
Burroughs

Reference
Manual

Priced Item
Printed in U.S.A.
April 1984

4,DW

Volume 2

5014954

Burroughs cannot accept any financial or other
responsibilities that may be the result of your use
oft his i n for mat ion 0 r '" of twa rem ate ria I ,
including direct, indirect, special or consequential
damages. There are no warranties extended or
granted by this document or software material.

You should be ver\' careful to ensure t hat the use of this
software material and/or information complies with the
laws, rules, and regulations of the jurisdictions with
respect to which it is llsed.

The information contained herein is subject to change
without notice. Revisions may be issued to advise of
such changes and/or additions.

Correspondence regarding this publication should he forwarded using the
Remarks form at the back of the manual, or may be addressed directly to
Corporate Documentation-\\'est, Burroughs Corporation, 1300 John Reed
Court, City of Industry, Calif,'rnia 91745, U.S.A.

System Architecture Reference \lanual, Volume 2

LIST OF EFFECTIVE PAGES

Page Issue

Title Original
ii Original
iii Original
iv Blank
v thru xix Original
xx Blank
xxi thru xxii Original
1-1 thru 1-22 Original
2-1 thru 2-15 Original
2-16 Blank
3-1 thru 3-101 Original
3-102 Blank
4-1 thru 4-22 Original
A-I thru A-II Original
A-12 Blank
B-1 thru B-83 Original
B-84 Blank
C-I thru C-I9 Original
C-20 Blank

5014954 iii

Section

2

5014954

System Architecture Reference Manual, Volume 2

TABLE OF CONTENTS

INTRODUCTION
DATA STRUCTURES
General Information .
Even-Tag Words . . .

Title

Operands (Single-and Double-Precision)
Numeric Operands
Boolean Operands

Tag-4 Word
Tag-6 Word (Uninitialized Datum)

Odd-Tag Words
Program Code Words
Segments
Descriptors

Data Segment Descriptor
Code Segment Descriptor
Stack Segments .
Paged Segments

References
Address Couples

Fixed-Fence Address Couples
Variable-Fence Address Couples

Lexical Links
IRW (Inditect Reference Word)

NIRW (Normal Indirect Reference Word)
SIRW (Stuffed Indirect Reference Word) .

IndexedDD (Indexed Data Descriptor)
PCW (Program Control Word)

Stack Linkage Words
MSCW (Mark Stack Control Word)
RCW (Return Control Word)
TSCW (Top of Stack Control Word)

Interlocks
Tags 8-15
STACK CONCEPT AND PROCESSOR STATE
General Information. . . .
Stacks
Code Segment Dictionaries
Addressing Granularity. .
Program Addressing Environment
Memory Addressing
Expression Stack
Executable Code Streams . . .
General Boolean Accumulators
Miscellaneous Processor State .
Processor State Component Sizes

Addressing Environment State:
Memory Addressing State:

Page

xxi
1-1
1-1
1-2
1-2
1-5
1-5
1-6
1-6
1-7
1-7
1-8
1-8
1-8
1-10
1-11
1-11
1-12
1-12
1-12
1-12
1-13
1-13
1-13
1-13
1-14
1-16
1-16
1-17
1-18
1-19
1-20
1-21
2-1
2-1
2-1
2-1
2-1
2-2
2-3
2-7
2-8
2-10
2-10
2-11
2-11
2-11

v

Section

2
(Cont)

3

vi

System Architecture Reference Manual, Volume 2

TABLE OF CONTENTS (Cont)

Title

Expression Stack State:
Code Stream Pointer:
Execution State Attributes:
General Boolean Accumulators:
Miscellaneous State: .

System Control
Programming Restrictions Due to Hidden State
OPERATOR SET AND COMMON ACTIONS
General Information.

Operators and Code Streams
Primary, Variant and Edit Operators
Common Actions : common action
Initial and Restart State

Checks and Interrupts
Expression Stack Control .

Top-of-Stack Push Operations
Top-of-Stack Pop Operations

Descriptor I ntcrpretation
ComputationaJ Operators

Numeric Operand Interpretation
Representable Operand Formats

Single-Precision Operand Values
Double-Precision Operand Values
Automatic Arithmetic Functions

Numeric-Interpretation Operators
Arithmetic Operators

ADD (add)
SUET (subtract)
l\1UL T (multiply)
MULX (extended multiply)
DIVD (divide)
IDIV (integer divide) . .
RDIV (remainder divide)
NORl\;1 (normalize)
AMIN and AMAX (arithmetic minimum and maximum)

Relational Operators . . .
LESS (less than)
LSEQ (less than or equal to)
EQUL (equal to)
NEQL (not equal to)
GREQ (greater than or equal to)
G R TR (greater than)

Range Test Operators
RNGT (rang,c test)
DRNT (dynamic range test)

Numeric Type··Transfer Operators
NTIA (intcgerize truncated)

Page

2-1[2
2-12
2-12
2-12
2-12
2-13
2-15
3-:1
3-:1
3-1
3-')
3-')
3-"
3-3
3-3
3-3
3-4
3-4
3-5
3-5
3-6
3-6
3-6
3-6
3-7
3-7
3-7
3-7
3-7
3-8
3-8
3-8
3-8
3-8
3-9
3-9
3-9
3-9
3-9
3-9
3-9
3-9
3-9
3-10
3-10
3-10
3-11


~~~-------------------------.---'-'--

System Architecture Reference Manual, Volume 2 

TABLE OF CONTENTS (Cont) 

Section Title Page 

3 NTGR (integerize rounded) 3-11 
(Cont) SNGL (set to single-precision rounded) 3-11 

SNGT (set to single-precision truncated) 3-11 
NTTD (integerize double-precision truncated) 3-11 
NTGD (integerize double-precision rounded) 3-12 
aISX (integer subset exception action) 3-12 

Scale Left 3-12 
SCLF (scale left) 3-13 
DSLF (dynamic scale left) 3-13 

Scale Right 3-13 
SCRS (scale right save) . 3-14 
DSRS (dynamic scale right save) 3-14 
SCRT (scale right truncate) 3-14 
DSRT (dynamic scale right truncate) 3-14 
SCRR (scale right rounded) 3-15 
DSRR (dynamic scale right rounded) 3-15 
SCRF (scale right final) 3-15 
DSRF (dynamic scale right final) 3-15 

Binary to Decimal Conversion 3-16 
BCD (binary convert to decimal) . . . 3-16 
DBCD (dynamic binary convert to decimal) 3-17 

Bit Vector Interpretation 3-17 
Logical Operators .. 3-17 

LNOT (logical not) 3-17 
LAND (logical and) 3-17 
LOR (logical or) 3-18 
LEQV (logical equivalence) 3-18 

Relational Operator . . 3-18 
SAME (logical equality) 3-18 

Literal Operators 3-18 
ZERO (insert literal zero) 3-18 
ONE (insert literal one) 3-18 
L T8 (insert 8 bit literal) 3-18 
LT16 (insert 16 bit literal) 3-18 
L T48 (insert 48 bit literal) 3-19 

Bit-Vector Type-Transfer Operators 3-19 
STAG (set tag) 3-19 
XTND (set to double-precision) 3-20 
JOIN (set two singles to double) 3-20 
SPL T (set double to two singles) 3-20 

Evaluate Word Structure Operators 3-21 
RTAG (read tag) 3-21 
CBON (count binary ones) 3-21 
LOG2 (leading one test) 3-21 

Word Manipulation Operators 3-21 
BSET (bit set) 3-22 
DBST (dynamic bit set) 3-22 

5014954 vii 



Section 

3 
(Cont) 

viii 

System Ar(,~ilccture Reference Manual, Volume 2 

TABLE OF CONTENTS (Cont) 

BRST (bit reset) 
DBRS (dynamk bit r~set) 

ISOL (field isolate) 
DISO (dynamic field isolate) 
INSR (field insert) 
DINS (dynamic field insert) 
FL TR (field transfer) 
DFTR (dynamic field transfer) 
CHSN (change sign) . . . . 

Linear Index-J:.'unction Operator 
OCRX (occurs index) 

Title 

Reference Generation and Evaluation Operators 
Double Precision 
Stack references "..... 
Lexical Link Evaluation 

aLXLK (evaluate lexical link) 
Lexical Chains . . . 0 • • • 

aLXCH (traverse lexical chain) 
Address-Couple Evaluation 
Evaluation of References . 
Address Couple Parameters 
NIRWs . . . . 
SIRWs . . . . 
IndexedWordDDs 
PCWs .... 
IRW Chains .. 
Reference Chains 
Reference Generation Operators 

NAMC (naIl1e call) 
LNMC (long name call) 
STFF (stuff) . . . . 
INDX (index) 
INXA (index by means of address-couple parameter) 
MPCW (make PC'V) 

Read Evaluation Operators 
aFOP (Fetch Operand) . 
aCPY (fetch copy descriptor) 
VALe (value call) . . . . . 
LVLC (long value call) . . . 
NXL V (index and load value) 
NXV A (index and load value by means of address-couple parameter) 
NXLN (index and load name) 
EV AL (evaluate) 
LOAD (load). . 
LODT (load transparent) 

Store Evaluation Operators 
Normal Store Operators 

STOO (store delete) 

Pag(~ 

3-22 
3-22 
3-2.3 
3-2.3 
3-2.3 
3-24 
3-24 
3-24 
3-25 
3-25 
J·25 
3-26 
3-26 
3-27 
3-27 
3-27 
3-27 
3-27 
3-27 
3-28 
3-28 
3-28 
3-28 
3-29 
3-29 
3-29 
3-30 
3-31 
3-31 
3-31 
3-32 
3-32 
3-33 
3-34 
3-34 
3-34 
3-34 
3-35 
3-36 
3-36 
3-37 
3-37 
3-38 
3-39 
3-39 
3-11-1 
3-41 
3-42 



----~~~~~------------------------------------------------------------, 

Section 

3 
(Cont) 

5014954 

System Architecture Reference Manual, Volume 2 

TABLE OF CONTENTS (Cant) 

Title Page 

STON (store non-delete) . . . . . . . . . . . . . 
ST AD and STAN (store delete/non-delete by means of address-couple) 

Overwrite Operators . . . . . 
OVRD (overwrite delete) 
OVRN (overwrite non-delete) 
RDLK (read and lock) . . 

Interlock Operators 
LOK (lock interlock) . . 
UNLK (unlock interlock) 
LOKC (conditional lock interlock) 
LKID (read interlock status) . . 

Processor State Operators ..... . 
Code Stream Pointer Distribution . . . . 

aPRCW (distribute PCW /RCW code-stream pointer) 
Branching Operators . . . . . . . . . . . . 
Static Branches . . . . . . . . . 

BRUN (branch unconditional) 
BRTR and BRFL (branch true and branch false) 

Dynamic Branches ...... . 
DBUN (dynamic branch unconditional) 
DBTR and DBFL (dynamic branch true and dynamic branch false) 

Stack Structure Operators. .... 
Display Update . . . . . . . . . 
Procedure Entry Operators 

MKST (mark stack) 
MKSN (mark-stack bound to name-call) 
IMKS (insert mark stack) 
ENTR (enter) .... 

Completing the MSCW 
Constructing the RCW . . . . 
Initializing the Processor State 

aACCE ( accidental entry) 
aINTE (interrupt entry) 

Procedure Exit Operators 
EXIT (exit) . . . . 
RETN (return) 

Stack Environment Operator 
MVST (move to stack) . . 

Dcactivating the Current Stack 
Changing the Addressing Environment and Identifying the Destination Stack 
Restoring Destination Stack State . . . 
Updating the Lexical Environment State 

Top-of-Stack Operators 
DLET (delete top-of-stack) 
EXCH (exchange top-of-stack) 
DUPL (duplicate top-of-stack) 
RSUP (rotate stack up) 

3-42 
3-42 
3-43 
3-43 
3-43 
3-44 
3-45 
3-47 
3-47 
3-48 
3-48 
3-48 
3-48 
3-48 
3-49 
3-49 
3-49 
3-49 
3-50 
3-50 
3-51 
3-51 
3-51 
3-51 
3-52 
3-53 
3-54 
3-54 
3-55 
3-55 
3-56 
3-56 
3-57 
3-59 
3-59 
3-61 
3-62 
3-62 
3-62 
3-62 
3-63 
3-63 
3-64 
3-64 
3-64 
3-65 
3-65 

ix 



x 

Section 

3 
(Cant) 

System Architecture Reference Manual, Volume 2 

TABLE OF CONTENTS (Cant) 

Title 

RSDN (rotate stack down) 
Processor-State Manipulation Operators 
Read State Operat ors . . . . 

RTFF (read true-false flip-flop) 
RSNR (rcad SNR). . . . . 
WHOI (read processor id) 
W ATI (read machine identification) 
RTOD (read time of day clock) 
RPRR (read processor register) . . 
RIPS (read internal processor state) 

Set State Operators . . . . . . 
SXSN (set external sign flip-flop) 
EEXI (enable external interrupts) 
DEXI (disable external interrupts) 
SINT (set interval timer) 
WTOD (write time of day clock) 
SPRR (set processor register) 
RUNI (indicate running) 
WIPS (write internal processor state) 
ZIC (zero Interrupt_Count) . 

Read and Set State Operator 
ROFF (read and reset overflow flip-flop) 

Data Array Operators 
Searching Operators . . . . . . 

LLLU (linked list lookup) 
SRCH (masked search for equal) 

Pointer Operators . . . . 
elernent_size conventions 
Length Argument . . 
Source Argument 
Short-Source Operators 
Destination Argument 
Source 1 and Source2 Arguments 
Overlapping Source and Destination 
Update Of Pointer-Operator Arguments 

Unconditional Character-Transfer Operators . 
Character-Relational Operators 
Scan Operators . . . . . . . . . . . 
Transfer Operators . . . . . . . . . 
Character-Sequence Compare Operators 
Character Set-Membership Operators 
Scan Operators . . . . . . . . . . 
Transfer Operators . . . . . . . . . . . . 
Character-Sequence Extraction Operator 
Character Translate Operator 
Decimal-Character-Sequence Operators 
Pack Operators . . . . . . . . . . 

Page 

3-65 
'. 3-65 

3-66 
3-66 
3-66 
3-66 
3-66 
3-67 
3-67 
3-67 
3-68 
3-68 
3-68 
3-68 
3-68 
3-68 
3-69 
3-70 
3-70 
3-70 
3-70 
3-70 
3-7] 
3-7] 
3-71 
3-72 
3-73 
3-73 
3-74 
3-74 
3-74 
3-75 
3-75 
3-75 
3-77 
3-78 
3-78 
3-79 
3-80 
3-81 
3-82 
3-82 
3-83 
3-83 
3-84 
3-85 
3-86 



Section 

3 
(Cont) 

5014954 

System Architecture Reference Manual, Volume 2 

TABLE OF CONTENTS (Cont) 

Unpack Operators. . . . 
Unpack-Unsigned Operators 
Unpack -Signed Operators . 
Input-Convert Operators 
Word-Transfer Operators . 
Word-Transfer-Protected Operators 
Word-Transfer-Overwrite Operators 
Primitive Display Operator 

SHOW (primitive display) 
Edit Operators . . . 
Enter-Edit Operators 

Table edit-mode 
Single edit-mode 

Enter-Table-Edit Operators 
Enter-Single-Edit Operators 
Edit-Mode Operators 
Character Skip Operators 

Skip Forward 
Skip Reverse . . . . 

Character Insert Operators 
INSU (insert unconditional) .. 
INSC (insert conditional) 
INOP (insert overpunch) 
INSG (insert display sign) 
ENDF (end float) . . . 

Character Move Operators 
MCHR (move characters) . 
MVNU (move numeric) . 
MINS (move with insert) 
MFL T (move with float) 

Miscellaneous Edit Operators 
RSTF (reset float flip-flop) 
ENDE (end edit) . . . . 

External Communication Operators 

Title 

CUIO (communicate with Universal I/O) 
SCNI/ SCNO (scan in/out) IDLE (idle until interrupt) 
P AUS (pause until interrupt) .... 
REMC (read external memory control) . 
WEMC (write external memory control) 

Miscellaneous Operators 
NOOP (no operation) . . . . . . . 
DLA Y (delay) . . . . . . . 
PUSH (push working stack onto activation record) 
STOP (unconditional processor halt) 
HAL T (conditional processor halt) 
NVLD (invalid operator) 
ASRT (assert) .... . . . . 

l:tage 

3-87 
3-87 
3-88 
3-89 
3-90 
3-90 
3-90 
3-91 
3-91 
3-91 
3-92 
3-92 
3-92 
3-92 
3-94 
3-95 
3-95 
3-95 
3-95 
3-96 
3-96 
3-96 
3-96 
3-96 
3-97 
3-97 
3-97 
3-97 
3-98 
3-98 
3-99 
3-99 
3-99 
3-99 
3-99 
3-99 
3-99 
3-99 
3-100 
3-100 
3-100 
3-100 
3-100 
3-101 
3-101 
3-101 
3-101 

Xl 



System Architecture Reference Manual, Volume 2 

TABLE OF CONTENTS (Cont) 

Section Title 

3 (Cont) VARI (introduce variant operator) 

xii 

4 INTERRUPTS... 
General Information. . . 

Interrupt Parameters . . 
Interrupt ID Parameter 

Resunlption Conditions 
P2 parameter. . 

Superhalt . . . . . . . . 
Interrupt Definition . . . . . 

Operator Dependent Interrupts 
M CP Service . . 

Presence Bit 
Paged Array 
Binding Request 
Stack Overflow 
Block Exit . . 
Locking and Unlocking 

Error Reporting. . . . . 
Invalid Operator . . . 
Undefined Operator 
Invalid Stack Argument 
Invalid Argument Value 
Invalid Code Parameter 
Invalid Reference 
Invalid Reference Chain . . 
Invalid Object 
Invalid Index . 
Memory Protect 
Divide by Zero 
Exponent-Overflow 
Exponent-Underflow 
Precision Loss 
Integer-Overflow . . 
Stack-Underflow . . 
Stack Structure Error 
Code Segment Error 
Invalid Program Word 
Page Structure Error 
False Assertion 

Alarm Interrupts . . . . 
Invalid Address 
Uncorrectable Memory Error 
Loop Timer 
Hardware Error 

External Interrupts 
A OPERATOR SET 

General Information . 

Pal!;e 

3-101 
4-1 
4-1 
4-1 
4-1 
4-6 
4-7 
4-7 
4-8 
4-8 
4-10 
4-10 
4-10 
4-11 
4-] 2 
4-12 
4-12 
4-12 
4-13 
4-13 
4-13 
4-14 
4-14 
4-14 
4-14 
4-16 
4-16 
4-17 
4-17 
4-17 
4-18 
4-18 
4-18 
4-19 
4-19 
4-20 
4-20 
4-20 
4-21 
4-21 
4-21 
4-21 
4-22 
4-22 
4-22 

. A-I 
A-I 



B 

5014954 

System ~rchitecture Reference Manual, Volume 2 

TABLE OF CONTENTS (Cont) 

Title 

OPERATOR REFERENCE SUMMARIES 
General Information. . . . . . . . . 

The Code-Stream Encoding Of The Operator . . 
Clients . . . . . . . . . . . 
Stack State Transformation . . . . . . . . 
Interrupts That May Be Generated . 
Symbols Used In This Appendix . . . 

Operator and Common Action Listing 
aACCE ..... 
aCPY 
aFOP .. 
aINTE 
aISX . 
aLXCH 
aLXLK . 
aPRCW 
ADD .. 
AM AX 
AMIN 
ASRT 
BCD .. 
BRFL 
BRTR 
BRST 
BRUN 
BSET. 
CBON 
CEQD 
CEQU 
CGED 
CGEU 
CGTD 
CGTU 
CHSN 
CLED 
CLEU .... 
CLSD 
CLSU 
CNED 
CNEU 
CUIO ..... 
DBCD 
DBFL 
DBRS 
DBST 
DBTR 
DBUN 

Palle 

B-1 
B-1 
B-1 
B-1 
B-1 
B-1 
B-2 
B-3 
B-3 
B-3 
B-4 
B-4 
B-5 
B-5 
B-6 
B-6 
B-7 
B-7 
B-7 
B-8 
B-8 
B-8 
B-9 
B-9 
B-9 
B-9 
B-9 
B-I0 
B-I0 
B-I0 
B-ll 
B-ll 
B-ll 
B-l1 
B-ll 
B-l1 
B-12 
B-12 
B-12 
B-12 
B-12 
B-13 
B-13 
B-13 
B-14 
B-14 
B-14 

xiii 



System Architecture Reference Manual, Volume 2 

TABLE OF CONTENTS (Cant) 

Section Title Pa~,e 

B (Cont) DEXI B-14 
DFTR B-15 
DINS. B-15 
DISO B-16 
DIVD B-16 
DLAY B-16 
DLET B-17 
DRNT B-17 
DSLF B-17 
DSRF B-18 
DSRR B-18 
DSRS B-18 
DSRT B-19 
DUPL B-19 
EEXI B-19 
ENDE B-19 
ENDF B-20 
ENTR B-21 
EQUL B-22 
EVAL B-22 
EXCH B-22 
EXIT. B-23 
EXPU B-24 
EXSD B-24 
EXSU B-25 
FLTR B-25 
GREQ B-25 
GRTR B-25 
HALT B-26 
ICLD. B-26 
ICRD B-26 
ICUD B-26 
ICVD B-27 
ICVU B-27 
IDIV B-27 
IDLE. B-27 
IMKS B-28 
INDX B-29 
INOP B-30 
INSC B-30 
INSG B-31 
INSR B-31 
INSU B-31 
INXA B-32 
ISOL B-32 
JOIN B-33 
LAND B-33 

xiv 



System Architecture Reference Manual, Volume 2 

TABLE OF CONTENTS (Cont) 

Section Title Pa~e 

B (Cont) LEQV B-33 
LESS B-33 
LKID. B-34 
LLLU B-34 
LNMC B-35 
LNOT B-35 
LOAD B-35 
LODT B-3-6 
LOG2 3-36 
LOK B-36 
LOKC B-37 
LOR B-37 
LSEQ B-37 
LT8 B-37 
LT16 B-37 
LT48 B-38 
LVLC B-38 
MCHR B-38 
MFLT B-38 
MINS B-39 
MKSN B-39 
MKST B-39 
MPCW B-40 
MULT B-40 
MULX B-40 
MVNU B-41 
MVST 3-42 
NAMC B-43 
NEQL B-43 
NOOP B-43 
NORM B-43 
NTGD B-44 
NTGR B-44 
NTIA B-44 
NTTD B-44 
NVLD B-45 
NXLN B-45 
NXLV B-46 
NXVA B-47 
OCRX B-47 
ONE B-48 
OVRD B-48 
OVRN B-48 
PACD B-48 
PACU B-49 
PAUS B-49 
PKLD B-49 

5014954 xv 



Sectlon 

B (Cont) 

xvi 

PKRD 
PKUD 
PUSH 
RDIV 
RDLK 
REMC 
RETN 
RIPS. 
RNGT 
ROFF 
RPRR 
RSDN 
RSNR 
RSTF. 
RSUP 
RTAG 
RTFF 
RTOD 
RUNI 
SAME 
SCLF. 
SCRF 
SCRR 

System Architecture Reference Manual, Volume 2 

TABLE OF CONTENTS (Cant) 

Title 

SCRS ... 
SCRT 
SEQD 
SEQU 
SFDC 
SFSC . 
SGED 
SGEU 
SGTD 
SGTU 
SHOW 
SINT . 
SISO . 
SLED 
SLEU 
SLSD. 
SLSU . 
SNED 
SNEU 
SNGL 
SNGT 
SPLT. 
SPRR 
SRCH 
SRDC 

Page 

B-49 
B-SO 
B-50 
8-50 
B-51 
3-51 
B-52 
B-52 
B-53 
13-53 
B-53 
B-S4 
B-S4 
B-54 
B-54 
B-55 
B-S5 
B-5S 
B-SS 
B-56 
B-56 
B-S6 
B-S7 
B-S7 
B-S7 
B-58 
B-S8 
B-S8 
B-59 
B-S9 
B-59 
B-59 
B-,59 
B-60 
B··60 
B··61 
B··61 
B··61 
B··62 
B··62 
B··62 
B··62 
B··62 
B··63 
n,·63 
R·64 
B-64 
B-64 



Section 

B (Cont) SRSC. 
STAD 
STAG 
STAN 
STFF . 
STOD 
STON 
STOP 
SUBT 
SWFD 
SWFU 
SWTD 
SWTU 
SXSN 
TEED 
TEEU 
TEQD 
TEQU 
TGED 
TGEU 
TGTD 
TGTU 
TLED 
TLEU 
TLSD 
TLSU 
TNED 
TNEU 
TRNS 
TUND 
TUNU 
TWFD 
TWFU 
TWOD 
TWOU 
TWSD 
TWSU 
TWTD 
TWTU 
UNLK 
UPLD 
UPLU 
UPRD 
UPRU 
UPUD 
UPUU 
USND 
USNU 

5014954 

--_._----------------------'----' 

System Architecture Reference Manual, Volume 2 

TABLE OF CONTENTS (Cant) 

Title Page 

B-65 
B-65 
B-66 
B-66 
B-66 
B-67 
B-68 
B-68 
B-68 
B-69 
B-69 
B-69 
B-70 
B-70 
B-70 
B-71 
B-71 
B-72 
3-72 
B-72 
B-72 
B-72 
B-72 
B-73 
B-73 
B-73 
B-73 
B-73 
B-74 
B-75 
B-75 
B-76 
B-76 
B-77 
B-77 
B-78 
B-78 
B-79 
B-79 
B-79 
B-79 
B-79 
B-79 
B-80 
B-80 
B-80 
B-81 
B-81 

xvii 



System Architecture Reference Manual, Volume 2 

-_._------------

Section 

B (Cont) 

C 

xviii 

TABLE OF CONTENTS (Cant) 

VALC 
VARK 
WATI 
WEMC 
WHO I 
WIPS 
WTOD 
XTND 
ZERO 
ZIC 

Title 

OPERATOR DEPENDENT INTERRUPT REFERENCE SUMMARIES 
General Information 

Binding Request 
Block Exit 
Code Segment Error 
Divide by Zero . . 
Exponent Overflow 
Exponent Underflow 
False Assertion . . 
Integer Overflow 
Invalid Argument Value 
Invalid Code Parameter 
Invalid Index 
Invalid Object 
Invalid Operator 
Invalid Reference 
Invalid Reference Chain 
Invalid Stack Argument 
Locking. . . . . . . 
Memory Protect 
Paged Array . . . . 
Page Structure Error 
Precision Loss 
Presence Bit . . . . 
Stack Overflow . . . 
Stack Structure Error 
Stack Underflow 
Undefined Operator 
Unlocking . . . . 

Page 

B-81 
B-81 
B-82 
B-82 
B-82 
B-82 
B-83 
B-83 
B-83 
B-83 
C-l 
C-l 
C-2 
C-2 
C-2 
C-2 
C-2 
C-3 
C-3 
C-3 
C-S 
C-6 
C-6 
C-B 
C-9 
C-9 
C-IO 
C-IO 
C-13 
C-13 
C-14 
C-lS 
C-16 
C-16 
C-17 
C-IB 
C-IB 
C-19 
C-19 



Figure 

1- 1 
1-2 
1-3 
1-4 
1-5 
1-6 
1-7 
1-8 
1-9 
1-10 
1-11 
1-12 
1-13 
1-14 
1-15 
1-16 
1-17 
1-18 
2-1 
2-2 
2-3 
2-4 
4-1 
4-2 
4-3 

Table 

1-1 
A-I 
A-2 

5014954 

System Architecture Reference Manual, Volume 2 

LIST OF ILLUSTRATIONS 

Word Format . . . . . . . . 
Single Precision Operand Format 
Double Precision Operand Format 
Boolean Operand Format 
Tag-4 Word Format. . . . 
Tag-6 Word Format. . . . 
Program Code Word Format 
Data Descriptor Format 
Code Segment Descriptor Format 

Title 

Normal Indirect Reference Word Format 
SIRW Word Format ....... . 
Indexed Word Data Descriptor Format 
Indexed Character Data Descriptor (Pointer) Format 
Program Control Word Format . . . . . 
Mark Stack Control Word (MSCW) Format 
Return Control word (RCW) Format 
Top Of Stack Control Word (TSCW) Format 
Interlock Control word Format 
Addressing environment example . . 
Menlory Environment Mapping 
Topmost Activation Record Example 
Processor Code Stream Pointer 
P-l Operator Dependent Interrupt (001) ID Parameter Format 
P-l Alarm Interrupt ID Parameter Format . 
P-l External Interrupt 10 Parameter Format . . . . . . . 

LIST OF TABLES 

Address Couple Fence Decoding 
Operators, Alphabetical List 
Operators, Numerical List 

Title 

Page 

1-1 
1-3 
1-4 
1-6 
1-7 
1-7 
1-8 
1-9 
1-1 1 
1-13 
1-14 
1-15 
1-16 
1-1 7 
}-18 
1-19 
1-20 
1-21 
2-4 
2-5 
2-8 
2-9 
4-2 
4-3 
4-4 

Page 

1-12 
A-I 
A-6 

xix 





System Architecture Reference Manual, Volume 2 

------------------------------~---~------.-

INTRODUCTION 

This manual describes and defines an architecture used in Burroughs Corporation data processing sys­
tem products. Products that include architecture described in this manual are essentially compatible 
with each other, including four generations of prior system products. It is intended that this tradition 
extend to systems developed in the future. 

"Essentially compatible", as used in this manual, means that programs written to process on one system 
also process on other systems sharing the same architectural design. Any reprogramming or adaptation 
to process a program on a similar system architecture will be of a minor nature. Programs originally 
written for execution on a prior generation system may require adaptation to account for present-day 
peripheral devices, which did not exist when the prior system architecture was designed. This is also 
true when adapting a present-day program to execute on a prior system design architecture. 

This architecture is designed for use in systems with different hardware characteristics, called 
"implementations" in this manual. System implementations may differ in the manner or method of 
handling internal operations or reporting system status information. When "implementation" is used 
in this Inanual, it implies a possible variance between systems with different hardware characteristics. 
"Implementation" variances may explain why particular programs execute differently on systems that 
use this COlllmon architecture design. 

This manual is designed to be used as the second volume of a two-volume System Reference Manual, 
for all systems that utilize this common architecture design. The first volume in a System Reference 
Manual set describes the characteristics of the hardware used in the system, and identifies the system 
designation. This second volume then describes the common operating system concepts and require­
ments. 

This document is organized as four sections, followed by three reference appendixes. Sections are num­
bered and appendixes listed alphabetically. 

Section 1: Data Structures 
This section describes the data structures and formats used in this architecture. All structures and 
formats, including system control structures and formats, are given. 

Section 2: Stack Concept and Processor State 
This section describes the concepts and operating characteristics of a stack. The stack links the 
hardware and software of a system together, to initiate Activation Records of a program or pro­
cess upon the system. Processor state (the system status required by the architecture) and memory 
addressing environment of the architecture are also described in this section. 

Section 3: Operator Set and Common Actions 
This section defines all operators in the architecture repertoire. Common Actions, which are gener­
al functions of the common architecture, are also described. 

Section 4: Interrupts 
Interrupts, generated by the architecture to document and define events and errors, are defined 
and described in this section. 

Appendix A: Operator Code Lists 
This appendix lists all operators of the architecture, in alphabetical order and by numeric-code val­
ue. It also identifies the mnemonic terms that distinguish operator functions. The system operating 
Mode for each operator code is specified. 

5014954 xxi 



System Architecture Reference Manual, Volume 2 
Introduction 

.. _------_._---------------------_._--------

Appendix B: Operator Reference Summaries 
This appendix lists operator mnemonics in alphabetic order. For each operator, the changes to the 
top of the stack resulting from execution of the operator are given. In addition, all interrupts that 
can be generated during execution of an operator are identified. For each interrupt that is listed, 
the Inost probable cause is given. 

Appendix C: Interrupt Reference Summaries 
This appendix itemizes all Operator Dependent Interrupts (001), in alphabetic order. For each 
001, operators (listed in alphabetical order) that generate that 001, along with the most probable 
cause for the interrupt, is given. 

From tirne-to-time this manual digresses to provide pragmatic commentary. Pragmatic commentaries 
describe practical aspects and as such may represent interruptions of technical subject descriptions. The 
following convention is used to inform a reader of the start of pragmatic discussion. Pragmatic discus­
sions terrninate at new topic headings, which change the subject. The following is an example of a 
pragmatic commentary: 

Pragmatic Notes 

Pragmatic Notes Subject : Data Types 

This architecture supports a number of data types that can be uniquely distinguished from each other 
by their structure; all such data types are defined in this section. This architecture supports additional 
data types that are distinguished by context; some of these are defined in this section, while the remain­
der are defined along with the applicable operators. 

xxii 



System Architecture Reference Manual, Volume 2 

SECTION 1 
DATA STRUCTURES. 

GENERAL INFORMATION 

Words are the fundamental unit of data. A word consists of a tag field and an information field. Fig­
ure 1-1 shows the structure of a word and identifies the fields and bits within the word structure. 

A tag field consists of four binary bits. The value of the tag field bits provides the general interpreta­
tion of data contained in the word information field. There are 16 different tag field values possible, 
but all possible values are not currently used. Some tag field values define words that have variable 
interpretations, but in these cases, information field bits further define the particular interpretation that 
applies to that word. 

Words have 48 information field bits. The information field bits are numbered 47 down to zero, from 
the high-order bit down to the low-order bit. Within a word, the 48 bits are subdivided into smaller 
bit fields. A smaller field within the information field of a word is denoted [first:length]. First is the 
bit number of the high-order bit in the field (first :5 47), and length is the field length in bits (length 
< = 48). Fields are often given names, such as "stack_number" for" [47: 12]". A field of an object, 
or the class formed by applying the field specification to a class of objects, is denoted by suffixing 
the field name or specification to the object or type name with an interposed dot: x. [46: 1] or 
SIRW .stack_number. 

TAG 
FIELD 

3 

51 

2 
50 

1 
49 

0 
48 

MV5353 

47 43 39 

46 42 38 

45 41 37 

44 40 36 

INFORMATION FIELD 

35 31 27 23 19 15 11 7 3 

34 30 26 22 18 14 10 6 2 

33 29 25 21 17 13 9 5 1 -.-

32 28 24 20 16 12 8 4 0 

Figure 1-1. Word Format 

When necessary, fields are wrapped around from the lowest-order bit to the highest-order bit. If length 
> first + 1 then length - (first + 1) bits are concatenated starting from the highest-order bit (47). The 
following sequence illustrates the field [first:length] in the case where length > first + 1: 

47,46, '" ,first, , ........ ,las t, ... .... .... ,1 

<--------- length ---------> 

5014954 1-1 



System Architecture Reference Manual, Volume 2 
Data Structures 

Word types are distinguished by tag value and frequently by additional type bits in the word. This 
section defines the data type name, tag and type bit identification, field interpretation, and semantics 
of each word type. 

In the remainder of the document, word types will be referred to by type name. Because the data type 
double-precision consists of two words, the term "item" is used (instead of "word") to refer to an entity 
whose type n1ay be double-precision. 

EVEN,-TAG WORDS 

Words with even tag values serve primarily as computation arguments, rather than as reference argu­
ments or control structures. 

An important aspect of such words is that they can be stored over in memory by normal store (as 
opposed to overwrite) operations, whereas all odd tagged words are protected from normal writes. 

Operands (Single-and Double-Precision) 

The great majority of data items dealt with by programs are operands, of which there are two types. 
A single-precision operand is a single word with a tag of 0 (see figure 1-2). A double-precision operand 
is a pair of consecutive words, both with a tag of 2 (the "first" word is always the word at the lower 
memory address whenever the operand is stored in memory). Figure 1-3 shows a double-precision oper­
and. 

Throughout this document, the term operand is used solely to refer to the type union single and dou­
ble-precision. 

Neither operand type has a unique interpretation applied to it. Operators, according to their function, 
apply different interpretations. For example, operands are interpreted as numeric values, bit vectors, 
and character sequences by arithmetic, word manipulation, and pointer operators, respectively. Numer­
ic and Boolean operands are generated and interpreted by a wide variety of operators, and are therefore 
defined here. Section 3 defines additional operand interpretations with the operator groups that apply 
them. 

]··2 



System. Architecture Reference Manual, Volume 2 
Data Structures 

_____________________________________ '_'_' ____ H ___ ' __ _ 

0 
51 

0 
50 

0 
49 

0 
48 

MV5354 

mant_sign 
exp_sign 
exponent 
mantissa 

5014954 

44 

[46: 1] 
[45: 1] 
[44: 6] 
[38:39] 

39 35 15 

38 34 

37 33 

28 24 20 16 12 

Mantissa sign (0 = posItIve, 1 = negative) 
Exponent sign (0 = positive, 1 = negative) 

11 

8 

The power of eight to which the mantissa is scaled 
The magnitude of the number before scaling 

Figure 1-2. Single Precision Operand Format 

3 

6 2 

5 

4 o 

1-3 



0 
51 

0 

1ST WORO 50 

1 
49 

0 
48 

0 
51 

0 

System Architecture Reference Manual, Volume 2 
Data Structures 

44 

.7 43 39 ,-~ _. 31 27 23 19 

14 

12 

15 

2ND WORlD 50 ~HI EXP 2 38 34 30 26 MANTISSA 14 

1 
49 

0 
48 

MV5355 

1st word: 

mant_sign 
exp __ sign 
exponent 
mantissa 

2nd word: 

hL __ order _exp 
mantissa 

45 

44 

[46: 1] 
[45: 1] 
[44: 6] 
[38:39] 

41 

4Q 

[47: 9] 
[38:39] 

37 33 .~ r----.~ 21 17 13 ,., ~-. 

36 32 28 24 20 16 12 -

Mantissa sign (0 = positive, 1 = negative) 
Exponent sign (0 = pOSItIve and 1 = negative) 
The low-order 6 bits of the exponent 
The integral portion of the mant'issa 

The high-order 9 bits of the exponent 
The fractional portion of the mantissa 

}---igure 1-3. Double Precision Operand F'ormat 

11 3 

10 6 2 

9 5 

8 4 o 

11 7 3 

10 6 2 

9 5 1 

8 4 0 

In processor state, a double-precision operand is treated as a 96-bit operand with a single 4-bit tag 
equal to 2. When a tag-2 item is pushed onto the stack, the high-order and low-order words are written' 
in that order, both with tags of 2. When a lag-2 word is popped from the expression stack as an argu·· 
ment, the next word is also popped from the stack and the two words joined to form the double-preci­
sion item; the word higher in the stack is taken as the low-order half of the double. If the second 
word popped docs not have tag =- 2, the action is undefined. 

1-4 



Numeric Operands 

System Architecture Reference Manual, Volume 2 
Data Structures 

Many operators interpret operands as numeric values. The structure of the numeric data is defined in 
this section; details of numeric interpretation are found with the operator descriptions in Numeric Op­
erand Interpretation. 

A single-precision floating-point operand is represented as a word with the following fields: 

mant_sign 
exp_sign 
exponent 
mantissa 

[47: 1] 
[46: 1] 
[45: 1] 
[44: 6] 
[38:39] 

Not used 
Mantissa sign (0 = positive, 1 = negative) 
Exponent sign (0 = positive, 1 = negative) 
The power of eight by which the mantissa is scaled 
The integer magnitude of the number before scaling 

A single-precision floating-point operand with exponent = ° is used as the canonical representation 
of a single-precision integer; an operand in this form is called a single_integer. 

The form "k-bit integer" (where k is an integer in {I to 39}) is used to specify an operator output 
value in which field [47:48-k] contains zero. The same term is used to specify an operator input value 
in which fields [46: 1] and [44:45-k] contain zero, or field [44:45] contains zero. (Bits 47 and 45 are 
insignificant in integer representations; bit 46 is insignificant if the mantissa value is zero.) 

A double-precision floating-point operand is represented as two words with the following fields: 

First word: 

mant_sign 
exp_sign 
exponent 
mantissa 

Second word: 

hi_order _exp 
mantissa 

[47: 1] 
[46: 1] 
[45: 1] 
[44: 6] 
[38:39] 

[47: 9] 
[38:39] 

Not used 
Mantissa sign (0 = POSItIve, 1 = negative) 
Exponent sign (0 = positive and 1 = negative) 
The low-order 6 bits of the exponent 
The integral portion of the mantissa 

The high-order 9 bits of the exponent 
The fractional portion of the mantissa 

A double-precision floating-point operand with exponent = 13 is used as the canonical representation 
of a double-precision integer; an operand in this form is called a double_integer. 

Boolean Operands 

Figure 1-4 shows the word format of a Boolean operand. Some operators generate and other operators 
consume operands interpreted as Boolean values. This architecture represents the Boolean values TRUE 
and FALSE as binary 1 and 0, respectively. The terms True and False are used to specify Boolean 
values: In the specification of a stack output from an operator, True and False are defined as the I-bit 
integer values 1 and 0, respectively. In the specification of a stack argument for an operator, True 
and False are defined as operands with bit [0: 1] equal to 1 or 0, respectively. Boolean interpretation 
ignores field [47:47] of any operand and the second word of a double-precision operand. 

5014954 1-5 



System Architecture Reference Manual, Volume 2 
Data Structures 

Boolean operands are generated by the relational operators, among others. Operands are interpreted 
as Boolean values by the branch operators and the ASRT (assert) operator. The logical operators do 
not interpret Boolean values; rather, they perform Boolean arithmetic upon all the bits of an item, 
in parallel. 

o 
~.--!!. 

o 

T 

o 
48 

MV5356 

lag (0: single-precision, 
2: double-precision (2nd word ignored)) 

[ 0: 1] Boolean value (0 = false, 1 = true) 

}'igtlrc 1-4. Boolean OI)Crand Format 

Tag-4 Word 

Tag-4 words are data words, but the only interpretation applied to them is as a 48-bit vector by a 
. class of computational operators. Figure 1-5 shows the format of a tag-4 word. 

Tag-4 words cannot normally be fetched to the expression stack a~: operands, and they are not valid 
arguments for arithmetic computational operatcrs. However, they may be stored over by normal store 
operators. 

This architecture does not exploit the tag value 4; the value is being held in reserve for applicat.ion 
in future levels of this architecture. Software uses some configurations of tag-4 data as flags for various 
purposes. 

Tag-6 Word (Uninitialized Datum) 

Figure 1-6 shows the format of a tag-6 word. "Uninitialized datum" and "lag-6 \\,ord" are synonymous 
type names for a word whose tag is 6. 

Tag-6 words are data words, but the onl) interpretation applied to them IS as a 48-bit vector by a 
class of computational operators. 

Tag-6 words cannot normally be fetched to the expression stack as operands, and they are not valid 
arguments for arithmetic computational operators. Hovv'ever, they may be stored over by normal store 
operators. 

1-6 



0 
51 47 

1 
50 46 

0 
49 45 

0 
48 44 

MV5357 

0 
51 47 

1 
50 46 

1 
49 45 

0 
48 44 

MV5358 

System Architecture Reference Manual, Volume 2 
Data Structures 

43 39 35 31 27 23 19 15 

42 (MAY BE INTERPRETED AS A BIT VECTOR) 

41 37 33 29 25 21 17 13 

40 36 32 28 24 20 16 12 

Figure 1-5. Tag-4 Word Format 

43 39 35 31 27 23 19 15 

42 3 (MAY BE INTERPRETED AS A BIT VECTOR) 

41 37 33 29 25 21 17 13 

40 36 32 28 24 20 16 12 

Figure 1-6. Tag-6 Word Format 

11 7 ~! 

10 6 2 

9 5 , - . ...- -

8 4 0 

11 7 3 

10 6 2 

9 5 1 

8 4 0 

This architecture defines minimal semantics for tag-6 words. One utility is implied by the type name: 
a tag-6 word can be used as the initial value of a variable; an operator expecting an operand or descrip­
tor will generate an interrupt, but a normal store operator can be used to assign an operand value 
to the variable. It is conventional for software to use the value zero with tag = 6 for this purpose; 
other tag-6 values are used by software to create distinctive flags for various purposes. 

ODD-TAG WORDS 

Program code words, program and data control words, and memory address reference words have odd 
tag field values. Words with odd tag values are protected against accidental destruction (by overwriting) 
while they are present in actual memory (but not in virtual memory). This architecture uses odd tag 
words to implement program control and direction over user programs, by means of a Master Control 
Program (MCP). Control functions such as the manual system initialization process and the interrupt 
control mechanism use odd tag words to implement their functions. 

PROGRAM CODE WORDS 
Variable length operator sequences are stored in arrays of program code words called code segments. 
Each program code-word contains six 8-bit containers called syllables, numbered zero to five from 
high-order to low-order. Figure 1-7 shows the format of a program code-word. The mapping of pro­
gram codes into code words is defined in section 3. 

5014954 1-7 



0 
51 

0 
50 

1 
49 ----

1 
48 

MV5359 

47 

System Architecture Reference ~,1anual, Volume 2 
Data Structures 

43 39 35 31 27 23 19 15 11 

SYLLABLEI2 
~ = 

SYLLABLE 4 r- ..;. ~SYLLABLE§ _SYLLABLE ~ _SYLLABLEQ 

0 1 2 3 4 

45 41 37 33 29 25 21 17 13 9 

44 40 36 32 28 24 20 16 12 8 

}'igure 1-7. Program Code Word Format 

SEGMENTS 

7 3 

SYLLABLE2 - -
5 

5 1 

4 0 

A group of memory words may be associated together to form a "segment". This document refers to 
two classes of segments, "virtual" and "actual". Segments may contain either data or code. Virtual seg­
ments are defined by special objects called Data Segment Descriptors (DDs) and Code Segment Descrip­
tors (CSDs). An actual segment is a contiguous group of memory words, and is defined by an unpaged 
Data Segment Descriptor or a Code Segment Descriptor. 

Virtual data segments may be unpaged (represented by one actual segment of arbitrary length) or paged 
(subdivided into fixed-size actual segments, with a possibly shorter last page). Code segments are always 
unpaged. 

Pragmatic Notes 

Virtual/ Actual Segments 

In this architecture, both virtual and actual segments are defined by descriptors. This useful distinction 
exists between paged and unpaged data descriptors. Except in this context, the adjectives are seldom 
used. 

DESCRIPTORS 

Memory is organized into variable-size segments that are either data segments or program code seg­
ments. Data segments are used to implement a program's vinual memory segments and to contain data 
structures such as stacks and Segment Dictionaries. Program code segments are used to contain the 
operator sequences of a program. Both data segments and code segments are described by descriptors. 
Data-segment descriptors and code-segment descriptors arc described in their respective subsections. 

Data Segment Descriptor 

A virtual data-segment is an array of clements, where an clement of the array is a single word, a double 
word pair, or a 1/ sub-word" character requiring 4 or 8 bits. Data-segment descriptor (DO) is the word 
type that describe data segments. The tag of a DO is 5. l"igure 1-8 shows the DO word format. 

1-8 



--------------------------------------------------------

System Architecture Reference Manual, Volume 2 
Data Structures 

Memory management of the data-segment utilizes a present bit, an address field, and a copy bit, which 
distinguishes two classes of DDs: original and copy descriptors. Copies may be either indexed or unin­
dexed. The word "copy" is usually omitted in describing an indexed descriptor, because any indexed 
DO is a copy. 

If the array is present, the address field of a descriptor contains the base memory location of the data­
segment. The important distinction between original and copy descriptors exists for absent arrays: the 
address field of an absent original contains a software-encoded value; the address field of an absent 
copy contains the nominal address of an original descriptor for the array. 

0 
51 

1 
50 

0 
49 

1 
48 

MV5360 

present 
copy 
indexed 
paged 
read_only 
element_size 

length 
address 

PR 
47 

C 
46 

0 
45 

PG 
44 

RO 
43 

S 42 

I 
Z 
E 41 

40 

[47: 1] 
[46: 1] 
[45: 1] 
[44: 1] 
[43: 1] 
[42: 3] 

[39:20] 
[19:20] 

39 35 31 27 23 19 15 11 

38 LENGTH 26 22 18 ADDRESS 

37 33 29 25 21 17 

36 32 28 24 20 16 

Present bit (0 = absent, 1 = present) 
Copy bit (0 = original, 1 = copy) 
Indexed bit (0: unindexed) 

13 

12 

Paged bit (0 = non-paged, 1 = paged) 
Read-only bit (0 = read/write, 1 = read-only) 

9 

8 

The type of array element (0 single precision, 1 = 
double-precision, 2 = hex, 4 = EBCDIC, 3,5,6,7 are 
invalid) 
The number of e1ements in the array 

7 

6 

5 

4 

present: nominal address of the base word of the data­
segment; absent copy: nominal address of the associated 
original descriptor; absent original: encoded by software 

Figure 1-8. Data Descriptor }'ormat 

J 

2 

, 

0 

The element_size field of the DO specifies the type of array element: single-precision, double-preci­
sion, EBCDIC (8-bit), and hex (4-bit). The terms word descriptor and WordDD are used for descriptors 
whose element_size values are single or double-precision; the terms character descriptor and CharDD 
are used for descriptors whose element_size values are EBCDIC or hex. The terms SingleDD and 
DoubleDD are used for WordDDs with element_size single-and double-precision, respectively. 

The read_only bit in a DO can be set to prevent use of the DO for write access to the data. 

Indexed DDs are actually references, which are described later in this section. 

Unindexed DDs have a length field and a paged indicator. The length field contains the number of 
elements in the array; the number of words in the array may be deduced from element_size and 
length. 

5014954 1-9 



System Architecture Reference Manual, Volume 2 
Data Structures 

If the paged bit is 0, there is no distinction between the "virtual" segment and an "actual" segment; 
when the OD is present it describes a single area of contiguous nominal memory addresses. If the paged 
bit is 1, the virtual-segment is paged, in which case it consists of a nurnber of pages each page_size 
words long (the last page may be shorter). In a present paged descriptor the address field contains the 
memory address of the first word of a page-table segment. which contains descriptors for the individual 
pages. These page descriptors are original singIc-\vord unpaged DDs. \Alhen a paged descriptor is in­
Jexed, another level of indexing is performed so that the resulting indexed descriptor references the 
specified clement of the specified page (see the INDX operator for a discussion of the .indexing of 
paged descriptor'i). 

Generally, there is one original DO for a segment, and copies are created by most of the operators 
that fetch DDs to the top of the stack. However, functional operator definition does not require pre­
cisely one original D D for each array. Furt hermore, an original D D may be brought to the top of 
the stack \vithout being transformed into a copy (but only the LODT and RDLK operators perform 
this action). 

Operators that access data through descriptors depenJ on the following assumptions (the operators pro­
duce undefined results if the assumptions arc not true): 

1. The number of memory words occupied by a single unpaged segment is enough to hold aLl of 
the array elements of any unindexcd descriptor referencing the array. That is, letting L = 
length from the data descriptor, W = number of words, and E = element size, then 

for E 
for E 
for E 
for E 

single, \V = L; 
double, vV = 2*L; 
EBCDIC, \V :.:: (L + 5) DIY 6; 
hex, W == (L+ll) DIY 12. 

2. The words directly before and after the actual segment have odd tags. 

The two ways of determining the boundaries of data segments (the length in the unindexed descriptor 
and the odd-tagged words at the actual segment boundaries) are used by the operator set as follows: 

1. The indexing operators use the unindexed descriptor length. 
2. The operators that fetch and store data through indexed descriptors (other than the pointer op-

erators) make no check at all (the previous index operation '5 check is trusted). 
3. Set membership tables and translation tables are not checked. 
4. The word transfer overwrite operators make no check. 
5. The character reverse-skip edit operators can check the index in the pointer. 
6. All other pointer operators usc the odd-tagged boundary words. 

This specification allows for the following inconsistency: an unindexed descriptor with an element-size 
of hex or EBCDIC may not be indexed beyond the length specified in the descriptor, but data may 
be accessed beyond this limit, up to the next word boundary, by pointer operators. 

Code Segrnent Descriptor 

A code-segment is an array of program code words referenced by a code-segment descriptor. Figure 
1-9 shows [he format of the code--segment descriptor. The tag value of a code-segment descriptor is 
3. 

1-10 



System Architecture Reference Manual, Volume 2 
Data Structures 

Memory management utilizes a present bit, copy bit, and the address field. The interpretation of these 
fields is the same as for a data descriptor. (For a present code-segment, the address field contains the 
base memory location of the segment. For an absent code-segment, the address field in an original 
contains a software-encoded value, while the address field in an absent copy points to an original.) 
Copy code-segment descriptors are generated and used only as an interrupt parameter, when an attempt 
is made to execute code from an absent segment. 

The seg __ Iength field contains the number of code words in the segment. Code segments may not be 
paged. 

0 
51 

0 
50 

1 
49 

1 
48 

MV5361 

present 
copy 

seg._.Jength 
address 

PR 

C 

Stack Segments 

43 

42 

[47: 1] 
[46: 1] 
[45: 5] 
[39: 7] 
[32: 13] 
[19:20] 

0 0 
39 35 31 27 19 

0 0 
38 34 SEGMENT 18 

LENGTH 
0 0 

37 17 

0 
36 32 28 24 16 

Present bit (0 = absent, 1 = present) 
Copy bit (0 = original, 1 = copy) 
Reserved for Software 
Must be zero 

15 

13 

12 

The number of code words in the segment 

11 

6 

5 

8 4 

present: nominal address of the base word of the data­
segment; absent copy: nominal address of the associated 
original descriptor; absent original: encoded by software 

f'igure 1-9. Code Segment Descriptor Format 

0 

A stack is a particular use of an actual segment, used to define program environments and maintain 
processing history. Stacks are referred to by stack numbers; a stack number is an index on a data de­
scriptor called the Stack- Vector Descriptor (SVD). The SVD is a present unpaged unindexed SingleDD; 
it defines an actual segment that contains a stack descriptor for each stack in the system. A stack de­
scriptor is an unpaged unindexed SingleDD. The allowable range of stack numbers is {O to 
min( 4095 ,SVD .length-l)}. The SVD is located at a nominal address calculated as 0[0] + 2; that is, its 
address-couple is (0,2). 

Paged Segments 

A virtual-segment is associated with one or more actual segments. To an unpaged virtual-segment there 
corresponds exactly one actual segment; in this case the virtual-actual distinction can be considered re­
dundant, and the adjective is often omitted. 

5014954 1-11 



System Architecture Reference Manual, Volume 2 
Data Structures 

A paged virtual-segment is represented by several actual segments, called pages. The Data Segment De­
scriptor is marked "paged"; it defines an actual segment called a "page t,able" containing one Data 
Segment Descriptor for each page. Each page DD is marked "unpaged" and "original"; it defines the 
actual segment for that page. All pages are page_size words long, except the last page in a virtual­
segment, which may be shorter. 

REFERENCES 

There are several reference data types: 1) normal and 2) stuffed indirect reference words (NIR Ws and 
SIRWs), which point to locations in activation records, 3) indexed data descriptors (lndexedDDs), 
which point to individual elements of data segments, and 4) program control words (PCWs), which 
provide code stream pointers and initial execution state values. Reference data types are described in 
the following paragraphs. 

Address Couples 

An address couple is a pair of indexes (Lambda, Delta) that reference a word in the current addressing 
environment: Lambda specifics a lexical level in the current addressing environment, and Delta is the 
offset to the referenced location from the base of the activation record at level Lambda. Note that 
the location referenced by an address-couple may vary according to the addressing environment at the 
time of its interpretation, depending on the value of D[LL] and on the values of the MSCWs in the 
lexical chain. 

Fixed-Fence Address Couples 

Address couples in Normal Indirect Reference Words (NIRWs) and in several operators are encoded 
in 16 bits with a 4-bit lambda value in field [15 :4] and a 12-bit delta value in field [11: 12]. 

Variable-Fence Address Couples 

Address couples in NAMC and V ALC operators are encoded in 14 bits with a "variable fence" between 
Lambda and Delta. Taking advantage of the fact that Lambda must be less than or equal to LL, the 
number of high-order bits interpreted as the Lambda value varies with the value of LL at evaluation 
time. The remaining low-order bits are interpreted as the Delta value. Table 1-1 gives explicit ranges. 

Table 1-1. Address Couple }'ence Decoding 

Hits left 
LL range of fence Lambda range Delta range 

{O to 3} 2 {O to LL} {O to 2**12-1} 
{4 to 7} 3 {O to LL} {O to 2**11-1} 

{8 to I5} 4 {O to LL} {O to 2**10-l} 

The Lambda value is the reverse of the bits to the left of the fence, and the Delta value is taken from 
the bits to the right of the fence. Following are examples of address-couple interpretation. Each pair 
is the same address-couple representation, but notic~ the effect of the dynamic fence, indicated by the 
colon (:). 

1-12 

1 a) at L L = 2, 1 0: 0000000 1 00 II:?: (1, 1 9) 
b) at LL= 13, 1000:0000010011 :?: (1,19) 

2 a) at LL 
b) at LL 

5 , 1 0 1 : 0000 1 000000 :?: ( 5 ,64 ) 
3 , 1 0: 1 0000 1 000000 :?: (I, 2 1 1 2 ) 



Lexical Links 

System Architecture Reference Manual, Volume 2 
Data Structures 

A Lexical Link is represented by a pair of fields, stack_number and displacement; their values consti­
tute a couple that specifies an activation record by identifying the stack that contains it and the number 
of words from the base of the stack to the base of the activation record. 

Lexical links appear in Stuffed Indirect Reference Words (SIRWs) and entered Mark Stack Control 
Words (MSCWs). 

IRW (Indirect Reference Word) 

The term IRW is used for the type union of NIRW and SIRW. The tag of an IRW is 1. 

(The term "indirect" refers to the fact that some operators, upon encountering a reference while at­
tempting to fetch or store an operand, use the reference to define a new storage location for the oper­
and. In this sense, an indexed data descriptor can also serve as an "indirect" reference. On the other 
hand, both IndexedDDs and IRWs are used as the initial or only reference by many operators. 

NIRW (Normal Indirect Reference Word) 

An NIRW is a dynamic address-couple that references a location in the current addressing environment. 
The tag of an NIRW is 1, and bit 18 is o. Figure 1-10 shows the format of a NIRW. 

The only field in an NIRW is an encoded address-couple, (Lambda, Delta). 

0 
51 11 

0 
50 

-'----+_--'-'H DE L T A 

0 
49 

1 
48 

MV5362 

address_couple 

lambda 
delta 

[18: 1] 
[15:16] 

[15: 4] 
[11:12] 

12 8 

0: denotes NIR W 
The fixed-fence address-couple of the referenced 
location in the current addressing environment 
lexical-level :lambda 
offset m :delta 

Figure 1-10. Normal Indirect Reference Word Format 

SIRW (Stuffed Indirect Reference Word) 

5 

4 

2 

o 

An SIRW, like an NIRW, references a location in an addressing environment. The form of the refer­
ence, however, is such that an SIRW always points to the same location, regardless of the state of 
the current lexical addressing environment. The tag of an SIRW is 1, and bit 18 is 1. Figure 1-11 shows 
the format of a SIR W. 

5014954 1-13 



System Architecture Reference Manual, Volume 2 
Data Structures 

An SIRW has three fields: stack_number, displacement, and offset. The memory location referenced 
by an SIRW is computed by the following function: 

BaseAddress(stack_number) + displacement + offset, 

where BaseAddress(stack_number) is the address of the base of the stack whose number is contained 
in the stack __ number field. BaseAddress + displacement yields the address of the base word of an 
activation record, and offset is the index of the referenced location relative to that base. 

Note that stack_number and displacement constitute a Lexical Link, and offset corresponds to NIRW­
.delta. 

o 
51 

10 
50 

>----

o 
--~ 

48 

MV5363 

stack __ number 

displacement 

offset 

47 

45 

43 39 35 31 27 7 

K NUMBER 38 =+--...;:;.. 1( FFSET 

41 

40 

37 

36 

[47:12] 

[35:16] 

[18: 1] 
[13: 1] 
[12:13] 

33 

32 28 

The identification of the stack containing the 
referenced location 

5 

4 

The displacement from the base of the stack to the 
base of the activation record 
1: denotes SIRW 
Reserved for software usc 
The offset from the base of the activation record to 
the referenced location 

}'igurc ) -11. SIRW Word Format 

IndexedDD (Indexed Data Descriptor) 

·1 

o 

IndexedDDs reference an individual clement of a data-segment. The interpretation of an IndexedDD 
is a variation of the interpretation of a DO (it is an indexed copy DD). The tag of an IndexedDD 
is 5, and its Indexed bit is 1. 

An IndexedDD's read_only, element_size, present and address field are interpreted identically to 
those of an unindexed copy DD. (An IndexedDD must be a copy, and it cannot be paged.) An indexed 
word descriptor is called an IndexedWordDD or (more specifically) an IndexedSingleDD or Inclexed­
DoubleDD (see Figure 1-12). An indexed character descriptor is called a Pointer (see Figure 1-13). 

The interpretation of the index to the referenced element depends on element_size. For Indexed­
WordD Ds, the index field is the word index from the base of the array or page to the single-precision 
word or to the first word of the double-precision word pair. For Pointers, the index field consists of 
two subfields: word_jndex, the index from the base of the array or page to the word containing the 
referenced character, and char_index, the character index within the word. For EBCDIC Pointers, 
char_._jndex must be in the range {O to 5}, and for hex Pointers, it must be in the range {O to II}. 
Char_.jndex 0 is the highest-order character in the word. 

1-14 



0 PR 
51 47 

1 1 
50 46 

0 1 
49 45 

1 0 
48 44 

MV5364 

present 
copy 
indexed 

read_only 
element_size 

index 

address 

5014954 

System Architecture Reference Manual, Volume 2 
Data Structures 

RO 
43 39 

0 
42 38 

0 
41 37 

D 
40 36 

[47: 1 ] 
[46: 1] 
[45: 1] 
[44: 1] 

[43: 1] 
[42: 3] 

[39:20] 

[19:20] 

35 31 27 23 19 15 
" 

2 INDEX 26 22 ,8 ADDRESS 

33 29 25 21 17 13 

32 28 24 20 16 12 

Present bit (0 = absent, 1 = present) 
Copy bit (l: [indexed] copy) 
Indexed bit (l: indexed) 

9 

8 

Must be zero: the effect of a 1 in this bit is 
undefined. 

7 

6 

5 

4 

Read-only bit (0 = read/write, 1 = read-only) 
The type of array element (0 = single-precision; 
double-precision). (2,4 denote Pointer; 3,5,6,7 are 
invalid.) 
The word index from the base of the array to the 
referenced item 
present: the nominal address of the base word of the 
array; absent: the nominal address of the associated 
original data descriptor 

Figure 1-12. Indexed Word Data Descriptor Format 

J 

2 

1 

0 

1-15 



0 PR 
51 47 ---

1 1 
50 46 

0 1 
49 45 

1 0 
48 44 

MV!5365 

present 
copy 
indexed 

read_only 
element_size 

char_index 

word_jndex 

address 

System Architecture Reference Manual, Volume 2 
Data Structures 

RO 
43 39 

C 

SQ 
H 8 

'r-A 
I R 
Z X 
E 41 .-7 

40 36 

[47: 1 ] 
[46: 1 ] 
[45: 1 ] 
[44: 1 ] 

[43 : 1 ] 
[42: 3] 

[39: 4] 

[35:16] 

[19:20] 

! 
j 

35 31 27 23 '9 15 11 

34 WORD INDEX 22 18 ADDRESS 

33 29 25 21 17 13 

32 28 24 20 16 12 

Present bit (0 = absent, 1 .c.: present) 
Copy bit (1: [indexed] copy) 
Indexed bit (1: indexed) 

9 

8 

Must be zero: the effect of a in this bit is 
undefined. 

7 

6 

5 

4 

Read-only bit (0 = read/write, 1 = read-only) 
The type of array element (2:= hex, 4 = EBCDIC). 
(0,1 denote IndexedWordDD; 3,5,6,7 are invalid) 
The index within the word of the referenced 
character 
The index from the base of the array to the word 
contaInIng the referenced character 
present: the nominal memory address of the base 
word of the array; absent: the nominal memory 
address of the associated original data descriptor. 

}'igure 1~13. Indexed Character Data Descriptor (Pointer) }'ormat 

PCW (Program Control Word) 

3 

I 

I 

2 • 

1 

0' 

A program control word (PCW) contains the initial code-stream pointer and execution state values as­
sociated with an activation record in the program. A PCW is the means by which the execution state 
is established for an activation record when it is entered (when it becomes the topmost activation rec­
ord). The tag of a PCW is 7. Figure 1-14 shows the format of a pew word. 

The PCW code-stream pointer consists of the fields sdll, sdi, pwi, and psi. The PCW lex_level field 
indicates the lexical level at which the activation record is to run. The control __ state attribute specifies 
execution in normal or control state. 

STACK LINKAGE WORDS 

There are three data types utiUzed for stack linkage. An lV1SCW (mark stack control word) and an 
RCW (return control word) arc the two words that contain stack linkage values for an activation record 
in the addressing environment. A TSCW (top-or-stack control word) is used to preserve processor state 
in an inactive stack (a stack to which no processor is bound) 

1-16 



0 
51 . 47 

1 

System Architecture Reference Manual, Volume 2 
Data Structures 

--1--"~- CS 
43 39 1~ 23 19 L 15 --' ~ L ~ I--

P 
S 0 

50 _ STACK NUMBER ~ 1--1 )4 3C PWI 22 18 '4 

1 
49 

---;-

1 
48 

MV5366 

stack ____ number 
psi 
pwi 
control_.State 

invalid_Jl 
lex __ level 
sdll 
sdi 

45 

44 

1 
I 

4 37 

I 
I 

401 36 

[47:12] 
[35: 3] 
[32:13] 
[19: 1] 

[18: 1] 
[17: 4] 
[13: 1] 
[12:13] 

SDL 
33 29 25 21 L 17 13 

L 

I 
I 

32 1 28 24 20 16 , 2 

SNR value when l\1PC\V executed 
The PSI code-stream pointer component 
The PWI code-stream pointer component 
The initial value of the CS Boolean (0 _~c normal 
state, 1 = control state) 
Must be 0 
The lexical level for the new activation record 
The SDLL code-stream pointer component 
The SOl code-stream pointer component 

Figure 1-14. Program Control Word Format 

There are several data types that have a tag of 3: the three stack linkage words, code-segment descrip­
tors, and program code words. There are no type bits within the words, and based only on tag value, 
they may not be distinguished from each other. However, these types arc assumed to be dist inguishabIc 
by context, and integrity of execution and addressing environment state depends on this assumption. 

MSCW (Mark Stack Control Word) 

A mark stack control word (MSCW) contains the History and Lexical Links for an activation record. 
The MSCW is the base word in the activation record and is pointed to by all links to it. 

The history_link field is valid in any MSCW; it contains a relative displacement dc)\vn the stack to 
the next MSCW on the historical chain. The entered bit indicates whether an activation record exists: 
if the bit is 0, the activation record is incipient and does not yet exist. 

If entered = 1, the remaining fields in the MSCW are valid. The lex __ Ievel field indicates the lexical 
level of the activation record containing the MSCW, and the stack .. _. __ number and displacement fields 
constitute the Lexical Link to the immediately global addressing space. 

5014954 1-17 



0 
51 

0 
50 

'j 

49 

'1 
48 

MV5367 

displacement 

entered 
lex __ level 
history_.Jink 

47 

System Architecture Reference Manual, Volume 2 
Data Structures 

L ~15~ __ ~1~1~ __ ~. ____ ~ 
L 

27 39 43 31 35 2 

STACK NUMBER ..::.38=+-__ ..: DISPLACEMENT _....::2,._....;.;~_..;',.;;,4.- HI STO R Y LI N K 2 

45 

44 

41 

40 

[47: 12J 

[35: 16] 

[] 8: 1] 
[17: 4] 
[13: 14] 

37 

36 

33 25 5 

32 28 24 4 

Identifies the stack. contallllllg the activation record 
to which the lexical link. points 
The displacement from the base of the 
stack __ l1umber stack. to the base of the activation 
record to \vhich the lexical link. points 
The entered bit (0 = inactive, 1 = entered) 
The lexical level at which the activation record runs 
The displacement do\vn the stack from the MSC\V to 
the base of the prior MSCW 

}~igure 1-15. Mark Stack Control Word (MSCW) }'ormat 

o 

RCW (Return Control Word) 

An RCW is stored at the base location plus one of an activation record, immediately above the MSCW, 
The RCW is associated with MSCW,history __ Jink. and preserves code-stream pointer and execution 
state to be restored when the activation record is exited and execution is resumed in the prior topmost 
activation record on the historical chain. The tag of an RCW is 3. Figure 1-16 shows the format of 
a RCW. 

The RCW code-stream pointer consists of the fields sdll, sdi, pwi, and psi. Preserved execution state 
consists of controL_state (the CS Boolean), the processor state Booleans defined in "General Boolean 
Accumulators", and lex __ level (the lexical level of the prior topmost activation record on the historical 
chain defined by MSCW.history_link). A restart indicator in the RC\V may condition restart state for 
the first operator in the designated code-st ream. 

The block_exit bit indicates whether or not an interrupt is to bc generated when the activation record 
is deallocated. This bit is always initialized to 0 by the enter operator~. It can be set to 1 by software, 
in which case it must be reset to 0 by soft\vare before an EXIT or RETN operator can deallocate the 
activation record associated with this RC\V. 

The exiL_opt field can be used to retain two bits of state at procedure entry to enable an optimization 
at procedure exit; see the definitions of ENTR and EXIT. 

1-18 



0 
51 

0 

EX 
47 

RS 

System Architecture Reference l\;1anual, Volume 2 
Data Structures 

E_O CS 
43 39 35 31 27 23 19 11i 

I::':::"::{-:::'- :;::::::::::::.::::::::-:::;;:. p L 
OF I:;:;::::::::}'::::::: S 0 

11 7 3 

50 
,,.. :::<:,:,:,::::: 

I 34 3C 22 18 14 1 SOl -.J.. PWI 

1 TF 
49 45 

1 FL 
48 44 

MV5368 

extI' 
o1'f1' 
tHI' 
flt f 
rs 
block __ exit 

exit~opt 

pSI 
pwi 
control __ state 
invalid_ll 
lex __ lcvcl 

sdll 
sdi 

!.{ ..••• >.:;:;; 

B_E I::::::~ 41 

[iii :::;1:· E_O 
::;: 0::::: .. 

40 ;:'" :::::::JOI 

[47: 1 ] 
[46: 1] 
[45: 1] 
[44: 1 ] 
[43 : I] 
[41: 1 ] 

[40: 2] 

[35 : 3] 
[32: 13] 
[ 19: 1 ] 
[18 : 1 ] 
[17 : 4] 

[13 : 1 ] 
[12:13] 

3:3. 29 25 21 L 17 
L 

32 28 24 20 16 

E XTF (e:xterna I -,ign flip- flop) 
OFFF (overfIo\v flip-flop) 
TFFF (true false flip-flop) 
FLTF (float flip-flop) 

I 
SOL 

13 9 5 

12 8 4 

restart indicator (0-=" initial, 1 = restart state) 
Arms Bloc" Exit interrupt from EXIT or RETN (0 
= disarmed, 1 = armed) 
= 0: no optimization information 
= 0: implementation-defined \'alues for optimization 
of EXIT IRETN 
The PSI code-stream pointer component 
The P\V I code-st ream pointer component 
The CS Boolean 
Constant \'alue () 
The lexical level of the prior topmost activation 
record on the historical chain defined by 
MSC\'\' .history link 
The SDLL code-stream pointer component 
The SOl code-stream pointer component 

I<'igure 1-16. Return Control word (RCW) Format 

TSCW (Top of Stack Control Word) 

1 

J 

When a processor is bound to a stack, its proc_jd is stored in the base word of the stack as a 3-bit 
integer (tag = 0). The stack is said to bc activc; the processor is said to be "running in" the stack. 
When the stack is inactive (has no processor bound to it), the base word contains a TSCW. The tag 
of a TSCW is 3. Figure 1-17 shows the format of a TSC\V. 

The pointer to the top of the expression stack is preserved in stack. __ height, \vhich holds the displace­
ment from the base of the stack to the top of the expression stack; the historical chain pointer is pre-
served in SF ___ disp, which holds the displacement from the top of the expression stack down to the 
head of the historical chain. These \'alues are saved and restored by the 1\:1 VST operator. In this archi­
tecture, none of this state is altered by l'v1 VST, so the fields have been delct eel from the TSC\V. The 
rationale for the deletion is that CS and LL should not change during a rvl VST operation, and the 
state of the Boolean accumulators is not significant in the lovv-lc\'el operating-system contexts in which 
MVST is used. 

5014954 1-19 



0 
51 

0 
50 

1 
49 

1 
48 

MV5369 

INTERLOCKS 

System Architecture Reference Manual, Volume 2 
Data Structures 

39 

S 
038 
F 
T 

37 

36 

stack __ height 
SF _disp 

35 31 27 

STACK_HEIGHT 

33 

32 

[39: 4] 
[35:16] 
[13:14] 

29 

28 

13 

24 12 

Reserved for software use 
Displacement S-BOSR 
Displacement S-F 

Figure 1-17. Top Of Stack Control Word (TSCW) Format 

11 

SF_DISP 2 

9 5 

8 4 0 

The data type interlock and its associated operators provide a mechanism for processes to effect mutual 
exclusion of code regions. The operators accept either 0 or 3 in the tag of an interlock, but always 
set the tag to 3. Figure 1-18 shows an Interlock word format. 

Each valid interlock status is named and defined in the following table, which also characterizes the 
contents of the owner_id and lock_control fields. 

:F'ree 
: Locked_U ncontended 
:Busy 
:I,ocked_Contended 
state 

Free 
Locked_U ncontended 
Busy 
Locked_Contended 

locked_ 
bit 

a 
1 
a 
o 

not __ free_ 
bit 

o 
1 
1 
1 

owner __ id 

o 
owner stack number 
busy stack number 

owner stack number 

lock_control 

arbitrary 
arbitrary 

o 
non-zero 

The combination locked_bit = 1 and not_free_bit = a is undefined and is not generated by the 
interlock operators. In this architecture, operators do not create Locked_Contended interlocks, but 
they distinguish the Locked_Contended from the Busy state. 

1-20 



MV5370 

tag 
OWller __ jd 
lock cant rol 
lockcd ____ .bit 

TAGS 8-15 

System Architecture Reference ivJanual, Volume 2 
Data Structures 

[47:12] 
[35: 14] 
[ 1: IJ 

0: I] 

accepted: 0 or 3, created: 3 
Slack number of lock OVv'l1er (or busy contender) 
Reserved for software use 
(0: state is not Locked _____ Uncontended, 
1: state is Locked ___ U ncontended) 
(0: state is 1/ Free ll

, 1: state is not 1/ Free") 

Figure 1-18. Interlock Control word f'ormat 

This architecture is defined with 4·-bit tags, but only tag values 0-7 are used to define data types. Tag 
values 8-15 are reserved for later Levels of this architecture specification. 

The architecture specified in this document permits an implementation to handle the high tag values 
in either of the following ways: 

1. Ignore the fourth bit (implement 3-bit tags). 
2. Treat tags 8-15 as defining arbitrary bit-vector data types. 

If option IS chosen, the entire document is to be read as specifying 3-bit tags and 51-bit words. 

If option 2 IS chosen, the following conventions apply: 

1. Words with tag -= 8, 10, 12, or 14 are treated as are those with tag = 6. That is, such words 
can be fetched with the LOAD operator, stored with the overwrite operators, and stored over 
with normal store operators; they may be used as computational but not arithmetic arguments. 

2. Words \\ith tag = 9, 11, 13, or 15 are treated as are those with tag = 3. That is, only the 
LOOT and RDLK operators can fetch them and only the overwrite and transfer-words-over­
write operators can store or store over them. If on the expression stack, they may be Llsed as 
stack arguments for those operators that accept an argument of "any" type. 

(Of course, these words are not treated as synonyms for words \\lith tag = 6 or tag = 3; each different 
tag value is unique to such operators as RTAG, SAME, and SRCH, and in such assertions as "the 
tag of an RC\V must be 3".) 

This section contains the only discussion of tag values 8-15 in the document. Section 3 and the appen­
dixes rnake no reference to such tag values. 

5014954 1-21 



System Architecture Reference Manual, Volume 2 
Data Structures 

Pragmatic Notes 

Software Conventions for the Fourth Tag Bit 

Given the two options defined in this section, and given the specification of the remaInIng operators, 
the following software convention should avoid any confusion of the four-bit tags (with the possible 
exception of tag-transfer input/output): always force tag bit 3 = 1 in the mask argument of the SRCH 
operator.; force tag bit 3 = 0 in all other contexts. 

1-22 



System Architecture Reference Manual, Volume 2 

SECTION 2 
STACK CONCEPT AND PROCESSOR STATE 

GENERAL INFORMATION 

This section discusses concepts associated with the process model implemented hy the architecture. It 
is intended primarily to introduce the stack structure and control mechanism required by the operator 
set described in section 3 of this manual. 

The hardware processor separates program functions into operators and operands. Program controller 
logic directs the fetching and execution of operator codes. Stack controller logic directs activity in the 
stack mechanism. Built-in synchronization circuits are required in the hardware of the system, to syn­
chronize the operations of the program and stack controller mechanisms. The stack concept imple­
mented in the system provides features necessary for automatic interrupt handling conuol logic, reen­
trant code programming techniques, and virtual memory operations. 

Stack control functions include 1/ common actions 1/, \vhich are described in detail in section 3 of this 
manual. This section describes the structure and linkages within the stack. Processor control logic is 
briefly described because system initialization functions utilize stack structure and req'uire the automatic 
synchronization t hat exists between t he stack and program cant rollers. 

STACKS 

The machine is oriented around the concept of a segmented memory and specially treated segments 
called stacks. The processor llses an expression stack; most operators take their arguments from the 
top of the stack and leave their results on top of the stack. 

A stack can be considered the instantaneous state of a process. The stack contains a historical record 
of all procedures (blocks) that have been entered and not yet exited. A system can utilize many stacks, 
with a processor being assigned to one stack at a time (thus providing multiprogramming). A system 
can be equipped with more than one processor (thus providing multiprocessing); at any moment, each 
processor is bound to a different stack. 

The data addressing space of the executing process is mapped into its stack, other stacks linked to it, 
and data segments referenced by descriptors contained in its stack structure. 

CODE SEGMENT DICTIONARIES 

Executable code is contained in segments defined by descriptors that occur in special segments called 
Code Segment Dictionaries. A code-segment dictionary can be considered the instantaneous state of 
a program. 

ADDRESSING GRANULARITY 

The unit of addressing is the word, a memory unit comprising 48 data bits and a 4-bit tag. Operators 
exist that can deal with parts of words, but memory is addressed and accessed in whole words. The 
term 1/ item" is more general than /I word 1/; an item may contain more than one word. 

5014954 2-1 



System Architecture Reference Manual, Volume 2 
Stack Concept and Processor State 

PROGRAM ADDRESSING ENVIRONMENT 

The addressing environment of the executing code-stream consists of a set of local addressing spaces 
contained within stacks. These are called activation records (referred to as lexical regions elsewhere), 
and (,<Jeh consists of a set of variables addressed by an index relative to the base of the activation rec­
ord. An activation record can be considered the installtaneOllS state of a procedure or block. 

Activation records arc maIl aged by use of t \va linked lists: the historical chain and the current lexical 
chain. Both links are contained in a structure' called a Mark Stack Control \\'onl (lVISC\V), located 
at the base of the activation record; links to an activation record always address the base word. 

The historical chain is a chronologically ordered list that consists of History Links connecting the 
l\1SC\V of each activation record to that of its initiating activation record. An historical chain pointer 
to the most recently created l\1SCW is all that is required to access any activation record ill the stack. 

Activation records are created on the top of the stack by a sequence of operations: 

1. f\., "mark stack 1/ operation defines the base location for the incipient activation record, creating 
a new MSCW at the head of the historical chain. 

2. A reference to the code for the ne\\< procedure is placed on the stack, follovv'ed by any 
parameters for the procedure. 

3. An "enter" operation is performed. The new activation record is now linked into the lexical 
I.:hain; the addressing environment and code-stream for the new procedure arc established. 

Prior to the "enter" operation, the !\1SC\V is marked "inacti\'e"; a historical linkage but not a lexical 
linkage exists and the incipient activation record is actually part of the expression stack of the initiating 
process. After step 3, the MSCW is marked "entered" and the new activation record formally exists. 

(The activation record at the head of the lexical chain is deleted from the stack by the" exit" operat ion; 
the addressing environment and code stream for the historically prior activation record arc reinstated.) 

A History Link is represented as an integer displacement from an lV1SCW to its immediate predecessor 
lVlSCW in the stack. 

The Lexical Link of an activation record points to the base of the immediately global addressing space, 
which is defined in terms of the static program structure as follows: if 80 and ill arc blocks in the 
program I 80 immediately contains B 1, and activation records A RO and AR 1 correspond to 80 and B 1, 
then ARO is the immediately global addressing space of AR 1. 

The current addressing environment is the set of activation records addressed by the lexical chain whose 
head is the activation record bound to the executing code-stream. This activation record is called the 
topmost activation record and is the activation record that contains the first entered MSCW on the 
historical chain. The position of an activation record in the lexical chain defines its lexical level. The 
lexical level of the topmost activation record is defined to be LL; there are LL + 1 activation records 
in the current environment. Lexical level 0 defines the end of the chain and denotes the most global 
addressing space. A lexical chain pointer to the topmost activation record is required for accessing the 
current environment. 

A Lexical Link is a (stack number, displacement) couple. The stack number is an index that uniquely 
identifies a stack; the displacement is a relative position within the stack of the base of the activation 
record. 

History LiIlks always point to an i\1SC\V in the same stack, but Lexical Links may point to an activa­
tion record in another stack. Therefore, an addressing environment may be mapped into a tree struc­
ture. 

2-2 



System Architecture Reference Manual, Volume 2 
Stack Concept and Processor State 

A general reference to an item in the current environment takes the form of a (Lambda, Delta) address 
couple, where Lambda is a lexical level and Delta is an offset to the referenced item from the base 
of the activation record at level Lambda. Address couples arc the means of addressing locations in 
the current environment. 

Processor management of the activation records in the stack utilizes the following registers: 

F: 

LL: 

O[LL]: 

0[0]: 

The nominal address of the most recent MSCW in the stack. 
F defines the head of the historical chain: all activation 
records and incipient activation records for the process arc 
accessible by following History Links from F. 

The lexical level of the topmost activation record in the 
current addressing environment -- the level at which the 
processor is running. LL is always in the range 0 s LL s 
15. 

The O[LL] nominal address of the 1\t1SCW at the base of 
the topmost activation record. O[LL] defines the head of the 
lexical chain: all activation records in the current addressing 
environment arc accessible by following Lexical Links from 
O[LL]. 

The nominal address of the MSCW at the base of the most 
global activation record. 

The stack-vector descriptor is located at address-couple (0,2); the interrupt entry is defined at address­
couple (0,3). The stack-vector descriptor and the interrupt entry can be located relative to 0[0], at nom­
inal addresses 0[0] + 2 and 0[0] + 3, respectively, even when the lexical chain from O[LL] is invalid. 
Operators that redefine the lexical chain can change the 0[0] value. 

Addressing may be optimized by defining an array of "display" registers maintained such 
that: :display registers 

O[i]: The O[i] nominal address of the MSCW at the base of the 
activation record at level i in the current addressing 
environment, for i in {O to LL} 

Figure 2-1 shows an addressing environment example. Note that the lexical link from the level 2 activa­
tion record is to another stack; there could also be a fork in the stack-structure tree above the level 
2 activation record. The activation record shown between the level LL and level LL-l activation records 
is not linked into the current environment; it is shown as level k. Depending upon the lexical linkage, 
k might be equal to LL or greater or less. 

MEMORY ADDRESSING 

A process executing on a hardware processor (or on an extension of such a process into the 110 subsys­
tem) has a program address space of 2**20 words. Each of these \vords has a 20-bit nominal address 
ranging from 0 to 2**20 - 1. It is this nominal address that occurs in descriptors and state registers; 
it is often called simply the memory address. 

5014954 2-3 



System Architecture Reference Manual, Volume 2 
Stack Concept and Processor State 

(LEXICAL LINK) 

F -----..... , NULL 

D[LL·1] ---. 

D[2}-" 

MV5371 

(TO ANOTHER 
STACK) 

2 

o 

(HISTORY LINK) 

(INACTIVE) 

LEVEL LL AA 

LEVEL K AR 

LEVE L LL·1 AR 

{ (ADDREIIED BY (2,2) ~ 

LEVEL 2 AR 

rigure 2-1. Addressing environment example 

A system may have more than 2**20 words of physical memory, in which case the processor can ad­
dress only part of the whole at anyone time. There is a mechanism for mapping the 2**20 contiguous 
nominal addresses into a larger physical memory. The mapping is specified in sections, called environ­
ment co:mponents; the collection of such components available to a process constitute its environment. 
The whole of the larger memory may be used by defining several different environments. Each environ­
ment can be identified by an environment number ranging from zero to some upper limit; the complete 
name of each program address is thus the couple 

NOTE 
The memory addressing "environment" and the "program address" couple 
just defined refer only to the memory addressing mechanism discussed in this 
section. These terms and concepts should not be confused with the 
"addressing environment" and "address-couple" defined in the previous sec­
tion and used throughout the document. 

The memory available to a given system may be thought of a'; being addressed by a single continuum 
of addresses ranging from zero to some upper limit. There is then some implementation defined map­
ping from this continuum of addresses to the physical addressing mechanism provided by a particular 
implementation. Note that the continuum may have no explicit representation in either hardware or 
sofh,vare, but is used to separate the concerns of nominal (program) address space management from 
implementation-dependent physical addressing mechanisms. This architecture is concerned with the first 

2-4 



System Architecture Reference Manual, Volume 2 
Stack Concept and Processor State 

mapping, from nominal address to continuum; the further mapping to physical mechanisms is not spec­
ified. "Holes" (subranges of addresses not present or not available) in any of these three levels have 
no effect on the model. 

An environment component is a contiguous subrange of the nominal address space that is mapped onto 
a contiguous subrange (of the same size) of the continuum. Thus, each program addressing environ­
ment is composed of one or more environment components, separated by "fences". Through the map­
ping, environment components from several different environments may be mapped onto the same su­
brange of the continuum, creating an "alias" situation where an clement of the continuum is addressed 
by several "names" - (environment number, nominal address) couples. 

In order to discuss restrictions on the generality of mapping structures, two models are used to illus­
trate the ways components from different environments may be identified in the mapping into the con­
tinuum. The first is a 2-dimensional diagram (figure 2-2), where the horizontal dimension represents 
the range of environment numbers present in a system at some time, and the vertical dimension repre­
sents the range of nominal addresses (0 to 2**20 - I). The horizontal lines represent fences separating 
environment components within an environment, and the enclosed rectangles represent components that 
may be shared among different environments. An example diagram appears belo\v. 

2**20-1 

~ 
w 
a: 
o 
o 
II{ 

-' 
II{ 
z 
~ 
o z 

MV5372 

o 

I 

o 2 3 4 5 6 7 8 

ENVIRONMENT NUMBER 

Figure 2-2. Memory Environment Mapping 

The second model is a graph, where the nodes represent components in the continuum, and the directed 
edges connect eomponcnts to neighboring components at the next higher nominal-address ~ubrange 
within the same environment. That is, for nodes A and B, the edge 

defines the relation that A and B are in the same environment, B has higher nominal address than 
A, and there is no other node (component) between A and B. These /I adjacent /I nodes need not contain 
the immediate succeeding address; that is, there may be holes in an environment. A path from a node 
representing the component containing nominal address 7ero to some terminal (no departing edges) 
node represents a complete environment. 

(The two models are, of course, equivalent: the nodes of the graph correspond to the boxes In the 
diagram; the edges of the graph correspond to the fences separating the boxes.) 

5014954 2-5 



Systc:n Architecture Reference Manual, Volume 2 
Stack Concept and Processor State 

In terms of these models, the following axioms state the requirements of every implementation: 

1. All boxes are rectangles. 
2. The graph is a single-rooted tree. 
3. The mapping preserves order and contiguity of addresses within each cOInponent. That is, if 

x, x + 1, and yare all addresses within the same environment component, and m is the mapping 
from the environment into the continuum, then: 

i) x < y < = > m(x) < m(y) 
ii) m(x) + 1 = m(x + 1) 

4. "'Aliasing" of addresses is restricted so that a continuum location has the same nominal address 
in all environments that share it, and the same continuum address does not occur twice in the 
same environment: If eland e2 are environment numbers, a I and a2 nominal addresses.) and 
rv1 the mapping into the continuum, then: 

iii) M(el,al) = M(e2,a2) and el W"" e2 - al a2 
iv) al --,= a2 ---; rv1(el,al) --,= M(el,a2) 

A valid implementation may reverse the order of the addresses; that is, reverse the meaning of the 
edges in the graph and reverse the labeling of the vertical dimension in the diagram. 

A valid implementation may impose any combination of the following restrictions: 

1. The common conlponent (root of the tree) must be at the low order addresses. 
2. Fences may occur only at particular nominal addresses. That is, the size of components may 

be quantized. 
3. The number of fences is limited to some upper bound defined by the implementation. {This 

limit may be zero, so that the scheme effectively reduces to a traditional single-component mem­
ory, with zero the only valid environment number.) 

4. Any or all fences may be forced to identical locations in all environments. 
5. The fan-out (departing edge count) at each node must be identical to the fan-out for other 

nodes at the same level (depth) in the tree. 
6. All environments must be complete; that is, all environments must be the full 2**20 words long. 

This requirement does not mean that there can be no holes iIi the actual memory space; some 
addresses in some environments may be unusable. 

'7. The D[O] value must be in the common component. 
8. The stack-vector must reside in the common component. 
9. A data or code segment must be entirely contained within one component. The following re­

strictions are corollaries of this one, except that they also restrict operations by means of a de­
scriptor that spans multiple segments (such as the 1/ M /I descriptor, with address 0 and length 
2**20-1, which spans all but one word of an entire environment.) 

10. All memory accesses made by a single invocation of a data array operator (via a single des,crip­
tor) must occur within the same component, except that the first access of LLLU may be in 
a different component from the second and subsequent accesses. 

11. \Vhen a descriptor is both indexed and evaluated in the same operator (as in NXL V, NXV A, 
NXLN), the base address and the sum (base address + index) must be in the same component. 

12. Both word of a double-precision item must be in the same component. 

If an implementation selects any of restrictions, 7 through 12, and the restriction is violated, the re~sults 
are undefined. 

2-6 



System Architecture Reference Manual, Volume 2 
Stack Concept and Processor State 

---

The association between an environment component and a component of the continuum is keyed from 
the Environment Number Register (ENR), which holds the environment number currently in use. The 
mapping is sct up using implementation-defined operations; ENR is loadcd by the move-stack (MVST) 
and set -processor-register (SPRR) operators. 

Memory address mapping uses the following register: 

ENR: The environment number of the current process 

EXPRESSION STACK 

Operator definition assumes the existence of an expression stack. Initial arguments are taken from it, 
and results are pushed onto it. The expression stack and current addressing environment concepts are 
merged by treating the topmost activation record as the expression stack. 

Variables local to the activation record are initialized by execution of operators that push items onto 
the expression stack followed by a PUSH operator, which appends the expression stack onto the top 
of the topmost activation record. This "stack building code" is usually the first operator sequence 
executed following completion of entry into the activation record. Procedure parameters are treated 
similar to local variables. They are initialized by execution of operators (just prior to the ENTR 
operator) that push items onto the expression stack. The ENTR operator, among other functions, ap­
pends the expression stack onto the newly created topmost activation record. (See also the description 
of the PUSH operator in Miscellaneous Operators and the ENTR operator in Processor State 
Operators.) 

The stack that contains the expression stack and topmost activation record is identified by an integer 
value called Stack Number. The base and limit of the stack are obtained from the stack descriptor 
(see also Stack Segments and Stack References). There may be activation records in the stack below 
the topmost one. 

The tern1 "expression stack" properly describes that portion of the stack from the top of the topmost 
activation record to the top of the stack. This architecture does not fully define the boundary between 
the activation record and the expression stack: a PUSH or ENTR is required to allow items from the 
expression stack to become addressable as part of the activation record, but items from the activation 
record as well as from the expression stack can be consumed as top-of-stack arguments. 

Figure 2-3 shows a typical configuration of the topmost activation record after completion of stack 
building code and subsequent operator execution. 

5014954 2-7 



System Architecture Reference l\1anual, Volume 2 
Stack Concept and Processor Srate 

(TOP OF EXPAEIlION ST ACKt 

n+2 (BASE OF EXPRESSION STACK) 

n+1 

(LOCAL VARIABLES) 

2 (BASE OF TOPMOST ACTIVATION RECORD) 

(STACK LINKAGE WORDS) 
D[LLJ ---.... 0 

-----------------.... 

MV5373 

.Figure 2-3. Topmost Activation Record Example 

Processor management of the expression stack utilizes the following registers: 

SNR: 
S: 

The stack number of the stack to which the processor is currently bound. 
The nominal address corresponding to the top word in the expression stack. 

The following optimization registers define the boundaries of the stack: 

BOSR: 
LOSR: 

The nominal base address of the stack containing the expression stack. 
The nominal limit address of the expression stack. 

Pragmatic Notes 

Top-of-Stack Registers 

This architecture does not specify top-of-stack registers, but it does permit an implementation to use 
an arbitrary number of processor registers to optimize access to top-of-stack values. An implementation 
satisfies this architecture specification if the ENTR and PUSH operators cause the contents of any top­
of-stack optimization registers to be written to memory. More elaborate optimization is possible, by 
treating the top-of-stack registers as holding cached values for the corresponding memory words. The 
S register defines the top-of-stack address as t hough all stack values were in memory. 

EXECUTABLE CODE STREAMS 

Variable length operator sequences are stored in arrays of program code words called code segments. 
Each program code-word contains six 8-bit containers called syllables. (The mapping of operators into 
syllables is specified in the Section 3 and Appendix B of this manual.) 

Each code-segment is referenced indirectly by a descriptor, called a code-segment descriptor (see Code 
Segment Descriptor). Code-segment descriptors for a program are collected in an array called a Code 
Segment Dictionary. 

2-8 



System Architecture Reference Manual, Volume 2 
Stack Concept and Processor State 

The term "code-stream pointer" is used to describe a reference to the entry point of an operator se­
quence in a code-segment. A code-stream pointer consists of the following components: 

An address-couple (SDLL, SDI) references the code-segment descriptor. SDLL is the Code Segment 
Dictionary lexical level (it is usually the case that a user program Code Segment Dictionary is the level 
1 activation record in its addressing environment, and the operating system Code Segment Dictionary 
is at level 0). SDI is the Code Segment Dictionary index to the code-segment descriptor relative to the 
base of the specified Code Segment Dictionary. The entry point in the code-segment is indicated by 
PWI, the program word index relative to the base of the code-segment, and PSI, the program syllable 
index within that word. 

The processor code-stream pointer consists of the following component registers: 

SDLL: 

SDI: 

PWI: 

PSI: 

The lexical level (0 or 1) at which the current Code Segment Dictionary is 
addressed. 
The index in the Code Segment Dictionary to the current code-segment 
descriptor. 
the index in the code-seglnent to the code-word containing the next 
operator. 
The index jn the code-word to the next operator syllable. 

Figure 2-4 illustrates the processor code-stream pointer. 

SOl 

(CODE 
SEGMENT 

DESCRIPTORS) 

PWI 

o 5 

(PROGRAM CODE WORDS) 

o [SDLL] --.. 0 o 

CODE SEGMENT DICTIONARY CODE SEGMENT 

MV5374 

Figure 2-4. Processor Code Stream Pointer 

Processor state also includes a Boolean attribute of the executing code-stream: 

CS: 

5014954 

If CS is set (control state), maskable external interrupts are disabled. If it 
is reset (normal state), they are enabled and may occur between operator 
executions. 

2-9 



System Architecture Reference Manual, Volume 2 
Stack Concept and Processor State 

GENERAL BOOLEAN ACCUMlJLATORS 

Processor state includes several Boolean accumulators that are used by several operator groups. Their 
use and definition are discussed in section 3. 

TFFF: 
OFFF: 
EXTF: 
FLTF: 

The true false flip-flop. 
The overflow flip-flop. 
The external sign flip-flop. 
The float flip-flop. 

MISCELLANEOUS PROCESSOR STATE 

Processor state includes the following: 

Halt: 

Interrupt_Count: 

TOO:: 

Running_Indicator: 

Interval_Timer: 

proc: 

proc_.id: 

seriaL __ number: 

factory _release_Jevel: 

field __ .modification_level: 

E-mode_level: 

E-mode_features: 

2-10 

Data segments may be subdivided into fixed-size pages. 
Page_size is the length in words of such pages; its value 
is a constant in a level of the architecture, for Level Alpha 
page_size = 256. 

If the Halt Boolean is true, processor execution will stop 
upon execution of a HALT (conditional processor halt). If 
it is false, a HALT is treated as a NOOP (no operation). 

A counter incremented once at each interrupt attempt; the 
counter may be set to zero by the ZIC operator. If 
Interrupt_Count is incremented beyond 3, the processor 
superhalts. 

The time of day clock, with values in 2.4-microsecond 
units. 

The running indicator is a Boolean that is set true by the 
RUNI operator and set false automatically by the processor 
if an interval of four seconds elapses since RUNI 
invocation. If the indicator is reset, a Run Timeout 
(unmasked external) interrupt is generated. 

The IntervaL_Timer is armed and set by the SINT 
operator and decremented at intervals of 512 microseconds. 
If the timer counts to zero or is specifically set to zero, an 
Interval Timer (external) interrupt is generated. Any 
external interrupt causes the Interval_Timer to be 
disarmed. 

The processor identification state, composed of: 

The processor identification number 

The system serial number 

The Engineering Release Lever(ERL) 

The field rework Level 

The architect ure level: 
4 "01/1 Alpha 

(reserved) 



machine_type: 

page_size_indicator: 

microcode_version: 

System Architecture Reference Manual, Volume 2 
Stack Concept and Processor State 

Machine series type id: 
4 "02" 85900 
4 "03" A9 
4 "05" 87900 

page size = 256 

microcode version indicator 

Pragmatic Notes 

Processor Identification State 

All the processor identification state is constant: Proc_id uniquely identifies individual processors in 
a multiprocessor system; it is typically established when the system is installed. J\;licrocode~_\crsion ;~ 
a feature of processors implemented with loadable control stores; it is supplied by the microcode i[\clf. 
Unit_id may be used to provide such data as serial number and manufacturing or modification level. 
The manufacturing organizations determine the structure and content of uniL_id and the mcchani~dn 
by which it is supplied; these matters are not specified in this manual. E-modc lcvrl, 
E __ mode_features, page_size, and page_size_indicator can be provided either by hardware or m:­
crocode, depending upon the implementation. 

PROCESSOR STATE COMPONENT SIZES 

This subsection summarizes characteristics of processor state components and gives their "container 
size". Processor state described here is also described elsewhere in this manual, where processor state 
affects particular system functions. The initial values of processor state components, required to start 
a system into operation, are given subsequently in the System Control subsection. 

The" container size" for each component is the number of bits required to contain the maximum allow­
able value of the component (components containing a single Boolean value require one bit). A correct 
architecture implementation is required to use the full container sizes for all components except the 
environment number (ENR). For ENR, an implementation may use any container size from 0 to 12 
bits. SPRR must invoke aISX action if an attempt is made to store a value too large for the container. 
MVST must generate an Invalid Argument Value interrupt if the ENR value in its argument is too 
large, except that if the ENR width is zero, MVST may be defined as having a 12-bit integer argument 
(stack number only) with aISX action. 

Addressing Environment State: 

F 

LL 

(20 bits): 

(4 bits): 

The nominal address of the most recently created MSCW in 
the stack. 
The lexical level of the topmost activation record in the 
current addressing environment - the level at which the 
processor is running. 

D[LL] (20 bits): The nominal address of the MSCW at the base of the 
topmost activation record. 

D[O] (20 bits): The nominal address of the MSCW at the base of the most 
global activation record. 

Memory Addressing State: 

ENR (0-12 bits): The environment number used to map nominal addresses 
into elements of the memory address continuum. 

5014954 2-1 1 



System Architeclure Reference Manual, Volume 2 
Stack Concept and Processor State 

Expression Stack State: 

SNR 

S 

BOSR 

LOSR 

(12 bits): 

(20 bits): 

(20 bits): 

(20 bits): 

Code Stream Pointer: 

SDLL ( 1 bit): 

SOl (13 bits): 

PWI (13 bits): 

PSI (3 bits): 

The stack_number of the stack containing the expression 
stack. 
The nominal address of the top word in the expression 
stack. 
The nominal base address of the stack containing the 
expression stack. 
The nominal limit address of the expression stack. 

The lexical level at which the current Code-Segment 
Dictionary is addressed. 
The index in the Code-Segment dictionary to the current 
code-segment descriptor. 
The index in the code-segment to the code-word containing 
the next operator. 
The index in the code-word to the next operator syllabIc. 

Execution State Attributes: 

CS (Boolean): While CS is true (control state), maskable external interrupts 
are disabled. When it is false (normal state), they are 
enabled and may occur between operator executions. 

General Boolean Accumulators: 

TFFF 
OFFF 
EXTF 
FLTF 

(Boolean): 
(Boolean): 
(Boolean): 
(Boolean): 

Miscellaneous State: 

Halt (Boolean): 

Interrupt_Count (2 bits): 

TOO (36 bits): 

Running_Indicator 
(Boolean): 

2-12 

The true false flip-flop. 
The overflow flip-flop. 
The external sign flip-flop. 
The float flip-flop. 

If Halt is true, processor execution will stop upon execution 
of a HALT (conditional processor halt). If it is false, a 
HALT is treated as a NOOP (no operation). The state of 
the Boolean is set by an agency external to the architecture 
processor (ultimately, by a human operator). 

Interrupt-entry counter. 

The time-of-day clock, which is incremented once every 2.4 
microseconds whenever the system is functional (even when 
the processor is halted.) 

The running indicator. The effect on the running indicator 
of halting the processor is implementation-defined. 



System Architecture Reference Manual, Volume 2 
Stack Concept and Processor State 

Interval_Timer (11 bits): The interval timer, with values in 512-microsecond units. The 
effect on the interval_timer of halting the processor is 
implementation-defined. 

(Boolean): 

proc (95 bits): 

"Interval_Timer is armed" state. 

The processor identification, composed of: 

proc_id 
unit_id 
E-mode_level 
E-mode_features 
machine_type 
page_size_indicator 
microcode_ version 

(3 bits). 
(32 bits). 
(4 bits). 
(4 bits). 
(8 bits). 
(4 bits). 
(40 bits). 

Processor identification state is presented here to standardize its data formats and naming-conventions. 
However, the uses of processor identification state, including the methods of acquiring, updating, and 
accessing its values, are implementation-defined. Any errors that may be caused by processor state 
data-handling operations are also implementation-defined. (See the descriptions of the RIPS, WIPS, 
REMC, and WEMC operators in section 3, especially the pragmatic note to the RIPS operator descrip­
tion.) 

SYSTEM CONTROL 

The following are system control state used by systems. 

HALT A Halt may be initiated by the human operator by means of the 
Maintenance Subsystem interface, by the processor by means of the STOP 
or HALT operator or by an external interface signal. The processor will 
not initiate any more operators and will stop when the currently executing 
operator or operators are completed. 

The MLIP is made aware that the processor is halted and responds by 
behaving as if the Suspend all Queues flag were true. The maintenance 
processor will enforce a minimum two 2. second delay after the Halt occurs 
before a Continue, a Clear, or a Start will be recognized. During this delay 
the MLIP may continue to run, allowing II0s other than Test Waits to 
complete. 

Pragmatic Notes 

Timer Functions in Halted Processors 

This architecture does not fully specify the behavior of the Running_Indicator and the Interval_Timer 
when a processor is halted and continued, because these matters do not concern normal operation. 
However, it should be noted that diagnostic use of the HALT and STOP operators is inconvenient 
if the processor immediately interrupts when continued; this is especially true for run_timeout, which 
software may treat as an error. 

5014954 2-13 



2-14 

CONTINUE 

CLEAR 

START 

Systenl Architecture Reference Manual, Volume 2 
Stack Concept and Processor State 

After a Halt the processor may be restarted by a Continue. Execution 
will resume at the operator that would have been initiated had the 
system not been halted. 

The Clear function may be executed by the human operator by means 
of the Maintenance Subsystem or by an external interface signal. If 
the system is not halted, a Halt operation is first performed. The 
internal processor state is set so as to permit normal execution, 
including clearing the superhalt counter. 

In response to a Clear, the MLIP will reset the Suspend all Queues 
flag, clear its reference to the Error IOCB, and broadcast a "master 
clear" on the MLI PORTS. It will not answer either processor or 
DLP requests until the master clear handshake is complete. 

The Start function initializes the processor state and begins processor 
execution. It may be initiated by the human operator by rneans of 
the Maintenance Subsystem or by an external interface. Start has 
effect only if the processor is in a halted state; it performs a Clear 
operation, except that a Halt is not first done. Start then initializes 
the following state: 

F 
LL 
D[LL] 
SNR 
S 
BOSR 
LOSR 
ENR 
SDLL 
SDI 
PWI 
PSI 
CS 

o 
o 
o (or value of a parameter from external interface) 
o 
4"4000" 
o 
o 
o 
o 
4 
o 
o 
o (False) 

After the state is initialized, control is transferred to code in memory 
by simulating an interrupt. (Current implementations use Invalid 
Address as the interrupt literal). 

If start is initiated by an external interface, D[O] is set to the value 
specified by the external agency. 

NOTE 
The system maintenance processor provides a means to load a code file to 
memory address 0 prior to a manual Start operation. 



System Architecture Reference Manual, Volume 2 
Stack Concept and Processor State 

PROGRAMMING RESTRICTIONS DUE TO HIDDEN STATE 

In addition to explicit architecture state, which is accessible directly through various operators, a pro­
cessor maintains other state to facilitate efficient execution. For the most part, this hidden state is not 
described in this document. However, some restrictions on software are necessary to ensure that hidden 
processor state is consistent with visible processor state (especially memory contents). 

This architecture defines enter, exit, and branch operators as the only mechanisms to alter the sequen­
tial execution of the code-stream. The result is undefined if the program changes a code-segment de­
scriptor or the contents of the code-segment while any processor is executing code from the referenced 
segment. (The processor is free to capture the code-segment base address and limit, one or more words 
of code, and so forth.) The result is also undefined of changing D[O] or ENR by means of the SPRR 
or MVST operator when the code-stream pointer would designate different code in the new and old 
addressing environments. 

The effect of changing the stack descriptor for an active stack (a stack to which an active processor 
is bound) is undefined. 

The effect of changing the stack-vector descriptor is undefined until 0[0] is subsequently assigned a 
value by SPRR, ENTR, EXIT, RETN, or MVST (which can change the continuum element associated 
with the nominal address in D[O]). An implementation may so restrict the nominal address mapping 
and 0[0] values that 0[0] maps to the same continuum element in all environments, in which case the 
implementation may capture the stack-vector descriptor whenever 0[0] is altered. An implementation 
may further restrict the nominal address mapping and stack-vector address so that the continuum 
elements in the stack-vector are the same in all environments, in which case the mapping of the the 
stack-vector base address onto the continuum may be captured whenever 0[0] is altered. If an imple­
mentation includes such restriction, and the value in D[O] or the address in the stack-vector descriptor 
violates the restriction, the result is undefined. 

If a nonpresent copy descriptor is brought to the expression stack and then modified in the present, 
copy, or address field, the modified descriptor must be explicitly returned to memory prior to being 
used as the reference input to an operator. (The memory write can be effected by an overwrite 
operation, an explicit PUSH, or an implicit push via ENTR.) In other words, the result is undefined 
if a descriptor is brought to the expression stack with copy = 1 and present = 0, the present or copy 
or address field is modified, and then the descriptor is consumed as a reference. 

The effect is undefined of changing the lexical linkage for any activation record currently in the ad­
dressing environment of a processor. 

The result is undefined of any fetch or store operation in the current stack (whether by means of an 
address-couple, SIRW, OD, or absolute-address) above the current upper-bound for stack addressing. 
That bound is moved upward to the S setting by an explicit PUSH, the ilnplicit push of an enter 
operator, or a move-stack operator. It is moved downward by an EXIT operator, or by a DLET 
operator that moves S below the most recent PUSH setting. 

5014954 2-15 





System Architecture Reference Manual, Volume 2 

SECTION 3 
OPERATOR SET AND COMMON ACTIONS 

GENERAL INFORMATION 

This section defines the architecture operator set and common actions. Operators and common actions 
are presented in functional category order. General information about each functional category is given 
before the specific functions within the category arc described. 

Operators usually execute upon operands present in the stack structure described in section 2 of this 
manual. When the result of an operator is data, that data is the most recent entity in the expression 
stack, at the top of the activation record. Changes to the expression stack that result from the normal 
conclusion of an operator sequence are given as part of the operator description. Changes to the ex­
pression stack that result from abnormal conclusion of an operator sequence are described in section 
4 of this manual, along with other system interrupts. 

Operators and Code Streams 

An operator is cOlnposed of an opcode and up to four parameters. Opcodes are typically one syllable, 
and parameters, if any, are in the syllables following the opcode. Opcode and parameter mapping into 
syllables varies; operator formats are explicitly specified in this section and in Appendix C. (The term 
parameter is used in operator descriptions to describe items from the code-stream; the term argument 
is used for items from the stack.) 

A code-stream is considered to be a sequence of syllables fetched without regard to word boundaries. 
The two cases where word boundaries are relevant are discussed separately with the operators L T48 
(insert 48-bit literal) and MPCW (make PCW). 

In diagrams specifying opcode and parameter interpretation, the operator name is used to represent 
its opcode value. (Opcode values are specified in the Operator Encoding and Operator Reference Infor­
Ination appendices). Vertical bars (I) denote syllable boundaries, and dotted vertical lines (:) denote 
parameter boundaries not corresponding to syllable boundaries. Where relevant, a word boundary is 
denoted by a double vertical bar (II). 

The following example diagram shows a 3-syllable operator, including two single-syllable parameters. 

I op I I name Pl P2 

The next diagram shows a 3-syllable operator, two syllables of which are a single parameter. 

5014954 3-1 



System Architecture Reference Manual, Volume 2 
Operator Set and Common Actions 

The final diagram shows a 3-syllable operator including two parameters that are mapped into two sylla­
bles. PI is 3 bits and P2 is 13 bits. 

I 
op I : I 

name I P 1 : P 2 

I 3: 13 

Primary, Variant and Edit Operators 

There may be several interpretations of an opcode syllable, depending upon context. 

Primary opcodes are represented in a single syllable. 

Variant opcodes are represented by two syllables, of which the first is the primary operator V ARt 

Edit opcodes are found in special tables (speci fied as an argument to an Enter Table Edit operator, 
TEED or TEEU) or in the code-stream immediately following an Enter Single Edit operator (EXSD, 
EXSU, or EXPU). 

Comlllon Actions : common action 

The concept of a "common action" is used in this document for a function that is common to several 
operators. Common actions are defined to effect economy (by reducing repetition), to improve rigor, 
and to provide a convenient reference for citation. Common actions are given three-and four-letter 
names like operators, but with a prefix of "a", as in "aPRCW". It should be emphasized that a com­
mon action specification is a rhetorical device used to specify operators; it is not a constituent of the 
system architecture. 

Initial and Restart State 

Some Primary and Variant operators can be entered in either of two states, initial or restart. By de­
fault, all operators begin in initial state. In some cases, when the execution of an operator must be 
interrupted, it may be necessary to resume in some other way, for example, with a different stack con­
figuratioJI1 or different assumptions about some system state. For these operators, a restart state is de­
fined. 

If an operator invokes interrupt entry (aINTE) or accidental entry (aACCE), it may cause RCW.rs to 
be set to 1, so that the operator will be resumed in restart state following the interruption. When EXIT 
or RETN finds RCW.rs = 1, the next operator executed is begun in restart state. 

Those cases that require the use of the restart mechanism are specified; other cases may use restart 
as an implementation option (see, for example, the pragmatic note under NXLV). A given operator 
may havt~ at most one restart state different from its normal initial state. The semantics of restart state 
are defined for each specified instance of its use. 

In general, the information implied by the use of restart state must be preserved until the operator 
is completed: once an operator has been resumed in restart state, any subsequent interruption and re­
sumption of the same operation must use restart state. 

3-2 



System Architecture Reference Manual, Volume 2 
Operator Set and Common Actions 

Ghecks and Interrupts 

Throughout this section, checks are defined to verify argument types, consistency of data, bounds on 
indexes, integrity of structures, and other related topics. The checks are generally stated in the form 
"if (some condition) then (some interrupt) is generated." Interrupts are defined generally and specifical­
ly in section 4; it may suffice for now to say that interrupt generation causes the current operator 
(usually) to abort its current function, and to cause a designated operating-system procedure to be in­
voked. Not all the checks specified here are required of every implementation, some are defined as 
"optional" in Appendix C. Not all the checks applicable to the operator are mentioned in every 
operator description; many are described generally for a class of operators. AIl the interrupts applicable 
to each operator are specified in Appendix C. 

EKpression Stack Control 

M:ost operators require items from the top of the expression stack, and leave their resuIt(s) on top of 
the stack. Stack items required by operators are caIled arguments. They are normally consumed; that 
is" they are used and deleted from the stack. To avoid excessive repetition, deletion of arguments is 
assumed for all operators, unless explicitly noted. 

Top-of-Stack Push Operations 

Operators that produce top-of-stack results must "push" them, in order, onto the expression stack. If 
the item being pushed is a double-precision operand, the first word is pushed below the second, both 
with tag = 2. 

The top of the expression stack has a nominal address defined to be S; the proper values for S are 
in the range (D[LL] + 2)-to-(LOSR-I), where LOSR is maintained equal to DD.address + DD.length 
for the stack descriptor. Whenever a word is pushed onto the expression stack, S is incremented by 
one and that address is assigned to the pushed word. If, as a result of the push, S = LOSR, a formal 
Stack-Overflow condition exists. 

A Stack-Overflow interrupt is required only when data are written to the expression stack in memory; 
an implementation is free to keep some of the top-of-stack words in local processor state (registers). 
It must be noted that S is defined in the architecture as the address corresponding to the top word 
in the expression stack; if, at a given moment, a processor has captured k top-of-stack words in local 
state, the address of the top word actuaIly in memory is then Sm = S - k. Although Sm is not defined 
as architecture state, it may be substituted for S in the definition of stack overflow: an implementation 
may define the Stack-Overflow condition to be Sm = LOSR. 

Note that Stack-Overflow is detected only when a push completes with the top-of-stack address exactly 
equal to LOSR. If a Stack-Overflow condition occurs on pushing the first word of a double-precision 
item, the second word is pushed before the interrupt is generated. 

If a Stack-Overflow is detected while Interrupt_Count > 0, the interrupt generation is deferred until 
Interrupt_Count is set to zero (by the ZIC operator). 

5014954 3-3 



System Architecture Reference Manual, Volume 2 
Operator Set and Common Actions 

The memory used by a stack is not strictly limited to the actual segment defined by the stack DD. 
If Stack-Overflow is detected, the stack segment will be overrun for the following reasons: 

1. The word whose push is detected as an overflow is stored as the first word past the end of 
the defined actual segment. 

2. The operator that detects the stack overflow may complete, pushing one or more additional 
words onto the stack. 

3. The Stack-Overflow interrupt generation pushes 4 words onto the stack. 
4. Any top-of-stack words held in optimization registers can be pushed into memory. 
5. Software can push some additional words onto the stack in the process of handling the inter­

rupt. 

The total number of words pushed into memory for the first four reasons cannot exceed 50 in the 
worst case. 

Pragmatic Notes 

Stack overflow will overrun the declared stack 

For Stack-Overflow interrupt generation and handling to complete without overwriting a critical value 
in memory, the memory allocation for the stack must be larger than the value in the length field of 
the stack descriptor. 

Top-of-Stack Pop Operations 

Any operator that requires a stack argument must "pop" it from the expression stack. If the word 
at the top-of-stack has tag = 2, the word below is also popped; if this word does not have tag = 
2, the result is undefined. The top and next words are taken as the second and first words of a double­
precision operand. (Note that because argument items may be either single or double words, mUltiple 
arguments must be accessed by popping them in order, from the topmost down.) 

The expression stack utilizes the set of locations whose nominal addresses are above D[LL] + 2. Note 
that the topmost activation record stack linkage words at D[LL] and D[LL] + 1 are excluded. If S < 
D[LL] + 2 and an operator attempts to use an expression stack argument, a Stack-Underflow interrupt 
is generated; this checking is required for all operators that utilize stack arguments. 

Descriptor Interpretation 

Most of the data and all the code in a systenl architecture reside in memory segments accessed by 
means of data and code-segment descriptors. The address of a particular memory word is computed 
by adding an index to the base address of an actual segment. For data, the index and the reference 
to the base of the actual segment are combined into a single item, an IndexedDD; for code, the seg­
ment base reference is in the CSD and the index is derived from the code-stream-pointer component 
PWI. 

The word referenced by an IndexedDD is located as follows: the nominal address of the word is calcu­
lated by adding the index value from the descriptor to the base address of the segment. If the descriptor 
is marked present, its address field contains the base address; otherwise that field contains the nom,inal 
address of the original DO, whose address field contains the base address if the segment is present. 
If the IndexedDD and the referenced original DO are both marked absent, a Presence Bit interrupt 
is generated. If the referent of the absent copy DO is not an original DD, an Invalid Object interrupt 
is generated. 

3-4 



System Architecture Reference Manual, Volume 2 
Operator Set and Common Actions 

Code addressing is similar to data addressing, except that the CSD provid~s only the segment-base ref­
erence; the index is in PWI. (Note that when edit-mode code is executed as a result of an enter-table­
edit operator, the code is referenced by an IndexedDD.) Code is never referenced through a copy CSD, 
so the indirection described for data reference through an absent IndexedDD does not apply; an absent 
CSD causes a Presence Bit interrupt to be generated. 

C:OMPUTATIONAL OPERATORS 

Operators in this group are loosely termed computational operators because they take arguments direct­
ly from the stack and leave some form of result on top of the stack. 

Computational operators do not evaluate references; their arguments must be items on the stack initial­
ly. Required parametric values may be static code parameters or dynamic stack arguments. 

Numeric Operand Interpretation 

Computational operators act on single-or double-precision operands interpreted as integers or floating­
point numbers. Binary computational operators require two operands to be present on the stack and 
unary computational operators require one. Single-precision and double-precision operands are defined 
in section 1 of this manual. 

In the following discussions, the symbols +, -, *, and / are used to denote respectively the add, sub­
tract, multiply, and divide arithmetic functions, and the "**" symbol denotes the exponentiation func­
tion. Other symbols and combinations of symbols represent implied arithmetic functions, as follow: 

5014954 

Symbol 

a b 
a < b 
a > b 
a :5 b 
a ~ b 
a -,= b 
{a,b,c} 
a ~ b 

lal 
S n 
D n 
R n 
T n 
N n 
I n 

RS n 
RD n 
TS n 
TD n 
Ri n 
NS 
ND 

RaI n 
Ti n 
RId 
TId 

Meaning 

a Equal To b 
a Less Than b 
a Greater Than b 
a Less Than Equal to b 
a Greater Than Equal to b 
a Not Equal to b 
Set a through c, including b 
a Mapped Into Set b 
a(absolute) 
n is Single-precision 
n is Double-precision 
n Rounded 
n Truncated 
n Normalized 
n Integerized 
n Single-precision, Rounded 
n Double-precision, Rounded 
n Single-precision, Truncated 
n Double-precision, Truncated 
n Absolute-value, Rounded-to-Integer 
Normalized, Single-precision 
Normalized, Double-precision 
n Algebraic-value, Rounded-to-Integer 
n Absolute-value, Truncated-to-Integer 
Rounded-to-Integer, Double-precision 
Truncated-to-Integer, Double-precision 

3-5 



Systelll Architecture Reference Manual, Volume 2 
Operator Set and Common Actions 

Representable Operand Formats 

Operand formats depend upon context and purpose. Generally, operands are of type INTEGER or type 
REAL. An INTEGER is a value which does not require an exponent part. A REAL is any value that 
requires an exponent part or contains a decimal-point (octal-point). 

INTEGER values are usually expressed as single-precision operands. However, INTEGER values are 
also expressed as double-precision operands because of arithmetic function logic. This lo.gic requires 
that whenever an input parameter to an arithmetic function is a double-precision operand the result 
of the function must also be expressed as a double-precision operand. 

REAL values are expressed as either single-precision or double-precision operands. These values are 
floating-point expressions which require an exponent part or a value containing a component less than 
unity (a fractional-value). 

Single-·Precision Operand Values 

Single-precision operands can contain any valUl~ in the range: - 549,755,813,887 with an exponent of 
-64 (decimal), through +549,755,813,887 with an exponent of +64 (decimal). 

Doublo-PrE~cision Operand Values 

Double-precision operands contain values in the range: 1.55083668571006866684511 with an exponent 
of - 29580 decimal through 1.94882838205028079124466 with an exponent value of + 29580 decimal. 

Automatic Arithmetic Functions 

Certain arithmetic functions are automatically performed by the system. These are rounding, trunca­
tion, integerization, normalization, and the conversion of operands to single-or double-precision. Some 
of these functions are also implemented as unique operator codes, and thus may be executed as part 
of user-program options. 

Particular arithmetic operators predefine the formats of resultant operands. The architecture computes 
an arithmetic function resultant value and then adjusts the value to conform to the predefined result 
operand format. This methodology requires that rounding and truncation be used to fit resultant values 
into the fixed operand formats. Errors while an arithmetic operator is in process may be due to a 
wrong value result or to a Loss-Of-Precision that occurred from forcing a resultant to fit into a prede­
fined operand format. 

The architecture must be able to determine the nature of computational operation errors and to cate­
gorize errors by defining whether an error is a Loss-Of-Precision, Integer-Overflow, Exponent-Over­
flow, or an Exponent-Underflow error. Interrupts are described in section 4 of this manual. 

Normalization is a computational function that removes leading-zeroes from an operand by adjusting 
the value of its exponent. Normalization is used by the architecture to facilitate arithmetic logic circuit­
ry. The alignment of mantissa values, through normalization, enhances the efficiency of arithmetic op­
erations. If the requirement to normalize an operand cannot be performed due to the limited size of 
the exponent field, a Loss-Of-Precision error :ls detected. 

Integerization is a computational process that adjusts the mantissa of an operand until it is in integer 
format. Integer format was described previously in this section. If an operand cannot be adjusted so 
that it is in integer format (because of the size of its exponent field) an Integer-Overflow error is de­
tected. 

3-6 



System Architecture Reference Manual, Volume 2 
Operator Set and Common Actions 

f\1 u meric-I nterpretation Operators 

The operators in the following groups interpret operands numerically as a primary part of their func­
tion; numeric interpretation also occurs as some part of the function of operators in other groups. 

Arithmetic Operators 

/uithmetic operators require either one or two operands on top of the stack. If the items are not oper­
ands, an Invalid Stack Argument interrupt is generated. 

Binary operators will generate a single-precision result if both operands are single-precision and a dou­
ble-precision result if either or both operands are double-precision. Where required, single-precision is 
extended to double-precision prior to the operation by appending a second word of all zeros. Note 
that the numeric value of the operand is not changed. 

For example, in the architecture, 

* 8**(-- 63) MUL T 2 -~ 2 8**( - 63) 
* 8**(-63) DIVD (1/2) ~ 2 * 8**(-63) 
* 8**( - 63) MUL T 2.5 ~ 3*8**( - 63) with preCISIon loss 
* 8**(- 63) DIVD 4 ~ 0 with precision loss 

These examples illustrate another difference: this architecture produces the proper result (0 for Expo­
nent Underflow; unnormalized small number for precision loss); where predecessor systems depend up­
on software to replace the stack result with a zero of the appropriate type. 

ADD requires two operands on top of the stack. The numeric values of the two operands are 
algebraically added and rounded, and the result is left on top of the stack. 

Exponent-Underflow or Overflow is never generated by ADD. If both x and yare single_integers and 
the absolute value of the sum is less than 2**39, then the result is a single_integer. 

SUBT (subtract) 

SUBT requires two operands on top of the stack. The numeric value of the top item is algebraically 
sllbtracted from the numeric value of the second item and rounded, and the result is left on top of 
the stack. 

Exponent-Underflow is never generated by SUBT. If both x and yare single_integers and the absolute 
value of the difference is less than 2**39, then the result is a single_integer. 

~~ULT (multiply) 

MUL T requires two operands on top of the stack. The numeric values of the two operands are algebra­
ically multiplied and rounded, and the result is left on top of the stack. 

If both x and yare single_integers and the absolute value of the product is less than 2**39, then 
the result is a single_integer. 

If the result of the rounding function causes the exponent value to be too large to fit in the operand 
format exponent field, an Exponent-Overflow interrupt is detected. If rounding causes the exponent 
value to be too small to fit in the operand format exponent field, an Exponent-Underflow interrupt 
is detected. 

5014954 3-7 



System, Arehitectun:: Reference Manual, Volume 2 
O'perator Set and Common Actions 

MULX (extended multiply) 

rv1ULX requires two operands on top of the stack. Any single-precision operand is extended to double­
precision before the numeric values are algebraically multiplied and rounded. The double-precision re­
sult ;" left on top of the stack. 

DiVO (divide) 

DIVD rt:quires two operands on top of the stacie The numeric value of the second item is algebraically 
divided by the numeric value of the top item and rounded, and the result is left on top of the stack. 
If the divisor (top-of-stack operand) equals zero, a Divide by Zero interrupt is generated. 

If the result of the rounding function causes the exponent value to be too large to fit in the operand 
fonnat exponent field, an Exponent·-Overflow interrupt is detected. If rounding causes the exponent 
value to be too small to fit in the operand format exponent field, an Exponent-Underflow interrupt 
is detected. 

IDIV (integer divide) 

IDIV requires two operands on top of the stack. The numeric value of the second item is algebraically 
divided by the numeric value of the top item. The fractional part of the floating point quotient is dis­
carded, and the integer part is left on top of the stack in canonical integer representation. 

If the divisor (top-of-stack operand) equals zero, a Divide by Zero interrupt is generated. If the trunca­
tion function results in an exponent value too large to fit in the operand format exponent field space, 
an Integer-Overflow interrupt is generated. 

RDIV (remainder divide) 

RDIV requires two operands on top of the stack. The numeric value of the second item is divided 
by the numeric value of the top item. The integer quotient with remainder is generated but only the 
remainder is left on top of the stack. The sign of the result is the same as the sign of the second i1:em 
(the dividend). 

If the divisor (top-of-stack operand) equals zero_, a Divide by Zero interrupt is generated. Neither Expo­
nent-Overflow nor Exponent-Underflow can be generated by RDIV. However, Integer-Overflow is gen­
erated whenever IDIV would generate Integer-Overflow for the same arguments. 

NORM (normalize) 

NORM requires an operand on the top-of-stack; otherwise an Invalid Stack Argument interrupt is gen­
erated. If the operand is single-precision, it is converted to normalized single-precision representation. 
If the operand is double-precision, it is converted to normalized double-precision representation. 

If the result of the rounding function causes the exponent value to be too large to fit in the operand 
format exponent field, an Exponent-Overflow interrupt is detected. If rounding causes the exponent 
value to be too small to fit in the operand format exponent field, an Exponent-Underflow interrupt 
is detected. 

3-8 



System Architecture Reference Manual, Volume 2 
Operator Set and Common Actions 

AMIN and AMAX (arithmetic minimum and maxirnum) 

A~v1IN (and AMAX) rC4uire two operands on top of the stack. The numeric values of the two operands 
are compared and the arithmetically lesser (or greater) of the two operand values is left as the result 
on top of the stack. If one of the input operands is single-precision and the other input operand is 
double-precision, the single-precision operand is extended before the cOlnparison, and a double-preci­
sion result is generated. If both of the inputs are single_integers, then so is the result. 

Relational Operators 

The relational operators all require two operands on top of the stack; otherwise an Invalid Stack Argu­
ment interrupt is generated. The numeric value of the second item is algebraically compared to the 
numeric value of the top item, and a Boolean result is left on top of the stack. The form of the Boo­
lean results True and False is defined in Boolean Operands. 

lESS (less than) 

LESS leaves a True result if the second from top-of-stack operand is arithnletically less than the top 
operand and a False result otherwise. 

lSEO (less than or equal to) 

LSEQ leaves a True result if the second from top-of-stack operand is arithmetically less than or equal 
to the top operand and a False result otherwise. 

EOUl (equal to) 

EQUL leaves a True result if the second from top-of-stack operand is arithmetically equal to the top 
operand and a False result otherwise. 

NEOl (not equal to) 

NEQL leaves a True result if the second from top-of-stack operand is arithmetically not equal to the 
top operand and a False result otherwise. 

GREO (greater than or equal to) 

GREQ leaves a True result if the second from top-of-stack operand is arithmetically greater than or 
equal to the top operand and a False result otherwise. 

GRTR (greater than) 

GRTR leaves a True result if the second from top-of-stack operand is arithmetically greater than the 
top operand and a False result otherwise. 

Range Test Operators 

The range test operators compute the result of a double arithmetic inequality, L :s X :s H. The value 
of X is a stack argument and is left on the stack along with the Boolean result. 

5014954 3-9 



System Architecture Reference Manual, Volume 2 
Operator Set and Common Actions 

FiNGT (range test) 

The RNGT operator includes the values of Land H as two eight-bit parameters. 

RNGT L H 

RNGT requires one operand on top of the stack (X); otherwise an Invalid Stack Argument interrupt 
is generated. 

Two operands are produced as a result of RNGT. The topmost result is the Boolean result of the arith­
metic inequality (that is, the result is True if the inequality is True, and it is False if the inequality 
is False). 

The other (bottom-most) result is an identical copy of the input, X. 

DRNT (dynamic range test) 

The DRNT operator is identical to the RNGT operator except that the values of Land H are stack 
arguments instead of code parameters. 

I H ---_._----
I L 
---------
I X 

DRNT requires three operands on top of the stack; otherwise an Invalid Stack Argument interrupt is 
generated. As in RNGT, two operands are produced. 

Numeric Type-Transfer Operators 

The following type transformations may be invoked on the top-of-stack item by operators defined in 
this group. 

NTIA, NTGR: Convert operand numeric value to single_integer. 
NTGD, NTTD: Convert operand numeric value to double_integer. 
SNGT, SNGL: Convert operand numeric value to single-precision. 
SNGT: Convert WordDD to SingleDD. 

The following type transformations, among others, may be invoked on the top-of-stack item by 
operators defined in Bit-Vector Type-Transfer Operators. 

XTND: Convert single-precision operand to double-precision, or convert WordDD to DoublcDD. 

For the following type transfer operators, tht~ top-of-stack operand is denoted x. 

3-10 



System Architecture Reference Manual, Volume 2 
Operator Set and Common Actions 

NT IA (i ntegerize tru ncated) 

NTIA requires an operand on top of the stack; otherwise an Invalid Stack Argument interrupt is gener­
ated. The operand is converted to single_integer representation by truncation and the result is left on 
top of the stack. If the truncation function results in a value too large to fit in a single_integer word 
format an Integer-Overflow interrupt is generated. 

NTGR (integerize rounded) 

NTGR requires an operand on top of the stack; otherwise an Invalid Stack Argument interrupt is gen­
erated. The operand is converted to single_integer representation by rounding and the result is left 
on top of the stack. If the rounding function results in a value too large to fit in a single_integer 
word format an Integer-Overflow interrupt is generated. 

SNGL (set to single-precision rounded) 

SNGL requires an operand on top of the stack; otherwise an Invalid Stack Argument interrupt is gener­
ated. The operand is converted to normalized single-precision representation and is left on top of the 
stack. 

If the rounding function results in an exponent value too large to fit in a single_integer operand for­
mat, an Exponent-Overflow interrupt is detected. If the result of the normalization function or the 
rounding function results in an exponent value too small to fit in a single_integer operand format, 
an Exponent-Underflow interrupt is detected. 

SNGT (set to single-precision truncated) 

SNGT requires an operand or WordDD on top of the stack; otherwise an Invalid Stack Argument in­
terrupt is generated. 

If the argument is an operand, it is converted to normalized single-precision representation and left 
on top of the stack. 

If the truncation function results in an exponent value too large to fit in a single_integer operand 
format, an Exponent-Overflow interrupt is detected. If the result of the normalization function or the 
truncation function results in an exponent value too small to fit in a single_integer operand format, 
an Exponent-Underflow interrupt is detected. 

If the argument is a SingleDD, it is left on the stack unchanged. If the argument is an unindexed Doub­
leDD with length> = 2**19, an Invalid Argument Value interrupt is generated. Otherwise, if the argu­
rnent is a DoubleDD, it is left on the stack as a SingleDD: the element_size is set to single-precision, 
and if the DoubleDD is unindexed, its length field is multiplied by 2. 

I\lTTO (integerize double-precision truncated) 

NTTD requires an operand on top of the stack; otherwise an Invalid Stack Argument interrupt is gen­
erated. The operand is converted with truncation to double_integer representation, and the result is 
left on top of the stack. 

If the truncation function results in an exponent value too large to fit in a double_integer operand 
format, an Exponent-Overflow interrupt is detected. If the result of the normalization function or the 
truncation function results in an exponent value too small to fit in a double_integer operand format, 
an Exponent-Underflow interrupt is detected. 

5014954 3-11 



System Architecture Reference Manual, Volume 2 
Operator Set and Common Actions 

NTGD (integerize double-precision rounded) 

NTGD requires an operand on top of the stack; otherwise an Invalid Stack Argument interrupt is gen­
erated. The operand is converted \vith rounding to double_integer representation and the result is left 
on top of the stack. 

If the rounding function results in an exponent value too large to fit in a double __ .integer operand 
format, an Exponent-Overflow interrupt is detected. 

a ISX (i nteger su bset exception action) 

aISX is a common action invoked by operators that require an argument to be within an integer subset, 
if the argument is not a k-bit integer (where k is determined by the invoking operator). 

If the argument is not an operand, an Invalid Stack Argument interrupt is generated. 

If the argulnent is an operand but not a single_jnteger, the implementation may be defined to integer­
ize the operand (as in NTGR); if the operand cannot be integerized, an Integer-Overflow interrupt is 
generated. If the integerized operand is a k-bit integer, the invoking operator proceeds to use the inte­
gerized value in place of the original argument. If the integerized argument is not a k-bit integeL, or 
the implementation does not perform integerization, the action in the next paragraph is performed. 

If the argument is an operand but not a k-bit integer, either an Invalid Argument Value or an Invalid 
Stack Argument interrupt is generated, as implementation-defined. 

The implementation options may be defined separately for each invocation of aISX. 

Pragmatic Notes 

Minimal Specification Constraint for Low-Level Operators 

The aISX action is defined to avoid over-specifying the error action to be taken in the implementation 
of certain operators that are "low-level". This means that their use is normally restricted to operating­
system software. 

The preferred implementation of aISX is to generate an interrupt for any argument that is not a k-bit 
integer, rather than to integerize; this mechanism will catch the most software errors. The flexibility 
is available so an implementation can "borrow logic" from other operators if some economy is thereby 
effected. 

Scale Left 

Scale left operators perform multiplication of an operand on top of the stack by 10 raised to a power 
specified by a scale factor. The scale factor may be a dynamic argument or a static parameter. 

The item to be scaled must be an operand; otherwise an Invalid Stack Argument interrupt is generated. 
If the operand is not an integer, it is integerized with the RId function; if it cannot be integerized, 
an Integer··Overflow interrupt is generated. 

If the scale factor is a dynamic argument, it must be an operand; otherwise an Invalid Stack Argument 
interrupt is generated. It is integerized with rounding if required, and if it cannot be integerized, an 
Integer-Overflow interrupt is generated, and if the result is a valid integer but not in the range O-to-
12, an Invalid Argument Value interrupt is generated. 

3-12 



System Architecture Reference Manual, Volume 2 
Operator Set and Comnlon Actions 

If the scale factor is a parameter, and it is not in the range O-to-12, and Invalid Code Parameter inter­
rupt is generated. 

The result CI the multiplication is left on top of the stack, represented as a single_jnteger or 
double ___ jntcger, depending on its magnitudc. The result is single-precision for thc range 0 to (239 - 1) 
and double-precision for (239) to (278 -- 1). If it is greater than or equal to 2**78, an indeterminate 
double-prccision integer is left on top of the stack, and OFFF (overf1ow flip-flop) is set to 1. 

selF (~~cale left) 

The top-of-stack operand is multiplicd by tcn raised to the power specified by the scale factor. The 
resultant singlc ____ jnteger or double_jntcger is left on top of the stack. Thc scale factor is a parameter: 

selF I 
Scale I 
Factor 

DSlF (dynamic scale left) 

The operand to be scaled is multiplied by 10 raised to the power specified by the scale factor. The 
resultant singlc_integer or doublc_integer is left on top of the stack. Both arguments are required 
on top of the stack: 

1

_---------------------

scale factor 

operand to be scaled 

Scale Right 

Scale right operators perform division of an operand on top of the stack by 10 raised to a power 
s,pecified by a scale factor. The scale factor may be a dynamic argument or a static parametcr. The 
results of the division are the quotient represented as a binary integer, or the remainder represented 
as a decimal (hex character) sequence, or both. 

The item to be scaled must be an operand; otherwise an Invalid Stack Argument interrupt is generated. 
If thc operand is not an integer, it is integerizcd with the RId or TId function, depending upon the 
operator; if the operand cannot be be integerized, an Integer-Overflow interrupt is generated. 

If the scale factor is a dynamic argument, it must be an opcrand; otherwise an Invalid Stack Argument 
interrupt is generated. It is integerized (RaJ function) if required. If it cannot be integerized, an Integer­
Overflow interrupt is generated, and if the result is a valid integer but not in the range 0-to-12, an 
Invalid Argument Value interrupt is generated. 

If the scale factor is a parameter, and it is not in the range 0 to 12, an Invalid Code Parameter inter­
rupt is gcnerated. 

Scale right operators leave on top of the stack either the quotient of the division, the remainder, or 
both the quotient and remainder. The quotient is represcnted as a single_integer if its magnitude is 
in the range 0 to (2**39 - 1) and as a double_integer for the range (2**39) to (2**78 - 1) (note that 
the magnitude of the quotient cannot exceed 2**78 - 1). The value of bit 47 is undefined. 

50Jl4954 3-13 



System Architecture Reference Manual, Volume 2 
Operator Set and Common Actions 

The remainder is a single-precision operand interpreted as a left-justified decimal (hex) sequence. The 
number of decimal digits in the remainder is equal to the scale factor, and each digit is in the range 
hex "0" to hex "9". The values of the rightmost 12- < scale factor> digits are undefined. The remainder 
is the unsigned result of dividing the absolute value of the integerized argument by a power of ten. 

SCRS (scale right save) 

The argument to be scaled is integerized using the RId function. SCRS leaves the quotient on top of 
the stack and the remainder second from top of the stack. The correct sign of the entire result is left 
in the sign bit of the quotient, even if the quotient itself is zero. The operand to be scaled is required 
on top of the stack, and the scale factor is a parameter: 

SCRS I 
Scale I 
Factor 

DSRS (dynarnic scale right save) 

The operation is the same as SCRS, but the scale factor is required on top of the stack above the 
operand to be scaled: only the quotient is left on top of the stack. 

scale factor 

operand to be scaled 

SCRT (scale right truncate) 

The argument to be scaled is integerized using the TId function. Only the quotient is left on top of 
the stack. (The operation effectively applies the Ti function to the quotient x/10**n.) 

The operand to be scaled is required on the stack, and the scale factor is a parameter: 

SCRT I 
Scale I 
Factor 

DSRT (dynamic scale right truncate) 

The operation is the same as SCRT, but the scale factor is required on top of the stack above the 
operand to be scaled: 

scale factor 

operand to be scaled 

3-14 



System Architecture Reference Manual, Volume 2 
Operator Set and Common Actions 

------------------------------------ ~-"--- ---~--" 

SCRR (scale right rounded) 

The~ argument to be scaled is integerized, using the RId function if the scale factor is zero and the 
TId function otherwise. Only the quotient is left on top of the stack. If the most significant digit of 
the remainder is greater than or equal to five, the magnitude of the quotient is increased by one. (The 
operation effectively applies the generic Ri function to the quotient x/l0**n.) 

The operand to be scaled is required on top of the stack, and the scale factor is a parameter: 

SCRR 

DSRR (dynamic scale right rounded) 

I 
Scale I 
Factor 

The operation is the same as SCRR, but the scale factor is required on top of the stack above the 
operand to be scaled: 

scale factor 

operand to be scaled 

seRF (scale right final) 

Thl;! argument to be scaled is integerized using the RId function. Only the remainder is left on top 
of the stack. EXTF (external sign flip-flop) is set to 1 if the mant_sign of the operand to be scaled 
is rninus and to 0 otherwise. OFFF (overflow flip-flop) is set to 1 if the quotient is any non-zero value; 
OFFF remains unchanged if the quotient is zero. 

The operand to be scaled is required on top of the stack, and the scale factor is a parameter: 

SCRF I Scale I 
Factor 

DSRF (dynamic scale right final) 

The operation is the same as SCRF, but the scale factor is required on top of the stack above the 
operand to be scaled: 

scale factor 

operand to be scaled 

5014954 3-15 



System Architecture Reference Manual, Volume 2 
Operator Set and Common Actions 

------

Binary to Decimal Conversion 

The binary-to-decimal conversion operators are variations of the scale-right-final operators, in that the 
result is a decimal digit sequence representing the remainder of division by a power of ten. Then: are 
two operators, a static form (BCD) with the number of digits specified as a code parameter, and a 
dynamic form (DBCD) with the number of digits supplied as a stack argument. 

The nUInber to be converted is a stack argument that must be an operand; otherwise an Invalid Stack 
Argument interrupt is generated. If necessary, that argument is integerized with rounding (using the 
RId function); if the operand cannot be integerized, an Integer-Overflow interrupt is generated. This 
integerized argument is referred to below as B (the binary integer). 

IBI rnod 10**N is converted to a sequence of N decimal digits, where N is provided as a code 
pararneter or a stack argument. The result is left justified in an operand, which is single-precision if 
N is 12 or less and double-precision if N is in the range 13 to 24. The contents of the operand beyond 
the N-digit sequence are undefined. 

EXTF is set to: false (positive) 
true (negative) 
undefined state 

OFFF is set to: true (overflow) 
unchanged 

if B ~ 0, 
if B < 0 and IBI mod 10**N > 0, 
if B < 0 and IBI mod 10**N = O. 

if IBI ~ 10**N. 
if IBI < 10**N. 

Pragmatic Notes 

Binary-to-decimal operators relate to scale-right operators 

The binary-to-decimal operators differ from the scale-right operators in two ways: 

• The binary-to-decimal operators do not set EXTF true if the binary argument is -- o. 
• The binary-to·-decimal operators accept N > 12. For 12 < n ~ 24, the following code sequences 

produce the same result operand: 

Static n 

BCD n SCRS n-12 
SCRF 12 
EXCH 
JOIN 

Dynamic n 
LT8 12 
SUBT 

DBCD DSRS 
SCRF 12 
EXCH 
JOIN 

BCD (binary convert to decimal) 

The B operand is the only stack argument; N is a code parameter: 

(var i ant) I 

3-16 

BCD 
number of I 
digits, N 



System Architecture Reference Manual, Volume 2 
Operator Set and Common Actions 

If N > 24, an Invalid Code Parameter interrupt is generated. 

DBCD (dynamic binary convert to decimal) 

Two stack arguments are required; if either is not an operand, an Invalid Stack Argument interrupt 
is generated. 

----------------------1 
N operand 

B operand 

The topmost argument is integerized with rounding (RaI function), if necessary, to produce N; if the 
argument cannot be integerized, an Integer-Overflow interrupt is generated. If N is not in the range 
O-to-24, an Invalid Argument Value interrupt is generated. The second argument provides B. 

Bit Vector Interpretation 

This group of operators provides various functions. Those operators that act on stack items either in­
terpret the items as bit vectors or deal with the word as a whole. In general, there are few restrictions 
on the type of stack items that will be acted upon. 

Logical Operators 

Logical operators require one or two top-of-stack items; they may be of any type. The items are inter­
pf(~ted as 48-bit vectors, unless one or both are double-precision items. In that case they are interpreted 
as 96-bit vectors, and if only one of the two items is double precision, the other is extended with 48 
zero bits (whether the item is an operand or not). 

The logical operation is applied in parallel to each bit of the vectors, and the result is left on top of 
the stack. For the unary LNOT operator, the tag of the result is the same as the tag of the top of 
stack item. For the binary logical operators the result is double-precision if either argument is double-, 
precision; otherwise the tag of the result is the tag of the second from top item. 

The four logical operations are illustrated here in binary notation: 

NOT 01 = 10 
0011 AND 0101 = 0001 
0011 OR 0101 = 0111 
0011 EQV 0101 = 1001 

LNOT (logical not) 

LNOT requires a single top-of-stack item. All bits of the vector are complemented, and its tag remains 
unchanged. 

LAND (logical and) 

LAND requires two top-of-stack items. The logical AND of the two bit vectors is left on top of the 
stack. 

5014954 3-17 



System Architecture Reference Manual, Volume 2 
Operator Set and Common Actions 

LOR (logical or) 

LOR requires two top-of-stack items. The logical OR of the two bit vectors is left on top of the stack. 

LEO\! (logical equivalence) 

LEQV requires two top-of-stack items. The logical EQV (equivalence) of the two bit vectors is left 
on top of the stack. 

Relational Operator 

SArvlE (logical equality) 

SAME requires two top-of-stack items. They are interpreted as 52-bit vectors (including tag bits). If 
all corresponding bits of the two vectors have the same value, a True result is left on top of the stack; 
otherwise a False result is left. If both items are double-precision, the bit vector interpretation includes 
the second words. Note that if only one item is double-precision, the result is necessarily false" 

Literal Operators 

Literal operators place a single-precision constant on top of the stack. They do not use any initial top­
of-stack items. 

ZERO (insert literal zero) 

Zr.RO leaves on top of the stack a single-precision word with all bits initialized to zero. 

ON E (insert literal one) 

ONE leaves on top of the stack a I-bit integer equal to 1. 

L T8 (insert 8 bit literal) 

L T8 leaves on top of the stack an 8-bit integer that is a copy of its one-syllable parameter. 

L T8 I Constant I 

LT16 (insert 16 bit literal) 

L TI6 leaves on top of the stack a I6-bit integer that is a copy of its two-syllable parameter. 

LT16 
I 

Constant 

3-18 



System Architecture Reference Manual, Volume 2 
Operator Set and Common Actions 

LT48 (insert 48 bit literal) 

L T48 leaves on top of the stack a single-precision operand that is a copy of its six-syllable parameter. 
The parameter is taken from the first code-word following the L T48 opcode. "Padding" syllables, if 
an~y, from the opcode to the end of the word containing the opcode are ignored. 

----------/ /-------------------------------------
I 

I ignored II' I I I I I II· LT481 if any Const.ant 
----------/ /-------------------------------------

Bit-Vector Type-Transfer Operators 

Operators in this group perform the following operations on the top-of-stack item(s). 

STAG: 
XTND: 

JOIN: 
SPLT: 

Set the tag to an arbitrary value from the top-of-stack. 
Append a low-order word of zeros, if necessary, to form a double-precision 
operand, or set the element_size of a word DD to double-precision. 
Join two operands to form one double-precision operand. 
Split an operand into two single-precision operands. 

STAG (set tag) 

STAG requires a tag value and an object item on top of the stack, and leaves as its result an item 
whose tag is the tag value and whose 48 bits are copied from the object item. 

tag value operand 

object item 

The tag value must be a single-precision operand; otherwise an Invalid Stack Argument interrupt is 
generated. The tag value is extracted from the field [3 :4] of this operand. There is no restriction on 
the initial type of the object item. 

If the tag value is 2, and the object item does not have tag 2, then the least significant word is set 
to zero. 

In this architecture, STAG zeros the second word of a double-precision operand created by setting the 
tag to 2. The B6800 leaves the arbitrary contents of the Y register as the contents of the second word. 

5014954 3-19 



~yslem Architectufe Reference Manual, Volume 2 
Operator Set and Common Actions 

XTND (set to double-precision) 

XTND requires an operand or a WordDD on top of the stack; otherwise an Invalid Stack Argmnent 
interrupt is generated. 

If the argument is a double-precision operand, it is left on the stack unchanged. If it is a single-preci­
sion operand, it is converted to double-precision representation by appending a second word whose 
fields are initialized to zero; the double-precision result is left on the stack. Note that its numeric value 
is not changed. 

If the argument is a DoubleDD, it is left on the stack unchanged. If the argument is a SingleDlD, it 
is left on the stack as a DoubleDD: its element_size is set to double-precision, and if the SingleDD 
is unindexed, its length field is divided by 2; any remainder is discarded. 

This architecture XTND disallows CharDDs, whereas B6800 XTND looks only at bit 40, the "double­
precision bit", of a data descriptor. The value of bit 40 is zero in the encoding of EBCDIC or hex 
elemcnt. __ size values, and by setting it to 1, B6800 XTND generates an invalid encoding. Furthermore, 
the DD length is improperly divided by 2 in this case. 

JOIN (set two singles to double) 

JOIN requires two operands on top of the stack; otherwise an Invalid Stack Argument interrupt is 
generated. A double-precision item is constructed from the two operands, and the result is left on top 
of the stack. 

The first and second words of the double-precision result are taken from the first words of the second 
and top operands respectively. The following possibilities arise from combinations of single and dOllble­
precision operands: 

sp (w"i) ==> dp(w2,wl) dp(wl,w2) ==> 

s p (w2) s p (w 3) 

2) 
1----------·-

==> I dp(w2,wl) 
-----------

sp(wl) 

dp (w2, w3) 

dp (w3,wl) dp(wl,w2) 4) ==> 

dp (w3,w4) 

SPL T (set double to two singles) 

SPL T requires an operand on top of the stack; otherwise an Invalid Stack Argument interrupt is gt~ner­
ated. Two single-precision items are constructed from the operand and left on top of the stack. 

If the operand is single-precision, it is left on the stack and a single precision zero is pushed on the 
stack above it. If the operand is double-precision, its two words are converted to two single-precilsion 
items. The first word is pushed on the stack first, and the second word is left on top of the stack. 

1) sp (w 1) ==> -----------1 sp (0) 2) dp (w 1 , w2) ==> sp (w2) 

-----------1 sp (w 1) 
------------

sp(wl) 

3-20 



System Architecture Reference Manual, Volume 2 
Operator Set and Common Actions 

Evaluate Word Structure Operators 

RTAG (read tag) 

RTAG requires one item on top of the stack, and its result is a 4-bit integer whose value is the tag 
of the item. 

C[30N (count binary ones) 

CBON requires an operand on top of the stack; otherwise an Invalid Stack Argument interrupt is gen­
erated. The number of binary-ones present in the operand are counted. If the operand is double-preci­
sion, all 96-bits are examined. CBON leaves a 7-bit integer value, which is the number of binary-ones 
counted, on top of the stack. 

LOG2 (leading one test) 

LOG2 requires one item on top of the stack, and then replaces it with a 6-bit integer value. The integer 
contains the bit-number of the leading (most-significant) binary-one bit in the stack item. If all bits 
in the item are binary-zeroes, LOG2 leaves an integer zero on the stack; otherwise the integer contains 
the (number + 1 of the) highest-order binary-one bit in the item. Only the first word (upper-half) of 
a double-precision stack item is examined. 

Word Manipulation Operators 

Word manipulation operators provide the capability to alter any "partial field" of a word in the stack 
called the destination, in some cases based on a field of another word in the stack called the source. 
The following operations are provided: 

BSET, DBST: 
BRST, DBRS: 
ISOL, DISO: 

INSR, DINS: 
FLTR, DFTR: 
CHSN: 

Set a single destination bit. 
Reset a single destination bit. 
Create a destination whose low-order field is set from a field of the 
source. 
Set a field of the destination from the low-order field of the source. 
Set a field of the destination from a field of the source. 
Complement the "sign" bit (bit 46) of the destination. 

Source items may be of any type. Except for CHSN, destination items may be any type. The altered 
destination item is left on the top of the stack. If the source is a double-precision item, the field is 
taken from its first word, and the second word is discarded. If the destination is a double-precision 
item, the bit or field altered is in its first word, and the second word is retained unchanged in the 
double-precision result. The following terms are used for bit/field specifications: 

Db: The destination bit to be set or reset, or the high-order 
bit of the destination field. 

Sb: The high-order bit of the source field. 
Len: The length of both the source and destination fields. 

There are static and dynamic operators corresponding to several of the operations. The static operators 
take Db, Sb, and Len specifications, as required, from code parameters; the dynamic operators take 
them from stack arguments. 

5014954 3-21 



System Architecture Reference Manual, Volume 2 
Operator Set and Common Actions 

If dynamic Db, Sb, and Len specification items are not operands, an Invalid Stack Argument interrupt 
is generated. They are integerized with rounding, if required, and if they cannot be integerized, an Inte­
ger-Overflow interrupt is generated. All Db all1d Sb values must be in the range {O to 47}, and Len 
values Inust be in {O to 48}. Static operators generate an Invalid Code Parameter interrupt if any of 
these values are invalid, and dynamic operators generate an Invalid Argument Value interrupt if any 
are invalid. 

The effect of word manipulation operators willi be shown as an assignment to a field of the .destination 
word. The remainder of the destination word is not changed. Note that Len = 0 is a valid specification 
of a null field; in this case the destination will not be altered at all. 

BSET (bit set) 

BSET sets a single destination bit: destination. [Db: 1] 
of-stack item, and Db is specified by a paralmeter: 

I BSET I 

DBST (dynamic bit set) 

1. The destination is the only .required top-

Db 

DBST sets a single destination bit: destination. [Db: 1] . - 1. The required initial stack state inclludes 
Db: 

Db 

destination item 

BRST (bit reset) 

BRST resets a single destination bit: destination. [Db: 1] 
of-stack item, and Db is specified by a parameter: 

o. The destination is the only required top-

I BRST I Db 

DBF~S (dynamic bit reset) 

DBRS resets a single destination bit: destination. [Db: 1] . - O. The required initial stack state includes 
Db: 

Db 

destination item 

3-22 



ISOL (field isolate) 

System Architecture Reference Manual, Volume 2 
Operator Set and Common Actions 

ISOL creates a single-precision destination word initialized to zero, and then sets its low-order field 
from a field of the source: destination: = 0; destination.[Len-l:Len] : = source.[Sb:Len]. The source 
is the only required top-of-stack item, and Sb and Len are specified by parameters: 

I ! SOL I Sb Len I 

DISO (dynamic field isolate) 

DISO creates a single-precision destination word initialized to zero, and then sets its low-order field 
from a field of the source: destination: = 0; destination. [Len-l :Len] : = source. [Sb:Len]. The required 
initial stack state includes Len and Sb: 

Len 

Sb 

source item 

INSR (field insert) 

INSR sets a field of the destination from the low-order field of the source: destination. [Db: Len] .­
source. [Len-l :Len]. The required initial stack state includes only the source and destination: 

source item 

destination item 
1------------------

Values for Db and Len are specified by parameters: 

I I NSR I Db Len I 

5014954 3-23 



System Architecture Reference Manual, Volume 2 
Operator Set and Common Actions 

DINS (dynamic field insert) 

DINS sets a field of the destination from the low-order field of the source: destination. [Db: Len] : = 
source.[Len-l:Len]. The required initial stack state includes Len and Db (but note that for DINS~, the 
source item is required on top of the stack): 

source item 

Len 

Db 

destination item 

FLTf~ (-field transfer) 

FL TR sets a field of the destination from a field of the source: destination. [Db: Len] 
Sb:Len]. The required initial stack state includes only the source and destination: 

s,ource i tern 

destination item 

Values for Db, Sb, and Len are specified by parameters: 

1 FLTR I Db Sb 

DFTR (dynamic field transfer) 

source.[-

DFTR sets a field of the destination from a field of the source: destination. [Db:Len] . - source.[­
Sb:Len]. The required initial stack state includes Len, Sb and Db: 

Len 

Sb 

Db 

source item 

destination item 

3-24 



System Architecture Reference Manual, Volume 2 
Operator Set and Common Actions 

.-------------------------------~---~---- ------

CHSN (change sign) 

The CHSN operator requires an operand on top of the stack; otherwise, an Invalid Stack Argument 
interrupt is generated. CHSN complements a single destination bit: destination. [46: 1] := NOT 
destination.[46: 1] 

Linear Index-Function Operator 

OCRX (occurs index) 

OCRX computes a linear integer function of an integer index, with bounds checking. The function is 
defined as 

Relativelndex (offset, length, index) = offset + (index-l)*width; 

where index must be in the range {I to limit}. 

OCRX leaves on top of the stack the result of the Relativelndex function applied to values derived 
from two arguments: 

Index Control Word 

index 

The Index Control Word ( ICW) must be a single-precision operand. It contains three fields: :index 
control word (lCW) 

ICW_width 
ICW_limit 
ICW_offset 

[47:16] 
[31:16] 
[15:16] 

The width coefficient 
the upper bound for the index 
the offset coefficient 

If the ICW is not a single-precision operand or if the index is not an operand, an Invalid Stack Argu­
ment interrupt is generated. The index argument is integerized with rounding if required; if it cannot 
be integerized, an Integer-Overflow interrupt is generated. 

If the index is not in the range {I to ICW _limit}, an Invalid Index interrupt is generated. Otherwise, 
OCRX leaves on top of the stack a single_integer whose value is Relativelndex (lCW _offset, 
leW_width, index). 

Pragmatic Notes 

OCRX is an indexing-computing function 

OCRX is intended for computing indexing functions to sub-records within a linear record structure. 
For example, assume that a record contains a sequence of sub-records s[l] to s[n]; each sub-record 
contains w elements of the base record type, and the first sub-record begins k elements into the record: 

5014954 3-25 



System Architecture Reference Manual, Volume 2 
Operator Set and Common Actions 

1
\\\\\\\\\\\1 
\\\\\\\\\\\ 5[lJ 

1<- k ->1 

: 5 [2J ¢¢¢ 

1<- w ->1 

: 5 [nJ 
:\\\\\\\\\\\\1 
:\\\\\\\\\\\\ 

The index for s[i] relative to the ,base of the record can be computed by the Relativelndex function 
of the OCRX operator, with i as the index and an ICW composed with: 

ICVl_width = w 
ICW_limit = n 
IC\\! __ offset = k 

Note that ICW __ limit and index are in the same units (ordinal index of the sub-record); ICW _width 
and IC\V _offset are in the same arbitrary units (typically characters or words); the Relativelndex func­
tion transforms from the first set of units to the second. 

REFERENCE GENERATION AND EVALUATION OPERATORS 

The common feature of this operator group is the generation and evaluation of references and chains 
of references. The group consists of reference generation operators (generators) and operators 'that eval­
uate references in order to read a target item onto the stack (read evaluators) or store an item from 
the stack into a target location (store evaluators). 

Basic evaluation of a reference consists of calculating the nominal memory address to which it refers. 
Read evaluation consists of fetching the contents of the referenced location; store evaluation consists 
of writing the contents of that location. 

Double Precision 

References to double-precision operands refer to the first word. The need for a second word may be 
indicated by the tag of the first word or by the reference (lndexedDoubleDD). The second word is 
in the next higher memory location. (Note that this architecture, like predecessor implementations, does 
not pennit a double-precision operand to be split between pages of a virtual-segment.) 

Pragmatic Notes 

Beware Aliasing Address Couples or IRWs with IndexedWordDDs 

Care must be exercised in any sit~ation in which an address-couple parameter or IRW might reference 
the same location as an IndexedWordDD, if there can be any conflict as to operand precision. Such 
a situation might arise if a descriptor is pointed into part of a stack (creating an "in-stack array"), 
and the same locations are also referenced by address-couple. Read evaluation operators such as VALC 
and LOAD distinguish single-from double-precision operands by the tag of the operand, if it is ad­
dressed directly by an address-couple parameter or an IRW; the determination is made from the 
elemenL __ size of an IndexedWordiDD, if such a descriptor is the last element in the reference chain. 
Similarly, normal store operators require the store operand to match the target type, which is deter­
mined from the tag of the target word (address-couple parameter or IR W) or by the element_size (In­
dexedWordDD). 

3-26 



Stack references 

System Architecture Reference Manual, Volume 2 
Operator Set and Common Actions 

A stack is accessed by its stack number as follows. The stack-vector descriptor at address-couple (0,2) 
is indexed by the stack number. If the stack number is not in the range {O to SVD.length-l}, an Invalid 
Index interrupt is generated; otherwise the stack descriptor is fetched. If either the word accessed as 
the stack-vector descriptor or the word accessed as the stack descriptor is not an unpaged unindexed 
SingleDD, an Invalid Object interrupt is generated. If the stack descriptor is an absent original DD, 
a Presence Bit interrupt is generated. The SVD must be a present original DD, and the stack descriptor 
must not be an absent copy DD; the effect of violating these restrictions is undefined. 

Lexical Link Evaluation 

A lexical link is a (stack number, displacement) couple; it specifies the base of an activation record. 
Basic evaluation of a lexical link consists of computing the nominal base address of the activation rec­
ord by adding the displacement to the base address of the referenced stack. If the stack number equals 
the contents of SNR, the base address is found in BOSR; otherwise, it is obtained from the stack de­
scriptor, as described in Stack References. 

aLXLK (evaluate lexical link) 

The common action aLXLK is defined to perform the evaluation defined in this section. 

Lexical Chains 

The addressing environment of a process is a list of activation records: the base address of the topmost 
record is recorded in D[LL]; the MSCW at that address contains a lexical link to the record for level 
LL-l, and so on to level zero. 

If an implementation maintains display registers, it is necessary to traverse all or part of the lexical 
chain whenever the topmost activation record changes, as occurs in procedure entry/exit and move­
stack operators (see Display Update). If an implementation does not have a full set of display registers, 
it may be necessary to traverse part of the lexical chain in order to find the activation record for a 
lexical level less than L L. 

During lexical chain traversal, a Stack Structure Error is generated if the word addressed by a lexical 
link is not an entered MSCW , or if the MSCW of the activation record for lexical level i does not 
contain i in the lex_level field. 

al_XCH (traverse lexical chain) 

The comn10n action aLXCH is defined to perform lexical chain traversal and consistency checking de­
fined in this section. 

A.ddress-Couple Evaluation 

Address couples occur in operator parameters and in Normal Indirect Reference Words (NIRWs). 
Those in parameters occur in either fixed-or variable-fence forms; NIRWs contain fixed-fence address 
couples. A name-call operator uses its address-couple parameter to construct an NIRW on the stack, 
where it will become an initial reference for a subsequent operator. Other operators use their address­
couple paranleter as their own initial reference. 

5014954 3-27 



System Architecture Reference Manual, Volume 2 
Operator Set and Common Actions 

Basic evaluation of an address-couple (Lambda,Delta) consists of calculating the nominal address of 
the referenced word, by adding Delta to the base address of the activation record whose lexical level 
is specified by Lambda. If Lambda = LL, the activation record base is in D[LL]. If not, the activation 
record base address can be read frorn a display register, if such registers are implemented, or found 
by traversing the lexical chain beginning at D[LL] (common action aLXCH). Note that since Larnbda 
specifies an activation record in the current addressing environment, the result of address-couple 
evaluation may vary according to the environment. 

When an address-couple is evaluated, Lambda must be less than or equal to LL, and for Lambda = LL, 
the address of the referenced stack location must be less than or equal to the address of the top-of­
stack (S); otherwise, an Invalid Reference interrupt is generated. Furthermore, for Lambda == LL, refer­
encing data that has not been explicitly pushed with an ENTR or PUSH operator is an undefined oper­
ation. 

Evaluation of References 

Read and store evaluators share the general capability to process a chain of references in order to locate 
some target itenl,. Reference chains may be composed of address-couple parameters, IRWs (NIRWs and 
SIRWs), IndexedWordDDs, and PCWs. 

Definition of valid target items and allowable reference chains depends on the function of the particular 
operator, but evaluation of each element of a reference chain and of IRW chains is common to the 
operator group. The following sections define evaluation of each reference form, IR W chain 
evaluation, and the notation used for each operator to specify allowable reference chains and valid tar­
get items. 

Address Couple Parameters 

Name-call operators use the parameter to construct an NIR W. Other operators evaluate the parameter 
to determine the corresponding nominal address, which is then typically used for read or store access. 

NIRWs 

The STFF operator transforms an NIRW into an SIRW that references the same location. Other 
operators evaluate the NIRW address-couple to determine the corresponding nominal address, which 
is then typically used for read or store access. 

NIR W s rnay be initial references only. 

SIRWs 

Basic evaluation of an SIRW consists of calculating the nominal address of the referenced word: SIR­
W.offset is added to the address derived from the Lexical Link (SIRW.stack_number, SIRW.displac­
ement) by the comrnon action aLXLK. (The ENTR operator uses the Lexical Link address as well as 
the sum.) 

The result of evaluation of an SIRW is constant regardless of the current addressing environment. 

No validity check is performed on the sizes of the displacement and offset fields during SIR W 
evaluation. SIRWs are created from NIRWs, and the NIRW components are verified at that time. 

3-28 



System Architecture Reference Manual, Volume 2 
Operator Set and Common Actions 

Pragmatic Notes 

SIRW as a parameter reference 

The SIRW is a reference to an item in an activation record in a stack; it is context-independent in 
that its interpretation does not depend upon the current addressing environment (apart from the D[O] 
environment, which determines the location of the stack-vector descriptor, which defines the stacks). 
The principal application of SIRW s is to pass reference parameters from one addressing environment 
to another. IndexedWordDDs serve as references to items in segments other than stacks. 

IndexedWordDDs 

Basic evaluation of a data descriptor as a reference is possible only for an IndexedWordDD referring 
to a present segment. The evaluation consists of calculating the nominal address of the referenced word 
(see Descriptor Interpretation). 

In cases where the target of an IndexedWordDD is an operand, the element type of the operand is 
determined by the element_size field of the IndexedWordDD (the last if a sequence of Indexed­
WordDDs was evaluated). The element_size value of single-or double-precision overrides the tag of 
the target operand. All operators that evaluate IndexedWordDDs, with the exception of LODT and 
the overwrite operators, obey this convention. 

An IndexedSingleDD may be used to reference words of any type appropriate to the referencing 
operator. An IndexedDoubleDD may be used only to reference an operand (for read evaluation) or 
an even-tagged word (for normal store evaluation). 

pews 
In the context of reference chain evaluation, evaluation of a PCW consists of an "accidental" proce­
dure entry. The PCW is assumed to point to a function with no parameters, whose returned value 
will be either the target of the chain or another valid reference. The net result of the accidental entry 
is that the place of the PCW in the reference chain is taken by the item returned by the function. 

The accidental entry is accomplished by the aACCE action, defined in Procedure entry operators. It 
is assumed that the function will terminate with a RETN (return) operator that leaves an item on top 
of the stack. If it does not, the item on top of the stack will be used incorrectly, as if it were such 
a result. 

When the operator resumes, the result of the function is treated as the target or next reference. If it 
is not valid in the context of the operator, an Invalid Stack Argument interrupt, rather than an Invalid 
Reference Chain interrupt, is generated. 

IRW Chains 

Throughout this group of operators, those that evaluate multiple references will evaluate a sequence 
of one or more IRWs wherever a single IRW may be evaluated. Because NIRWs may occur as initial 
references only, these chains consist of an optional NIRW referencing a chain of SIRWs. Chains of 
IR W s that may optionally contain the initial NIRW are referred to as "IR W chains"; chains of IRW s 
that may not contain an NIRW are referred to as "SIRW chains". (It is often convenient to regard 
an address-couple parameter, as well as an NIRW, as the head of an "IRW chain".) 

Evaluation of the IRW chain consists of successive IR W evaluations, starting with the head of the 
chain, until IR W read evaluation does not produce an IR W. 

5014954 3-29 



System Architecture Reference Manual, Volume 2 
Operator Set and Common Actions 

.-----~-

Reference Chains 

Operators that evaluate reference chains start from an initial reference and apply successive referc~nce 
read evaluation, according to a set of chaining rules, until a target item is produced. For each such 
operator, the set of initial references and targets is specified using the following notation: 

< Initial Reference> :: = {set of reference items} 
< target> :: = {set of target items} 

Chaining rules are specified by showing the valid evaluation results for each reference form that :may 
be a part of the chain. The form of such specification is: 

reference ~ evaluation results, 

Where /I -~ /I indicates read evaluation of the reference as defined in the preceding sections. Evaluation 
results can include reference forms or an Initial Reference, any of which is subsequently evaluated, 
or a target. Evaluation of the chain will continue until a target is encountered or until referc~nce 
evaluation produces an item that is not a valid result. If chain evaluation terminates with an invalid 
item, an interrupt is generated. With two exceptions, the interrupt is Invalid Reference Chain: a Bind­
ing Request interrupt is generated if the target is a DD with element_size = 7; an Invalid Stack Argu­
ment interrupt is generated if the result of pew evaluation (aACCE) is unacceptable. 

Chaining rule notation is illustrated by the following example. (Note that IndexedWordDD is used for 
the union of IndexedSingleDD or IndexedDoubleDD, which may be listed separately in the expansion.) 

3-30 

< Initial Reference> 
<target> 

NIRW 

SIRW chain 

IndexedSingleDD 

IndexedDoubleDD 

PCW 

{NIRW, SIRW chain, IndexedWordDD} 
{ operand} 

SlRW chain 
IndexedWordDD 
pew 
<target> 

IndexedWordDD 
pew 
<target> 

IndexedWordDD 
< target> 

< target> 

SIRW chain 
IndexedWordDD 



System Architecture Reference Manual, Volume 2 
Operator Set and Common Actions 

Reference Generation Operators 

f\IAMC (name call) 

The NAMC operator transforms an address-couple in the code-stream into an NIRW. NAMe is a 2-
syllable operator with a special structure, a 2-bit opcode and a 14-bit variable-fence address-couple: 

I : I I NAMe: add~ess-couple 
-------------------------
I 2 14 

The NAMC operator converts the variable-fence address-couple parameter into a fixed-fence address­
couple and leaves it in an NIR W on top of the stack. Name-call operators need not interpret the ad­
dress-couple; however, the tests on Lambda and Delta defined for address-couple evaluation may be 
applied and an Invalid Reference interrupt generated if either component is out of range. 

Pragmatic Notes 

NAMC is sensitive to lexical level 

The transformation from fixed-to variable-fence address-couple is made with the variable fence set ac­
cording to LL at the time the NAMC operator is executed. Because NIRWs are intended for immediate 
consumption (within the sanle block activation), there is no loss of generality due to this "premature 
binding" of the fence. 

LNMC (long name call) 

LNMC is equivalent to NAMC, except that its parameter is a fixed-fence rather than a variable-fence 
address-couple. LNMC is a 4 syllable operator whose appearance in the code-stream is: 

I (variant) LNMC I lambda~ Idelta 
---------------------------------------------------------

4 12 

Pragmatic Notes 

LNMC provides full-range Delta at any LL 

Because it has a fixed-fence address-couple, LNMC can be used to construct address couples with Delta 
as large as 2** 12 - 1 at any lexical level. NAMC can address the full range of Delta values only when 
LL ~ 3. 

5014954 3-31 



System Architect~re Reference lVlanual, Volume 2 
Operator Set and Common Actions 

--~------.---------.-----.----------.. -------.-----.--.-----~ ~~-----~-------

STFF (stuff) 

STFF converts the NIR W on top of the stack into an SIR W. If STFF encounters an SIRW on top 
of the stack, it ternlinates leaving the SIRW. ][f the top-of-stack item is not an NIRW or SIRW, an 
Invalid Stack Argument interrupt is generated. 

The (Larnbda,Delta) address-couple in the NIR W is interpreted as described in Address-Couple 
Evaluation. If Lambda > LL, or Lambda = LL and address(stack location) > S, an Invalid Reference 
interrupt is generated. Otherwise the SIRW is constructed to point to the word in the stack addressed 
by (Lambda,Delta). The displacement field is set to the stack-relative offset to the MSCW for the acti­
vation record referenced by the NIRW; if that offset exceeds 2**16-1, a Stack Structure Error inter­
rupt is generated. The stack_number field is set to the stack number containing this activation record. 
The offset field is set to the value of delta from the NIRW. The unused fields are set to zero. 

Pragmatic Notes 

STFF Algorithm 

The following algorithm produces the Lexical Link corresponding to the Lambda component of an ad­
dress-couple: If Lambda = LL, the Lexical Link is (SNR, D[LL]-BOSR); otherwise, the Lexical Link 
is contained in the MSCW for the activation record at lexical level Latnbda + 1 in the current addressing 
environnlent (at D[Lambda + 1] if that display register is implemented). 

INDX (index) 

INDX alPplies an integer index to an unindexed DD and leaves on top of the stack an IndexedDD 
pointing to the specified element. If the DD is a WordDD, the result is an IndexedWordDD, and if 
it is a CharDD, the result is a Pointer. An unindexed copy DO may be on the stack initially, or an 
unindexecl original or copy DO may be addressed by an IRW chain. 

< Descriptor Indication> 

< Initial Reference> 
<target> 

{unindexed copy WordDD, unindexed copy CharDD, 
initial reference} 
IRW chain 
{unindexed WordDD, unindexed 
CharDD} 

IRW ehain ----+- <target> 

INDX requires the Descriptor Indication and an operand index value on top of the stack in either or­
der: 

Descriptor Indica~ion index value 
OR 

index value Descriptor Indication 

If the index value is not an operand, an Invalid Stack Argument interrupt is generated. If the Descrip­
tor Indication is a copy DO with element_size = 7, a Binding Request interrupt is generated; otlher­
wise, if the Descriptor Indication is not an unindexed copy WordDD or CharDD or the head of an 
IR W chain, an Invalid Stack Argument interrupt is generated. 

3-32 



System Architecture Reference Manual, Volume 2 
Operator Set and Common Actions 

The index value is integerized with rounding (by using the RaI function defined for the NTGR 
operator) if required. If it cannot be integerized, an Integer-Overflow interrupt is generated. If the re­
sulting integer is not in the range {O to D D .length - 1}, an Invalid Index interrupt is generated. (Both 
DD.length and the index value are assumed to be in DD.element_size units). 

An IndexedWordDD or a Pointer is constructed according to the value of DD.element_size. For the 
different element_size values, the effective index values are derived from the index argument as fol­
lows: 

o (single-precision): 
1 (double-precision): 
2 (hex): 
4 (EBCDIC) 

WI 
WI 
WI 
WI 

index 
index * 2 
index DIV 12; CI = index MOD 12 
index DIV 6; CI = index MOD 6 

If the unindexed DD is unpaged, an indexed DD is constructed from it as follows: If the designated 
descriptor is an original DD, aCPY action is invoked to produce a copy DD. The present, copy, 
read_only, element_size, and address fields are copied from the unindexed copy DD. The indexed 
bit is set to 1. For a WordDD, an IndexedWordDD is constructed by setting the index field to WI; 
if WI exceeds 2**20 - 1, an Invalid Index interrupt is generated. For a CharDD, a Pointer is construct­
ed by setting the word_index field to WI and the char_index field to CI; if WI exceeds 2** 16 - 1, 
an Invalid Index interrupt is generated. 

If the data-segment is paged (the unindexed DD has paged = 1), INDX resolves the paging by per­
forming another level of indexing. The paged descriptor is indexed by WI DIV page_size, and the 
referenced word is accessed as a page descriptor. If it is an original unpaged SingleDD, the indexing 
operation proceeds; otherwise a Page Structure Error interrupt is generated. An indexed DD is created 
as follows: A copy of the page DD is fetched, using common action aCPY. The indexed bit is set 
to 1. The element_size and read_only fields are copied from the initial (paged) DD; the present and 
address fields are retained from the aCPY copy of the page DD. For a WordDD, an IndexedWordDD 
is constructed by setting index to WI MOD page_size. For a CharDD, a Pointer is constructed by 
setting word_index to WI MOD page_size and char_index to CI. 

INXA (index by means of address-couple parameter) 

INXA is a 3-syllable operator containing a fixed-fence address-couple; the code-stream appearance is: 

INXA 11 ambda ~ I 
delta 

4 12 

INXA is functionally equivalent to a name-call operator, containing the same address-couple, followed 
iInmediately by the IND X operator. 

5014954 3-33 



System Architecture Reference Manual, Volume 2 
Operator Set and Common Actions 

MPCW (make PCW) 

MPCW is a literal operator that constructs a pew at the top of the stack from a six-syllable pararneter 
in the code-strean1. The parameter is taken from the first code-word following the MPCW opcode. 
"Padding" syllables, if any, from the opcode to the end of the word containing the opcode are ignored. 
The PCW is constructed from the parameter by setting the tag to 7 and putting the value of SNR 
into the stack_number field. 

----------/ /-------_._----------------------------
I I ignored II I I I I I II MPCW if any skeleton PCW 

----------/ /--------------------------------------

The parameter is assumed to be a valid PCW skeleton. It is inserted at the top of the stack and tagged 
as a PCW. 

Read Evaluation Operators 

aFOF) (Fetch Operand) 

The common action aFOP is invoked by operators that evaluate a reference to fetcl;1 an operand value 
(as opposed to LODT and RDLK, which fetch only one word, not a whole operand in the double­
precision case). The action can be described as a procedure with one formal parameter, the reference 
to be evaluated, and three possible results: 

1. An operand value. 
2. A non-operand value. 
3. An Invalid Object interrupt: odd-tagged second word. 

If the referenced word does not have a tag of ° or 2, it is a non-operand value. 

If the reference is an IR Wand the referenced word has tag = 0, or the reference is an IndexedSing­
leDD and the referenced word has tag = ° or 2, the referenced word is fetched and the tag set to 
zero (if necessary) to form an operand value. 

If the reference is an IRW and th~ fetched word has tag = 2, its successor word (at the next higher 
nominal rnemory address) is fetched. If that word has a tag other than two, an Invalid Object interrupt 
is generated; otherwise, the referenced word and its successor are joined as the first and second words 
of a double-precision operand to form an operand value. 

If the reference is an IndexedDoubleDD, the physical successor word of the referenced word is fetched. 
If the successor word has an odd tag, an Invalid Object interrupt is generated; otherwise, the referenced 
word and its su~cessor are joined as first and words of a double-precision operand (with the tag set 
to two) to form an operand value. 

aCPY (fetch copy descriptor) 

The common action aCPY is invoked by any operator that accesses a descriptor (by evaluating a refer­
ence) and places a copy of that descriptor on the stack. (The exceptions are LODT and RDLK, which 
make a facsimile of the original descriptor rather than a "copy" of it.) 

A duplicate of the referenced descriptor is brought to the stack to become the copy. (If it is already 
a copy, no transformation is necessary.) If the descriptor is an absent original, the address field is re­
placed by the nominal melllory address at which the original was located; otherwise the address is re­
tained unchanged. The copy bit is set to 1. 

3-34 



V J\LC (value call) 

System Architecture Reference Manual, Volume 2 
Operator Set and Common Actions 

The VALC operator evaluates a reference chain whose head is an address-couple parameter; the target 
must be an operand, which is left on top of the stack. V ALC is a 2-syllable operator with a special 
structure, a 2-bit opcode and a 14-bit variable-fence address-couple: 

IVALC~ addr!ss-couPle 
---------------------------

2 : 14 

Reference chain evaluation performed by VALC is: 

< Initial Reference> .. - { address-couple} 
<target> .. - { operand} 

address-couple -+ SIRW chain 
IndexedWordDD 
<target> 

SIRW chain IndexedWordDD 
PCW 
<target> 

IndexedSingleDD IndexedW ordDD 
<target> 

IndexedDoubleDD -+ <target> 

PCW -+ SIRW chain 
IndexedWordDD 
<target> 

Reference evaluation is performed by invocation of the common action aFOP: an operand value is left 
on the stack as the result of V ALC; any non-operand value is examined as an element of the reference 
chain. If reference evaluation produces a DD with element_size = 7, a Binding Request interrupt is 
generated. 

If a PCW must be evaluated, accidental entry is performed by invoking the common action aACCE. 
The RCW.rs bit is set in the new activation record; when resumed in restart state, VALC ignores its 
code parameter and consumes a stack argument as the target of the PCW. If this argument is not a 
valid reference or target, an Invalid Stack Argument interrupt is generated. 

Otherwise, if reference evaluation produces an item that is not a valid result according to the above 
chain evaluation rules, an Invalid Reference Chain interrupt is generated. 

5014954 3-35 



System Architecture Reference Manual, Volume 2 
Operator Set and Common Actions 

LVLC (long value call) 

L VLC is equivalent to V ALC, except that its parameter is a fixed-fence rather than a variable-fence 
address-couple. L VLC is a 4-syllable operator whose appearance in the code-stream is: 

(variant) LVLC 11 ambda ~ I 
delta 

4 12 

Pragmatic Notes 

L VLC provides full-range Delta at any LL 

Because it has a fixed-fence address-couple, L VLC can be used to construct address couples with Delta 
as large as 2** 12 -- 1 at any lexical level. VALe can address the full range of Delta values only when 
LL $ 3. 

The L VLC operator, new in this architecture, is identical to the VALe operator except that its 
parameter is a fixed-fence address-couple. 

NXLV (index and load value) 

NXLV performs an INDX (index) operation to produce an IndexedWordDD and then evaluates the 
IndexedWordDD to fetch an operand. 

The required initial stack state is the same as that for INDX except that the DD must be a WordDD: 

< Descriptor .. - {unindexed copy word 
Indication> DD, initial reference} 

< Initial Reference> .. - IRW chain 

< index target> .. - unindexed WordDD 

[RW chain ~ < index target> 

If the index operation is unsuccessful, an interrupt is generated as specified for INDX. If the < index 
target> is successfully indexed, the ultimate target is fetched by read evaluation of the Indexed­
WordDD: 

IndexedWordDD oped;lnd 

The Inde:xedWordDD is evaluated by invoking the common action aFOP: an operand value is left on 
the stack as the result of NXL V; any non-operand value causes an Invalid Object interrupt to be gener­
ated. 

3-36 



System Architecture Reference Manual, Volume 2 
Operator Set and Common Actions 

Pragmatic Notes 

Presence Bit interrupt may use Restart 

When NXL V or NXLN generates a Presence Bit interrupt, the stack configuration and RCW can be 
constructed either to repeat the operator in initial state, with two arguments, or to repeat the operator 
in restart state, with the already-indexed descriptor as the only argument. (In the initial-state case, the 
Descriptor Indication argument could be the original argument, or it could be the unindexed copy de­
scriptor after any IRW chain evaluation.) 

N)(VA (index and load value by means of address-couple parameter) 

NXV A is a 3-syllable operator containing a fixed-fence address-couple; the code-stream appearance is: 

NXVA 11 ambda ~ I 
delta 

4 12 

NXV A is functionally equivalent to a name-call operator, containing the same address-couple, followed 
immediately by the NXL V operator. 

NXLN (index and load name) 

NXLN performs an INDX (index) operation to produce an IndexedSingleDD and then evaluates the 
IndexedSingleDD to fetch an unindexed DD; a copy of that DD is left on top of the stack. 

The required initial stack state is the same as that for INDX except that the descriptor indication or 
index target must be a SingleDD. 

< Descriptor 
Indication> 

< Initial Reference> 

< index target> 

IRW chain 

{unindexed copy 
SingleDD, initial 
refe,rence} 

IRW chain 

unindexed SingleDD 

< index target> 

If the index operation is unsuccessful, an interrupt is generated as specified for INDX. If the < index 
target> is successfully indexed, the ultimate target is fetched by read evaluation of the IndexedSing­
leDD: 

IndexedSingleDD unindexed DD 

If the target is not an unindexed DO, an Invalid Object interrupt is generated. 

The target is fetched as a copy (with aCPY action) and left on the top of the stack. (The NXLN 
operator does not examine the paged, read_only, element_size, length/index, or address field of a 
target DO.) 

5014954 3-37 



EVAL (evaluate) 

System Architectur~~ Reference Manual, Volume 2 
Operator Set and Common Actions 

The purpose of EV AL is to evaluate a reference chain in order to locate some target and then kave 
on top of the stack the reference whose evaluation produced the target. 

Reference chain evaluation performed by EV AL is: 

< Initial Reference> 

<target> 

NIRW 

SIRW chain 

IndexedWordDD 

PCW 

{NIRW, SIRW chain, 
Indexed W ordD D } 
{even-tag word, 
unindexed D D, 
IndexedDD with 
element_size > I} 

IndexedWordDD 
SIRW chain 
PCW 
<target> 

IndexedWordDD 
PCW 
<target> 

* no evaluation 
see below * 
IndexedWordDD 
SIRW chain 

If a target is located, the reference whose evaluation produced the target is left on top of the stack 
as the result. If an IndexedWordDD is encountered, it is left as the result without being evaluated. 
In effect, an IndexedWordDD is treated as if it had been evaluated and a target had been the result. 

If a pew must be evaluated, accidental entry is performed by invoking the common action aACCE. 
If the result of the function is not a valid reference, an Invalid Stack Argument interrupt is generated. 

Otherwise, if reference evaluation produces an item that is not a valid result according to the above 
chain evaluation rules, an Invalid Reference Chain interrupt is generated. 

3-38 



LOAD (load) 

System Architecture Reference Manual, Volume 2 
Operator Set and Common Actions 

LOAD performs a single evaluation of the Initial Reference, and if the result is a target, it is left on 
top of the stack: 

< Initial Reference> 

< target> 

NIRW 

SIRW 

IndexedSingleDD 

IndexedDoubleDD 

{NIRW, SIRW, 
IndexedWordDD} 

{operand, tag-4 word, 
tag-6 word, SIRW, 
any data descriptor} 

< target> 

< target> 

<target> 

operand (target) 

If the item on top of the stack is not an Initial Reference, an Invalid Stack Argument interrupt is 
generated. 

Reference evaluation is performed by invocation of the common action aFOP: an operand value is left 
on the stack as the result of LOAD; any non-operand value is examined as a possible target. If the 
Initial Reference is an IndexedDoubleDD and the target is not an operand, an Invalid Object interrupt 
is generated. 

If the target is a DD, it is fetched as a copy (with aCPY action) and left on the top of the stack. 
(The LOAD operator does not examine the indexed, paged, read_only, element_size, length/index, 
or address field of a target D D. 

In all other cases, if the referenced item is a valid < target>, it is left on top of the stack without 
conversion; otherwise, an Invalid Object interrupt is generated. 

LOOT (load transparent) 

LODT performs a single evaluation of the Initial Reference and leaves the result on top of the stack, 
with no restriction placed on the type of the result: 

5014954 

< Initial Reference> 

<target> 

NIRW 

SIRW 

IndexedSingleDD 

Integer 

{NIRW, SIRW, 
IndexedSingleDD, 
20-bit integer address} 

{any item} 

< target> 

<target> 

<target> 

< target> 

3-39 



System Architecture Reference Manual, Volume 2 
Operator Set and Common Actions 

If the argument is not an Initial Reference, one of the following actions is performed, depending upon 
the type and range of the argument and on the implementation-defined handling of an invalid operand 
argument: 

not operand: 

operand not single_integer: 

single_integer 
not in {O to 2**20-1}: 

Generate Invalid Stack Argument 
interrupt. 

Generate Invalid Stack Argument 
or Invalid Argument Value interrupt, 
or integerize (which may generate Integer 
Overflow) and test/use resulting integer. 

Generate Invalid Stack Argument 
or Invalid Argument Value 
or Invalid Address interrupt. 

If the Initial Reference is an IRW or an IndexedSingleOO, it is evaluated normally. If it is a 20-bit 
integer, it is interpreted as a nominal memory address from which the target is fetched" 

The addressed target word is left on top of the stack. If its tag is 2, the second word of the item 
left on top of the stack is zero. (Apart from the handling of tag 2, the LOOT operator does not 
exaInine or alter the target word in any way.) 

Pragmatic Notes 

Improper operand-address action is flexible 

The error action if the LOOT argument is an operand but not a 20-bit integer is specified like the 
alSX action (q. v.), with the additional option of generating Invalid Address interrupt. This specifica­
tion permits an implementation to treat integers greater than this architecture address width the same 
as integers that are within that limit but exceed the implementation memory path. As for aISX, the 
preferred implementation is to interrupt rather than to integerize a noninteger argument. 

Pragmatic Notes 

Invalid Address used as 001 

The LODT operator may generate the Invalid Address (alarm) interrupt in 001 fashion, by detecting 
that the operand argument is improper, as well as in alarm fashion when a memory fetch fails. 

3-40 



System Architecture Reference Manual, Volume 2 
Operator Set and Common Actions 

Store Evaluation Operators 

Normal Store Operators 

Normal store operators evaluate a reference chain in order to store an operand from the stack (the 
store object) into a target location. Reference chain evaluation performed by store operators is: 

< Initial Reference> 
<target> 

NIRW 

SIRW chain 

IndexedSingleDD 

IndexedDoubleDD 

PCW 

{NIRW, SIRW chain, IndexedWordDD} 
even-tagged word 

SIRW chain 
Indexed WordDD 
PCW 
< target> 

IndexedWordDD 
PCW 
< target> 

IndexedWordDD 
< target> 

<target> 

SIRW chain 
Indexed WordDD 

For STOD and STON, the Initial Reference and the operand are required on top of the stack, in either 
order: 

Initial Reference operand 
OR 

operand Initial Reference 

If the top-of-stack item is not an Initial Reference or an operand, or if the top-of-stack item is an 
Initial Reference and the second item is not an operand, or if the top-of-stack item is an operand and 
the second item is not an Initial Reference, an Invalid Stack Argument interrupt is generated. 

If any reference evaluation produces an odd-tag item other than an IRW, DD, or pew, or if an Inde­
xedWordDD is marked read_only, a Memory Protect interrupt is generated. If any reference 
evaluation produces a DD with element_size = 7, a Binding Request interrupt is generated. 

If a PCW must be evaluated, accidental entry is performed by invoking the common action aACCE. 
STOD or STON deletes the Initial Reference argument and then invokes aACCE, so that the result 
of the accidental-entry procedure becomes a new Initial Reference; these operators require no restart 
state. For ST AD or STAN, the RCW.rs bit is set in the new activation record; when resumed in restart 
state, ST AD or STAN ignores its code parameter and is functionally equivalent to STOD or STON, 
respectively. The chaining rules for a PCW successor are enforced partly by the store operators (which 
generate an Invalid Stack Argument interrupt if the Initial Reference is not a valid reference) and partly 
by the RETN operator (which generates an Invalid Stack Argument interrupt if its argument is an 
NIRW). 

5014954 3-41 



System Architecture Reference Manual, Volume 2 
Operator Set and Common Actions 

If reference evaluation produces an item otherwise not a valid result according to the above chain eval­
uation rules, an Invalid Reference Chain interrupt is generated. 

The Honnal store operators perform additional type checking; if any of the following situations occur, 
an Invalid Object interrupt is generated: 

ll. The operand is single-precision and: 

1) The final reference is an IndexedDoubleDD, or tag 2. 

2. The operand is double-precision and: 

1) The final reference is an IndexedSingleDD, or 
2) The final reference is an IR Wand the referenced word has tag = O. 

If th,~ operand is single-precision, it is stored at the target location, with a tag of zero. 

If the operand is double-precision, the successor of the target location (at the next higher nOlllinal 
memory address) is examined. If the successor location contains an odd-tagged word, a Memory Pro­
tect interrupt is generated; otherwise, the first and second words of the operand are written into the 
target location and its successor, respectively; both words have tag = 2. If an interrupt is generated 
while a double-precision value is being stored l the first half of the item mayor may not have been 
stored, depending upon the in1plementation. 

STOD (store delete) 

A normal store operation is performed. Both the Initial Reference and the operand are deleted from 
the stack. 

STON (store non-delete) 

A normal store operation is performed. The operand is left unchanged on top of the stack, and the 
Initial Reference is deleted. 

STAD and STAN (store del'ete/non-delete by means of address-couple) 

STAD and STAN are 3-syllable operators that contain a fixed-fence address-couple; the code-stream 
appearance is: 

ISTAD or STAN Ilambda~ I delta 

4 12 

The ST AD (or STAN) operator is ,functionally equivalent to a name-call operator, containing the same 
address-couple, followed immediately by the STOD (or STON) operator, except that PCW evaluation 
requires the use of restart state (as specified above). 

3-42 



Overwrite Operators 

System Architecture Reference Manual, Volume 2 
Operator Set and Common Actions 

Overwrite operators perform a single evaluation of the Initial Reference and store some item from the 
stack (the store object) into the resultant target location. There are no restrictions on either the store 
object or the initial contents of the target location; the II ~ II notation indicates store evaluation for 
these operators, which do not examine the target contents (except for RDLK). 

< Initial Reference> .. - {NIRW, SIRW, IndexedSingleDD} 
<target> .. - {any item} 

NIRW ~ <target> 

SIRW ~ < target> 

IndexedSingleDD ~ <target> 

The topmost stack item must be an Initial Reference; otherwise an Invalid Stack argument is generated. 
The second stack item is the Store object. If the Initial Reference is an IndexedSingleDD marked 
read_only, a Memory Protect interrupt is generated. 

:nitial Reference 

Store object 

Overwrite operators store single words and are oblivious to double-precision: If the store object is dou­
ble-precision, only the first word is stored, with its tag of 2. If the reference addresses a tag-2 word, 
only that word is overwritten; its successor is unchanged. Note that each case can produce an unpaired 
double-precision word in memory. 

OVRD (overwrite delete) 

An overwrite operation is performed. Both the Initial Reference and the store object are deleted from 
the stack. 

OVRN (overwrite non-delete) 

An overwrite operation is performed. The store object is left unchanged on top of the stack, and the 
Initial Reference is deleted. 

5014954 3-43 



System Architecture Reference Manual, Volunle 2 
Operator Set and Common Actions 

.-----~-

RDLK. (read and lock) 

RDLK is identical to OVRD, except that the word previously occupying the target location is left as 
the stack result. If the result has tag = 2, the second word of the double-precision result is set to 
zero. 

In any irnplementation, the following requirements must be met by all processors and by any other 
processing elements (such as 1/0 or communications processors) that share the system memory and 
use the RDLK convention for synchronization. 

1. RDLK reads the former cOlltents and writes the new contents of the referenced word as an indi­
visible operation; no other processor can access the referenced word between the read and write 
steps of a RDLK operator. 

2. Store operations for each processor effectively occur in order. That is, if a code-stream on one 
processor initiates stores intb location A and then into location B, any processor that finds the 
new value at B (with RDLK) and subsequently examines A must find the new value at A. 

3. No data-fetch memory operation that follows the RDLK in the dynamic code-stream of a pro­
cessor may take place until after the RDLK operation. 

Statements 2 and 3 amount to restrictions on the ability of an implementation to reorder the manipulat­
ing of independent pieces of state (such as the contents of different memory locations). 

Pragmatic Notes 

RDLK locking protocols 

RDLK provides a prilnitive locking mechanism for multiprocessor systems. The following illustration 
of a locking protocol is useful to point out why each of the three requirements above is necessary: 

Consider two storage locations, x and y. Assume that y is to be used as a lock protecting the contents 
of x; 0 and 1 denote unlocked and locked, respectively. The following program is being executed simul­
taneously in multiple processors: 

a: lock y: store 1 into y by means of RDLK until the result is not 1; 
b: fetch value from x; 
c: perform function on value; 
d: store new value into x; 
e: unlock y: store 0 into y. 

(Steps b through d constitute a "critical region 1/ that IS to be executed on at most one processor at 
a time.) 

Requirement 1 provides that exactly one processor will complete step a. Let us call this processor num­
ber 1, and say that it has completed step la. The other processor(s) will remain in step a, looping, 
until the completion of step 1 e. 

Requirement 2 provides that step 1 d is completed before step 1 e. 

After step 1 e, another processor can complete step a; let us call that processor number 2 and say that 
it has cOlnpleted step 2a. Requirement 3 provides that step 2b does not begin until step 2a has success­
fully conlpleted. 

The ordering constraints combine to assure that the value fetched in step 2b is the one that was stored 
in step lel. 

3-44 



Interlock Operators 

System Architecture Reference Manual, Volume 2 
Operator Set and Common Actions 

Operators in this group are defined together because they all manipulate the interlock data type and 
therefore share particular characteristics. An interlock can be associated with any desired program 
state. By "locking" that interlock (executing LOK) prior to entering a critical region and "unlocking" 
it (executing UNLK) upon leaving the region, a process can be assured of exclusive access to the associ­
ated state (assuming that all other processes observe the same locking convention). 

The LOK and UNLK operators perform the lock and unlock operations, respectively. If more than 
one process is contending for the same interlock, these operators generate special service interrupts to 
permit the operating system to resolve the contention. The LOKC operator performs a conditional lock 
operation, avoiding the interrupt if the lock operation fails. When a LOK or LOKC operator is success­
fully completed, the process that initiated the operator is allowed to proceed and is recorded as the 
"owner" of the interlock. The UNLK operator removes the current ownership, permitting another pro­
cess to complete a LOK or LOKC and acquire ownership. LOK, UNLK, and LOKC are special store 
reference-evaluation operators. 

The LKID operator reads the state of an interlock, reporting the owner (if any) of the interlock. LKID 
is a special read reference-evaluation operator. 

Interlock operators have a single stack argument, an Initial Reference that must directly reference the 
interlock. They evaluate the Initial Reference and perform the required manipulation of the target inter­
lock. 

< Initial Reference> .. - {NIRW, SIRW, IndexedSingleDD} 
< target> .. - interlock 

NIRW ~ < target> 

SIRW ~ < target> 

IndexedSingleDD ~ < target> 

The topmost stack item must be an Initial Reference; otherwise an Invalid Stack Argument interrupt 
is generated. Except for LKID, if the Initial Reference is an IndexedSingleDD marked read_only, a 
M:emory Protect interrupt is generated. If the target does not have tag = 3 or tag = 0, an Invalid 
Object interrupt is generated. This check is optional; if the interrupt occurs, the contents of the refer­
enced interlock are undefined. 

Pragmatic Notes 

Interlock Function Compatibility with other Architectures 

The interlock mechanism has been specified for Level Alpha in such a way that the functions of the 
interlock operators can be emulated by sequences of this architecture code using operators that are 
common to this and prior implementations. Thus, a system can simultaneously run programs that use 
the new operators and programs that emulate their functions, perhaps interacting with the same inter­
lock objects. However, programs compiled specifically to run on processors at Level Alpha or higher 
should use only the interlock operators, with the semantics outlined above, and should not be depend­
ent upon the detailed internal structure of the interlock objects. It should be possible for later architec­
tures to redefine the mechanism and the data structure, while retaining the operator semantics. 

5014954 3-45 



System Architecture Reference Manual, Volume 2 
Operator Set and Common Actions 

The operators in this group can effect the following net status transition upon an interlock: 

Free to Locked_Uncontended (by LOK and LOKC): 
The owner _jd field is set to the SNR value, the lock_control field is copied from the prior inter­
lock value, the locked_bit and not_free_bit are both set to 1, and the tag is set to 3. 

Locked ___ Uncontencled to Free (by UNLK): 
The lock_control field is copied from the prior interlock value, the tag is set to 3, and the rerrlain­
der of the word is set to zero. 

The operators in this group can effect the following temporary status transition upon an interlock; the 
prior value must be retained internally by the processor during the operation: 

Free, Locked_Uncontended, Locked_Contended, or Busy to Busy: 
The owner __ id field is set to the SNR value, the not_free_bit is set to 1, the tag is set to 3, 
and the remainder of the word is set to zero. 

Use of the Busy status is an implementation option for the operators and for software. The change 
to Busy status must be accomplished indivisibly; the operators are subject to the same constraints de­
fined for the RDLK operator. 

If an operator (or software routine) sets an interlock to Busy and the prior status of the interlock was 
already Busy, the effect on the interlock is to preserve Busy status but perhaps to change the owner_id 
(contender) stack number. In this case, the prior value must be discarded. The transition to Busy may 
be repeated; such "buzzing" of the interlock may be continued indefinitely, until a non-Busy prior stat­
us is found (or the operator is aborted by a Loop Timer interrupt). (Successive accesses to a Busy inter­
lock may require separation by an implementation-dependent delay, to avoid starvation of other 
memory requestors in the system - including the processor expected to un-Busy the interlock.) 

If the transition to Busy discovers a prior status that is not Busy, the operator must restore the prior 
value, either unchanged or modified to perform a valid status transition. The restoration is aCI;;om­
plished with a simple write operation (with the semantics of OVRD rather than RDLK). 

The LOK, LOKC, and UNLK operators may examine and (if appropriate) modify the interlock value 
in a single, indivisible operation, if such operation is possible in the implementation. Alternatively, 
these operators may effect the transition to Busy status, and then proceed: 

3-46 

1. If the prior status is Free (for LOK or LOKC) or Locked_Uncontended (for UNLK), the :prior 
value is modified to the opposite status and restored to the interlock, thereby completing the 
operator. 

2. If the prior status is Locked_Uncontended (for LOK or LOKC) or Free (for UNLK) or 
Locked-Contended, the unmodified prior value is restored to the interlock; the LOK or UNLK 
operator generates a Locking or Unlocking interrupt, respectively, or the LOKC operator re­
ports failure to effect locking. 

3. If the prior value is Busy, there are two possibilities: 

1) The operator can immediately generate an interrupt (LOK, UNLK) or report failure (LOKC). 
This action is the same as 2, above, except that the prior value is not restored to the inter­
lock. 

2) The operator can continue to set the lock Busy, until the prior value is found to satisfy the 
predicate for situation 1 or 2, above. 



System Architecture Reference Manual, Volume 2 
Operator Set and Common Actions 

------------- -.-

When a Locking or Unlocking interrupt is generated, the reference to the interlock IS passed as the 
interrupt P2; if the interlock reference is an NIRW, it is converted to an SIRW. 

Pragmatic Notes 

Implementation Options for Interlock Operators 

Several implementation options are specified for these operators. If a hardware design permits atomic 
read-examine-modify-write operations, that mechanism may provide the most effective implementation. 
For other designs, the Busy status is available. The decision to generate interrupt (or indicate LOKC 
failure) can be taken immediately (after a single "RDLK" exchange), or the operator can "Buzz" the 
interlock until non-Busy status is discovered. The latter approach may lead to a slight reduction in the 
nunlber of interrupts to be handled. LKID requires either buzzing or continual reading of the interlock: 
reading may reduce memory interference, but buzzing may permit sharing of mechanism between LKID 
and the other three interlock operators. 

Pragmatic Notes 

Interlock software conventions 

The LOK and UNLK operators are defined with the following assumptions with regard to the software: 

The interrupt procedure must "buzz" the interlock (using RDLK to exchange a Busy value into the 
interlock) until a non-Busy prior value is found. 

If the Locking interrupt routine finds a Free value, it emulates the LOK action and exits. 

If the Unlocking interrupt routine finds a Locked_Uncontended value, it emulates the UNLK action 
and exits. 

If the Locking interrupt routine finds a Locked_Uncontended or a Locked_Contended value, it con­
structs a Locked_Contended interlock and links the contending process into a wait list. (The 
lock_control field is available for this purpose.) The owner_id value is preserved. 

If the Unlocking interrupt routine finds a Locked_Contended value, it moves one process from the 
waiting to the ready list and constructs a Locked_Contended interlock (if there are remaining waiters) 
or a Locked_Uncontended interlock (otherwise). The owner_id of the interlock is set to the stack 
nurnber of the readied process. 

If the Unlocking interrupt routine finds a Free valut;~, an error exists in the locking protocol of the 
program. 

The owner_id value in a Busy interlock is not significant to the interlocking algorithms, but may be 
of diagnostic value. 

LOK (lock interlock) 

If the target interlock has not_free_bit = 0, the interlock status is changed to Locked_Uncontended; 
otherwise, a Locking interrupt is generated. 

UNLK (unlock interlock) 

If the target interlock has locked_bit 
locking interrupt is generated. 

5014954 

1, the interlock status is changed to Free; otherwise, an Un-

3-47 



System Architecture Reference Manual, Volume 2 
Operator Set and Common Actions 

-------

LOKe (conditional lock interlock) 

If the target interlock has not_free_bit = 0, the interlock status is changed to Locked_Uncontended 
and a True result is left on the stack; otherwise, a False (failure) result is left on the stack. 

LKID (read interlock status) 

While the target interlock status is Busy (interlock.not_free_bit = 1, interlock.locked_bit = 0, and 
interlock.lock_control = 0), the operator waits. When the target interlock is not Busy, the value of 
its owner_id field is left on the stack as a 12-bit integer. 

If the result of LKID is zero, the interrogated lock was Free. Otherwise, the interlock was 
Locked __ Uncontended or Locked_Contended; LKID reports the stack number of the process currc~ntly 
"owning" the interlock. 

At implementation option, the LKID operator lmay examine the interlock nondestructively (by read op­
erations) or it may effect the transition to Busy status and examine (and restore) the prior value. The 
operator must wait until the interlock status is not Busy (or until being aborted by a Loop Timer inter­
rupt). 

PROCESSOR STATE OPERATORS 
This section deals with operators that interact with processor state, primarily the state of the currently 
executing code-stream and the state of the stack in which the processor is running. 

Code Stream Pointer Distribution 

The processor code-stream pointer is initialized by the distribution of PCW or RCW code-stream point­
er components according to the following steps: 

1. SDLL and SDI are set from the sdll and sdi fields of the PCW or RCW, respectively, and 
the referenced code-segment descriptor (CSD) is fetched by evaluating (SDLL,SDI) as an ad­
dress-couple (see Address Couple Evaluation). (Note that this address-couple is evaluated in the 
new environment, in the case of procedure entry or exit.) If the tag of the code-segment descrip­
tor is not 3, a Code Segment Error interrupt is generated. 

2. The pwi and psi values are verified as follows. If pwi is not in the range {o to 
CSD.seg_Iength-l}, an Invalid Index interrupt is generated, and if psi is not in the range {o 
to 5}, an Invalid Argument Value interrupt is generated; otherwise PWI and PSI are set from 
the respective field values. (These tests are optional; they may be performed on both PCW and 
RCW, on just the PCW, or on neither.) 

3. If the CSD is present, CSD.address is the nominal base address of the new code-segment; the 
processor is conditioned to execute next from the new code-segment. If the CSD is absent, a 
Presence Bit interrupt is generated. Note that the code-stream pointer distribution is still com­
pleted in this case. The RCW constructed for the interrupt contains the pointer just distributed, 
and exit from the interrupt will complete the intended distribution from the then-present CSD. 

aPRCW (distribute PCW/RCW code-stream pointer) 

The COmlTIOn action aPRCW accomplishes the distribution of a code-stream pointer from a PCVv' or 
RCW, as described in this section. 

3-48 



Branching Operators 

System Architecture Reference Manual, Volume 2 
Operator Set and Common Actions 

Branching operators provide for altering the processor's code-stream pointer component. They may 
change the point of execution in the current code-segment or establish a new code-segment with an 
initial point of execution. 

Branches may be conditional or unconditional. Conditional branches alter the code-stream pointer or 
continue sequential execution depending upon the Boolean interpretation of an item in the stack. 

In a conditional branch, if the branch target is not valid but the branch condition is not met, it is 
implementation-dependent whether the sequential execution continues or an interrupt is generated to 
report the invalid target. 

Branching operators are classified as static or dynamic branches, as specified in the following two sub­
sections. 

Static Branches 

Static branches are always to a point within the current code-segment. That point is indicated by a 
2-syllable parameter. Op name stands for the particular static branch operator encoding: 

I 
op 

name l
op: 
psT: 

I . 
°p_PWI 

I 3: 13 

The high-order 3 bits of the parameter are interpreted as the new PSI value, and the low-order 13 
as the new PWI value. If op_pwi is not in the range {O to CSD.seg_Iength - I}, where CSD is the 
cunrent code-segment descriptor, an Invalid Index interrupt is generated. If op_psi is greater than 5, 
an Invalid Code Parameter interrupt is generated. 

BRUN (branch unconditional) 

Processor registers PSI and PWI are set from the parameter, and the processor is conditioned to 
execute next the operator at that point in the current code-segment. 

BRTR and BRFL (branch true and branch false) 

The top-of-stack operand must be an operand; otherwise, an Invalid Stack Argument interrupt is gener­
ated. The top-of-stack item is interpreted as a Boolean value. If BRTR finds it to be True or BRFL 
finds it to be False, processor registers PSI and PWI are set from the parameter and the processor 
is conditioned to execute next the operator at that point in the current code-segment; otherwise, sequen­
tial execution continues. 

5014954 3-49 



Dynamic Branches 

System Architecture, Reference Manual, Volume 2 
Operator Set and Common Actions 

Dynamic branches take their code-stream pointer values from a branch destination item on top of the 
stack. They may branch to a computed point within the current code segment or to a point in an arbi­
trary code-segment. 

Branching within the current code~segment is indicated if the branch destination item is an operand. 
It is integerized with rounding, if required, to produce a 14-bit integer. If the operand canpot be inte­
gerized, an Integer-Overflow interrupt is generated; if the integerized operand is not a 14-bit integer, 
either an Invalid Argument Value or an Invalid Index interrupt is generated, at implementation option. 
A 14-bit integer is interpreted as the code-seglnent index in units of half-words (3 syllables): 

dyn __ pwi 
alignment 

[13:13] 
[ 0: 1] 

The new PWI value. 
The alignment bit (0. word boundary, 1 half word boundary) 

The new PSI value is 0 (the word boundary) if the alignment bit is 0 and 3 (the half-word boundary) 
if the alignment bit is 1. If dyn_pwi is not in the range {O to CSD.seg_Iength - I}, where CSD is 
the current code-segment descriptor, an Invalid Index interrupt is generated. 

Branching to a point in an arbitrary code-segment is indicated if the branch destination item is 'a pew, 
or an N1RW to a pew. If PCW.sdll is different from the current value of SDLL, an Invalid Argument 
Value interrupt is optionally generated. The pew code-stream pointer is distributed by invoking the 
common action aPRCW, as specified in Code Stream Pointer Distribution. PCW.control_state is 
ignored. 

If the top-of-stack item is not an NIRW, PC\V, or operand, an Invalid Stack Argument interrupt is 
generated. If NIRW evaluation does not produce a PCW, an Invalid Object interrupt is generated, and 
if PCW.lex_Ievel is not equal to LL, an Invalid Argument Value interrupt is generated. 

All validity checking of the branch destination is optional for conditional branches. The test that 
dyn __ pwi is in {O to CSD. seg_Iength - I} is optional. 

Pragmatic Notes 

Dynamic branch destination operand checking 

An implementation can combine the two tests on the operand value, by generating an Invalid Index 
interrupt if the integerized value is not in the range {O to 2*(CSD.seg_Iength) - I}. If an implen1enta­
tion opts not to apply the seg_Iength check, then Invalid Argument Value is the preferable interrupt 
to report that the integer value is not a 14-bit integer. 

OBUN (dynar:nic branch unconditional) 

A branch destination item is required on top of the stack. If it is an operand, the branch is within 
the current code-segment. If it is a PCW, or an NIRW to a PCW, the branch is to an arbitrary code­
segment. 

3-50 



System Architecture Reference Manual, Volume 2 
Operator Set and Common Actions 

DBTR and DBFL (dynamic branch true and dynamic branch false) 

The second from top-of-stack operand must be an operand; otherwise, an Invalid Stack Argument in­
terrupt is generated. That operand is interpreted as a Boolean value. If DBTR finds it to be True or 
DBFL finds it to be False, a branch is executed using the top-of-stack branch destination item exactly 
as in DBUN. Otherwise, sequential execution continues. 

The required initial stack state is: 

branch destination 

Boolean 
--------------------1 

Stack Structure Operators 

Stack structure operators provide for procedure entry and exit and for changing the processor's site 
of activity by establishing a new running stack. They are involved in setting, saving, and restoring pro­
cessor state components and linkage of activation records in the stack, both historical and lexical. 

Display Update 

If an implementation maintains Display registers, their contents must be maintained so that D[i] con­
tains the base address of the activation record for lexical level i, for all i in the range {O to LL}. When­
ever the topmost activation record is changed, this invariance must be re-established, by traversing the 
lexical chain beginning at the base of the newly selected activation record (see common action aLXCH). 

Pragmatic Notes 

Display update early termination 

B{~cause the display registers model the lexical chains, and because of the tree structure implicit in the 
lexical chain definition, the following optimization is always possible: The lexical chain traversal and 
display update action is a loop through decreasing lexical levels i; the loop can be terminated when 
1) the new value for D[i] is the same as the current value, and 2) i is less than the previous value 
of LL (prior to the value of LL being changed by the operator invoking display update). 

Procedure Entry Operators 

In general, executing a procedure call requires a code sequence that performs the following steps: 

1 ~ Execution of MKST (mark stack) initializes the MSCW at the base of the inCipient activation 
record, linking it at the head of the historical chain; 

2. A reference to the PCW for the procedure is pushed onto the stack (in the location the RCW 
will subsequently occupy); 

3. Parameters to the procedure, if any, are built by operators that push items onto the stack 
(executed in the caller's environment); 

4. Execution of ENTR (enter) completes the stack linkage in the MSCW and RCW, creating a 
new topmost activation record, while saving the caller's environment and instating the proce­
dure's environment; 

5. Stack building code initializes the procedure's local variables, and the procedure body is 
executed. 

5014954 3-51 



MKST (mark stack) 

System Architecture Reference Manual, Volume 2 
Operator Set and Common Actions 

MKST builds an inactive MSCW on top of the stack and inserts it at the head of the historical chain. 
If the displacement between the new MSCW location and the base of the current stack (S + 1 - BOSR) 
is outside the range {1 to 2** 16 - 1}, and the old F-BOSR displacement is in that range, a Stack Struc­
ture Error interrupt is generated; P2 is the calculated displacement value. The difference between the 
new MSCW location and the current value of the F register is computed as S + 1 - F. If that differ­
ence is outside the range {1 to 2** 14 - I}, a Stack Structure Error interrupt is generated; P2 is the 
calculated difference. These tests are optional for explicit MKST and IMKS operators and for lVlKST 
implied by accidental entry (aACCE); neither test may be applied to MKST implied by interrupt 
(aINTE). 

If the calculated difference is within bounds, an MSCW is constructed with the history_link field set 
to the difference and all other fields set to zero, including the entered bit, thus marking the MSCW 
inactive. F is set to point to the new MSC\V on top of the stack. 

Pragmatic Notes 

F -- BOSR limited to 2** 16 - 1 

The restriction F - BOSR < 216 is applied to MKST so that a program cannot generate an activation 
record to which a lexical link cannot point. This restriction is unnecessarily harsh, in that a problem 
will arise only if an address-couple in this new activation record is used to generate a lexical link (by 
STFF or ENTR, including aINTE or aACCE)" However, it is the intent of this architecture that stacks 
be limited to 2**16 words, so the check in Iv1KST is legitimate. (Field-width checks are also defined 
for STFF, and thus for ENTR, but they detect an improper activation record somewhat after the fact.) 
If the ~imit is enforced in MKST, the checks defined for STFF and ENTR become redundant. 

The test is not applied to aINTE, and it is applied only to the first activation record above the linlit, 
so that an operating-system interrupt procedure can invoke other procedures to deal with the error 
situation. 

3-52 



System Architecture Reference Manual, Volume 2 
Operator Set and Common Actions 

MKSN (mark-stack bound to name-call) 

The operator is functionally equivalent to the MKST operator, subject to the following rules: 

1. The immediate next operator in the code-stream must be NAMC (name call); otherwise, an Un­
defined Operator interrupt is generated. The check is optional; if an interrupt is generated, the 
RCW designates the MKSN operator. 

2. The address-couple in the NAMC must be the initial reference for the corresponding ENTR. 
3. With two exceptions, the addressing environment, reference chain, PCW, and CSD must remain 

the same when the corresponding ENTR is executed as when the MKSN was executed. The ex­
ceptions are: 

1) The reference chain does not yield a PCW. As a result of the ensuing interrupt (e.g. Binding 
Request), the reference chain, PCW, and CSD are subject to modification. 

2) Another mark-stack operation occurs, either explicitly or via an interrupt. In this case, code­
segment status (absent or present at a specific address) is subject to change (but the ad­
dressing environment, reference chain, and PCW must not change). 

4. Any interrupt that ENTR would generate by evaluation of the reference chain may, at imple­
mentation option, be generated instead by the MKSN operator. (In the case of an Invalid Refer­
ence Chain or Binding Request interrupt, ODI_subtype bit [12: 1] is set, as though the interrupt 
had been from ENTR.) Any interrupt capable of interpretation as a service request must have 
a resumption condition of Repeat-IR; return from the interrupt procedure will repeat the MKSN 
operator. 

5. Between the execution of the MKSN and the subsequent execution of the corresponding ENTR, 
the result of a LODT on the MSCW or the word above it in the stack is implementation-de­
fined; the result of any other operation on those words is undefined. The MSCW must remain 
valid (tag = 3, entered = 0, history_link valid), but the other fields in the MSCW and the 
entire word and tag of the word above the MSCW may be defined to pass any state from 
MKSN to ENTR. 

The observance of these rules in software is mandatory. Their enforcement in an E-mode implementa­
tion is optional. Undetected violations of the rules can lead to undefined results. 

Pragmatic Notes' 

MKSN pragmatics 

A correct inlplementation of MKSN need only perform the MKST operation followed by a NAMC 
operation. However, it may be an optimization for a processor to begin some of the work of ENTR 
in the MKSN operator. Rule 1 requires the presence of the NAMC; an implementation may treat the 
NAMC as a parameter of the MKSN. Rule 2 enables early examination of the reference chain. Rule 
3 forbids interference from operators executed as part of the parameter-passing code. Rule 4 may make 
it simpler for MKSN and other invocations of ENTR to share common mechanisms. Rule 5 permits 
an implementation to "poison" the NIRW at F + 1 to help enforce rule 3; for example, the NIRW can 
be given a tag other than 1. Of course, ENTR must accept the poisoned NIRW. Rule 5 also permits 
the F and F + 1 words to contain other state being transmitted from MKSN to ENTR; one example 
is to put a lexical link to the PCW environment into the MSCW and the target PCW (appropriately 
poisoned) above it. 

5014954 3-53 



System Architecture Reference Manual, Volume 2 
Operator Set and Common Actions 

IMKS (insert mark stack) 

IMKS builds an inactive MSCW exactly as does MKST (mark stack), except that the new MSC'W is 
inserted "underneath" the two top-of-stack items. IMKS produces the effect of having saved the' top 
two stack items, deleted them from the stack I invoked MKST, and then pushed the two items back 
onto the stack. If there are less than two items in the expression stack at the start of an I1V1KS 
operation, a Stack-Underflow interrupt is generated. 

The following diagram illustrates the stack state transformation produced by IMKS: 

(initial stack state) ==> (final stack state) 

item a ------~----------l Item a 

F--> ~~~~;~~~~~;~~;~~;l--~~scf~k item b 

item c 

item c 
I 

ENTR (enter) 

The initial stack state for ENTR assumes prior execution of MKST (or IMKS). An inactive MSCW 
is required at the stack location addressed by F, and the head of an IRW chain to a PCW is required 
at the F + 1 stack location. The following diagram illustrates the initial stack state (there may be other 
inactive MSCWs on the historical chain between F and D[LL]): 

S--> 

F--> 

D[LL]---> 

3-54 

1------------------------------1 
I I 

n parameter locations 
/ / 

------~ead of IRW chain------:l----> 

------- inactive MSCW ------:1----+ 
------------------------------1 I 

I I I 

/ 
topmost activation record 

stack 
1 i nkage 
words 

~~~~~~~/ <-J 

to a pcw

history
1 ink -

System Architecture Reference Manual, Volume 2
Operator Set and Common Actions

If the item addressed by F does not have a tag of 3 or its entered bit is 1 (indicating an entered
MSCW), or if the top-of-stack address is less than or equal to F, a Stack Structure Error interrupt
is generated. If the F + 1 stack location is not the head of an IRW chain, an Invalid Stack Argument
interrupt is generated. If IRW chain evaluation produces a DD with element_size = 7, a Binding Re­
quest interrupt is generated. Otherwise, if IRW chain evaluation does not produce a PCW, an Invalid
Reference Chain interrupt is generated (see IRW chains for a definition of IRW chain evaluation). If
PeW.invalid_ll = 1, an Invalid Argument Value interrupt is generated.

ENTR consists of the following functional tasks:

1. Complete the MSCW, inserting it at the head of the appropriate lexical chain.
2. Construct an.!RCW to save the current processor code-stream pointer and Boolean accumula-

tors.
. ,.

3. Initialize processor state for the procedure being entered, including code-stream pointer and ad­
dressing environment.

Completing the MSCW

If PCW.lex_Jevel > 0, the activation record containing the PCW is the immediately global addressing
space (global AR) of the procedure being entered. ENTR forms a Lexical Link (stack_number, dis­
placement) to address the base of the global AR; this Lexical Link is inserted into the MSCW to com­
plete the lexical chain that defines the addressing environment of the new procedure. (Note that if
PeW.lex_Ievel = 0, there is no global AR; in this case, the value of the Lexical Link is undefined.)

The global AR is identified by the form of reference to the PCW (the final reference if an IR W chain
is evaluated). If the reference is an NIRW, the global AR is the activation record at level NIRW.La­
mbda in the addressing environment at invocation of ENTR: a Lexical Link to that AR is constructed
by implicit invocation of the STFF operator. If NIRW.lambda is unequal to PCW.lex_Ievel - 1, an
Invalid Argument Value interrupt is generated. If the reference is an SIRW, its Lexical Link
(stack_number, displacement) points directly to the global AR. If the word at the base of the global
AR is not an entered MSCW, a Stack Structure Error interrupt is generated; if its lex_level value is
unequal to PCW.lex_Ievel - 1, an Invalid Argument Value interrupt is generated.

PeW.lex_Ievel is copied into MSCW.lex_Ievel, MSCW.entered is set to 1, and the completed MSCW
is stored back at the F stack location. Note that MSCW.history_link is not altered by ENTR.

Constructing the RCW

Processor state values stored in the RCW are the Boolean accumulators (TFFF, OFFF, EXTF, and
FL TF), the processor code stream pointer (SDLL, SDI, PSI, PWI), CS (control state), and LL. For
explicit ENTR, the code-stream pointer designates the syllable following ENTR. For accidental entry
(ENTR invoked by aACCE), the code-stream pointer designates the operator invoking aACCE. For
interrupt entry (ENTR invoked by aINTE), the code-stream pointer is determined by the specific inter­
rupt situation.

The restart indicator RCW.rs is set to ° by an explicit ENTR; it is set to 1 only in some of the interrupt
(aINTE) and accidental (aACCE) entry cases for which the entire entry sequence (MKST ... ENTR) is
performed together. (For these implicit invocations, the value of rs is determined by the invoking oper­
ator.) The only cases of accidental entry that must set the rs bit are for value call, STAD and STAN.
The interrupt cases that must set the rs bit are noted in the descriptions of the operators and interrupts.
Inlplementations may define further uses of rs.

5014954 3-55

System Architecture Reference Manual, Volume 2
Operator Set and Common Actions

An implementation may use the exit_opt field in the RCW to enable optimizations in the procedure
exit operators. Any implementation must be such that exit_opt = 0 means that no optimization is
to be performed: software assignment of 0 to the exit_opt field in an RCW is valid, and is required
in any activation record whose environment might be changed by explicit alteration of stack linkages.

The RCW is stored at the F + 1 stack location.

Initializing the Processor State

LL is set from PCW.lex_level and D[LL] is set from F to address the base of the activation record.
The processor CS Boolean is set from PCW.control_state.

Any applicable display registers are updated to reflect the new addressing environment: If the pew
reference was an NIR W, no update is necessary, since the global AR of the new activation record is
already in the addressing environment. If the PCW reference was an SI R W, display update begins at
D[LL-l], the new global AR.

The expression stack is appended to the new activation record, making any procedure parameters acces­
sible.

The processor code-stream pointer state is initialized from the PCW by invocation of the common ac­
tion aPRCW, as discussed in Code Stream Pointer Distribution.

Pragmatic Notes

Pragmatics of exit_opt

There are several conditions that can be noticed at procedure entry and used to optImIze procedure
exit. The applicability of a particular optimization depends on the processor implementation. In the
following, the prefix Caller refers to a value prior to ENTR or subsequent to exit; Callee refers to
a value subsequent to ENTR and prior to exit.

If D[CaUerSDLL] = D[CalleeSDLL], the Code Dictionary activation record did not change, so code­
stream pointer distribution from the RCW can proceed prior to display update. Note that this equality
holds trivially if procedure entry was by means of an address-couple with Lambda ;::: CallerSDLL.

For entry by means of an address-couple with Lambda < CallerLL, EXIT or RETN needs to restore
only display registers D[i] for

CalleeLL :$ i :$ CallerLL.

If Lambda = CallerLL, not even D[CallerLL] is changed at exit.

aACCE (accidental entry)

The common action aACCE is invoked by some reference-chain evaluation operators to "evaluate" a
PCW. The action is automatic invocation of the paranleterless procedure (function) defined by the
PCW; it is defined as three steps:

1. Invoke MKST.
2. Place the reference to the PCW on the stack (at Mem[F + 1]), and
3. Invoke ENTR.

3-56

System Architecture Reference Manual, Volume 2
Operator Set and Common Actions

The action is subject to the interrupts of MKST and ENTR, although some error situations, such as
no unentered MSCW at Mem[F], are prevented by the close coupling of MKST and ENTR, and any
potential Binding Request or Invalid Reference Chain situation would have been handled already by
the invoking operator.

The accidental entry and subsequent return leave the processor executing the operator that initiated the
accidental entry. (Unlike explicit ENTR, which builds an RCW referencing the successor operator,
aACCE points the RCW at the invoking operator.) The invoking operator provides the value for
RCW.rs. In particular, value-call operators, STAD, and STAN set rs to 1 to cause re-entry in restart
state.

a I NTE (interrupt entry)

The common action aINTE is invoked to generate an interrupt, which is implemented as an entry to
an MCP procedure whose PCW, or an SIRW chain thereto, is located by the fixed address-couple
(0!,3). Two parameter words are provided to the procedure.

The action can be defined as four steps:

1. Invoke MKST.
2. Place an NIRW to (0,3) on the stack (at Mem[F + 1]).
3. Place the two parameter words on the stack.
4. Invoke ENTR.

The aINTE action may be invoked by operators (operator-dependent interrupts), between operators (ex­
ternal interrupts), or spontaneously at any time (alarm interrupts). The invoking mechanism determines
the contents of the parameters and of the resulting RCW.

The action is subject to the interrupts of MKST and ENTR, although some error situations, such as
no unentered MSCW at Mem[F], are prevented by the close coupling of MKST and ENTR. If an inter­
rupt is generated during the aINTE action, the stack will contain the four words inserted by aINTE:
the inactive MSCW, interrupt reference, and two parameter words. Note that if interrupt entry gener­
ates another interrupt (Invalid Reference Chain, Binding Request, or Invalid Argument Value) because
the interrupt reference is not usable, the new interrupt will surely fail for the same reason; successive
recursive interrupts will cause the processor to halt as described in Superhalt.

5014954 3-57

System Architecture Reference Manual, Volume 2
Operator Set and Common Actions

The following diagram illustrates the stack stare transformation produced by the interrupt entry se­
quence (F is shown pointing to the same activation record as O[LL] in the initial state, but that is
not required):

S-->

D[ll],
F-->

I
/

tos item

topmost
AR

RCW

MSCW

I
/

stack state
before interrupt

---------------------1
S--> P2 parameter

F-->

[) ell] -->

I
/

10 parameter

I RW to (0,3)

inactive MSCW

tos item

topmost
AR

RCW

MSCW

stack state preceding
ENTR to MCP interrupt

procedure

Stack state transformation produced by interrupt entry

hist
1 ink

----+

The effect is undefined of a Presence Bit or Stack Structure Error interrupt during a display update,
because the processor cannot know whether or not 0[0] would be altered, thus redefining (0,3). Soft­
ware nlust avoid any move (such as ENTR, EXIT IRETN, or MVST) into an activation record whose
lexical chain traverses an absent stack.

Pragrnatic Notes

Interrupt with unusable lexical chain

Given that a display update has failed (or a lexical chain is in error), it is reasonable to assert tlhat
0[0] has not (yet) moved and can be used to locate (0,3). Note, however, that if the word at D[O] + 3
is a PCW and the lexical chain cannot be traversed from O[LL] to 0[0], the architecture does not
fully define the immediate global environment for the interrupt procedure: the base of that environment
is at 0[0], but the number of the containing stack is not known. It has been suggested that a processor
could attempt to find the stack number of the level-O environment by reading the stack_number field
of the MSCW at 0[1], the MSCW at 0[0], or the PCW at 0[0] + 3. The first option fails if it is the
D[l] to])[0] link that is bad; the other two would require a software convention, because E-mode
places no requirernent on stack_number in a level-O MSCW or a PCW. Such an implementation-de­
fined extension of E-mode Level Alpha could be appropriate to improve robustness in error handling.
It is also appropriate to superhalt in such cases.

3-58

System Architecture Reference Manual, Volume 2
Operator Set and Common Actions

Procedure Exit Operators

There are two operators for deleting an activation record and returning execution to the prior topmost
activation record. RETN (return) assumes termination of a function and leaves the top-of-stack item
as a result, whereas EXIT assumes termination of a procedure and does not leave a result.

EXIT (exit)

EXIT deletes the topmost activation record from the stack and restores processor state for the prior
topmost activation record. The base location of the topmost activation record is addressed by D[LL),
and the prior topmost activation record is identified by the first entered MSCW on the historical chain
whose head is D[LL].

If the tag of the D[LL] or D[LL] + 1 item is not 3, a Stack Structure Error interrupt is generated.
If the RCW addressed by D[LL] + 1 has block_exit = 1, a Block Exit interrupt is generated. Other­
wise, the base of the prior topmost activation record is located by following the historical chain from
D[LL] until the first entered MSCW is encountered. If a history_link is evaluated and found to be
zero, or to point to a location less than or equal to BOSR, or if the tag of a stack item addressed
by a history_link is not 3, or if the lex_level field of the first entered MSCW is not equal to the
le~level field of the RCW in the initial topmost activation record, a Stack Structure Error interrupt
is generated,

The topmost activation record is deleted from the stack by setting the top-of-stack pointer, S, to
D[LL] - 1. F is reset to address the first MSCW on the historical chain whose head is D[LL], whether
or not it is entered. LL is set from the value saved in the RCW. D[LL] is reset to address the base
of the prior topmost activation record. Remaining processor state is reset by distributing values saved
in the RCW at the initial D[LL] + 1 stack location. The Boolean processor accumulators (TFFF, OFFF,
EXTF, FL TF) and CS (control state) are reset from their saved values in the RCW. Any applicable
display registers are updated to reflect the new addressing environment: the lexical chain is traversed
beginning at D[LL].

The processor code-stream pointer is initialized from the RCW by invoking the common action
aPRCW, as discussed in Code Stream Pointer Distribution. If RCW.rs = 1, the processor is condi­
tioned to execute in restart state the operator addressed by the new code-stream pointer.

Unless specific optimization information is recorded by ENTR in the RCW.exit_opt field, the
RCW.sdll component cannot be interpreted until the environment change (and any display update) is
complete.

5014954 3-59

System Architecture Reference Manual, Volume 2
Operator -Set and Common Actions

The following diagram illustrates the stack state transformation produced by EXIT. In the initial and
final states, F is shown pointing to the same activation record addressed by D[LL], but no such coinci­
dence is required. Note that LL is typically t:tifferent before and after the EXIT.

3-60

S--> TOSm item

D [L LJ ,
F-->

I
/

topmost AR I
(a t 1 eve 1 m) /

::;w ---:l---~~l~~~)Y-
TOSn item

I prior AR I I
/ (a t 1 eve 1 n) / I

1____ ::;w ---:1-+ <-I
-------------------1 ...

BEFORE exit (ll = m)

S-->

o ell] ,
F-->

TOSn item

I topmost AR I
/ (a t 1 eve 1 n) /

::;w ~~~;t+
------------------1 ...

AFTER ex it (Ll = n)

RETN (return)

System Architecture Reference Manual, Volume 2
Operator Set and Common Actions

RETN is exactly the same as EXIT, except that it assumes that the terminated activation record is a
function and that the initial top-of-stack item is to be the result of the function. RETN therefore re­
tains the initial top-of-stack item and pushes it back onto the top of the stack after the topmost activa­
tion record is deleted. If the top-of-stack item is an NIRW, an Invalid Stack Argument interrupt is
generated.

The following diagram illustrates the stack state transformation produced by RETN. In the initial and
final states, F is shown pointing to the same activation record addressed by D[LL], but no such coinci­
dence is required. Note that LL is typically different before and after the RETN.

5014954

s--> TOSm item

D [l lJ ,
F-->

I
/

I
/

topmost AR I
(a t 1 eve 1 m) /

RCW ----j (h is tory_
---- 1 ink)

MSCW - -----+

TOSn item

prior AR I I
(at level n) / /

---:1-+ <J
RCW

MSCW
------------------1 ...

...
BE FOR Ere t urn (l l = m)

S--> TOSm item

TOSn item

I topmost AR I
/ (at 1 eve 1 n) /

----j RCW
D[ll] , ----

F--> MSCW - -+
------------------1 ...

AFTER return (lL = n)

3-61

System Architecture Reference Manual, Volume 2
Operator Set and Common Actions

Stack Environment Operator

MVST (move to stack)

MVST changes the processor's site of activity by deactivating the current stack and activating a destina­
tion stack. A new Inemory addressing environment is also specified. A Top of Stack Control Word
(TSCVv') stored at the base location of an inactive stack is used to save the height of the stack and
a link to the start of the historical chain. These two fields within the TSCW are sufficient to activate
the stack.

MVST requires a single-precision operand on top of the stack to specify the stack number of the desti­
nation stack and the new environment numbcr; otherwise an Invalid Stack Argument interrupt is gener­
ated. The operand contains two fields:

[23:]l2] destination environment number
[11: 12] destination stack number

MVST consists of the following functional tasks:

1. Deactivate the current stack by writing a TSCW at its base.
2. Change addressing environment and identify the destination stack.
3. Restore processor stack state.
4. Update lexical environment state.

Deactivating the Current Stack

If S-BOSR is outside the range {I to 2** 16 - I}, or S-F is outside the range {I to 2** 14 -- I}, a Stack
Structure Error interrupt is generated (both tests are optional). Otherwise, MVST builds a TSCW by
setting the stack height field to the value S-BOSR, setting the SF _disp field to the value S-F, setting
the tag to 3, and setting the rest of the word to zero. The TSCW is stored at the base of the stack
(addressed by BOSR).

Changing the Addressing Environment and Identifying the Destination Stack

If the destination enviromnent number does not exceed the container size for ENR, it is loaded into
the register; otherwise an Invalid Argument Value interrupt is generated. (If an implementation does
not provide multiple environments, the container size for ENR is zero and the only value that may
be assigned to ENR is zero; in this case, the test is optional. Another option when the ENR container
size is zero is to define the MVST argument as a I2-bit integer, with aISX invocation for violation.)
When ENR is loaded, the addressing environment is changed; the new stack may be in a different
memory component from the old one.

SNR is set from the destination stack number. The stack descriptor identified by the destination stack
number is fetched as specified by the "Stack References" section. If the stack number is not valid,
an Invalid Index interrupt is generated. If the stack descriptor is marked not present, a Presence Bit
interrupt is generated.

If an interrupt is detected during step 2 or 3, the processor is not running on a valid stack. Therefore,
instead of generating the interrupt, the processor immediately generates a superhalt condition. (If a su­
perhalt occurs, the Interrupt_Count value is undefined; otherwise, the Interrupt_Count value is un­
changed by MVST.)

3-62

System Architecture Reference Manual, Volume 2
Operator Set and Common Actions

Restoring Destination Stack State

If the TSCW in the destination stack does not have tag = 3, a Stack Structure Error interrupt is gener­
ated. The following processor registers are loaded in the specified order, or its equivalent:

1. BOSR ~ Stack descriptor .address
2. LOSR ~ Stack descriptor .length + BOSR
3. S ~ TSCW.stack _height + BOSR
4. F ~ S - TSCW.SF_disp.

If the computed value of F is less than or equal to BOSR, a Stack Structure Error is generated.

The proc_id value (as a 3-bit integer) is stored at the base word of the destination stack.

Updating the lexical Environment State

D[LL] is set to point to the first entered MSCW (MSCW.entered = 1) on the historical chain whose
head is F. If, in following the historical chain, a history_link is encountered that points to a location
less than or equal to BOSR, or if the tag of a stack item addressed by a history_link is not 3, or
if the lex-,-level field of the first entered MSCW is not equal to LL, a Stack Structure Error interrupt
is generated.

Any other appropriate display registers are updated to reflect the new address environment: the lexical
chain is traversed beginning at D[LL].

If an interrupt is detected during 4. , the interrupt RCW points to the operator following MVST.

The following example illustrates the current stack transformation produced by MVST after the desti­
nation stack number has been deleted from the stack. The transformation of the destination stack is
essentially the inverse of that of the current stack. An inactive MSCW between Sand D[LL] is illus­
trated but atypical.

5014954

S--> TOS item

I I
/ /

F--> inactive Msc~--=l---+
---- ----I

I I

D[LL]-->

/

I

/

topmost
AR

entered MSCW

stack -----------------
base --> processor id

BEFORE move stack
(ac t i ve)

/

I

/

f
/

<-1

TOS item

'" SF I I
disp / /

----I
inactive MSCW -+---+

---- ----I
stack I I
height /

I

/

topmost
AR

entered MSCW

stack '" -----------------
base -------> TSCW

AFTER move stack
(i nac t i ve)

/

I

/

}
/

<-1

3-63

System Architecture Reference Manual, Volume 2
Operator Set and Common Actions

--------------------------- -----------

Pragmatic Notes

Interrupt_Count may be used in MVST

The specification that Interrupt_Count is undefined if MVST produces a superhalt and unchanged
otherwise makes it possible for MVST to use Interrupt_Count to detect the superhalt condition:
Interrupt_Count may be set to 3 at the beginning of step 2 and restored to its prior value at the end
of step 3.

Pragmatic Notes

No code-stream pointer distribution in MVST

The processor's code-stream pointer state is noticeably absent from the functioning of MVST. At termi­
nation, SDLL, SOl, PWI, and PSI remain as they were for the original stack; the code-stream bound
to the original stack continues execution.

Top-of-Stack Operators

These operators alter the top-of-stack state, while leaving the remaining processor state unchanged.
There is no restriction on the type of stack item that will be acted upon, but as operator arguments,
the items must be at or above D[LL] + 2 to avoid Stack-Underflow interrupts. Note that an item may
comprise either one or two words.

DLET (delete top-of-stack)

DLET requires one item on top of the stack and deletes it from the stack:

T05 iteml
-'-DLET-->

xx xx

EXCH (exchange top-of-stack)

EXCH requires two items on top of the stack and interchanges their order in the stack:

-----------1 T05 iteml

-----------1 T05 item2

---EXCH--> 1

_----------
T05 item2

1

_----------

T05 iteml

3-64

System Architecture Reference Manual, Volume 2
Operator Set and Common Actions

DUPL (duplicate top-of-stack)

DVPL requires one item on top of the stack, creates an exact duplicate of it, and leaves both items
on top of the stack:

ros iteml
--DUPL-->

TOS iteml TOS iteml

RSUP (rotate stack up)

RSVP requires three top-of-stack items. The third from top item is "rotated up" to become the top
of stack item:

TOS iteml TOS item3

TOS item2 --RSUP--> TOS iteml

TOS item3 TOS item2

RSDN (rotate stack down)

RSDN requires three top-of-stack items. The top item is "rotated down" to become the third from top­
of-stack item:

TOS iteml TOS item2

TOS item2 --RSDN--> TOS item3

TOS item3 TOS iteml
1-----------

Processor-State Manipulation Operators

These operators are classified as read state, set state, or read and set state functions. The operators
in each class are described in the following paragraphs.

Read state operators place processor state register values on top of the stack and mark the stack state
items valid. Set state operators bring values to the top of the stack and set processor state to match
the values brought to the top of the stack. Read and set state operators are similar to read state
operators, except that the processor state is reset at the conclusion of the operation.

5014954 3-65

System Architecture Reference Manual, Volume 2
Operator Set and Common Actions

Read State Operators

RTFF (read true·-false flip-flop)

RTFF leaves on top of the stack the value of TFFF as a Boolean operand, True or False.

RSNR (read SNR)

RSNR leaves on top of the stack a 12-bit integer containing the SNR value.

Pragmatic Notes

RSNR is equivalent to LT8 53, RPRR

The RSNR operator has the same function as RPRR with a stack argument of 53. RSNR provides
a migration path away from the use of RPRR except in limited contexts of low-level code.

WHOI (read processor id)

WHOI leaves on top of the stack a 3-bit integer containing the processor identification number,
proc __ jd.

WATI (read rnachine identification)

W A TI leaves on top of the stack a double-precision operand containing information about the level
of implelnentation. It consists of the proc state (except for proc_id), formatted into the following
fields:

First Word:
[47:32] unit_id or 0
[15: 4] E-mode_level
[11: 4] E-mode_features (default: 0)
[7: 8] machine_type

Second Word:
[47: 4] page_size_indicator
[43: 4] 0 (reserved)
[39:40] microcode_version or 0

Implementations return zero in fields for which the defined data are not relevant.

3-66

System Architecture Reference Manual, Volume 2
Operator Set and Common Actions

Pragmatic Notes

Format of microcode_version is defined by software

This architecture defines microcode_version as a 40-bit value to be returned by the W ATI operator
by implementations that use field-Ioadable microcode. The content of this field is not of functional
concern to operators of this architecture; it is a matter of convention between the software that creates
the value (the microcode compiler) and the software that reads it (the operating .system and any pro­
gram to which the information is made available). The following example convention is used for A9
systems, when operating software at the mark 3.4.740 release level:

[39:08]
[31:16]
[15:16]

mark_level: The "mark level" of the release (34).
cycle: The generation cycle of the release (740).
creation: The creation date, computed by means of the following
equation:

(year - 1970) * 1000 + day _of_year

RTOD (read time of day clock)

RTOD leaves on top of the stack a 36-bit integer containing the value of the time of day clock. The
range of values is {O to 2**36 - I} in units of 2.4 microseconds.

RPRR (read processor register)

RPRR requires one 6-bit integer stack argument; otherwise Integer Subset Exception action (aISX) is
invoked. The argument is interpreted as a processor register identification (register id), and the result
left on top of the stack is the value of the specified register. This result value is a k-bit integer, where
k is the width of the target register.

Readable processor registers are associated with register ids that are a subset of integers in the range
{O to 63}. If the register id is not a valid value, an Invalid Argument Value interrupt is generated.
See the table under SPRR for the valid register IDs and widths.

The value reported for the S register is the address of the top-of-stack item after the RPRR argument
has been consumed.

RIPS (read internal processor state)

The RIPS operator is provided to read implementation-defined processor state. RIPS accepts a single­
precision argument and leaves a single-precision value. The implementation must specify the allowable
argument values, any validity checking, the form and meaning of the output values, and the semantics
of the operator, including any interrupt generation.

5014954 3-67

System Architecture Reference Manual, Volume 2
Operator Set 3:nd Common Actions

Pragmatic Notes

Implementation-defined low-level operators

The RIPS, WIPS, REMC, and WEMC operators are defined as to opcode and stack argument/result
number and type, but not semantically. They exist to facilitate access to machine state at a level of
abstraction below that of the architecture functional definition. It is within the spirit of this specifica­
tion for an implementation to use such operators to perform diagnostic, maintenance, initialization,
or configuration functions, for example. It is contrary to that spirit to use such operators to extend
the architecture functionality at the level of abstraction of this specification. RIPS is a new operator
in this architecture (and the B7900).

Set State Operators

SXSN (set external sign flip-flop)

SXSN requires an operand on top of the stack; otherwise, an Invalid Stack Argument interrupt is gen­
erated. SXSN sets EXTP (external sign flip-flop) to the value of bit 46 of the top-of-stack item. The
operand is left unchanged on the stack.

EEXI (enable external interrupts)

EEXI conditions the processor to respond to external interrupts and resets the processor CS Boolean
to 0 (normal state). [f any external interrupt is pending when EEXI is executed (in control state), an
external interrupt occurs immediately following the EEXI operator, even if the immediate successor op­
erator is DEXI.

DEXI (disable external interrupts)

DEXI conditions the processor to ignore all masked external interrupts and sets the processor CS Boo­
lean to 1 (control state).

SINT (set interval timer)

SINT arms the interval timer and sets it from an operand on top of the stack. If the item on top­
of-stack is not an Il-bit integer, Integer Subset Exception action (.aISX) is invoked. Otherwise, the
Interval __ Timer is set to the specified value and armed.

WTOD (write time of day clock)

WTOD sets the time of day clock from an operand on top of the stack. If the item on top of the
stack is not a 36··bit integer, Integer Subset Exception action (aISX) is invoked.

3-68

System Architecture Reference Manual, Volume 2
Operator Set and Common Actions

SPRR (set processor register)

SPRR assigns a value to a register; it requires two stack arguments. The second argument is the register
id; it must be a 6-bit integer or else Integer Subset Exception action (aISX) is invoked. The top argu­
ment is the register value; it must be a k-bit integer (where k is the width of the destination register),
or else Integer Subset Exception action (aISX) is invoked. If the top argument fits within the k-bit
width specified in this architecture, but is too large for the container actually implemented, an Invalid
Argument Value is generated; see the "Processor State" appendix. The contents of the specified register
are set to the register value.

The required initial stack state is:

register value

register id

Settable processor registers are associated with register ids that are a subset of integers in the range
{O to 63}. If the register id is not a valid value, an Invalid Argument Value interrupt is generated.

The following table specifies the decimal register id encodings, register names, validity for RPRR and
SPRR, and register widths (in bits).

Register ID Register Name RPRR SPRR Width

0 D[O] yes yes 20
1 to LL-l invalid invalid
LL D[LL] yes yes 20
LL+ 1 to 35 invalid invalid
36 LOSR yes yes 20
37 BOSR yes yes 20
38 F yes yes 20
39-51 invalid invalid
52 S yes' yes 20
53 SNR yes yes 12
54-56 invalid invalid
57 (reserved) invalid invalid
58 ENR yes yes 0-12
59-63 invalid invalid

Assignment of a value to D[LL] does not invoke immediate display update. After the assignment, ac­
cess by means of a global address-couple (with lambda < LL) is undefined unless the new D[LL] value
addresses a proper MSCW that links to the same immediate global activation record as did the old
value.

If the register id designates S, the new register value remains in S at the completion of the SPRR
operator (the arguments to SPRR are consumed before the register assignment is made).

5014954 3-69

System Architecture Reference Manual, Volume 2
Operator Set and Common Actions

Pragmatic Notes

Beware manipulating S

Because S is the address of the top-of-stack, expressions and assignments involving S can generate
counterintuitive results. For example, a statement to increment S could be written "S: = S + 1" and
compiled in a straightforward way to produce the following architecture code:

LT8
LT8

RPRR
ONE
ADD
SPRR

52
52

070 Register id for SPRR
070 Register id for RPRR

Because the SPRR register id is already on the ,expression stack, RPRR returns a value one higher than
the top-of-stack address prior to execution of this statement. Therefore, the net effect of the statement
is to increment S by two, not one.

RUNI (indicate running)

RUNI sets the Running_Indicator.

WIPS (write internal processor state)

The WIPS operator is provided to write implernentation-defined processor state. WIPS accepts two sin­
gle-precision arguments and leaves no result. The implementation must specify the allowable argurnent
values, any validity checking, and the semantics of the operator, including any interrupt generation.

Pragmatic Notes

Implementation-defined low-level operators See note under RIPS.

ZIC (zero Interrupt_Count)

The ZIC operator sets the Interrupt_Count to zero.

Read a~nd Set State Operator

ROFF (read and reset overflow flip-flop)

ROFF leaves on top of the stack the Boolean value of OFFF (overflow flip-flop) and then uncondition­
ally resets OFFF to false.

3-70

System Architecture Reference Manual, Volume 2
Operator Set and Common Actions

DATA ARRAY OPERATORS
Operators in this group perform functions on arrays specified by data descriptor stack arguments. The
functions applied generally consist of sequential processing of one or more arrays of word or character
elements. Termination occurs when an element length has been exhausted or when some condition is
satisfied.

Data in one of the argument arrays may be modified, or the arrays may be processed in order to pro­
duce a result, or both actions may occur. Results are indicated by items left oOn top of the stack or
by the setting of one or more processor Boolean accumulators.

Array operators typically accept IndexedDDs as arguments or accept unindexed DDs and index them.
For an operator to access the data, the actual segment must be present; see Descriptor Interpretation.

Searching Operators

There are two searching operators. LLLU (linked list lookup) searches an explicitly linked list for the
first element whose data component is greater than or equal to a target value, and SRCH (masked
search for equal) searches an implicitly ordered list (backwards) for the first word that is bitwise equal
to a target value after both the word and target value have been masked.

LLLU (linked list lookup)

LLLU processes an array as an explicitly linked list and applies the following interpretation to each
word in the array (ignoring the tag):

LLLU_data
LLLU_link

[47:28]
[19:20]

The atomic data component
The link component (an index from the base of the array to
the next element in the list)

LLLU requires an initial index, an unindexed unpaged copy SingleDD, and a target value on top of
the stack:

index

SingleDD

target value

The index and target value must be operands and are integerized with rounding if required. If either
the index or the target value is not an operand or the second from top-of-stack item is not an unpaged
unindexed copy SingleDD, an Invalid Stack Argument interrupt is generated. If the index or target val­
ue cannot be integerized, an Integer-Overflow interrupt is generated. If the SingleDD is not marked
present, a Presence-Bit interrupt is generated. Whenever an index value is used to fetch a word from
the list, if it is not in the range {O to DD.length - I}, an Invalid Index interrupt is generated.

The initial index is applied to the SingleDD, and the first word of the list is fetched. Starting with
that word, LLLU applies the following iterative loop.

5014954 3-71

System Architecture Reference Manual, Volume 2
Operator Set and Common Actions

If the link component equals zero, a single_jnteger - 1 is left on top of the stack to signal failure"
If the link is non-zero and the data component is greater than or equal to the absolute value of the
target value, the operator terminates; otherwise the link value becomes the new index and the iteration
is repeated. If termination occurs in the first iteration, the initial index is returned on the stack as a
20-bit integer. If termination occurs on a subsequent iteration, the index used on the previous iteration
is returned as a 20-bit integer.

Pragmatic Notes

LLLU Pragmatics

For convenient use of the operator, the list should be constructed so that the potential targets are found
in the second through the penultimate elements; then the stack result is the index of the element whose
link points to the target element. If the target inequality is satisfied on the first element, the result
is aInbiguous, there being no prior element. J f the target inequality is satisfied on the last (link = 0)
element, the failure result is returned.

SRCH (masked search for equal)

SRCH scans an array called the 1/ domain" (an actual segment), from an indexed starting point back
towards the base, for a word that matches a target value in selected bits. Any or all of the 52 bits
(word and tag) may be matched. The result is a single_integer: the index of the matching word, or
-- 1 if the search fails.

SRCH requires three arguments on top of the stack: the search domain (a SingleDD), the mask, and
the target value:

domain

mask

target value

The donlain argument must be an IndexedSingleDD or an unpaged unindexed copy SingleDD; other­
wise an Invalid Stack Argument interrupt is generated.

If the domain is an unindexed descriptor with nOB-zero length, it is indexed by its length - 1 to form
an IndexedSingleDD. If it is an unindexed DD with zero length, no search occurs and the failure result
(- 1) is left on the stack.

Both the mask and target value are bit vectors of length 52. The target value is logically ANDed with
the mask before it is used for comparison. The second word of any double-precision target value or
mask is ignored.

The word referenced by the IndexedSingleDD is logically ANDed with the mask and compared to the
(masked) target value. If a matching word is found, its index is left on the stack as the SRCH result.
If there is no match and the actual segment index is non-zero, the index is decremented by one and
the search continues. If there is no match and the index is zero, the actual segment is exhausted: the
failure result is left on the stack.

If the actual segment is a page, the SRCH result index is relative to the page, not the array (virtual­
segment).

3-72

System Architecture Reference Manual, Volume 2
Operator Set and Common Actions

---------------------------------- ----------- - --- -

Pointer Operators

Pointer operators deal with sequences of word or character elements in data arrays. There are pointer
operators for scanning, transferring, comparing, and editing the element sequences in various ways;
various operators deal with only a source or a destination sequence, with both a source and a destina­
tion sequence, or with two source sequences. Sequential processing terminates when an element length
is exhausted or, in some cases, when a condition is satisfied before the length is exhausted. Some point­
er operators, called enter-edit operators, serve to invoke one or more instances of another class of
pointer operators, called edit-mode operators.

Typical pointer operators require initial stack arguments that specify the length, the source element se­
quence, and the destination element sequence. A source element sequence can be contained in an oper­
and or referenced by an indexed data descriptor; a destination sequence is always referenced by an
indexed data descriptor. A source or destination descriptor defines the first element of the target se­
quence.

Some operators (pack, input convert, string isolate) read a source and generate a result operand on
the stack; these stack results are not defined to be destinations.

The term "pointer operator" reflects the fact that the source or destination descriptor is usually a Point­
er (indexed character descriptor). In fact, indexed word descriptors are also acceptable, although they
are usually coerced to Pointers.

If an EBCDIC (or hex) Pointer has a char_index value outside the range {O to 5} (or {O to 11}),
an Invalid Argument Value interrupt is generated.

For transfer-words operations, the tag of each source word is transferred to the destination. For all
other pointer operations, the tag of each destination word is preserved.

element_size conventions

The element size for either the source or destination sequence can be specified by the element_size
in the Pointers, inferred by default, or fixed by the operator. Only the translate operator can
manipulate source and destination sequences of different element sizes. The word-transfer operators al­
ways operate on single words, but accept indexed descriptors of any valid element_size. The unpack
operators require a source operand and treat it as hex.

For all pointer operators except word-transfer, the following element-size adjustments are made: If
there are both source and destination arguments, and only one is a Pointer, the element_size of the
Pointer is applied to the other argument. If there is no Pointer argument, then any source or destina­
tion is assumed to be EBCDIC. When a character element_size is applied to a source or destination
word descriptor, that argument effectively becomes a Pointer; if the index is greater than 2** 16 - 1,
an Invalid Index interrupt is generated.

For word-transfer operators, the element_size specified in the source and destination descriptors is
unaltered, but the operation deals with single words. If a Pointer is used as source or destination, and
the char_index is non-zero, the descriptor is adjusted by setting char_index to zero and incrementing
word_index; if the resulting word = index exceeds 2** 16 - 1, an Invalid Index interrupt is generated.

For all pointer operators except word-transfer and translate, an Invalid Stack Argument interrupt is
generated if the source and destination arguments are both Pointers and the element_size values are
not equal.

5014954 3-73

Length Argument

System Architecture Reference Manual, Volume 2
Operator Set and Common Actions

When a pointer operator is invoked in initial state, the specifications in the following paragraphs apply.
If a pointer operator is resumed in restart stat e, the length argument must be a 20-bit integer, or else
the action is undefined. (In some restart situations, a length of zero is significant.)

The length argument must be an operand; otherwise an Invalid Stack Argument interrupt is generated.
It is integerized with rounding if required. If it cannot be integerized, an Integer~Overflow interrupt
is generated. If the integer value exceeds 2**20 - 1, an Invalid Argument Value interrupt i"s generated.

A negative length value is equivalent to zero. If length :5 0, all pointer operators terminate without
accessing any source element or transferring any destination element; no Paged Array interrupt is gen­
erated; service or error interrupts based upon the other arguments may be generated or not, at imple­
mentation option. (The enter-single-edit operators do not themselves terminate for zero-length input;
rather, any edit operators that require a length do so.)

A Paged Array interrupt is not generated after the length has been exhausted, or by compare-delete
operators after a nlismatch has been detected, or by scan or conditional transfer operators after a
source character has failed to satisfy the condition.

Source Argument

The source argument must be an operand or an IndexedDD of any valid element_size; otherwise an
Invalid Stack Argument interrupt is generated.

A source operand is interpreted according to element_size conventions defined above as an EBCDIC
sequence of 6 (or 12) characters or a hex sequence of 12 (or 24) characters, for a single-or double­
precision operand, respectively. The operand is logically concatenated with itself as required to form
an indefinite length sequence.

Except for word transfer overwrite, all pointer operations generate a Paged Array interrupt if an odd­
tagged word is read by means of a source pointer.

Short-Source Operators

The string-isolate, pack, and input-convert operators are special in that the source sequence is short
(never m.ore than 25 characters) and the result is left on the stack as an operand rather than being
moved to a destination sequence. Some of these operators interpret one character or one zone field
as a sign.

If a short-source operator is executed in initial state and then generates a Paged Array interrupt after
the sign or any data character has been read, the RCW.rs bit is set to 1 and the stack is updated to
the restart configuration: the updated length, the updated source and the partial result are put on the
stack. The length is above the source; the relative position and form of the partial result are implemen­
tation-defined. The effect of resuming the operator in restart state is undefined if the content or top­
of-stack position of the partial-result item has been altered.

It is never necessary to set RCW.rs to 1 when the Paged Array interrupt is generated while attempting
to fetch the first character in the source sequence. For operators that interpret the first character as
a sign, it is necessary that RCW.rs = a when the interrupt occurs fetching the first character.

3-74

System Architecture Reference Manual, Volume 2
Operator Set and Common Actions

-----------------------------------_ .. _-_ .. _------ ----

Because the source character sequences for these operators are short, so the operation can legitimately
cross only one page boundary, and because these operators have no destination that might be subject
to enlargement, it is not necessary to have a repeat resumption condition when the operator is begun
in restart state (having already encountered one page boundary). The stack configuration and resump­
tion condition is implementation-defined if a short-source operator is executed in restart state and then
generates a Paged Array interrupt.

Destination Argument

The destination argument must be an IndexedDD of any valid element_size; otherwise an Invalid
Stack Argument interrupt is generated.

Except for word transfer overwrite, all pointer operations generate a Paged Array interrupt if either
a read or write access is attempted to an odd-tagged destination word.

An operator is said .to "require a destination" if a destination stack argument is specified, except for
the Enter Single Edit operators; these operators "require a destination" if the subsequent edit operator
is a move, insert, or end-float operator.

If a destination pointer is marked read_only, operators that require a destination generate a Memory
Protect interrupt; the interrupt is optional if the initial length =5 O.

Source 1 and Source2 Arguments

The compare operators process two sources, rather than a source and a destination. Source2 and
Sourcel are treated as defined above for Source and Destination, respectively; the compare operators
are said not to "require a destination".

Overlapping Source and Destination

A source and destination are said to overlap if both arguments are IndexedDDs into the same segment
and the displacement (index difference) between them is less than the effective length (number of
elements transferred).

The effect of an overlapped unconditional word or character-transfer depends upon the direction and
magnitude of the displacement. In the following, D represents the displacement expressed as destination
element index minus the corresponding source element index. L represents the transfer length. N is 0,
8, or 16 for word, 8-bit, or 4-bit elements, respectively.

D =5 - L:
- L < D =5 0:

o < D < N:
N s D < L:

LsD:

No overlap
Destination sequence overwrites L + D source elements.
Destination and source contents are undefined.
D source elements are repeated throughout destination.
No overlap

Conditional (character-relational or set-membership) transfer operators are subject to the same con­
straints as unconditional transfers, but note that when D > 0 the only opportunity for conditional
termination is within the first D elements. L in the foregoing specification is the number of elements
actually transferred.

5014954 3-75

System Architecture Reference Manual, Volume 2
Operator Set and Common Actions

For translate involving 4-bit characters, the displacement d is reckoned in 4-bit characters from the
initial source to the initial destination. For translation of L characters, the overlap cases and effects
are as follows (where /2 indicates halving with truncation):

4-to 4-bit:

4-to 8-bit:

8-to 4-bit:

8-to 8-bit:

- L < d :5 0: L + d source elements overwritten
o < d < L: Undefined

- 2L < d :5 1 - L: max(L,2L + D) source elements overwritten
1- L < d < L: Undefined

- L < d < 0: (L + d + 1)/2 source elements overwritten
o :5 d < L: Source sequence overwritten
L :5 d < 2L: Undefined

- L < 0 :5 0: L + D source elements overwritten
o < 0 < L: Undefined

For edit operators, the source and destination overlap if - Ld < 0 < Ls, where Ld and Ls are the
destination and source length, respectively. (Note that for data-transferring edit operators, Ld ?: Ls.)
The result of overlapped editing is undefined if 0 > Ls - Ld. For a table-edit sequence, each group
of consecutive edit operators (other than skips) is to be considered a unit for the application of this
test. Overlap considerations do not apply directly to skip operators, but skip operators in an edit-table
change the initial pointer displacements for subsequent operators, so one operator's destination element
might become another operator's source element.

Pragmatic Notes

Overlap Pragmatics

For conditional and unconditional transfer operators, the three overlap cases are:

Destination first: move the data "down" (toward lower addresses)
Destination equals source: effective no-op
Source first: "smear" destination with repetitions of the source

Smearing occurs when destination elements become subsequent source elements; smearing works for
word transfers or for character transfers beyond a minimum displacement, but not for the translate
or edit operators.

Translation differs from simple transfer in that the transferred characters are modified (so smearing
is not defined), and the source and destination element sizes may differ. Except for translate in place
to the same or smaller element size, overlapping translate operations must be performed with great
care.

Edit operators also can modify the transferred characters, and can transfer more characters to the desti­
nation than from the source. Overlapping edit operations is recommended only for simple editing in
place, as in using MINS to suppress leading zeros.

3-76

System Architecture Reference Manual, Volume 2
Operator Set and Common Actions

Update Of Pointer-Operator Arguments

Most pointer operators occur in both "delete" and "update" variations. The "delete" forms consume
all of their stack arguments and do not leave updated results on the stack (although they may leave
other results on the stack). The "update" forms leave on top of the stack an updated reference(s) to
the source and destination (if applicable), and the length (if termination is possible before the length
is exhausted). (The SISO and SHOW operators have only a delete form; the TRNS and EXPU
operators have only an update form.)

A pointer operator can be interrupted (for example, at a page boundary); in which case the length,
source, and destination are updated to the point of the interrupt. Both update and delete operators
are subject to such interruption; the stack arguments are configured for resuming the operator (in
initial or restart state, depending upon the situation).

An updated length result is a 20-bit integer indicating the number of elements remaInIng to be pro­
cessed at termination or interrupt. It is produced by update operators that may terminate before the
length is exhausted, or by operators that are interrupted and can be resumed. If the initial length is
negative, the updated length is zero.

An updated source operand is the original operand circularly rotated left such that the left-justified
element is the next element that would have been processed if termination or interrupt had not oc­
curred.

A source or destination descriptor is updated as an indexed descriptor that references the next source
or destination element that would have been processed had termination or interrupt not occurred. The
updated descriptor reflects any adjustments made according to the element_size conventions defined
above: Word-transfer operators may adjust the char_index and word_index values; all other
operators change any indexed word descriptor into a Pointer.

If the initial length :5 0 for an update operator, or if update is caused by an interrupt prior to transfer
of any data, the input arguments left on the stack mayor may not be modified. For example, a length
< 0 may have been replaced by 0, and element_size changes may have been effected.

The field-width limits in a descriptor are 2** 16 - 1 for the word_index field in a Pointer and 2**20 - 1
for the index field in an indexed word descriptor. If the word index value to be updated into a descrip­
tor exceeds the limit, an Invalid Index interrupt is generated. If the update was being done to report
another interrupt, the Invalid Index is reported instead. An implementation may generate the interrupt
at any point in the sequence processing where the word index would exceed the limit.

5014954 3-77

System Architecture Reference Manual, Volume 2
Operator Set and Common Actions

Unconditional Clharacter-Transfer Operators

Unconditional character-transfer operators transfer hex or EBCDIC characters from the source to the
destination. The number of characters transferred is specified by the length. TFFF is left in an unde­
fined stale.

The required initial stack state is:

1-------------
Length

Source

Destination

The following operator leaves no results on the stack:

TUND (transfer characters unconditional delete)

The following operator leaves the updated source on top of the the stack and the updated destination
second from top of the stack:

TUNU (transfer characters unconditional update)

Character-Relational Operators

Character-relational operators sequentially apply a relational comparison of each source character to
a delimiter character supplied by a stack argument until the length is exhausted or a relation fails.
TFFF indicates the cause of termination: it is reset to 0 if a relation fails and set to 1 if the length
is exhausted (all source characters satisfy the relation).

The delilniter argument must be a single-precision operand; otherwise an Invalid Stack Argument inter­
rupt is generated. It is interpreted as a single right-justified character (EBCDIC or hex according to
the effective elenlent size of the source); all bits in the delimiter word except those in the delimiter
character itself are ignored.

The binary value of each source character is compared to the binary value of the delimiter character.
The operator names specify the relation of source character to delimiter that must hold for the
operation to continue. For example, the SLSU operator scans across source characters less than the
delimiter.

3-78

Scan Operators

System Architecture Reference Manual, Volume 2
Operator Set and Common Actions

Character-relational scan operators sequentially compare each source character to the delimiter charac­
ter as defined above.

The required initial stack state is:

Delimiter

Length

Source

The following operators leave no results on the stack:

SGTD (scan while greater delete)
SGED (scan while greater than or equal delete)
SEQD (scan while equal delete)
SNED (scan while not equal delete)
SLED (scan while less than or equal delete)
SLSD (scan while less than delete)

The following operators leave the updated length on top of the stack and the updated source second
from top of the stack:

SGTU (scan while greater update)
SGEU (scan while greater than or equal update)
SEQU (scan while equal update)
SNEU (scan while not equal update)
SLEU (scan while less than or equal update)
SLSU (scan while less than update)

5014954 3-79

System Architecture Reference Manual, Volume 2
Operator Set and Common Actions

-------------- ---------------------------------------

Transfer Operators

Character-relational transfer operators sequentially compare each source character to the delimiter char­
acter as defined above. Each source character that satisfies the relation is transferred to the destination
sequence.

The required initial stack state is:

Delimiter

Length

Source

Destination

The following operators leave no results on the stack:

TGTD (transfer while greater delete)
TGED (transfer while greater than or equal delete)
TEQD (transfer while equal delete)
TNED (transfer while not equal delete)
TLED (transfer while less than or equal delete)
TLSD (transfer while less than delete)

The following operators leave the updated length on top of the stack, the updated source second from
top of the stack~ and the updated destination third from top of the stack:

3-80

TGTU (transfer while greater update)
TGEU (transfer while greater than or equal update)
TEQU (transfer while equal update)
TNEU (transfer while not equal update)
TLEU (transfer whHe less than or equal update) TLSU (transfer while less than update)

System Architecture Reference Manual, Volume 2
Operator Set and Common Actions

Character-Sequence Compare Operators

Character-sequence compare operators apply a relational comparison of the sourcel sequence to the
source2 sequence. TFFF is set to 1 if the relation is satisfied and reset to 0 if the relation fails.

The required initial stack state is:

Length

Source2

Sourcel

The binary values of each corresponding sourcel and source2 character are compared. The two se­
quences are equal if and only if each sourcel character is equal to the corresponding source2 character
for the specified length (or the initial length is zero). Sourcel is strictly less (greater) than source2 if
and only if for the first (left-most) pair of unequal characters, the sourcel character is strictly less
(greater) than the source2 character.

The following operators terminate when the actual relation is determined. No result is left on the stack.

COTD (compare characters greater delete)
COED (compare characters greater than or equal delete)
CEQD (compare characters equal delete)
CNED (compare characters not equal delete)
CLED (compare characters less than or equal delete)
CLSD (compare characters less than delete)

The following operators terminate only when the length is exhausted. If a Paged Array interrupt is
taken after the relation (TFFF state) has been determined, RCW.rs is set to l, so that TFFF is not
modified when the operator is resumed. They leave the updated source on top of the stack and the
updated destination second from top of the stack. The updated Pointers reference the first character
after the end of the sequence as determined by the length:

COTU (compare characters greater update)
COEU (compare characters greater than or equal update)
CEQU (compare characters equal update)
CNEU (compare characters not equal update)
CLEU (compare characters less than or equal update)
CLSU (compare characters less than update)

5014954 3-81

System Architecture Reference Manual, Volume 2
Operator Set and Common Actions

Character Set-Membership Operators

Character set-membership operators test source characters for membership in a character set supplied
by a stack argmnent. The relations applied consist of inclusion and exclusion, and source characters
are sequentially tested until the relation fails or the length is exhausted. TFFF indicates the cause of
termination: it is reset to 0 if a relation fails and set to 1 if the length is exhausted (all source characters
satisfy the membership criterion).

The character set argument must be an IndexedSingleDD; otherwise an Invalid Stack Argument ill1ter­
rupt is generated. This IndexedSingleDD locates the first word of the character set. The actual seglnent
addressed by the IndexedSingle DD must be long enough to contain the referenced word and, for
EBCDIC source, the next seven words. This requirement is not directly enforced, but if an odd-tagged
word is encountered in the set table, a Memory Protect interrupt is generated.

The character set is interpreted as a bit vector indexed by the source character. If the selected bit is
1, the character is included in the set; otherwise it is excluded from the set. The bit is located by the
address equation:

Mem[set. address+set. index + Wordlndex(c)]. [Bitlndex(c):l]

Wordlndex and Bitlndex are computed from the binary representation of the source character (c) as
follows:

EBCDIC#Wordlndex value of 3 high-order bits
#BitIndex 31 (value of 5 low-order bits)

hex #Wordlndex 0
#BitIndex 31 (4 bit value)

In the following operator names, the relation "while source included in set" is called "while true", and
"while excluded from set" is called "while false".

Scan IOperators

Character set-membership scan operators apply the sequential membership test of each source character
to the character set as defined above.

The required initial stack state is:

Character set

Source

The following operators leave no results on the stack:

SWTD (scan while true delete)
SWFD (scan while false delete)

The following operators leave the updated length on top of the stack and the updated source second
from top of the stack:

3-82

SWTU (scan while true update)
SWFU (scan while false update)

Transfer Operators

System Architecture Reference Manual, Volume 2
Operator Set and Common Actions

Character set-membership transfer operators apply the sequential membership test of each source char­
acter to the character set as defined above. Each source character that satisfies the membership criteri­
on is transferred to the destination sequence.

The required initial stack state is:

Charact.er set

Length

Source

Destination

The following operators leave no results on the stack:

TWTD (transfer while true delete)
TWFD (transfer while false delete)

The following operators leave the updated length on top of the stack, the updated source second from
top of the stack, and the updated destination third from the top of the stack:

TWTU (transfer while true update)
TWFU (transfer while false update)

Character-Sequence Extraction Operator

SISO (string isolate)

SISO extracts a character sequence from the source, creates an operand containing the extracted se­
quence right-justified with leading zero-fill (if required), and leaves the operand on top of the stack.
The length specifies the number of characters in the extracted sequence.

The required initial stack state is:

Length

Source

The result may be a single-or double-precision operand depending on the length and the source charac­
ter type. If the source is EBCDIC, the result is single for length s 6 and double for {7 to 12}. If
the source is hex, the result is single for length :s; 12 and double for {13 to 24}. An Invalid Argument
Value interrupt is generated if the source is EBCDIC and length > 12 or if the source is hex and
length > 24.

5014954 3-83

System Architecture Reference Manual, Volume 2
Operator Set and Common Actions

Character Translate Operator

TRNS (translate)

TRNS sequentially accesses characters from the source sequence, maps each character into a specified
character set, and stores the translated character into the destination sequence. The character set map­
ping is indicated by a translate table argument.

The required initial stack state is:

Translate table

Source

Destination

The translate table must be an IndexedSingleDD; otherwise an Invalid Stack Argument interrupt is gen­
erated. This IndexedSingleDD locates the first word of the translate table. The actual segment ad­
dressed by the IndexedSingleDD must be long enough to contain the referenced word and the next 3
or 63 words for a hex or EBCDIC source, respectively. This requirement is not directly enforced, but
if an odd-tagged word is encountered in the translate table, a Memory Protect interrupt is generated.

The translate table is interpreted as an array of words, each containing 4 right-justified 8 bit characters.
It is indexed by the source character, and the selected 8 bit character is stored into an EBCDIC destina­
tion, or the 4 low-order bits of the character are stored into a hex destination. The character is located
by the address equation:

Mern[table. address + table. index + WordIndex(c)]. [FieldIndex(c):8]

Word Index and FieldIndex are computed fron) the binary representation of the source character (c)
as follows:

EBCDIC

hex

Word Index
FieldIndex

WordIndex
FieldIndex

value of 6 high-order bits
31 - 8*(value of 2 low order bits)

value of 2 high-order bits
31 - 8*(value of 2 low order bits)

TRNS leaves the updated source on top of the stack and the updated destination second from top of
the stack.

3-84

System Architecture Reference Manual, Volume 2
Operator Set and Common Actions

Decimal-Chcuacter-Sequence Operators

Decimal-character-sequence operators interpret hex or EBCDIC sequences as decimal sequences, and
provide conversion functions among various decimal representations. (Hex-sequence representations of
decimal data are often called Binary Coded Decimal, BCD.)

A decimal digit is represented as a four-bit binary integer in the range {O to 9}; a digit sequence is
an unsigned sequence of decimal digits. (A value in the range {hex" A" to hex"F"} is a "nondigit".)
Digit sequences can be represented as operand values or in hex or EBCDIC character sequences.

In an operand, a sequence of n digits is represented as a sequence of adjacent 4-bit fields, right-or
left-justified according to the operator. Up to 12 or 24 digits can be contained in a single-or double­
precision operand, respectively; the second word of a double holds the low-order digits.

The hex representation of a digit sequence is as a hex sequence of the corresponding digit values. The
EBCDIC representation of a digit sequence is as an EBCDIC sequence in which the numeric field (low­
order four bits) of each character contains a digit value. The high-order four bits are called the zone
field; zone fields are significant in some operators, but they do not form part of the digit sequence.

A signed decimal integer is represented as a digit sequence and a sign value. Hex"D" represents a
negative sign; any other 4-bit value represents a positive sign. The sign may be placed at either the
left (high-order) or right (low-order) end of the sequence. A signed sequence of n digits is represented
in hex as a sequence of n + 1 characters; the sign is.. the leftmost or rightmost character. A signed n­
digit sequence is represented in EBCDIC as a sequence of n characters; the sign occupies the zone field
of the leftmost or rightmost character. (Operand decimal sequences are always unsigned; EXTF can
be used to hold the sign.)

There are three groups of decimal digit-sequence pointer operators. (See also the arithmetic operators
BCD and DBCD, which produce a digit sequence from a binary integer.) The pack operators transform
a hex or EBCDIC source sequence into a right-justified operand digit sequence. The unpack operators
transform a left-justified operand digit sequence into a hex or EBCDIC destination sequence. The in­
put-convert operators are similar to pack, but the integer value of the source sequence is transformed
to binary representation.

Two pairs of operators, P ACD/P ACU and ICVD/ICVU, treat a hex source sequence as either un­
signed or left-signed, depending upon the value of the first character: a nondigit value is taken as a
sign; a digit value is taken as a digit. The sign is not counted in the length.

Pragmatic Notes

"Old" and "new" decimal-sequence operators

The operators PACD, PACU, UABD, UABU, USND, USNU, ICVD, and ICVU are a set of "old"
operators (introduced on the B6500). The operators PKUD, PKLD, PKRD, UPUD, UPUU, UPLD,
UPLU, UPRD, UPRU, ICUD, ICLD, and ICRD constitute a set of "new" operators. UPUD and
UPUU are UABD and UABU renamed; the others were introduced into this architecture. The new op­
erators provide a complete set of unambiguously unsigned, left-signed and right-signed options. The
old operators provide only left hex sign and right EBCDIC zone sign, and the PACx and ICVx
operators are data-driven with respect to the presence or absence of a sign character in a hex sequence.

5014954 3-85

System Architectur·e Reference Manual, Volume 2
Operator Set and Common Actions

Pack Operators

Pack operators perform a conversion from the source EBCDIC or hex decimal sequence to a decimal
operand containing the corresponding digit sequence right-justified with leading zero-fill. The operand
is left as a result on the stack. Nondigits in a hex source sequence (other than a sign character) or
in the numeric field of an EBCDIC source sequence are transferred unmodified to the operandl se­
quence.

The required initial stack state is:

Length

Source

The result is a single-precision operand if length :5 12 and double-precision for {13 to 24}. If length
> 24, an Invalid Argument Value interrupt is generated.

The following operators leave the decimal result on top of the stack.

PKUD (pack unsigned delete)
PKLD (pack left-signed delete)
PKRD (pack right-signed delete)
PACD (pack delete)

The following operator leaves the updated source on top of the stack and the decimal result second
from top of the stack.

PACU (pack update)

PKUD l,eaves EXTF and TFFF in undefined states. All other pack operators set both EXTF and TFFF:
true = negative and false = positive or unsigned; if the length argument is :5 0, EXTF and TFFF
are reset (false).

If length > ° and the source is hex and there is a sign, the number of characters read from a hex
sequence is one greater than the length value; a sign is always present for PKLD and PKRD; and never
present for PKUD; a sign is present for PACx when the leftmost hex character is a nondigit. If length
:5 0, no source characters are read and the digit-sequence result is zero.

Following are the sign locations for these operators:

PKUD:
PKLD, EBCDIC:
PKLD, hex:
PKRD, EBCDIC:
PKRD, hex:
PACx, EBCDIC:
PACx, hex:

3-86

none
zone of leftmost character
leftmost character
zone of rightmost character
rightmost character
zone of rightmost character
leftmost character if non digit , else none

System Architecture Reference Manual, Volume 2
Operator Set and Common Actions

-------------------------------------- -----_._. ---

If the PKRD operator is resumed in restart state with a hex source, the operator continues even if
length = 0 (in which case the sign character is yet to be fetched). If a left-signed operator is resumed
in restart state, the sign has already been determined; this concern applies to P ACD or P ACU with
a hex source and to PKLD with any source.

Unpack Operators

Unpack operators interpret the source operand as a left-justified digit sequence and store the corre­
sponding hex or EBCDIC decimal sequence into the destination. Nondigits in the operand sequence
are transferred unmodified to the hex characters or the numeric field of the EBCDIC characters in
the destination sequence.

The required initial stack state is:

----------------1
Length

Source operand

Destination

The element_size convention for unpack is that the source operand is unconditionally treated as hex;
if the destination is an IndexedWordDD, it is changed to an EBCDIC Pointer. If the source is not
an operand, an Invalid Stack Argument interrupt is generated. If length > 24, an Invalid Argument
Value interrupt is generated.

Unpack-Unsigned Operators

Unpack-unsigned operators store the destination decimal sequence without sign. For an EBCDIC desti­
nation, the zone field of each character is set to hex"F". For a hex destination, the digit sequence is
stored with no sign character.

The following operator leaves no results on the stack:

UPUD (unpack unsigned delete)

The following operator leaves the updated source operand on top of the stack and the updated destina­
tion second from top of the stack:

UPUU (unpack unsigned update)

5014954 3-87

~ystem Architecture Reference Manual, Volume 2
Operator Set and Common Actions

--

Unpack-Signed Operators

Unpack-signed operators store the destination decimal sequence with a sign; the sign is determined by
EXTF (external sign flip-flop), where true = negative and false = positive.

Hex "C" and "0" are used as the positive and negative sign characters respectively. For an EBCDIC
destination, the sign is inserted into the zone field of the rightmost or leftmost character, depending
upon the operator, and all other zone fields are set to hex"F". For a hex destination and length >
0, the sign is inserted as the leftmost or rightmost character, depending upon the operator; length + 1
hex characters are transmitted to the destination sequence. If length :5 0, no characters are transmiued
to the destination. The operator mnemonics and names are listed below with the location of the sign
for hex and EBCDIC sequences.

If a Paged Array interrupt is generated after the sign is inserted,by a USNx operator with a hex desti­
nation or by a UPLx operator, the RCW.rs bit is set to 1. When resumed in restart state, these
operators ignore the sign (becoming, in effect, an unpack-unsigned operator.)

If a Paged Array interrupt is generated by a UPRx operator in attempting to store the sign character
into a hex destination, the RCW.rs bit is set and the length argument is updated to zero. When resu­
med in restart state with a length = ° and a hex destination, these operators proceed to store the slign.
These operators do not require the use of restart state except for the hex length = ° case.

The following operators leave no results on the stack:

UPLO (unpack left-signed delete)
UPRO (unpack right-signed delete)
USNO (unpack signed delete)

HEX EBCDIC

left
right
left

left
right
right

The following operators leave the updated source operand on top of the stack and the updated destiina­
tion second from top of the stack:

3-88

UPLU (unpack left-signed update)
UPRU (unpack right-signed update)
USNU (unpack signed update)

HEX EBCDIC

left
right
left

left
right
right

System Architecture Reference Manual, Volume 2
Operator Set and Common Actions

Input-Convert Operators

Input-convert operators perform a conversion from the source EBCDIC or hex decimal sequence to
a numeric operand containing the signed integer value of the corresponding digit sequence. The oper­
and is left as a result on the stack. TFFF and EXTF are left in undefined states.

The required initial stack state is:

---~~~~~~----I
Source

If the length > 23, an Invalid Argument Value interrupt is generated. If the integer absolute value
of the source decimal sequence is less than 8**13, a single_integer is produced; otherwise a
double_integer is produced.

The following operators leave the integer result on top of the stack.

ICUD (input convert unsigned delete)
ICLD (input convert left-signed delete)
ICRD (input convert right-signed delete)
ICVD (input convert delete)

The following operator leaves the updated source on top of the stack and the integer result second
from top of the stack.

ICVU (input convert update)

If length > ° and the source is hex and there is a sign, the number of characters read from a hex
sequence is one greater than the length value. A sign is always present for ICLD, ICRD, and never
present for ICUD; a sign is present for ICVx when the leftmost hexidecimal character is a nondigit.
If length :5 0, no source characters are read and the binary integer result is positive zero.

The sign locations for these operators are the same as for the corresponding pack operators:

ICUD:
ICLD, EBCDIC:
ICLD, hex:
ICRD, EBCDIC:
ICRD, hex:
ICVx, EBCDIC:
ICVx, hex:

none
zone of leftmost character
leftmost character
zone of rightmost character
rightmost character
zone of rightmost character
leftmost character if nondigit, else none

If any character in the source decimal sequence is not a decimal digit (see Decimal character-sequence
operators), the result value is undefined, except that a sequence of all hex "F" characters is equivalent
to a sequence of nines.

If the ICRD operator is resumed in restart state with a hex source, the operator continues even if length
= ° (in which case the sign character is yet to be fetched). If a left-signed operator is resumed in
restart state, the sign has already been determined; this concern applies to ICVD or ICVU with a hex
source and to ICLD with any source.

5014954 3-89

System Architecture Reference Manual, Volume 2
Operator Set and Common Actions

Word-Transfer Operators

Word-transfer operators transfer word elements from the source to the destination. The number of
words is specified by the length. Source tags are transferred.

The required initial stack state is:

1

----·----------

Length

Source

Destination

A source operand is interpreted as a word or pair of words logically concatenated with itself indefini­
tely.

Source and destination Pointers, if not already word-aligned, are advanced to the next word boundary
(see element_size conventions under Pointer Operations).

Word-Transfer-Protected Operators

A word transfer operation is performed as defined above.

The following operator leaves no results on the stack:

TWSD (transfer words delete)

The following operator leaves the updated source on top of the stack and the updated destination sec­
ond frorn top of the stack:

TWSU (transfer words update)

Word-Transfer-Overwrite Operators

A word-transfer operation is performed as defined above. Source words are transferred to the destina­
tion regardless of tag value (a Paged Array interrupt cannot occur).

The following operator leaves no results on the stack:

TWOD (transfer words overwrite delete)

The following operator leaves the updated source on top of the stack and the updated destination sec­
ond frorn top of the stack:

TWOU (transfer words overwrite update)

3-90

System Architecture Reference Manual, Volume 2
Operator Set and Common Actions

-------------------------------------_._------ .. - --

Primitive Display Operator

SHOW (primitive display)

The SHOW operator displays a sequence of characters on an external device (subject to implementation
restrictions) without using the normal input/output system. SHOW requires two arguments, length (on
top) and source. If the source is a descriptor, it must be an EBCDIC Pointer or an IndexedWordDD
(which is coerced to an EBCDIC pointer); a hex pointer causes an Invalid Stack Argument interrupt
to be generated.

The operator causes min(length,implementation bound) characters to be transmitted from the source
to a visible display; any excess characters are ignored.

An upper bound on length is implementation-defined; acceptable values are 0 or > = 24. Any imple­
mentation that has no display mechanism will define the bound as zero; the SHOW operator can then
be implemented as equivalent to DLET twice (any type checking on the arguments is then optional).

The SHOW source must be entirely contained within one actual segment. If an odd-tagged source word
is encountered, a Memory Protect interrupt is generated.

A display of any length, including zero, entirely removes any prior message. Each display persists until
replaced by a subsequent display or destroyed by human action or some implementation-defined occur­
rence. (For example, an implementation may share display facilities between primitive display and nor­
mal Operator-Display-Terminal function, in which case ODT output can overwrite primitive output.)
If separate processors simultaneously attempt primitive displays on a multiprocessor system, the effect
is undefined. (At implementation option, there may be separate or shared display facilities.)

The characters to be displayed are represented in EBCDIC. The following 44 characters, plus space,
must be displayed with recognizable graphics:

ABCDEFGHIJKLMNOPQRSTUVWXYZ 0123456789 ,.I + -= 0

The display of any other EBCDIC non-control character is implementation-dependent. The effect of
EBCDIC control characters is undefined.

Pragmatic Notes

SHOW operator is for low-level code

The SHOW operator is applicable to very low-level code, such as bootstraps, operating-system
initialization, and diagnostic procedures. Depending upon the implementation, the SHOW operator
may be quite slow; it is not intended for routine use on a running system. (It is, of course, fast enough
to avoid Loop Timer interrupts.) The SHOW source may not include a page boundary.

Edit Operators

Edit-mode operators can be considered sub-operators invoked by a special class of pointer operators,
the enter-edit operators. Most edit operators process source or destination characters sequentially until
a length is exhausted.

5014954 3-91

Enter-lEdit Operators

~y~l~m Architecture Reference Manual, Volume 2
Operator Set and Common Actions

There are two modes in which edit operators are executed; each is initiated by an "enter edit" operator.
The enter edit operator provides the source and destination. It may specify update, which causes a ref­
erence to the destination and source (if applicable) to be left on top of the stack at termination of
edit-Illode.

Table edit-mode

A sequence of edit operators is executed until terminated by EN DE (end edit). Each acts on the source
and destination supplied by the table enter edit operator, and length is a parameter for each edit
operator requiring it. If update is specified, the updated source and destination are left on the stack
by ENDE.

Each edit operator that uses the s0urce/ destination updates it internally at termination, so that a group
of edit operators may sequentially process source/destination characters. Character-skip operators may
advance or back up the source/destination to alter the normal sequential processing.

Single edit-mode

A single edit operator acts on the source and destination supplied by the enter single edit operator.
Length is also supplied as a stack argument at entry, whether or not it is required by the edit operator.
If update is specified, the updated source and destination are left on the stack at termination of the
edit operator.

If a particular operator does not use the source or the destination argument, any tests on the argument
type are optional for that operator for the unused argument(s). An unused argument may be modified
by update action; for example, an IndexedWordDD may be changed to a Pointer.

All enter-edit operators except EXPU set FL TF = 0 when executed in initial state; all leave FL TF
unchanged when resumed in restart state.

Enter-Table-Edit Operators

Enter-table-edit operators supply the source and destination sequences, and a reference to the sequence,
or table, of edit operators to be executed. Each edit operator acts on 'the source or destination supplied
at entry~, and length is a parameter for each edit operator requiring it.

The required initial stack state is:

1---·-----------
I

Edit Table

Source

Destination

3-92

System Architecture Reference Manual, Volume 2
Operator Set and Common Actions

If the edit-table argument is not an IndexedDD, an Invalid Stack Argurnent interrupt is generated. The
data descriptor is interpreted as usual, except that the element_size field is ignored and the index field
is subdivided as follows:

esi

ewi

[39: 1]
[38: 3]
[35: 3]
[32: 13]

zero
Edit table syllable index of the first edit operator
zero
Edit table word index of the word containing the first edit operator

If field [39: 1] or [35 :3] is non-zero, the results are undefined. If the esi field is not in the range {O
to 5}, an Invalid Argument Value interrupt is generated. If the descriptor is not an indexed DD, an
Invalid Stack Argument interrupt is generated. Otherwise, edit operators (and their parameters) are
fetched from the edit-table, starting from the esi syllable of the ewi word, until completion of an
ENDE (end edit) operator. The normal code stream is then resumed with the operator following the
enter table-edit operator.

If execution is attempted of an edit-table word that does not have a tag of zero, an Invalid Program
Word interrupt is generated. If an ENDE is not encountered before the table array page is exhausted,
the odd-tagged word that is required to follow the page causes an Invalid Program Word interrupt.

In the case of a Paged Array interrupt, an operator executed in table-edit-mode must invoke restart
action if the FL TF state is true or if the operator has traversed one or more characters or if the inter­
rupt occurred transferring data to the destination. To invoke restart action, the operator sets RCW.rs
to 1 and updates the stack to the restart configuration of the enter-table-edit operator: the updated
length is on the stack in addition to the the updated table descriptor, updated source pointer, and the
updated destination pointer. The updated length is either the topmost or the second argument, as
specified by the implementation. The length argument (as a 20-bit integer) must always be present in
restart state; otherwise the result is undefined. If the interrupted operator has no length parameter,
the length argument value is 1. the updated table descriptor points to the edit operator that generated
the interrupt. (Once an enter-table-edit operator has been resumed in restart state, any subsequent inter­
ruption and resumption of the operation of that same edit operator must use restart state.)

If the edit-table word index to be updated into a descriptor exceeds 2** 13 - 1, an Invalid Index inter­
rupt is generated. If the update was being done to report .another interrupt, the Invalid Index is re­
ported instead. An implementation may generate the interrupt at any point in the sequence processing
when table code is being executed from a word whose index exceeds the limit.

For the following operator, the edit-mode terminator ENDE leaves no results on the stack:

TEED (table enter edit delete)

For the following operator, the edit-mode terminator ENDE leaves the updated source on top of the
stack and the updated destination second from top of the stack:

TEEU (table enter edit update)

5014954 3-93

System Architecture Reference Manual, Volume 2
Operator Set and Common Actions

Pragmatic Notes

Table-edit restart

It may be simplest always to use restart mode for a page boundary interrupt in a table-edit sequence.
Restart state is required in three cases:

1. The interrupted edit operator has transferred one or more characters, so the update.d length in
a stack argument must be. used instead of the code parameter.

2. The FL TF state is 1, so EL TF must not be reset upon resuming the operator.
3. The interrupt occurred trailisferring data to the destination, so the length is required as either

the top or second argum~nt (as specified by the ODL_subtype field in the interrupt ID
parameter). The length argijment indicates to software the amount by which the destination seg­
ment must be extended to complete the edit operator. If an interrupt occurs on an edit operator
that lacks a length parameter (lNSG, INOP, ENDF), the effective length is 1.

Enter-Single-Edit Operators

EXSU (execute single edit operator update)
EXSD (execute single edit operator delete)
EXPU (execute single edit operator, single pointer update)

Enter··single-edit operators supply the destination sequence, (sometimes) the source sequence, and the
length for the edit operator that follows it in the code-stream. Each argument must be on the stack
and must meet type restrictions, although it may not be required by the edit operator.

All edit operators requiring length terminate ilnmediately if it is zero.

The EXSD and EXSU operators require length, source, and destination on top of the stack:

Length

Source

Destination

For EXSD, the subsequent edit operator leaves no results on the stack.

For EXSU, the subsequent edit operator leaves the updated source on top of the stack and the updated
destination second from top of the stack.

In the case of a Paged Array interrupt, any operator executed by EXSD or EXSU sets RCW.rs to
1 if FL TF = 1. If an EXSx operator is resume~d in restart state, any subsequent interruption and re­
sumption of the same operation must use restart state.

The EXPU operator requires length and destination on top of the stack. No source is provided; if the
subsequent edit operator is one that generally requires a source, an Undefined Operator interrupt is
generated.

1----------_________ _
Length

Destination

3-94

System Architecture Reference Manual, Volume 2
Operator Set and Common Actions

The element_size convention applied is that a single or double-precision destination descriptor IS

changed to an EBCDIC Pointer.

The subsequent edit operator leaves the updated destination Pointer on top of the stack. (No delete
form of single-pointer enter edit operator is provided.)

Edit-Mode Operators

The following subsections define the operators that are executed in edit-mode (under the control of
an enter-edit operator). (These operators are sometinles called "edit micro-operators".)

Character Skip Operators

Character skip operators advance or back up the source or destination sequence. Length indicates the
number of characters to be skipped (a negative length argument is treated as zero).

Length is a parameter for table-edit-mode only:

I Skip I I I SokpiP I op Length
------------------- ----------
(Table edit) (Single edit)

Skip Forward

SFSC (skip forward source characters)
SFDC (skip forward destination characters)

Character skip forward operators advance the source or destination sequence. A source operand is cir­
cularly rotated left by length characters. A Pointer is incremented by length characters. Each word in
the array from the initial to the final point is accessed, and a Paged Array interrupt is generated if
a word has an odd tag. If the operator SFSC is entered by the EXPU operator, an Undefined Operator
interrupt is generated.

Skip Reverse

SRSC (skip reverse source characters)
SRDC (skip reverse destination characters)

Character skip reverse operators back up the source or destination sequence. A source operand is circu­
larly rotated right by length characters. A Pointer is decremented by length characters; if the resultant
word---.:.index is less than zero, a Paged Array interrupt is generated. Alternatively, each word addressed
by the decrementing index (but not the initial word if the initial character index = 0) is accessed, and
a Paged Array interrupt is generated if any of these words has an odd tag. If a Paged Array interrupt
is generated, the updated version of the pointer· that caused the fault has a word index of 0 and a
character index of O. If the operator SRSC is entered by the EXPU operator, an Undefined Operator
interrupt is generated.

5014954 3-95

System Architecture Reference Manual, Volume 2
Operator Set and Common Actions

Character Insert Operators

Character insert operators store a character or a sequence of characters into the destination sequence,
in some cases conditionally based on the value of FLTF (float flip-flop) and EXTF (external sign flip­
flop). Each character is a parameter, except for a fixed sign character.

If the destination is marked read_only, a Memory Protect interrupt is generated.

Several insert operators do not allow a hex destination. Those that do store only the numeric field
of a parameter character.

INSU (insert unconditional)

INSU stores a sequence composed of length repetitions of the parameter character (Char) into the desti­
nation.

Length is a parameter for table-edit-lTIode only:

I INSU I Length I Char I !IN5U I Char I

(Table edit) (5 i ng 1 e ed i t)

INSC (insert conditional)

INSC stores a sequence composed of length repetitions of a selected parameter character into the desti­
nation. If FL TF = 0, ZeroChar is selected; if FL TF = 1, NonZeroChar is selected.

Length is a parameter for table-edit-mode only:

I I I Zero II NonZero I
IN5C Length Char Char I I Zero I NonZero I

IN5C Char Char

(Tab 1 e ed i t) (5 i ng 1 e ed i t)

INOP {insert overpunch)

INOP stores hex"D" into the zone field of the destination character if EXTF -1; the destination char­
acter is not altered if EXTF = 0. Note that in either case the destination Pointer is advanced 1 charac­
ter. If the destination element_size is hex, an Invalid Stack Argument interrupt is generated.

INS(; (insert display sign)

INSG stores MinusChar into the destination if EXTF = 1, and stores PlusChar if EXTF
destination element_size is hex, an Invalid Stack Argument interrupt is generated.

MinusChar and PlusChar are parameters:

I !
Minus I Plus I

IN5G Char Char

3-96

0. If the

System Architecture Reference Manual, Volume 2
Operatqr Set and Common Actions

EN OF (end float)

If FL TF = 0, ENDF stores a selected parameter character into the destination; MinusChar is selected
if EXTF -1, and PlusChar is selected if EXTF = 0. If FL TF = 1, no character is stored, and the
destination Pointer is not advanced. FL TF is unconditionally reset to zero.

MinusChar and PlusChar are parameters:

I 1

M i nus I Plus I
ENDF Char Char

Character Move Operators

Character move operators transfer characters from source to destination with editing. Some move oper­
ators conditionally store into the destination a sequence of repeated parameter characters based on the
value of FLTF (float flip-flop), the source character, and EXTF (external sign flip-flop).

If the operator is entered by the EXPU operator, an Undefined Operator interrupt is given.

If the destination is marked read_only, a Memory Protect interrupt is generated.

If the destination element_size is hex, only the numeric field of a parameter character is stored.

MCHR (move characters)

MCHR transfers length characters from the source to the destination. Length is a parameter for tablc­
edit-mode only:

I MCHR I Length I I MCHR I
(Tab 1 e ed i t) (S i ng 1 e ed it)

MVNU (move numeric)

For an EBCDIC source and destination, MVNU transfers length numeric fields from the source to the
destination, setting each zone field to hex"F". For a hex source and destination, MVNU transfers
length hex characters (in this case MVNU is identical to MCHR).

Length is a parameter for table-edit-mode only:

I MVNU I Length I I MVNU I
(T ab 1 e ed i t) (S i ng 1 e ed i t)

5014954 3-97

System Architecture Reference Manual, Volume 2
Operator Set and Common Actions

MINS (move with insert)

MINS performs a leading zero suppression function from the source to the destination for length
source characters. In the following definition, the "source numeric field" is the numeric field of an
EBCDIC character or the entire hex character.

While FL TF = 0 and the value of the source numeric field is zero, the ZeroChar parameter is transfer­
red to the destination. If the value of the source numeric field is nonzero, FL TF is set to. 1, and the
source nurneric field is transferred as described in the next paragraph.

While FLTF = 1, the source numeric field is transferred to the destination and the zone field of an
EBCDIC destination character is set to hex"F".

Length is a parameter for table-edit-mode only:

I I I Zero I
MINS I Length Char I I Zero I

MINS Char

(Table edit) (S i ng 1 e ed i t)

MFL T (move with float)

MFL T performs a signed leading zero suppression function from the source to the destination for
length source characters. MFL T is functionally equivalent to MINS (move with insert) except for condi­
tional insertion of a sign character into the destination sequence.

While FLTF = 0 and the value of the source numeric field is zero, the ZeroChar parameter is transfer­
red to the destination.

If FLTF = 0 and the value of the source numeric field is nonzero, the PlusChar (if EXTF = 0) or
the MinusChar (if EXTF = 1) is inserted in the destination sequence, FL TF is set to 1, and the source
numeric field is transferred as defined for MINS.

While FL TF = 1, the source nUlneric field is transferred to the destination, as in MINS.

Note that the number of characters stored into the destination sequence may be length + 1. Length char­
acters are stored only if FL TF is initially 0 and for length characters, all source numeric fields are
zero, or if FL TF is initially 1.

Length is a parameter for table-edit-mode only:

I
I ! Zero I Minus I Plus I

MFLT I Length i Char Char Char

(Table edit)

I I Zero I Minus I Plus I
MFLT Char Char Char

(S i ng 1 e ed i t)

3-98

System Architecture Reference Manual, Volume 2
Operator Set and Common Actions

Miscellaneous Edit Operators

RSTF (reset float flip-flop)

RSTF unconditionally resets FL TF (float flip-flop) to o.
ENDE (end edit)

ENDE terminates table-edit-mode. If update was enabled by the enter edit operator, ENDE leaves the
updated source on top of the stack and the updated destination second from top of the stack.

EXTERNAL COMMUNICATION OPERATORS
CUIO (communicate with Universal I/O)

CUIO requires an Input/Output Control Block (lOCB) data descriptor on top of the stack and passes
the address field of the descriptor to the Message Level Interface Port (MLIP). An 10CB descriptor
must be an unpaged unindexed present copy SingleDD. The first word of the referenced 10CB array
must be a single-precision operand containing an 10CB mark, hex"lOCB", in the field [47: 16].

If the top-of-stack item is not a valid 10CB descriptor, an Invalid Stack Argument .interrupt is gener­
ated. If the first word of the 10CB array is not a single-precision operand with a valid 10CB mark,
an Invalid Argument Value interrupt is generated. Otherwise, the address field of the descriptor is
transmitted to the MLIP, and CUIO terminates when the MLIP acknowledges receiving the address.

A detailed description of I/O operation is contained in the second volume of this manual (the unique
System Reference Manual of a host system that uses this architecture).

SCNI/ SCNO (scan in/out)

IDLE (idle until interrupt)

IDLE loops internally until an external interrupt signal is present. At that time, it invokes the interrupt
procedure and terminates. The CS flip-flop is not examined or altered. The interrupt RCW designates
the operator following the IDLE.

PAUS (pause until interrupt)

PAUS loops internally until an external interrupt signal is present, at which time the operator termi­
nates normally.

The PAUS and IDLE operators differ in that the IDLE operator causes the external interrupt to occur,
regardless of 'control state. The interrupt occurs immediately after a P AUS if CS is false or the inter­
rupt is not masked by CS; otherwise the interrupt remains pending.

REMC (read external memory control)

The REMC operator is provided to read implementation-defined state in devices connected to the pro­
cessor. A "memory control" is typical of such a device. REMC accepts a single-precision argument and
leaves a single-precision value. The implementation must specify the allowable argument values, any
validity checking, the form and meaning of the output values, and the semantics of the operator, in­
cluding any interrupt generation.

5014954 3-99

System Architecture Reference Manual, Volume 2
Operator Set and Common Actions

Pragmatic Notes

Implementation-defined low-level operators See the note under RIPS.

WEMC (write external memory control)

The WEMC operator is provided to write implementation-defined state in devices connected to the lpro­
cess or. A "memory control" is typical of such a device. WEMC accepts two single-precision arguments
and leaves no result. The implementation must specify the allowable argument values, any validity
checking, and the semantics of the operator, including any interrupt generation.

Pragmatic Notes

Implementation-defined low-level operators See note under RIPS.

MISCELLANEOUS OPERATORS
NOOP (no operation)

No action is performed.

OLAV (delay)

The DLA Y operator has a one-syllable code parameter.

(var i ant) I OLAV N
------~---------------------------------

DLA Y does nothing for N + 1 intervals of time T, where N is the parameter value and T is implementa­
tion-defined. The main purpose of the DLA Y operator is to occupy one processor long enough for
other processor(s) to effect memory access to a shared data word; T should be chosen to suit this pur­
pose.

The DLA Y operator is not intended for accurate timings; an error of plus or minus max(2,N/5)*T
is acceptable.

Pragmatic Notes

DLA Y pragmatics

In typical implementations, T should be about the duration of an operator (such as RDLK) for which
access to main memory is required. On implementations that overlap execution of multiple operators,
it may be desirable for DLA Y to synchronize the processor so that other operators are also not ac­
cessing Inemory.

PUSH (push working stack (J)nto activation record)

The PUSH operator makes all items on the expression stack addressable as part of the topmost activa­
tion record. (See also Expression Stack.)

3-100

System Architecture Reference Manual, Volume 2
Operator Set and Common Actions

STOP (unconditional processor halt)

STOP causes the processor execution to halt in an orderly way, so that execution can be resumed by
an external action.

HALT (conditional processor halt)

If the processor Halt Boolean is false, HALT is equivalent to NOOP. If the Halt Boolean is true and
the HALT operator is executed in variant-mode, the operator is equivalent to STOP. If the Halt Boo­
lean is true and the HALT operator is executed in edit-mode, processor execution halts; the resulting
processor state and the ability to continue execution are implementation-defined.

NVLD (invalid operator)

An Invalid Operator interrupt is unconditionally generated.

ASRT (assert)

The ASRT operator has a one-syllable code parameter.

(variant) ASRT
interrupt I

code

The ASRT operator requires one operand on the stack; otherwise an Invalid Stack Argument interrupt
is generated.

The stack argument is interpreted as a Boolean value. If it is True, no further action is taken. If it
is False, a False Assertion interrupt is generated with the "interrupt code" parameter passed as an 8-bit
integer as the P2 parameter.

VARI (introduce variant operator)

The V ARI operator may be considered a primary operator that causes the next code syllable to be
interpreted as a variant operator. The two operator syllables are tightly bound, in that no external in­
terrupt can occur between the V ARI and the introduced operator, and any RCW that designates a
variant operator must point to the V ARI.

5014954 3-101

System Architecture Reference Manual, Volutne 2

GENERAL INFORMATION

SECTION 4
INTERRUPTS

An interrupt is an automatic invocation of an operating-system procedure; the mechanism is defined
in Section 3 as the common action aINTE. Exit from the MCP interrupt procedure, when practical,
returns execution to the interrupted code-stream.

Interrupts are divided into three classes:

ODI An Operator Dependent Interrupt is invoked directly by the current
operator to request an MCP service required by the operator or to
report a programming or operator fault

Alarm An Alarm interrupt is triggered by hardware fault detection during
operator execution

External An External interrupt is invoked between operators to report events
that are 'independent of the executing code-stream.

Appendix C of this manual summarizes Operator Dependent Interrupts and lists operators that invoke
each interrupt. In addition, Appendix C also gives the principal condition or state that causes an
operator sequence to invoke each interrupt. Operator functions and sequences are defined in Section
3 of this manual.

For External interrupts, the RCW created by ENTR (and stored at the F + 1 stack location) will point
to the next operator in the current code-stream; for Alarm interrupts, it will point to the operator that
was executing when the fault was detected. For most Operator Dependent interrupts, the RCW points
to the operator that generated the interrupt. In some cases, the RCW points to the operator immediate­
ly following that which detected the interrupt, or indicates the new destination if the interrupt occurred
in distributing a code-stream pointer. Note that in single edit-mode, the executing operator is consid­
ered to be the enter single edit operator, not the edit operator. Similarly, for variant-mode operators,
the RCW points at the VARI operator.

Interrupt Parameters

Information passed to the MCP interrupt procedure is contained in two parameter items in the stack.
The first is a single-precision operand interpreted as an interrupt identification literal (lD). The second
item, called the P2 parameter, varies according to the nature of the interrupt.

Interrupt 10 Parameter

The first interrupt parameter is the single-precision interrupt identification literal (lD parameter). Fig­
ures 4-1 through 4-3 show the different formats of this interrupt parameter word. For all interrupts,
the int_class field (ID. [26:3]) indicates the class of interrupt with values {I = Operator Dependent,
2 = Alarm, 4 = External}. Note that {O,3,5,6,7} are invalid.

5014954 4-1

System Architecture Reference Manual, Volume 2
Interrupts

---~---.,---.---.----------------------~------- --'-'-'-'" ~'- ---_._------_.------_._--------------------

4-2

0
51

0
50

0
49

0
48

MV5375

E-mode __ bit
int_dass
hetero
valid __ state
P2_double

this_op

ODI __ subtype
ODI __ type

[28: 1]
[26: 3]
[23: 4]
[19: 1]
[18: 1]

[17: 1]

[15: 4]
[11: 12]

Constant value 1
Binary 001: Operator Dependent
Reserved for use by heterogeneous systems
(l: valid; 0: invalid)
(0: P2.tag value was retained,
1: P2.tag was 2)
(0: code-stream pointer advanced or moved,
1: RCW ~ interrupted operator)
Qualifiers for particular ODI interrupts
001 type number

Figure 4-1. P-l Operator Dependent Interrupt (001) 10 Parameter Format

3

2

0
51

0
50

0
49

0
48

MV5376

E-mode_bit
jnt_class
hetero
valid_state
P2_double

this_op

invalid_addr
mem_error
hardware_error
loop_timer

System Architecture Reference Manual, Volume 2
Interrupts

[28: 1] Constant value 1
[26: 3] Binary 010: Alarm
[23: 4] Reserved for use by heterogeneous
[19: 1] (1: valid; 0: invalid)
[18: 1] (0: P2. tag value was retained,

1: P2.tag was 2)

systems

[17 : 1] (0: code-stream pointer advanced or moved,
1: RCW ~ interrupted operator)

[4: 1] 1 Invalid Address
[3: 1] 1 Uncorrectable Memory Error
[1: 1] 1 Hardware Error
[0: 1] 1 Loop Timer

Figure 4-2. P-l Alarm Interrupt ID Parameter Format

5014954 4-3

0
~_2.!

0
50

0
49

0
48

MV5377

E-mode_bit
int_class
hetero
valid __ state
P2_double
this_op
rUIL-timeout
unmasked_attn
10
attn
int_timer

System Architecture Reference Manual, Volume 2
Interrupts

[28: 1]
[26: 3]
[23: 4]
[19: 1]
[18: 1]
[17: 1]
[4: < 1]
[3: 1]
[2: 1]
[1: 1]
[0: 1]

Constant value 1
Binary 100: External
Reserved for use by heterogeneous systems
(1: valid)
(0: P2. tag value was retained)
(0: code-stream pointer advanced or moved)
1 Running Timeout
1 Unmasked Attention
1 I/O Finished
1 Attention
1 Interval Timer

Figure 4-3. P-l External Interrupt ID Parameter f'ormat

System Architecture Reference Manual, Volume 2
Interrupts

Fields in [47:32] are common to the interrupt ID for all interrupt classes and are defined below. Fields
in [15: 16] depend on the int_class value and are defined in Section 1 for each class of interrupts.

Interrupt ID (tag = 0)

Field Name

E-mode_bit

int_class

hetero

Bits

[47:19]

[28: 1]

[27: 1]

[26: 3]

[23: 4]

[19: 1]

[18: 1]

[17: 1]

[16: 1]

[15: 16]

Meaning or Usage

Reserved for future use

Constant value 1

Reserved for future use

1 Operator Dependent
2 = Alarm
4 = External

Reserved for implementation-defined use by
heterogeneous systems

Indicates validity of state for re-entry to the
code-stream (1: valid; 0: invalid)

If 1, the P2 parameter is a single-precision
first word of a item. If 0, the tag of the P2
parameter correctly indicates its type.

If 1, the RCW points to the interrupted
operator. If 0, the -code-stream pointer has
been advanced or moved.

Reserved

Dependent on int_class

The E-mode_bit serves to distinguish interrupts on this architecture from those of preceding implemen­
tations that may share software. (If the E-mode __ bit is 1, the processor is capable of executing the
W A TI operator.)

If valid_state = 1, the global system state and the top-of-stack configuration are proper for initiation
of the operator referenced by the interrupt RCW. If valid_state = 0, the global system state or the
top-of-stack configuration may not be consistent; the operating system may not EXIT back to the inter­
rupted environment. In this case the state of the stack immediately below the interrupt MSCW is imple­
mentation-defined.

If this_op = 1, the interrupt RCW references the operator that was interrupted. (If that operator
was a variant operator, the RCW points to the V ARI; if it was an edit-mode operator, the RCW points
to the TEED, TEEU, EXSD, EXSU or EXPU operator.) If this_op = 0, the RCW records a code­
stream pointer that has been advanced or moved. If the interrupt is Operator Dependent or an Alarm,
it was generated (or enabled) by or during the previous operator execution. That operator may not
be the physical predecessor in the code-segment; it may have been a branch or subroutine operator
that moved the code-stream pointer.

ID.P2_double is used to indicate that the P2 parameter had a tag = 2. (See Interrupt P2 Parameter
in this section.)

5014954 4-5

System Architecture Reference Manual, Volume 2
. Interrupts

-----------------------_ .. _ .. _--------.. _---._----------------

The couple (valid_state,this_op) is subject to the following interpretations:

(0,0) The interrupted code-stream lnay not be resumed; the interrupt was
generated by a prior operator or between operators, not by the
operator addressed by the RCW.

(0,1) The interrupted code-stream lmay not be resumed; the RCW addresses
the operator that was interrupted.

(1,0) The code-stream may be resUlmed with the operator referenced by the
RCW, which did not generate the interrupt. The interrupt may have
been generated between operators (external), or by the previous
operator (operator-dependent), which has consumed its stack inputs,
produced its normal stack outputs, and effected its normal changes on
system state.

(1,1) The code-stream may be resumed at the operator that was interrupted.
(RCW.rs is ° or 1, depending on the stack configuration for initial or
restart state at the beginning sequence of the operator.)

Resumption Conditions

The triple (lD.valid __ state,ID.this_op)RCW.rs) defines the "resumption condition" for an interrupt.
Frequently specified resumption conditions have names, as follows (x means "either ° or 1 as imple­
mentation-defined") :

(O,x~x)

(1 ,0~.O)
(1,l..x)
(l, 1 ,,0)
(1,1,1)

Defunct
Continue
Repeat-IR
Repeat-Initial
Repeat -Restart

The ternl Continue-Next is used as an abbreviation for the specification that the resumption condition
is Continue and the interrupt RCW references the operator that follows the interrupted operator in
the code-segment. The Continue-Next condition is not uniquely encoded, but can be inferred when
Continw~ condition is reported for particular interrupt types.

Repeat-IR specifies "either Repeat-Initial or Repeat-Restart as implementation-defined". The term is
used when Restart is not required, but may be used at implementation option.

The resurnption condition is specified for each interrupt. The specification may be applied to the entire
class, to an interrupt type, or to a particular instance of interrupt generation.

4-6

NOTE
The specification of a Repeat-Initial condition means the state is consistent
with re-entering the dperator "at the top," not that the operator inputs are
unchanged. For example, a reference-evaluation operator may have consumed
part of a reference chain, or a pointer operator may have performed part of
its function and updated its arguments.

System Architecture R(~ference Manual, Volume 2
Interrupts

-- -------------

Pragmatic Notes

Valid __ state permits operator retry action

For operator-dependent error interrupts and alann interrupts, the valid_state bit informs the MCP
whether operator retry is feasible. In general, the extent to which operators may be retried depends
on the implementation. The specification requires that valid_state be 0 unless retry is proper; it usually
does not specify which error situations may permit retry.

One practical implementation technique is to define a "retry" bit that is set true at the beginning of
each operator and set false whenever an operator changes state in any way that invalidates retry; error
interrupt generation then transcribes "retry" to ID. valid_estate.

P2 parameter

The second interrupt parameter, the P2 parameter, varies according to the specific interrupt type. For
a given interrupt it may be an item of fixed or varying type, or it may contain no information.

Interrupts involving descriptors often present special concerns for P2. The phrase "P2 is a copy of the
descriptor" is used to mean that if a DO is encountered, aCPY action is used to fetch a copy DD
as P2; this situation is typical of an interrupt generated by an operator that is attempting to fetch a
word from memory and interpret it as a descriptor. For Presence Bit interrupts generated in code­
stream pointer distribution, P2 is an aCPY copy of the absent CSD; this is the only context in which
a copy CSD occurs. In some error reports, a descriptor may occur in memory or on the stack simply
as a word type not recognized in the context; in such cases an unchanged duplicate of an original de­
scriptor may be reported as P2.

Whenever the item to be reported as P2 is double-precision (tag = 2), the first word of the item is
reported with tag -0 and P2_double = 1 is reported in the 10 parameter. (Correct software
operation requires that the interrupt mechanism pass a fixed number of parameter words to the inter­
rupt procedure, so a double-precision tag in P2 is suppressed.)

Interrupt Definition, in this section, specifies interpretation individually for all interrupts in which P2
is meaningful. Where the P2 parameter contains no information, it is not explicitly specified.

Superhalt

A superhalt condition exists when the processor cannot continue to process operators, either in the cur­
rent code-stream or by interrupting to another code-stream. When a superhalt condition exists, the pro­
cessor halts in a state from which normal continuation is not possible.

Super halt conditions can be generated internally by implementation (a microprocessor failure), by an
operator (that is, when MVST encounters an interruptable condition during the interval that the proces­
sor has no stack environment), or by detection of an interrupt loop.

An interrupt loop is detected by means of the Interrupt_Count register value. The register is incre­
mented by one at the beginning of interrupt entry; if it is incremented from 3, a superhalt condition
exists. The Interrupt_Count register is not automatically decremented; it can be set to zero by the
ZIC operator. (An interrupt loop could arise if, for example, the ENTR operator invoked by the inter­
rupt entry sequence itself generated an interrupt and the ENTR invoked by that interrupt generated
an interrupt, ad infinitum.)

5014954 4-7

Systdn Architecture Reference Manual, Volume 2
Interrupts

INTERRUPT DEFINITION
Operator Dependent Interrupts

Operator Dependent Interrupts are invoked directly by the current operator to request an MCP service
required by the operator or to report a programming or operator fault.

The Op{!rator Dependent ID parameter identifies the type of interrupt, and indicates by the valid_state
and this. __ op bits the status of the code-stream pointer in the interrupt RCW (see Resumption Condi­
tion). Operator Dependent ID (int_class = 1).

4-8

[15: 4]

[11:12]

The subtype of Operator Dependent Interrupt, defined as
required for each value of ODI_type.

The type of Operator Dependent Interrupt, where

o = Presence Bit S
1 = Paged Array SE

[12: 1] 1: page refef(~nced by P2 was being written

[13: 1] 1: length is word count
0: length is character count

[14:1] 1: length is at F-2
0: length is at F-l

[15:1] 1 : operator was skip reverse

([14:2] is valid only if [12: 1]

2 Stack-Overflow Se
3 Invalid Operator Es
4 U ndefin(~d Operator Es
5 Invalid Stack Argument E
6 Invalid Argument Value E
7 Invalid Code Parameter E
8 Invalid Reference E
9 Invalid Reference Chain Es
[12:1] = 1: operator was ENTR
10 Invalid Index Es
11 = Memory Protect E
12 Divide by Zero E#
13 Exponent-Underflow Ew#
14 Exponent-Overflow E#
15 Integer··Overflow E#
16 = Stack-Underflow E
17 < < unused> >
18 Stack Structure Error E
19 = Code Segment Error E
20 Invalid Program Word E
21 < < unused> >
22 Invalid Object E

1)

System Architecture Reference Manual, Volume 2
Interrupts

23
24
25
[12:1]
26
27
28
29

Page Structure Error E
Block Exit S
Binding Request S
= 1: operator was ENTR
Precision Loss Ew#
False Assertion E
Locking S
Unlocking S

Values of specific ODI_subtype bits are defined for specific ODI_type cases; when not specified,
ODI_subtype values are undefined.

Operator Dependent Interrupts are defined in two classes: those that (usually) request an MCP service,
and those that (usually) report error conditions arising from programming or operator faults. The next
two subsections define these classes.

Pragmatic Notes

ODI Classification

As a suffix to the ODI_type definition, the table above shows the classification of each interrupt,
according to the following legend. In general, interrupts classified as "E" have implementation-defined
resumption conditions and cannot, therefore, be treated as service requests. The other interrupts gener­
ally have resumption conditions specified in this architecture. Most "E#" and "Ew#" cases have Contin­
ue-Next specifications, with the operator result on the stack, but that result is reasonable only in the
"Ew#" case.

S: Service
Se: Service, sometimes treated as error
SE: Service by definition, but likely to be Error
E: Error
Es: Error, but capable of being interpreted as Service
E#: Error: numeric result is out of range and unusable
Ew#: Error warning: numeric result is out of range but usable

When an operator reports several interrupts, there is generally no requirement that one interrupt take
precedence, other than that imposed by the operator function. When processing actions are functionally
sequential, interrupts generated by the earlier take precedence; otherwise, interrupts generated by any
part of the operator may be reported. (For example, if some item B is meaningful only when item
A is interpreted in a particular way, an error in that interpretation of A must take precedence over
an error detected in B.) If a conditional action of the operator is not performed, interrupts that might
have been generated by it are not required. (For example, if the interpretation of A is such that B
is not significant, then any errors that might have been detected in B need not be reported.)

Pragmatic Notes

ODI_subtype provides operator context

ODI_subtype values are defined for certain ODI_type values to allow software to determine the inter­
rupt context without the need to locate the interrupted operator by evaluation of the RCW code-stream
pointer.

5014954 4-9

System Architecture Reference Manual, Volume 2
Interrupts

MCP Service

The interrupts defined in this section usually constitute requests for an MCP service that is an extension
of the hardware operators. In some situations, especially limiting cases, no service can be provided and
the interrupt must be treated as an error.

PresenCl3 Bit

A Presence Bit interrupt is used by operators to gain access to a data array or program code-segment
that is not present in memory. A data array (or a stack) is accessed through a DO. A program code,·
segment is accessed through a CSD. A Presence Bit interrupt is generated when access is required under
the following conditions:

Access is required through use of an original DO that is absent (DD.present = 0 and DD.copy =

0). An absent copy DD is treated as a reference to the original. If DO.present = 0 and DD.copy =

1, Mem[DD.address] is accessed; the Presence Bit interrupt occurs only if that original DO is absent.
(If no original DD is found, an Invalid Object interrupt is generated, rather than the Presence Bit inter­
rupt.)

Access to code is required by means of an absent CSD (CSD.present 0).

NOTE
A Presence Bit interrupt is not generated if the descriptor is an absent copy,
but the associated original descriptor is present. In that case, the address field
of the associated original is used to make the required access.

In the case of an access through a data descriptor, including a stack descriptor, the P2 parameter is
a copy of the DD. The resumption condition is Repeat: after the segment has been made present and
the original DD changed, an exit from the interrupt procedure will repeat the operator that generated
the interrupt.

In the case of an access through a code-segment descriptor, the P2 parameter is a copy of the CSD.
The resumption condition is Continue and the interrupt RCW contains the new code-strean1 pointer.
After the code-segment has been made present and the original CSD changed, an exit from the inter­
rupt procedure will complete the enter, exit, or dynamic branch into the intended code-segment.

Paged Array

A Paged Array interrupt is used by pointer operators to indicate an attempted access beyond the end
of the array or page. Pointer operators that access a data array sequentially rely on the following as­
sun1ptions:

1. The elements of an array: page are operands.
2. The words directly before and after an array page have odd tags.

Pointer operators generally perform sequential processing of data arrays. A Paged Array interrupt is
generated by these operators when an odd-tagged item is read from an array or a store is attempted
into an array word containing an odd-tagged item. If the MCP determines that the odd-tagged word
marks the end of the virtual array, an error condition exists, and the operator can be resumed only
if the MCP enlarges the segment and modifies the descriptors accordingly. If the odd-tagged word
marks the end of an actual segm;ent (array page) but not the end of the virtual-segment, the l\1CP
can adjust the pointer on the stack and return from the interrupt procedure to resume the operator
on the next page of the array.

4-10

System Architecture Reference Manual, Volume 2
Interrupts

For operators traversing the sequence in the forward direction, bit-IS in the ODI_subtype field of the
interrupt parameter is 0, and P2 is an IndexedDD denoting the first character where access was at­
tempted within a word with an odd tag; normally, this is the first character outside the actual segment.
For skip reverse operators, bit-IS in 10.001 subtype is 1 and P2 is normally an IndexedDD with index
0, denoting the beginning of the actual segment in which the skip occurred; if an odd-tag word occurs
within the segment, the index of P2 is implementation-dependent. The MCP is required to replace the
first copy of the same IndexedDD below the interrupt MSCW by an IndexedDD correctly referencing
the next array element.

Three bits in ODI_subtype indicate whether the descriptor in P2 is the destination of a transfer,
whether the transfer is in words or characters, and the location of the updated length argument; Bits
13 and 14 are significant only if bit 12 = 1. A fourth bit indicates the direction of traversal of the
character sequence.

[12:1]

[13:1]
[14:1]
[15:1]

Transfer destination indicator
(0: P2 is source pointer or operator does not transfer data;
1: P2 is destination pointer and operator transfers data.)
Element size indicator (0: characters; 1: words)
Length position indicator (0: in Mem[F-l];
Direction indicator (0: forward; 1: reverse)

The resumption condition for Paged Array interrupt is specified in Appendix C; it is usually a form
of Repeat.

Pragmatic Notes

ODI_subtype supports destination expansion

ODI_subtype bit 12 is defined for Paged Array interrupt so that software can recognize attempted
data transfer past the segment end. Software has the option of expanding the segment and resuming
the interrupted operator. The amount of expansion required to complete the operation can be deter­
mined from the updated length, the P2 element_size, and the indicator in ODI_subtype bit 13. The
stack location of the updated length is indicated in bit 14.

Binding Request

A Binding Request interrupt is generated when a reference chain evaluation (for any operator but
EV AL) produces a DO with element_size = 7. The interrupt is also generated when an indexing oper­
ator encounters a copy DD with element_size = 7 as a Descriptor Indication.

The requested service is to replace the original DD with an appropriate item according to software con­
vention. (If the DD is an absent original, all fields but present, copy, and element __ size are subject
to software interpretation.)

The P2 parameter is a copy of that descriptor. (If that descriptor is an original DO, the copy is created
by aCPY action). If the interrupted operator is ENTR, bit 12 of the interrupt 10 parameter is set to
1.

The resumption condition is Repeat-Initial or Repeat-Restart according to whether the interrupted oper­
ator began in initial or restart state.

5014954 4-11

System Architecture Reference Manual, Volume 2
Interrupts

Stack Overflow

Stack-Overflow indicates that a push onto the expression stack has caused the stack size to equal its
limit. The interrupt is a request to the MCP to extend the array in memory for the stack. All operators
may be resumed subsequent to MCP Stack-Overflow processing, under the assumption that the stack
size has been extended.

One of the following conditions must be present to restart or retry an operation that encounters a
Stack -Overflow int(~rru pt:

1. The operator must complete before generating the interrupt. In this case the resumption condi­
tion is Continue.

2. The operator must detect any possible stack overflow before altering its inputs or any perma­
nent state. In this case, the operator may be retried, and the resumption condition is Repeat.

Resumption condition specifications for either of these two interrupt situations is implementation-de­
pendent, within the constraints listed.

While classified as an Operator Dependent Interrupt, Stack-Overflow is not necessarily reported by an
operator that causes growth in the number of words on the expression stack. Because the Stack-Over­
flow condition Inay be defined in tern1S of memory words, and because a processor may retain some
top-of-stack words in local state, the Stack-Overflow condition may be detected when words that are
already formally on the expression stack are moved from local state to memory. Note, too, that an
operator can pop a word from the expression stack, causing S to be decremented to LOSR-1, and then
push a result onto the stack; thus, an operator with no more stack results than arguments can generate
a Stack-Overflow interrupt.

Block Exit

The EXIT and RETN operators generate a Block Exit interrupt when an attempt is made to deallocate
an activation record that has RCW. block_exit = 1.

The resumption condition is Repeat-Initial.

Locking and Unlocking

The Locking and Unlocking interrupts are generated by the LOK and UNLK operators, respectively,
when operating-system service is required to resolve an interlock contention. P2 contains a reference
(SIRW or IndexedSingleDD) to the interlock ..

The resumption condition is Continue-Next.

Error F~eporti ng

This set of interrupts reports error conditions arising from programming, compiler or operator faults.
(In S001e cases, the MCP may take corrective measures or otherwise remove the error situation and
resume the code-stream, in which case the interrupt was effectively a service request. Such action is
possible., of course, only with Repeat and Continue resumption conditions, when ID. valid_state =
1.)

Some error reporting interrupts are "optional." That is, some valid implementations of this specifica­
tion may not check for these error conditions. On such an implementation, the results of an operation
producing an undetected error condition are undefined. Appendix C indicates which error conditions
are optional.

4-12

System Architecture Reference Manual, Volume 2
Interrupts

--

Pragmatic Notes

Optional checks

The principles upon which some checks are made optional are these:

1. Given a correct implementation of operating system and user-language compiler, there is no way
to verify that the check is or is not made.

2. The likelihood of a devastating failure being avoided by including the check is deemed small.

A compelling reason for omitting a consistency check is that some optimization has made it unneces­
sary for the relevant state to be accessed. In other cases, an implementation can be made faster by
ignoring some checks on state that are unlikely to be wrong or innocuous if wrong. The general recom­
mendation is that an implementation include as many checks as practical, especially tag checks on any
words that must be accessed anyway.

Invalid Operator

An Invalid Operator interrupt is unconditionally generated by execution of NVLD (invalid operator).
No other operator generates this interrupt.

The resumption condition is Repeat-Initial.

Undefined Operator

An Undefined Operator interrupt is generated due to the attempted execution of an operator whose
encoding is not valid in the context. Valid operator encodings are found in Appendixes A and B. Pri­
mary and Variant encodings are expected in the normal succession of operators in the code-stream,
whether accessed sequentially or subsequent to branch or subroutine operators. Edit encodings are ex­
pected in the code-stream following an enter single-edit operator or in a table designated by an enter
table-edit operator; edit operators requiring a destination are undefined following the EXPU operator.
Only a NAMC operator is defined following a MKSN operator.

If an edit operator was expected, the resumption condition is Defunct-Here: the RCW points to the
enter-edit operator, and for table edit, the table pointer is updated to point to the offending code­
syllable. If an operator other than NAMC follows MKSN (and the implementation enforces the restric­
tion), the resumption condition is Defunct; it is implementation-defined whether the RCW points to
the MKSN, or to the next operator in the code-stream sequence.

Otherwise, the resumption condition is Continue-Next, and P2 is an operand containing the following
information:

Invalid Stack Argument

[47:39]
[8: 1]
[7: 8]

zero
1 if a variant operator was expected
The unrecognized operator syllable

An Invalid Stack Argument interrupt indicates an invalid initial stack state for an operator. This inter­
rupt is generated by any operator that places data type restrictions on its dynamic stack arguments
if one or more items on top of the stack do not have the required type(s). Argument type restrictions
are in terms of data types defined in Supported Data Types, of this section, according to tag value
and, in some cases, additional type bits within the word.

5014954 4-13

System ArchitectuH~ Reference Manual, Volume 2
Interrupts

For all Invalid Stack Argument interrupts, the stack item that violates type restnctIOn is the P2
pararneter. If two or more items are of incorrect type, only one is the P2 parameter. If the incorrect
item is double-precision, the first word is given as a single-precision P2 parameter operand, and
ID.P2 __ double= 1. If the incorrect item is an original DO, it is given as P2 without modification.

The resumption conditions are implementation-defined.

Invalid Argument Value

An Invalid Argument Value interrupt indicates that the data type of a dynamic stack argument is cor­
rect, but its value is not within a valid range. This interrupt is generated if an operand argument (inter­
preted as an integer) produces an invalid value, or if a field of a structured data type item has an
undefin,ed or invalid value.

The stack item having an invalid value is the P2 parameter. I f that item is double-precision, its first
word is given as a single-precision P2 parameter operand, and IO.P2_double = 1.

The resumption conditions are implementation-defined.

Invalid Code Parameter

An Invalid Code Parameter interrupt indicates that a code-stream parameter has an invalid value. This
interrupt is generated if a parameter is interpreted as an integer and produces a value greater than the
maximurn valid value, or if the value of the parameter does not meet other constraints imposed by
the operator. The invalid value is given as the P2 parameter in the form of a single_integer.

The resumption conditions are implementation-defined.

Invalid Fieference

An Invalid Reference interrupt indicates an attempted evaluation of an invalid address-couple reference
to an item in the current addressing environment. This interrupt is generated during evaluation of a
NIR W or an address-couple parameter under the following conditions:

1. The Lambda (lexical level} component is greater than LL (the lexical level at which the proces­
sor is running).

2. For Lambda = LL, the address of the referenced stack location is greater than the top-of-stack
address.

If the invalid reference is a NIRW, the NIRW is given as the P2 parameter. If the invalid reference
is an address-couple parameter, the P2 parameter is a single-precision operand whose low-order field
is the address-couple. A fixed-fence address-couple is transferred to P2 without modification; a
variable-fence address-couple may be given as P2 without modification or, after translation to fixed­
fence format, as defined by the implementation.

The resumption conditions are impleluentation-defined.

Invalid 11eference Chain

An Invalid Reference chain interrupt indicates that a reference evaluation produced an unexpected re­
sult. This interrupt is generated by operators that evaluate reference chains, when the evaluation of
an address-couple parameter, NIRW, SIRW, or IndexedWordOO produces an item that is neither a
valid reference in the chain nor a valid target item that terminates the chain. The definitions of valid
reference chains and valid target items vary according to operator function.

4-14

System Architecture Reference Manual, Volume 2
Interrupts

The invalid reference evaluation result is the P2 parameter. If that item is a double-precision operand,
the first word is passed as a single-precision operand with ID.P2_double = 1. If that item is aDD,
the P2 value is a copy fetched by aCPY action. (The reference evaluation result is never the initial
reference; an incorrect initial reference causes an Invalid Reference or Invalid Stack Argument inter­
rupt.) If the interrupted operator is ENTR, bit 12 of the interrupt ID parameter is set to 1.

The resulnption conditions are Repeat-Restart if the operator began in restart state, or Repeat-IR other­
wise. When the initial-or restart-state specification of the operator requires an i.nitial reference to the
chain in question, a valid reference is left on the stack; this may be the original reference (unless PCW
evaluation has occurred) or one of its successors.

Pragmatic Notes

Restart states for Invalid Reference Chain interrupts

Typically, an invalid reference chain is detected when some valid reference (in the operator context)
points to some item that is not valid. The last valid reference is left on the stack as the argument to
resume the operator, and the erroneous item is the P2 parameter. The typical resumption condition
is Repeat-Initial. If the reference chain did not include a PCW (accidental entry), it is also permissible
to leave the initial reference as the resumption stack argument. In the particular case that the initial
reference is part of the operator (a V ALC operator for instance), the choices are to use Repeat-Initial
and restart the chain from the beginning, or to use Repeat-Restart and provide the reference argument
on the stack. (Of course, if a PCW has already been evaluated, the Repeat-Restart condition must be
used; this is an example of "once in restart, always in restart.")

Pragmatic Notes

Interrupts related to reference evaluation

The Invalid Reference Chain interrupt is generated in situations in which a reference does not point
to a valid item. It is generated only by operators that evaluate potential reference chains. When the
chaining rules for such an operator are violated, there are three possible interpretations from a pro­
grammers viewpoint, but these are not generally distinguishable by the processor:

The unexpected item was an improper next reference in the chain.
The unexpected item was an improper final target.
The unexpected item was the accidental target of a valid-appearing, but misdirected reference.

The first possibility can be excluded in any context that does not pennit reference chaining. In these
cases, the Invalid Object interrupt is generated (although the third possibility still exists).

If an initial reference is unacceptable as to type, an Invalid Stack Argument interrupt is generated.
Address-couple initial references are also subject to Invalid Reference interrupts.

If PCW evaluation invokes an accidental-entry procedure that returns an unsatisfactory value, the resu­
med operator produces an Invalid Stack Argument, rather than an Invalid Reference Chain interrupt.
This situation is the same as that of an invalid initial reference for the restarted operator.

If the invalid reference evaluation result in an Invalid Reference Chain situation is a DD with
element_size = 7, a Binding Request interrupt is generated instead.

5014954 4-15

Invalid Object

System Architecture Reference Manual, Volume 2
Interrupts

An Invalid Object interrupt is generated if a single reference (rather than a reference chain) evaluation
is to be performed and the target object does not satisfy the operator requirements.

The interrupt is also generated in certain special cases:

A double-precision operand is to be fetched, but the second word has an incorrect tag.

The stack-vector descriptor is not an unpaged, original SingleDD.

The operand type to be stored (single-or double-precision) does not fit the target.

A stack descriptor is not an unpaged, unindexed Single DD.

The address field of an absent copy DD does not designate an original DD.

The invalid object word is the P2 parameter. If that word has a tag of 2, it is passed as a single­
precision operand with ID.P2_double = 1. If that word is a DD, the P2 value is a copy fetched by
aCPY a(;tion.

The resumption conditions are implementation--defined.

Invalid Index

An Invalid Index interrupt is generated if an integer value used to index an array of elements is not
within a valid index range for that array. Invalid Index conditions may exist for indexing data descrip­
tors, code-segment descriptors, the stack-vector descriptor, or (by the OCRX operator) linear indexing
functions. Invalid Index interrupts can also be generated when an index value exceeds the field width
in a descriptor. The P2 parameter varies depending on the type of array and form of index, as noted
in the following cases:

Data Descriptor (DD)

Invalid Index is generated when indexing an unindexed DD if the index value is not in the range {O
to DD.length-l} ofr if, in indexing an unpaged DD or updating an indexed DD, the computed word
index is not in the range {O to 2**W - I} (where W is 20 for IndexedWordDDs, 16 for pointers, and
13 for edit table operators). Indexing operators pass a copy of the unindexed DD as the P2 parameter.
Pointer operators pass a copy of the IndexedDD as the P2 parameter, with the word index field con­
taining the computed index modulo 2**W.

Code Segment Descriptor (CSD)

Invalid Index is generated by branching operators if the program-word index component is not in the
range {O to CSD.seg_Iength-l}. If the new code-stream pointer is specified by a PCW (dynamic
branches, ENTR), the PCW is pas~ed as the P2 parameter. If branching within the current code-seg­
ment is indicated by a top-of-stack operand (dynamic branches), P2 is the operand, and if indicated
by a parameter (static branches), P2 is a single-precision operand, where the low-order field is the
16-bit parameter.

4-16

System Architecture Reference Manual, Volume 2
Interrupts

Stack-Vector Descriptor (SVD)

Invalid Index is generated during stack accessing if the stack_number is not in the range {O to
SVD.length-l}. An indexed copy of the SVD, where the index field is the invalid stack_number, is
the P2 parameter.

Linear record structure

Invalid Index is generated by the OCRX operator if the sequence index operand is not in the range
{I to ICW .ICW _limit}. P2 is implementation defined.

The resumption condition is Repeat-IR for INDX, INXA, NXL V, NXV A, and NXLN, when the index
is not in {O to DD.length-l}, and Repeat-IR for OCRX when the index is not in {l to
ICW .ICW _limit}. The resumption condition is implementation-defined in all other cases.

Mommy Protect

A Memory Protect interrupt indicates an invalid attempt to write into a memory location, or improper
access to a memory-protected word. It is generated under the following conditions:

1. A write is attempted by store, overwrite, pointer, or edit operators, where the memory location
is referenced by an IndexedDD marked read_only. The IndexedDD is the P2 parameter.

2. For store operators, a tag = 3 item is encountered in evaluating a reference chain, or the sec­
ond-word location for a double-precision item contains an odd-tagged word. The tag = 3 or
odd-tagged item is the P2 parameter.

3. An odd tagged word is unexpectedly encountered in a set or translate table by a pointer
operator or in the source by a show operator. The IndexedDD referencing this word is the P2
parameter.

The resumption conditions are implementation-defined.

Divide by Zero

A Divide by Zero interrupt is generated by arithrnetic divide operators if the numeric interpretation
of the top-of-stack operand (the divisor) yields a value of zero.

The P2 parameter is the dividend.

The resumption condition is Continue-Next; the result value is implementation-dependent.

Exponent-Overflow

An Exponent-Overflow interrupt is generated by arithmetic and numeric type transfer operators if the
result of a rounding or truncation function is an exponent value too large to fit in the exponent field
of the operand format.

The resumption condition is Continue-Next. For SNGL or SNGT, the result type is single-precision.
For binary operators, the result value is single-or double-precision as .determined by the input argument
types. The result magnitude is the largest representable in that type; the result sign is determined by
the input argument(s).

5014954 4-17

System Architecture Reference Manual, Volume 2
Interrupts

Exponent--U nderflow

An Exponent-Underflow interrupt is generated by arithmetic and numeric type transfer operators if the
result of a rounding, truncation, or normalization function is an exponent value too small to fit in
the exponent field of the operand format.

The resumption condition is Continue-Next. The result type is single-precision for SNGL or SNGT,
as detern1ined by the input argument types(s) for other operators. The result value is zero. The inter­
rupt procedure can simply exit, if the underflow is tolerable.

Precision Loss

A Precision Loss interrupt is generated by arithmetic operators if the result of a rounding function
results in a Loss··Of-Precision.

When Precision Loss is reported, the unnormal~zed (imprecise) result of the operation is left on the
stack and the resumption condition is Continue-Next. The interrupt procedure can simply exit, if the
Loss-Of-Precision is tolerable.

Integer-Overflow

An Integer-Overflow interrupt indicates that an operand required to have an integer value cannot be
represented as an integer. This interrupt is generated if the integer numeric value of the operand, after
truncation or rounding if necessary, is not in the range {- 2**39 -+- 1 to 2**39 - I} for single-or
{ - 2**78 -+- 1 to 2**78 - I} for double-precision.

The operand is the P2 parameter. If it is double-precision, the first word is used as a single-precision
P2 parameter operand, with ID.P2_double = 1. For the following operators, the resumption condi­
tion is Continue-Next and the result on the stack has the specified type and representation, with inde­
terminate value:

Operator

NTIA, NTGR
NTGD, NTTD
[DIV
RDIV

Type

single-precision
double-precision
per inputs
per inputs

Representation

integer
integer
integer
any

For the following operators, if the interrupt occurs while integerizing the argument to be scaled or con­
verted, the resumption condition is Continue-Next and the result on the stack has the specified type
and representation, with indeterminate value:

Operator

SCLF, DSLF
SCRR, DSRR, SCRT, DSRT
SCRF, DSRF
SCRS, DSRS

BCD, DBCD

Type

double-precision
double-precision
single·-precision
(tos)double-precision
(2nd)single-precision
per N

Representation

integer
integer
decimal-digit sequence
decimal-digit sequence
decimal-digit sequence
decimal-digit sequence

In all other cases of Integer-Overflow, resumption conditions are implementation-defined.

4-18

System Architecture Reference Manual, Volume 2
Interrupts

Pragmatic Notes

Integer-Overflow Pragmatics

Integer-Overflow interrupt permits continuation of the code-stream when the argument being integer­
ized is the primary input to an operator whose output is an arithmetic function of that input. The
code-stream cannot be resumed when the argument is, for instance, an index, a length, or a scale fac­
tor. The type and representation of the results are those that would occur in the limit with inputs that
result in very large, but not overflowing, magnitudes. Note that a single-or double-precision zero is
an acceptable result in each case.

Stack-Underflow

Stack-Underflow indicates that an operator attempted to pop an argument from an empty expression
stack. The expression stack is the set of locations whose addresses are in the range {D[LL] + 2 to
LOSR}. A Stack-Underflow interrupt is generated if the address of the top-of-stack is less than
D[LL] + 2 when a pop is attempted.

Resumption conditions are implementation-defined.

Stack Structure Error

A Stack Structure Error interrupt indicates an invalid condition in the stack linkage structures used
to control procedure entry, procedure exit, and move-to-stack operations. The item presented as the
P2 parameter depends on the error condition, as noted.

The following notation is used:

Stack [i] = Contents at index 1 In the current stack.
Mem[a] = Contents of memory word at address a.
HistLink = Stack index computed from a history link.
LexLink = Address computed from a lexical link.

The operators ENTR (including aACCE and aINTE), EXIT, RETN, MYST, and aLXCH generate
Stack Structure Error interrupts under any of the following conditions.

(Stack[HistLink] -, = MSCW) or (Mem[LexLink] -, = entered MSCW) or
(ENTR: Mem[F] = inactive MSCW) or
(EXIT,RETN: Mem[D[LL] + 1] -, = RCW) or
(aLXCH: Mem[LexLink to level i].lex_Ievel -, = i)
(MYST: Stack[O] -, = TSCW): P2 = invalid word.

(EXIT,RETN: RCW.ll -, = MSCW.U) or (MYST: LL -, = MSCW.ll), for the first entered
MSCW on the historical chain whose head is the history link corresponding to the RCW or derived
from the TSCW: P2 = RCW or TSCW.

(HistLink :5 0 : P2 = MSCW containing the history link)
(EXIT,RETN,MYST: history_link = 0 in inactive MSCW: P2 is is MSCW)
(MYST: Computed F address :5 BOSR: P2 = F address)
(ENTR: S :5 F: P2 = S).

5014954 4-19

System Architecture Reference Manual, Volume 2
Interrupts

The common action aLXLK generates the intt:rrupt when the referent is not an entered MSCW , or
when the MSCW for level i does not have i in the lex_level field. P2 is the incorrect word.

The operators MKST (including aACCE, but not aINTE) and IMKS can optionally generate a Stack
Structure Error interrupt if S + I-F exceeds 2** 14 - 1 or S + 1-BOSR exceeds 2** 16 - 1. P2 is the errone­
ous value.

The STFF and ENTR operators (including aACCE, but not aINTE) can optionally generate a Stack
Structure Error interrupt if the displacement value in the Lexical Link corresponding to the address­
couple (!xceeds 2** 16 - 1. P2 is the displacement value.

Type checking of a stack linkage word (MSCW) occurs whenever the word must be accessed; the check
is always optional if the access is optional. Operators that update display registers may traverse part,
but not necessarily all, of the lexical chain for the new environment; these operators are ENTR (includ­
ing aACCE and aINTE), EXIT, RETN and l'vlVST (see aLXCH). Operators that evaluate an NIRW
(or PCW IRCW) may need to traverse part of the lexical chain if the implementation does not include
a complete set of display registers (see aLXLlK).

ResuInption conditions are implementation-defined.

Code Se~lment Error

A Code Segment Error interrupt indicates that in distributing a PCW or RCW code-streanl pointer,
an invalid code-segment descriptor is accessed. This interrupt is generated if the item accessed at ad­
dress-·couple (sdll,sdi) is not a tag-3 word, where sdll and sdi are components of a RCW or PCW code­
stream pointer. The invalid word is the P2 parameter.

The resumption condition is as follows: IO.valid_state assumes an implementation-defined value,
IO.this __ op = 0, and the interrupt RCW contains the new code-stream pointer.

Invalid Program Word

An Invalid Program Word interrupt indicates that a word accessed from the current code-segment is
not a Program Code Word. It is generated in table-edit-mode if the word tag is not 0. In all other
modes it is generated if the tag is not 3.

The invalid word is the P2 parameter.

For non-table code, the resumption condition is as follows: IO.valid_state assumes an implementation­
defined value. IO.this_op = ° if the invalid word contained the first syllable of a branch target:, or
IO.this __ ,op = 1 otherwise. The interrupt RCW references the first syllable of the operator that con­
tains a syllable in the invalid word.

For edit-table code, the resunlption condition is implementation-defined, but the stack configuration
must be defined to contain an updated table pointer referencing the edit operator that encountered the
invalid word.

Page Structure Error

A Page Structure Error interrupt is generated when an attempt to index a paged array encounters a
page descriptor which is not an unpaged, original SingleOO. P2 is a copy of the erroneous page de­
scriptor. The resumption condition is implementation-defined.

4-20

False Assertion

System Architecture Reference Manual, Volume 2
Interrupts

The False Assertion interrupt is generated only by the ASRT operator when the stack argument IS

False. The one-syllable code parameter is presented as an 8-bit integer value in the P2 parameter .

The resumption condition is Continue-Next.

Alarm Interrupts

Alarm interrupts are triggered by hardware fault detection, and the RCW created by the interrupt entry
will point to the operator that was executing when the fault was detected.

The Alarm ID parameter identifies the type of interrupt and indicates whether or not the interrupted
operator may be retried. If the stack state at the time of the interrupt is still consistent with the re­
quired initial state for the operator, and no global system state has been irreparably altered, the re­
sumption condition is Repeat-IR; otherwise it is Defunct. More than one fault condition may be re­
ported by a single Alarm interrupt.

Alarm ID (int_class = 2)

[15:11]

[4: 5]

Invalid Address

Reserved

The type of Alarm interrupt composed of:
invalid_addr [4: 1] = 1 = Invalid Address
mem_error [3: 1] = 1 = U ncorrectable Memory
Error
hardware_error [1: 1] = 1 = Hardware Error
loop_timer [0: 1] = 1 = Loop timer

This interrupt indicates an attempt to address a word of memory that does not exist on the system.
P2 contains the address.

Uncorrectable Memory Error

The P2 parameter identifies the memory address and the nature of the error. Single-bit read data errors
are corrected by hardware and are not reported by an interrupt, unless correction is disabled.

P2 parameter:

mem __ error_type [47: 7] The memory error field composed of:
mem_single_bit[43: 1] = 1 = Single-Bit Read data Error
mem_multi_bit [42: 1] = 1 = Multiple-Bit Read data
Error
addr_PE [41: 1] = 1 = Address-Parity Error

syndrome [39: 8] Reserved for implementation definition

5014954

address [31 :32] = The implementation-defined memory
address for the memory operation

4-21

System Architecture: Reference Manual, Volume 2
Ill1terrupts

Loop Timer

This interrupt indicates an effectively infinite loop by an operator. It is triggered by expiration of a
timer whose interval is sufficient for valid execution of any operator. A Loop Timer interrupt indicates
an operator fault, with two possible exceptions:

1. Reference chain evaluation is nonterminating if the chain loops.
2. The LLLU (linked list lookup) operator may encounter a data-driven, nonterminqting loop.

The following operators are not subject to the Loop Timer interrupt; HALT (when the Halt Boolean
is TRUE), STOP, IDLE, and P AUS.

Hardware Error

This interrupt indicates a hardware-detected error that is uncorrectable. The P2 parameter is implemlen­
tation -defined.

Externa~ Interrupts

External interrupts are invoked between operators to report events that are independent of the execut­
ing code-stream.

The External ID parameter identifies the type of interrupt. More than one external event may be re­
ported by a single External interrupt. The resumption condition is Continue; the interrupt RCW refer­
ences the next operator in the interrupted code-stream.

External ID (inL_class = 4)

[15:11]

[4: 5]

Reserved

The type of External Interrupt composed of:
run_timeout [4: 1] = 1 = Running Timeout
unmasked __ attn [3: 1] = 1 = Unmasked Attention
10 [2: 1] = 1 = I/O Finished
attn [1: 1] = 1 = Attention
jnt_timer [0: 1] = 1 = Interval Timer

External interrupts are masked by the CS (control state) flip-flop, except for Unmasked Attention and
Running Timeout. External interrupt cannot occur between a V ARI and the subsequent variiant
operator syllable, or between an enter-single-edit operator and the subsequent edit-mode operator.

4-22

System Architecture Reference Manual, Volume 2

GENERAL INFORMATION

APPENDIX A
OPERATOR SET

This appendix contains two tables, which list the operators described in section 3. of this manual. The
common actions described in section 3 are not included in the tables.

Table A-I lists operators in alphabetic order according to the formal description of the operation. For
each operator, the corresponding mnemonic and hexidecimal code-string value are given.

Table A-2 lists operators in hexidecimal code-string value order, in Mode sequence. All Primary-Mode
operators are listed, followed by all Variant-Mode operators, followed by all Edit-Mode operators. For
each operator hexidecimal code, the corresponding formal description name and mnemonic are given.

These two tables contain the same data, collated in different ways. Thus, two different approaches can
be used to obtain corresponding data about any operator in the Operator Set repertoire.

Table A-I. Operators, Alphabetical List

Operator Name

ADD
ARITHMETIC MAXIMUM
ARITHMETIC MINIMUM
ASSERT
BINARY CONVERT TO DECIMAL
BIT RESET
BIT SET
BRANCH FALSE
BRANCH TRUE
BRANCH UNCONDITIONAL
CHANGE SIGN BIT
COMPARE CHARACTERS EQUAL DELETE
COMPARE CHARACTERS EQUAL UPDATE
COMPARE CHARACTERS GREATER OR EQUAL DELETE
COMPARE CHARACTERS GREATER OR EQUAL UPDATE
COMPARE CHARACTERS GREATER DELETE
C;:OMPARE CHARACTERS GREATER UPDATE
COMPARE CHARACTERS LESS OR EQUAL DELETE
COMPARE CHARACTERS LESS OR EQUAL UPDATE
COMPARE CHARACTERS LESS DELETE
COMPARE CHARACTERS LESS UPDATE
COMPARE CHARACTERS NOT EQUAL DELETE
COMPARE CHARACTERS NOT EQUAL UPDATE
CONDITIONAL LOCK INTERLOCK
CONDITIONAL PROCESSOR HALT
COUNT BINARY ONES
COMMUNICATE ¥!ITH UNIVERSAL I/O

5014954

Mnemonic

ADD
AMAX
AMIN
ASRT
BCD
BRST
BSET
BRFL
BRTR
BRUN
CHSN
CEQD
CEQU
CGED
CGEU
CGTD
CGTU
CLED
EU
CLSD
CLSU
CNED
CNEU
LOKC
HALT
CBON
CUIO

Hexidecimal
80
958A
9588
9580
9577
9E
96
AO
Al
A2
8E
F4
FC
Fl
F9
F2
FA
F3
FB
FO
F8
F5
FD
95Bl
95DF
95BB
954C

A-I

A-2

System Architecture Reference Manual, Volume 2
Operator Set

Table A-I. Operators, Alphabetical List (Cont)

Operator Name:

DELAY
DELETE TOP-OF-STACK
DISABLE EXTERNAL INTERRUPT
DIVIDE
DUPLICATE TOP-OF-STACK
DYNAMIC BINARY CONVERT TO DECIMAL
DYNAMIC BIT RESET
DYNAMIC BIT SET
DYNAMIC BRANCH FALSE
DYNAMIC BRANCH TRUE
DYNAMIC BRANCH UNCONDITIONAL
DYNAMIC FIELD INSERT
DYNAMIC FIELD ISOLATE
DYNAMIC FIELD TRANSFER
DYNAMIC RANGE TEST
DYNAMIC SCALE LEFT
DYNAMIC SCALE RIGHT FINAL
DYNAMIC SCALE RIGHT ROUND
DYNAMIC SCALE RIGHT SAVE
DYNAMIC SCALE RIGHT TRUNCATE
ENABLE EXTERNAL INTERRUPTS
END EDIT (Edit-Mode)
END FLOAT (Edit Mode)
ENTER
EQUAL
EVALUATE
EXCHANGE
EXECUTE SINGLE MICRO, SINGLE POINTER UPDATE
EXECUTE SINGLE MICRO DELETE
EXECUTE SINGLE MICRO UPDATE
EXIT
FIELD INSERT
FIELD ISOLATE
FIELD TRANSFER
GREATER THAN
GREATER THAN OR EQUAL
IDLE UNTIL INTERRUPT
INDEX
INDEX AND LOAD NAME
INDEX AND LOAD VALUE
INDEX AND LOAD VALUE VIA ADDRESS COUPLE
INDEX VIA ADDRESS COUPLE
INPUT CONVERT DELETE
INPUT CONVERT LEFT-SIGNED DELETE
INPUT CONVERT RIGHT-SIGNED DELETE
INPUT CONVERT UNSIGNED DELETE
INPUT CONVERT UPDATE
INTRODUCE VARIANT OPERATOR
INSERT CONDITIONAL (Edit-Mode)

Mnemonic

DLAY
DLET
DEXI
DIVD
DUPL
DB CD
DBRS
DBST
DBFL
DBTR
DBUN
DINS
DISO
DFTR
DRNT
DSLF
DSRF
DSRR
DSRS
DSRT
EEXI
ENDE
ENDF
ENTR
EQUL
EVAL
EXCH
EXPU
EXSD
EXSU
EXIT
INSR
ISOL
FLTR
GRTR
GREQ
IDLE
INDX
NXLN
NXLV
NXVA
INXA
ICVD
ICLD
ICRD
ICUD
ICVU
VARI
INSC

Hexidedmal

95F6
B5
9547
83
B7
957F
9F
97
A8
A9
AA
9D
9B
99
9583
CI
C7
C9
C5
C3
9546
DE
D5
AB
8C
AC
B6
DD
D2
DA
A3
9C
9A
98
8A
89
9544
A6
A5
AD
EF
E7
CA
9575
9576
A4
CB
95
DD

System Architecture Reference Manual, Volume 2
Operator Set

Table A-I. Operators, Alphabetical List (Cont)

Operator Name

INSERT DISPLAY SIGN (Edit-Mode)
INSERT MARK STACK
INSERT OVERPUNCH (Edit-Mode)
INSERT UNCONDITIONAL (Edit-Mode)
INTEGER DIVIDE
INTEGERIZE DOUBLE-PRECISION ROUNDED
INTEGERIZE DOUBLE-PRECISION TRUNCATED
INTERGERIZE ROUNDED
INTERGERIZE TRUNCATED
INVALID OPERATOR
INVALID OPERATOR
LEADING ONE TEST
LINKED LIST LOOKUP
LESS THAN
LESS THAN OR EQUAL
LITERAL CALL ONE
LITERAL CALL ZERO
LITERAL CALL 8-BITS
LITERAL CALL 16-BITS
LITERAL CALL 48-BITS
LOAD
LOAD TRANSPARENT
LOAD TRANSPARENT
LOCK INTERLOCK
LOGICAL AND
LOGICAL EQUAL
LOGICAL EQUALITY
LOGICAL NEGATE
LOGICAL OR
LONG NAME CALL
LONG VALUE CALL
MAKE PROGRAM CONTROL WORD
MARK STACK BOUND TO NAME CALL
MARK STACK
MASKED SEARCH FOR EQUAL
MOVE CHARACTERS (Edit-Mode)
MOVE NUMERIC UNCONDITIONAL (Edit-Mode)
MOVE TO STACK
MOVE WITH FLOAT (Edit-Mode)
MOVE WITH INSERT (Edit-Mode)
MULTIPLY
MULTIPLY EXTENDED
NAME CALL

NO OPERATION
NO OPERATION
NORMALIZE
NOT EQUAL
OCCURS INDEX

5014954

Mnemonic

INSG
IMKS
INOP
INSU
IDlV
NTGD
NTTO
NTGR
NTIA
NVLO
NVLO
LOG2
LLLU
LESS
LSEQ
ONE
ZERO
LT8
LT16
LT48
LOAD
LOOT
LODT
LOK
LAND
SAME
LEQV
LNOT
LOR
LNMC
LVLC
MPCW
MKSN
MKST
SRCH
MCHR
MVNU
MVST
MFLT
MINS
MULT
MULX
NAMC

NOOP
NOOP
NORM
NEQL
OCRX

Hexidecimal

09
CF
D8
DC
84
9587
9586
87
86
FF
95FF
958B
95BO
88
8B
Bl
BO
B2
B3
BE
BO
BC
95BC
95BO
90
94
93
92
91
F6
F7
BF
OF
AE
95BE
07
06
95AF
Dl
DO
82
8F
40 to
7F
FE
95FE
958E
8D
9585

A-3

A-4

System Architectun:! Reference Manual, Volume 2
Operator Set

Table A-I. Operatolrs, Alphabetical List (Cont)

Operator Name

OVERWRITE DELETE
OVERWRITE NON-DELETE
PACK DELETE
PACK LEFT-SIGNED
PACK RIGHT-SIGNED
PACK UNSIGNED
PACK UPDATE
PAUSE UNTIL INTERRUPT
PRI~llTIVE DISPLAY
PUSH DOWN STACK REGISTERS
RANGE TEST
READ AND CLEAR OVERFLOW FLIP-FLOP
READ EXTERNAL MEMORY CONTROL
READ INTERLOCK STATUS
READ INTERNAL PROCESSOR STATE
READ l\1ACHINE IDENTIFICATION
READ PROCESSOR IDENTIFICATION
READ PROCESSOR REGISTER
READ STACK NUMBER
READ TAG FIELD
READ TIME-OF-DA Y CLOCK
READ TRUE/FALSE FLIP-FLOP
READ WITH LOCK
REMAINDER DIVIDE
RESET FLOAT (Edit-Mode)
RETURN
ROTATE STACK DOWN
ROTATE STACK UP
RUNNING INDICATOR
SCALE LEFT
SCALE RIGHT FINAL
SCALE RIGHT ROUNDED
SCALE RIGHT SAVE
SCALE RIGHT TRUNCATE
SCAN WHILE EQUAL DELETE
SCAN WHILE EQUAL UPDATE
SCAN WHILE FALSE DELETE
SCAN WHILE FALSE UPDATE
SCAN WHILE GREATER OR EQUAL DELETE
SCAN WHILE GREATER OR EQUAL UPDATE
SCAN WHILE GREATER DELETE
SCAN WHILE GREATER UPDATE
SCAN WHILE LESS OR EQUAL DELETE
SCAN WHILE LESS OR EQUAL UPDATE
SCAN WHILE LESS DELETE
SCAN WHILE LESS UPDATE
SCAN WHILE NOT EQUAL DELETE
SCAN WHILE NOT EQUAL UPDATE
SCAN WHILE TRUE DELETE

Mnemonic

OVRD
OVRN
PACD
PKLD

-PKRD
PKUD
PACU
PAUS
SHOW
PUSH
RNGT
ROFF
REMC
LKID
RIPS
WATI
WHOI
RPRR
RSNR
RTAG
RTOD
RTFF
RDLK
RDIV
RSTF
RETN
RSDN
RSUP
RUNI
SCLF
SCRF
SCRR
SCRS
SCRT
SEQD
SEQU
SWFD
SWFU
SGED
SGEU
SGTD
SGTU
SLED
SLEU
SLSD
SLSU
SNED
SNEU
SWTD

Hexidedmal

BA
BB
Dl
.9573
9574
9572
D9
9584
95DE
B4
9582
D7
9592
95B3
9598
95A4
954E
95B8
9581
95B5
95A7
DE
95BA
85
D4
A7
95B7
95B6
9541
CO
C6
C8
C4
C2
954F
95FC
95D4
95DC
95Fl
95F9
95F2
95FA
95F3
95FB
95FO
95F8
95F5
95FD
95D5

System Architecture Reference Manual, Volume 2
Operator Set

Table A-I. Operators, Alphabetical List (Cont)

Operator Name

SCAN WHILE TRUE UPDATE
SET DOUBLE TO TWO SINGLES
SET EXTERNAL SIGN FLIP-FLOP
SET INTERVAL TIMER
SET PROCESSOR REGISTER
SET TAG FIELD
SET TO DOUBLE-PRECISION
SET TO SINGLE-PRECISION ROUNDED
SET TO SINGLE-PRECISION TRUNCATED
SET TWO SINGLES TO DOUBLE
SKIP FORWARD DESTINATION CHARACTERS (Edit-Mode)
SKIP FORWARD SOURCE CHARACTERS (Edit-Mode)
SKIP REVERSE DESTINATION CHARACTERS (Edit-Mode)
SKIP REVERSE SOURCE CHARACTERS (Edit-Mode)
STORE DELETE
STORE DELETE VIA ADDRESS COUPLE
STORE NON-DELETE
STORE NON-DELETE VIA ADDRESS COUPLE
STRING ISOLATE
STUFF ENVIRONMENT
SUBTRACT
TABLE ENTER EDIT DELETE
TABLE ENTER EDIT UPDATE
TRANSFER CHARACTERS UNCONDITIONAL DELETE
TRANSFER CHARACTERS UNCONDITIONAL UPDATE
TRANSFER WHILE EQUAL DELETE
TRANSFER WHILE EQUAL UPDATE
TRANSFER WHILE FALSE DELETE
TRANSFER WHILE FALSE UPDATE
TRANSFER WHILE GREATER OR EQUAL DELETE
TRANSFER WHILE GREATER OR EQUAL UPDATE
TRANSFER WHILE GREATER DELETE
TRANSFER WHILE GREATER UPDATE
TRANSFER WHILE LESS OR EQUAL DELETE
TRANSFER WHILE LESS OR EQUAL UPDATE
TRANSFER WHILE LESS DELETE
TRANSFER WHILE LESS UPDATE
TRANSFER WHILE NOT EQUAL DELETE
TRANSFER WHILE NOT EQUAL UPDATE
TRANSFER WHILE TRUE DELETE
TRANSFER WHILE TRUE UPDATE
TRANSFER WORDS OVERWRITE DELETE
TRANSFER \VORDS OVERWRITE UPDATE
TRANSFER WORDS DELETE
TRANSFER WORDS UPDATE
TRANSLATE
UNCONDITIONAL PROCESSOR HALT
UNLOCK INTERLOCK
UNPACK LEFT-SIGNED DELETE

5014954

Mnemonic

SWTU
SPLT
SXSN
SINT
SPRR
STAG
XTND
SNGL
SNGT
JOIN
SFDC
SFSC
SRDC
SRSC
STOD
STAD
STON
STAN
SISO
STFF
SUBT
TSSD
TEEU
TUND
TUNU
TEQD
TEQU
TWFD
TWFU
TGED
TGEU
TGTD
TGTU
TLED
TLEU
TLSD
TLSU
TNED
TNEU
TWTD
TWTU
TWOD
TWOU
TWSD
TWSU
TRNS
STOP
UNLK
UPLD

Hexidecimal

95DD
9543
D6
9545
95B9
95B4
CE
CD
CC
9542
DA
D2
OB
D3
B8
F6
B9
F7
D5
AF
81
DO
D8
E6
EE
E4
EC
95D2
95DA
E1
E9
E2
EA
E3
EB
EO
E8
E5
ED
9503
95DB
04
DC
03
DB
9507
95BF
95B2
9570

A-5

Systen1 Architecture Reference Manual, Volume 2
Operator Set

Table A-t. Operators, Alphabetical List (Cont)

Operator Name Mnemonic Hexidecimal

UNPACK LEFT-SIGNED UPDATE
UNPACK RIGHT-SIGNED DELETE
UNPACK RIGHT-SIGNED UPDATE
UNPACK UNSIGNED DELETE
UNPACK UNSIGNED UPDATE
UNPACK SIGNED DELETE
UNPACKED SIGNED UPDATE
VALUE CALL

WRITE EXTERNAL MEMORY CONTROL
WRITE INTERNAL PROCESSOR STATE
WRITE TIME-OF-DA Y
ZERO INTERRUPT __ COUNT

Table A-2. Operators, Numerical List

Hexidecimal Operator name

PRIMARY MODE

00 thru 3F VALUE CALL
NAME CALL
ADD
SUBTRACT
MULTIPLY
DIVIDE

40 thru 7F
80
81
82
83
84
85
86
87
88
89
8A
8B
8C
80
8E
8F
90
91
92
93
94
95
96
97
98
99
9A

A-6

INTEGER DIVIDE
REMAINDER DIVIDE
INTEGERIZE TRUNCATE
INTEGERIZE ROUNDED
LESS THAN
GREATER THAN OR EQUAL
GREATER THAN
LESS THAN OR EQUAL
EQUAL
NOT EQUAL
CHANGE SIGN BIT
EXTENDED MULTIPLY
LOGICAL AND
LOGICAL OR
LOGICAL NEGATE
LOGICAL EQUALITY
LOGICAL EQUAL
INTRODUCE VARIANT OPERATOR
BIT SET
DYNAMIC BIT SET
FIELD TRANSFER
DYNAMIC FIELD TRANSFER
FIELD ISOLATE

UPLU
UPRD
UPRU
UABD
UABU
USND
USNU
VALC

WEMC
WIPS
WTOD
ZIC

9578
9571
9579
95Dl
95D9
95DO
95D8
00 to
3F
9593
9599
9549
9540

Mnemonic

VALC
NAMC
ADD
SUBT
MULT
DIVD
IDIV
RDIV
NTIA
NTGR
LESS
GREQ
GRTR
LSEQ
EQUL
NEQL
CHSN
MULX
LAND
LOR
LNOT
LEQV
SAME
VARI
BSET
DBST
FLTR
DFTR
ISOL

Hexidecintal

PRIMARY MODE

9B
9C
9D
9E
9F
AO
Al
A2
A3
A4
A5
A6
A7
AS
A9
AA
AB
AC
AD
AE
AF
BO
BI
B2
B3
B4
B5
B6
B7
BS
B9
BA
BB
BC
BD
BE
BF
CO
CI
C2
C3
C4
C5
C6
C7
CS
C9
CA

5014954

System Architecture Reference Manual, Volume 2
Operator Set

Table A-2. Operators, Numerical List (Cont)

Operator name

DYNAMIC FIELD ISOLATE
FIELD INSERT
DYNAMIC FIELD INSERT
BIT RESET
DYNAMIC BIT RESET
BRANCH FALSE
BRANCH TRUE
BRANCH UNCONDITIONAL
EXIT
INPUT CONVERT UNSIGNED DELETE
INDEX AND LOAD NAME
INDEX
RETURN
DYNAMIC BRANCH FALSE
DYNAMIC BRANCH TRUE
DYNAMIC BRANCH UNCONDITIONAL
ENTER
EVALUATE DESCRIPTOR
INDEX AND LOAD VALUE
MARK STACK
STUFF ENVIRONMENT
LITERAL CALL ZERO
LITERAL CALL ONE
LITERAL CALL S-BITS
LITERAL CALL I6-BITS
PUSH DOWN STACK REGISTERS
DELETE TOP-OF-STACK
EXCHANGE
DUPLICATE TOP-OF-STACK
STORE DELETE
STORE NON-DELETE
OVERWRITE DELETE
OVERWRITE NON-DELETE
LOAD TRANSPARENT
LOAD
LITERAL CALL 4S-BITS
MAKE PROGRAM CONTROL WORD
SCALE LEFT
DYNAMIC SCALE LEFT
SCALE RIGHT TRUNCATE
DYNAMIC SCALE RIGHT TRUNCATE
SCALE RIGHT SAVE
DYNAMIC SCALE RIGHT SAVE
SCALE RIGHT FINAL
DYNAMIC SCALE RIGHT FINAL
SCALE RIGHT ROUNDED
DYNAMIC SCALE RIGHT ROUNDED
INPUT CONVERT DELETE

Mnemonic

DISO
INSR
DINS
BRST
DBRS
BRFL
BRTR
BRUN
EXIT
ICUD
NXLN
INDX
RETN
DBFL
DBTR
DBUN
ENTR
EVAL
NXLV
MKST
STFF
ZERO
ONE
LTS
LTI6
PUSH
DLET
EXCH
DUPL
STOD
STON
OVRD
OVRN
LODT
LOAD
LT4S
MPCW
SCLF
DSLF
SCRT
DSRT
SCRS
DSRS
SCRF
DSRF
SCRR
DSRR
ICVD

A-7

Hexidecimal

PRIMARY MODE

CB
CC
CD
CE
CF
DO
01
D2
D3
D4
D5
D6
D7
D8
D9
DA
DB
DC
DD

DE
OF
EO
El
E2
E3
E4
E5
E6

E7
E8
E9
EA
EB
EC
ED
EE

EF

FO
Fl

F2
F3

F4

A-8

System Architecture Reference Manual, Volume 2
Operator Set

Table A-2. Operators, Numerical List (Cont)

Operator name

INPUT CONVERT UPDATE
SET TO SINGLE-PRECISION TRUNCATED
SET TO SINGLE-PRECISION ROUNDED
SET TO DOUBLE-PRECISION
INSERT l\1ARK STACK
TABLE ENTER EDIT DELETE
PACK DESTRUCTIVE
EXECUTE SINGLE I\lICRO DELETE
TRANSFER WORDS DESTRUCTIVE
TRANSFER WORDS OVERWRITE DELETE
STRING ISOLATE
SET EXTERNAL SIGN FLIP-FLOP
READ AND CLEAR OVERFLOvV FLIP-FLOP
TABLE ENTER EDIT UPDATE
PACK UPDATE
EXECUTE SINGLE I\lICRO UPDATE
TRANSFER \VORDS UPDATE
TRANSFER WORDS OVERWRITE UPDATE
EXECUTE SINGLE I\lICRO SINGLE POINTER
UPDATE
READ TRUE/FALSE FLIP-FLOP
MARK STACK BOUND TO NAME CALL
TRANSFER WHILE LESS DELETE
TRANSFER WHILE GREATER OR EQUAL DELETE
TRANSFER WHILE GREATER DELETE
TRANSFER WHILE LESS OR EQUAL DELETE
TRANSFER WHILE EQUAL DELETE
TRANSFER WHILE NOT EQUAL DELETE
TRANSFER CHARACTERS UNCONDITIONAL
DELETE
INDEX VIA ADDRESS COUPLE
TRANSFER WHILE LESS UPDATE
TRANSFER WHILE GREATER OR EQUAL UPDATE
TRANSFER \VHILE GREATER UPDATE
TRANSFER WHILE LESS OR EQUAL UPDATE
TRANSFER WHILE EQUAL UPDATE
TRANSFER WHILE NOT EQUAL UPDATE
TRANSFER CHARACTERS UNCONDITIONAL
UPDATE
INDEX AND LOAD VALUE VIA ADDRESS
COUPLE
COMPARE CHARACTERS LESS DELETE
COMPARE CHARACTERS GREATER OR EQUAL
DELETE
COMPARE CHARACTERS GREATER DELETE
COMPARE CHARACTERS LESS OR EQUAL
DELETE
COMPARE CH_ARACTERS EQUAL DELETE

Mnemonic

ICVU
SNGT
SNGL
XTND
IMKS
TEED
PACD
EXSD
TWSD
TWOD
SISO
SXSN
ROFF
TEEU
PACU
EXSU
TWSU
TWOU
EXPU

TRFF
MKSN
TLSD
TGED
TGTD
TLED
TEQD
TNED
TUND

INXA
TLSU
TGEU
TGTU
TLEU
TEQU
TNEU
TUNU

NXVA

CLSD
CGED

COTD
CLED

CEQD

Hexidecimal

PRIMARY MODE

F5
F6
F7
F8
F9

FA
FB

FD
FE
FF

V ARIANT MODE

9540
9541
9542
9543
9544
9545
9546
9547
9549
954C
954E
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
957F
9580
9581
9582
9583
9584
9585
9586
9587
9588
958A

5014954

System Architecture Reference Manual, Volume 2
Operator Set

Table A-2. Operators, Numerical List (Cont)

Operator name

COMPARE CHARACTERS NOT EQUAL DELETE
STORE DELETE VIA ADDRESS COUPLE
STORE NON-DELETE VIA ADDRESS COUPLE
COMPARE CHARACTERS LESS UPDATE
COMPARE CHARACTERS GREATER OR EQUAL
UPDATE
COMPARE CHARACTERS GREATER UPDATE
COMPARE CHARACTERS LESS OR EQUAL
UPDATE COMPARE CHARACTERS EQUAL
UPDATE
COMPARE CHARACTERS NOT EQUAL UPDATE
NO OPERATION
INVALID OPERATOR

ZERO INTERRUPT_COUNT
RUNNING INDICATOR
SET TWO SINGLES TO DOUBLE
SET DOUBLE TO TWO SINGLES
IDLE UNTIL INTERRUPT
SET INTERVAL TIMER
ENABLE EXTERNAL INTERRUPTS
DISABLE EXTERNAL INTERRUPTS
WRITE TIME-OF-DAY
COMMUNICA TE WITH UNIVERSAL I/O
READ PROCESSOR IDENTIFICATION
UNPACK LEFT-SIGNED DELETE
UNPACK RIGHT-SIGNED DELETE
PACK UNSIGNED
PACK LEFT-SIGNED
PACK RIGHT-SIGNED
INPUT CONVERT LEFT-SIGNED DELETE
INPUT CONVERT RIGHT-SIGNED DELETE
BINARY CONVERT TO DECIMAL
UNPACK LEFT-SIGNED UPDATE
UNPACK RIGHT-SIGNED UPDATE
DYNAMIC BINARY CONVERT TO DECIMAL
ASSERT
READ ST ACK NUMBER
RANGE TEST
DYNAMIC RANGE TEST
PAUSE UNTIL INTERRUPT
OCCURS INDEX
INTEGERIZE, DOUBLE-PRECISION, TRUNCATED
INTEGERIZE, DOUBLE-PRECISION, ROUNDED
ARITHMETIC MINIMUM
ARITHMETIC MAXIMUM

Mnemonic

CNED
STAD
STAN
CLSU
CGEU

CGTU
CLEU FC
CEQU

CNEU
NOOP
NVLD

ZIC
RUNI
JOIN
SPLT
IDLE
SINT
EEXI
DEXI
WTOD
CUIO
WHOI
UPLD
UPRD
PKUD
PKLD
PKRD
ICLD
ICRD
BCD
UPLU
UPRU
DBCD
ASRT
RSNR
RNGT
DRNT
PAUS
OCRX
NTTD
NTGD
AMIN
AMAX

A-9

Hexidecimal

V ARIANT MODE

958B
958C
958D
958E
9592
9593
9598
9599
95A4
95A7
95AF
95BO
95Bl
95B2
95B3
95B4
95B5
95B6
95B7
95B8
95B9
95BA
95BB
95BC
95BD
95BE
95BF
95DO
95Dl
95D2
95D3
95D4
95D5
95D7
95D8
95D9
95DA
95DB
95DC
95DD
95DE
95DF
95FO
95Fl
95F2
95F3
95F4

A-IO

System Architecture- Reference Manual, Volume 2
Operator Set

Table A-2. Operators, Numerical List (Cont)

Operator name

LEADING ONE TEST
LONG NAME CALL
LONG VALUE CALL
NORMALIZE
READ EXTERNAL MEMORY CONTROL
WRITE EXTERNAL MEMORY CONTROL
Read INTERNAL PROCESSOR STATE
WRITE INTERNAL PROCESSOR STATE
WHAT MACHINE IDENTIFICATION
READ TIME-OF-DA Y
MOVE TO STACK
LOCK INTERLOCK
CONDITIONAL LOCK INTERLOCK
UNLOCK INTERLOCK
READ INTERLOCK STATUS
SET TAG FIELD
READ TAG FIELD
ROTATE STACK UP
ROTATE STACK DOWN
READ PROCESSOR REGISTER
SET PROCESOR RECIISTER
READ WITH LOCK
COUNT BINARY ONES
LOAD TRANSPARENT
LINKED LIST LOOK-UP
MASKED SEARCH FOR EQUAL
UNCONDITIONAL PROCESSOR HALT
UNPACK SIGNED DELETE
UNPACK UNSIGNED DELETE
TRANSFER WHILE FALSE DELETE
TRANSFER WHILE TRUE DELETE
SCAN WHILE FALSE DELETE
SCAN WHILE TRUE DELETE
TRANSLATE
UNPACK SIGNED UPDATE
UNPACK UNSIGNED UPDATE
TRANSFER WHILE FALSE UPDATE
TRANSFER WHILE TRUE UPDATE
SCAN WHILE FALSE UPDATE
SCAN WHILE TRUE UPDATE
PRIMITIVE DISPLAY
CONDITIONAL HALT
SCAN WHILE LESS DELETE
SCAN WHILE GREATER OR EQUAL DELETE
SCAN WHILE GREATER DELETE
SCAN WHILE LESS OR EQUAL DELETE
SCAN WHILE EQUAL DELETE

Mnemonic

LOG2
LNMC
LVLC
NORM
REMC
WEMC
RIPS
WIPS
WATI
RTOD
MVST
LOK
LOKC
UNLK
LKID
STAG
RTAG
RSUP
RSDN
RPRR
SPRR
RDLK
CBON
LODT
LLLU
SRCH
STOP
TJSND
UPUD
TWFD
TWTD
SWFD
SWTD
TRNS
USNU
UPUU
TWFU
TWTU
SWFU
SWTU
SHOW
HALT
SLSD
SGED
SGTD
SLED
SEQD

Hexidecimal

V ARIANT MODE

95F5
95F6
95F8
95F9
95FA
95FB
95FC
95FD
95FE
95FF

EDIT MODE

DO
Dl
D2
D3
D4
D5
D6
D7
D8
D9
DA
DB
DC
DD
DE
DF

5014954

System Architecture Reference Manual, Volume 2
Operator Set

Table A-2. Operators, Numerical List

Operator name

SCAN WHILE NOT EQUAL DELETE
DELAY
SCAN WHILE LESS UPDATE
SCAN WHILE GREATER OR EQUAL UPDATE
SCAN WHILE GREATER UPDA TE
SCAN WHILE LESS OR EQUAL UPDATE
SCAN WHILE EQUAL UPDATE SEQU
SCAN WHILE NOT EQUAL UPDATE
NO OPERATION
INVALID OPERATOR

MOVE WITH INSERT
MOVE WITH FLOAT
SKIP FORWARD SOURCE CHARACTERS
SKIP REVERSE SOURCE CHARACTERS
RESET FLOAT
END FLOAT
MOVE NUMERIC UNCONDITIONAL
MOVE CHARACTERS
INSERT OVERPUNCH
INSERT DISPLAY SIGN
SKIP FORWARD DESTINATION CHARACTERS
SKIP REVERSE DESTINATION CHARACTERS
INSERT UNCONDITIONAL
INSERT CONDITIONAL
END EDIT
CONDITIONAL PROCESSOR HAL T

Mnemonic

SNED
DLAY
SLSU
SGEU
SGTU
SLEU

SNEU
NOOP
NVLD

MINS
MFLT
SFSC
SRSC
RSTF
ENJF
MVNU
MCHR
INOP
INSG
SFDC
SRDC
INSU
INSC
ENDE
HALT

A-II

System Architecture Reference Manual, Volume 2

APPENDIX B
OPERATOR REFERENCE SUMMARIES

GENERAL INFORMATION

Operators and common actions are listed alphabetically, and for each operator, the following informa­
tion is given.

The Code-Stream Encoding Of The Operator

The number of code-stream syllables required by the operator is shown, and the operator encoding
is defined to be a sequence composed of the opcode literal and, optionally, one or more parameters.
The opcode literal is shown as a hexidecimal-string (such as "A3"), or, in some cases, as a binary value
(such as 01). Parameters are specified as name:number-of-bits (such as op_psi:3). If the operator is
not a primary-mode operator, the interpretation mode is shown following the operator encoding.

Clients

For most common actions, the invoking operators are listed.

Stack State Transformation

Stack state transformations are shown by diagrams, which illustrate inputs and outputs in order from
top-of-stack downward:

Input items ~ Output items

The effect of the stack state transformation is that all inputs are consumed and all outputs are created.
"Null ~" and ,,~ Null" indicate that the operator has no inputs or outputs, respectively. There is
an implicit invariant: the item that was on the stack below the lowest input (if any) remains on the
stack below the lowest output (if any), unaffected by the stack state transformation of the operator.
The input items are shown for the initial state of the operator; some operators have additional stack
input arguments in restart state.

Initial stack items are denoted id: type(interpretation), where id and interpretation are optional. Type
may be a data type as defined in section 1 of this manual, "Any" indicating no type restriction, or
"*,, indicating a required set of types as defined under Invalid Stack Argument interrupt. Id, if in­
cluded, is a distinguishing name indicating how the item is to be used and establishing a reference for
the final stack state. Interpretation is explicitly included if multiple interpretations of the type are possi­
ble.

Final stack items may be denoted type(interpretation), id, id', or as a set of types. Type(interpretation)
is defined for initial stack items. Id and id' indicate the initial stack item of that name, the latter case
having a modified value.

Interrupts That May Be Generated

Where relevant, a brief statement of the conditions under which the interrupt may occur is included.
See Appendix C for explanation of the condition notation used and definition of nonstandard terms
and abbreviations.

5014954 B-1

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

Symbols Used In This Appendix

Certain symbols used in this appendix represent status conditions, computation results, and comparison
requirenlents. Other symbols that represent subset ranges, and subset units are also used throughout
this appendix. These are as follows:

B-2

{a,b,c}

[m:n]

[A+ 1]

a --. b

Symbol

a -, in {b,c,d}

a -, ---+ b

a < b

a > b

a ,= b

a $ b

a ?- b

a -, ~ b

elernent_size

Meaning

The set including items a, b, and c. All item
relationships are proper. Item magnitude is not
implied by the listing order.

The set of bits starting with m, the most­
significant bit, that extends downward for n
bits (including m).

The value of A, incremented + 1.

A linkage from position a that results in
position b, or the value of b that results from
use of a. If b is a set, a maps into the set b.

a not pres,ent in set {b,c,d}.

b not linked or obtained by use of a.

a is less than b.

a is greater than b.

a is not equal to b.

a is less than equal to b.

a is equal to or greater than b.

a is not equal to or greater than b.
SIR W . Lexical __ Link The Lexical_Link field
in a SIR\V word.

element_slize bit.

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

OPERATOR AND COMM"ON ACTION LISTING

The following is a listing of all operators and common actions.

aACCE

Name:

Encoding:

Clients:

Stack State
transformation:

Interrupts:

Inv Arg Value:

Stack -Overflow

Stack Structure:

accidental entry

none (common action)

EV AL L VLC ST AD STAN STOD STON
VALC

See the functional definition of aACCE in
section 3

Mem[F + 1) = NIRW directly to PCW and
PCW.ll > 0
and PCW.ll - 1 ,= NIRW.lambda
or PCW.ll ,in {O, MSCW.ll+ I}
or PCW.invalid_ll ,= 0

(new F) - (old F) ,in {I to 2**14-1}
(MKST)
or (new F) - BOSR ,in {O to 2** 16 - I}
or new displacement ,in {I to 2** 16 - I} +
or SIR W .lexical_link ,;::: entered MSCW

Also see aLXCH - display update; aPRCW - code-stream pointer distribution.

aCPY

Name:

Encoding:

Clients:

Stack state
transformation:

Interrupts:

5014954

fetch copy descriptor

none (common action)

INDX INXA LOAD NXLN: generation of
Presence Bit, Invalid Object, Invalid Reference
Chain, and Binding Request interrupts

not applicable

none

B-3

aFOP

Name:

Encoding:

CEents:

Stack state
transformation:

Interrupts:

Inv Object:

alNTE

Name:

Encoding:

Clients:

Stack state

transformation:

Interrupts:

Binding Request:

Inv Arg Value:

Inv Ref Chain:

Inv Stack Arg:

Stack-Overflow
Stack Structure:

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

fetch operand value

none (common action)

LOAD NXLV NXVA LVLC VALC

not applicable

second-word of double (obtained by means of
IRW) has tag 1= 2
or second-word of double (obtained by means
of IndexeclDD) has odd tag

interrupt entry

none (common action)

all operators and actions that generate
interrupts

See the functional definition of aINTE in
section 3

IRW chain .~ DD with element_size = 7

Mem[F + 1:1 = NIR W directly to PCW and
PCW.ll >
and PCW.ll - 1 -, = NIRW.lambda
or PCW.ll lin {a, MSCW.ll+l}
or PCW.invalid_ll 1= °
IRW chain = ~
(PCW, or DD with element_size = 7)

M[F + 1] (from interrupt_reference) not IRW

S :5 F or SIRW.lexical_Iink 12: entered
MSCW

Also see aLXCH - display update; NIR\V evaluation; aLXLK -- SIRW evaluation; aPRC\V -
code-stream pointer distribution.

B-4

alSX

Name:

Encoding:

Clients:

Stack state
transformation:

Interrupts:

Int Overflow:

Inv Arg Value:

Inv Stack Arg:

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

integer subset exception

none (common action)

MVST RPRR SINT SPRR WTOD

not applicable

argument not sp integer (*)

argument not k-bit integer (*)

argument not operand or not k-bit integer

(* Int Overflow and Inv Arg Value are alternatives for some cases of Inv Stack Arg: see action
definition.)

aLXCH

Name:

Encoding:

Clients:

address-couple evaluation:

display update:

Stack state
transformation:

Interrupts:

Stack Structure:

traverse lexical chain

none (common action)

address-couple parameter evaluation:
INXA NXVA LVLC MKSN-NAMC STAD
STAN VALC NIRW

alNTE DBFL DBTR DBUN ENTR EV AL
INDX LKID LOAD LODT LOK LOKC
NXLN NXL V OVRD OVRN RDLK STFF
STOD STON UNLK (sdll,sdi) address-couple
evaluation: aPRCW

aACCE alNTE ENTR EXIT MVST RETN

not applicable

For i in levels traversed:
Mem[LexLink to level i] .. = entered MSCW
or MSCW.lex_Ievel .. = i

Also see aLXLK (MSCW.stack_number, MSCW.displacement).

5014954 B-5

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

aLXLK

NaUle:

Encoding:

Clients:

SIRW evaluation:

Stack state
transformation:

Int(!ffupts:

Inv Index:

Inv Object:

Pre~sence Bit:

aPRCV\I

B-6

Name:

Encoding:

Clients:

Stack state
transformation:

Interrupts:

Code Seg Error
Inv Arg Value:

Inv Index:

Pre:sence Bit:

evaluate lexical link

none (comnl0n action)

MSCW lexical link evaluation: aLXCH

aINTE ENTR EV AL INDX INXA LKID
LOAD LODT LOK LOKC L VLC MKSN­
NAMC NXLN NXLV NXVA OVRD OVRN
RDLK STAD STAN STOD STON VALC
UNLK

not applicable

stack_number I in {O to SVD.length-l}

Mem[AbsentCopyDD.address] not original DO
or stack-vector descriptor not unpaged original
SingleDD or stack descriptor not unpaged
unindexed SingleDD

stack descriptor

distribute PCW IRCW code-stream pointer

none (comnlon action)

aACCE aINTE DBFL DBTR DBUN ENTR
EXIT RETN

not applicable

(PCW or RCW).psi lin {O to 5}

(PCW or RCW).pwi lin {O to
CSD.seg_Iength-l}

code-segment

ADD

Name:

Encoding:

Stack state
transfonnation:

Interrupts:

Exp Overflow:

Inv Stack Arg:

AMAX

Name:

Encoding:

Stack state
transformation:

Interrupts:

Inv Stack Arg:
Stack-Underflow

AMIN

Name:

Encoding:

5014954

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

add

1 syllable ("80")

opnd (numer i c)

opnd (numer i c) ==> opnd (numer i c)

R(x + y) = exponent value too big

TOS not opnd or TOS2 not opnd Stack­
Underflow

arithmetic maximum

2 syllables ("958A") Variant

opnd (numer i c)

opnd (numer i c) ==> opnd (numer i c)

TOS not opnd or TOS2 not opnd

arithmetic mInImUm

2 syllables ("9588") Variant
Otherwise see AMAX.

B-7

ASRT

Nalne:

Encoding:

Stack state
transformation:

Interrupts:

Inv Stack Arg:

False Assertion:
Stack -Underflow

BCD

Nmne:

Encoding:

Stack state
transformation:

Interrupts:

Int Overflow:

Inv Code Param:

Inv Stack Arg:
Stack -Overflow
Stack -Underflow

BRFL

B-8

Nanle:

Encoding:

Stack state
transformation:

Interrupts:

llnv Code Paranl:

Inv Index:

Inv Stack Arg:
Stack -Underflow

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

assert

3 syllables ("9580", interrupt_code:8) Variant

opnd (Boo 1 ean) ==> Nu 1 1

TOS not operand

opnd NOT Boolean True

binary convert to decimal

3 syllables ("9577", N:8) Variant

opnd (numer i c) ==>

TOS not dp integer

N > 24

TOS not opnd

branch false

opnd (BCD)

3 syllables (" AO", op_psi:3, op_pwi: 13)

opnd (Boo 1 ean) ==> Nu 11

op_psi > 5

op_pwi .. in {O to CSD. seg_Iength -1 }

TOS not operand

BRTR

Narne:

Encoding:

BRST

Narne:

Encoding:

Stack state
transformation:

Interrupts:

Iny Code Param:
Stack-Underflow

BRUN

Name:

Encoding:

State stack
transformation:

Interrupts:

Iny Code Param:

Iny Index:

BSET

Name:

Encoding:

CBON

Nanle:

Encoding:

Stack state
transformation:

In terru pts :

Iny Stack Arg:
Stack -Underflow

5014954

System Architecture Reference Manual, Volume 2
'Operator Reference Summaries

branch true

3 syllables (" AI", op_psi:3, op_pwi: 13)
Otherwise see BRFL.

bit reset

2 syllables ("9E", Db: 8)

dest: any (bit-vector) ==> dest'

Db > 47

branch unconditional

3 syllable (" A2", op_psi:3, op_pwi: 13)

none

op_psi > 5

op_pwi, in {O to CSD. seg_Iength -1 }

bit set

2 syllables ("96", Db:8)
Otherwise see BRST.

count binary ones

2 syllables ("95BB") Variant

opnd(bit-vector) ==> 7-bit integer

TOS not opnd

B-9

CEOD

Name:

Encoding:

Stack state
transformation:

Interrupts:

(nt Overflow:

lnv Arg Value:

[nv Index:

[nv Object:

Inv Stack Arg:

Paged Array:

Presence Bit:
Stack-Underflow

CEOU

Name:

Encoding:

Stack state
transformation:

Interrupts:

CGED

Name:

Encoding:

B-IO

System Architecture Reference Manual, Volume 2
Operator R1eference Summaries

compare characters equal delete

1 syllable CF4")

len! opnd(integer)

sou r c e 2: ~':

sourcel: desc ==>Null

len not sp integer

sourcel/source2 Pointer.char_index out of
range or len > 2**20 - 1

source I ' I source2' word index -, in {O to
2**16-l}

Mem[AbsentCopyDD,address] not original DD

len not opnd
or source 1 not {IndexedDD, opnd}
or source2 not {IndexedDD, opnd}
or (source} = EBCDIC(hex) and
source2 hex(EBCDIC))

source} or source2 Pointer

source 1 or source2 Pointer

compare characters equal update

} syllable ("FC ")

len: opnd(integer)

sou r c e 2: ~': source2'
-------------------- ==> ---------

sourcel: de:;c source 1 '

same as CEQD.

compare characters greater or equal delete

I syllable ("FI")
Otherwise see CEQD.

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

-- -

CGEU

Name:

Encoding:

CGTD

Name:

Encoding:

CGTU

Name:

Encoding:

CHSN

Name:

Encoding:

Stack state
transformation:

Interrupts:

Inv Stack Arg:
Stack -Underflow

CLED

Name:

Encoding:

CLEU

Name:

Encoding:

5014954

compare characters greater or equal update

1 syllable ("F9")
Otherwise see CEQU.

compare characters greater delete

1 syllable ("F2")
Otherwise see CEQ D.

compare characters greater update

1 syllable ("FA")
Otherwise see CEQU.

change sign

1 syllable ("8E")

num: opnd (numer i c) ==> num I

num not opnd

compare characters less or equal delete

1 syllable ("F3")
Otherwise see CEQD.

compare characters less or equal update

1 syllable ("FB ")
Otherwise see CEQU.

B-l1

CLSD

Narne:

Encoding:

CLSU

Narne:

Encoding:

CNED

Narne:

Encoding:

CNEU

Narne:

Encoding:

CUIO

B-12

Narne:

Encoding:

Stack state
transformation:

Interrupts:

Inv Arg Value:

Inv Stack Arg:

Stack -Underflow

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

compare characters less delete

1 syllable (//FO//)
Otherwise see CEQD.

compare characters less update

1 syllable (//F8//)
Otherwise see CEQU.

compare characters not equal delete

1 syllable C'F5//)
Otherwise see CEQD.

compare characters not equal update

1 syllable (//FD//)
Otherwise see CEQU.

communicate with Universal I/O

2 syllables (//954C//) Variant

iocb: SingleOO ==> Null

Mem[iocb].[47:16] -, = hex//lOCB//

iocb not prescnt unpaged unindexed copy
SingleD 0

DBCD

Name:

Encoding:

Stack state
transformation:

Interrupts:

Int Overflow:

Inv Arg Value:

lnv Stack Arg:
Stack-Underflow

DBFL

Name:

Encoding:

Stack state
transformation:

Interrupts:

Inv Stack Arg:

DBRS

Name:

Encoding:

Stack state
transformation:

Interrupts:

Int Overflow:

Inv Arg Value:

Inv Stack Arg:
Stack-Underflow

5014954

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

dynamic binary convert to decimal

2 syllables ("957F") Variant

N: opnd(integer)

B: opnd (numer i c) ==> opnd (BCD)

N not sp integer or B not dp integer

N .in {O to 24}

N not opnd or B not opnd

dynamic branch false

1 syllable ("AS")

branch-dest: ,',

opnd (Boo 1 ean) ==> Null

same as DBUN, plus:

opnd(Boolean) not operand

dynamic bit reset

1 syllable ("9F")

db: opnd(integer)

dest: any(bit-vector)

db not sp integer

db .in {O to 47}

db not opnd

==> dest'

B-13

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

OBST

Na:me:

Encoding:

OBTtR

Name:

Encoding:

OBUN

Name:

Encoding:

Stack state
transformation:

Int,errupts:

[nt Overflow:

.lnv Arg Value:

Inv Index:

Inv Object:

Inv Reference:

Inv Stack Arg:
Stack -Underflow

dynamic bit set

1 syllable ("97")
Otherwise see DBRS.

dynamic branch true

1 syllable (" A9")
Otherwise see DBFL.

dynamic branch unconditional

1 syllable (" AA")

branch-dest: ,': ==>Null

branch-dest opnd not sp integer

PCW.ll -, == LL
or branch-dest opnd .., in {O to 2* lie 14 - 1 }
(optionally reportable as Invalid Index) or
PCW.sdll -, = SDLL

branch-dest opnd.dyn_pwi
.., in {O to CSD.seg_Iength-1}

NIR W = --+ PCW

NIRW

branch-dest not {opnd,PCW ,NIRW}

Also see aLXCH - NIRW evaluation; aPRCW - code-stream pointer distribution.

OEXI

B-14

Nanle:

Encoding:

Stack state
transformation:

][nterrupts:

disable external interrupts

2 syllables ("9547") Variant

none

none

DFTR

Name:

Encoding:

Stack state
transformation:

Interrupts:

Int Overflow:

Inv Arg Value:

Inv Stack Arg:

Stack -Underflow

DINS

Name:

Encoding:

Stack state
transformation:

Interrupts:

Int Overflow:

Inv Arg Value:

Inv Stack Arg:
Stack -Underflow

5014954

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

dynamic field transfer

1 syllable ("99")

len: opnd(integer)

sb: opnd(integer)

db: opnd(integer)

I

source: any (bit-vector)

dest: any (bit-vector)
1-------------------------

len or sb or db not sp integer

len I in {O to 48} or sb I in /0 to 47} or
db lin {O to 47}

len not opnd
or sb not opnd
or db not opnd

dynamic field insert

1 syllable ("9D")

source: any (bit-vector)

len: opnd(integer)

db: opnd(integer)

dest: any (bit-vector)

len or db not sp integer

==> dest '

len I in {O to 48} or db I in {O to 47}

len not opnd or db not opnd

8-15

DISO

Name:

Encoding:

Stack state
transformation:

Interrupts:

[nt Overflow:

[nv Arg Value:

Inv Stack Arg:
Stack-Underflow

DIVD

Name:

Encoding:

Stack state
transformation:

Interrupts:

Divide by Zero:

Exp Overflow:

Exp Underflow:

lnv Stack Arg:

Precision Loss:
Stack -Underflow

DLAY

B-16

Nanle:

Encoding:

Stack state
transformation:

]lnterrupts:

Systenl Architecture Reference Manual, Volume 2
Operator Reference Summaries

dynamic field isolate

1 syllable ("9B")

len: opnd(integer)

sb: opnd(integer)

source: any(bit-vector)

len or sb not sp integer

==> sp

len -, in {O to 48} or sb -, in {O to 47}

len not opnd or sb not opnd

divide

1 syllable ("83")

opnd (numer i c)

opnd (numer i c) ==>

TOS opnd = 0

1

--------------­

opnd (numer- i c)
,---------------

R(x/y) = exponent value too big

R(x/y) = exponent value too small

TOS not opnd or TOS2 not opnd

R(x/y) -, = R *(x/y)

delay

3 syllables ("95F6", N:8) Variant

none

none

DLET

Name:

Encoding:

Stack state
transformation:

Interrupts:

Stack -Underflow

DR NT

Name:

Encoding:

Stack state
transformation:

Interrupts:

Inv Stack Arg:

Stack -Underflow

DSLF

Name:

Encoding:

Stack state
transformation:

Interrupts:

Int Overflow:

Inv Arg Value:

Inv Stack Arg:
Stack -Underflow

5014954

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

any

delete top-of-stack

1 syllable ("B5")

==> Nu 11

dynamic range test

2 syllables ("9583") Variant

H: opnd (numer i c)

L: opnd (numeJ:- i c) ==> opnd (Boo 1 ean)

X: opnd (numer i c) x

H not operand or L not operand or X not
operand

dynamic scale left

1 syllable ("el")

sf: opnd(integer)

opnd (numer i c) ==> opnd (i nteger)

sf not sp integer or TOS2 not dp integer

sf not in {O to I2}

sf not opnd or TOS2 not opnd

B-17

DSRF

Name:

Encoding:

Stack state
transformation:

Interrupts:

Int Overflow:

Inv Arg Value:

In", Stack Arg:
Stack-Underflow

DSRR

Name:

Encoding:

Stack state
transformation:

Interrupts:

Int Overflow:

Inv Arg Value:

Inv Stack Arg:
Stack -Underflow

DSRS

B-18

Narne:

Encoding:

Stack state
transform'ation:

Interrupts:

Int Overflow:

lnv Arg Value:

Inv Stack Arg:
Stack-Underflow

System Architectun~ Reference Manual, Volume 2
Operator Reference Summaries

----~ ---------------------------

dynamic scale right final

1 syllable ("e7")

sf: opnd(integer)

opnd (numer i c) ==> sp (BCD)

sf not sp integer or TOS2 not dp integer

sf -. in {O to 12}

sf not opnd or TOS2 not opnd

dynamic scale right rounded

1 syllable ("e9")

sf: opnd(integer)

opnd (numer i c) ==> opnd (i nteger)

sf not sp integer or TOS2 not dp integer

sf ,in {O to 12}

sf not opnd or TOS2 not opnd

dynamic scale right save

1 syllable ("e5")

sf: opnd(integer) opnd (i nteger)
------------------- ==> ----------------

opnd (numer i c) sp (BCD)

sf not sp integer or TOS2 not dp integer

sf -. in {O to 12}

sf not opnd or TOS2 not opnd

DSRT

Name:

Encoding:

DUPL

EEXI

Name:

Encoding:

Stack state
transformation:

Interrupts:
Stack -Overflow
Stack -Underflow

Name:

Encoding:

Stack state
transformation:

Interrupts:

ENDE

Name:

Encoding:

Stack state
transformation:

Interrupts:

Inv Index:

5014954

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

dynamic scale right truncate

1 syllable ("C3")
Otherwise see DSRR.

duplicate top-of-stack

1 syllable ("B?")

iteml

iteml: any ==> iteml

enable external interrupts

2 syllables ("9546") Variant

none

none

end edit

1 syllable ("DE") Edit

none, except to establish final stack state for
TEEU

source' or dest' word index..., in {O to
2**16-1}

B-19

ENDF

B-20

Name:

Encoding:

Stack state
transformation:

Interrupts:

Inv Index:

M,emory Protect:

Paged Array:

Stack-Overflow:

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

end float

3 syllables ("DS", MinusChar:8, PlusChar:8)
Edit

none

dest' word index -, in {O to 2 * * 16 - 1 }

read_only dest pointer

dest pointt:T

If table-edit, update for Paged Array interrupt

ENTR

Name:

Encoding:

Stack state
transformation:

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

enter

1 syllable (" AB")

S-->

n parameters

head of IRW chain- --->to PCW

F--> --~~~~~~~~-~s~~--=l---+
topmost

activation
record

RCW - ------+

1

_---------------,

S--> topmost
activation

record

------~~~------=l--+

F--> --~~~~~~-~s~~---I I

D[ll]-> ---------------­
previous

activation
record

RCW

o ell] --> ----~~~~~~-~s~~--- <--1 link to
Previous
Activation

inactive MSCW <-1

Interrupts:

Binding Request:

Inv Arg Value:

Inv Reference:

I nv Ref Chain:

Inv Stack Arg:

Stack Structure:

V Record

Before ENTR Operator After ENTR Operator

IR W chain ~ DD with element_size = 7

Mem[F + 1] NIRW directly to PCW and
PCW -:-
and PCW.ll - 1 ,= NIRW.lambda
or PCW.ll ,in {a, MSCW.ll+ 1}
or PCW.invalid_ll --, = °
NIRW

IRW chain = ~ (PCW, or DD with
element_size = 7)

Mem[F + 1] not IRW

S :$; F or Mem[F] --, = inactive MSCW
or SIRW.lexical_Iink --, ~ entered MSCW
or new displacement --, in {1 to 2** 16 - 1 }

Also see aLXCH - NIRW evaluation; display update; aLXLK - SIRW evaluation; aPRCW -
code-stream pointer distribution.

5014954 B-2]

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

EQUL

Name:

Encoding:

Stack state
transformation:

Interrupts:

Inv Stack Arg:
Stack -Underflow

EVAL

Name:

Encoding:

Stack state
transformation:

Interrupts:

Inv Reference:

Inv Ref Chain:

Inv Stack Arg:
Stack -Underflow

equal to

1 syllable ("BC")

opnd (numer i c)

opnd (numer i c) ==> sp (Boo 1 ean)

TOS not opnd or TOS2 not opnd

evaluate

1 syllable (" AC")

ref: ,', ==> {IRW,lndexedWordDD}

NIRW

see functional definition in Section 3

ref not {IRW,IndexedWordDD}

Also see aACCE - IRW ~ PCW; aLXCH - NIRW evaluation; aLXLK - SIRW evaluation.

EXCH

NaIne:

Encoding:

Stack state
transformation:

Interrupts:
Stack-Underflow

B-22

exchange top-of-stack

1 syllable (" B6")

iteml: any item2
------------ =:> -------

item2: any iteml

EXIT

Name:

Encoding:

Stack state
transformation: 5 -->

Interrupts:

Block Exit:

D[ll] ,
F-->

Stack Structure:

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

I
/

exit

1 syllable ("A3")

T05m item

topmost AR I
(a t 1 eve 1 m) /

:~:w ---=j ___ ~~l~~~rY-
T05n item s-->

I prior AR I I
/ (a t 1 eve 1 n) / /

RCW ----I' j
M5CW ---: -+ <-

------------------1 ...

BEFORE ex it (ll = m)

RCW.block_exit = 1

Mem[D[LL] + 1] .., = RCW

D[ll],
F-->

or Mem[D[LL]] .., = entered MSCW
or MSCW.history_link = 0
or HistLink !S BOSR
or Stack[HistLink] -. = MSCW
or RCW.ll -. = MSCW.ll

I
/

(First entered MSCW on historical chain)

T05n item

topmost AR I
(at level n) /

:~:w ~~~J+
------------------1 ~

AFTER ex it (ll = n)

Also see aLXCH - display update; aPRCW - code-stream pointer distribution.

5014954 B-23

System Architecture Reference Manual~ Volume 2
Operator Reference Summaries

EXPU

Name:

Encoding:

Stack state
transformation:

Interrupts:

Int Overflow:

Inv Arg Value:

Inv Object:

Inv Stack Arg:

Pnesence Bit:
Stack -Underflow

EXSD

B-24

Name:

Encoding:

Stack state
transformation:

Interrupts:

I nt Overflow:

Inv Arg Value:

Inv Object:

Inv Stack Arg:

Presence Bit:
Stack -Underflow

execute single edit operator, single pointer
update

1 syllable ("DD")

len: opnd(integer)

ptr: desc ==> ptrl

len not sp integer

dest Pointer .char_index out of range
or len > 2**20-1

Mem[AbsentCopyDD.address] not original DD

len not opnd or ptr not IndexedDD

ptr

execute single edit operator delete

1 syllable (" D2")

len: opnd(1nteger)

sour ce: ~':

dest: desc ==> Nu 11

len not sp integer

source/dest Pointer.char_index out of range
or len > 2**20-1

Mem[AbsentCopyDD.address] not original DD

len not opnd or source not
{lndexedD D, opnd }
or dest not IndexedDD

source or dest pointer

EXSU

Name:

Encoding:

Stack state
transformation:

Interrupts:

FLTR

Name:

Encoding:

Stack state
transformation:

Interrupts:

Inv Code Param:
Stack -Underflow

GREQ

Name:

Encoding:

GRTR

Name:

Encoding:

5014954

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

execute single edit operator update

1 syllable ("DA")

len: opnd(integer)

sour ce: ~'c source l

-------------------- ==> ---------
dest: desc dest I

NOTE

Note: final stack state produced at completion
of subsequent edit micro-operator.

same as EXSD.

field transfer

4 syllables ("98", Db:8, Sb:8, Len:8)

source: any (bit-vector)

dest: any (bit-vector) ==> dest '

Db > 47 or Sb > 47 or Len > 48

greater than or equal to

1 syllable ("89")
Otherwise see EQUL.

greater than

1 syllable ("8A")
Otherwise see EQUL.

B-25

HALT

Nairne:

Encoding:

Stack state
transformation:

J nterrupts:

ICLD

Narrle:

Encoding:

ICRD

Name:

Encoding:

ICUD

Natne:

Encoding:

Stack state
transformation:

Interrupts:

lnt Overflow:

Inv Arg Value:

Inv Index:

Inv Object:

Inv Stack Arg:

Paged Array:

Presence Bit:

S tack -Overflow:
Stack-Underflow

B-26

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

conditional processor halt

2 syllables ("95DF") Variant
1 syllable ('" DF") Edit

none

none

input convert left-signed delete

2 syllables ("9575") Variant
Otherwise see ICUD.

input convert right-signed delete

2 syllables ("9576") Variant
Otherwise see ICUD.

input convert unsigned delete

1 syllable (,,'A4")

len: opnd(integer)

---------------1 opnd (i nteger)
---------------1

sou~ce: * ==>
--------------------1

Result is sp if ABS(integer) < 8**13, dp
otherwise.

len not sp integer

len > 23
or source Pointer .char _index out of range

source' word index ,in {O to 2**16-1}

Mem[AbsentCopyDD.address] not original DD

len not opnd or source not {IndexedDD,
opnd}

source pointer

source pointer

update for Paged Array interrupt

ICVD

Name:

Encoding:

ICVU

Name:

Encoding:

Stack state
transformation:

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

input convert delete

1 syllable ("CA")
Otherwise see ICUD.

input convert update

1 syllable ("CB")

len: opnd(integer) source l

-------------------- ==> ---------------
source:)'(opnd (i n teger)

NOTE
Result is sp if ABS(integer)<8**13> , dp otherwise.

IDIV

Interrupts:

Name:

Encoding:

Stack state
transformation:

Interrupts:

Divide by Zero:

Int Overflow:

Inv Stack Arg:
Stack-Underflow

IDLE

Name:

Encoding:

Stack state
transformation:

In terru pts :

5014954

same as ICUD.

integer divide

1 syllable (" 84")

opnd (numer i c)

---------------1 opnd (i n teger)

opnd (numer i c) ==>
I

TOS opnd = 0

result not sp or dp integer
(Result type depends on argument types.)

TOS not opnd or TOS2 not opnd

idle until interrupt

2 syllables ("9544") Variant

none

An external interrupt occurs at the end of the
operator.

B-2?

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

.---------------------

IMKS

B-28

Name:

Encoding:

Stack state
transformation:

Interrupts:
Stack-Underflow

insert mark stack

1 syllable (fieF")

1---------------
iteml

item2

item2: any inactive MSCW

same as MKST, plus:

INDX

Name:

Encoding:

Stack state
transformation:

Interrupts:

Binding Request:

Int Overflow:

Inv Index:

Inv Object:

Inv Reference:

Inv Ref Chain:

Inv Stack Arg:

Presence Bit:

Page Struct Err:

Stack -Underflow

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

index

1 syllable (" A6")

desc- i nd: ,'~

index: opnd(integer) ==> IndexedDD

OR

index: opnd(integer)

desc- i nd: ,'~ ==> IndexedDD

IRW chain ~ DO with element_size = 7
or desc-ind is copy DD with element_size =
7

index not sp integer

index -lin {O to DD.length-l}
or (unpaged CharDD and word index lin {O
to 2** 16 - I})
or (unpaged DoubleDD and (doubled) word
index I in {O to 2**20 - I})

Mem[AbsentCopyDD.address] not original DD

NIRW

IRW chain = ~ (unindexed WordDD,
unindexed CharDD, or DD with element_size
= 7)

desc-ind not {unindexed copy WordDD,
unindexed copy CharDD,IRW} or index not
opnd

page table

paged DD [page index]
original SingleD D

~ unpaged

Also see aLXCH - NIRW evaluation; aLXLK - SIRW evaluation.

5014954 B-29

INOP

Name:

Encoding:

Stack state
transformation:

Interrupts:

Inv Index:

[nv Stack Arg:

Mernory Protect:

Paged Array:

Stack -Overflow:

INSC

B-30

Name:

Encoding:

Stack state
transformation:

Interrupts:

[nv Index:

Mernory Protect:

Paged Array:

Stack -Overflow:

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

insert overpunch

1 syllable ("OB") Edit

none

dest' word index lin {O to 2**16-1}

dest.element_size = hex

read_only dest pointer

dest pointer

If table-edit, update for Paged Array
interrupt.

insert cond:itional

3 syllables ("00", ZeroChar:B,
NonZeroChar:B) Edit
4 syllables ("00", Length:B, ZeroChar:B,
NonZeroChar:B) Table edit

none

dest' word index I in {O to 2** 16 - I}

read_only dest pointer

dest pointer

If table-edit, update for Paged Array
interrupt.

INSG

Name:

Encoding:

Stack state
transformation:

Interrupts:

Inv Index:

Inv Stack Arg:

Memory Protect:

Paged Array:

Stack-Overflow:

INSR

Name:

Encoding:

Stack state
transformation:

Interrupts:

Inv Code Param:
Stack -Underflow

INSU

Name:

Encoding:

5014954

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

insert display sign

3 syllables ("D9", MinusChar:8, PlusChar:8)
Edit

none

dest' word index -Jin {O to 2** 16 - I}

dest.element_size = hex

read_only dest pointer

dest pointer

If table-edit, update for Paged Array
interrupt.

field insert

3 syllables ("9C", Db:8, Len:8)

source: any (bit-vector)

dest: any (bit-vector) ==> dest'

Db > 47 or Len > 48

insert unconditional

2 syllables ("DC", Char:8) Edit
3 syllables ("DC", Length:8, Char:8) Table
Edit Otherwise see INSC.

B-3!

INXA

Name:

Encoding:

Stack state
transformation:

Interrupts:

Binding Request:

Int Overflow:

Inv Index:

Iov Object:

Inv Reference:

Inv Ref Chain:

Inv Stack Arg:

Presence Bit:

Page Struct Err:

Stack -Underflow

ISOL

B-32

Name:

Encoding:

Stack state
transformation:

Interrupts:

Inv Code Param:
Stack-Underflow

SystCITI Architecture Reference Manual, Volume 2
Operator Reference Summaries

index, by means of address-couple parameter

3 syllables ("E7", lambda:4, delta: 12)

j ndex: opnd (j nteger) ==> I ndexedDD

IRW chain ~ DD with element_size

index not sp integer

index -dn {O to DD.length-l} or
(unpaged CharDD and word index -tin
{O to 2** 16 - I})

7

or (unpag,ed DoubleDD and (doubled) word
index ,in {O to 2**20-1})

Mem[AbsentCopyDD.address] not original DD

address-couple parameter

IRW chain = ~ (unindexed WordDD,
unindexed CharDD,
or DD with element_size 7)

index not opnd

page table

paged DD [page index] ~ unpaged
original SingleD D

field isolate

3 syllables ("9A", Sb:8, Len:8)

source: any (bit-vector) ==> sp

Sb > 47 or Len > 48

JOIN

Name:

Encoding:

Stack state
transformation:

Interrupts:

Inv Stack Arg:
Stack-Underflow

LAND

Name:

Encoding:

Stack state
transformation:

Interrupts:
Stack -Underflow

LEQV

Name:

Encoding:

LESS

Name:

Encoding:

5014954

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

set two singles to double

2 syllables ("9542") Variant

opnd

opnd ==>
1------

dp

TOS not opnd or TOS2 not opnd

logical and

1 syllable ("90")

any (b it-vee tor)

any (b it-vee tor) ==>

logical equivalence

1 syllable ("93")
Otherwise see LAND.

less than

1 syllable ("88")
Otherwise see EQUL.

any (b it-vee tor)

B-3~

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

LKID

Name:

Encoding:

Stack state
transformation:

Interrupts:

Inv Object:

Iny Reference:

Inv Stack Arg:

Pn$ence Bit:
Stack -Underflow

read interlock status

2 syllables. ("95B3") Variant

ref:)'c ==> sp (12-b it integer)

ref = ~ word with tag in {0,3}
or Mem[AbsentCopyDD.address] not original
DO

NIRW

ref not {I R W, I ndexedSingleD 0 }

IndexedSingleD 0

Also see aLXCH - NIRW evaluation; aLXLK - SIRW evaluation.

LLLU

B-34

Name:

Encoding:

Stack state
transformation:

Interrupts:

Int Overflow:

Iny Index:

Iny Object:

Iny Stack Arg:

Presence Bit:
Stack-Underflow

linked list lookup

2 syllables ("95BD") Variant

index: opnd(integer)

1 is t: Sing 1 eDD

==> sp(integer)
I

targ: opnd(integer)

index or targ not sp integer

any index value .in {O to DD.length-l}

Mem[AbsentCopyDD.address] not original DD

index not opnd or targ not opnd or list not
unpaged unindexed SingleDD

SingleDD

LNMC

Name:

Encoding:

Stack state
transformation:

Interrupts:

Inv Reference:
Stack ~Overflow

LNOT

Name:

Encoding:

Stack state
transformation:

Interrupts:
Stack -Underflow

LOAD

Name:

Encoding:

Stack state
transformation:

Target

Interrupts:

lnv Object:

Inv Reference:

Inv Stack Arg:

Presence Bit:
Stack-Underflow

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

Long name call

4 syllables ("958C", lambda:4, delta: 12)
Variant

Null ==> NIRW

address-couple parameter

logical not

1 syllabIc ("92")

item: any (bit-vector) ==> item '

load

1 syllable ("BD")

ref: 1(==> target

NOTE
{opnd, tag 4 word, uninit opnd, SIRW, desc}

reference = ~ > {SIRW, DD, even-tag word}
or IndexedDoubleDD = ~ operand
or Mem[AbsentCopyDD.address] not original
DD

NIRW

ref not {IRW,IndexedWordDD}

IndexedWordDD

Also see aLXCH - NIRW evaluation; aLXLK - SIRW evaluation.

5014954 B-35

Sy.)h..lll Architecture Reference Manual, Volume 2
Operator Reference Summaries

LODT

Name:

Encoding:

Stack state
transformation:

Interrupts:

lnt Overflow:

lnv Address:

Inv Arg Value:

Inv Object:

Inv Reference:

Inv Stack Arg:

Presence Bit:
Stack-Underflow

load transparent

1 syllable ("Be")
2 syllables ("958C") Variant

ref: ,', ==> I--~~~--
1-------

ref opnd not a sp integer (*)

ref integer .in {O to 2**20-1} (*)

ref opnd -1 in {O to 2**20 - I} (*)

Mcm[AbsentCopyDD.address] not original DO

NIRW

ref not {IRW,lndcxedSingleDD,20-bit integer}

IndexedSingleD 0

Also see aLXCH - NIRW evaluation; aLXLK - SIRW evaluation.

NOTE
(*) lnt Overflow, Inv Address and Inv Arg Value are alternatives for some
cases of Invalid Stack Argument; see operator definition in section 3.

LOG2

LOK

B-36

Name:

Encoding:

Stack state
transformation:

Interrupts:
Stack-Underflow

Nalne:

Encoding:

Stack state
transformation:

Interrupts:

Locking:

leading onE: test

2 syllables ("958B") Variant

any(bit-ve~tor) ==> sp(integer)

lock interlock

2 syllables ("95BO") Variant

same as LOKC, plus:

interlock status not Free

LaKe

Name:

Encoding:

Stack state
transformation:

Interrupts:

Memory Protect:

LOR

Name:

Encoding:

LSEQ

LT8

Name:

Encoding:

Name:

Encoding:

Stack state
transformation:

Interrupts:
Stack -Overflow

LT16

Name:

Encoding:

5014954

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

conditional lock interlock

2 syllables ("95Bl") Variant

-~~~~-~-I ==>

--------1
sp (Boo 1 ean)

same as LKID, plus:

read_only IndexedSingleDD

logical or

1 syllable ("91")
Otherwise see LAND.

less than or equal to

1 syllable ("SB")
Otherwise see EQUL.

insert S-bit literal

2 syllables ("B2", constant:S)

Null ==> sp

insert 16-bit literal

3 syllables ("B3", constant: 16)
Otherwise see L TS.

B-37

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

--

LT48

Name: insert 48-bit literal

EJt1coding: 7 to 12 syllables ("BE", ... , constant:48)

NOTE
Constant starts on word boundary; otherwise see L T8.

LVL.C

Name:

Encoding:

MCHR

Name:

EJt1coding:

Stack state
transformation:

Interrupts:

Inv Index:

Memory Protect:

Paged Array:

Stack-Overflow:

Undefined Op:

MFLT

Name:

Encoding:

B-38

Long value call

4 syllables ("9580", lambda:4, delta: 12)
Variant
Otherwise see V ALC.

move characters

1 syllable ("07") Edit
2 syllables ("07", Length:8) Table Edit

none

source' or dest' word index ..,in {O to
2**16-1}

read_only dest pointer

source or dest pointer

If table-edit, update for Paged Array
interrupt.

move operator follows EXPU

move with float

4 syllables ("01", ZeroChar:8, MinusChar:8,
PlusChar:8) Edit
5 syllables ("01", Length:8, ZeroChar:8,
MinusChar:8, PlusChar:8) Table Edit
Otherwise see MCHR.

MINS

Name:

Encoding:

MKSN

Name:

Encoding:

Stack state
transformation:

Interrupts:

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

move with insert

2 syllables ("DO", ZeroChar:8) Edit
3 syllables ("DO", Length:8, ZeroChar:8)
Table Edit
Otherwise see MCHR.

mark-stack bound to name-call

1 syllable ("DF")

same as MKST (may be compiled with
subsequent NAMC)

same as MKST.

If an optimization of the MKSN-NAMC pair is implemented, the following interrupts can also be
generated:

Inv Reference:

Undefined Op:

address-couple from NAMC

next operator not NAMC

Such an implementation may also be defined to generate the following interrupts in anticipation
of the forthcoming ENTR:

Binding Request:

Inv Ref Chain:

IRW chain ~ DD with element_size

IRW chain I ~ (PCW, or DD with
element_size = 7)

7

Also see aLXCH - NIRW evaluation; aLXLK - SIRW evaluation.

MKST

Name:

Encoding:

Stack state
transformation:

Interrupts:

Stack -Overflow
Stack Structure:

5014954

mark stack

syllable (" AE")

Null ==> inactive MSCW

(new F) (old F) lin {I to 2**14-1}
or (new F) - BOSR I in {O to 2**16-1}

B-39

MPCW

Name:

Encoding:

Stack state
transformation:

Interrupts:
Stack-Overflow

MULT

Name:

Encoding:

Stack state
transformation:

Interrupts:

Exp Overflow:

Exp Underflow:

Precision Loss:

Inv Stack .Arg:
Stack -Underflow

MULX

B-40

Natne:

Encoding:

Stack state
transformation:

Interrupts:

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

make PC\~

7 to 12 syllables ("BF", ... , SkeletonPCW:48)

NOTE

SkeletonPCW starts on word boundary

Nu 11 ==> pew

mUltiply

1 syllable ("82")

opnd (numer i c)

opnd (numer i c) ==> opnd (numer i c)

R(x*y) exponent value too big

R(x*y) exponent value too small

R(x*y) -, == R *(x*y)

TOS not opnd or TOS2 not opn'd

extended nlultiply

1 syllable

opnd (numer i c)

opnd (numer i c) ==>

same as lVIUL T
1
-------------1 dp (numer i c)

MVNU

Name:

Encoding:

5014954

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

move numeric unconditional

1 syllable ("D6") Edit
2 syllables ("D6", Length:8) Table Edit
Otherwise see MCHR.

B-41

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

----------------------------- ---------------------------

MVST

Name:

Encoding:

Stack state
transformation

Interrupts:

Inv Arg Value:

Inv Index:

Inv Object:

Inv Stack Arg:

Presence Bit:

Stack Structure:

move to stack

2 syllables ("95AF") Variant

s--> TOS item

I 1
/ /

F--> inactive Msc~--=l---+
---- ----I I

I topmost 1 I
.I AR / /

entered Msc~---I <-1
----I

1 I

o ell] -->

/ /

-------- I----~os-i~~~-----
.... 1----· ----

SF 1 I
.., d i sp / /

....

stack
height

..,

....

inactive Msc~--=l---+
---- ----I I

I topmost I I
/ AR / /

I

/

entered MSCW

1

/

<-1

stack ----------------- stack .., -----------------
base --> processor id base -------> TSCW

BEFORE move stack
(ac t i ve)

ENR value too large for container

AFTER move stack
(i nac t i ve)

SNR value I in {O to SVD.length-l}

Mem[AbsentCopyDD.address] not original DD
or stack-vector descriptor not unpaged original
SingleDD
or stack descriptor not unpaged unindexed
SingleDD

TOS not single-precision operand

destination stack descriptor

Stack [stack base] 1= TSCW
or computed F +-- BOSR
or S-BOSR I in {I to 2 * * 16 - 1 }
or S-F: lin {I to 2**14-1}
or Stack [HistLink] .. = MSCW
or LL I == MSCW.ll
(First entered MSCW on historical chain.)

Stack -Underflow: (option if ENR container-size is 0)

Also see aISX - argument not 12-bit integer (option if ENR container-size
display update.

0); aLXCH -

B-42

NAMe

Name:

Encoding:

Stack state
transformation:

Interrupts:

Inv Reference:
Stack-Overflow

NEQL

Name:

Encoding:

NOOP

Name:

Encoding:

Stack state
transformation:

NORM

Name:

Encoding:

Stack state
transformation:

Interrupts:

I,nv Stack Arg:

Exp Underflow:
Stack -Underflow

5014954

System, Architecture Reference Manual, Volume 2
Operator Reference Summaries

name call

2 syllables (binary 01 :2, AddressCouple: 14)

Null ==> NIRW

address-couple parameter

not equal to

1 syllable ("8D")
Otherwise see EQUL.

no operation

1 syllable ("FE")
2 syllables ("95FE") Variant

none

normalize

2 syllables ("958E") Variant

num:opnd(numeric) ==> num l

num not opnd

N(x) = exponent value too small

B-43

NTGD

Name:

Encoding:

Stack state
transformation:

Interrupts:

Int Overflow:

Inv Stack Arg:
Stack-Underflow

NTGR

Name:

Encoding:

Stack state
transformation:

Interrupts:

Int Overflow:

Inv Stack Arg:
Stack -Underflow

NTIA

Name:

Encoding:

NTTD

Name:

Encoding:

B-44

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

integerize double-precision rounded

2 syllables ("9587") Variant

opnd (numer i c) ==> dp (i nteger)

TOS opndl not dp integer

TOS not opnd

integerize rounded

1 syllable ("87")

opnd (numer i c) ==> sp(integer)

TOS opnd not sp integer

TOS not opnd

integerize truncated

1 syllable ("86")
Otherwise see NTG R.

integerize double-precision truncated

2 syllables ("9586") Variant
Otherwise see NTGD.

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

----------------=------------------------ -.--.------

NVLD

Name:

Encoding:

Stack state
transformation:

Interrupts:

Invalid Operator

NXLN

Name:

Encoding:

Stack state
transformation:

Interrupts:

Binding Request:

Int Overflow:

Inv Index:

Inv Object:

Inv Reference:

Inv Ref Chain:

Inv Stack Arg:

Presence Bit:

Page Struct Err:

Stack-Underflow

invalid operator

1 syllable ("FF")
2 syllables ("9SFF") Variant

none

index and load name

1 syllable ("AS")

desc- i nd: ,'~

index: opnd(integer)

index: opnd(1nteger)

desc- i nd: ~'~

==> unindexed copy DO

OR

==> unindexed copy DO

IRW chain ~ DD with element_size = 7
or desc-ind is copy DD with element_size =
7

index not sp integer

index -, in {O to D D .length -1 }
or (unpaged DoubleDD and (doubled) word
index -dn {O to 2**20 -- I})

SingleDD [index] = ~ unindexed DD
or Mem[AbsentCopyDD.address] not original
DD

NIRW

IRW chain = ~ (unindexed SingleDD,
or DD with element_size = 7)

desc-ind not {unindexed copy SingleDD,IRW}
or index not opnd

page table or indexed SingleDD

paged SingleDD [page index] ~ unpaged
original SingleDD

Also see aLXCH -- NIRW evaluation; aLXLK -- SIRW evaluation.

5014954 B-45

NXLV

Name:

Encoding:

Stack state
transformation:

Interrupts:

Biinding Request:

Int Overflow:

Inv Index:

Inv Object:

Inv Reference:

Inv Ref Chain:

Inv Stack Arg:

Page Struct Err:

Presence Bit:
Stack -Underflow

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

index and load value

1 syllable (" AD")

desc- i nd: ~',

index: opnd(integer)

index: opnd(integer)

desc- i nd: "i't

==> opnd

OR

==> opnd

IRW chain ~ DD with element_size = 7
or desc-ind is copy DD with element_size =
7

index not sp integer

index -'in {O to DD.length-l}
or (unpaged DoubleDD and (doubled) word
index -, in {O to 2**20-1})

WordDD [index] = ~ opnd
or Mem[AbsentCopyDD.address] not original
DD

NIRW

IRW chain = ~ (unindexed WordDD,
or D D with element_size = 7)

desc-ind not {unindexed copy WordDD,IRW}
or index not opnd

paged WordDD [page index] = ~ unpaged
original SingleDD

Page table or indexed WordDD

Also see aLXCH - NIRW evaluation; aLXLK - SIRW evaluation.

B-46

NXVA

Name:

Encoding:

Stack State
transformation:

Interrupts:

Binding Request:

Int Overflow:

Inv Index:

Inv Object:

Inv Reference:

Inv Ref Chain:

Inv Stack Arg:

Page Struct Err:

Presence Bit:
Stack -Underflow

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

index and load value by means of address­
couple parameter

3 syllables ("EF", lambda:4, delta: 12)
______________________ 1

index: opnd(integer) 1==>

opnd

IRW chain ~ DO with element_size 7

index not sp integer

index --, in {O to DO .length -1 }
or (unpaged DoubleDD and (doubled) word
index --, in {O to 2**20 - I})

Word DO [index] = ~ opnd
or Mem[AbsentCopyDD.address] not original
DO

address-couple parameter

IRW chain = ~ (unindexed WordDD,
or DO with element_size = 7)

index not opnd

paged Word DO [page index] ~ unpaged
original SingleD 0

page table or indexed WordDD

Also see aLXCH - address-couple parameter evaluation; aLXLK - SIRW evaluation.

OCRX

Name:

Encoding:

Stack state
transformation:

Interrupts:

Int Overflow:

Inv Index:

Inv Stack Arg:
Stack -Underflow

5014954

occurs index

2 syllables ("9585") Variant

s p (leW)

opnd (i nteger) ==> s p (integer)

TOS2 opnd not sp integer

TOS2 opnd --, in {I to lew .ICW _limit}

TOS not sp or TOS2 not opnd

B-47

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

-------------- .--------------------------

ONE

Name:

Encoding:

OVRD

Name:

Encoding:

Stack state
transformation:

Interrupts:

Inv Object:

Inv Reference:

Inv Stack Arg:

M{!Illory Protect:

Presence Bit:
Stack -Underflow

insert literal one

1 syllable ("Bl")
Otherwise see L T8.

overwrite delete

1 syllable ("BA")

I------;;;~-~-------

1

_-----------------­

object: any

==> Nui 1

Mem[AbsentCopyDD.address] not original DD

NIRW

ref not {IRW ,IndexedSingleDD}

read_only IndexedSingleDD

IndexedSingleDD

Also see aLXCH - NIRW evaluation; aLXLK - SIRW evaluation.

OVRN

Name:

Encoding:

Stack state
transformation:

[nterrupts:

PACD

Natne:

Encoding:

B-48

overwrite non-delete

1 syllable ("BB")

ref: ~',

object: any

same as OVRD

pack delete

1 syllable ("Dl")
Otherwise see PKUD.

PACU

Name:

Encoding:

Stack state
transformation:

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

pack ,update

I syllable ("D9")

len: opnd(integer) source l

-------------------- ==> --------------------
source: ~', opnd(hex-sequence)

NOTE
Result is sp if len in {O to I2} and dp if len in {I3 to 24}

Interrupts:

PAUS

Name:

Encoding:

Stack state
transformation:

Interrupts:

PKLD

Name:

Encoding:

PKRD

Name:

Encoding:

5014954

same as PKUD

pause until interrupt

2 syllables ("9584") Variant

none

none

pack left-signed

2 syllables ("9573") Variant
Otherwise see PKUD.

pack right-signed

2 syllables ("9574") Variant
Otherwise see PKUD.

B-49

PKUD

Name:

Encoding:

Stack state
transformation:

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

pack unsigned

2 syllables (//9572//) Variant

len: o~nd (integer)

sour ce: ~': ==> opnd(hex-sequence)

NOTE
Result is sp if len in {O to 12} and dp if len in {13 to 24}.

Interrupts:

lnt Overflow:

Inv Arg Value:

Inv Index:

Inv Object:

lnv Stack Arg:

Paged Array:

Presence Bit:

Stack -Overflow:
Stack-Underflow

PUSH

Name:

Encoding:

Stack state
transformation:

] nterrupts:
Stack-Overflow

RDIV

Nante:

Encoding:

B-50

len not sp integer

len > 24
or source pointer .char_index out of range

source' word index --, in {O to 2** 16 - 1 }

Mem[AbsentCopyDD.address] not original DD

len not opnd or source not {IndexedDD,opnd

source pointer

source pointer

Update for Paged Array interrupt.

push working stack onto activation record

1 syllable C'B4//)

Expression stack is pushed
onto topmost activation record.

remainder divide

1 syllable (" 85//)
Otherwise s,ee IDIV.

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

------------------------------------_. ------

RDLK

Name:

Encoding:

Stack state
transformation:

Interrupts:

REMC

Name:

Encoding:

Stack state
transformation:

Interrupts:
Stack -Underflow

sp

(Others are
implementation-defined.)

5014954

read lock

2 syllables ("95BA") Variant

ref: ,'c

obj ect: any ==> prior contents: any

same as OVRD

read external memory control

2 syllables ("9592") Variant

==> sp

B-Sl

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

RETN

Name:

Encoding:

Stack state
transformation:

return

1 syllable ("A7")

S--> T05m item

D[ll] ,
F-->

Interrupts:

Inv Stack Arg:

Stack-Underflow

I topmost AR /
/ (a t level m) /

----j RCW (history
---- 1 ink) -

M5CW - -----+
------------------ 1

T05n item

J / prior AR /
/ (a t level n) / /

I
----j RCW

<-1

MSCW - -+
------------------1 ...

BEFORE return (ll = m)

same as EXIT, plus:

TOS is NIRW

RIPS

B-S2

Narne:

Encoding:

Stack state
transformation:

Interrupts:

Stack -Underflow

sp

(Others are
implementation-defined.)

read internal processor state

2 syllables ("9598") Variant

1----

==> I-:~-

5--> T05m item

TOSn item

/ topmost AR /
/ (a t level n) /
I

----j RCW
D[ll] , ----

F--> M5CW - -+
------------------1 ...

AFTER return (lL = n)

RNGT

Name:

Encoding:

Stack state
transformation:

Interrupts:

Inv Stack Arg:

Stack -Overflow

Stack -Underflow

ROFF

Name:

Encoding:

Stack state
transformation:

Interrupts:
Stack -Overflow

RPRR

Name:

Encoding:

Stack state
transformation:

Interrupts:

Inv Arg Value:

Stack -Underflow

Also see aISX:

5014954

System A'rchitecture Reference Manual, Volume 2
Operator Reference Summaries

range test

4 syllables ("9582", 1:8, h:8) Variant

1

opnd (Boo 1 ean)

X: opnd (numer i c) ==> x

TOS not operand

read and reset overflow flip-flop

1 syllable ("07")

Nu 11 ==> sp (Boo 1 ean)

read processor register

2 syllables ("95B8") Variant

reg-id: sp(integer) ==> sp(integer)

reg-id not in {a, LL, 36-38, 52-53, 58}

reg-id not 6-bit integer.

B-53

RSDN

Nanle:

Encoding:

Stack state
transformation:

IntcTrupts:
Stack -Underflow

RSNF~

Nanle:

Encoding:

Stack state
transformation:

In terru pts:
Stack -Overflow

RSTF

Nanne:

Encoding:

Stack state
transformation:

RSUP

B-S4

Name:

Encoding:

Stack state
transformation:

Interrupts:
Stack-Underflow

System Architecture· Reference Manual, Volume 2
Operator Reference Summaries

rotate stack down

2 syllables ("95B7") Variant

item 1: any item2

item2: any ==> item3

item3: any

read stack number

2 syllables ("9581") Variant

Null ==> sp (stack number)

reset float flip-flop

1 syllable ("D4") Edit

none

rotate stack up

2 syllables ("95B6") Variant

item3

iteml

item3: any item2

RTAG

Name:

Encoding:

Stack state
transformation:

Interrupts:
Stack -Underflow

RTFF

Name:

Encoding:

Stack state
transformation:

Interrupts:
Stack-Overflow

RTOD

Name:

Encoding:

Stack state
transformation:

Interrupts:
Stack-Overflow

RUNI

Name:

Encoding:

Stack state
transformation:

Interrupts:

5014954

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

any

read tag

2 syllables ("95B5") Variant

==> 4-bit integer

read true-false flip-flop

1 syllable ("DE")

Nu 11 ==> sp (Boo 1 ean)

read time of day clock

2 syllables ("95A7") Variant

Null ==> sp(integer)

indicate running

2 syllables ("9541") Variant

none

none

B-55

System Architecture Reference rvlanual, Volume 2
Operator Reference Summaries

-------------- ------------------------------

SAME

Name:

Encoding:

Stack state
transformation:

Interrupts:
Stack -Underflow

SClF

Nmne:

Encoding:

Stack state
transformation:

Interrupts:

Int Overflow:

Inv Code Param:

Inv Stack Arg:
Stack-Underflow

SCRF

B-56

Name:

Encoding:

Stack state
transformation:

Interrupts:

Int Overflow:

Inv Code Param:

Inv Stack Arg:
Stack-Underflow

logical equality

1 syllable ("94")

any (b it-vector)

any (b it-vector) ==> sp (Boo 1 ean)

scale left

2 syllables ("CO", ScaleFactor:8)

---------------1
opnd (numer i c) I

==>

TOS not dp integer

ScaleFactor > 12

TOS not opnd

scale right final

opnd (i nteger)

2 syllables ("C6", ScaleFactor:8)

-~~~~(~~~~~~~)-I ==>
---------------1

TOS not dp integer

ScaleFactor > 12

TOS not opnd

sp (BCD)

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

-------------------------------------_ .. __ ._---

SCRR

Name:

Encoding:

Stack state
transformation:

Interrupts:

SCRS

Name:

Encoding:

Stack state
transformation:

Interrupts:
Stack -Overflow

SCRT

Name:

Encoding:

5014954

scale right rounded

2 syllables ("C8", ScaleFactor:8)

1

_--------------

opnd (numer i c)

opnd (i nteger) ==>

same as SCRF

scale right save

2 syllables ("C4", ScaleFactor:8)

opnd (i nteger)

same as SCRF, plus:

scale right truncate

2 syllables ("C2", ScaleFactor:8)
Otherwise see SCRR.

B-S7

SEO[)

Narne:

Encoding:

Stack state
transformation:

Interrupts:

]fnt Overflow:

llnv Arg Value:

Inv Index:

lnv Object:

lnv Stack Arg:

Paged Array:

Presence Bit:
Stack -Underflow

SEOl)

Name:

Encoding:

Stack state
transformation:

Interrupts:

SFDC

B-58

Nanle:

Encoding:

State stack
transformation:

Interrupts:

Inv Index:

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

scan while equal delete

2 syllables ("9SF4") Variant

delim: sp(char)

len: opnd(integer)

source: ~': ==> Null

len not sp integer

source Pointer.char __ index out of range
or len > 2**20 - 1

source' word index ,in {O to 2**16-1}

Mem[AbsentCopyDD.address] not original DO

delim not sp or len not opnd or source not
{lndexedDD,opnd}

source pointer

source pointer

scan while equal update

2 syllables ("9SFC") Variant

--------------------1 delim: sp(char)

len: opnd(integer) len'
-------------------- ==> ---------

source: ~',

same as SEQD

skip forward destination characters

1 syllable ("DA") Edit
2 syllables (/IDA", Length:8) Table Edit

none

same as SRDC, plus:

dest' word index ,in {O to 2**16-1}

SFSC

Name:

Encoding:

Stack state
transformation:

Interrupts:

Inv Index:

SGED

Name:

Encoding:

SGEU

Name:

Encoding:

SGTD

Name:

Encoding:

SGTU

Name:

Encoding:

5014954

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

skip forward source characters

1 syllable ("D2") Edit
2 syllables ("D2", Length:8) Table Edit

none

same as SRSC, plus:

source' word index --, in {O to 2** 16 - l}

scan while greater or equal delete

2 syllables ("95Fl") Variant
Otherwise see SEQ D.

scan while greater or equal update

2 syllables ("95F9") Variant
Otherwise see SEQU.

scan while greater delete

2 syllables ("95F2") Variant
Otherwise see SEQD.

scan while greater update

2 syllables ("95FA") Variant
Otherwise see SEQU.

B-59

System Architectutc Reference Manual, Volume 2
Operator Reference Summaries

--- ----

SHOW

Na:me:

Encoding:

Stack state
transformation:

[nterrupts:

Int Overflow:

lnv Arg Value:

Inv Index:

Inv Object:

Inv Stack Arg:

J\1emory Protect:

Presence Bit:
Stack -Underflow

SINT

B-60

Narne:

Encoding:

Stack state
transformation:

Interrupts:

Stack-Underflow

Also see aISX:

primitive display

2 syllables (1/95DE") Variant

len: opnd(integer)

source: ~': ==> Null

len not sp integer

source Pointer.char _index -, in {O to 5}
or len > 2**20 - 1

source' word index -, in {O to 2** 16 - I}

Mem[AbsentCopyDD.address] not original DO

len not opnd or source not {EBCDIC
pointer,IndexedWordDD,opnd}

odd-tagged word in source

source pointer

set interval timer

2 syllables {1/9545") Variant

time: sp(integer) ==> Null

time not II-bit integer.

SISO

Name:

Encoding:

Stack state
transformation:

Result type is

Interrupts:

Int Overflow:

Inv Arg Value:

Inv Index:

Inv Object:

Inv Stack Arg:

Paged Array:

Presence Bit:

Stack -Overflow:
Stack -Underflow

SLED

Name:

Encoding:

SLEU

Name:

Encoding:

5014954

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

string isolate

1 syllable (" D5")

-----------~--------I
len: opnd(integer)

source: ,', ==> opnd(char-sequence)

NOTE

source

EBCDIC
hex

sp if len in

{O to 6}
{O to 12}

dp if len in

{7 to 12}
{13 to 24}

len not sp integer

(source = EBCDIC and len > 12)
or (source = hex and len > 24)
or source pointer .char_index out of range

Source' word index .in {O to 2** 16 - I}

Mem[AbsentCopyDD.address] not original DD

len not opnd or source not {IndexedDD,opnd}

source pointer

source pointer

Update for Paged Array interrupt.

scan while less or equal delete

2 syllables ("95F3") Variant
Otherwise see SEQD.

scan while less or equal update

2 syllables ("95FB") Variant
Otherwise see SEQU.

B-61

SLSD

Name:

Encoding:

SLSU

Name:

Encoding:

SNED

Narne:

Encoding:

SNEU

Name:

Encoding:

SNGL

B-62

Nanle:

Encoding:

Stack state
transformation:

Interrupts:

Exp Overflow:

Exp Underflow:

Inv Stack Arg:
Stack-Underflow

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

scan while less delete

2 syllables ("95FO") Variant
Otherwise see SEQD.

scan while less update

2 syllables ("95FS") Variant
Otherwise see SEQU.

scan while not equal delete

2 syllables ("95F5") Variant
Otherwise see SEQD.

scan while not equal update

2 syllables ("95FD") Variant
Otherwise see SEQU.

set to single-precision rounded

1 syllable

opnd (numer i c) ==> sp (numer i c)

RS(ND(x» = exponent value too large

N(x) = exponent value too small
or RS(ND(x» = exponent value too small
or NS(RS(ND(x») = exponent value too

TOS not opnd

SNGT

Name:

Encoding:

Stack state
transformation:

Interrupts:

Exp Overflow:

Exp Underflow:

Inv Arg Value:

Inv Stack Arg:
Stack -Underflow

SPLT

Name:

Encoding:

Stack state
transformation:

Interrupts:

Inv Stack Arg:
Stack -Overflow
Stack -Underflow

5014954

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

set to single-precision truncated

1 syllable ("CC")

opnd (numer i c) ==> sp (numer i c)

OR

word desc ==> sp desc

opnd

TS(ND(x» = exponent value too big

N(x) = exponent value too small
or TS(ND(x» = exponent value too small
or NS(TS(ND(x») = exponent value too small

TOS = unindexed DoubleDD and length
>2**19-1

TOS ..., in {opnd, WordDD}

set double to two singles

2 syllables ("9543") Variant

sp

==> sp

TOS not opnd

B-63

SPRR

Name:

Encoding:

Stack state
transformation:

Interrupts:

Iov Arg Value:

Stack-Underflow

Also see aISX:

SRCH

Name:

Encoding:

Stack state
transformation:

Interrupts:

Inv Object:

Inv Stack Arg:

J?resence Bit:
Stack -Underflow

SRDC

B-64

Narne:

Encoding:

Stack state
transformation:

Interrupts:

Paged Array:

Stack -Overflow:

::-:'ystcm Architecture Reference Manual, Volume 2
Operator Reference Summaries

set processor register

2 syllables (1/95B9") Variant

reg-val: sp(integer)

I
reg-id: sp(integer) ==> Nu 11

reg-id not in {valid values}
See SPRR definition.

reg-id not 6-bit integer or
reg-val not (register-width)-bit integer.

masked search for equal

2 syllables ("95BE") Variant

domain: SingleOO

mask: any (bit-vector)

targ: any (bit-vector) ==> sp(integer)

Mem[AbsentCopyDD.address] n0t original DD

domain -, in {unpaged copy SingleDD,
IndexedSingleDD}

SingleDD

skip reverse destination characters

1 syllable ("DB") Edit
2 syllable ("DB", Length:8) Table Edit

none

dest Pointer

If table-edit. update for Paged Array
interrupt.

SRSC

Name:

Encoding:

Stack state
transformation:

Interrupts:

Paged Array:

Stack -Overflow:

Undefined Op:

STAD

Name:

Encoding:

Stack state
transformation:

Interrupts:

Binding Request:

Inv Object:

Inv Reference:

Inv Ref Chain:

Inv Stack Arg:

Memory Protect:

Presence Bit:
Stack -Underflow

System .Architecture Reference Manual, Volume 2
Operator Reference Summaries

skip reverse source characters

1 syllable ("D3") Edit
2 syllables ("D3", Length:8) Table Edit

none

source pointer

I table-edit, update for Paged Array interrupt.

skip-source follows EXPU

store delete by means of an address-couple

3 syllables ("F6", lambda:4, delta: 12)

object: operand ==> Null

IR W chain --+ DD with element_size = 7

object operand type does not match store
target
or Mem[AbsentCopyDD.address] not original
DD

address-couple parameter

See functional definition in section 3.

(initial state) TOS not opnd
(restart state) TOS not {IRW,
IndexedWordDD}
or TOS2 not opnd

read_only IndexedWordDD
or reference chain --+ tag-3 item
or dp second word location is an odd-tagged
item

IndexedWordDD

Also see aACCE - ref chain
- RIRW evaluation.

;;::: PCW; aLXCH - address-couple parameter evaluation; aLXLK

5014954 B-65

STAG

Name:

Encoding:

Stack state
transformation:

Interrupts:

Inv Stack Arg:
Stack -U nderflow

STAN

Name:

Encoding:

Stack state
transformation:

Interrupts:

STFF

B-66

Name:

Encoding:

Stack state
transformation:

]nterrupts:

lnv Reference:

] nv Stack Arg:

Stack Structure:
Stack-Underflow

System Architecture· Reference Manual, Volume 2
Operator Reference Summaries

set tag

2 syllables ("95B4") Variant

tag: sp opnd

object: any ==>

tag not opnd

store non-delete by means of address-couple
parameter

3 syllables ("F7", lambda:4, delta: 12)

object: operand ==> obj ec t

same as STAD

stuff

syllable (" AF")

-----1

-~~~-t ==>
SIRW

NIRW

TOS not IRW

new displacement -, in {I to 2** 16 - 1 }

Also see aLXCH - NIRW evaluation.

STOO

Name:

Encoding:

Stack state
transformation:

Interrupts:

Binding Request:

Inv Object:

Inv Reference:

Inv Ref Chain:

Inv Stack Arg:

Memory Protect:

Presence Bit:
Stack -Underflow

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

store delete

1 syllable ("B8")

ref: ,'~

object: operand ==> Null
-------------------,

OR

object: operand

ref: ~.~ ==> Nu 11

IRW chain -» DD with element_size = 7

object operand type does not match store
target
or Mem[AbsentCopyDD.address] not original
DD

NIRW

See functional definition in Section 3.

TOS not {IRW, IndexedWordDD, opnd}
or (TOS in {IRW,IndexedWordDD} and
TOS2 not opnd)
or (TOS is opnd and TOS2 not
{IRW,IndexedWordDD})

read_only IndexedWordDD
or reference chain -» tag-3 item
or dp second word location is an odd-tagged
item

IndexedWordDD

Also see aACCE - ref chain;:::: PCW; aLXCH - NIRW evaluation; aLXLK - SIRW
evaluation.

5014954 B-67

STON

Name:

Encoding:

Stack state
transformation:

Interrupts:

STOP

Name:

Encoding:

Stack state
transformation:

Interrupts:

SUE~T

B-68

Name:

Encoding:

Stack state
transformation:

Interrupts:

Exp Overflow:

Inv Stack Arg:
Stack-Underflow

~ystem Architecture Reference Manual, Volume 2
Operator Reference Summaries

store non-delete

1 syllable ("B9")

object: operand ==> obj ec t

OR

object: operand

same as STOD

unconditional processor halt

2 syllables (//95BF") Variant

none

none

subtract

1 syllable ("81//)

opnd(numeric)

opnd (numer i c) ==> opnd (numer i c)

R(x-y) = exponent value too big

TOS not opnd or TOS2 not opnd

SWFD

Name:

Encoding:

Stack state
transformation:

Interrupts:

Int Overflow:

Inv Arg Value:

Inv Index:

Inv Object:

Inv Stack Arg:

Memory Protect:

Paged Array:

Presence Bit:
Stack -Underflow

SWFU

Name:

Encoding:

Stack state
transformation:

Interrupts:

SWTD

Name:

Encoding:

5014954

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

scan while false delete

2 syllables ("95D4") Variant

set: word desc

len: opnd(integer)

I-----:~~~:::-~------ ==> Nu 11

len not sp integer

source Pointer.char_index out of range
or len > 2**20 - 1

source' word index -lin {O to 2** 16 - I}

Mem[AbsentCopyDD.address] not original DD

set not IndexedSingleDD
or len not opnd
or source not {IndexedDD,opnd}

odd-tag in set

source pointer

set word desc or source pointer

scan while false update

2 syllables (195DC") Variant

set: word desc

len: opnd(integer)
-------------------- ==> ---------

source: ,'c source'

same as SWFD

scan while true delete

2 syllables (195D5") Variant
Otherwise see SWFD.

B-69

SWTU

Narne:

Encoding:

SXSN

Name:

Encoding:

Stack state
transformation:

Interrupts:

Iny Stack Arg:
Stack -Underflow

TEED

B-70

Nanle:

Encoding:

Stack state
transformation:

Interrupts:

Inv Arg Value:

Inv Index:

Inv Object:

Inv Stack Arg:

Presence Bit:

Stack-Underflow

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

scan while true update

2 syllables ("95DD") Variant
Otherwise see SWFU.

set external sign flip-flop

1 syllable ("D6")

num: operand ==>

num not opnd

table enter edit delete

1 syllable ("DO")

table: desc

source: ~.(

dest: desc ::=> Nu I I

table.esi I in {O to 5}

num

or source/dest PointeLchar_index out of
range
or len > 2**20 - 1 (restart state)

table' word index lin {O to 2**13 -I}

Mem[AbsentCopyDD.address] not original DD

table not IndexedDD or source not
{IndexedDD,opnd} or dest not IndexedDD

micro-op table pointer
or source or dest pointer

TEEU

Name:

Encoding:

Stack state
transformation:

Interrupts:

TEOD

Name:

Encoding:

Stack state
transformation:

Interrupts:

Int Overflow:

Inv Arg Value:

Inv Index:

Inv Object:

Inv Stack Arg:

Memory Protect:

Paged Array:

Presence Bit:
Stack-Underflow

5014954

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

table enter edit update

1 syllable (" D8")

table: desc

source: ,', source l

------------- ==> ---------
dest: desc dest '

NOTE
Final stack state is produced by ENDE.

same as TEED.

transfer while equal delete

1 syllable ("E4")

del im: sp (char)

len: opnd(integer)

source: ,':

dest: desc ==> Nu 11

len not sp integer

source/dest Pointer.char_index out of range
or len > 2**20 - 1

source' or dest' word index -1 in
{O to 2** 16 - I}

Mem[AbsentCopyDD.address] not original DD

delim not sp or len not opnd
or source not {lndexedDD,opnd}
or dest not IndexedDD
or (source = EBCDIC(hex) and dest
hex(EBCDIC))

read_only dest pointer

source or dest pointer

source or dest pointer

/

B-71

TEQU

Name:

Encoding:

Stack state
transformation:

Interrupts:

TGED

Narrle:

Encoding:

TGELJ

Narne:

Encoding:

TGTD

Narne:

Encoding:

TGTU

Name:

Encoding:

TLED

Nanle:

Encoding:

B-72

~ystem Architecture Reference Manual, Volume 2
Operator Reference Summaries
--- ----------

transfer while equal update

1 syllable (" Ee")

1

_-------------------

delim: sp(char)

len: opnd(integer) len '

source: i: ==> source l

dest: desc dest '

same as TEQD

transfer while greater or equal delete

1 syllable ("El")
Otherwise see TEQ D.

transfer while greater or equal update

1 syllable ("E9/1)
Otherwise see TEQU.

transfer while greater delete

1 syllable ("'E2/1)
Otherwise see TEQD.

transfer while greater update

1 syllabIc (" EA/I)
Otherwise see TEQU.

transfer while less or equal delete

1 syllable ("E3")
Otherwise see TEQD.

TLEU

Name:

Encoding:

TLSD

Name:

Encoding:

TLSU

Name:

Encoding:

TNED

Name:

Encoding:

TNEU

Name:

Encoding:

5014954

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

transfer while less or equal update

1 syllable ("EB")
Otherwise see TEQ U .

transfer while less delete

1 syllable ("EO")
Otherwise see TEQD.

transfer while less update

1 syllable ("E8")
Otherwise see TEQU.

transfer while not equal delete

1 syllable ("ES")
Otherwise see TEQ D.

transfer while not equal update

1 syllable ("ED")
Otherwise see TEQU.

B-73

TRNS

B-74

Name:

Encoding:

Stack state
transformation:

Interrupts:

Int Overflow:

Inv Arg Value:

Inv Index:

Inv Object:

Inv Stack Arg:

~1ernory Protect:

Paged Array:

Presence Bit:
Stack-Underflow

System Architectun! Reference Manual, Volume 2
Operator Reference Summaries

translate

2 syllables i("95D7") Variant

table: word desc

len: opnd(integer)

source: ~', source'
-------------------- ==> ---------

dest: desc dest'

len not sp integer

source/dest PointeLchar_index out of range
or len > 2**20 - 1

source' or dest' word index --, in {O to
2**16-1}

Mem[AbsentCopyOO.address] not original DO

table not IndexedSingleOO or len not opnd
or source not {IndexedOO,opnd}
or dest not IndexedDD

read_only dest pointer
or odd-tag in table

source or dt::st pointer

table word desc or source or dest pointer

TUND

Name:

Encoding:

Stack state
transformation:

Interrupts:

Int Overflow:

Inv Arg Value:

Inv Index:

Inv Object:

Inv Stack Arg:

Memory Protect:

Paged Array:

Presence Bit:
Stack-Underflow

TUNU

Name:

Encoding:

Stack state
transformation:

Interrupts:

5014954

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

transfer characters unconditional delete

1 syllable ("E6")

len: opnd(integer)

source: ~':

dest: desc ==> Null

len not sp integer

source/dest Pointer.char_index out of range
or len > 2**20 - 1

source' or dest' word index -lin {O to
2**16-l}

Mem[AbsentCopyDD.address] not original DD'

len not opnd or source not
{lndexedDD,opnd}
or dest not IndexedDD
or (source = EBCDIC(hex) and dest
hex(EBCD I C))

read_only dest pointer

source or dest pointer

source or dest pointer

transfer characters unconditional update

1 syllable ("EE")

len: opnd(integer)

sour ce: ,': source'
-------------------- ==> ---------

dest: desc dest'

same as TUND

B-75

TWFD

Name:

Encoding:

Stack state
transformation:

Interrupts:

Int Overflow:

Inv Arg Value:

Inv Index:

Inv Object:

Inv Stack Arg:

MelTIOry Protect:

Paged Array:

Presence Bit:
Stack-Underflow

TWFU

B-76

Name:

Encoding:

Stack state
transformation:

Interrupts:

:3YSlem Architecture Reference Manual, Volume 2
Operator Reference Summaries

transfer while false delete

2 syllables (//9502//) Variant

--------------------1
set: word desc

len: opnd(integer)

source: ~.~

dest: desc ==> Nu 11

len not sp integer

source/ desr Pointer .char _jndex out of range
or len > 2**20 - 1

source' or dest' word index -, in {O to
2**16-1}

Mem[AbsentCopyDD.address] not original DD

set not InclexedSingleDD or len not opnd
or source not {IndexedOD,opnd}
or dest not IndexedDD
or (source = EBCDIC(hex) and dest
hex(EBCDIC»

read __ only dest pointer
or odd-tag in set

source or dest pointer

set word desc or source or dest pointer

transfer while false update

2 syllables (//95DA//) Variant

1--------------------
set: word desc

len: opnd (integer) len '

source l

dest '

same as T\VFD

TWOD

Name:

Encoding:

Stack state
transformation:

Interrupts:

Int Overflow:

Inv Arg Value:

Inv Index:

Inv Object:

Inv Stack Arg:

Memory Protect:

Presence Bit:
Stack -Underflow

TWOU

Name:

Encoding:

Stack state
transformation:

Interrupts:

5014954

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

transfer words overwrite delete

1 syllable ("D4")

len: opnd(integer)

source: ,',

dest: desc ==> Null

len not sp integer

source/dest Pointer.char_index out of range
or len > 2**20 - 1

source' or dest' word index -. in {O to
2**k - I}, where k = 20 for IndexedWordDD
or 16 for pointer or source or destination
pointer has word_index = 2 * * 16 - 1 and
char_index > 0

Mem[AbsentCopyDD.address] not original DD

len not opnd or source not
{IndexedD D, opnd}
or dest not IndexedDD

read_only dest IndexedDD

source or dest IndexedDD

transfer words overwrite update

1 syllable ("DC")

len: opnd(integer)

source: ,', source l

-------------------- ==> ---------
dest: desc dest I

same as TWOD

B-77

TWSD

Name:

Encoding:

Stack state
transformation:

Interrupts:

Int Overflow:

Inv Arg Value:

Inv Index:

Inv Object:

Inv Stack Arg:

Memory Protect:

Paged Array:

Presence Bit:
Stack -Underflow

TWSU

B-78

NaIne:

Encoding:

Stack state
transformation:

Interrupts:

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

-------- --------------------------

transfer words delete

1 syllable ("D3")

1

_-------------------

len: opnd(integer)

sour ce: ~.~

dest: desc ==> Null

len not sp integer

source/dest PointeLchar_index out of range
or len > 2**20 - 1

source' or dest' index lin {O to 2**k-l},
where k =: 20 for IndexedWordDD, or 16
for pointer or source, or destination pointer
has word __ index = 2** 16 - 1 and char_index
> 0

Mem[AbsentCopyDD.address] not original DD

len not opnd or source not
{IndexedDD,opnd}
or dest not IndexedDD

read_only dest IndexedDD

source or dest IndexedDD

source or dest IndexedDD

transfer words update

1 syllable ("DB")

len: opnd(integer)

source: '1~ source'
-------------------- ==> ---------

dest: desc dest'

same as TWSD

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

TWTD

Name:

Encoding:

TWTU

Name:

Encoding:

UNLK

Name:

Encoding:

Stack state
transfonnation:

Interrupts:

Unlocking:

UPLD

Name:

Encoding:

UPLU

Name:

Encoding:

UPRD

Name:

Encoding:

5014954

transfer while true delete

2 syllables ("95D3") Variant
Otherwise see TWFD.

transfer while true update

2 syllables ("95DB") Variant
Otherwise see TWFU.

unlock interlock

2 syllables ("95B2") Variant

same as LOKe, plus:

interlock status not Locked_U ncontended

unpack left-signed delete

2 syllables ("9570") Variant
Otherwise see UPUD.

unpack left-signed update

2 syllables ("9578") Variant
Otherwise see UPUU.

unpack right-signed delete

2 syllables ("9571") Variant
Otherwise see UPUD.

B-79

UPRU

Name:

Encoding:

UPUD

Name:

Encoding:

Stack state
transformation:

Interrupts:

Int Overflow:

Inv Arg Value:

Inv Index:

Inv Object::

Inv Stack Arg:

Memory Protect:

Paged Array:

Presence Bit:
Stack -Underflow

UPUU

B-80

Name:

Encoding:

Stack state
transformation:

Interrupts:

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

unpack right-signed update

2 syllables ("9579") Variant
Otherwise see UPUU.

unpack unsigned delete

2 syllables ("95D1") Variant

len: opnd(integer)

source: opnd(hex-sequence)

dest: desc

len not: sp integer

len > 24

==> Null

or dest pointer . char_size out of range

dest' word index -, in {O to 2** 16-l}

Mem[AbsentCopyDD.address] not original DD

len not opnd, or source not opnd, or
dest not IndexedDD

read_only dest pointer

dest pointer

dest pointer

unpack unsigned update

2 syllables ("95D9") Variant

len: opnd(integer)

source: opnd(hex-sequence) source'
---------------------------- ==> ---------

dest: desc dest'

same as UPUD

USND

Name:

Encoding:

USNU

Name:

Encoding:

VALe

Name:

Encoding:

Stack state
transformation:

Interrupts:

Binding Request:

Inv Object:

Inv Reference:

Inv Ref Chain:

Inv Stack Arg:

Presence Bit:
Stack -Overflow:

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

unpack signed delete

2 syllables ("95DO") Variant
Otherwise see UPUD.

unpack signed update

2 syllables ("95D8") Variant
Otherwise see UPUU.

value call

2 syllables (binary 00:2, AddressCouple: 14)

Nu 1 1 ==> opnd

IRW chain ~ DD with element_size = 7

Mem[AbsentCopyDD.address] not original DO

lambda > 11

See functional definition in section 3.

restart TOS not {SIRW, IndexedWordOD,
operand}

IndexedWordDD

Also see aACCE - ref chain ~ PCW; aLXCH - address-couple parameter evaluation; aLXLK

VARI

Name:

Encoding:

Stack state
transformation:

Interrupts:

5014954

introduce variant operator

1 syllable ("95")

none

none

B-81

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

----~~ ---.-.. -- --------------

W,L\TI

Name:

Encoding:

Stack state
transformation:

Interrupts:
Stack -Overflow

WEMC

Name:

Encoding:

Stack state
transformation:

Interrupts:
Stack -Underflow

WHOI

Name:

Encoding:

Stack state
transformation:

Interrupts:
Stack-Overflow

Name:

Encoding:

Stack state
transformation:

Interrupts:

read machine identification

2 syllables (//95A4//) Variant

Null ==> dp(machine id)

sp

sp

write external memory control

2 syllables (//9593//) Variant

==> Null

(Others are implementation-defined.)

read processor identification

2 syllables ("954E//) Variant

Nul I ==> sp(proc id)

sp

write internal processor state

2 syllables (//9599") Variant

sp ==> Null
----I

Stack-Underflow (Others are implementation-defined.)

B-82

WTOD

Name:

Encoding:

Stack state
transformation:

Interrupts:
Stack -Overflow:

XTND

Name:

Encoding:

Stack state
transformation:

Interrupts:

Inv Stack Arg:
Stack -U nderflow

ZERO

zle

Name:

Encoding:

Name:

Encoding:

Stack state
transformation:

Interrupts:

5014954

System Architecture Reference Manual, Volume 2
Operator Reference Summaries

write time-of-day clock

2 syllables ("9549") Variant

1-------------------
I

time: sp(integer) ==> Null

Also see aISX: time not 36-bit integer.

set to double-precision

1 syllable ("CE")

dp (numer i c)

word desc ==> dp desc

TOS not {opnd, word desc}

insert literal zero

1 syllable ("BO")
Otherwise see L T8.

zero Interrupt_Count

2 syllables ("9540") Variant

none

none

B-83

Systenl Architecture Reference Manual, Volume 2

APPENDIX C
OPERATOR DEPENDENT INTERRUPT REFERENCE SUMMARIES

GENERAL INFORMATION

Operator Dependent Interrupts are listed alphabetically. For each interrupt, the oRerators and functions
that cause the interrupt are listed alphabetically. Where relevant, brief statements· of various conditions
under which an operator or function generates an interrupt are included. In some cases, operators and
fUllct ions which generate a particular interrupt are grouped into classes.

The association of Interrupt conditions with a class of operators, individual operator, or function, is
indicated by use of ellipses (series of periods or dots). If a class, operator, or function, has multiple
conditions ilcrnized, no precedence or priority is implied, all conditions listed are itemized as though
they are parallel to each other. If a common condition generates an interrupt during mUltiple classes,
operators, or functions, the condition is itemized under each class, operator, or function, for each in­
terrupt type.

The Itemization of Conditions under which interrupts are generated contain the following nonstandard
terms and abbreviations.

Address(name)

C

Dest

Dest' \'I/ord index

Dp

HistLink

I_cxLink

11

MemrRcf]

Opnd

OPT

R-~

R-R

SOUlce

Source digit

Source' word index

Sp

5014954

the nominal memory address associated with "name".

resumption condition is Continue.

destination array specification for pointer operators.

computed word-index of an updated destination
pointer.

double-precision.

the stack index computed from a history link.

the address computed from a lexical link.

lex ___ level.

The iterll stored in the memory location addressed by
Ref (Ref may be, for instance, a descriptor, IRW, or
nominal address.)

operand.

OPTIONAL (interrupt condition detection IS

implementation option.)

resumption condition IS Repeat-Initial.

resumption condition is Repeat-Restart.

resuIl.1ption condition is Repeat-Initial or Repeat­
Restart, according to whether the operator began in
initial or restart state, respectively.

source array specification for pointer operators.

non-signed hexidecimal character or a 4-bit EBCDIC
numeric digit.

computed word-index of an updated source pointer.

single-precision.

C-l

lystetn Architecture Reference l\;lanual, Volume 2
Operator Dependent Interrupt. Reference Summaries

Stack[i]

SVD

TOS

TOSi

V\Tord (as modifier of
descriptor)

TooBig

TooS:mall

The iteln stored at index-i in the current stack.

stack-vector descriptor.

Top-of-stack item.

i-th itern from the top of the stack (TOSI

descriptor . element_size is sp or dp.

TOS).

The exponent-value is too large to fit the available
exponent-field container (space).

The exponent-value is too small to fit the available
exponent-field container (space).

Unless restart state is specified explicitly, the interrupt descriptions that follow apply to the initial state
of the operator. For string-isolate" pack, input-convert, and enter-table-edit operators, the presence of
an additional argurnent in restart state changes the TOSi positions of some other arguments.

Binding Request

The following operators generate ,a Binding Request interrupt if a descriptor with an element_size of
7 is encountered in a reference chain:

alNTE ENTR INDX INXA L VLC NXLN NXL V NXV A ST AD STAN STOD STON VALC
MKSN-NAMC (optional implementation, anticipating ENTR)

The following operators generate a Binding Request interrupt if a copy descriptor with an element __ size
of 7 is encountered as a Descriptor Indication argument:

INDX NXLN NXL V

Block Exit

EXIT ,RETN RCW. block_exit

Code Segment Error

The common action aPRCW can generate Code Segment Error interrupts while distributing a new
code-sequence pointer, if the location referenced by the PCW (RCW, for EXIT and RETN) does not
contain a code-segment descriptor (with tag == 3). The test is OPTIONAL.

Divide by Zero

The following operators generate a Divide by Zero interrupt if the numeric interpretation of the top­
of-stack operand (divisor) is zero:'

DIV]) IDIV RDIV

Exponent Overflow

The following operators generate an Exponent-Overflow interrupt if the result of a rounding or trunca­
tion function is TooBig. For binary operators, the second from top-of-stack operand is denoted x and
the top operand y; for unary operators, the top-of-stack operand is denoted x.

C-2

System Architecture Reference Manual, Volume 2
Operator Dependent Interrupt Reference Summaries

ADD
DIVD
MULT,MULX
SNGL
SNGT
SUBT

Exponent Underflow

R(x + y) = TooBig
R(x/y) = TooBig
R(x*y) = Too Big
RS(ND(x)) = TooBig
TS(ND(x)) = TooBig
R(x-y) = TooBig

The following operators generate an Exponent-Underflow interrupt if the result of a rounding, trunca­
tion, or normalization function is TooSmall. For binary operators, the second from top-of-stack oper­
and is denoted x and the top operand y; for unary operators, the top-of-stack operand is denoted x.

False Assertion

DIVD
MULT,MULX
NORM
SNGL

SNGT

R(x/y) = TooSmall
R(x*y) = TooSmall
N(x) = TooSmall
N(x) = TooSmall
or RS(ND(x)) = TooSmall
or NS(RS(ND(x))) = TooSmall
N(x) = TooSmall
or TS(ND(x)) = TooSmall
or NS(TS(ND(x))) = TooSmall

A False Assertion interrupt is generated only by the ASRT (assert) operator when its stack input is
False. The operator's single-parameter syllable is the P2 parameter.

Integer Overflow

Conditions under which Integer-Overflow interrupts are generated are denoted as "stack item" not
"type" integer (not representable as an integer), where "type" is sp or dp.

aISX

BCD

CEQD,CEQU ,CGED,CGEU,
CGTD,CGTU ,CLED,CLEU,
CLSD, CLSU ,CNED, CNEU

DBCD

DBFL,DBTR

DBRS,DBST

DBUN

DFTR

DINS

DISO

5014954

argument not sp integer (See aISX summary.)

TOS opnd not dp integer

TOS opnd not sp integer

TOS opnd not sp integer
or TOS2 opnd not dp integer

TOS opnd not sp integer

TOS opnd not sp integer

TOS opnd not sp integer

TOS or TOS2 or TOS3 opnd not sp integer

TOS2 or TOS3 opnd not sp integer

TOS or TOS2 opnd not sp integer

C-3

System Architecture Reference Manual, Volume 2
Operator Dependent Interrupt Reference Summaries

DSLF, DSRF,DSRR,DSRS,DSRT

EXPU ,EXSD,EXSU

ICLD,ICRD,ICUD, ICVD,ICVU

IDIV

INDX

INXA

LLLU

LODT

NTGD,NTTD

NTGR,NTIA

NXLN,NXLV

NXVA

OCRX

PACD,PACU,

PKLD,PKRD,PKUD

RDIV

seLF, SCRF,SCRR,SCRS,SCRT

SEQD,SEQU ,SGED,SGEU,
SGTD,SGTU ,SLED,SLEU,
SLSD,SLSU ,SNED,SNEU

SHOW

SISO

S\VFD,SWFU ,SWTD,SWTU

TEQD,TEQU,TGED,TGEU,
TGTD, TGTU,TLED, TLEU,
TLSD,TLSU,TNED,TNEU

TRNS

TUND,TUNU

T"\VFD, T~FU, TWTD, TWTU

T\VOD,TWOU,TWSD,TWSU

UPLD,UPLU,UPRD,UPRU,
UPUD,UPUU,USND,USNU

TOS opnd not sp integer
or TOS2 opnd not dp integer

TOS opnd not sp integer

TOS opnd not sp integer

result not sp or dp integer (Result type
depends on argument types.)

index (TOS or TOS2) opnd not sp integer

TOS opnd not sp integer

TOS or TOS3 opnd not sp integer

argument not sp integer (see LODT summary)

TOS opnd not dp integer

TOS opnd not sp integer

index (TOS or TOS2) opnd not sp integer

TOS opnd not sp integer

TOS2 opnd not sp integer

TOS opnd not sp integer

same conditions as IDIV - result would be
Integer-Overflow

TOS opnd not dp integer

TOS2 opnd not sp integer

TOS not sp integer

TOS opnd not sp integer

TOS2 opnd not sp integer

TOS2 opnd not sp integer

TOS2 opnd not sp integer

TOS opnd not sp integer

TOS2 opnd not sp integer

TOS opnd not sp integer

TOS opnd not sp integer

Invalid Address is an Alarm interrupt, but it can be generated in one operator-dependent context; when
the LODT argurnent is an integeq but not within the range of a nominal memory address. An inlple­
mentation may be defined to generate an Invalid Argument Value or Invalid Stack Argument interrupt
in the same circumstance.

LODT TOS integer -, in {O to 2**20 - I}

C-4

System Architecture Reference Manual, Volume 2
Operator Dependent Interrupt Reference Summaries

--

Invalid Argument Value

Conditions under which Invalid Argument Value interrupts are generated are denoted as < argument>
relational expression or < argument> ,in {valid range}, where < argument> may be a < type name­
> .field ora stack-item specification.

aACCE,aINTE

aISX

aPRCW

CUIO

DBCD

DBFL,DBTR,DBUN

DBRS,DBST

DFTR

DINS

DISO

DSLF, DSRF ,DSRR,DSRS,DSR T
ENTR

ICLD,ICRD,ICUD, ICVD,ICVU

LODT

MVST

PACD,PACU, PKLD,PKRD,PKUD

RPRR

SISO

SNGT

5014954

(Mem[F + 1] = NIRW directly to PCW and
PCW.ll > 0 and PCW.ll - 1 'T

NIR W .lambda) (OPTIONAL)

or PCW.ll - 1 ,= MSCW.ll (OPTIONAL)
or PCW.invalid_ll ,= 0

argument not k-bit integer (see aISX summary)

(PCW or RCW).psi ,in {O to 5}
(OPTIONAL)

Mem[TOS descriptor].[47:16] ,= hex"l0CB"

TOS opnd ,in {O to 24}

PCW.ll 1= LL (OPTIONAL)
or branch-dest opnd lin {O to 2**16-1}
(optionally reportable as Invalid Index)
or PCW.sdll 1= SDLL (OPTIONAL)

TOS opnd lin {O to 47}

TOS opnd I in {O to 48}
or TOS2 opnd I in {O to 47}
or TOS3 opnd I in {O to 47}

TOS2 opnd I in {O to 48}
or TOS3 opnd lin {O to 47}

TOS opnd lin {O to 48}
or TOS2 opnd lin {O to 47}

TOS opnd I in {O to 12}
(Mem [F + 1] = NIR W directly to PCW and
PCW.ll > 0 and PCW.ll - 1 1=

NIRW.lambda) (OPTIONAL)
or PCW.Il lin {O, MSCW.ll+l}
(OPTIONAL)
or PCW.invalid_ll 1= 0

TOS opnd > 23

argument not k-bit integer (see LODT
summary

ENR value too large for container
(OPTIONAL if container size = 0)

TOS opnd > 24

TOS not in {O, LL, 36-38, 52-53, 58}

(source = EBCDIC and TOS opnd > 12)
or (source = hex and TOS opnd > 24)

TOS = unindexed DoubleDD and length >
2**19-1

C-5

System Architecture Reference Manual, Volume 2
Operator Dependent Interrupt Reference Summaries

SPRR

TEED,TEEU

UPLD,UPLU,UPRD,UPRU,
UPUD,UPUU,USND,USNU

TOSI not in {O, LL, 36-38, 52-53, 58}

table descriptor.esi -, in {O to 5}
(OPTIONAL)

TOS opnd > 24

All pointer operators can generate the interrupt if the char_index field of a source or destination
pointer is not in the proper range ({O to 5} for EBCDIC, {O to II} for hexidecimal). The checks are
OPTIONAL.

CEQD CEQU CGED CGEU CGTD CGTU CLED CLEU CLSD CLSU CNED CNEU
EXPU EXSU EXSD
ICLD ICRD [CUD ICVD ICVU
PKLD PKRD PKUD PACD PACU
SEQD SEQU SGED SGEU SGTD SGTU SLED SLEU SLSD SLSU SNED SNEU
SHOW
SWFD SWFU SWTD SWTU
TEED TEEU
TEQD TEQU TGED TGEU TGTD TGTU TLED TLEU TLSD TLSU TNED TNEU
TRNS
TUND TUNU
T'NFD TWFU TWTD TWTU
TWOD TWOU
TWSD TWSU
UPLD UPLU UPRD UPRU UPUD UPUU USND USNU

All pointer operators can generate the interrupt if the length argument exceeds 2**20 + 1. The check
is OPTIONAL for the SHOW operator and applies to TEED and TEEU only in restart state. (Some
pointer operators have a more restrictive limit, specifically string-isolate, input-convert, pack and un-·
pack.)

Invalid Code Parameter

Conditions under which Invalid Code Parameter interrupts are generated are denoted as paralmeter
name > maxirrlum valid value; all these tests are OPTIONAL.

BCD
BRFL,BRTR
BRST,BSET
BRUN
FLTR
INSR
ISOL
SCLF, SCRF,SCRR,SCRS,SCRT

Invalid Index

N > 24
op_psi > 5
Db > 47
op_psi > 5
Db > 47 or Sb > 47 or Len > 48
Db > 47 or Len > 48
Sb > 47 or Len > 48
ScaleFactor > 12

Conditions under which Invalid Index interrupts are generated are denoted "index value" -, in {valid
range} .

C-6

System Architecture Reference Manual, Volume 2
Operator Dependent Interrupt Reference Summaries

--

NOTE
Tests for word index < 2** 16 or 2**20 for pointer updates are shown for
both delete and update forms of the pointer operators. Only the update ver­
sions can generate the interrupt at normal termination, but both versions can
generate the interrupt if update is required in mid-operator, such as for an­
other interrupt.

aLXLK

aPRCW

BRFL,BRTR,BRUN

CEQD,CEQU ,CGED,CGEU,
CGTD,CGTU ,CLED,CLEU,
CLSD, CLSU, CNED, CNEU

DBFL,DBTR,DBUN

ENDE

ENDF

ICLD,ICRD,ICUD, ICVD,ICVU

INDX

INOP ,INSC,INSG,INSU

INXA

LLLU

MCHR,MFLT,MINS,MVNU

MVST

NXLN,NXLV

NXVA

OCRX

5014954

stack_number lin {O to SVD.length-l}
(OPTIONAL)

(PCW or R CW). pwi I in {O to
CSD.seg_Iength-l} (OPTIONAL)

op_pwi (param.) I in {O to CSD.seg_Iength­
I} (OPTIONAL)

source I' / source2' word index I in {O to
2**16-1}

TOS opnd.dyn pwi lin {O to
CSD.seg_Iength-l} (OPTIONAL)

source' or dest' word index lin {O to
2**16-1}

dest' word index I in {O to 2** 16 ~ 1}

source' word index lin {O to 2**16-1}

index (TOS or TOS2 opnd) I in {O to
DD.length-l }
or (unpaged CharDD and word index ,in {O
to 2**16-1})
or (unpaged DoubleDD and (doubled) word
index ,in {O to 2**20-1})

dest' word index I in {O to 2** 16 - I}

TOS opnd lin {O to DD.length-l}
or (unpaged CharDD and word index -Jin {O
to 2**16-1})
or (unpaged DoubleDD and (doubled) word
index I in {O to 2**20 - I})

any index value I in {O to DD.length-l}

source' or dest' word index ,in {O to
2**16-1}

Stack number not in {O to SVD .length-I}
(OPTIONAL)

index (TOS or TOS2 opnd) I in {O to
DD.length-l}
or (unpaged DoubleDD and (doubled) word
index lin {O to 2**20-1})

TOS opnd I in {O to D D .length -1 }
or (unpaged DoubleDD and (doubled) word
index I in {O to 2**20 -l})

TOS2 opnd -lin {1 to TOS.ICW_Iimit}

C-7

System Architecture Reference Manual, Volume 2
Operator Dependent Interrupt Reference Summaries

PACD,PACU, PKLD,PKRD,PKUD

SEQD,SEQU ,SGED,SGEU,
SGTD,SGTU ,SLED,SLEU,
SLSD,SLSU ,SNED,SNEU

SFDC,SRDC

SFSC,SRSC

SHOW

SISO

SWFD,SWFU ,SWTD,SWTU

TEED,TEEU

TEQD,TEQU:,TGED,TGEU,
TGTD,TGTU:,TLED,TLEU,
TLSD, TLSU ,TNED, TNEU

TRNS

TUND,TUNU

TWFD, TWFU, TWTD, TWTU

TWOD,TWOU,TWSD,TWSU

UPLD,UPLU 9 UPRD,UPRU,
UPUD, UPUU, USND, USNU

source' word index -dn {O to 2**16-1}

source' word index -dn {O to 2** 16 - l}

dest' word index -lin {O to 2**16-1}

source' word index -dn {O to 2** 16 - I}

source' word index I in {O to 2**16-l}

source' word index I in {Ot02**16-1}

source' word index lin {O to 2**16-l}

table' word index lin {O to 2**13 -I}

source' or dest' word index I in {O to
2**16-1}

source' or dest' word index -lin {O to
2**16-1}

source' or dest' word index -dn {O to
2**16-1}

source' or dest' word index lin {O to
2**16-1}

source' or dest' word index I in {O to
2**k - I}, where k = 20 for IndexedWordDD,
16 for pointer or source, or destination
pointer has word_index = 2** 16 - 1 and
char_index > 0

dest' word index I in {O to 2** 16-l}

Invalid Object

Invalid Object interrupts are indic~ted with the expression "reference -, ~ valid target", where applica­
ble, or noted with a short error !condition statement.

C-8

aFOP

aLXLK

DBFL,DBTR,DBUN

LKID

LOAD

second word of dp (accessed by means of
llRW) has tag 1= 2
or (accessed by means of IndexedDD) has odd
tag

stack-vector descriptor not unpaged original
SingleDD (OPTIONAL)
or stack descriptor not unpaged unindexed
SingleDD (OPTIONAL)

NIRW I ~ PCW

ref -, ~ word with tag in {0,3}
(OPTIONAL)

ref -, ~ (SIRW, DD, even-tag word)
or IndexcdDoubleDD -, -~ operand

System Architecture Reference Manual, Volume 2
Operator Dependent Interrupt Reference Summaries

MVST

LOK,LOKC

NXLN

NXLV,NXVA

ST AD,ST AN ,STOD,STON

UNLK

stack-vector descriptor not unpaged original
SingleDD (OPTIONAL)
or stack descriptor not unpaged unindexed
SingleDD (OPTIONAL)

ref -. ~ word with tag in {0,3}
(OPTIONAL)

SingleDD [index] -. ~ unindexed DD

WordDD [index] -. ~ opnd

Operand type does not match store target.

ref -, ~ word with tag in {0,3}
(OPTIONAL)

In addition, all operators that generate Presence Bit interrupts on a data descriptor can, instead, gener­
ate Invalid Object interrupts if an absent copy descriptor does not refer to an original DD:

Mem[AbsentCopyDD. address] not original DD

NOTE
Because the effect of an absent stack-vector descriptor or an absent copy
stack descriptor is undefined, an interrupt in this situation is OPTIONAL for
aLXLK and MVST.

Invalid Operator

An Invalid Operator interrupt is generated only by NVLD (invalid operator). NVLD is encoded in both
primary and variant modes.

Invalid Reference

An Invalid Reference interrupt may be generated by evaluation of an NIRW or an address-couple pa­
rameter. In the case of NAMC and LNMC, the interrupt can be generated in examining the address­
couple without evaluation. The tests are OPTIONAL.

5014954

DBFL,DBTR,DBUN
ENTR
EVAL
INDX
INXA
LKID
LOAD,LODT
LNMC
LVLC
LOK,LOKC
MKSN-NAMC
NAMC
NXLN,NXLV
NXVA
OVRD,OVRN
RDLK
STFF
STAD,STAN
STOD,STON
UNLK
VALC

NIRW
NIRW
NIRW
NIRW
address-couple parameter
NIRW
NIRW
address-couple parameter
address-couple parameter
NIRW
address-couple parameter (optional implementation)
address-couple parameter
NIRW
address-couple parameter
NIRW
NIRW
NIRW
address-couple parameter
NIRW
NIRW
address-couple parameter

C-9

System Architecture Reference Manual, Volume 2
Operator Dependent Interrupt Reference Summaries

Invalid Reference Chain

Conditions under which Invalid Reference Chain interrupts are generated are noted by indicating inva­
lid reference chains as "reference chain -, ~ valid reference or target", where feasible. Operators that
evaluate general reference chains are n1arked "**". Refer to operator chaining rules as defined in sec­
tion 3.

aINTE

ENTR

EVAL

INDX,INXA

LVLC

MKSN-NAMC

NXLN

NXLV,NXVA

STAD,STAN,STOD,STON

VALC

Invalid Stack Argument

[RW chain, ~ (PCW or (DO with
element_size = 7»

[RW chain -, ~ (PCW or (DO with
element_size 7»

**

IRW chain -, ~ (unindexed WordOD,
unindexed CharDD, or (DO with element_size
= 7»
**
(optional implementation, antIcIpating ENTR)
l[RW chain -, ~ (PCW or (DO with
element_size = 7»

KRW chain -, ~ (unindexed SingleDD
or (DO with element_size = 7»

KRW chain -, ~ (unindexed WordDD
or (DD with element_size = 7»

**
**

Conditions under which Invalid Stack Argument interrupts are generated are denoted as "stack item"
not "required type." "Required type" is a data type or set of types defined in Section 1 of this manual.

C-IO

aISX

ADD

AMIN,AMAX

ASRT

BCD

BRFL,BRTR

CHON

CEQD,CEQU ,CGED,CGEU,
CGTD,CGTU ,CLED,CLEU,
CLSD,CLSU ,CNED,CNEU

Argument not k-bit integer

TOS not opnd or TOS2 not opnd

TO D not opnd or TOS2 not opnd

TOS not opnd

TOS not opnd

TOS not opnd

TOS not opnd

TOS not opnd
or TOS2 not {IndexedDD,opnd}
or TOS3 not IndexedDD
or TOS2 = EBCDIC(hex) and TOS3
hex(EBCDIC)

System Architecture Reference Manual, Volume 2
Operator Dependent Interrupt Reference Summaries

CHSN

CUIO

DBCD

DBFL,DB1'R

DBRS,DBS1'

DBUN

DF1'R

DINS

DISO

DIVD

DRN1'

DSLF,DSRF,DSRR, DSRS,DSR1'

EN1'R

EQUL

EVAL

EXPU

EXSD,EXSU

GREQ,GR1'R

ICLD,ICRD,ICUD, ICVD,ICVU

IDIV

INDX

INXA

INOP

INSG

JOIN

LESS

LKID

LLLU

LOAD

5014954

1'OS not opnd

1'OS not present unpaged unindexed copy
SingleDD

1'OS not opnd or TOS2 not opnd

1'OS not {opnd,PCW,NIRW}
1'OS2 not opnd

1'OS not opnd

1'OS not {opnd,PCW,NIRW}

1'OS not opnd or TOS2 not opnd or TOS3
not opnd

TOS2 not opnd or 1'OS3 not opnd

1'OS not opnd or TOS2 not opnd

TOS not opnd or TOS2 not opIid

TOS not opnd or TOS2 not opnd
not opnd

TOS not opnd or 1'OS2 not opnd

Mem[F + 1] not IRW

1'OS not opnd or 1'OS2 not opnd

1'OS not {IRW,IndexedWordDD}

or TOS3

1'OS not opnd or TOS2 not IndexedDD

TOS not opnd or 1'OS2 not
{lndexedDD,opnd} or TOS3 not IndexcdDD

1'OS not opnd or 1'OS2 not opnd

TOS not opnd or TOS2 not
{lndexedDD,opnd}

TOS not opnd or TOS2 not opnd

(TOS not {unindexed copy WordDD,
unindexed copy CharDD,IRW} or TOS2 not
opnd) and (TOS not opnd or TOS2 not
{unindexed copy WordDD, unindexed copy
CharDD,IRW})

1'OS not opnd

dest.elemenL_size = hex

dest.element_size = hex

TOS not opnd or TOS2 not opnd

1'OS not opnd or TOS2 not opnd

1'OS not {IRW, IndexedSingleDD}

1'OS or 1'OS3 not opnd or 1'OS2 not unpaged
unindexed copy SingleDD

TOS not {IRW,IndexedWordDD}

C-ll

C-12

System Architecture Reference Manual, Volume 2
Operator Dependent [nterrupt Reference Summaries

LODT

LOK,LOKC

LSEQ

L VLC (restart)

MCHR,MFL T,MINS,MVNU

MULT,MULX

MVST

NEQL

NORM

NTGD,NTGR,NTIA,NTTD

NXLV

NXVA

OCRX

OVRD,OVRN

PACD,PACU,

PKLD,PKRD,PKUD

RDIV

RDLK

RETN

RNGT

SCLF

SCRF,SCRR,SCRS,SCRT

SEQD,SEQU ,SGED,SGEU,
SC,TD,SGTU ,SLED,SLEU,
SLSD ,SLSU ,SNED ,SNEU

SHOW

SISO

SNGL

SNGT

SPLT

SRCH

STAG

STFF

TOS not {IRW,IndexedSingleDD,20-bit
integer}

TOS not {IR W, IndexedSingleDD}

TOS not opnd or TOS2 not opnd

TOS not {SIRW, IndexedWordDD, operand}

source = EBCDIC(hex) and dest = hex
(EBCDIC

TOS not opnd or TOS2 not opnd

TOS not single-precision operand

TOS not opnd or TOS2 not opnd

TOS not opnd

TOS not opnd

(TOS not {unindexed copy WordDD,IRW} or
TOS2 not opnd) and (TOS not opnd or TOS2
not {unindexed copy WordDD,IRW})

TOS not opnd

TOS not sp or TOS2 not opnd

TOS not {IRW,IndexedSingleDD}

TOS not opnd or TOS2 not
{IndcxedDD,opnd}

TOS not opnd or TOS2 not opnd

TOS not {IRW,IndexedSingleDD}

TOS = NIRW

TOS not opnd

TOS not opnd

TOS not opnd

TOS not sp or TOS2 not opnd or TOS3 not
{IndexedDD,opnd}

TOS not opnd or TOS2 not {EBCDIC
pointer ,IndexedWordDD,opnd}

TOS not opnd or TOS2 not
{IndexedDD,opnd}

1'OS not opnd

1'OS not {opnd, word descriptor}

1'OS not opnd

1'OS --, in {unpaged unindexed copy SingleDD,
I ndexcdSingleDD}

1'OS not sp

1'OS not IRW

System Architecture Reference Manual, Volume 2
Operator Dependent Interrupt Reference Summaries

STAD,STAN (initial)

STAD,STAN (restart)

STOD,STON

SUBT

SWFD,SWFU ,SWTD,SWTU

SXSN

TEED,TEEU

TEQD,TEQU,TGED,TGEU,
TGTD,TGTU,TLED,TLEU,
TLSD, TLSU, TNED, TNEU

TRNS

TUND,TUNU

TWFD, TWFU, TWTD, TWTU

TWOD,TWOU,TWSD,TWSU

UPLD, UPLU, UPRD, UPRU,
UPUD,UPUU,USND,USNU

UNLK

V ALC (restart)

XTND

Locking

TOS not opnd

TOS not {IRW, IndexedWordDD} or TOS
not opnd

TOS not {IRW, IndexedWordDD, opnd} or
(TOS in {IRW, IndexedWordDD} and TOS2
not opnd) (TOS is opnd and TOS2 not
{IRW,IndexedWordDD})

TOS not opnd or TOS2 not opnd

TOS not IndexedSingleDD or TOS2 not opnd
or TOS3 not {IndexedDD,opnd}

TOS not opnd

TOS not IndexedDD or TOS2 not
{IndexedDD, opnd} or TOS3 not IndexedDD

TOS not sp or TOS2 not opnd or TOS3 not
{IndexedDD,opnd} or TOS4 not IndexedDD
or TOS3 = EBCDIC(hex) and TOS4 =
hex(EBCDIC)

TOS not IndexedSingleDD or TOS2 not opnd
or TOS3 not {IndexedDD,opnd} or TOS4 not
IndexedDD

TOS not opnd or TOS2 not
{IndexedDD,opnd} or TOS3 not IndexedDD
or TOS2 = EBCDIC(hex) and TOS3 =
hex(EBCDIC)

TOS not IndexedSingleDD or TOS2 not opnd
or TOS3 not {IndexedDD,opnd} or TOS4 not
IndexedDD or TOS3 = EBCDIC(hex) and
TOS4 = hex(EBCDIC)

TOS not opnd or TOS2 not
{IndexedDD,opnd} or TOS3 not IndexedDD

TOS not opnd or TOS2 not opnd TOS3 not
IndexedDD

TOS not {IRW, IndexedSingleDD}

TOS not {SIRW, IndexedWordDD, operand}

TOS not {opnd, word descriptor}

The Locking interrupt is generated by the LOK operator when the target interlock status is not Free.

Memory Protect

Most conditions under which Memory Protect interrupts are generated are noted by referencing a
read_only descriptor through which a write is attempted. Others are noted by encountering an odd­
tagged word in a set or translate table.

5014954 C-13

:-)ysrem Architecture Reference Manual, Volume 2
Operator Dependent Interrupt Reference Summaries

ENDF

INOP ,INSC,INSG,INSU

LOK,LOKC

MCHR,MFL T,MINS,MVNU

OVRD,OVRN

RDLK

read_only destination pointer

read_only destination pointer

read __ only IndexedSingleDD

read_only destination pointer

read. ___ only IndexedSingleDD

read ____ only IndexedSingleDD

odd-tag word in source SHOW

STAD,STAN,STOD,STON reference chain ~ tag-3 item or dp second­
word location is an odd-tagged item or

S\VFD,SWFU ,SWTD,SWTU

TEQD,TEQU,TGED,TGEU,

TGTD,TGTU,TLED,TLEU,

TLSD,TLSU,TNED,TNEU

TRNS

TUND,TUNU

TWFD, TWFU, TWTD, TWTU

T\VOD,TWOU

TWSD,TWSU

UPLD,UPLU,UPRD,UPRU,
UPUD, UPUU ~ USND, USNU

UNLK

Paged Array

read ___ only I ndexedWordDD

odd-tag in set

read_only destination pointer

read_only destination pointer or odd-tag in
table

read_only destination pointer

read_only destination pointer or odd-tag in
set

read-only destination pointer

read __ only destination pointer

read_only destination pointer

read_only IndexedSingleDD

Conditions under which Paged Array interrupts are generated are noted by naming the descriptor for
the array that nlay be Paged.

l~esumplion condition is inlplementation-defined for:

restart-state string-isolate, pack, and input-convert operators.

Resumption condition is Repeat-Initial for:

compare update operators before the relation is known.
pack and unpack operators with left-sign not yet fetched.
UPLD and UPLU operators prior to storing any character.
USND and USNU operators (in hexidecinlal) prior to storing any character.

Resumption condition is Repeat-Restart for:

compare operators after the relation is known.

C-14

System Architecture Reference Manual, Volume 2
Operator Dependent Interrupt Reference Summaries

UPLD and UPLU operators after the sign is stored.

USND and UPRU operators after the hexidecimal sign is stored.

UPRD and UPRU operators attempting to store a hexidecimal sign.

string-isolate, pack, or input-convert operators after any character has been fetched from the
source.

edit operators initiated by TEED or TEEU operators, (except for an interrupt on source segment
at the tart of an edit operator with FL TF = O.)

edit operators initiated by EXSD or EXSU with FL TF 1.

Resumption condition is Repeat-IR in all other cases.

CEQD,CEQU ,CGED,CGEU,
CGTD,CGTU ,CLED,CLEU,
CLSD,CLSU ,CNED,CNEU

ENDF

ICLD,ICRD,ICUD, ICVD,ICVU

INOP ,INSC,INSG,INSU

MCHR,MFLT,MINS,MVNU

PACD,PACU, PKLD,PKRD,PKUD

SEQD,SEQU,SGED,SGEU,
SGTD,SGTU ,SLED,SLEU,
SLSD,SLSU ,SNED,SNEU

SFDC,SRDC

SFSC,SRSC

SISO

SWFD,SWFU ,SWTD,SWTU

TEQD,TEQU,TGED,TGEU,
TGTD,TGTU,TLED,TLEU,
TLSD,TLSU,TNED,TNEU

TRNS

TUND,TUNU

TWFD, TWFU, TWTD, TWTU

TWSD,TWSU

UPLD,UPLU,UPRD,UPRU,
UPUD,UPUU,USND,USNU

Page Structure Error

source 1 or source2 pointer

dest pointer

source pointer

dest pointer

source or dest pointer

source pointer (R-R)

source pointer

dest pointer

source pointer

source pointer

source pointer

source or dest pointer

source or dest pointer

source or dest pointer

source or dest pointer

source or dest pointer

dest pointer (R-I, except R-R for signed after
sign stored)

The indexing operators can generate a Page Structure Error interrupt when indexing a paged DD.

INDX,INXA

5014954

paged DD [page index] --, ~ unpaged original
SingleDD

C-15

System Architecture Reference Manual, Volume 2
Operator Dependent Interrupt Reference Summaries

NXLN

NXLV,NXVA

Precis~on Loss

paged SingleDD [page index] -, -+ unpaged
original SingleD D
paged WordDD [page index] -, -+ unpaged
original SingleDD

The following operators generate a Precision Loss interrupt whenever rounding is possible (no Expo­
nent-Underflow), but precision must be lost to achieve an exponent within range.

Presence Bit

DIVD
MULT
MULX

R(x/y) -, = R *(x/y)
R(x*y) -, = R *(x*y)
R(x*y) -, = R *(x*y)

Conditions under which Presence Bit interrupts are generated are noted by naming the descriptor
through which access is required or the structure that is absent.

Resumption conditions are Repeat-IR, except as specified in the following table.

C-16

aLXLK

aPRCW

CEQD,CEQU ~CGED,CGEU,
CGTD,CGTU ,CLED,CLEU,
CLSD,CLSU,CNED,CNEU

EXSD,EXSU

EXPU

ICLD,ICRD,ICUD, ICVD,ICVU

INDX,INXA

LK[D

LLLU

LOAD

LOK,LOKC

LODT

LVLC

MVST

NXLN

NXLV,NXVA

OVRD,OVRN

PACD,PACU, PKLD,PKRD,PKUD

RDLK

SEQD,SEQU ,SGED,SGEU,
SGTD,SGTU ,SLED,SLEU,
SLSD,SLSU ,SNED,SNEU

stack descriptor

code-segment descriptor (C)

sourcel or source2 pointer (R-* for CxxU)

source or dest pointer (R-* if FL TF

dest pointer

source pointer (R-*)

page table

IndexedSingleDD

SingleDD

IndexedWordDD

IndexedSingleDD

IndexedSingleDD

IndexedWordDD (R-*)

destination stack descriptor

page table or indexed SingleDD

page table or indexed WordDD

IndexedSingleDD

source pointer (R-*)

IndexedSingleDD

source pointer

1)

System Architecture Reference Manual, Volume 2
Operator Dependent Interrupt Reference Summaries

SHOW

SISO

SRCH

STAD,STAN

STOD,STON

SWFD,SWFU ,SWTD,SWTU

TEED,TEEU

TEQD,TEQU,TGED,TGEU,
TGTD,TGTU,TLED,TLEU,
TLSD,TLSU,TNED,TNEU

TRNS

TUND,TUNU

TWFD, TWFU, TWTD, TWTU

TWOD,TWOU,TWSD,TWSU

UPLD, UPLU, UPRD, UPRU

UPUD,UPUU

USND,USNU

UNLK

VALC

Stack Overflow

source pointer

source pointer (R-*)

SingleDD

IndexedWordDD (R-*)

IndexedWordDD

set word descriptor or source pointer

edit-table descriptor or (R-*)
source or dest pointer (R-*)

source or dest pointer

table word descriptor or source or dest pointer

source or dest pointer

set word descriptor or source or dest pointer

source or dest pointer

dest pointer (R-*)

dest pointer

dest pointer (R-*)

IndexedSingleDD

IndexedWordDD (R-*)

Stack-Overflow interrupt is generated when a word is pushed onto the expression stack with the top­
of-stack address equal to the stack limit (LOSR).

The following operators and common actions have more stack outputs than inputs, and so can lead
to expression-stack growth:

aACCE aINTE DUPL IMKS LT8 LT16 LT48 LVLC MKSN MKST MPCW NAMC ONE RNGT
ROFF RSNR RTFF RTOD SCRS SPLT VALC WATI WHOI ZERO

The following operators can have stack outputs that, while equal in number to the stack arguments,
occupy more words:

BCD LOAD LODT NTGD NTTD NXV A SCLF XTND

Some operators have more arguments in restart state than in initial state. The following operators can
detect a stack overflow while updating the stack, prior to generating a Paged Array interrupt. The
Stack-Overflow interrupt will be generated after the initial one.

ICLD ICRD ICUD ICVD lCVU PKLD PKRD PKUD PACD PACU SISO

When initiated by TEED or TEEU:

ENDF INOP INSC INSG INSU MCHR MFL T MINS MVNU SFDC SFSC SRDC SRSC

Stack-Overflow is not necessarily reported by the operator that causes the stack build-up.

5014954 C-17

Systenl Architecture Reference Manual, Volume 2
Operator· Dependent Interrupt Reference Summaries

Stack Structure Error

aACCE

aINTE

aLXCH

ENTR

EXIT,RETN

MKSN ,MKST ,IMKS

MVST

STFF

new displacement lin {I to 2** 16 - I}
(OPTIONAL) or S+ 1 - F lin {I to
2**14-1} (OPTIONAL) (MKST) or
SIRW.lexical_Iink I ;?:: entered MSCW
(OPTIONAL)

SIR W .lexical_link I ;?:: entered MSCW
(OPTIONAL)

For i in levels traversed: Mem[LexLink to
level i] -, = entered MSCW (OPT) or
~v1SCW .lex_level --, = i (OPTIONAL)

S ::; F or Mem[F] --, = inactive t\,1SCW or
SIR W .lexical_link I ;?:: entered MSCW
(OPTIONAL) or new displacement I in {I to
2** 16 - I} (OPTIONAL)

Mem[D[LL]] I = entered MSCW
or Mem[D[LL] + 1] I = RCW
or MSCW.history_link = 0 (OPTIONAL)
or HistLink ::; BOSR
or Stack[HistLink] -, = MSCW
or RCW.Il --, = MSCW.ll (OPTIONAL)
(First entered MSCW on historical chain)

OPTIONAL, not allowed for interrupts: (new
F) - (old F) I in {I to 2** 14 - I} or (new
F) - BOSR I in {O to 2**16-1}

computed F ::; BOSR or HistLink ::5 BOSR
or S-BOSR -, in {I to 2 * * 16 - 1 }
(OPTIONAL) .
or S-F -, in {I to 2** 14 - I} (OPTIONAL)
or Stack[stack base] -, = TSCW
or Stack [HistLink] -, <= MSCW
or MSCW.ll -, = LL (OPTIONAL)
(l:irst entered MSCW on historical chain)

new displacement --, in {I to 2 * * 16 - I}

Stack Underflow

Stack-Underflow may be generated by any operator that requires stack arguments. If n argument w()rd~
are required (n > = 1) and the address of the top-of-stack address at operator entry is less than
D[LL] + n + 1, a Stack-Underflow condition exists.

Since most operators require stack arguments, the following lists only those operators that do NOT
generate a Stack-Underflow interrupt:

C-18

aACCE aCPY aINTE aISX
BRUN DLA Y DEXI
EEXI ENDE ENDF ENTR EXIT HALT IDLE INOP INSC INSG
INSU LNMC L T8

System Architecture Reference Manual, Volume 2
Operator Dependent Interrupt Reference Summaries

LT16 LT48 LVLC MCHR MFLT MINS
MKSN MKST MPCW MVNU NAMC NOOP NVLD ONE PAUS
PUSH ROFF
RSTF RTFF RTOD RUNI SFDC SFSC SRDC SRSC VALC WATI
WHO I ZERO
ZIC

Undefined Operator

All operator encodings that are undefined for the current interpretation mode cause an Undefined Op­
erator interrupt. Defined operators are identified in Appendixes A and B; all operators not identified
in these appendixes are undefined.

When MKSN-NAMC optimization is implemented, the interrupt is generated if the operator following
MKSN is not NAMC.

The interrupt is generated when the EXPU operator is used to execute an edit operator that requires
a source: one of four move operators (MINS, MFL T, MVNU, MCHR) or two skip source operators
(SFSC, SRSC).

Unlocking

The Unlocking interrupt is generated by the UNLK operator when the target interlock status is not
Locked.

5014954 C-19

Documentation Evaluation Form

Title: A-Series System Architecture Reference Manual, Volume 2 Form No: _5 __ 0 1 __ 4..;.,;.9 __ 5_4 ______ _

Date: April 1984

Burroughs Corporation is interested in receiving your comments
and suggestions, regarding this manual. Comments will be util­
ized in ensuing revisions to improve this manual.

Please check type of Suggestion:

o Addition

Comments:

From:

Name

Title

Company

Address

o Deletion o Revision o Error

Phone Number ______________ _ Date __________ _

Remove form and mail to:

Burroughs Corporation
Corporate Documentati~)I] -- West

1300 John Reed Court
(II\, of Industry, fA q1745

U.S.A.

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	3-001
	3-002
	3-003
	3-004
	3-005
	3-006
	3-007
	3-008
	3-009
	3-010
	3-011
	3-012
	3-013
	3-014
	3-015
	3-016
	3-017
	3-018
	3-019
	3-020
	3-021
	3-022
	3-023
	3-024
	3-025
	3-026
	3-027
	3-028
	3-029
	3-030
	3-031
	3-032
	3-033
	3-034
	3-035
	3-036
	3-037
	3-038
	3-039
	3-040
	3-041
	3-042
	3-043
	3-044
	3-045
	3-046
	3-047
	3-048
	3-049
	3-050
	3-051
	3-052
	3-053
	3-054
	3-055
	3-056
	3-057
	3-058
	3-059
	3-060
	3-061
	3-062
	3-063
	3-064
	3-065
	3-066
	3-067
	3-068
	3-069
	3-070
	3-071
	3-072
	3-073
	3-074
	3-075
	3-076
	3-077
	3-078
	3-079
	3-080
	3-081
	3-082
	3-083
	3-084
	3-085
	3-086
	3-087
	3-088
	3-089
	3-090
	3-091
	3-092
	3-093
	3-094
	3-095
	3-096
	3-097
	3-098
	3-099
	3-100
	3-101
	3-102
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-28
	B-29
	B-30
	B-31
	B-32
	B-33
	B-34
	B-35
	B-36
	B-37
	B-38
	B-39
	B-40
	B-41
	B-42
	B-43
	B-44
	B-45
	B-46
	B-47
	B-48
	B-49
	B-50
	B-51
	B-52
	B-53
	B-54
	B-55
	B-56
	B-57
	B-58
	B-59
	B-60
	B-61
	B-62
	B-63
	B-64
	B-65
	B-66
	B-67
	B-68
	B-69
	B-70
	B-71
	B-72
	B-73
	B-74
	B-75
	B-76
	B-77
	B-78
	B-79
	B-80
	B-81
	B-82
	B-83
	B-84
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	replyA

