
BAC-220

BURROUGHS
ALGEBRAIC
COMPILER
REVISED EnITION ••• * * *

BAC-220

BURROUGHS

ALGEBRAIC

COMPILER
REVISED EDITION

Sales Technical Services

EQUIPMENT & SYSTEMS

MARKETING DIVISION

Burroughs Corporation
Detroit 32, Michigan

220-2i0i7

MARCH 1963

Previous Edition

Copyright © 1961 BURROUGHS Corporation

Revised Edition March 1963

Copyright © 1963 BURROUGHS Corporation

This manual may be reproduced either in whole or
in part with prior permission of the publisher.

CARDATRON is a registered trade-mark of the
BURROUGHS Corporation.

preface
This document supersedes Bulletin 220-21011-D, BURROUGHS Alge­
braic Compiler, dated January 1961.

Since its first installation in March of 1960, the BURROUGHS Algebraic
Compiler for the 220 Electronic Data Processing System has under­
gone changes and additions aimed at improving the operation of the
compiler, and removing restrictions on itS use.

This manual describes the BURROUGHS Algebraic Compiler for the
220 in its present form; tapes containing this version are dated
February 1962. Beyond the usual corrections associated with normal
compiler maintenance, no further compiler changes are planned.

The February 1962 compiler system, described in this Reference
Manual, includes a generator with the ability to produce a compiler
conforming to any BURROUGHS 220 system installation.

Input-output techniques have been included which enable the pro­
grammer to write his own input-output procedures and to integrate
them easily with the compiler. As a result of this change, the input
and output devices employed at object time need not be the same as
those employed at compile time.

The diagnostic facilities have been improved in two ways:

More extensive diagnosis is now possible, because of the addition
of new error messages.

Diagnostic aids have been reorganized into categories which are
easier to use and to understand.

The writing and inclusion of external procedures have been facilitated
by the addition of several new pseudo-operations.

table of contents

I. INTRODUCTION 1-1 X. DIAGNOSTIC FACILITIES 10-1

II. ELEMENTS OF THE COMPILER LANGUAGE 2-1 Aids Available at Compile Time 10-1

Characters
Diagnostic Aids to Object Program Execution 10-4

2-1 Aids Specified by the Programmer 10-4
Identifiers 2-1 Error Messages from Library Procedures 10-6
Quantitie..<i 2-2 Object Program Listing 10-6
Variables 2-2
Constants 2-2 XI. PROGRAMS IN ALGOL 11-1
Evaluated Functions 2-3 Examples of Programs 11-1

III. EXPRESSIONS 3-1

Arithmetic Expressions 3-1
APPENDIX A. OPERATING INSTRUCTIONS FOR

Relations 3-2
THE BAC-220 GENERATOR PROGRAM A-1

Boolean Expressions 3-3 Readying the Equipment A-1
·Running the Gener<.i.tor Program A-1

IV. STATEMENTS 4-1 Composition of Generator Input Deck A-1
The Assignment Statement 4-1 Standard Version of BAC-220 A-2
The Grammar of Statements 4-2 Non-Standard Versions of BAC-220 A-5

Special Input-Output Routines A-8
V. BASIC DECLARATIONS 5-1 Error Messages A-9

Declarations of Type 5-1
The ARRAY Declaration 5-2 APPENDIX B. COMPILER OPERA TING
The COMMENT Declaration 5-3 INSTRUCTIONS B-1
The FINISH Declaration 5-3 Preparation of Source Programs on Punched Cards B-1

VI. BASIC CONTROL STATEMENTS 6-1
Preparation of Paper-Tape Source Programs B-1
Compiling a Program B-2

Transfer of Control 6-1 Operation of the FlNISH Declaration B-2
Suspension of Computation 6-2 Reloading the Object Program from Magnetic Tape B-3
Clauses 6-2 Dumping a Compiled Object Program on Cards B-3
Conditional Execution 6-2 Reloading the Object Program from Cards B-3
Control of Iterations 6-4 Dumping a Compiled Program on Paper Tape B-3

VII. SUBPROGRAMS 7-1
APPENDIX C. LIST OF RESERVED IDENTIFIERS C-1

Subroutines 7-1
Functions 7-2 APPENDIX D. SYNTACTICAL DESCRIPTION OF
Intrinsic Functions 7-3 THE COMPILER LANGUAGE D-1
Procedures 7-4 Forms of Definition D-1
External Program Declarations 7-7 Basic Symbols D-1

VIII. INPUT-OUTPUT TECHNIQUES 8-1 Expressions D-2

Input of Information 8-1 Statements D-3

Output of Information 8-3 APPENDIX E. TRANSLITERATION RULES E-1
Construction of Formats 8-4

Basic Symbols E-1
IX. OVERLAY TECHNIQUES 9-1 Expressions E-3

The SEGMENT Declaration 9-1 Statements E-3
The OVERLAY Statement 9-2 Declarations E-4

1J

BURROUGHS ALGEBRAIC COMPILER

Table of Contents (continued)

APPENDIX F. CONSTRUCTION OF APPENDIX G (continued)
MACHINE-LANGUAGE PROGRAMS F.;.l .l ~f'O'T1 A.. 1'.T G-19 .t\.I"\\._.,_l.t\.l'I

Linkage to Procedures F-1 SINH G-20
Parameters of Procedures F-1 COSH G-21
Relocation Conventions F-2 TANH G-22
Magnetic-Tape Operations F-3 ROMXX G-23
Use of Equivalence Cards F-3 ENTIRE G-24
Description of Name Cards F-4
Preparation of External Programs F-5 INDEX 1-1

Library Procedures F-7
The Error-Message Procedure F-7
Input-Output Procedures F-8 TABLES AND ILLUSTRATIONS
The FORMAT Declaration F-11

APPENDIX G. LIBRARY PROCEDURES G-1
TABLE 1 Some Input-Output Combination8 A-2

Specimen De8cription G-2 FIGURE 1 Generator Input Deck to Create

FLOAT G-3 Standard Version (Combination 1) A-3

FIX G-4 2 Statements Required for Standard

WRITE G-5 Library Deck A-5

READ G-6 3 Generator Input Deck to Create HIGH-SPEED

SQRT G-7 PRINTER Version (Combination 2) A-7
EXP G-8 4 Generator Input Deck to Create Paper-Tape
LOG G-9 Version (Combination 3) A-8
FLFL G-10 5 Generator Input Deck to Create
FLFX G-11 Combination 4 A-10
FXFL G-12
FXFX G-13 6 Generator Input Deck to Create

SIN G-14 Combination 5 A-11

cos G-15 7 Generator Input Deck to Create

TAN G-16 Combination 6 A-12

ARCS IN G-17 8 Generator Input Deck to Create
ARC COS G-18 Combination 7 A-13

tJf,

SYSTEM REQUIREMENTS

ORGANIZATION

I . . .
OF THE MANUAL

ADDITIONAL COPIES introduction

THIS BOOK IS INTENDED as a reference manual in the
use of BAC-220-the BURROUGHS Algebraic Com-·

piler for the 220 Electronic Data Processing System.
BAC-220 is a representation of ALGOL, the international
algorithmic language; it accepts symbolic programs and
produces machine-language programs for the BuR­
ROUGHS 220. A full description of ALGOL and its history
is available elsewhere. t

Part of the BAC-220 system is a generator program,
which generates different versions of the compiler in
order to accommodate the diverse operating procedures
and hardware configurations found in different B 220
installations. Thus the BAC-220 generator program
produces versions of the compiler which preserve por­
tions of core or tape storage, or which employ magnetic
tape, punched cards, punched paper tape, the HIGH­
SPEED PRINTER or the SUPERVISORY PRINTER in various
combinations for input and output purposes. Directions
for using the BAC-220 generator program are given in
APPENDIX A.

The standard version of BAC-220 produced by the
generator program requires a B 220 system comprising
5,000 words of core storage, two magnetic-tape storage
units, and CARDATRON with one input and one output
(LINE PRINTER) station. This standard version of BAC-
220 consists of approximately 3,600 instructions and
2,000 words of stored tables.

BAC-220 accepts symbolic programs formulated ac­
cording to the rules in this manual, and assembles
machine-language coding to perform the indicated
operations. The assembly of this coding proceeds at
approximately 500 words per minute. Appropriate
library and diagnostic routines, as well as a loader, are
automatically included with the compiled program as

t See Communications of the ACM, vol. l, no. 12, pp. 8-22; and
vol. 3, no. 5, pp. 299-313.

part· of the compilation process. Upon completion of the
compilation process the compiled program may be
loaded and executed immediately, or its execution may
be deferred by retaining the compiled program on mag­
netic tape, or by having the program punched onto
cards or paper tape.

As a representation of ALGOL, BAC-220 differs in cer­
tain respects from the ALGOL reference language. For
example, the ALGOL character set includes lower-case
letters of the alphabet, whereas representations of
ALGOL-such as BAC-220-written for use on most
conventional data-processing equipment recognize only
upper-case letters. Also, BAC-220 provides additions
for the ALGOL reference language which are essential to
the operation of data-processing systems: input-output
facilities, conventions for inclusion of segments of ma­
chine-language coding, and diagnostic features. Again,
the order in which certain constructs (e.g., procedure
declarations and call statements) appear in an ALGOL
program is not specified in the definition of the reference
language, whereas BAC-220, and other ALGOL repre­
sentations, contain such restrictions in some cases, in
order to maximize compiler efficiency.

A syntactical description of BAC-220 is presented in
APPENDIX D, and a summary of transliteration rules
for equivalent constructs of ALGOL and BAC-220 is
provided in APPENDIX E.

The text of this manual consists of definitions, direc­
tions, and rules for the use of the compiler, examples of
these definitions and rules, and some sample programs.
Appendices are included to deal with specific details of
the compiler and its operation. Whenever a term is
defined, it is italicized in the defining sentence. Ref er­
ences in the index to such definitions are also italicized.
Script letters are used in the text to denote generic
representations; e.g., Sis used to represent an expression
and S to represent a statement.

1-1

BURROUGHS ALGEBRAIC COMPILER

BURROUGHS CORPORATION is pleased to work with the
Cooperating Users of Burroughs Equipment in the task
of maintaining thi~ and other literature concerning the
BURROUGHS 220.

Constructive criticisms of the contents of this manual
will be appreciated by the authors and publishers.
Please address thi~m to:

1-2

MANAGER, AUTOMATIC PROGRAMING

BURROUGHS CORPORATION

460 Sierra Madre Villa

Pasadena, California, USA

Additional copies of this manual may be obtained from
your BuB..ROUGHS CORPORATION representative.

CHARACTER SETS

IDENTIFIERS

QUANTITIES

VARIABLES

CONSTANTS

CHARACTERS

THE BURROUGHS ALGEBRAIC COMPILER employs a
character set which is commonly available as a var­

iant of the usual Hollerith code. t These characters are:

Scientific

Character Set

Hollerith

Equivalents

THE ROMAN ALPHABET

A, B, ... , Z A, B, ... , Z

THE ARABIC NUMERALS

0, 1, ... , 9 0, 1, ... , 9

SPECIAL CHARACTERS

+

(
)

I
*

(space)

&
-Or@

3
D

$
I
*

(space)

In addition, some multiples of characters are given
meaning as though they constituted a single character:

ellipsis

** base-10 scale factor appended

t All of the examples in this manual are printed with the scientific
character set. If card equipment with FoRTRAN characters is
used, these same characters will be printed, with the exception
of the semicolon (;),which will print as a dollar sign ($). (The
type wheel is variation 'F'.) Card equipment with 'standard'
characters will print in Hollerith equivalents.

II ...

elements of the

From these characters statements are constructed which
are translated by the compiler into a form suitable for
execution by the BURROUGHS 220.

Metalinguistic Symbols

In addition to the script letters used in the text, some
symbols will be employed with metalinguistic signifi­
cance. These symbols include:

SYMBOL SIGNIFICANCE

~=} ..
{is equivalent to

has the form of
ellipsis

() broken brackets
p relational operator
0 arithmetic operator

I or
space

IDENTIFIERS

The fundamental construct of the compiler language is
the identifier. Identifiers are used to name the various
things which make up a program, for example, variables,
functions, labels, and subroutines. An identifier is com­
posed of a string of letters, or letters and digits, not ex­
ceeding 50 characters in length. t The first character of
an identifier must be a letter; no special characters (in­
cluding spaces) may be imbedded within an identifier.

In addition, a few identifiers are reserved for special use
as operators, punctuation marks, and as names of li­
brary functions.

t See CHAPTER X for restriction on the length of identifiers to be
monitored.

2-1

BURROUGHS ALGEBRAIC COMPILER

These reserved identifiers may not be used by the program­
mer in any context other than that set down in this manual.
A list of the reserved identifiers is given in APPENDIX
C. Any oiher ideniifiers may be used at will.

EXAMPLES:

z
GAMMA
SN2Nl
SIERRAMADREVILLAAVENUE
A374
YOU NGLADYOFCH I CH ESTER540
RUNGEKUTTAGILL

QUANTITIES

The BURROUGHS Algebraic Compiler is concerned with
the manipulation of three kinds of quantities: jloating­
point quantities, integer quantities, and Boolean quan­
tities. The terms FLOATING (or REAL), INTEGER,
and BOOLEAN define the type of quantity.

Floating-point quantities are numbers which may have
an integral and a fractional part. They are used to rep­
resent the class of real numbers to a precision of eight
significant digits, the maximum permitted by the float­
ing-point word format of the BURROUGHS 220. The
magnitude of a floating-point quantity must be less
than 1050• Any floating-point quantity which is smaller
in magnitude than 0.1 x 10-50 is treated as zero.

Integer quantities are those numbers whi¢h do not have
a fractional part, and which represent the class of inte­
gers which can be expressed in the word length of the
BURROUGHS 220, i.e., integer quantities must be smaller
than 1010 in magnitude.

Boolean quantities represent truth values. The only val­
ues for Boolean quantities are the integer one, meaning
true, and zero, meaning false.

A program may contain quantities of any or all of these
three types. The programmer assigns the types of the
variables, evaluated functions, and expressions which
appear in his program. (See CHAPTER V.) The type of a
constant depends upon context and form.

VARIABLES

Variables treated by this compiler are of two kinds­
simple variables and subscripted variables. A simple
variable represents a single quantity and is denoted by
an identifier; a subscripted tJariable represents a single
element of an array and is denoted by the identifier

2-2

which names the array, followed by a subscript list en­
closed in parentheses. The list consists of arithmetic
expressions separated by commas.

EXAMPLES:

Simple Variables

x
ALPHA
C13

Subscripted Variables

A(l,J)
M(I + 1, J + 1)
V(F(P + 1), 12 + Q)

Z(W(T), X(T), Y(T), Z(T))

C(13)

The expressions (see CHAPTER Ill) which make up a
subscripted variable may be of any complexity. Even
floating-point values are allowed, in which case the
floating-point number is truncated-the fractional part
dropped-to an integer. Each subscript must have a
value which is not less than unity and not greater than
the maximum specified for that array by the ARRAY
declaration (see CHAPTER V). The number of subscript
expressions must equal the number of dimensions of
the array.

Whether a variable represents a floating-point, integer,
or Boolean quantity is determined by the 'declaration
of type' described in CHAPTER V.

CONSTANTS

Integer Constants

Integer constants are represented by a string of digits.
A maximum of ten significant digits is allowed, i.e.,
leading zeros are ignored. Spaces may not be imbedded
within an integer constant.

EXAMPLES:

0
17

16384
2111

Floating-Point Constants

Floating-point constants are represented by a string of
digits which contains '.'-a decimal point. The decimal
point may not appear at the beginning or end of the string;
it must be imbedded within it. A floating-point constant
may contain a maximum of eight significant digits.
Leading zeros are not counted toward this maximum .. -

ELEMENTS OF THE COMPILER LANGUAGE

EXAMPLES:

0.0
3.1415927

43.0
0.00006174205

If desired, a scale factor may be appended to a floating­
point constant to indicate that it is to be multiplied by
.a..L. !-rl!,..,,-. rl-..-rr-...,, r..f lf\ Th:C"! C°'.n.n.l.n.. .fn.nf-1"'\.P ;o UTY.;f-f-on n~
Liu::; 111Ull.;t1LIJU pun c;J. v• .Lv • .L J..ue> "''-'cue; •Cl.'-'"v._ .. "' n ._._..,..,.._,..._ ue>

two asterisks followed perhaps by a '+' or ' - ' sign and
then by an integer. The integer specifies the power of 10
to be used, and is limited to a two-digit number. The
magnitude of such a floating-point number must not
exceed 0.99999999 x 1049

•

EXAMPLES:

2.6**5 means 2.6 x 105 or 260,000

1.7** -3 means 1. 7 x 10-3 or 0.0017

A third option allows a floating-point number to be
written as an integer followed by a scale factor.

EXAMPLE:

3**+4

This is precisely equivalent to writing 3.0**+4 or
30,000.0. Note that a scale factor alone may not be used
to specify a floating-point number-it is not valid to use
-2 to indicate 10-2 ; it must be written l-2 or
l.0**-2, etc.

Boolean Constants

Only two Boolean constants are allowed: Zero (written

as 0) meansfalse, and one (written as 1) means true.

EVALUATED FUNCTIONS

The compiler allows the use of a wide variety of func­
tions. In this section we will consider only the simplest
form of functional notation in order to provide a basis
for the next chapter. (CHAPTER VII contains a complete
description of the use of functions and the manner in
which they are defined.) For the moment we will assume
that a function acts on one or more quantities called
arguments and produces a single quantity as a result.
This resulting quantity is called an evaluated function.

GENERAL FoRM:

9"(Si, MN• Sq)

where 9" is an identifier which names the function and
S1 through Sq are expressions which are the arguments
of the function.

EXAMPLES:

SIN(X)
SQRT(8*2-4.A.C)
HYPERGEOM(A,B,C,Z)
LOG(SI N(TH ET A-ALPHA/2))
PEIRCE(P,Q)

The type of a function depends on the manner in which
the function was defined. The type required for each of
the arguments is also determined by the defmition of
the function. It U; the programmer's responsibility to en­
sure that each of the arguments is of the proper type.

2-3

ARITHMETIC EXPRESSIONS

BOOLEAN EXPRESSIONS

RELATIONS

~E COMPILER deals with two kinds of expressions:
J_ Arithmetic expressions (those having numerical val­

ues) and Boolean expressions (those having truth val­
ues). This chapter describes the manner in which these
expressions may be combined to produce new expres­
sions. Expressions must be well formed in accordance
with mathematical convention and with the rules set
forth below.

ARITHMETIC EXPRESSIONS

Arithmetic quantities are combined by means of the
operators + - · / and *. The symbol * is used to denote
exponentiation, that is, B*2 has the meaning B2• In ad­
dition to these five symbols, parentheses are employed
to indicate that a specific order of evaluation is to be
followed rather than the conventional order of evalua­
tion. To be explicit, it is assumed-in the absence of
parentheses to indicate otherwise-that exponentiation
is performed before multiplication, multiplication before
division, and division before addition and before sub­
traction. Convention in writing algebraic expressions
suggests this ordering rather than that of assigning equal
precedence to multiplication (·) t and division (/). As is
customary in mathematical literature, the expressions
A/B/C and A*B*C are regarded as ambiguous. Pa­
rentheses should be used to express the exact meaning
desired.

A variable, a constant, or an evaluated function of float­
ing or integer type will in itself constitute an arithmetic
expression. Furthermore, if 81 and 82 are any arithmetic
expressions and 83 is an arithmetic expression the first
character of which is not a + or - , then each of the
following combinations is also an arithmetic expression:

81·~ 81 + 83
Si/~ 81 - 83
81*~ +83
(81) -83

t Represented on card equipment as a decimal point (.).

III ...

• expressions

If 81 and 82 are both constants, the programmer must
write (81) • (82), to avoid conflict with the notation for
constants.

EXAMPLES:

X + Y*2
(720.0)12
C.SI N(N.3.1415927.F)
ARCTAN(HORIZ/VERTL) -ALPHA
(-8 + SQRT(B*2 - 4.A.C))/2.A
-(Z13*-3 + Z14*-3)/17.2
A(l + J, J + 1) - A(I + 1,1)/V(J)

Omission of the Multiplication Operator

Jn certain instances the '·' representing multiplication
may be omitted. In general, this omission is possible
wherever the lack of a '· ' will not result in ambiguity.

More specifically, suppose that:

d is an identifier specifying a simple variable, an array,
or a function;

'U is an identifier specifying a simple variable;
m:. is any constant; and
~ is the symbol for is equivalent to; then-

)d ~)·d
'U(~'U·(

)m:. ~ Hn.
fil(~ fil· (
) (~)-(
fild ~ fil·d

Ex.AMPLES:

4A.C
3(A + B)(A - B)
TAN(2X)ALPHA
2SI N(X)COS(X)

3-1

BURROUGHS ALGEBRAIC COMPILER

The Type of an Arithmetic Expression

The type of an arithmetic expression is determined by
the types of its constituents. Suppose that Bi and 8 i are
integral expressions and that Bx and B11 are floating-point
expressions. Further, take o to mean any of the arith­
metic operators: + - · / or *. Then,

Bi o B1

Bi o B11

Bx o B1

Bx o B11

is an integral expression, and

}are floating-point expressions.

In general, if either expression is floating-point, then the
result of combining them will be floating-point; if both
expressions are integral, then the combination is also
integral.

When mixed values are combined by the operators +
- · and / , the compiler provides the program to con­
vert the integral value to its corresponding floating­
point form. The actual computation is done in floating­
point. Exponentiation is usually performed by a routine
taken from the library of the compiler. Separate entries
to this routine are provided for each of the four com­
binations of integer and floating-point values.

If an integer constant appears in an expression of mixed
types, the necessary conversion is performed at the time
of compilation, resulting in no loss of efficiency in the
object program. For example, if X is a floating-point
variable, the expression X + 1 will be compiled as
though the user had written X + 1.0.

Arithmetic Combinations of Integers

As mentioned in CHAPTER II, integers may be no more
than ten digits in length. In all arithmetic operations,
digits are dropped from the most significant end of the
answer to produce a ten-digit result. Thus,

(734981) · (1000001) yields 4981734981;
5000000001 + 5000000001 yields 2.

Division of integers is unrounded. Thus,

3 /2 yields 1; 7 /11 yields 0; -41/3 yields -13.

Division by zero is undefined.

RELATIONS

Relations are provided to test the relative magnitudes
of arithmetic quantities. These relations consist of two
arithmetic expressions and a relational operator. A re­
lation is one of the forms of condition used in conditional
clauses and, as such, is employed to affect the sequence
in which statements are executed.

3-2

GENERAL FORM:

81 p 82

where 81 and 82 are arithmetic expressions, and p is a
relational operator. This relation has the value true if
81 does indeed stand in the relation p to 82; it is other­
wise false. It is used only in control statements; (see
IF, UNTIL, and EITHER IF). The relational operators
employed in this compiler are GTR, GEQ, EQL, LEQ,
LSS, and NEQ. Their significance is indicated in the
following table.

CONVENTIONAL
MATHEMATICAL

RELATIONT NOTATION MEANING

81 GTR 82 81 > 82 greater than
81 GEQ 82 81 ~ 82 greater than or equal to
81 EQL 82 81 = 82 equal to
81 LEQ 82 81 ~ B2 less than or equal to
81 LSS 82 81 < 82 less than
81 NEQ 82 81 ~ 82 not equal to

t Spaces are required to the left and right of the relational
operator.

EXAMPLES:

X NEQ 0
ABS(L - LPRIME) LSS EPSILON
T GTR TMAX

Within the context of this compiler, two numbers are
equal if the quantities which are their internal machine
representations are identical. Ordinarily, it would suffice
to say that two numbers are equal if their difference is
zero. In the BURROUGHS 220 this may not be the case,
since if A and B are floating-point numbers, and if
I A - B I < 0.1 x 10-50

, the result produced for their
difference A - B will be zero.

The programmer must be responsible for determining
whether he means that A and B are identical-in which
case he uses A EQL B- or whether he means that their
difference is zero, in which case he writes (A - B) EQL 0.

The compiler permits arithmetic operations to be per­
formed on quantities which are not of the same type. In
similar fashion, relational operators may be used to
compare quantities which.are not of the same type. If a
floating-point quantity is to be compared to an integral
quantity, the integer will be converted to its corre­
sponding floating-point form prior to the comparison.
If the integer is a constant, the conversion occurs
during compilation.

EXPRESSIONS

If a relation is enclosed within parentheses, it becomes
a Boolean expression which has a truth value of either
one or zero, depending on whether the relation is true
or false respectively.

BOOLEAN EXPRESSIONS

Boolean quantities may be combined by means of
logical operators to form Boolean expressions, in a man­
ner entirely analogous to the combining of arithmetic
quantities by arithmetic operators. Boolean expressions
are either true or false, depending entirely on the
truth values of the quantities entering into the expres­
sion and the definitions of the logical operators com­
bining them.

Logical Operators

The logical operators which are accepted by the com­
piler are NOT, AND, OR, IMPL, and EQIV. These
operators are called negation, conjunction, disjunction,
implication, and equivalence, and are defined as follows
(P and Q are Boolean quantities):

The expression NOT P is true whenever P itself is
false; it is false whenever P is true.

The expression P AND Q is true if and only if both P
and Q are true. If either P or Q is false, then P AND
Q is also false.

The expression P OR Q is true if either P or Q or both
are true. P OR Q is false only when both P and Q
are false.

The expression P IMPL Q is false only when P is true
and Q is false.

The expression P EQ IV Q is true if P and Q are both
true or bothf~lse. If either Pis true and Q is false or
P isfalse and Q is true, then P EQIV Q isfalse.

These definitions are summarized in the following table.

p Q NOT P P AND Q P OR Q P IMPL Q P EQIV Q

false false true false false true true

true true false true true true true

true false false false true false false

false true true false true true false

Construction of Boolean Expressions

Any variable, constant, or evaluated function will itself
constitute a Boolean expression, if it is of Boolean type.

In addition, if 81 p 82 is an arith~etic relation, and CB1
and CB2 are any Boolean expressions, then each of the
following is also a Boolean expression:

(81 p 82)
(CBi)
NOT CB1
CBi AND CB2

CB1 OR ffi2
CB1 EQIV CB2
CB1 IMPL CB2

The Boolean expression (81 p 82) may be combined with
any of the logical operators to form more complex
Boolean expressions.

Precedence of Logical Operators

Conventions for the order of precedence of logical op­
erators are not so well established as are those for
arithmetic operators. However, we shall assume the
following order, which is apparently the most common:

Unless indicated otherwise by the use of parentheses, NOT
will be executed before AND; AND will be executed l>ef ore
OR; OR will be executed "before IMPL; and IMPL will be
executed "before EQIV.

The expression P IMPL Q IMPL R is ambiguous; pa­
rentheses should be used to express the exact meaning
desired.

EXAMPLES:

NOT(P AND Q) OR R IMPL P OR NOT Q
NOT (NOT P) EQIV P
P IMPL P OR U AND V
(P OR Q) AND NOT (P AND Q)
(A LEQ X) AND (X LEQ B)
(ERROR LSS TOLERANCE) OR (N GTR 40)
RAND SOR (F(Z) EQL 4)
(M.N(R - 2) + 4 LSS TAN (BETA - ALPHA)) OR FLAG
(U.SINH(M) GTR M7) EQIV (V.COSH(M) GTR M12)

Any Boolean expression may appear in an arithmetic
expression, where it will in all respects behave as if it
were an integer taking on the values zero or one. In
such a case, Boolean operations will be executed prior
to arithmetic operations, unless parentheses have been
used to specify otherwise.

EXAMPLES:

G - 0.3N.(D LSS 300)
A+ V.NOT Bl OR 82

3-3

ASSIGNMENT STATEMENTS

GRAMMAR OF STATEMENTS

COMPOUND STATEMENTS

STATEMENT LABELS

THE statement, S, is the fundamental unit of expression
_l in the description of an algorithm. Most of what

follows in this manual deals with the formation of state­
ments and their interrelation to form larger constructs.
Statements specify something that the object program is to
do. Declarations give information to the compiler about
the program being. compiled. After this chapter, the word
'statement' will usually be employed to mean only a
statement. However, for the. present, 'statement' will
stand for either a statement or declaration.

The first part of this chapter discusses one particular
kind of statement-the assignment statement. The last
part of the chapter deals with the grammar of state­
ments in general, using assignment statements for
examples.

THE ASSIGNMENT STATEMENT

The assignment statement specifies an expression which
is to be evaluated and a variable which is to have the
resulting value assigned to it.

GENERAL FoRM:

'D = s
where 'D is a variable and S is an expression. Note that
the symbol = is used in a special sense in this compiler
to signify the process of substitution. Thus X = X + 1
means 'using the current value of the variable X, eval­
uate the expression X + 1, and assign the result as the
new value of X.' Although X = X + 1 is not a valid
equation, it is a well-formed statement, and the compiler
will carry out the indicated substitution. Thus the fol­
lowing valid algebraic expression

X*2 = Y + 2

has no meaning to the compiler, while

IV ...

statements

X =SQRT (K)

is a valid statement, and can be evaluated by a compiled
program, which then assigns the value of vK to the
variable X.

Arithmetic Assignment Statements

If the variable 'D in 'D = S is of integer or floating-point
type, then we have an arithmetic assignment statement.
If 'D is an integer and S is floating-point, then the value
of Swill be converted to integer form (truncating any
fractional part) before the assignment is made. If 'D is
floating-point and S is integral, then the value of S will
be converted to the corresponding floating-point num­
ber. If S is Boolean, it is treated as if it were integral.

EXAMPLES:

R = (-8 + SQRT(B*2 - 4A.C))/2A
FUNC = Y(I) + (Y(I + 1) - Y(l))(ARG - X(l))/(X(I + 1) - X(I))
U = X.COS(THETA) + Y.SIN(THETA)
OMEGA = 1/SQRT(L.C)
E = M.C*2
P(N) = ((2N - 1).P(N - 1) - (N - l).P(N - 2))/N
C(l,J) = C(l,J) + A(I, K).B(K,J)

Boolean Assignment Statements

If the 'D in 'D = S is a Boolean variable, we then have a
Boolean assignment statement. In this case, the expres­
sion S must be Boolean.

EXAMPLES:

FLAG= (SWITCH4 OR SWITCH5) AND FLAGPRIME
TEST= (X NEQ 0) AND (Y NEQ 0)
M(l,J) = M(l,J) OR (K(l,K) AND K(J,K))
TOGGLE3 = TOGGLE4 AND TAG OR (U LSS V)

4-1

BURROUGHS ALGEBRAIC COMPILER

Generalized Assignment Statement

GENERAL FORM:

If it is desired to assign the same value to a number of
variables, it can be accomplished in a single statement
by employing this generalized form.

Note that if the list of variables to which a value is being
assigned is of mixed type, then conversion of type will
be performed; e.g., assume X, Y, and 8 are floating, and
I is integer. Then the statement

will cause 8 to be truncated to an integer before storing
into I, and this truncated result floated before storing
into X. Thus, in this example, X = I = Y = 8, X = Y
= I = 8, and I = X = Y = 8 may all give different
results when 8 is floating.

EXAMPLES:

v = x = y = 15.302
A(I) = B(I) = Z = 0

THE GRAMMAR OF ST A TEMENTS

This section discusses certain definitions and rules of the
compiler language which have to do with the writing of
statements. The basic rule of the grammar of state­
ments is that statements must be separated by semicolons.

Even though a statement ends on a given line and the
next statement begins on the next line, the separating
semicolon must be indicated. The end of a line has no
meaning as punctuation.

GENERAL FORM:

!VW S; s NW

where the symbol S represents any statement. Unless
otherwise indicated, statements are performed one after
the other in the sequence in which they are written. As
many statements as desired may be written on a line
(subject of course to the physical limitations of the in­
put medium), or a statement may use as many lines as
are required for its expression.

EXAMPLE:

W =A + B; X =A - B; Y = A.B; Z = A/B

Compound Statements

It is frequently desirable to group several statements
together to form a larger construct which is to be con­
sidered as a single statement. Such a construct is called
a· compound statement.

4-2

GENERAL FORM:

where S1 through Sn are statements. The words BEGIN
and END serve as opening and closing 'statement pa­
rentheses.' Indeed, the symbols '(' and ')' may be sub­
stituted for the words BEGIN and END with no
change in meaning.

Throughout this description of the compiler, unless the
contrary is specifically stated, the word 'statement' and
the symbol S should be construed to mean either a sim­
ple or a compound statement.

Certain other constructs involving the grouping of sev­
eral statements automatically constitute compound
statements. These will be discussed further in their prop­
er context in CHAPTER V.

EXAMPLES:

BEGIN U = -B/2A; V = SQRT(U*2 - C/A);
Rl = U + V; R2 = U - V END

BEGIN S = SIN(THETA); C = COS(THETA);
XI= C.X + S.Y; ETA= -S.X + C.Y END

(S = A(l,J); A(l,J) = A(J,1); A(J,I) = S)

La be ling of Statements

It is often necessary to attach a name to a statement.
This name is called a statement label. A statement label
may be an identifier or an integer. (Leading zeros of an
integer used as a statement label are without meaning
to the compiler-the labels 13 and 013 are in all ways
equivalent.) When a statement is to be identified, it is
preceded by a label and the ' . .' separator.

GENERAL FORMS:

First form:

d.. s

Second form:

m-1 .. s
where g is an identifier, m-1 is an integer, and S is any
statement. These forms declare the identifier or integer
to be a label.

EXAMPLES:

START..SUM = 0
LEGENDRE .. P(N) = ((2N - 1) P(N - 1) - (N - l)P(N - 2))/N
ROTATE .. BEGIN S = SIN(THETA); C = COS(THETA);
XI= C.X + S.Y; ETA= -S.X + C.Y END
27 .. BETA = ARCTAN(HORIZ/VERTL) - ALPHA

\Vhen labeling a compound statement, the programmer
may repeat the statement label after the word END.

STATEMENTS

This may be done for readability of the print-out pro­
duced during compilation; the compiler itself makes no
use of the information.

GENERAL FORM:

This technique of demarcation of compound statements
is useful when such statements are nested.

EXAMPLES:

ROOTS .. BEGI N U = -B/2A; V = SQRT(B*2 - 4.A.C)/2A;
Rl = U + V; R2 = U - V END ROOTS

In those cases where it is necessary during the running
of a program to transfer from a point in a BEGIN ,.....,
END clause to a point just before the word END, a
labeled dummy statement is employed.

GENERAL FORM:

This statement, which does not in itself produce any
action, takes the form of a label followed by two periods,
directly preceding the word END which terminates the
group of statements. An example of this is shown in
CHAPTER VI, SEARCH OF A RECTANGULAR GAME F'OR
A SADDLE POINT.

It is sometimes necessary to introduce a section of ma­
chine-language coding into the compiled program, which
\vill then act in all respects like a statement. To do this,
one employs the declarator EXTERN AL ST A TE­
MENT in the symbolic program.

GENERAL FORM:

EXTERNAL STATEMENT£

The identifier £ serves as the label of the EXTERN AL
STATEMENT.

The defmition of the statement, i.e., the machine-lan­
guage program itself, appears after the FINISH declara­
tor of the symbolic program. (See APPENDIX F, Con­
struction of Machine-Language Programs.)

4-3

TYPE

ARRAY

COMMENT

FINISH

v ...

basic declarations

THE DECLARATIONS OF TYPE-FLOATING, REAL,
INTEGER, and BOOLEAN are defined in this

chapter, together with the ARRAY, COMMENT, and
FINISH declarations. These do not exhaust the entire
set of declarations available to the programmer; how­
ever, the others constitute separate subjects in them­
selves and are therefore reserved for later chapters.

Declarations determine how the compiled program will
treat certain of its elements. It is thus necessary to pre­
cede the use of an element with such a declaration.

DECLARATIONS OF TYPE

Declarations of type are used to indicate that a specified
set of identifiers represent quantities of a given type
(floating-point, integer, or Boolean). By the use of pre­
fixes, entire classes of identifiers are declared to be of a
given type. In addition, it is possible to declare that
a variable not appearing in any declaration of type is
of a given type.

Constructions of Declarations of Type

GENERAL FORM:

FLOATING J.,e

REAL J.,e

INTEGER J.,e

BOOLEAN J.,e

where J.£ is a type Ust to be defined below. These state­
ments declare the identifiers given in J.C to be of float­
ing-point, integer, and Boolean types. (FLOATING and
REAL produce equivalent results in the compiler.) A
type list consists of a sequence of entries separated by
commas. Possible entries include identifiers, identifiers
followed by blank subscripts, and prefixes.

EXAMPLE:

INTEGER I, J, K, L, Z, GCD(,), TABLE()

(Note that the use of a parenthesis pair following an
identifier in a declaration of type has no effect on the
compiled program; the parentheses are there only for
the convenience of the programmer. Also, the entire
type list may be enclosed in parentheses without affect­
ing the.object program.)

EXAMPLE:

BOOLEAN (SWI, SW2, FLAG, TOGGLE(,,))

The Use of Prefixes

If desired, one may put a prefix into a type list rather
than use an identifier. A prefix consists of an identifier
of no more than five characters, followed by three
periods.

GENERAL FORM:

s ...

EXAMPLE:

MQR4 ...

The appearance of this prefix in a declaration of type
means that any variable, function, or array, the identi­
fier of which has MQR4 as its first four characters, and
which is not explicitly declared, is of the specified type.

It is possible for prefixes to introduce apparent ambi­
guities. Consider J for example,

FLOATING ABCD, AB4; INTEGER AB ... ;
BOOLEAN ABC ...

What are the types of AB13, ABCD, ABCDEF, AB4,
and ABS? The rule governing this situation is: Unless
specifically indicated in a type list, an identifier is matched
against the longest applicable prefix. Thus, the above
identifiers are of integer, floating, Boolean, floating, and
integer types, respectively.

5-1

BURROUGHS ALGEBRAIC COMPILER

Declaration by Default

The word OTHERWISE may be written in lieu of a
type list. This form indicates that any name of a vari­
able, array, or function not specifically declared and not
matching any of the prefixes is to be of the type denoted
by this declaration. If no such declaration is given, any
undeclared variable, array, or function will be assumed
to be floating-point. This construction may be called
declaration by def a ult.

EXAMPLES:

BOOLEAN SW, P,Q,R; FLOATING X,Y,Z,F();
INTEGER OTHERWISE

INTEGER I, J, K, N, M ... , G; BOOLEAN OTHERWISE

To repeat the remark made in the introduction of this
chapter: The type of an identifier must be declared before
that identifier is used in any other statement. If an identi­
fier is used prior lo a declaration of type ii is declared, by
default, as FLOATING.

THE ARRAY DECLARATION

The ARRAY declaration provides a means of referring
to a collection of values by the use of a single identi­
fier, and at the same time specifies to the compiler the
structure which is to be imposed on this collection.

Arrays in this compiler are restricted to those of rec­
tangular construction in n-dimensional space.

If the identifier of an array is declared in a declaration
of type, then that declaration of type must precede the
ARRAY declaration.

Construction of ARRAY Declarations

An array must have been described by an ARRAY dec­
laration prior to the use of any subscripted variable
which represents an element of that array.

GENERAL FORM:

ARRAY £ff, £ff, NW• £ff

where £ff's are list items of the array declarator list.
These list items take on two general forms:

First form:

ff (mi. NW• mq)

Second form:

f1 (mi. ,.,..., , mq) = (mr, ~m, ~nt, NW, ~m)

Both of these forms declare ff to be an array of q dimen­
sions. Each dimension contains the number of elements
given by the corresponding value of ~; hence the value

5-2

of m is the maximum which a corresponding subscript
expression may assume.

The second form is used to set initial values for the ele­
ments of the array at load time; see Filling an Array,
below.

EXAMPLE:

ARRAY (M(3,4), CHAR (6,6,6), VECTOR (100))

This declaration reserves twelve cells in storage for the
two-dimensional array M, 216 cells for the three-dimen­
sional array CHAR, and 100 cells for the one-dimen­
sional array VECTOR.

At the programmer's option, the list of arrays being de­
clared may be enclosed in parentheses to improve the
readability of the symbolic program. Such use of these
parentheses will have no effect on the compilation.

Filling an Array

An item in an ARRAY declaration may have appended
to it a list of values to be assigned at the beginning of
computation to the elements of the array. Referring to
the second form, above:

Second form:

ff (m1, NW, mq) = (mr, mi, mi, NW, mr)

The quantities ~rr are constants (with their respective
signs) which are placed in the positions of the array ff.
(The compiler will, if necessary, convert these constants
at the time the program is compiled to agree in type
with that of the identifier ff.)

EXAMPLE:

ARRAY Q (3,2) = (7.3, 9.1, 4, 127.3, +4.19, -2.2)

Assuming Q has been previously declared to be floating,
this declaration will cause the matrix Q

[

7.3
4.0
4.19

9.1]
127.3
-2.2

to be available in memory when the compiled program
is loaded.

It is not necessary to fill up the entire array in this man­
ner. Cells to which no constant is assigned are cleared
to zero at the time the program is loaded from tape.

Referring again to the second form above, the con­
stants mi are placed in the array ff in the following order:

The initial subscript is (1, 1, .. ., 1). For each succeeding
value of mi the rightmost subscript is advanced by one.

BASIC DECLARATIONS

After the rightmost subscript reaches its maximum
value, ~Q• it is reset to one, and at the same time the
subscript to its left is advanced by one.

In similar fashion, the other subscripts are advanced,
the subscript in the (i - l)th position being increased
by one at the same time that the ith subscript is reset
to one.

until all subscripts have reached their respective maxi­
mum values.

Assuming an array A (ni. n2, ... , nq-i. nq), this results in
the following sequence of subscripts:

CYCLE SUBSCRIPT

1, 1, ... , 1, 1
1, 1, ... , l, 2

First

1, 1, ... , 1, nq

l, 1, ... , 2, 1
1, 1, ... , 2, 2

Second

1, 1, ... , 2, nq

Third 1, l, ... , 3, 1

ni. n2, ... , nq-1 - l, 1
n1, n2, ... , nq-1 - 1, 2

(n1 • n2· ... · nq-1 - l)th

ni, n2, ... , nq-i. 1
ni. n2, ... , nq-i. 2

THE COMMENT DECLARATION

The COMMENT declaration allows the programmer
to include any clarifying remarks, identifying symbols,
etc., in the printed compilation. The COMMENT dec­
laration does not appear as part of the compiled pro­
gram, and has no effect on the program; it merely sets
apart any string of characters for printing as part of the
compilation. Since the comment extends to the next
semicolon, a semicolon obviously cannot be used within
the string of characters.

GENERAL FORM:

COMMENTS

where S is any string of characters not containing a
semicolon.

EXAMPLE:

COMMENT SMOOTH FIELD DATA AND REDUCE TO
STANDARD FORM

There is one restriction on the use of the COMMENT
declaration. It must not be the last statement of a compound
statement; that is, a COMMENT statement must not
be terminated by an 'END' or a ')'. Only a ';' may
follow the comment.

THE FINISH DECLARATION

The FINISH declaration defines the end of the program
being compiled, and terminates the compilation. A
FINISH declaration must appear as the last statement
in any program and may appear nowhere else in the
symbolic program. The semicolon following a FINISH
declaration is essential; it may not be omitted.

GENERAL FORM:

FINISH;

EXAMPLE:

FINISH;

(See APPENDIX B for the manner in which the compiler
treats the FINISH declaration.)

5-3

VI ... TRANSFER OF CONTROL

SUSPENSION OF COMPUTATION

CONDITIONAL EXECUTION

CONTROL OF ITERATIONS basic control

THIS CHAPTER deals with the means of expressing the
'flow of control' of an algorithm which has been de­

scribed in compiler language. The order of evaluation of
equations is as important to the description of an algo­
rithm as are the equations themselves. Experience has
shown that there is a relatively small number of con­
structions which commonly appear in the description of
algorithms. This group of constructions has been in­
cluded in the compiler language.

The basic control statements provide the abilities:

First, to transfer control to another part of the problem
(the GO TO and SWITCH statements);

second, to suspend computation (the STOP statement);

third, to execute statements contingent on given criteria
(the IF and alternative statements); and

fourth, to control iterative processes (the FOR and
UNTIL statements).

TRANSFER OF CONTROL

The GO TO Statement

The GO TO statement provides the ability to transfer
control from one part of the compiled program to
another.

GENERAL FORM:

GO TO£

where £ is a statement label.

The statement with the label£ will be executed imme­
diately after the GO TO statement. The word TO is
redundant and may be omitted.

EXAMPLES:

GO TO START

GO A16
GO TO 14
GO LOOP

The SWITCH Statement

A second method of transferring control is provided by
the SWITCH statement. The SWITCH statement uses
the value of an expression to select one entry from a list
of statement labels, and then transfers control to the
statement bearing that label.

GENERAL FoRM:

SWITCH 8, (£i, £2, £3, '""' £n)

where 8 is an arithmetic expression and £1 through £n
are statement labels.

The action of a SWITCH statement is as follows:

Let i equal the integral part of the expression 8; then,

If i = 0, the SWITCH statement has no effect, and con­
trol continues in sequence.

If \ i \ :::; n, then a transfer of control is made to the
statement the label of which is in the ith position in the
list.

If\ i I ~ n + 1, then the action of the SWITCH state­
ment is undefined.

EXAMPLES:

SWITCH Y + 2, (Al, A2, A3)

If Y + 2 = 0, no transfer occurs.
If Y + 2 = 1, transfer to the statement labeled Al.
If Y + 2 = 2, transfer to the statement labeled A2.
If Y + 2 = 3, transfer to the statement labeled A3.

SWITCH 31 + J, (XA, XB, XC, YA, YB, YC)
SWITCH MOD(K,4) + 1, (ALPHA, BETA, GAMMA, DELTA)

6-1

BURROUGHS ALGEBRAIC COMPILER

SUSPENSION OF COMPUTATION

The STOP Statement

The STOP statement serves to indicate the end of opera­
tion or a temporary halt in. a compiled program. (Com­
putation is resumed with the next statement in sequence
when the START switch is depressed.) If desired, a STOP
statement may be accompanied by an expression the
value of which is displayed in the A register when the
computer stops.

GENERAL FORMS:

First form:

STOP

Second form:

STOPS

where 8 is any expression.

In the case of the first form, the computer stops with the
contents of the A register undefined; in the case of the
second form, the value of the expression e is found in
the A register.

EXAMPLES:

STOP
STOP 4241535362
STOP ANSWER(J)

CLAUSES

The GO TO, SWITCH, and STOP statements discussed
thus far are by themselves complete statements and de­
pend in no way on other statements to complete their
meaning. The remainder oi this chapter will discuss
statements which bear an analogy t6 the dependent
clauses of a natural language. In all cases, these clauses
affect the behavior of the statement (or compound
statement) which follows them.

A construction consisting of one or more clauses e fol­
lowed by a statement S,

is in itself a compound statement, requiring no addi­
tional punctuation.

Of course, if a clause is to affect the behavior of several
statements, those statements must be grouped together
as a compound statement:

e; BEGIN S1; S2; Sa; NW Sn END

Examples of these constructions will be given in context
below.

6-2

CONDITIONAL EXECUTION

The IF Statement

The IF statement consists of an IF clause followed by
a semicolon and then by a statement. An IF clause pro­
vides the means of indicating that the next statement
in sequence is to be conditionally executed. The clause
consists of the reserved word IF foilowed by a condition
which may be either a Boolean expression or a relation.

GENERAL FORM:

IF <B; s
where <B is a condition and S is any statement. Note
that the semicolon is used to separate a clause from its
associated statement.

The action of the IF statement is described graphically
by means of the following flow chart:

T

s

' ' ' I

'

F

If the condition of an IF clause is a Boolean expression
with truth value one, or if it is a relation made up of
expressions which do stand in the given relation to one
another, then statement S will be executed; otherwise,
statement Swill be skipped over and control continued
in sequence fallowing statement S.

ExAMPLES:

IF (X*2 GTR 7); STOP
IF (I EQLJ); A(l,J) = 1
IF (M NEQ 0) OR (N NEQ 0); GO TO LAST
IF P EQIV R OR P EQIV S; K = B(J)
IF (X LEQ 0) AND FLAG; X = ABS(X)
IF U ORV AND (X LSS 2.4); BEGIN U = O;

V = O; GO TO REPEAT END

BASIC CONTROL STATEMENTS

The most common form of condition which appears in
an algorithm is a simple comparison between the mag­
nitudes of two arithmetic quantities. Wbile this situa­
tion is certainly provided for under the form of Boolean
expressions (see the first two examples above), the
slightly more concise relations are also allowed. In those
cases where a relation is applicable and is used, the
result will be the compilation of a significantly more
efficient object program. The use of a relation in an IF
clause is recommended wherever possibie.

EXAMPLES:

IF X*2 GTR 7; STOP
IF I EQLJ; A(l,J) = 1
IF I EQL IX; SWITCH IX, (A,B,C)
IF ABS(TERM) LSS EPSILON; GO OUT
IF TGL4; IF Z GTR X + Y*2 - 4; BEGIN Z = Y -1;

X = Y /(U + Y); GO LOOP4 END

The Alternative Statement

An extended form of the IF statement is provided by
the alternative statement. A sequence of conditions is
examined-in order-until one is found which is satis­
fied. A statement associated with that particular condi­
tion is then executed; the remainder of the alternatives
are ignored. A second form indicates a statement to be
executed in the event that none of the sequence of
conditions is satisfied.

GENERAL FORMS:

First form:

EITHER IF ffi1; S1; OR IF ffi2; S2; NW;
OR IF CBn; ~END

Second form:

EITHER IF ffi1; S1; OR IF ffi2; S2; NW;
OR IF ffin; Sn; OTHERWISE; Sn+1

Whenever one of the alternative statements is found to
be true, the statement associated with OTHERWISE
will not be executed.

Any of the conditions ffi may be replaced by the simpler
form, 81 p &. whenever desired.

The following flow charts will serve to explain these two
statements more precisely. For the first form we have:

F

T

F

For the second form we have:

F

F ,

F

6-3

BURROUGHS ALGEBRAIC COMPILER

In the second form, no OR IF clauses need be used. If
no OR IF clauses are used, the alternative statement
becomes

EITHER IF ffi; S1; OTHERWISE; S2

which expresses the very common construction:

T F

EXAMPLE:

COMMENT EVALUATE POLYNOMIAL
USING RECURSION RELATION EMPLOYING PREVIOUS
VALUES WHEN POSSIBLE. N IS ORDER OF POLYNOMIAL
AND XIS ARGUMENT;
EITHER IF N EQL O; BEGIN M = l.0**40;
PNl = 1.0 END;
OR IF N EQLI; BEGIN M = 3; Z = X + X;
R = X + Z; PN2 = 1 ; PN 1 = X END;
OR IF (X + X EQL Z) AND (N GEQ M -1);
GO TO RECURSE;
OTHERWISE; BEGIN PN2=1; PNl = X;
7 v . v. 0 v . 7."" ?·
L = A T A 1 I\ = F\ T L. 1 Ill = ..J 1

RECURSE.. BEGIN N = N + 1; FORM = (M, 1, N);
BEGIN R = R +·z; PN = (R.PNl -(M -1) PN2)/M;
PN2 = PNl; PNl = PN END END RECURSE END;
POLYNOMIAL= PNl

Nested IF Statements

The nesting of IF statements results in a construct
somewhat similar to that of the alternative statement.

GENERAL FoRM:

IF ffi1; IF ffi2; MN ; IF ffin ; Sn; Sn+i

where ffi i is a Boolean or relational expression.

The statement Sn associated with the last condition is
executed if and only if all the conditions are found se­
quentially to be true. The first unsatisfied condition
will cause the remainder of these conditions to be ignored
and the statement Sn+1 to be executed. The following
flow chart illustrates the logic of the consti-uct:

6-4

i T

1T

T

F

I
i

~..__J
J

IF MOD (YR,4) EQL O; IF MO EQL 2;
IF DAY EQL 29; GO TO LEAPYEAR;
WRITE (;;VALIDATE)

CONTROL OF ITERATIONS

The UNTIL Statement

The UNTIL statement is used primarily to provide con­
trol of iterative processes where escape from the loop
depends upon a result calculated within the loop. An
UNTIL statement. consists of an UNTIL clause fol­
lowed by a semicolon, followed by a statement.

GENERAL FORMS:

First form:

UNTIL ffi; s

Second form:

BASIC CONTROL STATEMENTS

where ffi is any Boolean expression, 81 p 82 is a relation,
and S is any statement.

The action of the UNTIL statement is described graph­
ically by means of the following flow chart:

s

First form:

The statement Sis executed repetitively until the Bool­
ean condition is satisfied; control then continues in
sequence. If ffi is satisfied initially, S will not be executed
at all.

EXAMPLES:

COMMENT TABLE LOOK-UP;
I = 1; UNTIL (T(I) GEQ ARGMT); I =I + 1

UNTIL (L - LPRIME LSS TOLERANCE) AND
(V LSS 0.01); BEGIN V = V*2; LPRIME = L;
L = ITER (L,V) END

COMMENT SUM SERIES FOR E*-X;
N = 1; E = 1; T = 1; UNTIL (ABS(T) LSS 1**-6) OR

(N GTR 30); BEGIN T = -T.X/N; E = E + T;
N = N + 1 END

Second form:

As in the case of the IF statement, the UNTIL state­
ment is provided with an alternate form to produce a
more efficient object program in those cases where the
condition to be tested consists of a relation between
two arithmetic quantities.

EXAMPLES:

COMMENT SEARCH FOR ROOT OF F() ;
FA= F(A); UNTIL ABS (B -A) LSS EPS;
BEGIN U =(A+ B)/2; EITHER IF FA.F(U) GTR O; A= U;
OTHERWISE; B = U END

COMMENT ITERATED TRAPEZOIDAL INTEGRATION;
H = (B - A); I = (F(A) + F(B))/2; J = 0;
UNTIL I - 2 J LSS 0.003H;

BEGIN Q = H; J =I; H = H/2; X =A+ H;
UNTIL X GTR B;
BEGIN I =I + F(X); X = X + Q END END

The FOR Statement

The FOR statement finds its principal use in the control
of an iteration where the statement or statement group
to be iterated involves a variable (the induction vari­
able) which must take on a succession of values. It is
also used to cause a statement to be executed a prede­
termined number of times.

A FOR statement is comprised of a FOR clause and its
associated statement, which must be separated from the
clause by a semicolon.

GENERAL FORM:

FOR 'O = 9'£; s
where 'O is a variable, fJ£ is an iteration list, and the S
is any statement.

The iteration list describes the sequence of values that
the variable 'O is to assume. The statement S will be exe­
cuted for each of these values. After the iteration list
has been exhausted, the statement following S will be
executed. Note that a GO TO statement might transfer
control out of the FOR loop before the iteration loop
is exhausted.

The most common form that an iteration assumes is a
triplet of expressions separated by commas and enclosed
in parentheses.

First form:

(81, 88 , 8r)

where 81, 8 8 , and 8r are arithmetic expressions.

In this case, the FOR statement takes on the form:

FOR eo = (81, 8 8 , 0r); s

If the first character of 8 8 is not a minus sign, then the
form is equivalent to the simpler statements:

'O = 81 ; £ .. IF 'O LEQ 8r;

BEGIN s; eo = 'O + 88 ; GO TO£ END

6-5

BURROUGHS ALGEBRAIC COMPILER

The logical flow of this construct may be described
diagrammatically as follows:

Compare

CV:er
>

In the case that the first character of e8 is a minus sign,
the FOR statement is equivalent to:

'U = ct= Br;£ .. IF 'U GEQ Br;

BEGIN s; 'U = 'U + B8 ; GO TO£ END

and the preceding flow chart holds if we replace > by
<, and ::; by 2:: .

Note that if the test fails initially (i.e., Br > Br in the
first case, or Br < er in the second), the triplet is con­
sidered vacuous, and the statement S will not be exe­
cuted at all. On exit from the FOR statement, the value
of the induction variable 'U is that which it has when
the test first failed.

The use of a GO TO or SWITCH statement to transfer
control from outside the scope of the FOR loop to any
labeled statement included inside the compound state­
ment S may produce anomalous results.

EXAMPLES:

COMMENT EVALUATE INNER PRODUCT OF U() AND V();
DOT= O; FOR I = (1,1,N);
DOT= DOT+ U(l).V(I)

6-6

COMMENT SEARCH RECTANGULAR GAME FOR
SADDLE POINT;

FOR I= (1,1,M); BEGIN L = O;
FOR J = (U;N); IF A(l 1J) GTR L;
BEGIN L = A(l,J); T = J END;
FORK= (1,1,M); iF A(K,T) LSS L; GO AGAIN;
GO FOUND; AGAIN .. END; GO NONE

COMMENT SOLVE EQUATIONS A(N X (N + 1)) FOR X();
FOR K = (N + 1, -1, 1); BEGIN

FOR I= (1,1,N); X(I) = A(l,l);
FOR J = (2,1,K); BEGIN

D = A(l,J)/X(l);
FOR I = (2,1,N); A(I - 1, J -1) = A(l,J) - X(l).D;
A(N,J) = D END END

The second form that an iteration list may assume is a
list of expressions separated by commas.

Second form:

In this case, the FOR statement appears as

FOR 'U = Bi, B2, Ba, """'' Bq; S

The behavior of this statement may be clarified by the
following flow chart:

C{J = e1

That is, the variable 'U is successively given the values
of 8i; 82, and so on through &1r The statement S is exe­
cuted once for each value which 'U assumes.

BASIC CONTROL STATEMENTS

EXAMPLES:

FOR PRIME= 2,3,5,7,11,13,17; s
FOR X = 0, 0.1, 0.5, 1.0, 5.0, 10.0; s

Third form:

The third form of an iteration list is actually a combina­
tion of the first two; triplets of expressions which ap­
pear in the first form may be used as members of the
list of the second form. The sequence of vaiues which
results is the expected one.

EXAMPLES:

FOR Z = (0,1,10), (15,5,50), (100,50,1000), 5000, 10000; s

This statement would cause S to be executed for Z = 0,
1, 2, ... , 9, 10, 15, 20, 25, ... , 50, 100, 150, 200, 250, ... ,
900, 950, 1000, 5000, and 10000.

FOR I = (1,1,N); FOR J = (1,1,1 - 1), (I + 1,1,N);
A(l,J) = A(l,J)/A(l,I)

This statement will divide off-diagonal elements of each
row of matrix A(,) by the diagonal element of that row.
Note that the first triplet of the second FOR clause is
vacuous when I = 1; the second is vacuous when I = N.

6-7

SUBROUTINES

FUNCTIONS

INTRINSIC FUNCTIONS

PROCEDURES

EXTERNAL PROCEDURES

ONE OF THE MOST IMPORTANT aspects of the stored­
program computing device is its ability to treat

subprograms which may be executed from any point in
the main program. The compiler language includes sev­
eral methods of defining subprograms, each of which has
its particular field of application.

The declarations SUBROUTINE, FUNCTION, and
PROCEDURE will be discussed, as well as the ENTER
statement, the RETURN statement, a variation of the
assignment statement, and the procedure-call state­
ment. These declarations and statements are peculiar to
the definition and use of subprograms.

SUBROUTINES

The form of the subprogram which is conceptually the
simplest consists merely of a compound statement,
which may be executed on demand from any part of the
remainder of the program without the necessity of re­
writing the actual compound statement each time its
particular effect is desired. For our purposes here, such
a compound statement will be called a subroutine.

The SUBROUTINE Declaration

The SUBROUTINE declaration states that the follow­
ing compound statement represents a subroutine.

GENERAL FORM:

where fJ is an identifier and S1 through Sri are the state­
ments which define the effect of the subroutine. The
identifier becomes the subroutine label. In such a case,
fJ is not a statement label in the usual sense although it
may-at the programmer's option-follow the word
END, as may a label of any compound statement.

VII ...

subprograms

All the identifiers which appear in a subroutine have
precisely the same meanings as those assigned to them
outside the subroutine. This is what is meant when a
subroutine is said to be dependent on the program in
which it is defined.

The RETURN Statement

The compound statement which defines the subroutine
is executed starting with its first component statement.
One (or more) of the statements S1 through Sn which
compose the subroutine and which follow the SUB­
ROUTINE declaration must be a RETURN statement.
Computation within the subroutine proceeds until a
RETURN statement is encountered.

GENERAL FORM:

RETURN

The RETURN statement causes control again to be re­
sumed in sequence at that point at which the subroutine
was called. If control is to be returned to the point fol­
lowing the entry to the subroutine, the RETURN
statement must be used. 'Running off the end' of a
subroutine wiil produce anomalous results. Exit may of
course be made from a subroutine through the use of a
GO TO or SWITCH statement.

A subroutine need not be defined prior to its use. Sub­
routines may be defined within other subroutines.

EXAMPLE:

SUBROUTINE EVALUATE; BEGIN U = O; V = O;
FOR I = (1,1,N); FOR J = (1,1,N); BEGIN W = 0;
FORK= (1,1,N); W = W + X(l,K).Y(K,J); IF I EQL J;
W = W -1; U = U + ABS(W); V = MAX(V,ABS(W)) END;
U = U/N*2; RETURN END EVALUATE

7-1

BURROUGHS ALGEBRAIC COMPILER

The ENTER Statement

The ENTER statement is used to initiate the execution
of a subroutine (to call a subroutine).

GENERAL FORM:

ENTER!!

where 9 is the subroutine label.

EXAMPLE:

SUBROUTINE CHEBYSHEV;
BEGIN EITHER IF N EQL O; (M = l.0**40; PNl = 1.0);
OR IF N EQL 1; (M = 2; Z = X + X; PN2 = 1; PNl = X);
OR IF (X + X EQL Z) AND (N GEQ M); ENTER RECURSE;
OTHERWISE; BEGIN PN2=1; PNl = X; Z = X + X; M = 2;

ENTER RECURSE END;
CHEBY = PNl; RETURN;
SUBROUTINE RECURSE;
BEGIN FORM= (M,l,N);
BEGIN PN = Z.PNl - PN2; PN2 = PNl; PNl = PN END;

RETURN END END CHEBYSHEV

FUNCTIONS

Another sort of subprogram is that resulting from the
FUNCTION declaration. The reader should keep in
mind that the FUNCTION declaration is only one of
several ways in which functions are made available to
the program being compiled.

The FUNCTION Declaration

The FUNCTION declaration serves to define those
functions of a particularly simple and common kind,
which may be expressed by means of a single expression.
A function must be declared before it can be employed in
an expression. Functions may be declared inside of a
subroutine, but the result will be the same as if they were
declared outside of the subroutine.

GENERAL FORM:

FUNCTION g: (C~\, <P2, MN' @n) = e
where g: is an identifier which is to be the name of the
function. The parameters @1 through <Pn are identifiers
of variables which serve as the parameters of the func­
tion, and e is the expression which defines the function.

Any well-formed expression e involving the identifiers
@ i and any other identifiers appearing in the program
may be used. Identifiers used as parameters of a
FUNCTION declaration are independent of identifiers
used elsewhere in the program, even though the identifiers
used as parameters are spelled in exactly the same way as

7-2

the identifiers used outside of the FUNCTION declaration.

(This is subject to the provision that there is no conflict
between the declarations of type for the identifiers used
in the main program and the desired type for those
identifiers, spelled in the same way, which are used as
parameters.) All other identifiers appearing in e that
are not included in the parameter list are treated as if
they were part of the main program.

The types (integer, floating, Boolean) of the parameters
and the type of the value of the function itself are deter­
mined by the declarations of type in the same manner
as are other identifiers.

EXAMPLES:

FUNCTION ROOT (A,B,C) = (-B + SQRT(8*2 - 4A.C))/2A

FUNCTION NORM (X,Y) =SQRT((U.X*2 + V.Y*2)/(U + V))

FUNCTION NEGEXP(Z) = (1 + Z(0.2507213 + Z(0.0292732
+ 0.0038278Z)))* -4

FUNCTION ARCSINH(S) = LOG(S + SQRT(S*2 + 1))

FUNCTION STROKE(P,Q) =NOT (P AND Q)

Evaluation of a Declared Function

The evaluation of a declared function is initiated
through a function call.

GENERAL FORM:

9 (Si, 82, MN' Sn)

where the identifier !J is the name of the function, and
81 through Sn are the expressions representing argu­
ments supplied to the function.

The arguments may be constants, or variables used in
the main program, or both. However, it is the responsi­
bility of the programmer to ensure that the expressions
representing the arguments of the function agree in type,
number, and order with the parameters defined in the
FUNCTION declaration. When a function call is en­
countered in the program, the expressions in the argu­
ment list are evaluated and their respective values
assigned to the corresponding variables in the parameter
list. These current values are those used in the evalua­
tion of the expression specified in the FUNCTION
declaration.

EXAMPLES:

ROOT(5, C/2, C)
NORM(A,B)
NEGEXP(E)
ARCSI NH(11013.2)
STROKE(A OR B, A EQIV B)

SUBPROGRAMS

INTRINSIC FUNCTIONS

There is a small group of functions called intrinsic f unc­
tions, the definitions of which are a part of the compiler
and consequently require no FUNCTION declaration.
Each of the intrinsic functions is discussed in turn and
a tabular summary of them is given below.

The function MOD requires two integer arguments.
The value of the function is the integer obtained as the
remainder when the first argument is divided by the
second.

The functions MAX and MIN must have two or more
arguments. The value of the function MAX will be the
value of the largest of its arguments (algebraically);
the value of the function MIN will be the value of the
smallest of its arguments (algebraically).

the value of the function will be an integer. If any of
the arguments is floating-point, then the result will also
be floating-point.

SIGN (8)

The function SIGN has a single argument. If this argu­
ment is positive, the result will be + 1; if zero, the result
is also zero; if negative, the result is -1. The result of
the SIGN function wilJ be of the Rame type as that of
its argument.

ABS (8)

The function ABS has a single argument. The result of
the ABS function will be the absolute value of the
argument and will be of the same type as its argument.

PCS. (8)

The function PCS is used for interrogating the PROGRAM

CONTROL SWITCHES. The value of this function is Bool-
The arguments may be either integer or floating-point ean in type and is true if the indicated PROGRAM

expressions. If all of the arguments are integers, then CONTROL SWITCH is ON and false if OFF. The units digit

INTRINSIC FUNCTIONS

Name and Description Type of Function

f 1, x > 0
SIGN (X) =) 0. X = 0

-1, x < 0

ABS (X) =Ix I

PCS (N)

Same as arguments

Same as arguments

Same as argument

Same as argument

Boolean

Type of Argument(s)

Integer

Integer or

floating-point

Integer or

floating-point

Integer or

floating-point

Integer or

floating-point

Integer or

floating-point

Examples

Xi X2 MOD (Xi, X2)

100 7

-100 7

100 -7

-100 -7

A= l; B = 14; C = 6.

Y = MAX (A, B, C)

Y= 14.

2
-2

2
-2

A= 0.1; B = 14.0; C = 6.1.

Y = MIN (A, B, C)

y = 0.1.

If X = 34, SIGN (X) = +l.

If X = 0, SIGN (X) = 0.

If X = -15, SIGN (X) = -1.

If X = -45.67, ABS (X) = 45.67

If X = +19, ABS (X) = 19.

If PROGRAM CONTROL SWITCH 3 is ON,

PCS(3) = 1.

If OFF, PCS(3) = 0.

7-3

BURROUGHS ALGEBRAIC COMPILER

of the argument of the PCS function indicates which
of the PROGRAM CONTROL SWITCHES, 0 through 9, is to
be interrogated. The argument may be either integral
or floating-point. If a :MONITOR, TRACE, or DUMP
declaration is included in the program, the use of the
following control switches may be restricted: PCS 7,
PCS 8, PCS 9, and PCS 0. (See CHAPTER X.)

PROCEDURES

Procedures represent the third category of subprograms.
A procedure is a closed independent routine which may
be executed as a subprogram. This independence makes
procedures extremely important features of this com­
piler. A procedure may be written and checked out
independently, a collection of these procedures then
being retained as a repository of computing techniques.
The flexibility built into the argument structure of
procedures allows a specific procedure to be tailored to
a variety of situations.

There are three means by which a procedure may be
made availabl 0 to a compiled program:

First, the procedure may be taken from the library of
machine-language programs which define procedures.
These are called library procedures (see APPENDIX G).

Second, a machine-language program deck defining a
procedure may be included with the cards containing
the symbolic program. These are called external proce­
dures (see APPENDIX F).

Third, a procedure may be declared in the symbolic
language.

The PROCEDURE Declaration

Procedures may be made available to the compiled pro­
gram by means of the PROCEDURE declaration.

GENERAL FORM:

PROCEDURE.CP (~ £<'.P ~);
BEGIN S1; S2; ~;Sn; END

where CP is an identifier which names the procedure be­
ing declared; the S's are the statements and declara­
tions making up the definition of the procedure; and £<'.P
is the list of parameters to be used by the procedure.
As an alternative form, END may be followed by the
name of the procedure and then by a pair of parentheses.

The List of Parameters

The list of parameters of the PROCEDURE declaration
consists of identifiers and punctuation marks, these
identifiers serving as names of the various parameters.

7-4

An input parameter may be a sjmple variable or expres­
sion. A parameter representing an n-dimensional array
must be denoted by an identifier followed by a pair of
parentheses which encloses n-1 commas. Output pa­
rameters have the same form as input parameters, and
represent output variables or output arrays. Program­
reference parameters may be statement labels-or
identifiers representing labels of subroutines and seg­
ments, as well as input, output, and format labels.
Identifiers in the program-reference parameter list
which represent names of functions or procedures must
be followed by a pair of parentheses. A procedure may
not call itself.

The list of parameters of a PROCEDURE declaration
may be grouped into three categories. Let fJCP, 0<'.P, and
CPCRCP represent input, output, and program-reference
parameters, respectively.

Since any but not all of these three categories may be
missing, the list of parameters may assume the follow­
ing forms:

First:
Second:
Third:
Fourth:
Fifth:
Sixth:
Seventh:

(fJCP; 0<'.P; CPCRCP)
(fJCP)
(fJCP; 0<'.P)
(fJCP; ; CPCRCP)
(; 0<'.P)
(; 0<f; CPCR<f)
(; ; CPCRCP)

Independence of Declared Procedures

The compound statement defining a procedure is written
in terms of tl).e identifiers appearing in the list of param­
eters of the PROCEDURE declaration, together with
any other identifiers required.

The definition of a procedure should be considered as a
symbolic program which is independent of the program
in which the declaration occurs; that is, all identifiers
appearing within a PROCEDURE declaration are de­
fined only in terms of the declaration itself. Identifiers
spelled identically both inside and outside of any partic­
ular PROCEDURE declaration are in no way associ­
ated. There is one exception to this rule: After a proce­
dure is declared, the identifier which names it is recognized
as such throughout the subsequent program except where it
is used as a parameter in a FUNCTION or PROCE­
DURE declaration. Indeed, the declaration of a proce­
dure might be construed as adding another feature to
the compiler language, since the name of a procedure is
recognized throughout the program just as are the
reserved words FOR, GEQ, etc.

Declarations Within Procedures

The procedure definition must contain a sufficient num­
ber of declarations to describe the identifiers appearing

SUBPROGRAMS

either as parameters or in any other form within that
definition. Parameters representing arrays, functions,
or other procedures are identified as such by the punc­
tuation associated with them in the list of parameters.
For example, if W(, ,) appears as an input or output
parameter, W should not appear in an ARRAY declara­
tion within the PROCEDURE declaration. However,
any parameters which represent quantities within the
PROCEDURE declaration must have their types speci­
fied, either explicitly within a type declaration, or by
default. (See CHAPTER V.) These declarations have no
force outside the PROCEDURE declaration. A param­
eter representing a label of one sort or another is identi­
fied as such by its inclusion in the program-reference
portion of the list of parameters without a trailing pair
of parentheses, this constituting a sufficient identifica­
tion for labels.

Parameters of Value and Name

It is necessary to distinguish two classes of parameters,
parameters of value and parameters of name.

Parameters of value are variables within the procedure.
These variables will be set to the values of their corres­
ponding arguments whenever the procedure is called.
Any change in them occurring within the procedure (for
example, appearing as the left-hand member of an as­
signment statement) will have no effect on the variable
or variables which make up the corresponding argument.

On the other hand, parameters of name are associated
with their corresponding arguments in all respects. For
example, if PAR is a parameter of name for a certain
PROCEDURE declaration and, for some call of that
procedure, ARG is the corresponding argument, then
the effect is exactly as though the identifier ARG were
substituted for the identifier PAR throughout the PRO­
CEDURE declaration.

Input variables (or expressions) are parameters of value.
Input arrays, all output parameters, and all program­
reference parameters are parameters of name. (There is
thus no real distinction between an array indicated as
an input or as an output parameter.)

Construction of Procedures

As mentioned earlier, a procedure is an independent pro­
gram complete with its own declaratiOns and statements.
This program is contained within the BEGIN,...,., END
pair noted in the general form. The program defining
the procedure is entered at the first statement following
the BEGIN and continues in accordance with the se­
quence specified. As with the SUBROUTINE declara­
tion, a RETURN statement must be included at each
exit point of the procedure to return control to the point
directly following the procedure call. .

A procedure must be declared prior to its first use. It
may then be referred to from subsequent parts of the
program, as well as from within other PROCEDURE
declarations. FUNCTION and SUBROUTINE dec­
larations may appear within a PROCEDURE declara­
tion. However, one PROCEDURE declaration may not
appear within another procedure.

If a SUBROUTINE declaration appears within a PRO­
CEDURE declaration, a RETURN statement within
the subroutine causes an exit from the subroutine, not
from the procedure.

Examples of PROCEDURE Declarations

As a first example, we shall construct a procedure to
perform linear interpolation of a tabular function of one
variable, V. The parameters of the procedure will be two
vectors, X () and Y (), representing the independent
and dependent variables, a value V of the independent
variable, an integer N representing the number of en­
tries in the table, and finally a statement label, RANGE,
to which transfer is made in the event that V < X(l)
or V ~ X(N). This procedure is to be used as a function,
the value of which is the result of the interpolation.

EXAMPLES:

PROCEDURE I NTERP (X(), Y(), V, N; ; RANGE); BEGIN
INTEGER I, N;
IF (V LSS X(l)) OR (V GTR X(N)); GO TO RANGE;
I = 1; UNTIL V LEQ X(I); I =I + 1;
INTERP() = Y(I -1) + (Y(I - 1) - Y(I)) (V - X(I - 1))/
(X(I - 1) - X(I)); RETURN END I NTERP()

A procedure for multiplication of square matrices:

PROCEDURE MATRIMULT (N, A(,), B(,); C(,)); BEGIN
INTEGER 1,J,K,N;
FOR I = (1,1,N); FOR J = (1,1,N); BEGIN

S = 0; FOR K = (1,1,N); S = S + A(l,K).B(K,J);
C(l,J) = S END; RETURN END

(Note, in calling this procedure, that the matrix C must
be different from A and B.)

The following procedure solves a set of n equations in n
unknowns.

COMMENT SOLVE EQUATIONS WITH SELECTION
OF BEST PIVOTAL ROW;

PROCt:DURE JORDAN (rf,A (,); X()) ;
BEGIN INTEGER 1,J,K,L,N;
FORK =(N + 1, -1, 1); BEGIN D =0; L =1;

FOR I= (2,1,K); IF ABS (A(I -1,1)) GTR D;
BEGIN L = I - 1; D =ABS (A(L, 1)) END;

IF L -1 NEQ O;
FORJ =(1,1,K); BEGIN D =A(L,J);

A{L,J) = A(l,J); A(l,J) = D END;
FOR I = (1,1,N); X(I) = A(l,1);

7-5

BURROUGHS ALGEBRAIC COMPILER

FOR J = (2,1,K); BEGIN D = A{l,J)/X(l);
FOR I= (2,1,N); A(I -1, J -1) = A(l,J) - X(l).D;
A(N,J - 1) = D END END; RETURN END JORDAN()

The Procedure-Call Statement

A procedure-call statement constitutes a complete state­
ment in itself. The entry to a procedure is specified by
a procedure-call statement, and may assume any of the
following forms:

GENERAL FORMS:

First form: <P (d<t; 0ct; <PCR<t)

where <P is the name of the procedur~ being called;
d ct is the list of input arguments;
0ct is the list of output arguments; and

<PCR<t is the list of program-reference arguments.

Any but not all of the argument lists may be missing,
resulting in the following alternative forms:

Second form:
Third form:
Fourth form:
Fifth form:
Sixth form:
Seventh form:

<P (9a)
<P (9a; 0a)
<P (9<t; <PCR<t)
<P (; ea)
<P (; 0ct; <PCR<t)
<P (; ; <PCRa)

Arguments of Procedures

Whenever a procedure is called, a list of arguments, or
actual parameters, is specified. These arguments may
be grouped into three categories: Input arguments,
output arguments, and program-reference arguments.
Some of these categories may be missing, depending of
course upon the specific procedure used.

An input argument may be a simple variable, an ex­
pression, or an argument array (see CHAPTER II,
Subscripted Variables).

An output argument may be a simple variable, a sub­
scripted variable, or an array. A program-reference
argument may be a statement label, subroutine label,
segment label, input label, output label, or a format
label. The name of a function defined by a FUNCTION
declaration, or the name of any other procedure, may
be used as a program-reference argument when it is
followed by a pair of parentheses.

It is important to distinguish between an array and an
element of an array. A subscripted variable is an ele­
ment of an array-it represents a single quantity. An
array, however, represents a collection of quantities.
When an array is indicated as an argument of a pro­
cedure, the procedure is concerned with this entire
collection of quantities.

7-6

Suppose that the two-dimensional array named M is to
be an argument. The notation used for thi~ argument is
M (,) , the two empty subscript positions indicating
that IM: is two-dimensional. It is also possible to spec­
ify that a portion of some array be given to a procedure
as an argument. For example, if a procedure requires
that a certain argument be a one-dimensional array, the
array could be chosen as the (I+ l)th row of M (,)by
writing M (I + 1,) . The single empty subscript position
indicates a one-dimensional array. In similar fashion,
the (L - 2K)th column of M would be written as
M(,L - 2K). In general, the name of an array fol­
lowed by a subscript list which contains empty sub­
script positions specifies an array with dimensions equal
to the number of empty subscript positions. This holds
whether or not some of the subscripts are specified.

To specify a program-reference argument which is to be
a label, or the label of a subroutine, input-data list,
output-data list, or format-data list, it is necessary only
to write the desired identifier. A function or procedure is
specified by writing the name of the function or proce­
dure followed by a pair of parentheses, for example
HA VERSINE() .

Note that we now have a distinction between a function
and an evaluated function. An evaluated function has
its arguments specified; it represents the quantity ob­
tained by applying the definition of the function to
those arguments, and is thus an expression. A function,
however, represents only the definition.

Examples of Procedure-Call Statements

As an example of a procedure-call statement, suppose
that a procedure called INVERT has been defined to
evaiuate the inverse and aiso to caicuiate the deter­
minant of a given matrix. The arguments of this proce­
dure are to be:

Input:

Output:

Program­
rejerence:

The order of and the name of the matrix,
the determinant and inverse of which are
to be evaluated;

The array which is to receive the inverse
and the variable which is to receive the
computed value of the determinant;

A label of a statement to which transfer
is to be made if the matrix is singular.

The user would then write:

INVERT (N, A(I); B(,), D; ERROR4)

to set D to the value of the determinant of the N x N
matrix A(,) and to set B(,) equal to the inverse of the
matrix A(,). A transfer to the statement labeled
ERROR4 will occur if A(,) is singular.

SUBPROGRAMS

As a second example, suppose that a vector of data
points is to be treated by a least-squares smoothing
process. Suppose a procedure called SMOOTH is
available. The programmer might write:

SMOOTH (K, X(); Y())

where the input parameters are first, the number of
data points K, and second, the name X() of the vector
containing them, while the output parameter Y() is

Functions Used As Arguments

Any function-library, external, or declared-may be
used directly as a program-reference argument, with the
exception of the intrinsic functions, listed on page 7-3.
The exclusion of these intrinsic functions as program­
reference arguments was intentional, since the compiler
cannot treat this case directly. If a procedure requires a
function as one of its arguments, and the user desires to
specify it as an intrinsic function, that intrinsic function
may be renamed by the use of the FUNCTION declara­
tion. For example, if ABS() is to be the function
specified, write

FUNCTION F(X) = ABS(X)

and give the procedure F () for the argument.

No provision has been made in the compiler for using a
function the arguments of which have been in part spec­
ified and in part left empty. This situation causes little
inconvenience, however, since the FUNCTION declara­
tion may be used in lieu of such a feature. For example,
assume that a function of two arguments Q(X, Y) is
available and that it is desired to specify, as an argu­
ment to a procedure, that function of one argument Y
which is defined by always setting X to (A - B)*3. If
the declaration

FUNCTION QPRIME(Y) = Q((A - B)*3,Y)

is included in the symbolic program, then using the ar­
gument QPRIME() will produce the desired results.

Functions Defined by Procedures

Some procedures define functions, i.e., the procedure
with a given set of arguments represents a quantity.
This is the extended form of the evaluated function
mentioned in CHAPTER II.

A procedure which is to serve as a function must include
a procedure-assignment statement.

GENERAL FORM:

<'.P()=8

where a> is the name of the procedure being declared and

8 is an expression. The effect of this statement is to as­
sign the value of 8 to the procedure. Immediately after
this statement is executed, a RETURN statement must
be executed. As an example of this sort of construction,
consider the integration procedure using Simpson's
Rule:

PROCEDURE SIMPS (A,B,EPSILON; ; F()); BEGIN
K = L = F(A) + F(B); H = B - A;
GO TO ITER; UNTIL ABS((K - 2M)/K) LSS EPSILON;
BEGIN ITER .. Q = H/2; S = O; M = K;
FOR X =(A+ Q,H,B) ; S = S + F(X);
K = L + 4S ; L = L + 2S; H = Q END ;
SIMPS() = K.Q/3; RETURN END SIMPS()

In the above definition of SIMPS () , A and B are the
lower and upper limits of integration, respectively.
EPSILON is the maximum tolerable error in the result,
and F () is the function to be integrated.

The single value associated with the procedure SIMPS
() is the value of the definite integral indicated. The
type of the procedure is determined from the declara­
tions of type within the PROCEDURE declaration.
Suppose that we wish to evaluate the equation:

The assignment statement

J = 4SQRT (SIMPS (X - Y, X + Y, 1**-6; ; G3 ())*3)

would suffice. Note that the call on the procedure repre­
senting a function constitutes an expression which may
be combined with other expressions to form a statement.

EXTERNAL PROGRAM DECLARATIONS

By the use of this kind of declaration, a programmer
may define a statement or a procedure in terms of ma­
chine language and include it in a compiled program.

GENERAL FORMS:

First form:

EXTERNAL STATEMENT£

where£ is the label of an external statement.

The first form declares the program represented by £
to be a statement which will behave similarly to any
other active statement in the language. The label of this
statement will be£.

If the machine-language program defining the external
statement is to be referred to from more than one point
in the program, a subroutine may be used to enclose the

7-7

BURROUGHS ALGEBRAIC COMPILER

declaration EXTERN AL ST A TEMENT £. All refer­
ences to the external statement £ will then be made by
a reference to that subroutine. The declaration is treated
as a statement which initiates the execution of the
program £.

Second form:

{INTEGER \
\BOOLEAN

EXTERNAL PROCEDURE £(<P11~ 1 <Pn); l FLOATING £

REAL

where £ is the label of the external program, and
<Pi, ~, CPn is a list of parameters.

The second form defines the program represented by£
to be a procedure ~hich will behave like any other pro­
cedure in the language. The declaration of the second
form above must be made prior to a call on that proce­
dure. The call on an external procedure is precisely
analogous to that of any defmed procedure discussed
earlier.

Note that if the procedure is to define a function, then
its declaration of type must follow it immediately; if
not, the declaration of type may be omitted.

Both forms indicate to the compiler that a machine­
language program defining£ follows the FINISH card
of the symbolic program (see APPENDIX F).

EXAMPLES:

First form:

EITHER IF V GTR NMAX; BEGIN EXTERNAL STATEMENT
ERROR; GO RESET END; OR IF K LSS EPS; GO ERROR END

Second form:

EXTERNAL PROCEDURE COMPLEXMULT (A, B, C, D; X, Y);
FLOATING COMPLEXMULT; SREAL =0; SIMAG =0;

7-8

FOR I= (1,1,10); BEGIN COMPLEXMULT (AREAL(I),
AIMAG(I), BREAL(I), BIMAG(I); TREAL, TIMAG);
SREAL = SREAL + TREAL; SIMAG = SIMAG + TIMAG END
l:'VTrn11.1111 nnnl"l:'l'"'ll lnl:' C'Dl:'DD/ •• con cf\\.
C:./\ I C:.l\llt\L r f\UvC:.UUl\C:. 0r C:.1\1\\' ,1 l\LJLIJ/,

IF V GTR NMAX; SPERR(;;NERR)

PROCEDURE MATRIMULT (M, N, P, A(), B(), ROW, COLUMN,
OUTTAPE; C()); BEGIN INTEGER OTHERWISE;
FLOATING A, B, C; EXTERNAL PROCEDURE REWIND (U);
EXTERNAL PROCEDURE MAGREAD (N, U, A());
EXTERNAL PROCEDURE MAGWRITE (N, U, A());
REWIND (ROW); REWIND (COLUMN); REWIND (OUTTAPE);
FOR I= (1, 1, M); BEGIN MAGREAD (P, ROW, A());
FOR J = (1, l,N); BEGIN MAGREAD (P, COLUMN, B());
BEGINS= O; FORK= (1, I, P); S = S + A(K) B(K);
C (J) = S; REWIND (COLUMN) END;
MAGWRITE (N, OUTTAPE, C ())END; RETURN END

Machine-Language Procedures

Library procedures and all external programs are
written in the machine language of the BuRROUGHS 220.
Any features of the compiler-for example, input­
output procedures, multiple-precision and partial-word
arithmetic, detection of overflow, etc.-may be made
available to the compiled program through machine­
language procedures. The standard library contains a
selection of commonly used procedures which evaluate
the elementary functions and perform certain opera­
tions, such as the printing of error messages, or editing
of output information according to FORMAT declara­
tions. While many of these functions may be expressed
in the compiler language, the convenience of having
these procedures 'on call' without the programmer
directly providmg their defmitions makes their inclusion
in the library worthwhile.

APPENDIX F describes the preparation of library and
external procedures; APPENDIX G describes the library
procedures currently available.

VIII ...
INPUT

PREPARATION OF DATA CARDS

PREPARATION OF PAPER TAPE

OUTPUT

FORMAT

EDITING input-output

THIS CHAPTER DISCUSSES those features of the com­
piler relating to communication of information be­

tween the computer and the input-output equipment.
In general, the compiler input-output operations are
accomplished by means of machine-language procedures
(either external procedures or library procedures). Three
declarations are provided to aid in the input-output
processes-the INPUT, OUTPUT, and FORMAT
declarations.

INPUT OF INFORMATION

The INPUT Declaration

The INPUT declaration associates with identifiers
ordered sets of variables, values of which are to be read
into the computer as units. These sets of variables are
called input-data lists and the identifiers are termed
input labels. The input label with its associated input­
data list is termed an input-list element.

GENERAL FORM:

INPUT (.'1(~£), NW• .'1(~£))

where each .'1 is the identifier declared to be the label of
the corresponding input-data list ~£. As explained in
CHAPTER V, the parentheses around the input list in
such a declaration are included at the programmer's
option. Input-data lists consist of input data-list elements
separated ny commas. The simplest of these elements
is merely a list of variables.

First form:

where each 'O may be either a simple variable or a sub­
scripted variable.

EXAMPLE:

INPUT DATAl (X,Y,Z), DATA2 (P(I), Q(I))

f Prhnin11P\'
f/ l/(/ I ~I ~6'-'f Wv'-1

This declaration defines DATAl to be the set of varia­
bles X, Y, and Z (in that order) and DATA2 to be the
set P(I) and Q(I), using the current value of I for the
subscript.

The next list element to be considered is termed the
iterated variable.

Second form:

FOR '01 = .'1£; NW; FOR 'Ok= f1£; 'O

where FOR '01 = .'1£ through FOR 'Ok= f1£ are FOR
clauses which control the iteration of the variable 'O.
One or more of these FOR clauses may precede 'O.

EXAMPLES:

INPUT (VECTOR(FOR L = (1,1,F); Z(l)),
MATRIX (FOR I= (1,1,N); FOR J = (1,1,M); E(l,J)))

This declaration defines VECTOR to be the label of the
input-data list consisting of the variables

Z(l), Z(2), Z(3), NW• Z(F - 1), Z(F),

and MATRIX to be the label of the input-data list con­
sisting of the variables

E(l,l), E(l,2) NW• E(l,M), E(2,l), NW• E(N,M).

Note that the values for F, M, and N must have been
assigned elsewhere in the program.

The remaining forms of the input-data list consist of
combinations of the first and second forms. In the first
form, any 'O may be replaced by any input data-list
element and still be a valid input-data list. In the second
form, the 'O may be replaced by any input data-list
element enclosed in parentheses and still be a ')valid
input-data list. In this case, everything in the enclosed
input-data list is iterated.

8-1

BURROUGHS ALGEBRAIC COMPILER

Third form:

D.C, D.C, MN' D.C

Fourth form:

FOR 'U1 = 9£; MN; FOR 'Uk= 9£; (D.C)

The input-data lists given by the third and fourth forms
may of course be used as input-data lists within their
own definitions, thus providing for a very high degree
of flexibility.

EXAMPLE:

INPUT EQUATIONS (N, FOR I = (1,1,N);
(FOR J = (1,1,N); M(l,J), C(I)))

This input-data list consists of the variables N, M(l,l),
M(l,2), ... , M(l,N), C(l), M(2,l), ... , M(2,N), C(2),
M(3,l), ... , M(N,N), and C(N).

Note that as soon as a variable (in this case N) has
been read into the computer, it is immediately available
for use in a FOR clause or within a subscript expression.

Input Procedures

Machine-language procedures are employed to obtain
numbers from the input medium. The label of an input­
data list usually will appear as a program-reference
parameter of an input procedure. For convenience the
frequently used READ procedure is included in the
library and will be discussed below.

There is an important feature of all input procedures
which should be noted, so that caution may be exercised
in their use. Any FOR clause with an INPUT declaration
affects the value of the variable being stepped in exactly the
same manner as a FOR clause controlling a statement.
Thus if an input procedure is contained within the scope
of a FOR clause and the INPUT declaration to which
it refers contains a FOR clause, the variables stepped by
the two iterations should be different. This also applies to
the output procedures described later in this chapter.

The READ Procedure

The READ procedure provides data input for compiled
programs from punched cards, magnetic tape, and paper
tape. It may be called in either of two ways:

GENERAL FORMS:

First form:

READ (; ; 9D£)

Second form:

READ(; S; 9D£)

8-2

where 9D.C represents the label of some input-data list
and S is a Boolean variable.

TL.!- -----...l---- -1....a.-!-- !-.t.'----.a.!-- .t.'--- .a.L.- : ____ .._
.Lill::; _lJlU\;t:UUlt: UIJLtllll:::; llllUlllltlLlUll llUlll Lilt: lll_lJUL

buff er and assigns values to the variables in accordance
with the specifications of 9D£. The buffer is filled a
number of times sufficient to supply all the values re­
quested by 9D.C; if the entries in the last buff er load are
not requested, they are lost. If the second form was
used, the Boolean variable S is set to true when a sentinel
card is found and the input process is terminated (see
Preparation of Data Cards, below); S is otherwise set
to false. Using the first form will cause the word
SENTINEL to be ignored.

The REED Procedure

The REED procedure is used to load the input buffer
whenever more information is requested by its equiva­
lence, READ. The word REED is not a reserved word
in the compiler language, and the procedure cannot be
referred to explicitly in a program.

The REED procedure included in the library of the
standard version of the compiler allows only CARDATRON
input. To facilitate the reading of data from paper
.tape, a compiler containing the proper REED must
be used. Since a compiler has access to only one
REED procedure, data from cards, paper tape, or mag­
netic tape cannot be read simultaneously. However, the
same program will accept input from any one of these
sources, depending upon the characteristics of the com­
piler used (see APPENDIX A).

Preparation of Data Cards

Data cards are punched with a digit five in column 1;
the remainder of the card is available for data. An
integer is punched as a string of no more than ten
contiguous digits, preceded by an optional + or - .
Floating-point numbers are punched as a string of
digits containing a decimal point. t

No more than eight significant digits may appear in a
floating-point number. Leading zeros are not significant;
trailing zeros are. A sign may precede the number. A
scale factor (power of ten) may be attached to a floating­
point number by following the number with a ',' (not
!**'), an optional sign, and a two-digit integer.

At least one blank column must separate the numbers
on a card. A number may not be broken between suc­
cessive cards.

t As opposed to the representation used for constants in the
symbolic program, the decimal point may also appear on data
cards at either end of the string.

INPUT-OUTPUT TECHNIQUES

Alphanumeric information may be stored in the com­
puter in the form of integer quantities. This is accom­
plished by punching on a card the alphanumeric input
information bracketed with semicolons; consequently,
the character ';' may not be used within the alphanu­
meric string itself. For example, if 30 consecutive char­
acters are to be entered in columns 13 through 41 of a
card (six words), then semicolons must be punched in
both column 12 and column 42.

The string of alphanumeric characters may extend over
more than one card. Column 2 of the next card will be
considered a continuation of column 80 of the last card
read. The string is terminated by a semicolon. However,
if the INPUT declaration specified in the READ proce­
dure is satisfied before the semicolon is reached, the
remaining information on the current data card will
be lost.

Arrays of variables reserved for the storage of such data
should be declared of type INTEGER. One integer, ten
digits in length, is stored in the computer for every five
consecutive characters of alphanumeric information.
The internal representation is two digits per alphanu­
meric character, as described in APPENDIX C of Opera­
tional Characteristics of the BURROUGHS 220 Electronic
Data Processing System (Bulletin No. 5020A). If the
number of columns of alphanumeric information is not
a multiple of five; the last integer formed will have
numeric zeros (alphanumeric. blanks) appended. The
integer digits representing the residual characters will be
justified left in this word.

An asterisk will cause all information to its right on the
card to be ignored (if the asterisk is not within an alpha­
numeric string).

EXAMPLES:

1
37

---4724
+0394

3.0
-.9

+3.1416
8.

-2.99,9
32.4,-13
+7.2,+2

are integers

are floating-point numbers

}
are floating-point numbers with
scale factor

; THE GOAT OF HOGAN ; is an alphanumeric entry

A sentinel card is identified by punching the word
SENTINEL starting at column 2 and followed by a
blank column:

COLUMNS
1
2-9

10
11-80

ENTRY

5
SENTINEL
(blank)
(optional)

Preparation of Data for Paper Tape

The general rules associated with the preparation of
data cards also apply to the punching of data on paper
tape. Data on paper tape is read in blocks of 16 words,
each block representing an 80-column alphanumeric
card image. The first two digit positions of the first
word (sL = 22) of each data block are not scanned for
information. This permits convenient card-to-tape con­
version, whenever needed. Both the single-frame code
and the two-decimal-digit B 220 code may be used. All
special-character codes are tested and, if needed, trans­
lated into B 220 internal representation during input.

The sentinel block is formed by punching the word
SENTINEL in the first two words as follows:

WORD
1
2
3-16

SINGLE-FRAME CODE
2 SENT
2 INEL
(optional)

B 220 CODE
0 0062455563
0 4955455300

Note that the techniques explained here are applicable
only with the paper-tape REED procedure supplied by
BURROUGHS upon request. If this does not meet the
particular needs of the application, a suitable REED
can be written by the user (see APPENDIX F).

OUTPUT OF INFORMATION

The OUTPUT Declaration

The OUTPUT declaration associates with identifiers
the ordered sets of expressions which are to be written
out of the computer as groups. These sets of expressions
are called output-data lists and the identifiers are termed
output labels.

GENERAL FORM:

OUTPUT (!1 (~£), ,_, g (~£))

where each !1 is the identifier declared to be the label of
the corresponding output-data list ~£. (See CHAPTER V
for the explanation of the use of the outside parentheses.)
Output-data lists are constructed in a manner precisely
analogous to input-data lists with the following exception:
Although only values of variables may be read into the
computer, the value of any expression may be written out.
Thus, wherever a variable has been specified in the des­
cription of an input-data list, the reader may substitute an
expression in an output-data list.

8-3

BURROUGHS ALGEBRAIC COMPILER

EXAMPLE:

OUTPUT RESULTS ((R - I) (S -1), N(R), N(S), 8.4)

Output Procedures

Machine-language procedures are employed to transmit
numbers to the output medium. The label of an output­
data list appears as the program-reference parameter
of an output procedure.

The WRITE Procedure

The WRITE procedure provides for the edited output
of a compiled program on the LINE PRINTER, HIGH­
SPEED PRINTER, the CARD PUNCH, or the SUPERVISORY
PRINTER.

First form:

WRITE (; ; di>£, dg:£)

Second form:

WRITE(; ; dg:£)

where di>£ is the label of an output-data list and a-g:£ is
the label of a format-data list.

The effect of the first form is to edit the output and
load the output buffer with the values specified by the
output-data list 1>£, in accordance with the format
specified by g:ce. The second form is used to fill the
output buffer with the messages indicated by the for­
mat-data list g:£. The type of output medium used
depends on the particular RITE procedure incorporated
in the library, and on the type of activation phrase used
in the format-data list.

The RITE procedure is frequently used for the trans­
mittal of edited output information to the output
medium. (This procedure is not required when the
activation phrase is intrinsic to the WRITE procedure
itself.)

The word RITE is not a reserved word; RITE is a pro­
cedure, and is referred to automaticaJly through the
WRITE procedure. The standard library contains a
RITE procedure for the LINE PRINTER; however, the
user may replace it by any other machine-language
program (see APPENDIX F).

CONSTRUCTION OF FORMATSt

The FORMAT Declaration

The FORMAT declaration has been designed specifi­
cally for use with the WRITE procedure, and serves to
associate labels with format-data lists which describe

8-4

the appear.a.nee of the output page or card. Such a label
then is used as a parameter by the WRITE procedure.

FORMAT (a-(g:£), 9'(ff£))

where the g:ce's are format-data lists and the 9''s are the
associated labels (outside parentheses again are
optional).

The format-data list consists of a sequence of format
data-list elements which are separated by commas and
perhaps grouped by parentheses. These elements occur
in two forms:

First form:

rLw.d

Second form:

ff S

In the first form, the symbols r, w, and d represent inte­
gers and L represents a letter. The integers r or d or
both are sometimes omitted, reducing the first form to
Lw.d, rLw, or Lw in these cases.

The integer r specifies the number of times an element
is to be repeated. If r is omitted, the element is executed
once. Elements of the first form are divided into two
classes: editing elements and activation phrases.

In the second form, g:s represents any string of charac­
ters which does not contain an '*'. This element is used
for placing alphanumeric titles or other indicative
information in the output line. It is called aformat string.

Editing Elements

A numeric editing element specifies how a number is to
be edited. There are six such elements:

Iw The I element specifies that an integer is to be
printed (or punched) in a field w columns wide.
The integer will be normalized right in that field
and will have its leading zeros suppressed. If the
integer being edited is negative, a ' - ' (minus
sign) precedes it. The value of w must be suffi­
ciently large to accommodate the largest integer
to be encountered together with any possible
minus sign.

Xw.d The X element specifies that a floating-point
number is to be truncated to d places following

t Thege formats are not to be confused with the format bands
used in the BURROUGHS CARDATRON.

INPUT-OUTPUT TECHNIQUES

the decimal point and printed in a field w columns
wide. The value w must be sufficiently large to
accommodate the largest number to be printed
along with its decimal point and any possible
minus sign.

Fw.d The F element specifies that a floating-point num­
ber is to be truncated to d significant digits and
printed (or punched) in floating-point form as
follows:

A ' - ' (if the number is negative), a '.', d digits,
a',', a'-' (if the power of 10 associated with the
number is negative), and two digits representing
that power of 10. Thus to accommodate negative
numbers w 2:: d + 6.

Sw.d The S element specifies that a floating-point num­
ber is to be truncated to d digits and printed (or
punched) in a field w columns wide. A decimal
point will be inserted at the appropriate position
to cause the printing (or punching) of d signifi­
cant digits if possible. If a number is less than
0.1 in absolute value, zeros will be inserted be­
tween the decimal point (which will appear at
the extreme left) and any significant digits
printed, punched, or typed.

Aw The A element allows integers to be printed (or
punched) in their alphanumeric equivalents. A
single A phrase will produce, as an output, w
characters, five characters of alphanumeric in­
formation being translated from each word or
ten-digit integer. If w is not a multiple of five, the
least significant portion of the last word will be
ignored.

Bw The element Bw will cause w blank columns to be
inserted in the edited line.

If in any case the field width w which has been specified
is less than the width required by the output informa­
tion, or if there are undefined conditions in the format
specifications, an asterisk will be printed in the corres­
ponding field.

EXAMPLES:

We list here sevaral elements and a typical result of the
editing they specify. In each example the first of the two
lines indicates the result of the editing process, where
the symbol# indicates an editing space. The line directly
below each example shows the equivalent line as printed.

ELEMENTS RESULT

417 #####13#-72431 ####342######0
13 -72431 342 0

ELEMENTS RESULT (continued)

3X5.2 u.13#-.52#1.74
.13 -.52 1.7 4

X12.10 #.0000000015
.0000000015

Fl0.3 ##.472,-03
117? n'l

• ..,.IL.1-V\J

Fl2.4 ##-.3942, 073### .4311,-03###.0000, 00
-.3942, 07 .4311,--03 .0000, 00

5S9.5 ###3427 .1 ##--32.993 ##-.10206###13788. ###.00014
3427.l --32.993 -.10206 13788. .00014

Al2. The use of this phrase, in conjunction with
485659624543484562634559005741

will result in the printout
HORSECHESTER

Format Strings

The phrase *5'3* inserts the characters comprising the
string 5'S into the line being edited.

ExAMPLES:

PIPE DIAMETER
TRANSCONDUCTANCE-MICROMHOS
HIGH - LOW - CLOSE - NET CHG.
DURCHSCHLAGFESTIG KEIT - VOLT

Activation Phrases

An activation phrase specifies that the line described by
the preceding elements is to be sent to the output device.

Whenever a line is written out in this manner, the image
in memory of the line is reset to blanks. Thus, if an
activation phrase is repeated, only the first execution
produces any printed results; the repeat merely provides
vertical spacing. Four activation phrases are provided:

W w The W phrase provides for output under control
of the RITE procedure. Unless the standard
RITE procedure is replaced by one tM.t is more
suitable to the user's needs, the output will be
emitted on the LINE PRINTER. The value of w
specifies the 'c-digit' to be used for printer con­
trol. If w is omitted, it is assumed to be zero. If
the control panel is wired as specified in BUR­
ROUGHS CORPORATION TECHNICAL BULLETIN
No. 17, Control Panel Wiring for Type 407 with
BURROUGHS 205 or 220 CARDATRON, w is in­
terpreted as follows:

8-5

BURROUGHS ALGEBRAIC COMPILER

w RESULT
0 Single space before printing
1 Eject page after printing
2 Single space before and after printing
3 Eject page before printing
4 Double space before printing
5 Skip to channel 2 before printing
6 Double space before printing, single space

after printing
7 Skip to channel 3 before printing

P The P phrase specifies that the edited Jine is to
be punched into a card. The action is initiated
from within the WRITE procedure. Note that,
with the exception of the Aw element, the edited
form of the numbers is compatible with require­
ments for input-data cards.

The output cards produced by the WRITE procedure,
in accordance with the specifications of the appropriate
format-data list, may be used for input to the computer,
under control of the READ procedure. On all such cards,
alphanumeric output must be enclosed in semicolons,
which may be inserted through use of the format-string
element in the format-data list.

EXAMPLE:

;ALGOL;

Also, the specified format-data list must commence
with the format-string element *5* which will be con­
verted into a 5-punch in column 1 for a format select
on input.

Cw The action of the C phrase-combines those of the
Wand P phrases. Only the first 80 columns of
the edited line will be punched.

Tw The T phrase specifies that the edited line is to
be printed on the SUPERVISORY PRINTER. The
printout takes place from inside the WRITE
procedure with no reference to the RITE routine,
which is used only in conjunction with the W
phrase. The value of w specifies the number of
carriage returns to be executed prior to printing.

Repeat Phrases

A list of phrases may be placed in. parentheses to con=

8-6

stitute a compound phrase. These parentheses may be
nested to any depth.

Definite-Repeat Phrase:

r(ff..C)

Indefinite-Repeat Phrase:

(ff£)

where ff£ is a format-data list. The definite-repeat
phrase uses the format-data list r times in succession;
the indefinite-repeat phrase uses the format-data list
repeatedly until there are no more variables to print.

An entire format-data list is treated as if it were en­
closed in parentheses specifying indefinite repeat. The
interpretation of a format is terminated when there are
no more variables to print and the right parenthesis of
an indefinite repeat is encountered. If there are fewer
variables to print than are called for, the I, X, F, S, and
A phrases are interpreted as blank-insertion phrases,
Bw, to fill in the remaining spaces.

EXAMPLES:

3(5F15.8,WO)
TITLE
5,810, *$*,A26, *$*,P

The first example is equivalent to:

5F15.8, W0,5F15.8, W0,5Fl5.8, WO

The second example will print a line which reads

TITLE

The third example will punch a card according to the
format:

COLUMNS

1

2-11

12
13-38

39
40-80

CONTENTS

5
blanks

$

alphanumeric information

$

bla-11ks

SEGMENTATION

OVERLAYS

IX ...

overlay techniques

THE USE OF STORAGE OVERLAYS, though not essential
for a majority of problems, is required whenever a

program is too large for the amount of available storage.
This condition is indicated during compilation by the
message MEMORY CAPACITY EXCEEDED.

In such a case the program should be coded in segments;
these segments are then called into memory as a se­
quence of overlays under control of a master routine.
Once segmentation is employed in a program, the remain­
der of that program must consist only of segments.

To illustrate this graphically:

PARTl

MASTER

PART3

I~ Storage Capacity -----•-...ii
Here MASTER is the name of the master routine and
PARTl, PART2, and PART3 are the names of the
segments. The lengths of the horizontal lines may be
taken as proportional to the number of instructions in
the master routine and in the various segments. Note
that in the above example the total number of storage
locations is only that required by the master together
with its longest segment, PART3.

Each of the segments may in turn have subsegments,
which may be further subdivided into other subseg­
ments. All of these segments then become the master
routines for control of their respective subsegments. For
example:

PROGA
PARTl J

l PROGB

MASTER PROGC

PART2 PROGD

PR OGE

PART3

The master for PARTl, PART2, and PART3 thus is
MASTER; the master for PROGC, PROGD, and
PROGE is PART2, etc.

THE SEGMENT DECLARATION

The SEGMENT declaration is used to indicate the
division of the program into segments.

GENERAL FORM::

SEGMENT 9; BEGIN Si; S2; _,;Sn END

where 9 is an identifier which serves as the label of the
segment, and S1 through S2 are the statements which
make up the segment. If desired the segment label may
follow the word END as is the case with any compound
statement.

For example, the segmentation diagramed above would
be written as:

MASTER.. MN MN MN MN MN ;

SEGMENT PARTl; BEGIN_,_,_,_,_,;

SEGMENT PROGA; BEGIN,_,_,END PROGA;

SEGMENT PROGB; BEGIN_,MNEND PROGB

END PARTl;

9-1

BURROUGHS ALGEBRAIC COMPILER

SEGMENT PART2; BEGINMNMNMNMNMN;

SEGMENT PROGC; BEGINMNMNEND PROGC;

SEGMENT PROGD; BEGIN MN MN END PROGD;

SEGMENT PROGE; BEGIN_,_,END PROGE

END PART2;

SEGMENT PART3; BEGINMNMNEND PART3

THE OVERLAY STATEMENT

The OVERLAY statement is used to call a segment of
the compiled program into storage.

GENERAL FORM:

OVERLAY d

where !1 is the segment label of the segment to be called.
There are four rules governing the use of the OVER­
LAY statement:

First: Any segment may be overlaid only by a seg­
ment of the same immediate master.

Second: The OVERLAY statement which calls a seg­
ment into storage must appear in the master
routine corresponding to the segment being
called. Otherwise, segments may be called in as
many times as the user wishes, in any order.

Third: The OVERLAY statement does not by itself
produce a transfer to the segment being called.
Such a transfer must be provided for separately

9-2

by the user. The segment label maY. not be used
as a statement label for effecting this transfer.

Fourth: The return from a segment to its immediate
master, or to a master severai segments re­
moved, must be initiated through some type
of transfer statement similar to those used for
entry into the segment.

EXAMPLE:

BOOLEANS; REAL A, B; INTEGER OTHERWISE;
ARRAY A(200);
RD .. READ(;S;INDAT); IFS; BEGIN OVERLAY SENTINEL;
N = N + l; GO TO START END; N = N + l; OVERLAY ZERO;
GO STARTP;
INPUT INDAT (B, C, FOR I = (1, 1, 200); A(I));
FORMAT FR (15, 5F20.8, WO);

SEGMENT ZERO; BEGIN STARTP ..
FOR I = (1, 10, 200); WRITE (;;OUTP, FR); GO TO RD;
OUTPUT OUTP (I, FOR J =(I, 2, I + 8);
SIN (COS(LOG(A(J))))) END ZERO;

SEGMENT SENTINEL; START .. BEGIN FOR I = (1, 10, N - 10);
WRITE (;; FR, OUT); WRITE (; ;OUTR, FRR);
STOP 0757007250; GO RD;
OUTPUT OUT(I, FOR J =(I, 2, I + 8); A(J)),
OUTR(I, FOR J =(I, S, I + MOD(N, 10) - 2); A(J));
FORMAT FRR (*I = *, 14, 5(*G(I) = *, Fl4.6), WO, W3)

END SENTINEL; FINISH;

ERROR MESSAGES

MONITORING

OBJECT PROGRAM LISTING

x . . .

diagnostic
F /1~,,·1,,·f,,·p"

J Ul/l',,l'//l'l/J

THE COMPILER HAS BEEN EQUIPPED with a set of
diagnostic aids. These aids take the form of error

messages concerning the symbolic program, error mes­
sages indicating that computation has produced an
undefined result, and monitor, dump, and trace facili­
ties. A listing of the compiled program may also be
obtained.

For purposes of presentation, these diagnostic facilities
will be grouped into two categories: those aids opera­
tive at the time of compilation, and those operative at
the time the object program is run. In general, those in
the first category are concerned with the syntax of the
symbolic program;_ those in the second category are
useful for the verification of program logic.

AIDS AVAILABLE AT COMPILE TIME

One valuable diagnostic aid is a listing of the symbolic
program. This may be obtained during the compilation
process. This listing will be given unless PROGRAM

CONTROL SWITCH 4 is depressed.

The first step in checking out a program should be the
determination of its syntactical correctness. Of con­
siderable importance in helping the programmer to
achieve this objective are the error messages provided
automatically by the compiler.

Whenever an error is detected, the compiler attempts
to continue processing the symbolic program. Since the
compilation technique of necessity depends on the
syntax of the symbolic program for its classification of
identifiers and statements, an error in syntax may well
produce a misclassification. If the remainder of the
symbolic program is processed with the compiler in such
a 'confused' state about the characteristics of the pro­
gram, a proliferation of error messages may result.

If things get altogether out of hand, the compiler may
even come to a disorderly stop. Although such genera­
tion of spurious error messages is unfortunate, it has
been considered preferable to attempt to continue proc­
essing, in order to discover as many errors as possible in
a single pass rather than to force the compiler to aban­
don the compilation after the first error is detected.

The programmer himself must make the distinction be­
tween genuine errors and those introduced by previous
errors. However, it should not be assumed that all
errors in syntax will produce error messages.

No usable compiler can provide error messages which
explicitly describe every possible syntactical error. How­
ever, sufficient information usually is gained from the
error message to permit straightforward correction of
the program.

The following is a list of error messages and some sug­
gestions as to their possible cause.

COMPILER CAPACITY EXCEEDED

The internal storage capacity of the compiler has been
exhausted. The compiler stops with rC = 0000007777.

To overcome the problem of insufficient symbol storage
space, limited corrective measures may he.- adopted
which will :result in a· niore economical use of the asso­
ciative memory of the compiler:

All identifiers and names of labels should be shortened
to five characters or less.

A number of simple variables of the same type may
be grouped into a two-dimensional square array, or
as nearly square as possible, to conserve symbol
table space.

10-1

BURROUGHS ALGEBRAIC COMPILER

A reorganization of the symbolic program in accord­
ance with conventions discussed in CHAPTER XI will
reduce forward references to a minimum, thereby
making possible the conservation of additional mem­
ory space.

As a last resort, a procedure defined in the ALGOL
program may be rewritten in machine language and
incorporated as an external procedure. (See APPEN­
DIX F.)

CONSTANT OUT OF RANGE

A constant too large for the internal representation of
the BURROUGHS 220 was either written in the symbolic
program or was formed when the compiler combined
constants arithmetically.

DUPLICATE PROCEDURE NAME

The identifier assigned as the name of a procedure by a
PROCEDURE declaration (or the name of a function
by a FUNCTION declaration) has appeared in another
context in the program.

DUPLICATE LABEL

An identifier has been employed in another context in
the program. (Note that this may be the result of calling
a function or procedure before it has been declared.)

EXTERNAL PROGRAM NOT DECLARED

The external procedure or external statement declared
on some name card heading a machine-language deck
was not declared within the symbolic program.

EXTRA OPERAND

This error message may arise from a wide variety of
causes. Check for omitted commas, semicolons, or other
punctuation; for proper spelling of reserved identifiers,
and for a space imbedded within an identifier; or for the
omission of a space between contiguous identifiers.

EXTRA LEFT PARENTHESIS

This error message may occur only at the -end of proc­
essing the symbolic program. It is usually caused by the
inclusion of a spurious 'BEGIN' or '(' or by the omis­
sion of a required 'END' or ·r. Errors in the syntax of
FOR or aiternative statements, or in any of the deciara­
tions, may also introduce unwanted left parentheses
into the program even though the programmer did not
explicitly write them.

EXTRA RIGHT PARENTHESIS

This error is usually caused by the inclusion of a spu­
rious 'END' or ')' or by the omission of a required

10-2

'BEGIN' or '('. As with the extra left parenthesis,
check on the syntax of control statements and declara­
tions. The compiler tries to recover from this error by
introducing a left parenthesis to match the right paren­
thesis in question. If the right parenthesis was merely
misplaced, this will produce the message EXTRA LEFT
PARENTHESIS at the end of compilation.

IMPROPER ARGUMENT OF MOD FUNCTION

The arguments of the intrinsic function MOD must be
of integer type.

IMPROPER ARGUMENT OF PROCEDURE

Too many or too few arguments have been given in a
FUNCTION or a procedure-call statement.

IMPROPER ARRAY DECLARATION

An error in syntax has occurred in an ARRAY declara­
tion. Check in particular to see that all of the dimen­
sions are specified as integer constants.

IMPROPER ASSIGNMENT OPERATION

The symbol= has appeared in relational context. The
compiler will generate instructions as though the re­
served word EQL had been written. The error is detec.­
ted only if the misplaced character forms part of an IF
or UNTIL clause.

IMPROPER ASSIGNMENT STATEMENT

An expression or a constant has occurred to the left of
an'='.

IMPROPER BOOLEAN OPERAND

An attempt has been made to use a floating-point quan­
tity as a Boolean operand. The compiler cannot detect
integer quantities used as Boolean operands.

IMPROPER CARDATRON INSTRUCTION

An instruction following the CARDATRON input-output
pseudo-operation does not have an operation code of 60
through 65; or has improper 'standard' unit designation.

IMPROPER CHARACTER PAIR

Two successive characters (omitting spaces) have oc­
curred which are meaningless, for example, '+)', '=*',
or ', ;'. The compiler will ignore the second of these
characters and continue scanning.

IMPROPER CHECK SUM

A failure has occurred in the magnetic-tape system. The
compiler will reread the bad tape block repeatedly in an
attempt to bring in the information correctly.

DIAGNOSTIC F AGILITIES

IMPROPER EMPTY SUBSCRIPT POSITION

One of the character pairs '(,' ',,' ',)' or ' () ' has oc­
curred in the wrong con text.

IMPROPER EQUIVALENCE

In an external program the 82-field of an instruction
having a sign of five or six was not specified on an
equivalence card.

IMPROPER EQUIVALENCE CARD

An undefined name, or an equivalence number over 99,
has been specified on an equivalence card.

IMPROPER FUNCTION ARGUMENT

An expression has been written as an output or program­
reference argument; a label, function name, or proce­
dure name has been used as an input or output argu­
ment; or an array has been used as a program-reference
argument in a procedure call.

IMPROPER INPUT DECLARATION

An expression or constant has been used as a quantity
to be read in.

IMPROPER PSEUDO-OP

An instruction with a sign of four has an incorrect
operation field (sL = 62) code.

IMPROPER RELATION OPERATION

One of the arithmetic relational operators has occurred
in the wrong context.

IMPROPER SCALE FACTOR

An attempt has been made to use a scale factor which
is not an integer constant.

IMPROPER LABEL SYMBOL

A symbol other than a letter or digit has occurred in
a label.

IMPROPER SUBSCRIPT

Either too many or too few subscripts have been asso­
ciated with an array.

IMPROPER VARIABLE SYMBOL

An identifier has been used as a variable, in conflict
with previous context which implied that it was not a
variable.

MEMORY CAPACITY EXCEEDED

The object program has exceeded the memory capacity
of the computer. If all array dimensions are correct,
segmentation will have to be used.

MISPLACED ARITHMETIC OPERATION

One of the symbols + - · / or * has been used in the
wrong context.

MISPLACED COMMA

The symbol, has been used in the wrong context.

MISPLACED DECIMAL POINT

The symbol . has been used in the wrong context.

MISSING FIELD ON SYMBOLIC CARD

A name card or equivalence card of an external program
was incorrect.

MISSING FINISH CARD

The FINISH card required after the last machine­
language deck was not present.

MISSING FINISH PSEUDO-OP

The machine-language deck of an external program was
not terminated by a pseudo-operation for FINISH.

MISSING OPERAND

A misplaced operand may result in the error messages
MISSING OPERAND and EXTRA OPERAND ap­
pearing in the printout of the compilation. The com­
piler expected an operand and could not find it. Check
the formation of identifiers and the syntax of control
statements.

MISSING NAME CARD

The first card of either an external procedure or an ex­
ternal statement was not a name card.

PREFIX PROCEDURE NOT DECLARED

The procedure used as a prefix on an equivalence card
was not declared within the symbolic program.

UNDEFINED EXTERNAL PROCEDURE£
-

If an external procedure £ was declared in the symbolic
program but was not defined by a machine-language
deck, the first ten characters of its identifier are printed
along with this error mes.sage.

10-3

BURROUGHS ALGEBRAIC COMPILER

UNDEFINED LABEL -.C

The label £ was not defined within the symbolic pro­
gram. Only the first ten characters of£ will be printed
if it was an identifier. An integer is printed in its entirety.

DIAGNOSTIC AIDS TO OBJECT PROGRAM
EXECUTION

It is often desirable-and sometimes necessary- to be
able to inspect the intermediate results produced by a
program. For instance, an iteration scheme may fail to
converge in an expected time. This may be due to the
slowness of the convergence, or to special numerical
phenomena which often occur in iterative computation
with finite numbers subject to rounding errors. By
monitoring the successive values assigned to the iterated
variable or array, appropriate revision may be made to
the algorithm. In any extensive program a segment of
the program may have been written as a loop from
which-under certain circumstances-no exit is pos­
sible. By tracing the control sequence of labeled state­
ments as they are executed, this situation may be
discovered and rectified. Versatile diagnostic routines
are provided in the compiler to permit access to the
intermediate results of any algorithm and supervision
of the control path of the program.

Another program execution aid is the provisional detec­
tion of certain error conditions which frequently occur,
e.g., overflow resulting from division by zero in arith­
metic operations, and unacceptable arguments to library
procedures. The recognition of error conditions is per­
formed only by the library procedures, since inclusion
of the capacity to recognize spontaneously any possible
error situation would necessarily reduce the efficiency
of performance of a compiled program in the
BURROUGHS 220.

It is also possible to obtain a listing of the machine code
for the different portions of a compiled program. This
listing is as useful in providing insight to the computa­
tion technique arrived at by the compiler as it is val­
uable in providing a diagnostic aid for detecting logical
and accidental errors of a program.

These various diagnostic features of the compiler will
be discussed in the following sections of this chapter.

AIDS SPECIFIED BY THE PROGRAMMER

Provision has been made in the compiler for inclusion
in the object program of diagnostic routines intended to
allow the programmer to monitor the action of assign­
ment statements, trace the execution sequence of
labeled statements, and obtain complete or partial
dumps of the area of memory reserved for labels and
identifiers.

10-4

The inclusion of these diagnostic routines is governed
by the appearance of the MONITOR, TRACE, and
DUMP declarators, with their associated lists, in the
symbolic program. Because the labels and identifiers
declared within a procedure are treated. independently
of those same kinds of symbols declared in the non­
procedure body of a program, it is necessary to restrict
the scope of these diagnostic declarations either to the
procedure in which they appear or to the body of the
program-exclusive of procedures-in which they are de­
clared. This means that diagnostic declarations may
appear in the body of any procedure, in the body of the
program external to procedures, in both, or in neither.
When diagnostic declarations are included in a program
they should appear either at the beginning of the pro­
gram body or immediately after the BEGIN separator
of the PROCEDURE declaration in which they appear.

The inclusion of diagnostic facilities in a program con­
siderably diminishes the rate at which the object pro­
gram is executed. By suppression of some or all of the
printouts specified by the diagnostic declarations­
through proper employment of the PROGRAM CONTROL
SWITCHES-it is possible to increase the rate of program
execution. If a program is to be employed more than
once, it is suggested that this program be recompiled
with the diagnostic declarations and unnecessary pro­
gramed halts removed.

The MONITOR Declaration

The MONITOR declaration enables the programmer to
witness production of the results produced by assign­
ment statements.

GENERAL FoRM:

MONITOR mt£

The monitor list ;m.,c may be composed of elements
which are either or both of two kinds of symbols. They
may be the identifiers of simple variables, arrays,
functions, or procedures, or they may be the labels of
statements, subroutines, or segments. Each time an
assignment is made to an identifier included in the
monitor list, or any assignment is made within the scope
of a label appearing in the monitor list, the first five
characters of the identifier to which assignment is made
are printed along with the value which has been as­
signed. No parentheses or other special characters may
appear in the monitor list. The depression of PROGRAM
CONTROL SWITCH 0 at object time will cause suppression
of the monitoring action.

The DUMP Declaration

The DUMP declaration serves to declare those items
which are to be exhibited when a symbolic memory
dump is called for by a TRACE declaration.

DIAGNOSTIC FACILITIES

GENERAL FORM:

DUMP i)£

The dump list i)£ may consist of elements which are
either identifiers of simple variables or arrays, or which
are labels of statements or subroutines. If a DUMP
declaration appears as part of a procedure, then the
identifiers which appear in its dump list must be only
call-by-value simple variables contained in the proce­
dure parameter list.

If a dump list of a DUMP declaration is empty, this
indicates that all identifiers of simple variables or ar­
rays, and all labels of statements or subroutines within
the scope of that declaration, are to be exhibited ac­
cording to the output format of the dump routine. This
output format is composed of, a listing under four
headings. The first heading is a line which reads

LAST LABEL PASSED WAS£

where £ represents the first ten characters of the actual
label which was last passed. The second heading is a
line which reads

LABEL IN PROGRAM NUMBER OF TIMES EXECUTED

and beneath these separate titles are listed respectively
the first ten characters of each label in alphabetical
order, and a four-digit integer giving the actual number
of times that label has been encountered. The third
heading is a line which reads

VARIABLE IN PROGRAM VALUE

and under these respective titles are listed the first five
characters of each simple variable identifier and the
current value associated with that identifier. The fourth
heading is a line which appears as

ARRAY g

where fJ is an array identifier. Beneath this heading will
appear the current values of the elements of the array
designated by !J. The order in which these elements ap­
pear is identical to that which would be employed to fill
the array designated by fl. (See Filling an Array,
CHAPTER V.)

When a TRACE declaration has called for a symbolic
dump, and a DUMP declaration was given as part of a
PROCEDURE declaration, then the output format for
the symbolic dump of that procedure is preceded by a
heading which reads

PROCEDURE g

where !J represents the first five characters of the proce­
dure identifier.

The TRACE Declaration

The TRACE declaration is used to cause symbolic
dumps at specified points in the program.

GENERAL FORM:

TRACE 3£

The trace list 3£ is composed of elements which may be
of two distinct forms:

Firstform: £

Secondform: £(n)

where £ is a statement label and n is an integer constant
with a maximum of four significant digits. These forms
in9.icate respectively that every time statement label £
is;encountered, or only the nth time statement label£
is encountered, a symbolic dump of all items declared
in all DUMP declarations is to take place according to
the output format of the dump routine. This dump will
occur as the statement label£ is encountered, which is
always before the execution of the statement labeled by
£.By depressing PROGRAM CONTROL SWITCH 9, all action
caused by TRACE declarations will be suppressed.

Whenever a DUMP declaration appears in a symbolic
program, special provision is made to allow a compre­
hensive symbolic dump at any point in the program
where a programed halt is planned. By depressing the
RESET-TRANSFER switch following a programed halt, a
comprehensive symbolic dump may be obtained of all
labels and identifiers within the scope of all DUMP
declarations. This dump is provided according to the
output format of the dump routine. Control may be
resumed in sequence by depressing the ST ART switch,
following the machine stop which occurs after the
printout.

Minimum Monitoring

Minimum monitoring is another aspect of the diagnostic
facilities. The library procedures have certain error
messages which are dependent upon the diagnostic
routines for maintenance of particular information. For
instance, such error messages require the label of the
last labeled statement executed, and may also require
the number of times a particular label has been en­
countered. Whenever any of the diagnostic declarations
is included in the symbolic program, provision is made
automatically to maintain this information. If no
diagnostic declarations appear, then this information
will not be available for printout as part of the libnrry
procedure error messages. If the programmer wishes to
have only this particular information maintained (mini-

10-5

BURROUGHS ALGEBRAIC COMPILER

mum monitoring) the inclusion of a MONITOR dec­
laration with an empty monitor list will cause minimum
monitoring to occur within the scope of that MONITOR
declaration. By depressing PROGRAM CONTROL SWITCH
8, the action of minimum monitoring may be discon­
tinued. By depressing PROGRAM CONTROL SWITCH 7' a
listing of all labels within the scope of any diagnostic
declaration is provided as these labels are encountered.

ERROR MESSAGES FROM LIBRARY
PROCEDURES

Provision is made in the library procedures for the
printing of error messages when conditions are en­
countered which prohibit the proper execution of that
procedure. For instance, among these conditions are an
overflow upon entry to the procedure, arithmetic over­
flow resulting from execution of the procedure, an at­
tempt to compute the natural logarithm or extract the
square root of a negative number, and an attempt to
evaluate the exponential function for an absolute argu­
ment greater than the number 112.82666.

There are four separate error messages which may ap­
pear as a result of these different conditions. The most
frequent of these messages is

ARITHMETIC OVERFLOW -.c (nnnn)

where£ is the first ten characters of the last statement
label passed, and nnnn is an integer which has a maxi­
mum of four digits and indicates the number of times
this label has been encountered during the execution of
the object program. This message will occur whe:r:i an
overflow condition exists upon entry to a library pro­
cedure. This overflow condition may have arisen due to
division by zero, or through an attempt to determine
the result R of one of the following operations:

FIXED POINT R = I X1 ± X2 I > 1010

FLOATING POINT R = r xi± X2 I > 0.99999999 x 1049

FLOATING POINT R = I X1. X2 I >0.99999999 x 1049

FLOATING Po1NT R = I xi/ x2 I >0.99999999 x 1049

If no diagnostic declarations are made in the symbolic
program, this information about the last label en­
countered and the tally of label encounters is not main­
tained, and these portions of the error message are
blank (see Minimum Monitoring, above).

The other library procedure error messages depend upon
the appearance in the symbolic program of diagnostic
declarations in the same way as does this error message.
The second possible error message reads

RESULT OUT OF RANGE CP ~.c (nnnn)

where CJ> is the name of the library procedure in which

10-6

the result of an arithmetic operation has resulted in an
overflow. The third error message is one which reads

RESULT UNDEFINED FOR CJ> -.C (nnnn)

This message appears whenever a condition occurs
which is not meaningful for the procedure designated
by CJ> to treat. For example, this message will result if
the absolute argument of the inverse cosine function
(ARCCOS) is greater than one. The last possible library
procedure error message which may appear is of the
form

RESULT ILL-DEFINED FOR CJ> -£ (nnnn)

This message may be printed when the result produced
by the procedure CJ> is undependable in regard to nu­
merical accuracy, or only partially satisfactory in some
other respect.

OBJECT PROGRAM LISTING

By depressing PROGRAM CONTROL SWITCH 2 before or
during the compilation process, a listing of the compiled
object program may be obtained as the machine pro­
gram is assembled. The lines appearing in this listing
will be of the following general form:

llll s bbbb pp aaaa iiiii

where llll indicates an absolute machine address which
will be the actual machine address at object time of the
word defined bys (the sign position), bbbb (the variance
or control field), pp (the operation field), and aaaa (the
address field). The portion of the printed line indicated
by iiiii may be a symbol having no more than five
characters. This symbol is provided to assist the pro-
tl"rt:lrr· no-r hv ;n,-l;f"lo'lf;TI rr a;t h£n~ f ho lr~'nl rl '"'.f r.-nn....-..f.~-h ...
~.a.u...a..a..a..a..1..1.v.a.,J .1..1...&U...t.VU..l.1.1..1..1.f;i V.1.li.J..J.\...i.i. li.l..1.\...1 .n.J. .. U.U .. VJ. \.fUCl..l.ll.ill•J

used or the nature of the object to be achieved by the
instruction word with which this symbol is associated.

Certain portions of the printed line may be absent. For
instance, if in the source program an unconditional
branch (e.g., GO TO£) has been declared and the state­
ment label .C to which reference is made has not yet
been encountered, the compiler does not know the ap­
propriate address to which control must be transferred.
In this case the address field of the assembled machine­
instruction word for the branch instruction will be
blank. When the compiler does encounter the label to
which reference was made, it wilJ insert a line into the
listing which reads

llll aaaa

where llll will be seen to be the actual machine address
of the instruction which appears earlier in the listing
and with an address field which was of necessity left
blank.

DIAGNOSTIC FACILITIES

EXAMPLE:

COMMENT THIS PROGRAM IS INTENDED TO ILLUSTRATE
CERTAIN FEATURES OF THE MACHINE LANGUAGE
PRINTOUT;

BOOLEAN ABC123;

ABC123 =0;

0200 0 0000 46 4999 ABC12

ALPHA = BETA = 1.0;

0201 0 0000 10 4998 CONST
0202 0 0000 40 4997 BETA
0203 0 0000 40 4996 ALPHA

I DENTI Fl ER = ALPHA + BET A;

0204 0 0000 10 4997 BET A
0205 0 0000 22 4996 ALPHA
0206 0 0000 40 4995 IDENT

GAMMA= SQRT(IDENTIFIER);

0207 0 0000 10 4995 IDENT
0208 0 0000 44 4950 SQRT
0209 0 0000 30 4950
0210 0 0000 40 4949 GAMMA
0211 0 0000 10 4949 GAMMA
0212 0 0000 24 4949 GAMMA
0213 0 0000 40 4948 TEMP
0214 0 0000 10 4949 GAMMA
0215 0 0000 24 4949 GAMMA
0216 0 0000 22 4948 TEMP

GAMMA= (GAMMA.GAMMA+ GAMMA*2)/2.0;

0217 0 0002 45 0000
0218 0 0000 25 4947 CONST
0219 0 0000 40 4949 GAMMA
0220 0 0000 10 4946 CONST
0221 0 0000 13 4999 ABC12

0222 0 0101 36 0224
0223 0 0000 10 4999 ABC12
0224 0 0000 36

IF ABC123 OR NOT ABC123;
GO TO SOMELABELLATERINTHEPROGRAM;

0225 0 0000 30 0000 - SOM EL
0224 0226
0225 0226

SOMELABELLATER!NTHEPROGRAM~~ STOP GAMMA;

0226 0 0000 10 4949 GAMMA
0227 0 0137 00 7310
FINISH;

0228 0 9669 00 9669
0229 0 1000 60 0000
4946' 0 0000 00 0001 POOL
4998•' 0 5110 00 0000
4947 0 5120 00 0000

COMPILED PROGRAM ENDS AT 0229
PROGRAM VARIABLES BEGIN AT 4615

In addition to the listing of those machine-language
words assembled by the compiler from the source-lan­
guage symbolic program, a listing may also be obtained
of the machine instructions of external programs and
the machine instructions written by the compiler onto
the program tape from the library of standard proce­
dures. The listing of machine code for the external
procedures is obtained by depressing PROGRAM CONTROL

SWITCH 1 prior to or during the compilation process. If
the listing of machine code for library procedures is
desired, then depression of PROGRAM CONTROL SWITCH

3 will produce this listing.

10-7

ORGANIZATION OF PROGRAMS

HARMONIC-BOUNDARY VALUES

SURVEY TRAVERSE CALCULATIONS

HOUSEHOLDER REDUCTION

CROUT'S METHOD

XI ...

programs in algol

THE OVER-ALL ORGANIZATION of programs written in
BAC-220 is a matter which the rules leave largely

to the preference of the individual programmer. How­
ever, there are rules of precedence which must be ob­
served regarding the interrelations among certain dec­
larations and statements. Below is a summary of such
rules, arranged in the form of a suggested program
outline. If this out]ine is followed, the probability of
introducing additional errors into the program will be
greatly diminished.

COMMENT declarations-affect neither the compila­
tion nor the object program, and may appear anywhere,
except as the final statement of a compound statement.

MONITOR declaration-appears only if one or more
variables are to be monitored, or if the programmer
wishes to provide for minimum monitoring without
other diagnostic aids. It must be the first declaration
(other than a COMMENT declaration) of a symbolic
program, exclusive of procedures. When used to monitor
variables located inside of a procedure, the MONITOR
declaration must immediately follow the initial BEGIN
of the PROCEDURE declaration.

DUMP declarations-must be placed at the beginning
of the source program, or immediately after the first
BEGIN when a programmer requests a symbolic dump
inside a PROCEDURE declaration.

Declarations of type-declare the types of any identi­
fiers which are not floating-point by default (see
CHAPTER V) ; they must precede use of the identifier in
a statement.

ARRAY declarations-reserve storage for arrays of
data; they must precede use of any variable which is an
element of an array.

INPUT and OUTPUT declarations-relate the num­
bers to be read into the computer as input to their
respective symbolic variables.

FORMAT declarations-describe the appearance of
the output line or card.

PROCEDURE and FUNCTION declarations (sym­
bolic and extemal)-make specific subprograms avail­
able to the compiler; they must appear prior to the first
use of the subprograms.

SUBROUTINE declarations-make subprograms avail­
able to that portion of the program (procedure or main
body) in which they are declared. It is not necessary
that the declaration be declared before it is called.

Statements-assignment statements, procedure-call
statements, and control statements constituting the
main program, a PROCEDURE declaration, or a
subroutine.

FINISH declaration-must appear at the end of the
symbolic program.

Machine-language programs-may be used in con­
junction with a symbolic program. The lattoc must
contain declarations of all the machine-language pro­
grams so used. These programs are included after the
FINISH declaration of the symbolic program, and must
themselves be terminated by a second FINISH declara­
tion.

EXAMPLES OF PROGRAMS

The foJlowing complete programs are presented as illus­
trations of the rules delineated in this manual.

11-1

BURROUGHS ALGEBRAIC COMPILER

J. G. Herriot, of Stanford University, has written the
following program to determine an approximation of
harmonic-boundary values, using orthonormal func-
tions.

COMMENT THIS PROGRAM FIRST CONSTRUCTS A SET OF
ORTHONORMAL FUNCTIONS AND THEN USES THEM TO
FIND AN APPROXIMATION TO THE SOLUTION OF A
HARMONIC BOUNDARY-VALUE PROBLEM;

COMMENT WE FIRST CONSTRUCT THE ORTHONORMAL
FUNCTIONS;

INTEGER I, J, K, L, M, N, NU, TH;
ARRAY R(29), HFN(29), DSUM(24), HFCN(5), HFCEN(6),

FA(25,25), A(25,25), B(25,25), HA(47), HAA(24);
INPUT DATA (FOR I = (1,1,29); R(I)), DIMEN(N);
OUTPUT FRESULTS (FOR I= (1,1,N); FOR J = (1,1,N); FA(l,J)),

ARESULTS (FOR I= (1,1,N); FOR J = (1,1,N); A(l,J)),
BRESULTS (FOR I = (1,1,N); FOR J = (1,1,N); B(l,J)),
COEFFS (FOR NU= (4,4,N -1}; HA (2NU -1)),
HFNRES (FOR K = (1,1,29); HFN(K)),

CRES(CONST), HFCNRES (TH, FOR K = (1,1,5); HFNC(K)),
HFCENRES (TH, FOR K = (1,1,6); HFCEN(K));

FORMAT VECTOR (B8,6F16.8,WO),
FTITLE (B48,*FRESULTS,FA(i,J)*,W3,W2),
ATITLE (B48,*ARESULTS,A(l,J)*,W3,W2),
COEFTITLE (B30,*HA(8NU -1}*,W2),
BDYVALUES (B42,*PRELIMINARY BOUNDARY VALUES*,W3,

W2),
CBDYVALUES (B43,*CORRECTED BOUNDARY VALUES*,W2),
CONTITLE (850,*CONSTANT*,W2),
TABLE (88,12,B6,6Fl6.8,WO),
TABLEHEAD (S40, *THE VALUES OF H(RHO,TH) IN B*, W3,

W2),
TABLELINE (B13,*RHO*,B6,*0.5*,B13,*l.0*,Bl3,*l.5*,Bl3,
2.0, Bl3, *2.5*,Bl3, *3.0*, WO),
TABLETH (B8,*TH*,WO);

START .. READ (;;DATA); RDiM .. READ (;;DiMEN);
FOR I = (1,1,N); FOR J = (1,4,N);

BEGIN L =I - J; K =I+ J;
SUM = R (l)*K + l.5.R(18)*K.COS(0.59341195.L)

+ 0.5. R(29)* K.COS(0.78539816.L);
FORM= (2,1,17);
SUM= SUM + 2.0.R(M)*K.COS((M - 1).0.034906585.L);
FOR M = (19,1,28);
SUM =SUM + R(M)*K.COS((0.59341195 + (M - 18)

.0.017453293).L);
FA(l,J) = (8.0/K).0.017453293.SUM END;

WRITE (;;FTITLE);
WRITE (;; FRESUL TS, VECTOR);

FOR J = (1,1,N); 8(1,J) = FA(l,J);
FOR I = (2,1,N);

11-2

BEGiN FOR J = (1,1,i - l);
B(l,J) = -B(J,l)/B(J,J);

FOR J = (1,1,N);
BEGIN B(l,J) = FA(l,J);

FOR K = (1,1,I - l);

B(l,J) = B(l,J) + B(I, K).B(K,J) END;
FOR J = (1,1,1 -1);

B(l,J) = B(l,J).SQRT(B(J,J)/B(l,I)) END;
["(ID I 11 1 1\1\. 011 I\ 1 n //~(IDT/Oii I\\ I\·
I VI\ I = \J.rJ. 11,), U\1 11) = J.,V/ \v'-,!I\ I \U\l1IJJol)r

WRITE (;;BTITLE);
WRITE (;;BRESULTS, VECTOR);
FOR I= (1,1,N); FOR J = (1,1,N); A(l,J) = O;

A(l,l) = 8(1,1);
FOR I = (2,1,N);

BEGIN FOR J = (1,1,I -1);
BEGIN A(l,J) = O;

FOR K = (J,1,1 - l);
A(l,J) = A(l,J) + B(I, K).A(K,J) END;

A(l,I) = B(l,I) END; WRITE (;;ATITLE);
WRITE (; ;ARESUL TS, VECTOR);
COMMENT NOW CONSTRUCT THE APPROXIMATION TO
THE SOLUTION;

FOR J = (4,4,N - 1);
BEGIN DSUM(J) = O;

FORM = (1,1,17);
DSUM(J) = DSUM(J) + (R(M)*2 + R(M + 1)*2).
(R(M + l)*J.SI N(M.0.034906585.J)
-R(M)*J.SIN((M - 1).0.034906585.J));

FOR M = (18,1,28);
DSUM(J) = DSUM(J) + (R(M)*2 + R(M + 1)*2.(R(M + 1)

*J.SIN((0.59341195 + (M -17).0.017453293).J)
- R(M)*J.SIN((0.59341195 + (M - 18).0.017453293)

.J))) END;
FOR NU = (4,4,N - 1); BEGIN HA(2NU - 1) = 0;

FOR J = (4,4,NU);
HA(2NU -1) = HA(2NU - 1) + A(NU,J).DSUM(J);
HA(2NU - 1) = 4.0.HA(2NU -1} END;

WRITE (; ;COEFTITLE);
WRITE (; ;COEFFS, VECTOR);
FOR j = (4,4,N - i); BEGiN HAA(j) = O;

FOR NU= (J,4,N - 1);
HAA(J) = HAA(J) + HA(2NU -1}.A(NU,J) END;

FORM = (1,1,18); BEGIN HFN(M) = 0;
FOR J = (4,4,N - 1);
HFN(M) = HFN(M) + HAA(J).R(M)*J.COS((M - 1)

.0.034906585.J) END;
FORM =(19,1,29); BEGIN HFN(M) =0;
FOR J = (4,4,N -1);

HFN(M) = HFN(M) + HAA(J).R(M)*J.COS((0.59341195
+ (M -18).0.017453293).J) END;

WRITE (;;BDYVALUES);
WRITE (;;HFNRES, VECTOR);
AVT =0;
FORM = (l,l,29); AVT = AVT + R(M)*2 - HFN(M);

CONST= AVT /29.0; WRITE (;;CONTITLE);
WRITE (; ;CRES, VECTOR);

FORM = (i,i,29); HFN(M) =CONST+ HFN(M);
WRITE (;;CBDYVALUES);

PROGRAMS IN ALGOL

WRITE (;;HFNRES, VECTOR);
FOR I ~ (1,1,5); BEGIN TH= 5.(1 -1);

FOR J = (1,1,5);
BEGIN HFCN(J) = CONST;
FOR M = (4,4,N - 1);
HFCN(J) = HFCN(J) + HAA(M).(0.5.J)*M.
COS((I - 1).0.087266463.M) END;

WRITE(; ;TABLEHEAD);
WRITE(; ;TABLELI NE);
WRITE(;;TABLETH);

WRITE(; ;HFCNRES, TABLE) END;
FOR I= (6,1,10); BEGIN TH= 5.(1 -1);

FOR J = (1,1,6);
BEGIN HFCEN(J) =CONST;
FORM= (4,4,N - 1);
HFCEN(J) = HFCEN(J) + HAA(M).(0.5.J)*M.COS((I - 1)

.0.087266463.M) END;
WRITE (;;HFCENRES, TABLE) END;
STOP 1234;
GO TO RDIM;

FINISH;

The program which follows is one for survey traverse
calculations.

COMMENT SURVEY TRAVERSE CALCULATIONS;
TRACE ANGLE;
DUMP EW, NSC, CD;
INTEGER I, J, K, SURVEY, D{), MO I so I QO IN;
FUNCTION LENGTH(X,Y) = SQRT(X*2 + Y*2);
ARRAY D(200), M(200), S(200), Q(200), MD(200), NS(200),

EW(200), CNS(201), CEW(201);
START .. READ (;;IDENT); TMD = O; TNS = O; TEW= O;

FOR I = (1,1,N); BEGIN
READ (;;STATION); IF I NEQ K; STOP K;
Z = (60(60D(I) + M(I)) + S(l))/6.48**5;
SWITCH Q(I), (QUAD I, QUAD2, QUAD3, QUAD4);
QUAD!.. Z = 0.5 - Z; GO TO ANGLE;
QUAD2 .. Z = 1.5 + Z; GO TO ANGLE;
QUAD3 .. Z = 0.5 + Z; GO TO ANGLE;
QUAD4 .. Z = 1.5 - Z;
ANGLE .. ALPHA = 3.1415927Z;
NS(I) = MD(l)SIN(ALPHA); TNS = TNS + NS(I);
EW(I) = MD(l)COS(ALPHA); TEW= TEW+ EW(I);
TMD = TMD + MD(I) END;
ERROR = LENGTH (TNS, TEW); WRITE (;;TITLE, Fl);
NSC = -TNS/TMD; EWCF = -TEW/TMD; TCD =0;

TCNS = O; TCEW =0;
FOR I = (1,1,N); BEGIN
CNS(I) = NS(I) + MD(l).NSCF; TCNS = TCNS + CNS(I);
CEW(I) = EW(I) + MD(l).EWCF; TCEW = TCEW + CEW(I);

CD = LENGTH(CNS(I), CEW(I)); TCD = TCD +CD;
WRITE (;;ANSWERS,F2) END;
CNS(N + 1) = CNS(l); CEW(N + 1) = CEW(l); SUM= O;
FOR I = (1,1,N); SUM =SUM + (CNS(I + 1) - CNS(I))

(CEW(I + 1) + CEW(I));
SQFT = ABS(SUM)/2; ACRES = SQFT /43560;
WRITE (;;TOTALS, F3); GO TO START;
INPUT IDENT(SURVEY, N), STATION(K,D(I), M(K), S(I),

Q(i), MD(i));

OUTPUT TITLE(SURVEY, N, ERROR),
ANSWERS (I, D(I), M(I), S(I), Q(I), MD(I), CD, CNS(I), CEW(I)),
TOTALS (TMD, TCD, TCNS, TCEW, SQFT, ACRES);
FORMAT Fl(*SURVEY*, 18, B5, *NUMBER OF LEGS*, 15,

CLOSURE ERROR, X9.2, WI, *LEG*, B
5, *ANGLE*, B7, *MEASURED*, B5, *CORRECTED*, B3,

"=NORTH-SOUTH EAST-WEST*, W6, *NO. DD
MM SS Q DISTANCE DISTANCE DISPLACEMENT

DISPLACEMENT*, 2W), F2,{13, 15, 213, 12, 4Xl3.2, W),
F3(B6, *TOTALS*, B4, 4Xl3.2,W4, *AREA OF TRAVERSE*,

Xl3.2, *SQUARE FEET*,
Xl3.2, *ACRES*, W6);
FINISH;

The short program which follows is for a reduction of a
square matrix to tridiagonal form, using the method of
Householder.

COMMENT HOUSEHOLDER REDUCTION TO TRIDIAGONAL
FORM;

INTEGER I, J, K, L, R, N; ARRAY A (50,50), X(50), P(50);
INPUT ELEMENT (l,J,Q); OUTPUT AOUT (A(R,R)),

BOUT (-0.5/S);
FORMAT AF(BIO, XI0.5, W), BF(B40, XI0.5, W);
N =5;
IN .. READ(;;ELEMENT); IF I NEQ O; BEGIN A(l,J) = Q;

GO TO IN END;
FOR R = (1,1,N -1); BEGIN WRITE (;;AOUT, AF); L = R + 1;
S = O; FOR J = (L,l,N); S = S + A(R,J)*2;

S = SIGN (A(R,L))/2SQRT(S);
WRITE (;;BOUT, BF);
X(L) = SQRT(0.5 + A(R,L).S); S = S/X(L);
FOR J = (R + 2,1,N); X(J) = S.A(R,J);
FOR J = (R,1,N); BEGJN S = 0; FOR K = (L,l,N);
S = S + A(MIN(J,K), MAX(J,K)).X(K); P(J) =SEND;
S =0-;fOR J = (L,l,N); S = S + K(J).P(J};
FOR J = (L,l,N); P(J) = P(J) - S.X(J);
FOR J = (L,l,N); FORK= (J,l,N); A(J,K) = A(J,K) -2(X(J).

P(K) + X(K).P(J)) END;
WRITE (; ;AOUT, AF); STOP; GO TO IN;
FINISH;

The program below has been written by G. Forsythe,
of Stanford University. It solves a set of linear equa-

11-3

BURROUGHS ALGEBRAIC COMPILER

tions of the form Ay = B, using Crout's method with
interchanges.

COMMENT FORSYTHE PROGRAM;
PROCEDURE PRODUCT (;N, A(), P, E);
BEGIN
COMMENT THIS FORMS THE PRODUCT OF ARBITRARY FLOAT-

ING NUMBERS A(I),
FOR I = (1,1,N). EXPONENT OVERFLOW OR UNDERFLOW IS
PREVENTED. THE ANSWER IS P TIMES lO*E, WHERE E IS 0
fF POSSIBLE. IF E NEQ 0, THEN WE NORMALIZE P SO THAT
0.1 LEQ ABS(P) LSS 1.0;

INTEGER E, F, I, K, N;
Q = l.0**-10; F = 10;
FOR I = (1,1,N);
BEGIN IF A(I) EQL 0.0;

BEGIN P = 0.0; E = O; RETURN END;
IF ABS(A(I)) LEQ 1.0;
BEGIN F = F - 20; Q = Q.(10.0*20) END;
Q = Q.A(I); X = ABS(Q);
FOR K = (-10,1,10), (-11, -1, -41), (11,1,41);
IF ((10.0*K LEQ X) AND (X LSS 10.0*(K + 1)));

BEGIN Q = Q.(10.0*(-10 - K)); F = F + K + 10; GO TO 1
END;

1.. END;
IF (((-40) LEQ F) AND (F LEQ 58));
BEGIN P = (Q.(10.0*9)).(10.0*(F - 9)); E = O; RETURN

END;
P = Q.(10.0*9); E = F - 9; RETURN END PRODUCT ();

PROCEDURE INNERPRODUCT (S,F,U(), V());
BEGIN COMMENT THIS FORMS THE INNER PRODUCT OF THE

VECTORS U(I) AND V(I) FOR I = (S,l,F);
INTEGER I, S, F; SUM= 0.0;
FOR I= (S,1,F); SUM= SUM+ U(l).V(I);
I NNERPRODUCT() =SUM;
RETURN END INNERPRODUCT();

PROCEDURE CROUT4(;N, A(,), B(), Y(), PIVOT(), DET, EX7;
SINGULAR, IP());
BEGIN COMMENT THIS IS GROUTS METHOD WITH INTER­
CHANGES, TO SOLVE AY =BAND OBTAIN THE TRIANGULAR
DECOMPOSITION. IP() STANDS FOR AN INNER PRODUCT
ROUTINE. THAT· MUST BE AVAILABLE WHEN CROUT4() IS
CALLED. ALSO, PRODUCT () MUST BE AVAILABLE. THE
DETERMINANT OF A IS COMPUTED IN THE FORM DET TIMES
10*EX7, WHERE EX7 IS 0 IF POSSIBLE. IF EX7 NEQ 0, THEN
WE NORMALIZE DET WITH 0.1 LEQ ABS(DET) LSS i;
INTEGER K, I, J, IMAX, N, PIVOT; INTEGER EX7; INT= 1.0;
FOR K = <l.1.N):
BEGIN TEMP= O; FOR I= (K,1,N);

BEGIN A(l,K) = A(l,K) - IP(l, K - 1, A(I,), A(,K));
IF ABS(A(l,K)) GTR TEMP;
BEGIN TEMP= ABS(A(l,K)); IMAX= I END END;
PIVOT(K) =IMAX;

COMMENT WE HAVE FOUND THAT A(IMAX, K) IS THE LARGEST

11-4

PIVOT IN COL K. NOW WE INTERCHANGE ROWS·K AND IMAX;
IF IMAX NEQ K; BEGIN INT= -INT; FOR J = (1,1,N);

BEGIN TEMP= A(K,J); A(K,J) = A(IMAX,J);
A(IMAX,J) =TEMP END;
TEMP= B(K); B(K) = B(IMAX); B(IMAX) =TEMP END;

COMMENT NOW FOR THE ELIMINATION;

IF A(K,K) EQL 0.0;
BEGIN DET = 0.0; EX7 = O; GO TO SINGULAR END;

FOR I = (K + 1,1,N);
BEGIN XX= A(l,K); XY = A(K,K); X =LO; X = X.X;

A(l,K) = XX/XY END;
FOR J = (K ± 1,1,N); A(K,J) = A(K,J) - IP(l, K ~ 1, A(K,),

A(,J));
B(K) = B(K) - IP(l, K - 1, A(K,), B()) END;
FOR I = (1,1,N); Y(I) = A(l,I);
PRODUCT (; N, Y(), DET, EX7); DET = I NT. DET;

COMMENT NOW FOR THE BACK SUBSTITUTION;
FOR K = (N,-1,1);
BEGIN XX= B(K) - IP(K + 1, N, A(K,}, Y()); XY = A(K,K);

X =LO; X = X.X; Y(K) = XX/XY END; RETURN END CROUT4
();

PROCEDURE SOLV2(; N, B(,), C(), PIVOT(), Z(); IP());
BEGIN
COMMENT IT IS ASSUMED THAT A MATRIX A HAS ALREADY
BEEN TRANSFORMED INTO B BY CROUT, BUT THAT A NEW
COLUMN C HAS NOT BEEN PROCESSED. SOLV2() SOLVES
THE SYSTEM BZ = C. AN INNERPRODUCT PROCEDURE MUST
BE USED WITH SOLV2();

INTEGER K,· N, PIVOT;
FOR K = (1,1,N);
BEGIN TEMP= C(PIVOT(K)); C(PIVOT(K)) = C(K);

C(K) =TEMP; C(K) = C(K) - IP(l, K - 1, B(K,), C() J
END;

FOR K = (N; -L l); Z(K) = (C(K) - IP(K + L N1 B(K)1

Z()))/B(K,K);
RETURN END SOLV2();

COMMENT FORSYTHE TEST CROUT US169 EXT 2274;
FORMAT FRMTFL(WO, (6F19.8, WO));
FORMAT FRMTFX(WO, (6119, WO));
INTEGER PIVOT ();INTEGER EX; INTEGER I, J, N;
ARRAY A(70, 70, B(70), Y(70), C(70), PIVOT(70);
INPUT DATA(N, FOR I = (1,1,N); (FOR J = (1,1,N); A(l,J),

8(1)));
INPUT VECTOR(N, FOR I = (1,1,N); C(I));
START.. READ(; ; DATA); READ(; ; VECTOR); OUTPUT ORDER

(N);
OUTPUT DATAO (FOR I = (1,1,N); (FOR J = (1,1,N); A(l,J),

8(1)));
OUTPUT VECTORO (FOR I = (1,1,N); C(I));
WRITE (; ; ORDER, FRMTFX);
WRITE (; ; DAT AO, FRMTFL);
WRITE(; ; ORDER, FRMTFX);
WRITE (; ; VECTORO, FRMTFL);
CROUT4 (; N, A(,), B(), Y(), PIVOT(), DET. EX:

SINGULAR, INNERPRODUCT());
WRITE(; ; DATAO, FRMTFL);
OUTPUT ANSWER (FOR I = (1,1,N); Y(I));
OUTPUT PIVOTO (N, FOR I = (1,1,N); PIVOT (I));
OUTPUT DETO (DET);
OUTPUT EXPO (EX);
WRITE(; ; PIVOTO, FRMTFX);
WRITE(; ; ANSWER, FRMTFL);

PROGRAMS IN ALGOL

WRITE (; ; DETO, FRMTFL);
WRITE (; ; EXPO, FRMTFX);
SOLV2 (; N, A(,), C(), PIVOT(), Y(); INNERPRODUCT());
WRITE(; ; VECTORO, FRMTFL);
WRITE(; ; ANSWER, FRMTFL);
GO TO START; SINGULAR_ .. WRITE (; ; FRMTSI);
FORMAT FRMTSI (WO, *SINGULAR*, WO); GO TO START;

FINISH;

11-5

APPENDIX A

operating
instructions
_c Ll T) /f /) 11/l for rne DLLL-~~v

READYING THE EQUIPMENT

Two REELS OF MAGNETIC TAPE are reqmred to gen­
erate this compiler: the BAC-220 Generator Tape

and a tape on which the final version of the compiler is
to be stored. The procedure to be followed is:

First: Mount the generator on TAPE STORAGE UNIT

10, and place the unit in the NOT-WRITE status.

Second: On TAPE STORAGE UNIT 2, mount the tape on
which the compiler is to be written, and set
the unit to the WRITE status. Either an edited
or a 100-word preblocked tape may be used.
PROGRAM CONTROL SWITCH 1 must be put in
the ON position whenever the compiler is to be
written on an edited tape.

Third: Load the CARD READER with the generator
input deck, which is constructed in accordance
with the specifications given within this
appendix.

RUNNING THE GENERATOR PROGRAM

To execute the generator program, the following steps
must be performed:

First: Ensure that the equipment has been readied;
and

Second: If the BAC-220 GENERATOR CALLOUT routine
is maintained on cards, execute a CRD in­
struction (0 uOOO 60 0000).

The generator program will now run automatically until
the end of generation, or until interrupted by an error
message from the SUPERVISORY PRINTER. If the latter
condition occurs, the computer will halt with a display

generator program
of 7310 00 1370 in the C register, and the generating
process must be repeated.

COMPOSITION OF GENERATOR INPUT DECK

The generator input deck may include a variety of sym­
bolic statements that completely describe the charac­
teristics of the compiler desired. The specific generator
input statements required for any version of the com­
piler are outlined within this appendix. These state­
ments are categorized into six groups for ease of
understanding. Each card contains one statement
punched in a free format; the only exception is column
l, which must contain the digit two. Digits required for
the quantities to be used in the blanks below do not
require leading zeros.

Compiler Version Statements

GENERATE STANDARD VERSION OF BAC-220;
GENERATE HSP VERSION OF BAC-220;
GENERATE PAPER TAPE VERSION OF BAC-220;

Corrections Statement

CORRECTIONS·

System Environment Statements

COPY COMPILER FOR UNIT_ LANE_ ;
MACHINE-LANGUAGE OUTPUT ON UNIT_ LANE_
CARD READER IS UNIT_ ;
CARD PUNCH IS UNIT_ ;
PRINTER IS UNIT_ ;
MEMORY SIZE IS_;

A-1

BURROUGHS ALGEBRAIC COMPILER

Input-Output Facilities Statements

DELETE INPUT FORMATO;
DELETE INPUT FORMAT 1;
DELETE OUTPUT FORMAT 0;
DELETE OUTPUT FORMAT 1;
INPUTMEDIA;
OUTPUTMEDIA;

Miscellaneous Option Statements

POSITION GENERATED TAPE FORWARD_ BLOCKS;
SET SCANNING FOR COLUMNS_ THROUGH_ ;
PUNCH LIBRARY_ INSTRUCTIONS PER CARD;
COMMENT_ ;
SUPPRESS 0 K HALT;
COMPILATION BEGINS AT_;
VARIABLES END AT_ ;
PROCESS LI BRA RY;

FINISH Statement

FINISH;

STANDARD VERSION OF BAC-220

The standard version of the compiler (see combination
l, TABLE 1) utilizes the BURROUGHS library of standard
procedures, and requires both CARDA.TRON input and
output for transmittal of information

To generate a standard version of BAC-220, the deck
illustrated in FIGURE 1 is required. A brief description
of the various elements comprising this deck is given
below.

COMPILE TIME
COMBINATION INPUT OUTPUT

1 CARDATRON CARDATRON

2 CARDA.TRON HSP

3 Paper Tape
SUPERVISORY
PRINTER

4 CARDA.TRON CARDA.TRON

,.
Paper Tape CARDATRON tJ

6 Paper Tape CARDA TRON

7 CARDA.TRON HSP

The BAC-220 Generator Callout Deck

This deck is identical with the callout used for the
standard compiler, except that the odd lane is selected
rather than the even lane.

Compiler Version Statements

Statements from this group identify the type of com­
piler to be generated. One and only one card from this
group must appear in every deck.

For generating the standard version, the following com­
piler version statement is used:

GENERATE STANDARD VERSION OF BAC-220;

For generating non-standard versions (discussed below),
one of the following compiler version statements is to
be used:

GENERATE HSP VERSION OF BAC-220;
The above statement is applicable whenever the HIGH­
SPEED PRINTER is to be used for output at compile time,
and compile time input is through CARDATRON.

GENERATE PAPER TAPE VERSION OF BAC-220;

The above statement is applicable whenever paper tape
is to be used for input of source language at compile
time. It also provides that external programs be intro­
duced by means of paper tape.

GENERATE STANDARD VERSION OF BAC 220;

Use of the above statement is made when generating all
versions which use CARDA.TRON for both input and
output at compile time. Therefore, it is used even when
some medium other than CA.RDA.TRON is desired at
object time.

OBJECT TIME REFER TO
INPUT OUTPUT FIGURE NO.

CARDATRON CARDATRON 1

C.IBDATRON HSP 3

Paper Tape
SUPERVISORY

4
PRINTER

CARDA.TRON HSP 5

CARDA.TRON HSP 6

Paper Tape CARDATRON 7

CARDA.TRON CARDA.TRON 8

TABLE I-SOME INPUT-OUTPUT COMBINATIONS

A-2

OPERATING INSTRUCTIONS FOR THE BAC-220 GENERATOR PROGRAM

System
Environment
Statements

CORRECTIONS;

GENERATE
STANDARD VERSION
OF BAC-220;

BAC-220
GENERATOR
CALLOUT

Miscellaneous
Option
Statements

FINISH;

FIGlJRE 1. Generator Input Deck to Create Standard Version (Combination 1)

Corrections Statement

CORRECTIONS;

The corrections statement must immediately follow the
compiler version statement.

The cards for this section of the deck are prepared by
the user from a listing provided by the BURROUGHS
CORPORATION. A complete current list can be found in
Supp"lemental Material for Use with the BAC-220 Gen­
erator. Whenever this listing changes, an updated ver­
sion will be sent to all users.

System Environment Statements

All versions of BAC-220 require two magnetic-tape
units, one for the compiler itself and another to serve
as a scratch tape for the compiler. The statement

COPY COMPILER FOR UNIT_ LANE_ ;

indicates the lane and magnetic-tape unit desired for
the compiler at compile time. The compiler 'ltilizes the
working tape to store the object program. This tape
must be preblocked into 100-word blocks in both lanes.

A-3

BURROUGHS ALGEBRAIC COMPILER

The statement

MACHINE-LANGUAGE OUTPUT ON UNIT_ LANE_;

is used to indicate the lane and unit designation for the
scratch tape at compile time.

The statements

CARD READER IS UN!T_ ;
CARD PUNCH !S UNIT_ ;
PRINTER IS UNIT_ ;

specify the CARDATRON unit designations desired at
compile time and object time. The statement

MEMORY SIZE IS_ ;

specifies the memory size of the system on which the
compiler is to be used. The minimum memory size is
5,000 words. Memory size must be a multiple of one
hundred.

These cards may be placed in the deck in any sequence
relative to each other. The entire group of statements
may be omitted; if so, a compiler will be produced with
the following characteristics:

Compiler tape is produced for use on TAPE STORAGE
UNIT 2, lane 00

Compiler will use lane 00 of TAPE STORAGE UNIT 1 for
scratch tape

CARDATRON input will be unit 1

CARD PUNCH will be unit 2

Printer will be unit 2

Memory size will be 5,000 words.

Miscellaneous Option St :itements

The statements in this group serve the following func­
tions:

The statement

POSITION GENERATED TAPE FORWARD_ BLOCKS;

is used when the compiler program is to be placed on a
system tape containing other programs. In such a case,
it is unlikely that the compiler will be the first program
on the tape. Consequently, the tape must be positioned
forward to the appropriate place before the newly
generated compiler can be written on it.

The statement

SET SCANNING FOR COLUMNS_ THROUGH_ ;

enables the format of the source-language card deck to
be organized in a variety of ways. It specifies which
contiguous card columns of the source deck are to be
scanned.

A-4,

The statement

PUNCH LIBRARY_ INSTRUCTIONS PER CARD;

produces a punched-card deck containing all procedures
in the standard or non-standard BAC-220 library. A
maximum of six instructions per card may be punched.
A list of the standard procedures is contained in
APPENDIX G.

The statement

COMMENT_;

is used to insert explanatory remarks in the generator
input deck. This statement is formulated in accordance
with the same rules which govern the COMMENT
declaration in the source program (see CHAPTER V).

When compilation has been completed successfully, the
compiler program normally comes to an OK halt. If
immediate execution of the object program is desired
instead, the statement

SUPPRESS 0 K HALT;

will cause the compiler to be produced without this halt.

Location 0200, which is the standard starting location
of the object program, may be altered by means of the
statement

COMPILATION BEGINS AT_ ;

The only restrictions are that the address at which the
compiler program is specified to begin must not be less
than 0200 and must be a multiple of one hundred. The
memory area below the specified starting location is left
intact by the memory clear routine found in the object
program loader.

The effect of the statement

VARIABLES END AT_ ;

is to reserve memory space at object time between the
maximum memory cell of the system and the location
specified by the statement. This location must also be
given as a multiple of one hundred.

The inclusion of the statement

PROCESS LI BRA RY;

indicates that an extension of the standard library of
procedures is desired; therefore, it is never used for
generation .of the standard version of BAC-220.

The miscellaneous option statements may he used in
any sequence relative to the cards in this group, with
one exception: if the PROCESS LIBRARY statement
is used, it must be the last statement of this group. If

OPERATING INSTRUCTIONS FOR THE BAC-220 GENERATOR PROGRAM

no miscellaneous option statements are included in the
input deck, the generator program will produce a com­
piler conforming to the f oJlowing specifications:

FINISH Statement
A FINISH card must be used to terminate the input to
the generator program. Three .blank cards, or any num­
ber of 'reject' cards, follow the FINISH card.

I
I

I

The compiler program will start with the first block
of information on the compiler tape

Scanning is set for columns· 2 through 72, inclusive

OK halt is not suppressed

The library of procedures is not punched out

Compilation of object program will begin at location
0200

Program variables end at the maximum cell available
(e.g., 4999 in a 5,000-word system)

Compiler will be generated with the standard library
of procedures.

I
System

NON-STANDARD VERSIONS OF BAC-220
A non-standard version of the compiler, by definition,
is one which uses an extended or modified library of
procedures, at least one non-CARDATRON input-output
routine, or both.

To generate a non-standard version of the compiler, it
is first necessary to generate a standard version and
punch a standard library deck. This is accomplished by
including in the input to the generator, the PUNCH
LIBRARY_INSTRUCTIONS PER CARD state­
ment from the miscellaneous option statement group;
as illustrated in FIGURE 2. After the standard library

f
.,)' _ L

FINISH;

· Environment
Statements

I

L __ _._ ______ ,,..::.. -~l/

I
CORRECTIONS;

,--...... --------,_ __,,l/
GENERATE
STANDARD VERSION
OF BAC-220;

BAC-220
GENERATOR
CALLOUT

FIGURE 2. Statements Required for Standard Library Deck

A-5

BURROUGHS ALGEBRAIC COMPILER

has been punched, it may be modified to accommodate
the particular needs of an installation. Other machine­
language procedures may be added to the standard
library deck for future convenience, and some of the
standard routines in this deck may be replaced by non­
standard input-output routines written specifically for
the individual system configuration. The new non­
standard library of machine-ianguage procedures is
processed by the generator and then written on the
compiler tape.

The definition of the non-standard compiler requires
that the programmer be familiar with the functions of
the input-output facilities statements, discussed below.

Input-Output Facilities Statements

In general, the inclusion of any one statement from this
group means that at least one input-output procedure
is to be integrated with the compiler. The following
statements

DELETE INPUT FORMATO;
DELETE INPUT FORMAT 1;
DELETE OUTPUT FORMATO;
DELETE OUTPUT FORMAT 1;

delete all CARD READ FORMAT LOAD and CARD
WRITE FORMAT LOAD commands distributed
throughout the compiler, with one exception: the card
punch format; it is loaded regardless of the putput
device used. The second word of each of these state­
ments specifies whether the non-standard routine is to
affect input or output. The integer constant 0 or 1
appended to the end of one of these statements indicates
whether the procedure is to be used at compile time or
object time, respectively.

The routine to be used at compile time is placed in the
generator input deck after either of the following
statements

INPUTMEDIA;
OUTPUTMEDIA;

depending on its function. Whenever the statement

DELETE INPUT FORMATO;

is used, there must also be the statement

INPUTMEDIA;

followed by its associated procedure. The converse,
however, is not necessarily true if one wishes to use the
standard formats supplied by the compiler. Similarly,
the statement

DELETE OUTPUT FORMAT 0;

may be necessary, but it is not sufficient unless used

A-6

together with the statement

OUTPUTMEDIA;

The following statements

DELETE INPUT FORMAT 1;
DELETE OUTPUT FORMAT 1 ;

indicate that the standard REED or RITE library pro­
cedures, or both, are to be replaced by either non­
CARDATRON routines, or by procedures not using the
standard formats provided in the compiler. Therefore,
these special procedures must be placed in the modified
libr'.ITy -deck at the end of the generator input deck.

High-Speed Printer Version of BAC-220

A compiler can be generated which utilizes an on-line
HIGH-SPEED PRINTER at both compile time and object
time (see combination 2, TABLE 1). The procedure to be
followed is outlined below:

First: Generate a standard version of BAC-220 to
produce a standard library deck. Note that
the PUNCH LIBRARY-INSTRUC­
TIONS PER CARD statement must be in­
cluded among the miscellaneous option state­
ments.

Second: Replace the RITE procedure in the standard
library deck with a special Rl'I'E written by
the user to specifically produce output of re­
sults, symbolic dumps, and diagnostics on the
HIGH-SPEED PRINTER. (See APPENDIX F.)

Third: Construct the generator input deck shown in
FIGURE 3, selecting statements from each
group in accordance with the compiler char­
acteristics desired. A discussion of these state­
ments appears in this appendix under the
heading Standard Version of BAC-220.

If the HIGH-SPEED PRINTER is to be used for output at
both compile time and object time, three input-output
facilities statements are necessary:

DELETE OUTPUT FORMAT 0;
I NPUTMEDIA;
OUTPUTMEDIA;

A machine-language deck must follow the OUTPUT­
MEDIA statement. This deck constitutes a subroutine
which enables the compiler to produce a listing of the
symbolic program on the HIGH-SPEED PRINTER, along
with any syntactical error messages.

The modified library deck must have a FINISH sta~e­
ment both preceding and following it. The PROCESS
LIBRARY statement precedes the first FINISH crud,
which signals the end of the generator input statements.

OPERATING INSTRUCTIONS FOR THE BAC-220 GENERATOR PROGRAM

Machine-language deck to facilitate HSP -------.V 71
output at compile time. ,iJ....___-.... _______ ..,

' I I

OUTPUT MEDIA;

DELETE OUTPUT
FORMAT l;

DELETE OUTPUT
FORMATO;

System
Environment
Statements

CORRECTIONS;

GENERATE HSP
VERSION OF
BAC-220;

BAC-220
GENERATOR
CALLOUT

:'.\llodified
Library Deck

FINISH;

FINISH: \ PROCESS
LIBRARY;

Included in this library deck
will be a HIGH SPEED PRINTER

RITE procedure which will
replace the standard RITE
procedure

FIGURE 3. Generator Input Deck to Create HIGH-SPEED PRINTER Version (Combination 2)

The second FINISH statement delimits the modified
library deck.

Paper-Tape Version of BAC-220

This version is normally required by a user whose sys­
tem configuration does not include CARDATRON, or by
one who wishes to use paper tape as input and obtain
output from the SUPERVISORY PRINTER (see combina­
tion 3, TABLE 1). The procedure for generating this
version is outlined below.

NOTE: In order to generate such a version, a CARDA­

TRON system must be available.

First: Generate a standard version of BAC-220 to
produce a standard library deck (see FIGURE
2). Note that the PUNCH LIBRARY_
INSTRUCTIONS PER CARD statement
must be used.

Second: Replace the RITE procedure in the standard
library deck with a special RITE procedure
written by the user specifically to produce
output of results, symbolic dumps, and diag­
nostics on the SUPERVISORY PRINTER. Replace
the REED procedure in the standard library
deck with a special REED procedure written
specifically to allow input of data at object
time through the medium of paper tape. (See
APPENDIX F.)

A-7

BURROUGHS ALGEBRAIC COMPILER

Third: Construct the generator input deck shown in
FIGURE 4, selecting statements from each group
in accordance with the compiler characteris­
tics desired. A discussion of these statements
appears in this appendix under the heading
Standard Version of BAC-220.

All input-output facilities statements must be used to
generate this version. A machine-language subroutine
urh1r>h na-rrnit" innnf n.f' th£> "''"'"""',..,.,.,-,..,...._.rn h-n rn£>'-'TI" n.f

t'f.1...1..a.v.1...1.. yv.1...1..1....1..1.l.lu .J..1..l.t'U..l.I '\J.L lJ.L.1.V i.::JVU.LVV .J:-1..LVOJ..U.1..L.I. "'-'J J..1..1.\..JU.L.1.0 V.1.

paper tape will follow the INPUT MED IA statement.
Following the OUTPUTMEDIA statement will be a
machine-language subroutine which enables the com­
. piler to provide a listing of the symbolic program, as
well as syntactical error messages, on the SUPERVISORY
PRINTER.

A FINISH statement follows the PROCESS LI­
BRARY statement. The modified library deck is placed
after the FINISH statement; finally, another FINISH
statement is added to complete the deck.

SPECIAL INPUT-OUTPUT ROUTINES

Several machine-language procedures and routines pre­
pared to satisfy special input-output requirements have
been published by the BURROUGHS CORPORATION in
Supplemental Material for Use with the BAC-220 Gen­
erator. They were written to show the flexibility offered
by the BAC-220 System, and are intended to encourage
the user to write his own input-output procedures. For
instance, the user may desire a compiler that can write
the symbolic program on magnetic tape and print it

Machine-language program to provide
paper-tape input at compile tirrie.

A-8

CORRECTIONS;

GENERATE PAPER
TAPE VERSION OF
BAC-220;

BAC-220
GENERATOR
CALLOUT

DELETE OUTPUT
FORMAT I;

DELETE OUTPUT
FORMATO;

DELETE INPUT
FORMAT I;

FINISH;

Modified Library
Deck

FINISH;

PROCESS LIBRARY;
DELETE J NPuT
FORMATO;

OUTPUTMEDIA card followed by ~
machine-language program to provide ~
SUPERVISORY PRINTER output at compile
time.

OUTPUTMEDIA;

The standard REED and RITE procedures will be re­
placed by special machine-language procedures: paper­
tape REED and SUPERVISORY PRINTER RITE.

FmcRE 4. Generator Input Deck to Create Paper-Tape Version (Combination 3)

OPERATING INSTRUCTIONS FOR THE BAC-220 GENERATOR PROGRAM

off-line on the HIGH-SPEED PRINTER through the use of a
special HIGH-SPEED P~INTER plugboard. The user may
write a special OUTPUTMEDIA subroutine ·for this
purpose, one which edits the symbolic statements to
suit the particular plugboard and then writes these
statements on magnetic tape.

Supplemental Material for Use with the BAC-220 Gen­
erator contains the following non-standard input-output
routines:

HIGH-SPEED PR1NTER:

SPECIAL LIBRARY RITE PROCEDURE FOR
HIGH-SPEED PRINTER AT OBJECT TIME

SPECIAL OUTPUTMEDIA SUBROUTINE FOR
HIGH-SPEED PRINTER AT COMPILE TIME

PAPER-TAPE ROUTINES

SPECIAL LIBRARY REED PROCEDURE FOR
PAPER TAPE AT OBJECT TIME

SPECIAL INPUTMEDIA SUBROUTINE FOR
PAPER TAPE AT COMPILE TIME

SUPERVISORY PRINTER:

SPECIAL LIBRARY RITE PROCEDURE FOR
SUPERVISORY PRINTER AT OBJECT TIME

SPECIAL OUTPUTMEDIA SUBROUTINE FOR
SUPERVISORY PRINTER AT COMPILE
TIME

(The latter procedure must be used only in conjunc­
tion with the paper-tape REED procedure listed
above.)

With the exception of combination l, at least one
special-purpose input-output procedure deck must be
included in the input deck to the generator program.
It may he any of the following types: INPUTMEDIA,
OUTPUTMEDIA, REED, or RITE. The construction
of the input generator deck required for each of the
input-output combinations shown in TABLE 1 is illus­
trated in FIGURE 1 and FIGURES 3 through 8.

ERROR MESSAGES

The generator program provides automatic recognition
of error conditions. If an error condition is encountered,
the computer will halt immediately after an explanation
of the type of error has been emitted on the SUPER­
VISORY PRINTER. The following list describes the types
and causes of the various error conditions which may
arise prior to the library processing:

CHECK SUM ERROR

The generator program was not read in correctly. De­
pressing the START key causes another attempt to load
the program.

ERRONEOUS CORRECTION CARD

A correction card contains invalid information.

iNCORRECT STATEMENT

A symbolic statement is misspelled, or the card did not
have a two-punch in column 1.

MEMORY SIZE MUST BE GIVEN AS A MULTIPLE OF
ONE HUNDRED

An improper specification statement for memory size
has been made.

If the library processor detects an error, it will produce
one of the following error messages on the SUPERVISORY
PRINTER:

EQUiVALENCE NUMBER TOO LARGE

More than two digits have been given.

IMPROPER PSEUDO-OP

The library procedure currently being processed con­
tains an undefined pseudo-operation code.

INCORRECT PUNCTUATION

The ',' on a name card, or the '=' on an equivalence
card, was replaced by some other special character, or
was missing.

MISPLACED NAME CARDS

A second name card has appeared in a machine-language
deck prior to the pseudo operation for FINISH which
terminates that procedure.

MISSING EQUIVALENT

A machine-language instruction with a sign digit of 5
or 6 did not have an equivalence card to define its
digits sL=82.

MISSING NAME CARD

The name card of the procedure to be processed is ab­
sent or does not carry a two-punch in column 1.

REFERENCE WAS MADE TO THE UNDEFINED LIBRARY
PROCEDURE name

A machine-language procedure required as an equiva­
lence by some other library routine was not included
for processing in the modified library deck.

SEQUENCE ERROR

The relative location of the machine-language instruc­
tion being processed is less tha_11 that for the previous
one.

A-9

A-10

GENERATE
STANDARD

BURROUGHS ALGEBRAIC COMPILER

FINISH;

PROCESS LIBRARY;

DELETE OUTPUT
FORMAT l;

System Environ­
ment Statements

CORRECTIONS;

Modified Library
Deck

FINISH;

VERSION OF BAC-220;

BAC-220
GENERATOR
CALLOUT The standard RITE procedure will be replaced by the

special HIGH SPEED PRINTER RITE procedure.

FIGURE 5. Generator Input Deck to Create Combination 4

I

OPERATING INSTRUCTIONS FOR THE BAC-220 GENERATOR PROGRAM

Machine-language procedure to provide
paper-tape input at compile time. ~~~~---V' 71

,~----------------·,~ I

INPUTMEDIA;

DELETE OUTPUT
FORMAT l;

DELETE INPUT
FORMATO;

System
Environment
Statements

CORRECTIONS;
Modified
Library Deck

GENERATE PAPER
TAPE VERSION OF
BAC-220;

BAC-220
GENERATOR
CALLOUT

FINISH;

PROCFSS LIBRARY;

FINISH;

The standard RITE pro­
cedure will be replaced in the
standard library by the
HIGH SPEED PRINTER RITE
procedure.

FIGURE 6. Generator Input Deck to Create Combination 5

A-11

A-12

BURROUGHS ALGEBRAIC COMPILER

Machine-language procedure to provide
paper-tape input at compile time.

INPUTMEDIA;

DELETE INPUT
FORMAT l;

DELETE INPUT
FORMATO;

System
Environment
Statements

CORRECTIONS;

GENERATE PAPER
TAPE VERSION
OF BAC-220;

BAC-220
GENERATOR
CALLOUT

Modified Library
Deck

FINISH;

PROCESS
LIBRARY;

FINISH;

The standard REED pro­
cedure within the library deck
will be replaced by a special
paper tape REED procedure.

FmuRE 7. Generator Input Deck to Create Combination 6

OPERATING INSTRUCTIONS FOR THE BAC-220 GENij:RATOR PROGRAM

Machine-language deck to facilitate HSP ------~/"
output at compile time. ~ ./I

,~----------------... (""" I

System
Environment
Statements

CORRECTIONS;

GENERATE HSP
VERSION OF
BAC-220;

BAC-220
GENERATOR
CALLOUT

OUTPUTMEDIA;

DELETE
OUTPUT
FORMATO;

Modified
Library Deck

FINISH;

PROCESS
LIBRARY;

FINISH;

\
Required only when additions
to the standard library are
desired.

FIGURE 8. Generator Input Deck to Create Combination 7

A-13

THIS APPENDIX CONTAINS THE INFORMATION required
for the operation of the compiler. It is assumed that

the user is in possession of the magnetic-tape reel con­
taining the BAC-220 Generator and that he has gen­
erated a compiler to suit his needs.

For the most part, the compiler system is controlled by
means of decks of cards which load the desired routines
from the compiler tape and then transfer control to
these routines. These decks are termed 'callout decks.'
Any callout deck is read by placing it in the CARD READ­
ER and executing a CARD READ command: 0 uOOO
60 xxxx. (The address xxxx is irrelevant.) These decks
need no blank cards preceding or following them except
as specifically noted below.

The user should have access to the following callout
decks: GENERATOR CALLOUT, COMPILER CALLOUT, COM­
PILED OBJECT PROGRAM CALLOUT, COlVIPiLED OBJECT

PROGRAM DUMP CALLOUT, and COMPILED OBJECT PRO­
GRAM LOADER BOOTSTRAP.

PREPARATION OF SOURCE PROGRAMS ON
PUNCHED CARDS

Decks containing the source-language program are
punched to select format-hand 2 (digit two in column 1
of each card). The statements to be compiled may oc­
cupy a predetermined field, the boundary columns of
which are specified at the time of compiler generatfon.
The standard version of the -compiler scans symbolic
information from column 2 through column 72.

The symbolic deck is constructed by assembling the
following card deck:

First: The COMPILER CALLOUT deck;

Second: The source-language statements;

APPENDIX B

compiler
operating
instructions

Third: External machine-language programs (if any);

Fourth: Input data (if any); and

Fifth: Three blank cards, or any number of 'reject'
cards (i.e., cards with the digit seven punched
in column 1).

PREPARATION OF PAPER-TAPE SOURCE
PROGRAMS

Paper tape containing BAC-220 programs may be used
as input to the compiler. The input routine provided by
BURROUGHS scans one block of alphanumeric informa­
tion at a time (14 words), and translates any special­
character codes required. The first two digit positions
(sL=22) of the first word of each block are not scanned
for information. A card-to-paper-tape converter can be
used for the preparation of symbolic tape if BAC-220
statements are restricted to columns 2 through 72 of
the card.

The symbolic tape is prepared in the following sequence:

First: The COMPILER CALLOUT routine (below) may
be punched in paper tape. This eliminates the
necessity of executing the routine from the
console.

6 uOOO 04 0002

0 0000 39 0000
0 cl l8 50 0000

0 cOOl 52 0000
6 0000 30 0002

where u is the unit designation of the PAPER­
TAPE READER; c designates the compiler stor­
age unit; and ll indicates the proper lane.

Second: The BAC-220 statements must be prepared in
blocks of 14 words;

B-1

BURROUGHS ALGEBRAIC COMPILER

Third: External machine-language programs (if any)
must be prepared in blocks of 14 words;

Fourth: Input data (if any) must be prepared in blocks
of 16 words (see CHAPTER VIII, Input-Output
Techniques).

COMPILING A PROGRAM

The generated compiler is stored on a reel of magnetic
tape. This tape contains the compiler program proper,
the library routines, and a collection of routines which
includes the symbolic dump routine, the object program
loader, and the compiled object program dump. This
reel is mounted on the TAPE STORAGE UNIT for which it
was generated, and the unit placed in NOT-WRITE status.

A scratch tape which has been preblocked in 100-word
blocks on both lanes is then mounted, the unit desig­
nator set to the TAPE STORAGE UNIT specified for ma­
chine-language output, and the unit placed in WRITE
~tatus. The symbolic deck is placed in the CARD READER

and a CRD (0 uOOO 60 xxxx) is executed, or the sym­
bolic tape is mounted on the PAPER-TAPE READER and
a PRB (0 uOOO 04 xxxx) is executed. Execution of the
PRB instruction assumes that the callout routine pre­
cedes the symbolic program on tape.

The compiler reads cards, paper tape, or magnetic tape,
depending on its input characteristics, and produces a
copy of the symbolic language on an appropriate pre­
selected output device. Error messages resulting from
compilation are indicated in the printout, and immedi­
ately precede or follow the line containing an error. As
an aid in associating symbolic lines with their corres­
ponding machine-language equivalents, a machine
address is printed to the left of each symbolic card
image. This address points to the location where com­
pilation begins for the first statement on that particular
card. The compiled program is written on the selected
lane of the scratch tape. The opposite lane of this tape
is reserved for the symbolic memory dump routine.
After compilation is complete, the following two mes­
sages are produced:

COMPILED PROGRAM ENDS AT mmmm

PROGRAM VARIABLES START AT nnnn

where mmmm and nnnn are absolute· addresses. The
intermediate memory area between cells mmmm and
nnnn is cleared.

In addition to the above cell-count messages, the A
register will display either:

0 K (0757 00 7250)

B-2

provided that no error messages were produced, and
that this facility was not suppressed during generation
of the compiler, or

xx (0525 00 5250)

in the event that the compiler detected errors.

If the compilation has been properly completed, depress­
ing the START switch will load and execute the program.

During compilation, the following PROGRAM CONTROL
SWITCHES regulate the printed output:

PCS 1 - Provides for a listing of assigned library pro­
cedures.

PCS 2 - Provides for a listing of compiled statements
and constants.

PCS 3 - Provides for a listing of external program in­
structions.

, PCS 4 - Suppresses printing of BAC-220 statements.
· Error messages, however, will be emitted

along with a symbolic card image, which serves
as an aid in locating the general vicinity of the
syntactical error. If no error is discovered in
the symbolic program, the object program is
loaded immediately, and control is transferred
to the beginning of that program.

Whenever there is a magnetic-tape malfunction, the
specific type of error message is emitted, and the com­
puter halts with 0 9669 00 9669 displayed in the C
register. Depressing the START key results in another
attempt to use the designated tape.

OPERATION OF THE FINISH DECLARATION

When the compiler encounters the FINISH declaration,
it writes a HALT instruction (O 9669 00 9669) followed
by a CARD READ or PAPER TAPE READ,
BRANCH instruction at the end of the object-language
program, adds the library procedures, and then stops
compilation. Depressing the START key then initiates
execution of the object program. Upon completion of
this object-language program, pressing the ST ART key
will cause the execution of the CRD or PRB instruction
as the first step in the compilation of another symbolic
deck.

If the programmer wishes to avoid this sequence of
events, he should precede the FINISH declaration in
his symbolic program with a STOP statement, followed
by a statement which transfers coutrol back to the
desired point in his program. (See CHAPTER VI.)

OPERATING INSTRUCTIONS

RELOADING THE OBJECT PROGRAM FROM
MAGNETIC TAPE

The magnetic tape containing the compiled program
may be remounted on its designated TAPE STORAGE

UNIT at some later time, and the program loaded and
run. This is accomplished by reading the deck composed
of:

First: The COMPILED OBJECT PROGRAM CALLOUT deck
(two cards);

Second: Input data (if any); and

Third: Three blank cards, or any number of 'reject'
cards.

DUMPING A COMPILED OBJECT PROGRAM
ON CARDS

After a program has been checked out, the compiled
program may be punched on cards (or paper tape).
This object program facility is operational with all com­
piled programs except those making use of the segmen­
tation or dump features of the compiler.

Each card of the object program callout deck contains
five machine-language instructions. The dump opera­
tion is complete when an OK halt appears in the C
register and the A register displays all nines. At this
point it is recommended that the compiled program on
the output tape not be destroyed until the output pro­
duced by the CARD PUNCH is checked for errors. If a
check-sum error occurs during the loading of the object
program callout deck, it indicates the presence of an
erroneous card, and the dump operation may have to
be repeated.

A suitable loader comprising 50 cards, each card con­
taining a sequence number in columns 11 through 14,
may be punched out as an option prior to the object
program itself. After the original conversion, it may be
desirable to retain this loader deck for subsequent use
with other compiled program decks. The loader may be
dumped by setting PROGRAM CONTROL SWITCH 4 to the
ON position.

Preparation for dumping the object program consists
of the following:

First: Mount the compiler tape and the machine­
language tape on their designated units.

Second: Place the COMPILED OBJECT PROGRAM DUMP

CALLOUT deck in the CARD READER, and exe­
cute a CRD (0 uOOO 60 xxxx) from the console.

RELOADING THE OBJECT PROGRAM FROM
CARDS

The COMPILED OBJECT PROGRAM LOADER deck is designed
to be used together with the COMPILED OBJECT PROGRAM:

LOADER BOOTSTRAP. The combined decks constitute a
complete self-loading unit for the object program. Be­
fore the object program can be loaded, the following
deck must be constructed and placed in the CARD

READER:

First: The COMPILED OBJECT PROGRAM LOADER

BOOTSTRAP deck;

Second: The COMPILED OBJECT PROGRAM LOADER deck,
which is punched with a format-digit 6 in
column I;

Third: A blank card;

Fourth: The compiled object program deck, which uses
a I-punch in column 1 for format selection;

Fifth: Input data (if any);

Sixth: Three blank cards, or any number of 'rejects.'

The loading process is begun by the execution of a CRD
(0 1000 60 0000).

DUMPING A COMPILED PROGRAM ON
PAPER TAPE

The object program, but not its loader, can be dumped
on paper tape by depressing PROGRAM CONTROL SWITCH

3. Each object progr::im on paper tape will be preceded
by a sequence of instructions which will read in the
compiled object program loader routine from the com­
piler tape. The procedure for loading the object program
from paper tape is as follows:

First: Mount the compiler tape on the prescribed
TAPE STORAGE UNIT, and designate the PAPER­

T APE READER as unit I;

Second: Depress PROGRAM CONTROL SWITCH 3;

Third: Ready the CARD READER for input of data
(if any). A blank card must precede the data
deck; and

Fourth: Execute a PRB (0 1000 04 xxxx) from the
console.

B-3

APPENDIX c

list of reserved
identifiers

THE LIST BELOW INCLUDES all those identifiers to
which the compiler attaches a fixed meaning. These

identifiers have been mentioned separately throughout
this manual, but are listed here for quick reference. A
reserved identifier may not be used by the programmer
for any purpose other than its function as employed by
the compiler. In addition to this list, the names of all the
junctions in the library should be considered as reserved
identifiers.

ABS
AND
ARRAY

BEGIN
BOOLEAN
COMMENT

DUMP
EITHER
END

ENTER
EQIV
EQL
EXTERNAL
FINISH
FLOATING
FOR
FORMAT
FUNCTION
GEQ
GO
GTR
IF
IMPL

INPUT
INTEGER
LEQ
LSS
MAX
MIN
MOD
MONITOR
NEQ
NOT
OR
OTHERWISE
OUTPUT
OVERLAY

PCS
PROCEDURE
REAL
RETURN
SEGMENT
SIGN
STATEMENT
STOP
SUBROUTINE
SWITCH
TO
TRACE
UNTIL

C-1

APPENDIX D

'-11-1~ .,_a Pl-/,. pa , J_J 11-I lltl I

description of the
compiler language

FORM OF DEFINITIONS

THIS APPENDIX LISTS the syntactical definitions which
are provided for reference purposes. While it is not

the intent to express here every rule possible for the
construction of symbolic programs, these definitions
should serve to answer many questions which arise con­
cerning the language.

The definitions given here are expressed in a notation
which is particularly well suited for syntactical descrip­
tion. A definition has the general form:

Thing being defined : := definition

(the symbol ::=being read as has the form of).

The symbol I is to be read as or. Other symbols represent
themselves.

For example, the definition:

BASIC SYMBOLS

(basic :Yymbol) ::= (letter) I (digit) I (delimiter)

(scale factor) ::= **(integer constant) I
**+(integer constant) I **-(integer constant)

is to be interpreted as meaning: A scale factor con­
sists of two asterisks perhaps followed by a + or - sign
and then fallowed by an integer constant.

Syntactical definitions are recursive, that is, the defini­
tion may be applied over and over again. For example,

(integer constant) ::=(digit) j (integer constant) (digit)

would indicate that an integer constant consists of a
string of digits.

It is impossible in these definitions to give the restric­
tions on the definition. For the latter, it will be necessary
to refer to the relevant portion of the text, e.g., an inte­
ger constant is restricted to a maximum of ten digits (in
this case, a restriction due to the word length used in
the BURROUGHS 220).

(letter) ::= AIBICIDIEIFIGIHIIIJIKILIMINIOIPIQIRISJTIUIVIWIXIYIZ

(digit) ::= Oill2131415l6J718l9

(delimiter) ::= (operator) \ (separator) I (bracket) I (declarator)

(operator) ::= (arithmetic operator) I (relational operator) I (logical operator) I (sequential operator)

(arithmetic operator)::=+ I - I. I I I* I.+ I.- I*+ I*- I/+ I/-

(relational operator) ::= LSS i LEQ i EQL I GEQ i GTR i NEQ

(logical operator)::= NOT I AND! OR I EQIV I IMPL

(sequential operator) ::=GO I GO TO I RETURN\ STOP I FOR\ IF\ OR I EITHER IF\ OR IF I
SWITCH I UNTIL I OTHERWISE I OVERLAY

(separator) ::=. I, I .. \ ; I=** i BEGIN I END

D-1

BURROUGHS ALGEBRAIC COMPILER

(bracket) : := (I)

(declarator)::= INTEGER I BOOLEAN I FLOATING I REAL I ARRAY I FUNCTION I COMMENT I
PROCEDURE I SUBROUTINE I SEGMENT I FINISH I INPUT I OUTPUT I FORMAT I
MONITOR[TRACEjDUMP\EXTERNALSTATEMENTIEXTERNALPROCEDURE

(identifier) : := (letter) I (identifier) (letter) I (identifier) (digit)

(number) ::=(unsigned number) I +(unsigned number) I -(unsigned number)

(unsigned number) ::= (integer constant) I (floating point constant)

(floating point constant) ::= (integer constant) . (integer constant) I (integer constant) (scale factor) I
(integer constant) . (integer constant) (scale factor)

(scale factor) ::=**(integer constant) I **+(integer constant) I **-(integer constant)

(integer constant) ::= (digit) I (integer constant) (digit)

(empty) ::= (the null string of symbols)

EXPRESSIONS

(expression) : := (arithmetic expression) I (Boolean expression)

(variable) ::= (simple variable) I (subscripted variable)

(simple variable) ::= (variable identifier)

(variable identifier) : := (identifier)

(subscripted variable) ::= (array identifier) ((subscript list))

(subscript list) ::= (subscript expression) I (subscript list), (subscript expression)

(subscript expression) : := (arithmetic expression)

(arithmetic expression) : := (simple arithmetic expression) I + (simple arithmetic expression) I
-(simple arithmetic expression)

(simple arithmetic expression) ::= (constant) I (variable) I (evaluated function) I
(simple arithmetic expression) (arithmetic operator) (simple arithmetic expression) I
((arithmetic expression))

(constant) ::= (unsigned number) I (Boolean constant)

(Boolean constant) ::= 0 I 1

(evaluated function) ::=(function identifier) ((simple argument list)) I
(procedure identifier) ((argument list))

(function identifier) : := (identifier)

(procedure identifier) : := (identifier)

(simple argument list) ::= (simple argument) j (simple argument list), (simple argument)

(simple argument) ::= (expression)

(argument list) ::= (input argument part) i (input argument part) ; (output argument part) [
(input argument part) ; (output argument part) ; (program reference argument part)

(input argument part) ::= (empty) I (input argument list)

(input argument list) ::= (input argument) I (input argument list) , (input argument)

(input argument) ::= (expression) I (argument array)

D-2

SYNTACTICAL DESCRIPTION OF THE COMPILER LANGUAGE

(argument array) ::=(array identifier) ((argument subscript list))

(argument subscript list) ::= (argument subscript) I (argument subscript list), (argument subscript)

(argument subscript) ::= (empty) i (subscript expression)

(output argument part) ::= (empty) I (output argument list)

(output argument list) ::= (output argument) I (output argument list), (output argument)

(output argument) ::= (variable) I (argument array)

(program reference argument part) : := (program reference argument list)

(program reference argument list) ::= (program reference argument) I

(program reference argument list) , (program reference argument)

(program reference argument) ::= (label) I (identifier) ()

(label) ::= (identifier) I (integer constant)

(Boolean expression) ::= (Boolean constant) I (variable) I (evaluated function) I NOT (Boolean expression) I
(relation) I (Boolean expression) (binary logical operator) (Boolean expression) I ((Boolean expression))

(relation) : := (arithmetic expression) (relational operator) (arithmetic expression)

(binary logical operator) ::=AND I OR I EQIV I IMPL

STATEMENTS

(program) ::= (statement body); FINISH;

(statement body) ::= (statement) I (statement body) ; (statement) \ (declaration) ; (statement body)

(statement) ::= (assignment statement) I (go to statement) i (enter statement) I (return statement) I
(stop statement) l (switch statement) \ (overlay statement) \ (if statement) I (for statement) I
(until statement) I (alternative statement) \ (compound statement) \ (procedure call statement) j

(labeled dummy statement) I (labeled statement)

(assignment statement) ::= (left part list) (expression)

(left part list) : := (left part) I (left part list) (left part)

(left part) : := (variable) = (procedure identifier) () =

(go to statement) ::= GO TO (label) I GO (label)

(enter statement) ::= ENTER (subroutine label)

(subroutine label) ::= (identifier)

(return statement) : := RETURN

(stop statement) ::=STOP I STOP (expression)

(switch statement) ::=SWITCH (expression), ((switch list))

(switch list) ::= (statement label) I (switch list), (statement label)

(statement label) : := (label)

(overlay statement) ::=OVERLAY (segment label)

(segment label) ::= (identifier)

(if statement) ::= (if clause) ; (statement)

(if clause) ::= IF (condition)

(condition) ::= (relation) I (Boolean expression)

D-3

BURROUGHS ALGEBRAIC COMPILER

(for statement) ::= (for clause) ; (statement)

(for clause) ::=FOR (variable)= (iteration list)

(iteration list) : :=(arithmetic expression)\ ((arithmetic expression), (arithmetic expression), (arithmetic expression)) I
(iteration list) , (iteration list)

(until statement) ::= (until clause) ; (statement)

(until clause) ::=UNTIL (condition)

(alternative statement) ::= (alternative statement head) (alternative statement ending)

(alternative statement head) ::= EITHER (if clause) ; (statement) \

(alternative statement head) ; OR (if clause) ; (statement)

(alternative statement ending) ::= (ending) \ ; OTHERWISE ; (statement)

(ending) : := END j END (label) \ END (procedure identifier) ()

(compound statement) ::=BEGIN (statement body) (ending) \ ((statement body))

(procedure call statement) ::= (procedure identifier) ((argument list))

(dummy statement) ::= (empty)

(labeled statement) ::= (label) .. (statement)

(declaration) ::= (type declaration) \ (array declaration) I (comment declaration) \ (subroutine declaration) I

(function declaration) I (procedure declaration) I (segment declaration) I (input declaration) \

(output declaration) \ (format declaration) \ (monitor declaration) \ (trace declaration) I (dump declaration) !

(external declaration)

(type declaration) ::=(type name) (type list) I (type name) OTHERWISE I (type name) ((type list))

(type name)::= FLOATING\ INTEGER\ BOOLEAN\ REAL

(type list) ::= (type list element) \ (type list), (type list element)

(type list element) ::= (identifier) \ (identifier) () I (identifier) ...

(array declaration) ::=ARRAY (array list) \ARRAY ((array list))

(array list) ::= (array list element) I (array list) , (array list element)

(array list element) ::=(array identifier) ((integer list)) \ (array identifier) ((integer list)) = ((constant list))

(integer list) : := (integer constant) I (integer list) , (integer constant)

(constant list) ::= (constant) I (constant list) , (constant)

(comment declaration) : := COMMENT (comment symbol string)

(comment symbol string) : := (any string of symbols not containing ';')

(subroutine declaration) ::= SCBROUTINE (subroutine label) ; (compound statement)

(function declaration) ::= FuNCTION (function identifier) ((simple parameter list)) = (expression)

(simple parameter list) : := (identifier) I (simple parameter list) , (identifier)

(procedure declaration) ::= PROCED"CRE (procedure identifier) ((parameter list)) ; (compound statement)

(parameter list) ::= (input parameter part) ! (input parameter part) ; (output parameter part) i

(input parameter part) ; (output parameter part) ; (program reference parameter part)

(input parameter part) ::= (empty) \ (input parameter list)

·(input parameter list) ::= (input parameter) \ (input parameter list) , (input parameter)

(input parameter) ::= (identifier) \ (identifier) ((empty subscript list))

D-4

SYNTACTICAL DESCRIPTION OF THE COMPILER LANGUAGE

(empty subscript list) ::=(empty) \ (empty subscript list), (empty)

(output parameter part) ::= (empty) \ (output parameter list)

(output parameter list) ::= (output parameter) I (output parameter list) , (output parameter)

(output parameter) ::=(identifier) I (identifier) ((empty subscript list))

(program reference parameter part) : := (program reference parameter list)

(program reference parameter list) : := (program reference parameter) I
(program reference parameter list) , (program reference parameter)

(program reference parameter) : := (identifier) / (identifier) ()

(segment declaration) ::=SEGMENT (segment label) ; (compound statement)

(input declaration) ::=INPUT (input list) I INPUT ((input list))

(input list) ::= (input list element) I (input list) , (input list element)

(input list element) ::= (input label) ((input data list))

(input data list) ::= (input data list element) I (input data list) , (input data list element)

(input label) : := (identifier)

(input data list element) ::= (variable) I (for clause) ; (input data list element) 1

(for clause) ; ((input data list))

(output declaration) ::=OUTPUT (output list) I OUTPUT ((output list))

(output list) ::= (output list element) I (output list) , (output list element)

(output list element) ::= (output label) ((output data list))

(output data list) ::= (output data list element) I (output data list) , (output data list element)

(output label) ::= (identifier)

(output data list element) ::=(expression) \ (for clause) ; (output data list element) ! (for clause) ; ((output data list))

(format declaration) ::=FORMAT (format list) I FORMAT ((format list))

(format list) ::= (format list element) I (format list), (format list element)

(format list element) : := (format label) ((format data list))

(format data list) : := (formal data fo1t elen1ent) \ (format data list) , (format data list element) i
((format data list))

(format label) ::= (identifier)

(format data list element) ::= *(format string)* \ (letter) (integer constant) I
(letter) (integer constant) . (integer constant) I (repeat phrase) I (activation phrase)

(activation phrase) ::= (letter) I (letter) (integer constant) I (integer constant) (activation phrase)

(repeat phrase) ::= (integer constant) (format data list)

(format string) ::= (any string of symbols not containing '*')

(monitor declaration) ::=MONITOR (monitor list part)

(monitor list part) ::=(empty) i (monitor list)

(monitor list) : := (monitor list element) I (monitor list) , (monitor list element)

(monitor list element) : := (identifier) I (label)

(trace declaration) : := TRACE (trace list)

(trace list) ::= (trace list element) I (trace list), (trace list element)

D-5

BURROUGHS ALGEBRAIC COMPILER

{trace list element) ::= (label) I (label) ((integer constant))

(dump declaration) ::= DUMP (dump list part)

(dump list part) ::= (empty) I (dump list)

(dump list) ::= (dump list element) I (dump list), (dump list element)

(dump list element) ::= (identifier) I (label)

(external declaration) ::=EXTERNAL STATEMENT (label) I
EXTERNAL PROCEDURE (procedure identifier) ((parameter list)) !

EXTERNAL PROCEDURE (procedure identifier) ((parameter list)) ; (type name) (procedure identifier)

D-6

THIS APPENDIX presents a summary of equivalences
between the elements of the BURROUGHS Algebraic

Compiler language and the elements of ALGOL, the in­
ternational algebraic language. It is this latter language
which is used for the publication of programs written in
the former. Transliteration of _programs for the BUR-

1. BASIC SYMBOLS

Reference language

a. Non-delimiters

(1) Letters

(2) Digits

b. Delimiters

(1) Opera tors

Arithmetic

Relational

a MN z

0 .·.w 9

+

x

I

<
s
=

APPENDIX E

transliteration
rules

ROUGHS Algebraic Compiler into ALGOL requires a
thorough familiarity with ALGOL, the details of which
are available in the literature. t

t See Communicalwns of the ACM, vol. 1, no. 12, pp. 8-22; and
vol. 3, no. 5, pp. 299-313.

Burroughs language

A MN z
A ,....., Z

0 1'¥.' 9

+

The multiplication sign may be
omitted in certain instances.
It is represented on card equipment
as a decimal point (.).

I

LSS
LEQ
EQL
GEQ
GTR
NEQ

E-1

E-2

BURROUGHS ALGEBRAIC COMPILER

1. BASIC SYMBOLS (continued)

b. Delimiters (continued)

(1) Operators (continued)

Logical -,

Sequential

(2) Separators

(3) Brackets

v

/\

(:>)
Logical implication - no
equivalent in the reference
language.

go to
(no equivalent)

do
return
stop
for

if
or
if either

or if
(no equivalent)

(not required)

10

begin
end
(

)

[
]

NOT
OR
AND
EQIV
IMPL

GOTO
SWITCH
(no equivalent)

RETURN
STOP

FOR
IF
OR
EITHER IF
OR IF
UNTIL

(space)
Spaces must be used to separate
contiguous identifiers or an identifier
followed by a constant. Spaces may
not be imbedded within an identifier
or a constant.

On standard keypunch equipment,
the semicolon is represented by $
(dollar sign).

=
(no equivalent)

(no equivalent)
Related to the DO statement
in the reference language.

** Power of 10.

BEGIN
END
(

)

(

)

TRANSLITERATION RULES

1. BASIC SYMBOLS (continued)

b. Delimiters (continued)

(3) Brackets (continued)

(4) Declarators

2. EXPRESSIONS

i
l

type

array

(no equivalent)
comment
procedure
(no equivalent)
(no equivalent)
(no equivalent)
(no equivalent)
(no equivalent)
switch

*(

)
(Parentheses may be omitted
in certain instances.)

INTEGER, BOOLEAN,
FLOATING, REAL
ARRAY

FUNCTION
COMMENT
PROCEDURE
SUBROUTINE
INPUT
OUTPUT
FORMAT
FINISH
(no equivalent)
See SWITCH statement.

Most expressions are self-evident, except those noted below:

a. Numbers

b. Simple Variables

c. Subscripted
Variables

d. Functions

e. Arithmetic
Expressions

f. Boolean
Expressions

3. STATEMENTS

a. Assignment

b. Go to

c. Switch

d. If

e. Until

G.G10 ±G g.g** ±g
G. g.o

.G o.g
lQG l**g

I 9'

I[C] 9'(e)

I(R) 9' (CR)

(See Arithmetic Operators, above.)

El*(E2)
(Parentheses may be omitted
in certain instances.)

(See Relational Operators, above.)

V :=E

go to D

(no equivalent)

if B

(no equivalent)

'U = 8

GO TOD

SWITCH 8, (m1, m2, ""''' mn)

IF <B

UNTIL e

E-3

BURROUGHS ALGEBRAIC COMPILER

3. STATEMENTS (continued)

f. For forV := C FOR V = e

for V := Ei1 FOR v = (8i1, 8s1, 8eJ

(E,J Eel, MN

g. Alternative if either Bi; EITHER IF CB1; S1; OR IF CB2;

~i; or if B2; ~END

~2; MN end EITHER IF CB1; S1; OR IF CB2; S2;
IVT'UVUUTTQV. c>
V.1..1..1..&.;;.1.l.TT.U.J.&.;;, CJn

h. Stop stop STOP

i. Return return RETURN

j. Procedure I(Pi, Pi, MN' Pi) 9(<Pi, <Pi, MN' <Pi;

=: (Po, Po, MN' Po) <PO' <P 0' MN ' <P 0 ;

<Pn <Pn MN' <Pr)

k. Subroutines (no equivalent) ENTER9

l. Do do L1, L (no equivalent)

cs~~ I, MN,

S~ ~I)

4. DECLARATIONS

a. Type type (I, I, MN' I) BOOLEAN 9, 9(,), 9 ...

INTEGER 9, '9(,), 9 ...

FLOATING 9, 9(,), 9 .. ;

REAL 9, 9(,), 9 ...

(no equivalent) (type) OTHERWISE

b. Array array (I, I, MN' ARRAY 9i (ei),

I[C:C'], I. I, MN)

(no equivalent) ARRAY 9; (~i) = (ei),

c. Furictions I(R) := E FUNCTION 9(ffi) = e
d. Comment comment S; COMMENTS;

e. Procedure procedure I (Pi) =: (Po), PROCEDURE 9(<Pi; <Po; <Pr);

I(Pi) c:: (Po), MNMNMN' BEGIN si END

I(Pi) =: (Po) A; A;

MN_, MN ; A begin ~; ~;

NVV NV./ N\N ; ~ ; Ll ; M'V NW NW ;

~;~end

f. Subroutines (no equivalent) SUBROUTINE 9; (Si)

g. Input (no equivalent) INPUT (9i (~£)i)

h. Output (no equivalent) OUTPUT (9i (~.c)i)

i. Format (no equivalent) FORMAT (9i (ff~oC)i)

j. Finish (no equivalent) FINISH

k. Diagnostic (no equivalent) MONITOR mt£

(no equivalent) TRACE:J£

(no equivalent) DUMP~£

E-"1

~

APPENDIX ~

construction o /
machine-language
programs

PROGRAMS WRITTEN IN MACHINE-LANGUAGE-whether
for use as external programs, as external state­

ments, or as library procedures-are prepared similarly,
and the techniques and conventions required for their
construction are listed below.

LINKAGE TO PROCEDURES

When the compiler provides linkage to any procedure,
the instructions assembled are of the form:

0000 STP aaaa
nnOO BUN aaaa

where aaaa is the location of the first cell of the proce­
dure and the value of nn is one less than the number of
parameters to be given to the procedure.

Since the address fields of both the STP and the BUN
instructions are the Rame, it is necessary that the first
instruction of the procedure be a NOP. This NOP is of
the form:

aaaa: bbbb NOP xxxx

where xxxx will be replaced when the STP instruction
is executed, and bbbb is the address in which the first
parameter is to be stored. Each succeeding parameter
will then be stored in descending sequence beginning
with the address bbbb.

The last parameter is always retained in the A register
and will not be placed in memory. In all cases if a pro­
cedure has only one parameter, it will be found in the
A register.

Suppose that Pi. P2, and ,,,, Pm are the addresses of
those parameters which are to be given to the proce­
dure. The compiler will in effect produce the following
coding when the procedure-call statement is encoun­
tered:

CODE REMARKS

0 0000 CAD P1
0 4400 DLB aaaa bbbb--+ rB
1 0000 STA 0000 Pi--+ bbbb
0 0000 CAD P2
1 0000 STA 9999 P2--+ bbbb - 1

O 0000 CAD P m-1

1 0000 STA 9999-m+2 Pm-1--+ bbbb -- m + 2
0 0000 CAD Pm Pm--+ rA
0 0000 STP aaaa
0 nnOO BUN aaaa (nn = m - 1)

Notice that the control field of the NOP instruction
which heads the procedure provides the address used
to determine the location in which to store parameters.

When constructing machine-language procedures, the
bbbb field may be either located within the procedure
code itself (the control field of an instruction may be re­
located-see Relocation Conventions) or it may be abso­
lute. The absolute addresses available for this purpose
are 0100 through 0199. A word of caution concerning the
use of any of these absolute addresses for bbbb is neces­
sary. The memory area 0100 through 0199 is used as a
buffer area by input-output procedures.

PARAMETERS OF PROCEDURES

As discussed in CHAPTER VII, parameters may be con­
sidered as being either values or identifiers. Input vari­
ables or expressions are values; the procedure thus re­
ceives the actual value of the variable or expression
given as a parameter. Output variables are identifiers.

F-1

BURROUGHS ALGEBRAIC COMPILER

When an output variable is indicated, the address of
that variable is given to the procedure in the 04-field.

All program-reference parameters are also identifiers;
the procedure receives, in the 04-field, the address of
the parameter to which reference is made.

In the case of arrays the situation is somewhat more
complex. Whenever an array is written as a parameter
(either as input or output) provision is made for several
parameters to be given to the procedure. This set of
parameters consists of a base address and values corres­
ponding to each empty subscript position, which we will
call m, µi~ µ2, ... , µk, respectively. The address of an
element A(ni, n2, ... , nk) is then given by

m + (((... (n1µ1 + n2)µ2 + na) •.• + nk)µk.

As an example, consider the three-dimensional array
M (, , 5, , 7) which is used as an argument for a given
procedure. The arguments supplied to this procedure
would be m, µi, µ2 and µ3. The procedure could then cal­
culate the address of the element M(ni, n2, 5, na, 7) by

m + ((n1µ1 + n2)µ2 + n3)µa.

It should be noted that µk represents the spacing be­
tween adjacent elements in a row of the array. In the
common case where all subscripts are empty, or in the
special case where all are specified except the rightmost
subscript, the value. of µk will be one. The programmer
may make use of this fact to eliminate the final multi­
plication if he can guarantee that his external program
will always be utilized with these restrictions. He must,
however, allow space in his parameter buff er area for
µk, since the compiler will always supply it.

EXAMPLE:

Suppose the declaration EXTERNAL PROCEDURE
M(A(,,), B) appeared in the symbolic program, and it
is necessary to refer to the element A(I,J,K,) from in­
side the external program. The following coding would
place the value of the required element in the A register:

LOCA­
TION

0000
0001

0035
0036
0037

F-2

OPERATION
AND

ADDRESS

7 0125 01 0000
8 0000 40 0121

8 0000 10 0126
8 0000 14 0124
8 0001 49 0010

REMARKS

NOP 0000
STAB

Parameter buff er is speci­
fied as cell 0125 relative
to this instruction.

CADI
MULµ1
SLT 10

0038 8 0000 12 0127 ADDJ
0039 8 0000 14 0123 MULµ2
0040 0 0001 49 0010 SLT 10
0041 8 0.000 12 0128 ADDK
0042 8 0000 14 0122 MULµa
0043 8 0410 40 0045 STR 0045
0044 8 0000 42 0125 LDBm
0045 1 0000 10 0000 CAD array element

0121 0 0000 00 0000 B
0122 0 0000 00 0000 µ3

0123 0 0000 00·0000 µ2

0124 0 0000 00 0000 µ1
0125 0 0000 00 0000 m base address of array A
0126 0 0000 00 0003 I
0127 0 0000 00 0007 J
0128 0 0000 00 0006 K

RELOCATION CONVENTIONS

All machine-language programs are written relative to
location 0000. The compiler will relocate the program so
that it occupies storage starting at some other cell. The
address of this cell is called the relocation base. This
relocation is controlled by the sign digit of the machine­
language commands.

Sign Digit of Zero, One, Two, or Three

Instructions with signs of zero, one, two, or three are
not altered in any way.

Sign Digit of Four

Instructions with a sign digit of four behave in a manner
analogous to pseudo-operation codes in an assembler.
The following pseudo-operations are allowed:

An instruction with a sign of four and an operation code
of 00 (sL=62) is used to reserve blocks of memory
relative to the beginning of the external program. The
location counter is advanced by the amount specified
in the address field of the pseudo-operation instruction.

If an instruction has a sign of four and an operation
code of 01, it means that the next instruction or word
will be an 11-digit constant.

An instruction with a sign of four and an operation code
of 02 indicates that the next instruction will be a
CARDATRON input-output instruction, and that the unit
designations should be changed by the library processor
to the correct ones specified by the system environment
statements of the generator. Thus if the next instruc­
tion is a CWR with a unit designation of l, it will be
changed to the unit specified for the CARD PUNCH; if the

CONSTRUCTION .OF MACHINE-LANGUAGE PROGRAMS

unit designation is 2, it will be changed to the unit
assigned to the printer.

A machine-language instruction with a sign of four and
an operation code of 03 enables the address field of the
next instruction to be modified by the addition of a
four-digit constant to the address field of the pseudo­
instruction. Whenever this pseudo-operation precedes
a machine instruction having a sign of five or six, the
four-digit constant will increase the address supplied
to the instruction through the use of an equivalence
card. As a result, it is possible to ref er to any location
relative to the address assigned to the identifier used in
the equivalence. .

An instruction with a sign of four and an operation code
of 04 permits the control field of the next instruction to
be relocated with respect to the first instruction of the
external program. It is commonly used to precede an
instruction which has a sign digit of five or six.

If the operation code is 30, the compiler will insert an
unconditional transfer to the statement immediately
following the declarator which defined the external
statement. This instruction is similar to the RETURN
operation of the symbolic language and may be used
any number of times within an external statement.

If the operation code is 99, the end of this machine­
language program is indicated.

Sign Digit of Five or Six

Instructions with a sign digit of five or six have their
address field located relative to some identifier defined
within the ALGOL program. The control field is unal­
tered. The sign is set to one if the original sign was five,
and to zero if it was six. (See Use of Equivalence Cards
in this appendix.)

Sign Digit of Seven

Instructions with a sign digit of seven have their control
field (sL=44) relocated with respect to the first instruc­
tion of this external program. The address field is not
altered and the sign of the instruction is set to zero.

An instruction with a sign of seven and an operation
code of 01 (NOP) is often used as the first instruction of
an external or library procedure when it is desired to
locate the parameters to the procedure within the
routine itself.

Sign Digit of Eight

Instructions with a sign digit of eight have their address
fields (sL=04) relocated with respect to the first in-

struction of this external program. The control field is
not altered and the sign of the instruction is set to zero.

Sign Digit of Nine

Instructions with a sign digit of nine have their address
fields relocated with respect to the first instruction of
this external program. The control field is not altered
and the sign of the instruction is set to one.

MAGNETIC-TAPE OPERATIONS

In order to allow the use of the MAGNETic-T APE FIELD
SEARCH (MFS) and MAGNETIC-TAPE FIELD ScAN
(MFC) commands, the following conventions have been
employed:

The pseudo-operation codes 90 and 91 have been intro­
duced for use by the programmer, when referring to the
MFS and MFC commai;ids, respectively.

If the address field of the field search or scan is to be
absolute, then the sign of the instruction must be four
or five.

If the address field is relative to the first line of the sub­
routine, the sign must be eight or nine.

If the address field is relative to some identifier, the
sign must be six or seven.

The signs of five, seven, and nine indicate B-modifica­
tion is to be performed.

USE OF EQUIVALENCE CARDS

It is possible in a machine-language program to refer to
any identifier defined within the symbolic program, as
well as to any library procedure. Every identifier to
which it is desired to refer is assigned a unique two­
digit equivalent, mm, by means of an equivalence card
preceding the machine-language deck. (See APPENDIX
G for the list of subroutine names.) This card has the
digit two in column l, an arbitrary number of spaces,
an identifier, an equal sign, and a two-digit number
(leading zeros may be omitted) which is assigned to the
identifier, e.g.:

COLUMNS

1
5-9

or·
1
7-19

CONTENTS

2
SIN=3

2
SUMSQUARES = 56

If the identifier is defined within a procedure, then it
must be preceded by a prefix which is the name of the pro­
cedure enclosed in parentheses. Thus the equivalence card

F-3

BURROUGHS ALGEBRAIC COMPILER

for label START within the procedure SIMPSON
might appear as:

COLUMNS

1
4-20

CONTENTS

2
(SIMPSON)START = 13

The address field of any instruction within a machine­
langua.ge program which has a sign of. five or six, i.e. :

m xxxx OP mm kk

will be replaced by the constant kk, plus the address of
the identifier corresponding to the equivalent mm.

For example, suppose that the instructions

6 0000 44 0300
6 0001 30 0301
5 0001 23 0341

are included within a machine-language program and
that the equivalence card with the following entries:

COLUMNS

1
4-8

CONTENTS

2
SIN=3

has preceded this program. Now assume that the compi­
ler has assigned the cells 2856 - 2904 to the SIN routine.
These instructions would then appear in the final pro­
gram as:

0 0000 44 2856
0 0001 30 2857
1 0001 23 2897

If the identifier used in the equivalence statement is
that of an array, special coding must be provided to
address an element within this array. The method as­
sumes that an array A has been defined previously by
the declaration:

If this is so, then the address of the element A(ni, n2,

... , nk) is given by m + (((... (n1 µ2 + n2)µa + na) ... +
nk-1)µk + nk. (Note that µ1 is not used in the calculation.)
It should be noted that this formula differs from that
given in Parameters of Procedures. When referring to an
array as declared, the elements are adjacent in memory;
in consequence, the fmal multiplication is eliminated.

To each array identifier the compiler assigns a value of
m, representing the base address of that array. This
address will then replace the equivalence number as­
signed to the identifier at the head of the external

F-4

program. Thus if the array G had been defined by the
declaration:

ARRAY G(l5, 4, 6)

and it is required to refer to the element G(ni. n2, n3)

from inside of an external program by means of an
equivalence statement, then the following special sec­
tion of coding must be included to place the value of the
element into the A register.

RELATIVE OPERATION

LOCATION AND ADDRESS REMARKS

0107 8 0000 10 0132 CAD n1
0108 8 0000 14 0130 MUL Jl2

0109 0 0001 49 0010 SLT 10
OHO 8 0000 12 0133 ADD n2
Olll 8 0000 14 0131 MUL µa
Oll2 0 0001 49 0010 SLT 10
Oll3 8 0000 12 0134 ADD na
0114 8 0000 40 0135 STA temp
0115 8 0000 42 0135 LDB temp
0116 5 0000 10 5900 - CAD m

0130 0 0000 00 0004 µ2
0131 0 0000 00 0006 µ3
0132 0 0000 00 (n1) n1
0133 0 0000 00 (n2) n2
0134 0 0000 00 (na) ll3
0135 0 0000 00 0000 temp

The external program making use of the above coding
must be preceded by an equivalence card with the
format:

COLUMNS

1
6-9

CONTENTS

2
G=59

DESCRIPTION OF NAME CARDS

A 'name' (or header) card must precede each external
program in order to relate it to the declaration in the
source program.

GENERAL FoRM:

d, 5=3

where fJ is an identifier declared to be the name of the
external procedure or statement;

5=3 is the function type, where an external procedure
defmes a value, and may be any one of the reserved

CONSTRUCTION OF MACHINE-LANGUAGE PROGRAMS

words FLOATING, REAL, BOOLEAN or INTE­
GER. If the external program is an EXTERNAL
statement, or an EXTERNAL procedure which does
not define a value, then the type designation 53 may
be omitted.

PREPARATION OF EXTERNAL PROGRAMS

As discussed in CHAPTER VII, it is necessary, when us­
ing external programs, to have an EXTERNAL declar­
ator in the body of the symbolic program. The defini­
tion of the program in BURROUGHS 220 machine­
language follows the FINISH declaration of the sym­
bolic program.

All the external programs declared in the symbolic
program follow one after the other. Following the
final external program, the word FINISH must appear
on another symbolic card. This defines the end of the
program (symbolic statements and machine-language)
to the compiler; it is in addition to the FINISH declara­
tion of the symbolic program.

Either cards or paper tape may be used for symbolic
input to the compiler. External programs that are
stored on paper tape, however, must be punched in a
format which is slightly different from that used for
cards. For this reason, a separate discussion of each of
the two alternatives follows.

Machine-Language Procedure Deck

An external program card deck may consist of three
parts: a name card, equivalence card (or cards) and the
machine-language instruction cards which define the
operation of the program.

First: THE NAME CARD

'Name' cards have a two in column 1, followed by the
name of the EXTERNAL statement or procedure, a
comma, and the type (if necessary).

Second: THE EQUIV AI,ENCE CARDS

'Equivalence' cards have a two in column 1, an identi­
fier, an equal sign, and two digits. These cards are used
only when necessary to refer explicitly to other identi­
fiers in the program.

Third: THE INSTRUCTION CARD

'Instruction' cards define the program in machine lan­
guage, and have the following format:

COLUMNS CARD ENTRY

1- 2 60
3 The number of instructions on this card
4 - 10 ,A ... ny identification, serial numbers, etc., that

the user desires
11 - 14 These columns are either blank or contain

the relative location of the first instruction
on this card

15 - 25 · The first instruction
26 - 36 The second instruction
37 - 4 7 The third instruction
48 - 58 The fourth instruction
59 - 69 The fifth instruction
70 - 80 The sixth instruction

As many of these cards as required are used. The final
card of this program must have as its last instruction the
FINISH pseudo-operation code: 4 0000 99 0000.

EXAMPLE:

Suppose we wish to define a procedure to detect an over­
flow condition. In the symbolic deck, prior to the use of
this procedure, we would have the declaration:

EXTERNAL PROCEDURE OVERFLOW (; ; L)

Following the FINISH declaration of the symbolic pro­
gram, the following deck would appear:

CARD
NO.

1
2

3

EXAMPLE:

2
606

2

ENTRIES

OVERFLOW
0 0000 00 0000 0 0000 01 9999

8 0410 40 0002
0 0000 31 9999
8 0000 42 0000
1 0000 30 0000
4 0000 99 0000

FINISH

Suppose that an external procedure is to be defined for
the complex multiplication:

(A + iB)(C + iD) ~ (X + iY)

In the symbolic program, the following declaration
would appear:

EXTERNAL PROCEDURE CMPMULT(A, 8, C, D; X, Y); REAL
CMPMULT;

After the FINISH declaration of the symbolic program
would be the following deck:

F-5

BURROUGHS ALGEBRAIC COMPILER

CARD
NO. ENTRIES

1 2 CMPMULT, REAL
2 606 0 0000 01 0000 7 0024 01 9999

8 0410 40 0017
8 0000 41 0020
8 0411 40 0010
8 0000 10 0024
8 0000 24 0022

3 606 (I (1(1(1(1 (I') IJ(l(lf\ 8 0000 40 0020 v vvvv v-)'"''-''-'

8 0000 11 0023
8 0000 24 0021
8 0000 22 0020
0 0000 40 9999
8 0000 10 0024

4 606 0 0000 03 0012 8 0000 24 0021
8 0000 40 0020
8 0000 10 0023
8 0000 24 0022
8 0000 22 0020
000000 40 9999

5 604 0 0000 04 0018 8 0000 42 0000
1 0000 30 0000
4 0000 00 0005
4 0000 99 0000

EXAMPLE:

Suppose that an external procedure which will allow
keyboard input of a single item of data is to be defined.
The declaration

EXTERNAL PROCEDURE KEYIN (; X)

appears in the symbolic program. The card deck which
follows the FINISH declaration in the symbolic pro-
gram would be:

CARD
NO. ENTRIES

1 2 KEY IN
2 606 0 0000 01 0000 0 0000 01 9999

8 0410 40 0004
0 0007 45 0000
0 0000 08 0000
0 0000 40 9999
8 0000 42 0000

3 602 0 0000 02 0006 1 0000 30 0000
,i 0000 99 0000

4 2 FINISH

EXAMPLE:

If it is desired to use the keyboard to enter a variable
ALPHA, an external statement can be written for this
purpose. The external statement is a special case of the
external procedure, in which the parameter list is empty.

F-6

In the symbolic program the declaration

EXTERNAL STATEMENT KEYIN

would appear. Following the FINISH declaration would
be the deck:

CARD
NO.

1
2
3

ENTRIES

2 KEY IN
2 ALPHA=33
605 0 0000 00 0000 0 0007 45 0000

0 0000 08 0000
6 0000 40 3300
4 0000 30 0000
4 0000 99 0000

External Procedures on Paper Tape

External programs are stored on paper tape in 14-word
blocks. The tape is constructed in essentially the same
manner as that of a machine-language procedure deck;
the only exception is that the machine-language in­
structions are packed in a different format. The paper
tape must be prepared in the following sequence:

First: THE NAME BLOCK

The header block assumes the same form as that de­
scribed under Machine-Language Procedure Deck, dis­
cussed previously in this appendix. The 22-field of the
first word of this block will not be scanned. A sufficient
number of blank words must be inserted after the per­
tinent information to complete the block.

Second: THE EQUIV ALEN CE BLOCKS

These blocks are used only when it is necessary to refer
explicitly to other identifiers in the symbolic program,
or to other external or library procedures incorporated
in the program. The 22-field of the first word of these
blocks will not be scanned. Each equivalence statement
must have its own unique block of 14 words.

Third: THE INSTRUCTION BLOCKS

'Instruction' blocks of 14 words define the operation of
the external program, and may contain a maximum
of 13 machine instructions and pseudo-operation
codes. Indicated in the 02 field of the first word of each
block is the number of instructions contained in that
block. The sign of the first word must be a,zero. The
final block of every external program must have the
FINISH pseudo-operation code 4 iiii 99 iiii as its last
instruction, where iiii is irrelevant.

External programs are prepared for paper tape in
virtually the same manner as for those punched on
cards. The only exception is that the information in
columns 1-14 has been deleted in the instruction blocks.

CONSTRUCTION OF MACHINE-LANGUAGE PROGRAMS

EXAMPLE:

Consider the example on complex multiplication given
earlier in this appendix. To prepare this procedure for
paper tape, it would now have to be rearranged into
the following format:

BLOCK
NO. ENTRIES REMARKS

1 2 CMPMULT, REAL
2 0 0000 00 0013 Number of instructions

in this block.

3

7 0024 01 9999
8 0410 40 0017
8 0000 41 0020
8 0411 40 0010
8 0000 10 0024
8 0000 24 0022
8 0000 40 0020
8 0000 11 0023
8 0000 24 0021
8 0000 22 0020
0 0000 40 9999
8 0000 10 0024
8 0000 24 0021
0 0000 00 0009

8 0000 40 0020
8 0000 10 0023
8 0000 24 0022
8 0000 22 0020
0 0000 40 9999
8 0000 42 0000
1 0000 30 0000
4 0000 00 0005
4 0000 99 0000

LIBRARY PROCEDURES

Number of instructions
in this block.

Library procedure decks are prepared in a manner simi­
lar to that used for the preparation of external proce­
dures, with the possible exception of the name card. In
addition to the header cards described previously in
this appendix (see Description of Name Cards), another
form exists which is applicable only in the case· of
library procedures.

GENERAL Foru1:

9, ~3, (f,3

where§ and ~3 have the same meaning as explained in
Description of Name Cards, and <t3 is the argument type.
Library procedures which act as functions of a single
argument may specify the type of this argument. Con­
version of this type is performed before the program is
entered. If the type of the argument is not specified; no
such conversion will take place.

EXAMPLE:

The header card of a procedure in the library reads:

FLOAT, REAL (INTEGER)

If X is FLOATING and the expression FLOAT(X)
appears in the symbolic program, then the expression
will now be equivalent to FLOAT(FIX(X)), since the
argument type of FLOAT ()must be INTEGER.

Following the final library deck is again a card with the
word FINISH. The method of loading these decks onto
the tape is discussed in APPENDIX B, Compiler Operating
Instructions.

EXAMPLE:

A possible library procedure for the inverse-cosine func­
tion is reproduced here as an example. This procedure
uses the relation:

arccos x = arcsin (- x) + i"

A reference must be made to the ARCSIN procedure.
We shall assume also that cell 0047, relative to the
ARCSIN procedure, is available for temporary storage
and that cell 0033 contains the constant 7r /2.

CARD
NO. ENTRIES

1 2 ARCCOS, REAL
2 2 ARCSIN=21
3 606 0 0000 01 0000 0 0000 01 9999

6 0000 40 2147
6 0000 11 2147
6 0000 44 2100
6 0000 30 2100
6 0000 22 2133

4 603 0 0000 02 0006 8 0000 42 0000
1 0000 30 0000
4 0000 99 0000

THE ERROR-MESSAGE PROCEDURE

The error-message procedure controls the printing of
the f-ollowing types of error indication on the LINE
PRINTER:

RESULT OUT OF RANGE IN CP-£(nnnn)

RESULT UNDEFINED FOR CP - £(nnnn)

RESULT ILL-DEFINED FOR cs> - £(nnnn)

ARITHMETIC OVERFLOW - £(nnnn)

where (P is the label of the procedure which caused the
printing. If a MONITOR THACE, or DUMP declara­
tion has been given, £(nnnn) will also be printed, where

F-7

BURROUGHS ALGEBRAIC COMPILER

£ is the first five characters of the label of the last
labeled statement which has been executed, and nnnn
is the number of times this statement has been executed.

Any machine-language program may use this procedure
to give error indications, provided the following con­
ventions are adhered to:

The name <Pis in the R register, in alphanumeric form,
upon entrance to the error message procedure. (In the
case of arithmetic overflow, <P is ignored.)

Upon entrance, the exit line is in the B register.

Control is transferred to locations 0000, 0007, 0014, or
0021, relative to the beginning address of the error­
message procedure, to cause printing of any of the error
indications listed above in their respective order.

EXAMPLE:

To illustrate the use of the error-messa,ge procedure,
consider the library procedure ARCCOS. The relation

cos-1 x = ~ - sin-1 x
2

is used for calculation and hence an entry must be made
to the ARCSIN routine. Also, since cos-1 xis undefined
for I x I > l, an entry must be provided to the error­
message procedure.

CARD
NO. ENTRIES REMARKS

1 2 ARCCOS, REAL
2 2 ARCSIN=l
3 2 ERR0R=l3
4 606 0 0000 01 0000 0 0000 01 0000

8 0010 18 0012
8 0000 42 0000 Load B with

exit line
8 0000 41 0013 Load R with

name 'ACOS'
6 0000 34 1311 If! .r I > 1,

print undefined
error message

8 0000 40 0015
5 606 0 0000 02 0006 8 0000 11 0015

6 0000 44 0100 Get sin-1 (-.r).
6 0000 30 0101
8 0000 22 0014
8 0000 42 0000
1 0000 30 0000 Exit

6 605 0 0000 03 0012 0 5110 00 0000 1.0
2 4143 56 6200 'ACOS'
0 5115 70 7963 7r/2
0 0000 00 0000 Temporary

storage
4 0000 99 0000 End of

procedure

INPUT-OUTPUT PROCEDURES

The compiler system utilizes closed input-output rou­
tines for the transmittal of information to and from the
computer. For the purpose of clarification, these proce­
dures are divided into two categories, which correspond
to the phase in which they are used.

F-8

Compilation Phase

Two machine-language procedures that form an integral
part of the compiler are employed during compilation
time. The function of the first procedure is to read the
symbolic source statements; the other furnishes a listing
of the source language, together with any error messages.

The compiler program is linked to the INPUTMEDIA
procedure by the following pair of instructions:

STP aaaa

bbbb BUN aaaa

where aaaa is the address of the first instruction of the
procedure, and bbbb is the address of the first word of a
16-word input buffer.

The OUTPUTMEDIA procedure is linked by a pair
of instructions :

nncf STP aaaa

bbbb BUN aaaa

where nn is the number of words to be displayed on the
output device; c specifies the digit to be used for printer
control, and is to be interpreted according to the acti­
vation phrase list given in CHAPTER VIII; f is the digit
which specifies the format band; aaaa is the address of
the first instruction of the procedure; and bbbb is the
address of the output buffer.

The f digit determines the type of output requested by
the compiler.

f DIGIT
FORMAT

TYPE OF OUTPUT
BAND

ALGOL Statements 2 2

Error Messages 6 4

Machine Instructions 0 1

Forward References 4 3

Fix-up (see Chapter X, 8 5
Object Program Listing)

With the exception of the sign digits, input and output
procedures both are written in accordance with the con­
ventions established for external programs, discussed
previously in this appendix. The special sign digits
given below are used by the BAC-220 generator program
to control relocation of the input and output procedures
used at compile time.

Sign Digits of Zero through Five

Instructions with signs of zero, one, two, three, four, or
five are not altered in any way.

CONSTRUCTION OF MACHINE-LANGUAGE PROGRAMS

Sign Digits of Six and Seven

An instruction with a sign digit of six or seven has its
control field (sL=44) and its address field (sL=04) re­
located with respect to the first instruction of the input­
output procedure. The sign is set to one if the original
sign was seven, and to zero if it was six.

Sign Digit of Eight or Nine

An instruction with a sign digit of eight or nine has its
address field (sL=04) relocated with respect to the first
instruction of the program. The control field remains
unaltered. The sign is set to zero if the original sign was
eight, and to one if it was nine.

Each card of an input-output procedure deck will con­
tain one instruction punched in columns 37-47 inclusive
and a six in column 1. The remainder of the card may
he used for whatever purposes the programmer desires,
e.g., remarks or sequence numbers. Directions for inte­
grating these procedures with the compiler program are
given in APPENDIX A.

A maximum combined storage of 200 locations is avail­
able for special input and output procedures. Neither
of these procedures may exceed 150 instructions in
length.

EXAMPLE:

The coding of the standard CARDATRON output proce­
dure consists of the following:

RELATIVE
LOCATION CODE REMARKS

0000 0 0000 NOP 0000
0001 8 0000 LDB 0000 exit line
0002 8 0412 STB 0012
0003 1 0000 CAD 9999 address of output

buffers
0004 0 0000 SRA 0006
0005 8 0410 STA 0011
0006 1 0000 CAD 9998 nncf
0007 8 4210 STA 0011
0008 0 0000 SRA 0008
0009 0 0000 SUB ONE integer constant 1
0010 8 0000 ADL 0001
0011 0 2009 CWR 0000
0012 0 0000 BUN 0000

Execute Phase

The input-output media may he altered by replacing
the standard CARDATRON REED and RITE procedures
in the library, as described in APPENDIX A. The linkage
to the REED is located inside the READ procedure,
and is identical to that used for input at compilation

time. Calls on the RITE procedure are contained in the
WRITE, MONITOR, and ERROR procedures, as well
as in the symbolic dump routine. The linkage employed
;" nf tho fn-rm rlo"""";horl fn-r OTTTPTTTM"RnT A. {.;;:.pp.
£'-:1 '-1'.L '-1..1...l.V .L'-J..L..1...1..L '-4.VUV.A..A..._,V~ .A.'-J.L_,'-"..a. .a.. .._., ..L .. ,.....__..__..._,. _._..._ 'V"-''-"

Compilation Phase in this appendix). The f digit in the
control field (sL=44) of the STP command determines
the type of information to he transmitted.

FORMAT
TYPE OF OUTPUT f DIGIT BAND

Headings, Resu1ts and 8 5
Symbolic Dumps

Monitoring 4 3

Error Messages 6 4

It may be necessary in certain applications to read and
punch cards which have a fixed format. In such cases,
external programs for specialized forms of input and
output often will he employed in place of the conven­
tional READ and WRITE procedures.

It is necessary in these instances to describe the coding
produced by the compiler when an INPUT, OUTPUT,
or FORMAT declaration is given.

The prime function of the program produced from either
an INPUT or OUTPUT declaration is to form a link
between those quantities which have been determined
at compilation time (i.e., the addresses representing ar­
rays, variables, expressions, etc.) and those quantities
which are known only when the compiled program is
executed (i.e., quantities either to be read from, or writ­
ten on, various input or output media). The programs
thus must be produced without reference to the routines
which will use them.

When the name of an INPUT or OUTPUT declaration
is given to a procedure (either a library procedure such
as READ or WRITE, or some EXTERNAL procedure)
it is in the program-reference field, and thus an address
can he assigned to it. It is to t~is address that the input
or output program will refer to determine an 'exit' ad­
dress to which the program may transfer control. The
input-output program, in turn, leaves its own return
address in the B register. The A register is used to trans­
mit the actual data. An OUTPUT declaration will put
data to be transmitted to output media in the A regis­
ter. An INPUT declaration will store data from the A
register.

\Vhen all the relevant data have been transmitted-the
input-output string having been exhausted-the sign of
the A register will be loaded with the digit nine, which
serves as a termination flag. 1Vote that no information
should be transmitted until an entry has been made ta-.the

F-9

BURROUGHS ALGEBRAIC COMPILER

INPUT or OUTPUT decwration. If these strings were
vacuous, the A register· would be loaded immediately
with the termination flag, but it is necessary to enter
the routine to obtain this information.

Some examples should make this clearer. Suppose we
have the following INPUT declaration:

INPUT DATA (A, I, 0(1), 8)

Let us assume that the variables A, I, O(I), and B have
been assigned cells 3701, 3702, 2008 + I, and 3703, re­
spectively, and that the coding generated by the com­
piler for this INPUT declaration starts at cell 0956.

LOCA- OPERA-

TION TION ADDRESS REMARKS

0956 0 0000 30 0000
0957 0 0000 42 0957 first entry
0958 0 0002 20 0956
0959 0 0000 40 3701 second entry (A)
0960 0 0000 42 0960
0961 0 0002 20 0956
0962 0 0000 40 3702 third entry (I)
0963 0 0000 42 0963
0964 0 0002 20 0956
0965 0 0000 42 3702 fourth entry (0(1))
0966 1 0000 40 2008
0967 0 0000 42 0967
0968 0 0902 20 0956
0969 0 0000 40 3703 fifth entry (B)
0970 0 0009 43 0000 termination flag
0971 0 0000 30 0956

The following is a keyboard-input external procedure
which could use this INPUT declaration.

The procedure-call in the symbolic program would be:

KEYIN (; ; DATA)

Thus only one parameter (in rA) is supplied to the ex-
ternal procedure. This parameter is the address of the
input string DATA. In this particular case rA would
contain 0 0000 01 0956.

CARD

NO. ENTRIES

1 2 KEY IN
2 606 0 0000 01 0000 0 0000 01 0000

8 0410 40 0004
8 0410 40 0005
8 0401 26 0005
0 0000 44 9999
0 0000 30 9999

3 606 0 0000 02 0006 8 0009 33 0011

F-10

CARD

NO. ENTRIES

8 0412 40 0005
0 0001 45 0000
0 0000 08 0000
8 0000 30 0005
8 0000 42 0000

4 602 0 0000 03 0012 1 0000 30 0000
4 0000 99 0000

As an example of an OUTPUT declaration consider the
statement:

OUTPUT DATB (A, I, X(I), 8 + A*2)

Assume that the compiler has assigned the cells 3095,
3096, 3097, and 2106 + I to the variables A, I, B, and
X(I), respectively, and that the coding for this output
statement starts at 1159.

The coding would then appear as:

LOCA- OPERA-

TION TION ADDRESS REMARKS

1159 0 0000 30 0000
1160 0 0000 10 3095 first entry (A)
1161 0 0000 42 1161
1162 0 0002 20 1159
1163 0 0000 10 3096 second entry (I)
1164 0 0000 42 1164
1165 0 0002 20 1159
1166 0 0000 42 3096 third entry (X(I))
1167 1 0000 10 2106
1168 0 0000 42 1168
1169 0 0002 20 1159
1170 0 0000 10 3095 fourth entry

(B + A*2)
1171 0 0000 24 3095
1172 0 0000 22 3097
1173 0 0000 42 1173
1174 0 0002 20 1159
1175 0 0009 43 0000 fifth entry
1176 0 0000 30 1159 termination signal

The following describes an external procedure which
uses this declarator, and which will transmit the infor-
mation to the SUPERVISORY PRINTER as output (in in-
teger format).

The symbolic procedure-call might be, for example:

SPO (; ; DATB)

Thus only one parameter (in rA) would be supplied to
the external procedure. This parameter is the address of
the output string DA TB and, in this particular case,
would be 0 0000 00 1159.

CONSTRUCTION OF MACHINE-LANGUAGE PROGRAMS

CARD

NO. ENTRIES

1 2 SPO
2 606 0 0000 01 0000 0 0000 01 0000

8 0410 40 0004
8 0000 42 0004
8 9999 21 0004
0 0000 44 0000
1 0000 30 0000

3 606 0 0000 02 0006 8 0009 33 0010
8 0000 40 0012
8 0010 09 0012
8 0000 30 0004
8 0000 42 0000
1 0000 30 0000

4 602 0 0000 03 0012 4 0000 00 0001
4 0000 99 0000

THE FORMAT DECLARATION

The compiler does not produce a program for a FOR­
MAT declaration. It does a certain amount of pre­
processing of the format-data list, and inserts it into
the program. This preprocessing consists mainly of
breaking the list up into computer words, grouped
according to the format data-list elements. The sign of
the word determines the type of the associated element.

PHRASE FORMAT

a
nnna

awww
nnnawww

awww.dd
nnnawww.dd

WORD FORMAT

0 nnn a www dd

where u is any aiphabetic character represented in in­
ternal machine code, nnn is a three-digit numeric field,
www is a three-digit numeric field, and dd is a two-digit
numeric field.

(
nnn (

1 000 000 aaaa
1 000 nnn aaaa

This word corresponds to a parenthesis pair. The word

appears in the element list at a point corresponding to
the right parenthesis. The digits nnn are the repeat digits
preceding the corresponding left parenthesis. (A zero
implies an indefinite repeat.) The address of the word
corresponding to the element following the left paren­
thesis is aaaa.

2aaaaa

This word corresponds to five characters of a format
string lying between asterisks.

3aaaaa

This is the termination of a format string. One of the
ct's will be an* (internal machine code: 14) showing the
exact point of termination of the string. Spaces not
within a format string are ignored.

Consider the FORMAT declaration:

FORMAT F(5F14.8, *F(X) = *, 2(3A13, 15), WO, (5110, P))

and assume that the compiler assigns the cell 1894 to
the first element in F. The following would then be pro­
duced. (The symbol # is used here to indicate a space.)

ADDRESS ELEMENT REMARKS

1894 0 005 46 014 08 5Fl4.8
1895 2 14 46 24 67 04 *F(X)
1896 3 00 33 00 14 00 #=#*
1897 0 003 41 013 00 3Al3
1898 0 000 49 005 00 15
1899 1 000 0-02 1897 2(
1900 0 000 66 000 00 WO
1901 0 005 49 010 00 5Il0
1902 0 000 57 000 00 p
1903 1 000 000 1901 (5Il0)
1904 1 000 000 .1894 F()

Although there is a well-defined interpretation of these
elements as far as the WRITEprocedure is concerned,
the programmer is at liberty to employ these elements in
an external program, which will interpret them in any
way desired.

F-11

APPENDIX G

library procedures

JN ORDER TO MAKE ALTERATIONS to the library proce-
dures listed below, or to incorporate additional pro­

cedures in the library, it is necessary to follow the in­
structions given in APPENDIX B. Maintaining the library
in this manner requires that the user be in possession
of both the BAC-220 Generator Tape and the appro-

priate library-procedure _decks. The preparation of the
latter is discussed in APPENDIX F.

A description of these library procedures is given in the
following pages, preceded by a specimen page showing
the format of these descriptions.

The compiler tape contains the following library of standard procedures:

LIBRARY
PROCEDURE NAME

FLOAT
FIX
READ
WRITE
ERROR
SQRT
EXP
LOG
FX*FX
FL*FX
FL*FL
FX*FL
SIN
cos
TAN
ARCS IN
ARCCOS
ARCTAN
ROMXX
ENTIRE
LABEL

MONIT
TRACE
SINH
COSH
TANH

~~~~} 

DESCRIPTION 

Converts an integer to a floating-point number. 
Truncates a floating-point number to an integer. 
Input 
Output 
Library error-message procedure (see APPENDIX F). 
Square-root function 
ex 
ln x 

Power routines 

sin x 
cos x 
tan x 
sin-1 x 
cos-1 x 
tan-1 x 
(1 - x2)1/2 
Greatest integer [x] 
Library procedure employed for minimum monitoring (see 
CHAPTER X). 
Library monitor procedure (see CHAPTER X). 
Controls symbolic memory dump action (see CHAPTER X). 
sinh x 
cosh x 
hmhx 

Special input-output procedures (see APPENDIX F). 

G-1 



(NAME) 

FORM 

ARGUMENT 

RESULT 

DESCRIPTION 

ACCURACY 

ER.~OR MESSAGE 

ExTERNAL UsE 

REMARKS 

G-2 

BURROUGHS ALGEBRAIC COMPILER 

The generic form used by the programmer in his source pro­
gram, the italicized letters indicating the input arguments 
for the procedures. 

Specifies the type of argument required for the procedure. 

Defines the type of result produced by the procedure. 

Outlines the operation carried out by the procedure. 

Self-explanatory 

Lists all error. messages which will be printed out for the 
given procedure. 

This is shown as fae error message itself, followed by two 
blank columns, a hyphen, the first ten characters of .C (the 
label of the last labeled statement which has been executed), 
and (nnnn), the number of times this statement has been 
executed. 

If no MONITOR statement precedes the program, or. no 
labeled statement has been executed, blank columns will 
appear in place of£ and (nnnn). 

Explains conditions to be met in order to use these proce­
dures with external machine-language procedures. The name 
given here is to be used on equivalence cards in external 
programs. (See APPENDIX F.) 

Self-explanatory 



FoRM 

ARGUMENT 

RESULT 

DESCRIPTION 

ACCURACY 

ERROR MESSAGE 

EXTERNAL UsE 

REMARKS 

LIBRARY PROCEDURES 

FLOAT 

FLOAT (x) 

xis integral. 

FLOAT (x) is floating-point. 

Converts the argument x into its corresponding floating­
point form, as defined under AccURACY. 

Exact for I x I < 108, otherwise the result is truncated to 
eight significant digits. 

None 

xis in rA. On entry to the procedure, the exit from the sub­
routine must be stored in the 04 field of the first line of the 
procedure. Result of the procedure FLOAT (x) is in rA. Use 
FLOAT on equivalence cards. 

G-3 



FIX 

FORM 

ARGUMENT 

RESULT 

DESCRIPTION 

ACCURACY 

ERROR MESSAGE 

EXTERN AL u SE 

REMARKS 

G--1 

BURROUGHS ALGEBRAIC COMPILER 

FIX (x) 

x is floating-point. 

FIX (x) is integral. 

Truncates the argument x into its corresponding integral 
form. Any fractional part is lost. 

RESULT OUT OF RANGE IN FIX -£(nnnn) 
This print-out will result if I x I 2:: 1010 

xis in rA. Use FIX on equivalence cards. 



FORMS 

ARGUMENTS 

RESULT 

DESCRIPTIONS 

ACCURACY 

LIBRARY PROCEDURES 

WRITE 
First form: 
WRITE (; OUTDEC, FRMTDEC). 

Second form: 
WRITE ( ; ; FRMTDEC) 

OUTDEC is an identifier declared to be the label of an 
output-data list. FRMTDEC is an identifier declared to be 
the label of a format-data list. 

First form: 
Print or punch the output~data list OUTDEC as output on 
the LINE PRINTER, the CARD PUNCH, or the SUPERVISORY 
PRINTER according to the format FRMTDEC. 

&condform: 
Print or punch messages as output on the LINE PRINTER, the 
CARD PUNCH, or the SlJPERVISORY PRINTER as given by the 
format FRMTDEC. 

ERROR MESSAGE None 

CALLING SEQUENCE First form: 

0 0000 
0 0100 

CAD 
DLB 

STA 
CAD 
STP 
BUN 

Second form: 
CAD 
STP 

0 0000 BUN 

(Address of OUTDEC) 
WRITEsL = 44 

nn = 00 
-0 

(Address of FRMTDEC) 
WRITE 
WRITE 

(Address ofFRMTDEC) 
WRITE 
WRITE 

REMARKS For further details, see CHAPTER VIII and APPENDIX F. 

G-5 



0 ,..-
u-0 

READ 

FORMS 

ARGUMENTS 

RESULT 

DEFINITIONS 

A cc URA CY 

BURROUGHS ALGEBRAIC COMPILER 

First form: 
READ ( ; ; INDEC) 
Second form: 
READ (; s; INDEC) 

IND EC is an identifier declared to be the label of an input­
data list. 

S is a Boolean variable. 

First form: 
Read in the input-data list IND EC from the CARD READER. 

Second form: 
Same as the first form, but in addition, if the word SENTI­
NEL is encountered (other than in an alphanumeric entry), 
terminate the input process and set S to one. If not, set 
S to zero. 

ERROR MESSAGE None 

CALLING SEQUENCE First form: 
CAD 
STP 

O 0000 BUN 

Second form: 

0 0100 

CAD 
DLB 

STA 
CAD 
STP 
BUN 

(Address of INDEC) 
READ 
READ 

(Address of S) 
READ, sL = 44 

nn = 00 
-0 

(Address of INDEC) 
READ 
READ 

REMARKS For further details, see CHAPTER VIII arid APPENDIX F. 



FORM 

ARGUMENT 

DESCRIPTION 

ACCURACY 

ERROR MESSAGE 

EXTERNAL UsE 

RE~fARKS 

LIBRARY PROCEDURES 

SQRT 
SQRT (x) 

x is floating-point. 

SQRT (x) is the square root of x. 

The maximum error is 2 in the eighth significant digit. 

RESULT UNDEFINED FOR SQRT -£(nnnn) 
This printout will result if \x\ < 0. 

xis in rA. Use SQRT on equivalence cards. 

G-7 



BURROUGHS ALGEBRAIC COMPILER 

EXP 

ARGUMENT 

RESULT 

DESCRIPTION 

ACCURACY 

ERROR MESSAGE 

ExTERNAL UsE 

REMARKS 

RXP (x) 

x is floating-point. 

EXP (x) is floating-point. 

EXP (x) computes the exponential function ex. 

Let e be the error in the eighth significant digit, then 
for lxl < 100, e ~ 3; 
for 100 ~ lxl < 112.82666, e ~ 6. 

RESULT OUT OF RANGE IN EXP -£(nnnn) 
This printout will result if I xi ~ 112.82666. 

xis in rA. Use EXP on equivalence cards. 



FORM 

ARGUMENT 

RESULT 

DESCRIPTION 

ACCURACY 

ERROR MESSAGE 

EXTERNAL UsE 

REMARKS 

LIBRARY PROCEDURES 

LOG 

LOG (x) 

x is floating-point. 

LOG (x) is floating-point. 

LOG (x) is the natural logarithm, In x. 

The maximum error is 9 in the eighth significant digit 

RESULT UNDEFINED FOR LOG -£(nnnn) 
This printout will result if x :::; 0. 

xis in rA. Use LOG on equivalence cards. 

G-9 



G-10 

POWER 
ROUTINE 

FLFL 
FORM 

ARGUMENTS 

RESULT 

DESCRIPTION 

ACCURACY 

ERROR MESSAGES 

EXTERNAL USE 

REMARKS 

BURROUGHS ALGEBRAIC COMPILER 

A*B 

A is floating-point; Bis floating-point. 

The result, AB, is floating-point. 

The error is, in general, less than 8 in the eighth significant 
digit. However, since the error is a function of the magnitude 
of AB, the maximum error is 3 in the sixth significant digit. 

RESULT OUT OF RANGE IN FLFL -£(nnnn) 
This printout will result if JA BJ > 0.99999999 x 1049 • 

RESULT UNDEFINED FOR FLFL -£(nnnn) 

This printout will result if A = 0 and B ::; 0, or if A < 0 
and B is non-integral. 

A is in rA; Bis in rR. Use FL*FL on equivalence cards. 

This routine is automatically included in the compiled pro­
gram as. required. It is never caUed explicitly as a procedure. 

Note that the error messages for this routine are identical 
to those which can occur in the power routine FXFL. 



FORM 

ARGUMENTS 

RESULT 

DESCRIPTION 

ACCURACY 

ERROR MESSAGES 

ExTERNAL UsE 

REMARKS 

LIBRARY PROCEDURES 

A*B 

A is floating-point; B is integral. 

The result, AB, is floating-point. 

POWER 

ROUTINE 

FLFX 

The result, AB, has a maximum error of log2 B in the eighth 
significant digit. 

RESULT OUT OF RANGE IN FLFX -£(nnnn) 
This printout will result if IA Bl > 0.99999999 x 1049• 

RESULT UNDEFINED FOR FLFX -£(nnnn) 
This printout will result if A = 0 and B ~ 0. 

A is in rA; B is in rR. Use FL*FX on equivalence cards. 

This routine is automatically included in the compiled pro­
gram as required. It is never called explicitly as a procedure. 

G-11 



G-12 

POWER 

ROUTINE 

FXFL 
FoRM 

ARGUMENTS 

RESULT 

DESCRIPTION 

ACCURACY 

ERROR MESSAGES 

EXTERNAL UsE 

REMARKS 

BURROUGHS ALGEBRAIC COMPILER 

A*B 

A is integral; B is floating-point. 

The result, AB, is floating-point. 

The error is, in general, less than 8 in the eighth significant 
digit. However, since the error is a function of the magnitude 
of AB, the maximum error is 3 in the sixth significant digit. 

RESULT OUT OF RANGE IN FLFL -£(nnnn) 
This printout will result if IA Bl > 0.99999999 X 1049

• 

RESULT UNDEFINED FOR FLFL -£(nnnn) 
This printout will result if A = 0 and B ~ 0, 
or if A < 0 and B is non-integral. 

A is in r A; B is in r R Use FX *FL on equivalence cards. 

This routine is automatically included in the compiled pro­
gram as required. It is never called explicitly as a procedure. 

Note that the name of the power routine FLFL occurs in­
correctly in the error messages for this routine. 



FORM 

ARGUMENTS 

RESULT 

DESCRIPTION 

ACCURACY 

Elm.on MESSAGES 

ExTERNAL UsE 

REMARKS 

LIBRARY PROCEDURES 

A*B 

A and B are integers. 

POWER 
ROUTINE 

FXFX 

The result, AB, is an integer. If A F- 0or1, and B < 0, then 
the result is the integer 0. 

The result is exact. 

RESULT OUT OF RANGE IN FXFX -£(nnnn) 
This printout will result if IA Bl ~ 1010• 

RESULT UNDEFINED FOR FXFX -£(nnnn) 
This printout will result if A = 0 and B ~ 0. 

A is in rA; Bis in rR. Use FX*FX on equivalence cards. 

This routine is automatically included in the compiled pro­
gram as required. It is never called explicitly as a procedure. 

G-13 



SIN 

FoR~r 

ARGUMENT 

RESULT 

DESCRIPTION 

ACCURACY 

ERROR MESSAGE 

EXTERNAL UsE 

REMARKS 

G-14 

BURROUGHS ALGEBRAIC COMPILER 

SIN (x) 

x is in radians, and is floating-point. 

SIN (x) is floating-point. 

SIN (x) computes the sine function. 

The maximum error is 2 in the eighth significant digit. 

RESULT ILL-DEFINED FOR SIN -£(nnnn) 
This printout will result if I x I ~ 107 radians. 

xis in rA. Use SIN on equivalence cards. 



FORM 

ARGUMENT 

RESULT 

DESCRIPTION 

A cc URA CY 

ERROR MESSAGE 

EXTERNAL UsE 

REMARKS 

LIBRARY PROCEDURES 

cos 
COS (x) 

x is in radians, and is floating-point. 

COS (x) is floating-point. 

COS (x) computes the cosine function. 

The maximum error is 24 in the last two digits. 

RESULT ILL-DEFINED FOR COS -£(nnnn) 
This printout will result if \ (x + Tr /2) \ 2:: 107 radians. 

xis in rA. Use COS on equivalence cards. 

G-15 



TAN 
FoRM 

ARGUMENT 

RESULT 

DESCRIPTION 

ACCURACY 

ERROR MESSAGE 

EXTERNAL UsE 

REMARKS 

G-16 

BURROUGHS ALGEBRAIC COMPILER 

TAN (x) 

x is in radians, and is floating-point. 

TAN (x) is floating-point. 

TAN (x) computes the tangent function. 

The error is less than 21 in the last two significant digits, 
except near k(7r/2) where k is an odd integer. 

RESULT UNDEFINED FOR TAN -£(nnnn) 
This printout will result if cos x = 0. 

RESULT ILL-DEFINED FOR TAN -£(nnnn) 
This printout will result if I x I ~ 107 radians. 

x is in r A. Use TAN on equivalence cards. 



FORM 

ARGUMENT 

RESULT 

DESCRIPTION 

AccUR.A:CY 

ERROR MESSAGE 

EXTERNAL UsE 

REMARKS 

LIBRARY PROCEDURES 

ARCSIN 

ARCSIN (x) 

x is floating-point. 

ARCSIN (x) is in radians, and is floating-point. 

ARCSIN (x) computes the inverse-sine function. The prin­
cipal range is [-7r/2, 11"/2]. 

The maximum error is 7 in the eighth significant sigit. 

RESULT UNDEFINED FOR ASIN -£(nnnn) 
This printout will result if I x I > 1. 

xis in rA. Use ARCSIN on equivalence cards. 

G-17 



ARCCOS 

FORM 

ARGUMENT 

RESULT 

DESCRIPTION 

A cc URA CY 

ERROR MESSAGE 

EXTERNAL UsE 

REMARKS 

G-18 

BURROUGHS ALGEBRAIC COMPILER 

ARCCOS (x) 

x is floating-point. 

ARCCOS (x) is in radians, and is floating-point. 

ARCCOS (x) computes the inverse-cosine function. The 
principal range is [O, 7r]. 

Over most of interval [O, l] the maximum error will be 9 in 
the eighth significant digit. 

RESULT UNDEFINED FOR ACOS -£(nnnn) 
This 'printout will result if I x / > 1. 

xis in rA. Use ARCCOS on equivalence cards. 



FORM 

ARGUMENT 

RESULT 

DESCRIPTION 

ACCURACY 

ERROR MESSAGE 

ExTERNAL UsE 

REMARKS 

LIBRARY PROCEDURES 

ARCTAN 

ARCTAN (x) 

x is floating-point. 

ARCTAN (x) is in radians, and is floating-point. 

ARCTAN (x) computes the inverse-tangent function. The 
principal range is [--ir/2, 7r/2]. 

The maximum error is 4 in the eighth· significant digit. 

None 

xis in rA. Use ARCTAN on equivalence cards. 

G-19 



SINH 

FORM 

ARGUMENT 

RESULT 

DESCRIPTION 

ACCURACY 

ERROR MESSAGE 

EXTERNAL UsE 

REMARKS 

G-20 

BURROUGHS ALGEBRAIC COMPILER 

SINH (x) 

x is floating-point. 

SINH (x) is floating-point. 

SINH (x) computes the hyperbolic-sine function. 

Let e be the error in the eighth significant digit; then 

if I x I < 100, E ~ 7; 

if 100 ~ I x I ~ 112. 82666, E ~ 13. 

RESULT OUT OF RANGE IN SINH -£(nnnn) 
This printout will result if I x I 2: 112.82666. 

xis in rA. Use SINH on equivalence cards. 



FoRM 

.ARGUMENT 

RESULT 

DESCRIPTION 

ACCURACY 

ElmoR MEs"AGE 

ExTERNAL UsE 

REMARKS 

LIBRARY PROCEDURES 

GOSH 
COSH (x) 

x is floating-point . 

COSH (x) is floating-point. 

COSH (x) computes the hyperbolic-cosine function. 

Let e be the error in the eighth significant digit; then 

for I x I < 100, e ~ 7. 

for 100 ~ I x I ~ 112.82666, e ~ 13. 

RESULT OUT OF RANGE IN COSH -£(nnnn) 
This printout will result if I x I ~ 112.82666. 

xis in rA. Use COSH on equivalence cards. 

G-21 



TANH 

FoRM 

ARGUMENT 

RESULT 

DESCRIPTION 

ACCURACY 

ERROR MESSAGE 

EXTERNAL USE 

REMARKS 

G-22 

BURROUGHS ALGEBRAIC COMPILER 

TANH (x) 

x is floating-point. 

TANH (x) is floating-point. 

TANH (x) calculates the hyperbolic-tangent function. 

Let e be the error in the eighth significant digit; then 

for I x I < 100, e ~ 10; 

for I x I ~ 100, the result is exact. 

None 

xis in rA. Use TANH on equivalence cards. 



FORM 

ARGUMENT 

RESULT 

DESCRIPTION 

ACCURACY 

ERROR MESSAGE 

ExTERNAL UsE 

REMARKS 

LIBRARY PROCEDURES 

ROM XX 

ROMXX (x) 

x is floating-point. 

ROMXX (x) is floating-point. 

ROMXX computes the function (1 - x2) 112• 

The maximum error is 2 in the eighth significant digit. 

RESULT UNDEFINED FOR ROMXX -£(nnnn) 
This printout will result if I x I > 1. 

x is in rA. Use ROMXX on equivalence cards. 

In order to obtain accuracy for x near unity, double-preci­
sion arithmetic is used. 

Note that (x2 - 1) 112 = x. ROMXX (1.0/x). 

G-23 



ENTIRE 
FORM 

ARGUMENT 

RESULT 

DESCRIPTION 

ACCURACY 

ERROR MESSAGES 

EXTERNAL UsE 

REMARKS 

G-24 

BURROUGHS ALGEBRAIC COMPILER 

ENTIRE (x) 

x is floating-point. 

ENTIRE (x) is floating-point. 

ENTIRE (x) computes the function normally denoted by 
[ x ] ; it is defined to be the largest integer not greater than x. 

None 

xis in rA. Use ENTIRE on equivalence cards. 



[References to definitions of terms are in 
italics.] 

ABS (intrinsic function), 7-3 
Activation phrases (for output), 8-5 
Addition ( + ), arithmetic operator, 3-1 
ALGOL transliteration, APPENDIX E 
Alphanumeric input, rules for, 8-3 
Alphanumeric output, editing for, 8-4 
Alternative (EITHER IF) statement, 6-3 

AND (logical operator), 3-3 
Arguments, 

of functions, 2-3 
of procedures, 7-6 

Arithmetic expressions, 3-1 
Arithmetic operators, 3-1 
ARRAY declaration, 5-2 

construction of, 5-2 
Arrays, method of filling, 5-2 
}, .. ssignment statement, '-:~1 

arithmetic, 4-1 
Boolean, 4-1 
generalized, 4-2 

Asterisk, 2-1 
on data cards, 8-3 
for exponentiation, 3-1 
in format strings, 8-1, F-11 
printing of, 8-5 

Asterisks, 
for floating-point scale factor, 2-3 

BAC-220, non-standard versions, A-5 
definition of, A-5 
generation of, A-5 

HIGH-SPEED PRINTER version, A-6 
paper-tape version, A-7 

BAC-220, standard version, A-2 
definition of, A-2 
generation of, A-2 

Basic syrnbols, 
syntactical description of, APPENDIX D 
transliteration rules for, APPENDIX E 

index 

BEGIN (statement parenthesis), 4-2 
Blanks, insertion in output line, 8-6 
Boolean constants, 2-3 
BOOLEAN declaration (of type), 5-1 
Boolean expressions, 3-3 

construction of, 3-3 
Boolean quantities, 2-2 

C-digit, for printer control, 8-5 
Callout decks, B-1 
Card format, 

data cards, 8-2 
equivalence cards, F-3 
external procedure, APPENDIX F 
SENTINEL cards, 8-3 
source deck, B-1 

Cell-count message, B-2 
Character set used by compiler, 2-l 
Clauses, 6-2 
Commas, 

in subscript lists, 2-2, 5-3 
in type lists, 5-1 

COMMENT declaration, 5-3 
COMPILED OB.JECT PROGRAM CALLOUT 

deck, B-1 
COMPILED OB.JECT PROGRAM DUMP 

CALLOUT deck, B-1 
COMPILED OB.JECT PROGRAM LOADER 

deck, B-3 
COMPILED OB.JECT PROGRAM LOADER 

BOOTSTRAP deck, B-1 
Compiled program listing, 10-6 
COMPILER CALLOUT deck, B-1 
Compiler language, 

ALGOL transliteration of, APPENDIX E 
characters used in, 2-1 
syntax of, APPENDIX D 

Compiler operating instructions, 
APPENDIX B 

Compiler-system tape, use of, B-1 
Compiler version statements; A-1, A-2 
Compound statements, 4-2 
Conditional control, 6-2 

Constants (Boolean, floating-point, 
and integer), 2-2 

Control statements, 
for iteration, 6-4 
for suspension of computation, 6-2 
for transfer (of control), 6-1, 7-1 

Control switch, program (see PROGRAM 
CONTROL SWITCH) 

Corrections statement, A-1, A-3 

Data cards, preparation of, 8-2 
Data tape (paper), preparation of, 8-3 
Debugging (see Diagnostic Aids) 
Decimal point, 

card-equipment symbol for 
multiplication, E-1 

Declaration, 
ARRAY, 5-2 

construction of, 5-2 
DUMP, 10-4 
EXTERNAL program, 7-7 
FINISH, 5-3 
FUNCTION, 7-2 
MONITOR, 10-4 
of type, 5-1 

construction of, 5-l 
by default, 5-2 
restrictions upon, 7-2 

PROCEDURE, 7-4 
examples of, 7 -5 

SEGMENT, 9-1 
SUBROUTINE, 7-1 
TRACE, 10-5 

Diagnostic aids, CHAPTER X 
error messages, 

during compilation, 10-1, B-2 
during execution, from library 

procedures, 10-6 
during generation of compiler, A-9 
spurious, 10-1 

memory dumps, 
machine-language program, B-3 
symbolic, 10-4, 10-5 

1-1 



Index (continued) 

Diagnostic Aids (continued) 
Object program, 

dumping of, 10-4, B-3 
listing of, 10-6 
monitoring of, 10-4, 10-5 
tracing of, 10-4 

Diagnostic declarations, 
DUMP declaration, 10-4 
MONITOR declaration, 10-4 
TRACE declaration, 10-5 

Division (/), arithmetic operator, 3-1 
Dollar sign, print for semicolon, 2-1 
Dummy statement, labeled, use of, 4-3 
DUMP declaration, 10-4 
Dump list, 10-5 
Dumps, 

machine-language program, B-3 
on paper tape, B-3 
on punched cards, B-3 

symbolic storage, 10-4 
manual, 10-5 
program-controlled, 10-4, 10-5 

Editing elements (for output), 8-4 
EITHER IF (alternative) statement, 6-3 
END (statement parenthesis), 4-2 
ENTER statement, 7-2 
EQIV (logical operator), 3-3 
EQL (relational operator), 3-2 
Equality sign, as symbol for 

substitution, 4-1 
Equivalence cards, F-3 
Error messages, 

during compilation, 10-1, B-2 
during execution, from library 

procedures, 10-6 
during generation of compiler, A-9 
spurious, 10-1 

Error message procedure, F-7 
Evaluated functions, 2-3, 7-2 
Exponentiation (*), arithmetic 

operation, 3-1 
Expressions, CHAPTER III 

arithmetic, 3-1 
Boolean, 3-3 
mixed, 3-2 
syntactical description of, APPENDIX D 
transliteration rules for, APPENDIX E 

EXTERNAL PROCEDURE 
declaration, 7-8, F-2, F-6 

External procedures, 7-IJ, APPENDIX F 
External programs, preparation of, 

APPENDIX F 
EXTERNAL STATEMENT 

declaration, 4-3, 7-7, F-6 

FINISH declaration, 5-3 
operation of, B-2 
use in external programs, F-5 

FINISH statement, A-2, A-5, A-6 
Fixed-point (integer) quantities, 2-2 

I-2 

BURROUGHS ALGEBRAIC COMPILER 

FLOATING declaration, 5-1 
by default, 5-2 

Floating-point constants, 2-2 
Floating-point quantities, 2-2 
FOR statement, 6-5 
Format data-list, 8-4, F-11 
Format data-list elements, 8-4, F-ll 
FORMAT declaration, 8-4, F-11 
Format string, 8-4, 8-5, F-ll 

Function call, 7-2 
FUNCTION declaration, 7-2 
Functions, 7 -2 

arguments of, 2-3 
declared, 7-2 
defined by procedures, 7-7 
evaluated, 2-3, 7-2 
intrinsic, 7-3 

table of, 7-3 
used as arguments, 7-7 

GENERATOR CALLOUT deck, A-1, A-2, R-1 
Generator input deck, 

composition of, A-1 
compiler version statements, A-1 
corrections statement, A-1 
FINISH statement, A-2 
GENERATOR CALLOUT deck, A-1 
input-output facilities 

statements, A-2 
miscellaneous option statements, A-2 
system.environment statements, A-1 

Generator input statements, A-1 
Generator operating instructions, 

APPENDIX A 
GEQ (relational operator), 3-2 
GO statement, 6-1 
GO TO statement, 6-1 
GTR (relational operator), 3-2 
Header (name) card preceding 

external program, F-1 
HIGH-SPEED PRINTER -version of 

BAC-220, A-6 

Identifiers, 2-1 
reserved, list of, APPENDIX C 

IF statement, 6-2 
nested, 6-4 

IMPL (logical operator), 3-3 
Induction variable, 6-5 
Input cards, preparation of, 8-2 
Input data-list elements, 8-1 
Input-data lists, 8-1 
INPUT declaration, 8-1 
Input label, 8-1 
Input-list element, 8-1 
Input-output combinations, APPENDIX A 

table of, A-2 
Input-output facilities statements, 

A-2, A-6 

Input-output procedures, 
machine-language, F-8 

Input-output routines, non-standard, A-8 
Input-output techniques, CHAPTER VIII 
Input procedures, symbolic, 8-2 
Input tape (paper), preparation of, 8-3 
Integers, arithmetic, combinations of, 3-2 
INTEGER declaration, 5-l 
Integer quantities, 2-2 
Intrinsic functions, 7-3 

table of, 7-3 
Insufficient symbol storage space, 

corrective measures for, 10-1 
Iterated variables, 8-1 
Iteration, control of, 6- l 

Labels, 
for input, 8-1 
for output, 8-3 
for statements, 4-2 

Leading zeros, 2-2, A-1 
LEQ (relational operator), 3-2 
Library procedures, 7-4, F-7 

description of, APPENDIX G 
error messages from, 10-6 
list of, G-1 
listing of., l 0-7 

Linkage to machine-language 
procedures, F-1 

List of parameters, in procedure 
declaration, 7-4 

Listing, 
of external programs, 10-7 
of library procedures, 10-7 
of object program, 10-6 
of symbolic program, 10-1 

Logical (Boolean) operators, 3-3 
precedence of, 3-3 

LSS (relational operator), 3-2 

Machine-language procedure deck, F-5 
'1achine-language procedures, 7-1, 7-8 

construction of, APPENDIX F 
Machine-language program dumps, 

on paper tape, B-3 
on punched cards, B-3 

'1achine-language programs, 
construction of, APPENDIX F 

Magnetic tape, use of, 
during compilation, B-2 
in machine-language programs, F -3 
in reloading compiled program, B-3 
in running generator program, A-1 

MAX (intrinsic function), 7-3 
Memory dump of, 

machine-language programs, 
on paper tape, B-3 
on punched cards, B-3 

symbolic, 
manual, 10-5 
program-controlled, 10-t., 10-5 



Index (continued) 

Memory space, conservation of, 10-1 
Metalinguistic symbols, 2-1 
MIN (intrinsic function), 7-3 
Minimum monitoring, 10-5 

Miscellaneous option statements, A-2, A-it 

Missing address in object program 
listing, 10-6 

Mixed (floating and fixed) arithmetic, 3-2 

MOD (intrinsic function), 7-3 
MONITOR declaration, 10-4 

Monitoring (of object program), 10-4 
of control sequence, 10-4 
minimum, 10-5 
of variables, 10-'1 

Monitor list, 10-4 
Multiplication(.), arithmetic operator, 3-1 

Multiplication sign, 
decimal point equivalent of, 3-1 
omission of, 3-1 

Name (header) card preceding 
external program, F-4 

NEQ (relational operator), 3-2 

Nested IF statements, 6-4 

Non-standard version of BAC-220. 
definition of, A-5 
generation of, A-5 

HIGH-SPEED PRINTER version, A-6 
paper-tape version, A-7 

Non-standard input-output routines A-8 
NOT (logical operator), 3-3 

Object program 
cell count message, B-2 
dump of, 

on paper tape, B-3 
on punched cards. B-3 

listing of, 10-6 
monitoring of, 10-'1· 
reloading of, B-3 

Operators, CHAPTER III 
arithmetic, 3-1 
logical, 3-3 
relational, 3-2 
rules of precedence for sequencmg, 
3-1, 3-3 

Operating instructions for BAC-220, 
APPENDIX B 

Operating instructions for BAC-220 
generator, APPENDIX A 

OR (logical operator), 3-3 

OTHERWISE, used in alternative 
statements, 6-3 

Output-data lists, 8-3 

OUTPUT declaration, 8-3 
Output labels, 8-3 
Output procedures, symbolic, 8-4 
OVERLAY statement, 9-2 

BURROUGHS ALGEBRAIC COMPILER 

Overlay techniques, 9-1 

Page-eject control, 8-6 

Paper tape, 
dumping compiled program on, B-3 
external procedures on, F-6 
format of, 8-3, F-7 
preparation of data on, 8-3 
preparation of source programs on, B-1 
reloading object program from, B-3 
SENTINEL on, 8-3 

Paper-tape version of BAC-220, A-7 
Parameters, 

lists of, 7-4 
of name, 7-5 
of value, 7-5 

Parentheses, 
optional use of, 5-1, 8-1, 8-4 
in parameter lists, 7-4 
in place of BEGIN, 4-2 
in place of END, 4-2 
printing equivalents of, 2-1 
in repeat lists, 8-6 
use to indicate precedence, 3-1, 3-3 

PCS (intrinsic function), 7-3 
Phrases, 

activation, 8-5 
repeat, 8-6 

Power routines, APPENDIX G 
Precedence rules, 

arithmetic, 3-1 
Boolean, 3-3 

Prefixes, use of, 5-1 

Preparation of data, 
on paper tape, 8-3 
on punched cards, 8-2 

Printed characters, 2-1 
Procedure-assignment statement, 7-7 

Procedure-call statement, 7-6 
examples, of 7 -6 

PROCEDURE declaration, 7 _4, 
examples of, 7-5 

Procedures, 
arguments of, 7-6 
availability to compiled programs, 7-4 
declaration of, 7-4 
declarations within, 7-4 
external, 7-4, APPENDIX F 
functions defined by, 7-7 
input-output, 8-2, 8-4, F-8 
library, 7-4 APPENDIX G 
linkage to, F-1 
machine-language, 7 -4 
parameter lists in, 7-4 
parameters of, F-1 

PROGRAM CONTROL SWITCH 
during compile phase, 

number 1 - 10-7, B-2 
number 2 - 10-6; B-2 
number 3 - 10-7, B-2 
number 4 - 10-1, B-2 

during execute phase, 
number 0 - 10-1· 
number 7 - 10-6 
number 8 - 10-6 
number 9 - 10-5 

during generation, 
number 1 - A-1 

interrogation of, 7 -3 
Program logic, verification of. 

CHAPTER x 
Programs, machine-language, 

APPENDIX F 
Punched cards, 

equivalence, F-3 
external procedures on, APPENDIX F 
format of, 8-2, B-1 
loading compiler routines from, B-1 
preparation of data for, 8-2 
punching object program on, B-3 
in running generator program, A-1 

Punching out object program, 
on paper tape, B-3 
on punched cards, B-3 

Quantities (Boolean, floating-point, and 
integer), 2-2 

READ procedure, 8-2 
REAL declaration, 5-1 
REED procedure, 8-2 
Relational operator, 3-2 
Relation, 3-2 

enclosed within parentheses, 3-3 
form of condition, 3-2 
use in control statements, 3-2 
use in statement sequencing, 3-2 

Relocation base, F-2 
l:lelocation conventions, F-~ 
Relocation digits, 

sign digit of zero - F-2, F-8 
sign digit of one - F-2, F-8 
sign digit of two - F-2, F-8 
sign digit t;?f three - F-2, F-8 
sign digit of four - F-2, F-8 
sign digit of five - F-3, F-8 
sign digit of six - F-3, F-9 
sign digit of seven - F-3, F-9 
sign digit of eight - F-3, F-9 
sign digit of nine - F-3, F-9 

Repeat phrases, 8-6 
Reserved words, list of, APPENDIX C 
RETURN statement, 7-1 
RITE procedure, 8-4 

Sample programs, CHAPTER XI 
Scale factors in floating-point 

constants, 2-3 

SEGMENT declaration, 9-1 
Segmentation, 9-1 

1-3 



Index (continued) 

Semicolon, 
on data cards, 8-3 
in FINISH declaration, 5-3 
in grammar of statements, -1.-2 
printing equivalent of, 2-1 
in READ procedure, 8-2 
in WRITE procedure, 8-4 

Sentinel block, 8-3 

Sentinel card, 3-2 
format, 8-2 
in READ procedure, 8-2 

Sentinel declaration, 
on paper tape, 8-3 
on punched cards, 8-3 

SIGN (intrinsic function), 7-3 
Simple variables, 2-2 

Source program, preparation of, 
by means of paper tape, B-1 
by means of punched cards, B-1 

Spaces, 2-1, 3-2, F-11 

Spacing control, for printing, 8-6 

Special input-output routines, A-8 

Standard version of BAC-220, A-2 
generation;of, A-2 
input-output requirements for, A-2 

Statements, 4-1 
alternative, 6-3 
assignment, 4-1 

1-4 

arithmetic, 4-1 
Boolean, 4-1 
generalized, 4-2 

BURROUGHS ALGEBRAIC COMPILER 

Statements (continued) 
compound, 4-2 
control, 4-1, CHAPTER VI 
generator input, A-1 
grammar of, 4-2 
monitoring of, 10-4· 
procedure-assignment, 7-7 
procedure-call, 7-6 
syntactical description of, APPENDIX D 
transliteration rules for, APPENDIX E 

STOP statement, 6-2 
Stopping of compiler, unintentional, 10-1 
Subroutine, 7-1 
Subroutine call (see ENTER statement) 
SUBROUTINE declaration, 7-1 
Subroutine exit (see RETURN 

statement) 
Subscripted variables, 2-2, 5-2 
Subtraction (-),arithmetic operator, 3-1 
Suspension of computation, 6-2 
SWITCH statement, 6-1 
Switch, program control (see PROGRAM 

CONTRPL SWITCH) 
Symbolic program (see Source Program) 
Syntactical check of source program, 

CHAPTER X 
Syntax, errors in, 10-1 
Syntax of compiler language, 

APPENDIX D 
System environment statements, A-l, A-3 

TO (see GO TO) 
TRACE declaration, 10-5 

Trace list, 10-5 
Transfer of control, conditional, 

alternative statement, 6-3 
FOR statement, 6-5 
IF statement, 6-2 

nested, 6-i 
SWITCH statement, 6-1 
UNTIL statement, 6-4· 

Transfer of control, unconditional, 
ENTER statement, 7-2 
GO (or GO TO) statement, 6-1 
RETURN statement, 7-1 

Type, 
in arithmetic assignment statements, 

4·-1 
of arithmetic expressions, 3-2 
in Boolean assignment statements, 4-1 
in generalized assignment statements, 

4-2 
Type declarations, 5-1 

by default, 5-2 
restrictions upon 7-2 

Type list, 5-1 

UNTIL statement, 6-1· 

Variable, 
induction, 6-5 
iterated, 8-1 

Variables, 
simple, 2-2 
subscripted, 2-2, 5-2 
use in iterations, 6-5 

WRITE procedure, 8--1 



Burroughs Corporation DETROIT 32, MICHIGAN 

offices in principal cities 

in CANADA: BURROUGHS BUSINESS MACHINES LTD. 
TORONTO, ONTARIO 

'J'J0-91017 3-3-6 LITHO IN US A 


	000
	001
	002
	003
	005
	006
	01-01
	01-02
	02-01
	02-02
	02-03
	03-01
	03-02
	03-03
	04-01
	04-02
	04-03
	05-01
	05-02
	05-03
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	09-01
	09-02
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	11-01
	11-02
	11-03
	11-04
	11-05
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	B-01
	B-02
	B-03
	C-01
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	E-01
	E-02
	E-03
	E-04
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	F-11
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	G-09
	G-10
	G-11
	G-12
	G-13
	G-14
	G-15
	G-16
	G-17
	G-18
	G-19
	G-20
	G-21
	G-22
	G-23
	G-24
	I-01
	I-02
	I-03
	I-04
	xBack

