
I

~ User's Guide er = -a e. -· Ci" ...

I

User's Guide

Borland®
Turbo Profiler®
Borland International, Inc., 100 Borland Way
P.O. Box 660001, Scotts Valley, CA 95067-0001

Borland may have patents and/or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents.

COPYRIGHT© 1988, 1994 Borland International. All rights reserved. All Borland products are trademarks or
registered trademarks of Borland International, Inc. Other brand and product names are trademarks or registered
trademarks of their respective holders.

Printed in the U.S.A.

1EOR1094
9495969798-9 8 7 6 5 4 3 2
Hl

Contents
Introduction 1

The difference between optimizing and
profiling .2

Hardware and software requirements2
New features for version 4.5 .. 2
What's in this manual 3
Typeface con-..v,.entiorls 3
Software Registration and Technical Support .. 4

Chapter 1
A sampl!! profiling session 5

About the sample programs6
Profiling a program (PRlMEO) 6

Setting up the profile options 7
Collecting data 8
Displaying statistics8

Printing modules and statistics. 10
Time and counts profile listing 10
Profile statistics report 11

Saving and restoring statistics 12
Analyzing the statistics 12

Viewing both source code and statistics 12
Saving the window configuration. 13

Measuring an area's efficiency 14
A modularized primes test (PRlMEl) 15
Modifying the program and reprofiling 16

Loading another program (PRIME2) 16
Reducing calls to a routine (PRIME3) 16
Still more efficiency (PRIME4) 17
Eliminating CR/LF pairs (PRIMES) 17
Where to now? 18

Chapter 2
The Turbo Profiler environment 19
Part 1: The environment components . . . 19

The menu bar and menus 19
Choosing menu commands from the

keyboard. 20
SpeedMenus 20

Choosing menu commands with the mouse. 20
Shortcuts . 20
Turbo Profiler windows 21

Window management. 21
The status line . 22
Dialog boxes. 23

Part 2: The menu reference 23
= menu (System) 23

Repaint Desktop 23

Restore Standard 23
About 24

File menu . 24
Open 24

Session Saving 25
Get Info 26
DOS Shell . 27
Quit 27

View menu . 27
SpeedMenus. 28
Module 28

Line 29
Search 29
Next 29
Goto 30
Add Areas 30
Remove Areas 30
Operation 30

Callers 32
Module 32
File 33
Edit command 33

Execution Profile 33
Display 34
Filter 35
Module 36
Position 36
Remove 36

Callers 37
Inspect (left pane) 39
Inspect (right pane) 39
Sort (right pane) 39

Overlays . 39
Display 40
Inspect 40

Interrupts . 40
Collection (top pane) 41
Subfunctions (top pane) 41
Add (top pane) 41
Pick (top pane) 41
Remove (top pane) 42
Delete All (top pane) 42
Display (bottom pane) 42

Files 42
Collection (top pane) 43
Detail (top pane) 43
When Full (top pane) 43
Display (bottom pane) 43

Areas 44
Add Areas 45
Remove Areas 45
Inspect 45
Options 45

Sort 46
Routines . 46

Local Module (right pane) 47
Areas (both panes). 47
Callers (both panes) 47
Module (both panes) 47
Profile (both panes) 47

Disassembly (CPU) 47
Goto 48
Origin 48
Follow 49
Previous . 49
View Source 49
Mixed 49

Text File 50
The File window SpeedMenu 50
Goto 50
Search 50
Next 50
File 51
Edit 51

Coverage 51
Add All Modules (left pane) 52
Remove All Modules (left pane) 52
Add Module (left pane) 52
Remove Module (left pane) 52
Delete This Item (left pane) 52
Display (right pane) 52
Position (right pane) 53
Module (right pane) 53

Runmenu 54
Run 54
Program Reset 54
Arguments 54

Statistics menu 55
Callers 55
Files 56
Interrupts . 56
Overlays . 56
Profiling Options. 56
Accumulation. 58

Disabling accumulation 58
Delete All . 60
Save 60

Saving Files 60
Restore 60

Print menu. 61
Statistics . 61
Module 61
Options 62

Options menu. 62
Macros 63

Create 63
Stop Recording 63
Remove 63
Delete All . 63

ii

Recording macros 63
Display Options 64

Display Swapping. 64
Screen Lines 64
Tab Size 65
Width of Names. 65

Path for Source 65
Save Options 65
Restore Options. 66

Window menu 66
Zoom 67
Next. 67
Next Pane . 67
Size/Move 67
Iconize/Restore 67
Close 67
Undo Close " 67
User Screen . 68
The open window list 68

Help menu . 68
Index 68
Previous Topic 68
Help on Help 68

Chapter3
Profiling strategies 69
Preparing to profile 70

Adjusting your program 70
Compiling your program. 71
Setting profile areas 71

What level of detail do you need? 72
Adding areas 73
What type of data do you need? 73
When should data collection start? 74
How do you want time data grouped? 74
Which data do you want to look at? 74

Profiling your program 75
Focusing the profile session 75

Testing algorithms 76
Verifying and testing programs 76
Timing execution and monitoring

performance. 76
Studying unfamiliar code 77

Which analysis mode to use 77
Active analysis 78
Passive analysis 78 ·

Passive versus active analysis 79
Coverage analysis 79

Speeding up profiling 79
Improving statistical accuracy 79

Insufficient data. 80
Resonance . 80

Some tips for profiling overlays . . . 80
Profiling object-oriented programs 81

Interpreting and applying the profile results .. 81
Analyzing profile data 81

Execution Profile window 82
Callers window. 82
Overlays window 82
Interrupts window. 82
Files window 82
Coverage window 82

Filtering collected data. 83
Revising your program 84

Modifying data structures 84
Storing precomputed resuits 85
Caching frequently accessed data 85
Evaluating data as needed 85
Optimizing existing code 85

Wrapping it up 86

Chapter4
Inside the profiler 87
Area boundaries . . . ~ 88

Time and count collection 88
Showing routine call overhead 89
Who pays forloops? 89
Multiple return statements 91
Disabling often-called functions 91

Logging callers 92
Sampling vs. counting 93
Profiler memory use 94

Appendix A
Turbo Profiler's command-line

options 95
The command-line options 95

Batch mode (-b) 96
Configuration file (-c) 97
Display update (-d) 97
Help (-hand-?) 97
Session-state saving (-jn) 98
Mouse support (-p) 98
Remote profiling (-r) 98
Source code and symbols (-s). 98
Video hardware (-v) 99

AppendixB
Customizing Turbo Profiler 101
Running TFINST 101
Setting the screen colors 102

Customizing screen colors 102
Windows .102
Dialog boxes and menus 102
Screen 103

iii

The default colors103
Setting Turbo Profiler display parameters . . 103

Display Swapping103
Screen Lines. .104
Fast Screen Update104
Permit43/50Lines 104
Full Graphics Saving104
Tab Size .104
User Screen Updating 105

Turbo Profiler options 105
The Directories dialog box105
The User Input and Prompting dialog box . .105

History List Length 106
Interrupt Key 106
Mouse Enabled 106
Beep on Error106
Control Key Shortcuts 106

The Miscellaneous Options dialog box106
Printer Output 107
NMI Intercept. 107
Ignore Case of Symbols107
International support 107
DOS Shell Swap Size (Kb) 108
Remote type.108
Remote Link Port.108
Link Speed 108
Network local name 108
Network remote name 108

Setting the mode for display108
Default .108
Color 109
Black and White109
Monochrome. 109
LCD 109

When you're through.... 109
Saving changes.109

Save Configuration File 109
Modify TPROF.EXE 109

Exiting TFINST.110
Command-line options and TFINST

equivalents . 110

AppendixC
Remote Profiling 113
Hardware and software requirements. 114
Profiling remote OOS applications. 114

Setting up the remote system114
Configuring TFREMOTE.115

Customizing TFREMOTE.115
The remote DOS driver116

Starting the remote serial driver 116
Starting the remote LAN driver 116

Establishing the remote DOS link117

Serial connection 117
LAN connection 117

Profiling remote Windows applications . . . 118
Setting up the remote system 118
Configuring WREMOTE 118

Serial configuration 119
LAN configuration. 119
WREMOTE command-line options. 120

Starting the remote Windows driver 120
Establishing the remote Windows link 120

LAN connection121
Loading programs onto the remote system . 121
Remote profiling sessions 121
Troubleshooting. 122
TFREMOTE messages 122
WREMOTE messages 123

AppendixD
Turbo Profiler for Windows 125
Installing TPROFW. 126

Installing TDDEBUG.386 126

iv

Configuring TPROFW 126
Using TPROFW command-line options127
Using TFINST with TPROFW 127

UsingTPROFW 128
Profiling window procedures128

The Window Procedure Messages
dialog box .129

Profiling dynamic-link libraries (DLLs) 130
TPROFW error messages 131

AppendixE
Prompts and error messages 133
Turbo Profiler prompts. 133
Turbo Profiler error messages 135

Index 141

Tables
2.1 Menu hot keys 21
2.2 Manipulating windows 21
2.3 Turbo Profile session-state saving options . . 26
2.4 Summary of Turbo Profiler windows 27
2.5 Summary of interrupt statistic formats 42
3.1 Ways of using a profiler 75
3.2 SpeedMenu commands for filtering

collected statistics ~. 83

v

Al Turbo Profiler command-line options 96
B.1 Command-line options and TFINST

equivalents . 110
B.2 TFINST.EXE options 111
C.1 TFREMOTE command-line options 115
C.2 WREMOTE command-line options . 120
D.1 TPROFW command-line ootions . . 127
D.2 Window's message classes'. 130

Figures
1.1 Turbo Profiler with PRIMEO loaded 7
1.2 Program statistics, PRIMEO 8
1.3 The Display Options dialog box 9
1.4 Counts display in the Execution Profile

window 9
2.1 The Load A New Program to Profile

dialog box 24
2.2 The Enter Program Name to Load

dialog box . 25
2.3 The Module window (zoomed) 28
2.4 The Area Options dialog box 30
2.5 The Stack Trace dialog box 32
2.6 The Display Options dialog box 34
2.7 The Callers window, showing calls in

CALLTEST 37
2.8 The Overlays window 40
2.9 The Interrupts window 41
2.10 The Files Window 42

vi

2.11 The Areas window 44
2.12 The Area Options dialog box45
2.13 The Routines window46
2.14 The Disassembly (CPU) window47
2.15 The Coverage window 51
2.16 The Coverage Display dialog box 52
2.17 The Coverage window, listing blocks by

routine 53
2.18 The Profiling Options dialog box 56
2.19 The Display Options dialog box. 64
2.20 The Save Configuration dialog box. 65
B.1 Customizing colors for windows 102
B.2 The Display Options dialog box. 103
B.3 The User Input and Prompting

dialog box . 106
B.4 The Miscellaneous Options dialog box . . . 107
C.1 WRSETUP main window and Settings

dialog box . 119

Introduction

Borland's Turbo Profiler is the missing link in your software development cycle. Once
you have your code doing what you want, Turbo Profiler helps you do it faster and
more efficiently.

Turbo Profiler is a performance analyzer, a software tool that measures your program's
performance by finding

• Where your program spends its time
• How many times a line executes
• What lines have been executed
• How many times a routine is called, and by which routines
• What files your program accesses most and for how long

Turbo Profiler also monitors critical computer resources, such as
• Processor time
• Disk access
• Keyboard input
• Printer output
• Interrupt activity

By monitoring vital activities and providing detailed statistical reports on every part of
your program's performance, Turbo Profiler enables you to fine-tune your programs.
By opening up the inside of your program and exposing its most intricate operations
from execution times to statement counts, from interrupt calls to file access activities
Turbo Profiler helps you polish your code and speed up your programs.

Turbo Profiler surpasses other profilers on the market both in power and ease of use by
providing the following features:

• Interactive profiling quickly reveals inefficient code in a program.

• Lets you read and edit any text file during profiling sessions.

• Profiles any size program that runs under DOS or Windows.

• Handles programs written using Borland's C++ compilers and Turbo Assembler.

• Provides an easy-to-use interface with multiple overlapping windows, mouse
support, and context-sensitive help.

Introduction 1

• Reports execution time and execution count for routines and program lines.

• Tracks which blocks of code have and haven't been executed.

• Tracks complete call path history for all routines. Analyzes frequency of calls with
complete call stack tracing.

• Monitors DOS file activities from the Files window by file handle and time of open,
close, read, or write. Uses an event list to log the number of bytes read or written.

• Supports complete tracking of overlays.

• Allows remote serial and network profiling.

By picking up where code optimizers leave off, Turbo Profiler directs you immediately
to slow code, pointing out where to open up bottlenecks and when to rework
algorithms.

The difference between optimizing and profiling
An optimizer makes your program run a little faster by replacing time-consuming
instructions with less-expensive ones. But optimizing can't fix inefficient code.

Turbo Profiler helps you detect the least efficient part of your code and helps point to
algorithms that can be modified or rewritten. Studies show that the largest performance
improvements in programs come from changing algorithms and data structures, rather
than from optimizing small segments of compiled code. Trying to find program
bottlenecks without a profiler is like trying to find bugs without a debugger; Turbo
Profiler reduces both the time and effort it takes to improve your program's
performance.

Hardware and software requirements
Turbo Profiler has the same hardware and software requirements as your Borland
language product. For a complete list of requirements, refer to the User's Guide for the
Borland language you're using.

New features for version 4.5
Several new features have been added to Turbo Profiler 4.5: greater capacity, session
state saving, and DPMI profiling.

Turbo Profiler for Windows (TPROFW.EXE) can profile larger programs and provide
statistics for more areas than previous versions. Turbo Profiler also provides session state
saving; the profiler saves your settings so you can easily resume a profiling session. In
addition, TPROF.EXE (the DOS profiler) now uses the DOS protected mode interface
(DPMI) , which lets you profile larger DOS programs.

2 Turbo Profiler User's Guide

What's in this manual
Chapter 1, "A sample profiling session," is a tutorial that takes you through a simple
profiling session. The tutorial starts with a "let's see what's going on" profile, then takes
you through interpreting the profile data collected, modifying and refining the program
based on insight gained from the profile, and running additional profiles to gauge the
effect of each successive modification.

Chapter 2, "The Turbo Profiler environment," explains in detail each menu item and
dialog box option in the Turbo Profiler environment.

Chapter 3, "Profiling strategies," provides general guidelines and tips for conducting a
fruitful profiling session.

Chapter 4, "Inside the profiler," uses analogy to explain how Turbo Profiler gathers
execution-time and execution-count data while your program runs.

Appendix A, "Turbo Profiler's command-line options," lists each Turbo Profiler
command-line option and explains what the option accomplishes.

Appendix B, "Customizing Turbo Profiler," explains how to use TFINST to change the
configuration defaults of TPROF and TPROFW.

Appendix C, "Remote profiling," describes how to profile with two systems; you run
your program on one and Turbo Profiler on the other.

Appendix D, "Turbo Profiler for Windows," describes how to run Turbo Profiler for
Windows and how to use its special features.

Appendix F, "Prompts and error messages," lists all prompts and error messages that
can occur, with suggestions on how to respond to them.

Typeface conventions
This manual uses the following special fonts:

Mono space

Italics

Bold

Keycap

Key1+Key2

This type represents text that you type or text as it appears onscreen.

These are used to emphasize and introduce words, and to indicate
variable names (identifiers), function names, class names, and structure
names.

This type indicates reserved keywords words, format specifiers, and
command-line options.

This type represents a particular key you should press on your
keyboard. For example, "Press Del to erase the character."

This indicates a command that requires you to press Keyt with Key2. For
example, Shift+a (although not a command) indicates the uppercase
letter "A."

Introduction 3

ALL CAPS This type represents disk directories, file names, and application
names. (However, header file names are presented in lowercase to be
consistent with how these files are usually written in source code.)

Menu I Choice This represents menu commands. Rather than use the phrase "choose
the Save command from the File menu," Borland manuals use the
convention "choose File I Save."

Software Registration and Technical Support
The Borland Assist program offers a range of technical support plans to fit the different
needs of individuals, consultants, large corporations, and developers. To receive help
with this product, send in the registration card and select the Borland Assist plan which
best suits your needs. North American customers can register by phone 24 hours a day
by calling 1-800-845-0147. For additional details on these and other Borland services, see
the Borland Assist Support and Services Guide included with this product.

4 Turbo Profiler User's Guide

A sample profiling session
Profiling is one of the least-understood yet most useful and vital areas of good software
development. Surveys indicate that only a small fraction of professional programmers
actually use profilers to improve their code. Other studies show that, most of the time,
even the best programmers guess wrong about where the bottlenecks are in their
programs.

What is the advantage to using this widely overlooked tool? For one, profiling your
program can increase its overall performance. Second, profiling can augment your
ability to produce efficient code. The bottom line is that profiling, like debugging, can be
a cog in the wheel of the program development cycle.

We've based the examples in this chapter on John Bentley's "Programming Pearls"
column Guly 1987) in Communications of the ACM.

In this chapter we show you an example of profiling put to good use, and how-in the
long run-profiling can save you hours of hunting for that expensive line of code. You
use Turbo Profiler to:

• See where your program spends its time.
• Create an annotated source listing and a profile statistics report.
• Save profile statistics, then start up again with saved statistics.
• Analyze profile statistics and source code in side-by-side windows.

All the tutorial examples were run on a 486 machine with an SVGA video adapter.

The examples in this chapter are based on finding and printing all prime numbers
between 1 and 1,000. Recall that a number is prime if it is an integer and is divisible by
only the integer 1 and itself; it must also be odd, since any even number is divisible by 2
and therefore is not prime (actually, 2 is the only even prime number). You can tell
whether a particular number is prime by checking to see if it is divisible by other,
smaller primes, or by any integer larger than the first two primes, 2 and 3.

Chapter 1, A sample profiling session 5

The object of profiling the example programs is to speed up the process of finding and
printing the prime numbers. As you work through the examples, you'll learn how to use
Turbo Profiler to test the efficiency of each example's structure.

The first, program you'll look at is PRIMEO. Once you've profiled it and seen where to
modify the code, all you need to do is load and profile PRIMEl. With the exception of
PRIMEl, each of the programs covered inthis chapter (PRIME2, PRIME3, PRIME4, and
PRIMES) is a variation on its predecessor.

About the sample programs
The Turbo Profiler package comes complete with the sample programs used in this
chapter. Both the source code and the executable code are provided; Turbo Profiler
requires both to analyze a program. Each of the sample programs was compiled with
full symbolic information, since the profiler also requires this information.

To ensure that your own programs contain full symbolic information, you must compile
them with the appropriate compiler options turned on, as shown in the following list:

• Borland's line of C++ compilers: If you are compiling in the IDE,

1 Choose Options I Project.

2 Choose the Compiler I Debugging topic, then check Include Debug Information.

3 Choose the Linker I General topic, then check Include Debug Information.

If you are compiling from the command line, use the -v command-line option.

• Turbo Assembler: Use the /zi command-line option, then link the program with
TLINK, using the /v option.

Profiling a program (PRIMED)
You profile and improve a program in four steps:

1 Set up the program before profiling it.

2 Collect data while the program runs.

3 Analyze the collected data.

4 Modify the program and recompile it.

After modifying your program, repeat steps 1 through 3 to see if the modifications have
improved your program's performance.

PRIMEO uses Euclid's method of testing for prime numbers, a straightforward integer
test for a remainder after division. As each prime number is found, it is stored in the
array primes, and each successive number is tested for "primeness" by being divided by
each of the numbers already stored in primes.

Leaving Turbo Profiler at any time is a simple, one-step procedure: just choose
File I Quit or press Alt+X.

6 Turbo Profiler User's Guide

Load PRIMEO into Turbo Profiler by typing

TPROF PRIMED

and pressing Enter.

The profiler comes up with two windows open: the Module window (which displays
PRIMEO's source code) and the Execution Profile window (which will display profile
statistics after you run PRIMEO).

Figure 1.1 Turbo Profiler with PRIMEO loaded

For a more detailed description of the profiler's environment, see Chapter 2.

The Module and Execution Profile windows are concerned with steps 1 and 3 in the
profiling process. You use the Module window to determine what parts of the program
to profile. Once you run a program, the Execution Profile window displays the
information you need to analyze your program's behavior.

Setting up the profile options
Before you begin to profile your program, you might want to specify the areas you want
to profile. An area is a location in your program where you want to collect statistics: an
area can be a single line, a construct such as a loop, or an entire routine.

To analyze a small number of short routines (like prime and main in this program), you
have to know how often each line executes and how much time each line takes. To get
this information, every line in the program must be marked as an area.

By default, Turbo Profiler marks every line in a small program. To verify that this is true,
you can check the Module window to see that all executable lines are tagged with a
marker symbol(=~).

1 Press Alt+F10 to open the Module window SpeedMenu.

2 Choose Add Areas from the SpeedMenu. This menu lists area boundaries for you to
choose from.

3 Choose Every Line in Module. This sets area markers for all lines in the module, then
returns the cursor to the Module window.

Chapter 1, A sample profiling session 7

Collecting data
Now you're ready for the second step in the profiling process. Press F9 to run PRIMEO
under Turbo Profiler. The program prints the prime numbers between 1 and 1,000 on
your screen. When the program finishes, look at the information in the Execution Profile
window. These are your program statistics.

Zoom the Execution Profile window: Press F5 or choose Zoom from the Window menu.
The Execution Profile window should now look similar to this:

Figure 1.2 Program statistics, PRIMEO

The upper pane of the Execution Profile window displays the program's total execution
time, along with information about the data in the lower pane. The lower pane has four
fields for each line:

• An area name
• The number of seconds spent in that area
• The percentage of total execution time spent in that area
• A magnitude bar displaying a proportional graph of the execution time spent in that

area

The line

#PRIME0#31 3.3038 sec 81% !======================================
tells you that the thirty-first line of code in module PRIMEO executed for about 3.3
seconds-which was 81 % of the total execution time for all marked areas. The
magnitude bar automatically shows line 31's time full-scale because line 31 is the most
time-consuming of the marked areas.

Actual time and percentage statistics will vary from system to system.

Displaying statistics
You can also display this program's collected data as execution counts.

Display ...
Filter All •

Module
Remove

8 Turbo Profiler User's Guide

Press Alt+F10 to bring up the SpeedMenu for the Execution Profile window.

2 Choose Display on the SpeedMenu.

3 The Display Options dialog box lists six possible ways to display data in the
Execution Profile window.

Figure 1.3 The Display Options dialog box

• Time (the default setting) shows the total time spent in each marked area.
• Counts displays the number of times program control entered each area.
• Both shows time and counts data on the same screen.
• Per Call displays the average amount of time per call.
• Longest shows the longest time spent in each area.
• Modules (used with passive analysis) displays the time spent in each program

module.

4 Choose Counts under Display in this dialog box. (Click Counts with the mouse, or
use the arrow keys to move to it and press Enter, or press C, the hot key for this
option.)

5 Choose OK (or press Enter).

The Execution Profile window now displays PRIMED's statistics as execution counts
instead of execution times, as shown in this figure:

Figure 1.4 Counts display in the Execution Profile window

This display of PRIMED' s statistics shows that line 22 is the most frequently called line in
PRIMED.

You can also see counts and times together. Bring up the Display Options dialog box
again (either pressAlt+F10 and choose Display, or press Ctrl+D).

Choose Both under Display, then choose OK or press Enter. (To choose Both, either click
it, or press Down to get to it, then press Enter, or press B, the hot key for this option.)

Chapter 1, A sample profiling session 9

When the Execution Profile window displays time and counts together, the first entry
for each area is execution counts, and the second is execution time.

Printing modules and statistics
In this section, you print two things:

A profile source listing of the code that's in the Module window, with time and
counts data attached to each marked area.

2 The profile statistics displayed in the Execution Profile window.

Time and counts profile listing
Before you print the time-and-counts statistics to a file, you must first set the
appropriate printing options:

Choose Print I Options.

2 In the Printing Options dialog box, choose the File radio button (press Tab until the
radio buttons become active, then press Down to tum the setting to File).

3 Tab to the Destination File input box and type
PRIMEOSC.LST

4 Choose ASCII to use the standard ASCII character set (rather than the IBM extended
character set).

5 Choose OK (or press Enter).

The cursor returns to the active Execution Profile window.

Now, to print the listing file, choose Print I Module. In the Pick a Module dialog box,
press Down to highlight the module name PRIMEO, then press Enter (or choose OK).

To inspect the file PRIMEOSC.LST, choose View I Text File, and at the File Name prompt,
type

PRIMEOSC.LST

This is what you see if you're profiling the C program PRIMEO.C. The times in your file
will probably vary from the ones shown here because of the differences in computer
systems.

Turbo Profiler Version 4.5 Tue Aug 20 15:16:47 1994

Program: D:TPROFPRIMEO.EXE File primeO.c

Time Counts
/* Copyright (c) 1990, Borland International */
/* Program for generating prime numbers using

Euclid's method */

int primes[lOOO];
#define MAXPRIMES 1000

10 Turbo Profiler User's Guide

0.0000 1

0.0000 1
0.0000 1
0.0000 1
0.0000 1

0.0359 1
0.0354 1
0.0059 500

0.0071 499
0.3069 15122

0.0038 333

0.0034 333

0.0060 499
0.0037 333
0. 0017 166
6.2655 166
0.0019 166
0.0018 166

0.0000 1

main()
{

int j;
int lastprime, curprime;

primes[O] = 2;
prirnes[l] = 3;
lastprime = l;
curprime = 3;

printf ("prime %d = %d \n", 0, primes [OJ);
printf("prime %d = %d \n", 1, primes[l]);
while(curprime < MAXPRIMES)
{

for(j = O; j <= lastprime; j++)
if((curprime % primes[j]) == 0)
{

curprime += 2;

break;

if{j <= lastprime)
continue;

lastprirne++;
printf ("prime %d = %d \n", last prime, curprime);
primes[lastprirne] = curprime;
curprime += 2;

This profile source listing is useful because it's a permanent record that shows, for each
area in your program, the execution time and execution counts.

When you have finished examining the listing, pressAlt+F3, or click the close box, to
close the File window.

Profile statistics report
You can also print a replica of the open Execution Profile window's contents to your
printer or to a disk file.

1 Choose Print I Options again.

2 Choose the Printer radio button.

3 Choose Graphics to include extended ASCII characters in the printed report. (If your
printer does not support extended ASCII characters such as If and Jb, skip this step
and proceed to step 4.)

4 Press Enter (or choose OK).

5 Choose Print I Statistics.

Chapter 1, A sample profiling session 11

The resulting printout, like the profile source listing, is a permanent record of your
progress as you go through the steps of profiling, modifying, recompiling, and
reprofiling in your quest for the sleekest and most efficient code possible (and practical)
for your program.

Saving and restoring statistics
Before you go on, here's how to save PRIMEO's profile statistics to a file, so you can quit
Turbo Profiler at any time without losing the data. We also show you how to restore
those statistics the next time you start Turbo Profiler.

Choose Statistics I Save to save your program's profile statistics to a .TFS (Turbo Profiler
Statistics) file. Because PRIMEO is in the Module window, the File Name input box lists
PRIMEO.TFS as the default. Choose OK to create this file. All the statistical data from the
current profile run of PRIMEO is now saved in the file PRIMEO.TFS in the current
directory, so you can quit the profiler at any time without losing any of that information.

To restore the statistics you saved for PRIMEO, open PRIMEO in Turbo Profiler and
choose Statistics I Restore. The File Name input box lists *.TFS as the default. Press Enter
to go to the Files list box, then highlight PRIMEO.TFS and choose OK to recover the data
from this file.

The File Name input box lists *.TFS as the default. Press Enter to go to the Files list box,
then highlight PRIMEO.TFS and choose OK to recover the data from this file.

Analyzing the statistics
In this section you will learn how to analyze the statistics in the Execution Profile
window so you can use what they reveal to streamline your program.

First, though, take another look at the time and count statistics in the Execution Profile
window. Unzoom the Execution Profile window (choose Zoom from the Window menu
or press F5) and look at the statistics for lines 22 and 31 (the if and print£ statements).

We cover modifications to the print£ statement in program PRIMES.

A time and count profile like this tells a lot about a program. For instance, you can see
that line 22 in PRIMEO executes far more frequently than any other statement. It makes
sense that line 22 executes 15,122 times, since it tests every number between 4 and 1,000
against every number in the array primes, until there is even division or the array is
exhausted. That means a lot of numbers to be tested. You can also see that line 31, the
print£ statement, accounts for most of the program's total execution time.

Viewing both source code and statistics
The data in the Execution Profile window shows that the test in line 22 is doing more
work than it should. But you can't really get the entire picture until you look at
execution time and count data and source code together.

12 T u r b o P r o f i I e r U s e r ' s G u i d e

What you need to do is compare time and count data in the Execution Profile window
and the corresponding source code in the Module window.

Here's one way to display source code and profile statistics simultaneously:

Resize and move the Execution Profile window so it occupies the right half of your
screen: Choose Window I Size I Move, or press Ctrl+F5.

2 Follow the directions on the status line to:

Resize the window to full-screen height and half-screen width.

2 Move the resized winJuw tu the right.

When you've done steps 1 and 2, press Enter.

3 Activate the Module window by pressing F6, then resize and move it so it occupies
the left half of the screen.

4 Go back to the Execution Profile window (press F6 again).

To resize a window with the mouse, drag the Resize box in the lower right comer; to
move the window, drag the title bar or any double-line left or top border character
(II or=).

There is an automatic link between the Execution Profile window and the Module
window, so that when you move through the source code, the execution profile display
tracks the cursor's current line position. To see this tracking feature in action,

Activate the Execution Profile window (press F6), and move the highlight bar to the
first line.

2 Open the SpeedMenu (pressAlt+F10) and choose Module (or just press Ctrl+M).

The profiler positions the cursor on line 31 in the Module window.

3 Use the arrow keys to move through the source code to line 22.

This line is the second-largest time consumer in PRIMEO. The top two statistics lines
in the Execution Profile window now display the profile data for this if statement.

4 Move the cursor in the Module window to line 21 and note how the display in the
Execution Profile window tracks with it. The top lines in the Execution Profile
window are now the profile statistics for line 21.

5 Move the cursor to line 30 and note the display in the Execution Profile window.

Having the two windows synchronized this way makes it easy to find the greatest
resource hogs in your program. Once you get a better feel for interpreting the data
onscreen, you won't need to rely as much on profile listings like the one on page 10.

Saving the window configuration
This is a good time to save your customized version of Turbo Profiler. If you don't save
your customized window arrangement, the windows will revert to their default size
and placement the next time you load a program into Turbo Profiler.

1 Choose Options I Save Options. This brings up the Save Configuration dialog box.

C h a p t e r 1 , A s a m p I e pro f i I i n g s e s s i o n 13

2 By default, the Options check box is already checked. This records settings (such as
the Execution Profile window's display options) in the configuration file.

3 In the Save Configuration dialog box, tab to Layout and press Spacebar. This causes
your side-by-side window layout to be saved in the configuration file.

4 By default, the configuration file to be saved is TFCONFIG.TF, listed in the Save To
input box. Choose OK, or press Enter, to save your options to this file in the current
directory.

Wherever you start up Turbo Profiler, it looks for TFCONFIG.TF, the default
configuration file. When the profiler finds that file, the options and layout you've set
will come up automatically.

Measuring an area's efficiency
The ratio of execution time to execution counts is a good measure of a line's or routine's
overall efficiency. To see this ratio for the areas in PRIMEO, change the display option in
the Execution Profile window. Here's how:

From the Execution Profile window's SpeedMenu (press Alt+F10), choose Display.

2 Under Display in the dialog box, choose Per Call.

3 Choose OK (or press Enter).

Now you can see that line 22 is much more efficient than line 31. It uses up a lot of
execution time because it executes so many times, but each individual call averages
much less than a millisecond. Line 31, on the other hand, averages nearly 20
milliseconds per call.

Note The output from the profiler points the way to improving the execution time of PRIMEO
and making it structurally simple. The task of improving the program can be divided
into two strategies:

Reduce the amount of time spent in input/ output.

2 Rewrite the looping structure to be more streamlined and efficient.

The input/ output problem can be partially resolved by reducing the print£ statement
from its present form

printf ("prime %d = %d \n", last prime, curprime);

to simply

printf ("%d\n", curprime);

Just this simple modification results in a considerable savings in the execution time.
However, you can't reduce the number of times you call the output statement; for the
given problem, there will always be 168 primes to print out. And apart from this minor
improvement, there is not a great deal you can do to speed up the execution of PRIMEO.
Its algorithm, which requires saving all the previous results in an array and then using
them to divide, is thorough but virtually impossible to streamline. (It's also not very
memory-efficient, because the array requires an allocation of memory equal to the

14 Turbo Profiler User's Guide

number of primes being tested. Eventually this imposes a limit on the number of primes
that could be tested without running out of memory.)

Fortunately, there is a better way to test for prime numbers: You can change the
algorithm itself. That's what happens in the next example program, PRIMEl.

A modularized primes test (PRIME1)
You're finished with PRIMEO now, so load PRIMEl (the next version of the prime
number prograrrl) irlto t:he iv1odule vvindO\N ar1J luuk at the code:

Choose File I Open.

2 By default, the File Name input box is activated and contains the file-name mask
*.EXE. Press Enter.

3 In the Files list box, use the Up and Down keys to highlight PRIMEl.EXE.

4 Press Enter. Turbo Profiler loads PRIMEl into the Module window.

5 Zoom the Module window (press F5). Note the added prime (Prime) routine on
line 4.

You can see right away that two major changes have occurred:

• The array primes is gone. This program does not test by dividing each number by all
smaller primes; it simply uses a loop to divide by all the odd numbers up to but not
including the suspected prime. Initially this algorithm results in more iterations, but
we will see that it eventually can be refined into a more streamlined and readable
program.

• The prime number test itself has been placed in a separate routine that is called from
the main program.

Run PRIMEl in Turbo Profiler (press F9) and look at the statistics. Then choose Display
from the Execution Profile window SpeedMenu to open the Display Options dialog box
and tum on the Both radio button. Press Enter, then zoom the Execution Profile window
(F5).

The execution time has improved somewhat (this is due in part to the fact that PRIMEl
prints out less information than PRIMEO). The main bottleneck is still the printf
statement (now line 21).

Notice in particular that the test for prime numbers (line 9 in PRIMEO) now executes
78,022 times instead of 15,122. This may be surprising at first, but notice that it only
increases execution time for this line by about 1 second; we have already seen that this
statement is time-efficient.

One obvious way to improve efficiency, now that we have isolated the test loop in a
separate routine, is to cut down on the number of calls to the routine. There are ways of
limiting the number of integers that have to be passed to the routine for testing; the
more you can eliminate at the main program level, the fewer calls you have to make and
the faster your program executes. That is the strategy we employ in the next sample
programs.

C h a pt e r 1 , A s a m p I e prof i I i n g s e s s i o n 15

Modifying the program and reprofiling
Earlier, we pointed out that instead of testing for all factors between 1 and n in the
modulus statement, you c~ set the upper liinit of the test to the square root of the
number you're testing. That's what we've done in program PRIME2 (PRIME2PA).

Loading another program (PRIME2)
Go ahead and load PRIME2, the next version of the sample program, into the Module
window. In program PRIME2, we've added a root (Root) routine that calls a square root
library routine and returns an integer result.

You need to set areas for all lines in the module, so bring up the SpeedMenu in the
Module window, choose Add Areas I Every Line, then press Enter.

Press F9 to start profiling. Once again, you'll see the primes between 1 and 1,000 print to
the user screen.

When the program finishes running, open the Display Options dialog box (choose
Display from the Execution Profile SpeedMenu) and set Display to Both. Choose OK.
Despite decreasing the number of calls to line 15 (from 78,022 to 5,288) and reducing the
time spent in the same statement, there's still a substantial increase in overall execution
time.

The problem with PRIME2 is the expense of the new root routine. Line 7 inside the
routine executes 5,456 times, consuming the most time of any routine.

When the Execution Profile window shows both time and count information, certain
patterns are worth looking for. In inefficient routines, the second line (time data) is
much longer than the first line (count data), which means the ratio of time to counts is
high. This is the case for line 27, the print£ statement.

When a routine's time:count ratio is high, the best thing to do is substitute another
routine.

However, the return statement in the root routine (line 7) presents a different problem.
It accounts for the largest number of calls and the largest amount of time. Two other
lines (line 5 and line 8) have 5,456 calls, but the magnitude bar for each of these cases
shows small execution times. This is good: It means the statements are fast. So the
biggest problem right now is the number of calls made to the root routine.

Reducing calls to a routine (PRIME3)
The problem now is to reduce the number of calls to the root routine. Load PRIME3 into
the Module window, then zoom the Module window and take a look at the source code.

In PRIME3, the only routine modified is prime. We've added a new integer variable,
limit, and set limit equal to root(n) before entering the for loop. The test in the for loop is
based on limit.

16 Turbo Prof i I er User's Guide

In the Module window SpeedMenu, set areas to Every Line in Module. When you
profile the program this time (choose Run I Run or press F9), the program runs quite a
bit faster. PR1ME3 shows an almost 2S% decrease in total execution time.

The print£ routine is now the major resource consumer, eating up over half the
execution time. By reducing the number of calls to the square root routine in root (from
S,4S6 to 999), we've decreased computational time substantially.

Still more efficiency (PRIME4)
There are still more ways to increase the efficiency of the prime routine. Load PR1ME4
into the Module window now, then examine lines 8 through 17 of the source code.

/****** PRIME4.C ******/

if (n % 2 == 0)
return (n==2);

if (n % 3 == 0)
return (n==3) ;

if (n % 5 == 0)
return (n==5) ;

for (i=7; i*i <= n; i+=2)

if In % i == o I
return 0;

return 1;

There are a number of improvements here.

• The three if statements in the prime routine weed out factors that are multiples of 2,
3, and S, respectively. If you can't throw out a number n based on one of these tests,
you must test the remaining numbers, up to the root of n. You can start at the value
7-the if statements have eliminated all possibilities below this number.

• The for loop now increments by two on each iteration, because there's no point in
testing even numbers.

• The test i * i <= n has replaced the more expensive test involving the root routine.

The net result is that we've shaved nearly half a second off the execution time.

Eliminating CR/LF pairs (PRIMES)
Here's one last change. Instead of printing a carriage return/linefeed pair after each
prime number, try printing just a space. This is the only change made in program
PRIMES.

Load PRIMES, set areas for every line, then run it.

Chapter 1, A sample profiling session 17

Surprise! Eliminating the carriage return/linefeed pair cuts execution time by a factor of
almost 7. Apparently, printing newline characters is expensive. The distribution of
profiles is fairly even for execution times and counts. We'd be hard-pressed to squeeze
more out of this program without substantially changing the algorithm.

Where to now?
We've taken you through the basics of profiling in this tutorial. By now, you should be
familiar with using Turbo Profiler: loading and profiling programs, printing the
contents of various windows, saving and restoring profile statistics, and rearranging the
windows so you can analyze the statistics.

Go ahead and quit Turbo Profiler now (choose File I Quit, or pressA/t+X).

For more information about Turbo Profiler's environment, as well as details about parts
of the profiler not mentioned here, refer to Chapter 2.

If you want more challenges than we've given in this tutorial, try these:

• Profile for primes less than
Ill 2,500
Ill 5,000
.. 7,500
.. 10,000

• Set the profile mode (choose Statistics I Profiling Options to bring up the Profiling
Options dialog box) to Passive analysis. What does this do to profiler overhead?
What kinds of information do you lose in passive analysis? (See Chapter 3 for
information on passive profiling.) ·

• Find out what kind of performance improvement you get by implementing the Sieve
of Eratosthenes to compute primes up to 10,000.

• Compare the cost of printing newline characters with calls to position the cursor.

Note There are a number of articles on the subject of profiling, but not many books. John
Bentley's book, Writing Efficient Programs, provides a summary of rules for designing
efficient code, suggests a comprehensive methodology for profiling, and contains an
extensive bibliography.

18 Turbo Prof i I er User's Guide

The Turbo Profiler environment
Turbo Profiler makes it as easy and efficient as possible for you to profile your
programs. When you start Turbo Profiler, everything you need is literally at your
fingertips. That's what an environment is all about.

The Turbo Profiler environment also boasts these extras to make program profiling
smooth:

• Multiple, movable, resizable windows

• Mouse support for any mouse compatible with the Microsoft mouse version 6.1 or
later

• Dialog boxes to replace multilevel menus

Part 1: The environment components
There are three visible components to the integrated environment: the menu bar at the
top, the window area in the middle, and the status line at the bottom. Many menu items
also offer dialog boxes. Before we discuss each menu item in the environment, we'll
describe these more generic components.

The menu bar and menus
Turbo Profiler has both global and SpeedMenus. Global menus are ones you access via
the menu bar, and SpeedMenus are ones you access from within a window.

The menu bar is your primary access to all the global menu commands. In addition, it
displays a program activity indicator on the right side that tells, for example, whether
the profiler is READY for you to do something, RUNNING your program, or WAITing while it
processes a processor-intensive task. The only time the menu bar is not visible is when
you're viewing your program's output in the user screen.

Chapter 2, The Turbo Profiler environment 19

Choosing menu commands from the keyboard
Here's how to execute global menu commands using just the keyboard:

Press F10. This makes the menu bar active, which means the next thing you type
pertains to it, and not to any other component of the environment.

You see a highlighted menu title when the menu bar is active. The menu title that's
highlighted is the currently selected menu.

2 Once the global menu is active, use the arrow keys to select the menu you want to
display. Then press Enter.

Note To cancel an action, press Esc.

As a shortcut for this step, just press the initial letter of the menu title. (For example,
press F to display the Files menu.)

If an ellipsis(...) follows a menu command, the command displays a dialog box when
you choose it. If an arrow (~) follows the command, the command leads to another
menu.

3 If the command opens another menu, use the arrow keys again to select the
command you want. Then press Enter.

Again, as a shortcut, you can just press the highlighted letter of a command to choose
it, once the menu is displayed.

At this point, Turbo Profiler either carries out the command, displays a dialog box, or
displays another menu.

Speed Menus
In addition to the global menus that you access through the menu bar, each of Turbo
Profiler's windows has its own unique SpeedMenu. When you're in a window, press
Alt+F10 to bring up the SpeedMenu. For more information on accessing SpeedMenus,
refer to the discussion on page 28.

Choosing menu commands with the mouse
To use the mouse to choose commands from global menus, click the desired title on the
menu bar to display the menu, then click the desired menu command. You can also
drag straight from the menu title down to the menu command. Release the mouse
button on the command you want. (If you change your mind, just drag off the menu; no
command will be chosen.)

Shortcuts
Turbo Profiler offers many quick ways to choose menu commands. For example, with a
mouse you can combine the two-step process into one: Drag from the menu title down
to the menu commands, then release the mouse button when the command you want is
selected.

20 Turbo Profiler User's Guide

From the keyboard, you can use keyboard s~ortcuts (or hot keys) to access the menu bar
and choose commands.

Table 2.1 Menu hot keys

Press.this shortcut. ..

Ctr/ and the highlighted letter of the
SpeedMenu command

Alt plus the highlighted letter of the menu
command

The highlighted letter of the dialog box
component

The hot key combination listed next to a
menu command

Turbo Profiler windows

To accomplish this ..•

Carry out the SpeedMenu command

Display a menu from the menu bar

Execute that menu command or
select that dialog box component

Carry out the menu command.

Most of what you see and do in the Turbo Profiler environment happens in a window. A
window is an area of the screen that you can move, resize, zoom, layer, close, and open.

You can have many windows open in Turbo Profiler (memory allowing), but only one
window can be active at any time. Any command you choose or text you type applies
only to the active window.

Note The active window is the one that you're currently working in.

Turbo Profiler makes it easy to spot the active window by placing a double-lined border
around it. The active window always has a close box. If your windows are overlapping,
the active window is the one on top of all the others (the frontmost one).

There are several types of windows. Most of them have these things: a title bar, a close
box, two scroll bars, a resize corner, a zoom box, an iconize box, and a window number
(1to9).

Window management
Some windows are divided into two or more panes for displaying different kinds of
information. Individual panes often have their own SpeedMenu.

The following table provides a quick rundown of how to handle windows in Turbo
Profiler. You can perform these actions with a mouse or the keyboard.

Table 2.2 Manipulating windows

Tci·~~ool.llpl.iishthis.;•··
Open a window

Close a window

· •· Us~•oneOf·tliesel.llethod~;;;•+·•
Choose View to open a profiler window that's not already open.

Choose Close from the Window menu or press Alt+F3 or, if active, click
the window's close box.

Ch apter 2, The Turbo Prof i I er environment 21

Table 2.2 Manipulating windows (continued)

Activate a window

View the window's contents

Move the active window

Resize the active window

Zoom the active window

Iconize the active window

Move from pane to pane

The status line

Click anywhere in the window, or
Press Alt plus the window number (1 to 9, in the upper right border of
the window), or
Choose Window and select the window from the list at the bottom of
the menu, or
Choose Next from the Window menu (or press F6) to make the next
window active (next in the order you first opened them).

Use cursor keys to scroll the window up and down or left and right, or
Use the mouse to operate the scroll bars:
• Click the direction arrows at the ends of the bar to move one line or

one character in the indicated direction.
• Click the area in the middle of the bar to move one window size in the

indicated direction.
• Drag the scroll box to move as much as you want in the direction you

want.

Drag its title bar or any left border character that isn't a scroll bar, close
box, or zoom or iconize box, or
Choose Size/Move from the Window menu (or press Ctrl+F5), use the
arrow keys to place the window where you want it, then press Enter.

Drag the resize comer, or
Choose Size/Move from the Window menu (or press Ctrl+F5), press
Shift+Arrow to change the size of the window, then press Enter, or
Drag any part of the right or bottom border that isn't a scroll bar to
resize the window.

Click the zoom box, or
Double-dick the window's.title bar, or
Choose Zoom from the Window menu, or press F5.

Click the iconize box, or
Choose Iconize/Restore from the Window menu.
When a window is fully zoomed, it has only an unzoom box.([t])
When it is iconized, it has only a zoom box ([t]). In its restored state, it
has both an up and a down arrow.

Press Tab, Shift+ Tab, or Shift+Arrow, or
Choose Window I Next Pane.

The status line at the bottom of the Turbo Profiler screen provides the following
information:

• It reminds you of basic keystrokes and shortcuts applicable at that moment in the
active window. (You will see that the status bar changes if you hold down Alt or Ctr/.)

• It provides onscreen shortcuts you can click to carry out the action (instead of
choosing the command from the menu or pressing the hot key on the keyboard).

• It offers one-line information on any selected menu command or dialog box item.

The status line changes as you switch windows or activities. You can click any of the
shortcuts to carry out the command.

22 Turbo Profiler User's Guide

The only time the status line is unavailable is when a dialog box or menu is open. You
must close the dialog box or menu before doing anything else.

When you've selected a menu command, the status line changes to display a one-line
summary of the routine of the selected item. For example, if the Options menu title is
selected (highlighted), the status line displays the currently selected item in the Options
menu.

Dialog boxes
If a menu command has an ellipsi::. dfter it(...), the command opens a dialog box. A
dialog box is a convenient way to view and set multiple options.

When you're making settings in dialog boxes, you work with six basic types of controls:
radio buttons, check boxes, action buttons, text boxes, list boxes, and standard buttons.

If you have a color monitor, Turbo Profiler uses different colors for various elements of
the dialog box.

Part 2: The menu reference
This section gives you an item-by-item description of each menu command and dialog
box option in the Turbo Profiler environment.

= menu (System)
The= menu (called the System menu) appears on the far left of the menu bar. To activate
the= menu, either press Alt+Spacebar, or press F10, then use Right or Left to go to the=
symbol and press Enter.

With the commands in the = menu, you can

• Repaint the screen
• Restore your original window configuration
• Activate the Turbo Profiler information box

Repaint Desktop
Choose Repaint Desktop when you want Turbo Profiler to redraw the screen. You
might need to do this, for example, if a memory-resident program has left stray
characters on the screen, or possibly if you have display swapping turned off.

Restore Standard
When you start up Turbo Profiler, it sets the environment windows' size, window status
(open or closed), and placement according to information stored in the configuration file
TFCONFIG.TF. Once Turbo Profiler is onscreen, you can move and resize the windows,
close some and open others, and generally make a real mess of your screen. The Restore
Standard command provides a quick way to rectify such a situation.

Chapter 2, The Turbo Profiler environment 23

When you choose Restore Standard, Turbo Profiler puts all the windows back the way
they were when you first started the profiler.

About
When you choose About from the= menu, the About box pops up. This box lists the
Turbo Profiler version number. Press Enter or choose OK to close the box.

File menu
The File menu contains commands for

• Opening and loading a program to be profiled
• Changing the current directory
• Obtaining information about your program and system memory allocation
• Opening up a DOS shell
• Quitting the profiler

Open
The File I Open command, used to load an explicit file into the Module window, opens a
two-tiered set of dialog boxes. The first being the Load aNew Program to Profile dialog
box.

Figure 2.1 The Load A New Program to Profile dialog box

TRPOF.EXE's Load a New Program to Debug dialog box contains an additional button,
Session, to support its remote profiling feature. For more information on remote
profiling, and the Session button, see Appendix C.

If you know the name of the program you want to load, enter the executable name into
the Program Name input box and press Enter.

To search through directories for your program, click the Browse button to open the
second dialog box (the Enter Program Name to Load dialog box):

24 T u r b o P r o f i I e r U s e r ' s G u i d e

Figure 2.2 The Enter Program Name to Load dialog box

The Files list box displays the files in the currently selected directory. By entering a file
mask into the File Name input box (such as *.EXE), you can specify which files should be
listed. You can also use the File Name input box to change disk drives.

To "walk" through disk directories, double-dick the entries listed in the Directories list
box (the .. entry steps you back one directory level). Once you've selected a directory,
choose a file to load from the Files list box. To quickly search for a file, type a file name
into the Files list box. Turbo Profiler's incremental matching feature moves the highlight
bar to the file that begins with the letters you type. Once you've selected a file, press OK.
This action returns you to the Load a New Program to Profile dialog box.

To support remote debugging, TPROF.EXE contains a buttons in the Load a New
Program to Profile dialog box. The Session radio buttons specify whether or not the
program you're debugging is on a local or remote system. If it's located on a remote
system, select the Remote Windows radio button; if it's not on a remote system, select
Local. See Appendix B for complete instructions on remote debugging.

Note Before loading a program into the profiler, be sure to compile your source code into an
executable file (.EXE or .DLL) with full debugging information. Although you can load
programs that don't have debug information, you will not be able to use the Module
window to view the program's source code. (The profiler cannot reference the source
code of executable modules that lack debug information. If you load a module that
doesn't contain debug information, Turbo Profiler opens the Disassembly window to
show the disassembled machine instructions of that module.)

When you run a program under the control of Turbo Profiler, the program's executable
files (including all .DLL files) and original source files must be available. In addition, all
.EXE and .DLL files for the application must be located in the same directory.

Session Saving
When you exit Turbo Profiler, it saves to the current directory a session-state file that
contains information about the profiling session you're leaving. When you reload your
program from that directory, Turbo Profiler restores the history lists from the last
profiling session.

By default, all history lists are saved to the session-state file. Session-state files are
named XXXX.TP and XXXX.TPW by TPROF.EXE and TPROFW.EXE, respectivley,
where XXXX is the name of the program you're profiling. If no program is loaded when
you exit Turbo Profiler, then XXXX is named either TPROF or TPROFW.

Chapter 2, The Turbo Profiler environment 25

The Options I Set Restart Options command opens the Restart Options dialog box, from
where you can set how Turbo Profiler handles the session-state files. In this dialog box,
the Restore at Restart check box specifies whether you want to save the profiler's history
lists. The Use Restart Info radio buttons specify how you want to handle the file:

Table 2.3 Turbo Profile session-state saving options

Always Always use the session-state file.

Ignor if old Don't use the session-state file if you've recompiled your program.

Prompt if old Prompts if you want to use the session-state file if you've recompiled your program.

Never Do not use the session-state file.

Get Info
The File I Get Info command displays a text box with information about the program
being profiled and your system's current memory configuration.

Information in the Get Info box is for display only; you can't change any settings from
this box. Here's what the categories in this information box represent:

• Program is the program being profiled; you determine which file to profile with the
File I Open command.

• Status describes how Turbo Profiler gained control: it can be any one of the following
messages:

Loaded
Control-Break
Terminated, exit code XX
Stopped by area
NMI Interrupt
Exception XX
Di vi de by zero
No program loaded

• Mode is the profiling mode (active, passiv;e, or coverage); you specify the profiling
mode with the Profile Mode radio button in the Profiling Options dialog box
(accessed by choosing Statistics I Profiling Options).

• Collection tells whether automatic data collection is enabled or disabled; you specify
the data-collection setting with the Statistics I Accumulation command.

• Memory shows the use of memory:
• DOS: Memory occupied by DOS and/ or various device drivers
• Profiler: Total memory used by the profiler
• Symbols: Memory allocated for the program's symbol table
" Program: Memory allocated to the current program being profiled
" Available: Amount of remaining available memory

• DOS version shows the current DOS version on your system.

• Current date and time is taken from the system clock.

26 Turbo Profiler Us.er's Guide

After reviewing the information in the Get Info box, click OK or press Enter to return to
the current window.

DOS Shell
The File I DOS Shell command steps you out of Turbo Profiler and into a DOS shell. To
return to Turbo Profiler, type EXIT at the DOS prompt.

Note In remote profiling mode, the DOS command line appears on the Turbo Profiler screen
rather than on the user screen; this allows you to switch to DOS without disturbing your
program's output. Because your program's output is always available on one screen in
the ::.ptem, Window i User Screen and Alt+F5 are disabled during remote profiling. (See
Appendix C for details about remote profiling.)

Quit
@](Z] The File I Quit command exits Turbo Profiler, removes it from memory, and returns to

the DOS command line.

If you have any profile data or setup parameters that you want to keep (such as the
profile statistics, profiling and display options, and screen layout options), save them
with the Statistics I Save and Options I Save commands before exiting. If you don't,
you'll lose the options you've set.

Note Each time you exit Turbo Profiler, it remembers the areas you set up for the current
program by saving the settings in a . TF A file. Then, the next time the program is loaded,
the area settings are automatically put into effect.

View menu
The View menu lets you open several kinds of windows in which you can examine
information about your program's performance.

Table 2.4 Summary of Turbo Profiler windows

Module

Execution Profile

Callers

Overlays

Interrupts

Files

Areas

Routines

Disassembly

Text File

Coverage

Source code for the program being profiled

Statistical information about a program after the program has nm

Information about how often a routine is called and which routines call it

Information about overlays for Borland's line of Pascal compilers, Borland's C
and C ++ compilers, and Turbo Assembler

Information about interrupt calls made by the program

Information about file activity

Detailed information about data-collection activities at the places marked in
your source code

All routines that can be used as profile area markers

The current profile area in the Module window, as disassembled source code

Contents of any text file you specify

In its default setting, lists the code blocks which haven't yet been executed

C h a p I e r 2 , T h e T u r b o P r o f i I e r e n v i r o n m e n I 27

Speed Menus
Each Profiler window has its own SpeedMenu (actually, some windows have more than
one SpeedMenu, depending on the number of panes in the window). A SpeedMenu
contains commands and settings specific to the window pane.

To activate a SpeedMenu, press Alt+F10 (if there is more than one window pane, press
Tab to alternate between the panes). When the SpeedMenu pops up, use the arrow keys
to select the command you want and press Enter, or press the highlighted letter. Once
you choose a SpeedMenu command, Turbo Profiler either carries it out, displays a
dialog box, or displays another menu.

To activate a SpeedMenu item directly from the window (without bringing up the
SpeedMenu), press the Ctrl+{letter) hot key, where letter is the menu item's highlighted
letter.

To pop up the active menu's SpeedMenu using a mouse, dick the mouse's right button.
Then, select the command you want by dicking on the menu item.

Module
The Module window displays source code for the program being profiled. In the
Module window, you can examine code and set areas to be profiled. Special hot keys
and window links connect the code in this window to data and statistics in other
windows.

When you choose View I Module, a list box appears that lists all the source modules
linked with the program currently loaded into the Module window. Highlight the new
module you want to display, and press OK to load it into the Module window.

If the Modified appears in the title bar of the Module window, it indicates that the source
code to the file you're viewing has changes since the program was last compiled.

Figure 2.3 The Module window (zoomed)

When you run the profiler, both the .EXE file and the original source file must be
available. Turbo Profiler looks for your program's source code in these places, in this
order:

1 In the directory where the program was originally compiled. The name of the
directory where the program was originally compiled is contained in .EXE and .OBJ
files if you compiled your program with symbolic debugging information.

28 Turbo Profiler User's Guide

2 In the directories (if any) you've listed under Options I Path for Source (or stated in
the command-line option using the -sd switch).

3 In the current directory.

4 In the directory that contains the .EXE file of the program you're profiling.

PressAlt+F10 or click the right mouse button to bring up the Module window's
SpeedMenu. With the SpeedMenu commands, you can perform these actions:

• Move the cursor to a specific line or code label.

• Search for text in the source code.

• Add and remove profile areas.

• Set the profiling action that will occur for a given area.

• Specify the level of call-path recording for a given routine.

• Load another module or another source file of the current module into the Module
window.

• Invoke the editor specified when you run TFINST.

Line
@i!J[IJ To move swiftly to a particular line of code in the Module window, choose Line from

the SpeedMenu. The dialog box that pops up requests the line number you seek; type in
the new line number, then choose OK (or press Enter). If you enter a line number after
the last line in the file, you will be positioned at the last line in the file.

Search
@ill[]] To search for a character string in the current module, choose Search. The prompt box

that pops up requests the string to search for; type in the string, then choose OK (or
press Enter).

If the cursor is positioned over text that looks like a variable name, the prompt box
comes up initialized to that name. If you mark a block in the file, the profiler uses that
block to initialize the search prompt. This saves you from extraneous typing if the text
you want to search for is a string already in the Module window.

You can use the standard DOS wildcards (? and *): The ? indicates a match on any single
character, and the * matches 0 or more characters.

The search begins from the current cursor position and does not wrap around from the
end of the file to the beginning. To search the entire file, start at the first line.

Next
@ill[]] Once you've defined a search string with the Module window's local Search command,

you can search for successive occurrences of that string with the Next command.
Choose Next from the SpeedMenu, or press the shortcut, Ctrl+N. You can use Next only
after issuing a Search command.

Chapter 2, The Turbo Profiler environment 29

Goto
@ill@] To position the Module window's cursor on a particular routine or other code label in

your program's source code, choose Goto. The prompt box that pops up requests the
address you want to examine. Type in a line number, a routine name, or a hex address,
then choose OK (or press Enter).

Note Use the hex format of your program language.

For information on address syntax, see "Evaluating expressions" in the Turbo Debugger
User's Guide.

Add Areas
@ill[K) Add Areas on the Module window's SpeedMenu leads to another menu.

• All Routines adds area markers for all routines in the program being profiled,
including routines for which source code is unavailable (such as library routines
linked in as object modules).

• Modules with Source adds area markers for all routines in modules whose source
code is available.

• Routines in Module adds area markers for all routines in the current module (the one
in the Module window).

• Every Line in Module adds area markers for all lines in the current module.

• Lines in Routine adds area markers for all lines in the current routine (whichever
routine the cursor is on in the Module window).

• Current Routine adds an area marker for whichever routine the cursor is on in the
Module window.

• This Line adds an area marker for the line the cursor is on in the Module window.

Remove Areas
@ill0 Choosing Remove Areas on the Module window's SpeedMenu displays another menu.

This menu is almost identical to the Add Areas menu just described. Except for the All
Areas command, which removes all markers, each command on the Remove Areas
menu erases area markers the same way as the respective Add Areas command adds
area markers.

Operation
@ill@] The Operation command opens the Area Options dialog box, which contains settings

for the area marker on the current line in the Module window.

Figure 2.4 The Area Options dialog box

30 Turbo Profiler User's Guide

You can specify two options with the radio buttons in this dialog box: Operation and
Timing. In addition, the Window Procedure check box enables message tracking for
Windows programs.

• Operation specifies what profiling action will occur for the current area. Window
Procedure, when checked, specifies that the current area marks a procedure specific to
Windows.

When you mark an area, a marker symbol signifying the chosen operation appears to
the left of that area in the Module window. A different symbol is used to refer to each
type of area marker: A Normal area is marked with=>. a Stoo area is marked with
s">-, an Enable area is marked with e)I., and a Disable area is ~arked with d>.

" Normal collects profile statistics for this area as specified in the Statistics menu
(callers, file activity, interrupts, overlays, and so on) and Area Options dialog box,
which you reach through the SpeedMenus of the Module and Areas windows .

., Stop stops program execution at this marker.

Enable turns on the collection of statistics at this point in the program .

., Disable temporarily turns off the collection of statistics at this point in the program.
Data collection resumes once program control passes an Enable marker.

Note Coverage mode provides only one type of area marker, denoted by a single >
character. The marker indicates that the block has not been executed.

• Messages becomes active when the Window Procedure check box is checked.
Choosing Messages displays the Window Procedure Messages dialog box.

• Timing specifies whether the profiler will add the current area's execution time to a
higher-level area or keep it separate.

Separate adds any timer ticks in the current routine to that routine's statistics.

Combined sums the timer ticks of the marked routine with the timer ticks of all the
children of that routine. You can specify combined time for an area only if that
area's Callers setting is Immediate or All.

When you set a routine's Timing to Combined, Turbo Profiler does not display
timing statistics for the children of that routine-their times are reported as part of
the routine whose timing is set to Combined.

The following illustration shows how Combined timing works.

Chapter 2, The Turbo Profiler environment 31

In this illustration, the routine Fl has it's Timing set to Combined. Turbo Profiler collects
the timing information for all the routines (Fl, F2, F3, and F4), and sums them into the
timing information collected for the routine Fl.

Callers
@![]II] The Callers command on the SpeedMenu leads to the Stack Trace dialog box.

Figure 2.5 The Stack Trace dialog box

You specify how callers are handled with two sets of radio buttons, Areas and Stack.

• Areas specifies which areas you want call paths recorded for.

• This Routine sets only the current routine (the one the cursor is on in the Module
window) to the setting specified in Stack.

• This Module sets all routines in the current module to the setting specified in
Stack.

GI All Routines sets all routines in all program modules to the option specified in
Stack.

• Stack specifies how extensive ("deep") the recorded call stack should be.

GI All Callers records all available call stack information for the routine(s) you've
specified with the Areas option.

• Immediate Caller records only "parent" information for the routine(s) you've
specified with the Areas option.

" None turns off call stack information for the routine(s) you've specified with the
Areas option.

When OK is selected from the Stack Trace dialog box, the areas specified by the Areas
options are set according to the selected Stack option. Changes made in this dialog box
are reflected in the Areas window.

Module
@!DI]] The Module command on the SpeedMenu leads to the Pick a Module dialog box that

lists all your program's modules for which source code is available.

Most modules have only a single source code file; other files included in a module (such
as C header files) usually define only constants and data structures. Use this command
to open a different module in the Module window.

This option displays only the file names for the source code modules that are associated
with the program being profiled. It allows you to move rapidly from one module to
another without having to search your source directory explicitly.

The Module command searches for the source code in the following places, in the order
listed:

32 T u r b o P r of i I e r U s e r ' s G u i d e

In the directory where the program was originally compiled.

2 In the directories (if any) you've listed under Options I Path for Source (or stated in
the command-line option using the -sd switch).

3 In the current directory.

4 In the directory that contains the .EXE file of the program you're profiling.

File
@ill[IJ The File command on the Module SpeedMenu leads to a dialog box that lists all the

source files used to compile the Lu11enl rnudule. use this Lummand if yuur module has
source code in more than one file and the file you want is not displayed in the module
window.

The File command searches for the source code in the same order as the Module
command in the previous section.

Edit command
@EDIT] Although Turbo Profiler does not have a built-in editor, you can specify your own

favorite editor as an option when you customize the profiler with the Turbo Profiler
installation program, TFINST. See Appendix B for information about TFINST.

Once you've installed an editor using TFINST, whenever you choose Edit from the
Module window's SpeedMenu, Turbo Profiler automatically shells out to DOS and
invokes your editor. To return to the profiler from your editor, simply quit the editor.

Execution Profile
The Execution Profile window is where Turbo Profiler displays your program's profile
statistics (after you've set areas and run the program under control of the profiler).

The Execution Profile window consists of one pane, divided into two display areas (top
and bottom). The top display area lists

• Total Time: your program's total execution time.

• % of Total: how much of that total (a percentage) is represented by the statistics for
the areas you've chosen.

• Runs: the current profile run (if you're collecting and averaging statistics from more
than one run).

• The options you've chosen from the SpeedMenu (display format, filter status, and
sort order).

• Total Ticks: the total number of timer ticks which occurred during the program run.
Timer Ticks displays only during passive mode profiling.

The bottom display area lists one or two lines of profile data for each area you've
marked. The information shown in this display area can include each area's name or
line number, the execution counts for each marked area, the time spent in each marked
area, the average time per pass for each marked area, and the most time spent in a
marked area on a single pass.

Chapter 2, The Turbo Profiler environment 33

If you have a Module window and an Execution Profile window onscreen at the same
time, the Execution Profile window is positioned automatically to show the statistics for
the area the cursor is on in the Module window.

To specify how the Execution Profile window displays your program's statistics,
activate the SpeedMenu (pressA/t+F10). Through this SpeedMenu, you can

• Select what type of modules will be profiled: Window procedures or normal areas.

• Choose any one of six different ways to display profile statistics in the Execution
Profile window.

• Sort the displayed statistics.

• Temporarily remove one or more areas' statistics from the display.

• Examine the source code for an area.

• Delete an area's statistics from memory and erase the associated area marker.

Display
@ill[[] When you choose Display from the Execution Profile window's SpeedMenu, the

Display Options dialog box comes up.

Figure 2.6 The Display Options dialog box

You can specify three options with the radio buttons in this dialog box: Profile, Display,
and Sort.

• Profile specifies which areas are displayed in the Execution Profile window.
111 Normal Areas displays all marked areas, including any Window procedures that

are marked.

"' Window Procs filters the displayed areas to show only the classes and Windows
messages that are specified in the Windows Procedure Messages dialog box.

See Appendix D for a complete description of the Windows Procedure Messages
dialog box.

• Display specifies what form the data will be displayed in.

"' Time displays the profile statistics for each area as the time (in milliseconds)
program control was in that area.

111 Counts displays profile statistics for each area as pass counts: how many times
program control entered that area.

• Both displays the statistics for each area as both time (the top line) and counts. This
provides a graphic measure of a routine's efficiency.

"' Per Call displays each area's statistics as the Time:Counts ratio. This provides the
average time spent in each call to the routine.

34 Turbo Profiler User's Guide

• Longest displays, for each area, the longest single time program control was in
that area.

" Module displays, for each module in the program, the time program control was
in that module. This setting is useful only if Turbo Profiler is in passive mode,
which means it's recording with every clock tick which module the program is in.
This option is helpful as a first cut at profiling a large program.

• Sort specifies what order the data will be sorted in.

" Name sorts the profile statistics by area name, in alphanumeric order.

'" Address sorts profilP statistirs hy memory loc;:ition, st0rting -with the lowest
address.

" Frequency sorts the statistics numerically, with the highest frequency at the top.

The top display area of the Execution Profile window lists the current display and sort
options.

Filter
@ill[[] The Filter command on the SpeedMenu leads to the three-item menu shown here.

• All restores all collected statistics for the current program to the Execution Profile
window.

After you've filtered out certain statistics from the Execution Profile window (with
Filter I Module or Filter I Current), choose Filter I All to resfore all profile statistics to
the window.

• Module filters out all but one module's statistics.

This command leads to the Pick a Module dialog box, which lists all modules for the
current program. Use the Up and Down arrow keys to highlight one module in the list,
then press Enter. Only the areas in the chosen module show up in the Execution
Profile window.

• Current temporarily removes the highlighted area's statistics from the Execution
Profile window.

Choose Filter I Current if you want to throw out one area's statistics and see what
happens to the remaining percentages. The Current command is a temporary filter
that hides report information from sight without deleting any information; it does the
following:

Removes the current area's statistics from the Execution Profile window.

2 Calculates original total execution time minus the time of the removed area.

Recalculates the remaining areas' percentages as fractions of the newly calculated
total execution time.

When you filter one or more areas' statistics from the Execution Profile window, the
profiler calculates a new total execution time based on the statistics displayed in the
window, but the Total Time value shown in the top of the window does not change.

Chapter 2, The Turbo Profiler environment 35

When you use Filter I Current, the original total execution time for the entire program
remains displayed in the Execution Profile window's top display area.

Filter I Current is a temporary filter that hides report information from sight; Remove
actually affects area marker settings by removing them in both the Module and Areas
windows.

Note Don't confuse Filter I Current with the Remove command on the Execution Profile
window's SpeedMenu.

Module
@ill@] The Module command on the SpeedMenu takes you to the line of source code in the

Module window for which the statistics are highlighted in the Execution Profile
Window. Note that in addition to the Ctrl+M hot key, you can press Enter from the
Execution Profile window to execute the same command.

Suppose you highlight the statistics for routine frank in the Execution Profile window,
then choose Module from the SpeedMenu to activate the link. Turbo Profiler activates
the Module window and places the cursor on the first line of frank in the source code.
After that, you move the cursor to line 25 in the Module window (line 25 has an area
marker). Automatically, the Execution Profile window's contents scroll so that the
statistics for line 25 show at the top of the statistics display area.

The link is unidirectional: If you go back to the Execution Profile window (after going to
the Module window) and move the highlight bar, the source code in the Module
window does not scroll or track the highlight bar's position. (If it did, you could get very
frustrated.)

If, when you choose the Module command, source code for the highlighted line is
unavailable, the link goes to the corresponding line of code in the Disassembly (CPU)
window. This happens, for example, if you've marked areas for All Routines and the
highlighted line is a library routine. (See page 47 for details about the Disassembly
window.)

Position
@ill0 The Position command is identical to the Module command, with the exception that the

Position command does not activate the Module window; the Execution Profile window
remains active. Another shortcut for this command is the Spacebar.

Remove
@ill[]] The Remove command removes area marker settings from the currently highlighted

line in the Execution Profile window.

Warning The Remove command erases statistical data. Use it with discretion.

Once you remove the line's area markers with the Remove command, the statistics you
had gathered for that line are erased and no more statistics are gathered for that line of
code. To undo a Remove action, you must

Activate the Module window and bring up its SpeedMenu.

2 Place the cursor on the line whose marker you removed.

36 Turbo Profiler User's Guide

3 Choose Add Areas I This Line.

4 Run the program again (collecting a new set of statistics).

Callers
The Callers window is where Turbo Profiler displays the call paths for each marked
routine in your program. A call path is a list of all the routines that were called to
execute the currently selected routine. The call path starts with the original calling
routine. You must set the Statistics I Callers menu item to Enabled before the profiler will
record any call-path information.

Figure 2.7 The Callers window, showing calls in CALLTEST

The left pane in the Callers window lists each marked routine by name. When you
highlight a routine name in the left pane, the right pane displays each unique call path
for that routine. If a call path is wider than the right pane, you can zoom the window or
switch to the right pane and scroll left and right through the path.

Note An underscore precedes the identifier names in this Callers window because Borland's
C and C++ compilers add the underscore to all symbol names appearing in .OBJ files
and symbolic debugging information.

Although the Callers window displays the call-path information, you must specify what
type of call path recording you want. This is done through either the Module window or
the Areas window.

In the Module window, you can set callers options for whole groups of routines.

1 With the cursor on a marked routine in the Module window, press Alt+F10 to bring up
the SpeedMenu.

2 Choose Callers to see the Stack Trace dialog box.

3 Set the Areas option. You can choose to record call paths for the current routine, all
routines in the current module, or all routines in the program (including library
routines).

4 Set the Stack option. You can choose to record all callers for the chosen routine(s),
immediate callers (the routines' parents only), or no callers at all.

5 Press Enter or choose OK to go back to the Module window.

In the Areas window, you can set callers options for individual marked routines. (See
page 44 for more information about the Areas window.)

In the Areas window, place the highlight bar on the routine you want to set call-path
options for, then pressA/t+F10 to bring up the SpeedMenu.

2 Choose Options to see the Area Options dialog box.

C h a pt e r 2 , T h e Tu r b o P r of i I e r e n v i r o n m e n t 37

3 Set the Callers option. You can choose to record all callers for the chosen routine(s),
immediate callers (the routines' parents only), or no callers at all.

4 Press Enter or choose OK to go back to the Areas window.

Figure 2.7 shows routine c highlighted in the left pane of the Callers window, after a
profile run of this program, CALLTEST:

/* Program CALLTEST */
/*.,.Copyright (c) 1990, Borland International */
#include <stdio.h>

main ()
{

a tl
{

c ();
b2 ();
bl();
a();

int i;

for (i = O; i < 100; i++)
b2 ();

bl();

bl()
{

int i;

for (i = O; i < 33; i++)
c ();

b2 ()
{

c ()
{

int i;

for (i = O; i < 77; i++)
c () i

int i;

for (i = 0; i < 3; i++)

38 Turbo Profiler User's Guide

The Callers window's right pane lists each unique call path for routine c:

• 1 call from main to c
• 77 calls from main to b2 to c
• 33 calls from main to bl to c
• 7,700 calls from main to a to b2 to c
• 33 calls from main to a to bl to c

You'll find the Callers window useful when you must make decisions about
restructuring code, especially when it's possible to reach a routine through several
different call paths.

Both panes of the Callers window have SpeedMenus. In the Callers window's right
pane, the Inspect SpeedMenu item brings up a subsequent menu containing the
commands areas, module, and profile.

Inspect (left pane)
@fil[JJ When the highlight bar is on a routine name in the left pane, choose Inspect (or press its

shortcut, Ctr/+/) to view the source code for that routine in the Module window.

Inspect (right pane)
@fil[JJ When the highlight bar is on a call path in the right pane of the Callers window, you can

"inspect" (view information about) elements in that call path in one of three other
windows.

Choose Inspect to bring up a list of those other windows.

2 Choose the window you're interested in (Areas, Module, or Profile) from the list. This
brings up the Pick a Caller dialog box, which lists all callers on the current call path.

3 In the dialog box, highlight the caller in question (use the arrow keys or a mouse
click), then choose OK or press Enter. If the window you choose to inspect isn't
already open, the profiler opens it automatically, then goes to the caller's location in
that window.

Sort (right pane)
@fill]] With the local Sort command in the Callers window's right pane, you can sort the list of

call paths in two ways:

• Called sorts the call paths in the same order that program control traversed them at
run time.

• Frequency sorts the call paths by how often program control traversed each path,
with the most-used path at the top of the list.

Overlays
The Overlays window is where Turbo Profiler displays information about overlay
activity for Borland's Pascal compilers, Borland's C and C++ compilers, and Turbo
Assembler programs. You must set the Statistics I Overlays menu item to Enabled before
the profiler will record any overlay information (if your program has overlays, Turbo
Profiler automatically enables the Overlay option).

Chapter 2, The Turbo Profiler environment 39

Figure 2.8 The Overlays window

The information listed in this window can include:

• How many times your program loads each overlay into memory.
• When each overlay was loaded.
• The sequence in which your program loads the overlays.
• The size of the overlay

Like the Execution Profile window, the Overlays window is divided into two display
areas, top and bottom. The top display area lists total execution time for your program
and the current display option for overlay statistics. The bottom display area lists the
overlay statistics as either a histogram or a list of events.

Note Press any key to halt the execution of the program OVRDEMO.

If you have one of Borland's Pascal compilers, there's a program, OVRDEMO, that gives
a live demonstration of how the Overlays window works. Load this program into the
profiler. Then set area markers for every line in the module OVRDEMO, enable
Statistics I Overlays, and run the program. (You'll need the files OVRDEMO.PAS,
OVRDEMOl.PAS, OVRDEM02.PAS, and OVRDEMO.EXE to profile this program.)

The Overlays window's SpeedMenu provides two commands, shown here.

Display
@ill[QJ Display specifies how the data will appear; you toggle between Count and History by

pressing Enter.

Count produces a histogram that shows, for each overlay, how much memory that
overlay consumes and how many times your program loaded the overlay into memory.

History lists your program's overlay activity as a sequence of events; each line names
the overlay and specifies when, in the course of program events, that overlay was
loaded.

Inspect
@ill[]] Inspect goes automatically to the Module window (opening it, if necessary) and places

the cursor on the source code for the highlighted overlay.

Interrupts
The Interrupts window is where Turbo Profiler displays information about the video,
disk, keyboard, DOS, and mouse interrupt events in your program. The Statistics I
Interrupts menu item must be Enabled before the profiler will record any interrupt-call
information.

40 Turbo Profiler User's Guide

Figure 2.9 The Interrupts window

The Interrupts window is divided into three panes: top left, top right, and bottom.

• Tne top left pane displays the list of specific interrupts to be protiled (by INT number
and name).

• The top right pane lists information about the display mode and the current interrupt
(the one highlighted in the top left pane), number of calls, and execution time. You
cannot tab to the top right pane; it only displays information.

• In the bottom pane, you see a profile of data for each interrupt, shown as a histogram
or as start time and duration.

Each entry in the bottom pane of the Interrupt window can list

• The interrupt by name or INT number (or both)

• The number of calls to that interrupt (as an absolute number and as a percentage)

• The total amount of execution time spent in that interrupt (as an absolute number
and as a percentage)

Both active panes of the Interrupts window have SpeedMenus.

Collection (top pane)
@ill!TI The Collection command enables or disables collection of statistics for the current

interrupt (the one highlighted in the left display area of the top pane).

Subfunctions (top pane)
@ill[}] The Subfunctions command enables or disables collection of statistics for subfunctions

of the current interrupt (this is particularly useful for DOS INT 21H calls). Subfunction
numbers are determined from the value in the AH register when the interrupt is called.

Add (top pane)
@ill[fil The Add command adds an interrupt, by number, to the list in the pane's left display

area. Type the interrupt number in hexadecimal notation. For example, type 21 for INT
21H (if you type 33, turbo Profiler adds INT 33H to the list).

Pick (top pane)
@ill0 The Pick command displays a predetermined list of interrupts, so you can pick one to

add to the list in the left display area.

Ch a p I er 2, The Turbo Pro Ii I er environ men I 41

Remove (top pane)
@ill[]] The Remove command removes the current highlighted interrupt from the list in the

pane's left display area.

Delete All (top pane)
@ill@] The Delete All command removes all the listed interrupts in the pane's left display area.

Display (bottom pane)
@ill@] The Interrupt window's bottom pane has a one-item SpeedMenu; its command,

Display, leads to a subsequent menu. From this second menu, you can choose to display
interrupt statistics in one of four different formats, as shown in Table 2.5:

Table 2.5 Summary of interrupt statistic formats

Time

Calls

Both Time and Calls

Events

Files

Displays the amount of time spent in each interrupt and its subfunctions.

Displays the number of times each interrupt and its subfunctions were
called.

Displays both the amount of time and the number of times that each
interrupt and its subfunctions were called.

Displays a time-ordered list of interrupt calls.

The Files window is where Turbo Profiler displays information about file activity that
occurred during your program's run. For Turbo Profiler to record any file-activity
information (such as read, write, open, or close), Statistics I Files must be set to Enabled.

Figure 2.10 The Files Window

The Files window is divided into three panes: top left, top right, and bottom.

The top left pane lists files by name, including STDIN and STDOUT. As you move the
highlight bar over the file name you're interested in, the top right pane shows, for that
file,

• The handle number
• The time the file was opened
• How long the file was open
• The time required to open the file
• The number of reads and writes from and to the file
• The total number of bytes read and written
• The time for all reads from and writes to the file

42 Turbo Profiler User's Guide

• The time required to close the file

The top right pane only displays information. You can't tab to it, and it does not have a
SpeedMenu.

The lower pane displays file activity statistics (reads, writes, opens, and closes) as
individual entries, rather than as statistical totals associated with a single file-name
entry. Each entry provides information about a given file activity.

Both active panes of the Files window have SpeedMenus.

Collection (top pane)
@iill[I] The Collection command enables or disables the collection of file activity statistics for

the current file (the one highlighted in the left display area of the top pane).

Each entry in the bottom pane of the Files window provides information about a given
file activity.

Detail (top pane)
@iill[fil The Detail command enables or disables the collection of a detailed listing of file-activity

statistics. A detailed listing logs each file read and write separately, the time it occurred
(calculated from the from the program start), and the number of bytes transferred.
When Detail is disabled, only file open and close activities are logged; reads and writes
are summarized.

When Full (top pane)
@till~ The When Full command specifies what happens when the memory set aside for file

activity statistics fills up.

Wrap means that the newest file-activity statistics will overwrite the oldest ones when
the memory area fills up.

Stop means that file-activity statistics gathering will stop when the memory area fills up.

Display (bottom pane)
@iill[fil In the Files window's bottom pane, you can choose one menu item, Display, which

leads to the Display Options dialog box.

You can specify two options with the radio buttons in this dialog box: Display and Sort.

• Display specifies how you want file-activity statistics to appear in the bottom pane.
• Graph displays each activity's total time as a bar graph.
• Detail displays each activity's exact time in seconds.

Both options display the execution time in seconds; however, Graph also graphs the
display and Details tells when, in the course of program execution, the file activity
took place.

• Sort specifies the order in which Turbo Profiler sorts the displayed statistics.
"' Start Time sorts the files' statistics by sequential order of occurrence.
• Duration sorts the files' statistics by how long the open, read, write, or close

operation took.

Chapter 2, The Turbo Profiler environment 43

Areas
The Areas window is where Turbo Profiler displays detailed information about your
program's marked profile areas. The Areas window is used to inspect areas that have
been set and to adjust the behavior of individual areas.

Figure 2.11 The Areas window

By default, the Areas window lists each area in alphabetical order. For typical programs,
these areas are designated by the names of the routines to which they correspond.
However, if you mark each line in a routine, the area name is (generically)

ModName#FileNarne#NN

where ModName is the module name, FileName is the file name, and NN is the line
number. If you mark a line associated with a label (for example, a routine name), the
profiler uses the label as the area name.

1 Note The file name appears only if the module is made up of more than one file.

The Areas window shows the following information associated with each marked area:

• Start: starting address in hexadecimal.

• Length: length in bytes, as a hexadecimal number.

• Clock: whether the area uses a separate or combined clock in timing descendent
areas.

• Action: the area operation (what Turbo Profiler should do when it passes the
marker).

• Callers: whether the profiler tracks the area's immediate caller only, all callers, or no
callers.

• Winproc: "Yes" if the area is a Windows procedure, otherwise it is blank. This
column is pertinent only if a Windows program is being profiled with TPROFW, or
with TPROF acting as a remote Windows profiler.

The Areas window is more than a source window for static display of information. With
the SpeedMenu, you can

• Add or remove areas
• Inspect areas
• Change options for individual areas
• Sort the displayed information

44 Turbo Profiler User's Guide

Add Areas
@!ill[K] Choose Add Areas to add area markers. When selected, this command leads to another

menu that contains the commands All Routines, Module, and Routine.

• All Routines places markers at each routine in the current module.

• Module leads to the Pick a Module dialog box. This command lets you place markers
in a program module other than the one present in the Module window.

For more information on the Pick a Module dialog box, refer to the "Module" section
onpage32.

• Routine, when selected, leads to the Enter Routine Name to Add text box. Type the
name of the routine that you want to select, and choose OK

Remove Areas
@ill[]] Remove Areas is used to erase markers that have been set.

• All Areas removes the markers from all areas in the program, including the modules
not currently displayed in the Module window.

• Module leads to the Pick a Module dialog box. From this dialog box, choose a
module whose area markers you want to delete.

• This Area removes the area marker currently highlighted in the Areas window.

Inspect
@ill[[] When you choose Inspect, the profiler switches to the Module window and places the

cursor on the first line of source code corresponding to the current area highlighted in
the Areas window. If the area highlighted does not correspond to a program source line,
the CPU window is opened instead.

Options
@ill[]] When you choose Options from the Areas window's SpeedMenu, the Area Options

dialog box comes up.

Figure 2.12 The Area Options dialog box

You can specify three options with the radio buttons in this dialog box: Operation,
Callers, and Timing.

• Operation specifies what profiling action will occur for the current area.

See page 30 for a complete discussion on the Operation option.

• Callers specifies the depth of call-path information.

Chapter 2, The Turbo Profiler environment 45

• All Callers records all available call-path information for the current routine.
• Immediate Callers records only "parent" information for the current routine.
• None turns off call-path information for the current routine.

• Timing specifies whether the profiler will add the execution time of the current area's
child routines to a higher-level area or keep it separate.

The timing option is described in detail on page 31.

• Window Procedure, when checked, specifies that the current area marks a procedure
used by Windows.

• The Messages box becomes active when the Window Procedure check box is
checked. When Messages is chosen, the Window Procedure Messages dialog box is
displayed.

For a complete discussion of the Window Procedure Messages dialog box, refer to
AppendixD.

Sort
§[][I] The Sort command rearranges the information displayed in the Areas window. You can

,ort alphabetically (by Name) or numerically (by Address). Sorting by Address lists the
areas in an order more consistent with the order in which they appear in your source
code.

Routines
The Routines window is where Turbo Profiler displays a list of all routines that you can
use as area markers. Use it when you can't remember the name of a routine, or when
you want to see which routines have markers set on them. You can use the Inspect
command on the Areas SpeedMenu to go to other modules by "inspecting" a routine in
a particular module.

The information displayed is basically a list of all global symbols available from debug
information included in the executable file. These symbols include all routine and
procedure names in standard libraries for Borland's line of C++ or Pascal compilers, as
well as the names of routines in any third-party libraries you might be using (provided
you link to those libraries with symbolic debug information turned on).

Note The Routines menu gives you easy access to information related to symbols.

Figure 2.13 The Routines window

The Routines window is divided into two panes. The left pane lists routines global to
your whole profiled program, and the right pane lists routines that are local to the
current module of the program you're profiling.

46 Turbo Profiler User's Guide

Local routines include nested routines and procedures in Pascal, and static routines in C.
Global routines with area markers appear highlighted in the right pane. (By default, an
underscore (_)precedes all global variables in Borland C and C++ programs.)

Both panes of the Routines window have SpeedMenus.

Local Module (right pane)
@@CD When you choose Local Module in the Local Routines pane, the Pick a Module dialog

box pops up, listing all modules in your program.

After you highlight a module and choo"e OK, the profiler displays th;::.t modul€'s local
symbols in the right pane of the Routines window.

Areas (both panes)
@@0 The Areas command opens an Areas window and positions that window's highlight

bar on the current routine (the one that's highlighted in the Routines window).

Callers (both panes)
@ill[[] The Callers command opens a Callers window and shows the current routine's callers.

Module (both panes)
@ill[]] The Module command opens a Module window and positions the cursor on the source

code for the current routine.

Profile (both panes)
@@[1] The Profile command opens the Execution Profile window and shows the profile

statistics for the current routine.

Disassembly (CPU)
The Disassembly window (labeled "CPU" when it's on the screen) displays the current
area in the Module window as disassembled source code. The title bar of the
Disassembly window indicates your system processor type and the word Protected
appears if your program is a protected-mode program. You use the Disassembly (CPU)
window to help determine if you want to rewrite parts of your program in assembly
language.

Figure 2.14 The Disassembly (CPU) window

The left part of each disassembled line shows the instruction's address, either as a
hexadecimal Segment:Offset value or, if the segment value is the same as the current CS

C h a p I e r 2 , T h e T u r b o P r o I i I e r e n v i r o n m e n t 47

register, as a CS:Offset value. If the window is wide enough (zoomed or resized), it also
displays the bytes that make up the instruction. The disassembled instruction appears to
the right of each line.

In the Disassembly (CPU) window, global symbols appear simply as the symbol name.
Static symbols appear (generically) as

THAT#ModName#SymbolName /* Borland C++ */

ModName.SymbolName { Borland Pascal }

where ModName is the module name and SymbolName is the static symbol name. Line
numbers appear (also generically) as

#ModName#LineNumber /* Borland C++ */

ModName.LineNumber { Borland Pascal }

where ModName is the module name and LineNumber is the decimal line number.

In the Disassembly (CPU) window, you can use the F2 function key to set area markers
for each machine instruction you want to monitor. Any marked instructions that have
no symbol name appear in the Areas window as hex addresses in Segment:Offset form.
(Note that F2 can also be used to remove a marker from an area.)

With the Disassembly (CPU) window's SpeedMenu commands, you can go
immediately to any of these locations:

• A specified address
• The current program location (CS:IP)
• The destination address of the current instruction
• The previous instruction pointer address
• The address in the source code

You can also choose a SpeedMenu item to activate the Module window and move its
cursor to the source for the current instruction, or to display disassembled instructions
and source code three different ways.

Goto
@fil][§J When you choose Goto, a dialog box pops up and requests the address you want to go

to. Enter a hexadecimal address, using the hex format for your programming language.

You can enter addresses outside of your program to examine code in the BIOS ROM,
inside DOS, and in resident utilities.

The Previous command restores the Disassembly (CPU) window to the position it had
before you chose Goto.

Origin
@fil][QJ You choose Origin to position the window's highlight bar at the current program

location as indicated by the CS:IP register pair. This command is useful when you have
been looking at your code and want to get back to the address of the current instruction
pointer (CS:IP), where your program is stopped.

48 Turbo Profiler User's Guide

The Previous command restores the Disassembly (CPU) window to the position it had
before you chose Origin.

Follow
@ill[IJ The Follow command positions the Disassembly (CPU) window's highlight bar at the

destination address of the currently highlighted instruction. The window scrolls to
display the code at the address where the currently highlighted instruction will transfer
control. For conditional jumps, the window shows the address as if the jump occurred.

You can use this command with CALL, JMP, and conditional jump (JZ, JT\'E, LOOI',
JCXZ, and so on) instructions.

The Previous command restores the Disassembly (CPU) window to the position it had
before you chose Follow.

Previous
@ill[£] When you issue a command that changes the instruction pointer address (such as Goto,

Origin, or Follow), the Previous command goes back to the address displayed before
you issued that address-changing command. If you move around with the arrow keys
and the PgUp and PgDn keys, the profiler does not remember the window's position, but
you can always return to the origin, which is the current CS:IP.

Repeated use of the Previous command switches the Disassembly (CPU) window back
and forth between two addresses.

View Source
@ill[SI] The View Source command opens a Module window and shows the source code for the

current routine.

Mixed
@ill(.0 There are three ways to display disassembled instructions and source code in the

Disassembly (CPU) window. You choose the window's display format with the
SpeedMenu's Mixed command, which toggles between three choices: No, Yes, and
Both.

• No means that no source code is displayed, only disassembled instructions.

In No mode, global label names are still used in place of adqresses for calls, jumps,
and references to data items.

• Yes means that source code lines appear before the first disassembled instruction for
that source line.

The profiler automatically sets the window to Yes if your current module is a high
level language source module.

• Both means that source code lines replace disassembled lines for those lines that have
corresponding source code; otherwise, the disassembled instruction appears.

The profiler sets the window to Both if your current module is an assembler source
module.

C h a pt e r 2 , Th e T u r b o P r of i I e r e n v i r o n m e n t 49

Use Both if you're profiling an assembler module and want to see the original source
code line, instead of the corresponding disassembled instruction.

Text File
y OU can examine or modify any file on your system by using a Text File window. You
can view the file only as ASCII text, so files containing binary data may display
characters from the extended ASCII character set.

Before you can open a File window, you must choose the View I Text File command
from the menu bar. This command brings up a dialog box in which you can use DOS
style wildcards to get a list of file choices, or you can type a specific file name to load.

Once you've chosen your file, Turbo Profiler displays it in the File window.

The File window shows the contents of the file you've selected. The name of the file
you're viewing is displayed at the top of the window, along with the line number the
cursor is on.

The File window SpeedMenu
The File window SpeedMenu has a number of commands for moving around in a disk
file, changing the way the contents of the file are displayed, and making changes to the
file.

Goto
@ill[]] Positions you at a new line number in the file when you enter the new line number to go

to. If you enter a line number after the last line in the file, you will be positioned at the
end of the file.

Search
@ill[IJ Searches for a character string, starting at the current cursor position. You are prompted

to enter the string to search for. If you have marked a block in the file using the Ins key,
that block will be used to initialize the Search dialog box. This saves you from typing if
you want to search for a string that is already in the file you are viewing. The search
string can include simple wildcards, with? indicating a match on any single character,
and * matching 0 or more characters.

The search begins from the current cursor position and does not wrap around from the
end of the file to the beginning. To search the entire file, start at the first line (press
Ctrl+PgUp to move to the top of the file).

You can also invoke this command by simply starting to type the string you want to
search for. This brings up a dialog box exactly as if you had specified the Search
command.

Next
@ill[[] Searches for the next instance of the character string you specified with the Search

command; you can use this command only after first issuing a Search command.

This command is useful when your Search command didn't find the instance of the
string you wanted. You can keep issuing this command until you find what you want.

50 Turbo Profiler User's Guide

File
@!illlIJ Displays the same Program Load dialog box as the View I Text File command, enabling

you to load a different file.

Edit
@ill[[] Lets you make changes to the file you're viewing by invoking the editor you specified

with the TFINST installation program. This is done through the Editor Program Name
field (located under the Options I Directories dialog box in TFINST). This opti01 is not
available when profiling Windows applications with TPROFW.

Coverage
The Coverage window has two panes: the left pane displays a list of selected modules,
and the right pane shows the blocks contained in those modules. A block is a section of
code that has only one entry point and one exit point; there are no jumps into or out of a
block

Figure 2.15 The Coverage window

Selecting coverage mode (Statistics I Profiling Options) opens the Coverage window,
replacing the Execution Profile window. By default, Turbo Profiler selects as many
program modules as possible in the left pane and all blocks within those modules are
listed in the right pane.

Note The Coverage window and the Execution Profile window are mutually exclusive; only
one can be open at any given time.

In its default setting, the Coverage window lists only unexecuted blocks in the right
pane. Blocks that have been executed (hit) during a program run will be deleted from
the listing.

Before a program run, all program blocks are marked in the Module window with a ,..
character. In the default Coverage mode, Turbo Profiler removes the ,.. character from
each block as it is hit. Successive program runs continue to remove block markers,
allowing you to attempt different actions in order to hit the remaining marked blocks.

Note Turbo Profiler automatically marks all program blocks with a single marker.

To restore all program blocks to an unhit status, choose Delete All from the Statistics
menu.

Each pane of the Coverage window has its own SpeedMenu.

The left pane's SpeedMenu provides commands for selecting which modules are to be
included in the profiling session. The right pane's SpeedMenu provides commands
pertaining to how blocks are displayed.

Ch apter 2, The Turbo Pro Ii I er environment 51

Add All Modules (left pane)
@E][KJ When you choose Add All Modules, the blocks from all program modules contained in

the executable program are marked for the profile session. The keyword All indicates
this selection.

Remove All Modules (left pane)
@El[[] Remove All Modules removes all modules from the module list, leaving both panes in

the Coverage window empty.

Add Module (left pane)
@El[0 The Add Module command opens the Pick a Module dialog box, allowing you to select

from the list of modules in the current program.

For more information on the Pick a Module dialog box and its use, refer to page 32.

Remove Module (left pane)
@E][YJ Choosing Remove Module opens the Pick a Module dialog box. Using this dialog box,

you can remove a module from subsequent profile runs.

Delete This Item (left pane)
@El(]] The Delete This Item command either deletes or adds the currently highlighted item for

the remaining profile runs. If the item has no dash(-) in front of it, the item is deleted.
If the item does have a dash in front of it, it's added.

Display (right pane)
@El[QJ When you choose Display from the right pane's SpeedMenu, the Coverage Display

dialog box appears.

Figure 2.16 The Coverage Display dialog box

• The Display buttons define what gets displayed in the right pane of the Coverage
window.

e When you choose All, all blocks (both hit and unhit) are displayed in the right
pane. Blocks that have been hit show how many times they've been hit, and blocks
that haven't been hit display a zero (0) next to their entries. You can set the number
of hit counts that the Profiler tracks from the Profiling Options dialog box's
Maximum Coverage Count option.

See Figure 2.18 on page 56 for more information on setting Turbo Profiler's
coverage hit count.

52 T u r b o P r o f i I e r U s e r ' s G u i d e

• Not Hit (the default setting) means that only blocks that haven't been hit are
displayed.

• The Sort buttons define the order of block display. This menu item is available only if
All is selected from the Display option and Max Coverage Count in the Profiling
Options dialog box is greater than 1.

" A sort by Address lists blocks in alphabetical order.

• A sort by Count lists the blocks in order of number of hits, starting with those
blocks that have not been hit.

• The Group raJiu buttons allow you to group blocks individually, or by routine or
module.

Note The Group buttons are available only if Display is set to All .

., Selecting Block (the default setting) causes all blocks to be listed in the window
pane.

Selecting Routine causes blocks to be grouped together by routine. With this
selection, only routine names from the modules displayed in the left pane are
listed in the right pane. However, in addition to each routine name, a count of
blocks contained in the routine and the total number of blocks that have been hit is
displayed.

Figure 2.17 The Coverage window, listing blocks by routine

The Module radio button applies only to programs with multiple modules. It
works similarly to the Routine button, except that it groups blocks by module
instead of by routine name.

Position (right pane)
@ill[[] Use the Position command to inspect source code for a particular block of code. When in

the right pane, select a block by moving the highlight bar with the arrow keys. After you
select a block, choose Position to bring the source code into view in the Module window
or the CPU window while keeping the Coverage window active.

Pressing Spacebar also executes the Position command.

Module (right pane)
@ill[]] The Module command is much like Position, except that Module activates the Module

or CPU window and positions the cursor at the top of the block selected.

Pressing Enter also executes the Module command.

Note When Coverage mode is in effect, certain Turbo Profiler functions are no longer
pertinent, and respective menu items will be dimmed. Specifically, the following

Chapter 2, The Turbo Profiler environment 53

windows are unavailable from the View menu: Execution Profile, Callers, Files, Areas,
and Routines. The Statistics menu dims both the Callers and Files functions. Also, the
Accumulation toggle switch in the Statistics menu is automatically set to Enabled.
Lastly, the SpeedMenu of the Module window dims the functions Add areas, Remove
Areas, Operation, and Callers.

Run menu
The Run menu provides three commands for running your program: Run, Program
Reset, and Arguments. Control returns to the profiler when one of the following events
occurs:

• Your program finishes running
• Your program encounters an area marker whose operation is Stop
• You interrupt execution with the interrupt key
• Your program causes an exception

(Usually, the interrupt key is the Ctrl+Break key combination; you can change this to
another key with TFINST, the profiler installation program. When profiling a Windows
application using TPROFW, use the keystroke sequence Ctrl+Alt+SysRq to interrupt the
program. See Appendix D for details.)

You can run your program even if the Module window is closed (as long as there's a
program loaded into Turbo Profiler).

Note When you choose Run I Run or Run I Program Reset after reaching the run count limit,
any statistics collected for a previous execution are reset. If you want to save a set of
statistics, use Statistics I Save before you select Run or Program Reset, or use Statistics I
Profiling Options to set the run count greater than 1.

Run
The Run command runs your program and collects performance statistics.

If you set the Display Swapping option in the Display Options dialog box to Always,
your program's output replaces the Turbo Profiler environment screen until the
program finishes or you interrupt it.

Program Reset
The Run I Program Reset command reloads your program from disk. Use this command
if you've run your program too far during a profiling session and need to restart
execution at the start of the program.

If you select Run I Program Reset when the Module or Disassembly (CPU) window is
active, the display in that window won't return to the start of the program. Instead, the
cursor stays exactly where it was when you chose Program Reset.

Arguments
The program you're profiling might expect command-line arguments. With Run I
Arguments, you can store your program's command-line arguments within Turbo
Profiler. Then, when you choose Run I Run or Run I Program Reset, the profiler passes

54 Turbo Profiler User's Guide

the arguments to your program just as if you had typed them in at the command line.
You can change these arguments from within Turbo Profiler and rerun your program.

Enter the arguments exactly as you would at the DOS command line. (Do not enter the
program name.)

Statistics menu
The Statistics menu contains commands to

• Specify the type of data the profiler will collect (callers, files, interrupts, overlays)
• Set the profile mode to active, passive, or coverage
• Determine the number of program runs and areas
• Tum automatic data collection on and off
• Erase profile statistics
• Save profile statistics to a file
• Restore previously saved statistics

The default extension is .TFS, but you can use any extension you want.

You can save all statistical information from the current profile to a .TFS file. Then,
whenever you want to study the profile results, you can load that .TFS file-recovering
all the saved statistics without having to rerun the profile.

This feature is most useful if your programs take a long time to run or profile. You can
save multiple versions of profiles under different conditions, then restore each of the
resulting profiles for quick comparison at a later date. To automate this process, you can
create a macro or DOS batch file to automatically run several profiles with different
options or area markers, saving the results to individual .TFS files. Then, using the
macro or batch file, you can run the profiles and view your results later.

Note The first four items on the Statistics menu are toggle switches. When selected, the
Callers, Files, Interrupts, and Overlay options will toggle between the Enabled and
Disabled modes.

Callers
When you set the Callers option to Enabled, the profiler gathers statistics about which
routines call other routines. To specify which routines you want call histories for, you
choose the Callers command on the Module window's SpeedMenu or the Options
command on the Areas window's SpeedMenu, then select the appropriate radio buttons
under Callers and Areas.

Note You must run your program and accumulate some statistics before these windows
show any information.

After running your program and gathering the profile information, use the Callers
window to look at the call-history statistics.

Gathering caller information consumes memory and slows down your program's run
speed. If you don't need caller information, set Callers to Disabled.

Chapter 2, The Turbo Profiler environment 55

Files
When you enable the Files option, the profiler gathers statistics about which files your
program opens, and which read and write operations take place.

After running your program and gathering the profile information, use the Files
window to look at your program's file activity.

Gathering file-activity information consumes memory and slows down your program's
run speed. If you don't need file-activity information, set Files to Disabled.

Interrupts
When the Interrupts option is set to Enabled, the profiler collects statistics about which
interrupts your program calls. The profiler keeps separate statistics for DOS, video, disk
BIOS, mouse, and keyboard interrupts.

After running your program and gathering the profile information, use the Interrupts
window to look at which interrupts your program called.

Gathering interrupt information consumes memory and slows down your program's
run speed. If you don't need interrupt information, set Interrupts to Disabled.

Overlays
The Overlays option toggles whether statistics are collected for the overlays your
program loads. If your program does not contain overlays, an error message is
displayed if you try to enable this menu item, and the option remains disabled.

Gathering overlay information consumes memory and slows down the speed at which
your program runs. If you don't need overlay information, set this option to Disabled.

Profiling Options
The Statistics I Profiling Options command opens the Profiling Options dialog box,
shown here:

Figure 2.18 The Profiling Options dialog box

With the Profiling Options dialog box, you can set any of the following options:

• Profile Mode specifies the analysis mode. The default mode is Active.

"' Active analysis means full statistical information is collected for each marked area.
This includes basic clock timing information, and for routines, how many times
the routine was called and where it was called from.

56 Turbo Profiler User's Guide

"' Passive analysis means only basic clock timing information for each marked area is
collected. Passive mode is not available in TPROFW when running Windows in
386 enhanced mode. ·

.. Coverage analysis, in its default setting, means that Turbo Profiler tracks the blocks
of code that haven't been hit during a succession of program runs.

Note If you change analysis mode from Active or Passive to Coverage (or vice versa),
you'll be prompted with Reload program and change profiling mode? If you select the
YES button in answer to this prompt, the current set of statistics is deleted, and the
new analysis.mode bec?mes effective. B~.~~r~ to.save any vital profile statistics
before chang:ulg arLalys1s n1odes, ur tl1ey 11 oe iost.

• Run Count sets how many times your program will run while the profiler collects
statistics. The default is 1.

Note If Run Count is set to a number higher than 1, Turbo Profiler will reset statistics only
after the specified number of runs.

• Clock Speed defines the speed of the timing clock, in ticks per second. The default is
100 ticks per second. Clock speed is available only in passive mode.

• Maximum Areas specifies the maximum number of areas you can divide the current
program into. Turbo Profiler sets default areas based on the density of the symbols it
finds appended to the executable file. Increasing this setting will decrease the amount
of memory left for the profiled program.

• Maximum Windows Messages sets the maximum number of Windows messages
that can be marked. The default setting is 20. Increasing this setting will decrease the
amount of memory left for the profiled program.

• Maximum Coverage Cow1t sets the maximum number of hit counts that the Profiler
will keep track of while in coverage mode. The default for this setting is 1 (a block has
either been hit, or it has not). Increasing this setting will decrease the amount of
memory left for the profiled program and will increase the time it takes to run.

With the options in this dialog box, you can tailor the profiling session to meet your
unique programming needs.

Active analysis mode provides the most detailed analysis of your program at the cost of
slowing program execution speed. On the other hand, passive mode allows your
program to run at almost full speed, but does not provide any information about how
many times a routine was called or which routines called it.

If there are not many clock ticks during the time your profiled program runs, the data
collected might not accurately reflect the time spent in various parts of the program.
Running the program several times helps improve the accuracy by increasing the total
number of data points collected. Speeding up the clock is another way to increase the
total number of data points; this increases the accuracy of the timing statistics for each
region at the expense of slowing down program execution speed.

Note The profiler doesn't actually time each area, but uses the interrupt timer to increment a
timer count. When the program terminates, the profiler converts the values in the timer
counts to execution times, based on the current setting of the Clock Speed option in the
Profiling Options dialog box.

Ch a p I er 2, The Turbo Prof i I er environ men I 57

Accumulation
The Statistics I Accumulation option turns automatic data collection on and off. This
means you can collect data for a subset of all marked areas without removing any area
markers, and manually tum data collection on after your program begins running.

To collect data for a subset of all marked areas, do this:

1 In the Areas window's SpeedMenu, choose Options to open the Area Options dialog
box.

2 For those areas whose statistics you want, change the area marker from Normal to
Enable (to start data collection) or to Disable (to stop data collection).

3 Set Statistics I Accumulation to Disabled.

4 Run your program. The profiler will not start collecting data until it trips an area
marker that's set to Enable.

To tum on data collection manually after your program has started running, do this:

1 Set area markers.

2 Set Statistics I Accumulation to Disabled.

3 Run your program from the profiler (press F9).

4 When the program is in the appropriate run-time state, interrupt it.

5 Enable the collection of profile data (set Statistics I Accumulation to Enabled).

6 Resume program execution (press F9 again).

Turbo Profiler starts accumulating statistics immediately for the marked areas.

Disabling accumulation
Sometimes when many different places in your program call a routine or family of
routines, you want to know only

• the time spent in the routine
• when a specific part of your code calls the routine
• the time spent in the routine after a specific event

To monitor only certain calls to a routine, use Statistics I Accumulation to disable data
collection at the start. Mark an area that enables collection just before the call to the
routine that you want to collect statistics for (set the area marker to Enabled). Mark
another area that disables collection after the routine returns. You can also enable and
disable areas in unrelated parts of the code; do this when you want to collect statistics
only after a certain event.

Example #1: Collecting only for a specific call to a routine
Suppose you're interested in calls to abc only when it is called from xyz, but not at any
other time.

=> main()
(

58 Turbo Profiler User's Guide

/*normal area marker at routine*/

abc I I; /* don't want to collect stats for this call */

xyz II;

=> xyz 11 /*normal area marker at routine */
{

e> abc I I; /*want to collect statistics for this call */
d>

=> abc I I /*normal area marker at routine */
{

Notice the e~ that enables collection and the a~ that disables collection. You must
disable Statistics I Accumulation before running your program, or the profiler will
erroneously collect statistics for the first call to abc in main.

Example #2: Collecting after a certain event has occurred
Suppose that routine xyz behaves differently depending on some global state
information controlled by the two routines bufferon and bufferoff. You are interested
only in the time spent in xyz when bufferflag equals 1.

=>

=>

e>

d>

=>

main()
{

xyz II;

bufferon I I;

xyz I I;

bufferoff();

xyz (I;

bufferon(I
{

bufferflag =

bufferoff I I
{

buffer flag =

xyz 11

/*normal area marker at routine */

/* no statistics collected here */

/*will collect statistics for this call */

/* no statistics collected here */

/* normal area marker at routine */

1;

/*normal area marker at routine */

O;

/*normal area marker at routine */

Chapter 2, The Turbo Profiler environment 59

Notice that the use of e~ to enable collection and the d~ to disable collection are not near
the calls to xyz. Once again, you must disable data collection at the start (by setting
Statistics I Accumulation to Disabled), or the first call to xyz will erroneously contribute to
the collected statistics.

Delete All
The Statistics I Delete All command erases all statistics collected for the current profiling
session-essentially wiping the data slate clean so you can start afresh. Delete All
removes all profile data from the open profile report windows (Execution Profile,
Callers, Interrupts, Files, Overlays, and Coverage), but it does not delete the profiling
options you've set.

Save
The Statistics I Save command saves the following data, settings, and options:

• All statistics for which collection was enabled when you ran the current profile
(execution times and counts, callers, file activity, interrupts, overlays, coverage
counts).

• All area information (area names, operations, callers, separate versus combined
timing) displayed in the Execution Profile window.

Once you've saved statistics to a file, you can recover them at any time with the
Statistics I Restore command.

When you choose Statistics I Save, the Enter File Name to Save dialog box appears.

The Name input box lists a default .TFS file name (progname.TFS, where progname is the
current program's name).

Saving Files
To save the current profile statistics to the default file, choose OK

To save them to a different file,

Activate the File I Name input box.

2 Type in the desired file name (including disk drive and path, if you so choose).

3 Choose OK (or press Enter).

If the statistics file already exists, a message box asks if it's all right to overwrite the file.

Restore
When you choose Statistics I Restore, the Enter File Name to Restore dialog box appears.

The Restore dialog box works just like the profiler's other file-loading dialog boxes. You
can

• Enter a file name or a specification (with DOS wildcards) in the File Name input box.

60 Turbo Profiler User's Guide

• Choose a different disk drive or directory from the directory tree.

• Choose a file name from the Files list box.

• Choose OK to complete the transaction (or choose Cancel to leave the dialog box
without loading a file).

• Choose Help to open a window of information about how to use the dialog box.

After you load a statistics file, Turbo Profiler restores all the saved options, settings, and
resulting statistical information to the environment screen.

Print menu
Turbo Profiler's Print menu enables you to print the contents of any open profiler
window to a new or existing disk file, or directly to the printer.

Statistics
The Print I Statistics command prints the contents of all open profiler windows (except
for the Module, Routines, Text File, and Disassembly windows) to the printer, or to the
destination file named in the Printing Options dialog box.

Before you choose Print I Statistics, open the Printing Options dialog box (choose Print I
Options) and verify that the current printing options (dimensions, output location,
character set used, and-if you're printing to a file-destination file name) are what you
want.

If you choose to print statistics to an existing disk file, a menu pops up so you can
choose whether to append the existing file, overwrite it, or cancel the printing operation.

Module
From the Pick a Module dialog box accessed by choosing Print I Module, you specify
which of your program's modules you want printed to the printer or to the disk file
named in the Printing Options dialog box.

You can choose a specific module by name, or choose All Modules to print all your
program's available source code. When the profiler prints a module, it produces an
annotated source listing that lists execution time and counts data next to each source line
or routine you've marked as an area, as shown in the following listing:

Chapter 2, The Turbo Profiler environment 61

Program: C: TPROFI LEPRIMEl. EXE File PRIM El. C

Time Counts
#include <stdio.h>

0.0090 999 prime(int n)
{

0.0117 999
1.1456 78022
0.0080 831
0.0017 168
0.0101 999

0.0000 1

0.0000 1
0.0000 1
0.0255 999
4.1670 168
0.0000 1

Options

main()
{

int i;

for (i~2; i<n; i++)
if (n % i ~~ 0)

return O;
return 1;

int i, n;

n ~ 1000;
for (i~2; i<~n; i++)

if (prime(i))
printf("%d

When you choose Options from the Print menu, the Printing Options dialog box
appears.

• Width is the number of characters printed per line (default= 80).

• Height is the total number of lines per page (default= 66).

• The Printer /File radio buttons let you choose between sending the printed statistics
to the current printer or to a file. The default is Printer.

• The Graphics/ ASCII radio buttons let you toggle between printing characters from
the IBM extended character set (including semigraphic characters) and printing only
ASCII characters. The default is ASCII.

• Destination File is the disk drive (optional), path name (optional), and file name
(required) of the printed disk file.

Options menu
With the Options menu, you can

• Record a keystroke macro.

• Remove one or all macros.

• Set display options that control Turbo Profiler's overall appearance and operation.

• Specify directories (other than the current one) where Turbo Profiler will search for
source code.

• Save your window layout, macros, options set in other menus, and some other
miscellaneous options to a configuration file.

62 T u r b o P r of i I e r U s e r ' s G u i d e

• Restore the settings and options previously saved in a configuration file.

Macros
The Options I Macro command leads to a menu that lets you define new keystroke
macros or delete ones that have already been assigned.

The profiler's macro facility gives you the ability to record frequently used keystroke
sequences and place the recording into a single macro keystroke. For example, during
profiling, you may often repeat the same sequence of commands. With macros, you can
define a single keystroke that "plavs" this sequence of keystrokes. Once defined, you
can simply press the macro key to.perform the tedious task. ·

@JQ Create
When issued, the Create command starts recording keystrokes into an assigned macro
key. As an alternative, press the Alt= hot key for Create.

When you choose Create to start recording, a prompt asks for a key to assign the macro
to. Respond by typing in a keystroke or combination of keys (for example, Alt+M). The
message RECORDING will be displayed in the upper right corner of the screen while you
record the macro.

@JO Stop Recording
The Stop Recording command terminates the macro recording session. Use the Alt+
(Alt+Hyphen) hot key to issue this command, or press the macro keystroke that you are
defining to stop recording.

Important Do not use the Options I Macro I Stop Recording menu selection to stop recording your
macro, because these keystrokes will then be added to your macro! (The menu item is
added to remind you of the hot key.)

Remove
The Remove command removes a macro assigned to a keystroke. When you choose this
menu item, a list box pops up, displaying a list of the currently defined macros. Select
the macro that you want to delete, and press Enter.

Delete All
The Delete All command removes all macro keystroke definitions and restores all keys
to their original (default) meanings.

Recording macros
To record a macro,

Choose Options I Macros I Create (or press Alt=) to begin the macro definition. A
prompt appears, asking which key you want the macro assigned to.

2 Enter a key that isn't already assigned, for example, Shift+F10.

3 Once you begin recording the macro, all keystrokes entered become part of the macro
definition. However, keystrokes entered as program input and mouse actions will not
be included in the macro definition.

Chapter 2, The Turbo Profiler environment 63

4/ Stop recording the macro: Press Alt- or press the keystroke of the macro you are
defining (Shift+F10 in this example).

5 Save the macro to a configuration file: Choose Macros from the Save Configuration
dialog box (Options I Save Options). Type the name of the configuration file you want
(or use one listed in the dialog box), and press OK.

6 Continue profiling.

Display Options
The Options I Display Options command opens the Display Options dialog box, shown
here.

Figure 2.19 The Display Options dialog box

With the Display Options dialog box, you can do any of the following:

• Specify whether Turbo Profiler will swap screens while your program runs
• Set how many columns each tab stop occupies in the Module window
• Set the Turbo Profiler screen to 25-line or 43/50-line mode
• Specify how wide your program's routine names display in the Execution Profile and

Areas windows

Display Swapping
The Display Swapping radio buttons None and Always specify whether Turbo Profiler
swaps the user screen back and forth with the Turbo Profiler environment.

• None means don't swap between the two screens.

Use this option if you're profiling a program that does not send any output to the
user screen.

• Always means swap to the user screen every time your program runs.

Use this option if your program does writing to the screen.

When profiling a Windows application, display swapping is automatically set to
Always, and it cannot be changed.

Screen Lines
You use Screen Lines to specify whether Turbo Profiler's screen uses the normal 25-line
display or the 43-line or 50-line display available on EGA and VGA display adapters.

64 Turbo Profiler User's Guide

One or both of these buttons will be available, depending on the type of video adapter in
your PC. The 25-line mode is the only screen size available to systems with a
monochrome display or Color Graphics Adapter (CGA).

Tab Size
With the Tab Size input box, you set how many columns each tab stop occupies, from 1
to 32 columns. You can reduce the tab column width to see more text in source files with
a lot of tab-indented code.

Width of Names
The Width of Names input box is where you specify how wide routine names display in
the Execution Profile, Callers, and Areas windows.

Path for Source
By default, Turbo Profiler looks for your program's source code in these places, in this
order:

In the directory where the program was originally compiled

2 In the directories (if any) you've listed under Options I Path for Source (or stated in
the command-line option using the -sd switch)

3 In the current directory

4 In the directory that contains the .EXE file of the program you're profiling

With the Options I Path for Source command, you can add a list of directories that Turbo
Profiler searches before it searches in the current directory.

Enter the new to-be-searched directories in this format:

Directory; Directory; Directory

For example,

C:BorlandTC; C:Borland'TASM

Save Options
With Options I Save Options, you can save all your current profiler options to a
configuration file on disk. Then, whenever you want to reset the profiler options to
those saved settings, you can load that configuration file with Options I Restore Options.

When you choose Options I Save Options, the Save Configuration dialog box appears:

Figure 2.20 The Save Configuration dialog box

Chapter 2, The Turbo Profiler environment 65

With this dialog box, you can save your current profiler setup's options, layout, and
macros. Options, Layout, and Macros are check boxes; you can save one, two, or all
three types of information to a configuration file.

• Options are menu options not saved in a .TFA or .TFS file (such as Options I Path for
Source, command-line options, and settings in the Display Options dialog box).

• Layout includes which windows are currently open, plus their order, position, and
size.

• Macros are all keystroke macros currently defined.

• Save To lists the default configuration file. To save your options there, choose OK (or
press Enter).

To save your options to a different file, type in the different file's name (including
disk drive and path, if you want), then choose OK (or press Enter).

Once you've saved options to a configuration file, you can recover them at any time
with Options I Restore Options.

Restore Options
Options I Restore Options restores your profiling options from a disk file. You can have
multiple configuration files, containing different macros, window layouts, and so on.

When you choose Options I Restore Options, the Restore Options dialog box appears.

The Restore Options dialog box works just like the profiler's other file-loading dialog
boxes. You can

• Enter a file name or a specification (with DOS wildcards) in the File name input box

• Choose a different disk drive or directory from the directory tree

• Choose a file name from the Files list box

• Choose OK to complete the transaction (or choose Cancel to leave the dialog box
without loading a file)

• Choose Help to open a window of information about how to use the dialog box

After you type in or choose a configuration file name and load that file, Turbo Profiler
restores all the saved options, settings, layout, and macros to the current Turbo Profiler
environment. (You can restore only a configuration file that was created by the
Options I Save Options command.)

Window menu
The Window menu contains commands to

• Manipulate Turbo Profiler's windows
• Navigate within and through the windows
• Toggle windows to icons, and vice versa
• Close and reopen windows

66 Turbo Profiler User's Guide

• Go to your program's output screen
• Make an open window active

The commands in the top portion of the Window menu are for moving about within the
profiler's windowed environment and for rearranging the windows to your satisfaction.
Most Turbo Profiler windows have all the standard window elements (scroll bars, a
close box, zoom icons, and so on). Refer to the section "Turbo Profiler windows" earlier
in this chapter for information on these elements and how to use them.

Zoom
Ihe Zoom command zooms the active window (the one with a double-line border) to
full-screen, or returns the active window to the pre-zoomed size.

Next
The Next command activates the window whose number succeeds the number of the
current window.

Next Pane
In windows with multiple panes, the Next Pane command moves the cursor to the next
pane.

Size/Move
The Size/Move command activates Turbo Profiler's window-arranging mode. You
move the current window with the Left, Right, Up and Down keys. Shifted arrow keys
expand or contract the window. The legend in the status line explains which key
combinations do which action. The hot key for this command is Ctrl+F5.

lconize/Restore
The Iconize/Restore command shrinks the active window to an icon or restores the
active icon to a window.

Turbo Profiler's iconize feature is a handy tool for keeping several windows open
without cluttering up the screen. A window icon is a small representation of an open
window.

To make a window into its icon, choose Iconize/Restore from the Window menu, or
click the iconize box in the window's top frame. To restore an icon to its previous size,
choose Iconize/Restore again, or click in the icon's zoom box.

Close
The Close command temporarily removes the current window from the Turbo Profiler
screen. To redisplay the window just as it was, choose Undo Close.

Undo Close
The Undo Close command reopens the most recently closed window and makes it the
active window.

C h a pt e r 2 , T h e T u r b o P r of i I e r e n v i r o n m e n t 67

User Screen
Choose Window I User Screen (or pressA/t+F5) to view your program's full-screen
output. Press any key to return to the windowed environment.

The open window list
At the bottom of the Window menu is a numbered list of open windows. Press the
number corresponding to one of these windows to make it the active window. For a full
explanation of how to manage windows, see page 21.

Help menu
The Help menu gives you access to online help in a special window. There is help
information on virtually all aspects of the environment and Turbo Profiler. (Also, one
line menu and dialog hints appear on the status line whenever you select a command.)

To open the Help window, you can either

• Press F1 or Alt+F1 at any time (including from any dialog box or when any menu
command is selected), or

• Click Help whenever it appears on the status line or in a dialog box.

To close the Help window, press Esc, click the close box, or choose Window I Close.

Help screens often contain keywords (highlighted text) you can choose to get more
information. Press the arrow keys to move to any keyword; then press Enter to get more
detailed help on the chosen keyword. You can press Home and End to go to the first and
last keywords on the screen, respectively. With a mouse, you can click any keyword to
open the help text for it.

Index
The Help I Index command opens a dialog box displaying a full list of help keywords
(the special highlighted text in help screens that let you quickly move to a related
screen).

You can page down through the list. When you find a keyword that interests you,
choose it by using the arrow keys to move to it and pressing Enter. (You can also use the
mouse to click it.)

Previous Topic
The Help I Previous Topic command opens the Help window and redisplays the text
you last viewed.

Turbo Profiler lets you back up through 20 previous help screens. You can also click the
PgUp command in the status line to view the last help screen displayed.

Help on Help
The Help I Help on Help command opens up a text screen that explains how to use the
Turbo Profiler help system.

68 Turbo Profiler User's Guide

Profiling strategies
Improving your program's performance through profiling is not a simple linear process;
you don't just profile the program, modify the source code, and call it a day. Profiling
for improved performance with Turbo Profiler is dynamic and interactive. You collect
statistics, analyze the results in a variety of windows, perhaps change the profiling
parameters so you'll get different statistics, profile again, analyze again, modify the
source code and recompile, profile again, analyze again, and so on.

If you're not sure at first where the bottlenecks in your program are, go ahead and
profile using Turbo Profiler's default settings. When you look at the results in the
Execution Profile window, you get an idea of which routines in your program consume
the most overall time. By looking at time and count data together, you find out which
parts of the program are most expensive in terms of time per call. Armed with that
knowledge, you can start zeroing in on your program's problem areas.

Turbo Profiler provides several different report windows for analyzing the collected
data; you can also print report window contents to paper or your screen for a running
account of performance improvements. In the report windows, you can look at your
program's execution times and counts, file-access activity, DOS interrupts, and overlay
activity, along with call histories for routines.

What do you do with all this power and flexibility? How do you use Turbo Profiler for
efficient and effective profiling? And what are the tricks of the profiling trade?
Obviously, we can't answer all these questions in this chapter. We do, however, provide
some general guidelines, techniques, and strategies to get you moving.

The first time you load a program into Turbo Profiler, it

• Sets the profile mode to Active.
• Automatically scans through your .EXE file to find the main program module.
• Loads the main source module into the Module window.
• Sets area markers for the program.
• Positions the cursor at the main module's starting point.

C h a p t e r 3 , P r o f i I i n g s I r at e g i e s 69

The main module is the one that contains the first source line to be executed in your
program. Area markers are "trip points" that mark the locations where you want to
gather statistics; the number of markers set depends on the number of lines in the .EXE
file that have debug information associated with them.

Note Whenever you exit Turbo Profiler, it saves information about the areas you set up for
the currently loaded program in an area file named filename. TF A, where filename is the
name of your program. Each time you load a program to profile, Turbo Profiler looks
for a corresponding .TF A file. If it finds one, it automatically uses the area settings in
that file.

It's a good idea to save the results of a profile that takes a long time to run, in case you
want to study the results later.

You can also save the results of a profile to a .TFS file with the Statistics I Save command.
By default, the file name assigned to a statistics file is filename.TFS. You can use the
default or change the name (in case you want to save more than one set of statistics for a
single program).

Preparing to profile
The examples in Chapter 1 are small and simple; we designed them to show the general
process of profiling. The problem presented in that chapter was to optimize the routine
prime, rather than to identify specific program bottlenecks ..

However, you actually need a profiler more when you're writing very large programs,
rather than small ones, because you must identify which program fragments are
bottlenecks before you can figure out how to optimize any given fragment. In many
ways, it's easier to find the bottlenecks than it is to figure out what to do about them.

Adjusting your program
The first adjustment to your program is to set it up so you can find out what you need to
know from the profile. For example, if you're writing an interactive program that gets a
lot of input from the keyboard, you don't need to find out that most of your time is
spent waiting for the user to press a key.

Carefully think through how you would like to gather profile statistics, and adjust your
source code so the statistics gathered are useful and sufficient. Once the source code is
modified (if it needs to be), compile the program with debug information turned on.
Then, set area markers that tell the profiler where to collect statistics and what kind of
statistics to collect.

Here are some basic techniques for finding bottlenecks in large programs:

• Select data sets large enough to give you a useful profile.

Selecting pertinent input data is important. A string search program evoked on a
three-line file won't tell you very much. Likewise, searching for a short string found
in nearly every line of a 10,000-line file will give a different kind of profile than
searching for a long string found only once in 10,000 lines.

70 Turbo Profiler User's Guide

• If you know your program runs quickly, set the profiler to collect statistics over
several runs. (The Run Count setting in the Profiling Options dialog box allows
statistics to be accumulated for the number of runs specified.)

• Modify the program to work independently of keyboard input, or disable
accumulation of statistics in any areas that require keyboard input.

If your program requires keyboard input, read data from a file or use a random
number generator to stuff numbers into an array. The main idea is to select data that's
typical of the real-world data the module operates on.

• Isolate the modules of the program you know need improvement.

Compiling your program
After you've adjusted your program so that the profiling session won't become a wild
goose chase, compile it again with debug information turned on. Files that you've
compiled for debugging with Turbo Debugger can be handled by Turbo Profiler
without recompilation.

Turbo Profiler works with 16-bit Turbo C++, Borland C++, and Turbo Assembler
programs. You must compile your source code with full symbolic debugging
information turned on, as follows:

• Borland C++: In the Project Options dialog box, check the following two options:
• Compiler I Debugging I Debug Information in OBJs.
• Linker I General I Include Debug Information.

• Turbo Assembler: Source code must be assembled with the /zi command-line option
and linked with TLINK, using the Iv option.

To run Turbo Profiler, you need both the .EXE file and the original source files. Turbo
Profiler searches for the source files in these directories, in this order:

1 In the directory in which they were found at compile time (this information is
included in the executable file).

2 In the directories specified with the Options I Path for Source command (or in the
directories specified with the -sd command-line option).

3 In the current directory.

4 In the directory containing the executable program being profiled.

Setting profile areas
Once you've adjusted your program so you can concentrate on the troublesome areas
and have compiled it with debug information turned on, you're ready to run it through
the profiler and collect statistics for individual areas. You can start out by profiling your
whole program in general, then focus in on more and more detail as you find the trouble
spots. Start by accepting the default area settings-Turbo Profiler sets default areas
based on the density of the symbols it finds appended to the executable file.

Chapter 3, Profiling strategies 71

An area is a location in your program where you want to collect statistics: It can be a
single line, a construct such as a loop, or an entire routine. An area marker sets an internal
breakpoint. Whenever the profiler encounters one of these breakpoints, it executes a
certain set of code-depending on the options you've set for the area in question. This
profiling code could be a bookkeeping routine or a simple command to stop program
execution.

These are the actions the profiler can perform when execution encounters an area
marker:

Normal

Enable

Disable

Stop

Activates the default counting behavior (collects execution time and counts
for all marked areas).

Tums on the collection of statistics (if they've been previously disabled).

Tums off the collection of statistics, but lets your program keep running.
When your program enters an area where the action is set to Enable, the
profiler resumes data collection.

Stops the program, and returns control to the Turbo Profiler environment (or
to DOS, if you are using batch mode execution). At that point, you can
examine the collected statistics, then resume execution.

By default, Turbo Profiler counts the number of times execution enters an area and how
long it stays there. You can change what the profiler does when an area executes by
setting the Operation option in the Area Options dialog box-accessed through the
Module or Areas window SpeedMenus.

When you're setting areas in your program before running a profile, you should
consider these questions:

• How many areas should statistics be collected for?
• Which parts of the program should be profiled?
• What should happen at each marked area?

What level of detail do you need?
You must first decide how much information you want. Keep in mind how large your
program is and how long it takes to run.

• For a small program, you probably want statistics for every executable line-the
maximum level of detail.

• For large programs, you need less detail; just profiling the amount of time spent in
each routine is probably enough.

"Large" is a bit vague. You need to take into account the number of modules of source
code, the number of routines, and the number of lines.

If your source consists of 10,000 lines in ten modules, you should probably analyze only
one module at a time in active analysis. (Your program is factored into discrete
functional modules, right?)

On the other hand, if your program is less than 100 lines and you need detailed analysis,
you probably want to collect statistics for all the lines.

72 Turbo Profiler User's Guide

If your program runs in less than five seconds, you'll get more accurate profile results if
you set up multiple runs with averaged results. (Set the number of runs with the
Statistics I Profiling command.) If the program takes an hour to run (not counting
profiler overhead), be careful not to set so many areas that you slow down execution to
an unacceptable crawl.

Adding areas
Divide your program into a number of areas by selecting Add Areas from the Module
window's SpeedMenu. After this, run your program to accumulate statistics for each
area.

If you don't tell Turbo Profiler how to divide your program, it uses a default scheme to
intelligently select appropriate areas in your program. Based on information it finds in a
program's symbol tables, Turbo Profiler selects one of several default options for setting
areas in a program.

• If there are few symbols in the table, and there is a single module, Turbo Profiler
selects Every Line in Module as the default area setting.

• If there are many symbols and several modules, Turbo Profiler selects All Routines as
the default area setting.

Note If your program is very large, profile it first in passive mode to get the big picture, then
select areas for more detailed analysis.

What type of data do you need?
For each area in your program, Turbo Profiler accumulates the following default
information for Active and Passive modes:

• The number of calls to the area
• How much time was spent in the area (active mode)
• How many clock ticks occurred while the area executed (passive mode)

You can also collect more extensive information during the profiling session.

• By enabling Statistics I Callers and setting Call Stack options in the Area Options
dialog box, you can track which routines call a marked routine-how often and
through what pathway.

• With the Statistics I Files option enabled, you can monitor your program's file-access
activity.

• The Statistics I Interrupts option, when it is enabled, records your program's
interrupts.

• You can monitor your program's overlay file activity by enabling the Statistics I
Overlays option.

Once you've enabled the appropriate Statistics ,menu options, you can open the
corresponding profile report windows (through the View menu), then call up each
window's SpeedMenu to specify details about how you want the data collected.

Remember, to get the Turbo Profiler reports you want, set all options before you run the
program.

Chapter 3, Profiling strategies 73

When should data collection start?
Often, you want to collect timing information only when a certain portion of a program
is running. To do this, start the program executing without collecting any information;
set the Statistics I Accumulation option to Disabled. You can determine the Accumulation
option's setting at any time by bringing up the File I Get Info box and checking the status
of Collection. ·

With Accumulation disabled, you must set an area marker to Enable for the area where
you want data collection to start, then set another marker to Disable for the area where
you want data collection to stop. The actual number of start and stop points you set is
determined by the amount of available memory; generally, you can set as many as you
need.

How do you want time data grouped?
The profiler can keep each routine's execution-time statistics separate from others, or it
can combine routine's times with those of the routines calling them.

By default, as soon as an active routine calls a routine that has an area marker, the
profiler puts the calling routine on the call stack and makes it inactive. The profiler
associates any timer counts made while program control is in the routine with that
routine only, not with the caller.

However, if you specify that the caller should use a combined clock (rather than a
separate clock), the profiler associates timer ticks that occur while control is in the
routine with the caller.

Turbo Profiler's default analysis mode uses a separate timer for each marked routine. So
normally, the time spent in a routine is measured exclusive of calls to other routines. If
you want a routine's time data to include time spent in child routines, choose Combined
under Timing from the Areas window local Option command.

Which data do you want to look at?
It's important to know how to control the amount of information Turbo Profiler collects
and subsequently displays, particularly if you want detailed information about just part
of a large program. Turbo Profiler provides two ways to control how much information
you view about your program:

• Before you profile, you can limit the collection to specific areas and types of data by
setting options and parameters.

• After the profile, you can filter the collected statistics (without erasing any) and
display only the data you're currently interested in.

In the Module, Areas, and Interrupt windows, you can specify which parts of your
program you want Turbo Profiler to collect information about, and how much
information to collect. You can choose to make data collection as coarse as all routines in
a module or as fine as a single statement. You can choose to collect time-related data
only (by setting the analysis mode to Passive), or you can choose to collect the full
gamut of data, including complete call-stack histories, all file-access and overlay
activities, and all DOS interrupt calls. You can slow down or speed up the profiler's
timer, thus decreasing or increasing the resolution of data collected (passive mode only).

74 Turbo Profiler User's Guide

Note There's a basic tradeoff in how much data you choose to collect: The more information
Turbo Profiler collects, the slower your program runs and the more memory it needs to
store the collected statistics.

See page 83 for more information about filtering displayed statistics.

Once you've collected the data, you can use commands in the profile report windows to
temporarily exclude the data you don't want to look at from the displayed statistics.

Profiling your program
Once you've selected appropriate areas to monitor, run the profile. You can save the
resulting profile with the Statistics I Save command. This command saves the statistics to
a .TFS (Turbo Profiler Statistics) file. If you plan to save several different profile results,
use a file-naming convention that uniquely identifies each of the runs (for example,
RUNl.TFS, RUN2.TFS, and so on). This simplifies your task of comparing them later.

You might not know if a profile is worth saving until you look at several sets of statistics.

After you save the .TFS file, you can study the profile's results in the profile report
windows, sorting and filtering the displayed data as you explore their meanings. You
won't lose any area markers or statistical reports, because all this information can be
reproduced (simply restore the profile from the .TFS file). In general, if a profile took a
long time to create, save it unless you're absolutely sure you won't need it.

Focusing the profile session
Normally, programmers use a profiler to get answers to one or more of these questions:

• How efficient is this algorithm? (Algorithm testing).

• Is this program doing what I think it is? Is all of it running? (Program testing and
verification.)

• How long does each routine run? How much time does the program spend using
various resources? (Execution timing and resource monitoring.)

• What's the structure of this code? (Program structure analysis.)

The following table relates your profiling session to the type of information you'd like to
gather:

Tabie 3.1 Ways of using a profiler

Algorithm testing

Program testing
and verification

Llne-countinfonnation
Dynamic call history

Coverage analysis
Dynamic call history

Chapter 3, Profiling strate~ies · 75

Table 3.1 Ways of using a profiler (continued)

Execution timing Execution time
and resource monitoring Execution counts

Interrupt activity File-access activity
Overlay activity

Program structure Dynamic call history
analysis File-access activity

Testing algorithms

Execution profile (time and counts)
Interrupt activity
Overlay activity

If you're analyzing an algorithm, you'll probably concentrate on a small number of
routines, so it's more important to gather information about line count than execution
times. You need to do the following:

1 Isolate the algorithm and its supporting routines by marking them as areas.

2 Make sure you've set area markers for all lines in all routines that implement the
algorithm in question.

The examples in Chapter 1 demonstrate algorithm analysis, especially as it relates to
execution time statistics.

Verifying and testing programs
In program verification and testing, block execution information is more pertinent than
execution times. Since the verification and testing process looks at the program as a
whole, you want to see how everything works together in an integrated system.
Profiling a program while you run it through standard tests can point out areas of the
program that execute very little or not at all. Coverage analysis mode is most useful for
this type of verification testing.

If you deal with large pieces of code when you test and verify programs, you won't
need as much detail as you would for algorithm analysis. However, it's still useful to
know how many times a routine has been called. Organize a program test into groups of
routines that create a call hierarchy. With this type of test, coverage analysis can help
prove that every path in a switch statement or conditional branch has executed at least
once.

By studying call paths in the Callers window and printing out a source code listing
(annotated with execution counts) from the Module window, you can verify that
routines are called at the right time. And, if a block of code does not get hit at the
appropriate time, you can investigate why the piece of code does not get executed.

Timing execution and monitoring performance
When timing a large program to see where it's slow, you rarely need information at the
line-count level. In execution timing, you need to know two things:

How much time is spent in individual routines.

2 What times propagate from low-level routines to higher-level routines.

76 Turbo Profiler User's Guide

Before timing a program's execution, you need to set areas for all routines with source
code. In very large programs, limit your selection of area markers to a single module per
profile run.

Once you've set the area markers in a single module, profiling becomes a matter of
successive grouping and refinement. These are the techniques you use to refine the
profiling process:

• Use filters to temporarily mask out unwanted information (with the Execution Profile
window's local Filter command).

• UrJnark routines vv ... hose statistics you dort't wartt (witl-1 tl1e local Remove command
in the Module, Execution Profile, and Areas windows).

• Combine the timer counts for specified routines (with the Timer option, which you
set from either the Statistics I Profiling Options command or the Areas window's local
Options command).

If you're not completely familiar with the program you're profiling, you can use
execution timing and performance monitoring in conjunction with studying the
unfamiliar code.

Studying unfamiliar code
One of the best ways to study code you don't know is to analyze the dynamic call
history that Turbo Profiler generates in the Callers window. This history shows the
program's structural hierarchy. Although you can see only one routine's call paths at a
time, you can print all recorded call paths by choosing Print I Statistics with the Callers
window open.

By noting a program's called routines, their callers, and the number of times the
program traverses each call path, you can see which routines are most important. You
can also predict which higher-level routines will be affected by changes you make to
lower-level routines.

Execution times and counts give you a sense of the program's important routines. File
and overlay monitoring reveal any temporary files opened and closed during program
execution as well as any overlays swapped into memory. This information is harder to
find through lexical program analysis.

The profiler's link between the Execution Profile, Module, and Areas windows enables
you to move back and forth quickly to specified symbols, thus revealing the connections
between functionally related but physically separated pieces of source code.

Which analysis mode to use
One important consideration when you're profiling is whether to use active, passive, or
coverage analysis. You set the profiling mode from the Profiling Options dialog box
(choose Statistics I Profiling Options).

Once you know your program works correctly, active and passive analysis are
important tools for helping to improve the overall performance of your program.
Coverage analysis, on the other hand, is a useful tool to use while developing your code.

Chapter 3, Profiling strategies 77

Does the program call all routines at the appropriate time? Are there any sections of
code that do not get executed? These are important questions that can be answered by
profiling in coverage mode.

Active analysis
Turbo Profiler's default mode is active analysis; it collects execution times and execution
counts automatically, as well as any other data (such as call histories or DOS interrupts)
that you've enabled in the Statistics menu.

When you profile in active mode, keep in mind how frequently the program execution
trips area markers. For instance, you can mark every line in a program except a loop
statement, but if the program spends 95% of its time inside that loop, the number of
marked areas won't slow the profile much.

See the section "Speeding up profiling" for other ways to make your profiling sessions
go faster.

The profiler slows doWn. program execution if it must perform a lot of bookkeeping
every time it executes a source statement. If that happens; you can always switch to
passive analysis, which turns off all automatic calls to the expensive bookkeeping
routines that the profiler performs under active analysis mode.

Passive analysis
If your program runs very slowly and you can do without execution counts and call
histories, use passive analysis; in passive mode, the profiler collects only time-related ··
statistics for marked areas (such as execution times, interrupt calls, and file activity).
Your profile runs will go much faster in passive analysis mode.

In passive analysis, Turbo Profiler interrupts your program's execution at regular
intervals to sample the value of the program counter, CS:IP. If the sampled value points
to an address inside an area that you're monitoring (a marked area), the profiler
increments the ticks in that area's timer compartment. If the value in the CS:IP does not
point to an address inside a marked area (for example, it points to an address within a
DOS interrupt or BIOS call), the profiler throws out that timer tick.

It's hard to interpret the results of passive analysis unless your program runs a long
time, or unless you accumulate timing statistics over many runs. Some areas of your
code might never show up even though they execute, because they're never being
executed at the time the profiler interrupts the program's execution. To obtain greater
statistical accuracy, collect statistics over several program runs (be sure to set the Run
Count in the Profiling Options dialog box to coincide with the number of runs you plan
to monitor).

Passive analysis doesn't add noticeable overhead to program run time, but it does
sacrifice some detail in the resulting reports. When you set passive analysis, there is no
noticeable slowdown in program execution. However, you might not be able to get all
the information you require. You can't get count information or callers information, but
you can monitor interrupt calls and file activity.

78 Turbo Profiler User's Guide

Passive versus active analysis
Some of the data you collect under passive analysis might be misleading if you don't
take these points into consideration when you analyze the results:

• If your program does disk I/O, the profiler gives file-access time to the calling routine
under active mode, but not under passive mode.

• If your program calls an interrupt that's not marked as an area, the profiler gives the
interrupt's time to the calling routine in active mode, but excludes the interrupt's
time in passive mode.

Coverage analysis
Coverage analysis lets you verify program structure and execution sequence. Because
coverage analysis doesn't slow down program execution (unless Max Coverage count is
set to a high number), you can perform two tasks with one profiling pass. Coverage
allows you to count how many times a block has been executed (set the Maximum
Coverage Count using Statistics I Profiling Options). With this, you can verify that a
block of code does get called and, at the same time, determine if it is getting called too
many or too few times.

Speeding up profiling
Each time your program enters a routine that you have defined as a data-collection area,
Turbo Profiler must perform certain processing (''bookkeeping" code). The execution
speed of a program under the control of Turbo Profiler depends on how frequently area
markers are tripped and on the kind of information being collected for the most
frequently tripped areas. The greater the level of information being collected
(particularly call-stack history), the longer it takes to execute bookkeeping code
associated with an area. Even if your program runs slower, Turbo Profiler still keeps
track of timing information properly.

Sometimes your program speed might be unacceptably slow under Turbo Profiler. That
might be because your program is frequently calling a deeply nested routine with call
stack tracing set to All Callers for All Areas. If you've defined this deeply nested routine
as an area, Turbo Profiler will spend a lot of time keeping track of the calls to it.

To determine if your program is frequently calling a low-level routine, switch to the
Execution Profile window and display the areas by execution counts. (Set the
SpeedMenu Display option to Counts.) This displays an execution-count histogram
sorted by the number of times each area is executed.

If the program calls one or more routines much more frequently than the rest, you can
exclude them from the list of displayed areas with the Execution Profile window's local
Filter I Current command. You can also unmark areas with the local Remove command
in the Module, Areas, and Execution Profile windows.

Improving statistical accuracy
If you don't collect enough data (because yourprogram runs too fast for the profiler to
gather a statistically significant number of data points) or if you collect a skewed data set

Chapter 3, Profiling strategies 79

(because of resonance), you won't be able to make informed decisions about the changes
needed in your source code .. Here's what to do if either of these problems should occur.

Insufficient data
To improve the accuracy of timing statistics and to get a statistically significant average,
run your program more than once. Be sure to set the Run Count option in the Profiling
Options dialog box. When your program terminates and you run it again, the profiler
adds the times for the new run to times accumulated for previous runs. This continues
until you've executed your program the number of times specified in the Run Count
option.

Caution! Running your program after the specified number of runs will reset all statistical
information in preparation for a new set of runs. Be sure to save (or analyze) the
statistics before embarking on a new set of runs.

Resonance
Resonance occurs, for example, if a loop cycles at the same frequency as the timer tick If
resonance is causing the profiler to return inaccurate data, use the Clock Speed setting in
the Profiling Options dialog box to set the profiler's clock to anywhere between 18 and
1,000 ticks per second. Choose a speed that is not an integral multiple or fraction of the
speed that is causing the resonance. For example, if your program exhibits resonance at
100 ticks per second, try 70 or 130 ticks per second.

If you suspect that resonance is causing biased statistics, try different clock speeds that
are not integral multiples, and compare the collected statistics. If resonance is the
problem, the various sets of statistics will vary considerably.

Changing the clock speed can be done only in passive mode; active mode doesn't use
clock ticks.

The faster the clock speed, the more accurately Turbo Profiler can determine where your
program spends its time. So, will setting the clock speed to 1000 ticks per second
produce incredibly accurate timing information? Not necessarily. The faster you set the
clock speed, the slower your program will run (because Turbo Profiler must perform
certain lookup operations each time a clock tick occurs). So if you want greater accuracy
than the default 100 ticks per second, increase the clock speed until you reach an
acceptable compromise between accuracy and execution speed.

Also note that if a section of your program disables interrupts, only the first clock tick
during execution of that section will be counted, and your system's internal clock will
run slower. Avoid setting the clock speed so fast that it causes multiple ticks while
interrupts are disabled.

i

Some tips for profiling overlays
Overlays allow large programs to run in limited memory by storing portions of the code
on disk and loading that code only as needed. If you use overlays, the program's
modules share the same memory-thereby reducing total RAM requirements.

Unfortunately, swapping code in and out of memory can lead to slow program
execution because it wastes time accessing disk drives. Because even a fast disk drive is

80 Turbo Profiler User's Guide

still the slowest storage device in most PCs, improper overlay management can
dramatically reduce performance. To make a difficult situation worse, the overlay
manager code in the compiled program is normally hidden. Turbo Profiler brings
overlay management code out in the open so you can adjust your program's overlay
behavior.

To fine-tune overlay performance, you need to choose the right overlay buffer size,
select algorithms for managing overlays in the buffer, and set other parameters that can
help keep the most frequently used overlay modules in memory for longer periods of
time. You can reduce "thrashing," which results from too many disk accesses as the
program reads overlay, by keeping frequently used overlays in memory longer.

Statistics displayed in the profiler's Overlay window include

• The number of times your program loads each overlay from disk.
• The time-ordered event sequence in which your program loads overlays.

The load-count and execution-time information is useful for determining which
overlays should stay in RAM longer. By comparing this data with a profile of non
overlay routines, you can decide which modules should be overlays and which
shouldn't.

With the overlay event history, you can choose optimal algorithms for overlay buffer
management. By examining a list of overlays and seeing when and how often each was
loaded, you can decide which main program modules might work better as overlays,
and which overlays might benefit from being made part of your main program.

Profiling object-oriented programs
In general, profiling object-oriented programs is not much different from conventional
profiling; treat object-oriented programs just like ordinary programs and consider each
method to be just li!<e a call to a routir]-e.

Interpreting and applying the profile results
OK, so you've decided what profile statistics you want to collect, adjusted your program
accordingly, and run it enough times to gather a statistically significant (if not
downright daunting) set of data. Now what?

Now comes the fun part. First you analyze the data to figure out what the profiler is
telling you, then you apply that newfound knowledge to your source code to make your
program faster and more efficient than ever.

Analyzing profile data
The Turbo Profiler windows you'll use to study the collected statistics fall into two
categories: program source windows and profile report windows.

Turbo Profiler's program source windows are the Module, Areas, Routines, and
Disassembly (CPU) windows. Before running the profile, you mainly use source

Ch apter 3, Prof i Ii n g st r a I e g i es 81

windows to set areas and to specify profiling actions at the marked areas. After you
examine the profile statistics (in one or more report windows), you use source windows
again to analyze your program's source code.

Turbo Profiler's report windows are the Execution Profile, Callers, Overlays, Interrupts,
Files, and Coverage windows. You use report windows to display profile statistics
gathered from your running program, so you can evaluate the collected data and
determine where changes in the source code might improve your program's
performance.

Execution Profile window
This window is your primary focus for improving the performance of your program. In
general you will want to examine those lines of source code that account for most of the
program execution time. Next, look for lines (or routines) with a high ratio of execution
time to execution count. And finally, it is always good form to check on the routines that
account for the most "per call" execution time.

Callers window
Once you have isolated a routine you want to improve, use the Callers window to locate
all of the areas in your program that call the selected routine. The Callers window
displays the number of times the routine was called, and the source of those calls (the
caller).

Overlays window ·
The Overlays window lets you detect excessive overlay calls, which will then become
candidates for placement in a non-overlaid module (unit).

Interrupts window
The Interrupts window reveals all the (selected) interrupts made by your program. This
revelation may prompt you to combine video output for some lines of code, or for file
intensive programs, suggest that disk 1/0 be buffered.

Files window
The Files window quickly discloses the number of reads and writes performed to the
files manipulated by your program. In 1/0-intensive applications, this window will
point out which files deserve your attention.

Coverage window
The Coverage window, in its default setting, displays blocks of code that have not been
hit during the profiling session runs. This window helps to isolate sections of code that
do not get called (dead code) and areas that need to be called. In addition, the Coverage
window can be adjusted so that it displays the number of times each block of code has
been hit during the program runs.

82 T u r b o P r of i I e r U s e r ' s G u i d e

Filtering collected data
Turbo Profiler's windows provide SpeedMenu commands for temporarily or
permanently filtering data out of the current display. Here's a table summarizing the
profiler's filtering options:

Table 3.2 SpeedMenu commands for filtering collected statistics

Window SpeedMenu command

Execution profile Filter

Files

Interrupts

Overlays

Coverage

Remove

Collection (top pane)

Detail (top pane)

Display (bottom pane)

Remove (top pane)

Display (bottom pane)

Display

Display

Sort

Group

What it does for you

Temporarily removes the current area's statisti "S, or
showb uni y the current moduie's statistics, or restores all
collected statistics to the window. (You choose Current,
Module, or All from the Filter menu.)

Permanently erases the current area's statistics from the
collected data. Use with caution!

When disabled, no file statistics are collected.

When disabled, displays only file open and close
activities. When enabled, also displays file read and
write activities.

Displays each event either as a bar graph e!t ·'"lent, or as
text showing the exact time and duration of the event.

,_. - ·- .. ~·- . ·-·· ~·

Removes the currently selected interrupt from the top
pane.

Displays an interrupt's statistics as either (1) summary
histograms of time, calls, or both, or (2) a detailed
sequence of events.

Displays each overlay's profile statistics as either (1)
Count, a summary of memory consumed and times
loaded, or (2) History; a detailed sequence of events, with
a line of data for every time the overlay loaded.

···-··-··- ~··-·-·- ·--··-·· ··-·-· . -- ·-~ . ·- ···- -··- . ·- . ··- ·- . -·-
Specifies blocks to display: (1) display all blocks or
(2) display only blocks not hit.

Determines the order of display for the blocks (either by
address or by number of times hit).

Sets the method of block display as either (1) display all
blocks, (2) group blocks by routine, or (3) group blocks
by module.

When you choose Remove from the Execution Profile's SpeedMenu to permanently
filter out an area's statistics, the profiler

• adjusts the report by discounting time spent in that area.

• adjusts the percentages of remaining areas by calculating them as percentages of the
revised total time:

(revised total time= total profile time - time for the removed area)

• unmarks that area in the Module window.

• removes the area from the areas list in the Areas window.

Note When you remove an area from the Execution Profile window, the remaining area's
statistics will be recalculated for the current run only. A subsequent run of the program
will most likely show the time for the removed area shifted into one or more other areas.

Chapter 3, Profiling strategies 83

To permanently remove an area (and the time spent in that area) from the statistics, you
must set the area to Disable. Be sure you don't forget to set a following area to Enable.

Revising your program
Here's a general plan of attack for finding routines where simple changes can improve
your program's performance.

Look for large routines with a disproportionate share of execution time, or for
routines with a large number of calls. Working from the highest level of your
program, follow flow of control through successive levels of calls, looking for places
to optimize by reducing or eliminating excessive calls and operations.

2 Look for statements and routines that have a high ratio of time to count. From the
Execution Profile window's SpeedMenu, set Display to Both or Per Call. Then look
for those areas that show a long time magnitude bar and a short count magnitude
bar. Statements and routines of this sort usually represent an inefficient segment of
code. Recode them to produce the same result in a more efficient way.

3 As a last resort, you can optimize the program's innermost loops; here are some
techniques:
" Unroll loops
" Cache temporary results calculated on each iteration
" Put calculations for which results don't change outside loops
• Hand-code assembly language

Usually you'll see less improvement with inner-loop optimization than you'll see if you
modify control constructs, algorithms, or data structures.

Besides the general guidelines just listed, here are some specific things you can do to
improve your program's performance:

• Modify data structures and algorithms
• Store precomputed results
• Cache frequently accessed data
• Evaluate data only as needed
• Optimize loops, procedures, and expressions

Modifying data structures
Try using more sophisticated data structures or algorithms. For example, a QuickSort
routine will generally operate faster than a bubble sort for a random distribution of key
values. Consult a book on data structures and algorithms for other examples.

Switch from real numbers to integers for fast calculations, such as window and string
management for screen I/O and graphics routines. Use long integers for data
manipulation or any other value that does not require floating-point precision.

Instead of sorting an array of lines of text, add an array of pointers into the text array. All
text access occurs via the pointers. To sort or insert a new line of text, you need to
reorder only the pointers, rather than entire lines of text.

84 Turbo Profiler User's Guide

Storing precomputed results
If a set of computed numbers is referenced more than once in a program, it is best to do
the computations once, and store the results in a table that can then be accessed. For
example, build a sine table, then look up sine as a function of degrees based on an
integer index.

Caching frequently accessed data
C buffers low-level character input from files. The getc routine reads a whole sector of
bytes from the disk into a buffer, but returns only the first character read. The next call to
getc returns t..~e next character in the buffer, arld so ort, w1Lil tlte buffer is empty,, in
which case getc reads another sector in from disk.

In an interactive editor or file-dump utility, you can keep a number of buffers that are
updated while the program waits for user input. You might have two buffers that
always contain screenfuls of information read from the beginning and the end of the file.
Another two buffers can keep the previous and next screenful of bytes in the disk file
relative to the position currently onscreen. This way, for those file-navigation
commands the user is most likely to select, your interactive program can update the
screen without disk access.

Evaluating data as needed
Structure the order of conditional tests and switches so that those most likely to yield
results are evaluated first. This will reduce the number of times that low-incident
switches will be tested.

For a large table of lookup information, evaluate entries only as you need them, and use
a supplemental array to track entries that have already been computed.

You might need to calculate the length of a line only when you need to reformat
output-not each time a new line is read from a file.

Optimizing existing code
Loops, procedures, and expressions all offer potential for improvement.

For loops:

• Whenever possible, move calculations outside of loops. Repeatedly calculating the
same value inside a loop is both time-consuming and unnecessary.

Store the results of expensive calculations.

For example, an insertion sort routine doesn't need to swap every pair of numbers as
it works up an array. If you save the value of the starting element, the inner loop
needs to move the successive element down only as long as that element is less than
the starting one. When this test fails, you insert the stored value at the current
position. This process replaces the expensive swap operation for each element called
for in the traditional insertion sort algorithm.

• If two loops perform similar operations over the same set of data, combine them into
a single loop.

• Reduce two or more conditional tests in a loop to a single test, if possible.

Chapter 3, Profiling strategies 85

For example, add an extra element to an array and initialize it to some sentinel value
that will cause the loop test to fail. (This is how C handles text strings.)

• Unroll loops.

For example, replace this

for (x = O; x < 4; x++)
y += items [x];

with this

y += items[O] + items[l] + items[2] + items[3];

For routines:

• Rewrite frequently called routines as inline routines, or replace their definitions with
inline macros.

• Use co-routines for multipass algorithms that operate on large data files. (See the
setjmp and longjmp routines in C.)

• Recode recursive routines to use an explicitly managed data stack.

For expressions:

• Use compile-time initialization.

• Combine returned results in a single call.

For example, write routines that return sine/ cosine, quotient and remainder, or x-y
screen coordinates as a pair.

• Replace indexed array access with pointer indirection.

Wrapping it up
In this chapter, we've covered most of the things you need to consider before, during,
and after a profiling session. We've explained how to prepare your program, and
yourself, for the profile; we've given you some hints and caveats about the process of
profiling; and we've given you some ideas about how to apply the results after you've
run the profile.

In the next chapter, we show the details of how Turbo Profiler accumulates statistics;
how area markers affect data collection, where time and count information gets
calculated, and how Turbo Profiler keeps track of routine calls.

86 Turbo Profiler User's Guide

Inside the profiler
If you want to use Turbo Profiler to your best advantage, you need to understand its
inner workings. Knowing what the profiler does when it encounters an area marker or
what happens each time the profiler interrupts program execution allows you to fine
tune your techniques both for specifying the type of information to collect and for
interpreting the resulting reports.

Consider the source code in PTOLL.C:

#include <stdio.h>
#include <dos.h>

void main(I
{

printf("Entering main\n");
route66 (I
printf("Back in main\n");
delay(lOOO);
highway80();
printf("Back in main\n");
delay(lOOO);
printf ("Leaving main\n\n" I;

route66 (I
{

printf("Entering Route 66\n");
delay(2000);
printf ("Leaving Route 66\n" I;

highway80 (I
{

printf ("Entering Highway 80\n");
delay(2000);

· printf I "Leaving Highway 80\n" I;

C h a p I e r 4 , I n s i d e I h e p r of i I e r 87

In the previous program, setting areas to Routines in Module effectively sets up four
time-collection compartments and four count-collection compartments. Turbo Profiler ..
keeps execution times and counts for main, route66, and highwaySO. In addition, Turbo
Profiler keeps a total for both execution times and for counts.

Area boundaries
In this section, you follow program execution and see what the profiler does as each
area marker is passed. It's best to think of this process as going through a series of
tollbooths. After you pass a tollbooth, you're on a section of road associated with that
tollbooth until you come to another tollbooth.

You' re in no tollbooth's territory before you reach the first tollbooth. When you pass the
first tollbooth, time spent on each section of roadway is tracked by the tollbooth in
charge of that section of the road. Note that you can only go one direction down the
road: Loops and jumps are like airlifts that take you back to some previous position on
the road.

Time and count collection
Before you enter the main program block, C startup code is executed, which is
equivalent to no tollbooth's territory. Any timer ticks encountered here are thrown
away, unless you have explicitly set an area in the startup code.

As soon as you pass the area marker (tollbooth) at main, the count associated with main
increments by l. Any timer tick that occurs between the time you enter main and the
time when route66 is called goes into main's timer compartment.

Next, main calls route66 and you enter a new stretch of highway. The moment execution
passes through the area marker (the tollbooth) at route66, several things happen:

• The current area is set to route66.
• The compartment for the caller (main, in this case) goes on a stack.
• The count-collection compartment associated with route66 increments by 1.

Any timer tick that occurs between now and the time you return from route66
automatically increments route66's time-collection compartment. The global program
time-collector also continues to increment with each timer tick.

As soon as execution passes through a return point for route66, the profiler pops the
caller's compartment from a stack. The caller's count compartment is not incremented
on a return. However, any timer ticks that occur between now and the call to highwaySO
are added to the time-collection compartment for main as well as to the program's global
compartment.

To verify this, turn off route66's area marker (position the cursor on route66's area
marker and press F2) and compare the result with a profile for which that area marker
was set. You should see essentially j:he same total execution time. However, main's
execution time should increase by the amount of time it took to execute route66.

88 Turbo Profiler User's Guide

Showing routine call overhead
You might want to measure the time consumed by calling a routine (for example,
route66) and ignore the time spent inside the routine. You can also get this killd of
information using passive analysis, discussed in Chapter 3. The easiest way to get this
information is to disable collection at the entry point for route66, and then to reenable
collection upon return from route66.

To disable route66, position the cursor on the function header. Next, choose Operation
from the Module window's SpeedMenu to open the Area Options dialog box, and set
Operation to Disable.

When you disable collection on entry to route66, returning from it doesn't automatically
reenable collection. You must set an area marker at the closing brace for route66, and set
the operation for that area marker to Enable (using the Area Operations dialog box).

Who pays for loops?
The tollbooth analogy helps explain why passing through an area marker and jumping
back to a program statement that precedes that marker (using a loop or goto statement)
doesn't change the current area. Even though you're lexically outside the scope of the
marker, you haven't passed through any new markers. Any timer ticks that occur will
still be associated with the most recently tripped marker.

Knowing this, take a look at the next program:

#include <stdio.h>
#include <dos.h>
lost_in_town (I;

=> void main (I
(

printf ("Entering main
lost_in_town();
delay(lOOO);
printf ("Leaving main \n \n) ;
delay(lOOO);

=> lost_in_town()
{

int i;
printf ("Looking for highway ... \n") ;
delay(lOO);
for (i=O; i<lO; i++I
{

printf ("Ask for directions \n);
=> print£ ("Wrong turn \n\n" I;

delay(lOOO);

printf ("On the road again \n);

Chapter 4, Inside the profiler 89

In program plost, we've complicated the routine lost_in_town by using a compound
statement inside a loop. Assume that three area markers have been set: one for main, one
for lost_in_town, and one for the line that prints Wrong turn.

Things get tricky when you get into lost_in_town. When you first enter the routine,
lost_in_town becomes the current area. The time associated with printing Looking for
highway is associated with this marker.

Time for executing the loop statement is still associated with the routine marker, and the
first time you Ask for directions, timing information is associated with the routine
marker. However, once you trip the line marker for Wrong turn, the remainder of the
time spent in the routine is associated with that line marker.

Just because you pass into an area that was previously associated with another marker
doesn't mean the current area changes. The current area changes only when you trip an
area marker. This can produce unexpected results.

For instance, if you set the three markers for program plost as already described (one
each for the main function, the lost_in_town function, and the Wrong Turn statement),
approximately 84% of program time will be associated with printing "Wrong tum,"
while only 1 % of execution time will be associated with lost_in_town. This is because
nine out of ten calls to Ask for directions, plus all calls to the subsequent delay
statement, occur after the wrong Turn marker was tripped.

If you toggle off the area marker for Wrong turn, 84% of the remaining execution time will
be logged to the routine lost_in_town.

Now, consider the following code:

main

while (! kbhit ()
{

funcl ();
statementl;
statement2;
func2 ();

funcl ()
{

}

func2 ()
{

}

Assume that areas are set for All Routines in the module so that routines main,funcl,
and func2 each mark the beginning of an area. You enter main, which trips main' s area
marker. When this happens, Turbo Profiler internally encounters a breakpoint. This
encounter sets a variable indicating that, until you trip another breakpoint, main is the
current area. This encounter also increments a variable associated with execution counts
for main by 1.

90 Turbo Profiler User's Guide

The scope of these areas is dynamic rather than lexical. That is, main is the current area
until funcl is called. As soon as you enter funcl, you're in a new area until you encounter
another function call or until you return fromfuncl. This means that the profiler puts the
caller (main, in this case) on a stack.

When you exitfuncl, you trip a return marker that the profiler set up when it entered
funcl. The routine main becomes the current area again. Any timer ticks that occur while
the program is executing statementl or statement2 will update the timer for the area
associated with main.

Two things are going on here:

1 Every time you encounter an area, the profiler calls an internal routine that adjusts
variables and updates a routine call stack. Two variables are associated with each
area: execution counts and execution time. Each time you enter an area, the execution
count associated with that area increments.

2 Every time a timer tick occurs, the profiler calls another internal routine that checks to
see what area is current, then increments the timer variable associated with that area
by the appropriate amount of time.

When the program terminates, Turbo Profiler converts the counts variable for each area
to an actual time (based on the total number of timer ticks that occurred for the entire
program).

Multiple return statements
What do you do about multiple return statements? The answer is related to the implicit
return points at the end of routines.

Note Even though you might have several explicit return points in your function, Borland's C
and C++ compilers actually tum all returns into jumps to a single exit point at the end of
the routine. The line that receives the area marking for a return statement is the line
associated with the closing brace for the routine. This is the actual assembly language
return statement to which all other return statements in the routine are vectored.

Disabling often-called functions
The easiest way to disable collection for a function is to set a Disable marker at the
function header and an Enable marker on the line after the call to the function. However,
if a function is called from more than one place, it may be difficult to set Enable markers
after each function call. In this case, set the Enable marker at the closing brace of the
function, or (better yet) at the actual return statement in the function code.

For example, if you want to overlook the time spent in funcl, set a Disable marker at the
header for funcl. Then, enable collection again at the return statement for funcl:

1 Go to the Disassembly window (View I Disassembly).

2 Set an area marker at the ret statement of the function.

3 Go to the View I Areas window.

Ch a p I er 4, Inside I he prof i I er 91

4 Set options to Enable (Ctrl+O, E).

Now, whenever funcl is called, collection will be disabled upon entry to the function,
and enabled at the exact point that the function returns.

A simpler yet less accurate way to reenable collection is to set the Enable marker at the
closing curly brace of the function in question. The drawback of this method, however,
is that timing information will be collected for the time it takes to return from the
function.

Logging callers
An active routine is a routine currently on the profiler's routine call stack. In active
analysis, Turbo Profiler maintains its own routine call stack. This stack is similar to the
stack found in any DOS program. However, the profiler's stack is separate from the
user's program stack and is used strictly to retain information about routine calls for
which a return statement has not yet been executed.

In order to maintain an active routine stack, Turbo Profiler recognizes two types of area
markers:

• Routine-entry area markers (routine markers)
• Normal area markers (label markers)

When the profiler encounters a routine-entry area marker, it pushes the currently active
routine (the last encountered routine-entry marker) onto its active routine stack. The
newly encountered routine marker then becomes the active routine marker.

Now, if a normal area marker trips, this encounter will have no effect on the current
routine or on the active routine stack. When a normal area marker trips, it simply
becomes the active area, which means that the profiler forgets the previously active area.
The currently active routine, however, remains on the stack until the profiler encounters
a return statement.

When a return is issued within an active routine, the area marker associated with that
routine bE~comes inactive. The routine on top of the profiler's active routine stack pops
off the stack and becomes the active routine until a return statement executes within that
routine, or until another routine-entry area marker is tripped.

Thus the profiler can maintain a complete call history for every marked routine. If you
have enabled Statistics I Callers for all marked routines, then each time a routine-entry
area marker is tripped, the profiler saves the entire profiler call stack in a buffer linked
directly to the routine-entry marker.

If that call stack is identical to a call stack that was saved for a prior entry to this routine,
the profiler increments a counter, rather than saving the call stack again. If, however, the
call stack is different, the profiler allocates a new buffer and logs the profiler call stack to
that new buffer. This makes it possible to maintain a record of every call path to a
routine and the number of times each call path is traversed.

The profiler's active routine stack is related to three menu settings:

• Statistics I Callers (set to either Enabled or Disabled)

92 T u r b o P r of i I e r U s e r ' s G u i d e

• The Callers option, set from the Areas' local window Option selection
• The Stack option, set from the Module's local window Callers selection

While all selections relate to callers, you gain finer control over logging call paths by
using the SpeedMenu of the Module window. From this menu, you can set the Areas
option to log callers for a single routine, for all the routines in a single module, or for all
the routines in the program. As well, the Stack command allows you to specify callers as
All Callers, Immediate Caller, or None.

• All Callers means log the entire routine call stack each time the entry point is tripped.

• L'TI....'Uediate Caller means log only the top entry on the routine call stack when the
entry point is tripped.

• None means don't log any routine stack information when this routine-entry marker
is tripped.

By default, when you first profile a program, the Callers option for all routine-entry area
marks is set to None.

Enabling Statistics I Callers from the main menu is the same as setting the Callers option
to All Callers for each area marker listed in the Areas window. However, once you've
hand-set any of the Callers options in the Areas window, setting Statistics I Callers to
Enable won't change the value of the Callers options for any of the areas.

Disabling the Statistics I Callers option at this point tells the profiler not to log any stack
information, but doesn't change the Caller settings in the Areas window. (Neither does
setting Statistics I Caller.)

Sampling vs. counting
This section relates only to passive mode.

The profiler doesn't actually measure time: It comes up with a very accurate estimate of
time based on information from timer tick counts. This is a form of statistical sampling. By
taking regular periodic samples of the current area, and by keeping a count for each area
(which increments each time that area is active when the timer interrupts), the profiler
can estimate the time spent in a given area.

The profiler knows the total time taken to run the program. It also knows the total
number of times the timer interrupted the program. The time spent in a given area can
be calculated as

timearea = timer total * countsarea I countstotal

This is not the true time spent in an area. If your program iterates over some routine at a
frequency that is a multiple of the timer frequency (for example, a routine that generates
a steady sound tone), the execution of a particular line (or area) might exactly coincide
with most of the timer interrupts. This resonance could occur even though that line is
not where the program is spending most of its time. This is rare, but possible.

Chapter 4, Inside the profiler 93

If you suspect this sort of frequency collision, change the value of the clock speed
(Statistics I Profiling Options I Clock Speed) and compare the resulting profile to the
previous one.

Profiler memory use
The profiler allocates memory for area information on the far heap. If you add areas
while the program is running, the far heap will expand into the user program area to
make room for new area variables and buffers. This is why, if you modify areas during a
run, you should always reset the program with Run I Program Reset. If you don't, the
results of a profile might be unpredictable; you could hang your computer.

94 Turbo Profiler User's Guide

Turbo Profiler's command-line options
This is the generic command-line format for running Turbo Profiler:

TPROF [tprof_options] [prognarne [prograrn_args]]

where tprof_options is a list of one or more command-line options for the profiler (see
Table Al), progname is the name of the program you want to profile, and program_args is
a list of one or more command-line arguments for the profiled program.

You can type TPROF without a program name or any arguments; if you do, you must then
load the program you want to profile with Turbo Profiler's environment.

Here are some example Turbo Profiler command lines:

tprof -sc progl a b Starts the profiler with the -sc option and loads program
PROGl with two command-line arguments, a and b.

tprof prog2 -x Starts the profiler with default options and loads program
PROG2 with one argument, -x.

The command-line options
All of Turbo Profiler's command-line options start with a hyphen(-). At least one space
or tab separates each option from the TPROF command and any other command-line
components.

To tum an option off at the command line, type a hyphen after the option. For example,
-vg- explicitly turns the graphics save option off. Normally you'll tum an option off only
if it's permanently enabled in the profiler's configuration file, TFCONFIG.TF. (You can
modify the configuration file with the TFINST installation program described in
Appendix B.)

A p p e n d i x A , T u r b o P r of i I e r ' s c o m m a n d - I i n e o p I i o n s 95

Table A.1 summarizes Turbo Profiler's command-line options; we cover these options
in greater detail in the following pages.

Table A.1 Turbo Profiler command-line options

-b Loads Turbo Profiler in batch mode.

-bccount Run in batch mode with run count of count.

~file Reads in configuration file file.

-do Runs the profiler on a secondary display.

-dp Shows the profiler on one display page, the output of the profiled program on another.

-ds Maintains separate screen images for the profiler and the program being profiled.

-h Displays a help screen.

-? Also displays a help screen.

-ji Session-state saving: Don't use session-state file if you've recompiled your program,

-jn Session-state saving: Don't use session-state file.

-jn Session-state saving: Prompt for session-state file use if you've recompiled your program.

-jn Session-state saving: Use session-state file, even if you've recompiled your program.

-p Enables mouse support.

-r Enables profiling on a remote system.

-mL;R Remote network profiling, where L is the local machine and R is the remote machine.

-rpN Sets the remote link port to port N.

-rsN Sets the remote link speed.

-sc Ignores case when you enter symbol names.

-sdDIR Sets one or more source directories to scan for source files.

-Sn Don't load symbols.

-vg Saves complete graphics image on program screen.

-vn Disables 43/50 line display.

-vp Enables EGA palette save for program output screen.

Batch mode (-b)
The -b command-line argument instructs Turbo Profiler to run in batch mode. Turbo
Profiler's environment isn't activated in batch mode; instead, the profiler runs the
program and saves all statistics to a filename. TFS file, where filename is the name of the
executable file.

The -b argument lets you create a DOS batch file of one or more TPROF commands. If
the program you're profiling doesn't require any keyboard input, you can run the batch
process while you're doing something else.

Note Before profiling in batch mode, an area file must be set up to instruct the profiler what
areas to inspect and what profiling mode to use.

To set up the area file, load your program and choose the profiling mode you want to
use (Statistics I Profiling Options). Next, mark areas that you want inspected, setting up
all Enable and Disable markers as needed. Then, exit Turbo Profiler. This creates a .TFA
file that records the selected areas and profiling mode.

96 Turbo Profiler User's Guide

Once the area file is set, create a DOS batch file with the desired Turbo Profiler
commands. Here's an example:

TPROF -b MYPROG argl arg2
rename MYPROG.TFS MYPROGl.TFS
TPROF -b MYPROG argl arg3
rename MYPROG.TFS MYPROG2.TFS
TPROF -b MYPROG arg2 arg2
rename MYPROG.TFS MYPROG3.TFS
TPROF -b MYPROG arg2 arg3

i\.ltemately, you can. set rurt courlt > 1 to accumulate all statistics irLto the sarrle filt.

Notice that you must rename the .TFS file after each TPROF command. If you fail to do
so, successive runs of the same program will overwrite the statistics file already created.
Once you've written your batch file, run it from the DOS command line.

Configuration file (-c)
This option tells Turbo Profiler to use the indicated configuration file. The default is
TFCONFIG.TF; if you want to load a different one, you must use -c, followed
immediately (no space) by the name of the configuration file you want to use.

Display update (-d)
All -d options affect the way Turbo Profiler updates the display.

-do Runs the profiler on a secondary display. You can view the program's
screen on the primary display while Turbo Profiler runs on the secondary
display.

-dp This is the default option for color displays. It shows the profiler on one
display page, and the output of the program being profiled on another.

Using two display pages minimizes the time it takes to swap between
two screens. You can use this option only on a color display, because only
color displays have multiple display pages. You can't use this option if
the profiled program itself uses multiple display pages.

-ds This is the default option for monochrome displays. It maintains separate
screen images for the profiler and the program being profiled.

Each time you run the program or reenter the profiler, Turbo Profiler
loads an entire screen from memory. This is the most time-consuming
method of displaying the two screen images, but it works on any display
and with programs that do unusual things to the display.

Help (-h and - ?)
Both of these options display Turbo Profiler's command-line syntax and options.

Appendix A, Turbo Profiler's command-line options 97

Session-state saving (-jn)
The session-state options specify how you want Turbo Profiler to handle the session
state files. See "Session Saving" on page 25 for more information.

Mouse support (-p)
This option enables mouse support (on by default).

Remote profiling (-r)
All-r options affect Turbo Profiler's remote profiling link.

-r

-mL;R

-rpN

-rsN

Enables profiling on a remote system. If no other -r command-line
options are specified, -ruses the default serial port (COMl) and speed
(115K baud), unless these have been changed using TFINST.

Enables profiling on a remote system over a local area network link. L
and Rare optional arguments, specifying the local and remote system
names respectively.

Sets the remote serial link port to port N. Set N = 1 for CO Ml; N = 2 for
COM2, N=3 for COM3, and N=4 for COM4.

Sets the remote serial link speed to the value associated with N. Set
N=l for 9,600 baud, N=2for19,200 baud, N=3 for 38,400 baud, and
N=4 for 115,000 baud.

Source code and symbols (-s)
All -s options affect the way Turbo Profiler handles source code and program symbols ..

-sc Ignores case when you enter symbol names, even if your program has
been linked with case-sensitivity enabled.

Without the -sc option, Turbo Profiler ignores case only if you've
linked your program with the "case ignore" option enabled.

-sdDIR Sets one or more source directories to scan for source files; the syntax is:
Note: There shouldn't be a space between -sd and the directory name.

-sddirname

dirname can be a relative or absolute path and can include a disk letter.
To set multiple directories, use the -sd option for each separate
directory, or list them together like this

sddirl;dir2;dir3

Turbo Profiler searches directories in the order specified.

If the configuration file specifies a directory list, the profiler appends
the ones specified by the -sd option to that list.

98 T u r b o P r of i I e r U s e r ' s G u i d e

Video hardware (-v)
All -v options affect how Turbo Profiler handles the video hardware.

-vg Saves the program screen's complete graphics image. This option
requires extra memory but lets you profile programs that use special
graphics display modes. Try this option if your program's graphics
screen becomes corrupted when running under Turbo Profiler.

-vn Disables the 43 I 50 line display mode. Specify this option to save some
memory·. Use -vn if you're rUi,.,..uJ..·.-.1g on an EGA or VGA arLd krLow~ you
won't switch into 43- or 50-line mode once Turbo Profiler is running.

-vp Enables you to save the EGA/VGA palette for the program output
screen. Use this option for programs that output to special EGA/VGA
graphics modes.

Appendix A, Turbo Profiler's command-line options 99

100 Turbo Profiler User's Guide

Customizing Turbo Profiler
Turbo Profiler is ready to run as soon as you make working copies of the files on the
distribution disk. However, you can change many of the default settings by running the
customization program called TFINST. You also can change settings using command
line options when you load Turbo Profiler. If you find yourself frequently specifying the
same comm.and-line options over and over, you can make those options permanent by
running the customization program.

The customization program lets you set the following items:

• Window and screen colors and patterns

• Display parameters: screen-swapping mode, screen lines, tab column width, fast
screen update, 43/50-line mode, full graphics saving, and user-screen updating

• Your editor startup command and directories to search for source files and the Turbo
Profiler help and configuration files

• User input and prompting parameters: history list length, beep on error, interrupt
key, mouse, and control-key shortcuts

• NMI intercept and remote profiling

• Display mode

Running TFINST
To run the customization program, enter TFINST at the DOS prompt. As soon as TFINST
comes up, it displays its main menu. You can either press the highlighted first letter of a
menu option or use the Up and Down arrow keys to move to the item you want and then
press Enter. For instance, press D to change the display settings. Use this same technique
for choosing from the other menus in the installation utility. To return to a previous
menu, press Esc. You may have to press Esc several times to get back to the main menu.

Choose Quit (or Alt+X) from the menu to exit TFINST.

A p p e n d ix B , C u st o m i z i n g T u r b o P r of i I e r 101

Setting the screen colors
Choose Colors from the main menu to bring up the Colors menu. It offers you two
choices: Customize and Default Color Set.

Customizing screen colors
If you choose Customize, a third menu appears, with options for customizing Windows,
Dialogs, Menus, and Screens.

Windows
To customize windows, choose the Windows command. This command opens a fourth
menu, from which you can choose the kind of window you want to customize: Text,
Statistics, or Disassembly (the CPU window). Choosing one of these options brings up
yet another menu listing the window elements, together with a pair of sample windows
(one active, one inactive) in which you can test various color combinations. The screen
looks like this:

Figure B.1 Customizing colors for windows

When you select an item you want to change, a palette box pops up over the menu. Use
the arrow keys to move around in the palette box. As you move the selection box
through the various color choices, the window element whose color you are changing is
updated to show the current selection. When you find the color you like, press Enter to
accept it.

Note Turbo Profiler maintains three color tables: one for color, one for black and white, and
one for monochrome. You can change only one set of colors at a time, based on your
current video mode and display hardware. So, if you are running on a color display and .
want to adjust the black-and-white table, first set your video mode to black and white by
typing MODE BWBO at the DOS prompt, and then run TFINST.

Dialog boxes and menus
If you choose Dialogs or Menus from the Customize menu, a screen appears with a
menu listing dialog box or menu elements, and a sample dialog box or menu for you to
experiment with.

102 Turbo Profiler User's Guide

As with the Windows menu, choosing an item from the current menu opens a palette
from which you can choose the color for that item.

Screen
Choosing Screen from the Customize menu opens a menu from which you can access
another menu with screen patterns and palettes for screen elements, as well as a sample
screen background on which to test them.

The default colors
If you choose Default Color Set from the Colors menu, facsimiles of an active text
window and an inactive window appear onscreen. The facsimiles show you the default
colors for their elements. A dialog box lets you select text, statistics, or low-level
windows to view.

Setting Turbo Profiler display parameters
Choose Display from the main menu to bring up the Display Options dialog box.

Figure B.2 The Display Options dialog box

Note These display options include some you can set from the DOS command line when you
start up Turbo Profiler, as well as some you can set only with TFINST. See page 110 for a
table of Turbo Profiler command-line options and corresponding TFINST settings.

Display Swapping
You use the Display Swapping radio buttons to control whether Turbo Profiler switches
between its own display and the output of the program you're profiling. You can toggle
between the following settings:

None Don't swap between the two screens. Use this option if you're profiling a
program that does not output to the user screen.

Always Swap to the user screen every time the user program runs. Use this option
if your program writes to the user screen.
This is the default option.

Appendix B, Customizing Turbo Profiler 103

Screen Lines
Use these radio buttons to toggle whether Turbo Profiler should start up with a display
screen of 25 lines or a display screen of 43 or 50 lines.

Note Only EGA and VGA monitors can display more than 25 lines.

Fast Screen Update
The Fast Screen Update check box lets you toggle whether your displays will be
updated quickly. Toggle this option off if you get "snow" on your display with fast
updating enabled. You need to disable this option only if the "snow" annoys you. (Some
people prefer the snowy screen because it gets updated more quickly.)

Permit 43/50 Lines
Turning this check box on allows big (43 I 50-line) display modes. If you tum it off, you
save approximately SK, since the large screen modes need more window buffer space in
Turbo Profiler. This may be helpful if you are profiling a very large program that needs
as much memory as possible to execute in. When the option is disabled, you will not be
able to switch the display into 43 I 50-line mode even if your system is capable of
handling it.

Full Graphics Saving
Turning this check box on causes the entire graphics display buffer to be saved
whenever there is a switch between the Turbo Profiler screen and the user screen. If you
tum it off, you can save approximately 12K of memory, which is helpful if you are
profiling a very large program that needs as much memory as possible to execute.
Generally the only drawback to disabling this option is that the user screen might show
a small number of corrupted locations that usually don't interfere with profiling.

Tab Size
In this input box, you can set the number of columns between tab stops in a text or
source file display. You are prompted for the number of columns (a number from 1 to
32); the default is 8.

104 Turbo Profiler User's Guide

User Screen Updating
The User Screen Updating radio buttons set how the user screen is updated when Turbo
Profiler switches between its screen and your program's user screen. There are three
settings:

Other Display

Flip Pages

Swap

Runs Turbo Profiler on the other display in your system. If you have both a
color and monochrome display adapter, this option lets you view your
program's screen on one display and Turbo Profiler's on the other.

Puts Turbo Profiler's screen on a separate display page. This option works
only if vour display adapter has multiple displav pages, like a CGA. EGA. or
VGA You can't use this.option on a monochi-ome diSplay. This option works
for the majority of profiling situations; it's fast and disturbs only the operation
of programs that use multiple display pages-which are few and far between.

Uses a single display adapter and display page, and swaps the contents of the
user and Turbo Profiler screens in software. This is the slowest method of
display swapping, but it is the most protective and least disruptive. If you are
profiling a program that uses multiple display pages, use this option. Also use
the Swap option if you shell to DOS and run other utilities or if you are using a
TSR (such as SideKick) and want to keep the current Turbo Profiler screen as
well.

Turbo Profiler options
The Options command in the main menu opens a menu of options, which in turn open
dialog boxes for you.

The Directories dialog box
This dialog box contains input boxes in which you can enter:

Editor program name

Source directories

Turbo directory

Specifies the DOS command that starts your editor. This lets Turbo
Profiler start up your favorite editor when you are profiling and want to
change something in a file. Turbo Profiler adds to the end of this
command the name of the file that it wants to edit, separated by a space.

Sets the list of directories Turbo Profiler searches for source files.

Sets the directory that Turbo Profiler searches for its help and
configuration files.

The User Input and Prompting dialog box
This dialog box lets you set options that control how you input information to Turbo
Profiler, and how Turbo Profiler prompts you for information:

Appendix B, Customizing Turbo Profiler 105

Figure B.3 The User Input and Prompting dialog box

History List Length
This input box lets you specify how many earlier entries are to be saved in the history
list of an input box.

Interrupt Key
The Interrupt Key radio buttons let you change the Turbo Profiler interrupt key from its
default of Break to Escape, NumLock, or another key or key combination. Pushing the
Other radio button displays a prompt asking you to press the key or key combination
you want to use as the interrupt key.

Mouse Enabled
This check box controls whether Turbo Profiler defaults to mouse support.

Beep on Error
Turbo Profiler can give a warning beep when you press an invalid key or do something
that generates an error message. Checking the Beep on Error check box enables the
warning beep.

Control Key Shortcuts
This check box enables or disables the control-key shortcuts. When control-key
shortcuts are enabled, you can invoke any SpeedMenu command directly by pressing
the Ctr/ key in combination with the first letter of the menu item. However, in that case,
you can't use those control keys as WordStar-style cursor-movement commands.

The Miscellaneous Options dialog box
The Miscellaneous Options dialog box contains options controlling interrupts, EMS
memory, DOS shell swapping, and remote profiling.

106 Turbo Profiler User's Guide

Figure B.4 The Miscellaneous Options dialog box

Printer Output
This option lets you toggle whether to print both extended and standard ASCII
characters, or just the straight ASCII character set.

NMI Intercept
The nomnaskable interrupt (NMI) is a hardware interrupt that the processor must deal
with immediately. It is typically used to halt processing when there is a memory parity
error: an error message like "Memory Parity Error" is displayed and the system hangs.

Another use for this interrupt is to enable a debugger board to perform a breakout when
you press the breakout button. Because the NMI defaults to OFF with Turbo Profiler,
you will probably want to tum this interrupt on if you use a debugger board.

If your computer is not a Tandy 1000, IBM PC compatible, ACER 1100, or NEC
MultiSpeed, you can run TFINST and try turning on the NMI Intercept check box. Some
computers use the NMI in ways that conflict with Turbo Profiler, so if you have
problems loading in applications under Turbo Profiler after turning this option on, run
TFINST again and disable Turbo Profiler's use of this interrupt.

Ignore Case of Symbols
If this check box is turned on, Turbo Profiler will ignore the difference between
uppercase and lowercase. If it is not checked, case sensitivity will be in effect.

International support
If this check box is checked, Turbo Profiler will sort all items in list boxes according to
the country setting in your CONFIG.SYS file (when using DOS), or according to the
country checked in the Windows Control Panel (when using Windows). For more
information on setting the country code, refer to your DOS or Windows User's Guide.

If the box is not checked, Turbo Profiler will sort entries in list boxes according to the
ASCII values of the items in the box (when using DOS), or according to the ANSI values
of the items in the box (when using Windows).

A p p e n d i x B , C u s t o m i z i n g T u r b o P r o f i I e r 107

DOS Shell Swap Size (Kb)
In this input box you can set the number of kilobytes of memory to be swapped out for
the DOS shell. Memory swapping allows you to use the File I DOS Shell command even
when a large program is loaded.

DOS Shell Swap Size is not available in TPROFW.

Remote type
The Remote Type radio buttons let you specify the type of remote profile link. None, the
default mode, specifies that profiling is local; there is no remote link. The Serial button
enables remote serial profiling. The communication port and link speed are defined by
Remote Link Port and Link Speed options. The Network button specifies remote LAN
profiling.

Warning! Usually you won't want to save a configuration file that specifies remote profiling, since
Turbo Profiler will then look for the remote link each time it's loaded.

Remote Link Port
The Remote Link Port radio buttons let you choose either the COMl, COM2, COM3,
and COM4 serial ports for the remote serial link.

Link Speed
The Link Speed radio buttons let you choose one of the four speeds that are available for
the remote serial link: 9,600 baud, 19,200 baud, 38,400 baud, or 115,000 baud.

Network local name
This text box lets you define the default name of the local system when using remote
LAN profiling. By default, the name LOCAL is given to the local system. This name
should be changed if more than one person is using the network for remote profiling.

Network remote name
This text box lets you define the default name of the remote system when using remote
LAN profiling. By default, the name REMOTE is given to the local system. This name
should be changed if more than one person is using the network for remote profiling.

Setting the mode for display
Choosing Mode for Display from the main menu opens a menu from which you can
select the display mode for your system.

Default
Turbo Profiler automatically detects the kind of graphics adapter on your system and
selects the display mode appropriate for it.

108 Turbo Profiler User's Guide

Color
If you have an EGA, VGA, CGA, MCGA, or 8514 graphics adapter and choose this as
your default, the display will be in color.

Black and White
If you have an EGA, VGA, CGA, MCGA, or 8514 graphics adapter and choose this as
your default, the display will be in black and white.

Monochrome
Choose this only if you are using a coior monitor with a Hercules or monochrome text
display adapter.

LCD
Choosing this instead of Black and White if you have an LCD monitor makes your
display much easier to read.

When you're through ...
After configuring and customizing the way Turbo Profiler looks and behaves, you'll
want to save the settings out to disk. You can either modify the Turbo Profiler
executable program directly (TPROF.EXE), or you can create a configuration file that
gets loaded as you load Turbo Profiler.

Saving changes
When you have all your Turbo Profiler options set the way you want, choose Save from
the main menu to determine how you want them saved.

Save Configuration File
If you choose Save Configuration File, a dialog box opens, initialized to the default
configuration file TFCONFIG.TF. You can accept this name by pressing Enter, or you can
type a new configuration file name. If you specify a different file name, you can load
that configuration by using the -c command-line option when you start Turbo Profiler.
For example,

tprof -cmycfg myprog

You can also use the Turbo Profiler Options I Restore Configuration command to load a
configuration once you have started Turbo Profiler.

Modify TPROF.EXE
If you choose Modify TPROF.EXE, any changes you've made to the configuration are
saved directly into the Turbo Profiler executable program file TPROF.EXE. The next
time you enter Turbo Profiler, those settings will be your defaults.

Appendix B, Customizing Turbo Profiler 109

Note If at any time you want to return to the default configuration that Turbo Profiler is
shipped with, copy TPROF.EXE from your master disk onto your working system disk,
overwriting the TPROF.EXE file that you modified.

Exiting TFINST
To get out of TFINST at any time, choose Quit from the main menu.

Command-line options and TFINST equivalents
Some of the options described above can be overridden when you start Turbo Profiler
from DOS. The following table shows the correspondence between Turbo Profiler
command-line options and the TFINST program command that permanently sets that
option.

Table B.1 Command-line options and TFINST equivalents

Display I Display Options

-do (•) Other Display

-dp (•) Flip Pages

-ds (•) Swap

Options I Input and Prompting I User Input and Prompting

-p [Xl Mouse Enabled

-p- [l Mouse Enabled

Options I Miscellaneous I Miscellaneous Options

-r- (•) None'

-r (•) Serial

-rn (•) Network

Options I Miscellaneous I Miscellaneous Options

-rpl (•) COMl

-rp2 (•) COM2

Options I Miscellaneous I Miscellaneous Options

-rsl (•) 9,600 baud

-rs2 (•) 19,200 baud

-rs3 (•) 38,400 baud

-rs4 (•) 115,000 baud

Options I Miscellaneous I Miscellaneous Options

-sc [X] Ignore Case of Symbol

-sc- [] Ignore Case of Symbol

Options I Dfrectories I Directories

-sd Source Directories

Display I Display Options

-vn [] Permit 43/50 Lines

-vn- [X] Permit 43/50 Lines

110 T u r b o P r of i I e r U s e r' s G u i d e

1FINST.EXE uses the following syntax:

TFINST [options] [exefile]

Items enclosed in brackets are optional. For a list of options, see the following table.

Table B.2 TFINST.EXE options

-cfile Use configuration file file.

-h, -? Display help screen.

-p Enabie mouse support.

-w Configure 1PROFW.EXE.

Appendix B, Customizing Turbo Profiler 111

112 Turbo Profiler User's Guide

Remote Profiling
Remote profiling is just what it sounds like: You run Turbo Profiler on one computer
and run the program you're profiling on another. The systems can be connected by
either the serial ports of the systems or through a NETBIOS-compatible local area
network (LAN).

Remote profiling is useful in several situations:

• When your program needs a lot of memory, and you can't run both the program and
Turbo Profiler on the same computer. When this happens, you'll get Not enough
memory error messages.

• When your program loads under Turbo Profiler, but there's not enough memory left
for it to operate properly. Here, you'll get memory allocation errors during the
profiling session.

• When you are profiling a Windows program.

If you're profiling a Windows application, you have the choice of running Turbo
Profiler for Windows (TPROFW) and the application on a single machine, or of running
Windows, WREMOTE, and the application on one machine and running Turbo Profiler
(TPROF) on another.

Although there are many reasons why you'll want to profile a program using two
systems, the advantages become even greater when you are developing a Windows
application:

• If you have a single monitor, running Turbo Profiler and the application on the same
machine means that you must switch between Turbo Profiler's character mode
screens and the application's graphics mode screens.

If you use remote profiling, you can see the application's screens and Turbo Profiler's
screens at the same time. (This same result can be achieved if you have two monitors
attached to the same system.)

Appendix C, Remote Prof i Ii n g 113

• TFREMOTE and WREMOTE use far less memory than Turbo Profiler, so the
program you're profiling will behave more like it does when running normally,
without the profiler in the background.

Hardware and software requirements
You choose between a serial or a LAN connection for the remote session. The two setups
do use different hardware; however, both share the following requirements:

• A development system with enough memory to load TPROF (this is the local system).

• Another PC with enough memory and disk space to hold either TFREMOTE and the
DOS program you want to profile or WREMOTE, Windows, and the Windows
program you want to profile (this is the remote system).

If you're going to profile a Windows application, the remote machine must be able to
run in protected mode, which means that the CPU must be at least an 80286. The
amount of memory required depends on the mode in which you' re running
Windows, but must be at least lMB.

For a serial connection, you'll need a null modem cable to connect the serial ports of the
two systems. Make sure the cable connecting the two systems is set up properly: You
can't use a straight-through extension-type cable. At the very least, the cable must swap
the transmit and receive data lines (lines 2 and 3 on a 25-pin cable).

For a LAN connection, you'll need a LAN running Novell Netware-compatible software
(IPX and NETBIOS version 3.0 or later).

Note NETBIOS must be loaded onto both the local and remote systems before TPROF,
TFREMOTE, TFREMOTE, or WREMOTE can be loaded. This is true for both DOS and
Windows profiling.

Profiling remote DOS applications
To profile a remote DOS application, you must run TFREMOTE and the application on
one machine and Turbo Profiler on another. In this discussion, the machine running
TFREMOTE and the application is called the remote machine, and the machine running
Turbo Profiler is called the local machine.

Setting up the remote system
Copy the remote profiling driver TFREMOTE.EXE onto the remote system, as well as
any files required by the program you're profiling. These files can be data input files,
configuration files, help files, and so on. If you want, you can also copy your application
program onto the remote system. However, Turbo Profiler automatically sends it over
the remote link if necessary.

To put files on the remote system, you can use floppy disks or the TDRF remote file
transfer utility.

114 Turbo Profiler User's Guide

Configuring TFREMOTE
When starting TFREMOTE, you must configure it so it can communicate over the
remote link. You do this by starting the driver with specific command-line options. Start
an option with either a hyphen(-) or a slash(/).

Table C.1 TFREMOTE command-line options

-? or -h Displays a help screen

-m<remutename> Remote LAN prohling

-rpl Port 1, (COMl); default

-rp2 Port 2, (COM2)

-rp3 Port 3, (COM3)

-rp4 Port 4, (COM4)

-rsl Slowest speed (9,600 baud)

-rs2 Slow speed (19,200 baud)

-rs3 Medium speed (38,400 baud)

-rs4 High speed (115,000 baud); default

-w Writes options to the executable program file

Note For a list of all available TFREMOTE command-line options, type the following at the
remote DOS prompt:

TFREMOTE -h

Customizing TFREMOTE
If TFREMOTE is started without command-line options, it assumes remote serial
profiling at the default port and speed built into TFREMOTE.EXE (COMl and 115,000
baud respectively, unless you've changed them with the -w option).

You can make TFREMOTE' s command-line options permanent by writing them back to
disk To do this, specify-won the command-line along with the other options you want
to make permanent. TFREMOTE then prompts for the name of the executable file to
write to; if you enter a nonexistent executable file name, TFREMOTE creates the file. If
you press Enter, the currently running program (usually TFREMOTE.EXE) is
overwritten.

If you are running DOS version 3.0 or later, the prompt indicates the path and file name
from which you executed TFREMOTE. You can accept this name (press Enter), or enter a
new executable file name. (If you're running DOS 2.xx, you must supply the full path
and file name of the executable program.)

For example, on the remote system, type the following command line at the DOS
prompt:

TFREMOTE -w -rs3 -rp2

When prompted, enter the name of the program to modify, for instance, tfremot2.exe.
With this, TFREMOTE creates a new remote driver named TFREMOT2.EXE, where the
default speed is 38,400 baud (-rs3) and the default port is COM2 (-rp2).

A p p e n d i x C , R e m o t e P r of i I i n g 115

The remote DOS driver
To begin a remote profiling session, you must first start the driver on the remote system
and then load TPROF on the local system.

Before starting TFREMOTE, be sure the directory on the remote system is set to the one
that contains the program files. This is essential because TFREMOTE puts the program
to be profiled into the directory that is current when you start TPROF. You don't give
the program name on the TFREMOTE command line, since TPROF controls the loading
of the program.

When loaded, TFREMOTE signs on with a copyright message, then indicates that it's
waiting for you to start Turbo Profiler at the other end of the link. To stop and return to
DOS, press Ctrl+Break.

Starting the remote serial driver
If you're using a null modem cable to connect the two systems, you must use the
command-line options -rs and -rp to indicate the speed and port of the data
communications.

If the remote system's serial port is set up as COMl, type

TFREMOTE -rpl -rs4

Note that this is the default setting of TFREMOTE, and is the same as issuing the
command

TFREMOTE

if the default settings haven't been changed. If the remote system's serial port is set up as
COM2,type

TFREMOTE -rp2 -rs4

to start TFREMOTE.

If you're using a PS/2, use the command-line option-rsl.

All three of these commands start the link at its maximum speed (115,000 baud). This
speed works with most PCs and cable setups. However, if you experience
communication difficulties, see Table C.1 on page 115 for how to start the link at a
slower speed.

Note It's possible that the local and remote systems use different serial ports for the null
modem cable connection. In this case, the two systems' serial port settings will not
match. However, the communication speed of the two systems must always be the same
for the connection to work

Starting the remote LAN driver
If you're using a LAN to connect the two systems, you must use the -m command-line
option to start TFREMOTE. For example, issuing the following command at the DOS
prompt will start TFREMOTE over a LAN connection, naming the remote system
remote link:

TFREMOTE -rnremotelink

116 Turbo Prof i I er User's Guide

If a remote name is left out of the command, the default name REMOTE is used.

For more on naming remote systems, see the "LAN connection" section that follows.

Establishing the remote DOS link
Once TFREMOTE has been loaded on the remote system, start Turbo Profiler on the
local system using command-line options that correspond to the established data link
(serial or LAN).

Serial connection
TPROF and TFREMOTE use the same syntax for specifying the speed and port settings
for remote serial communications. For the link to work properly, you must set both
systems to the same speed (with the -rs option).

After loading TFREMOTE on the remote system, run TPROF on the local system to
complete the remote link. The following DOS command will load Turbo Profiler,
establishing a connection through serial port 2, at the default speed of 115,000 baud:

TPROF -rp2 filename

When the link is successful, the message Link established appears on the remote system,
and the activity indicator on the local system displays READY. Turbo Profiler's display
then appears on the local system.

If the program filename is not on the remote system, then Turbo Profiler will send the
program over the remote link. For more about loading programs over the link, refer
to"Loading programs onto the remote system" on page 121.

Instead of using-rs and -rp, you can use the -r command-line option, which starts the
remote serial link using the default speed and serial port. Unless you've changed the
defaults using TFINST, -r specifies COMl at 115,000 baud.

LAN connection
TPROF uses the -m command-line option to initiate a remote LAN link. However, the
syntax used with Turbo Profiler is slightly different from that used with TFREMOTE.
Following is the Turbo Profiler remote LAN syntax:

TPROF -rn [Local] [;Remote] filename

The -m command-line option takes two optional parameters: the local system name
and the remote system name, separated by a semicolon. Since both parameters are
optional, there are four ways to use the -m command-line option with TPROF. These
DOS commands all load Turbo Profiler, specify a remote LAN connection, and load the
program filename for profiling.

TPROF -rn filename

Uses the default names Local and Remote for both the local and remote systems.

TPROF -rnLOCALl filename

Specifies LOCALl as the local system name, but uses the default (Remote) for the remote
system name.

Appendix C, Remote Profiling 117

TPROF -rn;REMOTEl filename

Uses the default (LOCAL) for the local system name, but specifies REMOTEl for the
remote system.

TPROF -rnLOCALl;REMOTEl filename

Specifies both system names.The handshake should take less than 15 seconds after you
enter the TPROF command.

Local and remote system names can be up to 16 characters long.

Note If only one person on a network is using remote profiling, then it isn't necessary to
define special local and remote system names. However, if more than.one person uses
remote profiling on a given network, unique names must be given to all systems.

Profiling remote Windows applications
To profile a remote Windows application, you must run Windows, WREMOTE, and the
application on one machine and Turbo Profiler on another. In this discussion, the
machine running Windows, WREMOTE, and the application is called the remote system,
and the machine running Turbo Profiler is called the local system.

Setting up the remote system
Copy to the remote system the remote profiling driver WREMOTE.EXE, the
configuration program WRSETUP.EXE, and any files required by the program you're
profiling. These files include data input files, configuration files, help files, Windows
DLL files, and so on. If you want, you can also copy your application program onto the
remote system. However, Turbo Profiler automatically sends it over the remote link if
necessary.

To put files on the remote system, you can use floppy disks or the TDRF remote file
transfer utility. TDRF is described in the online text files.

Configuring WREMOTE
Before running WREMOTE for the first time, you should run the WRSETUP program to
establish the communication settings.

Set up WREMOTE with WRSETUP. When you run WRSETUP, you see a window
displaying the commands File, Settings, and Help. Choosing Settings displays the
following screen:

118 Tu r b o P r o f i I e r U s e r ' s G u i d e

Figure C.1 WRSETUP main window and Settings dialog box

file ,Settings Help

'.I

D !.~.(~.~-~fr :~1:~:~:~: ~~~~:~:~~:P.:~~:~
[SJ .Q.uit when host quits

Starting .directory:

A.emote type

®.Serial

0 Network

Nel:\vork remote name:

!REMOTE

Serial configuration

r
Boudrotel
01!600

® 192![0

0 3.!!400

Comm port

®COMl

OcoMg

0 COM;)

0COM4

If you're using serial communications, select the Serial radio button, and set a baud rate
and communications port that works for your hardware setup. The defaults are 19,200
baud and COMl.

LAN configuration
If you're using LAN communications, select the Network radio button, and specify the
desired remote system name in the Network Remote Name text box. By default, the
remote system name is REMOTE. For more on remote system names, refer to "LAN
connection" on page 117.

In the Starting Directory text entry box, enter the directory path where Turbo Profiler
should look for the program you're profiling. If you want WREMOTE to return control
to Windows when you terminate Turbo Profiler on the local machine, select Quit When
Host Quits. If you are using the higher transmission speeds (38,400 or 115,000 baud)
check the Disable Clock Interrupts box. This will help WREMOTE and Turbo Profiler
establish a connection in the Windows environment.

As with any .INI file, you can edit the file directly using any word processor that
produces ASCII text.

Once you've set your options and closed the WRSETUP window, WRSETUP will save
your settings to the file TDW.INI in your Windows directory. The following TDW.INI
file sets WREMOTE at 19,200 baud on COM2 with clock interrupts disabled and the
program returning control to Windows when Turbo Profiler terminates:

[WRemote]
BaudRate=2
Port=2

Appendix C, Remote Profiling 119

Quit=l
Clock=l

WREMOTE command-line options
You can use WREMOTE command-line options to override the default settings or the
settings listed in the WREMOTE.INI file. Start an option with either a hyphen(-) or a
slash(/).

Table C.2 WREMOTE command-line options

-c<filename>

.:..d<dir>

-rcO

-rel

-m<remotename>

-rpl
-rp2
-rp3
-rp4
-rqO

-rql

-rsl

-rs2

-rs3

-rs4

Use <filename> as the configuration (.IN1) file

Use <dir> as the startup directory

Clock interrupts enabled

Clock interrupts disabled

Remote LAN profiling

Port 1 (COMl); default

Port 2 (COM2)

Port 3 (COM3)

Port 4 (COM4)

Don't quit when Turbo Profiler quits

Quit when Turbo Profiler quits

Slowest speed (9,600 baud)

Slow speed (19,200 baud)

Medium speed (38,400 baud)

Fast speed (115,000 baud); default

Starting the remote Windows driver
After you start WREMOTE from Windows, the program displays an hourglass at the
mouse cursor location, indicating that it's ready for you to start Turbo Profiler at the
other end of the link.

To terminate WREMOTE while it is waiting to establish a connection with TPROF, press
Ctrl+Break on the remote machine.

Establishing the remote Windows link
If you're using a null modem cable to connect the two systems, you may use the
command-line options -rs and -rp to indicate the speed and port of the data
communications.

For more on command-line options, see "Serial connection" on page 117.

Both Turbo Profiler and WREMOTE must be set to the same speed to work properly.
You can use the-rs parameter to set the baud rate for Turbo Profiler, or you can use the
-r command-line option, which starts the remote serial link using the default speed and
serial port. Unless you've changed the defaults using TFINST, -r specifies COMl at
115,000 baud.

120 T u r b o P r o I i I e r U s e r ' s G u i d e

LAN connection
TPROF uses the -m command-line option to initiate a remote LAN link. For more on
-m, see "LAN connection" on page 117.

Here's a typical Turbo Profiler command to start the remote Windows link:

TPROF -rs2 myprog

This command begins the link on the default serial port (usually COMl) at the link
speed (19,200 baud), and loads the program myprog into the remote system if it's not
already there.

When Turbo Profiler starts on the local machine, it displays copyright and version
information and the following message:

Waiting for handshake from remote driver (Ctrl+Break to quit)

While waiting for a connection, an hourglass is displayed on the remote system. Turbo
Profiler's normal window display comes up on the local machine. Press Ctrl+Break to exit
WREMOTE if the link is not successful.

Loading programs onto the remote system
If a file name is included as a TPROF command-line argument, or if you load a new file
into the profiler using the File I Open command, Turbo Profiler will automatically check
to see if the program needs to be sent to the remote system.

Windows DLL files are not automatically transferred to the remote system.

Turbo Profiler is smart about loading programs onto the remote system. First, a check is
made to see if the program exists on the remote system. If the program doesn't exist on
the remote system, it's sent over the link right away. If the program does exist on the
remote system, Turbo Profiler looks at the date and time of the program on the local
system and compares this with the copy on the remote system. If the program on the
local system is later (newer) than the remote copy, Turbo Profiler assumes you've
recompiled or relinked the program, and sends it over the link.

At the highest link speed, file transfers move at a rate of about lOK per second. A typical
60K program takes roughly six seconds to transfer. On DOS systems, Turbo Profiler
indicates that the system is working by displaying the number of bytes transferred on
the remote system.

Remote profiling sessions
Once you start TPROF in remote mode (using either TFREMOTE or WREMOTE), the
Turbo Profiler commands work exactly the same as they do on a single system; there is
nothing new to learn.

Becquse the program you're profiling is actually running on the remote system, any
screen output or keyboard input to that program happens on the remote system. The
Window I User Screen command ha,s no effect when you're running on the remote link.

Appendix C, Remote Prof i Ii n g 121

The remote system's CPU type appears as part of the CPU window title, with the word
REMOTE before it.

To send files over to the remote system while running Turbo Profiler, go to DOS (choose
File I DOS Shell) and then use TDRF to perform file-maintenance activities on the remote
system. To return to Turbo Profiler, type EXIT at the DOS prompt and continue profiling
your program.

Troubleshooting
Here's a list of troubleshooting techniques you can try if you experience problems with
the remote setup:

• Check your cable hookups.

• Check that you're using the correct serial port settings or that you're properly
connected to the network.

• Try running the link at a slower speed (using the -rs command-line option) until you
find a speed that works.

• Some hardware and cable combinations don't always work properly at the highest
speed, so if you can get the link to work only at a lower speed, you might want to try
a different cable or different computers.

• If you're profiling a Windows program and can't get the connection to work at any
speed, use WRSETUP to Disable clock interrupts and try running the link at 9,600 baud.
If that works, try successively higher speeds.

TFREMOTE messages
nn bytes downloaded

TFREMOTE is receiving a file from the local system. This message shows the progress of the file transfer. At the highest
link speed (115,000 baud), transfer speed is about lOK per second.

Can't create file
TFREMOTE can't create a file on the remote system. This can happen if there isn't enough room on the remote disk to
transfer the executable program across the link.

Can't modify .exe file
You specified a file name to modify that is not a valid copy of the TFREMOTE utility. You can modify a copy of the
TFREMOTE utility only with the -w option.

Can't open .exe file to modify
TFREMOTE can't open the file name you specified. You've probably entered an invalid file name.

Download complete
Your file has been successfully sent to TFREMOTE.

Download failed, write error on disk
TFREMOTE can't write part of a received file to disk This usually happens when the disk fills up. You must delete some
files before TFREMOTE can successfully download the file.

Enter program file name to modify
If you are running on DOS version 3.0 or later, the prompt indicates the path and file name from which you executed
TFREMOTE. You can accept this name (press Enter), or enter a new executable file name.
If you're running DOS version 2.xx, you must supply the full path and file name of the executable program.

122 T u r b o P r of i I e r U s e r ' s G u i d e

Interrupted
You pressed Ctrl+Break while waiting for communications to be established with the other system.

Invalid command-line option
You gave an invalid command-line option when you started TDRF from the DOS command line.

Link broken
The program communicating with TFREMOTE has stopped and returned to DOS.

Link established
A program on the other system has just started to communicate with TFREMOTE.

Loading program name from disk
Turbo Profiler has told TFREMOTE to load a program from disk into memory in preparation for profiling.

No network present
TFREMOTE is unable to detect a NETBIOS compatible network. Make sure you have loaded NETBIOS (version 3.0 or
greater) and are connected to the network.

Program load failed, EXEC failure
DOS could not load the program into memory. This can happen if the program has become corrupted or truncated.
Delete the program file from the remote system's disk to force Turbo Profiler to send a new copy over the link. If this
message appears again after deleting the file, you should relink your program using TLINK on the local system and try
again.

Program load failed; not enough memory
The remote system doesn't have enough free memory to load the program you want to profile.

Program load failed; program not found
TFREMOTE could not find the program on its disk.

Program load successful
TFREMOTE has finished loading the program Turbo Profiler wants to profile.

Reading file name from Turbo Profiler
This appears on your remote screen so that you know when a remote file is being sent to Turbo Profiler.

Unknown request: message
TFREMOTE has received an invalid request from the local system (where you're running Turbo Profiler). If you get this
message, check that the link cable is in good working order. If you keep getting this error, try reducing the link speed
(use the -rs command-line option).

Waiting for handshake (press Ctrl+Break to quit)
TFREMOTE has started and is waiting for a program on the local system to start talking to it. To return to DOS before
the other system initiates communication, press Ctrl+Break.

WREMOTE messages
Can't find configuration file

You used the-<: command-line option to specify a file that doesn't exist.

Can't load WINDEBUG.DLL
The dynamic link library WINDEBUG.DLL isn't in the current directory. WREMOTE requires this DLL in order to run.

Can't open COMx serial port
WREMOTE is trying to use a COM port that is either in use or doesn't exist.

Invalid switch
You specified an unknown option on the WREMOTE command line.

No network present
WREMOTE is unable to detect a NETBIOS compatible network. Make sure you've loaded NETBIOS (version 3.0 or
greater) and are connected to the network.

A p p e n d i x C , R e m o t e P r o f i I i n g 123

124 Turbo Prof i I er User's Guide

Turbo Profiler for Windows
Turbo Profiler for Windows (TPROFW) lets you profile applications you've written for
Microsoft Windows, version 3.0 and higher. It runs under Windows on the same
machine as the program you are profiling and switches between its own screens and
your application's screens, just as Turbo Profiler does.

You profile in Windows much as you would in DOS, except that you can also access
information particular to Windows applications, such as

• Messages received and sent by your application's windows
• The complete list of modules loaded by Windows (including dynamic-link libraries)
• Dynamic-link library (DLL) profiling

TPROFW runs in Windows standard mode or 386 enhanced mode, which means that
your computer must have an 80286 processor or higher and at least lMB of memory.

TPROFW.EXE supports several diffemt video adapters through the use of several DLLs.
After you've installed TPROFW, run TDWlNI.EXE to help you select or modify the
driver that's used with your setup.

By default, TPROFW uses the SVGA.DLL video driver, which supports most video
adapters and monitors. For more information on the available video DLLs, refer tho the
entries for DUAL8514.DLL, STB.DLL, SVGA.DLL, and TDWGUl.DLL in the online
Help system of TDWlNl.EXE.

Like Turbo Profiler, TPROFW can also take advantage of a second monitor attached to
your computer, allowing you to view TPROFW screens on one monitor and your
application's screens on another. You select this display option by starting TPROFW
with the -do command-line switch or by running the TFINST utility and setting User
Screen Updating to Other display.

A p p e n d i x D , T u r b o P r o Ii I e r Io r W i n d o w s 125

Installing TPROFW
When you install Turbo Profiler on your system, the installation program puts the
following two Windows-related files in the same directory as your Turbo Profiler files:

• TPROFW.EXE, the TPROFW program
• TFWHELP.TFH, the TPROFW help files

The installation process creates an icon for TPROFW and installs it in the Windows
Program Manager group for your Borland language. You can run TPROFW by
choosing the icon, just as you can with any other Windows application.

Installing TDDEBUG.386
The TDDEBUG.386 file on your installation disks provides the same functionality as the
Windows SDK file WINDEBUG.386. In addition, it provides better support than
WINDEBUG.386 for the Ctrl+Alt+SysRq key combination (used to break out of a Windows
application and return to TPROFW).

The installation program should copy this file to your hard disk and alter your
Windows SYSTEM.IN! file so that Windows loads TDDEBUG.386 instead of
WINDEBUG.386. If, for some reason, the installation program can't complete this task,
you'll have to do it by hand as follows:

1 The installation program will have copied TDDEBUG.386 from the installation disks
to your hard disk. The standard directory for this file is C: \WINDOWS. If you move
the file to another directory, substitute that directory in the instructions.

2 With an editor, open the Windows SYSTEM.IN! file, search for [386enh], and add the
following line to the 386enh section:

device=c:\windows\ddebug.386

3 If there's a line in the 386enh section that loads WINDEBUG.386, either comment the
line out with a semicolon or delete it altogether. (You can't have both TDDEBUG.386
and WINDEBUG.386 loaded at the same time.)

For example, if you load WINDEBUG.386 from the C: \WINDOWS directory, the
commented-out line would be

;device=c:\windows\windebug.386

Configuring TPROFW
Just as with Turbo Profiler, you can configure TPROFW two ways: by entering
command-line options or by using the TFINST utility.

126 T u r b o P r of i I e r U s e r ' s G u i d e

Using TPROFW command-line options
You can set the configuration of TPROFW by using various command-line options
followed by an optional program name with its own command-line options. The
program name can be preceded by a path name.

Because TPROFW is a Windows program, you will probably enter any command-line
options either by using the Program Manager's File I Run command or by using the
Program Manager's File I Properties command to change the command-line property of
the TPROFW icon. You can also start Windows and TPROFW from the DOS command
line. Follow t11e Vlindows command witl1 the TPROFvV command, optionally followed
by switches or a program name (with or without switches).

The command-line syntax for TPROFW is

TPROFW [options] [program-name [program-args]]

Table D.1 provides a summary of the command-line options for TPROFW:

Table D.1 TPROFW command-line options

-?,-h Displays help on 1PROFW command-line options.

-b Uses batch-mode profiling.

-bcount Use batch-mode profiling, and run the progrm count
number of times.

-cfilename Uses configuration file filename.

-do Runs 1PROFW on the secondary display.

-ds Updates screens by swapping pages.

-p Uses a mouse. If the mouse driver is disabled for Wmdows,
it will be disabled for 1PROFW as well, and the -p
command-line option will have no effect.

-sc Ignores case for symbol names.

--:-sddir[;dir ...] Sets one or more source file directories.

-tdir Sets the starting directory.

See Appendix A for a complete description of the command-line options.

Note The command-line option-tis available only with TPROFW. This option changes
TPROFW's starting directory, which is where TPROFW looks for the configuration file
and for .EXE files not specified with a full path. The syntax is

-tdirname

You can set only one starting directory with this option. If you enter this command more
than once on the same command line, TPROFW uses only the last entry.

Using TFINST with TPROFW
To use TFINST with TPROFW, start TFINST using the -w command-line option.
TFINST for TPROFW works just like TFINST for Turbo Profiler, except that the default

Appendix D, Turbo Profiler for Windows 127

configuration file is TFCONFIG.TFW and fewer options are available. (See the list of
TPROFW command-line options in the previous section.)

For a description of how to use TFINST, see Appendix B.

Using TPROFW
When you load TPROFW, it comes up in full-screen DOS character mode, not in a DLL
(unless you're using the TDWGUl.DLL video driver). Unlike other applications that run
under Windows, you can't use the Windows shortcut keys (like Alt+Esc or Ctrl+Esc) to
switch out of TPROFW and run another application. However, if the application you are
profiling is active (the cursor is active in one of its windows), you can use these keys or
the mouse to switch to other programs.

Note If you do use Ctrl+Esc to switch out of an application running under TPROFW, you see
the application name on the list of tasks. You will never see TPROFW on the task list
because TPROFW is not a normal Windows task that you can switch into or out of.

Profiling using TPROFW is pretty much the same as profiling using Turbo Profiler.
However, there are some differences:

• Switching from your application to TPROFW is accomplished by using the
Ctrl+Alt+SysRq key combination. This operation is similar to using Ctrl+Break to switch
out of a DOS application and back to Turbo Profiler, except that the DOS application
terminates, while the Windows application is only suspended.

• If possible, run your application to completion or use the System command to exitit
before exiting TPROFW or loading in another program to be profiled. Failing to exit a
Windows application properly can leave resources allocated that would otherwise
have been deallocated, potentially causing problems with TPROFW or other
applications.

• The DOS Shell command from the File menu is not available.

• The Edit command on the Module and Text File SpeedMenus are not available.

• Interrupts, File 1/0, and Overlay windows are not available.

• Display Swapping settings are not available in the Display Options dialog box.

Profiling window procedures
TPROFW keeps track of routines inside window procedures by tracking the message
classes called by the routine and windaw messages sent to the procedures. Before message
classes and window messages can be tracked, you must first specify that an area marker
represents a window procedure. Specifying a window procedure area marker is done
from either the Module window's SpeedMenu Operation command, or the Areas
window SpeedMenu Option command.

128 Turbo Profiler User's Guide

The Window Procedure Messages dialog box
After an area marker is specified as a window procedure marker, you must then select
which messages and classes you want to track for that particular procedure. When
Messages is selected from either the Module window's SpeedMenu Operation command
or the Areas window SpeedMenu Option command, the Window Procedure Messages
dialog box is displayed.

With the Window Procedure Messages dialog box, you can select the window messages
and message classes that are tracked for the current area marker. TPROFW, by default,
tracks all message classes.

The Window Procedure Messages dialog box uses check boxes and text boxes for the
following:

• The Window Messages list box displays specially selected window messages.

• Message Name is a text box that accepts a window message name or window
message number. Use the Add command to append the specified message to the
Window Messages list.

Turbo Profiler will recognize only window message names that begin with WM_. If
you wish to track a message other than a WM_ message, you must provide the
window message number (window message numbers are acquired from either your
program source files or from the windows header include files).

Window message names are case sensitive.

• Delete removes the currently highlighted message from the Window Messages list
box.

• Remove All deletes all specially selected messages from the Window Messages list
box. When this command is selected, the Window Messages list box will be cleared of
all entries.

• Add All selects all WM_ messages from all classes. Each message is listed in the
Window Messages list box after this command is chosen. Because so many messages
come through, you'll probably want to narrow the focus by selecting only the classes
of interest from the list of message names.

Note Before selecting Add All, ensure the Max Windows Messages setting (Statistics I
Profiling Options) has been adjusted to accommodate the number of messages you
want to track.

Including all message classes, there are over 140 WM_ messages.

• Add appends the message name specified in the Message Name text box to the
Window Messages list.

• The Message Classes check boxes allow you to choose specific classes of messages to
watch. When a specific Windows message class is selected, all WM_ messages from
that class will be tracked.

A p p e n d i x D , T u r b o P r of i I e r f o r W i n d o w s 129

Table D.2 describes the window message classes:

Table D.2

All Messages

Mouse

Window

Input

System

Initialization

Clipboard

DDE

Non-client

Other

Window's message classes

All messages starting with WM_.

Messages generated by a mouse event (for example, WM_LBUTIONDOWN and
WM_MOUSEMOVE).

Messages from the window manager (for example, WM_PAINT and WM_ CREATE).

Messages generated by a keyboard event or by the user's accessing a System menu,
scroll bar, or size box (for example, WM_KEYDOWN).

Messages generated by a system-wide change, (for example, WM_FONTCHANGE
and WM_SPOOLERSTATUS).

Messages generated when an application creates a dialog box or a window (for
example, WM_INITDIALOG and WM_INITMENU).

Messages generated when one application tries to access the clipboard of a window in
another application (for example, WM_DRAWCLIPBOARD and
WM_SIZECLIPBOARD).

Dynamic Data Exchange messages, generated by applications' communicating with
one another's windows (for example, WM_DDE_INITIATE and WM_DDE_ACK).

Messages generated by Wmdows to maintain the non-client area of an application
window (for example, WM_NCHITTEST and WM_NCCREATE).

Any messages starting with WM_ that don't fall into any of the other categories, such
as owner draw control messages and multiple document interface messages.

For a complete list of all WM_ messages, refer to your Borland compiler's online Help.

Note When you've selected the appropriate window messages, profile your program as
usual. To view window message statistics, choose Window Procedures from the
Display Options dialog box, accessed through the Execution Profile SpeedMenu.

Profiling dynamic-link libraries (DLLs)
A DLL (dynamic-linked library) is a Windows library of routines and resources that is
linked to your application at run time instead of at compile time. This run-time linking
allows multiple applications to share a single copy of routines, data, or device drivers,
thus saving on memory usage. When an application that uses a DLL starts up, Windows
loads it in memory so the application can access the DLL's entry points (if the DLL isn't
already loaded into memory).

TPROFW can load a DLL that doesn't have a symbol table, but only into a CPU
window.

When you load an application with DLLs linked to it, TPROFW determines which of
these DLLs, if any, have symbol tables (were compiled with the debugging option
turned on) and tracks them for you.

TPROFW automatically loads in the symbol table and source of every DLL that's linked
to your application, but only if the DLL has a compatible symbol table. A DLL has a
symbol table compatible with TPROFW if it was compiled with debugging information
turned on and the compiler was one of Borland' s C ++ Windows compilers, or Turbo
Assembler.

130 Turbo Profiler User's Guide

Note DLLs that are loaded via the LoadLibrary call will not be automatically tracked by
Turbo Profiler. To track these DLLs, you must set a Stop area marker after the
LoadLibrary call. When the profiler encounters this area marker, you'll be able to access
the DLL through the Module command on the Module window's SpeedMenu, or
through View I Module. You'll need to set up a stop area on the last line of the DLL
function in order to view the DLL's statistics. If you don't set the stop area, you will not
be able to view or analyze the statistics.

Because the s:}rmbol table for the DLL is not associated with the symbol table for the
executable program, Turbo Profiler will produce a separate statistics file (.TFS) and a
separate areas file (.TFA) for each DLL profiled.

TPROFW error messages
There is only one error message returned solely by TPROFW. In addition to this error
message, Turbo Profiler error messages can also be returned.

Ctrl+Alt+SysRq interrupt. System crash possible. Continue?
You attempted either to exit TPROFW or to reload your application program while the program was suspended as a
result of your having pressed Ctrl+Alt+SysRq. Because Windows kernel code was executing at the time you suspended the
application, exiting TPROFW or reloading the application will have unpredictable results (most likely hanging the
system and forcing a reboot).

A p p e n d i x D , T u r b o P r o Ii I e r Io r W i n d ow s 131

132 T u r b o P r of i I e r U s e r' s G u i d e

Prompts and error messages
Turbo Profiler displays messages and prompts at the current cursor location. This
chapter describes the prompts and error and information messages Turbo Profiler
generates.

We tell you how to respond to both prompts and error messages. All the prompts and
error messages are listed in alphabetical order, with a description provided for each one.

Turbo Profiler prompts
Turbo Profiler displays a prompt in a dialog box when you must supply additional
information to complete a command. The prompt describes the information that's
needed. The contents may show a history list of previous responses that you have given.

You can respond to a prompt in one of two ways:

• Enter a response and accept it by pressing Enter.
• Press Esc to cancel the dialog box and return to the menu command that opened it.

Some prompts only present a choice between two items (like Yes/No). You can use Tab
to select the choice you want and then press Enter, or press Y or N directly. Cancel the
command by pressing Esc.

For a more complete discussion of the keystroke commands to use when a dialog box is
active, refer to Chapter 2.

Here's an alphabetical list of all the prompts and messages generated by dialog boxes:

Enter code label to position to
Enter the address you wish to examine in the Disassembly pane. The Disassembly pane shows the disassembled
instructions at the specified address.

Enter command line arguments
Enter the command-line arguments for the program you're profiling. You can modify the current command-line
arguments or enter a new set.

A p p e n d ix E , P r o m p Is a n d e r r o r m es sag e s 133

You will then be prompted whether you want to reload your program from disk. Some languages or programs, such as
programs written in C, require you to reload the program before the arguments take effect.

Enter file name to restore from
Enter the name of the file to restore the statistics from. If you specify an extension to the file name, it will be used.
Otherwise the extension .TFS will be used.

Enter file name to save areas to
Enter the name of the file to save the current areas to. If you specify an extension to the file name, it will be used.
Otherwise the extension .TFS will be used.

Enter file name to save to
Enter the name of the file to save the current statistics to. If you specify an extension to the file name, it will be used.
Otherwise the extension .TFS will be used.

Enter interrupt number
Enter the number of the interrupt that you wish to track.

Enter name of file to view
Enter the name of a text file that you want to inspect. The file specified will be brought into the File window.

Enter new directory
Enter the new drive and/ or directory name that you want to become the current drive and directory.

Enter new line number
Enter a new line number to position the text file to. The first line in the file is line 1. If you specify a line number that is
greater than the last line in the file, the file is positioned to the last line.

Enter program name to load
Enter the name of the program to load. If the program has the .EXE extension, you don't have to specify it; if the
program has any other extension, you must supply it.
If you supply a wildcard specification or accept the default *.EXE, a list of matching files is displayed for you to select
from.

Enter routine name to add
Enter the name of the function you wish to include, exclude, or set.

Enter search string
Enter a character string to search for. You can use a simple wildcard matching facility to specify an inexact search string;
for example, use* to match zero or more of any characters, and? to match any single character.

Enter source directory list
Enter the directory or directories to search for source files.
If you want to enter more than one directory, separate the different directory paths with a space or a semicolon (;). These
directories will be searched, in the order that they appear in this list, for your source files.

Pick a caller
Pick a routine from the list of callers. You will then be positioned to that routine in the window that you picked from the
previous menu.

Pick a method name
You have specified a routine name that can refer to more than one method in an object. Pick the correct one from the list
presented, with the arguments you want.

Pick a module
Select a module name to view in the Module window. You are presented with a list of all the modules in your program.
Either use the cursor keys to move to the desired module, or start typing the name of the module. As you type the
module name, the highlight bar will move to the first module that matches the letters you typed. When the highlight bar
is on the desired module, press Enter.

Pick a source file
Pick a new source file to display in the Module window. The list shows all the source files that make up the module.

Pick interrupt
Pick an interrupt from the list of interrupts built into Turbo Profiler.

Pick macro to delete
Pick a macro to erase from the list of defined macros.

134 T u r b o P r o I i I e r U s e r' s G u i d e

Reload program and change profiling mode?
When you change the profiling mode from active or passive to coverage, or from coverage to active or passive, all
current profile statistics will be erased. If you wish to save the statistics before changing modes, answer NO to this
prompt and save the statistics to a .1FS file. Otherwise, answer YES to the prompt.

Turbo Profiler error messages
Turbo Profiler uses error messages to tell you about things you haven't quite expected.
Sometimes the command you have issued cannot be processed. At other times the
message warns that things didn't go exactly as you wanted.

Error messages can be accompanied by a beep. You can turn the beep on or off in the
customization program, TFINST.

Already recording, do you want to abort?
You are already recording a keystroke macro. You can't start recording another keystroke macro until you finish the
current one. Press Y to stop recording the macro, N to continue recording the macro.

Ambiguous symbol symbol name
You have entered a member function or data item name and Turbo Profiler can't tell which of the multiple instances of
this member you mean.
This can happen when a member name is duplicated in two multiply inherited classes. Use the classname:: override to
name explicitly the member you want.

Bad or missing configuration file name
You have specified a nonexistent file name with the -c command-line option when you started Turbo Profiler. The built
in default configuration values are used instead.

Bad interrupt number entered
You have entered an invalid interrupt number. Valid interrupt numbers are 9 to FF.

Bad module name module name
The module name that you have entered does not exist.

Can't execute DOS command processor
Either there was not enough memory to execute the DOS command processor, or the command processor could not be
found (the COMSPEC environment variable is either absent or incorrect). Make sure that the COMSPEC environment
variable correctly specifies where to find the DOS command processor.

Can't findfilename.DLL
You attempted to load a program that requires one or more DLLs, but TPROFW can't find one of them. Make sure your
executable file and the DLLs it requires are in the same directory, then load the program again.

Can't swap user program to disk
The program being profiled could not be swapped to disk. There is probably not enough room on the disk to swap the
program. You will not be able to edit any files or execute DOS commands until some more room is made available.

Error loading program
You program could not be loaded. The format of the .EXE does not match the operating system.

Error printing statistics
· There was an error sending to the printer. Check that the printer is online and not out of paper.

Edit program not specified
You tried to use the Edit SpeedMenu command from a Module or Disk File window, but you cannot edit the file
because Turbo Profiler does not know how to start your editor.
Use the configuration program TFINST to specjfy an editor.

Error reading statistics file
An error oc=red while you were restoring the collected statistics. Make sure that the disk is ready.

Error saving configuration
Your configuration could not be saved to disk. The disk might be full, or there might be no more free directory entries in
the root directory.

A p p e n d i x E , P r o m pt s a n d e r r o r m e s s a g e s 135

You can use the File I IX)S Shell command to go to IX)S and delete a file or two to ma:ke room for the configuration file.

Error swapping in user program, program reloaded
An error occurred while you were reloading your program that was swapped to disk. This usually means that the swap
file was accidentally deleted.
You will have to reload your program using the Run I Program Reset command before you can continue profiling.

Error writing statistics file
An error occurred while you were writing to the statistics file that stores your program. statistics. Your disk is probably
full.
Make sure that the disk is ready and that there is enough room on the disk.

Exception N, error code N
Turbo Profiler encountered either an invalid memory reference or an invalid instruction in your program. You must
correct ther error before continuing profiling.

Help file TFHELP.TFH not found
You asked for help but the disk file that contains the help screens could not be found. Make sure that the help file is in
the same directory as Turbo Profiler.

Invalid number entered
The line number you specified is either a negative number, or contains an alphabetic character. Make sure you specify a
positive integer as a line number.

Invalid statistics file
The file you specified to restore statistics from has an invalid format. Make sure the file name you specified was created
using the Statistics I Save command.

Invalid switch
An invalid command-line option was encountered duriitg program loading.

Invalid window message number
The window message that you have specified is not a valid name or number. Make sure that the message name is
correctly spelled (window message names are case sensitive).

Maximum number of areas has been reached
There is no more room to add areas. Use the Options I Number of Areas command to increase the amount of memory
set aside for areas.

Maximum number of interrupts being monitored
You can't watch any more interrupts; you have already told Turbo Profiler to watch as many interrupts as it is capable of
doing. You will have to use the SpeedMenu Remove command to remove an existing interrupt before you can add any
more.

Maximum number of windows messages has been reached
By default, Turbo Profiler sets the maximum number of window messages. ff you attempt to track more than the
number of messages specified in the Max Windows Messages text box (found through the Statistics I Profiling Options
command), you'll receive this error message.
When cited with this error message, no window messages will be added to the list by Turbo Profiler. Make sure to reset
the Max Windows Messages count to reflect the number of messages that you want to watch, artd then add the
appropriate messages through the Window Procedure Messages dialog box.

NMI interrupt
The program you're profiling has generated an NMl (non-maskable interrupt).

No help for this context
You pressed F1 to get help, but Turbo Profiler could not find a relevant help screen. Please report this to Borland
Technical Support.

No file name was given
You have indipited that you wiSh to output a file, but you have not specified a file name. You must either specify a file
name or switch to another output location before you can leave the dialog box.

No modules with statistics
There are no modules with any statistics collected, so there is nothing to print.

No network present
You must load NETBIOS (version 3.0 or above) before running TPROF or TFREMOTE with the-m option.

136 T u r. b o P r of i I e r U s e r' s G u i d e

No previous search expression
You have used the Next command from the SpeedMenu of a text pane, without previously issuing a Search command.
First use Search to specify what to search for, then use Next to look for subsequent instances.

No program loaded
You tried to issue a command that requires a program to be loaded. There are many commands that can be issued only
when a program is loaded, for example, the commands in the Run menu. Use the File I Open command to load a
program before issuing these commands.

No source file for module module name
The source file cannot be found for the module that you wish to view. The source file is searched for first in the current
directory, and then in any directories specified in the configuration file and then in any directories specified by the
command line -sd option.

Not a code address
You have entered an address that is not a code address in your program. You can set profiling areas only on code
addresses.

Not available when in coverage mode
This error message appears when you attempt to use a function that can't be used in coverage mode. Most likely, you're
trying to set (or remove) an area marker. Since Turbo Profiler automatically sets coverage mode markers, you can't set or
remove them manually.

Not enough memory for selected operation
You issued a command that has to create a window, but there is not enough memory left for the new window. You
must first remove or reduce the size of some of your windows before you can reissue the command. Also see the -m
option in Appendix A.

Not enough memory to load program
Your program's symbol table has been successfully loaded into memory, but there is not enough memory left to load
your program. You can hook two systems together and run Turbo Profiler on one system and the program you're
analyzing on the other. See Appendix C for more information on how to do this.

Not enough memory to load symbol table
There is not enough room to load your program's symbol table into memory. The symbol table contains the information
that Turbo Profiler uses to show you your source code and program variables. If you have any resident utilities
consuming memory, you may want to remove them and then restart Turbo Profiler. You can also try making the
symbol table smaller by having the compiler generate debug symbol information only for those modules you are
interested in analyzing.
When this message is issued, your program itself has not yet been loaded. This means you must free enough memory
for both the symbol table and your program.

Out of heap space
Turbo Profiler ran out of memory to collect the information you requested. You'll need to reduce the amount of data that
you want to gather in a single run.

Overlay not loaded
You have attempted to examine code in an overlay that is not loaded into memory. You can examine code only for
overlays that are already in memory.
However, you can still look at the source code for a module in a Module window. Setting an area's operation to stop will
let you view the disassembled overlay.

Overwrite existing macro on selected key
You have pressed a key to record a macro, and that key already has a macro assigned to it. If you want to overwrite the
existing macro, press Y; otherwise, press N to cancel the command.

Overwrite file name?
You have specified a file name to write to that already exists. You can choose by entering Y to overwrite the file,
replacing its previous contents, or you can cancel the command by entering N and leave the previous file unchanged.

Path not found
You entered a drive and directory combination that does not exist. Check that you have specified the correct drive and
that the directory path is spelled correctly.
The current drive and directory are left as they were before you issued the command.

Appendix E, Prompts and error messages 137

Premature end of string in symbol name ,
The symbol name that you have entered is incomplete. If you specify a module name, it must be followed by either a
line number or local symbol name.

Press key to assign macro to
Press the key that you want to assign the macro to. Then press the keys to do the command sequence that you want to
assign to the macro key. The command sequence will actually be performed as you type it. To end the macro recording
sequence, press the key')'OU assigned the macro to. This macro will be recorded on disk along with any other keystroke
macros.

Procedure stack overflow
Your program has too many nested procedure or function calls.- You must remove some of the areas that are set on
routines in the deepest calling path. Use the Callers window to find this area.

Program does not have overlays
The program you are profiling does not have any overlays, so you can't open an Overlay window.

Program has invalid symbol table
The program that you wish to load has a symbol table with an invalid format. Re-create your .EXE file and reload it.

Program has no symbol table
The program you want to analyze has been successfully loaded, but it does not contain any debug symbol information.
Relink the program so that it has a symbol table.

Program linked with wrong linker version
The program you tried to load was linked with a linker whose version is incompatible with that of Turbo Profiler. Either
the linker was an old one or you're using an old version of Turbo Profiler.

Program not found
The program you wish to load does not exist. Check that the name you supplied to the File I Open command is correct
and that you supplied a file-name extension if it is different from .EXE.

Program out of date or missing on remote, send over link?
You have specified a program to analyze on the remote system, but it either does not exist on the remote, or the file is
newer on the local system than on the remote system.
If you press Y, the program is sent across the link. If you press N, the program is not sent, and the File I Open command is
aborted.
You'll usually respond with Y. If you are running the link at the slowest speed (using the-rsl command-line option),
you might want to aport the command with N and transfer the file to the remote system using a floppy disk.

Reload program so arguments take effect?
With most programs, you must reload after changing their arguments.
When you press Y, a Run I Program Reset command is automatically performed for you.

Reload program so new area count takes effect?
In order for Turbo Profiler to reallocate the memory used for statistics areas, your program must be unloaded from
memory and then reloaded and executed from the beginning again.
Press Y to make this happen, or press N if you can wait for the next manual program load for the new area size to take
effect.

Run out of space for keystroke macros
There is not enough memory to record all your keystroke macro.

Search expression not found .
The specified text string or byte list is not present in the file. Since the search proceeds forward from the current cursor
position, you should return to the top of the file via the Ctrl+PgUp hot key, then repeat the search. .

Stopped by area
Turbo Profiler encountered an area whose op~ration you set to "stop." You can continue profiling by using the Run I
Run command.

Symbol not a routine name
The symbol name that you supplied is not a valid name of a routine.

Symbol not found
You have entered an expression containing an invalid symbol name. A valid symbol name consists of one of the
followin~: .

138 Turbo Profiler User's Guide

A global symbol name
A module name, followed by#, followed by a local symbol name
A module name, followed by a #, followed by a decimal line number

Syntax error in symbol SymbolName
You have entered an invalid symbol name. A valid symbol name consists of one of the following:

A global symbol name
A module name, followed by#, followed by a local symbol name
A module name, followed by a#, followed by a decimal line number

Too many areas for a Windows program
You've attempted to profile a program with more areas than the 511 supported by Windows. Some of the areas you set
will not be profiled. You'll havf::' to reduce tlle nu..f'!l~ber of areas in order to control vt1'JcJ1 areas arc not included.

Too many files match wildcard mask
You specified a wildcard file mask that included more than 100 files. Only the first 100 file names are displayed.

Unknown control point
Turbo Profiler has encountered an INT 3 instruction in your program that it doesn't recognize. Because Turbo Profiler
uses INT 3 instructions to indicate control points, if you've put any in your program yourself, there will be a conflict. It's
also possible that Turbo Profiler inserted a control point and then lost track of it.
If you inserted the INT 3 in your program, you'll have to remove it to run Turbo Profiler on your program.
If you didn't put the INT 3 in, then it's one of Turbo Profiler's. Removing the area containing the INT 3 will allow you to
continue profiling the program.

Unable to determine procedure type
Turbo Profiler can't determine whether the current area is a near or far procedure. You'll have to remove it from the list
of areas for Turbo Profiler to proceed.

Value must be between nn and nn
You have entered an invalid numeric value for an editor setting (such as the tab width) or printer setting (such as the
number of lines per page). The error message will tell you the allowed range of numbers.

Video mode switched while flipping pages
You've started Turbo Profiler with a display updating mode that does not allow display pages to be saved, and the
program that you are profiling has switched into a graphics mode.
Turbo Profiler has changed the display mode back to text display, so the screen contents of the program you are
profiling have been lost.
To avoid this situation, start Turbo Profiler with display-swapping enabled (-ds command-line option).

Waiting for remote driver. Press Esc to stop waiting
You've started a remote profiling session, and Turbo Profiler is waiting to connect to the remote driver. Press Esc to
about the remote session.

A p p e n d i x E , P r o m pt s a n d e r r o r m e s s a g e s 139

140 Turbo Profiler User's Guide

Symbols
* (search wildcard) 29
? (search wildcard) 29
-? profiler option 97

Numerics
8514 graphics adapter 109

A
About Turbo Profiler

command 24
Accumulation option 74
Acer 1100 and NMI 107
active analysis

See also profiling
area markers and 78
disk 1/0 and 79
passive analysis vs. 78
setting 77

active window 21
adapters See graphics adapters;

video adapters
Add Areas command 45
Add command 41
Address option 35
addresses, jumping to

Disassembly (CPU)
window 48

Module window 30
alerts, setting 106
algorithms

analyzing 75
multipass 86

All Callers option 32, 46
All command 35
All Routines

Add Areas menu
command 30

Stack Trace dialog box
option 32

area files, saving 27
area markers

See also areas
active analysis and 78
defined 72
function entry 30
lines

adding 30
current 30
single, removing 36

Index
modules, adding 30
normal 92
operation 31
program execution and 79
routine-entry 92
routines

~~~~tic39~- ~-~"'1'- ~ "'"' U.\'U.i...LU.V-1.- J.V.L _t--'-lV.L1J..Ul5 ,(...,{ 

symbols 31 
Area Options dialog box 45 
areas 72, 87 

See also area markers 
adding 45 
current 

changing 90 
disassembled source code 

as 27 
setting~ for 30 
specitying profiling 

action 31 
statistics 83 

erasing 83 
default 71 
defined 72 
execution counts and times 

and 91 
function-entry markers 30 
inspecting 45 
maximum 57 
measuring efficiency 14 
names 44 
normal markers 92 
profiler behavior when 

entering 91 
program size and 72 
removing 45 
settings 

considerations 72 
default 73 
saving 70 

statistics, default 72 
.TFA files and 70 

Areas command (Routines) 47 
Areas radio buttons 32 
Areas window 44-46 

Callers option and 37 
local menu 45 

arguments, command-line 
options 138 

arrays 
accessing for optimum 

speed 84, 86 
sorting 84 

ASCII characters 
printing high 11, 107 

assembly language 
assessing value of 47 

asterisk(*), search wildcard 29 

B 
-b profiler option 96 
batch mode profiling 96 
beeps, setting 106 
Beep on Error check box 

(TFINST) 106 
boards See debugger boards 
Borland Assist program 4 
Borland compilers 71 
Both option 

Disassembly (CPU) window 
local menu 49 

Display Options dialog 
box 34 

Both Time and Calls 
command 42 

bubble sort 84 
buffers, data 85 
bytes, searching for 138 

c 
-c profiler option 97 

problems with 135 
TPROFW 127 

C language 6 
C++ language, expressions 135 

See also object-oriented 
programs 

cables, null modems 
remote profiling and 114 

call history, dynamic 75, 76 
call paths 37 

example 39 
recording 32 
sorting 39 

call stack 32, 92 
setting 73 

Call Stack option 73 
Called option 39 
Callers command 32, 55 

call stack and 73 
logging call paths and 93 
Routines window local 

menu 47 

Index 141 



Callers option 38 
Area.s window and 37 

Callers radio buttons 45 
Callers window 37-39, 82 

local menu 39 
calls 

overhead 89 
passive analysis and 79 

Calls command 42 
case statements, verifying 76 
case sensitivity, enabling 98, 107 
central processing unit See CPU 
characters, printing 

graphic 11 
high vs. standard ASCII 107 

character strings See strings 
clock 31, 74 
Clock Speed option 57 
close boxes 21 
Collection command 43, 83 

interrupts 41 
color monitors, 

customizing 102-103 
color tables 102 
Colors menu (TFINST) 102 
combined clock 

timer data and 74 
command-line options 138 

batch mode 96 
configuration file 97 
disabling 95 
display update 97 
help 97 
mouse support 98 
overriding 110 
remote profiling 98, 117 
saving 101 
source code and symbols 98 
syntax 95 
TFINSTvs. 110-111 
TFREMOTE 115 
TPROFW 127 
videos 99 
WREMOTE 120 

cnmmands 20 
See also specific commands 
prompts and 133 

communications 
remote systems 108 

connection problems 122 
compatibility 2 
compiling for profiling 71 
COMSPEC environment variable 

(DOS) 135 
conditional statements 76 
configuration files 

creating 14 

142 Turbo Profiler User's Guide 

default name, changing 109 
directory paths, setting 105 
loading 97 
problems with 135 
saving 109 

problems with 135 
TFCONFIG 127 
TPROFW 127 

configuring 
TPROFW 126 
Turbo Profiler 101 

Control Key check box 
(TFINST) 106 

control points 139 
control-key shortcuts 106 
copyright information 24 
Count option 40 
Counts option 34 
Coverage Display dialog box 52 
Coverage mode 

blocks selected 51 
coverage count, setting 57 

Coverage window 51-54, 82 
displaying blocks 52 
grouping blocks 53 
sorting display 53 

CPU, WREMOTE and 122 
CPU window See Disassembly 

(CPU) window 
Ctrl+Alt+SysRq (Windows 

interrupt key) 126 
Current command 35 
current instruction pointer 48 
Current Routine command 

Add Areas menu 30 
cursor, moving 29 
customer assistance 4 
customizing Turbo Profiler 

101-110 

D 
-d profiler option 97 

WREMOTE 120 
data 

collecting and displaying See 
statistics 

caching 85 
evaluation order 85 
sets, size and profiling 70 
structures, optimizing 84 

debugger boards 
nonmaskable interrupts 

and 107 
debugging information 71 

adding to modules 25 
global symbols 46 

Default Color Set command 
(TFlNST) 103 

default settings 101 
restoring 109 

Delete All command 
(Interrupts) 42 

Detail command 43, 83 
Detail option 43 
device drivers 

WREMOTE.EXE 118 
dialog boxes 23 

See also specific dialog box 
Accept Color Set 

(TFINST) 103 
customizing 102 
Directories (TFINST) 105 
Display Options 

(TFINST) 103 
escaping out of 133 
hotkeys 21 
Miscellaneous Options 

(TFINST) 106 
prompts in 133-135 
search 50 

Dialogs command (TFINST) 102 
directories 

changing 25 
default 105 
paths 

problems with 137 
setting 134 
starting TPROFW 

directory 127, 128 
WREMOTE and 120 

searching 71 
source files 32, 98 

path for source 28 
Directories dialog box 

(TFINST) 105 
disabling statistics collection 31 
Disassembly (CPU) window 

47-50 
display options 49 
local menu 48 
restoring 48, 49 

disk drives, changing 25 
disks, writing to 

problems with 135, 136 
Display command 83 

Execution Profile window 
local menu 34 

Interrupts window local 
menu 42 

Overlays window local 
menu 40 

Display menu (TFINST) 103 
display options 103-105 



Display Options dialog box 64 
TFINST 103 

Display radio buttons 34, 43 
Display Swapping radio buttons 

TFINST 103 
displays 

See also screens 
buffer, saving 104 
color 109 

customizing 102-103 
dual 27 
modes 102 

defaults, setting 108 
problems with 139 

options 109 
colors 102-103 

pages 105 
problems with 109 
swapping 105 
updating 104 

DLLs 
LoadLibrary call 131 
problems with 135 
profiling 130 
statistics and 131 

-do profiler option 127 
documentation, printing 

conventions 3 
DOS 

command processor 
problems with 135 

COMSPEC environment 
variable 135 

shelling to, display swapping 
and 105 

wildcards, choosing files 
and 50 

DOS Shell command 27, 135 
DOS Shell Swap Size input box 

(TFINST) 108 
drives, changing 25 
-ds profiler option 127 
dual monitors 27 
Duration option 43 
dynamic-link libraries See DLLs 

E 
Edit command 135 
editor, installing 33 
efficiency, measuring 14 
ellipsis mark( ... ) 23 
enabling statistics collection 31 
Enhanced Graphics Adapter 

(EGA), line display 104 
Enter Program Name to Load 

dialog box 24 

Eratosthenes, Sieve of 18 
error messages 

beep, enabling 106 
memory 113 
TFREMOTE 122-123 
TPROFW 131 
Turbo Profiler 135-139 

Events command 42 
Every Line in Module command 

Add Areas menu 30 
example programs 

(PLOST*.*) 89 
execution counts and times 

areas and 91 
default behavior 72 
passive analysis and 79 
program structure analysis 

and 76 
program testing and 

verification and 75 
resource monitoring and 76 

Execution Profile window 
33-37,82 

description 8 
local menu 34 
Module window and 34, 36 

execution timing, statistics for 76 
exiting 

TFINST 110 
Turbo Profiler 27 

expressions 

F 

entering, problems with 138 
optimizing 86 

Fast Screen Update check box 
(TFINST) 104 

features 1 
new 2 

File command 33 
files 

access 76 
text files, viewing 27 
tracking 27, 73 

activities, displaying 83 
disk, problems with 135, 136 
information on 26 
loading 15 
needed for profiling 28 
opening 24,50 

problems with 137 
wildcard masks 

and 139 
searching 50 
source 

current routine 47 

directories 32 
inspecting 39 
list of 33 
loading 134 

problems with 137 
options 98 
searching for 71 
setting directory path 105 
statistics 12 
viewing 34 

statistics See statistics 
swap 136 
TDDEBUG.386 126 
text 50 

viewing 27 
.TFA 27, 70 
TFWHELP.TFH 126 
TPROF.EXE 109 
TPROFW 126 
WREMOTE.EXE 118 

Files option 73 
Files window 42-43, 82 

local menu 43 
Filter command 35, 77, 83 
filters See statistics, filtering 
Follow command 49 
frequency collisions 

solving 94 
Frequency option 35, 39 
Full Graphics Saving check box 

(TFINST) 104 

G 
Get Info command 26 
global menus 19 
global symbols 46 
Goto command 

Disassembly (CPU) window 
local menu 48 

Module window local 
menu 30 

Graph option 43 
graphics 

color tables 102 
display buffer, saving 104 
snow, problems with 104 

graphics adapters 108 
display options 109 
display pages 105 
EGA 104 
Hercules 109 
monochrome text-only 109 
VGA 104 

graphs (file activity) 43 

Index 143 



H 
-h profiler option 97 

TFREMOTE 115 
hard disks See disk drives 
hardware 

display options, setting 104 
requirements 2 

TDDEBUG.386 126 
TPROFW 125 

heap Seememory 
help 97 

accessing, problems with 136 
command-line options 

TFlNST 111 
Turbo Profiler 97 

status line 23 
Help window 68 
Hercules graphics adapter 109 
History List Length input box 

(TFlNST) 106 
History option 40 
hotkeys 21 

enabling 106 

I/O 
disk, active and passive 

analysis and 79 
keyboard, profiling and 71 
options 105 

IBM graphic characters, 
printing 11 

IBM PC compatible and 
NMl 107 

icons, documentation 3 
Ignore Case of Symbol check box 

(TFINST) 107 
Immediate Caller option 

Area Options dialog box 46 
Stack Trace dialog box 32 

input boxes (TFINST) 
DOS Shell Swap Size 108 
TabSize 104 

Inspectcommand 39,40 
Areas window local menu 45 

installation 
TDDEBUG.386 126 
TFREMOTE 114 
TPROFW 126 
WREMOTE 118 

instructions 
current pointer 48 
displaying 49 
pointer, address of 49 

INT 3 instruction 139 

144 Turbo Profiler User's Guide 

integrated environment 19-68 
interrupt keys 

setting 106 
Windows 126 

interrupts 
adding to statistics 

collection 41 
amount of time in 41 
display formatting options 42 
execution timing and resource 

monitoring 76 
monitoring 73 
names 41 
NMI 107 
number of calls to 41 
passive analysis and 79 
pick list 41 
removing 

from statistics 
collection 42 

from window 83 
statistics 41 
subfunctions 41 
WREMOTE 120 

Interrupts command 73 
Interrupts window 40-42, 82 

local menu 41 

K 
keyboard 

choosing menu 
commands 20 

input, profiling and 71 
keys(TFINST) 101 
keystrokes 

recording, problems with 138 

L 
labels, moving cursor to 29 
LCD screens 109 
leaving Turbo Profiler 27 
Line command 29 
line counts 

algorithm analysis and 75, 76 
program verification and 

testing and 76 
lines 

See also area markers 
jumping to 30 
moving cursor to 29 
numbers 134 

Lines in Routine command 
Add Areas menu 30 

links, remote 98 

Link Speed radio buttons 
(TFINST) 108 

LoadLibrary, DLLs and 131 
local menus 28 

Areas window 45 
Callers window 39 
Disassembly (CPU) 

window 48 
Execution Profile window 34 
Files window 43 
Interrupt window 41 
Module window 29 
Overlays window 40 
Routines window 47 
Text File window 50 

Local Module command 47 
local system, remote profiling 

and 114 
Longest option 35 
loops, optimizing 84, 85 

M 
macros, recording 137, 138 
markers, area See area markers 
Maximum Areas option 57 
Maximum Coverage Count 

option 57 
Maximum Windows Me3sages 

option 57 
memory 104 

allocation, problems with 137 
error messages 113 
overlays and 40 
problems with 137 
stop and start points and 7 4 
usage 26 

menu bar See menus 
menus 

accessing 19 
arrows 20 
bar, activating 20 
customizing 102 
ellipsis marks ( ... ) 23 
global 19 
hot keys 21 
local See local menus 
opening 20 
shortcuts 20 
System 23 
TFlNST 101 
View 27 

Menus command (TFINST) 102 
message classes 130 
messages 

error See error messages 
Windows, logging 128 



Microsoft Windows See 
Windows 

Miscellaneous Options dialog 
box (TFINST) 106 

Mixed command 49 
Mode for Display menu 

(TFINST) 108 
Modify command (TFINST) 109 
Module (display option) 35 
Module command 

Execution Profile window 
local menu 36 

Filter menu 35 
Module window local 

menu 32 
Routines window local 

menu 47 
Module window 28-33 

Execution Profile window 
and 34 

Execution Profile window 
link 36 

local menu 29 
printing from 10 
source code, inspecting 39 

modules 
adding debug information 25 
current, statistics 83 
loading 134 
viewing 134 

problems with 137 
Modules with Source command 

Add Areas menu 30 
monitors, second 125 

See also displays; screens 
mouse 

choosing menu 
commands 20 

disabling/ enabling 98, 106, 
127 

support 19 
Mouse Enabled check box 

(TFINST) 106 

N 
Name option 35 
NEC MultiSpeed and NMI 107 
NETBIOS, remote profiling 

and 114 
Next command 

error message generated 
by 137 

Module window local 
menu 29 

Text File window local 
menu 50 

NMI, systems using 107 
NMI Intercept check box 

(TFINST) 107 
None option 

Area Options dialog box 46 
Stack Trace dialog box 32 

nonmaskable interrupts 107 
normal area markers See area 

markers, normal 
null modem cable 

remote profiling and 114 

0 
object-oriented programs 

expressions, problems 
with 135 

profiling 81 
Open command 24 
Operation command 

(Module) 30 
Operation radio buttons 

Area window 45 
Module window 31 

optimizers 2 
options 105 

customizing 101 
defaults, restoring 109 
display 103-105 

swapping 103 
input 105 
setting 7 

Options command (Areas) 45 
Options menu 

TFINST 105 
Turbo Profiler 62-66 

Origin command 
(Disassembly) 48 

overhead, calculating 89 
Overlay window 81 
overlays 

buffer management 81 
demonstration 40 
execution timing and resource 

monitoring and 76 
history 40 
memory and 40 
monitoring 73 
problems with 137 
profiling tips and 

techniques 80 
statistics 39, 40 

Overlays command 73, 83 
Overlays window 39-40, 82 

local menu 40 

p 
-p profiler option 98 

TPROFW 127 
passive analysis 

See also profiling 
active analysis vs. 78 
caller information and 79 
disk I/ 0 and 79 
execution counts and 79 
interrupts and 79 
program execution time 

and 78 
setting 77 

paths 
call 39,93 
setting 98 

Per Call option 34 
Permit 43 I 50 Lines check box 

(TFINST) 104 
Pick command 41 
PLOST.Cand 

PLOSTP AS.PAS 89 
pointers 

arrays and 84, 86 
instruction 

address of 49 
current 48 

pop-up menus See local menus 
ports 

remote, setting 98 
serial 108 

Position command 
Execution Profile window 

local menu 36 
Previous command 48, 49 
PRIMEn*.* (example 

programs) 6 
Printer Options radio buttons 

(TFINST) 107 
printing 

high vs. standard ASCII 107 
Module window contents 10 

printing conventions 
(documentation) 3 

Profile command 
Routines window local 

menu 47 
Profile mode radio buttons 56 
Profile radio buttons 34 
profile report windows 82 
profiling 

analysis modes 
See also active analysis 
active 56 
choosing 75, 77 
coverage 57 

Index 145 



current 26 
default 56 
passive 57 

batch mode 96 
defined 1 
dynamic-link libraries 130 

statistics and 131 
end results 75 

type of statistics to collect 
"for 75 

large programs 104 
object-oriented programs 81 
optimizers and 2 
passes 57 
preparing programs for 70 
program speed and 79 
refining the process 77 
remote 98, 113-123 

commands 121 
configuring Windows 

driver 119 
defined 113 
DOS applications 114 
DOS version and 115 
hardware 

requirements 114 
LANlink 117 
LAN system names 118 
loading programs 121 
local system 114 
NETBIOSand 114 
network compatibility 114 
PS/2 and 116 
remote DOS driver 

(TFREMOTE) 116 
remote systems 114 

defaults, setting 108 
remote Windows driver 

(WREMOTE) 118 
seriallink 117 
troubleshooting 122 
user screen and 121 
Windows link 120 
Windows programs 

and 118 
saving profiles 75 
slow programs and 79 
speeding up 79 
steps 6, 69 
Windows programs 125 

Profiling Options command 77 
Profiling Options dialog box 77 
program execution, stopping 31 
Program Reset command 54 
program source windows 81 
Programming Pearls 5 

146 Turbo Profiler User's Guide 

programs 
compiling for profiling 71 
current 26 
example 6 
execution speed 78, 79 
file access, monitoring 73 
keyboard input 71 
loading 

DLLs 130, 131 
problems with 137, 138 

symbol tables and 137 
without debug 

information 25 
object oriented 81, 185 
optimizing 84 
profiling 

dynamic-link libraries 130 
with no debug symbol 

information 138 
with out-of-date debug 

symbol information 138 
reloading, problems with 136 
restructuring 39 
running, NMI and 107 
size, areas and 72 
slow 79 
source location 32 
speed, statistics collection 

and 75 
stopping during a profiling 

session 72 
structure analysis 76 
swapping to disk, problems 

with 135 
testing and verifying 75, 76 
timing, statistics for 76 
unfamiliar, studying 77 
Windows profiling 125 

prompts 

Q 

commands and 133 
dialog boxes 133-135 
responding to 133 
setting 105 

question mark (?), search 
wildcard 29 

quicksort 84 
Quit command 27 

TFINST 110 

R 
-r profiler option 98, 117 
-re profiler option 

(WREMOTE) 120 

recursive routines 86 
Refresh Desktop command 23 
Remote Analyzing check box 

(TFINST) 108 
remote debugging 25 
REMOTE indicator 122 
Remote Link Port radio buttons 

(TFINST) 108 
remote links 

defaults, setting 108 
problems with 138 

remote profiling See profiling, 
remote 

remote systems 114 
remote Windows link 114 
Remove Areas command 45 
Remove command 83 

current areas 83 
Execution Profile window 

local menu 36 
undoing 36 

interrupts 83 
Interrupts window local 

menu 42 
report windows, summary 69 
requirements 

hardware 2 
software 71 

resizing windows 13 
resonance 80 
resources 1 

statistics for monitoring 76 
Restore Standard command 23 
routines 

accessing, problems with 134 
active, call stack and 92 
available for profiling 27 
calling other routines 73 
combined clock and 74 
interrupts See interrupts 
jumping to 30 
marking See area markers 
optimizing 84,86 
overhead 89 
recursive 86 
reducing calls to 16 
timer data 74 

Routines in Module command 
Add Areas menu 30 

Routines window 46-47 
local menu 47 

Run command 54 
Run Count option 57 
running TFINST 101-110 



s 
sample programs (PRIMEn*.*) 6 
Save Configuration dialog 

box 13, 65 
Save Configuration File 

command(TFINST) 109 
Save menu (TFINST) 109 
-sc profiler option 98 

TPROFW 127 
Screen command (TFINST) 103 
Screen Lines radio buttons 

TFINST 104 
screens 

See also displays 
background, customizing 103 
color, customizing 102-103 
dual 27 
LCD 109 
lines per, setting 104 
repainting 104 
snow, problems with 104 
swapping 103, 105 
updating 105 

scroll bars 21 
-sd profiler option 98 

TPROFW 127 
Search command 

Module window local 
menu 29 

Text File window local 
menu 50 

searches 29 
separate clock 31 
serial links, remote 108 
Session button 24 
Session radio buttons 25 
session, saving 25 
shortcuts See hot keys 
Sieve of Eratosthenes 18 
snow 104 
Sort command 

Areas window local menu 46 
Callers window local 

menu 39 
Sort radio buttons 35, 43 
sorttypescompared 84 
source code See files, source; 

programs 
source modules 

choosing 32 
search order 28 
viewing 28 

stack, call, size of 32 
Stack radio buttons 32 
Stack trace dialog box 32 

Start Time option 43 
statements, execution, 

verifying 76 
statistics 

accumulation, disabling 58 
accuracy 79, 80 
areas 44 
collection 72, 73, 83 

automatic 26 
disabling 31, 72 
enabling 31 
normal 31 
options 45 
program speed and 75 
type to collect 75 

current 
area 83 
removing 35 
routine 47 

default 72 
displaying 8, 9, 34 

filtering display 75 
erasing 36 
file activity 43 

graph view 43 
time in seconds 43 

files, writing to 136 
filtering 35, 74, 77, 83 

calculation of time 35 
temporary 36 

limiting 74 
module 35 
overlays 39, 40 
partial 74 
printing 11 
problems with 136 
program execution speed 

and 79 
removing 34 
sorting 34, 35 
start and stop points 

(maximum) 74 
time 34,35 
types of 73 
viewing 33 

choices 34 
number of passes 34 
source code with 12 
time 34 

status line 22 
Stop option 

Files window local menu 43 
strings, searching for 50, 134 
structure analysis, statistics 

for 76 
Subfunctionscommand 41 
switch statements, verifying 76 

symbol names, problems 
with 135 

symbol tables 138 
DDLsand 130 
invalid 138 

symbols 

T 

disassembled 48 
problems with 138 

-t profiler option 127, 128 
Tab Size input box (TFINST) 104 
tabs, setting 104 

problems with 139 
Tandy 1000 and NMI 107 
TDDEBUG.386 file 126 
TDRF (remote file transfer 

utility) 114 
remote Windows and 122 

techni~al support 4 
text, st.arching for 29 

problems with 138 
text editors 105 

problems with 135 
text files 

se, ·ching 50 
viewing 27 

Text File window 50-51 
local men" 50 

.TFA files 
areas and 70 
automatic saving 27 

TFCONFIG.TF 14 
TFINST 101-110 

command-line options 
vs. 110-111 

exiting 110 
main menu 101 
options, saving 109 
TPROFW and 127 

TFREMOTE (remote profiling 
utility) 

configuring 115 
customizing 115 
error messages 122-123 
installing 114 
LANlink 116 
loading 116 
options See command-line 

options 
problems with 138 
serial link 116 

This Line command 
Add Areas menu 30 

This Module option 32 
This Routine option 32 

Index 147 



time and counts profile listing 10 
Time option 

Execution Profile window 34 
Interrupt window 42 

timer 
combined clock 7 4 
data grouping 7 4 
inaccurate results and 93 
separate vs. combined 

clock 31 
setting 57 
sound routines and 93 

Timer radio buttons 31 
Timing radio buttons 46 
title bars 21 
TPROF 

error messages 135-139 
modifying with TFINST 109 

TPROFW 
command-line options 127 
configuring 126 
differences from Turbo 

Profiler 128 
dynamic-link libraries 

profiling 130 
error messages 131 
installation 126 

system requirements 125 
list of files 126 
message classes 130 
profiling Windows 

programs 125 
running 128 
switching applications 

and 128 
TSR programs, display 

swapping and 105 
Turbo language products 71 
Turbo Profiler Statistics file See 

.TPS files 
tutorial 5-18 
typographic conventions 

(documentation) 3 

u 
user screen 

display buffer 104 
remote profiling and 121 
updating 105 

User Screen Updating radio 
buttons (TFINST) 105 

utilities 
TFREMOTE See TFREMOTE 
TDRF 122 

148 Turbo Profiler User's Guide 

v 
-v profiler option 99 
version number information 24 
VGA 104 
video adapters 108 

See also Enhanced Graphics 
Adapter; graphics adapters; 
Video Graphics Array 
Adapter 

display pages 105 
options 99 

Video Graphics Array Adapter 
(VGA), line display 104 

Viewmenu 27 
View Source command 49 

w 
-w profiler option 

TFREMOTE 115 
warning beeps, enabling 106 
When Full command 43 
wild cards 

DOS 50, 139 
in searches 29 

window messages 
logging to the TPROFW 

window 128 
setting number tracked 57 

Window Procedure Messages 
dialog box 129 

Window procedures 34, 46 
windows 

activating 22 
active, defined 21 
Areas 44-46 

Callers option and 37 
Callers 37-39 
close box 21 
closing 21 
Coverage window 51-54, 82 
customizing 102 
Disassembly (CPU) 47-50 
Execution Profile 33-37 

Module window and 34 
Files 42---43 
Interrupts 40---42 
linking 13 
Module 28-33 

Execution Profile and 34 
moving 22 
multiple 51 
opening 21 
Overlays 39---40 
panes 21 
problems with 137 

profile report 82 
program source 81 
properties 21 
report 69 
resizing 13, 22 
restoring 23 
Routines 46---47 
saving configuration 13 
scrolling 21 
zooming 8,21,22 

Windows command 
(TFINST) 102 

Windows 
profiling programs 125 
remote profiling 118 
Windows Messages 

command 128 
WordStar-style cursor

movement commands 106 
Wrap option 43 
WREMOTE 

y 

command-line options 120 
configuring 118 
hardware requirements 114 
software requirements 118 

Yes option 49 

z 
Zoom command 8 
zoom icon 21, 22 



Borland 
Corporate Headquarters: 100 Borland Way, Scotts Valley, CA 95066-3249, (408) 431-1000. Offices in: Australia, Belgium, Brazil, 
Canada, Chile, Denmark, France, Germany, Hong Kong, Italy, Japan, Korea, Latin America, Malaysia, Netherlands, Singapore, Spain, 
Sweden, Taiwan, and United Kingdom • Part# BCP1245WW2177 A • BOR 7778 


