

Mastering Turbo Debugger®

Mastering Turbo Debugger®

Tom Swan

HAYDEN BOOKS
A Division of Macmillan Computer Publishing

11711 North College. Carmel, Indiana 46032 USA

© 1990 by Tom Swan

FIRST EDITION
SECOND PRINTING -1991

All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical,
photocopying, recording, or otherwise, without written permission from the
publisher. No patent liability is assumed with respect to the use of the
information contained herein. Although every precaution has been taken in
the preparation of this book, the publisher and author assume no
responsibility for errors or omissions. Neither is any liability assumed for
damages resulting from the use of the information contained herein. For
information, address SAMS, 11711 N. College Ave., Carmel, IN 46032.

International Standard Book Number: 0-672-48454-4
Library of Congress Catalog Card Number: 90-61921

Acquisitions Editor: Linda Sanning
Manuscript Editor: Sara Black
Production Editor: Kathy Grider-Carlyle
Production Coordinator: Steve Noe
Cover Concept and Art Direction: Dan Armstrong
Compositor: Cromer Graphics
Illustrator: Don Clemons
Production Assistance: T. R. Emrick, Tami Hughes, Bill Hurley,
Chuck Hutchinson, Betty Kish, Bob LaRoche, Diana Moore, Bruce Steed,
Mary Beth Wakefield
Indexer: Sharon Hilgenberg
Technical Reviewer: Rick Naro

Printed in the United States of America

To my mother Mary P. Swan and my father Reyer 0 Swan,
the beekeepers!

Overview

Partl Guide and Reference 1

1 Introduction 3

2 Preparing Programs for Debugging 13

3 Getting Turbo Debugger Up and Running 41

4 Windows, Menus, and Hot Keys 71

5 Views and Local Commands 125

6 Using TD's Utility Programs 177

Part2 The Art of Debugging 195

7 Developing a Debugging Strategy 197

8 Breakpoints and Code Tracing 213

9 Evaluating Expressions 235

10 Common C Bugs 249

11 Hands-On Debugging for C 279

12 Common Pascal Bugs 311

13 Hands-On Debugging for Pascal 345

14 Common Assembly Language Bugs 377

15 Hands-On Debugging for Assembly Language 403

vii

viii Mastering TUrbo Debugger

Part 3 Advanced Debugging Topics
16 Macros and Keystroke Recording

17 Remote and Dual-Monitor Debugging

18 Hardware-Assisted Debugging

19 Debugging Resident Programs

Part 4 Data-Structure Guides
20 C and C + + Data Structures

21 Pascal Data Structures

22 Assembly Language Data Structures

Bibliography

Index

423

425

447

461

483

517

519

547

569

585

587

Contents

Preface :xxxiii

Acknowledgments xxxv

Part 1 Guide and Reference 1

1 Introduction 3

Requirements 4
Required Hardware 4
Required Software 5
Required Knowledge 5
Optional Hardware 5

How to Use This Book 6
About the Chapters 6

Part 1 : Guide and Reference 7
Part 2: The Art of Debugging 7
Part 3: Advanced Debugging Topics 8
Part 4: Data-Structure Guides 8

Listings 9
Keyboard Keys 9
Text Styles JO
File Names 11
Where to Go from Here 11
Summary 11

ix

x Mastering Turbo Debugger

2 Preparing Programs for Debugging
How to Use This Chapter
The Design-Compile-Debug Cycle
Compiler Updates
Managing Object Libraries with TLIB
Compiling C and C + + Programs for Debugging

Sample C Program
Lattice C 3.3
Microsoft C 5. 1
Microsoft C 6.0
QuickC 2.01
Turbo C 2.0 Integrated Environment
Turbo C 2.0 Command-Line Compiler
Turbo C + + 1.0 Programmer's Platform
Turbo C+ + 3.0 Command-Line Compiler
Zortech C + + 1.07
Zortech C + + 2.0

Compiling Pascal Programs for Debugging
Sample Pascal Program
Microsoft Pascal 4.0
QuickPascal 1. 0
Turbo Pascal 4.0
Turbo Pascal 5.x Integrated Environment
Turbo Pascal 5.x Command-Line Compiler

Preparing Assembly Language Programs for Debugging
Sample Assembly Language Program
Microsoft Macro Assembler 5 .1
OptASM 1.5
QuickAssembler 2.01
Turbo Assembler 2.0

Preparing .COM Programs for Debugging
Sample .COM Program
Assembling .COM Programs

Compiling Other Programs for Debugging
Debugging Without the Source
Using TOUCH to Update Files
Summary

3 Getting Turbo Debugger Up and Running
Configuration Tips

Black-and-White Graphics
Setting Up Directories

14
15
15
17
17
17
18
19
20
20
21
22
22
24
24
25
25
25
26
28
28
29
30
31
31
32
33
33
34
35
35
36
37
38
39
39

41
42
42

13

41

Contents xi

System RAM 43
Expanded RAM (EMS) 43
Extended RAM (XMS) 44
Converting Extended to Expanded RAM 45
80286 Installation 46
80386 Installation 47
Exceptions 48
Reserving Environment Variable Space 48
Remote and Dual-Monitor Installation 49

Installing a Mouse 49
Using a Mouse with Microsoft Windows 50
Minimum Configurations 50
Custom Setups 51

Editing Configuration Files 52
Restoring Original Settings 52

TDINST Commands 53
Colors 53

Customize 53
Default color set 53

Display 53
Display swapping 53
Integer format 54
Beginning display 54
Screen lines 54
Tab size 54
Max tiled watch 54
Fast screen update 55
Permit 43/50 lines 55
Full graphics save 55
User screen updating 55
Log list length 55
Floating precision 56
Range inspect 56

Options 56
Directories 56
Input & prompting 56
Source debugging 57
Miscellaneous 57

Mode for Display 58
Save 59

Save configuration file 59
Modify td.exe 59

Quit 59
Creating a Debugging Workstation 59

Running Editors and Other Programs 60

xii Mastering Turbo Debugger

Shelling to DOS
Installing Language Help
Microsoft Windows

Running TD
TD Command-Line Options

-c[file]
-do, -dp, -ds
-h, -?

-il + 1-l
-kl+ 1-J
-1
-m(#)
-p[+I - l
-r[+I - l
-rp(#)
-rs(#)
-sc[+I -]
-sd(dir)
-sm(#)
-vg[+ 1-l
-vn[+ 1-l
-vp[+ 1-J
-y(#)
-ye(#)

TD286 Command-Line Options
TD386 Command-Line Options

-bl+ 1-J
-e(#)
-fx69
-w

Summary

4 Windows, Menus, and Hot Keys
Sample Program
The Scoop on Scope
Choose, or Select, Your Weapon
Turbo Debugger's Display
Windows
Menus
Views

What's in a Window?
Mouse Window Commands
Using Scroll Bars

60
61
61
62
62
63
63
64
64
64
64
65
65
65
65
66
66
66
66
67
67
67
67
68
68
68
68
68
69
69
70

71
72
73
73
75
75
79
79
80
81

71

Contents xiii

Window Panes 82
Keyboard Window Commands 83

Moving Windows 84
Context Sensitivity 84

Dialog Boxes 84
What's in a Dialog Box? 85
Closing Dialog Boxes 87
Selecting Options with a Mouse 87
Selecting Options with the Keyboard 88
Entering Text 89
History Lists 90
Message Dialogs 91
Prompt Dialog Boxes 91

Inspectors 92
Local Inspector Menu 93

Range 94
Change 94
Inspect 95
Descend 95
New expression 95
Type cast 95

Inspecting Objects 95
Object Inspector Menus 96

Methods 97
Show inherited 97
Hierarchy 97

Inspecting Object Types 97
Inspect 98
Hierarchy 98
Show inherited 98

Global Menus 98
System Menu (=) 99

Repaint desktop 99
Restore standard 99
About 100

File Menu 100
Open 100
Change dir 101
Get info 101
DOS shell 102
Resident 103
Symbol load 103
Table relocate 103
Quit {<Alt)-X) 103

View Menu 103

xiv Mastering Turbo Debugger

Run Menu 103
Run ((F9)) 104
Go to cursor ((F4)) 104
Trace into ((F7)) 104
Step over ((F8)) 105
Execute to ((Alt)-(F9)) 105
Until return ((Alt)-(F8)) 106
Animate 106
Back trace ((Alt)-(F4)) 107
Instruction trace ((Alt)-(F7)) 107
Arguments 108
Program reset ((Ctrl)-(F2)) 108

Breakpoints Menu 108
Toggle ((F2)) 109
At ((Alt)-(F2)) 109
Changed memory global 110
Expression true global 110
Delete all 111

Data Menu 111
Inspect 111
Evaiuate/modify ((Ctrl)-(F4)) 111
Add watch ((Ctrl)-(F7)) 113
Function return 113

Options Menu 113
Language 113
Macros 114
Display options 115
Path for source 115
Save options 116
Restore options 116

Window Menu 117
Zoom ((F5)) 117
Next ((F6)) 117
Next pane ((Tab)) 118
Size/move ((Ctrl)-(F5)) 118
Iconize/restore 118
Close ((Alt)-(F3)) 119
Undo close ((Alt)-(F6)) 119
Dump pane to log 119
User screen ((Alt)-(F5)) 119
1 Module TCALC, 2 Watches 120

Help Menu 120
Index ((Shift)-(Fl)) 121
Previous topic ((Alt)-(Fl)) 121
Help on Help 121

Contents

Hot Keys
Summary

5 Views and Local Commands
How to Use This Chapter
Default Commands
Another View
Breakpoints View

Local Breakpoints View Commands
Set options ((Ctrl)-S)
Hardware options ((Ctrl)-H)
Add ((Ctrl)-A) (Default)
Remove ((Ctrl)-R, (Delete))
Delete all ((Ctrl)-D)
Inspect ((Ctrl)-I)

CPU View
CPU Window Uses
Opening the CPU Window
CPU Code Pane
Local CPU Code Pane Commands

Goto ((Ctrl)-G)
Origin ((Ctrl)-0)
Follow ((Ctrl)-F)
Caller ((Ctrl)-C)
Previous ((Ctrl)-P)
Search ((Ctrl)-S)
View source ((Ctrl)-V)
Mixed ((Ctrl)-M)
New cs:ip ((Ctrl)-N)
Assemble ((Ctrl)-A) (Default)
1/0 ((Ctrl)-1)

CPU Registers Pane
CPU Flags Pane
CPU Stack Pane
Local CPU Stack Pane Commands

Goto ((Ctrl)-G)
Origin ((Ctrl)-0)
Follow ((Ctrl)-F)
Previous ((Ctrl)-P)
Change ((Ctrl)-C) (Default)

CPU Dump Pane
Dump View

Scrolling the Dump Window

122
124

xv

125

126
126
127
127
128
128
130
130
131
131
131
132
132
132
134
135
135
135
136
136
136
136
137
137
138
138
139
139
139
140
140
140
141
141
141
141
142
142
142

xvi Mastering Turbo Debugger

Local Dump View Commands
Goto ((Ctrl)-G)
Search ((Ctrl)-S)
Next ((Ctrl)-N)
Change ((Ctrl)-C) (Default)
Follow ((Ctrl)-F)
Previous ((Ctrl)-P)
Display as ((Ctrl)-D)
Block ((Ctrl)-B)

Execution History View
Reverse Executing Code
Reverse Execution Limitations
Local Execution History Commands

Inspect ((Ctrl)-I)
Reverse execute ((Ctrl)-R)
Full history ((Ctrl)-F)
Keystroke restore ((Ctrl)-K)

File View
File View Local Menu

Goto ((Ctrl)-G)
Search ((Ctrl)-S) (Default)
Next ((Ctrl)-N)
Display as ((Ctrl)-D)
File ((Ctrl)-F)
Edit ((Ctrl)-E)

Hierarchy View
C + + vs. Turbo Pascal
Hierarchy View Local Menu

Inspect ((Ctrl)-I)
Tree ((Ctrl)-T)
Parents ((Ctrl)-P)

Log View
Log View Local Menu

Open log file ((Ctrl)-0)
Close log file ((Ctrl)-C)
Logging ((Ctrl)-L)
Add comment ((Ctrl)-A) (Default)
Erase log ((Ctrl)-E)

Module View ((F3))
Module View Window Title
Module View Local Menu

Inspect ((Ctrl)-I)
Watch ((Ctrl)-W)
Module ((Ctrl)-M)
File ((Ctrl)-F)

143
143
143
144
144
144
146
146
147
149
149
149
149
150
150
150
150
151
152
152
152
152
153
153
153
153
154
154
155
155
155
155
156
156
157
157
157
157
158
159
159
159
160
160
160

Contents xvii

Previous ((Ctrl)-P) 161
Line ((Ctrl)-L) 161
Search ((Ctrl)-S) 161
Next ((Ctrl)-N) 162
Origin ((Ctrl)-0) 162
Goto ((Ctrl)-G) (Default) 162
Edit ((Ctrl)-E) 163

Numeric Processor View 163
NDP Stack Values 164
The Numeric Processor View's Window Title 164
Numeric Processor View Local Menu 164

Zero ((Ctrl)-Z) 165
Empty ((Ctrl)-E) 165
Change ((Ctrl)-C) (Default) 165
Toggle ((C trl)-T) (Default) 165

Registers View 165
Register View Local Menus 166

Increment ((Ctrl)-I) 166
Decrement ((Ctrl)-D) 167
Zero ((Ctrl)-Z) 167
Change ((Ctrl)-C) (Default) 167
Registers 32-bit ((Ctrl)-R) 167
Toggle ((Ctrl)-T) (Default) 167

Stack View 168
Stack View Local Menu 168

Inspect ((Ctrl)-I) (Default) 168
Locals ((Ctrl)-L) 169

Variables View 169
Variables View Local Menu 170

Inspect ((Ctrl)-I) (Default) 170
Change ((Ctrl)-C) 171

Watches View 171
Viewing Variables 172
Adding Symbols to Watches 172
Watches View Local Menu 173

Watch ((Ctrl)-W, (Insert)) (Default) 173
Edit ((Ctrl)-E) 173
Remove ((Ctrl)-R, (Delete)) 174
Delete all ((Ctrl)-D) 174
Inspect ((Ctrl)-I) 174
Change ((Ctrl)-C) 174

Summary 174

xviii Mastering Turbo Debugger

6 Using TD's Utility Programs 177

Displaying On-line Help 177
Error Messages 178
About the Syntax Descriptions 178
TDCONVRT.EXE 178
TDCONVRT Syntax and Options 179

-c 179
-SW 179

TDDEVEXE 180
TDDEV Syntax and Options 180

-r 180
TDINST.EXE 180
TDINST Syntax and Options 181

-c(file) 181
TDMAP.EXE 181
TDMAP Syntax and Options 182

-b 182
-c 182
-e(ext) 182
-q 183

TDMEM.EXE 183
TDMEM Syntax and Options 183

-v 183
TDNMI.COM 183
TDNMI Syntax and Options 184

-p[(#) l 184
TDPACK.EXE 184
TDPACK Syntax 184
TDREMOTE.EXE 185
TDRF.EXE 185
TDSTRIP.EXE 185
TDSTRIP Syntax and Options 186

-s 186
-c 186
TDSTRIP Examples 186

TDUMP.EXE 187
TDUMP Syntax and Options 188

-a 188
-a7 188
-b(#) 188
-e 188
-el 188
-er 189
-elr 189

Contents

-h
-1
-m
-0

-oc
-oiID
-ox ID
-v

UNZIP.EXE
UNZIP Syntax and Options

-c, -cm
-0

-p
-t

-v[b I c Id I e In Ip Is Ir]
Summary

Part 2 The Art of Debugging

7 Developing a Debugging Strategy
The Elements of Debugging Style
Turbo Debugger's Tools

Breakpoints
Code Tracing
Data Inspection
Expression Evaluation

Bug Species
Syntax Errors
Runtime Errors
Logical Errors

Types of Runtime and Logical Bugs
Data-Dependent Bugs
Intermittent Bugs
Moving-Target Bugs
Fatal Bugs
Long-Distance Bugs
Time-Bomb Bugs

Debugging Strategies
Testing for Bugs

Force Bugs into the Open
Take Good Notes
Test as You Go

Stabilizing Bugs

189
189
189
190
190
190
190
191
191
191
192
192
193
193
193
193

xix

195

197

198
199
199
201
201
202
203
203
204
205
205
206
206
206
207
207
208
209
209
210
210
210
211

xx Mastering Turbo Debugger

Isolating Bugs
Repairing and Retesting

Summary

8 Breakpoints and Code Tracing
Breakpoints, Tracepoints, and Watchpoints
Debugging with Code Breakpoints

Isolating a Bug
Breaking in Procedures and Functions
Examining Program Exit Conditions
Finding a Runtime Error
Breaking into OOP Methods
Code Breakpoint Tricks

Debugging with Data Breakpoints
Entering Expressions
Hardware and Software Differences
Speeding Software Data Breakpoints
String Comparisons
Breaking on Register Values
Data Breakpoint Tricks

Logging Expressions
Logging Multiple Variables
Logging Complex Expressions
Logging "Self" in OOP Code
Side Effects

Splicing Code
Splicing Pascal Code
Splicing C Code
Splicing Procedure and Function Calls

Setting the Pass Count
Verifying a Loop Index
Finding Unauthorized Variable Assignments
Locating Unwanted Recursions

Debugging with Code Tracing
Tracing and Stepping
Using Instruction Tracing
Animation
Debugging with Back Tracing
Back Tracing Machine Code
Back-Tracing Limitations

Tracing into DOS and BIOS Code
Summary

211
211
212

213

213
214
214
215
215
216
216
217
217
218
218
219
220
220
221
221
222
223
223
224
224
224
225
226
226
227
227
227
228
228
229
230
231
231
232
232
233

Contents

9 Evaluating Expressions
Language and Format
Changing an Expression's Format
Line Numbers
C Expressions

Operators
Numeric Expressions
String Expressions
Type Casting
Side Effects

Pascal Expressions
Operators
Numeric Expressions
String Expressions
Calling String Functions
Type Casting
Side Effects

Assembly Language Expressions
Operators
Numeric Expressions
String Expressions
Side Effects

Object-Oriented Expressions
Calling Object Methods
Summary

10 Common C Bugs
Going to the Source

Transposed Comment Brackets
Mismatched Braces and Parentheses
Else with Wrong If
All Things Being Equal
Path-Name Problems
Misplaced Semicolons
Accidental Function Redefinition

Problems with Variables
Uninitialized Variables
Finding Uninitialized Variables
Stabilizing a Changing Variable
Mishandling Global Variables
Confusing Automatic and Static Variables
Confusing Static and Extern

xxi

235

236
236
237
238
239
239
239
239
240
240
241
241
241
241
242
243
244
244
245
245
246
246
247
247

249

249
250
250
251
252
253
254
255
256
256
257
258
259
260
261

xxii Mastering Turbo Debugger

Arrays 261
Something for Nothing 262
Index-Range Errors 262

Problems with Pointers 263
Uninitialized Pointers 263
Finding Uninitialized Pointers 264
Finding NULL Pointers 265
Not Allocating Space to Pointers 265
Flunking Pointer Arithmetic 266
Pointers and Automatic Variables 266
Not Disposing Allocated Space 268
Using Disposed Memory 268

Functions 268
Forgetting a Return Value 268
Confusing Calls by Value and Reference 270
Function Side Effects 271
Unwanted Recursion 272

Numerical Errors 273
Bad Operator Precedence 273
Putting the Hex On 274

File Handling 274
Forgetting to Close Open Files 274
Not Checking for 1/0 Errors 274
Neglecting to Use Pointers in scanf() 275

Bad Breaks 276
Nested Breaks 276
Broken Continuations 277
Forgetting Break in a Switch Statement 277

Summary 278

11 Hands-On Debugging for C 279

Debugging Strategy Review 280
The Program 280
Hands-On Debugging Sessions 289

Using LS.C 290
How LS.C Works 290

Bug Number I 291
Bug number I - Test 291
Bug number I -Stabilize 292
Bug number I - Isolate 292
Bug number I-Repair 294

Bug Number 2 295
Bug number 2-Test 295

Contents

Bug number 2-Stabilize
Bug number 2-Isolate
Bug number 2-Repair

Bug Number 3
Bug number 3-Test
Bug number 3-Stabilize
Bug number 3-Isolate
Bug number 3-Repair

Bug Number 4
Bug number 4-Test
Bug number 4-Stabilize
Bug number 4-Isolate
Bug number 4-Repair

Bug Number 5
Bug number 5-Test
Bug number 5-Stabilize
Bug number 5-Isolate
Bug number 5-Repair

Summary

12 Common Pascal Bugs
Typos and Other Ink Spots

The Case of the Missing Comment Bracket
ELSE with Wrong IF-THEN
Disappearing Standards

Variable Dilemmas
Global Variable Wars
Home on the Range Error

How to Find a Runtime Error
Looping Once Too Many Times

Procedural Predicaments
Mixing Variable and Value Parameters
String Length Problems

Functional Foul Ups
Side Effects
This Way Out
Unwanted Recursion
Mutual Madness
Interactive Side Effects

Pointer Pointers
Uninitialized Pointers
Finding Nil Pointers
Finding Uninitialized Pointers

295
296
297
297
298
298
299
301
302
302
303
303
307
307
308
308
308
310
310

xxiii

311

311
311
313
315
316
318
318
319
319
320
321
321
323
323
324
325
327
328
328
329
330
330

xxiv Mastering Turbo Debugger

Disposed Pointers
Unnormalized Pointers
Misunderstanding MemAvail and MaxAvail
Out-of-Memory Bugs

Numerical Puzzles
Misplaced Operator Precedence
Negative Words
Putting the Hex On
Integer Wrap Around

Mishandling Files
Forgetting to Close a File
Delayed File Errors

Overlay Obstacles
Over Initialization
Sluggish Overlays

Summary

13 Hands-On Debugging for Pascal
The Program
Hands-On Debugging Sessions
Using CAL. PAS
Bug Number 1

Bug number 1-Test
Bug number I-Stabilize
Bug number I - Isolate
Bug number I-Repair

Bug Number 2
Bug number 2-Test
Bug number 2-Stabilize
Bug number 2-Isolate
Bug number 2-Repair

Bug Number 3
Bug number 3-Test
Bug number 3-Stabilize
Bug number 3-Isolate
Bug number 3-Repair

Bug Number 4
Bug number 4-Test
Bug number 4-Stabilize
Bug number 4-Isolate
Bug number 4-Repair

Bug Number 5
Bug number 5-Test

331
332
333
334
335
335
336
337
337
338
338
339
341
341
342
343

345

346
353
354
355
355
356
357
358
359
360
360
360
363
364
364
364
365
366
367
368
368
368
370
370
371

Contents

Bug number 5-Stabilize
Bug number 5-Isolate
Bug number 5-Repair

Bug Number 6
Bug number 6-Test
Bug number 6-Stabilize
Bug number 6-Isolate
Bug number 6-Repair

Summary

14 Common Assembly Language Bugs
Typos and Ink Spots

Instruction Operand Order
Popping the Wrong Registers
Confusing Offsets and Variables

Common Program Errors
No Return to DOS
Stack Missing or Too Small
Misunderstanding Uninitialized Data
Misunderstanding ASSUME
Unexpected Register Changes
Undocumented Registers

Flag Foul-Ups
Segment Snags

Using the Wrong Segment Register Value
Using the Wrong Default Segment Register
Ignoring Data Segment Starting Offsets
Unexpected Segment Wrap Around

Procedural Predicaments
Unexpected Fall-Through
Uninitialized Register Parameters
Multiple Entry Points and Exit Paths
Returning Near and Far
Not Preserving Registers Around Calls

Jumping Into the Fire
Wrong Jump Sense
Misplaced Local Labels

String Sins
Expecting CX = 0 to Reach an Entire Segment
Trusting String Operands
Bad Direction Flag Setting
Confusing Default Segment Registers

Interrupt Intricacies

371
371
372
373
373
373
373
375
375

xxv

377

377
377
378
379
381
381
382
382
383
384
385
385
385
386
386
387.
388
389
389
390
390
391
392
392
393
393
395
395
396
397
397
397

xxvi Mastering Turbo Debugger

Destroying Register Values
Disabling Interrupts
Forgetting to Restore Interrupt Vectors

Numerical Puzzles
Not Extending the Sign Bit
Radix Mistakes

Debugging Mixed-Language Code
Summary

15 Hands-On Debugging for Assembly Language
The Program
Hands-On Debugging Sessions
Using FILLMEM and FILLTEST
Bug Number I

Bug number I - Test and Stabilize
Bug number I-Isolate
Bug number I-Repair

Bug Number 2
Bug number 2-Isolate
Bug number 2-Repair

Bug Number 3
Bug number 3-Isolate
Bug number 3-Repair

Summary

Part 3 Advanced Debugging Topics

16 Macros and Keystroke Recording
Macros

How to Enter Macros
Keys for Macros
Saving and Restoring Macros
Macros and Debugging

Opening views
Reprogramming TD's hot keys
Repeating test sequences
Entering watch and inspector expressions
Setting multiple breakpoints

Problems with Macros
Sample Macros

Display hidden windows-(Shift)-(FI)
Skip over statements-(Shift)-(F2)

398
398
398
399
399
399
400
401

403

404
412
413
414
415
415
416
417
417
418
419
419
422
422

423

425

425
426
426
428
428
428
429
430
430
431
431
432
433
433

Contents

Reset and return to origin-(Shift)-(F3)
Open views as icons-(Shift)-(F4)
Erase user screen-(Shift)-(F5)
Start a new log file-(Shift)-(F6)
Snapshot-(Shift)-(F7)
OOP instance inspector-(Shift)-(FS)
Forward and reverse gears-(Keypad +)and (Keypad -)
Repeat test-(Shift)-(F9)
CPU search next command-(Shift)-(FlO)

Keystroke Recording
Enabling Keystroke Recording
Execution History View Review
Keystroke Recording and Debugging

Keystroke recording and breakpoints
Keystroke recording and animation
Keystroke recording and code tracing
Keystroke recording and inspectors

Creating Repeatable Test Procedures
Problems with Keystroke Recording

Using Macros and Keystroke Recording
Summary

17 Remote and Dual-Monitor Debugging
The Right Connections
Testing the Remote Link
Configuring TDREMOTE
Configuring TDRF
TDRF and TDREMOTE Command-Line Options
Configuring TD for Remote Debugging
Debugging a Program in Remote Mode

File I/O and Remote Debugging
Debugging Keyboard Input Routines

TDRF Commands
Dual-Monitor Debugging

Using Two Monitors
Switching Displays
Problems with Dual-Monitor Debugging

Summary

18 Hardware-Assisted Debugging
Internal and External Hardware Debugging

Single-Stepping and the Trap Flag

434
435
436
436
437
438
439
440
440
441
441
442
442
442
443
443
443
444
444
445
445

xxvii

447

448
450
451
452
453
453
454
456
456
457
458
459
459
459
460

461

461
462

xxviii Mastering Turbo Debugger

Breakpoint Interrupt
Internal Debugging Registers
Hardware-Debugging Boards
Setting Up for Hardware-Assisted Debugging

The Hardware Breakpoint Options Dialog
How to Set Hardware Breakpoints
Modifying Existing Hardware Breakpoints
Accessing and Changing Memory
Expression True vs Hardware Breakpoints
Selecting Hardware Breakpoint Options
How Hardware-Assisted Debugging Works

Problems with Hardware-Assisted Debugging
Debugging with Hardware Breakpoints

Hardware Breakpoints and C
Hardware Breakpoints and Pascal
Using I/O Breakpoints
Using Instruction-Fetch Breakpoints

Debugging Embedded Systems
Installing a Panic Reset Button
Writing a Debugging Device Driver
Summary

19 Debugging Resident Programs
TSRs-A Quick Review
Debugging TSRs
A Sample TSR Program
Debugging the Sample TSR

Setting TSR Breakpoints
Resetting the Interrupt Vector

Alternate TSR Debugging Methods
Loading the TSR from DOS
Loading a Separate Symbol Table

Debugging TSRs in Remote Mode
Resident Remote Debugging
Nonresident Remote Debugging

Common TSR Bugs
Failing to Preserve All Registers
Mishandling Segment Registers
Conflict with a BIOS Routine
Conflict with a Nonreentrant DOS Routine
Interrupting a Hardware Interrupt
Miscalculating the Resident Portion Size
Loading an Unprotected Resident Data Segment

462
462
463
465
466
467
469
469
470
470
473
474
475
475
478
479
479
480
481
481
482

483

483
485
486
497
497
498
500
500
502
503
504
505
506
506
506
507
508
508
509
509

Contents xx ix

PRINT.COM Conflict 510
Not Letting Interrupt 09h Finish 510
Not Letting Interrupt 08h Finish 510
Failing to Deal With Critical Errors 511

Device Drivers-A Quick Review 511
Debugging Device Drivers 512
Debugging Device Drivers in Remote Mode 513
Debugging Interrupt Service Routines 513
Debugging "Exec-ed" Processes 514
Summary 516

Part4 Data-Structure Guides 517

20 C and C + + Data Structures 519

Where Are My Variables? 519
Static Variables 520
Automatic Variables 520
Register Variables 521
Function Parameters 521
Pointer Variables 522

Size of Variables 523
Internal Variables 523
Viewing Local Symbols 523
Examining Basic Data Types 524

Char Types 524
Int Types 525
Float Types 525
Enumerati9n Types 526

Constants 527
Examining Derived Data Types 528

Arrays 528
Arrays of Pointers 530
Strings 531
Bit Fields 531
Structures 534
Unions 535

Pointers 536
Pointers and Arrays 536
Typed and Untyped Pointers 537
NULL Pointers 538

Files 538
Debugging Dynamic Structures 539
Pseudo Variables 540

xxx Mastering Turbo Debugger

Debugging C + + Objects
Watching Objects
Browsing Object Classes
Browsing Object Instances

Summary

21 Pascal Data Structures
Where Are My Variables?

Global Variables
Local Variables and Parameters
Pointer Variables

Size of Variables
System Variables
Examining Simple Data Types

Boolean Types
Char Types
Enumerated Types
Integer Types
Real Types
Subrange Types

Constants
Examining Complex Data Types

Array Types
Record Types
Problems with "With"
Set Types
String Types

Files
Debugging Dynamic Structures
Debugging Objects

Watching Objects
Classes vs Instances
Finding the VMT

Summary

22 Assembly Language Data Structures
Where Are My Variables?
Entering Values
Size of Variables
Examining Simple Data Types

Byte (db) Variables
Word (dw) Variables

540
541
541
543
546

547

547
547
548
548
549
549
550
550
550
551
552
553
554
555
555
556
557
558
558
559
560
562
563
564
564
565
567

569

569
570
570
571
571
572

Contents xxxi

Doubleword (dd) Variables 573
Pointer (df, dp) Variables 573
Doubleword (dd) Pointers 574
Quadword (dq) Variables 574
Ten-Byte (dt) Variables 575

Memory-Addressing Modes 575
Equates and Expressions 576
True and False Expressions 577
Examining Complex Data Types 578

Arrays 578
Strings 579
Structures 580
Unions 581
Records 582

Summary 584

Bibliography 585

Companies and Products 585
References 586

Index 587

Preface

ALL PROGRAMS have bugs. You've heard it said, but is it true? Maybe not,
although it does seem that few programmers write bug-free code on the first
try. Any sizable program is bound to catch a few snags at some stage in its
development.

The trick, of course, is to find and fix the bugs before others see them. But,
despite what you may have heard or read elsewhere, debugging is not an
obscure ritual that only programming wizards can possibly master. Debugging
is a skill-one that all programmers can learn how to perform successfully and
with a minimum of fuss and frustration.

With that thought in mind, over a year ago, I began writing Mastering
Turbo Debugger. Originally, I meant to focus on two themes: First, how to use
Turbo Debugger to debug MS-DOS programs in C, Pascal, and assembly lan
guage; and, second, how to combine that practical knowledge with the ele
ments of a good debugging style.

While researching that second theme, however, I ran into an unexpected
stumbling block. To my surprise, I found that very little had been written about
how to acquire useful debugging skills, or even about what those skills are. Of
the few books and articles that mention debugging, most do so only in passing.
("While debugging, watch out for uninitialized pointers. They can bite."). I
knew that already-I wanted to learn how to bite back!

Resigned to getting little help from currently published material, I dis
carded two earlier rough-draft manuscripts and started over from scratch. Little
by little, ideas took form and the chapters fell into place. By drawing on my
own experiences with debugging and programming, by reading between the
lines in the very few references that treat debugging seriously, and by sharing
ideas with friends and colleagues, I was able to assemble a collection of practical
advice about debugging that I hope will make it easier for others to identify and
stamp out bugs.

xxxiii

xxxiv Mastering Turbo Debugger

Now that the book is done, and I'm finally typing these last few words, I
can say truthfully that writing Mastering Turbo Debugger has been a remark
able learning experience for me. When I began writing the book, I thought that
I knew what debugging was "all about." But I soon discovered that what I didn't
know could, well, fill a book. So, here is that book. May it serve your own
debugging efforts well.

TOM SWAN

Note: The complete Turbo Debugger and Tools package from Borland includes
three products: Turbo Debugger 2. 0, Turbo Assembler 2. 0, and Turbo Profiler
1.0. This book covers Turbo Debugger 2.0. For an assembly language tutorial, see
my book Mastering Turbo Assembler, Howard W. Sams, 1989. Mastering Turbo
Debugger does not cover Turbo Profiler. Profiling is a subject that demands more
than a glossing over in a chapter or two-and for that reason, this book concen
trates on its defined goal: explaining how to use Turbo Debugger as a tool for
developing useful debugging strategies. Will there be a Mastering Turbo Profiler?
Let me turn the question back to you. Would you find such a book to be useful? If
so, let me know by writing to me in care of Howard W. Sams, 11711 N. College
Ave., Carmel, IN 46032.

Acknowledgments
)
I

Lrs BOOK would not exist without the efforts of the following people. To
all of you: Please accept my sincere thanks and appreciation for your time, your
patience, and your expertise.

To everyone at Howard W Sams, especially Sara Black, Kathy Grider
Carlyle, Chuck Hutchinson, Betty Kish, Jennifer Matthews, San Dee Phillips,
Glen Santner, Linda Sanning, Richard Swadley, Ann Taylor, and others who
edited and "debugged" the text: Thanks for your painstaking attention to
countless details. To Rick Naro at Paradigm Systems, who read the manuscript
for technical accuracy: Thank you for your many helpful suggestions. To the
Turbo Debugger development team and supporting players at Borland Interna
tional, including Nan Borreson, Chuckjazdzewski, Matt Pietrek, Steve Sheridan,
Eugene Wang, and Tom Wu: Thank you for answering my questions and for
supplying the prerelease software that made it possible for me to write this
book. To Turbo Debugger's developers at Purart, especially Chris Williams:
Thanks for an excellent debugger. To my correspondents on Borland's Com
puserve forums: Thank you for many hours of engaging, informative, and
always entertaining conversation. To my friend Ron Borthwick, who knows PC
hardware inside and out, thanks for helping more than you realize. And, to my
wife and assistant Anne: A special thank you not only for helping with this
book, but for being there always.

xxxv

xx.xvi Mastering Turbo Debugger

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks are
listed below. In addition, terms suspected of being trademarks or service marks have
been appropriately capitalized. SAMS cannot attest to the accuracy of this information.
Use of a term in this book should not be regarded as affecting the validity of any
trademark or service mark.

386-MAX"' is a trademark of Qualitas, Inc.

BRIEF™ is a trademark of Solutions Systems Company.

DESQview"' is a trademark of Quarterdeck Office Systems.

IBM® PC is a registered trademark of International Business Machines Corporation.

Microsoft® C is a registered trademark of Microsoft Corporation.

Microsoft® Macro Assembler is a registered trademark of Microsoft Corporation.

Microsoft® Windows™ is a registered trademark of Microsoft Corporation.

Microsoft® Windows™/386 is a registered trademark of Microsoft Corporation.

MS-DOS® is a registered trademark of Microsoft Corporation.

Periscope™ 11-X is a trademark of The Periscope Co., Inc.

PC-Kwik™ is a trademark of Multisoft Corporation.

PS/2™ is a trademark of International Business Machines Corporation.

SideKick® is a registered trademark of Borland International, Inc.

VEDIT® is a registered trademark of CompuView Products, Inc.

WordStar® is a registered trademark of WordStar International Incorporated.

Part One

Guide and Reference

Chapter 1

Introduction

MosT PROGRAMMERS view debugging as all work and no fun. But that's
understandable-instead of finding and fixing bugs, who wouldn't prefer to
write new code? Nothing ruins the day like a nasty bug that pops up out of
nowhere in a program that seemed to work just fine. Programming is often
enjoyable. Debugging is always a grind.

So, I won't promise to make debugging fun. Nobody can do that. Instead,
with the help of Borland International's Turbo Debugger (TD) 2.0, I aim to
demonstrate in this book how you can master the art of debugging, not as a
tedious, distasteful chore, but as an interesting challenge, just another part of
your normal programming activities. Debugging won't ever be fun. But it can
be rewarding when accomplished with patience and skill.

Like all skills, however, improving your ability to find and fix bugs in code
will take time. And that's where this book and TD 2.0 come in. In the following
chapters, you'll meet every TD command and feature. You'll learn ways to
develop useful debugging strategies using TD to find out quickly what's causing
your program to misbehave. And, you'll investigate many common bugs in C,
Pascal, and assembly language, which will help you to avoid making these same
mistakes in your own programs.

In researching the material for this book, I combed language tutorials for
debugging tips, I monitored Borland's Compuserve forums, and I took thou
sands of notes about my own debugging experiences with TD. I spent countless
hours using TD 2 .0, from its early "alpha" and "beta" tests, to the production
version you can purchase today. Along the way, I nearly became bug-eyed
looking at buggy code-but I also discovered there was more to the art of
debugging than I ever expected to learn.

The result of those efforts is Mastering Turbo Debugger, a guide to the art
of debugging in C, Pascal, and assembly language and a complete reference to
TD's windows, commands, and hot keys. This chapter introduces the book and
explains how to get the most from its four parts:

3

4 Part One: Guide and Reference

• Part 1 is a Guide and Reference to installing and using TD. Read these
chapters quickly your first time through for an overview of TD's
commands.

• Part 2 explores The Art of Debugging from a language point of view. In this
part, you'll learn how to develop successful debugging strategies. You'll
also follow hands-on demonstrations in C, Pascal, and assembly language to
see TD in action as you find and fix several dastardly bugs.

• Part 3 covers Advanced Debugging Topics, including macros, keystroke
recording, remote and dual-monitor debugging, hardware debugging,
TSRs, and device drivers.

• Part 4 closes the book with detailed Data-Structure Guides, which show
how to use TD to examine simple and complex data structures in C, Pascal,
and assembly language. Use this section as a reference for investigating
variables in your programs.

You'll also want to cut out one of the keyboard overlays inside the book's
back cover. Place the appropriate template on your keyboard for a handy
reference to TD's function keys.

Requirements

The following sections list required and optional hardware and software items
that you'll need to use the information in this book.

Required Hardware

• Any IBM PC, PS/2, or compatible computer.

• At least 384K of RAM available after booting.

• One hard drive or a high-density diskette drive. (A hard drive is
recommended-TD 2.0 will not work with standard 360K drives.) Note:
You may not be able to run the automated INSTALL program to install TD
on a high-density floppy. In that case, you'll have to run the UNZIP utility
manually (see chapter 6) to extract files from the .ZIP archives on TD's
master diskettes.

• Color or monochrome display.

• Keyboard.

Chapter One: Introduction 5

Required Software

• Turbo Debugger 2.0. You may be able to get by with an earlier version, but
most of the information in this book requires TD version 2.0.

• DOS 2.0 or a later version.

• For Pascal: Turbo Pascal (TP) 5.0 or later versions. TP 5.5 or later is
required for object-oriented examples. It's possible to debug TP 4.0 pro
grams with TD (see chapter 2), but versions 5.0 or later give better results.

• For C: Turbo C (TC) 2 .0 or later versions. TC++ 1.0 is required for object
oriented C + + examples.

• For assembly language: Turbo Assembler (TASM) 2.0, supplied with TD. To
enter programs, you'll also need a programmer's text editor such as Brief,
Multi-Edit, Epsilon, VEdit, or Borland's Sidekick. Or, you can use any word
processor that can save files in plain ASCII format.

• You may also use Microsoft C (MSC), Microsoft Macro Assembler (MASM),
and other languages as explained in chapter 2. However, you will have to
modify some of the program listings before they will compile or assemble
with non-Borland language products.

Required Knowledge

• You'll need a fundamental knowledge of C, Pascal, or assembly language
programming. The more you know about one or more of these languages,
the better you'll be able to use TD and the information in this book.

• You'll also need a working knowledge of DOS commands, batch files, and
related topics. A good DOS reference (see Bibliography) is a practical
necessity.

Optional Hardware

• An 80286-based PC and at least 640K of extended memory for debugging
in protected mode with the alternate TD286 debugger.

• Or, an 80386- or 80486-based computer for installing the TDH386.SYS
device driver, which lets TD use special debugging features available on
these processors.

• On 80386- and 80486-based systems, at least 640K of extended memory to
use the optional TD386 supervisor for debugging programs and running
TD in virtual 8086 machines. (The TDH386.SYS device driver must also be
installed.)

• Printer.

6 Part One: Guide and Reference

• Mouse input device.

• 8087, 80287, or 80387 numeric data processor (NDP).

• Additional expanded memory for large-program debugging.

• EGA or VGA display capable of showing 43 or 50 lines.

• Second PC or compatible computer attached to a host system with a serial
cable for remote debugging. Or, separate monochrome and color display
adapters for dual-monitor debugging. (See chapter 17.)

• Trapper debugger board for using TD's hardware-breakpoint features (see
chapter 18 and Bibliography).

How to Use This Book

If you've never used TD before, it's probably best to read this book from cover
to cover. I organized the chapters to introduce debugging concepts and to
serve as a reference to TD's commands. If you read the chapters in order, you'll
never meet an unexplained term, although, from time to time, I may refer you
to other chapters where you can find more information about a topic.

If you' re familiar with any version of TD, you may be able to skip the rest of
part 1 and start with part 2's discussion of debugging strategies. TD l.x users
should at least skim chapters 4 and 5 in part 1 for descriptions of new features in
TD 2.0. Everyone should read chapter 2's instructions about preparing pro
grams for debugging, using a variety of compilers and assemblers.

Chapters 10-15 and 20-22 are devoted to C, Pascal, and assembly language
(three chapters each). You can read only the chapters that apply to your favorite
language, but you might want to browse through the others for additional
debugging tips. Some of the material in these chapters is duplicated, but to
avoid too much redundancy, I've tried to concentrate on tips that apply
uniquely to each language.

Scan the following chapter summaries for a closer look at the book's
contents. If you don't want to read these descriptions now, turn to the next
section, "Listings," and read the remainder of this chapter for several important
details that will help you to get the most from this book.

About the Chapters

The following brief descriptions explain the contents of Mastering Turbo
Debugger's chapters. Read this information for an overview of the book's
contents.

Chapter One: Introduction 7

Part 1: Guide and Reference

• Chapter 1, "Introduction," lists requirements and explains how to use this
book effectively.

• Chapter 2, "Preparing Programs for Debugging," details how to prepare C,
Pascal, and assembly language programs for debugging, using a variety of
language products.

• Chapter 3, "Getting Turbo Debugger Up and Running," shows how to
install, configure, and run TD. The chapter also covers TD's command-line
options.

• Chapter 4, "Windows, Menus, and Hot Keys," is a guide to most of TD's
commands and keys. Read this chapter for general information about using
windows, dialog boxes, the keyboard, and a mouse.

• Chapter 5, "Views and Local Commands," covers the commands in TD's
View menu. The chapter is a reference to TD's main features-those you
will use most frequently during debugging sessions.

• Chapter 6, "Using TD's Utility Programs,'' describes miscellaneous utilities
such as TDMAP and TDSTRIP, which are supplied with TD. Just browse
through this chapter at first so you'll know where to find specific facts as
you need them.

Part 2: The Art of Debugging

• Chapter 7, "Developing a Debugging Strategy,'' discusses approaches to
debugging, using TD as the primary weapon in your arsenal. Read this
chapter for tips about developing a good debugging style.

• Chapter 8, "Breakpoints and Code Tracing,'' details the finer points of these
powerful debugging tools, two of TD's most important features.

• Chapter 9, "Evaluating Expressions," documents TD's expression-handling
abilities in C, Pascal, and assembly language. Read this chapter for tips
on entering expressions and to learn how to use expression side effects to
call C and Pascal routines out of context from the rest of a program loaded
into TD.

• Chapter 10, "Common C Bugs," lists bugs that often plague C code. Use this
chapter as a guide to avoid making typical errors in your C programs.

• Chapter 11, "Hands-On Debugging for C," is the first of three chapters that
include a medium-size program with several documented bugs. Step-by
step, hands-on demonstrations show TD in action as you enter commands
to track down bugs in a Turbo C program. You can also use this chapter and
the similar chapters 13 and 15 for Pascal and assembly language as self tests
of your debugging skills.

8 Part One: Guide and Reference

• Chapter 12, "Common Pascal Bugs," lists bugs that typically appear in
Pascal programs.

• Chapter 13, "Hands-On Debugging for Pascal," is similar to chapter 11 but
contains information for Turbo Pascal programmers. Despite the sim
ilarities, however, the program listing and bugs in this chapter are different
from those in chapter 11; therefore, you can read either chapter without
spoiling the plot in the other.

• Chapter 14, "Common Assembly Language Bugs," lists bugs that are both
common and unique to assembly language.

• Chapter 15, "Hands-On Debugging for Assembly Language," is similar to
chapters 11 and 13 but contains information for Turbo Assembler program
mers. As in chapter 13, the program listing and bugs in this chapter are
different from the ones in the other two. You can follow the hands-on
debugging demonstrations in this chapter and take the self tests even after
you've solved the other chapters' "whodunits."

Part 3: Advanced Debugging Topics

• Chapter 16, "Macros and Keystroke Recording," shows how to use these
advanced TD features to create your own commands, to automate parts of a
debugging session, and to replay recorded keystrokes, useful for designing
repeatable test procedures. Several sample macros are listed for C, Pascal,
and assembly language.

• Chapter 17, "Remote and Dual-Monitor Debugging," explains how to take
advantage of two computers connected with a serial cable or two display
adapters in one system. With these setups, output from TD and the target
program appear on separate monitors, simplifying debugging of graphics
applications and other display-oriented programs.

• Chapter 18, "Hardware-Assisted Debugging," discusses in detail extra fea
tures available for 80386- and 80486-based systems. The chapter shows
how to install and use a Trapper debugging board to take advantage of TD's
advanced hardware-breakpoint abilities.

• Chapter 19, "Debugging Resident Programs,'' tours the byways of TSR and
device-driver debugging, using TD's new resident commands.

Part 4: Data-Structure Guides

• Chapter 20, "C and C + + Data Structures,'' lists common C data types and
shows how to use TD to inspect them. Use this and the next two chapters as
guides for examining variables in your own programs.

Listings

Chapter One: Introduction 9

• Chapter 21, "Pascal Data Structures," lists common Pascal data types and
shows how to use TD to inspect them.

• Chapter 22, "Assembly Language Data Structures," lists common assembly
language data types and shows how to use TD to inspect them.

Many of the C, Pascal, and assembly language listings in this book are printed
with line numbers for reference. When entering the listings into your editor,
type only the text that follows the reference numbers and colons along the left
border.

Unlike many of my books, this one does not include an offer to sell the
program listings on disk. There are several reasons for this. For one, many of
the programs in this book have bugs, and I'm reluctant to offer for sale
programs that don't work! For another, this book does not teach you how to
program, and, therefore, most of the program listings are short fragments that
illustrate various principles. You can understand most of these examples just by
reading them.

However, the hands-on demonstrations in chapters 11, 13, and 15, do
require you to enter three sizeable programs (about 400 lines each). I suggest
you bite the bullet and type them into your editor. But if you don't have time to
do that, you can download the listings from Borland's Compuserve forum. To
join, type GO BOR at any Compuserve main prompt and follow directions.
Then, search the Turbo Debugger section library for the keyword MTD (for
Mastering Turbo Debugger). You may also find these same listings on an
electronic bulletin board. (If you manage a BBS, feel free to place the files on
your service-with the bugs intact, please.)

Keyboard Keys

Angle brackets surround references to named keys-for example, (Fl), (Ctrl),
and (Alt). Fl without brackets means to type an F followed by 1. With the
brackets, (Fl) means to press the function key labeled "Fl." (By the way, this is
the same style used by PC World magazine.)

A dash between keys or characters means you should press the first key and
hold it down while you press the second. For example, (Alt)-(F5) means to
press (Alt), hold it down, and press (F5). (Ctrl)-C means to press and hold
(Ctrl) while you press C. (Even though character keys are printed in uppercase,
you don't have to press (Shift) unless instructed to do so.) When two keys are

10 Part One: Guide and Reference

printed together without a dash as in (Esc)X, this means to press and release
(Esc), and then to press X.

The two forms are often combined. For example, (Alt)-XC means to press
and hold (Alt), press X, release those two keys, and then press C. The familiar
"reboot" sequence (Ctrl)-(Alt)-(Del) means to press and hold (Ctrl), press
and hold (Alt), press (Del), and then release all three keys.

Cursor keys are named (Cursor Up), (Cursor Down), (Cursor Left), and
(Cursor Right). Other keys such as (Page Up) and (Insert) are spelled as they
appear on most extended keyboards (the ones with function keys along the top
row). On other keyboards, these keys may be abbreviated, for example, as
(PgUp) and (Ins).

Text Styles

Many computer books adopt a gaggle of text styles: one for key words, one for
input, one for output, one for listings, and so on. This book follows a simpler
(and, I think, less confusing) three-way design:

• Language key words, listings, and items such as menu names and option
settings that you see on screen are printed in monospace. Text that you enter
at the DOS prompt to compile, link, and run various utility programs is
printed in this same style, matching the way these lines appear on your
display.

• In paragraphs, keys that you are to press and entries that you are to make
are printed in bold.

• Important passages, new terms, plus book, product, and other titles are
printed in attention-getting italic. Program abbreviations such as TD, TP,
and MSC are not italicized.

Colons (:) separate multiple commands. To save space, command names
followed by a three-dot ellipsis on screen do not include that symbol, which
indicates that choosing the command opens a dialog window for selecting
options (see chapter 4). For instance, the Module ••• command in the View menu
is printed here as View: Module.

You may enter DOS and most other commands in upper- or lowercase as you
prefer. However, be aware that some option letters for selecting various program
features may be case-sensitive-for example, -s and -S might have different mean
ings. Commands are printed in this book in lowercase except when uppercase is
significant.

Chapter One: Introduction II

File Names

Casual references to file names and DOS commands are in uppercase-for
example, DIR and TD.EXE. When they refer to something you should enter,
these same names are in lowercase (because that's how you'll type them) and
are printed in bold. For example, you may see a sentence such as: "Enter
cd '- td to switch to the '-TD directory, using the DOS CD command."

Program names include the file-name extension only when they refer to
that file as listed in a DOS directory. For example, TDMAP.EXE is the file name
for the TDMAP program. I may also tell you to enter the tdmap command at
the DOS prompt to run TDMAP. The lowercase and bold tdmap indicates that
this is something you can enter.

Where to Go from Here

Summary

Read chapter 2 next for instructions about preparing programs for debugging. If
you already know how to do that, turn to chapter 3 to get TD up and running.

Debugging is no fun, but it can be challenging, as this book attempts to show. If
you're new to TD, read all chapters from cover to cover. Or, if you have some
debugging experience, start with part 2 and turn to the other chapters as you
need them.

This introduction to Mastering Turbo Debugger explains several important
details that will help you to get the most from the book. It also lists required
hardware and software that you'll need in order to use the information that
follows.

Preparing Programs
for Debugging

Chapter 2

A SENSE OF DIRECTION isn't one of my better skills-when traveling
without a map, I'm lucky to find my way home. To find its way around
programs, TD needs a different sort of map, one that charts the symbols, line
numbers, and other landmarks in compiled code. Collectively known as the
symbol table, this detailed mapping of a program's parts and pieces lets TD
relate machine-code instructions and raw binary data to source-code lines,
variables, and other structures in the program's high-level language (HLL),
usually, C, Pascal, or assembly.

The symbol table in a compiled or assembled program makes it possible for
TD to execute binary code while displaying statements and data structures from
the program's text. Rather than forcing you to pick apart machine-code instruc
tions and hunt through data segments looking for variables-as you must, for
example, with DOS DEBUG-the symbol table simplifies debugging by letting
you focus on data structures and statements in their more familiar (and more
readable) source-code forms. This is why TD is known as a symbolic debugger.
It uses symbolic information in compiled code to let you debug programs on
the source-code level.

But compiled code straight from the compiler lacks the symbolic informa
tion that TD requires. So, the first step in preparing programs for debugging is
to give the compiler and linker special commands that add symbols and line
numbers to the program's compiled result. This chapter explains how to do that
for several different compilers and assemblers. It's possible to use TD to exam
ine code that doesn't have a symbol table, but in that event, you'll see only the
disassembled machine code. You won't be able to view variables by name or
trace C, Pascal, and assembly language statements.

That same rule applies to all programs, whether composed of one or several
modules. In every case, before using TD to debug the code, you must compile
or assemble the program with the correct commands to add symbolic informa
tion to all the program's parts and pieces. If you don't, TD will show statements

13

14 Part One: Guide and Ref ere nee

and data structures for only the parts that have symbol tables attached. For that
reason, when developing new software, it's usually best to add a symbol table
every time you compile. This will lengthen compile times somewhat, but when
a bug surfaces (and it will, it will), you can then load the program immediately
into TD for debugging.

Also, be sure to store the program's original source-code text files in a
directory where TD can find them-usually in the current directory or in a path
specified with Options:Path for source. TD displays the program's lines and
data structures directly from these files-the lines you see on TD's display are
the same lines you wrote into the program's text.

In C and Pascal, one line may contain two or more statements. However, because
TD is line-oriented, not statement-oriented, many debugger commands work best
when there is only one statement per line. Try to follow this one-statement-per
line design rule in your own programs. You'll find TD easier to use, and you may
also discover that your program's logic is clearer and, therefore, easier to debug.

When TD searches for source-code files, it looks in various directories in
this order:

• The directory from which the compiler or assembler reads the original
source-code files.

• One or more directory path names listed in Options:Path for source or
specified with the -sd option (see chapter 3).

• The current directory.

• The same directory where the .EXE, .COM, or other file loaded into TD is
located.

How To Use This Chapter

The information in this chapter will help you to determine the proper commands
to use with your compiler and assembler to add symbol tables to compiled and
assembled code. Three main sections-one each for C, Pascal, and assembly
language-include detailed instructions for building programs with various lan
guages listed alphabetically by product (not company) name. As these instruc
tions demonstrate, you can use TD to debug programs written with just about
any language that can generate Microsoft Code View symbols or a .MAP text file.
You don't have to use a Borland language to take advantage of TD's features.

Each main section in this chapter also includes a small sample program that
you can use to test your compiler and linker. After reading the section that
applies to your language, enter the sample program and try out the instructions

Chapter Two: Preparing Programs for Debugging 15

for compiling and loading the result into TD. Then turn to chapter 3, "Getting
Turbo Debugger Up and Running," to begin learning your way around TD's
windows and commands.

The Design-Compile-Debug Cycle

Many programmers use a debugger as a last-ditch attempt to investigate why a
program isn't working as expected. In fact, until I became more familiar with
TD, I was a proud member of the I-hate-to-debug club. But now I use TD as an
everyday programming tool to examine the inner secrets of my code-not just
to track down bugs.

After a year or so of working with TD, my programming habits have settled
into a design, compile, and debug cycle, illustrated in Figure 2.1. Use the
diagram as a guide to the steps required to compile and link programs for
debugging. As the figure shows, although there are many ways to prepare
programs for TD, the goal is always the same: to transfer a symbol table
(represented by a boxed-in S) from the compiler's output to the executable code
file or to store the symbols separately in a .TDS (Turbo Debugger Symbol) file.
Either way, TD can then load the program and use the symbols for debugging
on the source-code level. Figure 2 .1 also lists typical files identified by file-name
extensions such as .PAS, .C, and .OBJ, generated at each stage in the process of
preparing programs for debugging. Chapter 6 describes how to use the utility
programs, such as TDMAP and TDSTRIP, mentioned in Figure 2 .1.

Compiler Updates

Sometimes it seems that software manufacturers release new compiler versions
faster than rabbits make bunnies. Although I've used the most recent versions
of compilers available to me, in a few months after this book is printed, some of
the information here may become obsolete. If your compiler or assembler isn't
listed, or if the instructions in this chapter don't work for other versions, try
these suggestions:

• Use the commands for the previous release. If they don't work, you may
find a note in your language manuals that explains a change to a command
line option used here.

• Read the instructions for a similar product (e.g., another C compiler). This
may give you enough hints to get started.

• Look in your manuals for information about how to add CodeView debug
ging information to compiled and assembled code. Also read the notes in

16 Part One: Guide and Reference

MAKE

library Files
{.OBJ, .LIB, .TPU)

Map File
(.MAP)

TDMAP

TD Symbol File
(.TDS)

Design

Program Source
Code

(.C, .PAS, .ASM)

Compiler or
Assembler

Object File
{.OBJ)

linker
{LINK, TLINK, or
Built-in Linker)

Turbo Debugger

I!) = Symbols

Header or Include
Flies

{.H,.INC)

- {Turbo Pascal)

EXE2BIN

TDCONVRT

TDSTRIP

TD Symbol File
(.TOS)

Figure 2.1. Preparing programs for debugging.

this chapter for compiling Microsoft C programs and converting their
Code View symbol tables to TD's format by running the TD utility program
TDCONVRT (see chapter 6).

• Read "Compiling Other Programs for Debugging" near the end of this
chapter. If your language can create a standard .MAP file, you can debug the
code with TD, but with some limitations-for example, all data structures
will be represented as arrays of bytes or words.

The following sections assume that you've installed your compiler or assembler
according to the manufacturer's instructions, set required environment variables,
and included necessary directories in a DOS PATH statement. Before trying out the
commands in this chapter, be sure that you can compile, link, and run a small test
program.

Chapter Two: Preparing Programs for Debugging 17

Managing Object Libraries with TLIB

Be sure to use the TLIB program that comes with TD (on one of the Turbo
Assembler disks) to add object-code files to library files. Older versions of TLIB
strip symbol tables from .OBJ files, making it impossible to view the source
code for those files in TD's Module window.

Before debugging programs linked to files in libraries, you may have
to recompile each object-code file and rebuild the library files with the
new TLIB.

Compiling C and C + + Programs for Debugging

C programmers all have their favorite MS-DOS compilers, and there are so many
good C-language products to choose from, it's impossible to cover them all
here. For this section, therefore, I've tried to select compilers from the main
stream-the ones against which most others compete. Even if your compiler
isn't listed, you may be able to use commands similar to those in this section.

Sample C Program

Listing 2 .1, SAMPLE. C, is a short C program that you can use to test the
commands in this section. The program displays command-line arguments in
reverse order. For example, after compiling and linking SAMPLE, typing
sample argl arg2 arg3 from DOS displays:

Argument #3 arg3
Argument #2 arg2
Argument #1 arg1

Listing 2.1. SAMPLE.C.

1 :
2:
3:
4:
5:
6:
7:
8:
9:

10:
11 :
12:

/*
** Test C program
*/

#include <stdio.h>

main(int argc, char *argv[])
{

}

while (--argc > 0)
printf("Argument #%d

exit CO>;
%s\n", argc, argv[argcl);

18 Part One: Guide and Reference

Some compilers do not allow typed parameters in function declarations, as
used here in Listing 2.1 at line 7. In that case, try the alternative old-style
program in Listing 2.2, SAMPLE2.C, and substitute SAMPLE2 for SAMPLE
elsewhere in this chapter.

1 :
2:
3:
4:
5:
6:
7:
8:
9:

10:
11 :
12:
13:
14:
15:

Listing 2.2. SAMPLE2.C.

'* ** Test C program (old-style)

*'
#include <stdio.h>

main(argc,argv,envp)
int argc;
char *argv[J;
char *envp[J;
{

}

while C--argc > Q)
printfC"Argument #%d %s\n", argc, argv[argcJ>;

exit CO>;

Lattice C 3,3

Lattice C (LC) represents the "unusual" category of C compilers in this chapter.
That's not to detract from the quality of this product-LC is a very capable
compiler for MS-DOS and OS/2 programming, and it's well regarded among
programmers. But the steps required to prepare LC programs for debugging
with TD require the most finagling, and similar steps may be necessary for
other non-Microsoft and non-Borland compilers. So, if you can't get TD to
recognize your code, these tips may help.

First, you must compile and link your program modules separately. LC 3. 3
uses the Microsoft Overlay Linker version 3.64, but it can't give the necessary
commands to create a .MAP file in the form that TD requires. Luckily, though, it
can put basic debugging information in the .OBJ file, so that's the first step. For
example, to compile SAMPLE.C to SAMPLE.OBJ, use the command:

le -d sample

The -d option inserts line number information into SAMPLE.OBJ. (You
might also try -dl or -d2, which are supposed to insert other symbols and data
type information as well as line numbers. But my tests indicate these alternate
options do not affect TD's ability to view LC source code.)

Next, link the .OBJ file to the appropriate LC libraries. The key here is to
give the commands needed to create a .MAP file with line numbers and other
symbols intact. For the small memory model, this command is:

Chapter Two: Preparing Programs /or Debugging

link /NOIGNORECASE /LINENUMBERS /MAP
c:\lc\s\c.obj+sample.obj,sample,sample/M,
c:\lc\s\lc+c:\lc\lapi.lib;

19

Type all of that on one line, or better, insert it into a batch file named
LCL.BAT (or another name), and then type lei to link. You may have to use the
correct path names for your libraries in place of the names listed here. But, to
avoid hunting through manuals looking for those and other details, you can use
the compiler to generate the correct information. For example, enter le -L
sample. Then, use the text in the resulting SAMPLE.LNK file to create LCL.BAT.
(Before debugging, be sure to recompile the program as explained earlier.)

After compiling and linking, you'll have on disk a file named SAMPLE.MAP,
which TDMAP can use to add TD-format symbols to SAMPLE.EXE. The final
step is to process that file and load the code into TD. To do that, enter the two
commands:

tdmap sample.map
td sample

That converts and loads SAMPLE.EXE into TD. If you see the CPU window
instead of the expected source-code view, choose TD's View: Module command,
highlight one of the listed module names, and press <Enter). (If the entire
program is in one source-code file, there will be only one name.) After that,
press (F2) to set a breakpoint at the first executable statement in the code, then
press < F9) < F2) to run the program to that stopping place and remove the
breakpoint. This positions the cursor on the first executable source-code state
ment and initializes data segment registers so you can view variables in mem
ory. (Later chapters explain more about breakpoints and using TD commands
these keystrokes will let you begin using TD while you learn about these and
other commands.)

Microsoft C 5.1

To compile a Microsoft C (MSC) program contained in a single text file, run the
CL Compiler-Linker executive program with the /Zi option. This adds
CodeView debugging information to the compiled .OBJ code file and automat
ically runs the linker. Also specify the /Od option to disable optimizations,
which can affect TD's ability to relate source and binary machine code:

cl /Zi /Od sample.c

The .C file-name extension is required, and the two options /Zi and /Od are
case-sensitive-/zi and /od won't work. The command first compiles SAMPLE.C
to SAMPLE.OBJ and then runs the linker, giving the necessary commands
to link in library modules and transfer CodeView debugging information to

20 Part One: Guide and Reference

SAMPLE.EXE. You can then convert the finished code and load the result into
TD by typing:

tdconvrt sample.exe
td sample

Compiling multimodule programs is equally simple-just give CL all of the
program's .C files. Specify the main module first. For example, to compile
MAIN.C with submodules SUBl.C and SUB2.C, use the command:

cl /Zi /Od main.c sub1.c sub2.c

You can then run TDCONVRT on MAIN.EXE as before to convert the
Code View information for debugging with TD.

Microsoft C 6. 0

Follow the instructions for Microsoft C 5 .1 in the previous section. The com
mands for preparing code are the same for MSC versions 5.1and6.0.

QuickC 2.01

The steps to use the Microsoft QuickC (QC) command-line compiler for C
programs are the same as they are for the compiler's built-in assembler (see
"QuickAssembler 2.01" later in this chapter). To compile SAMPLE.C and load
the finished code into TD, use the /Zi CodeView debugging option (the Z must
be in uppercase) and convert the symbols in SAMPLE.EXE to TD's format with
TDCONVRT:

qcl /Zi sample.c
tdconvrt sample.exe
td sample

Be sure to specify the .C and .EXE file-name extensions as shown here. To
compile a multimodule program, feed the individual source-code modules to
QCL:

qcl /Zi main.c sub1.c sub2.c
tdconvrt main.exe
td main

Or, you can compile the submodules separately with the le ("compile
only") and /Zi options and then compile and link the separate .OBJ code
modules to the main code file before converting the result with TDCONVRT
and loading into TD:

Chapter Two: Preparing Programs for Debugging

qcl /c /Zi sub1.c
qcl /c /Zi sub2.c
qcl /Zi main.c sub1.obj sub2.obj
tdconvrt main.exe
td main

Turbo C 2. 0 Integrated Environment

21

Turbo C 2 .O's (TC2) integrated environment combines a text editor, C compiler,
and a drastically stripped-down version of TD for a complete development
system in one package. Although TC2's Integrated Development Environment
(IDE) is convenient for entering, compiling, and testing small programs, you'll
want to take advantage of features in the stand-alone TD for serious debugging
work. This can also free extra memory for debugging large programs.

To continue using the IDE for editing and compiling, but to prepare code
for debugging with TD, you'll need to change a few IDE settings. After
starting TC2, select Options: Compi ler: Code generation. Highlight OBJ debug
information and press (Enter) to change this setting to On. Press (Esc), select
Opt i mi zat ion, and set Jump opt i mi zat ion to Off. If you don't do this, TD may
not be able to relate optimized machine code to the appropriate C statements.
Next, open the Debug menu, and change Source debugging to Standalone.
When you compile a program, this adds symbolic debugging information to the
finished .EXE disk file, preparing the code for loading into TD.

You may want to save these settings in a configuration file. That way, you
won't have to make the same modifications every time you start TC2. To do
this, select Options: Save options and specify a file name, or press (Enter) to
accept the default TCCONFIG. TC.

After setting TC2's options, either manually or by loading a configuration file,
you're ready to compile and debug programs. First, load or enter the program
text (SAMPLE.C, for example) into TC2's editor and use Compi le:Make EXE file
to compile the source code to disk. You can also specify a project file according
to directions in the Turbo C Users Guide for compiling multimodule programs.

If you haven't made any changes to the program recently, instead of
compiling, you may see a message that your file "is up to date." In that case,
because the compiler skips re-creating the .EXE disk file, it also skips adding
debugging information to code that you compiled before under different set
tings. If that happens, you have several options:

• Delete the program's .EXE and .OBJ files and recompile.

• Make an unimportant change to the source text.

• Use the Compile and Build all commands.

Whatever approach you decide to use, the result is to create an .EXE disk
file with the necessary information required to load the program into TD. After

22 Part One: Guide and Reference

compiling, be sure that all .C source files are available to TD. Then, quit TC2
and type td sample to begin debugging.

Turbo C 2.0 Command-Line Compiler

Many professional C programmers prefer to use TC2's command-line compiler
{TCC) along with a separate text editor for entering and modifying source code.
This arrangement frees extra memory for compiling large programs, and it also
lets you take advantage of various options and in-line assembly language
features that are not available in the IDE. To compile SAMPLE, use TCC's -v
option and load the finished code file into TD:

tee -v sample
td sample

Compiling programs stored in multiple source code files is equally simple.
For example, if your main program text is stored in MAIN.C, which calls
functions in submodules SUBl.C and SUB2.C, create and load MAIN.EXE into
TD with the commands:

tee -v main sub1 sub2
td main

Another way to handle multimodule programs is to compile individual mod
ules separately with the -c ("compile-only") option, and then use TCC to link the
.OBJ files to the finished main code file. Just remember to use the -v option for all
steps. Also, be sure to specify the .OBJ file-name extension for SUBl.OBJ and
SUB2.0BJ (on the third line below) to avoid recompiling those modules:

tee -v -e sub1.e
tee -v ..:.e sub2.e
tee -v main sub1.obj sub2.obj
td main

If you store various options in a TURBOC.CFG configuration file, and if one
of those options is -0 (Optimize jumps), add the option -o- to TCC to disable
optimizing in all of the previous commands. This will keep the debugger in
sync with the Module window's source-code display.

Turbo C + + 1. 0 Programmer's Platform

The newest version of Borland's Turbo C compiler adds C + + object-oriented
features, ANSI standard compatibility, and a vastly improved IDE-now named
the Programmer's Platform. (I'll refer to this version as TC++.) The new IDE

Chapter Two: Preparing Programs for Debugging 23

includes a stripped version of TD that's suitable for examining small programs
and tests. But for debugging larger programs and for finding elusive mistakes,
you'll still want to use the full TD 2.0.

As already explained, to use previous TC and TD versions together, you
would have to compile a program, quit to DOS, load the result into TD, debug,
quit TD, reload TC2 's editor, and so on. TC+ + changes that endless run
around by letting you transfer control from the IDE to another program, usually
TASM or TD. To start debugging after compiling a program, you simply transfer
control directly to TD without quitting to DOS. Then, to return to TC+ + after
debugging, quit TD by pressing (Alt)-X.

Your TC + + installation may already be configured to call TD. To find out if
it is, start TC+ + (enter tc at the DOS prompt) and press (Alt)-(Space) (or
(Alt)-F(Cursor left) under Microsoft Windows). If "Turbo Debugger" is
listed as a command in TC++ 's System menu, your system is configured.
Otherwise, follow these steps to transfer to TD for debugging. You can also
repeat the same steps to modify the transfer configuration:

1. With TC+ + running, press (Alt)-OT and move the highlight bar to a
blank line or to an existing transfer-command name that you want to
modify. Then, press E or click the Edi t button to add or change the entry.

2. Enter Turbo -Debugger as the Program Tit le. The tilde(-) is optional
it enables the following character (Din this case) as the hot key that you can
press when the System menu is visible. If you don't want to assign a hot key,
don't enter the tilde.

3. In Program Path, enter td. This assumes that TD's directory is listed in a
PATH statement. If it isn't listed, enter the full path name, for example,
c:'-td.

4. In Command Line, enter $EXENAME to pass the name of the current pro
gram to TD for debugging. You can also add additional command-line
options such as -k, -r, or -vg (see chapter 3). To have TC++ prompt you for
additional arguments before transferring to TD, append $PROMPT to the
end of the line.

5. Next, select an optional Hot Key assignment from the list at the right of the
Modify/New Transfer Item dialog box. You can then press (Shift) plus the
selected function key to transfer to TD.

6. When you've prepared TC++, select the New or Modify buttons and press
K (or click the mouse cursor on Ok) to erase the Transfer dialog and accept
your changes. Use the Options: Save command to save the configuration for
the next time you run TC + + .

After following those steps to prepare TC + + , you' re ready to transfer
control directly to TD by pressing the programmed hot keys or by selecting
Turbo Debugger from the System menu. Make sure that debugging information

24 Part One: Guide and Reference

is added to the compiled code~ (p~ess (Alt)-OB and verify that Source
Debugging is On). Use the Comp i Le menu's Make EXE f i le or Bui ld all
commands to compile and link the program. Then, transfer to TD for
debugging.

Turbo C + + 3, 0 Command-Line Compiler

See "Turbo C.2.0 Command-Line Compiler." The instructions for compiling
and linking C,programs are identical for the command-line TC compiler ver
sions 2.0 andTC+ + 1.0.

To compile C + + programs, unless you've configured the compiler to
always recognize C + + code, you may have to specify the file-name extension
.CPP. For example, to compile and debug SAMPLE.CPP (not shown here), enter
the command:

tee -v sample.cpp
td sample

If you don't supply the .CPP extension, TCC + + looks for the file SAM
PLE.C by default, not SAMPLE.CPP. Except for this difference, the other com
mands should work as they do for TCC 2.0.

Zortecb C+ + 1.07

Zortech C (ZTC) can compile programs written in C and C + + . But because the
compiler outputs Code View-compatible debugging information and because
Code View cannot understand elements that are unique to C + +, objects and
methods (among other things) are translated into C equivalents for debugging. In
other words, you can load a C + + program into TD, but you may not be able to
view your program's structures in every detail. Also, variables loaded into regis
ters may display as four question marks (????)-TD's "value unknown'' symbol.

There are several ways to compile programs with Zortech C + + . The
simplest plan is to use the ZTC compiler control program. Specify the -g option
to add line numbers and symbols to .OBJ code files; insert a -co option to call
the Microsoft Overlay Linker and to add CodeView debugging information to
the finished code. To save a small amount of memory, you can also use -gl (line
numbers only) or -gs (symbols only), although the results aren't as good.
Zortech also recommends using the -S stack-frame option. After compiling and
linking, process the result with TDCONVRT and load into TD. For example,
these commands compile and load the SAMPLE program:

ztc -g -S -co sample.c
tdconvrt sample.exe
td sample

Chapter Two: Preparing Programs for Debugging 25

To compile a multimodule program with a main module MAIN.C and two
submodules SUBl.C and SUB2.C, just list all submodules after the main one:

ztc -g -S -co main.c sub1.c sub2.c
tdconvrt main.exe
td main

Or, you can compile the submodules separately with the -c ("compile
only") option, and then let ZTC link the individual .OBJ files to the finished
.EXE code file. In this case, specify the -co CodeView option only in the last
ZTC command:

ztc -c -g -S sub1.c
ztc -c -g -S sub2.c
ztc -g -S -co main.c sub1.obj sub2.obj
tdconvrt main.exe
td main

Zortecb C+ + 2.0

See "Zortech C+ + 1.07." The commands to prepare programs for versions
1.07 and 2.0 of the Zortech compiler are identical.

Compiling Pascal Programs for Debugging

Because there aren't as many MS-DOS compilers for Pascal as there are for C
programmers, most people use Turbo Pascal (TP). That's just as well because
TD can't load Microsoft QuickPascal (QP) programs, even though QP is largely
compatible with TP on the source-code level. Even so, TD can debug Microsoft
Pascal 4.0 code, as explained in the next section.

Sample Pascal Program

Listing 2.3, SAMPLE.PAS, is a short Pascal program that you can use to test the
instructions in this section. The program displays command-line arguments in
reverse order. For example, after compiling and linking SAMPLE, typing sam
ple argl arg2 arg3 displays:

Argument #3 arg3
Argument #2 arg2
Argument #1 arg1

26 Part One: Guide and Reference

Listing 2.3. SAMPLE.PAS.

1 :
2:
3:
4:
5:
6:
7:
8:
9:

10:

** Sample Pascal program
*)

program Sample;
var i : integer;
begin

for i := paramCount downto 1 do
writeln('Argument#', i, '

end.

Microsoft Pascal 4. 0

paramStr()) ;

Although it can generate CodeView debugging information, Microsoft Pascal
4.0 (MSP4) is not compatible with Microsoft's QuickPascal or Turbo Pascal. For
this reason, MSP4 can't compile SAMPLE.PAS (Listing 2.3). Instead, use
MSPSAMP.PAS in Listing 2.4. The program prompts for up to eight arguments,
stored in an array of Lstring. When you press (Enter) to return to DOS, the
program displays these pseudo "arguments" in reverse order.

1 :
2:
3:
4:
5:
6:
7:
8:
9:

10:
11 :
12:
13:
14:
15:
16:
17:
18:
19:
20:
21 :
22:
) ;

Listing 2.4. MSPSAMP.PAS.

** Sample Microsoft Pascal 4.0 program

program Sample(input, output >;
var

i, paramCount : integer;
paramStr : array[1 •• 8 l of LstringC80>;
done : Boolean;

begin
done := false;
paramCount := O;
while <not done) and CparamCount < 8) do
begin

paramCount := paramCount + 1;
write(output, 'Argument? ' >;
readln(input, paramStr[paramCount l >;
done := paramStr[paramCountl[Ol = chr(O)

end;
paramCount := paramCount - 1;
for i : = pa ram Count down to 1 do

writeln(output, 'Argument#', i:1, '

23: end.

{ Len = 0 }

pa ramSt r [

To compile MSP4 programs for running in TD, use the PL.EXE Pascal/Link
driver program with the /Zi option and convert the CodeView symbols in the

Chapter Two: Preparing Programs for Debugging 27

finished code file with TDCONVRT. The /Zi option is case-sensitive: Z must be
uppercase and i, lowercase. Also use the -sc option when starting TD to ignore
case for symbols-if you don't specify this option, you'll have to use
View:Variables to select variables for watching and inspecting (subjects cov
ered later in this book). For example, to compile, link, and load MSPSAMP into
TD, use the commands:

pl /Zi mspsamp.pas
tdconvrt mspsamp.exe
td -sc mspsamp

If the CPU window appears when TD starts, use View: Mo du Le to select the
MSPSAMP source module. When the Modu Le window opens, press (F5) to
zoom the window to full screen. Then, press (F2) to set a breakpoint on the
program's first statement. You don't have to highlight that statement, just press
(F2)-TD will set the breakpoint at the first executable statement it finds. After
this, press (F9) (F2) to run past the program's startup code and remove the
temporary breakpoint. This positions the cursor on the program's first line
similar to the display that comes up for Turbo Pascal programs. (See chapters 4
and 5 for full descriptions of these commands.)

You might want to enter the keypresses in the previous paragraph as a macro.
Then you can press the macro's assigned key every time you need to issue these
same commands. Chapter 16 explains how to enter macros.

To compile multimodule programs, give PL all the program's module
names, some of which might be MSP4 modules and others might be units (two
different methods for breaking an MSP4 program into pieces). For a main
program MAIN.PAS that uses a unit UNIT.PAS and module MOD.PAS, compile,
link, and load the program into TD with the command:

pl /Zi main.pas unit.pas mod.pas
tdconvrt main.exe
td -sc main

Use the View:Module command to view the program's source code in TD.
Then, press (F8) to execute the program's startup code and position the cursor
on the first program statement.

You can also compile modules and units separately. To do this, add the /c
("compile only") switch to /Zi for the separate modules, then use PL to compile
and link the pieces:

pl /Zi /c unit.pas
pl /Zi /c mod.pas
pl /Zi main.pas unit.obj mod.obj

28 Part One: Guide and Reference

tdconvrt main.exe
td -sc main

When debugging MSP4 programs, you may have to set Options: Language
to Pase al. (Save a TDCONFIG.TD configuration file in the current directory to
avoid having to change this setting for each debugging session.)

QuickPascal 1. 0

It's not possible to use TD to debug programs compiled with Microsoft's
QuickPascal 1.0. The QP compiler has its own built-in debugger, which can't
generate Code View information or a .MAP file. The command-line QP compiler
QPL.COM isn't any help either. So if you have hopes of using TD together with
QP and QPL, you're out of luck.

Perhaps a future QP version will generate CodeView debugging informa
tion, or at least a .MAP file. In that case, you might be able to use TDCONVRT
and TDMAP to translate that information to TD's required format.

Turbo Pascal 4. 0

Contrary to what you may have heard or read elsewhere, you can debug Turbo
Pascal 4.0 (TP4) programs with TD. Of course, you'll get better results with TP
versions 5.0 or 5.5 (collectively known as version 5.x), which can generate TD
symbols directly. But, by creating an intermediate .MAP file with the TP4
compiler, you can view symbolic information in TD, set breakpoints, and trace
through a program's statements-even those in multiple units. You won't be
able to examine data structures with as much detail as you can by compiling
with later TP versions. But until you can upgrade your compiler, at least you're
not stuck out on a limb without a ladder.

To prepare TP4 programs for debugging, you can use the TP4 integrated
development environment (IDE) or the command-line compiler. If you are
using the IDE, open the Options:Compi ler menu and set Turbo pascal map file
and Debug information to On. You must turn on this second setting to transfer
the necessary symbolic information and line numbers to the compiled code.
Unfortunately, those symbols are not in TD's format but are instead intended for
use with Microsoft's SYMDEB debugger, which isn't compatible with Code View
or TD. For that reason, it's also necessary to create a .TPM (Turbo Pascal Map)
file of the same symbols, which can then be translated by other utilities into
TD's required format.

To compile with the command-line compiler, use the /$T + option to create
the .TPM map file. After that, or after compiling from inside the IDE and
quitting to DOS, convert the .TPM file to a .MAP text file with the TP4 utility
TPMAP. Then, process that file with TD's TDMAP program to write the symbols

Chapter Two: Preparing Programs for Debugging 29

back to the .EXE file in TD's format. For example, use these commands to
compile SAMPLE and load the result into TD:

tpc /$T+ sample
tpmap sample
tdmap sample.map
td sample

Notice that the second line runs T PMAP; the third runs T DMAP-two
different programs. For multimodule programs, add the JM ("make") or /B
("build") options to the TPC command. This will compile individual units and
include their symbols in the . TPM map file. Use TD's View: Madu Le command to
select among various source-code modules.

Turbo Pascal 5.x Integrated Environment

Turbo Pascal 5.0 and 5.5 (I'll refer to them both as TP5) come supplied with an
IDE that includes the compiler, editor, and stripped-down debugger in the file
TURBO.EXE. Although useful for examining small programs and tests, TP5's
built-in debugger lacks the features and memory capacity of the full-powered
TD. To take advantage of those features, but still be able to edit and compile
programs in the IDE, you'll need to set various switches to add symbols and line
numbers to compiled Pascal programs. You can then load the .EXE file into TD.

To prepare programs for debugging, start TP5 and set Debug: Standa Lone
debugging to On. You can also change Integrated Debugging to Off, although
this is not required. If you want to view local variables declared in procedures
and functions, use Options:Compi Ler to change Local symbols to On. Turning
this option off might save a little memory, but then you won't be able to view
local variables in TD. (Alternately, you can insert a {$ L +} option in the source
code to enable local symbols.)

Also change Debug information to On. If this option is off, no symbols will
be written to the compiled code file, regardless of the other switch settings.
(This makes the Debug information command handy for turning symbol gener
ation on and off quickly without changing other settings.) In addition to these
settings, change Compile:Destination to Disk; otherwise, TP5 compiles to
memory, making the result inaccessible to TD. You must compile your program
to a disk .EXE file before you can load the code into the debugger.

After making these changes, you may want to use Options: Save options to
save the new configuration in a TURBO. TP file, which TP5 will read from the
current directory the next time you start the IDE. Or, specify a different file
name (perhaps TD.TP), which you can load with Options: Retrieve options to
configure the IDE for debugging.

With all the proper switches set, compile your program with one of TP5's
three Compi Le-menu commands-Campi Le, Make, or Bui Ld. For simple

30 Part One: Guide and Reference

programs like SAMPLE, load the text into the editor and select Compi Le. For
programs that use custom units, use Make to compile only those modules that
have changed since the previous compilation. Use Bui Ld to compile all
modules.

After a successful compilation, press (Alt)-X to quit TPS. Then, type td
sample to load SAMPLE.EXE into TD for debugging.

Turbo Pascal 5.x Command-Line Compiler

Many professional Pascal programmers prefer to use Turbo Pascal's command
line compiler (TPC) along with a separate text editor for entering and modifying
source code. This arrangement can also free extra memory for compiling large
programs with many symbols.

To use TPC to compile SAMPLE, specify the Iv option, which adds symbols
and line numbers to the finished .EXE code file in TD's required format. You
can then load that file into TD using the commands:

tpc /v sample
td sample

When compiling programs that use units, also specify Im ("make") or lb
("build") options to compile out-of-date modules. For example, to compile a
program file MAIN.PAS that uses two units in UNITl.PAS and UNIT2.PAS, and
then load MAIN.EXE into TD, use the commands:

tpc /v /b main
td sample

Replace lb with Im to compile only the minimum number of modules to
bring the entire program up to date. (If TD doesn't display source code for
some modules, use lb the first time you compile. Use Im from then on. This
ensures that all .TPU [Turbo Pascal Unit] files have symbolic debugging
information.)

You can also compile units separately if you prefer, although this isn't
necessary for most programs. The following commands are equivalent to the
previous two:

tpc /v unit1
tpc /v unit2
tpc /v main
td main

To conserve memory, you can specify the option 1$D- for tpc in addition to
those listed here. This disables local-symbol generation, adding only global
symbols for debugging.

Chapter Two: Preparing Programs for Debugging 31

Preparing Assembly Language Programs for Debugging

It's probably true that most people think a symbolic debugger like TD is most
useful for debugging C and Pascal code. But even though assembly language
symbols have a direct relationship to the finished machine code, and, therefore,
you might think a nonsymbolic debugger like DEBUG would be adequate for
investigating problems, there are many advantages to symbolic versus machine
code assembly language debugging.

For one, TD's main Module window displays the program's source-code
lines and comments from the original text files. You see your program in the
debugger exactly as it appears in the editor. Other TD windows can display
variables, evaluate expressions, and set breakpoints to enhance your ability to
comprehend just what your exquisitely written (but unfortunately buggy)
machine code is doing. The alternative-and I'm always amazed to discover
programmers still doing this-is to pick apart a DEBUG hex dump and hunt
through a disassembly of the program's instructions to rout out the bugs.

There are times, though, when looking deep inside a program's executable
machine code is useful-for example, when you want to try a temporary
optimization or if you suspect that the compiler's or assembler's output is faulty
(unlikely, but possible). At such times, when you do need to see the assembled
machine code, you can open TD's CPU window by pressing (Alt)-VC. Then, to
switch back to the source-code Module window, press (F6). (See chapters 3-5
for more details about these and other TD commands.)

Sample Assembly Language Program

Listing 2.5, SAMPLE.ASM, is a short assembly language program in standard
Microsoft Macro Assembler (MASM) syntax that you can use to test the assembly
language instructions in this chapter. The program displays a short message and
then ends. You might want to verify that the code assembles and runs correctly
before trying to load the result into TD. To do that with Turbo Assembler, enter
the commands:

tasm sample
tlink sample
sample

1 :
2:
3:
4:
5:
6:
7:

Listing 2.5. SAMPLE.ASM.

TITLE Test Assembly Language Program CMASM syntax)

DOSSEG
.MODEL SMALL
.STACK 100h

.DATA

32 Part One: Guide and Reference

Listing 2.5. (cont.)

8:
9: string db "Test Program",13,10

10: Len equ $ - string
11 :
12: PUBLIC string
13:
14: .CODE
15:
16: start: mov ax, iilDATA Assign address of data
17: mov ds, ax segment to ds
18: mov bx, 1 Select standard out
19: mov ex, Len Set ex = string length
20: mov dx, OFFSET string Address string with dx
21: mov ah, 40h Select DOS write function
22: int 21h Display string
23: mov ax, 4C00h Select DOS exit function
24: int 21h Exit program
25:
26: END start

Microsoft Macro Assembler 5.1

This version of the Microsoft Macro Assembler-better known as MASM-can
generate Code View symbol tables directly. After assembling and linking (I used
version 3.64 of the Microsoft Overlay Linker to test these commands, although
other versions probably will work), run the TD utility program TDCONVRT to
translate the CodeView symbols in the finished .EXE file to TD's format. For
example, to assemble, link, and debug SAMPLE, enter:

masm /zi sample;
link /CO sample;
tdconvrt sample.exe
td sample

The semicolons are optional, but if you leave them out, MASM and LINK
will prompt you for various file names. Be sure to supply the entire file name
(SAMPLE.EXE here) to TDCONVRT. Some versions of this utility create spurious
files (such as AA.AAA) if you don't specify the full file name with its extension.

The /zi option tells MASM to include Code View debugging information in
the output file, SAMPLE.OBJ in this example. The /CO option tells LINK to copy
that information to SAMPLE.EXE, preparing the code for loading into TD. You
can also replace /zi with /zd, which adds only line number information to the
.OBJ output file. But you can then view only source-code lines in TD, not other
symbols. Usually, there's no reason to use this option except, perhaps, to
conserve a little memory for debugging large programs.

Chapter Two: Preparing Programs /or Debugging 33

To link multiple object files for debugging, first assemble each source-code
file with the /zi or /zd options. Then link with a command such as:

Link /CO main+sub1+sub2

That links MAIN.OBJ, SUBl.OBJ, and SUB2.0BJ to produce MAIN.EXE.
Other arrangements will also work as long as you include the /CO option.
Consult MASM's manuals for LINK's complete syntax.

OptASM 1.5

OptASM from SLR Systems can insert debugging information into .OBJ output
files, but because some versions of this popular assembler don't come with a
linker, it may be necessary to create a .MAP file and then translate that informa
tion with the TDMAP utility. Using the MS-DOS 8086 Object Linker version
3.05 as supplied with MS-DOS 3.3 (other versions should work the same way),
the steps to assemble, link, and debug SAMPLE are:

optasm /zi sample;
link /LINENUMBERS /MAP sample;
tdmap sample
td sample

You may also want to use the -B or -E options along with TDMAP. (See
chapter 6.) Also, all symbols that you want to view in TD must be declared in
PUBLIC statements. Local symbols are not transferred to the map file.

OptASM also has a /zt option, which is supposed to generate "Turbo"
line numbers. I've had better luck using /zi, but check your manuals for
details-perhaps newer assembler versions will generate TD-compatible
symbols.

Link multiple modules as with MASM, or check your linker's manual for
details. If your linker recognizes CodeView debugging, use that option and
translate the result with TDCONVRT instead of TDMAP.

QuickAssembler 2.01

Microsoft's QuickAssembler 2.01 is built into the QuickC 2.01 compiler. Of
course, most people use QuickC to compile C programs, but you can also use it
for stand-alone assembly language work. For this purpose, it's probably easiest
to run the command-line compiler QCL, although it is possible to assemble
programs from inside the integrated editor. Here's how to use QCL to assemble
SAMPLE and load the result into TD:

34 Part One: Guide and Reference

qcl /Zi sample.asm
tdconvrt sample.exe
td sample

The /Zi option is case-sensitive-the Z must be uppercase and the i, lower
case. Also, you must specify the .ASM and .EXE file-name extensions for the
file-name arguments supplied to QCL and TDCONVRT.

There are two ways to compile a multimodule program. The first is easiest
in most cases-just list the main module first, followed by others. For example,
if the main module MAIN.ASM calls routines in a submodule SUB.ASM, assem
ble for debugging with the commands:

qcl /Zi main.asm sub.asm
tdconvrt main.exe
td main

Or, you can assemble the individual modules by first adding a /c option and
then specifying the object files in the final QCL command. This will assemble
the main module and link it to other object-code files assembled earlier:

qcl le /Zi sub.asm
qcl /Zi main.asm sub.obj
tdconvrt main.exe
td main

Turbo Assembler 2.0

Borland's Turbo Assembler (TASM), which is supplied with the full Turbo
Debugger and Tools package, can add TD symbolic information directly to the
.OBJ output file. To assemble SAMPLE and load the finished code into TD, use
these commands:

tasm /zi sample
tlink /v sample
td sample

The /zi option adds symbols and line numbers to SAMPLE.OBJ. You can
replace /zi (line numbers and other symbols) with /zd (line numbers only) to
conserve memory. If you do that, you can still view variables by name, but you
won't see full data structures. For example, strings declared with DB display as
word values, not as character arrays as they normally do when the code is
assembled with the /zi option. The /v option for TLINK transfers the symbol
table from SAMPLE.OBJ file to SAMPLE.EXE. You must remember to use both
options. If you forget to insert /v during the link step, the symbol table will not
be included in the result even if you assembled the source-code text with /zi.

Chapter Two: Preparing Programs for Debugging 35

To compile a multimodule program with a main module MAIN.ASM and a
submodule SUB.ASM, assemble the parts separately and link them with TLINK
as shown here:

tasm /vi main
tasm /vi sub
tlink /v main sub
td main

Preparing .COM Programs for Debugging

Not long ago, the preferred code-file format was a .COM (command) file, which
normally limits programs to 64K of memory and stores the code, data, and
stack in a single segment. Today, the issues that made . COM files popular in the
past-faster loading, faster compilation, and simple organization-are no longer
critical, and most programmers compile to .EXE code files instead.

Preparing .COM code files for debugging is less straightforward than pre
paring .EXE files because a .COM file reserves no space for a symbol table. The
answer to this dilemma is to store symbols and line numbers in a separate . TDS
file, which TD can read and overlay onto the code in memory, accomplishing
the same effect as loading an .EXE file that contains all the information TD
needs. The following sections explain how to do this in assembly language.

Sample . COM Program

Assemble Listing 2.6 to test the following instructions for debugging .COM code
files. As written, the program assembles only with TASM. Delete line 4 and
remove the first semicolon from line 5 for MASM.

Listing 2.6. COMPROG.ASM.

1 : TITLE Test Assembly Language .COM Program
2:
3: DOSSEG
4: .MODEL tiny TASM
5: .MODEL small MASM
6:
7: .DATA
8:
9: string db "Test .COM-style Program",13,10,'$'

10:
11 : .CODE
12:
13: ORG 10Dh
14:
15: Start: mov dx, offset string

36 Part One: Guide and Reference

Listing 2.6. (cont.)

16: mov ah, 09h
17: int 21h
18: Exit:
19: mov ax, 4C00h
20: int 21h
21:
22: END Start

Assembling. COM Programs

To assemble and link a .COM-style program with TASM and TLINK, use the /zi
option and link with /v. Don't use the /t option with TLINK as you normally do
to create .COM files-thts option removes the symbol table from the object
code. Instead, process the .EXE file with TDSTRIP, using the -c option to create
the finished . COM file and -s to store the symbol table in a . TDS file. The
complete instructions for assembling, linking, and loading COMPROG .ASM into
TD are:

tasm /zi comprog
tlink /v comprog
tdstrip -c -s comprog
td comprog

Ignore the "no stack" warning from TLINK. Because this step creates
COMPROG.EXE, the linker warns about the missing stack segment, which isn't
needed for a .COM code file.

With a little more work, you can also assemble .COM code files with MASM
5.1. (Be sure to change .MODEL to smal l-MASM doesn't recognize TASM's tiny
memory model key word.) The trick this time is to generate Code View symbols
in the .EXE file, use TDCONVRT to translate those symbols to TD format, and
then strip the symbols with TDSTRIP to create the finished .COM code file:

masm /Zi comprog;
link /CO comprog;
tdconvrt comprog.exe
tdstrip -c -s comprog
td -sc comprog

The -sc option tells TD to ignore symbol case. After TD starts, use
View: Module to open a source-code window, press (F2) to set a breakpoint on
the first source-code executable instruction, and then press (F9) (F2) to start
the program and halt at the first line. This simulates the conditions of a .COM
program loaded into memory just before the first instruction executes. (See
chapters 4 and 5 for more details about these and other TD commands.)

Chapter Two: Preparing Programs for Debugging

If you follow these steps and still don't see your source code in TD, you may have
to run the TOUCH utility to update file dates and times. Just enter touch *. * to
update all files in the current directory, then try the TD command again. Also see
chapter 6 and the notes near the end of this chapter for more information about
TOUCH.

Compiling Other Programs for Debugging

37

In general, if your language can generate a .MAP file that lists public symbols
and source-code line numbers, you can use TD to debug the code. This goes for
any language, not only C, Pascal, and assembly. You won't be able to see every
detail of exotic data structures in their original source-code forms, but you can
still view their values as bytes and words in memory. What's more, you can use
TD's code-tracing, breakpoint, and expression features to help find the bugs in
your programs.

If you have trouble getting TD to recognize your language's .MAP file
format, compare the sample .MAP file text in Figure 2.2 to the output from your
compiler or linker. Perhaps you'll be able to convert a nonstandard format to

match the one that TDMAP requires. To create this text, I entered the TASM
commands tasm /zi sample and tlink. Im /1 sample.

Start Stop Length Name
OOOOOH 00016H 00017H TEXT
00018H 00025H OOOOEH DATA
00030H 0012FH 00100H STACK

Address Publics by Name

0001:0008 STRING

Address Publics by Value

0001:0008 STRING

Class
CODE
DATA
STACK

Line numbers for sample.objCSAMPLE.ASM) segment TEXT

16 0000:0000
20 0000:0008
24 0000:0015

17 0000:0003
21 OOOO:OOOE

Program entry point at 0000:0000

18 0000:0005
22 0000:0010

Figure 2.2. Sample .MAP file contents.

19 0000:0008
23 0000:0012

38 Part One: Guide and Reference

After creating a standard .MAP file, use the command tdmap file.map to
translate the map text information into a TD symbol table and write that data to
FILE.EXE. If you are creating a .COM file, perform these steps before running
TDSTRIP to store the symbol table in a . TDS file and create the . COM code file
on disk, as explained earlier in "Assembling .COM Programs."

When using TDMAP, specify -C if your language's symbols are case
sensitive. Add the -B option if you want to view variables as bytes instead of as
word values. Also add -Exxx where xxx is a file-hame extension such as ASM or
HCC for any files listed in the .MAP file without extensions. This will enable TD
to load those files and relate the source-code lines to the compiled code.

Debugging Without the Source

Debugging is more complicated (to say the least) when you don't have the
source code to a program. That's rare, but it happens. Perhaps you've lost a
version of a program's source, or maybe you just want to dissect a commercial
program, using TD as your scalpel to slice into the code and see what makes it
tick. At such times, don't resort to using DOS DEBUG-you may still be able to
debug the code at the source level with TD.

The first approach to debugging a sourceless program is simply to load the
code as is into TD. When you do this, you'll see a machine-language disassem
bly of the program in TD's CPU window, similar in some ways to what DEBUG's
"unassemble" command produces. You've got to be sharp to debug machine
code this way-there are no landmarks to recognize and no comments or
procedure headers to denote logical divisions in the program. Also, it's up to
you to separate data from code. TD can't know which is which, and if you
accidentally execute some data as instructions, the program may crash. Still,
you can set breakpoints and use most other commands as described in later
chapters. TD is far superior to DEBUG for examining programs in this rawest of
low-level forms.

Another possibility is to disassemble the code with a program designed for
this purpose. A capable disassembler can read a compiled .EXE, .COM, or
device-driver file and create pseudo source-code assembly language text. You
can then assemble the pseudo source code with TASM or MASM (or another
assembler) according to instructions earlier in this chapter to add a symbol table
to the result, which you can then load into TD for debugging at the source
level-or as close as you're likely to get.

An excellent disassembler is Sourcer from V Communications, Inc. This
program does an amazing job at identifying procedures and separating code
from data. It also identifies DOS and BIOS function calls, locates external
subroutine entry points, and inserts comments in the pseudo source code.
(Some of the comments are a bit simple-minded, but even minimal comments
are better than none at all.)

Chapter Two: Preparing Programs for Debugging 39

Be careful when running disassembled code files after reassembly. Usually,
the pseudo source text will assemble without errors, but the result might not
run correctly without further modifications. To disassemble and debug a large
program is a major undertaking-but at least Sourcer and TD give you a flying
start.

Using TOUCH to Update Files

Summary

On occasion, you may be unable to run TDSTRIP and other utilities on various
files as described in this chapter. If you receive errors, and especially if that
happens for commands that worked perfectly well before, try running the
TOUCH utility on all or some files in the directory. To update all files in the
current directory, enter touch * • * .

That sets all file dates to the current date and time. Sometimes this is
necessary to force a utility to process a set of files that, because of their differing
dates and times, are incorrectly flagged by the utility as unrelated.

TD needs a map, called the symbol table, to find its way around a program's
compiled code. This chapter explains how to add a symbol table to programs
using a variety of C, Pascal, and assembly language compilers and assemblers.

Of course, Borland's own languages-Turbo C, Turbo Pascal, and Turbo
Assembler-can generate TD symbol tables directly; therefore, these are the
most convenient languages to use with TD. But if your language can add
Microsoft CodeView debugging information to compiled code, or if it can at
least create a standard .MAP text file, TD can help you to debug the program.

Because TD is line-oriented, not statement-oriented, some commands work
best when each line contains only one statement. Following this one-statement
per-line design rule may also help to make your source code more readable and,
therefore, easier to debug.

This chapter also explains how to debug .COM programs, how to translate a
.MAP file to a TD symbol table, and how to use a source-code disassembler to
debug programs for which the original source text is lost or unavailable.

Chapter 3

Getting Turbo Debugger
Up and Running

INSTALLING TD is a simple process-just run the INSTALL program on TD's
"Install" diskette and follow the instructions. Because these and other installa
tion details are covered in the Turbo Debugger Users Guide, instead of dupli
cating that information, this chapter concentrates on tips for configuring TD,
installing a mouse, saving disk space, using extended and expanded RAM,
setting up TD to run a text editor, and using TD with multitasking software such
as Microsoft Windows. The chapter ends with a complete reference to TD's
command-line options.

It's probably best to skim this chapter (and the next two) to become familiar
with the layouts. You can then refer back to these pages for help with specific
commands and configurations as you need them.

Before running INSTALL, you may have to reboot to remove TSRs and, possibly, to
disable a disk cache such as PC-Kwik; otherwise, INSTALL may hang while
unpacking archived (compressed) files. The problem is caused by a conflict
between some versions of the UNZIP utility and the cache software.

Configuration Tips

The tips in this section will help you to configure TD for peak performance. On
my system, I keep two configurations-one for 80386 virtual debugging and
another for DOS and Windows. I run a simple batch file to copy the appropriate
AUTOEXEC.BAT and CONFIG.SYS files to my C: "- root directory so I can
quickly switch from one setup to another.

I also keep several "local" configurations in my project directories by
saving TDCONFIG.TD files with TD's Options:Save options command. This

41

42 Part One: Guide and Reference

records the options I use to debug various programs, saving me the trouble of
resetting those same options the next time a bug surfaces in the code.

When configuring TD for your system, don't aim for perfection. Each
buggy program will pose unique problems to solve, and you'll probably have to
reconfigure TD frequently to find different kinds of bugs. Use the information
in this chapter to find a "happy medium" that works for most programs. You
can always create configuration files to fine-tune TD if necessary.

Black-and-White Graphics

Most CGA, EGA, and VGA video displays are color, but if yours is in black and
white (or green, amber, or even shocking monochromatic pink), you might not
be able to read INSTALL's messages. In that case, press q to quit to DOS and
restart with the command install lb to fix the problem. You'll also want to
configure TD to use black-and-white "colors." See "Custom Setups" later in this
chapter.

Setting Up Directories

Most people install TD-plus the other two programs in the Turbo Debugger
and Tools package, TASM and Turbo Profiler (TPROF)-on a hard drive in the
subdirectories C: 'TD, C: 'TASM, and C: 'TPROF. If you are using floppy
diskettes, you'll need at least one high-density 5.25-inch 1.2-megabyte, or one
3.5-inch 720K or better, drive. TD's code file TD.EXE is too large to fit on a
standard 360K floppy diskette. (Unfortunately, you can't use INSTALL to install
TD on high-density floppies. To do that, you must unpack the .ZIP archive files
manually with the UNZIP utility. See chapter 6.)

Whatever directory names you decide to use, be sure to add a command
such as path=c: 'dos;c: 'td to your AUTOEXEC.BAT file. This will let you
switch to your working directories and run the debugger by typing td plus a
program name. If you are using two high-density disk drives instead of a hard
drive, insert the command path=a:' ;b:' in AUTOEXEC.BAT so you can run
TD in one drive while the other is current.

Some programmers prefer to store all TD files along with TASM and TPROF in
a common directory, typically named C: 'UTIL or C: 'BIN. You might also store
your compiler's executable files there plus other utility programs. This arrangement
offers three advantages over using the stock setup's multiple subdirectories:

• The PATH environment variable is kept short.

• Programs start more quickly (on the average) because COMMAND.COM
needs to search only two directories for executable files-the current
directory and the one listed in PATH.

Chapter Three: Getting Turbo Debugger Up and Running 43

• The newest versions of utilities such as README, GREP, and MAKE auto
matically replace old files of the same names. This also prevents wasteful
duplicate files in multiple directories.

A disadvantage of this technique is that some programs may start more
slowly if C: "--BIN becomes very full. Also, to uninstall programs and to upgrade
to future versions requires manually deleting old files, which can be tedious.

System RAM

TD can use three kinds of memory: system, expanded (EMS), and extended
(XMS). Normally, the debugger shares system RAM with the code that you want
to examine, an arrangement that works surprisingly well even for medium-size
programs. You'll need a minimum of 384K available in addition to DOS and any
resident programs, but the more memory you have, the better. Figure 3.1
illustrates this common configuration and lists rough sizes for each component
in RAM. (Exact sizes will vary from one installation to another.)

• OK J System Memory L
DOS

-t 150K

410K

•

Turbo Debugger

Symbol Table

Expanded RAM (EMS)

230K • Program Code and Data

J_ •
640K

Free Memory

• (Sizes are approximate)

Figure 3.1. System-memory map.

If your system has an expanded memory card installed, TD can store its overlays
and program symbols there to free some system RAM for the debugger and the
program's code. For debugging medium- to large-size programs, if you run out
of room in system RAM, increasing your system's EMS capacity may be the least
costly solution. Figure 3.2 illustrates how TD uses EMS RAM to store symbol
tables, plus a few other items you'll meet later.

Other programs may compete with TD for EMS RAM. For example, you
may install a large RAM drive at boot time. In that case, be sure to reserve some
EMS for TD. The exact amount depends entirely on the size of your program's

44 Part One: Guide and Reference

• OK

~Kt
150K

400K

•
240K •

J_ •
640K

.--I System Memory -L
DOS

Turbo Debugger

Program Code and Data

Free Memory

•(Sizes are approximate)

Expanded
Memory (EMS)

Symbol Table
History Lists

Overlays
plus other uses

Figure 3.2. Expanded-memory (EMS) map.

code and how many public symbols it defines, so it's impossible to calculate
how much EMS RAM you need. Experiment until you find a setting that works.

Extended RAM (XMS)

Extended RAM is found only on 80286-, 80386-, and 80486-based systems;
therefore, if you have an XT-style PC, skip to "Remote and Dual-Monitor
Installation." Only AT-class machines can use extended RAM, which extends the
computer's address space above a standard PC's I-megabyte high-water mark.
Figure 3.3 illustrates TD's use of extended RAM.

• OK _f System Memory l

T
150K

•
490K •

DOS

75K Core (TD286 only) - - - - -
Program Code and Data

J Extended L Memory (XMS)

§ RAM Drive

Turbo Debugger
T
640K

1 •

640K
Free Memory § Disk Cache

j

• (Sizes are approximate) §(Optional)

Figure 3.3. Extended-memory (XMS) map.

Many AT-class systems come with extended RAM installed on the mother
board. Others have XMS cards that you can configure to EMS or XMS specifica
tions (or both). These tips and the notes that follow for 80286-, 80386-, and
80486-based PCs will help you to choose the best arrangement for your system:

• 80286 and 80386 systems need about 640K extended RAM. (In past TD
versions, the recommended extended RAM minimum for TD386 was 700K.

Chapter Three: Getting Turbo Debugger Up and Running 45

Actually, that figure is approximate, and a smaller value might work equally
well, especially if you also have EMS for TD to store symbol tables. See the
-f option later in this chapter.) If you have less than 640K extended RAM,
you may not be able to run TD286 or TD386.

• If you have a large amount of extended RAM (at least 1 megabyte), config
ure about 700K as extended and, if possible, the rest as expanded RAM. You
can then run TD, TD286, or TD386 to debug very large programs.

• If you are using other programs such as a disk cache or RAM drive that
compete with TD for extended RAM, be careful not to allocate the same
RAM for more than one use. See Figure 3.3 for help in planning your
extended RAM usage.

One way to prevent conflicts when multiple programs share extended
memory is to install an extended-memory manager and, possibly, Microsoft's
XMS HIMEM.SYS driver, supplied with Microsoft Windows. This driver
makes a 64K High Memory Area (HMA) available starting at the base of
extended RAM.

If you aren't using Windows, you can get a free copy of the XMS software
and documentation by calling the Microsoft Information Center (MIC) toll free
at 800-426-9400. When you hear the recording, follow instructions to connect
to the MIC and ask for the "XMS documentation and driver source code for the
Extended Memory Specification."

TD286 also respects the VCPI (Virtual Control Program Interface) specifi
cation, available at no charge from Phar Lap Software, Inc., 60 Aberdeen Ave.,
Cambridge, MA 02138. Their phone number is 617-661-1510. (This is not a toll
free call.) Programs that are VCPI-aware can share extended RAM without
conflicts.

Neither of these solutions is perfect, however, and they do not permit
TD386 to run along with other protected-mode software such as Windows/386
and DesqView. Also, all programs and TSRs must recognize the existence of an
extended-memory driver-this isn't automatic.

Converting Extended to Expanded RAM

There are public domain drivers available such as EMS40.SYS published by PC
Magazine (Vol 8, No. 12) that use an 80386 or 80486 processor's paging abilities
to convert extended memory to EMS. Unfortunately, because these drivers
switch in and out of protected mode to perform a copy subroutine for each
access to a new memory page, they can cause TD's performance to drop
through the bottom of the barrel.

For this reason, if you want to convert extended RAM to EMS for storing
symbol tables, one of these drivers may not be the best choice. Instead, try
these suggestions:

46 Part One: Guide and Reference

• Use the -f switch with TD386 to convert additional extended RAM to EMS
for TD's use. (This RAM is not available to your program. It's strictly for
TD's private consumption.)

• Purchase an expanded memory card. You can install extended and
expanded RAM in the same computer, and TD can use both kinds of
memory simultaneously.

• Run TD or TD286 (not TD386) under Windows/386 or Windows 3. O with
the HIMEM.SYS XMS driver installed according to directions. Depending
on the total amount of extended RAM in your system, Windows will
automatically convert extended RAM to EMS, which TD will use. Under
Windows 3. 0 on an 80386- or 80486-based system, you can also install the
supplied EMM386.SYS device driver to convert a portion of extended RAM
to EMS.

• Some people with 80386 systems recommend running TD and
Windows/286 or Windows 3. 0 in real mode with 386-Max from Qualitas to
manage extended memory. (See Bibliography.) However, you must run TD
or TD286, not TD386, under this configuration.

80286 Installation

AT-class PCs with 80286 processors and at least 640K of extended RAM can run
TD 2.0 in protected mode. With this configuration, the TD286 debugger loads
all but a small portion of itself into extended RAM. Only a small core of about
75K remains behind in system memory, freeing the rest of RAM to hold a target
program's executable code and data. (See Figure 3.3.) According to Borland,
because TD286 recognizes the VCPI specification, you may also be able to use
TD286 with a VCPI-aware extended memory manager.

Because all 80286-based systems are not equal, before running TD in
protected mode, change to TD's directory and execute TD286INS to configure
TD286 for your hardware. The Turbo Debugger User's Guide implies that, in
some cases, this may hang your computer, forcing you to reboot. If that
happens, the guide suggests restarting the program to continue configuring. I'd
also suggest removing all TSRs and device drivers before running TD286INS for
the first time. That may not be necessary, but experience teaches that limiting
the number of variables while configuring software is often a good idea.

After configuring TD286, you're ready to run TD in protected mode. Turn
to "Running TD" later in this chapter for details.

You can't use TD286 and another protected-mode program such as a DOS
extender at the same time. Also, if you have an 80386- or 80486-based system, you
may run TD286, but usually, you'll want to use TD386 instead, as the next section
explains.

Chapter Tbree: Getting Turbo Debugger Up and Running 47

80386 Installation

If you're fortunate to have an 80386- or 80486-based system, you can install
the TDH386.SYS device driver to take advantage of special debugging registers
on these processors. Patterned after ICE hardware-the vastly more expensive
In-Circuit Emulators hardware used by system designers-these features let
you set breakpoints (instructions to halt a program based on certain conditions)
to monitor bytes in memory without slowing TD's performance. You can set
similar breakpoints on systems with 8088, 8086, and 80286 processors. But,
without hardware debugging abilities, TD has to monitor memory locations by
brute force, which can drastically reduce runtime speed. (Chapter 8 covers
breakpoints in more detail. Also see chapter 18.)

To install the TDH386 device driver, add the following line to your
CONFIG.SYS configuration file in your boot drive's root directory:

DEVICE=C:\TD\TDH386.SYS

This assumes that TD is installed in C: "'-TD. After rebooting, when you next
run TD, the device driver gives the debugger access to debugging registers on
80386 and 80486 processors.

If you also have at least 640K of extended memory available, after booting
to install TDH386.SYS, you can run the TD386 protected-mode supervisor.
This runs the target program and TD in two 8086 virtual machines, replicating
the runtime conditions that exist during normal operation of a buggy program
under DOS. (See "Running TD" later in this chapter for more information about
running TD386.)

Among the many advantages of running TD386 in protected mode on
80386 systems, these head the list:

• All available system memory is allocated to your program. TD and the
symbol table no longer have to share memory with the program's code.
Provided you have enough RAM, this should make it possible to debug
programs of any size. (See also the -f switch, which lets TD386 use some
extended RAM as EMS for storing large symbol tables.)

• The buggy code runs under conditions that are identical to normal DOS
operation. TD386 can help pinpoint positional bugs that appear when the
code runs from DOS, but disappear when the program runs under control
of the debugger-an exasperating experience, as anyone who's faced this
kind of bug can verify.

• The debugger and program symbols are protected from wayward state
ments, pointers, and array index faults (among other problems) that over
write RAM allocated to TD. All memory outside of the program's virtual
machine is protected from unauthorized changes. (But see "Exceptions"
later.)

48 Part One: Guide and Reference

• Conflicts between the debugger and program code are eliminated. All
system resources (disk drives, keyboards, video displays, and so on) are
available to the program.

There are still a few restrictions when using TD386: you can't debug
protected-mode programs, you can't access memory above the lower I-mega
byte address space, and you can't execute privileged instructions. Also, only
one program at a time may serve as the protected-mode supervisor; therefore,
you can't run TD386 along with other multitasking software such as
Windows/386, Windows 3.0 in 386 enhanced mode, QEMM, 386-Max and
DesqView. You can run only plain TD and TD286 when using those and similar
programs.

Even so, when running one of those multitaskers, or if you don't have 640K
of extended RAM available for TD386 or TD286, you can still install the
TDH386.SYS device driver on 80386 and 80486 systems. This lets TD take
advantage of hardware debugging registers on the processor. You don't have to
run TD386 to enable hardware breakpoints.

Exceptions

Even with TD386, it's still possible for an exception violation to occur when
TD386 intercepts an unexpected critical interrupt. Typical exception values are
0 (divide error), 6 (illegal machine code), 13 (general protection exception), and
14 (page fault). Some network cards cause TD386 to fail with exception 13.
Code that was trashed by a bad pointer often leads to exception 6. Some TSRs
are also known to cause similar headaches.

The only solution to these problems is to remove the card or software that's
at fault. In the case of exception 6, the error is probably in the target program
(but remove all TSRs just to be safe). Unfortunately, when the problem is caused
by conflicting hardware, there aren't any easy answers. Complain loudly to
manufacturers, stressing that they should document the interrupts used in their
peripherals.

Reserving Environment Variable Space

When TD386 creates the virtual machine under which a target program's code
runs, it allocates 256 bytes for environment variables. If your program needs
more or less than this default amount, specify the space you need with the
device-driver's -e option in CONFIG.SYS. For example, this line reserves 800
bytes for environment variables:

DEVICE=C:\TD\TDH386.SYS -e800

Chapter Three: Getting Turbo Debugger Up and Running 49

This option affects only the amount of system RAM reserved for environ
ment variables that your program code requires. It does not affect how TD386
loads TD into extended RAM-a common misconception. (The option is equiv
alent to COMMAND.COM's le switch.) For other memory options, see "Running
TD" later in this chapter.

Remote and Dual-Monitor Installation

Chapter 17 explains how to link two systems for remote debugging, and it
shows how to install TD for use with two monitors connected to one computer.
These configurations make it possible to view TD's screen while seeing your
program's display at the same time. A remote link is the safest possible setup-it
completely isolates the development system from harm caused by bugs. Even
the TD386 virtual debugger can't prevent a bug from erasing source code and
other files on your disk drive!

If you have two PCs, or if you have two video adapters in your computer,
you might want to read chapter 17 now to learn how to prepare TD for remote
or dual-monitor debugging. You can then use this configuration along with
most of the other information in this book. (You can't debug remotely while
running TD286 and TD386, though.)

Installing a Mouse

You don't have to take any special actions for TD to recognize most popular
brands of mouse input devices. I use a Microsoft "Bus" mouse, but those
from other manufacturers (e.g., Logitech) should work equally well. If you
have a Microsoft mouse, there are two ways to install the required device
driver:

• Insert the command DEVICE=d: "-dir"-MOUSE.SYS in your CONFIG.SYS
file, where d: "- dir "- is the optional drive and directory that contains the
MOUSE.SYS file.

• Or, insert the command d: "- dir "-MOUSE into AUTOEXEC.BAT to install
the MOUSE.COM program stored ind:"- dir "-.

Installing MOUSE.SYS may save a little RAM by avoiding unnecessary dupli
cation of environment variables attached to every TSR that you load. But only
the MOUSE.COM method lets you run the Microsoft CPANEL Control Panel
program to adjust mouse sensitivity. Also, you can enter the command MOUSE
OFF to remove the TSR mouse driver from RAM without rebooting. If you use a

50 Part One: Guide and Reference

mouse only with TD, you can save about 15K of RAM for compiling and editing
by starting the debugger with the batch file in Listing 3.1, TDM.BAT.

Listing 3.1. TDM.BAT.

mouse
td %1 %2 %3 %4 %5 %6 %7 %8 %9
mouse off

Replace td with td286 or td386 if you have the appropriate hardware. Use
the command mouse /Sn where n is a number between 0 and 100 to adjust
sensitivity-that is, the speed of the mouse pointer relative to how much you
move the mouse device. Store TDM.BAT, MOUSE.COM, and TD.EXE in direc
tories listed in a PATH statement. From then on, enter TDM instead of TD to
start the debugger and enable the mouse. When you quit TD, the final com
mand removes the mouse driver from memory, freeing about 15K.

Using a Mouse with Microsoft Windows

Even though Microsoft Windows has its own mouse driver, you still have to
install MOUSE.SYS or MOUSE.COM to use a mouse with TD. When running
under Windows, TD's mouse cursor appears only in a full-screen text window.
When running the debugger in a graphics window, you can't use the mouse to
pull down TD menus and select commands. To do that, you must switch to text
mode (usually by pressing (Alt)-(Tab)) before TD will recognize and use the
mouse driver you installed at boot time. This is a limitation that Windows places
on all DOS applications.

Minimum Configurations

If you' re short on disk space, consult Table 3 .1 for the minimum number of files
required to run TD, TD286, and TD386. Also listed are the files required for
remote debugging with two computers (see chapter 17).

As the table shows, the only required file for all systems is TD.EXE. When
debugging in remote mode, the remote system needs only the
TDREMOTE.EXE file.

If you can spare the room, you should also keep TDHELP.TDH in TD's
directory. This file stores the text for TD's extensive on-line help-if the file is
missing, you'll see the message "Help file tdhelp.tdh not found" when you press
(Fl). You may also want to keep various TD utilities on disk. See chapters 2 and
6 for hints about selecting which utilities you need.

Chapter Three: Getting Turbo Debugger Up and Running

Table 3.1. Minimum files required for debugging.

System

All

80286

80386

Remote

Required Files

TD.EXE

TD.EXE
TD286.EXE*

TD.EXE
TDH386.SYS
TD386.EXE*

TD.EXE
TDREMOTE.EXE
TDRF.EXE

*Required only for protected-mode operation.

Custom Setups

51

After installing TD's files, run the configuration program TDINST to select
various settings and options. Don't put this job off until later-some of the
settings can drastically affect TD's performance; therefore, selecting the right
options for your hardware can improve TD's ability to help you find bugs
quickly.

Some TDINST commands require you to enter text, others let you select
one or more options, and still others are enabled or disabled by a check box.
Many settings are grouped in a dialog box. To select these options, press (Tab)
to move among option groups and (Shift)-(Tab) to move in the opposite
direction. Or, point the mouse cursor at an item to change and click the left
button. Enable check boxes [Xl by pressing (Space) or clicking the mouse. Use
(Cursor Up) and (Cursor Down) to select settings marked with a round dot
(called radio buttons because they resemble the buttons on a car radio). When
you're done making changes in a dialog box, press (Enter) or click Ok to
accept the settings, or press (Esc) or click Cance L to restore the previous
values. (Also see chapter 4 for a more complete description about using dialog
boxes.)

When you have configured TD, use TDINST's Save command to store
your settings directly in TD.EXE or in a configuration file, usually named
TDCONFIG.TD. The next time you start TD, it will read TDCONFIG.TD from
the current directory, in the "Turbo" directory specified with TDINST,
or in the same directory where TD.EXE is located. If it doesn't find a
TDCONFIG.TD file in one of those locations, TD uses the default configuration
stored in TD.EXE.

52 Part One: Guide and Reference

Some people report problems seeing TDINST and TD's displays and cursors,
which can happen on systems that don't support multiple video pages or
that install a single-page ANSI.SYS device driver. Follow these steps to cure
the problem. Run TDINST (even though you can't see its output) and enter
dw(Enter)s(Enter)(Enter)q. This creates a TDCONFIG.TD file with User
screen updating set to Swap, preventing TD from using multiple video pages.
You can also specify the -ds option for TD as explained later in this chapter.

Editing Configuration Files

In time, you'll probably collect many TDCONFIG.TD files in various directories
with custom settings for different projects. If you need to store more than one
configuration file in the same directory, use the DOS RENAME command to
change TDCONFIG.TD to any name you like. You can then pass the file to TD
to select that configuration (see the -c switch later on in this chapter).

For example, to debug a program named PROG.EXE and use a configura
tion named NEW TD, enter td-cnew.td prog with no space between the c and
the first letter of the file name. You can also use a similar command with
TDINST to edit a custom configuration. To do that for NEW TD, enter tdinst
-cnew.td.

Restoring Original Settings

Enter the command tdinst -c with no file name to load a fresh copy of TD's
original unchanged settings. You can then save those changes back to TD.EXE
to restore the program to its virgin state as it existed just after installation. You
can also use this trick to create a TDCONFIG.TD file with the original settings.
Start TDINST with the nameless -c option, then save the configuration in
TDCONFIG. TD.

I discovered the nameless -c trick by accident-this is not a documented feature,
so it may or may not work in the future. Borland recommends recopying the
TD.EXE file from its master disk if you need to install a fresh copy of the debugger.
Actually, that won't work either because the TD.EXE file is compressed, and you'll
either have to rerun INSTALL or use the UNPACK utility (see chapter 6) to extract
the file from the archive. Try tdinst -c first. It's much easier than those
alternatives.

Chapter Tbree: Getting Turbo Debugger Up and Running 53

TDINST Commands

Most of TDINST's commands follow, with additional hints for creating custom
configurations. To save space, a few commands that have obvious purposes and
that are covered in the Turbo Debugger Users Guide are not listed. Most of the
tips here are not in the TD guide.

Colors

The following hints are for using the two TDINST Co lo rs subcommands.

Customize

Select this command to customize display colors. Choose Windows, Di a logs,
Menus, or Screen and use the resulting menus to make your changes. Sample
windows show the results of new settings. Hint: If you press (Print Screen)
frequently to print copies ofTD's display, set Screen:Pattern for background
to Blank to reduce printing time.

Default color set

Choose this command, press (Tab) twice to select View co lo rs, and then press
(Cursor Up) and (Cursor Down) to review colors for various display
samples.

Display

Selecting the Display command in TDINST's main menu brings up the Display
options dialog box with the following options.

Display swapping

Set to None for debugging programs with no display output. Set to Smart to let
TD decide when to switch from its own display to the program's. Set to Always
to switch to the output display between every executed statement. The option
has no effect when debugging in remote or dual-monitor modes. Hint: Use the
Smart setting to reduce display "chatter."

54 Part One: Guide and Reference

Integer format

Most programmers prefer setting this to Both, which displays all integer values
in hexadecimal and in decimal. Hint: Set to Hex or Decimal to reduce screen
clutter, at the expense of not seeing both integer formats together.

Beginning display

Set to Source to view the Module window and your program's source code
when TD starts. Set to Assembler to view the CPU window at startup instead.
When set to Source, TD runs a compiled program's C or Pascal startup code
automatically, pausing at the first source-code instruction. When set to
Assembler, TD does not execute the startup code; therefore, it may not be able
to find program variables until you run enough of the startup programming to
initialize segment registers. Hint: Usually, set this option to Source unless you
want to debug a compiled program's startup code, or if you prefer to have the
CPU window open for assembly language debugging.

Screen lines

Use the 43/50 setting to display 43 (EGA) or 50 (VGA) lines. Use 25 for all other
displays. Hint: To gain a little more memory for symbols, set to 25 and uncheck
Permit 43/50 lines. Borland's documentation claims this can save 8K of RAM,
but I've measured as much as 16K savings with some configurations.

Tab size

This option specifies the size of each tab column but has no effect on source
code created with editors that insert spaces for tabs. Use this option to config
ure TD's display only if your editor inserts tab control codes in text. The
maximum value is 32. (Do you know anyone who actually uses 32-character
tabs?) Hint: Typical values are 3 or 4 for C and Pascal and 8 for assembly
language. Set to 1 or 2 for heavily indented programs. This will pack more text
horizontally in the Mod u le window.

Max tiled watch

This value limits the automatic expansion of the Watches window. It doesn't
affect the number of variables you can watch, only the number you see on
screen at the same time. Hint: Set to 10 or a little higher if you've enabled 43/50
screen lines for EGA or VGA displays. This will still leave plenty of room to view
source-code statements in the Module window.

Chapter Three: Getting Turbo Debugger Up and Running 55

Fast screen update

If you have a CGA display and if you see interference or "snow" on screen
when TD writes to the display and when you press keys, uncheck this option.
Normally, leave the option checked on. Hint: If you can live with the snow on a
CGA display, check this option for faster displays. You may also want to change
this setting when using dual monitors if one of the displays is attached to a CGA
card (see chapter 17).

Permit 43/50 lines

Check this option to debug programs that display in EGA or VGA 43/50-line
modes. Unchecking it forces TD to display 25 lines regardless of the Screen

Lines setting, allowing the target program to display 43- or 50-line text screens.
Hint: Uncheck to conserve up to 16K RAM.

Full graphics save

Check only if you will debug graphics programs. You might have to use this
option to prevent conflicts between TD's text screen and the graphics display.
Hint: Leave the option unchecked to conserve up to BK RAM on some systems.
Check it only if you experience problems with graphics output.

User screen updating

Toggle Other di sp Lay if you have two display adapters (see chapter 17). The two
circuits must use different video buffer addresses. Toggle FL i p pages on if your
display adapter supports multiple pages (most CGA, EGA, and VGA displays do).
Set to Swap only if you experience problems when TD switches between its
display and your program's. Hint: Swap uses extra memory (up to 16K) for
display buffers. Don't enable this setting unless absolutely necessary.

Log list length

Sets the number of lines (from 4 to 200) held in the in-memory log. It has no
effect on log information written to disk. Hint: Make sure this value is at least as
large as the number of Screen Lines you specify so that you can use the
Window: Dump pane to Log command to log the contents of any window.

56 Part One: Guide and Reference

Floating precision

Normally set to 6, this value controls the maximum number of digits used to
display floating point (real) values. You can specify from 1 to 32 digits. Hint:
Higher values let TD display larger and smaller real numbers in decimal nota
tion. For best results, choose a setting that matches the precision of the
precision-point data type your programs use most often.

Range inspect

Change the default value of 5 to expand the number of elements TD shows for
untyped arrays viewed in Inspector windows when you press (Ctrl)-R to
choose the Range command. (Chapter 4 introduces Inspector windows.) Hint:
You need to change this value only if you always modify the default range when
you choose that command. I change it to 10 so I can see more of my arrays in
inspector windows without having to make adjustments.

Options

Selecting Options from TDINST's main menu brings up a submenu of four other
commands.

Directories

Enter the full path name of your program editor in Edi tor program name. When
TD's Module window is active, you can then press (Ctrl)-E to run your editor
that is, if your system has enough memory. TD passes the name of the file
displayed in the Module window to the program you specify. (For other ways to
use this feature, see "Creating a Debugging Workstation" later in this chapter.)
In Source di rec tori es, enter the directory names where you store source-code
files. Enter TD's home directory name in Turbo di rectory. Hint: Change Source
directories if you separate source and .OBJ files after compiling (e.g., after
inserting compiled modules into .LIB files). Change Turbo di rectory if pressing
TD's help key (Fl) brings no help at all when TD's directory is not current.
Otherwise, you can usually leave these two settings blank.

Input & prompting

Set Hi story list length to the number of entries you want TD to save in
prompt boxes. You can then select from the recorded histories to save retyping
responses to most prompts. Hint: 10 is adequate; 15 is better.

Use Interrupt Key to change TD's break key-normally set to
(Ctrl)-(Break). Selecting Other enables the Set Key button, which lets you

Chapter Three: Getting Turbo Debugger Up and Running 57

program any key combination for breaking. You may have to change this setting
to debug programs that need to use the break key. Some people also prefer to
change the key to (F12) on extended keyboards with more than ten function
keys. However, because some keyboards may not generate the expected break
signal, after reprogramming this setting, load a test program that pauses for
input (just execute a readln statement in Pascal, or a scanfO function in C, or
call a DOS input function in assembly language), press (F9) to run the code,
and try your new break key to be sure it works.

Always switch on Mouse enabled unless you are 100% positive you will not
use a mouse. Leaving this option on has no effect even if you don't have a
mouse, so the only reason to disable the switch is if you're debugging a custom
mouse driver that you don't want TD to use.

Turn off Beep on error for silent running. That way, it will be easier to hear
the bugs chewing up your code. (Just kidding.)

Toggle on Keystroke recording to use TD's ability to record every key
stroke and then play that recording back. Hint: Turn this option off unless you
always plan to use the -k option, explained later in this chapter. When this
setting is on, TD will create a .TDK (Turbo Debugger Keystroke) file for every
program you debug. Turn it off if these extra files become a problem-you can
always enable keystroke recording with -k when needed.

Turn on Control key shortcuts to enable (Ctrl) hot keys, which you can
press to issue local commands in windows (see chapter 5). Hint: Turn this one
off only if you need additional keys to assign to macros or if you want to use
WordStar-editing keys such as (Ctrl)-C and (Ctrl)-S, which conflict with those
same hot keys in some windows. Because hot keys make TD much easier to use,
usually, it's best to leave this option on.

Source debugging

Set Language to Source module to let TD choose expression and other data
formats based on the source-code file name. Change to C, Pas ca L, or Assembler
to force the debugger to use one of those formats at all times. Set Ignore symbol
case on if TD doesn't recognize variable names embedded in source code, but
does display those variables in uppercase in the View: Vari ables window-a sign
that TD is treating the symbols as case-sensitive when they're not. Hint: C
programmers who occasionally use Pascal may want to select the C source setting
and then use C-style expressions while debugging Pascal code. Pascal fans who
use C infrequently may want to select Pas ca L. You may also have to change this
setting when debugging code from compilers that TD fails to recognize.

Miscellaneous

NMI intercept lets TD deal with nonmaskable interrupts, which have been put
to all sorts of unwelcome uses ln various PCs and peripherals. If TD hangs or if

58 Part One: Guide and Reference

your system is connected to a network or if TD resets the system clock or if you
experience other odd problems running the debugger (especially intermittent
failures), try unchecking this option. Hint: On systems with multispeed (some
times labeled "Turbo") switches, run TD, quit to DOS, and check that the speed
didn't change. Some computers have lights to indicate the current speed; others
don't. You may have to inspect the setting using a utility supplied with
your system. Or, type dir at the DOS prompt before and after running TD
to see if TD affects performance. If you notice a slowdown, toggle NMI
intercept off.

Uncheck Use expanded memory to let your program (not TD) use EMS RAM
for its own data. Hint: Whether or not your program uses EMS, normally leave
this option checked on so TD can store symbols in EMS RAM. Check it off only
if your code must have access to all available EMS space.

In most cases, leave Change process ID checked-it resolves potential
conflicts between TD and your program's use of DOS function calls and file
handles. Hint: Unchecking this option allows you to trace into DOS function
calls. But if you do this, be prepared for system crashes and, possibly, a reduced
number of file handles available to your code.

OS she LL swap size C Kb) sets the amount of code TD swaps to disk when
you choose the Fi Le: DOS she L L command. The value is meaningless for virtual
mode debugging on 80386 or 80486 systems and for protected-mode operation
on 80286 systems, which never swap program code to disk. Hint: Set to 0 to
swap the entire program to disk.

Spare symbol memory CKb> reserves room for symbol tables loaded with
Fi Le:Symbol Load. Hint: This option has no effect on TD's normal operation,
but high values may waste memory when debugging small programs. For that
reason, the default value of 0 is probably best-you can always use the -sm
command-line option to select symbol-table size as needed.

Turn on Remote debugging only if you will always debug programs with two
systems as chapter 17 explains. Because you can use the -r option to do this
anyway, there's rarely a compelling reason to switch this option on. Leaving it
off gives you the choice of running TD normally or via a remote link-it doesn't
prohibit remote debugging.

Use Remote Link port to select your serial 1/0 port, COM1 or COM2. Hint:
Don't look for other choices; TD can't use COM3 or COM4 for remote
debugging.

Set Link speed to the maximum 1/0 port speed. 40 stands for 38,400; 115
for 115,200 baud-the fastest setting. Always use the 115 Kbaud setting unless
you experience 1/0 problems.

Mode for Display

Use this command to select among five display modes, Default, Color, Black

and white, Monochrome, and LCD. Normally select Defau Lt to let TD detect and

Save

Quit

Chapter Three: Getting Titrbo Debugger Up and Running 59

use a display mode that's appropriate for your system. Hint: If you have a CGA,
EGA, or VGA display, but are using a black-and-white monitor, use the command
MODE BW80 before starting TDINST and then select Black and white or LCD. Do
this before using TDINST's Colors command to customize display colors. If you
still have trouble seeing menus, you might have to type tdinst lb to run TDINST
in black-and-white mode on monochrome displays that emulate CGA hardware.

Select this TDINST main menu command to save a custom setup in one of the
following two ways.

Save configuration file

Choose this subcommand to save all settings in a named file, usually TDCON
FIG.TD. Hint: This command overwrites existing files with no prior warning.
Use extreme caution when changing the default file name.

Modify td.exe

Select this subcommand to save settings directly to TD.EXE. A TDCONFIG.TD
file will override any settings in TD.EXE, so if your changes don't seem to take,
you may also have to erase an old configuration file in the current directory or
in TD's home directory.

Select Quit to return to DOS. If you made any changes to various settings,
TDINST will warn you before quitting if you didn't save them.

Creating a Debugging Workstation

There's a simple reason that many programmers shy away from using
debuggers-they take time to load and execute, and using them can increase
compilation times. Even a few seconds added to the design-compile-debug
cycle discussed in chapter 2 can lead to hours of wasted time over several
months. It's also annoying to have to quit the editor, run the compiler, load the
debugger, quit the debugger, reload the editor, and so on.

One answer is to create your own debugging workstation, using features in
TD and other software to make your editor, compiler, and TD readily available.

60 Part One: Guide and Reference

This section discusses several approaches for preparing a con;i.fortable working
environment that can reduce design-compile-debug cycle times while filling in
work-habit ruts you may have fallen into.

Running Editors and Other Programs

As explained previously, you can enter the path name of your editor with
TDINST's Options: Directories command. Actually, that name can refer to any
program-TD doesn't know MR-ED.EXE from a talking horse. TD passes the
name of the current module displayed in the Module window to whatever

'program you choose to run by this method, a fact that may be useful for
running other programs that accept a file name.

This suggests numerous ways to use this feature. For example, you might
run a compiler and use a pop-up editor to enter program text from inside TD.
That way, you need to load TD only once at the start of the day. Or, you might
run another program to modify data files required by the program being
debugged. This may be faster than quitting TD, entering new data, and then
reloading the debugger to continue testing.

You can also run a batch file by entering its file name as the TD "editor."
When the Module window is active in TD, you can then press (Ctrl)-E to
execute the batch file's commands, which can run utilities, erase temporary
files, and perform other jobs.

Another possibility is to run your editor (or any other program) with TD's
Fi le:Open command. In other words, instead of shelling to DOS or installing
the editor's file name with TDINST, load your editor's .EXE or .COM file as
though you were going to debug it, and then press (F9) to run! When you quit
your editor, you'll be back at TD's display. This trick is especially useful when
running TD286 or TD386 (which frees all or most system RAM for running
programs), and it's often much faster than quitting to DOS to run another
program. You can even run the full TP or TC IDE editors and compilers under
TD's control this way.

Sbelli'ng to DOS

Use TD's Fi le: DOS she l l command to suspend debugging temporarily and
return to DOS. You can then run editors, compilers, and linkers to modify your
program. When done, enter exit at the DOS command line to get back to TD.

If you use this method to edit and recompile program source-code files, be sure to
reload the compiled program with Fi le: Open; otherwise, TD will use the old
code that it previously swapped to disk.

Chapter Three: Getting Turbo Debugger Up and Running 61

You might have to use TDINST's Options:MisceLLaneous command to
increase the amount of memory reserved for OS she LL, normally set to 128K.
Some compilers and editors can run in that small amount of space, but most
require more room. Remember, this setting has no effect when running TD286
and TD386, which disable swapping program code and data to disk when
shelling to DOS.

Installing Language Help

TP and TC programmers may want to install the on-line help systems for those
languages before running TD by changing to the TP or TC directory and
entering thelp at the DOS prompt. Doing this loads the on-line help TSR into
RAM. You can then press (Fl) to use TD's on-line help system or press 5 on the
numeric keypad to get help with Pascal or C. You can also move the cursor to
any source-code statement in a TD window and press 5 to bring up documenta
tion about that command, library function, or data structure.

Listing 3.2, TDH.BAT, shows how to enable language help temporarily
during TP debugging sessions. Enter the batch file and then type a command
such as tdh prog to debug a compiled program PROG.EXE and load TP's on
line help. (This assumes that TURBO.HLP is in the C: "- TP directory.) The third
line removes the help program from RAM after you quit TD. TC users should
change the help file's path name to C: "-TC"- TCHELP.TCH, assuming that TC is
installed in C: "-TC. The batch file requires the TP or TC directory to be listed
in the current PATH.

Listing 3.2. TDH.BAT.

theLp /Fc:\tp\turbo.hLp
td %1 %2 %3 %4 %5 %6 %7 %8 %9
the Lp /U

Microsoft Windows

Probably the best all-around way to design a debugging workstation is to
enhance DOS with a program switcher or multitasker such as Microsoft Win
dows or Desq View.

Whatever setup you choose, you can then run your editor, compiler, and
TD in separate windows and use mouse or keyboard commands to switch
between those and other tasks. For best results, a fast AT or 80386-based system
and a high-quality color EGA and VGA display are practical necessities. You'll
also need at least 2 megabytes of RAM-4 is better.

To run TD under Windows, you must create a .PIF (program information)
file, and run that file to start TD. Or, you can open a COMMAND.COM window
and then run TD and other DOS applications as you normally do from the DOS

62 Part One: Guide and Reference

prompt. Several sample .PIF files are provided with Windows for this purpose.
Use the supplied PIFEDIT program to create TD.PIP and store the file in TD's
directory or with other PIF files. (This program is named PIF Editor under
Windows 3. 0.) When running PIFEDIT, set Required memory to 384; Desi red
to 512 or 640. Other settings are optional, and you'll have to experiment to
achieve the best results for your system.

Running TD

With your code compiled and with TD installed and configured, you're ready
to begin learning more about TD's many features. Starting TD is easy-just type
td plus the name of a program to debug. If that program takes command-line
parameters, add them after the program name. For example, to load a sorting
program that operates on input and output files, enter a command similar
to this:

td mysort input.txt output.txt

Enter td286 instead of td if you've configured an 80286 system to run in
protected mode. Or, enter td386 instead of td for virtual debugging on 80386
systems. (This requires the TDH386.SYS driver to be installed in CONFIG.SYS
as described earlier.)

To debugfilter programs that process redirected input and, usually, write
output to the standard DOS output file, enter a command such as:

td filter < i nfi le. txt

You can also start TD with no parameters, in which case you'll see the CPU

window instead of the usual source-code Madu le view. If you start TD this way
under Windows or another multitasker, you can then use Fi le: Open to load
programs for debugging.

The complete syntax for running TD, TD286, and TD386 with optional
elements in brackets, is:

td[286j386l [option .•.] [program [<) [arguments ..•)]

TD Command-Line Options

The following reference includes all TD command-line options. Because some
of the features are covered in later chapters, you might want to skim this
material now so you can look up specific details later. To view a list of TD

Chapter Three: Getting Turbo Debugger Up and Running 63

options on screen, enter td -h or td -? . To print a reference copy, enter
td-h)prn.

TD286 and TD386 options are also listed in this section. To view them on
screen, use the -h or-? options. This works for TD386 only on 80286 or on
80386 systems with the TDH386.SYS driver installed in CONFIG.SYS. Also,
you'll receive an error message if you try to run these programs while another
protected-mode supervisor (such as Windows or DesqView) is in charge.

To enable an option, type a dash and the option letter in upper- or lower
case between TD and the optional program name. You can replace the dash
with a forward slash (/) if you prefer. Follow the letter with a dash (representing
minus) to disable an option. Follow it with a plus sign (+)to turn that option on.
Separate multiple options with spaces. For example, to load MYPROG.EXE (or
MYPROG.COM) and to disable 43/50-line mode and the mouse, you would
enter:

td -vn -p- myprog

All command-line options take precedence over settings in a TDCONFIG.TD
configuration file and defaults stored directly in TD.EXE by TDINST.

The following TD command-line options are arranged alphabetically. A few
related options are listed together-for example, -do, -dp, and -ds. Optional
arguments are bracketed [like this]. The notation [+ I -] indicates you can type
a plus to enable or a minus to disable this option. (The plus sign is the default
you never have to type it.) Where appropriate, the TDINST configuration
command that's related to an option is also listed in this section.

-cffile]

This option loads a configuration file named file. There should not be any space
between the c and the first letter of the file name. Normally, file is named
TDCONFIG.TD, but you can use any other name. TDINST command: none.
(Use the similar -c option with TDINST to edit a configuration file.)

-do -dh -ds
' -y,

Use only one of these three options at a time: -do to enable a second display in a
two-display system; -dp to select page flipping for multipage video display
adapters (normally, the default setting); and -ds to cure problems when TD
switches between its display and a program's. Use -ds if a program loaded into
TD displays text on multiple pages, in which case you should not use -dp. (Your
program or TD can flip pages, not both.) When debugging graphics programs,

64

-b -~ ' .

Part One: Guide and Reference

if you receive the message "Video mode switched while flipping pages," start
TD with the -ds option and the problem should disappear. (See also the -vg
option.) TDINST command: Di sp Lay: Use.r screen updating :Other di sp Lay
(-do), FL i p pages (-dp), Swap (-ds).

Use either of these two commands to list TD's options to the standard output.
The presence of either option prevents TD from running, even if you also
specify additional options and a file name. TDINST command: none. (You can
use these same command-line options to display TDINST's instructions.)

-if+ 1-J
Enables or disables process ID switching. Use -i- only if you want to trace into
DOS routines. Use -i if you did not check the related TDINST option (thus
allowing DOS tracing) and you don't want to trace into DOS routines for this
debugging session.

Process ID switching allows TD and your program to call DOS functions
and use file handles without conflicts. Disabling this feature with -i- allows you
to trace into DOS, but it also causes your program to share file handles with TD.
Because tracing DOS routines is dangerous and may cause DOS to become
unstable, use -i- with extreme caution. TDINST command:
Options: Mi see L Laneous: Change process ID.

-k[+ 1-J

-l

Enable or disable keystroke recording. When enabled (-k), all keystrokes are
saved in a .TDK file, and you can use View:Execution history to replay all
recorded activity to rerun various test sequences. Unlike simple macros, key
stroke recording saves all input to TD and to the program being debugged;
therefore, you can use this feature to repeat every command that you issue
while debugging.

If you enabled this option with TDINST, you can temporarily disable it with
-k- to avoid creating a .TDK file in the current directory. TDINST command:
Options: Input & prompting: Keystroke recording.

Enable this command to force TD to display the CPU window at startup, and not
to run startup code added by the compiler before the first source-code state-

-m(#)

Chapter Three: Getting Turbo Debugger Up and Running 65

ment in a target program. You can then press (F7) and (F8) and use other
commands to trace the program's initializations. When you do that, you may
have to step through code that initializes segment registers ds and es before TD
will be able to locate variables in the data segment.

Another time when -1- is useful is to view the Module window when TD
starts if you previously used TDINST to force the CPU window to come up by
default. TDINST command: Display:Beginning display.

Use -m to set TD's heap size to #K. For example, -m12 allocates a 12K heap.
Normally, TD sets aside 18K for its heap, in which it stores various dynamic
items, including command histories and breakpoint information. Use -mO to
allocate a maximum 18K heap. In some cases, a slightly smaller heap will allow
TD to function normally but will free enough room for a large symbol table.
This won't always work, but it's worth a try. The smallest heap TD can use is 7K.
TDINST command: none.

-pf+l-J
Unless you turned off mouse support with TDINST (which is rarely necessary),
you'll never have to use this command. TD automatically recognizes and uses a
mouse if you have one. But you can use -p- to disable mouse support tempo
rarily if that ever becomes necessary, for example, to debug a custom mouse
driver. TDINST command: Options: Input & prompting: Mouse enabled.

-r{+ 1-1
Start TD with -r to activate remote debugging. You'll also have to connect your
two systems with a serial cable and start TDREMOTE on the remote computer.
See chapter 17 for more information about debugging in remote mode.
You can't use this option with TD286 or TD386. TDINST command:
Options:Miscellaneous:Remotedebugging.

-rp(#)

When using -r, you can also use -rpl or -rp2 to select COMl or COM2, the
only two 1/0 ports that TD supports for remote debugging. Usually, you'll
use -rp to test your remote hookup as chapter 17 explains, and then run TDINST
to record the correct port in TD. EXE or in a configuration file.

66 Part One: Guide and Reference

You can't use this command without also using -r. TDINST command:
Options :Mi see l laneous: Remote link port.

-rs(#)

Similar to -rp, when using -r, you can also specify -rsl (9600 baud), -rs2 (38.4
Kilobaud), or -rs3 (115.2 Kilobaud) to set I/O transfer speed. Usually, you'll use
this command to test a remote hookup and then run TDINST to record the
correct speed in TD.EXE or in a configuration file. Also, as with -rp, there's
never any reason to use -rs without also using -r. TDINST command:
Options: Mi see l laneous: Link speed.

-sc[+ 1-1
Enable the ignore-symbol-case option with -sc to treat upper- and lowercase
symbols equally (the default). Disable with -sc- to make case significant so that
myVar and MyVAR are considered to be different symbols. Either way, this option
affects only programs that are compiled and linked with your language's
case-sensitive switch on. Most C but not Pascal programs are case-sensitive.
Assembly language programs are usually not case-sensitive unless linked to
C code. TDINST command: Options: Source debugging: Ignore symbol case.

-sd(dir)

Use -sd to specify an alternate directory where you store your source-code files.
To list more than one directory, enter multiple -sd commands such as
td -sd '\.include -sdc: '\.lib. All specified directories are added to those listed
in a configuration file. TDINST command: Options:Directories:Source
directories.

-sm(#)

This option allocates from 0 to 2 56K of memory for a symbol table to be loaded
by Fi le: Symbol load, usually to debug resident device drivers and TSRs (see
chapter 19). Before using this option, type dir to list the .TDS file name that
contains the symbols stripped from a code file by TDSTRIP or prepared from a
.MAP file by TDMAP. Then, use -sm to allocate about 1.5 to 2 times the size that
DIR reports for the symbol-table file. For example, if DIR reports the .TDS file
size to be 8750 bytes, use the command -sml3. If you receive an error when
loading the symbol table, quit TD and increase the -sm value until you get a
successful load.

Chapter Three: Getting Turbo Debugger Up and Running 67

Because the allocated space is added to TD's normal symbol-table room,
there's no reason to use -sm except when loading a symbol-table file from a
.TDS file. TDINST command: Options:Miscellaneous:Spare symbol memory.

-vg[+ 1-1
Specify -vg to debug graphics programs, especially if you receive error mes
sages or experience problems when TD switches between its display and the
program's. You might also need to use both -vg and -ds to debug graphics
programs successfully. (Note: Debugging graphics programs is much easier with
two computers or two monitors-see chapter 17 for details.) TDINST com
mand: Display:Full graphics save.

-vn[+ 1-J
If you've enabled 43/50-line mode with TDINST for an EGA or VGA display, use
-vn to temporarily disable the extra-length mode and display TD in 25 lines.
The option has no effect if 43/50-line mode was disabled with TDINST. In other
words, you can't use -vn- alone to switch on 43/50-line displays, you can use -vn
only to switch them off. TDINST command: Di splay:Screen Lines.

-vp[+ 1-1

~y(#)

Use -vp to enable EGA palette save mode. This option is necessary only if you
experience problems with EGA colors. Normally, it's not needed. TDINST
command: none.

This option can help strike a balance between performance and memory
savings by adjusting the size of TD's overlay buffer from 20K (-y20) up to 200K
(-y200). (The default value is SOK.) Smaller values cause TD to load overlays
more frequently from disk, thus reducing performance while making more
memory available for a program and its symbols. Larger values improve TD's
performance but decrease the maximum size of a target program you can load.
This option has no effect with TD286 or TD386, which do not use overlays.
TD~NST command: none.

68 Part One: Guide and Reference

-ye(#)

If expanded memory is available, TD will use up to 192K (twelve I6K pages) for
its overlays. If that doesn't leave enough expanded memory for your program's
own use, you can specify this option to limit how much RAM TD should use in
I6K chunks. For example, -yes allocates eight 16K pages, or 128K. To debug
programs that need access to all available EMS RAM, specify -yeO to disable TD's
use of EMS for overlays. Like -y, this option has no effect when used with TD286
or TD386. TDINST command: Options :Mi see l laneous: Use expanded memory.

TD286 Command-Line Options

TD286 recognizes all of the same options available to TD except the overlay
options -y and -ye (TD286 doesn't use overlays) and the remote-mode options
-r, -rp, and -rs. To debug in remote mode, you must use TD.

TD386 Command-Line Options

The following options are available for TD386 in addition to those listed for TD
(except where noted). Like TD286, TD386 does not recognize the -y, -ye, -r,
-rp, and -rs options.

To use TD386, you must have an 80386- or 80486-based system, and you
must install the TD386H.SYS device driver as explained under "80386 Installa
tion" near the beginning of this chapter.

-bf+ 1-J

-e(#)

Specify -b to allow (Ctrl)-(Break) to interrupt a hung program even when
interrupts are disabled. This is so helpful, you may want to enable this option
permanently. To do that, type td386 -b -wand press (Enter) to accept the
default path name where TD386.EXE is located. Or, enter a different file name
ending in .EXE to preserve the original file. Be careful when entering this
command-the option overwrites any existing file of the name you specify
without warning.

Use -e to specify an amount of extended memory in 1,024-byte increments that
other programs use. Normally, TD386 loads TD into extended memory starting

Chapter Tbree: Getting Turbo Debugger Up and Running 69

at the 1-megabyte address boundary. The -e option moves TD's load address
higher to avoid overwriting another program in that same space. For example, if
you are running a 250K RAM drive in extended memory, run TD386 with the
option -e250.

Disk cache programs such as PC-KWIK load from the top of available
extended RAM down; therefore, you don't have to use -e to reserve space for a
cache-a common misconception. But you do have to tell the cache not to
grow down past the 640K limit in order to reserve enough room to run TD286
in protected mode or for virtual debugging with TD386. To do this with
PC-KWIK, use an option such as /E:1724 to reserve 700K in low extended RAM
for TD386 to use. (Note: That's a PC-KWIK, not a TD, option. Other disk cache
programs may have similar options to restrict their use of extended RAM at
lower addresses.)

1xooo

-w

Use -f to set the expanded memory page frame address to a hex value x. For
example, to specify EOOO as the page frame, use the command -fEOOO. You'll
have to experiment to find. a value that works for your system. Try also -fCOOO
or -fDOOO.

This option converts additional extended memory over the amount used by
TD386 to EMS RAM. TD can then use this RAM to store a program's symbols.
However, the converted memory is available only to TD-your program can't
use this memory for its own EMS purposes. Use the option to debug large
programs when you run out of room for the symbol table.

Hint: You do not have to use this option if you have an expanded memory
card or emulator in your system. Also, the option will not work unless you also
enable TDINST's Options: Mi see l laneous: Use expanded memory setting.

To avoid having to enter the -b, -e, and -f TD386 options described in this
section for each new debugging session, specify -w to modify TD386.EXE's
default values. For example, if you normally use -b, -e512, and -fEOOO with
TD386, change the defaults to these values by entering the command td386 -b
-e512 -fEOOO -w. Then, press (Enter) to accept the default path name where
TD386.EXE is stored. Or, enter a different file name ending in .EXE to preserve
the original file. Be careful when entering this command-the option doesn't
warn you before overwriting any existing file of the same name. The new
settings take effect the next time you run TD386.

70

Summary

Part One: Guide and Reference

This chapter lists tips for installing, configuring, and running TD. Every buggy
program presents unique problems, and you may need to create many different
configurations. Use the TDINST utility to select options that work best for most
programs. Then, create TDCONFIG.TD files (either with TDINST or TD) to
fine-tune the default settings.

TD can run on plain PCs and XTs or on AT-class systems with extended
memory. TD286 can load most of the debugger into extended RAM, freeing
system RAM for debugging large programs. TD386 can load a program and TD
into virtual 8086 machines to free even more room for debugging. This also
isolates the debugger from TD, thus preventing wayward instructions from
overwriting TD's own code. All versions can use expanded RAM to store TD's
overlays and a target program's symbol table.

A good way to use TD is to create a debugging workstation under control of
Microsoft Windows, DesqView, or a similar multitasking DOS add-on. Or you
can use the information in this chapter to run editors and other programs
directly from TD. Anything you can do to limit the amount of time spent
switching between editors, compilers, TD, and DOS can reduce the tedium of
the design-compile-debug cycle.

This chapter also explains how to enable a mouse, how to load a language's
on-line help for use inside TD, and how to use various command-line options to
select debugging features.

Windows, Menus, and
Hot Keys

Chapter 4

LJRBO DEBUGGER is one of the most complex software packages that many
programmers will ever own. Maybe that's why some are put off initially by
TD's numerous windows and hundreds of commands. They mastered their
compilers and editors in a few hours-why should it take so long to learn how
to use TD?

The source of this common complaint, I believe, is that most programmers
begin to learn their way around TD (and other debuggers) only after they've
exhausted all other avenues for finding bugs in their code. Then, with deadlines
looming, they turn to TD for help and are frustrated by their unfamiliarity with
TD's windows, menus, and hot keys at a time when they're already burned up
about not being able to find those blasted bugs.

If there's a recipe for failure, that one belongs in the haute cuisine of
disasters. So, instead of waiting for trouble to boil before trying out TD's
commands, you'll find debugging easier if you blend TD into your daily
programming habits, and use it as a tool to examine code even before bugs
occur. Then, when disaster strikes, you won't have to waste time learning how
to set breakpoints, add variables to the Watches window, and enter expressions.

To help you master TD, this chapter is organized as a reference to TD's
windows, menus, and hot-key commands. Portions of most TD displays are
reproduced here, making this a good chapter to read when you're away from
your keyboard. Don't try to memorize every detail that follows-skim the
material your first time through so you can return for specific information later.

Sample Program

The TP sample spreadsheet program TCALC or the TC equivalent MCALC on
your language master disks makes good multimodule demonstration pro-

71

72 Part On.e: Guide an.d Ref eren.ce

grams for experimenting with TD's commands. (I used TCALC to prepare the
figures in this chapter.) To compile TCALC with TP's command-line compiler,
enter:

tpe /v /b teale

To compile TC's MCALC, enter:

tee -v mealc meparser mcdisply mcinput meommand meutil

Then, enter td teak or td mcalc to load the program into TD. Press (F9)
to run the program, (Ctrl)-(F2) to reset the demo to the beginning, and
(Alt)-X to quit TD. (We'll cover these commands in detail later, but that much
will get you started.)

Unfortunately, there's no similar sample code for TASM users. Instead, you
can use either one of the assembly language demos on TASM's master disk or a
listing from an assembly language book. (CHARS.ASM or DT.ASM from my
book, Mastering Turbo Assembler, is a good choice.)

The Scoop on Scope

All identifiers have a scope, a limit on their visibility to other parts of a
program. Some identifiers are global-their scope extends throughout the
entire program. Others are local-they are visible only while their declaring
routines are active.

TD respects identifier scope. It always lets you specify global identifier
names-for example, to inspect the value of a variable. But TD can't find local
variables unless their declaring modules or routines are active. If you try to
enter an identifier outside of its scope, you'll probably see a value listed as four
questions marks ????, or you'll receive an error message that the symbol can't
be found. It is possible to override the current scope by prefacing a symbol with
its module, procedure, or function name, separating identifiers with a # or a
period. (See chapter 9 for details.)

Sometimes, TD's handling of locally scoped identifiers leads to problems.
Although you can enter such identifiers at any time, TD recognizes them
only when the declaring code runs. But TD can't know whether an identifier
outside of its scope is spelled correctly, and any typing mistakes will go
unnoticed. Don't be concerned about this, just be aware of how TD works. If
TD refuses to recognize an identifier, make sure you've spelled it
correctly.

Chapter Four: Windows, Menus, and Hot Keys 73

Choose, or Select, Your Weapon

In general, to select something means to highlight it with a keyboard or mouse
command. To choose something means to select the item and then enter a
command that activates it. For example, you can select a command from
a menu by moving the highlight bar to that command's name. But you choose
the command by double-clicking its name or by pressing (Enter) after you
select it.

The difference between selecting and choosing an item isn't always clear,
but the distinction may be important at times.

Turbo Debugger's Display

TD usually begins with a display similar to the one in Figure 4 .1. For reference,
various window parts, which will be described later, are identified in the
diagram. Global menu commands are along the top. (The triple-line symbol =
at the far left represents TD's System Menu. Other menus have names like Fi le

and Data.)

~
~ Fl le Vlai R1r1 Bred<polnts Doto Optloos Wlrdow
~IJ=lbLle: TCflC File: TCflC.Pffi 15===========

Help

Active
Window

Current
Line

{ Tt.rbo r.aJc }
{ Cql\l"Joj-it (c) l~ by Borlcrd lntemcrtlcn:il. In:. }

ITOfT(TI TCal c;
{ Tu-bo Pascal 5.5 cbJect--orlented excnple rialn ro:iJle.

ObJect--orl ented spr ecdsheet i:rOQrcn.
See TCfl.C. llx: f cr 11cre I n f ornct I on ctiout th I s exmp I e.

}

{$S-} ---1(Mouse C11rsor)

uses Ta\n;

~ b_egln
-Run;
erd.

{ Cal I 11C1I n procecire. The i:rog-cn Is des I gied thl s "O:I to ru<e
{ ccnpl les faster. Sln:e the rialn swrce fl le gets ccnpl led every
{ every tll'IE?, it OO<es sense to ru:e the fl le as 51'1'.111 as possible.

~~--l«:it~c-hes~~~~~~~~~~~~~~~~~~~~2=-===i~~--'
Fl-He I F2-Br ,t F3-Mod F~-Here F5-Znorn Ffdle·t F7-T1 rn-P FC:-St>, F9-R"n FlfHlen11

"cf unction-key Reference I Message Line)

Figure 4.1. Typical starting display.

74 Part One: Guide and Reference

To the right of the global menu names is the Activity Indicator, which tells
you what TD is doing. For example, in Figure 4.1, TD is READY to accept
commands. Table 4.1 lists the meanings of other activity indicators.

Table 4.1. Activity indicators (upper left display corner).

Indicator

ERROR

HELP

MENU

MOVE

MOVE/RESIZE

PLAYBACK

PROMPT

READY

READY. ..

RECORDING

RUNNING

STATUS

WAIT

Activity or Meaning

Error message showing; (Esc) to clear

On-line help is active; (Esc) to return

Menu line is active; (Alt)-(FIO) returns

Hold mouse button and drag to move window

Use cursor movement keys to move or resize window

Playing back recorded keystrokes

Answer dialog box prompt; (Esc) clears

Cursor in window; TD is ready for commands

TD is sorting the symbol table; wait

Macro recording in progress; (Alt)-(Minus) stops

TD is running, tracing, or stepping code

Status dialog box is active; (Esc) clears

Code is running or TD is busy; wait

The bottom display line shows TD's hot keys and also displays messages from
time to time. Hold down (Alt) or (Ctrl) to see additional keys. Between the top
and bottom two lines is TD's display field, which is normally filled with one or
more windows displayed next to each other either in tiled fashion or overlapping.
As Figure 4.1 shows, TD starts with two windows completely occupying this
area-Modu Le and Watches. There's nothing sacred about this initial organization,
and you can change it to any other configuration by using an Options command
to save a TDCONFIG.TD configuration file, as explained later.

If instead of Module and Watches TD displays the CPU or other window
setup initially, the cause might be one of the following:

• You didn't compile and link your code with the correct options to add
debugging information to the .EXE or .COM or other code file. See chapter
2 for help.

• TD can't find the source code files for the program. Use TDINST as
explained in chapter 3 to specify a path to those files, or use an Options
command as explained later in this chapter.

• You forgot to delete an old TDCONFIG. TD configuration file in which you
saved a nonstandard window arrangement. Erase this file in the current
directory or in TD's home directory.

Windows

Menus

Chapter Four: Windows, Menus, and Hot Keys 75

• You used the -1 command to start TD, causing the debugger not to execute
the program's startup code. Use Run-menu commands to continue, or use
the View:Module command to open the Module window to see your source
code.

All TD windows are one of these four varieties:

• Menus

• Views

• Dialog boxes

• Inspectors

All four window kinds are related, but individual windows vary widely in
the number and kinds of elements they contain. For example, some windows
can move; others can't. One window might have a mouse scroll bar; another
won't.

The following information explains in general how to use TD's four kinds of
windows. After that are details about global menus, commands, and hot keys.
Chapter 5 covers individual View-menu windows with their associated dialog
boxes and commands. Inspectors are discussed as needed to explain how to
investigate language data structures.

TD displays three kinds of menus, from which you can execute various
commands:

• Global pull-down menus

• Local pop-up menus

• Submenus

There are nine global pull-down menus listed along the top of TD's display
(see Figure 4.1). To open a global menu so you can see its commands, press
(FlO) and use (Cursor Left) and (Cursor Right) to highlight the menu you
want. Then, press (Enter) or (Cursor Down) to open that menu. Or, instead
of pressing (FlO), you can press (Alt) plus the first letter of the menu name.
You can also click the left mouse button after moving the mouse cursor to the

76 Part One: Guide and Reference

menu name. To open the System menu, press {Alt)-{Space) or click the
=symbol.

Hint: Because Microsoft Windows reserves (Alt)-(Space) for its own use, under
that program, press (Alt)-F(Cursor Left) to open the System menu.

If you have trouble opening a menu, the reason is probably that another
window is expecting a response from you. Supply that response, or press (Esc)
(possibly more than once), and then try to open the menu again.

When a global menu opens, it displays a list of commands (see Figure 4.2).
Inside the menu, a highlight bar shows which command you'll execute if you
press (Enter). Press (Cursor Up) and (Cursor Down) to move the high
lighter up and down and (Home) and (End) to highlight the first and last
commands. You can also use WordStar control keys A, S, D, F, E, and X to move
around in menus. Or, press the highlighted letter key to execute a menu
command directly. For example, to execute the Fi le menu's Resident
command, open that menu and press R.

= 111111 Uiai fln lft(j(points Data [\:itions IJindoo..o Help IDlllll
[I rau;.PAS lB==========l=[t][' :

LllQI
Ch:noe dlr ••.
Set Info .••
!Ill she I I

Resident
&Jibol loo:! ...
Table relocate .••

Q:.ilt Alt-X

Figure 4.2. Sample global pull-down menu.

Hint: The bottom display line describes the highlighted command in all menus,
and a good way to learn more about TD is to open various menus and read those
notes. For more extensive help, highlight a command and press (Fl), then follow
directions for using TD's on-line help window. (See "Help Menu" later in this
chapter.)

To execute a command in an open global menu, you can also click the
mouse cursor anywhere on the command name. Or, if you used the mouse to
click open a menu, continue to hold the mouse button down while you drag the
highlight bar up and down. Then, release the button when you get to the
command you want. Press (Cursor Left) and (Cursor Right) to close
the current menu and open one of its neighbors. Press (Esc) to close the menu

Chapter Four: Windows, Menus, and Hot Keys 77

and return to whatever you were doing. Or, you can click the mouse cursor
anywhere outside of the menu border to close an open menu.

Inside the menu, as Figure 4.2 shows, some commands may be separated
by horizontal lines. Commands within a segmented area are related in some
way, but the lines have no special meaning. Also inside the menu are any hot
key assignments, shown to the right of a menu command. For example, in
Figure 4.2, <Al t>-X is listed as the hot key for the Quit command. As you
execute various menu commands, pay attention to these hot keys, which you
can press to execute commands without opening their menus. Eventually, you'll
memorize the hot keys for commands that you use most frequently. It's much
easier to press (Alt)-X to quit TD than to type (FlO)fq or other keys that do
the same thing.

Notice also that some commands-for example, Open and Change di r in
Figure 4.2-are followed by an ellipsis(...). This symbol tells you that executing
the command opens a dialog box for selecting various TD features.

This is a good place to point out a key TD feature. It's possible to execute many of
TD's commands in uncountably different ways. Because different people have
different skills and equipment-some are good typists, some have a mouse, others
prefer using the keyboard-individuals will develop their own ways to run TD.
Experiment with as many different possibilities as you can to find the commands
that work best for you. I tend to use the mouse and keyboard about equally. So,
the instructions here may reflect my personal bias. You may find other command
sequences that work better for you.

Local pop-up menus belong to individual windows and list the commands
that you can give to perform various actions on the information displayed inside
that window. Each window has one or more local menus that pop up close to
the text or mouse cursors, not in fixed locations. To open a local menu, first
activate the window you want to use (make sure the window's border is a
double line), then press (Alt)-(FlO). ((Ctrl)-(FlO) also works.) For example,
to open the Watches local menu (see Figure 4.3), press (F6) to activate that
window and press (Alt)-(FlO).

i rtp I e11e11ta I .;jlloiiitDchill•l II 1i#iil
vcr Rerwove

Sovecfxi Delete a 11

Figure 4.3. Sample local pop-up window.

78 Part One: Guide and Ref ere nee

If you have a mouse, you can click the right button to open a local menu for
the active window. To activate a different window, click the mouse cursor inside
that window or anywhere on its border. To activate an inactive window and
open its local menu, move the mouse cursor inside the window and click the
right button twice. You can then choose commands by clicking their names, or
hold down the button, drag the highlight bar, and release the button to execute
the command.

When a local pop-up menu is open, execute commands using the same
keystrokes and mouse movements described earlier for global menus. As with
those menus, the bottom line describes each highlighted local command, and
you can press (Fl) for more extensive on-line help. Unlike global menus, local
pop-ups can also move. Just click and drag the window border with a mouse, or
press (Ctrl)-(F5) and use (Enter) and cursor movement keys to move
windows and uncover whatever was hidden below. (See "Views" for more
details about moving windows with keyboard commands.)

Also unlike global menus, all local menu commands have associated hot
keys. To execute a local command directly, just press < Ctrl) and the high
lighted letter of that command. For example, to execute the De Let e a LL
command in Figure 4.3, press (Ctrl)-D. When the local menu is closed, you
must press (Ctrl) plus a command's hot key. When the menu is open, press
only the hot-key letter. (You can use TDINST to disable local command hot
keys, as explained in chapter 3.)

Both global and local menus may have additional submenus (see Figure 4.4).
A solid triangle (..,..) to the right of a menu command-as in the Another and
Macros commands in the figure-tells you that executing the command opens a
submenu, which lists additional commands. Press (Esc) to close the submenu
and return to the underlying menu. Or, press (Alt) and the letter of another
global menu to close both menus and open another. To do the same with a
mouse, either dick on another menu name or click anywhere outside the menu
border.

l!m Pui ElreoKpoints

I BreaKpo I nts
Stac:K
LOQ

/V
II

/V

I Execution hlstcry I
l·~=w ~
1~·,· I .

WWW Wincb.J Help

L77 ... 1; Saree

lrente... Alt=
Stop reccrdlno Alt -
Reniove
Delete all

Figure 4.4. Two sample submenus.

Views

Chapter Four: Windows, Menus, and Hot Keys 79

Another way to close a submenu is to click and hold the mouse button
down while pointing to a visible command in the underlying menu. For
example, with the Opt i ens menu's Mac res submenu open (see Figure 4.4), you
can click and hold on Language or Mac res in the underlying menu to close the
submenu. Then drag the mouse to another command or move it outside the
menu and release to close both menus.

Views are TD's main windows-places where most debugging activities occur.
There are 14 of these views, each opened by executing a command from the
global View menu. The following information generally applies to all 14 views.
For details about individual view windows, see chapter 5.

Whats in a Window?

Figure 4.5 illustrates the parts ofa typical View window-in this case, a Module

window that displays the source code for the OBJECTS.PAS file, positioned to
line 205. Most View windows appear similarly, but they are different sizes and
shapes and have different contents.

Active Window
(Double-Line

Border)

Window Number

[J::::Ho le: IB..ECTS Fi le: OOJECTS.PAS 205~====3=
destn.dcr Strem.Dene;
beoin

Freel1e!l<Proc:Li st, T ~t • Si zeOf<ffroc));
Freel1e!l<T\,l'.Jel.ist, T~t • SizeOf<l«Jrd>>;

end·

procedo..re Strem.Error<COOe: lnteQer>;
beoln

Status :• COOe;
end·

Horizontal Scroll Bar Window Contents

Figure 4.5. Parts of a typical View window.

Resize
Handle

Only one window at a time is the active window-identified by a double
line border. All input and commands from you affect the active window.
Inactive windows have single-line borders. Output from TD may appear in
active and inactive windows, but commands affect only the active one. For

80 Part One: Guide and Reference

example, see the Watches window near the bottom of the display in Figure 4.1.
Even though this window is inactive, TD still updates its contents when
vf!riables change values.

There are five ways to activate a specific window:

• Choose the window from the Window global menu. Open that menu in the
usual way and select a window name as you do other commands. Or, with
the Window menu open, press the digit key of that window's number.

• Open the window from the View menu. A new window always opens as the
active window. If that window is already open, it will become active.

• Press (F6) to cycle through all open windows, activating each window in
turn.

• Press (Alt)-n where n is an open window's number.

• Click the mouse cursor anywhere inside a window or on its border. Of
course, this works only if you can see at least part of a covered window. To
activate a window that's completely hidden behind another, you must use
one of the other four methods or move the other windows aside.

Mouse Window Commands

Many of the elements identified in Figure 4.5 are appropriate only if you have a
mouse. You can still perform all TD commands directly from the keyboard
see "Keyboard Commands" later in this chapter. But a mouse makes life with
TD windows so much easier, you may want to consider adding one to your
system.

Most mouse movements are intuitive, and I assume you know how to move
the mouse, click the buttons, and click and drag (hold the mouse button down
while you move the mouse). The following tips are for using a mouse with TD
windows (refer to Figure 4.5 as you read these):

• Click on the close-window button (upper left corner) to close the window.
You don't have to press the button in the exact middle-anywhere on the
two square brackets or the rectangle inside will do.

• To move a window, click anywhere on a single- or double-line border, hold
the button down, drag the window outline to another location, then release
the button.

• To resize a window, click and drag on the lower right single-line corner (the
resize handle). When the window outline is the way you want it, let go of
the button. If the window does not have a vertical scroll bar, you can click
and drag anywhere along the right border to resize that window.

• Click or release the mouse button outside of an area to cancel a command
chosen by accident. For example, suppose you click on the zoom down

Chapter Four: Windows, Menus, and Hot Keys 81

button when you meant to hit zoom up. If you're quick enough to realize
your error before releasing the button, move the mouse aside and then
release to cancel the command. (This trick also works with menus. When
clicking and dragging in a menu, move the mouse cursor outside of the
menu window and release the button to not choose any commands.)

• Double-click anywhere on the top window border to zoom a window to
full screen. Double-click again to zoom back to the previous window size.

• Zoom buttons may appear in one of three styles (see Figure 4.6). Click on
the zoom-up arrow to enlarge that window to cover the entire screen.
Because that makes the window grow to its maximum size, it will then have
only a zoom-down arrow. Click on that button to restore the window to its
previous size. When both zoom-up and zoom-down arrows are visible,
click on the zoom-down arrow to shrink the window to a small icon, which
TD automatically positions in the lower right display corner. Icons have
only zoom-up buttons. Click an icon's zoom-up arrow to restore the win
dow to its previous size.

Full Zoom Medium Zoom Icon

r·J=~rn

Figure 4.6. Three zoom-button styles.

Using Scroll Bars

Many windows have vertical and horizontal scroll bars, which you can use to
pan a window's contents up, down, left, and right. Some windows have only
one bar and not the other. Others do not have scroll bars. The presence of a
scroll bar is significant-it tells you that there is more to see beyond that
window's borders. If a window doesn't have any scroll bars, then its contents
are displayed in full.

Figure 4. 7 shows a typical scroll bar, in this case a horizontal bar. (Vertical
bars operate similarly, but they pan a window's contents up and down instead
of left and right.) Click the left mouse button on one of the small triangles at
either end of the scroll bar to scroll the contents one line (or other unit) at a
time. Click repeatedly to scroll multiple lines or hold the mouse button down
for a moment to scroll continuously until you release the button or until you
move the mouse cursor aside.

82 Part One: Guide and Reference

Scroll Left Slider Scroll Right

l r::La r 1111uf
Page Left Page Right

Figure 4. 7. Typical scroll bar.

All scroll bars have a slider, a rectangular block that travels between the two
triangles at the ends. The slider's position represents the relative position of the
window's contents. For example, if the slider is about one-quarter of the way
from the left, you can assume that there's about three-quarters more infor
mation hidden to the right. If the slider is in the middle, you're seeing the
content's midpoint (more or less). When the slider is at either end of a scroll bar,
you can assume you've reached the end of the window's contents in that
direction.

To move to a specific location, click and drag the scroll bar slider and
release the button when the slider is near the location you want. Because the
slider only approximates the window's position, you'll probably miss the exact
spot you want, so use this method to get close to where you want to go,
and then use other scroll-bar commands to fine-tune your destination. To
page left, right, up, and down, click inside the shaded parts on either side of the
slider.

Hint: A handy trick is to position the mouse cursor to one side of a slider and click
the left mouse button several times while being careful not to move the mouse. In
most windows, this will jump back and forth between two pages of information
similar to pressing (Page Up) and (Page Down) repeatedly.

To page rapidly in any direction, click and hold the mouse button down
inside the shaded region to either side of the scroll-bar slider. The window
contents will continue to scroll in the same direction even after the slider
passes the mouse cursor, making this a great way to scan quickly through a long
source-code listing.

Window Panes

Many windows are divided into two or more panes. For example, as Figure 4.8
shows, the CPU window has five panes separated by vertical and horizontal
lines.

Like windows, only one pane inside a window is active. To activate another
pane, click the mouse button inside that pane's borders. Sometimes, an active

Chapter Four: Windows, Menus, and Hot Keys 83

~l]::::(JlU ~ [tm:J::i
ax EBE c-0

cs:00413 ff outsw bx EBE z-0
cs: 00'\C 7279 Jb 00:7 ex EBE s-0

TC!Ui.83: OO;iln dx EBE o-e
cs:004E 55 push bp sl EBE p-0
cs:OOf ffE5 l10V bp,sp di EBE o-e
cs: 0051 B:EC02 Sib sp,llE2 ~EBE 1-1

TC!Ui.84: Ser .Pr i ntErrcr<ErrfuHer.:ry); sp :FFE d-0
cs:0054 EFOOOO l10V di,0000 ds 7716
cs:0057 EE push cs es 7716
cs:OOSB 57 push di SS Efl78
cs:0059 EF!HlS l10V di, 05EJI cs 77';?£
cs:OOSC lE push ds Ip 0000

ds:OOOO CD 20 00 ffi 00 ~ F0 FE = a U:I
ds:OOOO lD F0 03 01 53 31 'll 01 e:lll:IJ-¥1:1
ds:0010 53 31 Ill 02 70 37 7A 29 S-il;i7z) SS :4800 0000
ds:0018 01 01 01 00 02 FF FF FF EDI I ss::FFE~

Figure 4.8. A CPU window is divided into five panes.

pane will have scroll bars-inactive panes never do. The active pane also will
have a flashing text cursor or a highlight bar (or both).

Some window panes are strictly informational, for example, the right pane
of the Breakpoints view. Such panes display various facts, but you can't activate
them with the mouse.

Keyboard Window Commands

If you don't have a mouse, or if you don't like to use one, you can also drive TD
with keyboard commands. These notes explain a few "key" concepts for
manipulating windows. For more details on keyboard commands, see "Hot
Keys" later in this chapter.

• Press (F6) to cycle between all open windows, activating each in turn.
There are other ways to activate windows, but this key is usually the fastest.

• Press (Alt)-(F3) to close an active window. If you do this by accident for
any window opened from the View menu only, press (Alt)-(F6) imme
diately after to reopen the closed window. (You can only recover one
closed window this way.) Note: Previous TD versions assigned (F3) as the
window-close key. This was changed to a double-key assignment to make it
harder to close windows accidentally.

• Press (F5) to zoom a window to maximum size. Press (F5) again to zoom
back to original size. To zoom a window to an icon, use the Window menu's
Iconi ze/restore command. After that, you can activate the window and
press (F5) once or twice to zoom to maximum and original sizes. Execut
ing Iconize/restore on an active icon also zooms the window to its
original size, but pressing (F5) is usually easier.

84 Part One: Guide and Reference

Moving Windows

Press (Ctrl)-(F5) to switch TD into "window-adjust" mode for the active
window. (Note: In previous TD versions, (Scroll Lock) activated this mode.)
After the window border changes to an unbroken single line, the bottom
display line shows a list of some window movement and sizing keys. Here's a
complete list:

• Press the cursor movement keys to move the window outline to a new
position, then press (Enter) to fix the window at that spot. If you change
your mind about moving the window, press (Esc). You can't move a
window beyond TD's display limits-all windows must be fully visible.

• Use named function keys to move windows in giant steps-(Home) to
move fully left, (End) to move right, (Page Up) to move up, and
(Page Down) to move down. These keys make it easy to move windows
quickly out of the way or to send multiple windows to opposite corners.

• Press and hold (Shift) while using the cursor movement keys to resize a
window. In general, you can change a window to any size, although some
windows restrict their minimum and maximum dimensions.

• Press and hold (Shift) and use named function keys to resize windows to
their minimum and maximum limits-(Home) for the narrowest size,
(End) for the widest, (Page Up) for the shortest, and (Page Down) for
the tallest. (On my keyboard, these commands work only for these named
keys on the numeric keypad with the (Num Lock)-key light off, not the
similar keys on an extended keyboard.)

Context Sensitivity

An important feature that applies to all TD windows is the concept of context
sensitivity. At most times, TD is able to recognize various highlighted items, for
example, text at the flashing cursor or at the position of the mouse cursor. This
lets you point to something and give a command to operate on that item. For
example, you can move the cursor (with or without a mouse) to a variable in a
source-code listing displayed in the Module window and press (Ctrl)-1 to
inspect that variable's contents. This is much faster than typing the variable's
name.

Dialog Boxes

Dialog boxes, newly introduced in TD 2.0, make selecting program options
much easier than in previous debugger versions. Dialog boxes collect various

Chapter Four: Windows, Menus, and Hot Keys 85

items in one handy window-for example, all the switches and settings associ
ated with the display (see Figure 4.9). This lets you view all settings at a glance
while changing only the options you need.

[l]J======IDI splo,i opt I rn1======:::;i
O' I t
(.. ~ r~one ~· •
(•) Srnort

-. - fornat

<) Al1u11..1<s

Screen I i nes
Col 25 < l 4:i1c;n

< > He,..
() Decimal
(• l Both

Tcb size •

Figure 4-9. A typical dialog box.

Using dialog boxes effectively takes practice. As with other windows, a
mouse makes dialog-box handling much easier, and you may want to consider
adding one to your system. You can select all options with the keyboard, but
not as easily.

This section describes the parts, pieces, and commands associated with all
dialog boxes. Individual dialogs are discussed along with the commands that
activate them.

Wbat~ in a Dialog Box?

As Figure 4.9 shows, a dialog box's window looks like other windows. But a
closer look reveals a few key differences:

• A dialog box lacks a resize handle in the lower right corner. You can't
change the size of a dialog box. But you can move dialog boxes to new
positions using the same commands that work for other windows.

• A dialog box lacks zoom buttons.

• A dialog box has at least one clickable button, usually labeled Ok, Yes,
Cance L, or He Lp.

• Unlike other windows, dialog boxes do not have local pop-up menus.
Pressing (Alt)-(FlO) has no effect when a dialog box is active.

It's important to be able to distinguish dialog boxes from other windows
because, when a dialog box is active, you can't issue other TD commands until
you close the dialog box. This restriction is necessary because changing the
settings in a dialog box affects TD's operation-so, you've got to complete your
changes before continuing to use other debugger commands. Related to this is
the fact that only one dialog box can be on the screen at a time.

86 Part One: Guide and Reference

No two dialog boxes are exactly alike, although they all use one or more
parts listed in Figure 4.10. Depending on the kind of display you have, these
parts may appear differently than shown here. For example, on monochrome
displays, a default button is marked with a chevron character (»). On color
screens, that same button is displayed in a different or brighter color than other
buttons.

~ ICrncel h W t--------i(Buttons)

[)<J Options
[] Layout
[)<'] Mncrno;

(•) Sour-ce
() c
() Posco!
() AccPrnb I Pr

.............. --------1(Check boxes)

.............. --------1(Radio buttons)

Filenrne ~ amiiiil•••••••• -~
checKSno~ J!

~c=he=c=K=Eo~f~---1"'" -------t(Llstbox)
_ checKBrect: ! -

Figure 4.10. Dialog-box parts.

Each dialog-box part has a specific purpose and controls options in a
unique way. The following notes describe the parts listed in Figure 4.10. After
that are instructions for using the keyboard and mouse to select a dialog's
options.

• Buttons perform immediate actions. For example, the Ok button accepts the
current settings and closes the dialog box. The Cancel button also closes
the dialog box, but it restores the original settings. The Help button acti
vates TD's on-line help to describe the dialog box's options. All dialog boxes
have at least one button, usually named Ok.

• Check boxes select one or more options in a group. For example, in Figure
4.10, two check boxes select Options and Macros but not Layout.

• Radio buttons select one of several related options. They're called radio
buttons because they resemble a car radio's push buttons. On the radio, you
can tune into only one station at a time. In a dialog box, you can select only
one radio button from a group. For example, in Figure 4.10, the Source
option is selected. Selecting another button-C, Pascal, or Assembler
would deselect Source (similar to the way a radio button pops out when
you press another).

• Input boxes are places where you can type information such as an expres
sion, a file name, or an argument to be supplied to your program. TD saves

Chapter Four: Windows, Menus, and Hot Keys 87

a history list of your entries in most input boxes and lets you select previous
entries from these lists the next time you activate this same dialog. More
about this later.

• List boxes display lists of items for selection-for example, a list of file or
module names. List boxes operate similarly to menus-use keyboard cursor
movement keys and (Enter) to select highlighted items or double-click the
left mouse button after moving the mouse cursor to the item you want.
(Note: A quick double-click is necessary to select list-box items. A single
click merely highlights that item. This differs from the way menu com
mands are selected by single clicks.) Alphabetized list boxes-for example,
file and directory lists-let you select entries by typing partial names, what
the Turbo Debugger Users Guide calls incremental matching. If
MYCODE.EXE is listed among other files, none of which begins with MYC,
you can type those three characters to highlight the name. In long lists, this
may be faster than using cursor movement keys to move the highlight bar to
that name.

Closing Dialog Boxes

You can press (Alt)-(F3) to close regular windows, but not dialog boxes. To
close dialogs, you must press (Esc) or select another button or operation that
closes the window. This may seem confusing at first, and until I discovered a
small visual clue, I constantly pressed the wrong keys to close the wrong kinds
of windows.

The trick is to look for a resize handle in the lower left corner of the
window border. (See Figure 4.5.) If that corner is a double line, then the
window is a dialog box, and you can close it by pressing (Esc). But if
the corner is a single-line resize handle as it is in the Figure 4.5, you must press
(Alt)-(F3) to close the window-(Esc) won't work because this is not a
dialog box.

There's one exception to this rule-you can press (Esc) or (Alt)-(F3) to
close inspector windows even though they have resize handles.

Selecting Options with a Mouse

To activate a button, click and release the mouse button on the display button's
highlighted text. The action doesn't take effect until after you release the button
without moving the mouse cursor. This lets you cancel a button's action by
moving the mouse cursor aside and releasing the button.

To select a check-box item, click anywhere in that item's text. You don't
have to aim with 100% accuracy-for example, in Figure 4.10, you can click on
any letter of Layout, inside the square brackets, or even on the brackets to

88 Part One: Guide and Reference

check that item. Try this-it's a great time saver. Check boxes operate as toggles.
Click once to select them; click again to turn them off.

To select a radio button, click inside the parentheses or on the button's
label. This deselects the current radio button and selects the new one. Unlike
check boxes, radio buttons are not toggles-at least one button in a group must
be selected at all times.

Use the mouse to position the text cursor inside an input box and then enter
your text. This is one time when you must take your hands off the mouse
unfortunately awkward, but unless you've got three hands, there's no alter
native. Because (Enter) selects the Ok button, don't press that key to end
typing unless you also want to accept all changes and close the dialog
box. (See "Entering Text" below for more information about typing into input
boxes.)

Selecting Options with the Keyboard

You can select all dialog items with keyboard commands. Although I prefer to
use a mouse, at times I find it's easier to use the keyboard-especially when
entering expressions and changing values, which require too much switching
back and forth between the two input devices. Even if you have a mouse, it's a
good idea to learn how to work with dialog boxes from the keyboard. These
notes will help.

To select options in a dialog box, press that option's highlighted letter or
number. Or, press (Tab) to move from one section to another-you can
identify the current item by looking for the flashing cursor and by observing
the labels. On color screens, the current item is displayed in a bright color; on
monochrome screens, it's bracketed. To see this, open a dialog box and press
(Tab) a few times. Press (Shift)-(Tab) to move in the opposite direction.

Press (Enter) to choose the dialog box's highlighted button, usually Ok or
Yes. Press (Esc) to choose the Cance L button if there is one. Press (Fl) to
choose Help. You can also tab to the button you want and press (Enter),
which leads to an ambiguity. For example, if the Cance L button is active,
pressing (Enter) cancels the dialog box. But if no button is active, pressing
(Enter) selects Ok; therefore, it's possible to press (Enter) to accept and to
throw away your option settings! This can be terribly confusing. Just be sure
that, if you're going to press (Enter) to select the Ok button, no other button is
highlighted.

Tab to the check box you want to change and press (Space) to toggle the
check mark on and off.

Radio buttons operate differently. First, tab to a group of radio buttons.
Then use the cursor movement keys to select one button from the group.
Unlike check boxes, you can press (Tab) to move from item to item. This is
because check boxes function as individual items, but radio buttons function as
a group-confusing until you get used to the difference.

Chapter Four: Windows, Menus, and Hot Keys 89

Tab to an input box and type your entries. (See "Entering Text" after this
section for more help with typing.)

Tab to a list box and use (Cursor) keys to select one of the listed items.
Then press (Enter) to select that item (and usually close the dialog box).

Entering Text

At many different times, TD lets you enter text, usually into a dialog's input box.
If you have a mouse, you can use it to position the flashing text cursor inside an
input box. Just point to any character and click the left button. With or without
a mouse, you can use the usual text-editing keys to move the text cursor as listed
in Table 4.2.

Table 4.2. Text editing keys.

Key

(Cursor Up)
(Cursor Down)
(Cursor Left)
(Cursor Right)
(Delete)
(Home)
(End)
(Page Up)
(Page Down)

Purpose

Select previous history entry
Select next entry or highlight this one
Move cursor left one character
Move cursor right one character
Delete character at cursor
Move to beginning of line
Move to end of line
Move to first history entry
Move to last history entry

TD lacks the insert/overstrike ability found in most editors and word
processors. To replace characters, delete the old text and enter the new-you
can't type over text to replace it.

When selecting text from a history list (see next section) or when TD
inserts text in an input box automatically (which it frequently will do, for
example, to enter a highlighted expression from your source text into an input
box for editing), new typing replaces the old highlighted text. To keep that text,
press (Cursor Left) or (Cursor Right) before pressing any other keys. This
removes the highlighting so you can change the text without replacing it.
To rehighlight the line, press (Cursor Down). (If there are multiple entries,
this may select the next one. In that event, press (Cursor Up) to back up one
line.) The text is again highlighted, and the next alphanumeric keypress will
replace it.

90 Part One: Guide and Reference

History Lists

TD keeps track of the ten most recent entries into most dialog input boxes. (Use
TDINST to change this number.) Histories in different input boxes are
independent-each box keeps its own historical record. Figure 4.11 shows a
sample history list as displayed by Watches:Edit.

[IJ=Enter expression to IJCrl:c

checKSnow
di redl!i rlrn
checKEof
checKl!red< !
~ lem:e1 h ~

Figure 4.11. Sample history list.

When you reuse an input box, you can select a stored history entry instead
of retyping it. To do that, move the highlight bar with the cursor movement
keys and press (Enter). Or, double-dick the left mouse button while pointing
to the entry you want. You might have to tab to the input box first. In small
dialog boxes like the one in Figure 4.11, the input box is selected by default. In
complex dialog boxes, another item might be selected at first.

To save room in dialog boxes with many other items, some history lists stay
hidden until activated. If a small down arrow (see Figure 4.12) appears to the
right of a single-line input box, there's a hidden history list waiting behind the
scenes. To activate the list, press <Cursor Down). If you tab to another dialog
item, TD hides the history list again, but it shows the selected entry in the
input box.

Fllencne ~ ••••••••••o -~
r le ncne I

c::::J- ~·±!:.s~
Figure 4.12. Input box with history list.

Some input boxes use history lists to let you type partial entries and then
press (Ctrl)-N. TD will search for a history entry that matches. If it finds one, it
will complete the typing for you. For example, if COUNTXYZ is among a list of
variable names, you can type cou(Ctrl)-N instead of entering the full identi
fier. At times, for example in a file-name dialog, pressing (Ctrl)-N will open a
list-box dialog with a set of symbols. Choose one of the displayed symbols to
complete your entry.

Chapter Four: Windows, Menus, and Hot Keys 91

Message Dialogs

A message window is a dialog box with no options, only a button or two and a
message. Figure 4.13 shows a typical example-the "Terminated" message you
see after running a program to completion.

[IJ=======:;i

Terniroted, exit code 0

Figure 4.13. Message dialog box.

Because message windows are dialog boxes, you must close them before
you can use other TD commands or make other windows active. To close a
message dialog, click the window-close or Ok buttons, or press (Enter). Even
though there's no Cancel button, you can also press (Esc) or (Space) to close.

Hint: Before closing a message dialog box, click on He l p or press (Fl) for on-line
help about why this message appeared.

Prompt Dialog Boxes

Some dialog boxes prompt for input but contain no other options except for the
usual Ok, Cancel, and Help buttons. You'll often see these dialog boxes in
response to various commands-for example, a command to change the value
of a variable. Prompt dialogs also have history lists from which you can select
previous entries. Figure 4.14 shows a sample prompt dialog box opened by the
Fi le: Change di r command.

[IJ==Enter new dlrecto1ru===:::;i
llC:\TP\IIFI ____ _

W lem:e1h ~

Figure 4.14. Prompt dialog box.

When a prompt dialog box appears, the bottom display line shows the
message "Enter item prompted for in dialog title." Read the window's title to
know what TD expects you to enter. If you're still not sure what to enter, press
(Fl) for help.

92 Part One: Guide and Reference

Another kind of prompt dialog requires a yes or no answer. For example, if
you choose the Run:Arguments command, after entering new command-line
arguments, TD displays a prompt dialog that asks, "Reload program so argu
ments take effect?" This and similar dialogs have two buttons-Yes and No. Use
a mouse to click the button you want, or press (Enter) or (Space) to choose
Yes; press (Esc) to choose No. You can also press the Y or N keys to answer.

Inspectors

TD's fourth window variety is called an inspector. Inspectors are like magnify
ing glasses that let you view the inner workings of variables, memory locations,
and subroutines. Inspectors also let you view lists of items linked by pointers,
and they let you change the values of variables in memory. Figure 4.15 shows a
sample inspector window open to a variable named count Byte of type BYTE.
The variable's current value is 76 in decimal, or $4C in hex.

Window Number

Close Button

'
Variable Name

~ l 17-

Data Type Value Resize Handle

Figure 4.15. A simple inspector.

Inspectors are like View windows-they have close and zoom buttons, they
have a window number, and a resize handle. You can move, activate, and adjust
the size of inspectors with mouse and keyboard commands as described earlier.

Inspectors differ from other windows by their ability to mold themselves to
the data types of inspected items. If you view an array, the inspector shows the
array's contents along with its index values. If you view a structure or record,
the inspector shows the record's fields. And, if you view an object, the inspec
tor shows data fields and methods in object classes and instances.

As Figure 4.15 shows, the first line in an inspector lists the item's segment
and offset addresses (9624:0041). When this address line is highlighted, if you
press (Enter), a second inspector opens to that address-a trick that's mostly
useful for inspecting data addressed by pointers.

Figure 4.16 shows two inspectors opened to a Pascal record variable. In
these and similar complex inspectors, you can move the highlight bar to any of
the listed items to view its data type on the bottom line. If you then press
(Enter), another inspector opens to show you more details about the high
lighted item-in this example, the value of a field in the record (see the

Chapter Four: Windows, Menus, and Hot Keys 93

inspector to the right in the figure). You can continue to highlight and inspect
individual items in complex data structures this way. There's no limit to the
number of inspectors you can open. (But you may run out of memory at some
point if you try to open too many inspectors at once.)

AX 256 <$100) I
BX 21213 <$52FB) I ex 1513 <$ffi7)
[))(1004 ($'\::£)
Ef' 0<$0>
SI 145 ($91) T

~----~1 !£SISTERS

lnspectlna r---:-1---~
@7004: OOJE
AX 256 <$100>
BX 21243 <$52FB >
ex 1543 <$607)
c:D< HIM <$'\::£)
Ef' 0<$0)
SI 145 <$91>

,_lijllllml -~
[IJ=I nspestl ng Sl=~[tJ[i

Figure 4.16. Two complex inspectors.

When inspecting variables with many parts, the top part of an inspector
may scroll as you move the highlight bar up and down. If scroll bars appear,
you can also use the mouse to scroll an inspector's contents. Inspector windows
operate much like list boxes in dialogs, and you can use similar commands to
control them.

To close an inspector, press (Esc) or (Alt)-(F3). If you've opened multi
ple inspectors to view the details of a complex data structure, press (Esc) to
close only the topmost inspector window. Or press (Alt)-(F3) to close all
open inspectors.

Chapters 20-22 list sample inspectors for all data structures in C, Pascal,
and assembly language. Refer to those chapters for more information about
using inspectors to view variables of different kinds.

Local Inspector Menu

Inspectors have their own local menus, activated in the usual way by pointing to
the inspector window and pressing the right mouse button or by pressing
(Alt)-(FlO) when the inspector window is active. Figure 4.17 shows a sample
local menu for an inspector open to a Boolean Pascal variable Di rectVideo.

An inspector's local menu is divided into two sections. The commands in
the top section perform minor surgery on the inspected item. The bottom
commands affect the entire inspector window. All commands do not apply to
all data types-for example, it's senseless to change the Range of a Boolean

variable; you can change only the Range of an array. But don't be concerned
about this-you'll learn how to apply these commands as you open inspectors
to inspect variables of different kinds.

Remember that you can press (Ctrl) and a local command's highlighted
letter to execute that command. For example, with an inspector active,
press (Ctrl)-N to select the New expression command. Also, because

94 Part One: Guide and Reference

~
[IJ::lnseectim DirectVldeo-~[tJ[~]::;J

rr.@111$1rml •
i1sjii11i1iiiiiii·iij True J

Ch:n;ie •••

Inspect
Descend
Hai express I en . •.
T\,lle cast ...

Figure 4.17. An inspector's local menu.

inspector menus behave like other local menus, they can move-a useful trick
to remember when the menu covers the inspected data. Just pick up the menu's
window with a mouse or use keyboard commands to shove it aside. (Some
people call TD's moveable menus "tear-off menus.")

The following notes describe how to use each command in an inspector's
local menu. You'll find more details about these commands in other places in
this book.

Range

This command changes the starting index and range of the indexed items in an
array. Use it to limit or expand the amount of information displayed. Enter
values separated by a comma. For example, type 5, 8 to list eight items
beginning with the fifth, which might have an index value of 4 if the first array
index is 0.

Change

This command changes the value of the highlighted item. If the address line is
highlighted, the new value is stored in the entire variable. If another part of a
variable is highlighted, only that part changes. This lets you highlight a field in a
record or a character in a string and press (Ctrl)-C to change its value. The
changed value is stored directly in memory, so be sure that's what you want to
do before using this command. If you receive the error message "Symbol not
found," the value you entered is in the wrong form for this item. See chapter 9
for help on entering expressions for your language.

Hint: This command is activated simply by typing any alphanumeric key. You
never have to press (Ctrl)-C to choose it-just start typing after highlighting an
item to change. Try this. It saves a lot of time.

Chapter Four: Windows, Menus, and Hot Keys 95

Inspect

Press (Ctrl)-1 to open another inspector window for the highlighted item or
address. You can also press <Enter) to choose this command automatically.
Multiple inspectors take memory, and you may not be able to use this command
if you're short on RAM.

Descend

This command is similar to Inspect. Use it to view more details about a
highlighted item. Unlike Inspect, however, the new inspector replaces the
current inspector's contents, and there is no way to get the old contents back
(except, of course, by reopening the original inspector.) Use Descend if you run
out of memory when viewing multiple inspectors with the Inspect command.

New expression

Use this command to inspect another named variable when it's more conve
nient to enter the new item's name than it is to close the current inspector and
open another one. The newly inspected item completely replaces the current
inspector's contents.

Type cast

Enter a C or Pascal type cast expression to modify the data type of the inspected
item, for example, to view a typed structure addressed by a generic pointer. If
that pointer is p, and the type is t, then enter a C type cast such as (t * > p or
Cstruct t *)p to view the data addressed by pas type t. Or, in Pascal, enter the
expression t (pA) where t is a valid data type. See chapter 9 for more informa
tion about entering type casts.

Hint: You can use this command during assembly language debugging if you first
change Opt i ens: Language to C or Pascal.

Inspecting Objects

Because objects are special data types that encapsulate code and data, they have
special inspector windows. As Figure 4.18 shows, there are two kinds of
inspectors: one for instances (left) and another for object types or classes
(right).

96 Part One: Guide and Reference

~18 <$E432) LOC

4------~I [0£ l!F609: llBl
I NIT l!EFA'f: 1!117
CELL TYPE l!Ffil9: IIB:l

CELLPTR

r;=[IJ=CbJect Ty:ie OOS.STIEftt:'t=[t][H:;
STFEfl1. TYPECCUiT : I.ml
STl£fl1. TYPEL I ST : STYPEL I STPTR

STFEfl1. STATUS : I NTEGER

VI RTLR.. PRJ::Ell.FE IIl'E
VI RTLR.. PRJ::EllJE STFEfl1. ~
VI RTLR.. PRJ::EllJE STl£fl1. FLllJH
VI RTIR. FlKTI lli EETPffi : LCNll NT

Figure 4.18. Inspecting object instances and types.

Object inspectors are divided into two panes. At top are the object's
instance variables; at bottom, method names and addresses. Highlight an
instance variable and press (Enter) (or (Ctrl)-1) to inspect that variable in
more detail. For example, in Figure 4.18, you could highlight LOC and press
(Enter) to view that field in this object.

To view the source code for object methods, press (Tab) to shift to the
method area in the inspector window. Highlight a method name (for example,
INIT in Figure 4.18) and press (Enter) twice-once to open a new inspector to
that method and again to jump to the method's source code in the Modu Le
window.

Object Inspector Menus

Local menus in object inspector windows add a few new commands to those
listed in Figure 4 .17 and described earlier. When inspecting object instances
(see Figure 4.18, left), there are two local menus, as shown in Figure 4.19. In
that figure, the menu on the left appears when the top portion (showing
instance variables) of the inspector is active. The menu on the right appears
when the bottom portion is active (showing the object's methods).

Ronoe ...
Ch:r.Qe •••
Hetrods Yes
61-oo I mer I ted Yes

Inspect
Descend
Ne..J express I on •••
T\P! cast ...
Hiercrc~

R11111Je •••

Hetrods Yes
sroo i mer i tec:t Yes

Inspect
Descend
Ne..J express I on •••
T\P! cast •..
Hlercrc~

Figure 4.19. Object-instance inspector menus.

The two local menus are nearly identical-but only the one for the instance
variables in the top of the object inspector contains the Change command. (You
can't change object methods. You can change only instance field values.) The

Chapter Four: Windows, Menus, and Hot Keys 97

following notes describe how to use the local commands added to object
inspectors.

Methods

This command toggles the bottom pane on and off. If on, that pane shows the
object's methods. If off, the inspector shows only the object's instance vari
ables. Hint: When inspecting complex objects, turning Methods off (press
(Ctrl)-M) lets you fit more information on-screen.

Show inherited

This command specifies whether to show inherited instance variables and
methods if Methods equals Yes. This command is an excellent tool for compar
ing the instance variables and methods declared in this object with those
declared in the object's ancestors.

Hierarchy

Press (Ctrl)-H to open the View:Hierarchy window and highlight the
inspected object's type (or class), showing where that object fits within the
program's object tree. Because this opens a full View window, and not a dialog
box, you have to press (Alt)-(F3), not (Esc), to close the window. See
chapter 5 for more information about using the Hierarchy view.

Inspecting Object Types

In TP5.5 and TC++, object types or classes are conceptual-they don't exist
anywhere in memory when a program runs. Object instances, which do exist
in memory, are variables of their classes. Because of this difference, the inspec
tor windows for object classes and variables differ, as do their local menus.
Obviously, you can only Change an object instance's fields because only an
object instance is stored in memory.

Normally, you can open inspector windows only to variables that exist in
memory (and to procedures and functions, which, after all, are a form of data).
But TD makes an exception for object types, which you'll often want to
inspect. To do that, open the View: Hierarchy window either from the View

menu or by executing the Hierarchy command while inspecting an object
instance. Highlight an object type name in either window pane and press
(Enter) or (Ctrl)-1 to open an inspector window for that type. As you'll see
when you try this, an object-type inspector is similar to an object-instance
inspector, but it shows the full instance variables and method names along with
ancestor object names (if this type inherited parts from other objects).

98 Part One: Guide and Reference

As with other inspectors, you can highlight an object type's various items
and press (Enter) or (Ctrl)-1 to open another inspector for that item. But,
because the object type doesn't exist as a variable in memory, this works only
for fields that are other objects (or pointers to objects). It's not possible to open
inspectors for fields of other data types such as integers, strings, and real
numbers.

When inspecting object types, the local menus for the top and bottom
inspector panes contain only the three commands shown in Figure 4.20.

HI ercrch,i
5raJ I mer I ted Yes

Figure 4.20. Object-type inspector menu.

Inspect

This command opens an inspector window for another object type. It does not
work for fields of other data types-only object types and pointers to object
types. The resulting inspector functions is a new object-type inspector.

Hierarchy

This command shows the location of the inspected type in the Hi er arch y
window's tree. It is useful for switching back to that window rapidly without
having to close the object-type inspector.

Show inherited

This command toggles inherited properties on and off. Use this command to
compare the items defined in this object with those the object inherits from
ancestor types.

Global Menus

This chapter began with a description of how to use TD's global menus, which
are displayed on the top line of the screen (see Figure 4J) The following
information describes each of TD's global menus in the order they appear on
that line and describes any related dialog boxes. Command hot keys are listed in
parentheses.

Chapter Four: Windows, Menus, and Hot Keys 99

Because some of this information applies to later chapters, the information
here is brief and refers you to other places in this book. Also, some terms and
concepts haven't been introduced-but that can't be helped. Use this section to
become familiar with TD's global menus, commands, and dialog boxes. Then
return to it later when you need help with specific commands.

As in chapter 2, to avoid duplicating the information in the Turbo Debugger User's
Guide, I've concentrated here on tips that explain why you might want to use one
or another command. Remember also that you can highlight any command in TD
and press (Fl) for help.

System Menu (=)

The System menu contains commands that have system-wide effects on TD's
operation-plus one purely informational command. (See Figure 4.21.) Press
(Alt)-(Space) to open this menu. (Microsoft Windows users must press
(Alt)-F(Cursor Left) instead.)

II Fi le UietJ fln

Figure 4.21. System menu.

Repaint desktop

This command redisplays the global menu line, function key line, and all open
TD windows. Use it to recover from a misbehaving program that overwrites
some or all of TD's display.

Hint: Memorize (Alt)-(Space)R as the command to use if a program obliterates
TD's display so much you can't even see the menu names. This might happen if
you started TD with the -ds option or if you set Di sp Lay: User screen updating
to Swap with TDINST (see chapter 3).

Restore standard

This command restores all windows to their configuration when you first
loaded your program into TD.

100 Part One: Guide and Reference

Hint: If the Wat ch es window stops expanding automatically for new variables, use
this command to reactivate the expansion, which becomes disabled if you alter the
size of the Module or Wat ch es windows. The command is also useful to restore an
expanded Watches window to its original small size. To do that, make Watches
active, press (Ctrl)-D to delete all variables in the window, and press
(Alt)-(Space)S to restore the original window sizes.

About

This command displays miscellaneous information about TD.

File Menu

Use Fi le menu commands (see Figure 4.22) to open code files for debugging,
to change directories, to view general information about a program you're
debugging, to issue DOS commands, and to quit TD. You can also use com
mands in this menu to debug resident code, as chapter 19 explains.

DID VlaJ fln

u2;1
Ch:noe dir ..•
Bet Info ..•
i:n; she I I

P.esldent
So,,ml looo .•.
Tcbl e rel oc:ote •.•

Cliit Alt-)(

Figure 4.22. File menu.

Open

This command opens a dialog box (see Figure 4.23) and lets you select another
code file for debugging. Enter a Fi le name, select a name from Fi Les, and view
files in other Directories. The second to bottom line shows the current path
and wild-card settings. The bottom line shows the selected file and its date,
time, and size.

In addition to a file name, you can enter arguments and initiate I/O redirec
tion in the dialog's Fi le name prompt box. For example, enter a file name such
as myprog.exe argl arg2. However, any arguments that have wild cards
(for example, when debugging a directory-lister) are expanded by the dialog;

Chapter Four: Windows, Menus, and Hot Keys 101

[IJ Enter i:ro;Tcrn raE to I ocd====::;i

Fl le raE

Fl les DI rec tor I es

tcalc.exe

C: \ TP\[lF\ •.EXE
Tat.C.Ell'E obi 29, 19'11 7:'14cn 15~ Mes

Figure 4.23. File:Open dialog box.

therefore, you must use the Run menu's Arguments command to enter argu
ments with wild cards.

Hint: At any time during debugging, press (Alt)-FO(Enter) or select a file name
to reload a program. This has the same effect as quitting TD and restarting from
DOS, but it is faster.

Change dir

This command opens a prompt box (see Figure 4.14). Enter the path name of
any directory. You may specify either a drive, for example, C: or D:, along with
the path or just the path. A good time to use this command is just before
choosing Fi le:Open when you want to load a program in a different directory
and make that directory the new current one.

Get info

This command displays information about the code file loaded at startup or
after using Fi le:Open. (See Figure 4.24.) It shows the program name and its
current runtime status. Various messages appear here, most of which have
obvious meanings such as No program loaded, Control break, Breakpoint at ... ,
Loaded .. ., Stopped at .. ., NMI Interrupt, Exception .. ., Divide by zero, Termi
nated, and Resident.

In the middle are system memory statistics (left) and EMS use (if TD has
found some expanded memory to use). The User interrupts line shows any
interrupts the target program is handling. Other items listed near the bottom

102 Part One: Guide and Reference

[IJ=Syster. lnfc:rnotlcrF===::;i
Prcx;rcn: C: \ TP\[lJ'\ TCR.C.EXE
Status : Loaded

- Heniory
[Jll : 231l<b
IJel:x.ioJer- : El<l:i
&pbols : El<l:i
Prcx;rcn : 1!B<b
Aval lctil e: El<l:i

User I nterr4Ji;s:

--EltJ-
[Jll : 192Kb
Oebt.QJer : 352Kb
Proi;rm : El<l:i
Ava II cb I e: 22'1Kb

: 3.00

Figure 4.24. File: Get info dialog box.

include the current DOS version, whether breakpoints are being set in hard
ware (80386 or 80486 systems only with an installed TDH386.SYS driver), and
the date and time (to remind you, I suppose, how much time you've lost while
hunting bugs).

The values for Av a i lab le RAM are frequently 0 because of the way DOS allocates
all memory to a loaded program. This doesn't mean you've run out of room. It just
means DOS has given your code all available system RAM. If your program releases
some RAM to DOS (or, for example, if in a TP program you use an $M directive to

limit RAM use), then the Available figure might not be 0. The Available EMS
value (if shown) lists how much EMS RAM is available to your program.

DOS shell

This command exits temporarily to DOS, swapping some RAM to disk to release
the amount of memory specified by TDINST. Use it to issue DOS commands
such as COPY and COMP. Enter exit at the DOS prompt to return to TD.

If the DOS screen doesn't work correctly when you choose this command,
for example, if the display doesn't scroll as it normally does, the fault could be
an installed ANSI.SYS or similar device driver. Try removing the driver. Or start
TD with the -ds command-line option to prevent the debugger from using
multiple video pages (see chapter 3).

Never load TSRs into memory after exiting to DOS. Run only small stand-alone
utilities and DOS commands.

Chapter Four: Windows, Menus, and Hot Keys 103

Resident

Makes TD "go resident" to allow debugging resident code. See chapter 19 for
more information about this command.

Symbol load

This command loads a symbol table stored in a .TDS file. See chapters 2, 6, and
19 for information about preparing this file. Before using this command, you
may have to start TD with an -sm# option to reserve space for symbols. (See
chapter 3.)

Table relocate

This command relocates a symbol table's origin to the address of code already
in memory. Usually that code is a TSR loaded before starting TD. Or it might be
a device driver. (Chapter 19 explains more about using this command.)

Quit ((Alt)-X)

Press (Alt)-X to quit TD and return to DOS. You can execute this command at
just about any time, but not when a dialog box is active. If (Alt)-X doesn't
seem to work, press (Esc) and then try (Alt)-X again. If that still doesn't work,
press (Ctrl)-(Break)(Esc)(Alt)-X. If you get no response, you may have
crashed the debugger. Press (Ctrl)-(Alt)-(Del) to reboot. If you're still hung,
click your heels three times and toggle the on/off switch.

View Menu

Chapter 5 describes the commands in this menu.

Run Menu

Commands in the Run menu (see Figure 4.25) execute the currently loaded
program. Various choices let you run code up to breakpoints (see chapter 8),
execute code fragments, single-step individual instructions, animate in slow
motion, and even trace backwards to undo previously executed instructions.
Other Run-menu commands let you enter program arguments and reset a
program to its beginning.

104 Part One: Guide and Reference

Run ((F9))

Im E!red<points Dato ~tions

6o to Cl.rsa"
Trace into
Step over
Execute to ...
t..nt i I rett.rn
Fhl11ote •••
BocK trace
I nstruct I on trace

~1101ts ••.
Proarcn reset

F1
F7
FB

Alt-F9
Alt-FB

Alt-F1
Alt-Fl

Ctrl-F2

Figure 4.25. Run menu.

This command runs program from the line marked by~ in the Madu Le window
(see Figure 4.1). Code runs at full speed-except, perhaps, when an active
breakpoint is set to monitor memory locations.

Use this command to run a program up to a breakpoint, which you can set with
the commands in the Breakpai nts menu, described later in this chapter.

Go to cursor ((F4))

Use the arrow keys to move the cursor, or click anywhere on a source-code line
with the mouse, and press (F4) to run the program up to that line. The
program must reach the marked location-if a statement skips the code at the
cursor, pressing (F4) will have the same effect as (F9).

Trace into ((F7))

Press (F7) to execute the single statement marked by~ in the Madu Le window.
If that statement calls a function, procedure, or assembly language subroutine,
TD jumps to that routine and pauses, loading a different source-code file from
disk if necessary. If process-ID switching is off (see chapter 3), then you can also
trace into DOS int 21 function calls. Lines that contain multiple statements
execute as a single command.

You can also use this command to trace into object methods. TD recog
nizes polymorphic method calls-those that are redirected through an array of
method addresses called the VMT (Virtual Method Table).

Chapter Four: Windows, Menus, and Hot Keys

If pressing (F7) causes the CPU window to appear, TD can't find the source-code
file for the module that contains the traced routine. In that event, either continue
debugging on the machine-code level or, to return to your source, press (F3) and
choose the previous module name. Set a breakpoint (press (F2)) at the statement
after the one you just traced and press (F9) (F2). This will execute the code for
which the source is unavailable, halt after the routine returns, and remove the
temporary breakpoint.

Step over ((FS))

105

Press (FS) to execute the single statement marked by..,.. in the Module window.
Unlike the similar Trace into command, Step over executes function, pro
cedure, and assembly language subroutine calls as indivisible instructions. After
the called routine finishes, the program halts at the next statement. Lines that
contain multiple statements execute as a single command.

Use Step over to narrow a search for a bug in the early stages of debugging.
First, run a suspect section of code by pressing (FS) to step over all subroutine
calls. Then, when you find the subroutine where the bug appears, set a break
point at the statement that activates the routine, reset the program, and press
(F9) to execute to that location. After that, press (F7) to trace into the routine
and (FS) to step over more code until you find the low-level statement that's
causing the problem.

Despite this command's name, TD does not skip over the current instruction
when you press (FS). It still executes the stepped-over routine. To skip a state
ment completely, move the cursor to the next statement below and type
(Alt)-VC(Ctrl)-N(Alt)-(F3). This opens the CPU window, resets registers CS
and IP to the new origin at the cursor, and closes CPU. If CPU is already active, just
move the cursor to the next machine-code instruction to execute and press
(Ctrl)-N.

Execute to ((Alt)-(F9))

Use this command to run a program up to a specific constant address. The
program will halt when registers CS:IP equal the specified address. So, for the
command to work, the program must reach the address that you enter. If you
enter an offset value, TD automatically prefaces it with the code-segment value
in CS. For example, TD interprets the Pascal hex value $017F as CS:$017F. Or,
specify segment values explicitly as in $4000:$0800.

See chapter 9 for more information on entering address constants in C,
Pascal, and assembly language.

106 Part One: Guide and Reference

You can also type a module name and line number such as umod#IOO
to halt before executing the statement at that line. But it's usually easier to use
Go to cursor (move the cursor and press (F4)) for this purpose instead.

If you receive a runtime error when executing a program directly from DOS,
note the address and load the program into TD. Then, press (Alt)-(F9) and
enter an expression such as (cs+OOOO):ffff where 0000 is the runtime error's
segment value and ffff is the offset. Because loading the program into TD
positions the code to a different location than when that same program runs from
DOS (unless you're running TD386), you must add the current code-segment
register CS to the runtime error's segment value. If that doesn't work, you might
have to press (F8) immediately after starting TD before using the Execute to
command. This will execute any startup code and initialize CS to your program's
code segment.

Until return ((Alt)-(FS))

There are two main uses for this command. One, after pressing (F7) when you
meant to press (F8) to step over a procedure or function call, press
(Alt)-(F8) to run the program at full speed until the code returns to
the statement following the one that called the routine. In that
way, (Alt)-(F8) is a sort of "undo" command for Trace into. Two, use the
command to finish executing a procedure or function after you've examined its
initial statements.

Press (Alt)-VS to open the Stack window. The routine immediately below the
highlighted line tells you the general location to which (Alt)-(FS) will return. If
the Stack window shows no active subroutine calls, pressing (Alt)-(FS) does
nothing.

Animate

Execute this command by pressing (Alt)-RN or by choosing the Animate
command from the Run menu. (Previous TD versions assigned hot key
(Alt)-(F4) to this command. Version 2.0 now uses those keys for the Back
trace command.) Enter the amount of delay in tenths of seconds to pause
between each source-code line (or machine code if you're debugging in the CPU

window). For example, enter 20 to pause for about 2 seconds between lines;
enter 2 .5 to pause for about a quarter second.

Use Animate to monitor a series of statements instead of pressing
(Fi) repeatedly. Then sit back and wait for a bug to appear. Press (Esc)
to stop animating and then use other commands to fine-tune your search for a
problem.

Chapter Four: Windows, Menus, and Hot Keys 107

Back trace ((Alt)-(F4))

New to version 2.0, Back trace is TD's "execution undo" command. Just press
(Alt)-(F4) to run your program in reverse, undoing the effects of statements
previously executed by pressing (F7) or (Alt)-(F7) or by using Run: Animate.
You can also reverse most statements executed by pressing (FS), but you can't
unravel a LOOP, a machine-code string instruction, or other statements treated as
atomic by Step over. To get the most out of Back trace, use (F7) to execute
several statements and press (Alt)-(F4) to undo that execution.

TD can reverse execute up to 400 statements, or 3000 if you have enough
EMS RAM. Press (Alt)-VE to open the Execution hi story window to examine
the list of recorded statements. (See chapter 5 for more information about this
window.)

Don't expect too much from Baek trace. Obviously, it can't recall text sent
to a printer or data written to disk. It also can't back up through a software
interrupt int instruction unless you traced into that code by pressing
(Alt)-(F7) (see Instruction trace in the next section). Despite these limita
tions, Back trace does let you back up to rerun a troublesome section, perhaps
with new arguments.

Pressing (F9) and executing software interrupts erases the Execution history;
therefore, this puts (Alt)-(F4) out of action until you run a few more statements
by pressing (F7) or (Alt)-(F7).

Instruction trace ((Alt)-(F7))

When debugging C or Pascal source code in the Module window, press
(Alt)-(F7) to open the CPU window and execute one machine-code
instruction-usually one of several such instructions that the compiler
generated for this high-level statement. This has the identical effect as pressing
(Alt)· VC (F7). You can also use this command to trace a software interrupt
int instruction.

Use the command in the final debugging stages after you've narrowed
a problem to one or more statements and when you need to examine
each machine-code instruction to understand why a high-level statement
failed. For assembly language debugging, the command works, but it isn't that
useful.

Hint: After tracing into a procedure or function call by pressing (Alt)-(F7), to
return to the source-code view and halt at the next statement, press (F6) repeat
edly to make the Module window active. Then press (FS).

108 Part One: Guide and Reference

Arguments

Use this command to enter program arguments or to enable 1/0 redirection as
you might do if executing the code from the DOS command line. Because this
changes the startup conditions, TD asks if you want to "Reload program so
arguments take effect?" Press (Enter) or click the Yes button. Press (Esc) or
click No to cancel reloading and to throw away the new arguments-you must
let TD reload the program for the new arguments to be accepted.

Reloading the program does not affect any variables added to Watches or
any breakpoints set in code. This makes the Arguments command particularly
handy for testing a variety of input data-for example, all .the character switches
that the program recognizes.

Remember that you can supply program arguments when starting TD. For
example, you can enter td mycode file to debug a program file named
MYCODE.EXE and supply the argument FILE. Use the Arguments command if
you forget to supply a needed argument or to change the arguments that you
entered before.

Program reset (< Ctrl >-< F2))

Press (Ctrl)-(F2) to reset the program to its original startup condition.
All breakpoints and watched variables remain active, so you can use this
command to restart and investigate the effects of new input data or other
operations.

Hint: Activate the Modu Le window and press (Ctrl)-0 immediately after pressing
(Ctrl)-(F2) to bring the first source-code statement into view.

Breakpoints Menu

The Breakpoints menu (see Figure 4.26) lets you set breakpoints at specific
locations or based on other conditions. When you execute a program by
pressing (F9), TD halts the code before executing the statement at a breakpoint
or after executing code that satisfies other conditions such as a variable reaching
a specific value.

Don't confuse this menu with the View menu's Breakpoints command. Use
the Breakpoints menu to set new breakpoints. Use the View menu's
Breakpoints command to view and modify breakpoints already set. Normally,
a breakpoint halts the program when it reaches a test location. But it's also
possible to perform other breakpoint actions, call subroutines, and log expres
sions. (See chapter 8 for information about how to use breakpoints as part of a
good debugging strategy.)

Chapter Four: Windows, Menus, and Hot Keys

Toggle ((F2))

rmw !hla [ptions

At... Alt-F2
Chcnoed r1e!1CrY QI cbo I •••
Expression true olcbol .••
Delete al I

Figure 4.26. Breakpoints menu.

109

The simplest way to set a breakpoint is to move the cursor to a source-code line
and press (F2). Or, move the mouse cursor to either of the two blank columns to
the left of any source-code statement and click the left mouse button when the
mouse cursor changes from a square block to the symbol *. On monochrome
monitors, the breakpoint shows in reverse video or is highlighted in some other
way. On color monitors, breakpoint statements display in stop-sign red.

To remove a breakpoint, position the cursor and press (F2) again. You can
toggle a breakpoint on and off as often as necessary. And, there's no limit to the
number of breakpoints you can set simultaneously. (Actually, there may be an
upper limit-TD has to record breakpoint information somewhere in a PC's
limited memory. But the maximum number is probably so high that it's mean
ingless to consider.)

You may set a breakpoint only on statements for which the compiler
generates machine code. This includes certain keywords and symbols such as
BEGIN and END in Pascal or the braces [and] in C, which TD takes to represent
any startup code appended by the compiler to the beginning of a subroutine;
therefore, setting a breakpoint at the first statement in a procedure may have a
different effect than setting one at the BEGIN or opening brace.

Hint: The Togg Le command accepts a certain amount of "slop"-the cursor can
be anywhere on a line, it doesn't have to be positioned at the first character. Also,
if the cursor is on a line that doesn't generate any machine code-for example, a
comment or a function header-pressing (F2) sets a breakpoint at the first code
generating statement below. You don't have to move the cursor to that line.

At ((Alt)-(F2))

Use this command to enter a constant address where you want the program to
halt. You can also enter a module name and line number in the form
MODU LE#250.

Usually, pressing (F2) is easier than using this command to set breakpoints.
But it might be useful for running code up to a runtime error location or to an

110 Part One: Guide and Reference

address listing in a .MAP file. In that case, you may have to add your program's
CS register value to the reported segment address-similar to the way you can
specify a stopping address with the Execute to command in the Run menu.

Changed memory global

One of the most common and difficult bugs to fix is a bad pointer or other
instruction that alters a memory location unexpectedly. Use the Changed memory
g Loba L command to narrow your search for the source of this slippery bug.

When you choose the command, a dialog box prompts you for a memory
address and count. Enter a constant expression followed by a comma and the
number of elements you want to monitor. Normally, you'll specify the address
as the name of a variable. For example, to halt the program if the Temperature
rises (or falls), just enter that variable's name. To monitor more than a single
variable-for example, an array of ten integers-follow the name of the variable
by the count like this: MyArray,10.

The 10 here does not represent the number of bytes that are monitored.
Instead, this is the count of elements of the variable's size. If TD recognizes
MyArray to have 5-byte elements, the expression would set a breakpoint for
50 bytes.

You can also enter an explicit address such as DS:$0800,128 to monitor a
block of 128 bytes. In C, use an expression such as DS:Ox0800,128. See chapters
5 and 8 for more information on watching memory values.

The more bytes you monitor, the slower your code will run. If you have an
80386-based system, install the TDH386.SYS device driver to enable hardware
debugging features, allowing code to run at full speed. You can execute either
TD or TD386 for this purpose-it's the device driver that enables the special
registers, not the virtual-mode capabilities in TD386.

Expression true global

This command sets a breakpoint to halt the program when a variable equals
a specific value. For example, to trigger a breakpoint when an integer
variable named count equals 99, choose this command and enter the expression
count=lO in Pascal, count= =10 in C, or count eq 10 in assembly language.

You can also monitor processor registers for specific values with this
breakpoint option. In Pascal, enter ax()O; in C, enter ax!= O; and in assembly
language, enter ax ne 0 to halt the code if register AX is not zero. (See chapter 9
for help with entering other expressions in these three languages.)

As with Changed memory g Loba L, this command may cause performance to drag
unless you have an 80386-based system and have installed the TDH386.SYS device
driver.

Chapter Four: Windows, Menus, and Hot Keys 111

Delete all

Execute De Lete a LL to remove all breakpoints from your program. To remove
individual breakpoints, move the cursor to that location and press (F2). Or
open View: Breakpoints, highlight any listed breakpoint, and press (Ctrl)-R.

Data Menu

The four commands in the Data menu (see Figure 4.27) give you ways to inspect
variables, evaluate expressions, add expressions to the Watches window, and
examine function return values.

Inspect

llillBll Ultions Uindow Help

E110I t.cle/oodl fy ..•
ft:Jd wtch ...
FLl"Ctl on rehrn

Ctr I-Fi
Ctrl-F7

Figure 4.27. Data menu.

Choose Inspect and enter the name of a variable that you want to examine in
detail. If the variable is within the current scope, TD opens an inspector
window and displays the variable's contents. If not, TD displays "Symbol not
found." This means you can always inspect a global variable, but you can
inspect local variables in C and Pascal only when their declaring procedures
and functions are active.

Because the size, contents, and abilities of inspector windows depend on
the examined data structure, it takes time to learn how to put these windows to
the best use. For general information about inspector window features, see
"Inspectors" earlier in this chapter. For detailed instructions for inspecting
specific data structures in C, Pascal, and assembly language, see chapters 20-22.

Usually, the easiest way to open an inspector window is to position the cursor on a
variable name and press (Ctrl)-1. Most often, you'll choose the Inspect
command in the Data menu only when you can't easily find the variable name in
your source code.

Evaluate/modify (< Ctrl)-(F 4))

Use this command to evaluate an expression, to examine a variable's value, or to
change it. You can also use the command to call procedures and functions in

112 Part One: Guide and Reference

your C and Pascal programs independently of the program's normal
operation-a great way to run quick tests on a misbehaving subroutine.

When you press (Ctrl)-(F4) or choose Evaluate/modify from the Data
menu, TD displays the dialog box in Figure 4.28. Three prompt boxes
Expressi on, Result, and New value-occupy most of this dialog box. The
Expression area lets you enter new expressions to evaluate. The Result box
shows the result of an expression after you choose the Eva l button. And the
New va Lue space lets you enter a new value for a variable you entered into
Expression. These three boxes can scroll horizontally if necessary to display
long lines, indicated by left and right triangles at either end of the field.
The top and bottom areas can scroll vertically, and they each have separate
history lists of previous entries. Press (Esc) or click the close button to close
the dialog box.

[IJ=======E·vall.l'.lte/oodl f'tF=======;i
E .. -

checKBreoK

Result

New value
Folse

Figure 4.28. Evaluate/modify dialog box.

To enter a new expression, tab to the Express i on field and type the expres
sion as it would appear in C, Pascal, or assembly language. You can also highlight
an expression in the Module window and press (Ctrl)-(F4) to open Evaluate/
modify and copy the marked text to the Expression prompt box. Or just move
the cursor to a variable name and· open the dialog box. Choose Eva l to evaluate
the expression and display the result in the Result area. If the cursor is inside the
Expression field, you can also press (Enter) to choose the Eva l button.

If you evaluate a variable, you can change its value by moving to the New
va Lue field and entering another constant expression. For example, after typing
MyCount into the Expression area and pressing (Enter) to examine that
variable's value, tab to New va Lue and enter MyCount+ 1. Then, choose Modify
to evaluate that expression and assign its result to the variable in the Expression
area. If the cursor is inside the New va Lue field, pressing (Enter) chooses the
Modi f y button.

Expressions can also call procedures and functions in C and Pascal pro
grams. When it evaluates such expressions, TD pushes any required parameters
and calls the routine-just as a statement in your program might do. Part 2
(especially chapter 9) explains how this works.

Chapter Four: Windows, Menus, and Hot Keys 113

When an object method is active, enter self (or this for TC+ +) into the
Expression area. This is a good way to verify the class of an object, but
Inspector windows are usually better for examining objects in detail.

Add watch ((Ctrl)-(F7))

Press (Ctrl)-(F7) and enter a variable name or expression to add to the
Watches window. If that window is closed, TD opens it. The expression or
variable must evaluate to a constant-you can't enter expressions that cause side
effects such as assigning a value to a variable or incrementing a variable with C's
++and -- operators. But you can watch expressions such as MyCounter*2. TD
will then display the result of that expression, and it will update that value if
MyCounter ever changes.

Rather than use this command, however, you may find it easier to move the
cursor to a variable name and press (Ctrl)-W to add that variable to Watches.
(See chapter 5 for more information about this view window.) Use the Add watch
command only if it's inconvenient to find a variable in the source code.

Function return

After halting a program inside a function, choose this command to examine the
result that will be passed back to the function's caller. The command opens an
Inspector window to a pseudo variable that represents the function's value,
formatted according to the declared data type.

Hint: Most function results are passed in registers, which you can also examine
with the View: Registers command. Use that command along with Function
return to verify that function results are stored in the expected registers.

Options Menu

The commands in the Options menu (see Figure 4.29) let you select various
runtime parameters, create macros, change display formats, set directory paths,
and perform other jobs that affect how TD operates. You can also save options
in configuration files that you can reload during future debugging sessions to
restore a custom configuration.

Language

Choose Source or one of the three languages-C, Pascal, or Assembler
(assembly language)-from the dialog box shown in Figure 4.30. When this

114 Part One: Guide and Reference

WWW Windc:MJ Help

Lcinqi Jl"ll]P. • • Sru irr ~

lb:ros ~
Displo,i options .. .
Poth fer sa.rce .. .
Save qit i ens ...
Restcre opt i ans ..•

Figure 4.29. Options menu.

'•) Source () c
() Posco I
< l A~~"'·'b I w

Figure 4.30. Expression Language dialog box.

option is set to Source, TD detects the language type automatically so you can
enter expressions in that language's format. Use the other settings to force TD to
accept expressions in a different format.

Hint: If you're more comfortable with C, but you have to debug a Pascal program,
change Language to C. You can still debug the Pascal code as usual, but you can
now enter hex values as OxOSOO and use other C constructions. Pascal program
mers faced with debugging foreign C code can switch Language to Pascal to let
TD recognize hex values such as $0800 and to format other expressions in a more
familiar style.

Macros

The Macros command displays a submenu that you can use to create and delete
macros (see the right half of Figure 4.4). TD macros can record and assign
lengthy command sequences to (Ctrl) and other keys, which you can then
press to run those commands.

Creating macros is easy. Just press (Alt)·= to begin recording and press the
key to assign to this macro. Then, execute the commands to record. When
you're done, press (Alt)-(Minus) to stop.

Using macros effectively is another matter. Because source-code changes,
it's difficult to create general-purpose macros that work correctly under a range
of conditions. Still, macros are useful. See chapter 16's sample macros for C,
Pascal, and assembly language debugging.

Chapter Four: Windows, Menus, and Hot Keys

You can record only TD commands in macros, not input typed into program
variables. If you need that ability, use TDINST to switch on "Keystroke recording,"
or start TD with the -k option to record all keypresses and most mouse movements
(see chapter 3).

Display options

115

Figure 4.31 shows the dialog box associated with this command. It's settings
are similar to those for TDINST's Display command as described in
chapter 3.

[l]l=====Di spl Od C4)tl rns=======;i
DI I I t
(~ !~one !.• •

(•) Srnurt
C)Al11m.1s

-. :. f t
() HE,,
<) Oecirnal
< o) 8nth •

&:reen I Ines Teti size
1+15 +cm11 •

Figure 4.31. Display options dialog box.

Use the dialog box to change Di sp Lay swapping to None (no output display),
Smart (show output only when it changes or might change), or A Lways (show
output between every statement).

Choose an Integer format to show values in Hex or Decimal. Use Both to
display in both styles-usually the best choice unless you prefer one or the
other and want to save a little horizontal display space.

Set Screen lines to 25 for most monochrome and CGA displays or to 43 /50
for EGA and VGA displays that can display extra lines. The change takes effect as
soon as you close the dialog box.

Set Tab size to the same setting that you use in your editor, from 1 to 32.
The source code must have embedded tab characters for this setting to have an
effect.

Path for source

Enter a path name with an optional drive letter where you store your
program's source-code files. Enter multiple directory names separated by
semicolons.

116 Part One: Guide and Reference

For large multimodule programs, I like to store various sections in their own
directories. When debugging test programs inside those directories, I enter the
pseudo directory name " .. " in Path for source. Or, I use names such as
" .. '- subx." This tells TD to look for additional source-code files in this directory's
parent and in other subdirectories stemming from the same ancestor. I also avoid
specifying drive letters such as C: and D:. That way, my configurations will work if
I move my files to a different drive.

Save options

Choose this command and fill in the dialog box shown in Figure 4.32. Check
off the items you want to save-Options to save all settings from other
Options-menu commands, Layout to save the currently open View-menu win
dow positions and sizes, and Macros to save any macros you created. Enter the
file name, usually TDCONFIG.TD, in the Save to input field, then choose Ok to
save the configuration to disk.

[XJ Options: .
[J Lciyout
[) Mnrro""

Save To
llBIMB

Figure 4.32. Save Configuration dialog box.

Be careful when typing the Save to file name-TD doesn't warn you before
replacing an existing file. Some programmers name their configurations the
same as their program, for example, SORT.TD for a program named SORT.C.
This may be asking for trouble. If you accidentally supply the wrong file-name
extension (.C instead of .TD), you could wipe out a source-code file.

If you change the output file name by accident, to return to the default
TDCONFIG.TD, move to the Save to prompt box and press (Cursor Up) or
(Cursor Down).

Restore options

Use this command to load a configuration file saved by the Save options
command or created with TD INST as explained in chapter 3. The command

Chapter Four: Windows, Menus, and Hot Keys 117

opens a file dialog similar to the Fi le:Open command's (see Figure 4.23) but
displays files ending in .TD instead of .EXE. (You can change this by entering a
new wild-card expression such as * .tdx or * .td?.)

Window Menu

Just about everything TD has to say is displayed in a window. Use the com
mands in the Window menu (see Figure 4.33) to move, resize, shrink, expand,
close, and activate various TP windows. Some of these operations were cov
ered earlier-see "Views" near the beginning of this chapter.

lllllllaHelp

Next F6
Next pcre T cfi
Slze/oove Ctrl-FS
I con I ze/restcre
Close Alt-f3
l..'1do c I ose Al t-F6

~ pcre to log
User screen Alt-FS
1 Hocl.i I e TCFLC
2 lbtches

Figure 4.33. Window menu.

Zoom ((F5))

Press (F5) to expand the current window to full screen or to shrink it to its
former size. I find the command especially handy for examining complex data
structures in inspector windows-it's faster to zoom such windows to full
screen temporarily than to use mouse and keyboard commands to make minor
adjustments to the window size.

Hint: Because large windows take more memory, this command may not work
when debugging big programs. You can usually avoid this problem and conserve
resources by zooming only one window at a time.

Next((F6))

Press (F6) to activate the next window in numerical sequence. I use this key to
bring multiple inspector windows back into view after switching to Madu le to

118 Part One: Guide and Reference

view some source code. Even though this means pressing (F6) several times,
this is often easier than choosing the windows by other means as explained later
in this section.

Next pane ((Tab))

Press (Tab) to move from one pane to the next in windows that have more
than one pane or in dialog boxes with multiple fields and buttons. This com
mand does nothing for windows that have only single panes.

Press (Shift)-(Cursor Left) or (Shift)-(Cursor Right) to move the cursor to
the previous and next words in the Module window. Pressing (Tab) in TD does
not move the text cursor to the next column as it does in most text editors, but
these alternate keys make it possible to move around just as rapidly.

Size/move ((Ctrl)-(F5))

Formerly attached to (Scroll Lock), the size I move command lets you move
and resize any window that has a resize handle in the lower right corner (see
Figure 4.1). You can move but not resize dialog boxes. If you have a mouse,
you'll probably never use this command. (In that case, remember (Ctrl)-(F5)
as a possible macro key.)

Iconize/restore

Choose this command to reduce the current window to an icon, displayed as a
tiny window near the bottom right of TD's display. Choose the command to
expand an icon to its former size.

If you prefer to keep many View-menu windows open instead of choosing
them individually as needed, convert them all to icons and use Options: Save
options to store the Layout in a configuration file. When you restart TD, you
can then use a mouse or keyboard command to expand the windows you want
to use.

After converting a window to an icon, it may disappear behind Module or
Watches. If that happens, press (F6) to bring the icons forward so you can see
them. Or, if this is a frequent problem, shrink Module and Wat ch es one or two
columns horizontally from the right to expose a sliver of the icon borders, which
you can click with the mouse pointer to activate the windows.

Chapter Four: Windows, Menus, and Hot Keys 119

Close ((Alt)-(F3))

Press (Alt)-(F3) to close the current View-menu window. This does not work
for dialog boxes. If the window is an inspector, pressing (Alt)-(F3) closes all
open inspectors. To close only the active inspector window, press (Esc). (In
previous TD versions, (F3) was the close command's hot key.) See the next
command for a way to undo the most recent close.

Undo close ((Alt)-(F6))

If you accidentally close a View-menu or inspector (but not a dialog box), press
(Alt)-(F6) to reopen the window to its former size, position, and content. You
can restore only the most recently closed window-pressing (Alt)-(F6) again
does not reopen other windows closed earlier.

Hint: After opening multiple inspector windows, to close all but the one with the
lowest window number, press (F6) or click on any other inspector to make it
active, then press (Alt)-(F3)(Alt)-(F6). This can be handy when following a
linked list to start over from the root node and follow a different path.

Dump pane to log

Choose this command to copy the information in the currently active pane of
the active window to the Log window, opened by View: Log. See chapter 5 for
more information about keeping logs and saving a log file to disk.

I often use this command to prepare before-and-after tests. For example,
after opening the Registers window, I'll dump one or both panes to the Log
window. This gives me a snapshot of register and flag values as they existed at
this place in my program. After running other statements, I can then compare
the Log entry with the current values in Registers. (If you do this frequently,
assign the command to a macro key. See chapter 16.)

User screen ((Alt)-(F5))

Press (Alt)-(F5) to switch from TD's display to the program's output screen.
To return to TD, press any key. The display output is frozen-all you can do is
look.

If this command doesn't work, check that Options:Display options is set
to Smart or Always. If it's set to None, there is no display output to view. Also,
TD disables User screen during remote and dual-monitor debugging (see
chapter 17).

120 Part One: Guide and Reference

1 Module TCALC, 2 Watches

At the bottom of the Windows menu (see Figure 4.33) is a numbered list of all
open View-menu and inspector windows. The list changes as you open and
close windows, but it usually has the two entries listed here, Module (plus the
module's name) and Watches.

To activate a listed window, you can open the Windows menu and press its
number. This is the same number you can press along with (Alt) when the
menu is not open. Usually, though, pressing (F6) or using a mouse to activate
new windows is easier. The list is mostly helpful just for seeing what windows
are open.

The Windows menu can list up to nine window titles. When ten or more windows
are open, the last menu command changes to Window pick. Choosing this com
mand opens a dialog list box (see Figure 4.10) from which you can select the
window you want to activate.

Help Menu

The last global menu lists three commands for TD's on-line help system. (See
Figure 4.34.) The commands are easy to use. Just choose one of the Help menu's
selections or press (Fl). Then, follow the on-screen instructions to page among
topics until you find the help you need.

I nde' Shi ft-Fl
Previous tqilc Alt-Fl
Help on help

Figure 4.34. Help menu.

TD's help system is context-sensitive. This means you can activate a window
or highlight a command and press (Fl) at any time to view more information
about that selection. For information about how to use on-line help, press (Fl)
twice.

Use the four cursor movement keys to select highlighted words in help-text
screens, then press (Enter) to view more information about these topics.
After threading your way among the facts you need, press (Esc) to close the
help windows and return to what you were doing. To back out of a threaded
journey through various help screens, press (Page Up) one or more times. See
Table 4.3 for a complete list of keys you can use while viewing help screens.

Chapter Four: Windows, Menus, and Hot Keys

Hint: Press (Alt)-(Fl) to reopen the previous help screen after you close the on
line help system by pressing (Esc). This is a handy key to remember for flipping
between another TD window and the help text that describes how that window
works.

Table 4.3. On-line help keys.

Key

(Alt)-(Fl)

(Ctrl)-(Page Up)

(Cursor Down)

(Cursor Left)

(Cursor Right)

(Cursor Up)

(Enter)

(Esc)

(Fl)

(Page Down)

(Page Up)

Action

View previous screen (same as (Page Up))

Return to first page opened this session

Select highlighted topic below

Select highlighted topic to left

Select highlighted topic to right

Select highlighted topic above

View help screen for highlighted topic

Close help screen and return to TD

Open index to all help topics

View next help screen*

View previous screen (same as (Alt)-(Fl))

*This works only when "PgUp/PgDn" appears in lower right corner.

Index ((Shift)-(Fl))

121

Press (Shift)-(Fl) at any time to open TD's He Lp Index window. Then, use cursor
and page movement keys or a mouse to choose topics from the displayed list.

Previous topic ((Alt)-(Fl))

When the on-line help system is open, pressing (Alt)-(Fl) is the same as
pressing (Page Up). The command takes you back through the help screens
you visited previously.

This command is more useful after closing help by pressing (Esc). At any
time after that, you can press (Alt)-(Fl) to reopen the previous help screen.

Help on Help

Choose this command for an overview of TD's on-line help system. The
information is the same as displayed when you choose the He Lp on He Lp entry in
the help system index.

122

Hot Keys

Part One: Guide and Reference

As you learn to navigate TD's menus and windows, you'll find many commands
that have hot-key assignments. Memorize as many of those keys as you can.
You'll cut out a lot of rigmarole-opening menus, moving highlight bars, and
choosing commands from pop-up lists.

This section will help you to learn TD's hot keys. Listed here are (Ctrl),
(Alt), and all function key combinations (see Tables 4.4, 4.5, and 4.6). Unused
combinations (marked none in the "Action" column) are available for assigning
to macros (except for (F11) and (F12) on extended keyboards). Other suitable
macro keys are (Shift)-(F2) through (Shift)-(FIO).

For compatibility with Borland's integrated Turbo Pascal and Turbo C compilers
and editors, (Shift)-(F6) performs the same action as (F6), (Ctrl)-(FS) sets
breakpoints as does (F2), and (Ctrl)-(FlO) and (Alt)-(FlO) both open local
menus. Unless you need both sets of keys, the duplicated entries make good
choices for assigning to macros.

Key

(Fl)

(F2)

(F3)

(F4)

(FS)

(F6)

(F7)

(FS)

(F9)

(FlO)

(Fll)

(F12)

Table 4.4. Function hot keys.

Action

On-line help text

Toggle breakpoint at cursor on or off

Open the Pick a module dialog box

Execute program up to cursor

Zoom (enlarge or shrink) window

Uncover and make next window active

Single-step, tracing into subroutine calls

Single-step, stepping over subroutine calls

Run program to a breakpoint or to completion

Toggle between global menu and a window

None (not available for macro assignment)

None (not available for macro assignment)

This section does not list local-menu (Ctrl)-letter keys. As explained earlier,
every View window has its own local menu of commands, each of which has a
highlighted character that you can press along with (Ctrl) to choose that
command without first opening the menu. The best way to learn these hot
keys is to open the menus or press the (Ctrl)-key combinations to choose

Chapter Four: Windows, Menus, and Hot Keys 123

commands. Eventually, you'll memorize the keys for the commands you use
most frequently.

If you have a mouse, you can click the left button to choose any function key
displayed on TD's bottom line. You can also hold down (Alt) or (Ctrl) until that
line changes (this takes a moment). Then, while still pressing that key, click the
listed function. If you're good with a mouse, but not the world's best typist, you
may find this method easier than pressing double-function keys.

Keys

(Alt)-(Fl)

(Alt)-(F2)

(Alt)-(F3)

(Alt)-(F4)

(Alt)-(FS)

(Alt)-(F6)

(Alt)-(F7)

(Alt)-(FS)

(Alt)-(F9)

(Alt)-(FlO)

Keys

(Ctrl)-(Fl)

(Ctrl)-(F2)

(Ctrl)-(F3)

(Ctrl)-(F4)

(Ctrl)-(FS)

(Ctrl)-(F6)

(Ctrl)-(F7)

(Ctrl)-(F8)

(Ctrl)-(F9)

(Ctrl)-(FlO)

Table 4.5. (Alt)-Function hot keys.

Action

Display or reopen previous help screen

Set breakpoint options

Close the active window ((Alt)-(F6) recovers)

Back trace through previous instruction traces

View user screen (any keypress returns to TD)

Reopen most recently closed View window

Trace into machine code of current statement

Run until return from subroutine

Execute up to specified address or line

Open local menu for current window

Table 4-6. (Ctrl)-function hot keys.

Action

None

Reset program to startup conditions

None

Evaluate and modify expressions

Activate window move and resize commands

None

Add a variable to Watches window

Toggle breakpoint (same as (F2))

Run program (same as (F9))

Open local menu (same as (Alt)-(FlO))

124

Summary

Part One: Guide and Reference

TD is a complex software package, and learning how to use its many windows,
menus, and hot keys can be frustrating-especially when you have to find a bug
now, not tomorrow. However, by weaving TD into your daily programming
habits and by using the debugger as a tool to examine code even before bugs
occur, you'll be ready to use the commands when bugs do surface.

This chapter is organized as a reference to most of TD's windows, menus,
and hot keys. It also contains general information about using windows, dialog
boxes, inspectors, the keyboard, and a mouse. Skim the chapter for an over
view of TD's operations, then come back later for help with specific commands
as you need it.

TD uses three kinds of menus: global menus, local menus, and submenus.
Global menus are always available except when a dialog box is open. Local
menus are associated with other windows. Submenus contain additional com
mands. Descriptions of global menus are listed iµ this chapter in the order the
menus appear on the top line of TD's display.

The next chapter covers TD's most heavily used windows and commands
from the View menu.

Chapter 5

Views and Local Commands

MosT OF TD's power is concentrated in the View menu's 14 main com
mands (see Figure 5.1). Each of these commands opens a view window,
described in this chapter in alphabetic order along with the window's associ
ated local commands.

Most View-menu commands directly open their view windows-for exam
ple, Watches and Registers. Others (Module and Fi le) first open a dialog box
that prompts for various options to apply to those views. One command
(Another) opens a submenu that lets you create additional copies of three other
common views.

If you are reading this chapter out of order, you might want to glance at the
beginning of chapter 4 for general help on using windows, choosing menu
commands, and operating dialog boxes. Here are a few highlights from chapter
4 that will also help:

• Press (Alt)-V to open the View menu. Then, press the highlighted letter of
the command you want. For all View commands, this is the first letter of the
command name. Press C to open the CPU view, H for the object Hierarchy,
and so on. You can also use a mouse to choose commands.

• An ellipsis (...) in a menu command indicates that the command opens a
dialog box. A small triangle(..,...) tells you the command opens a submenu.

• Press (Esc) to close a dialog box. Press (Alt)-(F3) to close a View
window. You know it's a dialog box if the lower right corner is a solid
double line. Only active View windows (and inspectors) have single-line
resize handles at the lower right.

• TD normally opens the Module and Watches views when you start debug
ging. You'll rarely need to open these windows from the View menu.

• Press (Alt)-(FlO) or (Ctrl)-(FlO) to open a view's private menu of local
commands. Or, instead of opening the menu, press (Ctrl) and a local

125

126 Part One: Guide and Reference

.. lln lreal<JXJints

llrea<JXJ I nts
Sta:K
log
Uatches
Vcrlcbles
Hodule... F3
Fl le •••
CPU
~
P.a;iisters
Nuner i c processcr
Execution history
Hiercrcn.i

1···, I .

Figure 5.1. View menu.

command's highlighted letter. A few commands also recognize (Delete)
and (Insert) as alternate hot keys. Get in the habit of using these keys
they can save a lot of time. To help you learn them, this chapter lists hot
keys in parentheses after the local command names.

• Press (F6) or use a mouse to activate an inactive window. Only one view at
a time can be active, and all local commands apply only to thatview.

How to Use This Chapter
Because this chapter is a reference to all v; ew-menu commands, it mentions
topics discussed elsewhere. So, if you come across something you don't under
stand, just skip it and go on. Don't try to memorize every detail here-skim the
material the first time through and plan to come back later when you need help
with specific commands.

Dozens of figures in this chapter illustrate many of TD's displays, making
this a good chapter to read when you're away from your computer. Depending
on the type of video adapter you have, the screens printed here might be
different from those you see on your monitor. But all elements will be in the
same places, and this shouldn't cause any problems.

Default Commands
Most views have default commands in their local menus that TD executes when
the view's window is active and you simply start typing or when you press
(Enter) or (Space). These commands are marked here by the word(DefaulV.

Chapter Five: Views and Local Commands 127

Default commands make TD seem almost intelligent, and they can save
many wasteful keystrokes. For example, Goto is the Module window's default
command; therefore, instead of pressing (Ctrl)-G or opening the local menu
and pressing G, you can simply type the name of a procedure or function to
view. Once you learn these and other shortcuts, you'll never have to select these
commands from their menus again.

Another View

Strictly speaking, Another isn't a view-it's a command that lets you open
additional copies of three other views: Module, Dump, and Fi le, explained
elsewhere in this chapter. Choose A not her and then choose an additional view
from the submenu (see the bottom of Figure 5.1).

Another is needed because of the way View commands work. If, for exam
ple, you choose Dump a second time, it activates the current Dump window,
bringing that window to the front if it's now hidden. It doesn't create another
Dump. For this reason, only Another can open a second copy of these three
windows. (It would serve no purpose to have second copies of the other views.)

You can use Another to open as many Module, Dump, or Fi le windows as
you need, limited only by the amount of memory available for TD to store
internal data related to open windows.

Breakpoints View

The Breakpoints view displays facts about active and inactive breakpoints
stopping places or conditions where you want to halt a program for examina
tion, log an expression, or call a subroutine. As Figure 5.2 shows, the
Breakpoints window has two panes, but unlike other multipane windows, only
the left pane has a local menu.

The right pane displays details about the highlighted breakpoint to the left.
Move the highlight bar to select any breakpoint and read the information to the
right. In Figure 5.2, the breakpoint named G loba l_1 is set to go off when the
expression Reg. ax <> 0 is true. The breakpoint is enabled.

ri;;'CJg[l~J=iBrli-ecl~IJ~-1 n;tf~~~~=====~~[t][.a.J=;i
I~ Elrea<po I nt
TCSCFEEN. 351 Exp"ess I on true "Reg. ax <> B"

Erd:lled

Figure 5.2. Breakpoints view.

128 Part One: Guide and Reference

If you've installed TDH386.SYS and if a breakpoint can use hardware
debugging features on 80386 or 80486 processors, an asterisk in the left pane
indicates that this breakpoint will not affect performance when you run the
code by pressing (F9).

Don't confuse the Breakpoints view with the global Breakpoints menu.
Use the view to examine breakpoints you set previously and to modify how
those breakpoints work. Use the menu to set new breakpoints, as described in
chapter 8. (It is possible, though not as easy, to set breakpoints with the view's
local Add command, as explained later in this chapter.)

Local Breakpoints View Commands

There are six local commands that you can use when the Brea kpo i nt s view is
active. (See Figure 5.3.) The following notes describe how to use each of these
commands.

Set options ((Ctrl)-S)

• ••••• Hcrd.cire opt I ans .••

Fktl .••
P.enove
Delete al I
Inspect

Figure 5.3. Breakpoints local menu.

This option opens the Breakpoint options dialog box illustrated in Figure 5.4.
Use this command to examine or change the following options associated with
this breakpoint.

• Address: Breakpoints in code are in the form #NAME#LINE or NAME.LINE
where NAME is the module name and LINE is a line number. (The exact
format depends on the current language.)

• Action: Set to Break to halt the program when the Condition to the right is
true. Change to Execute and enter a function or procedure into the Action
expression to run a subroutine when this breakpoint hits. Set to Log to log
the result of an Action expression-usually a variable to examine at each
breakpoint.

• Action expression: Enter an expression in your language's format (see
chapter 9) to call a subroutine when Action is set to Execute, or to make an
entry in the Log view. You can also enter an expression with an intentional
side effect (a change to a global value) such as i + + in C.

Chapter Five: Views and Local Commands

[l]l======IEred<pol nt optlons========;i
IW-ess

Action
• Er 1 111

·) E ~t._11+t.
~ I [1 1 l

Action expression
111141111111

Pass cOU'lt
I

ldQl!l!I

Caidltion
· HI "·lJ_

' Lh1111r-d r11>-111 n '-l

,. 1 E-r:=r1::: __ 11111tr111:::

! Hnr r~ 1...,, ~

Ccrl:Jltlon expression

Figure 5.4. Breakpoint options dialog box.

Hint: To avoid trouble, it's usually best if a Log expression does not cause any side
effects such as assigning a function result to a variable or using the C ++ and -
increment and decrement operators. You may do this in unusual circumstances,
but be aware that if you do, the breakpoint may affect the target program,
complicating the search for a bug.

129

• Pass count: Change to ignore a breakpoint Condition until that condition occurs
a certain number of times. For example, to break out of a loop after nine iterations,
set a breakpoint on a statement inside the loop and change Pass count to 9. You
can't set Pass count to 0 or to a negative value. Instead, use the Breakpoint
disabled check box to disable a breakpoint.

• Global: After setting a breakpoint in code (usually by pressing (F2)), you can enter
a Condition expression for TD to evaluate when the breakpoint occurs. If you
then turn on the Global switch, TD will monitor that condition between every
source line (if Module is the active window) or between every machine-code
instruction (if CPU is active). Because this will reduce TD's performance unless you
have an 80386 or 80486 and are running TD386, there's few good reasons to
change the Global setting-but you can examine it to find out how TD will
monitor a breakpoint condition while a program runs.

Note: TD's use of the word "Global" confuses many people. A common code
breakpoint is not global because TD creates it by inserting an interrupt instruction
into the code; therefore, the debugger doesn't have to monitor the breakpoint's
address. Instead, the breakpoint occurs when the program itself executes the
interrupt instruction, which TD replaces with the original code when it handles
the breakpoint. A global breakpoint requires TD to examine a memory location
each time the debugger gains control from the target program. That's why global
breakpoints cause performance to suffer the blues.

130 Part One: Guide and Reference

• Condit ion: Set to Always for breakpoints in code. Set to Changed memory to
break when any ofa range of memory bytes specified in Condition expression
are changed. Set to Expression true to break when an expression becomes true
usually when a variable reaches a specific value as in Figure 5.4 where the break will
occur when Reg. ax is not zero. Set to Hardware to enable the Hardware options
local command if you're system has an 80386, 80486, or debugging board (see
chapter 18).

• Condition expression: Enter an expression here when Condition is set to
Changed memory or to Expression true. In the first case, the expression should
be an address or label followed by a optional count of the number of items to
examine. For example, the expression My Count, 2 monitors 4 bytes if My Count is a
2-byte integer. To monitor an entire variable such as an array, just enter its name. To
monitor an unlabeled address, enter it in hex in your language's format. You can also
specify segment registers and offsets such as CS:S0800 (Pascal), CS:Ox800 (C), or
CS:0800h (assembly language). When Condition is set to Expression true, TD
evaluates the Condition expression before every source-code line (or machine
code instruction if the CPU view is active). The breakpoint Action is then taken if
the expression is true.

Hint: Set Changed memory and enter a Condition expression to find a bug
that's unexpectedly changing a memory location. Set Expression true and enter
an expression to halt the code when a variable reaches or exceeds a specific value,
for example, when an array index that's supposed to be limited to 99 is greater or
equal to 100.

• Breakpoint disabled: Check this box to disable a breakpoint temporarily. Check
it again to turn the breakpoint back on.

Hardware options ((Ctrl)-H)

Before you can use this command, you must install a hardware debugging
board or have an 80386 or 80486 processor in your system as explained in
chapter 18.

Add ((Ctrl)-A) (Default)

This option opens the Breakpoint opt ions dialog (see Figure 5.4) so you can fill
in a new breakpoint's details. In some cases, this might be easier than using the
global Breakpoints menu commands to set breakpoints, especially if the
Breakpoints view is already active. But usually, you won't add new breakpoints
this way. Instead, use the methods described in chapters 4 and 8. For example,
it's a lot easier to move the cursor to a source-code line and press (F2) to set a

Chapter Five: Views and Local Commands 131

code breakpoint than it is to use the Add command and fill in the source-code
line number manually.

Hint: After loading a program into TD, open the Breakpoints view and enter the
name of any procedure, function, or label. Because Add is the default action, just
start typing. You don't have to choose the command from the menu. This will
open the Breakpoint options dialog box and set a breakpoint at that address.
Then, press (F9) to run the code to the breakpoint-a quick way to execute up to

a routine when you know its name.

Remove ((Ctrl)-R, (Delete))

This command removes the breakpoint highlighted in the Break poi n ts
window. Be sure that's what you want to do-you'll have to reenter the break
point if you remove it accidentally.

Hint: This is one of the few TD commands with two hot keys. You can press
(Crtl)-R or (Delete) to remove individual breakpoints.

Delete all ((Ctrl)~D)

This option removes all breakpoints of all kinds. Use this command to delete
breakpoints only if the Breakpoints view is already active-the Delete all
command in the Breakpoints global menu takes fewer keystrokes ((Alt)-BD
instead of (Alt)-VB(Ctrl)-D).

Inspect ((Ctrl)-1)

Highlight a nonglobal code breakpoint and press (Ctrl)-1 to view that source
code line in the Module window. If that window is not open, this command
opens it.

Because Module usually occupies most of the display, when you press
(Ctrl)-1, the Breakpoints window appears to close, but it's just hidden behind
Module. Press (F6) a few times to bring Breakpoints back into view.

Note: This command doesn't work for global breakpoints that monitor memory
locations and expressions. To examine those breakpoints, use Set options (press
(Ctrl)-S).

132

CPU View

Part One: Guide and Reference

The CPU view is one of TD's most complex. (See Figure 5.5.) Each of its five
panes displays a different kind of information, and each has its own local menu
of commands. Starting with the large pane in the upper left corner and proceed
ing clockwise, first is the Code pane, which shows a disassembly of your
program's compiled or assembled machine code. Next is the Registers pane
a view of the 16- or 32-bit processor registers. After that comes a thin pane at
the far right of the processor Flags. Below Registers and Flags is the Stack
pane, showing the values currently pushed onto the system stack. To the left of
that is the Dump pane, which you can use to view and change bytes, words, and
other values anywhere in memory.

r;=[IJ=G'U 00386 ss: 3'00 • _fil" 3=[t]m~

ax 7201 c-0
cs:048AHl07EEC02 c~ byte ptr [bp-j bx 0001 z-0
cs:04EE 73ffi jrb TCSCREEN .354 ex 7200 s-0

TCSCREEN.352: CurrCol s :• 40 dx 3'02 o-0
cs:0490 C47Effi les di. [bp+ffi] si 9011 p-0
cs:0493 26C6'150128 llOV es : byte ptr [di ffi8A o-0
cs:0498 E808 j~ TCSCIHN.355 bp HC 1-1

TCSCREEN. 354: CurrCol s :• 80; sp :FOO d-0
cs:04"*1 C47Effi les di' [bp+06] ds 9011
cs: 049) 26C6450150 l'IOV es:byte ptr [es 9011

TCSCPEEN. 355: erd SS 9093
cs:04A2 EBlC j~ TCSCPEEN.361 cs 8974

TCSCREEN. 357: VideoType :•to'!· ip 0400
It[

:!I D • ds:0000 00 00 OC 00 44 FF 16 00
ds:0000 EA FF 0A 00 F6 FF 5E 05 n I + "+
ds:0010 ES 7F 0A 00 F6 FF CO 05 00 + =4 SS: ::f'[JI 0002
ds:0018 ES 7F 21 01 IF FE 15 50 00 1i:f11SP SS: ::f.'00~5003

Figure 5.5. CPU view.

Only two of the CPU's five panes are unique-the Code and Stack panes.
The others are identical to the separate views Dump and Registers (which also
contains the Flags pane). Turn to the descriptions of those two views in this
chapter for more information about these sections of the CPU window. This
section explains how to use the Code and Stack panes.

CPU Window Uses

Use the CPU view to examine and patch a program on its lowest level-the
machine-code instructions that drive the 80x86 processor in your computer.
Use it also to view and modify processor registers and flags, to examine the
system stack, and to view a dump of bytes, words, and other values anywhere
in memory.

When debugging assembly language code, some people prefer to use the
CPU window instead of the source-code Madu le view. Because assembly

Chapter Five: Views and Local Commands 133

language source-code statements directly translate into individual machine
code instructions and because much of assembly language programming
involves setting registers and flags and manipulating the stack and bytes in
memory, the CPU window is often convenient for debugging assembled
machine code.

But when debugging high-level C and Pascal programs, the CPU window is
mostly useful only when it becomes necessary to peer below the source-code
level and look at the code the compiler has generated for your commands. For
that reason, when debugging C and Pascal, you'll want to use the Module
window at most times, switching to CPU only when:

• You want to trace machine not source code. When CPU is active, (F7),
(F8), and other Run-menu commands execute processor instructions.
When Module is active, those same commands trace source-code lines,
which might be composed of many compiled machine-code instructions.

• You need to examine the registers or flags, for example, after returning
from an assembly language subroutine or a call to a DOS function.

• You want to examine or modify a procedure or function's return address on
the stack, or you want to alter a parameter passed to a routine on the stack.

• You want to execute individual machine-code instructions and watch their
effects on bytes in memory.

• You want to patch the compiled code. The CPU window lets you assemble
new instructions directly into memory, which might be useful for testing
temporary fixes that you'll later add to your program's source.

Opening the CPU Window

Usually, use the mouse or press (Alt)-VC to open the CPU window, similar to
the way you choose other View-menu commands. Sometimes, however, the CPU
window will open automatically when:

• You debug a program that lacks debugging information in its .EXE or .COM
file. Unless this is what you want to do, quit TD and recompile according to
the instructions in chapter 2. If the CPU window still appears, check that
Options:Path for source lists the directory path name where you store
your source-code files. If that's still no help, you may have used TDINST to
set Display: Beginning display to Assembler. Change this back to Source,
or use the -1- command line to run TD.

• You call a routine in a module for which source code is not available, for
example, a library routine. If you do this by accident, close the CPU window
(press (Alt)-(F3)) and then press (Cursor Down)(F4) to run the pro
gram up to the next source-code statement.

134 Part One: Guide and Reference

• You break out of a program by pressing (Ctrl)-(Break). This will often
interrupt a library routine without source-code and debugging information.
Unless you want to continue debugging from that point, close the CPU
window and press (Ctrl)-(F2) to reset.

The CPU view also exhibits a fair amount of intelligence. When you open
CPU, it tries to show you something logical-the disassembled machine code for
a selected statement in the Module window or a Dump of the bytes for an
inspected data structure. But, if the window activates the wrong pane, just tab
to the one you want.

CPU Code Pane

The Code pane is the large one in the CPU view's upper left corner. (See Figure
5.5.) In it is a disassembled representation of your program's compiled or
assembled code. Usually, as the figure shows, the original source-code state
ments are displayed along with the machine-code instructions generated for
those statements. (See the Mixed local command to change this pane's display
format.) A small triangle (..,..) marks the location of the instruction that will
execute for the next Run-menu command.

When the highlighted instruction in this pane refers to a memory
location-for example, as in the instruction mov [bp-01 J ,al-the upper win
dow border (near the center) shows something like SS: 3 F F7 = 5 F. To the left of=
is the effective address to which the instruction refers; to the right is the current
byte or word value at that address. Use this information to confirm that values
loaded into registers or written to memory are correct and that the addresses
point where you think they should.

Examining code in the CPU view is a great way to learn how your compiler
operates. Scanning the machine code for selected source-code statements can
show you how the compiler executes a pointer reference, calls a function or
procedure, or evaluates an expression. If you're curious about what code is
really doing, this is the place to find out.

Assembly language programmers may notice a few discrepancies between
source statements and disassembled machine code. This is because 80x86
assembly language often uses several mnemonics (symbolic names) for the same
code. For example, j e and j z refer to the same jump instruction. But TD always
disassembles j z as the equivalent j e.

Hint: Along with the disassembly, the Code pane normally shows the machine
code bytes for those instructions. But, if you shrink the CPU window horizontally
to less than about 60 characters wide, the bytes disappear! When you don't need
to see the machine code, you can shrink CPU this way to pack almost as much
information on-screen in a much smaller space.

Chapter Five: Views and Local Commands 135

Local CPU Code Pane Commands

Like most window panes, the Code pane has its own local menu of commands
(see Figure 5.6). The next sections describe how to use each command.

,,. ..
lrlaln
Fol loo
Coller
Previous
Secrch
Viai sot.rce
Mixed 'les

Ne..i cs: Ip
Assertile ••.
I /0 ~

Figure 5.6. Local menu in the CPU window's code pane.

Goto ((Ctrl)-G)

To examine other parts of a program, you can press the cursor and page
movement keys, or you can use the Goto command to jump farther away.
Enter an address such as 054Eh ($054E for Pascal, Ox054E for C), or if you
know the line number, enter #module#OOO where module is the name of a
source-code module and 000 is the line number, for example, #strio#124.
(When debugging Pascal code, enter line numbers in the form
MODULE.LINE.)

Hint: Press (Ctrl)-(Cursor Left) and (Ctrl)-(Cursor Right) to shift the
instruction displayed at the highlight bar in the Code pane. This is similar to using
Goto to reposition the window and is helpful on the rare occasions where the
disassembly becomes out of synch with the source code.

Origin ((Ctrl)-0)

This option returns to the current origin-the location of the instruction that
will execute next when you use a Run command or press a hot key such as
(F7), (FS), or (F9). Use this command after viewing other locations to get
back to the program's current origin.

It's a good idea to use this command before entering expressions to make
sure TD scopes any local symbols to the origin, not to another location in the
code you happen to be viewing.

136 Part One: Guide and Reference

Hint: After scrolling around in the Modu Le window to view various source-code
lines and opening the CPU window to view a disassembly of those statements,
press (Ctrl)-O(Ctrl)-V to reset both windows, with CPU active.

Follow ((Ctrl)-F)

When a jump, call, or software interrupt instruction is highlighted in the CPU's
Code pane, press (Ctrl)-F to view that instruction's target location-the code
that will be executed by the next Run command. You might think of Fo L Low as a
kind of "look before you leap" feature. It lets you look ahead into a subroutine
before actually jumping into it.

After pressing (Ctrl)-F to view a target subroutine, press (F7) to execute
the jump, call, or interrupt instruction that leads to this address. You can then
continue debugging the subroutine. But never press (Ctrl)-N after (Ctrl)-F to
make the target the new origin-unless, of course, you don't want the caller's
return address to be pushed onto the stack.

caller ((Ctrl)-C)

Press (Ctrl)-C to view the code that called the currently displayed subroutine.
In order for this to work, that location's return address must be on the stack and
a ca L L must have been the most recently executed instruction. After pressing
(Ctrl)-C, you can press (Ctrl)-P or (Ctrl)-0 to return to the previous view.

Previous ((Ctrl)-P)

Press (Ctrl)-P to return to the location previously displayed in the Code pane
before you used another command to move away from that spot.

Hint: This command gives you a neat way to toggle between two disassemblies.
For example, press (Ctrl)-F to follow (but not execute) a ca LL instruction and
then press (Ctrl)-P repeatedly to toggle between the two views.

Search ((Ctrl)-S)

Enter an assembly language instruction or a series of byte values to find. TD will
start searching from the current address down. If it finds your search argument,
it will reposition the CPU Code pane to that new location.

When entering byte lists, be sure to use the correct format for the current
language. For example, to search for the two hex bytes SE and 7F, enter

Chapter Five: Views and Local Commands 137

$8e $7f in Pascal, Ox08E Ox07F in C, or 08Eh 07Fh in assembly language.
Also, beware of byte swapping in word and other multibyte values. To find the
word value 8E7F, you must enter $ 7F8E, Ox7F8E, or 07F8Eh to account for
the way these values are stored in memory.

You can also search for assembly language instructions, but in that case, you
must enter an instruction that assembles to the bytes you want to find.
TD doesn't search for the text of the instruction-it assembles the text and
then searches for the resulting bytes. For example, if you enter the search
argument or al,al, TD assembles that instruction and looks for the bytes OAh
and COh.

This means you can't search for conditional jumps because the offset
locations are not the same for the starting and target addresses. If you search
for je tcscreen.450, TD assembles the instruction and calculates the offset
from the current location to line 450. Because that offset value is probably
different where the instruction exists in the code, this kind of search usually
fails.

Hint: Performing multiple searches for the same instruction is difficult because
there is no "search again" command in this window pane. Fortunately, it's easy to
create your own. For example, to find all occurrences of int 21 h, after finding the
first, press (Cursor Down)(Ctrl)-S(Cursor Down)(Enter). Record those
keys as a macro if you do this often.

View source ((Ctrl)-V)

Press (Ctrl)-V to view the source-code statement in the Module window
associated with the highlighted machine-code instruction in the CPU window's
Code pane.

Hint: Get into the habit of using this command if you frequently switch between
the CPU and Module views-it's faster than closing the CPU window and then
having to reopen it later. Press (F6) a few times or press (Alt) and the CPU
window's number (usually 3) to return.

Mixed ((Ctrl)-M)

This command has three settings: No, Yes, and Both. Press (Ctrl)-M to cycle
through each of these to change the format of the disassembled instructions in
the Code pane. The results are purely visual and the settings have no other
effects.

138 Part One: Guide and Reference

Hint: I use Both for C and Pascal, Yes for assembly language, and No when
examining code for which I don't have the source text.

New cs:ip ((Ctrl)-N)

After highlighting an assembly language instruction, press (Ctrl)-N to copy the
address of that instruction to registers CS (code segment) and IP (instruction
pointer). This changes TD's origin-the location of the next instruction to
execute.

Never reset the origin to an instruction inside a subroutine-that would skip
the ca l l instruction that pushes the caller's return address onto the stack. Do
this only if you'll never execute that routine's return. For safety, place a break
point at the next ret or retf so that, if you press (F9) by accident, you'll avoid
an almost certain crash.

Assemble ((Ctrl)-A) (Default)

Press (Ctrl)-A or just start typing to assemble a new instruction at the current
location. When you press (Enter), TD moves the highlight bar to the next line
down; therefore, to enter multiple instructions, just type them one after the
other, pressing (Enter) at the end of each line.

Use this command to enter short patches to code or to test small assembly
language sequences. You can't save your changes to disk. Don't use this command
to enter long subroutines-if you press (Ctrl)-(F2) to reset the code, TD will
throw out all your patches. Also, you can't use the full-address forms of string
instructions. Instead, you must use shorthand mnemonics like lodsb and cmpsw.

Hint: Add a small buffer to your program to provide space for entering assembly
language patches. Use the Data: Inspect command to open an inspector window
to the buffer, press (Alt)-VC to open the CPU view and press (Tab) to move to
the Code pane. Press (Ctrl)-G and enter the first address shown in the Dump pane.
You can then assemble instructions into the buffer without concern about over
writing other code in RAM. To execute the patch, use a call far seg:ofs
instruction where seg:ofs is the segment and offset address of the patch, which
should end with a far return instruction (retf).

If you make a mistake typing an instruction, you'll receive messages such as
"Invalid instruction mnemonic" or "Symbol not found." To avoid having to
retype the entire line, after erasing the error message, either press (Space) or
press (Ctrl)-A and then press (Cursor Down) to highlight the previous text,
which you can then edit in the usual way.

Chapter Five: Views and Local Commands 139

1/0 ((Ctrl)-1)

After pressing (Ctrl)-1 or choosing I/O from the local menu, press I, 0, R, or
W to choose one of the submenu's commands: In byte, Out byte, Read word, or
Write word. (See Figure 5.7.) Don't also press (Ctrl)-let up on that key first.
The "In" commands prompt you for the port number, which you can enter in
decimal or hex. The "Out" commands prompt for a port number and a value to
write to that port. Separate the two values with a comma. You can specify port
numbers from 0 to 65,535.

Hint: Be extremely careful with this command. It's like a rifle with a hair trigger
once you fire it, there's no way to recall the bullet. Even reading from some ports
can affect circuits and devices attached to your system. For safety, reboot after
using I/O.

ld!Mi-1
Out b,ite
Read 1JOrd
Urite IJOrd

Figure 5. 7. I/O submenu for the CPU window's code pane.

CPU Registers Pane

The Registers pane in the CPU window shows the 80x86 processor's 16- or 32-
bit registers. (See Figure 5. 5.) The commands for this pane are identical to those
for the Registers view, described later in this chapter.

CPU Flags Pane

The F Lags pane in the CPU window shows the 80x86 processor's single-bit
flag values. (See Figure 5.5.) There is only one local command in this
pane, Togg Le. To use it, highlight the flag you want to change and press
(Ctrl)-T.

Hint: You can also press (Space) or (Enter) to toggle a flag value between 1 (on)
and 0 (off).

140 Part One: Guide and Reference

CPU Stack Pane

The Stack pane in the CPU window's lower right corner shows 16-bit word
values on the system stack. (See Figure 5.5.) A small triangle(.,...) marks the stack
pointer's current location, the value most recently pushed onto the stack. This is
the word that will be loaded into a register by the next pop instruction or into i p

by the next ret (or the first of a pair of words to be loaded into cs: i p by the
next retf).

Hint: TD displays stack words in byte-swapped order. To view stack bytes as they
are actually stored in RAM, tab to the Dump pane, press (Ctrl)-G, and enter ss:sp
for a byte-dump of the same values listed in the St a ck.

Local CPU Stack Pane Commands

The Stack pane's local menu (see Figure 5.8) has five commands, described in
the next sections.

•ms•Orioin
Fol loo
Previous
CharQ! ...

Figure 5.8. Local menu in the CPU window's stack pane.

Goto ((Ctrl)-G)

Use this command to position the stack to a new location. It's especially useful
for examining pointer references to variables stored on the stack. For example,
to see the stack location affected by the instruction mov byte ptr [bp-13], press
(Ctrl)-G and enter bp-$13 (bp-Ox13 for C or bp-13h for assembly language).
Remember, the 13 is in hex, even though the Code pane doesn't list the value
that way!

To scroll the St a ck pane without moving the highlight bar, press
(Ctrl)-(Cursor Left) and (Ctrl)-(Cursor Right).

When viewing stack locations, be aware that the stack pointer is always
even (or, at least it should be). To return to a true representation of the stack
after viewing odd-value addresses, press (Ctrl)-0. To move quickly through
the stack, enter an expression such as sp + 128 or sp + 1024. You don't have to
specify the stack segment register SS in the expression.

Chapter Five: Views and Local Commands

Hint: You don't have to view only the system stack in the Stack pane-you can
also use it to view other locations as a list of words. For example, press (Ctrl)-G
and enter ds:$0080 to view an array of integers or words in the data segment. I
find that the St a c k's vertical format makes viewing such arrays easier than the
Dump pane, which displays values in a wide block. Unfortunately, the list is "upside
down." So, to move down in memory (to higher addresses), you must press
(Cursor Up). Of course, in RAM, up to one person might be down to another.

Origin ((Ctrl)-0)

141

Press (Ctrl)-0 to reset the Stack pane to the current SS:SP stack location. Use
the command after scrolling, paging, or using other commands to view other
stack positions.

Follow ((Ctrl)-F)

When a pointer on the stack represents an offset to another stack frame (a series
of values pushed onto the stack usually by a high-level language subroutine),
you can highlight the value and press (Ctrl)-F to view that stack location. In
the case where multiple pointers point to many such frames, you can trace
through the stack quickly by highlighting the values and pressing (Ctrl)-F.
This command has the same effect as entering the pointer as an offset value
with the Goto command.

Hint: Press (Ctrl)-P to return to the previous view. Or, press (Ctrl)-0 to return
to the stack origin after following a series of pointers.

Previous ((Ctrl)-P)

Press (Ctrl)-P to restore the Stack pane to where it was before you used
other commands to view different locations. The command works as a toggle
press (Ctrl)-P two or more times to switch rapidly between two stack
locations.

Change ((Ctrl)-C) (Default)

Press (Ctrl)-C or just start typing to enter a new word value for the highlighted
stack location. You can use this command to change arguments passed on the
stack or to alter a return address. Remember to enter the value using the correct
format for your language.

142 Part One: Guide and Reference

CPU Dump Pane

The Dump pane in the CPU window shows byte, word, at;id other values any
where in memory. (See Figure 5.5.) The commands for this pane are identical to
those for the Dump view, described next.

Dump View

Figure 5.9 shows a typical Dump view window. Although at first glance, the
contents of this window appear scatterbrained, the information divides log
ically into three columns: an address field (for example, ds:OOOO), eight hexa
decimal byte values stored beginning at that address, and eight ASCII characters
representing those same bytes. These characters frequently look like gibberish
unless the bytes are part of a string. You can ignore them most other times.

[

[ll=ll.irip 3=[t][JJ::::;i
ds:OOOO 00 00 OC 00 44 FF 16 00 :!J D • ~
ds:oooo ER FF IJl oo F6 FF SE as n I + "+ 1
ds:0010 ES 7F IJl 00 F5 FF CIJ 05 00 + =+ I
ds:0018 E5 7F 21 01 CF FE 15 50 001C111SP ~

~ I I 11 111 . Iµ

Figure 5.9. Typical Dump view.

The address field may appear as in Figure 5. 9 or as segment and offset
values such as 735F:35D8. Watch for this-it tells you whether TD recognizes
the displayed data as belonging to the program's global data segment addressed
by ds. If an explicit segment address value appears, you are not looking at the
data segment.

Because TD makes copies of certain memory locations, video display buffers,
interrupt vectors, and the like, when using the Dump view to examine locations
outside of a program, you may not be seeing the actual values stored in RAM when
you look there. In other words, you can't see the values that TD uses from those
locations. Instead, the Dump window always shows you the values that will be
available to your code when it runs.

Scrolling the Dump Window

Use the cursor and page movement keys to scroll the text cursor inside the Dump

window. Press (Home) and (End) to move the cursor to the beginning and
end of a line. Press (Ctrl)-(Home) and (Ctrl)-(End) to move to the top and
bottom of the window. Press (Ctrl)-(Page Up) to reset the current offset
address to 0000, moving to the top of the current segment. To scroll the

Chapter Five: Views and Local Commands 143

window contents 1 byte at a time but keep the cursor stationary, press
(Ctrl)-(Cursor Left) or (Ctrl)-(Cursor Right).

Local Dump View Commands

The Dump view has one menu of local commands (see Figure 5.10), three of
which have submenus with other commands .

Goto ((Ctrl)-G)

....
Sea-ch
Next
~
Fol loo •
Previous

Display as •
Bl ocK •

Figure 5.10. Dump-view local menu.

Use this command to position the Dump view to any address. If you enter only an
offset such as $085E (Pascal), Ox085E (C), or 085Eh (assembly language), TD
moves to that offset within the current segment. You can also specify explicit
segment and offset pairs such as $72D0:$085E, Ox72DO:Ox085E, or
72DOh:085Eh. Or, you can specify a segment register like this: ds:$085E.

In place of an explicit address, you can also enter the name of a variable. For
example, to dump the bytes of an array, enter its name with the Goto command.
In fact, you can enter other kinds of expressions, too. TD will evaluate the
expression and dump the bytes at the address that equals the result of the expres
sion. You can even enter program line numbers such as TCSCREEN.435 or
#DT#42 to dump the machine-code bytes associated for the statement at that line.

Search ((Ctrl)-S)

Press (Ctrl)-S and enter bytes or ASCII text in quotes that you want to search
for in RAM. Separate multiple bytes with spaces. Surround ASCII text with
single quotes in Pascal, double quotes in C, or either in assembly language.

Hint: Searches extend only to the end of the current segment. To continue a search
in the next segment, add 1000 hex to the segment address with the Goto
command. For example, if the current segment is 3500h, Goto 4500h:O and repeat
the search by pressing (Ctrl)-N.

144 Part One: Guide and Reference

Next ((Ctrl)-N)

Press (Ctrl)-N to repeat the most recent Search, starting from the current
location and proceeding into the current segment (toward higher addresses).

Hint: Press (Ctrl)-(Page Up) before (Ctrl)-N to repeat a search for the entire
segment beginning at address seg:OOOO.

Change ((Ctrl)-C) (Default)

Press (Ctrl)-C or just start typing to insert one or more byte values starting
with the byte above the flashing text cursor. Separate multiple bytes with
spaces. Remember to enter each byte in a format that's suitable for your
language-for example, $FF (Pascal), OxFF (C), and OFFh (assembly language).

You can also enter string data by typing a single (Pascal and assembly) or
double (C and assembly) quote to choose the Change command. Then, enter
your ASCII text, type a closing quote mark, and press (Enter) to insert the
string into memory.

Use the Display as command to change the display format in the Dump

window. You can then enter word, floating point, and other kinds of values
instead of single bytes. If you don't change the display format before entering
16- and 32-bit values, you might accidentally change the wrong bytes if you fail
to consider the 80x86's byte-swapped storage order for multibyte values. For
these reasons, it's probably best to enter values in the currently displayed
format.

Hint: To use a mouse to choose this command, position the mouse cursor on the
byte you want to change, press the right mouse button, and choose Change. But,
be careful. If the mouse cursor moves before the local menu appears, you won't
know that until you finish the command. Because this makes it too easy to deposit
bytes at the wrong locations, I prefer to click the mouse left button to position the
cursor. Then, I enter the new data.

Follow ((Ctrl)-F)

This command pops up a submenu with five additional commands. (See Figure
5 .11.) Each command interprets the bytes at the text cursor as an address for
displaying code in the CPU window or bytes at a different location in Dump. Code
commands are at the top of the submenu; data commands are at the bottom. By
using these commands, you can follow a list of items joined by pointer fields,
trace pointers in the stack, and view buffers addressed by word segment values.

Chapter Five: Views and Local Commands

tleor code
Fer code

Offset to data
Se~t:offset to data
Bose ~t:0 to data

Figure 5.11. Submenu for the Dump view's Follow command.

145

The fastest way to choose these commands is to press (Ctrl)cFX where X
is the submenu command's first letter: N, F, 0, S, or B. If you use these
commands often, you might want to record those keystrokes as macros. The
following notes explain how to use each of these subcommands:

• Near code: Opens or activates the CPU window to the current CS segment at
the offset address equal to the word at the cursor. Most of the time, you'll
use this command to trace a 16-bit near return value in the stack, although
you can also use it to trace near calls, jumps, and 16-bit pointers to

subroutines.

• Far code: Opens or activates the CPU window to the segment and offset
address equal to the 32-bit value at the cursor. Use this command to inspect
the code for a far return on the stack or to view the instructions addressed
by any other 32-bit pointer.

Hint: The 32-bit pointers are stored as two words with the offset value preceding
the segment. The bytes in each of these word values are stored in swapped order.
For these reasons, you might want to change the display format to words before
using this command. That will make the values easier to read.

• Offset to data: Repositions the Dump view's contents to the current seg
ment and offset value at the cursor. Because most C and Pascal pointers are
stored as 32-bit values, you won't use this command often. But it shines
when debugging assembly language programs, which frequently use arrays
of offsets to address strings and other variables in the data segment. The
Offset command lets you position the cursor on an array entry and press
(Ctrl)-FO to view the data at that address.

• Segment: offset to data: Repositions the Dump view's contents to the 32-bit
segment and offset value at the cursor. The most common use for this
command is to follow a linked list. Just position the cursor on the pointer
value and press (Ctrl)-FS to view the bytes at that location. You can then
move the cursor to another pointer and repeat the command to view other
linked items.

146 Part One: Guide and Reference

Hint: Another good use for this command is to inspect arguments passed as 32-bit
pointers on the stack to a procedure or function in C and Pascal programs. To do
this, use the Goto command to view the stack (enter ss:sp for the address). Then,
move the cursor to the pointer value and press (Ctrl)-FS. The Dump window will
then display the data addressed by the pointer.

• Base segment :0 to data: Repositions the Dump view's contents to the seg
ment value at the cursor with an assumed offset of 0000. A good use for this
command is to display the contents of buffers stored in their own
segments-a typical setup for C and Pascal, but not uncommon in assembly
language. Usually, a list of these buffers is stored as an array of word
pointers in the global data segment. To view a buffer, move the text cursor
to one of the word pointers and press (Ctrl)-FB.

Previous ((Ctrl)-P)

After using another local command (but not cursor and page movement keys) to
scroll the Dump view's contents, press (Ctrl)-P to return to the previous display.
The view keeps track of the last five Goto and Fol low commands.

You can use the command as a toggle to switch between two views. For
example, after pressing (Ctrl)-FS to follow a 32-bit pointer that addresses
another variable, press (Ctrl)-P to view the previous item.

Display as ((Ctrl)-D)

Choosing this command brings up a submenu of commands that you can use to
change the display format of the information in the Dump window. (See Figure
5.12.)

am•
Wc:n::I
LCll"l!l
Coop
Fl oat
Real
CJoubl e
Extended

Figure 5.12. Submenu for the Dump view's Display as command.

You might want to experiment with the available settings: Byte, Word, Long,

Comp, Float, Real, Doub le, and Extended. Most have obvious meanings. Long is
a 32-bit integer. Comp stands for Composite Number, an 8-byte integer value
equivalent to TP's Comp data type.

Chapter Five: Views and Local Commands

Hint: Display values as words when examining pointers. That way, you won't have
to swap bytes mentally to realize that 08 OF 00 01 actually refers to the address
0100:0F08. This is much easier to see if you display those bytes as the two words
OF08 0100, even though you still have to reverse the segment and offset values.

Block ((Ctrl)-B)

147

Choosing the Block command pops up a sub menu of five other commands that
Clear, Move, Set, Read, and Write multiple values in memory. (See Figure 5.13.)
Use these commands to fill buffers, zero a data segment, or insert values into
unused stack space.

om
Hove
Set
Read
Write

Figure 5.13. Submenu for the Dump view's Block command.

Be careful when using these commands-they write and move values in
memory and can easily destroy code and data, including bytes that belong to
TD. Here's what each command does:

• Cl ear: Enter an address, a comma, and the number of bytes starting at that
address that you want to clear to 0. For example, enter ds:0,8 to clear the 8
bytes at ds:OOOO through ds:0007.

Hint: To clear an entire variable in Pascal or C, enter its name, a command, and
sizeof(name). For example, to zero a buffer named InBuf, enter
InBuf,sizeof(InBut).

• Move: Enter source and destination addresses plus the number of bytes to
copy from the source to the destination. Except for overlapping moves
where the source and destination areas share some of the same locations,
this command does not change any bytes in the source.

• Set: Use Set to assign any byte value to a range of addresses. Enter an
address, the number of bytes to set, and the value to insert in memory. For
example, ds:$0080, 10, $FF sets 10 bytes starting at ds:0080 to hexa
decimal FF.

148 Part One: Guide and Reference

Hint: You can fill backwards by subtracting from the current address. For
example, to fill 100 bytes of unused stack space, enter the Set expression
ss:(sp - 100) ,100 ,255. Take care not to fill too far backward, or you might
erase other data, especially when using memory models that store global data
and the system stack in the same segment. After running your program, use the
Dump view to scan the stack-you'll see at a glance how much stack space your
code used during the run.

• Read: Use this command to load data from a disk file into a block of
memory. After choosing Read, enter or select a file name from the direc
tory dialog box, then enter the address of the buffer and the maximum
number of bytes (usually sizeof(buffer)) to load.

• Write: Use this command to write data to an existing or new file. After
choosing Write, enter or select a file name from the directory dialog box
and then type the address of the buffer and the number of bytes (usually
sizeof(buffer)) to write to disk.

You can use the Block:Write command along with TD's built-in assembler
to create small .COM program files. To do this, follow these steps:

1. Start TD with no file name. This opens the CPU window to the address
CS:OlOO, the origin of all .COM programs.

2. Enter your program instructions. You don't need to select any commands to
do this, just type the instructions and press (Enter) at the end of each line.
You must compute address offsets manually. To make this easier, if the
current address for the next instruction is 0108 and you need to jump
forward from there to an unknown location, insert the temporary com
mand je 0108 and then fill in the correct offset later.

3. Note the address just after the last instruction in your program. You need
this address to tell TD how many bytes to write to disk.

4. Press (Alt)-VD to open the Dump window. Then, press (Ctrl)-G and enter
cs:OlOOh to view the bytes of the instructions you entered into the CPU
view. The Dump window will display the address as ds: 0100 because
CS = DS for .COM programs.

5. Pres3 (Ctrl)-BW to select the Block:Write command. Enter a file name,
for example, test.com.

6. TD then prompts for an address and count. Enter the expression
cs:OlOOh, nh where n is the address you noted earlier minus lOOh.
For example, if the address after the last instruction was Ol 5F, enter
005Fh.

Chapter Five: Views and Local Commands 149

Execution History View

If you like to ride backwards in subways and trains, you'll love the Execution
history view, which shows you where your program came from to get to
where it got. (Got that?) Even better, it lets you throw TD into reverse gear to
undo execution one step at a time. This is useful for running multiple tests on
code fragments and for resetting conditions before a bug appeared so you can
test theories about the problem. You can also use this window to replay saved
keystrokes leading up to a recorded event.

As Figure 5.14 shows, the Execution history view is divided into two
panes. On top is a machine-code disassembly that shows the instruction you can
undo. On bottom is a list of events, one for each time TD regained control after
executing one or more instructions in your code. If you have EMS RAM, TD can
save up to 3,000 instructions. If not, the limit is about 400 instructions.

Reverse Executing Code

Before you can run code in reverse, you have to execute one or more statements
by pressing (F7), (FS), or (Alt)-(F7) or by using the Run:Animate command.
Because of differences among these code-tracing commands, the effects on reverse
tracing will vary. Use the Run: Trace into command (<F7)) for best results.

Reverse Execution Limitations

There are several limitations on the kinds of instructions you can reverse
execute. As you might expect, you can't undo some operations-reading or
writing bytes to 1/0 ports, for example. You also can't undo the effects of an
interrupt service routine.

Local Execution History Commands

Figure 5 .15 shows the local command menus for the top (the left screen in the
figure) and bottom (the right screen in the figure) Exec u t i on hi story panes.
Each of these commands is described next.

[IJ=Executim history====
8F4E:43A9: oov es: [bx•di J, si
8F4E:43fC: retf

Trace TCSCREEN.520: Scr.lnit;
Troce TCSCREEN.SCREEN. INIT: beoin
T roce TCSCREEN.332: DI cttode ;s LastHode;

Figure 5.14. Execution history view.

150 Part One: Guide and Reference

Ins ed
Reverse execute 1•• I ~trcf:e restore
Ful I history Yes

Figure 5.15. Execution history view local menu.

Inspect ((Ctrl)-1)

Press (Ctrl)-I to inspect the source-code line in the Module view associated
with the highlighted machine-code instruction (top pane) or control event
(bottom pane). If there isn't a source-code statement associated for the high
lighted item, TD may open the CPU window instead.

Reverse execute ((Ctrl)-R)

Highlight a machine-code instruction in the Execution hi story's top pane and
press (Ctrl)-R to execute back to and including that command. For example,
to undo the effects of the previous three instructions, press (Cursor Up) three
times to and then press (Ctrl)-R.

Full history ((Ctrl)-F)

Toggle this setting off if you don't want to collect every machine-code instruc
tion in the Execution history view's top pane. When set to Yes, pressing
(Alt)-(F4) reverses lines in the Module window and instructions in CPU. When
set to No, pressing (Alt)-(F4) works in Pascal and C only for the CPU view,
which has to be the active window during tracing.

Hint: Switching Fu LL hi story off adds a bit of speed to TD's tracing abilities, and
it may conserve a little memory. Usually, however, you should leave it on to enable
full back tracing.

Keystroke restore ((Ctrl)-K)

Highlight an event listed in the bottom pane of the Execution hi story view and
press (Ctrl)-K to repeat all keystrokes and significant mouse operations that
led to that moment of debugging history. The command works only if you
started TD with the -k command-line option or if you turned on keystroke
recording permanently with TDINST (see chapter 3).

File View

Chapter Five: Views and Local Commands 151

Use the Fi le view to examine the contents of a disk file. Choosing this
command opens a dialog box to prompt for a file name, the same dialog that
other file-related commands use. Figure 5.16 shows a sample view of a text file
BUFSTM.ASM (top left) and that same text as assembled by Turbo Assembler to
BUFSTM.OBJ (bottom right). Text files look very much like source code in a
Module window, while other files look like a byte Dump. Feel free to examine any
file on disk-TD will not overwrite the file or change it in any way.

When viewing binary data (as shown at the bottom right of Figure 5.16),
address values in the first column are relative to the start of the file data. These
addresses do not reveal where TD stores the file data in memory.

[IJ=Fi le C:\TP\()(J'\ElfSTH.ASM 1=======:3=[tJm=u
; Tt.rbo Pascal 5.5 oojed-oriented exmple I:
; Assembler code for oo..ECTS.PAS unit
; Coi:i\l"i cht (c) 1939 by 8or I ard I nternati anal, Inc.

TI TLE Bl.FSTH

I NCLlII O&ECTS. I IC

[IJ=File C:\TP\OOP\ElfSTH.[EJ:::=====3=[tJ[iJl
00000: 00 0c 00 0c 42 55 '16 53 r;4 l3LFS
EHB3: 54 'Id 2e 41 53 'Id Ba BB TH. ASHee
00010: 1f 00 00 00 54 7S 72 62 • Ti.rb
00018: 6f 20 41 73 73 65 6d 62 CJ Asserib
00020: 6c 65 72 20 20 56 65 72 I er Ver
00020: 73 69 6f 6e 20 31 2e 30 si on 1.0
00030: bo 00 12 00 40 e9 50 05 ei @&P+

Figure 5.16. File views.

When viewing text data, the line number is shown after the file name in the
window's top border. (It's 1 in the figure.) Use this number as a guide to find
source-code lines referred to by TD in other windows such as Vari ab le s
and CPU.

The text and binary Fi Le views are also useful for examining data files
those a program reads or those it creates. For example, if your code writes a text
file, rather than quitting to DOS and using the TYPE command or another
program to examine the file's contents, use TD's Fi Le view. You can then restart
the code (press (Ctrl)-(F2)), change input parameters or other conditions,
and run another test. This should be much faster than switching between TD
and DOS.

Hint: Use the Fi le view to examine C header files included in a module's source
code. Or, create your own reference files and open them with this command to
create custom on-line help screens.

152 Part One: Guide and Reference

File View Local Menu

Whether TD displays binary data or ASCII text in the Fi Le view, there
are six local commands you can use when this window is active. (See
Figure 5 .17.)

IMH
Secrch
Next

Display as Hex
Fi le •..
Edit

Figure 5.17. File view local menu.

Goto ((Ctrl)-G)

Use Goto to enter a new line number for ASCII text files or offset address for
binary data. If the number you enter is within range, TD will reposition the
Fi Le view to the new location.

Search ((Ctrl)-S) (Default)

Press (Ctrl)-S or just start typing to enter a string you want to find in an ASCII
text file or to locate a series of bytes in binary data. Unlike other TD commands
that perform searches, the Fi Le:Search command does not require strings to
be delimited with quote marks. But you do have to enter a byte series in the
correct format for the current language, for example, $FO (Pascal), OxFO (C), or
OFOh (assembly language).

Hint: This command is useful for poking around in compiled programs for which
the source code is not available. For example, to verify various messages while
writing this book, I loaded TD.EXE into a Fi le view window and searched for
"Error" and similar strings that led me to other information.

Next ((Ctrl)-N)

After performing a Search command, press (Ctrl)-N to find the next occur
rence of the search argument in the file. Press (Ctrl)-(Page Up) to move to
the top of the file before pressing (Ctrl)-N if you want to repeat a search from
the beginning.

Chapter Five: Views and Local Commands 153

Display as ((Ctrl)-D)

Press (Ctrl)-D or choose this command to toggle the Fi le window between
ASCII text and hexadecimal byte views. Usually, TD will display data in the
correct format, but if it can't tell what a file MYSTUFF.XQP contains, it will
display the contents in binary. In that case, press (Ctrl)-D to switch to the
other format.

File ((Ctrl)-F)

The Fi le local command is identical to the Fi le command in the View menu. It
opens a dialog box to prompt for a file name. If the file you specify exists, TD
replaces the current Fi le view with the contents of the new file.

Hint: When examining files updated by a program, use this local command to
reload the Fi le view with a data file's current contents. TD does not update this
window automatically-the Fi le view represents a snapshot of a file's bytes at the
time you loaded it from disk.

Edit ((Ctrl)-E)

If you specified an editor, a batch file, or another program with TDINST (see
chapter 3), press (Ctrl)-E to run the program. TD passes to that program the
name of the current file as an argument. This may be useful during debugging to
make quick changes to one or more modules and to prepare input data for tests.

Hierarchy View

The Hierarchy view displays the relationships among an object-oriented pro
gram's object data types-or classes as they're known in C+ +.As Figure 5.18
shows, the window is divided into two panes-a list of object types on the left
and a family-tree diagram of those same objects on the right.

Both panes understand the same keys for moving the highlight bar up and
down. The cursor and page movement keys move the bar in the usual direc
tions, (Ctrl)-(Home) moves to the top of the pane, (Ctrl)-(End) moves to
the bottom, (Ctrl)-(Page Up) moves to the first object name, and
(Ctrl)-(Page Down) moves to last.

Remember when using this window that you are viewing object types, not
object instances (variables). The types do not exist in memory. Think of the
information in this window as templates of a program's objects. Use it to
browse objects and to examine their relations with one another.

154 Part One: Guide and Reference

Hint: To document an object-oriented program, dump the Hierarchy window to
a log file, which you can then print or .store along with other program document
files. First, open the Log view, press (Ctrl)-0, and supply a name for the log file.
Press (Alt)-(F3) to close Log. Then, press (Alt)-Vil(Tab)(Alt)-WD to copy
the Hierarchy's right pane to the log.

[IJ=lb ect Hi ercrch,,s::=======3=[tm
, ••• "'ERiE

ElOCK lr---u:i_i.

~E ~F~CELL
C!l..IJlTAEl.f
llli6T!Eft1
EtPT'i'CE..l.. • t---1>T!Eft1
FCRflnmfTA ~AEft1
F!HU.IULL i----SSSTAEFt1
lffHTFB..E l___QJ:sr!Eft1
lff'UTFIB.D -~----n1!IE

~.ISTlill ~~~IST~==================J
Figure 5.18. Hierarchy view.

C + + vs. Turbo Pascal

The Hi er arch y view is similar for C + + and Turbo Pascal object-oriented pro
grams. But when displaying C + + object classes, if those classes inherit from
multiple ancestors, the view changes to display a Parent Tree pane below the
usual two panes as shown in Figure 5.18. This new pane displays the parents for a
highlighted class. Use this pane as you do the others. For example, you can high
light and select class names to view them in more detail, just as you can in the
object list and tree panes.

See chapters 20 and 21 for more information about viewing objects and classes in
Pascal and C + + programs.

HierarclJy View Local Menu

Each of the Hierarchy view's two panes has a small local menu (see Figure 5.19).
The left pane has two commands, the right has one. When debugging C+ + pro
grams that use multiple inheritance, a third local menu is available for the bottom
Parent Tree pane. The following sections describe how to use these commands.

1•·H Pcrents

Figure 5.19. Hierarchy view local menus.

Log View

Chapter Five: Views and Local Commands 155

Inspect ((Ctrl)-1)

Press (Ctrl)-1 or just press (Enter) to open an inspector window for a
highlighted object type in either of the two Hierarchy window panes. The
command does the same job for all panes.

The object type's inspector window resembles an inspector for an object
instance, but it displays only type information for data fields in the object, and
it doesn't list the object's address. Remember, you are viewing only a template
of an object, not an instance of that object in memory. Only variables have
addresses, not data types.

Tree ((Ctrl)-T)

After highlighting an object type name in the left pane of the Hierarchy

window, press (Ctrl)-T to move to the right pane and highlight that same
object type. This shows where that object type fits in the program's family tree
of all other objects.

Hint: The Hi er arch y view's left pane recognizes incremental matching-just type
the first few letters of any object type name to move quickly to that object. When
you know an object's name, this may be faster than using the mouse or cursor
movement keys.

Parents ((Ctrl)-P)

Tab to the bottom pane in a C + + program that uses multiple inheritance and
press (Ctrl)-P to toggle the setting from Yes to No. When set to Yes, multiple
ancestors are displayed for a descendant class. If you don't need to see that
information, change the setting to No.

This command is available only in C + + code. It is not available (nor is it
needed) in Pascal programs.

Open the Log view to see entries made to the log buffer or file (see Figure 5 .20).
You can also use this command to start a new log and to write the current log
information to disk.

Figure 5.20 shows a log of three items: the value of Reg .ax, the module and
line number of a breakpoint (TCSCREEN.351), and a few register values. The
value and breakpoint information are from breakpoints that I set and modified
with the Breakpoints view's Set options local command, changing Action to

156 Part One: Guide and Reference

Log and entering the variable name Reg.ax as the Act_ion expression. The
register values came from the Registers view, copied to the Log by the
Window:Dump pane to Log command (press (Alt)-WD).

Unless you save log information to disk with the Open Log f i Le command, the log
window can store at most about 50 lines. When it becomes full, new entries cause
older ones to scroll into oblivion. You can change the maximum number of Log
lines with TDINST (see chapter 3). But to conserve memory, it's usually better to
save long logs to disk.

Log View Local Menu

rr=[IJ=l....QQ

Brea(point at TCSCPEEN.351
ReQs

u

ax 7201
bx 0001
ex 7200
dx :FD2

'\=[f][']::;

Figure 5.20. Log view.

With the Log view active, there are five commands you can use to open and
close a log disk file, to add a comment, and to erase the current log information
(see Figure 5.21). You can also turn off logging temporarily .

•. ,
Clase log fl le
LOQ!l I no Yes
Ad:! coment ...
Erase log

Figure 5.21. Log view local menu.

Open log file ((Cttl)-0)

Press (Ctrl)-0 to open a log file on disk and press (Enter) to accept the
default file name or enter a new name. The default is the name of the current
module with the extension .LOG. With a log file open, all entries in the Log
window plus all newly logged information are written to disk. (The Log window
still shows the most recent lines added to the log.)

Chapter Five: Views and Local Commands 157

You can log to only one file at a time. If you choose this command twice
without first closing the log file, TD displays the message AL ready Logging to a
f i Le.

Hint: The window title normally says "Log." But when logging to a disk file, the
title changes to something like "Log to TCALC.LOG." Watch this title. It tells you
whether log information is being saved to disk.

Close log file ((Ctrl) -C)

If you don't want to continue recording logged information to disk, or if
you want to start a new log file, press (Ctrl)-C to close the current log
file. You don't have to execute this command before leaving TD. An open log
file is closed automatically when you quit to DOS. You may also want to press
(Ctrl)-E to erase any leftover lines in the Log window.

Hint: Use the Fi Le view to open a saved log file and examine its contents. Because
the Log window lacks a Search command, the Fi Le view is useful for searching
through long logs for information.

Logging ((Ctrl)-L)

The Logging command acts as a toggle that switches logging on and off. When
off, no new entries are saved in the Log window or file, and the message
(Paused> is displayed in the window title. When on, logging resumes.

Use this command to speed up sections of code with many breakpoints that
log Act i on express i on s. When you need to get through such code quickly,
temporarily switching off logging is faster than disabling breakpoints with
Breakpoints:Set options.

Add comment ((Ctrl)·A) (Default)

Press (Ctrl)-A or just type to add a comment to the Log window or file.
Whatever you type is added to the end of the current log.

Erase log ((Ctrl)-E)

Press (Ctrl)-E to erase the log information inside the Log window. This com
mand does not affect any log information already written to disk.

158 Part One: Guide and Reference

Module View ((F3))

If there's a main view in TD, this is it. The Module window (see Figure 5.22)
shows your source code and breakpoints, and it lets you inspect and watch
variables by selecting them from the text. When you start TD, this window
opens by default and occupies most of the display-unless, that is, you
configured TD to open with a different window combination. Also, if TD can't
find the program's source-code file, it displays the CPU window instead of
Module.

[IJ=Hodule: TCfUi Fi le: TC!Ui.PAS l===========.l=Ctl[Ull

{ Copo,,rh# (c) 1989 by Borlmd I nternoti cnol, Inc. }

unit TCRun;
{ Tt.rl:x:i Pascal 5.5 object-oriented exoople n.n mociile.

This unit is used by TCflC.PAS.

}
See TCflC.llI: for an more infor11ation about this excnple.

Figure 5.22. Module view.

Of all 14 TD views, only Module has an associated hot key. Press (F3) to
open a pick list of module names (see Figure 5.23). You can then select a name
in the usual ways, or type the first few letters of a listed entry and press (Enter)
(or click Ok) to open that module.

Hint: Opening a new module replaces the one now on view in the Mod u le
window. To view more than one module at the same time, use the
Another:Module command.

[ll=PicK a 11od.JI

Figure 5.23. The Module view's pick list.

Chapter Five: Views and Local Commands 159

Module View Window Title

The Module view's title in the top window border shows the module name
(TCRUN in Figure 5.22), and the file associated with this module-usually the
same name plus an extension such as .PAS or .C. After this is the line number at
the text cursor (not the mouse cursor).

At times, you might see the word (Modified> between the file name and
line number. If so, this means the source-code file's date and time are later than
the compiled code. When this happens, be prepared for strange occurrences
what you see on-screen may not be what you have in memory! Usually, this is
caused by forgetting to recompile the code after making changes to source
code files or making the wrong directory current and loading an old compiled
program into TD.

Module View Local Menu

Figure 5.24 shows the 11 local commands you can issue when the Module

window is active. The following notes describe each of these commands.

Inspect ((Ctrl)-1)

Move the text cursor to an identifier. Usually this will be a variable name, but it
can also be a function identifier or constant. Press (Ctrl)-1 to open an inspec
tor window for that identifier.

As mentioned in chapter 3, inspector windows mold themselves to the type
of data they contain. See that chapter and also chapters 9 and 20-22 for more
information about inspecting data types in C, Pascal, and assembly language.

Hint: To dump the contents of a large buffer, move the cursor to the buffer's name
and press (Ctrl)-I(Alt)-VD. This opens a Dump window to the same address as
the inspector, giving you two views of the same information.

WW
l«rl:ch

Hcrl.ile ...
File ...

Previous
Line ...
Secrch .•.
Next
Orioln
Soto ...
Edit

Figure 5.24. Module view local menu.

160 Part One: Guide and Reference

Watch ((Ctrl)-W)

The best way to use this command to add identifiers to the Watches view is to
move the text cursor to a variable's name and press (Ctrl)-W. If the text cursor
is not pointing to a symbol that TD recognizes, a prompt box will open in
which you can type the identifier.

You don't have to highlight the entire variable name to add it to Watches.
Also, the text cursor does not have to be under a name's first letter. If you have a
mouse, click the left button anywhere on an identifier and press (Ctrl)-W to
add it to Watches.

Hint: If you have a mouse, you can click and drag the mouse pointer to highlight
text in the Modu Le window. If you don't have a mouse, press (Insert) and the
cursor movement keys.

Module ((Ctrl)-M)

This command opens a pick list of module names (see Figure 5.23). It has the
same effect as pressing (F3)-one key instead of two. So, the Module local
command is one of a very few TD commands that you'll probably never use.
Pick another module to replace the one now in the Modu Le window or press
(Esc) to cancel the command.

File ((Ctrl)-F)

When viewing modules with multiple source files-usually one or more include
files inserted into a main program file with a compiler command-press
(Ctrl)-F and select one of the listed files. This does not change the module
currently on view. It selects which of two or more files that make up that
module to display in the Modu Le window.

To view a different module, use the Module command (or press (F3)). Also,
this is not the correct command to view header files in C programs. To do that,
use View: Fi Le.

Hint: Use this command to find out if a module includes any other sources during
compilation. If only one file name is listed after you press (Ctrl)-F, the current
module includes no other files.

Chapter Five: Views and Local Commands 161

Previous ((Ctrl)-P)

Press (Ctrl)-P to return to a previous location after scrolling away, using the
Goto command, initiating a Search, or issuing any other command that changes
the current position.

The command functions as a toggle-it doesn't let you page back through
multiple locations. It can return to a previous module, though, so this is a
quick way to reload a module after pressing (F3) to view a different source
code file.

To return to the current statement, not necessarily the previous view, press
(Ctrl)-0, not (Ctrl)-P.

Line ((Ctrl)-L)

After pressing (Ctrl)-L, enter a line number for the current module. If that
number is in range of the lines in the module, TD will reposition the Module
window to that new line.

This command is often helpful for inspecting code when you receive
warnings from the compiler or from a C LINT program-a utility that combs
"fuzzy" C code and reports questionable statements by line number. You can
enter those numbers with the Line command and then type (Alt)-VC to view
the machine code for that statement.

The command is also useful for setting multiple breakpoints in code when
you have a printed listing. Press (Ctrl)-L, enter a line number, and press (F2)
to set a breakpoint on that line. With a little practice, you can set a half dozen
breakpoints in a module in a few seconds this way. It's much faster in some
cases than scrolling through the text hunting for the lines you want.

Search ((Ctrl)-S)

Use this command to search for text in the current Modu Le-similar to the way a
text editor's search command works. If TD finds the argument you enter, it
positions the Modu Le window to that line. If not, it displays "Search expression
not found."

You can use wild cards in search arguments. For example, the expression
TC• finds all words beginning with TC. TC??? finds all occurrences of TCxxx
where xxx are any characters. These wild cards are similar to those you can use
with the DOS DIR command.

Hint: Searching begins from the current location. To hunt for text in the entire
module, press (Ctrl)-(Page Up) before starting a new search.

162 Part One: Guide and Reference

Next ((Ctrl)-N)

After using the Search command, press (Ctrl)-N to find the next occurrence of
the search argument. If there are no more occurrences, TD displays "Search
expression not found."

To repeat other previous searches, press (Ctrl)-S and use the cursor keys
to select a saved search argument from the history list.

Origin ((Ctrl)-0)

Press (Ctrl)-0 to display the statement that will execute for the next Run
command. This is especially useful after paging away from a breakpoint or after
viewing other modules. Also, after pressing (Ctrl)-(F2) to reset a program,
press (Ctrl)-0 to display the program's first statement.

As with the CPU view's Origin command, it's a good idea to press (Ctrl)-0
before entering expressions to make sure TD scopes any local symbols to the
origin, not to another location in the source code you happen to be viewing.

Hint: The current statement is marked with a right-pointing triangle (....). If that
symbol appears in the Module window, press (Ctrl)-0 to move the text cursor to
the marked line. This may be easier than using cursor movement keys or the
mouse to do the same.

Goto ((Ctrl)-G) (Default)

To find the source-code line associated with machine code at a specific address,
enter that address and press (Enter). Because this is the default command, you
don't have to press (Ctrl)-G first-just start typing. The address can be any
thing that evaluates to a constant, but usually, you'll enter a procedure or
function name, an assembly language label, or a line number such as
#mymodule#24 (or mymodule.24 in Pascal). You can also enter an expres
sion that refers to a pointer. As long as the expression evaluates to an address,
Goto can use it.

Address values must be in a form that's suitable for the current language. TD
prefaces offset values-for example, $0100 (Pascal), Ox0100 (C), or OlOOh
(assembly language)-with the current code segment CS. Or, you can enter an
explicit address such as CS:$085E to find a source-code line after a runtime
error that reports the source of the fault by address.

When searching for runtime errors this way, be aware that TD loads your
program into a different area from where that same code runs when executed
directly from DOS. For that reason, you may have to add the current value of CS
to the segment value reported in the error. For example, for a runtime error at

Chapter Five: Views and Local Commands 163

02F0:0800, enter the address expression (CS+ $02F0):$0800 (using the
appropriate formats for hex values in your language) to find the buggy source
code statement.

Hint: Enter the name of any procedure or function (or fully qualified object
method) to jump to that routine's source code. You don't have to choose any
commands. Just make the Module view active and start typing. This is one of the
fastest ways to hop around in a large program, provided, that is, you know the
names of the subroutines you want to see.

Edit ((Ctrl)-E)

If you specified an editor name with TDINST (see chapter 3), you can press
(Ctrl)-E to edit the current module. When you use this command, TD exits to
DOS and appends the module's file name to the editor and path you entered
with TDINST. If all goes well, this should load the module into your editor.
When you are done making changes, quit your editor to return to TD. As I
mentioned before, you can also use this command to run other programs and
batch files. You don't have to use it to run only text editors.

Numeric Processor View

As you might expect, the Numeric processor view (see Figure 5.25) shows you
the inner workings of a numeric data processor (NDP) such as an 8087, 80287,
or 80387 (and, I assume, the on-board NDP on newer 80486 processors). But
even if your system lacks a hardware NDP, also known as a math coprocessor,
you can still use this view to inspect and manipulate an NDP emulator linked
into your code.

r,=[IJ=80387 I PTR•070C0 IJ'!XIE•346 IJ'TR-10484=3=[tJ[i:1=1J
i ri-0 i e-0

Empty ST<l) ch•l de-0
Empty ST C2) zn-0 ze-0
Empty STC3) oo-0 oe-0
Empty ST< 1) w· 1 ue-0
Empty ST<5) pn= 1 pe= 1

. Empty ST <6) i en-0 i r-0
Empty ST<7) pc=3 cc=l

rc-0 st-7
lc·l

Figure 5.25. Numeric processor view.

The Numeric processor view is divided into three panes. The large pane on
the left shows the NDP or emulator's internal registers stack-a small amount of

164 Part One': Guide and Reference

memory inside the chip that stores intermediate values. The middle pane lists
the NDP control flags. The right pane lists status flags. Refer to an Intel or other
NDP reference for the meanings of these fields. (See Bibliography.)

NDP Stack Values

The register stack values in the left pane of the Numeric processor window
are divided into three columns. The first column shows the register's status
Va lid, Zero, Special, or Empty. The next column lists the register's index
number, 0 to 7. The final column (which is blank if the status is Empty) shows
the value stored in this register.

The Numeric Processor Views Window Title

The Numeric processor view's window title (see Figure 5.25) shows whether an
Emulator or real NDP is being used (an 80387 in the figure). After this are three
labels: IPTR (instruction pointer), OPCODE (operation code), and OPTR (operation
pointer). IPTR addresses the current NDP instruction (the one just executed).
OPCODE is the hex value of that instruction, and OPTR is the transfer address from
that instruction. Not all instructions have such addresses.

The two IPTR and optional OPTR addresses are 20-bit absolute values. To
convert these values to segment and offset logical pairs, lop off the last digit for
the offset and append 0 to what's left for the segment. For example, if IPTR
equals OlOEF, it refers to the normalized logical address lOEO:F. (A normalized
pointer's offset is within the range 0 to 15 decimal.)

Hint: Open the CPU view, press (Ctrl)-G to choose the Goto command, and enter
a converted logical address to find the NDP instruction in memory. Remember to
enter address values in a form that's appropriate for your language.

Numeric Processor View Local Menu

The Numeric processor view's left pane (see Figure 5.25) has three local com
mands. The middle and right panes have one each (see Figure 5.26). This
section explains the view's local commands.

Figure 5.26. Numeric processor view local menus.

Chapter Five: Views and Local Commands 165

Zero ((Ctrl)-Z)

Highlight a stack slot in the left pane and press (Ctrl)-Z to clear that value to 0.

Hint: Pressing O(Enter) does the same job and might be easier if you're not a
touch typist.

Empty ((Ctrl)-E)

Highlight a stack slot in the left pane and press (Ctrl)-E to empty that register.
An empty register contains no value. This is not the same as setting the register
to 0.

Change ((Ctrl)-C) (Default)

Highlight any stack slot in the left pane and enter a new value to insert in that
register. This is the default command, so you can just start typing. You don't
have to press (Ctrl)-C first.

You can enter integer values such as 1234 and 56, hex values in a form that's
appropriate for your language ($FF, OxFF, OFFh, and so on), or floating point
values in decimal (3.14159) or scientific notation (3.755e-2).

You can also enter an expression (see chapter 9). For example, to enter the
value of a variable Numloops into an NDP register, highlight the register's slot,
enter the variable's name, and press (Enter).

Toggle ((Ctrl)-T) (Default)

Highlight a flag in the middle or right Numeric processor panes and choose
Toggle to flip that flag from 0 to 1, or from 1to0.

Hint: Because this command is the default for these two Numeric processor
panes, you can press (Enter) or (Space) to toggle a flag on and off. This is easier
than pressing (Ctrl)-T or choosing this command from the local menu.

Registers View

Use the Registers view to examine and change register and flag values in your
system's 80x86 processor. If your system has an 80386 or 80486, you can also

166 Part One: Guide and Reference

choose whether to view registers as 16- or 32-bit values. Figure 5.27 shows both
of these views.

r.=m;r<['Js
A.~ - c-0

bx Em! z-0
ex 7200 s-0
dx :F02 o-0
sl !Ell p-0
di 05Efl a-0
bp :FEC l•l
sp l=OO d-0
ds ~11
es ~11
SS m3
cs 997'1
IP &!If!

Figure 5.27. 16- and 32-bit Register views.

The Registers view is identical to the CPU window's Registers and F Lags
panes. The views are available separately to make it easy to inspect register and
flag values without obscuring two-thirds of your display behind other CPU panes
that you don't need to see. The local commands in the view and CPU panes are
also identical.

Register View Local Menus

The two panes in the Registers view show register values (left) and flags
(right). The following information describes the six local commands in these
panes (see Figure 5.28).

Increment ((Ctrl)-1)

Highlight any register in the Registers view's left pane and press (Ctrl)-1 to
increment that register value by 1.

Hint: Hold down (Ctrl)-1 and let your keyboard's auto-repeat capability increase
register values rapidly. This is sometimes easier than typing new values with the
Change command. (Press (Ctrl)-D to decrement the register if you go too far.)

Increment
Oecrenent
Zero
~ ...
Re;JI sters 32-bl t No

Figure 5.28. Register view local menus.

Chapter Five: Views and Local Commands 167

Decrement ((Ctrl)-D)

Highlight any register in the Registers view's left pane and press (Ctrl)-D to
decrement the register's value by 1.

Zero ((Ctrl)-Z)

Press (Ctrl)-Z to set a register to 0. I find it's easier to just type O(Enter), but
try it both ways.

Change ((Ctrl)-C) (Default)

To change the value of any register, highlight it, enter the new value, and press
(Enter). There's never any good reason to choose this command from
the local menu or to press (Ctrl)-C. Just move the highlight bar and start
typing.

Remember to enter new values in a form that's suitable for your language
for example, $FACE (Pascal), OxFACE (C), or OFACEh (assembly language).

Hint: To set more than one register to the same value, enter the first normally,
highlight the next, and press (Space)(Cursor Down)(Enter). This selects the
previous entry from the Change command's history list for each register in turn.

Registers 32-bit ((Ctrl)-R)

Toggle this setting from No (16-bit registers) to Yes (32-bit registers) on systems
that have 80386 or 80486 processors. Changing this setting has no effect on
register values, and you can switch between the two views as often as you like.

Notice that in Figure 5.27 the 32-bit view also shows the additional two
segment registers FS and GS, available only on 32-bit processors.

Toggle ((Ctrl)-T) (Default)

The Flags pane in the Registers view has only one command, Toggle, which
you can choose by pressing (Ctrl)-T.

Hint: Because Toggle is the default command in the Flags pane, you can just
highlight any flag and press (Enter) or (Space) to change it from 0 to 1 or from
1 to 0.

168 Part One: Guide and Reference

Stack View

The Stack view shows the chain of function, procedure, and object method
calls that led to the current location. If no subroutine calls were made to arrive
at this place in the program, the Stack view will be empty. You might want to
open this view before tracing code with Run-menu commands. That way, you
can see the hierarchy of nested subroutine calls as it develops.

When procedures and functions return to their callers, the list of entries in
the Stack view shrinks. When the program makes new calls, it grows. For
example, Figure 5.29 shows that module TCSCREEN has called a procedure
(actually an object method call) named INIT. When INIT returns, that line will
be removed from the window.

~[IJ=StocK r-···
Figure 5.29. Stack view.

The Stack view is also useful for spotting calls to procedures and functions
that shouldn't be happening-or that are being made out of order. A quick
glance at the Stack view shows you the full sequence of calls that led into the
current subroutine.

The Stack view works only on a source-code level. You can't use this window to

view calls and returns executed in the CPU window.

Stack View Local Menu

The Stack view has a simple local menu with two commands, described next
(see Figure 5.30).

Inspect ((Ctrl)-1) (Default)

Highlight any line in the Stack view and press (Ctrl)-1 to view that place in the
program. This is a great way to follow the chain of function and procedure calls
that led to a bug. Use the St a ck view to trace back through those calls until you
find what went wrong. Choosing this command activates or opens the Modu Le
window.

Chapter Five: Views and Local Commands

Hint: Because Inspect is the default command, you can just press (Enter} to
inspect a highlighted St a ck entry. This is faster than choosing the command from
its menu or pressing (Ctrl}-1. Press (F6> a few times to return to the Stack view.

Figure 5.30. Stack view local menu.

Locals ((Ctrl)-L)

169

The Lo ca ls command opens a Vari ables view window (described in the next
section). Highlight a function, procedure, method name, or a recursive instance
ofa subroutine in the Stack window and press (Ctrl)-L to see all local symbols
available to the code at this point in time.

When Variables opens, it shows global symbols in the top pane, locals in
the bottom. The highlight bar will rest on one of the local variables in the
procedure highlighted in the Stack window. Press (Enter) to inspect those
symbols in more detail.

Variables View

As a name, the Vari ab Les view is an understatement. This window shows not only
variables, but all global and local program symbols available to TD (see Figure 5.31).
In fact, this view is the symbol table, minus source-code line numbers.

The Variables view is divided into two panes. On top are global symbols:
variables, constants, methods, procedures, and functions. On the bottom are
the local symbols currently within the scope of an active procedure, function,
or object method. The Turbo Debugger Users Guide calls the top section the
global pane and the bottom the static pane.

[1J=Uori ctil es========::Fmm=;i
TCRUI I .PROl3RRM08,JEC T. 1111 T @7045: 13EHll
TCIUi.PfITffHB.ECT.tnE 1!70'!5:01513 I
TC!Ui. PIU3RFKB..ECT. 6ETCD1tfflli 1!70'!5: 1F22 I
TC!Ui .PJUmm..ECT .SETO I SPLFMHA-1!70'!5: 20711

~C!Ui.il[i. PlllilU3RFKB..Ei!iiliiilCTii. 0ii1iSPLliAliiYFlijl jl!7ilill1ilii5il:2j1i93illl~j
CLEFRlCR:EN 1!8971: Em:!
tiJlv£TEXT 1!8971:00'X
Sffil..L TEXT 1!897'1: 01'10
EGA I tfiTALLEO 1!8971: 023J

Figure 5.31. Variables view.

170 Part One: Guide and Reference

Use the global pane to examine global variables and other global symbols at
a glance. Because the symbols are grouped by module, this pane is a great way
to inspect a series of variables. It's much faster than adding those same variables
one by one to Watches or opening inspector windows for them. Use the static
pane to view local variables declared inside procedures and functions.

Note: Before the Variables view will show a procedure or function's local
symbols correctly, you must be sure to execute that routine's startup code. If the
current line marker (.,..) points to a Pascal procedure or function's begin or if it
points to a C function's opening brace, then press (F7) or (FS) to see the local
symbols in the bottom pane.

For C and assembly language programs, symbols in Variables are sorted
alphabetically; therefore, you can use TD's incremental matching capabilities.
As you type, the window automatically scrolls to symbols that begin with the
letters you enter. To find C identifiers, you might have to type one or two
leading underscores. Press (Home) to move the cursor to the beginning of a
line (or (Ctrl)-(Page Up) to move to the top of the list) before starting a new
incremental search.

Unfortunately, Pascal symbols are not sorted alphabetically, which disables
incremental matching for programs in this language. Instead, symbols declared
in the same units are listed together.

Variables View Local Menu

There are only two local commands in the Variables view, both of which are
the same for the top and bottom panes (see Figure 5.32). The next sections
explain how to use the commands.

Figure 5.32. Variables view local menu.

Inspect ((Ctrl)-1) (Default)

Press (Enter) to inspect a highlighted symbol in the top or bottom panes of
the Vari ab le s view. You can also choose the command from its menu or press
(Ctrl)-1, but pressing (Enter) is easier. If that symbol refers to code, the
command activates or opens the Module window and displays the source code
associated with that symbol (usually a procedure or function name). (If the CPU
window opens instead, then TD couldn't find the source-code file.) If the

Chapter Five: Views and Local Commands 171

highlighted symbol refers to a variable, the Inspect command opens an inspec
tor to show the variable's value.

Change ((Ctrl)-C)

Press (Ctrl)-C and enter a new value for a highlighted variable in the top or
bottom panes of the Variables view. The command works only for variables
if you try to change a procedure or constant, TD will tell you the symbol
"Cannot be changed."

Watches View

The Watches view lets you watch over one or more variables at any moment
during a program's execution (see Figure 5.33). Even better, when tracing code
with a Run menu command (usually by pressing (F7) or (F8)), changes to
variables made by statements are displayed instantly in Watches. For example,
you can examine a loop index as it cycles from a minimum to a maximum value,
watch a string take shape as a series of operations add characters to it, or watch
the results of a complex expression. The Watches view lets you see all the
individual values that make up these and other data structures.

~
[IJ::\.Jatche,==================;2=[t]m=;1

ScreerPtr 8800:0000 : SCIHff'OI NTER I
i deo T \jJe (5) : v I [[OTYPES I
astHode 3 <$3) : llRl
I dHode 15366 <ttffi > : lrnD

~iiiiliilliiiiillliiiiil .. iiilllllllllllllllllllllllllllllllll9~

Figure 5.33. Watches view.

When you first start TD, the Watches window occupies a narrow strip of
real estate near the bottom of the screen, just under Module. As you add new
symbols to the window, it automatically expands up to a limit specified with
TDINST (see chapter 3). This lets you add several symbols to Watches without
having to resize the window to see its contents.

Hint: If you resize the Module or Watches window, Watches loses its magical
ability to grow and shrink automatically. To restore this feature after adjusting
either of these windows, choose the System(=) menu's Restore standard
command. This won't work, however, if you save a nonstandard window Layout
with Options: Save options. When that happens, instead of quitting TD and
deleting TDCONFIG.TD, save a new configuration without the Layout and then
press (Alt)-(Space)S.

172 Part One: Guide and Reference

Viewing Variables

Most symbols added to Watches are variables. As Figure 5.33 shows, the win
dow displays the variable's name and value followed by a colon and data type.
Unless you change Options:Display options:Integer format, integer values
appear in decimal and in hex (in parentheses). Other variables display in
appropriate forms.

Because Watches displays variables on single lines, complex items such as
records and objects may be less than clear. In such cases, fields are strung
together inside braces or parentheses, and separated by commas like this:

Reg (16,242,4400,1550,28216, ... ,6):Registers

Because fields are not labeled, this view is good only for a quick summary
of the structure's values. For a better picture, highlight the line in Watches and
press (Ctrl)-1 (see the Inspect local command later in this chapter).

Adding Symbols to Watches

There are many ways to add new symbol names to Watches, but the easiest is to
move the text cursor to any character of a symbol (usually a variable name) in
the Module window and press (Ctrl)-W. You can also use the Data:Add watch
command (press (Ctrl)-(F7)) and type in a variable's name. Or, you can use
the Watch local command in the Watches window.

When you add local symbols to Watches, if those symbols are not within
the current statement's scope, TD displays its "unknown value" symbol-????.
Later, when those variables come within the active scope, Watches will display
their values. Unfortunately, this also means that TD doesn't catch typing mis
takes. If you mistype an identifier-for example, Clout instead of Count-TD
assumes the symbol hasn't come into scope, even though that will never
happen.

You can also add expressions to Watches-you don't have to limit entries to
plain symbols. For example, you can watch an expression such as Count - 1. TD
evaluates the expression each time it displays the symbol's value; therefore, the
displayed value in this example will always be one less than Count. This can be
useful for monitoring loop indexes in code such as:

for Count := Min to Max do
a[Count - 1] := b[Count - 1 J;

Hint: When debugging object-oriented Pascal and C + + code, enter self (Pascal)
or this (C ++)into Watches. As you trace into various method calls, the window
will show the instances of objects as they activate each method.

Chapter Five: Views and Local Commands 173

Watches View Local Menu

There are six local commands available in the Watches view, each described
next (see Figure 5.34).

IHJ!Z!,
Edit ...
Remove
Oel ete al I

Inspect
Cl-m;ie

Figure 5.34. Watches view local menu.

Watch ((Ctrl)-W, (Insert)) (Default)

Choose this command to enter the name ofa variable to add to those in Watches.
As mentioned before, there are easier ways to watch new symbols, but the
command comes in handy when Watches is already active and you want to add
another variable to the window.

Hint: Because this is the default command, you can just start typing; you don't
have to press (Ctrl)-W or (Insert) first. Also, when entering many similarly
named variables such as varl, var2, and var3, to save typing time, enter the first
one and press (Enter). Then, press (Space) (Cursor Down) to select the
previous entry from the command's history list. You can then edit the text to add
the next variable.

Edit ((Ctrl)-E)

Highlight any line in Watches and press (Ctrl)-E to insert the symbol into a
small dialog box, where you can edit its name. When you're done, press
(Enter) to replace the highlighted line with the edited symbol.

The command is useful for editing a complex variable so you can view one
field from a record or an instance variable in an object. For example, using the
earlier example for Reg, you could highlight that line, press (Ctrl)-W, and
change the symbol to Reg. AH to show only that field value.

Hint: You can also press (Enter) instead of (Ctrl)-E to call up this command.
When Watches is active, think of (Enter) as the "Edit" key.

174

Summary

Part One: Guide and Reference

Remove ((Ctrl)-R, (Delete))

Highlight any line in Watches and press (Ctrl)-R or (Delete). TD removes
that line without disturbing any others.

Delete all ((Ctrl)-D)

Press (Ctrl)-D to delete all lines in Wat ch es .

Inspect ((Ctrl)-1)

Highlight a line in Watches and press (Ctrl)-1 to open an inspector window for
that variable or other symbol. See chapters 3, 20-22, and others for more
information about using inspectors.

The Inspect command is useful only for inspecting symbols that evaluate
to memory addresses. You can still inspect an expression such as Count - 1, but,
in that and similar cases, the inspector window opens to a constant value.

Hint: When watching self or this in Watches for object-oriented debugging,
highlight that line and press (Ctrl)-I(Ctrl)-H to see where the object instance
fits in the hierarchy of other objects. I memorized this command by associating I
and H with Instance Hierarchy, although that's not what the I stands for.

Change ((Ctrl)-C)

Press (Ctrl)-C and enter a new value for the highlighted symbol in Watches.
You can change the values of variables, but not expressions or functions.

The 14 commands in the View menu are some of TD's most powerful features.
While debugging, you'll probably use these commands more frequently than
others. View-menu commands open views (windows) that show a program's
source code, variables, machine code, processor registers, and other informa
tion. TD normally opens two of these views, Module and Watches, at the start of
each new debugging session.

Each view has a private menu of local commands, which perform various
operations inside the current window. You can select these commands as you
do others, but it's easier to press (Ctrl) plus the command's hot key. That way,
you don't have to open the menus. Most views also assign one local command as

Chapter Five: Views and Local Commands 175

an automatic default, selected when you just start typing. Learning these short
cuts can save a lot of time.

This chapter contains many tips for using all 14 View-menu commands. Hot
keys and defaults are also listed for all local commands. Together, chapters 4
and 5 form a complete reference to TD's menus, windows, views, and hot keys.

Chapter 6

Using TD's Utility Programs

RcKED WITH TD are several utility programs. Use them to convert
CodeView debugging information to TD's format, to display details about
object-code and other files, to unpack archive files downloaded from bulletin
boards, and to perform other jobs that make debugging a little less painful. (Any
program that can help find bugs is welcome!)

This chapter is a reference to TD's utilities and command-line options. Each
utility is listed in alphabetic order. As in previous chapters, instead of duplicating
what you can find in the Turbo Debugger Users Guide, I've tried to concentrate
on sharing tips that will help you get the most from these programs.

Displaying On-line Help

To display instructions for TDCONVRT, TDMAP, TDPACK, TDRF, TDSTRIP,
TDUMP, and UNZIP, enter the program name with no arguments or option letters
and press (Enter). For TDINST, TDNMI, and TDREMOTE, enter the program
name plus -? . For example, to display TDREMOTE's instructions, enter:

tdremote -?

Or, to print a copy of the help text, enter:

tdremote -? >prn

Some programs also recognize-has the "help" command-line option. Because the
-? and -h commands are the same for all programs that use them, to save space
here, these switches are not listed among other options.

177

178 Part One: Guide and Reference

Error Messages

The meanings of most error messages should be obvious, so I haven't dupli
cated them here. For more help with these messages, list or print the
MANUAL.DOC file on one of the TD master disks.

About the Syntax Descriptions

This chapter lists the complete syntax for each TD utility. Square brackets
represent optional items. The word options stands for one or more option
letters, always preceded by a dash(-) or a slash(/). A vertical line means "or."
For example, [.EXE I .COM] indicates that you can type either .EXE or .COM.
Symbols such as (file), (infile), and (outfile) represent file names. The
symbol (ext) represents any file-name extension. (#) stands for an integer
value. An ellipsis(...) implies that you can repeat the previous item any number
of times.

In general, TD's utilities operate similarly. But there are nagging inconsis
tencies. For example, TDCONVRT runs silently with the -s switch, while
TDMAP requires -q to do the same. Also, help messages are inconsistent, listing
combinations of upper- and lowercase letters preceded by slashes in some cases
and dashes in others. To keep this chapter from looking too much like a flea
market of command-line options, I've remodeled a few facts here and there. For
that reason, you may notice several differences between this chapter and the
instructions displayed by the utilities.

Most TD utilities are written as filters that write to the DOS standard output file.
To pause long listings, you can pipe that output with a vertical bar character (I) to
the DOS MORE filter, which must be in the current PATH. For example, enter
tdmem -v J more to pipe TDMEM's verbose (-v) output to MORE. You can then
press (Space) or (Enter) to view the information a page at a time.

TDCONVRT.EXE

Use this program to convert Microsoft Code View debugging information in
compiled and assembled code files to TD's format. As you'd expect, most
Microsoft languages can add Code View data to compiled code-similar to the
way Borland languages add TD information. But several other compilers and
assemblers can also create CodeView symbols. For those products, you can
probably use TDCONVRT to prepare code for debugging with TD.

Chapter Six: Using TD's Utility Programs

See chapter 2 for more information about using TDCONVRT with various com
pilers and assemblers.

179

TDCONVRT Syntax and Options

-c

-SW

The complete syntax for TDCONVRT is:

tdconvrt [options] [<infi le> [<outfi le>ll

The default (infile) extension is .EXE. The default (outfile) extension is
.TDS.

This option creates a separate . TDS file containing the symbol table from
(infile). If you don't specify an (outfile) name, it will have the same name as
the input file, but with the extension changed to .TDS. For example, after
compiling SAMPLE.C to SAMPLE.EXE, if you enter:

tdconvrt -c sample

TDCONVRT reads the CodeView information from SAMPLE.EXE and
writes that same data to SAMPLE.TDS. It does not modify the original
SAMPLE.EXE.

When you debug a CodeView .EXE and a .TDS file with the same file
names in the same directory, TD first tries to read the debugging information
from the .EXE file. If that data is not in TD format, it then looks for the .TDS
file.

Hint: Use the -c option if you want to run Code View and TD on the same program
without having to recompile.

This option tells TDCONVRT to "shut up" -that is, to run silently. Use this
command if you run TDCONVRT from a batch file or with MAKE, and you
don't want to clutter the display with messages you don't care to read.

180 Part One: Guide and Reference

MAKE is a utility program supplied with TASM, TP, TC, and many other compilers
and assemblers. It reads a text file, called a MAKE file, which lists the dependen
cies between compiled and source code. MAKE uses this information to issue the
minimum number of commands required to recompile and link a multimodule
application.

TDD EV.EXE

Run TDDEV with no parameters for a list of character and block device drivers
currently installed, probably by DEVI CE= commands in CONFIG.SYS. The
program is smart enough to detect any drivers installed after booting,
in which case it displays "Detected device drivers patched in after
CONFIG.SYS."

See chapter 19 for help with device-driver debugging.

TDDEV Syntax and Options

-r

The complete syntax for TDDEV is:

tddev [options]

Specify the -r option for a "raw" report, listing additional facts about installed
drivers, including strategy and interrupt entry point addresses.

TD INST.EXE

Run TDINST to modify various settings in TD.EXE, to create a custom
TDCONFIG. TD configuration file, or to modify the parameters in an existing
configuration.

Chapter Six: Using TD s Utility Programs 181

TDINST Syntax and Options

The complete syntax for TDINST is:

tdinst [option] [<outfi le>]

If you don't want to modify the original TD.EXE file, copy it to another file
and specify that file's name as the optional TDINST (outfile). When you choose
the Save command, TDINST will modify the file copy, not the original TD.EXE.

-c\{ile)

Use the -c option and a file name to edit a TDCONFIG.TD or other configura
tion file created earlier with TDINST or by using TD's Options: Save options
command. Don't put any spaces between the option letter and the file name.
For example, this loads BCFG.TD into TDINST for editing:

tdinst -cbcfg.td

When you Save the configuration, choose the Save configuration file
subcommand to modify BCFG.TD or another file. Or, choose Modify td. exe to
transfer the configuration to TD.EXE (or a copy of that file).

TD MAP.EXE

If your language can't generate TD or Code View debugging information, but if it
can create a .MAP file, you can use TDMAP to prepare the code for debugging
with TD.

TDMAP reads a .MAP text file-a road map of a compiled or assembled
program's symbols and line numbers. It translates the information in the .MAP
file to TD's format and writes that information to the .EXE file to prepare it for
debugging.

If TDMAP can't read your language's .MAP file, use the Turbo Linker
(TLINK) Im option to create a sample .MAP file of a test program assembled
with TASM. This will give you a template .MAP file to compare with the one
from your language. In some cases, you might need to make minor fixups to
convert foreign map files for TDMAP.

See chapter 2 for examples of TDMAP in action.

182 Part One: Guide and Reference

TDMAP Syntax and Options

-b

-c

The complete syntax for TDMAP is:

tdmap [options] [<mapfile>[.MAPJ [<outfile>J [options]]

Usually, you won't need to specify an (outfile), TDMAP assumes that file
has the same name as (mapfile), but ends with the extension .EXE.

If the .MAP file's date and time stamp is older than the .EXE file's, TDMAP displays
a warning. To avoid this, use the TOUCH utility supplied with TASM to update the
file's date and time.

Unless you specify the -b option, TDMAP lists all variable types as word, or
array of word. The option forces symbols to be of type byte or array of byte.
Use the option if your language aligns variables to byte addresses.

This option reveals one of TD's weaknesses when debugging programs
from languages that can't generate TD or CodeView debugging information
directly. When debugging from a .MAP file, all symbols are represented as bytes
or words. Even so, you can use type casts to convert selected variables to more
readable forms. See chapter 9 for help.

Use -c to tell TDMAP that map-file symbols are case-sensitive. With this option
in effect, MyVAR, myVar, and MYVAR represent three different symbols. TDMAP's
default is to ignore case differences.

Hint: If you have trouble getting TD to recognize variable names and other
symbols, try using combinations of TDMAP's -c option along with TD's -sc
command.

-e(ext)

Some languages that recognize default file-name extensions create .MAP files
with file names that lack extensions. For example, the .MAP file might refer to
MYFILE, which the language assumes to mean MYFILE.C. So that TD knows

-q

Chapter Six: Using TD's Utility Programs 183

this same detail, use options such as -eC and -ePAS. Don't type any spaces or a
period between the -e and the extension's first character. The extensions can be
in upper- or lowercase.

Tell TDMAP to "be quiet"-that is, not to display a progress report while
converting .MAP files. Because a large program can take several seconds to
convert, using this option can speed the process. You might also use it to reduce
display clutter when running TDMAP from a MAKE file.

TDMEM.EXE

Run TDMEM to display a system memory map, including a report of total and free
expanded and extended memory. The program is especially useful for locating
TSRs and other resident code for debugging (see chapter 19). In addition to other
facts about various items in memory, TDMEM also displays each program's PSP
(Program Segment Prefix) address, plus a list of "hooked vectors," in other words,
interrupts that the TSR has redirected through its own routines. These facts can be
vital for finding bugs that are caused by two or more conflicting TSRs.

TDMEM Syntax and Options

-v

The complete syntax for TDMEM is:

tdmem [options]

Use the verbose switch -v for a long-winded report, including the number of file
handles allocated to a process.

TDNMI.COM

This utility installs a small resident program in memory that periodically (about
two times a second) clears the nonmaskable interrupt on systems that mask out
NMI for their own reasons. (Actually, it's impossible to mask the NMI. But it is

184 Part One: Guide and Reference

possible to disable the ports that lead to the CPU's NMI pin, thus effectively
masking the "nonmaskable" interrupt. TDNMI clears these ports.)

TDNMI also continually resets the breakout latch in a Periscope debugging
board. This lets you press that board's breakout switch to activate TD.

Note: Most people should not run this program. Install TDNMI once every time
you boot only if you have a Periscope debugging board or if your system disables
NMI. If you need to use the program, insert the line c: 'td' tdnmi in
AUTOEXEC.BAT. Replace C: "'-TD with the directory where TDNMI.EXE is stored.

TDNMI Syntax and Options

The complete syntax for TDNMI is:

tdnmi [<option>]

-pf(#)]

Specify -p to reset the Periscope board's breakout latch at the default address
0300h. Or, if you reconfigured your board, specify a different address imme
diately after -p, for example, -p310.

TD PACK.EXE

If you are having trouble debugging large programs, try running the code or
symbol file through TDPACK. This will compress the debugging information in
the file by combining duplicate strings and other items. With luck, this will free
enough space so you can load the program into TD.

If you still can't load the program, turn to chapter 3 for other ways to limit TD's
memory use.

TDPACK Syntax

The complete syntax for TDPACK is:

Chapter Six: Using TD s Utility Programs 185

tdpack [<file>[.EXEl.TDSl.COMll

If you don't specify a file-name extension, TDPACK attempts to open
<file). EXE. If that doesn't work, it tries to open <file). TDS. If you specify
.COM, TDPACK tries to open <file). TDS because it assumes you've created
.COM and .TDS files with TDSTRIP's -c and -s options. (Symbol tables are never
stored in .COM files; therefore, it would make no sense for TDPACK to operate
directly on .COM programs.) TDPACK has no command-line options.

See also TDSTRIP in this chapter and "Assembling .COM Programs" in
chapter 2.

IDREMOTE.EXE

TD RF.EXE

Run TDREMOTE on a remote computer connected to a host system's RS-232
port by a serial cable. You can then use TD's -r option to debug programs in
remote mode, and you can use the TDRF utility to give simple commands to the
remote computer. (Chapter 17 describes how to use TDREMOTE.)

After starting TDREMOTE on a remote computer connected to a host system's
RS-232 port by a serial cable, you can use TDRF to delete files, change directo
ries, transfer files, and give other simple commands to the remote computer.
(Chapter 17 describes how to use TDRF.)

TD STRIP.EXE

Use TDSTRIP to remove TD's symbol table from a compiled and linked .EXE
code file. You might do this to prepare "beta" test versions of your program
files that are identical to your own test copies minus the debugging information.

More often, however, you'll use TDSTRIP instead of the DOS EXE2BIN
utility to convert an .EXE file to a .COM-style code file with debugging informa
tion stored in a . TDS data file (see chapter 2). You can also use the program to
prepare .TDS files for debugging TSRs and device drivers (see chapter 19).

Note: Tests show that TDSTRIP does not always produce the same results as
recompiling a program without debugging information. A stripped code file is
probably safe for distribution, but if it were my code, I would still recompile it
before "pressing" the final master.

186 Part One: Guide and Reference

TDSTRIP Syntax and Options

-s

-c

The complete syntax for TDSTRIP is:

tdstrip [options] [<infile> [<outfile>ll

The (infile) may be an .EXE or .OBJ file that contains TD debugging
information. The purpose and format of (outfile > depends on whether you
specify the -s and -c options. See the descriptions of those options and
"TDSTRIP Examples" later on for sample TDSTRIP commands.

Specifying -s strips debugging information from (infile), which must have the
extension .EXE. Exactly what happens to that information depends on whether
you also specify -c and an optional output file name. (See "TDSTRIP
Examples.")

This option converts an .EXE file to a .COM file, similar to the way the DOS
EXE2BIN utility works. Because .COM files can't store debugging information,
you'll probably use -c and -s together to copy the symbol table to a .TDS file. You
can then debug the .COM file with TD. The next section explains how this works.

TDSTRIP can't convert every .EXE file to a .COM program. For a successful
conversion, the program's origin must begin at offset OlOOh, and it can't specify a
stack segment or include any references that require "fix ups" at runtime.

TDSTRIP Examples

Even though TDSTRIP has only two options, it's difficult to use correctly. I've
found that ifI don't specify file-name extensions for (infile) and (outjile), but
let TDSTRIP add them for me, I stay out of trouble. If you do specify exten
sions, be sure to use the correct ones, or you can easily create a . TDS data file
named MYPROG.EXE, which, if you try to run it, will lead to a colossal crash.

The following sample command lines cover most TDSTRIP option and file
name combinations and should answer many questions about how to use the
utility.

Chapter Six: Using TD's Utility Programs 187

• To remove debugging information from SAMPLE.EXE, permanently losing
that information, enter:

tdstrip sample

• To create NEWFILE.EXE without debugging information but without
changing the original SAMPLE.EXE file (same as copying SAMPLE.EXE to
NEWFILE.EXE and then typing tdstrip newfile), enter:

tdstrip sample newfile

• To strip debugging information from SAMPLE.EXE and transfer that same
information to a new file named SAMPLE. TDS-useful for debugging
TSRs-enter:

tdstrip -s sample

• To strip debugging information from SAMPLE.EXE and transfer that same
information to a new file named NEWFILE.TDS, enter:

tdstrip -s sample newfile

• To strip debugging information from SAMPLE.EXE, create SAMPLE.COM,
and delete SAMPLE.EXE-which also permanently throws away any debug
ging information-enter:

tdstrip -c sample

• To create NEWFILE.COM without changing the original SAMPLE.EXE
thus preserving debugging information in that file-enter:

tdstrip -c sample newfile

• To copy debugging information from SAMPLE.EXE to a new file named
SAMPLE.TDS, creating SAMPLE.COM and deleting the original
SAMPLE.EXE file-useful for preparing .COM programs for debugging
enter:

tdstrip -s -c sample

• To copy debugging information from SAMPLE.EXE to NEWFILE.TDS,
creating SAMPLE.COM and deleting the original SAMPLE.EXE file,
enter:

tdstrip -s -c sample newfile

TD UMP.EXE

TDUMP is a remarkable program that has all sorts of uses. With this single
program, you can display an ASCII text file, examine bytes in data files,
decipher an object-code file's internal format, print the debugging information
added to an .EXE file, check a file's integrity, and perform other chores that can
make debugging less painful.

188 Part One: Guide and Reference

TDUMP Syntax and Options

-a

-a7

-b(#)

-e

-el

The complete syntax for TDUMP is:

tdump [options] [<infile> [<outfile>] [options]]

You must specify an (infile). Because TDUMP recognizes no default exten
sions, to dump SAMPLE.EXE you must type that file's full name. TDUMP writes
its output to an optional (outfile) in ASCII text format. You can add one or
more options either immediately after TDUMP or after the file names.

This option tells TDUMP that (in file) contains ASCII text. The result is similar
to a Dump window's byte list, but with each byte converted to a character. Any .
characters not in the ASCII range of 32-126 are displayed as periods.

This option displays characters in an ASCII text file with all high bits forced to
0. Use this option to dump WordStar and similar text files, which use the
"extra" bit in characters as a formatting matker.

Start dumping at an offset equal to (#),expressed in the C language's hexadeci
mal format. For example, -bOxOlOO starts dumping at hexadecimal offsetOlOO.

Force executable code-file display, the default for files that end in .EXE. Use this
option only when dumping executable code files that use a different file-name
extension.

Usually, when dumping an .EXE file with debugging information, TDUMP
displays any line numbers and hex offsets in this format:

-er

-elr

-b

-l

-m

Chapter Six: Using TD s Utility Programs 189

Line Numbers:
7:01FAh 10:0203h 9:0217h 11 :021Ah

Specify -el if you don't want to see this information.

When dumping .EXE files, TDUMP normally displays relocatable address
entries in the form:

Relocation Locations (1 Entry)
0000:0001

Specify -er if you don't want to see this information.

This is shorthand for -el -er. Use it to not display line numbers and relocation
details.

Use this option to force TDUMP to display a file's contents as hexadecimal bytes
and their ASCII equivalents-similar to the default format for a TD Dump
window. This is the default setting for unrecognized file-name extensions. Use it
only to display hex dumps for .EXE, .DLL, .OBJ, .LIB, and .TDS files, all of
which TDUMP recognizes as containing formatted data. (.DLL stands for
Dynamic Link Library, normally associated with OS/2. TD can't debug OS/2
code, but the presence of features like this suggests that such support might not
be far away.)

TDUMP displays the object-code modules in library files ending in .LIB. If your
libraries end in a different extension, you must use this option to tell TDUMP
that a file is a library. Otherwise, it will dump the file in hex.

Use this option only with TC+ + programs to demangle function and variable
names in compiled code. If you don't use this option, these identifiers will
appear in strange (mangled) forms, which, in a nutshell, allow C + + and C

190

-o

-oc

-oiID

-ox JD

Part One: Guide and Reference

object-code files to be linked and processed by other utilities that normally
recognize only C syntax. Use the -m option to dump compiled TC+ + pro
grams and view symbols the way you wrote them.

TDUMP normally displays the formatted contents of object-code files ending in
.OBJ. If your object-code files end in a different extension, you must use this
option to tell TDUMP that the file contains object-code records. Otherwise, it
will dump the file in hex.

This option verifies the checksum for object-file records. Or, at least that's what
I think it should do. In the current TD 2.0 release, this option appears to have
no effect.

Object-code files (and library files that contain object-code modules) store rec
ords that list various facts. Each record is identified by an Object File Record ID.

To list only specific object-file records, specify the option -oiID. Replace ID
with the record ID you want to see. This is very useful for extracting informa
tion from .OBJ and .LIB files. For example, for a list of an object file's segment
definitions, enter the command:

tdump -oiSEGDEF sample.obj

Or, to display the public symbols in a library, enter:

tdump -oiPUBDEF sample.lib

You can also use more than one -oiID command to list multiple object-code
records. Once you figure out the forms that are useful to you, enter them into a
batch file so you don't have to look them up later. Consult a DOS technical
reference for other record IDs (see Bibliography).

Similar to -oi, this option lists all object-code records except the one identified.
Use multiple -oxID commands to exclude more than one object-code record ID
from the output.

-v

Chapter Six: Using TD '.s Utility Programs 191

Useful commands include -oxCOMENT (yes, there is only one M) and
-oxLINNUM, which reduces TDUMP's usually lengthy output to a more man
ageable size.

Specify -v (the verbatim switch) if you want to dump the "whole ball of wax"
for an .OBJ file. The bytes from the file are dumped after each formatted object
code record. Using this option also suppresses comments normally added by
TDUMP to document various object-code components. (This one is for pro
gramming "Hall of Famers" who can read object code as though it were Pascal
or C. Don't bother with this option unless you really understand how .OBJ files
are put together.)

UNZIP.EXE

To save disk space, many of TD's files are compressed into archives, identified
by the file-name extension .ZIP. Use the UNZIP utility to extract one or more
files from these packed archives on TD's master disks. Usually, the automated
INSTALL program runs UNZIP for you. But, if you decide not to unpack
archived files at that time, or if you're installing TD on floppy diskettes, you can
run UNZIP manually on individual .ZIP files to extract the files you need.

You can also use UNZIP to extract files from archives downloaded from
bulletin boards, Compuserve, Bix, and similar on-line services.

Warning: Some versions of this utility do not work properly with the popular PC
KWIK disk caches. If UNZIP hangs, reboot without the cache and try again. The
problem is caused on 80386 or later machines by PC-KWIK's use of BIOS routines
to access extended RAM. Unfortunately, not all BIOS implementations preserve the
upper 16-bits of the 32-bit EAX register, which, apparently, UNZIP uses if avail
able. Future versions of the cache and archiving software watch for and fix the
conflict, so you may never run into this bug.

UNZIP Syntax and Options

The complete syntax for UNZIP is:

192 Part One: Guide and Reference

unzip [options] [<infile> [<outpath>l [<file> ... JJ

The (infile) must be a .ZIP file. You can't use this program to extract files
from .ARC files, which use a different compression scheme. (Some other
Borland language disks contain a program UNPACK.COM that can unpack these
older-style archives.)

Specify an (outpath) such as C: "DEMOS to direct UNZIP's output to that
directory. If you don't specify an (outpath), UNZIP deposits extracted files in
the current directory.

To extract only specific files from an archive, list the file names
after (infile) and an optional output path. Separate multiple file names with
spaces. You can also use wild cards such as •.PAS to extract files with similar
names.

Hint: Copy a .ZIP file to a RAM drive and unpack the files there. This makes UNZIP
really zip! You can then inspect each unpacked file and decide whether to copy it
to a floppy or hard disk directory.

Some of the following options are not documented, but work in the version
I used to write this chapter.

-c, -cm

-o

When you just want to read the contents of an archive, use the -c (console)
option to direct output to the display. Use -cm (console, more) to pause the
display between pages. At the end of each page, press (Space) to continue,
(Enter) for the next line, or (Esc) to advance to the next file. Press (Ctrl)-C
at any time to return to DOS.

Hint: Press (Esc) to skip .EXE and other binary files, displayed as gibberish. I
often run UNZIP with a command like unzip -cm •.zip to scan all archive files
quickly in the current directory. Usually, this is faster than entering each file name
individually.

Use this option if you don't want UNZIP to warn you before overwriting an
existing file.

-p

-t

Chapter Six: Using TD s Utility Programs 193

Similar to -c, this option directs output to the printer. Use it to print archived
text files without having to extract those files from the archive.

This option tests an archive's integrity. It displays a list of an archive's contents
and verifies whether files can be safely extracted.

-v[b I c Id I e In IP Is Ir}

Summary

These options list an archive's contents. Use them to see a directory of a .ZIP
archive without extracting the files it contains. Add an optional letter after -v to
select brief output (b), and sort by CRC (c), by date (d), by extension (e), by file
name (n), by percent of compression (p), by size (s), and in reverse order (r). For
example, enter unzip -vber tdexmple for a brief list of an archive sorted in
reverse order by extension.

Note: UNZIP is a slightly modified version of PKUNZIP, published as pay-if-you
use-it shareware by PKWARE, Inc. (See Bibliography). This program and others are
available on most bulletin boards and on-line services. Write to the company for
more details and for information about utilities that let you create your own
compressed archives.

TD's utility programs perform a variety of miscellaneous jobs. This chapter
describes how to use TD's utilities, and it lists their command-line options. (See
chapter 17 for help with TD REMOTE and TDRF.)

To display instructions for most utilities, enter the program's name and
press (Enter). Or, specify the-? or -h command-line options.

Part Two

lheArtofDebugging

195

Developing a
Debugging Strategy

Chapter 7

IF YOU HAVE a modem, you probably know about Compuserve's software
forums-on-line bulletin boards where programmers can trade messages, tips,
and techniques. Programming is a lonely craft; and the forums give program
mers from all over the world a chance to meet and share ideas. Joining a forum
is a great way to learn tricks of the trade and to get answers and suggestions
about puzzling problems. It also makes interesting reading.

For example, I don't know how many times I've seen a message that goes
something like this:

Everybody-I've discovered a bug in Turbo Pascall!! In my 15,000-line point
of-sale package, I store linked data on the heap to categorize records accord
ing to subject, priority, etc. I use NewO and DisposeO to manage the mess.
Everything seems to be working just fine, but then something damages my list
pointers. I'm sure it's not my code because I tested it. Is this a bug in the
compiler? What should I do?-Confused.

Poor Confused. He or she has contracted a common ailment known as "the
compiler-is-bad syndrome." (Hardware engineers often catch a related "the
chip-is-bad virus.") True, compilers do have bugs. So do chips. But, most of the
time, if something goes wrong, you'll find the culprit in your own work. There
may be a bug in Turbo Pascal, but, more likely, the problem is hiding in
Confused's "tested" code. Here's how I might respond:

Dear Conj used-Can you isolate and upload a small section of your program
that seems to be causing the problem? Maybe you 've used a disposed pointer
somewhere. -Tom

No one in his right mind would accept an invitation to go bug busting in a
strange 15,000-line program. Before looking for goblins, the first step is to

197

lY)B Part Two: 7be Art of Debugging

isolate the section of the code that's haunted. Often, after posting that advice,
I'll receive a reply similar to this:

Tom-I started extracting code to upload and then, what do you know, I found
the bug!!! You were right. I disposed a pointer and then used it two statements
later (sigh). Everything's working now. Thanks so much for your help. -
Confused No More.

I'll gladly accept credit for helping even though I didn't do anything.
Confused found the bug simply by isolating suspect statements that had not
been as thoroughly tested as Confused thought. If you remember nothing else
from this book, remember to isolate your bugs. You'll be amazed at how much
time that simple strategy alone can save during debugging.

After all, that's the goal of learning how to use TD-to let you quickly find
bugs so you'll have time to pursue more valuable treasure. Nobody wants to
waste efforts on fruitless crusades for bugs. But that's exactly what many
programmers do. Instead of methodically searching for the cause of a bug, as
soon as a problem appears, they load into TD all 38 modules of a 150K program
that took six months to develop. Then, they single-step through each statement,
hoping to discover just what has gone wrong.

Resist this natural urge to puzzle out the cause of a bug. Instead, learn how
to use TD's tools and to apply the principles outlined in this chapter. Debug like
you play chess. Plan ahead. Develop a strategy. And then go in for the kill.

The Elements of Debugging Style
Every programmer should read Brian W. Kernighan and P.]. Plauger's The
Elements of Programming Style at least once a year. It's filled with gems like
"Make it clear before you make it faster" and "Let the data structure the
program."

But, while researching this book, I could find almost no similar advice for
debugging. Could it be that, by not discussing the subject, programmers
secretly hope the need for debugging will disappear? I can't answer that ques
tion. But, I can offer my own list of suggestions for developing a good debug
ging style-a condensed sampling of the front-line strategies that have saved my
skin in countless bug battles over a dozen or so years:

• Recognize that bugs are inevitable. You may find a bug in the compiler, but
you're more likely to find the error in your own code. Accept this. Every
body makes mistakes.

• Let go of frustration. That's easier to say than to accomplish, but when a
bug plagues your code, instead of boiling over while hunting for the cause,
take a short break, and then start fresh. Enjoy your work!

Chapter Seven: Developing a Debugging Strategy 199

• Use well-known programming algorithms. There's no need to rediscover
programming principles from scratch. Invest in books of algorithms, clip
subroutines from magazine articles, purchase the top-rated toolkits for your
language, and build your own procedure, function, and object-class
libraries. You'll prevent many bugs by constructing code on existing frames
instead of reinventing the wheels for each new project.

• Isolate your bugs. Don't just hunt through code looking for mistakes. Use
TD to narrow bug searches first to a module, then to a subroutine, and
finally to a statement or two. Divide and conquer.

• Document your bugs. When you discover a bug, carefully document the
steps and input data that caused the error. You must be able to duplicate a
program's bugs. That way, after fixing the problem, you can repeat those
same steps to verify that your repairs are working. How else will you prove
that the wicked bug is dead?

• Develop repeatable tests. Don't postpone testing and debugging until
you've finished a large project. Test as you go. And, be sure to create your
test code and data with the same care that you apply to your main work.
Sloppy testing is a natural habitat for bugs.

Turbo Debugger's Tools

As you learned in part 1, TD has many commands, views, menus, windows, and
other features. But among its many strengths, four main abilities offer the most
power for developing useful debugging strategies:

• Breakpoints

• Code tracing

• Data inspection

• Expression evaluation

The following sections briefly introduce these four concepts, which you'll
meet again in future chapters.

Breakpoints

All breakpoints have two parts: a condition and an action. Usually, the condi
tion is simply the address of a machine-code instruction-often the first such
code of a high-level C or Pascal statement. When the program reaches the code
breakpoint's address, TD executes the planned action, which normally halts
the program so you can view variables and inspect other facts about

200 Part Two: Tbe Art of Debugging

misbehaving code. In addition to halting the program, breakpoint actions can
also write information to the Log window or execute a subroutine.

TD sets code breakpoints by vectoring type 3 interrupts to its breakpoint
handler. For each code breakpoint that you set, TD swaps the byte at the
breakpoint location with an int 3 software interrupt instruction (byte value CC
hex). When the code executes the interrupt, TD's breakpoint handler gains
control and swaps the original byte back to memory. After the handler executes
the breakpoint action, to continue the program, TD restarts the code beginning
at the breakpoint's address.

Actually, the process of handling code breakpoints is a little more complicated
than that. After intercepting a type 3 interrupt, TD replaces the original byte that it
saved when you set the breakpoint. To continue executing the program, the
breakpoint handler decrements the IP value pushed onto the stack by int 3 so that
the next i ret will execute the code at the breakpoint location. It then throws the
processor into single-stepping mode (see the next section), executes the restored
instruction at the breakpoint, regains control, again swaps CC hex with the byte at
the breakpoint address (so that the handler will run if this location is reached later
on), clears single-stepping mode, and continues execution. Luckily, TD handles
these details automatically. You don't need to understand them to be able to use
the debugger.

TD also lets you set two kinds of data breakpoints. The first of these, called
a changed-memory breakpoint, periodically examines memory addresses for
changes to values stored there. The second, called an expression-true break
point, monitors bytes in memory to become equal to specific values. When one
of these data breakpoint conditions is satisfied, TD executes the planned action,
just as it does for code breakpoints.

If your system has an 80386 or 80486 processor, and if you've installed
TDH386.SYS or if you have a Trapper debugger board, TD can use the hard
ware's debugging registers and related features to set data breakpoints (see
chapter 18). With the appropriate hardware, changes to monitored locations
generate a debug exception (a type 1 interrupt) that activates TD's data break
point handler. Without this special help, TD can still set changed-memory and
expression-true breakpoints, but it has to examine memory locations by brute
force between source-code lines or machine-code instructions. This is why
setting data breakpoints makes programs run slowly on systems with 8088,
8086, and 80286 processors.

Most often, you'll set code breakpoints to narrow the search for a bug. You'll
create data breakpoints to find statements that are changing values unexpectedly
or to discover how and why a variable reaches a specific value. For any of the
three kinds of code and data breakpoint conditions, you can specify any one of
the three possible actions to halt the program, make a log entry, or execute a
subroutine-a total of nine breakpoint condition and action combinations.

Chapter Seven: Developing a Debugging Strategy 201

See chapter 8 for more information about how to use each of the three
kinds of breakpoint conditions and actions.

Code Tracing

All 80x86 processors can execute machine-code instructions one at a time-or,
more correctly, they allow a program like TD to gain control between the
execution of instructions. Called single-stepping, this feature is enabled when a
program sets the trap flag (TF), which causes the processor to issue a type 1
interrupt after most instructions. (A few instructions, for example, assignments
to segment registers, suppress the type 1 interrupt signal for the next instruc
tion; therefore, these machine codes can't be traced.) When you use TD's Trace
into, Step over, and Animate commands, the debugger intercepts the interrupt
signal, letting you run programs one line or instruction at a time or in slow
motion, which can help find bugs by slowing fast actions to inspectable levels.

Code tracing and breakpoints are natural partners. Many times, you'll set a
breakpoint to halt a program at a test location, and then single-step through
additional statements at that place. For this reason, chapter 8 discusses break
points and code tracing together.

Data Inspection

If you've never used a debugger before, you've probably inserted output
commands in your program to display or print the values of variables at
strategic locations. Or, perhaps you've written subroutines to save values in disk
files for inspection after a test run.

Such methods should be entombed with hex pads, toggle switches, core
dumps, and other relics from computing's pioneer days. With TD's abilities to
inspect data structures of all kinds, you'll never have to use those old tech
niques again. Instead, you can inspect your program's variables in one of two
main ways:

• Watching

• Inspecting

Both of these data inspection methods are similar. When you watch a
variable by adding it to the Watches window, TD lists the variable's name, value,
and data type on a single line. As you encounter breakpoints and use TD's code
tracing commands, you instantly see changes to all variables listed in Watches. If
a variable changes unexpectedly or becomes equal to an unplanned value,
you'll know immediately in which section of code that happened. You can
also change the value of any variable to test the effects of new data on a
program.

202 Part Two: The Art of Debugging

Inspecting takes the concept of watching variables one step further, show
ing you the intimate details of any variable from the simplest character to the
most complex object-oriented structure you can devise. With TD's inspector
windows, you can trace through a linked list, inspect an array, or examine the
fieldsofaPascal recordoraC struct.

TD automatically updates inspector windows with new values as you exe
cute code. You always see the current value of a variable in an inspector
window. You can also use inspectors to enter new values into variables.

See chapter 4 for general information about using inspectors. Also see
chapters 20-22 for details about inspecting specific data types in C, Pascal, and
assembly language.

Note: You can also watch and inspect C and Pascal procedures and functions. In
that case, however, you see the subroutine's address and, if it's a typed function,
the data type it returns. In other words, you can inspect code as data, but you can't
change it.

Expression Evaluation

The fourth main debugging tool that you'll find especially helpful for develop
ing useful debugging strategies is also one of TD's most versatile features. Along
with breakpoints, code tracing, and data inspection, TD can evaluate just about
any expression your compiler or assembler can parse (translate). You can use
TD's expression evaluator to:

• Inspect and change variables, similar to the way you can perform those
same tasks by watching and inspecting.

• Convert integers from hex to decimal and perform calculations. TD's
expression evaluator makes a handy on-screen calculator.

• See the result of an expression before it executes. For example, if an
expression is passed to a procedure or function, you can evaluate the
expression's result without having to call the subroutine.

• Experiment with new expressions without having to recompile your pro
gram. You can copy an expression from your source code, make adjust
ments, and have TD evaluate the result. When the new expression passes
muster, you can add the finished version to your source code.

• Call subroutines in your code independently of TD's other code-tracing
capabilities. This lets you patch code on the fly and even create custom
debugging commands.

You must take a great deal of care to use the last of these suggestions
properly. In fact, many programmers will never need it. But imagine the control

Chapter Seven: Developing a Debugging Strategy 203

it offers. You can test the effects of a subroutine without having to run your
program to the place where that subroutine is called-a fact that's useful when a
bug crashes the code before reaching that spot. And, you can run "what if" tests
to inspect what happens if you were to call a routine after a breakpoint halts the
code.

Usually, you'll enter expressions or copy them from your source code into
TD's Eva Luate/modi fy dialog box (press (Ctrl)-(F4)). But you can also evalu
ate expressions by adding them to the Wat ch es window or to an Inspector. TD
will then reevaluate the expression every time it gains control-in between
every instruction if you want. Or, you can insert an expression as the action for
a breakpoint, splicing code to call a subroutine when the breakpoint condition
hits or just to save the result of the expression in the Log window. In fact, just
about any time TD prompts for a constant value or an address, you can enter an
expression.

When entering expressions, you must be careful to use data formats suitable
to the current language. See chapter 9 for more information about how to enter
expressions for C, Pascal, and assembly language.

Bug Species

Most bugs are unique. That's one reason they're so hard to find. Even so, all
bugs belong to one of these three species:

• Syntax errors-program doesn't compile

• Runtime errors-program compiles but doesn't run

• Logical errors-program runs but doesn't work

Become familiar with these kinds of bugs and the differences between
them. That way you'll avoid making the same mistakes over and over. Eventu
ally, you'll be able to recognize classes of bugs by the symptoms they produce
in a running program.

The following sections introduce these three bug species. Other chapters in
part 2 recount instances of these bugs in programs and show how to use TD to
find them.

Syntax Errors

A syntax error in the source code breaks the rules of the language. We should be
able to trust the compiler to tell us of such mistakes. After all, it's the ultimate
authority of language syntax, and no compiler worth its salt should generate
code for a syntactically incorrect program.

204 Part Two: The Art of Debugging

Some programmers further divide syntax errors into two subspecies. First,
there are syntax errors caused by using unsupported symbols-for example,
typing BEGN instead of BEGIN, or using the keyword ELSIF, which you
remembered from the Modula/2 book you read last year, but which doesn't
exist in Pascal or C. Second, there are syntax errors caused by using supported
symbols in the wrong ways-like expecting a Pascal procedure to return a
value, which of course, it can't do.

But however you divide them, syntax bugs should be the easiest to find.
And, in fact, you'll rarely have the opportunity to use TD to debug errors in
syntax because the compiler will refuse to create the compiled code file until
the source text is error-free.

Unfortunately, some kinds of syntax errors can still slip through the cracks,
as you'll see in chapters 10 and 12 when you meet a few common bugs in C and
Pascal. But most of the time, you'll catch syntax errors during compilation or
assembly. TD can't help you find these kinds of bugs.

Runtime Errors

High-level languages like Pascal and C rely heavily on runtime libraries of stock
routines that display text on screen, send characters to printers, read disk
directories, handle file input and output, and perform other common jobs.
When one of these routines receives illegal input or incorrect instructions, it
generates a runtime error. This has one of two effects:

• The runtime error handler halts the program after displaying a message
along with the address of the faulty statement.

• The runtime routine returns an error code to the program, which is
expected to handle the error itself.

Other kinds of runtime errors occur when a program can't find its overlay
file to load a portion of itself into RAM or when an expression performs an
illegal operation-dividing by 0, for example. These and similar problems may
activate runtime handlers in the operating system, causing the program to halt
with a cryptic message.

Whatever the cause, a runtime error is embarrassing. It reveals the back
stage business that you so carefully attempted to hide. Any actor who has
had the scenery fall over during Act I knows what it's like for a programmer
to receive a report of a fatal runtime error. You know it's going to be a
long night.

Finding and fixing runtime errors can be difficult. With TD, though, as long
as you know the address where the fault occurred, you can set a breakpoint at
that position and inspect the buggy statement. Usually, the runtime library's
error handler reports this address.

Chapter Seven: Developing a Debugging Strategy 205

Chapters 11-13 discuss ways to deal with runtime errors in C and Pascal.
Assembly language programmers can use similar techniques.

Logical Errors

Most of the information in this book is directed at wiping out this third and
most common kind of bug-an error in the program's logic. Such errors are
frequently caused by poor design, sloppy programming, and carelessness. But,
as I mentioned before, a few logical errors are bound to occur in anything but
the simplest of programs. Programming a major application is just too difficult
for anybody to expect to do it correctly on the first try.

TD can help you to locate logical errors by displaying the values of vari
ables, running your code at slow speed, stopping on command at breakpoints,
and letting you peer into memory as through a microscope in search of bugs
hiding out in RAM. But even with all these features, TD still can't fix your bugs
for you-an obvious but important fact to keep in mind. It's still up to you to
decide why a statement is failing. The debugger can show you the conditions
surrounding that failure. And this book's tips and hints can help you to acquire
good debugging skills. But it's still your job to interpret the conditions and test
results and to identify the source of your troubles.

Types of Runtime and Logical Bugs

Of all the runtime and logical errors you can make, most bugs seem to fall into
six subcategories. When bugs occur, before loading the code into the debugger,
I've found that it's often useful to classify runtime and logical errors as one of
the following:

• Data-dependent bugs

• Intermittent bugs

• Moving-target bugs

• Fatal bugs

• Long-distance bugs

• Time-bomb bugs

While reading about these common kinds of bugs, keep in mind that there
are no boldly drawn lines among the types, as there are among the three bug
species described earlier. Identifying the kind of bug you have takes skill, guess
work, and luck. But you can improve your odds at finding the cause of a
problem by becoming familiar with the kinds of bugs that all programmers
probably will face sooner or later.

206 Part Two: The Art of Debugging

Data-Dependent Bugs

A data-dependent bug is caused by a particular value or set of input data. With
other data, the program runs with no errors.

The key to finding this kind of bug is to devise good input test data. Be sure
to include values in the middle, at both ends, and outside of expected ranges.

TD's Watches and inspector windows are useful for finding the causes of
data-dependent bugs. Or, if a specific value is giving you trouble, you might set
an Expression true global breakpoint to find the statement that's assigning a
specific value to a variable.

Intermittent Bugs

Intermittent bugs can drive anyone buggy. The symptom here is a program that
fails, apparently for a different reason each time the code runs. Sometimes it
works just fine. Then, just when you think all is well, the thing crashes again.

Cosmic rays? Probably not. Most of the time, this sort of problem is caused
by an uninitialized variable. Because all variables have some value, if the code
doesn't assign specific values to variables, they will have the values left in RAM
by whatever was there before the program runs.

This bug also shows up at times after running a different program, not the
one with the bug. Immediately after running that program, you execute the
buggy code (which, up to now, you thought was working just fine). But this
time, your program crashes, leading you to suspect the other program is causing
the trouble.

Don't fall into this trap. The problem is more likely an uninitialized variable
that's stored in a little-used area of RAM, maybe an are? that's always equal to 0
except after running a huge word processor or spreadsheet. Your code crashes
because, for instance, the formerly untouched variable now equals 243 instead
ofO.

Another symptom of this problem occurs when a program crashes only just
after compiling. Then, you run the same code and it works fine. Obviously,
there's a bug in the compiler. Right?

Wrong. Nab this bug by devising repeatable tests that reproduce the error.
Try to duplicate as many runtime conditions as you can and keep good notes
about all the steps that lead to a bug's appearance.

Moving-Target Bugs

This bug is related to the intermittent kind, but instead of going away under
different runtime conditions, it changes character. You might even be tricked
into thinking you have two bugs when, in fact, there's only one.

Chapter Seven: Developing a Debugging Strategy 207

Moving-target bugs exhibit two classic symptoms. In the first case, the bug
shows up when you run the code from DOS. But, when you load the same code
into TD, the bug changes to something else. In the second case, the bug
changes when you add a new routine to the program-or, it progresses from an
annoying problem to a full crash.

Uninitialized variables and pointers may be the cause of a moving-target
bug. Any change to the program's load address-for example, loading the buggy
code into TD-affects the bug by altering the values of uninitialized variables.

Running TD in remote mode or in virtual mode with an 80386 system is a
good way to find a moving-target bug. Either of these methods helps to stabilize
the runtime conditions under which you test your code.

Fatal Bugs

Unless you're debugging in remote mode, a fatal bug may crash your system and
take the debugger with it. Even with TD286 or TD386, a nasty bug can still
cause a failure. Only remote debugging can totally prevent the host system from
crashing. Remember, TD and your code share the same memory, and in that
case, there's nothing to prevent your code in all cases from destroying part
of TD.

The worst case of this bug is one that damages your development system.
For example, it's possible for a fatal bug to erase your hard drive, and there's
nothing TD can do to recover your lost files. Using well-tested runtime libraries
is the best preventive medicine against these kinds of bugs, which tend to show
up more frequently for programmers who write low-level "systems" applica
tions than those who write data base and other commercial software.

To find fatal bugs, the first step is to protect your development system.
Because even an 80386 or 80486 system running in virtual mode isn't com
pletely immune, the best solution is to use two computers and run TD in
remote mode (see chapter 17). No bug can reach through an 1/0 port and
destroy your hard drive or cause other damage. Of course, the remote system
might suffer the same sorts of problems, but at least your main development
computer is safe.

Long-Distance Bugs

Many people assume incorrectly that the source of a bug must be near to where
the problem occurs. But that's not true for a long-distance bug, which sets
conditions in motion that cause other statements to fail.

The classic case is a bad pointer that pokes random values into a subroutine
that won't be called until much later. When that damaged code runs, the
program crashes, leading you to hunt for a mistake in the routine. Of course,
you won't find the problem there.

208 Part Two: Tbe Art of Debugging

When this happens, trust your test procedures. If you've written careful
tests, and you are sure that a subroutine is operating correctly, you will have to
look elsewhere for the bug. If the code is crashing, you might set a Changed
memory global breakpoint on the subroutine code itself. This will halt the
program at the statement that's overwriting the code.

But if that doesn't work, you'll have to trace from the crash point back in
time, investigating the sequence of events that led to the bug's appearance. Start
by devising tests to run the code to just before the bug occurs. Then, use the
Stack window and TD's Run:Back trace command to go back in time and
investigate the events that caused the crash.

If you still can't locate the bug, set up check points at strategic spots where
you can verify program parameters. Long-distance bugs are very hard to find
because they may be caused by any statement and not show up until much later.
The key is to attempt to discover the set of parameters that don't fit your
expectations. If you can do that, you should be able to find the faulty
statements.

Time-Bomb Bugs

The final logical and runtime bug type is actually a long-distance bug that
reaches beyond your program's borders to affect another program. At first, the
symptom of a time-bomb bug leads you to believe you've got an intermittent or
moving-target problem. The bug doesn't always appear-it happens only
occasionally.

But after investigating the problem, you still can find nothing wrong. And,
besides, this program runs flawlessly on your partner's system. It only crashes
for you (or for one customer and not another).

In such cases, you might have a time-bomb bug, its fuse lit by another
program that you ran earlier. This treacherous surprise package explodes only
after the buggy code finishes and you run the other program. For example,
program A might change but fail to restore an interrupt vector in low memory.
Other programs don't use that vector, so they run just fine. But program B does,
and because of program N.s mistake, the B crashes.

As with long-distance bugs, the first step is to trust your test procedures.
After investigating program B, which doesn't have the bug, consider that the
mistake may be in program A. To test that assumption, try to duplicate
the bug, keeping good notes about all the programs you run until the bug
appears. Reboot between programs and be suspicious about any program that
ends prematurely, thus skipping code that restores low-memory vectors and
other information left in RAM after the program returns to DOS. When you
can duplicate the bug, use TD to examine program Xs closing parameters and
program B's input. Look for a common link between the two programs and
narrow your search to statements that might affect that link.

Chapter Seven: Developing a Debugging Strategy 209

Debugging Strategies

So far in this chapter, you've read about the elements that contribute to a
good debugging style, you've met TD's main features for finding bugs, you've
learned about the three species of bugs, and you've examined six common
bugs that most programmers face sooner or later. It's time to assemble the
pieces of that knowledge into a general debugging strategy that you can use
for finding and fixing real bugs in real code.

Because each problem poses unique challenges, each requires a unique
solution, and no single strategy will work in all cases. But no matter what
problem you're facing, having a debugging strategy is always better than having
none. And the strategies that work best for me usually include these four
elements:

• Testing for bugs

• Stabilizing bugs

• Isolating bugs

• Repairing and retesting

Testing for Bugs

Of course, you know you've got to test your programs. But, how do you go
about it? Do you write your code and then "play" with it? Do you use a
program for a few hours? Or, do you give it to friends to try, and then assume
all's well if no bugs appear?

There's nothing wrong with that kind of testing, and in fact, you should let
others use your programs. They may find bugs or design flaws that you miss
because you're too "close" to the project. Novices tend to find inconsistencies
that experts naturally avoid.

But I'm talking about a different kind of testing-one that's designed to find
the limits and flaws in code. The purpose of good testing is to force bugs to
happen now so they won't happen later. And good test procedures play crucial
roles in any debugging strategy.

Here are three hints that I try to remember when designing test procedures
and data:

• Force bugs into the open

• Take good notes

• Test as you go

210 Part Two: The Art of Debugging

Force Bugs into the Open

Whether your tests are separate programs, a set of input data, or just a series of
steps that you follow to exercise a section of code, design tests to force bugs to
happen. Usually, you can do that by including data and procedures in the
middle and at both ends-for example, using values like $0.001 and
$999999.99 in a checkbook-balancing program, no matter how unlikely such
values are in the real world. Test common cases, but don't neglect the uncom
mon ones.

Always save your tests and keep a log of their results. When you force a bug
to appear, you can then repeat the test while executing the code in TD. Set
breakpoints and examine variables at strategic locations. Then, force the bug
into the open. Combined with good test data, TD will usually lead you straight
to the source of the problem.

Take Good Notes

Use a data base system or your text editor to log your tests. Although this takes
time, and you may be tempted to skip this step when deadlines are too close for
comfort, good notes will almost always save more time in the long run than they
take to create along the way.

Notes should include the date and time, the test procedure itself or its file
name, the results of the test, and a description of any bug that you found. You
should also add a note about what you plan to do about the bug, and then later,
how you solved the problem. A glance at your past notes will help you to find
bugs in other programs by refreshing your memory about problems you solved
in the past.

Good notes also make it possible to duplicate test conditions under which
bugs appear. See "Stabilizing Bugs" later.

Test as You Go

Don't wait until you're finished programming to begin testing and debugging.
Test as you go. Use a top-down strategy in your tests, just as you do in your
code. Test at high levels first to verify that procedures are working. Then, as
you complete the lower subroutines, you can write tests for new sections
without having to repeat your tests for the higher levels you've already tested.

Some people also suggest testing in both directions, first verifying that
subroutines work correctly before adding them to a program and then testing
the kit with the caboodle. Either way, the idea is to localize your tests to small
sections as you complete them rather than use one grandaddy test bed for the
entire project.

This can also simplify your debugging strategy by focusing your energy on
small sections of the code at a time. When bugs appear, you can use TD's

Chapter Seven: Developing a Debugging Strategy 211

breakpoints and code-tracing commands to isolate buggy code and investigate
the causes, without having to trace through a lot of programming that has
nothing to do with the problem you're trying to find.

Stabilizing Bugs

When a test forces a bug into the open, the next step is to stabilize the problem.
You can't fix a bug that hops around all over the place. First, you've got to nail it
down so it stays put.

The best way to stabilize a bug is to devise a repeatable test that always
forces the bug into the open. This may be difficult if the bug is the intermittent
or moving-target variety, but resist the urge to skip this step for bugs that won't
hold still. Most will if you can duplicate runtime conditions exactly. And, that's
the key. Reboot, fill RAM with known values, and use TD to initialize variables.
Do whatever you can to pin a bug in place. This might take time, but it will
make debugging easier-and less frustrating.

Isolating Bugs

You've completed your tests and forced a bug into the open. You've carefully
documented the test procedure and you've stabilized the problem. The bug
stays put-it always shows up for the same input.

You're now ready to find out what's causing that bug. Load the program
into TD and isolate the problem. To do that, you may have to set breakpoints at
random locations, or you might be able to start examining one section of a large
program, skipping other parts that you tested before. Narrow your search to a
module, then to a procedure in that module. Then, start examining the state
ments in that procedure. TD's keystroke-recording ability is especially helpful
for this. See chapter 16.

Postpone single-stepping the code with trace commands as long as possible.
Tracing takes time, so try to get close to a problem before using the Trace into
and Step over commands. Concentrate on finding where a bug occurs, not why
it happens.

Often, you'll discover your mistake this way before you complete the hunt.
Just narrowing a search seems to help people to reconsider their program's
design, focusing their mental energy on the problem. Solutions to bugs just
pop out.

Repairing and Retesting

You've found the bug! And now that you know what's wrong, you can fix the
problem. If you're still unsure about why the problem occurred, verify that

212

Summary

Part Two: The Art of Debugging

you're using your language's syntax correctly. Any uncertainty at this point
should send you straight to your reference manuals. Before fixing a bug, be
absolutely sure you've correctly identified the cause.

After fixing the problem, don't neglect to retest your program, using the
same test data and following all the steps outlined in your notes. Be sure you can
prove without a doubt that you've eliminated the bug. Don't just assume it's gone.

And don't forget to update your notes and to document the change in your
source code. I frequently convert buggy statements into comments, so I can
compare new programming with old. Or, even better, use a version control
program to keep track of all source-code changes. Armed with your notes and
test procedures, you can then step back in time to just before you fixed a bug in
case it shows up again later, or if another bug surfaces that you suspect was
caused by fixing the other one.

Keep your tests, notes, and old program versions. In time, you'll build a
custom data base that will help you to devise new debugging strategies the next
time disaster strikes.

Programmers learn the value of a good programming style, but even experts
often fail to realize that a good debugging style is equally important. Recognize
that bugs are inevitable, let go of frustration, use well-known algorithms, isolate
bugs, take good notes, and use the same care in writing test procedures that you
use in all your projects.

TD has many commands, of course, but among them, four often prove to be
the most useful for debugging: breakpoints, code tracing, data inspection, and
expression evaluation. The next several chapters discuss these areas in detail.

Three species of bugs affect code: syntax, runtime, and logical errors. The
last two of these further divide into six kinds of common bugs: data-dependent
bugs, intermittent bugs, moving-target bugs, fatal bugs, long-distance bugs, and
time-bomb bugs. The purpose of a good debugging strategy is to identify a bug
by species and kind. Only then can you begin to find and fix the problem.

Each problem is unique, so it's difficult to create general formulas to find
and fix bugs. But a good debugging strategy should include four elements:
testing, stabilizing, isolating, and repairing. Be your own "beta" tester. Stabilize
a bug so it holds still while you search for its cause. Isolate buggy code; don't
waste time puzzling out problems. And, after you locate a bug and fix it, repeat
your tests to prove a problem is gone for good. Don't forget to document the
fixes you make.

With these elements of a good debugging style in mind, you're ready to
explore how to use TD's breakpoints and code-tracing capabilities. The next
chapter explains how to put these two most powerful TD tools to work.

Breakpoints and
Code Tracing

Chapter 8

IF THERE'S a common feature that all debuggers share, it's a breakpoint.
A breakpoint is like a checkpoint in a rally. It forces the action to stop at
planned intervals so you can keep tabs on the race-that is, the race to find
bugs.

As described in chapter 7, breakpoints have two parts: a condition and an
action. When the condition is satisfied-for example, when the program
reaches a certain location or when an expression becomes true-TD carries out
the programmed action. That action might halt the program, execute a sub
routine, or log the value of a variable.

After TD halts a program at a breakpoint, you'll often use code-tracing
commands to execute one or more additional statements. Breakpoints let
you find out roughly where a problem is located. Tracing can take you straight
to a bug's hideout. Because these two TD features often go hand in hand, this
chapter describes them together. It also explains how to use breakpoints
to log expressions and splice code to try out repairs from inside the debugger.

Breakpoints, Tracepoints, and Watchpoints

If you've used another debugger, you may be familiar with the words break
point, tracep"oint, and watchpoint. TD doesn't use these terms, but it has all the
same abilities. In TD:

• A classic breakpoint is the same as a code breakpoint set by TD's Tagg Le
command (press (F2)) to halt a program or perform another action just
before the program executes an instruction at a planned address.

213

214 Part Two: The Art of Debugging

• A tracepoint is similar to a Changed memory global breakpoint, triggered
when a monitored memory location changes value.

• A watchpoint is like an Expression true global breakpoint, triggered when
a monitored memory location changes to a specific value.

Debugging with Code.Breakpoints

After you've forced a bug into the open and stabilized it with a repeatable test,
the next step is to isolate the bug. At this stage, you know that the program isn't
working, but you don't know why it has failed. To answer that question, the first
step is to isolate the buggy statements that have gummed up the works.

The following sections describe ways to use code breakpoints for that
purpose. To set a code breakpoint, move the text cursor to any line in the CPU or
Module windows and press (F2). Or, if you have a mouse, click in either of the
two blank columns to the left of a source-code line. (See chapters 4 and 5 for
other ways to set breakpoints. j

Isolating a Bug

Use a divide-and-conquer approach to isolate a bug to the smallest possible
section of code. One obvious way to do this is to set a breakpoint somewhere
in the middle of a program and then press (F9) to run to that place. If the bug
still appears, set another bteakpoint halfway back and repeat. If it doesn't show,
set a breakpoint farther into the code and run.

While setting out your traps, keep in mind that the goal is to pinpoint the
source-code statement that causes the bug to appear. These tips will help you to
narrow the search:

• Press (Ctrl)-(F2) to reset the program before beginning the next test run.
This does not erase existing breakpoints. They stay set until you remove
them.

• Sometimes, it's useful to run the program with no breakpoints and press
(Ctrl)-(Break) to halt when a bug appears. If this opens the CPU window,
to get back to the source-code view, activate the Module window, move the
cursor to a location somewhere after the place where you halted the code,
and press (F4). If that doesn't work, try setting one or more breakpoints
and press (F9). You may have to repeat these steps several times to narrow
your search to a small section that you can then examine in detail.

• Use the -k command-line option (see chapter 3) to enable keystroke record
ing when you start TD. You can then use the View:Execution history

Chapter Eight: Breakpoints and Code Tracing 215

command's bottom pane to play back all events leading to the moment a
bug arrives on stage. After opening that window, press (Tab) to move the
highlight bar into the bottom pane, select the event to reenact, and press
(Ctrl)-K.

Breaking in Procedures and Functions

Pascal and C procedures and functions (I'll call them all subroutines here)
usually begin with startup instructions that allocate space on the stack for local
variables and prepare register BP for addressing those variables and any argu
ments passed to the routine. To examine the startup code:

• Position the cursor on the procedure or function declaration (not the first
statement in its body) and press (F2). TD will show the breakpoint on the
Pascal BEGIN keyword or on a C function's opening brace. This tells you the
breakpoint is set to go off before the first statement executes.

• Press (F9) to run the code. When the breakpoint hits, press (Alt)-VC to
open the CPU window. You can then trace the machine-code startup instruc
tions for this subroutine.

It's also useful to set breakpoints at the beginning of every subroutine in a
module. The brute force method uses the Madu Le window's Search command
(press (Ctrl)-S). Enter procedure or function as the search argument. As you
locate each subroutine, press (F2) (Ctrl)-N to set a breakpoint there and move
to the next routine. When you run the code, it will halt at the beginning of each
subroutine. (See "Data Breakpoint Tricks" later in this chapter for a different
method to break in subroutines.)

To view all local variables within the scope of each routine, open the Vari ab Les
view (press (Alt)-VV). Then, press (F9) to run. When the program breaks at the
start of each procedure or function, the bottom window pane shows all arguments
passed to routines plus other items reachable from this location. (If you halted the
program before a subroutine's startup code, you must press (FS) or (F7)
to execute those instructions before the window will show the correct
information.)

Examining Program Exit Conditions

You can also set breakpoints at the ends of subroutines, which is especially
useful for examining function return values. To do that, Search for procedure
or function as in the previous section, but press (Cursor Up) a few times
to move the cursor to the previous Pascal routine's END or a C function's

216 Part Two: The Art of Debugging

closing brace before setting the breakpoint. When you press (F9) to run,
the subroutines will halt before they return to their callers. You can then
use the Data : Fun ct i on return command to examine the return values for
functions.

Finding a Runtime Error

When a runtime error handler halts a program due to an I/O error or another
cause, it usually reports the address where the problem occurred. To find the
statement at that address, press (Alt)-(F2) to set a breakpoint at the reported
location, then press (F9) to run to that place.

If that doesn't seem to work, the error handler may be reporting a relative
segment address. To find the true location when running the program in TD,
press (Alt)-(F2) and add the CS register to the reported segment value. For
example, if the reported address is 3400:0800, enter (cs+$3400):$0800 in
Pascal or (cs+Ox3400):0x0800 in C.

Hint: You can enter similar expressions with the Goto command in the Module
view. This positions the cursor to the offending statement without requiring you to
run the code up to that spot.

Breaking into OOP Methods

Set breakpoints in Pascal and C + + object methods the same way you set
breakpoints in non-OOP code. When the breakpoint hits, you can then use the
Data:Evaluate/modify command (press (Ctrl)-(F4)) to call other methods
for the object instance that led to the breakpoint location. For example, after
opening the Evaluate/modify window, you might enter self.listEmpty() to
see the effect of that method for this object instance. For methods that declare
no parameters, the empty parentheses tell TD to call the method instead of
merely reporting its address. In C + + , use this instead of self.

You can also call non-OOP routines this way (see "Splicing Code" later in
this chapter). But the technique is particularly useful for debugging object
methods because of the way objects encapsulate their data and code. In well
written OOP code, calling a method out of turn should affect only the current
object instance.

Another useful technique is to open an inspector window for the current
object when a breakpoint halts the action inside a method. To do that, move the
cursor to a blank character and press (Ctrl)-1 or use the Data: Inspect

command. Then, enter self for Pascal or this for C + + . Or, choose
View:Variables. The bottom pane of this window shows the self or this

Chapter Eight: Breakpoints and Code Tracing 217

parameter passed to all object methods, although it doesn't show as much detail
as an inspector window.

Code Breakpoint Tricks

As chapter 7 explains, to set breakpoints in code, TD replaces a single byte at
the breakpoint address with an int 3 instruction (CC hex). When the program
reaches that location, the software interrupt activates TD, which copies the
original byte back into RAM so that, when you execute the instruction, it runs
as it normally would if the code had never stopped.

You can take advantage of this fact to place permanent breakpoints in code,
which, in some cases, might be easier to set in the source-code text than to use
TD commands. To do this in Pascal, insert the statement:

inlineC $CC>;

For Turbo C, use the statement:

asm int 3

In assembly language, use:

int 3

Or, use another method to insert the CC hex byte into the code. You can set
as many of these breakpoints as you need. TD won't highlight the locations as it
does for other breakpoints, and it won't let you modify their actions with the
local commands in the Breakpoints view. But, when you press (F9) to run the
program, it will halt at each of the permanent breakpoint locations.

Debugging with Data Breakpoints

There are two kinds of data breakpoints you can set. One kind monitors
memory locations for changes to bytes stored there. Another monitors memory
for specific values.

In general, the first kind-set by the Changed memory global command in
the Breakpoints global menu (not the View window command with the same
name)-is most helpful for finding a statement that changes data or code
without permission. Often, this is the result of using an uninitialized pointer,
but it might also be caused by an array index that's addressing elements beyond
the space allocated to the array. After identifying the addresses where the
unauthorized change is occurring, enter the address and number of bytes to

218 Part Two: The Art of Debugging

monitor. For example, in Pascal, enter something like cs:$0F00,$100. In C,
use cs:OxOFOO,OxlOO, and in assembly language, cs:OFOOh,OlOOh.

If a variable is changing unexpectedly, just enter the variable's name.
Despite the Change memory global command's prompt message "Enter memory
address, count," you don't have to enter the count. Suppose you have a 1,000-
byte array of 4-byte long integers ArrayOfPlenty. To monitor the entire array,
just enter its name. Or, to monitor only a portion, enter an expression like
ArrayO{Plenty[n),c, where n is the index of the first entry in the array and c is
the count of those items you want to monitor-64 to monitor the first 256
bytes, for example, (256/4).

When you know the address and the bad value that's showing up, for
example, when an index count becomes equal to 100 when you know it should
never be greater than 99, choose Expression true global in the Breakpoints
global menu and enter an expression such as count) 99. TD will evaluate that
expression repeatedly, and when the result is true, it will execute the pro
grammed action. Usually, this will take you right to the spot that's incrementing
count once too many times.

Entering Expressions

When you enter segment:offset address expressions in various TD commands,
use a form that's appropriate for the current language (see chapter 9). If you enter
only the offset, TD considers that value to be relative to the current value of CS.

But you don't have to enter explicit address values. You can also enter a
module name and line number such as #SCRMOD#IOO or, in Pascal,
SCRMOD.100. Or, if a pointer addresses the location you need, you can
dereference its value to pass the address to TD. For example, when TD prompts
for an address, in Pascal, you might enter p"; in C, *p.

Yet another way to enter an address is to refer to a label, for example, a
procedure or function name. Just enter the procedure name, which TD evalu
ates as an address. You don't need to preface the name with @ as you do in
Pascal, or with & as you must in C.

When entering address and other constant expressions, be careful not to intro
duce side effects. For example, don't enter x = 5 in C when you meant to specify
x = = 5. The first expression sets x to 5; the second tests whether x equals 5. In
Pascal, don't use : = in expressions. In assembly language, use EQ and similar
keywords, not=.

Hardware and Software Differences

When setting Changed memory global and Expression true global breakpoints,
be aware that TD scans memory locations and evaluates expressions between

Chapter Eight: Breakpoints and Code Tracing 219

every statement or machine-code instruction. Because that takes time, these
data breakpoints can make the program run slowly. The more addresses and
expressions you enter, the slower the code goes. In fact, searching for an elusive
bug that's changing bytes at random in a large buffer could take hours-far too
long to be useful in many cases.

The following notes describe a few ways to add back some of the speed that
data breakpoints steal.

Speeding Software Data Breakpoints

The best solution when data breakpoints slow execution is to install the
TDH386.SYS device driver on an 80386- or 80486-based system (see chapter 3).
You can then take advantage of this processor's special debugging registers,
which can monitor up to four addresses for read and write instructions. All
systems with 80386 or 80486 processors, including those with 80386SX pro
cessors, have this capability.

An even better choice is to install a hardware debugging board, which gives
you a wider range of methods for examining memory locations (see chapter 18).

When TD can use either of those two hardware solutions, it displays an
asterisk (*) next to the breakpoint in the Breakpoints view. You can also
request hardware assistance for a breakpoint by clicking the Hardware condition
in the Breakpoint options dialog box (press (Ctrl)-S after opening the
Breakpoints view and highlighting a current breakpoint).

Hint: A faster way to open the Breakpoint options dialog is to move the cursor
to any breakpoint highlighted in the Modu Le window and press (Alt)-(F2). This
takes you to the same dialog box as choosing View: Breakpoints, selecting a
breakpoint in that view, and pressing (Ctrl)-S.

But what if you don't have an 80386 an 80486 or a hardware debugging
board? In that case, there's no way to prevent the code from executing more
slowly. But there are a few things you can do to minimize sluggishness:

• Make sure the Module, not the CPU, window is active before running the
code. That way, TD will evaluate breakpoint expressions between source
code lines. With CPU active, the debugger does that between every
machine-code instruction, which takes more time.

• Limit evaluation to a specific address. To do this, first set a code breakpoint
to any source-code line. Choose View:Breakpoints and press (Ctrl)-S to
Set options. Change Condition to Changed memory and enter an address or
variable name in Condition expression. Or, change Condition to
Expression true and enter the expression that you want TD to evaluate at

220 Part Two: Tbe Art of Debugging

this address. Either way, TD will now examine the condition you specified
only when the program reaches this breakpoint location. Of course, you
can use this trick only if you know where to set the code breakpoint. But,
when you do, this is a great way to add speed to data breakpoints.

• Avoid referring to local variables in expressions. This causes TD to work
harder to evaluate expressions because it can't compute addresses in
advance as it can for global variables. Setting a Changed memory global
breakpoint for a local variable declared in a procedure or function usually
causes a worse slowdown than setting a similar breakpoint on a global
symbol.

• Before setting data breakpoints, try to narrow your bug search as much as
possible by using code breakpoints. This will improve speed by limiting the
number of statements TD has to execute while monitoring memory loca
tions and evaluating expressions.

• Limit the number of bytes monitored. When examining an array, instead of
watching the entire variable, enter an expression such as a[0],5 to examine
the first five elements. Or, monitor a related variable instead of the data that
changes. For example, in Pascal, to trap changes to strings, you might just as
well examine the string length by entering s[O] for a Changed memory global
breakpoint. This will be a lot faster than watching every byte in a 255-
character string variable. (But it might also miss a bug that's causing the
string to change without also changing its length.)

String Comparisons

Talking about strings, you can monitor them for changes but not for specific
values. In other words, you can set a Changed memory global breakpoint with an
expression equal to a string identifier, but you can't set an Expression true
global breakpoint to monitor when, for example, a string equals 'XYZ'.

However, you can accomplish almost the same result entering a complex
expression such as (s[l] = 'X') and (s[2] = 'Y') to set a breakpoint when the
first two characters in s are 'X' and 'Y'. This may produce a few false breaks for
string values that don't exactly match the one you're looking for, but the
method works well enough in most cases. (In C, use expressions like (s[O] = =
'X') && (s[l] = = 'Y').)

Breaking on Register Values

You can enter expressions to set breakpoints for when registers change or when
they become equal to a certain value. For instance, you might enter es into a
Changed memory global breakpoint to halt a program if that data segment
register ever changes value. Because Pascal and C statements often use that

Chapter Eight: Breakpoints and Code Tracing 221

register to load pointer values, this may help you to arrest a delinquent pointer
bug.

At times, it may also be useful to watch for when two registers are equal to
each other. To do this, choose Expression true g Laba Land enter an expression
such as ds = es in Pascal, ds = = es in C, or ds EQ es in assembly language. In
C, you can also refer to pseudo registers such as _AX and _DX, but the leading
underscores are not required.

Similarly, to find instructions that change but fail to restore a register value,
enter an Expression true global breakpoint expression such as ds O es. Or,
use an explicit value as in the expression ds () $ 76FO to nab a statement that
changes the data segment register. This can be useful for identifying the source
of a long-distance bug by finding instructions that change the data segment
register, causing statements that appear correct in the source code to write data
to the wrong locations in memory.

Data Breakpoint Tricks

To narrow a search for a bug quickly, it's often useful to halt a program or
perform another breakpoint action at the beginning and end of every pro
cedure and function in C and Pascal.

Because most high-level subroutines begin by assigning the stack pointer to
register BP, you can often do this by entering bp as the expression for the
Changed memory g Laba L command in the Breakpoints menu. Then, press (F9)
to run the program, which will halt at every change to BP Because procedures
and functions typically restore BP before they return to their callers, this
method halts the program at the start and end of most subroutines. (If other
code changes BP, the program may also make a few unplanned stops, but this
shouldn't cause any problems.)

Logging Expressions

For all breakpoints, you can tell TD to log the result of an expression as the
action to perform when the breakpoint hits. You can do this for code and data
breakpoints, and there are different reasons you might want to use this tech
nique for each of the two kinds of breakpoint conditions.

To prepare a breakpoint to log an expression, first set the breakpoint as you
normally do-usually by pressing (F2) , clicking the left mouse button, or by
choosing Breakpoints:At and entering an address expression. Next, press
(Alt)-VB(Ctrl)-S to open the Breakpoints view and set the option for this
breakpoint. (To do this for several breakpoints, highlight each one in the
window before pressing (Ctrl)-S.)

222 Part Two: Tbe Art of Debugging

You should See the Breakpoint options dialog box. Set the Action radio
buttons to Log (press (Tab) and use the cursor movement keys to select a
labeled button). Press (Tab) again and enter an expression in Action expres
sion.

TD will evaluate the expression and log its value. Possible action expres
sions you can enter include:

• The name of a variable. TD will write the variable's value to the log at each
breakpoint.

• The result of a C or Pascal function, either in the program or in a runtime
library linked to the code. For example, in Pascal, enter IoResultO (note
the required empty parentheses) to log the result of that function at each
breakpoint. Be careful to consider the side effects that this may cause, for
example, changing a global variable.

• A literal value such as 0 or 1. This can be useful when you want to log many
code breakpoints in a long program just to see whether certain sections are
executed, but without halting the code. Enter all the breakpoints, then
change each to log the digit as the expression. (It doesn't matter what digit
you use, but you have to enter something-TD can't log an empty expres
sion.) After running the program, open the Log window to see which of
your breakpoints were executed.

There are other possibilities, and each problem will suggest its own solu
tions. The following sections include additional hints that may help you decide
how to log different kinds of information.

Logging Multiple Variables

You can set as many breakpoints as you want, but only one per address. This
means you can't log the results of more than one expression for a code
breakpoint set to a certain statement. For example, there's no easy way to log
the value of two variables i and j for a single breakpoint inside a loop.

One way around this dilemma is to write a string function that returns
monitored variables in character form. Here's a sample in Pascal:

function ijStr(i, j : integer > : string;
var si, sj : string[6];
begin

strC i, si >;
strC j, sj >;
i j St r : = s i + ' ' + s j

end;

The i j St r function returns a string with the values of i and j converted to
characters. Unfortunately, because Turbo Pascal strips unused code while com-

Chapter Eight: Breakpoints and Code Tracing 223

piling, you also have to enter a statement such as writeln(ijStr(0, O));
somewhere so the function is available when you load the program into TD.

After doing that, set a breakpoint and modify it to log the expression
ijStr(i, j). This calls ijStr at each breakpoint, converts the variables to a
string, and records the result in the Log window.

Logging Complex Expressions

When a conditional expression controls a program loop, rather than halt the
code inside the loop to examine conditions for each iteration, you can save time
by logging an expression instead. That way, the code runs at full speed, and you
can view the finished report in the Log window after the loop finishes. For
example, suppose you've written the following while loop in C:

while C--argc > O>
printfC"Argument #%d: %s\n", argc, argv[argc]);

Set a breakpoint on the while statement and change the breakpoint to log
argc as the action expression. Be aware that the logged value is saved before the
expression is evaluated; therefore, you have to subtract 1 mentally from the
recorded values to account for the decrement operator(--). But don't try to fix
the problem by logging the expression --argc. That would change argc every
time TD evaluates the expression and throw the while loop out of whack. (This
is an example of a side effect that you should avoid except in special cases. See
"Splicing Code" later.)

Logging "Self" in OOP Code

To log a series of method calls for various object instances, set a code break
point on a method's declaration or first statement and press < F9) to halt the
program at the first call to that method. (Use View:Hierarchy to find a pro
gram's methods.) Then, open the Breakpoints view and press (Ctrl)-S. Set
Action to Log and enter self or this in C+ + as the Action expression. Press
(F9) again to restart the program. All subsequent method calls will now be
logged, giving you a complete record of all objects that call that method.

When entering self or this as an action expression, the program's current
location must be inside a method before TD will accept the key word. In other
words, as with other symbols, self or this must be within the current scope
before you can use it in an expression.

Hint: Because this tip may produce reams of data, you might want to open a log
file (press (Ctrl)-0 in the Log view) before running the program.

224 Part Two: The Art of Debugging

Side Effects

Because expressions can call functions and assign values to variables, they
might cause side effects. For example, if you log an expression f(x), TD calls f ()
when it evaluates the expression, just as the program code might call that same
subroutine. If the function changes a global variable, it could affect the pro
gram's operation. It might even introduce a bug where none existed before!

The same is true of expressions that assign values to variables. Usually, it's
not wise to log expressions of the form v = k where v is a variable, k is a
constant value or another expression, and = is the assignment operator or
statement in your language.

To avoid side effects in action expressions, ask yourself if the expression
evaluates to a constant and whether it calls any functions. If so, proceed
cautiously, and carefully compare results with and without the breakpoint
enabled to be sure that you haven't introduced a side effect accidentally.

Splicing Code

Now that I've posted fair warnings about the dangers of side effects in expres
sions, I'll turn completely around and show how doing exactly that can some
times be useful for debugging. When used this way, a side effect is called a code
splice.

To splice code, set a breakpoint in the usual way, then press (Alt)-VB to
open the Breakpoints view. Press (Ctrl)-S to set the breakpoint's options and
then change Action to Execute. Next, enter an Action expression, which
should call one or more functions, assign a value to a variable, or both. When
the breakpoint hits, TD will evaluate the expression and, in the process, execute
the side effect. The program now runs as though a new statement (the splice) at
that position performed this same action.

The following sections suggest a few ways to put this interesting technique
to work. Unfortunately, the method is available only to Pascal and C program
mers; you can't splice assembly language code, at least not as easily. (It might be
possible to call assembly language routines by inserting ca L L instructions in an
unused area of memory and then executing those calls. But this is probably
more trouble than it's worth.)

Splicing Pascal Code

After isolating a bug to a few statements, you can use a code splice to test
possible solutions to the problem. Of course, you can exit TD, modify the
source code, compile, and reload the program for testing. But many times you

Chapter Eight: Breakpoints and Code Tracing 225

can insert temporary splices to test your assumptions without leaving the
debugger.

For example, consider the buggy Pascal program in Listing 8.1,
SPLICEl.PAS. After running the code, you discover there are two bugs: variable
count is never initialized, and the wrong variable (i instead of count) is incre
mented inside the while loop.

Listing 8.1. SPLICEl.PAS (with bugs).

program splice1;
var

count, i : integer;
begin

while count< 100 do
begin

writeln('Count =
i := i + 1

end;
end.

count >;

Of course, in this small example, you could just as easily modify and
recompile the source to fix the errors. But a run-through of the steps required
to splice a temporary fix demonstrates a technique that's often useful in more
complex situations:

1. Set a code breakpoint on the first line of the while statement, press (F9) to
run the program to that line, move the cursor to count, press (Ctrl)-1, and
enter an initial value, for example, 10. This takes care of the missing
initialization statement that should precede the loop.

2. Toggle the breakpoint from step 1 off-you don't want to halt the code
while the loop executes now that you've initialized count.

3. Set a new code breakpoint on the statement that increments i. There's no
simple way to prevent that from happening, but you can patch the code to
increment the correct variable.

4. Press (Alt)-VB(Ctrl)-S to open the Breakpoint options dialog. Change
Action to Execute, and enter count:= count + 1 for the Action expres
sion.

5. Press (Enter) to close the dialog box and (Alt)-(F3) to close the
Breakpoints window. Then, press (F9) to run the patched code, which
now executes the while loop correctly.

Splicing C Code

Splicing C programs is similar to splicing Pascal. As an example, Listing 8.2,
SPLICEl.C, has the same two bugs as Listing 8.1. It neglects to initialize count,
and it increments the wrong variable inside the while loop.

226 Part Two: Tbe Art of Debugging

Listing 8.2. SPLICEl.C (with bugs).

#include <stdio.h>
main 0
{

}

int count, i;

while (count < 100)
{

printf< "Count= %i\n", count >;
i++;

}

To patch SPLICEl.C with a temporary splice, follow the five steps in the
previous section for Pascal. But in step 4, enter the expression count+ + to
increment count. When you press (F9) to run the modified code, you'll see
that it now works correctly.

Splicing Procedure and Function Calls

Calling procedures and functions in Pascal or C action expressions is another
way to put code slicing to use. The technique is especially good for initializing a
series of variables that would take too much time to set manually in the Watches
view or Inspector windows.

First, write the procedure, which includes statements to assign test values
to variables. You can also add statements to prompt you for new values at
runtime. Be sure to call the procedure at least once in the program (preferably
near the beginning) to prevent the compiler from throwing away the "unused"
subroutine.

Next, set a code breakpoint at the beginning of the section where you've
isolated a bug. Modify the breakpoint to execute an expression and enter the
initialization procedure's name (or C void function's name) followed by a set of
empty parentheses, for example, Customlnits(). TD will then call the pro
cedure every time it reaches the breakpoint, assigning new test values at this
location.

Setting the Pass Count
Select any breakpoint in the Breakpoints view (press (Alt)-VB), open the
Breakpoint options dialog box (press (Ctrl)-S), tab to the Pass count input
box, and enter any value from 1 to 32767. Press (Enter) to close the dialog
window.

From then on, every time the breakpoint condition is satisfied, if Pass
count is greater than 1, TD subtracts 1 from the current count and lets the

Chapter Eight: Breakpoints and Code Tracing 227

program continue. (In other words, it ignores the breakpoint.) When Pass
count equals 1, TD executes the breakpoint action.

The following notes describe a few practical uses for Pass counts greater
than 1.

Verifying a Loop Index

One way to verify that a loop index is within range is to set an Expression true
global breakpoint for an expression like index> maxlndex. But there's another
way to accomplish the same job with a Pass count that doesn't slow perfor
mance on non-80386 systems.

First, set a code breakpoint at the first statement inside the loop you want to
check, for example, on the w r i t e l n statement in Listing 8 .1 or the pr i n t f line in
Listing 8.2. Then, change the Pass count for this breakpoint to the maximum
number of times plus 1 that the loop should execute. If the loop ever runs more
than its official limit, the breakpoint will halt the program. If the breakpoint
doesn't hit, then the loop is operating within its defined parameters, and the
index value is probably okay.

Finding Unauthorized Variable Assignments

When hunting for a statement that's changing a variable unexpectedly, you can
set a Changed memory global breakpoint for that variable as described earlier.
But when many other statements also assign values to the same variable, the
breakpoint may halt the program dozens or hundreds of times, reducing the
effectiveness of this technique.

A possible solution is to set the breakpoint's Pass count to a high value and
run the code. If the bug does not appear, double Pass count and repeat the test.
If the problem shows, halve the count. By repeating this process, you can
quickly find the statement that's not supposed to modify the variable, while
skipping past most others that are.

Locating Unwanted Recursions

One of the nastiest surprises is a procedure or function that calls itself unexpect
edly, often because a function name incorrectly appears on the right side of an
assignment expression inside the function. Usually, this kind of bug is easy to
find because the program halts with a stack overflow at the buggy statement.

But a subtle form of this problem can be more difficult to debug-an
unwanted mutual recursion, where another procedure or function calls back
the one that called it in the first place. To find out where the code is going
wrong, after isolating which subroutine is running more often than it should,

228 Part Two: Tbe Art of Debugging

insert a breakpoint in the routine and set the Pass count to 2 or higher. The first
call to the routine will be ignored. The next (if count is 2 initially) will halt the
program. Use the View.: Stack command (press (Alt)-VS) to find the source of
the unwanted recursion. The procedure or function name should appear inside
the window.

Debugging with Code Tracing

TD's Run menu gives you several ways to execute code. They're all useful, but
five of those commands let you run one statement, or even one machine-code
instruction, at a time. This extreme level of control-called code tracing or
single-stepping-is one of the most productive debugging tools in TD's toolkit.

You met these commands earlier in chapter 4, and you've used them in
other places. But for those who need a quick refresher, the five code-tracing
commands covered in this section (with hot keys in parentheses) are:

• Animate-Runs code in slow motion. Use it to slow a complex passage so
you can see exactly where a bug hatches.

• Back trace C<Alt>-<F4»-Traces individual instructions in reverse. Use it
to undo the steps that led to a bug.

• Instruction trace C<Alt>-<F?»-Opens the CPU window and executes a
single machine-code instruction for the current source-code line in the
Mod u Le view. Use this command to examine the code generated by the
compiler for a high-level-language statement and to trace into int software
interrupt instructions.

• Step over C<F8»-Executes a subroutine call or software at full speed then
halts when the routine returns. Use this command to step over procedure
and function calls.

• Trace into (<F7>)-Traces into a subroutine call or software interrupt. Use
this command to follow procedure and function calls to their destinations.

The following sections describe some of the ways you can use these
commands to carry out your debugging strategy.

Tracing and Stepping

Be sure to understand the difference between tracing and stepping. When you
press (F7) to trace into a procedure, function, or subroutine call, TD executes
the ca LL instruction and stops. You'll see the instructions for that subroutine,
with source code if available or in disassembled machine code if not. You can
then continue to trace instructions in the routine.

Chapter Eight: Breakpoints and Code Tracing 229

When you press (FS) to step over a procedure, function, or assembly
language subroutine call, TD executes the call instruction at full speed. Then,
when the called routine returns, TD again halts the code so you can continue
.~racing. The effect of this is identical to setting a breakpoint for the instruction
following the one that calls the subroutine and pressing (F9).

If the current instruction is not a call to a subroutine, then pressing (F7) or
(FS) has the same effect. To avoid confusing the two keys, I usually trace all
code by pressing (F7) and use (FS) only when I don't want to trace into a
subroutine. This also gives the best control for tracing code in reverse (see
"Debugging with Back Tracing" later in this chapter).

You can also use (F7) and (FS) to narrow a search for a bug. During the
early stages of a debugging session, press (FS) to step over all subroutine calls
on the outer program level until you determine roughly where the bug
occurs. Set a breakpoint at that location (or just before) and press
(Ctrl)-(F2) to reset the program. This will not remove the breakpoint. Next,
press (F9) to run the program at full speed up to the marked subroutine
call and press (F7) to trace into that call. You can then repeat these steps
until you find the source of a bug. This avoids tracing a lot of other
statements needlessly, but it works best with code that's written in top-down
fashion, where each program level contains numerous calls to the next level
down.

Using Instruction Tracing

If you're programming in C or Pascal, I'd suggest using the Instruction trace
command as a last resort. Try to debug your code on the source-code level in
the Module window. It's much easier (usually) to find bugs by tracing statements
in the same language that you used to write them. Trust the compiler. It
probably does not have a bug, and you probably do not have to examine the
machine code generated for high-level statements to determine what's gone
wrong.

But don't hesitate to break that rule when you've exhausted other avenues
and need to step into the wonderful world of assembly language to understand
what the code is doing on the lowest level. To do this, position the cursor on
any high-level statement and press (Alt)-(F7) to open the CPU window and
execute one machine-code instruction. You can then continue tracing with
(F7) and (FS), although now only individual processor instructions will be
executed, not high-level source-code lines. To return to the source level, press
(Ctrl)-V (View source).

Don't use this command when you only want to view the compiled code
for a high-level statement. To do that, you can open the CPU window (press
(Alt)-VC). Press (Alt)-(F7) for an Instruction trace to open CPU and
execute one instruction, for example, a procedure or function call that you
want to debug in disassembled form.

230 Part Two: The Art of Debugging

Another time to use Instruction trace is when you need to trace into a
software interrupt int instruction. See "Tracing into DOS and BIOS Code" later
in this chapter.

Animation

I prefer to use this command when debugging in remote mode (see chapter 17)
or when using two monitors. But you can use it at any other time to run code in
slow motion, like flipping the pages of a paper cartoon.

And that's a good analogy. If you're not debugging remotely and if the
program displays a lot of text, TD will switch between its own and the output
displays so much that you may have trouble seeing the results. To eliminate
display jitters, use Options:Display options to set Display swapping to None
before choosing Run:Animate. (Of course, you now can't switch to the output
display by pressing (Alt)-(F5). The program still writes to the display; you just
can't see it.)

When you choose Run:Animate, you're prompted for a delay value in lOth
second intervals. You can enter any value from 0 to 71-beyond that, code runs
as though you entered 0. (I found this limit by trial and error. It's not an
officially documented maximum.) The default value of 3 delays about a 113
second between instructions. I often enter 10, which gives me a better chance
to follow the code flow. Anything above 20 (a 2-second delay) causes too much
of a slowdown to be useful.

Hint: Before using this command, decide whether you want to animate on the
source- or machine-code levels. Open the Module window to animate high-level
source-code statements. Open CPU only if you want to animate individual
machine-code instructions.

When it starts animating, TD executes multiple trace-into commands, just
as though you pressed (F7) . But instead of halting the code after each trace, TD
pauses and then "presses" (F7) again. Press (Esc) to stop the action. (This may
take a moment when using high delay values.)

I find animation to be useful for debugging two kinds of programs:
graphics and those that build complex text displays. (It's probably also useful
for putting embedded systems through the paces, but I'm not a hardware
engineer, so I can't say for sure.) Animation is especially useful with TD running
on one system while the buggy code runs remotely on another. With this setup,
you can animate a section of code, sit back, and watch the result until a bug
appears. Keep your finger poised on (Esc), ready to halt the program as soon as
you find the bug. Then, use back tracing to step back to the statement that's
causing all the trouble.

Chapter Eight: Breakpoints and Code Tracing

Hint: During early stages of a debugging session, an animation value of O can be
very useful for isolating where a bug appears. It's probably not a good idea to run
the entire program this way, but you might animate a module or two and press
(Esc) to stop when you've located where the bug occurs.

Debugging with Back Tracing

231

The first rule to remember before trying to use TD's Back trace command
(press (Alt)-(F4)), is: You can't trace back in time until you trace forward into
the future. You can use any one of the five tracing commands listed earlier, but
you'll get the best results from TD's Trace into command (press (F7)). Using
that command prepares nearly every instruction for back tracing.

The Animate command also records events for back tracing, letting you run
code in slow motion and press (Esc) when a bug appears. When doing this,
you'll often execute one or two statements too many. If that happens, just back
trace until you find the buggy statement.

Another good use for back tracing is to run repeated tests on a section of
code for different input data. You can repeat loops, function calls, and other
statements over and over, each time changing associated variables listed in the
Watches or Inspector windows.

Back Tracing Machine Code

To back trace through machine-code instructions, open the CPU window before
pressing (Alt)-(F4). It doesn't matter whether you traced the code originally
at the source- or machine-code levels-TD always lets you trace back through
machine-code instructions disassembled in CPU. (This works because TD traces
source-code lines by single-stepping the associated machine-code instructions
at high speed; therefore, each of those recorded instructions is available for
back tracing.)

In the late stages of a bug search, use this technique to examine the effects
of undoing machine code. For example, after tracing through several statements
and locating a bug, open the CPU window and press (Alt)-(F4) to undo the
machine-code instructions for the buggy statement. Although this shouldn't be
necessary in most cases, it can reveal why a high-level statement is misbehaving
when you can't figure that out by examining the source-code text.

Hint: To view a list of instructions available for back tracing, press (Alt)-VE to
open the Execution history window. You can then highlight any instruction
and press (Ctrl)-R to travel back to that moment in time.

232 Part Two: Tbe Art of Debugging

Back-Tracing Limitations

Back tracing can't undo every instruction. In particular, you can't trace back
through:

• Anyofthefollowingmachine-codeinstructions: in, out, insb, insw, outsb,
and outsw.

• A procedure or function that you stepped over by pressing (FS).

• Any software interrupts (int machine-code instructions) that you didn't
trace by pressing (Alt)-(F7).

• I/O statements that write data to disk, send text to the printer, read or write
data to I/O ports, and perform other obviously "undoable" actions.

Tracing into DOS and BIOS Code

Normally, TD prevents you from tracing into DOS and BIOS calls. It's rare that
a bug hunt will lead into these dark woods, but if you must make the journey
(or if you' re just curious and you like to poke around in system code), here are
a few hints that will help you to enjoy-and, with luck, to survive-the trip.

• Disable TD's process-ID switching with the -i- command-line option or by
using TDINST (see chapter 3). This will allow you to trace into DOS
routines. But it also forces your program and TD to use the same limited
number of DOS file handles, so you might not be able to accomplish the
trick if your program opens several files simultaneously.

• Press (Alt)-(F7) to trace into a software int instruction such as the
ubiquitous int 21 h DOS-function call. You can't trace into software inter
rupts by pressing (F7).

• Before tracing into a system routine, set a breakpoint after the int
instruction that calls the DOS or BIOS routine. That way, you can probably
press (F9) to get back to your program after you're done poking around.
And do try to get back. Quitting TD after halting a system routine is not a
good idea. It could cause DOS, your computer, or both to become unstable.

• Setting breakpoints inside DOS is very dangerous. Don't do it! (If you must
try this, reboot as soon as possible.)

• For the best protection, trace DOS routines only when debugging in
remote mode. This will protect your development system. Remember,
there's no way to predict the effects of halting DOS or the BIOS during a
critical operation. You can do a lot of damage if you're not careful.

Summary

Chapter Eight: Breakpoints and Code Tracing 233

All debuggers let you set breakpoints, usually to halt the code so you can
examine variables and other conditions at strategic locations. This chapter
explains how to use breakpoints in C, Pascal, and assembly language
debugging.

Code tracing, or single-stepping, gives you complete control over a pro
gram's execution. You can trace into or step over subroutine calls. You can also
animate code, running it in slow motion to reveal bugs doing their dirty work.
After tracing code, you can back trace most instructions in reverse, undoing
their effects.

Breakpoints and tracing are natural partners. Often, you'll set a breakpoint,
run the code up to that location, and then trace additional statements one by
one until you pinpoint where a bug is hiding.

Be sure to understand the difference between tracing and stepping. Press
(F7) to trace into subroutine calls. Press (FS) to step over those calls. Using
(F7) and choosing the Run:Animate command are best if you want to take
advantage of TD's back-tracing abilities.

In addition to halting at a breakpoint, you can also have TD log an expres
sion. This is a good method to use along with several breakpoints or inside
loops. By logging the values of variables at many breakpoint locations, you can
run the program at full speed and then choose View: Log to see a full activity
report later.

Usually, it's best to avoid side effects, often caused by breakpoint expres
sions that call program functions. But when used with care, side effects let you
splice new procedures into programs to test the effects of procedure and
function calls at breakpoint locations.

Tracing into DOS routines is tricky business. Don't do it unless you have
to-it can make DOS unstable, causing damage to hard drives, erasing files, and
leading to other miseries. For safety, trace into DOS and BIOS system routines
only when debugging in remote mode.

Chapter 9

Evaluating Expressions

EXPRESSIONS IN PROGRAMS can range from simple calculations like (i + 1 >
to complex formulas that simulate events in the real world. To help you debug
expressions, TD has a full expression evaluator that can calculate the result of
just about any C, Pascal, or assembly language expression.

TD's expression handler makes it possible to test the results of expressions
(or parts of expressions) without having to execute program statements. You
can also enter an expression at any time TD prompts for a number or an
address. To TD, anything that returns a value is an expression. So, if the
debugger asks you to supply a count-perhaps as the second parameter of a
Changed memory global breakpoint-instead of typing a literal number, you can
enter (marbles - 1). TD will evaluate that expression and use the result, thus
saving you the trouble of counting your marbles and subtracting 1.

You can also use TD's expression-handling capabilities as an on-line calcula
tor. To do that, open the Data menu's Evaluate/modify dialog box (press
(Crtl)-(F4)) and enter any expression. I like to use this dialog box to convert
between hexadecimal and decimal values. I can also enter characters in quotes
to determine their ASCII values.

If you first highlight an expression in the Module window (use a mouse, or
press (Insert) and the cursor movement keys) and press (Ctrl)-(F4), TD will
copy the expression text to the Evaluate/modify window's Expression pane.
You can then press (Enter) or click the Eva l button to evaluate the expression
and display its result. This gives you a quick way to test expressions in programs
without having to execute code or retype long expressions.

But that's not all. In addition to being able to evaluate nearly any C, Pascal,
or assembly language expression, TD can also call compiled C and Pascal
functions and procedures. Similar to the code-splicing technique described in
chapter 8, this lets you execute portions of your program independently of
other statements. Just insert a function's name in an expression wherever a
variable or constant of that same data type might appear. To call a procedure or

235

236 Part Two: 7be Art of Debugging

a void C function, attach empty parentheses to its name as in, for example,
DoThisNow().

This chapter explains how to enter these and other kinds of expressions
during debugging sessions. The first part of the chapter lists general informa
tion. The rest details expression formats for C, Pascal, and assembly language.

If you read the entire chapter, you may notice a few sentences repeated here and
there in the C, Pascal, and assembly language parts. Please excuse the redundan
cies, which (I hope) make it easier to find information about a specific language's
expression formats.

Language and Format

To TD, an expression is anything that returns a value. An expression can be the
name of a variable like pi eCount or a literal number like 156 or 3.14159. It can
also be an address, usually written in hexadecimal in a format that's suitable for
the language selected in the Options menu.

Expressions can also be complex, using parentheses and operators from the
current language. You can even assign the result of an expression to a variable.
Instead of quitting TD, assigning different values to variables, recompiling the
program, and reloading the code into TD, you can use expressions to enter a
series of values to change variables "on the fly."

Changing an Expression's Format

Usually, TD will display an expression result appropriately. It displays characters
as text, real numbers in floating point or scientific notation, addresses separated
into segment and offset parts, and integers in hex and decimal. (If you want to
see only hex or decimal values, use Options:Display options to change the
Integer format setting.)

Usually, TD's default formats give the best results, but not always. For
example, you may want to examine the address of a variable in the Watches
window instead of that variable's value. To do that, append a capital letter P to
the variable name as in the expression pieCount,P. If the expression evaluates
to a pointer or an array, you can also add a repeat count as in p,d,10, which
displays 10 decimal bytes addressed by pointer p. Notice that p is not
dereferenced as it would be if you wrote p". See Table 9 .1 for other options you
can use to change an expression's display format.

Chapter Nine: Evaluating Expressions 237

The TD User's Guide indicates that repeat counts should come before the format
ting letter, but my tests show that this is not correct-the count should follow the
letter. Also, some of the options, for example, f[#], do not always seem to
produce the expected results. For these reasons, if a formatting option doesn't let
you see a variable in the format you need, you might try using a type-cast
expression to convert the variable's data type to another form.

Table 9.1. Expression formatting options.

Option

c

d

f[#]

h

m

md
p

s
x

Description

Display strings in extended ASCII

Decimal integer

Floating point (#=optional number of digits)

Hexadecimal (same as x)

Display memory as hex byte list

Display memory as decimal byte list

Pointer (segment: offset)

Quoted, null-terminated string

Hexadecimal (same ash)

Hints: Use the h and d formats to show selected variables in hex and decimal
instead of changing the Integer format setting with Options:Display
options, which affects all variables. Add an optional digit after f, for example,
type f8 or flO, to see that many significant digits. Specify a small repeat count to
limit the amount of information TD displays horizontally in the Watches window.

Line Numbers

Whenever TD requests an address, you can enter a line number in the form:

[[#lmodule[#filell#OOO[#identl

Replace module with a module name, file with a file name for multifile
modules, 000 with the line number in decimal, and ident with an identifier in
that module and file. The identifier can be any global symbol. You must type
the # character, which you can replace with a period if that doesn't conflict
with other uses for the current language. Usually, you don't have to precede the
module name with#, and, in fact, that can cause problems in Pascal expressions

238 Part Two: The Art of Debugging

where this character prefaces control codes in strings. Try it both ways to find
the format that works for your program. Here are a few samples:

#150

prog.300

#prog#x.inc#25

prog#25#i

Line 150 in the current module

Line 300 in module PROG

Line 25 in PROG's Include file X.INC

Variable i at line 25 in PROG

The last line is handy when you need to select one of several variables declared
on a single line.

When supplying a literal line number is inconvenient, you can also enter
line-number expressions in this alternate format:

[#module[#fi le]] [#procJ#ident

After the optional module and file names, replace proc with a procedure or
function identifier, followed by a local symbol ident. For example:

counter

prog#volume

#prog#x.inc#q

prog#volume#v2

Local symbol counter

Function or procedure volume in PROG

Variable q in PROG's X.INC include file

Variable v2 in volume

C Expressions

When entering C expressions, be aware that identifiers are case-sensitive. If TD
complains that it can't find a symbol, be sure you've typed the symbol cor
rectly. You do not have to enter a leading underscore, even though the
Variables window may list a variable that way-for instance, _myCounter. If
TD can't find an identifier, it appends an underscore and looks in the symbol
table again. But watch out for variables that begin with double underscores as in
__ huge_dble. In that case, you must enter at least one underscore for TD to
find the symbol. (If this gives you trouble, and if your programs don't rely on
case sensitivity, you might want to use TDINST to turn off case-sensitive
symbols as explained in chapter 3.)

You can also type register names such as AX and ES in expressions.
However, when those names conflict with other program symbols, you may
have to preface them and other registers with an underscore as in _CS and
_BX. When entered that way, the symbols refer to Turbo C's pseudo register
names, which TD recognizes when the current language is C. Because C is case
sensitive, these register names must be in uppercase.

Chapter Nine: Evaluating Expressions 239

Operators

You can use all of C's usual numeric operators, array brackets [l (vectors), unary
operators, and the assignment symbol =. You can also combine operators to
create shorthand assignments such as += and *=. Because you're probably
familiar with the purpose of these and other operators, I won't describe them
here. See the Turbo Debugger Users Guide and your language reference manual
for a complete list of operators and their precedences. In general, you can
combine operators, variables, and constants using the same formats as in your
program's source code.

When entering 32-bit addresses, use a colon (:)to separate the segment and
offset parts. Although the Turbo Debugger Users Guide suggests using a double
colon (::) for this purpose, a single one works equally well. As far as I've
been able to tell, : : has no practical value. For example, to specify two 16-bit
values as a 32-bit address, enter expressions like ds:bx, _DS:Ox80, and
(_ CS+OxOlOO):OxOOFO. The parentheses are required because the colon in
TD has a higher precedence than +.

Numeric Expressions

TD assumes that constant values in numeric C expressions are in decimal.
Precede digits with a capital 0 for octal, or with OX or Ox for hexadecimal.
Append a capital L for long 32-bit integers.

Enter floating point values in the usual way-3.14159. Use scientific nota
tion for very large and small values-2el0 and 5.8e-12.

String Expressions

Surround single characters with single quotes and character strings with double
quotes. Represent control codes with C escape sequences-for example, "- t for
tab, "- n for new lines, "- '- for "-, "- xOO for a hex value 00, and so on.

Hint: Use the Data: Eva Luate/modi fy command and enter characters such as');
and '$' to display their ASCII values in decimal and in hex.

Type Casting

When you want TD to treat an identifier of one data type as though it were
another, use a type cast. Usually, you'll do this to tell TD that a void pointer
actually addresses i n t, ch a r, or data of another type. Specify the data type in

240 Part Two: The Art of Debugging

parentheses followed by the identifier to convert. For example, Ci nt *) p casts p
as a pointer to int, while *Ci nt *) p casts and dereferences the pointer to return
the addressed integer value.

You can also use a cast when debugging code to which you've added
symbolic information from a .MAP file (see chapter 2). In that case, TD con
siders all variables to be bytes or words, and you can use casts to let TD know
what those variables actually are. For example, (double) level tells TD to treat
level as though it were of type double.

Side Effects

As described in chapter 8, side-effect expressions are useful for assigning values
to variables and for splicing code with temporary breakpoint patches. A side
effect expression calls a C function, which may change a global variable. Or, it
assigns the result of a function to a variable. When entering expressions that
cause side effects, be sure to use =only when you want to assign the result of
the expression on the right to the variable or address on the left. Use == to test
for equality.

You can pass parameters to functions just as you do in source-code state
ments. Specify literal values, expressions, or symbolic arguments, but don't end
the line with a semicolon. For example, this calls a function reset with three
arguments, a literal value (255), a pointer variable named cp, and a constant MAX:

reset(255, cp, MAX)

To call functions with no parameters, follow the identifier with empty
parentheses, for example, do_something(). If you don't attach the paren
theses, TD replaces do_somethi ng with the address of that symbol-it doesn't
call the function code.

Pascal Expressions
Except for set expressions and string concatenation using either the concat
function or the string addition operator(+), TD can evaluate nearly any Pascal
expression. Unlike C, Pascal symbols are not case-sensitive, so you can enter an
identifier as maxvalue even though that symbol might be spelled MaxValue in
the program source code.

You can also refer to register names like AX and DS in expressions as long as
you haven't defined other symbols with those same names. If this is a problem,
switch languages temporarily to C with Options: Language and attach an under
score as in _cs to refer to C's pseudo registers. After entering the expression
you'll have to use C data formats-remember to switch the current language back
to Source or Pas ca L.

Chapter Nine: Evaluating Expressions 241

Operators

You can use all of Turbo Pascal's usual numeric operators, array brackets [l,
unary operators, and the assignment symbol :=. Because you're probably
familiar with the purpose of these and other operators, I won't repeat them
here. See the Turbo Debugger Users Guide and your language reference manual
for a list of operators and their precedences. In general, you can combine
operators, variables, and constants using the same formats as in your program's
source code.

Enter 32-bit address values with a colon (:) separating the segment and
offset parts. For example, to specify two 16-bit values as a 32-bit address, enter
expressions like ds:bx, ds:$0080, and (cs+ $0100):$00FO. The parentheses
are required in this sample because the colon in TD has a higher precedence
than other operators.

Numeric Expressions

TD assumes that constant values in numeric Pascal expressions are in decimal.
Precede digits with a dollar sign($) for hexadecimal values such as $0FOO and
$FA9E.

Enter floating point values in the usual way, for example, 3.14159. Use
scientific notation for very large and small values such as 2e10 and 5.8e-12.

String Expressions

The only restriction on string expressions is concatenation-you can't create
single strings out of multiple parts using concat or the string addition
operator(+).

If you must use string concatenation in TD, write your own string function
that returns two or more string arguments as a single string value. You can then
call the function in an expression.

Surround characters and strings with single quotes, just as you do in Pascal
source code. Precede control characters and extended ASCII values with# as in
this sample string, which includes two "bell" controls:

'Ring'#?' the'#?' bell'

Calling String Functions

To determine a string's length, enter an expression such as length(s) in the
Evaluate/modify dialog box. Because the length function returns an integer
value, TD allows it. Unfortunately, the debugger doesn't recognize other string

242 Part Two: The Art of Debugging

functions and procedures such as Copy and Delete. Therefore, you can't call
these routines in expressions.

But, like many rules, this one's made to be broken-just write your own
replacement string procedures and functions and call those in expressions
instead of the originals. For example, in Listing 9.1, STRFUNC.PAS, xCopy and
xDelete call their counterparts Copy and Delete. This adds xCopy and xDelete
to the program's symbol table, giving TD the information it needs to call these
routines.

Listing 9.1. STRFUNC.PAS.

(*
** Purpose: Test string functions
** Author: Cc) 1990 by Tom Swan.
*)

program stringFunctions;
var

s : string;

function xCopy(s : string; index, Len
begin

xCopy := copy C s, index, Len)
end; { xCopy }

word) string;

procedure xDelete(var s
begin

string; index, Len word>;

delete(s, index, Len
end; { xDelete }

begin
s := xCopy(s, 1, 0 >;
xDeleteC s, 1, 0 >;
s := 'abcdefghijklmnop'

end.

{ Prevents stripping xCopy }
{ Prevents stripping xDelete }

Notice that the first two statements in STRFUNC's main block make pur
poseless calls to xCopy and xDe lete. This prevents TP's linker from stripping the
functions from the compiled result.

After loading the test program into TD, press (FS) to step past the assign
ment to strings. Press (Ctrl)-(F4) to open the Evaluate/modify dialog box.
Then, enter a few test expressions such as xCopy(s,1,4) and xDelete(s,2,3).
Enters and press (Enter) to inspect the string variable's current value.

Type Casting

When you want TD to treat an identifier of one data type as though it were
another, use a type cast. Usually, you'll do this to tell TD that a generic Pascal

Chapter Nine: Evaluating Expressions 243

poi n t er actually addresses an array, a record, or data of another type. Specify
the data type followed by parentheses around the identifier to convert. For
example, string(p") casts the variable that p addresses as a string, while
i nteger(p") casts that same data as an integer value.

Just as this book was about to be printed, Borland decided to delete TD's capa
bility to use expressions such as string(p") and integer(p"), features that
worked in previous TD releases and in all TD2 prereleases that I tested. These
constructions are perfectly legal in TP, and, therefore, the debugger should recog
nize them. But, even though these formats no longer work, I left this information
here in hopes that a later release will restore this omission. If you program in
Pascal, and if you want these features back, as I do, tell Borland!

Casts are also useful to force TD to convert numeric expressions to one of
Turbo Pascal's five integer types: Short Int, Byte, Integer, Word, and Longlnt.
For example, TD assumes that 100 is a Short Int-the smallest type that can
hold that value. To represent 100 as a 32-bit long integer, enter Longlnt(lOO) in
an expression.

Side Effects

As chapter 8 explains, side-effect expressions are useful for assigning values to
variables and for splicing code with temporary patches. A side-effect expression
calls a Pascal procedure or function, which may change a global variable. Or, a
statement might assign a function's value to a variable. Either way, the result is a
side effect. To cause side effects intentionally in TD expressions, use Pascal's
assignment operator : = to assign the result of an expression on the right to a
variable or address on the left.

You can also pass parameters to procedures and functions just as you can in
source-code statements. Specify literal values, expressions, or symbolic argu
ments, but don't end the line with a semicolon. For example, this calls a
procedure reset with three arguments, a literal value (255), a pointer variable
named cp, and a constant MAX:

reset(255, cp, MAX)

To call procedures and functions with no parameters, follow the identifier
with empty parentheses, for example, do_something(). If you don't attach
the parentheses, TD returns the address of do_something-it doesn't call the
procedure or function code.

244 Part Two: 1be Art of Debugging

Assembly Language Expressions

Expressions in assembly language differ from those in Pascal and C in a major
way-they are evaluated at assembly time, not when the assembled program
runs. Unlike C and Pascal compilers, which translate expressions into machine
code instructions that calculate expression results at runtime, the assembler
reduces expressions to constant values during assembly. Consequently, all
values in an expression must also be constants, not variables.

Even so, while it supports typical assembly language expressions, TD can
also evaluate expressions that you can't insert into an assembly language
program-unless, that is, you write your own expression parser. For example, if
you declare a variable Count with the dw directive, you can enter the expression
(Count* Level)/ 2 in the Data menu's Evaluate/modify window even though
there's no easy way to enter similar expressions directly into the program's
source code.

You can also enter register values in expressions. 8-bit registers display as
type byte; 16-bit registers, as type word; and 32-bit registers, as type dwo rd.

A useful trick is to set a breakpoint for specific register values. For instance,
to halt before returning to DOS via int 21h, enter an Expression true global
breakpoint for the expression ah eq 04ch. When you press (F9) to run the
program (it will execute more slowly than normal), the code will stop when ah
equals 04Ch, DOS's program-terminate function number. Of course, if the
program ends via another method, it won't stop, which may also be useful to
know.

Hint: The symbol $ stands for the current location. For a continual update on the
address of the next instruction to execute, insert the expression cs:$ into the
Watches view.

Operators

You can use all of TASM's and MASM's usual numeric operators, unary
operators, comparison operators (EQ, NE, LT, LE, GT, and GE), and the assignment
symbol=. Because you're probably familiar with the purpose of these and other
operators, I won't repeat them here. See the Turbo Debugger User's Guide and
your language reference manual for a list of operators and their precedences.

Remember always to use EQ, not EQU, in comparisons for equality. EQU
associates a value and a constant in the source code-it has no meaning in TD.
To compare two symbols, enter an expression such as (vl EQ v2). To assign a
new value to a variable, use the= operator like this: vl = 5.

Enter 32-bit address values with a colon (:) separating the segment and
offset parts. For example, to specify two 16-bit values as a 32-bit address, enter

Chapter Nine: Evaluating Expressions 245

expressions such as ds:bx, ds:0080h, and (cs+OlOOh):OOFOh. Actually, the
parentheses aren't needed in this last case as they are in C and Pascal expres
sions because the colon has a lower precedence than + when the current
language is set to Assembler.

Note: Apparently, TD follows TASM's Ideal mode to determine operator prece
dence, while the Turbo Debugger User's Guide incorrectly lists operators accord
ing to their precedence levels in MASM mode. To avoid confusion, it's probably
best to use parentheses instead of relying on a certain precedence order when
entering assembly language expressions into the debugger.

Numeric Expressions

TD assumes that constant values in numeric assembly language expressions are
in hexadecimal. Be aware of this-the default radix (number base) in TASM
and MASM is decimal unless you've used the RADIX command to change it.
This means that expressions copied from the source code into a prompt box
may not produce the same result as when the assembler evaluates that same
expression.

One way to resolve potential conflicts (except when using the RADIX

command) is to always specify a value's radix-both in the source code and in
TD expressions. End hexadecimal values with h, decimal values with d, octal
values with o or the more conspicuous q, and binary values with b. You may
use upper- or lowercase letters. In all cases, you must begin a number with a
digit. This is a hexadecimal value: OF09Ch. This is an alphanumeric symbol:
F09Ch.

Enter floating point values in the usual way, for example, 3.14159. Use
scientific notation for very large and small values such as 2el0 and 5.Se-12.

String Expressions

You can display strings declared with DB and delimited with single or double
quotes, but you can't assign new string values in expressions. Assembly lan
guage has no string assignment operator, and neither does TD when the current
language equals Assembler.

One way around this problem is to open an Inspector window for the label
that identifies the string. You can then enter quoted characters such as 'p' and
'@' to modify the string. Or, after opening the Inspector, press (Alt)-VD to
open a Dump window listing the bytes and characters in the string. Move the
cursor to the character display at right and enter the new string delimited with
double or single quotes.

246 Part Two: The Art of Debugging

A bug in TD prevents entering single-character quoted strings into Dump windows
when Language is set to Assembler. The Dump window accepts strings such as
'ab' and 'abc', but it rejects single-character expressions like 'x' and 'y'. Perhaps
this problem will be fixed in a future release.

Side Effects

There's no way to call assembly language subroutines in TD expressions. You
can do that only in C and Pascal programs. You can assign expressions to
variables, however, using the = operator as explained earlier. But using side
effects to splice code and to call routines independently of other statements is a
high-level operation that TD does not support when the current language is set
to Assembler.

Object-Oriented Expressions

In expressions, you may refer to Pascal object types or C + + classes, object
instances, methods, and fields. (For simplicity, I'll refer to them all as types.) Use
periods to separate related identifiers. For example, list .delete might refer to
a method delete in the object list type, while myl i st. empty might refer to an
empty function or data field in an object instance named myl i st.

Always keep in mind the difference between object types and instances.
You can't use the value of a field in an object type because that field doesn't
exist anywhere in memory until the object is instantiated, that is, allotted space
as a variable. You can't use an object type's fields in expressions. Only variables
have values, not data types.

To refer to object types and instances outside of the current scope, you may
have to qualify the object expression. To do that, you can append a module
name to an object type or instance, and you can refer to local variables and
nested procedures and functions (Pascal only). Use dot notation to separate
individual parts, according to this scheme:

[module.]instanceltype[.fieldl.method][.local symbol]

As usual, brackets represent optional items. Replace module with a module
name to refer to objects in a module outside of the current one. The instance
may be a variable or a pointer to an object. Or, you can specify an object type.
After that, you can refer to afield or method in the object, plus any local symbol
defined in that method. This might be a local variable, or in Pascal, a nested
procedure or function.

Chapter Nine: Evaluating Expressions 247

Calling Object Methods

Summary

You can call object methods in C + + and Pascal programs just as you can other
procedures and functions. But there's a catch. Because objects encapsulate their
code and data, an object only exists after it's been instantiated. Although the
object method's code is stored along with other subroutines of the program,
you can execute those methods in expressions only by referring to an instance
of the object type.

This restriction makes better sense when you consider that object methods
typically read and write data field values in objects. Because those fields don't
exist in memory until the object type is instantiated as a variable, executing an
object method outside of any reference to an object instance could cause
serious problems. You'd be reading and writing data in fields that don't yet exist
anywhere in memory.

So, the first rule to remember is, if you want to call object methods in
expressions, you must execute the program up to a place where one or more
object instances are available. One way to do this is to set a breakpoint inside a
method. When the program halts, open the Data menu's Eva Luate/modi fy
window and enter an expression such as self.currentltem(). (C + + uses the
keyword th i s instead of s e L f.) Without the empty parentheses, TD would
display the address of selj.currentltem. With the parentheses, TD calls the
cur rent Item method. If the current object instance is of type Li st, then typing
list.currentltem is perfectly acceptable-it represents the address of that
method in this object type. But entering list.currentltem() causes TD to report
an "Illegal procedure or function call" because it makes no sense to call a method
in an object type.

You can also pass arguments to methods in parentheses. For example, you
might execute methods by entering expressions such as self.setX(lO) and
self.setAll(pastHead). Again, without parentheses, TD would evaluate selj.setX
and self.setAll as the addresses of those methods. With the parentheses, TD calls
the methods and, in these examples, passes the listed arguments.

It's also possible to call methods for specific objects. To do that, run the code
until the object comes into scope-perhaps as a result of the program reaching a
local declaration inside a procedure or function, or after a statement allocates
heap space to an object pointer. You can then call methods with expressions. If
menu is an initialized object instance, you can call methods in the object by
entering expressions such as menu.displayMenu() and menu.nextltem().

TD can evaluate just about any C, Pascal, or assembly language expression.
Whe11ever TD asks for a number or an address, you can enter an expression.
You can test expression results in the Eva Luate/modi fy dialog box, and you can

248 Part Two: Tbe Art of Debugging

use that window as an on-line calculator. In C and Pascal, you can even call
procedures and functions in expressions to execute code independently of
other statements.

Expression syntax depends on the Language setting in the Options menu.
Normally, TD selects the appropriate language automatically. But you can always
change the setting if, for example, you prefer to enter expressions in C's format
while debugging assembly language code.

Source-code line numbers can substitute for addresses and, in some cases,
are easier to enter. Separate module, file, line number, and identifier symbols
with #or, if it doesn't present any conflicts, a period.

Each language-C, Pascal, and assembly language-has its own expression
format. In general, TD can evaluate nearly any expression that you might use in
a program. With few exceptions, all operators, numeric data types, and strings
are available. You can also cast C and Pascal pointers to inform TD what data
types those pointers address.

Side effects are an important debugging tool, but they require care to use
properly. A side effect can occur when a function changes or is assigned to a
global variable. Side effects in TD let you call functions in expressions to test
code independently of other statements. You can also call Pascal procedures
and C void functions.

In object-oriented Pascal and C + + programs, it's possible to call object
methods, but only when an object instance of that object's type is within the
current scope. Object types don't exist in memory, so it doesn't make sense to
reference object fields until the objects are instantiated.

Chapter 10

Common C Bugs

BECAUSE OF C's wide lexical freedom, bugs in C programs frequently arise
from statements that compile correctly but don't perform up to snuff. In other
words, C lets programmers get away with source-code murder, and it often
takes a sophisticated debugger with the nose of a bloodhound (TD) plus an
experienced detective with the intuition of a Sherlock (that's you) to track down
the villainous bugs responsible for a C program's demise.

So, when the tables turn on your C code, start your investigation with the
tips in this chapter. Chances are you'll find the culprit among the common C
bugs listed here. I collected many of these problems from various C program
ming books and other sources (including my own list of colossal blunders). Of
cburse, it's not possible to list every error that you can make in C programs. But
even if your bug isn't here, you can at least use this chapter to eliminate the
more likely causes.

Note: I used TC2 to compile the sample code in this chapter; therefore, some of
the code and error messages may be unique to that compiler. But all of the bug
descriptions are general and should apply to most modern C-language compilers.

Going to the Source

Every programmer knows that simple typing errors frequently cause bugs. But
instead of looking for simple, unexciting typos in source code, programmers
often waste time hunting for more exotic disasters such as uninitialized
pointers, array-index range errors, and accidental function recursion. We'll
examine those and other fancy bugs in a moment, but when trouble brews, it's
wise to begin your search by first going directly to the simple source.

249

250 Part Two: Tbe Art of Debugging

Transposed Comment Brackets

Because C's comment brackets use the two symbols* and/, if you accidentally
transpose one of those characters, the other may become part of the comment,
causing it to extend to the next closing bracket. For example, consider this
typical fragment:

for (count= O; count<= 9; count++) { /*Fill array/*
a[count] = count; /* Assign count to array */

}

At first glance, this for loop appears to initialize an array of integers with
the values 0 through 9. But the comment at the end of the first line incorrectly
ends with /* when it should end with the closing comment bracket */-a
simple transposition that incorrectly extends the comment from I* Fi l l ... to
the end of the next line at ... array *I.

Because of the error, the compiler reads the assignment to a [count] as part
of the comment; therefore, that statement is never compiled, and it doesn't
execute. When you run the buggy program, the array appears to be filled with
random values, and you may be tempted to look for a bad pointer that's trashing
the array contents when the actual cause is far simpler.

If you are using TC, one way to locate a bad bracket is to enable nested
comments with the -C option. If the code compiles correctly without that
switch but generates spurious errors with the switch turned on, then a bad
comment bracket is almost surely at fault. For example, compiling the pre
vious for statement with -C produces an "Unexpected end of file" error and
two "Compound statement missing" errors. Compiling without that switch
produces no error messages. Notice that these errors do not refer directly to
the actual problem, but to the faulty syntax that the compiler notices as a
result of the bad comment. It's still up to you to realize why these errors
occurred.

In some cases, that can be difficult, especially when the bad comment
extends over several lines. In that case, load the program into TD and press
(F7) or (F8) to single-step sections of code. Or, use the Run:Animate
command to execute a module in slow motion while you watch for the cursor
to jump over statements that were accidentally converted into comments.

Mismatched Braces and Parentheses

Similar to a bad comment bracket-and just as common, if not more so-is a
mismatched set of braces or parentheses. In most cases, the compiler will flag
such errors, but more often than not, the resulting error messages are anything
but helpful. Here's a typical example:

Chapter Ten: Common C Bugs

for (i = 1 ; i <= 10; i ++) {

printf("\n">; } /* ??? */
for (j = i; j <= 10; j ++) {

printf(11 %d ", j >;
}

}

251

The closing brace at the end of the first pr i n t f < > statement should not be
there. When compiled, this innocent-looking character produces a flood of
error messages, all of which begin with the line that follows the code fragment.
Be aware of this-the compiler may not notice such problems until long after
passing the mistake.

Simple typos like this one are easy to spot. But in a complex section of code
with many nested statements, you can have a devil of a time identifying which
brace or parenthesis is out of order. Of course, if the code won't compile, TD
can't help you locate the problem. So, the best course of action is to run the
source code through a brace and parentheses counter, which you can find on
most on-line bulletin boards, from Compuserve, or in a commercial C toolkit.
You might also use a LINT program, which reads through a C source-code
listing and performs a more thorough syntax analysis than provided by most
compilers.

Else with Wrong If

I classify this error with other source-code typos even though most C refer
ences list it as a logical mistake. But the problem usually is not one of poor
logic. More often, the cause of a misplaced else statement is just sloppy typing,
as this fragment demonstrates:

if (count <= 10>
if (j == count)

printf<"j =count");
else

printf<"count > 10\n">;

The if statement is supposed to test whether count is less or equal to 10. If
so, a second if compares j and count. If those two variables are equal,
print f () displays a message that j = count. But if count is greater than 10, a
second if statement displays count > 10.

Or does it? Running the code when count equals 11 does not display any
message because the else statement logically attaches to the second, not the
first, if. Even though the programmer aligned the else with the first if
perhaps in a hurry to get that statement entered before closing time-the
compiler sees the program differently. The correct code is:

252 Part Two: The Art of Debugging

if (count <= 10) {

if Cj == count>

}

else

print fC" j = count");

printf("count > 10\n");

By surrounding the inner if statement with braces, the else now applies to
the first if as it should.

This mistake is especially hard to find in deeply nested i f statements. When
you suspect the code is bugged by this sort of problem, use TD to step through
the logic, add the control variables (count and j in this example) to the Watches
window or open an inspector for them, and set a breakpoint (press (F2)) on
the first if. Then, run the code to that place (press (F9)). Use the Change
command to assign test values to the variables-press (Ctrl)-C with the vari
able highlighted in Watches or just type the new value with the inspector
window active. After that, single-step the code by pressing (FS) and observe
the results.

All Things Being Equal

How many times have you typed = when you should have typed = = ? If not
many, go to the head of the class. But if you make this common C mistake often,
don't worry. At least you're in good (and numerous) company.

Of course, you probably know that the single equal sign = is C's assignment
operator. In an expression, the value on the right of = is assigned to the variable
on the left. For example, this assigns 123 to an integer variable k:

k = 123;

That's harmless enough, but it's not so innocent when a similar construc
tion appears in a i f statement, as in this faulty example:

k = 100;
if Ck = 1> pri ntf ("k = 1 \n"); /* ??? */

The control expression Ck = 1 > assigns 1 to k, probably not what the
programmer intended. Because this means that k will always equal 1 at this
place in the program, when the statement runs, no matter what value k has
initially, printfO always reports k = 1. To correct the mistake, use the equality
operator in the control expression:

if Ck== 1) printfC"k = 1\n">;.

Chapter Ten: Common C Bugs 253

Most compilers warn about this error. (TC reports a "Possibly incorrect
assignment" for the previous example.) But many programmers turn off this
and other warnings to prevent too much "chatter" from the compiler. The easy
solution, of course, is to leave the warning enabled. But there's a good reason
you might want to disable it. Because all expressions have values, a typical C
trick is to write statements like this:

if CCk=getkC>>!=O>
do_somethingCk>;

The expression CC k = get k C > > ! =O> performs work (it assigns the result of a
fictitious function get k 0 to k), and it also has a value, the same value assigned
to k. This is an example, then, where = in a control expression is correct
because the i f statement is supposed to check the value of the expression to
determine whether to execute do_somethi ngO. If getkO returns 0, k is set to 0,
and the i f statement regards the result as false. If get k C > returns 1, k is set to 1,
or nonzero, C's value for true.

While the C language allows (even encourages) this kind of tricky business,
many compilers generate warnings for it. However, because the technique is
common, the messages are usually meaningless, so many programmers turn
them off. Unfortunately, if you do that-for example, by using a -w-pi a
compiler switch with TC-the previous incorrect i f statement will go
unnoticed, leading to a hard-to-find bug.

A good way to use TD to find this error is to set a Breakpoints:Changed
memory global breakpoint for k, 1. (The 1 means "1 word," the size of an int
variable in TC.) Then press (F9) to execute the code, which will halt at all
changes to k. (In a large program, you might want to start by running the
program to a logical stopping place, for example, the beginning of a suspected
function. Then, set the global breakpoint and press (F9) to continue.) You may
have to press (F9) more than once to skip legitimate assignments to k, includ
ing any automatic initializations. But this experiment will find any bad i f
statements. Just keep pressing (F9) and examining each stopping point to be
sure that the code is supposed to assign a new value to k.

Path-Name Problems

Exasperating conflicts can occur in path-name strings because DOS uses the
backslash(\) as a directory-name separator. This causes trouble because C uses
that same character as an escape mechanism to insert control characters in
ASCII strings. For a variable declared as char *filename, a common mistake is
to assign a path name such as:

filename= "c:\tc\alpha\newstuff"; /* ??? */

254 Part Two: 1be Art of Debugging

Who would think that such an innocent-looking statement could cause so
much trouble? Yet that's exactly what it does. Because \ t represents a tab
character, \a the bell, and \n a new line (carriage return and line feed in DOS),
printing this string with printfO displays:

c: clpha ewstuff

Many C programmers, when they see scrambled output like that, imme
diately think "bad pointer." But don't be fooled. The errors are simple typos,
which you can easily correct by doubling the backslashes:

filename = "c:\\tc\\alpha\\newstuff";

Misplaced Semicolons

It takes time and patience to learn where semicolons go in C programs. The
compiler traps most mistakes that involve semicolons-C's statement
terminator-and you can learn to prevent most problems by studying a good C
tutorial and by reading samples of healthy C code. Sometimes, though, mis
placed semicolons can lead to deceiving error messages. For example, a typical
mistake is to define a function prototype like this:

void do_something(int kk>;

Using a text editor's cut-and-paste commands, you then copy the prototype
declaration to the function's implementation, accidentally forgetting to delete
the semicolon. Because of this, the compiler reports a "Declaration syntax
error" when it tries to compile:

void do_something(int kk); /* ??? */
{

printfC"\n\ninside do_something. kk=%d\n", kk>;
}

A similar mistake, which the compiler does not catch, causes a far more
difficult bug to find. Beginners are especially prone to this one because they
haven't yet learned that semicolons terminate statements, not control struc
tures. For example, a common mistake is to write a for loop this way:

for (count= 1; count<= 10; count++); /* ??? */
printf("count=%d\n", count);

The semicolon at the end of the first line is perfectly legal but usually
senseless. Because C permits null statements, the result is a do-nothing loop that

Chapter Ten: Common C Bugs 255

initializes count to 1 and repeatedly increments count until it equals 11. The
print f 0 statement is then executed a single time instead of ten times as
intended.

Removing the misplaced semicolon fixes the error, which you can locate
with TD by single-stepping the code and examining the control variable count.

Another similar bug that causes the program to halt in its tracks, forcing you to
reboot, is sometimes the fault of a misplaced semicolon in a wh i le loop such as:

count= 1;
while (count<= 10); { /* ??? */

count++;
printfC"count=%d\n", count);

}

The statement while (count <= 10); is syntactically legal, but it's almost
certainly unintended. Because of the semicolon, the wh i le loop executes a null
statement repeatedly while count is less than or equal to 10. Because count
never changes, the system hangs.

TD makes it easy to find this kind of error. Just run the code until it hangs
and press < Ctrl)-(Break). If you' re lucky to hit the exact moment when the
loop repeats, the debugger will show you the statement that's executing over
and over. Usually, though, you'll break into a disassembled instruction dis
played in the CPU window. If that happens, press (Cursor Up) until you see
your C source code, then press (F6) to bring the Module window back into
view. That should locate the buggy code. You might also be able to press (FS)

repeatedly to return to the source-code view. But even these keys may not
return you to Module if you're trapped inside a subroutine for which source is
not available. In that case, you have little choice but to repeat the experiment
until you break into a module that TD recognizes.

Accidental Function Redefinition

The C compiler should warn against accidentally reusing an identifier that's
already associated with a library function. But if functions don't do what you
think they should-especially if you've just begun to use a new library-check
whether you have accidentally redefined a function name.

Some libraries add prefixes to their function names, a simple device that
goes a long way toward avoiding conflicts. For example, in a graphics library,
there might be functions such as gr _line, gr _point, and gr _c ire le. If every
library followed a similar convention, you could easily avoid name conflicts by
never using the same gr_ prefix for your own identifiers.

To find errors caused by reusing function names, set a breakpoint (press
< F2)) on the function call that appears to be broken. Then press < F9) to run
the program up to that place and single-step through the function by pressing

256 Part Two: The Art of Debugging

(F7). If the CPU window appears, then you probably have not redefined the
library function. But, if the Module window jumps to one of your own func
tions, compare its name with those in the libraries you are using. You might just
find a duplicate.

Problems with Variables
It's hard to imagine a useful C program that doesn't declare any variables. Even
the rare module that lacks its own variables may use private data that belongs to
runtime library routines.

TD gives you several ways to examine a program's variables-for example,
inspector windows, the Watches and Vari ables views, and expression evalua
tion in the Evaluate/modify dialog box. You can also set data breakpoints to
monitor changes to values in memory. Use these and other features to search for
bugs in variables. As the following sections explain, there are more than a few
common pitfalls.

Uninitialized Variables

One of the most feared bugs is the dreaded uninitialized variable. (Don't
scream.) In C, global variables-those declared outside of mai nO-are ini
tialized to 0 at runtime. But automatic variables-those declared inside a
function-are not initialized. This means that if you create an automatic variable
like this:

int apples;

the compiler generates code to allocate stack space for app Les at runtime.
Because that space is not initialized, apples will have whatever value was left in
that same location by a previous operation. To initialize app Les, you can declare
it to have a starting value:

int apples = 10;

Or, you can include an assignment statement in the code:

int apples;

apples = 10;

Either way, just giving variables initial values can often prevent bugs from
cropping up later.

Chapter Ten: Common C Bugs 257

But, while carefully initializing variables can prevent bugs, recognizing that
a problem is caused by an uninitialized variable is not so easy. The classic
symptom is a bug that seems to have a life of its own. When you run the
program, a variable takes on a strange value. Then, you insert new program
ming, or you enable debugging statements with a command-line directive.
When you run the code, app Les stabilizes to 0. What's going on?

In such cases, you may not be initializing app Les properly. This causes the
variable to assume values left on the stack, and because of the stack's volatile
nature, app Les may have different values at different times while the program
runs. Also, the presence of new programming might alter the location of the
code, data, and stack segments, thus affecting the variable's position and its
value. Uninitialized variables are sensitive to the slightest breeze. Even minor
alterations to the source code may flush a bug into the open air.

Another symptom of an uninitialized variable is code that runs differently
on two systems. Often, this will lead you to suspect a hardware failure on one of
the computers, or you might conclude there's a bug in the BIOS. But the real
cause could be an uninitialized variable. If the two systems differ in any way-if
they load different DOS versions, read a different set of TSRs into RAM, or
install different device drivers-then they will "assign" different values to
uninitialized variables.

Finding uninitialized variables takes patience-especially in code with hun
dreds or thousands of variables to check. TD can help, as the next section
explains, but before loading the program into the debugger, it's wise to stabilize
runtime conditions. For example, you could reboot before testing. Or, you
could write a utility to fill RAM with known values. By stabilizing runtime
conditions, you'll be able to duplicate the bug on demand and simplify your
search for the cause.

C compilers should warn you if they detect variables used before appearing on the
left side of an assignment. Even so, it's possible for uninitialized array elements,
pointers, and other structures to slip through the C parser and cause a bug.

Finding Uninitialized Variables

When you suspect that an uninitialized variable is causing a bug, the first step is
to identify which variable is at fault. Sometimes, the answer will be obvious
for example, if the program displays the wrong date, obviously you'll want to
examine the program's date variables.

At other times, however, you won't know which variable to observe. You
might suspect an array-index value or a record field in a linked list, but you
won't know which of many possible variables is the source of the bug.

258 Part Two: The Art of Debugging

A good way to proceed is to isolate the bug to as small a section of code as
possible. Then, open the Vari ab le s window (press (Alt)-VV) and set a
Changed memory global breakpoint for the pseudo register _BP. When you
press (F9) to run, the code will halt at the beginning of all functions that refer
to automatic variables and function parameters on the stack. (You may have to
repeat this experiment for registers _SI and _DI to find functions that store
local variables in these registers.) As you run the code, watch the bottom pane
of the Vari ab Les window-it will show you the values of all automatic variables
and function parameters.

You may also want to add specific variables to the Watches window and
observe their values while you single-step the code by pressing (F7) or (F8).
Or, open an inspector window for an even closer look at a variable's value.

Stabilizing a Changing Variable

One of the most distressing bugs is the kind that changes a variable at random
while a program runs. This can be caused by an uninitialized variable allocated
at different locations at different times. Because those locations have different
values, the symptom of this problem resembles the effect of a bad pointer that's
overwriting memory.

One way to find such problems is to locate all statements in a program that
change a certain variable. You could add the variable to the Watches view for
observation, but a faster method is to log accesses to one or more variables
while the code runs. This creates a report of all statements that affect those
variables. For example, follow these steps to create a log for a variable named k:

1. Use Breakpoints: Changed memory global to set a breakpoint to k. Just enter
the variable's name-despite the prompt, you don't have to specify its size
in bytes.

2. Select View:Breakpoints and press (Ctrl)-S to Set options. Change
Action to Log and set Action expression to the variable's name, k. This will
log every change made to that variable. Repeat this for each variable you
want to monitor.

3. Press (F9) to run the program to completion, then press (Alt)-VL to view
the Log window. You'll see a history of all source-code lines that changed k.
To examine those lines, switch to the Module window, press (Ctrl)-L, and
enter a line number. Or, refer to a printed listing. (Note: The logged lines
may refer to statements after the ones that changed the variable.)

You might also want to write the log to disk. After step 2, press (Alt)-VL
and (Ctrl)-0 to open a log file. Specify the default file name or enter a
different one. (You must open the log file before making too many log entries,
or old ones might scroll out of the in-memory log's limited space.) When you

Chapter Ten: Common C Bugs 259

quit TD, the log is automatically saved to disk. Here's a sample of a log file I
created by following those steps:

Turbo Debugger Log
Stopped at main
At #VAR#36 k = int 1 COx1>
At #VAR#52 k = int 2 COx2>
At #VAR#36 k = int 3 COx3)
At #VAR#52 k = int 4 COx4>
Terminated, exit code 0

Starting with the third line (ignore the first two), each log entry indicates
where k was changed. #VAR#36 refers to module VAR.Cat line 36, where the int
variable k was changed to 1. Other log entries, such as the "Terminated"
message here, indicate breakpoint locations and other events.

Mishandling Global Variables

Good code uses global variables only when absolutely necessary. For example,
using a global variable as the control in a for loop is almost always a bad idea. If
that loop calls a function that also changes the global variable, problems are
certain to arise. If k is global, then even this innocent-looking code is prone to
catching a bug:

for Ck= 1; k <= 10; k++) {
do_somethingC>; /* ??? */

}

If do_somethingO modifies k, this loop will fail. But if do_somethingO
does not change k, the loop will execute correctly. In fact, the only way to
certify that this loop will run without error is to limit the scope of k, preventing
access to that variable from inside do_somethingO.

Whenever a bug search leads to a global variable, you should consider
whether that variable needs to be global. If it does not need to be global,
convert it to an automatic variable inside the functions that need it. Or, define
the variable as static to limit its scope to a module or function. Use globals
only where a variable must retain its value between function calls.

If you suspect that two or more functions use the same global variables in
conflicting ways, log changes to that variable as explained in the previous
section. This will give you a history of activity for the variable and may help you
to find the conflict.

260 Part Two: The Art of Debugging

Confusing Automatic and Static Variables

Variables declared outside of ma i n < > are global. They are initialized to O and
retain their values between function calls. Variables declared inside functions,
including ma i n < >, are allocated temporary spate on the stack or are stored
inside a processor register. Because automatic variables do not retain their
values between function calls, they must be reinitialized every time the func
tion runs.

But don't confuse static and automatic variables, both of which may be
declared inside a function. For example, this function declares an automatic
variable r of type float:

void auto varO
{

float r;
r = 3.14159;

}

Because r is automatic, it must be initialized at each call to auto_varO.
Contrast this to a similar function that declares r as stat it float:

void static var(} {
static float r;
r = 9.51413;

}

A static variable is allocated global space; therefore, its value is initialized to
0, and it does not change between function calls. In fact, a static variable
declared this way is identical to a global variable except for one difference: only
the function in which the variable is declared may use the variable.

A common error is to assume that, if two functions declare static variables
of the same name, they refer to the same variable in memory. They do not-a
fact that you can prove by opening an inspector window for each variable. If
you try this, you'll see that the addresses of identically named static variables in
separate functions are different.

Also, when using TD to examine static variables, be aware of a subtle
difference between the Watches and inspector windows. When you open an
inspector to a specific variable, it will always refer to that same variable even if
the code enters another function that declares another static variable of the
same name. But, when you add a static variable to Watches, that variable will
refer to the value that falls within the current scope. In other words, if you want
to examine the values of static variables available to a function, add them to
Watches. But if you want to examine a static variable at a specific address, use
an inspector.

Chapter Ten: Common C Bugs

Hint: To inspect variables listed in Watches, press (F6) to activate that view,
highlight the variable, and press (Ctrl)-1.

261

Confusing Static and Extern

Arrays

Another common confusion involves the keywords stat i c and extern. As the
previous section explains, if two functions declare identically named static vari
ables, those variables are stored at different memory addresses. There are, in fact,
two separate variables, even though they have the same name. But in a multi
module program, you'll often want to allocate space for a variable in one module
and then refer to that variable from inside others. This is what extern is for.

If you are having trouble getting your functions to reference a global
variable in another module, you may be using extern incorrectly. Or, you may
be confusing it with static. To solve the problem, it helps to remember that
only one module may allocate space for a variable. For example, suppose that
you declare int xcount outside of mainO. Then, in a separate module, you
write a function extern_var 0 that needs to reference that same global variable.
To accomplish that, write the function this way:

void extern var()
{

extern int xcount;
/* •.. function statements*/

}

Because of extern, the compiler knows that xcount will be allocated in
another module, and it assumes that the address of the variable will be supplied
when all modules are linked to the final code file. It would be a mistake to use
static for this purpose, which would create two distinct variables in memory,
both named xcount.

Use inspector windows to examine extern and stat i c variable addresses
and to make sure that the variables that you think refer to the same memory
locations actually do.

Problems with arrays are most often caused by improper indexing; therefore,
the place to begin searching for array bugs is with the array's index variable. The
following sections describe how to handle this and other common array prob
lems that plague C programmers. But if you still can't find the bug, turn to the
section on pointers for more information about debugging arrays.

262 Part Two: 7be Art of Debugging

Something for Nothing

You always get something for nothing in C arrays. That is, there is always a value
stored at index location [OJ. If you declare an array of 10 integer values, the
array indexes range from O to 9, not from 1 to 10. A common mistake is to
misunderstand this and write code such as:

int a[10J;
int i;
for Ci = 1; i <= 10; i++} /* ??? */

a[iJ = O;

In this sample, if i is not a register variable, it is physically located after the
end of the array a. (At least it was in one test with TC.) Because the for loop
mistakenly cycles index i from 1 to 10 when it should have used values from 0
to 9, the final assignment when i equals 10 overwrites the index variable,
resetting it to O! This causes the entire loop to restart, thus hanging the
computer until you reboot or, if you're executing the program in TD, until you
press (Ctrl)-(Break).

This example demonstrates how sensitive C arrays are to index range
problems. Even a simple mistake can hang the system. Avoid similar trouble by
remembering that [OJ is always the first index position in a C array and that the
last legal position is always equal to the number of elements declared minus 1.
(Pascal programmers who switch to C are particularly prone to making this
mistake because arrays in Pascal may be indexed starting with 1 or any other
integer value.)

Index-Range Errors

The example in the previous section is only one of a class of bugs known as
index-range errors. In C programming, it's your responsibility never to use
index values outside of an array's declared size. Doing so may overwrite other
variables or code in memory, causing serious bugs and crashes. In fact, if you
experience a major crash, it's often wise to start looking for the problem by
examining arrays and array indexes. Experience suggests that the tiniest mis
takes in array indexing can produce the most spectacular crashes. In other
words, with array-index errors, you often get the most bang for your bug.

One way to trap range errors is to use the Breakpoint:Expression true
g loba L command to set a breakpoint for out-of-range index values. For exam
ple, if i is an integer index for a 100-element array, enter the expression:

(i < O> I I (i > 99)

Chapter Ten: Common C Bugs 263

That will trigger a breakpoint at any time i 's value is outside of its legal
range. And this usually will take you directly to the statement that's writing
beyond the declared array range.

When this approach is not convenient, you might set a Changed memory
global breakpoint to monitor a few bytes before or after the array in memory.
This can locate a statement that accidentally writes to a location outside of the
array's allocated space. To set the breakpoints, use inspector windows to
determine the starting and ending addresses of the array and then enter
adjusted addresses and byte counts into the Changed memory global prompt box
to monitor values just beyond the array boundaries. Or, instead of calculating
the addresses manually, you can specify "illegal" array indexes. For instance, to
monitor the bytes before and after an array i n t a [1 0 l, set two breakpoints, one
for a [-11 and another for a [10 l. You can also use larger and smaller array
indexes and specify an element count to monitor more space around the array.

Problems with Pointers

Pointers in C have taken the blame for more bugs than any other feature in the
language. But I often wonder whether that criticism is deserved or imagined.
While it's true that pointers allow you to address and, therefore, change any
byte in memory, it doesn't necessarily follow that simply using pointers opens
the door for all sorts of bugs to crawl in. Pointers can cause bugs, but so can
other misused language features.

But it's certainly true that, when a pointer is at fault, finding and fixing the
problem can be extremely difficult. A bad pointer might even overwrite the
debugger, causing it to crash, unless, that is, you're debugging in remote mode,
or you're running TD386 on an 80386- or 80486-based system. (See chapters 3,
17, and 18.)

So, don't avoid pointers because "they cause bugs." Pointers don't
cause bugs; programmers do. You can learn to use pointers safely, and you can
use TD to find errors caused by wayward pointers, as the following sections
explain.

Uninitialized Pointers

The most common pointer bug stems from code that uses an uninitialized
pointer variable. When looking for this problem, keep these four pointer facts
in mind:

• A pointer is a variable. It is stored somewhere in memory.

• A pointer has a value stored in the pointer variable.

264 Part Two: lbe Art of Debugging

• The pointer's value is an address, which points to another location in
memory.

• The location to which the pointer points has a data type, just like any other
variable.

Hint: One way to guard against pointer bugs is to use const to tell the compiler to
reject assignments to pointer variables. To do that for a pointer p to a variable v,
use a declaration such as * const p = &v;.

Finding Uninitialized Pointers

Uninitialized pointers can exhibit a variety of symptoms, and it's impossible to
list every possible characteristic. But some of the more common signs are:

• A variable changes value even though no statement directly writes to that
variable.

• A function that runs correctly most of the time suddenly crashes.

• A function fails to return to its caller. Instead, another section of the
program magically runs.

• The program runs just fine. But after the program finishes, DOS crashes.

All of those effects might be caused by a pointer that writes data to memory
locations that don't "belong" to the pointer. Because a pointer can address any
spot in RAM, it can change bytes in DOS, alter a low-memory interrupt vector,
wreck a return address on the stack, destroy code, or poke new values into
other variables.

Finding the cause of such errors can be difficult. You can't set a breakpoint
for a specific pointer value because you don't know what that value is. And you
can't watch every memory byte for changes. That would produce too many
halts for other statements that have legitimate reasons for changing values.

TC, other compilers, and LINT syntax checkers issue warnings if they
encounter statements that use pointers before they are initialized. These checks
can help, but they're not foolproof. Even if your code compiles with no
warnings, it could still contain an uninitialized pointer error. For example, if the
pointers are embedded in a struct like this:

struct node {

};

I* .•• other data*/
struct node *left;
struct node *right;

Chapter Ten: Common C Bugs 265

and if you declare a variable np of type st rue t node, the compiler does not warn
about the assignment tnp. left= tnp.right, even if those two pointers have
not been initialized.

Hint: If your pointers are automatic variables declared inside a function (including
main), then you can use the same technique described earlier to find other
uninitialized variables. Set a Changed memory global breakpoint for _BP, select
View: Vari ab Les, and press (F9) to run. Watch for senseless pointer values at the
start of each function.

Finding NULL Pointers

Global and static pointers are initialized to NULL when the program runs. But
using these pointers can lead to disaster, overwriting the low-memory interrupt
vector table beginning at address 0000:0000, the value associated with NULL.

To find NULL pointers, you can't set an Expression true global breakpoint
for myptr ==NULL. That doesn't work because NULL is #defined as a macro
in STDIO.H, and TD doesn't allow you to refer to macros this way. Instead,
enter the expression myptr = = 0:0. When you press (F9) to run the code,
TD will halt the program at every spot where my pt r equals NU LL. Change = = to
! = to find statements that assign values to NULL pointers.

Not Allocating Space to Pointers

Closely related to uninitialized pointers is the common mistake of forgetting to
allocate memory space by calling ma l loc 0 or another memory-allocation
library routine before using the pointers. This error frequently occurs with
character strings, which are usually addressed by pointers declared like this:

char *string;

Elsewhere, assign and display a string with:

string = "Rudolph the Red-Nosed Reindeer";
printfC 11 %s 11 , string);

What's not evident is the hidden business in such code that leads to many
string-pointer bugs. Assigning "Rudolph ... " to the string pointer appears to
break the earlier rule that pointers should be initialized before being used. Why
don't you have to call ma l loc 0 to create space to store the string?

The reason is that assignments of string constants to pointers in C assign the
address of those constants to the string pointer variables. The actual characters

266 Part Two: Tbe Art of Debugging

are stored in a fixed location in memory, and the assignment does not copy
characters from there to somewhere else.

You can prove this to yourself by opening an inspector window to st r i ng.
Notice that, when you execute the assignment, the variable's address changes in
the inspector window to the location where the character string is stored.

Flunking Pointer Arithmetic

C's pointer arithmetic capabilities let you add and subtract values from pointers,
which is often handy as an alternative to common array indexing. For example,
if you define the following variables:

float a[10J;
int i;
float *fp;

you can then display the array contents with this typical for loop:

for Ci = O; i <= 9; i++)
printfC"a[%dJ=%f\n", i, a[i]);

But, you can also use a pointer fp to do the same job:

for (fp = a; fp <= &a[9J; fp++)
pri ntfC 11%f\n", *fp);

The key here is the increment operation fp++, which advances the pointer
to the next array element, not to the next byte in memory. Pointer arithmetic in
C always accounts for the pointer's data type. If the pointer addresses a 4-byte
variable (as it does here), then incrementing the pointer in a C expression
actually adds 4 to the pointer's address value when the code runs. This is easy to
forget because the ++ operator increments integer variables by 1. Applying that
operator (and its counterpart --) to a pointer increments and decrements the
pointer by the size of the addressed item. Forgetting this detail is sure to lead
to bugs.

Pointers and Automatic Variables

Remember that automatic variables are temporary-they exist in memory only
while their declaring function is active. When the function returns to its caller,
any memory used by automatic variables is reclaimed for use during other
function calls and to store return addresses.

Chapter Ten: Common C Bugs 267

One mistake that programmers often make is to assign the address of an
automatic variable to a pointer. There is nothing wrong with doing so, as long as
you are careful not to use that pointer after the function ends. Because auto
matic variables no longer exist after that time, using pointers to the variables'
former addresses can easily overwrite other data and return addresses on the
stack.

This error sometimes sneaks up on programmers when they pass argu
ments by address to function parameters. For example, suppose you write the
following function:

void make f Loat()
{

}

float fp;

fp = 3.14159;
make_troubleC&fp);

Function make_f Loat 0 declares a single floating point automatic variable
fp. It then assigns a value to fp and calls make_t roub Le, which takes a pointer to
type f Loat:

void make trouble(f Loat *fp) {
global = fp; /* ??? */
/* ..• other code*/

}

If variable g Laba L is another f Loat *fp pointer in which the function saves
the address of its parameter for another statement's later use, this code is
walking on dangerously thin ice. The bug occurs when the caller to make_f Loat
exits, causing the space originally allocated on the stack for fp to be reclaimed
and leaving g Laba L addressing a now unprotected location in the stack. Writing
a value to *9 Laba L could change a variable belonging to another function.
Worse, if g Laba L happens to point to a return address, changing its value could
alter the course of history-that is, the history of your function calls and
returns.

Finding this kind of mistake is difficult, even with TD. The debugger can
help you to narrow the problem to a section of code. It can slow the code with
tracing and animation commands so you can observe the effects of actions that
otherwise pass too quickly. But the best medicine in this case is prevention.
Either avoid passing the addresses of automatic variables to pointer parameters
or never design your functions to save those pointers in global variables. When
you must write such code, be sure to document functions to which automatic
variables should not be passed by address.

268 Part Two: The Art of Debugging

Not Disposing Allocated Space

After allocating space to a pointer by calling ma l loc 0 or one of its relatives,
when you're done using that space, you should call free 0 (or the appropriate
derivative) to dispose the unused space. If you receive out-of-memory errors
after a program has been running for a time, failing to dispose unused memory
might be the cause. Check that all calls to ma l loc 0 are matched by calls to
free 0.

Using Disposed Memory

Related to the previous out-of-memory bug is the common mistake of using a
pointer after its allocated space has been disposed. Because free 0 and its
derivatives return a memory block to the pool of unallocated bytes in the heap,
using a disposed pointer can produce the same kinds of problems as using other
uninitialized pointers.

One way to prevent such errors is to set disposed pointers to NULL
immediately after calling free 0. You can then use TD to find illegal uses of
disposed pointers by following the earlier suggestions for finding NULL pointers.

Functions

Some of the more common bugs that are associated with functions are: forget
ting to return a value for all possible exit paths, confusing value and variable
(passed by address) parameters, being victimized by a hidden side effect, and
accidentally falling into an unwanted recursion. This section examines these
typical function traps in detail.

Forgetting a Return Value

Except for void functions, you must remember to execute a return statement
for all possible exit paths. Although it's rare to forget a return altogether, it's
fairly common to fail to cover all the bases. For example, suppose you have
these definitions:

enum boolean { NO, YES };
enum boolean answer(char *prompt);

You then write the answer function, which is supposed to return NO or YES
depending on whether you press N or Y in response to a prompt:

Chapter Ten: Common C Bugs

enum boolean answer(char *prompt)
{

}

int c;

printf("%s Cy/n)? ", prompt>;
c = toupper(getchar() >;
if (C :: I YI)

return YES;
else if Cc == 'N')

return NO;
/* ??? */

269

The problem here is that the programmer neglected to consider what
would happen if somebody types a character other than Nor Y. In that case, the
function simply ends without executing a return. To fix the mistake, you could
repeat the call to get ch a r C > until it returns N or Y, or you could change the i f
statement to:

if (C :: I YI)

return YES;
else

return NO;

The function still ends for any keypress other than N or Y, but now it
defines a return value for every possible condition.

Of course, this example is a simple one, and in this case, covering all the
bases isn't that difficult. This kind of bug is more common in large functions
with many nested if statements, which you can test with TD to determine
whether the function returns values for all possible exit paths.

To do that, position the cursor on the function's closing brace and
press (F2). This sets a breakpoint to just before the function ends. Then, press
(F9) to run the code. When the program halts, use Data:Function return to
examine the function's value. Repeat this experiment for different sets of input
data.

Note: Before rerunning a test with new input data, close the Function return
window. If you don't, the window may not show the correct value at the next
breakpoint. Or, choose Data: Function return a second time even if the win
dow is already ppen (you don't have to close the window first). This forces TD to
update the information in the window to show the current return value for the
active function.

270 Part Two: The Art of Debugging

Confusing Calls by Value and Reference

Technically, all C function arguments are passed by value. C has no equivalent
to Pascal's var parameter declarations. In C, all function parameters receive
copies of passed arguments-a scheme that seems simple enough but can lead
to trouble when those values are pointers.

Confusing the two kinds of arguments-those that are passed by value and
those that are passed by reference-can lead to all sorts of nasty surprises. Even
though ANSI C function prototypes can help prevent mistakes before they do
any damage, it's still possible to fool the compiler with code such as:

void parametersClong *P1, long *p2)
{

/* ... statements *I
}

Function parameters declares two pointer parameters to long integers, p1
and p2. To pass the address of two Long arguments x and y to the function, use a
statement similar to this:

parameters(&x, &y>;

That correctly passes the addresses of x and y to parameters. But errors
sometimes occur when programmers confuse the address operator(&) with a
pointer cast. For instance, this is not correct:

parameters((Long *)x, (Long *)y); '* ??? */

The first example correctly uses & to pass the address of the two variables to
the function. The second example incorrectly casts the value of the variables
into pointers-a mistake that can have serious consequences if the function
writes values to those phony addresses. In fact, this error can produce all the
horrors of an uninitialized pointer, and because the compiler freely allows
recasting variables this way, it does not warn that anything is amiss.

Here's a good way to find this kind of mistake. After loading the program
into TD, set a breakpoint on the function you want to monitor. Add the
function's parameters to the Watches window, which displays the values as????
because the variables are not yet in scope. This is normal-the actual data will
show up later on when the function runs.

Next, press (F9) to run the code and, when it halts, use the View:Stack
command to list the currently active function calls. Highlight the call imme
diately below the monitored function, and press (Ctrl)-1 to inspect that
source-code line. Then, open an inspector window for each of the arguments in
the statement that called the function.

Chapter Ten: Common C Bugs 271

Now, compare the addresses of those variables with the addresses of the
function parameters in Watches. In all cases, the addresses should match. If they
don't, you may have passed an argument by value when you should have passed
it by reference.

Function Side Effects

Functions that alter global variables are generally considered to be bad form,
although in practice, the technique can be useful. But it can also cause serious
bugs, as this code fragment demonstrates:

int err;

int error code(}
{

int temp;

temp = err;
err = O;
return(temp);

}

Function error _code 0 returns the value of a global integer variable err, to
which another function (not shown) assigns an error code that indicates the
success or failure of a preceding I/O operation. As a means of enabling future
I/O, error_codeO resets err to 0. ,

The scheme works well enough, but problems begin if another function
calls error_codeO incorrectly. For example, suppose err equals 10 from a
previous I/O operation. This is the wrong way to check for that error:

if (error code(} != O>
printfC"ERROR: code #%d\n", error_codeO>; /* ??? */

The if statement calls error_codeO to check whether err is 0. (Presuma
bly, the global variable err is not made available for direct use to other
functions.) If the error code is not zero, print f 0 displays a message. But it also
calls error_codeO again to display the error code number. Because the pre
vious call resets err to 0, the program always displays:

ERROR: code 0

This is a good example (and a bad case) of a function side effect-a function
that affects future runtime behavior by changing global values.

272 Part Two: Tbe Art a/Debugging

Finding a function side effect requires careful monitoring of the afflicted
global variables. This is difficult because you may not know what those
variables are, and their symbols may be hidden in a compiled library for which
you don't have the source code. If you do have the source or know the
addresses of the variables, you can set a Changed memory global breakpoint to
halt when statements change their values. Or, use Expression true global in
cases when you know exactly what to look for-in the previous sample, a
statement that sets err to 0.

In a complex expression where you suspect a function side effect, a good
test is to assign all function values to automatic variables and then use the
variables in expressions instead of calling the functions directly. Use TD to try
out several sets of input data for both forms of the function. If the results differ,
the cause might be a function side effect.

Unwanted Recursion

Recursion is a useful feature in C that lets functions call themselves. As a general
programming concept, recursion also simplifies "housekeeping" details for
some kinds of algorithms-for example, a tree search that works by calling itself
at each node in a linked list until finding a target item.

Unwanted recursions are not at all useful. When a function calls itself by
accident, the results can range from odd behavior to a fatal stack overflow.
Sometimes, programmers accidentally cause an unwanted recursion by writing
expressions that use the function's name on the right side of an assignment:

result = 2 * f();

Normally, this would cause no trouble. But if that statement appears inside
function f C >, the compiler generates code to call f C >, which evaluates the
expression, which again calls f C >, and so on. Usually, the symptom of this
problem is a stack-overflow error when the numerous return values, parame
ters, and automatic variables fill the stack to capacity. Use TD to isolate the place
where the error occurs, then trace the code. You'll easily spot where the
function calls itself.

A more subtle kind of unwanted recursion-and one that's much more
difficult to find-occurs when a function a C > calls b C >, which calls a C > back
again. This is called a mutual recursion. When it occurs unintentionally, the
program may halt with a stack overflow as it can for a plain recursion. But the
more common symptoms are incorrect values from expressions or strangely
repeating operations that should run only once.

After using TD to narrow the problem to a small section of code, run the
affected area to a breakpoint or use the Run: Animate command to execute the
program in slow motion while you watch the source code in the Module

Chapter Ten: Common C Bugs 273

window. You might also want to open the View:Stack window, which lists
function calls. Any accidental recursions should then be obvious.

Numerical Errors

It's difficult to categorize numerical errors-there are countless numbers of
bugs that can arise from poorly written expressions. However, a few show up
with regular frequency. If you are having trouble with expression results, check
these first.

Hint: Use the Data menu's Eva Luate/mod if y dialog box to test expressions. To
copy an expression from the source text to the dialog box's Expression pane,
press (Insert) and move the cursor (or use a mouse) to highlight the expression in
the Madu Le view. Then, press (Ctrl)-(F4), and press (Enter) or click the Eva L
button to evaluate the result.

Bad Operator Precedence

Mistakes with operator precedence can cause so many problems, I prefer to use
parentheses lavishly in expressions to force the evaluation order I want. For
example, I rarely write expressions like this:

x = n + 4 I x;

Instead, I'd write the logically equivalent expression:

x = Cn + 4) I x;

For most values of n and x, the two expressions are not equivalent. Instead,
because division has a higher precedence than addition, most compilers evalu
ate the former expression as:

x = n + (4 I x>;

But even if that's what I meant to write, I'd include the parentheses to make
my intentions clear. It's too easy to introduce bugs by assuming the wrong
evaluation order in a complex expression.

274 Part Two: The Art of Debugging

Putting the Hex On

You must be careful to express constants in the appropriate radix. The compiler
can catch an assignment such as count= fa29 because it assumes that fa29 is an
identifier. But it can't catch count= 7659 if you meant that value to be hexadeci
mal. To assign the correct value, you must write count = Ox7659.

Unless you change the default Integer format with Options: Display
options, TD displays values in decimal and hexadecimal. Because this can help
you to spot a radix error, it's probably best not to change the default setting.
Instead, use the formatting options (see chapter 9) to display selected variables
in the format you want.

File Handling

There are countless bad turns you can make in programs that read and write
data to disk files. But, before embarking on an extended debugging session to
find your mistakes, eliminate the possibilities listed in this section.

Forgetting to Close Open Files

As a rule, you should close all open files before a program ends. This ensures that
the DOS directory entry for the file is properly updated and that any data held in
memory is flushed to disk. It also releases DOS file handles for future use.

But if you are using a modern C compiler and DOS 2.0 or later, this error
isn't that likely to occur because most programs end via DOS function Ox4C,
which automatically closes any open file handles before passing control back to
COMMAND.COM. Other functions, such as Ox31 (terminate-and-stay-resident),
do not close open files. And, for that reason, it's wise to close your files
explicitly-especially when building library functions that you might use later
in a resident program.

The symptom of a failure to close file handles is a reduction in the number of
available DOS handles for new files; therefore, the error frequently shows up later
when you run the next program and execute a statement that attempts to open a
new file. If that fails due to a lack of file handles, the problem may be in an earlier
function, or it might even be in another program that you ran before this one.

Not Checking for 110 Errors

I'm always amazed at the amount of code that fails to take 1/0 errors into
account. Disks do become full, write-protect tabs are sometimes covered

Chapter Ten: Common C Bugs 275

when they should be uncovered, and disk sectors can become unreadable.
Careful programmers test for 1/0 errors after every significant 1/0
operation.

In C programs that use file streams, ferro r 0 tests for 1/0 errors. After
detecting errors that way, a common mistake is to forget to call c Learerr to
allow future 1/0 to continue. Another mistake is forgetting that rewind clears
any unserviced 1/0 errors.

Neglecting to Use Pointers in scanf()

Except for the initial formatting string, all arguments in scan f 0 calls must be
pointers to variables. A common error is to write code like this:

int count;

printfC"? ");
scanf ("%d", count); /* ??? */

While this appears to prompt for an integer value count, because that
variable is passed incorrectly by value to scanf 0, the result is a serious bug. At
best, count will not have the value entered by the operator. At worst, the system
will crash when scanf 0 writes data over other variables, code, or the stack.
The correct way to write the previous sample is:

printfC"? ");
scanf("%d", &count);

In this case, &count passes the address of count to scanf 0, which fills in
the variable with a value from the standard input, usually the keyboard.

Remember too that string arrays are pointers; therefore, you can pass them
directly to scan f 0 . For a string declared as char s [80 l ; , use this expression to
input text:

scanf(11 %s", s);

The string variable s is an array, which is equivalent to a pointer; therefore,
specifying &s in this case would be incorrect as that would pass the address of
the pointer, not the array. As this demonstrates, it's not enough just to hunt for
scanf 0 function calls with arguments not prefaced with &. You must also
examine the data types of the arguments to find mistakes. (Inspector windows
are good for this.)

276 Part Two: Tbe Art of Debugging

Bad Breaks
A break statement causes a loop or a switch statement to terminate imme
diately. This section discusses a few of the more common bugs associated with
break.

Nested Breaks

When break executes, the currently active for, while, or do loop ends. A
common bug is caused by executing a break at the wrong level in a deeply
nested set of loops. Although contrived, the following code demonstrates the
problem:

for (i = 1 ; i < 10; i ++) {

printf<"\n%d: ", i>;

}

for (j = 1 ; j < 10; j ++) {

printf<"%d ", j);
if Ci >= 5) break; /* ??? */
}

This fragment should write five sets of ten values, but it halts early by a
break when i >= 5. From the indentation, it appears as though the programmer
intended the break to exit the outermost loop, but because it executes while the
inner for is acUve, the program displays:

1: 2 3 4 5 6 7 8 9
2: 2 3 4 5 6 7 8 9
3: 2 3 4 5 6 7 8 9
4: 2 3 4 5 6 7 8 9
5:
6:
7:
8:
9:

Loading the program into TD and tracing the code proves that the outer
loop continues to run even after executing break. Only the inner loop is
prevented from finishing.

Having found the problem, the fix is to move the break to the correct level:

for (i = 1 ; i < 10; i ++) {

printf<"\n%d: ", i>;

Chapter Ten: Common C Bugs

}

for Cj = 1; j < 10; j++)
printfC 11 %d ", j);

if Ci >= 5) break;

Now, when the program runs, it displays the correct results:

1 : 2 3 4 5 6 7 8 9
2: 2 3 4 5 6 7 8 9
3: 2 3 4 5 6 7 8 9
4: 2 3 4 5 6 7 8 9
5: 2 3 4 5 6 7 8 9

Broken Continuations

277

Related to a bad break is a bug caused by confusing break and continue. A
continue statement causes the currently active loop to start with the next
iteratidh; break exits the loop immediately. Single stepping a few test loops in
TD is a good way to learn the difference between break and continue and to
determine whether you've used the wrong one.

Forgetting Break in a Switch Statement

In a switch statement, executing break junips to the statement that follows the
switch. There are two places where this use of break typically leads to bugs.

The first occurs when a break is purposely left out of s w i t ch in order to
allow multiple selectors to activate a code section. For example, suppose you
want to execute a series of statements from a different "entry point" depending
on the value of an integer i. If i equals 3, you want to execute statements 3, 4,
and 5; if it's 4, you want to execute statements 4 and 5; if it's 5, you want to
execute only statement 5. A switch statement is the ideal choice for solving this
kind of problem:

i = 3;
switch Ci) {

case 1 printfC"case 1 \n"); break;
case 2 printfC"case 2\n"); break;
case 3 printfC"case 3\n">;
case 4 printfC"case 4 \n");
case 5 pri ntfC"case 5\n">: break;
default : break;

}

/* •.. execution continues here after break*/

278

Summary

Part Two: The Art of Debugging

Cases 3 and 4 "fall through" to the next statements, allowing multiple
selectors to activate a statement series at different starting points. The other
cases end with break, which passes control to the statement that follows the
switch.

There is nothing wrong with using break this way, but the program is prone
to developing a bug if the design changes later and you forget to take into
account all the consequences of the programmed fall-throughs. Of course, in a
simple example such as this, any errors are easy to see. But typical s w i t ch
statements can occupy pages of printout listings, and they can be nested inside
each other, making bugs hard to find.

Remember also to include a break as the default value, as in the previous
sample, even when not strictly needed. The extra break occupies very little
room and costs nothing in runtime performance. But it can trap errors caused
by bad input values to the switch statement.

Hint: Set a breakpoint on the default break, and the program will halt if the
switch statement ever receives an out-of-range selector.

C is a well-respected language with many useful features. But it also allows
programmers to get away with source-code murder. Bugs in C range from
simple typos to uninitialized variables, mishandled arrays, bad pointers, prob
lems with function parameters, and other problems.

Getting to know the common C bugs in this chapter is a good way to
prevent them from occurring in your own code. And, when bugs do happen,
you can use this knowledge to help find the source of the problems with TD.

Chapter 11

Hands-On Debugging for C

To GAIN EXPERIENCE in the art of debugging, there's nothing like a little
on-the-job training. In this chapter, you'll enter a buggy Turbo C program-a
UNIX-like replacement for the DOS DIR command-which is long enough to
be interesting, but not so long as to discourage you from typing it into your
editor. Then, you'll follow the steps outlined in chapter 7 to develop a debug
ging strategy for five mischievous bugs. After fixing each problem, you'll retest
the code to be sure the bugs stay dead.

You can also use this chapter as a self test of the information you've learned
so far. After reading about each bug, watch for this note:

Self test: Stop reading now.

When you see that message, stop reading and try to find and fix the
problem. Continue reading after you've discovered the solution or if you're
stuck and need more help. Don't be concerned if you can't find all the bugs on
your own. It's more important to try and fail than never to try at all.

Note: Some of the text in this chapter also appears in the hands-on debugging
sessions for Pascal and assembly language in chapters 13 and 15. Despite these
similarities, the programs and bugs in each of these chapters are different-you
can read one chapter and take the self test, or read them all.

279

280 Part Two: Tbe Art of Debugging

Debugging Strategy Review

Before turning to the buggy program, it will be helpful to review the steps of a
good debugging strategy from chapter 7. Remember to apply these steps if
you're taking the self test.

The key to all debugging strategies is to avoid hunting through code
looking for errors. Try not to figure out the cause of a bug. Develop good tests
and use TD to divide and conquer. Force bugs into the open where you can trap
them. Don't be clever, be methodical.

Briefly, here are the four steps that you should follow to find and fix each
bug in this chapter's sample program. You might also want to reread "Debug
ging Strategies" near the end of chapter 7:

• Test: Design good tests to force bugs to appear. Don't just "play" with the
program. Use the same care to write test procedures and to create test data
that you use for the main code. Test extreme ranges and take good notes. (If
this were a real program in development, you would also want to test as you
go rather than wait until the program is done to begin testing.)

• Stabilize: Write down the steps required to reproduce the problem. If you
can't cause a bug to repeat, you won't be able to prove later that you've
fixed the mistake. Always nail your bugs to the ground before attempting to
fix them.

• Isolate: Use TD to isolate the section of code that's causing the problem.
Divide and conquer. Concentrate on finding where, not why, a bug appears.
Work quickly until you've narrowed the search to a reasonably small
section that you can examine in finer detail.

• Repair: You've found the bug. Quit TD and fix the mistake. But, before
continuing to program (or to move on to the next bug in this chapter's
simulation), be sure to document what you did to repair the mistake. And, most
important, repeat your earlier tests to verify that the bug is gone for good.

The Program

Enter Listing 11.1 and save it in a file named LS.C. Remember not to enter the
line numbers added for reference along the left border. Then, compile to
LS.EXE with the integrated Turbo C editor and compiler as explained in chapter
2, or use this command to compile with the command-line compiler:

tee -v ls

You may use either Turbo C 2.0 or Turbo C+ + 1.0 to compile the sample
program.

Chapter Eleven: Hands-On Debugging/or C

Note: After finding each bug and making the suggested changes to LS.C, enter that
same command to recompile the modified listing.

1: /*
2: **
3: **

4: *'
5:

Listing 11.1. LS.C (with bugs).

Purpose: List files (WITH BUGS!)
Author: Cc> 1990 by Tom Swan.

6: /* ---- Include header fi Les */
7: #include <stdio.h>
8: #include <mem.h>
9: #include <dos.h>

10: #include <dir.h>
11 :
12: /* ---- Define constants *I
13: #define NUM COLUMNS 5
14: #define COLUMN WIDTH 15
15: #define FNAMESTR LEN 12
16:
17: /*----File date bit fields*/
18: typedef struct DATEFIELD {
19: unsigned day : 5;
20: unsigned month : 4;
21: unsigned year : 7;
22: } datefield;
23:
24: /* ---- Fi le time bit fields */
25:
26: typedef struct TIMEFIELD {
27: unsigned int hour : 5;
28: unsigned int minute 6;
29: unsigned int second : 5;
30: } timefield;
31:
32: /* ---- Linked list entries*/
33: typedef struct ITEM *itemPtr;
34: typedef struct ITEM {
35: itemPtr next;
36: char attr;
37: timefield time;
38: datefield date;

281

282 Part Two: Tbe Art of Debugging

39: Long size;
40: char name[13l;
41: } item;
42:
43: /* ---- Function prototypes */
44: void getOptions(int argc, char *argv[J);
45: void instruct(void);
46: int isFileCchar *path>;
47: void fixPath(char *path>;
48: itemPtr newltemC>;
49: void readDirectoryCvoid);
50: int itemCmp(const void*, const void*);
51: void sortDirectoryCvoid>;
52: void writeBlanksCint numBlanks>;
53: void writeDate(dateField date>;
54: void writeTime(timeField time>;
55: void writeAttributes(char attr);
56: void writeltem(itemPtr p);
57: void displayByRows(void);
58: void displayByCols(void);
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:

/*----Options and their default values
en um boolean { FALSE, TRUE };
en um boolean OPT_ALLFILES = FALSE;
en um boolean OPT_HELP = FALSE;
en um boolean OPT_LONG = TRUE;
en um boolean OPT_ROWORDER = FALSE;
en um boolean OPT_SORT = FALSE;
en um boolean OPT UPPERCASE = FALSE;

69: /* --~- Global variables */

*/

70: itemPtr *indexArray;
71: char path[79l = "*·*";
72: itemPtr root;
73: int dirCount;
74:

/* Pointer array for sorting */
/* Path name and default value */
/*Directory list pointer*/
/*Number of list entries*/

75: /* ---- The main program function */
76: main(int argc, char *argv[])
77: {
78: getOptions(argc, argv>;
79: if (OPT HELP)
80: instruct();
81: readDirectory();
82: if CdirCount == O>
83: printfC"\n%s\n", "No fi Les");

Chapter Eleven: Hands-On Debugging for C

84: else {
85: sortDirectoryC);
86: if COPT ROWORDER I I OPT LONG)
87: displayByRowsC>;
88: else
89: displayByColsC>;
90: }
91: return O;
92: }
93:
94: /* ---- Interpret command-Line options */
95: void getOptionsCint argc, char *argv[])
96: {
97: unsigned char ch;
98: char *Pi
99:

100: while C--argc > O> {
p = *++argv;
if (*p != '-' && *P

strcpy(path, p);
else {

! = I I I)

if Cstrlen(p) -- 1)
ch='?';

else

/*Set path or wild card*/

/* If no option Letter */

283

101 :
102:
103:
104:
105:
106:
107:
108:
109:
110:
111 :
112:
113:
114:
115:
116:
117:
118:
119:
120:
121 :
122:
123:
124:
125:
126:
127:
128:

ch = *(p + 1>;
switch CtoupperCch)) {

case 'A':

/* else ch == option Letter */

OPT ALLFILES = TRUE;
break;

case 'H' :
OPT HELP
break;

case 'NI :
OPT SORT
break;

case IR' :

= TRUE;

= FALSE;

OPT ROWORDER = TRUE;
break;

case 'W' :
OPT LONG = FALSE;
break;

case 'U' :
OPT UPPERCASE = TRUE;
break;

default:

284 Part Two: Tbe Art of Debugging

129:
130:
131:
132: }
133: }
134: }
135:

OPT HELP = TRUE;
break;

}

136: /* ---- Display instructions and halt */
137: void instructCvoid)
138: {
139: printfC"\nUsage: LS [option ••.] [argument] [option •.. l\n");
140: printf("\nLS displays a list of files in the current\n");
141: printf("directory, or in the directory specified by\n");
142: printf("an optional path and wild-card argument. \n");
143: printf("Options are:\n\n">;
144: printf("-a All files\n");
145: printfC"-h Display this help message\n");
146: printf("-n Do not sort file names\n");
147: printf("-r Row order (implies -w)\n");
148: printfC"-u Uppercase display\n">;
149: printf("-w Wide listing\n");
150: printf("-? Same as -h\n\n");
151: printfC"Example: ls -a -w \\mywork*.c\n");
152: exit CO>;
153: }
154:
155: /*Return TRUE if path is a file or contains wild cards*/
156: int isFi leCchar *path)
157: {
158: FILE *f;
159:
160: if Cstrchr(path, '*') != NU.LL 11 strchrCpath, '?') != NULL)
161: returnCTRUE);
162: else {
163: if ((f = fopenCpath, "r")) -- NULL>
164: returnCFALSE);
165: else {
166: fcloseCf);
167: returnClRUE>;
168: }
169: }
170: }
171 :
172: /*----Prepare path for directory sea~ch */
173: void fixPathCchar *path)

Chapter Eleven: Hands-On Debugging for C

174: {
175:
176:

unsigned char Lastch; /* Last char in path */

177: if (!isFileCpath)) {
lastch = path[strlen(path)-1J;
if Clastch != ':')

if Clastch != '\\')
/* e.g. "a:" */
/* e.g. "\path\" */

285

178:
179:
180:
181:
182:
183:
184: }

strcat(path, "\\");
strcat(path, "*·*");

/* Append '\' */
/*Append wild card*/

}

185:
186: /* Return pointer to new List item */
187: itemPtr newitem()
188: {
189: return CCitemPtr) malloc(sizeof(item)));
190: }
191:

/* ----Read directory into Linked List*/
void readDirectoryCvoid)
{

struct ffblk fb; /* File search block*/
int searchAttr; /* Search attribute */

192:
193:
194:
195:
196:
197:
198:
199:

int done; /* True when search is done
itemPtr p; /* Pointer to Li st items */

root = NULL; /*Start new List*/

*/

200:
201:
202:

if (OPT ALLFILES)
searchAttr = Ox3F;

/* Determine search attribute */
/*ALL files and directories*/

203: else
204:
205:

searchAttr = Ox10;
fixPathCpath>;

/*Normal files and directories*/

206: done= findfirst(path, &fb, searchAttr>;
207: while (!done) {
208: if (root == NULL) {
209: root = newitemC>; /* Insert first Li st item */
210: p = root; /* Address item with p *'
211: } else {
212: p->next = newitemC>; '* Insert other Li st items */
213: p = p->next; '* Move p to new item */
214: }
215: p->next = NULL; '* Mark end of List */
216: memcpyC&p->attr, &fb,
217: sizeof(item) - sizeof(itemPtr>>; /* Copy item to List */
218: if (!OPT UPPERCASE)

286 Part Two: The Art of Debugging

219:
220:
221:
222:
223: }
224:

}

strlwr(p->name);
dirCount++;
done = findnextC&fb>;

/* Convert name to Lowercase */
/* Count entries in List */

225: /*----Compare two directory names for qsort() */
226: int itemCmp(const void *item1, const void *item2)
227: {
228: return(strcmp(
229: (*(itemPtr *)item1>->name,
230: (*(itemPtr *)item2>->name >>;
231: }
232:
233: /* ---- Prepare directory index and sort entries */
234: void sortDirectory(void)
235: {
236:
237:
238:

itemPtr p;
unsigned int i;

I* Pointer to List items */
I* Array index */

239: /*Prepare array of pointers to Listed items*/
240: if CdirCount > O> {
241: indexArray =
242: CitemPtr *) mallocCdirCount * sizeof(itemPtr>>;
243: p = root;
244: i = O;
245: while (p !=NULL) {
246:
247:
248:
249:

}

indexArray[i++l = p;
p = p->next;

/* Add pointer to index */
/* Move p to next item */

250: /*Sort the pointers array by file name*/
251: if (OPT SORT && dirCount > 1)
252: qsortC&indexArray, dirCount, sizeof(itemPtr), itemCmp);
253: }
254: }
255:
256: /* ---- Send numBLanks blanks to std out */
257: void writeBLanksCint numBLanks)
258: {
259: while C--numBLanks >= 0)
260: putchar(' '>;
261: }
262:
263: /*----Write a file's date*/

Chapter Eleven. Hands-On Debugging for C

264: void writeDateCdateField date)
265: {
266: printf("%4d-%02d-%02d",
267: date.month, date.day, date.year + 80);
268: }
269:
270: /*----Write a file's time*/
271: void writeTimeCtimeField time)
272: {
273: unsigned hour;
274: char *ampm;
275:
276: hour = time.hour;
277: if Chour >= 12) {
278: if (hour != 12)
279: hour = hour - 12;
280: am pm = " pm";
281: } else
282: ampm = " am";
283: printfC"%4d:%02d%s", hour, time.minute, ampm);
284: }
285:
286: /*----Write a file's attributes*/
287: void writeAttributesCchar attr)
288: {
289:
290:
291:
292:
293:
294:
295:
296:
297:
298:
299:

}

/*

char *S = " ------··· ,

i f Catt r & FA RDONLY) s[2l = I r I i
if Cat tr & FA HIDDEN) s[3] = I h Ii
if Catt r & FA SYSTEM) s[4l = I 5 I ;

if Cat tr & FA LABEL) s[5l = IV I;

; f Catt r & FA DIREC) s[6l = Id I;
if Cat tr & FA ARCH) s [7] = I a I;
print fC 11 %s 11 , s);

----Write one directory item */ 300:
301:
302:
303:
304:
305:
306:
307:
308:

void writeitemCitemPtr p)
{

unsigned int width;

if C !OPT LONG)
width = COLUMN _WIDTH;

else
width = FNAMESTR LEN + 1 ;

287

288 Part Two: Tbe Art of Debugging

309: printfC"%s", p->name>;
310: writeBlanks(width - strlen(p->name>>;
311: if (OPT LONG) {
312: if (p->attr & FA_DIREC)
313: pri ntfC"<DIR> "); /* <DIR> + 3 blanks */
314: else
315: printfC"%8ld", p->size>;
316: writeDate(p->date>;
317: writeTime(p->time>;
318: writeAttributes(p->attr>;
319: }
320: }
321:
322: /* ---- Display directory in row order */
323: void displayByRows(void)
324: {
325: unsigned int i;
326:
327: if (dirCount > O> {
328: printfC"\n">;
329: for Ci = 1; i <= dirCount; i++) {
330: writeitem(indexArray[i - 11>;
331: if Ci % NUM COLUMNS== 0 I I OPT LONG)
332:
333: }

printf("\n">;

334: if (!OPT LONG && dirCount % NUM COLUMNS != 0)
335: print f("\n");
336: }
337: }
338:
339: /* ---- Display directory in column order */
340: void displayByCols(void)
341: {
342: unsigned int rows, i, j;
343:
344: if CdirCount > O> {
345: printf("\n">;
346: rows= CdirCount I NUM_COLUMNS);
347: if CdirCount % NUM COLUMNS != 0)
348: rows++;
349: for Ci = 1; i <= rows; i++) {
350: j = i;
351: while (j <= dirCount) {
352: writeitem(indexArray[j - 11);
353: j += rows;

Chapter Eleven: Hands-On Debugging for C

354:
355:
356:
357:
358: }

359: }

}

}

if C j > di rCount)
printf("\n">;

Hands-On Debugging Sessions

289

Each of the following sections begins with a description of a bug in LS.C. The
descriptions simulate the early stages of debugging when you know that some
thing isn't operating as expected, but you don't know exactly what has gone
wrong. Perhaps a customer telephoned to complain about a strange occurrence,
or you've added new programming, and the code, which seemed to work
correctly until now, suddenly failed. All you know at this stage is that the
program isn't working. You don't know why.

If you're taking the self test, after reading the description of the bug, put the
book aside and try to find and fix the mistake on your own. Then, whether or
not you're taking the self test, follow the step-by-step numbered sections to run
through the TD commands that I used to locate the bug. Do this even if you've
successfully located the bug on your own. That way, you can compare your
debugging strategy with mine.

Be careful to keep LS.Cup to date. Some of the later bugs depend on earlier
ones, and you must complete sections 1 through 5 in that order, or the step-by
step instructions will be meaningless. A useful plan is to copy LS.C to LSTEST.C
for taking the self tests. Make your own changes only to LSTEST.C. Then, after
finishing each self test, compile and load the current LS.C file into TD, and follow
the step-by-step debugging demonstrations after the "stop reading" note. Make
the changes suggested in the text directly to LS.C. You can then copy the partially
debugged LS.C again to LSTEST.C to take the next bug's self test.

You might also want to copy the original, unmodified LS.C to another file,
perhaps named LSBUG.C, so you or someone else can repeat the hands-on
demonstrations in the future without having to retype the listing. This will also
let you start over in case you mix up the files. If that happens, just copy the
master LSBUG.C to LS.C and make the suggested changes to LS.C up to the
point where you stopped.

Note: Line numbers in the text refer to Listing 11.1 as printed in this chapter. After
you make the first set of changes to LS.C, your editor's line numbers may not
match those in the listing. For that reason, when I suggest adding new statements,
for example between lines 45 and 46, use the printed listing as a guide to locate the
place in your up-to-date LS.C file where you should make those changes.

290 Part Two: Tbe Art of Debugging

Using LS.C

If the program didn't have any bugs, it would list the files in the current or
another directory. Similar to the UNIX LS command, the program understands
the options listed in Table 11.1. Of course, you'll have to find and fix the bugs in
the program before these options will work.

Option

-a
-h

-n
-r
-u

-w

-?

How LS. C Works

Table 11.1. LS.C options.

Description

All files, including those normally hidden

Display helpful instructions

Do not sort file names

Display wide listing in row order

Uppercase display (normally lowercase)

Wide listing in column order

Same as -h

Finding bugs is always easier when you're familiar with the code. If LS.C was
your program, you'd have a good idea where to look for certain kinds of bugs.
But, because you've never seen this program before, debugging its statements
will be more difficult than normal. These notes will help fill that gap.

Many of LS's functions have obvious purposes-setting various options,
displaying instructions, preparing wild cards and path names for directory
searching, and converting directory information to the proper formats for
display. Because the program sorts the directory by file name (unless you've
turned off sorting with the -n option) it has to read all file names into memory,
sort them, and then display the information.

To do that, LS stores directory entries on a linked list (see Figure 11.1). Each
listed entry contains the name of a file plus other information such as its date,
time, and size (see st ruct item at lines 34-41). A single pointer named root
(line 72) addresses the first entry of the list. Another variable di r Count (line 73)
counts the number of entries in this list. If root== NULL or di rCount == 0, the list
is empty.

For easy sorting, LS also prepares an array of pointers i ndexArray (line 70)
that addresses the items in the linked list. As Figure 11.1 shows, each array
element points to one linked list entry, giving LS two ways to access the
directory information stored in memory. It can follow the next fields in the list,
hopping from one directory entry to the next, or it can run through all entries
in the indexed array. Sorting is kept fast by rearranging the pointers in

Chapter Eleven: Hands-On Debugging/or C 291

indexArray rather than shuffling the larger directory items or fussing with the
list's next links. This also makes it easy for the program to display sorted and
unsorted file lists. (For example, you could revise the program to display both
kinds of lists without having to reread the directory from disk. Don't try this
before fixing the bugs, though!)

Another global variable path at line 71 addresses the requested path and
wild card such as C: "- MYWORK "- • . C that you can enter as an argument when
running LS. If you enter no such argument, path defaults to the string "*. • ".

root----

indexArray

ltemPtr

itemPtr

itemPtr

Array of Pointers

item next

Linked List of File Items

item next item next

Figure 11.1. LS stores file entries in a linked list.

Bug Number 1

You've just completed the first version of LS.C, and you're ready for a test run.
You should have debugged the code as you programmed each new function,
but you were in a hurry to finish before the weekend. Now, you've got trouble.

When you compile and run the program by typing ls and pressing (Enter)
at the DOS prompt, you discover a serious problem-the display looks some
what like a directory, but its contents are unreadable. Something is trashing the
directory names. Could this be caused by a bad pointer?

Self test: Stop reading now.

Bug number 1-Test

You've already performed the only primary test possible for now-running the
program. Because it fails so miserably, there's not much else you can do to test
the code at this stage.

292 Part Two: Tbe Art of Debugging

Bug number 1-Stabilize

Even though testing seems pointless (you know the program is broken), a
repeatable test is a major element in all good debugging strategies. Without a
repeatable test, you'll have no way to verify that you've fixed a bug after you
discover what's wrong. Here's the stabilizing test that I devised:

1. Create a temporary directory named TEMP with the DOS command
md temp. Use the command copy ls.c temp to copy a test file to the
directory so LS has at least one file name to list.

2. Enter the command ls temp to list the contents of the TEMP directory.

3. Enter the command dir temp to use the DOS DIR command to list the
same directory. Compare the results from step 2. They should list similar
information.

This simple but effective test stabilizes the bug in three ways. It prepares
useful test data (the TEMP directory). It describes how to run LS to reproduce
the problem. And, it provides a way to verify whether the program works
(using DIR). The next step is to find the cause of the bug.

Bug number 1-Isolate

Obviously, the program's output is faulty. This might be caused by a bug in the
output routines, or it could be caused by faulty input. Or, both input and output
routines could be broken. When faced with similar situations, remember to
divide and conquer. Don't peer into every corner looking for bugs. Isolate their
nesting grounds so you can smoke them out.

Since input precedes output, let's first be sure that the program is reading
the directory correctly. There's no sense wasting time investigating the output
routines until we determine whether the input is getting in. Follow these steps:

1. Load LS.EXE into TD by typing the command td ls temp. (Supplying the
temp argument now is easier than using the Run:Arguments command in
TD later, which would have the same effect.)

2. Because root addresses the linked list of file-name entries (see Figure 11.1),
it seems like a good idea to monitor that pointer's value. Our first goal is to
examine how the file list forms. To add root to the Watches view, move the
cursor up a few lines to any character in the identifier root (line 72) and
press (Ctrl)-W. The window shows the pointer's data type and its current
value, ds:OOOO.

3. Press (FS) to step over each statement in ma i n () until root's value
changes. (I had to press (FS) four times.) This proves that
readDi rectory() is changing root-the expected behavior.

Chapter Eleven.· Hands-On Debugging for C 293

4. The directory should now be in memory, stored in the list that root
addresses. To find out if that's so, press (F6) to make Watches the active
window and then press (Ctrl)-1 to inspect the item addressed by root.
Notice that, although the inspector window lists the correct field names for
a directory item, the contents are gibberish. Obviously, read Di rectory 0
is not preparing the linked list as it should.

5. We need to dig deeper to investigate how readDi rectory 0 forms the list.
To do that, press (Esc) to close the inspector window and (F6) to make
Module the active window again. Move the cursor up one line to
readDi rectory 0 and press (F2) to set a breakpoint on that line. Press
(Ctrl)-(F2) to reset the program and press (F9) to run. When the
breakpoint stops the program, press (F7) to trace into readDi rectoryO.
(This is a typical sequence. First, step over various statements looking for
changes to variables or other events. Then, set a breakpoint just above that
location, rerun the program, and trace into a suspicious function call.)

6. The cursor should now be on the entry to readDi rectory(). Next, let's
find out exactly where root changes. Press (Alt)-BC to set a Changed
memory global breakpoint and enter root into the prompt box. Press
(Enter) or click the Ok button to close the box. You don't have to specify
root's size-TD uses the variable's size as the default count value.

7. Press (F9) to continue running the program. In a moment, the breakpoint
halts the program at #LS#210. (The line number may be different on your
screen.) Press (Enter) to clear the breakpoint message window and notice
that a statement has just assigned to root the address of a new item,
allocated by function newitemO. To examine that item, press (F6) to
make Watches current and then press (Ctrl)-1. So far so good-the pro
gram hasn't assigned any information to the new item, so the gibberish
inside the structure is expected.

8. The program is paused inside the while loop that reads directory informa
tion from disk. Press (Cursor Down) twice to highlight the att r field in
the inspector, then type 0 and press (Enter). This initializes the field
value so we can detect any changes made to it. Often, when variables
appear to be assigned scrambled information, it's a good idea to initialize
suspect variables this way. Otherwise, it's easy to miss where the faulty
assignment occurs. To continue looking for that assignment, press (F7)
four times to trace each statement while you watch the at t r field in the
inspector window for changes. (Notice that you can trace the code even
though the inspector is the top window-you don't have to make Module
the active window to do this.)

9. The inspector's contents change after the call to memcpy at line 216. But the
information inside the newly allocated item is still gibberish; therefore, we
know the bug occurs somewhere in the previous four lines, probably at
memcpy.

294 Part Two: The Art of Debugging

10. Some programmers at this point would trace the machine code to memcpy,
hoping to find a mistake in the runtime library. Don't do this-at least not
until you've verified that you have used that routine correctly.

11. So, let's look at the source of the data for memcpy. Because we've already
executed that line, press (Alt)-(F4) to go back one step, undoing the
effects of the function call. Notice that this also resets the data inside the
inspector. Press (F6) to make Module the active window. Move the cursor
to the line that calls memcpy (it should already be on that line), press
(Alt)-BD to delete old breakpoints, and press (F2) to set a breakpoint at
the new location. This will let us examine each loop as it reads one
directory entry from disk.

12. So we can view those entries, move the cursor to the f in &fb, the
argument passed as the source of the memory move. (At this point, local
variable fb holds raw directory information read from disk.) Press (Ctrl)-1
to open an inspector window for this information.

13. Notice that the file name is the single-character string . \0, which repre
sents the current directory. (If you don't see this string, make sure that
Options:Language is set to Source.) Press (F9) to run another loop and
the string changes to .. \0 representing the directory on the previous level.
Press (F9) again. This time, the name field equals LS. C\0. From these
tests, it seems as though the program is reading directory information into
fb correctly.

14. Where was that inspector to root? Press (Alt)-3 to bring its window
forward and compare the two structures. (You may have to rearrange the
windows so you can see both at the same time. If you accidentally closed
the inspectors, open two of them for root and fb using the Data: Inspect
command.) Obviously, the two records are different, even though the
memcpy function should have assigned the contents of fb to the item
addressed by root. No doubt about it, this is the bug.

Notice that the first field in fb is ff_reserved. The real information begins
at the next field-ff _att rib. And this is the problem. As now written, the call
to memcpy transfers information from the start of fb instead of from the
beginning of the ff_attrib field. The program reads the directory informa
tion correctly but assigns the wrong bytes to the items on the linked list.

Bug number 1-Repair

As it often happens, the repair is easy once you've located the source of the
trouble. Quit TD (press (Alt)-X) and load LS.C into your editor. Then, change
line 216 to:

memcpy(&p->attr, &fb.ff_attrib,

Chapter Eleven: Hands-On Debugging/or C 295

Recompile (tee -v ls) and run the repeatable test (ls temp). You should now
see normal file names and other directory information. Run the DOS DIR
command on the same directory (dir temp) to prove that the bug is fixed.
Apparently, it is. But, the program still isn't working correctly. LS and DIR now
show the same basic information, but the file times are different.

Bug Number 2
After fixing the first bug in LS, you retested the program and discovered another
problem-DOS DIR and LS report different times for the same files. This is
common. You fix one bug, and another surfaces. Good! This shows that your
testing strategies are flushing out bugs before your customers will see them.

Of course, the bad news is: you have another bug to fix.

Self test: Stop reading now.

Bug number 2-Test

To provide a few more test files, enter the DOS command copy ls.* temp. Or,
copy a few files from another directory. For a completely thorough test, you
could prepare dummy files with various dates and times including midnight and
noon. But you don't have to do that for this demonstration.

Bug number 2-Stabilize

The steps for stabilizing this bug are the same as before-enter the commands
ls temp and dir temp. You may also want to print copies of these test results
for reference while debugging. To do that, assuming you have a printer, of
course, enter the commands ls temp)prn and dir temp)prn. If you don't
have a printer, refer to Figure 11.2. (Of course, the file dates and times will be
different on your display.)

C:\>dir tenp

\Jolt.ne in crive C Is ffRl Dl9< C
C:\>ls tenp Di rectory of C: \ TEtfl

<DIR> 4-25-90 15:47 Pl1 ----d-- <DIR> +-25--93 11:47a
<DIR> 4-25--90 16:47 prl ----d-- <DIR> 4-25-93 11 :47a

ls.c 9422 3-27-90 4:49 en ----da LS c 9422 3-27-93 10:49a
ls.obj 3624 4-25--90 7:49 en ----da LS (BJ 362'1 '1-25--93 11:49a
ls.exe llffi0 4-25--90 8:49 en ----da LS EXE llffi0 4-25--93 11:49a

5 Flle(s) 19742720 bytes free

Figure 11.2. Sample directories of TEMP.

296 Part Two: Tbe Art of Debugging

Notice that the file sizes and dates appear to be correct. This suggests that
most of the program is working. Only the file times are wrong. The job, then, is
to isolate the section of buggy code that's responsible for displaying file times.

Bug number 2-Jsolate

Type td ls temp to load LS into TD. Again, supplying the temp argument now
is easier than using a command to do that later. Because we know that some
thing is wrong with the file times, we may as well start investigating the code
that's responsible for displaying those times. Follow these steps:

1. Press (Ctrl)-G to choose the Module window's Goto command. Enter
writeTime and press (Enter) to jump to that routine's source. (This is a
handy way to hop to specific functions. When you know the function
names, using Goto is much faster than paging through a long file looking for
subroutines.)

2. Press (F2) to set a breakpoint on the function declaration (line 2 71 in the
listing). We want to examine ti me arguments passed to the function, so
move the cursor to the tin ti me at the end of this line and press (Ctrl)-1 to
open an inspector window for this parameter.

3. Oops! TD displays the error message "Cannot access an inactive scope."
This makes sense. No statement has called wri teTi me; therefore, its parame
ters don't yet exist. Press (Esc) to clear the error message and press (F9)
to run the program up to the breakpoint you set earlier. (The cursor should
still be on time.) Press (Ctrl)-1 again. This time, the inspector opens
because the parameter is "visible" within the current scope.

4. If you printed a directory listing, compare it with the information in the
window. (If you don't have a printer, refer to Figure 11.3. Of course, the
information shown here will differ from the text on your display.) The
inspector shows the time for the first file. Compare that time with DIR's
output (Figure 11.2 if you don't have a printer). It looks as though the values
for struct's. hour and second fields at far right in the window are reversed.
(The hour is in 24-hour time.)

5. Note the struct values and press (F9). This runs the program to the next
writeTime call. Press (Alt)-(F5) to view the program's display. Compare
the file time with the values you noted, not the values now on-screen. Note

tioo=3=[t)[~~
17
11

Figure 11.3. Sample time inspector.

Chapter Eleven: Hands-On Debugging for C 297

those values for later. Again, hour and second are reversed. Press (Enter)
to return to TD's screen.

6. Repeat step 5 once or twice more. In each case, the fields are reversed-the
second field equals the correct hour as displayed by DIR. Good testing
strategies along with TD's ability to examine function arguments took us
straight to the buggy code.

Bug number 2-Repair

We've proven that the date Field structure's hour and second fields are reversed.
To repair the damage, change that structure's definition at lines 26-30 to:

typedef struct TIMEFIELD {

unsigned int second 5;
unsigned int minute 6;
unsigned int hour : 5;

} timeField;

Recompile and repeat the test to be sure that DIR and LS display the same
file times. You might also want to compare the new structure with your DOS
reference's description of the time field in a directory entry (not shown here).

Bug Number 3
To the right of every file's date and time, LS is supposed to display the file's
attributes. But, as it now operates, LS marks all file entries as directories (with a
lowercase d). Worse, trying LS on other directories shows that some entries
have the archive bit set; others don't, making it difficult to pin this bug down.

Table 11.2 lists the attribute settings that LS should display for files, directo
ries, and volume labels. But something is causing the program to show the
wrong facts.

Table 11.2. LS file attributes.

Attribute

a

d

h

r

s
v

Meaning

Archive bit (file is not backed up)

File is a directory

File is hidden

File is marked read-only

System file

Volume label

298 Part Two: Tbe Art of Debugging

Self test: Stop reading now.

Bug number 3-Test

LS seems to have a moving-target bug, one that changes depending on the input
fed to the program. In fact, when tested on some directories, the attribute
information appears to be correct.

At such times, when your tests indicate that a bug comes and goes as it
pleases, list your observations, paying no attention to order. Then, use that
knowledge to stabilize the bug. For example, you might observe that:

• When at least one archive marker (a) appears, all subsequent files have the
same marker.

• Directories that contain only directories list correctly. Normal files in sub
directories are marked incorrectly as directories.

• In some directories, other false attributes appear. For example, some files
are marked as hidden even though they're not.

Note: It may be difficult for you to simulate all of these effects. Your files are
different from mine, and the results of running LS will therefore differ, too. Don't
worry about these differences-they won't affect the following hands-on demon
stration. If you have a hard drive, try entering ls -a ' . That should demonstrate
that LS is not healthy.

Bug number 3-Stabilize

After recording your observations, look for facts that will help stabilize the bug.
In this case, the fact that all files in subdirectories are marked incorrectly as
directories gives a simple repeatable test. The other observations may be caused
by other bugs, or they might all be related. But to reduce the test to manageable
levels, it helps to pick one repeatable event and ignore the others.

This is a good rule of thumb to follow. When a bug exhibits many faces,
choose one for debugging. By narrowing your sights to one characteristic,
you'll simplify the debugging strategy. Then, after fixing that bug, if the others
disappear, you can safely assume they were related. If not, you have your next
debugging session cut out for you.

If your version of DOS has the ATTRIB command, follow these steps to
reproduce the directory and archive flag bugs (or, maybe it's the same bug). If
your DOS version doesn't have this command, use a commercial DOS utility to

Chapter Eleven: Hands-On Debugging/or C 299

change the archive bit as described here or skip the next four steps and
continue reading at "Bug number 3-Isolate." (This will not affect the hands-on
demonstration.)

1. Using the TEMP subdirectory from previous tests, enter attrib -a
temp '- *. * or use a DOS utility to turn off the archive flags for all files in
TEMP.

2. Enter Is temp. Notice that all files are listed as directories, but none of the
archive flags is set.

3. Set the archive bit of the first file in TEMP. For example, if that file is LS.C,
type attrib +a temp'- ls.c. (You can also use a DOS utility to perform this
step.)

4. Enter Is temp again. All files are still listed incorrectly as directories. But
now, all files also have their archive flags set, even though we set that flag
for only one file.

This test describes every step required to reproduce the bug. It takes
advantage of the earlier observations that all files are marked as directories and
that after one file's archive flag is set, other files show the same flag. The steps
are repeatable, nailing down this elusive bug so we can find and fix it.

Bug number 3-Isolate

In a normal setting, you would now load the program into TD and repeat the
previous test procedures to reproduce the bug. However, because some DOS
versions don't have an ATTRIB command, the following notes skip this part of
the debugging strategy. But no matter. TD can still help find the bug.

1. Load LS into TD with the command td Is temp.

2. Earlier, you used the Goto command to locate a function's source. Here's
another way that's handy when you can't remember the function's exact
name. In this case, let's suppose that you know the name begins with
"write." Press (Alt)-VV to view the program's variables (actually, the
window shows all global and local symbols, not only variables). Because C
adds an underscore to symbols, enter _w. If you make a mistake, press
(Home) and start over. As soon as you type the two characters, the
window shifts to the first matching entry. You should see the symbol
_write. Press (Cursor Down> to highlight the next line
Lwri teatt ri but es) and then press (Enter). This takes you directly to that
function's source.

3. The cursor should be on writeattributes' declaration. The function uses
one char parameter att r, which contains a file's attribute bits. A local string

I

300 Part Two: Tbe Art of Debugging

pointer s addresses a string of two blanks plus six dashes-the default
settings for a file with no flags. Six if statements test bits in at tr and
assign appropriate letters to the string before a call to pr i n t f displays the
result.

4. Apparently, the if statements are not setting the correct flags; therefore,
let's test the before and after conditions for each call to this function.
Because this report will be lengthy, to save time, we'll dump the informa
tion to the Log view.

5. First, set a breakpoint on the function declaration at line 287 in the original
listing. (The cursor should be on that line. If so, just press < F2).) Then,
without moving the cursor, press (Alt)-(F2) to open the Breakpoint
options dialog box for this breakpoint. Use a mouse or press (Tab) and
(Cursor Down) twice each to change Action to Log. Then, press (Tab)
again and enter attr as the Action expression. Press (Enter) to accept
your changes. Instead of halting the program, when the program reaches
the breakpoint's location, it will now log the value of att r for each file that
LS lists.

6. Next, set two more breakpoints by moving the cursor and pressing (F2)
one at the first if statement (line 291) and another at print f (line 297). As
you set each breakpoint, repeat step 5 to change the Action to Log, but this
time enter s as the Action expression for both breakpoints. (You can set
both breakpoints and then modify the options, or do them one at a time.)
This will log the string value before and after the i f statements assign
characters to the string.

7. Press (F9) to run. Notice that the program operates more slowly as
the breakpoint actions write information to the Log. When you see the
"Terminated" message, press (Enter) to clear that window. Then, press
(Alt)-VL to open the Log window and press (F5) to expand the view to
full screen.

Note: If TD displays "Not enough memory for selected operation," press (Esc) to
close the error-message window and then press (F6) two or more times to make
Vari ab Les active. Press (Alt)-(F3) to close that view, press (F6) again until Log
is active, and then press (F5) to zoom the window to full screen.

8. You are now seeing the before, during, and (almost) after pictures of each
call to writeAttributes (see Figure 11.4). The attr values appear to be
correct-Ox10 is a directory, Ox20 indicates the archive flag is set, and OxOO
is correct for normal files. (A good DOS reference explains these values.)
But the before and after strings are odd. At the second call to
writeAttributes (about eight lines down), the initial string has the same
value as it did just before the previous call ended. We've found the bug. The

Chapter Eleven: Hands-On Debugging for C 301

function is supposed to initialize the string at the beginning of each call.
Instead, it uses the left-over string values from previous executions.

Turbo Debugger Log
At writeAttributes att r = char I \x1 QI 16 COx1 D>
At #LS#291 s = char * ds:03AF II ------''
At #LS#297 s = char * ds :03AF II ----d-11
At writeAttributes attr = char I \X1 DI 16 C0x10)
At # LS#291 s = char * ds:03AF II ----d-11
At #LS#297 s = char * ds :03AF II ----d-11
At writeAttributes attr = char I I 32 COx2D>
At #LS#291 s = char * ds:03AF 11 ----d-11
At #LS#297 s = char * ds:03AF II ----da11

At writeAttributes att r = char I \QI 0 COxDD>
At #LS#291 s = char * ds:03AF II ----da 11

At #LS#297 s = char * ds:03AF II ----da 11

Terminated, exit code 0

Figure 11.4. Partial log of calls to writeAttributes.

Bug number 3-Repair

Notice from Figure 11.4 that the char variable in writeAttributes (line 289 in
the original listing) addresses location ds: 03AF (which might be different on
your system). But the variable is supposed to be local to the function-and that's
the key to understanding the source of this error.

The declaration char *sand the string assignment do not copy the charac
ters from that string to the variable-they merely assign the address of the
string constant to s. Because there is only one copy of the string in memory, any
changes are permanent.

Knowing this, the fix is obvious. The function must copy the string con
stant into another variable, and then insert any flag characters into the fresh
copy. To make this change, quit TD, load LS.C into your editor, delete line 289
and, in its place, insert these lines:

static char *source = 11
char s[9J;

strcpy(s, source);

------''· I

The first line defines a static char pointer named source, which addresses
a constant string of two spaces and six dashes. The second line creates a local
char pointers with enough space to hold the eight-character string plus a null
terminator. The third line copies the constant string (and its terminator) to the
local variable addressed by s.

302 Part Two: The Art of Debugging

Now that the string is a proper local variable on the stack, into which the
string constant is copied on each call to wri teAtt ri but es, the problem with file
name attributes is gone. After making these changes, run the earlier tests to
verify that the attributes display correctly.

BugNumber4

While finding and fixing the previous three bugs, you may have noticed
another one-file names are not sorted alphabetically. And the -n option, which
is supposed to turn off sorting, seems to have no effect. (To see the problem, try
the commands ls and ls -n.)

In your own code, when you discover other problems while searching for a
bug, note them for later. Resist the temptation to fix every bug in sight. That
will only complicate the current debugging strategy. And, if you fix two or
more problems at once, you could introduce new errors that your test pro
cedures won't catch.

Self test: Stop reading now.

Bug number 4-Test

Good test data and good debugging strategies go hand in hand. Test data can
come from various sources, but often, it's necessary to create some with
another program.

For example, Listing 11.2 creates dummy files in the TEMP subdirectory for
testing LS's sorting abilities. Save the listing as MAKETEMP.C and compile with
the command tee maketemp. Don't run the program yet.

1: '*
2: **
3: **
4: *'
5:

Listing 11.2. MAKETEMP.C.

Purpose: Make test files in TEMP subdirectory.
Author: Cc> 1990 by Tom Swan.

6: /* ---- Include header file */
7: #include <stdio.h>
8:
9: /* ---- Function prototype */

10: void makefileCchar *fname>;
11 :

Chapter Eleven: Hands-On Debugging for C

12: main 0
13: {
14: makefi le("temp\ \test .007");
15: makefi le("temp\ \zzzzzzzz. zzz");
16: makefileC"temp\\gggggggg.ggg");
17: makefi le("temp\\test.02011 >;
18: makefi le("temp\\s.z");
19: makefile("temp\\mmmmmmmm.mmm">;
20: makefi le("temp\ \ssssssss.sss");
21: makefi le("temp\ \a.a");
22: makefi leC"temp\\test.001");
23: makefi le("temp\ \aaaaaaaa.aaa");
24: makefi le("temp\ \b");
25: }
26:
27: /* ---- Create a file named fname */
28: void makefileCchar *fname)
29: {
30: FILE *f;
31:
32: if ((f = fopen(fname, "w")) ==NULL>

33: printfC 11 %s%s\n", "Error opening", fname >;
34: else
35: fclose(f);
36: }

Bug number 4-Stabilize

Follow these steps to create test data for the sorting bug:

303

1. Enter del temp, answer Y to the "Are you sure?" prompt from DOS, and
then run MAKETEMP (Listing 11.2) to create test files in the empty TEMP
subdirectory. If you receive any errors, check that TEMP is in the current
directory. If not, enter rod temp and then run MAKETEMP again.

2. Type ls temp to list the files in TEMP. They should be sorted alphabetically,
but, obviously, they are not.

3. Type dir temp and compare the DOS directory. LS and DIR list files in the
same order.

Bug number 4-Isolate

Let's review what we know about LS so far. We know the files are loaded into
memory correctly. We know the program can display file names. We also know

304 Part Two: The Art of Debugging

that the DOS- DIR command lists files in the same order as LS, implying that no
sorting is taking place. (That's confirmed also by the fact that the -n option
doesn't seem to work.)

These observations give valuable clues for debugging. If we assume that no
sorting is taking place, then the cause is either a problem with the program's
options switches or in the way it calls the library qsort 0 function. The first
problem is easy to check, and in fact, doesn't require loading the program into
TD. As you can see from the original listing, line 66 sets OPT_SORT to the value
FALSE. But, this should be TRUE in order to have the program sort file names by
default.

To repair this obvious mistake, load LS.C into your editor, and change line
66 to:

enum boolean OPT_SORT = TRUE;

Recompile (tee -v ls) and test. Despite fixing the obvious mistake, when
you enter ls temp, files still aren't sorted correctly. (You may even see some
gibberish again on screen.) We may as well assume that qsort 0 works-the
library routine may have a bug, but the problem is more likely to be found in
way LS calls that routine.

So, let's check the data structures first, then examine how qsort 0 acts on
them:

1. Load LS into TD with the command td -k ls temp. This passes the TEMP
subdirectory name to LS and enables keystroke recording, which we'll use
in a moment.

2. We want to test the before and after effects of calling sort Di rectory at line
85 in the original listing. Move the cursor down to that line (use the cursor
movement keys), and press (F2) to set a breakpoint there. Then, press
(F9) to run the program up to that line, halting the program before calling
sort Di rectory.

3. As you recall, LS uses two data structures: a linked list of file entries and an
array of pointers that address each entry (see Figure 11.1). To sort the file
names, instead of moving the items in the linked list, the sorting routine is
supposed to rearrange the pointers in the array.

4. To investigate why this isn't working correctly, first, let's examine the
linked list, addressed by root. Press (Alt)-DI, type root, and press
(Enter) to open an inspector window to the first item in the list. The top
line of the inspector shows the address of the root pointer, followed by the
address to which the pointer points. It also shows the fields in this item. To
examine the next list node, move the highlight bar down one line to the
next pointer field and press (Enter). This opens another inspector win
dow for the item addressed by that field. Repeat this step-highlight next

Chapter Eleven: Hands-On Debugging for C 305

in the new window and press (Enter). Notice that the name field shows
the file name for this entry. Continue opening inspectors until the next
field equals ds: 0000, the value that represents NULL and marks the end of
the list.

Note: If you see the message "Not enough memory for selected operation," press
(Esc) two times and then, instead of pressing (Enter) to open a new inspector,
highlight the next field and press (Ctrl)-D to choose the inspector window's
local Descend command. This replaces the contents of current inspector with the
next item from the list and, therefore, does not require TD to allocate additional
memory for another window. Continue highlighting next fields and pressing
(Ctrl)-D until next equals ds:OOOO.

5. Apparently, the linked list is sound-all the file names are there. Close all
inspectors by pressing (Alt)-(F3).

6. Press (F8) to step over the call to sort Di rectory. Then, examine the
i ndexArray array of pointers, which that function is supposed to initialize
and sort. To do this, press (Alt)-DI, type indexArray into the prompt
box, and press (Enter).

7. The array appears to hold only one item at [Q J, but this is
understandable-lines 241-242 allocate only as much memory to the array
as needed to hold one pointer for each linked list item, a fact that TD can't
know because this calculation is made at runtime. To see the entire array,
you have to tell TD the array's current size. Press (Ctrl)-R to select the
Range command, press (Backspace) once or twice to erase the default
range of 5 or 10, enter dirCount, and press (Enter). (The complete entry
should read 0, di rCount.) As lines 241-242 show, LS allocates di rCount *
sizeofCitemPtr) bytes to the array. Because TD already knows the array
elements are item pointers, you need to tell the debugger how many items
(not bytes) to display. Specifying di rCount instead of a literal value is the
simplest way to do this.

8. Use a mouse (or (Ctrl)-(F5), (Shift)-(Cursor), and (Enter) keys) to
resize the inspector (see chapter 4) to show all 13 elements from [QJ to
[12 J. To examine the data at the addresses in those array positions, move
the highlight bar down to any bracketed index and press (Enter). After
viewing that item, press (Esc) to close the inspector window, move the
highlight bar to another index, and press (Enter). Repeat several times.
Notice that the file names are identical to those you examined in the linked
list earlier.

9. These examinations tell us that the linked list and the array of pointers
contain the expected information. Obviously, then, i ndexAr ray's pointers
aren't being sorted by sort Di rectory. Because we've gone past that

------·--.. -----------------------------------

306 Part Two: 1be Art of Debugging

function call, press (Alt)-(F4) to back up one statement, and then press
(F7) to trace into sortDi rectory. (Leave the indexArray inspector open.)

10. You should now see sort Di rectory's source code in the Modu Le window.
(Move the i ndexArray window aside if necessary.) Press (F6) twice to
make the Modu Le window current, move the cursor down to the call to
qsort (line 252 in the original listing), and press (F2) to set a breakpoint
there. Then, press (F9) to run the program up to that location. We want to
investigate what qsort does to indexArray; therefore, press (F6) again to
bring the inspector window back into view. Note the addresses in the array
and press (F8) to step over qsort, which should rearrange the addresses
in the array. But the addresses didn't change. Why?

11. To find out, we need to dig further into the call to qsort, but because this
is a library routine, probably coded using instructions that delete TD's
event history, we can't back up by pressing (Alt)-(F4) as we did earlier.
Instead of repeating the previous nine steps manually, press (Alt)-VE to
open the Execution history view. Press (Tab) to move the highlight bar
into the bottom pane of this window, which, because we started TD with
the -k option, displays recorded events. Press (Cursor Up) once to
highlight the breakpoint at the call to qsort, then press (Ctrl)-K. Thanks
to TD's keystroke recording, this repeats all the keystrokes you entered up
to that point in time. After a few moments, the action stops with the cursor
poised at the qso rt function call.

12. Press (Alt)-VC to open the CPU window, then press (F7) seven times to
trace each instruction up to (but not including) ca LL _qsort. These instruc
tions push arguments onto the stack for the function call. Before tracing
that call, let's examine the arguments on the stack, displayed in the lower
right pane. Because C pushes function arguments in reverse order, the
stack pointer should address the first item in i ndexArray. On my display,
the stack shows the address 0778 hex. (This and other addresses may be
different on your screen.) To verify this address, press (F6) to bring back
the indexArray window and note the address below the window's top
border. (If the window is gone, press (Alt)-DI and enter indexArray.)
On my display, this line shows @63C8:0778: ds:OA80. The first address
(63C8:0778) shows where the indexArray pointer is stored. The second
(ds:OA80) shows where that pointer points. But the stack contains the
pointer's address; therefore, qsort is sorting the wrong data! The call to
qsort should push the pointer's value, not its address. By isolating the
problem and comparing addresses, we found the bug.

13. To verify this without leaving TD, we can patch the argument on the stack.
Note the correct address at right on the first line of the inspector (ds: OA80
for me), press (F6) three times to make CPU the active window and then
press (Tab) three times to highlight the stack pane in the lower right
corner. Enter the value of the pointer-Ox0a80 for me, but probably
different for you. Just type this value and press (Enter) to change the

Chapter Eleven: Hands-On Debugging/or C 307

word on the stack. Don't forget to preface the hex value with Ox. Verify
that the stack entry changes to the value you enter.

14. Press (F9) to run the program to completion. Press (Enter) to clear the
"Terminated" message. Then, press (Alt)-(F5) to view the output. The
directory is now sorted correctly. Press (Enter) to return to TD.

Bug number 4-Repair

In this case, we know the cause of the bug, and we've already verified the fix by
patching a qsort argument on the stack. The bug is caused by passing the value,
not the address, of indexArray to qsort. To correct the problem, quit TD, load
LS.C into your editor, and change line 252 to:

qsort(indexArray, dirCount, sizeof(itemPtr), itemCmp>;

In other words, remove the & from the &i ndexArray argument. All else stays
the same. Recompile and test. TEMP and other directories are now sorted
correctly.

Bug Number 5

The program seems to be working much better now. Directories are sorted,
dates and times appear to be correct, and file sizes compare with the informa
tion reported by DOS DIR. It's time to print the labels and ship the product.
Right?

Almost. A beta tester just phoned at 4:55 pm on Friday afternoon (and,
naturally, you're leaving for the mountains tomorrow) to report that the -r
option isn't working. According to the program's documentation, this option is
supposed to display a wide directory in row order. Unlike the -w option, which
lists files sorted in columns like a newspaper's, the -r option should display files
similar to DIR's /w option.

Strangely enough, however, when combined with -w, the -r option works as
it should! In other words, as the beta tester reported, the command ls -r temp
fails to produce the expected wide directory, but the two commands
ls -w temp and ls -r -w temp work correctly. You try those three commands
and discover the report is correct. Unless you can find and fix the bug quickly,
it's goodbye mountains.

Self test: Stop reading now.

308 Part Two: The Art of Debugging

Bug number 5-Test

This bug brings up the difficult question, "How much testing is enough?" You
can't feed LS and most other programs every possible input value they might
have to handle. There's probably not enough time in the universe (not to
mention this evening) for that.

Even limiting the tests to all valid program options is impractical-there are
127 unique combinations of LS's seven option letters. (In other words, we can
assume that -n -u give the same results as -u -n.) But if option order does matter,
it would take 13,699 tests to cover all possible combinations of just seven
options! (That is, 7 + (7 x 6) + (7 x 6 x 5) + ... + (7 x 6 x 5 x ... x 1).)

Devising good tests that cover midrange and extreme cases is the only
reasonable answer to this common dilemma. It's just not possible to test every
possible input combination. In this simulation, at least we're lucky to know
which options work and which don't. But, in "real life," it's often necessary to
choose reasonable subsets of all input values to find similar bugs. This points
out how important it is to create test data with great care. The success of your
programs may depend on it.

Bug number 5-Stabilize

Armed with the TEMP subdirectory from the previous test plus the beta tester's
report, we can design a stabilized test procedure:

1. Enter ls temp. The directory displays normally.

2. Enter ls -w temp. The directory displays correctly in column order.

3. Enter ls -r temp. The directory should display in row order. Instead, it
shows the same results as in step 1.

4. Enter ls -r -w temp. The directory displays correctly in row order. This is
the result that should be given for step 3.

Bug number 5-Isolate

The stabilized test suggests an action plan: find and compare the statements that
generate the good and bad results. Because some option-letter combinations
work correctly, while others don't, comparing the good actions to the bad may
tell us what's wrong:

1. Load LS into TD with the command td ls. You don't need to supply the
TEMP directory name this time.

Chapter Eleven: Hands-On Debugging for C 309

2. Move the cursor to OPT_ALLFILES (line 62 in the original listing). Press
(Ctrl)-W to add this option to the Watches window. Then, move the
cursor down to the next option (OPT_ HELP) and press (Ctrl)-W to add it to
Watches. Repeat these steps four more times to add all seven OPT variables
to the window.

3. Press (Ctrl)-0 to return to the origin in the Module view. Then, move the
cursor to if COPT_HELP) (line 79) just below the call to getOptions and
press (F2) to set a breakpoint there. This will stop the program so we can
inspect the option settings in Watches. Press (F6) to make Watches the
active window to make it easy to copy the values to the Log view for later
inspection.

4. Type (Alt)-RA and enter the command-line argument temp. Press
(Enter), then press (Enter) again to answer Yes to the "Reload pro
gram ... " prompt, and press (F9) to run the program up to the breakpoint.
Press (Alt)-WD to dump the current window (Watches) to the Log view.

5. Repeat all keypresses in step 4 three more times with one difference: Each
time, substitute for temp the test arguments -w temp, -r temp, and
-r -w temp from the stabilized test procedure. This copies the entire series
of test results to Log, making it easy to compare them.

6. To do that, press (Alt)-VL to open the Log window and press (F5) to
zoom the window to full screen. You should see four sets of option
variables-one set for each of the previous test runs.

7. We know that the last set of values (for options -r -w) represents the values
that should be used for the third test (-r). The first two sets show values for
tests that work correctly. So, compare the last two sets. The last set should
equal the third, but, obviously, it doesn't. OPT_LONG is TRUE in the third set
but FALSE in the fourth. This is the reason the directory displays in long
form with the -r switch-OPT_LONG should be FALSE to make the directory
display in wide style.

8. The next step, then, is to trace into get Options to see how the program
sets options for the -r option. Press (Alt)-(F3) to close the Log window,
(F6) to make Module the active window, and (F2) to clear the breakpoint
at the if statement. Press (Alt)-RA and enter -r temp as the command
line argument, then press (Enter) twice to accept the new arguments and
reload the program.

9. Press (F7) twice to trace into the call to get Options. Move the cursor to
the s w i t ch statement (line 109) and press (F2) to set a breakpoint there.
Press (F9) to run up to the breakpoint and move the cursor to ch, the
variable that should hold option letters entered as the program's argu
ments. Press (Ctrl)-1 to open an inspector window. This shows the option
character to be 'r ', which is correct.

310 Part Two: 1be Art of Debugging

10. Press (Esc) to close the inspector and press (F7) three times to follow the
switch statement's logic. It correctly selects case' R ',sets OPT_ROWORDER to
TRUE, and hops back to the top of the while.

11. Press (F7) four more times to examine the next argument. This time, the
program calls strcpy to copy the argument text to the global path. Press
(F7) once more, and the code jumps to the end of getOptions. Look at
the option settings in Watches. OPT_LONG is still TRUE, but it should be false.
We've confirmed the bug. OPT_LONG should be set to FALSE to display a
wide directory for the -r option.

Bug number 5-Repair

Summary

Quit TD and load LS.C into your editor. The obvious repair is to add this
statement between lines 120 and 121 (just below OPT_ROWORDER =TRUE):

OPT_LONG = FALSE;

Although that works, notice that the next case executes this same state
ment; therefore, another repair is possible, one that employs an infamous C
programming trick. Just remove the break statement at line 121, letting the case
for 'R 'fall through to the case for 'W'. You don't need to enter the assignment
to OPT_LONG after all. (If you did that, delete the line.)

Often, a problem in a switch statement is caused by a missing break. But,
this time, just the opposite caused the bug-an extra break that wasn't needed.
Careful comparisons of variables and a repeatable test procedure revealed the
cause of the bug.

Be sure to try the ls -r and ls -w commands to determine whether the bug
is fixed. (And, enjoy your trip to the mountains.)

This chapter lists a buggy program (LS.C), describes five bugs, and shows how
to use TD to find the source of each problem. You can use the chapter as a
hands-on demonstration of debugging techniques or as a self test of what
you've learned so far. (See chapters 13 and 15 for similar hands-on sessions using
Pascal and assembly language.)

Chapter 12

Common Pascal Bugs

OF ALL high-level languages, Pascal does more than most to guard against
common programming errors. Pascal's strong type-checking and other checks
and balances help ensure that assignments and variables passed to procedures
and functions are the correct data types. And, in Turbo Pascal, automatic
range- and stack-checking options can trap problems during compilation
and at runtime, preventing many common bugs from taking hold in finished
code.

This chapter explores Pascal's well-known (and a few not so well-known)
bugs and shows how to use TD to find them. The material is organized by
complexity, starting with simple errors in Pascal etiquette and progressing to
more scandalous blunders that have been known to crash even the most
carefully arranged events in Pascal programs.

Typos and Other Ink Spots

More than a few bugs are caused by simple typing mistakes. Misplaced com
ment brackets, poor indentation, and accidental redefininition of standard
procedures and functions are almost always caused by typos. Like an ink spot
on a music score, even one misplaced symbol can throw a Pascal program's
orchestration out of tune.

The Case of the Missing Comment Bracket

Unfortunately, TD can't help you to find the first and, perhaps, most common
Pascal source code typo. Even so, this bug pops up all the time, and it deserves
a dishonorable mention here.

311

312 Part Two: The Art of Debugging

Whenever I receive a strange syntax error message during compilation, I
usually find a misplaced comment bracket somewhere. A common symptom of
this problem is the disappearing procedure, illustrated in Listing 12.1,
BADBRACE.PAS.

Listing 12.1. BADBRACE.PAS (with bugs).

1: program badBrace;
2: var i : integer;
3:
4: procedure something(var i : integer >;
5: begin
6: if i < 100 then inc(i)
7: else i := O;
8: end; { something)
9:

10: procedure somethingElse;
11: begin
12: writeln('Value of i =
13: end; { somethingElse }
14:
15: begin
16: i : = 100;
17: something(i >;

) .
I

18: somethingElse; { Unknown identifier error! }
19: end.

Compiling BADBRACE with TP produces Error 3: "Unknown identifier"
at the last statement before end. The error message is no help, however, because
the actual mistake occurs much earlier in line 8 at the end of procedure
something, where a right parenthesis appears instead of the correct right brace.
Because Pascal comments may extend over multiple lines, the faulty comment
continues to the next right brace-in this case, to the end of the next pro
cedure, somet hi ngE l se; therefore, the compiler "sees" all of somet hi ngE L se's
statements as a long comment. Because those statements aren't compiled as
instructions, an error occurs when another statement tries to call the pro
cedure. To fix the problem, change line 8 to:

8: end; { something }

To determine whether a missing comment bracket is ruining the day, use
your editor's search command to locate right and left braces. You can then
match them visually. Or, run the GREP utility (located on your TP diskettes) to
display all lines with left braces-you might quickly spot a mistake that you may

Chapter Twelve: Common Pascal Bugs 313

easily miss by hunting through 10,000 lines of source text. (This works only if
the program uses single-line comments.) Here's what GREP displayed when I
fed it BADBRACE.PAS, using the -n option to display numbered lines containing
the character {:

C:>grep -n { badbrace.pas
File BADBRACE.PAS:
8 end; { something)
13 end; { somethingElse }
18 somethingElse; { Unknown identifier error! }

ELSE with Wrong IF-THEN

Nested for loops are easy prey for a misplaced e ls e clause-an error that can
be difficult to find. Listing 12.2, BADELSE.PAS, shows a classic case.

Listing 12.2. BADELSE.PAS (with bugs).

1: program badElse;
2: uses crt;
3: var
4: ch : char;
5: fileSaved : Boolean;
6:
7: function answerYes(message
8: begin
9: write(message >;

10: ch := readKey;
11: writeln(ch>;

string) Boolean;

12: answerYes := (ch = 'Y') or (ch = 'y' >
13: end;
14:
15: begin
16: fileSaved :=FALSE;
17: if not fileSaved
18: then
19: if answerYes('Save file? ')
20: then writeln('Saving file'
21: else
22: writeln('Ending program: file is saved')
23: end.

BADELSE emulates the way some programs prompt you to save changes to
a disk file before quitting. If fi leSaved is false, the program displays "Save

314 Part Two: 1be Art of Debugging

file?" If fi leSaved is true, the program skips the prompt and tells you the file is
saved-or, at least, that's what should happen. (The sample doesn't actually
write any file data, so don't be concerned about erasing something by accident.)
When you answer N to the "Save file?" prompt, instead of quitting as it should,
the program displays "Ending program: file saved."

Obviously, BADELSE has a bug-apparently caused by line 22 executing for
the wrong condition, that is, when fi leSaved is false. That line should execute
only when fi leSaved is true. Now that the bug is out in the open and stabilized
by a repeatable test, the next step is to load the program into TD and look for
the cause.

First, set a breakpoint on the statement (line 22) that's executing out of
place. Then, open the View menu's Breakpoints window and press (Ctrl)-S to
set the breakpoint's options. Change Condition to Expression true and enter
not fileSaved under Condition expression. Press (Enter) to close the win
dow and then press (F9) to run the program. Answer N to the prompt, and
after the breakpoint stops the program, examine the conditions that led to that
statement running at the wrong time.

The fix in this case is to add ·begin and end keywords to force the
else clause to go with the appropriate then. This takes extra space and typing
time, but there's no runtime penalty for bracketing single statements, and it's a
good way to avoid this common problem. Here's how to fix BADELSE's lines
16-22:

if not fileSaved then
begin

if answerYes('Save file? ') then
begin

writeln('Saving file' >
end

end else
writeln('Ending program: file is saved')

In larger programs where multiple statements run at the wrong times, use
TD to identify the misplaced else. In general, follow these steps:

1. Set a breakpoint on the statement that appears to be executing at the wrong
time.

2. Modify the breakpoint with the View:Breakpoints and Set options
commands to be triggered on Expression true, with a Condition expres
sion equal to the conditions that should not be true for this statement.

3. Run the code until it fails. Examine all nested if statement control vari
ables. This should tell you which nested statement is attached to the wrong
else.

Chapter Twelve: Common Pascal Bugs 315

Disappearing Standards

Here's the situation. You've been using Turbo Pascal for years. Then, all of
a sudden, a familiar library routine fails. For example, Listing 12.3,
STANDARD.PAS, prompts for a name and address. Line 36 then calls the stan
dard string procedure insert to change "Tom Jones" to "Mr/Mrs Tom Jones."
But, when you run the program, instead of that result, every name comes out as
"l:Mr/Mrs." What's going on?

Listing 12.3. STANDARD.PAS (with bugs).

1: UV-}
2: program standard;
3:
4: type
5: rec = record
6: name : string[40l;
7: address : string[40l;
8: end;
9:

10: var
11: r : rec;
12:
13: procedure insert(s : string; var d string; n
14: var
15: temp string[8l;
16: begin
17: str(n, temp >;
18: d :=temp+ '·' + s;
19: end;
20:
21: procedure insertNameC r : rec >;
22: begin
23: { insert new record in data base }
24: writelnC r.name >;
25: writeln(r.address >;
26: writelnC 'Inserted' >;
27: writeln;
28: end;
29:
30: procedure getrec(var r
31: begin
32: write('Name? ' >;
33: readlnC r.name >;
34: write('Address? ' >;

rec >;

integer >;

316 Part Two: The Art of Debugging

35: readlnC r.address >;
36: insert('Mr/Mrs ', r.name, 1 >;
37: end; { getrec }
38:
39: begin
40: getrecC r >;
41: insertNameC r >;
42: end.

Investigating the bug, you first check the syntax for the insert statement at
line 36, and it appears to be correct, inserting "Mr/Mrs" into r. name at index
position 1. But, something is causing r. name to change unexpectedly-and,
that's the key to finding the error. Load the program into TD and follow these
steps to find the statement that changes r. name:

1. Choose the Breakpoints:Changed memory global command and enter
r.name as the breakpoint expression. Despite the prompt in the window
title, you don't have to enter a count-TD monitors the entire variable by
default.

2. Press (F9) to run, and enter TomJones. The program breaks at line 34. No
problem there. The read ln statement at line 33 is supposed to change
r. name.

3. Press (F9) again to continue. Enter Mr. Jones's address when prompted.
Surprisingly, this triggers another breakpoint at line 19.

Look closely at the Module window. You've found the bug. Lines 13-19
redefined the insert procedure, which you added td insert line numbers into
another section of the program (not shown in this simplified example). Just by
accident, the redefined routine has the same name and identical parameters as
the library standard, which you intended to call from line 36.

The fix is easy-rename the new insert routine and try not to use standard
procedure and function names for your own code in the future. Unfortunately,
as the number of standard routines in TP's library grows, it's becoming harder
to avoid making this mistake. Try to be as familiar as you can with TP's library.
The more you know about existing identifiers, the less frequently you'll experi
ence a problem with disappearing standards.

Variable Dilemmas

All variables exist somewhere in memory, and as a result, until you assign a
value to a variable, it will have whatever value happens to be at that address
when the variable comes into scope. The so-called uninitialized variable is

Chapter Twelve: Common Pascal Bugs 317

actually initialized for you by whatever was left at that memory location by
another process. An uninitialized variable has an unpredictable value, not a
nonexistent one. Until you assign it a value, there's no way to predict what a
variable's initial value will be.

Uninitialized variables often cause bugs that seem to be alive. They hide
from your attempts to catch them-a mark of the intermittent or moving-target
varieties introduced in chapter 7. First, you run a program and it fails. Then,
you add a statement like this to display a test value:

writelnC 'Testing. count= ', count >;

And the bug disappears! But when you remove the test line, the bug does not
come back as you expect. So, you conclude, maybe the problem was just a
"glitch." Chalk one up for cosmic rays. Then, later on-maybe even days later
you make another change and there's that bug again.

Frustrating, isn't it?
Luckily, this common mystery is not difficult to solve. Whenever you

notice that conditions change after you add a seemingly innocent statement, the
cause is almost always an uninitialized variable. (But see the section on pointer
bugs later in this chapter.) The new statement causes addresses of other state
ments to change and, therefore, may affect the starting value of the uninitialized
variable at its new memory location. Even a small change to the program can
cause the compiler or editor to run differently, thus filling different sections of
memory with new values that are left in RAM when the program runs.

A little medicine can prevent future headaches. Always initialize your vari
ables, even when this means executing a few more statements than necessary.

But when that's impractical, resist the urge to load the program into TD and
start poking around. You'll rarely find the bug that way. Instead, make every
possible attempt to stabilize the error. Reboot. Write a program to fill memory
with zeros before executing the buggy program. Duplicate as many runtime
conditions as you can to force the bug into the open. Only after you can repeat
the problem should you load the program into TD. Then, use code breakpoints
to isolate the section of code that's causing the trouble and look for unini
tialized variables.

It may also be useful to log assignments to one or more variables while the
code executes. Doing this may show you which variables are not assigned initial
values when they should be. For example, here's a printout of the activity log
for changes made tor.name in STANDARD.PAS (Listing 12.3):

Turbo Debugger Log
At STANDARD.34 r.name = 'Tom Jones' STRING[401
At STANDARD.36 r.name = 'Tom Jones' STRING[40l
At STANDARD.19 r.name = '1:Mr/Mrs ' STRING[40l
Terminated, exit code 0

318 Part Two: The Art of Debugging

After loading STANDARD.EXE into TD, follow these steps to create this log:

1. Use the Breakpoints: Changed memory g Loba L command to set a breakpoint
to r. name.

2. View the Breakpoints window and press (Ctrl)-S to Set options. Change
Action to Log and set Action expression tor.name.

3. Press (F9) to run the program. Enter sample data. When the program
ends, press (Alt)-VL to view the Log window.

You might also want to write the log to disk. After step 2, open the log file by
pressing (Alt)-VL(Ctrl)-0. Choose the default file name or enter a different one.

Global Variable Wars

Use global variables only where strictly required. Never declare simple globals
for multiple subroutines to use. The most common conflict occurs in innocent
looking code like this:

for i := 1 to 100 do
something;

If i is a global variable and if procedure something also uses i, the for loop
may go haywire. Using global variables this way is almost always a bad idea. A
better plan is to declare loop controls as local variables in procedures and
functions.

A good way to resolve a global variable conflict is to set a breakpoint to
occur every time a suspect variable changes value. That way, you can examine
all statements that affect the variable-you'll probably find that two or more
procedures refer to the same global variable by mistake.

To do this, load the program into TD and add the variable to the Watches
window so you can monitor its value. Then, choose Breakpoints: Changed
memory g Loba L, which prompts you to enter an address. Just enter the variable's
name-despite what the prompt says, you don't need to know the address. (TD
evaluates a variable name as an expression, reducing it to that variable's address
in memory.) Now, press (F9) to run the program. Every time the variable
changes, the Modu Le window will display the statement that made the change.

Home on the Range Error

Accessing array indexes outside of an array's declared boundaries can lead to all
sorts of disasters by overwriting other variables or code in memory. If variables

Chapter Twelve: Common Pascal Bugs 319

seem to change on their own when other unrelated statements execute, a likely
cause is an array-index fault, also known as a range error.

The best medicine against range errors is to use Turbo Pascal's [$R+] switch
to generate automatic checks for assignments to subrange variables and to array
indexes. Illegal values will then halt the program with a runtime error.

If you suspect an array-indexing range error has occurred, and you don't
want to switch on automatic runtime checks, use the Breakpoint menu's
Expression true g loba L command and enter an expression such as:

(index < 0) or (index > 99)

Run the code by pressing (F9). The program will halt if index is not within
the range 0 to 99.

How to Find a Runtime Error

Follow these steps to locate the source of a runtime error:

1. Note the address in an error message such as Runtime error 105 at
0084:0026.

2. Load the program into TD or reset (press (Ctrl)-(F2)(Ctrl)-0 to view
the main program module). The reported runtime error address is relative
to this module, so it's important to have it in view in the Module window.

3. Press (Ctrl)-G and enter the reported address in hexadecimal, adding the
code-segment register CS. Don't forget the dollar sign-Pascal's hexadeci
mal indicator. In this case, you would enter (cs+ $84:$26).

4. In the Module window, you should now see the statement after the one that
caused the error. If the bug's cause is still not obvious, set a code breakpoint
((F2)) at this location or a little earlier, reset ((Ctrl)-(F2)), and run
((F9)). You can then use other TD commands to examine variables and
statements that led to the problem.

Looping Once Too Many Times

Related to array-indexing problems is a loop that loops once too often. Most
programmers learn the hard way not to write code like this:

const

var
count = 100;

a array[0 .. count - 1 l of integer;
integer;

320 Part TWo: The Art of Debugging

begin
for i := 0 to count do

a[iJ := i;
end.

That program has a serious bug. Although the programmer carefully
declared a constant count representing the number of items to store in an array,
the array is indexed starting at 0, not l; therefore, the highest possible index
value is 99, not 100. The range 1..100 and the range 0 .. 99 both cover 100 values.
The range 0 .. 100 covers 101 values-the number of times the faulty for loop
executes, which is clearly a mistake. The correct loop is:

for i := 0 to count - 1 do
a[iJ := i;

However, because you may forget to subtract 1 from count in all such cases, it's
usually wise to add two more constants:

con st

var

count = 100;
lowindex = O;
highindex =count - 1;

a : array[lowindex .. highindex J of integer;

By specifying the index limits in the const section, you reduce the likeli
hood of introducing errors later. You can now rewrite the for loop:

for i := lowindex to highindex do
a[iJ := i;

Finding loops that execute too many times is similar to finding outcof-range
index values. Monitor the control variables with breakpoint expressions and in
the Watches window. Or, enter a Changed memory global breakpoint for an
expression such as a[maxlndex + 1], which halts the program if a statement
assigns a value just after the end of the array-probably the most common form
of this mistake.

Procedural Predicaments

The concept of a subroutine is probably one of the oldest paradigms (concep
tual models) in computer programming. Pascal uses two kinds of subroutines:
procedures and functions. Procedures run where their names appear in state-

Chapter Twelve: Common Pascal Bugs 321

ments. Functions run where their names appear in expressions. For simplicity,
I'll refer to both kinds as procedures in this section.

Mixing Variable and Value Parameters

Pascal programmers often confuse value and variable parameters declared in
procedures. The two key points to remember are:

• A value parameter is a copy of a variable's value passed to a procedure;
therefore, changing the parameter inside the procedure does not affect the
original variable.

• A variable parameter is passed as the address of a variable; therefore,
changing the parameter inside the procedure also changes the original
because it refers by address to the original variable.

The classic symptom of a value- or variable-parameter mixup resembles the
uninitialized variable ailment described earlier. Despite the fact that you care
fully initialized your global variables, the code fails with index-range errors,
pointer problems, and other ills. Just about any kind of bug can be caused by an
uninitialized variable, so this is a difficult problem to pinpoint.

One solution is to monitor suspect variables at the beginning and end of
every procedure. To do this, set a Changed memory global breakpoint on
register BP. Because BP is set equal to SP at the start of every procedure and
then restored before the procedure finishes, this trick is a handy way to halt the
program at the beginning and end of every procedure. Press (F9) to run and
choose View:Variables to examine arguments passed to value and variable
parameters.

You may also want to log values passed to procedures instead of halting the
code. To do this, choose the View: Breakpoints command, highlight the break
point you set earlier, and press (Ctrl)-S to set Action to Log and Action
expression to the name of a parameter to monitor. Run the program and then
press (Alt)-VL to view the logged information. This will show all values passed
to this procedure's parameter.

String Length Problems

Procedures that process string parameters are most useful when they can work
on strings of any length. For example, the classic procedure to convert (or
"bump") a string to uppercase is:

procedure bumpstrup(vars : string >;
var i : integer;

322 Part Two: Tbe Art of Debugging

begin
for i := 1 to length(s do

s[i] := upcase(s[i]
end; { bumpstrup }

By declaring parameter s of type string, which is equivalent to the
maximum-length string of 255 characters, the procedure can accept strings of
any length. Even so, the following does not compile:

var s20 : string[20];
begin

s20 := 'abcdefg';
bumpstrup(s20 >;

end;

Turbo Pascal rejects the 20-character string argument passed to bump st rup
because the procedure's parameter is declared as a variable string of 255
characters. If the procedure changes any byte in the string beyond s [20], it
could overwrite memory addresses that don't belong to the original string. Of
course, the for loop in bumpstrup prevents this, but the compiler isn't smart
enough to make that observation; therefore, the fix is to turn off string-length
checking when calling the procedure:

{$V-} bumpstrup(s20 >; {$V+}

That compiles and runs, but it also introduces the danger that bumpst rup
may now write beyond the declared length of s20. If, for example, the for loop
in bump st rupx were changed to:

for i := 1 to 255 do
s[i] := upcase< s[iJ >;

the code would merrily overwrite the data at s [21 J to s [2 5 5 J despite the fact
that the official end of the string is at s [20J.

To find out if a string-length error is causing a bug, try changing all short
string-variable declarations such as string [20 J to plain string types. Then rerun
the code. If the bug disappears, examine all procedures with var string
parameters, using TD to monitor index values and string lengths in the Watches
window.

Another good way to find these kinds of errors is to set an Expression true
global breakpoint on the string length. Enter an expression such as length(s)
) 20 to halt the program if the string length ever grows beyond its declared
limit. Or, instead of a literal maximum length value, use the expression
length(s)) = sizeof(s), which has the same effect.

Chapter Twelve: Common Pascal Bugs 323

Functional Foul Ups

A misused function is at the bottom of many subtle bugs. Because functions are
used like constants in expressions, they can obscure their effects on a program.
A bug that appears to be caused by the expression may actually be the result of a
function that changes a global variable or that calls a critical system routine at
the wrong times. Such bugs have definite symptoms described here that, when
you come to recognize them, will help you to find and fix the problems.

Side Effects

The classic side effect is a function that changes a global variable on which the
function depends. The standard IoResu l t function is an prime example. For
example, this does not work:

{$1-}

begin
assign(f, 'FILENAME' >;
reset (f >;
if IoResult <> 0 then
begin

writelnC 'Error#', IoResult >; { ??? }
halt(IoResult)

end;
end.

Errors detected by the reset statement cause IoResu l t to return a nonzero
value. The if statement tests for that condition and halts the program if any
errors occur. No problem there. But running the code always displays "Error
#0" no matter what caused reset to fail. Why?

This problem is due to misunderstanding IoResu l t's intentional side effect.
When an I/O error occurs, reset and other I/O routines store an error code in
an integer system variable named InOutRes. IoResult returns this value, but it
also resets the value to 0-an action that's required to allow future I/O opera
tions, which examine InOutRes to see if any pending errors are unresolved. If
the function didn't do this, you'd have to reset the internal value with a
program statement after every I/O error. IoResu l t saves you that trouble by
doing this automatically, but in the process, it introduces the side effect that
every subsequent call to the function with no intervening I/O operation always
returns 0.

Finding the source of similar side effects is difficult. For instance, in the
previous sample, you may incorrectly assume that the write l n statement is at
fault and waste time debugging the code at this place in the program. To avoid

324 Part TWo: The Art of Debugging

making that mistake, when examining expressions that call functions, inspect
or watch all global variables used by the functions. Add those variables to a
Wat ch es window or set Changed memory global breakpoints on selected vari
ables to monitor when they change.

After stabilizing a side-effect bug, use a temporary variable to store the
function result. This usually repairs the problem. For example, you can correct
the previous code with:

{$I-}

var
resultCode : integer;

begin
assign(f, 'FILENAME' >;
reset(f) ;
resultCode := IoResult;
if resultCode <> 0 then
begin

writeln('Error#', resultCode >;
halt(resultCode)

end;
end.

This Way Out

Designing Pascal functions is like designing prisons. You must be sure to guard
all the exits. Every function should return a planned value for every possible
escape route, or the result will be a serious breach of security, as demonstrated
by this criminally dysfunctional function:

function f{ n : integer) : integer;
begin

if n >= 0
then f := { some calculated value }

end;

The mistake here is that n might be negative-a condition the function
ignores. Some programmers "fix" this problem with a sternly worded comment
in the source code:

{ Function f. Note: parameter n MUST BE POSITIVE! }

But that, of course, isn't much help in preventing bugs. If the function is
buried in a 100,000-statement library, you and other programmers may never

Chapter Twelve: Common Pascal Bugs 325

read that comment. A better approach is to change the parameter type to
restrict input to legal values. For example, if you change n to type word, the
compiler will reject negative arguments passed to the parameter. This neatly
prevents bugs and has no effect on runtime performance.

When that's not possible, try these steps to find bad function results:

1. Add a temporary statement at the start of the function, setting the result to a
default value. In this example, you could insert f: = -1;.

2. Recompile and load the program into TD.

3. Set a code breakpoint (press (F2)) on the function's end; keyword. This
will halt the program just before the function returns to its caller.

4. Press (Alt)-VB to view the Breakpoints window and select Set options
(press (Ctrl)-S) to change Condition to Expression true. Then, set
Condition expression to f = -1. This alters the breakpoint to halt the
program only when the function identifier equals the default value. Press
(Enter) to close the Breakpoints window.

5. Optionally add various parameters and local variables to the Watches
window. In this example, you'd probably want to watch parameter n.

When you press (F9) to run the program, it will halt every time the
function is ready to exit without having assigned a return value different from
the assigned default. You can then use the View:Stack command to find the
expression that called the function with the bad input arguments.

Unwanted Recursion

A stack overflow error might be caused by too little stack space, but when
increasing the stack size with an ($MJ directive doesn't make the bug go away,
you should immediately suspect an unwanted recursion. This can happen in a
function that mistakenly uses the function identifier on the right side of an
equation. For example, suppose you need a custom random-number generator
(even though Turbo Pascal already has one). You might begin with the standard
approach illustrated in Listing 12.4.

1: {$N+,E+}
2: program stacked;
3: uses crt;
4:
5: con st

Listing 12.4. RANDOM.PAS.

{ Coprocessor or emulation }

6: MAXLONG = $7FFFFFFF;

326 Part Two: The Art of Debugging

7: var
8: seed : longlnt;
9:

10: function random(var seed
11: const
12: M = 25173;
13: c = 13849;
14: begin
15: random := seed I MAXLONG;

longlnt)

16: seed := C M * seed + C > mod MAXLONG;
17: end; { random }
18:
19: begin
20: write('Seed? ' >;
21: readlnC seed>;
22: while not keypressed do
23: write(random(seed):20:8
24: end.

double;

Although RANDOM seems to work correctly, you decide to experiment.
What if, you ask, you were to randomize the seed inside the function? (This may
not produce useful random sequences, but it illustrates a common problem.)
Perhaps you could change line 15 to:

random := random(seed) I MAXLONG;

But, when you run the program, you immediately receive error 202,
"Stack overflow." In fact, the program no longer displays any random values.
If you receive this message while running TD (reported as "exit code 202"),
the cursor should be positioned near the location of the problem. If you ran
the code from DOS, to find the source of the error, load the program into TD,
press (F8) to step past any startup code and type (Ctrl)-G. Enter the
reported error address relative to CS:OOOO. For example, if the error was
reported at 0032:0143, enter (cs+ $32),$0143 to locate the statement that
caused the stack to overflow. Remember to specify hexadecimal values with
preceding dollar signs even though the error doesn't display hex values
that way.

When you receive a stack overflow-especially after making a change to a
function statement-you should immediately suspect that an unwanted recur
sion is at fault. Check whether you accidentally used the function name in the
right hand part of an assignment, as I did in this example, causing random to be
called each time random begins running. The same problem can also occur in
procedures that inadvertently call themselves in statements.

Chapter Twelve: Common Pascal Bugs 327

Mutual Madness

The unwanted recursion described in the previous section is not hard to find.
The symptom of a stack overflow is immediate, and it points directly to the
offending statement.

More difficult is an unwanted mutual recursion-an effect that occurs
when one function calls another that eventually calls the original function back.
This traps the mutual functions in a so-called infinite loop, which ends with
abrupt finality when the stack runs out of space.

If you've tried the suggestions in the previous section, but still can't locate
the problem, you may have been victimized by an unexpected mutual recur
sion. To find out if this is the case, load the program into TD, and follow these
steps:

1. Set a Changed memory g Loba L breakpoint for sp, the stack pointer register.
This will trigger the breakpoint whenever SP changes.

2. Modify the breakpoint by using the Set options command in the
Breakpoints window (press (Alt)-VB(Ctrl)-S). Change Action to Log and
set Action expression to sp, which will record the value of SP every time
the breakpoint's condition is satisfied.

After these steps, run the program (press (F9)) until the stack overflows.
Then, press (Alt)-VL to view the log. You may see something like this:

Turbo Debugger Log
At MUTUAL.18 sp = 1020 ($3FC) WORD

At MUTUAL.8 sp = 534 ($216) : WORD
At MUTUAL.FIRST sp = 530 ($212) : WORD
At MUTUAL.14 sp = 528 ($210) : WORD
At MUTUAL.SECOND sp = 524 ($20C) : WORD
At MUTUAL.8 sp = 522 ($20A) : WORD
At MUTUAL.FIRST sp = 518 ($206) : WORD
At MUTUAL.14 sp = 516 ($204) : WORD
At MUTUAL.SECOND sp = 512 ($200) : WORD
Terminated, exit code 202

Program MUTUTAL (not shown) calls procedures FIRST and SECOND over
and over until it blows up the stack, ending the program with exit code 202.
Examining those two routines is sure to turn up an accidental mutual recursion.

328 Part Two: The Art of Debugging

Note: Even though this trick generates an overwhelming stream of data, you don't
have to write the Log to disk. You want to see only the tail end of the log anyway,
so it doesn't matter if you lose the earlier entries.

When using this technique, be aware that it can take a long time. Setting
breakpoints on register values requires TD to examine processor registers after
each statement, causing the program to run at a snail's pace, even on fast 80386-
or 80486-based machines. To save time, try to isolate the problem to one module,
run the code up to that place, and then start logging breakpoints on SP.

You might also be able to save time by forcing stack overflow errors to
occur sooner. To do that, add the compiler directive ($M 1024,0,0J (changing
0,0 to the minimum and maximum amount of heap space you need). This sets
up a small 1,024-byte stack. If the program fails before the bug surfaces, you
may have to increase this value.

Another possibility is to set an Expression true global breakpoint for
sp ($300 instead of the method described in step 2. That won't improve per
formance by much, but it may reduce the size of the log file by logging entries
only after SP becomes dangerously low.

Interactive Side Effects

Functions that perform I/O of any kind are prone to another common error,
which I call an interactive side effect. This problem occurs when a multipart
expression accidentally calls the same function more than once. A typical case is
a statement that calls the Crt unit's read Key function:

if C readKey = 'Y') or C readKey = 'y')
then writelnC 'Answer is Yes')
else writelnC 'Answer is No' >;

That will never work! The multiple calls to readKey require double key
presses where only one is needed. Keep an eye out for similar expressions. They
may look healthy, but they're about to come down with a bug.

In a very complex expression, it may not be obvious that multiple calls to
functions are being made. To find out, run the code up to the expression. Then,
press (F7) to single-step through the expression parts. You'll quickly spot any
functions that are executing more than once.

Pointer Pointers
Turbo Pascal pointers are composed of two 16-bit halves: a segment value and
an offset. Pointers may point to any location in a PC's I-megabyte address

Chapter Twelve: Common Pascal Bugs 329

space-a versatility that's both useful and dangerous when misdirected. Unini
tialized pointers can address bytes in a program's code segment and data
segment, in the stack, or even inside DOS. If you assign a value to one of those
locations, you could damage your code, other data, or DOS itself.

Uninitialized Pointers

An uninitialized variable is bad enough, but an uninitialized pointer is like an
arrow fired blindly into the air. There's no telling where it will come down or
what it will hit.

Because pointers can address any location in RAM and, therefore, might
change bytes belonging to data and code, the symptoms of an uninitialized
pointer are varied and difficult to catalog. Here are a few of the classic signs that
misused pointers are known to cause:

• The program crashes, forcing you to reboot. Sometimes, you can recover
only by turning power off and on.

• DOS develops strange quirks after running the program.

• The program runs correctly once. Subsequent runs fail.

• Variables change unexpectedly.

• Procedures and functions return to the wrong addresses.

• Procedures and functions run magically even though no statement or
expression calls them.

• The program crashes when executed from DOS, then runs without fault
in TD.

Crashes and DOS problems are most likely caused by assigning values to
pointers that address bytes in a code segment. Changing those bytes by acci
dent can produce delayed effects that can throw a bug search off track. A bad
pointer that wrecks a subroutine not called until much later is extremely
difficult to find.

Another symptom is a program that runs correctly one time but then fails to
run the next. This is often caused by an uninitialized pointer that has a
predictable value after compiling-which leaves memory initialized to one set
of values-but then takes on a different value after the program loads other data
into RAM. On subsequent runs, the pointer has a different value than on the
first.

A variable might change unexpectedly because of a pointer that addresses
the variable's memory space. This problem is not as difficult to locate. Set a
Changed memory g Loba L breakpoint on the variable to halt the program when
the variable changes.

330 Part Two: Tbe Art of Debugging

If a procedure or function suddenly executes even though no statement
called it, or if a routine returns to an unexpected location, an uninitialized
pointer might be the cause. The most likely bug is a pointer that addresses the
stack segment-easily located by setting a breakpoint on the pointer's segment
value (see the next section). Less frequently, a pointer might change a machine
code ret instruction to something else, causing a fall-through from one routine
to the next in RAM.

Programs that crash when executed from DOS but then run flawlessly in
TD may be caused by an uninitialized pointer that overwrites the interrupt
vector table in low memory, beginning at address 0000:0000. Because a nil
pointer in Pascal has this same value, and because Pascal does not prevent
assignments via pointers equal to n i l, such assignments can easily modify the
vector table-a bug that may not surface until after the program ends. (This is a
good but nasty example of the time-bomb bug introduced in chapter 7.)
Because TD saves and restores a portion of the interrupt vector table, running
the code under the debugger's control can cause this bug to disappear. But
running the same code from DOS does not restore the damaged vectors, thus
causing a future crash.

Finding Nil Pointers

Finding n i l pointers is not always easy. If you know the variable name, set an
Expression true global breakpoint and enter the expression p =nil. This will
halt the code at any time the pointer equals n i l.

Usually, however, you won't even know which pointer is causing the
trouble. You can't set breakpoints on all the pointers in your program!

One little-known way to trap assignments to n i l pointers is to set an
Expression true global breakpoint expression to (es=O) and (di=O). That
works because TP generates code to load pointer addresses into ES:DI for
assignments. Monitoring the register values will halt the code after the machine
code instruction (usually Les) that loads the nil pointer address into the two
registers.

Finding Uninitialized Pointers

When your code develops a bug and if the program uses pointers, there are
several steps you can take to determine if an uninitialized pointer is the cause.
First, because pointers usually address variables allocated in the heap by new,
you can set a breakpoint to halt the program or to log an expression for every
statement where a certain pointer addresses a value outside of the heap.

To do this for a pointer p, set an Expression true global breakpoint to
the expression seg(p") (seg(heapOrg"), which halts the program for every
statement where p addresses RAM below the heap. This includes all of DOS, the

Chapter Twelve: Common Pascal Bugs 331

program's data, and code. The carets in the expression dereference the
pointers, causing seg to return the segment address of the memory location to
which p points. Without the caret, seg(p) returns the segment address of the
pointer variable. The heapOrg typed constant pointer from the System unit
locates the start of heap memory.

If you suspect a bad pointer is changing a return address or other value on
the stack, you can watch for this condition by setting a similar breakpoint to

seg(p") = ss, which executes the breakpoint action if the segment address of
the value addressed by p ever equals the value of the stack segment register.

Disposed Pointers

The flip side of the uninitialized pointer coin is a bug caused by a statement that
uses a disposed pointer. Pascal's dispose procedure returns to the heap the
memory that new allocates to a pointer. Unfortunately, dispose does not change
the pointer value; therefore, after executing dispose(p), the pointer p still
addresses the same memory as it did before. However, that memory is now on
the heap's free list of disposed spaces, which might be reallocated to other
pointers by subsequent calls to new.

Bugs caused by using a disposed pointer will show up only if later state
ments allocate that same memory to fresh pointers. Assignments will then write
values to memory locations addressed by more than one pointer at the same
time-an insidious condition that can cause all sorts of trouble.

Because disposed pointers have perfectly legitimate address values even
though the memory at those locations is not available for the program's use,
finding this condition is a challenge. One approach is to take advantage of a
Pascal feature that in other circumstances is best avoided-the ability to
redefine library routines. For example, add the replacement dispose procedure
to your program and recompile:

procedure dispose(var p >;
var

pp : pointer absolute p;
begin

system.dispose(pp >;
pp : = n i l;

end;

Next, load the code into TD. Add selected pointer variables to Watches or
set Expression true global breakpoints for expressions such as p=nil. (Or,
use the ES:DI trick mentioned earlier.)

Every call to dispose is now routed through the custom replacement,
which uses an untyped parameter to accept pointers of all types. The parameter
is redefined as a pointer absolute for passing to system.dispose, which

332 Part Two: The Art of Debugging

handles the memory deallocation as usual. The final statement resets the
pointer to nil, allowing breakpoints to detect subsequent assignments to dis
posed pointers.

Note: This technique will not work with object-oriented programs that use Turbo
Pascal's extended dispose procedure. Use the method only for non-OOP pointer
debugging.

Unnormalized Pointers

A pointer is normalized when its offset value is in the range 0000 to OOOF
hexadecimal (0 to 15 in decimal). Unnormalized pointers have offset values
greater than OOOF hex. Because 80x86 processors address memory in 16-byte
chunks, or paragraphs, it's possible for unnormalized pointers with different
values to address the same bytes in memory. But normalized pointers are
unique-there's only one normalized pointer address value per byte in RAM.

For that reason, programs can compare, add, subtract, and perform other
operations on normalized pointers-operations that fail if the pointers are not
normalized. For example, a simple calculation can subtract two normalized
pointers to determine the number of bytes between two addresses. But if the
pointers are unnormalized, that same formula will usually give the wrong
answer.

Many of TP's system routines do not normalize pointers before using them.
This saves time but can also cause bugs. The most notorious of these routines is
FreeMem, which returns a certain number of bytes to the heap. Usually, you'll
use the procedure this way:

FreeMemC p, 100 >;

That returns 100 bytes to the heap at the address where p points. But, the
procedure works correctly only if pis normalized. Suppose you have these type
declarations:

aPtr = "anArray;
anArray = array[1 •. 100J of integer;

If you then declare variables p and p2 of type aPtr, you might execute code
to allocate a 100-integer array and then dispose its higher half, perhaps to
conserve memory when you don't need the full array:

new C p >;
p2 := lilp"[SOJ;
FreeMemC p2, 100 >; { ??? }

Chapter Twelve: Common Pascal Bugs 333

The code appears to be unblemished, but there's a worm in the apple. First,
new allocates a full-sized array and assigns its address to p. An assignment
statement uses the QI operator to set p2 to the address of the array's midpoint.
And FreeMem disposes 100 bytes (50 integers) at that address.

But that's not what happens. Because QI returns an unnormalized pointer,
FreeMem miscalculates the number of bytes to return to the heap, and the
program will probably crash.

Sometimes this error can go unnoticed for many statements. Other times it
will appear immediately. When it occurs, you may be able to find the cause by
setting an Expression true global breakpoint for the expression ofs(p")) 15.
Don't forget the caret ("), which passes to ofs the address to which p points.
Without the caret, the expression would pass the address where the pointer
variable is stored.

After entering the expression, run the program by pressing (F9). It will
halt whenever p's offset value is unnormalized. (You may have to press (F8) at
the beginning of the program to initialize DS so TD can correctly locate p and
other variables. This might produce false breakpoints at startup, which you can
safely ignore.)

Finding the mistake is the difficult part. Fixing it is easy-normalize the
pointer before passing it to FreeMem or to other system routines. To do that,
include this function in your code:

function normalize(p : pointer) : pointer;
begin

normalize := ptr(seg(p") + (ofs(p") div 16), ofs(p") mod 16)
end; { normalize }

To correct the buggy call to FreeMem listed earlier, change that statement to:

FreeMem(normalize(p2), 100 >;

Misunderstanding MemAvail and MaxAvail

Be sure that you understand the difference between memAvai l and maxAvai l,
both of which tell you how much space is available on the heap but differ in
how they calculate that space:

• memAvai l returns the total amount of free space available.

• maxAvai l returns the size of the largest available heap space.

Normally, you should use maxAvai l to determine whether enough space is
available for a new pointer-addressable variable. For example, if pr addressed a
record type rec, it's not a good idea to write:

334 Part Two: Tbe Art of Debugging

if memAvail >= sizeof(rec>
then new(pr >;

Instead, call maxAvai l to determine if there's a space large enough to hold a
variable of rec's size:

if maxAvail >= sizeof(rec)
then new(pr) ;

The difference is important because previous calls to dispose may have left
gaps in the heap. In that case, the total amount of available memory may be
greater than the largest available space. If that largest space is smaller than the
size of rec, calling new will cause a runtime out-of-memory error (code 203).

If you receive that error while running the code from DOS, use TD's Goto
command in the Module window to locate the statement where the error occurs
(see "How to Find a Runtime Error" earlier in this chapter). If that location calls
new or getMem, check earlier statements to see whether you called memAvai l
when you should have called maxAvai l.

But if you discover that you did check maxAvai l correctly, then you are
most likely experiencing the effects of a badly fragmented heap. Some say this
is a bug in Pascal, but it's more of a design flaw than an outright error.
Fragmentation is caused by disposing many small-size pointer-addressable vari
ables. This fragments heap memory while also causing the free list to steal space
for its own use. You might want to consider storing small variables in larger
buffers allocated by new; That will reduce the size of the free list and create
larger holes in memory of the same size, which will help to prevent
fragmentation.

Out-of-Memory Bugs

Of course, running out of memory is a problem. But I have in mind a different
out~of-memory quirk that I call the "water, water everywhere" bug. This
problem is not caused directly by a memory shortage. It occurs when a
program disposes too many variables in order to make room in a full heap. This
leads to "memory, memory everywhere, but not a drop to dispose."

Or, rather, there's not enough memory to insert new entries into the free
list that keeps track of disposed bytes in the heap. This can happen when the
heap is full or nearly so and you call dispose to make room for new variables.
Because the heap is full, TP is unable to expand the free list to record the newly
disposed memory addresses, thus preventing the disposal for the same reasons
that prompted the program to make room!

When using TD to trace the cause of an apparent memory shortage, if you
end at a dispose statement that appears to release plenty of space, your code
may have been pumped dry by a "water, water everywhere" bug. Plug the hole

Chapter Twelve: Common Pascal Bugs 335

in the dike by setting System. Freemi n to a higher value divisible evenly by 8.
Calls to new and getmem will then fail if the space between HeapPt rand F reePt r
is less than FreeMi n, thus reserving more room for free-list entries.

Numerical Puzzles

There are countless numbers of numerical bugs, but a few show up with
predictable frequency. For instance, you may discover that an assignment from
an expression to a variable does not give the expected value. After using TD to
isolate the appropriate statements, you still don't know why the result is wrong.
Now what do you do?

One answer is to write a few other expressions to test your assumptions. Of
course, you can write small programs for this purpose, but don't forget about
the Data menu's Evaluate/modify command, which lets you enter test expres
sions. This is a great place to run quick tests and to feed new input values into
formulas.

You can also load expressions directly from the source code into the
Evaluate/modify window. To do that, highlight the expression in the Module
view by clicking and dragging the mouse. Or, position the cursor on the
expression's first character and press (Insert) (End) to highlight the line. Use
the cursor movement keys to adjust the amount of highlighted text so you don't
copy a semicolon if there is one at the end of the line. Press (Ctrl)-(F4) to
open the Ev a l u ate I modi f y dialog box and copy the highlighted text to the
Expression pane. Then, press (Enter) to calculate the result. Beware of
expressions that use functions-TD will call the function code, which might
cause a side effect if it contains statements that change global variables.

Hint: When evaluating test expressions, if you receive the message "Initialization
not complete," press (Esc) to close the dialog box, press (F8) to execute the
program's startup code, and then try Evaluate/modify again.

Misplaced Operator Precedence

Expecting specific operator precedences in expressions can lead to obscure
code. For that reason, I rarely rely on a language's defined precedence order for
numerical and other operators. Instead, I prefer to use parentheses in expres
sions to make my intentions perfectly clear-even when parentheses aren't
required. For example, for most values of n and x, this expression

x := C n + 4) I x;

336 Part Two: 7be Art of Debugging

is not equivalent to

x := n + 4 I x;

Because division has a higher precedence than addition, TP and most other
compilers evaluate the expression as:

x := n + C 4 I x >;

But even if that's what I meant to write, I would add the parentheses. They
help prevent bugs that might occur if I make changes to the expression later.

TD helps find badly written expressions by monitoring variables and letting
you enter test expressions. But, unless you already suspect that you've written
the expression incorrectly, there's not much else TD can do. However, if you
know the range that an expression result should have, you may be able to locate
the problem with an Expression true global breakpoint. For example, in the
previous sample expressions, if x should always range from 0 to 99, enter a
breakpoint expression such as (x (0) or (x) 99), which will halt the code
any time x steps out of bounds.

Negative Words

Expecting unsigned word values to become negative is a common numerical
problem with a classic symptom-a hung computer. For example, consider this
loop:

while w >= i do
begin

{ something }
dee(w >;

end;

If i is an integer and w is a word, then if i is negative, w will always be
greater or equal to i. As a result, the loop will execute "forever" -that is, until
you pull the plug.

To find what's causing the computer to hang, reboot and load the program
into TD. Run the code until it hangs, then press (Ctrl)-(Break) to break out of
the loop. Usually, this will cause the CPU window to open because you'll most
likely interrupt execution between two machine-code instructions, not neces
sarily between two high-level statements. If this happens, switch to the Module
view, move the cursor to a statement close to where the break occurred, and
press (F4) to continue running the program up to that line. You may also be
able to press (FS) repeatedly until source-code statements reappear in the CPU

view. But, unfortunately, that may require single-stepping too much code to be
practical.

Chapter TWelve: Common Pascal Bugs 337

Another possibility is to choose Run:Animate and enter 0 to select the
shortest possible delay value. Press (F9) to continue running and be ready to
press (Esc) (or another key) as soon as you see source-code lines appear in the
window. This may take a few long moments. (It also may not work at all if
you're unlucky enough to have halted inside a machine-code routine that's
looping, waiting for a keypress or other input.)

I've also had some success with this problem by setting an Expression true
global breakpoint for cs= $1234 where $1234 equals a code-segment value in
the compiled program. Use the CPU window to determine this value before
running the code. Then, if pressing (Ctrl)-(Break) brings up the CPU view,
enter the breakpoint expression and press (F9) to continue running. In a
multisegment program, use an expression such as (cs)= $1234) where $1234 is
the lowest code segment used by the program's code. After the breakpoint hits,
you may still have to press (FS) a few times to get back to the source if the
code-segment value you specify includes routines in the runtime library.

Whichever method you choose, after getting back to the source, check
whether the code is executing inside a loop. If so, examine the control variables
(wand i in this example) and be especially wary of any mixed integer and word
combinations.

Putting the Hex On

Programs are sometimes vexed by numbers that should be expressed in hex but
are actually interpreted as decimal values. The compiler can report incorrect
values only for constants that use hex letters A to F. Assignments such as
i := FA29 don't compile because Turbo Pascal "sees" FA29 as an identifier that
begins with F. It doesn't realize that FA29 should be a hexadecimal value written
as $FA29.

Other mistakes such as i : = 100 compile without error, even though
you intended to write i : = $100, which has a different result. In decimal, 100
is 100. But $100 is 256.

As with other numerical errors, you can use TD's Watches and Evaluate/
modify windows to check for decimal values that should be in hex. Because
these and other windows display integers in both decimal and hex unless you
change the Integer format setting with Options:Display options, such mis
takes are often easy to spot by simple observation.

Integer Wrap Around

Pushing your system to the max is fine, but pushing integer variables past their
maximum limits can have serious consequences. For example, adding 1 to
32767, the maximum positive integer value, produces different results depend
ing on the expression. If i is an integer, then this does not compile: ,

338 Part 'IWo: '/be Art of Debugging

i := 32767 + 1;

But the compiler accepts the next statements, which appear to produce the
same result:

:= 32767;
:= i + 1;

Adding 1 to i (or using the equivalent statement incCO) equals -32,768
because of the wrap-around effect produced by carries within a fixed number
of bits. The first statement doesn't compile because the compiler evaluates the
constant expression 32767 + 1 as a longint-not an integer. Because longint
values are 32 bits long, the addition is perfectly legal. But, the assignment to the
16-bit i is not.

Finding this type of mistake isn't too difficult. You might set a breakpoint to
halt the program if i =max Int. Then, after the break, press (F7) to single-step
the code up to the place where i is incremented past its maximum value. Or,
you could watch for a change in sign, monitoring the expression i < 0 in an
Expression true global breakpoint.

Mishandling Files

File handling is one of those subjects that every programming language seems
to do differently. On the surface, the commands are usually similar-there are
open, close, read, and write operations, plus other ways to manipulate files,
usually by calling DOS functions. But, underneath these apparent standards are
subtle deviations that can lead to bugs.

Many times, file-handling bugs are caused by changes to the language. For
example, in early versions of Turbo Pascal, closing a closed file had no bad
effects. Now, it can lead to serious problems, as explained a bit later. If your
code ran correctly before but now fails when recompiled with a new compiler
version, run don't walk to your references and carefully review the current set
of file-handling specifications.

Forgetting to Close a File

Always close your files when you're done with them. Some languages, but not
TP, specify that files are closed automatically at the ends of procedures that
declare local file variables. Others, including TP, close all open files when the
program ends.

When programs halt unexpectedly due to a runtime error #4 (too many
open files), the fault is probably one of these:

Chapter Twelve: Common Pascal Bugs 339

• One or more procedures fails to close a file variable declared locally in the
procedure.

• The number of files exceeds DOS's maximum of 15 per process. This
maximum remains fixed even if n is set to a larger value in a CONFIG.SYS
FI LES=n command, which specifies the maximum number of files for all
concurrent processes. Each process is still limited to 15 files.

• The CONFIG.SYS FILES command is missing or is set to a low value.

• The program is executed as a DOS filter or in a pipe, which steals one file
handle away from the program.

To examine file details, add a uses dos; declaration to your program and
watch or inspect fileRec(t), where f is the name of any file variable. Or, use
textRec(tt), where tf is a variable of type text. These type cast expressions
expose the details inside file variables that are normally hidden from view.

You can also set Expression true global breakpoints for a file f using
expressions such as fileRec(t).mode = fmClosed to locate closed files or
fileRec(t).mode () fmClosed to locate those that are open.

Delayed File Errors

File 1/0 errors sometimes occur at the strangest times. Usually, the problem is
caused by misunderstanding how the [$1] option affects file errors. For example,
consider the buggy Listing 12.5, BADCLOSE.PAS, which detects whether a file
exists.

Listing 12.5. BADCLOSE.PAS (with bugs).

1: program badClose;
2:
3: type
4: s65 = string[65l; {file names}
5:
6: {$!-}

7: function fileExistsC fileName
8: var
9: f: file;

10: begin
11: assign(f, fileName >;
12: reset(f >;
13: fi leExists := IoResult = O;
14: close(f >; { ??? }

15: end; { fi leExi sts }
16: {$!+}

17:

s65) Boolean;

340 Part Two: The Art of Debugging

18: var
19: filename s65;
20:
21: begin
22: write('Enter file name to check ' >;
23: readlnC filename>;
24: if fileExists(fileName
25: then writelnC filename, ' exists')
26: else writelnC filename, 'does not exist' >;
27: writeln('End of program' >;
28: end.

When you run BADCLOSE, enter an existing file name (BADCLOSE.PAS is a
good choice). The program correctly reports that the file exists. Then, run the
program again and enter a nonexistent file name such as XXX. This time, you
receive "Runtime error 103 at 0000:013.A'.' (or something similar).

To find the source of this data-dependent bug, load the program into TD or
press (Ctrl)-(F2) to reset if you already did that. Then, press (Ctrl)-G and
enter cs:$013A (replace $013A with the reported address) to jump to the
statement that caused the runtime error.

Strangely enough, that statement is write ln at line 26. (The cursor will be
on line 27 because the reported runtime error address is just after the offending
statement.) Something is causing a standard and presumably well-debugged
library routine to halt the code!

Some programmers at this point would waste time tracing through the
machine code for write l n. (They must be spelunkers at heart.) Resist taking
such journeys to the center of your own code-at least until you've exhausted
simpler possibilities near the surface. A better plan is to isolate all statements for
which the System unit's InOutRes typed constant is not 0. This is the value that
IoResu l t returns; therefore, setting a breakpoint for this condition effectively
inserts a check on IoResu l t at every statement in the entire program.

To perform this test, reset the program (press (Ctrl)-(F2)), choose the
Breakpoints:Expression true global command, and enter the expresion
InOutRes()0. Then, press (F9) to run the program. Enter a nonsense
response for the file-name prompt to duplicate the runtime error. The code will
break inside fi leExi sts at line 13. This is not the bug-the very next line
checks Io Res u l t, causing f i l e Ex i st s to return true or false depending on
whether the reset at line 12 succeeded. That's exactly what should happen.

So, press (F9) again to continue. When you do that, you may be surprised
to hit a second breakpoint at line 15. Something is causing the function to end
with InOutRes not equal to 0, a condition that causes the next IIO operation to
fail due to Turbo Pascal's requirement that pending I/O errors prevent future
1/0 until IoResu l t clears the internal error code.

The pea that's causing all the discomfort must be the statement between the
assignment to the fi leExi sts function identifier and end-the close statement

Chapter Twelve: Common Pascal Bugs 341

at line 14. Because the previous reset failed, file f is hot open; therefore, the
close generates an 1/0 error. However, because 1/0 error checking was
switched off at line 6, the problem goes unnoticed until later at write l n.

There are a number of ways to fix this mistake, but the most reliable is to
check IoResu l t after close, adding this statement between lines 14 and 15:

if IoResult <> 0
then { ignore the error };

Overlay Obstacles

When it loads an overlay from disk, Turbo Pascal's overlay manager requires all
active procedures and functions to be compiled with the ($F + J far-code switch.
This switch causes the compiler to generate far call and ret instructions,
which push and pop full 32-bit return addresses on the stack.

The overlay inan::tger enforces this requirement in order to allow multiple
overlays to call each other. At such times, the program may have to shuffle one
or more overlays in and out of the overlay buffer. To prevent ret instructions
from returning to code that's no longer in memory (and what a bug that would
be), the overlay unit patches return addresses on the stack to return to a
subroutine inside the overlay manager. Upon intercepting one of those patched
returns, the manager reloads the appropriate overlay module from disk and
completes the return. Making those patches requires the overlay code to exam
ine procedure stack frames while searching for a return address. That code is
designed to recognize only 32-bit far addresses; therefore, all procedures and
functions must be activated with far calls.

Forgetting to compile your code with the ($F + J switch is the most probable
cause of bugs in overlay handling. Remember that, even if procedure A calls
procedure B, which calls procedure C, which calls another routine in an
overlay, procedures A, B, and C must all be compiled with (SF+]. For this
reason, Borland recommends placing that switch at the top of the program. But,
strictly speaking, you need to use the switch only for code that might lead to an
overlay being loaded into memory.

Over Initialization

You must call Ov r In it before using overlays in a program, but only do that one
time! A common mistake is to call Ovrinit from inside the overlay module. If
that procedure is then called several times, the program will eventually fail-a
good example of an intermittent bug that shows up only after running the same
code many times.

342 Part Two: Tbe Art of Debugging

Sluggish Overlays

When you have many small units in a program, the tendancy is to convert them
all to overlays in an attempt to make the program run in as small a space as
possible. Don't do this. You may cause your code to develop a bad case of
lethargy-a bug that falls in the intermittent category because it appears only
after the program runs correctly for a while. A slowdown is usually due to one
of these causes:

• The overlay buffer is too small. A larger buffer will reduce disk activity and,
therefore, improve program speed.

• Multiple overlays are being loaded from inside a for, whi Le, or repeat
statement, which can drastically cut performance, especially when RAM
space is cramped.

• The disk drive might be failing. This forces DOS to reread tracks many
times until the operation succeeds.

Except for a hardware problem, TD can help you to fine-tune overlay
performance by monitoring activity for two Over Lay unit typed constants,
OvrTrapCount and OvrloadCount. When combined with Turbo Pascal 5.5's new
probation-reprieve memory management scheme, the correct values for those
two variables will help to keep frequently used overlays in memory longer. This
can give an overlaid program a· tremendous performance boost.

To monitor the two variables, load your program into TD and make the
Watches window current. Then, type the names of the two variables. Or, set a
separate Changed memory g Loba L breakpoint for each of the variable names.
Then, open the Breakpoints window and press (Ctrl)-S to Set options.
Change Action to Log and Action expression to the variable name. (Both
Action expression and Condition expression should refer to the same vari
able.) Close the window and run the program. Then, inspect the log (press
(Alt)-VL). (I find it best to log the variables and inspect the results after
testing.)

The following guidelines y.rill help you to adjust the two parameters for
better overlay performance. (This text is extracted from my book, Mastering
Turbo Pascal 5.5.)

• OvrloadCount measures the number of times units are loaded from disk.
Aim for the lowest possible value, indicating that units are staying in
memory longer. You can usually reduce a high OvrloadCourit by increasing
the overlay buffer size with OvrSetBuf.

• OvrTrapCount counts two items: the number of times units are loaded from
disk and the number of times units are accessed while on probation. Each
count represents one interception by the Over Lay manager of a call to a unit
that either is not in memory or is on probation. If OvrTrapCount increases at

Summary

Chapter Twelve: Common Pascal Bugs 343

nearly the same rate as OvrloadCount, then the probation-reprieve scheme
is not working well-try increasing the probation area size by calling
OvrSetRetry. You might also need a larger overlay buffer. If OvrTrapCount
increases at a greater rate than OvrloadCount, then more units are being
reprieved-a good sign that you're headed in the right direction. If
OvrTrapCount increases while OvrloadCount advances slowly or not at all,
you've probably hit the ideal configuration. You might even try reducing
the buffer and probation sizes to minimize memory use.

Knowing the most common bugs in your favorite language can help you to
avoid repeating the same mistakes over and over. And, it can help you to
recognize certain kinds of bugs by their symptoms. When bugs occur, as they
almost always do, the more you know about their characteristics, the better
prepared you'll be to use TD to find the causes so you can fix them.

This chapter lists many of Pascal's most common bugs, and it shows how to
use TD to flush them out. Bugs in Pascal code can range from simple typos, to
uninitialized pointers, to problems with overlays-difficulties that most Pascal
programmers run into sooner or later.

Chapter 13

Hands-On Debugging
for Pascal

To BECOME a master gardener, you've got to get your hands dirty. And so it
is with debugging. To master the art of debugging Turbo Pascal programs,
there's no substitute for a little hands-on experience searching for harmful bugs
in muddy code.

Similar in design to chapter 11 's hands-on debugging sessions for Turbo C,
this chapter demonstrates how to use TD to find real bugs in real TP code. First,
you'll enter a buggy program, which is long enough to be interesting, but not
so long as to discourage you from typing it into your editor. Then, you'll follow
the steps outlined in chapter 7 to develop a debugging strategy for six devilish
bugs. After fixing each problem, you'll retest the code to be sure the bugs stay
dead.

You can also use this chapter as a self test of the information you've learned
so far. After reading about each bug, watch for a note like this:

Self test: Stop reading now.

When you see that message, stop reading and try to find and fix the
problem. Continue reading after you've discovered the solution or if you're
stuck and need more help. Don't be concerned if you can't find all the bugs on
your own. It's more important to try and fail than never to try at all.

Note: Even if you already read chapter 11, you can take the self tests and follow the
demonstrations in this chapter. The program and bugs are completely different (as
they are in chapter !S's hands-on sessions for assembly language). However, if you
didn't read chapter 11, you might want to scan that chapter's review of debugging
strategies from chapter 7 before continuing.

345

346 Part 7Wo: The Art of Debugging

The Program
Type in Listing 13.1 and save as CAL.PAS. Don't enter the line numbers along the
left border added for reference. Then, compile to CAL.EXE with the integrated
TP editor and compiler as explained in chapter 2, or use this command to
compile with the command-line compiler:

tpc -v cal

Note: After finding each bug and making the suggested changes to CAL.PAS, enter
that same command to recompile the modified listing.

Listing 13.1. CAL.PAS (with bugs).

1: (*
2: **
3: **
4: **
5: *)

File: cal.pas (WITH BUGS!)
Purpose: Display 6-month calendars
Author: Cc> 1990 by Tom Swan.

6:
7: program cal;
8:
9:

10: uses crt, dos;
11:
12:
13: const
14:
15:
16: { ---- Miscellaneous constants }
17:

NULL = #0;
BLANK = #32;

{Null character }
{ Blank character }

18:
19:
20:
21:
22:

LOWEST YEAR = 1980;
HIGHEST YEAR = 2099;

{ Lowest legal year }
{ Highest legal year }

23:
24:
25:
26:
27:
28:
29:
30:

{ Key constants returned by getKey function }

KEY ENTER = #13; KEY_ESC = #27;
KEY HOME = #140; KEY LEFT = #144;
KEY RIGHT = #146; KEY PGUP = #142;
KEY PGDN = #150; KEY INS = #151;

Chapter Thirteen: Hands-On Debugging for Pascal

31:
32: { ---- Set of months with 30 days (the 'hath 30' months> }
33:
34:
35:
36:

HATH THIRTY : set of 1 12 = [4, 6, 9, 11 l;

37: { ---- Names of months as character strings }
38:
39: MONTH_NAMES : array[1 12 l of string[9 l =
40: ('January', 'February', 'March', 'April',
41: 'May', 'June', 'July', 'August', 'September',
42: 'October', 'November', 'December' >;
43:
44:
45: { Number of days to the first of each month. }
46:
47: DAY OF YEAR : array[1 12 l of word =

347

48: (0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334);
49:
50:
51: { Names of week days as character strings. }
52:
53: DAY NAMES : array[0 •. 6 l of string[9 l =
54: ('Sunday', 'Monday', 'Tuesday', 'Wednesday',
55: 'Thursday', 'Friday', 'Saturday'>;
56:
57:
58: var
59:
60:
61:
62:
63:
64:

today
targetdate
userQuits

dateTime;
dateTime;
Boolean;

65: { ---- Return key press }
66:
67: function getKey char;
68: const

{ Today's date }
{ First month to display }
{ TRUE to quit program }

69: KEY OFFSET = 69; { 128 + readKey value for F1 (59) }
70: begin
71: getKey := readKey;
72: if keypressed and < getKey = NULL >
73: then getKey := chr< ord(readKey > + KEY OFFSET >;
74: end; { getKey }
75:

348 Part Two: The Art of Debugging

76:
77: { ---- Return TRUE if low <= n <= hi }
78:
79: function inRange(n, low, hi integer
80: begin
81: inRange := C low<= n) and C n <=hi
82: end; { inRange }
83:
84:
85: { ---- Return TRUE if year is a leap year }
86:
87: function leapYearC year : word > : Boolean;
88: begin
89: if year mod $100 = 0
90: then leapYear := C year mod 400) = 0
91: else leapYear := year mod 4) = 0
92: end; { leapYear }
93:
94:

Boolean;

95: { ---- Return last day of month for year and month in date d }
96:
97: function lastDayC d : dateTime > : word;
98: begin
99: with d do

100: begin
101: if month in HATH THIRTY
102: then lastDay := 30 else
103: if month <> 2 then lastDay := 31 else
104: if leapYearC year)
105: then lastDay := 29 ·
106: else lastDay := 28
107: end { with }
108: end; { lastDay }
109:
110:
111: {----Return true if dated is a legal (existing) date}
112:
113: function legalDateC d : dateTime > : Boolean;
114: begin
115: legalDate := FALSE; { Default value for early exits }
116: with d do
117: begin
118: if not inRangeC month, 1, 12
119: then exit;
120: if not inRange(year, LOWEST_YEAR, HIGHEST YEAR

Chapter Thirteen: Hands-On Debugging for Pascal

121: then exit;
122: legalDate := inRange(day, 1, lastDay(d))
123: end { with }
124: end; { legalDate }
125:
126:
127: {----Return O=sun, 1=mon, ... , ?=sat for dated. Assumes
128: that date is legal. }
129:
130: function dayOfWeek(d : dateTime) : word;
131: var
132: oldYear, oldMonth, oldDay, dow : word;
133: begin
134: getDate(oldYear, oldMonth, oldDay, dow >;
135: with d do
136: begin
137: setDate(year, month, day >;
138: getDate(year, month, day, dow
139: end; { with }
140: setDate(oldYear, oldMonth, oldDay >;
141: dayOfWeek := dow
142: end; { dayOfWeek }
143:
144:
145: { ---- Get today's date }
146:
147:
148:
149:
150:
151 :
152:

procedure getToday(var today
var yy, mm, dd, dow : word;
begin

getDate(yy, mm, dd, dow >;
with today do
begin

153: year := yy;
154: month := mm;
155: day := dd
156: end { with }
157: end; { getToday }
158:
159:

dateTime >;

160: { ---- Add one month to date d. Note: The day is not

349

161: changed, which could result in an illegal date if day> 28}
162:
163: procedure nextMonth(var d : dateTime >;
164: begin
165: with d do

350 Part Two: The Art of Debugging

166: if month < 12
167: then
168: inc(month
169: else
170: begin
171: month := 1;
172: inc< year >
173: end { else }
174: end; { nextMonth }
175:
176:
177: { ---- Subtract one month from date d. Note: The day is not
178: changed, which could result in an illegal date if day> 28}
179:
180: procedure prevMonth(var d : dateTime >;
181: begin
182: with d do
183: if month >
184: then
185: dee(month
186: else
187: begin
188 : month : = 1 2 ;
189: dee(year >
190: end
191: end; { prevMonth}
192:
193:
194: { ---- Show one calendar at x, y = top left corner }
195:
196: procedure showCal(x, y : word; d : dateTime >;
197: var
198: showDay, weekday : integer;
199: currentmonth : Boolean;
200:
201: procedure showMonthHeader(x, y : word; d dateTime >;
202:
203:
204:
205:

var
doy : integer;

begin
lowvideo;

206: gotoxy(x, y >;
207: with d do
208: begin

{ Day of year }

209: doy := DAY OF YEAR[month l;
210: if leapYear(year > and < month>= 3 >

Chapter Thirteen: Hands-On Debugging for Pascal

211: then inc(doy >;
212: write(year, BLANK:13, doy:3 >;
213: gotoxy(<x + 10> -
214: (length(month names[month l) div 2), y >;
215: highvideo;
216: write(month names[month l)
217: end; { with }
218: gotoxy(x, y + 1) ;
219:
220:
221:
222:
223:

write('--------------------' >;
gotoxy(x, y + 2 >;
write(' S M T W T F S' >;

end; { showMonthHeader }

224: begin
225: with d do
226: begin
227: day := 1;

{ 20 dashes }

228: currentmonth := (year = today.year) and
229: (month= today.month >;
230: showMonthHeader(x, y, d >;
231 : y : = y + 3;
232: weekday := dayOfWeek< d >;
233: gotoxy(x + (weekday* 3), y >;
234: for showDay := 1 to lastDay(d) do
235: begin
236: if currentmonth and (showDay = today.day
237: then highvideo
238: else lowvideo;
239: write(showDay:2, BLANK>;
240: inc(weekday >;
241: if weekday>= 7 then
242: begin
243: weekday := O;
244: inc(y >;
245: gotoxy(x, y)
246: end { if }
247: end { for }
248: end { with }
249: end; { showCal }
250:
251:
252: { ---- Show calendars starting from date d (with day = 1) }
253:
254: procedure showCals(d : dateTime >;
255: con st

351

352 Part Two: 1be Art of Debugging

256: XCAL = 5;
257: YCAL = 3;
258: var
259: i : integer;
260: begin

{Top left x coordinate of first calendar }
{II lly II II II II}

261: if not legalDate< d) then d :=today;
262: d.day := 1;
263: for i := 0 to 5 do
264: begin
265: showCal(XCAL + Ci mod 3) * 25, YCAL + Ci div 3) * 10, d);
266: nextMonth< d)
267: end { for }
268: end; { showCals }
269:
270:
271: {----Prompt for year to display}
272:
273: procedure getNewDate(var d : dateTime >;
274: begin
275: gotoxy(1, 23 >;
276: clreol;
277: write('Year? ' >;
278: readln(d.year >;
279: d.day := 1;
280: d.month := 1
281: end; { getNewDate}
282:
283:
284: { ---- Initialize global variables }
285:
286: procedure initialize;
287: begin
288: if lastmode <> mono
289: then textcolor(brown >;
290: userQuits := FALSE;
291: getToday(today>;
292: targetdate := today;
293: end; { initialize}
294:
295:
296: { ----- Display instructions }
297:
298: procedure instructions;
299: begin
300: gotoxy< 1, 23 >;

Chapter Thirteen: Hands-On Debugging for Pascal 353

301: textcolor(white>;
302: lowVideo;
303: write('>EsclEnter-Quit, Home-Today,' >;
304: write(' LeftlRight-month, PgUpjPgDnlins-year ' >;
305: end; { instructions }
306:
307:
308: begin
309: initialize;
310: repeat
311: clrscr;
312: showCals(targetdate >;
313: instructions;
314: with targetDate do
315: case getKey of
316: KEY_ESC, KEY ENTER : userQuits := TRUE;
317: KEY HOME targetDate := today;
318: KEY INS getNewDate(targetDate >;
319: KEY PGUP dee(year >;
320: KEY PGDN inc(year >;
321: KEY_LEFT prevMonth(targetDate >;
322: KEY RIGHT : nextMonth(targetDate >;
323: end; { case }
324: until userQuits;
325: gotoxy(1, 24)
326: end.

Hands-On Debugging Sessions

Each of the following sections begins with a description of a bug in CAL.PAS.
The descriptions simulate the early stages of debugging when you know that
something isn't operating as expected, but you don't know exactly what has
gone wrong. Perhaps a customer telephoned to complain about a strange
occurrence, or you've added new programming, and the code, which seemed
to work correctly until now, suddenly failed. All you know at this stage is that
the program isn't working. You don't know why.

If you're taking the self test, after reading the description of the bug, put the
book aside and try to find and fix the mistake on your own. Then, whether or
not you're taking the self test, follow the step-by-step numbered sections to run
through the TD commands that I used to locate the bug. Do this even if you've
successfully located the bug on your own. That way, you can compare your
debugging strategy with mine.

354 Part Two: The Art of Debugging

Be careful to keep CAL.PAS up to date. Some of the later bugs depend on
earlier ones, and you must complete sections 1 through 6 in that order, or the
step-by-step instructions will be meaningless. A useful plan is to copy CAL.PAS
to CALTEST.PAS for taking the self tests. Make your own changes only to
CALTEST.PAS. Then, after finishing each self test, compile and load the current
CAL.PAS file into TD and follow the step-by-step debugging demonstrations
after the "Stop reading" note. Make the changes suggested in the text directly to
CAL.PAS. You can then copy the partially debugged CAL.PAS again to CAL
TEST.PAS to take the next bug's self test.

You might also want to copy the original, unmodified CAL.PAS to another
file, perhaps named CALBUG.PAS, so you or someone else can repeat the
hands-on demonstrations in the future without having to retype the listing. This
will also let you start over in case you mix up the files. If that happens, just copy
the master CALBUG.PAS to CAL.PAS and make the suggested changes to
CAL.PAS up to the point where you stopped.

Note: Line numbers in the text refer to Listing 13.l as printed in this chapter. After
you make the first set of changes to CAL.PAS, your editor's line numbers may not
match those in the listing. For that reason, when I suggest adding new statements,
for example between lines 45 and 46, use the printed listing as a guide to locate the
place in your up-to-date CAL.PAS file where you should make those changes.

Using CAL.PAS

If CAL.PAS did not have bugs, it would display 6-month calendars (see Figure
13.1) and let you press several keys to view and enter other months and years.

1990 Hcrch 59

6 H T W T F 6
1 2 3

1 5 6 7 8 9 10
11 12 13 1115 16 17
18 19 20 21 22 23 21
25 26 27 28 29 31 31

151

6 H T W T F 6
1 2

3 4 5 6 7 8 9
10 11 12 13 11 15 16
17 18 19 20 21 22 23
21 25 26 27 28 29 30

!HI Apr! I

6 H T W T F S
1 2 3 1 5 6 7
8 9 10 11 12 13 11

15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 31

lHI July 181

S H T W T F S
1 2 3 4 5 6 7
8 9 10 11 12 13 14

15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 31 31

1990 120

S H T W T F S
l 2 3 1 5

6 7 8 9 10 11 12
13 11 15 16 17 18 19
20 21 22 23 21 25 26
27 28 29 31 31

1990 August 212

S H T W T F S
1 2 3 4

5 6 7 8 9 10 11
12 13 11 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 31 31

>Esc iEnter-l)Ji t, Hcne-Tcx:lay, LeftiRi ght-111011th, Poltii Pi;Jhi I ns-yecr

Figure 13.1. Sample CAL.PAS display.

Chapter Tbirteen: Hands-On Debugging/or Pascal 355

Table 13 .1 lists the keys and associated commands you can use to control
CAL.PAS. Unfortunately, however, the program doesn't work, so many of these
commands will fail until you find and fix the bugs in the code.

Bug Number 1

Here's the scene. You've just added new programming to CAL.PAS. You've
compiled the program, and you're ready for a test run. The program starts as it
should, and the display appears as expected. But when you try the commands
in Table 13.1, you discover that the only keys the program recognizes are
(Esc) and (Enter). Other commands don't work. (Actually, because the current
month is showing, (Home) may or may not be working. There's no way
to tell.)

Table 13.1. CAL.PAS keys and commands.

Key

(Cursor Left)

(Cursor Right)

(Enter)
(Esc)
(Home)

(Insert)

(Page Down)

(Page Up)

Command

Go back one month

Go forward one month

Quit program and return to DOS

Same as (Enter)

Display current month and year

Enter a new year

Go forward one year

Go back one year

Obviously, the program isn't calling the procedures for those commands as
it should. Or, could something else be wrong?

Self test: Stop reading now.

Bug number 1-Test

The test to reproduce this bug covers a lot of ground. That can't be helped,
however. Until we can execute the program's commands, we can't test whether
those commands work. So, the full test merely describes the problem:

356 Part Two: The Art of Debugging

1. Run the program.

2. Press (Insert), (Home), (Page Up), (Page Down), (Cursor Left),
and (Cursor Right). None of these keys appears to work. ((Home) might
be working, but it's impossible to tell.)

3. Press (Esc) or (Enter) and the program ends. This is correct.

The full test describes the bug in detail-in fact, the initial test is the bug
description. But it's still too broad to be useful for debugging. We need to
stabilize the problem before hunting for the cause.

Note: Ignore any other bugs you may notice. Concentrate on one problem at a
time-in this case, the inoperative command keys.

Bug number 1-Stabilize

You've identified the bug, and you might be tempted to skip this step and start
debugging. But the test in the previous section covers too much territory. Also,
we haven't done anything to duplicate runtime conditions that might be causing
the error.

A good way to satisfy these goals and stabilize a bug is to select a subset of
the full test. In other words, instead of just pressing all keys to see if they work,
a more exacting strategy will let us work quickly to find the bug's source.

So, let's pick one of the broken commands, assuming that the same bug is
responsible for causing that and the other function key to fail. That assumption
may be wrong-each key could be failing for a different reason. (After all, at
least two keys work!) Still, it seems more likely that we'll find one bug, not four
or five. Here's the plan:

1. Run the program.

2. Press (Esc). The program should end.

3. Run the program again.

4. Press (Page Up). The calendar should display the previous year. Instead,
the year does not change.

Notice that the refined test includes instructions about how to run the
program, how to perform a command that works, and how to duplicate a
known problem. The steps also list what should happen along with what
doesn't. Together, the stabilized test duplicates the runtime conditions needed
to reproduce the bug while providing a useful comparison to make during
debugging.

Chapter Thirteen: Hands-On Debugging/or Pascal 357

Bug number 1-Isolate

It's time to load the program into the debugger and narrow the problem to as
small a section of code as possible. Remember to compile the source with the
proper switch to insert debugging information, then type td cal to start TD.
You should see the program's source code in the Module window.

Next, follow these steps to isolate the bug. Remember, the goal is to work
quickly, using the tests developed in the previous two sections.

1. Move the cursor to anywhere on the line inside the case statement that
begins with the constant KEY _PG UP (line 3 19 in the listing), and set a code
breakpoint there (press (F2)). We want to find out why the KEY_PGUP key
fails, so that case selector is the logical place to start.

2. Because this line decrements the year field in targetDate (the displayed
calendar's date), it's probably a good idea to monitor this value in the
Watches window. To do that, press (F6) to make Watches current and
enter targetDate.year. You don't have to choose any commands, just
start typing and press (Enter). Then press (F6) to switch back to the
Module window.

3. Press (F9) to run the program. When the calendar display appears, press
(Page Up) to duplicate the bug.

4. The code stops on the breakpoint. Notice that the year displayed in
Watches is correct. Next, we want to verify whether the statement
advances the year. So, press (F8) to step over the code. (You could also
press (F7), but ifthe statement called a procedure or function, you'd want
to step over that call the first time through. Remember, the goal is to divide
and conquer. Don't start tracing into subroutines until you're reasonably
certain that you're in hot pursuit of a bug.)

5. Oh, no. The year didn't change. And, the cursor moved to the next case
selector. This is clearly wrong. After executing a selected case, the program
should move to the end of the case statement; therefore, the only possible
conclusion is that the KEY PGUP statement did not execute.

6. To test that assumption, set another breakpoint on the KEY_ESC selector
(move the cursor up to line 316, just below case, and press (F2)). Press
(F9) to run, then press (Esc). When the breakpoint stops the code, press
(F8) as you did before. This time, the cursor jumps to the until clause in
the repeat statement, the correct behavior after the selected case
statement executes.

7. The case statement seems to work, so perhaps the problem isn't with the
program commands after all. Instead, it looks as though the proper case
selectors aren't generated for the expected keystrokes. Those selectors
come from get Key, called by case. So, let's turn our attention there.

358 Part 7Wo: Tbe Art of Debugging

8. To test the assumption that getKey is at fault, press (Ctrl)-(F4) to open
the Evaluate/modify dialog box. Type KEY_ PGUP and press (Enter)
to see the value of this selector. (Perhaps the key constant values are
wrong.) But, no, the value is ASCII #142, the correct value for (Page Up).

9. So, let's test the get Key function. While still viewing the Evaluate/modify
window, type getKey() and press (Enter). The program display appears
when the expression executes the function. (The entire program isn't
running, at this point, only get Key.) Press (Page Up), the faulty key. In a
moment, the Result pane in the Evaluate/modify window shows that
get Key 0 returned #0-not the expected value of #142 that we determined
in the previous step.

10. Try executing get Key again. You don't have to type it-just press (Enter)
with the cursor on get Key 0. When the calendar appears, press (Esc), one
of the two keys that we know works. As expected, the window shows the
correct value for this key, ASCII #2 7.

11. Apparently, get Key works for some keys but not for others. Press (Esc) to
close the Evaluate/modify window. Clear old breakpoints ((Alt)-BD) and
reset the code ((Ctrl)-(F2)). Move the cursor to line 315 (press (Ctrl)-L,
type 315, and press (Enter)) and set a new breakpoint (press (F2)) on
that line. It's time to trace get Key to see what's wrong with the function.

12. Press (F9) to run. At the breakpoint, press (F7) to trace into getKey.
Press (F7) once more to execute the function's invisible startup instruc
tions, then press (F7) again to trace the first statement, which calls the
system routine read Key to get the next keypress.

13. You should again see the program's display. Press (Page Up), the key
that's causing all the trouble.

14. So far, so good, the program returns from read Key and prepares to execute
the next line. So, let's continue tracing-there are only a few statements
here, and we may as well examine each one in detail. Press (F7) once
more.

15. Whoops! The cursor jumped to begin. Now, what could that mean? There's
only one answer-the function just called itself. Examine the if statement
that you traced. The expression C get Key= NULL) is the culprit. It calls the
function rather than doing what it should-testing for the null character
(#0) that precedes all function keys returned by readKey. We've found the
bug-an unexpected recursion inside the function.

Bug number 1-Repair

To fix the problem, quit TD ((Alt)-X) and load CAL.PAS into your editor. Add a
char variable for the if statement to examine. This modifies the function to

Chapter Thirteen: Hands-On Debugging/or Pascal 359

return the next keypress only if the first equals #0, indicating that a named
function key was pressed. To make these changes, replace lines 67-7 4 in the
original CAL.PAS listing with the following text:

function getKey : char;
con st

KEY OFFSET = 69; { 128 + readKey value for F1 (59) }
var

ch : char;
begin

ch := readKey;
if keypressed and (ch = NULL)

then getKey := chr(ord(readKey) + KEY OFFSET
else getKey := ch

end; { getKey }

After repairing the buggy function, recompile CAL.PAS (tpc -v cal) and
repeat the stabilized test. Run CAL and press (Page Up). This time, the year
advances as planned. Also try the other function keys. They seem to work, too.
Apparently, our assumption that there was one bug, not four or five, was
correct.

Bug Number 2

If you have a color monitor, you undoubtedly noticed from the previous
demonstration that every time you press a key, the display changes from color
to black and white. I purposely avoided mentioning this problem until now for
a good reason.

Very often while testing for one bug, you'll notice another. When that
happens, make a note about it, then continue working on the first bug. Don't
hop around fixing everything in sight. If you do, you may introduce other
errors, and you'll destroy the effectiveness of your test procedures.

If you don't have a color monitor, you won't even know that this new bug
exists. Readers with monochrome screens may think that gives color-display
owners an unfair advantage, but if you were writing a commercial program,
you'd want to test it on as many different system configurations as possible. But
even if you can't locate a color monitor, you can still follow the step-by-step
demonstration for finding the bug.

Self test: Stop reading now.

360 Part Two: The Art of Debugging

Bug number 2-Test

This time, the test is simple. Any key, it seems, causes the problem. No matter
what you type, the screen switches from living color to dull black and white
after the first keypress.

When faced with similar problems, I usually press as many keys as possible,
both alone and in combination with (Ctrl), (Alt), and (Shift). This takes
only a few seconds, and it often forces other bugs into the open-for example,
a command that executes for the wrong key.

Some programmers perform their keyboard tests in the most violent fash
ion, literally smashing their fist onto the keys (but not too hard) to test the
program's input procedures. I prefer less brutal tests, but the point is, no matter
what input test you devise, you can't check every possible combination of all
keys! It's probably good enough to test only the alphanumeric keys plus a few
extremes-function keys, keypad digits with (Num Lock) on and off, cursor
movement keys, and so on. Good tests don't have to include every possibility. A
sensible cross section will do.

Bug number 2-Stabilize

As with the first bug, after testing reveals a problem, stabilize the error with
repeatable steps. Here are the ones I selected:

1. Run the program.

2. Press (Esc). The program ends normally.

3. Run the program again.

4. Press A. The display changes to black and white.

Why did I choose to press the A key in step 4? Why not use a program
function key such as (Home) or (Page Down)?

The reason is that I noticed from the earlier tests that both the A key and
(Page Down) produced the same result. Because the program recognizes (Page
Down) as a command, but does not recognize the A key, it seems reasonable to
conclude that the operation selected by (Page Down) is not causing the
problem. For this reason, choosing the A key gives us a head start by narrowing
the bug search even before loading the code into TD.

Bug number 2-Isolate

Armed with a repeatable test, load CAL into TD, this time specifying the -k
command-line option to enable keystroke recording. (Enter the command td -k
cal.) Then, follow these steps to isolate the cause of the disappearing color display:

Chapter Thirteen: Hands-On Debugging for Pascal 361

1. Because the bug occurs after pressing a key, the logical place to divide the
code is the same as it was for the previous mistake-on the case statement
at line 315. (Remember, line numbers here refer to the listing printed in
this chapter. Because you modified CAL.PAS, line numbers in your editor
and in TD may not match.) Move the cursor to that line, set the breakpoint
there (press (F2)), and then press (F9) to run.

2. The program will halt almost immediately. When it does, press (Alt)-(F5)
to examine the output screen. It's in color, which is no surprise-you
haven't completed the steps to reproduce the bug. So, press (Enter) to
return to TD's display, then press (F9) to continue running. This calls
get Key for the next keypress. Press the A key to duplicate the bug, and the
program halts at the same breakpoint location. Press (Alt)-(F5) to check
the display again. Now it's in black and white! Press (Enter) to return
to TD.

3. At this point, we know only that the bug occurs somewhere between
repeat at line 310 and unti Lat 324. The next step, then, is to narrow the
search further to discover whether the problem appears before or after the
current breakpoint on case. That's easy enough. Just set another break
point at unti L (line 324). Move the cursor to that line and press (F2).

4. Clear the output display by opening the Eva Luate/modi fy window (press
(Ctrl)-(F4)). Enter clrscr() and press (Enter) to call that system rou
tine. (When trying this at other times, if you receive the message "Initializa
tion not complete," close the window, press (FS), and repeat the com
mand. This executes runtime startup code, so TD can locate and call
system routines.) Press (Esc) to close the Eva Luate/modi fy window and
(Alt)-(F5) to check that the display is clear. Press (Enter) to return to
TD.

5. Next, press (Ctrl)-(F2) and (F9) to reset the program and run. Again,
the program stops at case, and the output screen is in color as it was
before. (Check it by pressing (Alt)-(F5) and then (Enter) to return to
TD.) Press (F9) to run and then press the A key. The code stops at u n ti L.
Check the output (press (Alt)-(F5) and (Enter)). It's still in color, so we
can assume that the error occurs above case. This also eliminates get Key as
a candidate. (The problem could have been caused by the earlier bug fix,
but that does not appear to be the case.) ·

6. Of the three statements between repeat and case, we can safely eliminate
c L rsc r. The problem might be in a system routine like this one, but that's
not very likely. More likely, the bug is in show Ca Ls (line 312) or
instructions (line 313). We can ignore everything between case and end
because the A key is not one of the listed case selectors.

7. By setting breakpoints and repeating the stabilized test, we've narrowed
the search in short order to two statements. So far, the hunt has remained
entirely on the program's outer level, letting us quickly eliminate entire

362 Part Two: Tbe Art of Debugging

sections of code. But now, it's time to dig deeper to find out which
statement is at fault. To duplicate the buggy conditions, press (Alt)-FO,
enter cal, and press (Enter). This reloads the program and clears all
breakpoints-easier than using other commands to do the same job. Move
the cursor to the line that calls show Cal s (312 in the listing) and press (F2)
to set a breakpoint there. This routine is the likely candidate since it
displays the calendars.

8. But, let's be sure. Press (F9) to run. The code halts at showCals. Press
(F8) to step over the procedure and check the output (press (Alt)-(F5)).
It's in color. Press (Enter) to return to TD and press (F9) to continue.
Press the A key to duplicate the bug. Then press (F8) once more and
check the output ((Alt)-(F5)). The screen is in black and white. Obvi
ously, the second call to show Ca ls is causing the problem. Press (Enter) to
return to TD.

9. Reset the program (press (Ctrl)-(F2)) and repeat step 8 up to the second
time the instructions tell you to press (F8). But this time, instead of that
key, press (F7) to trace into the show Cal s procedure. (If you get mixed up
at this point, just repeat step 9.) You should see showCa ls' source code in
the Module window.

10. A quick glance at show Cal s shows that this procedure merely calls showCa l

in a for loop to display each month's calendar. Let's trace into the first of
those calls. To do that, move the cursor down a few lines to showCal and
press (F4) to execute up to that line. Then press (F7) to trace into the
procedure.

11. You now see s howC al 's source code. Check the output again to be sure
there's nothing there (press (Alt)-(F5) and then press (Enter) to return
to TD). Next, let's find the first statement that writes something to the
screen. Press (F8) to step over individual lines and check the output by
pressing (Alt)-(F5) and (Enter) after each line executes. Aha! The call to
showMonthHeader shows the top part of the first calendar in black and
white. (If you don't have a color monitor, stop pressing (F8) after execut
ing showMonthHeader.)

12. Unfortunately, we've stepped too far to trace back through
showMonthHeader. But, because we enabled keystroke recording, it's possi
ble to repeat all the steps that led up to that point. To jump back one step in
time, first press (Alt)-VE to open the Execution history window. Press
(Tab)(Cursor Up) to highlight the call to showMonthHeader in the bot
tom pane. Then, press (Ctrl)-K to repeat the keystrokes that led to this
stopping place. This may take a few seconds. When TD stops, the cursor
will be positioned on the call to showMonthHeader.

13. Press (F7) to trace into that procedure. Then, as you did earlier, press
(F8) to step over each source line and check the output for changes by
pressing (Alt)-(F5)(Enter). The first such change comes at line 212

Chapter Tbirteen: Hands-On Debugging/or Pascal 363

(write (year, •••), which displays the year and number of days in the year
to the first of the current month. After executing that statement, check the
output by pressing (Alt)-(F5)(Enter). It's in black and white.

14. But, wait a minute. We haven't executed any statements that change display
colors. And, it's impossible for the display to switch to black and white on
its own. We've traced the code to the lowest level-a write statement in
the runtime library, which we may as well assume works correctly. The
only conclusion is disheartening. We've been on a wild goose chase!

15. It happens. But, because you've adopted a methodical approach to debug
ging, you can easily return to a previous assumption and continue debug
ging. Our efforts aren't yet wasted. Earlier, the search narrowed to one of
two procedures, show Cal s and instructions. The problem isn't in
showCals. It must be in ...

16. Instructions? Let's find out. Press (Alt)-VE to open the Execution
hi story window again, press (Tab) to move to the bottom pane, then
press (Ctrl)-(Page Up) to jump to the first recorded line. Press (Cursor
Down) five times to highlight the first call to instructions and press
(Ctrl)-K to replay all keystrokes up to that call. When the action stops,
press (F7) to trace into instructions. Look at the code (lines 298-305).
The textColor statement at line 301 sets the output to white. Now,
everything makes sense. The instructions procedure runs after the first
call to showca ls; therefore, the output changes to black and white only
after showCals has one shot at displaying the calendar in color.

17. By the way, this is a good example of a long-distance bug-a problem that
appears in one place but is caused by a statement in some other location.
We found the bug this time, not by tracing to it but by eliminating the only
other possible path.

Bug number 2-Repair

This bug is caused by an inconsistent design-a typical problem when a global
setting (the text color in this case) requires temporary changes (to show calen
dars in one color but inS,tructions in another). There are usually two approaches
you can take to prevent this kind of problem:

• Save and restore the current setting in each routine that changes it.

• Or, make each routine responsible for selecting the setting it needs.

Either solution will work-but I prefer the second. That way, every routine
is responsible for setting its own display colors. To fix the program, quit TD,
edit CAL.PAS, and move lines 288 and 289 (if lastmode .•• then) from their
present positions inside initialize to between lines 224 and 225 in showCa l
(just after begin and before with d do). Now both showCal and instructions

364 Part 1Wo: 7be Art of Debugging

follow the same scheme-changing the text color as needed. Don't forget to
recompile and retest!

Bug Number 3
Things are looking up. You've tried all of the program's commands, and the
code seems to be working well. Time to cut the master and start shipping disks
to customers. Right?

Not exactly. Remember that the primary goal of good testing is to force bugs
into the open air. How do you know the program is worki~g? Perhaps there are
hidden bugs waiting for certain input or other conditions. All may seem well. But
it's time to put that assumption to the test-the torture test, that is.

For some reason, bugs often hide at the limits in code. Formulas that
normally work give incorrect results when fed extreme values. Arrays blow up
when indexes reach either end. Programs crash when memory fills. So far, you
haven't tested CAL.PAS at its limits. For example, it's probably a good idea to
display a few calendars for the two constant values at lines 20 and 21, which
define the earliest year as 1980 and the highest as 2099-limits imposed by DOS
date routines.

On one such trial, you press (Page Up) to travel back in time to 1980. Then
you press (Page Up) again just to verify that the program stops at that year. But
instead of stopping there, the calendar resets to the current year. Worse, (Page
Up) suddenly stops working. In fact, other function keys fail at this point too.
(But sometimes, they start working again!) Could this be a result of the earlier
change to get Key?

Self test: Stop reading now.

Bug number 3-Test

This looks serious. The program fails at its outer limits, and as soon as one
problem appears, others follow-the keyboard stops working. Things aren't
looking up after all. In fact, they seem to be getting worse.

The test has already forced the bug into the open, so we can skip directly to
the next stage in the debugging strategy.

Bug number 3-Stabilize

Let's review the facts. Pressing (Page Up) a number of times to display early
years causes the program to fail after reaching the lower limit of 1980. Pressing

Chapter Thirteen: Hands-On Debugging/or Pascal 365

that same key only once or twice doesn't seem to cause any trouble. So, to
stabilize the problem, the first step is to determine the minimum number of
trials required to reproduce the bug.

That's a good rule of thumb. When a sequence of repeated events leads to a
bug, try to find the smallest number of events that causes the problem. Hunt for
the cause by repeating the test in TD. After fixing the problem, retest the
program to be sure the bug is gone. This is the strategy we'll follow. If CAL is
running, quit to DOS, then:

1. Run CAL and press (Page Up) until the year equals 1980.

2. Press (Page Up) again. The calendar changes to the current year.

3. Press (Page Up) again. The key no longer works.

4. Press (Esc) to end. This key works.

Bug number 3-lsolate

Load CAL into TD with the command td cal. Follow these steps to isolate the
cause of this bug:

1. Because we know the number of steps that reproduce the problem, the first
step is to run the code to just before the problem appears. To do this, first
set a breakpoint at the case selector for KEY_PGUP at line 319 in the original
listing-move the cursor to that line and press (F2). Then, with the cursor
still on the same line, press (Alt)-(F2) to set this breakpoint's options.

2. Press (Tab) or use the mouse to highlight the Pass count input box in the
Breakpoint options dialog box. Then, type 11-the minimum number of
keypresses required to reproduce the error. (Note: It's 1990 as I write this.
Increase the pass count by one for each later year.) Press (Enter) to accept
the change.

3. Press (F9) to run. Press (Page Up) 11 times or the number you entered
for the pass count. The code will halt at the suspect location. Setting the
pass count allowed us to get to this place in the code quickly.

4. Let's examine the target date's year. Move the cursor to any character of
target Date on the line above and press (Ctrl)-W to add the variable to the
Watches window. As you can see, the first field in the date record equals
1980.

5. Trace the current line by pressing (F8). The year changes to 1979. But that
seems wrong. Why then does the calendar display the current year? To find
out, run the code by pressing (F9) again. Press (Page Up) to complete the
stabilized test and press (Alt)-(F5) to examine the program's display. The
year on screen is still the current one, but when you press (Enter) to

366 Part Two: 7be Art of Debugging

return to TD and then press (F8) to step over dee C year > again,
targetDate's first field changes to 1978.

6. Apparently, showCa Ls is not displaying the same date as the one passed to it
at line 312. Let's trace into that routine and see whether targetDate is
reaching its intended target. Set a breakpoint on the call to show Ca Ls (move
the cursor to line 312 showCalsC targetDate >and press (F2)) and then
press (F9)(F7) to run the code and trace into the procedure.

7. Press (F8) to step over the procedure's startup code. (Always remember to
perform this step after tracing into a procedure or function in which you
want to examine passed arguments.) Move the cursor to either of the two
references to parameter d on this line and press (Ctrl)-W to add d to
Watches. It's now easy to compare this date with target Date.

8. The dates are the same. But look at the first statement. If the procedure
determines that dis not a legal date, it sets it equal to today. We know that d
is not legal-1978 is earlier than the programmed lower limit; therefore,
press (F8) to see ifthe statement assigns today to d. And, yes, it does. This
is why, when passed an illegal date, the displayed calendar shows today's
year.

9. And now we see the problem. Obviously, targetDate is not changed after
the assignment of today to d. The showCals procedure should pass that
value back to the caller to keep the dates in synch.

Bug number 3-Repair

To fix the bug, quit TD, edit CAL.PAS, and add var to the showCals declaration
at line 254, changing that line to:

procedure showCals(var d : dateTime >;

Recompile and run the program, then press (Page Up) to repeat the earlier
test. But, what's this? Something else appears to be wrong. Now, years don't
change by ones-the wrong months pop up on screen. Try (Cursor Left) and
(Cursor Right) to move from month to month. Those keys don't work either.
Instead of fixing the problem, we've made it worse!

At such moments, don't be alarmed. I cooked up this surprise to demon
strate the value of good test procedures. What if you had added the var
declaration, assumed the problem was fixed, and then added a few other new
features? You might then have assumed that the new code had produced the
bug, when it was the simple three-letter change you made earlier. Many pro
grammers fall into this trap. Don't be one of them.

Also, when a bug fix seems to worsen a problem-as it often does-it's
usually a good idea to remove it and return to the previous version. Debugging
rarely follows the cleanly outlined steps you might find in a textbook (but,

Chapter Thirteen: Hands-On Debugging for Pascal 367

obviously, not this one). In practice, debugging is a messy business. Be prepared
to undo your changes when you discover they don't work.

But was the earlier bug search wasted? No. We determined that the program
reduces the year field in targetDate as expected. But the code allows year to
go beyond the programmed limit of 1980. This is a major design flaw-the
program should prevent target Date from becoming illegal in the first place.

Apparently, there are two appropriate repairs to this lack of error handling
that our debugging strategy exposed. One is to insert checks in the code before
every change to targetDate to ensure that it never becomes illegal. For exam
ple, you could change line 319 to:

KEY_PGUP : if year>= LOWEST_YEAR then dee(year >;

That's the approach many programmers take, and it's not wrong. But it may
introduce other bugs by spreading the program's error checks over a wide area.
For that reason, I prefer to repair this kind of problem by simply resetting
target Date to its formerly legal value ifit ever becomes illegal. To make my fix,
load CAL.PAS into your text editor and add this variable declaration between
lines 61 and 62:

savedDate : dateTime; { Current Legal date }

Then, add this assignment between the original lines 313 and 314 (between
instructions and with targetDate do), preserving targetDate for resetting
later:

savedDate := targetDate;

Also add this two-line statement between lines 323 and 324 (between end and
unti L) to test targetDate and reassign it the saved date value if the adjusted
date is illegal:

if not LegaLDate(targetDate)
then targetDate := savedDate

Be sure to remove the var that you added earlier to show Ca Ls at line 254. Then,
recompile and retest. Now when you press (Page Up), the calendars stop at
1980 as they should.

BugNumber4
You just finished adding error handling to prevent a serious bug when the year
became less than the lowest legal year, 1980. This should also take care of any

368 Part Two: The Art of Debugging

possible problems at the other end when the year is greater than the upper
limit, 2099. Right?

Absolutely not. One of your beta testers just reported that when December
2099 is displayed in the upper left corner, the following months begin on the
wrong days. You try the experiment and discover the report is correct. How can
that be?

Self test: Stop reading now.

Bug number 4-Test

Be sure always to test your programs at their extreme ranges. Never assume that
fixing a problem for one extreme will repair other problems. Test low, middle,
and high values to force bugs to appear.

To verify the beta tester's report, run CAL, press (Insert), enter 2099, and
press (Cursor Right) to bring December 2099 to the upper left corner. Notice
that January 2100 is displayed next to December, even though we added code
earlier to limit dates to legal ranges. (2099 should be the last year displayed.)
Worse, the calendar shows all months starting with January 1, 2100 beginning
on the same day.

Bug number 4-Stabilize

The repeatable test to stabilize the bug is:

1. Run the program.

2. Press (Insert), enter 2098, and press (Enter). We don't want to enter
2099 here because the beta tester reported using the cursor keys to bring
the problem dates into view. This may or may not be significant, so we'll do
the same. Entering 2098 keeps the problem month off screen, no matter
what the current month is.

3. Press (Cursor Right) until December 2099 is in the upper left corner.
January 2100 (which shouldn't be displayed) shows the wrong days. So do
February through May 2100, which also should be rejected as illegal dates.

Bug number 4-Isolate

This time, a check of a good DOS manual reveals the cause of the problem-DOS
can't handle dates beyond December 31, 2099. The program should prevent
displaying illegal dates after then. At first, we might suspect a problem with the

Chapter Tbirteen: Hands-On Debugging for Pascal 369

legalDate function at line 113. But rather than waste time pondering the func
tion's algorithm, let's use TD's ability to set breakpoints for specific values and
find out where in the code illegal dates are getting through. Follow these steps:

1. Load CAL. EXE into TD with the command td cal Because show Ca ls takes
care of displaying calendars, let's find out whether an illegal target Date is
ever passed to that procedure. To do this, move the cursor to the call to
showCals (line 312 in the printed listing) and press (F2) to set a code
breakpoint there.

2. Without moving the cursor, press (Alt)-(F2) to set this breakpoint's
options. Tab to Condition and press (Cursor Down) twice to toggle
Expression true, then press (Tab) again and, as the Condition expression,
enter targetDate.year)2099. Press (Enter) to accept the changes you
made to the breakpoint.

3. Press (F9) to run the program. Even though you set a breakpoint to
monitor a memory location for a specific value, the program runs at full
speed (or nearly so). This is because you limited the expression evaluation
to a single line in the source. If you don't have an 80386-based system or a
hardware de bugging board, this is a good way to use Express i on t rue
breakpoints without affecting program performance.

4. Repeat the stabilized test to force the bug to appear (bring December, 2099
to the upper left corner). Nothing happens, proving that an illegal
target Date year is not passed to showCa ls. Good. This eliminates that
section of code and lets us trace further into showCals to locate the
problem.

5. Press (Esc) twice to end CAL and remove TD's termination message. The
cursor should still be on the line that calls showCals. Press (F2) to remove
the breakpoint, then press (Ctrl)-(F2) to reset. Move the cursor to any
letter in showCa ls and press (Ctrl)-G(Enter) to Goto that routine's source
code. (Remember this handy shortcut for hopping to the source of a
procedure or function. It's usually easier than paging through text looking
for a specific routine.)

6. Let's repeat the earlier test to find an illegal date in the for loop that
displays the six calendars. Move the cursor down five lines to the place
inside the loop that calls show Cal, press (F2) to set a breakpoint, and press
(Alt)-(F2) to set options. Press (Tab) to move to Condition and (Cursor
Down) twice to set Expression true. Press (Tab) again and enter
d.year)2099 as the Condition expression. Press (Enter) to close the
options dialog window. (This is nearly the same test we performed for
targetDate earlier, but it narrows the search further to each calendar as it
displays.)

7. Press (F9) to run. You may notice that the code runs slower than before.
This is because setting breakpoints for local variables requires more

370 Part Two: Tbe Art of Debugging

processing than for globals. (On fast systems, you may not be able to tell the
difference.) Repeat the stabilized test procedure to bring December 2099
into view. You won't be able to complete these steps-as soon as January
2100 scrolls into view at the lower right corner, the breakpoint halts the
program, and TD displays Breakpoint at CAL.271 "d.year>2099" true.
(The line number may be different.)

8. Press (Esc) to clear the breakpoint message. There's no need to go further.
The code should not pass illegal dates to show Cal, but it does. Despite the
test for illegal dates that we inserted before, the call to nextMonth just after
the current breakpoint increments the date past its upper limit. The pro
gram's error-handling needs more work.

Bug number 4-Repair

Searching for this bug with TD taught us two facts about the program. One, an
illegal initial date is not passed to show Cal s in the program's outer loop (at line
312). But, two, an illegal date is passed to showCal from inside showCals at
line 265.

This implies that two changes are required. First, line 261 (if not legal
Date •••) is useless. We've proven that illegal dates aren't passed to this pro
cedure, so we may as well remove the statement-it has no effect on the
program. Load CAL.PAS into your editor and delete that line.

A better place to check for illegal dates-in fact, the only correct place in
this example-is before calling show Cal. To do that, insert this line between
lines 264 and 265 (between the for loop's begin and the call to showca l):

if not legalDateC d > then exit;

Compile and run the stabilized test. This time, when December 2099
comes into view, show Cal s exits before displaying the illegal dates, leaving
those calendars blank.

Bug Number 5
Just when you think you've found all the bugs, a beta tester phones to report a
runtime error for "certain date values" entered after pressing (Insert). When
you ask which date fails, the tester says, "Jan 1996."

"But," you say, "You're not supposed to enter month names, only years
with this command." The tester thanks you for the advice and hangs up, leaving
you with a nagging suspicion that you've forgotten something important. So,
you try the reported bug, and sure enough, the program halts with a runtime
error 106.

Chapter Thirteen: Hands-On Debugging/or Pascal 371

Self test: Stop reading now.

Bug number 5-Test

The first question that comes to mind is, "Is this problem specific to the input
value ']an 1996', or do other input values cause the same problem?" To find out,
press (Insert) and enter a few other month names and years. Finding that they
all halt the program, try other text-your name, random characters, and other
bad input. In all cases, the result is the same.

Bug number 5-Stabilize

Since all character input seems to cause the same problem, it's only necessary to
pick one sequence that you know fails. For this, we may as well use the beta
tester's example:

1. Run CAL.

2. Press (Insert) to select the change year command.

3. EnterJan 1996.

4. The program halts with Runtime error 106 at 0000:0661 (the address may
be different).

Bug number 5-Isolate

Isolating a runtime error is easy. The runtime error handler has given you the
address, which you can pass to TD to find the statement that's causing the
trouble. Follow these steps:

1. Load CAL.EXE into TD with the command td cal. Press (Ctrl)-G to select
the Module view's Goto command. Enter the error address $0661 (use the
value from your screen) and press (Enter) to jump to that location. The
dollar sign tells TD that this is a hexadecimal value.

2. The cursor is now at the line just after the one that caused the problem-the
call to read ln at line 278 in the original listing. Just to make sure we've
found the source of the trouble, set a breakpoint at read ln (move the cursor
up one line and press (F2)), then press (F9) to run.

3. Press (Insert). The breakpoint stops the program before the readln call.
Press (F9) to continue and enter Jan 1996. When you press (Enter), the

372 Part Two: The Art of Debugging

program halts and TD displays Terminated, ex it code 106. This proves that
the call to reac!l n is causing the bug.

Bug number 5-Repair

Some programmers, upon discovering that a bug occurs during a call to a
system routine like read ln, immediately criticize the language for the failure.
Or, they waste time tracing the routine's machine code looking for a bug.

But, the chance of finding a bug in well-tested system code is small. More
likely, the problem is in the way the program uses that code. You may disagree
with the design of a system procedure or function, but if it follows its published
specifications, it doesn't have a bug. It just doesn't work as you may wish it did.

For that reason, this is the time to turn to your language manuals. When you
do, you find that read l n is supposed to fail for character input to numeric
variables. The bug isn't in read ln, but rather in the program's use of that
routine. To read a numeric variable without halting for a bad input value, you
must read a string and convert it to an integer value. This gives the program
complete control over input so it can deal appropriately with bad data.

A quick fix isn't possible this time. Instead, the getNewDate procedure
needs redesigning. Quit TD, edit CAL.PAS, and insert this new procedure in
place of lines 273-281 in the original listing:

procedure getNewDateC var d : dateTime >;
var

s : string[4J;
x : integer;

begin
gotoxyC 1, 23 >;
clreol;
write('Year ? ' >;
readln(s >;
if length(s > 0 then with d do
begin

end

val(s, d.year, x >;
day := 1;
month ~= 1

end; { getNewDate)

The revised getNewDate reads new years into a four-character string s, and
if that string's length is not 0, calls val to convert the string to an integer, saving
the result in d • ye a r. The program ignores the error code x that v a l returns
from other bugs and tests, we know that the program's error handling will

Chapter Thirteen: Hands-On Debugging for Pascal 373

prevent displaying illegal dates. So, even if getNewDate returns an out-of-range
year, the program will not fail. (Of course, you may want to test this claim!)

BugNumber6

Another beta tester reports that February 2048 should have 29 days, but the
calendar displays it as having 28. The year 2048 should be a leap year. But,
obviously, the program's leap-year function needs repair.

Self test: Stop reading now.

Bug number 6-Test

This problem brings up a difficult question: How much testing is enough? There's
no easy answer. In this program, it's reasonable to test all February calendars
between 1980 and 2099 to check whether each displays the correct number of
days. But is it reasonable to test every mbnth of every year? Probably not.

The solution is to develop confidence in your test procedures and data.
Don't test only the finished code. Test low-level functions such as LeapYear,

which in this case appears to be broken. Allowing this untested function into
the program led to a nasty bug that could have been prevented by good testing.
But now that we've found another bug, Jet's use TD to isolate it.

Bug number 6-Stabilize

The stabilized test is simple:

1. Run CAL.

2. Press (Insert) and enter 2048.

3. Press the cursor movement keys if necessary to bring February into view.
The month should have 29 days, but it shows 28.

Bug number 6-Isolate

The bug search is already narrowed to a single function. Let's use TD's ability to
call functions out of context to find out why the code fails. Follow these steps:

374 Part 'lloo: Tbe Art of Debugging

1. Load CAL.EXE into TD with the command td cal. Press (F8) to execute
the program's startup code and then press (Ctrl)-(F4) to open the
Evaluate/modify window.

2. Call the leapYear function with various test values. For example, enter
leapYear(2048). When you press (Enter), the Result pane reports False
for this expression-which is not correct. 2048 is a leap year. Try other
years: 2047, 1980, 1996, and 2000. These values appear to give the
correct results.

3. The next step is to examine leapYear in finer detail to discover why it
doesn't work as expected. Press (Esc) to close the Evaluate/modify
window, then press (Ctrl)-G to select the Goto command. Enter leap Year
and press (Enter) to display that function's source code.

4. Move the cursor to the line that begins i f ye a r.. . and press < F2) to set a
breakpoint there. Press (Alt)-(F2) to set this breakpoint's options. Tab to
Condition, press (Cursor Down) twice to select Expression true, press
(Tab) again, and enter year=2048 as the Condition expression. Press
(Enter) to accept the change. Notice that TD allows you to set a break
point for a variable (the year parameter) that does not yet exist. As long as
the cursor is inside a procedure or function, TD can recognize the scope of
that routine; therefore, it allows the breakpoint for the variable that will
come into scope only when this routine is active.

5. Press (F9) to run. When the program display appears, use the cursor
movement keys to bring February of the current year into view. Then, press
(Insert) and enter 2048. The program should halt with the message
Breakpoint at CAL. 93 "yea r=2048" true. (The line number may be
different.)

6. Press (Enter) to clear the message. Examine the code carefully. The first
statement tests whether the remainder of dividing the year by $100 is 0. But
this is the wrong radix! The value should be 100 decimal to account for leap
year centuries that are evenly divisible by 400 (2000, for example). The bug
is a single character, $.

7. Because $100 is 256 in decimal, and because 2048 happens to be the only
year in the range 1980 to 2099 that's evenly divisible by 256, this accounts
for why other leap years are displayed correctly except for this one. The
program "thinks" 2048 is the turn of a century. And, because 2000 is
divisible by 4, even though the function is wrong, it gives the right result
for that year.

8. You could fix the problem easily enough, but let's complete the demonstra
tion using the CPU window to add a temporary patch to the code. Press
(Alt)-VC to open that window and then press (Cursor Down) a few
times to highlight the machine-code instruction mov cx,0100. Type mov
cx,64 and press (Enter) to modify this instruction to load the correct

Chapter Thirteen: Hands-On Debugging/or Pascal 375

divisor into CX. Press (Alt)-(F3) to close the CPU window and press (F2)
to erase the breakpoint.

9. Press (F9) to run. February 2048 now has 29 days as it should.

Bug number 6-Repair

Summary

The final repair is the simplest of them all. Quit TD, edit CAL.PAS, and remove
the dollar sign from $100 at line 89.

This chapter lists a buggy Pascal program, describes six bugs, and shows how to
use TD to find the source of each problem. You can use the chapter as a hands
on demonstration of debugging techniques or as a self test of what you've
learned so far.

After completing this chapter, you may want to go back and retest the
finished program to make sure all of the (known) bugs are gone. Also, after
adding new features to CAL, you can run the same tests to force new bugs into
the open.

Chapter 14

Common
Assembly Language Bugs

BECAUSE YOU CAN MAKE the same kinds of mistakes in assembly language
as you can in C and Pascal, this chapter does not repeat the obvious-for
example, looping one too many times and overwriting code and data by using
an out-of-range array index. Instead, the following sections concentrate on
errors that are common and unique to assembly language programming.

Note: The source code in this chapter requires 'Jitrbo Assembler 2 .0 (TASM), which
is supplied with Turbo Debugger and Tools 2.0. In general, though, most of the
information that follows applies to other assemblers such as the Microsoft Macro
Assembler (MASM) and OptASM.

Typos and Ink Spots

In all programming languages, bugs frequently occur due to simple typing
mistakes. However, because assembly language comments begin with a semi
colon and extend to the end of the line, it's unlikely that a misplaced comment
bracket will cause the same level of damage as in C and Pascal. Still, assembly
language programmers are prone to making other kinds of typos that are just as
difficult to find.

Instruction Operand Order

One of the most common typographical blots in assembly language is a simple
but disastrous reversal of operands in certain instructions, typically mov:

377

378 Part 'li.vo: Tbe Art of Debugging

mov ex, ax ; copy ax into ex

In that and other two-operand instructions, the transfer of data is from right
to left. In this example, the value of AX is copied into ex. People who are
unfamiliar with Intel 80x86 instructions often think this is backwards-that the
instruction reads as though it transferred ex to AX. But that's not the way the
instruction works-mov ex ,ax transfers AX to ex.

To avoid making this mistake, memorize this general scheme, which applies
to most two-operand instructions:

instruction destination, source

Knowing about this mistake is one thing-finding it is another. Often, the
telling symptom is a register that changes unexpectedly. To find the mistake,
you can use the Breakpoint menu's Changed memory global command to set a
breakpoint for every time the register changes, but beware that executing a long
program with such a command may generate too many spurious breakpoints to
be useful. If the bad value is consistent-for example, ex is zeroed
unexpectedly-use the Expression true global command with an expression
such as ex eq 0 to set your traps.'

A trick that sometimes works is to examine registers (press (Alt)-VR) after
the bad register value shows up. Look for other registers with the same value
and set an Expression true global breakpoint for ex eq ax or es eq ds. This
may help you to locate the instruction that's assigning AX to ex when it should
have assigned ex to AX.

Popping the Wrong Registers

For every push, there should be a corresponding pop (unless you adjust the stack
pointer by other means). If you push these three registers:

push ax
push bx
push ex

Then, sometime later, you should pop those registers in the reverse order:

pop ,ex
pop bx
pop ax

Occasionally, errors in pushing and popping creep in after modifying a
subroutine and inserting a new push instruction, perhaps after adding a loop
that changes a previously unused register. Then, you either forget to add a

Chapter Fourteen: Common Assembly Language Bugs 379

corresponding pop or you insert the instruction in the wrong place. Either way,
your program's goose is cooked.

The first mistake-forgetting the pop-almost always sends the code into
limbo. When I modify a subroutine and it blows up, I often find a missing pop
to be the cause. But if I can't locate the mistake in the source text, I set a
breakpoint on the first and last instruction in the subroutine and inspect the
stack pointer SP in the CPU or Registers window to confirm that my pushes and
pops match.

The second mistake-inserting a pop in the wrong location-is more diffi
cult to locate. The symptom in this case is a register suddenly changing value
similar to what happens when you reverse the destination and source operands.
A trick that I use is to open the Registers window at the start of a routine (or
before a series of push instructions), and then execute the Window menu's Dump
pane to log command. I then trace through several instructions or execute the
code to a breakpoint, and compare the Log and Registers windows side by
side. (A mouse helps arrange the windows on screen.) A quick glance shows any
discrepancies among the pushed and popped registers.

If these kinds of errors plague your code, you might want to use a macro or
TASM 2.0's new single-line, multiple-instruction push and pop instructions,
which let you write code like this:

push ax bx ex

pop ex bx ax

Confusing Offsets and Variables

MASM (and TASM when not in IDEAL mode) allows an ambiguous form of
variable addressing that leads to many assembly language bugs. If the data
segment defines a word variable named Counter, then this statement loads the
variable's value into BX:

mov bx, [Counter]

. The brackets tell the assembler to generate the correct instruction to load
the value at the address whete Counter is stored. But MASM syntax also allows
you to write the same instruction without the brackets:

mov bx, Counter

380 Part 1Wo: The Art of Debugging

That's harmless enough-unless you rrieant to load the offset address of
Counter into BX. Just removing the brackets is not enough. To correct the
problem, you must also add the offset keyword:

mov bx, offset Counter

If you forget the offset, TASM warns you of the danger only when assem
bling in IDEAL mode, so this can be easy to miss in MASM-style code. Because
the missing .offset probably loads the wrong address into the register;
subsequent instructions that use the register as a pointer can overwrite other
data at the wrong location. This may wreck the cbde or everi the stack,
depending on the value of Counter and how segments are ordered. If your code
unravels like haywire, a mixed up offset and variable reference might be the
cause.

Prevention is the best medicine in this case. To avoid confusing offsets and
variables, force yourself to surround all variable references with brackets. That
way, you'll be less likely to forget to include the offset qualifier when you need
to use the address of :i variable instead of its value. You can also use TASM's
IDEAL mode, which requires brackets around all variable references.

Finding the source of a variable reference that should have used offset is a
tough job that requires setting a breakpoint for all instructions that read that
variable's address. You still have to figure out which of those instructions is
wrong, but at least this method gives you a head start. Unfortunately, monitor
ing memory reads requires hardware-debugging assistance (see chapter 18). TD
can monitor changes to specific memory locations, but it can't find ali accesses
to a certain address without help from the hardware. .

If you do have a hardware debugging board or an 80386 or 80486 pro
cessor, follow these steps to set a breakpoint to find all reads to a specified
address:

1. Open the Breakpoint~ window from the View menu (press (Alt)-VB).

2. Press (Ctrl)-A to add a new breakpoint. Selectthe Global and Hardware
options, then press (Enier) or click Ok. to close the window.

3. Press (Ctrl)-H to modify hardware options, set Address match to Equal,
and enter Counter as the Address va Lue. Leave the other default values as
they are. Press (Enter) or click Ok to close the window.

4. Execute the code by pressing < F9). The breakpoint will halt the program at
every reference to .Counter.

By following those four steps; you can quickly locate all instructions of the
form mov bx, [Counter] and mov bx, Counter. Look for an instruction that
should have been written mov bx, offset Counter.

Chapter Fourteen: Common Assembly Language Bugs 381

Common Program Errors

Crack assembly language programmers can write the most amazingly clever
code. But assembly language can also lead programmers into bug-infested
woods where even top professionals spend much of their time fighting goblins.
You'll prevent many disasters if you avoid the following demons.

No Return to DOS

Assembly language programs never die; they just fade back to DOS. Forgetting
to provide an exit path for every possible condition that might end a program
will surely lead to a colossal crash.

The usual way to end most assembly language programs is to call DOS
function 4Ch with code similar to this:

Exit:
mov
mov
int

ah, 04Ch
al, [exitCodel
21h

DOS function: Exit program
Return exit code value
Call DOS. Terminate program

Byte variable exit code holds a value to return to DOS as an error indicator,
which tells the calling process whether an error occurred. When running
programs from DOS, you can inspect the error value in a batch file by examin
ing ERROR LEVEL. (Most DOS references explain how to do this.)

There are other ways to end programs, but none as sound, so there's no
need to list them here. If your programs use other means, you'd be smart to
bring them up to date.

If that doesn't ease your woes, you've got to find where the program is
flying off into outer space. Do that by dividing the code into arbitrary sections
until you narrow the search to a small section that you can then trace one
instruction at a time. One way to do this is to open the CPU window and patch in
j mp near Exit-or from other segments, j mp far Exit-instructions.

To make the patch, move the highlight bar to an appropriate location and
start typing. You might also have to enter one or more nop instructions after the
patch to keep the disassembled code in synch with your program.

Hint: Press (Ctrl)-M to toggle the Mixed setting to No in order to see a disassem
bly of the patched instructions; other settings show the original source code even
after you enter patches, which can be confusing.

After running the program to completion, press (Ctrl)-(F2) to reset. That
also removes the previous patch. You can then patch in another jump nearer to

382 Part 7loo: The Art of Debugging

the crash site. By repeating this process, it shouldn't take long to narrow the
problem to a small section, which you can then trace or Animate while watch
ing various program variables.

Stack Missing or Too Small

Be sure to declare a stack of an appropriate size unless you're writing a .COM
program, which combines the code, data, and stack into a single 64K or smaller
segment. During development, or if the code hangs, declare a large stack with
the directive:

STACK 16384 ; 8192 is also a good choice

Declaring more stack space than needed is a useful debugging tool. Try this
as one of your initial tests when a program catches a bug. If the problem
disappears, it may be caused by too little stack space.

Also, by adding this simple test to your list of standard debugging steps,
you'll find those times when you simply forget to declare a stack. Although the
linker warns about this condition, the warning message may scroll off screen
before you read it, especially when you're assembling large programs with
TASM's MAKE utility.

Misunderstanding Uninitialized Data

Assembly language variables are usually stored in data segments, of which there
are two basic kinds: initialized and uninitialized. Most often, segment registers
DS and ES locate data-segment starting addresses, leading to bugs if you forget
to initialize and preserve these register values.

It's wise to take the word "uninitialized" seriously. Uninitialized variables
have no predetermined values, and programs that fail to recognize that are on a
sure path to trouble.

In assembly language, a question mark defines an uninitialized value. For
example, to define space for a single uninitialized byte, you can write:

aByte DB ?

The problem is, many programmers assume that aByte and other "unini
tialized" variables are set to 0 when the program runs. They make that assump
tion because, when a Byte is sandwiched between two other initialized vari
ables, the assembler reserves space for the variable by inserting one or more O
bytes:

Chapter Fourteen: Common Assembly Language Bugs

aWord
aByte

ow 1 h
DB ?

aString DB 'Cc) 1920. No Rights Reserved'

383

Declared that way, the uninitialized aByte is set to 0 because, in order to
include the values for aWord and aString in the .OBJ file, the assembler has to
reserve space for aByte. By design, the assembler assigns 0 bytes to that space;
therefore, even though aByte is declared as an uninitialized variable, it is
"initialized" to 0 at runtime.

Danger looms if, later on, you remove ast ring or shift it to another spot. If
that places aByte among the last uninitialized variables defined, space for aByte
is no longer reserved in the object-code file's data segment:

aString DB
aWord OW

'(c) 1920. No Rights Reserved'
1h

aByte DB ?

The modified program no longer reserves space for aByte, and as a result,
aByte's starting value equals the left over value stored at that location. It's
no longer safe to assume that the uninitialized value will be set to 0 by
default.

TD adds to the confusion because, when you assemble the code with full
debugging information, uninitialized variables are preset to all 0 bytes-even
when they are declared last. Only when you execute the program directly from
DOS are uninitialized values assigned uninitialized memory space.

If the program exhibits buggy behavior when executed directly from DOS,
but if that bug disappears when executed under the debugger, you should
immediately suspect that an uninitialized variable is at fault.

A good way to combat such bugs is to use the UDATASEG directive to collect
all uninitialized variables in the same location. This will help you to verify that
your program properly assigns values to all variables in uninitialized data
segments.

Misunderstanding ASSUME

A common snafu is misunderstanding the role of ASSUME in segment addressing.
ASSUME is a directive to the assembler-it doesn't generate any machine code,
and, therefore, the directive has no effect at runtime. ASSUME tells the assembler
that a segment register has been or will be initialized to the address of a
declared segment. This lets the assembler choose the correct machine-code
formats for instructions that refer to variables in that segment.

Some programmers place a single ASSUME inside the code segment before
the first instruction. For example, this is a typical directive:

384 Part Two: Tbe Art of Debugging

ASSUME cs:cseg, ds:data, es:extra, ss:stackSeg

That's fine, and it defines the segment locations early for easy reference. But
it's still the program's responsibility to load the segment registers with the
correct values. All that ASSUME does is to tell the assembler what registers the
program will use to address variables in segments. (Registers CS and SS are
initialized at runtime by DOS. You don't have to initialize them with program
instructions.)

If the program changes DS or ES, it must also tell the assembler about the
change. Use ASSUME to do this as in this fragment:

mov ax, extra2
mov es, ax
ASSUME es:extra2

Initialize es to address
of extra data segment

Tell assembler where es points

You must load the register and tell the assembler about the change with
ASSUME.

Unexpected Register Changes

When a register changes value unexpectedly, it's usually due to one of two
causes: an interrupt service routine (ISR) that fails to preserve modified register
values or an instruction such as mul ax, [value], which changes both AX and
DX, even though only AX is shown in the source code. Other culprits include
string instructions such as stosb and lodsw, which modify the string index
registers SI and DI.

You can often distinguish between the two different cases by running the
code several times. If the bug appears at random times, it's most likely due to a
faulty ISR. But if the bug appears consistently at the same location, check your
assembly language reference for all register effects for instructions in that code
section. Pay special attention to i mu l, mu l, and string instructions. They seem to
give assembly language programmers the most trouble with unexpected
changes to register values.

It is possible to set a Changed memory global breakpoint for a suspected
register, but due to the heavy reuse of most registers in assembly language code,
this often produces an overwhelming series of breaks that are more confusing
than helpful. Do what you can to isolate the bug to as small a section of code as
possible before setting breakpoints for specific registers. Then, press (Alt)-BE
and enter an expression such as ax eq 042h to halt the code when that value
appears in AX. (See chapters 8 and 9 for help with breakpoints and assembly
language expressions.)

Chapter Fourteen: Common Assembly Language Bugs 385

Undocumented Registers

Don't be too trusting of documented register use. Test your code to be sure that
subroutines preserve the expected register values.

This can even be a problem with well-known DOS routines. For example,
this typical fragment writes ASCII characters ending with $ to the standard
output:

mov dx, offset message
mov ah, 09h
int 21h

A well-known and trusted DOS reference does not mention that calling
DOS function 09h also changes AL, but it does.

Flag Foul-Ups

Symptoms of mishandled flags can range from the simple to the complex. One
signpost is a subroutine or other code section that runs under the wrong
conditions. For example, if a certain routine should execute only when Leve Lis
less than 10 but runs unexpectedly when that variable is greater than 10, you
may have failed to preserve flags that are set during a previous comparison.
(Also see "Jumping Into the Fire" later on.)

A good way to watch for flag changes is to open the CPU window and press
(Tab) to activate the flag pane-the skinny one at the upper right. Then, use
the Window menu's Dump pane to Log command to make a copy of the current
flag values. You can then open the View menu's Log window to inspect flag
settings and compare them after you step through various code sections. Once
you master this trick, you'll find it's a lot easier than jotting down flag values on
paper.

Segment Snags

Suddenly, your variables disappear, or they change values. Your code seems to
be suffering from a loss of memory, and you are at a loss to explain why. Or,
values that you store at one location magically shift to another.

What's the matter? Probably, you've got a segment-related bug, often
caused by mishandling a segment register. This can cause the program to read
and write data at a different segment base than intended, causing all variables to
change suddenly. When that happens, look for the following common causes.

386 Part Two: 1be Art of Debugging

Using the Wrong Segment Register Value

You probably realize that you must initialize your segment registers, usually by
executing these simplified memory-model instructions at the beginning of your
program:

IDEAL

DOSSEG

MODEL

STACK

CODESEG

Start:

mov

mov

mov

small

256

ax, @data

ds, ax

es, ax

Initialize DS to address

of data segment

Make es = ds

This is not a complete program, but it shows a typical startup sequence.
Errors will occur, of course, if you forget to initialize DS (and ES if needed), but
more often, segment-addressing bugs arise from other code that changes DS or
ES and does not restore their values.

If you suspect that DS is being changed at the wrong time, load your code
into the debugger and press (F8) to step over the instructions that initialize the
segment registers. Open the CPU or Registers window and then set an
Expression true g Loba l breakpoint to the expression (cs eq 2AFDh) and (ds
ne 2B01h).

In place of 2AFDh, use the current value of CS shown in the CPU or
Registers window. In place of 2BOlh, use the current value of DS. You must
monitor both CS and DS to avoid breaking when code outside of the program
changes DS.

Next, close the CPU or Registers window or press (F6) to switch back to
the source-code view. Then, run the program by pressing (F9). The code will
halt at any instruction in your program that changes DS to a value other than
@data.

Using the Wrong Def a ult Segment Register

Certain instructions are intimately tied to specific segment registers. For exam
ple, lods always loads a byte or word at DS:SI, unless an explicit override
specifies ES instead of DS. Similarly, stos normally stores a byte or word at
ES:DI.

But it's the instructions, and not the index registers SI and DI, that are
linked to segment registers DS and ES by default. A common misunderstanding
is to assume that DI always represents an offset from the segment addressed by
ES because stos normally uses ES:DI. It doesn't. Consider a simple mov:

Chapter Fourteen: Common Assembly Language Bugs 387

mov ax, [word ptr dil

When used like that in a register-indirect reference, Di's default segment is
DS, not ES. To refer to data in a segment addressed by ES, you must use an
explicit override:

mov ax, [word ptr es:dil

Common symptoms of a misused default segment register include the
inability to find initialized data, strings that display garbage on screen, and
other illnesses that suggest the program is having trouble locating its data.

Many times, the cure is simple. Just set DS and ES to the same segment. If
your troubles go away, then you've probably written code that expects the
wrong default register for some instructions. Of course, you can't apply this
technique if you need to use ES to address a second data segment or if the
program modifies ES frequently.

A good way to check that instructions are referring to the expected segment
register is to single-step portions of the program while viewing the CPU window.
At every memory read and write, the border just above the code pane shows
the segment, offset, and value at the computed address before the highlighted
instruction executes. Use this feature to verify that your segment expectations
are what you think they should be.

Ignoring Data Segment Starting Offsets

You can use TD to monitor your program's data segments. First load your
program and press (F7) or (FS) to step through the instructions that initialize
DS and ES. Open a Dump window, press (Ctrl)-G, and enter ds:O or es:O to
display bytes at these addresses.

When you do that, you may be surprised to discover that the first variables
declared in your program aren't necessarily located at DS:OOOO or ES:OOOO. If
the segment is aligned by BYTE or WORD, the first byte of the segment's first
variable might be at offset 08h or OEh or at another value. Only when data
segments are aligned to PAGE or PARA are the starting offsets guaranteed to begin
at 0. This is a normal consequence of 80x86 memory segments, which always
begin on fixed 16-byte address boundaries, called paragraphs. To align seg
ments to addresses between paragraphs requires the segments to be positioned
at an offset from the closest fixed boundary below (at a lower address).

Figure 14 .1 illustrates how misunderstanding this arrangement can lead to
serious bugs. Register CS addresses the base of the program's code segment.
Register DS addresses the data segment. But because the data segment is WORD
aligned (or, it might be BYTE aligned), the byte at DS:OOOO actually addresses the
tail end of the overlapping code segment. Changing the bytes starting at
DS:OOOO will modify some of the program's instructions!

388 Part Two: The Art of Debugging

Code Segment

cs:OOOO

ds:OOOO
Paragraph Boundary - -~-

Data

Data Segment

Figure 14.1. Overlapping code and data segments.

To determine whether this is causing the bug, set a Changed memory global
breakpoint for ds:O, offset firstVar - 1, where fi rstVar is the first variable
declared in the data segment. The offset address of that variable minus one
equals the number of overlapping bytes in both segments. Setting a breakpoint
to watch for changes will trap any instruction that overwrites the tail end of the
program's code.

Unexpected Segment Wrap Around

A similar problem to the one described in the previous section occurs when an
instruction or a loop writes data to multiple segment locations, incrementing an
offset value, usually in a register. For example, suppose you define a 24-byte
array and fill that array with 0 bytes this way:

xor ax, ax
mov bx, offset array
mov ex, 12

@@10:
mov [word bxJ, ax
add bx, 2
loop @@10

There are better ways to write this kind of loop, but the sample clearly
demonstrates a common mistake. If array is located near the end of a 64K data
segment and if the wrong loop count is assigned to CX, then adding 2 to BX
might cause the index value to wrap around from OFFFFh to 0. Because DS:O
overlaps a portion of the preceding code segment in memory, the effect is to
wipe out one or more instructions.

Load the code into TD and set a Changed memory global breakpoint for
ds:O,n where n is the nutnber of bytes to monitor. This will trap the instruction
that's writing data to addresses that don't belong to the data segment.

Chapter Fourteen: Common Assembly Language Bugs 389

Procedural Predicaments

A procedure (a subroutine) isn't as neatly packaged in assembly language as
procedures and functions are in C and Pascal. In assembly language, a pro
cedure is any series of instructions that ends with re t or re t f. Procedures help
modularize a program, but because the assembler enforces few rules for creat
ing procedures, they also invite several common mistakes.

Unexpected Fall-Through

The most prevalent procedure error is an unexpected fall-through, caused by
forgetting to end a procedure with ret or ret f. Programmers who are more
comfortable with C and Pascal often make this error because high-level lan
guages do not require termination instructions at the end of a procedure or
function. (In a way, this problem resembles a bug caused by a missing return
statement in a C function that returns a value.)

If your program seems to develop a mind of its own, you may be experienc
ing this sort of trouble. For example, consider these two subroutines:

; ---- Return ax = ax + bx + ex
PROC AddReg

add ax, bx ax <- ax + bx + ex
adc ax, ex Forgot ret instruction!

ENDP AddReg
; ---- Display message
PROC Welcome

mov dx, off set Message
mov ah, 9
int 21 h
ret AddReg returns here!

ENDP Welcome

Because AddReg doesn't return to its caller, the program continues with
procedure Welcome after the second adc instruction. Welcome displays a message
defined in the data segment:

DATASEG
Message db 13, 10, "Care for a game of chess?", '$'

But, because of the bug, every time you call AddReg to add AX + BX + CX,
the computer asks "Care for a game of chess?"

The mistake in this example is obvious, but in a large program with many
modules or multiple code segments where adjacent subroutines in the assem-

390 Part Two: The Art of Debugging

bled code might not be next to each other in the source, if you can't find the
missing return by eye, set a breakpoint in the unexpected routine (We L come in
this example). Then, open the CPU window and press (F9) to run the program
until it stops. You'll probably find that you should have inserted a ret or retf
just above that point. If a return is there, then you may have called the wrong
subroutine. In that case, press (FS) to step over the current routine's code until
it returns. That will take you back to just after the bad ca L l.

Uninitialized Register Parameters

An obvious, but still frequent, error is forgetting to pass the correct input values
in the registers required by a procedure. To check input values, you can add
registers to Watches or press (Alt)-VR to view them in the Registers window.
Or, you can view the CPU window, which has its own Registers pane. That way,
you can inspect any input flag values, too.

Multiple Entry Points and Exit Paths

A good rule of thumb is to provide single entry and exit points in all pro
cedures. Of course, rules are made to be broken, and this rule is broken more
often than most by clever assembly language programmers bent upon squeez
ing their code into the smallest possible space.

Technically, there's nothing wrong with a procedure that has multiple
entries and exits-as long as you stay on guard for bugs. The number one
guideline is to provide an exit for every possible input condition, which is not
always easy to do in complex code.

To check out a procedure with multiple entries and exits, use the CPU
window to assign test values to registers and then execute a call to the sub
routine by pressing (FS). Unfortunately, you can't use the Data menu's
Eva Luate/modi fy command to call assembly language subroutines out of con
text as you can in C and Pascal. But there is a way to simulate that ability. Follow
these steps:

1. Run the code up to a ca LL instruction that calls the test procedure. Open
the CPU window and press (Ctrl)-G. Enter the current instruction pointer
IP displayed in the registers pane near the top left corner of the window.
For example, if the current location is CS:OOlB, enter cs:OOlbh. (Don't
forget the trailing h to indicate that this is a hexadecimal value.) The
highlight bar should not move.

2. Press (Tab) and enter values passed to the subroutine in registers. Press
(Tab) again and set any required flags. Then press (Shift)-(Tab) once or
twice to get back to the disassembly pane.

Chapter Fourteen: Common Assembly Language Bugs 391

3. Press (F8) to step over the ca L L instruction, simulating TD's ability to call
subroutines out of context in C and Pascal. (If you press (F7), you would
trace into the subroutine. To execute the routine at full speed, (F8) is the
correct key.) When the subroutine finishes, examine any returned registers
or other events you need to monitor.

4. To prepare for another test, press (Ctrl)-G, hit (Cursor Down), and then
press (Enter) (Ctrl)-N. This repositions the highlight bar to the ca LL
instruction and sets CS:IP to that location. You can then set new values in
registers and flags and repeat from step 2.

These steps reset the origin to the ca L L instruction so you can call the same
subroutine many times without having to reset the entire program. You might
also be able to press (Alt)-(F4) (the Back trace command's hot key) or use
keystroke recording to perform similar tricks, undoing the effects of cal ls and
other instructions. (See chapter 16.)

By the way, step 4 makes an excellent macro. Before executing step 4 the
first time, press (Alt)-= to turn on the macro recorder and choose a key for the
macro ((Alt)-R for "Reset" is a good choice). After pressing (Ctrl)-N, press
(Alt)-- ((Alt) and the hyphen(-) key) to stop recording. From then on, instead
of doing step 4, press (Alt)-R to reset the program to just before the ca L l.
When you're done testing, you might want to use the Save opt i ens command
in the Options menu to save this macro for next time.

Returning Near and Far

Every call to a near procedure (in the same code segment) must be matched by a
near return. Every call to a far procedure (in a different code segment) must be
matched by a far return. Near calls and returns push and pop 16-bit address
offsets on the stack; far calls and returns push and pop 32-bit segment and
offset addresses.

If you always use PROC directives, and optionally specify near or far, TASM
can generate the correct ca L l and ret instructions automatically. But it's also
possible to create a subroutine without PROC:

subx: push ax
; instructions for subroutine
pop ax
retf

If you call this routine from within current code segment, the assembler
will not generate a far ca LL instruction. TASM doesn't know that the subroutine
returns via ret f, so it incorrectly uses a near ca L l. It's up to you to use the
correct cal L instruction:

392 Part Two: Tbe Art of Debugging

call far subx

Two common symptoms often appear for this bug. The first is a system
crash, caused by "returning" to a far address from a near call. Sometimes, a
crash will not occur if other calls left the correct segment address on the stack,
in which case the telling mark is a stack pointer that advances 2 bytes too many
for each subroutine call as extra words are popped from the stack.

The second common symptom is a stack that slowly loses space, often
caused by a near return to a far call that happens to be in the same segment. For
example, you might have a series of far library procedures that are called both
from other segments and by local routines in the same segment. In that case,
the routines must end with retf instructions and must be called by call far
routine instructions no matter where the call originates.

Because the offset portion of the return address is pushed onto the stack last
by a call far instruction, a near ret in the same segment works but also leaves
the segment address unpopped. A handy way to find all ret and retf
instructions is to search for those symbols in the CPU window (press (Ctrl)-S).
Because these two returns evaluate to single-byte machine codes OC3h (ret)
and OCBh (ret f), you can search for them by name. This will also locate any ret
instructions in far PROCs for which the assembler generates ret f machine codes.

Not Preserving Registers Around Calls

One of the leading causes of "the chip is bad fever" is a mysteriously changing
register. I caught a dose of that bug one time while using a computer (not a PC)
that used an interrupt to update a processor register repeatedly as a random
number seed. One time, I forgot that fact and noticed that the register was
changing at random. Assuming that the chip had developed a bad case of the
jitters, I decided to replace it with a new processor. Luckily, I remembered the
interrupt just before popping out the "faulty" chip.

A more common cause of a register that changes mysteriously is a sub
routine that modifies the register but fails to preserve its value. You may be able
to trap this error by setting a Changed memory global breakpoint on the register,
but first try to isolate the mistake to as small a section as possible. Because of the
limited number of registers in 80x86 processors, setting breakpoints for
changed registers often produces too many halts to be useful.

Jumping Into the Fire

TD makes life with conditional jumps so much easier, I usually test my code in
the debugger during development instead of waiting for bugs to appear. This

Chapter Fourteen: Common Assembly Language Bugs 393

helps me to avoid two of the most common errors with conditional jumps,
described next.

Wrong jump Sense

It's easy to mix up conditional jumps like j a (jump if above, unsigned) and jg
(jump if greater, signed). For example, when comparing negative values, using
the wrong jump causes the program to fail as this sample demonstrates:

xor
cmp
j a

ax, ax
ax, -1
Exit

set ax = 0
is ax > -1?
jump if ax> -1 (??)

The j a is not correct. It should be jg. The program fails because 0 is greater
than -1, but 0 is not above -1, which in unsigned decimal equals 65535
(OFFFFh).

Long-distance conditional jumps are even more error-prone than single
jumps like that one. Typically, when jumping farther than about 127 bytes
forward or backward, it's necessary to combine two jump instructions this way:

cmp
jg
jmp
@@10:

ax, -1
@@10
Error

is ax <= -1?
jump if ax > -1
jump if ax <= -1

Reversing the sense of the conditional jump-using jg instead of j le-and
then following the conditional with an unconditional j mp has the same effect as
j le Error, but allows the target label to be farther away.

One way to prevent errors when designing such code is to use TASM's
JUMPS directive, which inserts long-distance jumps as needed automatically
when the target label is too far away for a single conditional jump to reach.

Another way is to use TD to examine flags in test cases. Remember that
conditional jumps are based on certain flag settings. For instance, jg is carried
out only ifthe sign flag sf equals the overflow flag of and ifthe zero flag zf is 0.
Compare these values with an assembly language reference's flag settings for
conditional jumps.

Misplaced Local Labels

Watch out for local labels such as @@10: and @@Continue: in the wrong position.
Because local labels can be duplicated throughout a program, be sure to aim
your jumps at the targets you want to hit.

394 Part Two: 1be Art of Debugging

The assembler can catch one of the most common local-label mistakes.
Suppose you write a subroutine to call another routine ten times:

PROC Do Sub
mov ex, 10

@@Temp:
call Subroutine
dee ex
jnz @@Temp
ret

ENDP Do Sub

If another place in the program executes call Do Sub, the routine calls
Subroutine (not shown) ten times. You then realize that if you load CX with
another value, you can call the temporary local label to execute Subroutine any
number of times:

mov
call

ex, 2
@@Temp

load count into ex
call DoSub's temp label C??)

The trouble is, this doesn't assemble because @@Temp: is trapped inside
DoSub; therefore, the label is not visible (to TASM, that is) outside of the
procedure. Local labels exist only up or down to the nearest nonlocal label, and
the assembler gives an "Undefined symbol" error when you try to assemble the
source.

But the assembler does not catch another common local-label problem.
The trouble begins when you write a loop similar to the previous sample to call
a Subroutine (or perform another action) a certain number of times:

xor
@@Repeat:

call
Entry2:

ax, ax

Subroutine

dee ax
jnz @@Repeat

@@Repeat:

Here, the problem occurs because local label @@Repeat appears at the
correct place in the loop but is repeated later. The program assembles with no
errors, but the j nz refers to the second @@Repeat: when it should jump to the
first. The code is syntactically correct because local labels may be repeated
between other nonlocal labels such as Ent ry2:. But it doesn't run as expected.

Chapter Fourteen: Common Assembly Language Bugs 395

Tracing or stepping over (press (F7) or (FS)) through this kind of
sequence quickly points out such errors. When doing that in the CPU window,
up and down arrows appear next to highlighted jump instructions if the jump
will be taken. If the arrows don't appear, then the instruction after the jump will
execute next. This lets you preview the effect of a jump without actually
jumping.

String Sins

String instructions lods, movs, stos, cmps, and seas plus their alternate no
operand forms are useful for filling, moving, comparing, and performing other
operations on byte strings. When combined with repeat prefixes rep, repe,
repz, repne, and repnz, a single instruction can affect thousands of bytes.

Such power adds speed to machine code. But, when applied carelessly,
these instructions can also wipe out an entire segment in a flash. So, if your
program has a bug and you are using string instructions, the error might be
among the following common mistakes.

Expecting CX = 0 to Reach an Entire Segment

Because a repeat prefix such as repnz examines ex before executing the next
string instruction, if ex equals O initially, the instruction is skipped. That means
you can't fill an entire 64K segment addressed by ES with code such as:

xor al, al set al = 0 (fill value>
mov ex, 65535 assign count to ex
mov di I 0 assign offset address to di
cld clear direction flag
repnz stosb fill segment Less 1 byte

That fills the addresses from ES:OOOO up to and including ES:FFFEH with 0
bytes. To fill the last byte, you must follow this sequence with another unre
peated stosb.

A useful method for examining code like this is to open a Dump window to
the area being filled or moved by other string instructions. Use the Goto
command (press (Ctrl)-G) to position the window to the area to watch. Then,
trace or step through the instructions. The Dump window will show the results.

It's also helpful to fill areas with known values when performing string
instruction tests. For example, before filling a buffer, I often set all bytes to Offh
so I can easily see if any bytes are skipped by the code. Rather than write a loop
to do this, use the Dump window's Block:Set command to fill memory with
byte values. Be careful with the command-it writes values directly to any

396 Part Two: The Art of Debugging

locations you specify. To fill the entire segment at ES:O with Offh bytes, enter
the Set expression es:0,65535d,Offh.

Trusting String Operands

String instructions may include operands that specify source and destination
labels. Even so, you still have to load the necessary registers and set the
direction flag for the instructions to work. The operands are permitted only so
the assembler can check whether the labels are addressable by the currently
ASSUMEd segment registers. A typical mistake is to write:

ASSUME es: DATA
mov ex, 10 ; load count into ex
xor al, al ; Load f i l l value into al

repnz stos [byte es:destination] ; f i l l array (??)

This is very dangerous! The code tells the assembler that ES: addresses the
global data segment and that the program will store 10 zero bytes in an array
named de st i nation. The assembler reports no errors, but the code has a
whopping bug because it fails to initialize the destination index register DI and
to clear the direction flag so that stos will increment the index for each repnz
repetition. Here's the correct way to write the loop:

ASSUME es: DATA
mov ex, 10
xor al, al
mov di I off set destination
cld

repnz stos [byte es:destinationJ

Even though stos specifies the destination label, a mov or other instruction
still has to initialize DI to the same offset address. Also, a c ld instruction clears
the DF flag to make certain that DI will be incremented.

The symptom of a string-instruction operand problem can be a subtle quirk
or a horrendous crash. If you are using operands this way, set breakpoints on
your string instructions and run your code until it halts. Then, open the
Registers or CPU windows to check that all registers are properly initialized.

Hint: Press (F7) to execute repeated string instructions one iteration at a time.
Press (FS} to execute all repetitions. Just before pressing those keys, you might
want to change SI, DI, and CX to experiment with different index and count values
rather than reassemble the code.

Chapter Fourteen: Common Assembly Language Bugs 397

Bad Direction Flag Setting

Always precede every repeated string instruction with c Ld (to increment index
registers SI and DI) or std (to decrement the registers). Don't just execute a
single c Ld at the start of your program and assume that the DF flag won't ever
change. Other subroutines may not preserve DF's value.

Confusing Default Segment Registers

Another common string error can occur when you expect the wrong default
segment register to be used. For example, stosb and other forms of stos store
bytes at ES:DI; therefore, you must initialize ES to the segment that contains the
variable at the offset in DI. If only DS is initialized to the program's data
segment, the string instruction could easily overwrite data or code anywhere in
memory.

One way to avoid trouble is to set DS and ES to the same data segment
address early on. That way, you can use string instructions freely to fill, move,
and compare bytes in global variables. This is a good idea when assembling
stand-alone programs that specify MODEL sma LL at the start, in which case there
is only one global data segment unless you specify another with FARDATA.

You can get back into trouble, though, if you later switch to another
memory model or if you decide to use multiple data segments. Code that used
to work correctly may then require extensive changes to initialize segment
registers before each string operation.

Interrupt Intricacies

An interrupt service routine is similar to a common subroutine except that,
instead of being called from a program statement, it runs due to an external
event that triggers the processor to suspend its current activity and jump to a
vector address stored in low memory. Software interrupts such as the famous
DOS function call int 21 h and the ROM BIOS video interrupt int 1 Oh are even
more like subroutines because program statements call them explicitly. But
hardware interrupts, which can run at any time, give people the most trouble.

The key to ISR success is to understand that a hardware interrupt might
occur at any time (except when expressly prohibited by clearing the interrupt
enable flag with c Li, but more on that later). Because the ISR might run
between any instruction in a program-even between instructions in DOS or in
the ROM BIOS-you must reset every modified register and flag to the same
values as when the ISR began.

Usually, bugs in ISRs show up as intermittent faults. Under one set of
conditions, a certain problem appears. Under another, it goes away or changes

398 Part Two: The Art of Debugging

character. It's impossible to describe one set of circumstances that signifies an
ISR bug. But, if your program uses interrupts, problems might be from one of
the following common causes.

Destroying Register Values

Because TD saves and restores the first 48 interrupt vectors, if you set any of
those vectors to your own ISR, an external event will activate that ISR only if
you run the code by pressing (F9). The debugger also restores these same
vectors before returning to DOS-so if your program changes one or more
vectors, you don't have to restore their values.

While usually helpful, these features can make it difficult to detect the most
·common kind of ISR bug-failing to preserve every modified register. Flag
values are saved and restored automatically by the processor during interrupt
handling. You don't have to preserve flags yourself. But if the ISR doesn't
preserve a register, all kinds of bad things are likely to happen.

To examine the before and after register values in an ISR, set a breakpoint
on the ISR's first instruction and run your program by pressing (F9). After the
breakpoint halts the program, open the Registers window and execute the
Window menu's Dump pane to log command. Open, resize, and align the Log
window so you can easily compare register values. Then, run the ISR up to i ret
and verify that all registers are preserved.

Disabling Interrupts

If you want other interrupts to be able to interrupt an ISR, you must execute st i
as one of the ISR's initial instructions. When you are having trouble getting an
interrupt to run as expected-for example, if a serial I/O routine loses charac
ters even at slow baud rates or if a clock ISR loses time-the fault may be in
another ISR that fails to enable interrupts by executing st i . If that ISR takes a
long time to finish, no other maskable interrupts will be processed until the
next i ret. For that reason, it pays to check that all active ISRs properly execute
st i before wasting· time hunting bugs in healthy code.

Forgetting to Restore Interrupt Vectors

Always restore all changed interrupt vectors except in cases when a program
installs resident code that remains in memory while other programs run. In
other cases, you should reset all interrupt vectors before returning to DOS. (See
chapter 19 for more information about debugging TSRs and other resident
programs.)

Chapter Fourteen: Common Assembly Language Bugs 399

If DOS or other programs develop bugs after your program runs, a changed
interrupt vector may be at fault. Also, when debugging ISRs, if you aren't 100%
sure that interrupt vectors are reset properly, reboot before running your code in
TD. Otherwise, the first 48 vectors will be restored to their buggy values when
the debugger returns to DOS. In fact, under these circumstances, code that runs
just fine in the debugger may develop a bug only when you run other code!

Problems like these are sometimes easier to fix by writing short test pro
grams to put ISRs through the paces (either in the debugger or from DOS). A
neat debugging trick is to deactivate the external interrupt by executing cl i in
the test code and then call your hardware interrupt with a software int
instruction. This lets you debug the ISR code as though it were a plain sub
routine (it still has to end with i ret, though).

Numerical Puzzles

Expression handling in assembly language is far more tedious than in C and
Pascal. If you must use assembly language to crunch numbers, watch out for the
following common "gotchas."

Not Extending the Sign Bit

When mixing signed bytes and words, be sure to extend the sign bit properly.
Don't get caught in this trap:

mov
mov
add

al, -1
bx, 5
ax, bx

set al = -1
set bx = 5
ax <- ax + bx (??)

Here, the intention is to add a byte in AL to a word in BX. The trouble is,
the first mov assigns a value only to AL, leaving the high byte of AX (AH)
uninitialized. If AX is 07F04h before this fragment, the addition (-1 + 5) will
equal 32,511.

To fix the mistake, insert cbw after the first mov to convert the signed byte in
AL to a signed word in AX.

Radix Mistakes

Adopt a standard radix and stick to it. I use decimal in all cases except where
hex seems more appropriate-filling memory with all Offh bytes, constructing
logical AND and OR masks and setting specific bits in bytes and words. I

400 Part Two: Tbe Art of Debugging

learned to count my toes before I learned to count computer bits, so decimal is
more natural to me. Besides, this is the default setting for TASM and MASM.

Many assembly language programmers prefer hexadecimal, however, and
they change the default radix to hex by adding a RADIX 16 directive to their
programs. There's nothing wrong with that, but remember that you still have to
add a trailing h to all hex values that end in a b, which the assembler and TD
recognize as the binary radix modifier.

Watch out for this problem. Even after changing the radix to hex, the value
lOlB equals 5 in binary; it does not equal the expected 4,123 in decimal! To
write that value correctly in hex, you still have to use lOIBh with a trailing h
even though you changed the default radix.

Hint: Mistakes in radix often show up in the Watches and inspector windows. The
Data menu's Eva Luate/modi fy command is also helpful as a decimal-to-hex
converter-use it often to check that values are what you think they should be.

Debugging Mixed-Language Code
C and Pascal programs that call assembly language subroutines, whether
included in line with the source code or from external modules, can experience
the same kinds of bugs as unmixed code. As far as debugging is concerned,
there isn't anything special about mixing languages.

Of course, you must be careful to follow the recommended designs for
writing assembly language subroutines. Common errors include failing to pre
serve the stack frame pointer BP, adjusting the stack pointer by the wrong
number of bytes in a ret instruction, and failing to preserve registers. (Watch
out for SI and DI in mixed-language C programs. Those may be used as C's
register variables.)

When debugging Turbo C programs, TD automatically switches to show C
and assembly language source code in the Modu Le view. For this to work, you
must be sure to assemble, compile, and link with the options that add debug
ging information to all modules (see chapter 2).

When debugging Turbo Pascal programs, however, TD does not show an
assembly language view-even if you assembled the object-code modules cor
rectly. Unfortunately, the built-in TP linker strips debugging information from
.OBJ modules when it combines them with the compiled Pascal code. We can
only hope that a future TP release will fix this problem.

Hint: When TD switches from C to assembly language, if Options: Language is
set to Source, as it usually is, you must enter expressions in assembly language
format. When TD switches back to C, you must use C's format again. If you find
this to be confusing, choose another setting for Options: Language.

Summary

Chapter Fourteen: Common Assembly Language Bugs 401

It's possible to write some classy code in assembly language, but it's also
possible to introduce subtle bugs that are extremely difficult to find. Assembly
language is a cryptic language that demands utmost attention to detail. The
slightest mistake can lead to disaster.

This chapter lists many kinds of common assembly language bugs that are
both common and unique. Of course, you can also make most of the same
errors in assembly language as in C and Pascal, so if you're reading this chapter
out of order, you might also want to read chapters 10 and 12 for descriptions of
other common bugs.

Chapter 15

Hands-On Debugging for
Assembly Language

BUGS IN assembly language code often do more damage than similar
problems in other languages. Because an assembly language program is in
complete charge of the computer, the slightest disturbance can send the code
spiraling out of control-all the more reason to apply the debugging strategies
and principles outlined in this book and demonstrated in this chapter.

Similar in design to the hands-on debugging sessions in chapters 11 and 13
for Turbo C and Turbo Pascal, the following sections demonstrate how to use
TD to find bugs in Turbo Assembler code. First, you'll enter a buggy program,
which is long enough to be interesting, but not so long as to discourage you
from typing it into your editor. Then, you'll follow the steps outlined in chapter
7 to develop a debugging strategy for three fiendish bugs. After fixing each
problem, you'll retest the code to be sure the bugs stay dead.

You can also use this chapter as a self test of the information you've learned
so far. After reading about each bug, watch for a note like this:

Self test: Stop reading now.

When you see that message, stop reading and try to find and fix the
problem. Continue reading after you've discovered the solution or if you're
stuck and need more help. Don't be concerned if you can't find all the bugs on
your own. It's more important to try and fail than never to try at all.

Note: Even if you already read chapter 11 or 13, you can still take the self tests and
follow the demonstrations here. Parts of these chapters are the same, but the
programs and bugs are unique. If you didn't read chapter 11, you might want to scan
that chapter's review of debugging strategies from chapter 7 before continuing.

403

404 Part Two: The Art of Debugging

The Program

As you learned in chapter 7, a good plan for stabilizing bugs caused by unini
tialized variables and pointers is to set all available memory to 0 before running
the buggy code. That way, uninitialized variables will have known values,
which you can search for with the debugger.

The next three listings make up a program, ZEROMEM, that you can use for
this purpose. Before running tests on buggy code, use ZEROMEM to clear old
values out of memory. Or, you can incorporate the program into your own
projects. This may be all you need to stabilize a bug that refuses to hold still.

Although filling bytes with values should be a simple job, because the
80x86 divides memory into 64K segments, filling address ranges over multiple
segments is difficult to accomplish with good speed. For that reason, I decided
to base ZEROMEM on a general-purpose module FILLMEM.ASM (Listing 15.1)
that can fill any range of addresses with values, from a single byte up to all
available RAM. Unfortunately, however, the module has a few rough spots that
need polishing.

To expose those defects, I also wrote a test program, FILLTEST.ASM (Listing
15.2). Before running the final ZEROMEM.ASM program (Listing 15.3), the
subroutines in FILLMEM will have to pass FILLTEST's tests.

Enter all three listings now, but don't assemble and run ZEROMEM.ASM
yet-I'll let you know when to do that. Use these commands to assemble and
link the other two modules, FILLMEM and FILLTEST:

tasm /zi fi l lmem
tasm /zi filltest
tlink /v filltest fillmem

You may want to insert those lines into a batch file named MT.BAT (for
Make Test). You can then enter MT to assemble and link instead of typing each
line.

Note: After finding each bug and making the suggested changes, enter these same
three commands to reassemble and relink. Or, run the MT batch file if you
created it.

Listing 15 .1. FILLMEM.ASM.

1 : %TITLE "Fill-memory module. TASM 2.0 Ideal mode"
2:
3: i** Fi le: fillmem.asm CW ITH BUGS!)
4: "** , Author: (c) 1990 by Tom Swan.
5:
6: IDEAL

Chapter Fifteen.· Hands-On Debuggingfor Assembly Language

7:
8:
9:

10:

MODEL small
CODESEG
PUBLIC CalcDistance, FillMemory, Normalize

405

11: ;---
12: ; CalcDistance Calculate distance between two pointers
13: ;---
14: Input:
15: es:di =normalized pointer number
16: ds:si =normalized pointer number 2
17: Output:
18: dx:ax = 32-bit unsigned result. If es:di = ds:si, the
19: result= 1. If es:di < ds:si, the result is undefined.
20: Registers:
21: ax, dx
22: ;---
23: PROC
24:
25:
26:
27:
28:
29:
30:
31:
32:
33: @@10:
34:
35:
36:
37:
38:
39:
40:
41: ENDP
42:

CalcDistance
push bx ex di si
mov
sub
cwd
nlov
mov
sub
xor
mov

shl
rel
loop
add
adc
pop
ret

ax, s i
ax, di

s i, ds
di, es
si, di
di , di
ex, 4

s i ,
di ,
@@10
ax, s i
dx, di
si di ex bx

CalcDistance

Save modified registers
Copy si to ax for subtraction
ax <- si - di (signed)
Convert to 32-bit ax:dx
Copy ds to si, es to di--can't
subtract segment registers.

si <- ds - es (# paragraphs)
Zero high order 32-bit result
Assign loop count

Multiply segment value by 16
over 32-bit result si:di

Loop on ex
Add offset value to
32-bit result in dx:ax

Restore saved registers
Return to caller

43: ;---
44: ; Fil LBytes Fill number of bytes at any address
45: ;---
46: Input:
47: ex= number of bytes to fill (must be<= OfffOh)
48: dl =byte value to use for fill
49: es:di =normalized starting address for fill
50: Output:
51: none

406 Part Two: Tbe Art of Debugging

52: ; Registers:
53: ax, ex, di, es
54: ;---

FillBytes 55: PROC
56:
57:
58:

j cxz iilii110
cld
repnz stosb

Exit if count = 0
Clear direction flag
Fill ex bytes at es:di

59: &Hi110:
60:
61: ; ---- Fall through to Normalize pointer in es:di
62:
63: ENDP FillBytes
64:
65: ;---
66: ; Normalize Normalize pointer in es:di
67: ;---
68: Input:
69: es:di = any 32-bit address value
70: Output:
71: es:di normalized so that offset in di is in
72: the range 0000 to OOOFh. Formula is
73: segment = (segment + (offset I 16))
74: offset = (offset % 16) (% = "modulo")
75: Registers:
76: ax, es, di
77: ;---
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:

PROC

ENDP

Normalize
push bx ex
mov ax, di
mov cl, 4
shr ax, cl
mov bx, es
add ax, bx
mov es, ax
and di I Of h
pop ex bx
ret
Normalize

Save registers
Copy di (offset) to ax
Calculate offset I 16

by shifting right x 4
Copy es to bx
ax = ax + bx
Copy result back to es
Calculate offset % 16
Restore registers
Return to caller

91: ;---
92: ; FillMemory Fill memory with any byte value
93: ;---
94: Input:
95: dl =byte value to use for fill
96: es:di =starting address for fill

Chapter Fifteen: Hands-On Debugging for Assembly Language 407

97: ds:si =ending address for fill
98: Output:
99: Area from es:di up to and including ds:si filled

100: with dl bytes. If ds:si = es:di, 1 byte is filled.
101: If ds:si < es:di, no filling occurs.
102: After, es:di = address of byte after ds:si
103: Registers:
104: ax
105: ;---
106: PROC
107:
108:
109:
110:
111 :
112:
113:
114:
115:
116:
117:
118:
119:
120:
121 :
122:
123:
124:
125:
126:
127:
128:
129:
fil L
130:
131 :
132:
133:
134:
135:
136:
137:
138:
139:
140:

@@10:

Fi L LMemory
push bx ex dx di si es ; Save most registers

Normalize the two addresses in es:di and ds:si, so that
their offset values are in the range 0000 to OOOFh.

push es ds Save es, push ds
pop es Set es <- ds
xchg di I si Swap di and si
ca LL Normalize Normalize ds:si in es:di
push es Push result in es
pop ds Set ds <- es
xchg di I si Swap di and si back
pop es Restore es
ca LL Normalize Normalize es:di

Fill as many almost full segments as possible. The
division keeps the program running fast, while
simplifying the Logic that would be required to fi LL
full 65,536-byte segments when the starting offset
might not be zero.

push dx Save fill value on stack
call CalcDistance dx:ax <- count of bytes to

mov bx, OfffOh bx<- fill-Loop maximum count
div bx ax <- dx:ax div OfffOh
mov bx, dx Assign remainder to bx
pop dx Restore fill value to dl
mov ex, ax Assign fill-Loop count to ex
jcxz @@20 Skip Loop if count = 0

push ex Save count for next Loop
mov ex, OfffOh Set count to maximum
call FillBytes Fill ex bytes at es:di
pop ex Restore Loop count

408 Part Two: The Art of Debugging

141:
142: @&120:
143:
144:
145:
146:
147:
148:

ENDP

loop

mov
call

@@10

ex, bx
FillBytes

pop es si di dx ex bx
ret
FillMemory

Repeat until ex= 0

Assign remainder in bx to ex
Fill remaining bytes

; Restore registers
Return to caller

149: END ; End of fillmem.asm text

Listing 15.2. FILLTEST.ASM.

1: %TITLE "Test fi l lmem module"
2:
3: ; **
4: ;**
5:

File: filltest.asm
Author: Cc> 1990 by Tom Swan.

6: Note: Run in TD. If exit code = 0, no errors detected, else
7: exit code equals the failed test number.
8:
9: JUMPS

10: IDEAL
11 : MODEL small
12:
13: STKSIZE EQU
14:

4096

15:
16:

STACK STKSIZE

17: er
18: lf
19:

EQU
EQU

13
10

20: SEGMENT DSeg Para Public 'DATA'
21:
22: exitCode
23:

db 0

24: ; ---- TEST1: 1-byte fill
25:

'TEST1' ,er, l f, '$'
Offh

Stack size in bytes

26: t1 s
27: t1 x
28: t1
29: t1 y

30:

db
db
db
db

Offh Area to fill

31: test1
32:
33:

dw
dw
dw

Off h

offset t1.s
offset t1x +
offset t1y -

Address of test name
Address to start fill
Address to end fill

Chapter Fifteen: Hands-On Debugging/or Assembly Language 409

34: dw offset t1y - off set t1
35:
36: ; ---- TEST2: 2-byte fill
37:
38: t2s db 'TEST2' ,cr, lf, '$'
39: t2x db Off h
40: t2 dw Offffh Area to fill
41: t2y db Offh
42:
43: test2 dw offset t2s
44: dw offset t2x + 1
45: dw offset t2y - 1
46: dw offset t2y - off set t2
47:
48: ; ---- TEST3: 4096-byte fill
49:
50: t3s db 'TEST3' ,cr, lf, '$'
51 : t3x db Off h
52: t3 db 4096 dup (Qffh) Area to fill
53: t3y db Off h
54:
55: test3 dw off set t3s
56: dw offset t3x + 1
57: dw offset t3y - 1
58: dw offset t3y - off set t3
59:
60: ENDS DSeg
61:
62: CODESEG
63:
64: From FILLMEM.OBJ:
65:
66: EXT RN FillMemory:proc
67:
68: ASSUME ds:DSeg
69:
70: Sta rt:
71: mov ax, DSeg Initialize OS and ES to
72: mov ds, ax address of data seg
73: mov es, ax
74:
75: Run tests, which jump to Exit with exitCode = test #
76: if any errors are detected.
77:
78: mov bx, offset test1 Address test1's data

410 Part Two: Tbe Art of Debugging

79:
80:
81:
82:
83:
84:
85:
86: Exit:
87:
88:
89:
90:

call
mov
ca LL
mov
ca LL

mov

mov
mov
int

PerformTest
bx, offset test2
PerformTest
bx, offset test3
PerformTest

[exitCodel, 0

ah, 04Ch
a L, [exit Code]
21 h

91: ; ---- Perform the fill test
92:
93: PROC
94:
95:
96:
97:
98:
99:

100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111 :
112:
113: @@10:
114:
115: ENDP
116:

PerformTest
inc [exit Code]
mov dx, [bxl
mov ah, 9
int 21 h
mov
mov
xor
ca LL
cmp
jne
cmp
jne
cmp
jne
mov
xor
repe
jcxz
jmp

di I [bx + 21
Si I [bx + 41
d LI d L
FiLLMemory
[byte es:di - 11, Offh
Exit
[byte ds:si + 11, Offh
Exit
[byte es:dil, 0
Exit
ex, [bx + 61
a L, a L
scasb
@@10
Exit

ret
PerformTest

Perform test
Repeat for other tests

No errors

DOS terminate function
Load ERRORLEVEL code
End

Identify test number
Display test message
via DOS function 9

Call DOS function
es:di = start address
ds:si = end address
dl = fill value CO>
Fi LL es:di to ds:si
Test byte before fill
Jump if changed
Test byte after fill
Jump if changed
Test first/single byte
Jump if <> 0
ex= fill area size
al = fi LL value CO>
scan rest of fill area
Exit if ex = 0
Else jump to error

Return to caller

117: END Start ; End of program I entry point

Listing 15.3. ZEROMEM.ASM.

1: %TITLE "Zero available memory. TASM 2.0 Ideal mode."
2:
3: ; ** Fi Le: zeromem.asm (WITH BUGS!)

Chapter Fifteen: Hands-On Debugging for Assembly Language 411

Author: Cc) 1990 by Tom Swan.

IDEAL
MODEL small

STKSIZE EQU 256 Stack size in bytes

STACK STKSIZE

DATASEG

lowAddr dd far pt r 0 First address filled
highAddr dd far ptr 0 Last address filled

UDATASEG

db 'ZEROMEM: Filling memory ... ','$'

CODESEG

43: ; GetAddresses

Initialize DS to
address of data seg

Display welcome message
DOS function: print
Call DOS
Find f i l l begin, end
Initialize es:di
Initialize ds:si
Assign f i l l byte (Q) to dl
Fi l l memory with dl

Calculate high and Low fill addresses
44: ;---
45: Input:
46: es = PSP segment address (offset assumed to be 0000)
47: Output:
48: LowAddr = address one byte beyond stack

412 Part Two: The Art of Debugging

49: highAddr = highest address allocated to program
50: Note: assumes that highest possible stack address
51: is< Offfeh.
52: Registers:
53: ax
54: ;---
55: PROC
56:
57:
58:
59:
60:
61:
62:
63: ENDP
64:
65:

Get Addresses
mov
mov
mov
dee
mov
mov

[word lowAddr+2l, ss
[word lowAddrl, STKSIZE
ax, [es:2l
ax
[word highAddr+2l, ax
[word highAddrl, Ofh

ret
GetAddresses

Set lowAddr to byte
after end of stack

Get address·from PSP
Correct value in ax
Copy to variable
Assign offset
Return to caller

END Start End of program I entry point

Hands-On Debugging Sessions

Each of the following sections begins with a description of a bug in
FILLTEST.ASM. The descriptions simulate the early stages of debugging when you
know that something isn't operating as expected, but you don't know exactly
what has gone wrong. In this case, problems have been revealed by running
FILLTEST, which puts FILLMEM's subroutines through their paces. Only after
passing all tests will you trust the low-level routines enough to assemble and run
ZEROMEM.

Note: FILLTEST.ASM declares a data segment DSeg using TASM's SEGMENT
directive instead of the usual simplified memory model DATASEG (see line 20 in
Listing 15.2). This causes variables to be aligned to a segment paragraph boundary,
duplicating the offset positions of those variables under different runtime condi
tions. If FILLTEST didn't do this, some of the bugs in this chapter might show up
differently on different machines. Aligning the test data keeps the tests "honest"
a good tip to remember when debugging your own code.

If you're taking the self test, after reading the description of a bug, put the
book aside and try to find and fix the mistake. Then, whether or not you're
taking the self test, follow the step-by-step numbered sections to run through
the TD commands that I used to locate the error. Do this even if you've
successfully located the bug on your own. That way, you can compare your
debugging strategy with mine.

Chapter Fifteen: Hands-On Debugging for Assembly Language 413

Be careful to keep FILLMEM.ASM up to date. Some of the later bugs
depend on earlier ones, and you must complete sections 1 through 3 in that
order, or the step-by-step instructions will be meaningless. A useful plan is to
copy FILLMEM.ASM to MYFILL.ASM for taking the self tests. Make your own
changes only to MYFILL.ASM. Then, after finishing each self test, compile and
load the current FILLMEM.ASM file into TD and then follow the step-by-step
debugging demonstrations after the "Stop reading" note. Make the changes
suggested in the text directly to FILLMEM.ASM. You can then copy the
partially debugged FILLMEM.ASM again to MYFILL.ASM before taking the
next bug's self test.

You might also want to copy the original, unmodified FILLMEM.ASM to
another file, perhaps named FILLBUG.ASM, so you or someone else can repeat
the hands-on demonstrations without having to retype the listing. This will also
let you start over in case you mix up the files. If that happens, just copy the
master FILLBUG.ASM to FILLMEM.ASM and make the suggested changes to
FILLMEM.ASM up to the point where you stopped.

Note: Line numbers in the text refer to the listings as printed in this chapter. After
you make the first set of changes to FILLMEM.ASM, your editor's line numbers
may not match those in the listing. For that reason, when I suggest adding new
statements, for example between lines 45 and 46, use Listing 15.1 as a guide to
locate the place in your up-to-date FILLMEM.ASM file where you should make
those changes.

Using FILLMEM and FILLTEST

Before turning to the first bug, you'll need to understand how the FILLTEST
program and the FILLMEM module work. Here's a brief summary of FILLMEM's
subroutines:

• Ca le Di stance calculates the number of bytes between two addresses,
which must be normalized (their offsets must be in the range 0 to 15). Pass
the starting address in ES:Dl and the ending address in DS:Sl. If these
addresses are the same, CalcDistance should return 1, not 0. After calling
the subroutine, DX:AX equals the 32-bit unsigned integer result with the
low-order value in AX. Registers AX and DX are subject to change. Other
registers are preserved.

• Fil LBytes fills any range of addresses within one segment. Set ex to the
number of bytes to fill, DL to the value to store in those bytes, and ES:DI to
the starting address. The value in ex must be less than or equal to OFFFOh,

414 Part Two: The Art of Debugging

which simplifies filling segments that are not aligned on paragraph bound
aries, but which also limits the maximum range to 65,520 bytes. Fil lBytes
modifies AX, CX, DI, and ES. Other registers are preserved.

• Normalize converts any address in ES:DI to a unique value, called a nor
malized address, useful for some kinds of operations-for example, calcu
lating the distance between two bytes in RAM. After calling Normalize, the
address in ES:DI points to the same physical location in memory, but its
offset is guaranteed to be within the range of 0 to 15. The subroutine may
change AX, ES, and DI. It preserves other registers.

• Fil lMemory performs memory fills between two addresses, no matter how
distant. The subroutine can fill a single byte or multiple segments. Set DL to
the value to use for filling, ES:DI to the starting address, and DS:SI to the
ending address. Fi l lMemo ry changes only AX. Other registers are
preserved.

The FILLTEST program (see Listing 15.2) puts those four subroutines
through their paces. Three sets of variables labeled TESTl, TEST2, and TEST3
store the name of the test as an ASCII$ string (see line 26 in Listing 15.2),
followed by three variables: a check byte (labeled 'x'), an area to fill, and
another check byte (labeled 'y'). The addresses of these items are then stored
in four word variables labeled by the test name (for example, see test1 at lines
31-34).

FILLTEST displays the test name, fills the test area, scans that area to
determine if the fill worked, and verifies that the check bytes surrounding that
area were not disturbed. The main program performs these actions by using BX
as a pointer to the test-data addresses and calling the subroutine PerformTest
(see lines 78-83).

That subroutine (lines 93-115) calls DOS to display the test name, prepares
ES:DI and DS:SI to address the area to fill, and then calls Fil lMemory in the
FILLMEM module. After that, PerformTest verifies that the fill worked. If so,
the subroutine returns normally. If not, it jumps directly to label Exit at line 86.
This leaves the exit Code byte variable set to the test number, which is either
passed back to DOS as an error code or displayed in TD's "Terminated, exit
code" message box. If TD reports an exit code of 0, then all tests passed;
otherwise, the value represents the number of the failed test.

Bug Number 1

On your first FILLTEST trial run, you realize something is amiss. First, the
program displays only the TESTl message, suggesting a failure in that routine.
Second, when you load FILLTEST into TD and run, the debugger reports an
exit code of 1.

Chapter Fifteen: Hands-On Debugging/or Assembly Language 415

Self test: Stop reading now.

Bug number 1-Test and Stabilize

Unlike the C and Pascal hands-on demonstrations in chapters 11 and 13, we've
already stabilized the hug in this chapter by running FILLTEST. Even so, it's
important to list the steps required to reproduce the bug:

1. Load FILLTEST into TD with the command td filltest.

2. Press (F9) to run the test.

3. The program halts with "exit code 1," suggesting a failure in TESTl.

To avoid repeating those obvious steps, this will be the last "Test and
Stabilize" section. Use these same steps to test and stabilize each of the three
bugs in this chapter.

Bug number 1-Isolate

The next step is to isolate the problem to find out where the code is misbehav
ing. Follow these steps.

1. The program is already loaded into TD. (If not, perform the three steps
under "Bug number 1-Test and Stabilize" now.) If the "Terminated"
message window is still visible, press (Esc). Then, press (Ctrl)-(F2) to
reset.

2. Because the first test fails, it makes sense to monitor test number 1 's
variables. Press (F6) to make Watches the current window, type tlx, and
press (Enter). Notice that you don't have to choose a command-just start
typing. Also enter t1 and t1 y. As you can see, each of these values equals
255 (FFh). Press (F6) to return to the Module view.

3. Now, let's find out where Perform Test fails. First move the cursor down
about nine lines to mo v bx , offset test 2 and press (F2) to set a breakpoint
there (after the first call to PerformTest). Experience teaches that before
tracing into low-level assembly language routines, it's a good idea to set a
breakpoint so that you can return to a known location later. Next, press
(F7) five times to trace into PerformTest. Then, move the cursor down
about seven lines to ca LL Fi L LMemory and press (F4) to run up to that

416 Part Two: The Art of Debugging

location. Press (FS) to step over the ca l L. This should clear test variable tl
to 0, but it doesn't, meaning that we are faced with the job of finding the
cause of an event that doesn't occur.

4. This suggests a failure in the fill algorithm, so let's review what we know
about FILLMEM's subroutines. As explained earlier, Fil lBytes (lines 43-63
in Listing I 5. I) is responsible for filling address ranges within a single
segment; therefore, we may as well begin searching FILLMEM at this lowest
level by checking how Fil lBytes operates.

5. To do that, you could press (F3) to choose TD's View:Module command,
select module "fillmem," and then search for the Fil lBytes subroutine. But
there's an easier way: just enter the routine's name fillbytes. This automat
ically selects the Module view's Goto command. After you press (Enter), it
switches modules and hops directly to the subroutine's first instruction,
jcxz iiliil10. (Go ahead and enter fillbytes now and press (Enter). Notice
that the module name changes in the window's top border.)

6. Press (F2) to set a breakpoint on the j c x z instruction. Then, press
(Ctrl)-(F2) to reset the program and (F9) to run the test up to the
breakpoint. Notice how in all of these steps, we are digging deeper into the
code, running up to a strategic location, observing the results, resetting,
and then following the logic farther down. With luck, this will take us to the
bug's hideout.

7. The program is now paused inside the call to Fil lBytes. To examine the
arguments passed to the subroutine, press (Alt)-VR to view the Registers
window. Immediately, we spot a problem-ex should specify the number
of bytes to fill, I for this single-byte test. But the Registers view shows CX
equal to 0000.

8. A quick patch proves whether setting CX to I fixes the problem. Move the
highlight bar down to ex 0000, type 1, and press (Enter). CX's value
should change to 0001.

9. Close Registers (press (Alt)-(F3)), then press (F9) to run. The program
halts at the breakpoint we set earlier, and the test byte at tl now equals 0 as
it should. Also, PerformTest didn't halt this time with exit code I.

Bug number 1-Repair

By definition, when ES:DI and DS:SI address the same location, FILLMEM's
Fil lMemory subroutine is supposed to fill exactly I byte by setting CX to I and
calling Fi l l Bytes. Because that isn't happening, the cause must be in
Ca l c Di stance, which should return I for the "distance" between two equal
addresses.

In other words, to find the number of bytes between two addresses XI and
X2, CalcDistance should calculate (X2 - XI) + I. Instead, a sub instruction

Chapter Fifteen: Hands-On Debugging/or Assembly Language 417

(line 26) subtracts the two offsets but fails to add 1 to the 16-bit result before
converting it to 32 bits with cwd.

To fix the problem, quit TD, load FILLMEM.ASM into your editor, and add
the following line between original lines 26 and 27 in procedure Cal cDi stance
after the instruction sub ax,di:

inc ax ; Equal addresses are 1 byte distant

Assemble and link (or run the MT batch file). Then, enter filltest at the
DOS prompt to retest. TESTl now passes as expected, but, obviously, our work
is unfinished. The program never makes it past TEST2.

Bug Number 2

This is typical. You fix one bug and another one pops out of nowhere. But this
is good news-your tests are forcing bugs into the open. Better to do that now
than to let a customer find a problem for you.

Getting back to work, you load the modified FILLTEST into TD and
discover that the program now ends with exit code 10. (Type td filltest to start
TD, then press (F9).) That's strange. There are only three tests, not ten. Has
FILLTEST caught a bug?

Self test: Stop reading now.

Bug number 2-Isolate

This bug has all the symptoms of an uninitialized variable or pointer. Appar
ently, the exitCode variable is being trashed. Let's find out where that's
happening.

1. Load FILLTEST into TD with the command td filltest. If TD is already
running, press (Esc) to clear the message window if it's visible, then press
(Ctrl)-(F2) to reset. Add variables exitCode, t2x, t2, and t2y to Watches.
To do that, either move the cursor to each of those variables (lines 22 and
39-41 in Listing 15.2) and press (Ctrl)-W, or press (F6) to make Watches
the current window and enter each name as you did in the previous
demonstration. Be sure to switch back to Module (press (F6) again) before
continuing.

418 Part Two: 7be Art of Debugging

2. Next, set a breakpoint to find where exitCode is set to 10-the value that
TD reports when the program ends. Press (Alt)-BE and enter exitCode
eq lOd. This sets an Expression true global breakpoint that will halt the
code at the instruction that sets exit Code to 10. Notice how the trailing d
specifies 10 as a decimal value. This is necessary because TD's default value
is hexadecimal when debugging assembly language.

3. Press (F9) to run. In a moment, the program stops with the same "Termi
nated" message as before. But that's strange. It should have halted as soon as
exitCode became equal to 10-long before the program ended. Press
(Esc) to clear the message box, then look at the variables in Watches. The
exitCode is 2, not 10. Also, test location t2 is set to 0 as expected, and the
check bytes at t2x and t2y are undisturbed. There doesn't seem to be
anything wrong with the test variables.

4. What can these observations mean? There's only one answer: the variables
aren't being trashed after all. Instead, the program has lost track of its
data-a sure sign that a subroutine has changed a data segment register and
failed to change it back.

5. Let's test that assumption. Press (Alt)-BD to delete all breakpoints and then
press (Ctrl)-(F2) to reset the program to its beginning. Press (Ctrl)-0 to
position the cursor to the origin in case the line at that location is not on
screen. (Notice that the variables remain visible in Watches after resetting.)

6. Move the cursor down several lines to the second ca LL to PerformTest-the
one that's broken. Press (F4) to run up to that location. Then, press
(Alt)-BC, type ds, and press (Enter) to set a Changed memory g Loba L
breakpoint for that register. This will halt the code after any instruction
changes DS.

7. Press (F9) to run. In a moment, a message appears giving the breakpoint
number (there is only one), the module name, and a line number
(#fi Llmem#119 on my screen, but possibly a different number on yours).
Press (Esc) to clear the message window.

8. The instruction that changed DS is above the cursor: pop ds. Notice also that
the variables in Watches now have the values????, indicating that even TD
can't find them. Move the cursor up a few lines to find out which sub
routine we're in. It's Fi L LMemory, and the push instruction at line 107
obviously fails to save DS. Also, obviously, we've found the bug.

Bug number 2-Repair

It's not hard to fix bugs when you know what causes them. In this case, the
repair adds DS to the push and pop instructions in Fi L LMemory. Quit TD, load
FILLMEM.ASM into your editor, and change original line 107 to:

push bx ex dx di si ds es

Chapter Fifteen: Hands-On Debugging for Assembly Language 419

Also change original line 145 to:

pop es ds si di dx ex bx

After assembling and linking, load FILLTEST into TD and press (F9) to
run. This time, the "Terminated" message box displays "exit code O," indicating
that the three tests passed. Press (Esc) to clear the message box, then press
(Alt)-(F5) to check the program's output. You should see all three test names.
Press any key to return to TD.

Bug Number 3
With FILLMEM completely debugged (we hope), it's time to assemble and run
ZEROMEM.ASM (Listing 15.3). To do that, quit TD if it's running and enter these
commands:

tasm /zi zeromem
tlink /v zeromem fillmem

Then, enter zeromem to run the program. A message tells you that
ZEROMEM is filling memory, and after a brief moment, the DOS prompt
returns. Apparently, the code is working correctly. Just to be sure, load
ZEROMEM into TD and examine a few locations with the Dump view. To your
surprise, you discover that available memory is set to anything but the expected
zeros. Considering the careful tests we've conducted, how can this be?

Self test: Stop reading now.

Bug number 3-lsolate

To isolate this bug, we need a way to examine the memory that ZEROMEM is
supposed to set to 0. A macro will help perform that job quickly:

1. If you didn't load ZEROMEM into TD, do that now with the command
td zeromem. Move the cursor down several lines to the second int 21 h
instruction (below mov ax, 04C00h), and press (F2) to set a breakpoint for
returning to this spot later.

2. Move the cursor up a couple of lines to ca L L Fi l L Memory and then press
(F4) to run up to that location. The program is now paused just before any
filling occurs.

420 Part Two: 1be Art of Debugging

3. To examine the memory areas that should be filled, press (Alt)-VD to
open the Dump view and press (F5) to zoom the window to full screen.

4. Press (Alt)-= to start recording a macro. Press (Ctrl)·A for the macro
key assignment. (If a message asks for permission to overwrite an existing
macro, answer "Yes" by pressing Y.) The activity indicator at the upper
right should now display RECORDING. Press (Ctrl)-G to choose the Goto
command, enter es:O, press (Enter), press (Ctrl)-(F4), type
es= es+ 1 OOOh, and press (Enter) (Esc). Stop recording the macro by
pressing (Alt)--. The upper right corner should display READY. (If you
make a mistake while entering the macro, press (Alt)-- to stop recording
and then repeat this step over from the beginning.)

5. You have just entered a macro to display the beginning of the segment
addressed by ES and then added 1 OOOh to that register to prepare for
displaying the next segment. Press (F8) to execute the call to Fil lMemory,
where the program is now paused. Notice that you can do this even though
the Dump window recovers the display. Scan the bytes in the Dump view by
pressing (Page Down) a dozen or more times. As you can see, some bytes
are set to 0, but most aren't.

6. To scan the next segment, press (Ctrl)-A. This runs the macro you
entered, positions the Dump view to the current ES:O address, and adds
lOOOh to ES for the next time. Notice how the segment address at far left
advances by lOOOh. Use (Page Down) to scan this new segment. Repeat
several times (press (Ctrl)-A and (Page Down)) until you reach the end
of available memory-on most systems, when the segment address is
greater or equal to AOOO. To find the exact maximum address, press
(Alt)-VR to open Registers. ZEROMEM assigns the ending address to
DS:SI. Close Registers by pressing (Alt)-(F3).

Note: If you quit TD, you'll lose the macro you entered in the previous steps. To
save it, press (Alt)-OS and M to select the Macros check box. Press (Enter) to
write TDCONFIG.TD to disk. The next time you start TD, you can open the Dump
view and press (Ctrl)-A to run the macro.

Now that we have a way to examine the memory that ZEROMEM is
supposed to fill, the next step is to find out why the program fails to live up
to its promise. The obvious approach is to set a Changed memory global
breakpoint for the starting address and halt the code at the instruction
that's changing this byte to the wrong value. That would take us directly to
the buggy code.

However, because FILLMEM uses a repeated string instruction to perform
the fill (see line 58 in Listing 15 .1), this kind of breakpoint works only on
80386- and 80486-based systems that install the TDH386.SYS device driver

Chapter Fifteen: Hands-On Debugging/or Assembly Language 421

to enable hardware debugging registers. A more general, but slower,
method that works for all systems follows.

7. Press < F6) a couple of times to return to the Module view. Press
< Ctrl)-(F2) to reset the code, move the cursor up to the cal l Fi l l Memory
instruction, and press (F4) to run up to that spot.

8. Press (F6) to reactivate the Dump window, press (Ctrl)-G to select the
Goto command, enter es:di, and press (Enter). If the Dump view is
zoomed to full screen, shrink it by pressing (F5) so you can see the
Madu Le window behind.

9. Next, choose the Run:Animate command (press (Alt)-RN). Then, keeping
your eye on Dump, press (Enter) to animate with the default value 3 (3/10-
second delays). As soon as the byte values in the center of Dump begin to
change, press (Esc) to stop animating. This will take about 10 or 15
seconds.

10. The current instruction in the Module window is repnz stosb, which
performs the filling for FILLMEM. Open the Registers view ((Alt)-VR) to
inspect the fill value being used in AL. As you can see, this value is not 0,
and now the problem is clear. The Fi L LBytes subroutine should have
copied the fill value passed in DL to AL before executing repnz stosb.

11. Let's try a patch to prove that assumption. Press (Alt)-(F3) to close
Registers. Press (F6) twice to activate Module, move the cursor up one
line to the c l d instruction, and press (F2) to set a breakpoint there. Press
(Alt)-(F2) to modify that breakpoint's options. Press (Tab) twice and
use (Cursor Down) to change Action to Execute. Press (Tab) once
more and enter al=dl for the Action expression. Press (Enter) to accept
this change and close the Breakpoint options dialog box.

12. You have just inserted an expression that patches Fi L LBytes to perform a
missing instruction. To test the patch, reset the program (press
(Ctrl)-(F2)), press (F6) to bring the Dump window back into view,
and press (F9) to run. When the program reaches the breakpoint
you set earlier, zoom the Dump view to full screen ((F5)). The values are
all Os. Use the (Page Down) key to examine more of this segment.
Then, press (Ctrl)-A to examine other segments a:> you did before. (The
first time you do this, you may see a few bytes in the stack segment,
identified by SS in the left column. Filling starts after the stack, so this is
normal.)

Note: If you examine all available RAM, sooner or later, you'll run into a series of
nonzero values, probably FF FF FF ... Note the address of the first value. (For me, it
was 9DD9:2270). Normalizing this address equals the end of RAM, or in my case,
AOOO:OOOO. If you want, you can confirm this by passing the unnormalized
address to the Normalize procedure in FILLMEM (lines 65-89).

422 Part Two: The Art of Debugging

Bug number 3-Repatr

Summary

As with most bugs, once you locate the cause, the repair is easy. Quit TD, load
FILLMEM.ASM into your editor, and insert the following line between original
lines 56 and 57 in Listing 15.1 (between j cxz iilii110 and c ld):

mov al, dl ; Assign fill value to AL

Be sure to assemble and link both FILLMEM and ZEROMEM. The complete
commands are:

tasm /zi fillmem
tasm /zi zeromem
tlink /v zeromem fi llmem

Then, load ZEROMEM into TD and repeat steps 1 to 6 at the beginning of
this section to fill and examine memory. If you saved the macro earlier, in place
of step 4, press (Ctrl)-G to choose the Dump view's Goto command and enter
es:O to position the window to the starting address for the fill. Then, continue
with steps 5 and 6.

Note: This final bug (if there is such a thing) demonstrates the danger of using
incomplete tests. FILLTEST failed to test FILLMEM's ability to fill multiple seg
ments, a problem that surfaced only after running ZEROMEM. A better test would
not have stopped after filling only a few test variables.

This chapter lists a buggy assembly language program, describes three bugs,
and shows how to use TD to find the source of each problem. You can use the
chapter as a hands-on demonstration of debugging techniques or as a self test of
what you've learned so far.

After you iron out its bugs, the ZEROMEM program also makes a useful
utility for setting all available RAM to 0 bytes, which can help stabilize unini
tialized variables and bad-pointer bugs in other programs. Run ZEROMEM
before loading programs into TD for debugging.

Part Three

Advanced Debugging Topics

423

Macros

Chapter 16

Macros and
Keystroke Recording

TD CAN RECORD and play back keystrokes in one of two ways. It can
associate a series of commands with a macro key that you can press to execute
those commands. Or, it can record all keystrokes from the beginning of a TD
session so you can replay those keys to relive a moment of debugging history.

Because macros and keystroke recording are related but used differently,
this chapter covers them both. The first section explains how to enter and use
macros as part of a debugging strategy. It also includes several sample macros
that you can enter and save in a TD configuration file. The second section
describes how to use keystroke recording.

A macro can save time by reducing a series of TD commands to a keypress or
two. When creating your own macros, the main points to remember are:

• A macro can repeat only TD commands. If one of those commands exe
cutes a target program's instruction that prompts for input, any keys that
you press in response are not saved in the macro.

• While recording a macro, the keys you press perform their usual actions.
Before creating a new macro, you must load a program, open windows, and
perform any other setup chores required by the macro's commands.
Recording a macro doesn't just "go through the motions." Each command
executes as you enter it.

• Unfortunately, there is no way to edit a macro after you've created one. If
you make a mistake while entering a macro's keystrokes, you must start
over. (If that mistake is minor, however, you may be able to leave the error
in the macro without any harm.)

425

426 Part Tbree: Advanced Debugging Topics

How to Enter Macros

Press (Alt)-= (hold down (Alt) and press the unshifted = key). When you
release those keys, TD's activity indicator in the upper right corner changes to
PROMPT, and a window appears with the message, "Press key to assign
macro to."

Press any unused key for the macro. Good choices are (Shift) plus a
function key (Fl) to (FlO), unused control keys, or unusual symbol keys such
as - , J, and ! .

If you choose a macro key that's already used for another macro, TD asks
"Overwrite existing macro on selected key?" Answer Y to replace the macro
assignment with the new keystrokes. Or, answer N to cancel macro recording.
If you answer N, you can start over by pressing (Alt)-= and selecting a
different key assignment.

When macro recording begins, the activity indicator changes to RECORDING.
Enter the TD commands that you want to associate with this macro key. The
commands operate as they normally do, so you must be sure to open windows
and perform other preliminary setups before starting to record.

When you're done, press (Alt)-- (hold down (Alt) and press the unshifted
dash or hyphen key, not the minus key on a numeric keypad). The activity
indicator at the upper right corner should return to READY, indicating that TD is
no longer recording keystrokes for this macro. You can now press the assigned
macro key to rerun the commands you just entered.

Keys for Macros

Be careful not to assign a macro to a TD hot key. If you do, the macro key will
replace the original key's operation. For example, if you assign a macro to
(Ctrl)-1, you'll no longer be able to position the cursor to a variable's name in
the Module window and press those keys to open an inspector window, show
ing the variable's value. However, you can still use the associated Inspect
command by choosing it from a menu.

Table 16.1lists28 unused keys that don't conflict with TD's current hot-key
assignments. Generally, the shifted function keys make the best choices and are
recommended by Borland for assigning to macros. But the other keys should be
available on most keyboards. You might want to copy this table and enter your
own macro assignments in the blank spaces for reference. With one exception,
the (Ctrl)-letter key combinations near the end of the table are unused by local
menus in view windows. A few windows, for example, the flags pane in
Registers, assign (Ctrl)-T to a Toggle command. Because you can choose that
command simply by pressing (Enter) or (Space), (Ctrl)-T makes a good
macro key. The same is true for other (Ctrl)-letter key combinations that you
never or seldom use.

Chapter Sixteen: Macros and Keystroke Recording

Table 16.1. Suggested macro keys.

Keys Description*

(Shift)-(Fl)

(Shift)-(F2)

(Shift)-(F3)

(Shift)-(F4)

(Shift)-(FS)

(Shift)-(F6)

(Shift)-(F7)

(Shift)-(FS)

(Shift)-(F9)

(Shift)-(F 10)

(Ctr! -(Fl)

(Ctr! -(F3

(Ctr! -(F6

(Ctrl)-(FS)

(Ctrl)-(F9)

(Ctrl)-(FlO)

(Ctr!)--

(Ctr!)-(Enter)

(Ctrl)-J

(Ctrl)-Q

(Ctrl)-T

(Ctrl)-U

(Ctrl)-X

•Fill in this table to document your macro key assignments.

Note: Keys (Ctrl)-(FS), (Ctrl)-(F9), and (Ctrl)-(FlO) perform the same jobs
respectively as (F2) (Breakpoints:At), (F9) (Run:Run), and (Alt)-(FlO)
(Loe a L). The three (Ctr!) function key combinations are duplicated for compati
bility with other Borland products, but if that's not important to you, they make
good choices for macros. Also, when using (Ctr!)-@ and (Ctr!)-'", you don't have
to press (Shift) .

427

428 Part Three: Advanced Debugging Topics

Saving and Restoring Macros

To save the current set of macro assignments, choose Options:Save options
(press (Alt)-OS). Press Mor use a mouse to select the Macros option in the Save
Configuration dialog box, and then press (Enter) or click the Ok button to
create the TDCONFIG. TD file in the current directory.

The other options in the dialog box select whether to save Options (for
example, the number of display lines, the language, and the path for source
files), plus Layout (the current crop of open view windows, their positions, and
sizes). You can check these options on or off to save other items along with
macros in TDCONFIG. TD.

You can also change the TDCONFIG.TD file name by tabbing to the Save To

area in the Save Conf i gu ration dialog box and typing a different name. Or, use
the DOS RENAME command to change the file name after quitting TD.

After saving macros (and other items) in a configuration file, you can reload
that file to restore its settings and macros. There are three ways to do this:

• Start TD normally with TDCONFIG. TD in the current directory. TD will
load that file automatically if it exists. If TDCONFIG. TD is not in the current
directory, then TD looks for the configuration file in the TDINST Turbo
di rectory and then in debugger's home path, usually C: 'TD.

• Use the -c command-line option to load a different configuration file when
you start TD. For example, to load MACROS.TD and debug a program called
MYCODE.EXE, use the command td -cmacros.td mycode. Notice that
there is no space between -c and the configuration file name.

• After starting TD, choose Options: Restore options (press (Alt)-OR) and
select or enter a configuration file name.

Macros and Debugging

Macros are good for repeating any sequence of commands that you execute
regularly. While debugging, if you notice that you are entering the same com
mands over and over, you might want to convert them into a macro.

The following sections describe some of the uses I've found for macros
while debugging various programs. Most of these macros are temporary-I
enter them while debugging and don't save them to disk. Or, I sometimes save
these macros in a TDCONFIG.TD file and then, after debugging the code, erase
the file.

Opening views

I get a little tired of pressing (Alt)-V plus a view's hot key to open a window,
especially after doing that a few hundred times. If I know I'm going to open the

Chapter Sixteen: Macros and Keystroke Recording 429

Dump view frequently, I'll assign the keys (Alt)-VD to a macro. To those keys I
might also add (F5) to zoom the window to full screen. And, if I want to
inspect data at a certain location, I'll insert a Goto command.

For example, the sequence to open a Dump window, zoom it to full screen,
and use Goto to view bytes addressed by DS:SI is:

<Alt>-=

<Shift>-<F1>

<Alt>-VD

<F5>

<Ctrl>-G

DS:SI<Enter>

<Alt>--

Start macro recorder

Assign macro key

Choose View: Dump

Zoom to full screen

Choose Goto command

Enter address

Stop recording the macro

Note: Other macros in this chapter are listed similarly, with keystrokes to the left
and brief descriptions to the right. Enter only the keys at left and press (Enter)
only where that key appears. In place of the second line ("Assign macro key"), you
may use any of the key combinations from Table 16.1.

Reprogramming TD's hot keys

Although TD lacks the native ability to change its hot-key command assign
ments, if you don't like TD's choice of keys, you can always reprogram them
with macros. For instance, because I never press (FlO) to open global menus, I
reassign that key as a macro that opens the Breakpoint options dialog box.
Then, after setting a code breakpoint at a source-code line, I press (FlO) to
open the dialog box, which lets me select different conditions and actions for
this breakpoint. Enter these keystrokes to create the macro:

<Alt>-=

<F10>

<Alt>-VB

<Ctr l>-S

<Alt>--

Start macro recorder

Assign macro key

Choose View: Breakpoints

Choose Set options

Stop recording the macro

Hint: Notice that I did not use the existing hot key (Alt)-(F2) as the macro
sequence to open the dialog box. Now that I've reassigned (FlO) to do this, I can
use (Alt)-(F2) for another macro. Or, I could leave the original definition alone if
I wanted both keys to perform the same action.

430 Part Tbree: Advanced Debugging Topics

I also frequently use macros to add hot keys to commands that have none
for example, Window: Dump pane to log. To avoid choosing that command over
and over from the Window menu, I create a macro for the sequence (Alt)-WD.
Then, when I want to dump a window pane's data to the Log, I just press the
macro key.

Repeating test sequences

Macros are also useful for creating repeatable tests-one of the key elements of
a successful debugging strategy. To do this, load your program into TD and start
recording a macro. You can assign the macro to any key, but I usually choose
(Shift)-(F9) because of the way TD uses (F9) and variations for other "run''
commands.

Next, use TD commands to run the code to a stopping place immediately
before a bug appears. Stop recording the macro. Save the macro to disk so you
can restart the same sequence after quitting and restarting the debugger (or in
case of a serious crash that forces you to reboot).

After tracing the buggy code, to perform another test, press (Alt)-FO and
enter or select the program's name. This reloads the buggy program and resets
other TD conditions to their original startup values. After that, press the macro
key to rerun the program up to where you stopped before.

Even better, because macros ignore keystrokes entered as input for the
target program, this method lets you rerun test patterns with new data. When
the code reaches an input statement, the macro will pause. Enter the new
information and press (Enter) (or continue the buggy program by other
means). The macro will then pick up from where it stopped.

Entering watch and inspector expressions

It can be tedious to enter numerous variable names or to select them from the
source code in the Module window. To make this easier to do, I start recording a
macro. Then I add my variables to Watches, or I open inspector windows to
view their values. When I'm done, I stop recording the macro and save it in
TDCONFIG.TD. The next time I load that same program, I can then press the
macro key to load the same set of data into Watches.

There are several ways to implement this tip. You can record the keystrokes
needed to search for variables in modules, position the cursor, and press
(Ctrl)-W or (Ctrl)-1 to watch and inspect values. You could also use the
Data:Inspect and Data:Add watch commands and enter each variable name.
But I find the technique works best by using this sequence of commands:

<Alt>-=

<Ctrl>-<F1>

Start macro recorder

Assign macro key

Chapter Sixteen: Macros and Keystroke Recording

<Alt>-VW

v1<Enter>

v2<Enter>

vn<Enter>

<Alt>-VM<Enter>

<AL t>--

Activate Watches view

Enter first variable name

Enter second variable name

Enter more variable names

Enter last variable name

Activate Mo du Le view

Stop recording the macro

431

After switching to the Watches view, enter a variable name-which auto
matically selects the window's default local Watch command-and then switch
back to Module. Notice that the macro commands select Watches and Module
from the View menu rather than have you press (F6) or (Alt) and the win
dow's number. Because of this and because variables are listed by name, the
macro will work under a variety of conditions, for example, even if the Watches
view is closed.

Setting multiple breakpoints

When you have several breakpoints to set, rather than do that for each new
debugging session, you can record the necessary keystrokes in a macro. After
that, load the target program and press the macro key to set out your traps for
the next test run.

When setting breakpoints with macros, be aware that the Breakpoints:At
command ((F2)) operates as a toggle. Pressing (F2) sets or removes a break
point at the cursor position in the Modu Le window. For this reason, if you rerun
a macro that sets breakpoints, it will remove the breakpoints set previously.

Sometimes this can be useful. For example, you might record the steps
required to set the last 6 out of 12 breakpoints as a macro. You can then press
the macro key to toggle those 6 breakpoints on and off without disturbing the
others.

When you don't want a macro to toggle breakpoints, use the Fi Le:Open
command to reload the target program. Unlike Run: Program reset
((Ctrl)-(F2)), reopening the program with the Fi Le menu command erases all
current breakpoints, which you can then set again by running the macro.

Problems with Macros

Macros replay their keystrokes blindly. Unless all conditions are the same when
you replay a macro as they were when you recorded the original keys, the
results may not be what you expect.

This is frequently a problem when you press a macro key while a dialog
box is active. Because dialog boxes inhibit global menu commands, any macro

I

432 Part Tbree: Advanced Debugging Topics

keystrokes that choose commands will produce strange results or be ignored.
One way to avoid this trouble is to begin all macros by pressing <Esc) one time
after starting to record. Because that key closes an active dialog window, but is
usually ignored at other times, the effect is to allow the macro to work even
when a dialog box is on screen.

When creating macros, it also helps to keep in mind these other limitations
and quirks:

• You can record up to 256 keystrokes for a single macro, provided, of
course, that TD has enough memory to store those keys.

• Mouse clicks and movements are not stored in macros. While recording a
macro, TD ignores any commands entered with a mouse.

• Macros can't call other macros. The effects of pressing another macro's key
while recording a new macro are unpredictable.

• There is no way to edit existing macros, and there is no way to display a
macro's keystrokes. Keep good notes about the macros you enter. That way,
you'll be able to retype them later if necessary.

• If you accidentally press the wrong macro key while recording a macro,
stop recording, and choose the Options: Macros: Remove command (<Alt)
OMR). Press the macro key that you typed by accident to restore that key to
its original use. Use Options:Macros:Delete all (<Alt)-OMD) to erase all
macro definitions and restore all keys. (Be careful with this command.
Unless you saved your macros to disk, after deleting them, there is no way
to get them back.)

Sample Macros

The next sections describe a few sample macros that you can enter and store in
a TD configuration file. For best results, erase or rename any existing TDCON
FIG. TD files to avoid conflicts. (Be sure to check for a configuration file in TD's
home directory.) I've suggested macro key assignments for all macros in this
section, but you can change these to any of the keys listed in Table 16.1.

In addition to the listed keystrokes, you may also have to answer the
prompt "Overwrite existing macro on selected key." If you see that message,
press Y or click the Yes button and then continue typing.

Note: Start TD and load a sample program before entering these macros. Unless
the instructions say otherwise, you can use any listing in this book. Or, if you're
familiar enough with TD's commands, use one of your own programs. After
entering one or more macros, remember to choose Options: Save options to
save the keystrokes in a configuration file. TD does not warn you if you quit the
debugger without saving your macros.

Chapter Sixteen: Macros and Keystroke Recording 433

Display hidden windows-(Shift)·(Fl)

If you have a mouse, you've probably discovered that clicking inside the Module
window causes any inspectors and other view windows to run and hide. Enter
the following macro to bring all hidden windows back into view:

<Alt>-=

<Shift>-<F1>

<Alt>-1

<Alt>-2

<Alt>-3

<Alt>-4
<Alt>-5
<Alt>-6
<Alt>-7
<Alt>-8
<Alt>-9

<Alt>--

Start macro recorder

Assign macro key

Bring first window forward

Bring next window forward

And so on, ...

... up to the last window

Stop recording the macro

You can enter this macro even if there are less than nine windows open. TD
ignores (Alt)-digit key combinations for nonexisting window numbers.

The next time inspector and view windows disappear behind Module,
either after clicking the mouse or using other commands, press <Shift)-(Fl) to
bring them all forward again. If you want to try this now, open several inspec
tors to a few test variables, press (Alt)-1 or click the mouse pointer inside
Module to make it the active window (which hides the inspectors), and press
(Shift)-(Fl).

Skip over statements-(Shift)-(F2)

The TD commands Run:Trace into ((F7)) and Run: Step over ((F8)) execute
the current instruction and stop. If that instruction calls a procedure, function,
or subroutine, pressing (F7) traces into that routine. Pressing (FS) executes
the call at full speed, stopping after that call returns.

What's missing is the capability to skip an instruction and not execute its
machine code. Of course, this can have negative effects on the program, but it
can also make a useful debugging tool that will let you investigate what happens
if you remove one or more instructions.

Before entering this macro, load a sample program into TD, press (FS),
and position the cursor to the first of at least two source-code statements in the
Module view. This is important-the macro works correctly only where there
are at least two adjacent lines that generate machine code. After positioning the

I
I

434 Part Three: Advanced Debugging Topics

cursor, press (F4) to run the program to this location. (If the cursor is already
at the current location, skip that step.)

The current-statement marker (••·-) and cursor should now be on the same
line, and there should be at least one program statement below that line.
Press (Cursor Down) to move to the statement below, and then enter the
macro:

<Alt>-=

<Shift>-<F2>

<Alt>-VC

<Ctr l>-N

<Al t>-<F3>

<Alt>--

Start macro recorder

Assign macro key

Open the CPU view

Reset CS:IP to the new origin

Close the CPU view

Stop recording the macro

To use this macro, move the cursor to any source-code line below the
current one and press (Shift)-(F2). The current instruction and those up to
the cursor will be skipped. This is similar to the way (F8) works except that no
code is executed. The new current instruction will be the one to which you
moved the cursor before running the macro. Choosing any Run-menu com
mand will continue the program starting with that line.

Note: Before running this macro, be sure that the cursor is on a source-code line
that generates at least one machine-code instruction and that the Module window
is active. Also, never use this macro to skip a return from a procedure or
function-this will almost certainly cause problems if you continue running the
program.

Reset and return to origin-(Shift)-(F3)

When you press (Ctrl)-(F2) to choose the Run:Program reset command, TD
reloads the program but leaves the cursor at the place where the program
stopped during the previous session. Sometimes this can be useful. For exam
ple, after resetting, you can move the cursor up a line or two and press (F4) to
rerun the code up to that earlier statement.

Even so, after resetting, I often press (Ctrl)-0 to return the cursor to the
origin. For that reason, I combined the two commands into a "super reset"
macro:

<Alt>-=

<Shi ft>-<F3>

<Ctr l>-<F2>

Start macro recorder

Assign macro key

Reset the current program

Chapter Sixteen: Macros and Keystroke Recording

<Ctrl>-0

<Alt>--

Move cursor to origin

Stop recording the macro

435

After entering this macro, during a debugging session, you can press
(Ctrl)-(F2) as usual to reset and leave the cursor where it is, or press
(Shift)-(F3) to reset and move the cursor back to the program's first
statement.

Hint: After (Ctrl)-0, you can also insert other commands to close View-menu
windows, execute the System menu's Repaint desktop or Restore standard
commands, or perform any other tasks that you want to attach to TD's standard
Program reset command.

Open views as kons-(Shift)-(F4)

Because I usually open the same few windows for every debugging session, I
discovered that I could save time by using a macro to open those views at the
touch of a key. Also, shrinking the windows to icons reduces display clutter
while arranging the views along the right border where I can select them easily
with a mouse. (If you don't have a mouse, you can do the same by pressing
(F6) or (Alt) plus the window's number and then pressing (FS).)

Enter the following macro to create three icons for the Breakpoints, Log,
and CPU views. You can replace my (Alt)-Vx commands with those that open
the views you need, or you can add additional views. Just be sure to follow each
View-menu command with (Alt)-WI to shrink the window to an icon.

<Alt>-=

<Shift>-<F4>

<Alt>-VB

<Alt>-WI

<Alt>-VL

<Alt>-WI

<Alt>-VC

<Alt>-WI

<Alt>--

Start macro recorder

Assign macro key

Open the Breakpoints view

Reduce window to an icon

Open the Log view

Reduce window to an icon

Open the CPU view

Reduce window to an icon

Stop recording the macro

The next time you start TD, press (Shift)-(F4) to open these same win
dows and shrink each one to an icon. Initially, the icons will be hidden behind
the Module and Watches views. Press (F6) to bring them forward.

436 Part Three: Advanced Debugging Topics

Hint: If you also entered the "Display Hidden Windows" macro ((Shift)-(Fl)),
you can press those keys after pressing (Shift)-(F4) to bring all icons into view.

Erase user screen-(Shift)-(F5)

Between debugging sessions, TD does not clear the program's display. Unless
the target program does this, whatever was on screen will be there the next
time you choose the Window: User screen command ((Alt)-(F5)).

Use the following macro to add an "Erase User Screen" command to TD.
The macro works by calling Turbo Pascal's or Turbo C's c l rs c r procedure. (TP
programs must add a uses crt declaration. TC programs must include the
CONIO.H header and must call clrscrO at least once in the program.) If you
are using a different language, you may be able to call a similar library sub
routine (or write one) that erases the display.

Before creating the macro, load a test program into TD and press (F8) to
execute any runtime initialization routines. Then, enter these keystrokes:

<Alt>-=

<Shift>-<FS>

<Ctrl>-<F4>

clrscrO

<Enter>

<Esc>

<Alt>--

Start macro recorder

Assign macro key

Open the Evaluate/modify dialog box

Enter the procedure or function name

Evaluate (call) the routine

Close the dialog window

Stop recording the macro

Note: Before using this macro, you must execute the target program's runtime
initializations. Do this by pressing (FS) after loading the code into TD or after
resetting. Running the macro before initializing the program does no harm, but it
won't clear the display.

Start a new log file-(Shift)-(F6)

I like to keep a log file open at all times while debugging so I can dump
information to the Log view and not have to worry about old text scrolling out
of reach. The following macro lets me open a new log file at the start of a
debugging session.

Before entering the keystrokes, make sure there are no .LOG files in the
current directory. Then, type these commands:

Chapter Sixteen: Macros and Keystroke Recording 437

<Alt>-= Start macro recorder

<Shift>-<F6> Assign macro key

<Alt>-VL Open Log view

<Ctr l>-C Close log file if one is open

<Ctr l>-E Erase log window (optional)

<Ctr l>-0 Open a new log file

<Enter> Accept the default file name

<Alt>-<F3> Close the Log view

<Alt>-- Stop recording the macro

You can now close the log file by pressing (Alt)-VL and (Ctrl)-C. In the
future, to start a new log, press (Shift)-(F6) . If a NAME. LOG file already exists
in the current directory where NAME is the file name of the program's main
module, TD will display "Overwrite NAME.LOG?" Answer Y to start a new log
of the same name. Or, if you press N, you can enter a new log file name. When
you see this prompt message, because the macro has finished replaying its
keystrokes, you'll have to close the Log window manually by pressing
(Alt)-(F3).

Note: The log file remains open and information is written to the Log whether or
not that view is open.

Snapshot-(Shift)-(F7)

At various times while debugging a program, I run the following macro to take a
"snapshot" of the Module, Watches, and CPU views. The macro stores the text
from each of those views in a log file named SNAPSHOT.LOG, erasing any old
file of that name. I can then print that file, view it with the View: Fi le
command, or rename it to save a copy for future reference.

Load a sample program and make the Module window current before
entering these keystrokes to create the "snapshot" macro:

<Alt>-=

<Shift>-<F7>

<Alt>-VL

<Ctrl>-C

<Ctr l>-E

<Ctrl>-0

<Enter>

Start macro recorder

Assign macro key

Open Log view

Close log file if one is open

Erase log contents

Open a new log file

Accept the default file name

438 Part Tbree: Advanced Debugging Topics

<Enter> Allow overwriting old snapshot

<Al t>-<F3> Close the Log view

<Alt>-1 Activate the Module view

<Alt>-WD Dump pane to log

<Alt>-2 Activate Watches view

<FS> Zoom to full screen

<Alt>-WD Dump pane to log

<FS> Zoom back to normal size

<Alt>-VC Open CPU view

<FS> Zoom to full screen

<Alt>-WD Dump disassembly pane to log

<Tab> Move to next pane

<Alt>-WD Dump registers to log

<Tab> Move to next pane

<Al t>.-WD Dump flags to log

<Tab> Move to next pane

<Alt>-WD Dump stack to log

<Tab> Move to next pane

<Alt>-WD Dump memory dump to log

<Tab> Move to first pane

<FS> Zoom back to normal size

<Al t>-<F3> Close CPU view

<Al t>-VL Open Log view again

<Ctrl>-C Close log file

<Ctrl>-E Erase log contents

<Alt>-<F3> Close Log view

<Alt>-- Stop recording the macro

OOP instance inspector-(Shift)·(F8)

In object-oriented Pascal or C + + programs, after halting inside a call to a
method, I often want to inspect the object instance that made the call. The next
macro makes this easy by opening an inspector window for the self (Pascal) or
this (C ++)hidden argument passed to all methods.

Before entering the macro, you must load a program that declares at least
one object with at least one method. Set a breakpoint inside that method and
press (F9) to execute up to that place. Then, type these keystrokes:

Chapter Sixteen: Macros and Keystroke Recording 439

<Alt>-=

<Shift>-<F8>

<Alt>-VS

<Ctrl>-L

Start macro recorder

Assign macro key

Open the Stack view

View local variables

<Ctr l>-<Page Down>

<Enter>

Move to last item in window

Open s e l f or th i s inspector

Activate Stack view <Alt>-VS

<Alt>-<F3>

<Alt>--

Close Stack view

Stop recording the macro

Alternatively, you could replace the keys from (Alt)-VS to (Alt)-(F3) with
(Alt)-DI and use the commands self(Enter) for Pascal or this(Enter) for
C + + . But I like the longer version for two reasons. One, it works with both
Pascal and C + + object methods, and two, it opens the Variables view to
show other method parameters and variables within the current scope.

Note: Run this macro only after pausing the program inside a method and after
executing that macro's startup code. After running the macro, press (Alt)-(F3)

twice to close the inspector and Vari ab Les windows.

Forward and reverse gears-(Keypad+) and (Keypad -)

Most keyboards have a separate numeric keypad with + and - keys. Because
you can always enter those characters with the + and - keys on the main
keyboard, if you don't mind giving up the keypad equivalents, they make handy
forward and reverse "gear shift" macros.

Enter the following keystrokes to assign the Trace into ((F7)) and Back
trace ((Alt)-(F4)) commands to keypad+ and - . Be sure to press those keys
on the keypad, not on the main keyboard:

<Alt>-=

<Keypad+>

<F7>

<Alt>-

<Alt>-=

<Keypad->

<Alt>-<F4>

<Alt>--

Start macro recorder

Assign macro key

Execute trace into command

Stop recording the macro

Start macro recorder

Assign macro key

Execute back-trace command

Stop recording the macro

440 Part Tbree: Advanced Debugging Topics

You can now press (Keypad +) and (Keypad -) to trace forward and
backward in code. And, you can still use the original keys (F7) and
(Alt)-(F4). Remember that back tracing has some limitations, for example,
you can't reverse gears through a software interrupt instruction or through any
library routine that executes an interrupt. But most of the time, you can press
those keys to trace program statements forward and back. I find the macros
much easier to use than (F7) and (Alt)-(F4).

Note: The only drawback is that, after creating the macros, to enter expressions,
you must remember to press the + and - keys on the main keyboard. The macros
disable the keypad + and - keys for all other uses.

Repeat test-(Shift)-(F9)

As I mentioned earlier, I usually reserve this macro key to create repeatable tests
while debugging. For that reason, I don't assign it to a permanent macro.

CPU search next command-(Shift)-(FlO)

Ii' you do a lot of assembly language programming, you may have noticed that
the CPU view has a Search command ((Ctrl)-S) but lacks a Search next
operation like the one in the Module view. To search for several machine-code
instructions takes too many keystrokes for my tastes, so I created my own
Search next command with a macro.

Before typing these keystrokes, load any program (it doesn't have to be
written in assembly language) and press (Alt)-VC to open the CPU view. Press
< Ctrl)-S to start a search, enter push hp, and press <Enter). If you receive a
message such as "Syntax error" or "Search expression not found," press < Esc).
Then, enter these keystrokes to create the macro:

<Alt>-=

<Shift>-<F10>

<Cursor Down>

<Ctrl>-S

<Cursor Down>

<Enter>

<Alt>--

Start macro recorder

Assign macro key

Move cursor to next instruction

Start a search

Select previous search argument

Search for next occurrence

Stop recording the macro

After entering the macro, the next time you open the CPU window and
search for an assembly language instruction, press (Shift)-(FlO) to locate the
next occurrence of the same search argument.

Chapter Sixteen: Macros and Keystroke Recording 441

This macro is also useful for locating the starts of Pascal and C subroutines,
as long as those routines allocate stack space for local variables. First, start a new
search for push hp. If you find that instruction, press (Ctrl)-V to see the
associated high-level source code in the Module view. Press (F6) a few times to
return to CPU, then press (Shift)-(FlO) to search for the next occurrence of
that same instruction. You can then press (Ctrl)-V again to see the next
routine's source.

Note: This is the end of the sample macros section. If you are entering each macro
as you read about it, be sure to choose Options: Save options, press M to select
Macros, and press (Enter) to save the macros in TDCONFIG.TD. You might want
to make a copy of that file to preserve the macros for future debugging sessions.

Keystroke Recording

Both macros and keystroke recording save keypresses for playing back later. But
although these TD features seem to be twins, they have very different
personalities.

While macros can associate one or more events with many different macro
keys, there is only one keystroke recording session in progress while TD is
running. Keystroke recording operates as a kind of endless tape inside TD that
records every event as it occurs. Unlike macros, keystroke recording saves all
keypresses from the first command you give after loading a program into TD
until you quit, including any keys you press in response to a program's prompts.

Borland calls keystroke recording their "instant replay" feature, and that's
not a bad description. Keystroke recording lets you reenact events up to where
the ball slips out of your program's hands, and the computer cries "foul."

Enabling Keystroke Recording

As chapter 3 explains, there are two ways to enable keystroke recording. If you
always plan to use the feature, you can switch it on with TDINST for every
debugging session. Or, you can give the -k command-line option when you start
TD. For example, to debug a program named OODRAWEXE and enable key
stroke recording, start TD with the command:

td -k [other options] oodraw

Either way, the result is a file called OODRAWTDK in the current directory.
(The file is always named the same as the buggy program's main module but

442 Part Three: Advanced Debugging Topics

with the extension .TDK.) After quitting TD, you can erase this file without
harmful effects.

Execution History View Review

As chapter 5 explains, the bottom pane of the Execution history view displays
the events saved by TD's keystroke recording facility. Press (Alt)-VE to open this
window and then press (Tab) to move the highlight bar into the bottom pane.

After performing those steps, you can move the highlight bar to any line
and then choose one of two local commands. Press (Ctrl)-1 to Inspect the
source-code line for this recorded event. Or, press (Ctrl)-K to reload the
program and replay all keystrokes up to that moment. When you do that, the
replayed keys plus those you press after the replay stops are again saved in the
Execution hi story's bottom pane. A good way to think of this is to imagine a
tape inside TD that you can rewind and replay by pressing (Ctrl)-K. After
stopping the tape, you can then press the record button (using any Run-menu
command) to start recording new material from that location.

Note: The top pane of the Execution history view shows events that the
Run : Ba c k t race command can execute in reverse. Even though this pane is in
the same window, it has no direct relationship to keystroke recording. The two
panes may at times show similar events, however.

Keystroke Recording and Debugging

Because keystroke recording saves and replays all keystrokes, it's ideal for
running repeat tests on buggy code. The following sections list a few tips for
using this feature as part of an overall debugging strategy.

Keystroke recording and breakpoints

Start TD and enable keystroke recording. Set two or more breakpoints to
narrow a search for a bug and run the code up to the breakpoints. Based on
your observations, open the Execution history window, select a breakpoint
location, and press (Ctrl)-K to repeat the steps that led to that place. Then,
trace deeper into the code (usually by pressing (F7)), set more breakpoints,
and repeat.

This technique is especially helpful when you have to press keys and supply
other data to let the buggy code proceed to the next breakpoint location. With
keystroke recording, you have to type such input only once. TD will replay
those keys and commands perfectly every time from then on.

Chapter Sixteen: Macros and Keystroke Recording 443

Keystroke recording and animation

Another way to use keystroke recording to narrow a bug search is to run the
code with the Run:Animate command. Because this command operates by
issuing Trace commands as though you pressed (F7) repeatedly, each ani
mated statement is saved in the Execution hi story's recorded keystrokes.

While animating a section of code, be ready to press (Esc) or another key
to stop executing. Then, open the Execution history window, select a prior
trace point, and press (Ctrl)-K to rerun the program up to that location.

Or, if that takes too much time, press (Ctrl)-1 to inspect the source code at
any recorded trace, press (F2) to set a breakpoint at that location, and then
press the keys (Ctrl)-(F2) to reset and (F9) to run up to this breakpoint
location. You can then continue tracking a bug from this spot.

Keystroke recording and code tracing

Many programs are composed of a series of calls to procedures, functions, and
subroutines. When trying to find which of those calls has a bug, a good plan of
action is to enable keystroke recording and follow these steps:

1. Press (F8) to step over procedure and function calls until the bug appears.

2. Open the Execution history view and move the highlight bar up one or
more lines to the faulty call.

3. Press (Ctrl)-K to replay all steps up to but not including this call.

4. Press (F7) to trace into the call. Then, repeat from step 1 until you locate
the bug.

When debugging programs written in strict top-down fashion, these steps
can take you straight to a bug with amazing speed. Instead of tracing every
statement in sight, use keystroke recording along with the Step over and Trace
into commands in the Run menu to divide and conquer a bug's territory.

Hint: I sometimes open the Execution history window before pressing (FS)
and (F7) to trace code. Each trace point then appears inside the window's bottom
pane, giving me a quick way to review the steps that led to the program's current
statement.

Keystroke recording and inspectors

Open inspector windows by positioning the cursor in the Madu le view and
pressing (Ctrl)-1 or by using the Data: Inspect command. With keystroke

444 Part Three: Advanced Debugging Topics

recording enabled, you can then replay these steps to reopen your inspectors
for a new test run.

When you choose the Keystroke restore command in the Execution his
tory view's bottom pane, TD closes all open inspectors. Therefore, when you
replay keystrokes, TD will open fresh inspector windows for these same variables.

Creating Repeatable Test Procedures

Recorded keystrokes saved in a . TDK file are available the next time you start
TD with keystroke recording enabled for this same module. This means you can
run through a debugging session, quit TD, and recompile your source code.
Then, when you restart the debugger, open the Execution history view and
replay the previous keystrokes to repeat your test procedure.

When doing this, you'll notice the line "End of recording" in the bottom
window pane. Highlight this line and press (Ctrl)-K to get back to your
previous stopping place. Or, highlight a different line to return to an earlier
moment.

Obviously, this feature has limits. If you make drastic changes to the code,
TD might not be able to replay the commands required to get back to a specific
location. Also, you may prefer to clear recorded keystrokes before starting a
new debugging session. In that case, be sure to erase the .TDK file before
running TD.

Problems with Keystroke Recording

Using keystroke recording is mostly intuitive. Even so, there are a few hidden
gotchas that you should keep in mind when using this feature:

• Program arguments entered with Run:Argument are not reset when replay
ing keystrokes. This means that any arguments entered after the event to
which you return will be used on this new test run. If those new arguments
change the course of history, they could affect TD's ability to get back to a
previous stopping place.

• Mouse clicks and movements are not saved along with keystrokes. Use a
mouse only for commands that you want keystroke recording to ignore.

• The number of keystrokes that can be recorded is limited only by the
amount of disk space available. Be sure to have plenty of free space on disk
before starting TD with keystroke recording enabled.

• Data written to disk may affect replayed keystrokes if the program rereads
that data. For example,, you may not be able to repeat a test run for a
program that modifies input data in a file because, on the next run, the
program will try to process the modified data.

Chapter Sixteen: Macros and Keystroke Recording 445

Using Macros and Keystroke Recording

Summary

Because macros and keystroke recording save keystrokes, they can conflict.
Usually, you'll have no trouble using both features while debugging. But if you
do run into difficulties, the following notes may help:

• If you create a macro while recording keystrokes and then replay those
keys, TD will attempt to recreate the macro. In this event, you may see a
message box that asks "Overwrite existing macro on selected key?" If so,
answer N. This seems to allow the playback to continue.

• If you replay recorded keystrokes, one of which runs a macro, that macro
will again run. However, if that macro traces statements beyond the one to
which you intended to return, the program will not halt at the expected
location. Instead, execution will continue past that location until the macro
stops replaying.

For these reasons, I find it's best to create macros without keystroke
recording enabled. Also, when recording keystrokes, I avoid using macros that
trace code-except for simple ones like the (Keypad +) and (Keypad -)
macros described earlier.

Macros let you associate TD keystrokes with macro keys, usually (Shift) and a
function key (Fl) through (FlO). With macros, you can quickly replay com
plex command sequences, invent custom commands, reopen a series of inspec
tor windows, and perform other repeatable activities. This chapter explains
how to enter macros and lists several sample macros that you can enter and save
in a TDCONFIG.TD configuration file.

Keystroke recording also saves keystrokes, but unlike macros, this TD
feature can save keypresses given in response to program prompts. Also unlike
macros, there is only one keystroke recorder, enabled by switching this option
on with TDINST or by using the -k command-line option.

With keystroke recording enabled, you can open the Execution history
window, press (Tab) to activate the bottom pane, and highlight any recorded
moment. You can then press (Ctrl)-1 to inspect that event's source code or
(Ctrl)-K to replay all keystrokes that led to this place. This makes keystroke
recording ideal for designing repeatable tests and for replaying events that led
to a bug.

Chapter 17

Remote and Dual-Monitor
Debugging

IF YOU ARE fortunate to have two PCs (they can be XTs, ATs, or other models),
you can run TD in remote mode. This lets you execute buggy code on a remote
system while the debugger runs locally on your main development computer.

Or, if you have two display adapters with video buffers located at different
addresses, you can configure TD to display its output on one monitor while you
view the program's graphics and text displays on the other.

These setups, explained in this chapter, offer several advantages over TD's
normal single-computer operation. The main benefits for a remote hookup are:

• Both displays are visible at the same time-you no longer have to press
(Alt)-(F5) to view your code's output. (In fact, those keys are disabled in
remote mode.) TD's windows appear on the main system while the remote
computer shows the target program's display. This makes remote debug
ging especially useful for testing graphics programs or those programs that
create complex text screens.

• The target program's input comes from the remote system's keyboard.
While debugging, you issue TD commands as usual on the local computer,
but you type input to the program on the remote keyboard. Because the
two keyboards (and other peripherals such as printers and a mouse) are
isolated, hardware conflicts between TD and the target program are elimi
nated. This is especially helpful when debugging input routines, TSRs, and
device drivers. (See chapter 19.)

• Programs that are too large to fit in RAM along with TD on one system can
usually be debugged in remote mode. All but a small amount of memory
(about 20K) is available on the remote. TD shares the local system's RAM
with itself and the program's symbol table. Also, TD can use local EMS RAM
for symbols, making a remote link ideal for debugging very large programs.
Symbols occupy no space on the remote computer's disk or memory.

447

448 Part Three: Advanced Debugging Topics

• Remote debugging prevents haywire bugs from crashing the debugger,
which can easily happen on a single system, especially when not running
TD386. Even if the remote system crashes, it's unlikely to affect TD's local
operation. (I suppose that a buggy program could issue a TD command via
the remote link and cause the local system to hang. But the possibilities of
this happening are "remote.")

• The remote link prevents serious damage to the local development system's
disk and other devices. There is virtually no way for a buggy program
running on a remote computer to affect the development system's disk-for
example, by writing absolute sectors or by performing another hardware
specific operation. Of course, buggy code can still erase files and perform
other mischief on the remote machine. But at least the main computer is
well protected from harm by the remote link.

There are a few disadvantages with remote and dual-monitor debugging.
For one, there's the cost of the second system or display hardware. For another,
remote debugging can't take advantage of TD386's ability to set hardware
breakpoints on 80386 and 80486 processors.

A third disadvantage is the time it takes to transfer the target program's com
piled or assembled code to the remote computer. When running in remote mode,
TD takes a little longer to get going than it does when executed locally. Also, you
have to transfer to the remote system any data and text files required by the target
code, which adds more time to the debugging process. These disadvantages are
usually minor, however, and the steps are easily automated with a batch file.

Dual-monitor debugging doesn't offer as many advantages as a remote link
between two computers, but if you have the appropriate hardware, TD can
display its own screens on one monitor while the program's output appears on
the other. Also, with this setup, you can take advantage of hardware debugging
registers on an 80386 or 80486 processor and still see both screens, which isn't
possible in remote mode.

This chapter explains how to hook up two systems or two monitors for
remote and dual-monitor debugging. For a remote link, you'll need two com
puters with one serial I/O port each, a cable, and appropriate connectors. For
dual-monitor debugging, you'll need color and monochrome adapters (or the
equivalent internal circuits) and two displays. If you have only a single system
with one display, you can't use these TD features. But you might still want to
scan this chapter to determine if adding a second computer or investing in
another monitor will be worthwhile.

The Right Connections
As with many endeavors, it pays to have the right connections. That's especially
true when hooking two computers' RS-232 serial I/O ports: COMl or COM2. (If

Chapter Seventeen: Remote and Dual-Monitor Debugging 449

your system has additional COM3 and COM4 ports, TD can't use them. You
must use COMl or COM2.)

For a successful remote link, the first step is to prepare or purchase a serial
cable with the necessary pin connections. Successful communications requires
the transmit data (pin 2) and receive data (pin 3) lines to talk to each other;
therefore, a straight-through or "ribbon" cable between two identically config
ured I/O ports probably won't work. (Note: Some systems have 9-pin to 25-pin
adapters that cross pins 2 and 3. In that case, because the two lines are already
crossed, a straight-through cable may work.)

There might be a PC clone somewhere that breaks that rule, but to connect
most systems, you'll need what's usually called a null-modem cable, which
simply means that pins 2 and 3 are crossed between the two connectors. This
configuration lets the speaker (transmitter) talk to the listener (receiver).

Warning: Before attaching any cables, make absolutely sure that you know which
are the RS-232 serial ports on the back of your computer. Unfortunately, other
devices sometimes use connectors that look like serial ports, and attaching a
remote link to the wrong device could damage one or both computers. For that
reason, it's a good idea to test your serial ports with an inexpensive modem or
with a "loop-back" plug and associated diagnostic software that you may have
received on a system disk. Connect the two computers only after you've positively
identified the RS-232 serial ports on each.

Figure 17.1 shows the connections to make between two 25-pin (also called
DB-25) connectors. It doesn't matter which end you plug into which computer,
but be sure to check whether you need male pins or female sockets. This is the
correct cable to use when connecting most XTs and PCs. (When connecting
this cable to a single 9- to 25-pin adapter, make sure that only the adapter or the
cable, but not both, crosses pins 2 and 3.)

0

• • • 2 2 • •• 3 ~ 3 • •• • •• • •• • •• 7 7 • •• • •• • •• • •• • •• • •• •
0

DB-25 DB-25

Figure 17.1. 25-pin to 25-pin serial connections.

450 Part Three: Advanced Debugging Topics

Figure 17.2 shows the connections to make between 25-pin and 9-pin
connectors found on most AT-class and 80386 (or 80486) systems. Use this
cable to connect most AT systems to a spare PC or XT.

0

• • • • • • • • • • • • •
0

DB-25

2
3

7

0

•
::R::: 2 ••

3 •• • •
5 • •

0

DB-9

Figure 17.2. 25-pin to 9-pin serial connections.

Figure 17.3 shows the connections to make between two 9-pin connectors.
In most cases, this is the correct cable to use for hooking up two AT-class systems.

0 0

• • •• 2
~ 2 •• •• 3 3 • • •• • • • • 5 5 ••

0 0

DB-9 DB-9

Figure 17.3. 9-pin to 9-pin serial connections.

When making your own cables, you can leave unlisted pins unconnected.
With prefabricated cables, try the connection first before cutting unused wires.
In most cases, other pins can be connected without affecting the remote link as
long as at least the pins listed here are attached.

Hint: Use a short cable-if possible, less than 50 feet long. With good quality,
shielded cable, you might be able to extend this recommended maximum. But for
best results, the shorter the cable the better.

Testing the Remote Link

After buying or preparing your serial cable, attach the two systems and run the
test described in this and the next two sections. The local system needs a fully

Chapter Seventeen: Remote and Dual-Monitor Debugging 451

installed copy of TD plus miscellaneous files in a directory that's listed in a DOS
PATH command. The remote system needs only the TDREMOTE.EXE utility,
which can be in the current directory, on a floppy disk, or in a PATH subdirec
tory. You do not have to install TD on both computers.

After you've copied TDREMOTE.EXE to your remote computer, type
tdremote and press (Enter) on the remote keyboard. You should see:

TD Remote Program Loader Version 2.0 ... Cc) 1988, 1990 Borland Intl
Waiting for handshake (press Ctrl-Break to quit)

Next, switch to the local system, type tdrf dir and press (Enter). (TDRF is
TD's Remote File Utility-more on this program later.) If all is working cor
rectly, you should see a directory of the remote computer on the local system's
display. You'll probably also see and hear disk activity on both systems.

Note: If the preceding test works, skip the instructions in the next two sections,
which you need to complete only if the default configuration fails. Continue
reading at "Configuring TD for Remote Debugging."

Configuring TDREMOTE

If the test in the previous section failed, you'll need to configure TDREMOTE
(TD's Remote Program Loader) on the remote system. You may also need to
configure TDRF on the local system as explained in the next section. Or, the
problem could be a bad cable or a faulty serial port. Whatever the cause, the
following tests will help you to determine and cure the problem.

On the remote system, if TDREMOTE is currently "Waiting for handshake,"
press (Ctrl)-(Break) to return to the DOS prompt. Verify which remote serial
port is connected on the remote computer-either COMl or COM2. If it's
COMl, restart TDREMOTE with this command:

tdremote -rp1

Or, if the cable is attached to COM2, use this command:

tdremote -rp2

Next, back again at the local system's keyboard, enter tdrf dir and press
(Enter). If you see "Waiting for handshake" and don't receive a directory
listing from the remote, press (Ctrl)-(Break) on the local system and go on to
the next section now to configure TDRF. Leave TDREMOTE running on the
remote computer.

452 Part Tbree: Advanced Debugging Topics

If you do see a directory, you'll want to save this configuration for next
time. To do that, first press (Ctrl)-(Break) on the remote keyboard to return
to DOS. Then, restart TDREMOTE with the same -rp command-line option plus
-w. This writes the tested configuration directly to TDREMOTE.EXE. For exam
ple, if you determined that COM2 works on the remote system, enter:

tdremote -rp2 -w

TDREMOTE will then prompt for the name of the program code file to
modify. Press (Enter) to accept the default file name or enter a different name
if you want to store the modifications to a copy ofTDREMOTE.EXE, leaving the
original program file untouched.

Configuring TDRF

After checking the remote system's serial port and restarting TDREMOTE with
an appropriate option, do the same on the local system with TDRF. For exam
ple, if you determine that the local system is connected to COMl, enter this
TDRF command:

tdrf -rp1 dir

Notice that, in addition to the command-line option, you must also issue a
TDRF command such as DIR. If the cable is attached to COM2, enter:

tdrf -rp2 dir

If neither of these commands works, you either have a bad cable, or your
serial ports can't handle a high-speed 115 Kbaud rate. Repeat the TDREMOTE
and TDRF commands from this and the previous sections, but this time, add
one of the two "speed" options -rs2 or -rsl to retest your connections at 38.4
Kbaud and 9,600 baud. If you still are having trouble, and if the cable is not
faulty, one or both serial ports may need repairs.

Note: Two of TD's published remote baud rates (9,600, 40K, and 115K) are
approximate. The true values are 9,600 (-rsl), 38,400 (-rs2), and 115,200 (-rs3)
baud. You don't need to be aware of these precise rates for most remote debugging
sessions, but they may be important for system designers to know, especially
when debugging embedded systems software and for running custom PC hard
ware in remote mode.

Chapter Seventeen: Remote and Dual-Monitor Debugging 453

After you can successfully display a remote directory, use the -w com
mand as explained in the previous section to write TDREMOTE's options
permanently to disk for the next time. For example, on the remote system,
enter:

tdremote -rp1 -rs2 -w

Substitute the -rp(#) and -rs(#) options from your tests. Then, on the local
system, execute a similar command, again writing the options to disk. You
might enter something like this:

tdrf -rp2 -rs2 -w

You'll be prompted for the name of the program code file to modify. Press
(Enter) to accept the default file name or enter a different name if you want to
store the modifications to a copy of TDRF.EXE, leaving the original program file
untouched.

As a final test, start TDREMOTE on the remote computer (don't enter any
command-line options this time) and then enter tdrf dir on the local system. If
you receive a directory from the remote computer, you're ready to begin
remote debugging.

TDRF and TDREMOTE Command-Line Options

Table 17.1 lists all TDREMOTE and TDRF command-line options. For additional
help, type tdremote -h. For help with TDRF, type tdrf and press (Enter).
Whatever settings you choose, remember that TDREMOTE and TDRF must
operate at the same speed.

Configuring TD for Remote Debugging

Before debugging in remote mode the first time, run the TD installation pro
gram TDINST and choose the Options and Mi see L Laneous commands. Set
Remote Link port to the I/O port to which the cable is attached on the local
system-COM1 or COM2. Leave Link speed set to 115 Kbaud unless you changed it
earlier to run TDRF. TD must be set to operate at the same speed as TDRF and
TDREMOTE. Do not enable Remote debugging unless you plan to run TD
exclusively in remote mode.

454 Part Tbree: Advanced Debugging Topics

Hint: If you will always debug a certain program remotely, you might want to
enable the Remote debugging option and save this configuration in a TDCON
FIG. TD file in the current directory. But, usually, you should leave this box
unchecked. That way, you can continue to use TD in single and in remote modes.
If you select this setting, start TD with the option -r- when you don't want to run
the debugger in remote mode.

Table 17 .1. TDREMOTE and TDRF command-line options.

Option Description

-rp(#) Set COM port (1 = COMl, 2 = COM2)

-rs(#) Set baud rate (1=9,600, 2 = 38.4K, 3 = 1l5.2K)

-w Write options to .EXE file

-h Display help

-? Same as -h

Debugging a Program in Remote Mode

To debug a program in remote mode, make sure your systems are connected
properly and then start TDREMOTE on the remote computer. You should
see the same copyright and "Waiting for handshake ... " messages as listed
earlier.

Return to the local keyboard, compile your program, and start TD with the
-r option-unless you enabled Remote debugging with TDINST, in which case -r
has no effect. For example, after compiling a program named MYTEST.PAS (not
listed here-the steps are similar for other programs), enter this command at
the local keyboard:

td -r mytest

If you're sharp, you'll see the message "Waiting for handshake from
TDREMOTE (ctrl-break to quit)" on the local computer. But, ifthat message isn't
soon replaced by TD's display, the remote link is not working and you may
need to configure TDRF and TDREMOTE as explained earlier.

The first thing TD does when started in remote mode is check if the target
file is already on the remote computer. If not, or if the date of an existing file is
earlier than the date of that same file on the local system, the debugger asks,
"Program out of date on remote, send over link?" Usually, you should type Y,
click Yes, or press (Enter) to answer. When you do that, the debugger copies

Chapter Seventeen: Remote and Dual-Monitor Debugging 455

the target file-MYTEST.EXE in this case-to the current directory on the
remote computer's disk.

If you answer no to the prompt, TD will display "Error loading program"
because it won't find the program's code file on the remote's disk. This might
also happen if you mistype the program's name. Press (Esc) to clear the error
message and then use Fi Le:Open ((Alt)-FO) to load the correct .EXE file. You
are still communicating with the remote system, and it's not necessary to quit
and restart TD in order to begin debugging. (You can also load several files in
succession to debug more than one program in remote mode. Each file will be
transferred to the remote for debugging.)

While TD is transferring an .EXE or other code file to the remote, you'll see
these messages on the remote's display:

Link established
Reading fi Le "MYTEST.EXE" from Turbo Debugger
2176 bytes downloaded
Download complete
Loading program "MYTEST.EXE" from disk
Program Load successful

Only the target-code file is transferred to the remote system-the source
code text files remain on the local computer's disk where TD can find them.
The symbol table is stripped from the code file before the transfer to save time;
therefore, the file on the remote does not contain any debugging symbols.
If the target file already exists and is not out of date, you'll see only the
last two messages. During these file-transfer stages, you may receive an error
message if, for example, there isn't enough room on the local system to hold the
target-code file. The Turbo Debugger User's Guide explains these error
messages.

Provided all goes well, you should be looking at the Modu Le window and
seeing the source code to MYTEST.PAS or another program. The remote display
remains stuck where it is for the moment because the program hasn't begun
executing yet. You can now press (F7) and (FS) on the local keyboard to
single-step through the code. You can also use other TD commands, just as you
do when debugging on a single system. In fact, all TD commands except
Window:User screen ((Alt)-(F5)) operate identically in remote mode as they
do in single-computer debugging sessions. The only significant difference is
that TD's and the program's displays appear on their own monitors. Also, you
must remember to use the remote keyboard to answer prompts and enter
information required by the buggy program.

Other than these few differences, running TD in remote mode is no
different from running a local setup. You can issue all TD commands, use a
mouse to open and move windows, add variables to Watches windows, inspect
memory areas, and perform other debugging operations.

456 Part Three: Advanced Debugging Topics

Note: As mentioned earlier, you can't set hardware breakpoints while debugging in
remote mode, even if the remote system has an 80386 or 80486 processor and
installs TDH386.SYS at boot time. For this reason, even with fast computers, data
breakpoints set with the Changed memory g Laba Land Expression true g Laba L
commands in the Breakpoints menu cause the target code to execute slowly.

File 1/0 and Remote Debugging

Because TD transfers only the target-code file automatically, it's your respon
sibility to copy any data or other files that the target program requires. Remem
ber, the code file runs on the remote system under the supervision of
TDREMOTE while the debugger runs locally; therefore, you must create the
necessary conditions on the remote system that would exist if the code was
executing from DOS. TD automatically transfers only the program's .EXE file.

When debugging programs that read other data files, use the TDRF utility
to copy those files to the remote system before starting TD. (See the next
section in this chapter for details about TDRF commands.) For example, to copy
a file named MYDATA.DAT to the remote system and begin remote debugging
for MYTEST.EXE, enter the two commands:

tdrf t mydata.dat
td -r mytest

The tdrf t command copies MYDATA.DAT from the local system to the remote
disk drive in the current directory. Then, td -r mytest tells TD to debug
MYTEST.EXE over the remote link. If you have many files to transfer, or if you
have to give several TDRF commands each time you start debugging, you can
save time by storing the necessary commands in a batch file named D.BAT (or
another name) in your program's working directory. You can then run the batch
file to begin a new remote debugging session.

Debugging Keyboard Input Routines

Remote debugging makes testing keyboard input routines easier than on a
single system where TD and the program have to share the same keys. Although
TD does a great job of staying out of the program's way, there are times when
two keyboards are practically required to solve a sticky input problem.

For example, it's difficult to create reliable tests for investigating input from
the type-ahead buffer, where keypresses are stored before the program's input
statements have a chance to read those key values. On a single system, if the
target code isn't running, every keypress is directed to TD; therefore, the only

Chapter Seventeen: Remote and Dual-Monitor Debugging 457

way to stuff keys into the type-ahead buffer for the buggy program to read is to
run the code-but, then, you can't see what the debugger is doing.

A remote link is the answer. After starting TD in remote mode, run the code
up to a breakpoint or other stopping place. The activity indicator should display
READY. Next, switch to the remote system and enter the keys you want to insert
into the type-ahead buffer. Nothing will happen. Back on the local system again,
use TD Run-menu commands to trace or run various input statements, which
will read the keypresses you typed a moment ago into the remote's type-ahead
buffer. This will give you a close-up picture of how the program handles input
from the buffer.

TDRF Commands

Table 17.2 lists TDRF's commands, all of which are single letters, listed in the
leftmost column. You can enter full name commands such as dir and cd if you
prefer, but TDRF ignores all but the command's first letter. The table also lists
the operation that TDRF performs, the minimum and maximum number of
arguments allowed, the equivalent DOS commands, and an example of the
command in action.

Table 17.2. TDRF commands.

Command Letter Equivalent
and Operation Args DOS Command Example

c Change directory 0-1 CD or CHDIR tdrf C C: "- tp

d List directory 0-1 * DIR tdrf d

e Erase file 1* ERASE or DEL tdrf e * .bak

f Copy from remote 1-2 * COPY tdrf f newdat.dat

k Remove directory RD or RMDIR tdrf k "-temp

m Make directory MD or MKDIR tdrf m "- newtemp

r Rename file 2 RENAME tdrf r x.txt x.bak

Copy to remote 1-2 * COPY tdrf t readme.doc

• File specifications may include wild card characters • and?.

For the commands in Table 17 .2 to work, the remote system must be
running TDREMOTE. After issuing a command, you'll see the results on the
local display, not on the remote computer. On the remote screen, you'll see
only "Link established" and "Link broken" messages, indicating that
TDREMOTE is communicating successfully with TDRF.

Be careful when using the two copy commands f and t not to reverse the
direction of the transfer. To copy a file from the remote to the local system, use

458 Part Three: Advanced Debugging Topics

the f command. To copy a file to the remote from the local computer, use the t
command. These commands do not warn you before removing an existing file
on the destination drive, and it's easy to erase data accidentally by copying in
the wrong direction. So, be careful.

Some commands require no parameters. For example, a useful command is
tdrf c, which prints the current directory of the remote computer, similar to
the way CD with no parameters works from DOS. Enter tdrf d for a listing of
the files in the remote's current directory.

You may use wild card characters * and ? in file specifications with all
commands except ck m and r. For example, to list all .PAS file names in the
current directory, enter tdrf d * • pas. To copy all files from the current path to
the remote computer, enter tdrf t *. * .

Dual-Monitor Debugging

Monochrome displays-including the original IBM Monochrome Display
Adapter (MDA) and most Hercules brand monochrome cards and clones
receive their characters from a video buffer located at segment address OBOOOh.
Because the Color Graphics Adapter (CGA) and its descendants-Enhanced
Graphics Adapter (EGA) and Video Graphics Array (VGA)-use a text buffer at a
different segment address, OB800h, it's possible for both kinds of video hard
ware to operate peacefully in the same computer.

Even though DOS can use only one display at a time, each video circuit
remains "alive" while the computer is on. For this reason, simply storing ASCII
character codes in the correct buffer causes text to appear on that display
adapter's screen. TD uses this trick to display its output on the other display
the one that DOS isn't using-letting you debug code on one computer but see
TD's and the program's output on separate monitors.

Two monitors are especially good for debugging graphics programs, where
it's often necessary to trace or animate in slow motion a series of graphics
statements while you watch the effect take shape on the program's screen. This
is also a good way to debug subroutines that display text windows (like TD's)
and other complex text screens. Even better, unlike remote-mode debugging,
dual monitors on an 80386- or 80486-based system let you see both displays at
once and still be able to set hardware breakpoints.

Hint: When plugging two video cards into the same system, It's usually a good idea
to insert mode co80 and mode mono commands into AUTOEXEC.BAT. On
some systems, TD may not be able to run in dual-monitor mode until you execute
these or similar commands to initialize the video hardware. Make sure MODE.COM
is in the current path before giving the commands.

Chapter Seventeen: Remote and Dual-Monitor Debugging 459

Using Two Monitors

To test whether your two display adapters and monitors can run simultaneously,
enter the commands mode co80 and mode mono. These commands should
switch DOS back and forth between the two screens. If this doesn't work, you
may not be able to use TD's dual-monitor abilities.

After getting the two displays working, load a test program into TD with
the command td -do test. The -do command-line option switches on TD's
Other display setting to send TD's output to the alternate monitor. The pro
gram's output will appear on the display that DOS normally uses.

To enable dual-monitor debugging permanently, use the TDINST Display
command to set User screen updating to Other di splay. Write the configura
tion to TD.EXE to use dual monitors for all debugging sessions or save the new
setting in a TDCONFIG. TD configuration file in the current directory.

Switching Displays

Most systems require you to set a system switch to select one of your video
adapters as the primary display. But, regardless of this switch's setting, you can
always select the other display for debugging using the following commands to
debug a program called NAME.EXE:

• Type mode co80 and td -do name to run TD on the monochrome
monitor and to see the program's output on the color display.

• Type mode mono and td -do name to run TD on the color display and to
see the program's output on the monochrome screen.

In other words, when you use the -do switch, TD's output always goes to
the alternate display, while the program's screen appears on the monitor that is
active when you start the debugger.

Problems with Dual-Monitor Debugging

Aside from incompatible video hardware that prevents TD from using dual
monitors, there are two problems that you might run into when debugging in
this mode:

• If the target program writes directly to the alternate display, it might
destroy TD's screen. Use the System menu's Repaint desktop command to
recover. (If you can't see TD's menus, press (Alt)-(Space)R.)

• When using an older CGA card to drive the alternate display (the one on
which TD's output appears), you might have to disable Fast Screen Update

460

Summary

Part Three: Advanced Debugging Topics

with the TDINST Di splay command to eliminate interference patterns
2(snow). However, if the snow doesn't bother you, enable this option for
faster screen updates.

Running TD in remote or dual-monitor modes lets you view TD's and the
program's outputs on separate displays. This makes these special configura
tions, described in this chapter, ideal for debugging code that creates complex
graphics or text screens, especially when you need to trace statements and
observe their visual effects.

Remote debugging isolates the local development system from the remote
computer, thus eliminating hardware conflicts and helping to prevent buggy
programs from damaging your main system. A remote link is also useful for
debugging keyboard input routines, TSRs, and device drivers.

In addition to the TDREMOTE program, which must be running on the
remote system for remote-mode debugging, you can use the TDRF utility to
transfer files, list directories, and perform other tasks on the remote computer.

Successful dual-monitor debugging requires two video adapters (or equiva
lent internal circuits) that receive characters from different memory addresses.
With this setup, TD's display appears on the alternate monitor, letting you view
the program's output on the currently active display.

Hardware-Assisted
Debugging

Chapter 18

Busy PROGRAMMERS need fast tools for chasing bugs. At most times, TD
and an AT-class system offer more than adequate speed, but when monitoring
memory with Changed memory g Loba L breakpoints, even a fast 80386-based
system can slow to a traffic-snarling creep. Getting out of this kind of jam and
solving a few other tricky problems described in this chapter require the
features that only hardware-assisted debugging can provide.

Despite common hearsay, "hardware-assisted debugging" doesn't have to
mean investing in a circuit board that costs three times the price you paid for
your computer. If your system has an 80386 processor, it already has many of
the features found in more costly products. Or, if your system has an earlier
processor such as an 8086 or 8088, there are ways for getting a little hardware
help to fix broken programs without having to break your bank account.

While examining these subjects, I'll also take the opportunity to dip into a
few related hardware topics, explaining how to use TD to debug embedded
systems, how to install and use a breakout switch, how to set breakpoints in ROM
(Read-Only Memory) code, and how to add a panic button to systems that lack a
reset switch.

Internal and External Hardware Debugging

Hardware-assisted debugging comes in two varieties: internal and external. The
internal variety refers to special debugging features built into 80x86 processors.
The external kind usually takes the form of a circuit card that you can plug into
a peripheral slot.

TD can take advantage of both internal and external hardware-debugging
components. In fact, many people don't realize that TD uses hardware-debugging
features that are available on all 80x86 processors. If these options didn't exist,
neither would TD!

461

462 Part 7bree: Advanced Debugging Topics

Single-Stepping and the Trap Flag

You're probably familiar with TD's most basic hardware-assisted debugging
feature, called single-stepping, used by the Trace into ((F7)) command. Avail
able on all 80x86 processors, single-stepping works by generating a type 1
interrupt between most instructions. TD enables single-stepping by setting the
processor's trap flag and directing the subsequent type 1 interrupts to an
internal subroutine. By this hardware trick, the debugger gains control of the
target code between nearly every instruction.

On systems with processors earlier than the 80386, TD sets this same flag
to implement Changed memory and Expression true breakpoints (see chapter 8).
By intercepting control after most instructions, TD can monitor memory loca
tions, and if a breakpoint condition is satisfied, it can halt the code or perform
another action. This is why these data breakpoints make program code run
slowly. It's as though you inserted a ca LL instruction to a complex subroutine
between every instruction in your program.

Breakpoint Interrupt

80x86 processors also reserve interrupt type 3 as the breakpoint interrupt, the
second kind of hardware-debugging capability found in all PCs, regardless of
make or model. TD uses this hardware feature to set breakpoints in the
program's code. When you set a code breakpoint, TD swaps an int 3's single
byte machine code (OCCh) with the byte at the breakpoint's location. When the
program reaches this spot, the processor executes the interrupt, which transfers
control to TD. Using some additional hocus pocus, TD eventually replaces the
original instruction to allow the code to continue; therefore, when you exam
ine the program's machine code, you'll never see the int 3 instructions that TD
inserts. (See chapter 7 under "Turbo Debugger's Tools" for a more detailed
description of how TD handles code breakpoints.)

Note: You can insert temporary int 3 instructions in your code to create "forced"
breakpoints, but don't use this interrupt for other purposes. If you do, you may
not be able to debug the program with TD or other debuggers. Also, it's probably
a good idea to remove int 3 instructions before executing the program from DOS.

Internal Debugging Registers

The hardware-debugging story took a major turn with the introduction of the
80386 processor, to which Intel added several new features. Among these was a
bank of debugging registers, specifically reserved for setting breakpoints that

Chapter Eighteen: Hardware-Assisted Debugging 463

in the past required an expensive in-circuit emulator (ICE) or caused software
debuggers like TD to execute code at a snail's pace when monitoring a pro
gram's data.

On systems with 80386, 80386SX, or 80486 processors, TD can use these
on-board debugging registers to set sophisticated data breakpoints. Of the eight
32-bit registers available (labeled DRO through DR7), four can store addresses of
locations in memory to monitor a variety of conditions. The other registers are
either reserved or used for various control operations, for example, to distin
guish between data-read and data-write breakpoints. (If you want to know more
about these hardware-debugging features, Intel's 80386 and 80486 reference
manuals describe them in detail. See the Bibliography.)

If your computer has an 80386 or later processor, all versions of TD can use
the debugging registers to set sophisticated data breakpoints. All you have to do
to enable this capability is to insert the line DEVICE= C: "TD"'- TDH386.SYS
into the CONFIG.SYS file. (Replace C: "TD with the path where you installed
TD.) The next time you boot, the device driver will be loaded into RAM, ready
for TD's use.

Remember that all versions of TD can use the debugging registers on
80386- and 80486-based machines. You do not have to run TD386 to enable
hardware-assisted debugging, a common misconception. However, if you also
have additional extended RAM, as chapter 3 explains, you can run virtual-mode
TD sessions by starting the debugger with the TD386 supervisor. This configu
ration lets you set breakpoints using more sophisticated address-matching con
ditions than are possible with plain TD and TD286. We'll look at those differ
ences in more detail later. For most purposes, you can install the TDH386.SYS
device driver to take advantage of hardware-debugging features with similar
benefits on all 80386, 80386SX, and 80486 systems while running plain TD,
TD286, or TD386.

Note: You may be able to install the TDH386.SYS device driver even if you are
running a memory manager like QEMM.SYS or a multitasker such as DesqView,
Windows/386, or Windows 3.0 in 386 Enhanced mode, all of which prevent
TD286 and TD386 from running. With the device driver installed, you can still set
hardware breakpoints while running plain TD-you just can't run TD286 and
TD386. According to Borland, TD should be able to use debugging registers in a
multitasking environment without conflicts unless multiple copies of the debug
ger attempt to set hardware breakpoints simultaneously. In that event, all bets
are off.

Hardware-Debugging Boards

If your computer does not have an 80386 or later processor, or if you need
more sophisticated debugging features, you may want to consider purchasing a

464 Part Three: Advanced Debugging Topics

hardware debugger circuit board. These products, of which there are several
brands, typically come with banks of protected RAM for storing debugging
software (not TD), a breakout switch for cutting down a hung program, plus
other features that tap into the computer's address bus to give detailed pictures
of low-level goings on.

At this time, only one such external hardware-debugging board-the Trap
per, manufactured by Purart, Inc.-can communicate directly with TD. (See
Bibliography.) If you have an original PC, XT, or AT, you can install a Trapper
board in an empty slot (a "short slot" will work) to add hardware-debugging
features to your system similar to those on an 80386. You can also use the
board's breakout switch to bring up TD from a hung program. Although the
Trapper board can set only a single hardware breakpoint, it offers additional
features such as fast I/O and instruction-fetch traps that even TD386 can't
perform with the same agility.

Other debugging boards with more extensive features (and higher
price tags to match) are available from various manufacturers. Probably,
the most popular of these are manufactured by The Periscope Company. Their
Periscope debuggers are well known and well regarded among professional
programmers. (For this chapter, I tested the Periscope III model on an original
IBM XT.)

Unfortunately, as good as they are, Periscope debugging boards come with
their own software; they do not make good use of TD. It's possible to install a
Periscope debugger and run TD on the same system, but it's not possible (or at
least it's not easy) to make TD communicate directly with the hardware debug
ger's features. A major drawback is TD's inability to use the model III's real-time
trace buffer, which can record up to SK of "bus events," providing snapshots of
the internal happenings for individual machine cycles. Earlier versions of TD
hinted at providing this feature, but, apparently, that hint remains in Borland's
suggestion box. For that reason, companies like Periscope have chosen not to
implement device drivers that would allow TD to communicate with these
more sophisticated hardware debuggers, even though Borland has always made
the device-driver interface available to developers.

Despite these limitations, though, it is possible to use a Periscope model I or
Ill's breakout switch to interrupt execution and return to TD from a hung
program. To enable the switch for Periscope's default port address of 0300h,
type this command or add it to AUTOEXEC.BAT:

tdnmi -p

Or, if you changed the board's address, add it to -p, but do not type a colon
as you must with the similar Periscope PS.COM software option. For example,
to enable the breakout switch at address 0380h, use the command:

tdnmi -p380

Chapter Eighteen: Hardware-Assisted Debugging 465

Setting Up for Hardware-Assisted Debugging

Choosing the right combination of hardware and software is always difficult. If
you're shopping for hardware, the following suggestions will help you to plan a
strategy for adding hardware-assisted debugging features to your development
system:

• An 80386-, 80386SX-, or 80486-based computer is probably the best all
around choice. All versions of TD can use the special debugging registers
on these processors to set up to four hardware breakpoints for a variety of
conditions.

• Any computer with an 80386 or better processor plus at least 700K of
extended RAM can run TD and a target program in virtual mode under
control of TD386. This arrangement adds additional levels of hardware
debugging features that are as good as or better than similar options found
on external ICE hardware costing much more.

• If you have a PC, XT, or AT class computer, and you don't plan to upgrade
to an 80386 or better system soon, a Trapper board offers a relatively
inexpensive way to add hardware-assisted debugging features to your
machine. Despite the Trapper's limit of a single hardware breakpoint, the
board can monitor 1/0 instructions, and it can even let you set breakpoints
in ROM code by monitoring instruction fetches. Also, the Trapper's break
out switch comes in handy for getting back to TD from a hung program.

• A Trapper board might also be useful when installed in an 80386 or better
system. In general, while TD386 and the TDH386.SYS device driver offer
superior hardware-debugging assistance, they do so with a small loss of
speed for 1/0 and some kinds of data breakpoints. A Trapper board pro
vides these same services while allowing the program to run at full speed.

• The principle drawback to using a Trapper board in an 80386 or better
system is that you must run plain TD or TD286. With TD, the debugger and
your code share the same 640K of system RAM. By running TD286 on an
80386 system, you can still make use of extended RAM and Trapper's
features. (This is also a good setup for an 80286 AT with extended RAM.)
But, because Trapper comes with its own TD device driver, it can't work
along with TDH386.SYS and TD386. Even so, you can still install the
Trapper card, load TDH386.SYS, and run TD386. In that case, the virtual
mode TD just ignores the Trapper hardware.

• Periscope and other external hardware debuggers offer even higher, but
pricey, levels of sophistication. Unfortunately, these boards do not fully
cooperate with TD. You may be able to use TD and an external debugger in
the same computer, and you can use a Periscope model I or Ill's breakout
switch to interrupt a hung program and return to TD. But, don't expect TD
to use the board's other features, for example, to set hardware breakpoints,

466 Part Three: Advanced Debugging Topics

monitor instruction fetches, store symbols in on-board RAM, or access a
real-time trace buffer.

The Hardware Breakpoint Options Dialog

With a Trapper board installed, or after booting to load the TDH386.SYS device
driver on a system with an 80386 or better processor, TD enables the Hardware
breakpoint command in the Breakpoints menu. Choosing this command
opens the Hardware breakpoint options window (see Figure 18.1). This same
dialog box is also available by choosing View: Breakpoints, highlighting an
existing hardware breakpoint, and pressing (Ctrl)-H to use the local Hardware
options command. (If another hardware debugger becomes available, it proba
bly will include a device driver that will enable these same commands.)

[IJ======
(•) Recid rnernor~'::J
() Wr i te memory
<) Access nrenrory
<) Input I ;O
<) Output I /0
< > Both I ;O
() Fetch instr11ctinn

<•> Match al I
() Equal
() Unequal
() Above
<) BelrnJ

) Less or equa I
) Greater 01- equo I
) Range
) Not ronae

Address va I ue
-Nnt nvnilnble>

I
(•) Motch al I
() Equal
() Unequal
() Above
() Below
() Less or equo I
() Greater 01- equa I
<) Range
< > Not romoo

Data vol ue
•ttl•·Li&••l:t•

Figure 18.1. The Hardware breakpoint options dialog box.

You can use the Hardware breakpoint options dialog box to set new
hardware breakpoints or to modify existing ones. As Figure 18.1 shows, three
sets of radio buttons let you select among seven Cycle, nine Address match, and
nine Data match options-a total of 567 different combinations. However, the
actual number of hardware breakpoint types you can set will be less than this
maximum because the Trapper board and the TDH386.SYS device driver do
not support all possible settings. Also, some combinations have no practical
value (for example, matching all addresses and all data values for read/write
Access memory cycles-sort of like begging for grid lock at high noon in Times
Square). TD displays the error message "Can't set that sort of hardware break
point" for unsupported combinations.

After opening the dialog window, to set a hardware breakpoint, first select a
Cycle, for instance, a Write memory operation to inspect a value stored in RAM.
This type of breakpoint requires selecting an Address match option, usually
Equal, which monitors the specified cycle type for a specific address. When you

Chapter Eighteen: Hardware-Assisted Debugging 467

select any button except Match all from the Address match group, TD enables
the Address value input box. Move the cursor to that area and enter an address
or variable name, using the expression format for the current language. For
example, you might enter dataArray[lO] to set the breakpoint for an array
element at index 10.

After selecting Cyc Le and Address match options, if you also want to restrict
the breakpoint to a specific data value, you may select a Data match button. This
group of buttons is always optional-you may select Mat ch all to match any
data value for a certain cycle type and address. Or, if you select a different
Data match setting, TD enables the Data value input box. ln that case,
move the cursor to the box and enter a value, using the expression format that's
suitable for the current language. For example, if you're debugging a Turbo
Pascal program, to watch for the value FF hex, you would enter $FF into this
box.

After setting these breakpoint options, click the Ok button with a mouse or
just press (Enter). Click Cance l or press (Esc) if you change your mind. You
can also select the He Lp button for on-line messages about the dialog's settings.

Hint: Tab to one of the three radio button groups before pressing (Fl) or clicking
He l p to get help with a specific set of options.

How to Set Hardware Breakpoints

After booting to install the TDH386.SYS device driver, or a similar driver
supplied with a Trapper hardware-debugging board, you can load a program
into TD, TD286, or TD386 and set hardware breakpoints. (You can't run TD386
when the Trapper device driver is installed, however.)

Use Fi Le : Get i n f o to verify that TD recognizes the existence of hardware
assisted debugging (the Breakpoints setting should display Hardware). To set a
new hardware breakpoint, you can use one of four methods:

• Use the Breakpoints:Changed memory global command to monitor any
address or variable for changes. TD will use the device driver to set this
breakpoint in hardware. If you've exceeded the maximum number of
hardware breakpoints (1 for Trapper, 4 for TDH386.SYS), TD will set the
breakpoint in software as it normally does, which may slow the program.

• Use the Breakpoints:Hardware breakpoint command to open the
Hardware breakpoint options dialog box. Then, select the settings you
want as described in the previous section. Unlike the Changed memory
global command, with this method and those that follow, the breakpoint
will be accepted only if you have not exceeded the hardware's capacity for
new breakpoints.

468 Part Tbree: Advanced Debugging Topics

• Open the View:Breakpoints window and press (Ctrl)-A to add a new
breakpoint. This opens the Breakpoint options dialog box (see Figure 5.4).
Toggle Global on, and then set Condition to Changed memory, enter an
address expression in Condition expression, and press (Enter). (This has
the identical result as the less complicated Breakpoints:Changed memory
global command.)

• Open View:Breakpoints, press (Ctrl)-A, toggle Global on, and set
Condition to Hardware. Press (Enter) and note that the window displays
"Breakpoint, Not set, Enabled." To finish the breakpoint, highlight it and
press (Ctrl)-H, selecting the local Hardware options command. This
opens the Hardware breakpoint options dialog box, identical to using the
Breakpoints: Hardware breakpoint command.

After setting the hardware breakpoint, open the View: Break poi n ts
window (it may already be open depending on which of the previous methods
you decide to use). The new breakpoint will be listed as Global_1* or similar,
with the asterisk confirming that the device driver successfully fielded the
breakpoint. If the asterisk does not appear, the breakpoint is not set in
hardware.

When you highlight a hardware breakpoint in Breakpoints' left pane, the
right pane displays lines similar to these:

Breakpoint
Hardware Write memory
Addr: Equal a[QJ
Data: Match all
Enabled

The first line identifies the breakpoint action, which you can change by
pressing (Ctrl)-S and setting Action to Break, Execute, or Log. (You don't have
to halt the program with hardware breakpoints. You can use them to splice
code and log expressions, as chapter 8 explains.)

The middle three lines of the breakpoint's description list the cycle, address
match, and data match that you selected from the Hardware breakpoint
options dialog box. The last line shows Enabled or Disabled. To toggle this
setting, highlight the breakpoint, press (Ctrl)-S, and change the Breakpoint
disabled check box. Other lines may also appear in the window listing other
breakpoint options.

Hint: It's often easier to disable a breakpoint temporarily than it is to delete and
reenter it later, for example, after resetting the code to repeat a debugging test. By
the way, the keystrokes to disable or enable a highlighted breakpoint in the
Breakpoints view make a good macro: (Ctd)-S D (Enter).

Chapter Eighteen: Hardware-Assisted Debugging 469

Modifying Existing Hardware Breakpoints

You can modify existing hardware breakpoints in two ways. First, open the
View:Breakpoints window and highlight the breakpoint you want to change.
Then, press (Ctrl)-S to open the Breakpoint options dialog. At this point, you
can change the Action, Action expression, Pass count, or Breakpoint dis
abled settings.

However, don't change the breakpoint's Condition (which should be listed
as Hardware), toggle the Global check box, or enter an Address or Condition
expression. If you choose any of these options, you'll be prevented from
modifying the cycle, address match, and data match settings in the Hardware
breakpoint options dialog box.

You can also highlight a hardware breakpoint in the Breakpoints view
window and press (Ctrl)-H. This opens the Hardware breakpoint options
dialog box (Figure 18.1). You can then select new settings for the breakpoint as
you do when creating a new breakpoint.

Accessing and Changing Memory

After setting a Changed memory g loba L breakpoint, either by using that com
mand in the Breakpoints global menu or by setting the Changed memory radio
button in the Breakpoint options dialog box, even if TD sets the breakpoint in
hardware, you cannot open the Hardware breakpoint options dialog box (Fig
ure 18.1) to modify this breakpoint's settings.

This restriction makes sense when you consider that a Changed memory
breakpoint does exactly what its name suggests: it monitors a memory location
for a change to the value currently stored there. For example, suppose you set a
Changed memory breakpoint (in hardware or in software) for an array account
with the value at indexed position [Q] equal to 50 and then execute these Pascal
statements:

account [Q] := 50;
account[Ol := 100;

The Changed memory breakpoint will be triggered only for the second
statement because the first writes the same value to account [Ql.

However, setting a hardware breakpoint with Cyc Le = Write memory,
Address match = Equal, and Address value = account[Q], will activate the
breakpoint for both assignments-a subtle difference that may be important
when searching for bugs that destroy memory areas. Only a hardware break
point can detect an instruction that writes a value to a memory location that
already equals that same value.

470 Part Three: Advanced Debugging Topics

Expression True vs Hardware Breakpoints

As chapter 8 .explains, you can set Expression true global breakpoints to
evaluate an expression as the breakpoint's condition. TD never sets these
breakpoints in hardware, and for that reason, using this command in the global
Breakpoints menu may cause the code to run slowly.

With hardware assistance, you can often get the same results of an expres
sion breakpoint with no slowdown. First, use any of the methods listed earlier
to open the Hardware breakpoint options dialog box (Figure 18.1). Then, select
Cycle, Address match, and Data match radio buttons, and enter expressions and
values into the Address value and Data value input boxes, using settings that
duplicate the breakpoint expression.

For example, instead of setting an Expression true global breakpoint for
yCoord) = 480, create a new hardware breakpoint. Set Cycle to Write memory,
Address match to Equal, and Data match to Greater or equal. Enter yCoord
into the Address value box and 480 into Data va Lue. TD will then halt the code
or perform another action after any statement writes a value of 480 or greater to
yCoord, regardless of that variable's current value.

Using hardware-debugging features to simulate Expression true g Loba L
breakpoints this way takes more time and care, but the results are worth
the effort. With the breakpoints set in hardware, the code now runs at full
speed.

Hint: This tip works best on systems with 80386 or better processors, an installed
TDH386.SYS device driver, and TD386. Other configurations restrict the kinds of
hardware breakpoints you can set and, therefore, limit the kinds of expressions
you can simulate with hardware options. See "Problems With Hardware-Assisted
Debugging" later in this chapter.

Selecting Hardware Breakpoint Options

Tables 18.1, 18.2, and 18.3 describe each of the three banks of radio buttons in
the Hardware breakpoint options dialog box (Figure 18.1). The tables also list
the conditions under which a breakpoint action will be taken. Table 18.2's
Address match options apply to the currently selected Cyc Le. Table 18.3's Data
match options apply to the currently selected Cycle and Address match. For
Address and Data match options not equal to Mat ch a L l, you must enter Address
and Data va Lue expressions into those input boxes before TD will accept the
breakpoint. Depending on your hardware and the version of TD you are
running, some combinations of options listed in these tables may not be
recognized.

Chapter Eighteen: Hardware-Assisted Debugging

Table 18.1. Hardware breakpoint cycle options.

Cycle Breakpoint Action Occurs ..•

Read memory After a read from memory

Write memory After a write to memory

Access memory After a read or write from or to memory

Input 1/0 After an i n instruction executes

Output 1/0 After an out instruction executes

Both 1/0 After an in or out instruction executes

Fetch instruction When the processor fetches an instruction

Table 18.2.

Address Match

Match alt

Equal

Unequal

Above

Below

Less or equal

Greater or equal

Range

Not range

Table 18.3.

Data Match

Match alt

Equal

Unequal

Above

Below

Less or equal

Greater or equal

Range

Not range

Hardware breakpoint address match options.

Breakpoint Action Occurs .•.

After alt matching cycles

For the specified address value only

For any other address except this one

For alt addresses above this one

For alt addresses below this one

For this address and those below

For this address and those above

For an address and count such as a [1 0] , 5

For all addresses outside of a range

Hardware breakpoint data match options.

Breakpoint Action Occurs .•.

For alt matching cycles and addresses

For the specified data value only

For any value except this one

For all values above (greater than) this one

For all values below (less than) this one

For this value and those that are less

For this value and those that are greater

For any values within a range such as 10,20

For any values outside of a range

471

Table 18.4 lists the combinations of hardware options from Tables 18.1,
18. 2, and 18. 3 that are available for various hardware configurations.

472 Part Three: Advanced Debugging Topics

The Trapper options are available only with TD and TD286, not TD386. The
TD/TD286 and TD386 settings require a system with an 80386 or better
processor and an installed TDH386.SYS device driver.

Table 18.4. Hardware breakpoint option combinations.

Option Trapper TD/TD286 TD386

Cycle:
Read memory Yes No Yes

Write memory Yes Yes Yes

Access memory Yes Yes Yes

Input I/O Yes No Yes

Output I/O Yes No Yes

Both I/O Yes No Yes

Fetch instruction Yes Yes Yes

Address match:
Match all* No No No

Equal Yes Yes Yes

Unequal No No No

Above Yes No Yes

Below No No Yes

Less or equal No No Yes

Greater or equal Yes No Yes

Range Yes Yes Yes

Not range No No No

Data match:
Match all No Yes Yes

Equal No Yes Yes

Unequal** No No No

Above No Yes Yes

Below No Yes Yes

Less or equal No Yes Yes

Greater or equal No Yes Yes

Range No Yes Yes

Not range*• No No No

• For hardware that supports I/O breakpoints, this setting may equal Match a l l.
However, this may cause recursive entries into the debugger due to TD386's own I/O
instructions. In most cases, it's best to select Equal and specify an I/O address to
monitor in the Address value input box.

• • To simulate an Unequal data match, set two hardware breakpoints for the same
cycle, address, and data value, with a data match of Above for the one and Be low for
the other. Use a similar trick to set a Not range data match, but set the "Above"
breakpoint to the higher and the "Below" breakpoint to the lower range of values.

Chapter Eighteen: Hardware-Assisted Debugging 473

How Hardware-Assisted Debugging Works

There isn't room here to describe in detail how hardware breakpoints work on
the processor level with an 80386 or with a hardware debugger. In general,
though, an active hardware breakpoint causes one of two actions to occur when
the breakpoint's condition is satisfied:

• In the case of a Trapper or other external hardware debugger, a satisfied
breakpoint condition triggers a nonmaskable interrupt (NMI), which the
debugger's device driver intercepts. The driver then passes control to TD,
which executes the breakpoint action. The device driver ignores NMI
signals that come from another device, allowing more than one use of this
interrupt line.

• With TDH386.SYS installed on systems with 80386 or better processors, a
satisfied breakpoint condition causes the processor to generate an interrupt
type 1-the same interrupt generated for single-stepping when the trap flag
is set. TD intercepts this interrupt, determines the cause, and executes the
breakpoint action.

The results are similar in both cases. However, because the Trapper or similar
board uses the NMI approach while TDH386.SYS uses a type 1 interrupt, the effects
of hardware breakpoints under various configurations will differ in subtle ways.

For example, because Trapper uses NMI, the board can intercept a breakout
switch signal and call TD, letting you press the button to interrupt a hung
program. But when using TDH386.SYS on a system that also has a Trapper or
Periscope debugger installed, in order to use the breakout switch, you must also
load the TDNMI resident utility. That program intercepts the NMI signal from
the debugging hardware and activates TD.

Another difference between the two hardware techniques involves code
tracing. Using a Trapper board and device driver, it's possible to trace, step, and
animate code and still be able to set hardware breakpoints reliably. No matter
how you run the code, if the breakpoint condition is satisfied, it will interrupt
the program or perform another action.

TDH386.SYS and all versions of TD do not work the same way. With these
configurations, setting a hardware breakpoint and tracing, stepping, or animat
ing code will cause the breakpoint condition to be missed! This happens
because, when running in single-step mode, the processor generates a type 1
interrupt signal after every instruction, preempting the use of this interrupt for
a hardware breakpoint.

Normally, these differences are minor and won't affect your debugging
strategies. But, I have found the Trapper board to be useful for animating a
section of code in slow motion and still be able to set hardware breakpoints.
This is not possible to do with any version of TD, whether or not the
TDH386.SYS device driver is installed.

474 Part Three: Advanced Debugging Topics

Problems with Hardware-Assisted Debugging

It may be useful to keep the following problems and limitations in mind when
using hardware breakpoints:

• 80386 or better systems with TDH386.SYS installed are limited to four
hardware breakpoints using any version of TD. With a Trapper board, the
limit is one hardware breakpoint.

• According to Borland, TDH386.SYS hardware breakpoints may be set for
an address range from 1 to 16 bytes with TD and TD286. However, the
actual limit may be less depending on how the data is aligned. TD386 and
the Trapper board impose no practical limits on the range of hardware
breakpoints.

• Some computers use NMI to communicate with peripheral cards (for exam
ple, to enable a video mode) and for other purposes. On these systems, you
may have to install the TDNMI utility to resolve these conflicts.

• Instruction-fetch breakpoints may cause "false triggers" because of the way
80x86 processors load, or fetch, multiple instructions. This means that
some instructions may activate the breakpoint even if those instructions are
not executed. For example, an instruction following a conditional jump that
is not taken may still cause the breakpoint action to occur if the processor
fetches all of those instructions together.

• Because of the way the Trapper and other external hardware-debugging
boards work, there may be a small delay between the time the breakpoint
condition is satisfied and TD's appearance. This happens because a few
cycles execute between the time the device driver asserts NMI and when
TD receives that signal, a problem known as NM/ latency. For that reason,
when the breakpoint action halts the code, the actual cause of a problem
might be a few instructions away in either direction (because the latency
period may have allowed the code to repeat a loop before TD halts
execution.)

• You may see a "Device driver stuck" error when setting hardware break
points to monitor local variables allocated by C and Pascal on the stack.
This problem occurs when a breakpoint causes the device driver to be
entered recursively due to its own use of a few bytes of stack space. When
those bytes overlap the addresses of the local data, the device driver may
discover that it has interrupted itself, in which case it reports the error.
You can usually fix the problem by disabling the breakpoint temporarily
and tracing a few instructions to execute the procedure or function's
startup code, which allocates stack space for use by local variables. Also,
be aware that setting hardware breakpoints for unallocated stack data
belonging to inactive procedures and functions may cause similar
problems.

Chapter Eighteen: Hardware-Assisted Debugging 475

Debugging with Hardware Breakpoints

One of the most common uses for a hardware breakpoint is to find an instruc
tion that's overwriting some data that should not be changed at this place in the
program. In other words, you know the data is wrong, and you know where
that data is, but you don't know the location of the faulty code.

By setting a hardware breakpoint to halt the code when the data changes,
and then running the program, TD will stop at the instruction that's causing the
damage. Most of the time, you can use a Changed memory global breakpoint for
this purpose. But, often, it's best to use the methods described earlier to set
Cyc Le, Address match, and, possibly, Data match options to find all reads and
writes to a certain location or range of addresses.

However, the flip side of the hardware-debugging coin has a darker face.
When you know the place in the program, but you don't know where the bad
data is coming from, hardware assistance may be of no help. For example, after
narrowing a bug to a procedure or function that receives arguments from
various places, you still may have no idea why the caller is passing the bad data
to the subroutine. The problem could be in other code that created the
conditions affecting the caller. In such cases, hardware breakpoints won't locate
the trouble because you don't know the bad data's address, which you need in
order to set the breakpoint. In this case, try using the stack window to
investigate the subroutine's callers. This may give you a clue about where to
look for the source of the bad data.

The following sections list sample programs in C and Pascal and show how
to use TD to trap memory reads and writes-typical situations that are well
suited for hardware-assisted debugging. (You can also set hardware breakpoints
for assembly language using similar methods.) The demonstrations will help you
to understand the kinds of conditions that hardware breakpoints can detect. To
follow the step-by-step instructions, your computer must have an 80386 or
better processor, and you must install the TDH386.SYS device driver. You may
run TD, TD286, or TD386 (the memory-read test requires TD386). Or, you can
use a Trapper board and TD or TD286.

Hardware Breakpoints and C

Enter Listing 18.1 and compile with the Turbo C command tee -v harddemo.
Then, follow the step-by-step instructions after the listing to test hardware
breakpoints with C.

Listing 18.1. HARDDEMO.C.

1: #include <stdio.h>

2:
3: inti;

476 Part Three: Advanced Debugging Topics

4: int a[100J;
5:
6: mainO
7: {
8: puts("Press <Enter> to begin test ... ">;
9: i = getcharC>; /*Wait for keypress */

10:
11: puts("Test #1: Read">;
12: i = a[50J;
13:
14: puts("Test #2: Write" >;
15: a[50J = O;
16:
17: puts("Test #3: Read/Write">;
18: a[50J = a[50J;
19:
20: return O;
21: }

After compiling the program, load it into TD with the command td386
harddemo. (If you run plain TD or TD286, you won't be able to complete the
read-memory test unless you have a Trapper board installed in your computer.)
Next, follow these steps:

1. Press (Alt)-BH to open the Hardware breakpoint options dialog box.
Press (Tab) to move to Address match (leaving Cycle set to Read memory)
and then press (Cursor Down) to select Equal. Press (Tab) again and
enter a[50] for the Address va Lue. When you press (Enter), TD accepts
this breakpoint, which will halt the code for any reads from the array at
index position 50. (If you receive an error message, your system can't set
this kind of breakpoint. Press (Esc) twice to erase the message and close
the dialog window. Then, skip to step 7.)

2. Press (Alt)-VB to view this breakpoint's parameters. You should see
G Laba l_1 *in the window pane at left, and a description of the breakpoint
at right. Remember, the asterisk (*) indicates that this is a hardware
breakpoint.

3. Close the Breakpoints view window ((Alt)-(F3)) and press (F9) to run
the program. Press (Enter) to begin the test. Almost immediately, the first
breakpoint halts the code. Press (Esc) to clear the message window. If TD
displays the CPU window, press (Ctrl)-V to view the related source-code
statement. (This may or may not happen depending on the kind of system
you have, which version of TD you are running, whether you have a
Trapper board, and so on.)

Chapter Eighteen: Hardware-Assisted Debugging 477

4. The memory-read test has correctly identified the first access to a[50].
Note that only a hardware breakpoint can detect this condition-software
data breakpoints are not able to detect reads from memory.

5. Press (F9) to continue the program. A second breakpoint halts the code.
Press (Esc) and, if CPU opens, (Ctrl)-V. The cursor should be on or near
the third assignment, which again reads from a [SQ]. The second test is
skipped because it writes to the array; it doesn't read a value from it.

6. For the next test, reset the program by pressing (Alt)-FO and entering
harddemo (or selecting the program from the file list). You can use other
methods to reset, but this approach is easier when you also want to clear all
breakpoints.

7. Press (Alt)-BH to reopen the hardware dialog box. This time, press
(Cursor Down) to set Cycle to Write memory. Then, press (Tab), press
(Cursor Down) to select Equal for Address match, press (Tab) once
more, and enter a[50]. When you press (Enter), TD sets a breakpoint for
memory writes to a [50].

8. Press (F9) to run and (Enter) to start the test. When the breakpoint hits,
press (Esc) (plus (Ctrl)-V to return to the source code if CPU opens).
Notice the position of the cursor-just after (or, possibly, on) the assign
ment to a[50]. This time, the memory read from that location was
skipped.

9. Press (F9) to continue. A second breakpoint halts the code. (Press (Esc)
and, if necessary, (Ctrl)-V.) The final test reads and writes to a[50], an
action that the memory-write breakpoint easily traps.

10. Repeat from step 6, but this time, after opening the dialog box, press
(Cursor Down) twice to set Cycle to Access memory. Select the other
settings as you did before. When you press (F9) to run, you'll receive
three breakpoints, one for each assignment. As this shows, a hardware
breakpoint is the only way to detect both reads and writes from a memory
location.

11. A final test shows the difference between changed-memory and other
kinds of hardware breakpoints. Reload the program (press (Alt)-FO and
select or enter harddemo). Press (F6) to switch to the Watches window
and enter a[50]. Press (Ctrl)-C to change this array element's value to 1.
Press (F6) to switch back to the Module view.

12. Set a Changed memory global breakpoint (press (Alt)-BC) and enter a[50]
into the prompt box. Press (Alt)-VB and notice how this breakpoint's
information differs from the other hardware kind. Also, as the asterisk
proves, TD automatically detected and used the hardware's debugging
capabilities. Close the Breakpoints window ((Alt)-(F3)) and press (F9)
to run. When you press (Enter) to begin the test, you receive a break
point after the assignment of 0 to a [50]. (Press (Esc) and, if necessary,
(Ctrl)-V to return to the source-code view.) Press (F9) again, and the

478 Part Three: Advanced Debugging Topics

program ends, skipping the assignment to a[50J at line 20. Even though
this statement also writes to the array, it doesn't change the value stored
there. For that reason, the Changed memory g Loba L breakpoint does not halt
the code.

13. Press (Esc) to clear the "Terminated" message. The value of a[50J should
now be 0 in Watches. Press (F9) and Y to reset and run the code (leaving
the previous breakpoint set). This time, when you press (Enter) to start
the test, the program runs to completion. The breakpoint does not halt the
code because the two assignments to a [50J did not change the value
stored there. Press (Esc) to remove the "Terminated" message and (Alt)
X to quit TD and return to DOS.

Hardware Breakpoints and Pascal

Enter Listing 18.2 and compile with the Turbo Pascal command tpc -v hard
demo. Then, follow the step-by-step instructions in the previous section to test
using hardware breakpoints with Pascal.

Listing 18.2. HARDDEMO.PAS.

1: program hardDemo;
2:
3: var
4:
5:
6:
7:

a

8: begin
9:

integer;
array[0 •• 99) of integer;

10: write('Press <Enter> to begin test •.. ' >;
11: readln; {Wait for keypress}
12:
13: writeln('Test #1: Read' >;
14: i := a[50J;
15:
16: writeln('Test #2: Write' >;
17: a[50J := O;
18:
19: writeln('Test #3: Read/Write' >;
20: a[50J := a[50J;
21:
22: end.

Chapter Eighteen: Hardware-Assisted Debugging 479

Using 110 Breakpoints

The steps to set 1/0 breakpoints are the same as for other kinds of hardware
assisted traps. For example, to locate an input instruction for a certain port
address, set Cyc Le to Input I/O, change Address match to Equa L, and enter the
port address into the Address value input box. If you want to watch for a
specific data value from that port, also change Oat a match to Equa L and enter
the value into the Data va Lue input box.

Set other 1/0 breakpoint combinations using similar commands. To find
both input and output instructions, select Both I/O for the Cycle. In that case,
you'll probably also want to select a range of port address values to monitor (for
example, Ox03F8,8 in C's format to trap 1/0 for ports from 03F8 to 03FF hex).

Note: Although TD accepts an Address match setting of Match all for 1/0
breakpoints, this may cause problems with TD386, and for that reason, isn't
recommended. When monitoring 1/0, it's usually best to specify one or more port
addresses.

Using Instruction-Fetch Breakpoints

After installing the TDH386.SYS device driver or a Trapper board, you can set
instruction-fetch breakpoints to halt code or perform other actions when the
processor loads instructions at specified addresses for execution.

To use a Trapper board's instruction-fetch breakpoints, you'll need to
purchase an optional "umbilical cable" that plugs into an 8087 or 80287 math
coprocessor socket. (You may use the cable with or without a math chip also
installed.) The cable allows the Trapper to monitor the computer's bus for
instruction fetches. If you don't need to set these kinds of breakpoints, you
don't need the cable.

Instruction-fetch breakpoints are typically used to set code breakpoints in
ROM subroutines. Because TD swaps int 3 (OCCh) machine codes with program
bytes to implement code breakpoints, the Breakpoints: Togg Le command
((F2)) won't work for instructions that are permanently chiseled into a ROM's
stone-cold circuits.

For example, suppose you want to halt a program when it calls a certain
ROM BIOS routine. (You can use Listing 18.1 or 18.2 to try this.) After loading
the program into the virtual-mode debugger with TD386, press (Alt)-BH to
open the Hardware breakpoint options dialog box. Set Cycle to Fetch
instruction and change Address match to Greater or equal. Then, enter the
address OxFOOO:OOOO (or $FOOO:OOOO for Pascal). Press (Enter) or click Ok
to set the breakpoint. When you run the code by pressing (F9), TD will halt
execution of any ROM code at or above that address.

480 Part Three: Advanced Debugging Topics

Note: When running TD or TD286, you must set Address match to Equal or
Range, which is limited to 16 bytes. For this reason, with these versions of the
debugger, you must know the exact ROM address within 16 bytes to set
instruction-fetch breakpoints.

Another less common use for an instruction-fetch breakpoint is to trap data
that another statement accidentally calls as "code." Finding this kind of bug is
difficult because it usually crashes the system. As always, the first step is to
narrow the problem to a small section of code. Then, set an instruction-fetch
breakpoint to monitor selected areas of data. This requires an accurate address
map of the program's segments, and you'll probably have to repeat the test
several times before locating the data that's executing as "code."

When you successfully trap the bad call to the program's data, the CPU view
will open. At that time, you can examine the stack pane in the lower right
corner to determine where the call came from. Or, use the Stack view to
inspect a C or Pascal program's currently active procedures and functions. This
should tell you the location that called the data.

Debugging Embedded Systems

An embedded system is a broad term that usually refers to a highly specialized
computer incorporated (embedded) in some sort of device-for example, a
performance panel in an automobile, an audio mixing board, or a laser printer.

In most cases, the embedded system's software is stored in ROM on board
the device. That software has to be debugged, perhaps by running simulations
on a PC before committing the code to its final form. But the real test comes
after burning the code into ROM, when, of course, the really tricky bugs often
decide to announce their presence. Unfortunately, the stock TD can only debug
code running on a PC. It can't help you to debug software after it's embedded
inside custom hardware.

An interesting product, Paradigm Locate, from Paradigm Systems (see
Bibliography) offers a unique solution to this problem. Without going into
every detail here-some of which are highly advanced-Locate lets system
designers embed the functional equivalent of the TDREMOTE utility inside the
custom hardware. By then running TD in remote mode (see chapter 17), the
debugger is fooled into thinking that it's communicating with a remote PC,
when in fact, it's actually talking to an embedded system that has been modified
to include the few resources of a PC that TD requires.

The main advantage with this setup is cost-it should be less expensive to
simulate a remote PC for debugging embedded systems than it would be to
purchase an in-circuit emulator or to create other hardware for debugging

Chapter Eighteen: Hardware-Assisted Debugging 481

purposes. The only disadvantage, which is minor, is that the device must
include a serial I/O port that's compatible with a PC's baud rates. For most
designs, the tradeoff of being able to use TD to debug a custom device's
software will more than offset the costs of including an extra I/O port.

Note: I'm not a hardware engineer, so I'll leave the description of Paradigm's
Locate package with that brief description. For more information, contact Para
digm Systems.

Installing a Panic Reset Button

Another product that deserves mention here is the lrata Reset switch sold by
Irata Systems, Inc. (see Bibliography). Some newer computers come with reset
switches on the front panel, but most older PCs and XTs lack a similar "panic
button."

A reset switch has nothing to do with TD, of course, but if you are as
frustrated as I was at having to flip the big red power switch after repeated
program crashes, you may want to consider installing an Jrata button. With the
switch mounted (either on the back panel or through a hole that you can drill in
the front of the case), you can press the button to reboot. It's a real time saver,
and it helps reduce wear and tear on the power switch, which, if it breaks, may
require replacing the system's more expensive power supply.

Warning: If you're the slightest bit nervous about working around power supplies
inside your computer, get help or don't install this switch. The product comes with
only minimal instructions, so you'll need to know your way around your PC's
circuits, or you could damage your computer.

Writing a Debugging Device Driver

It's unlikely that you'll need to write your own hardware device driver, but if
you want to try your hand at this difficult task, you'll find the specifications in a
file named MANUAL.DOC on a TD master diskette. The text in this file also
makes interesting reading for those who want to know more about how the
TDH386.SYS device driver implements hardware-assisted debugging for 80386
and later-model processors.

In the past, Borland has hinted that a future TD release would expand the
debugger's use of a TDHDEBUG device driver-the name of the installed driver

482

Summary

Part Three: Advanced Debugging Topics

in RAM. At present, however, TD can access driver subroutines only to set
breakpoints as described in this chapter. It still can't perform two of the
promised expansions:

• Support for a real-time trace-back buffer.

• Access to a hardware debugger's RAM, probably for storing large symbol
tables.

Perhaps a future version of TD will enable these options, which would
make a marriage between Turbo Debugger and a Periscope or other hardware
debugging board, if not made in heaven, at least more likely to succeed.

Two kinds of hardware-assisted debugging let TD set sophisticated breakpoints
for memory read, write, I/O, and instruction-fetch operations. Internal hard
ware on board 80386, 80386SX, and 80486 processors add in-circuit emulator
capabilities to TD. External hardware debuggers such as the Trapper and Peri
scope peripheral boards are also useful for adding similar features to PCs, XTs,
andATs.

Every 80x86 processor has at least some form of hardware-assisted debug
ging, for example, a trap flag that throws the computer into single-step mode.
But only an 80386 or later processor has special debugging registers that TD
can access via the TDH386.SYS device driver to set complex data breakpoints
with the Hardware breakpoint options dialog box.

With all of these setups, there are several ways to set hardware breakpoints.
If possible, TD will automatically use the hardware to assist a Changed memory

g Loba L breakpoint, which can locate changes to existing values in memory. Or,
for more control, you can use the Hardware breakpoint command in the
Breakpoints menu to select Cyc Le, Address match, and Data va Lue options.

Other kinds of hardware-assisted debugging are available to trap I/O
instructions and to monitor the processor's instruction fetches, useful for set
ting breakpoints in ROM code. Related hardware-assistance topics in this chap
ter include the ability to use TD for embedded systems debugging, and the
installation of a panic reset button.

Debugging
Resident Programs

Chapter 19

L THE PAST, a hardware debugging board was a practical necessity for
trapping bugs in resident code. Because a hardware debugger hides in the
board's protected RAM, this setup lets you place breakpoints inside resident
subroutines to halt execution, for example, when the device driver receives a
call from DOS or when a Terminate-and-Stay-Resident program (TSR) pops up
on screen.

Starting with version 2 .0, TD can now run as a kind of super TSR, simulat
ing the way a hardware debugger stays out of DOS's way. With TD hiding in the
background, the debugger is ready to halt resident code at breakpoints and to
monitor other conditions for device drivers and TSRs. You can also load and
relocate a program's symbol table to debug TSRs and device drivers that were
loaded into memory before starting TD.

This chapter explains how to use these new TD commands to debug TSRs
and device drivers written in assembly language. (You can use the same tech
niques to debug resident C and Pascal programs, too.) The chapter lists a few
typical bugs that infest resident code, and it also covers related topics of debug
ging interrupt service routines (not always possible with TD) and "exec-ed" child
processes.

TSRs-A Quick Review

DOS has always had the capability to load TSRs, which, unlike common .EXE
and .COM programs, sit in memory awaiting an activation signal such as a
special keypress or another external event. When that happens, the TSR typ
ically pops up in a text window and performs its duties. Then, usually after you
give the TSR another command, the program restores the display and other
conditions to their original states to allow the interrupted process to continue.

483

I
I

484 Part Three: Advanced Debugging Topics

In this way, TSRs give DOS a limited measure of multitasking-or, at least, the
capability to share resources with more than one program simultaneously
loaded into memory.

There are two varieties of DOS TSRs: active and passive. An active TSR mon
itors an external device (usually the keyboard) and watches for a specific command
to float by. Most often, that command is a combination of keypresses such as
(Alt)-(Shift) or (Ctrl)-(Shift) that the TSR recognizes as an activation signal.

After receiving the activation signal, most active-type TSRs do not begin
running immediately. Instead, they set a flag in memory that causes the TSR to
activate itself later, often at the next timer-tick interrupt. Because the TSR may
be activated at any time-and, therefore, it may have interrupted a DOS or BIOS
subroutine-a well-written TSR should delay its activation to allow other pro
cesses to finish. This is especially true of interrupted DOS functions, many of
which are not reentrant (able to be interrupted and restarted). Failing to allow
for this condition is probably the number one cause of TSR bugs.

A passive-type TSR is not as finicky. Unlike the more complex active type,
passive resident code does not monitor external events. Instead, a passive TSR
sleeps until another program sends it a wake-up signal. Because the other
program controls when that occurs, conflicts with uninterruptible DOS and
BIOS routines are unlikely. The passive TSR operates much like a subroutine
library except that it remains in RAM instead of being linked to every program
that needs the TSR's routines.

Despite these operational differences, active and passive TSRs have nearly
identical forms and are loaded into RAM using similar techniques. Both TSR
varieties are composed of two sections: the transient portion and the resident
portion. Successful TSR debugging requires a good understanding of how these
two sections cooperate to load a TSR into memory:

• The TSR's transient portion contains instructions that install the TSR's resi
dent portion in RAM. To do that, the transient code calls DOS function 3 lh,
which raises the address where DOS normally loads new programs. Some
TSRs issue the alternate int 27h instruction instead of calling function 31 h.
Either way, DOS protects the resident code from being overwritten by
another program, allowing the TSR to remain in memory while awaiting its
wake-up call. Active-type TSRs also usually change an interrupt vector or
perform another action that will allow the resident portion to recognize the
activation signal. Passive TSRs don't need to perform this step.

• The TSR's resident portion contains code, data, and sometimes a private stack
that remains in memory after the transient portion ends. In most cases, an
active-type TSR's resident code is written as an interrupt service routine (ISR)
that intercepts keypresses or other external events that will activate the TSR.
Passive TSRs can also be ISRs, but they are usually not tied to a hardware
interrupt signal. Instead, a program calls a passive TSR with a software int
instruction, similar to the way DOS functions are called with int 21.

Chapter Nineteen: Debugging Resident Programs 485

Debugging TSRs

Because TSRs load themselves into memory, past TD versions could not exam
ine a TSR's code and data symbolically. It was possible to debug the TSR's
transient loader with TD, but not the resident portion-except, that is, in the
CPU view's machine-code disassembly.

TD 2.0 changes that with features that emulate a hardware debugger's
capability to run in the background. By using TD's new Resident command,
you can load a TSR, return to normal DOS operation, give the TSR's activation
signal, and then investigate variables, examine source code, set breakpoints,
and evaluate other conditions in resident code and data.

Figure 19.1 illustrates how TD shares memory with a TSR. If you're using
TD386, the debugger and TSR each runs in a separate virtual 8086 address
space, duplicating the conditions that exist when loading the resident program
directly from DOS. TD286 can also free system RAM by loading the debugger
into extended RAM. You can use any of these TD versions to debug TSRs.

Low Memory

Turbo Debugger

TSR Resident Portion

TSR Transient Portion

Available RAM

Extended RAM Turbo Debugger - - - - -
High Memory

_I

} DOS, other TSRs, etc.

TD.EXE } Temporary

ffi Resident
Portion

B

Virtual-mode debugging
with TD386 supervisor,
or with TD286.

Figure 19.1. TD shares RAM with a TSR being debugged.

When you load the TSR's code into TD and press (F9) to run, the transient
portion (labeled Bin the figure) installs the TSR's resident part (A) in RAM just as
it does when you run the program from the DOS command line. You can debug
the transient code as you do any other program, set breakpoints on source-code
statements, watch and inspect variables, and perform other debugging tasks.
However, before you can debug the transient portion, you'll need to perform a
few extra steps.

Hint: When debugging TSRs, iron out any wrinkles in the transient loader before
hammering the lumps in the resident portion. It's probably not wise to debug both
parts simultaneously.

486 Part Tbree: Advanced Debugging Topics

After the loader finishes, press (Esc) to clear the message "Resident, Exit
code O." If you receive any other message, the TSR has not been installed, and
you'll have to investigate why that happened by debugging the transient loader.
Only after receiving the "Resident" message can you proceed to debug the
resident code and data.

Next, set breakpoints for resident statements to halt the TSR or perform
other actions at strategic locations. Then use the Fi le: Resident ((Alt)-FR)
command to make TD resident in RAM. Looking again at Figure 19.1, you can
see that this new Temporary Resident Portion consists of the debugger plus the
TSR's own resident code and data.

At this point, you should see the DOS command line. Depending on how
much memory your system has and whether you are using TD, TD286, or
TD386, you can give DOS commands, run programs, and perform other tasks
as you normally do. TD remains in memory along with the TSR, which you can
activate by pressing the appropriate keys or by running another program to
issue the interrupt signal that calls one of the TSR's subroutines. When the TSR
hits a breakpoint, TD pops into view. After you're done examining variables,
single-stepping statements, and using other TD commands, continue the pro
gram by pressing (F9).

When you're finished debugging, to unload the resident debugger, run the
TSR up to a breakpoint-or, from the DOS command line, press
(Ctrl)-(Break) twice. When you then press (Alt)-X to quit, TD unloads itself
and the TSR's resident portion, returning the system to the conditions that
existed before the debugging session began.

But if the TSR changes any hardware settings, or if it alters interrupt vectors
above 2F hex, TD may not be able to restore every last detail to original form.
For this reason, in some Circumstances, you may still have to reboot or perform
other actions after quitting TD.

Note: TD can remove itself and an installed TSR from RAM whether or not the TSR
has an "unload" command.

A Sample TSR Program

A hands-on demonstration of a TSR debugging session will help you to under
stand how to use TD's Fi le:Resident command to debug resident code. In this
section, you'll assemble, load, and debug a sample TSR using the methods
outlined previously. To save space, the TSR is a mere shell. Even so, it contains
many of the parts and pieces found in complete applications. Note: You can use
most of the same steps in this section when debugging TSRs written in Pascal
andC.

Chapter Nineteen: Debugging Resident Programs 487

To assemble the sample TSR, enter Listings 19.1, 19.2, and 19.3. Make sure
that Turbo Assembler's directory is in the current path. Then, type these
commands:

tasm /zi common
tasm /zi /m loadtsr
tlink /v loadtsr common
tasm /zi call64
tlink /v call64

Note: Don't run any of the sample TSR programs just yet. They are designed to
work together, and they may fail if executed out of order. Turn to "Debugging the
Sample TSR" after the listings for instructions about loading the assembled pro
grams into TD.

Listing 19.1. COMMON.ASM.

1: i**
2: ; **
3: i**
4: ; **
5: i**
6: ; **
7: i**

Purpose: Common routines for ASM programs.
Author: (c) 1990 by Tom Swan.

To compile:
tasm /zi common

8:
9: COMMON code

10:
11 :
12:

SEGMENT para public 'CODE'
ASSUME cs:COMMON_code, ds:nothing, es:nothing
PUBLIC HexDigit, IntToHex

13: ;--
14: ; HexDigit Convert 4-bit value to ASCII hex digit
15: ;--
16: Input:
17: dl =value limited to range 0 •. 15
18: Output:
19: dl = ASCII hex digit equivalent
20: Registers:
21: dl
22: ;--
23: HexDigit
24:
25:
26:
27:

cmp
jb
add

PROC

d LI 10
HD 10

near

d LI I A I -10

Is dl < 10 (i.e. hex 'A')?
If yes, jump
Else convert to A ... F

488 Part Three: Advanced Debugging Topics

28:
29:
30:
31:
32:
33:
34:

HD 10:

HexDigit

ret

or
ret

d l, '0'

ENDP

Return to caller

Convert digits 0 to 9
Return to caller

35: ;--
36: ; IntToHex Convert unsigned integer to ASCII hex string

37: ;--
38: Input:
39: ax = 16-bit value to convert
40: ex = minimum number of digits to output
41: es:di =address of string large enough to hold result
42: Output:
43: es:di = address of byte after last inserted character
44: Registers:
45: ax, bx, ex, dx, si, di
46: ;--
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:

IntToHex

ITH 10:

ITH 20:

ITH 30:

ITH 40:

mov.
xor
jcxz

xor
div
call
push
inc
loop

inc
or
j nz
mov
jcxz
cld

pop
stosb
loop

ret

PROC

bx, 16
s i, si
ITH 20

dx, dx
bx
Hex Di git
dx
si
ITH 10

ex
ax, ax
ITH 10
ex, si
ITH 40

ax

ITH 30

near

Radix = 16 Chex>
Set digit-count to zero
If cx=O, jump to set cx=1

Extend ax to 32-bit dxax
ax<-axdx div bx; dx<-remainder
Convert dl to ASCII digit
Save digit on stack
Count digits on stack
Loop on minimum digit count

Set ex = 1 in case not done
Is ax = 0? Call digits done>
If ax<>O, continue conversion
Set ex to stack char count
Skip next loop if cx=OOOO
Auto-increment di for stosb

Pop next digit into al
Store digit in str; advance di
Loop for ex digits

Return to caller

Chapter Nineteen: Debugging Resident Programs

73: IntToHex ENDP
74:
75: COMMON code
76:

ENDS
END

End of procedure

End of COMMON code segment
End of COMMON module

Listing 19.2. LOADTSR.ASM.

1: i**
2: i**
3: ; **
4: ; **
5: i**
6: ; **
7: ; **
8: ; **
9:

;-----

TSRint

Purpose: Sample TSR for Mastering Turbo Debugger
Author: Cc) 1990 by Tom Swan.

To compile:
tasm /zi /m loadtsr
tlink /v loadtsr common

Equates

equ 64h TSR's interrupt number

10:
11 :
12:
13:
14:
15:
16:
17:

STACK SIZE equ 100h TSR's stack size
CR equ 13 ASCII carriage return
LF equ 10 ASCII line feed
STDOUT equ Standard output handle

18: ;--
19: ---- Resident Portion ----
20: ;--
21 :
22: TSR_group GROUP TSR_code, TSR_data, TSR stack
23:
24: ;----- The TSR's code segment
25:
26: TSR code
27:
28:

SEGMENT byte public 'TSRCODE'
ASSUME cs:TSR_group, ds:TSR_group

29: ;----- The TSR's Interrupt Service Routine
30:
31: TSR isr PROC far
32:
33: ;----- Switch to the TSR's private stack
34:
35:
36:
37:
38:

sti
push
push
pop

ds
cs
ds

Allow interrupt servicing
Save ds on current stack
Address TSR group with
ds <same as cs)

489 I
I

490 Part Three: Advanced Debugging Topics

39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51 :
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:

;-----

;-----

mov
mov
mov
mov

push
push
push
push

Display

mov
mov
mov
mov
int

Restore

pop
pop
pop
pop

Old_sp, sp Save sp and ss in the
Old_ss, SS TSR's data segment
SS, TSR SS ~ Load new stack segment and ,
sp, TSR_sp offset values into ss:sp

ax Save other registers
bx used by this TSR
ex on the TSR's stack
dx

message (note the TSR_group override!)

bx, STDOUT ; Load DOS handle into bx
ex, MESSAGE LEN ; Load string length into ex
dx, offset TSR_group:Message ; Address message
ah, 40h Call DOS function 40h
21 h to display string

registers saved on TSR's private stack

dx
ex
bx
ax

65: ;----- Reset to original stack and restore ds, dx
66:
67: mov
68: mov
69: pop
70: iret
71:
72: TSR isr
73: TSR code
74:

ss, TSR_group:Old_ss ; Restore saved stack
sp, TSR_group:Old_sp ; registers to ss:sp
ds Restore ds from old stack

; Return from interrupt

ENDP
ENDS

75: ;----- The TSR's data segment
76:
77:
78:
79:
80:
81:
82:
83:

TSR data

psp
DOSversion
Oldss
Old_sp
TSR SS

SEGMENT word

dw 0
dw 0
dw 0
dw 0
dw seg

public 'TSRDATA'

TSR's psp segment address
Major and minor version number
Storage for old stack seg (ss)
Storage for old stack ofs (sp)

TSR stack TSR's stack seg <ss)

Chapter Nineteen: Debugging Resident Programs 491

84:
85:
86:
87:
88:
89:
90:
91:
92:

TSR_sp dw STACK SIZE ; Initial stack ofs (sp)
Message db CR, LF, 'TSR Activated: code-'
MsgCode db '0000:0000 data-'
MsgData db '0000:0000 stack-'
MsgStack db '0000:0000' I CR, LF
MESSAGE LEN = $ - Message

TSR data ENDS

93:
94: ;-----The TSR's stack segment
95:
96: TSR stack
97: private_stack
98: TSR stack
99:

SEGMENT word stack 'STACK'
db STACK SIZE dup(?)
ENDS

100: ;--
101: ----Transient Portion----
102: ;--
103:
104:
105:
106:
107:
108:
109:

;-----

LOADER

The TSR

code

loader's

SEGMENT
ASSUME
EXTRN

code segment

para public 'CODE'
cs:LOADER_code, ds:TSR _data, ss:TSR stack
IntToHex:proc

110:
111 :

;----The TSR loader's main procedure

112:
113:
114:
115:
116:
117:
118:
119:
120:
121 :
122:
123:
124:

Load TSR

mov
mov
call
jnc
mov
jmp

LTSR 10:
mov
push
push

PROC far

ax, seg TSR_data ; Initialize ds to address
ds, ax
CheckVersion
L TSR 10
al I 1
ErrorExit

psp, es
es
ds

the TSR's data segment
Abort if DOS version= 1.x
Jump if cf = 0 (no error)
Select error message #1
End program if DOS 1.x

Save psp segment for TSR
Save PSP address on stack
Save TSR data segment

125: ;----- Install interrupt service routine
126:
127:
128:

mov
mov

al, TSRint
ah, 35h

Get current vector for
the TSR's interrupt number

I
I

492 Part Three: Advanced Debugging Topics

129: int
130: mov
131: or
132: jz
133: pop
134: pop
135: mov
136: jmp
137: LTSR 20:
138:
139:
140:

mov
mov

21h
bx, es
bx, bx
LTSR 20
ds
es
al, 2
ErrorExit

using DOS function 35h.
Copy segment address to bx
and test if bx = 0.

Jump if vector is not used
Restore TSR data seg to ds
Restore PSP address to es
Set error code number
And exit with error message

ax, seg TSR_code ; Set ds to TSR's code
ds, ax segment.

141 :
142:

ASSUME ds:TSR code

143:
144:
145:
146:
147:
148:
149:
150:

mov
mov
mov
int
pop

dx, offset TSR isr ; Set dx to TSR's int service
al, TSRint routine, and set the
ah, 25h interrupt vector for TSRint
21h with DOS function 25h.
ds Restore TSR data segment

ASSUME ds:TSR data

151: ;-----Insert TSR addresses into the message string
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:

push
pop
mov
push
mov
mov
call

pop
push
mov
mov
call

pop
mov
mov
call

ds
es
ax, seg TSR_group
ax
bx, offset TSR isr
di, offset MsgCode
Insert Address

ax
ax
bx, size TSR code
di, offset MsgData
InsertAddress

ax

Set es = ds for addressing
strings with es:di

ax <- TSR group segment
Save ax for later
bx <- TSR code offset
Address code addr in string
Insert ax:bx into string

Restore ax from stack
and save ax again

bx <- TSR data offset
Address data addr in string
Insert ax:bx into string

Restore ax from stack
bx, size TSR code + size TSR data ; bx=stack ofs
di, offset MsgStack; Address stack addr instr
InsertAddress ; Insert ax:bx into string

172: ;----- Terminate and stay resident

Chapter Nineteen: Debugging Resident Programs

173:
174:
175:
176:

mov
mov

ax, seg LOADER data
ds, ax

177:
178:

ASSUME ds:LOADER data

179: mov
180: mov
181: int
182: pop
183: mov
184: sub
185: mov
186: int
187:
188: Load TSR
189:

dx, offset doneMsg
ah, 09h
21h
ax
dx, cs
dx, ax
ax, 3100h
21 h

ENDP

493

Initialize ds to Loader's
data segment

Display "TSR Loaded" message
by calling DOS print
string function.

Restore PSP seg addr to ax
dx <- Transient start addr
dx <- Resident size
DOS terminate function
Terminate, stay resident
al = 0 (return code)

190:
191:
192:
193:

·--

194:
195:
196:
197:
198:
199:
200:
201:
202:
203:
204:
205:
206:
207:
208:
209:
210:
211:
212:
213:
214:
215:
216:

' ; ErrorExit Exit with error message and code in al
·--' Input:

al= error code 1 .. n
ds = address of TSR's data segment
es= psp segment address (DOS 1.x only)

Output:
none. program halted.

Registers:
none preserved

;--
ErrorExit

ASSUME

push
push
mov
mov

ASSUME

mov
mov
int
pop

PROC near

ds:TSR data

DOSversion
ax
ax, seg LOADER data
ds, ax

ds:LOADER data

dx, offset errorMsg
ah, 09h
21h
ax

Save DOS version on stack
Save error code on stack
Initialize ds to Loader's
data segment

Address "ERROR: " string
DOS print-string function
Display error Lead-in
Restore error code to al

494 Part Tbree: Advanced Debugging Topics

217:
218:
219:
220:
221:
222:
223:
224:
225:
226:
227:
228:
229:

test2:

default:

push
cmp
jne
mov
jmp

cmp
jne
mov
jmp

mov

ax
al,
test2
dx, off set
Exit

al, 2
defau Lt
dx, offset
Exit

dx, offset

Save code again
Does error code = 1?
If not, check next code

errmsg1 Address error message 1
Display message and exit

Error code 2

errmsg2

defaultmsg ; Default error code

230: ;----- Display message and exit. Error code sti LL in al.
231:
232: Exit:
233:
234:
235:
236:
237:
238:
239:

mov
int
pop
pop
cmp
jb

ah, 09h
21h
ax
bx
bl, 2
ExitDOS1x

DOS print-string function
Display error message
Restore error code to al
Restore DOS version to bx
Is it ver. 2.x or higher?
Jump for versions 1.x

240: ;----- End program for DOS 2.x and higher
241:
242:
243:
244:

mov
int

ah, 4ch
21 h

DOS terminate with code
End with error code in al

245: ;-----End program for DOS 1.x
246:
247:
248:
249:
250:
251:
252:
253:
25t.:

ExitDOS1x:
push
xor
push
retf

ErrorExit

es
ax,ax
ax

ENDP

Push es onto stack
Set ax to 0000
Push 0000 (stack=es:OOOO>
Far return exits program

255: ;--
256: ; CheckVersion Test DOS version
257: ;--
258: Input:
259: ds = address of TSR's data segment
260: Output:

Chapter Nineteen: Debugging Resident Programs 495

261:
262:
263:
264:
265:
266:

TSR data:DOSversion = version number
ax = version number
cf = 0 = DOS version 2.x or higher
cf = 1 = DOS version 1. x

Registers:
ax

267: ;--
268: CheckVersion
269:

PROC near

270:
271:
272:
273:
274:
275:
276:
277:
278:
279:

ASSUME ds:TSR data

mov ah, 30h
int 21h
mov word pt r DOSversion,
cmp a L, 02h
ret

CheckVersion ENDP

; DOS
; Get

ax ;
Test
cf
cf

get-version function
DOS version
Save in TSR data seg
major revision number

= 0 if a L >= 2
= 1 if al < 2

280: ;--
281: ; InsertAddress Insert seg:offset address into a string
282:
283:
284:
285:
286:
287:
288:
289:
290:
291:
292:
293:
294:
295:
296:
297:
298:
299:
300:
301:
302:
303:
304:

;--
Input:

ax = segment address
bx = offset address
es:di = address of 9-character string (minimum size)

Output:
ax:bx inserted in hex into string at di
es:di = address of byte after Last inserted character

Registers:
ax, bx, ex, dx, si, di

·--,
InsertAddress PROC near

push bx Save offset value on stack
ca LL IA 10 Insert segment into string
inc di Skip colon (:)
pop ax Restore offset to ax

IA 10:
mov ex, 4 Specify minimum of 4 digits
ca LL IntToHex Convert ax to hex at es:di
ret Return to caller

InsertAddress ENDP

I

496 Part Tbree: Advanced Debugging Topics

305: LOADER code ENDS
306:
307: ;----- TSR loader's data segment
308:
309: LOADER data SEGMENT word public 'DATA'
310:

doneMsg db CR,LF,'TSR Loaded',CR,LF,'$'
errorMsg db CR,LF,'ERROR: I '$' I

311 :
312:
313:
314:
315:
316:
317:
318:

errmsg1 db 'Requires DOS 2.0 or later' ,CR,LF, '$'
errmsg2 db 'Interrupt vector in use',CR,LF,'$'
defau l tmsg db 'Unknown cause',CR,LF,'$'

LOADER data ENDS
END Load TSR

Listing 19.3. CALL64 .ASM.

1 : i**
2: i** Purpose: Demonstrate how to activate LOADTSR
3: i** Author: (c) 1990 by Tom Swan.
4: i**
5: ;** To compile:
6: i** tasm /zi cal l64
7: i** tl ink /v cal l64
8: i**
9: DOSSEG

10: .MODEL small
11 : .STACK 256
12:
13: ;----- Equates
14:
15: TSRint equ 64h TSR's interrupt number
16:
17: .CODE
18: Start:
19: mov ax, @data Initialize OS to address
20: mov ds, ax of data segment
21: int TSRint Activate resident code
22: Exit:
23: mov ax, 04C00h DOS function: Exit program
24: int 21h Terminate with al=exit code
25:
26: END Start End of program I entry point

Chapter Nineteen: Debugging Resident Programs 497

Debugging the Sample TSR
Before running the sample TSR, check that you have at least these five files in
the current directory: COMMON.ASM, LOADTSR.ASM, LOADTSR.EXE,
CALL64.ASM, and CALL64.EXE. Then, start TD with the command td loadtsr.
In a moment, you should see the TSR's source code in the main Madu Le window.

Notice that the cursor is positioned on the TSR's entry point, in this case, at
the instruction under label Load_TSR. This duplicates the conditions that exist
just before the TSR transient portion begins running when you execute the
program from DOS. If you now press (F9) to run, the transient loader will
install the TSR's resident code and data in memory.

Go ahead and do that-press (F9) to install the TSR. You should receive
the message "Resident, exit code O." (If you receive another message or exit
code, skip ahead to "Resetting the Interrupt Vector," then try again.) Press
(Enter) or (Esc) to clear the message window.

As explained earlier, the transient code's main job is to install the TSR's
resident portion. LOADTSR accomplishes this at lines 143-146 in Listing 19.2 by
calling DOS function 25h, which changes interrupt 64h's vector (represented
by constant TSRint) to address the TSR's interrupt service routine, TSR_i sr
(lines 31-72). The instructions at lines 183-186 assign the resident portion's size
in paragraphs to DX before calling DOS function 3 lh to terminate and make
that much of the program resident in RAM. The other instructions in the
program insert the TSR's code, data, and stack addresses into a string (lines 85-
88) displayed when the resident code runs.

Setting TSR Breakpoints

If you are following along with TD, the TSR is now installed in memory, and the
debugger is idle. The next step is to set a few breakpoints inside the resident
code so that, when you activate the TSR, TD can regain control to let you
examine variables and to perform other debugging rites and rituals. Use (Page
Up) and the cursor movement keys (or a mouse) to position the cursor at the
entry to procedure TS R _ i s r, the st i instruction (line 3 5 in Listing 19. 2.) Press
(F2) to set a breakpoint at that line. Then, press (Alt)-FR (Fi Le:Resident),
which pushes TD into the background and returns the DOS prompt.

After using the Resident command, you should see the message "TSR
Loaded." You can now give DOS commands (for example, type dir for a
directory) and run other programs. But, despite appearances, TD and LOAD
TSR are still in memory, waiting for an activation signal.

In this case, you can give that signal by running the CALL64 program
(Listing 19.3), which includes an int 64h instruction, the interrupt number that
activates LOADTSR's resident code. As soon as you type call64 and press
(Enter), you again see TD's screen with the cursor positioned at the break
point you set earlier.

498 Part Three: Advanced Debugging Topics

If you press (F9) now, the resident code finishes, and the DOS prompt
reappears. Notice that when you do this, the TSR displays a message that lists
the addresses of the resident code, data, and stack segments. These addresses
may be helpful for debugging various TSR parts and pieces, and you might want
to include similar code in your own programs.

To get back to TD, press (Ctrl)-(Break) twice. (If this opens the CPU
window, close it by pressing (Alt)-(F3).) Then, to quit the debugger and
return to DOS, press (Alt)-X.

When you quit TD after having installed a TSR, the debugger unloads the
TSR's resident portion, resets interrupt vectors from 00 to 2Fh, unloads itself
from RAM, and exits. This restores most conditions to their original states that
existed before you began this debugging session. You can then edit the TSR,
recompile, and continue debugging.

Resetting the Interrupt Vector

Resident programs are likely to do just about anything, including actions that TD
can't reset automatically. If you are following along on your computer, you just
installed a TSR, ran the code to a breakpoint, and exited to DOS. If you now type
td loadtsr to start another debugging session, and press (F9) to run, instead of
"Resident, exit code O," TD displays the message "Terminated, exit code 2." This
indicates that something is preventing the TSR's transient code from installing the
resident portion. Let's use the debugger to find out what's wrong.

First, press (Esc) to clear the termination message and then press
(Ctrl)-(F2) to reset the program to its startup conditions. Because termination
error codes are passed back to DOS in register AL, we need to set a breakpoint
on that condition to track down the conditions under which this error occurs.

Press (Alt)-BE and enter al eq 2 to set a breakpoint to halt the program
when register AL equals 2, the value of the reported error. Then, press (Alt)
VR to use View: Registers (or open the CPU window) and change register AX to
0000 (just type 0 and press (Enter)). This will prevent a false breakpoint from
occurring in case AL already equals 2 from a previous operation.

You can now press (F9) to run the program, which should halt at about
line 136. Press (Esc) and (F6) once or twice to bring the Module view forward.
The instruction just before the breakpoint's location is mov al, 2; therefore, it's a
program instruction that's causing the error, not another kind of bug. Examin
ing a few lines above this location reveals that error code 2 is set when interrupt
64h's vector is in use. Because TD resets only vectors 0 through 2Fh, even after
unloading the TSR and the debugger, interrupt 64h's vector remains in place.
So, the transient loader refuses to run the second time.

Now that we know why that happens, the fix is easy-write a short utility
(see Listing 19.4, RESET64.ASM) to reset the interrupt vector and run that
program between debugging sessions. Assemble the program with the
commands:

Chapter Nineteen: Debugging Resident Programs

tasm /zi reset64
tl ink /v reset64

1: i**
2:
3:
4:
5:
6:
7:
8:
9:

10:

i**
i**
i**
"** ,
i**
i**
i**
i**
i**

11: i**

Listing 19.4. RESET64.TSR.

Purpose: Reset interrupt vector 64h to 0000:0000
Author: (c) 1990 by Tom Swan.

Note: Run this program before debugging LOADTSR.EXE.
Do NOT run while LOADTSR is resident.

To compile:
tasm /zi reset64
tlink /v reset64

12: DOSSEG
13:
14:
15:
16:
17:
18: TSRint
19: CR
20: LF
21: STDOUT
22:

.MODEL

.STACK

Equates

23: .DATA

small
256

equ
equ
equ
equ

64h
13
10
1

TSR's interrupt number
ASCII carriage return
ASCII line feed
Standard output handle

499

24: Message db CR,LF,'Interrupt vector 64h reset',CR,LF,'$'
25:
26: .CODE
27: Start:
28:
29:
30:
31:
32:
33:

xor
mov
mov
mov
int

dx, dx
ds, dx
al, TSRint
ah, 25h
21 h

dx <- 0000
ds <- 0000
Reset TSR's interrupt
vector by calling
DOS function 25h.

34: ;-----Display confirmation message
35:
36:
37:
38:
39:
40:

mov
mov
mov
mov
int

ax, @data
ds, ax
dx, offset
ah, 09h
21h

; Address data segment
with ds

Message ; Address message string
Call DOS function 9
to display string

500 Part Tbree: Advanced Debugging Topics

41: Exit:
42: mov ax, 04C00h
43: int 21h
44:
45: END Start

DOS function: Exit program
Terminate with al=exit code

End of program I entry point

After assembling and linking RESET64, from the DOS command line, type
reset64 and press (Enter) to run the program, which should display the
message, "Interrupt vector 64h reset." You can then restart TD and run LOAD
TSR as explained before.

In other situations, you may have to perform similar reinitializations before
you will be able to debug a TSR after the first trial run. Or, you might have to
reboot. Of course, a well-written TSR should be able to remove all traces of
itself from memory. But, because TD has taken over the tasks of unloading the
TSR's resident portion, the TSR's own unloading routines may not have the
opportunity to run; therefore, when debugging complex TSRs, you may still
need to devise custom procedures similar to RESET64 for resetting conditions
between debugging sessions.

Alternate TSR Debugging Methods

At times, running the TSR's transient loader inside TD may be inconvenient. For
example, as demonstrated in the previous section, making TD and the TSR
resident at the same time can prevent the TSR's unloader from resetting inter
rupt vectors and other critical items. (The sample program in this chapter
doesn't have an unloader, but the effect of not being able to reset the vector
illustrates the difficulty.) Also, because installing the TSR from inside TD posi
tions the TSR above any other resident programs, the methods just described
can't be used to investigate conflicts that occur only when the TSR is installed
earlier than other resident programs.

Another TD command, Fi le:Table relocate, can deal with those sorts of
problems by moving the relative address of the program's debugging symbols
to another location in memory. (The symbols don't actually move, of course.
Relocating the program's symbols merely tells TD to associate those symbols
with data at a new address.) This lets you debug a resident program installed
before running TD.

Loading the TSRfrom DOS

To see how this technique works, reboot to make sure the sample TSR isn't
already in memory. Then, follow these steps to load and debug LOADTSR
(Listing 19.2) using Table relocate:

Chapter Nineteen: Debugging Resident Programs 501

1. Run LOADTSR from the DOS command line to install the sample TSR in
memory. You should see the message "TSR Loaded." If not, reboot or run
RESET64 to clear the interrupt 64h vector, then try again.

2. Next, run CALL64 to display the TSR's code, data, and stack segment
addresses. Write down the code segment address-you'll need it in a
moment.

3. Enter the command td loadtsr to start TD and load the assembled TSR.
Do not run the program.

4. Open the View: CPU window (<Alt)-VC) and type two instructions, press
ing (Enter) after each: int 64h and int 3. You don't have to select a
command first-when viewing the CPU window, you can just start typing
to patch in new machine-code instructions. The first instruction activates
the TSR and the second is a fail-safe interrupt that will call TD in case you
forget to set a breakpoint inside the TSR's resident code. (Note: You can
skip this step when debugging active TSR's that are awakened by key
presses. The patch is needed only for this chapter's sample.) Close the CPU
window by pressing (Alt)-(F3).

5. Open the View:Variables view ((Alt)-VV). The window shows the vari
ables of the program as loaded in TD-not those that belong to the TSR
you installed earlier.

6. Choose Fi Le:Table relocate ((Alt)-FT) and enter the code-segment
address you noted earlier. Remember to use assembly language notation
for hex values. For example, if the TSR reported a code-segment address of
3ESB, enter 03e8bh as the segment address value for Tab Le re Locate.

7. When you enter the segment address, the values in Vari ab Les change to
the actual TSR's data. You are now viewing the code and data values of the
resident code installed before starting the debugger.

8. Press (Tab) to move the cursor into the lower window pane and highlight
the TS R's entry point at label ts r _ i s r. Press (Enter) to view the source
code line at this location.

9. Press (F2) to set a breakpoint on the TS R's first instruction.

10. Press (F9) to run the patched int 64 instruction and activate the TSR,
which will halt at the breakpoint. You are now seeing the conditions as
they exist when the TSR is activated from DOS, and you can use other TD
commands to inspect variables, patch subroutines, and evaluate
expressions.

11. After debugging, press (Alt)-X to quit TD and return to DOS. Because you
loaded the TSR separately, its resident portion remains in memory. You can
prove this by running CALL64 again.

12. Because the sample TSR does not have the ability to unload itself from
memory, you may want to reboot now to remove the resident code from
RAM.

502 Part Three: Advanced Debugging Topics

When debugging your own programs, keep in mind that after you relocate
the TSR's symbol table, any symbols that refer to code and data in the TSR's
transient portion are invalid. This will not cause problems if you remember not
to execute transient subroutines or change any data that doesn't belong to the
TSR's resident segments. As Figure 19.2 shows, after relocation, transient sym
bols can even address portions of TD! Storing new values to those locations
may cause serious problems.

Resident TSR Code and Data Relocated Symbols

Turbo Debugger Invalid Transient Symbols) Copy of TSR Resident Portion Original Symbol Table

Copy of TSR Transient Portion Original Transient Symbols

Figure 19.2. Repositioning the symbol table for a TSR's resident code and
data may invalidate symbols for the transient portion.

Note: You can use the TDMEM utility program (see chapter 6) to locate TSR code
segment addresses for repositionillg debugging symbols. However, the addresses
reported by TDMEM may need adjusting for TD's use, and for that reason, it's best
to include programming in the TSR to report the resident code's address as
demonstrated here.

Loading a Separate Symbol Table

There's another, and perhaps better, way to debug a TSR that is already resident
before starting TD. With this method, you transfer the program's debugging
symbols to a separate file and then load that information into the debugger. This
also takes less RAM and, therefore, may allow you to debug larger TSRs.

To experiment with this technique, reboot to unload the sample TSR. Then,
follow these steps:

1. Run LOADTSR as you did earlier to install the sample TSR in memory. Also
run CALL64 and note the reported address of the TSR's code segment.
Next, use the command tdstrip -s loadtsr.exe to transfer debugging
information from LOADTSR.EXE to a new file named LOADTSR.TDS.

2. Enter dir loadtsr.tds to determine the size of the symbol table file. Double
the file size and round down to the nearest 1,000 bytes to find the approxi
mate amount of memory required to hold the symbols. For example, if the

Chapter Nineteen: Debugging Resident Programs 503

file size is 1,810 bytes, the symbols will take about 3K. (Note: Borland
recommends using a value of about 1.5 times the size of the symbol table
file.)

3. Start TD with the -sm option to reserve space for the program's symbols,
using the value you determined in the previous step. For example,
to reserve 3K for symbols, enter td -sm3. Do not specify a file name to
load.

4. Press (Esc) or (Enter) to erase TD's startup message. Execute
Fi le:Symbol load ((Alt)-FS) and select or enter the name of the symbol
table file, in this example, LOADTSR.TDS. If you receive the error message
"Not enough memory to load symbol table," quit the debugger and increase
the value for -sm.

5. Use Fi le:Table relocate ((Alt)-FT) to enter the TSR's code-segment
address reported earlier by CALL64, for example, 017a3h. You should see
the CPU window change to display the TSR's instructions. To open the
Module window, you may have to press (F3), select Loadtsr, and press
(Enter) and (F5) to zoom the display to full screen. You can now set
breakpoints, view variables, and use other commands to debug the TSR.

6. After setting at least one breakpoint (on sti at line 35 in Listing 19.2 if
you're following along), you can now activate the TSR in one of two ways.
You can patch in and run instructions as you did earlier to call a subroutine
in the resident code, or you can use Fi Le: Resident ((Alt)-FR) to push TD
into the background. With this second (and probably better) method, the
DOS prompt reappears, and you can press the TSR's activation keys to wake
up the code. (For this demonstration, simulate that action by running
CALL64.) When the program reaches a breakpoint, TD comes out of hiding
to perform the breakpoint action, usually halting the program so you can
inspect various conditions.

Debugging TSRs in Remote Mode

Another good way to debug TSRs is to connect two systems with an RS-232
serial cable and execute TD in remote mode (see chapter 17). This setup allows
the TSR to run on the remote system while you simultaneously view TD's
display on the local screen. Remote debugging also isolates the resident code
from the debugger, thus avoiding conflicts and crashes that can occur when
both programs share the same memory.

There are two ways to debug a TSR in remote mode. The first uses TD's
resident capabilities. The second repositions a TSR symbol table over a TSR that
was installed on the remote system before you started the debugger. The
following sections explain how to use both of these methods.

504 Part Three: Advanced Debugging Topics

Resident Remote Debugging

Follow these steps to debug a TSR on a remote system while you view TD's
output on a local display. For test purposes, you can use Listings 19.1 through
19.4, or you can substitute your own TSR code in place of LOADTSR:

1. Make sure the two computers are properly connected. To verify that,
type tdremote on the remote system and tdrf d at the local keyboard. You
should see a listing of the files in the remote system's current directory.

2. Transfer miscellaneous files needed by the TSR to the remote system. If you
are running the sample TSR, enter tdrf t reset64.exe and tdrf t
call64.exe to copy those two auxiliary programs to the remote.

3. With TDREMOTE still running on the remote computer, start TD on the
local system using the command td -r loadtsr. If you see a message asking
permission to "send over link?," answer "Yes" (press (Enter)). In a
moment, you should see the program's source code in the Module window
on the local screen.

4. Press (F9) on the local keyboard to run the TSR's transient loader and
install the resident portion in the remote computer's memory. If you are
using the sample TSR, you should see the message "TSR loaded" on the
remote display. On the local screen, you should see a window with the
message "Resident, exit code O." Press (Esc) on the local keyboard to erase
this message.

5. The TSR is now loaded into the remote system's RAM, and the debugger is
running locally. Using the local keyboard, set one or more breakpoints in
the TSR's resident code. If you're following along with the sample TSR, set a
breakpoint on the st i instruction after label ts r _ i s r at line 3 5.

6. Next, on the local system, choose Fi Le: Resident (press (Alt)-FR). Because
you are debugging in remote mode, this makes TDREMOTE go resident on
the remote computer-it does not make TD resident locally as with single
system TSR debugging. You should see the DOS prompt reappear on the
remote computer, and you can now switch to that keyboard and give DOS
commands or run other programs. TDREMOTE remains in memory, ready
to intercept breakpoints and to send the local system a signal that will
awaken TD. Until then, TD is inactive and won't accept any commands
locally. (You can press (Ctrl)-(Break) on the local keyboard to regain
control if the remote system hangs.)

7. On the remote keyboard, run the CALL64 program to activate the sample
TSR. (Or, press your own TSR's hot keys.) When the program reaches a
breakpoint, TDREMOTE wakes up TD on the local system, and you can
switch back to that keyboard to examine variables, make patches, and use
other TD commands.

Chapter Nineteen: Debugging Resident Programs 505

8. Press (F9) locally to continue running. You can then switch over to the
remote keyboard again and press the TSR's hot key (or run CALL64). When
finished debugging, run the TSR up to a breakpoint or press
(Ctrl)-(Break) on the local keyboard to regain control. Then, press
(Alt)-X locally to quit TD and return to DOS. This restores both the
remote and local systems to their states before starting TD. The remote
system should display the message "Link broken," indicating that
TDREMOTE is ready to accept new remote commands from TD or TDRF. If
you also want to exit TDREMOTE on the remote system at this point, press
(Ctrl)-(Break) on that computer's keyboard. (Leave TDREMOTE running
if you intend to repeat these steps and continue debugging this or another
program.)

Note: Run RESET64 on the remote system to reset the interrupt 64h vector. A
more complete TSR would have an "unload" command, which you could run at
this time. Or, you can reboot to remove the TSR from memory.

Nonresident Remote Debugging

The previous instructions won't work with a TSR that's already in RAM before
you start TD. In that case, follow these steps instead. (You can use the sample
LOADTSR program or substitute your own TSR code.)

1. Load the TSR on the remote system. (Use TDRF to transfer the code file if
necessary.) If you are using the sample TSR, execute LOADTSR from the
remote system's DOS command line. Also run CALL64 to display the TSR's
code segment address-you'll need that value in a moment. If you receive
an error message from LOADTSR, run RESET64 or reboot, then try again.

2. Start TDREMOTE on the remote computer.

3. On the local keyboard, issue the command tdstrip -s loadtsr to copy the
symbol table from LOADTSR.EXE to LOADTSR.TDS. (If you performed this
step earlier, you'll receive the message "Program does not have a symbol
table." In this case, ignore the message-you already created the necessary
files. But at other times, you might have to reassemble (or recompile) the
program and give the TDSTRIP command again.) As before, double the size
of the .TDS file and round down to the nearest 1,000 bytes to determine
how much memory TD will require to hold the symbol table. Start TD with
the command td -sm3 -r (no file name) to begin a remote debugging
session and reserve 3,000 bytes for the symbol table.

4. Use Fi Le: Symbol Load ((Alt)-FS) to load the symbol table file LOAD
TSR.TDS. If you receive an error message, quit TD and increase the -sm
value to reserve more space.

506 Part 7bree: Advanced Debugging Topics

5. Use Fi le: Table relocate ((Alt)-FT) to enter the TSR's code-segment
address you noted earlier. Remember to enter this address in the correct
format for the current language. For example, in assembly language, if the
reported code-segment address is 3E85, enter 03e85h.

6. Press (F3) to select loadtsr and open the Module window (if it's not open).
Optionally press (F5) to zoom the view to full screen.

7. Set a breakpoint inside the TSR's resident code-at st i on line 35 if you're
following along. Then, use Fi le: Resident ((Alt)-FR) on the local key
board to force TDREMOTE into the background, returning the DOS
prompt on the remote system and temporarily deactivating TD on the local
computer. Switch to the remote's keyboard and run CALL64 (or press your
own TSR's hot keys).

8. You can now continue to debug the code as described under step 8 in the
previous section. But this time, when you quit TD locally, it does not
unload the TSR from the remote system's RAM. To do that, quit
TDREMOTE on the remote and use the TSR's unload command or, for the
sample listing, reboot.

Common TSR Bugs

Just about anything that can go wrong with nonresident programs can affect a
TSR, of course, but the following bugs tend to show up with increased regu
larity in resident code. If your TSR is failing, check these possibilities first.

Failing to Preserve All Registers

Active TSRs must preserve all registers and flags. (Flag preservation is automatic
for interrupt service routines that return via an i ret instruction.) Passive TSRs
may change registers as long as they will be activated only by an explicit int
instruction in another program. When activated in this manner, a passive TSR
operates as a resident subroutine-similar to the way DOS int 21 h functions
operate-and you may pass values back in registers and flags. In that case, a
passive TSR must never be activated by an external event that might interrupt a
program at an unpredictable time.

Mishandling Segment Registers

Never assume that segment registers ES, DS, or SS address any specific locations in
memory. Only CS can be trusted-after all, it must address the current code
segment that contains the resident code when that code is active. Many program
mers use this fact to initialize DS to the same segment by executing the instructions:

Chapter Nineteen: Debugging Resident Programs

push cs
pop ds

507

That sets DS equal to CS, allowing variables to be located in the TSR's
segment group. But this works only if data and code share the same segment. A
large TSR may have separate data and code segments, and, in that case, you'll
have to initialize DS with a MOY instruction such as:

mov ds, TSR_DATA

Confusion over which data segment is current is another source of prob
lems, particularly in cases where the transient loader has its own data apart from
the resident portion's. You must be careful to address the correct segment at all
times-use ASSUME directives to tell the assembler which is the current data
segment. Read through LOADTSR.ASM in Listing 19.2 for examples that show
how to manipulate DS and ES when dealing with multiple data segments.

Use TD to verify DS and ES values. If you aren't sure if the program is using
the correct segment, insert a dummy string variable into the TSR's data segment:

dummy db "This is the data segment"

Then, after halting at a breakpoint in the TSR, and after stepping through
the instructions that initialize DS (or ES), open a Dump window, press (Ctrl)-G,
and enter ds:dummy or es:dummy. If you see your test string, you know that
DS is set correctly.

Conflict with a BIOS Routine

Active TSRs must never call a ROM BIOS routine that was interrupted by the
event that triggered the TSR's code. Routines in the BIOS are not reentrant,
which means they cannot be interrupted and restarted, mostly because they
store values in variables at fixed addresses and, therefore, can use only one set
of those variables at a time.

Because there are no mechanisms available to tell if a BIOS routine was
interrupted, TSR programmers are forced to invent their own clever solutions.
One such method examines the return address on the stack. If the segment
address is high (OFOOOh, for example), then you know that a BIOS routine was
interrupted. But this method isn't foolproof-some systems move BIOS rou
tines into RAM to improve performance.

A better method is to insert hooks into each BIOS interrupt vector that a
program uses. The hook intercepts calls to that vector, increments a counter,
and calls or jumps to the original vector address to complete the BIOS function
call. When the TSR receives its activation signal, it first checks whether any
BIOS hook counts are nonzero. If so, then the BIOS was interrupted, and the

508 Part Three: Advanced Debugging Topics

TSR must delay activation-usually accomplished by setting an internal flag that
can be inspected on subsequent clock ticks. Only when all's quiet on the BIOS
front does the TSR pop into action.

Strange lockups and other problems can be caused by failing to follow this
rule, and because such bugs are difficult to repeat, there isn't much that TD can
do to help you find them. The best solution is to include hooks for every BIOS
routine that you call in the TSR and to be absolutely certain that none of those
routines was interrupted by the TSR's activation event.

Conflict with a Nonreentrant DOS Routine

A TSR must also monitor DOS activity to be certain that no nonreentrant calls
were interrupted. The best way to accomplish this (and maybe it's the only way)
is to call the "undocumented" DOS interrupt 2lh, function 34h, which returns
in ES:BX the address of the In-DOS flag. DOS increments this flag on each call
to interrupt 2lh and then decrements the value on each return. The active TSR's
transient loader should obtain and save the In-DOS flag address in the resident
data segment.

When the TSR receives its activation signal, it should test the In-DOS flag by
examining the byte at the address determined by the TSR's loader. If the flag is
nonzero, then a DOS routine was interrupted, and the TSR must delay activa
tion, usually by setting a flag that a clock-tick routine can test later on. Only
when the In-DOS flag is 0 should the TSR awaken.

The fly in the ointment that causes a lot of trouble is that COMMAND.COM
waits for a keypress via DOS function Olh. Because this sets the In-DOS flag, the
TSR can never pop up from DOS. Programmers often solve this problem by
tapping into interrupt 28h (DOS's "undocumented" idle interrupt), which DOS
function Olh calls repeatedly while waiting for a keypress. If this interrupt is
called, and if the Jn-DOS flag is set, the TSR may safely activate itself.

Note: See "Failing to Deal With Critical Errors" later in this section for another
note that concerns the In-DOS flag.

Interrupting a Hardware Interrupt

Serious bugs can occur when a TSR interrupts a hardware interrupt before that
interrupt's routine can send an end-of-interrupt signal to the 8259A interrupt
priority controller. Generally, the method for doing this is to set ax to
0000101lb, execute out 20h, al, wait a couple of machine cycles, and then
execute in al, 20h. This returns 0 in AL if no hardware interrupts are being

Chapter Nineteen: Debugging Resident Programs 509

serviced. If AL is not zero, then the TSR must delay activation until hardware
interrupt processing stabilizes.

A hung system is often caused by this problem. Narrow the bug to as small a
section of code as possible using TD's code-tracing commands and be sure that
your interrupt routines do not prevent others from completing their jobs.

Miscalculating the Resident Portion Size

When terminating via DOS interrupt 2lh, function 3lh, you must calculate the
size in paragraphs of the resident code, data, and stack and pass that value in
DX. The usual way to do this is to load the PSP segment address into AX and
subtract that value from the current CS register while the TSR's transient loader
runs. (The PSP's segment address is in ES just before an .EXE-style TSR's
transient portion runs.)

Be sure not to confuse this method of determining the resident portion's
size with the older method of assigning to DX the offset to the first byte in the
transient portion (in other words, the byte after the end of the resident code
and data) and ending the program with interrupt 27h. This is especially dan
gerous because confusing the old and new methods might not surface as a bug
if the value in DX causes DOS to reserve enough memory to hold the TSR. But
later, if the TSR's size changes, the program may fail.

If you are struggling to discover why a TSR is crashing, determine the TSR's
transient size manually (use TLINK's Im option to generate a .MAP file), set a
breakpoint at the end of the TSR's loader just before exiting via function 3lh,
and compare the value in DX with the expected resident size in 16-byte
paragraphs.

Loading an Unprotected Resident Data Segment

When using the GROUP directive to collect a TSR's resident code, data, and
stack segments-especially when the TSR's transient loader shares one or more
of those same segments, usually the stack-you must be careful to construct the
program's source code to ensure that all resident segments are loaded into
memory in the correct order. Consult a good assembly language reference or
your assembler's manuals for details on how various GROUP parameters affect
segment order.

The symptom of this problem is usually a serious crash, often caused by a
data segment in the wrong position and, therefore, not protected when the
transient loader ends via DOS function 3 lh. One way to check for this error is
to create a segment map file with TLINK's Is option and inspect the resident
segment addresses. For example, here's a portion of the map file for LOAD
TSR.ASM (Listing 19.2):

510 Part Three: Advanced Debugging Topics

0000:0000 0033 C=TSRCODE S=TSR CODE G=TSR GROUP M=LOADTSR.ASM ACBP=28 - -
0003:0004 004C C=TSRDATA S=TSR DATA G=TSR GROUP M=LOADTSR.ASM ACBP=48 - -
0008:0000 0100 C=STACK S=TSR_STACK G=TSR_GROUP M=LOADTSR.ASM ACBP=54
0018:0000 OOC2 C=CODE S=LOADER CODE G=(none) M=LOADTSR.ASM ACBP=68
0025:0000 002E C=CODE S=COMMON CODE G=(none} M=COMMON.ASM ACBP=68
0027:000E 0067 C=DATA S=LOADER DATA G=(none) M=LOADTSR.ASM ACBP=48

Notice that the TSR_CODE, TSR_DATA, and TSR_STACK segments are
correctly grouped and that the transient code (C =CODE) and data (C =DATA)
segments follow the resident group.

PRINT. COM Conflict

Some TSR's use interrupt 2Fh as a means of identifying themselves and to
determine whether that same TSR is already installed in memory. Using this
trick can also cause a nasty bug if PRINT.COM is loaded before the TSR under
DOS 2.x. In those DOS versions, PRINT.COM also uses interrupt 2Fh, causing a
conflict. Try loading the TSR before PRINT.COM to see if the error disappears.

Hint: Because this requires loading the TSR from DOS, you'll have to use one of
the methods for loading a symbol table to debug the resident code with TD.

Not Letting Interrupt 09h Finish

A common mistake in active TSRs is to monitor keyboard interrupt 09h and
activate the TSR immediately upon recognizing one or more keystrokes. Doing
this violates the general rule that all hardware interrupts should be allowed to
finish before the TSR activates; therefore, a better method sets a flag, lets
interrupt 09h finish normally, and then activates the TSR at a later time-usually
on the next clock tick.

Not Letting Interrupt 08h Finish

Many TSR's include a clock-tick routine that hooks into interrupt 08h or installs
an interrupt lCh timer-control handler, which is called by interrupt 08h about
18.2 times a second. Usually, the clock-tick routine monitors a flag that another
routine sets-most often by the code that watches the keyboard or other device
for the TSR's activation signal.

Problems arise when a TSR's clock-tick routine preempts normal interrupt
08h processing. Because that interrupt is responsible for a variety of system

Chapter Nineteen: Debugging Resident Programs 511

tasks-turning off disk drive motors, for example-it must finish before the TSR
gains control. Also, interrupt 08h must be allowed to reset the 8259A interrupt
controller, or future interrupt signals could be locked out, causing a hung system.

The usual solution is to ca L L the original interrupt 08h handler in the TSR's
own clock-tick routine. Then, after the original code returns, the TSR can safely
begin. But, watch out for a second gotcha: the next timer interrupt will again call
this same routine, which needs to determine if it has just interrupted itself. A
second flag that indicates whether the TSR's clock-tick routine is currently run
ning will handle this problem while allowing critical system functions to
continue.

Failing to Deal With Critical Errors

Some of today's TSRs are more sophisticated than many stand-alone applica
tions. Some TSRs read and write disk files, print graphics, and perform other
tasks that require careful handling of DOS critical errors.

A common mistake is to ignore this subject and allow whatever critical
error handlers are now in effect to intercept disk and other device errors that
may occur while the TSR runs. This is a dangerous practice, and a well-written
TSR should install its own critical error handler (interrupt 24h), plus
(Ctrl)-(Break) (interrupt lBh) and (Ctrl)-C (interrupt 23h) interceptors. Of
course, the TSR must restore the original handlers when finished. Writing and
installing DOS critical-error handlers is too involved to discuss in detail here.
Consult a good DOS reference (see Bibliography) that covers the subject.

A related problem involves DOS's switching of internal stacks to allow
certain DOS routines to interrupt themselves. This process permits DOS 's own
critical error handlers to call DOS routines. But it also complicates the logic of
checking whether a DOS routine is active by examining the Jn-DOS flag, which
DOS zeros before executing interrupt 24h. While it may seem strange that DOS
zeros In-DOS while a DOS routine is running, this is necessary because of the
way some interrupt 24h handlers fail to return control to their callers. In that
event, the In-DOS flag would never be reset, causing a hung system.

The fix to this tricky problem is to examine another flag, called the critical
error flag. For DOS 3.1 and later versions, this 1-byte value is stored just above
(at a lower address) than the In-DOS flag. In other DOS versions, a TSR's loader
needs to search DOS for this byte. (Many DOS references and public domain
TSRs explain how to accomplish this.)

Device Drivers-A Quick Review

There are two kinds of device drivers: those that are built into DOS and those
that are stored externally in disk files, usually ending with the extension .SYS.

512 Part Three: Advanced Debugging Topics

Built-in, or intrinsic, drivers need no special installation. The external kind are
loaded at boot time by DEVICE= commands in the CONFIG.SYS configuration
file in the disk's root directory.

Although programming device drivers is a whole new resident-code ball
game, the steps to debug them with TD follow the same rules for debugging
TSRs. For that reason, I won't include a sample driver here (even a do-nothing
shell would take over 500 lines of assembly language code). See the Bibliogra
phy for references that describe how to program DOS device drivers.

Debugging Device Drivers

You can debug device drivers locally or remotely, but a remote link may be
best. As their names suggest, device drivers control devices-and, therefore,
they may affect the operation of the computer. Isolating the debugger (and your
important files) from the device driver is often wise. It may also be easier to
reinstall a modified driver by transferring it to the remote and rebooting than to
reset your (probably overstuffed) development system.

Before debugging an installed device driver, try to get as many bugs out of
the low-level subroutines by inserting them in small test programs, which you
can debug using conventional methods. Device-driver debugging is rarely easy,
and a little advance work will help prevent errors in the finished code.

To prepare a device driver for debugging, compile or assemble in the usual
way but do not link the result. Instead, use TDSTRIP with the -s and -c
options to copy the program's symbol table to a .TDS file and to convert the
.EXE code file to .COM format. (You can rename this file's extension to .SYS,
although that isn't necessary.) After those steps, insert a line such as
DEVICE= C: "- WORK"- MYDEV. COM into CONFIG. SYS and reboot to install
the device driver code.

Run the TDDEV utility to determine the driver's segment address. (You
could also insert programming into the driver to report its address at boot
time.)

With the . TDS and source-code files in the current directory, start TD with
the -sm option to reserve space for loading the symbol table. Use a value about
1.5 times the size of the .TDS file. For example, if the .TDS file is 5,144 bytes
long, type the command td -sm8 to reserve SK of symbol space. Do not
specify a file name when you start the debugger.

Press (Esc) to clear TD's startup message, then use the Fi le: Symbol Load
command to load the .TDS file prepared earlier. Use Fi le:Table relocate to
position the symbols at the segment address of the device driver as reported by
TDDEV.

Set breakpoints in the code, open the Module view, and use other TD
commands to prepare for debugging. When you're ready to begin a test run,
use Fi Le: Resident to push TD into the background. The DOS prompt will

Chapter Nineteen: Debugging Resident Programs 513

reappear, and you can now use whatever commands are appropriate to activate
the driver's code. When the device driver reaches a breakpoint, TD will inter
cept control and let you examine the current state of affairs.

Debugging Device Drivers in Remote Mode

With two computers, TD can run locally while the remote system installs and
runs the driver code, which you can transfer from the local computer to the
remote using TDRF. Except for this difference, the steps to debug a device
driver are similar to those described in the previous section.

Compile normally, and then use TDSTRIP with -s and -c options to create a
.TDS symbol table file and to convert the .EXE file to .COM format. Transfer
and install the device driver code on the remote computer, and start
TDREMOTE on that system. Back at the local keyboard, start TD with the
command td -sm8 -r to reserve SK for symbol space (or about 1.5 times the
size of the .TDS file) and to engage remote-mode debugging. Adjust the value
after -sm to reserve more or less space.

Use Fi le: Symbol load and Fi le:Table relocate as explained in the pre
vious section to load the . TDS symbol table file and position it to the location of
the driver in RAM. Set your breakpoints and choose Fi le: Resident to push
TDREMOTE into the background, returning the DOS prompt on the remote
system. You can now give whatever commands are needed to test the device
driver code.

Note: When debugging in remote mode, the Fi le: Resident command makes
TDREMOTE go resident, not TD. On the local system, the debugger remains
dormant until it intercepts a breakpoint from the remote.

Debugging Interrupt Service Routines

Most TSR's and some device drivers are implemented as interrupt service
routines, and the steps outlined in the beginning of this chapter are similar for
debugging any ISR.

If possible, incorporate the ISR code inside a shell program that you can run
normally. You can then load the entire program into TD for debugging. In that
case, you don't need to use any special commands to tell TD where to find the
ISR's code.

But, if the ISR is installed permanently in RAM (acting in that case like a
TSR), you can strip the symbol table from the code file using TDSTRIP, use the

514 Part 7bree: Advanced Debugging Topics

-sm command to reserve space, and then load the symbols into the debugger
with Fi le:Symbol load and Fi le:Table relocate.

In some cases, you may find it difficult if not impossible to debug hardware
ISRs with TD. This is especially true of externally generated interrupts, for
example, from an I/O port. You might be able to use TD to investigate portions
of the code, but for best results, you'll probably need a hardware debugging
board such as the Periscope III (see chapter 18).

Debugging "Exec-ed" Processes

Programs that run other programs via DOS "exec" function 4Bh (or a related C
function or Pascal procedure) pose a special problem for debugging. After
loading the parent program into the debugger and running, how do you tell TD
where to find a child process called home by its parent?

In a sense, an "exec-ed" child process is a kind of temporary resident
program, and you can use TD's Resident and symbol table commands to debug
a child process as you do for TSRs and device drivers. But, there's a catch.
Unlike other resident programs, a child process doesn't exist in memory until
after the parent process calls the "exec" function. For that reason, TD can't set
breakpoints in the child, which remains on disk when the parent is loaded into
the debugger.

The answer is to run TD in the background and have the child process itself
awaken the debugger. To do this, insert an int 3 breakpoint in the "exec-ed"
child. In Pascal, use an in line< $CC) ; instruction. In C, use asm int 3;. In
assembly language, insert an int 3 instruction.

Listings 19.5 (PARENT.PAS) and 19.6 (CHILD.PAS) demonstrate how to use
this technique to prepare and debug "exec-ed" Turbo Pascal programs. The
steps are similar for C and assembly language.

1: {$M 2048, 0, 0}
2: program parent;
3: uses DOS;

Listing 19.5. PARENT.PAS.

4: var s : string[80J;
5: begin
6: writeln< 'Inside parent' >;
7: write< 'Enter argument: ' >;
8: readln< s >;
9: exec< 'child.exe', s >;

10: writeln('Back inside parent again' >;
11: end.

Chapter Nineteen: Debugging Resident Programs

1: {SM 2048, 0, 0}
2: program child;
3: begin
4: inline(sec >;

Listing 19.6. CHILD.PAS.

5: writeln('Inside child' >;
6: writeln('Argument= ', paramStr(1) >;
7: write('Press Enter ... ' >;
8: readln;
9: end.

515

When compiling and linking, add debugging information to the child, but
not to the parent. (If you need to debug the parent's statements, do that
separately.) To compile and link the sample listings, use these two commands:

tpc parent
tpc -v child

Prepare a symbol table file for the child process, using TDSTRIP's -s option.
In this case, enter the command tdstrip -s child. Use DIR to find CHILD.TDS's
file size. Then, start TD with -sm, specifying about 2.5 times that size in 1,000-
byte increments. For instance, enter the command td -sm4 to reserve 4K. Do
not supply a file name.

Note: Tests indicate that debugging child processes with the techniques described
here requires more space for the symbol table than for TSRs or device drivers. You
may have to experiment with different -sm values to find the correct value for your
programs.

When TD's opening screen appears, press (Esc) to erase the startup
message and then choose the Fi le:Resident command ((Alt)-FR) to push TD
into the background. The DOS prompt will reappear. If you run TDMEM at this
point, you'll see where TD is stored in RAM as a TSR (unless you're running
TD386).

Now, run the parent program. If you're following along, enter parent and
press (Enter). Type a short string and press (Enter) to execute PARENT's
exec statement and call the child. When the program reaches the int 3
instruction in the child's code, TD intercepts the breakpoint and opens the CPU

window.
So you can inspect the child's symbols and source code, use Fi le: Symbol

load ((Alt)-FS) to load the CHILD.TDS symbol table file into the memory you
reserved earlier with -sm. (If you receive an error, press (Esc) and (Alt)-X to
quit TD, then restart the debugger, this time using a larger -sm value.)

516

Summary

Part 1bree: Advanced Debugging Topics

You also have to tell TD the child's address so the debugger can match
symbols with code and data in RAM. To do this, press (Alt)-FT to choose
Fi le: Tab le re locate. Enter cs and press (Enter). (Note: Also press (Ctrl)-0
if CPU does not display the child's source code.) You should see one or more
source-code lines mixed in with the assembly language disassembly in CPU.

Next, open a Module window, showing the child's statements. Assuming you
have the source-code file available (CHILD.PAS in this example), press (F3) and
select the module's name. Press (F5) to zoom to full screen. You can now set
breakpoints, examine variables, and use other TD commands to inspect the
child process.

When you're done debugging, if TD is active, press (Alt)-X to quit. This
restores conditions as they existed before running the parent program. Or, if
the parent program ran to completion and the DOS prompt is displaying, press
(Ctrl)-(Break) twice to return to TD. Then quit normally.

Note: Be sure to remove any inline int 3 instructions before compiling the
finished child process programs.

TD can now run in the background, simulating the way a hardware debugger
hides behind the DOS scene so you load and debug TSRs and device drivers.

Other related commands let you load symbol tables stored in . TDS files
(usually prepared by TDSTRIP) and tell TD the address of the code to which the
symbols apply. Using these commands along with TD's resident abilities lets you
debug TSRs and device drivers loaded into memory before starting TD.

You can debug TSRs locally or in remote mode using two computers as
described in chapter 17. For best results, and to prevent disasters on your
development system, it's usually a good idea to debug device drivers remotely.

TD's symbol table and resident commands are also useful for debugging
interrupt service routines and "exec-ed" child processes.

Part Four

Data-Structure Guides

517

Chapter 20

C and C + + Data Structures

L's INSPECTOR WINDOWS are the ultimate data-structure browsers. With
inspectors, you can study variables of any types, from the simplest integers to
those in a complex linked list.

This chapter and the next two show how to use TD inspectors and the
Watches view to examine data structures in C, C+ +, Pascal, and assembly
language. Use these chapters as references when you're debugging a program
and need more information about how to inspect a real number, an array, or
another kind of structure. (See chapters 4 and 5 for general information about
using inspectors and the Watches view.)

Note: I used Turbo C 2.0 and Turbo C + + 1.0 to prepare the sample source code
in this chapter.

Where Are My Variables?

Knowing where variables are often gives useful clues about why a program isn't
behaving as expected. In C and C + + , there are five basic categories for
defining storage space for variables:

• Static variables retain their values between function calls. May be scoped
globally to an entire program or locally to one or more functions or
modules.

• Automatic variables are allocated temporary space during a function call.
Variables are available only to the declaring function and are stored on the
stack.

519

520 Part Four: Data-Structure Guides

• Register variables behave as automatic variables but are stored in registers,
usually SI and DI.

• Function parameters are identical to automatic variables but receive initial
values from the function's caller. They are always passed by value in C and
by value or by reference (address) in C + +.

• Pointer variables usually address variables allocated in the heap but may
point to data stored anywhere in memory.

Read the following notes for tips about using TD to inspect variables
created by each of these allocation methods.

Static Variables

Static variables are defined outside any function (including main (>) or with the
keywords stat i c and extern. Static variables retain their values between func
tion calls, but their scope extends only to their declaring module or function.
When declared extern, a variable has a global scope and refers to a fixed
location that's allocated space elsewhere.

TD can inspect and watch static variables of both kinds. To avoid confusion
when monitoring static variables, it's a good idea to assign them unique
names. For example, if you define int count in main (> and st at i c int count in
a function f 0, the compiler allocates space for two distinct count variables at
two different locations. But while debugging, it may not be clear which count
value you're viewing.

When you can't change variable names to resolve this kind of conflict, use a
pound sign(#) to specify the variable's scope. For example, to inspect count in
function f < >, enter #f#count as the variable name. To inspect the same variable
in main (>, enter #main#count. This trick lets you monitor a variable without
having to switch to the module in which the variable is defined.

Automatic Variables

Automatic variables are stored on the stack by the function that declares them.
Because that allocation occurs each time the function runs, automatic variables
do not retain their values between function calls. Beginning C programmers
often forget this and mistakenly assume they can reuse the value assigned to int
count on subsequent calls to function f (>. To do that, you would have to define
the variable as stat i c, reserving permanent storage for its value.

When inspecting an automatic variable, pay attention to the address line in
the inspector window. The segment value should match the stack segment,
which you can determine with View:Registers. If the segment values don't
match, then the variable is not automatic. Perhaps it's defined to be static, or

Chapter Twenty: C and C + + Data Structures 521

perhaps due to a typing error, the program refers to a global count instead of a
local cnt.

Register Variables

Many C compilers store int-size automatic variables in registers SI and DI.
These register variables behave as other automatic values-they don't retain
their values between function calls, and they are scoped to their declaring
function.

In an inspection window, TD replaces a register variable's address with the
word Register. (See Figure 20.1 for two samples.) When you see this word, you
know that the value is stored in a processor register, not on the stack with other
automatic variables. Unfortunately, TD does not show you which register holds
which value. But you can quickly find this out by opening View: Registers. If SI
and DI hold the same value, change one of the two registers and observe which
inspector also changes.

Figure 20.1. Inspecting two register variables.

Function Parameters

Arguments are passed to function parameters either directly by value or indi
rectly by address on the stack. C functions always pass parameters by value, but
that value may be a pointer to another location where the actual value is stored.
In C + +, arguments can be passed by value or by reference (address).

Confusing the kind of parameter a function uses can lead to all kinds of
bugs. For example, don't write code like this:

void g(int x, int *Y>
{

}

x = 1 O;
y = 30; '* ??? */

When function g <) runs, the assignment to y is stored in the pointer's offset
value, probably not the intended result. Future assignments to *Y will then store
values at that modified location, which may belong to another variable or even
part of the program's code. The correct assignment is:

*Y = 30;

522 Part Four: Data-Structure Guides

Knowing where your variables are is a good way to prevent this sort of
mistake. Use TD inspectors to confirm that your variables are where you expect
them to be. As Figure 20.2 illustrates, a direct parameter's address will always be
a simple value like @8523: F FD6, the segment part of which (hexadecimal 8523)
should match the stack segment register SS-a fact you can verify with
View: Registers. An indirect parameter such as int *Y has the two-part address
@8523: FFD8 : ds :0610 [_q] where hexadecimal 8523: FFD8 is the address of the
pointer variable, and d s : 0610 is the address where that pointer points. If TD
recognizes the addressed value, it also displays the variable's name prefaced
with an underbar in brackets.

tin x==3=(t][~

[0]

1ntll!lllll.lllllllllllllllllllllllllllllllllll>jl

Figure 20.2. Inspecting direct (left) and indirect (right) function parameters.

Get used to these formats. A quick glance at an inspector window will tell
you whether your parameters are passed by value or by address-and that
knowledge is often enough to locate and fix a bug that's caused by confusing
the two conventions.

Pointer Variables

Later on in this chapter we'll take a closer look at C pointers and the bugs that
can arise due to pointer abuse. But the key element to keep in mind while
debugging is that a pointer is a two-faced critter: it exists somewhere in
memory, and it addresses a variable that exists somewhere else.

As explained in the previous section, a pointer always has two parts: an
address such as @7411: FFD6 where the pointer is stored and the address where
the pointer points. If that location is in a known segment, TD displays the
appropriate segment register, for example, @ds :0472. This gives you a good way
to check that variables are located where they should be.

Hint: Don't assume that an address in the form @ds: xx xx references a global
variable in the data segment. It might address a dynamic variable declared on the
heap, which in some memory models shares the same segment space with the data
segment and the stack.

When inspecting pointer values, the inspector window displays the value of
the addressed item. Because pointers and arrays are virtually interchangeable in
C, the value often shows up as an array index, for example, [Q] 100 COx64). If

Chapter Twenty: C and C + + Data Structures 523

you move the selector bar to that line and press (Enter), TD opens a second
inspector window for the value addressed by the pointer.

Size of Variables

Every data type, and therefore every variable of any type, has a size equal to the
number of bytes required to store that value in memory. To verify how much
space a variable occupies, use Data: Evaluate/modify (press (Ctrl)-F4) and
enter sizeof(v) where vis the name of a variable.

For example, to find the size of a variable float fp, enter sizeof(fp) in the
Evaluate/modify window's Expression area. When I did this, TD reported that
fp was an unsigned int 4 <Ox4>. This indicates that a variable of type float
takes 4 bytes. The unsigned int refers to the data type of the s i zeof 0 pseudo
function, not to the data type of the inspected variable.

Take care when using s i z eo f (> not to introduce unexpected side effects
that will affect your debugging session. If the program declares a function f (>,
the expression sizeof(f()) tells you the number of bytes returned by the
function, but it also executes the function code.

Internal Variables

Most programs carry a lot of excess baggage including variables used internally
by library runtime routines. To examine those variables, use View:Variables

and scroll through the top pane of this two-pane window.
In many cases, TD knows the names but not the types and sizes of many

library variables. For example, ????is listed as the value for DGROUP@. To find the
actual value, position the highlight bar over the variable name and press
(Enter). Although this opens an inspector window for the variable, the win
dow still doesn't show the value or size. But no matter; just press (Alt)-VD to
open a Dump window, which picks up the starting address from the inspector
and shows you the value in RAM for this unknown item. If you try this, you'll
see the word value that locates the beginning of the data-segment group. You
can use the same trick to examine other internal system variables of unrecog
nized types.

Viewing Local Symbols

The bottom pane of the View:Variables window shows all the local symbols
that are within the scope of the current function. Use this command for a quick

524 Part Four: Data-Structure Guides

peek at a function's data-it's much easier than opening inspector windows for
all local symbols or adding them to Watches one by one. The window pane also
shows argument values passed to function parameters.

Hint: When single-stepping through a program's function calls, you may have to
press (FS) to execute the function's startup code before the local symbols will
come into view.

By the way, the bottom pane in View:Variables is useful for spotting bad
assignments to indirect parameters, as in the earlier example where the state
ment y = 30 incorrectly changes the pointer address value for a parameter
declared as int *Y· While single-stepping through a function's code, watch the
Vari ab Les window for changes to similar indirect parameter addresses, which
should remain constant under most circumstances. Although this takes time,
any faulty assignments will be obvious.

Examining Basic Data Types

Not counting void, there are four basic C data types: char, int, float, and
enumeration. Most program variables are declared to be one of these types, or
one of their signed, unsigned, long, and short variations. Of course, TD can
display all such variables, showing their names, data types, current values, and
locations in memory.

You already learned many ways to view variables, but if you're reading this
chapter out of order, here's a quick review. Most of the time, the easiest
technique is to position the cursor on the variable's name in the Module window
and press (Ctrl)-1. This opens an inspector window that gives you the most
extensive information possible about the variable's address, value, and type.
You can also press (Ctrl)-W to add the variable to the Watches window, which
shows less detailed information but lets you view several variables at once. Or,
use View: Vari ab Les to examine all of your program's global and local symbols.
You can also enter a variable's name into the Evaluate/modify dialog box.

Char Types

Figure 20.3 shows three variables, ca plain char, uc an unsigned char, and sc a
signed char. Notice that TD displays char and signed char, which are equiva
lent, as type char.

When displaying char variables, just below the variable's address, TD shows
the data type plus three information fields: the value expressed as a character,

Chapter Twenty: C and C + + Data Structures

WS.!/m;t11 u:=3=[t]['

~f51ii11 liiidlciilira-illll·lli'xCFiill'120iiii1171< 0iixiiiCF•>_J

m:wticy sc=3=[t]['il

~'!:'--....... '~llllill2·.-.14 .. <0xFllllllll2~

Figure 20.3. Inspecting C's char types.

525

the value in signed or unsigned decimal, and the value in unsigned hexadecimal
(unless you changed the Integer form at setting with Opt i ans: Display opt i ans).
Standard ASCII characters are shown for common values; others are shown as
escaped hexadecimal values such as ' "- xCF' and ' "- xF2 '. The unsigned hexadeci
mal values are in standard C notation-for example, OxCF for hex CF.

Int Types

Figure 20.4 shows inspector windows for the five integer types: int, short int,
long int, unsigned int, and unsigned long. Following the address of each
variable is the type and value in decimal and hexadecimal in parentheses.

A useful trick is to use an inspector window as a negative-to-positive value
converter. Even if a variable's data type is unsigned, TD still allows assignments
of negative values to that variable, providing a quick way to convert negative to
unsigned positive decimal equivalents. For example, changing an unsigned int
to -432 displays 65104 in the inspector-the equivalent positive value in
decimal.

Float Types

The three floating point (or real) data types in Care float, double, and long
daub le. Figure 20.5 shows example inspector windows for each of these types

tin si=3=[f]['iJ

3 (BxJ~jl

J:UIMI •

e
[ll=ln~ti73 ul=3=[tla

_:ijlmil -

~[ll=ln~ti73 I i=3=[tJ[i~

~a -12345678'1.. <0xFfll432EB)

Figure 20.4. Inspecting C's integer types.

526 Part Four: Data-Structure Guides

and also shows the two ways that TD displays floating-point values: in decimal
(3.14159 and 0.01) and in scientific notation (le+ 21). In general, very large and
small values are displayed in scientific notation while other values are shown in
decimal.

~
[IJ=l~tirn f 3=[tJU

_;ljlmfl -
~iii'aeB1llllllllllllllllllli0i.0~1J I oat 3 .1'1159

~------~

I I llllllllllllllllllllllll
double le+21

Figure 20.5. Inspecting C's floating-point types.

When you enter new floating-point values-usually by opening an inspec
tor window and typing the new value-TD may show a different value from the
one you enter. For example, if you type 10e+20 for a long double, the
inspector window will show the value as 1 e+21, which, of course, is the same.
Similarly, if you enter le - 2, the inspector displays the result as 0. 01.

One of the most common errors is to expect perfect accuracy from
floating-point calculations. Floating-point values are stored in fixed-width vari
ables, and for that reason, some values are approximate. Don't use floating
point variables to count your chickens. You may get only half a bird.

Note: TD faithfully emulates an 80x87 and can use a math coprocessor if your
system has one to evaluate real-number expressions.

Enumeration Types

Enumeration types add clarity to C programs and, therefore, also serve as
powerful weapons in the fight against bugs. A typical enumeration type is:

enum Boolean { NO, YES };

The new type Boo lean is associated with two constant symbols, NO and YES.
Internally, the compiler represents those symbols as int values: 0 for NO and 1
for YES. You can assign other values to enumerated constants, but usually, it's
best to let the compiler make the assignments for you.

After defining an enumeration type, you can create variables in the usual
way. For example, this declares a variable choice of type Boolean and sets the
initial value to YES:

Constants

Chapter Twenty: C and C + + Data Structures 527

enum Boolean choice= YES;

Examining choice with a TD inspector window (see Figure 20.6) shows
the address and data type as usual. It also shows the enumerated constant value
(YES) plus the underlying int value (1). Being able to examine enumeration
types this way is a useful debugging tool.

~mruwmti, cmice=3=[t][.lB

[~I ecn I/ES <1> 4------· Figure 20.6. Inspecting a C enumeration type.

Unfortunately, TD does not permit you to use constant identifiers in break
point expressions. For example, to set a breakpoint for when choice equals
YES, you have to enter choice = = 1 using Breakpoints:Expression true
g Laba L. Apparently, TD does not recognize enumerated constants as program
symbols, only as translated values in inspector windows. It also does not let you
enter constant names to change an enumeration's value. To set choice to NO,
you have to enter 0-you can't type NO.

Despite these restrictions, with a little extra programming, you can get TD
to cough up all the enumerated symbols it associates with an enumeration data
type. To do this, construct a small for loop in your code-something like this:

for (choice = O; choice < 10; choice++)
printf(11 %d\n", choice);

Even though choice is of type Boo Lean, I wrote the loop to cycle ten times
to cover all the possible enumerated constants. For other enumeration types,
you might loop 10, 20, or 100 times. The exact number isn't important.

Next, load the program into TD and set a code breakpoint ((F2)) on the
pr i ntf statement. Open View: Breakpoints, highlight the breakpoint, and press
(Ctrl)-S to set options. Change Action to Log and set Action expression to
choice. Press (Enter) to close the options window and press (F9). When the
loop finishes, open the Log window ((Alt)-VL). You'll see all of the enumer
ated constants (plus others that you can ignore) showing their symbolic names
and int values.

There are two kinds of constants in C: macros created by #define and stored
variables that don't change during the course of a program run.

Defined macros are not variables. They are simply text that the compiler
inserts in place of the macro's symbol. Once you compile the program, the

528 Part Four: Data-Structure Guides

macro symbols are no longer available, and for that reason, you can't inspect or
watch them with TD.

However, TD recognizes constants defined with the const keyword. For
example, you might create these constant values:

const int INTCONST = 1234;
const char CHARCONST = 'x';
const float FPCONST = 3.14159;

Figure 20.7 shows sample inspector windows for these three constants,
sometimes also called static variables. While debugging, you can watch and
inspect constants just as you can variables.

I NTCCJIST=3=[t mil

1231 <ex·m2DI ~[::nrt i ng Cfffi'.:CNiT=3=[tJaB

[~~ 'x' 120 <0x78>

~-------
FF'CCJ'IST=3=[tJ['ilil

3.1'115u

Figure 20. 7. Inspecting C constants.

Hint: Unlike the compiler, TD allows you to change a constant's value. This is not a
bug in the debugger-it's a feature that makes experimenting with new constant
values possible without having to recompile the sources.

Examining Derived Data Types

The range of basic data types in C is sparse, but well-chosen. Together with the
basic int, char, and other types, the language's derived types-arrays, strings,
bit fields, structures, and unions-make it possible to build any data structure
you can imagine.

Being able to peer into the dark corners of even the most complex data
structures is essential for finding bugs that demolish your carefully constructed
C castles. As the following sections explain, with TD's inspector windows, you
can shine light onto arrays, strings, bit fields, and other structures.

Arrays

Figure 20.8 (left) shows an inspector window opened to an array of floating
point values defined as float fp_array[10l. The inspector displays the data

Chapter Twenty: C and C + + Data Structures 529

type of that and similar arrays as float [10l. As in all inspector windows, the
top line below the window's border shows the variable's address-the location
of the first array element at index [Q l. Below the address are some (or, for short
arrays, all) of the items in the array, with the index values displayed in brackets
at left and the array element values at right. Press the cursor or page movement
keys to scroll this part of the window to see other array elements. At the bottom
of the window (below the horizontal scroll bar), you see the data type and array
range for the highlighted line above-fl oat [10 l when the address is high
lighted, as it is in the figure, or float for an individual array element.

[0] 0 I

[1] 1.21 [ZJ 2.4
[3] 3.6
[4] 4.8
[5] 6

~i1001t .. [1•0J_. .. 11111111111111~1

I nspectl no fp_crra,rl:~
e831C:FF78
[0] 0
[!] 1.2
[2] 2. 4

~Mr.trt 1 1 fp_w[2]=-1=[t][l

[~oot 2.4
~ ~

floot

Figure 20.8. Inspecting an array.

When inspecting an array with dozens or more elements, it may be incon
venient to scroll to the values you need to see. In that case, press (Ctrl)-R to
select the inspector window's Range command and enter the starting index, a
comma, and a number of array elements to view. For example, to display ten
values starting with indexed entry [201, enter 20,10. You'll then see values for
indexes [201 through [291 in the window.

Figure 20.8 (right) shows how to examine an individual element stored in
an array. To create this image, I moved the selector bar to index entry [21 and
pressed (Enter). This pops up a new inspector window for that array element.
The window title Inspecting fp_array[2l tells you this is an element from an
array and not a common floating-point variable. Also, the smaller inspector
shows the address of the inspected element, useful knowledge for debugging
programs that calculate array-element addresses.

Hint: When viewing multiple inspector windows this way, press (Esc) to close
only the topmost window. Press (F3) to close the topmost window plus all others.

Unlike inspectors, when adding arrays to Watches, you'll see only as many
array elements in braces as can fit horizontally on screen. Although you can
scroll left and right to view other elements, it's easier to view multiple array
elements with inspectors.

But it's often useful to add a single array element to Watches. To do that,
press (F6) to make Watches the current window and enter an array name with
a bracketed index, for example, fp_array[4]. To switch from one array

530 Part Four: Data-Structure Guides

element to another, position the highlight bar on the array name (it can be an
indexed element or the entire array) and press (Enter). This opens an Edit
watch expression window with the name of the array ready for editing. (You
can also press (Ctrl)-E to do the same, but pressing (Enter) is easier.) Use the
cursor movement keys to edit the array index value to display in Watches.

Arrays of Pointers

Pointers are covered in more detail later in this chapter. But arrays of pointers
are so common in C programming, they deserve special mention here.

Figure 20.9 (left) shows an inspector window for an array of pointers to
integer values. (In practice, this may not be a useful structure, but the principles
apply to any array of pointers to other kinds of data types.) I defined the array
as int * ap [10 l and initialized it by allocating heap space to each array element.
Because those elements are addressed by pointers, they show as addresses to
the right of the indexed values in the inspector window. The segment portion of
those addresses is listed as ds:, indicating in this case that the heap is inside the
program's data segment.

[tma
[0] ds:OO:X: I
[1J

ds:ElE1 I [2] ds:ElEC
[3] ds:00:4
[1] ds:EB'C [0]
[5] ds:0'.E'I 9

~ I ~
int •[10] Int •

Figure 20.9. Inspecting an array of pointers.

To create the image to the right of Figure 20.9, I positioned the highlight
bar on index entry [1 l and pressed (Enter). This opened another inspector
window for the array element-the pointer, not the value to which it points.
You can tell this because the top line of the new inspector shows a double
address, listing the location of the pointer (its position inside the array). Because
the variable is a pointer, the inspector also shows the addressed location,
ds :08E4. At that address is an integer value equal to 1. Notice how the inspector
displays the pointer as though it were an array with a lone indexed position ([0 l).
Pointers and arrays are practically equivalent in C, and, therefore, TD displays
array elements in arrays of pointers as though they addressed other arrays.

Note: In Figure 20.9 (right), if you were to move the highlight bar to [Q] and press
(Enter), TD would open an inspector window for a simple int variable at
ds: 08E4. This is not necessary, however, because the inspector already shows the
value at that location.

Chapter Twenty: C and C + + Data Structures 531

Strings

Character strings in Care implemented as arrays of char; therefore, you can use
the same techniques for inspecting strings as you can for other arrays.

Figure 20.10 shows an inspector window opened to a string variable
defined as char *s. Because this allocates space for a pointer (s), the inspector's
address line shows both the location of that pointer plus the addressed location.
To the extreme right, the address line also shows the first few characters in the
string. Below that line are the individual array elements of type char, also
showing the characters in the string.

[0] '5' 83 <0x53) I
[l] ·c. 99 <0x63) I
[2] 'r' 114 <0x72)
[3] '0' 97 <0x61)
['I] 'p' 112 <0x70)
[5] ' ' 32 <0x20) •

~her··· --llili-~1
Figure 20.10. Inspecting a C character string.

Because an inspector window lists string array elements vertically, it may be
difficult to use this method to examine lengthy strings. For easier viewing, open
the inspector to the string pointer as shown in Figure 20.10. Then, press
(Cursor Down) to highlight the first character at index [QJ. Press (Alt)-VD
to open a Dump window to that address. This displays the string as a block of
bytes, showing all of a string's characters in a group.

Note: If you press (Alt)-VD with the highlight bar on the inspector window's
address line, you won't see the string's characters. You'll see the memory allocated
to the string pointer-probably not what you want. Remember to highlight the
first character in the string before opening the Dump view.

Bit Fields

Bit fields are highly system-dependent and, therefore, highly susceptible to
catching bugs. Often, a bit-field structure is used to access peripheral registers
or operating system switches, such as the DOS keyboard flag, as in this sample:

struct kb_flag {
unsigned int right_shift 1;
unsigned int left shift 1;
unsigned int ctl shift 1;

532 Part Four: Data-Structure Guides

unsigned int alt shift 1 ;
unsigned int sc ro LL state 1 ;
unsigned int num state 1 • ,
unsigned int caps state 1 ; -
unsigned int ins state 1 ;

};

Usually, programs address structures like kb_f Lag using a pointer variable,
which you might declare this way:

struct kb_f Lag far *key_state;

Another reason that this and similar declarations are so bug-prone is that
different compilers may allocate individual fields in the bit-field structure either
from top to bottom or from bottom to top. Obviously, declaring fields in the
wrong order is likely to cause problems-such as the (Caps Lock) light coming
on when you press (Left Shift).

TD can help you locate such errors. As Figure 20.11 (left) shows, a bit-field
structure in an inspector window looks very much like an array, but instead of
index values, individual bit fields are listed to the left with the field names and
sizes in bits separated by colons.

r.::~f[IJ=lns:=t\ry Key_state=3=. [t][U=
rai91111m.uam111!!JH'
ri !tiLshi ft : 1 . 0
I efLshi ft : 1 0
ctl_shift : 1 0
olLshift : 1 0
scrol I _stote : 1 1
nurLstote : 1 0
CClJS_stote : 1 0
i ns_stote : 1 0

~-------·~1 struct Kb_flao fer•

Inspect I no Key.state-Tl
~31C:FFCE·.: 0040:0017 ri !)'iLshi ft : 1 0
lefLshl ft : 1 0
ctl.-shift: 1 0
olLshl ft : 1 0
scro I L.stote : l 1
nurLState : 1 0

~[IJ=l~tlna n.n_state : 1=1=[tJ[i~
131
unsl Int 1 <0xl)
~

Figure 20.11. Inspecting a bit-field structure .

... ··.
As with other multipart structures, you can highlight an individual field and

press (Enter) to examine that bit (or bits) more closely. For example, to create
the image in Figure 20.11 (right), I highlighted num_state and pressed (Enter)
to pop up another inspector, which shows the value of that field as an
unsigned int. If you use a lot of bit fields, you'll find this process to be very
handy for extracting values from packed bit structures. It's a good way to
confirm-"tharyour program's logic is extracting the right bits from the right
places.

Figure 20.11 also illustrates a problem with TD that can sometimes cause
headaches, especially when debugging programs that directly access resources

Chapter Twenty: C and C + + Data Structures 533

through bit fields. In this case, key_state points to a byte that keeps the current
status of (Shift) and various other keys such as (Num Lock) and (Caps). To
initialize that pointer, you can execute the statement:

key_state = (struct kb_flag far*) MK_FPC0x0040, Ox0017);

If you then load the program into TD and open an inspector window for
key_state, you may be surprised to discover that pressing the listed keys does
not cause the expected changes in the bit-field values listed in the window. This
is because your program and the debugger share the keyboard, and the current
bit values won't show up in the inspector until the debugger releases control to
your code or until it accesses the inspected register or variable.

For instance, examine the right side of Figure 20.11 closely. Notice that the
value for num_state in the partially covered window is 0 but that the same value
in the smaller foreground window is 1. This discrepancy arose because I
pressed (Num Lock) after opening the inspector to key_state, then I opened
the second inspector for the num_state bit field. This caused TD to reexamine
the keyboard byte flag in memory and display the new value for the inspected
field.

In similar circumstances, you may have to open or reopen an inspector
window to be sure you are viewing the current bit-field values after those values
are updated by events external to the debugger and your code. For common
program variables, TD automatically updates irtspected and watched values
when they change. But for system-dependent items like the keyboard flags, an
inspector operates more like a camera that takes a snapshot of memory at the
time you open the window. TD does not update the "pictures" of those values
when they change.

A common st ruct technique-unnamed bit fields-throws TD for a loop.
Here's a typical example:

struct no name {
unsigned int x
unsigned int
unsigned int y

};

3;
3; /* unnamed bit field */
2;

Two named bit fields x and y are separated by an unnamed 3-bit field.
Apparently, Turbo C doesn't include information in the program's symbol table
for unnamed bit fields, causing TD to miscalculate the location of any following
fields. In this example, because TD is unaware of the unnamed field's existence,
the debugger is unable to display field y's correct value in an inspector window.
Unfortunately, there seems to be no easy work-around for this problem
except, that is, to use a Dump window to view struct variables and extract bit
field values yourself.

534 Part Four: Data-Structure Guides

Structures

C structures can house variables of many different data types under a st r u ct 's
roof. Inspectors make it easy to examine all the bits and pieces that make up
even the most complex multipart structures.

As an example, consider the palettetype structure from the Borland
Graphics Interj ace (BGI) library supplied with Turbo C. This structure is
declared as:

struct palettetype {
unsigned char size;
signed char colors[MAXCOLORS + 11;

};

A palettetype structure has two fields: a size and an array of colors. To
define storage for variables of and pointers to pa lettetype structures, you can
write:

struct palettetype color_palette;
struct palettetype *cp_ptr = &color_palette;

Here, color_palette is a variable of type palettetype, and cp_ptr is
initialized as a pointer to that structure. Figure 20.12 shows inspector windows
opened to these variables and to various elements in the multipart structures.

m=lns~tins color_eolette=3=[t][,i ~
1u111nn • •
sl ze '\x10' 16 <0x10)

~01j1 1iorlljsilwlli\'x0iijll!i\x0Cliiii\iliix8Aiiiliii\xlii. EFill\iilxC8iili\iliixFFlilii\x031iii\B
struct palettetl,lle

..----1 nsped i ng co I or -BO I ette-3 I
BrllC: FFOO
size '\xr:=;:I nspecti no sl ze-
col ors w\x01 \xOCl \x8A\x0FI BrllC:FFOO
..----Inspecting colors-~ ctn- '\x10' 16 <0x10)
~1C:FFB9
[0] '\x01' 1 <0x01) __J m ~-··ecticy colors[3J=6=[tmJ=;i

[3] [SiY '\xBA' -70 <0x8A)-ll
['!] _Jj'
[5J '\xCB' -56 <0xCB)

ctn-

Figure 20.12. Inspecting a complex structure.

As you can see in the sample inspectors, TD shows all of a structure's fields,
and it lets you highlight individual fields and press (Enter) to open additional

Chapter Twenty: C and C + + Data Structures 535

inspector windows for those elements. In cases where a field is itself a derived
type, you can open even more inspector windows to travel deeply into a
structure's back roads.

Viewing complex structures in the Watches window is not as handy.
Because this window shows data horizontally, watching an entire structure
usually shows only the first field or two, and it requires you to scroll the
window horizontally to see more of the structure's contents. For that reason, I
prefer to inspect structures with inspectors.

But, you can add individual structure fields to Watches, similar to the way
you can watch individual array elements. To do that, press (Ctrl)-(F7)
(Data: Add watch), and enter the st ruct's name, a period, and the field you want
to examine, for example, color-palette.size. Watches will then show only
the size field in the window.

Unions

Unions are structures of fields that are stored at the same location. A union lets
you create variables that can hold more than one type of data in the same
memory space, but only one variable at a time. For example, here's how to
declare a union fair_share and variable fp_val with float and char array
fields that share the same address, which you might do to "convert" a floating
point value to an array of bytes:

union fair share {
float fp_fi eld;
char fp_chars[sizeof(float) l;

} fp_val;

Figure 20.13 (left) shows an inspector window opened to the fp_va l union.
Except for the uni on keyword at the bottom of the window, the inspector looks
the same as it does when showing a common st ruct. To the right of the figure,
another inspector is opened to the fp_chars field. Notice that the address of
this field (@831 c: FFCA) is identical to the address of the union, even though fp_
cha rs is the second declared field. This fact plus the uni on keyword tell you this
is a union where all fields have the same addresses, and not a common st ruct,
where fields are displaced from one another. Because variables of st rue ts and
uni ens look very similar in TD inspectors, you need to look carefully in order
to tell the two constructions apart.

As with other complex data types, inserting a union into Watches may be
more confusing than helpful. Complex unions require you to scroll horizontally
to view more than the first field or two. But you can watch individual fields,
separated from their union identifiers with periods, for example, fp_va l. fp_
f i e l d and f p _ v a l . f p _ch a rs.

I
I

536

Pointers

Part Four: Data-Structure Guides

re_[IJ= I nsoect ill;i_ fih va I =3=[t J [J)::;

fp_field 3.1'1159
~p_chcrs I •JxlJl}xEFI !"

ll'lion foir..shcre

Figure 20.13.

,--lnspectlno fp_val-·...-.~-~
~31C:FFCA
fp_fleld 3.14159
fp..c:hcrs •\xlJl\xEF I@"
r;:=[IJ=l~tLrq m__c~'l=[tJ[iJ=

[0] '\x00' -'18 (0x00)
[l] '\xEF' 15 <llxEf)
[2] 'I , 73 (0x'\9)
[3] '@' 6'I (0x'\0)

~hcrlil,[11] .. 1111111111111iillililllllli~I

Inspecting a union.

Pointers get more than their fair share of blame for bugs in C programs. Or,
maybe the stigma is deserved. Pointers can address variables of any type
anywhere in memory. Most beginning C programmers find pointer concepts
difficult to learn, and compared with other data types, pointer syntax, with its
cryptic symbols*, ->,and&, can be confusing to read and understand.

Following are several tips about using TD inspectors and other features to
view pointers and the data they address.

Pointers and Arrays

When you open an inspector window to a pointer variable, TD displays both
the address of that variable and the address to which the pointer points. Figure
20.14 (left) shows this for a pointer defined as int *buffer. The first line inside
the window lists the two addresses, often with a segment register (ds in the
figure). Sometimes, just inspecting the pointer's address values can find bugs
caused by pointer variables that aim at the wrong targets.

r,=[IJ= I nsoect [Dg_ buf fer=3=[t][J]::;

[0] 212ill (BxS:B3)

··-----·~1 int •

lnspedlno;i buffer-~
~31C:FF86 : ds:092C
[0] 212'18 (Bx5300)

[

[IJ=!L '\=[t][J)::;i
ds:FFE6 2C 09 10 01 OC 'IC ffi EF .. L ,. •

Int • ds:FFEE C8 FF 03 00 ~ 08 82 63 ~ .. ~~c I
ds:FFC6 lC 03 00 01 00 BF '19 '10 ~+I@ I
ds:FFCE 17 00 '10 00 c:E FF 10 01 i @ 1-a J

Figure 20.14. Inspecting a pointer variable.

Figure 20.14 (right) shows what happened when I typed (Alt)-VD with the
address line highlighted as shown to the left. This opened a Dump window to the

Chapter Twenty: C and C+ +Data Structures 537

location where the pointer variable is stored, showing the pointer's byte values
2C 09. To follow this 16-bit pointer value to its destination, you could move the
cursor to the first of those two bytes and press (Ctrl)-FO (Fo L Low :Offset to
data). This will replace the Dump window's contents with the data at that
location. Notice that the pointer's byte values in the Dump window are in byte
swapped order.

If this were a far 32-bit pointer, you could press (Ctrl)-FS to select
Follow:Segment:offset to data, replacing the data in the Dump view with
the bytes at that location. Or, to do the same directly from the inspector,
highlight the line that begins with index [Q] and press (Alt)-VD. Either
of these methods shows the contents of memory addressed by a pointer
variable.

Typed and Untyped Pointers

Pointers that address variables of known data types-int, char, st ruct, and so
on-are called typed pointers. Other pointers that address a location in mem
ory of unknown type are called untyped or generic pointers. In C's recent past,
char* was the de facto generic pointer data type, leading to some confusion
between that and a string pointer, both of which share the identical syntax.
Today, void * is the new standard for declaring generic pointers.

Figure 20.15 (left) shows an inspector window opened to a void pointer
defined as void *nothing. To the right is another inspector, which I opened by
first pressing (Cursor Down) to highlight not hi ng's index [Q] and then
pressing (Enter). Because a generic pointer of type void* addresses nothing in
particular, TD shows the data type and value for the addressed information as
UNKNOWN·

;=[IJ=lnsoecti_oo_roth~[t][~]::::;

[0] ~C:0976

~ ~,
void•

Figure 20.15. Inspecting a void pointer.

Many times, you'll know that void pointers actually address a specific data
type or structure. To see that data in a more appropriate form, recast the pointer
to the other type. First, open an inspector window for the void pointer as
illustrated in Figure 20.15 (left). Then press (Ctrl)-N to select the inspector's
New expression command. Recast the pointer-for example, enter
(int *)nothing-and the inspector window will show the pointer type as int *.
It will also display the addressed data as type int.

I
I

538

Files

Part Four: Data-Structure Guides

NULL Pointers

Whether initialized or not, a pointer always points somewhere. But there is an
exception to that rule. When equal to the constant NULL, equivalent to 0, a
pointer addresses no specific location.

Unfortunately, TD doesn't display the word NULL as the value of a pointer
that equals NULL. Instead, it displays the pointer's offset value as 0000. When
you see 0000 to the right in the address line of an inspector window opened to
any pointer, it tells you this is a NULL pointer.

Also be aware of a subtle difference between near and far pointers that
equal NULL. For a near pointer, TD might display the address as ds :0000, which
you can easily misinterpret as meaning a pointer to the first byte of the data
segment. This is not the case. A near 16-bit pointer's segment value is assumed
to be relative to a segment register, usually DS. That's why TD displays ds: as
the pointer's segment. Even so, if the offset equals 0000, it's still a NULL pointer.

Contrasting that, TD fully displays a NULL far pointer as 0000:0000. Log
ically, both near and far NULL pointers are equivalent-they both address noth
ing in particular. But TD displays them differently.

Typically, files in Care defined as FILE *stream. When you open an inspector
window to a file variable, the results will be similar to those shown in Figure
20.16.

r;::_[IJ=I nsoectlr::ig_ strem=3=[t][.iJ=;

level 0 <0x0>
fl OJS 5 <0x5>
fd '\x05' 5 <0x05>
hold '\0' 0 <0x00>
bslze 512 <0x200>
l:uffer ds:EH:E
Ct.rp ds: EIJ'%
i stenp 0 <0x0>
tOl<:en 1:H3 <0x546>

~------·~' :stru:t •

Figure 20.16. Inspecting a FILE structure.

A FI LE is a structure defined in the header file STDIO.H. Like all structures,
a FI LE variable has various fields that TD can display symbolically. For debug
ging, the fd (file descriptor), buffer, curp (current pointer), and token fields are
most useful. The file descriptor is the DOS handle associated with this file. The
buffer and curp are pointers to the stream's I/O buffer. And token should
always equal the offset address of the FI LE variable-it's used to verify that this
is a valid FI LE structure.

Chapter Twenty: C and C + + Data Structures 539

A useful trick is to set a breakpoint for any changes to the stream's buffer.
This can halt a program every time it reads a new block of data from disk or
when the code writes any data to the buffer through the stream. To set this kind
of breakpoint, assuming the FI LE variable is a pointer named st ream, press
(Alt)-B to open the Breakpoints menu and choose the Changed memory global
command. Enter stream-)buffer, stream-)bsize to monitor the 1/0 buffer
for changes. Then, press (F9) to run.

Debugging Dynamic Structures

Dynamic data structures such as trees and lists are composed of variables
(usually st rue ts) that contain pointers to other variables, most often of the
same data types. TD makes fast work of these recursive data structures, which
can be tricky to debug.

Using inspector windows, it's possible to examine dynamic structures and
to follow the links that join them in memory. For example, consider a tree of
node structures, which you might define as:

struct i tern {
char *data;

};

struct item *Left;
struct item *right;

struct item *root;

The st ruct i tern contains three fields: a character pointer to the data for
this node and two recursive pointers to other structures of this same type. The
variable root addresses the base or root of the tree, formed by assigning Left
and right addresses after comparing new strings alphabetically with the data
stored previously in one or more other nodes. (Most good C tutorials cover the
algorithms for creating trees.)

To inspect a tree (or any other linked data structure), open an initial
inspector window to the root structure (see Figure 20.17). Then, highlight one
of the structure's pointers and press (Enter) to open another inspector to the
addressed item that's hanging out on that branch of the tree. Keep repeating
those steps until you see as much of the tree as you need.

When opening many inspector windows this way, depending on how much
RAM is available, you may receive an out-of-memory error from TD. If this
happens, press (Esc) to close some of the inspectors that you no longer need.
After closing a few unused windows, you should have enough memory to
continue viewing more of the tree.

Another way to conserve memory when inspecting linked nodes is to open
an inspector window to the root pointer, highlight one of the structure's

540 Part Four: Data-Structure Guides

pointer fields (left or right in Figure 20.17), and press (Ctrl)-D to choose the
Descend command. This reuses the current inspector for the addressed data, which
doesn't require TD to allocate additional memory for another inspector window.

Inspecting root-·d----.
Reoister : ds:ERE
data ds: 01AF "Hcn;Jo"
left ds:!BE
riljit ds:(HE

struct i ten •
..--lnspec ng ef ti I t--2
~:£m0 : ds:EDE

..--Inspecting rid-it-~
~3:E:£Dl2 : ds:(HE

data ds: 01135 "8cnono# oota ds:01C2 "Peach"
left ds:EH:E
ri ljit ds:EDJE

I eft ds:OOOO
r I g ;=[1J=l l'§le5tl_rig_ datCFfF[t J Eli:;

struct I tern • cha [0] 'P' 80 <0x50)
,--lnspedina left ,- '---- [lJ 'e' 101 <Bx65)
esn: 0080 : ds: !Bl: [2) 'a' 97 <Bx61>
data ds:BlOC "fWI e#
left ds:0000

[3J 'c' 99 <0x63)
[4] 'h' 104 (0x68)

ri liit ds:0000

st rue t i te11 •

~SiJillllllllfllllilllllllllll'B\Bl'IBl<IBxBBltiill)i~I
chcr •

Figure 20.17. Inspecting a tree.

Pseudo Variables

Turbo C defines several pseudo variables that let program statements refer
directly to processor registers. For example, if you assign a value to variable_ SI,
the compiler generates a machine-code instruction that changes the SI register.

TD recognizes all Turbo C pseudo variables, and you can use them to set
breakpoints and watches and to open inspector windows for processor regis
ters. To see how this works; use the Data menu's Inspect command and enter
_AX when prompted for the item to inspect. (You must type AX in upper
case.) Also open the Registers window and step through a few program
statements-you'll see the value in the inspector updated to match AX's register
value.

Apparently, to make life with pseudo variables simple, TD considers AX, ax,
and_ AX to all refer to the AX register, even though Turbo C recognizes only_ AX.
But, if your program declares a variable of the same name-ax or AX, for
example-then to view the register, you must type _AX with the underbar.

Debugging C + + Objects

Objects in C+ +encapsulate code and data, much the way structs can collect
variables of different data types. A C + + object declaration, or class, usually

Chapter Twenty: C and C + + Data Structures 541

includes one or more instance variables (for example, pointers and variables of
various types) plus methods that carry out the class's tasks. Classes can inherit
the properties of one or more other classes, and they can declare virtual
methods that can change the behavior of existing code at runtime, a process
known as polymorphism. As mentioned in earlier chapters, these concepts
come under the heading of object-oriented programming, or OOP.

When debugging C + + programs that declare one or more classes, TD
enables the View: Hie rare hy command, which is useful for investigating class
relationships, and to locate the source code for class methods. Also, inspector
windows can display object classes and instances (variables) of those classes,
making TD a powerful tool for debugging and browsing C + + objects.

Watching Objects

Because objects tend to be complex entities, viewing them in the Watches

window is possible, but not usually convenient. Watches displays variables,
including objects, all on one line, and for that reason, I prefer to use inspectors
to look inside objects.

As with other kinds of structures, however, it's often useful to monitor
individual object data fields in Watches. To do that, press (Alt)-DW and enter
an expression with an object instance's name, a period, and a field-for exam
ple, myobject.mydata or mybike.topSpeed.

Note: You can add only object instances and fields in an instance, but not classes,
to the Watches view.

Browsing Object Classes

Be sure that you understand the difference between a class and an instance. An
object class is a template that programs can use to define instances (variables) of
that class. Instances are stored in memory like other variables; classes aren't.

There are two ways to inspect object classes: in the Hierarchy view and in
an inspector window. Opening the Hierarchy window displays object names
sorted alphabetically at left and a tree of object relationships at right (see Figure
20.18).

The right side of the Hierarchy view is divided into two panes. The top
pane lists class names along the left edge, attached by lines to descendants
below and to the right. For example, in the figure, there are two "root"
ancestors: Vehicle and Boat. Descended directly from Vehicle are
FourWheeler and TwoWheeler. A single object, Amphibious, is descended from
two other objects, Boat and FourWhee ler, an example of multiple inheritance.

I
~

542 Part Four: Data-Structure Guides

;:=[IJ::Class Hlercrc.hiu:y ========;J::[t]['J::i
Andiiblous Vehicle
Boat ~ot.rih!el er
Fcu-lfieel er [IMNDlii
T u:Uieel er T i.dh!el er
Vehicle Boat

L___flndil b I ous••

Ptrents of !Tdil bl ous

~~ler
l___IJetJi c I e

Figure 20.18. Viewing C + + object relationships in the Hierarchy view.

Notice that Amphibious is followed by one or two asterisks. The primary
class has two asterisks; each secondary class has one. When a class is marked
this way, the Hierarchy view's lower right pane lists that object's parents,
showing the complement of the information above. (If all objects have only
single parents, this pane does not appear.) As Figure 20.18 shows, Amphibious
lists its immediate parents as Boat and FourWheeler (it could have more than
two parents). This window also lists an object's distant relatives, in this case, the
single grandparent Vehicle.

The Hierarchy view is easy to use (see chapter 5 for more information).
After selecting a class at left by typing part or all of its name or by using the
cursor and page movement keys, press (Ctrl)-T to move the cursor to the class
tree pane, showing the class's position among its relatives. Or, press (Tab) to
move from pane to pane. After highlighting a class name in any pane, press
(Enter) to open an inspector window, listing the items declared in the class
plus all items inherited from ancestor objects (see Figure 20.19).

'C!:ll=Class Andilbious="l=[tlm=;

floot Vehicle: :topSpeed
floot Uehicle::ci.rf~eed

f I oot Boot: : oetWe I i;JitO
void Boat::putWeli;titO
c I ass Boat •Boot: : BootO

Figure 20.19. Inspecting a C + + object class.

The top portion of a class inspector lists the object's declared and inherited
fields. Because this is only a class, not an instance, fields do not have values, and
you can't change them.

The bottom portion of a class inspector lists the methods available to
instances of this class. Press (Tab) to move the cursor into this pane, select a
method, and press (Enter) to open another inspector window, showing the
method's address. Press (Enter) once again to hop to the method's source
code in the Module view-a neat way to browse through all of a program's
methods. (TD must be. able to find the method's source-code file, or this tip
won't work.)

Chapter Twenty: C and C + + Data Structures 543

Note: When the word Class appears in an inspector's window title (see Figure
20.19), you are viewing an object class, not an instance.

Browsing Object Instances

Listing 20.1 is the sample Turbo C+ + program that I used to prepare the object
class and instance figures in this section. To keep the listing short, the program
is only a demonstration, and it doesn't perform any useful tasks. But if you want
to experiment with TD's commands for viewing classes and instances, enter the
text and compile from the DOS command line with the command tee -v
vehicle.epp.

Listing 20.1. VEHICLE.CPP.

1: // vehicle.cpp for TC++ 1.0
2:
3: #include <stdio.h>
4:
5: // -- Class declarations
6:
7: II A Vehicle is an "abstract" class
8: class Vehicle {
9: float topSpeed;

10: float currentSpeed;
11 : public:
12: void accelerate(float amount>;
13: void decelerate(float amount>;
14: void stop();
15: float getTopSpeed(void) { return topSpeed; }
16: void putTopSpeed(f loat s> { topSpeed = s; }
17: float getSpeed<void) { return currentSpeed; }
18: void putSpeed(f loat s) { currentSpeed = s; }
19: Vehicle() { topSpeed = currentSpeed = 0.0; }
20: Vehicle(float maxSpeed);
21: ~Vehicle() { stopO;}
22: } ;
23:
24: // -- A TwoWheeler is a Vehicle with a top speed of 35.0
25: class TwoWheeler : public Vehicle {
26: pub Li c:
27: TwoWheeler() { putTopSpeedC35.0); }
28: };

544 Part Four: Data-Structure Guides

29:
30: // -- A FourWheeler is a Vehicle with a top speed of 120.0
31: class FourWheeler : public Vehicle {
32: public:
33: FourWheelerC> { putTopSpeedC120.0>; }
34: };
35:
36: // -- A Boat is a new class
37: class Boat {
38: float weight; // Exceed this and she sinks
39: public:
40: float getWeightCvoid) { return weight; }
41: void putWeightCfloat w) {weight= w; }
42: Boat() { weight = 0.0; }
43: };
44:
45: // -- An amphibious vehicle is a boat with four wheels!
46: class Amphibious : public Boat, FourWheeler {
47: public:
48: Amphibious() { putTopSpeedC 45.0 >; }
49: } ;
50:
51: //==Method implementations
52:
53: void Vehicle::accelerate(float amount)
54: {
55: currentSpeed += amount;
56: if CcurrentSpeed > topSpeed)
57: putSpeedCtopSpeed>;
58: }
59:
60: void Vehicle::decelerate(float amount)
61: {
62: currentSpeed -= amount;
63: if CcurrentSpeed < 0.0)
64: putSpeedCO.O>;
65: }
66:
67: void Vehicle::stop()
68: {
69: while CcurrentSpeed > 0.0)
70: decelerateC1.0>;
71: }
72:
73: Vehicle::VehicleCfloat maxSpeed)

Chapter Twenty: C and C + + Data Structures

74: {
75: topSpeed = maxSpeed;
76: currentSpeed = 0.0;
77: }
78:
79: main()
80: {

545

81: TwoWheeler mybike; II Define test objects for each class
82: FourWheeler mycar;
83: Boat myboat;
84: Amphibious mytank;
85:
86:
87:
88:
89:
90:
91:

myboat.putWeight(1200);
mytank.putWeight(20000);

mybike.accelerate(2.0);
I* myboat.putSpeed(46.5);*1
mytank.putSpeed(58.0);

92: mytank.decelerate(20.0);
93: mytank.stop();
94:

II Assign weights to myboat, mytanl

II Call a few object methods
11 Incorrect--no setSpeed metho1
II Okay--inherited from Vehicle

95: printf<"mybike's top speed= %f\n", mybike.getTopSpeedO);
96: printf<"mycar's top speed= %f\n", mycar.getTopSpeedO);
97: printf<"myboat's weight = %f\n", myboat.getWeightO>;
98: printf("mytank's top speed= %f\n", mytank.getTopSpeedO);
99: printf<"mytank's weight= %f\n", mytank.getWeightO);

100: }

After compiling, load the VEHICLE sample program into TD; press (FS)

about five times to initialize all object instances. Then, press (Alt)-DI and enter
mytank to inspect that instance of the Amphibious class (see Figure 20.20).

E[IJ= I nsoect l.!:!l '!\ltcri< 3=[tl[H=1

Boot: : IJe i \tit 2Em3
Vehlcle::t~Soeed '15

Vehicle: :-tlehi c I e 1!7E53:0402
Fo..rlf'lee I er: : fo..rltiee I er 1!7E53: 0'\FB
~lblrus 1!7E53:0566

c I ass lb;:nibl ous

Figure 20.20. Inspecting a C + + object instance.

When it shows an object instance, the inspector window divides into three
panes. Under the window title is the object's memory address. If this were a
pointer to an object, the address would have two parts as it does for other

546

Summary

Part Four: Data-Structure Guides

pointers, showing the location of the pointer variable and the location of the
addressed object. Under the address are the object's instance variables (or
fields), in this case, weight and topSpeed. To the left of the double colons(::)
are the object class names that declare these variables. As usual, values are
shown at left in the window (20000 and 45 here).

The middle pane of an instance inspector shows the object's method names
with their declaring classes plus the address of each method's code. The bottom
pane describes the currently highlighted item above.

After opening an instance inspector, press (Ctrl)-H to show that object's
class position in the Hierarchy view. You can also highlight a method name
(after pressing (Tab) to move the cursor into the middle pane) and press
(Enter) twice to see that method's source code. See chapter 4 for more
information about using other local commands with inspector windows.

This chapter is a reference to inspecting C and C + + data structures. Use the
information in this chapter as a guide for investigating variables in your
programs.

The next two chapters describe how to inspect common data structures in
Pascal and assembly language programs.

Chapter 21

Pascal Data Structures

USE THIS CHAPTER as a guide to examining variables in Turbo Pascal
programs with TD inspector and Watches windows. As in Chapter 20, this one
begins with a review of where Pascal programs typically store variables. It then
shows sample variables and lists tips for viewing simple, complex, and object
oriented data types.

Note: I used Turbo Pascal 5.5 to prepare the sample code for this chapter. Except
for the object-oriented information, most of the details should apply to versions
4.0 and 5.0 as well.

Where Are My Variables?
Pascal variables typically fall into one of three categories:

• Global variables stored in the data segment.

• Local variables and parameters stored in the stack.

• Pointer variables address data stored in the heap (usually).

The following notes describe these categories and list a few hints for using
TD to examine variables stored in these memory locations.

Global Variables

Variables in the global data segment include all typed constants and those
declared in the program's outermost var section. They are called global

547

I
i

548 Part Four: Data-Structure Guides

variables because they exist within the scope of the entire program. The
compiler collects all global variables including those declared in unit interfaces
into one memory segment, which can be as large as 64K. Register DS addresses
this segment.

The location of a program's first global variable is not at ds:OOOO as you
might expect. This is because the system unit plus others that the program uses
add their own globals to the data segment. So, don't assume that your variables
will be stored at the beginning of the global data segment even when they are
the "first" variables in your program text. Use an inspector window to deter
mine the exact address of variables.

Local Variables and Parameters

Local variables include parameters and those declared in procedures and func
tions. Space for local variables is allocated on the stack. For that reason, local
variables are dynamic-they exist only within the scope of activated routines.
Any memory occupied by local variables that are no longer in scope is available
for reuse. This is why, when examining local variables and parameters with TD,
you may have to pause the debugger inside a procedure or function to view
local variables.

When inspecting local variables with identical names, TD usually shows the
value of the variable in scope. For example, if procedures A and B declare count
variables, TD shows the value of count for whichever procedure happens to be
active. This can be confusing if the program also declares a global variable of
the same name. Use dot notation when inspecting or watching variables to
resolve any such conflicts, prefacing the variable with the procedure, function,
unit, or program name. For example, a.count refers to the count variable in
procedure A, even if Bis active.

Pointer Variables

Variables addressed by pointers typically exist in the heap, which usually
occupies the amount of memory left after loading the program into RAM and
setting up the data and stack segments. The "heap" is an appropriate name for
this area, upon which programs might throw any sort of data structure.

ryped pointers in Pascal are bound to a specific data type. TD always
knows the type of variable addressed by a pointer. If the pointer addresses an
integer, the debugger shows the integer's value. If the pointer addresses a string,
the debugger displays the string's characters.

Untyped pointers may point to a data structure of any type, or they may
hold addresses for other purposes. For example, the system unit declares
several pointer variables such as saveintOO for saving system interrupt vectors
redirected by runtime routines.

Chapter Twenty-One: Pascal Data Structures 549

Other untyped pointers may address data structures. In that case, use a type
cast to tell TD the data type. For example, if an untyped pointer p actually
addresses a real number, enter real(p) as the expression to view in a Watches
or inspector window.

When inspecting pointer values, remember to type a caret (as in p") to refer
to the variable that the pointer addresses, usually located somewhere inside the
heap. To examine the pointer itself, omit the caret.

It's possible but less common for pointers to address variables not in the
heap. Turbo Pascal's @ symbol allows programs to assign the address of any
variable to a pointer. If p addresses an integer, and num is a global integer
variable, this assigns the address of num to p:

p := @num;

Because num is global, the variable is in the data segment. If num were a local
variable or a parameter, its address would be in the stack. Normally, pointer
variables are in the heap-but, as this example shows, that's not always the case.
Use inspectors to verify that variables are where you think they are.

Size of Variables

You'll often need to know how many bytes a variable occupies. One way to do
this is to call the si zeof function with the Evaluate/modify command. For
example, to check how many bytes a Boo lean variable named switch occupies,
press (Ctrl)-(F4) and enter sizeof(switch). The Result field in the
Evaluate/modify window then shows 1 ($1) : WORD. This indicates that switch
occupies 1 byte in memory. The first value is decimal; the second hexadecimal.

When using this method to determine a variable's size, don't let the WORD in
the result fool you-that's just the data type of the s i zeof function. It's not the
type of the sized variable. If measure is type real, evaluating sizeof(measure)
displays 6 ($6) : WORD, indicating that real variables occupy 6 bytes.

System Variables

When you drive a compiled Pascal program under TD, many system and unit
variables come along for the ride. The debugger recognizes all identifiers
declared in system and other units. It also recognizes standard procedure and
function names such as new and odd.

Refer to the SYSTEM.DOC file supplied with Turbo Pascal for a list of these
identifiers. Other .DOC files document interface sections for other units
valuable information to keep handy while debugging. For example, to locate

550 Part Four: Data-Structure Guides

the start of the heap after loading a program and pressing (F7) to execute any
startup code, enter heaporg into the Evaluate/modify dialog box
((Ctrl)-(F4)). The heap's starting address will then appear in the window's
Result box. Or, just open the Vari ab Les window (press (Alt)-VV) and use the
cursor and page movement keys to view all system and other variables.

Examining Simple Data Types
Most program variables are simple integers, real numbers, Boolean true and
false values, and so on. Of course, TD can display all such variables, showing
their names, data types, current values, and locations in memory. The following
reference shows examples of each of these simple types and discusses associ
ated debugging techniques.

As explained in other chapters, there are many ways to examine variables,
but the easiest is to position the cursor on the variable's identifier and press
(Ctrl)-1, opening an inspector window to show the variable's value, data type,
and address. Or, press (Ctrl)-W to add a variable to Watches. You can also
choose View: Variables to display all program variables in one window. Or, use
the Data menu's Evaluate/modify command ((Ctrl)-(F4)) and enter a vari
able's name for inspection.

Boolean Types

Figure 21.1 shows an inspector window for a Boo lean variable named switch.
The value on the second line at far right is always true or false. Enter true or
false to change the variable's value.

· mRl1
~IJ=lnspectiw swl tcl-Fl=[t][.l

Figure 21.1. Inspecting a Boolean variable.

In Pascal, the ordinal value of false is 0. True equals 1. Other ordinal values
may cause bugs in code that expects Boo leans to have no values outside this
limited range. You might be able to trap this condition with a breakpoint
expression like byte(ord(switch))) 1, which will halt the program if switch's
value is not true or false. This might also help detect uninitialized Boolean
variables.

Char Types

Figure 21.2 shows a char (character) variable named initial in an inspector
window. ASCII values ranging from 32 to 126 display as characters, for example

Chapter Twenty-One: Pascal Data Structures 551

'X and'&'. Values outside of this range display as decimal values preceded with
a hatch mark like this: #220.

~J=lnseytl] initlol=l=[t][J
· w..1111111
(}ffl 'A'

Figure 21.2. Inspecting a char variable.

When entering char values, you can type standard ASCII characters in
single quotes, or you can precede values with a hatch mark-for example, 'N or
the equivalent #65 (in hexadecimal, #$). To enter extended ASCII characters,
you must use the second form, for example, typing #220 or #245. You can also
enter expressions such as chr($41), useful for typing ASCII character values in
hexadecimal.

Enumerated Types

Enumerated types are rarely declared directly as variables. Most of the time, a
program creates an enumerated type identifier and then defines a variable of
that type, as in these sample lines:

type
RGBcolor = (RED, BLUE, GREEN);

var
color : RGBcolor;

Figure 21. 3 shows how variable co lo r of type R GB co lo r normally appears in
an inspector window. If the element name doesn't show up-in other words, if
you see a value such as 1 but not the associated name (GREEN in this sample)-try
pressing (F7) to execute the program's startup code. (Press (Ctrl)-(F2) first
to reset TD if the program has terminated.

col a<=l=[t]['

Figure 21.3. Inspecting an enumerated variable.

To enter new enumerated values, you can specify an element by name
RED, BLUE, or GREEN-or you can use a type cast with the data type and element
value in parentheses. For example, because the first element is always repre
sented byO, changing color to RGBcolorC1) is the same as setting it to BLUE, the
second enumerated element.

552 Part Four: Data-Structure Guides

Integer Types

Turbo Pascal recognizes five integer types: byte, integer, longint, short int,

and word. Figure 21.4 shows sample inspector windows for variables of each. In
all cases, the variable name is in the top border, and the address is on the first
line below followed by the data type and value in decimal and hexadecimal.
Hexadecimal values are in parentheses and are preceded by a dollar sign. (This
assumes you haven't changed TD's Integer format in the Display options

dialog box, or with TDINST.)

INTEGER 520 <$208)

LOOI NT 1234567093 <$'1~0202)

Figure 21.4. Inspecting Turbo Pascal's integer types.

Byte parameters passed to procedures and functions occupy 2-byte words
on the stack. When linking assembly language modules to Pascal programs, a
common error is to assign a byte value to AH and then push AX onto the stack
to pass the value to another subroutine. But this is not correct. The value should
be stored in AL, the "lower" half of the 2-byte AX. This problem sometimes
occurs when the code stores a byte in a temporary word variable and then loads
that value into AX. If the original operation stores the byte in the wrong half of
the variable, its value will be transferred into AH instead of AL. Inspecting
variables and registers can clear this kind of fog in a hurry.

To confuse matters even more, the Stack pane in TD's CPU window shows
stack entries as 2-byte words in byte-swapped order. For example, as Figure 21.5
shows, the highlighted value 0003 at ss:3FF6 is actually stored as the two bytes
03 and 00 at 9309:3FF6. For that reason, when inspecting integer arguments
passed on the stack, it may be easier to view them in the Dump pane. To do this,
press (Tab) to move the cursor to that pane, press (Ctrl)-G, and enter ss:sp.

Data pane Stack pane

9309: :J'F6 03 00 02 00 01 00 00 00 " I II SS: :J'FR 0031
9309::J'FE 00 00 SE EE 7'1 15 FF '16 "lltS F SS: :J'FB IHl2
9309: '10ffi ffi C'\ 76 02 26 00 '\'\ 02 +-vE iDI
9309:'10EE 26 88 lC 89 '\6 &I 89 SE &iLeF~ ss:3'F'\ 003l
9309:'1016 02 EB IE Ill '16 ffi 83 C'\ ltiFtfr ss :3'f2>3'FC

Figure 21.5. The stack pane shows byte parameters as
byte-swapped words.

Chapter Twenty-One: Pascal Data Structures 553

One of the most common bugs involving integer variables is caused by the
wrap-around effect that occurs when adding and subtracting values close to the
maximum and minimum of a data type's allowed range. For example, the result
ofadding 1 to an integer variable equal to 32,767 is not 32,768, which is $8000
in hexadecimal, or - 32, 768 decimal. Likewise, adding 1 to the word value
65,535 equals 0, not 65,536 as you might expect.

Pascal does nothing to guard against mistakes caused by inadvertent wrap
arounds, which are easy to introduce into complex expressions that mix vari
ables of different integer types. Use Evaluate/modify ((Ctrl)-(F4)) to test
suspect expressions, breaking those expressions into pieces until you find
what's wrong.

Often, a judicious type cast will fix a wrap-around problem by promoting
smaller types to larger ones. For example, if a and bare word values and c is of
type long Int, the expressions c : = a + b may not give the same result as c : =
longlnt<a> + b. Recasting a to a longlnt prevents the wrap-around error
because, in the other expression, the result of the addition is converted to
long Int after adding the two integer values.

Another common error that crops up all the time when using unsigned byte
and word values is to forget that unsigned values can never be negative. Loops
like this one are bound to fail:

while w >= 0 do
begin

something;
w := w + 1

end;

If w is a word, the loop never ends because words are always greater or equal
to 0. The symptom of this problem is usually a hung system. Use TD's code
tracing commands to find the bug by narrowing the problem to where the
program stops.

Real Types

Except for type real, Turbo Pascal's real-number types follow IEEE conven
tions and are compatible with formats used by a hardware numeric data pro
cessor (NDP).

Bugs caused by real numbers frequently involve round-off errors, espe
cially in business calculations where every penny counts. I find it helpful to
remember that real numbers represent measurements, not increments. Integer
data types are appropriate for counting the number of apples in a barrel. Real
numbers are appropriate for measuring how much the barrel weighs. Bugs are
certain to bore holes in programs that use a numeric data type for the wrong
purpose.

I
I

554 Part Four: Data-Structure Guides

Figure 21.6 shows sample inspector windows for each of Turbo Pascal's
five real types: comp, double, extended, real, and single. Notice that very
large and small values are shown in scientific notation, while midrange values
are displayed in more common decimal form. When entering new values
using the Change command in an inspector or Watches view, you can type
digits in either format, but TD may display the result differently from what
you enter. For example, if you type 65e9 for a variable of type real, TD
displays the equivalent value 6. 5e+10. Of course, you can also enter decimal
values such as 1.5 and 3.14159.

Hint: When using the inspector and Watches local Change commands, remember
that you can type expressions. For instance, suppose a program has a real variable
named inches. You can inspect that variable and enter new test expressions such
as 7/8 and 5 + 113. TD will evaluate the expressions and store the decimal
equivalents in the variable.

Subrange Types

Subranges specify an integer type's minimum and maximum range, helping to
prevent bugs caused by statements that assign values outside of that range to
variables. In Turbo Pascal, subranges are more useful when range checking is
enabled with the ($R+] option. With that switch engaged, the compiler gener
ates code to ensure that assignments to subrange variables are within limits.
With range checking off, subranges are treated no differently than other integer
types, except that out-of-range constant values during compilation will cause a
compile-time error.

Figure 21.7 shows an inspector window open to a subrange type declared
as 1 .. max, using the constant max (not shown) equal to 100. Notice that the data
type lists the range of values as 1 .. 100. TD does not pick up the use of the
constant in forming the new type, a minor inconvenience. Subranges in the
Watches view show up similarly.

neastrefxtemed=S=[t Jc i

1.le•'\932

Figure 21.6. Inspecting Turbo Pascal's real-number types.

Constants

Chapter Twenty-One: Pascal Data Structures 555

If you suspect that your code is failing due to a range error, instead of
recompiling with the ($R + J switch, set an Expression true global breakpoint
for an expression such as (n (min) or (n) max). The program will then halt if
n is outside of the range min •• max.

Figure 21. 7. Inspecting a subrange data type.

Pascal constants are used directly by compiled code, they aren't stored in a data
segment or on the heap. Even so, you can use TD to inspect constants-you just
can't change their values.

The same is not true of typed constants, which are not really constants at
all, but more like preinitialized global variables stored in the data segment with
other globals. For this reason, I usually prefer to use the term variable constant
instead of typed constant, but I'll defer to the common term here. TD allows
you to inspect and change typed constants as though they were variables.

All constants are represented internally as values of specific data types,
which, in some cases, might not be obvious. For example, this constant:

con st max = 100;

appears to declare a byte value max equal to 100. Internally, however, max is
stored as a 32-bit Longlnt. To prove this, load a test program with the const
declaration, position the cursor on max, and press (Ctrl)-1, opening an inspec
tor window to examine the constant type and value. As Figure 21.8 shows, max
is stored internally as a longint, not a byte. TD helps to shine light on this and
other similar hidden facts about internal storage details, which may affect the
results of expressions.

Examining Complex Data Types

TD's ability to examine complex data types exceeds similar features in other
debuggers. Of course, this is a valuable aid for debugging, but you don't have to

Figure 21.8. Inspecting a constant shows its internal data type and value.

I
I

556 Part Four: Data-Structure Guides

wait for problems to appear to use TD to inspect data. Inspector windows make
great browsers for verifying that data structures contain expected values, as
demonstrated in the following sections on Pascal's complex data types.

Array Types

Figure 21. 9 shows an inspector window opened to a variable re a l Arr a y
declared as:

var
realArray: array[1 •. 20] of real;

l~,,.,,jf,ticy rea1Acyf3=[tJ['~

[1] 2. 32831e-00 I

[2] 3 .137991
[3] 86.1018
[4) 20.2581
[5] 27 .2921
[6] 67 .1654 •

~ u .. 20) CF AEfl. I
Figure 21.9.

Inspect i na reo I lh-ay-:i---~
e9421:00:£
[!] 2 . 32031e-OO
[2) 3.13793
[3] ffi.1018

a::'nsrctlcy realtt3J=i=. [tm
~ER. Elj .1048

AEfl.

Inspecting an array.

Positioning the cursor on re a l Arr a y and pressing (Ctrl)-1 opens the
inspector window shown at left in the figure. Like all such windows, the
address locates the start of the variable in memory, in this case, the first byte of
the array at 9421:003E. Below that are the indexes and values for individual
array elements.

To see other values in large arrays, press the cursor and page movement
keys to scroll the inspector window's contents. Or, use the Range command
(press < Ctrl)-R) and enter the index values of the array elements that you want
to inspect-for example, 12, 18. Be careful not to exceed the size of the array. If
you do, and if you then use a Change command to assign values to elements
outside of the memory allocated to the array, you may overwrite another value
or instruction in memory.

To the right of Figure 21.9, two overlapping inspector windows illustrate
how to view individual array elements. To make this figure, I positioned the
cursor on index value [3] and pressed (Enter). Notice that the smaller inspec
tor window's title is realArray[3], which tells you this value belongs to the
array. The address in the window locates the array element in memory.

Of course, TD can also inspect multidimensional arrays. When debugging
such structures, it's helpful to keep in mind that a multidimensional array is just
a conceptual model for an array of other arrays. For example, if multi is
declared as array [1 .. 10, 1 .. 5] of integer, this is just a handy way to describe
a structure that consists of 10 five-integer arrays.

Chapter Twenty-One: Pascal Data Structures 557

Inside inspector windows, TD displays multidimensional arrays in a way
that mirrors that model. To investigate individual elements in the structure,
highlight successive index values and keep pressing (Enter) until you get to
the item you want to see.

Record Types

Pascal re co rd variables store various fields, which may be of any type, including
other records. As Figure 21.10 illustrates, using TD inspector windows makes it
easy to step into a record and examine individual field values. The left of the
figure shows an inspector window for a record declared as:

var
collection : record

r real;
s string[20l;
c long Int;

end;

r;=[IJ=)"wtirg col lectlon=3=:[tJUJ= m@w.
R 697.675
S 'F\Jple Pie'
c 697 ($289)

PEaHI

lnspectlno col lectlon-·~-~
@9421:1BJB
R ffi7.675
S 'FWle Pie'
C lnspectlno S--.,..._-~89)

@9'121:0EIE 'fWle Pie'
s [0] 9 ($09)

UJ ~·
[2] 'p'
[3J ~[[J:=l~tlr'jl S[2J=S=[tJ[-'
[1] _:_Jiii il'iTm -
[SJ (}flR 'p'

Figure 21.10. Inspecting a record variable.

As always, the address in the inspector window locates the first byte of the
record in memory (see the left half of Figure 21.10). Individual fields are listed
below the address. The right half of the figure shows three inspector windows,
produced by positioning the selector bar first on string variable s, pressing
(Enter), positioning the selector on [2], and pressing (Enter) again. This
displays the data type and address of the second character of this record's string
field. As you can see, it takes only a few simple keystrokes to dig deeply into
any record structure, no matter how complex.

When ill."""Cting record fields, TD follows the rules that apply to simple
variables of those same types. Integer fields display like integer variables,
real fields display like real variables, and so on. Refer to the appropriate
section in this chapter for more information about these and other data
types.

558 Part Four: Data-Structure Guides

Problems with "With"

The with keyword in Pascal makes it easy to refer to record elements without
having to type the record's identifier over and over. For example, to display the
elements of the co L l ect ion record from the previous section, you can write:

with collection do
writeln(s, ' r I I c >;

Unfortunately, this kind of statement gives TD indigestion. If you attempt
to watch or inspect the field names by positioning the cursor on s, r, or c, the
debugger displays Symbol not found error messages, probably because TD can't
look back and "see" the with statement, which tells the compiler that these
symbols are fields in the col Lection record. There are two solutions to this
problem:

• Inspect the full record name instead of inqividual fields. For example, press
(Alt)-DI and enter collection. Then, highlight a field in the inspector
window and press (Enter) to inspect the value.

• Inspect or watch a qualified record and field name, separated by a period
(called dot notation). To do this, press (Alt)-DI to inspect (or (Alt)-DW to
watch) an expression such as collection.r or collection.s.

Set Types

Sets occupy from 1 to 32 bytes, with each bit representing the presence (1) or
absence (0) of a corresponding element. TD displays sets using a form that
closely mirrors their source-code declarations. For example, Figure 21.11 shows
a sample inspector window for a set of characters assigned the set ['0' .. '9' l
and declared as:

var
digits set of char;

SET CF Dm

Figure 21.11. Inspecting a set.

The set's elements are shown below the address. As the figure shows,
['0' .. '9' l displays the range of values now in the set, in this case, the ten

Chapter Twenty-One: Pascal Data Structures 559

ASCII digit characters 0 through 9. Use the Change command in an inspector or
Watches window to enter new set values in this same format. When entering
character sets, though, you have to type # for extended ASCII characters as in
[#128 .. #2 5 5].

Changing a character set variable to an expression such as [#128 .. #255] erases
the variable to the null set []. TD also fails to recognize set values such as
[chr (65), chr (72)]. Even ['a', 'b', 'c'] produces a "Syntax error." Also,
there seems to be no easy way to assign extended ASCII values to character set
variables, not even by pressing (Alt) and digit keys on the numeric keypad.
Perhaps a future TD release will do a better job at handling Pascal character sets.

To view the bytes in a set variable, open an inspector window and press
(Alt)-VD, displaying a Dump window positioned to the variable's address. When
you need to inspect a set element's bit position, open both windows and either
change the set value or type new byte values in the Dump view. This lets you
experiment with bit patterns and view the resulting set (or enter sets and see the
bit patterns), which might be useful for examining the source of a problem that
you suspect is related to the way sets are stored in memory.

String Types

Strings in Pascal are specialized character arrays, where the first byte represents
the number of characters stored in the string. Because this value is a byte, a
string's maximum length is limited to 255 characters.

Bugs sometimes occur when programmers forget that a string variable's size
and length can never be the same. A string variable's size in bytes is constant,
while its length can vary from 0 to (size - 1) characters. Keeping these facts
firmly in mind can prevent lots of problems.

Figure 21.12 shows an inspector window for a string variable named t i t Le.
The format of this window is similar to other kinds of arrays, but with one
difference. Element [Q] shows the string's length in decimal and hexadecimal.
The other elements show the characters in the string. Technically, the inspector

Figure 21.12. Inspecting a string variable.

560

Files

Part Four: Data-Structure Guides

shows the incorrect data type for the string's length byte, which Pascal con
siders to be of type char. But it's helpful to see this value in decimal anyway, so
TD is justified in bending Pascal's rule in this case.

Despite this feature, however, to enter a new string length, you must
preface the value with a # symbol, or TD will not allow the assignment. For
example, to change the length oft it Le from 26 to 34, position the selector bar
on [QJ and enter #34.

A common and very dangerous bug arises in procedures that declare
variable string parameters of type st r i ng:

procedure message(var s : string >;
begin

s := 'Some message to return ins';
end;

That looks harmless enough, and it is, provided that variables passed to
procedure message are long enough to hold the result. With Turbo Pascal's [$V-J
string-length switch in effect, the following declarations and statement cause a
major bug:

{$V-}

type
string10 = string[10J;

var
shortString : string10;

{- insert message procedure here }
begin

message(shortString >;
end.

Variable short String can hold up to ten characters, but the parameter to
message is declared as a generic string, which can store up to 255 characters.
Because the [$V-J switch turns off automatic string-length checks, message can
overwrite other bytes in memory outside of the space allocated to short String.

Note: See "String Length Problems" in chapter 12 for more information about
dealing with this common bug.

You can examine file variables using the same methods that work for other
kinds of data. Even though you normally can't look at a file variable's details,

Chapter Twenty-One: Pascal Data Structures 561

TD allows you to add a file variable to the Watches or an inspector window for
any file, for example a variable defined as myFi le: FILE of Real or text Fi le:
TEXT. Examining myFi le, text Fi le, and other file variables reveals their
addresses, status (open or closed), name, and type. All such files are one of
these three types:

• Text file

• Typed file

• Untyped file

To see still more details inside file variables, add the Dos unit to a program's
uses statement. Then, press (Alt)-DI or (Alt)-DW and enter a type-cast
expression such as textRec(t) or fileRec(f) where t is any text file and f is any
typed or untyped file. Casting the variables to these record declarations lets TD
display all normally hidden fields inside the file variables. See the DOS.DOC file
on your Turbo Pascal diskettes and your reference manuals for information
about each of these fields.

As you can see in Figure 21.13, which shows the contents of a text file
named text Fi le, there's a lot more to a file variable than is usually apparent.
The top of the figure shows the inspector window for the file variable. The
bottom shows the inspector window open to the same variable but using the
type-cast expression textRec(textFile). The file is currently open to a disk file
named DATA. I and has a test line loaded into the output buffer. You could also
open additional inspector windows to view even more details about individual
fields. To see more of the buffer's contents, highlight the BUFFER field and press
(Enter). Or, highlight the field and type (Alt)-VD to open a Dump window,
showing the buffer's contents as a block of bytes.

j=[IJ=ln~tins textFi le=:5::[f][~J=i'
@:#!;lj!! Ml I
<OJTPUT. 'd:ita. l' >

TEXT Fl LE

r;=[IJ= Inspect~ T exffiec < textF 11 e

fffO._E 5 <$5>
l1IE 55218 <$0782)
ElfS I ZE 128 <$8EI>
PRl~TE 0 <$1l>
ElfPffi 16 ($10)
ElfE~ 0(~)
ElfPTR 9'166:EHE
CIBflliC 93Ci: 0579
I f'OJTFUtc 93Ci: ffi85
FW31fUtc nl I
QffiERJtc 93C4: ffiCA
LG:FmTA <0,0,0,0,0,0,0,0, 0,0,0,0,0, 0, 0,0>
f'ffE ('d', 'a', 't', 'a','.', 'l',110,110,11185,110,110,118,110, '11',110, '>
ElFFER <"'T', 'h', 'i ', 's',' ','I'. 's',' ','a',' ', 't', 'e', "s', 't

TEXTREC

Figure 21.13. Inspecting a text file.

562 Part Four: Data-Structure Guides

Figure 21.14 shows another example, this time for a typed file declared as a
file of rec where rec is a simple three-field record. The top inspector window
shows TD's normal view for file variables; the bottom shows the results of
inspecting the type-cast expression fileRec(typedFile), which reveals the
hidden fields inside the file variable. Untyped files declared as type file have
the same internal structure as typed files.

FILE CF REC

r,::[IJ=lnSPeCtl!!!i Fl I eRec<tlJ)e(f"I I e:C'l=[t][.lJ::;

IRO._E 6 <$6)
l«E 55219 ($0783)

RECSIZE 29 <$1D>
PRI \JITE <0, 0, 0, 0, 0, 0, 0, 0,0,0, 0, 0, 0,0,0,0,0, 0
IHIUlTA <0,0,0.0,0,0,0,0,0,0,0, 0,0,0,0,0>
tftE <"'d"', 'a', 't', 'a",'.', '2',tt0, '8',ttB, 'I!',

FILEREC

Figure 21.14. Inspecting a typed file.

Debugging Dynamic Structures

Of all the bugs that can flutter into a program, those that involve pointer
variables are often the most difficult to net. This is especially true of structures
such as lists and trees, where multiple variables are linked by pointer fields that
address other variables, all of the same types.

Such recursive data structures provide powerful ways to store and organize
information in memory. By using inspector windows, its possible to step
through individual records in a complex list or tree, using TD as a browser to
locate data simply by following pointers-as easy as drawing a picture by
connecting the dots. For example, consider these definitions:

type
string20 = string[20J;
itemPointer = Aitem;
item = record

var
root

data : string20;
left, right : itemPointer

end;

itemPointer;

Chapter Twenty-One: Pascal Data Structures 563

Variable root addresses an i tern record, which serves as the root of a tree
a special kind of ordered linked list. By opening an inspector window to root,
all elements linked to the tree are available for inspection. Figure 21.15 illus
trates several inspector windows that stem from root and show the contents of
a sample tree. In this case it's a fruit tree with data values equal to the strings
'Mango', 'Banana', 'Apple', and 'Peach'.

lnspectinQ Root-~
~29:ffii4 : !ES3:0013
[flTA 'Hcnoo'
LEFT 9354:!BIJ
RI !JtT 935 Inspect I nQ RI Effi-ti-----.
1---------1@9853:0019 : 935A:!BH

I nspecti no LEFT
:0015 : ~:0000

'&ricno'
9356: IBJ1

[IJ=lnspectinQ LEFT=5=[t][' 07
~:0022 : 9356:1'1Dl
rnTA 'A~le'
LEFT ni I
RIGHT ni I

I TEli'O I NTEA

[fffA 'Peach'
- LEFT ni I

R 1 Slff 985C: 0001

ITElf'OINTER

Figure 21.15. Inspecting a tree's elements.

I constructed Figure 21.15 by first opening an inspector window to root.
Then, I positioned the cursor on LEFT and RIGHT pointer fields and pressed
(Enter) to open additional inspectors for items linked to those branches.
Pointers marked n i L represent the end of a branch.

Note: TD displays ni L for pointers set to that value (represented internally as
0000:0000), but it does not prevent you from opening an inspector for the "data"
at that location, even though, technically, a n i L pointer doesn't address a valid
memory location. For this reason, when inspecting linked lists and trees, it's up to
you to know when to stop following pointers to new information.

Debugging Objects

The most complex kinds of inspectors are those that display the contents of
object instances or types (also called classes). In Turbo Pascal 5.5, an object
encapsulates both data fields (instance variables) and methods (procedures,
functions, constructors, and destructors). Those methods may be static
(directly addressable) or virtual (addressable via a lookup table).

While debugging any program that declares at least one object, you can
press (Alt)-VH to view a hierarchy of object relationships among all classes
available to the program. Remember that this window shows only classes; it

I
I

564 Part Four: Data-Structure Guides

does not show object instances. See chapter 5 for more information about using
this window as an object class browser-a great way to get the broad picture of
an object-oriented program's organization.

Watching Objects

Because most objects tend to be extremely complex structures, I find that
adding objects to Watches is rarely of much use. Instead, to examine an object's
parts and pieces, I prefer to open an inspector window to an instance of that
object's class or to the class declaration itself. However, at times, I'll specify
expressions such as list.count or list.root to watch individual object fields in
Watches-useful when I don't want to see all that an object contains.

Figure 21.16 shows an inspector window open to an object instance called
names Fi le. The top pane of the window lists data fields in the object, which
you can inspect as you can other Pascal variables by highlighting entries and
pressing (Enter). The bottom inspector pane lists the object's methods. Press
(Tab) to move the cursor into this pane, highlight a method, and press
(Enter) to open an inspector window listing that method's address and type. If
you then press (Enter) a second time, TD will switch to the Module window
and show you the method's source code. (If the source-code file isn't available
to TD, it will open a CPU window instead.)

Classes vs Instances

a IJ= I nsoect im_ ncnesF 11 e=3=[tJ m=;1
4

STREFt1. T'-IPECClM' 768 <$300>-i
~rii!REiFt1i!ill. mB.iiii!il1 siir••lllllosooiiil:Eftllii~·I
ELf6TREFt1.00lf;: &ill :!Dli
STREFt1. Effm ~ :E!:Bi
ELfSTREFt1. FLLEH ~ : 0:Bi

IUHSSFILE

Figure 21.:i.6. Inspecting an object instance.

Be sure to understand the difference between an object class and an object
instance. A class is like a record declaration or another data type. Classes don't
exist in memory; they're merely schematics for creating variables of those
types. An instance, on the other hand, is a variable of an object class (like a
variable of a record type). Like other variables, object instances may be stored
in the data segment, on the stack, or in the heap.

Because only object instances have substance, when inspecting instances,
you can view and change data fields stored in an object. But, when inspecting
classes, those same fields don't exist anywhere-they merely show you what a

Chapter Twenty-One: Pascal Data Structures 565

variable of that class will contain when and if a program statement defines a
variable of that type-or, to use the proper OOP buzzwords, when the program
"instantiates the class."

Finding the VMT

Object types that define a constructor or that have one or more virtual methods
have an associated Virtual Method Table (VMT) stored in the global data
segment. Calls to virtual methods consult this table and, therefore, can be
redirected at runtime to call replacement routines in descendant objects, a
process known as polymorphism.

Object instances that require VMTs begin with a single 2-byte field that
holds the offset value of the VMT address in the data segment. Normally, this
field is invisible, but it might be useful to inspect it while debugging OOP code.
To find the VMT, open an inspector to an object instance. Then, press
(Alt)-VD to view a dump of the bytes where the object is stored. The first two
bytes are the VMT's offset in byte-swapped order. When I tried this on a test
object, the Dump window displayed the two bytes 1 A 00, indicating that the VMT
is stored at DS:OOlA.

After doing this, you could press (Ctrl)-G to Goto that address and view
the bytes that make up the VMT. But there's a better way to view VMTs. First,
add the following type definition to the main program module and recompile:

VMTptr = "VMT;
VMT = record

size : word;
negSize integer;
methods : array[1 .. 1000 J of procedure

end;

The VMT record describes the VMT's format, which begins with a word field
equal to the size of an object instance of the class. The following integer field
(negSi ze) is the negation of size and is used by Pascal to verify that the object
has been initialized. For example, if size equals 27, then negSi ze should equal
- 27; otherwise, the object instance has not been initialized by a call to its
constructor method. To check for this condition, recompile with the [$R+ J
option in effect, which inserts automatic runtime checks to halt the code if a
virtual-method call is made to an uninitialized object. The option works by
comparing the size and negs i ze fields in object instances before every call to a
virtual method.

The third field in the VMT record is an array of 1000 procedure pointers. I
used 1000 because it's unlikely that any object would declare more than that
number of methods. The actual value isn't too important, however.

566 Part Four: Data-Structure Guides

Figure 21.17 illustrates how to use the VMT record to inspect an object's
VMT in the data segment. After obtaining the VMT's offset address from a Dump

window as explained previously, press (Alt)-DI. When prompted for an
expression to inspect, enter something like VMTptr(ds:SOOlA), replacing
OOlA with the address of the VMT that you want to see. The top of the figure
shows the result. The Constant line displays the VMT's address. Below that are
the SIZE, NEGSIZE, and METHODS fields. Notice that SIZE and NEGSIZE
complement each other (26 and - 26).

r-lnspectlna \11TptrCds:$00lo}-3-.-.--~
Constmt : 9766: OOlA
SIZE 26 <$1A>
f'EffilZE -26 <$FFE6>
t£THlJS <9581 :Eafi,9581 :0131,9581 :07EB,958

[_PR'.:::ClEl.1£=:::__ 1r=~QI[llilJ=ll nsoec.j.tj!_!!l_--IETHJ!i!ji~-·[*'tJj['!!i!I~
[l] 9581 :Eafi (oo.£CTS.ElFSTfEft1.1
[2] 9581:0131 Coo..ECTS.STREFl1.m
[3 J 9581 : 07E8 [oo.£CTS. ElFSTFEFl1.
['\] 9581:07FE [oo.£CTS.ElFSTfEft1.
[5] 9581:0023 [oo.£CTS.ElFSTfEft1.
[6 J 9506: 0'13E (PERSIJiU. FllJ£SSF I ~ii

~OCEIUE]

Figure 21.17. Inspecting an object's VMT.

The bottom of Figure 21.17 shows the result of positioning the selector on
the METHODS fiell;i and pressing (Enter) to open another inspector window.
This lists all virttlfll methods stored in the table and identifies the methods by
their full dot-notai·on names. (Press (F5) to zoom this window to full screen if
the names are trun ated as they are here.)

At this point, ,ou can inspect individual methods. For example, Figure
21.18 shows what h ppened after I highlighted the sixth entry in methods (see
Figure 21.17) and pr1 ssed (Enter). I then pressed (Cursor Down) to select
the [1 l field in th • inspector and pressed (Enter) a second time to view
this method. Pres 1ing (Enter) once more would then take me to the

I
method's source code, a useful technique for navigating from a VMT back to
the source. ~.

I I nsoecti na IETHJEC6J-~
766:0032

~:013E
J=I ti t£THJE(6J"=:S::[tm

PIUEJl.I£

Figure 21.18. Inspecting an object method by way of•
the object's VMT.

Summary

Chapter Twenty-One: Pascal Data Structures 567

This chapter is a reference to inspecting Turbo Pascal data structures. Use the
information in this chapter as a guide for investigating variables in your
programs.

Chapter 20 describes how to inspect common C and C + + data structures.
The next chapter explains how to inspect variables in assembly language
programs.

Assembly Language
Data Structures

Chapter 22

ASSEMBLY LANGUAGE allows programmers great freedom, but it also
demands great care. Bugs that are stopped at the gate by a Pascal or C compiler
are waved through by the assembler, which does little to outlaw errors caused
by out-of-bounds array indexes, mismatched data types, and other vices.

Of course, that freedom is also one of assembly language's main strengths.
If you want to treat a structure as a collection of strings for one operation but
as an array of binary words for another, that's fine with the assembler, and it
might be useful for writing tight code that runs at top speed. But it also
complicates debugging by shifting error prevention from the language to your
shoulders.

This chapter explores TD's capability to examine assembly language data
structures created with Turbo Assembler (TASM) or Microsoft's Macro Assem
bler (MASM). Use it as a source of tips for investigating data structures in your
own programs.

Where Are My Variables?

One of the keys to successful assembly language programming (and debug
ging) is to know where your variables are at all times. Because assemblers
loosely enforce data-type checking, careful control over the location of data
in assembly language programming is more important than it is with high
level languages, which take over most data addressing details. For that reason,
assembly language bugs are often location-dependent, and a good bit of your
debugging efforts will be concentrated on examining the addresses and values
in memory.

569

570 Part Four: Data-Structure Guides

Entering Values

With Opt i ens: Language set to Assembler (or Source after loading an assembled
and linked assembly language program), TD's default data-entry radix is hexa
decimal, a fact that can't be changed. This means that, at most times, if you
enter 10, the debugger silently converts the value to 16 decimal. This can be
handy, for example, when using the Evaluate/modify command as a hex-to
decimal converter. Just press (Ctrl)-(F4), enter 10, and press (Enter). The
Result window then shows word 16 C10h).

Unfortunately, as you can see from this experiment, the result is in decimal
followed by the equivalent hex value in parentheses-a small, but potentially
confusing, detail. What's more, the default radix for most TASM and MASM
programs is decimal, which further complicates debugging.

Of course, one thing nobody needs during debugging is more confusion!
For that reason, it's probably best to add a trailing h to hex values, d for
decimals, and b for binary values at all times.

Note: Be especially wary of ambiguous values such as OlOlb and OllOb. Are these
hexadecimal values lOlB and llOB, or are they binary values 0101 and 0110? The
answer is, they are binary, even though TD's default radix is hex. In fact, the only
way to enter such values in hex is to add a trailing has in 101Bh and llOBh. You
must include the h to resolve the ambiguity of hexadecimal values that end with b.

Size of Variables

It's often helpful to check how many bytes a variable occupies. You may
discover that you accidentally declared a byte with db when you intended to
declare a word with dw or that you've used the wrong constant to declare an
array with the dup directive.

Unfortunately, TD lacks a way to determine the size of assembly language
variables directly. One way around the limitation is to change languages. To do
this, press (Alt)-0 to open the Opt i ens menu, press (Enter), and press P to
change the language to Pase al (press C for C). Press (Enter) again to accept
the change, and then use the Data menu's Evaluate/modify command to enter
an expression such as sizeof(aByte) or sizeof(anArray). The result shows the
size in bytes:

2 ($2) : WORD

The size of the variable is displayed first in decimal, then in hex preceded
by a dollar sign-Turbo Pascal's symbol for a hexadecimal value. (If you

Chapter Twenty-Two: Assembly Language Data Structures 571

changed the language to C, you'd see Ox2 for the hexadecimal equivalent.)
Ignore the WORD. That's the data type of the s i zeof pseudo function, not of the
inspected variable.

Hint: After using this trick, be sure to reset the language to Assembler or Source.

Examining Simple Data Types

Simple data types are declared with one of the seven Define-Memory dkectives
listed in Table 22.1. The following sections explain how to examine each of
these fundamental assembly language data types with TD inspector windows.

Table 22.1. Simple assembly language data types.

Directive Name Size in Bytes

db Define byte

dw Define word 2

dd Define doubleword 4

dp Define pointer 6
df Define far pointer 6
dq Define quadword 8

dt Define ten bytes 10

Byte (db) Variables

Figure 22.1 shows an inspector window open to assembly language's simplest
data type, a single byte. The variable a Byte was defined with this db directive:

aByte db 61h Byte or char in hex

Figure 22.1. Inspecting a byte (db) variable.

TD normally displays all byte values in three ways: as an ASCII character, in
decimal, and in hex (inside parentheses). The full 32-bit address is shown above
the data type (byte).

572 Part Four: Data-Structure Guides

Figure 22.2 shows a similar inspector window for a variable aChar, also
defined with db, but initialized to the character value 'a' with the directive:

a Char db 'a I ; Same as aByte

1iA?mvt11 c:Oicr=3=rtm
~~~·~ielllllllll,01,i9171<i611h~> 

Figure 22.2. Inspecting a character (db) variable. 

Because characters and bytes in assembly language are one and the same, 
except for the variables' names, there isn't any difference between the inspec
tor windows in Figures 22.1and22.2. You can use the Change command (press 
(Ctrl)-G) to assign new standard ASCII characters to these variables, but to 
enter exten<,ied characters in the range of 128-255, you must enter the ASCII 
values in hex or decimal. 

Word (dw) Variables 

Variables defined with dw occupy 2 bytes, which are stored in byte swapped 
order with the most significant byte first. Figure 22.3 shows a sample inspector 
window for a variable aWord defined as: 

aWord dw 65535 ; A word in decimal 

Figure 22.3. Inspecting a word (dw) variable. 

There are two details to keep in mind when debugging dw variables. First, 
remember that there are no explicit signed and unsigned data types in assembly 
languages; therefore, legal word values may range from -32,768 to 65,535. 
Even so, the values from 32, 768 to 65,535 are identical in binary to the values 
from - 32, 768 to -1, a common source of confusion. 

The second detail to remember is that words are always stored in byte
swapped order. To verify this, press (Alt)-VD to open a Dump window after 
inspecting a word value such as OFF55h. This will show you the physical byte 
order of the value as stored in memory-in this case, in the two bytes 55 FF. 
Remember this detail also when using the Dump window's Search command 
((Ctrl)-S). To find a specific word value, you can enter the full value as 1234h 
or the individual bytes as 34h 12h. Either argument will locate the same value 
in RAM, and at times, one form may be more convenient to use than the other. 



Chapter Twenty-Two: Assembly Language Data Structures 573 

Doubleword (dd) Variables 

A doubleword takes 4 bytes, as illustrated by Figure 22.4, which shows a dd 
variable defined as: 

aDoubleWord dd 450000 ; A double word in decimal 

Figure 22.4. Inspecting a doubleword (dd) variable. 

Like word values, doublewords may be signed and unsigned and may range 
in decimal from -2,147,483,648 to 4,294,967,295. However, as with word 
values, negative doublewords duplicate in binary the positive values starting 
from 2,147,483,648. (TD allows you to enter negative doubleword values using 
the Change command in an inspector window or Watches view, but it displays 
only the positive equivalents.) 

When examining doubleword values in Dump windows, remember that both 
of the two words and the two bytes in each word are stored in byte-swapped 
order. The doubleword value 12345678h appears in the window as the four hex 
bytes: 78 56 34 12. As with dw word values, this is also important to remember 
when using the Dump window's Search command ((Ctrl)-S). To find a specific 
doubleword variable, you can enter the full value as 12345678h or the individ
ual bytes as 78h 56h 34h 12h. 

Pointer (df, dp) Variables 

Both df (define far pointer) and dp (define pointer) give the same result, a 48-bit 
pointer, which TD displays as type pword (see Figure 22.5). Unlike most other 
inspector windows open to pointer variables, this one shows the variable's 
address in the first line, but not the location to which the pointer points. 
Instead, that value is displayed as the 6-byte hexadecimal figure to the right of 
the data type. 

cfcrPol nter='l=[t][~ 

Figure 22.5. Inspecting a df or dp 48-bit pointer variable. 

Most 8086 assembly language programs won't use df and dp directives. If 
you're trying to use them to define pointers, try dd (define doubleword) 
instead. Despite this directive's name, it's suitable for creating 32-bit integers 



574 Part Four: Data-Structure Guides 

and pointers composed of 16-bit segment and offset parts, as the next section 
explains. 

Doubleword (dd) Pointers 

When dd is used to create 32-bit, or far, pointers, TD displays the variables as 
type far ptr, where type might be byte, word, and so on. Figure 22.6 shows a 
sample of a variable declared as: 

aPointer dd a Byte ; A "far" pointer 

rC[ ll= I nsoect i IJ9.. cf'o Inter 

[0] 

~--------~1 Me for ptr 

'a' 97 <61h> 

Figure 22.6. Inspecting a 32-bit pointer (dd) variable. 

As you can see in Figure 22 .6, the inspector displays the address of 
a Poi n t er followed by the addressed location. It also identifies the target's name 
and module, in this case, #testexe#abyte. Below this line is the value of the 
variable at that location, here 97, or in ASCII, the lowercase character 'a'. Notice 
that TD displays a single index [Q l as though the variable addressed an array. 

TD distinguishes between doubleword integer values and pointers created 
by dd directives. Inspectors show integer values in decimal and hexadecimal 
(see Figure 22.4). They show pointers as illustrated in Figure 22.6. 

Quadword (dq) Variables 

A quadword typically defines real (floating-point) numbers, as in this directive, 
which initializes aQuadWord to 71': 

aQuadWord dq 3.14159 ; A real number 

Unfortunately, as Figure 22. 7 illustrates, TD displays quadwords in hexa
decimal, even though dq is rarely used to define 8-byte integers. Also, TD does 
not allow you to enter new floating-point values for quadword variables using 
an inspector or Watches local Change commands. 

Fad••••100•92l•F!F•l311Wi1(i_. .. ~ 

Figure 22.7. Inspecting a quadword (dq) variable. 



Chapter Twenty-Two: Assembly Language Data Structures 575 

One way around these limitations is to switch languages to Pascal with the 
Options menu Language command. After doing that, open an inspector win
dow to a quadword variable and press (Ctrl)-N. Enter a type-cast expression 
such as double(aQuadWord), replacing aQuadWord with your variable's identi
fier. This displays the dq value formatted as a real number, and it lets you use the 
Change command to enter new values and expressions like 2.5or1/7. However, 
if you then change Language back to Source or Assembler, TD becomes 
confused about the variable's data type and erases the inspector window's 
contents. 

Ten-Byte (dt) Variables 

Variables defined with dt are usually in Binary Coded Decimal (BCD) format, 
stored as 4-bit hex digits in 10 bytes. This creates enough room for values that 
range from 1 to 20 digits, equal to integer values from Oto a number with 20 9s. 
Figure 22.8 shows an inspector window for a 10-byte variable defined as: 

aTenBytes dt 81659247 ; A Binary Coded Decimal 

Figure 22.8. Inspecting a 10-byte (dt) variable. 

For some unexplained reason, TD does not let you enter new values for dt 
variables using an inspector or Watches local Change commands. To get around 
this limitation, open the inspector and then press (Alt)-VD, creating a Dump 
window showing the variable's bytes. You can then enter new BCD values, but 
in reverse byte order. 

Memory-Addressing Modes 

TD's Data:Evaluate/modify command is useful for experimenting with the 
first five of assembly language's seven addressing modes, listed in Table 22.2. 
Many bugs in assembly language programming are caused by misunderstanding 
(and misusing) these addressing modes. 

Entering test expressions into the dialog's Expression input box lets you 
preview an addressing mode's results. For example, enter aBuffer + si to see 
the location and data addressed by that expression. You can also preface an 
expression with operators such as byte, word, offset, and seg to change the 
type of data addressed. 



576 Part Four: Data-Structure Guides 

Table 22.2. Assembly language addressing modes. 

Mode 

Direct 

Register-Indirect 

Base 

Indexed 

Base-Indexed 

1/0 Port 

String 

Example 

mov ax, (aByte] 

mov ax, [byte ptr bx] 

mov ax, (aBuffer + bp] 

mov ax, [aBuffer + si] 

mov ax, (aBuffer + bx + si] 
in ax, dx 

stosb 

To experiment with 1/0 Port addressing, open the CPU window, press 
(Ctrl)-1, and select an input or output command from the small pop-up menu. 
After that, specify the port number to read or write, using the registers pane to 
enter and inspect byte or word values. 

There's no easy way to test string-addressing operations such as stosb and 
lodsw. But you can assemble short tests into an unused memory location (open 
CPU and start typing), or create test programs in the usual way, and load them 
into TD. 

Note: Be careful when experimenting with 1/0 ports. Just reading a port address 
may activate devices or change a peripheral's configuration. Poking around 
aimlessly might have disastrous consequences. 

Equates and Expressions 

Errors frequently crop up in equated (EQU) expressions for a variety of reasons. 
Because equates are evaluated at assembly time, it's easy to use the wrong radix 
in a constant, or to type SHL when you meant to use SHR, and not notice the 
mistake until the program runs-and fails. 

Because equated expressions evaluate to constants, their results are usually 
combined inside instructions or buried in other directives, making them difficult 
to inspect, even with TD. For example, suppose you declare these three 
constants: 

C1 
C2 
C3 

EQU 
EQU 
EQU 

100 
C1 SHL 
C2 AND OFFOOh 

The values are arbitrary, but they demonstrate a situation that occurs often 
in assembly language programming. Constant C1 declares a simple value, which 



Chapter Twenty-Two: Assembly Language Data Structures 577 

is manipulated twice: first through an intermediate constant C2 and then 
through a third constant C3 to produce a final value. None of these constants is 
stored in RAM, and none is available for inspection with TD, making errors in 
logic difficult to trace. TD reports "Symbol not found" if you try to inspect C1, 
C2, or C3. 

One solution is to use the Data menu's Evaluate/modify command 
((Ctrl)-(F4)) to enter test expressions. You can't use constant identifiers in 
expressions, but you can enter text such as (100 shl 1) shr 2 to test C3's result in 
the final code. 

Hint: If you need to inspect various constants with TD, add temporary variables in 
the assembly language source code to hold the constant values. You can then 
inspect the variables with TD. Remove the temporary variables before you com
pile the finished code. 

True and False Expressions 

Table 22.3 lists comparison operators that are useful in Evaluate/modify 

commands for testing whether certain values and symbols are equal, not equal, 
less, and greater. 

Table 22.3. Assembly language comparison operators. 

Operator Meaning 

eq Equal 

ge Greater than or equal 

gt Greater than 

le Less than or equal 

It Less than 

ne Not equal 

Don't try to use (, ), =, and () in expressions-they aren't recognized by 
TD when Language is set to Assembler. Instead, use comparison expressions 
such as aWord eq lOOh and aByte le 8, which produce results like these: 

word -1 (FFFFh) 

word 0 <Oh> 

Because there are no TRUE and FALSE symbols in assembly language, you 
have to memorize that -1 means "true" and 0 means "false." True to assembly 



578 Part Four: Data-Structure Guides 

language form, TD displays the decimal and hex results of comparisons, leaving 
the interpretation of those results to you. Likewise, to enter true and false 
values, you must enter their decimal, hex, or other equivalents. 

Note: See chapter 9 for more information about entering assembly language 
expressions. 

Examining Complex Data Types 

Assembly language's complex data types are severely limited and more difficult 
to use than similar structures in C and Pascal. It's your responsibility to cook up 
array indexes and field offsets-items that high-level languages hand to you on a 
platter. Of course, this also gives you the opportunity to customize algorithms 
for top performance. 

TD inspectors are great for browsing through complex assembly language 
structures, and they also make good teachers. If you're a little unsure how to 
create a complex data type, run test programs in TD, use the Evaluate/modify 
command to examine expressions and variables, and patch in new instructions 
with the CPU view. Use the debugger to find out whether your source-code 
constructions create the structures you need. 

The following sections describe ways to use TD to inspect arrays, strings, 
structures, and unions-four of the most common complex data structures in 
assembly language programming. 

Arrays 

The simplest kind of array in assembly language is a buffer of bytes, illustrated 
in Figure 22.9, created with the definition: 

aBuf fer db 256 DUP (?) ; A byte buffer 

alluffer=3=[t]['J:::;i 

[0] ' ' 0 (Bfh) I 
[!] •• 0 (!Di) I 
[2] ' ' 0 (Bfh) 
[3] ' ' 0 (Bfh) 
[1] ' ' 0 (Bfh) 

~5i]lll(ll[llll ....... ·.··0·<·0fh·)~. 
Me [256] I 

Figure 22.9. Inspecting a byte array. 



Chapter Twenty-Two: Assembly Language Data Structures 579 

The DUP operator repeats a define-memory directive (db in this case) to 
allocate space for storing multibyte values. TD treats such arrays as collections 
of the base type, in this example, an array of bytes. It shows the address of the 
array in the first line of the inspector window, followed by each element's index 
in parentheses. The first index is always 0. The array's data type is shown at the 
bottom with the total number of elements in brackets. To see more array 
elements, press (F5) to zoom the window to full screen or scroll the window's 
contents with the cursor and page movement keys. 

Figure 22.10 shows a second array, this time created with a dw directive: 

aSeries dw 512 DUP COAAAAh,OBBBBh) 

Notice how two initializing values, OAAAAh and OBBBBh, are stored in all 
array positions-a good debugging trick to remember. After a program finishes, 
use the Dump view or an inspector to examine the array contents. Any breaks in 
the repeating pattern will show you how much of the array was used. 

To inspect an individual array element, highlight any indexed entry and 
press (Enter) or (Ctrl)-1. This opens a second inspector for that element and 
also shows the element's address in the array. This can be useful for verifying 
whether a program calculates those same addresses correctly. 

Strings 

[0] 433~ (lfffii) I 

[l] 10059 <EHBi> I [2] 4::m'I (Flffl'l) 
[3] 40059 <EHBi> 
[1] 13i~ (Flffli) 

~-11111111111!1 ...... 10059iiill<EHBiiil')~., 
urd [1021) 

Figure 22.10. Inspecting a word array. 

Strings and byte arrays are equivalent in assembly language, and both are 
defined with the db directive. Most often, a terminating character-either a 
dollar sign'$' or a zero byte-marks the end of the string. Figure 22.11 shows 
an inspector window open to a string defined as: 

aString db "Practice Makes Perfect" 

Each character in a String occupies 1 byte, but as defined here, the lack of a 
terminating value may cause a bug in the code. Most of the time, you'll define 
strings like these: 



580 Part Four: Data-Structure Guides 

aString 
aString 

db 
db 

"A better string", '$' 
"Even better", 0 

Figure 22.11. Inspecting a string variable. 

The first definition uses a dollar-sign terminator, probably for passing the 
string to DOS function 9 (print character string). The second conforms to C's 
string type, which ends with a null character equal to 0. Whichever format you 
use, if you forget the terminating character, the symptom is usually a lot of 
garbage letters and symbols on screen. If you see this, use TD to verify that 
string variables end with the correct byte values. 

Another less commonly used string in assembly language programming 
begins with a byte value that represents the count of characters in the string. 
This length-byte design is the same as used in Turbo Pascal strings. The 
following section describes how to create this format with an assembly lan
guage st rue keyword. 

Structures 

A st rue (no ending t) in assembly language is like a Pascal record or a C st ruct 
(with an ending t). Inside a st rue, you can insertfields of other simple types. 
You can then define a single variable to contain all the elements of your st r u c. 
For example, to declare an SO-character Pascal length-byte string type, you 
could write: 

st rue 
strlen 
chars 

ends 

PasString 
db 0 
db 80 dup (?) 

PasString 

Then, in the program's data segment, you can define a variable of type 
PasString with the line: 

aPasString PasString <26,"Mastering Turbo Pascal 5.5"> 



Chapter Twenty-Two: Assembly Language Data Structures 581 

Figure 22.12 shows how TD displays this structure in an inspector window. 
Each field name is shown below the address of the structure. After opening the 
inspector, you can move the highlight bar to any field and press (Enter) to 
inspect that field's value. This will also display the address of that element. 

When assembling with TASM's Ideal mode, two or more structures may use 
the same names for field identifiers. When assembling with MASM or with TASM 
in MASM mode, field names must be unique. This can lead to confusion (and to a 
whopper of a bug) if you calculate field offsets using the wrong structure. 

To examine individual fields in the Watches window, rather than inspecting 
the entire st r u c, use dot notation, limiting the amount of information shown 
on one line. For example, to monitor the string length byte, you can enter: 

aPasString.strlen 

Note: TD correctly handles unnamed struc fields. For example, if PasString's 
st r Len field weren't named (in other words, if you simply declared it as db 0), an 
inspector window will still be able to show other named fields correctly, although 
the unnamed fields are hidden from view. Contrast this with the way TD fails to 
handle unnamed bit fields in C st rue ts (see chapter 20). 

~l]:~~tirig_cf'osStr~[t][~J::; 

strl en '+' 26 <lfh) 
chcrs "Hasterirg Ti.rho Pascal 5.5 
~ • I 
struc posstr i ng 

Figure 22.12. Inspecting a struc variable. 

Unions 

Unions are identical to struc data types, except they use the union directive, 
and most importantly, their fields overlay the same address in the structure. TD 
lets you inspect unions to see all values for all fields, regardless of which field is 
currently significant. This can be a great help in discovering errors (assigning 
values to the wrong field, for example) and for examining data in more than one 
way at once. 

Using a sample from my book Mastering Turbo Assembler, a st rue and a 
uni on demonstrate the idea: 

st rue 
Lo Byte 
Hi Byte 

TwoBytes 
db ? 

db ? 
ends TwoBytes 

I 
I 



582 Part Four: Data-Structure Guides 

union ByteWord 

asBytes TwoBytes <> 

asWord dw ? 
ends ByteWord 

TwoByt es (a st rue) declares two uninitialized byte fields. Byt eWo rd (a uni on) 

declares one field as a TwoBytes st rue, another as a plain word. This lets 
ByteWord variables function as double byte and word values, and it also lets TD 
display values in both of those ways. 

After declaring the data types, the next step is to define a single variable of 
type ByteWord: 

aByteWord ByteWord <,OFACEh> 

Figure 22.13 demonstrates how TD skillfully displays the contents of this 
complex variable. The inspector window at top left shows the individual fields 
in aByteWord as two bytes (in ASCII) and as a single word value (in decimal and 
hex). Opening other inspector windows for these fields displays even more 
details about the separate byte and word values. To make the other two 
inspectors in the figure, I highlighted fields asbytes and aswords and pressed 
(Enter). Notice that the inspectors show the same addresses for both fields, 
further proof that this is a uni on and not a common st rue. 

asbytes { 'r.', '• ' } 
aswcrd 6'\2ffi <Ffnh > 
~llilllllillllllllllllBlllllllBllllBll-.JI 
struc byteword 

642ffi <Ffnh > 

Figure 22.13. Inspecting a union variable and its fields. 

Note: TD incorrectly displays a union as a st rue (see top left window in Figure 
22.13). Be aware of this problem-there isn't any way to tell the two data types 
apart in TD inspectors except by examining field addresses. 

Records 

Records in assembly language are not like records in a data base or in Pascal. An 
assembly language record is a collection of 8 or 16 bits packed into a byte or 
word, usually called bit fields. These are very useful devices for packing lots of 



Chapter Twenty-Two: Assembly Language Data Structures 583 

information into tight spaces-and TD is a very useful tool for examining bit
field values. A quick look at a record in an inspector window instantly shows 
the values and positions of all defined fields. 

An example demonstrates how to. use TD to examine bit fields. First, 
declare a few constants: 

MALE EQU 0 
FEMALE EQU 
YES EQU 1 
NO EQU 0 

Then, define a RECORD data type, listing the fields and their sizes in bits: 

RECORD person sex:1,married:1,divorced:1,employed:1,children:4,age:7 

The bits do not have to total exactly 8 or 16. Finally, create a variable of type 
person in a data segment: 

aPerson person <FEMALE, NO, YES, YES, 3, 32> 

You can then inspect aPerson or add it to the Watches view. Figure 22.14 
shows how this looks in an inspector window opened to aPerson and another 
opened for the 4-bit field chi Ldren. 

'WJJl:~rTitiw ci'erson=3=mm=; 

aoe:7 32 
children : '\ 3 
e!lllloyed : 1 1 
divorced : 1 1 
ocrried : 1 0 
sex:! 1 

··------1~1 struc person 

Figure 22.14. Inspecting a record's bit fields. (The value listed for the 
children bit field at right is not correct.) 

As Figure 22.14 shows, each field in aPerson is listed in reverse declaration 
order. To check which bits are affected by modifications to individual bit fields, 
open a Dump window, press (Ctrl)-G, and enter a record variable's name. This 
will show the byte or bytes assigned to the variable. Then, switch back to the 
inspector window and move the highlight bar to any field. (If you press 
(Enter) or (Ctrl)-1 at this time, another inspector opens for this field, as 
shown at right in Figure 22.14.) Next, type the new bit-field value and watch the 
Dump window. You'll see the byte value change. This test may be easier to 
perform if all fields are initially zero. 



584 

Summary 

Part Four: Data-Structure Guides 

Note: As Figure 22.14 shows, TD displays individual bit fields as dword data types, 
but it does not list the correct values for extracted fields. Also, TD permits setting 
data breakpoints for bit-field identifiers, but those breakpoints do not work 
correctly. Perhaps these problems will be fixed in a later TD version. Until then, 
use the record's inspector (as shown at left in the figure) to view bit-field values 
and set breakpoints only for entire record variables, not selected fields. 

This chapter is a reference to inspecting assembly language (MASM and TASM) 
data structures. Use the information in this chapter as a guide for investigating 
variables in your program. 

Chapters 20 and 21 describe how to inspect common C, C+ +,and Pascal 
data structures. 



Bibliography 

Companies and Products 

Borland International, 1800 Green Hills Road, Scotts Valley, CA 95066, 
408/438-5300, Turbo Debugger and Tools 2.0 (includes Turbo Debugger 2.0, 
Turbo Profiler 1. 0, Turbo Assembler 2. O); Turbo C 2. O; Turbo C + + 1. O; Turbo 
Pascal 5.5. 

Compuserve Information Service, P. 0. Box 20212, Columbus, OH 43220, 
800/848-8199, Compuserve. 

Intel Corporation, iAPX 86/88, 1861188 User's Manual; 80286 and 80287 
Programmer's Reference Manual; 80386 Programmer's Reference Manual; 
i486 Microprocessor Programmer's Reference Manual, Box 58130, Santa Clara, 
CA 95052-8130, 800/548-4725. 

Irata Systems, Inc., 2562 E Glade, Mesa, AZ 85204, 602/926-7969, Irata Reset 
Switch. 

Microsoft Corporation, Box 97017, Redmond, WA 98073-9717, 206/882-8080, 
Microsoft Macro Assembler 5.1, Microsoft C 5.1 and 6. 0, Microsoft Windows 
3.0; Microsoft Programmer's Library CD-ROM. 

Multisoft Corp., 15100 SW Koll Parkway, Beaverton, OR 97006, 800/274-5945, 
PC-Kwik. 

Paradigm Systems, Inc., 3301 Country Club Road, Suite 2214, Endwell, NY 
13760, 800/537-5043, 607/748-5966, Locate. 

Periscope Company, Inc., 1197 Peachtree Street Plaza Level, Atlanta, GA 30361, 
800/722-7006, Periscope I, Periscope III. 

Phar Lap Sofrware, Inc., 60 Aberdeen Avenue, Cambridge, MA 02138, 
617 /876-2972. 

585 

I 
I 



586 Mastering Turbo Debugger 

PKWare, Inc., 7545 N. Port Washington Rd., Glendale, WI 53217, 
414/352-3670, PkZIP. 

Purart, Inc., P. 0. Box 189, Hampton Falls, NH, 603/772-9907, Trapper. 

Qualitas, Inc., 7101 Wisconsin Ave. Suite 1386, Bethesda, MD, 20814, 
301/907-6700, 386-Max. 

Quarterdeck Office Systems, 150 Pico Boulevard, Santa Monica, CA 90405, 
213/392-9851, Desqview. 

References 

Duncan, Ray, Advanced MS-DOS, 1986, Microsoft Press, Redmond, WA. 

Kernihan, Brian W and Plauger, P. J., 'The Elements of Programming Style, 
1978, McGraw-Hill, Reading MA. 

Kerhihan, Brian W and Ritchie, Dennis M., 'The C Programming Language, 
2nd Ed., 1988, Prentice Hall, Englewood Cliffs, NJ. 

Stroustrup, Bjarne, The C+ +Programming Language, 1986, Addison-Wesley, 
Reading MA. 

Swan, Tom, Mastering Turbo Pascal 5.5, 1989, Howard W Sams, Carmel, IN. 

Swan, Tom, Mastering Turbo Assembler, 1989, Howard W Sams, Carmel, IN. 

Ward, Robert, Debugging C, 1986, Que, Carmel, IN. 



Index 

-? (list options) command-line option, 
64 

-? option, 63 
80286, installation configuration tips, 

46 
80386 

installation configuration tips, 
47-48 

Trapper debugging board, 464, 
466 

80486, installation configuration tips, 
47-48 

A 
About command, 100 
Action expression option, 128 
active window, 79-80 
activity indicators, 74 
Add command, 130-131 
Add comment command, 15 7 
Add watch command, 113, 1 72 
Address option, 128 
Alt- - (Stop Re..:ording) hot keys, 114 
Alt-= (Record Macro) hot keys, 114 
Alt-Fl (Previous topic) hot keys, 121 
Alt-F2 (At) hot keys, 109 
Alt-F3 (Close Window) hot keys, 119 

Alt-F4 (Back trace) hot keys, 107, 
228 

Alt-F5 (User screen) hot keys, 119 
Alt-F6 (Undo Close) hot keys, 83, 

119 
Alt-F7 (Instruction trace) hot keys, 

107, 228 
Alt-F8 (Until return) hot keys, 106 
Alt-function keys, hot key listing, 123 
Animate command, 106, 149, 201, 

228, 272 
code tracing, 230-231 
keystroke recording, 443 

Another command, 127, 158 
archives, 191 

listing contents, 193 
verifying, 193 

Arguments command, 92, 101, 108 
arrays 

and pointers ( C and C + + ), 
536-537 

as derived data types ( C and 
c + + ), 528-530 

c, 261-263 
complex data types 

assembly language, 578-579 
Pascal, 556-557 

587 



588 Mastering Turbo Debugger 

range of indexed items, 94 
Turbo Pascal and, 318-320 

ASCII text, searching for, 143 
ASCII text file, 188 

finding string, 152 
high bits forced to 0, 188 

ASM file extension, 34 
Assemble command, 138 
assemblers, updates and debugging, 

15-16 
assembling .COM programs, 36-37 
assembly language, 4 

code breakpoint tricks, 21 7 
common bugs, 377-400 

bad direction flag setting, 397 
conditional jumps, 392-395 
confusing default segment 

registers, 397 
confusing offsets and registers, 

379-380 
CX = O not reaching entire 

segment, 395-396 
destroying register values, 398 
disabling interrupts, 398 
flag problems, 385 
forgetting to restore interrupt 

vectors, 398-399 
ignoring data segment starting 

offsets, 387-388 
instructional operand order, 

377-378 
misplaced local labels in 

conditional jumps, 393-395 
misunderstanding ASSUME, 

383-384 
misunderstanding uninitialized 

data, 382-383 
mixing up conditional jumps, 

393 
multiple entry points and exit 

paths, 390-391 
near and far procedures, 

391-392 
no return to DOS, 381-382 

not extending sign bit, 399 
popping wrong registers, 

378-379 
radix mistakes, 399-400 
registers changing at random, 

392 
segment-related problems, 

385-388 
stack missing or too small, 382 
string operands, 396 
undocumented registers, 385 
unexpected fall-through, 

389-390 
unexpected register changes, 

384 
unexpected segment wrap 

around, 388 
uninitialized register parameters, 

390 
wrong default segment register, 

386-387 
wrong segment register, 386 

complex data types 
arrays, 578-579 
records, 582-584 
strings, 579-580 
structures, 580-581 
unions, 581-582 

copying instruction address to 
registers, 138 

data structures, 569-584 
data types, 5 71 

byte (db) variables, 571-572 
doubleword ( dd) pointers, 5 7 4 
doubleword (dd) variables, 573 
pointer (df, dp) variables, 573 
quadword ( dq) variables, 

574-575 
ten-byte (dt) variables, 575 
word ( dw) variables, 5 72 

debugging, 403-422 
edit code failure, 416-41 7 
exit code failure, 414-415 
memory set wrong, 419-422 



Inde.x 

uninitialized variable and 
pointer, 417-419 

equates, 576-577 
expressions, 244-246, 576-577 

numeric, 245, 399-400 
operators, 244-245 
side effects, 246 
string, 245-246 
true and false, 577-578 

finding instruction, 136-13 7 
hands-on debugging, 413 
interrupts, 397-399 
memory addressing modes, 

575-576 
preparing programs for debugging, 

31-35 
procedure problems, 389-392 
program errors, 381-385 
strings, 395-397 
testing instructions, 138 
variables, 569-571 

assignment operators (C), 252-253 
At command, 109-110 
AUTOEXEC.BAT file, 41-42, 49 
automatic variables ( C and C + + ), 

519-521 

B 
-b (interrupt hung program) 

command-line option, 68 
Back tracing command, 107, 228 

code tracing, 231 
limitations, 232 
machine-code tracing, 231 

BADBRACE.PAS listing, 312 
BADCLOSE.PAS listing, 339-340 
BADELSE.PAS listing, 313 
Base segment:O to data subcommand, 

146 
batch files, 15 3 

running from TDINST, 60 
Beginning display (TDINST) 

command, 54, 65, 133 

binary data, finding offset address, 
152 

BIOS, code tracing, 232 

589 

bit fields, derived data types ( C and 
c+ + ), 531-533 

Block command, 147-148 
block device drivers, listing, 180 
Borland's Compuserve forum, 9 
break key, customizing, 56-57 
break statements (C), 276-278 
Breakpoint options dialog box, 

128-130, 222 
breakpoints, 199-201, 213-214 

see also code breakpoints and 
data breakpoints 

changed-memory, 200 
code, 200, 214-217 
data, 200, 217-221 
deleting, 111, 131 
details of new breakpoint, 130-131 
displaying active and inactive 

views, 127-129 
expression, 469-470 
expression-true, 200 
finding unauthorized variable 

assignments, 227 
hardware, 462, 466-473 
110, 479' 
instruction-fetch, 479-480 
keystroke recording and, 442 
locating unwanted recursions, 

227-228 
logging 

complex expressions, 223 
expressions, 221-222 
multiple variables, 222-223 
into object-oriented 

programming, 223 
nonglobal code viewing source 

code, 131 
removing, 109, 131 
setting, 109 

multiple with macros, 431 
pass count, 226-228 

I 



590 Mastering Turbo Debugger 

side-effects in expressions, 224 
splicing 

code, 224-226 
functions and procedures, 226 

TSR (terminate and stay resident), 
497-498 

variable equaling specific value, 
110 

verifying loop index, 227 
viewing, 158 

Breakpoints command, 258 
Breakpoints menu, 108-111 
Breakpoints options dialog box, 

130-131 
Breakpoints view, 127-131 
Brief, 4 
bugs, 203-208 

assembly language, 377-400 
bad direction flag setting, 397 
conditional jumps, 392-395 
confusing default segment 

registers, 397 
confusing offsets and registers, 

379-380 
CX = O not reaching entire 

segment, 395-396 
destroying register values, 398 
disabling interrupts, 398 
flag problems, 385 
forgetting to restore interrupt 

vectors, 398-399 
ignoring data segment starting 

offsets, 387-388 
instructional operand order, 

377-378 
misplaced local labels in 

conditional jumps, 393-395 
misunderstanding ASSUME, 

383-384 
misunderstanding uninitialized 

data, 382-383 
mixing up conditional jumps, 

393 

multiple entry points and exit 
paths, 390-391 

near and far procedures, 
391-392 

no return to DOS, 381-382 
not extending sign bit, 399 
popping wrong registers, 

378-379 
radix mistakes, 399-400 
registers changing at random, 

392 
segment-related problems, 

385-388 
stack missing or too small, 382 
string operands, 396 
undocumented registers, 385 
unexpected fall-through, 

389-390 
unexpected register changes, 

384 
unexpected segment wrap 

around, 388 
uninitialized register parameters, 

390 
wrong default segment register, 

386-387 
wrong segment register, 386 

c, 249-278 
= = and =, 252-253 
accidental function redefinition, 

255-256 
array indexes value of 0, 262 
bad operator precedence, 273 
break vs. continue, 277 
confusing automatic and static 

variables, 260 
constants in hexadecimal, 274 
else with wrong if, 251-252 
forgetting break in switch 

statement, 277-278 
forgetting function return value, 

268-269 
forgetting to close open, 274 



Index 

function calls confusing by 
value and reference, 270-271 

function side effects, 271-272 
index-range errors, 262-263 
mishandling global variables, 

259 
mismatched braces and 

parentheses, 250-251 
misplaced semicolons, 254-255 
neglecting using pointers in 

scanf(), 275 
nested break statements, 

276-277 
not allocating space to pointers, 

265-266 
not checking for 1/0 errors, 

274-275 
not disposing pointer allocated 

space, 268 
NULL pointers, 265 
path-name problems, 253-254 
pointer arithmetic, 266 
pointers and automatic 

variables, 266-267 
stabilizing changing variable, 

258-259 
static vs. external keywords, 

261 
transposed comment brackets, 

250 
initialized pointers, 263-265 
initialized variables, 256-258 
unwanted recursion, 272-273 
using disposed pointer memory, 

268 
data-dependent, 206 
fatal, 207 
intermittent, 206 
isolating, 211 

with code breakpoints, 214-215 
logical errors, 205 
long-distance, 207-208 
moving-target, 206-207 
repairing and retesting, 211-212 

runtime errors, 204-205 
stabilizing, 211 
syntax errors, 203-204 
testing for, 209-211 
time-bomb, 208 

591 

TSR (terminate-and-stay-resident) 
programs 
conflicts 

BIOS routine, 507-508 
nonreentrant DOS routine, 

508 
failing to deal with critical 

errors, 511 
Interrupt 08h not finishing, 

510-511 
Interrupt 09h not finishing, 510 
interrupting hardware interrupt, 

508-509 
loading unprotected resident 

data segment, 509-510 
miscalculating resident portion 

size, 509 
mishandling segment registers, 

506-507 
not preserving registers, 506 
PRINT.COM conflict, 510 

Turbo Pascal, 311-343 
array-indexing problems, 

318-319 
decimal instead of hexadecimal 

numbers, 337 
delayed file errors, 339-341 
disappearing standards, 315-3 16 
disposed pointers, 331-332 
else with wrong if-then, 

313-314 
finding nil pointers, 3 30 
forgetting to close file, 338-339 
functions not returning planned 

values, 324-325 
global variables, 318 
integer wrap around, 337-338 
interactive side effects, 328 



592 Mastering Turbo Debugger 

loops that execute too many 
times, 319-320 

memA vail and maxA vail, 
333-334 

misplaced operator precedence, 
335-336 

missing comment brackets, 
311-313 

mixing variable and value 
parameters, 321 

negative words, 337 
numeric, 335-338 

negative words, 3 36 
out of memory, 334-335 
over initialization, 341-342 
procedural problems, 320-322 
range errors, 318-319 
side effects, 323-324 
sluggish overlays, 342-343 
string length problems, 321-322 
uninitialized pointers, 329-331 
uninitialized variables, 316-318 
unnormalized pointers, 332-333 
unwanted mutual recursion, 

327-328 
unwanted recursion, 325-326 

buttons, 86 
bytes 

c 

as address for displaying code, 
144-146 

entering values, 144 
searching for, 143 

-c (edit configuration file TD INST) 
option, 63 

-c (load configuration file) command
line option, 63, 428 

C,4 
arrays, 261-263 
assignment operator, 252-253 
automatic variables, 256-257 
break statements, 276-278 
comments, 250 

common bugs, 249-278 
= = and =, 252-253 
accidental function redefinition, 

255-256 
array indexes value of 0, 262 
bad operator precedence, 273 
break vs. continue, 277 
confusing automatic and static 

variables, 260 
constants in hexadecimal, 274 
else with wrong if, 251-252 
forgetting break in switch 

statement, 277-278 
forgetting function return value, 

268-269 
forgetting to close open files, 

274 
function calls confusing by 

value and reference, 270-271 
function side effects, 271-272 
index-range errors, 262-263 
mishandling global variables, 

259 
mismatched braces and 
parentheses, 250-251 

misplaced semicolons, 254-255 
neglecting using pointers in 

scanf(), 275 
nested break statements, 

276-277 
not allocating space to pointers, 

265-266 
not checking for 1/0 errors, 

274-275 
not disposing pointer allocated 

space, 268 
NULL pointers, 265 
path-name problems, 253-254 
pointer arithmetic, 266 
pointers and automatic 

variables, 266-267 
stabilizing changing variable, 

258-259 



Index 

static vs. external keywords, 
261 

transposed comment brackets, 
250 

uninitialized pointers, 263-265 
initialized variables, 256-258 
unwanted recursion, 272 
using disposed pointer memory, 

268 
compiling programs for debugging, 

17-25 
constants, 527-528 
data structures, 519-546 
data types 

char, 524-525 
enumeration, 526-527 
floating point, 525-526 
integer, 525 

debugging, 279-310 
display contents unreadable, 

291-295 
dynamic structures, 539-540 
file attributes wrong, 297-302 
file names not sorted 

alphabetically, 302-307 
file times different, 295-297 
strategy review, 280 
wide directory in row order not 

working, 307-310 
derived data types 

arrays, 528-530 
arrays of pointers, 530 
bit fields, 531-533 
strings, 5 31 
structures, 534-535 
unions, 535 

expressions, 238-240 
numeric, 239 
operators, 239 
side effects, 240 
string, 239 
type casting, 239 

files, 538-539 
function parameters, 520-522 

593 

functions, 255-273 
global variables, 256-257, 271-272 
handling files, 274-275 
hardware breakpoints and, 

475-478 
numerical errors, 273-274 
path-name strings, 253-254 
pointers, 263-268 

and arrays, 536-537 
NULL, 538 
typed and untyped, 5 3 7 

pseudo variables, 540 
size of variables, 523 
splicing code, 225-226 
statement terminators, 254-255 
variables, 256-261 

automatic, 519-521 
internal, 523 
pointer, 520, 522-523 
register, 520-521 
static, 519-520 
viewing local symbols, 523-524 

C file extension, 19-20, 116 
c++ 

compiling programs for debugging, 
17-25 

constants, 527-528 
data structures, 519-546 
data types 

char, 524-525 
enumeration, 526-527 
floating point, 525-526 
integer, 525 

debugging 
dynamic structures, 539, 540 
objects, 540-546 

derived data types 
arrays, 528-530 
arrays of pointers, 5 30 
bit fields, 531-533 
strings, 5 31 
structures, 534-535 
unions, 535 

files, 538-539 

I 
I 



594 Mastering Turbo Debugger 

function parameters, 520-522 
object methods, 247 
object-oriented programming 

instance inspector (Shift-F8) 
macro, 438-440 

objects 
browsing classes, 541-542 
browsing instances, 543-546 
watching, 541 

pointers 
and arrays, 536-537 
NULL, 538 
typed and untyped, 537 

pseudo variables, 540 
relationships of classes (data 

types), 153-155 
setting code breakpoints, 216-217 
size of variables, 523 
variables 

automatic, 519-521 
internal, 523 
pointer, 520, 522-523 
register, 520-521 
static, 519-520 
viewing local symbols, 523-524 

vs. Turbo Pascal in Hierarchy 
view, 154 

caches, memory limitations, 68-69 
CAL.PAS listing, 346-354 

debugging 
commands won't work, 355-359 
date runtime errors, 370-373 
display changes from color to 

black-and-white, 359-364 
illegal dates, 367-370 
program fails and keyboard 

stops working, 364-367 
untested functions, 373-375 

CALL64.ASM listing, 496 
Caller command, 136 
Change command, 141, 1-14, 165, 

167, 171, 174 
Change dir command, 91, 101 

Changed memory global command, 
110, 217-218, 221, 258 

changed-memory breakpoints, 200 
character device drivers, listing, 180 
check boxes, 86 
checksum, verifying for .OBJ files, 

190 
CHILD.PAS listing, 515 
choosing, 73 
CL Compiler-Linker, 19-20 
classes 

relationships (data types) in 
c+ +, 153-155 

vs. instances (Pascal), 564 
Clear subcommand, 147 
Close command, 119 
Close log file command, 15 7 
Close Window (Alt-F3) keys, 83 
code 

splicing with breakpoints, 224-226 
swapping to disk, 58 

code breakpoints, 200, 214-217 
breaking in procedures and 

functions, 215 
finding runtime error, 216 
isolating bugs, 214-215 
program exit conditions, 215-216 
setting for Pascal and C + + , 

216-217 
tricks, 217 

code files 
force executable display, 188 
information about, 101-102 
selecting for debugging, 100-101 

Code pane, 132, 134-139 
formatting disassembled 

instructions, 13 7-138 
returning to location in, 136 

code tracing, 201, 228-232 
Animation command, 230-231 
Back tracing command, 231 
BIOS code, 232 
DOS code, 232 



Index 

Instruction command, 229-230 
keystroke recording, 443 
single-stepping, 201 
vs. stepping, 228-229 

colors, customizing on-screen, 53 
Colors (illINST) command, 53 
COM files, 14, 38, 74, 185 

converting from .EXE files, 
185-186 

COM programs 
assembling, 36-37 
preparing for debugging, 35-36 

command-line options, 62-69 
-? (list options), 64 
-b (interrupt hung program), 68 
-c (load configuration file), 63, 

428 
-do (second display), 63-64, 459 
-dp (page flipping), 63-64 
-ds (ill/program display), 63-64, 

102 
-e (caching memory limitations), 

68-69 
-f (convert extended memory to 

EMS RAM), 69 
-h (list options), 64 
-i (enable/disable ID switching), 64 
-k (enable/disable keystroke 

recording), 64, 150, 442 
-l (display CPU window), 64-65, 

75 
-m (set heap size), 65 
-p (mouse enable/disable), 65 
-r (remote debugging), 65, 454 
-rp (remote debugging port), 

65-66, 452-453 
-rs (110 transfer speed), 66 
-sd (alternate directory), 66 
-sm (symbol table memory 

allocation), 66-67, 103 
-vg (debug graphics programs), 67 
-vn (disable 43/50-line mode), 67 
-vp (EGA palette save mode), 67 

595 

-w (modify TD386.EXE default 
values), 69 

-y (overlay buffer size), 67 
-ye (EMS overlay buffer size), 68 
TD286, 68 
TD386, 68-69 
TDCONFIG.TD file, 63 

COMMAND.COM file, 42, 49, 61 
commands 

see also subcommands and 
individual commands 

executing from menus, 75-78 
keyboard window, 83-84 
TDRF, 457-458 

comments 
C, 250 
missing brackets (Turbo Pascal), 

311-313 
COMMON.ASM listing, 487-489 
compilers, updates and debugging, 

15-16 
complex data types 

assembly language 
arrays, 578-579 
records, 582-584 
strings, 579-580 
structures, 580-581 
unions, 581-582 

Pascal, 555-560 
arrays, 556-557 
records, 557 
set, 558-559 
string, 559-560 
with keyword, 558 

COMPROG.ASM listing, 35-36 
Condition expression option, 130 
conditional jumps, 393-395 

misplaced local labels, 393-395 
mixing up, 393 

CONFIG.SYS file, 41, 47-49, 62-63 
configuration 

custom setups, 51-52 
minimum for Turbo Debugger, 

50-51 



596 Mastering Turbo Debugger 

restoring original settings, 52 
saving, 116 

configuration files, 65-66 
editing, 52 
loading, 63, 116-117 

constants (Pascal), 555 
CPP file extension, 24 
CPU view, 132-142 

machine-code instructions, 
132-133 

switching to Module view, 137 
CPU window, 31, 38, 54, 62 

bytes as address for displaying 
code, 144-146 

Code pane, 132, 134-139 
displaying, 64-65 
Dump pane, 132, 142 
Flags pane, 132, 139 
opening, 13 3-134 
Registers pane, 132, 139 
Stack pane, 132, 140-141 

Ctrl-F4 (Evaluate/modify) hot keys, 
111-113 

Ctrl-F5 (Size/move) hot keys, 84, 118 
Ctrl-F7 (Add watch) hot keys, 113 
Ctrl-function keys (hot key listing), 

123 
Customize (IDINST) subcommand, 

53 

D 
-do (second display) command-line 

option, 63-64, 459 
-dp (page flipping) command-line 

option, 63-64 
-ds (TD/program display) command

line option, 63-64, 102 
data formats, 57 
data breakpoints, 200, 217-221 

and string comparisons, 220 
expressions, 218 
software and hardware differences, 

218-220 
tricks, 221 

Data menu, 111-113 
data segments, uninitialized, 382-383 
data structures 

assembly language, 569-584 
c and c+ +, 519-546 
Pascal, 547-566 
recursive, 539 

data types 
assembly langtiage, 571 

byte (db) variables, 571-572 
doubleword (dd) pointers, 574 
doubleword (dd) variables, 573 
pointer (elf, dp) variables, 573 
quadword ( dq) variables, 

574-575 
ten-byte (dt) variables, 575 
word ( dw) variables, 5 72 

c and c+ + 
char, 524-525 
enumeration, 526-527 
floating point, 525-526 
integer, 525 

Pascal 
Boolean, 550 
char, 550-551 
enumerated, 551 
integer, 552-553 
real, 553-554 
subrange, 554 

DEBUG (DOS) command, 13 
debug exception, 200 
debugging, 44 7-460 

assembly language, 403-422 
edit code failure, 416-41 7 
exit code failure, 414-415 
memory set wrong, 419-422 
uninitialized variable and 

pointer, 417-419 
c, 279-310 

display contents unreadable, 
291-295 

file attributes wrong, 297-302 
file names not sorted 

alphabetically, 302-307 



Index 

file times different, 295·297 
strategy review, 280 
wide directory in row order not 

working, 307·310 
C + + , objects, 540-546 
code breakpoints and, 214· 217 
code tracing, 228·232 
compiling 

C and C + + programs for, 
17·25 

Pascal programs for, 25·30 
compressing information, 184-185 
configuring TD for remote 

debugging, 453·454 
data breakpoints and, 217·221 
developing strategies, 197·212 
device drivers, 512·513 
DOS function 4Bh, 514-516 
dual-monitor, 447-460 

benefits, 448 
problems, 459-460 
switching displays, 459 

dynamic structures 
c and c+ +, 539·540 
Pascal, 562-563 

elements of debugging style, 
198·199 

embedded systems, 480-481 
exec functions, 514-516 
graphics programs, 67 
hardware breakpoints, 475-480 
hardware-assisted, 461-482 

breakpoint interrupt, 462 
debugging boards, 463-464 
external and internal, 461-466 
hardware breakpoints, 466-468 
internal debugging registers, 

462 
problems, 474 
setUng up, 464-465 
single stepping and trap flag, 

462 
internal registers, 462 

interrupt service routines (ISR), 
513·514 

597 

keystroke recording and, 442-444 
macros and, 428-431 

entering watch and inspector 
expressions, 430-431 

opening views, 428·429 
repeating test sequences, 430 
reprogramming TD's hot keys, 

429-430 
setting multiple breakpoints, 

431 
mixed-language code, 400 
objects (Pascal), 563-566 
panic reset button, 481 
preparing 

.COM programs for, 35·36 
assembly language programs for, 

31·35 
programs, without source code, 

38·39 
remote, 58, 65, 447-451, 454-457 

benefits, 447-448 
device drivers, 513 
connecting computers, 448-450 
file 110, 456 
keyboard input routines, 

456-457 
null-modem cables, 449-450 
testing remote link, 450-452 
TSR programs, 503·506 

resident code, 103 
returning to DOS, 60-61 
strategies, 209· 212 
TSR programs, 483·51 l 

loading from DOS, 500·502 
nonresident remote mode, 

505·506 
resetting interrupt vector, 

498·500 
resident remote mode, 504·506 
sample program, 497·500 
symbol table, 502-503 
TSR breakpoints, 497·498 

I 



598 Mastering Turbo Debugger 

Turbo Pascal, 34S-3 75 
commands won't work, 355-359 
date runtime errors, 370-373 
display changes from color to 

black-and-white, 359-364 
illegal dates, 367-370 
program fails and keyboard 

stops working, 364-367 
untested functions, 3 73-3 75 

workstations, 59-62 
writing hardware device driver, 

481-482 
Decrement command, 167 
Default color set (TDINST) 

subcommand, S3 
Delete all command, 111, 131, 174 
derived data types ( C and C + + ) 

arrays, 528-530 
arrays of pointers, 5 30 
bit fields, 531-533 
strings, 5 31 
structures, 534-535 
unions, 535 

DesqView, 61 
device drivers, 511-513 

debugging, 512-513 
HIMEM.SYS, 45-46 
TDH386.SYS, 47-49, 62-63, 68, 219 

dialog boxes, 84-92 
buttons, 86 
check boxes, 86 
closing, 87 
entering text, 89 
history lists, 90 
input boxes, 86-87 
list boxes, 87 
message dialogs, 91 
prompt, 91-92 
radio buttons, 86 
selecting options, 87-89 

TDINST, 51 
directories 

alternate, 66 
configuration tips, 42-43 

path name, 101 
program editor path, 56 

Directories (TDINST) command, 56, 
60, 66 

display 
customizirig, 115 
directing output to, 192 
mode, 58-59 
options, 53-56 
pausing, 192 
recovering, 99 
return from Dump view, 146 

Display (TDINST) command, 53-57, 
67, 115 

Display as command, 144, 146-147, 
153 

Display options command, 115, 119, 
172 

Display options dialog box, 53-S6 
Display swapping option, 53, llS 
DOS 

code tracing, 232 
function calls and TD conflicts, S8 
returning from 

debugging, 60-61 
TDINST, S9 

routines, tracing/stop tracing, 64 
DOS function 4Bh, debugging, 

Sl4-Sl6 
DOS shell command, S8, 60, 102 
dot notation (Pascal), 548 
dual-monitor debugging see 

debugging, dual monitor 
Dump pane, 132, 142 
Dump pane to log (TDINST) 

command, SS, 119 
Dump view, 142-148 
Dump window 

bytes as address for displaying 
code, 144-146 

formatting display of information, 
146-147 

return to previous display, 146 
scrolling, 142-144 



Index 

dynamic structures; debugging 
C and C + +, 539-540 
Pascal, 562-563 

E 
-e (reserve extended memory) 

command-line option, 68-69 
Edit command, 153, 163, 173 
editors, running from TDINST, 60 
embedded systems, debugging, 

480-481 
Empty command, 165 
EMS40.SYS program, 45 
environmental variables, reserving 

space configuration tip, 48-49 
Epsilon, 4 
equates (assembly language), 576-577 
Erase log command, 15 7 
error messages and utility programs, 

178 
Evaluate/modify command, 111-113, 

216, 239 
Evaluate/modify dialog box, 203 
EXE file extension, 20, 34-35, 11 7, 

179, 188 
EXE files, 14, 21, 29·30, 32, 36, 38, 

74, 181, 185-186 
converting to .COM file, 185-186 
displaying relocatable address 

entries, 189 
displaying with line numbers and 

hex offsets, 188-189 
not displaying line numbers and 

relocation details, 189 
exec functions, debugging, 514-516 
Execute to (Alt·F9) hot keys, 

105-106 
Execute to command, 105-106 
Execution history command, 64, 214 
Execution history view, 149-150, 

442-444 
expanded RAM (EMS), 58 

configuration tips, 43-44 

599 

Expression true global command, 
110, 262 

expression-true breakpoints, 200 
expressions, 236-246 

adding to Watches window, 113 
assembly language, 244-246, 

576-577 
numeric, 245, 399-400 
operators, 244-245 
side effects, 246 
string, 245-246 
true and false, 577-578 

breakpoint side-effects, 224 
c, 238-240 

numeric, 239 
operators, 239 
side effects, 240 
string, 239 
type casting, 239 

data breakpoints, 218 
entering watch and inspector with 

macros, 430-431 
evaluating, 112-113, 202-203, 

235-246 
formatting, 57, 236-237 
line numbers, 237-238 
logging with breakpoints, 221-223 
object-oriented programming, 246 
Pascal, 240-243 

calling string functions, 241-242 
numeric, 241 
operators, 241 
side effects, 243 
string, 241 
type casting, 242-243 

extended memory, converting to EMS 
RAM, 69 

extended RAM (XMS), configuration 
tips, 44-45 

F 
-f (convert extended memory to EMS 

RAM) command-line option, 69 

I 



600 Mastering Turbo Debugger 

Fl (Help) hot key, 91, 120 
F2 (Toggle) hot key, 109 
F3 (Module view) hot key, 158 
F4 (Go to cursor) hot key, 104 
F5 (Zoom Window) hot key, 83, 117 
F6 (Next Window) hot key, 83 
F7 (Trace into) hot key, 104-105 
F8 (Step over) hot key, 105 
F9 (Run) hot key, 104 
Far code subcommand, 145 
Fast screen update option, 55 
fatal bugs, 207 
File command, 153, 160 
file extensions 

.ASM, 34 

.c, 19-20, 116 

.CPP, 24 

.EXE, 20, 34-35, 117, 179, 188 

.LOG, 156 

.OBJ, 22, 190 

.SYS, 511 

.TD, 116-117 

.TDS, 35, 179 

.ZIP, 3, 191 
TDMAP and, 182-183 

File menu, 100-103 
File view, 151-153 
File window, toggling between ASCII 

text and hexadecimal byteview, 
153 

files 
.COM, 14, 38, 74, 185 
.EXE, 14, 21, 29-30, 32, 36, 38, 74, 

181, 185-186 
.LIB, 56, 189 
.MAP, 14, 16, 18, 28, 37-38, 66, 

110, 181-183 
.OBJ, 17-19, 21, 24-25, 56, 186, 

190, 400 
.PIF, 61-62 
.TDK, 64, 444 
.TDS, 15, 38, 66-67, 185-186 
.TPM, 28-29 
.TPU, 30 

.ZIP, 42 
archives, 191 
AUTOEXEC.BAT, 41-42, 49 
C and C + +, 538-539 
COMMAND.COM, 42, 49, 61 
CONFIG.SYS, 41, 47-49, 62-63 
configuration, 65-66 
device-driver, 38 
displaying as hexadecimal bytes 

and ASCII equivalents, 189 
FILLMEM.ASM, 413-414 
FILLTEST.ASM, 413-414 
handling 

c, 274-275 
Turbo Pascal, 338-341 

MOUSE.COM, 49-50 
MOUSE.SYS, 49-50 
Pascal, 560-562 
saving settings in named, 59 
selecting for debugging, 100-101 
TCCONFIG.TC, 21 
TCHELP.TCH, 61 
TD.EXE, 42, 50-52, 59, 65-66, 180 
TD386.EXE, 68 
TDCONFIG.TD, 41, 51-52, 59, 63, 

74, 116, 180, 428 
TDHELP.TDH, 50 
TDREMOTE.EXE, 50 
TURBO.HLP, 61 
TURBOC.CFG, 22 
unpacking archived, 191 
viewing contents, 151-15 3 

FILLMEM.ASM listing, 404-408, 
413-414 
subroutines, 413-414 

FILLTEST.ASM listing, 408-410, 
413-414 

flags 
assembly language problems, 385 
changing values, 165-166 
toggling in Numeric processor 
. panes, 165 

viewing values, 139 
Flags pane, 132, 139 



Index 

Floating precision option, 56 
Follow command, 136, 141, 144-146 
Full graphics save (TDINST) 

command, 55, 67 
Full history command, 1 SO 
function keys, hot key listing, 122 
function parameters ( C and C + + ), 

520-522 
Function return command, 113, 216, 

269 
Function return window, 269 
functions 

G 

breaking in with code breakpoints, 
215 

c, 255-273 
halting program inside, 113 
splicing, 226 
Turbo Pascal, 323-328 

Get info command, 101-102 
global menus, 75-77, 98-121 
Global option, 129 
global symbols, viewing, 169-1 71 
global variables, 72 

C, changing, 271, 272 
mishandling, 259 
Pascal, 547-548 
Turbo Pascal, 318 

Go to cursor command, 104 
Goto command, 135, 140-143, 152, 

162-163 
graphics, black-and-white 

configuration tips, 42 
graphics programs, debugging, 67 
GREP utility, 43 

H 
-h (list options) command-line 

option, 63-64 
HARDDEMO.C listing, 475-476 
HARDDEMO.PAS listing, 478 
hardware 

debugging boards, 130, 463-464 

601 

debugging, 461-482 
breakpoint interrupt, 462 
external and internal, 461-466 
hardware breakpoints, 466-468 
internal debugging registers, 

462 
problems, 474 
setting up, 464-465 
single stepping and trap flag, 

462 
optional, 4-5 
requirements, 3 

Hardware breakpoint options dialog 
box, 466-472 

hardware breakpoints, 466-4 72 
accessing and changing memory, 

469 
C and, 475-478 
debugging with, 475-480 
modifying, 469-472 
Pascal and, 478 
selecting options, 470-471 
setting, 467-468, 472 
vs. expression true breakpoints, 

469-470 
hardware device drivers, writing, 

481-482 
hardware interrupt, TSR conflict, 

508-509 
Hardware options command, 130 
Hardware options dialog box, 219 
heap, setting size, 65 
help 

on-line help, 61, 121 
utility programs, 1 77 

Help (Fl) key, 50, 61, 76 
Help menu, 120-121 
Help on Help command, 121 
Hierarchy view, 153-155 

C + + vs. Turbo Pascal, 154 
history lists, 90 
hot keys, 122-123 

Alt-- (Stop Recording), 114 
Alt-= (Record Macro), 114 



602 Mastering Turbo Debugger 

I 

Alt-Fl (Previous topic), 121 
Alt-F2 (At), 109 
Alt-F3 (Close Window), 83, 119 
Alt-F4 (Back trace), 107, 228 
Alt-F5 (User Screen), 119 
Alt-F6 (Undo Close), 83, 119 
Alt-F7 (Instruction trace), 107, 

228 
Alt-F8 (Until return), 106 
Alt-F9 (Execute to), 105-106 
Alt-function key listing, 123 
Ctrl-F2 (Program reset), 108 
Ctrl-F4 (Evaluate/modify), 111-113 
Ctrl-F5 (Size/move), 84, 118 
Ctrl·F7 (Add watch), 113 
Ctrl-function key listing, 123 
enabling, 5 7 
Fl (Help), 50, 61, 76, 91, 120 
F2 (Toggle), 109 
F3 (Module view), 158 
F4 (Go to cursor), 104 
F5 (Zoom), 83, 117 
F6 (Next Window), 83, 117-118 
F7 (Trace into), 104-105, 228 
F8 (Step over), 105, 228 
F9 (Run), 60, 104 
function key listing, 122 
reprogramming TD's, 429-430 
Shift-Fl (Index), 121 

-i (enable/disable ID switching) 
command-line option, 64 

1/0 
breakpoints, 479 
command, 139 
errors, not checking for in C, 

274-275 
port speed, 58 
redirection, 108 
remote debugging, 465 
set transfer speed, 66 

Iconize/restore command, 83, 118 

identifiers 
adding to Watches view, 160 
global, 72 
local, 72 
moving to, 159 
scope, 72 

Increment command, 166 
Index command, 121 
Input & prompting (TDINST) 

command, 56-57, 64-65 
input boxes, 86-87 

history lists, 90 
Inspect command, 111, 131, 138, 

150, 155, 159, 168-170, 174, 216 
inspector windows, 92-98 

data-dependent bu~, 206 
keystroke recording, 443-444 
modifying data type, 95 
opening for object type, 98 
replace with new inspector 

windows contents, 95 
variables and symbols, 174 

install lb command, 42 
INSTALL program, 3 
installing 

mouse, 49-50 
Turbo Debugger (TD), 41 

instances vs. classes (Pascal), 564 
instantiated objects, 246 
Instruction trace command, 107, 

228-230 
instruction-fetch breakpoints, 479-480 
instructions, viewing target location, 

136 
Integer format option, 54, 115 
integers, wrap around, 337-338 
Interrupt 08h, TSR not letting it 

finish, 510-511 
Interrupt 09h, TSR not letting it 

finish, 510 
interrupt vector, resetting for TSR 

program, 498-500 
interrupt service routine (ISR) 

assembly language, 397-399 



Index 

debugging, 513-514 
destroying register values, 398 
disabling, 398 
forgetting to restore interrupt 

vectors, 398-399 
nonmaskable, 57-58 

Irata Reset switch, 481 

K 
-k (enable/disable keystroke 

recording) command-line option, 
64, 150, 442 

keyboard 
remote debugging of input 

routines, 456-457 
selecting options in dialog box, 

88-89 
window commands, 83-84 

keypad, + and - as forward and 
reverse macro, 440-441 

keys 
Alt-Tab (text mode), 50 
macros, 426-427 
on-line help, 121 
text editing, 89 
usage in text, 9-10 

keystroke recording, 425, 442-445 
Animate command, 443 
breakpoints, 442 
code tracing, 443 
debugging and, 442-444 
enabling, 442 
Execution history view, 442 
inspector windows, 443-444 
problems, 444 
repeatable test procedures, 444 
vs. macros, 44 5 

Keystroke restore command, 150 
keystrokes 

recording, 57, 64 
repeating, 150 

603 

L 
-1 (display CPU window) command

line options, 64-65, 75 
Language command, 113-114, 240 
Lattice C (LC) 3.3, preparing 

programs for debugging, 18-19 
see also C and C+ + 

LIB files, 56 
displaying object-code modules, 

189 
listing records, 190-191 

Line command, 161 
LINT program, 251 
list boxes, 87 
listings, see program listings 
LOADTSR.ASM listing, 489-496 
local commands 

Breakpoints view, 128-131 
CPU Code pane, 135-139 
CPU Stack pane, 140 
Dump view, 143-148 
Execution history, 149-150 
File view, 152-153 
Hierarchy view, 154-155 
Log view, 156-15 7 
Module view, 159-163 
Numeric processor view, 164-165 
Register view, 166 
Stack view, 168-169 
Variables view, 170-171 
Watches view, 173 

local inspector menu, 93-95 
Change command, 94 
Descend command, 95 
Inspect command, 95 

New expression command, 95 
Range command, 94 
Type cast command, 95 

local 
pop-up menus, 77-78 
program symbols, viewing, 

169-171 
variables, 72 

Pascal, 548 

I 
I 



604 Mastering Turbo Debugger 

Locals command, 169 
Log command, 119 
LOG file extension, 156 
log files, 156-15 7 

comments, 15 7 
start new (Shift-F6) macro, 

436-437 
Log list length option, 5 5 
Log view, 155-157 
Log window 

adding comments, 157 
copying pane information to, 119 
erasing information, 15 7 

Logging command, 15 7 
logical errors, 205 
loop index, verifying with 

breakpoints, 227 
LS.C listing, 281-291 

debugging 

M 

display contents unreadable, 
291-295 

file attributes wrong, 297-302 
file names not sorted 

alphabetically, 302-307 
file times different, 295-297 
wide directory in row order not 

working, 307-310 

-m (set heap size) command-line 
option, 65 

machine code instruction search 
(Shift-FlO) macro, 441-442 

machine-code 
Back tracing command, 231 
collecting instructions, 150 
executing instructions back to, 

150 
executing one instruction, 107 

macros, 425-442, 445 
creating and deleting, 114-115 
debugging and, 428-431 

entering watch and inspector 
expressions, 430-431 

opening views, 428-429 
repeating test sequences, 430 
reprogramming TD's hot keys, 

429-430 
setting multiple breakpoints, 

431 
entering, 426 
keys, 426-427 
problems, 431-432 
restoring, 428 
samples, 432-442 

CPU search next command 
(Shift-FlO), 441-442 

display hidden windows (Shift
Fl), 433 

erase user screen (Shift-F5), 436 
keypad + and - as forward and 

reverse, 440-441 
object-oriented programming 

instance inspector (Shift-PS), 
438-440 

open views as icons (Shift-F4), 
435-436 

repeat test (Shift-F9), 441 
reset and return to origin (Shift

F3), 434-435 
skip over statements (Shift-F2), 

433-434 
snapshot (Shift-F7), 437-438 
start new log file (Shift-F6), 

436-437 
saving, 116, 428 
vs. keystroke recording, 445 

Macros command, 114-115 
MAKE utility, 43, 179-180 
MAKETEMP.C listing, 302-303 
MAP files, 14, 16, 18, 28, 37-38, 66, 

110, 181-183 
symbols and case-sensitivity, 182 

MASPSAMP.PAS listing, 26 
math coprocessor see numeric data 

processor 
Max tiled watch option, 54 
MCALC, 71-72 



Index 

memory 
accessing and changing for 

hardware breakpoints, 469 
addressing modes (assembly 

language), 575-576 
allocation for symbol table, 66-67 
configuration tips, 43-46 
converting extended to expanded 

RAM, 45-46 
editing values, 147 
increasing for OS shell, 61 
limitations for caches, 68-69 
monitoring variables, 110 
releasing TDINST specified, 102 
requirements, 3 

menus, 75-79 
executing commanqs, 75-78 
global, 75-77, 98-121 
local inspector, 93-95 
local pop-up, 77-78 
object inspector, 96-97 
object-type inspector, 97-98 
submenus, 78-79 

message dialogs, 91 
Microsoft C (MSC) 

5.1, preparing programs for 
debugging, 19-20 

6.0, preparing programs for 
debugging, 20 

Microsoft CodeView 
converting debugging information 

to TD format, 178 
symbols, 14 

Microsoft CP ANEL Control Panel 
program, 49 

Microsoft Macro Assembler (MASM) 
5.1, 4 
preparing programs for debugging, 

32 
Microsoft Overlay Linker 3.64, 18, 32 
Microsoft Pascal (MSP4) 4.0, 

preparing programs for debugging, 
26-28 

Microsoft Windows, 61 
mouse and, 50 
running Turbo Debugger under, 

61-62 

605 

Miscellaneous (IDINST) command, 
57-58, 61, 64-67, 69 

Mixed command, 13 7-138 
mixed-language code debugging 

(Turbo C and Turbo Pascal), 400 
Mode for display (IDINST) 

command, 58-59 
modify (TDINST) subcommand, 59 
Module command, 19, 27, 29, 75, 

160 
Module view, 158-163 

inspecting source-code, 150 
switching to CPU view, 137 
window title, 159 

Modlile window, 31, 54, 62, 74 
data breakpoints, 219 
searching for text, 161 

modules 
editing, 163 
line numbers, 161 
selecting, 160 
viewing multiple, 158 

monitors 
customizing colors, 5 3 
EGA color problems, 67 
remote and dual-monitor 

installation configuration tips, 49 
mouse 

canceling commands, 80-81 
enabling/disabling, 57 
installing, 49-50 
Microsoft Windows and, 50 
moving windows, 80 
repeating operations, 150 
resizing windows, 80 
selecting options in dialog box, 

87-88 
window commands, 80-81 
zooming windows, 81 

I 
I 



606 Mastering Turbo Debugger 

mouse /Sn command, 50 
MOUSE.COM file, 49-50 
MOUSE.SYS file, 49-50 
Move subcommand, 147 
MS-DOS 8086 Object Linker 3.05, 33 
Multi-Edit, 4 
mutual recursion, 227, 272 

N 
named variables, inspecting other, 95 
Near code subcommand, 145 
New cs:ip command, 138 
New expression command, 93 
Next (F6) hot key, 117-118 
Next command, 117-118, 144, 152, 

162 
Next pane command, 118 
nonmaskable interrupts, 57-58 
normalized address, 414 
NULL pointers (C and C + + ), 538 
null-modem cables, 449-450 
numeric data processor (NDP), 

163-164 
stack values, 164 

numeric expressions 
not extending sign bit, 399 
radix mistakes, 399-400 

Numeric processor view, 163-165 
stack values, 164 

· window titles, 164 

0 
OBJ file extension, 18, 22 
OBJ files, 17, 19, 21, 24-25, 56, 186, 

@o . 

dumping everything, 191 
file extensions and, 190 
listing records, 190-191 
verifying checksum, 190 

object libraries, managing with TUB, 
17 

object-oriented programming 
expressions, 246 
logging with breakpoints, 223 

object-type inspector menu, 96-98 
Hierarchy command, 97-98 
Inspect command, 97-98 
Show inherited command, 97-98 

objects 
c+ + 

browsing classes, 541-542 
browsing instances, 543-546 
calling methods, 247 
debugging, 540-546 
watching, 541 

comparing instance variables and 
methods declared, 97 

Pascal 
calling methods in, 247 
debugging, 563-566 
watching, 564 

inspecting, 95-98 
instantiated, 246 
location of inspected type, 98 
toggling 

inherited properties, 98 
window panes, 97 

tracing methods, 104-105 
type or class, 97 

Offset to data subcommand, 145 
offsets, confusing with registers, 3 79, 

380 
OOP code see object-oriented 

programming 
Open (TDINST) command, 60 
Open command, 100-101, 117 
Open dialog box, 101 
Open log file command, 156-15 7 
operating system requirements, 4 
OptASM 1.5, preparing programs for 

debugging, 33 
options 

command-line, 62-69 
listing, 64 

Options (TDINST) command, 56 
Options menu, 113-117 

saving settings from commands, 
116 



Index 

Origin command, 135-136, 141, 162 
overlay buffers, sizing, 67 

Turbo Pascal, 341-343 

p 

-p (mouse enable/disable) command
line option, 65 

panes, 82-83 
activating, 81 -82 
copying information to Log 

window, 119 
parameters 

function ( C and C + + ), 520-522 
mixing variable and value, 321 

Parent Tree pane, 154 
PARENT.PAS listing, 514 
Parents command, 155 
Pascal, 4 

see also Turbo Pascal 
classes vs. instances, 564 
code breakpoint tricks, 21 7 
compiling programs for debugging, 

25-30 
complex data types, 555-560 

arrays, 556-557 
records, 5 5 7 
set, 558-559 
string, 559-560 
with keyword, 558 

constants, 555 
data structures, 547-566 
data types, 5 50 

Boolean, 550 
char, 550-551 
enumerated, 551 
integer, 552-553 
real, 553-554 
subrange, 554 

debugging 
dynamic structures, 562-563 
objects, 563-566 

dot notation, 548 
expressions, 240-243 

calling string functions, 241-242 

numeric, 241 
operators, 241 
side effects, 243 
string, 241 
type casting, 242-243 

files, 560-562 
hardware breakpoints and, 478 
object methods, 247 
object-oriented programming 

instance inspector (Shift-PS) 
macro, 438-440 

607 

setting code breakpoints, 216-21 7 
splicing code, 224-225 
variables 

global, 547-548 
local, 548 
pointer, 548-549 
size, 549 
system, 549-550 

watching objects, 564 
Virtual Method Table (VMT), 

565-566 
pass count, setting with breakpoints, 

226-228 
Pass count option, 129 
Path for source command, 14, 

115-116, 133 
Pattern for background (TDINST) 

command, 53 
PC-KWIK, 69 

UNZIP and, 191 
Periscope debugging board, 463 

reset breakout latch, 184 
Permit 43/50 lines option, 55 
PIF file, 61-62 
PIFEDIT, 62 
PKUNZIP, 193 
pointer variables 

C and C + +, 520-523 
Pascal, 548-549 

pointers 
C and C + +, 263-268 

arrays, 536-537 
as derived data types ( C and 

c+ + ), 530 



608 Mastering Turbo Debugger 

NULL, 538 
typed and untyped, 5 3 7 

doubleword (dd) assembly 
language, 5 7 4 

global, 265 
normalized, 332-333 
Pascal 

typed, 548 
untyped, 548-549 

static, 265 
Turbo Pascal and, 328-334 
unnormalized, 332-333 

ports, specifying number, 139 
Previous command, 136, 141, 146, 

161 
Previous topic command, 121 
PRINT.COM, conflict with TSR, 510 
printers, directing output to, 193 
procedures 

assembly language problems, 
389-392 

breaking in with code breakpoints, 
215 

multiple entry points and exit 
paths, 390-391 

near and far, 391-392 
splicing, 226 
unexpected fall-through, 389-390 

program editor, path, 56 
program listings, 9 

BADBRACE.PAS, 312 
BADCLOSE.PAS, 339-340 
BADELSE.PAS, 313 
CAL.PAS, 346-353 
CALL64.ASM, 496 
CHILD.PAS, 515 
COMMON.ASM, 487-489 
COMPROG.ASM, 35-36 
FILLMEM.ASM, 404-408 
FILLTEST.ASM, 408-410 
HARDDEMO.C, 475-476 
HARDDEMO.PAS, 478 
LOADTSR.ASM, 489-496 
LS.C, 281-289 

MAKETEMP.C, 302-303 
MSPSAMP.PAS, 26 
PARENT.PAS, 514 
RANDOM.PAS, 325-326 
RESET64.TSR, 499-500 
SAMPLE.C, 17 
SAMPLE2.C, 18 
SAMPLE.ASM, 31-32 
SAMPLE.PAS, 25-26 
SPLICEl.PAS, 225 
SPLICE2.C, 226 
STANDARD.PAS, 315-316 
STRFUNC.PAS, 242 
TDH.BAT, 61 
TDM.BAT, 50 
VEHICLE.CPP, 543-545 
ZEROMEM.ASM, 410-412 

Program reset (Ctrl·F2) hot keys, 108 
Program reset command, 108 
Program Segment Prefix (PSP) 

address, 183 
programs 

assembly language errors, 381-385 
CL Compiler-Linker, 19·20 
code breakpoints and exit 

conditions, 215-216 
debugging 

remote mode, 185, 454-457 
without source code, 38·39 

deleting breakpoints, 111 
design-compile-debug cycle, 15 
DesqView, 61 
displaying first statement, 162 
EMS40.SYS, 45 
entering arguments, 108 
halting at constant address, 

109-110 
halting inside functions, 113 
INSTALL, 3 
jumping to section of, 135 
Lattice C (LC) 3.3, 18·19 
LINT, 251 
managing remotely, 185 
MCALC, 71·72 



Index 

Microsoft C (MSC), 4 
5.1, 19-20 
6.0, 20 

Microsoft CP ANEL Control Panel, 
49 

Microsoft Macro Assembler 
(MASM) 5.1, 4, 32 

Microsoft Overlay Linker 3.64, 32 
Microsoft Pascal (MSP4) 4.0, 26-28 
Microsoft QuickC (QC) 2.01, 20 
Microsoft Windows, 50, 61 
MS-DOS 8086 Object Linker 3.05, 

33 
OptASM 1.5, 33 
PC-KWIK, 69 
PIFEDIT, 62 
PKUNZIP, 193 
preparing for debugging, 13-39 
QuickAssembler 2.01, 33-34 
QuickC 2.01, 33 
QuickPascal (QP) 1.0, 28 
returning to current origin, 

135-136 
returning to startup condition, 108 
running, 15 3 

from line marked, 104 
from TDINST, 60 
instructions in reverse, 149 
to specified address, 105-106 
Sourcer, 38 

switch to screen from TD, 119 
TCALC, 71-72 
TD286, 46 
TD386 protected-mode supervisor, 

47-49 
TDCONVRT, 20, 32, 178-180 
TDDEV, 180, 512 
TDINST, 51-59, 180-181 
TDMAP, 181-183 
TDMEM, 183 
TDNMI, 183-184 
TDPACK, 184-185 
TDREMOTE, 185, 451-453 
TDRF, 185, 452-453, 457-458 

TDSTRIP, 185-187, 512 
TDUMP, 187-191 
TUB, 17 

609 

Turbo Assembler (TASM) 2.0, 4, 
34-35 

Turbo C (TC2) 2.0, 4, 21-22, 71 
Turbo C+ + (TC++) 

1.0, 4, 22-24, 97 
3.0, 24 

Turbo Pascal 
(TP4) 4.0, 28-29 
(TP5) 5.x, 4, 29-30, 71, 97 

undoing execution, 107 
UNZIP, 191-193 
VCPI (Virtual Control Program 

Interface), 45 
viewing previous execution, 149 
Zortech C + + (ZTC) 

1.07, 24-25 
2.0, 25 

prompt boxes, saving entries in, 56 
prompt dialog boxes, 91-92 
pseudo variables (C and C + + ), 540 

Q 
QuickAssembler 2.01, preparing 

programs for debugging, 33-34 
QuickC (QC) 2.01, preparing 

programs for debugging, 20 
QuickPascal (QP) 1.0, preparing 

programs for debugging, 28 
Quit (TDINST) command, 59 
Quit command, 103 

R 
-r (remote debugging) command-line 

option, 65, 454 
-rp (remote debugging port) 

command-line option, 65-66, 
452-453 

-rs (I/O transfer speed) command-line 
option, 66 

radio buttons, 86 

I 
I 



610 Mastering Turbo Debugger 

RANDOM.PAS listing, 325-326 
Range (TDINST) command, 56 
Range inspect option, 56 
Read subcommand, 148 
README utility, 43 
real numbers (Pascal), 553 
recording keystrokes, 5 7 
records (complex data types) 

assembly language, 582-584 
Pascal, 557 

recursion 
locating unwanted with 

breakpoints, 227-228 
mutual, 272 
unwanted in C, 272-273 

recursive data structures, 5 39 
register variables ( C and C + + ), 

520-521 
registers 

changing at random, 392 
changing values, 165-167 
confusing with offsets, 379-380 
data breakpoints and, 220-221 
decrement values by 1, 167 
emptying in stack, 165 
increment values by 1, 166 
inserting new value, 165 
internal debugging, 462 
popping wrong, 378-379 
toggling, 167 
undocumented, 385 
unexpected changes, 384 
uninitialized parameters, 390 

Registers 32-bit command, 167 
Registers command, 113 
Registers pane, 132, 139 
Registers view, 165-167 
remote debugging, 58-65 

device drivers, 513 
recording port, 65-66 
see also debugging, remote 

Remove command, 131, 174 
RENAME (DOS) command, 52 
Repaint desktop command, 99 

RESET64.TSR listing, 499-500 
resident code, debugging, 103 
Resident command, 103, 485-486 
Restore options command, 116-11 7 
Restore standard command, 99· 100 
Reverse execute command, 150 
ROM BIOS and TSR conflicts, 

507-508 
Run (F9) hot key, 60 
Run menu, 103-108 
runtime errors, 204-205 

s 

code breakpoints, 216 
Turbo Pascal, 319 

-sd (alternate directory) command· 
line option, 66 

-sm (symbol table memory 
allocation) command-line option, 
66-67, 103 

SAMPLE.ASM listing, 31-32 
SAMPLE.C listing, 1 7 
SAMPLE.PAS listing, 25-26 
SAMPLE2.C listing, 18 
Save (TDINST) command, 51, 59 
Save configuration dialog box, 428 
Save configuration file (TDINST) 

subcommand, 59, 181 
Save options command, 41, 116, 118, 

181 
Screen lines option, 54, 115 
screens 

erase user screen (Shift-F5) macro, 
436 

setting display mode, 58-59 
scroll bars, 81-82 
search arguments, finding next 

occurrence, 152 
Search command, 136· 13 7, 143, 152, 

161 
searches 

next argument, 162 
repeating, 144 



Index 

segment registers 
ignoring data segment starting 

offsets, 387-388 
problems, 385-388 
unexpected segment wrap around, 

388 
using wrong, 386 
using wrong default, 386-387 

Segment:offset to data subcommand, 
145 

selecting, 73 
Set options command, 128 
Set subcommand, 147-148 
Shift-Fl (Index) hot keys, 121 
SideKick, 4 
single-stepping see code tracing 
Size/move command, 118 
software 

and data breakpoints, 219-220 
requirements, 4 

source code, viewing, 158 
Source debugging (TDINST) 

command, 57, 66 
source-code 

delay between lines, 106 
finding line associated with 

machine code, 162-163 
source-code files 

path, 115-116 
selecting from module, 160 

Sourcer, 38 
SPLICEl.PAS listing, 225 
SPLICE2.C listing, 226 
Stack command, 270 
Stack pane, 132, 140-141 

resetting or restoring to stack 
location, 141 

Stack view, 168-169 
stacks 

clearing value to zero, 165 
emptying register, 165 
missing or too small, 382 
new word value for location, 141 

611 

pointers to another stack location, 
141 

repositioning, 140-141 
viewing, 168-169 

STANDARD.PAS listing, 315-316 
statements 

as indivisible instructions, 105 
executing, 104-105 
terminators (C), 254-255 

static variables ( C and C + + ), 
519-520 

Step over command, 105, 201, 228 
stepping vs. code tracing, 228-229 
STRFUNC.PAS listing, 242 
string data, entering, 144 
string functions, calling from 

expressions, 241-242 
strings 

assembly language, 395-397 
complex data types, 579-580 

bad direction flag setting, 397 
C, path-name, 253-254 
C and C + + , derived data types, 

531 
comparisons and data breakpoints, 

220 
Pascal, complex data type, 559-560 
confusing default segment 

registers, 397 
length problems, 321-322 
operands, 396 

structures 
complex data types (assembly 

language), 580-581 
derived data types (C and C + + ), 

534-535 
submenus, 78-79 
subroutines 

FILLMEM.ASM listing, 413-414 
testing, 111-112 
viewing calling code, 136 

Symbol load command, 58, 66, 103 

I 
I 



612 Mastering Turbo Debugger 

symbol table, 13-15, 58 
creating separate file, 1 79 
loading from .TDS file, 103 
memory allocation, 66-67 
relocating origin, 103 
removing from compiled and 

linked .EXE file, 185-186 
symbolic debugger, 13 
symbols, adding names to Watches, 

172 
syntax errors, 203-204 
SYS file extension, 511 
system 

displaying memory map, 183 
RAM configuration tips, 43 
stack word values, 140 

System menu, 99· 100 
system variables (Pascal), 549-550 

T 
Tab size option, 54, 115 
Table relocate command, 103, 

500-502 
tasm command, 31 
TCALC, 71·72 
TCCONFIG.TC file, 21 
TCHELP.TCH file, 61 
td command, 21-22, 24-25, 29-30, 

32·33, 50, 62 
TD file extension, 116-11 7 
td sample command, 20, 22, 24, 

29-30, 32·33 
TD.EXE file, 42, 50-52, 59, 65-66, 

180 
modifying, 181 

TD286, 46 
command line options, 68 

td286 command, 50, 62 
TD386 

command-line options, 68-69 
Trapper debugging board, 464 

td386 command, 50, 62 
TD386.EXE file, 47-49, 68 

modify default values, 69 

TDCONFIG.TD file, 41, 51-52, 59, 74, 
116, 180, 428 
command-line options, 63 
editing, 181 
sample macros, 432-434 

CPU search next command 
(Shift·FlO), 441-442 

display hidden windows (Shift· 
Fl), 433 

erase user screen (Shift-F5), 436 
keypad + and · as forward and 

reverse, 440-441 
object-oriented instance 

inspector (Shift-F8), 438-440 
open views as icons (Shift·F4), 

435-436 
repeat test (Shift·F9 ), 441 
reset and return to origin (Shift· 

F3), 434-435 
skip over statements (Shift·F2), 

433-434 
snqpshot (Shift-F7), 437-438 
start new log file (Shift-F6), 

436-437 
TDCONVRT, 20, 32, 178-180 

-c option, 1 79 
-sw option, 1 79-180 
on-line help, 1 77 
running silently, 179-180 
syntax and options, 1 79-180 

tdconvrt command, 21, 24-25, 27-28, 
32 

TDDEV, 180, 512 
-r option, 180 
listing additional device driver 

information, 180 
syntax and options, 180 

TDH.BAT listing, 61 
TDH386.SYS device driver, 47-49, 

62-63, 68 
Expression true global command, 

110 
hardware breakpoints, 473 
softWare data breakpoints, 219 



Index 

Trapper debugging board, 464, 
466 

TDHELP.TDH file, 50 
TDINST, 51-52, 180-181 

-c option, 181 
commands, 53-59 
enabling keystroke recording, 442 
multiple video pages and, 52 
on-line help, 1 77 
quitting to return to DOS, 59 
releasing memory specified, 102 
running editors and other 

programs, 60 
selecting options from dialog box, 

51 
syntax and options, 181 

TDK file, 64, 444 
TDM.BAT listing, 50 
TDMAP, 181-183 

-b option, 182 
-c option, 182 
-e option, 182-183 
-q option, 183 
and file extensions, 182-183 
on-line help, 177 
preparing MAP files, 181-182 
running silently, 183 
syntax and options, 182 

tdmap command, 20, 29, 33, 38 
TDMEM, 183 

-v option, 183 
syntax and options, 183 

TDNMI, 183-184 
-p option, 184 
clearing nonmaskable interrupt, 

183-184 
on-line help, 177 
syntax and options, 184 

TDPACK, 184-185 
on-line help, 1 77 
syntax, 184-185 

TDREMOTE, 50, 185, 451-453 
-w option, 452-453 
command-line options, 453-454 

corifiguring, 451-452 
on-line help, 177 
testing, 451 

TDRF, 185, 452-453 
command-line options, 453-454 
commands, 457-458 
configuring, 452 
on-line help, 177 

613 

TDS (Turbo Debugger Symbol) file, 
15, 38, 66-67, 185-186 
loading symbol table, 103 

TDS file extension, 35, 179 
TDSTRIP, 185-i87 

-c option, 186, 512 
-s option, 186, 512 
examples, 186-187 
on-line help, 177 
preparing device driver for 

debugging, 512 
syntax and options, 186 

TDUMP, 187-191 
-a option, 188 
-a7 option, 188 
-b option, 188 
-e option, 188 
-el option, 188-189 
-elr option, 189 
-er option, 189 
-h option, 189 
-1 option, 189 
-m option, 189-190 
-o option, 190 
-oc option, 190 
-oiID option, 190 
-oxID option, 190-191 
on-line help, 1 77 
syntax and options, 188-191 

text 
editing keys, 89 
entering in dialog box, 89 
searching Module window for, 161 

text editors 
Brief, 4 
Epsilon, 4 

i 

I 
I 



614 Mastering Turbo Debugger 

Multi-Edit, 4 
running, 15 3 
SideKick, 4 
VEdit, 4 

text mode (Alt-Tab) keys, 50 
TLIB, managing object libraries, 17 
tlink command, 31 
Toggle command, 109-110, 139, 165, 

167 
TOUCH utility, 37, 39 
TP, MAKE utility program, 180 
TPM file, 28-29 
tpmap command, 29 
TPU file, 30 
Trace command, 149 
Trace into command, 104-105, 201, 

228 
tracepoints, 214 
trap flag, hardware-assisted 

debugging, 462 
Trapper debugging board, 463-464, 

466 
80386, 464, 466 
hardware breakpoints, 473 

Tree command, 155 
TSR (terminate-and-stay resident) 

programs, 483-500 
active, 484 
common bugs 

conflict with BIOS routine, 
507-508 

conflict with nonreentrant DOS 
routine, 508 

failing to deal with critical 
errors, 511 

interrupting hardware interrupt, 
508-509 

loading unprotected resident 
data segment, 509-510 

miscalculating resident portion 
size, 509 

mishandling segment registers, 
506-507 

not letting Interrupt 08h finish, 
510-511 

not letting Interrupt 09h finish, 
510 

not preserving registers, 506 
PRINT.COM conflict, 510 

debugging, 483-511 
remote mode, 503-506 

installing on-line language help, 61 
loading from DOS, 500-502 
loading separate symbol table, 

502-503 
nonresident remote mode, 

505-506 
passive, 484 
resetting interrupt vector, 498 
resident portion, 484 
resident remote mode, 504-505 
sample program, 487-496 

debugging, 497-500 
transient portion, 484 

TSR breakpoints, 497-498 
Turbo Assembler (TASM) 2.0, 4 

MAKE utility, 180 
preparing programs for debugging, 

34-35 
Turbo C (TC) 2.0, 4, 71 

code breakpoint tricks, 21 7 
compiling LS.C, 280 
MAKE utility, 180 
MCALC, 71-72 

mixed-language code debugging, 
400 

preparing programs for debugging 
command-line compiler, 22 
integrated environment, 21-22 

Turbo C + + 1.0 (TC++), 4 
calling Turbo Debugger, 23 
compiling LS.C, 280 
inspecting object types, 97 
preparing programs for debugging, 

22-24 



Index 

Turbo C + + 3.0 
demangle function and variable 

names in compiled code, 
189-190 

preparing programs for debugging 
command-line compiler, 24 

Turbo Debugger (TD) 
as symbolic debugger, 13 
code tracing, 201 
configuring for remote debugging, 

453-454 
configuration tips, 41-49 

80286 installation, 46 
80386 installation, 47-48 
80486 installation, 47-48 
black-and-white graphics, 42 
converting extended to 

expanded RAM, 45-46 
expanded RAM (EMS), 43-44 
extended RAM (XMS), 44-45 
remote and dual-monitor 

installation, 49 
reserving environmental 

variable space, 48-49 
setting up directories, 42-43 
system RAM, 43 
TDH386 exceptions, 48 

creating .COM program files, 148 
custom setups, 51 
display, 73-75 
displaying information about, 100 
DOS function calls and conflicts, 

58 
installing, 41 
minimum configuration, 50-51 
mouse, 49-50 
reprogramming hot keys, 429-430 
running, 41-69 

Windows, 61-62 
switch to programs screen, 119 
tools, 199-203 

breakpoints, 199-201 
data inspection, 201-202 
expression evaluation, 202-203 

windows displayed, 74-75 

Turbo Pascal 
arrays and, 318-320 
common bugs, 311-343 

array-indexing problems, 
318-319 

615 

decimal instead of hexadecimal 
numbers, 337 

delayed file errors, 339-341 
disappearing standards, 315-316 
disposed pointers, 331-332 
else with wrong if-then, 

313-314 
finding nil pointers, 330 
finding uninitialized pointers, 

330-331 
forgetting to close file, 338-339 
functions not returning planned 

values, 324-325 
global variables, 318 
integer wrap around, 337-338 
interactive side effects, 328 
loops that execute too many 

times, 319-320 · 
memAvail and maxAvail, 

333-334 
misplaced operator precedence, 

335-336 
missing comment brackets, 

311-313 
mixing variable and value 

parameters, 321 
negative words, 336-337 
numeric, 335-338 
out of memory, 334-335 
over initialization, 341-342 
procedural problems, 320-322 
range errors, 318-319 
side effects, 323-324 
sluggish overlays, 342-343 
string length problems, 321-322 
uninitialized pointers, 329-330 
uninitialized variables, 316-318 
unnormalized pointers, 332-333 
unwanted mutual recursion, 

327-328 



616 Mastering Turbo Debugger 

unwanted recursion, 325·326 
debugging, 345-375 

commands won't work, 355-359 
date runtime errors, 370-373 
display changes from color to 

black-and-white, 359-364 
illegal dates, 367-370 
program fails and keyboard 

stops working, 364-367 
untested functions, 373-375 

debugging exec functions, 514-516 
file handling, 338-341 
finding runtime errors, 319 
functions, 323-328 
hands-on debugging, 353 
MAKE utility, 180 
mixed-language code debugging, 

400 
overlays, 341-343 
pointer and, 328-334 
variables and, 316-318 
vs. C + + in Hierarchy view, 154 

Turbo Pascal (TP) 5.0, 4, 71 
inspecting object types, 97 
preparing programs for debugging, 

28·29 
command-line compiler, 30 
integrated environment, 29·30 

TCALC, 71·72 
TURBO.HLP file, 61 
TURBOC.CFG file, 22 
typed constant, 555 

u 
Undo close command, 119 
uninitialized variables, 316· 318 
unions 

complex data types (assembly 
language), 581-582 

derived data types ( C and C + + ), 
535 

Until return command, 106 
UNZIP utility, 3, 42, 191-193 

·c option, 192 

-cm option, 192 
-o option, 192 
·p option, 193 
·t option, 193 
·v option, 193 
on-line help, 177 
syntax and options, 191-193 
warning before overwriting files, 

192 
User screen command, 119 
User screen updating (TDINST) 

command, 55, 64 
utilities, 177-193 

GREP,43 
MAKE, 43 
README, 43 
syntax, 178 
TOUCH, 37, 39 
UNZIP, 3, 42 

v 
-vg (debug graphics programs) 

command-line option, 67 
-vn (disable 43/50-line mode) 

command-line option, 67 
-vp (EGA palette save mode) 

command-line option, 67 
value parameter, 321 
values 

changing, 94 
editing in memory, 147 
finding, 136· 13 7 

variable constant (Pascal) see typed 
constant 

variable parameter, 321 
variables 

adding names, 1 73 
adding to Watches window, 113 
assembly language, 569-570 

byte (db), 571-572 
doubleword (dd), 573 
pointer (df, dp), 573 
quadword (dq), 574-575 
size, 570-571 



Index 

ten-byte (dt), 575 
word (dw), 572 

automatic and pointers, 266-267 
automatic and static, 260 
c, 256-261 

automatic, 256-257 
global, 256-257 
mishandling global, 259 

c and c+ + 
automatic, 519-521 
internal, 523 
pointer, 520-523 
register, 520-521 
size, 523 
static, 519-520 
viewing local symbols, 523-524 

changing values, 174 
deleting, 174 
editing, 1 73 
equaling specific value as 

breakpoint, 110 
finding unauthorized assignments, 

227 
global, 72 
inspecting, 95, 111, 201-202 
inspector window, 174 
local, 72 
logging multiple with breakpoints, 

222-223 
monitoring in memory, 110 
Pascal 

global, 547-548 
local, 548 
pointer, 548-549 
system, 549-550 
size, 549 

removing, 174 
Turbo Pascal and, 316-318 
uninitialized, 316-318 
viewing, 158, 169-1 72 
watching, 201-202 

Variables command, 216, 523-524 
Variables view, 169-171 

opening window, 169 

Variables window, 57 
VCPI (Virtual Control Program 

Interface), 45 
VEdit, 4 
VEHICLE.CPP listing, 543-545 

' 617 

video pages, multiple and TDINST, 52 
View menu, 79-80, 103, 125-174 

saving window positions and sizes, 
116 

View source command, l 3 7 
View window, 79 
views, 79-84, 125-174 

Breakpoints, 127-131 
CPU, 132-142 
Dump, 142-148 
Execution history, 149-150, 

442-444 
File, 151-1 5 3 
Hierarchy, 153-155 
Log, 155-157 
Module, 158-163 
Numeric processor, 163-165 
open as icons (Shift-F4) macro, 

435-436 
opening another copy of views, 

127 
Registers, 165-167 
snapshot (Shift-F7) macro, 437-438 
Stack, 168-169 
Variables, 169-171 
Watches, 171-174 

Virtual Method Table (VMT), 104 
finding in Pascal, 565-566 

w 
-w (modify TD386.EXE default 

values) command-line option, 69 
-w option (TDREMOTE), 452-453 
Watch command, 160, 173 
Watches view, 171-174, 270 

adding identifiers, 160 
Watches window, 54, 74, 100, 201 

adding variable or expression, 113 
data-dependent bugs, 206 

I 
I 



618 Mastering Turbo Debugger 
.~~~~~~~~~~~~~~~~~~~~~~~~~~ 

expanding for new variables, 100 
watchpoints, 214 
window commands, mouse and, 

80-81 
Window menu, 117-120 

activating other windows from, 
120 

windows, 75-98 
activating, 80, 117-118, 120 
active, 79-80 
closing, 83, 119 
context sensitivity, 84 
CPU, 31, 38, 54, 62, 64-65 
displaying hidden (Shift-Fl) macro, 

433 
inactive, 79-80 
inspectors, 92-98 
main, 79 
menus, 75-79 
Module, 31, 54, 62, 74 
moving, 84, 118 

and resizing, 118 
next, 83 
panes, 82-83, 118 
reducing to icon, 118 
restoring to configuration, 99-100 
scroll bars, 81-82 

undoing close, 119 
Variables, 57 
View, 79, 125-174 
Watches, 54, 74, 100, 201 
zooming, 11 7 

to icon, 83 
Windows menu, 80 
workstations, debugging, 59-62 
Write subcommand, 148 

X-Z 
XMS HIMEM.SYS driver, 45-46 
XMS program, 45 

-y (overlay buffer size) command-line 
option, 67 

-ye (EMS overlay buffer size) 
command-line option, 68 

Zero command, 165, 167 
ZEROMEM.ASM listing, 410-412 
ZIP file extension, 3, 191 
ZIP files, 42 
Zoom command, 11 7 
Zortech C + + (ZTC) 1.07 and 2.0, 

preparing programs for debugging, 
24-25 



"° f 1 f 2 f 3 f 4 f 5 f 7 - Fa- - - F9 - - Pio- - F-11- - F12- -, -------------------f 6 
Help Toggle Module ... Go to cursor Zoom Next Trace Step over Run Menu 

breakpoint window into 

Cut out Cut out 

I 
I 
I 
I 
I 
I 
I 

Previous At... Close Back trace User Undo 
topic screen close 

Program Evaluate/modify Size/ 

- - - _r~t- - - - - - - - ... 
move ----.. ___ 

Instruction Until return trace. 
Add Toggle 

watch ... breakpoint ----.. ____ 
Execute 

to ... 

Run ---
Local 
menu 

Turbo Debugger® 
Function Keys 
------· 



Improve JOU1' programs and write 
error-free Code with .Masterln6 
nuoo IJebrJgger'IJ. You'B elevate 
JOU1' debugging skills to power
tevels-rlgbt away! 

With a tbcmlgb overview, tbe 
book lntroduceS and explains 
every 1\nt>o Debugger command 
and feature. You Jeam. how to 
identify cmmm bup that 
burrow inside c, Pascal, and 
assembly language programs, 
and how to implement successful 
debuglDg strategies to get rid 
of them. This clear, concise text 
also expores advanced debugging 
~ such as keystroke 
rea>nling, :remote and dual
mmttor debuaging, TSRs and 
deYice drivers, and object-oriented 
Jl'Oblem solving. 

~~aw 
you brr# 10 .... simple and 

INFORMATION 
CENTER 

0 INT ) ADV I 
~-H-0-WTO-J I 

QIBM COMPATIBLEt=J 

Q PROGRAMMING ) 

Q TURBO DEBUGGER )2.~ 

$29.95 US/ $38.95 CAN 

complex data structures for 
investipting variables in your 
oode. Plus, tbe book includes 
three cmvenient keyboard 
templates that you can use as 
bandy references to 1\nt>o 
Debugger's function keys. 

Mastering Tu1fJo Debuaer is your 
first-hand guide to mastering 
JOU1' debugging skills and 
making JOU1' programming more 
powerful! 

Thm Swan is a well-known auth:>r 
and computer programmer. As 
contributing editor for PC 
Techniques, Programmer's 
]oumal, and PC W~ T<m 
Swan's columns reveal his talent 
for reaching both tbe nov1ce and 
the fl'O('mkmal. He bu written 
several successful books, including 
.Mastttring Tu1fJo Pascal 5.5 and 
Ma8terln6 Tu1fJo Assembler. 

ISBN 0-672-48454-4 

90000 

48454 

With .Mastering 
Turbo Debugger, 
you learn how to: 

Reduce your 
design-compile
debug cycle 
time 

Debug 
successfully 
in C, Pascal, 
and assembly 
language 

Master Turbo 
Debugger's 
windows, 
commands, 
and "hot keys" 

Automate your 
debugging 
sessions with 
macros and 
keystroke 
recording 

Examine TSRs 
and device 
drivers 

HAYDEN BOOKS 


