










































































































































































































































































































































































































































































































































































































































































































DATA SEGMENT 
CODE ENDS ;error, code should be DATA 

User-generated error 
An error has been forced by one of the directives, which then 
forces an error. For example, 

. ERR ;shouldn't get here 

USES has no effect without language 
This warning appears if you specify a USES statement when no 
language is in effect. 

Value out of range 
The constant is a valid number, but it is too large to be used 
where it appears. For example, 

DB 400 

Variable length parameter must be last parameter 
If a variable-length parameter is present, it must be the last 
parameter. For example, 

foo proctype pascal :word, : unknown, :word ;Not allowed. 

Fatal error messages 

Appendix 0, Error messages 

Fatal error messages cause Turbo Assembler to immediately stop 
assembling your file. Whatever caused the error prohibited the 
assembler from being able to continue. Here's a list of possible 
fatal error messages. 

Bad switch 
You have used an invalid command-line option. See Chapter 2 
for a description of the command-line options. 

Can't find @file _ 
You have specified an indirect command file name that does 
not exist. Make sure that you supply the complete file name. 
Turbo Assembler does not presume any default extension for 
the file name. You've probably run out of space on the disk 
where you asked the cross-reference file to be written. 

Can't locate file 
You have specified a file name with the INCLUDE directive that 
can't be found. 

329 



330 

An INCLUDE file could not be located. Make sure thatthe 
name contains any necessary disk letter or directory path. 

Error writing to listing file 
You've probably run out of space on the disk where you asked 
the listing file tobe written. 

Error writing to object file 
You've probably run out of space on the disk where you asked 
the object file to be written. 

File not found 
The source file name you specified on the command line does 
not exist. Make sure you typed the name correctly, and that 
you included any necessary drive or path information if the file 
is not.in the current directory. 

File was changed or deleted while assembly in progress 
Another program, such as a pop-up utility, has changed or 
deleted the file after Turbo Assembler opened it. Turbo 
Assembler can't reopen a file that was previously opened 
successfully. 

Insufficient memory to process command line 
You have specified a command line that is either longer than 
64K or can't be expanded in the available memory. Either 
simplify the command line or run Turbo Assembler with more 
memory free. . 

Internal error 
This message should never happen during normal operation of 
Turbo Assembler. Save the file(s) that caused the error and 
report it to Borland's Technical Support department. 

Invalid command line 
The command line that you used to start Turbo Assembler is 
badly formed. For example, 

TASM ,MYFILE 

does not specify a source file to assemble. See Chapter 2 for a 
complete description of the Turbo Assembler command line. 

Invalid number after 
You have specified a valid command-line switch (option), but 
have not supplied a valid numeric argument following the 
switch. See Chapter 2 for a discussion of the command-line 
options. 

Turbo Assembler User's Guide 



Appendix 0, Error messages 

Out of hash space 
The hash space has one entry for each symbol you define in ' 
your program. It starts out allowing 16,384 symbols to be 
defined, as long as Turbo Assembler is running with enough 
free memory. If your program has more than this many 
symbols, use the IKH command-line option to set the number 
of symbol entries you need in the hash table. 

Out of memory 
You don't have enough free memory for Turbo Assembler to 
assemble your file. 

If you have any TSR (RAM-resident) programs installed, you 
can try removing them from memory and try assembling your 
file again. You may have to reboot your system in order for 
memory to be properly freed. 

Another solution is to split the source file into two or more 
source files, or rewrite portions of it so that it requires less 
memory to assemble. You can also use shorter symbol names, 
reduce the number of comments in macros, and reduce the 
number of forward references in your program. 

Out of string space 
You don't have enough free memory for symbol names, file 
names, forward-reference tracking information, and macro 
text. A maximum of S12K is allowed, and your module has 
exceeded this maximum. 

Too many errors found 
Turbo Assembler has stopped assembling your file because it 
contained so many errors. You may have made a few errors 
that have snowballed. For example, failing to define a symbol 
that you use on many lines is really a single error (failing to 
define the symbol), but you will get an error message for each 
line that referred to the symbol. 

Turbo Assembler will stop assembling your file if it encounters 
a total of 100 errors or warnings. 

331 



332 

Unexpected end of file (no END directive) 
Your source file ended without a line containing the END 
directive. All source files must end with an END directive. 

Turbo Assembler User's Guide 



80287 coprocessor 
.287 directive 95 
P287 directive 95 

80387 coprocessor 
.387 directive 95 
P387 directive 95 

.8086 directive 92 

.8087 directive 95 
80186 processor 

.186 directive 92 
P186 directive 92 

80286 processor 
.286 directive 92 
.286C directive 92 
.286P directive 92 
protected mode 26 

N 

80386 processor See also 386 processor 
.386 directive 92 
.386C directive 92 
.386P directive 92 
loop instructions for 175 
P386 directive 92 
P386N directive 92 
P386P directive 92 
protected mode 26 

80486 processor 
.486 directive 92 
.486C directive 92 
.486P directive 92 
P486 directive 92 
P486N directive 92 
protected mode 26 

80487 processor 
.487 directive 92 
P487 directive 92 

{ } (brace) initializer 164, 170 
records and 168 

< > (bracket) initializer 166 
nested structures/ unions and 166, 172 

Index 

D 

records and 168 
< > (brackets) 

literal string 198 
macros and 190 

E 

8087 coprocessor 18, 95 
.8087 directive 95 
Borland c++ and 260 
P8087 directive 95 

.186 directive 92 

.286 directive 92 

.287 directive 95 
.. 386 directive 92 
.387 directive 95 
.486 directive 92 
.487 directive 92 
8086 processor 

.8086 directive 92 
P8086 directive 92 
PUSHing constants 178 
segments and 97 

.286C directive 92 

.386C directive 92 

.486C directive 92 

.286P directive 92 

.386P directive 92 

.486P directive 92 
386 processor 

protected mode 26 
[] (square brackets) 

describing address contents 87 
Ideal mode 38 
MASMmode38 

;; comment character 194 
:: directive 137 
= (equals) directive 46 
. (period) character 

Ideal mode 39 
@@ symbol 158 
+ addition operator 87 

x 

333 



@32Bit symbol 101 
! character 199 
& character, in macros 193 
= directive 18 
% expression evaluation character .199 
% immediate macro directive 204 
? keyword 122, 147 

as initial value 164 
\ line continuation character 197 
@-sign 31 
= sign, argument lists and 147 
$ symbol 131 
? symbol 160 

A 
/ a option 17, 27 
address expressions See expressions 
address subtypes 

complex 75 
setting 82 

address subtypes of symbols 
distance parameter and 75 

addresses, calculating 85 
ALIAS 224 
alias values 45 
ALIGN directive 120, 135 
.ALPHA directive 111 
ALPHA directive 17, 27 
ancestor virtual methods 65 
ARG directive 145, 146 

Borland C++ and 258 
arguments 

BYTE 147 
names (scope of) 148 
substitution (defined) 192 

arithmetic operators 81,87 
.ASM files 1, 15 
assembling 

first program 10 
multiple passes 142 
number of passes 22 

ASSUME directive 110 
at-sign 31 
attribute values of segments 106 
attributes 

segment 
access 108 

334 

B 

alignment 107 
class 107 
combination 106 
size 108 

values of segments· 106 

@B symbol 158 
/b option 16 
\ comment character 42 
Backus-Naur form (BNF) grammar 76 
%BIN directive 232, 233 
binary coded decimal (BCD) encoding 

DT directive and 163 
bit-field records, defining 117 
bit shift operators 81 
BIX, JOIN BORLAND 6 
block scoping of symbols, defined 156 
books 

assembly language 12 
Boolean algebra and operators 81 

symbol expressions and 214 
Borland 

contacting 5 
Borland C++ 

ARG directive and 258 
assembler modules in 18 
case sensitivity 24, 249 
code segment 241 
data types 249 
external symbols 251 
floating-point emulation 18 
linking to 269 
LOCAL directive and 256 
memory models 241 
parameter passing 252 
Pascal calling conventions 267 
public functions and 247 
register preservation 260 
returning values 260 
segment directives and 242 
structures 261 

BOUND instruction 
Ideal mode 39 . 

buffers, size of 16 
bulletin board, Borland 5 
BYTE arguments 147 

Turbo Assembler User's Guide 



byte values 160 

c 
C++ See Borland C++ 
/ c option 17, 230 
calculating addresses 85 
CALL..METHOD instruction 62, 63,67 

near tables and 187 
CALL instruction 183, See also 

CALL..METHOD 
extended 184 

case sensitivity 
assembler routines and 24 
Borland C++ 249 

CATSTR directive 191 
code-checking 26 
.CODE directive 103 
@code symbol 104 
code generation, intelligent (directives for) 173 
code segments 99 

Borland C++ 241 
CODESEG directive 103, 279 
@CodeSize symbol 102 
: (colon) operator 85 
: operator 136 
COM files 277 
COMM directive 223 
command files, indirect 31 
command-line options 13 
command-line syntax 14 

help screen 19 
COMMENT directive 43 
comments 

;; comment character 194 
; (semicolon) comment character 42 
\ comment character 42 
COMMENT directive 43 
end of line 42 
including in macros 194 

communal variables 222 
MASM mode and 223 

_ comparison operators 82 
compatibility, MASM vs. Ideal mode 297 
compiler options See individual listings 
complementary jumps 174 
complex types 125, 126 

Index 

compressing data, record data types and 117 
CompuServe, GO BORLAND 6 
conditional blocks (terminating) See GOTO 

directive 
conditional directives 

assembly pass 217 
defining blocks of code 209 
expression 213 
nesting 210 
symbol-definition 214 
text string 215 
when to use 209 

conditional jumps See jumps, conditional 
conditional list directives 228 
%CONDS directive 228 
configuration files 32 
.CONST directive 103 
CONST directive 103 
constants 

defined 71 
in expressions 77 
numeric 71 
rotation counts and shift instructions 179 
string 73 

constructor and destructor procedures 
writing 152 

coprocessor directives 95 
@Cpu symbol 93 
%CREF directive 231 
.CREF directive 231 
%CREFALL directive 231 
%CREFREF directive 231 
%CREFUREF directive 231 
cross-reference 

generating 15 
in listing files 17 
symbol information 230 

cross-reference utility See TCREF utility 
CS override 26 
%CTLS directive 227 
@curseg symbol 104 

o 
/d option 18 
data 

allocating 159 
constants and 162 

335 



WORDS 160 
defining 160 
initialized (defined)' 159 
repeated blocks 159 
storage in memory 162 
structures See structures 
uninitialized 

defined 159 
specifying 160 

.DATA? directive 103 

.DATA directive 103 
@data symbol 104 
data structures See structures 
data types 

Borland C++ 249 
creating named 171 
creating record 167 
declaring record 11 7 
enumerated 115 

creating instances of 169 
initializing instances of 169 
multiline syntax 116 
pseudo ops and 116 

objects and 56 
. record, multiline syntax for 117 

table 124 
multiline syntax 125 

with virtual methods 172 
DATASEG directive 103, 279 
@DataSize symbol 102 
??date symbol 46 
DB directive 160 
DD directive 160, 163 
debugging information 31 
%DEPTH directive 232 
derived objects 58 
development cycle, program 10 
DF directive 160 
directives See also individual listings 

conditional 209 
assembly pass 217 
symbol-definition 214 

conditional expression 213 
coprocessor 95 
displaying assembly messages 49 
error-generation 212 

using symbol expressions 215 

336 

include files 44 
module names 48 
processor 92 
program termination'48 
startup 20 
symbols 21 

DISPLAY directive 49 
distance parameter 

complex subtypes and 75 
DOS formats 

COM 277 
EXE 276 

DOSSEG directive 112 
:: directive 137 
doubleword values 161 
DP directive 160 
DQ directive 160, 163 
DT directive 160, 163 
dummy arguments 

defined 192 
in macros 197 
local 194 
recognizing 193 
types of 197 

DUP keyword 159 
DW directive 160 
dynamic link libraries (DLL) 

defined 280 
example of 280 

E 
/ e option 18, 95 
ELSEIF directive 213 
ELSEIFB directive 215 
ELSEIFDEF directive 214 
ELSEIFDIF directive 215 
ELSEIFDIFI directive 215 
ELSEIFE directive 213 
ELSEIFIDN directive 215 
ELSEIFIDNI directive 215 
ELSEIFNB directive 215 
ELSEIFNDEF directive 214 
ELSEIFxxx directives 211 
EMUL directive 19, 95 
encoded real numbers 163 
END directive 48 
ENDM keyword 196 

Turbo Assembler User's Guide 



ENDS directive 108, 120, 121 
ENTER instruction 175 
ENTERD instruction 176 
ENTERW instruction 176 
ENUM directive 115 
enumerated data types 

creating instances of 169 
defined 115 
initializing instances of 169 
multiline syntax for 116 
pseudo ops and 116 

environment variables, MASM mode 298 
epilog code 

defined 142 
how it works 143 
languages and 143 
NOLANGUAGE procedures and 144 
register preservation and 149 
specifying default style 100 

EQU directive 45, 46, 190 
Ideal vs. MASM mode 36 

equal (=) directive 18 
equate substitutions 45 
.ERRI directive 217 
.ERR2 directive 217 
ERR directive 213 
.ERR directive 213 
.ERRB directive 216 
.ERRDEF directive 215 
.ERRDIFI directive 216 
.ERRE directive 213 
.ERRIDN directive 216 
.ERRIDNI directive 216 
ERRIFI directive 217 
ERRIF2 directive 217 
ERRIF directive 213 
ERRIFB directive 216 
,ERRIFDEF directive 215 
ERRIFDIF directive 216 
ERRIFDIFI directive 216 
ERRIFE directive 213 
ERRIFIDN directive 216 
ERRIFIDNI directive 216 
ERRIFNB directive 216 
ERRIFNDEF directive 215 
.ERRNB directive 216 
.ERRNDEF directive 215 

Index 

.ERRNZ directive 213 
error-generation directives 212 
error messages 301-332 

fatal 329 
reporting 51 
source file line display 30 
warning 302 

ERRxxx directives 212 
EVEN directive 134 
EVENDATA directive 134 
EXE files 276 
.EXE files 2 
.EXIT directive 105 
EXITCODE directive 105 
EXITM directive 195 
expressions 

l6-bit vs. 32-bit 88 
BNF grammar and 76 
byte values 87 
constants in 77 
contents of 76 
determining characteristics 86 
evaluation character 199 
Ideal mode 38 
obtaining type of 83 
precision of 76 
register names and 77 
segment overrides of 84 
setting address subtypes 82 
structure names in 124 
symbols in 77 
syntax of 283 
text macro names and 78 
why to use 71 

extended CALL instruction See 
CALL..METHOD instruction 

extern "C" 241 
external symbols See symbols, external. 
EXTRN directive 221 

Borland C++ and 251 

F 
@F symbol 158 
far data 

initialized 99 
uninitialized 99 

far pointer values 161 

337 



FAR procedures 140 
far returns, instructions for 176 
.FARDATA? directive 103 
@fardata? symbol 104 
FARDATA directive 103 
.FARDATA directive 103 
@fardata symbol 104 
fast immediate multiply instruction See 

FASTIMUL instruction 
F ASTIMUL instruction 182 
fatal error messages 329 
field value manipulation instructions 181 
file names 47 

object-oriented programming format 68 
??filename symbol 47 
@FileName symbol 47 
files 

.ASM 15 
assembly 47 
configuration 32 
indirect 31 
listing See listing files 

flag instructions, smart 180 
FLDENV instruction 183 
FLIPFLAG instruction 180 
floating-point· 

emulation 18 
Ideal vs. MASM mode 299 
instructions 2 

floating-point instructions See coprocessor 
emulation directives 

floating-point numbers 163 
FRSTOR instruction 183· 
FSA VE instruction 183 
FSTENV instruction 183 

G 
GEnie, BORLAND 6 
GETFIELD instruction 182 
GLOBAL directive 222 

in .ASO files 68 
objects and 58 

global symbols, include files and 222 
GOTO directive 195 . 
GREP utility See the README file 
GROUP directive 109 

Ideal vs. MASM mode 40 

338 

groups 

H 

assigning segments to 109 
segment registers and 110 
segments in Ideal mode 39 

H2ASH utility See the README file 
Ih option 19 
hardware and software requirements 2 
HELLO.ASM 10 
help 

displaying screen 19 
HIGH operator 87 

i486 processor 
protected mode 26 

Ii option 19 
IDEAL directive 37 
Ideal mode 1 

BOUND instruction 39 
expressions 38 
features 36 
include files 44 
operands 38 
operators 38 
predefined symbols 45 
segment fixups 39 
segment groups 39 
speed 36 
why to use 35, 36 

IF1 directive 210, 217 
IF2 directive 210, 217 
IF directive 210, 213 

. IFB directive 210, 215 
IFDEF directive 210, 214 
IFDIF directive 210, 215 
IFDIFI directive 210, 215 
IFE directive 213 
IFIDN directive 210, 215 
IFIDNI directive 210, 215 
IFNB directive 201, 210, 215 
IFNDEF directive 210, 214 
IFxxx directives 209 
immediate mq.cro directive (%) 204 
implied addition 87 

Turbo Assembler User's Guide 



IMUL instruction See F ASTIMUL instruction 
%INCL directive 228 
INCLUDE directive 19, 44 
include files 

Ideal mode 44 
setting path ·19 

INCLUDELIB directive 224 
indirect command files 31 
information 

technical support 5 
inheritance 

defined 58 
example of 65 
objects and 128 
previous object definitions 172 
structure definitions and 122 

initialization code 104 
installation instructions 7 
instances 

creating object 67 
creating structure or union 164 
creating table 170 
initializing instances 165 
initializing table 170 
initializing union or structure 164 
named-type, creating 171 
of objects 172 
of records 167 
virtual method table 65, 172 
virtual method table (VMT) 61 

INSTR directive 191 
instruction set See individual listings 
instruction size See size of instruction$ 
intelligent code generation 

directives for 173 
@Interface symbol 

MODEL directive and 102 
IRET instruction 

expanded 177 
IRETW instruction 177 
IRP directive 202 
IRPC directive 202 

J 
Ij option 20 
jEMUL option 19 
JMP .. METHOD instruction 67, 188 

Index 

JMP instruction 183 
jumps 

complementary 174 
conditional 174 

JUMPS directive 174 

K 
keyword precedence 290 

Ideal mode 290 
MASM mode 291 

keywords 23, See also individual listings 
list of available 292 

Ikh option 21 

L 
11 option 17, 21, 24 
Ila option 21, 144 

language modifiers and 145 
LABEL directive 120, 136 
labels 

defining 135 
external 248 
local in MASM 158 

.LALL directive 204, 229 
language modifiers 

WINDOWS procedures and 145 
languages 

MODEL and 142 
modifiers and Windows procedures 144 
overriding default for procedures 142 
preserving registers and 149 
procedures and arguments 145 
setting in CALL statement 270 

LARGE operator 88, 183 
instructions it affects 183 

LARGESTACK directive 113 
LEAVE instruction 175 
LEAVED instruction 176 
LEA VEW instruction 176 
length of symbols 23 
LENGTH unary operator 79 
LFCOND directive 30 
.LFCOND directive 228 
LGDT instruction 183 
libraries (including) See TLINK 
LIDT instruction 183 

339 



line continuation character (\) 197 
line number information 30 
linker See also TLINK utility 

Borland C++ 252, 269 
PharLap 108 
segment ord,ering and 111 

%LINUM directive 233 
%LIST directive 227 
.LIST directive 227 
listing files 15 

IX command-line option and 229 
conditional listing directives 228 
cross-reference information 17 
cross-reference table and 225 
directives for 226 
false conditionals in 30 
format of 225 
format parameters 232 
generating 21 
high-level code in 21 
including files in 228 
including multiline macros 204 
macro expansions in 229 
symbol table and 227 
symbol table in 230 
symbol tables 

suppressing 24 
why to use 225 

literal string brackets 198 
LOCAL directive 146 

Borland C++ and 256 
in macros 194 

local labels 
inMASM 158 

LOCALS directive 150, ·156 
location counter 

creating address expressions 85 
defined 131 
directives for 132 

location counter symbol 131 
LOOP instruction 175 
loop instructions for 80386 processor 175 
LOOPDinstruction 175 , 
LOOPDE instruction 175 
LOOPDNE instruction 175 
LOOPDNZ instruction 175 
LOOPDZ instruction 175 

340 

LOOPE instruction 175 
LOOPNE instruction 175 
LOOPWE instruction 175 
LOOPWNE instruction 175 
LOOPWNZ instruction 175 
LOOPWZ instruction 175 
LOOPZ instruction 175 
LOW operator 87 ' 
.LST files 15 

M 
@Mptr member 172 
I m option 22, 142, 298 
macros 

& character in 193 
body of 192 
controlling expansion 195 
defining new text 191 
defining substring 191 
deleting multiline 200 
dummy arguments within 197 
expansions in listing files 229 
including comments in 194 
invoking arguments with special characters 
199 
invoking general multiline 197 
length of text 191 
manipulating string 190 
multiline 192 

defining general 196 
multiline expansions in listing file 204 
names in expressions 78 
nested and recursive 200 
redefining general multiline 199 
repeating 201, 202 
returning positions of strings 191 
string repeat 202 
terminating assembly of 195 
terminating body of 196 
text 

defined 189 
examples of manipulation 191 
how to define 190 

why to use 189 
%MACS directive 204, 229 
MAKE utility See also the README file 

COM programs and 279 

Turbo Assembler Users Guide 



MASK unary operator 80 
MASKFLAG instruction 180 
MASM compatibility 297 

environment variables 298 
expressions 38 
floating-point format 299 
NOSMART directive 297 
predefined symbols 45 
Quirks mode 297 
segment groups 40 
two-pass asssembly 298 

MASM directive 37 
MASM mode See MASM compatibility 
math coprocessor See numeric coprocessor 
member functions 265 
memory models 

available segments 98 
Borland C++ 241 
FAR code pointers 102 
modifiers of 100 
NEAR code pointers 102 
segment attributes for 275 
specifying values 101 
standard 99 

messages 
reporting error 51 
suppressing 27 
warning 50 

METHOD keyword 56, 59 
method procedures 

creating 152 
defined 59 
example of 60 
structure of 68 

methods 
calling ancestor virtual 66 
calling static 62 
calling virtual 63, 64 
defined 54 
static versus virtual 

advantages of 60 
tables and 124 
virtual 187 

Microsoft Assembler See MASM compatibility 
IML command-line switch 73 
I ml option 22, 45, 220 
MODEL directive 98, 101 

Index 

language modifiers and 144 
.MODEL directive 98 
@Model symbol 101 
models, determiJ:ring procedure distance 140 
modifiers, language 144 
modular programming, module names 48 
modules, defined 219 
IMU command-line switch 73 
I mu option 23 
MULTERRS directive 51 
multiline definition syntax 43 
multiline macros 192 

defining general 196 
deleting general 200 
including in listing file 204 
invoking general 197 
redefining general 199 

multiline syntax 
enumerated data types and 116 
record data types and 117 
table data type definitions and 125 

multiple assembly passes 22, 142 
IMV command-line switch 73 
I mv# option 23 
IMX command-line switch 73 
I mx option 24, 220 

N 
In option 24 
NAME directive 48 
name-mangling 239 
named structures, including 122 
naming conventions of symbols 219 
NEAR procedures 140 
near returns, instructions for 176 
near tables, objects and 63 
NEARSTACK modifier 99 
nested macros See macros 
nested procedures 150 
%NEWP AGE directive 232 
%NOCONDS directive 228 
%NOCREF directive 231 
%NOCTLS directive 227 
NOEMUL directive 19, 95 
%NOINCL directive 228 
NOJUMPS directive 174 
NOLANGUAGE interfacing convention 186 

341 



NOLANCUAGE procedures 
prolog and epilog code and 144 

%NOLIST directive 227 
NOLOCALS directive 156 
%NOMACS directive 204, 230 
NOMULTERRS directive 51 
NOPs, avoiding generation of 175 
NOSMART directive 173 

MASM compatibility 297 
%NOSYMS directive 227 
NOTHING keyword ·110 
%NOTRUNC directive 233 
NOWARN directive 50 
NUL device 16 
null string, length of 191 
numbers 

encoded real 163 
floating-point 163 

numeric constants 71 
numeric coprocessor 18 

o 
10 option 25 
.OBI files 1 

suppressing 26 
object files 

debugging information in 31 
line number information in 30 
module name 48 
segment ordering 17, 27 

object methods 
calling 187 
tail recursion for 188 

object modules, defined 10 
@Object symbol 129 
object-oriented programming 

advantages of using 53, 54 
defined 53 
filename format 68 
list of examples 69 
table data types and 124 

objects See also methods 
creating instances of 67, 172 
data types and 56 
declaring 56, 57 
defined 54 
defining symbols 129 

342 

derived 58, 59 
differences between structures and 172 
GLOBAL directive and 58 
how to define 128. 
inltializing instance's VMT pointer 188 
linked list example 55 
method procedures and 128, 152 
near tables and 63 
structures and 128 
TLINK compatable without overlay code 25 
virtual method table instances 172 
what they consist of 128 

OBIXREF utility See the README file 
OFFSET operator 38, 84 

MASM vs. Ideal mode 40 
offsets, getting segments and 84 
loi option 25 
lop option 25, 108 
operands, Ideal mode 38 
operators See also individual listings 

bit shift 81 
Boolean algebra and 81 
comments 43 
comparison 82 
general arithmetic 81 
Ideal vs. MASM mode 38 

options, command line See command-line 
options 

ORC directive 132 
los option 25 
%OUT directive 49 
overlay code 

p 

generating 25 
IBM linker 25 
Phar Lap linker 25 

P8086 directive 92 
P8087 directive 95 
P186 directive 92 
P287 directive 95 
P386 directive 92 
P387 directive 95 
P486 directive 92 
P487 directive 92 
P386N directive 92 
P486N directive 92 

Turbo Assembler User's Guide 



P386P directive 92 
Ip option 26 
PAGE directive 232 
%P AGESIZE directive 232 . 
parameter passing 

Borland C++ 252 
%PCNT directive 233 
. (period) character 

MASM vs. Ideal mode 285 
. (period) operator 86 
period, Ideal mode structures 39 
Phar Lap linker 108 
plus sign 15 
pointers 

virtual method table 61, 63, 64, 65 
POP instruction 183 

multiple 177 
pointers and 178 

POP A instruction 
expanded 178 

POP A W instruction 179 
POPFW instruction 179 
%POPLCTL directive 235 
precedence 

keyword 290 
Ideal mode 290 
MASM mode 291 

predefined symbols See symbols 
PROC directive 139 
PROC keyword, Ideal mode 37 
PROCDESC directive· 152, 186 
procedure prototypes 152 
procedure types, defining 149 
procedures 

calling and having RETURNS 186 
calling with arguments 185 
declaring 139 
defining types 127 
determining distance of 141 
FAR 140 
interfacing conventions of 184 
languages for 

arguments and 145 
MODEL and 142 
overriding default 142 

method 68 
creating 152 

Index 

models and distance of 140 
NEAR 140 
nesting and scope rules 150 
NOLANGUAGE 144 
prototyping 186 
publishing prototypes 222 
specifying languages for 142 
stack frames and I 146, 175, 184 
writing constructor and destructor 152 

pr9cessor directives 92 
processor type, determining 93 
PROCTYPE directive 127, 149 
program development cycle 10 
program termination, END directive and 48 
prolog code 

defined 142 
languages and 143 
NOLANGUAGE procedures and 144 
register preservation and 149 
specifying default style 100 
what it does 143 

protected mode 26 
segment registers and 97 

prototypes 
procedure 152 
procedure types and 154 
publishing procedure 222 

prototyping procedures 186 
PUBLIC directive 220 
public functions, Borland C++ and 247 
PUBLICDLL directive 221 
PURGE directive 200 
PUSH instruction 183 

multiple 177 
pointers and 178 

PUSHA instruction 
expanded 178 

PUSHAW instruction 179 
PUSHF instruction 

expanded 178 
PUSHFW instruction 179 
PUSHing constants 178 
%PUSHLCTL directive 234 

Q 
Iq option 26 
quadword values 161 

343 



question mark 
symbols using 46 

QUIRKS directive 297 

R 
, Ir option 18,26 
RADIX directive 72, 163 
.RADIX directive 72 
radixes 

available 71 
changing default 72 
characters determining 72 
default 163 

real mode, segment registers and 97 
record data types, multiline syntax for 117 
RECORD directive 117 
records 

< > and 168 
{} and 168 
creating instances of 167 
defining 168 
initializing instances 168 
retrieving data from 182 
setting values in 181 

recursive macros See macros 
reference books 12 
registers See also individual listings 

initializing with models 277 
names of and expressions 77 
preserving 149 
preserving (Borland~ C++) 260 
segment 97 

registration (product) 
by phone 5 

REPT directive 201 
RET instruction, NEAR or FAR and 176 
RETCODE instruction 176 
RETF instruction 176 
RETN instruction 176 
return instructions 176 
RETURNS directive 186 

5 
I s option 17, 27 
.sALL directive 204, 230 
scope of symbols, defined 155 

344 

scope rules for nested procedures 150 
SEG operator 84 
SEGCS instruction 179 
SEGDS instruction 179 
SEGES instruction 179 
SEGFS in~truction 179 
SEGGS instruction 179 
SEGMENT directive 105 
SEGMENT keyword, Ideal mode 37 
segments 

8086 processor and 97 
assigning to groups 109 
attributes 

access 108 
alignment 107 
class 107 
combination 106 
size 108 

Borland C++-and 241 
closing 108, 120 
code 99 
default attributes 275 
directives (Borland C++ and) 242 
fixups (Ideal vs. MASM mode) 39 
forced overrides 179 
generic 105 
getting offsets and 84 
groups 

Ideal mode and 36, 39 
MASMmode40 

groups and 98 
how the stack is treated 98 
memory models and 99 
opening 105 
ordering 1 7, 111 

alphabetic 111 
changing 111 
DOS 112 
sequential 111 

overrides of expressions 84 
reg~sters 97, See also individual listings 
regIsters and 110 
sequential order 17, 27 
simplified directives 103 
size 94 
symbols and 104 
writing to uninitialized 106 

Turbo Assembler User's Guide 



SEGSS instruction 179 
semicolon 14 

within macros 43 
SEQ directive 17 
.sEQ directive 111 
SETFIELD instruction 181 
SETFLAG instruction 180 
SFCOND directive 30 
.SFCONDS directive 228 
SGDT instruction 183 
shift instructions, rotation counts and 179 
SHL operator 82 
SHR operator 82 
SIDT instruction 183 
simplified segment directives See also 

individual listings 
symbols and 104 

size of data See data 
size of instructions, co~trolling 183 
SIZE unary operator 79 
SIZESTR directive 191 
SMALL operator 88, 183 

instructions it affects 183 
SMALLSTACK directive 113 
SMART directive 173 

MASM compatibility 297 
smart flag instructions, why they're useful 180 
software and hardware requirements 2 
source files 

include files 19 
symbols 18 

square brackets 
Ideal mode 38 
MASMmode38 

stack 
changing size of 112 
MODEL directive and 112 
segments and 98 

STACK directive 103 
stack frame 

defined 184 
specifying arguments 145 

.STACK directive 103 
@stack symbol 104 
.STARTUP directive 104 
@Startup symbol 105 
STARTUPCODE directive 104, 277 

Index 

static methods 
calling 62 
versus virtual (advantages of) 60 

statistics, displaying 16 
string constants 73 
strings, quoted 162 
STRUC directive 56, 118, 121, 128, 129 
structures 

aligning members 120 
Borland C++ 261 
bracket initializer and nested 166 
closing 120 
creating instances of 164 
creating members 120 
defined 118 
differences between objects and 172 
including named 122 
initializing instances 164 
member names and 119, 123 
members and 119 
names in expressions 124 
nested 123 
nesting 121 
objects and 128 
opening a definition 118 

SUBSTR directive 191 
SUBTTL directive 234 
%SUBTTL directive 234 
symbol tables 

listing files and cross-referencing 17 
suppressing 24 

symbols 
address subtypes 

complex 75 
simple 74 

aliases 45 
block-scoped 156 
block-scoped (disabling) 157 
case sensitivity of 22, 24, 73 
@Cpu93 
??date 46 
defined 73 
defining 18 
dynamic link entry points 221 
enabling locally scoped 150 
external 24, 221 

Borland C++ and 251 

345 



??filename 47 
@FileName 47 
global 222 
in expressions 77 
length of 23 
location counter 131 
MASM block scoping 157 
names of 73 
naming conventions for languages 219 
overriding language setting 220 
public 24, 220 
publishing external 220 
redefinable 155, 156 
restrictions 18 
scope of (defined) 155 
standard values 77 
??time 47 
types of 73 
uppercase 23 
values used by themselves 78 
why to use 71 
@WordSize 94 

%SYMS directive 227 
SYMTYPE operator 86 
syntax, command-line See command-line 

syntax 

T 
It option 27 
TABLE directive 56 
@Table symbol 129 
@TableAddr member 172 
@Table'addr symbol 129 
tables 

creating instances of 170 
data types 124 
initializing instances of 1 70 
overriding members 126 
static members 124 
virtual members 124 

%TABSIZE directive 234 
tags, macro 195 
tail recursion code, instruction for 188 
TASM32.EXE 8 
TASM.CFG32 
TASM.EXE8 
TASMX.EXE8 

346 

TBLINIT directive 61 
in .ASM files 68 

TBLINIT instruction 188 
TBLINST directive 61 

in .ASM files 68 
TBLINST pseudo-op 172 
TBLPTR directive 129 
TCREF utility 15, See also the README file 
Technical Support 

contacting 5 
termination, END directive and 48 
termination code 105 
TESTFLAG instruction 180 
text macro names, in expressions 78 
text strings See strings 
% TEXT directive 234 
TFCOND directive 30 
.TFCOND directive 228 
THELP utility See the README file 
THIS operator 85 
time 47 
??time symbol 47 
TITLE directive 234 
%TITLE directive 234 
TLIB utility See the README file 
TLINK utility 252, 269, See also the README 

file 
example of 11 

% TRUNC directive 233 
TSM_UTIL.TXT 8 
Turbo Librarian See the README file 
Turbo Link See TLINK utility 
two-pass assembly 

MASM compatibility 298 
type checking, Ideal mode 35 
TYPE operator 83 
type override operators 82 
type-safe linkage 239 
.TYPE operator 86 
TYPEDEF directive 126 
typefaces in this manual 4 
types See also data types 

complex 125, 126 
defining named 126 
defining procedure 127 
of expressions 83 
procedure 149 

Turbo Assembler User's Guide 



symbol 73 

u 
luoption28 
I u command-line switch 47 
UDATASEG directive 103,279 
UFARDATA directive 103 
underscore, and the C language 248 
UNION directive 118, 121 
unions 

bracket initializer and nested 166 
closing 120 
creating instances of 164 
defined 118 
initialized data 123 
initializing instances 164, 165 
members and 119 
multiple initialized members 166 
nested 123 
nesting 121 
opening a definition 118 

uppercase, converting symbols to 23 
USE32 modifier 99 
USES directive 149 
utilities See individual listings 

V 
Iv option 16,28 
variables, communal 222 
VERSION directive 47, 48 

line continuation and 44 
MASM compatability and 48 

VIRTUAL keyword 57, 125 
virtual method table 

initializing 61 
initializing pointer to 188 
instances of 61, 65, 172 
modifiers and 128 

Index 

objects and 129 
pointers 64 
pointers to 61, 63, 65, 129 

virtual methods 
ancestor 65 
calling 63, 64 
object data types and 172 
versus static (advantages of) 60 

virtual table pointers 
determining size of 129 
modifiers and 128 

W 
Iw option 28 
WARN directive 50 
WARN PRO directive 279 
warning messages 50, 302 

"mild" 28 
generating 28 

WHILE directive 202 
WIDTH unary operator 80 
windows applications, creating 279 
word values 161 
@WordSize symbol 94 

x 
Ix option 30 
XRF files 15 
XALL directive 204, 230 
XCREF directive 231 
XLIST directive 227 

z 
Iz option 30 
I zd option 30 
I zi option 31 
I zn option 31 

347 





.. 

Borland 
Corporate Headquarters: 100 Borland Way, Scotts Valley, CA 95066-3249, (408) 431-1000. Offices in: Australia, Belgium, Canada, 
Denmark, France, Germany, Hong Kong, Italy, Japan, Korea, Latin America, Malaysia, Netherlands, New Zealand, Singapore, Spain, 
Sweden, Taiwan , and United Kingdom· Part # LSM1240WW21770 • BOR 6284 


