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Preface

Programmers are always arguing about which language is the best. Try to win C program-
mers over to Pascal and they’ll tell you to go eat quiche. Try to get Pascal pundits to recog-
nize the fresh look of BASIC and you’ll probably be told where to GOTO. And don’t even
think of suggesting to FORTH fans that theirs is an obscure language, hardly suitable for
any “serious” work—unless, that is, you’re prepared to be threaded up and tarred right out
of town.

I try to avoid getting into such arguments, which I find to be more amusing than significant.
What if, instead of programmers, the debaters were chefs arguing about whether a souffle
will be more heavenly if the recipe is written in French, English, or Spanish? Of course, that’s
silly—you’ll get the same results no matter what language spells out the ingredients. Flour is
flour, right?

The same is true in programming. All high-level languages must translate their instructions
into native machine code to run on computer processors such as the PC’s 8086, 80386, or
80486 microprocessors, covered in depth in these pages. With this in mind, it’s easy to see
that, when stripped bare (as the cover of this book seems to suggest), all programming lan-
guages actually speak the same tongue—forked as it may be in some cases.

So, no matter what high-level language you favor, it makes sense to learn assembly language,
the only computer language that lets you talk to a naked computer in its own dialect. In the
following chapters, I'll concentrate mostly on how to write entire programs in assembly lan-
guage, paying special attention to developing reusable library modules. There are chapters
that explain how to mix assembly language with Pascal, C, and C++. This new edition also
includes chapters on Turbo Assembler’s object-oriented features, and on Windows applica-
tion development using assembly language.

To the beginners among you, I add this note: If you’ve heard that assembly language is dif-
ficult, don’t believe it. With Turbo Assembler’s many features including Ideal mode, and
with the guiding hand of the marvelous Turbo Debugger, you'll soon be twiddling bits with
the best of them. Quiche indeed!

Tom Swan
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Learning Assembly Language

I remember when I discovered assembly language. The nearest I've come to experiencing the
same elation was the day I first balanced a two-wheeler, wiggling my way down our street,
my father’s thumb no longer snagging my belt, my fear of falling melting like bee’s wax in
the siin.

Mastering assembly language gives many programmers the same sort of astonished joy. Why?
Because assembly language is the only computer language that lets you talk to a computer in
its native tongue, commanding the hardware to perform exactly as you say. If you like to be
in charge, if you like to control things, if you're interested in details, you'll be right at home
with assembly language.

My goal in writing this book is to offer a guiding hand as you find your own balance in as-
sembly language programming. Read the rest of this chapter for suggestions on how to pre-
pare your disk and how to make the best use of the book’s various parts and pieces. Enter the
examples—or examine the files on the accompanying disk—puzzle through the exercises and
projects at the end of each chapter, and don’t be afraid to experiment on your own. Above
all, have fun! (If you become frustrated, see “How To Get More Help” later in this chapter.)

You Take the High Level and I'll Take the Low Level

Even though it may appear that a computer “understands” high-level languages such as BASIC,
Pascal, or C, all computer programs actually run in machine language, the coded bytes that
drive the computer’s central processing unit (CPU). For this reason, machine code is a better
term for this lowest of low-level computer languages—the only language the CPU knows.
Because CPUs can’t directly execute C and Pascal statements, programs in these and other
high-level languages must be compiled (translated) to machine code before the programs can
be used. Similarly, a program written in an interpreted language such as BASIC or LISP must
be translated to machine code, although in these cases, the translation happens invisibly while
the program runs, usually one statement at a time.

Assembly language programs are also translated to machine code by a program called an as-
sembler. Despite this similarity with other languages, assembly language is neither high nor
low level; it’s sort of stuck in between. Unlike C and Pascal statements, which might trans-
late to dozens of machine-code bytes, assembly language instructions directly relate to indi-
vidual machine codes—the major distinction between assembly language and high-level
computer languages. All languages have their good points, but only assembly language al-
lows you to write programs directly in the CPU’s indivisible instruction set.
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If assembly language and machine code enjoy a one-to-one relationship, why not program
directly in machine code? The answer is: Machine code is just too cumbersome. While it’s
true that very early computer programs were programmed in machine code, today this is
almost never done—and with good reasons. For example, many machine codes depend on
their relative positions in memory. Also, in pure machine code, there are no named
variables, and there is no way except by fixed addresses to tell a program where values and
subroutines are stored. This means that if you change one instruction in a 10,000-byte
machine-code program, you may have to modify 9,000 other codes as well!

Obviously, such hard labor lacks appeal for fun-loving programmers, whose brains, despite
popular opinion, are not bitmapped and wired with AND gates. Programming directly in
machine code is drudge work. Programming in assembly language gives you the best of two
worlds, combining direct access to the computer’s lowest levels with features like named
variables and numeric expressions that make programming in high-level languages practical
and enjoyable. With assembly language, you can change one instruction and then feed the
modified code to Turbo Assembler, which translates the entire program to machine code.
Some people say that assembly language is only one step above machine code. That’s true,
but it’s a big step.

Developing Mental Pictures

Because assembly language statements directly translate to the CPU’s fundamental machine
codes, the best way to become a crack assembly language programmer is to develop good
mental models of a computer’s inner workings. The more you know about how your com-
puter is constructed and the more familiar you are with the functions in DOS and the ROM
BIOS on PCs, the better you will be able to apply your knowledge of assembly language
when writing computer programs.
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In later chapters, I concentrate on subject areas that explain in detail how to control various
parts of a PC’s hardware. For example, one chapter deals with the keyboard and display,
another chapter explains serial communications. The goal in these chapters is to help you
develop mental models of what really goes on inside your computer, while showing how to
control the computer’s devices with assembly language statements.

Preventive Debugging

Some people find it difficult to make the intuitive leap between a program’s written state-
ments and the actions that occur when the program runs. This is especially so with cryptic
assembly language instructions such as mov ax, bx and xor ¢x, cx, which appear to have no
connection with displaying characters on-screen, printing text, and dialing up remote
systems via modems. Comprehending a program by mentally executing out-of-context
ssembly language statements can frustrate even the most mechanical of thinkers. But don’t
let such moments ruin your day. This is hard for everybody.

Using a program such as Turbo Debugger, included with most versions of Borland C++ and
Pascal, is one way—maybe the best way—to improve your ability to understand an assem-
bly language program’s actions. Many people consider a debugger to be useful only for help-
ing to fix a broken program. But a debugger can offer preventive medicine as well as a cure.
With Turbo Debugger, you can peer into memory as your program runs, watch processor
registers change, see memory bytes take on values, and step through a program’s actions in
slow motion. You can also view your assembly language statements along with the corre-
sponding machine code, seeing exactly what Turbo Assembler generates from your program
text.

Using Turbo Debugger to examine running programs helps you to understand the purpose
of specific assembly language statements. In future chapters, I'll often suggest using Turbo
Debugger to check registers and flags, to examine sections of memory, and to run your pro-
gram up to temporary stopping places, letting you reflect at your own speed on what the
program is doing every step of the way.
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Striving for the Ideal

Turbo Assembler is actually two assemblers in one. Normally, Turbo Assembler processes
programs written in the popular MASM syntax (MASM is short for Microsoft Assembler).
For assembling programs downloaded from bulletin boards, copied from time-share systems,
or gleaned from MASM books, this is the method to use.

Examples in this book use Turbo Assembler’s Ideal mode, which I believe to be superior to
MASM syntax—especially for writing stand-alone assembly language programs. With Ideal
mode, programs assemble faster and are less prone to developing bugs that can result from
MASM’s many known quirks and syntactical freedoms. (The Turbo Assembler User’s Guide
spells out the differences between MASM and Ideal mode instructions.)

In addition to extra speed and the absence of quirky behavior, Ideal mode offers other ad-
vantages. Structures (similar to Pascal records or C structures) can repeat member field names.
Assembler directives are easier to remember and use. Equated symbols and expressions al-
ways have predictable values. And formats for various memory-addressing modes must con-
form to generally recognized guidelines. If you don’t yet grasp the significance of some of
these items, you’ll have to trust my opinion: Ideal mode is what PC assembly language pro-
grammers have needed for years.

Don’t be concerned that by learning Ideal mode, you’ll be shut out from using the thou-
sands of lines of MASM code in the public domain. After learning Ideal mode, you'll be able
to read and understand MASM-mode programs with little effort. Most differences between
the two modes are subtle—a spelling change here, an operand reversal there. I regularly read
and work on programs in both syntaxes without difficulty, but I prefer using Ideal mode for
new projects.

Advantages of Assembly Language

Many books list in detail the advantages and disadvantages of programming in assembly lan-
guage. The advantages are rather obvious and well known: low-level access to the computer
and the promise of top speed that comes from total control over the CPU. High-level
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language programs tend to run more slowly than assembly language programs because of the
way a C or Pascal compiler uses standard methods to read and write variables, to call subrou-
tines, and so on. In assembly language, if you want to store a variable in a readily accessible
processor register, that’s your business.

Despite many claims to the contrary, however, there is no guarantee of speed in assembly
language programming. An experienced C or BASIC programmer can write programs that
run circles around bungled assembly language jobs. Assembly language gives you nothing
more than the opportunity to write programs with optimum efficiency—a worthy goal that
requires time and patience to achieve in practice. But if speed is your aim, you can at least be
sure of one thing: You’ve come to the right race track.

Disadvantages of Assembly Language

The main disadvantages of assembly language programming most often cited are: increased
risk of bugs, reduced portability, and the absence of library routines to perform tasks such as
displaying strings or reading disk-file data. Let’s take these one by one.

Increased risk of bugs I don’t agree with this criticism. Bugs are the result of carelessness,
not the result of features in a computer language. You can write buggy programs in any lan-
guage, and you can write bug-free programs in assembly language. I do agree that simple
bugs in assembly language programs are often more serious than mistakes in C or Pascal.
Because assembly language gives you complete control of the CPU, a single haywire state-
ment can cause a system crash more readily than in high-level languages, where a compiler
generates the machine code for you. One way to deal with this problem is to run your pro-
grams under the control of Turbo Debugger, which can help reduce the likelihood of a crash.

Reduced portability By nature, assembly language is tied to the CPU for which a pro-
gram is designed. Assembly language instructions translate directly to machine code and,
therefore, will run only on computers using a compatible CPU. Porting (transferring) an
assembly language program from one computer to another with a different processor usually
means starting over from scratch. I have to agree with this gripe. To gain the advantages of
assembly language, you must give up the ability to port programs easily to other systems.
You can’t have it both ways.
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Absence of library routines All high-level languages have commands to perform com-
mon jobs such as displaying strings, printing text, and processing disk files. Also, high-level
languages let you write mathematical expressions such as (x * 2 + 8). Assembly language
lacks such niceties, requiring you to write custom code for these and other tasks. Although
this fact is true, the argument misses the primary point of gaining total control over a
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library—the opportunity to achieve optimum efficiency and top speed. Furthermore, many
assembly language libraries are available containing routines to perform typical high-level
operations. You may have to work a little harder, but there’s nothing you can do in a high-
level language that you cannot do in assembly. Besides, if you must use certain features in C,
C++, or Pascal, you can always combine high-level languages with assembly language, as
Chapters 12 and 13 explain.

Hardware Requirements
To make the best use of this book, at a minimum you should have the following equipment:
IBM PC, XT, AT, PS/2, or 100% compatible

384K memory (256K if you don’t use Turbo Debugger)
* One or two floppy disk drives

* Monochrome or color display

For simplicity, I'll use PC to refer to this basic system, which is perfectly suitable for enter-
ing and running most of the examples in this book. You’ll probably find the going easier if
you also have any of the following optional equipment:

* Printer

* Hard disk drive
¢ Additional memory

Almost all the programs in this book will run on any IBM computer with an 8086, 8088,
80286, 80386, 80486, or Pentium processor. A few programs here and there, however, re-
quire an 80386 or 80486 (or equivalent). Windows programs require a hard disk drive, but
then, so does Windows itself.
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Software Requirements

In addition to the required hardware listed in the preceding sections, at a minimum you need
to have the following software:

* Turbo Assembler 4.0 and Turbo Debugger 4.0

* DOS 4.01 or alater version

* Optional: Microsoft Windows 3.1 or a later version (for the programs in
Chapter 15)

You can probably use most of the programming techniques in this book with Turbo
Assembler 3.2 and Turbo Debugger 3.2 shipped with Borland Pascal 7.0. I tested all
program listings, however, with Turbo Assembler 4.0.

For entering program listings, you also need a text editor, which Turbo Assembler does not
supply. Any one of the following editors will work just fine:

* The editor in Borland Pascal or C++

¢ Brief

* VEdit Plus

¢ EDIT (from MS-DOS)

* Epsilon

¢ WordStar (in nondocument mode)

SideKick or SideKick Plus notepad

If you have a Borland language, use the editor built into the integrated version of your com-
piler. You can also use any plain ASCII text editor, but don’t use a word processor such as
WordPerfect, which adds formatting codes to text.

After entering or viewing the disk file for each program, use your editor’s “exit-to-DOS”
command to return to the DOS prompt and then follow the instructions listed and explained
before each program example. After assembling and experimenting with the program, type
EXIT and press Enter to return to editing. If your text editor lacks a similar command to
return to DOS, you'll have to quit the program, assemble, and then reload your editor to
enter the next example. Some editors such as Brief can run Turbo Assembler directly, but
you still have to exit to DOS to run the resulting programs.
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Microsoft Windows Users

If you are running Microsoft Windows, open a DOS prompt window for editing, assem-
bling, and trying out this book’s sample programs. Except for the Windows programs in
Chapter 15, you cannot assemble and run this book’s listings directly as Windows applica-
tions.

Also, due to the way Windows takes over control of DOS and the ROM BIOS, a few pro-
grams in this book may not run correctly in a DOS prompt window. I'll warn you in ad-
vance of any such problems. If you experience trouble running some programs, exit Microsoft
Windows and try again from a DOS prompt.

How To Use This Book

Beginners should read this book from front to back. The text and program examples were
carefully selected to avoid using terms not yet introduced. If you read chapters out of order,
be aware that many program examples use modules introduced earlier. For example, you
may not understand the programs in Chapter 9 if you did not read about the modules those
programs use from previous chapters. To find hints about specific topics, refer to the table of
contents, and the subject index.

About the Chapters

Each chapter in this book follows the same general organization, designed so that you can
use the book both as a tutorial and as a reference. A flyleaf page lists the chapter’s major top-
ics. Following this comes the chapter text, which ends with a summary, plus a list of exer-
cises to test your knowledge and, except for this chapter, suggested projects. Answers to all
exercises are included near the back of the book. I did not provide answers for suggested
projects.

The book is divided into three parts. Part I, “Programming with Assembly Language,” is a
tutorial on 8086 assembly language. Part II, “Application Programming,” describes how to
mix assembly language with Pascal, C, and C++, how to use Turbo Assembler’s object-ori-
ented features, and also how to write Windows applications using assembly language. Part
I11, “Reference,” lists processor and Turbo Assembler instructions. The following notes briefly
describe each chapter.

¢ Chapter 1, “Introduction,” introduces concepts of assembly language programming,
explains how to use this book, and makes other suggestions, as you no doubt know
if you've read this far!

* Chapter 2, “First Steps,” describes the parts of an assembly language program, gets
you started using Turbo Assembler and Turbo Debugger commands, and explains
how to create .EXE and .COM code files on disk.

11
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Chapter 3, “A Bit of Binary,” reviews the basics of the binary number system,
concentrating on concepts that are vital in assembly language programming.
Beginners: Don’t skip this chapter! Experts: Skim the material for a quick refresher.

Chapter 4, “Programming in Assembly Language,” explores the difficult subject of
memory segmentation and introduces most of the 8086 instruction set.

Chapter 5, “Simple Data Structures,” explains addressing modes and shows how to
reserve memory for variables. You'll also learn how to use the TLIB utility program
to construct a library file containing this book’s modules, required by examples in
future chapters.

Chapter 6, “Complex Data Structures,” expands on the topics introduced in
Chapter 5, showing how to create advanced multifield structures, unions, arrays,

and packed bit-field records.

Chapter 7, “Input and Output,” gives advice on reading the keyboard and writing
text to the standard output file (usually the display) from assembly language. Some
examples call DOS and ROM BIOS routines for these tasks. Others show how to

improve display performance by writing directly to video RAM buffers.

Chapter 8, “Macros and Conditional Assembly,” explains how to combine repetitive
instructions into macros, adding custom commands to assembly language. Also
discussed are conditional assembly techniques for writing multipurpose programs
that assemble differently on demand.

Chapter 9, “Disk-File Processing,” covers assembly language techniques for creating,
reading, and writing file data stored on disk. Reading disk directories is also ex-

plained.

Chapter 10, “Interrupt Handling,” dives into the intricate and often confusing
subjects of writing interrupt service routines, tapping into the PC timer, and
accessing serial I/O ports.

Chapter 11, “Advanced Topics,” discusses some of the less frequently used (and,
perhaps, poorly understood) Turbo Assembler techniques.

Chapter 12, “Mixing Assembly Language with Pascal,” unravels the tricky secrets of
mixing assembly language with Turbo Pascal, with the goal of optimizing program
performance.

Chapter 13, “Mixing Assembly Language with C and C++,” shows how to mix
assembly language with Borland C++, emphasizing optimization as in Chapter 12.

Chapter 14, “Programming with Objects,” explains how to use Turbo Assembler’s
object-oriented-programming (OOP) features, and also suggests advantages and
disadvantages of using OOP techniques in assembly language.
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* Chapter 15, “Programming for Windows,” provides guidelines for writing Win-
dows applications purely in assembly language. (The programs in this chapter
require Microsoft Windows 3.1 or a compatible later version.)

* Chapter 16, “Assembly Language Reference Guide,” is an alphabetic reference to
the instruction sets for 80x86 processors (excluding protected-mode instructions,
not used 1n application programming).

* Chapter 17, “Turbo Assembler Reference,” lists the syntax for Turbo Assembler’s
predefined symbols, operators, MASM- and Ideal-mode equivalents, and directives.

About the Modules

Many of the programs are constructed as separate modules, which you can assemble and store
in a library file for other programs to share. Instructions are given for creating and using a
suggested library file named MTA.LIB, but feel free to store the modules in another file if
you prefer.

Refer to the index to find program examples, demonstrations, shells (ready for filling with
your own code), Pascal and C external routines, macros, and other files. In addition to the
book’s many tested examples, major library modules include:

* STRINGS.ASM: package of ASCIIZ string subroutines

* STRIO.ASM: routines for reading and writing ASCIIZ strings

* BINASC.ASM: conversion utilities for strings and numbers

* SCREEN.ASM: memory-mapped video procedures

* KEYBOARD.ASM: routines for reading key presses including function keys

* DOSMACS.ASM: macros for calling DOS functions

* DISKERR.ASM: routines for deciphering disk errors

* PARAMS.ASM: routines to read DOS command-line parameters

e ASYNCH.ASM: interrupt-driven serial I/O routines

How To Organize Your Disks

Hard Drives

Hard disk drives are more widely used than they were when this book’s first edition was
published. If you don’t have a hard drive, see the next section, “Floppy Disk Drives,” for
help setting up a floppy-disk based system.

13
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The steps for installing Turbo Assembler differ depending on the version you have. Some
versions are automatically installed with a Borland Language product such as Pascal 7.0. Others
must be installed in an existing directory (Turbo Assembler 4.0, for example, is typically
installed in C:\BC4\BIN, the “binaries” directory for Borland C++.)

Follow the steps in your language User’s Guide for installing Turbo Assembler. To check
whether your installation is correct, go to a DOS prompt (open a DOS window if you are
running Microsoft Windows), then enter tasm. This should display the following lines fol-
lowed by a list of command-line options:

Turbo Assembler Version 4.0 Copyright (c) 1988, 1993 Borland International

Syntax: TASM [options] source [,object] [,listing] [,xref]

Ifyou can’t seem to run TASM, the cause is probably a mistake in your system PATH. Make

sure that a command such as the following is in your computer’s plain-text AUTOEXEC.BAT
file:

PATH=C: \WINDOWS;C:\DOS;C: \BC4\BIN

Borland Pascal 7.0 users should change C:\BC4\BIN to C:\BP\BIN (or to the directory where
you install Pascal’s executable code files).

Some versions of Turbo Assembler, such as those that used to be supplied with the discon-
tinued Borland product, Application Frameworks, install Turbo Assembler and Turbo
Debugger in separate directories. In that case, you might have to set your path to something

like this:

PATH=C: \WINDOWS;C:\DOS;C:\TASM;C:\TD

Floppy Disk Drives

If you do not have a hard drive, you can probably use Turbo Assembler and most of this
book’s programs from floppy disks. You cannot run some of the more sophisticated examples,
such as those that require Microsoft Windows, but you can still use this book to learn assem-
bly language techniques on floppy-disk systems with two drives A: and B:. Used PCs are
available for very little money, so this is an inexpensive way to get started programming.

Create a boot disk with operating system files, COMMAND.COM (a DOS program that
lets you give commands and run other programs from a DOS prompt), your text editor, and
Turbo Assembler. To create this disk, boot your computer to your DOS master disk in A:.
Insert a blank disk into B: and enter the following command (the /s option transfers system

files to the disk):

format b: /s
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Also copy any other programs you need. For example, to use the DOS EDIT program for
entering and reviewing program listings, copy it to your disk (the exact command depends
on where the EDIT.EXE file is located—but not all DOS versions provide it):

copy a:\edit.exe b:
Finally, copy Turbo Assembier’s executabie code flie, TASM.EXE, to the disk:
copy tasm.exe b:

Again, the exact command depends on your version of Turbo Assembler. Some versions can
be installed directly to a floppy disk. For additional installation instructions, refer to the User’s
Guide that came with your assembler or compiler.

After creating your Turbo Assembler floppy disk, edit or create a plain text AUTOEXEC.BAT
file with a PATH statement such as:

PATH=A:\;B:\

When you reboot your computer, this statement makes it possible to run programs from
drives A: and B:, regardless of which is the current drive. The only disadvantage of this tech-
nique is that you must have formatted disks in both drives at all times, or you may receive a
“Not ready” error. If this happens, press R to retry the command after inserting a disk.

Older Turbo Assembler Versions

You can probably use many of this book’s programs with older versions of Turbo Assembler.
Depending on your version, however, you may not be able to use object-oriented features or
write Windows applications. For best results, you should upgrade to Turbo Assembler 4.0.
If you have version 3.0, you can probably get by, but I tested the programs in the book only
with version 4.0.

If you cannot get a program to run with your version, try the original listing file supplied on
this book’s disk. See the disk installation instructions at the end of this book for instructions
on using these first-edition files.

Entering Program Listings

If you are typing the listings, using your favorite text editor, enter the example programs
exactly as printed, except for the numbers and colons at the left. These numbers are for refer-
ence only—don 't type them. Try to match the indentations in the listings. You don’t have to
indent every line exactly as printed, but so you can better understand the assembly language
instructions, try to keep columns aligned more or less as they are in the book. Use your editor’s
tab key to save typing time.

15
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Each example program is numbered by chapter (1.5, 4.3, and so on) with the name of the
disk file shown next to the program number (BINASC.ASM ASYNCH.ASM, and so forth).
Save each program with the suggested disk-file name. Some programs depend on these
filenames; therefore, if you change the name of one program file, you may have difficulty
running other programs later.

NOTE

Getting More Help

If you need more help, if you have a burning question, if you find a mistake (horrors!) in this
book, what should you do? First, don’t panic. Second, don’t phone. Sorry, but if I took the
time to speak to all who telephone, I'd never get books like this one finished. That doesn’t
mean I don’t want to hear from you. I love to receive letters from readers, and I always try to
write back. Limit your questions to one or two, but don’t send disks—I can’t return them.
If you want to get in touch, here’s how:

* Write to Swan Software, P.O. Box 1303, Key West, FL 33040.
* Send CompuServe Email to 73627,3241.

* Write to me in care of Sams Publishing.

Summary

The purpose of this book is to guide you through the often difficult world of assembly lan-
guage programming for IBM PCs and compatibles running DOS and Windows. Learning
assembly language does not have to be difficult, despite what you may have heard. This book’s
many examples and topics will help you to acquire programming skills that even many pro-
fessional programmers lack. The published programs are modular and well tested, and many
can be extracted for use in your own work.

Assembly language is a convenient method for writing machine-code programs. Although
early programmers wrote computer programs directly in low-level machine code, few pro-
grammers would do the same today. Assembly is one step above machine code, while C, Pascal,
BASIC, Prolog, and others are high-level languages. Because assembly language is closely tied
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to the machine code of the computer processor, a good way to learn assembly language pro-
gramming is to develop useful mental models of the computer’s inner workings. Also, using
Turbo Debugger as a teaching tool helps explain how assembly language programs operate.

Turbo Assembler runs in two modes, MASM and Ideal. The example programs in this book
are all written in Ideal mode, superior in many wayvs to MASM svntax.

Assembly language—like all computer languages—has its advantages and disadvantages. The
major advantages are the promise of extra speed plus the ability to program the computer’s
processor directly. The major disadvantage is that assembly language programs will run only
on the processor for which they are written.

Line numbers added to all example programs in this book are purely for reference. When
entering listings, don’t type the numbers and colons. All programs are provided on the disk
at the back of the book. For best results, you should have Turbo Assembler 4.0. First edition

files are provided on disk for use with earlier Turbo assembler versions.

Exercises

1.1. Why is “machine language” an improper term?

1.2. What is meant by the terms “high level” and “low level” in describing computer
languages?

1.3. What is the major difference between a high-level language and assembly
language?

1.4. Why don’t programmers write software directly in machine code anymore? Why
do you think they ever did?

1.5. How can a debugger help you to learn assembly language?

1.6. What is a register?

1.7. What is a flag?

1.8. What are some of the advantages of Turbo Assembler’s Ideal mode?

1.9. What are the main advantages of programming in assembly language?

1.10. What are the main disadvantages of programming in assembly language?

17






First Steps

Assembly Language: Parts and Pieces, 20
Assembling a Program, 30
Understanding Object Code, 32
Command-Line Options, 33

Dealing with Errors, 34

Introducing Turbo Debugger, 37
Writing .COM and .EXE Programs, 42
Summary, 49

Exercises, 50

Projects, 51




2

20

| PART| @  PROGRAMMING WITH ASSEMBLY LANGUAGE

Assembly Language: Parts and Pieces

Assembly language is an odd-looking computer language. The program source-code text is
sprinkled with three- and four-character unpronounceable words like c1i, movsb, and sbb,
appearing to the untrained eye to follow no preplanned order or to have any relationship
with one another. And no matter how long you stare at the programmer’s comments—the
text preceded by semicolons at the ends of most assembly language lines—the words often
seem to have no connection with the program’s instructions.

One reason for this apparent (but deceiving) disarray is the lack of built-in control structures
in assembly language. There are no REPEAT-UNTIL or WHILE constructions to group
repetitive actions. There are no IF-THEN-ELSE or CASE statements to make decisions, and
there is no assignment symbol to initialize named variables. Performing such high-level ac-
tions requires you to construct programs from a single set of low-level machine-code instruc-
tions, giving the assembly language source-code text a homogenized sameness that tends to
hide the inner meaning of what the program is doing. Also, assembly language is line-
oriented, not statement-oriented as are C, Pascal, and BASIC. Consequently, many lines of
code are usually needed to perform even simple operations like adding numbers or initializ-
ing variables.

There is order in the apparent jumble, however. Even though Turbo Assembler permits pro-
grammers to organize their code in numerous styles, most assembly language programs natu-
rally divide into five main sections: header, equates, data, body, and closing. (These are my
own terms, by the way—there are no standard names for the parts of an assembly language
program.) The header contains setup information. The eguatesarea declares symbols to which
you assign various expressions and constant values. The daza section declares variables to be
stored in memory. The body contains the actual program code. The closing marks the end of
the source-code text. Let’s examine each of these parts more closely.

The Header

The header begins an assembly language program. In the header are various commands and
directives, none of which produces any machine code in the final product. The header in-
structs the assembler to perform certain actions, generating the finished code file according
to various options at your disposal.

Figure 2.1 shows a sample header, similar to the header at the beginning of most example
programs in this book. (This isn’t a complete program—so don’t bother trying to assemble
it.) The optional TITLE line describes the purpose of the program, causing the text between
quotes to print at the top of each listing page—that is, if you ask Turbo Assembler to print
a listing. The 1DEAL directive switches on Turbo Assembler’s Ideal mode. Leave this out to
assemble a program written in Microsoft Macro Assembler (MASM) syntax.
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%TITLE "Test Header--Don't Assemble!”

IDEAL
MODEL small
STACK 256

Figure 2.1, Tipical assembly language header.

Next comes the MODEL directive, which selects one of several memory models (see Table 2.1),
most of which are used only when combining assembly language with Pascal or C. In stand-
alone assembly language programming, the smal/ model is usually the best choice. But don’t
be fooled by the name. The small memory model gives you up to 64K of code plus another
64K of data for a total maximum program size of 128 K—practically a bottomless pit in the
memory-efficient world of machine code.

The sTAcK directive in Figure 2.1 reserves space for the program’s stack, an area of memory
that stores two kinds of data: values temporarily stored by or passed to subroutines and the
addresses to which subroutines return control. (Stacks also come into play during interrupts,
a subject for Chapter 10.) Manipulating the stack is an important assembly language tech-
nique, which I cover in more detail in the chapters to come. The value after the STACK direc-
tive tells Turbo Assembler how many bytes to reserve for the stack segment—256 bytes in
Figure 2.1. Most programs require only a small stack, and even the largest programs rarely
require more than about 8K.

Table 2.1. Memory Models.

Name Code  Data  Assumptions Description
tiny near near cs = dgroup Code, data, and stack in
ds = ss = dgroup one 64K segment. Use for
.COM programs only.
small near  near  cs = _text Code and data in separate
ds = ss = dgroup 64K segments. Use for

small- to medium-size .EXE
programs. Best choice for
most stand-alone assembly
language programs.

medium far near  cs = <module> text  Unlimited code size.
ds = ss = dgroup Data limited to one 64K
segment. Use for large
programs with minimal
data.

continues

21



PART] @  PROGRAMMING WITH ASSEMBLY LANGUAGE

Table 2.1. continued

Name Code  Data  Assumptions Description

_text Code limited to one

ss = dgroup 64K segment. Unlim-
ited data size. Use for
small- to medium-size
programs with many or
very large variables.

compact near far cs
ds

large far far cs = <module>_text  Unlimited code and
ds = ss = dgroup data sizes. Use for large
program and data
storage requirements,
as long as no single
variable exceeds 64K.

huge far far cs = <module>_text  Unlimited code and
ds = ss = dgroup data sizes. Identical to
the large memory
model. (The huge
model is provided for
compatibility with high
level languages.)
tchuge far far cs = <module>_text  Same as the large
ds = nothing memory model, but
ss = nothing with different register
assumptions. Use
mostly for Turbo C
and Borland C++
programming.
tpascal near  far cs = code Provided for backwards
ds = data support for early
ss = nothing versions of Turbo
Pascal. Obsolete for
Borland Pascal.

flat near  near  cs = _text For use with OS/2
ds = ss = flat only; otherwise the same as
the small memory model.
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Equates

After the program header come various constant and variable declarations. In assembly lan-
guage, constant values are known as eguates, referring to the EQu directive that associates val-
ues with identifiers such as Maxvalue and Portaddress. Turbo Assembler allows you to use

EQU or, for numeric values only, an equal sign (=).

Using equated identifiers instead of “magic” numbers like 0100h and 0B800h lets you refer
to expressions, strings, and other values by name, making programs easier to read and modify.
(Literal values are magical because of the way they can hide a program’s secrets.) Here are a
few sample equates that could follow the header in Figure 2.1:

Count EQU 10

Element EQU 5

Size = Count * Element
MyBoat EQU "Gypsy Venus"
Size = 0

Although most equated symbols simply stand in place for their associated values and expres-
sions—similar to the way constants are used in Pascal and C—there are several tricky rules
to remember when creating and using assembly language equates:

* After declaring a symbol with EQu, you cannot change the symbol’s associated value.
Redefining an equated symbol (changing Count to 11, for example) is never allowed.

* The same rule is not true for symbols declared with an equal sign (=), and you can
change these values as often as you like. Notice how the sample equates change the
value of size from 50 to 0. You can do this anywhere in the program, not just in
the equate section.

* EQU can declare all kinds of equates including numbers, expressions, and character
strings. The equal sign (=) can declare only numeric equates, which can be literal
values like 10 and OFh, or expressions such as Count * Size and Address + 2.

* Equated symbols are not variables—neither the symbols nor their associated values
are stored in the program’s data segment. Assembly language instructions can never
assign new values to equated symbols, regardless of whether EQU or = was used to
declare the symbols.
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¢ Although you can declare equates anywhere in your program, it’s usually best to
place them near the beginning where they are most visible. An equate buried deeply
inside the program’s code can easily become the source of a hard-to-find bug.

* Expressions declared with EQU are evaluated later when the equated symbol is used
in the program. Expressions declared with an equal sign (=) are evaluated at the
place where the equated symbol is defined. The assembler stores the equated zext of
EQu symbols but stores only the value of = symbols.

This last rule is easier to understand by examining a few more examples. Suppose you have
the following three equates:

LinesPerPage = 66
NumPages = 100
TotallLines = LinesPerPage * NumPages

Obviously, TotalLines equals the result of multiplying LinesPerPage times NumPages, or 6,600.
(As in most computer languages, an asterisk (*) indicates multiplication.) Because TotalLines
is declared with the equal sign (=)—indicating a numeric value—the expression is evaluated
immediately, associating the result of the expression with TotalLines. If you assign a new
value to NumPages elsewhere in the program, the computed value of TotallLines does not
change. A different effect occurs, however, if you declare TotalLines with EQu:

TotalLines EQU LinesPerPage * NumPages

Internally, Turbo Assembler stores the actual text, not the calculated result, of an expression
along with all EQu symbols—in this case, the text of the expression LinesPerPage * NumPages.
Later in the program when you use TotalLines, the assembler inserts this text as though you
had typed those characters at this place in the source code. The expression is then evaluated
to produce a final value. If you assign new values to one or both of the symbols used in the
expression—either NumPages or LinesPerPage—the evaluated result changes accordingly.

This ability to affect the result of equated expressions can be useful. You can program one
module with an equated expression that changes value depending on equates in other mod-
ules. Be aware of the subtle difference between = equates and those that you create with Equ.
This is a feature that can also create bugs if used carelessly.

The Data Segment

A program’s data segment usually appears between the equates and the program’s instruc-
tions. It’s possible, but rarely useful, to declare data segments elsewhere and to have multiple
data segments strewn throughout the program text. Despite this feature, your assembly lan-
guage programs will be easier to read and modify if you follow the simpler plan suggested
here, declaring all your variables between the equates and code.
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Begin your program’s data section with the DATASEG directive. This tells the assembler to store
variables inside the program’s data segment, which can be as large as 64K in the small memory
model. The data segment can store two kinds of variables: initialized and uninitialized. When
the program runs, initialized variables have preassigned values, which you specify in the pro-
gram text and which are stored inside the program’s code file on disk. These values are auto-
matically loaded into memory and are readily available when the program runs. Uninitialized
variables are identical to initialized variables in every way except that uninitialized variables
do not occupy space in the program’s code file and, consequently, have unknown values when
the program runs. Because of this, declaring a large uninitialized variable—an array of con-
secutive values or a large buffer to be filled from a disk file, for example—will reduce the size
of the program’s code file.

NOTE

Reserving Space for Variables

Although Chapter 5 describes in detail how to declare variables in a program’s data segment,
a few simple examples introduce several important concepts that you need to know now.
Here’s a typical data segment as it might appear after the program’s header and equates:
DATASEG

numRows DB 25

numColumns DB 80

videoBase DW  oBooh

First comes the DATASEG directive, informing Turbo Assembler to allocate space for the
program’s data segment. Three variables are then declared: numRows, numColumns, and videoBase.
As a rule, I prefer to capitalize my equated constants (Count, NumPages, and so on) and to
begin variables with lowercase letters as shown here. This is an arbitrary convention, and
you can type symbols in uppercase or lowercase as you prefer. Also, some programmers use
underline characters to make multiword identifiers more readable, for example, writing
num_rows and video_base instead of the mixed case style shown here.

DB (define byte) and pw (define word) are the two most common directives used to reserve
space for a program’s variables. You'll use these directives repeatedly. Unlike high-level lan-
guages where the actual location of variables in memory is usually unimportant, in assembly
language, you must reserve space in memory for your variables and, in the case of uninitialized
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variables, assign values to that space. Be sure that you understand how this differs from equated
symbols, which are associated with values and expressions in the source-code text only. Vari-
ables have space reserved in the program’s data segment in memory. Equated symbols do
not.

The symbols associated with variables—numRows, numColumns, and videoBase in the previous
samples—are called /abels. A label points to the item that it labels—in this case the reserved
memory space for a variable’s value. Programs can refer to this space by using the label as a
pointerto the value in memory. In the assembled program, labels are translated to the memory
addresses where variables are stored, a process that allows you to address memory by the names
you invent rather than by literal memory addresses.

Variables are guaranteed to follow each other inside the data segment—knowledge that you
can use to perform various tricks. For example, these declarations:

DATASEG
aTom DB "ABCDEFGHIJKLM"
nT0z DB "NOPQRSTUVWXYZ"

seem to be creating two character strings labeled atom and nT0z. In memory, however, the
characters A to Z are stored consecutively, creating one string containing the letters of the
alphabet. The label nT0z simply points to the middle of this string—there aren’t really two
separate entities in memory.

Careful readers may be thinking, “But wait! If DB means ‘define byte,” what’s it doing declar-
ing character strings?” Good question. DB has the special ability to reserve space for multiple-
byte values, from 1 to as many bytes as you need. A string is composed of individual ASCII
characters, each occupying 1 byte; therefore, DB is simply assembly language’s tool for
declaring character strings, which, after all, are merely series of ASCII byte values stored con-
secutively in memory. You can use DB to declare individual characters and byte values, sepa-
rated by commas:

DATASEG

perfectTen DB 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
theTime "'DB 9,0 ; i.e., 9:00
theDate DB 12,15,98 ; i.e., 12/15/1998
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And, you can also combine character and byte values, creating a two-line string variable with
the ASCII codes for carriage return and line feed stuck in between. As the following example
shows, you can use either single or double quotes around character strings:

combo DB 'Line #1', 13, 10, "Line #2"

Some languages—moast notrably Pascal—differentiare herween cineole characrers and ctrinoe

< < ‘ (<] O
of multiple characters. In assembly language, the difference between a character and a string
is one of size only. There are no extra values, length bytes, or termination characters in as-
sembly language strings, unless, of course, you put them there.

You'll learn more about strings later when examining assembly language instructions spe-
cially designed to manipulate byte strings in memory. For now, remember that, unlike in
most high-level languages, strings are simply consecutive values in memory, created with the
DB directive.

The Program Body

After the data segment comes the program’s body, also known as the code segment—the
memory chunk that contains your program’s assembled code. Inside this area, assembly lan-
guage text lines are further divided into four columns: label, mnemonic, operand, and com-
ment. Each column has an important function, best described by example. In the program
text, by the way, the amount of spacing between columns is not important. Most people
align the columns by simply pressing their editor’s tab key once or twice.

NOTE

Although you haven’t met any actual assembly language instructions yet, examine the sample
data and code segments in Figure 2.2 and try to pick out the four columns. (This is not a
complete program—so don’t bother trying to assemble it.) Although short and sweet, the
example contains the essential elements of a complete assembly language code segment. To
provide some data to use, a data segment also declares a single-byte variable named excode,
initialized to 0.
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After the CoDESEG directive in Figure 2.2 are several lines divided into label, mnemonic, op-
erand, and comment columns. In the first column are two labels, start: and Exit:. Labels
mark the places in a program to which other instructions and directives refer. Lines that don’t
need labels have blanks in this column. In the code segment, a label always ends with a colon
(:). In the data segment, a label must not end with a colon. (See the exCode label, for ex-
ample.) You just have to memorize this rule, which admittedly makes little logical sense.

In the second column are mnemonics, literally “formulas for remembering things.” (By the
way, the word “mnemonic” has a fascinating history. In Greek mythology, Mnemosyne—
pronounced nee-mos$-in-nee—is the goddess of memory, the bride of Zeus, and the mother
of the Muses. While trying to memorize assembly language mnemonics, a silent offering to
Mnemosyne may not help, but it can’t hurt.) Each mnemonic formula in the second col-
umn in Figure 2.2 refers to one machine-code instruction—mov for Move, jmp for Jump,
and int for Interrupt. Some mnemonics are easy to remember: dec for Decrement, shl for
Shift Left, and ror for Rotate Right. Others look like the handiwork of a crazed typesetter:
jexz for Jump if ox is Zero, and rer for Rotate through Carry Right. A few rare cases are
actually full-blown words: out for Out, push for Push, and pop for Pop. Even so, as you can
clearly see, assembly language is abbreviated to the extreme. It will take time and patience to
learn the name and purpose of each mnemonic. You’ll meet the full set of 8086 mnemonics
in Chapter 4. Also, Chapter 16, the Assembly Language Reference Guide, lists every mne-
monic along with full names and descriptions of how the associated instructions operate.
Refer to these sections often and memorize as many mnemonics as you can. When reading
through a program, always pronounce a mnemonic’s full name. In time, this will help make
assembly language, if not easy reading, at least more understandable.

The third column in Figure 2.2 contains the operands—the values on which the preceding
mnemonic instruction operates. A few instructions require no operands and, in these cases,
the third column is blank. Many instructions require two operands; others take only one.
No 8086 instruction requires more than two operands. The first operand is usually called
the destination. The second operand (if there is one) is called the source. Operands take
many forms; therefore, it’s best to learn the different forms as you meet each mnemonic in-
struction.
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Label Mnemonic Operand Comment
DATASEG

exCode DB o ; A byte variable
CODESEG

Start: mov ax, @data ; Initialize DS to address
mov ds, ax ; of data segment
jmp Exit ; Jump to Exit label
mov cx, 10 ; This line is skipped!

Exit:
mov ah, 04Ch ; DOS funtion: Exit program
mov al, [exCode] ; Return exit code value
int 21h ; Call DOS. Terminate program
END Start ; End of program / entry point

Figll re 2.2 The four columns of an assembly language program.

The fourth and final column is always optional and, if included, must start with a semicolon
(). Turbo Assembler ignores everything from the semicolon to the end of the line, giving
you a place to write a short comment describing what this line does. Nearly every line of
every example program in this book ends with a comment, which you can leave blank to
save typing time if you are entering the programs by hand. In your own work, be sure to add
clear comments that fully describe your program. As you are no doubt beginning to realize,
especially if assembly language is new to you, this language is cryptic and hard to read. You
can’t add too many comments.

A Few Comments on Comments

Sometimes you'll see an assembly language line that begins with a semicolon in the first col-
- umn. Most programmers write their more lengthy comments this way, identifying various
program sections and describing tricky sections. (As with comments at the ends of lines, you
can leave these longer comments blank to save typing time when entering this book’s ex-
amples.) Many programmers begin their programs with a multiline identifying comment

like this:

3

; PURPOSE: Predict winning Lottery numbers

; SYSTEM: 1IBM PC / Turbo Assembler Ideal Mode
; AUTHOR: Ivan the UnLucky

Another kind of comment exists in MASM mode but, unfortunately, not in Ideal mode. In

MASM mode, you can start a large comment with the COMMENT directive, followed by a char-
acter called the comment delimiter, in turn followed by your comment, and ending with a
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second instance of the same delimiter. To do this in Ideal mode, temporarily switch to MASM
mode:

MASM

COMMENT /* This is a comment, which can
stretch over several lines and which you
can easily reformat with your editor's
paragraph command. */

IDEAL

After the MASM directive enables MASM mode, the COMMENT directive begins a multiline com-
ment, defining a backslash as the comment delimiter character. A second backslash ends the
comment. (The asterisks are purely for show here—I use them only to help my eye pick out
comments in the text and to make the comments resemble those in C.) Finally, the 1DeAL
directive returns Turbo Assembler to Ideal mode. The blank lines after MASM and before 1DEAL
let me reformat the entire comment block using my editor’s reformat-paragraph command,
making it easier to edit a lengthy note in the program text. You may want to try this trick if
your editor has a similar command.

The Closing

The final part of an assembly language program is the closing, a single line that tells Turbo
Assembler it has reached the end of the program. There is only one directive in the closing:
END. Repeating the last line from Figure 2.2, a typical closing is:

END Start ; End of program / entry point

The END directive marks the end of the program source-code text. The assembler ignores any
text below this line—a good place to stick additional notes, by the way. To the right of END,
you must specify the label where you want the program to begin running. Usually, this label
should be the same as the label that precedes the first instruction following the CODESEG di-
rective. You can start a program elsewhere, although I can’t think of any good reasons for
doing so.

Assembling a Program

Now that you know the form of an assembly language program, the next step is to learn how
to assemble a program text file to produce a running code file on disk. Use your text editor
to type in Listing 2.1, FF.ASM, or locate that file on disk. (Remember: Don’t type the ref-
erence numbers and colons at the left. Type only the text to the right of the colons.) Try to
align the four columns similarly to the printed text. You don’t have to be too exacting—
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close is good enough. To save time, leave out the comments. Quit your editor (or tempo-
rarily return to DOS if your editor has such a command) and type these lines:

tasm ff

tlink ff

The tasm command runs Turbo Assembler, which reads FF.ASM and, provided you entered
the prograin text worrecty, creates 4 new Lie Fr.OBj, containing die asscibled code 11 rdw
form—not yet ready to run. If you receive any errors, check your typing and try again. The
tlink command runs Turbo Linker, which reads FF.OB]J and creates the executable code
file FF.EXE. Notice that neither command requires you to type the filename extension (ASM
or .OB]J). You can type these extensions if you want, but why work harder than necessary?

Now turn on your printer. (If you don’t have a printer, you can’t use this program. Sorry!)
Type FF at the DOS prompt and press Enter to send a form-feed command to the printer,
advancing the paper to the next page. Copy FF.EXE to the directory where you store your
other utilities and run this program instead of reaching for your printer’s form-feed button.
(My printer is across the room, and I originally wrote FF years ago so I wouldn’t have to get
out of my chair just to advance the paper. So call me lazy.)

Listing 2.1. FF.ASM.
1: %TITLE "Send printer form feed command -- by Tom Swan"

2

3 IDEAL

4:

5: MODEL small

6: STACK 256

7:

8: ;--——-- Equates

9:

10: ASCIIcr EQU 13 ; ASCII carriage return

11: ASCIIff EQU 12 ; ASCII form feed control code
12:

13: CODESEG

14:

15: Start:

16: mov ax, @data ; Initialize DS to address

17: mov ds, ax ;5 of data segment

18:

19: mov dl, ASCIIcr ; Assign cr code to dl
20: mov ah, 05h ; DOS function: Printer output
21: int” 21h ; Call DOS--carriage return
22:
23: mov dl, ASCIIff ; Assign ff code to dl
24: mov ah, 05h ; DOS function: Printer output
25: int 21h ; Call DOS--form feed

26:

27: Exit

28: mov ax, 04C00h ; DOS function: Exit program
29: int 21h ; Call DOS. Terminate program
30:
31: END Start ; End of program / entry point
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Understanding Object Code

Listing 2.1 requires two steps—assembling and linking—to translate an assembly language
program from text form into an executable program. Turbo Assembler never directly creates
a program in ready-to-run form but instead generates an intermediate file containing the
assembled program in a form called the object code. Before you can run the program, you
must further process the object code with a linker, which creates the executable .EXE file on

disk.

For simple programs, this may seem like two steps too many, but there is a good reason for
dividing the process into assembly and link steps. As you will learn in later chapters, Turbo

Linker (as well as other linkers) can combine multiple object-code files to produce a single

executable program. This ability lets you program a large project in small pieces, assemble
the pieces to create separate object-code files, and then link all the pieces with one command.
The individual pieces, or modules, can share data and call subroutines declared in other
modules. Most programmers build libraries of assembled object-code modules, collecting
their favorite and well-tested building blocks, ready for constructing new programs. For some
strange reason, in many high-level languages, writing programs in separate pieces this way is
difficult and requires unusual commands and other incantations to get the job done. Luck-
ily, as you will see, linking separately assembled object-code modules created by Turbo As-
sembler is easy.

Inside the object-code file are the machine-code instructions, translated from your assembly
language text. Also in the object code are various text symbols that you want to share with
other modules, plus optional information that Turbo Debugger requires. It’s not necessary
to understand every last detail of what’s inside an object-code file. Just be aware that Turbo
Assembler creates this file, always ending in .OB]J, and never directly creates the finished
executable code. Only Turbo Linker can do that.
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By the way, Turbo Assembler’s object-code files end in the standard .OBJ, and you can link
these files with other linkers (such as the one supplied with some early versions of DOS) and
with object-code files produced by languages from other companies (for example, Microsoft
C). You can, of course, link Turbo Assembler’s object-code files with those produced by other
Turbo Languages. Always use Turbo Linker for this purpose.

NOTE

Command-Line Options

Both Turbo Assembler and Turbo Linker allow you to specify options on the command line
to select various features during assembling and linking. Type tasm and press Enter to list
Turbo Assembler’s command-line options. Type t1ink and press Enter to list Turbo Linker’s
command-line options.

Options are represented by one or more letters, sometimes followed by other information.
To select an option, type a dash and the option letter or letters between the tasm or tlink
commands and the filename of the program you are assembling or linking. For example, to
assemble Listing 2.1 and create a listing file, use the command:

tasm -1 ff

You can type this and all other command lines in uppercase or lowercase. You can also use a
forward slash instead of a dash if you prefer. The option -1 tells Turbo Assembler to gener-
ate a listing file in addition to assembling the program, creating both FF.OB] and FF.LST
on disk. Try this command and then examine FF.LST with your text editor. Inside, you’ll
find a complete listing of the program along with line numbers, the object-code bytes, and,
at the end, a listing of the program’s symbols. You might want to print a copy of this file for
reference.
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When assembling a program, you can string multiple command-line letters together, op-
tionally separated by spaces. Here are a few more samples:

tasm /h

tasm -1-c ff

tasm /1 /c ff

tasm -zi ff

tasm -1 -iC:\INCLUDES ff

Try these on your system. Instead of assembling a program, the first command tells Turbo
Assembler to display a list of command-line options. For a printed reference, type
tasm /h >prn. The second line creates a listing file with cross-referenced line numbers (#10,
#25, etc.) at the end. The third command does the same but shows how to use slashes in-
stead of dashes to specify the option letters. The fourth line adds to FF.OBJ information for
Turbo Debugger. The last line creates a listing file and specifies a path name for include files.
(Include files are separate text files that you want Turbo Assembler to insert into your pro-
gram. Listing 2.1 doesn’t use any include files; therefore, this sample command has no prac-

tical effect.)

Turbo Linker also has various command-line options given in the same way, except that some

early versions of TLINK require options to be preceded with a slash (/m) rather than a dash

(-m). Newer versions of the linker allow slashes or dashes, but when typing multiple letter

commands, dashes might have to be separated by a space. Here are several examples of Turbo

Linker command-line options (I tested these with Turbo Linker 6.00; if you have a different

version, try these commands to find out which option styles work on your system):

tlink -v ff

tlink /v ff

tlink -m -1 ff

tlink /m/1 ff

tlink -x ff

tlink /x ff

The first lines give the /v or -v option to prepare FF.EXE for use with Turbo Debugger.
~ The next lines specify two options, selecting an extended map file (saved to FE.MAP on disk)

and adding to this file additional line number information (/1). After trying this command,

examine FF.MAP with your text editor. The /x or -x option tells Turbo Linker not to create

amap file, saving a small amount of disk space and a tiny bit of time during linking. Use this

command if you don’t need the map file, which shows the memory organization of the pro-

gram and is generally used by debuggers and as part of a program’s documentation.

Dealing with Errors

If to err is human, programmers must be superhuman beings. No matter how careful we are,
no matter how diligent, we all make plenty of mistakes in our day-to-day work. But you
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can’t fool Turbo Assembler. At least, you can’t force the assembler to accept an illegal con-
struction. If you try—whether intentionally or not—you’ll receive an error message, a warn-
ing, or both. The distinction between errors and warnings is important:

* Errors are fatal. The resulting object code—if created—will not link and will not
run.

* Warnings are not fatal. The resulting object code probably will link but may or may
not run correctly.

Let’s make a few intentional errors now so you’ll know how to deal with your own mistakes
later on. If you're using an editor such as Brief that can automatically run Turbo Assembler,
press the Alt-F10 keys to assemble the next few examples. The error message will then ap-
pear at the bottom of your screen, and the cursor will rest on the offending line. If you are
assembling by typing commands at the DOS prompt, you’ll have to reload the program text,
fix the error, exit to DOS, and try again.

When it finds an error, Turbo Assembler displays an error message along with the line num-
ber in parentheses. Some programmers save these messages in a disk file or print them for
reference, using commands such as:

tasm ff>err.txt (save errors in err.txt)

tasm ff>prn - (save errors to printer)

Without the redirection symbol (>) and a filename, error messages appear on-screen. Unless
the errors scrolled off-screen, you can still print a copy of the display by pressing your Shift
and PrtScr keys. To experiment with errors, copy FF.ASM (Listing 2.1) to a new file,
FF2.ASM. Then modify line 3 to read IDEA. (Remove the capital L.) At the DOS prompt,
type tasm f£2 to assemble. Because Turbo Assembler has no idea what an IDEA is, assembling
the program produces:

Assembling file: ff2.ASM
**Error** ff2,.ASM(3) Illegal instruction

Error messages: 1
Warning messages: None
Passes: 1

Remaining memory: 375k

The error message after the “Assembling file ...” line tells you in which file the error occurred,
shows the line number in parentheses, and gives a brief message about the error. If you need
more help, look up the error message in the alphabetized list near the end of your Turbo
Assembler Reference Guide. Changing IDEA back to IDEAL fixes the mistake. Do that and
then make another error, deleting the colon from the Start label at line 15. Assembling this
file produces:

Assembling file:  ff2.ASM

**Epror** ff2.ASM(15) Illegal instruction
**Error** ff2.ASM(31) Undefined symbol: START
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Error messages: 2
Warning messages: None
Passes: 1

Remaining memory: 375K

Although you've made only one mistake, Turbo Assembler displays two error messages, one
at line 15 because of the missing colon, and another at line 31, which refers to the start
label. Because the first error makes the start label unrecognizable—labels in the code seg-
ment must end with colons, remember—the later reference also fails. This is an example of
error propagation: one error causing others to occur or to propagate. In a large program, the
little buggers can sometimes propagate all over the place. If this happens, and especially if
you suddenly begin receiving errors in sections that previously assembled just fine, try fixing
only the first couple of reported errors and reassemble. Often, the remaining errors will then
be gone.

Returning to our mistake-ridden example, replace the colon at the end of line 15. Then, add
to line 14 the two words PROC DuMMY. Don’t worry what this means. I just want to show you
something. Assembling the program now gives:

Assembling file: ff2.ASM
*Warning* ff2.ASM(31) Open procedure: DUMMY

Error messages: None
Warning messages: 1
Passes: 1

Remaining memory: 375k

Similar to an error message, a warning tells you something is wrong at a certain line. Notice
that, in this case, the reported line number is 31, not 14 as you might have expected. A PROC
directive specifies the start of a procedure, a group of instructions that your program treats as
a complete routine. Turbo Assembler expects all PROC directives to have matching EnoP (End
Procedure) directives. Because it finds no such directive by the time it reaches the end of the
program, the assembler warns you that a procedure was left open somewhere.

Because this is a warning and not an error, you can link and run the resulting program. In
this case, the nonexistent open procedure does no harm. In fact, there is no effect whatsoever
on the resulting code. This may not always be true, however, and you are living dangerously
if you ignore Turbo Assembler’s warnings. For example, a missing ENDP may result from leaning
on your text editor’s delete-line key—or perhaps you accidentally left a procedure unfinished.
Turbo Assembler is very forgiving of such errors, giving you the freedom in many cases to
make gross mistakes—the price you pay for the low-level access and potential speed avail-
able only in pure assembly language. The assembler is smart enough to warn you about po-
tential dangers, but intimate knowledge of your program is still the only way to know for
certain whether a warning s significant or can be safely ignored.
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Introducing Turbo Debugger

Although you can fix syntax errors by reading Turbo Assembler’s error messages and then
examining your text to find typos and illegal constructions, fixing logical errors is not so easy.
Turbo Assembler knows how to assemble a syntactically correct program, but it doesn’t
understand what the program is supposed to do. Often, your programs will not do what you
think they should. In this event, you can get some much-needed help from a program spe-
cifically designed to help you find and repair logical errors: Turbo Debugger.

Like all debuggers, Turbo Debugger serves as a kind of supervisor, taking control of a pro-
gram and letting you examine variables in memory and run the code in slow motion. You
can tell Turbo Debugger to run a program up to a certain point or until a certain event oc-
curs. You can change values in memory, temporarily try out new instructions, and change
register and flag values. You can also use Turbo Debugger to program in machine code,
occasionally useful for trying out ideas as long as the number of instructions is not too large.

Such a versatile program is extremely helpful in assembly language programming, where a
program’s logic is difficult to discern from the program’s text. Turbo Debugger can also help
you find errors in C and Pascal programs, although we’ll concentrate here on assembly lan-
guage debugging. As I mentioned in Chapter 1, Turbo Debugger also makes an excellent
teacher, giving you the opportunity to examine your program and observe the effects of vari-
ous instructions. One of the best ways to learn about individual mnemonic instructions is to
write a short test program, load the program into Turbo Debugger, and examine the results
in slow motion. If you make the effort to do this every time you have a question about a
certain instruction, you'll be amazed at the amount of information you’ll pick up just by
watching the instruction in action.

Debugging with an 80386 or Later Processor

If your system has an 80386, 80486, or Pentium processor, you can take advantage of spe-
cial features in Turbo Debugger. If your system has an 8086, 8088, or 80286 processor, you
can’t use these special features. Even so, Turbo Debugger is a powerful program, having many
commands that you can use to debug programs on any PC. If your system does have an 80386
or later-module CPU, insert the following command in your root directory’s CONFIG.SYS
file, specifying the correct path name to locate the TDH386.SYS device driver file:

DEVICE=\TDEBUG\TDH386.SYS
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This enables Turbo Debugger to use special debugging registers available only inside the 80386
processor. These registers give Turbo Debugger the ability to stop a program when any bytes
in a specified memory range are changed or even if these bytes are merely examined by a
program. You can also run your program in virtual memory, exactly simulating how your
program will run as a stand-alone DOS application. Without an 80386, your program nec-
essarily shares memory with the debugger. As a result, some bugs—especially those that de-
pend on the program’s location in memory—may disappear under control of the debugger
and then reappear when running the program normally, a tricky problem that can be diffi-
cult to fix.

With the device driver installed, you can use the virtual-memory version of Turbo Debugger
TD386.EXE in place of the standard version TD.EXE. (You can still use the standard ver-
sion.) Whenever this book tells you to type TD, type TD386 instead.

Turbo Debugger as Teacher

To demonstrate how to use Turbo Debugger as an assembly language teacher, let’s examine
Listing 2.1 under control of the debugger. First, copy FF.ASM to LF.ASM and load the copy
into your text editor. You may delete or rename LF.ASM if it exists on disk. Then change
three lines as follows:

1: STITLE "Send line feed command to printer"
11: ASCII1lf EQU 10 ; ASCII line feed control code
23: mov dl,ASCIIlf ; Assign 1f code to dl
These modifications convert the form-feed program into a line-feed program, which you can
use to advance your printer one line at a time. This may not be that useful a utility program
to keep around, but these changes will save paper for the upcoming tests.

After saving LF.ASM, assemble and link the program with options that add debugging in-
formation to the .OB]J and .EXE files. This information tells Turbo Debugger about the
program’s symbols, locations of variables, segment organization, and so on. Type these com-
mands to prepare the program for debugging:

tasm /zi 1f
tlink /v 1f
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If you don’t use the /zi and /v options as shown here, Turbo Debugger can still load your
program, but the debugger will be able to show only the disassembled machine code. With
the command-line options, the debugger can show labels, variable structures, source-code
lines, and other information. In future example programs, whenever I suggest examining a
program with the debugger, use these same options during assembly and linking.

After assembling and linking with the /zi and /v options, make sure you have at least the
LF.ASM and LF.EXE files on disk and then load the program under Turbo Debugger’s control
with the command:

td 1f

Remember: If you installed the TDH386.SYS device driver and have an 80386 processor in
your system, you can use the virtual-memory version of Turbo Debugger by giving the alter-
nate command:

td386 1f

In a moment, you should see Turbo Debugger’s display, showing the program’s source code.
(If Turbo Debugger can’t find the program’s .ASM file, it will be unable to display the source-
code window.) Use the cursor keys to move the flashing cursor up and down, examining the
program text. You can also use the PgUp, PgDn, Home, and End keys to move around in
the source-code window. You can only view this text; you can’t edit any mistakes you may
find. To do that, you have to quit Turbo Debugger and use your text editor.

NOTE

For a different view of your program, press Alt-V-C, selecting the View-CPU-Window com-
mand. Press F5 to toggle this window to full screen. The CPU window shows your program’s
source code in an abbreviated form, the actual machine code as stored in memory, the values
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of registers and flags, and a dump of the memory bytes. Besides showing many more details,
there’s an important difference between this window and the previous one. In the source-
code window, also called the module view, you are seeing a copy of the program text. In the
CPU window, you are peering directly into memory, seeing the actual byte values that are
there. The CPU window takes you on a kind of fantastic voyage, miniaturized in the style of
an Isaac Asimov novel and injected into your computer’s RAM. Naturally, when perform-
ing surgery on bytes in memory, you want to be careful not to kill the patient. Turbo Debugger
helps prevent catastrophes, but you can still get into trouble by fooling around indiscrimi-
nately.

Press the cursor up and down keys to move the highlighted bar to different instructions.
Diamonds mark the instructions that belong to your program. Notice that, unlike the source-
code window, you can view other areas outside of these marked lines. Press the Tab key to
move the cursor to other sections of the CPU window. You’ll do this from time to time to
change register values and to modify bytes in memory. (Don’t change anything this time.)

Press the Tab key until the highlighted bar reappears in the large section. To change the
appearance of this window, press Alt-F10 and select the Mixed command (press M or move
the bar to Mixed and press Enter). You can give this same command more easily by pressing
Ctrl-M, too. The command has three settings: No, Yes, and Both. The settings change the

view of your program as follows:

* No shows a disassembly of the machine-code bytes in memory, looking similar to
assembly language instructions. It is convenient for viewing code when you don’t
have the corresponding .ASM file. This view is less cluttered than the others, and,
for that reason, many prefer it.

* Yes shows your source code along with the disassembled machine code. It is used to
display high-level language lines along with the compiled machine code. Normally,
you won’t use this setting to view assembly language programs.

* Both is the default and probably the best view in the CPU window, showing the
machine-code bytes in the left column along with the source-code lines that created
the code. It doesn’t display blank lines.

Besides showing you different views of your program and memory, Turbo Debugger can
execute your code in various ways. For practice, turn on your printer (if you have one) and
then follow these numbered steps to execute the program under Turbo Debugger’s control:

1. Press F9 to run the program to completion. The paper should advance one line. Use
this command to run a program and then examine the state of memory, registers,
and flags after the program finishes.

2. After running the program, press Ctrl-F2 to reset. This reloads the program from
disk, resetting Turbo Debugger to its original startup condition. (If you forget this
step and press F9 to run again, you'll see a message asking if you want to reload the
program.)
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10.

11.

Press F6 twice to get back to the source-code window.

Press Alt-V-R to select the View-Registers command. If necessary, press Ctrl+F5
and use the arrow keys to move this window to the far right, or click and drag the
window with a mouse, uncovering your program’s instructions. Press Esc to lock
the window in its new position. The registers window shows the values of the
registers and flags inside your computer’s processor. This window is extremely
useful for examining the results of various machine-code instructions, most of which
affect the values in one or more registers.

In the source-code window, a small arrow to the left of the program’s first instruc-
tion, mov ax, @data, tells you that this is the next instruction to be executed. Press
F8 to execute this instruction. When you do this, two things happen: The arrow
moves down to the next instruction, and the value of the ax register in the registers
window changes. The instruction “moved” a value into the register—you saw it
happen. Stepping through individual instructions with F8 lets you run your
program in slow motion, executing one instruction at a time and pausing to let you
view the effects of each machine code.

Press F8 again, executing the next instruction, mov ds, ax. Watch the registers
window—ryou should see the value of the ds register change to the same value now
in ax. The mov instruction moved the value of ax into ds. Again, for the time being,
don’t be too concerned with why the program does this.

Press F6 until the flashing cursor reappears in the source-code window. The register
window is now covered by this window. (F6 switches among all open windows—
you can also press Alt-# where # is the window number 1-9.)

Move the flashing cursor down to the line that reads mov d1, AsCII1f—three
instructions beyond the current instruction marked by the arrow. Press F4 to run
the program from the current instruction down to the instruction at the flashing
cursor. Use this method to execute small sections of code when you don’t want to
pause after each instruction.

Press F6 repeatedly until the registers window reappears. Then press F8 twice,
executing the next two instructions. Watch the value of the dx register—you should
see a part of this value change.

The arrow should now point to the int 21h instruction (at line 25 in Listing 2.1).
This instruction calls a function in DOS, activating one of the operating system’s
many routines, in this case, sending a character to the printer. Press F8 to execute
the instruction. If your printer is on, the paper should advance one line.

There’s no need to run the program to completion as the remaining instructions
simply return control to DOS—or, in this case, to Turbo Debugger. Press Alt-X to
quit the debugger and end the session.
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Turbo Debugger has many other commands to let you examine, execute, and modify your
program. But the preceding steps are all you need to know to run most assembled examples
in this book, and to examine the effects of various instructions. In future examples, T'll tell
you how to use other Turbo Debugger commands. As you can see, a debugger can help you
examine your program in ways that otherwise would be impossible. When it comes to help-
ing you learn assembly language, Turbo Debugger is indeed a great teacher.

Writing .COM and .EXE Programs

You probably know that in DOS there are two kinds of executable code files: those that end
in .COM and those that end in .EXE. You can write assembly language programs to create
both types. Although most example programs in this book are of the .EXE variety, at times
you may want to produce a .COM file instead.

Rather than start new programs from scratch, you may find it helpful to begin with a tem-
plate containing the bare necessities required by .COM and .EXE programs. Listing 2.2 lists
a shell for .COM programs. Listing 2.3 lists the corresponding .EXE shell. You can use the
.EXE shell to save typing time when entering example programs in other chapters. Each tem-
plate has several comments beginning with semicolons and suggesting where to place equates,
variables, and other items, some of which will be new to you. You may remove these com-
ments when starting a new program with a copy of one of the templates.

Listing 2.2, COMSHELL.ASM.
1: TITLE "Shell for .COM files -- by Tom Swan"

2:

3: IDEAL

4:

5: MODEL  tiny

6:

7: - Insert INCLUDE "filename" directives here
8:

9: j--—m- Insert EQU and = equates here
10:

11: DATASEG

12:
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13: ;-—--- If an error occurs and the program should halt, store an
14: appropriate error code in exCode and execute a JMP Exit
15: instruction.

16:

17: exCode DB 0

18:

19: ;-—--- Declare other variables with DB, DW, etc. here

20:

21 CULESEG

22:

23: ORG 100h ; Standard .COM start address (origin)
24:

25: Start

26:

27 ;---—- Insert program, subroutine calls, etc., here

28:

29: Exit

30: mov ah, 04Ch ; DOS function: Exit program
31: mov al, [exCode] ; Return exit code value

32: int 21h ; Call DOS. Terminate program
33:

34: END Start ; End of program / entry point

Listing 2.3. EXESHELL.ASM.
1: %TITLE "Shell for .EXE code files -- by Tom Swan"

2
3 IDEAL
4
5: MODEL  small
6: STACK 256
7.
8: ;----- Insert INCLUDE "filename" directives here
9:
10: ;----- Insert EQU and = equates here
11:
12: DATASEG
13:
14: ;----- If an error occurs and the program should halt, store an
15: appropriate error code in exCode and execute a JMP Exit
16: ; instruction. To do this from a submodule, declare the Exit
17 label in an EXTRN directive.
18:
19: exCode DB 0
20:
21: j---—- Declare other variables with DB, DW, etc. here
22:
23: ;----- Specify any EXTRN variables here
24:
25: CODESEG
26:

continues
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Listing 2.3. continued

27 j--——- Specify any EXTRN procedures here

28:

29: Start:

30: mov ax, @data ; Initialize DS to address
31: mov ds, ax ; of data segment

32: mov es, ax ; Make es=ds

33:

34: ;-—-—-——- Insert program, subroutine calls, etc., here

35:

36: Exit:

37: mov ah, 04Ch ; DOS function: Exit program
38: mov al, [exCode] ; Return exit code value

39: int 21h ; Gall DOS. Terminate program
40:

41: END Start ; End of program / entry point

Writing .COM Programs

Listing 2.2 shows the correct format for writing .COM programs in Ideal mode. Line 5 se-
lects the tiny memory model, which combines the program’s variables, code, and stack into
one 64K memory segment. Because of this, .COM programs always occupy 64K of memory
(or all available RAM, whichever is less), regardless of the program’s size on disk. This little-
known fact is one reason that .EXE programs are preferred. Although .EXE code files may
take up more room on disk (because additional information about the program’s organiza-
tion is included in the file), most small .EXE programs take up much less memory during
execution than the equivalent .COM programs.

Line 23 shows another characteristic of a .COM program. The 0rG (origin) directive tells
Turbo Assembler that this program’s first instruction is to be loaded at address 100h (the
small 4 stands for hexadecimal), relative to the beginning of the program’s code segment—
the chunk of memory designated to hold the assembled machine code. This value is the same
as the load address for programs written for the CP/M operating system, upon which much
of DOS is based and which usually ran on computers having a o2/ memory size of 64K.
Under DOS, .COM programs operate in a kind of pseudo-CP/M address space, despite the
fact that most modern PCs have ten times the memory capacity (640K) or more. Today,
there’s almost no good reason to use this ancient code-file format.

In Chapter 4, you’ll meet most 8086 instruction mnemonics; therefore, I won’t explain here
what Listing 2.2 does at lines 30-32. The effect of this code is to return control to DOS
when the program is finished. All .COM programs must end with these instructions (or an
equivalent variant).
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Assembling .COM Programs

To assemble a .COM program requires slightly different commands than described earlier.
You must pass Turbo Linker the /t option, which specifies a tiny model program. For prac-
tice, assemble and link Listing 2.2 with these commands:

tasm comshell
Liiik /U comshell

It Ain’t Over Till ... Actually, It Ain’t Ever Over

This is a good time to introduce a most important point: All assembly language programs
must return control either to another program or to DOS, using commands specifically pro-
vided for this purpose. This concept frequently confuses programmers who have written
programs in other languages like C, Pascal, and BASIC, where programs simply end. Assem-
bly language programs never end—they just fade away—that is, they relinquish control to
another running program.

You can understand the purpose behind this idea if you remember that the computer’s pro-
cessor is always processing. As long as the plug is in and the switch is on, there is never a time
when a computer isn’t computing. Even when the DOS prompt silently waits for your next
command, the computer processor is whizzing away, performing billions of cycles, constantly
processing the instructions that only appear to make the computer pause. Doing nothing
takes a great deal of effort for a computer!

Because of the processor’s incessant cycling, a program can never simply end—it has to hand
over control to another program to give the processor something to do. Forgetting this step
almost always has drastic results. If you fail to hand over control to another program, the
processor will continue to process whatever is in memory after the physical end of your pro-
gram. That memory might contain anything—leftover code and data from other programs
or just the random bit patterns that exist when you switch on power. The result of process-
ing this unknown information is usually a spectacular crash, garbage on-screen, or worse,
the permanent destruction of data on disk. Use the templates in Programs 2.2 and 2.3, which
include the necessary instructions to return control to DOS. That way, you won’t acciden-
tally forget this important step.

When most programs end, they give DOS a command to reload a program called
COMMAND.COM, located on your boot disk or in a hard drive’s root directory, usually
C:\. COMMAND.COM is a program just like any other but with the special purpose of
letting you give commands to DOS. When you run a program from DOS,
COMMAND.COM loads your code and passes control to your program’s instructions. When
your program ends, it must return control to COMMAND.COM for the DOS prompt to
reappear. Be sure you understand this process—it is vital to your ability to write assembly
language programs.
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Writing .EXE Programs

Writing a program in .EXE format takes a little more work than writing .COM programs,
but the result is usually worth the effort. The .EXE format occupies only as much memory
as required to run your program, leaving the most room possible for storing data, creating
large arrays, and sharing space with other .EXE programs in a multitasking operating sys-
tem. (DOS does not have multitasking abilities—that is, the ability to run two or more pro-
grams simultaneously, although you can add this ability to DOS by running Microsoft
Windows. Writing programs in .EXE format lets these programs organize memory more
efficiently.)

The reason that .EXE programs require more work is that variables, the stack, and the ma-
chine code are stored in separate memory segments, occupying up to a total of 128K under
the small memory model. (The small memory model combines the stack and data segments;
other models allow larger amounts of code and data.) In Listing 2.3, the size of the stack is
specified by the STACK directive (line 6). The size of the data segment is calculated from
the combined sizes of the program’s variables. The size of the code segment depends on how
many instructions are in your program.

Because variables are stored apart from the program’s code—unlike in the .COM format,
where data and code share the same memory segment—the first job in all .EXE programs is
to initialize the data segment register ds. Lines 30-31 accomplish this task in Listing 2.3,
assigning the built-in symbol edata to register ax (line 30) and then assigning ax to ds (line
31). The reason this takes two steps is that you cannot assign values like @data directly to
segment registers—you can assign values only from other general-purpose registers such
as ax.

Ending an .EXE program is identical to ending a.COM program, as lines 37-39 show. Again,
don’t be too concerned here with what these instructions do. Remember, though, that the
purpose is to pass control back to COMMAND.COM, using a special DOS function. To
assemble and link Listing 2.3, use these commands.

tasm exeshell
tlink exeshell

Printing Listings

Now that you know how to enter, assemble, and link programs, you may want to print ref-
erence listings of the sample programs in this chapter. Because assembly language listings
tend to produce lines longer than the standard 80-character width of most printers, the first
step is to write a program to select your printer’s compressed style, usually extending the
limits a 132-character lines and, on some printers, even more.
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Listing 2.4, PR132.ASM, is a simple .EXE style program that selects 132-character output
on most Epson-compatible printers. Assemble and link the program with these commands:

tasm pri132
tlink pri132

Listing 2.4. PR132.ASM.

1: %TITLE "Select 132-char printer output -- by Tom Swan"

2-

3 IDEAL

4

5: MODEL small

6: STACK 256

7:

8: DATASEG

9:

10: ; Insert the codes that select your printer's 132-character (or
11: ; greater) output style, sometimes called "compressed" mode.

12: ; The values below should work with most Epson-compatible printers.
13: ; The last value must be 0!

14:

15: prCodes DB 27, 15, 0 ; Must end in 0!

16:

17: CODESEG

18:

19: Start:

20: mov ax, @data ; Initialize DS to address
21: mov ds, ax ; of data segment

22:

23: cld ; Clear df--auto increment si
24: mov si, offset prCodes ; Point si to prCodes

25: Next:

26: lodsb ; Load next code into al

27: or al, al ; Is al = 0?

28: jz Exit ; If yes, jump to exit

29: mov dl, al ; else assign al to dl

30: mov ah, 05h ; DOS print char function
31: int 21h ; Call DOS. Print char.

32: jmp Next ; Do next code.

33: Exit:

34: mov ax, 04C0oh ; DOS function: Exit program
35: int 21h ; Call DOS. Terminate program
36:

37: END Start ; End of program / entry point

After assembling PR132.ASM, try an experiment. Turn on your printer and type DIR>PRN to
print a listing of the current directory in your printer’s default style. Type PR132 and press
Enter. Then, type DIR>PRN again, this time printing a directory in compressed style. If this
doesn’t work, you’ll probably have to modify the codes in line 15 for your printer. Check
your manual for the correct values to use. After the pB directive, you can specify codes in
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decimal, hexadecimal (start the value with 0 and end with h), or characters (surround one or
more characters with double or single quotes). Some printer manuals list hexadecimal codes
with preceding dollar signs, as in $1F. Rewrite such codes in assembly language style: 01Fh.
For example, if your printer specifies the sequence Escape-C, $1F, you could use any one of
the following lines in place of line 15:

prCodes DB 27, 67, 31, 0 ; decimal
prCodes DB 01Bh, 043h, 01Fh, 0 ; hexadecimal
prCodes DB 27, 'C', 01Fh, @ ; decimal, char, hex

The last value must be 0, marking the end of the sequence. This format—a list of bytes end-
ing with 0—is a typical construction in assembly language programs, allowing the list to
contain any number of items—as long as no other value is 0, of course.

Unless you’ve written programs in assembly language before, you probably won’t understand
the instructions in PR132.ASM. This is not too important. The purpose of this chapter is to
get you started, giving you practice entering, assembling, and linking programs—valuable
experience that you will draw upon later. Even so, you should at least be able to understand
the idea of this program by reading the comments. The plan is simple: get each of the prcodes
bytes in turn and send each value to the printer until reaching the 0 byte, marking the end of
the list. Then, return control to DOS.

Listing PR132

After entering PR132.ASM, assembling, linking, and testing, you're ready to print a refer-
ence listing. Turn on your printer and type PR132 to select compressed output. Then reas-
semble the program, this time using the command:

tasm /1 PR132

As an alternative, to include a cross-reference of symbols at the end of the listing, use the
command:

tasm /1/c PR132

Either of these commands creates PR132.LST, called the /isting file, ready to print. To print
the listing file, type the command:

type pri132.1st>prn

The listing file contains form-feed control characters to skip page perforations, and for this
reason, you probably shouldn’t print listing files with a word processor, as these programs
usually handle paging automatically. You might also send the listing to a print spooler, al-
lowing you to run other programs while printing continues. Unless you are logged onto a
network, use the DOS command to spool a listing file:

print pri32.asm
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If this is the first time you gave a print command, you’ll be asked to supply an output file.
Usually, just press Enter to select the default file PRN. Refer to your DOS manual for more
information about using the print spooler. You can print multiple listings by separating their
names with spaces on the command line—a real time saver if you need to print several
listing files and want to continue editing and assembling other programs. You can print
multiple files by separating their names with spaces or by giving separate print commands.
Assembly language listings tend to be much longer than those produced by high-level
languages, and a print spooler is a practical necessity for assembly language programmers.

After printing, copy your listing files to a floppy disk along with the other files related to
each program. Most people save the listing files for future reference. If you’re tight on space,
you can delete the files ending in .LST.

NOTE

Summary

Assembly language programs roughly divide into five sections: header, equates, data, body,
and closing. The body is further divided into four columns: labels, mnemonics, operands,
and comments. Labels refer to the positions of variables and instructions, represented by mne-
monics. Operands are required by most assembly language instructions, giving instructions
data to process. Comments, always optional, help you to remember the purpose of various
instructions.

Assembling programs produces object code, which must be linked to create an executable
file, ending either in .EXE or .COM. You can use special option letters to select features in
Turbo Assembler and Turbo Linker. Turbo Assembler reports errors and warnings on-screen
during assembly.

Turbo Debugger can run an assembled program in slow motion and can let you peer into
memory to see the actual bytes that form your program’s code and data. You can use Turbo
Debugger to help pinpoint bugs and also as your personal assembly language teacher, which
can run test programs and let you observe the effects of executing individual machine-code
instructions.
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The .COM code file format is a carry-over from the CP/M operating system. While useful
in some cases, this format is not recommended for PC programs. All code, data, and the
stack in a .COM program occupy one 64K memory segment. The .EXE code-file format is
more efficient, even though programs may occupy slightly more room on disk. In memory,
.EXE programs occupy only as much memory as needed. Writing .EXE programs takes a
little more effort because you are responsible for specifying a program’s data, code, and stack
segments.

Assembly language programs don’t end—they pass control to another program, usually
COMMAND.COM. Forgetting this step can cause serious problems by executing random
instructions in memory following the physical end of your program.

A listing file documents a program. Most programmers print listing files of their finished
programs for future reference. You can use the DOS print spooler to print long listings while
you continue working.

Exercises
2.1. Referring to Listing 2.3, what are the line numbers of the header, equates, data,
body, and closing?
2.2. What is the name of the variable in Listing 2.4?
2.3. How many comments are there in Listing 2.12
2.4. What characters precede option letters for Turbo Assembler and Turbo Linker?

2.5. Suppose you have a program text file named BUGABOO.ASM. What are the
assembling and linking steps required to create the necessary files to debug
BUGABOO with Turbo Debugger?

2.6. Which program do you use, Turbo Assembler or Turbo Linker, to create object
code? Which do you use to create executable code? What is the purpose of
creating object code?

2.7. What is the difference between an error and a warning? What should you do if
you receive an error or a warning?

2.8. How do .COM and .EXE code files differ?

2.9. Suppose you have a program named LISTME.ASM. What are the steps required
to assemble and print a listing file of this program.

2.10. What is the correct way to end an assembly language program?
2.11. What does the b8 directive do? What kinds of data can you create with p8?
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Projects

2.1. Print a reference copy of Turbo Assembler’s option letters.

2.2. Make a copy of Listing 2.4 and rename the copy PR80.ASM. Modify this

program to select your printer’s 80-column output style.

2.3. Create and prinr ]icring files for Progrqmc 21 rhroug}w 24

2.4. Start a floppy disk or hard drive directory for saving your assembled example
programs. Create individual subdirectories for each program, naming the
directories the same as the programs. Then copy all files for each program to the
appropriate subdirectory. For example, to save Listing 2.1, you could create a
subdirectory named FF and copy to FF the files: FF.ASM, FF.OB], FF.EXE,
FF.MAP, and optionally FF.LST.

2.5. Execute Listing 2.4 under control of Turbo Debugger. Press the F8 key to run
the program a single step at a time. Watch carefully the repetitive action of the
instructions from line 26 through 32 as the program reads each printer code
until reaching the 0, marking the end of the list. Bring up the register window
and watch the ax register, especially for the instruction at line 26. What do you
think is happening here?

2.6. Rewrite Listing 2.1 and assemble to a .COM code file.
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Memorabilia

Bits and bytes are an assembly language program’s fuel. The more you know about bits, bytes,
and the arithmetic and logic operations you can perform on binary values, the more energy
you’ll be able to squeeze from this power source of all digital computing—the lowly binary
digits, or bits, 0 and 1.

Physically, of course, there are no binary digits in memory or in the computer’s processor—
there are only electric charges that are on (energized) or off (not energized). For the purposes
of programming, however, it’s convenient to ignore this fact and pretend that there are in-
deed ones and zeros stuffed into the computer’s circuit board. Groups of binary digits can
then represent values, which in turn can stand for all sorts of items: ASCII characters, printer
control codes, checkbook balances, the date and time, and so on. Other binary values might
be used to read and write values to input and output ports, which appear to programs like
other values in memory but which might actually be switches that activate and deactivate
various circuits that control devices attached to the computer. Storing bits to these locations
is equivalent to flipping a light switch on and off. In assembly language, simply writing a
certain value to a specific location can turn on motors, display characters, send values to re-
mote systems, and make sounds.

With such an important role for binary values to play—especially in assembly language pro-
gramming—it’s important to be intimately comfortable with binary arithmetic and logic.
That doesn’t mean you have to be able to add columns of hexadecimal numbers by hand.
For this, you may as well use a programmer’s calculator. (After all, that’s what most profes-
sional programmers do.) Even so, a working knowledge of binary principals is vital to your
ability to write good assembly language programs. By all means, use your calculator, but don’t
ignore learning the basics. Every minute you spend learning these subjects will save you from
hours of puzzlement in the future.
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How Many Bits in a Byte?

Let’s start with a quick review. There are 8 bits in a byte; 2 bytes in a word; 4 bytes in a
doubleword; 6 bytes in a farword; and 8 bytes in a quadword. Bits are numbered from right
to left—bit 0 is always farthest to the right and is called theleast significant digit (LSD). The
bit farthest to the left is called the most significant digit (MSD). Figure 3.1 illustrates typical
ways of representing the bits in byte and word values.

Figure 3.1. 7 6 5 4 3 2 1 0
Typical byte and word
diagrams 1 1t ]lofol 1o} 1]1
MsD 8-bit Byte LSD
15 8 7 0
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7 0 15 8
e mmmmm e
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L

Byte-Swapped Word
k as Stored in Memory J

In memory, bytes are stored consecutively one after the other. Each byte has an associated
address, a unique number that pinpoints this byte’s location from all others. To read and
change byte values in memory, assembly language programs specify a value’s starting address,
usually but not always in the form of a named label such as temperature or numCumquats.
Being able to use readable labels instead of actual address values like 0F00:0014 is one of the
main advantages offered by assembly language.

In 8086 programming, word values are stored in byte-swapped order, with the word’s most
significant byte (MSB) at a higher address than the least significant byte (LSB). In assembly
language listings, word values are shown in reverse order from the order that the bytes are
actually stored in memory. (For example, see Figure 3.1, bottom.) This byte-swapped order
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makes arithmetic easier to perform on multibyte values because the least significant bytes,
which must be added first, are at lower addresses. But the swapped order can also lead to
confusion for people who have to read the listings and relate printed values to those in memory.
To locate a word in memory equal to hexadecimal 0201, for example, requires searching for
the two consecutive bytes, 01 and 02, not for 02 and 01.

Binary Arithmetic and Logic

Because large values can take many bits to represent, calculating complex equations directly
in binary is tedious. Fortunately, you don’t need to become so fluent in binary arithmetic
that you can instantly convert a grocery cash register tape from decimal to binary, compute
the sum, and convert back to decimal all in your head. Some books require you to learn how
to add, subtract, multiply, and divide directly in binary—operations that programmers in
the real world would rather do on a computer. My hat’s off to you if you find such opera-
tions easy. For most purposes, the well-versed assembly language programmer needs to know
how to perform only four fundamental operations:

* Count from 0 to 16 in binary without help.
* Convert values into binary, hexadecimal, and decimal.

* Understand the logical operations AND, OR, and XOR.

* Understand how signed (positive and negative) and unsigned (positive only) values
differ in their binary representations.

Counting in Binary

Table 3.1 lists the binary, hexadecimal, and decimal values from 0 to 16. Try to memorize
this table and mark this page. You'll need these values time and again.

Table 3.1. 0-16 in Binary, Hexadecimal, and Decimal.

Binary Hexadecimal Decimal
0000 00 0
0001 01 1
0010 02 2
0011 03 3
0100 04 4
0101 05 5
0110 06 6
0111 07 7
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Binary Hexadecimal Decimal
1000 08 8

1001 09 9

1010 0A 10

1011 0B 11

1100 0C 12

1101 0D 13

1110 OE 14

1111 OF 15

1 0000 10 16

It’s easy to learn how to count and add in binary if you remember one simple fact about
adding two values expressed in any number system: When you run out of symbols in a col-
umn, carry a 1 to the left. You know how to do this in decimal. But with only two symbols
in binary—or base two—values, a carry from one column to the column on the left occurs
sooner in binary than in decimal, which has ten symbols and, therefore, can represent larger
values with fewer numbers of digits. Adding 1 + 1 in decimal requires no carry:

1
+1
T2
In decimal, the result can be represented by a single symbol (2). In binary, a single digit can
be only 0 or 1; therefore, it takes an additional digit to represent a count of two things. Adding
1 + 1 in binary, then, forces a carry to the column on the left:

1
1
10

The result is notten. The result is zwo expressed as the base two value 10. As you know, adding
1 to decimal 9 (the highest single digit in base ten) gives 0 in that column with a carry to the
next column to the left. Likewise, adding 1 to binary 1 (the highest single digit in base two)
gives 0 in that column with a carry to the next column to the left. Adding in binary is no
different from adding in decimal—you just run out of symbols more quickly and, as a result,
have to carry a 1 to the left more frequently. With this rule in mind, you can add any two
binary values. Let’s try this with a more complex addition, writing the carries above the val-

ues being added:
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A1 111 (carries)

01101010  (first value)
+0010.1110  (second value)

1001 1000  (sum)

The Power of 2

In most number systems (at least in those of the modern world), the position of a digit rep-
resents a value equal to the digit multiplied by the column’s significance, or power. In deci-
mal, for instance, the 3 in 300 stands for the number of hundreds—the power of the third
column to the left. The rightmost column represents 10 to the zero power, written 10°. The
second column to the left represents 10'; the next represents 10% and so on. To find the
power of any column, write the number of the column’s position (starting with 0) as the
exponent to the number base. Then, multiply that many base values to find the significance
of the column. For example, the value 10° equals (10 x 10 x 10), or 1000.

Binary values are positional, too. Because binary values are expressed in base 2, binary col-
umns represent the powers of 2. In binary, the 1 in 100 stands for one count of the third
column’s power, or 22, which in decimal equals 4 (2 x 2); therefore, 100 in binary is equiva-
lent to 4 in decimal. 1000 in binary equals 2°, or 8 (2 x 2 x 2), and so on.

Finite Values

Computer programs usually represent numbers with fixed numbers of bits in one or more
bytes. This makes it practical to store numbers in memory, which is divided into byte-size
pieces. At the same time, a fixed number of bits places a limit on the number of values that
can be expressed. A single byte of 8 bits, for example, can express values from 0 to 255. A 16-
bit word can express values from 0 to 65,535, and so forth. To express higher values requires
more bits.
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To calculate the maximum value that can be expressed within a fixed number of bits 7, use
the formula 2° - 1. For example, if #is 8, then the maximum value you can express in 8 bits
equals 2x2x2x2x2x2x2x2) -1, 0r255. Counting 0, there are 256 values in the range
0 to 255; therefore, the formula for the number of values that a fixed number of bits 7 can
express equals 2°. Know these boundaries well. You’ll bounce into them all the time.

The K Game

Most people use a convenient shorthand to represent 1,000-byte, or kilobyte, quantities of
memory as in 64K, 128K, and 640K. These convenient powers of 2—in all cases equal in
binary to a 1 followed by several zeros—have been adopted by computer users everywhere as
accurate measurements of RAM, despite the fact that a 64K computer actually has 65,536
bytes—the full number of values that can be expressed in 16 bits, or 2°.

The address range of the 8086 processor, by the way, is 2%, or 1,048,576 bytes—a so-called
megabyte plus change. As you’ll learn in later chapters, the 8086 uses some hocus-pocus to
reduce two 16-bit address values down to a 20-bit physical address that actually locates indi-
vidual bytes within this memory range. The 80486 processor can address up to 2% bytes.
That’s four gigabytes of memory, or exactly 4,294,967,296 bytes. (I don’t know why they
call a billion bytes a gigabyte. Maybe it should be a billybyte.)

When working with address values in binary, try to get used to thinking in powers of 2.
Measuring memory in K is quick and easy, but it is just too vague for the exacting world of
assembly language programming.

Binary and Hexadecimal

Hexadecimal values are represented in base 16—in other words, with the 16 symbols 0, 1, 2,
3,4,5,6,7,8,9,A,B,C, D, E, and F. The hexadecimal digits are made up of the ten deci-
mal digits 0 to 9 plus the six letters A to F.

Counting in hexadecimal is easy (see Table 3.1) if you remember that 1 + F equals hexadeci-
mal 10 (16 in decimal). Remember, 1 plus the last symbol in any positional number system
equals the symbol 10 expressed in that number system.
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Because the hexadecimal number system contains 16 symbols and because 16 is a power of
2 (2%, values in binary are easily converted to and from hexadecimal by substitution. Plainly,
it’s easier to write and remember hex values like B800 than it is to write and remember the
binary equivalent: 1011 1000 0000 0000. Here’s another example:

0100 1111 0101 1100
4 F 5 C=4F5C

The binary value (top) converts to hex (bottom) by substitution from Table 3.1. To convert
from hex to binary, substitute in the other direction, replacing hex digits with their 4-bit
binary equivalents.

Converting Hexadecimal and Decimal Values

Converting between hexadecimal and decimal is not as simple as converting between hexa-
decimal and binary values. The easiest way to accomplish such conversions is to use a
programmer’s calculator designed for this purpose. Or, use a software calculator such as the
one in Borland’s SideKick or Microsoft Windows. That way, you can pop up the calculator
in the middle of typing a program, do the calculation, and go right back to work.

For the times when you can’t get to your calculator, it pays to know how to convert hexa-
decimal and decimal values by hand. This is not as difficult to do as you may think. As in
binary and decimal, hex digits are positional, representing increasing powers of 16 from right
to left. Knowing this provides a quick trick for converting any 16-bit value from hexadeci-
mal to decimal, requiring you to memorize only these four values:

16°=1
16'=16
16 = 256
16° = 4,096

The exponents represent column positions in the hexadecimal value, numbered from right
(0) to left (3). To convert hexadecimal to decimal, multiply the value of each hex digit by the
power of its column. Add the multiplications, and you’re done. For example:

8B92 = (8 x4096) + (11x256) + (9x16) + 2x 1) = 35,730

The hexadecimal value 8B92 equals 35,730 in decimal. For the hex digits A-F, use Table 3.1
to convert mentally to decimal before multiplying. In this example, (B x 256) is equivalent
to (11x256). To convert from decimal to hexadecimal, reverse the process, dividing by powers
of 16. Although this is a little more difficult, you can do the calculation by hand this way:

(35,730/4096) = 8.72 ... (8 x4096) = 32,768 (35,730 - 32,768) = 2962
(2,962/256) = 11.57 ... (11x256) =2816 (2,962 -2,816) = 146
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(146/16) = 9.125 9 x 16) = 144 (146 - 144) = 2
/1) =2 2x1)=2 2-2)=0

8,11,9,2=8B92

Don't be overwhelmed—this isn’t as confusing as it probably looks. Reading each row from
left to right, look at how the expressions divide a decimal value by decreasing powers of 16,
throw out the remainder, multiply the whole number by the same power, and subtract the
result from the total. Then the next line uses the result of this calculation in the next divi-
sion, repeating the process until reaching 0. If the first division is greater or equal to 16, start
with a higher power. If a subsequent division is greater or equal to 16, you've made a mis-
take. Written down, the expressions seem to be a frightening load of work. But with practice
and an inexpensive decimal calculator, you can do the conversion in a few seconds. Notice
how the hex digits pop out of the divisions—38, 11 (b), 9, 2, or hexadecimal 8B92.

Two’s Complement Notation

Unsigned integers include 0 and all positive whole values. Signed integers include the un-
signed integers plus whole values less than 0. Within a fixed number of bits, there are a fixed
number of signed and unsigned values. For instance, in 4 bits, the smallest value is 0000; the
largest unsigned value is 1111. Converting to decimal, this equals the range of 0-15—a total
of 16 possible values including 0. In 8 bits, the largest unsigned value is 1111 1111, or 255
decimal—making a total of 256 possible values in one 8-bit byte. The whole numbers in
mathematics may be infinite, but in computer programming, whole numbers have definite
limits. '

Because you can express only a fixed number of values within a fixed number of bits, repre-
senting negative values in signed binary requires some trickery. A value’s sign is either posi-
tive (+) or negative (-); therefore, a single bit can represent the sign of an integer—1 for negative
and 0 for positive. That leaves the rest of the bits to represent the signless absolute value. This
observation leads to a convenient representation for negative integers in binary, called the
two’s complement.
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In two’s complement notation, if the leftmost bit is 1, the value is negative. If the leftmost
bit is 0, the value is positive or 0. To convert between positive values and two’s complement
notation, first negate each bit (step 1 below)—changing the ones to zeros and the zeros to
ones—forming an intermediate value called the one’s complement. Add 1 to this value (step 2
below), forming the final two’s complement result:

01101010  (original value)
1001 0101 (1. negate each bit—one's complement)
+ 1 (2.add 1)

1001 0110  (two's complement)

The steps are reversible. To convert a two’s complement value to its absolute value, perform
the same steps. For example:

1111 1110  (two's complement)
0000 0001 (1. negate each bit)
+ 1 (2.add 1)

0000 0010  (absolute value)

As this example shows, the absolute value of the 8-bit two’s complement 1111 1110 equals
0010, or 2. In other words, 1111 1110 is decimal -2, represented as a signed binary, two’s
complement value. The conversion steps work no matter how many bits are in the value—
4,8, 16, or more. The leftmost bit always indicates whether a value is positive (0) or negative
(1). If negative, performing the two’s complement operations finds the absolute value.

A good way to understand the purpose of the two’s complement is to remember the number
line you no doubt learned in math class. (See Figure 3.2.) Values to the right of 0 are posi-
tive; values to the left are negative. The line extends in two directions farther than human
minds can imagine.

With a fixed number of positions for digits—as in a computer’s memory—you might imag-
ine the familiar number line to be circular. (See Figure 3.3.) The binary values (outside the
circle) orbit sequentially to the right. Adding one to the highest value (1111) returns to 0.
Signed decimal equivalent values are inside the circle; unsigned values are outside, with the
binary values written under their decimal counterparts. This figure assumes four binary dig-
its are available, although the same idea holds for any fixed number of bits.
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From Figure 3.3, you can see that exactly half of the signed values are negative (-1 to -8).
The other half are positive (0 to 7). The unsigned values (0 to 15) use the same binary values
as the signed quantities, a fact that leads to an important rule to remember: Negative binary
values are negative by convention only. Within a fixed number of bits, all unsigned values have
corresponding signed values represented by the identical bit patterns such as (9,-7), (13, -3),

and (15, -1). The binary values for the negative numbers are simply represented in two's

complemcnt form.

Figure 3.2, | ] | } |

Signed-integer number line.

-
-T-

Figure 3.3.

With a fixed number of
binary digits available, it’s
convenient to imagine the
Jfamiliar number line as a
circle.

1001 8 0111
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Subtracting by Adding

Two’s complement notation is important in binary arithmetic because it gives computer
circuits the ability to subtract by adding. Also, performing the two’s-complement steps—
negating the bits and adding 1—makes it easy to find the absolute value of negative binary
values expressed in two’s complement notation. If you understand the idea of a circular number
line (Figure 3.3), you can easily grasp these ideas. Obviously, adding decimal 1 + 9 equals
10, equivalent to the signed value -6 (binary 1010) on the circular number line—the iden-
tical result received by subtracting 1 - 7. Therefore, instead of subtracting 1 - 7, you can
instead add 1 + 9 and then look up the negative value on the circular number line as the
two’s complement of the result.

Fortunately, in 8086 assembly language, you don’t have to subtract by adding two’s comple-
ments because the processor has instructions for subtracting values. Even so, it pays to un-
derstand the mechanism. The rule is: To subtract one binary value from another, convert
the second value to two’s complement notation and add. For demonstration, let’s start with
a simple subtraction that produces a positive result:

1001 1001 9
- 0101 +1011 -5
0100 10100 4

On the left, 5 (0101) is subtracted from 9 (1001) directly. In the middle, the two’s comple-
ment of 5 (1011) is added to 9. The right column shows the subtraction in decimal. The
two calculations give identical results, but with a carry out of the middle column for the two’s
complement addition, indicating the result is positive. Now watch what happens when you
subtract 5 - 9, giving a negative answer:

0101 0101
- 1001 +0111  (two's complement of 1001-9 decimal)

?100 01100 (two's complement of 0100-4 decimal)

The left column requires a borrow where none is to be had. On the right, subtracting by
adding the two’s complement of 9 decimal to 5 gives 1100, which you know is negative because
the leftmost bit in 1100 is 1. The two’s complement is this is 0100, or 4, the absolute value
of -4, which is the result of subtracting 5 - 9. In this way, the system of two’s complements
allows you to subtract binary values by adding—simple as 1, 10, 11.
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Logical Operators

Three logical operations—AND), OR, and XOR (exclusive or)—are as common in assem-
bly language programming as weeds in a garden. (On second thought, they’re not as
common as weeds in our garden.) AND, OR, and XOR give you total control over manipu-
lating the individual bits in binary values. You can set and reset single bits withour affecting
others, isolate one or more bits from bytes and words, and perform other operations.

Table 3.2 lists the truth tables for AND, OR, and XOR, showing the effects that a logical
operation has on 2 bits. AND is represented by &, OR by |, and XOR by x.

Table 3.2. AND, OR, XOR Truth Tables.

AND (&) OR (1) XOR(x)
a&b=c alb=c axb=c
0&0=0 010=0 0x0=0
0&1=0 0l1=1 Ox1l=1
1&0=0 110=1 1x0=1
1&1=1 111=1 1x1=0

Study Table 3.2 carefully. The result of ANDing two bits equals 1 only if bit zand bit &also
equal 1. The result of ORing two bits is 1 if bit #or bit 4 equals 1. The result of XORing two
bits is 1 only if bit 2 or bit & exclusively equals 1.

Masking with AND

AND is most often used to mask (isolate) bits in byte and word values. Referring to the AND
truth table in Table 3.2, you can see that a 1 passes through a 4 to ¢ only if there is a corre-
sponding 1 in column 4. You can use this observation to create filters to extract bits from
bytes. Here’s a typical example:

0101 1101 (original value)
& 0000 1111 (AND mask)

0000 1101 (result)

The mask is 0000 1111, of OF hexadecimal. Because ANDing 2 bits gives a 1 only if both
bits are 1, only the least significant 4 digits on the right pass through the mask unchanged.
The most significant 4 digits on the left are masked out by the zeros in the AND mask. Per-
form the truth table operations on each column of this example to prove to yourself that the
mask works.
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Another typical use for AND masks is to test the value of single bits. First, create a mask with
a 1 in the test bit position. Then, AND this mask with the test value, allowing a candidate
bit to pass through. For example, suppose you want to test the leftmost bit, perhaps to deter-
mine whether a value is negative in two’s complement notation:

0111 1010 1001 1111 (original values)
& 1000 0000 & 1000 0000  (AND masks)
00000000 10000000 (results)

The mask (80 hexadecimal) isolates the most significant digit—the one farthest to the left. If
the original value has a 0 in this position, the result equals 0. If the original value has a 1 in
this position, the result is not 0. Following the AND operation, testing if the result is 0 tells
you whether the original value is negative (in two’s complement notation). In 8086 program-
ming, as you will learn, there are other ways to test for negative values. Even so, masking
single bits this way is an important technique to know.

Setting Bits with OR

Contrasting the action of AND, logical OR is most often used to change the value of indi-
vidual bits without affecting other bits in a byte. As Table 3.2 shows, a 1 bit in column &
always results in a 1 bit in the result ¢, while an 0 in column 4 allows the original bit value
from column 1 to pass through to the result. Notice that this pass-through action is the
opposite of the AND operation, where a 1 bit in the mask allows bit values to pass through.
These facts allow OR to set any bit in a byte, as this example demonstrates:

0010 1011 (original value)
I 1000 0000 (OR mask)

1010 1011 (result)

The OR mask (80 hexadecimal) changes the most significant digit in the original value from
0 to 1. (If that bit was already 1, then it passes through unchanged.) Referring to the OR
truth table in Table 3.2, perform the OR operation on each column in this example to prove
to yourself how this works.

Combined with AND, OR is frequently used to change the settings of a device’s switches,
economically represented as single bits in memory, perhaps stored in registers inside the
device’s interface card plugged into the computer. (A register is a small amount of special-
purpose memory, usually inside an integrated circuit chip. The 8086 processor as well as
other chips on your PC’s circuit board have many such registers to hold meaningful values.)
To see how AND and OR can be used to control devices, imagine a light attached to your
computer and suppose that bit 3 of a certain register byte value represents the switch to turn
the light on (1) and off (0). Bits 5, 6, and 7 represent the light’s intensity in eight steps from
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000 (dim) to 111 (bright). Other bits have other meanings and you must be careful not to
change bits that are of no concern to you. Representing the taboo bits as question marks, the
intensity as v, and the switch as s, the following operations turn on the light and change the
intensity to 3:

TaEA 221N (hit nAacitinn Nniimhare)
JCSH Saiv i pesiien numasere)

vw? s???  (original settings)
& 00010111  (AND mask)
0007 07?7  (result of AND)
| 01101000 (OR mask)
011? 1???  (result)

First, an AND mask strips the original value of any 1 bits in positions 7, 6, 5, and 3—the
bits to be changed to the new settings. The ones in the AND mask preserve the original val-
ues in the forbidden positions—4, 2, 1, and 0—that must not be changed. After this, an OR
mask sets bits 7, 6, and 5 to 011 (3 decimal) and also sets bit 3 to 1. Notice how zeros in the
OR mask allow the values of the preserved bits (?) to pass through unharmed. Now, com-
pare the bottom and top lines. The intensity value vov is changed to 011 and the switch s to
1. The bits that control other devices are undisturbed.

The Exclusive OR Club

The third common logical operator, XOR, is similar to OR but with one important differ-
ence. As you can see from Table 3.2, the result cequals 1 only when one but not both of the
original two values is 1. If both of the original two bits are the same, then the result of XOR
is 0. This property provides a handy tool for toggling individual bits on and off—without
having to know beforchand what the original bit values are. As with OR, a 0 in the XOR
mask allows an original bit value to pass through. This example helps explain the idea:

1010 0010 (original value)
® 11101011 (XOR mask)
0100 1001 (result)
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Applying XOR to these two values, when both bits are equal, the result is 0. When both bits
are different, the result is 1. Using Table 3.2 as a guide, verify that each of the columns in
this example is correct. Then watch what happens when the XOR mask has a 1 bit in every
position:

1010 0101 (original value)
® 1111 1111 (XOR mask)
0101 1010 (result)

Compare the top and bottom lines. Each bit in the original value is reversed in the result. All
the ones are converted to zeros; all the zeros, to ones. (Adding 1 to this result gives the two’s
complement of the original value. How interesting.) What’s more astounding about XOR is
that, as if by magic, repeating the identical operation restores the original value:

0101 1010 (result from previous example)
® 1111 1111 (same XOR mask, too)
1010 0101 (orignal value!)

You can understand this apparent sleight of hand by observing that, if an XOR mask toggles
every bit in the original for which there is a corresponding 1 in the mask, then reapplying
that same mask to the result has to again toggle every bit back to its original value. This
action—the ability to combine a value via XOR and then restore the original value with a
second XOR—is frequently used in graphics software to allow objects, represented by bit
patterns, to pass through each other harmlessly. Other uses for this property are found in
communications and encryption software.

As a kind of side show effect—because of XOR’s toggling action—every 1 bit in the mask
toggles the corresponding bit in the original value on or off. Exclusively ORing any value
with itself always gives 0. For example:

0111 1101 (original value)
® 0111 1101 (same value as an XOR mask)
0000 0000 (result)

Remember: The result is 0 when two exclusive-ORed bits have the same value. Obviously,
XORing two identical values can have only one effect—all zeros in the result. By the way,
you’'ll see this trick often in 8086 assembly language programs. There are other ways to change
a byte to 0, but XORing a value with itself is one of the fastest methods available.
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Returning to the example of a light attached to a computer, you could perform this XOR
operation to toggle the light on and off without affecting the other bit values:

vvv? s??? (original settings)
® 0000 1000 (XOR mask)
vwv? x??7? (result)

A 1 bit in the XOR mask toggles the corresponding bit s in the original value to its opposite
value x in the result without affecting any other bits. The importance of this operation is
that the program doesn’t have to know the original value sto toggle the value. All that’s known
is that the result is opposite of the original. If the light was on, now it’s off. If it was off, now
it’s on.

Shifting and Rotating

Shifting bits left and right is another common operation performed on binary values. A shift
to the left typically moves a 0 bit into the LSD position, pushing the former MSD off the
edge of the cliff at the far left. A shift to the right does the same, but moves a 0 bit into the
MSD position, losing the former LSD. Variations on this theme store the lost bit and move
the value of another single-bit flag into the new LSD or MSD position. Other variations
move the LSD or MSD around to the other end—or through a single-bit flag—causing the
bits to rotate.

Because bit shifting is such a common operation in assembly language programming, we’ll
pick up this discussion again when meeting the 8086 shift and rotate instructions. But, for
now, there are two concepts you should understand: multiplication by shifting left and divi-
sion by shifting right. To understand how it is possible to multiply and divide by shifting,
examine this addition:

0110 1011 (original value)
+ 0110 1011 (added to itself)
1101 0110 (shifts value left!)
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As the top and bottom lines indicate, adding a value to itself causes the bits to shift one po-
sition to the left. Stated differently, a binary multiplication by 2 is equivalent to shifting the
bits in the value once to the left. Continuing to shift the bits left multiplies the result again
by 2, thus multiplying the original value by 4, or 2. This leads to a generai rule: To multiply
any value by a power of 2, shift the value left by the exponent’s value. To find x times 2*—
that is, to multiply x by 16—shift x left 4 bit positions.

Obviously, if shifting left multiplies binary values by successive powers of 2, shifting right
divides values by 2, 4, 8, and so on. To find the result of 1010 1111 (AF hexadecimal, or
175 decimal) divided by 4, just shift the bits right twice:

1010 1111 (original value)
0101 0111 (divided by 2)
0010 1011 (divided by 2 more)

The result, 0010 1011 (2B hexadecimal, or 43) equals the result of 175 divided by 4—throw-
ing away any remainder, that is. Similar to multiplication, to divide by any power of 2, shift
the original value right by the exponent’s value.

There are several catches to these tricks. For one, you can multiply and divide only unsigned
values by powers of 2. For another, the product must fit within the size of the destination.
(Multiplying 1111 1111 by 2, for example, is notequal to 1111 1110—a ninth bit is needed
to represent the correct result.) And, because bits are lost off the forward end of the shift—
with 0 bits coming in from the leading edge—dividing ignores any remainder in the result.
Despite these restrictions, because shifting bits is one of the fastest operations a digital com-
puter processor can perform, whenever you can multiply or divide by shifting, it pays to do
so. In future chapters, you'll see programming examples that prove this point.

Summary

Bits and bytes fuel the computer processor. There are 8 bits in a byte; 2 bytes in a word; 4
bytes in a doubleword; 6 bytes in a farword; and 8 bytes in a quadword. In memory, bytes
are stored consecutively, each byte precisely located by a unique address. Word values are
stored in byte-swapped order with the most significant bytes at higher addresses.

Well-dressed assembly language programmers need only four binary basics in their ward-
robe: counting from 0 to 16 in binary; converting among binary, hexadecimal, and decimal
values; understanding logical AND, OR, and XOR operations; and representing negative
values in two’s complement notation.

As in other positional number systems, columns from right to left in binary represent in-
creasing powers of the number base. Because 16 is a power of 2, hexadecimal notation gives
programmers a convenient way to represent binary values by substitution. Converting
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between hexadecimal and binary is easy. Converting between decimal and hexadecimal is
more difficult—probably best handled by a programmer’s calculator. Even so, you should
learn how to do the conversion by hand, which is not so difficult once you know the tricks.

Negative values in binary are represented in two’s complement notation. A negative number’s
MSD always equals 1. For simplicity, 0 is considered to be a positive value. Two’s comple-
ment notation allows processors to subtract by adding and also makes it easy to find the
absolute value of any negative number expressed in two’s complement form.

The three logical operations AND, OR, and XOR are typically used to manipulate individual
bits in binary values without disturbing other bits. AND masks combine with binary values
to isolate one or more bits. OR masks can set individual bits to 1. XOR masks can toggle bits
from 1 to 0 and back regardless of the original value. AND followed by OR is one of assem-
bly language’s most common sequences and is typically used to change specific bit values
without disturbing other bits in bytes.

Shifting bits left multiplies unsigned binary values by successive powers of 2. Shifting bits
right divides unsigned binary values by powers of 2, throwing away any remainder. Because
computers can shift bits very quickly, using these operations can help speed binary math in
assembly language programs.

Exercises
3.1. What does the word “bit” stand for?

3.2. How many bits are there in a byte? How many bytes are in a word? How many
words are in a quadword?

3.3. What do MSD, LSD, MSB, and LSB stand for?

3.4. What is the sum of the two binary values 0110 1011 1111 1001 and 1010 1011
1100 10002

3.5. What are the hexadecimal equivalents of the binary values in question #4
(including the sum)?

3.6. How much in decimal does 27 represent? What column (bit number) in a binary
value has the power of 272

3.7. How much is 3ECA in decimal? How much is decimal 12,152 in binary? Try
doing this by hand, even if you have a programmers calculator. (Hint: Convert
the decimal value to hexadecimal and then to binary by substitution.)

3.8. What AND mask would you use to isolate bits 5, 3, and 2 in an 8-bit byte?
What OR mask would you use to set bits 7 and 6 to 1? What XOR mask would
you use to toggle a byte’s MSD on and off?
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3.9.

3.10.

3.11.

3.12.

3.13.

3.14.

[Advanced] Given the job of setting bits 3 and 7 to 1 while toggling bit 2 on/off
and preserving all other bits in a byte, what combination of masks and logical
operators would you use?

How many bits are there in 2,048 farwords?

What are the one’s and two’s complements of the binary values 1011 1111, 0000
0001, 1000 0000, 1110 0001, and 1111 11112

What is the decimal equivalent of the signed binary value 1111 10012 What is
the decimal equivalent of these same bits as an unsigned binary value?

What is the maximum value that you can express in 6 bits? How many values can
you express in 9 bits?

Multiply 0011 1001 by 4 using a bit shift. Divide 1001 1100 by 8 using bit
shifts. Check your answers in decimal. Why can’t you multiply 0101 0101 by 8
using bit shifting?

Projects

3.1.

3.2.
3.3.

3.4.
3.5.
3.6.

Count in binary and hexadecimal from 0 to 16 without referring to Table 3.1.
Create your own binary-to-hex pocket reference.

Device number circles similar to Figure 3.3 for 3- and 5-bit binary values.

Why do you suppose processors like the 8086 require words to be stored in byte-
swapped order?

Write the bit numbers for a 16-bit word as depicted on the top of Figure 3.1.
Write the truth tables for AND, OR, and XOR without referring to Table 3.2.

Add several binary values to themselves. What do the results suggest?
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Memory Segmentation

Before learning about 8086 processor registers and the instruction set, it’s helpful to under-
stand how the 8086 addresses memory using a system of segments and offsets—two terms that
have caused more than their fair share of confusion.

Representing address values internally in 20 bits, the 8086 processor can directly access up
to 1 megabyte of memory. Because DOS, the ROM BIOS, and a few other items occupy
some of that space in PCs, most software has to run in a smaller space of about 256K to
512K. If you want your programs to run on as many PCs as possible, limit your memory
requirements to this range.

No matter how much memory the processor can address, and no matter how many memory
chips are installed inside the computer, the smallest memory unit remains the 8-bit byte. As
mentioned earlier, each byte has a unique location, called the physical address, which pro-
grams specify to read and write the bytes they need. Obviously, you need a greater number
of bits to represent the physical addresses of greater amounts of memory. If your computer
had only 64K, then the address of any byte would comfortably fit in 16 bits, which can rep-
resent values from 0 to 65,535 (2'® — 1)—or 64K in round numbers. To address the PC’s
maximum 1 megabyte of memory requires a minimum of 20 bits. (2% = 1 equals 1,048,575,
or hexadecimal FFFFF.) The problem is: 8086 registers are only 16 bits wide. How is it possible
for the 8086 processor to access the full megabyte of memory in a typical PC?

The answer is memory segmentation, a method the 8086 uses to divide its large address space
into logical 64K chunks. With this method, the address of a specific byte can be expressed in
two values: the address of the chunk, or segment, plus a 16-bit offset from the beginning of
the segment. Together the combination of segment and offset values is called the logical address.
The first byte in a segment is at offset 0000, the second at offset 0001, the third at 0002, and
so on—no matter where the segment physically begins in memory. Figure 4.1 illustrates this
idea, showing that each location in memory has both a physical address (right) and a logical
address (left), expressed as an offset from the beginning of a segment boundary. With seg-
mentation, the 8086 processor can efficiently address up to 1 megabyte of memory while
using relatively small, 16-bit registers. As an additional benefit, segmentation makes it easy
to move programs to new physical locations by changing only the segment base address. The
offset values within a segment require no adjustments, allowing for relocatable programs that
can run identically in different memory locations.
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Figure 4.1. Low Memory
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High Memory

Paragraphs, Segments, and Offsets

To locate the beginnings of memory segments, the 8086 processor contains four 16-bit seg-
ment registers. Internally, the processor combines the value of one segment register with a
16-bit offset (the logical address) to create a 20-bit physical address. It does this by first
multiplying the segment value by 16 and then adding the offset to the result. Because of the
multiplication—equivalent to shifting the bits left four times, as you recall from Chapter
3—segment boundaries fall on physical address multiples of 16 bytes. Each of these 16-byte
memory tidbits is called a paragraph. A simple calculation proves there are a maximum of
65,536 paragraphs—and, therefore, an equal number of segment boundaries—in the 8086’s
1-megabyte address space (1,048,576/16). (Notice that this also equals the number of val-
ues you can express in one 16-bit segment register.) Here are a few other important facts
about segments to keep in mind:

* Segments are not physically etched in memory—a common misconception. A
segment is a logical window through which programs view portions of memory in
convenient 64K chunks.

* A segment’s starting location (that is, the segment’s logical address) is up to you and
can be any value from 0000 to FFFF hex. Each logical segment value (0, 1, 2, ...,
65,535) corresponds to a physical paragraph boundary (0, 16, 32, ..., 1,048,560).

* Segments can be as small as 16 bytes or as large as 64K (65,536 bytes). The actual

size of a segment is up to you and your program.

* Segments do not have to butt up against each other physically in memory, although
they often do.
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* Segments can overlap with other segments; therefore, the same byte in memory can
have many different logical addresses specified with different but equivalent segment
and offset pairs. Even so, each byte has one and only one 20-bit physical address.

This last point confuses almost everyone on their introduction to memory segmentation.
Two different segment and offset pairs can (and often do) refer to the same byte in memory.
If you remember how the processor creates a 20-bit physical address—multiplying the seg-
ment value by 16 and adding the offset—you can see that the segment:offset hexadecimal
values 0000:0010 and 0001:0000 refer to the same physical location. Duplicating in deci-
mal how the 8086 processor converts these logical addresses to physical addresses, each cal-
culation—(0000 x 16) + 16 and (0001 x 16) + 0—gives the same result, 16.

NOTE

8086 Registers

Figure 4.2 illustrates the 8086 registers. The same registers are available in all 80x86 models.
(The 80386, 80486, and Pentium CPUs have additional registers and extensions that don’t
concern us here.) If you limit your register use to those listed in Figure 4.2, your programs
are guaranteed to run on all PCs. The registers are grouped into five categories:

* General-purpose registers (ax, bx, cx, dx)

Pointer and index registers (sp, bp, si, di)
* Segment registers (cs, ds, ss, es)

* Instruction pointer (ip)

* Flags (of, df, if, tf, sf, zf, af, pf, cf)

All 8086 registers are 16 bits wide. In addition, the four general-purpose registers—ax, bx,
cx, and dx—are subdivided into high and low 8-bit halves. The 16-bit ax register, for ex-
ample, is composed of two 8-bit parts, ah and al. Register bx is divided into bh and b1; cx,
into ch and c1; and dx, into dh and d1. This flexible arrangement lets you operate directly on
the full 16-bit register width or work separately with the register’s two 8-bit halves. Remem-
ber that changing the value in the 16-bit ax also changes the register’s two 8-bit halves a1
and ah. Likewise, changing the value in c1 also changes the value of cx.
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Figure 4.2. < 16 bits >
8086 registers. [€«— 8 bits —>}€— 8 bits —>
ax: ah al Accumulator
bx: bh bl Base
cX: ch cl Count
dx: dh dl Data
sp Stack rointer
bp Base Pointer
si Source Index
di Destination Index
cs Code Segment
ds Data Segment
ss Stack Segment
es Extra Segment
I ip | Instruction Pointer

Status Flags

General-Purpose Registers

Assembly language programs refer to registers by their mnemonics, ax, c1, ds, and the like.
But the registers also have less familiar names as shown to the right of Figure 4.2. (The names
are never used directly in programs, though.) The accumulator ax is usually used to accumu-
late the results of additions, subtractions, and so forth. The base register bx often points to
the starting address (called the base) of a structure in memory. The count register cx frequently
specifies the number of times some operation is to repeat. And the data register dx most of-
ten holds data, perhaps passed to a subroutine for processing. These definitions are by no
means fixed, and most of the time it’s up to you to decide how to use a general-purpose reg-
ister. For example, just because cx is called the count register, there’s no reason you can’t
count things using bx. In some cases, however, certain 8086 instructions require specific
registers.

Pointer and Index Registers

Contrasting the four general-purpose registers, other 8086 registers in Figure 4.2 are closely
related to specific operations. The stack pointer sp always points to the top of the processor’s
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stack. (We'll tackle stacks in detail a bit later.) The base pointer bp usually addresses variables
stored inside the stack. Source index si and destination index di are known as string registers.
Usually, si and di serve as workhorses for easing the load of processing byte strings.

Segment Registers

The four segment registers—cs, ds, ss, and es—locate the start of four 64K segments in
memory, as illustrated in Figure 4.3. A program is free to allocate more than four segments
but, in that case, has to swap the correct values in and out of one or more segment registers
to address the additional segments.

Segment registers are highly specialized. You can’t directly perform math on segment regis-
ters or use them to hold the results of other operations. The code-segment register cs addresses
the start of the program’s machine code in memory. The data-segment register ds addresses
the start of the program’s variables. The stack-segment registerlocates the start of the program’s
stack space. The extra-segment register es locates an additional data segment if needed, al-
though in many programs, es and ds address the same memory, facilitating some operations
tied to these registers. Actual segment order does not have to match the order shown in Fig-
ure 4.3. As explained before, segments may be stored anywhere in memory and in any order.

Figure 4.3.

Segment registers address cs: Code Segment

Jfour memory segments.
ds: Data Segment
es: Extra Segment
ss: Stack Segment
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Instruction Pointer

The special-purpose instruction pointer ip specifies the next machine-code instruction to be
executed, relative to the segment located by cs. You'll rarely (if ever) refer to ip directly. In-
stead, you'll use instructions that change ip (and possibly cs) to alter the location of the next
instruction to be executed, thus changing the flow of the program. For example, calling a
subroutine causes the address of that routine to be loaded into ip (or into the ¢s:ip pair).

Flags

Although the status flags register is 16 bits wide, only 9 bits are used. (See Figure 4.2.) The
other 7 bits are of no use to programs. Individual flag bits are represented by single letters o,
d, i, t, s, 2, a, p, and c. Some references (including this one) frequently refer to these as of,
df, if, and so on. Table 4.1 lists the full name of each flag bit.

Most of the time, the 8086 flag bits reflect the result of various instructions and operations.
For example, after an addition, the carry flag cf indicates if the result generated a carry. The
overflow flag indicates if the result of a signed addition cannot be represented correctly within
a certain number of bits. Flags also serve multiple purposes. For instance, you might shift a
register’s bits left, transferring the former MSD into the carry flag cf for inspection. Other
instructions can then take action based on the setting of this and other flag bits. Or you might
use cf as a single-bit warning device to indicate that an error occurred, allowing other parts
of the program to be aware that something is amiss. As you learn each assembly language
instruction, you’ll also learn the various roles that flags play in a program’s actions.

Table 4.1. 8086 Flags.

Symbol Full Name

o or of Overflow flag

d or df Direction flag

iorif Interrupt enable flag
t or tf Trap (single-step) flag
s or sf Sign flag

zor zf Zero flag

a or af Aucxiliary flag

p or pf Parity flag

corcf Carry flag
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Instruction Groups and Concepts

All 8086 instructions are divided by function into six categories. The rest of this chapter
examines each of these groups and lists short programs that you can use to view the opera-
tion of many 8086 instructions. (Future chapters will introduce the remaining instructions.)
The six groups are:

* Data transfer instructions

* Arithmetic instructions

* Logic instructions

* Flow-control instructions

¢ Processor control instructions

¢ String instructions

Data Transfer Instructions

Table 4.2 lists the 8086 data transfer instructions. There are four subdivisions in this group:
General, Input/Output, Address, and Flag. The operands to the right of each mnemonic
specify the data elements required by the instruction. Most instruction mnemonics specify
destination and source operands. Others require one or no operands.

Let’s look at the first data transfer instruction mov and see how it works. Probably, mov ap-
pears in assembly language programs more frequently than any other instruction. From Table
4.2, you can see that mov requires a source and a destination operand. Notice that the source
is written after the destination, implying that mov operates this way: ;

mov  destination <-- source
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Table 4.2. Data Transfer Instructions.

Mnemonic/Operands Description

General Instructions
mov destination, source Move (copy) byte or word
pop desiinaiion Pop darta from stack
push immediate Push data onto stack
xchg destination, source Exchange bytes and words
xlat/xlatb table Translate from table

Input/Output Instructions

in accumulator, port Input (get) byte or word
out port, accumulator Output (put) byte or word
Address Instructions
1ds destination, source Load pointer using ds
lea destination, source Load effective address
les destination, source Load pointer using es
Flag Instructions
lahf Load ah from (some) flags
popf Pop flag register from stack
pushf Push flag register onto stack
sahf Store ah into (some) flags

The source data moves in the direction of the arrow, from right to left. Be careful not to
reverse the operands, a typical and potentially disastrous mistake. In assembly language pro-
grams, the following instruction moves the value of the bx register into the ax register:

mov  ax, bx ; ax <-- bx

If ax equals 0000 and bx equals 0123h, then this instruction sets ax equal to 0123h. The
value of bx does not change. Some programmers like to use a comment to clarify the direc-
tion that the data moves. Here’s an example:

mov  c¢x, [numPages] ; CX <-- [numPages]

This mov instruction moves the value stored at numPages into the cx register. The brackets
around numPages are important. The label numPages specifies a memory address. But, with
brackets, [numPages] stands for the data stored at that address. This concept—that a label
specifies the address of data stored in memory—is vital to your understanding of assembly
language programming. Atall times, you must be careful to specify whether an instruction is
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to operate on an address value or on the data stored at that address. Brackets are simply tools
for this purpose, but you must remember to use them correctly.

You can move data from registers to memory, too. For example, this copies the value in the
8-bit register d1 to the address specified by 1evel:

mov  [level], dl ; [level] <-- dl

From the brackets, you know that the value of d1 moves to the location to which 1evel points.
Moving data around this way—copying one register value to another and transferring data
from a register to a location in memory—are some of the most common operations in as-
sembly language programming. One thing mov can’t do, however, is transfer data directly
between two memory locations. This never works:

mov [count], [maxCount] 5 ?2?2?

To move the value stored at maxCount into the location addressed by count instead requires
two steps, using a register as an intermediate holding bin:

mov ax, [maxCount] ; ax <-- [maxCount]
mov [count], ax ; [count] <-- ax
A Moving Example

Listing 4.1 demonstrates how mov works. Assemble, link, and load the program into Turbo
Debugger with the commands:

tasm /zi mov
tlink /v mov

td mov

Listing 4.1. MOV.ASM.

1: STITLE "MOV demonstration -- by Tom Swan"

2:

3 IDEAL

4:

5: MODEL  small

6: STACK 256

7:

8: DATASEG

9:

10: exCode DB 0

11: speed DB 99 ; One-byte variable
12:

13: CODESEG

14:

15: Start:

16: mov ax, @data ; Initialize DS to address
17: mov ds, ax ; of data segment
18:
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19: mov ax, 1 ; Move immediate data into
20: mov bx, 2 ;  registers

21: mov cx, 3

22: mov dx, 4

23:

24: mov ah, [speed] ; Load value of speed into al
25: mov si, offset speed ; Load address of speed into al
26:

27: Exit:

28: mov ah, 04Ch ; DOS function: Exit program
29: mov al, [exCode] ; Return exit code value

30: int 21h ; Call DOS. Terminate program
31:

32: END Start ; End of program / entry point

Running MOV in Turbo Debugger

You should now have the MOV program loaded into Turbo Debugger. Follow these num-
bered steps for a few experiments that will help you to understand what the instructions do:

1. Press Alt-V-C to open the CPU window and press F5 to zoom the window to full
screen. Because the CPU window shows many important details on one display—
the stack, registers, flags, memory, and instructions—this is the window you should
use to run most assembly language programs in this book.

2. Press F8 to run the program a single step (instruction) at a time as you read the
following descriptions. (Line numbers reference each line from Listing 4.1.)

3. Lines 16-17 initialize the ds segment register, first assigning to ax the predefined
value @data and then assigning this value to ds. (You can assign only values from a
general-purpose register, a memory variable, or the stack to a segment register—you
can’t directly assign literal values to segment registers.)

4. Executing lines 19-22 assigns literal values 1, 2, 3, and 4 to the general-purpose
registers ax, bx, cx, and dx. Stop pressing F8 when Turbo Debugger’s instruction
arrow (to the right of the addresses such as cs:0011) points to the mov ah, [speed]
instruction. (If you accidentally go too far, press Ctrl-F2 to reset and then press F8
until you get back to the right spot.)

5. Themov ah, [speed] instruction at line 24 loads the value stored at the location
addressed by speed into the 8-bit register half ah. Near the top of the display in the
double-line border, look for the text that reads ds:0001 = 63. This tells you the
value in hexadecimal (63) that is about to be loaded into ah. The ds:0001 notation
indicates the address at which this value is stored. Like all addresses, the address has
two components: a segment value (held by register ds) and an offset 0001.

6. Press F8 to execute the instruction at line 24 and watch the value of the ax register
change in the upper-right corner of the display. Notice that the ds:0001=63 is now
gone. To see this again, use the up and down arrow keys to move the highlighted
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bar up and down. You can always move the bar to any individual instruction to see
the effect of values about to be loaded into registers or written to memory.

7. Find register si near the upper-right third of the CPU window. Press F8 again,
executing the instruction at line 25, mov si, offset speed. As you can see, this
instruction sets register si to 0001, the offset value of the address in the previous
step. The oFFSET keyword in the mov instruction tells the assembler you intend to
use the offset address of a label. (OFFSET may be in lowercase—offset —on your
screen.)

8. Continue to press F8 until the program ends. Lines 28-30 perform three steps that
end every EXE program. First, the value of the DOS exit operation (04Ch) is
loaded into ah. Then, al is assigned the contents of variable exCode, which a
program can pass back to DOS as an error indicator. A zero value means no error.
The int 21h instruction at line 30 calls DOS with these parameters in ah and al,
ending the program.

9. Press Esc followed by Alt-X to quit Turbo Debugger.

Stacking the Deck

A stack is a special segment of memory that operates in conjunction with several 8086 in-
structions. As with all segments, the location of the stack and its size (up to 64K) are up to
you and your program to determine. In assembly language programs, the easiest way to cre-
ate a stack is to use the STACK directive, as in most example programs in this book. If you
don’t create a stack, you'll receive a warning from Turbo Linker. A stack has three main
purposes: '

* To preserve register values temporarily

* To store addresses to which subroutines return

* To store dynamic variables
The last of these comes into play more often in high-level language programming, where
variables are passed via the stack to and from functions and procedures. Similarly, tempo-

rary variables may be stored on the stack. These uses are rare in pure assembly language pro-
gramming, although you can certainly store variables in stack memory this way if you want.
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How Stacks Operate

Conceptually, a stack is like a spring-loaded bin of dishes in a restaurant kitchen. The top
dish on the stack is readily available, but to get to the dishes below, other dishes above must
first be removed. Placing a new dish on the top of the stack is called a push. Removing a dish
from the top of the stack, causing other dishes below to move up a notch, is called a pop.
Because of the way the last dishes pushed onto the stack are the first dishes to be popped, this
kind of a stack is called a LIFO stack, for “Last-In-First-Out.”

Unlike dishes, values in computer memory can’t physically move up and down. Therefore,
to simulate the action of a moving stack of values requires using registers to locate the base
address of the stack and the offset address of the top dish—that is, the location where the top
value of the stack is stored. In 8086 programming, segment register ss addresses the stack
segment base. Register sp addresses the top of stack offset in that segment.

Figure 4.4 illustrates how a small stack of 12 bytes appears in memory. Register ss addresses
the base of the stack at segment address 0F00. Register sp addresses offsets from this starting
address, ranging from 0000 to 000A. The last byte in the stack is at offset 000B (in the fig-
ure, just to the right of the byte at 000A). Items in the stack occupy 2-byte words. The pro-
gram that prepares this stack would declare a STACK 12 and let the assembler, linker, and
DOS calculate exactly where in memory the stack will be stored. You don’t have to initialize
registers ss and sp. DOS does that for you when it loads your assembled program. In the
figure, sp1 shows where sp points when the program begins running. Notice that the logical
address in ss:sp points to the byte below the last byte in the stack.

NOTE

Refer again to Figure 4.4. Several actions occur if you execute these instructions:

mov ax, 100

push ax 5 sp2
mov bx, 200
push bx ; sp3

The push instruction performs two steps:

1. 2 is subtracted from sp.

2. The specified register value is copied to [ss:sp].
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Figure 4.4. Low Memory
The stack segment. oFoo: | 0000 |
|
0002
1
I
0004 '
T
0006 | End of
T Stack
ss :sp3 | 0008 290 Segment
ss:sp2 | 000A 1 '4
ss:sp1 | 000C

The order of these steps is important. A push first subtracts 2 (not 1) from sp. In Figure 4.4,
the first such push leaves sp at sp2, where the value of register ax is then stored. Notice that
this action leaves the stack pointer addressing the most recently pushed word value on the
stack.

NOTE

A Stack Demo

You can use Turbo Debugger to watch a stack in action—a great way to learn how stacks
operate. For this purpose, use Listing 4.2, which demonstrates one of the stack’s most com-
mon uses—to preserve register values. Assemble, link, and load the program into Turbo
Debugger with the commands:

tasm /zi pushpop

tLink /v pushpop

td pushpop

After the listing are step-by-step instructions for running the program under the control of

Turbo Debugger.
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Listing 4.2. PUSHPOP.ASM.
1: STITLE "PUSH/POP demonstration -- by Tom Swan"

2

3 IDEAL

4:

5: MODEL small

6: STACK 256

7

8 DATASEG

9:

10: exCode DB 0

11:

12: CODESEG

13:

14: Start:

15: mov ax, @data ; Initialize DS to address
16: mov ds, ax ;  of data segment

17:

18: push ax ; Save ax and bx

19: push bx ; on the stack

20:

21: mov ax, -1 ; Assign test values

22: mov bx, -2

23: mov cx, 0

24: mov dx, 0

25:

26: push ax ; Push ax onto stack

27: push bx ; Push bx onto stack

28: pop cXx ; Pop cx from stack

29: pop dx ; Pop dx from stack

30:

31: pop bx ; Restore saved ax and bx
32: pop ax ;  values from stack

33:

34: Exit:

35: mov ah, 04Ch ; DOS function: Exit program
36: mov al, [exCode] ; Return exit code value
37: int 21h ; Call DOS. Terminate program
38:

39: END Start ; End of program / entry point

Running the PUSHPOP Demo

You should have PUSHPOP running in Turbo Debugger. Follow these steps to see a stack
in action:

1. Open and zoom the CPU window with Alt-V-C and F5. Press F8 twice, stepping to
line 18. Note the values of the ax and bx registers.

2. Watch the stack values in the lower-right corner—the window with addresses that
begin with ss:. Press F8 once to push the value of ax onto the stack. Press F8 again
to push the value of bx. The top of the stack is marked with an arrow at the bottom
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of the window. (Only Turbo Debugger’s designers know why the “top” of the
stack appears at the “bottom” of this window. I told you such terms tend to be
confusing.)

3. Press F8 four times, executing lines 21-24 and loading registers ax, bx, cx, and dx
with test values.

4. Press F8 again to execute line 26, pushing the value of ax onto the stack. Observe
the stack’s contents and the value of sp before and after the push. Press F8 once
more to push bx.

5. Lines 28 and 29 pop the stack, removing the value at [ss:sp] and adding 2 to sp,
addressing the next word. Press F8 twice to execute the two lines. Notice that you
can pop values from the stack into registers other than the ones you pushed earlier.

6. Press F8 twice again to execute lines 31-32. These instructions restore the values of
bx and ax to the values they had before executing lines 18-19.

7. Quit Turbo Debugger with Alt-X. You don’t have to run the program to its
completion.

Stack Management

The goal of good stack management is simple: For every push in a program, there must be a
balancing pop. Matching your pops and pushes keeps the stack pointer right—in other words,
in synch with the program’s ability to store and retrieve the values it needs.

Consider what happens if you fail to execute a matching pop for every push. In this case, future
pushes will cause the stack to grow larger and larger, eventually overflowing the segment space
allotted by your program. This serious error usually results in a crash as areas in memory are
overwritten by the runaway stack pointer. A similar error occurs if you execute more pops
than pushes, causing a stack underflow and also usually resulting in a crash.

A good way to prevent such problems is to write your programs in small modules, or sub-
routines. In each module, push onto the stack all the registers you plan to use. Then, just
before this section of code ends, pop the same registers off the stack but in the reverse order.
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For example, here’s how you might construct a typical section:

push ax ; Save ax, bx, dx on the stack
push bx
push dx

! ———— Prooramminn anec hara
: (L ing goes here

pob dx ; Restore dx, bx, ax from the stack

pop bx

pop ax

Presumably, the instructions between the push and pop instructions will use ax, bx, and dx;
therefore, these registers are pushed onto the stack to preserve the register values. Later, the
same registers are popped from the stack in reverse order, restoring the original register val-
ues and keeping the stack in synch. Recalling the analogy of the stack of dishes, you can see
that popping in reverse order is necessary to restore the previously saved values to the correct
registers. The last value pushed onto the stack (dx) is the first to be removed, while the first
dish pushed (ax) is the last to be popped.

NOTE

Exchanging Data

Let’s examine another instruction from Table 4.2, xchg, which swaps two register values or
a register value and a byte or word stored in memory. Suppose you want to exchange the
values in dx and ax. With xchg, you simply write:

xchg ax, dx 5 ax <- dx; dx <- ax

Even though Table 4.2 lists source and destination operands for xchg, the order of operands
doesn’t matter as the instruction swaps the value of one operand with the other. Without
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xchg, swapping two registers requires either a push onto the stack or a third register. For ex-
ample, here’s a less efficient method to exchange two 16-bit registers using the stack as an
intermediate way station for one value: ‘

push ax ; stack <- ax
mov ax, dx ; ax <- dx
pop dx ; dx <- stack (original ax)

Swapping two 8-bit values takes a third register because you can’t push bytes onto the stack—
you can push and pop only 16-bit words. Without xchg, to swap two bytes in al and ah, you
could write:

mov bh, ah ; bh <- ah
mov ah, al ; ah <- al
mov al, bh ; al <- bh

Of course, with xchg, none of this is necessary. (It is instructive to understand how the stack
and other registers can be used this way, however.) In addition to swapping register values,
xchg can also swap the value in a register with a value stored in memory. Here are two ex-
amples:

xchg ax, [things] ; ax <--> [things]
xchg [oldCount], cx ; CX <--> [oldCount]

The first line swaps the value of ax with the value stored at things. The second line swaps cx
and oldCount. Again, the order of operands is unimportant.

Arithmetic Instructions

Most computers are great at math; therefore, it may come as a surprise that assembly lan-
guage has only a few relatively primitive math operators. There is no exponentiation sym-
bol, no floating point, no square root, and no SIN and COS functions built into the 8086
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instruction set. Mathematics instructions in assembly language are restricted to adding,
multiplying, dividing, and subtracting signed and unsigned binary integer values. Table 4.3
lists the 8086 math instructions.

There are two ways to increase the math power of assembly language programming. First,
you can purchase (or write) a math package with routines that implement the high-level
tunctions you need. Another solution is to purchase a math coprocessor chip for your PC,
although this can be expensive if your computer has an 80286 or 80386 processor, which
requires a complementary 80287 or 80387 math chip. The 80486 processor contains the
built-in equivalent of an 80387 math chip. Third, and probably best, is to use a high-level
language such as Turbo Pascal or Turbo C to code your floating-point expressions. These
languages come with automatic detectors to sniff out the presence of a math coprocessor,
and can switch to a software emulator for systems lacking the optional chip. After writing
your program, you can combine the compiled high-level code with your assembly language
program (see Chapters 12 and 13). Because math coprocessors have strict requirements about
data and instruction formats, most compilers generate optimized machine code, and there’s
little advantage to writing floating-point expressions directly in assembly language.

But don’t take this as a negative pronouncement on assembly language math. Even without
a math library or coprocessor, you can do plenty with the 8086’s built-in integer instruc-
tions. In fact, most programs get along just fine without any higher math capabilities. You
certainly don’t need floating-point numbers to total the bytes in a disk directory or to count
the number of words in a text file. For these and other operations, integer math is more than
adequate. In pure assembly language, such jobs frequently run more quickly than equivalent
code of compiled high-level languages.

Table 4.3. 8086 Arithmetic Instructions.
Mnemonic/Operands Description

Addition Instructions

aaa ASCII adjust for addition
adc destination, source Add with carry

add destination, source Add bytes or words

daa Decimal adjust for addition
inc destination Increment

Subtraction Instructions

aas ASCII adjust for subtraction
cmp destination, source Compare
das Decimal adjust for subtraction

continues
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Table 4.3. continued

Mnemonic/Operands Description

Subtraction Instructions
dec destination Decrement byte or word
neg destination Negate (two’s complement)
sbb destination, source Subtract with borrow
sub destination, source Subtract

Multiplication Instructions

aam ASCII adjust for multiply
imul source Integer multiply
mul source Multiply
Division Instructions
aad ASCII adjust for division
cbw Convert byte to word
cwd Convert word to doubleword
div source Divide
idiv source Integer divide

Addition Instructions

Table 4.3 lists five addition instructions. Two of these, add and adc, sum 2 bytes or words.
Inc (increment) is a fast instruction to add 1 to a register or value in memory. (The other
two instructions, aaa and daa, make adjustments to values stored in binary-coded-decimalfor-
mat, which you’ll meet again later on.) To add an 8-bit value in ah to the 8-bit value in bh,
you can write:

add ah, bh ; ah <- ah + bh

As with mov, the add instruction requires source and destination operands. The instruction
sums these two values and stores the result in the specified destination, replacing the original
value. In this example, the result is stored in ah. The adc instruction operates similarly but
adds in the value of the carry flag cf to the result:

adc ah, bh ; ah <- ah + bh + cf

If cf equals 1, the result is the same as adding 1 to the sum of ah and bh. After a previous add
operation, cf is set to 1 if an overflow occurred; therefore, adc is most often used after an
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initial add when summing multibyte values, picking up the possible carries while individu-
ally adding each byte in turn. Although you can add words directly, you could use these
instructions to add the individual bytes of a 16-bit value stored at sum to register ax. These
instructions double the word at sum;

mov ax, [word sum] Set ax to value of [sum]

add al, [byte sumj : Add LSBs

adc ah, [byte sum + 1] ; Add MSBs with possible carry

mov [word sum], ax ; Store value back in memory

Remember that words are stored in byte-swapped order. In this sample, the first line loads
the word value into ax. The second line adds the least significant bytes together, storing the
result in al and setting cf to 1 if the addition generates a carry. The third line adds this pos-
sible carry to the sum of the most significant bytes. Finally, the fourth line stores the final
result back in memory. Because the 8086 can manipulate word values directly, you can per-
form this same addition with the simpler instructions:

mov ax, [word sum] ; Set ax to value of [sum]

add [word sum], ax ; Add [sum] to itself

You must load [sum] into a register before adding because add cannot directly add two val-
ues stored in memory—at least one register must be specified. Notice that in these examples
the word and byte operators tell the assembler what kind of data sum addresses. In some cases,
the assembler can figure this out on its own. In others, you need to use the operators. There’s
no harm in using them, however. (Chapter 5 explains data formats and operators in more

detail.)

Both add and adc can add immediate (literal) values to registers and values in memory. For
example, this adds 5 to the current value of bx, storing the result in bx:

add bx, 5 ; bx <- bx + 5

When you need to add only 1 to a value, use inc instead of add—it’s faster. Notice from
Table 4.3 that inc requires only one operand. The following instructions increment four
general purpose registers by 1:

inc ax ; ax <- ax + 1
inc bx 3y bx <= bx + 1
inc cx ;3 CX <-c¢cx + 1
inc dh ; dh <- dh + 1

The last of these samples increments dh, leaving the value of d1 alone. The other three samples
increment the full 16-bit registers specified. Remember that you can operate on either of a
general-purpose register’s 8-bit halves without affecting the other half.

Subtraction Instructions

Subtracting in assembly language is similar in form to adding. The sub instruction subtracts
two byte or word values. The sbb instruction does the same but takes into account a possible
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borrow from a previous subtraction of multibyte or multiword values. An example shows
how to subtract bx from ax and store the result in ax:

sub ax, bx ; ax <- ax - bx

As with add and adc, you can subtract two registers or a register and a value stored in memory.
You can also subtract immediate values. You should be able to understand the following
samples by reading the comments to the right of each line:

cX <- ¢cx - 5

dx <- dx - [score]

[answer] <- [answer] - 3
ax <- ax - 1

sub cx, 5 ;
sub dx, [score] H
sub [answer], 3 ;
sub ax, 1 3
You can replace the last of these samples with the faster dec instruction, which decrements
by 1 a register or value in memory. You can decrement byte and word values, as these samples

show:

dec ax ; ax <- ax - 1

dec dl ;5 dl <- dl - 1

dec si ; 8i<-si -1
H

dec [balance] [balance] <- [balance] - 1

Add and Subtract Demonstration

Listing 4.3 demonstrates the four instructions add, sub, inc, and dec. Assemble, link, and
run the program under control of Turbo Debugger with the instructions:

tasm /zi addsub
tlink /v addsub
td addsub

Listing 4.3. ADDSUB.ASM.
1: %TITLE "ADD, SUB, INC, DEC demo -- by Tom Swan"

2:

3: IDEAL

4:

5: MODEL small

6: STACK 256

7:

8: DATASEG

9:

10: exCode DB 0

11: count bW 1

12:

13: CODESEG

14:

15: Start:

16: mov ax, @data ; Initialize DS to address
17: mov ds, ax ;  of data segment
18:
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19: mov ax, 4

20: mov bx, 2

21: add ax, bx ; ax <- ax + bx

22:

23: mov cx, 8

24: add cx, [count] ; CX <- cx + [count]

25:

28: add feountj, cx ; Leountj <- cx + [count]

27:

28: inc [count] ; [count] <- [count] + 1

29: dec [count] ; [count] <- [count] - 1

30: inc ax ; ax <- ax + 1

31: dec cX ; CX <= ¢cx + 1

32:

33: Exit:

34: mov ah, 04Ch ; DOS function: Exit program
35: mov al, [exCode] ; Return exit code value

36: int 21h ; Call DOS. Terminate program
37:

38: END Start ; End of program / entry point

Running the ADDSUB Demo

Press Alt-V-C and F5 to view the CPU window. Watch the register values change as you
single step through the program by pressing F8 while reading the following descriptions.
Try to predict register and memory values before executing each instruction.

Lines 19-21 show how to add the values in two registers ax and bx, storing the result in ax.
Try changing the initial values (4 and 2) and rerun the program. Lines 23-26 add register cx
and variable [count] together. Notice that you can store the result in a register (line 24) or
back in memory (line 26). To experiment with sub, make a backup copy of ADDSUB.ASM,
and then change all add instructions to sub, reassemble, link, and run under Turbo Debugger’s
control.

Lines 28-31 demonstrate how inc and dec increment and decrement variables and register
values. To see the values in memory change, watch the upper middle of Turbo Debbuger’s
CPU window. You should see the value stored at [count]. Unfortunately, after executing
line 29, this value disappears (because the next instruction makes no reference to count's
location). The next section explains a method to make watching variables easier.
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Watching Out for Number One

Turbo Debugger has a “watch window” for viewing variables. As you execute instructions
that change values in memory, the values listed in the watch window also change. This makes
it easy to observe the effects of executing assembly language instructions that operate on
variables. Load Listing 4.3 with the command td addsub, but don’t open the CPU window
just yet. Then follow these steps to inspect the value of count (line 11):

1. Press Ctrl-F7, type count, and press Enter. Turbo Debugger locates the count
variable in memory and shows count's initial value in the watch window at the
bottom of the display.

2. Press F8 until reaching line 26 (add [count],cx). Then press F8 again and watch
the value of count in the watch window change.

NOTE

When running other example programs in this book, you can add variable names to the watch
window. Also, there are other ways to view memory with Turbo Debugger—for example,
the bottom-left corner of the CPU window shows successive bytes from any starting loca-
tion. But the watch window is easy to use and has the advantage of showing variables by
name. Even better, you can change the values of variables without having to reassemble the
program. To try this, press Ctrl-F2 to reload ADDSUB (or start Turbo Debugger with td
addsub) and follow these steps:

1. Press F6 until the watch window borders change to double lines, indicating this
window is active. Type count and press Enter. This demonstrates another way to
enter variable names to watch. (If count is already in the window, you can skip this
step.)

2. Press Cttl-C (the watch window’s Change command) and enter a new value for
count. Instead of count's initial value (1) as listed in the program (line 11), the
program now begins with your new count value.

3. Step through the program with F8. The instructions use the new count value. Press
Ctrl-F2 to reload the program, use F6 to make the watch window active if neces-
sary, and enter new values for count until you’re familiar with this option.

These Turbo Debugger commands save time by giving you the ability to change variable
values and run test programs without having to reassemble your code. When changing vari-
able values, you can enter new numbers in hexadecimal, decimal, or binary. In all cases, the
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first character must be a decimal digit. The last character can be & for decimal, 4 for hexa-
decimal, or & for binary. The default is hexadecimal. Here are a few sample values as you
might enter them into the watch window:

100 hexadecimal (256 decimal)

offh hexadecimal (255 decimal)

256d decimal

1001b binary (9 decimal)

FFh error--first character must be 0-9
Sneaky Subtractions

From Table 4.3, you might think the instructions neg and cmp are out of place. Neg negates
a binary value. Cmp compares two values. So, what do these instructions have to do with sub-
traction?

In the case of neg, the 8086 processor internally subtracts from 0 the value to be negated.
This value might be stored in a register or in memory. Subtracting a value from 0, as you
recall, forms the two’s complement of that value—identical to toggling all the zeros to ones
and the ones to zeros, and then adding 1. In 8086 assembly language, it’s simpler just to use
neg to do the same thing. Here are two samples:

neg ax ; Form two's complement of ax

neg [value] ; Form two's complement of [value]

The relation between cmp and subtraction is not as obvious—that is, until you understand
that most digital processors perform comparisons between two values by subtracting one value
from the other and then throwing away the result. The reason for performing comparisons
this way is to set various flag bits that indicate the condition. of the result—for example,
whether the result is zero, negative, or positive. Cmp performs a subtraction identically to sub
but saves only the flag values, which other instructions can inspect. (Later in this chapter
when we get to flow-control instructions, this will make more sense.) For now, just remem-
ber that a cmp is the same as a sub with no result, only a possible change to various flags.

Multiplying and Dividing Unsigned Values

Multiplication and division require extra care to perform properly. You must be certain to
place values in the correct registers. After the operation, you must be careful to extract the
answer from the right places. The best way to learn the ropes is to run an example program
in Turbo Debugger and demonstrate how mul, imul, div, and idiv operate. Assemble and
link Listing 4.4 and load the code into Turbo Debugger with the commands:

tasm /zi muldiv

tlink /v muldiv
td muldiv
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Listing 4.4. MULDIV. ASM.
1: %TITLE "MUL, DIV, IMUL, IDIV demo -- by Tom Swan"

2

3 IDEAL

4

5: MODEL  small

6: STACK 256

7:

8 DATASEG

9:

10: exCode DB 0

11: opByte DB 8

12: opWord DwW 100

13: sourceByte DB 64

14: sourceWord Dw 4000

15:

16: CODESEG

17:

18: Start:

19: mov ax, @data ; Initialize DS to address
20: mov ds, ax ; of data segment

21:

22: mov al, [opByte] :

23: mul [sourceByte] ; ax <- al * [sourceByte]
24:

25: mov ax, [opWord]

26: mul [sourceWord] ; ax,dx <- ax * [sourceWord]
27: .

28: mov ax, [opWord]

29: mul ax 5 ax,dx <- ax * ax

30:

31: mov ax, [opWord]

32: div [sourceByte] ; al <- ax div [sourceByte]
33:

34: mov ax, [opWord]

35: mov dx, [opWord]

36: div [sourceWord] 5 ax <- ax,dx div [sourceWord]
37:

38: Exit:

39: mov ah, 04Ch ; DOS function: Exit program
40: mov al, [exCode] ; Return exit code value
41: int 21h ; Call DOS. Terminate program
42:

43: END Start ; End of program / entry point

Running the MULDIV Demo

In addition to excode, MULDIV declares four test variables at lines 11-14. Add these vari-
able names to Turbo Debugger’s watch window. (Quick tip: press F6 and type the variable
names.) Then, open the registers window or view the CPU window, whichever you prefer.
Press F8 to step through each instruction. To start over, press Ctrl-F2. Experiment with
different values as you follow these suggestions:
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1. Lines 22-23 multiply two unsigned bytes. One byte must be in register al. The
other can be in memory, as in this example, or in another 8-bit register. The result
of the multiplication is stored in the 16-bit register ax. Overflow is not possible as
255 * 255 equals 65,025—well within the maximum range of a 16-bit word. Prove
this to yourself by changing opByte and sourceByte to OFFh and rerun the program.

5

Lines Z5-Z06 are simiiar but, this time, multiply two 16-bit word values. Two
registers, dx and ax, hold the result, which can be up to 32 bits long. dx holds the
most significant part of the result; ax, the least significant part. As with byte
multiplication, overflow cannot occur.

3. Lines 28-29 square the value of a register, multiplying ax by itself. You can also
square an 8-bit value by multiplying al by itself. You can’t do this with any other
registers—you can use only ax and al.

4. Lines 31-32 demonstrate unsigned division. The source data to the div instruction

divides into the 16-bit dividend in ax. The whole number quotient is placed in a1
with any remainder in ah.

5. Lines 34-36 perform a similar division, this time dividing a 32-bit value in dx and
ax by the 16-bit word value of sourceword. Register dx holds the most significant
word of the original value, and ax holds the least significant word. After the divi-
sion, the whole number quotient is stored in ax with any remainder in dx.

As you can see from these experiments, unsigned multiplication and division is somewhat
unfriendly in 8086 assembly language. You must use only the specified registers, and you
must be aware that 32-bit results and operands are stored in two registers dx and ax. The
source operand to mul and div (see lines 23, 26, 29, 32, and 36) can be a memory location as
in most of these examples or any general-purpose register. Because the size of the source
operand determines the size of the result, you should also be aware that accidentally multi-
plying a word variable (as in line 26) when you think you are multiplying a byte variable will
cause dx to change.
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Multiplying and Dividing Signed Values
The signed multiply (imu1) and divide (idiv) instructions operate similarly and use the same
registers as mul and div. (The 7in the mnemonics stands for integer, indicating that signed

positive and negative values are allowed.) The only difference is in the range of values al-
lowed:

* Signed bytes range from —128 to +127
* Signed words range from 32,768 to 32,767

Try a few experiments by modifying Listing 4.4 to use imul in place of mul and idiv in place
of div. Enter various positive and negative test values, either by editing lines 11-14 or by
typing new values in Turbo Debugger’s watch window. As you will see from your tests, us-
ing signed multiplication and division requires some care. If you get stuck, the following
notes should help:

* Remember that negative results are in two’s complement notation.

* Any remainder (ah for 8-bit divisions and dx for word divisions) has the same sign as
the quotient.

* An interrupt 0 is generated, possibly halting the program, if you attempt to divide
by 0 or by any divisor that produces a result larger than the specified destination can

hold.

Converting Bytes, Words, and Doublewords

When using signed binary values, you often need to convert an 8-bit byte value to a 16-bit
word, perhaps to prepare for a multiplication or division. Because the value may be a nega-
tive number in two’s complement notation, this can be tricky as you must take care to pre-
serve the original value and its sign. To make this easy, use cbw (convert byte to word) and
cwd (convert word to doubleword). For an example of how these instructions work, insert
the following lines into Listing 4.4, replacing lines 22-36. Assemble and run under control
of Turbo Debugger, experimenting with different values for sourceByte and sourceword:
mov al, [sourceByte] ; Load source byte into al

cbw ; Extend sign to ax

mov ax, [sourceWord] ; Load source word into ax

cwd ; Extend sign to dx,ax

Try setting sourceByte to —3 decimal and executing the first two of these instructions. Be-
fore cbw, al equals hexadecimal FD. After, ax equals FFFD—the same value (-3 decimal)
expressed in 16 instead of 8 bits. The cbw instruction extends the 8-bit value (including the
sign) to the 16-bit destination. Similarly, cwd extends 16-bit values to 32-bit doublewords. -
Except for the number of bits involved, the two instructions perform the same job.

When using these instructions, you must observe a few restrictions. The source value for cbw
must be in al. The 16-bit result always appears in ax. The source value for cwd must be in ax.
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The 32-bit result always appears in dx and ax. Normally, you’ll use cow and cwd along with
imul and idiv when you have byte values to multiply or divide into words. But you’re cer-
tainly free to use these instructions in other ways, too.

Logic Instructions

Table 4.4 lists the 8086 logic instructions, organized in two subdivisions: Logical and Shift/
Rotate instructions. Logical instructions combine bytes and words with AND, OR, and other
logical operators. Shift/Rotate instructions shift and rotate bytes and words. These concepts
were introduced in Chapter 3.

The simplest logical instruction, not, toggles the bits in a byte or word from ones to zeros
and from zeros to ones. As you know, this is called the one’s complement. (Adding 1 to this
result forms the two’s complement, although it’s much easier to use neg for this purpose.)
One way to use not is to toggle true and false values. If a zero value represents false and a
nonzero value represents true, then the following instructions flop register dh from true to
false and then back to true:

mov dh, -1 ; Set dh to true (non zero)
not dh ; Set dh to "not true," i.e., false
not dh ; Set dh to "not false," i.e., true

Table 4.4. 8086 Logic Instructions.

Mnemonic/Operands Description
Logical Instructions

and destination, source Logical AND
not destination Logical NOT (one’s complement)
or destination, source Logical OR
test destination, source Test bits
xor destination, source Logical Exclusive OR

Shift/Rotate Instructions
rcl destination, count Rotate left through carry
rer destination, count Rotate right through carry
rol destination, count Rotate left
ror destination, count Rotate right
sar destination, count Shift arithmetic right
shl/sal destination, count Shift left/arithmetic left
shr destination, count Shift right
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Logical Combinations

Chapter 3 explains the ins and outs of the logical AND, OR, and XOR operations on binary
values. The 8086 instructions of the same names perform these logical jobs, combining byte
and word values according to the rules of the truth tables in Table 3.2. Listing 4.5 demon-
strates how the instructions work in assembly language. Assemble, link, and run with Turbo
Debugger using the commands:

tasm /zi andorxor
tlink /v andorxor
td andorxor

Listing 4.5. ANDORXOR.ASM.

1: STITLE "AND, OR, XOR demonstration -- by Tom Swan"

2:

3 IDEAL

4:

5: MODEL  small

6: STACK 256

7

8 DATASEG

9:

10: exCode DB 0

11: sourceWord Dw 0ABh ; 16-bit source value
12: wordMask DW OCFh ; 16-bit mask

13:

14: CODESEG

15:

16: Start:

17: mov ax, @data ; Initialize DS to address
18: mov ds, ax ; of data segment
19:
20: mov ax, [sourceWord] ; Set ax, bx, cx, and dx
21: mov bx, ax ;  to [sourceWord]
22: mov CcX, ax
23: mov dx, ax
24:
25: and ax, [wordMask] ; ax <- ax AND mask
26:
27: or bx, [wordMask] 5 bx <--bx OR mask
28:
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29: xor cx, [wordMask] ; €X <- cx XOR mask

30:

31: xor dx, dx ; dx <- 0000

32:

33: Exit:

34: mov ah, 04Ch ; DOS function: Exit program
35: mov al, [exCode] ; Return exit code value

36: int 21h ; Call DOS. Terminate program
37:

38: END Start ; End of program / entry point

Running the ANDORXOR Demo
With the assembled ANDORXOR program loaded into Turbo Debugger, follow these steps

to see the 8086 and, or, and xor instructions in action:

1. Open Turbo Debugger’s CPU window (Alt-V-C) and zoom to full screen (F5).

2. Watch (Cul-F7) variables sourceword and wordmMask to make it easy to enter new test
values. Press F6 if necessary to bring the watch window into view.

3. Press F8 to step through the program, stopping after executing the xor instruction
in line 31. Try to predict the results of the and, or, and xor instructions in lines
25-29, comparing your predictions with the register values ax for and, bx for or,
and cx for xor.

4. To experiment with new test values, press Ctrl-F2 to reset the program. Then, with
the watch window active, position the selector bar on the variable you want to
change and press Ctrl-C. Enter a new value and press Enter. Then repeat from
step 3.

The xor instruction in line 31 of Listing 4.5 sets register dx to 0, a frequently used trick in
8086 programming. Try line 31 with different test values in dx to prove that this line always
produces a zero result.

Testing 0001 0010 0011

ANDing two bits produces 1 only if both bits equal 1; therefore, the and instruction is often
used to test whether one or more bits equal 1 in a byte or word value. For example, if you
need to determine whether bit 2 is set, you can use a mask of 4:

0011 0111 (Value to test)
0000 0100 (AND mask)
. 0000 0100 (Result)

If the result equals 0, then bit 2 in the original value must be 0. If the result does not equal
0 as in this sample, then bit 2 of the original value must equal 1. Unfortunately, the and
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instruction destroys the original value in the process. To perform this operation while pre-
serving the test value—perhaps to test several single bits in succession without having to re-
load a register—use the test instruction instead of and:

mov ah, [testValue] ; Load [testValue] into ah
test ah, 04h ; Test if bit 2 is set

j————— take action here on bit 2

mov dh, 80h ; Load mask into dh
test ah, dh ; Test if masked bit is set

- take action here on bit 7
test ah, [testBit] ; Test bit with variable mask
S take action on the test bit

As these samples show, you can test literal (also called immediate) values such as 04h and
80h, values in registers, or values in memory. Test performs a logical and on the operands
but throws away the result, leaving the destination operand unchanged but setting the flags
exactly the same as and. After the test instruction, you would normally use a jump instruc-
tion (explained later) to take an appropriate action based on the test result. Note the similar-
ity between test and cmp, which performs a subtraction but throws out the result. The test
instruction performs an and but throws out the result.

Shifting Bits Around

Several shift-and-rotate instructions are available in the 8086 instruction set. As Table 4.4
shows, there are instructions to shift bits left and right and to rotate values through the carry
flag cf. The instructions further divide into four subgroups:

¢ Plain shifts (sh1, shr)

¢ Plain rotations (rol, ror)

* Rotations through cf (rcl, rer)

¢ Arithmetic shifts (sal, sar)
Each of these groups follows a different rule for shifting the bits in bytes and words left
or right. Despite their subtle differences, the instructions take the same number and types
of operands. Once you learn how to use one, you know how to use them all. Let’s use the

most common shift shl for demonstration. It specifies a register or memory location plus a
count, 7

shl ax, n ; Shift ax left by n = 1 bits
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Strangely enough, 7 must equal 1, or you’ll receive an error. (On later-model processors such
as the 80386, 7z may be an unsigned 8-bit constant.) The only legal form of this kind of shift
in 8086 assembly language is:

shl ax, 1 ; Shift ax left by 1 bit

To shift valnes hy maore than 1 bir ar a time on the 8086 requires two steps: first lcad a count

value into c1, and then specify c1 as the second operand to the shift instruction:

mov cl, 5 ; Load count into cl
shl ax, cl ; Shift ax left by cl bits

You must use c1 for this—no other register will work as the second operand. You can also
shift memory locations and 8-bit register halves. For example:

mov cl, 2 ; Load count into cl

shl bh, cl ; Shift bh left by cl bits

shl [seconds], 1 ; Shift [seconds] left by one bit
shl [minutes], cl ; Shift [minutes] left by cl bits

A few experiments and diagrams will clarify the differences between the various shift instruc-
tions. Use the following commands to assemble and run Listing 4.6 with Turbo Debugger:

tasm /zi shift
tlink /v shift

td shift

Listing 4.6. SHIFT.ASM.

1: %TITLE "Shift instruction demonstration -- by Tom Swan"
2:

3 IDEAL

4:

5: MODEL small

6: STACK 256

7:

8: DATASEG

9:

10: exCode DB [1]

11: operand DB 0AAh

12:

13: CODESEG

14:

156: Start:

16: mov ax, @data ; Initialize DS to address
17: mov ds, ax ;  of data segment

18:

continues
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Listing 4.6. continued

19: shl [operand], 1 ; Shift left

20: shr [operand], 1 ; Shift right

21: rol [operand], 1 ; Rotate left

22: ror [operand], 1 ; Rotate right

23: rcl [operand], 1 ; Rotate left through carry
24: rer [operand], 1 ; Rotate right through carry
25: sal [operand], 1 ; Shift arithmetic left

26: sar [operand], 1 ; Shift arithmetic right

27:

28: Exit

29: mov ah, 04Ch ; DOS function: Exit program
30: mov al, [exCode] ; Return exit code value

31: int 21h ; Call DOS. Terminate program
32:

33: END Start ; End of program / entry point
Running the SHIFT Demo

The following steps assume you have assembled SHIFT.ASM and loaded the program into
Turbo Debugger. These experiments will help clarify several tricky points about the 8086
shift instructions:

1. Listing 4.6 executes each of the seven 8086 shift instructions from Table 4.4. For
reasons I'll explain later, sh1 and sal are two names for the identical instruction;
therefore, although there are eight shift mnemonics, there are only seven actual shift
instructions.

2. Figure 4.5 illustrates how the plain shift instructions shl and shr operate. Step
through (F8) lines 19-20 to experiment with these. Each bit in the destination
operand shifts one or c1 positions to the left or right. For sh1, bit 7 (MSD) moves
into the carry flag (cf), while a 0 bit shifts in from the right. For shr, bit 0 (the
LSD) moves into the carry flag, while a 0 bit shifts in from the left.

3. Figure 4.6 shows how the rotation instructions rol and ror differ from plain shifts.
They do not shift a 0 bit in from the right or left; instead, the MSD and LSD values
rotate around to the opposite end. The other bits shift in the indicated direction.
With rol, the original MSD rotates around to become the new LSD. With ror, the
original LSD rotates around to the MSD position. These same bits also move into
the carry flag, just as they do with shl and shr. Step through lines 21-22 to experi-
106 ment with these instructions.
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4. Figure 4.7 illustrates the rotate-through carry instructions, rcl and rer. For both of
these instructions, the 1-bit carry flag serves as an extension to the register or
memory location being rotated. With rc1, the MSD shifts into the carry flag while
the old carry flag value moves into the LSD position. With rcr, the LSD shifts into
the carry flag while the old carry flag moves into the MSD position. The other bits
siifl in e indicated directon. Step through lines 23—24 to experiment with rcl
and rer.

5. Figure 4.8 illustrates the final shift instruction sar, which is a strange bird. sar
operates identically to shr except that the MSD retains its original value. Addition-
ally, the MSD is copied to the bit on the right. This is easier to see with a few
example binary values:

10001000
11000100
11100010
11110001
11111000

Figure 4.5. MSD LSD
The shl/sal and shr plain cf
shift instructions.

A
o

Shift Left (shi/sal)

cf

Y

0 —>|

Figure 4.6. MSD _ LSD
The rol andror rotate 1 1 1 1 I I
|

instructions. cf i A |

A

Rotate Left (rol)

MSD LSD

cf

Y

Rotate Right (ror) 107
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Figure 4.7.

LSD
[ I I I I [ I
through-carry instructions. cf \

The rcl and rer rotate-

A

MSD

Y
Y

Figure 4.8.

The sar instruction.

Y

cf

y

Shift Arithmetic Right (sar)

Starting with the second value, each successive line shows the result of applying sar to the
value above. The bits shift right just as with shr, but the MSD retains its value and is copied
to the right. As a result, sar is useful for dividing two’s complement negative numbers by
powers of 2. For example, expressed in hexadecimal, successive sar instructions produce this

sequence:

8000 -32768
c000 -16384
E000 -8192
Fooo -4096
F800 -2048
FFFE -2
FFFF -1

Additional sar instructions have no effect on hexadecimal FFFF—unlike idiv, which if used
to divide —1 by 2, gives 0, as you'd expect.

Unlike other shift-instruction pairs that match a right shift with a similar left shift, sar does
not have a left-handed partner. Instead, the sh1 instruction is given a second mnemonic sal,
making up for the deficiency. The reason that an arithmetic shift left is no different from a
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logical shift left is evident by examining the previous hexadecimal sequence in reverse. If we
work from the bottom up, these are the same values that applying sh1 would produce. (Try
converting the hex values to binary if you have trouble visualizing this.) In a nutshell, sar is
already balanced by sh1/sar, which can multiply negative two’s complement values by pow-
ers of 2, and there’s no need for a separate instruction.

Why Shift?
There are many reasons for programs to employ shift instructions, although two reasons stand
out:

* To move bits into specific positions

* To multiply and divide by powers of 2

Moving bits into specific positions and then using logical operators to pack the shifted result
into other values is a typical assembly language operation. For example, suppose dh initially
equals 3, d1 equals 5, and the program requires these two numbers to be packed into dh with
the 3 in the most significant bits and the 5 in the least significant portion of the byte. Here’s
how you might proceed:

mov dh, 3 ; dh <= 3

mov dl, 5 ; dl <- 5

mov cl, 4 ; Load count into cl

shl dh, cl ; Shift dh left four bits
or dh, dl ; dh <- dh OR dl

NOTE
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Shifty Multiplies and Divides

A useful technique to know is how to multiply and divide by powers of 2 using only shift
instructions. (You learned the basics of this in Chapter 3.) Most of the time, shifts are much
faster than mul, imul, div, and idiv instructions; therefore, you should always use shifts when
appropriate. To multiply a value by 8 (or 2°), for example, you need only to shift that value
left 3 times:

mov ax, 6 ; ax <- 6

mov cl, 3 ; Load count into cl

shl ax, cl ; ax <- ax * 8

Or to divide by 16 (2), shift right 4 times:
mov cl, 4 ; Load count into cl

shr ax, cl ; ax <- ax / 16

One problem with multiplication is the possibility of overflow, ignored in these samples. If
the carry flag equals 1 after a sh1 by 1, then the result is too large to fit in the destination
register or memory location. Overflows from shifting by more than 1 are difficult to detect.
Also, with division, any remainder is lost—dividing 2 into 3 by shifting 3 right equals 1, and
the remainder is nowhere to be found.

Flow-Control Instructions

Table 4.5 lists the 8086 flow-control or jump instructions, those that allow programs to change
the address of the machine code to be executed next. Without flow-control instructions, a
program would simply start at the top and run at breakneck speed toward the bottom, with
no stops, loops, or side trips along the way. With flow-control, programs can make deci-
sions, inspect flags, and take actions based on previous operations, bit tests, logical compari-
sons, and arithmetic. Also, flow-control instructions give programs the ability to repeat
instructions based on certain conditions, conserving memory by looping through the same
sections of code over and over.

Table 4.5. 8086 Flow-Control Instructions.

Mnemonic/Operands Description
Unconditional Transfer Instructions

call rtarget Call procedure

jmp target Jump unconditionally

ret value Return from procedure
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Mnemonic/Operands Description
retn value Return from near procedure
retf value Return from far procedure

Conditional Transfer Instructions

jaljnbe short-target
jae/jnb short-target
ib/inae short-target
jbe/jina short-target
jc short-target
jeljz short-target
jg/inle short-target
jge/jnl short-target
jl/jnge short-target
jle/ing short-target
jnc short-target
ine/jnz short-target
ino short-target
inp/ipo short-target
ins short-target

jo short-target
ip/ipe short-target
is short-target

joxz short-target

loop short-target

loope/loopz short-target

loopne/loopnz slaort—mrget

Jump if above/not below or equal
Jump if above or equal/not below
Jump if below/not above or equal
Jump if below or equal/not above
Jump if carry

Jump if equal/0

Jump if greater/not less or equal
Jump if greater or equal/not less
Jump if less/not greater or equal
Jump if less or equal/not greater
Jump if no carry

Jump if not equal/0

Jump if no overflow

Jump if NOT parity/parity odd
Jump if NOT sign

Jump if overflow

Jump if parity/parity even

Jump if sign

Loop Instructions

Jump if cx equals 0
Loop while cx <> 0
Loop while equal/0
Loop while not equal/not 0

Interrupt Control Instructions

int interrupt-type
into

iret

Interrupt
Interrupt on overflow

Interrupt return
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Although there may seem to be an overwhelming number of jump instructions in Table 4.5,
the forest has only a few easily identified species to memorize. This chapter concentrates on
the first two categories: conditional and unconditional jumps. Later chapters introduce loops
and the interrupt control instructions.

Unconditional Transfers

An unconditional transfer changes the address of the next instruction to be executed. It oper-
ates like an exit-only ramp on a highway—once you’re in the lane, you're going that-a-way,
whether you want to or not. And once the processor executes an unconditional transfer, the
destination instruction will be the next to execute without exception. Unconditional trans-
fers load new address values into the ip register and, in some cases, into the cs code-segment
register, too. Together, cs: ip specify the address of the next instruction to execute. Chang-
ing either or both registers changes the address of this instruction, altering the normal top-
to-bottom program flow.

~ Calling Subroutines

One of assembly language’s most useful devices is the subroutine, a collection of related in-
structions, usually performing one repetitive operation. A subroutine might display a char-
acter string on-screen, add a series of values, or initialize an output port. Some subroutines
live grandiose lives: making a chess move or logging on to a remote computer. Others play
more humble roles: displaying a single character or reading a key press from the keyboard.

Some programmers write long subroutines that perform many jobs on the theory that mul-
tiple subroutines can make a fast program run slowly. Don’t do this. You may gain a tiny bit
of speed by combining operations into a massive subroutine, but you are more likely to end
up with a buggy and hard-to-maintain program over which you will ponder your original
intentions while questioning the sanity of your decision to become a programmer.

The best subroutine does one and only one job. The best subroutine is as short as possible
and only as long as necessary. The best subroutine can be listed on one or two pages of print-
out paper. The best subroutine begins, not with code, but with comments describing the
subroutine’s purpose, results, input expected, and registers affected. The best subroutine can
be understood out of context by someone who has no idea what the entire program is doing.
In other words, the best subroutine is short and sweet and neat.

Listing 4.7 demonstrates how to write a subroutine in assembly language. Assemble, link,
and load into Turbo Debugger as you have the other examples in this chapter, using the
commands:

tasm /zi subdemo

tlink /v subdemo
td subdemo
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Listing 4.7. SUBDEMO.ASM.

1: %TITLE "Subroutine demonstration -- by Tom Swan"

2:

3: IDEAL

4:

5: MODEL  small

g: STACK 258

7:

8: DATASEG

9:

10: exCode DB 0

11:

12: CODESEG

13:

14: Start:

15: mov ax, @data ; Initialize DS to address
16: mov ds, ax ; of data segment

17:

18: mov al, 1 ; Load AL-DL with values

19: mov bl, 2 ;  to add

20: mov cl, 3

21: mov dl, 4

22: call AddRegisters ; AX <- AL+BL+CL+DL

23: call AddRegisters ; again

24: call AddRegisters H and again!

25:

26: Exit:

27: mov ah, 04Ch ; DOS function: Exit program
28: mov al, [exCode] ; Return exit code value

29: int 21h ; Call DOS. Terminate program
30:

31 j——mmmmmmm e - e
32: ; AddRegisters Sum al, bl, cl, and dl

33 o
34: ; Input

35: ; al, bl, cl, dl = Four 8-bit values to add

36: ; Output:

37: ; ax = al + bl + cl1 + dl

38: ; Registers:

39: ; ax, bh, ch, dh changed

40 e
41: PROC - AddRegisters

42: xor ah, ah ; Set ah equal to zero

43: xor bh, bh ; Set bh equal to zero

44: xor ch, ch ; Set ch equal to zero

45: xor dh, dh ; Set dh equal to zero

46: add ax, bx ; AX <- AX + BX

47: adc ax, cx ; AX <- AX + CX + CF

48: adc ax, dx ; AX <- AX + DX + CF

49: ret ; Return to caller

50: ENDP AddRegisters

51:

52: END Start ; End of program / entry point
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Running the SUBDEMO Program

The main portion of the SUBDEMO program is at lines 14-29. The subroutine is at lines
31-50. There are several new items in the code:

* The comments at lines 31-40 describe the subroutine’s name, purpose, input,
output, and affected registers. The dashed outlines are optional, serving mostly to
mark the beginnings of many subroutines in a long listing. For many programmers,
a personal subroutine header style is a valued trademark. If you want to use your
own format, that’s fine—just be sure to include at least the information shown here.

* The Proc and ENDP directives (lines 41, 50) mark the subroutine’s beginning and
ending.

* The ret instruction (line 49) must be included in every subroutine, but not
necessarily on the last line as in this example.

The Proc and ENDP directives are optional, but I strongly suggest you use them to mark the
beginnings and endings of all your subroutines. PROC and ENDP are directives to Turbo As-
sembler—they are not 8086 instructions. The PROC directive comes first, followed by the
subroutine’s name, which labels the address of the first instruction, here at line 42. The enop
directive comes last, optionally followed by the same label name as in the preceding PRoC.
Including the name here shows which subroutine is ending, but you can leave the name blank
if you prefer. In line 22, the main program calls the subroutine by using the call instruction
along with the label AddRegisters. Two important actions take place when call executes:

* The return address of the next instruction following the call is pushed onto the
stack.

* The address of the subroutine is inserted into register ip or, in some cases, into
register pair cs:ip. ‘

Before starting to run the called subroutine, the 8086 processor pushes the address of the
instruction following the call onto the stack. This address is called the return address be-
cause it marks the location to which the subroutine should eventually return control. In this
example, the first such return address is that of the instruction at line 23, another call. After
pushing this address, the processor jumps unconditionally to the called label, executing the
instruction at line 42. The program then continues running from that point, executing the
instructions in the subroutine.

The reason for pushing the return address onto the stack becomes clear when the subroutine’s
ret instruction at line 49 executes. Like call, ret causes two important actions to occur:

* The return address is popped from the stack into register ip (or into cs:ip).

* The program continues running with the instruction following the call that
previously activated the subroutine.

Figure 4.9 illustrates the action of the three call instructions in lines 22-24 of Listing 4.7.
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Each call causes the subroutine’s instructions to begin running until reaching the ret in-
struction, which returns control to the instruction immediately after the call. Different places
in the program can call the same subroutine. To view this action on your computer, load
Listing 4.7 into Turbo Debugger and follow these steps:

1. From the CPU window, press F8 six times, stopping just before you execute the
call instruction at line 22. Notice that registers al, b1, c1, and d1 are loaded with
values to pass to the subroutine for processing.

2. Instead of pressing F8 to execute the call instruction, press F7, the “trace into” key.
You should see the instruction marker jump to the xor instruction at line 42,
indicating that the subroutine code is ready to run. If you’re quick, you might also
see the return address pushed onto the stack (lower-right corner of the screen).

3. Press F7 repeatedly until you get to the ret instruction in line 49. Then press F7
again, executing ret and returning control to the instruction following the call in
line 22.

4. Press F7 to again call the same subroutine. And then press F7 repeatedly as you did
before, stopping after executing the ret instruction for a second time.

5. The instruction marker should now be poised on line 24, ready to execute the final
call. This time, instead of F7, press F8—the key you normally use to single-step
through programs. F8, the “step over” key, executes the subroutine at full speed,
stopping only after the subroutine returns rather than showing you the individual
instructions. Remember, to step through a subroutine, press F7 at the call instruc-
tion. To step over a subroutine, press F8. F8 is useful when you’re positive that a
subroutine is functioning correctly and you don’t want to waste time single-
stepping through the routine’s instructions.

Figure 4.9.
Subroutine calls and
returns.

<Various Instructions>

call Subroutine

call Subroutine

Y

call Subroutine —

Y

3 <Various Instructions>
S,

Y

A

<Various Instructions>

ret
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You should be able to understand how the AddRegisters subroutine works in Listing 4.7.
Read the comments if you need help—there aren’t any new instructions here. The xor in-
structions at lines 42—45 clear any extraneous values in the upper halves of the registers to be
added. Then add and adc add the four values in al, b1, c1, sand d1, placing the sum in ax.

The Long and Short of It

Although Table 4.5 lists three return instructions—ret, retf, and retn—there actually are
only two: retf and retn. The generic ret mnemonic allows Turbo Assembler to decide which
of the other two returns is appropriate for the memory model in use. To understand the
difference between retf and retn, you first have to understand the difference between an
intrasegment and intersegment subroutine call:

* An intrasegment subroutine call activates a subroutine in the same code segment as
the call instruction. In other words, upon transferring control to a new location,
segment register cs remains unchanged; therefore, it’s necessary to change only ip to
run the subroutine. An intrasegment return address is a 16-bit word.

* An intersegment subroutine call activates a subroutine in a different code segment
from the segment containing the call. In this case, both cs and ip must be changed
to the new location and the full 32-bit return address of the instruction following
the call is pushed onto the stack.

There is only one call mnemonic because the assembler knows whether a called subroutine
is near (in the same segment) or far (in a different segment) when it assembles the call. But
there are two return mnemonics—retn for near, intrasegment calls and retf for far,
intersegment calls—to allow you to write near and far subroutines as you choose, changing
the default instruction that Turbo Assembler generates for ret.

The best way to avoid confusion with these details is to let Turbo Assembler generate the
correct codes for you. (After all, that’s one reason for using an assembler in the first place.)
To define a near subroutine, use the NEAR operator in the PROC definition:

PROC SubName NEAR
yo———- insert subroutine instructions here
ret

ENDP SubName

To write an intersegment subroutine, change NEAR to FAR. Turbo Assembler will then assemble
far calls to this subroutine and replace the ret instruction with retf.
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Passing Values to and from Subroutines

From Listing 4.7, you can see that subroutine AddRegisters requires four 8-bit registers to
hold values to add. The subroutine returns the sum of this addition in ax. Passing values in
registers to subroutines is the most common method for giving subroutines data to process.
Two other methods are:

* Storing data in global variables

* Passing data on the stack

Subroutines may operate directly on variables declared in the data segment, for example, the
exCode byte at line 10. Usually, though, this is not a wise choice. Changing global variables
from inside subroutines can lead to confusion over which subroutine changed which values
when. In a complex program with hundreds or thousands of subroutines, many of which
call each other in various sequences, two subroutines that affect the same global values may
introduce a dangerous kind of bug called a side effect into your program. This problem de-
velops when a program (or another subroutine) calls a subroutine that changes a global value
currently used for other purposes.

Passing data on the stack is a good way to avoid side effects, especially when a subroutine
requires many parameters. You could modify Listing 4.7 to follow this scheme. Before each
call (lines 22-24), instead of loading registers al, b1, c1, and d1 with data to process, you
might use these instructions:

mov ax, 1 ; First element
push ax ; Push onto stack
mov ax, 2 ; Second element
push ax ; Push onto stack
mov ax, 3 ; Third element
push ax ; Push onto stack
mov ax, 4 ; Fourth element
push ax ; Push onto stack

call AddValues

Notice that you must load a register (ax here) and then push that register onto the stack—
you can’t push literal values directly onto the stack. In the subroutine, you may think the
first job is to pop the parameters from the stack. But this doesn’t work: V

PROC AddValues
pop dx ; ?727?
pop c¢x
pop bx
pop ax
: ; Subroutine instructions
ret

ENDP AddValues

The first pop accidentally removes the return address pushed by the call instruction, caus-
ing the subroutine to add the wrong values and to lose its ability to return to the calling place.
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The solution is to remove the return address, pop the parameters, and then replace the re-
turn address back onto the stack. This takes another register:

PROC AddValues

pop si ; Save return address in si
pop dx ; Pop 4 parameters

pop c¢x

pop bx

pop ax

push si ; Replace return address
: ; Subroutine instructions
ret

ENDP AddValues
This works, but as you can see, passing values on the stack is not as easy as passing values
directly in registers. It is possible to address parameters on the stack using a method em-
ployed in high-level languages, explained in Chapters 12 and 13. As you'll see, a special form
of the ret instruction can remove the pushed parameters before popping the return address,
eliminating some of the complexity of the method described here.

To Push or Not to Push

Listing 4.7’s comment at line 39 tells you that ax, bh, ch, sdh, and various flags are changed
by the subroutine. If the calling program uses any of these registers or flags for its own pur-
poses, you now have a conflict to resolve. There are two solutions:

* Save the original register values before the call

* Save the original register values inside the subroutine

Ask six programmers, and you shall receive six opinions about which of these two methods
for preserving registers is best. The first plan saves registers currently in use before calling
subroutines that change those registers. In Listing 4.7, for example, if the calling program is
using bh and ch, it might call the subroutine like this:

push bx ; Save bx on the stack

push c¢x ; Save cx, too

call AddRegisters ; Call subroutine

pop ©x ; Restore cx from the stack

pop bx ; Restore bx, too

You must push the entire register (ax, bx, etc.), even if you need to preserve only the 8-bit
halves (ah, b1, etc.). Pushing the registers onto the stack before the subroutine call saves the
register values temporarily on the stack, from where the same register values are later restored
after the subroutine finishes. Notice that the pop instructions must be in the reverse order
from the push instructions.

The second school of thought on register preservation makes each subroutine responsible
for saving and restoring the registers it changes—except, of course, for registers used to pass
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values back to callers. With this approach, you could revise AddRegisters (lines 41-49) as
follows:

PROC AddRegisters

pushf ; Save flags
push bx ; Save changed registers, too
push cx

push dx
H Subroutine instructions

pop dx

; Restore registers
pop cx
pop bx
popf ; Also restore flags
ret ; Return to caller

3
ENDP AddRegisters

The calling program now can freely call the subroutine, which guarantees that, if it uses any
registers for its own purposes, it will restore those registers to their original values before re-
turning. This example also saves the flags with pushf and then restores the flags with popf
just before the subroutine ends. This works because call, push, and ret (among others) do
not change the flag values. Even so, saving and restoring flags this way is probably unneces-
sary, and few programs actually do this. If you need to save flag values, however, this is how
to do it.

Which is the best method? Should the caller or the “callee” save registers affected by the
subroutine? In practice, I usually make the subroutine responsible for saving the registers it
changes—probably the preferred method of most assembly language programmers. This does
entail some wasted effort, however, as the subroutine might needlessly save the value of a
register that isn’t being used by the program that calls the subroutine. Even so, in a typical
program with dozens of subroutines, many of which call each other in unpredictable sequences,
it’s simply more practical, if not 100% efficient, to let the subroutines save and restore their
modified registers. Sometimes, however, and especially where top speed is needed, I'll ig-
nore this rule of thumb and make the caller responsible for saving needed values. If you do
this, be sure to carefully document which registers are changed inside the subroutine, or bugs
are almost sure to surface later.

Jumping Unconditionally
The 8086 has well over a dozen different jump instructions (see Table 4.5). One of these,

jmp, is an unconditional jump; the others are all conditional jumps. The difference between
the two jump types is important:

* An unconditional jump always causes the program to start running at a new address.

* A conditional jump causes the program to start running at a new address only if
certain conditions are satisfied. Otherwise, the program continues as though the
conditional jump instruction did not exist.
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The unconditional jmp works identically to call, except that the return address is not pushed
onto the stack. The jmp instruction takes a single parameter: the label of the location where
the program is to transfer control. For an example of how this works, modify Listing 4.7,
inserting the following instruction between lines 21 and 22:

jmp Exit

When you single-step the modified program in Turbo Debugger, you'll see the jmp instruc-
tion skip the three calls in lines 22-24, jumping directly to the mov instruction at the Exit
label. That’s all jmp does. Use the instruction anytime you want to jump from somewhere to
somewhere else. As with call, that somewhere else may be in the same code segment or in a
different segment. Turbo Assembler implements the correct jmp for you, making either an
intrasegment jump (to a different offset in the same code segment, changing only the ip reg-
ister) or an intersegment jump (to a different segment and offset, changing both cs and ip).
Most of the time, you’ll use jmp to jump to locations in the same code segment—almost
always the case with the small-memory model.

L

Jumping Conditionally

Table 4.5 lists the 8086’s 18 conditional jump instructions, many of which have two mne-
monics representing the same instruction, for example, je/jz and jg/jnle, makinga total of
30 mnemonics. This may seem to be an overwhelming number of conditional jumps to learn,
bug, like verb conjugations, the different forms are easy to remember if you separate the root
(always j for jump) from the endings (2, nbe, ¢, 2 etc.). Each of these endings represents a
unique condition, as listed in Table 4.6. Once you memorize these meanings, you’ll have
little trouble differentiating among the many kinds of conditional jumps. In the table, the
endings on the right are negations of the endings on the left. (Two conditional jump mne-
monics, jpe and jpo do not have negative counterparts.)

All conditional jumps require a target address—a label marking the location where you want
the program to continue running if the specified condition is met. For example, following a
comparison of two registers with cmp, you might use je (jump if equal) to transfer control to
a location if the values in the registers are equal. To demonstrate this, suppose you need a
subroutine to return cx equal to 1 if ax = bx or to 0 if ax <> bx. This does the job:
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PROC RegEqual

mov cx, 1 Preset cx to 0001

cmp ax, bx Does ax equal bx?

je Continue ; Jump if ax = bx

Xor cx, CX Else, set cx to 0000
Continue:

ret
FNDP Rnquua'l

Return to caller

Table 4.6. Conditional Jump Endings.

Ending Meaning Ending Meaning

a above na not above

ae above or equal nae not above or equal
b below nb not below

be below or equal nbe not below or equal
c carry nc not carry

e equal ne not equal

g greater ng not greater

ge greater or equal nge not greater or equal
l less nl not less

le less or equal nle not less or equal

o overflow no not overflow

p parity np not parity

pe parity even -

po parity odd -

s sign ns not sign

z Zero nz not zero

First, cx is preset to 1, the result that indicates ax equals bx—a fact the subroutine doesn’t
know just yet. Next, a cmp compares ax and bx. Remember that cmp performs a subtraction
(ax - bx) but throws away the result, setting the zero flag zf to 1 if the result is zero, or to 0
if the result is not zero. The je conditional jump tests the zero flag, transferring control to
the Continue label if the condition is met—namely that zf = 1, indicating that ax equals bx
and, therefore, preserving the preset value in cx. If the condition is not met (zf = 0), then
the xor instruction sets cx to 0. In either case, the ret instruction executes last, returning
control to the location after the call instruction that activated the subroutine.
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A downward jump as in this example—skipping an assignment to a register or, perhaps, a
call to another subroutine—is probably the most typical use for conditional jumps. But you
can also jump up to create loops in programs. For example, this fragment increments ax by
1, calling a subroutine Print (not shown here) until ax equals 10:

xor ax, ax ; Preset ax to 0000
Count:

inc ax ; ax <- ax + 1

call Print ; Call subroutine

cmp ax, 10 ; Is ax = 10?

-jne Count ; Jump if ax <> 10

; Program continues here

The loop extending from Count: to jne executes repeatedly as long as ax is not equal (#¢) to
10. As in the previous example, the cmp instruction sets the flags for the following condi-
tional jump to test. If the condition is not met—in other words, if ax does not yet equal
10—control transfers back up to Count, starting the loop over from the inc instruction. When
ax hits 10, the condition fails, and jne does not transfer control to the target label, continu-
ing instead with the next instruction below.

Double Jumping

As you can see from Table 4.5, many conditional jumps have two names for the same in-
struction. In all cases, you can use either mnemonic interchangeably. For example je and jz
assemble to the identical machine code.

Why, then, do you need the two different names? The answer is: Simply to make program-
ming easier. Literally translated, jz means “jump if the zero flag equals 1” while je translates
to “jump if equal.” The reason for the two different translations is more obvious when you
consider how this jump instruction is used. After a cmp operation, if the result is 0, then the
zero flag is set to 1. Knowing this, you could use jz to test the zero flag and jump to another
location.

To avoid forcing you to perform similar mental gymnastics at every step in a program, the
8086 instructions set provides alternate mnemonics that make more sense in given situa-
tions. After a cmp, you simply use je to test if the operands were equal. Or you can use jne to
test if the operands were not equal. In most cases, you don’t even have to be aware of which
flags are set and tested.

NOTE
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Using Conditional Jumps

Learning which conditional jump to use in a given situation takes practice. Reading assem-
bly language programs will help, and, as you read through this book, you'll see most of the
conditional jumps in action. Be sure to memorize the endings in Table 4.6. Also, under-
stand the difference between the two phrases, above-below and less-greater, as used in instruc-
tions such as jb and jge. Remember these two points:

* use above-below jumps such as ja and jbe with unsigned values

* use less-greater jumps such as jle and jg with signed values

Because of the wrap-around effect in arithmetic operations on binary values expressed within
fixed numbers of bits, the difference between comparisons of signed and unsigned values is
important. (Adding 1 to hexadecimal FFFF, for example, equals 0000 within 16 bits. In
decimal, this is equivalent to the strange but true equation, 65,535 + 1 = 0.) A few examples
help clarify this important detail. Suppose you subtract two registers and want to jump to a
certain location if the result is less than 0. This is the correct way to accomplish your goal:
sub ax, bx ; ax <- ax - bx

jl1  Negative ; Jump if ax < bx

If the subtraction of bx from ax results in a negative value, then the condition of j1 succeeds,
and control transfers to the address of the Negative label. Obviously, if ax is less than bx,
then the result of subtracting bx from ax will be negative. Replacing j1 with jb, through,
does not work:

sub ax, bx ; ax <- ax - bx

jb Negative ; ?77?

The above-below conditional jumps test the results of comparisons and other operations on
unsigned (positive) whole numbers. Even if bx is greater than ax, the result of subtracting
unsigned bx from ax is still an unsigned value. To test whether the unsigned ax is greater
than unsigned bx, you can write:

cmp ax, bx  ; Is unsigned ax > bx?

ja  Greater ; Jump if ax > bx

The ja (jump if above) instruction correctly tests the result of a comparison between two
unsigned values. Only if ax is greater than bx does the jump occur. If ax is below or equal to
bx, then the jump does not occur. On the other hand, if ax and bx were signed values, then
ja would not be appropriate here—instead, you’d probably want to use the signed condi-
tional jump, jg.
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Conditional Restrictions

All conditional jumps have one major restriction: They can transfer control only a very short
distance away—exactly 128 bytes back (to a lower address) or 127 bytes forward (to a higher
address) from the first byte of the instruction immediately followingthe jump. Counting the
2 bytes that each conditional jump occupies, you can jump a tiny bit farther ahead than back—
a small detail that rarely matters very much. Don’t worry. Turbo Assembler will tell you if
you try to jump too far.

The conditional jump target in the range of —128 to 127 bytes is called the displacement, a
value calculated for you by the assembler from the label you supply in your program’s text.
The displacement—not the actual address of the target label—is inserted into the assembled
machine code for this jump instruction. You never have to calculate the displacement manu-
ally, but you should be aware that because the target address is expressed as a displacement,
conditional jumps have the marvelous property of executing identically at any memory loca-
tion without change, leading to an interesting fact about 8086 programming:

NOTE

Although relocatable conditional jumps are usually advantageous, when you absolutely must
jump conditionally to a far-away location, the limited displacement range can be trouble-
some. To jump farther than about 127 bytes away requires a combination of conditional
and unconditional jumps. For example, suppose you want the program to jump to an Error
routine if dx equals 1, perhaps halting the program with a message. You could write:

cmp dx, 1 ; Is dx = 12
jne Continue ; Jump if dx <> 1
jmp Error ; Error, halt (dx = 1)

Continue:
: ; No error, continue program
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If dx equals 1, then the jne conditional fails, executing the unconditional jmp, which trans-
fers control to Error, presumably out of range of jne. When combining jumps this way, care-
fully think through the logic—it’s easy to pick the wrong conditional, a common source of
bugs. To avoid confusion, remember this hint:

You can see how this hint works by examining the code for the previous example if the Error
label is in range of the conditional jump. The much simpler program now becomes:

cmp dx, 1 ; Is dx =17

je Error ; Error, halt (dx = 1)

Obviously, this fragment jumps to Error if dx equals 1. To jump conditionally to an out-of-
range label requires the opposite conditional (jne instead of je) followed by the uncondi-
tional jmp to the target.

Learning More About Conditional Jumps

To learn more about how each conditional jump instruction operates, try running some of
the previous examples in Turbo Debugger. You should be able to do this on your own by
now. Just take one of the test programs you entered earlier and replace the guts with the
programming from this text—or, even better, make up your own examples. (You’'ll have to
supply labels for any subroutine calls and jumps.)

Chapter 16 lists each conditional jump in detail. Refer to this chapter to learn which flag
bits are affected by each instruction. Above all, think logically. After a comparison, question
your motives. Do you want to jump if the result is less or greater (signed), or if the result is
above or below (unsigned)? Keep your jumps to the minimum distances possible and avoid
using too many jumps. A typical mistake is to write code like this:

cmp bx, 5 ;5 Is bx = 52

jne Nots ; No, jump to Not5

mov ax, [count5] ; Yes, Load ax with [count5]

jmp Continue ; Jump to skip next instruction
Not5:

mov ax, [count] ; Load ax with [count]

Continue:
H Program continues here
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This fragment requires two labels and two jump instructions just to load ax with a different
value depending on whether bx equals 5. Try not to hop around so much. Preloading ax
with one of the two possible results eliminates a label and the unconditional jump:

mov ax, [count 5] ; Preset ax <- [count5]

cmp bx, 5 ; Is bx = 5?7

je  Continue ; Yes, ax is correct, so jump

mov ax, [count] ; No, load ax with other value
Continue:

: ; Program continues here
Not only is this shorter and easier to read, the code operates more quickly when bx does not
equal 5. (A jmp instruction as used here takes more processor time to execute than a mov be-
tween a register and memory location; therefore, the two movs are not as wasteful as you may
think on a casual reading.)

Processor Control Instructions

The set of 8086 instructions listed in Table 4.7 directly operate on the processor. In all cases
but one, these processor control instructions assemble to single-byte codes and require no
operands. Most of the instructions set or clear individual flag bits. Others synchronize the
processor with external events and, in one case, nop actually does nothing at all.

Table 4.7. 8086 Processor Control Instructions.

Mnemonic/Operands Description
Flag Instructions
cle Clear carry
cld Clear direction (auto-increment)
cli Clear interrupt-enable flag
cme Complement carry
stc Set carry
std Set direction (auto-decrement)
sti Set interrupt-enable flag

External Synchronization Instructions

esc immediate, source Escape to coprocessor

hlt Halt processor

lock ' Lock the bus

wait Wait for coprocessor
Miscellaneous

nop No operation
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Flag Operations

The first group of instructions in Table 4.7 sets and clears individual flag bits. A flag is set
when it equals 1. It’s clear when it equals 0. You can set and clear the carry flag (stc and
clc), the direction flag (std and c1d), and the interrupt flag (sti and c1i). You can also comple-
ment the carry flag with cmc, toggling c¢f from 1 to 0 or from 0 to 1.

The direction flag instructions are used exclusively with the string instructions in Table 4.8.
Chapter 5 explains how to use these instructions. The interrupt flag bit is normally set or
cleared inside interrupt service routines, as Chapter 10 explains. In general, sti allows most
kinds of interrupts to occur, while c1i prevents their occurrence.

One typical use for ste and clc is to set the carry flag to pass back a result from a subroutine.
For example, you could write a routine to test whether a certain bit is set in a value passed in
register d1:

PROC TestBit

test dl, 08h ; Test bit 3

jz  Exit ; Exit if bit 3 =0

stc ; Set carry flag
Exit:

ret ; Return to caller

ENDP TestBit

This procedure tests whether bit 3 equals 1, setting the carry flag to 1 only if it does. The
test instruction resets the carry flag regardless of the operand values, but it also sets the zero
flag to 1 only if the result is 0—indicating in this example that bit 3 in d1 is 0. In that event,
the jz instruction jumps directly to Exit, leaving cf = 0. Otherwise, the stc instruction sets
the carry flag, returning cf = 1. The main program might call the subroutine this way:
mov dl, [testvalue] ; Load test value into dl

call TestBit ; Call test subroutine

jc BitIsSet ; Jump if bit 3 = 1

: ; Program continues if bit 3 = 0

After calling TestBit, the jc instruction transfers control to BitIsSet only if cf = 1. Passing
the carry flag back from a subroutine this way is common in assembly language program-
ming. Also, you’ll often see routines that use cf to indicate whether an error occurred. For
example, to call a hypothetical routine DiskRead and check for an error, you might write
something like this to jump to your error handler if the subroutine fails:

call DiskRead ; Read the disk (subroutine not shown)
jnc Continue ; Continue program if no error (CF = 0)
jmp Error ; Else, jump to error handler (CF = 1)

Continue:
H ; Program continues here

127



128

| PART| @  PROGRAMMING WITH ASSEMBLY LANGUAGE

Getting in Synch

The 8086 external synchronization instructions are rare birds for which you’ll probably have
only occasional uses. H1t brings the processor to a screeching halt, continuing only after re-
ceiving one of two kinds of interrupts. (See Chapter 10 for more information about inter-
rupts.) The most typical use for hit is to force the processor to wait for a signal from an
external device, continuing only when the device gives the processor the green light to pro-
ceed.

wait and esc are used to interface the 8086 with a math coprocessor. Esc is the only proces-
sor control instruction that requires operands.

Lock causes the 8086 to assert (turn on) a signal that interface circuits can recognize as a notice
that the bus is in use. (The bus is the collection of lines to and from the processor, memory
and elsewhere, over which data bits travel their various routes.) Lock is not really a separate
instruction, but a prefix for another instruction, most often xchg. In a computer with mul-
tiple processors accessing the same memory locations, you can use lock to avoid the poten-
tial conflict of both processors writing to the same location simultaneously. If you need this
capability, refer to Intel’s documentation (see Bibliography). In most PC programming, Lock
isn’t needed.

Something for Nothing

Nop is perhaps the strangest of all 8086 instructions. From the instruction’s name, you may
think that nop doesn’t do anything. And so it doesn’t! Executing nop is like accelerating a car
in neutral—push the pedal to the floorboards and you're still going nowhere fast. But in the
sometimes wacky world of assembly language programming, even nothing has its purposes.
Nop comes in handy usually in two ways:

* To remove another instruction temporarily

* To save space for a forward jmp

Nop is most useful when you want to remove an instruction from a program without having
to reassemble and link. Poking a few nop machine codes (hexadecimal 90) over other instruc-
tions is a useful debugging trick. When trying to locate the source of a bug, try replacing a
suspect instruction or two with nops in the hope that this will reveal hidden mistakes. Often,
removing instructions is good way to learn what effects those instructions have. For example,
suppose you want to examine what happens in Listing 4.7 (SUBDEMO) if line 42 does not
zero ah. You could remove the instruction in the text, reassemble, link, and test. Or you can
just load the already assembled code into Turbo Debugger and follow these steps:

1. Open the CPU window and move the selector bar to the xor instruction at the
beginning of AddRegisters. Note the address to the left, probably something like
€s:001D.
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2. Press Tab to move the cursor to the memory dump area in the CPU window’s
bottom-left corner.

3. Press Cul-G to select the Goto command. Then enter the address from step 1, for
example, ¢s:001Dh. (Remember to add the 4 for hexadecimal!)

4. The cursor should now be positioned on the first of two bytes, 32 and E4, the
binary machine codes for the xor ah, ah instruction. Verify this by comparing the
bytes in the memory dump area with the disassembled code above.

5. Change the byte values by typing 09eh 090h and watch the disassembled code above
when you press Enter. The 2-byte xor instruction instantly changes to two single-
byte nops.

6. Use F7 to step through the modified program, observing what happens (or, rather,
doesn’t happen) to ah when the nops execute. When the subroutine ends (at the ret
instruction), ax no longer correctly holds the sum of the four registers. As this test
proves, zeroing ah is necessary to ensure an accurate result.

7. To reset the program, press Ctrl-F2 or replace the nops with their original machine
codes, 032h and 0E4h.

Saving Jump Space

Turbo Assembler will occasionally insert a nop to reserve space for a jmp instruction. Eatlier,
you learned that jmp transfers control unconditionally to a target address. But, depending on
how far away you are jumping, Turbo Assembler generates one of several machine code forms
for jmp, adding from 2 to 5 bytes to the assembled program. Normally, you can ignore this
fact and just let the assembler choose the most efficient form, which it will always do. Even
s0, because Turbo Assembler is a one-pass assembler—reading your source code only one
time to generate object code—a problem develops with instruction sequences such as:

or ax, bx ; Does ax = bx?

jz  Skip ; Jump if yes

jmp Elsewhere ; Else jump to Elsewhere
Skip:

mov ax, 1 ; Set ax to 1 if ax = bx

jmp Continue ; Skip next command
Elsewhere:

mov ax, 2 ; Set ax to 2 if ax <> bx

Continue:
H ; Program continues
Although this sequence has no practical purpose, it demonstrates a typical problem. When
Turbo Assembler reaches the first jmp instruction—which in this case jumps forward to a
higher memory location—the assembler doesn’t yet know how far it is from the jmp to the
target address at Elsewhere. Always the pessimist, Turbo Assembler assumes the worst—that
Elsewhere will be greater than 127 bytes ahead. Therefore, the assembler reserves space for a
3-byte jmp, which has a reach of about +/~32K. Upon reaching E1sewhere, Turbo Assembler
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realizes its error—E1sewhere is close enough for the shorter 2-byte jmp to reach, within 128
bytes back or 127 bytes forward. Because the 2-byte jmp operates more quickly than the
3-byte version, Turbo Assembler goes back and changes the jmp to the 2-byte model. To
avoid having to reassemble the other instructions between this jmp and Elsewhere, the as-
sembler changes the now extra third byte to a nop, then continues on with the rest of the
program. If you assemble this short example, you'll see code that looks something like this:
cs:0000 EB 04 jmp Elsewhere

cs:0002 90 nop

The inserted nop does nothing but occupy space. Because of the preceding unconditional
jmp, the nop never even executes. To get rid of the do-nothing nop, saving 1 byte, place a
SHORT directive before the jmp target address:

jmp  SHORT Elsewhere

This forces Turbo Assembler to use the 2-byte jmp version. Of course, if E1sewhere later turns
out to be farther than 127 bytes away, you’ll receive an error and will have to remove the
SHORT directive.

Using the JUMPS Directive

If you insert a JUMPS directive on a line somewhere early in your program, Turbo Assembler
allows you to use conditional jump instructions to locations that are farther away than the
normal restriction of about 127 bytes. There’s a catch with this directive, however. Suppose
you write:

JUMPS

or ax, ax ; Is ax = 07

je There ; Jump if ax = @

mov ax, 5 ; Else set ax to 5
There:

With the Jumps directive in effect, when Turbo Assembler assembles the je instruction, it
actually inserts:

je There
nop
nop
nop
There:

The three nops reserve space for alternate code that the assembler inserts if the target label
There is farther away than je can normally reach:
jne Temp

jmp There
Temp:



PROGRAMMING IN ASSEMBLY LANGUAGE

Instead of assembling the je that you wrote, Turbo Assembler inserts the opposite instruc-
tion jne followed by an unconditional jmp—exactly the same as explained earlier. The Temp
label is just for illustration—a label isn’t actually inserted into the program. The problem
with JuMPS is those extra nops, which are inserted whether or not they are needed. For this
reason, I prefer to write double jumps explicitly. The yumps directive does come in handy as

a temporary tool, though Afrer finishing o program design, you can convert the long jumps

Y

to explicit double jump instructions and remove the JuMPs directive from the final assembly.
This will eliminate the wasteful nops.

String Instructions

The 8086 string instructions in Table 4.8 are powerful little engines for processing all kinds
of data—not just character strings. Remember that strings in assembly language are sequences
of bytes that may or may not represent ASCII characters. Despite their suggestive names, the
8086 string instructions don’t care what the bytes mean. String instructions divide into three
groups:

* String transfer instructions

* String inspection instructions

* Repeat prefix instructions

Table 4.8. 8086 String Instructions.

Mnemonic/Operands Description

String Transfer Instructions

lods source Load string bytes or words

lodsb Load string bytes

lodsw Load string words

movs destination, source Move string bytes or words
movsb Move string bytes

movsw Move string words

stos destination Store string bytes or words

stosb - Store string bytes

stosw Store string words

String Inspection Instructions
cnps destination, source Compare string bytes or words
cmpsb Compatre string bytes

continues
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Table 4.8. continued

Mnemonic/Operands Description

String Inspection Instructions
cmpsw Compare string words
scas destination Scan string bytes or words
scasb Scan string bytes
scasw Scan string words

Repeat Prefix Instructions

rep Repeat
repe/repz Repeat while equal/0
repne/repnz Repeat while not equal/0

String transfer instructions move bytes and words from memory to a register, from a register
to memory, or directly from memory to memory. String inspection instructions let you com-
pare and scan bytes and words, searching for specific values. Repeat prefix instructions can be
attached as prefaces to other string instructions, creating single commands that repeat a
number of times or cycle until a specified condition is met. A prefixed string instruction can
quickly fill thousands of bytes with values, copy strings from one location to another, and
search large memory blocks for values.

Despite the many mnemonics in Table 4.8, there are actually only five string instructions:
lods, stos, movs, scas, and cmps. The others are shorthand mnemonics for these same com-
mands. As you can see in the table, the shorthand names such as 1odsb and cmpsw require no
operands and, therefore, are easier to use. Similarly, there are only two repeat prefixes: rep is
identical to repe and repz. And repne and repnz represent the same prefix. The interchange-
able names are provided merely to help you document exactly what your program is doing.

String Index Registers

All string instructions use specific registers to perform their duties. Unlike other instructions
that let you decide which registers to use, string instructions are finicky, always operating
with the same combination of registers ds:si and es:di—the source and destination string
index registers, which specify offsets in the data and extra segments.
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The five string instructions load, store, move, compare, and scan bytes and words. While
performing these jobs, each string instruction also increases or decreases the registers they
use. Byte operations subtract or add | to si or di (or both); word operations add or subtract
2. For example, if si equals 0010 hexadecimal, then after a lodsw operation, si would be
advanced to 0012 (or retarded to 000E, depending on the direction of the string operation).
Because of this effect on the index registers, by adding a repeat prefix to a string instruction,
programs can process whole sequences of data with a single command.

The direction flag df specifies whether string instructions should increase or decrease si and
di. If df = 1, then the indexes are decreased toward lower addresses. If df = o, then the
indexes are increased toward higher addresses. Use c1d to clear df, automatically incrementing
siand di toward higher addresses. Use std to set df, automatically decreasing si and di toward
lower addresses.

Loading Strings

The 1ods instruction loads data addressed by ds:si or es:si into al for byte operations or
onto ax for word operations. After this, si is increased or decreased, depending on the set-
ting of the direction flag df. Byte operations adjust si by 1; word operations, by 2. With this
instruction, you can construct a simple loop to search for a byte value:

cld ; Auto-increment si
Repeat:
lods [byte ptr ds:si] ; al <- [ds:si]; si <- si + 1
or al, al ; Is al = 0?
jne Repeat ; Repeat if al <> 0
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First, c1d clears df, preparing to auto-increment si after each lods, which copies into al the
byte addressed by ds:si. Then si is advanced to address the next byte in memory. After loading
each byte, an or instruction tests if al equals 0. If not, the jne jumps back to label Repeat :,
thus repeating this sequence until finding a zero byte. (If no zero byte exists in the segment
at ds, by the way, this loop will repeat “forever.” Take care that you don’t introduce a bug
into your programs with loops such as this.)

NOTE

Using Shorthand String Mnemonics

Because 1ods normally operates on the value addressed by ds:si, Turbo Assembler gives you
two shorthand mnemonics that do not require operands, lodsb and lodsw. The s in this
and other shorthand string mnemonics stands for string byte. The sw stands for string word.
Table 4.9 lists the equivalent longhand forms for all the shorthand mnemonics.

Table 4.9. String Instruction Shorthand.

Shorthand Equivalent String Instruction

lodsb lods [byte ptr ds:si]

lodsw lods [word ptr ds:si]

stosb stos [byte ptr es:di]

StOSW stos [word ptr es:di]

movsb movs [byte ptr es:di], [byte ptr ds:si]
MOoVsSW movs [word ptr es:di], [word ptr ds:si]
scasb scas [byte ptr es:di]

SCasw scas [word ptr es:di]

cmpsb cmps [byte ptr ds:si], [byte ptr es:di]
cmpsw cmps [word ptr ds:si], [word ptr es:di]
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Addressing String Labels

Turbo Assembler allows you to specify data labels in the long forms of the string instructions
in Table 4.9. For example, to load into al the first byte of a string s1, you can write:

DATASEG
string db 'This is a string', 0

CODESEG
mov si, offset string ; Assign address of string to si
lods [string] ; Get first byte of string

But the instruction lods [string] does not assemble as you may think. Instead, Turbo As-
sembler converts this instruction to lodsb, assuming that you previously loaded the offset
address of string into si. Remember that all string instructions require specific registers to
address the data on which the instructions operate. Even when you specify a variable by name
as in this example, you still have to load si or di with the appropriate addresses for the in-
struction. Specifying a variable by name merely lets Turbo Assembler verify that this vari-
able is probably addressable by the appropriate registers. The assembler doesn’t initialize the
index registers for you. '

Storing Data to Strings

stos and the shorthand mnemonics stosb and stosw store a byte in al or a word in ax to the
location addressed by es:di. As with lods, stos increments or decrements di by 1 or 2, de-
pending on the setting of df and whether the data is composed of bytes or words. Combin-
ing lods and stos in a loop can transfer strings from one location to another:

cld ; Auto-increment si and di
Repeat:

lodsw ; ax <- [ds:si]; si <- si + 2

cmp ax, OFFFFh ; Is ax = OFFFFh?

je Exit ; Jump if ax = @FFFFh

stosw ; [es:di[ <- ax; di <- di + 2

jmp Repeat ; Repeat until done

Exit:

In this example, first the c1d instruction prepares to auto-increment si and di. Then, lodsw
loads into ax the word addressed ds: si, also incrementing si by two. If ax equals the value
OFFFFh—presumably placed into memory by another routine as an end-of-data marker—
the je instruction exits the loop. Otherwise, stosw stores the word in ax to the location
addressed by es:di, also incrementing di by 2. The final jmp repeats these actions until de-
tecting the OFFFFh marker. Once again, the danger here is that OFFFFh does not exist in
the data segment. As you'll learn later, there are other ways to code this operation that elimi-
nate this problem.
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Moving Strings

Use movs or the shorthand forms movsb and movsw to move bytes and words between two
memory locations. Because these instructions do not require an intermediate register to hold
data on its way from and to memory, they are the fastest tools available by moving data blocks.
As with other string instructions, you can use the longhand form along with operands, or, as
most programmers prefer, you can use the simpler shorthand mnemonics.

Movsb moves 1 byte from the location addressed by ds:si or es:si to the location addressed
by es:di, incrementing or decrementing both index registers by 1. Movsw moves a word be-
tween the two locations, incrementing or decrementing the registers by 2. Although you can
use these instructions alone to transfer one byte or word—or construct a loop to transfer
many successive values—you’ll most often add a repeat prefix as in this sample:

cld ; Auto-increment si, di
mov cx, 100 ; Assign count to cx
rep movsb ; Move 100 bytes

These three little instructions move 100 bytes of memory starting at ds:si to the location
starting at es: di. The repeat prefix rep repeatedly executes movsb, subtracting 1 from cx after
each repetition, and ending when cx equals 0. You must use cx for this purpose. Without a
repeat prefix, you'd have to write the instructions this way:

cld ; Auto-increment si, di
mov cx, 100 ; Assign count to cx
Repeat:
movsb ; [es:di] <- [ds:si]; advance si & di
dec cx ; Count number of Loops done
jnz Repeat ; Repeat Loop if cx <> 0

But, with a repeat prefix, there’s no need to go to all this trouble; furthermore, handling the
counting chores yourself results in slower code.

NOTE

Filling Memory

The stos instruction makes filling memory with a byte or word value easy. Be careful with
this one. It can erase an entire memory segment in a flash. For example, this stores bytes
equal to 0 in a 512-byte block of memory, starting at the label Buffer:
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mov ax, SEG Buffer
mov es, ax

mov di, OFFSET Buffer
xor al, al

mov cx, 512

cld

rep stosb

Assign segment address of Buffer
to extra segment register es

Assign offset address to di

Assign value to store in memory

Assign count to cx

Prepare to auto-increment di

Set 512 bytes to zeros

First es is assigned the segment address of the variable to be erased to all zeros. The SEG op-
erator returns the segment portion of a variable, here Buffer. This value is first assigned to
ax, which is then assigned to es. (The two steps are necessary because of the restriction against
moving literal values directly into segment registers such as es.) After this, di is initialized to
address the beginning of Buffer, al is set to the value to store in memory, and the number of
bytes is loaded into cx. Finally, after c1d sets df to 1, preparing to auto-increment di, the
repeated stosb instruction fills Buf fer with zeros. By changing only the value assigned to cx,
this same sequence can fill up to 65,535 bytes. (Set cx to OFFFFh to repeat a string instruc-
tion this maximum number of times. To fill 65,536 bytes, add an additional stosb instruc-
tion after rep stosb.)

Scanning Strings

Use scas to scan strings for specific values. As with other string instructions, you can use the
longhand or shorthand forms scasb and scasw. Each repetition of scas compares the byte
value in al or the word value in ax with the data addressed by es:di. Register di is then
incremented or decremented by 1 or 2.

Because you can compare single bytes and words with a cmp instruction, the scan instruc-
tions are almost always prefaced with repe (repeat while equal) or repne (repeat while not
equal)—or with the mnemonic aliases repz (repeat while zf = 1) and repnz (repeat while
zf = 0). For each repetition, these prefixes decrement cx by 1, ending if cx becomes 0. (Re-
member that repe, repz, and rep are the same instruction.) When these prefixes are used
with scas or cmps (or any of their shorthand equivalents), repetitions also stop when the zero
flag zf indicates the failure of the scan or the compare. For example, a simple sequence scans
250 bytes looking for a 0:
cld

mov. di, OFFSET Start

mov cx, 250

xor al, al

repne scasb
je  MatchFound

Auto-increment di

Address starting Location with es:di
Set cx to maximum count

Set al = @0, the search value

Scan memory for a match with al

Jump if a @ was found at es:di - 1

After clearing df with cld, causing scasb to auto-increment di, which is initialized to ad-
dress the label Start, cx is loaded with the maximum number of bytes to scan, 250. Then, a1
(holding the search value) is zeroed with an xor instruction. The repne scasb instruction
scans up to 250 bytes decrementing cx after each repetition, and cycling while cx is not 0
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and while zf indicates that a match has 7otbeen found. (You would use repe or repz to cycle
until a mismatch is found.) After the repeated scan, an original je jumps to MatchFound (not
shown) only if the search byte was located. The address of that byte is at es:di-1.

When Zero Means Zero

If cx equals 0, repeated string instructions cycle 65,536 times. But when you want 0 to mean
“perform this operation zero times,” you must test whether cx is 0 before starting the re-
peated string instruction. You could do this with an or followed by a jump:

or CX, CX ; Does cx = 07
jz Skip ; Jump if yes (cx = 0)
rep stosb ; Else repeat stosb

Skip:

This sequence jumps to label skip if cx is 0. Only if cx is not 0 does the rep stosb instruction
execute. This prevents accidentally repeating the string operation 65,536 times—unless, of
course, that’s what you want to do. Instead of this sequence, however, you can use a special
conditional jump instruction provided for this purpose.

jcxz  Skip ; Jump if cx = 0

rep stosb ; Else repeat stosb
Skip:
The jcxz instruction performs the same function as the or and jz instructions in the previ-
ous example. :

Comparing Strings

To compare two strings, use cmps or the shorthand forms cmpsb and cmpsw. The instructions
compare two bytes or words at es:di and ds:si or es:si. As Table 4.9 shows, the operands
are reversed from the similar operands for movs—an important distinction to keep in mind.
The cmps comparison subtracts the byte or word at es:di from the byte or word at ds:si or
es:si, saving the flags of this subtraction but not the result—similar to the way cmp works.
After the comparison, both si and di are incremented or decremented by 1 for byte com-
pares and by 2 for word compares. These instructions are almost always prefaced with a re-
peat prefix as in this sample:

cld
mov si, OFFSET si

; Auto-increment si, di
; Address first string with ds:si
mov di, OFFSET s2 ; Address second string with es:di
mov cx, strlength ; Assign string length to cx
repe cmpsb ; Compare the two strings
H
H
3

jb  Less Jump is si1 < s2
ja Greater Jump if s1 > s2
je Equal Jump if s1 = s2

This sequence assumes that string s1 is stored in the segment addressed by ds and that string
s2 is stored in the segment addressed by es. If ds = es, then the two strings would have to be
stored in the same segment. After the initializing steps—clearing df with c1d, assigning the
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string addressed to si and di, and setting cx to the maximum number of bytes to compare—
the repe cmpsb repeated string instruction compares the two strings, ending on the first mis-
matched byte found. (You could also use repne here to compare two strings, ending on the
first match found.) After the repeated instruction, the flags indicate the final result, which
you can test by any of the three conditional jumps as shown here.

Summary

Segments divide the 8086’s large address space into manageable 64K-maximum size chunks,
allowing programs to address memory using efficient 16-bit pointers. Segment registers point
to the start of segments in memory. Segments can overlap and can begin at any 16-byte para-
graph boundary.

There are five categories of registers in the 8086 design: the general-purpose registers (ax,
bx, cx, dx), the pointer and index registers (sp, bp, si, di), the segment registers (cs, ds, ss,
es), the instruction pointer (ip), and the flags (of, df, if, tf, sf, zf, af, pf, cf). Some regis-
ters have specific purposes; others are free to be used however you wish.

Six main groups divide the 8086 instruction set into data transfer instructions, arithmetic
instructions, logic instructions, flow-control instructions, processor control instructions, and
string instructions. Many instructions require one or two operands, usually labeled the des-
tination and the source. Other instructions require no operands.

Stacks in memory resemble a stack of dishes where the last dish placed onto the stack is the

first to be removed. This is known as a LIFO (Last-In-First-Out) structure. In the 8086 the
ss:sp register pair locates the base and top of stack in memory. Programs use the sTACK di-
rective to allocate stack space at run time.

Subroutines help divide a large program into modules. Programs run subroutines with call
instructions. Subroutines must end with a ret instruction to return to the instruction fol-
lowing the call. By using the PROC and ENDP directives around subroutine code, Turbo As-
sembler automatically assembles the correct calls and returns for intrasegment (same cs) and
intersegment (different cs) subroutines.
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Jump instructions change program flow, altering which instruction is to execute next. There
are two kinds of jump instructions, conditional and unconditional. Conditional jump target
addresses are limited to about 127 bytes away. The unconditional jmp instruction has no
range limit.

Exercises

4.1. What are the minimum and maximum sizes of a memory segment for the 8086
processor?

4.2. List several ways to set register ax equal to 0.

4.3. Using push and pop, how can you duplicate the effect of the instruction mov
ax,dx?

4.4. Describe the difference between neg and not.

4.5. What combination of instructions can rotate a 16-bit register enough times to
restore completely the original value in that register? Which shift or rotate
instructions will also preserve the value of the carry flag?

4.6. Write a routine to unpack two 4-bit values from an 8-bit byte into two 8-bit
bytes. For example, if the original value equals SF hexadecimal, then the two
results should equal 05 and OF. Assume that the original value is in register ah
and that the result is to be stored in dh and d1.

4.7. How might you use a shift instruction to test whether a certain bit, say number
5, is set in register dh?

4.8. Suppose that the label Target is farther away than the conditional jump j1 can
reach. How can you recode the following instruction to avoid an error from
Turbo Assembler?
jl Target ; Jump to Target if Less

4.9. Without using neg or not, write instructions to form the one’s and two’s comple-
ments of values in bx.

4.10. Write your own nop instruction. No registers or flags should change by executing
your custom nop. Can you find more than one way to do nothing? (Your answer
can take more than a single byte of assembled code.)

4.11. What do string repeat prefixes do?

4.12. What instructions would you use to scan 65,536 bytes of memory?
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Projects

4.1. Write a subroutine to unpack any number of bits from a word, returning those
bits in the lower portion of a register. In other words, the caller to this subroutine
should be able to pass a value containing bits, say, in positions 4, 5, and 6. The
subroutine should return those bits in positions 0, 1, and 2, setting all other bits
to 0.

4.2. Write a subroutine to do the reverse of Project 4.1. That is, the routine should be
able to pack any number of bits into a certain position in a word, without
disturbing other bits already there.

4.3. Create templates on disk for your future programs and procedures. Decide what
information you will place in your subroutine headers.

4.4. Write a subroutine to scan memory for a specific byte value, stopping if that byte
is not found within a certain number of memory locations. Use string instruc-
tions from Table 4.8.

4.5. Write subroutines to copy blocks of memory from one location to another,
correctly handling variables in the same or in different segments. Use string
instructions in your answer.

4.6. Write a routine to change all the characters in an ASCII string to uppercase or
lowercase. Write your answer with and without string instructions.
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Addressing Data in Memory

Of all the subjects in 8086 assembly language programming, the many ways of addressing
data in memory are probably some of the most difficult to learn. But you’ll avoid a lot of
head scratching if you remember that all data references take one of these three forms:

* Immediate data references

* Register data references

* Memory data references

Immediate data are values stored directly in the machine code of an instruction. For example,
when you write:

mov  ax; 5 ; ax <- 5

the assembler generates a machine-code variant of the mov instruction that loads the immed;-
atevalue 5 into ax. The 5 is stored directly in the mov instruction’s assembled machine code.
In most cases, immediate data is the only operand or is the second of two operands. (An
exception is out, which allows immediate data as the first of two operands.) You can never
change the value of immediate data when the program runs.

Register data refers to data held in processor registers. You've already seen many examples of
this kind of data reference. The machine code generated by the assembler for register data in-
cludes appropriate values to cause the instruction to operate on the specified registers, as in:

add ax, bx ; ax <- ax + bx

Memory datais the third kind of data reference, of which there are several variations. To avoid
confusion when learning these variants, remember that the goal is to help the processor cal-
culate a 16-bit, unsigned value called the effective address, or EA. The EA represents an offset
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starting from the base of a segment addressed by one of the four segment registers: cs, ds,
es, and ss. As you recall from Chapter 4, “Programming in Assembly Language,” a segment
register and offset form a 32-bit logical address, which the 8086 further translates into a physi-
cal 20-bit address, uniquely locating any byte in memory.

You never have to be concerned about calculating an EA or forming the physical 20-bit ad-
dress—these are the processor’s jobs. Your responsibility is to give the processor the data
necessary to calculate the EA, locating your variables in memory. To do this, you can use

one of seven memory modes, as described next.

Memory-Addressing Modes

Table 5.1 lists the seven memory-addressing modes available in 8086 programming. Except
for string and I/O port addressing, which have special requirements, these addressing modes
can be used in all instructions that allow referencing data in memory. For instance, although
the mov instruction is used in the examples in Table 5.1, you can use similar references with
other instructions such as add, inc, and xor. The following sections describe the first five
addressing modes, leaving string and I/O port addressing for later.

Table 5.1. 8086 Addressing Modes.

Addressing Mode Example

Direct mov  ax, [count]
Register-indirect mov  ax, [bx]

Base mov  ax, [record + bp]

Indexed mov  ax, [array + si]
Base-indexed mov  ax, [recordArray + bx + si]
String lodsw

I/0 Port in  ax, dx
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Direct Addresses

A direct address is the literal offset address of a variable in memory, relative to any segment base.
For example, to refer to variables in the data segment, you can write instructions such as:

inc [MyMoney] ; Add 1 to value of [MyMoney]

The notation [MyMoney] is assembled to the offset address where the variable MyMoney is stored.
All such direct address references are permanently fixed in the assembled code and can’t be
changed by a running program. (Self-modifying programs can change a direct address refer-
ence, but, for the reasons already described, this is a poor and unreliable technique.)

Overrides

Direct address references are normally relative to the segment addressed by ds. To change
this, you can specify a segment override as in:

mov ch, [es:OverByte]

This instruction loads a byte at the label overByte stored in the segment addressed by es.
The override instruction es: is required to defeat the processor’s normal use of the default
segment base in ds. You can apply similar overrides to access data in other segments, too.
Here are three more examples:

mov  dh, [cs:CodeBytel] ; dh <- byte in code segment
mov  dh, [ss:StackByte] ; dh <- byte in stack segment
mov  dh, [ds:DataByte] ; dh <- byte in data segment ???

The first line loads into dh a byte located in the code segment. Because most variables will be
in a data segment, referring to data stored in the code segment is only occasionally useful.
The second line loads a byte located in the stack segment. While permissible, this is rarely
done in practice. The third line unnecessarily specifies ds—direct data references normally
refer to the segment addressed by ds. Here are a few additional hints that will help you to use
overrides correctly:
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* Even though you specify an override as part of the data reference, an override
actually occupies a byte of machine code and is inserted just before the affected
instruction. Overrides are instruction prefixes that change the behavior of the next
instruction to be executed.

¢ The effect of an override lasts for only one instruction. You must use an override in
every iefeieiice 10 daia in « segment other than the defauit segment for this instruction.

* In Turbo Assembler’s Ideal mode, the entire address reference including the segment
override must be in brackets. Although MASM mode allows a more free-form style,
Ideal mode’s clearer syntax requirements are fully compatible with MASM mode.

* It is your responsibility to ensure that variables are actually in the segments you
specify and that segment registers es and ds are initialized to address those segments.
Stack ss and code segment cs registers do not require initialization.

Register-Indirect Addresses

Instead of referring to variables in memory by name, you can use one of three registers as a
pointer to data in memory: bx, si, and di. Because a program can modify register values to
address different memory locations, register-indirect addressing allows one instruction to op-
erate on multiple variables. After loading an offset address into an appropriate register, you
can refer to the data stored in memory with instructions such as:

mov cx, [WORD bx] ; Copy word at [bx] into cx
dec [BYTE si] ; Decrement byte at [si] -

The WORD and BYTE operators are required when Turbo Assembler is unable to determine
whether the register addresses a word or a byte in memory. In the first line here, data ad-
dressed by bx is moved into the 16-bit register cx; therefore, the WORD operator is not needed
because the assembler knows the size of the data reference from the context of the instruc-
tion. Specifying the operator as in this sample does no harm, though. In the second line, the
BYTE operator must be included because the assembler has no other way of knowing whether
dec is to decrement a byte or a word.

147



148

L PART| @  PROGRAMMING WITH ASSEMBLY LANGUAGE

Register-indirect addressing defaults to the segment addressed by ds. As with direct address-
ing, you can use overrides to change this default to any of the other three segments. A few
examples make this clear:

add [WORD es:bx], 3 ; Add 3 to word at es:bx
dec [BYTE ss:si] ; Decrement the byte at ss:si
mov  cx, [cs:di] ; Load a word from code segment

As explained earlier, when using overrides this way, you must be sure that the data you are
addressing actually exists in the segments you specify. And, even though overrides to the stack
segment as in the second sample are allowed, they are rarely of much practical use.

Base Addresses

Base addressing employs the two registers bx and bp. References to bx are relative to the data
segment addressed by ds. References to bp are relative to the stack segment ss and are nor-
mally used to read and write values stored on the stack. You can use segment overrides as
previously described to refer to data in any of the other segments.

Base addressing adds a displacement value to the location addressed by bx or bp. This dis-
placement is a signed 16- or 8-bit value representing an additional offset above or below the
offset in the specified register. A typical use for base addressing is to locate fields in a data
structure. For example:

mov bx, OFFSET Person ; Point to start of Person

mov ax, [bx + 5] ; Get data 5 bytes beyond

After assigning to bx the offset address of a variable named Person (not shown), a second mov
loads into ax a value stored 5 bytes from the start of Person. Similarly, you can use instruc-
tions to reference variables on the stack, as in:

inc [WORD bp + 2] ; Increment word on stack

dec [BYTE bp - 8] ; Decrement byte on stack

Remember that references to bp are relative to the stack segment ss. (Chapters 12, “Mixing
Assembly Language with Pascal,” and 13, “Mixing Assembly Language with C and C++,”
describe in more detail how to use bp and base addressing to access stacked variables.) The
displacement value may also be negative as the second line shows. Because displacements are
16-bit values, the effective range is —32,768 to 32,767 bytes away from the offset addressed
by bx or bp.
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Indexed Addresses

Indexed addressing is identical to base addressing except that si and di hold the offset ad-
dresses. Unless you specify a segment override, all indexed address references are relative to
the data segment addressed by ds. Normally, indexed addressing is used to access simple arrays.
For example, to increment the fifth byte of an array of 8-bit values, you can write:

inc [BYTE si + 4] ; Add 1 to array element number 5

Because si + @ locates the first array element, a displacement of 4 and not 5 must be used to
locate the fifth byte in the array. Also, as with base addressing, displacements are signed val-
ues and, therefore, can be negative:

mov  dx, [WORD di - 8] ; Load word 8 bytes before di

OTE

Base-Indexed Addresses

Base-indexed addressing combines two registers and adds an optional displacement value to
form an offset memory reference—thus coupling the features of the base- and indexed-
addressing modes. The first register must be either bx or bp. The second register must be si
or di. Offsets in bx are relative to the ds data segment; offsets in bp are relative to the ss stack
segment. As with other addressing modes, you can use overrides to alter these defaults. A few
examples help explain this valuable addressing technique:

mov ax, [bx + si] ; Load data segment word into ax
mov ax, [bx + di] H " " "
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mov ax, [bp + si} ; Load stack segment word into ax

mov ax, [bp + di] ; " " "

Turbo Assembler allows you to reverse the order of the registers, for example, writing [si + bx]
and [di + bp]. But these are not different addressing modes—just different forms of the same
references. You can aso add an optional displacement value to any of the four previous variations:

mov ax, [bx + si + 5] ; Load displaced data segment word into ax
mov ax, [bx + di + 5] ; " " "
mov ax, [bp + si + 5] ; Load displaced stack segment word into ax

mov ax, [bp + di + 5] " " "

In addition, you can add overrides to any of these eight basic base-indexed addressing vari-
ants to refer to data in segments other than the defaults:

mov ax, [es:bx + si + 8] ; Use es instead of ds default
mov ax, [cs:bp + di] ; Use cs instead of ss default

Base-indexed addressing is the 8086’s most powerful memory reference technique. With this
method, you can specify a starting offset in bx or bp (perhaps the address of an array), add to this
an index value in si or di (possibly locating one element in the array), and then add a displace-
ment value (maybe to locate a record field in this specific array element). By modifying the base
and index register values, programs can address complex data structures in memory.

Using the ASSUME Directive

An AssuMe directive tells Turbo Assembler to which segment in memory a segment register
refers. The purpose of ASSUME is to allow the assembler to insert override instructions auto-
matically when needed. Always remember that ASSUME is a command to the assembler and
does not generate any code.

When using simplified segment addressing—as in most of this book’s examples—you’ll rarely
need to use ASSUME. And, by explicitly using segment overrides, you can eliminate the need for
ASSUME altogether. Even so, it pays to understand how this directive works. Suppose you write:

CODESEG

jmp  There ; Skip declaration of vi
vi db 5 ; Store a 5 in the code segment
There:

mov ah, [cs:vi] ; Load 5 into ah
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This code snippet illustrates one way to store data inside the code segment—an unusual but
allowable practice. The jmp instruction skips over the declaration of a byte variable v1. (When
mixing data and code, you certainly don’t want to accidentally execute your variables as though
they were instructions.) The mov instruction uses a segment override (cs:) to load the value
of v1 into ah. The override is required because direct data references normally default to the
ds data segment.

Because Turbo Assembler knows that cs refers to the code segment, it allows you to replace
the mov instruction with the simpler instruction:

mov ah, [v1] ; Load 5 into ah from code segment

Even though an explicit override is not used, Turbo Assembler checks its list of variables,
detects that v1 is stored in the code segment, and automatically inserts the required override.
In other cases when Turbo Assembler doesn’t know which segment registers refer to which
memory segments, you must either use an explicit override or tell the assembler what’s going
on with an ASSUME directive. Here’s another example:

CODESEG
jmp There ; Skip declaration of vi
v1 db 5 ; Store a 5 in this Location
There:
mov ax, @code ; Assign address of code segment
mov es, ax ;  to es register
ASSUME es:_TEXT
mov ah, [v1] ; Load 5 into ah from extra segment

Again, a 5 byte is stored directly in the code segment. In this example, segment register es is
initialized to address the code segment, assigning the predefined symbol ecode to ax and then
assigning this value to es. The AssumE directive tells Turbo Assembler where es now points,
using the small memory model’s name for the code segment _TEXT. Finally, the mov loads the
value of v1 into ah. Although this appears identical to the earlier example, because of the
ASSUME directive, the actual instruction assembled is:

mov ah, [es:v1]

Because v1 is stored in the code segment, however, both [es:v1] and [cs:v1] correctly locate
the same variable. All that ASSUME does is allow the assembler to insert the override instruc-
tions automatically.

NOTE
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Expressions and Operators

Expressions in assembly language have one purpose: to make programs easy to understand
and, therefore, easy to modify. For example, you might have several equates, associating
optional values with symbols such as:

RecSize EQU 10

NumRecs  EQU 25

Elsewhere you can use the equated symbols in expressions, perhaps to store in memory a
value equal to RecSize times NumRecs:

BufSize dw RecSize * NumRecs

When Turbo Assembler processes this directive, it multiplies RecSize by NumRecs and stores
the resulting constant (250) in the word variable Bufsize. It’s important to understand that
this calculation occurs during assembly—not when the program runs. All expressions evalu-
ate to constants in the assembled code. In high-level languages, expressions such as (Columns

* 16) are evaluated at runtime, possibly with a new value for a variable named Columns en-
tered by an operator. In assembly language, expressions reduce to constant values when you
assemble the program text, not when the program runs. The difference can be confusing at
first, especially if you’re more accustomed to high- than low-level programming,

Table 5.2 lists Turbo Assembler’s Ideal-mode expressions operators, which you can use to
calculate constant values of just about any imaginable type. MASM-mode operators (listed
in Turbo Assembler’s Reference Guide) are similar. Don’t confuse operators such as AND, OR,
XOR, and NOT with the assembly language mnemonics of the same names. The assembly lan-
guage mnemonics are instructions that operate at runtime. The operators are for use in ex-
pressions, calculated at assembly time. In this and in other chapters, you'll meet many of
these operators in action.

Simple Variables

Earlier program examples in this book created simple variables with db and dw directives. These
directives belong to a family of similar commands, all having the same general purpose: to
define (meaning to reserve) space for values in memory. The directives differ only in how
much space they can define and the types of initial values you can specify. Table 5.3 lists all
seven of these useful directives ranked according to the minimum amount of space each re-
serves. Also listed are typical examples, although the directives are not limited to the uses
shown here. You can type any of these directives in uppercase or lowercase. D8 and db have
the same meaning.
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Wide Open Spaces

To create large amounts of space, you can string together several db, dw, or other define-memory
directives, or you can use the DUP operator, which is usually more convenient. DUP has the

following form:

ftahell directive count DIP (exnreccion [ eynreccionl )

Table 5.2. Expression Operators.

Operator Description Operator Description
0 Parentheses LT Less than
* Multiply MASK Record-field bit mask
/ Divide MOD Division remainder
+ Add/unary plus NE Not equal
- Subtract/unary
minus NEAR Near code pointer
Structure member NOT One’s complement
Segment override OFFSET Offset address
? Uninitialized data OR Logical OR
[ Memory reference PROC Near/far code pointer
AND Logical AND PTR Expression size
BYTE Force byte size PWORD 32-bit far pointer
CODEPTR Procedure address
size QWORD Quadword size
DATAPTR Model-dependent
size SEG segment address
DUP Duplicate variable SHL Shift left
DWORD Force doubleword SHORT Short code pointer
EQ Equal SHR Shift right
FAR Far code pointer SIZE Size of item
FWORD Farword size SMALL 16-bit offset
GE Greater than or equal SYMTYPE Symbol type
GT Greater than TBYTE Ten-byte size
HIGH Return high part THIS Refer to next item

continues
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Table 5.2. continued
Operator Description Operator Description
LARGE Force 32-bit offset TYPE Type of item
LE Less than or equal UNKNOWN Remove type info
LENGTH Number of elements WIDTH Bit field width
Low Low part WORD Word size

XOR Exclusive OR
Table 5.3. Define-Memory Directives.
Minimum

Directive Name Bytes Allocated Typical Use
db Define byte 1 Byrtes, strings
dw Define word 2 Integers
dd Define doubleword 4 Long integers
dp Define pointer 6 32-bit pointer
df Define far pointer 6 48-bit pointer
dq Define quadword 8 Real numbers
dt Define ten bytes 10 BCD numbers

To create a multibyte space, start with an optional label and a define-memory directive from
Table 5.3. Follow this with a count equal to the number of times you want to duplicate an
expression, which must be in parentheses. The bup keyword goes between the count and the
expression. For example, each of these directives reserves a 10-byte area in memory, setting
all 10 bytes to 0:

Ten1 dt 0 ; Ten zero bytes

Ten2 db 10 DUP (0) ; Same as above

Separating multiple expressions or constant values with commas duplicates each value in turn,
increasing the total size of the space reserved by the count times the number of items. De-
spite a count of 10, therefore, the following directive creates a 20-byte variable—ten repeti-
tions of the two bytes 1 and 2.

Twenty1 db 10 DUP (1,2) ;5 20 bytes--1, 2, 1, 2, ..., 2
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You can also nest DUP expressions to create large buffers initialized to a constant value. For
example, each of the following directives reserves a 20-byte area with all bytes equal to 255:
Twenty2 db 10 DUP (2 DUP (255))  ; 20 bytes of 255

Twenty3 db 20 DUP (255) ; Same as above

These same examples work with any of the define-memory directives to reserve different
amounts of space. Most often, though, you’ll use db and dw for integer, string, and byte vari-
ables, putting the other directives to work only for the special purposes listed in Table 5.3.
But you are free to use these directives as you please. To create a 20-byte variable of all zeros,
for example, you could use db as before or dt like this:

Twenty4 dt 2 DUP (0)

Of all the define-memory directives, only db has the special ability to allocate space for char-
acter strings, storing one ASCII character per byte in memory. Here’s a sample, ending in a
zero byte, a typical construction called an ASCIIZ string:

Astring db 'String things', @

Combining db’s string ability with the buP operator is a useful trick for filling a buffer with
text that’s easy to locate in Turbo Debugger’s dump window. You might code a 1,024-byte
buffer as:

Buffer db 128 DUP ('=Buffer=") ; 1024 bytes

DUP repeats the 8-byte string in parentheses 128 times, thus reserving a total of 1,024 bytes.
In Turbo Debugger, use the view-Dump command, zoom to full screen with F5, press Alt-
F10, and select Goto to view the program’s data segment at DS:0000. Then use the PgDn
key to hunt for this or a similar buffer in memory. There are other ways to find variables
with Turbo Debugger, but this age-old debugging method is still a useful trick.

Initialized Versus Unitialized Data

When you know your program is going to assign new values to variables and, therefore, don’t
care what the initial values are, you can define uninitialized variables—those that have no
specific values when the program runs. To do this, use a question mark (?) in place of the
define-memory constant:

stuff db ? ; Byte of unknown value
moreStuff dw ? ; Word of unknown value
anyStuff dt ? ; Ten bytes of unknown values

To create larger uninitialized spaces, use a question mark inside a DUP expression’s parenthe-
ses, a useful technique for creating big buffers such as:

BigBuf dp 8000 DUP (?) ; 8000-byte buffer
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The 8,000-byte buffer created by this command contains bytes of no specific values when
the program runs. Whatever was in the memory occupied by the buffer when DOS loads
your program is what the buffer will contain.

The main reason for declaring uninitialized variables is to reduce the size of the assembled
code file. Instead of storing useless bytes on disk, uninitialized space is allocated at run time.
For this to work, you must follow one of two rules:

* Place all uninitialized variables last in the data segment

* Or preface uninitialized variables with UDATASEG

Usually, the easiest plan is to place uninitialized variables last in the data segment, after vari-
ables with initial values. When this isn’t practical, use the UDATASEG directive to tell Turbo
Assembler to relocate an uninitialized variable to the end of the last initialized variable in the
data segment even though the unintialized variable appears elsewhere in the program text.
For example, you can write:

DATASEG

vari db 1

var2 db

UDATASEG

array db 1000 DUP (?)
DATASEG

var3 db 3

The UDATASEG directive places array after var3 in memory, just as though you had declared
the large uninitialized variable last instead of between the two initialized variables var2 and
var3. Without UDATASEG, the large array would be “trapped” between var2 and var3, unnec-
essarily increasing the size of your code file by 1,000 byrtes.
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Be careful when using UDATASEG not to assume that one variable physically follows another in
memory, as variables normally do. Some programs expect variables to be ordered in memory
the way they are declared in the program text and, in these cases, relocating the variables is a
big mistake. Avoid this problem in your own programs—and add clarity to your source code—
by organizing your data segment like this:

DATASEG

; initialized variables

UDATASEG
; uninitialized variables

String Variables

While db can create character-string variables, assembly language has no built-in character-
string commands to read and write strings, to delete characters, or to compare one string
with another. Listing 5.1 adds these and other routines to assembly language programs. But
first, let’s examine a few typical string formats.

Probably the most common string format is the ASCIIS$ string—a series of ASCII characters
ending in a dollar sign. Use db this way to create an ASCIIS string:

myString db 'Welcome to my program', '$'

You don’t have to separate the dollar sign from the main string—you could just add $ be-
tween the “m” and the closing single quote. Separating the characters as shown here empha-
sizes that the dollar sign is a string terminator—not just another character. To display this
string, use DOS function 09:

mov dx, OFFSET myString ; Address string with ds:dx
mov ah, 09 ; Specify DOS function 09
int 21h ; Call DOS to display string

The first line assigns the offset address of mystring in the program’s data segment addressed
by ds. The 09 assigned to ah is the value of the DOS “Output character string” function,
which int 21h activates. The int (software interrupt) instruction operates similarly to a sub-
routine call and, after DOS finishes executing the function specified in ah, returns control
to your program starting with the instruction that follows int 21h. Chapter 10, “Interrupt
Handling,” discusses this and other kinds of interrupts in more detail.

NOTE
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The major problem with ASCIIS$ strings is obvious—there’s no easy way to display a dollar
sign! Also, it’s difficult to read characters from the keyboard or from disk files into such strings.
For these reasons, I rarely use ASCIIS$ strings. Instead, I prefer ASCIIZ strings ending in a
zero byte—the same format used by most high-level language C and C++ compilers. With
ASCIIZ strings, you might create an error message by writing:

diskErr db "Disk read error!", 0

ASCIIZ strings can be as long as you need—from a single character up to thousands. The
first byte at the string label is either an ASCII character or a zero byte, also called an ASCII
null character. If the first is 0, then the string is empty. This fact leads to an easy way to create
zero-length string variables with the DUP operator:

stringvVar db 81 DUP (0) ; 80-character string + null

When creating strings this way, always set the DUP count to one more than the maximum
number of characters you plan to store in the string, leaving room for the null, which must
always end the string. The only disadvantage of ASCIIZ strings is that DOS has no standard
routines for reading and writing string variables in this format. The string packages later in
this chapter fix this deficiency with routines that you can use to read and write ASCIIZ strings.

Quoting Quotes

For all strings declared with db, you can surround characters with either apostrophes (') or
double quotes (") as long as you begin and end with the same symbols. In the ASCII charac-
ter set, an apostrophe and a closing single quote are the same characters. On your keyboard
and in this book, the symbols are printed with straight up and down lines. But on your dis-
play, depending on your operating system and text-editor character set, the single quote apos-
trophe symbol may hook down to the left.

NOTE

To include a quote mark inside a string, you have several options. The easiest method is to
use one type of quote mark around the character string containing the other type:

Quote db 'When "quoting" speech, you can surround', 0@
Unquote db "the text with 'quote marks' like this.", @
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The double quotes in the first string are inserted as characters. The single quotes in the second
string are also inserted as characters. Another method is to repeat the same quote used as the
string delimiter. This is useful for creating strings that contain both single and double quotes:

CrazyQuotes db 'This ''string'' contains four "quote" marks', 0

Tha vnmanead cloasla oo e B T o T T e P
4210 LLpLateld J1UBIL Yuuildy alvuliu uic ywula .\L/Lﬂg AalC LCILCU .)11151: LluULC ldais clldide-
ters even though the entire string is delimited by these same characters. You can do the same
with double quotes, too.

Local Labels

Up until now, program examples used code segment labels like Start: and Repeat:. Such
labels are global to the entire program that declares them. In other words, if you label an
instruction Here: at the beginning of the program, that label is available to call, jmp, and
other instructions anywhere else throughout the code. One problem with this is that you
constantly have to think up new names to avoid conflicts with labels you've already used.
For short hops, this is a major inconvenience, as in this short sample:

cmp ax, 9 ; Does ax = 9?

je SkipIt ; Skip and below if ax = 9

add cx, 10 ; Else add 10 to cx
SkipIt:

Short jumps such as the je to label SkipIt: are common in assembly language programming.
Most probably, no other instruction will need to jump to this same label; therefore SkipIt:
isn’t needed beyond this one place. A large program might make hundreds or thousands of
similar hops, requiring you to invent new names for each one! To reduce this burden, Turbo
Assembler lets you create local labels, which exists only in the sections of code that need them.

Alocal label is identical to any other code label but begins with two az-signs, @e. Examples of
local labels include such names as @@10:, @@Here:, @@Tempo:, and @ex:. The life of a local la-
bel extends only forward and back to the next nonlocal label. Because this includes labels
defined in PRoC directives, if you surround your procedures with PROC and ENDP, local labels
in subroutines are visible only inside the routine’s code. You can then reuse the same local
labels elsewhere without conflict. An example helps make this clear:

jmp There ; Jump to global label
@@10:

inc ax

cmp ax, 10

jne @@10 ; Jump to local label above
There:

cmp ax, 20

je ee@io ; Jump to local label below

xor cx, cx
@e10:
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Don’t try to run this example—it’s just for illustration. The first jmp jumps to the global
label There:—you can jump to global labels from anywhere in a program. The next jne jumps
to local label @@10:. But, which one? There are two. The answer is, the first e@10:, which
extends only down to the global label There:. Consequently, the jne can “see” only the first
@e10:. For the same reason, the later je instruction jumps down to the second @@10: because
the global There: above blocks the view of the first local label. Some advantages of local la-
bels are: '

* Local labels save memory by letting Turbo Assembler reuse RAM for cther local
labels. Global labels are permanently stored in memory during assembly, even if the
labels arc used only once. Local labels are thrown away every time a new nonlocal
label is encountered.

* Local labels improve program clarity. For example, a quick scan of a program easily

picks out the global and local labels.

* Local labels help reduce bugs by making it more difficult to write long-distance
hops from one place in a program to another. If you surround your procedures with
PROC and ENDP directives, you won’t be tempted to jump to a temporary label in the
midsection of a subroutine—a generally recognized source of bugs.

NOTE

An ASCIIZ String Package

Chapter 4 introduced the 8086 string instructions. Listing 5.1 (STRING.ASM) is a pack-
age of 12 ASCIIZ string routines, many of which put these string instructions to good use.
Lines 18-29 list the names and give brief descriptions of the routines in the package, which
is organized a little differently from listings you’ve seen up to now. STRINGS.ASM is a /-
brary module that you must assemble separately and then link with another program. Unlike
previous program examples, the STRINGS module does not run on its own. Instead, as later

examples demonstrate, STRINGS requires a host program to use the subroutines in the
module. To assemble STRINGS, use the command:

tasm strings

Or, if you plan to use Turbo Debugger to examine programs that use the string package, use
the command:

tasm /zi strings
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Be aware that using the /zi option adds debugging information to the assembled code and,
for this reason can make the finished code file swell—often enormously. Use the former
command (without the /zi option) to reduce code-file size.

Whichever of the two commands you use, the result is a file named STRINGS.OB]J, con-
taining the raw assembled code. ready to be linked into a host program. After the
STRINGS.ASM listing are suggestions that describe how to do this. But, for the purposes of
running other programs in this book, many of which require the STRINGS package, you
need to store the STRINGS.OB] code in a library file. Enter the following command, ignor-
ing a probable warning that “STRINGS [was] not found in [the] library:”

tlib /E mta -+strings

NOTE

The result of the t1ib command is a file named MTA.LIB (for “Mastering Turbo Assembler
Library”) containing the STRINGS package. The /€ option stores an extended dictionary in
the library file, which helps to speed linking by providing TLINK with additional informa-
tion about the library’s symbols. The -+strings command tells TLIB to replace any previ-
ous version of STRINGS with the new .OB] code file. Later on, you’ll add new object-code
files to MTA.LIB, which will greatly redue the complexity of assembling and linking pro-
grams that use routines in STRINGS and in other separately assembled modules. If you make
any changes to the STRINGS.ASM listing, repeat the tasm and t1ib commands to replace
the old object code in the MTA.LIB file with the updated programming.

Listing 5.1. STRINGS.ASM.
1: %TITLE "String Procedures--Copyright 1989,1995 by Tom Swan"
2:
3: IDEAL
4:
5: MODEL small
6:
7: CODESEG
8:
9: PUBLIC MoveLeft, MoveRight, StrNull, StrLength
10: PUBLIC StrUpper, StrCompare, StrDelete, StrlInsert
11: PUBLIC StrConcat, StrCopy, StrPos, StrRemove
12:

continues
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Listing 5.1. continued

13:
14:
15:
16:

’
3
’
)
E]
H
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
E
3
3
3
il
3
3
3
)
3
3
3
3
El
3
3

Assemble with the command TASM STRINGS to create STRINGS.OBJ. To use
the procedures, add EXTRN <procedure>:PROC statements where
<procedure> is one of the following identifiers:

Moveleft -- memory move with increasing indexes
MoveRight -- memory move with decreasing indexes
StrNull -- erase all chars in string

StrLength -- return number of chars in string
StrUpper © -- convert chars in string to uppercase
StrCompare -- alphabetically compare two strings
StrDelete -- delete chars from string

Strinsert -- insert chars into string

StrConcat -- attach one string to another

StrCopy -- copy one string to another

StrPos -- find position of substring in a string
StrRemove -- remove substring from a string

After assembling your program, link with STRINGS.OBJ. For example,
if your program is named MYPROG, first assemble MYPROG to MYPROG.OBJ
and link with the command TLINK MYPROG+STRINGS to create MYPROG.EXE.

STRING VARIABLES:

A string is a simple array of characters with one character per
eight-bit byte. A null character (ASCII @) must follow the last
character in the string. An empty string contains a single null.
Declare string variables this way:

STRING DB 81 DUP (0) ; 80-character string + null

STRING CONSTANTS:

Always allow one extra byte for the null terminator. Character
constants (which may be used as variables) must be properly
terminated. For example:

ci db 'This is a test string.', 0

SEGMENT REGISTERS:
Routines in this package assume that ES and DS address the
same segment. Set ES=DS before calling any of these routines.

: ASCNull EQU 0 ; ASCII null character
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57:
58:
59:
60:
61:
62:
63:
/4:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
: ENDP MoveLeft
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:
100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:

SNEWPAGE

; MovelLeft

H si =
5 di =
hvy =
dx =
cx =

Output:

address of source string (st1)
address of destination string (s2)
indey e1 (i)

index s2 (i2)

number of bytes to move (count)

count bytes from s1[i1] moved to the location
starting at s2[i2]

none

5
5
5
5
H
5
; Registers:
5
H
P

ROC MoveLeft

jcxz
push
push
push

add
add
cld
rep

pop

pop

pop
@@99:

ret

%SNEWPAGE

@@99 ; Exit if count = 0@

CX ; Save modified registers

si

di

si, bx ; Index into source string

di, dx ; Index into destination string
; Auto-increment si and di

movsb ; Move while cx <> @

di ; Restore registers

si

cX

; Return to caller

Move byte-block right (up) in memory

; (same as Moveleft)

; Output:

H (same as MovelLeft)

; Registers:
; none

PROC MoveRight

jexz
push
push
push

add
add
add
dec
add
dec

@e99 ; Exit if count = @

cX ; Save modified registers

di

si

si, bx ; Index into source string

di, dx ; Index into destination string
si, cx ; Adjust to last source byte

si

di, cx ; Adjust to last destination byte
di

continues
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Listing 5.1. continued

113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:

std ; Auto-decrement si and di
rep movsb ; Move while cx <> 0
pop si ; Restore registers
pop di
pop cX
@@99:
ret ; Return to caller
ENDP MoveRight
%SNEWPAGE
3
5 StrNull Erase all characters in a string
; R
; Input:
H di = address of string (s)
; Output:
5 s[@] <- null character (ASCII 0)
; Registers:
H none
3
PROC StrNull
mov [byte ptr di], ASCNull ; Insert null at s[0]
ret ; Return to caller
ENDP StrNull
SNEWPAGE
I .
; StrLength Count non-null characters in a string
§
5 Input:
H di = address of string (s)
; Output:
H cx = number of non-null characters in s
; Registers:
H cXx
S —— — -
PROC StrLength
push ax ; Save modified registers
push di
xor al, al ; al <- search char (null)
mov cx, offffh ; CX <- maximum search depth
cld ; Auto-increment di
repnz  scasb ; Scan for al while [di]<>null & cx<>0
not cX ; Ones complement of cx
dec cX 5 minus 1 equals string length
pop di ; Restore registers
pop ax
ret ; Return to caller
ENDP StrLength
%SNEWPAGE
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164:
165:
166:
167:
168:
169:
170:
171
172:
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
192:
193:
194:
195:
196:
197:
198:
199:
200:
-201:
202:
203:
204:
205:
206:
207:
208:
209:
210:
211:
212:
213:
214:
215:
216:
217:
218:
219:
220:

3
; StrUpper Convert chars in string to uppercase
3
; Input
H di = address of string to convert (s)
; Output:
H lowercase chars in string converted to uppercase
; Begicteors
5 none
S
PROC StrUpper
push ax ; Save modified registers
push CcX
push di
push si
call StrLength ; Set cx = length of string
jexz @@99 ; Exit if length = 0
cld ; Auto-increment si, di
mov si, di ; Set si = di
@e10:
lodsb ; al <- s[si]; si <- si + 1
cmp al, 'a’ ; Is al >= 'a'?
jb @@20 ; No, jump to continue scan
cmp al, 'z’ ; Is al <= 'z2'?
ja @e20 ; No, jump to continue scan
sub al, 'a'-'A’ ; Convert lowercase to uppercase
@e20:
stosb ; s[di] <- al;.di <- di + 1
loop ee1o ; CX <- ¢x - 1; loop if cx <> 0
@@99:
pop si ; Restore registers
pop di
pop cX
pop ax
ret ; Return to caller
ENDP StrUpper
%SNEWPAGE
§
; StrCompare Compare two strings
§
; Input:
H si = address of string 1 (s1)
5 di = address of string 2 (s2)
; Output:
H flags set for conditional jump using jb, jbe,
; je, ja, or jae.
; Registers:
H none
S
PROC StrCompare
push ax ; Save modified registers
push di
push si
cld ; Auto-increment si
@ee10:
lodsb ; al <- [si], si <- si + 1
scasb ; Compare al and [di]; di <- di + 1

continues
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Listing 5.1. continued

221: jne @@20 ; Exit if non-equal chars found
222: or al, al ; Is al=0? (i.e. at end of s1)
223: jne eet1o ; If no jump, else exit

224: @@20:

225: pop si ; Restore registers

226: pop di

227: pop ax

228: ret ; Return flags to caller

229: ENDP StrCompare
230: %NEWPAGE

231: ;-- -——— -
232: ; StrDelete Delete characters anywhere in a string

233! j-—mmmmm e e e

234: ; Input

235: ; di = address of string (s)

236: ; dx = index (i) of first char to delete

237: cx = number of chars to delete (n)

238: ; Output:

239: ; n characters deleted from string at s{i]

240: ; Note: prevents deleting past end of string

241: ; Registers:

242: none

243: ;- -
244: PROC StrDelete

245: push bx ; Save modified registers

246: push cX

247: push di

248: push si

249:

250: ; bx = SourcelIndex

251: ; ¢x = Count / Len / CharsToMove

252: ; dx = Index

253:

254: mov bx, dx ; Assign string index to bx

255: add bx, cx ; Source index <- index + count
256: call StrLength ; Cx <- length(s)

257: cmp cx, bx ; Is length > index?

258: ja ee10 ; If yes, jump to delete chars
259: add di, dx ; else, calculate index to string end
260: mov [byte ptr di], ASCNull ; and insert null

261: jmp short @@99 ; Jump to exit

262: @@10:

263: mov si, di ; Make source = destination

264: sub cx, bx ; CharsToMove <- Len - Sourcelndex
265: inc cXx ; Plus one for null at end of string
266: call MoveLeft ; Move chars over deleted portion
267: @@99:

268: pop si ; Restore registers

269: pop di

270: pop cX

271: pop bx

272: ret ; Return to caller

273: ENDP StrDelete
274: SNEWPAGE
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276: ; Strlnsert Insert a string into another string

277: j-——m—mm——— - e
278: ; Input

279: ; si = address of string 1 (s1)

280: ; di = address of string 2 (s2)

281: ; dx = insertion index for s2 (i)

282: NOTE: 2 must bec largc cnocugh tc coxpand by length{ct)!
283: ; Output:

284: ; chars from string s1 inserted at s2[i]

285: ; s1 not changed

286: ; Registers:

287: ; none

288 o o
289: PROC Strinsert

290: push ax ; Save modified registers

291: push bx

292: push cX

293:

294: ; ax = LenInsertion

295: ; cx = CharsToMove

296:

297: xchg si, di ; Exchange si and di

298: call StrLength ; and find length of st

299: xchg si, di ; Restore si and di

300: mov ax, cx ; Save length(s1) in ax

301:

302: call StrLength ; Find length of s2

303: sub cx, dx ; Cx <- length(s2) - i + 1

304: inc [ ; €x = (CharsToMove)

305:

306: ; bx = st index

307:

308: push dx ; Save index (dx) and si

309: push si

310: mov si, di ; Make si and di address s2
311: mov bx, dx ; Set s1 index to dx (i)

312: add dx, ax ; Set s2 index to it+LenInsertion
313: call MoveRight ; Open a hole for the insertion
314: pop si ; Restore index (dx) and si
315: pop dx

316:

317: xor bx, bx ; Set s1 (source) index to zero
318: mov cXx, ax ; Set cx to LenInsertion

319: call MoveLeft ; Insert s1 into hole in s2
320:

321: pop cx ; Restore registers

322: pop bx

323: pop ax

324: ret ; Return to caller

325: ENDP StrInsert
326: %NEWPAGE

327
328: ; StrConcat Concatenate (join) two strings
329: ;-- -- .

continues
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Listing 5.1. continued

330:
331:
332:
333:
334:
335:
336:
337:
338:
339:
340:
341:
342:
343:
344:
345:
346:
347:
348:
349:
350:
351:
352:
353:
354:
355:
356:
357:
358:
359:
360:
361:
362:
363:
364:
365:
366:
367:
368:
369:
370:
371:
372:
373:
374:
375:
376:
377:
378:
379:
380:
381:
382:
383:
384:

5 Input:
H si = address of source string (st1)
H di = address of destination string (s2)
H Note: s2 must be large enough to expand by length(s1)!
; Output:
; chars from s1 added to end of s2
; Registers:
; none
E)
PROC StrConcat
push bx ; Save modified registers
push cX
push dx

; dx = s2 destination

call StrLength ; Find length of destination (s2)
mov dx, cx ; Set dx to index end of string
xchg si, di ; Exchange si and di
call StrLength ; Find find length of source (s1)
inc cX ; Plus one includes null terminator
xchg si, di ; Restore si and di
xor bx, bx ; Source index = 0
call MoveLeft ; Copy source string to destination
pop dx ; Restore registers
pop cX
pop bx
ret ; Return to caller
ENDP StrConcat
SNEWPAGE
[ ——
; StrCopy Copy one string to another
S e
; Input
H si = address of source string (s1)
H di = address of destination string (s2)
; Output:
H Chars in s1 copied to s2
H Note: s2 must be at least Length(s1)+1 bytes long
; Registers:
H none
S e
PROC StrCopy
push bx ; Save modified registers
push cX
push dx
xchg si, di ; Swap si and di
call StrLength ; Find length of source string (st)
inc cX ; Plus one includes null terminator
xchg si, di ; Restore si and di
xor bx, bx ; Source string index = @
xor dx, dx ; Destination string index = 0@
call MoveLeft ; Copy source to destination
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385:

386: pop dx ; Restore registers
387: pop cX

388: pop bx

389: ret ; Return to caller

390: ENDP  StrCopy
391: %NEWPAGE

392:
393: ; StrPos Search for position of a substring in a string
894 oo
395: ; Input:

396: ; si = address of substring to find

397: ; di = address of target string to scan

398: ; Output:

399: ; if zf = 1 then dx = index of substring

400: ; if zf = @ then substring was not found

401: ; Note: dx is meaningless if zf = @

402: ; Registers:

403: ; dx

404 ;e
405: PROC StrPos

406: push ax ; Save modified registers

407: push bx

408: push cX

409: push di

410:

411: call StrLength ; Find length of target string
412: mov ax, cx ; Save length(s2) in ax

413: xchg si, di ; Swap si and di

414: call StrLength ; Find length of substring

415: mov bx, cx ; Save length(s1) in bx

416: xchg si, di ; Restore si and di

417: sub ax, bx ; ax = last possible index

418: jb @e20 ; Exit if len target < len substring
419: mov dx, @ffffh ; Initialize dx to -1

420: @e10:

421: inc dx ; For 1 = @ TO last possible index
422: mov cl, [byte bx + di] ; Save char at s[bx] in cl
423: mov [byte bx + di], ASCNull ; Replace char with null
424: call StrCompare ; Compare si to altered di
425: mov [byte bx + di], cl ; Restore replaced char
426: je @e20 ; Jump if match found, dx=index, zf=1
427: inc di ; Else advance target string index

428: cmp dx, ax ; When equal, all positions checked
3

429: jne @e10 ; Continue search unless not found
430:

431: xor CX, CX ; Substring not found. Reset zf =0
432: inc cX ;  to indicate no match

433: @@20:

434: pop di ; Restore registers

435: pop cX

436: pop bx

437: pop ax

438: ret ; Return to caller

439: ENDP StrPos
440: SNEWPAGE

continues
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Listing 5.1. continued

441 e
442: ; StrRemove Remove substring from a string

443: ;--

444: ; Input:

445: ; si = address of substring to delete

446: ; di = address of string to delete substring from

447: ; Output:

448: ; if zf = 1 then substring removed

449: ; if zf = @ then substring was not found

450: ; Note: string at si is not changed

451: Note: if zf = @ then string at di is not changed

452: ; Registers:

453: ; none

454: j—-—mmmmm——— -
455: PROC StrRemove

456: push cx ; Save modified registers
457: push dx

458:

459: call StrPos ; Find substring, setting dx=index
460: jne @@99 ; Exit if substring not found
461: pushf ; Save zf flag

462: xchg si, di ; Swap si and di

463: call StrLength ; Find length of substring
464: xchg si, di ; Restore si and di

465: call StrDelete ; Delete cx chars at di[dx]
466: popf ; Restore zf flag

467: @@99:

468: pop S dx ; Restore registers

469: pop cX

470: ret ; Return to caller

471: ENDP  StrRemove

472:

473: END ; End of STRINGS.ASM module

Programming in Pieces

Before jumping into a description of the routines in the STRINGS module, you should know
some of the ways that you can combine STRINGS with programs and with other object-
code modules. Modules like STRINGS can declare subroutines, variables, and constants to
be shared with programs and other modules. An object-code module is a self-contained pack-

age, assembled apart from other code, and then linked to a host program, creating the fin-
ished executable disk file.

Dividing large programs into modules is a great time saver. Instead of reassembling the iden-
tical code over and over, you can store that code in a separate module, assemble to disk, and
then link with your program. When modifying existing programs, you have to reassemble
only the modules that you modify. Modules also help simplify complex programs by letting
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you concentrate on smaller and easier to digest chunks of code. In addition, you can store
object-code modules in library files, making your favorite subroutines instantly available to
new programs.

In the source-code text, a separate module differs only slightly from the text of a main pro-
gram. Referring to Listing 5.1, you can see that the initial lines are the same as in previous
listings (for example, see Listing 4.7) but do not include a STACK directive. Only the main
program can declare a stack segment—separate modules never need to do this.

Another difference is that separate modules lack the steps in a main program to initialize
data-segment registers and to return control to DOS when the program ends. Instead, as
you can see, Listing 5.1 contains a series of procedures, marked by the PROC and ENDP direc-
tives. A final END directive ends the text but does not add an entry-point label to END as must
be done in a main program file (for example, see line 52 in Listing 4.7). Only the main pro-
gram can specify an entry point.

Public Policy

Lines 9-11 in STRINGS declare several symbols in PuLIC directives. These symbols are the
same names used as labels in PROC procedure headers. (For example, see line 73.) Every sym-
bol that you want a module to export to the outside world must be declared in a puBLIC di-
rective as shown here. You can use individual pusLIC directives to declare symbols one at a
time or string them together with commas as in this example. Symbols can be the names of
numeric constants declared with equal signs (=), variables, or code labels. Constants declared

with EQU cannot be exported.

NOTE

_

All other symbols not declared PUBLIC (AsCNull at line 55, for instance) are private and can-
not be used by other programs. Private symbols may be repeated by modules and programs
without conflicting with the symbols declared private in other modules. Only symbols in
PUBLIC directives are visible outside of the module. Notice that the symbols in the PUBLIC
directive have no data-type identifiers—nothing to indicate what the symbols are. As later
examples demonstrate, this is the responsibility of the program that imports the symbols.
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Assembling and Linking Separate Modules

Assembling separate modules is easy. Just type tasm module where module is the name of the
text file to assemble. You do not have to specify the .ASM extension after the filename. To
assemble the module for use with Turbo Debugger, use the command tasm -zi module, which
adds extra information to the .OBJ file so that Turbo Debugger can locate variables and
subroutines by name.

To assemble a program that uses the code in separate modules, use either of these same com-
mands. You can assemble the main program and all its modules in any order, and none of
the module’s .OB] files needs to be on disk during assembly of any other modules. After
assembling all modules, you’ll have a series of .OB]J files on disk. The next step is to link
these separate pieces together to create the finished code. For example, if your main program
is THEMEAT.ASM and your modules are LETTUCE.ASM and MUSTARD.ASM, you
would first assemble each module:

tasm lettuce

tasm themeat

tasm mustard

You can perform these steps in any order. Or, if these are the only .ASM files in the current
directory, you can use the simpler command tasm *.ASM to assemble all three files. After
assembling, you’ll have THEMEAT.OBJ, LETTUCE.OB]J, and MUSTARD.OB]J on disk.

You then link these object-code files with the command:
tlink themeat lettuce mustard

The first name after tlink must refer to the main program. Subsequent names refer to the
separate modules used in the program. Multiple module names may be listed in any order
and are separated by spaces. (You can also use plus signs as in t1ink themeat+lettuce+mustard.)
The result of linking is a sandwich of all modules plus the main program in one finished
code file, in this example, THEMEAT.EXE. The name of the result is the same as the name
of the first object file after TLINK but with the extension changed to .EXE. To specify a
different name, SANDWICH.EXE for instance, add a comma and the new name after the
object-file list: :

tlink themeat lettuce mustard, sandwich
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A comma must separate the object-file list from the new .EXE filename. During linking,
TLINK creates a map file containing a report of the symbols and their addresses in the fin-
ished code. The map file has the same name as the default .EXE file but ends in .MAP, un-
less you specify a different name. This assembles the object files (represented here as

<obj-files>), and creates both SANDWICH.EXE and SANDWICH.MAP:

tlink <obj-files>, sandwich, sandwich

If you don’t want a map file, use the /x option before the object-file list. This saves disk space
and speeds linking a tiny bit by reducing TLINK’s work load. Turbo Debugger does not
require the map file, but some other debuggers and source-code utility products from other
companies do. You may also want to save the map file as part of your program’s documen-
tation. This command specifies no map file:

tlink /x <obj-files>

The final option you can specify with TLINK is the name of one or more library files, which
contain separately assembled object modules in one disk file. Put spaces between multiple
library filenames. For example, if you have two libraries, BUTTER.LIB and BREAD.LIB,

the complete linking command might be:
tlink <obj-files>,,,butter bread

You don’t have to specify the .LIB extension. Notice the three commas after the object-file
list. These commas tell Turbo Assembler to use the default names for the missing items.
Without the commas, Turbo Linker can’t know that BUTTER and BREAD are library files—
it would mistake them for .OB]J files. You must add the commas to hold the places for
optional items you don’t specify. With square brackets representing optional items, the
complete syntax for TLINK 6.0 is:

tlink [options] objfiles, exefile, mapfile, libfiles, deffile, resfiles

In this command, objfiles refers to assembled object code files; exefile is the name of the
final output code file, mapfile lists public symbols and other information, 1ibfiles refers to
libraries such as MTA.LIB (provided on disk) that contain multiple object-code files, deffile
is a linker definition file, and resfiles refers to resources combined into the finished code.
The last two items, deffile and resfiles, are required only for Windows programs.

A String /O Package

Although the STRINGS module can be used alone, another module is needed to display strings
and to read new strings from the keyboard. This second module makes it easy to experiment
with STRINGS and also serves as a useful module on its own. Assemble Listing 5.2, STRIO.ASM,
and add the object code to your MTA.LIB library file with the commands:
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tasm /zi strio

tlib /E mta -+strio

For running host programs in Turbo Debugger, you must use the /zi option both here and
when assembling STRINGS. To reduce code-file size, assemble with tasm strio and rein-
stall STRIO in the library. At the t1ib command, ignore the probable warning that STRIO
was not found in the library. You’ll see this warning only the first time you add STRIO to
MTA.LIB. At this point, you now have two modules in MTA.LIB: STRINGS and STRIO.
To see a list of the symbols in the library file, enter:

tlib mta, con

Or, replace con with prn to send output to the printer. You can also store tlib’s output in a
disk file with a command such as t1ib mta,temp.txt. Be careful—TLIB won’t warn you
before erasing an existing file of the same name.

Listing 5.2. STRIO.ASM.

1: %TITLE "String Input/Output Routines -- by Tom Swan"
2:
3 IDEAL
4:
5: MODEL  small
6-
7:
8: ;-——-—- Equates
9:
10: BufSize EQU 255 5 Maximum string size (<=255)
11: ASCnull EQU 0 5 ASCII null
12: ASCcr EQU 13 ; ASCII carriage return
13: ASC1f EQU 10 ; ASCII line feed
14:
15:
16: ;----—- String buffer structure for DOS function 0QAh
17:
18: STRUC StrBuffer
19: maxlen db BufSize 5 Maximum buffer length
20: strlen db 0 ; String length
21: chars db BufSize DUP (?) ; Buffer for StrRead
22: ENDS strBuffer
23:
24:
25: DATASEG
26:
27: buffer StrBuffer <> ; Buffer variable for ReadStr
28:
29:
30: CODESEG
31:
32: ;---—-- From: STRINGS.O0BJ
33:
34: EXTRN StrLength:proc, StrCopy:proc
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PUBLIC

: %NEWPAGE

; StrRead

Output:

Registers:
none

TP e o e e e e e e e s v

ROC StrRead
or
jz

push
push
push
push

mov
mov
mov
int
xor
mov
mov
mov
call

pop
pop
pop
pop

. @@99:

ret

: ENDP StrRead
1 SNEWPAGE

StrRead, StrWrite, StrWrite2, NewLine

di = address of destination string

cl = maximum string length EXCLUDING null terminator
Note: if cl = 0, StrRead does nothing

Note: actual variable must be cl+ti bytes long

Note: string length is limited to 255 characters

String copied from standard input into your buffer

cl, cl ; Is cl = 07

@e99 ; If yes, jump to exit

ax ; Save modified registers

bx

dx

si

[buffer.maxlen], cl ; Set maxlen byte

ah, 0@ah ; DOS Buffered-Input function
dx, offset buffer.maxlen ; Address struc with ds:dx
21h ; Call DOS to read string

bh, bh ; Zero high byte of bx

bl, [buffer.strlen] ; bx = # chars in buffer

[bx+buffer.chars], ASCnull ; Change cr to null
si, offset buffer.chars ; Address buffer with si

StrCopy ; Copy chars to user string
si ; Restore registers

dx

bx

ax

; Return to caller

; StrWrite/StrWrite2 Write string to standard output

; Input:

; di = address of string (s)

H cx = number of chars to write (StrWrite2 only)
; Output:

H string s copied to standard output

3

; Registers:

H cx (StrWrite only)

continues
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Listing 5.2. continued

91: ; -—-
92: PROC StrWrite
93: call StrLength ; Set cx=length of string
94:
95: PROC StrWrite2 ; Alternate entry point
96: push ax ; Save modified registers
97: push bx
98: push dx
99:
100: mov bx, 1 ; Standard output handle
101: mov dx, di ; ds:dx address string
102: mov ah, 40h ; DOS write to file or device
103: int 21h ; Call DOS (on ret ax=# chars written)
104:
105: pop dx ; Restore registers
106: pop bx
107: pop ax
108: ret ; Return to caller
109: ENDP StrWrite2 ; End of alternate procedure
110: ENDP StrWrite ; End of normal procedure
111
112: %NEWPAGE
113: ; -
114: ; NewLine Start new line on standard output file
115: —
116: ; Input:
117 none
118: ; Output:
119: ; carriage return, line feed sent to standard output
120: ; Registers:
121: ; ah, dl
122: ;
123: PROC NewLine
124: mov ah, 2 ; DOS write-char routine
125: mov dl, ASCcr ; Load carriage return into dl
126: int 21h ; Write carriage return
127: mov dl, ASCl1f ; Load line feed into dl
128: int 21h ; Write line feed
129: ret ; Return to caller
130: ENDP NewLine
131:
132: END ; End of STRIO module
.
Procedures in STRIO

There are three procedures in the STRIO module, which many programs in this book use.
"The three routines are:

* strRead—Read an ASCIIZ string
* strwrite—Write an ASCIIZ string

* NewLine—Start a new output line
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The first two procedures require strings in ASCIIZ form—the same form used by the
STRINGS module. All three routines use the standard DOS input and output files—
usually the keyboard and display. As future programs demonstrate, there are faster ways to
display text on screen than Strwrite. But even so, this small module comes in handy for
reading and writing string data.

Using the STRIO Module

The three procedures in STRIO.ASM (Listing 5.2) should be easy for you to understand.
Except for a data structure at lines 18-22, you have already met most of the elements in this
listing elsewhere. This section explains how to use STRIO’s routines in your own programs
to read and write ASCIIZ strings to the standard input and output files, normally the key-
board (input) and display (output). (We'll return to this program again in Chapter 6, “Com-
plex Data Structures,” which explains complex data structures.)

StrRead (39-78)

Assign to es:di the address of any ASCIIZ variable, which can be from 1 to 255 characters
long plus 1 byte for the null terminator. Normally, ASCIIZ strings can be just about any
length. But, due to limitations of DOS, you can read strings up to a maximum of only 255
characters. Also set c1 to the maximum number of characters you want people to be able to
enter. If c1 equals 0, strread does nothing. Here’s how you might use StrRead to prompt for
some data to be entered at the keyboard:

DATASEG

response db 81 dup (0) ; 80-character string + null
CODESEG

mov di, OFFSET response ; Address response with es:di
mov cl, 80 ; Allow @ to 80 characters
call StrRead ; Read string

Notice that c1 is set to 80 even though the string variable is 81 bytes long. This allows 1 byte
for the null terminator at the end of the string. Don’t forget this all important rule—you
must leave room for StrRead to insert the string-terminator byte. StrRead calls DOS func-
tion OAh at line 65, which requires the string structure defined at lines 18-22 (further ex-
plained in Chapter 6).

StrWrite (80-110)

To pass an ASCIIZ string to the standard output (usually the display), call strwrite with
es:di addressing the string. If you already know the string length, you can assign the length
value to cx and call strwrite2 instead—an example of a rested procedure. Notice how the
procedure at lines 95-109 nests inside the outer procedure at lines 92-110. The difference
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between the two procedures is that, after calling StrWrite2, cx is not changed. After calling
Stririte, cx equals the string length. The nested procedure defines an alternate entry point
into the subroutine.

A typical use for StrWrite is to display a program’s welcome message:

cr EQU 13 ; ASCII carriage return
1f EQU 10 ; ASCII line feed
DATASEG

welcome db  cr, 1f, 'Welcome to Noware Land'
db cr, 1f, '(C) 1998 by Nobody, Inc.',cr,1f,1f,0
CODESEG
mov ax, @data
mov ds, ax ; Initialize ds
mov es, ax ; Initialize es = ds
mov di, OFFSEET welcome ; Address string with di
call StrWrite ; Display string

There are several interesting points here that deserve a closer look. First, two equates assign
the ASCII values of a carriage return and line feed to symbols cr and 1f. In the data segment,
a string variable is then created, adding cr and 1f as needed. In assembly language, the
flexible db operator lets you easily add control characters this way directly to strings. Also,
because variables are stored consecutively in memory, only one string variable is actually here—
despite the fact that the string is declared in two separate db directives. Only one null termi-
nator is at the end of the second line; therefore, this is one string, not two. Notice also how
the string ends with a carriage return and two line feeds. The first carriage return sends the
cursor to the far left of the display. After that, successive line feeds send the cursor down (or
scroll the display up) twice. There’s no need to add another carriage return. The ability to
handle such flexible data structures is one of assembly language’s most welcome features.

In the code segment of this sample, the first three instructions initialize ds and es to address
the program’s data segment. Always perform these steps in programs that use the STRIO
module (as well as other modules in this book). After this, a mov instruction assigns the ad-
dress of string welcome to di. A single call to Strwrite then displays the two-line string.

The code for strwrite in STRIO is fairly simple. Lines 102-103 call DOS function 40h
with cx equal to the string length, bx equal to 1 (representing DOS’s standard output file),
and ds:dx equal to the string address. The other instructions save and restore modified reg-
isters (except for cx when calling the strwrite entry point).
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NewLine (113-130)

The final procedure in STRIO is NewLine. Call this procedure to start a new line on the dis-
play. The procedure works by passing carriage-return and line-feed control codes in register
d1 to DOS function 2, which writes single characters to the standard output. Note that the
procedure changes ah and d1.

Linking Modules into a Program

The good news is: You now possess two useful packages to manipulate, read, and write ASCII
strings—routines that other programs in this book use heavily and that you’ll find many uses
for in your own code. The bad news is: You have to enter one more program to demonstrate
how to use routines in separate modules. For this purpose, assemble and link Listing 5.3,

ECHOSTR.ASM, creating ECHOSTR.EXE, with the command:

tasm /zi echostr

tlink echostr,,,mta

As described earlier, the three commas hold the places of missing items in the tlink com-
mand, telling Turbo Linker that mta is the name of a library file. Also, you need to use the
/zi option only if you want to run ECHOSTR in Turbo Debugger. To run the program
from DOS, just type echostr. Then, type any string of characters and press Enter. You should
see the same string repeated below your typing—proof that the STRIO module is working.
Admittedly, this is a very simple example. But, as you will soon see, there’s much more that

you can do with STRINGS and STRIO.

Listing 5.3. ECHOSTR.ASM.

1: %TITLE "String Read Test -- by Tom Swan"

2.

3 IDEAL

4

5 MODEL small

6 STACK 256

7:

8: MaxLen EQU 128 ; 128-character string

9: cr EQU 13 5 ASCII carriage return

10: 1f EQU 10 ; ASCII line feed

11

12

13: DATASEG

14

15: exCode db 0

16: welcome db 'Welcome to Echo-String', cr, 1f

17 db 'Type any string and press Enter', cr,1f,1f, 0
18: testString db MaxLen DUP (0), @ ; MaxLen chars + null
19

20

continues
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Listing 5.3. continued

21: CODESEG

22:

23: ;---—-—- From STRIO.OBJ:

24:

25: EXTRN  StrRead:proc, StrWrite:proc, NewLine:proc

26:

27: Start:

28: mov ax, @data ; Initialize DS to address
29: mov ds, ax ; of data segment

30: mov es, ax ; Make ds=es

31:

32: mov di, offset welcome ; Display welcome message
33: call StrWrite

34:

35: mov di, offset testString ; di = address of testString
36: mov cx, MaxLen 5 Cx = maximum len

37: call StrRead ; Read string from keyboard
38: call NewLine ; Start a new display line
39: call StrWrite ; Echo string to display

40:

41: Exit:

42: mov ah, 04Ch ; DOS function: Exit program
43: mov al, [exCode] ; Return exit code value
44: int 21h ; Call DOS. Terminate program
45:

46: END Start ; End of program / entry point

New Features in ECHOSTR.ASM

The STRINGS and STRIO packages require ds and es to address the same data segment.
Line 30 in ECHOSTR satisfies this requirement by assigning the same value to es as as-
signed to ds in the previous line. EXESHELL.ASM (Listing 2.3) contains this instruction so
you don’t forget this important step when needed.

Line 25 in ECHOSTR shows how to import symbols that are declared in another module’s
puBLIC directives. The EXTRN directive tells Turbo Assembler that various symbols are exter-
nalto this program and that the actual addresses and values for these items will be supplied
later when the program and all its modules are linked together. There are several things to
keep in mind when using EXTRN:

* Every symbol in an EXTRN directive must eventually be resolved to a like symbol
declared in a PuBLIC directive in 2 module linked to the program. Otherwise, you’ll
receive an error from Turbo Linker.

* EXTRN directives must specify the #ype of the symbol. In line 25, all three symbols are

type proc, which tells the assembler that these are subroutine labels and, therefore,
can be used as targets in call and jmp instructions. You can also declare code labels
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as near and far, forcing the assembler to generate either intersegment or
intrasegment subroutine calls. (It’s still your responsibility to ensure that the correct
ret instructions are used in the external routines.)

* When declaring external variables, allowable types are: byte, word, dword, fword,
pword, dataptr, gword, and tbyte, corresponding to the data directives in Table 5.3.
“You must insert EXTRN directives for variabies in the proper data segment, usuaily just
after DATASEG. If you accidentally declare external variables inside the CODESEG, the linker
will be unable to calculate the correct addresses for your external data.

* External numeric equates are always type abs (for absolute value). A good place for
these EXTRN symbols is before the DATASEG directive.

* Object-code modules can declare EXTRN directives, too. For example, see line 34 in
STRIO.ASM (Listing 5.2), which imports two procedures from the STRINGS
module. Any module can export its own symbols in PUBLIC directives and import
external symbols from any other module in EXTRN directives.

* When multiple modules (including the main host program) refer to the same EXTRN
symbols, only one copy of the object-code module containing those symbols is

linked into the finished code file.

* You need to declare only the symbols your program uses. You don’t have to declare
all of the symbols that are declared PuBLIC in a module. Despite this, Turbo Linker
always links entire modules into the finished code, even if you use only one or two
procedures (or other declarations) in that module.

* To create a complete code file, you must link all modules containing the symbols
that are declared in EXTRN directives among all the program’s modules. Storing
object code in library files makes linking easier by allowing Turbo Linker to pick
out only the object-code modules it needs. The entire library is 7oz linked into your
code—only the necessary modules stored in the library.

A Simplified External Example

A few quick examples will help clarify the preceding details about exporting and importing
equates, variables, and procedure labels. (You don’t have to enter and run these samples,
although you can if you want to.) Here’s the object-code module:

IDEAL

MODEL small

PUBLIC  Maximum
Maximum = 100h

DATASEG

PUBLIC counter
counter db ofh

CODESEG

PUBLIC subroutine
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PROC subroutine
ret

ENDP subroutine
END

After switching to Ideal mode and specifying the small memory model, the module declares
numeric equate Maximum public. In the data segment, another symbol—the byte variable
counter—is also declared public. In the code segment, a third symbol, subroutine, a proce-
dure label, is exported. Notice that the PUBLIC directives are placed in sensible places. A host
program can import these symbols this way:

IDEAL
MODEL small
STACK 256
EXTRN  Maximum:abs
DATASEG
EXTRN  counter:byte
CODESEG
EXTRN  Subroutine:proc
Start: mov ax, @data ; Initialize ds to address
mov ds, ax ; of data segment
mov ax, Maximim ; Set ax = Maximum
mov cl, [counter] ; Get value of counter
mov bx, OFFSET counter ; Get address of counter
call Subroutione ; Call external subroutine
Exit:
mov ax, 04Cooh ; DOS function: Exit program
int 21h ; Call DOS. Terminate program
END Start ; End of program / entry point

Look carefully at the placement of the EXTRN directives, especially for counter and
Subroutine. These symbols are placed in the data and code segments so the linker will be
able to resolve their addresses correctly. The type of the numeric equate is abs. The type of
the db variable is byte. If the variable had been declared in the other module with dw, the
type would be word. The subroutine label is given the type proc. In the main program code,
these symbols are used exactly as though they were declared directly in the program. If you
want to assemble and run the finished program in Turbo Debugger, assuming you name the
module MODULE.ASM and the main program MAIN.ASM, use these commands:

tasm /zi module

tasm /zi main

tlink /v main module
td main

Exploring the Strings Module

Now that you know how to write, assemble, and link separate modules, you’re ready to ex-
plore the 12 procedures in Listing 5.1, STRINGS. All the procedures in STRINGS operate
on ASCIIZ strings—sequences of characters ending in a zero byte. You can also use the two
routines MoveLeft and MoveRight on unterminated byte strings. In the interests of



SimpLe DATA STRUCTURES J

speed—and, therefore, in the spirit of blue-blooded assembly language programming—most
outines in STRINGS do little error checking. For example, when copying one string to
another, it’s your responsibility to ensure that the destination is large enough to hold the
copied characters.

The following sections describe each of the routines in STRINGS. Line numbers refer to
those in Listing 5.1.

NOTE

MovelLeft (58-89)
MoveRight (91-121)

These two routines move bytes in memory from one location to another. Other string rou-
tines call MoveLeft and MoveRight to copy strings, attach one string to another, and insert
characters into a string. You can also use these routines to fill buffers and to copy blocks of
memory from place to place.

Both MoveLeft and MoveRight use a repeated string instruction, movsb at lines 82 and 114.
The other instructions save and restore register values and prepare si, di, and flag df for the
memory-block move. Notice how the jexz instruction at line 74 prevents accidentally mov-
ing 65,530 bytes if cx is 0, jumping in this event to local label @e99: at line 87. A similar
instruction at line 102 jumps to line 119 for the same reason. (Remember, local labels ex-
tend only up or down to the next nonlocal label; therefore, @e99: can be reused without conflict

at lines 193, 267, and 467.)

NOTE

The comments to MoveLeft and MoveRight at lines 58—72 and 91-100 list required registers
and explain the effects of calling each routine. MoveRight requires the same input parameters
as MoveLeft. When using these or any other procedures in STRINGS, always be sure to check
the “Registers” section in the procedure header, which lists any potentially modified regis-
ters. In this case, MoveLeft and MoveRight are friendly—they return all original register
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values intact. This isn’t true for all procedures. By the way, the SNEWPAGE directives that be-
gin each procedure in the STRINGS listing cause form-feed control characters to be written
to the listing file, if you create one with Turbo Assembler’s /1 command. This makes listings
neater by starting new procedures at the tops of fresh pages.

Call MoveLeft with si addressing the source string and di addressing the destination—the
place to where you want to copy bytes. Assign to bx and dx index values for copying bytes
somewhere other than the start of the strings. For example, to copy a 20-byte variable v1 to
the middle of a 40-byte variable v2, you could write:

DATASEG
v1 db '12345678901234567890', 0 ; 20-byte string
v2 db 40 dup (0) ; 40-byte string
CODESEG

mov si, OFFSET vi
mov di, OFFSET v2
mov bx, 0

mov dx, 10

mov cx, 20

call MovLeft

Assign source address of vi

Assign destination address

Set source index (v1[0])

Set destination index (v2[10])
Specify the number of byes to move
Move bytes from v1[0@] to v2[10]

MovelLeft copies bytes from left (low addresses) to right (high addresses). When the source
and destination addresses overlap—as they may, for example, when moving bytes inside the
same string variable—the direction of the move can have important consequences. An ex-
ample explains this action:

mov [buffer], 0

mov si, OFFSET buffer

mov di, si

xor bx, bx

mov dx, 1

mov cx, (LENGTH buffer) - 1
call MoveLeft

Set first byte of buffer to 0
Address start of buffer with si
Address same buffer with di

Set source index to 0

Set destination index to second byte
Set count = Length of buffer - 1
Fill buffer with 0s

The first mov sets the first byte in buffer to 0. Registers si and di are assigned the same offset
address of this variable. After this, source index bx is set to 0 (the index position of the first
byte in buffer), and dx is set to 1 (the index of the second byte in buffer). Then, using the
LENGTH operator—which returns the number of bytes in a variable—cx is set to 1 less than
the length of buffer. Calling MoveLeft with these parameters copies the byte at buffer[0] to
buffer(1], then from buffer[1] to buffer[2], and so on, filling the entire buffer with the
value originally at index 0.
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When the source and destination addresses overlap and you don’t want to replicate the source
bytes in the destination, you must begin the move at the opposite end of the variables.
MoveRight accomplishes this by adding cx-1 to si and di (see lines 109~112). Next, std pre-
pares to decrement si and di automatically while the repeated string instruction at line 114
executes. This prevents the source bytes from shifting into the destination, which is espe-
cially useful for moviiig byies to higher addresses in a variabie—for exampie, to perform an
insertion in a large text buffer. Here are a few more hints that will help you get the most
from MoveRight and MovelLeft:

* When the source and destination addresses overlap, if the source is lower than the
destination, call MoveRight to prevent accidentally replicating source data into the
destination.

* When the source and destination addresses overlap, if the source is higher than the
destination, call MoveLeft to prevent accidentally replicating source data into the
destination.

* When the source and destination addresses do not overlap, always call MoveLeft. This
routine runs a tiny bit faster because it does not have to adjust si and di by cx-1.

StrNull (123-136)

Call strnull to erase the characters in a string addressed by di. strNull operates by storing
a zero byte at the start of the string (line 134). Examine the phrase in brackets, duplicated
here for reference:

mov [byte ptr di], ASCNull

The byte ptr operators tell Turbo Assembler that di addresses an 8-bit byte. Replace byte with
word if di addresses a 16-bit word. The ptr is optional, and you could revise this line to read:

mov [byte di], ASCNull

To use strhull, assign the address of a string variable to di and call the procedure. For ex-
ample, you might use striull to set the length of an uninitialized string variable to 0:

UDATASEG

string db 81 dup (?) ; Uninitialized 80-character string
CODESEG

mov di, OFFSET string ; Address string with di

call StrhNull ; Set string Length to 0@

Because a zero-length ASCIIZ string has a null terminator as its first character, Strhull doesn’t
need to know the maximum string size and, therefore, works with any length string variables.
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StrLength (138-162)

strLength calculates how many characters are stored in an ASCIIZ string addressed by di.
strLength returns this value in cx, which can then be passed to other routines that need to
know the length of a string. (Notice that line 146 tells you that cx is subject to change. If you
are using cx for other purposes and need to call StrLength, you’ll have to save cx somewhere—
probably on the stack—and then restore the original value later.)

Suppose you want to jump to the end of the program if, after prompting for some input, the
length of the string is 0. You could write:

DATASEG

string db 'Sample user response string', 0
CODESEG

mov di, OFFSET string ; Address string with di
call StrLength ; Set cx to string Length
or cx, Cx ; Is cx = 0?

jz  Exit ; Jump to Exit if cx = 0

strLength demonstrates how to use the scasb string instruction, introduced in Chapter 4.
Use scasb to scan byte strings for a specific value; use scasw to scan word strings. The value
to search for must be in al for byte searches or in ax for word searches. Assign the starting
address for the scan to es:di and set cx to the maximum number of bytes to scan. Both scasb
and scasw compare the byte in al or the word in ax with the data at es:di, effectively per-
forming a cmp. With these instructions, you can devise loops to search for byte and word
values:

cld

mov di, buffer
mov  cx, lenbuffer
mov  al, searchval
repne scasb

je Match
jmp NoMatch

Prepare to audo-increment di
Address buffer with es:di ’
Set cx = Length of buffer

Set al = value to find

Repeat while bytes not equal
Match found

Match not found

In this code, the repne prefix executes scasb repeatedly, while al and the byte at es:di are
“not equal (ne),” decrementing cx and stopping if this makes cx = 0. After the scan, two
jumps test whether the search ended at a matching byte, jumping to appropriate labels (not
shown). Because scas sets the same flags as cmp, you can follow the scan with conditional
jumps as shown here.

The effect of the repeated scan at line 155 in procedure Striength is to scan an ASCIIZ string,
stopping when the byte at es:di is 0 or when cx decrements to 0, thus preventing a runaway
condition that might occur if you accidentally pass an uninitialized string to the procedure
and if no zero bytes are in the data segment—unlikely, but possible.
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Repeated-Loop Calculations

Lines 156157 in StrLength uses an obscure technique to calculate the number of times that
a repeated string operation executes. The method requires cx to be initialized to OFFFFh
(-1 in two’s complement notation) as done here at line 153. After the repeated scan (line
155), a simple logical operation calculates the number of times the previous scan had re-
peated. To understand how this works, first consider the classic method for calculating the
repeated string instruction count:

mov  cx, -1 ; Initialize cx to -1
repnz scasb ; Repeat while [di] <> al and cx <> 0
not cX ; Form one's complement of cx

The one’s complement of cx equals the number of times the repnz scasb loop executed. Why
this works is easier to fathom by thinking through the effect of a single iteration. Because cx
initially equals —1, if the scasb stops after one repetition, then cx will equal -2, or FFFE hexa-
decimal. (The repnz prefix subtracts 1 from cx for each repetition of scasb.) The absolute value
(two’s complement) of -2 is, of course, 2—which is 1 too many. You could subtract 1 from the
absolute value to get the correct answer (2 — 1 = 1 iteration), but recalling from Chapter 3, “A Bit
of Binary,” that the two’s complement of a value equals the one’s complement plus 1, you may
as well just take the one’s complement as the final result! By the way, this works for positive
values, too. If cx equals 32,766 after the scan, then 32,769 loops had been executed. Work out
in binary the one’s complement of 32,766 (7FFEh) to prove to yourself that this is so.

For strLength’s purposes, the classic method’s result is 1 too many because the value counts
the null terminator at the end of the string. For this reason, line 157 decrements cx to give
the final answer.

StrUpper (164-199)

strupper converts lowercase letters in a string to uppercase without changing other nonal-
phabetic characters. Assign the string address to di and call the procedure this way:

DATASEG

lc db 'abcdefghijklmnopgrstuvwxyz', @

CODESEG

mov di, OFFSET lc ; Address string with es:di
call StrUpper ; Convert chars to uppercase

The procedure demonstrates two popular string instructions lodsb and stosb, introduced in
Chapter 4, along with a new instruction, loop (see line 192). The loop instruction subtracts
1 from cx and, if ex is not yet 0, jumps to the specified target address. In Strupper, the target
address is the local label, @@10: at line 183. Loop effectively performs in one step the same job
as these instructions:

dec cx ; CX <- ¢cx - 1
jnz Target ; Jump to Target if cx <> 0
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Two other variations of 1oop are loopne/loopnz and loope/loopz. The mnemonic pairs are
just different names for the identical instructions for the same reasons that other instruc-
tions such as repne/repnz and jnz/jne have double names. Loopne and loopnz also jump to
a target label if, after decrementing cx, this register is not yet 0. At the same time, a test is
made of zf, presumably set or cleared by a previous comparison. For example, to scan a buffer
from back to front searching for a byte equal to OFFh, you might use code such as:

mov cx, LENGTH buffer

mov bx, OFFSET buffer + LENGTH buffer
@ee20:

dec bx

cmp  [BYTE bx], Offh

loopne @@20

je  Match
Register cx is set to the maximum number of bytes to scan; bx is set to the address just past
the end of the buffer. The three instructions after @@20: then decrement the index pointer
bx, comparing each byte at this address with OFFh. The 1oopne instruction subtracts 1 from
cx and jumps to @@20: only if cx is not 0 and if the cmp did not detect an OFFh byte. After the
search is completed, a je instruction jumps to label Match (not shown) only if the 0FFh value
was found in the buffer. You can use 1oope similarly to locate bytes or words that don’t match
a certain value.

As you can see, loop, loope, and loopne are handy instructions for writing search loops.
Returning to the STRINGS module, in strupper, after initializing cx to the string length,
exiting immediately if the length is O (see lines 175-182), the instructions at lines 183-192
use lodsb, stosb, and loop to scan the string, examining each character with two cmp in-
structions. If a lowercase letter is found, line 189 adjusts the ASCII value to uppercase. Notice
how the expression in sub al, 'a'-'A' subtracts from al the numeric difference between
ASCII lowercase and uppercase letters. Characters in assembly language are just numbers
and, as this demonstrates, you can use them directly in numeric expressions. (BASIC and
Pascal programmers may find this a bit strange. C programmers are no doubt right at home.)
Remember that Turbo Assembler evaluates this and other constant expressions during as-
sembly, not at run time. You could write sub al,32 to do the same thing, but then the pur-
pose of the instruction would be less clear.

StrCompare (201-229)

Comparing two strings alphabetically is a surprisingly simple job, as you can see in the StrCompare
procedure. To use StrCompare, assign the addresses of two strings to si and di and call the pro-
cedure. After that, use one of the unsigned conditional jump instructions jb, jbe, je, ja, or jae
to test the result of the comparison. For example, to compare strings s1 and s2 and then jump to
label stringsLess if s1 is alphabetically less than s2, you can write:
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DATASEG

s1 db 80 dup (0)
s2 db 40 dup (0)
CODESEG

mov si, OFFSET si

ASCIIZ string variables, presumably
assigned characters elsewhere

Address first string with si

mov di, OFFSET s2 ; Address second string with di
call StrCompare ; Compare si1 and s2

ib  StrinasLess ¢ Jdump if et < 2

jg StringsGreater ; Jump if s1 > s2

; If here, s1 = s2!

You can use multiple jumps as shown here without calling strcompare a second time. The
string variables do not have to be the same size, and the string lengths can be 0. Both strings
must end with 0 bytes, or strcompare will start behaving strangely.

The code works by using 1odsb and scasb at lines 219-220, loading a single character into
al and comparing the ASCII value with the character at [es:di]. These two instructions
also advance si and di by 1 (because of the previous c1d instruction at line 217). The jne at
line 221 exits the loop if the comparison fails. Obviously, if any characters are different, so
are the strings, and the alphabetic result is known at the first such difference found. The or
instruction at line 222 checks whether a1 is 0, indicating that the end of the first string at
ds:siwas found before reaching the end of the second string at es: di. If the end is not found,
the jne at line 223 continues the comparison; otherwise, the loop ends.

You might be wondering what happens if the second string at es:di is shorter than the first
at ds:si. In this event, assuming that all characters are equal up to the end of the shorter
string, the scasb at line 220 compares a character from the first string at ds: si with the null
terminator at the end of the second string at es:di. Obviously, this comparison fails; there-
fore, the result indicates that the longer string is alphabetically greater than the shorter. In
other words, this comparison actually involves the null terminator, which is not a character
in the string. However, the result is correct.

It may take a little effort to understand all this by simply reading the text and program. For
a better picture of how strCompare works, try running a small test program in Turbo Debugger
and compare different strings. Watch in particular the cf and zf flags during the loop at
lines 218-223.

StrDelete (231-273)

StrDelete deletes one or more characters starting at any position in a string and prevents
you from deleting more characters than exist in the string, making it easy to perform jobs
such as stripping the extension from the end of a filename or limiting responses to a certain
number of characters. Assign to di the address of any ASCIIZ string variable, set dx to the
index of the first character to delete (starting with 0 for the first character in the string), and
assign to cx the number of characters to delete. For example, this deletes the phrase “and
tigers” plus one space from a string:
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DATASEG

string db ‘'Lions and tigers and bears, oh my!', 0
CODESEG

mov di, OFFSET string ; Address string with es:di

mov dx, 6 ; Index to the "a" in and

mov cx, 11 ; Number of chars in "and tigers "
call StrDelete ; Delete 11 chars at string[6]

NOT

StrDelete works in two stages. Lines 259-261 handle the condition where you try to delete
more characters than are in the string. In this case, the mov at line 260 inserts a null at the end
of the new string and exits. Lines 263-266 delete characters by calling MoveLeft with both
si and di addressing the same string. This moves the end of the string (including the null

‘terminator) over top of the deleted characters. Notice the short operator (line 261) added to

the jmp target address, telling Turbo Assembler that label @@99: is no more than about 127
bytes distant. This helps the assembler generate a more efficient form of jmp than is required
to jump farther away.

Strinsert (275-325)

Call strinsert to insert characters from one string into another at any position. Assign to si
the address of the source string (the one to insert into the other) and to di the address of the
destination string (the one to receive the insertion). Assign to dx the index into the destination
string where you want to begin the insertion. Remember that the first character is at index 0.
The source string is not changed. This example inserts the string 'tab-A" into another string:

DATASEG

destination db 'Insert into slot-B ', 0

source db ‘tab-A ', 0

CODESEG

mov si, OFFSET source ; Address source string with ds:si
mov di, OFFSET destination ; Address destination with es:di
mov dx, 7 ; dx = index of "I" in destination
call StriInsert ; Insert source into destination
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By this time, you should be able to understand the instructions for strinsert from the com-
ments in the listing. Hint: The call to MoveRight at line 313 punches a hole in the destina-
tion string just large enough to hold the insertion. Then the call to MoveLeft at line 319
copies the source-string characters into the hole. The other instructions initialize registers to
prepare for these two block moves.

StrConcat (327-359)

StrConcat concatenates (joins) one string to another. The destination string at es:di must be
large enough to hold the characters it now has plus the characters from the source string at ds: si.
The source string is not changed. The following changes “This is” to “This is the end!”:

DATASEG

source db 'the end!', 0

destination db 'This is 'y 0

CODESEG

mov si, OFFSET source ; Address source with ds:si

mov di, OFFSET destination ; Address destination with es:di
call StrConcat ; Attach source to destination

strconcat calls StrLength at lines 346 and 349, once to find the end of the destination string
and again to find the length of the source string. Notice how the xchg instructions at 348
and 351 temporarily swap si and di for these subroutine calls. After these steps, a call to
MoveLeft at line 353 performs the attachment.

StrCopy (361-390)

StrCopy copies one string variable to another, which must be at least as long as the length of
the original string plus 1 byte for the null terminator. The procedure is easy to use. Just as-
sign the address of the source string to si and the destination to di. Then call strcopy. Any
characters in the destination string are subject to permanent erasure. For example, to copy
the characters in one string to an uninitialized string variable, you could write:

DATASEG

st db '‘Original string', 0

s2 db 80 dup (?) ; Uninitialized string variable
CODESEG

mov si, OFFSET s1 ; Address source string with si

mov di, OFFSET s2 ; Address destination string with di
call StrCopy ; Copy string s1 and s2

The code to Strcopy isn’t difficult to understand. An xchg instruction at line 378 swaps si
and di so that StrLength, which uses di, can return the length of the source string. A second
xchg (line 381) then restores the original register values. The other instructions in the proce-
dure prepare registers for the call to MoveLeft, which performs the actual copy, moving the
bytes of st and s2. ‘
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StrPos (392-439)

strPos is the most complex in the STRINGS module, although the individual instructions
should all be familiar to you. Call Strpos to determine if and when a substring at ds: si exists
inside a target string at es: di. After StrPos returns, if zf equals 1, then dx equals the index in
the target string where the substring begins. If zf is 0, then the substring was not found in
the target and the value in dx is meaningless. An example shows how to use StrpPos to deter-
mine if the extension .ASM is in a file-name string:

DATASEG

extension db 'LASM', 0
filename db 'MYTEST.ASM', @
CODESEG

mov si, OFFSET extension ; Address substring with ds:si

mov di, OFFSET filename ; Address target string with es:di

call StrPos ; Search for substring in target

jz  foundExtension ; Jump if substring found at dx

jmp notfound ; Jump if substring not found

After the subroutine checks that the substring length is less than or equal to the target string’s
length—otherwise, there’s no sense continuing the search—lines 421-429 call strcompare
repeatedly until finding the substring or reaching the end of the target. The mov instructions
at lines 422, 423, and 425 temporarily replace characters in the target with nulls, using the
powerful base-indexed addressing mode, indexing the string at bx with register di. Repeat-
ing this operation and advancing a character at a time in the target eventually examines all
possible positions where the substring might be located.

StrRemove (441-471)

Calling three other subroutines in the STRINGS module, strremove is handy for removing
substrings from strings. It’s simple to use, too. Assign to ds:si the address of the substring to
delete. Assign to es:di the address of a target string. Then call strRemove. If the substring is
found in the target, the characters are removed; otherwise, no changes to the target are made.
The substring is never changed. As in strPos, the zf flag indicates the result of the removal:
1 if the substring was found and removed or 0 if not. Here’s an example that deletes an area
code from a phone number string:

DATASEG

phoneNumber db '(800)-555-1212"', 0@ ; Target string
areaCode db '(800)-', 0 ; String to delete
CODESEG

mov si, OFFSET areaCode ; Address substring to delete
mov di, OFFSET phoneNumber ; Address target string

call StrRemove ; Delete substring from target
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Of interest in StrRemove are the pushf and popf instructions at lines 461 and 466, which save
and restore the flag registers on the stack. This allows the procedure to return the zf flag
result of the call to Strpos at line 459—necessary because the calls to StrLength and StrDelete
change the flags.

Summary

All references to data take one of three forms: immediate, register, and memory. Immediate
data is stored directly in machine-code instructions. Register data refers to values held in
registers such as ax and ch. Memory references allow five variations: direct, register-indirect,
base, indexed, and base-indexed. Despite the many different addressing methods available,
the goal of all memory-addressing modes is to help the processor to form the effective ad-
dress, a 16-bit unsigned offset from the start of a memory segment addressed by one of the
four segment registers.

Expressions are reduced during assembly to constant values, which programs can use. Un-
like a high-level language’s expressions, expressions in assembly language are not evaluated
at run time. Expressions can employ a variety of operators to combine labels, addresses, and
other values in many different ways.

Simple variables are created by reserving space in a data segment with directives such as db
and dw. The buP operator can be added to these directives to reserve blocks of space. Initial-
ized data is stored in the program’s code file on disk. Uninitialized data is allocated at run
time and is not preset to any specific values. The db directive can be used to allocate string
variables delimited by single or double quotes.

The scope of local labels extends only to the next nonlocal label above or below. A local label
is similar to a global label but begins with the symbol ee. Local labels help conserve memory
by letting the assembler reuse RAM for other local labels. They also reduce the need to think
up new label names for temporary use.

Modular programming divides large jobs into easy-to-manage pieces. Individual modules
are assembled separately and then linked to a host program to create the finished code. Modules
can export code, numeric constants, and variable labels in PuBLIC directives for other mod-
ules and programs to share. Programs and modules import symbols from other modules in
EXTRN directives. The TLIB utility program stores object-code modules in library files, which
can simplify linking multiple modules.
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Exercises

5.1. Give examples of instructions that use immediate, register, and memory data.

5.2. Give examples of instructions that use each of the five memory-addressing
modes.

5.3. Construct a data segment with byte, word, string, and one 1,024-byte buffer
variables. Put the buffer into the uninitialized data-segment area.

5.4. Write a subroutine to initialize your buffer in Exercise 5.3 to contain sequential
byte values ranging from 0 to 255.

5.5. Insert your subroutine from Exercise 5.4 into an object-code module. Then write
a host program to call your subroutine. What steps are required to assemble and
link your module and program?

5.6. What are some of the advantages of storing object-code modules in library files?
5.7. What does a PuBLIC directive do? What does EXTRN do?

5.8. To which local label does the following jmp refer?

@e40:
inc ax
Repeat:
jmp @@40
cmp ax, 0
j1  Repeat
lodsb
je @EExit
@Q40:
Xor cx, cXx
@RExit:
mov ax, 04Ch
int 21h

5.9. Which of the following equates can be exported in a PuBLIC directive? What
EXTRN directive is needed to import these symbols into a program?

IDEAL

MaxCount = 1000
cr EQU 13
1f EQU 10
YesAnswer = 'Y'

MaxSize EQU 4
BufferSize = MaxCount * MaxSize

5.10. Show three ways to declare a 20-character string variable.

5.11. Suppose you have the modules GETDATA, PRINTER, READTEXT, and the
library file MTA.LIB. What instructions do you need to use to assemble and link
a main program that uses the three modules plus the STRIO and STRINGS
modules in the library?
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5.12. What TLIB commands can you use to install the three modules in Exercise 5.112
5.13. Suppose there is a byte variable named Flag stored in the code segment. What
instruction or instructions do you need to use to load this byte into register dh?
5.14. Declare the following string using a db directive:
"This 'string' can't have 'too' many auotes." she <aid.
Projects
5.1. Write improved versions of the MoveLeft and MoveRight procedures in the
STRINGS module by moving 16-bit words at a time with movsw when the cx
byte count is even.
5.2. Write a series of test procedures to put the STRINGS and STRIO modules
through their paces.
5.3. Rewrite Strconcat so that it calls StrInsert instead of MoveLeft. Verify that your
procedure operates identically to the original.
5.4. Write a module to send ASCIIZ strings to the printer.
5.5. Write a program to use your printer module from Project 5.4 to initialize various
print options on your printer.
5.6. [Advanced] Write a new STRINGS module to operate on byte-length strings. A

byte-length string stores the length of the string in the first byte. The second and
subsequent bytes stores the characters of the string. There is no null terminator,
and string lengths are limited to 255 characters. Your STRINGS module should
use the same procedure names as the ASIIZ STRINGS module in this chapter.
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Structures

A structure is a named variable that contains other variables, called fields. The keyword sTRUC
begins the structure, followed on the same line by any name you want, for example, MyStruct.
A matching keyword ENDS follows the last field in the structure. You can attach a copy of the
structure’s name after ENDS or leave the name out—similar to the way you can repeat a pro-
cedure name after ENDP. For example, this structure contains three fields representing a date:
STRUC Date

day db 1 ; Day field--default value = 1

month db ? ; Month field--no default value

year dw 1991 ; Year field--default value = 1991
ENDS Date ; "Date" is optional here
You can insert fields of any type inside a structure, using the same methods that you use to
declare plain variables. This example has three fields: day, month, and year. The first two fields
are single bytes, with the first of these values initialized to 1. The second byte field in
uninitialized. The third field is a word, initialized to 1991. The indentation of each field is
purely for show. When defining structures such as this, remember these important points:

¢ A structure is not a variable. A structure is a schematic for a variable.

* Structures may be declared anywhere. The STRUC directive does not have to be
placed in the program’s data segment, although it certainly can be.

* A structure tells Turbo Assembler about the design of variables that you plan to
declare later on or that already exist elsewhere in memory.

* Even though you use directives such as db and dw to define the types of a structure’s
fields, the structure does not reserve space in the data segment or cause any bytes to
be written to the finished program.

Declaring Structured Variables

To use a structure design, you must reserve space in memory for the structure’s fields. The
result is a variable that has the design of the structure. Start each such variable declaration
with a label, followed by the structure name, and ending with a list of default values in angle
brackets <>. Leave the brackets empty to use the defaults (if any) defined earlier in the struc-
ture definition. Returning to the example Date structure again, the program’s data segment
might declare a Date variable like this:

DATASEG

birthDay pate <> ; 1-0-1991

A label birthpay starts the variable declaration. Next comes the structure name Date at the
same place you would normally use simple directives like dw. The empty angle brackets cause
this date’s fields to assume the default values declared in the structure. Uninitialized default
field values—as in the month field here—are set to 0 unless all fields in the structure are
uninitialized, and the variable is declared in the program’s uninitialized data segment area.
In that case, the actual field values are undefined. Here are a few more examples:
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DATASEG

today Date <5,10> ; 5-10-1991
dayInDayOut Date <11,12,1912> ; 11-12-1912
monthOfSundays Date <,8,> ; 1-8-1991

The today date variable replaces the first two default values—day and month—with 5 and
10. The missing third field value assumes the default from the structure design, here 1991.
The second variabie aayinbayout repiaces ail three defauit values. The third variable
monthOfSundays specifies a new month value while using the defaults for others, here chang-
ing month to 8. The first comma is needed to “get to” the second structure field. The second
comma is not needed, and you could also write:

monthOfSundays Date <,8>

A Structured Demo

A good way to learn more about structures is to examine a few sample structured variables
with Turbo Debugger using Listing 6.1., STRUC.ASM. Refer to the numbered experiments
following the listing after you assemble, link, and load the program into Turbo Debugger
with the commands:

tasm /zi struc

tlink /v struc
td struc

Listing 6.1. STRUC.ASM.

1: STITLE "TD Structure Demo -- by Tom Swan"

2:

3: IDEAL

4:

5: MODEL small

6: STACK 256

7:

8: STRUC Date

9: day db 1 ; Day--default value = 1

10: month db ? ; Month--no default value
11: year dw 1991 ; Year--default value = 1991
12: ENDS Date

13:

14: STRUC CityState

15: city db | RHAHBHAB AR AR AHBRS, © ; 20 or so chars
16: state db "##', 0 ; 2 chars
17: ENDS CityState

18:

19:
20: DATASEG
21:
22: exCode db 0
23:

continues
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Listing 6.1. continued

24: today Date <>

25: birthDay Date <8,8,1988>

26: earthDay Date <1,1,2001>

27: newYear Date <,,1990>

28:

29: address CityState <>

30: glitterTown CityState <'Hollywood', 'CA'>

31: pennState CityState <'Pennstate', 'PA'>

32: hotSpot CityState <'Brownsville', 'TX'>

33: defaultState CityState <,'NH'>

34: defaultCity CityState <'New York City'>

35:

36:

37: CODESEG

38:

39: Start:

40: mov ax, @data ; Initialize DS to address
41: mov ds, ax ; of data segment

42:

43: ; Note: run in Turbo Debugger--program doesn't do anything

44:

45: Exit:

46: mov ah, 04Ch ; DOS function: Exit program
47: mov al, [exCode] ; Return exit code value
48: int 21h ; Call DOS. Terminate program
49:

50: END Start ; End of program / entry point
Running the STRUC Demo

You should have assembled STRUC and loaded the code into Turbo Debugger. Follow these

suggested experiments to see how structured variables are stored in memory:

1. Press the Ale-V and V keys to select the View:Variables command. A window will
pop into view, listing all the program’s variables by name.

2. Press Tab to move the selection bar into the variable list, and then press the down
arrow key to move the bar to “today.” Notice the field values listed in braces to the
right of the field names, giving you a quick glance of the data stored in the struc-
tured variables.

3. Press Curl-I to inspect the today variable. (You can also press F5 at this point to
zoom the small window to full screen for a less constricted view.) Turbo Debugger
lists each field on a separate line, using the names from the STRUC definition and
showing you the actual values stored in memory. Because db can reserve space for
both ASCII characters and bytes, the debugger shows these values both ways. Just
ignore the characters for noncharacter byte fields. Integer values are shown in
decimal and hexadecimal in parentheses.

4. Press Alt-F3 or Esc to close the inspection window. Move the selector bar down to
200 the next variable (birthDay) and press Enter—a shorthand method to display an
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inspection window. Compare the listed field values with those in the program at
line 25. Press Alt-F3 or Esc and repeat these same steps for the remaining two dates
at lines 26-27.

. Lines 14-17 declare another structure CityState, with two string fields city and
state. So that you can see the default values in Turbo Debugger, these strings are
picinitialized 0 hatch uratks. Normaily, you’d inidalize string vaiues with less
obtrusive symbols such as blanks or nulls. Starting again from the Variables win-
dow, move the selector bar to address and press Enter.

. The two default fields are now displayed in the inspection window. The bottom of
this window tells you the type and size of the structure and individual fields. Use the
cursor keys to move the selector bar to one field (watch how the bottom line
changes) and press Enter again. This opens up a new inspection window, allowing
you to view the individual bytes in a field variable. Move the selector bar down to
any single byte and press Enter one more time to open yet another inspection
window, this time showing the address of an individual byte. Being able to step
down into the byte values of a structured variable is one of Turbo Debugger’s best
features for assembly language programming, where finding data structures in
memory can sometimes be extremely frustrating.

. Press Esc several times until only the Variables window is again active (with double-
line borders). Move the selector bar down to the next variable value pennstate, and
press Enter. Zoom to full screen with F5. Compare the displayed strings with the
defaults at line 31. Notice that only the leading portion of the string field is replaced
by the text in the angle brackets. The rest of the string is padded (filled) with the
default characters from the STRUC definition.

. Lines 15 and 16 declare this structure’s fields as ASCIIZ strings, ending in null
characters. But, on your display, the nulls appear to be missing. The reason for this
discrepancy is that Turbo Debugger displays only the initial field value. To prove
that the nulls are still where they should be, move the selector bar to city and press
Enter. Then press the PgDn key until the bar rests on the final byte of this field (at
line 19). Press Enter again and jot down the address (6C89:0060 for me). Press Esc
twice, then select the state field. Press Enter. The address on my screen is
6C89:0062—indicating that there is an invisible byte at 6C89:061. We've found
the null!

. To see the nulls in the string variables, press Esc several times to return to the
Variables window. Press Alt-V and D to select the View:Dump command. Press
Curl-G and enter the string address from step 8—6C89h:0060h for me. You must
type the small 4 letters after the segment and offset address values. Press F5 to zoom.
You are now looking at the structured variable values as stored in the program’s data
segment. Try to pick out the nulls, which separate the individual string fields.
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10. There’s no need to run this program—it doesn’t do anything beyond showing you
how structures are assembled. When you’re done experimenting, press Alt-X to
return to DOS.

As you can see from these notes, string fields in structures are fixed-length items. The hatch
marks (#) in the default values at lines 15-16 are replaced by new values assigned in the angle
brackets at lines 29-34. Turbo Assembler in Ideal mode fills the rest of the string with the
default characters in the structure definition. (In MASM mode, any remaining characters
are magically changed to spaces—even if this isn’t what you want. Ideal-mode structures are
much easier to use.) In Turbo Debugger, you can normally see only the first of a list of val-
ues declared in db and dw directives. To see each value, you could modify the citystate struc-
ture definition at lines 14-17, placing each field value on separate lines:

STRUC  CityState

city db | BRI R R
cnull db 0

state db "##'

snull db 0

ENDS CityState

Because of the additional fields that now reserve bytes for the string null terminators, you
also have to modify the variable declarations at lines 29-34, adding new values for each field.
If you don’t do this, you'll receive an “override” error during assembly, which happens when
you try to override a default value such as a single byte with a multiple-byte string. Change
lines 29-34 as follows, reassemble, and inspect the new variables with Turbo Debugger:

address CityState <>

glitterTown CityState <'Hollywood',Q,'CA',0>
pennState CityState <'Pennstate',0, 'PA',0>
hotSpot CityState <'Brownsville',0,'TX',0>
defaultState CityState <,, 'NH'>

defaultCity CityState <'New York City'>

Using Structured Variables

Using the fields in a structured variable is only a little more difficult than using simple vari-
ables, as explained in Chapter 5. All of the same addressing modes are available. Because field
names are contained by the structure definition, to refer to an individual field, you must
write both the structure and the field names, separating the two with a period. Refer back to
Listing 6.1. To assign a new value to the day field in today, you can assign an immediate
value to a field in memory with:

mov [today.day]l, 5 ; Change day to 5
You can also load field values into registers as in this instruction, which reads the year into ax:

mov ax, [today.year] ; Get year into ax
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Other variations are possible. You can add, subtract, read, write, and logically combine fields
and registers. Remember that in all cases, you have to give both the structure and variable
names so the assembler can generate the correct address to your fields. Here are a few more
examples:

inc [earthDay.day] ; Add 1 to day field
add  InewVear year], oX ; Add ox to year Tisld
cmp [today.month], 8 ; Does month = 87

STRIO Structures

In Chapter 5, I promised to explain the strBuffer structure at lines 18-22 in STRIO.ASM,
Listing 5.2. For reference, that data structure is repeated here:

BufSize EQU 255 ; Maximum string size
STRUC StrBuffer

maxLen db BufSize ; Maximum buffer Length
strlen db 0 ; String Length

chars db BufSize DUP (?) ; Buffer for StrRead

ENDS strBuffer

BufSize is an equate equal to 255, the maximum-length string that DOS can read. The
strBuffer structure uses this value to declare three fields in the form required by DOS func-
tion OAh that reads strings from the standard input file (usually the keyboard). strread calls
this routine to let you enter strings into variables. (See lines 39-78 in Listing 5.2.) This raw
input is then converted to ASCIIZ format for use with routines in STRINGS, STRIO, and
other modules in this book.

Line 27 in Listing 5.2 declares a variable buffer of the StrBuffer structure, using the default
values in the structure definition. StrRead passes the address of this variable to DOS, which
handles all the keyboard-processing details, limiting the result to the maximum length specified
in field maxLen, storing the actual string length in field strLen, and inserting characters (if
any) into field chars.
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When you are done typing, pressing Enter causes DOS to set field strien to the number of
characters you typed. DOS also adds an ASCII carriage return to the end of the string. Be-
cause this is the wrong terminator for the ASCIIZ format, lines 66-68 in strRead replace the
carriage return with an ASCII null before copying the string to the program’s variable (lines
69-70).

Notice how the program refers to string fields at lines 62, 64, 67, 68, and 69 using both
direct- and base-addressing modes. In each case, the structure name is followed by a period
and a field name. Line 62 stores the value of c1 into the maxLen field of buffer. Line 64 shows
how to find the offset address of a specific field maxLen. Line 68 adds the value of register bx
to the start of the chars field, locating the address of the carriage return stored in chars.

More About Numeric Variables

In assembly language programs, you can represent values in hexadecimal, binary, or deci-
mal. But, because the three number systems share the same digit symbols, you have to tell
the assembler which number system you mean. To the end of your numbers, add a 4 for
binary and an 4 for hexadecimal. Add nothing or  for decimal, the usual default for all
numbers. For example, these variables represent the same values in the three number bases:

vi dw 0100111101011100b ; Binary

v2 dw  04F5Ch ; Hexadecimal

v3 dw 20316 ; Decimal (default)
v4 dw 20316d ; Decimal

Notice that the hex value (04F5Ch) begins with a leading 0. This 0 is required only if the
first digit is A-F as in the value OFACEh. Even so, it’s not a bad idea to include the 0 any-
way—if only to be consistent. Hex values must begin with decimal digits because the assem-
bler can’t know whether FACEh is a label or a value. As a result, you must observe one strict
rule when writing numeric values: The first digit of all values in any base must be a digit—
0 or 1 for binary; 0 to 9 for decimal and hex. Adding a leading 0 to hex value satisfies this

rule.

Using RADIX

Unless you end a number with & or 4, Turbo Assembler assumes the value is decimal. To
change this default behavior, use the RADIX directive. (Radix means “number base.”) For
example, to make hexadecimal the default radix, use the command:

RADIX 16 ; Default radix is hexadecimal
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For most purposes, it’s probably best to stick with the assembler’s default decimal radix and
use »and 4 to specify your hexadecimal and binary values. If you forget to change the RADIX
to hexadecimal in a new program, you could easily mistake 100 for 256 decimal. There’s
just no mistaking 0100h as a hexadecimal value.

NOT

Signed and Unsigned Integers

When declaring values with db and dw, be aware of the differences between signed and un-
signed values, as explained in Chapter 3. Unlike high-level languages, assembly language
enforces no limits on signed number ranges; therefore, as long as the value you specify fits
within the space you allocate, the assembler accepts your every wish and command. For ex-
ample, you can write:

vi dw 32768 ; 08000h
v2 dw -32768 ; 08000h !

v3 dw -1 ; OFFFFh

v4 dw 65535 i OFFFFh !

When Turbo Assembler stores these values in memory, the results may not be what you expect.
Variable v1 is stored as the unsigned value 32,768 or 08000h. (Note: Commas are used in
numbers here to make them easier to read. You can’t add commas to numbers in programs.)
Notice that this value is identical to the signed value -32,768—at least it is in the world of
fixed-length binary values in computer memory. Similarly, -1 and 65,535 both assemble to
the identical value OFFFFh. As this demonstrates, even though the allowable range of values
is-32,768 to +65,535, values from -32,768 to -1 and from 32,768 to 65,535 are represented
identically in binary. A thorough understanding of binary representations and two’s comple-
ment notation is the best way to avoid confusion with these idiosyncrasies of assembly lan-
guage programming.

Floating-Point Numbers

You can also declare floating-point numbers with the dt directive, which reserves 10 bytes of
memory, much the same as dw reserves 2 bytes. The result of dt with a floating-point value
is a binary 10-byte real number in standard IEEE (Institute for Electrical and Electronic
Engineers) format. These values are compatible with the format used by 8087, 80287, and
80387 numeric coprocessors. You can also exchange floating-point values in your assembly
language programs with most high-level languages to process floating-point expressions.
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Without a subroutine package to display and process floating-point values in assembly lan-
guage, floating-point values are difficult to use. To declare a floating-point number, use dt
this way:

fp dt 3.14159 ; 4000C90FCF80DC33721Dh

Binary-Coded Decimals

Another use for dt is to declare packed binary-coded-decimal (BCD) numbers. These values
are useful especially in business calculations where large numbers are frequently required
but where the round-off errors possible with floating-point values are unacceptable. BCD
values take more room (10 bytes each) and require more time to process than byte and word
integers, so you won’t use this format except in special cases. (Chapter 11 describes BCD
numbers in detail.) To declare a packed BCD value, use the same dt directive as for floating-
point values, but don’t use a decimal point. For example:

bcd1 dt 1234
bcd2 dt 9876543210
bcd3 dt 250000

Each of these declarations reserves 10 bytes of memory, storing the initialized value with 2
digits per byte. In other words, a BCD value can have up to 20 digits. Values are stored in
reverse order, so that the previous examples appear in memory with each digit assigned to a

4-bit nybble in the byte:

nnnn:0000 34 12 00 00 00 00 00 00 00 00
nnnn:0000 10 32 54 76 98 00 00 00 00 00
nnnn:0000 00 00 25 00 00 00 00 00 00 00

Arrays in Assembly Language

There are no native commands, structures, or methods for declaring and using arrays in as-
sembly language programs. In high-level languages such as Pascal and C, you can declare
arrays and then refer to array items with an index variable. For example, a Pascal program
might declare an array of ten integers, indexed from 0 to 9:

VAR intArray : ARRAY[ @ .. 9 ] OF Integer;
In the program, statements can then refer to the array, perhaps using an index variable for a
FOR loop to assign values to each array position:

FOR I := 0 TO 9 DO

intArray[ I ] := I;
For those who are not familiar with Pascal, this statement assigns the values 0 through 9 to
the ten arrayed integers. C and BASIC programmers have similar ways to create and use arrays.
In assembly language, managing arrays is a little more difficult, but also more flexible
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because itis up to you to write the COdC to access array Valucs. One way to create an integer
array, for example, is to use the DUP operator:

anArray db 10 DUP (?) ; Array of 10 integers

You can also define ten values in sequence, declaring and initializing the array in a single

anArray db e, 1, 2, 3, 4, 5,6, 7,8, 9

Arrays of other structures such as strings and STRUC variable take more effort. For instance,
suppose you need an array of four 20-byte strings. Because this array is so small, you may as
well use four separate variables:

anArray db 20 DUP (?), © ; anArray[0]
db 20 DUP (?), 0 ; anArray[1]
db 20 DUP (?), 0 ; anArray([2]
db 20 DUP (?), © ; anArray[3]

The four variables are stored consecutively in memory; therefore, the same four 20-byte strings
(plus 1 byte for the string terminator) can be accessed as individual variables or as a structure
of four arrayed strings. Unless you love typing long programs, this approach may be imprac-
tical for creating large arrays. Consider how you might create space for one hundred 20-byte
strings. Using two new directives LABEL and REPT, you can write:

LABEL anArray Byte
REPT 100

db 20 DUP (?), O

ENDM

The first line declares the label anArray of type Byte. Other type names you can use here are
Word, Dword, Fword, Pword, DataPtr, Qword, and Tbyte. Or you can use a structure name. The
LABEL directive tells the assembler how to address the data that follows—it doesn’t reserve
any memory space. In this example, the data that follows are strings, which are always ad-
dressed as single bytes. The REPT (Repeat) command repeats any assembly language state-
ment for a certain number of times, here 100. Everything between REPT and EnoM (End Macro)
is repeated as though you had typed this line so many times. (The ENDM command also ends
macro definitions, a subject for Chapter 8.)

One useful trick is to change the declaration each time in the definition. For example, to
create an array of ten integers and assign the values 0 through 9 to each array position, you
can use this declaration:

value = 0

LABEL anArray  Word
REPT 10

dw value

value = value + 1

ENDM
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The result is an array of word integers with the values 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. The
numeric value equate is initialized to 0. As you recall from Chapter 5, symbols defined with
equal signs can be redefined later—the key to this method. Inside the REPT definition, a dw
directive defines one word of memory equal to value. After this, value is increased by 1 for
the next pass. Remember that expressions such as value = value + 1 are evaluated at assem-
bly time and ¢hat all the actions just described take place during assembly—not when the
program runs. The result is an array of ten words initialized to successive values. No code is
generated by these commands. '

NOTE

Changing Types with LABEL

The LABEL directive is used most often to assign two or more labels of different types to the
same data in memory. With this technique, you can read and write variables as bytes in some
instructions but as words (or other types) elsewhere. The directive has three parts:

LABEL identifier type

The identifier is treated the same as any other label. The #ype can be near, far, proc, byte,
word, dword, fword, pword, dataptr, qword, or tbyte. The #ype can also be the name of a STRUC
data structure. Using LABEL, you can declare a value as two bytes, but view the value as a 16-
bit word:

LABEL ByteValue byte

WordvValue dw  01234h

The hexadecimal value 01234h is labeled as wordvalue and declared as a 16-bit word with
dw. But the preceding LABEL creates a second byte label Bytevalue, which addresses the same
value in memory. This lets you write instructions such as:

mov ax, [WordValue] ; Get full 16-bit value
mov bl, [Bytevalue] ; Get 8-bit LSB
mov bh, [Bytevalue + 1] ; Get 8-bit MSB

The first mov loads the full 16-bit value, setting ax to 01234h. The second mov loads only the
first 8 bits of this same value, setting bl to 034h. The third mov loads the second 8 bits, set-
ting bh to 012h. Thus, the final two instructions set bx to the same value as ax. (Remember
that words are stored in byte-swapped order—the value 01234h is stored in memory as the
two bytes 034h and 012h.)
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Using LABEL to assign labels of different types to variables is even more useful for addressing
structures as collections of typed fields, but also as streams of 16-bit words. Using the bate
structure from the beginning of this chapter, you could write:

LABEL DayMonth word

OneDay Date <>

OneDay is a single structured variable of type Date. The label payMonth addresses this same
memory but considers the data to be of type word. In the program’s code, you can refer to
the first two fields in OneDay normally as OneDay .day and Onebay.month. Or, because of the
additional label, you can load these two byte fields directly into one 16-bit register:

mov ax, [DayMonth] ; Load day and month into ax
mov al, [OneDay.day] ; Load day into ah
mov ah, [OneDay.month] ; Load month into al

The first mov performs the identical function as the last two mov instructions. Sometimes, as
this shows, using LABEL can help cut out an instruction or two, and, if that instruction is
repeated often, this will also improve program performance.

Indexing Arrays

Now that you know how to declare arrays, the next step is to investigate ways to read and
write arrayed values. For example, how do you refer to item number 52 The key to the an-
swer is in realizing that array indexes in assembly language are simply addresses—as are all
references to variables; therefore, regardless of the type of data stored in an array, the goal of
indexing individual values reduces to these two steps:

* Multiply the size of the array elements by the array index 1.
* Add the result to the array’s base address.

For example, in a simple array of bytes, if /is 0, then /x 2(0) plus the address of arraylocates
the first value at @r7ay/0]. The second value (array[1]) is located at the base address of array
plus 1, and so on. As Figure 6.1 shows, the goal is to convert array index values such as these
to addresses in memory. Index 0 is equivalent to the address, 000D—the same as the base
address of the entire array. Index 1 corresponds to 000E; index 2, to 000F; on down to index
9, which locates the value at offset 0016. A real-life example will help make this process clear.
Byte arrays are the easiest to manage, so let’s take those first. To load into al the 64th ele-
ment of a 100-byte array, you can write:

DATASEG

anArray db 100 DUP (0)

CODESEG
mov al, [anArray + 63]
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Figure 6.1. Addresses Low Memory Indexes
ik ow | w0 | <o
memory. 000E 20 <« [1]
000F 30 <« 2]
0010 40 <« 3]
0011 50 <« [4]
0012 60 <« [5]
0013 70 <« [9]
0014 80 «— [7]
0015 90 <« [g]
0016 100 <« [
High Memory

The 63 in this example is correct because the first array element is at offset 0. An index of 64
would incorrectly locate the 65th item in the array, not the 64th. When calculating array
indexes, you’ll avoid much confusion and frustration if you always remember that the index
range for an array of 100 items is 0 to 99, not 1 to 100.

Adding literal values like 63 as in the previous example doesn’t allow for much flexibility. In
most situations, you'll use a register or memory variable to hold the array index. Using the
base-addressing mode introduced in Chapter 5, you might store an array index value in reg-
ister bx. For example, suppose you have a variable named index and you want to load the
value of anArray[index] into a register. You can write:

DATASEG

index dw  ?

anArray db 100 DUP (?)

CODESEG

mov bx, [index] ; Get index value

mov al, [bx + anArray] ; al <- anArray[index]

The two data declarations reserve space for a 16-bit index and a 100-byte uninitialized array.
In the code segment, the first mov loads the current value of index into bx. The second mov
adds bx to the base address of the array, locating the correct byte and loading the arrayed
value into al. You can also use registers si and di to do the same:
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mov si, [index] ; Get index value
mov al, [si + anArray] ; al <- anArray[index]
mov di, [index] ; Get index value
mov al, [di + anArray] ; al <- anArray[index]

The top two lines perform the same function as the bottom two. Technically, this is the
indexed- not base-addressing mode, although, as you can see, there’s not much practical dif-
ference between the two methods.

Multibyte Array Values

Array addressing becomes trickier when arrayed values occupy more than 1 byte. Because of
the computer’s binary nature, calculating the addresses of multibyte array elements is sim-
plest when the element sizes are powers of 2. In this case, you can use fast shift instructions
to perform the initial multiplication of the index times the value byte size. Adding the result
of this multiplication to the array’s base address locates any arrayed value, as the following
fragment demonstrates:

DATASEG

index dw ?

anArray dw 100 DUP (?)

CODESEG

mov bx, [index] ; Get index value

shl bx, 1 ; bx <- index * element-size (2)
mov ax, [bx + anArray] ; ax <- anArray[index]

In this example, the element size is 2 bytes; therefore, the easy (and fastest) way to multiply
the index value by 2 is to shift the value left 1 bit. Compare Figure 6.2 with Figure 6.1. As
you can see, addresses to the left increase by 2. The calculate the address of the fifth 2-byte
array value (at index 4), you first multiply 4 x 2 and add the result to the base address of the
array to get the final offset value of 0018h.
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Figure 6.2.

When arrayed element sizes
are powers of 2, translating
indexes to offset addresses is
relatively simple.

Low Memory
Addresses LSB MSB Indexes

0010 <« [0]
0012 <« 1]
0014 « 2]
0016 <« 3]
0018 <«
001A < [5]
001C <« [6]
001E <« [7]
0020 < [g]
0022 < [9]
0024 <« [10]

High Memory

Calculating index addresses when element sizes are not powers of 2 requires some fancy foot-
work to keep the code running as fast as possible. Of course, you can always use mul to per-
form the initial multiplication. Consider an array of elements, each occupying 5 bytes. To
set bx to the offset address of the element at index requires several steps:

mov
mov
mul
mov
add

ax, [index]

bx, 5

bx

bx, ax

bx, OFFSET anArray

3
bl
3
3
3

Get index value into ax

Set bx = element size

dx:ax <- index * element size

move result to bx (ignoring dx)

Set bx <- offset address of element

Only the LSB of the multiplication is important—the high 16 bits in dx of the full 32-bit
result are ignored. (Presumably another part of this program checks to be sure that index
values are within bounds.) The problem with this approach is the mul instruction, which can
take as many as 118 machine cycles to execute. For this reason, it pays to factor out the pow-
ers of 2 and use a combination of shifts and other fast instructions to calculate the addresses
of arrayed values:

mov
mov
shl
shl
add
add

bx, [index]

ax, bx

bx, 1

bx, 1

bx, ax

bx, OFFSET anArray

Get index value into bx

Save value in ax

bx <- bx * 2

bx <- bx * 4 (total)

bx <- bx * 5 (total)

Set bx <- address of element
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The comments in this fragment show the running total in bx. First, two left shifts multiply
bx by 4. Adding this result to the original index value completes the full multiply-by-5.
Obviously, 5 of any value equals 4 of that value plus 1 of that same value. Because 4 is a
power of 2, the program can perform the first part of the multiplication with fast shift in-
structions before completing the result with a simple addition. This entire sequence of in-
Structions runs 74y times faster than a single mul instructon.

Such tricks as these aren’t always possible. Bu, in general, when you can use shifts instead of
muldiplication, the results will be faster. The best approach is to pick array element sizes that
are powers of 2. When that is impossible, try to find a combination of shifts and other in-
structions that will give you the correct result.

Unions and Records

Defined with a UNION directive, a union has the identical form as a STRUC structure. Like struc-
tures, unions contain named fields, often of different data types. The difference between a
union and a structure is that union fields overlay each other within the variable. A union
with three byte fields, in other words, actually occupies only a single byte. As the next ex-
ample shows, you can use this feature to construct variables that the assembler can reference
as containing more than one type of data, similar to the way you learned how to use LABEL

earlier:

UNION ByteWord
aByte db ?
aword dw  ?

ENDS ByteWord

An ENDs directive ends the union. In this example, aByte overlays the first byte of aword. If
this were a structure, then aByte and aword would be stored in consecutive locations. Be-
cause this is a union, however, aByte and aword are stored at the same location in memory.
Therefore, inserting a value into aByte also changes the LSB of aworad:

mov [aByte], bh ; Store bh at aByte and aWord's LSB

When combined with structures, unions give you powerful ways to process variables. For
example, Figure 6.3 lists a useful structure and union combination that you can use to refer
to variables as 16-bit words and as 8-bit bytes.

Figure 6.3. STRUC  TwoBytes
loByte db ?
hiByte db ?
ENDS TwoBytes

Union with nested
structures.

UNION ByteWord
asBytes TwoBytes <>
asWord dw ?
ENDS ByteWord
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The TwoBytes structure defines two byte fields, LoByte and hiByte. The union ByteWord also
defines two fields. First is asBytes, of the previously defined TwoBytes structure. Next is asword,
a single 16-bit word. Variables of type ByteWord make it easy to refer to locations as both
word and double-byte values without the danger of forgetting that words are stored in byte
reversed order—a problem with the LABEL method. To use the nested union, first declare a
variable, in this case assigned the value of OFFOOh.

DATASEG

data ByteWord <,0FF00h>

You can now refer to data as a TwoBytes structure or as a 16-bit word. A short example dem-
onstrates how to load the same memory locations into either byte or word registers. Because
the TwoBytes structure is nested inside the union, two periods are required to “get to” the
byte fields. Notice how the field names reduce the danger of accidentally loading the wrong
byte of a word into an 8-bit register:

CODESEG

mov al, [data.asBytes.LoByte] ; Load LSB into al
mov ah, [data.asBytes.hiByte] ; Load MSB into ah
mov ax, [data.asWord] ; Same result

Bit Fields

Many times in assembly language programming you’ll need to examine and change one or
more bits in a byte or word value. You've already learned several ways to accomplish this
with logical instructions such as or, and and xor to set and clear individual bits without dis-
turbing others. For example, to set bit number 2 in a byte register, you can use the instruc-
tion.

or al, 00000100b

When doing this, it’s often helpful to write out the values in binary—just remember the fi-
nal 4. As you also learned earlier, and can mask values, setting one or more bits to 0:

and al, 11110000b

Even though writing the values in binary helps to clarify exactly which bits are affected by
the instructions, you still have to count bits and take time to visualize the results of your
logic. In complex programs, it’s very easy to set or reset the wrong bit—a most difficult bug
to find. To make processing bits easier, Turbo Assembler offers two devices—the RECORD and
the MASK.

Declaring RECORD Types

RECORD is a directive that lets you give names to bit fields in bytes and words. You simply
specify the width of each field—in other words, the number of bits the field occupies. Turbo
Assembler then calculates the position of the field for you. For example, this RECORD defines
signedByte as an 8-bit value with two fields:
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RECORD signedByte sign:1, value:7

After the RECORD directive comes the record’s name, followed by a series of named fields. Each
field name ends with a colon and the width of the field in bits. The sign field in this example
is 1 bit long. The value field is 7 bits long. Separate multiple fields with commas. If the total
number of bits is less or equal to 8, Turbo Assembler assumes the record is a byte; otherwise,
itassumes the record is a word. You can’t construct records larger than a word, although you
can create multifield structures containing multiple bit fields, which would accomplish the
same thing. You don’t have to specify exactly 8 or 16 bits, although most programmers do,
inserting dummy fields to flesh out a bit record to account for every bit, whether used or
not.

Creating variables of a RECORD type is similar to creating variables of structures and unions.
In fact, the three forms appear identical, leading to much confusion over the differences
between structures and records. A few samples will clear the air:

DATASEG

V1 signedByte <> ; default values

v2 signedByte <1> ; sign = 1, value = default
v3 signedByte <,5> ; sign - default, value = 5
v4 signedByte <1,127> ; sign = 1, value = 127

v5 signedByte <3,300> ; sign = 1, value = 44

A record variable declaration has three parts: a label, the RECORD name, and two angle brack-
ets with optional values inside. The first sample declares v1 as a variable of type signedByte.
Because no values are specified in brackets, the default values for all bit fields are used. (In
this case, the defaults are 0. In a moment, you'll see how to set other defaults.) The second
sample sets the sign bit of v2 to 1, leaving the value field equal to the default. The third line
sets value to 5, letting the sign field assume the default value. The fourth line assigns values
to both fields in the variable, setting sign to 1 and value to 127. The fifth line shows what
happens when you try to use out-of-range values such as 3 and 300. In this case, the actual
values inserted into the record equal the attempted values modulo (division remainder) 2",
where 7 equals the number of bits in the field.

Setting Default Bit-Field Values

Normally, the default field values in RECORD variables are 0. To change this, add to the field
width an equal sign and the default value you want. For example, to create a RECORD with an
MSD default of 1 and a second field defaulting to 5, you can write:

RECORD minusByte msign:1 = 1, mvalue:7 = 5

Declaring a variable of this type with empty angle brackets sets the msign field to 1 and the
mvalue field to 5. Specifying replacement values in brackets as explained before overrides these
new defaults. Notice that different field names are used here. Even though the names are
contained in the RECORD definition, Turbo Assembler considers these names to be global—
active at all places in the program or module. Therefore, you must use unique field names
among all your RECORD definitions in one module.
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NOTE

Using RECORD Variables

After declaring a RECORD type and a few variables of that type, you can use several different
methods to read and write bit-field values in those variables. To demonstrate how to do this,
we first need a new RECORD type:

RECORD person sex:1,married:1,children:4,xxx:1,age:7,school:2

RECORDs like this one can pack a lot of information into a small space. In this example, only
16 bits are needed to store five facts about a person—with field sex equal to 0 for male and
1 for female, married equal to 0 if false or 1 if true, children ranging from 0 to 15, a 1-bit
dummy field xxxx reserved for future use, an age field ranging from 0 to 127, and school
from 0 to 3, representing four levels of a person’s schooling. Figure 6.4 illustrates how these
fields are packed into one 16-bit word. As with all 16-bit values, the two 8-bit bytes of this
variable are stored in memory in reverse order, with bits 0-7 (LSB) at a lower address than

bits 8-15 (MSB).

What’s in a Field Name?

Turbo Assembler converts bit-field names into the number of right shifts required to move
the field to the rightmost position in the byte or word. The value is equal to the byte or word
bit position of the least significant digit for this field. Referring to the person record, then,
sex = 15, married = 14, children = 10, xxx = 9, age = 2, and school = 0. (See Figure 6.4.)
You can use these field name constants as simple EQU equates. Normally, though, you’ll
use the values to shift bit fields into the rightmost position in a register, making it easy to
process individual field values. The process works in reverse, too. If the children bit-field
value is already in the rightmost position of ax, shifting ax left by the value of children moves
the bit-field value into its proper position, ready to be packed into the record.

Figure 6.4. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A record packed with six
bit fields stores a lot of
information in a small
—1 1 1 l l
space. i — 1 1 1
sex:1 children:4  xxx:1 age:7 school:2

married:1
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Using field names instead of manually counting bits saves time and helps prevent bugs. For
example, to increment the age field, you can shift the appropriate bit-field value to the
rightmost position in a word register, increment the register, and then shift the result back
into position. Before doing this, however, you must strip out other bits from the variable.
To help with this step, Turbo Assembler provides an operator called MASK, which takes the
name of a bir field and generares an apnronriare and magk with birs egual ro 1 in 2ll positions
o T rr-Tr e = Al S r
for this field. A good way to organize your masks is to use names similar to the associated

fields:

maskSex = MASK sex
maskMarried = MASK married
maskChildren = MASK children
maskAge = MASK age
maskSchool = MASK school

Each new identifier—for example, maskSex and maskMarried—is assigned a mask for each
bit field (except for xxx, which we’ll just ignore). The names make the purpose of the various
symbols easy to remember, although you can use whatever names you like. You don’t have
to preface the identifiers with “mask.” With the bit-field names and masks, it’s easy to iso-
late and process bit-field information without having to calculate the positions of fields in
records. An example explains how this works. First, declare a variable named subject of type
person:

DATASEG
subject person <>

Then, to set single bit fields to 1, use or to combine the mask with the record’s current value:

CODESEG
or - [subject], maskSex ; Set sex field = 1
or [subject], maskMarried ; Set married field = 1

To reset single-bit fields to 0, use the NOT operator along with the bit mask, toggling all bits
in the mask. The following shows two ways to proceed:

and [subject], NOT maskSex ; Change sex field to @

mov ax, [subject] ; Load subject into ax

and ax, NOT maskMarried ; Change married field to @
mov [subject], ax ; Store result back in memory

Extracting Bit Fields

For bit fields of more than 1 bit, the process is similar but requires additional steps to isolate
the values. There are several possible methods you could use, but these steps always work:

1. Copy the original variable into a register
2. AND the register with the field mask
3. Shift the register right by the field-name constant
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After copying the variable into a register (either 8 or 16 bits wide, depending on the variable’s
size), step 2 isolates the field’s bits, stripping other fields out of the record, thus setting all
other bits but those in the desired field to 0. Step 3 then shifts the isolated field bits to the
rightmost position in the register. To add a new member to our subject’s family, use these
steps:

mov ax, [subject] ; Step 1--copy the variable
and ax, maskChildren ; Step 2--isolate the bit field
mov cl, children ; Prepare shift count

shr ax, cl ; Step 3--shift field to right
inc ax ; Add 1 to number of children

The mov and and instructions copy the subject variable into ax and strip other fields out of
the value, leaving only the bits that apply to children. After loading the shift count into c1,
the shr instruction shifts the children field to the far right of ax, preparing for inc to incre-
ment this value. If the children field was already rightmost in the variable—making the shift
count equal to 0—the shift instructions can be skipped. For example, you could write:

mov cl, children ; Move shift count into cl
or «c¢l, cl ; Is count = 07
H
H

jz eeto Jump if yes, cl = 0

shr ax, cl Else shift ax, cl times
e@10:

inc ax 5 Add 1 to number of children

A better approach is to use a conditional I directive, which Chapter 8 explains in more detail.
This lets the assembler, rather than the program, decide whether shifting is required. After
completing steps 1 and 2 to copy and mask the record variable, the following instructions
shift the result right only if the children constant is greater than 0:

IF children GT @

mov c¢l, children ; Move nonzero count into cl
shr ax, cl ; Shift ax, cl times

ENDIF
inc ax ; Add 1 to number of children

If the expression in the conditional IF is true, then Turbo Assembler assembles the code up
to the next ENDIF directive. If the expression is false, then the code is ignored. This method
eliminates the unnecessary comparison, jump, and shift instructions of the previous tech-
nique.

Recombining Bit Fields

After extracting a bit field and processing its value, you now need a way to insert the result
back into a record variable. Assuming the result is rightmost in a register, follow these four
steps:

1. Shift the register left by field-name constant

2. AND the register with the field mask
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3. AND the original value with NOT field mask
4. OR the register into the original value

Step 1 shifts the value into its correct position, again using the field name as the shift count
but this time shifting left instead of right. Step 2 is an optional safety valve, which limits the
new value to the field’s width in bits. If you are positive that the new field value is within the
proper range, you can skip this step. But any out-of-range values—accidentally giving our
subject the burden of 45 children, for example—can change the values of other fields. For
this reason, it’s a good idea to mask the new value this way before combining the value back
into the original variable. Step 3 complements step 2 by setting all bits of the field in the
original value to 0—in a sense, punching a hold in the original value like a cookie cutter
punching out a circle in dough. Step 4 then Ors the new value into this punched-out hole,
completing the process.

To demonstrate these four steps in assembly language, the following code fragment moves
the children field (now rightmost in register ax) back into the subject variable:

mov cl, children Move shift count into cl

shl ax, cl ; Step 1--shift into position
and ax, maskChildren ; Step 2--Limit value
and [subject], NOT maskChildren ; Step 3--punch a hole
or [subject], ax ; Step 4--drop value into hole

As with the previous steps that extract a bit field, you can use a conditional IF directive to
skip the shift if children = 0, indicating that this field is already rightmost in the variable.
Also, you can eliminate the first and if the result cannot possibly be larger than 15—the
maximum value that the 4-bit children field can express.

Putting the extraction and recombination steps together, here’s another example that adds
10 to our subject’s age field:

mov ax, [subject]
and ax, maskAge

; Copy the variable into ax
; Isolate the age field
mov cl, age ; Prepare shift count
shr ax, cl ; Shift age field to right
add ax, 10 ; Age 10 to subject's age
shl ax, cl ; Shift age back into position
and ax, maskAge ; Limit age to maximum range
and [subject], NOT maskAge ; Punch a hold in (zero) age field
or [subject], ax ; Drop new age value into hole

Many programmers avoid using RECORD bit fields, probably because they do not understand
the techniques. This fact is evident from the many assembly language programs that declare
fixed constants for shift values and masks, making the code much more difficult to modify.
If you take the time to learn how to use RECORD and MASK, defining your packed records as
described here, you'll be able to write programs that automatically adjust for new situations—
a change to the number of bits in the school field or a newly found uses for the reserved xxx
single-bit field. You can also change the default values assigned to fields without having to
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hunt through a lot of cryptic statements, making changes to programs that don’t need fix-
ing! Just change your RECORD definitions, and you’re done. The same advantages apply to
STRUC and UNION, which help take much of the complexity out of working with complex data
structures.

Efficient Logical Operations

The saying “There’s always room for improvement” is especially true in assembly language.
One improvement that’s often missed is the replacement of word-based instructions for
shorter, and potentially faster, byte-based instructions that perform identical jobs in certain
situations.

For example, when testing a bit in a record, or when setting or exclusive-ORing bits, it’s
possible to use a byte-based instruction even when operating on a 16-bit word value when
the target bit is in the low-order portion of the word. An example will help clarify the prob-
lem and its solution. Consider the following bit-field record:

RECORD BitRec b@:1, b1:4, b2:3, b3:7

Logical and, or, test, and xor instructions can manipulate bits in BitRec record variables by
referring to the bo, b1, b2, and b3 labels. You can, for instance, set bit b2 in the ax register
with the instruction:

or ax, b2
When assembled, this generates a word-based instruction that takes three machine code bytes:
oD 07 00

That same instruction, however, is more efficiently coded as follows, which performs the
identical job and has the same effect on processor flags:

or al, b2
When assembled, this instruction takes only two machine code bytes:
oc o7

Even though the variable is in the 16-bit register ax, an 8-bit instruction that refers to the 8-
bit low-order byte register al has the identical effect.

Automating Efficient Logical Operations

To automate the selection of efficient logical instructions, Turbo Assembler 3.0 and later
versions provide four pseudo instructions: SETFLAG, MASKFLAG, TESTFLAG, and FLIPFLAG. With
them, the assembler can choose the most efficient forms of logical instructions automati-
cally. For example, the assembler replaces this instruction:
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SETFLAG ax, b2

with the more efficient:

or al, 07

rather than the equivalent, but less efficient, instruction that might appear to be necessary:
or ax, b2

The following code snippet shows how to use the pseudo instructions. Comments show the
assembled code. For example, in the first line, the SETFLAG instruction is encoded as a byte-
based logical or instruction. The equivalent, but potentially inefficient, instruction follows
on the second line. Notice that in the case of logical and, in this example, a byte-based in-
struction replacement is not possible:

SETFLAG ax, b2 ; or al, o7 / oce7
or ax, b2 ; or ax, 0007 / 0D0Q700
MASKFLAG ax, b2 ; and ax, 0007 / 250700
and ax, b2 ; and ax, 0007 / 250700
TESTFLAG ax, b2 ; test al, 07 / A80Q7
test ax, b2 ; test ax, 00007 / A90700
FLIPFLAG ax, b2 ; xor al, 07 / 3407
xor ax, b2 ; xor ax, 0007 / 350700

Automating Record Field Operations

Turbo Assembler 3.0 and later versions provide two additional pseudo instructions, SETFIELD
and GETFIELD that greatly simplify working with bit-field records. Before using them, you
should be familiar with the discussions in this chapter on using record variables along with
MASK values to set and retrieve bit values packed into bytes and words.

A few examples show how these new instructions can simplify the steps for inserting and
extracting person record fields. So you don’t have to flip pages, here is the record declaration
again: '

RECORD person sex:1, married:1, children:4, xxx:1, age:7, school:2

As you learned, it takes a combination of shift, rotate, and logical instructions to set and
retrieve values in person record fields, but Turbo Assembler 3.0 and later versions can create
the necessary instructions for you. For example, first prepare a register to hold a person record:

xor ax, ax ; Clear person record

That simply clears register ax to zero. To insert a value into the record’s children field, first
assign the value to a register (b1 here), and use SETFIELD as follows:

mov bl, 3 ; Move no. children to bl
SETFIELD children ax, bl ; Set children field in ax
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The second line inserts the value of bl into ax without disturbing other bits in ax. To do that,
Turbo Assembler writes the following logical operations in place of the SETFIELD pseudo
instruction:

rol bl, 02

or ah, bl

The first instruction rotates the children value left two positions, and the second instruc-
tion logically ORs that value into ax. The assembler also chooses a more efficient byte-form
of the logical or rather than operating on the full 16-bit word.

You can use SETFIELD similarly to insert values into any record field—an age value, for ex-
ample:

mov bl, 43 ; Move age to bl

SETFIELD age ax, bl ; Set age field in ax

This generates another set of rotate and logical operations to insert into ax an age value from
b1, without disturbing other record fields.

To extract bit-field values from records, use GETFIELD. For example, the following instruc-
tion sets bl to the number of children in the person record held in register ax:

GETFIELD children bl, ax ; Get children into bl (destroys bh!)

Assuming the preceding SETFIELD instructions were executed, this sets b1 to 03. In place of
the pseudo GETFIELD instruction, Turbo Assembler writes the following instructions:

mov bl,ah

ror bl,02

and bl,oF

The first line moves the portion of the record that contains the desired bit-field value (ah)
into bl. The second line rotates that value right two positions, moving it to the rightmost
spot in bl. The third line applies the literal mask oFh to isolate the desired value, which in
this example, sets bl to 03.

Similarly, you can use GETFIELD to extract the age value from the record in ax:
GETFIELD age bl, ax ; Get age into bl (destoys bh!)

The assembler generates another set of logical operations that in this case set bl to 43, the
age value packed in the record.

One danger with GETFIELD is that it always uses the full 16-bit target register, even though
you specify only the low-order portion. In the preceding two GETFIELD examples, as the com-
ments indicate, the most significant byte in bh is destroyed by the logical instructions that
Turbo Assembler creates.

You may use other registers and memory references with SETFIELD and GETFIELD—you don’t
have to use ax and bl as demonstrated here. The full syntax for both pseudo instructions
follow:
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SETFIELD field_name destination_r/m, source_reg
GETFIELD field_name destination_reg, source_r/m

Use these rules to construct SETFIELD and GETFIELD instructions. Each requires a field name
followed by destination and source specifications. The destination for SETFIELD may be a
register or a memory reference. Its source must be a register. The destination for GETFIELD

Using Predefined Equates

Turbo Assembler knows a few predefined equates that you can use as default values for pro-
gram variables. Table 6.1 lists these equates, all of which begin with two question marks.

Listing 6.2, VERSION.ASM, demonstrates how to use these equates to create a version-
making string automatically when the program is assembled. Assemble, link, and run the
program with the commands:

tasm version

tlink version,,, mta
version

Table 6.1. Predefined Equates.

Symbol ' Meaning

?7Date Today’s date in the DOS country-code style
??Filename The module or program’s disk-filename

27Time The current time in the DOS country-code style
??Version Turbo Assembler version number

VERSION uses the STRIO and STRINGS modules from Chapter 5; therefore, the tlink
command assumes that the assembled code for these modules is stored in MTA.LIB. If you
want to examine the program in Turbo Debugger, add the /zi option to tasm and the /v
option to tlink—as you probably know by now.
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Listing 6.2. VERSION.ASM.

1: %TITLE "Automatic Program Version Demo -- by Tom Swan"
2:
3 IDEAL
4:
5: MODEL  small
6: STACK 256
7:
8: cr EQU 13 ; ASCII carriage return
9: 1f EQU 10 ; ASCII line feed
10:
11:
12: DATASEG
13:
14: exCode db 0
15:
16: ident db cr, 1f, ??FileName, ' ', ??Date, ' ', ??Time
17: db cr, 1f, 0
18:
19:
20: CODESEG
21:
22: j---=- From STRIO.O0BJ
23:
24: EXTRN  StrWrite:proc
25:
26: Start:
27: mov ax, @data ; Initialize DS to address
28: mov ds, ax ; of data segment
29: mov es, ax ; Make es = ds
30:
31: mov di, OFFSET ident ; Address program id string
32: call StrWrite ; Display string
33:
34: Exit:
35: mov ah, 04Ch ; DOS function: Exit program
36: mov al, [exCode] ; Return exit code value
37: int 21h ; Call DOS. Terminate program
38:
39: END Start ; End of program / entry point

Running VERSION

Lines 16-17 create an ASCIIZ string, starting and ending with a carriage return and line feed
plus a null terminator. Inside the string, the predefined equates ??FileName, ??Date, and
??Time are used in a db directive to create a string with these three values, separated by a few
spaces. Running the program displays a line similar to:

version ©02/15/95

08:13:23



CompLex DATA STRUCTURES

The nice feature about building the automatic string is that merely reassembling the pro- -

gram automatically changes the version date and time. This simple device is very useful for
keeping track of program updates.

Converting Numbers and Strings

In high-level languages, you can read and write numeric values directly. For example, to let
someone enter a number and then display the result, assuming n is an integer, you might use
these Pascal statements:

Write( 'Enter a value: ' );
ReadLn( n );
WriteLn( 'Value is: ', n );

Native assembly language lacks similar abilities. Instead, you have to read and write strings
and then convert those strings to and from binary values for processing, storing on disk, and
so on. Of course, high-level languages must do this internally, too!

Listing 6.3, BINASC.ASM, is a module that you can use to make this process easier to pro-
gram. The module has routines that can convert 16-bit values to and from signed and un-
signed decimal, hexadecimal, and binary ASCIIZ strings. Assemble to BINASC.OBJ and
store this code in your MTA.LIB file with the commands:

tasm /z binasc

tlib /E mta -+binasc

As with the modules in Chapter 5, ignore the warning that BINASC is not in the library. It
won’t be until you install it the first time. Also, be aware that BINASC uses two procedures
from STRINGS; therefore, you won’t be able to link programs to BINASC until at least
both of these modules are installed in MTA.LIB.

Listing 6.3. BINASC.ASM.
1: STITLE "Binary to/from ASCII Conversion -- by Tom Swan"

2:

3: IDEAL

4:

5: MODEL small
6:

7 == Equates

8:

9: ASCnull EQU [} 3 ASCII null character
10:

11: DATASEG

12:

13: CODESEG

14:

15: j-—-—- From STRINGS.OBJ
16:

continues
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Listing 6.3. continued

17: EXTRN . StrLength:proc, StrUpper:proc

18:

19: PUBLIC HexDigit, ValCh, NumToAscii

20: PUBLIC BinToAscHex, SBinToAscDec, BinToAscDec, BinToAscBin
21: PUBLIC AscToBin

22:

23: %NEWPAGE

24: ;-——————- - -
25: ; HexDigit Convert 4-bit value to ASCII digit

26 j-———m e -

27: ; Input

28: ; dl = value limited to range 0..15

29: ; Output:

30: ; dl = ASCII hex digit equivalent

31: ; Registers:

32: ; dl

33: ; e e -—- -—-
34: PROC HexDigit

35: cmp dl, 10 ; Is dl < 10 (i.e. hex 'A")?

36: jb ee@10 ; If yes, jump

37: add dl, 'A'-10 ; Else convert to A, B, C, D, E, or F
38: ret ; Return to caller

39: @@10:

40: or di, 'o' ; Convert digits @ to 9

41: ret ; Return to caller

42: ENDP HexDigit
43: %NEWPAGE

44 e -— -
45: ; ValCh Convert ASCII digit char to binary value

4B oo

47: ; Input

48: ; dl = ASCII digit '0'..'9'; 'A'..'F'

49: ; bx = base (2=binary, 10=decimal, 16=hexadecimal)

50: ; Output:

51: cf = 0: dx = equivalent binary value

52: ; cf = 1: bad char for this number base (dx is meaningless)

53: ; Registers:

54: ; dx

55: ;- -—— -

56: PROC ValCh

57: cmp di, '9' ; Check for possible hex digit

58: jbe @e10 ; Probably '0'..'9', jump

59: sub di, 7 ; Adjust hex digit to 3A..3F range
60: @@10:

61: sub di, 'e’ ; Convert ASCII to decimal

62: test dl, ofoh ; Check 4 msbs (sets cf=0)

63: jnz @@99 ; Jump if error (not digit or A-F)
64:

65: xor dh, dh ; Convert byte in dl to word in dx
66: cmp dx, bx ; Compare to number base (cf=1 if ok)
67: @@99:

68: cme ; Complement cf to set/reset err flag
69: ret ; Return to caller

70: ENDP ValCh
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71: %NEWPAGE

72 e e
73: ; NumToASCII Convert unsigned binary value to ASCII

T o
75: ; Input

76: ax = 16-bit value to convert

77 bx = base for result (2=binary;10=decimal;16=hex)

78 CX = minimum number OT Jigits to output

79: di = address of string to hold result

80: ; Note: assumes string is large enough to hold result

81: ; Note: creates full result if cx is less than the number
82: ; of digits required to specify the result or cx = @
83: ; Note: if cx=0@ and ax=0 then length of string will be 0
84: ; set cx=1 if you want string to = '0' if ax=0

85: ; Note: assumes (2<=bx<=16)

86: ; Output:

87: ; none

88: ; Registers:

89: ; ax, cx

90: ; - e
91: PROC NumToASCII ; Normal entry point

92: push dx ; Save some modified registers
93: push di

94: push si

95:

96: ; si = count of digits on stack

97:

98: xor si, si ; Set digit-count to zero

99: icxz @e20 ; If cx=0, jump to set cx=1

100: @@10:

101: xor dx, dx ; Extend ax to 32-bit dxax

102: div bx ; ax<-axdx div bx; dx<-remainder
103: call HexDigit ; Convert dl to ASCII digit

104: push dx ; Save digit on stack

105: inc si ; Count digits on stack

106: loop eeto ; Loop on minimum digit count
107: @@20:

108: inc CcX ; Set ¢cx = 1 in case not done
109: or ax, ax ; Is ax = 0? (all digits done)
110: jnz ee10 ; If ax <> @, continue conversion
111: mov cx, si ; Set cx to stack char count
112: jexz @e40 ; Skip next loop if cx=0000

113: cld ; Auto-increment di for stosb
114: @@30:

115: pop ax ; Pop next digit into al

116: stosb ; Store digit in string; advance di
117: loop @e30 ; Loop for cx digits

118: @@40:

119: mov [byte di], ASCnull ; Store null at end of string
120: pop si ; Restore saved registers

121: pop di

122: pop dx

123:

124: ret ; Return to caller

125: ENDP NumToASCII

continues
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Listing 6.3. continued

126: %NEWPAGE

127: ; - -—
128: ; BinToAscHex Convert binary values to ASCII hex strings

129 jr—— e
130: ; Input:

131: ; ax = 16-bit value to convert

132: cx = minimum number of digits to output

133: ; di = address of string to hold result

134: Note: assumes string is large enough to hold result

135: ; Note: outputs full result if cx is less than the number
136: ; of digits required to specify the result

137: ; Output:

138: ; none

139: ; Registers:

140: ; ax, cx

141: j-—-——- ———= - - -
142: PROC BinToAscHex

143: push bx ; Save bx on stack
144: mov bx, 16 ; Set base = 16 (hex)
145: call NumToAscii ; Convert ax to ASCII
146: pop bx ; Restore bx

147: ret ; Return to caller

148: ENDP BinToAscHex
149: SNEWPAGE

150 o
151: ; BinToAscDec  Convert binary values to ASCII decimal strings
152: ;-- - —-——- - R Rt T B
153: ; Input:

154: ; Same as BinToAscHex

155: ; Output:

156: ; none

157: ; Registers:

158: ; ax, cx (indirectly)

159: ;-- ———- -

160: PROC BinToAscDec

161: push bx ; Save bx on stack

162: mov bx, 10 ; Set base = 10 (decimal)

163: call NumToAscii ; Convert ax to ASCII

164: pop bx ; Restore bx

165: ret ; Return to caller

166: ENDP BinToAscDec
167: %NEWPAGE

168: ;-- e -
169: ; SBinToAscDec Convert signed binary to ASCII decimal strings
170: ;-- - e e e Lt
171: ; Input:

172: Same as BinToAscHex (ax = signed 16-bit value)

173: ; Output:

174: none

175: ; Registers:

176: ax, cx

177: B e
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178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
192:
193:
194:
195:
196:
197:
198:
199:
200:
201:
202:
203:
204:
205:
206:
207:
208:
209:
210:
211:
212:
213:
214:
215:
216:
217:
218:
219:
220:
221:
222:
223:
224:
225:
226:
227:
228:
229:
230:
231:
232:
233:
234:
235:
236:

PROC SBinToAscDec

push bx ; Save bx and di
push di
cmp ax, 0 ; Is signed ax < 0?
jge ee10 ; Jump if ax >= @
neg ax ; Form twos complement of ax
mov [byte di], '-' ; Insert '-' in string
inc di ; Advance string pointer
ee10:
mov bx, 10 ; Set base = 10 (decimal)
call NumToAscii ; Convert ax to ASCII
pop di ; Restore bx and di
pop bx
ret ; Return to caller
ENDP SBinToAscDec

%NEWPAGE

; BinToAscBin  Convert binary values to ASCII binary strings

3

; Same as BinToAscHex
; Output:

H none

; Registers:

H ax, cx (indirectly)

PROC BinToAscBin

push bx ; Save bx on stack
mov bx, 2 ; Set base = 2 (binary)
call NumToAscii ; Convert ax to ASCII
pop bx ; Restore bx
ret ; Return to caller
ENDP BinToAscBin
%NEWPAGE
3
; ChToBase Return number base for string
§ e e
; Note

H Private subroutine for AscToBin. Don't call directly.
; Input:
; si = pointer to null terminator at end of string
Note: assumes length of string >= 1

E)

; Output:

H bx = 2(binary), 10(decimal/default), 16(hexadecimal)

; si = address of last probable digit character in string
; Registers:

H bx, dl, si

PROC ChToBase
mov dl, [byte si-1}] ; Get last char of string

mov bx, 16 ; Preset base to 16 (hexadecimal)
cmp dl, 'H' ; Is it a hex string?

je ee1o ; Jump if hex

mov bx, 2 ; Preset base to 2 (binary)

cmp dl, 'B' ; Is it a binary string?

je @e10 ; Jump if binary

mov bx, 10 ; Preset base to 10 (decimal)

cmp dl, 'D' ; Is it a decimal string?

jne @@20 5 Jump if NOT decimal

229
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Listing 6.3. continued
237: @e10:
238: dec si ; Adjust si to last probable digit
239: @@20:
240: ret ; Return to caller
241: ENDP ChToBase
242: %SNEWPAGE
243: ; - -—- ———-
244: ; AscToNum Convert ASCII characters to binary
245: ;-- e e
246: ; Note:
247: ; Private subroutine for AscToBin. Don't call directly.
248: ; Input:
249: ; ax = initial value (0)
250: ; bx = number base (2=binary, 10=decimal, 16=hexadecimal)
251: ; di = address of unsigned string (any format)
252: ; si = address of last probable digit char in string
253: ; Output:
254: ; cf = 0 : ax = unsigned value
255: ; cf = 1 : bad character in string (ax is meaningless)
- 256: ; Registers:
257: ; ax, c¢x, dx, si
258: ;---
259: PROC AscToNum
260: mov cx, 1 ; Initialize multiplier
261: @@10:
262: cmp si, di ; At front of string?
263: je @@99 ; Exit if at front (cf=0)
264: dec si ; Do next char to left
265: mov dl, [byte si] ; Load char into dl
266: call ValCh ; Convert dl to value in dx
267: jc @@99 ; Exit if error (bad char)
268: push cX ; Save cx on stack
269: xchg ax, cx ; ax=multiplier; cx=partial value
270: mul dx ; dxax <- digit value * multiplier
271: add cX, ax ; CX <- cx + ax (new partial value)
272: pop ax ; Restore multiplier to ax
273: mul bx ; dxax <- multiplier * base
274: xchg ax, cx ; ax=partial value; cx=new multiplier
275: jmp ee10 ; do next digit
276: @@99:
277: ret ; Return to caller
278: ENDP AscToNum
279: %NEWPAGE
280: ;-----—---- ———
281: ; AscToBin Convert ASCII strings to binary values
282: ; -
283: ; Input:
284: ; di = ASCIIZ string to convert to binary
285: ; 'H' at end of string = hexadecimal
286: ; '‘B' at end of string = binary
287: ; 'D' or digit at end of string = decimal
288: ; '-' at s[@] indicates negative number
289: ; - Note: no blanks allowed in string
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290: ; Output:

291: ; cf = 1 : bad character in string (ax undefined)

292: ; cf = 0 : ax = value of string

293: Note: chars in string converted to uppercase

294: ; Note: null strings set ax to zero

295: ; Registers:

296: ; ax

297 -
298: PROC AscToBin

299: push bx ; Save modified registers

300: push cx ; (some of these are changed

301: push dx 5 in subroutines called by

302: push si ; this procedure)

303:

304: call StrUpper ; Convert string to uppercase

305: call StrLength ; Set cx to Length of string at di
306: xor ax, ax ; Initialize result to zero (cf=0)
307: jexz @e99 ; Exit if length = 0. ax=0, cf=0
308: mov si, di ; Address string at di with si

309: add si, cx ; Advance si to null at end of string
310: cmp [byte di], '-' ; Check for minus sign

311: pushf ; Save result of compare

312: jne @e10 ; Jump if minus sign not found

313: inc di ; Advance di past minus sign

314: @@10:

315: call ChToBase ; Set bx=number base; si to last digit
316: call AscToNum ; Convert ASCII (base bx) to number
317: rcl bx, 1 ; Preserve cf by shifting into bx
318: popf ; Restore flags from minus-sign check
319: jne @@20 ; Jump if minus sign was not found
320: neg ax ; else form twos complement of ax
321: dec di ; and restore di to head of string
322: @@20:

323: rcr bx, 1 ; Restore cf result from AscToNum
324: @@99:

325: pop si ; Restore registers

326: pop dx

327: pop CcX

328: pop bx

329: ret ; Return to caller

330: ENDP AscToBin

331:

332: END ; End of module

Using the BINASC Module

There are eight subroutines in BINASC that you can call from your own programs. (See
lines 19-21.) Two other subroutines are called by the routines in the module. The following
notes describe each subroutine and list several sample program fragments. After this section
are two full programs that also demonstrate how to use the routines described here.
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HexDigit (24-42)

HexDigit converts a 4-bit value in register d1 to the equivalent ASCII hex digit. You prob-
ably won’t need to call this routine, although you certainly can if you find a purpose for it.
Other routines in the module call HexDigit as part of their algorithms to convert longer bi-
nary values to ASCIL.

ASCII digits 0 through 9 have the hexadecimal values 030h through 039h. As a result of this
clever design, adding hex 30h converts any single digit to ASCII. The value 04h is 34h in
ASCII, 08h is 038h, and so on. Also, to convert an ASCII digit character to its equivalent
binary value is a simple matter of reversing the process, subtracting 30h.

Unfortunately, this neat plan fails to accommodate the 16 hexadecimal symbols 0-9 and A-
F, requiring HexDigit to check at line 35 if d1 is less than 10 decimal. If not, line 37 performs
the conversion, changing the values 0Ah, 0Bh, 0Ch, 0Dh, OEh, and OFh into the correct
ASCII character, A-F. Otherwise, the or instruction at line 40 inserts 30h into the value,
converting the decimal digits 0-9 to ASCII.

ValCh (44-70)

ValcCh reverses what HexDigit does, converting ASCII digit characters 0-9 and A-F into equiva-
lent binary values. Because this routine is used to convert strings in various number bases,
the code checks for characters that do not belong to the specified base in bx. To use valch,
assign a digit character to d1 and the number base to bx—2 for binary, 10 for decimal, or 16
for hexadecimal:

mov dl, 'A’ ; Character to convert
mov bx, 16 ; Number base = hex
call valCh ; Convert dl to binary in dx

valch returns the converted value in register dx. If a bad character is detected, flag cf is set to
1, in which case the value in dx should not be trusted. Usually, you should follow vaich with
a conditional jump that tests for this:

call valCh ; Convert char in dl to value in dx

jc  Error ; Jump if bad digit detected

The procedure uses a few methods that may not be obvious on a casual reading. Lines 57-59
check for a hex character A-F, converting these digits to the ASCII characters with values
03Ah through 03Fh. (You might call these values pseudo-hex characters.) After this step,
dl holds either an illegal character or a value in the range 030h through 03Fh, simplifying
the upcoming conversion.
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The next step is to convert the value in d1 to binary by removing 030h (line 61). As explained
in the comments to HexDigit, subtracting 030h converts characters to binary. In this case,
the subtraction works also for the pseudo-hex characters from the previous steps.

The instructions at lines 65-66 complete the conversion by zeroing the upper half of dx—using
the typical 8086 xor method. After this, dx is compared to the number base in bx. As long as the
result is less than the base, the value is within range; otherwise, the original character must have
been illegal. Unfortunately, this comparison leaves error flag cf in the opposite state that’s needed,
a problem easily fixed by the cme instruction at line 68, which complements the carry flag, tog-
gling it from 1 to 0 or from 0 to 1. This is also required if the test at line 62 detects an ASCII
character value not in the range 030h through 03Fh.

NumToASCII (72-125)

NumToASCII is a general-purpose binary number to ASCII converter that you can use to con-
vert values to ASCII strings in any number base from 2 to 16. Because NumToASCII requires
considerable effort and planning to use correctly, you might want to call other routines such
as BinToASCHex and BinToAscDec, which call NumToASCII to perform their conversions. I'll explain
these routines in a moment. You should at least study NumToASCII’s code, if only to under-
stand how the programming operates.

Lines 76-85 list NumToASCII’s register requirements along with a few important notes. The
procedure assumes that register ax holds the value to convert, bx equals the number base (as
explained for valch), cx equals the minimum number of digit characters to insert in the string,
and es:di addresses a string variable large enough to hold the result. A few hints about these
requirements will help you to understand the programming:

* For safety, make sure your string variable is at least 5 bytes long for hex values, 6
bytes for decimal values, and 17 bytes for binary values. These lengths ensure that
the result will fit and include 1 extra byte for the all-important string terminator.

* Set cx to 1 if you want a zero value to be converted to ‘0" and not a blank string. If
cx and the value to convert are both 0, the result is a zero-length string.

¢ The base in bx is not limited to 2, 10, and 16. You can convert binary values to octal
by setting bx to 8, or to other bases as well. Register bx must be in the range 2-16.

* The usual numeric qualifying characters 4, 4, and 4 that end values like 0FA9Ch,
01110010b, and 12345d are not inserted into the string. You must add these
characters if you need them.

* NumToASCII can’t convert negative (two’s complement) values to strings. To do this,
call sBinToAscDec, which is designed to handle signed integers.

Although longer than most subroutines in this book, NunToASCIT uses a simple method to
convert values to ASCII. The div instruction at line 102 repeatedly divides the subject num-
ber by the base, calling HexDigit to convert the remainder in dx to ASCIIL Each of these
characters is pushed onto the stack (line 104.) This action repeats until register cx becomes
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0 at the Loop instruction (line 106). When this happens, the code at lines 108-110 checks
whether ax is 0, indicating that the value has been completely converted. If ax is not 0, then
cx did not specify enough digits to hold the full result, and the jump at line 110 loops back
to local label @@10: for another division until this condition is satisfied. The result is to push
onto the stack at least the minimum number of digits required to represent the converted
number, or as many digits as cx specifies, whichever is greater.

Line 105 counts in si the number of divisions performed, a value checked at lines 111-112.
If si = o, there aren’t any digits. (Both cx and ax must have been 0.) If this condition is not
detected, the code at lines 113-117 pops each digit from the stack—in the reverse order that
the digits were pushed—and stores the digit characters in the string variable (line 116). The
final step is to insert the null terminator (line 119) before ending the procedure.

BinToAscHex (127-148)
BinToAscDec (150-166)
SBinToAscDec (168-192)
BinToAscBin (194-210)

These four routines require the same parameters; therefore, I'll describe them together.
BinToAscHex converts 16-bit unsigned values to hexadecimal strings. BinToAscDec converts
16-bit unsigned values to decimal strings. SBinToAscDec converts 16-bit signed values in two’s
complement notation to decimal strings. And BinToAscBin converts 16-bit values to binary.

To use one of these converters, assign to ax an appropriate value. Set cx to the minimum
number of digits you want in the result—at least 1 if you need zeros to come out as “0.” Set
es:di to the address of your string variable, which may be uninitialized. For example, to load
a value from memory and convert to a string, you can write:

DATASEG

value dw 1234 ; A 16-bit decimal value

string db 20 DUP (?) ; More than enough space

CODESEG

mov ax, @data

mov ds, ax ; Initialize ds and es to

mov es, ax ; address program's data segment
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mov ax, [value] ; Get value to convert

mov c¢x, 1 ; At least one digit, please

mov di, OFFSET string ; Address the string variable

call BinToAscDec ; Convert ax to decimal string

You can replace the call to BinToAscDec with any of the other three routines—the rest of the
steps remain the same. As a reminder, this example includes the steps to initialize ds and es.
BINASC caiis routines in STRINGS, which requires es to equal ds.

The conversion routines are not difficult to understand. Three of the four routines are ex-
tremely simple, merely saving bx, setting bx to the appropriate base, and calling NumToASCI1
to perform the actual conversion. You can, of course, call NunToASCII directly if you want.

SBinToAscDec is more complex than the other three routines because it has to deal with pos-
sible negative values in two’s complement notation. Line 181 checks for negative values by
comparing ax with 0. If ax is positive (MSD = 0), then the procedure performs a straight
conversion, identical to BinToAscDec. If ax is negative, then line 183 uses neg to calculate the
absolute value. The next line then inserts a minus sign into the string. Line 185 increments
the string pointer di to skip the minus sign, causing the subsequent call to NunToASCIT to
start inserting digits at this new position. Register di is then restored at line 189. (Line 180
pushed di onto the stack for this reason.)

ChToBase (212-241)
AscToNum (243-278)

These two routines are private to the BINASC module, and you’ll probably find few direct
uses for them. (You may want to examine the code, though.) ChToBase returns a value in bx
equal to the probable number base for a string ending in D or 0-9 for decimal, H for hexa-
decimal, and B for binary. (The letters must be capitals—lowercase d, h, and b will not work
here.) Register si addresses the string’s null terminator on entry to ChToBase, and on return,
si addresses the last probable digit character in the string. Other than these points, the code
is self-explanatory.

AscToNum performs a raw conversion from ASCII to binary, calling valch in a loop at lines
261-275. For each character loaded at line 265 into d1, valch returns the equivalent value or
indicates an error by setting cf. The code at lines 268-274 multiplies the temporary result by
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the multiplier (initialized at line 260), which is in turn multiplied by the number base (line
273). Repeating these steps increases the multiplier by the power of each successive column,
multiplying that result by the value of the digit character in each column until done. Most of
the instructions in this section are here to perform some fancy footwork so that the correct
values appear in the necessary registers at the right times. For a better understanding of how
this works, execute this section in Turbo Debugger and pay close attention to the register
values.

AscToBin (280-330)

Call AscToBin to convert strings to binary values. The string format must be ASCIIZ and
may end in 4 or a digit for decimal values, 4 for hexcadecimal, or & for binary. Set es:di to
the address of the strings to convert. After AscToBin finishes, the carry flag cf indicates if the
result in ax is valid (cf = 0) or if an illegal character was detected in the string (cf = 1). No
blanks are allowed in the string, which is converted to uppercase. (Use strcopy in STRINGS
to copy the original string if you want to preserve it.) Zero-length strings set ax to 0. The
following illustrates the various string formats accepted by AscToBin:

DATASEG

s1 db '12345', 0 ; Decimal string (default)

s2 db '54321d', @ ; Decimal string ending in d

s3 db '-9876', 0 ; Negative decimal string

s4 db 'Fi19Ch', 0 ; Hexadecimal string

s5 db '1010b', 0 ; Binary string

CODESEG

mov di, OFFSET st ; Address string s1 (or s2-s5)

call AscToBin ; Convert string to value in ax
jc Error ; Jump if error, else continue

As you can see from these samples, hexadecimal numbers do not require a leading digit as
they do in assembly language programs. Signed integer values can range from -32,768 to
+32,767. Unsigned integers can range from 0 to 65,535. Unusual values in the range -65,535
t0 -32,769 are illegal but do not cause errors. These values and others outside the allowable
ranges “wrap around” to equivalent binary values.

The procedure operates by calling Strupper and strLength in STRINGS to convert the string
to uppercase and to set cx to the string length. If cx is 0, the procedure ends (see line 307)
with ax equal to 0. If the string length is not 0, lines 308-313 check if the first character is a
minus sign, saving the result of the comparison at line 310 on the stack with a pushf instruc-
tion. chToBase (line 315) then sets bx to the appropriate number base by testing the end of
the string for D, H, or B character. Then AscToNum performs the actual conversion to binary.
After this, the flags from the minus-sign comparison are restored (line 318) and the value in
ax is negated to two’s complement notation (line 320) if a minus sign had been found. Notice
how this plan allows converting both unsigned and signed integer ranges with the same code—
65,535 and -1 are both correctly converted to the same binary value.
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Two rotate instructions demonstrate one way to preserve the carry flag, which indicates
AscToBin’s success or failure. Line 317 rotates bx once to the left, shifting the carry flag into
bx’s LSD. This must be done because the very next instruction (popf) could change cf, the
result of calling AscToNum. Later at line 323, the saved carry flag is rotated back into ¢f with
rer—a neat trick that works, if you can spare a register.

Putting BINASC to Work

Two example programs demonstrate how you can use BINASC to convert values to strings.
Listing 6.4, EQUIP.ASM, also defines a RECORD variable (line 20) to extract bit fields from a
system variable that indicates the kind of equipment attached to your computer. The pro-
gram uses routines from BINASC and STRIO and indirectly from STRINGS, which must
be installed in MTA.LIB. Assemble and link the program with the commands:

tasm equip
tlink equip,,, mta
equip

Listing 6.4. EQUIP.ASM.

1: %TITLE "Display PC Equipment Info -- by Tom Swan"
2-

3 IDEAL

4:

5: MODEL  small

6: STACK 256

7:

8:

9: j---—- Equates

10:

11: EOS EQU 0 ; End of string terminator
12: cr EQU 13 ; ASCII carriage return
13: 1f EQU 10 ; ASCII line feed

14:

15:

16: ;----- Define byte records with fields for equipment information
17:

18: ; !! NOTE : Type the line 20 on ONE line !!

19:

continues 2 37
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Listing 6.4. continued

20: RECORD Equip printers:2, x:1, game:1, ports:3, y:1, drives:2, mode:2, ram:2, z:1,

disk:1
21:
22:
23: ;-—-——- Define masks for isolating individual bit fields
24:
251 jom
26: ; AND Mask Field
270 e —_——
28: maskPrinters = MASK printers
29: maskGame = MASK game
30: maskPorts = MASK ports
31: maskDrives = MASK drives
32: maskMode = MASK mode
33: maskDisk = MASK disk
34:
35:
36: DATASEG
37:
38: exCode db 0
39:
40: welcome db cr,1f, 'Equipment determination'’
41: db cr,1f,'(C) 1995 by Tom Swan',cr,1f,1f,EOS
42:
43: strPrinters db 'Number of printers ........ ', EOS
44: strGame db 'Game I/O0 port ............. ', EOS
45: strPorts db 'Number of RS232 ports ..... ', EOS
46: strDrives db 'Disk drives (minus 1) ..... 'y EOS
47: strMode db ‘Initial video mode ........ ', EOS
48: strDisk db 'Has disk drive (1=yes) .... ', EOS
49:
50: string db 40 DUP (?) ; Work string
51:
52:
53: CODESEG
54:
55: ;-—--- From STRIO.O0BJ and BINASC.OBJ
56:
57: EXTRN  BinToAscDec:proc, StrWrite:proc, NewlLine:proc
58:
59: Start:
60: mov ax, @data ; Initialize DS to address
61: mov ds, ax ; of data segment
62: mov es, ax ; Make es = ds
63:
64: mov di, OFFSET welcome ; Address welcome message
65: call StriWrite ; Display message
66: int 11h ; BIOS equipment determination
67: mov bx, ax ; Save information in bx
68:
69: mov di, OFFSET strPrinters ; Address item label
70: mov dx, maskPrinters ; Assign AND mask
71: mov cl, printers ; Assign shift count
72: call ShowInfo ; Display label and info
73:
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74: mov di, OFFSET strGame ; Next item

75: mov dx, maskGame

76: mov cl, game

77: call ShowInfo

78:

79: mov di, OFFSET strPorts ; Next item

80: mov dx, maskPorts

/1: mov cl, perte

82: call ShowInfo

83:

84: mov di, OFFSET strDrives ; Next item

85: mov dx, maskDrives

86: mov cl, drives

87: call ShowInfo

88:

89: mov di, OFFSET strMode ; Next item

90: mov dx, maskMode

91: mov cl, mode

92: call ShowInfo

93:

94: mov di, OFFSET strDisk ; Next item

95: mov dx, maskDisk

96: mov cl, disk

97: call ShowInfo

98:

99: Exit:

100: mov ah, 04Ch ; DOS function: Exit program
101: mov al, [exCode] ; Return exit code value
102: int 21h ; Call DOS. Terminate program
103: %NEWPAGE

104 § - e
105: ; ShowInfo Display label and equipment value

06§ m o s
107: ; Input

108: ; bx = Equipment data from int 11h

109: ; cl = Bit field shift count

110: ; dx = Bit field AND-mask

111: di = Address of label string

112: ; Output:

113: ; label and data value displayed

114: ; Registers:

1156: ax, cx

116
117: PROC ShowInfo

118: mov ax, bx ; Assign equipment value to ax
119: and ax, dx ; Isolate bit field in ax
120: shr ax, cl ; Shift field far right in ax
121: call StrWrite ; Display label at di

122: mov di, OFFSET string ; Address work string

123: mov cx, 1 ; Request at least 1 digit
124: call BinToAscDec ; Convert ax to ASCIIZ string
125: call StrWrite ; Display string

126: call NewLine ; Start a new line

127: ret ; Return to caller

128: ENDP ShowInfo

129:

130: END Start ; End of program / entry point
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How EQUIP Works

The mask constants at lines 28-33 are used to extract each of the Equip RECORD’s fields as
defined at line 20. The ShowInfo subroutine at lines 104-128 does the work, using dx as the
mask value. Most of the program is concerned with making calls to this routine (see lines
69-97). Line 66 calls a BIOS (Basic Input/Output System) ROM routine via interrupt 11h,
which all Pcs support, to load the system configuration into register ax.

The showInfo subroutine calls BinToAscDec to convert the masked and shifted value in ax to
a string for displaying with a call to strwrite (line 125). Figure 6.5 shows a sample run of
the program.

Figure 6.5. Equipment determination

Sample run of Listing 6.4, (C) 1995 by Tom Swan

EQUIP.ASM. Number of printers.......... 1
Game I/O port.........c...u (1}
Number of RS232 ports....... 2
Disk drives (minus 1)....... 0
Initial video mode.......... 2
Has disk drive (1 = yes)....1

Programming a Number Base Converter
Putting together many of the ideas in this chapter, Listing 6.5, CONVERT.ASM, is a useful

utility that you can use to convert values among binary, decimal, and hexadecimal number
bases. The program demonstrates how to use many of the procedures in the BINASC mod-
ule. Figure 6.6 shows a sample CONVERT session.

Figure 6.6. Convert binary, hexadecimal, decimal values
(c) 1995 by Tom Swan

Sample run of Listing 6.5, Press Enter to quit.

CONVERT ASM.
Value to convert? 745

Binary............. : 0000001011101001
Hexadecimal........ 1 02E9
Unsigned decimal... : 745
Signed decimal..... . 745

Value to convert? face
**ERROR: Illegal character in string

Value to convert? faceh

Binary............. : 1111101011001110
Hexadecimal........ 1 FACE
Unsigned decimal... : 64206
Signed decimal..... : -1330
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Because most of the groundwork is done by the STRINGS, STRIO, and BINASC modules,
which should be in your MTA.LIB file, the CONVERT program is mostly a series of call
instructions to the appropriate subroutines. Just about every other instruction is a mov to
prepare registers for these calls. As a result, you should have little trouble reading the pro-
gram and, by studying the comments, understanding what each line does. Assemble, link,
and run CONVERT with the commands

Cax il LU A a0,

tasm convert
tlink convert,,, mta
convert

Listing 6.5. CONVERT.ASM.

1: %TITLE "Convert binary, hex, decimals -- by Tom Swan"

o:

3 IDEAL

4:

5: MODEL small

6: STACK 256

7:

8: ;-———- Equates

9:

10: EOS EQU 0 ; End of string

11: cr EQU 13 . 5 ASCII carriage return

12: 1f EQU 10 ; ASCII line feed

13: maxLen EQU 40 ; Maximum entry string length
14:

15:

16: DATASEG

17:

18: exCode . db 0 ; DOS error code

19:
20: welcome db cr,1f, 'Convert binary, hexadecimal, decimal values'
21: db cr,1f,'(c) 1995 by Tom Swan',cr,1f
22: db cr,1f, 'Press Enter to quit.',cr,1f,EOS
23: prompt db cr,1f,1f, 'Value to convert? ', EOS
24: error db cr,1f,'**ERROR: Illegal character in string',EOS
25: binary db cr,1f,'Binary ............. . ',EOS
26: hex db cr,1f, 'Hexadecimal ........ : ',EOS
27: decimal db cr,1f, 'Unsigned decimal ... : ',EOS
28: sdecimal db cr,1f,'Signed decimal ..... . ',EOS
29:
30: value dw ? ; Result of AscToBin
31: response db - maxLen+1 DUP (?) ; String for user response
32:
33:
34: CODESEG
35:
36: ;--——- From STRINGS.OBJ & STRIO.OBJ
37:
38: EXTRN StrLength:proc, StrRead:proc
39: EXTRN  StrWrite:proc, NewLine:proc
40:
41: j---—- From BINASC.OBJ
42:
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Listing 6.5. continued

43: EXTRN
44: EXTRN
45:

46: Start:

47: mov
48: mov
49: mov
50:

51: mov
52: call
53: .

54: ;-----

55:

56: Again:

57: mov
58: call
59: mov
60: mov
61: call
62: call
63: call
64: joxz
65:

66: ;--———-— Convert
67:

68: call
69: mov
70: jnc
71: mov
72: call
73: jmp
74:

75: ;----- Convert
76:

77: Continue:
78: mov
79: call
80: mov
81: mov
82: mov
83: call
84: call
85:

86: mov
87: call
88: mov
89: mov
90: mov
91: call
92: call
93:

BinToAscHex:proc, SBinToAscDec:proc, BinToAscDec:proc
BinToAscBin:proc, AscToBin:proc

ax, @data
ds, ax
es, ax

di, OFFSET welcome
Strwrite

Prompt for value to convert

di, OFFSET prompt
StriWrite

di, OFFSET response
cx, maxLen

StrRead

NewLine

StrLength

Exit

entered chars to binary

AscToBin
[value], ax
Continue

di, OFFSET error
StrWWrite

Again

Initialize DS to address
of data segment
Make es = ds

Display welcome. message

Display prompt string

Get user response
Maximum string length

Start new display line
Did user press Enter?
Exit if yes (cx=0)

Convert string to ax

Save result in variable
Jump if c¢f is 0--no error
Else display error message

Let user try again

binary value to various string number formats

di, OFFSET binary
StrWrite

ax, [value]

cx, 16

di, OFFSET response
BinToAscBin
StrWwrite

di, OFFSET hex
StrWrite

ax, [value]

cx, 4

di, OFFSET response
BinToAscHex
StrWrite

Display binary label

Get value to convert
Minimum number of digits
Use same string for result
Convert to binary digits
Display result

Display hex label

Get value to convert
Minimum number of digits
Use same string for result
Convert to hex digits
Display result
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94: mov di, OFFSET decimal ; Display decimal label

95: call StrWrite

96: mov ax, [value] ; Get value to convert

97: mov cx, 1 ; Minimum number of digits
98: mov di, OFFSET response ; Use same string for result
99: call BinToAscDec ; Convert to decimal digits
100: call StrWrite ; Display result

101:

102: mov di, OFFSET sdecimal ; Display signed decimal label
103: call StrWrite

104: mov ax, [value] ; Get value to convert

105: mov cx, 1 5 Minimum number of digits
106: mov di, OFFSET response ; Use same string for result
107: call SBinToAscDec ; Convert to signed decimal
108: call StrWrite ; Display result

109: jmp Again ; Repeat until done

110: Exit:

111: mov ah, 04Ch ; DOS function: Exit program
112: mov al, [exCode] ; Return exit code value
113: int 21h ; Call DOS. Terminate program
114:

115: ' END Start ; End of program / entry point
Summary

Structures are not variables; they’re schematics that you can use to create multifield variables. A
structure definition begins with STRUC and ends with ENDS. Default field values in the definition
can optionally be overridden in a variable of the structure’s design. To refer to the fields of a
structure, write the structure variable’s name, a period, and the field name. String fields in Ideal
mode are padded with the default characters defined in the structure definition.

Decimal is the normal radix (number base) in assembly language programs. Hex values must
begin with one decimal digit and end with 4. Binary values end with 4. Decimal values end
with nothing or 4. You can change the radix with the RADIX directive.

Turbo Assembler lets you specify signed integers in the range -32,678 to 65,535, but values in
the ranges -32,768 to -1 and 32,768 to 65,535 are represented identically in binary. You can
declare floating-point numbers in IEEE format with the dt directive, although using floating-
point values in assembly language is difficult. The same directive can create binary-coded-
decimal (BCD) numbers, which pack two digits into single bytes for numbers up to 20 digits
long. BCD numbers are useful in business calculations because they avoid round-off errors that
can occur in the results of floating-point expressions.

Although assembly language lacks built-in array mechanisms, the base- and indexed-addressing
modes can be used to read and write individual array elements. There are many ways to create
arrays in memory and, with the LABEL and REPT directives, you can even build arrays with auto-
matically assigned values. The goal of array indexing is to calculate the address of an individual
arrayed value. This is easiest to do when array element sizes are 1 byte or a power of 2.
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Unions appear to be identical to structures but are declared with the UNION directive. A union’s
fields overlay each other in the union variable, differing from a structure where fields are
distinct. Combinations of structures and unions make it possible to create complex data struc-
tures in assembly language.

The RECORD directive declares packed bit-field bytes and words. Field names in a record are
constants that represent the number of shifts required to move field values to the rightmost
position in a register or variable. The MASK operator converts a bit-field constant to a binary
mask that can be used with logical instructions such as and and or to.extract and combine

bit-field values.

To automatically generate the most efficient logical or, and, test, and xor instructions, you
can instead use these pseudo instructions respectively: SETFLAG, MASKFLAG, TESTFLAG, and
FLIPFLAG.

If you have Turbo Assembler 3.0 or later, you can use the pseudo instructions SETFIELD and
GETFIELD to insert and extract bit fields packed in records.

Turbo Assembler’s predefined equates can be used, among other things, to create an auto-
matic version stamp every time a program is assembled.

The BINASC module in this chapter converts signed and unsigned binary values to ASCIIZ
strings and also converts ASCIIZ strings in three number bases to binary values. The rou-
tines are particularly useful for converting numeric input entered in ASCII at the keyboard
into binary values for processing.

Exercises

6.1. Create a structure named Time with fields for hours, minutes, and seconds.

6.2. Declare Time variables with predefined 24-hour-clock values for 10:30:45,
14:00:00, 16:30, and midnight.

6.3. Create a variable named theTime of type Time from exercise #6.1 and write the
assembly language instructions: to set the time to 15:45:12; to increment the
hour; to reset the time to 00:00:00; and to copy theTime to a second variable
oldTime.

6.4. Assume the default radix has been changed to 16. What are the decimal values
of: 00001011, 10000000b, 1234, 4321d, FACE and 00FF?

6.5. Create variables for the floating-point values 2.5, 88.999, and 0.141. Create
binary-coded-decimal values for 125,000 and 1,250,500. What is the largest
possible BCD value you can create?
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6.6.

6.7.

6.8.

6.9.

Create arrays of 45 two-byte words; 100 four-byte (doubleword) values; 1024
bytes; and 75 binary-coded-decimal values. How many bytes do each of your
arrays occupy in memory?

Create a word index variable and, using this value, write instructions to load bx
with the address of any element for the four arrays in exercise #6.6.

Define a union similar to Figure 6.3’s Byteword, but with fields that allow
accessing values as bytes, words, and doublewords. Show example instructions for
accessing variables as any of the three types.

Design a packed record named inventory with four bit fields (width in bits
shown in parentheses): location (3), status (1), quantity (5), and vendor (4).
How many bytes does a variable with this design occupy in memory? What are
the range of values each field can represent?

6.10. Write instructions to perform these operations on your inventory record from
question #9: create a variable named inv of type inventory, set location to 3, set
status to 1, add 6 to quantity, load vendor field into dh, toggle the status field,
and zero all fields in the record. Hint: Use the MASK operator to create and masks.

6.11. Write a program ADDHEX.ASM to display the sum of two hexadecimal values
entered at the keyboard. Use routines as needed from the BINASC, STRINGS,
and STRIO modules in your answer.

6.12. Add an automatic version stamp to your answer in exercise #6.11.

Projects

6.1. Write routines to pack and unpack BCD numbers, converting a standard dt 2-
digit-per-byte format to a 20-byte variable containing 1 digit per byte.

6.2. Write a logical calculator to display the results of performing AND, OR, XOR,
NOT, NEG, SHL, and SHR operations on binary values. Users should be able
to enter values and instructions at the keyboard.

6.3. [Advanced] Write a new version of BINASC named BINASC32 to handle 32-bit
decimal integers.

6.4. Write a program to create an array of string records. Then write subroutines to
let people enter and display field values in each record. (Note: Don’t be con-
cerned with saving your data on disk, a subject covered in Chapter 9.)

6.5. Construct general-purpose subroutines to pack and unpack bit fields in record
variable words. Your code should work with both word and byte values.

6.6. Write a general-purpose array index address calculator that returns the offset

address for any array value of any byrte size.
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Standard Input and Output

If you want your programs to run on as many different DOS systems as possible, not only
IBM PCs, you must use standard methods for reading input from the keyboard and for writing
output to the display—not to mention communicating with other devices such as printers
and plotters.

DOS provides several standard I/O functions, the simplest of which read and write one char-
acter at a time. For example, you can read a character from the standard input device into
register al with two simple instructions:

mov ah, 1 ; Specify DOS "Character Input" function

int 21h ; Call DOS. Character returned in al

If the standard output device is the main console, as it usually is, reading input this way
echoes each key press to the display. Because DOS 1/O is redirectable, however, there’s no
guarantee that the input data will come from the keyboard. Unknown to the program, the
person using the computer may have executed a command to tell DOS to change the
standard input file from the keyboard to a disk file:

program <afile.txt

The advantage of using DOS functions to read data from the standard input file is that your
program does not have to perform any special actions to permit someone changing from where
input comes or to where output goes. For most purposes, the program is blissfully unaware
of physical I/O device details. If someone wants to print a program’s output instead of see-
ing it on screen, that’s fine with DOS and the program. Similarly, to write a single character
to the standard output device takes only a few simple commands:

mov ah, 2 ; Specify DOS "character Output" function
mov dl, [thechar] ; Move character into dl
int 21h ; Call DOS

The character for output is loaded into d1 from a byte variable theChar (not shown). Once
again, because output for DOS function 2 may be redirected, there’s no guarantee that this
code will write a character to the display. For example, someone could execute a command
such as the following to send your program’s output to a serial output port, which might be
attached to any sort of device.

program >com1

Taking a Break

DOS functions 1 and 2 check whether Ctrl-C—the break command—was typed some time
earlier. If so, DOS executes interrupt 23h, which halts the program. (Chapter 10 explains
interrupts in more detail. As used here, an interrupt is similar to a subroutine call.) To avoid
unexpectedly breaking out of a program when someone presses Ctrl-C, you have three choices:
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* Use a different DOS function
* Replace the code for interrupt 23h with your own Ctrl-C handler
¢ Tell the device driver to ignore Ctrl-C key presses. ‘

Usually, the first choice is the best—other input methods are available that pass Ctrl-C back
to your program just like any other key press. Writing your own interrupe handler i prob-
J o ) V< =/ = R s B r v
ably more work than necessary. The third choice takes more work (as I'll explain later in this
section) but may be useful in some cases. A device driver is a program in a highly specialized
form that interfaces with physical devices such as keyboards, printers, and displays. Many

good DOS programming references explain this form.

Always remember that both of the standard input @nd outpur character functions 1 and 2
check for Curl-C key presses. When this happens due to a call to the DOS input function 1,
your program never receives the Ctrl-C. When a Cul-C is detected during a call to DOS
output function 2, the character in d1 is passed to the standard output file before the Ctrl-C
check takes place.

These checks for special characters are called filters because of the way they filter out certain
key presses and characters for special action. In addition to filtering Ctrl-C, input and out-
put functions 1 and 2 also filter other control codes, performing the actions listed in Table
7.1. Except for Curl-C, Curl-P, and Curl-S, which apply only to output, these actions occur
for both input and output functions 1 and 2.

Unfiltered Input

When you don’t want to filter Ctrl-C and other control codes, you can use one of two functions:

¢ DOS function 6: Direct console I/O
* DOS function 7: Unfiltered input without echo

Function 6 is included in DOS mostly to accommodate programs converted from CP/M, which
has a similar function for direct console I/O. Because there are other, and probably better, ways
to access input and output devices directly in DOS, there’s rarely any good reason to use
function 6. Instead, it’s usually best to employ function 7 to read characters quietly—that is,
without echoing key presses to the standard output device and without filtering Curl-C.
Except for the function number, the code is identical to the code for function 1:

mov ah, 7 ; Specify DOS "Input without echo"

int 21h ; Call DOS. Character returned in al

This method does not check for Ctrl-C or Ctrl-Break key presses and, therefore, prevents
people from ending programs prematurely. Other control codes in Table 7.1 are returned to
your program as normal key presses. To add filtering to input without echoing characters to
the standard output device, use function 8, which generates the interrupt 23h break signal
to end the program if DOS detects a Ctrl-C or Ctrl-Break key press. Except for this action,
function 8 is identical to function 7.
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Table 7.1. Standard 1/0 Control Codes.
Crrl Key ASCII Code Action

Cutrl-C 03 Generate interrupt 23h (break)
Cul-G 07 Ring the bell

Cul-H 08 Nondestructive backspace
Curl-I 09 Tab forward

Crrl-] 10 Line feed (with possible scroll)
Cul-M 13 Carriage return

Cul-P 16 Toggle PRN device on/off
Cul-S 19 Stop output until next key press

Unfiltered Output

As explained earlier, you can write ASCIIS$ strings with DOS function 9. Besides requiring
the strange ASCII$ dollar-sign string format, function 9 (as function 2) detects Ctrl-C and
responds to the other control codes in Table 7.1. If you must use these functions, prevent
people from breaking out of a running program by calling DOS function 44h, “Device-driver
control” or IOCTL—available beginning with DOS version 2. This function lets you re-
program the output device driver to ignore Ctrl-C and Ctrl-Break key presses. First, call
function 44h with al equal to 0, reading the current device control bits from the device driver:

mov  ax, 4400h ; DOS function 44h, item 00: get device info
mov  bx, 1 ; Specify standard output
int  21h ; Call DOS. Returns data in dx

The device driver’s bit settings are now in register dx. Bit 5 of the device driver settings tells
the driver whether to process all data (bit = 1), or whether to filter characters for Ctrl-C and
Curl-Break (bit = 0). Setting bit 5 turns off filtering:

mov ax, 4401h ; DOS function 44h, item 01: set device info

xor  dh, dh ; dh must be @ for this function call

or dl, 20h ; Set bit 5--process binary data

int 21h ; Call DOS with data in dx

This technique disables Ctrl-C, Ctrl-S, and Curl-P filtering, not only for your program but
also for any other programs including DOS itself that call functions 2 and 9 to pass data to
the standard output device. For instance, after reprogramming the device driver, you will
not be able to press Ctrl-C to interrupt a long directory started with the DIR command. So,
as the video stores say, “Be kind: Rewind”—that is, before your program ends, clear bit 5
with the identical seven previous instructions but replace or d1, 20h with and d1, @DFh to
restore Curl-C checking.
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Waiting Around—and Around

A program that reads input via DOS functions 1, 7, and 8 can become trapped in an endless
cycle, waiting for key presses until the cows come home. (As far as I can tell, they always do.
But, never mind.) Many times, you’ll want a program to respond to key presses when they
occur but to continue other operations if no input is ready. For example, a word processor
could perform a lengthy search-and-replace operation, ending early if you press the Esc key.
Or a simulation could update the display, taking various actions in real time as you type
commands. There are two ways to achieve these goals:

* Interrupt-driven, buffered input

* DPolling

In the first method, incoming data forces the CPU to execute special code designed to store
input in memory buffers for later processing. (Chapter 11 explains this method in detail.) In
the second method, a program periodically polls the input device, reading input only after
detecting waiting data. If no input is available, the program continues with other operations.

With polling, you must read input often enough to avoid losing characters. For example, if
someone presses two keys before you check the keyboard for new input, the first key press
might be lost. Fortunately, routines in the IBM PC’s ROM BIOS automatically respond to
key presses, storing ASCII codes in a #ype-ahead buffer. When DOS reads data from the key-
board, it actually removes characters from this buffer. As a result, the only danger is that the
buffer can fill before the program requests input. Even this danger is minimized by an auto-
matic bell that sounds, warning a speedy typist to slow down.

NOTE
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Key Press Checking

To check whether incoming data is waiting to be read, use DOS function 11, “Get Input
Status,” which returns al equal to 0 if no input data is ready or to OFFFh if a character is
waiting to be read. (Zero and 0fth are the only two values returned by function 11; therefore,
just checking whether al equals 0 is adequate.) With this method, you can write a simple loop
to call a subroutine repeatedly, processing new characters only as they become available:

ee10:

call OtherStuff
mov ah, 11

Code to execute until char is ready
DOS function "Get Input Status"

bl

3
int 2th ; Call DOS. Result in al
or al, al ; Is al = 07
je ee1o ; Jump if al = @. No input is waiting
mov ah, 7 ; Else read character with no echo
int 21h ; Call DOS. Character returned in al
call ProcessChar ; Process new input data in al
jmp @@10 ; Play it again, Sam

This fragment repeatedly calls otherstuff (not shown) until function 11 indicates that a
character is ready. When a new character becomes available—probably as a result of some-
body pressing a key—function 7 reads the character. It then calls Processchar (also not shown)
to take appropriate actions, which might include ending the program on detecting the Esc
or another key. In fact, this simple example could be used as the entire “main loop” of any
program that needs to continue processing while responding to key presses as they become
available. Unfortunately, there’s a fly in the ointment: Function 11 also detects Ctrl+C and
Curl+Break, ending the program via interrupt 23h if those keys are pressed. This effectively
destroys the advantage of using function 7 to read unfiltered input. Even reprogramming
the device driver as described earlier is of no help this time.

The answer is to call BIOS routine 16h instead of DOS to test whether a key press is avail-
able. When ah equals 1, this routine returns the zero flag zf equal to 1 if the type-ahead buffer
is empty or to 0 if at least one character is in the buffer. In addition, if a character is waiting
to be read, the BIOS routine returns the character in al and its scan code (keyboard key
number) in ah. When ah initially equals 0, the same function removes and returns in ax one
character from the type-ahead buffer. These routines give you the means to program com-
pletely unfiltered, quiet I/O. The previous code now becomes:

@@10:

call OtherStuff Code to execute until char is ready
mov ah, 1 Select "Input Status" routine

int 16h Call BIOS keyboard I/O0 function

3
H
H
jz eeto ; Jump if zf = 1. No input is waiting
xor ah, ah ; Select "Read Character" routine

H

H

H

int 16h Call BIOS Keyboard I/0 function
call ProcessChar Process new input data in al
jmp ee10 Once more, from the top

With this technique, no sequence of key presses can end the program prematurely. Having
solved the problem for input, another BIOS function also lets you display characters with no
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Ctrl-C or Ctrl-Break filtering. With this function, you can program a procedure ProcessChar
to display characters read by the previous sample code:

PROC ProcessChar

cmp al, 27 ; Is al = Escape key?

je Exit ; If yes, exit program

mov bl, 15 ; Foreground color for graphics displays
mov an, 14 ; Select "write [(IY" routine

int 10@h ; Call BIOS Video I/O0 function

ret ; Return to caller

ENDP ProcessChar

First, al is compared with the ASCII code for Esc (27), jumping to the Exit label (not shown)
if you press the Esc key. (Providing a way to end the program is essential when not relying
on DOS to end the program upon sensing Ctrl-C or Ctrl-Break.) If Esc is not detected, b1
is assigned a foreground color, required only for graphics displays. Then ah is set to 14 deci-
mal, selecting the BIOS “Write TTY” routine—so called because its simple character out-
put resembles that of a Teletype machine, in other words, lacking facilities for positioning
the cursor, changing character colors and attributes, clearing to ends of lines, and so on. Still,
interrupt 10h is useful for reasonably fast output, especially when you want the program to
have total control over I/O.

As with most good things in life, you pay a price by calling the ROM BIOS I/O routines. As
you can see from the last several samples, the program has eliminated all calls to DOS. Con-
sequently, the program will now run only on IBM PCs and 100% compatibles that contain
the proper ROM BIOS routines. The code may not execute on plain DOS systems or under
other operating systems that run pseudo-versions of DOS. Because there are so many mil-
lions of PCs installed in offices throughout the world, this may not be as severe a problem as
it has been in times past. However, when using these techniques, you should at least include
a warning along with your program not to attempt execution on noncompatible systems.

A more nagging problem is the loss of I/O redirection, one of DOS’s most appealing good-
ies. Calling BIOS routines to give programs total control over character I/O means that your
program users will no longer be able to redirect input to come from a text file or to send
output to the printer. Many programmers consider such loss an advantage, giving their pro-
grams complete control over what is printed, what appears on display, and so forth. But, for
small programs and utilities, I/O redirection is a helpful feature to have, and you may want
to consider using standard DOS function calls in such cases.
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Reading Function Keys

The ASCII character set directly represents only 32 control codes with values from 0 to 31,
95 symbols with values from 32 to 126, plus a delete character with the value 127 (alias,
rubou). Including uppercase and lowercase letters, punctuation and various Ctrl, Shift, and
Alt combinations, there simply aren’t enough codes to cover all the key combinations of-
fered by even a small 83- or 84-key PC keyboard.

NOTE

To handle the special keys, the DOS input methods discussed in the previous section return
two codes representing a function key. The first code, always 0, is called the lead-in charac-
ter. When any keyboard input routine returns a 0, the next character indicates which func-
tion key was pressed. This scheme leads to code such as:

mov ah, 1

int 2th

or al, al

jnz NormalChar
int 21h

jnz FunctionKey

Specify DOS "Character Input" function
Call DOS. Character returned in al
Check for lead-in from keyboard

Jump to process a normal character
Call DOS for next character

Jump to process a function key

3
3
3
H
)
3

As this shows, two DOS calls to function 1 are required to detect and read function keys,
including special keys such as Ins, Del, PgUp, PgDn, the cursor keys, and the numbered
function keys F1-F10 found on all PC keyboards. Normal characters are processed by jumping
to NormalChar (not shown); function keys by jumping to FunctionKey (also not shown).

NOTE

Many programmers use the double-DOS-call method, but I find this to be cumbersome in
practice. Even though you can detect function keys, there’s still no simple way to represent
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these keys as plain characters, as you can other keys like A and Q. For this reason, I 7ap (that
is, translate) function key values to single codes, a method described later in this chapter along
with the listing for a keyboard input module you can add to your library.

Flushing the Type-Ahead Buffer

When prompting for a yes or no response to a dangerous operation—formatting a disk or
erasing an important disk file—it’s a good idea to flush (empty) the type-ahead buffer before
reading the keyboard, thereby forcing people to consider carefully their answers to your
program’s more serious questions. These are two ways to flush the type-ahead buffer. The first
is rather obvious—simply keep reading and throwing away key presses until none is available:

@@10:

mov ah, 1 ; Select "Input Status" routine
int 16h ; Call BIOS keyboard I/0 function
jz  ee20 ; Jump if zf = 1. No input is waiting
xor ah, ah ; Select "Read Character" routine
int 16h ; Read and throw away one character
jmp ee10 ; Jump to repeat loop
@@20: ; Type-ahead buffer is now empty

This code is similar to previous samples, calling BIOS interrupt 16h with ah equal to 1 to
test whether input is available. If there is (as indicated by zf = 0), ah is set to 0, and interrupt
16h is again called to read one character from the type-ahead buffer, repeating these steps
until no more characters are available.

Another possibility is to call a special DOS function that clears the type-ahead buffer and
then executes another character-input command. If your program must run on all DOS
systems, this is the method to use. First, load ah with the function number 0Ch. Then load
the number of another input command into al: either 1, 6, 7, 8, or 0Ah. If using OAh, the
“Get String” command, also set ds:dx to the address of the buffer to use for string input.
Call DOS with int 21h, which flushes the type-ahead buffer and then executes the function
specified in al. For example:

mov  ah, @OCh ; Select "Reset input buffer & execute"
mov al, 7 ; 1, 6, 7, 8, or OAh allowed
int  21h ; Call DOS to flush buffer and

; execute the command in al

Some assembly language programmers employ yet another technique to empty the type-ahead
buffer, fiddling with two pointers (addresses) that keep track of the buffer’s head and tail.
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These pointers address the beginning (head) and end (tail) of the type-ahead buffer some-
where in memory. A third pointer locates the start of the buffer. By definition, when the
head and tail pointers are equal, the buffer is empty. All three pointers are located in the
BIOS data segment at 0040h, an area reserved for system variables. As the following frag-
ment demonstrates, you can use this information to empty the type-ahead buffer by setting
the head and tail pointers equal to the buffer’s starting address:

bufferStart EQU 0080h Buffer-start pointer

head EQU 001Ah ; Head pointer
tail EQU 001Ch ; Tail pointer
mov ax, 0040h ; Address BIOS data segment

mov ds, ax

mov ax, [bufferStart]
cli

mov [head], ax

mov [tail], ax

sti

with ds register

Get buffer starting address
Prevent interrupts from occurring
Assign address to head pointer
Head = tail, emptying the buffer
Allow interrupts again

First, segment register ds is set to the BIOS data segment beginning at 0040h. Then ax is
loaded with the value stored at [bufferstart], which holds the offset address of the type-
ahead buffer. Inserting this value into both the head and tail pointers empties the buffer.
The c1i (clear interrupt) instruction prevents a keyboard interrupt from occurring during
the time that the two pointers are being adjusted. The sti instruction again allows inter-
rupts after the buffer is cleared.

NOTE

Introducing DOS Handles

Another useful way to move data in and out of programs is to read and write files, identified
by values called handles. The word “file” refers to disk files, as well as to devices such as the
display, keyboard and printer. Instead of writing code to access such different devices di-
rectly, you can instead read from and write to logical files assigned to the devices, employing
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a single set of DOS function calls to communicate with a wide variety of hardware. (We'll
return to the subject of handles in Chapter 9, which covers how to use handles to read and
write disk files.)

When DOS loads and runs a program, it initializes several standard files. Table 7.2 lists the
five handles associated with these files. showing the values that assembly language programs
can use to communicate with the display, keyboard, printer, and one serial I/O channel.

When you issue a DOS command to redirect I/O, using the redirection character < to specify
a new input device or file and > to specify a new output device or file, DOS closes handles 0
and 1 and then reopens these defaults to the new devices, thus switching I/O away from the
usual CON device, that is, the display and keyboard. This happens before your program
begins running; therefore, all you have to do is read from handle 0 and write to handle 1 to
give people complete control over your program’s I/0.

Handle 2 is most often used for displaying error messages. Because I/O redirection affects
only handles 0 and 1 and because handle 2 normally refers to the console, when redirecting
output to another device, writing to handle 2 still goes to the display. This lets you display
progress and error messages without worrying whether the messages will interfere with other
output. (You can write anything you want to handle 2; you don’t have to use this handle for
only error messages.)

Handle 3 is assigned to the first serial port, also known as COM1. But, because DOS handles
serial I/O so poorly, you should probably not try to use this handle for communicating with
remote systems via modems and high-speed RS-232 interfaces.

Handle 4 is associated with the printer, which may be plugged into the computer’s parallel
or serial ports. Some assembly language programmers use the ROM BIOS printer routine,
interrupt 17h, which works only for parallel printers. While this is the normal configuration
for most PC systems, many installations still have serial printers. Writing to the standard
print device is the best way to accommodate all possible printer setups.

Table 7.2. Standard DOS Handles.

Handle Device Name Device Description

0 CON Standard input device

1 CON Standard output device

2 CON Standard error output device

3 AUX Auxiliary (serial I/O) device

4 PRN Standard listing device (printer)
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Writing DOS Filters

Using standard DOS 1/O file-handling techniques, you can write filter programs that read
the standard input file, perform some operation on incoming data, and then write the modi-
fied data to the standard output file. Multiple filter programs can be combined with a spe-
cial character called a pipe, represented by a vertical bar (1). A pipe routes the output of one
filter to the input of the next filter, which can route its output to a third filter, and so on.
Combining multiple filters, each with a simple purpose—for instance, sorting text lines and
extracting data based on various criteria—lets you build complex on-the-spot commands to
solve problems that might otherwise require custom programming.

Along with its other utility programs, DOS provides three standard filter programs: FIND,
MORE, and SORT. (Refer to your DOS manuals for information on using these programs.)
You can also add your own filters to this basic set. To help you get started, Listing 7.1,
FILTER.ASM, is a shell that handles most of the low-level details involved with filter pro-
gramming. FILTER is a complete filter, reading from the standard input device and writing
to the standard output device. Because the program is only a shell, it doesn’t perform any
useful function. After the listing, I'll explain how to modify the shell to do something worth-
while. Just so you know whether you entered the program correctly, you can assemble FIL-
TER with the command tasm filter.

Listing 7.1. FILTER.ASM.

1: STITLE "Filter Shell -- Copyright (c) 1989,1995 by Tom Swan"

2-

3 IDEAL

4:

5: MODEL small

6: STACK 256

7

8:

9: j-————- Equates

10:

11: InputHandle EQU 0 ; Standard input handle

12: OutputHandle EQU 1 ; Standard output handle
13: ErrOutHandle EQU 2 ; Standard error-out handle
14: bell EQU 07 ; ASCII bell

15: cr EQU 13 ; ASCII carriage return

16: 1f EQU 10 ; ASCII line feed

17: eof EQU 26 ; DOS end-of-file char ("Z)
18:
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: exCode

: oneChar

: Start:

: Repeat:

: Done:

DATASEG

DB ]

Error messages

: errMessage
: lenErrMessage

: codeAccess
: errAccess
: lenErrAccess

: codeNotOpen
: errNotOpen
: lenErrNotOpen

: codeDiskFull
: errDiskFull
: lenErrDiskFull

: errGeneral
: lenErrGeneral

; I/0 error code

DB bell, cr, 1f, 'FILTER ERROR: '
= $-errMessage

EQU 5

DB 'access denied', cr, 1f

= $-errAccess

EQU 6

DB 'bad handle or file not open', cr, 1f

= $-errNotOpen

EQU 29

DB 'disk full', cr, 1f

= $-errDiskFull

DB ‘unknown cause', cr, 1f ;

= $-errGeneral

Input buffer

CODESEG

mov
mov
mov

call

jz
Process
call
jnz

mov

jmp

mov
call

DB ? ; Holds
ax, @data

ds, ax

es, ax

ReadChar

Done

[oneChar] here

WriteChar

Repeat

[exCode], codeDiskFull
Exit

[oneChar], eof
WriteChar

Code = ?

one input character

3

Initialize DS to address
of data segment
Make es = ds (optional)

Read next character
End loop if at end-of-file

Write processed character
Repeat unless disk is full
Set error code

and skip eof write

Write end-of-file character
to standard output. Do NOT
check for disk full here!

continues
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Listing 7.1. continued

72: Exit:

73: cmp [exCode], 0@ ; Check for possible error
74: jz @@99 ; Jump if no error detected
75: call DisplayError ; else display error message
76: @@99:

77: mov ah, 04Ch ; DOS function: Exit program
78: mov al, [exCode] ; Return exit code value

79: int 21h ; Call DOS. Terminate program
80:

81: %NEWPAGE

82: ; -

83: ; ReadChar

Read one character from standard input

85: ; Input:

86: ; none

87: ; Output:

88: ; zf = 0 : al = next input character (0..255)

89: ; zf = 1 : no more input available

90: ; Registers:

91: ax

92: ;-——-mmmmm - e
93: PROC ReadChar

94: push bx ; Save modified registers
95: push cx

96: push dx

97:

98: mov ah, 03Fh ; Read-device function number
99: mov bx, InputHandle ; Specify input handle
100: mov cx, 1 ; Number of chars to read
101: mov dx, offset oneChar ; Store input at ds:dx
102: int 21h ; Call DOS. Get input.
103: jnc @a@10 ; Jump if no error indicated
104: mov [exCode], al ; else save error code
105: jmp Exit ; and exit program early
106: @@10:

107: or ax, ax ; Set/clear zero flag (zf)
108:

109: pop dx ; Restore registers

110: pop cX

111: pop bx

112: ret ; Return to caller

113: ENDP ReadChar

114: %NEWPAGE

115: ; e e e
116: ; WriteChar Write one character to standard output

117: ;-- - -—=
118: ; Input:

119: ; [oneChar] = character to write

120: ; Output:

121: zf = @ : character written to standard output file

122: ; zf = 1 : output device is full (disk output only)

123: ; Registers:

124: ; ax

125: ;- -
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126: PROC WriteChar

127: push bx ; Save modified registers
128: push cX

129: push dx

130:

131: mov ah, 040h ; Write-device function number
132: mov bx, OutputHandle ; Specify output handle
HH mov CH, 1 5 Wumoeir OF Chais 1o wiite
134: mov dx, offset oneChar ; Take input from ds:dx
135: int 21h ; Call DOS. Write output.
136: jnc ee10 ; Jump if no error detected
137: mov [exCode], al ; else save error code
138: jmp Exit ; and exit program early
139: eeio:

140: or ax, ax ; Set/clear zero flag (zf)
141:

142: pop dx ; Restore registers

143: pop CcX

144: pop bx

145: ret ; Return to caller

146: ENDP WriteChar
147: SNEWPAGE

148: j——— -
149: ; DisplayError Display error message

150
151: ; Input

152: ; [exCode] = non-zero error code

153: ; Output:

154: none: error message sent to standard error-output device
155: ; Registers:

156: ; ax, bx, cx, dx

157
158: PROC DisplayError

159: mov cx, lenErrMessage ; Length of common string
160: mov dx, offset errMessage ; Address of common string
161: call DisplayString ; Display first part message
162:

163: cmp [exCode], codeAccess ; Test for codeAccess err
164: jne ee10 ; Jump if not this code
165: mov cx, lenErrAccess ; Set string length

166: mov dx, offset errAccess ; Set string address

167: jmp DisplayString ; Display string

168: @@10:

169: cmp [exCode], codeNotOpen

170: jne @e@20

171: mov cx, lentErrNotOpen

172: mov dx, offset errNotOpen

173: jmp DisplayString

174: @@20:

175: cmp [exCode], codeDiskFull

176: jne @@30

177: mov cx, lenErrDiskFull

178: mov dx, offset errDiskFull

179: jmp DisplayString

180: @@30:

181: mov cx, lenErrGeneral ; Other error values

182: mov dx, offset errGeneral

183:
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Listing 7.1. continued

184: DisplayString:

185: mov ah, 040h ; Write-device function number
186: mov bx, ErrOutHandle ; Specify error output handle
187: int 21h ; Call DOS. Write output.
188: ret ; Return to caller

189:

190: ENDP DisplayError

191:

192: END Start ; End of program / entry point

How FILTER Works

FILTER uses DOS handles to read and write characters to the standard input and output
devices. The program also correctly handles error conditions—including a tricky disk-full
condition that many similar programs fail to detect—and illustrates a few other goodies that
you can put into operation in your own code.

The three equates at lines 11-13 are assigned the values of three standard DOS handles. (See
Table 7.2.) Later on, these equates are passed to appropriate DOS functions to read and write
characters. Lines 27—43 illustrate a different way to declare character strings. In place of the
ASCII$ and ASCIIZ methods described before, these strings are unterminated. The first string,
erriessage at line 27, creates a string preceded by bell, carriage return, and line-feed control
characters. Writing this string rings the bell and starts a new display line, as well as writing
the visible characters, “FILTER ERROR:” Line 28 shows how to assemble a numeric equate
equal to the length of the string. Here’s a similar example:

DATASEG
. dumbJoke db "My Texas fleas have dogs."
LenString = $ - dumbJoke

The dollar sign ($) is called the location counter. Turbo Assembler replaces $ with the current
offset address at this place in the program—in this case, relative to the data segment, although
you can use this symbol in any other segment, too. Because an offset address is just a value, as is
the label dumbJoke, subtracting dumbJoke from the location counter affer the string calculates the
string length. You can use the same trick with any other label to calculate structure and array
sizes or even to find the number of bytes of code between two points in the code segment.

NOTE
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In FILTER, the series of strings and string lengths at lines 27—43 are error messages, associ-
ated with values assigned by EQU directives. For example, codeAccess is the error code for
the string errAccess, which has the length LenErraccess. By the way, using similar names
this way is a good technique for keeping programs organized, especially when you have more
than just a few symbols to track.

Lines 58—67 perform FILTER’s input and output duties, repeatedly calling two subroutines
ReadChar and WriteChar, reading one character from the standard input device, and storing
that character in a variable onechar (line 48). At line 62, you can insert your own program-
ming to process this character before the call to writechar at line 64 sends onechar on its way
to the standard output.

Lines 68-70 add an end-of-file control character, ASCII 26 (Ctrl-Z), to the end of the out-
put file. (Some programs require this character; others do not. It’s probably best to write the
marker just to be safe.)

FILTER.ASM ends by first inspecting the exCode variable, which hasn’t been used up until
now. In this program, an error code may be stored in exCode by either ReadChar or WriteChar.
In that event, a third subroutine bisplayError sends an appropriate message to the standard
error-output device handle number 2. After this, the program ends via DOS function 04Ch,
passing the exCode value back in al (lines 77-79).

The code at lines 5875 is carefully constructed to respond to all possible I/O errors. If
ReadChar returns the zf flag set, then there is no more input to process, and line 60 jumps to
the Done label, where the end-of-file marker is written. If WriteChar returns the zf flag set,
then the output file must be a disk text file and the disk is full, a condition that DOS strangely
does not report as an error. Many programs skip this all-important step of checking for a
disk-full condition as at lines 64—67 here.

The rest of the FILTER shell is composed of three subroutines that you can call in your own
programs. The next section describe how to do this.

Readchar (82-113)

ReadChar demonstrates how to read one character from the standard input device (handle
0). DOS function 03Fh, “Read from file or device,” requires bx to hold the handle number,
cx to hold the maximum number of characters to read, and ds:dx to hold a pointer to the
location where DOS should store the input data. This routine returns cf set if an error is
detected, in which case the error code (either 5 or 6) is stored in exCode at line 104 followed
by a jump to the Exit label, ending the program immediately if an error occurs. The or in-
struction at line 107 sets or clears zf. If ax is 0, then no more data is available from the input
file; otherwise, ax equals the number of characters actually read, which may be fewer than
the maximum specified in cx.
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WriteChar (115-146)

writechar calls DOS function 040h, “Write to file or device,” to write one character to the
standard output device (handle 1). Again, bx equals the handle number; cx, the number of
characters; and ds: dx, the address of the data to be written. If ¢f is set on return from DOS
function 040h, lines 137-138 store the error code in al in variable exCode and jump to the
Exit label. Line 140 sets or clears zf as described before.

DisplayError (148-190)

DisplayError demonstrates how to display error (and other) messages in filter programs, using
the same DOS function (040h) used in WriteChar. In this case, however, bx is assigned the
standard error-output handle at line 186, with cx equal to the string length and ds:dx ad-
dressing the string variable. Because handle 2 is used, even if the standard output is redi-
rected, error messages are still written to the display.

Customizing FILTER

Because FILTER reads characters from the standard input device and writes characters to
the standard output device, you can use I/O redirection characters (< and >) and a pipe (I) to
execute the program. To modify the program to do something useful, first copy FILTER.ASM
to LC.ASM and replace line 62 in the copy with the code in Figure 7.1.

After adding the new lines, assemble and link with the commands:

tasm lc

tlink lc v

You now have a new filter program LC to convert rext files to all lowercase. One good use for
LC is to convert to lowercase public domain assembly language listings, many of which are in
all uppercase, which I find difficult to read. Before processing your valuable files, try the pro-
gram on a copy of any text file. If your file is named OLDFILE.TXT, issue the command:

lc <oldfile.txt >newfile.txt

to convert the text in OLDFILE. TXT to lowercase and write the result to a new file named
NEWEFILE.TXT. No changes are made to OLDFILE. TXT.

mov al, [oneChar] ; Load al with input char

cmp al, 'A' ; Test if > 'A’

jb ee1o ; Jump is al < 'A‘

cmp al, 'z’ ; Test if al < 'Z'

ja ee1o ; Jump if al > 'Z'

add al, 'a'-'A' ; Convert A-Z to a-z

mov [oneChar], al ; Save converted character
@e10:
Figure 7.1.

Code to replace line 62 in Listing 7.1, converting the FILTER.ASM shell to LC.ASM.
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Another way to use a filter program like LC is to pipe the output of one filter into the input
of another. For example, to display a sorted disk directory in all lowercase, use the command:

dir|lc|sort|more

DIR is, of course, a DOS command; LC is the filter from this chapter; MORE is a standard
DOS filter program that inserts pauses at every screenfull of lines; and SORT is another stan-
dard filter that sorts text lines. Because the display is the standard output file, there’s no need
to redirect output in this case. When you do want to redirect piped output, for example to
print a directory in lowercase, use a command like this:

dirjlc >prn

Printing Text

The printer is just another output device; therefore, the easiest way to print text is to write to
the standard list-device handle, number 4. (See Table 7.2.) For example, you can print a
string with code such as this: '

DATASEG

string DB 'This string is printed'

LenString = $ - string

CODESEG

mov ah, 040h DOS function "Write to File or Device"
mov bx, 4 Standard list device handle number

mov cx, LenString
mov dx, offset string
int 21h

Assign length of string
Assign string address to ds:dx
Call DOS to print string

After this code executes, register ax equals the number of characters printed, unless cf is set,
in which case ax equals an error code, probably 5 (access denied) or 6 (bad handle or file not
open). If cf is not set, it’s also possible, although unlikely, for ax to be less than cx, indicat-
ing that only some of the characters were successfully printed. You can deal with this situa-
tion if you want, but for most printing jobs, it’s not necessary, continuing instead with:

jnc  Continue ; No error--continue

mov [errorCode], ax ; Else store error code

jmp Error ; Exit program
Continue:
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An easy way to print single characters is to use DOS function 5, which sends the character in
d1 to the standard list device associated with handle 4:

mov ah, 5 ; DOS printer output
mov dl, [anyChar] ; Place character in dl
int 21h ; Call DOS to print one character

Both this and the previous methods ensure portability and will work with just about any
printer/interface combination your program is likely to meet. As mentioned earlier, you can
also print a character by calling the ROM BIOS interrupt 17h, although this method won’t
work with serial printers:

mov ah, @ ; Select print routine of interupt 17h

mov al, [anyChar] ; Place character in al

mov dx, @ ; Printer number 0, 1, or 2

int 17h ; Call ROM BIOS to print one character

After this code, if ah equals 1, then the character was not printed—probably because the printer
is either off line, or, perhaps, there is no printer. Use this method only if you are sure that
your program will drive a printer attached to the computer’s parallel interface, and you are
sure the system has an IBM-compatible BIOS.

Selecting Printer Features

All modern printers understand a variety of control codes to select various features, switch
on underlines, print in bold face, and so on. To select a feature is a simple matter of “print-
ing” the correct control-code sequence. When the printer receives such a sequence, it inter-
prets the values as instructions instead of ASCII codes to print. For example, to switch to
compressed text on most Epson-compatible printers, you can write:

mov ah, 5 ; DOS printer output
mov dl, 14 ; Compressed-text control code
int 21h ; "Print" the command

Some commands required two or more successive codes, usually starting with an escape char-
acter (ASCII 27). Probably, the best way to handle such codes is to write a small subroutine
to print one character:

PROC PrintChar

mov ah, 5 ; DOS printer output
int 21h ; Print character
ret ; Return to caller

ENDP PrintChar

Then place the value to print in d1 and call Printchar. To turn on underlining, you can write:

mov dl, 27
call PrintChar
mov dl, 45
call PrintChar
mov dl, 1
call PrintChar
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This sends the sequence 27, 45, 1, which tells the printer to begin to underline subsequent
text. (Change the 1 to 0 to cancel underlining.) Table 7.3 lists a subset of the more popular
control sequences understood by many printers. Consult your printer manual for other codes.

Table 7.3. Typical Printer Control Sequences.

ASCIH Code Decimal Values Action

BELL 7 Ring printer’s bell

HT 9 Horizontal tab (forward)

LF 10 Line feed

VT 11 Vertical tab

FF 12 Form feed

CR 13 Carriage return

SO 14 Double width text on*

SI 15 Compressed text on

DC2 18 Compressed text off

DC4 20 Double width text off

CAN 24 Clear printer buffer

ESC,—NUL 27,45,0 Underlining off
ESC—SOH 27,451 Underlining off

ESCE 27,69 Emphasized text on

ESC,F 27,70 Emphasized text off

ESC,W,NUL 27,87,0 Double width text off

ESC,W,SOH  27,87,1 Double width text on

*Cancelled by CR, LF, or DC4

Memory-Mapped Video

To paraphrase a well-known writer whose name is similar to mine (but ends with a big bad
Wolfe instead of a beautiful Swan), assembly language programmers like to power their code
to the edge of the envelope. To achieve the best possible output speed in PC programming,
there’s only one way to fly—write characters directly to the PC’s memory-mapped video.

Although there are several different kinds of video adapters and systems available for IBM
PCs and compatibles, all use one of two special memory areas that other circuits read to dis-
play text on screen. These areas, called video or regen buffers, begin at segment address 0BOOOh
for monochrome and Hercules displays and at 0B800h for graphics systems, including CGA, 267
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EGA, and VGA standards. Each word in the buffer specifies an extended ASCII character
value from 0 to 255 plus a second byte that selects attributes such as bold face and underlin-
ing on monochrome systems or background and foreground colors on color monitors. Al-
though there are many different modes and features of these display standards that you can
use, when it comes to displaying text by directly writing to the video buffers, the process is
relatively straightforward.

The reason for having two video buffers, by the way, is that the original IBM PC allowed
both monochrome and color graphics adapters to be used simultaneously. Although most
people use a single CRT and adapter card today, obviously, such dual use requires two buff-
ers to hold screen data. The first job, then, is to discover whether the system has a mono-
chrome or color adapter—or which of the two is active in systems with both setups. Do this

by calling the ROM BIOS interrupt 10h with ah equal to 15 decimal:

DATASEG

VBASE dw ? ; Video buffer base address
CODESEG

mov [VBASE], 0B800h ; Initialize default segment address
mov ah, 15 ; ROM BIOS "Get video state" number
int 10h ; Call BIOS video I/O service

H
3
k)
cmp al, 7 ; Is result monochrome?
3
3

jne @@10 ; Jump if not monochrome
mov [VBASE], 0B00Oh ; Else change default segment address
ee10:

These instructions call the BIOS video routine with int 10h and check the result returned in
al. Ifalis 7, this is a monochrome system (including those with the popular Hercules adapter);
otherwise, the system has a graphics card of some kind. Accordingly, the word variable vBASE
is set to the proper segment address for other routines to use.

After this step, writing a character to the display is a simple matter of poking an ASCII value
and an 8-bit attribute code into a memory location, offset from the segment specified by
vBASE. There are several ways to proceed, but the method I have found easiest to use is to
load es with the segment address and di with the offset:

mov es, [VBASE] ; Address video buffer segment with es

mov di, 0@ ; Assign offset address to di

After this, load an ASCII value into al and the attribute or color value into ah and execute
stosw to display the character:

mov al, [anyChar] ; Load character to display into al
mov ah, [attribute] ; Load attribute into ah
stosw ; Store ax at es:di

If you are going to store successive characters and attributes with this method, execute a c1d
instruction before the first stosw to prepare for auto-incrementing di. When displaying only
one character, it doesn’t matter whether di increases or decreases, so you can leave this step
out.
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Figure 7.2 illustrates that characters in monochrome and color video memory buffers are
composed of character and attribute bytes. Figure 7.3 shows the format of a character at-
tribute byte, which is identical for both color and monochrome adapters. Of course, you see
colors only on color displays. On monochrome systems, “colors” are shown as underlines,

bold face, and reversed (black on bright) video.

In the video buffer memory, character bytes are stored at even addresses; attribute bytes, at
odd addresses. When reading and writing the character value and attribute together into a
16-bit register, remember that the 8086 stores word values in byte-swapped order. Conse-
quently, assuming the value of di is even, executing either of the following two instructions
loads the character value into al and the attribute into ah:

lodsw ; al <- character; ah <- attribute
mov ax, [es:di] ; Same, but di is not changed

Figure 7.2. (even) (odd)
Screen positions and video addr addr + 1
buffers. Character | Character

0-255 0-255

80 x25
Display
Figure 7.3. r 6 5 4 3 2 1 0
M
07?0€brome and. color Red |Green| Blue Red |Green| Blue
attribute byte.
— L
Background —[ Foreground
Blink Intensity

Cursor Coordinates

To position the cursor to a specific location, call BIOS interrupt 10h with ah equal to 2,
dh equal to the row number, and d1 equal to the column. Location (0,0) is at the upper
left corner; therefore, the maximum column is 79 and the maximum row 24 for a typical
80x25 character display. Because some video systems can display multiple pages, you must
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also assign a page number to bh. Usually, you can get away with specifying the default page
0, positioning the cursor with:

xor bh, bh ; Select page 0 (default)

mov ah, 2 ; Specify set-cursor routine number
mov dh, [row] ; Load row into dh

mov dl, [column] ; Load column into dl

int 10h ; Call BIOS video I/0 service

If your program uses other page numbers, or if you change pages with:

mov ah, 5 ; Specify change-page routine number
mov al, 1 ; Specify page number 1 (second page)
int 10h ; Call BIOS video I/0 service

then you should request the current page number before changing the cursor location. Do
this by calling interrupt 10h with ah equal to 15 decimal:

mov ah, 15 ; Specify get-video-state routine number
int 10h ; Call BIOS video I/0 service

This loads the current display page number into bh, sets ah to the display width (usually 80)
and, as described earlier, also sets al to the current display mode. With the page number in
bh, you can then position the cursor without worrying that you may be doing this on the
wrong page—an error that even some commercial programs make. (If you’ve ever used a
program where the cursor sometimes disappears or behaves strangely, you’re probably see-
ing this problem in action.)

Snow Code

Snow is beautiful stuff, but not when it “drifts” onto a computer display. Unfortunately, by
writing directly to video display memory in CGA text mode, you can introduce snow by
interfering with the timing of circuits responsible for updating, or refreshing, the screen. (The
same problem does not occur with monochrome, Hercules, and newer EGA and VGA dis-
play adapters.) This refreshing action is performed automatically about 60 times a second
creating the illusion of stability when the truth is anything but.

CGA displays are rarely used on modern PCs, and dealing with this problem isn’t as neces-
sary as it was in the past. Even so, if you want your DOS assembly language programs to
work on all PCs, you must provide code for older systems. Also, the techniques described in
this section are generally useful on other computer systems where similar methods for creat-
ing smooth displays may be required.



INpUT AND OuTPUT

The trick in eliminating snow is to access video memory only during the time when display
circuits are not likely to read data at the same addresses. The most reliable time to do this is
during the vertical retrace period when the CRT beam moves invisibly from the bottom to
the top of the display after finishing one full refresh cycle. Writing to video buffer memory
during this time is guaranteed not to interfere with the CGA’s own timing requirements.

nnro,—ﬂnn the ‘vav‘fifv\' vatenra marind rans ires ndino A ranicran tha \/fnv-«\o-/\ln fQ/( (‘DT
eCling o verticar retrace pariCa requirds réading a register in Tl LVallor

Controller with an in instruction, which, along with its sister instruction out, have the gen-
eral forms:

in accumulator, port
out port, accumulator

The accumulator may be either al (to input a byte) or ax (to input a word). The porzspecifies
the physical address of the device being read and must be a number from 0 to 255 or a value
in dx from 0 to 65,535. An in instruction reads a byte or word from a port. An out instruc-
tion writes a byte or word to a port. For some ports, simply reading or writing the correct
address causes an action to occur and, in this case, the data transfer is meaning]ess.

To eliminate CGA snow, an in instruction reads the 6845 controller’s status register byte at
address 03dah. If bit 3 of the result in al is 1, then a vertical retrace operation is in progress,
and it’s safe to poke a character quickly into memory. The code to accomplish this is:

M6845 EQU 03dah ; Address of CGA 6845 CRT Controller
mov dx, M6845 ; Set dx to input port address
ee10:
in al, dx ; Read 6845 status
test al, 08h ; Test if bit 3 = 1
je @e1o ; Repeat if bit 3 =0

Immediately after this, it’s safe to store a character and attribute into the video regen buffer.
You can use any of the addressing methods described in this book, but the fastest way is to
employ a string stosw instruction. Assuming that es:di addresses the video buffer and that
cx holds the character in c1 and attribute in ch, you can follow the previous code with:

mov ax, cx ; Move character/attribute into ax

stosw ; Store ax at es:di

Unfortunately, all this effort to prevent snow on CGA text screens negates most of the speed
gained from writing directly to video buffers in the first place. Worse, because the program
now has to check whether “snow control” is required before writing every character, output
to other display types goes more slowly, too. For these reasons, you may want to consider
writing two library modules, one with snow control and the other without. Also, be aware
that some users are willing to put up with snow to achieve faster displays, so you should al-
ways make snow removal optional. Unfortunately, some reviewers and computer journalists
have decided that snow is totally unacceptable, failing in many cases to point out that the
trade-off is a severe loss of output speed. Many people welcome the extra speed even if they
have to watch an occasional snowfall.

271



/

272

! PaRT] @  PROGRAMMING WITH ASSEMBLY LANGUAGE

More About 1/0 Ports

As the previous section suggests, reading and writing ports with in and out instructions are
among the lowest of low-level, hardware-specific programming jobs you can perform. Port
addresses are hard-wired into computer and interface circuits, and you can’t change the ad-
dresses in a program. Some interfaces allow you to select port addresses by flipping switches
or installing a jumper wire. Also, it’s possible to design interface cards that