
The ARPANET IMP Program:
Retrospective and Resurrection

The IMP Software Guys

draft of December 2, 2013

The ARPANET technology has been extensively documented by BBN people [Heart94] and others.
Sections 1, 2 and 3 of this paper sketch the history (not the inherent technology which has
previously been described in many publications) of the ARPANET Interface Message Processor
(IMP) program as originally written in 1969 for the modified Honeywell 516 computer. Other
systems, derived more or less from the original system and running on a variety of hardware
platforms, are also enumerated.

In 2013 a faded 1973 line printer listing of the IMP program from 1973 was run through a
special OCR program optimized to process such historical artifacts; an assembler was recreated
to assemble the IMP code (looking like the modified PDP-1 Midas assembler used in 1973); and a
software emulator of the original IMP hardware platform was created. Sections 4 and 5 of the
paper describe the methods used to recover a digital copy and assemble and run again the 1973
IMP code.

* * *

The 1969 BBN ARPANET IMP development team (and the evolving team members over the years)
called themselves “the IMP guys,” a name that stuck even after women joined the team. Many
people have helped write or provided information to this paper, and thus we think it is an
appropriate homage for the paper’s author to be “the IMP Software Guys.” We include within
this designation the non-BBN people from Silicon Valley who, in 2012–2013 participated in the
resurrection of the original 516 IMP program.

[The following table of contents is only here to assist reviewers in assessing the structure
of the paper. It will be removed for the published version of the paper.]
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Part I: ARPANET IMP Program Retrospective

1 Preparation, implementation, and installation, 1968-1970

In 1968 BBN was preparing to bid on the contract from ARPA to develop the ARPANET Interface
Message Processors (IMPs) [ARPA68]. Frank Heart, Bob Kahn, Severo Ornstein, and David Walden
were the main members of BBN’s proposal team (although other BBN people participated) with
Heart as the team leader, Kahn with prior background in the concepts of packet switching,
Ornstein as the hardware designer, and Walden as the software designer. Shortly before the
due date for BBN’s proposal [BBN68] to ARPA, Will Crowther was added to the team as another
(more senior) software person; and after BBN was awarded the contract, Ben Barker was added
as a hardware designer and Bernie Cosell as a third software person. BBN was awarded to IMP
development contract with a start date of January 1, 1969.

Over the first eight months of 1969, Cosell, Crowther, and Walden developed the IMP’s
program, and Barker and Ornstein developed BBN’s modifications to the Honeywell 516 com-
puter to adapt it for the ARPANET IMP function. Heart and Kahn interacted in various useful
ways with the hands-on developers. On the software side of things, Cosell focused on the
development tools and IMP code that allowed debugging and statistics taking; Crowther focused
on the code that handled interactions among the IMPs; and Walden focused on the IMP-to-host
code. Nonetheless, all three knew the entire software system inside out [BBN Report 1763, BBN
Report 1822, BBN Report 1877]. (“Host” is the name for computers connected to an IMP and
using the network of IMPs to communicate with others host computers. By this definition, a
personal computer connected today to a router or a company web server connected to a router
are host computers, using the internetwork of routers to communicate with other computers.)

The IMP hardware was a modified Honeywell 516 [Honeywell1, Honeywell2, Honeywell3].
However, the IMP software was developed on BBN’s PDP-1d using the TECO editor [Murphy09]
for composing and editing the program and the PDP-1d’s Midas assembler [Midas1, Midas2]
modified to understand the Honeywell 516 instruction codes, word size, and page boundaries.
The assembled program in octal was then output on paper tape for loading into the IMP via
its paper tape reader; after BBN’s PDP-1d was connected to the ARPANET in 1971, new IMP
software could be loaded into IMPs via the network itself. (An aside: The original paper about
the IMP from the BBN developers [Heart70] describes editing on the PDP-1 and outputting a
paper tape of the symbolic assembly code and assembling that on the Honeywell 516. We did
that only a very few tedious times before switching to assembly on the PDP-1d. By the time the
1970 paper was written, we were a year beyond assembling on the Honeywell machine. Leaving
that language in the paper, taken from a quarterly report to ARPA, was an oversight.)

Starting around Labor Day in 1969, one IMP a month was delivered in succession to UCLA,
SRI, UCSB, and the University of Utah. Early in 1970 a fifth IMP was installed at BBN, and a
Network Control Center capability was developed by late 1971 [McKenzie72, NCCv52].

By way of context, the Honeywell 516 computer had 32 thousand bytes of random access
memory and a 1 microsecond cycle time (and was the size of a refrigerator). A random laptop
computer (say in the Toshiba Satellite line) in 2013 has 4 billionF bytes of random access
memory (a factor of 125 thousand bigger than the IMP’s memory) and a cycle time 2.8 thousand
times as fast (although it is hard to make a valid cycle and instruction time comparison given
how different computer architectures are now versus then). It is hard for some people to
imagine today how a entire packet switching system could be implemented in a computer as
small as the 516 IMP.

* * *

The ARPANET, which became operational as a research network in early 1970, directly transi-
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tioned to or somewhat influenced a number of other networks. We will mention these other
networks in Section 2. In Section 3 we will provide a sketch of how the Honeywell-516-based
IMP code evolved for use on several different hardware platforms (the same code also ran on
the non-hardened Honeywell 316, also modified with BBN designed interfaces to support the
packet-switching function).

2 Evolution of the ARPANET and its successors and derivatives

Between 1969 and 1975 the ARPANET expanded at the rate of about 10 IMP per years (to
approximately 60 IMPs total). Over the period from July 1 to December 31, 1975, the ARPANET
operation was phased over from ARPA to the Defence Communications Agenca (DCA) to be
run as an operational network, although it continued to be involved in communications R&D
experiments. By 1982, there were about 90 IMPs in the ARPANET and the government made
the decision that the ARPANET would be the foundation of the Defense Data Network (DDN).
Creation of DDN involved splitting the existing ARPANET into two parts — a part which was still
known as ARPANET and served non-military users, and a part which was known as MILNET and
served military users. (The two parts could communicate in a controlled way by devices called
mail bridges.) Also over this period, the ARPANET (in its pre-DDN and DDN form) became a part
of many early Internet experiments and thus the backbone of the Internet in its early growth
period. In 1988 steps began to dismantle the ARPANET [McKenzie94].

From relatively early in its ARPANET effort, BBN also had aspirations for expanding upon and
exploiting the ARPANET technology beyond the ARPANET, both elsewhere in the government
and commercially. Relatively early on a slightly modified version of the 516 IMP technology
was deployed in the U.S. intelligence community [COINS]. In 1972 BBN organized a commercial
packet-based telecommunications carrier known as Telenet which originally used a version of
the 516 IMP code running on Honeywell 716 computers but later built their own computer and
redid the software. BBN made consulting agreements with Logica in the U.K. and SESA in France
for them to bid the 516/316 IMP technology, and BBN bid on other commercial networks (based
on ARPANET technology) itself, for instance at Citibank and On-line Systems. By 1974 BBN
had developed the Pluribus parallel processor for which it developed software interoperable
with the 516/316 IMP system. In time BBN started its own computer company (BBN Computer
Corporation) which original handled the hardware maintenance contracts for BBN-delivered
networks (as well as trying to be a mini-computer vendor more generally). By 1982, the name
of BBNCC was changed to BBN Communications Corporation and its activities were refocused
on networking. From this part of the company, BBN delivered many commercial, military and
other networks around the world.1 BBNCC supported the 516/316 IMP technology, the Pluribus
IMP technology, and developed new IMP technology based on BBN’s C/30 and C/300 computers.
An overview of these various systems is shown in Figure 1.

BBN’s ARPANET technology also influenced the design of several non-BBN networks. The
LFK Network was a deliberate copy of the ARPANET code running on Norsk Data computers
and rewriting the IMP code from scratch [Liaaen02]. The founders of Packet Communications
Corporation (who left BBN a little before Telenet was founded) had a copy of the IMP system

1 [The following footnote text can be dropped from this paper and listed on a website for the paper.]
On October 4 and 7, 2013, an exchange of emails on the ex-BBN mailing list listed some of the companies to
which BBNCC and other parts of BBN delivered networks — among them ARPANET/MILNET Abbey Bank, Amadeus,
BBN Networks, BBN net, Bank of Hawaii, Barclays, Berkeley Library, Burlington Northern, Chembank, Citibank,
Customs/Treasury, DISNET 1,2, 3, ENI, 5th Signal Net, ISTEL, ITT, IRRC, Irving Trust, JAL, KDD, MCI, MINET, Many
military exercise networks (Reforger, Forger, etc.), Marriot, Mastercard, Michigan Bell, NKK, NatWest, Nexis, On-Line
Systems, PGI, Packet Radio Net, Packet Voice Satcom, Schulumberger, Sixtel, USAF Academy, VISA, Wang, Weyerhauser,
WINNET, Wideband net, and several classified networks. Contributors to this exchange were Jack Haverty, Bernie
Cosell, Ken Turkewitz, Ben Barker, Keesan, Cliff Romash, and, with particular good memories or personal archives,
Alan Hill and Peg Primak.
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listing (BBN was required to give copies to companies which asked for a slightly handling charge),
but perhaps did not closely follow BBN’s IMP system design. Other places, for example, at least
one company in Japan, studied the function of the original ARPANET IMP, and it influenced the
design of their network.

More generally, many of the technology approaches originally demonstrated in the ARPANET
have become part of the DNA of modern data communications (e.g., the Internet): dynamic
routing, operation without central control, packet flow control and reliable transmission, its
operating philosophy, its engineering approach to standards, etc.).

3 Evolution of the IMP code

A main point of this paper is to trace the evolution of the original software developed for the
516 IMP as it was reused and adapted for several different hardware platforms over the course
of many years; see Figure 2.

Making the network algorithms really work, on the 516/316

After the initial IMP installations in 1969, the ARPANET continued to expand and, being a
more or less operational network, fixes were required and improvements could be made
to the 516/316 IMP software [McQuillan72]. Later the algorithms were reimplemented so
Pluribus-platform-based IMPs could function as an IMP compatibly with the 516/316 IMPs and
the 516/316 IMP program was adapted to run on the C/30 platform. However, it was years
later before fundamental networking algorithms were developed on a platform other than the
516/316 IMP platform.

Here we will sketch the initial round of changes to the IMP software by quoting from a 1972
paper [McQuillan72].

A balanced design for a communication system should provide quick delivery of
short interactive messages and high bandwidth for long files of data. The IMP
program was designed to perform well under these bimodal traffic conditions. The
experience of the first two and one half years of the ARPA Network’s operation
indicated that the performance goal of low delay had been achieved. The lightly-
loaded network delivered short messages over several hops in about one-tenth of a
second. Moreover, even under heavy load, the delay was almost always less than one-
half second. The network also provided good throughput rates for long messages at
light and moderate traffic levels. However, the throughput of the network degraded
significantly under heavy loads, so that the goal of high bandwidth had not been
completely realized.

We isolated a problem in the initial network design which led to degradation under
heavy loads [BBN Report 2161, Kahn71]. This problem involves messages arriving at
a destination IMP at a rate faster than they can be delivered to the destination Host.
We call this reassembly congestion. Reassembly congestion leads to a condition
we call reassembly lockup in which the destination IMP is incapable of passing any
traffic to its Hosts. Our algorithm to prevent reassembly congestion and the related
sequence control algorithm are described in the following subsections.

We also found that the IMP and line bandwidth requirements for handling IMP-
to-IMP traffic could be substantially reduced. Improvements in this area translate
directly into increases in the maximum throughput rate that an IMP can maintain.

Another set of changes was made to expand the capabilities rather than the performance of
the IMP.
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Year

1969

Begun Q3 1970;
�rst �eld operation Q3 1971

Design begun Q4 1971;
operations ~Q1 1972

1971-1974

1977-1979

ca. 1980-1981

ca. 1982

??

??

ca. 1981-1983

ca.  1984

ca. 1983-1985

1985-1987

1987-1989

Function

Original IMP code

TIP code

VDH code

Fix IMP end-to-end bugs, improve modularity
(di�erent speed, TIP, VDH, robustness, throughput)

Completely replace routing code (link-state/SPF)

IMP code runs on MBB-base C/30 emulating 316

X.25 added

TAC

PAD

NCP-to-TCP transition

NMFS developed converting MBB into a real-time
extended memory machine independent of the 
software application; IMP code adapted to run on 
NMFS version of C/30

IMP code adapted to run on C/300

End-to-end code for IMP redone to embed X.25

Store-and-forward code for IMP redone to 
improve conjestion control

Figure 2: Software evolution
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The size of the initialization code and the associated tables deserves mention.
This was originally quite small. However, as the network has grown and the IMP’s
capabilities have been expanded, the amount of memory dedicated to initialization
has steadily grown. This is mainly due to the fact that the IMPs are no longer
identical. An IMP may be required to handle a Very Distant Host [a host at the other
end of a communications circuit rather than a bit of wiring away from the IMP], or
TIP hardware [an IMP option for directly connecting to it a software host handling 63
terminals], or five lines and two Hosts, or four Hosts and three lines, or a very high
speed line, or, in the near future, a satellite link. As the physical permutations of the
IMP have continued to increase, we have clung to the idea that the program should
be identical in all IMPs, allowing an IMP to reload its program from a neighboring IMP
and providing other considerable advantages. However, maintaining only one version
of the program means that the program must rebuild itself during initialization to
be the proper program to handle the particular physical configuration of the IMP.
Furthermore, it must be able to turn itself back into its nominal form when it is
reloaded into a neighbor. All of this takes tables and code. Unfortunately, we did not
foresee the proliferation of IMP configurations which has taken place; therefore, we
cannot conveniently compute the program differences from a simple configuration
key. Instead, we must explicitly table the configuration irregularities.

John McQuillan has also said the following about that era during which checksums and
other code robustness devices were put into the code [McQuillan13].

. . . [a] significant part of the effort I put in to the IMP program from 1971 to 1973
had to do with hardware/software interactions. The interrupt system of the 516,
and the direct memory channels turned out to be a key focus, both as strengths of
the hardware, and sources of issues and failures . . . One of the goals in that period
was to make the IMP more resilient . . .

After the above changes were made, the major effort of the next few years was redoing
the original ARPANET routing as the limitations of the original algorithm were discovered as
the network grew larger. First there were little modifications, and then McQuillan looked at
the issues in detail [McQuillan74]. Eventually, McQuillan and others developed a new routing
algorithm [McQuillan80, McQuillan09] which the then IMP programmers implemented. The
original routing algorithm was useful for getting the ARPANET up and running quickly and
supporting, more or less, its first few years of operational use. The new routing algorithm
lives on today in the OSPF routing algorithms [McQuillan09]. Although not unique to the
routing transition, the routing transition was an instance where incompatible releases of the
IMP software had to be distributed; this added significant complexity to the release effort
(an interim release had to be created to allow moving between the prior and new operational
releases).

Pluribus

As the above evolution of the 516/316 IMP software was happening, the Pluribus multiprocessor
system was being developed and the IMP algorithms were recoded for it [Heart73, Ornstein75].
In addition “reliability code” was developed to allow a Pluribus IMP to keep functioning as a
packet switch in the face of various bits of its hardware failing, such as a processor or memory
[Katsuki78, Walden11 pp. 534-538]. This was so successful there was no simple off switch
for the machine; a program had to be run to shut parts of the machine down faster than the
machine could “fix itself” and keep running.

7



The Pluribus IMPs and 516/316 IMPs ran together and compatibly in the ARPANET and later
in DDN. In particular, the complex transition to the new ARPANET routing algorithm mentioned
at the end of the prior section has to be done in the 516/316 IMP and Pluribus IMP in parallel.

MBB-based systems

In 1978 BBN developed its Micro-programmable Building Block (MBB) computer which could
be coded by users to perform different functions [Kraley80, Walden11 pages 527–528]. The
Honeywell 316 computer was going out of production and the Honeywell 716 was not suitable
for the IMP task. Thus, microcode was created for the MBB to make it look like a 316 IMP, and
by the fall of 1979 the MBB-based system was functioning as an IMP packet switch called the
C/30. The 316 IMP code was not changed much for its transition to the MBB emulating the 316
in micro code. (Another version of the MBB was microcoded to more or less directly execute the
C programming language in which Unix was written, and these Unix machines, called C/70s,
were used in networks of C/30 packet switches as terminal concentrators[check] and to run
network-control-center software.) Approaching 1,500 MBB-based systems were installed in
networks delivered by BBN. Most of this work was done in BBN Communications Corporation
(see page 3).

The efforts in the early years of BBNCC primarily consisted of adding capabilities to the
edges of a C/30 network. One such effort was adding (ca. 1982) to the IMP software an
interface for X.25 hosts; the X.25 interface initially ran on top of the standard ARPANET 1822
host interface [BBN Report 5500]. This system simultaneously supported the ARPANET 1822
and X.25 interfaces. At the time[check] the X.25 interface was added, BBN Communications
Corporation began calling the system a PSN[check]. BBNCC also developed new terminal
concentrators for this line of packet switches, called TACs (ca. 1980–1982) [BBN Report 4401,
BBN Report 4780] and PADs (1981–1983) which were terminal concentrators in a computer
separate from the packet switch [BBN TM-CC-0267].

During the 1981–1983 period, BBNCC also had to deal with the conversion of the networks
it was operating from the ARPANET NCP host-host protocol to use by the hosts of TCP/IP. BBN
had to adapt its own systems functioning as hosts to TCP/IP and was involved in the staging
of the transition for other hosts [RFC810,[check]is there an RFC by a BBN author about the
transition?, .].

In 1982–1983, the IMP code underwent a major change as new microcode (known as the
Native Mode Firmware System — NMFS) was written for the MBB which allowed the IMP software
to run on a highly improved “316” (with a 20-bit rather than 16-bit address space, scheduling
and process management functions moved into the microcode, external interface drivers that
serviced interrupts and moved bytes from the hardware to memory done in microcode, and
some additional instructions for queuing functions) [BBN Report 5000].

In 1983–1985, a new hardware machine was built, the C/300. This was a faster MBB, but
with the customizations for the Honeywell emulation built in, so that it could not run in C/70
or other hardware modes [BBN Report 6289]. This was the workhorse in the DDN upgrade.

Note that many of the above MBB based developments concerned running the IMP code a
succession of upgraded platforms and adding new capabilities at the periphery of a network
such as handling X.25 hosts and communication with a rewritten network control center
program. Naturally, there were also upgrades to the basic packet switching algorithms. Then in
1985–1987, there was a major change in the basic packet-switching algorithms: the end-to-end
code for the packet switch was rewritten to embed X.25 as part of the basic system rather than
it riding on top of the ARPANET’s 1822 interface.[citation?] This was the PSN 7 version of the
system for which a listing is known to exist.[citation?]

In 1987–1989, another major change to the basic packet-switching algorithms was done: the
packet-switching store-and-forward code was redone to include congestion control.[citation?]
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This was the PSN 8 version of the system for which a listing is known to exist.[citation?]

* * *

In these first three sections we have sketched the way the original ARPANET IMP code was
reused, reimplemented, extended, and changed over more than 30 years. We have also hinted
at the impact the original ARPANET IMP functions on numerous more or less closely related
networks — certainly to some extent in the Internet today.

Part II: ARPANET IMP Program Resurrection

4 Recovery of 1973 516/316 IMP system listing, 2002–2013

In 2002 Paul Wexelblatt, who had been a member for BBN’s ARPANET IMP team at one point,
was cleaning out the basement of his house. He queried Bernie Cosell and Dave Walden about
whether they wanted any of his old BBN reports, manuals, and program listings, which included
a September 1973 listing of the 516/316 IMP program, IMP version 3050. It was agreed that
Walden would pick up some boxes of materials from Wexelblat’s house, would keep these for
a while as he worked on the BBN computing history book [Walden11], and then would offer
anything Cosell wanted to him for permanent possession. In particular, Cosell asked that the
IMP program listing be passed to him, and eventually it was.

In 2009 Tony Michel began to think about running the IMP code again on simulated machines,
and Cosell passed the IMP program listing to Michel for scanning and OCR. Over the next couple
of years Michel did a lot of scanning work but more was needed, and he passed the listing to
Walden to work on some more scanning.

In 2012 Jack Haverty (who had worked at BBN, close to the IMP system, early in his career)
began asking questions about the ARPANET IMP software system for a legal dispute about
prior art for which he was to be an expert witness. Haverty’s idea was that the IMP system
represented an example of prior art that could help refute an invention claim from a later date.
Considerable discussion went on between Harverty, Cosell, Walden, and a few other ex-BBN IMP
people about exactly what the program did. These discussions continued into 2013.

At some point the idea arose (among Haverty, the law firm, and the firm’s other technical
experts) of getting a good scan of the listing and OCRing it to recover a source code file which
could perhaps be assembled and run on simulated IMP machines. Walden still had the listing in
hand and offered to take the listing to the Boston office of the law firm for which Haverty was
consulting to get a good quality scan done, and the scan was done.

However, getting decent OCR from the scan was not successful. Several different OCR
programs were tried and none produced good results. Still Walden posted the scan of the listing
on his website with other historical IMP system content [IMP73].

Hence, Charlie Neuhauser, who was a technical consultant to the law firm, and his colleague
Tom Kilbourn hired a person to retype the entire listing, including the octal representation of
the assembled program. Then they had other people proofread the entire listing — one person
reading out loud the newly typed version and the other person checking what was heard against
the scan of the listing. This caught about 40 errors in the retyped listing, and Charlie caught
another 10 (e.g., the letter O substituted for zero, and the letter I for 1) while he was trying to
understand the code. The typing job was amazing.

In parallel James Markevitch became aware of the scan of the IMP system listing and ran it
through his home-built OCR program optimized for faint line printer listings. James explained
as follows [Markevitch13]:
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In about 2006 I was attempting to OCR some old computer listings and found that
none of the commercial software packages handled these old listings very well. As a
result, I wrote a set of software optimized for processing these old computer listings.
I used that software to convert the IMP listing scan into a plain text file.

Old listings have a lot of artifacts that need to be dealt with by the OCR software
including broken characters, horizontal and vertical shifting of the characters due to
mechanical imperfections in the old printers, light or inconsistent printing due to
faded ribbons, and even dot matrix character representations used by some printers,
among others. Add to this the fact that the listings are often many decades old (the
oldest one I converted was from the late 1950’s) and have faded, have been scribbled
on, and/or have accumulated stains. Furthermore, the scans are often done at low
resolution and many times haven’t been feed properly (or are hand-placed) which
skews the pages significantly.

The software uses a variety of pattern recognition and geometric techniques to
differentiate between characters and create models of expected character positions.
Each algorithm is designed to be self-refining and is highly tolerant of noise, allowing
the software to extract character images from the artifacts mentioned above.

I also created a Midas assembler and ran it on the processed listing. The output it
generates is identical to the listing. This involved reverse-engineering the apparent
behavior of Midas since it is similar, though not identical, to the PDP-6 and PDP-1
versions. The Midas assembler is written in Perl [Midas3].

I have done this same sort of thing numerous times: OCR a listing, convert to a file
that can be input to an assembler [Midas4], write an assembler, assemble, compare
the output with the OCR’d listing, and iterate [Midas5] fixing any assembler issues
or OCR errors until the OCR output and the assembler output match. Because of the
redundant information in assembly listings (both source code and the object code
are contained in it), this iteration works very well to quickly catch the occasional
OCR errors in all but the comment fields of the listings. Even an OCR error every few
pages quickly jumps out with this process. Many old assemblers had undocumented
features or behavior and a listing that uses a rich set of the assembler features will
expose those behaviors — as a side-benefit, this process results in a usable assembler
for this old architecture.

* * *

All of the scans and listings mentioned above and below are available for the reader to peruse
at walden-family.com/bbn/#ref-impsoftware

* * *

Neuhauser and his team used James’s assembly-checked OCR output to check and correct their
retyped version of the listing — only another three or so errors. Below is Neuhaurser’s story
[Neuhauser13a]:

Initially, I went through the entire listing and extracted all the IO opcodes. From
this, the Honeywell manuals [Honeywell1, Honeywell2] and a review of the functions
in the listing, I managed to reconstruct most of the functional aspects of the I/O
interface in the sense that I knew there was an OCP or SKS code that did something;
but I did not always know what it did. The original ARPA net proposal document
[BBN68] was very, very helpful and in my experience was a model of descriptive
excellence. From this review I wrote a small document that described the IO codes
and what I thought they did [Neuhauser13b]. Of course, in some cases it was just
rank speculation.
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Even without the emulator extension, Tom and I managed to step the emulator
through the stand alone debugger and with a few selective modifications to the
code (e.g., killing the watchdog timer) managed to get the standalone debugger to
work. As a guide to the debugger we used the big three page comment section that
preceded the standalone debugger and found that all the functions we could test (i.e.
those that did not use the network) seemed to function as advertised. When looking
through the code one thing I found very helpful was the concordance [IMP73], which
was almost as good as using an editor to search the code.

At this point I realized that we would really need some help on the emulator and
brought in Robert Armstrong, who had some really good background working with
PDP-8[check] emulation. For a while he even sold a PDP-8 front panel that you could
connect to your emulator and key in your code if you wanted to. One thing that Bob
really knew is how the simh [Simh] was supposed to be used. By this I mean that
he knew that you needed to add commands to the emulator so you could control
the state of certain things that would normally be hardware controlled. For example,
he made the IMP number adjustable. Also he had commands to configure various
devices and to disable them so that we could debug around them.

One thing he did early on was to formalize the extensions he was going to make
so that we could all see what the end product was going to be. I thought that this
was a very smart thing to do because I was sort of focused on “get it done” and he
was focused on “get it right,” which was the correct thing to focus on.

We had a number of problems initially. As I see it, the IMP code is not your
ordinary garden variety code. In some ways it is more complex than a typical small
operating system.

Because timing is so important in the IMP code, the emulator must be more
accurate than what we would normally expect for simulating an old computer
running its software. In the IMP, as I understand it, you have to do things at the
required pace, not too fast and not too slow. This seems to me to have been the
source of many of the problems. Bob spent quite a bit of time experimenting to get
the emulator timing exactly right.

The other thing that impressed me about the IMP code is that it made use of every
known trick. Not just self-modifying code for simple things like jump tables, but
self-modifying code to control the state of execution. Also the basically interrupt
driven nature of the code makes it inherently difficult to deal with. This of course is
where emulation really helps because you have a complete visibility into the code
that was not available in 1973. Several times Bob wrote simple extensions to the
emulator that would allow us to trap on certain conditions that would have been
impossible to do even on the real system. For example, he could trap on a particular
data write pattern. In the emulation of these old machines the speed advantage of
emulation is so great that it is almost like having a logic analyzer attached to the
IMP.

One thing that took me some time to understand was what was the 1973 code.
Although I assumed that it was actual released code, I always kept in the back of my
mind that it might be some sort of test branch from the mainline code and might
actually contain bugs. As I worked with the code, and especially when you and the
others managed to advance it so far, I became more confident that it was production
code.

On a philosophical level it is amazing that this was possible, not just technically,
but also from a practical standpoint. Without a doubt the Arpanet was a seminal
project. Certainly there were other store and forward systems in use in the same
or earlier time frame. I worked on one at Bell Labs. But the Arpanet was the one
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that was easily scalable (you may not agree given how hard you worked on the
code). It was also the one that was universal in the sense that it could connect any
sort of device. Of course, I imagine that no one knew what would results when the
first machine was turned on. Otherwise, the original code would have been saved.
That anything still exists is remarkable. Technology advances so rapidly that even
important contributions like the Arpanet are lost after only a few years. Although no
one thing is responsible for the internet as we know it today, Arpanet was certainly
important to getting things off the ground and should be remembered for the truly
amazing outcome.

5 IMP software cycles again, 2013

As mentioned above, Bob Armstrong built the simulator for the 516/316 IMP. He started with
the existing Honeywell 316 simulator [Simh316] based on the simh simulator [Simh], and then
he modified the H316 simulator to simulate the instructions and interfaces BBN added to the
316 computer to run the IMP system [Honeywell3] as part of the IMP system development [BBN
Report 1763, BBN Report 1822, Heart70]. The software kit for Bob’s IMP simulator (released to
the public courtesy of the aforementioned, but anonymous, law firm) is available on the web
[SimhIMP].

Bob Armstrong’s version of the story is below [Armstrong13]:

I originally knew nearly nothing about the IMP or the H316, but I am quite familiar
with simh. When Tom and Charlie started using simh, I got involved by answering
some of their questions. They were trying to demonstrate the IMP software on
simh but were being stymied by the fact that a large chunk of the IMP hardware
was custom made by BBN and simh naturally knew nothing about those devices.
Eventually the topic of modifying simh came up and I was asked if I thought I could
do it.

The then current simh was able to simulate a standard H316 CPU including a
number of peripherals — disk drives, magtape, line printers, etc. — none of which
were used by the IMP software. On the other hand, the IMP software, although it
could run on a standard H316 CPU, required a number of special peripherals none
of which simh implemented. Those include:

• A BBN engineered synchronous modem (e.g., Bell 303) interface. This was a
fairly sophisticated interface that not only could transfer data directly to and
from memory using DMA, but could also frame packets, compute and verify
CRCs, do DLE stuffing, and more.

• A BBN engineered synchronous serial host interface. This is another sophisti-
cated interface that could handshake with the host, detect various host ready
and error conditions, convert between the native host word size and the 16 bit
H316, and more.

• A BBN engineered real time clock. Ironically, Honeywell offered a real time clock
option for the H316 CPU already, but the IMP used its own version that was
similar to, but not compatible with, the Honeywell model.

• A BBN engineered watch dog timer (WDT). This was a fairly simple device which
would fool the CPU into taking a memory protection fault trap if a certain time
interval elapsed without the WDT being reset. Honeywell offered a memory
management option for the H316, but this was unused and the corresponding
hardware absent on the IMP, and reusing the memory protection fault trap was
a simple way of getting a non-maskable interrupt.
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• A BBN engineered “task shuffling” interrupt, which was used by the IMP software
to implement multitasking.

• A BBN engineered light panel, which contained sixteen status lamps.

• Several BBN added miscellaneous instructions. These included instructions to
return an IMP node number, which was hardwired with jumpers in each IMP’s
hardware and instructions for the MLC [TIP multi-line controller] which was not
used in the part of the IMP code we were demonstrating and which we elected
not to implement.

• Lastly, the IMP used an individually vectored priority interrupt system. This
was actually a standard Honeywell option for the H316 and wasn’t engineered
by the BBN team, however the existing simh was unable to simulate this option
and it had to be added.

This was a considerable number of devices and features that needed to be added
to simh, but in principle at least most of them were fairly straight forward to
implement. The biggest issue was a lack of concrete information about how any of
these devices were actually supposed to work. Charlie read the IMP source code and
made a list of all the I/O instructions and made an initial guess as to what they were
supposed to do [Neuhauser13b]. Later on the BBN IMP guys found and passed along
more period documentation from BBN [BBN TIR 89a, BBN TIR 89b] that clarified more
of it, but there were still a few things we only discovered the hard way, by stepping
through execution of the IMP code.

The modem emulation was particularly difficult to get right and I ended up
completely rewriting that part at least once. The initial implementation used TCP to
tunnel a virtual modem connection between two simh instances, however with TCP
network delays are unpredictable and inconsistent, and that proved to be a huge
problem. The IMP code is extremely sensitive to modem timing, and even goes to
the trouble of measuring, using the real time clock, the exact time it takes to send a
message. Knowing the time and the size of the message, the IMP code computes the
effective throughput for each modem line, and it needs that number to fall within
a very narrow window. If the modem isn’t running at the right speed, the IMP will
declare the line “down” and attempt to report the problem back to the Network
Control Center. This was, as the BBN IMP guys explained to me, because back in the
early 1970s an important feature of the IMPs was being able to detect something
apparently wrong with inter-IMP lines as early as possible in order to be able to
report the problem to AT&T Long Lines. The only solution for the simulator was
to rewrite the modem to use UDP, which gives shorter delays and more consistent
timing, and to further virtualize the modem simulation and tie it to the simulated
real time clock. This makes the modem timing appear completely constant to the
IMP code, even if in actuality it is not.

Even with all the IMP specific issues we had, it was also possible that an apparent
bug in running the IMP program was the result of a change we’d made to simh.
One especially nasty problem, that took a couple of days to track down, turned
out to be a very subtle bug in simh’s modeling of the TTY interrupt timing. There
was a particular combination of Teletype I/O instructions which would not have
interrupted on a real H316, but generated an immediate interrupt in simh. This a
bug in simh, despite simh already being able to run a number of other generic H316
programs including the official Honeywell diagnostics. Apparently nothing other
than the IMP code used this particular combination of Teletype I/O, and the bug was
never discovered until we came along.
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Figure 3: Early 1970 ARPANET map [a crisper version of this map can be created]

All told, modifying simh to run the IMP code proved to be quite a bit more
challenging than I’d expected. I think I originally promised Charlie that the job would
take about two weeks, and in the end it took closer to two months.

By the summer of 2013, with interaction with Neuhauser, Barker, Cosell, Michel, and Walden,
Armstrong had refined his understanding of how the IMP hardware and software worked and
had the IMP simulator working reliably. Three IMPs in a series could communicate with each
other, thus demonstrating the store-and-forward worked, one could use the simulated Teletype
of one IMP to inspect and change memory of another IMP, IMPs could reload from each other,
and so on. The 1973 version of the IMP, from four years after the IMP code originally cycled in
1969, was running again.

On July 5 the simulator was configured with the following 5-IMP network.

IMP 1 connected to IMPs 2 and 3
IMP 2 connected to IMPs 1, 3, and 4
IMP 3 connected to IMPs 1 and 2
IMP 4 connected to IMP 2 and 5
IMP 5 connected to IMP 4

This configuration was representative of the first 4- and 5-node ARPANET configurations in
1969 and early 1970 (Figure 3): IMP 1 = UCLA, IMP 2 = SRI, IMP 3 = UCSB, IMP 4 = University
of Utah, and IMP 5 = BBN. The simulated IMPs were started in numeric order representing the
order of their actual installation approximately 43 years ago.

A few days later, a pair of simulated IMPs communicated from different computers using
the Internet as a telephone line between them.

As a result of the effort to make IMP version 3050 run again and the consequent decision to
write this note, we put out a call for inputs to other members of the ARPANET IMP development
and maintenance community. Thus, we now have a 1971 July NCC listing, a 1971 December
IMP listing, and a 1974 mid-year listing, which John McQuillan had in his personal archives.
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John scanned them, and James Markevitch OCR’d them, making needed additions to his Midas
IMP-code assembler as necessary, and these listings also have been posted on the web [NCCv52,
IMP2514, IMP3147].

* * *

The first three sections of this note are a relatively straightforward historical account, albeit
an extended anecdote collected from many people rather than a formal piece of computing
history research. The last two sections describe an effort that is part of a relatively new area of
computing history work (that some are calling “living history” and others call “retro history”) in
which artifacts from computer history are brought back to life. This latter part of the story may
not be done: We plan to continue the effort to collect, organize, and make such IMP artifacts
available to the computing history world.

Participants

[This following list of people can be moved to a website and only list the URL of the participants
website here.]

* * *

Among the people who were involved with the packet switch code or this recounting of its
history were Len Abram, Ellie Baker, Ben Barker, Rosemary Carter, Bernie Cosell, Will Crowther,
Peter Cudhea, Jim Dempsey, Eric Elsam, Walter Gillett, Jack Haverty, Jim Herman, Alan Hill, Bob
Hinden, Doug Hirsch, Richard Koolish, Mike Kraley, Ken Laube, Joel Levin, Ben Littauer, Andy
Malis, Alex McKenzie, John McQuillan, Tony Michel, Drew Powles, Peg Primark, Ira Richer, Eric
Roberts, John Robinson, Cliff Romash, Eric Rosen, Paul Santos, Ken Turkewitz, Dave Walden, Jil
Westcott, and Paul Wexelblat. No doubt I have missed some people, and these can be added to
the on-line list at walden-family.com/bbn/imp-code

In addition to some of the people listed in the prior paragraph, the people involved in the
2013 recovery of the IMP code were: Bob Armstrong, Tom Kilbourn, James Markevitch, and
Charlie Neuhauser, who reside and work in Silicon Valley, and BBN librarian Jennie Connolly.
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