

UNIX System
Administrator's Manual

Release 5.0

June 1982

Not for use or disclosure outside the
Bell System except under written agreement.

UNIX is a trademark of Bell Laboratories

Copyright © 1982 Bell Laboratories, Inc.

This manual was set on an AUTOLOGIC. Inc.
APS-5 phototypesetter driven by the TROFF
formatter operating under the UNIX system.

- 2 -

INTRODUCfION

This manual is intended to supplement the information contained in the UNIX Sys­
tem User's Manual and to provide an easy reference volume for those who must
administer a UNIX system. Accordingly, only those commands and descriptions
deemed appropriate for system administrators have been included here.

This manual is divided into three sections:

I. System Maintenance Commands and Application Programs
7. Special Files.
S. System Maintenance Procedures.

Throughout this volume, each reference of the form name(lM), name(7), or
name(S), refers to entries in this manual, while all other references to entries of
the form name(N), where N is a number possibly followed by a letter, refer to
entry name in Section N of the UNIX System User's Manual.

Section 1 (System Maintenance Commands and Application Programs) contains sys­
tem maintenance programs such as fsck, mkfs, etc., which generally reside in the
directory /etc; these entries carry a sub-class designation of "1M" for cross
referencing reasons.

Section 7 (Special Files) discusses the characteristics of each system file that actu­
ally refers to an input/output device. The names in this section generally refer to
device names for the hardware, rather than to the names of the special files them­
selves.

Section 8 (System Maintenance Procedures) discusses crash recovery and boot pro­
cedures, facility descriptions, etc.

Each section consists of a number of independent entries of a page or so each. The
name of the entry appears in the upper corners of its pages. Entries within each
section are alphabetized, with the exception of the introductory entry that begins
each section. The page numbers of each entry start at 1 .. Some entries may
describe several routines, commands, etc. In such cases, the entry appears only
once, alphabetized under its "major" name.

All entries are based on a common format, not all of whose parts always appear:

The NAME part gives the name(s) of the entry and briefly states its purpose.

The SYNOPSIS part summarizes the use of the program being described. A
few conventions are used, particularly in Section 1 (Commands):

Boldface strings are literals and are to be typed just as they appear.

Italic strings usually represent substitutable argument prototypes and pro­
gram names found elsewhere in the manual (they are underlined in the
typed version of the entries).

Square brackets I) around an argument prototype indicate that the argu­
ment is optional. When an argument prototype is given as "name" or
"file", it always refers to afile name.

Ellipses ••• are used to show that the previous argument prototype may be
repeated.

A. final convention is used by the commands themselves. An argument
beginning with a minus -, plus +, or equal sign - is often taken to be
some sort of flag argument, even if it appears in a position where a file
name could appear. Therefore, it is unwise to have files whose names
begin with -, +, or-.

- 3 -

Introduction

The DESCRIPTION part discusses the subject at hand.

The EXAMPLE(S) part gives example(s) of usage, where appropriate.

The FILES part gives the file names that are built into the program.

The SEE ALSO part gives pointers to related information.

The DIAGNOSTICS part discusses the diagnostic indications that may be pro­
duced. Messages that are intended to be self-explanatory are not listed.

The WARNINGS part points out potential pitfalls.

The BUGS part gives known bugs and sometimes deficiencies. Occasionally,
the suggested fix is also described.

A table of contents and a permuted index precede Section 1. The permuted index
contains entries from both the UNIX System User's Manual and this volume, and on
each line, the title of the entry to which that line refers is followed by the appropri­
ate section number in parentheses. This is important because there is considerable
duplication of names among the sections, arising principally from commands that
exist only to exercise a particular system call.

On most systems, all entries are available on-line via the man(l) command, q.v.

- 4 -

T ABLE OF CONTENTS

1. System Maintenance Commands and Application Programs

intro introduction to system maintenance commands and application programs
abt • . • . • • . • • • • . • • . . • • • abort on-line diagnostics
accept •..•.•.••••..•••••.•• allow/prevent LP requests
acct .'. overview of accounting and miscellaneous accounting commands
acctcms .•...• command summary from per-process accounting records
acctcon . • . . • . • . • . • . • • . • . . • . • connect-time accounting
acctmerg . • • . • • • . • . • • . • • • merge or add total accounting files
acctprc • • . . . • • . process accounting
acctsh • . . . • • . • . . • . • • • . • . . shell procedures for accounting
acuset. . . • • • • • . • • • • • . connect ACUs and communication lines
atb . • • • . . • . • . . • attach to an Address Translation Buffer
bcopy . • . • • . • . . • • • . • . • • • • • • • • interactive block copy
brc. . . . • • • • . • . • . • • . • • • . system initialization shell scripts
checkall • . . . • faster file system checking procedure
chmap ..•.•.•.•..•..• change the diagnostic spooler map file
chroot . . • • • • • • • • • • • . • • change root directory for a command
clri . • . . • • • • • • clear i-node
config.3b . configure a UNIX system
config.dc • configure a UNIX system
crash. • • • examine system images
cron .•.••.•.••••••••••••••••••• clock daemon
dcopy . • • . . . • . . . • • • • • copy file systems for optimal access time
devnm . . . • . • . • . • . . • . . • • • • . • • • • . • • device name
df ..•••..••••.•.. • . . • report number of free disk blocks
dgn • • . . • . . • • . • . . initiate on-line diagnostics
don • • • • • . • • device logically on, logically off or display status
dskfmt. • • • . . • • • • • . . . • . • • . • format and verify disk packs
dstart. • . . • • • • • • • • start, stop and find status of on-line diagnostics
emulcntrl • . • • • • • . • • . . perform 3270 emulation control functions
emulload • • . . • . . • . • • . • . . load and start 3270 emulation script
emulstat • • • . • • . get 3270 emulation controller/terminal status
errdead • • extract error records from dump
errdemon . • • . • . • • • . • • • error-logging daemon
errpt . . . • • • • • • • • process a report of logged errors
errstop • • . • • . • . . • . . . • . • terminate the error-logging daemon
ff • • • • . . . • . • • list file names and statistics for a file system
filesave •.•••••••.•..•• daily/weekly UNIX file system backup
finc • . . . • • • . • . • • • • • • • • • • • . • fast incremental backup
format .•••.••••• format and/or check RP06 and RM05 disk packs
frec .••.••.•.••••.•.•• recover files from a backup tape
fsck . • • • • . • • • • • file system consistency check and interactive repair
fscv .••••••• convert files between PDP-ll and VAX-ll/780 systems
fsdb ••••.•••...••.••.•.•.••. file system debugger
fts . • • • • • • • • • • • Field Test Set interface
fuser • . . . • • • • • . • . • identify processes using a file or file structure
fwtmp • . • • • • • • • . • • . • . manipUlate connect accounting records
getty . • • • • . • • • • set terminal type, modes, speed, and line discipline
init • • • • • process control initialization
install • • • • • • • . • • . • • . • • • . • • • • • • • install commands
ipb •••.••.•••••••.•• read the EAI Input Parameter Buffer
killall • . • • • • . • . • • • • • • • . • . • • • . kill all/active processes
link •••••••••••.•••.• exercise link and unlink system calls
Ipadmin • • • • . • . • • • . • • • • • • configure the LP spooling system

- 1 -

Table of Contents

lpsched • • • • • start/stop the LP request scheduler and move requests
mkboot . convert a.out file to boot image
mkfs ••.••.•••••••••••••.•• construct a file system
mknod • • • • • • • • . • • • • • • • • • . • . • • . • build special file
mount • • • • . • • • • . • . . • • • . . mount and dismount file system
msi • • • • • • • • • • • • . • • • • • memory system diagnostic interface
mvdir • . • • • • • . • . • • . • • • • . • • • • • • • move a directory
ncheck • • • • • • • • • • • • • • • • • • generate names from i-numbers
newboot. • • • . . • • • . • • . • • • • load VTOC, prom patch, or lboot
nscloop • • perform the NSC local network loop back functions
nscmon • • • • • • • • • . • . operationally control the NSC local network
pcldaemon • • • • • • PCL link monitor
prm • send a Processor Recovery Message
profiler . • . operating system pro filer
pwck •• • • password/group file checkers
reboot. • • • • • • • • • reboot the system
rmv •.••.••.•• remove unit from service before on-line diagnostics
rst ••.••.••••••• restore unit to service after on-line diagnostics
runacct • • • • • • • . • • • • . • . • • • • • • • • run daily accounting
sar • • . • • . • • . • • • • • • • • . . • . system activity report package
setmnt . • • • • . establish mount table
setmrf • • • • • • • . • . • . • • . • • . • . override system MRF action
shutdown •••••••.•••••..••••• terminate all processing
ssr • . • • print or modify the System Status Register
st. • • • • • • • • • • • • synchronous terminal control
sta • • • find status of pending on-line diagnostic requests
stgetty • . • • • • wait on synchronous login line for use
sysdef • • • • • • • • • . • • . • • • • . • . • • • • • system definition
uuclean • • • • • • • • • • • • • • • • . • • uucp spool directory clean-up
uusub • • • • • • . • • • • • • • • . • . • . • • . monitor uucp network
vcf .•••••.•••••. VAX-ll/780 configuration verification program
vlx ••••••.••..•••• VAX-ll/780 LSI console floppy interface
volcopy. • • • • copy file systems with label checking
vpmc.dec • • compiler for the virtual protocol machine
vpmc.u3b. • • • • • • • • • • • • compiler for the virtual protocol machine
vpmsave • • • • . • • • • • • • • • . • • save and print VPM event traces
vpmset • connect/load VPM drivers and programmable communication devices
vpmtest • • . • • . • • • . • . • • . • • • • • • . • • . test KMC lines
wall •••••••••••••.•..•.•••••• write to all users
whodo • • • • • • • • . • • • • • • • • • • • • who is doing what
x25pvc . • install, remove, or get status for a BX.25 minor device or link

7. Special Files

intro • • • • • • introduction to special files
acu • Automatic Call Unit (ACU) interface
cat • • . • • • • • phototypesetter interface
dgn • • • • • • . on-line diagnostic interface
dmc •••••••••. communications link with built-in DDCMP protocol
dmk •••••••••••••••• DMll-BA modem control multiplexor
dsk • • • • • • • . • • • • • • . • . • • • • . • 3B20S moving-head disk
du • • • • • • • • • • • • • • • • • • • DU-II synchronous line interface
dz ••••••• DZ-ll, DZ-ll/KMC-llB, DH-ll asynchronous multiplexers
emulio • . • • • • • • • • • • • . • . • • • • • 3270 emulation interface
err • • • • • • • • • • • • • • • • . • • • • • • • error-logging interface
gd • • • • . . • • • • • • • • • • • • general driver for moving-head disks
gt. • • • • • • • • • • • • • • . • • • • • . general driver for tape drives

- 2 -

Table of Contents

hm . . • • • . • . • • • • . • • . • . . . • . . RM05 moving-head disk
hp •.•..•••.••.••...• RP04/RP05/RP06 moving-head disk
hs • RHll/RJS03-RJS04 fixed-head disk file
ht .•..••...•.•••••.• TUI6/TEI6 magnetic tape interface
kl •.•.••••..•.•.••• KL-ll or DL-ll asynchronous interface
kmc•..••.•.•••.. KMC-llB/KMSll microprocessor
lp • . • • • . . • . . . • • . . . • • • line printer
mem .•.•...•...•......•••..•.•. core memory
mill • • . . . • . . • • . . • • . . • . . • . • • • MLlI solid-state disk
nc • • . . • . • • . . • • • • . • network control
nsc•. . • . • . . . • . NSC adapter interface specification
null. • . • • • the null file
osm . • • interface to UNIX system messages
pel • parallel communications link interface
prf • . • • • . • operating system profiler
rf. • .•• RFII/RSII fixed-head disk file
rk •..•....•.•..•..•..... RK-ll/RK03 or RK05 disk
rl • • • ..••..•..•••.• RL-II/RLOI disk
rm80 . • • . . • • RM80 moving-head disk
rp•.... RP-ll/RP03 moving-head disk
rp07 • • RP07 non-removable medium moving-head disk
st . • • . • • • . • • . synchronous terminal interface
stermio . • general synchronous terminal interface
termio . . • • . . • • • • • • . • . • . . • . . general terminal interface
tm •......••..•.••.•. TMll/TUIO magnetic tape interface
tn4 . . • . . • • • • . • • . . • • . • • eight line asynchronous interface
tn74 • • . . • • . . • . • • . • . . . • . two line asynchronous interface
tn83 ..••......••••.•...... console/printer interface
tn85 . • • • • • . • • • • • • • • • • medium speed line printer controller
trace • • . . • • • • event-tracing driver
ts 11 • • . . . • . • . • . . • . • • TSII magnetic tape interface
tty . • . . • • • • . • . . • . • . controlling terminal interface
tu78 . . • • . . • TU78 magnetic tape interface
un32 • . . • . . • • . • . • . • . . • . • magnetic tape interface
un52 • . . • • . • . • . • . • • • . . • . . • • • magnetic tape interface
un53•.•...•.•. UN53/TN82 synchronous device interface
vp . • • • . • • . . • . • • • . • • . . • • . . • • . . Versatec printer
vpm .. • . • • . . • . • • • . . • • . • • . . Virtual Protocol Machine
x25 . • . • . . . • • . • • . • • • • • • • . • • BX.25 network interface

8. System Maintenance Procedures

intro . • • introduction to system maintenance procedures
3B20boot . . • 3B20S bootstrap procedures
3B200ps • . • . 3B20S console operations
70boot • • . 11/70 bootstrap procedures
7500ps . • V AX-ll/750 console operations
7800ps . . VAX-I 1/780 console operations
crash.dec . • . • • . • . . . • • . . • what to do when the system crashes
crash.u3b • • . • . • • • • • • what to do when the system crashes
diskboot • • • . . • . . • • • . • disk bootstrap programs
eai . • • . • • . • • . • . • . . . • • • 3B20S emergency action interface
ldtape • • • • . . . • . • . • • • • • • • • load disk from tape procedures
mk . . • • . • • • • . • • • . • how to remake the system and commands
prm • • • • • . • • . • • • 3B20S Processor Recovery Messages
rje • RJE (Remote Job Entry) to IBM
romboot • • . . • . • . . • • • . • • . . • special ROM bootstrap loaders

- 3 -

Table of Contents

tapeboot • • • • • • • • • • • • • • • • • magnetic tape bootstrap program
trouble •.•.••••••••••••••••• trouble reporting system
unixboot •••••••••••••.•• UNIX startup and boot procedures

- 4 -

PERMUTED INDEX

70boot: 11/70 bootstrap procedures.
/functions·of HP 2640 and 2621-series terminals. • •

handle special functions of HP 2640 and 2621-series/ hp:
archiver. hpio: HP 2645A terminal tape file

functions of DASI 300 and/ 300, 300s: handle special
/special functions of DASI 300 and 300s terminals. •

of DASI 300 and 3008/ 300, 3008: handle special functions
functions of DASI 300 and 300s terminals. /special •

functions. emulcntrl: perform 3270 emulation control •
emulstat: get 3270 emulation/ ••••

emulio: 3270 emulation interface.
emulload: load and start 3270 emulation script.

procedures. 3820boot: 38208 bootstrap
operations. 38200ps: 38208 console • •

. 3820boot: 38208 bootstrap procedures.
38200ps: 38208 console operations.

dis: 38208 disassembler.
interface. eai: 38208 emergency action

dsk: 38208 moving-head disk.
produce C source listing from 38208 object file. list: • •

Messages. prm: 38208 Processor Recovery
sys3b: 38208 specific system calls.

system: format of 38208 system description file.
13tol, Itol3: convert between 3-byte integers and long/

comparison. diff3: 3-way differential file • • •
Tektronix 4014 terminal. 4014: paginator for the

paginator for the Tektronix 4014 terminal. 4014:
of the DASI 450 terminal. 450: handle special functions

special functions of the DASI 450 terminal. 450: handle •
files from the HONEYWELL 6000. /fget.demon: retrieve

send files to the HONEYWELL 6000. fsend: • • • • • • •
output to the HONEYWELL 6000. /send phototypesetter

procedures. 70boot: 11/70 bootstrap • •
operations. 7500ps: VAX-ll/750 console

f77: Fortran 77 compiler. • • • • • • • •
operations. 7800ps: V AX-ll/780 console

long integer and base-64/ a641, 164a: convert between
abort: generate an lOT fault.

abt: abort on-line diagnostics.
program. abort: terminate Fortran

Fortran absolute value. abs, iabs, dabs, cabs, zabs:
value. abs: return integer absolute

adb: absolute debugger. •• •
abs: return integer absolute value. • • • • •

dabs, cabs, zabs: Fortran absolute value. abs, iabs,
/floor, ceiling, remainder, absolute value functions.

diagnostics. abt: abort on-line • • • •
LP requests. accept, reject: allow/prevent

of a file. touch: update access and modification times
utime: set file access and modification times.

accessibility of a file. access: determine •••••
commands. graphics: access graphical and numerical
machine/ sputl, sgetl: access long numeric data in a

sadp: disk access profiler. • • • •
Idfcn: common object file access routines.

copy file systems for optimal access time. dcopy:. • •
/setutent, endutent, utmpname: access utmp file entry.

access: determine accessibility of a file.
enable or disable process accounting .. acct: • •

acctcon2: connect-time accounting. acctconl,
acctprcl, acctprc2: process accounting ..

- 1 ..

70boot(8)
hp(l)
hp(l)
hpio(l)
300(1)
300(1)
300(1)
300(1)
emulcntrl(IM)
emulstat(IM)
emulio(7)
emulload(IM)
3820boot(8)
38200ps(8)
3820boot(8)
38200ps(8)
dis(l)
eai(8)
dsk(7)
list(l)
prm(8)
sys3b(2)
system(4)
l3tol(3C)
diff3(1)
4014(1)
4014(1)
450(1)
450(1)
fget(lC)
fsend(1C)
gcat(1C)
70boot(8)
7500ps(8)
f77(1)
7800ps(8)
a641(3C)
abort(3C)
abt(IM)
abort(3F)
abs(3F)
abs(3C)
adb(1)
abs(3C)
abs(3F)
floor(3M)
abt(IM)
accept(IM)
touch(l)
utime(2)
access(2)
graphics(1G)
sputl(3X)
sadp(l)
Idfcn(4)
dcopy(IM)
getut(3C)
access(2)
acct(2)
acctcon(IM)
acctprc(IM)

Permuted Index

turnacct: shell procedures for accounting. /startup, •• • •
/accton, acctwtmp: overview of accounting and miscellaneous/

accounting and miscellaneous accounting commands. /of
acct: per-process accounting file format.

search and print process accounting file(s). acctcom:
acctmerg: merge or add total accounting files. •••••
mclock: return Fortran time accounting. •••••••

summary from per-process accounting records. /command
wtmpfix: manipulate connect accounting records. fwtmp,

runacct: run daily accounting. ••.••••
process accounting. aect: enable or disable

file format. acct: per-process accounting
per-process accounting/ acctcms: command summary from

process accounting file(s). acctcom: search and print
connect-time accounting. acctconI, acctcon2: .••

accounting. acctconI, acctcon2: connect-time
acctwtmp: overview off acctdisk, acctdusg, accton,
overview off acctdisk, acctdusg, accton, acctwtmp:

accounting files. acctmerg: merge or add total
acctdisk, acctdusg, accton, acctwtmp: overview off

accounting. acctprcI, acctprc2: process •
acctprcI, acctprc2: process accounting. '.

acctdisk, acctdusg, accton, acctwtmp: overview off • • •
sin, cos, tan, asin, acos, atan, atan2:/ •••••
intrinsic function. acos, dacos: Fortran arccosine

killall: kill all active processes.
sag: system activity graph.

sal, sa2, sadc: system activity report package.
sar: system activity reporter. •••

current sces file editing activity. sact: print
report process data and system activity. /time a command;

(ACU) interface. acu, dn: Automatic Call Unit
acu, dn: Automatic Call Unit (ACU) interface. • •••.•

acuset: connect ACUs and communication lines.
communication lines. acuset: connect ACUs and

specification. nsc: NSC adapter interface • • • •
formatting/ mosd: the OSDD adapter macro package for

adb: absolute debugger. .
acctmerg: merge or add total accounting files.

atb: attach to an Address Translation Buffer.
sces files. admin: create and administer

admin: create and administer sces files.
imaginary part of complex/ aimag, dimag: Fortran

part intrinsic function. aint, dint: Fortran integer
alarm: set a process's alarm clock. • •••••

clock. alarm: set a process's alarm
change data segment space allocation. brk, sbrk: • • •

rea1loc, calloc: main memory allocator. malloc, free,
accept, reject: allow/prevent LP requests.

natural logarithm/ log, alog, dlog, clog: Fortran
logarithm intrinsic/ 10gIO, alogIO, dlogIO: Fortran common

Fortran/ max, maxO, amaxO, maxI, amaxI, dmaxI:
max, maxO, amaxO, maxI, amaxI, dmaxI: Fortran/

Fortran/ min, minO, aminO, minI, aminI, dminI:
min, minO, aminO; minI, aminI, dminI: Fortran/ ••

remaindering intrinsic/ mod, amod, dmod: Fortran • • •
rshift: Fortran bitwise/ and, or, xor, not, lshift,

disk packs. format: format and/or check RP06 and RM05
sort: sort and/or merge files. • • • • •

send, gath: gather files and/or submit RJE jobs.
Fortran nearest integer/ anint, dnint, nint, idnint:

link editor output. a.out: common assembler and
mkboot: convert a.out file to boot image. • • •

link editor output. a.out: PDP-ll assembler and

- 2 -

acctsh(IM)
acct(IM)
acct(IM)
acct(4)
acctcom(I)
acctmerg(IM)
mclock(3F)
acctcms(IM)
fwtmp(IM)
runacct(IM)
acct(2)
acct(4)
acctcms(IM)
acctcom(I)
acctcon(IM)
acctcon(IM)
acct(lM)
acct(IM)
acctmerg(IM)
acct(IM)
acctprc(IM)
acctprc(1 M)
acct(lM)
trig(3M)
acos(3F)
killall(lM)
sag(IG)
sar(IM)
sar(l)
sact(l)
timex(l)
acu(7)
acu(7)
acuset(IM)
acuset(IM)
nsc(7)
mosd(5)
adb(l)
acctmerg(IM)
atb(IM)
admin(l)
admin(l)
aimag(3F)
aint(3F)
alarm (2)
alarm(2)
brk(2)
malloc(3C)
accept(IM)
log(3F)
logIO(3F)
max(3F)
max(3F)
min(3F)
min(3F)
mod(3F)
bool(3F)
format(IM)
sort(l)
send(lC)
round(3F)
a.out(4)
mkboot(IM)
a.out.pdp(4)

introduction to commands and application programs. intro:
maintenance commands and application programs. /system

maintainer. ar: archive and library
maintainer for portable/ ar: archive and library

ar: archive file format.
format. ar: common archive file

language. be: arbitrary-precision arithmetic
acos, dacos: Fortran arccosine intrinsic function.

maintainer. ar: archive and library
for portable archives. ar: archive and library maintainer

cpio: format of cpio archive. • . . . •
ar: common archive file format. . . •

ar: archive file format. • • .
header of a member of an archive file. /the archive

common archive/ arcv: convert archive files from PDP-II to
convert: convert object and archive files to common/

files from PDP-ll to common archive format. /archive
an archive/ ldahread: read the archive header of a member of

HP 264SA terminal tape file archiver. hpio: . • • • . • .
tar: tape file archiver. ...•••...

maintainer for portable archives. /archive and library
cpio: copy file archives in and out.

asin, dasin: Fortran arcsine intrinsic function.
atan2, datan2: Fortran arctangent intrinsic function.

atan, datan: Fortran arctangent intrinsic function.
from PDP-ll to common archive/ arcv: convert archive files .

imaginary part of complex argument. /dimag: Fortran
return Fortran command-line argument. getarg:

command. xargs: construct argument list(s) and execute
getopt: get option letter from argument vector. . . . • .

expr: evaluate arguments as an expression.
echo: echo arguments. •..••.

bc: arbitrary-precision arithmetic language.
number facts. arithmetic: provide drill in

expr: evaluate arguments as an expression. . • • •
as: assembler for PDP-ll.
as: common assembler. .

characters. asa: interpret ASA carriage control . .
control characters. asa: interpret ASA carriage

ascii: map of ASCII character set.
set. ascii: map of ASCII character

long integer and base-64 ASCII string. /convert between
number. atof: convert ASCII string to floating-point

and/ ctime, localtime, gmtime, asctime, tzset: convert date
trigonometric/ sin, cos, tan, asin, acos, atan, atan2:

intrinsic function. asin, dasin: Fortran arcsine
help: ask for help. •

output. a.out: common assembler and link editor
output. a.out: PDP-II assembler and link editor

as: common assembler. • •
as: assembler for PDP-ll.

KMCIIB/ kasb, kunb: assembler/un-assembler for the
assertion. assert: verify program

assert: verify program assertion. •.•.•.•.
setbuf: assign buffering to a stream.

kl: KL-ll or DL-ll asynchronous interface.
tn4: eight line asynchronous interface. . .
tn74: two line asynchronous interface. • •

/DZ-II, DZ-II /KMC-II B, DH-II asynchronous multiplexers.
sin, cos, tan, asin, acos, atan, atan2:trigonometric/

arctangent intrinsic/ atan, datan:· Fortran
arctangent intrinsic/ atan2, datan2: Fortran

cos, tan, asin, acos, atan, atan2: trigonometric/ sin,
Translation Buffer. atb: attach to an Address

- 3 -

Permuted Index

intro(l)
intro(lM)
ar.pdp(l)
ar(l)
ar.pdp(4)
ar(4)
be(l)
acos(3F)
ar.pdp(l)
ar(l)
cpio(4)
ar(4)
ar.pdp(4)
Idahread(3X)
arcv(l)
convert(l)
arcv(l)
Idahread(3X)
hpio(l)
tar(l)
ar(l)
cpio(l)
asin(3F)
atan2(3F)
atan(3F)
arcv(l)
aimag(3F)
getarg(3F)
xargs(l)
getopt(3C)
expr(l)
echo(l)
be(l)
arithmetic(6)
expr(l)
as.pdp(l)
as(l)
asa(l)
asa{l)
ascii(S)
ascii(S)
a641(3C)
atof(3C)
ctime(3C)
trig(3M)
asin(3F)
help(l)
a.out(4)
a.out.pdp(4)
as(l)
as.pdp{l)
kasb(l)
assert(3X)
assert(3X)
setbuf(3S)
kl(7)
tn4(7)
tn74(7)
dz(7)
trig(3M)
atan(3F)
atan2(3F)
trig(3M)
atb{lM)

Permuted Index

floating-point number. atof: convert ASCII string to
integer. strtol, atol, atoi: convert string to • •

integer. strtol, atol, atoi: convert string to
link. x25alnk, x25i1nk: attach or install a BX.25 •

Translation Buffer. atb: attach to an Address
interface. acu, dn: Automatic Call Unit (ACU)

wait: await completion of process.
processing language. awk: pattern scanning and •

ungetc: push character back into input stream.
back: the game of backgammon.

back: the game of backgammon. •••••
daily/weekly UNIX file system backup. filesave, tapesave:

finc: fast incremental backup. • • • . • • • .
frec: recover files from a backup tape. • • • • • •

banner: make posters.
between long integer and base-64 ASCII string. /convert

portions of path names. basename, dirname: deliver
arithmetic language. be: arbitrary-precision . . . •

system initialization/ brc, beheckrc, rc, powerfail: • . •
beopy: interactive block copy.
bdiff: big diff.

cb: C program beautifier. • . . •
jO, jl, jn, yO, yl, yn: Bessel functions. •

bfs: big file scanner.
fread, fwrite: binary input/output.

bsearch: binary search.
tdelete, twalk: manage binary search trees. tsearch,

remove symbols and relocation bits. strip:.. • .' • • •
/not, Ishift, rshift: Fortran bitwise boolean functions.

bj: the game of black jack.
bj: the game of black jack. • • • • •

beopy: interactive block copy.
sum: print checksum and block count of a file.

sync: update the super block. • • • • • • •
df: report number of free disk blocks. • •••••

rshift: Fortran bitwise boolean functions. /Ishift,
mkboot: convert a.out file to boot image.
unix boot: UNIX startup and boot procedures. • •

romboot: special ROM bootstrap loaders.
3B20boot: 3B2OS bootstrap procedures.

70boot: 11/70 bootstrap procedures.
tape boot: magnetic tape bootstrap program. •

disk boot: disk bootstrap programs.
system initialization shell/ brc, beheckrc, rc, powerfail:

space allocation. brk, sbrk: change data segment
modest-sized programs. bs: a compiler/interpreter for

bsearch: binary search.
to an Address Translation Buffer. atb: attach •••••

read the EAI Input Parameter Buffer. ipb: •••.•..•
stdio: standard buffered input/output package.

setbuf: assign buffering to a stream. • •
mknod: build special file. • • • •

dmc: communications link with built-in DDCMP protocol.
x25i1nk: attach or install a BX.25 link. x25alnk,

x25c1nk: change over a BX.25 link. ••.•••
x25dlnk: halt or detach a BX.25 link. x25hlnk, • •

/remove, or get status for a BX.25 minor device or link.
x25: BX.25 network interface.

swab: swap bytes. • •••••..••
ec, pee: C compiler. •••••••

programs. sec: C compiler for stand-alone
cflow: generate C flow graph. •••••

cpp: the C language preprocessor.
cb: C program beautifier.

- 4 -

atof(3C)
strtol(3C)
strtol(3C)
x25alnk(3C)
atb(IM)
acu(7)
wait(l)
aWk(l)
ungetc(3S)
back(6)
back(6)
filesa ve(l M)
finc(lM)
frec(lM)
banner(l)
a641(3C)
basename(1)
bc(l)
brc(IM)
bcopy(IM)
bdiff(l)
cb(J)
bessel(3M)
bfs(1)
fread(3S)
bsearch(3C)
tsearch(3C)
strip.pdp(1)
bool(3F)
bj(6)
bj(6)
bcopy(1M)
sum(1)
sync(l)
df(1M)
bool(3F)
mkboot(IM)
unix boot(8)
romboot(8)
3B20boot(8)
70boot(8)
tapeboot(8)
diskboot(8)
brc(1M)
brk(2)
bs(l)
bsearch(3C)
atb(IM)
ipb(IM)
stdio(3S)
setbuf(3S)
mknod(IM)
dmc(7)
x2Salnk(3C)
x2Sclnk(3C)
x25hlnk(3C)
x2Spvc(1M)
x2S(7)
swab(3C)
ec(l)
sec(I)
cflow(l)
cpp(1)
cb(I)

lint: a C program checker.
cxref: generate C program cross reference.

object file. list: produce C source listing from 3820S
value. abs, iabs, dabs, cabs, zabs: Fortran absolute

cal: print calendar.
dc: desk calculator. . • •

cal: print calendar.
calendar: reminder service.

cu: call another UNIX system.
data returned by stat system call. stat: •••••.••

acu, dn: Automatic Call Unit (ACU) interface.
malloc, free, realloc, calloc: main memory allocator.

intro: introduction to system calls and error numbers.
link and unlink system calls. link, unlink: exercise

sys3b: 3820S specific system calls. ••••..•••.
to an LP line printer. Ip, cancel: send/cancel requests

pnch: file format for card images. •
asa: interpret ASA carriage control characters.

files. cat: concatenate and print
interface. cat: phototypesetter . . .

cb: C program beautifier.
ce, pee: C compiler. . • .

function. cos, dcos, ccos: Fortran cosine intrinsic
cd: change working directory.

commentary of an SCCS delta. cdc: change the delta
ceiling, remainder ,/ floor, ceil, fmod, fabs: floor,

/ceil, fmod, fabs: floor, ceiling, remainder, absolute/
intrinsic/ exp, dexp, cexp: Fortran exponential .

cflow: generate C flow graph.
delta: make a delta (change) to an SCCS file. .

pipe: create an interprocess channel. • • .
/dble, cmplx, dcmplx, ichar, char: explicit Fortran type/

stream. ungetc: push character back into input
and neqn. eqnchar: special character definitions for eqn

user. cuserid: get character login name of the
/getchar, fgetc, getw: get character or word from stream.

/putchar, fputc, putw: put character or word on a stream.
ascii: map of ASCII character set.

interpret ASA carriage control characters. asa:
_tolower, toascii: translate characters. / _to upper ,

iscntrl, isascii: classify characters. /isprint, isgraph,
tr: translate characters.

lastiogin, monacet, nulladm,/ chargefee, ckpacet, dodisk,
directory. chdir: change working

/dfsck: file system consistency check and interactive repair.
packs. format: format and/or check RP06 and RM05 disk

checking procedure. checkall: faster file system .
constant-width text fori cw, checkcw: prepare .••••
text for nrolf or/ eqn, neqn, checkeq: format mathematical

lint: a C program checker. • • • • .
grpck: password/group file checkers. pwck,
checkall: faster file system checking procedure.

copy file systems with label checking. volcopy, labelit:
systems processed by fsck. checklist: list of file . • •

formatted with the/ mm, osdd, checkmm: print/check documents
file. sum: print checksum and block count of a

chess: the game of chess. . ..•.•.....
chess: the game of chess.

chown, chgrp: change owner or group.
times: get process and child process times. • . • . •

terminate. wait: wait for ~hild process to stop or . . .
spooler' map file. chmap: change the diagnostic

chmod: change mode.
chmod: change mode of file.

- 5 -

.'

Permuted Index

lint(l)
cxref(l)
list(I)
abs(3F)
cal(l)
dc(l)
cal (1)
calendar(1)
cu(lC)
stat(5)
acu(7)
malloc(3C)
intro(2)
link(1M)
sys3b(2)
Ip(l)
pnch(4)
asa(l)
cat(l)
cat(7)
cb(l)
ce(l)
cos(3F)
cd(l)
cdc(1)
floor(3M)
floor(3M)
exp(3F)
cflow(l)
delta(l)
pipe(2)
ftype(3F)
ungetc(3S)
eqnchar(5)
cuserid(3S)
getc(3S)
putc(3S)
ascii(5)
asa(l)
conv(3C)
ctype(3C)
tr(l)
acctsh(IM)
chdir(2)
fsck(1M)
format(lM)
checkall(IM)
cW(I)
eqn(1)
!int(1)
pwck(lM)
checkall(1 M)
volcopy(lM)
checklist(4)
mm(l)
sum(l)
chess(6)
chess(6)
chown(l)
times(2)
wait(2)
chmap(lM)
chmod(l)
chmod(2)

Permuted Index

of a file. chown: change owner and group
group. chown, chgrp: change owner or

chroot: change root directory.
for a command. chroot: change root directory

monacct, nulladm,/ chargefee, ckpacct, dodisk, lastlogin, .
isgraph, iscntrl, isascii: classify characters. /isprint,

uuclean: uucp spool directory clean-up. ...•..
c1ri: clear i-node. . . • • .

status/ ferror, feof, c1earerr, fileno: stream
alarm: set a process's alarm clock. • •••....

cron: clock daemon. . • . .
clock: report CPU time used.

logarithm/ log, alog, dlog, clog: Fortran natural
Idclose, Idaclose: close a common object file.

close: close a file descriptor. .
descriptor. close: close a file • . .

fclose, ffl ush: close or flush a stream.
c1ri: clear i-node. • • .

System Status/ ssr, setssr, c1rssr: print or modify the
cmp: compare two files. .

/real, float, sngl, dble, cmplx, dcmplx, ichar, char:/
line-feeds. col: filter reverse •

comb: combine SCCS deltas.
comb: combine SCCS deltas.

common to two sorted files. comm: select or reject lines
nice: run a command at low priority.

change root directory for a command. chroot:
env: set environment for command execution.

uux: unix to unix command execution.
system: issue a shell command from Fortran.
quits. nohup: run a command immune to hangups and

net: execute a command on the PCL network.
getopt: parse command options. •..•...

/shell, the standard/restricted command programming language.
and system/ timex: time a command; report process data

per-process/ acctcms: command summary from
system: issue a shell command.

test: condition evaluation command. • • •
time: time a command. • • . • . . •

argument Iist(s) and execute command. xargs: construct
getarg: return Fortran command-line argument.

and miscellaneous accounting commands. /of accounting
intro: introduction to commands and application/

Ito system maintenance commands and application/
access graphical and numerical commands. graphics:

install: install commands. ••.•••
how to remake the system and commands. mk:

network useful with graphical commands. stat: statistical
cdc: change the delta commentary of an SCCS delta.

ar: common archive file format.
/archive files from PDP-ll to common archive format.

editor output. a.out: common assembler and link
as: common assembler.

object and archive files to common formats. /convert
10g10, aloglO, dloglO: Fortran common logarithm intrinsic/

routines. Idfcn: common object file access •
Idopen, Idaopen: open a common object file fori •.

/line number entries of a common object file function.
Idclose, Idaclose: close a common object file.
read the file header of a common object file. Idfhread:
entries of a section of a common object file. /number

the optional file header of a common object file. /seek to
/entries of a section of a common object file.

/section header of a common object file.

- 6 -

chown(2)
chown(I)
chroot(2)
chroot(IM)
acctsh(IM)
ctype(3C)
uuclean(IM)
c1ri(IM)
ferror(3S)
alarm(2)
cron(IM)
c1ock(3C)
log(3F)
Idclose(3X)
c1ose(2)
c1ose(2)
fclose(3S)
c1ri(IM)
ssr(IM)
cmp(l)
ftype(3F)
col(l)
comb(I)
comb(I)
comm(l)
nice(I)
chroot(IM)
env(I)
uux(IC)
system(3F)
nohup(l)
net(lC)
getopt(l)
sh(l)
timex(l)
acctcms(IM)
system(3S)
test(I)
time(l)
xargs(I)
getarg(3F)
acct(IM)
intro(I)
intro(IM)
graphics (I G)
install(IM)
mk(8)
stat(iG)
cdc(l)
ar(4)
arcv(l)
a.out(4)
as(l)
convert(l)
logIO(3F)
Idfcn(4)
Idopen(3X)
Idlread(3X)
Idclose(3X)
Idfhread(3X)
Idlseek(3X)
Idohseek(3X)
Idrseek(3X)
Idshread(3X)

an indexed/named section of a common object file. /seek to
of a symbol table entry of a common object file. /the index

symbol table entry of a common object file. /indexed
seek to the symbol table of a common object file. Idtbseek:

line number entries in a common object file. linenum:
nm: print name list of common object file.

relocation information for a common object file. reloc:
scnhdr: section header for a common object file.

line number information from a common object file. land
table format. syms: common object file symbol

filehdr: file header for common object files.
Id: link editor for common object files.

size: print section sizes of common object files.
comm: select or reject lines common to two sorted files.

/VPM drivers and programmable communication del'ices. •
ipes: report inter-process communication facilities/

acuset: connect ACUs and communication lines. • •
stdipe: standard interprocess communication package.

pel: parallel communications link interface.
built-in DDCMP protocol. dmc: communications link with

diff: differential file comparator. ..•.•••
cmp: compare two files.

SCCS file. sccsdiff: compare two versions of an
diff3: 3-way differential file comparison. •• . • • . .

dircmp: directory comparison. •• • • • • •
expression. regcmp, regex: compile and execute regular
regexp: regular expression compile and match routines.

regcmp: regular expression compile. •
cc, pec: C compiler. ••••••

f77: Fortran 77 compiler. ••••••
programs. scc: C compiler for stand-alone

protocol machine. vpmc: compiler for the virtual
protocol machine. vpmc: compiler for the virtual

yacc: yet another compiler-compiler.
modest-sized programs. bs: a compiler/interpreter for

erf, erfc: error function and complementary error function.
wait: await completion of process.

Fortran imaginary part of complex argument. /dimag:
conjg, dconjg: Fortran complex conjugate intrinsic/

cprs: compress an IS25 object file.
pack, peat, unpack: compress and expand files.

table entry of a/ Idtbindex: compute the index of a symbol
cat: concatenate and print files ..

synchronous printer. scat: concatenate and print files on
test: condition evaluation command.

system. config: configure a UNIX
system. config: configure a UNIX

program. vcf: V AX-ll/7S0 configuration verification
config: configure a UNIX system.
config: configure a UNIX system.

system. Ipadmin: configure the LP spooling
conjugate intrinsic function. conjg,'dconjg: Fortran complex

conjg, dconjg: Fortran complex conjugate intrinsic function.
fwtmp, wtmpfix: manipulate connect accounting records.

lines. acuset: connect ACUs and communication
an out-going terminal line connection. dial: establish • . •

vpmset, vpmstart: connect/load VPM drivers and/
acctconl, acctcon2: connect-time accounting.

fsck, dfsck: file system consistency check and/
vlx: VAX-II/7S0 LSI console floppy interface.

3B200ps: 3B2OS console operations.
7500ps: VAX-ll/750 console operations .••
7S00ps: VAX-ll/7S0 console operations. • .

report and interactive status console. rjestat: RJE status

- 7 -

Permuted Index

Idsseek(3X)
Idtbindex(3X)
Idtbread(3X)
Idtbseek(3X)
linenum(4)
nm(l)
reloc(4)
scnhdr(4)
strip(1)
syms(4)
filehdr(4)
Id(1)
size(1)
comm(l)
vpmset(IM)
ipes(1)
acuset(IM)
stdipe(3C)
pel(7)
dmc(7)
diff(l)
cmp(l)
sccsdiff(I)
diff3(1)
dircmp(l)
regcmp(3X)
regexp(5)
regcmp(l)
cc(l)
f77(I)
scc(l)
vpmc.dec(IM)
vpmc.u3b(1M)
yacc(l)
bs(1)
erf(3M)
wait(l)
aimag(3F)
conjg(3F)
cprs(1)
pack(l)
Idtbindex(3X)
cat(l)
scat(l)
test(l)
config.3b(I M)
config.dc(I M)
vcf(IM)
config.3b(IM)
config.dc(IM)
Ipadmin(IM)
conjg(3F)
conjg(3F)
fwtmp(IM)
acuset(IM)
dial(3C)
vpmset(IM)
acctcon(IM)
fsck(IM)
vlx(1M)
3B200ps(S)
7500ps(S)
7S00ps(S)
rjestat(1 C)

Permuted Index

tn83: console/printer interface.
cw, checkcw: prepare constant-width text for troff.

mkfs: construct a file system.
execute command. xargs: construct argument list(s) and

nroff/troff, tbl, and eqn constructs. deroff: remove
Is: list contents of directories.

toc: graphical table of contents routines.
csplit: context split. • • .

asa: interpret ASA carriage control characters.
ioct!: control device. .

fcnt!: file control. •••••
perform 3270 emulation control functions. emulcntrl:

init, telinit: process control initialization.
dmk: DMII-BA modem control mUltiplexor.

nc: network control. •• . • •
msgct!: message control operations.

semct!: semaphore control operations.
shmct!: shared memory control operations.

fcnt!: file control options.
st: synchronous terminal control. ••• . .

nscmon: operationally control the NSC local network.
uucp status inquiry and job control. uustat:

vc: version control. • . . . • • . .
medium speed line printer controller. tn85:

emulstat: get 3270 emulation controller/terminal status.
interface. tty: controlling terminal

terminals. term: conventional names for •
char: explicit Fortran type conversion. /dcmplx, ichar,

, units: conversion program.
dd: convert and copy a file. •

image. mkboot: convert a.out file to boot
PDP-II to common/ arcv: convert archive files from

floating-point number. atof: convert ASCII string to .
integers and/ 13tol, Ito13: convert between 3-byte •

and base-64 ASCII/ a64l, 164a: convert between long integer
archive files to common/ convert: convert object and
/gmtime, asctime, tzset: convert date and time to/ . .

and VAX-ll/780 systems. fscv: convert files between PDP-ll
to string. ecvt, fcvt, gcvt: convert floating-point number

scanf, fscanf, sscanf: convert formatted input.
files to common/ convert: convert object and archive

strtol, atol, atoi: convert string to integer.
dd: convert and copy a file. • • • • • • •

bcopy: interactive block copy. •...•..••
cpio: copy file archives in and out.

access time. dcopy: copy file systems for optimal
checking. volcopy, labelit: copy file systems with label

cp, In, mv: copy, link or move files.
uulog, uuname: unix to unix copy. uucp, .••....

public UNIX-to-UNIX file copy. uuto, uupick: . . • •
file. core: format of core image

core: format of core image file.
mem, kmem: core memory. •...•

cosine intrinsic function. cos, dcos, ccos: Fortran •
atan2: trigonometric/ sin, cos, tan, asin. acos, atan,

hyperbolic cosine intrinsic/ cosh, dcosh: Fortran
functions. sinh, cosh, tanh: hyperbolic

cos, dcos, ccos: Fortran cosine intrinsic function.
/dcosh: Fortran hyperbolic cosine intrinsic function.

sum: print checksum and block count of a file. . • • •
wc: word count. • • . . • • • •

files. cp, In, mv: copy, link or move
cpio: format of cpio archive. . . • • . •

and out. cpio: copy file archives in

- 8 -

tn83(7)
cw(l)
mkfs(1M)
xargs(l)
deroff(l)
Is(l)
toc(lG)
csplit(1)
asa(l)
ioctl(2)
fcnt!(2)
em ulcntrl(I M)
init(1M)
dmk(7)
nc(7)
msgctI(2)
semctI(2)
shmctI(2)
fcnt!(5)
st(lM)
nscmon(IM)
uustat(1C)
vc(l)
tn85(7)
em ulstat(1 M)
tty(7)
term(5)
ftype(3F)
units(l)
dd(l)
mkboot(lM)
arcv(l)
atof(3C)
13tol(3C)
a641(3C)
convert(l)
ctime(3C)
fscv(lM)
ecvt(3C)
scanf(3S)
convert(l)
strtol(3C)
dd(1)
bcopy(lM)
cpio(l)
dcopy(lM)
volcopy(IM)
cp(1)
uucp(lC)
uuto(lC)
core(4)
core(4)
mem(7)
cos(3F)
trig(3M)
cosh(3F)
sinh(3M)
cos(3F)
cosh(3F)
sum(1)
wc(l)
cp(1)
cpio(4)
cpio(l)

cpio: format of cpio archive. •
preprocessor. cpp: the C language•

file. cprs: compress an IS25 object
clock: report CPU time used.

craps: the game of craps. • . . • • • •
craps: the game of craps.
crash: examine system images.

system crashes. crash: what to do when the
system crashes. crash: what to do when the

what to do when the system crashes. crash: . • • . .
what to do when the system crashes. crash: . . . • . •

rewrite an existing one. creat: create a new file or
file. tmpnam, tempnam: create a name for a temporary

an existing one. creat: create a new file or rewrite
fork: create a new process. .

tmpfile: create a temporary file.
channel. pipe: create an interprocess •

files. admin: create and administer SCCS
umask: set and get file creation mask. . . .

cron: clock daemon.
cxref: generate C program cross reference.

crypt: encode/decode.
generate DES encryption. crypt, setkey, encrypt:

function. sin, dsin, csin: Fortran sine intrinsic
csplit: context split. . . •

intrinsic/ sqrt, dsqrt, csqrt: Fortran square root
terminal. ct: spawn getty to a remote

for terminal. ctermid: generate file name
asctime, tzset: convert date/ ctime, localtime, gmtime, •

cu: call another UNIX system.
ttt, cubic: tic-tac-toe. . . • •

activity. sact: print current SCCS file editing
uname: print name of current UNIX system.

uname: get name of current UNIX system.
slot in the utmp file of the current user. /find the
getcwd: get path-name of current working directory.
spline: interpolate smooth curve. . • •

name of the user. cuserid: get character login
of each line of a file. cut: cut out selected fields

each line of a file. cut: cut out selected fields of
constant-width text fori cw, checkcw: prepare •.

cross reference. cxref: generate C program
absolute value. abs, iabs, dabs, cabs, zabs: Fortran

intrinsic function. acos, dacos: Fortran arccosine
cron: clock daemon. ••.•••.

sending daemon, line printer daemon. dpd, lpd: HONEYWELL
errdemon: error-logging daemon. .••..•..•

terminate the error-logging daemon. errstop: • . . • • .
dpd, lpd: HONEYWELL sending daemon, line printer daemon.

runacct: run daily accounting. • • . . . •
backup. filesave, tapesave: daily/weekly UNIX file system

/handle special functions of DASI 300 and 300s terminals.
special functions of the DASI 450 terminal. /handle
intrinsic function. asin, dasin: Fortran arcsine • • • •

/time a command; report process data and system activity.
/sgetl: access long numeric data in a machine independent/

plock: lock process, text, or data in memory. •
prof: display profile data. ••.•••..•••

call. stat: data returned by stat system .
brk, sbrk: change data segment space allocation.

types: primitive system data types. • . . • • . .
join: relational database operator.

intrinsic function. atan, datan: Fortran arctangent
intrinsic function. atan2, datan2: Fortran arctangent

- 9 -

Permuted Index

cpio(4)
cpp(l)
cprs(l)
c1ock(3C)
craps(6)
craps(6)
crash(IM)
crash.dec(8)
crash.u3b(8)
crash.dec(8)
crash. u3b(8)
creat(2)
tmpnam(3S)
creat(2)
fork(2)
tmpfile(3S)
pipe(2)
admin(l)
umask(2)
cron(IM)
cxref(l)
crypt(l)
crypt(3C)
sin(3F)
csplit(I)
sqrt(3F)
ct(lC)
ctermid(3S)
ctime(3C)
cu(lC)
ttt(6)
sact(l)
uname(l)
uname(2)
ttyslot(3C)
getcwd(3C)
spline(IG)
cuserid(3S)
cut(l)
cut(l)
cw(I)
cxref(l)
abs(3F)
acos(3F)
cron(IM)
dpd(IC)
errdemon(I M)
errstop(I M)
dpd(lC)
runacct(lM)
filesave(IM)
300(1)
450(1)
asin(3F)
timex(l)
sputl(3X)
plock(2)
prof(l)
stat(5)
brk(2)
types(5)
join(l)
atan(3F)
atan2(3F)

Permuted Index

/asctime, tzset: convert date and time to string. . .
date: print and set the date. ..•••.....

date: print and set the date.
/idint, real, 80at, sng!, dble, cmplx, dcmplx, ichar,/

dc: desk calculator.
/80at, sng!, dble, cmplx, dcmplx, ichar, char: explicit/

conjugate intrinsic/ conjg, dconjg: Fortran complex
optimal access time. dcopy: copy file systems for

intrinsic function. cos, dcos, ccos: Fortran cosine. .-
cosine intrinsic/ cosh, dcosh: Fortran hyperbolic .

dd: convert and copy a file.
/link with built-in DDCMP protocol.

adb: absolute debugger.
fsdb: file system debugger.

sdb: symbolic debugger.
sysdef: system definition.

eqnchar: special character definitions for eqn and neqn.
names. basename, dirname: deliver portions of path . .

file. tail: deliver the last part of a . .
delta commentary of an sces delta. cdc: change the . . .

file. delta: make a delta (change) to an SCCS
delta. cdc: change the delta commentary of an SCCS

rmdel: remove a delta from an SCCS file.
to an SCCS file. delta: make a delta (change)

comb: combine SCCS deltas. ..•......
mesg: permit or deny messages. •....

tbl, and eqn constructs. deroff: remove nroff/troff,
setkey, encrypt: generate DES encryption. crypt,

system: format of 3B2OS system description file.
close: close a file descriptor. •

dup: duplicate an open file descriptor.
dc: desk calculator.

x25hlnk, x25dlnk: halt or detach a BX.25 link.
file. access: determine accessibility of a

file: determine file type. . . .
master: master device information table.
master: master device information table.

UN53/TN82 synchronous device interface. un53:
ioctl: control device. .•......

off or/ don, doff, disp: device logically on, logically
devnm: device name. •.....

get status for a BX.25 minor device or link. /remove, or
/tekset, td: graphical device routines and filters.

and programmable communication devices. /VPM drivers
devnm: device name. • .

exponential intrinsic/ exp, dexp, cexp: Fortran
blocks. df: report number of free disk

check and interactive/ fsck, dfsck: file system consistency
diagnostics. dgn: initiate on-line . • • • •

interface. dgn: on-line diagnostic
DH-ll asynchronous/ dz, dzb, dh: DZ-ll, DZ-ll/KMC-llB,

dzb, dh: DZ-ll, DZ-ll/KMC-llB, DH-ll asynchronous/ dz,
dgn: on-line diagnostic interface.

msi: memory system diagnostic interface.
find status of pending on-line diagnostic requests. sta: •

chmap: change the diagnostic spooler map file.
abt: abort on-line diagnostics.

dgn: initiate on-line diagnostics.
and find status of on-line diagnostics. /start, stop . •

from service before on-line diagnostics. rmv: remove unit
unit to service after on-line diagnostics. rst: restore . .

terminal line connection. dial: establish an out-going
ratfor: rational Fortran dialect.

bdiff: big diff. . . . • • . . . • • •

- 10 -

ctime(3C)
date(l)
date(l)
ftype(3F)
dc(l)
ftype(3F)
conjg(3F)
dcopy(lM)
cos(3F)
cosh(3F)
dd(l)
dmc(7)
adb(l)
fsdb(lM)
sdb(l)
sysdef(lM)
eqnchar(5)
basename(1)
tail(1)
cdc(l)
delta(l)
cdc(1)
rmdel(l)
delta(l)
comb(l)
mesg(1)
deroff(l)
crypt(3C)
system(4)
close(2)
dup(2)
dc(l)
x25hlnk(3C)
access(2)
file(1)
master.dec(4)
master.u3b(4)
un53(7)
ioctl(2)
don(1M)
devnm(lM)
x25pvc(lM)
gdev(1G)
vpmset(lM)
devnm(1M)
exp(3F)
df(lM)
fsck(lM)
dgn(lM)
dgn(7)
dz(7)
dz(7)
dgn(7)
msi(lM)
sta(lM)
chmap(lM)
abt(lM)
dgn(lM)
dstart(lM)
rmv(lM)
rst(1M)
dial(3C)
ratfor(l)
bdiff(1)

comparator. diff: differential file • • • •
comparison. diff3: 3-way differential file

sdiff: side-by-side difference program; • • • •
diffmk: mark differences between files.

diff: differential file comparator.
diff3: 3-way differential file comparison.

between files. diffmk: mark differences
of complex argument. aimag, dimag: Fortran imaginary part

intrinsic function. aint, dint: Fortran integer part
dir: format of directories. ••
dircmp: directory comparison.

dir: format of directories.
Is: list contents of directories.

rm, rmdir: remove files or directories.
cd: change working directory.

chdir: change working directory.
chroot: change root directory.
uuclean: uucp spool directory clean-up.

dircmp: directory comparison.
unlink: remove directory entry.

chroot: change root directory for a command.
path-name of current working directory. getcwd: get

mkdir: make a directory.
mvdir: move a directory. •••••

pwd: working directory name.
ordinary file. mknod: make a directory, or a special or

path names. basename, dirname: deliver portions of
dis: 3B208 disassembler.

printers. enable, disable: enable/disable LP •
aoct: enable or disable process accounting.

dis: 3B208 disassembler.
type, modes, speed, and line discipline. /set terminal •

sadp: disk access profiler. • • •
df: report number of free disk blocks. ••••••

diskboot: disk bootstrap programs.
dsk: 3B208 moving-head disk.

RHll/RJS03-RJS04 fixed-head disk file. hs: • • • • • •
rf: RFll/RSll fixed-head disk file. • • • • • • • •

Idtape: load disk from tape procedures.
hm: RM05 moving-head disk. •••••••••

moving-head disk. /RP04/RP05/RP06
mill: MLll solid-state disk. • ••••••••

dskvfy: format and verify disk packs. dskfmt, • • •
and/or check RP06 and RM05 disk packs. format: format

rk: RK-ll/RK03 or RK05 disk.
rl: RL-ll/RLOI disk. • •••••••••

rm80: RM80 moving-head disk. ••••••••••
medium moving-head disk. /RP07 non-removable

rp: RP-ll/RP03 moving-head disk. • •••••••
du: summarize disk usage. •••••

programs. diskboot: disk bootstrap
general driver for moving-head disks. gd: ••••••

mount, umount: mount and dismount file system. •
logically off or/ don, doff, disp: device logically on,

prof: display profile data. • •
logically on, logically off or display status. /disp: device

hypot: Euclidean distance function.
/lcong48: generate uniformly distributed pseudo-random/

kl: KL-ll or DL-ll asynchronous interface.
logarithm/ log, alog, dlog, clog: Fortran natural • •

logarithm/ 10g10, aloglO, dloglO: Fortran common
multiplexor. dmk: DMII-BA modem control

max, maxO, amaxO, maxi, amaxl, dmaxl:'Fortran maximum-value/
built-in DDCMP protocol. dmc: communications link with

- 11 -

Permuted Index

diff(l)
diff3(l)
sdiff(l)
diffmk(l)
diff(l)
diff3(1)
diffmk(l)
aimag(3F)
aint(3F)
dir(4)
dircmp(l)
dir(4)
Is(1)
rm(l)
cd(l)
chdir(2)
chroot(2)
uuclean(1M)
dircmp(l)
unlink(2)
chroot(lM)
getcwd(3C)
mkdir(l)
mvdir(IM)
pwd(l)
mknod(2)
basename(l)
dis(l)
enable(l)
aoct(2)
dis(l)
getty(lM)
sadp(l)
df(IM)
diskboot(8)
dsk(7)
hs(7)
rf(7)
Idtape(8)
hm(7)
hp(7)
mil 1(7)
dskfmt(IM)
format(lM)
rk(7)
rl(7)
rmSO(7)
rp07(7)
rp(7)
dU(I)
diskboot(8)
gd(7)
mount(lM)
don(lM)
prof(l)
don(lM)
hypot(3M)
drand48(3C)
kl(7)
log(3F)
loglO(3F)
dmk(7)
max(3F)
dmc(7)

Permuted Index

min, minO, aminO, mill I , amini, dminl: Fortran minimum-value/
multiplexor. dmk: DMII-BA modem control

intrinsic/ mod, amod, dmod: Fortran remaindering
interface. acu, dn: Automatic Call Unit (ACU)

nearest integer/ anint, dnint, nint, idnint: Fortran
mm, osdd, checkmm: print/check documents formatted with the/

macro package for formatting documents. mm: the MM • . .
macro package for formatting documents. /the OSDD adapter

slides. mmt, mvt: typeset documents, view graphs, and
nulladm,/ chargefee, ckpacct, dodisk, lastlogin, monacct,

on, logically off or/ don, doff, disp: device logically ••
whodo: who is doing what. ••••••••

logically on, logically off/ don, doff, disp: device
daemon, line printer daemon. dpd, Ipd: HONEYWELL sending

dpr: off-line print.
reversi: a game of dramatic reversals. ••••

nrand48, mrand48, jrand48,/ drand48, erand48, Irand48,
graph: draw a graph. ••••••

arithmetic: provide drill in number facts. • • •
gd: general driver for moving-head disks.
gt: general driver for tape drives.

trace: event-tracing driver. •••••••••
/vpmstart: connect/load VPM drivers and programmable/

gt: general driver for tape drives. •••••••
transfer-of-sign/ sign, isign, dsign: Fortran ••••••

intrinsic function. sin, dsin, csin: Fortran sine ••
intrinsic function. sinh, dsinh: Fortran hyperbolic sine

dsk: 3B208 moving-head disk.
verify disk packs. dskfmt, dskvfy: format and •

packs. dskfmt, dskvfy: format and verify disk
root intrinsic/ sqrt, dsqrt, csqrt: Fortran square

stop and find status off dstart, dstop, dstat: start,
status off dstart, dstop, dstat: start, stop and find

find status off dstart, dstop, dstat: start, stop and
intrinsic function. tan, dtan: Fortran tangent • • •

tangent intrinsic/ tanh, dtanh: Fortran hyperbolic •
interface. du: DU-II synchronous line

du: summarize disk usage.
interface. du: DU-II synchronous line
an object file. dump: dump selected parts of

extract error records from dump. errdead:
od: octal dump. •••••••.

object file. dump: dump selected parts of an
descriptor. dup: duplicate an open file

descriptor. dup: duplicate an open file ••
DZ-ll/KMC-llB, DH-ll/ dz, dzb, dh: DZ-ll,

asynchronous/ dz, dzb, dh: DZ-ll, DZ-ll/KMC-llB, DH-ll
dz, dzb, dh: DZ-ll, DZ-ll/KMC-llB, DH-ll/

DH-ll asynchronous/ dz, dzb, dh: DZ-ll, DZ-ll/KMC-llB,
interface. eai: 3B208 emergency action

ipb: read the EAI Input Parameter Buffer.
echo: echo arguments. •••

echo: echo arguments.
floating-point number to/ ecvt, fcvt, gcvt: convert

ed, red: text editor .•
program. end, etext, edata: last locations in

sact: print current sees file editing activity.
ed, red: text editor. • •••••
files. Id: link editor for common object

se: screen editor for video terminals.
ged: graphical editor. ••••••

Id: link editor. ••••••
common assembler and link . editor outpui. a.out:
PDP-II assembler and link editor output. a.out:

- 12 -

min(3F)
dmk(7)
mod(3F)
acu(7)
round(3F)
mm(l)
mm(5)
mosd(5)
mmt(l)
acctsh(IM)
don(IM)
whodo(IM)
don(IM)
dpd(lC)
dpr(lC)
reversi(6)
drand48(3C)
graph(lG)
arithmetic(6)
gd(7)
gt(7)
trace(7)
vpmset(lM)
gt(7)
sign(3F)
sin(3F)
sinh(3F)
dsk(7)
dskfmt(IM)
dskfmt(IM)
sqrt(3F) .
dstart(IM)
dstart(lM)
dstart(IM)
tan(3F)
tanh(3F)
du(7)
dU(I)
du(7)
dump(l)
errdead(IM)
od(l)
dump(l)
dup(2)
dup(2)
dz(7)
dz(7)
dz(7)
dz(7)
eai(8)
ipb(IM)
echo(l)
echo(l)
ecvt(3C)
ed(l)
end(3C)
sact(l)
ed(l)
Id(l)

• se(l)
ged(IG)
Id.pdp(l)

• a.out(4)
a.out.pdp(4)

sed: stream editor. ••.•••..
/user, real group, and effective group IDs.

and/ /getegid: get real user, effective user, real group,
Language. efl: Extended Fortran . .

fsplit: split f77, ratfor, or efl files. • • . • • • . .
for a pattern. grep, egrep, fgrep: search a file

interface. tn4: eight line asynchronous •
eai: 3B2OS emergency action interface.

emulcntrl: perform 3270 emulation control functions.
status. emulstat: get 3270 emulation controller/terminal

emulio: 3270 emulation interface.
emulload: load and start 3270 emulation script. • • • . . •

emulation control functions. emulcntrl: perform 3270
interface. emuIio: 3270 emulation • • •

emulation script. emulload: load and start 3270
controller/terminal status. emulstat: get 3270 emulation

enable/disable LP printers. enable, disable: •••.•
accounting. acct: enable or disable process

enable, disable: enable/disable LP printers.
crypt: encode/decode.

encryption. crypt, setkey, encrypt: generate DES
setkey, encrypt: generate DES encryption. crypt,

makekey: generate encryption key.
locations in program. end,etext, edata: last .

/getgrgid, getgrnam, setgrent, endgrent: get group file/
/getpwuid, getpwnam, setpwent, endpwent: get password file/

utmp/ /pututline, setutent, endutent, utmpname: access
nlist: get entries from name list.

file. linenum: line number entries in a common object
man, manprog: print entries in this manual.

man: macros for formatting entries in this manual.
file/ /manipulate line number entries of a common object

common/ /seek to line number entries of a section of a •
/Idnrseek: seek to relocation entries of a section of a/

utmp, wtmp: utmp and wtmp entry formats. •••.•
endgrent: get group file entry. /getgrnam, setgrent,

endpwent: get password file entry. /getpwnam, setpwent,
utmpname: access utmp file entry. /setutent, endutent,

/the index of a symbol table entry of a common object file.
/read an indexed symbol table entry of a common object file.

putpwent: write password file entry. • . . • • • • . .
rje: RJE (Remote Job Entry) to IBM. • . • . •

unlink: remove directory entry. • • • • • • • . •
command execution. env: set environment for

environ: user environment.
profile: setting up an environment at login time.

environ: user environment. •.•.••
execution. env: set environment for command

getenv: return value for environment name.
getenv: return Fortran environment variable.

sky: obtain ephemerides.
character definitions for eqn and neqn. /special

remove nroff/troff, tbl, and eqn constructs. deroff:
mathematical text for nroff/ eqn, neqn, checkeq: format

definitions for eqn and neqn. eqnchar: special character •
mrand48, jrand48,/ drand48, erand48, Irand48, nrand48,

graphical device/ hpd, erase, hardcopy, tekset, td:
complementary error function. erf, erfc: error function and

complementary error/ erf, erfc: error function and • •
err: error-logging interface.

from dump. errdead: extract error records
daemon. errdemon: error· logging . .

format. errfile: error-log file
system error / perror, errno, sys_errlist, sys_nerr:

- 13 -

Permuted Index

sed(l)
getuid(2)
getuid(2)
efl(l)
fsplit(l)
grep(l)
tn4(7)
eai(8)
emulcntrl(lM)
emulstat{lM)
emulio(7)
emulload{lM)
emulcntrl(1 M)
emulio(7)
emulload(lM)
emulstat(1 M)
enable(l)
acct(2)
enable(l)
crypt(l)
crypt(3C)
crypt(3C)
makekey(l)
end(3C)
getgrent(3C)
getpwent(3C)
getut(3C)
nlist(3C)
linenum(4)
man(1)
man(5)
Idlread(3X)
Idlseek(3X)
Idrseek(3X)
utmp(4)
getgrent(3C)
getpwent(3C)
getut(3C)
Idtbindex(3X)
Idtbread(3X)
putpwent(3C)
rje(8)
unlink(2)
env(l)
environ(5)
profile(4)
environ(5)
env(l)
getenv(3C)
getenv(3F)
sky(6)
eqnchar(5)
deroff(l)
eqn(l)
eqnchar(5)
drand48(3C)
gdev(lG)
erf(3M)
erf(3M)
err(7)
errdead(lM)
errdemon(lM)
errfile(4)
perror(3C)

Permuted Index

complementary/ erf, erfc: error function and
function and complementary error function. lerfc: error
sys_erriist, sys_nerr: system error messages. / errno, • •

to system calls and error numbers. lintroduction
errdead: extract error records from dump.

math err: error-handling function.
errfile: error-log file format.

errdemon: error-logging daemon.
errstop: terminate the error-logging daemon.

err: error-logging interface.
process a report of logged errors. errpt:

hashcheck: find spelling errors. /hashmake, spellin,
logged errors. errpt: process a report of

error-logging daemon. errstop: terminate the
terminal line/ dial: establish an out-going

setmnt: establish mount table.
in program. end, etext, edata: last locations

hypot: Euclidean distance function.
expression. expr: evaluate arguments as an

test: condition evaluation command. .
vpmfmt: save and print VPM event traces. vpmsave,

trace: event-tracing driver.
crash: examine system images.

exeelp, execvp: execute a/ exeel, execv, execle, execve,
execvp: execute/ execl, execv, execle, execve, exeelp,

execl, execv, execle, execve, execlp, execvp: execute a/
network. net: execute a command on the PCL

execve, execlp, execvp: execute a file. /execle,
construct argument list(s) and execute command. xargs: •

regcmp, regex: compile and execute regular expression.
set environment for command execution. env:

sleep: suspend execution for an interval.
sleep: suspend execution for interval.

monitor: prepare execution profile. • • •
profil: execution time profile.

uux: unix to unix command execution. • • • • • .
execvp: execute a/ exeel, execv, exeele, execve, exeelp,

execute/ exeel, execv, execle, execve, exeelp, execvp:
/execv, execle, execve, exeelp, execvp: execute a file.

system calls. link, unlink: exercise link and unlink
a new file or rewrite an existing one. creat: create

process. exit, _exit: terminate
exit, 3xit: terminate process.

exponential intrinsic/ exp, dexp, cexp: Fortran
exponential, logarithm,/ exp, log, 10glO, pow, sqrt:

peat, unpack: compress and expand files. pack,
cmplx, dcmplx, ichar, char: explicit Fortran type/ Idble,

exp, dexp, cexp: Fortran exponential intrinsic/ . . .
exp, log, 10glO, pow, sqrt: exponential, logarithm, power,/

expression. expr: evaluate arguments as an
routines. regexp: regular expression compile and match

regcmp: regular expression compile. . • . .
expr: evaluate arguments as an expression. •••.•••

compile and execute regular expression. regcmp, regex:
efl: Extended Fortran Language.

greek: graphics for the extended TIY-37 type-box.
dump. errdead: extract error records from

f77: Fortran 77 compiler.
fsplit: split f77, ratfor, or efl files.

remainder,l floor, ceil, fmod, fabs: floor, ceiling,
factor: factor a number. • .•

factor: factor a number.
true, false: provide truth values.

data in a machine independent fashion .. /access long numeric

- 14 -

erf(3M)
erf(3M)
perror(3C)
intro(2)
errdead(lM)
matherr(3M)
errfile(4)
errdemon(1 M)
errstop(1 M)
err(7)
errpt(IM)
spell(l)
errpt(lM)
errstop(1 M)
dial(3C)
setmnt(lM)
end(3C)
hypot(3M)
expr(l)
test(I)
vpmsave(IM)
trace(7)
crash(lM)
exec(2)
exec(2)
exec(2)
net(lC)
exec(2)
xargs(l)
regcmp(3X)
env(l)
sleep(l)
sleep(3C)
monitor(3C)
profil(2)
uux(lC)
exec(2)
exec(2)
exec(2)
link(lM)
creat(2)
exit(2)
exit(2)
exp(3F)
exp(3M)
pack(l)
ftype(3F)
exp(3F)
exp(3M)
expr(l)
regexp(5)
regcmp(l)
expr(l)
regcmp(3X)
efl(l)
greek(5)
errdead(IM)
f77(l)
fsplit(1)
floor(3M)
factor(l)
factor(l)
true(l)
sputl(3X)

fine: fast incremental backup.
procedure. checkall: faster file system checking

abort: generate an lOT fault. •••......
a stream. fclose, mush: close or flush

fcntl: file contro\. • • • .
fcntl: file control options.

floating-point number/ ecvt, fcvt, gcvt: convert
fopen, freopen, fdopen: open a stream.

status inquiries. ferror, feof, clearerr, fileno: stream
fileno: stream status/ ferror, feof, clearerr,

statistics for a file system. ff: list file names and . .
stream. fclose, mush: close or flush a

files from the HONEYWELL/ fget, fget.demon: retrieve
word from/ getc, getchar, fgetc, getw: get character or

from the HONEYWELL/ fget, fget.demon: retrieve files
stream. gets, fgets: get a string from a

pattern. grep, egrep, fgrep: search a file for a .
times. uti me: set file access and modification

Idfcn: common object file access routines.
determine accessibility of a file. access:

hpio: HP 2645A terminal tape file archiver. • . .
tar: tape file archiver. • • •

cpio: copy file archives in and out.
pwck, grpck: password/group file checkers ..••

the diagnostic spooler map file. chmap: change
chmod: change mode of file. • .

change owner and group of a file. chown:
diff: differential file comparator.

diff3: 3-way differential file comparison.
fcntl: file contro\.
fcntl: file control options.

ullpick: public UNIX-to-UNIX file copy. uuto,
core: format of core image file. • • • • . . .

cprs: compress an IS25 object file. • • . . • • •
umask: set and get file creation mask.

fields of each line of a file. cut: cut out selected
dd: convert and copy a file. • • . . • •

a delta (change) to an SCCS file. delta: make
close: close a file descriptor.

dup: duplicate an open file descriptor.
file: determine file type.

selected parts of an object file. dump: dump
sact: print current sces file editing activity. •

setgrent, endgrent: get group file entry. /getgrnam,
endpwent: get password file entry. /setpwent,
utmpname: access utmp file entry. /endutent,

putpwent: write password file entry. •....
execlp, execvp: execute a file. /execv, execle, execve,

grep, egrep, fgrep: search a file for a pattern. • • •
Idaopen: open a common object file for reading. Idopen,

acct: per-process accounting file format.
ar: common archive file format.

ar: archive file format.
errfile: error-log file format.

pnch: file format for card images.
intro: introduction to file formats. •••.•..

entries of a common object file function. /line number
get: get a version of an SCCS file. • • . • . .

group: group file. • • • • . • • • • • •
files. filehdr: file header for common object

file. Idfhread: read the file header of a common object
Idohseek: seek to the optional file header of a common object/

fixed-head disk file. hs: RHll/RJS03-RJS04
split: split a file into pieces. • • • • • . • •

- 15 -

Permuted Index

finc(J M)
checkall(I M)
abort(3C)
fclose(3S)
fcntl(2)
fcntl(5)
ecvt(3C)
fopen(3S)
ferror(3S)
ferror(3S)
ff(J M)
fclose(3S)
fget(IC)
getc(3S)
fget(lC)
gets(3S)
grep(J)
utime(2)
Idfcn(4)
access(2)
hpio(J)
tar(l)
cpio(J)
pwck(JM)
chmap(JM)
chmod(2)
chown(2)
diff(J)
dilD(l)
fcntl(2)
fcntl(5)
uuto(lC)
core(4)
cprs(I)
umask(2)
cut(l)
dd(l)
delta(l)
close(2)
dup(2)
file(l)
dump(l)
sact(I)
getgrent(3C)
getpwent(3C)
getut(3C)
putpwent(3C)
exec(2)
grep(I)
Idopen(3X)
acct(4)
ar(4)
ar.pdp(4)
errfile(4)
pnch(4)
intro(4)
Idlread(3X)
get(l)
group(4)
filehdr(4)
Idfhread(3X)
Idohseek(3X)
hs(7)
split(J)

Permuted Index

issue: issue identification file. • • • • • • . . . • . .
of a member of an archive file. /read the archive header

close a common object file. Idclose, Idaclose: •••
file header of a common object file. Idfhread: read the

a section of a common object file. /line number entries of
file header of a common object file. /seek to the optional •

a section of a common object file. /relocation entries of .
header of a common object file. /indexed/named section
section of a common object file. Ito an indexed/named

table entry of a common object file. /the index of a symbol •
table entry of a common object file. /read an indexed symbol

table of a common object file. /seek to the symbol
entries in a common object file. Iinenum: line number

link: link to a file. • • . • • . . • • .
listing from 38208 object file. list: produce C source

mknod: build special file. • • • . • • • . .
or a special or ordinary file. /make a directory, •

ctermid: generate file name for terminal.
mktemp: make a unique file name. . • • • . . .

a file system. ff: list file names and statistics for
change the format of a text file. newform:
name list of common object file. nm: print

null: the null file. • • • • •
/find the slot in the utmp file of the current user.

/identify processes using a file or file structure.
one. creat: create a new file or rewrite an existing

passwd: password file. . • • . • • • • • •
or subsequent lines of one file. /lines of several files
/rewind, ftell: reposition a file pointer in a stream.

Iseek: move read/write file pointer.
prs: print an SCCS file. • • • • • . • • •

read: read from file. • • • • • . • • •
for a common object file. /relocation information

rf: RFII /RSII fixed-head disk file. • • • •
remove a delta from an SCCS file. rmdel:

bfs: big file scanner.
two versions of an sces file. sccsdiff: compare
sccsfile: format of SCCS file. • • • • • • •

header for a common object file. scnhdr: section
stat, fstat: get file status. . • • •

from a common object file. /line number information
processes using a file or file structure. /identify

checksum and block count of a file. sum: print • • • • . •
syms: common object file symbol table format.

tapesave: daily/weekly UNIX file system backup. filesave,
procedure. checkall: faster file system checking

and interactive/ fsck, dfsck: file system consistency check
fsdb: file system debugger. • . • •

names and statistics for a file system. ff: list file
volume. file system: format of system

mkfs: construct a file system.
umount: mount and dismount file system. mount,

mount: mount a file system.
ustat: get file system statistics.

mnttab: mounted file system table. • •
umount: unmount a file system.

of 38208 system description file. system: format
access time. dcopy: copy file systems for optimal

fsck. checklist: list of file systems processed by
volcopy, labelit: copy file systems with labelj

deliver the last part of a file. tail: • • • • • • • .
tmpfile: create a temporary file. • • • • • • • • • •

create a name for a temporary file. tmpnam, tempnam:
mkboot: converta.out file to boot image.

- 16 -

issue(4)
Idahread(3X)
Idclose(3X)
Idfhread(3X)
Idlseek(3X)
Idohseek(3X)
Idrseek(3X)
Idshread(3X)
Idsseek(3X)
Idtbindex(3X)
Idtbread(3X)
Idtbseek(3X)
linenum(4)
link(2)
list(1)
mknod(lM)
mknod(2)
ctermid(3S)
mktemp(3C)
ff(1M)
newform(l)
nm(1)
nulI(7)
ttyslot(3C)
fuser(lM)
creat(2)
passwd(4)
paste(1)
fseek(3S)
Iseek(2)
prs(1)
read(2)
reloc(4)
rf(7)
rmdel(l)
bfs(l)
sccsdiff(1)
sccsfile(4)
scnhdr(4)
stat(2)
strip(1)
fuser(lM)
sum(1)
syms(4)
filesave(1M)
checkall(lM)
fsck(lM)
fsdb(lM)
ff(lM)
fs(4)
mkfs(lM)
mount(lM)
mount(2)
ustat(2)
mnttab(4)
umount(2)
system(4)
dcopy(lM)
checklist(4)
volcopy(lM)
tail(1)
tmpfile(3S)
tmpnam(3S)
mkboot(lM)

and modification times of a file. touch: update access
ftw: walk a file tree. •

file: determine file type.
undo a previous get of an SCCS file. unget:

report repeated lines in a file. uniq:
val: validate SCCS file. • • •

write: write on a file. • • •
umask: set file-creation mode mask.

common object files. filehdr: file header for
ferror, feof, cIearerr, fileno: stream status/ •

and print process accounting file(s). acctcom: search
merge or add total accounting files. acctmerg: • • • •

create and administer SCCS files. admin: • • . . .
send, gath: gather files and/or submit RJE jobs.

VAX-1Ij780/ fscv: convert files between PDP-ll and
cat: concatenate and print files. ..••••••••

cmp: compare two files. •••••••.••
lines common to two sorted files. comm: select or reject

cp, In, mv: copy, link or move files.
mark differences between files. diffmk:

file header for common object files. filehdr:
find: find files.

frec: recover files from a backup tape.
archive/ arcv: convert archive files from PDP-ll to common

fget, fget.demon: retrieve files from the HONEYWELL 6000.
format specification in text files. fspec: ••••..

split f77, ratfor, or efl files. fsplit: ••••••
string, format of graphical files. /graphical primitive

intro: introduction to special files. ••.••.•••
link editor for common object files. Id: . • • • • • • •

scat: concatenate and print files on synchronous printer.
rm, rmdir: remove files or directories.

/merge same lines of several files or subsequent lines off
unpack: compress and expand files. pack, peat,

pr: print files.
section sizes of common object files. size: print

size: print sizes of object files.
sort: sort and/or merge files.

NSC network. nusend: send files to another UNIX on the
/convert object and archive files to common formats.

fsend: send files to the HONEYWELL 6000.
what: identify SCCS files. •.••••

daily/weekly UNIX file system/ filesave, tapesave:
greek: select terminal filter. •••• • •

nl: line numbering filter. •••• . •
col: filter reverse line-feeds.

graphical device routines and filters. /tekset, td:
tplot: graphics filters. • • • • • • • •

finc: fast incremental backup.
find: find files. ••••••

find: find files. . • • •
hyphen: find hyphenated words.

ttyname, isatty: find name of a terminal.
object library. lorder: find ordering relation for an

hash make, spellin, hashcheck: find spelling errors. spell, •
/dstop, dstat: start, stop and find status of on-Iine/

diagnostic requests. sta: find status of pending on-line
of the current user. ttyslot: find the slot in the utmp file

tee: pipe fitting. •••••
hs: RHlI/RJS03-RJS04 fixed-head disk file .•••

rf: RFlI/RSll fixed-head disk file .•••
int, ifix, idint, real, float, sngl, dble, cmplx,/

atof: convert ASCII string to floating-point number.
ecvt, fcvt, gcvt: convert floating-point number to/

- 17 -

Permuted Index

touch(l)
ftw(3C)
file(l)
unget(l)
uniq(l)
val(l)
write(2)
umask(l)
filehdr(4)
ferror(3S)
acctcom(l)
acctm erg(l M)
admin(l)
send(1C)
fscv(lM)
cat(l)
cmp(l)
comm(l)
cp(1)
diffmk(l)
filehdr(4)
find(l)
frec(lM)
arcv(l)
fget(lC)
fspec(4)
fsplit(l)
gps(4)
intro(7)
Id(l)
scat(l)
rm(l)
paste(l)
pack(1)
pr(l)
size(l)
size.pdp(1)
sort(1)
nusend(lC)
convert(l)
fsend(lC)
what(1)
filesave(lM)
greek(l)
nl(l)
col(l)
gdev(1G)
tplot(1G)
finc(lM)
find(l)
find(1)
hyphen(1)
ttyname(3C)
lorder(l)
spell(1)
dstart(lM)
sta(1M)
ttyslot(3C)
tee(1)
hs(7)
rf(7)
ftype(3F)
atof(3C)
ecvt(3C)

Permuted Index

/modf: manipulate parts of floating-point numbers. .
floor, ceiling, remainder,/ floor, ceil, fmod, fabs:

floor, ceil, fmod, fabs: floor, ceiling, remainder,/
vlx: VAX-ll/780 LSI console floppy interface.

cflow: generate C flow graph. ..••••
fclose, mush: close or flush a stream. • • . • •

remainder,/ floor, ceil, fmod, fabs: floor, ceiling,
stream. fopen, freopen, fdopen: open a

fork: create a new process.
per-process accounting file format. acct: • • • • • • . •

dskfmt, dskvfy: format and verify disk packs.
RM05 disk packs. format: format and/or check RP06 and

ar: common archive file format. ••..•.••••
from PDP-II to common archive format. /convert archive files

ar: archive file format. •••••.•
errfile: error· log file format. ..••.•.•.

pnch: file format for card images. • .
RP06 and RM05 disk packs. format: format and/or check

nroff or/ eqn, neqn, checkeq: format mathematical text for
description file. system: format of 3B20S system

newform: change the format of a text file.
inode: format of an inode. . • •

core: format of core image file.
cpio: format of cpio archive.

dir: format of directories. •
/graphical primitive string, format of graphical files.

sccsfile: format of SCCS file.
file system: format of system volume.
files. fspec: format specification in text

object file symbol table format. syms: common •
troff. tbl: format tables for nroff or

nroff: format text. •.••••
and archive files to common formats. /convert object

intro: introduction to file formats. • • • •
wtmp: utmp and wtmp entry formats. utmp,
scanf, fscanf, sscanf: convert formatted input.

fprintf, sprintf: print formatted output. printf,
/checkmm: print/check documents formatted with the MM macros.

mptx: the macro package for formatting a permuted index.
mm: the MM macro package for formatting documents.

OSDD adapter macro package for formatting documents. /the
manual. man: macros for formatting entries in this

f77: Fortran 77 compiler.
abs, iabs, dabs, cabs, zabs: Fortran absolute value. • •

system/ signal: specify Fortran action on receipt of a
function. acos, dacos: Fortran arccosine intrinsic •
function. asin, dasin: Fortran arcsine intrinsic . .

function. atan2, datan2: Fortran arctangent intrinsic
function. atan, datan: Fortran arctangent intrinsic

or, xor, not, lshift, rshift: Fortran bitwise boolean/ and,
getarg: return Fortran command·line argument.

loglO, alogIO, dloglO: Fortran common logarithm/
intrinsic/ conjg, dconjg: Fortran complex conjJlgate

function. cos, dcos, ccos: Fortran cosine intrinsic • •
ratfor: rational Fortran dialect. •••••
getenv: return Fortran environment variable.

function. exp, dexp, cexp: Fortran exponential intrinsic
intrinsic/ cosh, dcosh: Fortran hyperbolic cosine
intrinsic/ sinh, dsinh: Fortran hyperbolic sine •
intrinsic/ tanh, dtanh: Fortran hyperbolic tangent

complex/ aimag, dimag: Fortran imaginary part of
function. aint, dint: Fortran integer part intrinsic

efl: Extended Fortran Language.
amaxO, maxI, amaxI, dmaxI: Fortran maximum-value/ /maxO,

- 18 -

frexp(3C)
floor(3M)
floor(3M)
vlx(lM)
cflow(i)
fclose(3S)
floor(3M)
fopen(3S)
fork(2)
acct(4)
dskfmt(lM)
format(lM)
ar(4)
arcv(l)
ar.pdp(4)
errfile(4)
pnch(4)
format(IM)
eqn(1)
system(4)
newform(l)
inode(4)
core(4)
cpio(4)
dir(4)
gps(4)
sccsfile(4)
fs(4)
fspec(4)
syms(4)
tbl(1)
nroff(l)
convert(l)
intro(4)
utmp(4)
scanf(3S)
printf(3S)
mm(l)
mptx(5)
mm(5)
mosd(5)
man(5)
£77(1)
abs(3F)
signal(3F)
acos(3F)
asin(3F)
atan2(3F)
atan(3F)
bool(3F)
getarg(3F)
loglO(3F)
conjg(3F)
cos(3F)
ratfor(I)
getenv(3F)
exp(3F)
cosh(3F)
sinh(3F)
tanh(3F)
aimag(3F)
aint(3F)
efl(l)
max(3F)

aminO, minI, aminI, dminl: Fortran minimum-value/ IminO,
log, alog, dlog, clog: Fortran natural logarithm/

anint, dnint, nint, idnint: Fortran nearest integer/
abort: terminate Fortran program. . . • •

functions. mod, amod, dmod: Fortran remaindering intrinsic
function. sin, dsin, csin: Fortran sine intrinsic . • •

function. sqrt, dsqrt, csqrt: Fortran square root intrinsic
len: return length of Fortran string. • •

index: return location of Fortran substring.
issue a shell command from Fortran. system: .

function. tan, dtan: Fortran tangent intrinsic
mclock: return Fortran time accounting.

intrinsic/ sign, isign, dsign: Fortran transfer-of-sign •
/dcmplx, ichar, char: explicit Fortran type conversion.

generator. srand, rand: Fortran uniform random-number
formatted output. printf, fprintf, sprintf: print

word on a/ putc, putchar, fputc, putw: put character or
stream. puts, fputs: put a string on a
input/output. fread, fwrite: binary
backup tape. frec: recover files from a

df: report number of free disk blocks.
memory allocator. malloc, free, realloc, calloc: main

stream. fopen, freopen, fdopen: open a •
parts of floating-point/ frexp, Idexp, modf: manipulate

list: produce C source listing from 3B208 object file.
frec: recover files from a backup tape.

land line number information from a common object file.
gets, fgets: get a string from a stream. • . • .
rmdel: remove a delta from an SCCS file. • •

getopt: get option letter from argument vector.
errdead: extract error records from dump.

read: read from file.
system: issue a shell command from Fortran.

ncheck: generate names from i-numbers.
nlist: get entries from name list.

arcv: convert archive files from PDP-II to common archive/
acctcms: command summary from per-process accounting/

diagnostics. rmv: remove unit from service before on-line
getw: get character or word from stream. /getchar, fgetc,

Idtape: load disk from tape procedures.
/fget.demon: retrieve files from the HONEYWELL 6000.

nsctorje: re-route jobs from the NSC network to RJE.
getpw: get name from UID.

formatted input. scanf, fscanf, sscanf: convert
of file systems processed by fsck. checklist: list

consistency check and/ fsck, dfsck: file system
PDP-ll and VAX-ll/780/ fscv: convert files between

fsdb: file system debugger.
reposition a file pointer in/ fseek, rewind, ftell: • • •

HONEYWELL 6000. fsend: send files to the
text files. fspec: format specification in

eft files. fsplit: split f77, ratfor, or
stat, fstat: get file status.

pointer in a/ fseek, rewind, ftell: reposition a file
fts: Field Test Set interface.
ftw: walk a file tree.

Fortran arccosine intrinsic function. acos, dacos: . • .
Fortran integer part intrinsic function. aint, dint:

error/ erf, erfc: error function and complementary
Fortran arcsine intrinsic function. asin, dasin: •

Fortran arctangent intrinsic function. atan2, datan2: .
Fortran arctangent intrinsic function. atan, datan: • •
complex conjugate intrinsic function. /dconjg: Fortran

ccos: Fortran cosine intrinsic function. cos, dcos,

- 19 -

Permuted Index

min(3F)
log(3F)
round(3F)
abort(3F)
mod(3F)
sin(3F)
sqrt(3F)
len(3F)
index(3F)
system(3F)
tan(3F)
mclock(3F)
sign(3F)
ftype(3F)
rand(3F)
printf(3S)
putc(3S)
puts(3S)
fread(3S)
frec(IM)
df(IM)
malloc(3C)
fopen(3S)
frexp(3C)
list(I)
frec(IM)
strip(1)
gets(3S)
rmdel(l)
getopt(3C)
errdead(IM)
read(2)
system(3F)
ncheck(IM)
nlist(3C) c

arcv(l)
acctcms(lM)
rmv(IM)
getc(3S)
Idtape(8)
fget(IC)
nsctorje(l C)
getpw(3C)
scanf(3S)
checklist(4)
fsck(IM)
fscv(IM)
fsdb(IM)
fseek(3S)
fsend(lC)
fspec(4)
fsplit(I)
stat(2)
fseek(3S)
fts(lM)
ftw(3C)
acos(3F)
aint(3F)
erf(3M)
asin(3F)
atan2(3F)
atan(3F)
conjg(3F)
cos(3F)

Permuted Index

hyperbolic cosine intrinsic function. /dcosh: Fortran
and complementary error function. /error function

Fortran exponential intrinsic function. exp, dexp, cexp:
gamma: log gamma function. ••••.•.

hypot: Euclidean distance function. •••••••
of a common object file function. /line number entries

common logarithm intrinsic function. /dlogIO: Fortran
natural logarithm intrinsic function. /dlog, clog: Fortran

matherr: error-handling function. • •••••.
transfer-of-sign intrinsic function. /dsign: Fortran

csin: Fortran sine intrinsic function. sin, dsin, . • •
hyperbolic sine intrinsic function. /dsinh: Fortran

Fortran square root intrinsic function. sqrt, dsqrt, csqrt:
Fortran tangent intrinsic function. tan, dtan: . . .

hyperbolic tangent intrinsic function. /dtanh: Fortran
jO, jl, jn, yO, yl, yn: Bessel functions. . . . • • •

Fortran bitwise boolean functions. /lshift, rshift:
perform 3270 emulation control functions. emulcntrl:

logarithm, power, square root functions. /sqrt: exponential,
remainder, absolute value functions. /floor, ceiling,

dmaxl: Fortran maximum-value functions. /max1, amaxl, . •
dminl: Fortran minimum-value functions. /minl, amini,

Fortran remaindering intrinsic functions. mod, amod, dmod:
the NSC local network loopback functions. nscloop: perform .

300, 300s: handle special functions of DASI 300 and 300s/
hp: handle special functions of HP 2640 and/

terminal. 450: handle special functions of the DASI 450
Fortran nearest integer functions. /nint, idnint: .

sinh, cosh, tanh: hyperbolic functions. ••• . . • •
atan, atan2: trigonometric functions. /tan, asin, acos,

using a file or file/ fuser: identify processes • •
fread, fwrite: binary input/output.

connect accounting records. fwtmp, wtmpfix: manipulate
jotto: secret word game. • • • • • • . •

moo: guessing game. . . • • . • • •
back: the game of backgammon.

bj: the game of black jack.
chess: the game of chess. • • . .
craps: the game of craps. . • • •
reversi: a game of dramatic reversals.

wump: the game of hunt-the-wumpus.
intro: introduction to games. ...••••••

gamma: log gamma function. . • • • •
gamma: log gamma function.

submit RJE jobs. send, gath: gather files and/or •••
jobs. send, gath: gather files and/or submit RJE

output to the HONEYWELL 6000. gcat: send phototypesetter •
user. gcosmail: send mail to HIS

num ber to string. ecvt, fcvt, gcvt: convert floating-point
moving-head disks. gd: general driver for

ged: graphical editor.
maze: generate a maze. • •
abort: generate an lOT fault.
cflow: generate C flow graph.

reference. cxref: generate C program cross
crypt, setkey, encrypt: generate DES encryption.

make key: generate encryption key.
terminal. ctermid: generate file name for

ncheck: generate names from i-numbers.
lexical tasks. lex: generate programs for simple

/srand48, seed48, lcong48: generate uniformly distributed/
srand: simple random-number generator. rand,

Fortran uniform random-number generator. srand, rand:
controller/terminal/ emulstat: get 3270 emulation

- 20 -

cosh(3F)
erf(3M)
exp(3F)
gamma(3M)
hypot(3M)
Idlread(3X)
logI0(3F)
log(3F)
matherr(3M)
sign(3F)
sin(3F)
sinh(3F)
sqrt(3F)
tan(3F)
tanh(3F)
bessel(3M)
bool(3F)
emulcntrl(1M)
exp(3M)
floor(3M)
max(3F)
min(3F)
mod(3F)
nscloop(I M)
300(1)
hp(l)
450(1)
round(3F)
sinh(3M)
trig(3M)
fuser(1M)
fread(3S)
fwtmp(lM)
jotto(6)
moo(6)
back(6)
bj(6)
chess(6)
craps(6)
reversi(6)
wump(6)
intro(6)
gamma(3M)
gamma(3M)
send(lC)
send(1C)
gcat(lC)
gcosmail(1 C)
ecvt(3C)
gd(7)
ged(lG)
maze(6)
abort(3C)
cflow(1)
cxref(l)
crypt(3C)
makekey(l)
ctermid(3S)
ncheck(lM)
lex(l)
drand48(3C)
rand(3C)
rand(3F)
em ulstat(l M)

gets, fgets: get a string from a stream.
get: get a version of an SCCS file.

ulimit: get and set user limits.
the user. cuserid: get character login name of

getc, getchar, fgetc, getw: get character or word from/
nlist: get entries from name list.

umask: set and get file creation mask.
stat, fstat: get file status. ••..•

ustat: get file system statistics. .
file. get: get a version of an SCCS

/getgrnam, setgrent, endgrent: get group file entry.
getiogin: get login name.

logname: get login name.
msgget: get message queue.
getpw: get name from UID.

system. uname: get name of current UNIX
unget: undo a previous get of an SCCS file.

argument vector. getopt: get option letter from • • •
/getpwnam, setpwent, endpwent: get password file entry.

working directory. getcwd: get path-name of current
times. times: get process and child process

and/ getpid, getpgrp, getppid: get process, process group,
/geteuid, getgid, getegid: get real user, effective user,/

semget: get set of semaphores.
shmget: get shared memory segment.

/x25Ink: install, remove, or get status for a BX.25 minor/
tty: get the terminal's name.

time: get time. ••••.••
command-line argument. getarg: return Fortran

get character or word from/ getc, getchar, fgetc, getw:
character or word from/ getc, getchar, fgetc, getw: get •

current working directory. getcwd: get path-name of
getuid, geteuid, getgid, getegid: get real user ,/
environment variable. getenv: return Fortran

environment name. getenv: return value for
real user, effective/ getuid, geteuid, getgid, getegid: get

user,/ getuid, geteuid, getgid, getegid: get real •.
setgrent, endgrent: get group/ getgrent, getgrgid, getgrnam,
endgrent: get group/ getgrent, getgrgid, getgrnam, setgrent,
get group/ getgrent, getgrgid, getgrnam, setgrent, endgrent:

getiogin: get login name.
argument vector. getopt: get option letter from

getopt: parse command options.
getpass: read a password.

process group, and/ getpid, getpgrp, getppid: get process,
process, process group, and/ getpid, getpgrp, getppid: get
group, and/ getpid, getpgrp, getppid: get process, process

getpw: get name from UID.
setpwent, endpwent: get/ getpwent, getpwuid, getpwnam,
get/ getpwent, getpwuid, getpwnam, setpwent, endpwent:
endpwent: get/ getpwent, getpwuid, getpwnam, setpwent,

a stream. gets, fgets: get a string from
and terminal settings used by getty. gettydefs: speed

modes, speed, and line/ getty: set terminal type, • •
ct: spawn getty to a remote terminal.

settings used by getty. gettydefs: speed and terminal
getegid: get real user,/ getuid, geteuid, getgid,

pututiine, setutent,/ getutent, getutid, getutiine,
setutent, endutent,/ getutent, getutid, getutiine, pututiine,

setutent,/ getutent, getutid, getutiine, pututiine,
from/ getc, getchar, fgetc, getw: get character or word
convert/ ctime, localtime, gmtime, asctime, tzset:
setjmp, longjmp: non-local goto. ••..••..

string, format of graphicalj gps: graphical primitive

- 21 -

Permuted Index

gets(3S)
get(i)
ulimit(2)
cuserid(3S)
getc(3S)
nlist(3C)
umask(2)
stat(2)
ustat(2)
get(i)
getgrent(3C)
getiogin(3C)
logname(l)
msgget(2)
getpw(3C)
uname(2)
unget(l)
getopt(3C)
getpwent(3C)
getcwd(3C)
times(2)
getpid(2)
getuid(2)
semget(2)
shmget(2)
x25pvc(lM)
tty(1)
time(2)
getarg(3F)
getc(3S)
getc(3S)
getcwd(3C)
getuid(2)
getenv(3F)
getenv(3C)
getuid(2)
getuid(2)
getgrent(3C)
getgrent(3C)
getgrent(3C)
getiogin(3C)
getopt(3C)
getopt(l)
getpass(3C)
getpid(2)
getpid(2)
getpid(2)
getpw(3C)
getpwent(3C)
getpwent(3C)
getpwent(3C)
gets(3S)
gettydefs(4)
getty(lM)
ct(lC)
gettydefs(4)
getuid(2)
getut(3C)
getut(3C)
getut(3C)
getc(3S)
ctime(3C)
setjmp(3C)
gps(4)

Permuted Index

cflow: generate C flow graph. • • • . • • •
graph: draw a graph.

graph: draw a graph. . • . • • • •
sag: system activity graph. • • • • . • •

commands. graphics: access graphical and numerical
/network useful with graphical commands.

/erase, hardcopy, tekset, td: graphical device routines and/
ged: graphical editor.

primitive string, format of graphical files. /graphical
format of graphical/ gps: graphical primitive string,

. routines. toc: graphical table of contents
gutil: graphical utilities.

numerical commands. graphics: access graphical and
tplot: graphics filters. • . . • •

ITY-37 type-box. greek: graphics for the extended
plot: graphics interface.

subroutines. plot: graphics interface . . . •
mvt: typeset documents, view graphs, and slides. mmt,

package for typesetting view graphs and slides. /macro
extended ITY-37 type-box. greek: graphics for the

greek: select terminal filter.
file for a pattern. grep, egrep, fgrep: search a

/user, effective user, real group, and effective group/
/getppid: get process, process group, and parent process IDs.

chown, chgrp: change owner or group. ...•••.•.
setgrent, endgrent: get group file entry. /getgrnam,

group: group file. •
group: group file. . . . • •

setpgrp: set process group 10. ••••••••
id: print user and group IDs and names.

real group, and effective group IDs. /effective user,
setuid, setgid: set user and group IDs. . • . • • • •

newgrp: log in to a new group. ..••...•
chown: change owner and group of a file. • • • • •

a signal to a process or a group of processes. /send
update, and regenerate groups of programs. /maintain,

checkers. pwck, grpck: password/group file
ssignal, gsignal: software signals.
drives. gt: general driver for tape

hangman: guess the word.
moo: guessing game. . • . . •

gutil: graphical utilities.
x25hlnk, x25dlnk: halt or detach a BX.25 link.

DASI 300 and 300s/ 300, 300s: handle special functions of
2640 and 2621-series/ hp: handle special functions of HP

the DASI 450 terminal. 450: handle special functions of
hangman: guess the word.

nohup: run a command immune to hangups and quits.
graphical device/ hpd, erase, hardcopy, tekset, td:

hcreate, hdestroy: manage hash search tables. hsearch,
spell, hashmake, spellin, hashcheck: find spelling/

find spelling errors. spell, hashmake, spellin, hashcheck:
search tables. hsearch, hcreate, hdestroy: manage hash

tables. hsearch, hcreate, hdestroy: manage hash search
file. scnhdr: section header for a common object

files. filehdr: file header for common object
file. ldfhread: read the file header of a common object

/seek to the optional file header of a common object/
/read an indexed/named section header of a common object/

ldahread: read the archive header of a member of ani
help: ask for help.

help: ask for help. ••••..•..•
hm: RM05 moving-head disk.

retrieve files from the HONEYWELL 6000. /fget.demon:

- 22 -

cflow(l)
graph(lG)
graph(IG)
sag(lG)
graphics(1 G)
stat(IG)
gdev(lG)
ged(lG)
gps(4)
gps(4)
toc(IG)
gutil(IG)
graphics(1 G)
tplot(IG)
greek(5)
plot(4)
plot(3X)
mmt(l)
mv(5)
greek(5)
greek(l)
grep(l)
getuid(2)
getpid(2)
chown(1)
getgrent(3C)
group(4)
group(4)
setpgrp(2)
id(1)
getuid(2)

.~ setuid(2)
newgrp(l)
chown(2)
kill(2)
make(l)
pwck(IM)
ssignal(3C)
gt(7)
hangman(6)
moo(6)
gutil(1 G)
x25hlnk(3C)
300(1)
hp(l)
450(1)
hangman(6)
nohup(1)
gdev(IG)
hsearch(3C)
spell(1)
spell(1)
hsearch(3C)
hsearch(3C)
scnhdr(4)
filehdr(4)
Idfhread(3X)
Idohseek(3X)
Idshread(3X)
Idahread(3X)
help(l)
help(l)
hm(7)
fget(lC)

fsend: send files to the
phototypesetter output to the

printer daemon. dpd, Ipd:
handle special functions of

archiver. hpio:
of HP 2640 and 2621-series/

moving-head disk.
td: graphical device routines/

file archiver.
fixed-head disk file.

manage hash search tables.
interface.

wump: the game of
cosh, dcosh: Fortran

sinh, cosh, tanh:
sinh, dsinh: Fortran
tanh, dtanh: Fortran

hyphen: find
function.

Fortran absolute value. abs,
rje: RJE (Remote Job Entry) to

/sngl, dble, cmplx, dcmplx,
semaphore set or shared memory

and names.
setpgrp: set process group

issue: issue
file or file/ fuser:

what:
dble, cmplx,/ int, ifix,

integer / anint, dnint, nint,
id: print user and group

group, and parent process
group, and effective group
setgid: set user and group

sngl, dble, cmplx,/ int,
core: format of core

convert a.out file to boot
crash: examine system

pnch: file format for card
aimag, dimag: Fortran

nohup: run a command
finc: fast

long numeric data in a machine
for formatting a permuted

of a/ Idtbindex: compute the
ptx: permuted

Fortran substring.
a common/ Idtbread: read an

ldshread, Idnshread: read an
Idsseek, ldnsseek: seek to an

inittab: script for the
initialization.

init, telinit: process control
/rc, powerfail: system

dgn:
process. popen, pclose:

process.
c1ri: clear

inode: format of an
ipb: read the EAI

sscanf: convert formatted
push character back into

Permuted Index

HONEYWELL 6000. • • • • • •
HONEYWELL 6000. gcat: send •
HONEYWELL sending daemon, line
HP 2640 and 2621-series/ hp:
HP 2645A terminal tape file •
hp: handle special functions •
hp:, RP04/RP05/RP06
hpd, erase, hardcopy, tekset,
hpio: HP 2645A terminal tape
hs: RHll/RJS03-RJS04 • • •
hsearch, hcreate, hdestroy:
ht: TUI6/TEI6 magnetic tape
hunt-the-wumpus.
hyperbolic cosine intrinsic/
hyperbolic functions.
hyperbolic sine intrinsic/
hyperbolic tangent intrinsic/
hyphen: find hyphenated words.
hyphenated words. • • •
hypot: Euclidean distance •
iabs, dabs, cabs, zabs:
IBM .••••••••••
ichar, char: explicit Fortran/
id. /remove a message queue,
id: print user and group IDs
10 .••••••••••
identification file. • • • •
identify processes using a
identify sces files. • •
idint, real, float, sngl, • •
idnint: Fortran nearest
IDs and names.
IDs. /get process, process
IDs. /effective user, real
IDs. setuid, ••••
ifix, idint, real, float,
image file. • ••
image. mkboot:
images.
images. • •••
imaginary part of complex/
immune to hangups and quits.
incremental backup.
independent fashion .. /access
index. /the macro package
index of a symbol table entry
index. • • • • • • • • • • •
index: return location of
indexed symbol table entry of
indexed/named section header/
indexed/named section of a/
init process. •••••••
init, telinit: process control
initialization. • • • • • • •
initialization shell scripts.
initiate on-line diagnostics.
initiate pipe to/from a
inittab: script for the init
i-node. • •••••••
inode: format of an inode.
inode .••••••••
Input Parameter Buffer.
input. scanf, fscanf,
input stream. ungetc:

- 23 -

"

fsend(lC)
gcat(lC)
dpd(IC)
hp(l)
hpio(l)
hp(l)
hp(7)
gdev(lQ)
hpio(l)
hs(7)
hsearch(3C)
ht(7)
wump(6)
cosh(3F)
sinh(3M)
sinh(3F)
tanh(3F)
hyphen(l)
hyphen(l)
hypot(3M)
abs(3F)
rje(8)
ftype(3F)
ipcrm(l)
id(l)
sctpgrp(2)
issuc(4)
fuser(lM)
what(l)
ftype(3F)
round(3F)
id(l)
getpid(2)
getuid(2)
setuid(2)
ftype(3F)
core(4)
mkboot(lM)
crash(lM)
pnch(4)
aimag(3F)
nohup(l)
finc(lM)
sputl(3X)
mptx(5)
Idtbindex(3X)
ptx(l)
index(3F)
Idtbread(3X)
Idshread(3X)
Idsseek(3X)
inittab(4)
init(lM)
init(lM)
brc(lM)
dgn(lM)
popen(3S)
inittab(4)
clri(lM)
inode(4)
inode(4)
ipb(lM)
scanf(3S)
ungetc(3S)

Permuted Index

fread, fwrite: binary input/output. ••..•
stdio: standard buffered input/output package. • .

fileno: stream status inquiries. /feof. clearerr.
uustat: uucp status inquiry and job control. .

x25alnk. x25ilnk: attach or install a BX.25 link. • . .
install: install commands.

install: install commands.
link. x25ipvc. x25rpvc: install or remove a PVC on a

for a BX.25/ x25pvc, x25lnk: install. remove. or get status
sngl, dble. cmplx, dcmplx./ into ifix. idint, real, float,

abs: return integer absolute value.
/164a: convert between long integer and base-64 ASCII/
nint. idnint: Fortran nearest integer functions. /dnint.
function. aint. dint: Fortran integer part intrinsic
atol, atoi: convert string to integer. strtol. • • • • •

/lto13: convert between 3-byte integers and long integers.
3-byte integers and long integers. /convert between

bcopy: interactive block copy.
system consistency check and interactive repair. /file
rjestat: RJE status report and interactive statu;; console.

dn: Automatic Call Unit (ACU) interface. acu.
cat: phototypesetter interface.

dgn: on-line diagnostic interface.
du: DU-ll synchronous line interface.
eai: 3B2OS emergency action interface.

emulio: 3270 emulation interface.
err: error-logging interface.

fts: Field Test Set interface.
ht: TUI6/TEI6 magnetic tape interface.

KL-II or DL-ll asynchronous interface. kl:
msi: memory system diagnostic interface.

parallel communications link interface. pel:
plot: graphics interface.

nsc: NSC adapter interface specification.
st: synchronous terminal interface. ••.••

general synchronous terminal interface. stermio:
plot: graphics interface subroutines.

termio: general terminal interface.
tm: TMII/TUIO magnetic tape interface.

tn4: eight line asynchronous interface.
tn74: two line asynchronous interface.

tn83: console/printer interface.
messages. osm: interface to UNIX system

ts: TSII magnetic tape interface.
tty: controlling terminal interface.

tu78: TU78 magnetic tape interface.
un32: magnetic tape interface.
un52: magnetic tape interface.
synchronous device interface. /UN53/TN82

VAX-ll/780 LSI console floppy interface. vlx:
x25: BX.2S network interface. ••••••

spline: interpolate smooth curve.
characters. asa: interpret ASA carriage control

sno: SNOBOL interpreter. • .•••••
pipe: create an interprocess channel.

facilities/ ipes: report inter-process communication
package. stdipe: standard interprocess communication
suspend execution for an interval. sleep:.. . .

sleep: suspend execution for interval. • • • • . • .
acos, dacos: Fortran arccosine intrinsic function.

dint: Fortran integer part intrinsic function. aint.
asin, dasin: Fortran arcsine intrinsic function.
datan2: Fortran arctangent intrinsic function. atan2.

datan: Fortran arctangent intrinsic function. atan,

- 24 -

fread(3S)
stdio(3S)
ferror(3S)
uustat(lC)
x25alnk(3C)
install(1 M)
install(1 M)
x25ipvc(3C)
x25pvc(lM)
ftype(3F)
abs(3C)
a641(3C)
round(3F)
aint(3F)
strtol(3C)
Ijtol(3C)
13tol(3C)
bcopy(IM)
fsck(lM)
rjestat{1 C)
acu(7)
cat(7)
dgn(7)
du(7)
eai(8)
emulio(7)
err(7)
fts(lM)
ht(7)
kl(7)
msi(lM)
pcl(7)
plot(4)
nsc(7)
st(7)
stermio(7)
plot(3X)
termio(7)
tm(7)
tn4(7)
tn74(7)
tn83(7)
osm(7)
tsll(7)
tty(7)
tu78(7)
un32(7)
un52(7)
un53(7)
vlx(lM)
x25(7)
spline(lG)
asa(l)
sno(1)
pipe(2)
ipes(1)
stdipe(3C)
sleep(l)
sleep(3C)
acos(3F)
aint(3F)
asin(3F)
atan2(3F)
atan(3F)

Fortran complex conjugate intrinsic function. /dconjg:
dcos, ceos: Fortran cosine intrinsic function. cos,
Fortran hyperbolic cosine intrinsic function. /dcosh: •
cexp: Fortran exponential intrinsic function. /dexp,

Fortran common logarithm intrinsic function. /dloglO:
Fortran natural logarithm intrinsic function. lclog:

Fortran transfer-of-sign intrinsic function. /dsign:
sin, dsin, csin: Fortran sine intrinsic function.

dsinh: Fortran hyperbolic sine intrinsic function. sinh, •
csqrt: Fortran square root intrinsic function. /dsqrt,
tan, dtan: Fortran tangent intrinsic function.
Fortran hyperbolic tangent intrinsic function. /dtanh:

dmod: Fortran remaindering intrinsic functions. /amod,
commands and application/ intro: introduction to • • •

formats. intro: introduction to file
intro: introduction to games.

miscellany. intro: introduction to • • •
files. intro: introduction to special

subroutines and libraries. intro: introduction to • • •
calls and error numbers. intro: introduction to system

maintenance commands and/ intro: introduction to system
maintenance procedures. intro: introduction to system

application programs. intro: introduction to commands and
intro: introduction to file formats.
intro: introduction to games.
intro: introduction to miscellany.
intro: introduction to special files.

and libraries. intro: introduction to subroutines
and error numbers. intro: introduction to system calls

maintenance commands/ intro: introduction to system
maintenance/ intro: introduction to system

ncheck: generate names from i-numbers.
ioct\: control device.

abort: generate an lOT fault. • • • • •
Parameter Buffer. ipb: read the EAI Input

semaphore set or shared/ ipcrm: remove a message queue,
communication facilities/ ipcs: report inter-process

cprs: compress an IS2S object file.
/islower, isdigit, isxdigit, isalnum, isspace, ispunct,/

isdigit, isxdigit, isalnum,/ isalpha, isupper, islower,
/isprint, isgraph, iscntrl, isascii: classify characters.

terminal. ttyname, isatty: find name of a • •
/ispunct, isprint, isgraph, iscntrl, isascii: classify/
isalpha, isupper, islower, isdigit, isxdigit, isalnum,/
/isspace, ispunct, isprint, isgraph, iscntrl, isascii:/

transfer-of-sign/ sign, isign, dsign: Fortran
isalnum,/ isalpha, isupper, islower, isdigit, isxdigit,
/isalnum, isspace, ispunct, isprint, isgraph, iscntrl,/
/isxdigit, isalnum, isspace, ispunct, isprint, isgraph,/
/isdigit, isxdigit, isalnum, isspace, ispunct, isprint,/

Fortran. system: issue a shell command from
system: issue a shell command. •

issue: issue identification file.
. file. issue: issue identification

isxdigit, isalnum,/ isalpha, isupper, islower, isdigit, •
/isupper, islower, isdigit, isxdigit, isalnum, isspace,/

news: print news items. • • • • • • • • •
functions. jO, jl, jn, yO, yl, yn: Bessel

functions. jO, jl, jn, yO, yl, yn: Bessel
bj: the game of black jack. ••••••••

functions. jO, jl, jn, yO, yl, yn: Bessel
operator. join: relational database

jotto: secret word game.
/lrand48, nrand48, mrand48, jrand48, srand48, seed48,/

- 25 -

Permuted Index

conjg(3F)
cos(3F)
cosh(3F)
exp(3F)
loglO(3F)
log(3F)
sign(3F)
sin(3F)
sinh(3F)
sqrt(3F)
tan(3F)
tanh(3F)
mod(3F)
intro(l)
intro(4)
intro(6)
intro(S)
intro(7)
intro(3)
intro(2)
intro(lM)
intro(8)
intro(l)
intro(4)
intro(6)
intro(S)
intro(7)
intro(3)
intro(2)
intro(lM)
intro(8)
ncheck(lM)
iocti(2)
abort(3C)
ipb(lM)
ipcrm(l)
ipcs(l)
cprs(l)
ctype(3C)
ctype(3C)
ctype(3C)
ttyname(3C)
ctype(3C)
ctype(3C)
ctype(3C)
sign(3F)
ctype(3C)
ctype(3C)
ctype(3C)
ctype(3C)
system(3F)
system(3S)
issue(4)
issue(4)
ctype(3C)
ctype(3C)
news(l)
bessel(3M)
bessel(3M)
bj(6)
bessel(3M)
join(l)
jotto(6)
drand48 (3C)

I

Permuted Index

assembler/un-assembler forI kasb, kunb: •. ..
makekey: generate encryption key. • .

killall: kill all active processes.
process or a group off kill: send a signal to a

kill: terminate a process.
processes. killall: kill all active

asynchronous interface. kl: KL-II or DL-II
interface. kl: KL-II or DL-II asynchronous

microprocessor. kmc: KMC-IIB/KMSII
vpmtest: test KMC lines. •.

/assembler/un-assembler for the KMCIIB microprocessor.
microprocessor. kmc: KMC-IIB/KMSII

mem, kmem: core memory.
quiz: test your knowledge. • .

for the KMCIIB/ kasb, kunb: assembler/un-assembler
3-byte integers and long/ 13tol, Ito13: convert between

integer and base-64/ a64l, 164a: convert between long
copy file systems with label checking. /Iabelit:

with label checking. volcopy, labelit: copy file systems
scanning and processing language. awk: pattern

arbitrary-precision arithmetic language. bc:
efl: Extended Fortran Language. • .

cpp: the C language preprocessor.
command programming language. /standard/restricted

chargefee, ckpacct, dodisk, lastiogin, monacct, nulladm,/
load VTOC, prom patch, or Iboot. newboot: ••.•
/jrand48, srand48, seed48, Icong48: generate uniformly/

object files. Id: link editor for common
Id: link editor. • .

object file. Idelose, Idaelose: elose a common
header of a member of anI Idahread: read the archive

file for reading. Idopen, Idaopen: open a common object
common object file. Idelose, Idaelose: elose a .

of floating-point/ frexp, Idexp, modf: manipulate parts
access routines. Idfcn: common object file

of a common object file. Idfhread: read the file header
line number entries/ Idlread, Idlinit, Idlitem: manipulate

number/ Idlread, Idlinit, Idlitem: manipulate line ••
manipulate line number/ Idlread, Idlinit, Idlitem:

number entries of a section/ Idlseek,ldnlseek: seek to line
entries of a section/ Idrseek, Idnrseek: seek to relocation

indexed/named/ Idshread, Idnshread: read an
indexed/named/ Idsseek, Idnsseek: seek to an
file header of a common/ Idohseek: seek to the optional

object file for reading. Idopen, Ida open: open a common
relocation entries of a/ Idrseek, Idnrseek: seek to

indexed/named section header/ Idshread, Idnshread: read an
indexed/named section of a/ Idsseek, Idnsseek: seek to an

procedures. Idtape: load disk from tape
of a symbol table entry of a/ Idtbindex: compute the index

symbol table entry of a/ Idtbread: read an indexed
table of a common object/ Idtbseek: seek to the symbol

string. len: return length of Fortran
len: return length of Fortran string.

getopt: get option letter from argument vector.
simple lexical tasks. lex: generate programs for

generate programs for simple lexical tasks. lex: ••
to subroutines and libraries. /introduction

relation for an object library. /find ordering
ar: archive and library maintainer.

portable/ ar: archive and library maintainer for
ulimit: get and set user limits. • •

tn4: eight line asynchronous interface.
tn74: two line asynchronous interface.

- 26 -

kasb(l)
makekey(l)
killall(IM)
kill(2)
kill(l)
killall(l M)
kl(7)
kl(7)
kmc(7)
vpmtest(I M)
kasb(l)
kmc(7)
mem(7)
quiz(6)
kasb(I)
13tol(3C)
a641(3C)
volcopy(l M)
volcopy(I M)
awk(l)
bc(i)
efl(1)
cpp(\)
sh(1)
acctsh(lM)
newboot(l M)
drand48(3C)
Id(1)
Id.pdp(1)
Idelose(3X)
Idahread(3X)
Idopen(3X)
Idelose(3X)
frexp(3C)
Idfcn(4)
Idfhread(3X)
Idlread(3X)
Idlread(3X)
Idlread(3X)
Idlseek(3X)
Idrseek(3X)
Idshread(3X)
Idsseek(3X)
Idohseek(3X)
Jdopen(3X)
Idrseek(3X)
Idshread(3X)
Idsseek(3X)
Idtape(8)
Idtbindex(3X)
Idtbread(3X)
Idtbseek(3X)
len(3F)
len(3F)
getopt(3C)
lex(l)
lex(l)
intro(3)
lorder(l)
ar.pdp(l)
ar(l)
ulimit(2)
tn4(7)
tn74(7)

an out-going terminal line connection. /establish
type, modes, speed, and line discipline. /set terminal

wait on synchronous login line for use. stgetty:
du: DU-\1 synchronous line interface.

line: read one line. ••••••••
common object file. linenum: line number entries in a

/Idlinit, Idlitem: manipulate line number entries of a/
Idlseek,ldnlseek: seek to line number entries of a/

strip: strip symbol and line number information from a/
nl: line numbering filter. • •

out selected fields of each line of a file. cut: cut • •
tnSS: medium speed line printer controller.

Ipd: HONEYWELL sending daemon, line printer daemon. dpd,
send/cancel requests to an LP line printer. Ip, cancel:

Ip: line printer.
Ipr: line printer spooler. • •

line: read one line.
Isearch: linear search and update.

col: filter reverse line-feeds. • • • • • . •
in a common object file. .linenum: line number entries

connect ACUs and communication lines. acuset: •.•••.
files. comm: select or reject lines common to two sorted

uniq: report repeated . lines in a file. • •••••
of several files or subsequent lines of one file. /same lines

subsequent/ paste: merge same lines of several files or
vpmtest: test KMC lines. ••••••••••

link, unlink: exercise link and unlink system calls.
files. Id: link editor for common object

Id: link editor.
a.out: common assembler and link editor output.
a.out: PDP-ll assembler and link editor output.
pel: parallel communications link interface.

link: link to a file.
peldaemon: PCL link monitor.
cp, In, mv: copy, link or move files.

link: link to a file. • • •
and unlink system calls. link, unlink: exercise link

protocol. dmc: communications link with built-in DDCMP
attach or install a BX.2S link. x2Salnk, x2Silnk:

x2Sclnk: change over a BX.2S link. ••••••••
halt or detach a BX.2S link. x2Shlnk, x2Sdlnk:

install or remove a PVC on a link. x2Sipvc, x2Srpvc:
for a BX.2S minor device or link. /remove, or get status

lint: a C program checker .•
Is: list contents of directories.

for a file system. ff: list file names and statistics
nlist: get entries from name list. • • • • • • • • • •

nm: print name list. •• • • • • • • • • •
nm: print name list of common object file. •

by fsck. checklist: list of file systems .processed
from 3B208 object file. list: produce C source listing

file. list: produce C source listing from 3B208 object
xargs: construct argument list(s) and execute command.

files. cp, In, mv: copy, link or move
script. emulload: load and start 3270 emulation

procedures. Idtape: load disk from tape • • • •
Iboot. newboot: load VTOC, prom patch, or •

rom boot: special ROM bootstrap loaders. • • • • • • • • • •
tzset: convert date/ ctime, localtime, gmtime, asctime, •

index: return location of Fortran substring.
end, etext, edata: last locations in program. • • •

memory. plock: lock process, text, or data in
trouble: log a trouble report.

natural logarithm intrinsic/ log, alog, dlog, clog: Fortran

- 27 -

Permuted Index

dial(3C)
getty(IM)
s~getty(I M)
du(7)
line(l)
Iinenum(4)
Idlread(3X)
Idlseek(3X)
strip(l)
nl(l)
cut(l)
tnSS(7)
dpd(IC)
Ip(I)
Ip(7)
Ipr(l)
line(l)
Isearch(3C)
col(l)
Iinenum(4)
acuset(IM)
comm(l)
uniq(I)
paste(l)
paste(l)
vpmtest(lM)
link(IM)
Id(l)
Id.pdp(l)
a.out(4)
a.out.pdp(4)
pcI(7)
Iink(2)
peldaemon(lM)
cp(l)
link(2)
Iink(1M)
dmc(7)
x2Salnk(3C)
x2Sclnk(3C)
x2Shlnk(3C)
x2Sipvc(3C)
x2Spvc(lM)
lint(l)
Is(l)
ff(lM)
nlist(3C)
nm.pdp(l)
nm(l)
checklist(4)
list(l)
list(l)
xargs(l)
cp(l)
emulload(lM)
Idtape(S)
newboot(lM)
romboot(S)
ctime(3C)
index(3F)
end(3C)
plock(2)
trouble(l)
log(3F)

Permuted Index

gamma: log gamma function.
newgrp: log in to a new group.

exponential, logarithm,/ exp, log, 10g10, pow, sqrt:
common logarithm intrinsic/ 10g10, aloglO, dloglO: Fortran
logarithm, power,/ exp, log, 10glO, pow, sqrt: exponential,

/aloglO, dloglO: Fortran common logarithm intrinsic function. •
/dlog, clog: Fortran natural logarithm intrinsic function. •

/logIO, pow, sqrt: exponential, logarithm, power, square root/
errpt: process a report of logged errors. •..•••

/disp: device logically on, logically off or display/
don, doff, disp: device logically on, logically off or/

stgetty: wait on synchronous login line for use.
getlogin: get login na.me. •••••

logname: get login name. •••••
cuserid: get character login name of the user.

logname: return login name of user.
passwd: change login password.

login: sign on. ••
setting up an environment at login time. profile:

logname: get login name.
user. logname: return login name of

a641, 164a: convert between long integer and base-64 ASCII/
between 3-byte integers and long integers. /ltoI3: convert

sputl, sgetl: access long numeric data in a machine/
setjmp, longjmp: non-local goto.

perform the NSC local network loopback functions. nscloop:
for an object library. lorder: find ordering relation

nice: run a command at low priority. • • • • • •
requests to an LP line/ Ip, cancel: send/cancel

send/cancel requests to an LP line printer. Ip, cancel:
Ip: line printer. • • • • •

disable: enable/disable LP printers. enable,
/Ipshut, Ipmove: start/stop the LP request scheduler and move/

accept, reject: allow/prevent LP requests. • •••••
Ipadmin: configure the LP spooling system.

Ipstat: print LP status information.
spooling system. Ipadmin: configure the LP

line printer daemon. dpd, Ipd: HONEYWELL sending daemon,
request/ Ipsched, Ipshut, Ipmove: start/stop the LP • •

Ipr: line printer spooler. • • •
start/stop the LP request; Ipsched, Ipshut, Ipmove:

LP request scheduler/ Ipsched, Ipshut, Ipmove: start/stop the
information. Ipstat: print LP status • • •

jrand48,/ drand48, erand48, Irand48, nrand48, mrand48,
directories. Is: list contents of

update. Isearch: linear search and •
pointer. Iseek: move read/write file

bitwise/ and, or, xor, not, Ishift, rshift: Fortran
vlx: VAX-ll/780 LSI console Hoppy interface.

integers and long/ 13tol, Itol3: co.nvert between 3-byte
m4: macro processor. • • • •

/access long numeric data in a machine independent fashion ..
vpm: Virtual Protocol Machine. •••••••

for the virtual protocol machine. vpmc: compiler • •
for the virtual protocol machine. vpmc: compiler • •

permuted index. mptx: the macro package for formatting a
documents. mm: the MM macro package for formatting
mosd: the OSDD adapter macro package for formatting/

view graphs and/ my: a troff macro package for typesetting
m4: macro processor .••••••

in this manual. man: macros for formatting entries
formatted with the MM macros. /print/check documents

program. tape boot: magnetic tape bootstrap
ht: TU16/TE16 magnetic tape interface.

- 28 -

gamma(3M)
newgrp(l)
exp(3M)
loglO(3F)
exp(3M)
logI0(3F)
log(3F)
exp(3M)
errpt(IM)
don(IM)
don(lM)
stgetty(I M)
getJogin(3C)
10gname(l) .
cuserid(3S)
logname(3X)
passwd(l)
login(l)
profile(4)
logname(l)
logname(3X)
a641(3C)
13tol(3C)
sputl(3X)
setjmp(3C)
nscloop(I M)
lorder(I)
nice(l)
Ip(I)
IpO)
Ip(7)
enable(I)
Ipsched(IM)
accept(lM)
Ipadmin(IM)
Ipstat(l)
Ipadmin(IM)
dpd(IC)
Ipsched(IM)
Ipr(l)
Ipsched(IM)
Ipsched(lM)
Ipstat(l)
drand48(3C)
Is(l)
Isearch(3C)
Iseek(2)
bool(3F)
vlx(IM)
I3tol(3C)
m4(l)
sputl(3X)
vpm(7)
vpmc.dec(1 M)
vpmc.u3b(IM)
mptx(5)
mm(5)
mosd(5)
mv(5)
m4(I)
man(5)
mm(1)
tapeboot(8)
ht(7)

tm: TMII/TUIO
ts: 1'811

tu78: TU78
un32:
unS2:

send mail to users or read
users or read mail.

gcosmail: send
mail, rmail: send

malloc, free, realloc, calloc:
regenerate groups off make:

ar: archive and library
ar: archive and library

intro: introduction to system
intro: introduction to system

SCCS file. delta:
mkdir:

or ordinary file. mknod:
mktemp:

regenerate groups off
banner:

key.
main memory allocator.

entries in this manual.
this manual.

tsearch, tdelete, twalk:
hsearch, hcreate, hdestroy:

records. fwtmp, wtmpfix:
off ldlread, ldlinit, ldlitem:

frexp, ldexp, modf:
manual. man,

manprog: print entries in this
for formatting entries in this

change the diagnostic spooler
ascii:

files. diff mk:
umask: set file-creation mode

set and get file creation
table. master:
table. master:

information table.
information table.

regular expression compile and
eqn, neqn, checkeq: format

function.
multiple-access-user-space/

dmaxl: Fortran maximum-value/
dmaxl: Fortran/ max,

max, maxO, amaxO,
/maxl, amaxl, dmaxl: Fortran

maze: generate a
accounting.

rp07: RP07 non-removable
controller. tn8S:

memcpy, memset: memory/
memset: memory/ memccpy,

operations. memccpy, memchr,
memccpy, memchr, memcmp,

free, realloc, calloc: main
shmctl: shared

queue, semaphore set or shared
mem, kmem: core

Permuted Index

magnetic tape interface.
magnetic tape interface.
magnetic tape interface.
magnetic tape interface.
magnetic tape interface.
mail. mail, rmail:
mail, rmail: send mail to
mail to HIS user. . .•
mail to users or read mail.
main memory allocator.
maintain, update, and
maintainer. •••••
maintainer for portable/
maintenance commands and/
maintenance procedures.
make a delta (change) to an •
make a directory. .•.•.
make a directory, or a special
make a unique file name.
make: maintain, update, and
make posters. ••...•
make key: generate encryption
malloc, free, realloc, calloc:
man: macros for formatting •
man, manprog: print entries in
manage binary search trees. •
manage hash search tables.
manipulate connect accounting
manipulate line number entries
manipulate parts of /
manprog: print entries in this
manual. man,
manual. man: macros
map file. chmap: . •
map of ASCII character set.
mark differences between
mask ..••••••••
mask. umask: •••..
master device information
master device information
master: master device
master: master device
match routines. regexp:
mathematical text for nroff or /
math err: error-handling • . .
maus: ••.•••..•••
max, maxO, amaxO, maxi, amaxl,
maxO, amaxO, maxI, amaxl,
maxI, amaxl, dmaxl: Fortran/
maximum-value functions.
maze: generate a maze. • •
maze .•••••••..•
mclock: return Fortran time
medium moving-head disk.
medium speed line printer
mem, kmem: core memory.
memccpy, memchr, memcmp,
memchr, memcmp, memcpy,
memcmp, memcpy, memset: memory
memcpy, memset: memory/
memory allocator. malloc,
memory control operations.
memory id. /remove a message
memory. • •••••••.•

- 29 •

tm(7)
tsll(7)
tu78(7)
un32(7)
unS2(7)
mail(1)
mail(1)
gcosmail(I C)
mail(l)
malloc(3C)
make(l)
ar.pdp(1)
ar(l)
intro(IM)
intro(8)
delta(I)
mkdir(l)
mknod(2)
mktemp(3C)
make(l)
banner(1)
makekey(1)
malloc(3C)
maneS)
man(l)
tsearch (3C)
hsearch(3C)
fwtmp(1M)
Idlread(3X)
frexp(3C)
man(l)
man(1)
maneS)
chmap(1M)
ascii(S)
diffmk(1)
umask(1)
umask(2)
master.dec(4)
master.u3b(4)
master.dec(4)
master.u3b(4)
regexp(S)
eqn(1)
matherr(3M)
maus(2)
max(3F)
max(3F)
max(3F)
max(3F)
maze(6)
maze(6)
mclock(3F)
rp07(7)
tn85(7)
mem(7)
memory(3C)
memory(3C)
memory(3C)
memory(3C)
malloc(3C)
shmctl(2)
ipcrm(l)
mem(7)

Permuted Index

/(shared
memcmp, memcpy, memset:

shmop: shared
lock process, text, or data in

shmget: get shared
interface. msi:

/memchr, memcmp, memcpy,
sort: sort and/or

files. acctmerg:
files or subsequent/ paste:

msgctl:
msgop:

prm: send a Processor Recovery
msgget: get

or shared/ ipcrm: remove a
mesg: permit or deny

osm: interface to UNIX system
sys_nerr: system error

prm: 3B2OS Processor Recovery
/for the KMCIIB

kmc: KMC-I I B/KMS I 1
dminI: Fortran minimum-value/

dminI: Fortran/ min,
min, minO, aminO,

/minl, aminI, dminl: Fortran
or get status for a BX.2S

and commands.
boot image.

special or ordinary file.
name.

mlIl:
formatting documents. mm: the

documents formatted with the
documents formatted with the/

formatting documents.
view graphs, and slides.

table.
remaindering intrinsic/

chmod: change
umask: set file-creation

chmod: change
dmk: DMlI-BA

getty: set terminal type,
bs: a compiler/interpreter for
floating-point/ frexp, Idexp,

touch: update access and
utime: set file access and
ssr, setssr, clrssr: print or

/ckpacct, dodisk, lastlogin,
pcldaemon: PCL link

profile.
uusub:

package for formatting/
mount:

system. mount, umount:

setmnt: establish
dismount file system.

memory) operations. . • • • •
memory operations. /memchr,
memory operations.
memory. plock:
memory segment.
memory system diagnostic
memset: memory operations.
merge files. .••••..•
merge or add total accounting
merge same lines of several .
mesg: permit or deny messages.
message control operations.
message operations.
Message. • .••••••
message queue. ••...
message queue, semaphore set
messages. • ••..•.••
messages. • •••.••••
messages. /errno, sys_errlist,
Messages .•........
microprocessor.
microprocessor. •...••
min, minO, aminO, minI, aminI,
minO, aminO, minI, aminI,
minI, aminI, dminI: Fortran/ •
minimum-value functions.
minor device or link. /remove,
mk: how to remake the system
mkboot: convert a.out file to
mkdir: make a directory.
mkfs: construct a file system.
mknod: build special file.
mknod: make a directory, or a
mktemp: make a unique file
mlI 1: MLlI solid-state disk.
MLlI solid-state disk.
MM macro package for . •
MM macros. /print/check
mm, osdd, checkmm: print/check
mm: the MM macro package for
mmt, mvt: typeset documents,
mnttab: mounted file system
mod, amod, dmod: Fortran
mode ..••
mode mask .•.••••.
mode of file. • • • • • • •
modem control multiplexor.
modes, speed, and line/
modest-sized programs. . .
modf: manipulate parts of .
modification times of a file.
modification times. • . • •
modify the System Status/
monacct, nulladm, prctmp,/
monitor. • .••.•••
monitor: prepare execution
monitor uucp network.
moo: guessing game.
mosd: the OSDD adapter macro
mount a file system.
mount and dismount file
mount: mount a file system.
mount table. . • • • . • •
mount, umount: mount and

- 30 -

maus(2)
memory(3C)
shmop(2)
plock(2)
shmget(2)
msi(1M)
memory(3C)
sort(1)
acctmerg(1M)
paste(I)
mesg(l)
msgctl(2)
msgop(2)
prm(IM)
msgget(2)
ipcrm(1)
mesg(I)
osm(7)
perror(3C)
prm(8)
kasb(I)
kmc(7)
min(3F)
min(3F)
min(3F)
min(3F)
x2Spvc(IM)
mk(8)
mkboot(1M)
mkdir(l)
mkfs(IM)
mknod(lM}
mknod(2)
mktemp(3C)
mil 1(7)
mlI 1(7)
mm(S)
mm(I)
mm(I)
mm(S)
mmt(1)
mnttab(4)
mod(3F)
chmod(l)
umask(l)
chmod(2)
dmk(7)
getty(lM)
bs(l)
frexp(3C)
touch(l)
utime(2)
ssr(IM)
acctsh(IM)
pcldaemon(1M)
monitor(3C)
uusub(IM)
moo(6)
mosd(S)
mount(2)
mount(IM)
mount(2)
setmnt(lM)
mount(IM)

mnttab: mounted file system table.
mvdir: move a directory.

cp, In, mv: copy, link or move files. . .•••.
Iseek: move read/write file pointer.

the LP request scheduler and move requests. /start/stop
dsk: 3B208 moving-head disk.
hm: RM05 moving-head disk.

hp: RP04/RP05/RP06 moving-head disk.
rmBO: RMBO moving-head disk.

RP07 non-removable medium moving-head disk. rp07:
rp: RP-ll/RP03 moving-head disk.

gd: general driver for moving-head disks. • • •
formatting a permuted index. mptx: the macro package for

/erand4B, Irand4B, nrand4B, mrand4B, jrand4B, srand4B,/
setmrf: override system MRF action. • • • • • • •

operations. msgcti: message control . •
msgget: get message queue.
msgop: message operations.

interface. msi: memory system diagnostic
(shared memory)/ maus: multiple-access-user-space •••

DH-Il asynchronous multiplexers. /DZ-ll/KMC-llB,
dmk: DMII-BA modem control multiplexor. • .••••.•

typesetting view graphs and/ mv: a trolf macro package for
cp, In, mv: copy, link or move files.

mvdir: move a directory.
graphs, and slides. mmt, mvt: typeset documents, view

log, alog, dlog, clog: Fortran natural logarithm intrinsic/
nc: network control.

i-numbers. ncheck: generate names from
/dnint, nint, idnint: Fortran nearest integer functions.
mathematical text fori eqn, neqn, checkeq: format

definitions for eqn and neqn. /special character • . •
PCL network. net: execute a command on the

nc: network control. •••••
x25: BX.2S network interface.

nscloop: perform the NSC local network loopback functions.
execute a command on thePCL network. net: •••••.

control the NSC local network. /operationally ••
operation status of the NSC network. nscstat: query the

to another UNIX on the NSC network. nusend: send files
re-route jobs from the NSC network to RJE. nsctorje: •

commands. stat: statistical network useful with graphical
uusub: monitor uucp network. • ••.•.•••

patch, or Iboot. newboot: load VTOC, prom •
a text file. newform: change the format of

newgrp: log in to a new group.
news: print news items. ••••••

news: print news items. • •
process. nice: change priority of a
priority. nice: run a command at low

integer / ani nt, dnint, nint, idnint: Fortran nearest
nl: line numbering filter.

list. nlist: get entries from name
nm: print name list.

object file. nm: print name list of common
hangups and quits. nohup: run a command immune to

setjmp, longjmp: non-local goto. • . . • . .' .
moving-head/ rp07: RP07 non-removable medium

bitwise boolean/ and, or, xor, not, Ishift, rshift: Fortran ••
drand4B, erand4B, Irand4B, nrand4B, mrand4B, jrand4B,/

nrolf: format text.
format mathematical text for nrolf or trolf. /checkeq:

tbl: format tables for nrolf or trolf.
constructs. derolf: remove nrolf/trolf, tbl, and eqn

- 31 -

Permuted Index

mnttab(4)
mvdir(lM)
cp(l)
Iseek(2)
Ipsched(IM)
dsk(7)
hm(7)
hp(7)
rmBO(7)
rp07(7)
rp(7)
gd(7)
mptx(5)
drand4B(3C)
setmrf(IM)
msgctl(2)
msgget(2)
msgop(2)
msi(lM)
maus(2)
dz(7)
dmk(7)
mv(5)
cp(l)
mvdir(IM)
mmt(l)
log(3F)
nc(7)
ncheck(IM)
round(3F)
eqn(l)
eqnchar(5)
net(lC)
nc(7)
x25(7)
nscloop(IM)
net(lC)
nscmon(IM)
nscstat(l C)
nusend(lC)
nsctorje(I C)
stat(lG)
uusub(lM)
newboot(IM)
newform(l)
newgrp(l)
news(l)
news(l)
nice(2)
nice(l)
round(3F)
nl(l)
nlist(3C)
nm.pdp(l)
nm(l)
nohup(l)
setjmp(3C)
rp07(7)
bool(3F)
drand48(3C)
nrolf(l)
eqn(l)
tbl(l)
derolf(l)

Permuted Index

specification. nsc: NSC adapter interface
nscloop: perform the NSC local network loop back/

operationally control the NSC local network. nscmon:
the operation status of the NSC network. nscstat: query

files to another UNIX on the NSC network. nusend: send .
re-route jobs from the NSC network to RJE. nsctorje:

specification. nsc: NSC adapter interface
network loop back functions. nscloop: perform the NSC local

the NSC local network. nscmon: operationally control
status of the NSC network. nscstat: query the operation

the NSC network to RJE. nsctorje: re-route jobs from
null: the null file. . • • • • . . •

null: the null file. • • • .
/dodisk, lastlogin, monacct, nulladm, prctmp, prdaily,/

nl: line numbering filter. . .•.
sputl, sgetl: access long numeric data in a machine/

graphics: access graphical and numerical commands.
UNIX on the NSC network. nusend: send files to another
common/ convert: convert object and archive files to

ldfcn: common object file access routines.
cprs: compress an 1825 object file. • •••.

dump selected parts of an object file. dump:
ldopen, ldaopen: open a common object file for reading.

number entries of a common object file function. /line
ldaclose: close a common object file. ldclose, . • .

the file header of a common object file. ldfhread: read
of a section of a common object file. /number entries
file header of a common object file. Ito the optional

of a section of a common object file. /entries • • • .
section header of a common object file. /indexed/named

section of a common object file. /indexed/named
symbol table entry of a common object file. /the index of a
symbol table entry of a common object file. /read an indexed

the symbol table of a common object file. /seek to • • •
number entries in a common object file. linenum: line
C source listing from 38208 object file. list: produce

nm: print name list of common object file. . • • • . . •
information for a common object file. /relocation

section header for a common object file. scnhdr:
information from a common object file. land line number

format. syms: common object file symbol table
file header for common object files. filehdr:

ld: link editor for common object files.
print section sizes of common object files. size: .

size: print sizes of object files.
find ordering relation for an object library. lorder:

. sky: obtain ephemerides.
od: octal dump.

od: octal dump.
dpr: off-line print.

/doff, disp: device logically on, logically off or display/
dgn: on-line diagnostic interface.

sta: find status of pending on-line diagnostic requests.
abt: abort on-line diagnostics. • • . •

dgn: initiate on-line diagnostics. • • • .
start, stop and find status of on-line diagnostics. /dstat:

unit from service before on-line diagnostics. /remove
restore unit to service after on-line diagnostics. rst: • • •

reading. ldopen, ldaopen: open a common object file for
fopen, freopen, fdopen: open a stream. • . . . • •

dup: duplicate an open file descriptor.
open: open for reading or writing.

writing. open: open for reading or
prf: operating system pro filer.

- 32 -

nsc(7)
nscloop(1M)
nscmon(IM)
nscstat(I C)
nusend(IC)
nsctorje(1 C)
nsc(7)
nscloop(I M)
nscmon(1M)
nscstat(1 C)
nsctorje(1 C)
nUll(7)
null(7)
acctsh(lM)
nl(1)
sputJ(3X)
graphics(1 G)
nusend(lC)
convert(l)
Idfcn(4)
cprs(1)
dump(l)
Idopen(3X)
Idlread(3X)
Idclose(3X)
Idfhread(3X)
Idlseek(3X)
Idohseek(3X)
Idrseek(3X)
Idshread(3X)
Idsseek(3X)
Idtbindex(3X)
Idtbread(3X)
Idtbseek(3X)
linenum(4)
list(1)
nm(l)
reloc(4)
scnhdr(4)
strip(1)
syms(4)
filehdr(4)
Id(1)
size(1)
size.pdp(1)
lorder(l)
sky(6)
od(l)
od(l)
dpr(lC)
don(lM)
dgn(7)
sta(lM)
abt(1M)
dgn(1M)
dstart(lM)
rmv(lM)
rst(1M)
Idopen(3X)
fopen(3S)
dup(2)
open(2)
open(2)
prf(7)

/prfdc, prfsnap, prfpr: operating system profiler.
network. nscstat: query the operation status of the NSC •

local network. nscmon: operationally control the NSC
3B200ps: 3B2OS console operations.

7500ps: V AX-ll/750 console operations.
7S00ps: VAX-ll/7S0 console operations.

/(shared memory) operations.
memcmp, memcpy, memset: memory operations. memccpy, memchr,

msgctl: message control operations.
msgop: message operations.

semctl: semaphore control operations.
semop: semaphore operations.

shmctl: shared memory control operations.
shmop: shared memory operations.

strcspn, strtok: string operations. /strpbrk, strspn,
join: relational database operator. •.••••••

dcopy: copy file systems for optimal access time.
vector. getopt: get option letter from argument

common/ Idohseek: seek to the optional file header of a
fcntl: file control options. • • • • • • • •

stty: set the options for a terminal.
getopt: parse command options. . • • • • . . •

Fortran bitwise boolean/ and, or, xor, not, Ishift, rshift:
object library. lorder: find ordering relation for an •
a directory, or a special or ordinary file. mknod: make

formatting/ mosd: the OSDD adapter macro package for
documents formatted with/ mm, osdd, checkmm: print/check • .

messages. osm: interface to UNIX system
dial: establish an out-going terminal line/

assembler and link editor output. a.out: common • . . •
assembler and link editor output. a.out: PDP-ll

sprintf: print formatted output. printf, fprintf,
gcat: send phototypesetter output to the HONEYWELL 6000.

setmrf: override system MRF action.
/acctdusg, accton, acctwtmp: overview of accounting and/

chown: change owner and group of a file. • .
chown, chgrp: change owner or group. ••••••

and expand files. pack, peat, unpack: compress
permuted/ mptx: the macro package for formatting a

documents. mm: the MM macro package for formatting
mosd: the OSDD adapter macro package for formatting/ ••

graphs and/ mv: a troff macro package for typesetting view
sadc: system activity report package. sal, sa2,

standard buffered input/output package. stdio: • • • . • •
interprocess communication package. stdipe: standard

dskvfy: format and verify disk packs. dskfmt, • . • • • •
check RP06 and RM05 disk packs. format: format and/or

4014 terminal. 4014: paginator for the Tektronix
interface. pel: parallel communications link

ipb: read the EAI Input Parameter Buffer.
process, process group, and parent process IDs. /get

getopt: parse command options.
passwd: change login password.
passwd: password file.

/setpwent, endpwent: get password file entry.
putpwent: write password file entry.

passwd: password file.
getpass: read a password.

passwd: change login password.
pwck, grpek: password/group file checkers.

several files or subsequent/ paste: merge same lines of
new boot: load VTOC, prom patch, or Iboot. ••••..
dirname: deliver portions of path names. basename, • • •

directory. getcwd: get path-name of current working

- 33 -

Permuted Index

profiler(IM)
nscstat(1 C)
nscmon(lM)
3B200ps(S)
7500ps(S)
7S00ps(S)
maus(2)
memory(3C)
msgctl(2)
msgop(2)
semctl(2)
semop(2)
shmctl(2)
shmop(2)
string(3C)
join(l)
dcopy(1M)
getopt(3C)
Idohseek(3X)
fcntl(5)
stty(l)
getopt(l)
bool(3F)
10rder(1)
mknod(2)
mosd(5)
mm(l)
osm(7)
dial(3C)
a.out(4)
a.out.pdp(4)
printf(3S)
gcat(lC)
setmrf(IM)
acct(IM)
chown(2)
chown(l)
pa~k(l)
mptx(5)
mm(5)
mosd(5)
mv(5)
sar(IM)
stdio(3S)
stdipe(3C)
dskfmt(lM)
format(1M)
4014(1)
pel(7)
ipb(IM)
getpid(2)
getopt(l)
passwd(l)
passwd(4)
getpwent(3C)
putpwent(3C)
passwd(4)
getpass(3C)
passwd(l)
pwck(IM)
paste(l)
newboot(IM)
basename(l)
getcwd(3C)

Permuted Index

fgrep: search a file for a pattern. grep, egrep,
processing language. awk: pattern scanning and

signal. pause: suspend process until
expand files. pack, peat, unpack: compress and

cc, pec: C compiler.
peldaemon: PCL link monitor.

net: execute a command on the PCL network.
link interface. pel: parallel communications

peldaemon: PCL link monitor.
a process. popen, pelose: initiate pipe to/from .

fscv: convert files between PDP-ll and VAX-ll/780 systems.
as: assembler for PDP-ll .•.•.•..••.

editor output. a.out: PDP-ll assembler and link
/convert archive files from PDP-ll to common archive/

truth value about your/ pdpll, u3b, u3b5, vax: provide
requests. sta: find status of pending on-line diagnostic . • .

functions. emulcntrl: perform 3270 emulation control
loopback functions. nscloop: perform the NSC local network

mesg: permit or deny messages. .
macro package for formatting a permuted index. mptx: the

ptx: permuted index.
format. acct: per-process accounting file

acctcms: command summary from per-process accounting/ •
sys_nerr: system error/ perror, errno, sys_errlist,

cat: phototypesetter interface.
HONEYWELL 6000. gcat: send phototypesetter output to the

tc: phototypesetter simulator. .
split: split a file into pieces. •••.•..••

channel. pipe: create an interprocess
tee: pipe fitting. •.....•

popen, pelose: initiate pipe to/from a process. . •
data in memory. plock: lock process, text, or

plot: graphics interface.
subroutines. plot: graphics interface

images. pnch: file format for card
ftell: reposition a file pointer in a stream. /rewind,

Iseek: move read/write file pointer. . • • • . • . . .
to/from a process. popen, pelose: initiate pipe

and library maintainer for portable archives. /archive
basename, dirname: deliver portions of path names. • .

banner: make posters. . . . • • . . . •
logarithm,/ exp, log, logl0, pow, sqrt: exponential,

/sqrt: exponential, logarithm, power, square root functions.
brc, bcheckrc, rc, powerfail: system/

pr: print files. •....
/lastlogin, monacct, nulladm, prctmp, prdaily, prtacct,/

/monacct, nulladm, prctmp, prdaily, prtacct, runacct,/
for trolf. cw, checkcw: prepare constant-width text

monitor: prepare execution profile. •
cpp: the C language preprocessor. • •••••

unget: undo a previous get of an sces file.
profiler. prf: operating system •

operating/ prftd, prfstat, prfdc, prfsnap, prfpr:
prfsnap, prfpr: operating/ prftd, prfstat, prfdc,

/prfstat, prfdc, prfsnap, prfpr: operating system/
system/ prftd, prfstat, prfdc, prfsnap, prfpr: operating

prfpr: operating/ prftd, prfstat, prfdc, prfsnap,
graphicalj gps: graphical primitive string, format of

types: primitive system data types.
prs: print an sces file.

date: print and set the date.
cal: print calendar. • . •

of a file. sum: print checksum and block count
editing activity. sact: print current SCCS file

- 34 -

grep(l)
awk(l)
pause(2)
pack(l)
cc(l)
peldaemon(1 M)
net(lC)
pel(7)
peldaemon(lM)
popen(3S)
fscv(lM)
as.pdp(l)
a.out.pdp(4)
arcv(l)
machid(1)
sta(lM)
emulcntrl(lM)
nscloop(lM)
mesg(l)
mptx(5)
ptx(l)
acct(4)
acctcms(lM)
perror(3C)
cat(7)
gcat(lC)
tc(l)
split(l)
pipe(2)
tee(l)
popen(3S)
plock(2)
plot(4)
plot(3X)
pnch(4)
fseek(3S)
Iseek(2)
popen(3S)
ar(1)
basename(l)
banner(1)
exp(3M)
exp(3M)
brc(lM)
pr(l)
acctsh(lM)
acctsh(1M)
cW(I)
monitor(3C)
cpp(l)
unget(l)
prf(7)
profiler(lM)
profiler(1 M)
profiler(IM)
profiler(IM)
profiler(1 M)
gps(4)
types(5)
prs(l)
date(l)
caJ(l)
sum(l)
sact(l)

dpr: off-line print._
man, manprog: print entries in this manual.

cat: concatenate and print files. • • • • • • • •
seat: concatenate and print files on synchronous/

pr: print files. • • • • • • • •
printf, fprintf, sprintf: print formatted output. ••

lpstat: print LP status information.
nm: print name list. • • • • • •

object file. nm: print name list of common
system. uname: print name of current UNIX

news: print news items. • • • • •
Status/ ssr, setssr, clrssr: print or modify the System

file(s). acctcom: search and print process accounting . •
object files. size: print section sizes of common

size: print sizes of object files.
names. id: print user and group IDs and

vpmsave, vpmfmt: save and print VPM event traces. •
formatted/ mm, osdd, checkmm: print/check documents ••

tn8S: medium speed line printer controller.
HONEYWELL sending daemon, line printer daemon. dpd, lpd: •

requests to an LP line printer. /cancel: send/cancel
lp: line printer. ••••••••

and print files on synchronous printer. seat: concatenate
lpr: line printer spooler.

vpr: Versatec printer spooler.
vp: Versatec printer.

disable: enable/disable LP printers. enable,
print formatted output. printf, fprintf, sprintf:

nice: run a command at low priority. • • • • • •
nice: change priority of a process.

Messages. prm: 3820S Processor Recovery
Message. prm: send a Processor Recovery

errors. errpt: process a report of logged
acct: enable or disable process accounting. • • •

acctprcl, acctprc2: process accounting. • ••
acctcom: search and print process accounting file(s).

times. times: get process and child process
init, telinit: process controlJ

timex: time a command; report process data and system/
exit, _exit: terminate process. • • • • • • • •

fork: create a new process. • • • • • • • •
/getpgrp, getppid: get process, process group, and parentI

setpgrp: set process group ID.
process group, and parent process IDs. /get process,

inittab: script for the init process. • • • • • • •
kill: terminate a process. • • • • • • •

nice: change priority of a process. • • • • • • •
kill: send a signal to a process or a group off
initiate pipe to/from a process. popen, pelose:

getpid, getpgrp, getppid: get process, process group, and/
ps: report process status. • • • • • •

memory. plock: lock process, text, or data in • •
times: get process and child process times. ••••••

wait: wait for child process to stop or terminate.
ptrace: process trace.

pause: suspend process until signal. • • • •
wait: await completion of process. • • • • • • • • •

list of file systems processed by fsck. checklist:
to a process or a group of processes. /send a signal

killa1l: kill all active processes. • • • • • • • •
structure. fuser: identify processes using a file or file

awk: pattern seanning and processing language.
shutdown: terminate all processing.

m4: macro processor. • ••••

- 35 -

Permuted Index

dpr(lC)
man(l)
cat(l)
seat(l)
pr(l)
printf(3S)
Jpstat(l)
nm.pdp(l)
nm(l)
uname(l)
news(l)
ssr(lM)
acctcom(l)
size(l)
size.pdp(l)
id(l)
vpmsave(lM)
mm(l)
tn8S(7)
dpd(lC)
lp(l)
Ip(7)
seat(l)
lpr(l)
vpr(l)
vp(7)
enable(l)
printf(3S)
nice(l)
nice(2)
prm(8)
prm(lM)
errpt(lM)
acct(2)
acctprc(1 M)
acctcom(l)
times(2)
init(lM)
timex(l)
exit(2)
fork(2)
getpid(2)
setpgrp(2)
getpid(2)
inittab(4)
kill(l)
nice(2)
kill(2)
popen(3S)
getpid(2)
ps(l)
plock(2)
times(2)
wait(2)
ptrace(2)
pause(2)
wait(l)
checklist(4)
kill(2)
kil1all(1 M)
fuser(lM)
awk(l)
shutdown(lM)
m4(1)

Permuted Index

prm: send a Processor Recovery Message.
prm: 3B208 Processor Recovery Messages.

provide truth value about your processor type. /u3bS, vax:
alarm: set a process's alarm clock ..•.•

3B20S object file. list: produce C source listing from
prof: display profile data.

profile. profil: execution time
prof: display profile data.

monitor: prepare execution profile. •..•..
profil: execution time profile. •.••••

environment at login time. profile: setting up an
prf: operating system pro filer. • . . • • •

prfpr: operating system profiler. /prfdc, prfsnap,
sadp: disk access profiler. . • • • • • • •

/connect/load VPM drivers and programmable communication/
standard/restricted command programming language. /the

new boot: load VTOC, prom patch, or Iboot. • . • • .
link with built-in DDCMP protocol. dmc: communications

vpm: Virtual Protocol Machine.
vpmc: compiler for the virtual protocol machine. •.••.
vpmc: compiler for the virtual protocol machine. .•..•

arithmetic: provide drill in number facts.
pdp II , u3b, u3bS, vax: provide truth value about your/

true, false: provide truth values.
prs: print an SCCS file.

/nulladm, prctmp, prdaily, prtacct, runacct, shutacct,/
ps: report process status.

/generate uniformly distributed pseudo-random numbers.
ptrace: process trace.
ptx: permuted index. ••

stream. ungetc: push character back into input
put character or word on a/ putc, putchar, fputc, putw:

, character or word on a/ putc, putchar, fputc, putw: put
entry. putpwent: write password file

stream. puts, fputs: put a string on a •
getutent, getutid, getutline, pututline, setutent, endutent,/

a/ putc, putchar, fputc, putw: put character or word on
x2Srpvc: install or remove a PVC on a link. x2Sipvc,

file checkers. pwck, grpck: password/group
pwd: working directory name.
qsort: quicker sort. . . • . .

the NSC network. nscstat: query the operation status of
msgget: get message queue. ..•.•.....

ipcrm: remove a message queue, semaphore set or shared/
qsort: quicker sort. • • . • . •

command immune to hangups and quits. nohup: run a • • •
quiz: test your knowledge.

random-number/ srand, rand: Fortran uniform
random-number generator. rand, srand: simple . . .

rand, srand: simple random-number generator.
srand, rand: Fortran uniform random-number generator.

fsplit: split f77, ratfor, or efl files.
dialect. ratfor: rational Fortran
ratfor: rational Fortran dialect.

initialization/ brc, bcheckrc, rc, powerfail: system
getpass: read a password. . . .

entry of a common/ Idtbread: read an indexed symbol table
header/ Idshread, Idnshread: read an indexed/named section

read: read from file. .
rmail: send mail to users or read mail. mail,

line: read one line.
read: read from file.

member of ani Idahread: read the archive header of a
Buffer. ipb: read the EAI Input Parameter

- 36 -

prm(IM)
prm(8)
machid(1)
alarm(2)
Iist(I)
prof(1)
profil(2)
prof(l)
monitor(3C)
profil(2)
profile(4)
prf(7)
profiler(I M)
sadp(1)
vpmset(IM)
sh(l)
newboot(1M)
dmc(7)
vpm(7)
vpmc.dec(1M)
vpmc. u3 b(l M)
arithmetic(6)
machid(l)
true(l)
prs(l)
acctsh(1M)
ps(1)
drand48(3C)
ptrace(2)
ptx(l)
ungetc(3S)
putc(3S)
putc(3S)
putpwent(3C)
puts(3S)
getut(3C)
putc(3S)
x2Sipvc(3C)
pwck(IM)
pwd(l)
qsort(3C)
nscstat(1 C)
msgget(2)
ipcrm(l)
qsort(3C)
nohup(l)
quiz(6)
rand(3F)
rand(3C)
rand(3C)
rand(3F)
fsplit(I)
ratfor(l)
ratfor(l)
brc(IM)
getpass(3C)
Idtbread(3X)
Idshread(3X)
read(2)
mail(l)
line(l)
read(2)
Idahread(3X)
ipb(lM)

common object file. Idfhread:
open a common object file for

open: open for
Iseek: move

cmplx,/ int, ifix, idint,
allocator. malloc, free,

reboot:
specify what to do upon

/specify Fortran action on
from per-process accounting

errdead: extract error
manipulate connect accounting

tape. frec:
prm: send a Processor
prm: 3B208 Processor

ed,
generate C program cross

execute regular expression.
compile.

make: maintain, update, and
regular expression. regcmp,
compile and match routines.
or modify the System Status

match routines. regexp:
regcmp:

regex: compile and execute
requests. accept,

sorted files. comm: select or
lorder: find ordering

join:
for a common object file.

strip: remove symbols and
Idrseek, Idnrseek: seek to

common object file. reloc:
/fmod, fabs: floor, ceiling,

mod, amod, dmod: Fortran
commands. mk: how to

calendar:
rje: RJE

ct: spawn getty to a
file. rmdel:

semaphore set or/ ipcrm:
x2Sipvc, x2Srpvc: install or

unlink:
rm, rmdir:

eqn constructs. deroff:
x2Spvc, x2Slnk: install,

bits. strip:
before on-Iine/ rmv:
check and interactive

uniq: report
console. rjestat: RJE status

clock:
communication/ ipcs:

blocks. df:
errpt: process a

sa2, sadc: system activity
timex: time a command;

ps:
file. uniq:

facilities status. ststat:
trouble: log a trouble

sar: system activity

read the file header of a •
reading. Idopen,ldaopen:
reading or writing.
read/write file pointer.
real, float, sngl, dble, •
realloc, calloc: main memory
reboot: reboot the system.
reboot the system.
receipt of a signal. signal:
receipt of a system signal.
records. /command summary
records from dump.
records. fwtmp, wtmpfix:
recover files from a backup
Recovery Message. •
Recovery Messages.
red: text editor.
reference. cxref: • •
regcmp, regex: compile and
regcmp: regular expression
regenerate groups of programs.
regex: compile and execute
regexp: regular expression • •
Register. /c1rssr: print
regular expression compile and
regular expression compile.
regular expression. regcmp,
reject: allow/prevent LP
reject lines common to two
relation for an object/
relational database operator.
reloc: relocation information
relocation bits. • . • • • .
relocation entries of a/
relocation information for a
remainder, absolute value/
remaindering intrinsic/
remake the system and • •
reminder service. • • • • •
(Remote Job Entry) to IBM.
remote terminal. • • • . .
remove a delta from an sces
remove a message queue,
remove a PVC on a link.
remove directory entry. •
remove files or directories.
remove nroff/troff, tbl, and
remove, or get status for a/
remove symbols and relocation
remove unit from service .
repair. /system consistency
repeated lines in a file.
report and interactive status
report CPU time used.
report inter-process . • • •
report number of free disk
report of logged errors.
report package. sa 1,
report process data and system/
report process status.
report repeated lines in a
report synchronous terminal
report.
reporter.

- 37 -

Permuted Index

Idfhread(3X)
Idopen(3X)
open(2)
Iseek(2)
ftype(3F)
malloc(3C)
reboot(IM)
reboot(l M)
signal(2)
signal(3F)
acctcms(1 M)
errdead(1 M)
fwtmp(1M)
frec(IM)
prm(IM)
prm(8)
ed(1)
cxref(1)
regcmp(3X)
regcmp(l)
make(l)
regcmp(3X)
regexp(S)
ssr(1M)
regexp(S)
regcmp(1)
regcmp(3X)
accept(IM)
comm(1)
10rder(1)
join(1)
reloc(4)
strip.pdp(l)
Idrseek(3X)
reloc(4)
floor(3M)
mod(3F)
mk(8)
calendar(l)
rje(8)
ct(1C)
rmdel(1)
ipcrm(l)
x2Sipvc(3C)
unlink(2)
rm(1)
deroff(1)
x2Spvc(lM)
strip.pdp(1)
rmv(lM)
fsck(IM)
uniq(1)
rjestat(1 C)
c1ock(3C)
ipcs(1)
df(1M)
errpt(1M)
sar(1M)
timex(1)
ps(1)
uniq(1)
ststat(1)
trouble(l)
sar(1)

Permuted Index

trouble: trouble reporting system.
stream. fseek, rewind, ftell: reposition a file pointer in a .
/Ipmove: start/stop the LP request scheduler and move/

reject: allow/prevent LP requests. accept, . . . •
LP request scheduler and move requests. /start/stop the

of pending on-line diagnostic requests. sta: find status
Ip, cancel: send/cancel requests to an LP line/

network to RJE. nsctorje: re-route jobs from the NSC
on-line diagnostics. rst: restore unit to service after

HONEYWELL/ fget, fgeLdemon: retrieve files from the
argument. getarg: return Fortran command-line
variable. getenv: return Fortran environment .

accounting. mclock: return Fortran time
abs: return integer absolute value.

string. len: return length of Fortran
substring. index: return location of Fortran . .

logname: return login name of user.
name. getenv: return value for environment

stat: data returned by stat system call.
reversi: a game of dramatic reversals. .•......

col: filter reverse line-feeds.
reversals. reversi: a game of dramatic

file pointer in a/ fseek, rewind, ftell: reposition a
creat: create a new file or rewrite an existing one. . .

file. rf: RFll/RSII fixed-head disk
file. rf: RFll/RSII fixed-head disk .

disk file. hs: RHll/RJS03-RJS04 fixed-head
gather files and/or submit RJE jobs. send, gath: . • . • .

jobs from the NSC network to RJE. nsctorje: re-route ••• .
rje: RJE (Remote Job Entry) to IBM.

IBM. rje: RJE (Remote Job Entry) to
interactive status/ rjestat: RJE status report and . • . • •
interactive status console. rjestat: RJE status report and

rk: RK-ll/RK03 or RK05 disk.
rk: RK-ll/RK03 or RK05 disk. • •••••.

rk: RK-ll/RK03 or RK05 disk.
rl: RL-ll/RLOI disk. • •

rl: RL-ll/RLOI disk.
directories. rm, rmdir: remove files or

format and/or check RP06 and RM05 disk packs. format:
hm: RM05 moving-head disk.

rmSO: RMSO moving-head disk.
rmSO: RMSO moving-head disk.

read mail. mail, rmail: send mail to users or •
SCCS file. rmdel: remove a delta from an

directories. rm, rmdir: remove files or
before on-line diagnostics. rmv: remove unit from service

romboot: special ROM bootstrap loaders. • . •
loaders. romboot: special ROM bootstrap

chroot: change root directory. •••.• . •
chroot: change root directory for a command.

logarithm, power, square root functions. /exponential,
/dsqrt, csqrt: Fortran square root intrinsic function.
/tekset, td: graphical device routines and filters. • . •

common object file access routines. Idfcn:
expression compile and match routines. regexp: regular

graphical table of contents routines. toc: ..••.
disk. rp: RP-ll/RP03 moving-head

moving-head disk. hp: RP04/RP05/RP06 •.••.
format: format and/or check RP06 and RM05 disk packs. .

moving-head disk. rp07: RP07 non-removable medium
medium moving-head disk. rp07: RP07 non-removable

rp: RP-ll/RP03 moving-head disk.
standard/restricted/ sh, rsh: shell, the •.•...••

- 38 -

trouble(S)
fseek(3S)
Ipsched(1 M)
accept(IM)
Ipsched(I M)
sta(IM)
Ip(I)
nsctorje(1 C)
rst(1M)
fget(lC)
getarg(3F)
getenv(3F)
mclock(3F)
abs(3C)
len(3F)
index(3F)
logname(3X)
getenv(3C)
stat(5)
reversi(6)
col(l)
reversi(6)
fseek(3S)
creat(2)
rf(7)
rf(7)
hs(7)
send(lC)
nsctorje(1 C)
rje(S)
rje(S)
rjestat(1 C)
rjestat(1 C)
rk(7)
rk(7)
rk(7)
rl(7)
ri(7)
rm(l)
format(IM)
hm(7)
rmSO(7)
rmSO(7)
mail(l)
rmdel(I)
rm(1)
rmv(IM)
romboot(S)
romboot(S)
chroot(2)
chroot(IM)
exp(3M)
sqrt(3F)
gdev(IG)
Idfcn(4)
regexp(5)
toc(IG)
rp(7)
hp(7)
format(IM)
rp07(7)
rp07(7)
rp(7)
sh(l)

and, or, xor, not, Ishift, rshift: Fortran bitwise/
after on-line diagnostics. rst: restore unit to service . . .

nice: run a command at low priority.
hangups and quits. nohup: run a command immune to •

runacct: run daily accounting.
runacct: run daily accounting.

/prctmp, prdaily, prtacct, runacct, shutacct, startup,/
activity report package. sal, sa2, sadc: system . . .

report package. sal, sa2, sadc: system activity
editing activity. sact: print current SCCS file

package. sa I, sa2, sadc: system activity report
sadp: disk access profiler.
sag: system activity graph. .
sar: system activity reporter.

traces. vpmsave, vpmfmt: save and print VPM event
space allocation. brk, sbrk: change data segment

formatted input. scanf, fscanf, sscanf: convert
bfs: big file scanner. . • . • • . • •

language. awk: pattern scanning and processing •
files on synchronous printer. scat: concatenate and print

stand-alone programs. scc: C compiler for • •
the delta commentary of an SCCS delta. cdc: change

comb: combine sces deltas. . • • • •
make a delta (change) to an SCCS file. delta: •••

sact: print current sces file editing activity.
get: get a version of an SCCS file.

prs: print an SCCS file.
rmdel: remove a delta from an SCCS file.

compare two versions of an SCCS file. sccsdiff:
sccsfile: format of sces file.

undo a previous get of an SCCS file. unget:
val: validate sces file.

admin: create and administer SCCS files.
what: identify sces files.

of an SCCS file. sccsdiff: compare two versions
sccsfile: format of SCCS file.

/start/stop the LP request scheduler and move requests.
common object file. scnhdr: section header for a

terminals. se: screen editor for video
load and start 3270 emulation script. emulload: • • • •

inittab: script for the init process.
system initialization shell scripts. /rc, powerfail:

sdb: symbolic debugger .•
program. sdiff: side-by-side difference

terminals. se: screen editor for video
grep, egrep, fgrep: search a file for a pattern.

accounting file(s). acctcom: search and print process
lsearch: linear search and update.

bsearch: binary search. •••••••
hcreate, hdestroy: manage hash search tables. hsearch,

tdelete, twalk: manage binary search trees. tsearch, •
jotto: secret word game.

object file. scnhdr: section header for a common
object/ /read an indexed/named section header of a common

Ito line number entries of a section of a common object/
Ito relocation entries of a section of a common object/

/seek to an indexed/named section of a common object/
files. size: print section sizes of common object

sed: stream editor.
/mrand48, jrand48, srand48, seed48, Icong48: generate/

section off ldsseek, ldnsseek: seek to an indexed/named
a section/ ldlseek,ldnlseek: seek to line number entries of

a section/ ldrseek, ldnrseek: seek to relocation entries of
header of a common/ Idohseek: seek to the optional file

- 39 -

Permuted Index

bool(3F)
rst(lM)
nice(i)
nohup(i)
runacct(I M)
runacct(1 M)
acctsh(IM)
sar(lM)
sar(lM)
sact(l)
sar(lM)
sadp(i)
sag(IG)
sar(I)
vpmsave(IM)
brk(2)
scanf(3S)
bfs(l)
awk(I)
scat(I)
scc(l)
cdc(I)
comb(I)
delta(I)
sact(1)
get(l)
prs(I)
rmdel(l)
sccsdiff(1)
sccsfile(4)
unget(l)
val(I)
admin(I)
what(l)
sccsdiff(1)
sccsfile(4)
lpsched(1 M)
scnhdr(4)
se(i)
emulload(IM)
inittab(4)
brc(IM)
sdb(l)
sdiff(I)
se(I)
grep(I)
acctcom(I)
Isearch(3C)
bsearch(3C)
hsearch(3C)
tsearch(3C)
jotto(6)
scnhdr(4)
Idshread(3X)
Idlseek(3X)
Idrseek(3X)
Idsseek(3X)
size(l)
sed(l)
drand48(3C)
Idsseek(3X)
Idlseek(3X)
Idrseek(3X)
Idohseek(3X)

Permuted Index

common object file. Idtbseek: seek to the symbol table of a
shmget: get shared memory segment. ..•••....

brk, sbrk: change data segment space allocation.
to two sorted files. comm: select or reject lines common

greek: select terminal filter.
of a file. cut: cut out selected fields of each line • •

file. dump: dump selected parts of an object . .
semctl: semaphore control operations.
semop: semaphore operations.

ipcrm: remove a message queue, semaphore set or shared memory/
semget: get set of semaphores. • • • .

operations. semctl: semaphore control • •
semget: get set of semaphores.
semop: semaphore operations.

Message. prm: send a Processor Recovery
a group of processes. kill: send a signal to a process or •

the NSC network. nusend: send files to another UNIX on
6000. fsend: send files to the HONEYWELL

and/or submit RJE jobs. send, gath: gather files
gcosmail: send mail to HIS user.

mail. mail, rmail: send mail to users or read • •
the HONEYWELL 6000. gcat: send phototypesetter output to

line printer. lp, cancel: send/cancel requests to an LP
daemon. dpd, lpd: HONEYWELL sending daemon, line printer

stream. setbuf: assign buffering to a •
IDs. setuid, setgid: set user and group • •

getgrent, getgrgid, getgrnam, setgrent, endgrent: get group/
goto. setjmp, longjmp: non-local

encryption. crypt, setkey, encrypt: generate DES
setmnt: establish mount table.

action. setmrf: override system MRF
setpgrp: set process group 10.

getpwent, getpwuid, getpwnam, setpwent, endpwent: get/
modify the System Status/ ssr, setssr, clrssr: print or • • • •

login time. profile: setting up an environment at
gettydefs: speed and terminal settings used by getty.

group IDs. setuid, setgid: set user and
/getutid, getutline, pututline, setutent, endutent, utmpname:/

data in a machine/ sputl, sgetl: access long numeric •. .
standard/restricted command/ sh, rsh: shell, the • . . • • • •

operations. shmctl: shared memory control • . • •
queue, semaphore set or shared memory id. /a message

/multiple-access-user-space (shared memory) operations.
shmop: shared memory operations.

shmget: get shared memory segment.
system: issue a shell command from Fortran.
system: issue a shell command. ••••••

shutacct, startup, turnacct: shell procedures fori /runacct,
system initialization shell scripts. /rc, powerfail:

command programming/ sh, rsh: shell, the standard/restricted
operations. shmctl: shared memory control

segment. shmget: get shared memory
operations. shmop: shared memory • •

/prdaily, prtacct, runacct, shutacct, startup, turnacct:/
processing. shutdown: terminate all .

program. sdiff: side-by-side difference
transfer-of-sign intrinsic/ sign, isign, dsign: Fortran

login: sign on. • • • • • • .
terminal. stlogin: sign on to synchronous

pause: suspend process until signal. • • • • • • • .
what to do upon receipt of a signal. signal: specify •
action on receipt of a system signal. /specify Fortran

on receipt of a system/ signal: specify Fortran action
upon receipt of a signal. signal: specify what to do

- 40 -

Idtbseek(3X)
shmget(2)
brk(2)
comm(i)
greek(i)
cut(l)
dump(l)
semctl(2)
semop(2)
ipcrm(i)
semget(2)
semctl(2)
semget(2)
semop(2)
prm(lM)
kill(2)
nusend(lC)
fsend(lC)
send(iC)
gcosmail(I C)
mail(i)
gcat(iC)
lp(l)
dpd(lC)
setbuf(3S)
setuid(2)
getgrent(3C)
setjmp(3C)
crypt(3C)
setmnt(lM)
setmrf(lM)
setpgrp(2)
getpwent(3C)
ssr(lM)
profile(4)
gettydefs(4)
setuid(2)
getut(3C)
sputl(3X)
sh(l)
shmctl(2)
ipcrm(l)
maus(2)
shmop(2)
shmget(2)
system(3F)
system(3S)
acctsh(iM)
brc(lM)
sh(i)
shmctl(2)
shmget(2)
shmop(2)
acctsh(lM)
shutdown(1 M)
sdiff(l)
sign(3F)
login(i)
stlogin(l)
pause(2)
signal(2)
signal(3F)
signal(3F)
signal(2)

of processes. kill: send a signal to a process or a group
ssignal, gsignal: software signals. .•..•••

lex: generate programs for simple lexical tasks.
generator. rand, srand: simple random-number

tc: phototypesetter simulator. • . • . . .
atan, atan2: trigonometric/ sin, cos, tan, asin, acos,

intrinsic function. sin, dsin, csin: Fortran sine
sin, dsin, csin: Fortran sine intrinsic function.

/dsinh: Fortran hyperbolic sine intrinsic function.
functions. sinh, cosh, tanh: hyperbolic

hyperbolic sine intrinsic/ sinh, dsinh: Fortran
common object files. size: print section sizes of .

files. size: print sizes of object
size: print section sizes of common object files.

size: print sizes of object files. . . . •
sky: obtain ephemerides.

an interval. sleep: suspend execution for
interval. sleep: suspend execution for

documents, view graphs, and slides. mmt, mvt: typeset
typesetting view graphs and slides. /macro package for

current/ ttyslot: find the slot in the utmp file of the
spline: interpolate smooth curve. . • • • •

int, ifix, idint, real, float, sngi, dble, cmplx, dcmplx,/
sno: SNOBOL interpreter.

sno: SNOBOL interpreter. .
ssignal, gsignal: software signals.

mill: MLlI solid-state disk.
sort: sort and/or merge files.

qsort: quicker sort. •.•..••.
sort: sort and/or merge files.

tsort: topological sort. •••••••••
or reject lines common to two sorted files. comm: select

object file. list: produce C source listing from 3B2OS
brk, sbrk: change data segment space allocation.

terminal. ct: spawn getty to a remote •
sys3b: 3B20S specific system calls.
fspec: format specification in text files.

nsc: NSC adapter interface specification. • . • • . .
receipt of a system/ signal: specify Fortran action on

teceipt of a signal. signal: specify what to do upon .
/set terminal type, modes, speed, and line discipline.

used by getty. gettydefs: speed and terminal settings
tn85: medium speed line printer controller.

hashcheck: find spelling/ spell, hashmake, spellin,
spelling/ spell, hashmake, spellin, hashcheck: find • .

spellin, hashcheck: find spelling errors. /hashmake,
curve. spline: interpolate smooth

split: split a file into pieces.
csplit: context split. •••.•••

files. fsplit: split f77, ratfor, or etl
pieces. split: split a file into

uuclean: uucp spool directory clean-up.
Ipr: line printer spooler. • • . .

chmap: change the diagnostic spooler map file. •••
vpr: Versatec printer spooler. • • • • • • •

Ipadmin: configure the LP spooling system.
output. printf, fprintf, sprintf: print formatted

numeric data in a machine/ sputi, sgeti: access long
square root intrinsic/ sqrt, dsqrt, csqrt: Fortran

power,/ exp, log, 10g10, pow, sqrt: exponential, logarithm,
exponential, logarithm, power, square root functions. /sqrt:

sqrt, dsqrt, csqrt: Fortran square root intrinsic/ • • •
random-number generator. srand, rand: Fortran uniform

generator. rand, srand: simple random-number

- 41 -

Permuted Index

kill(2)
ssignal(3C)
lex(l)
rand(3C)
tc(1)
trig(3M)
sin(3F)
sin(3F)
sinh(3F)
sinh(3M)
sinh(3F)
size(l)
size. pdp(1)
size(l)
size.pdp(l)
sky(6)
sleep(l)
sleep(3C)
mmt(l)
mv(5)
ttyslot(3C)
spline(lG)
ftype(3F)
sno(1)
sno(l)
ssignal(3C)
mlll(7)
sort(1)
qsort(3C)
sort(1)
tsort(l)
comm(l)
list(1)
brk(2)
ct(lC)
sys3b(2)
fspec(4)
nsc(7)
signal(3F)
signal(2)
getty(lM)
gettydefs(4)
tn85(7)
spell(l)
spell(l)
spell(l)
spline(lG)
split(1)
csplit(l)
fsplit(1)
split(l)
uuclean(lM)
Ipr(1)
chmap(1M)
vpr(l)
lpadmin(lM)
printf(3S)
sputi(3X)
sqrt(3F)
exp(3M)
exp(3M)
sqrt(3F)
rand(3F)
rand(3C)

Permuted Index

/nrand48, mrand48, jrand48,
input. scanf, fscanf,

signals.
modify the System Status/

control.
interface.

on-line diagnostic requests.
sec: C compiler for

package. stdio:
communication/ stdipc:

sh, rsh: shell, the
emulload: load and

on-line/ dstart, dstop, dstat:
lpsched, lpshut, lpmove:

unixboot: UNIX
/prtaect, runaect, shutaect,

system call.

useful with graphical/
stat: data returned by

with graphicalj stat:
ff: list file names and
ustat: get file system

status report and interactive
on, logically off or display

emulation controller/terminal
/install, remove, or get

lpstat: print LP
feof, clearerr, fileno: stream

control. uustat: uuep
communication facilities

/ dstat: start, stop and find
diagnostic/ sta: find

nscstat: query the operation
ps: report process

print or modify the System
status console. rjestat: RJE

stat, fstat: get file
terminal facilities

input/output package.
communication package.

terminal interface.
login line for use.

synchronous terminal.
dstart, dstop, dstat: start,

wait for child process to
strncmp, strepy, strnepy,/

/strepy, strnepy, strlen,
strncpy,/ strcat, strncat,

/strncat, strcmp, strncmp,
/strrchr, strpbrk, strspn,

sed:
mush: close or flush a

fopen, freopen, fdopen: open a
reposition a file pointer in a
get character or word from

fgets: get a string from a
put character or word on a

puts, fputs: put a string on a
setbuf: assign buffering to a

/feof, clearerr, fileno:
push character back into input

long integer and base-64 ASCn

srand48, seed48, lcong48:/
sscanf: convert formatted
ssignal, gsignal: software
ssr, setssr, clrssr: print or
st: synchronous terminal
st: synchronous terminal
sta: find status of pending
stand-alone programs.
standard buffered input/output
standard interprocess '. • . •
standard/restricted command/
start 3270 emulation script.
start, stop and find status of
start/stop the LP request/ •
startup and boot procedures.
startup, turnaect: shell/ •
stat: data returned by stat
stat, fstat: get file status.
stat: statistical network
stat system call.
statistical network useful
statistics for a file system.
statistics. ••••..•
status console. rjestat: RJE
status. /device logically •
status. emulstat: get 3270
status for a BX.25 minor /
status information. . •
status inquiries. ferror, .
status inquiry and job. •
status. /report inter-process
status of on-line diagnostics.
status of pending on-line
status of the NSC network.
status. • .••..•.•
Status Register. / clrssr: . .
status report and interactive
status. . .••.••.•
status. /report synchronous
stdio: standard buffered . .
stdipc: standard interprocess
stermio: general synchronous
stgetty: wait on synchronous
stime: set time.
stlogin: sign on to
stop and find status off
stop or terminate. wait:
strcat, strncat, strcmp,
strchr, strrchr, strpbrk,j
strcmp, strncmp, strcpy,
strepy, strncpy. strlen./
strcspn, strtok: string/
stream editor.
stream. fclose, • • .
stream. . ••.••
stream. fseek, rewind, ftell:
stream. /getchar, fgetc, getw:
stream. gets, ..••.••
stream. /putchar, fputc, putw:
stream. • ••••••
stream.
stream status inquiries.
stream. ungetc:
string. /164a: convert between

- 42 -

drand48(3C)
scanf(3S)
ssignal(3C)
ssr(lM)
st(lM)
st(7)
sta(lM)
sec(l)
stdio(3S)
stdipc(3C)
shell
emulload(lM)
dstart(lM)
Ipsched(lM)
unixboot(8)
aectsh(lM)
stateS)
stat(2)
stat(lG)
stateS)
stat(IG)
ff(iM)
ustat(2)
rjestat(1 C)
don(iM)
emulstat(1M)
x25pvc(IM)
\pstat(l)
ferror(3S)
uustat(lC)
ipcs(l)
dstart(IM)
sta(1M)
nscstat(1 C)
ps(l)
ssr(1M)
rjestat(1 C)
stat(2)
ststat(1)
stdio(3S)
stdipc(3C)
stermio(7)
stgetty(1 M)
stime(2)
stlogin(l)
dstart(IM)
wait(2)
string(3C)
string(3C)
string(3C)
string(3C)
string(3C)
sed(1)
fclose(3S)
fopen(3S)
fseek(3S)
getc(3S)
gets(3S)
putc(3S)
puts(3S)
setbuf(3S)
ferror(3S)
ungetc(3S)
a64l(3C)

convert date and time to string. /asctime, tzset:
floating-point number to string. /fcvt, gcvt: convert

gps: graphical primitive string, format of graphical/
gets, fgets: get a string from a stream. • • •

len: return length of Fortran string. • • • • • • • • • •
puts, fputs: put a string on a stream. • • • •

strspn, strespn, strtok: string operations. /strpbrk,
number. atof: convert ASCII string to floating-point

strtol, atol, atoi: convert string to integer. •• • • •
relocation bits. strip: remove symbols and

number information from a/ strip: strip symbol and line
information from a/ strip: strip symbol and line number
/strncmp, strcpy, strncpy, strlen, strchr, strrchr,/

strcpy, strncpy,/ streat, strncat, stremp, strncmp,
streat, strncat, stremp, strncmp, strcpy, strncpy,/

/strcmp, strncmp, strcpy, strncpy, strlen, strchr,/ •
/strien, strehr, strrchr, strpbrk, strspn, strcspn,/
/strncpy, strlen, strehr, strrchr, strpbrk, strspn,/

/strehr, strrehr, strpbrk, strspn, strcspn, strtok:/ •
/strpbrk, strspn, strcspn, strtok: string operations.

string to integer. strtol, atol, atoi: convert
processes using a file or file structure. fuser: identify

terminal facilities status. ststat: report synchronous
terminal. stty: set the options for a

another user. su: become super-user or
gath: gather files and/or submit RJE jobs. send, •

intro: introduction to subroutines and libraries.
plot: graphics interface subroutines. • • • • • •

/same lines of several files or subsequent lines of one file.
return location of Fortran substring. index: • • • • •

count of a file. sum: print checksum and block
du: summarize disk usage.

accounting/ acctcms: command summary from per-process
sync: update the super block. ••• • • • •

sync: update super-block. • • • • • • •
su: become super-user or another user.

interval. sleep: suspend execution for an
interval. sleep: suspend execution for

pause: suspend process until signal.
swab: swap bytes.

swab: swap bytes. •••••••
information from/ strip: strip symbol and line number

object/ /compute the index of a symbol table entry of a common
Idtbread: read an indexed symbol table entry of a common/
syms: common object file symbol table format.

object/ Idtbseek: seek to the symbol table of a common
sdb: symbolic debugger .••••

strip: remove symbols and relocation bits.
symbol table format. syms: common object file •

sync: update super-block.
sync: update the super block.

un53: UN53/TN82 synchronous device interface.
du: .DU-II synchronous line interface.

use. stgetty: wait on synchronous login line for • •
concatenate and print files on synchronous printer. scat: • •

st: synchronous terminal control.
facilities/ ststat: report synchronous terminal •

interface. st: synchronous terminal • • •
interface. stermio: general synchronous terminal • • •

stlogin: sign on to synchronous terminal.
calls. sys3b: 3820S specific system

sysdef: system definition.
error/ perror, errno, sys_errlist, sys_nerr: system

perror, errno, sys_errlist, sys_nerr: system error/

- 43 -

Permuted Index

ctime(3C)
ecvt(3C)
gps(4)
gets(3S)
len(3F)
puts(3S)
string(3C)
atof(3C)
strtol(3C)
strip.pdp(I)
strip(l)
strip(l)
string(3C)
string(3C)
string(3C)
string(3C)
string(3C)
string(3C)
string(3C)
string(3C)
strtol(3C)
fuser(IM)
ststat(l)
stty(l)
sU(I)
send(lC)
intro(3)
plot(3X)
paste(l)
index(3F)
sum(l)
du(l)
acctcms(IM)
sync(l)
sync(2)
sU(I)
sleep(l)
sleep(3C)
pause(2)
swab(3C)
swab(3C)
strip(l)
Idtbindex(3X)
Idtbread(3X)
syms(4)
Idtbseek(3X)
sdb(l)
strip. pdp(1)
syms(4)
sync(2)
sync(l)
un53(7)
du(7)
stgetty(1 M)
scat(l)
st(lM)
ststat(l)
st(7)
stermio(7)
stlogin(l)
sys3b(2)
sysdef(IM)
perror(3C)
perror(3C)

Permuted Index

/compute the index of a symbol
file. /read an indexed symbol

common object file symbol
master device information
master device information

mnttab: mounted file system
Idtbseek: seek to the symbol

toc: graphical
setmnt: establish mount

tbl: format
hdestroy: manage hash search

tabs: set

a file.
trigonometric/ sin, cos,

intrinsic function.
tan, dtan: Fortran

/dtanh: Fortran hyperbolic
hyperbolic tangent intrinsic/

sinh, cosh,
tape boot: magnetic

gt: general driver for
hpio: HP 2645A terminal

tar:
recover files from a backup

ht: TUI6/TE16 magnetic
tm: TMll/TUI0 magnetic

ts: TSll magnetic
tu78: TU78 magnetic

un32: magnetic
un52: magnetic

Idtape: load disk from
bootstrap program.

file system backup. filesave,

programs for simple lexical
deroff: remove nroff/troff,

or troff.

hpd, erase, hardcopy, tekset,
search trees. tsearch,

hpd, erase, hardcopy,
4014: paginator for the

initialization. init,
temporary file. tmpnam,

tmpfile: create a
tempnam: create a name for a

terminals.
for the Tektronix 4014

functions of the DASI 450
st: synchronous

ct: spawn getty to a remote
generate file name for

ststat: report synchronous
greek: select

st: synchronous
stermio: general synchronous

termio: general
tty: controlling

dial: establish an out-going
getty. gettydefs: speed and

sign on to synchronous
stty: set the options for a

table entry of a common object/
table entry of a common object
table format. syms:
table. master:
table. master:
table. . .••
table of a common object file.
table of contents routines.
table. . ••.•.•.
tables for nroff or troff.
tables. hsearch, hcreate,
tabs on a terminal. •.
tabs: set tabs on a terminal.
tail: deliver the last part of
tan, asin, acos, atan, atan2:
tan, dtan: Fortran tangent
tangent intrinsic function.
tangent intrinsic function.
tanh, dtanh: Fortran
tanh: hyperbolic functions.
tape bootstrap program.
tape drives.
tape file archiver.
tape file archiver.
tape. frec: • .
tape interface.
tape interface.
tape interface.
tape interface.
tape interface.
tape interface.
tape procedures.
tape boot: magnetic tape
tapesave: daily/weekly UNIX
tar: tape file archiver. • • •
tasks. lex: generate • • • • •
tbl, and eq n co nstructs. • • .
tbl: format tables for nroff
tc: phototypesetter simulator.
td: graphical device routines/
tdelete, twalk: manage binary
tee: pipe fitting. ••••.
tekset, td: graphical device/ .
Tektronix 4014 terminal.
telinit: process control
tempnam: create a name for a
temporary file. • • • . • • •
temporary file. tmpnam,
term: conventional names for
terminal. 4014: paginator
terminal. 450: handle special
terminal control. .
terminal. . •••.•
terminal. ctermid:
terminal facilities status.
terminal filter. . •
terminal interface.
terminal interface.
terminal interface.
terminal interface.
terminal line connection.
terminal. settings used by
terminal. stlogin:
terminal.

- 44 -

Idtbindex(3X)
Idtbread(3X)
syms(4)
master .dec(4)
master.u3b(4)
mnttab(4)
Idtbseek(3X)
toc(lG)
setmnt(IM)
tbl(1)
hsearch(3C)
tabs(l)
tabs(l)
tail(1)
trig(3M)
tan(3F)
tan(3F)
tanh(3F)
tanh(3F)
sinh(3M)
tapeboot(8)
gt(7)
hpio(l)
tar(l)
frec(IM)
ht(7)
tm(7)
tsll (7)
tu78(7)
un32(7)
un52(7)
Idtape(8)
tapeboot(8)
filesave(1 M)
tar(l)
lex(l)
deroff(I)
tbl(l)
tc(l)
gdev(lG)
tsearch(3C)
tee(1)
gdev(lG)
4014(1)
init(lM)
tmpnam(3S)
tmpfile(3S)
tmpnam(3S)
term(5)
4014(1)
450(1)
st(IM)
ct(lC)
ctermid(3S)
ststat(l)
greek(l)
st(7)
stermio(7)
termio(7)
tty(7)
dial(3C)
gettydefs(4)
stlogin(l)
stty(l)

tabs: set tabs on a
hpio: HP 2645A

isatty: find name of a
and line/ getty: set

functions of DASI 300 and 300s
of HP 2640 and 2621-series

tty: get the
se: screen editor for video

term: conventional names for
kill:

shutdown:
abort:

exit, _exit:
daemon. errstop:

for child process to stop or
interface.

command.
vpmtest:
fts: Field

quiz:
ed, red:

change the format of a
fspec: format specification in

/checkeq: format mathematical
prepare constant-width

nroff: format
plock: lock process,

troff: typeset
ttt, cubic:

data and system/ timex:
time:

mclock: return Fortran
systems for optimal access

profil: execution
up an environment at login

stime: set

time: get
tzset: convert date and

clock: report CPU
process times.

update access and modification
get process and child process

file access and modification
process data and system/

interface.
interface. tm:

file.
for a temporary file.

interface.
interface.
interface.

printer controller.
/tolower, _toupper, _tolower,

contents routines.
popen, pclose: initiate pipe

toupper, tolower, _toupper,
toascii: translate/ toupper,

tsort:
acctmerg: merge or add

modification times of a file.
translate/ toupper, tolower,
_tolower, toascii: translate/

terminal. .••...•
terminal tape file archiver.
terminal. ttyname, . • .
terminal type, modes, speed,
terminals. /handle special .
terminals. /special functions
terminal's name.
terminals. • •••
terminals. . •••
terminate a process.
terminate all processing.
terminate Fortran program.
terminate process.
terminate the error-logging
terminate. wait: wait
termio: general terminal
test: condition evaluation
test KMC lines.
Test Set interface.
test your knowledge.
text editor.
text file. newform: .
text files. •••••
text for nroff or troff.
text for troff. cw, checkcw:
text. . •••••••.
text, or data in memory.
text. • ..•.•..•
tic-tac-toe. • • • • • • .
time a command; report process
time a command.
time accounting.
time. dcopy: copy file
time: get time. . • •
time profile. • • • •
time. profile: setting
time. • ..•.••
time: time a command.
time. • •••••.•
time to string. /asctime,
time used .•••.••
times: get process and child
times of a file. touch:
times. times:
times. utime: set • . . • .
timex: time a command; report
tm: TMll/TUlO magnetic tape
TMII/TUIO magnetic tape
tmpfile: create a temporary
tmpnam, tempnam: create a name
tn4: eight line asynchronous
tn74: two line asynchronous
tn83: console/printer • • •
tn85: medium speed line
toascii: translate characters.
toc: graphical table of . • •
to/from a process.
_tolower, toascii: translate/
tolower, _toupper, _tolower,
topological sort.
total accounting files. • • .
touch: update access and
_toupper, _tolower, toascii:
toupper, tolower, _toupper,

- 45 -

Permuted Index

tabs(l)
hpio(l)
ttyname(3C)
getty(IM)
300(1)
hp(l)
tty(l)
se(l)
term(5)
kill(l)
shutdown(IM)
abort(3F)
exit(2)
errstop(IM)
wait(2)
termio(7)
test(I)
vpmtest(IM)
fts(1M)
quiz(6)
ed(l)
newform(l)
fspec(4)
eqn(l)
cW(l)
nroff(l)
plock(2)
troff(l)
ttt(6)
timex(l)
time(l)
mclock(3F)
dcopy(IM)
time(2)
profil(2)
profile(4)
stime(2)
time(l)
time(2)
ctime(3C)
clock(3C)
times(2)
touch(l)
times(2)
utime(2)
timex(l)
tm(7)
tm(7)
tmpfile(3S)
tmpnam(3S)
tn4(7)
tn74(7)
tn83(7)
tn85(7)
conv(3C)
toc(IG)
popen(3S)
conv(3C)
conv(3C)
tsort(l)
acctmerg(IM)
touch(l)
conv(3C)
conv(3C)

Permuted Index

tplot: graphics filters.
tr: translate characters.
trace: event-tracing driver.

ptrace: process trace. • • • • • • . • •
save and print VPM event traces. vpmsave, vpmfmt:
sign, isign, dsign: Fortran transfer-of-sign intrinsic/

/ _to upper , _tolower. toascii: translate characters.
tr: translate characters.

atb: attach to an Address Translation Buffer.
ftw: walk a file tree. ••••••

twalk: manage binary search trees. tsearch, tdelete,
tan, asin, acos, atan, atan2: trigonometric functions. /cos,

constant-width text for troff. cw, checkcw: prepare
mathematical text for nroff or troff. /neqn, checkeq: format

typesetting view graphs/ mv: a troff macro package for, ••
format tables for nroff or troff. tbl: ••••••••

troff: typeset text.
trouble: log a trouble report.

trouble: log a trouble report. • • • . .
trouble: trouble reporting system.
system. trouble: trouble reporting
values. true, false: provide truth

pdp11, u3b, u3bS, vax: provide truth value about your/ .
true, false: provide truth values. . • • • • •

interface. ts: TSII magnetic tape
ts: TSII magnetic tape interface.

manage binary search trees. tsearch, tdelete, twalk:
tsort: topological sort. • • •
ttt, cubic: tic-tac-toe.

interface. tty: controlling terminal • •
tty: get the terminal's name.

graphics for the extended ITY-37 type-box. greek:
a terminal. ttyname, isatty: find name of

utmp file of the current/ ttyslot: find the slot in the • .
interface. ht: TUI6/TEI6 magnetic tape

tu78: TU78 magnetic tape interface.
interface. tu78: TU78 magnetic tape • .

/runacct, shutacct, startup, turnacct: shell procedures for /
trees. tsearch, tdelete, twalk: manage binary search

ichar, char: explicit Fortran type conversion. /dcmplx,
file: determine file type. ••••••...•

value about your processor type. /vax: provide truth
getty: set terminal type, modes, speed, and line/

for the extended ITY-37 type-box. greek: graphics
types. types: primitive system data

types: primitive system data types. • • • • • • . • • •
graphs, and slides. mmt, mvt: typeset documents, view

troff: typeset text. • • • • • • •
mv: a troff macro package for typesetting view graphs and/
/localtime, gmtime, asctime, tzset: convert date and time/

value about your/ pdp11, u3b, u3bS, vax: provide truth
about your/ pdp11, u3b, u3bS, vax: provide truth value

getpw: get name from UID. .•••••••
limits. ulimit: get and set user

creation mask. umask: set and get file
mask. umask: set file-creation mode

file system. mount, umount: mount and dismount
umount: unmount a file system.
un32: magnetic tape interface.
unS2: magnetic tape interface.

synchronous device interface. unS3: UNS3/1N82 • • • • •
device interface. unS3: UNS3/1N82 synchronous ••

UNIX system. uname: get name of current •
UNIX system. uname: print name of current

- 46-

tplot(IG)
tr(l)
trace (7)
ptrace(2)
vpmsave(IM)
sign(3F)
conv(3C)
tr(l)
atb(IM)
ftw(3C)
tsearch(3C)
trig(3M)
cW(I)
eqn(l)
mv(S)
tbl(l)
troff(l)
trouble(l)
trouble(l)
trouble(8)
trouble(8)
true(l)
machid(l)
true(l)
ts11 (7)
ts11 (7)
tsearch(3C)
tsort(l)
ttt(6)
tty(7)
tty(l)
greek(S)
ttyname(3C)
ttyslot(3C)
ht(7)
tu78(7)
tu78(7)
acctsh(lM)
tsearch(3C)
ftype(3F)
file(1)
machid(l)
getty(lM)
greek(S)
types(S)
types(S)
mmt(l)
troff(l)
mv(S)
ctime(3C)
machid(l)
machid(l)
getpw(3C)
ulimit(2)
umask(2)
umask(l)
mount(lM)
umount(2)
un32(7)
unS2(7)
unS3(7)
unS3(7)
uname(2)
uname(l)

file. unget: undo a previous get of an SCCS
an SCCS file. unget: undo a previous get of

into input stream. ungetc: push character back
srand, rand: Fortran uniform random-number/

/seed48, Icong48: generate uniformly distributed/
a file. uniq: report repeated lines in

mktemp: make a unique file name. • • . . .
acu, dn: Automatic Call Unit (ACU) interface.

on-line/ rmv: remove unit from service before
diagnostics. rst: restore unit to service after on-line

units: conversion program.
boot procedures. unix boot: UNIX startup and

uuto, uupick: public UNIX-to-UNIX file copy.
unlink system calls. link, unlink: exercise link and

entry. unlink: remove directory
unlink: exercise link and unlink system calls. link,

umount: unmount a file system.
files. pack, peat, unpack: compress and expand

times of a file. touch: update access and modification
of programs. make: maintain, update, and regenerate groups

Isearch: linear search and update. .•.•••.
sync: update super-block. • .
sync: update the super block.

du: summarize disk usage. • . •
stat: statistical network useful with graphical/ .

id: print user and group IDs and names.
setuid, setgid: set user and group IDs.

character login name of the user. cuserid: get
/getgid, getegid: get real user, effective user, realJ

environ: user environment.
gcosmail: send mail to HIS user.

ulimit: get and set user limits.
logname: return login name of user.

/get real user, effective user, real group, and/
become super-user or another user. su: ...•.

the utmp file of the current user. /find the slot in
write: write to another user. •....•

mail, rmail: send mail to users or read mail.
wall: write to all users. . . • • • .

fuser: identify processes using a file or file/
statistics. ustat: get file system

gutil: graphical utilities. . . • . . .
modification times. utime: set file access and

utmp, wtmp: utmp and wtmp entry formats.
endutent, utmpname: access utmp file entry. /setutent,

ttyslot: find the slot in the utmp file of the current user.
entry formats. utmp, wtmp: utmp and wtmp

/pututline, setutent, end ute nt, utmpname: access utmp file/
clean-up. uuclean: uucp spool directory

uusub: monitor uucp network. . . . • . . •
uuclean: uucp spool directory clean-up.

control. uustat: uucp status inquiry and job
unix copy. uucp, uulog, uuname: unix to

copy. uucp, uulog, uuname: unix to unix
uucp, uulog, uuname: unix to unix copy. •

file copy. uuto, uupick: public UNIX-to-UNIX
and job control. uustat: uucp status inquiry

uusub: monitor uucp network.
UNIX-to-UNIX file copy. uuto, uupick: public

execution. uux: unix to unix command
val: validate sces file.

val: validate SCCS file.
/u3b, u3b5, vax: provide truth value about your processor/

abs: return integer absolute value. . • • . •

- 47 -

Permuted Index

unget(l)
unget(l)
ungetc(3S)
rand(3F)
drand48(3C)
uniq(I)
mktemp(3C)
acu(7)
rmv(IM)
rst(IM)
units(l)
unixboot(8)
uuto(lC)
link(IM)
unlink(2)
link(lM)
umount(2)
pack(l)
touch(l)
make(l)
Isearch(3C)
sync(2)
sync(I)
dU(I)
stat(lG)
id(I)
setuid(2)
cuserid(3S)
getuid(2)
environ(5)
gcosmail(lC)
ulimit(2)
logname(3X)
getuid(2)
su(l)
ttyslot(3C)
write(l)
mail(l)
wall(IM)
fuser(IM)
ustat(2)
gutil(lG)
utime(2)
utmp(4)
getut(3C)
ttyslot(3C)
utmp(4)
getut(3C)
uuclean(IM)
uusub(IM) .
uuclean(lM)
uustat(IC)
uucp(IC)
uucp(lC)
uucp(lC)
uuto(lC)
uustat(IC)
uusub(IM)
uuto(IC)
uux(lC)
val (I)
val(I)
machid(l)
abs(3C)

Permuted Index

cabs, zabs: Fortran absolute value. abs, iabs, dabs,
getenv: return value for environment name.

ceiling, remainder, absolute value functions. /fabs: floor,
true, false: provide truth values. ••••••.•••

return Fortran environment variable. getenv: • • • • . •
your/ pdpll, u3b, u3b5, vax: provide truth value about

7500ps: VAX-l 1/750 console operations.
verification program. vcf: VAX-l 1/780 configuration

7800ps: VAX-Il/780 console operations.
interface. vlx: VAX-Il/780 LSI console floppy

files between PDP-Il and VAX-Il/780 systems. /convert
vc: version control. • • • • •

verification program. vcf: VAX-l 1/780 configuration
option letter from argument vector. getopt: get

vcf: VAX-l 1/780 configuration verification program.
dskfmt, dskvfy: format and verify disk packs. • •

assert: verify program assertion.
vpr: Versatec printer spooler.
vp: Versatec printer. • •••
vc: version control.

get: get a version of an sees file.
sccsdiff: compare two versions of an sees file.

se: screen editor for video terminals.
mmt, mvt: typeset documents, view graphs, and slides. •
macro package for typesetting view graphs and slides. /troff

vpm: Virtual Protocol Machine.
vpmc: compiler for the virtual protocol machine.
vpmc: compiler for the virtual protocol machine.

floppy interface. vlx: V AX-Il /180 LSI console
systems with label checking. volcopy, labelit: copy file

file system: format of system volume. • • • • • • • • • •
vp: Versatec printer.

vpmset, vpmstart: connect/load VPM drivers and programmable/
vpmfmt: save and print VPM event traces. vpmsave,

vpm: Virtual Protocol Machine.
protocol machine. vpmc: compiler for the virtual
protocol machine. vpmc: compiler for the virtual •

event traces. vpmsave, vpmfmt: save and print VPM
print VPM event traces. vpmsave, vpmfmt: save and • •

VPM drivers and programmable/ vpmset, vpmstart: connect/load
drivers and/ vpmset, vpmstart: connect/load VPM

vpmtest: test KMe lines.
vpr: Versatec printer spooler.

newboot: load VTOC, prom patch, or lboot.
process. wait: await completion of

or terminate. wait: wait for child process to stop
for use. stgetty: wait on synchronous login line

to stop or terminate. wait: wait for child process
ftw: walk a file tree.

wall: write to al\ users.
wc: word count.
what: identify sees files.

signal. signal: specify what to do upon receipt of a
crashes. crash: what to do when the system
crashes. crash: what to do when the system

whodo: who is doing what. • • • •
who: who is on the system. . • .

who: who is on the system.
whodo: who is doing what.

ed: change . working directory.
chdir: change working directory.

get path-name of current working directory. getcwd:
pwd: working directory name.

write: write on a file. • • • • • •

- 48 -

• abs(3F)
getenv(3C)
f100r(3M)
true(l)
getenv(3F)
machid(l)
7500ps(8)
vcf(lM)
7800ps(8)
vlx(IM)
fscv(lM)
vc(l)
vcf(lM)
getopt(3C)
vcf(IM)
dskfmt(IM)
assert(3X)
vpr(l)
vp(7)
vc(l)
get(l)
sccsdiff(l)
se(l)
mmt(l)
mv(5)
vpm(7)
vpmc.dec(1 M)
vpmc.u3b(IM)
vlx(IM)
volcopy(IM)
fs(4)
vp(7)
vpmset(IM)
vpmsave(IM)
vpm(7)
vpmc.dec(1 M)
vpmc.u3b(IM)
vpmsave(l M)
vpmsave(IM)
vpmset(IM)
vpmset(IM)
vpmtest(IM)
vpr(l)
newboot(IM)
wait(l)
wait(2)
stgetty(1 M)
wait(2)
ftw(3C)
wal\(IM)
wc(l)
what(l)
signal(2)
crash.dec(8)
crash.u3b(8)
whodo(IM)
who(l)
who(l)
whodo(IM)
ed(l)
chdir(2)
getcwd(3C)
pwd(l)
write(2)

putpwent: write password file entry.
wall: write to all users. . •

write: write to another user. • •
write: write on a file.
write: write to another user.

open: open for reading or writing. • ••••••••
utmp. wtmp: utmp and wtmp entry formats.

formats. utmp. wtmp: utmp and wtmp entry
accounting records. fwtmp, wtmpfix: manipulate connect

hunt-the-wumpus. wump: the game of _ . • •
x25: BX.25 network interface.

install a BX.25 link. x25alnk, x25i1nk: attach or
link. x25clnk: change over a BX.25

BX.25 link. x25hlnk, x25dlnk: halt or detach a
detach a BX.25 link. x25hlnk, x25dlnk: halt or •

BX.25 link. x25alnk, x25ilnk: attach or install a •
remove a PVC on a link. x25ipvc, x25rpvc: install or
get status for a/ x25pvc, x25lnk: install, remove, or

remove, or get status for a/ x25pvc, x25lnk: install, ••
PVC on a link. x25ipvc, x25rpvc: install or remove a

list(s) and execute command. xargs: construct argument •
Fortran bitwise/ and, or, xor, not, Ishift, rshift:

jO, jl, jn, yO, yl, yn: Bessel functions.
jO, jl, jn, yO, yl, yn: Bessel functions.

compiler-compiler. yacc: yet another • • • • •
jO, jl, jn, yO, yl, yn: Bessel functions.

abs, iabs, dabs, cabs, zabs: Fortran absolute value.

- 49 -

Permuted Index

putpwent(3C)
wall(lM)
write(l)
write(2)
write(l)
opcn(2)
utmp(4)
utmp(4)
fwtmp(lM)
wump(6)
x2S(7)
x2Salnk(3C)
x2Sclnk(3C)
x2Shlnk(3C)
x2Shlnk(3C)
x2Salnk(3C)
x2Sipvc(3C)
x2Spvc(lM)
x2Spvc(lM)
x2Sipvc(3C)
xargs(l)
bool(3F)
bessel(3M)
bessel(3M)
yacc(l)
bessel(3M)
abs(3F)

INTRO(1M) INTRO(1M)

NAME
intro - introduction to system maintenance commands and application pro­
grams

DESCRIPTION
This section describes, in alphabetical order, commands that are used
chiefly for system maintenance and administration purposes. The com­
mands in this section should be used along with those listed in Section 1 of
the UNIX System User's Manual. References to other manual entries not of
the form name(lM), name(7) or name (8) refer to entries of that manual.

COMMAND SYNTAX
Unless otherwise noted, commands described in this section accept options
and other arguments according to the following syntax:

name [option(s)] lcmdarg(s))
where:

name

option

noargletter

argletter

optarg

cmdarg

The name of an executable file.

- noargletter(s) or,
- argletter<>optarg
where <> is optional white space.

A single letter representing an option without an argument.

A single letter representing an option requiring an argument.

Argument (character string) satisfying preceding argletter.

Path name (or other command argument) not beginning with
- or, - by itself indicating the standard input.

SEE ALSO
getopt(1), getopt(3C).
UNIX System User's Manual.
UNIX System Administrator's Guide.

DIAGNOSTICS

BUGS

Upon termination, each command returns two bytes of status, one supplied
by the system and giving the cause for termination, and (in the case of
"normal" termination) one supplied by the program (see wait(2) and
exit(2». The former byte is 0 for normal termination; the latter is cus­
tomarily 0 for successful execution and non-zero to indicate troubles such
as erroneous parameters, bad or inaccessible data, or other inability to cope
with the task at hand. It is called variously "exit code", "exit status", or
"return code", and is described only where special conventions are
involved.

Regretfully, many commands do not adhere to the aforementioned syntax.

- 1 -

I

I

ABT(lM) (3B20S only) ABT(IM)

NAME
abt - abort on-line diagnostics

SYNOPSIS
jdgnjbinjabt slot

DESCRIPTION
Abt is a diagnostic command which terminates the diagnostic request indi­
catedby the slot. Slot is a number from 0 to 9 reported by the Maintenance
Input Request Administrator (MIRA) whenever a dgn(IM) or rst(IM) com­
mand is invoked.

SEE ALSO
dgn(IM), dstart(IM), rst(IM).
3B DMERT Output Messages, OM-4COOO-Ol.

WARNING
Diagnostic commands are intended for use only by trained hardware
maintenance personnel.

- 1 -

ACCEPT(IM) ACCEPT(IM)

NAME
accept, reject - allow/prevent LP requests

SYNOPSIS
/usr /lib/aecept destinations
/usr /lib/reject [-r[reason]] destinations

DESCRIPTION

FILES

Accept allows lp(l) to accept requests for the named destinations. A destina­
tion can be either a printer or a class of printers. Use lpstat(l) to find the
status of destinations.

Reject prevents lp(l) from accepting requests for the named destinations. A
destination can be either a printer or a class of printers. Use lpstat(l) to
find the status of destinations. The following option is useful with reject.

- r[reason] Associates a reason with preventing /p from accepting
requests. This reason applies to all printers mentioned up to
the next -r option. Reason is reported by /p when users
direct requests to the named destinations and by lpstat(l). If
the -r option is not present or the -r option is given
without a reason, then a default reason will be used.

/usr/spool/lp/*
SEE ALSO

enable(1), lp(l), Ipadmin(1M), Ipsched(lM), Ipstat(1).

- 1 -

I

I

ACCT(IM) ACCT(IM)

NAME
acctdisk, acctdusg, accton, acctwtmp - overview of accounting and miscel­
laneous accounting commands

SYNOPSIS
/usr/lib/acet/acctdisk

/usr/lib/acct/acctdusg [-u file] [-p file]

/usr/lib/acet/accton [file]

/usr/lib/acct/acctwtmp "reason"

DFSCRIPTION

FILFS

Accounting software is structured as a set of tools (consisting of both C
programs and shell procedures) that can be used to build accounting sys­
tems. Acctsh(IM) describes the set of shell procedures built on top of the
C programs.

Connect time accounting is handled by various programs that write records
into /usr/adm/utmp, as described in utmp(4). The programs described in
acctcon(IM) convert this file into session and charging records, which are
then summarized byacctmerg(IM).

Process accounting is performed by the UNIX kernel. Upon termination of
a process, one record per process is written to a file (normally
/usr/adm/pacet). The programs in acctprc(lM) summarize this data for
charging purposes; acctcms(IM) is used to summarize command usage.
Current process data may be examined using acctcom(l).

Process accounting and connect time accounting (or any accounting records
in the format described in acct(4» can be merged and summarized into
total accounting records by acctmerg (see tacet format in acct(4». Prtacct
(see acctsh (lM» is used to format any or all accounting records.

Acctdisk reads lines that contain user 10, login name, and number of disk
blocks and converts them to total accounting records that can be merged
with other accounting records.

Acctdusg reads its standard input (usually from find / -print) and com­
putes disk resource consumption (including indirect blocks) by login. If
-u is given, records consisting of those file names for which acctdusg
charges no one are placed in file (a potential source for finding users trying
to avoid disk charges). If -p is given, file is the name of the password file.
This option is not needed if the password file is /etc/passwd.

Accton alone turns process accounting off. If file is given, it must be the
name of an existing file, to which the kernel appends process accounting
records (see acct(2) and acct(4».

Acctwtmp writes a utmp(4) record to its standard output. The record con­
tains the current time and a string of characters that describe the reason. A
record type of ACCOUNTING is assigned (see utmp(4». Reason must be a
string of 11 or less characters, numbers, $, or spaces. For example, the fol­
lowing are suggestions for use in reboot and shutdown procedures, respec­
tively:

acctwtmp 'uname' »/etc/wtmp
acctwtmp "file save" » /etc/wtmp

/etc/passwd
/usr/lib/acct

used for login name to user 10 conversions
holds all accounting commands listed in
sub-class 1M of this manual

- 1 -

ACCT(IM)

/usr/adm/pacct
/etc/wtmp

SEE ALSO

current process accounting file
login/logoff history file

ACCT(IM)

acctcms(lM), acctcom(l), acctcon(1M), acctmerg(lM), acctprc(lM),
acctsh(lM), fwtmp(1M), runacct(1M), acct(2), acct(4), utmp(4).
UNIX Accounting System in the UNIX System Administrator's Guide.

- 2 -

I

I

ACCTCMS(IM) ACCTCMS(1M)

NAME
acctcms - command summary from per-process accounting records

SYNOPSiS
/usr/lib/aeet/aeetcms [options] files

DESCRIPTION
Acctcms reads one or more files, normwly in the form described in acct(4).
It adds all records for processes that executed identically-named commands,
sorts them, and writes them to the standard output, normally using an
internal summary format. The options are:

-a Print output in AScn rather than in the internal summary format.
The output includes command name, number of times executed,
total kcore-minutes, total CPU minutes, total real minutes, mean
size (in K), mean CPU minutes per invocation, and "hog factor",
as in acctcom(l). Output is normally sorted by total kcore-minutes.

-c Sort by total CPU time, rather than total kcore-minutes.
-j Combine all commands invoked only once under "-other".
-& Sort by number of command invocations.
-s Any file names encountered hereafter are already in internal sum-

mary format.

A typical sequence for performing daily command accounting and for main­
taining a running total is:

SEE ALSO

acctcms file ... >today
cp total previoustotal
acctcms -s today previoustotal >total
acctcms -a -stoday

acct(1M) , acctcom(1), acctcon(IM), acctmerg(1M), acctprc(IM),
acctsh(IM), fwtmp(1M), runacct(IM), acct(2), acct(4), utmp(4).

- I -

ACCTCON(lM) ACCTCON(lM)

NAME
aectcon 1, aectcon2 - connect-time aecounting

SYNOPSIS
/usr/lib/acct/acctconl [options]

/usr/lib/aeet/aeetconl

DESCRIPTION
Acctconl converts a sequence of login/logoff records read from its standard
input to a sequence of records, one per login session. Its input should nor­
mally be redirected from /ete/wtmp. Its output is ASCII, giving device,
user ID, login name, prime connect time (seconds), non-prime connect
time (seconds), session starting time (numeric), and starting date and time.
The options are:

-p Print input only, showing line name, login name, and time (in
both numeric and date/time formats).

-t Acctconl maintains a list of lines on which users are logged in.
When it reaches the end of its input, it emits a session record for
each line that still appears to be active. It normally assumes that
its input is a current file, so that it uses the current time as the I
ending time for each session still in progress. The -t flag causes
it to use, instead, the last time found in its input, thus assuring
reasonable and repeatable numbers for non-current files.

-I file File is created to contain a summary of line usage showing line
name, number of minutes used, percentage of total elapsed time
used, number of sessions charged, number of logins, and number
of logoffs. This file helps track line usage, identify bad lines, and
find software and hardware oddities. Hang-up, termination of
login (1) and terminiation of the login shell generate a logoff
records, so that the number of logoffs is often three to four times
the number of sessions. See init(lM) and utmp(4).

-ofile File is filled with an overall record for the accounting period, giv­
ing starting time, ending time, number of reboots, and number of
date changes.

Acctcon2 expects as input a sequence of login session records and converts
them into total aecounting records (see taeet format in acct(4».

EXAMPLES

FILES

These commands are typically used as shown below. The file ctmp is
created only for the use of acctprc(lM) commands:

aectconl -t -llineuse -0 reboots <wtmp I sort +In +2 >ctmp
acctcon2 <ctmp I acctmerg >ctacct

/etc/wtmp

SEE ALSO

BUGS

aect(lM), aectcms(1M), acctcom(1), acctmerg(lM), acctprc(lM),
acctsh(lM), fwtmp(lM), runaect(lM), aect(2), acct(4), utmp(4).

The line usage report is confused by date changes. Use wtmpfix (see
jWtmp(lM» to correct this situation.

- 1 -

I

ACCTMERG (1M) ACCTMERG(lM)

NAME
acctmerg - merge or add total accounting files

SYNOPSIS
JusrJlibJacctJacctmerg [options] [file] ...

DESCRIPTION
Acctmerg reads its standard input and up to nine additional files, all in the
tacct format (see acct(4», or an ASCII version thereof. It merges these
inputs by adding records whose keys (normally user 10 and name) are
identical, and expects the inputs to be sorted on those keys. Options are:

-a Produce output in ASCII version of tacct.
-i Input files are in ASCII version of tacct.
-p Print input with no processing.
- t Produce a single record that totals all input.
-u Summarize by user 10, rather than user 10 and name.
-v Produce output in verbose ASCII format, with more precise notation

for floating point numbers.

The following sequence is useful for making "repairs" to any file kept in
this format:

SEE ALSO

acctmerg -v <filel >file2
edit file2 as desired . ..

acctmerg -a <file2 >filel

acct(lM), acctcms(lM), acctcom(l), acctcon(1M), acctprc(lM),
acctsh(1M), fwtmp(lM), runacct(1M), acct(2), acct(4), utmp(4).

- 1 -

ACCTPRC(1M) ACCTPRC(1M)

NAME
acctprcl, acctprc2 - process accounting

SYNOPSIS
/usr/lib/acct/acctprcl [ctmp]

/usr/lib/acct/acctprcl

DESCRIPTION

FILES

AcctprcJ reads input in the form described by acct(4), adds login names
corresponding to user IDs, then writes for each process an ASCII line giving
user ID, login name, prime CPU time (tics), non-prime CPU time (tics), and
mean memory size (in 64-byte units). If ctmp is given, it is expected to
contain a list of login sessions, in the form described in acctcon(lM),
sorted by user ID and login name. If this file is not supplied, it obtains
login names from the password file. The information in ctmp helps it dis­
tinguish among different login names that share the same user ID.

Acctprc2 reads records in the form written by acctprcJ, summarizes them by
user ID and name, then writes the sorted summaries to the standard output
as total accounting records.

These commands are typically used as shown below:

acctprcl ctmp </usr/adm/pacct I acctprc2 >ptacct

/ etc/passwd

SEE ALSO

BUGS

acct(1M), acctcms(lM), acctcom(1), acctcon(1M), acctmerg(lM),
acctsh(lM), fwtmp(1M), runacct(lM), acct(2), acct(4), utmp(4).

Although it is possible to distinguish among login names that share user
IDs for commands run normally, it is difficult to do this for those com­
mands run from cron(lM), for example. More precise conversion can be
done by faking login sessions on the console via the acctwtmp program in
acct(lM). '

- 1 -

I

I

ACCTSH(lM) ACCTSH(IM)

NAME
chargefee, ckpacct, dodisk, lastlogin, monacct, nulladm, prctmp, prdaily,
prtacct, runacct, shutacct, startup, turnacct - shell procedures for account­
ing

SYNOPSIS
/usr/lib/acct/chargefee login-name number

/usr/lib/acct/ckpacct [blocks]

/usr /lib/acct/dodisk

/usr/lib/acct/lastlogin

/usr/lib/acct/monacct number

/usr/lib/acct/nulladm file

/usr /lib/acct/prctmp

/usr/lib/acct/prdaily [mmdd]

/usr/lib/acct/prtacct file [·heading·]

/usr/lib/acct/runacct [mmdd] [mmdd state]

/usr/lib/acct/shutacct [·reason·]

/usr /lib/acct/startup

/usr/lib/acct/turnacct on I oft' I switch

DESCRIPTION
Chargefee can be invoked to charge a number of units to lOgin-name. A
record is written to /usr fadm/fee, to be merged with other accounting
records during the night.

Ckpacct should be initiated via cron(lM). It periodically checks the size of
/usr /adm/pacct. If the size exceeds blocks, 1000 by default, turnacct will
be invoked with argument switch. If the number of free disk blocks in the
/usr file system falls below 500, ckpacct will automatically turn off the col­
lection of process accounting records via the oft' argument to turnacct.
When at least this number of blocks is restored, the accounting will be
activated again. This feature is sensitive to the frequency at which ckpacct
is executed, usually by cron.

Dodisk should be invoked by cron to perform the disk accounting functions.

Lastlogin is invoked by runacct to update /usr/adm/acct/sum/loginlog,
which shows the last date on which each person logged in.

Monacct should be invoked once each month or each accounting period.
Number indicates which month or period it is. If number is not given, it
defaults to the current month (01-12). This default is useful if monacct is
to executed via cron(lM) on the first day of each month. Monacct creates
summary files in /usr /adm/acct/fiscal and restarts summary files in
/usr/adm/acct/sum.

Nulladm creates file with mode 664 and insures owner and group are Adm.
It is called by various accounting shell procedures.

Prctmp can be used to print the session record file (normally
/usr/adm/acct/nite/ctmp created byacctconl (see acctcon(lM».

Prdaily is invoked by runacct to format a report of the previous day's
accounting data. The report resides in /usr/adm/acct/sum/rprtmmdd
where mmdd is the month and day of the report. The current daily
accounting reports may be printed by typing prdaily. Previous days'
accounting reports can be printed by using the mmdd option and specifying

- 1 -

ACCTSH(1M) ACCTSH(IM)

FILES

the exact report date desired. Previous daily reports are cleaned up and
therefore inaccessible after each invocation of monaeet.

Prtaeet can be used to format and print any total accounting (taeet) file.

Runaeet performs the accumulation of connect, process, fee, and disk
accounting on a daily basis. It also creates summaries of command usage.
For more information, see runaeet(IM).

Shutacet should be invoked during a system shutdown (usually in
fete/shutdown) to turn process accounting off and append a "reason"
record to /ete/wtmp.

Startup should be called by /ete/re to turn the accounting on whenever the
system is brought up.

Turnacet is an interface to aecton (see acet(IM» to turn process accounting
on or off. The switch argument turns accounting off, moves the current
/usr/adm/paeet to the next free name in /usr/adm/paeetiner (where incr is
a number starting with 1 and incrementing by one for each additional paect
file), then turns accounting back on again. This procedure is called by
ckpacct and thus can be taken care of by the cron and used to keep paect to
a reasonable size.

/usr/adm/fee
/usr/adm/pacct
/usr/adm/pacct*

/etc/wtmp
/usr/adm/acct/nite
/usr/lib/acct

/usr/adm/acct/sum

accumulator for fees
current file for per-process accounting
used if pacct gets large and during
execution of daily accounting procedure
login/logoff summary
working directory
holds all accounting commands listed in
sub-class 1M of this manual
summary directory, should be saved

SEE ALSO
acct(1M), acctcms(IM), acctcom(1), acctcon(IM), acctmerg(IM),
acctprc(IM), fwtmp(IM), runacct(IM), acct(2), acct(4), utmp(4).

- 2 -

I

I

ACUSET(IM) (38208 only) ACUSET(1M)

NAME
acuset - connect ACUs and communication lines

SYNOPSIS
jetejaeuset filen

DESCR.IPTlON
The acuset command provides a means for dynamically associating tn8 ACU
minor devices with communication lines. The connections are specified in
filen; the format of this file is described below. Until these connections
have been made, a program cannot dial out on an ACU. The connections
can be changed dynamically. The only processes affected are those trying
to dial out on the connections being changed.

Pilen consists of one or more lines of the following form:

jdev jacu? unit port [line]

where jdevjacu? is the ACU minor device name, unit is the ACU unit
number, port is the port number, and line is the optional line number in an
ACU sharing arrangement.

Here is a sample file for four ACUs with no sharing arrangements.
jdev /acuO 0 0
/dev /acul 0 1
/dev /acu2 0 2
/dev /acu3 0 3

Here is a sample file for one ACU in a sharing arrangement with twelve
data sets.

/dev /acuO 0 0 1
/dev /acul 002
/dev /acu2 0 0 3
/dev /acu3 0 0 4
/dev /acu4 0 0 5
/dev /acu5 0 0 6
/dev /acu6 0 0 9
/dev jacu7 0 0 10
/dev /acu8 0 0 11
/dev /acu9 0 0 12
/dev/acul0 0 0 13
/dev /acu11 0 0 14

The line numbers correspond to physical slot numbers in the ACU sharing
hardware.

SEE AlSO
acu(7).

- 1 -

ATB(1M) (3B208 only) ATB(1M)

NAME
atb _- attach to an Address Translation Buffer

SYNOPSIS
/ete/atb command args

DFSCRIPTION
An Address Translation Buffer (ATB) is an associative memory that is used
to speed up the conversion of a virtual memory address to a physical
memory address. The 3B20S contains eight ATBs. ATB-O is used by the
operating system, ATB-l is shared by all user processes, ATB-2 through
A TB-7 are normally unused.

The atb command "attaches" itself to an unused ATB, i.e. becomes the sole
process using it, and then overlays itself with command. A process
"attached to" an ATB will run slightly faster if measured over a long period
of time.

WARNING
Super-user privileges are required.

SEE ALSO
sys3b(2).

- 1 -

I

I

BCOPY(IM) (Obsolescent) BCOPY(IM)

NAME
bcopy - interactive block copy

SYNOPSIS
jetcjbcopy

DESCRIPTION
Bcopy dates from a time when neither the UNIX file system nor the DEC
disk drives were as reliable as they are now. Bcopy copies from and to files
starting at arbitrary block (512-byte) boundaries.

The following questions are asked:

to:
offset:
from:
offset:
count:

(you name the file or device to be copied to).
(you provide the starting "to" block number).
(you name the file or device to be copied from).
(you provide the starting "from" block number).
(you reply with the number of blocks to be copied).

After count is exhausted, the from question is repeated (giving you a
chance to concatenate blocks at the to+offset+count location). If you
answer from with a carriage return, everything starts over.

Two consecutive carriage returns terminate bcopy.

SEE ALSO
cpio(1), dd(l).

- 1 -

BRC(IM) BRC(IM)

NAME
brc, bcheckrc, rc, powerfail - system initialization shell scripts

SYNOPSIS
/etc/brc
/etc/bcheckrc

/etc/rc

/etc/powerfail

DESCRIPTION
Except for powerfail, these shell procedures are executed via entries in
/etc/inittab by init(1M) when the system is changed out of SINGLE USER
mode. Power/ail is executed whenever a system power failure is detected.

The brc procedure clears the mounted file system table, /etc/mnttab (see
mnttab(4» , and loads any programmable micro-processors with their
appropriate scripts.

The bcheckrc procedure performs all the necessary consistency checks to
prepare the system to change into multi-user mode. It will prompt to set
the system date and to check the file systems with/sck(lM).

The rc procedure starts all system daemons before the terminal lines are
enabled for multi-user mode. In addition, file systems are mounted and
accounting, error logging, system activity logging and the Remote Job Entry
(RJE) system are activated in this procedure.

The power/ail procedure is invoked when the system detects a power failure
condition. Its chief duty is to reload any programmable micro-processors
with their appropriate scripts, if appropriate. It also logs the fact that a
power failure occurred.

SEE ALSO
init(lM), shutdown(1M), inittab(4), vpm(7).

- 1 -

I

CHECKALL{ 1M) CHECKALL (1M)

NAME
checkall - faster file system checking procedure

SYNOPSIS
letc/checkall

DESCRIPTION
The checkall procedure is a prototype and must be modified to suit local
conditions. The following will serve as a example:

If check the root file system by itself
fsck Idev IrpO

If dual fsck of drives 0 and 1
dfsck Idev Irrp[12345] - /dev /rrpll

In the above example (where Idev Irrpll is 320K blocks and
Ide v Irrp[ll34S] are each 65K or less), a previous sequential fsck took 19
minutes. The checkall procedure takes 11 minutes.

Dfsck is a program that permits an operator to interact with two fsck(IM)
programs at once. To aid in this, dfsck will print the file system name for
each message to the operator. When answering a question from dfsck, the
operator must prefix the response with a I or a 1 (indicating that the
answer (efers to the first or second file system group).

Due to the file system load balancing required for dual checking, the dfsck
command should always be executed through the checkall shell procedure.

In a practical sense, the file systems are divided up as follows:

dfsck file_systems_on_drive_O file_systems_on_drive_I
dfsck file_systems_on_drive_2 - file_systems_on_drive_3

A three drive system can be handled by this more concrete example
(assumes two large file systems per drive):

dfsck /dev/dsk31 /dev/dsk[I4] - /dev/dskI[I4] /dev/dsk34
Note that the first drive 3 file system is first in the jilesystemsl list and is
last in the jilesystems2 list assuring that references to that drive will not
overlap at execution time.

WARNINGS
1. Do not use dfsck to check the root file system.

2. On a check that requires a scratch file (see -t above), be careful not to
use the same temporary file for the two groups (this is sure to scramble
the file systems).

3. The dfsck procedure is useful only if the system is set up for multiple
physical I/O buffers.

SEE ALSO
fsck(IM).
Setting up UNIX in the UNIX System Administrator's Guide.

- 1 -

CHMAP(IM) (38208 only) CHMAP(lM)

NAME
chmap - change the diagnostic spooler map file

SYNOPSIS
/dgn/bin/chmap

DESCRIPTION

FILES

Chmap informs the on-line diagnostic spooler to reread the spooler map
file. The spooler map file. /dgn/dgnc/map. contains a list of at most 10 file
names. Each file name is contained on a separate line. All diagnostic out­
put messages will be appended to each file that is specified within the map
file. If the first line of the map file is the character string stamp. then all
diagnostic output messages are prefixed with a time stamp.

/dgn/dgnc/map

WARNING
Diagnostic commands are intended for use only by trained hardware
maintenance personnel.

- 1 -

CHROOT(IM) CHROOT(IM)

NAME
chroot - change root directory for a command

SYNOPSIS
/etc/chroot newroot command

DESCRIPTION
The given command is executed relative to the new root. The meaning of
any initial slashes (f) in path names is changed for a command and any of
its children to newroot. Furthermore, the initial working directory is
newroot.

Notice that:

chroot newroot command >x

will create the file x relative to the original root, not the new one.

This command is restricted to the super-user.

The new root path name is always relative to the current root: even if a
chroot is currently in effect, the newroot argument is relative to the current
root of the running process.

SEE ALSO
chdir(2).

BUGS
One should exercise extreme caution when referencing special files in the
new root file system.

- 1 -

CLRI(IM) CLRI(1M)

NAME
clri - clear i-node

SYNOPSIS
/etc/clri file-system i-number ...

DESCRIPTION
Clrl writes zeros on the 64 bytes occupied by the i-node numbered i­
number. File-system must be a special file name referring to a device con­
taining a file system. After elri is executed, any blocks in the affected file
will show up as "missing" in an fsek(IM) of the file-system. This com­
mand should only be used in emergencies and extreme care should be
exercised.

Read and write permission is required on the specified file-system device.
The i-node becomes allocatable.

The primary purpose of this routine is to remove a file which for some rea­
son appears in no directory. If it is used to zap an i-node which does
appear in a directory, care should be taken to track down the entry and
remove it. Otherwise, when the i-node is reallocated to some new file, the
old entry will still point to that file. At that point removing the old entry
will destroy the new file. The new entry will again point to an unallocated
i-node, so the whole cycle is likely to be repeated again and again.

SEE ALSO
fsck(IM), fsdb(IM), ncheck(IM), fs(4).

BUGS
If the file is open, elri is likely to be ineffective.

- I -

I

CONFlG(lM) (38208 only) CONFIG(lM)

NAME
config - configure a UNIX system

SYNOPSIS
/ete/eonfig [system [master]]

DESCRIPTION

FILES

Config is a program that takes a description of a UNIX system and generates
the. necessary configuration information for the operating system. This
includes hardware, driver and parameter specifications. System is used for
the description file. The default file is fete/system. Information defining
the allowable configuration is kept in the master file. The default file is
fete/master.

The user must supply the system definition file; the supplied version con­
tains the minimal configuration for the processor.

/etc/system
/etc/master
conf.c

default system description file
default input master device table
output configuration table file

SEE ALSO
sysdef(lM), master(4), system(4).
Setting up UNIX in the UNIX System Administrator's Guide.

DIAGNOSTICS
Diagnostics are routed to the standard error output and are self­
explanatory .

- 1 -

CONFIG(IM) (DEC only) CONFIG(1M)

NAME
config - configure a UNIX system

SYNOPSIS
/ete/eonfig [-n 1 [-t 1 [-I file 1 [-e file 1 [-m file 1 dfile

DESCRIPTION
Config is a program that takes a description of a UNIX system and generates
two files. One file provides information regarding the interface between the
hardware and device handlers. The other file is a C program defining the
configuration tables for the various devices on the system.

The -n option produces a non-separated I and D space low.s core image
for the PDP-II (this is for small systems, i.e., PDPII /23 and 11/34).

The -I option specifies the name of the hardware interface file; low.s is
the default name on the PDP-ll; univee.e is the default name on the VAX-
11.

The -e option specifies the name of the configuration table file; eonr.e is
the default name.

The - m option specifies the name of the file that contains all the informa­
tion regarding supported devices; jete/master is the default name. This
file is supplied with the UNIX system and should not be modified unless the
user fully understands its construction.

The -t option requests a short table of major device numbers for character
and block type devices. This can facilitate the creation of special files.

The user must supply dfile; it must contain device information for the
user's system. This file is divided into two parts. The first part contains
physical device specifications. The second part contains system-dependent'
information. Any line with an asterisk (.) in column I is a comment.

All configurations are assumed to have the following devices:

one DLlI (for the system console)
one KWII-L line clock or KWII-P programmable clock

with standard interrupt vectors and addresses. These two devices must not
be specified in dfile. Note that UNIX needs only one clock, but can handle
both types.

First Part of dfile
Each line contains four or five fields, delimited by blanks and/or tabs in the
following format:

devname vector address bus number

where devname is the name of the device (as it appears in the fete/master
device table), vector is the interrupt vector location (octal), address is the
device address (octal), bus is the bus request level (4 through 7), and
number is the number (decimal) of devices associated with the correspond­
ing controller; number is optional, and if omitted, a default value which is
the maximum value for that controller is used.

There are certain drivers that may be provided with the system, that are
actually pseudo-device drivers; that is, there is no real hardware associated
with the driver. Drivers of this type are identified on their respective
manual entries. When these devices are specified in the description file,
the interrupt vector, device address, and bus request level must all be zero.

If the device is a VAX-ll massbus adapter, then vector is the adapter nexus
number, and address must be zero.

- 1 -

I

CONFlG(IM) (DEC only) CONFlG(IM)

Second Part of djile
The second part contains three different types of lines. Note that all
specifications of this part are required, although their order is arbitrary.

I. Root/pipe/dump device specification

Three lines of three fields each:

root devname minor
pipe devname minor
dump devname minor

where minor is the minor device number (in octal).

2. Swap device specification

One line that contains five fields as follows:

swap devname minor swplo nswap

where swplo is the lowest disk block (decimal) in the swap area and nswap
is the number of disk blocks (decimal) in the swap area.

3. Parameter specijication

Several lines of two fields each as follows (number is decimal):

buffers
sabufs
inodes
files
mounts
coremap
swapmap
calls
proes
maxproe
texts
clists
hashbuf
physbuf
xlSlinks
xlSbufs
xlSmap
xlSbytes
ibloeks
power
mesg
sema
shmem
maus

EXAMPLE

number
number
number
number
number
number
number
number
number
number
number
number
number
number
number
number
number
number
number
o or I
o or I
o or I
o or I
o or I

(zero on the VAX-ll)

(PDP-ll only)

(PDP-ll only)

(VAX-ll only)
(PDP-ll only)

To configure a PDP-ll/70 system with the following devices:
one RP06 disk drive controller with 6 drives
one DHll asynchronous multiplexer with 16 lines (default number)
one DMll modem control with 16 lines (for the DHll)
one DHII asynchronous multiplexer with 8 lines
one DMll modem control with 8 lines (for the DHll)
one LPII line printer
one TUI6 tape drive controller with 2 drives
one DUI asynchronous interface

Note that UNIX only supports DHII units that require corresponding DMII

- 2-

CON FIG (1M) (DEC only) CONFIG(IM)

units. It is wise to specify them in DH-DM pairs to facilitate understanding
the configuration. Note also that, in the preceding case, the DL11 that is
specified is in addition to the DL11 that was part of the initial system. We
must also specify the following parameter information:

root device is an RP06 (drive 0, section 0)
pipe device is an RP06 (drive 0, section 0)
swap device is an RP06 (drive 1, section 4),

with a swplo of 6000 and an nswap of 2000
dump device is a TUl~ (drive 0)
number of buffers is 35
number of system addressable buffers is 12
number of processes is 150
maximum number of processes per user ID is 25
number of mounts is 8
number of inodes is 120
number of files is 120
number of calls is 30
number of texts is 35
number of character buffers is 150
number of coremap entries is 50
number of swap map entries is 50
power fail recovery is to be included
messages are to be included
semaphores are to be included
one psuedo device driver for the Operating System Profiler

The actual system configuration would be specified as follows:
rp06 254 776700 5 6
dhll 320 760020 5
dm 11 300 770500 4
dhll 330 760060 5 8
dmll 304 770510 4 8
Ipll 200 775514 5
tu 16 224 772440 5 2
dIll 350 775610 5
prf 0 0 0
root rp06 0
pipe rp06 0
swap rp06 14 6000 2000
dump tu16 0
* Comments may be inserted in this manner
buffers 35
sabufs 12
procs 150
maxproc 25
mounts 8
inodes 120
files 120
calls 30
texts 35
clists 150
coremap 50
swapmap 50
power 1
msg 1
serna 1

- 3 -

I

CONFIG(IM) (DEC only) CONFIG(IM)

FILES
/etc/master
low.s
univec.c
conf.c

default input master device table
default output hardware interface file for PDP-II
default output hardware interface file for the VAX-II
default output configuration table file

SEE ALSO
sysdef(I M), master(4).
Setting up UNIX in the UNIX System Administrator's Guide.

DIAGNOSTICS

BUGS

Diagnostics are routed to the standard output and are self-explanatory.

The -t option does not know about devices that have aliases. For exam­
ple, an TEI6 (an alias for an TU(6) will show up as an TUl6; however, the
major device numbers are always correct.

- 4 -

CRASH{IM) CRASH{lM)

NAME
crash - examine system images

SYNOPSIS
/etc/crash [system] [namelist]

DESCRIPTION
Crash is an interactive utility for exammmg an operating system core
image. It has facilities for interpreting and formatting the various control
structures in the system and certain miscellaneous functions that are useful
when perusing a dump.

The arguments to crash are the file name where the system image can be
found and a namelist file to be used for symbol values.

The default values are Ide, /mem and lanix; hence, crash with no argu­
ments can be used to examine an active system. If a system image file is
given, it is assumed to be a system core dump and the default process is set
to be that of the process running at the time of the crash. This is deter­
mined by a value stored in a fixed location by the dump mechanism.

COMMANDS
Input to crash is typically of the form:

command [options] [structures to be printed].
When allowed, options will modify the format of the printout. If no specific
structure elements are specified, all valid entries will be used. As an exam­
ple, proc - 12 15 3 would print process table slots 12, IS and 3 in a long
format, while proc would print the entire process table in standard format.

In general, those commands that perform I/O with addresses assume hexa­
decimal on 32-bit machines and octal on 16-bit machines.

The current repertory consists of:

aser f list of process table entries]
Aliases: aarea, a_area, a.
Print the user structure of the named process as determined by the
information contained in the process table entry. If no entry
number is given, the last executing process's information will be
printed. Swapped processes produce an error message.

trace [-r] [list of process table entries]
Aliases: t.
Generate a kernel stack trace of the current process. If the -r
option is used, the trace begins at the saved stack frame pointer in
Up. Otherwise the trace starts at the bottom of the stack and
attempts to find valid stack frames deeper in the stack. If 110 entry
number is given, the last executing process's information will be
printed.

Up [stack frame pointer]
Aliases: r5, fp.
Print the program's idea of the start of the current stack frame (set
initially from a fixed location in the dump) if no argument is given,
or set the frame pointer to the supplied value.

stack [list of process table entries]
Aliases: stk, s, kernel, k.
Format a dump of the kernel stack of a process. The addresses
shown are virtual system data addresses rather than true physical
locations. If no entry number is given, the last executing process's
information will be printed.

- 1 -

I

CRASH(lM)

proc [- [r]] [list of process table entries]
Aliases: ps, p.

CRASH(lM)

Format the process table. The -r option causes only runnable
processes to be printed. The - alone generates a longer listing.

pcb [list of process table entries]
Print the process control block of the current process. The process
control block is a part of the user area (VAX-llj780 only). If no
entry number is given, the last executing process's information will
be printed.

ioode [-] [list of inode table entries]
Aliases: ioo, i.
Format the inode table. The - option will also print the inode data
block addresses.

file [list of file table entries]
Aliases: files, f.
Format the file table.

mouot [list of mount table entries]
Aliases: mot, m.
Format the mount table.

text [list of text table entries]
Aliases: txt, x.
Format the text table.

tty [type] [-] [list of tty entries]
Aliases: term, dz, dh.
Print the tty structures. The type argument determines which struc­
ture will be used (such as kl, dh, dz, or dzb; the last type is remem­
bered). The - option prints the stty(l) parameters for the given
line.

stat Print certain statistics found in the dump. These include the panic
string (if a panic occurred), time of crash, system name, and the
registers saved in low memory by the dump mechanism.

var Aliases: tuoables, tuoable, tuoe, v.
Print the tunable system parameters.

buf [list of buffer headers]
Aliases: hdr, bufhdr.
Format the system buffer headers.

buffer [format] [list of buffers]
Alias: b.
Print the data in a system buffer according to format. If format is
omitted, the previous format is used. Valid formats include
decimal, octal, hex, character, byte, directory, ioode, and write.
The last creates a file in the current directory (see FILES) containing
the buffer data.

callout Aliases: calls, call, c, timeout, time, tout.
Print all entries in the callout table.

map [list of map names]
Format the named system map structures.

om [list of symbols]
Print symbol value and type as found in the namelist file.

ts [list of text addresses]
Find the closest text symbols to the given addresses.

- 2 -

CRASH(lM) CRASH(lM)

ds [list of data addresses]
Find the closest data symbols to the given addresses.

od [symbol name or address] [count] [format]
Aliases: dump, rd.
Dump count data values starting at the symbol value or address
given according to jormot. Allowable formats are octal, longoct,
decimal, longdec, character, hex, or byte.

Escape to shell.

q Exit from crash.

? Print synopsis of commands.

ALIASES

FILES

There are built in aliases for many of the jormots as well as those listed for
the commands. Some of them are:

byte b.
character char, c.
decimal dec, e.
directory direct, dir, d.
hexadecimal hexadec, hex, h, x.
in ode ino , i.
longdec Id, D.
longoct 10, o.
octal oct, o.
write w.

jusr jincludejsysj*.h
jdevjmem

header files for table and structure info
default system image file

junix default namelist file
buf.' files created containing buffer data

SEE ALSO

BUGS

mount(IM), nm(l), ps(l), sh(l), stty(l), crash(8).

Most flags are abbreviated and will have little meaning to the uninitiated
user. A source listing of the system header files at hand would be most use­
ful while using crash.

Stack tracing of the current process on a running system doesn't work.

- 3 -

I

CRON(lM) CRON(lM)

NAME
cron - clock daemon

SYNOPSIS
/etc/cron

DESCRIPTION

FILES

Cron executes commands at specified dates and times according to the
instructions in the file /usr /lib/crontab. Because cron never exits, it
should be executed only once. This is best done by running cron from-the
initialization process through the file /etc/rc (see init(1M».

The file crontab consists of lines of six fields each. The fields are separated
by spaces or tabs. The first five are integer patterns that specify in order:

minute (0-59),
hour (0-23),
day of the month (1-31),
month of the year (1-12),
and day of the week (0-6, with O=Sunday).

Each of these patterns may contain:
a number in the (respective) range indicated above;
two numbers separated by a minus (indicating an inclusive range);
a list of numbers separated by commas (meaning all of these
numbers); or
an asterisk (meaning all legal values).

The sixth field is a string that is executed by the shell at the specified
time(s). A % in this field is translated into a new-line character. Only the
first line (up to a % or the end of line) of the command field is executed by
the shell. The other lines are made available to the command as standard
input.

Cron examines crontab once a minute to see if it has changed; if it has,
cron reads it. Thus it takes only a minute for entries to become effective.

/usr/lib/crontab
/usr/adm/cronlog

SEE ALSO
init(IM), sh(I).

DIAGNOSTICS

BUGS

A history of all actions by cron are recorded in /usr/adm/cronlog.

Cron reads crontab only when it has changed, but it reads the in-core ver­
sion of that table once a minute. A more efficient algorithm could be used.
The overhead in running cron is about one percent of the CPU, exclusive of
any commands executed by cron.

- 1 -

DCOPY(IM) DCOPY(IM)

NAME
dcopy - copy file systems for optimal access time

SYNOPSIS
jetcjdcopy [- sX] [-an] [-d] [-v] [-ffsize:isize] inputfs outputfs

DESCRIPTION
Dcopy copies file system inputfs to outputfs. Inputfs is the existing file sys­
tem; outPUtfs is an appropriately sized file system, to hold the reorganized
result. For best results inputfs should be the raw device and outpur(s should
be the block device. Dcopy should be run on unmounted file systems (in
the case of the root file system, copy to a new pack). With no arguments,
dcopy copies files from inputfs compressing directories by removing vacant
entries, and spacing consecutive blocks in a file by the optimal rotational
gap. The possible options are

-sX supply device information for creating an optimal organization of
blocks in a file. The forms of X are the same as the -s option
ofJsck(lM).

- an place the files not accessed in n days after the free blocks of the
destination file system (default for n is 7). If no n is specified
then no movement occurs.

-d leave order of directory entries as is (default is to move sub­
directories to the beginning of directories).

-v currently reports how many files were processed, and how big
the source and destination freelists are.

-Vsize[:isize]
specify the outPUtfs file system and inode list sizes (in blocks). If
not given, the values from the inputfs are used.

Dcopy catches interrupts and quits and reports on its progress. To ter­
minate dcopy, send a quit signal and dcopy will no longer catch interrupts or
quits. Dcopy also attempts to modify its command line arguments so its
progress can be monitored with ps(1).

SEE ALSO
fsck(lM), mkfs(lM), ps(l).

- 1 -

I

DEVNM(IM) DEVNM(IM)

NAME
devnm - device name

SYNOPSIS
/ete/devom [names]

DESCRIPTION
Devnm identifies the special file associated with the mounted file system
where the argument name resides (as a special case, both the block device
name and the swap device name is printed for the argument name / if
swapping is done on the same disk section as the root file system). Argu­
ment names must be full path names.

This command is most commonly used by /ete/re (see bcheckrc(lM» to
construct a mount table entry for the root device.

EXAMPLE

FILES

The command:
/ete/devnm /usr

produces
rpl /usr

if /usr is mounted on /dev /rpl.

/dev/rp*, /dev/dsk*
/etc/mnttab

SEE ALSO
bcheckrc(lM), setmnt(lM).

- 1 -

DF(lM) DF(1M)

NAME
df - report number of free disk blocks

SYNOPSIS
df [-t] [-f] [file-systems]

DESCRIPTION

FILES

Df prints out the number of free blocks and free i-nodes available for on­
line file systems by examining the counts kept in the super-blocks; file­
systems may be specified either by device name (e.g., Ide'/dskl) or by
mounted directory name (e.g., lusr). If the file-systems argument is
unspecified, the free space on all of the mounted file systems is printed.

The -t flag causes the total allocated block figures to be reported as well.

If the -f flag is given, only an actual count of the blocks in the free list is
made (free i-nodes are not reported). With this option, df will report on
raw devices.

Idev/dsb
/etc/mnttab

SEE ALSO
fs(4), mnttab(4).

- 1 -

I

DGN(lM) (382OS only) DGN(1M)

NAME
dgn - initiate on-line diagnostics

SYNOPSIS
jdgnjbinjdgn name unit [options]

DESCRIPTION
Dgn initiates on-line diagnostics on the device indicated by name and unit.
Options is a string of keyword parameters separated from each other by
white space. Dgn parses the parameter string options and verifies that each
keyword parameter does not contain any missing components or values that
are out-of-range.

The following options are recognized, each as a separate argument:

raw

uel

pb=x[-y]

rpt=x

tip

Print the diagnostic results of every phase and all failures.
By default, only the final results and the first five failures of
each failing phase will be printed.
Unconditionally execute the diagnostic with no early termi­
nation (i.e., the diagnostic will be run to completion in spite
of failures). By default, the diagnostic will terminate after
the first failing phase.
Execute only the specified phase numbers. May be either a
single decimal number or a range of numbers. The letter x
denotes the beginning phase number and y the ending
phase number.
Repeats the diagnostic x times. The maximum value
allowed is 256.
Executes the Trouble Location Procedure at the conclusion
of the diagnostic. This process analyzes diagnostic failures
and generates a weighted list of faulty circuit packs. This
option must not be used in conjunction with the uel option.

file=filename Routes all output messages into a file named filename,
instead of the user's terminal. Filename is opened for
appending and is relative to the directory jdgnjdgne unless
a full pathname is specified.

eont This option is effective only when name and unit is an lOP
By default, after an lOP is diagnosed, all of its Peripheral
Controllers (PCs) are diagnosed automatically. The eont
option causes only the lOP diagnostics to be run. Note that
MHOs are never automatically diagnosed when name and
unit is a OFC.

bu=name unit This option allows a helper unit identified by name and unit
to be specified. For example, when diagnosing the mag­
netic tape controller (i.e., UN32), a diagnostic test tape with
a write ring must be mounted on the specified helper unit.
The following example shows how one might invoke diag­
nostics using the helper unit option:

dgn un32 0 ph=5 hu=mt 2
SEE ALSO

rmv{lM), rst(lM).
3B DMERT Output Messages, OM-4COOO-Ol.

WARNING
Diagnostic commands are intended for use only by trained hardware
maintenance personnel.

- 1 -

DON(IM) (38208 only) DON(IM)

NAME
don, doff, disp - device logically on, logically off or display status

SYNOPSIS
fete/don unit unitnum [pump-file]
fete/don all [sysfile]

fete/doff unit unitnum

/ete/disp unit unitnum
/ete/disp all [sysfile]
/ete/disp all - [sysfile]
/ete/disp all -i [sysfile]
/ete/disp all -e [incr] [sysfile]

DESCRIPTION

FILES

Don restores to service (logically connects to the system) a hardware unit.
Unitnum is the unit number of that particular unit. For example,

don tn4 1

restores to service the tn4 whose unit number is 1. Pump-file in directory I
/firm is pumped into that specified device. The default pump-file is unit.
Don all reads sysfile, default is fete/system, and performs a don unit unit-
num [pump-file] on each lOP, DFC and associated peripherals listed in that
file. Lines prefixed with a , (comment) or ! (no-pump) will be skipped.
Don all is primarily useful when the system is brought to multi-user mode.

Doff removes from service (logically disconnects) unitnum of type unit.

Disp prints the status of unitnum of type unit (e.g., "out of service",
"undergoing diagnostics"). Disp all reads sysfile, default is fete/system,
and performs a disp unit unitnum on each lOP, DFC and associated peri­
pherals listed in that file. Lines prefixed with a , are skipped. Output is in
the form of:

unit-unitnum chan dev status

for an lOP or DFC and

slot unit-unitnum status

for each device on that lOP or DFC. If the - argument is given. a status
diagram of the hardware is printed on the terminal. Known terminals from
the environment parameter $TERM (see environ (5» are:

$TERM Value Terminal Type
4420 TTY 4420
vt100 VT 100
2621 HP 2621
2645 HP 2645

Peripherals out of service are displayed in inverse video and invalid entries
are blinked (shown by • and I, respectively, under the device slot on
Hewlett Packard terminals). The i flag makes the program interactive; the
e flag redraws the status of the machine every incr seconds, default is 30 (a
? is printed under each entry that has changed status since the invocation
of the program).

/etc/master default table for hardware specifications
/etc/system default system configuration file

SEE ALSO
config(1M), master(4), system(4).

- 1 -

I

DSKFMT(IM) (38208 only) DSKFMT(IM)

NAME
dskfmt, dskvfy - format· and verify disk packs

SYNOPSIS
/etc/dskfmt unit [start [end]]

/etc/dskvfy unit [start [end]]

DESCRIPTION

FILES

Dskfmt formats a disk pack and dskvfy verifies the format of a disk pack.
Unit specifies the unit number of the disk drive to be used. Note that this
drive must be in the out of service state and the controller for this drive
must be in the in service state. Start and end specify the starting and end­
ing cylinders, inclusive, for the operation to be done. If no arguments are
given the default for start is 0 and for end is the last cylinder on the disk.

/dev /dgn/mhd
/dev /dgn/dfc

SEE ALSO
dsk(7).

DIAGNOSTICS
If dskvfy finds an error in the format of the disk the numbers of the
cylinders found to be bad will be printed.

- 1 -

DSTART(IM) (382OS only) DSTART(1M)

NAME
dstart, dstop, dstat - start, stop and find status of on-line diagnostics

SYNOPSIS
/dgn/bin/dstart

/dgn/bin/dstop

/dgn/bin/dstat

DESCRIPTION

FILES

Dstart enables on-line diagnostics to be run by automatically starting both
the Output Message Spooler Program (SPOOLER) and the Maintenance
Request Input Administrator Program (MIRA), respectively. These two
diagnostics programs are only started if they're not already running. Also,
both program's process ID numbers are reported in parentheses. On-line
diagnostics require that both these programs be started before any diagnos­
tics requests are accepted.

The spooler arranges for all diagnostic output to be logged in
/dgn/dgnc/log. When the spooler is restarted, /dgn/dgnc/log is moved to
/dgn/dgnc/oldlog and a new /dgn/dgnc/log is started. All output is also
appended to each file mentioned in the map file, /dgn/dgnc/map (see
chmap(lM)).

Dstop stops both the SPOOLER and MIRA programs only if they are
currently running. Otherwise, no explicit action is taken. In either case, an
appropriate message is reported indicating what action did occur.

Dstat reports the current status of both the SPOOLER and MIRA diagnostic
programs. If both programs are currently running a message indicating that
they are running is reported along with their respective process ID numbers.
Otherwise, a message indicating that they are not running is reported.

/ dgn/ dgnc/log
/dgn/dgnc/map

spooler output message log.
list of file names for routing spooler output messages.

SEE ALSO
dgn(lM), rmv(lM), rst(IM).

WARNING
Diagnostic commands are intended for use only by trained hardware
maintenance personnel.

- I -

I

I

EMULCNTRL (1M) (3B208 only) EMULCNTRL(1M)

NAME
emulcntrl - perform 3270 emulation control functions

SYNOPSIS
jetcjemulcntrl device function [arg]

DESCRIPTION

FILES

Emulcntrl is used to communicate with the 3270 emulation controller
driver. Device is the name of the emulation controller to use (e.g.,
jdev jemcO). Function is a string indicating the operation to perform. Some
functions require an additional argument argo Valid junction strings and
additional arguments are as follows:

on Start the 3270 emulation script associated with device.

off

ascii

ebcdic

pollid

selid

delay

Stop the 3270 emulation script associated with device.

This 3270 emulation controller is to be ASCII. The ASCII 3270
script must be loaded on the associated physical device.

This 3270 emulation controller is to be EBCDIC. The EBCDIC 3270
script must be loaded on the associated physical device. Controllers
are EBCDIC by default.

Change the POLL character for this controller to argo Arg must be
the decimal value of the character desired.

Change the SELECT character for this controller to argo Arg must
be the decimal value of the character desired.

Set the time delay before transmitting EOT's to argjlO seconds.
The default is 2 seconds.

trace Force the script to trace certain events.

Except for starting and stopping, these functions should be performed
before starting the script.

jdev/emc?

/lib/a3270scr

/lib/e3270scr

3270 emulation controller devices

ASCII 3270 script

EBCDIC 3270 script

SEE ALSO
emulload(lM), emulstat(lM), vpmset(lM), emulio(7).

DIAGNOSTICS
Emulcntrl fails if the function cannot be performed, e.g., changing the POLL
character on a running controller.

- 1 -

EMULLOAD(lM) (38208 only) EMULLOAD(lM)

NAME
emulload - load and start 3270 emulation script

SYNOPSIS
/ete/emulload

DESCRIPTION

FILES

The emulload command file is used to load the 3270 emulation protocol
script into the physical device, set the proper options, and start execution of
the script. Emul/oad will need local modification to use the proper hardware
device, set the proper options, or to start more than one emulation con­
troller.

As distributed, ernul/oad contains the following:

/etc/vpmset /dev /emcO /dev /un53.0
/etc/emulcntrl /dev /emcO ascii
/etc/vpmstart /dev /un53.0 6 /lib/a3270scr
/etc/emulcntrl /dev/emcO on

This command file will connect the emulation controller and physical line,
set the controller to ASCII mode, load the ASCII emulation script, and start
execution of the script. Other controller options are described in
emulcnITI (1 M).

The /ete/re file should call /ete/emulload when going to multi-user state.
The fete/shutdown file should halt any controllers that were started in
/ete/re. For example, the entry in fete/shutdown for the emulload com­
mand shown above would be:

/etc/emulcntrl /dev/emcO off

/dev/emc? 3270 emulation controller devices

/lib/a3270scr ASCII 3270 script

/lib/e3270scr EBCDIC 3270 script

SEE ALSO
emulcntrl(lM), emulstat(lM), vpmset(lM), emulio(7).

- 1 -

I

I

EMULSTAT(IM) (38208 only) EMULSTAT(lM)

NAME
emulstat - get 3270 emulation controller/terminal status

SYNOPSIS
/ete/emulstat device

DESCRIPTION

FILES

Emulstat reports the status of device. Device may be a 3270 emulation con­
troller or terminal. The status is reported as hexadecimal values represent­
ing the following:

flags The value of the device flags. Possible flag values for controllers
or terminals are given in emulio(7).

code

station

A value used by the driver for indicating certain error conditions
or return values.

For terminals, this is the value of the station (controller)
identification byte. For controllers, it is the value of the Polling
byte used by the remote system.

terminal For terminals, this is the value of the terminal identification byte.
For controllers, it is the value of the Selection byte used by the
remote system.

dev This value indicates the physical hardware device being used by
this controller (e.g., the un53 minor device number).

Emulstat will fail if the controller has not been started.

/dev/emc?

/dev/emt*

/lib/a3270scr

/lib/e3270scr

3270 emulation controller devices

3270 emulation terminal devices

ASCII 3270 script

EBCDIC 3270 script

SEE ALSO
emulcntrl(lM), emulload(1M), vpmset(lM), emulio(7).

- 1 -

ERRDEAD(1M) ERRDEAD(IM)

NAME
errdead - extract error records from dump

SYNOPSIS
/etc/errdead dumpfile [namelist]

DESCRIPTION

FILES

When hardware errors are detected by the system, an error record that con­
tains information pertinent to the error is generated. If the error-logging
daemon e"demon(lM) is not active or if the system crashes before the
record can be placed in the error file, the error information is held by the
system in a local buffer. E"dead examines a system dump (or memory),
extracts such error records, and passes them to errpt(lM) for analysis.

The dumpfile specifies the file (or memory) that is to be examined. The
system namelist is specified by namelist; if not given, /unix is used.

/unix
/usr/bin/errpt
/usr/tmp/errXXXXXX

system namelist
analysis program
~emporary file

DIAGNOSTICS
Diagnostics may come from either e"dead or errpt.
intended to be self-explanatory.

SEE ALSO
errdemon(lM), errpt(lM).

- 1 -

In either case, they are I

I

ERRDEMON(IM) ERRDEMON(IM)

NAME
errdemon - error-logging daemon

SYNOPSIS
JusrJlibJerrdemoD [file]

DESCRIPTION

FILES

The error logging daemon e"demon collects error records from the operat­
ing system by reading the special file Jdev Jerror and places them in file. If
file is not specified when the daemon is activated, JusrJadmJerrfile is used.
Note that file is created if it does not exist; otherwise, error records are
appended to it, so that no previous error data is lost. No analysis of the
error records is done by e"demon; that responsibility is left to e"pt(lM).
The error-logging daemon is terminated by sending it a software kill signal
(see signal(2». Only the super-user may start the daemon, and only one
daemon may be active at any time.

Jdev Jerror source of error records
/usr/adm/errfile repository for error records

DIAGNOSTICS
The diagnostics produced by e"demon are intended to be self-explanatory.

SEE ALSO
errpt(IM), errstop(IM), kill(I), err(7).

- 1 -

ERRPT(lM) ERRPT(lM)

NAME
errpt - process a report of logged errors

SYNOPSIS
errpt [optio ns] [files]

DESCRIPTION

FILES

E"pt processes data collected by the error logging mechanism
(e"demon(1M» and generates a report of that data. The default report is a
summary of all errors posted in the files named. Options apply to all files
and are described below. If no files are specified, errpt attempts to use
jusrjadmjerrfile as file.

A summary report notes the options that may limit its completeness,
records the time stamped on the earliest and latest errors encountered, and
gives the total number of errors of one or more types. Each device sum­
mary contains the total number of unrecovered errors, recovered errors,
errors unabled to be logged, I/O operations on the device, and miscellane­
ous activities that occurred on the device. The number of times that errpt
has difficulty reading input data is included as read errors.

Any detailed report contains, in addition to specific error information, all
instances of the error logging process being started and stopped, and any
time changes (via date(l» that took place during the interval being pro­
cessed. A summary of each error type included in the report is appended
to a detailed report.

A report may be limited to certain records in the following ways:

-s date Ignore all records posted earlier than date, where date has
the form mmddhhmmyy, consistent in meaning with the
date(l) command.

-e date

-a
-d devlist

-pn

-f

/usr/adm/errfile

Ignore all records posted later than date, whose form is as
described above.

Produce a detailed report that includes all error types.

A detailed report is limited to data about devices given in
devlist, where devlist can be one of two forms: a list of
device identifiers separated from one another by a
comma, or a list of device identifiers enclosed in double
quotes and separated from one another by a comma
and/or more spaces. E"pt is familiar with the common
form of identifiers (e.g., rs03, RS04, hs; see Section 7 of
this volume). For the 3B20S the devices for which errors
are logged are DFC, lOP, and MT. For Digital Equipment
Corporation machines, the (block) devices for which
errors are logged are RP03, RP04, RP05, RP06, RP07,
RS03, RS04, TSll, TUlO, TU16, TU78, RK05, RK06,
RK07, RM05, RM80, and RFll. Additional identifiers are
int and mem which include detailed reports of stray­
interrupt and memory-parity type errors respectively.

Limit the size of a detailed report to n pages.

In a detailed report, limit the reporting of block device
errors to unrecovered errors.

default error file

SEE ALSO
errdemon (1 M), errfile(4).

- 1 -

I

I

ERRSTOP (1M) ERRSTOP(1M)

NAME
errstop - terminate the error-logging daemon

SYNOPSIS
/etc/errstop [namelist J

DESCRIPTION

FILES

The error-logging daemon e"demon(IM) is terminated by using errstop.
This is accomplished by executing ps(l) to determine the daemon's iden­
tity and then sending it a software kill signal (see signal(2»; /unix is used
as the system namelist if none is specified. Only the super-user may use
e"stop.

/unix default system namelist

DIAGNOSTICS
The diagnostics produced by e"stop are intended to be self-explanatory.

SEE ALSO
errdemon(IM), ps(I), kill(2).

- I -

FF(IM) (not on PDP-fl) FF(lM)

NAME
ff - list file names and statistics for a file system

SYNOPSIS
/ete/ff [options] special

DESCRIPTION
Ff reads the i-list and directories of the special file, assuming it to be a file
system, saving i-node data for files which match the selection criteria. Out­
put consists of the path name for each saved i-node, plus any other file
information requested using the print options below. Output fields are posi­
tional. The output is produced in i-node order; fields are separated by tabs.
The default line produced by ffis:

path-name i-number

With al1 options enabled, output fields would be:

path-name i-number size uid

The argument n in the option descriptions that fol1ow is used as a decimal
integer (optional1y signed), where +n means more than n, -n means less
than n, and n means exactly n. A day is defined as a 24 hour period.

- I Do not print the i-node number after each path name.

-I

-p prefIX

-8

-u
-an
-mn
-en

-nfile

Generate a supplementary list of all path names for multiply
linked files.

The specified prefix will be added to each generated path
name. The default is ..

Print the file size, in bytes, after each path name.

Print the owner's login name after each path name.

Select if the i-node has been accessed in n days.

Select if the i-node has been modified in n days.

Select if the i-node has been changed in n days.

Select if the i-node has been modified more recently than the
argument file.

-i i-node-list Generate names for only those i-nodes specified in i-node-list.

EXAMPLES
To generate a list of the names of al1 files on a specified file system:

ff -I /dev /diskroot

To produce an index of files and i-numbers which are on a file system and
have been modified in the last 24 hours:

ff - m -1 /dev /diskusr > /log/incbackup/usr/tuesday

To obtain the path names for i-nodes 451 and 76 on a specified file system:
ff -i 451,76 /dev/rrp7

SEE ALSO

BUGS

finc(IM), find(I), frec(IM), ncheck(IM).

Only a single path name out of any possible ones will be generated for a
multiply linked i-node, unless the -I option is specified. When -I is
specified, no selection criteria apply to the names generated. All possible
names for every linked file on the file system will be included in the output.

On very large file systems, memory may run out before ff does.

- 1 -

I

I

FILESAVE(1M) FILESA VE (l M)

NAME
filesave. tapesave - daily/weekly UNIX file system backup

SYNOPSIS
/etc/filesa ve. ?
/etc/tapesa ve

DESCRIPTION
These shell scripts are provided as models. They are designed to provide a
simple. interactive operator environment for file backup. Filesave.? is for
daily disk-to-disk backup and tapesave is for weekly disk-to-tape.

The suffix.? can be used to name another system where two (or more)
machines share disk drives (or tape drives) and one or the other of the sys­
tems is used to perform backup on both.

SEE ALSO
shutdown(l M). volcopy(lM).

- 1 -

FINC(1M) (not on PDP-II) FINC(1M)

NAME
fine - fast incremental backup

SYNOPSIS
fine [selection-criteria] file-system raw-tape

DESCRIPTION
Fine selectively copies the input file-system to the output raw-tape . The cau­
tious will want to mount the input file-system read-only to insure an accu­
rate backup, although acceptable results can be obtained in read-write
mode. The tape must be previously labelled by labelit (see vo/copy(1M)).
The selection is controlled by the selection-criteria, accepting only those
inodes/files for whom the conditions are true.

It is recommended that production of a fine tape be preceded by the.ff com­
mand, and the output of .ff be saved as an index of the tape's contents.
Files on a fine tape may be recovered with the free command.

The argument n in the selection-criteria which follow is used as a decimal
integer (optionally signed), where +n means more than n, -n means less
than n, and n means exactly n. A day is defined as a 24 hours.

-an

-mn
-en

-nfile

EXAMPLES

True if the file has been accessed in n days.

True if the file has been modified in n days.

True if the i-node has been changed in n days.

True for any file which has been modified more recently
than the argument file.

To write a tape consisting of all files from file-system JUST modified in the
last 48 hours:

fine -m -2 /dev/rdiskusr /dev/rtpO

SEE ALSO
cpio(l), ff(lM), frec(lM), volcopy(1M).

- 1 -

I

I

FORMAT(IM) (V AX stand-alone only) FORMAT(IM)

NAME
format - format and/or check RP06 and RM05 disk packs

DESCRIPTION
Format will format new RP06 or RM05 packs and check used packs (with
write inhibited). The program reports the location and type of errors
encountered, including ECC correctable error burst sizes.

EXECUTION
The following example shows how to load format on a VAX-ll /780 with a
UNIX updated floppy disc:

»>H<cr>
HALTED AT nnnnnnnn

»>B<cr>

$$

CPU HALTED
INIT SEQ DONE
HALT INST EXECUTED
HALTED AT nnnnnnnn
LOAD DONE, nnnnnnnnn BYTES LOADED

To execute format, type /stand/format after the standalone shell prompt
$S. The formatter will print out its command vocabulary, and proceed
inter-actively. If one wishes to format a pack on disk drive 1, for example,
the command is dU. The program will double check format requests, as
pack contents will be destroyed.

COMMANDS

FILES

m n MBA with drive doing the format is n. (defaults to 0)
d n drive with the pack to be formatted or checked is n. (drive

number must be between 1 and 7)
f format pack
c check pack format
q quit
v print vocabulary
R n set the error report level to n.
X will tell you about the available report levels.

The X command will explain the Report Level options the first time it is
executed. Subsequent execution by the operator or by the program during
error logging, will merely print the information defined by the current
report level.

/stand/format

SEE ALSO
7800ps(8).

- 1 -

FR.BC(IM) (not on PDP-II) FR.BC(lM)

NAME
frec - recover files from a backup tape

SYNOPSIS
/etc/frec [-p path] [-f reqfile] raw-tape i-number:name •••

DESCR.ImON
Free recovers files from the specified raw-tape backup tape written by
valeopy(IM) or jinc(1M), given their i-numbers. The data for each recovery
request will be written into the file given by name .

The -p option allows you to specify a default prefixing path different from
your current working directory. This will be prefixed to any names that are
not fully qualified, i.e. that do not begin with / or ./. If any directories are
missing in the paths of recovery names they will be created.

-p path Specifies a prefixing path to be used to fully qualify any
names that do not start with / or ./.

-f reqfile Specifies a file which contains recovery requests. The for­
mat is i-number:newname, one per line.

EXAMPLES
To recover a file, i-number 1216 when backed-up, into a file named junk in
your current working directory:

frec /dev/rmtO 1216:junk
To recover files with i-numbers 14156, 1232, and 3141 into files
/usr/src/cmd/a, /usr/src/cmd/b and /usr/joe/a.c:

frec -p /usr/src/cmd /dev /rmtO 14156:a 1232:b
3141 :/usr/joe/a.c

SEE ALSO

BUGS

cpio(l), ff(IM), finc(IM), volcopy(IM).

While paving a path (i.e. creating the intermediate directories contained in a
path name) free can only recover inode fields for those directories contained
on the tape and requested for recovery.

- 1 -

FSCK(IM) FSCK(IM)

NAMB
fsck, dfsck - file system consistency check and interactive repair

SYNOPSIS
jetcjfsck [-y] [-n] [-sX] [-SX] [-t file] [-q] [-D] [-f] [file­
systems]

jetcjdfsck [options I] filsysl ••• - [options2] filsys2 ...

DESCRIPTION
Fsck

Fsek audits and interactively repairs inconsistent conditions for UNIX file
systems. If the file system is consistent then the number of files, number of
blocks used, and number of blocks free are reported. If the file system is
inconsistent the operator is prompted for concurrence before each correc­
tion is attempted. It should be noted that most corrective actions will result
in some loss of data. The amount and severity of data lost may be deter­
mined from the diagnostic output. The default action for each consistency
correction is to wait for the operator to respond yes or no. If the operator
does not have write permissionfsek will default to a ~n action.

Fsek has more consistency checks than its predecessors eheek, deheek,
feheek, and ieheek combined.

The following options are interpreted by fsek.

-y Assume a yes response to all questions asked by fsek.

-n Assume a no response to all questions asked by fsek; do not open
the file system for writing.

-sX Ignore the actual free list and (unconditionally) reconstruct a new
one by rewriting the super-block of the file system. The file system
should be unmounted while this is done; if this is not possible, care
should be taken that the system is quiescent and that it is rebooted
immediately afterwards. This precaution is necessary so that the old,
bad, in-core copy of the superblock will not continue to be used, or
written on the file system.

The -sX option allows for creating an optimal free-list organization.
The following forms of X are supported for the following devices:

-s3 (RP03)
-s4 (RP04, RP05, RP06)
-sBlocks-per-cylinder:Blocks-to-skip (for anything else)

If X is not given, the values used when the file system was created
are used. If these values were not specified, then the value 400:7 is
used.

-sx Conditionally reconstruct the free list. This option is like -sX above
except that the free list is rebuilt only if there were no discrepancies
discovered in the file system. Using -S will force a no response to
all questions asked by fsek. This option is useful for forcing free list
reorganization on uncontaminated file systems.

-t If fsek cannot obtain enough memory to keep its tables, it uses a
scratch file. If the -t option is specified, the file named in the next
argument is used as the scratch file, if needed. Without the -t Bag,
fsek will prompt the operator for the name of the scratch file. The
file chosen should not be on the file system being checked, and if it
is not a special file or did not already exist, it is removed when fsek
completes.

- 1 -

FSCK(lM) FSCK(lM)

-q Quiet fsck. Do not print size-check messages in Phase 1. Unrefer­
enced fifos will silently be removed. If fsck requires it, counts in the
superblock will be automatically fixed and the free list salvaged.

- D Directories are checked for bad blocks. Useful after system crashes.

-f Fast check. Check block and sizes (Phase 1) and check the free list
(Phase 5). The free list will be reconstructed (Phase 6) if it is neces­
sary.

If no file-systems are specified, fsck will read a list of default file systems
from the file /etc/checklist.

Inconsistencies checked are as follows:
1. Blocks claimed by more than one inode or the free list.
2. Blocks claimed by an inode or the free list outside the range

of the file system.
3. Incorrect link counts.
4. Size checks:

Incorrect number of blocks.
Directory size not 16-byte aligned.

5. Bad inode format.
6. Blocks not accounted for anywhere.
7. Directory checks:

File pointing to unallocated inode.
Inode number out of range.

8. Super Block checks:
More than 65536 inodes.
More blocks for in odes than there are in the file sys­
tem.

9. Bad free block list format.
10. Total free block and/or free inode count incorrect.

Orphaned files and directories (allocated but unreferenced) are, with the
operator's concurrence, reconnected by placing them in the lost+found
directory, if the files are nonempty. The user will be notified if the file or
directory is empty or not. If it is empty, fsck will silently remove them.
Fsck will force the reconnection of nonempty directories. The name
assigned is the inode number. The only restriction is that the directory
lost+found must preexist in the root of the file system being checked and
must have empty slots in which entries can be made. This is accomplished
by making lost+found, copying a number of files to the directory, and then
removing them (beforefsck is executed).

Checking the raw device is almost always faster and should be used with
everything but the root file system.

Dfsck
Dfsck allows two file system checks on two different drives simultaneously.
options] and options2 are used to pass options to fsck for the two sets of file
systems. A - is the separator between the file system groups.

The dfsck program permits an operator to interact with two fsck(1M) pro­
grams at once. To aid in this, dfsck will print the file system name for each
message to the operator. When answering a question from dfsck, the
operator must prefix the response with a 1 or a 2 (indicating that the
answer refers to the first or second file system group).

Do not use dfsck to check the root file system.

- 2 -

FSCK(lM) FSCK(lM)

FILES
/etc/checklist
/ etc/ checkall

contains default list of file systems to check.
optimizing dfsck shell file.

SEE ALSO

BUGS

checkall(1M), clri(1M), ncheck(1M), checklist(4), fs(4), crash(8).
Setting up UNIX in the UNIX System Administrator's Guide.

Inode numbers for. and •• in each directory should be checked for validity.

DIAGNOSTICS
The diagnostics produced by fsck are intended to be self-explanatory.

- 3 -

FSCV(lM) (DEC only) FSCV(lM)

NAME
fscv - convert files between PDP-ll and VAX-ll/780 systems

SYNOPSIS
lete/fse, -, ispecial [ospecial]
lete/fse, -p ispecial [ospecial]

DFSCRIPTION
Fscv converts file systems between PDP-ll and VAX-ll/780 formats. The
super block, free list, and in odes are converted to the format of the output
file. Fscv may be executed on PDP-ll and VAX processors. The mandatory
flag specifies the format of the converted file system:

-, Convert file system from PDP-ll to VAX format.

-p Convert file system from VAX to PDP-ll format.

[special is the name of a special file containing a file system to be converted
(e.g.; Ide'/rrpl). The optional ospecia/ is the name of the special file to
receive the results of the conversion. If ospecia/ is specified the entire con­
tents of ispecial are copied to ospecia/ before the conversion is performed.
If ospecial is not specified an in-place conversion of ispecial is performed.
The following items should be noted before executingfscv:

1. A file system consistency check (fsck(1M» should be performed on
ispecial immediately prior to executingfscv.

2. Neither ispecia/ nor the optional ospecia/ should contain a mounted
file system during execution of fscv. Modification to either the input
or the output file system while fscv is executing will probably corrupt
the converted file system.

3. A backup of ispecial (see vo/copy(1M» is highly recommended if an
in-place conversion is to be performed. System crashes, 1/0 errors,
etc., during execution of fscv may destroy the file system contained
in ispecial. Also, if the optional ospecial is specified any data con­
tained in that special file will be over written.

4. If the optional ospecial is specified, this special file must be large
enough to contain the entire contents of ispecial. See the appropriate
special files in section 4.

EXAMPLFS

BUGS

Copy and convert a file system from PDP-ll to VAX format:
/etc/fscv -v /dev /rrpO /dev /rrplO

Perform an in-place conversion from VAX to PDP-ll format:
letc/fscv -p /dev /rrplO

The boot block is not modified during conversion. The resulting file sys­
tem will not be bootable. No data contained in the files of the file system
are modified.

SEE ALSO
fsck(lM), volcopy(lM).

- 1 -

I

FSDB(IM) FSDB(1M)

NAME
fsdb - file system debugger

SYNOPSIS
/etc/fsdb special [-]

DESCRIPTION
Fsdb can be used to patch up a damaged file system after a crash. It has
conversions to translate block and i-numbers into their corresponding disk
addresses. Also included are mnemonic offsets to access different parts of
an i-node. These greatly simplify the process of correcting control block
entries or descending the file system tree.

Fsdb contains several error checking routines to verify i-node and block
addresses. These can be disabled if necessary by invoking fsdb with the
optional - argument or by the use of the 0 symbol. (Fsdb reads the i-size
and f-size entries from the superblock of the file system as the basis for
these checks.)

Numbers are considered decimal by default. Octal numbers must be
prefixed with a zero. During any assignment operation, numbers are
checked for a possible truncation error due to a size mismatch between
source and destination.

Fsdb reads a block at a time and will therefore work with raw as well as
block I/O. A buffer management routine is used to retain commonly used
blocks of data in order to reduce the number of read system calls. All
assignment operations result in an immediate write-through of the
corresponding block.

The symbols recognized by fsdb are:
absolute address
i convert from i-number to i-node address
b convert to block address
d directory slot offset
+ , - address arithmetic
q quit
>, < save, restore an address

numerical assignment
= + incremental assignment

decremental assignment =. character string assignment
o error checking flip flop
p general print facilities
f file print facility
B byte mode
W word mode
D double word mode

escape to shell

The print facilities generate a formatted output in various styles. The
current address is normalized to an appropriate boundary before printing
begins. It advances with the printing and is left at the address of the last
item printed. The output can be terminated at any time by typing the
delete character. If a number follows the p symbol, that many entries are
printed. A check is made to detect block boundary overflows since logically
sequential blocks are generally not physically sequential. If a count of zero
is used, all entries to the end of the current block are printed. The print
options available are:

- 1 -

FSDB(lM)

i
d
o
e
c
b

print as i-nodes
print as directories
print as octal words
print as decimal words
print as characters
print as octal bytes

FSDB(lM)

The f symbol is used to print data blocks associated with the current i­
node. If followed by a number, that block o'f the file is printed. (Blocks
are numbered from zero.) The desired print option letter follows the block
number, if present, or the f symbol. This print facility works for small as
well as large files. It checks for special devices and that the block pointers
used to find the data are not zero.

Dots, tabs and spaces may be used as function delimiters but are not neces­
sary. A line with just a new-line character will increment the current
address by the size of the data type last printed. That is, the address is set
to the next byte, word, double word, directory entry or i-node, allowing the
user to step through a region of a file system. Information is printed in a
format appropriate to the data type. Bytes, words and double words are
displayed with the octal address followed by the value in octal and decimal.
A .B or .D is appended to the address for byte and double word values,
respectively. Directories are printed as a directory slot offset followed by
the decimal i-number and the character representation of tbe entry name.
Inodes are printed with labeled fields describing each element.

The following mnemonics are used for i-node examination and refer to the
current working i-node:

EXAMPLES
386i

In=4

In=+l

fc

2i.fd

dSi.fc

md mode
In link count
uid user ID number
gid group ID number
sz file size
afI. data block numbers (0 - 12)
at access time
mt modification time
maj major device number
min minor device number

prints i-number 386 in an i-node format. This nOw
becomes the current working i-node.

changes the link count for the working i-node to 4.

increments the link count by 1.

prints, in ASCII, block zero of the file associated with the
working i-node.

prints the first 32 directory entries for the root i-node of
this file system.

changes the current i-node to that associated with the Sth
directory entry (numbered from zero) found from the
above command. The first logical block of the file is then
printed in ASCII.

S128.pOo

2i.aOb.d7=3

prints the superblock of this file system in octal.

changes the i-number for the seventh directory slot in the
root directory to 3. This example also shows how several
operations can be combined on one command line.

- 2 -

I

FSDB(IM) FSDB(lM)

d7 .nm = "name" changes the name field in the directory slot to the given
string. Quotes are optional when used with om if the first
character is alphabetic.

a2b.pOd prints the third block of the current in ode as directory
entries.

SEE ALSO
fsck(1M), dir(4), fs(4).

- 3 -

FTS(lM) (382OS only) FTS(lM)

NAME
fts - Field Test Set interface

SYNOPSIS
/ete/fts find util-id
/ete/fts stat file
/ete/Cts set hex-num command args

DESCRIPTION
Fts provides an interface to the 3B20S Field Test Set (FTS). The FlS is a
hardware device for tracing the execution of a process based on its utility
ID.

For UNIX, the utility ID of a process is a 24 bit quantity divided into two
fields. By default: the low order 16 bits contain the i-number of the process
file, and the high order 8 bits contain the minor device number of the
filesystem on which the process file exists.

After a fork(2) system call, the child process's utility ID is the same as the
parent's. After an exec(2) system call, if the process's utility ID had previ­
ously been modified (see below), it remains unchanged, otherwise it is set
to the default value.

The following options are recognized by fts:

find util-id Prints on the standard output, the device name and path name
of a file that has utility ID of util-id. Util-id is interpreted as a
hexadecimal constant.

statjile Prints on the standard output, the utility ID ofjile.

sethex-num command args

SEE ALSO

Changes its own utility ID, and then overlays itself with com­
mand. The new utility ID is as follows: the high order 8 bits
have the value -1 (all bits set), and the low order 16 bits are
set to hex-num. Hex-num is interpreted as a hexadecimal con­
stant.

exec(2), fork(2), sys3b(2).

- 1 -

I

FUSER(lM) FUSER(lM)

NAME
fuser - identify processes using a file or file structure

SYNOPSIS
jetejruser [-ku] files [-] [[- ku] files]

DESCRIPTION
Fuser lists the process IDs of the processes using the files specified as argu­
ments. For block special devices, all processes using any file on that device
are listed. The process ID is followed by c, p or r if the process is using the
file as its current directory, the parent of its current directory (only when in
use by the system), or its root directory, respectively. If the - u option is
specified, the login name, in parentheses, also follows the process ID. In
addition, if the - k option is specified, the SIGKILL signal is sent to each
process. Only the super-user can terminate another user's process (see
ki/l(2)). Options may be respecified between groups of files. The new set
of options replaces the old set, with a lone dash canceling any options
currently in force.

The process IDs are printed as a single line on the standard output,
separated by spaces and terminated with a single new line. All other output
is written on standard error.

EXAMPLES

FILES

fuser -ku jdevjdskl?
will terminate all processes that are preventing disk drive one from
being unmounted if typed by the super-user, listing the process ID
and login name of each as it is killed.

fuser - u / etc/passwd
will list process IDs and login names of processes that have the
password file open.

fuser - ku /dev /dskl? -u /etc/passwd
will do both of the above examples in a single command line.

Note that the above device names for disks are generic to the 3B20S and
may be different on other processors.

/unix
/dev/kmem
/dev/mem

for namelist
for system image
also for system image

SEE ALSO
mount(lM), ps{l), kill(2), signal(2).

- 1 -

FWTMP(IM) FWTMP(IM)

NAME
fwtmp, wtmpfix - manipulate connect accounting records

SYNOPSIS
/usr/lib/acct/fwtmp [-ie]
/usr/lib/acct/wtmpfix [files]

DESCR.IPTION
Fwtmp

Fwtmp reads from the standard input and writes to the standard output,
converting binary records of the type found in wtmp to formated ASCII
records. The ASCII version is useful to enable editing, via ed(l), bad
records or general purpose maintenance of the file.

The argument -ie is used to denote that input is in ASCII form, and output
is to be written in binary form.

Wtmpfix

FILES

Wtmpfix examines the standard input or named files in wtmp format,
corrects the time/date stamps to make the entries consistent, and writes to
the standard output. A - can be used in place of files to indicate the stan­
dard input. If time/date corrections are not performed, acctconl will fault
when it encounters certain date change records.

Each time the date is set, a pair of date change records are written to
/ete/wtmp. The first record is the old date denoted by the string old time
placed in the line field and the ftag OLD_TIME placed in the type field of
the <utmp.h> structure. The second record specifies the new date and is
denoted by the string new time placed in the line field and the ftag
NEW_TIME placed in the type field. Wtmpfix uses these records to syn­
chronize all time stamps in the file.

In addition to correcting time/date stamps, wtmpfix will check the validity of
the name field to ensure that it consists soley of alphanumeric characters, a
S or spaces. If it encounters a name that is considered invalid, it will
change the login name to INVALID and write a diagnostic to the standard
error. In this way, wtmpfix reduces the chance that acctconl will fail when
processing connect accounting records.

/etc/wtmp
/usr /include/utmp.h

SEE ALSO
acct(1M), acctcms(lM), acctcom(1), acctcon(lM),acctmerg(lM),
acctprc(lM), acctsh(1M), runacct(lM), acct(2), acct(4), utmp(4).

- 1 -

GETTY{lM) GETTY(1M)

NAME
getty - set terminal type, modes, speed, and line discipline

SYNOPSIS
jetejgetty [- h] [- t timeout] line [speed [type [linedisc]]
jetejgetty -e file

DESCRIPTION
Getty is a program that is invoked by init(lM). It is the second process in
the series, (init-getty-Iogin-shell) that ultimately connects a user with UNIX.
Initially getty generates a system identification message from the values
returned by the uname(2) system call. Then, if jetejissue exists, it outputs
this to the user's terminal, followed finally by the login message field for
the entry it is using from jetejgettydefs. Getty reads the user's login name
and invokes the login(l) command with the user's name as argument.
While reading the name, getty attempts to adapt the system to the speed
and type of terminal being used.

Line is the name of a tty line in jdev to which getty is to attach itself. Getty
uses this string as the name of a file in the jdev directory to open for read­
ing and writing. Unless getty is invoked with the - h flag, getty will force a
hangup on the line by setting the speed to zero before setting the speed to
the default or specified speed. The -t flag plus timeout in seconds,
specifies that getty should exit if the open on the line succeeds and no one
types anything in the specified number of seconds. The optional second
argument, speed, is a label to a speed and tty definition in the file
jetejgettydefs. This definition tells getty what speed to initially run at, what
the login message should look like, what the inital tty settings are, and what
speed to try next should the user indicate that the speed is inappropriate.
(By typing a <break> character.) The default speed is 300 baud. The
optional third argument, type, is a character string describing to getty what
type of terminal is connected to the line in question. Getty understands the
following types:

none
vt61
vt100
hp4S
clOO

default
DEC vt6l
DEC vt100
Hewlett-Packard HP45
Concept 100

The default terminal is nonep; i.e., any crt or normal terminal unknown to
the system. Also, for terminal type to have any meaning, the virtual termi­
nal handlers must be compiled into the operating system. They are avail­
able, but not compiled in the default condition. The optional fourth argu­
ment, linedisc, is a character string describing which line discipline to use in
communicating with the terminal. Again the hooks for line disciplines are
available in the operating system but there is only one presently available,
the default line discipline, LDISCO.

When given no optional arguments, getty sets the speed of the interface to
300 baud, specifies that raw mode is to be used (awaken on every charac­
ter), that echo is to be suppressed, either parity allowed, newline characters
will be converted to carriage return-line feed, and tab expansion performed
on the standard output. It types the login message before reading the
user's name a character at a time. If a null character (or framing error) is
received, it is assumed to be the result of the user pushing the "break"
key. This will cause getty to attempt the next speed in the series. The series
that getty tries is determined by what it finds in jetejgettydefs.

- 1 -

GETIY(IM) GETIY(IM)

FILFS

The user's name is terminated by a new-line or carriage-return character.
The latter results in the system being set to treat carriage returns appropri­
ately (see ioctl(2».

The user's name is scanned to see if it contains any lower-case alphabetic
characters; if not, and if the name is non-empty, the system is told to map
any future upper-case characters into the corresponding lower-case charac­
ters.

In addition to the standard UNIX erase and kill characters (I and @l), getty
also understands \b and ·U. If the user uses a \b as an erase, or U as a
kill character, getty sets the standard erase character and/or kill character to
match.

Getty also understands the "standard" FSS2 protocols for erasing, killing
and aborting a line, and terminating a line. If getty sees the FSS erase char­
acter, _, or kill character, $, or abort character, &, or the FSS line termina­
tors, / or !, it arranges for this set of characters to be used for these func­
tions.

Finally, login is called with the user's name as an argument. Additional
arguments may be typed after the login name. These are passed to login,
which will place them in the environment (see login (1».

A check option is provided. When getty is invoked with the -c option and
file, it scans the file as if it were scanning /etc/gettydefs and prints out the
results to the standard output. If there are any unrecognized modes or
improperly constructed entries, it reports these. If the entries are correct, it
prints out the values of the various flags. See ioctl(2) to interpret the
values. Note that some values are added to the flags automatically.

/ etc/ gettydefs
/etc/issue

SEE ALSO

BUGS

ct(lC), init(1M), 10gin(1), ioctl(2), gettydefs(4), inittab(4), tty(7).

While getty does understand simple single character quoting conventions, it
is not possible to quote the special control characters that getty uses to
determine when the end of the line has been reached, which protocol is
being used, and what the erase character is. Therefore it is not possible to
login via getty and type a I, @' /, !, _, backspace, AU, -D, or & as part of
your login name or arguments. They will always be interrepted as having
their special meaning as described above.

- 2 -

I

INIT(IM) INIT(1M)

NAME
init, telinit - process control initialization

SYNOPSIS
letc/init [0123456SsQq]

I etc/telinit [0123456sSQqabc]

DESCRIPTION
Init

Init is a general process spawner. Its primary role is to create processes from
a script stored in the file letc/inittab (see inittab(4». This file usually has
init spawn getty's on each line that a user may log in on. It also controls
autonomous processes required by any particular system.

Init considers the system to be in a run-level at any given time. A run-level
can be viewed as a software configuration of the system where each
configuration allows only a selected group of processes to exist. The
processes spawned by init for each of these run-levels is defined in the inittab
file. Init can be in one of eight run-levels, 0-6 and S or s. The run-level is
changed by having a privileged user run letc/init (which is linked to
fetcltelinit). This user spawned init sends appropriate signals to the orginal
init spawned by the operating system when the system was rebooted, telling
it which run-level to change to.

Init is invoked inside UNIX as the last step in the boot procedure. The first
thing init does is to look for letc/inittab and see if there is an entry of the
type initdefault (see inittab(4». If there is, init uses the run-level specified in
that entry as the initial run-level to enter. If this entry is not in inittab or
inittab is not found, init requests that the user enter a run-level from the vir­
tual system console, Ide v Isyscon. If an S (s) is entered, init goes into the
SINGLE USER level. This is the only run-level that doesn't require the
existence of a properly formated inittab file. If letc/inittab doesn't exist,
then by default the only legal run-level that init can enter is the SINGLE
USER level. In the SINGLE USER level the virtual console terminal
Ide v Isyscon is opened for reading and writing and the command Ibin/su is
invoked immediately. To exit from the SINGLE USER run-level one of two
options can be elected. First, if the shell is terminated (via an end-of-file),
init will reprompt for a new run-level. Second, the init or telinit command
can signal init and force it to change the run-level of the system.

When attempting to boot the system, failure of init to prompt for a new
run-level may be due to the fact that the device Idev Isyscon is linked to a
device other than the physical system teletype (Jdev Isystty). If this
occurs, init can be forced to relink Idev Isyscon by typing a delete on the
system teletype which is co-located with the processor.

When init prompts for the new run-level, the operator may only enter one
of the digits 0 through 6 or the letters S or s. If S is entered init operates
as previously described in SINGLE USER mode with the additional result
that Ide v Isyscon is linked to the user's terminal line, thus making it the
virtual system console. A message is generated on the physical console,
Ide v Isystty, saying where the virtual terminal has been relocated.

When init comes up initially and whenever it switches out of SINGLE USER
state to normal run states, it sets the ioctl(2) states of the virtual console,
Idev Isyscon, to those modes saved in the file letc/ioctl.syscon. This file is
written by init whenever SINGLE USER mode is entered. If this file doesn't
exist when init wants to read it, a warning is printed and default settings are
assumed.

- 1 -

INIT(IM) INIT(IM)

If a 0 through 6 is entered init enters the corresponding run-level. Any
other input will be rejected and the user will be re-prompted. If this is the
first time init has entered a run-level other than SINGLE USER, init first scans
inittab for special entries of the type boot and bootwait. These entries are
performed, providing the run-level entered matches that of the entry before
any normal processing of inittab takes place. In this way any special initiali­
zation of the operating system,such as mounting file systems, can take
place before users are allowed onto the system. The inittab file is scanned
to find all entries that are to be processed for that run-level.

Run-level 2 is usually defined by the user to contain all of the terminal
processes and daemons that are spawned in the multi-user environment.

In a multi-user environment, the inittab file is usually set up so that init will
create a process for each terminal on the system.

For terminal processes, ultimately the shell will terminate because of an
end-of-file either typed explicitly or generated as the result of hanging up.
When init receives a child death signal, telling it that a process it spawned
has died, it records the fact and the reason it died in /ete/utmp and
/ete/wtmp if it exists (see who(l». A history of the processes spawned is
kept in /ete/wtmp if such a file exists.

To spawn each process in the inittab file, init reads each entry and for each
entry which should be respawned, it forks a child process. After it has
spawned all of the processes specified by the inittab file, init waits for one of
its descendant processes to die, a powerfail signal, or until init is signaled by
init or telinit to change the system's run-level. When one of the above three
conditions occurs, init re-examines the inittab file. New entries can be
added to the inittab file at any time; however, init still waits for one of the
above three conditions to occur. To provide for an instantaneous response
the init Q or init q command can wake init to re-examine the inittab file.

If init receives a powerfail signal (SIGPWR) and is not in SINGLE USER
mode, it scans inittab for special powerfail entries. These entries are
invoked (if the run-levels permit) before any further processing takes place.
In this way init can perform various cleanup and recording functions when­
ever the operating system experiences a power failure.

When init is requested to change run-levels (via telinit), init sends the warn­
ing signal (SIGTERM) to all processes that are undefined in the target run­
level. Init waits 20 seconds before forcibly terminating these processes via
the kill signal (SIGKILL).

Telinit
Telinit, which is linked to /ete/init, is used to direct the actions of init. It
takes a one character argument and signals init via the kill system call to
perform the appropriate action. The following arguments serve as direc­
tives to init.

0-6 tells init to place the system in one of the run-levels 0-6.

a,b,e tells init to process only those /ete/inittab file entries
having the a, b or e run-level set.

Q,q tells init to re-examine the /ete/inittab file.

s,S tells init to enter the single user environment. When this
level change is effected, the virtual system teletype,
/dev /syseon, is changed to the terminal from which the
command was executed.

- 2 -

INIT(IM) INIT(IM)

FILPS

Telinit can only be run by someone who is super-user or a member of
group sys.

/etc/inittab
/etc/utmp
/etc/wtmp
/ etc/ioctl.syscon
/dev /syscon
/dev /systty

SEE ALSO
getty(lM), 10gin(I), sh(I), who(I), kill(2), inittab(4), utmp(4).

DIAGNOSTICS
If init finds that it is continuously respawning an entry from /etc/inittab
more than 10 times in 2 minutes, it will assume that there is an error in the
command string, and generate an error message on the system console, and
refuse to respawn this entry until either 5 minutes has elapsed or it receives
a signal from a user init (telinit). This prevents init from eating up system
resources when someone makes a typographical error in the inittab file or a
program is removed that is referenced in the inittab.

- 3 -

INSTALL (1M) INSTALL (1M)

NAME
install - install commands

SYNOPSIS
/ete/install [-e dira] [-f dirb] [-i) [-n dirc] [-0] [-s] file [dirx
...]

DESCRIPTION
Install is a command most commonly used in "makefiles" (see make (1»
to install a file (updated target file) in a specific place within a file system.
Each file is installed by copying it into the appropriate directory, thereby
retaining the mode and owner of the original command. The program
prints messages telling the user exactly what files it is replacing or creating
and where they are going.

If no options or directories (dirx ...) are given, install will search a set of
default directories (lbiil, /usr/bin, /etc, /lib, and /usr/lib, in that order)
for a file with the same name as file. When the first occurrence is found,
install issues a message saying that it is overwriting that file with file, and
proceeds to do so. If the file is not found, the program states this and exits
without further action.

If one or more directories (dine ...) are specified after file, those directories
will be searched before the directories specified in the default list.

The meanings of the options are:

-c dira Installs a new command (file) in the directory
specified by dira, only if it is not found. If it is
found, install issues a message saying that the file
already exists, and exits without overwriting it. May
be used alone or with the -s option.

-f dirb

-i

-n dire

-0

-s

Forces file to be installed in given directory, whether
or not one already exists. If the file being installed
does not already exist, the mode and owner of the
new file will be set to 755 and bin, respectively. If
the file already exists, the mode and owner will be
that of the already existing file. May be used alone
or with the -0 or -s options.

Ignores default directory list, searching only through
the given directories (dirx ...). May be used alone or
with any other options other than -e and -f.

If file is not found in any of the searched directories,
it is put in the directory specified in dire. The mode
and owner of the new file will be set to 755 and bin,
respectively. May be used alone or with any other
options other than -c and -f.

If file is found, this option saves the "found" file by
copying it to OLDfile in the directory in which it was
found. This option is useful when installing a nor­
mally text busy file such as /bin/sh or jete/getty, where
the existing file cannot be removed. May be used
alone or with any other options other than -c.

Suppresses printing of messages other than error
messages. May be used alone or with any other
options.

- 1 -

I

INSTALL(IM) INSTALL (1M)

SEE ALSO
make(1), mk(8).

I

- 2 -

IPB(IM) (3B2OS only) IPB(1M)

NAME
ipb - read the EAI Input Parameter Buffer

SYNOPSIS
/etc/ipb

DESCRIPTION

FILES

[pb prints the settings of the various fields in the EAI Input Parameter
Buffer. Information displayed includes the method used to boot the sys­
tem, whether the backup root file system is being used, whether certain
hardware error checks are enabled and whether minimal configuration has
been specified.

/usr/include/sys/ipb.h

SEE ALSO
3B200ps(8).

- 1 -

I

KILLALL(1M) KILLALL(1M)

NAME
killall - kill all active process es

SYNOPSIS.
jetejkillall [signal 1

DESCRIPTION

FILES

Killall is is a procedure used by jetejshutdown to kill all active processes
not directly related to the shut down procedure.

Killall is chiefly used to terminate all processes with open files so that the
mounted file systems will be unbusied and can be unmounted.

Killall sends signal (see kill(l» to all remaining processes not belonging to
the above group of exclusions. If no signal is specified, a default of 9 is
used.

jetcjshutdown

SEE ALSO
fuser(lM), kill(1), ps(l), shutdown(lM), signal(2).

- 1 -

LINK (1M)

NAME
link, unlink - exercise link and unlink system calls

SYNOPSIS
fete/link filel file2
fete/unlink file

DESCRIPTION

LINK(lM)

Link and unlink perform their respective system calls on their arguments,
abandoning all error checking. These commands may only be executed by
the super-user, who (it is hoped) knows what he or she is doing.

SEE ALSO
rm(l), link(2), unlink(2).

- I -

I

I

LPADMIN(IM) LPADMIN(1M)

NAME
Ipadmin - configure the LP spooling system

SYNOPSIS
/osr /lib/lpadmin -p printer [options]
/osr/lib/lpadmin -xdest
/osr/lib/lpadmin -d[dest]

DESCRIPTION
Lpadmin configures LP spooling systems to describe printers, classes and
devices. It is used to add and remove destinations, change membership in
classes, change devices for printers, change printer interface programs and
to change the system default destination. Lpadmin may not be used when
the LP scheduler, q,sched(lM), is running, except where noted below.

Exactly one of the -p, -d or -x options must be present for every legal
invocation of Ipadmin.

-d[dest] makes dest, an existing destination, the new system default
destination. If dest is not supplied, then there is no system
default destination. This option may be used when
Ipsched(lM) is running. No other options are allowed with
-d.

-xdest

-pprinter

removes destination dest from the LP system. If dest is a
printer and is the only member of a class, then the class will
be deleted, too. No other options are allowed with -x.

names a printer to which all of the options below refer. If
printer does not exist then it will be created.

The following options are only useful with -p and may appear in any order.
For ease of discussion, the printer will be refered to as P below.

-eclass inserts printer P into the specified class. Class will be created
if it does not already exist.

-eprinter copies an existing printer's interface program to be the new
interface program for P.

- h indicates that the device associated with P is hardwired. This
option is assumed when creating a new printer unless the -I
option is supplied.

-iinterface establishes a new interface program for P. Interface is the
path name of the new program.

-I indicates that the device associated with P is a login terminal.
The LP scheduler, Ipsched, disables all login terminals
automatically each time it is started. Before re-enabling P,
its current device should be established using q,admin.

-mmodel selects a model interface program for P. Model is one of the
model interface names supplied with the LP software (see
Models below).

-rclass removes printer P from the specified class. If P is the last
member of the class, then the class will be removed.

- ,device associates a new device with printer P. Device is the path­
name of a file that is writable by the LP administrator, q,.
Note that there is nothing to stop an administrator from
associating the same device with more than one printer. If
only the -p and -, options are supplied, then q,admin may
be used while the scheduler is running~

- 1 -

LPADMIN(lM) LPADMIN(lM)

Restrictions.
When creating a new printer, the -v option and one of the -e, -i or -m
options must be supplied. Only one of the -e, -i or -m options may be
supplied. The - h and -I keyletters are mutually exclusive. Printer and
class names may be no longer than 14 characters and must consist entirely
of the characters A-Z, a-z, 0-9 and _ (underscore).

Models.
Model printer interface programs are supplied with the LP software. They
are shell procedures which interface between Ipsched and devices. All
models reside in the directory /usr /spool/lp/model and may be used as is
with Ipadmin -m. Alternatively, LP administrators may modify copies of
models and then use Ipadmin -i to associate them with printers. The fol­
lowing list describes the models and lists the options which they may be
given on the Ip command line using the -0 keyletter:

dumb interface for a line printer without special functions and protocol.
Form feeds are assumed. This is a good model to copy and modify
for printers which do not have models.

1640 Diablo 1640 terminal running at 1200 baud, using XON/XOFF pro­
tocol. Options:

-12 12-pitch (1 O-pitch is the default)
-f don't use the 450(1) filter. The output has been pre-

processed by either 450 (1) or the nroff 450 driving table.

hp Hewlett Packard 2631 A line printer at 2400 baud. Options:

-c compressed print
-e expanded print

prx

EXAMPLES
1.

Printronix P300 printer using XON/XOFF protocol at 1200 baud.

Assuming there is an existing Hewlett Packard 2631A line printer
named hp2, it will use the hp model interface after the command:

FILES

2.

3.

/usr/lib/lpadmin -php2 -mhp

To obtain compressed print on hp2, use the command:

lp -dhp2 -o-c files

A Diablo 1640 printer called st1 can be added to the LP configuration
with the command:

/usr/lib/lpadmin -pstl -v/dev/tty20 -m1640

4. An nroff document may be printed on st1 in any of the following ways:

nroff -T450 files I lp -dstl -of
nroff -T450-12 files I lp -dstl -of
nroff -T37 files I col I lp -dstl

5. The following command prints the password file on stl in 12-pitch:

lp -dstl -012 /etc/passwd

NOTE: the -12 option to the 1640 model should never be used in con­
junction with nroff.

/usr/spool/lp/*

SEE ALSO
450(1), accept(IM), enable(I), Ip(1), Ipsched(lM), Ipstat(1).

- 2 -

I

I

LPSCHED(1M) LPSCHED (1M)

NAME
lpsched, Ips hut, lpmove - start/stop the LP request scheduler and move
requests

SYNOPSIS
/usr /lib /Jpsched
/usr /lib /Jpshut
/usr/lib/Jpmol'e requests dest
/usr/lib/Jpmol'e destl dest2

DESCRIPTION

FILES

Lpsched schedules requests taken by /p(l) for printing on line printers.

Lpshut shuts down the line printer scheduler. All printers that are printing
at the time /pshut is invoked will stop printing. Requests that were printing
at the time a printer was shut down will be reprinted in their entirety after
/psched is started again. All LP commands perform their functions even
when /psched is not running.

Lpmove moves requests that were queued by q,(I) between LP destinations.
This command may be used only when q,sched is not running.

The first form of the command moves the named requests to the LP desti­
nation, dest. Requests are request ids as returned by /p. The second form
moves all requests for destination destl to destination dest2. As a side
effect, /p will reject requests for destl .

Note that /pmove never checks the acceptance status (see accept(lM» for
the new destination when moving requests.

/usr/spooljlp/*

SEE ALSO
accept(lM), enable(l), lp(l), Ipadmin(IM), Ipstat(I).

- 1 -

MKBOOT(lM) (3B208 only) MKBOOT(lM)

NAME
mkboot - convert a.out file to boot image

SYNOPSIS
JetcJmkboot a.out-file boot-file

DESCRIPTION
Mkboot creates boot-file as a main-memory image of the a.out-file. Mkboot
creates the boot-file with the text first, null byte padding from the end of
the text to the start of the data, the data, null byte data for the bss, and
null byte padding to bring the boot-file size up to a multiple of 512.

DIAGNOSTICS
Mkboot prints the starting and ending addresses for text, data, and bss on
the standard error output.

Self-explanatory complaints about bad arguments and bad a.out format.

- 1 -

I

I

MKFS(lM) MKFS(lM)

NAME
mkfs - construct a file system

SYNOPSIS
jetejmkfs special blocks[:inodesl [gap blocks/cyI]
jetejmkfs special proto [gap blocks/cyI]

DESCRIPTION
Mkfs constructs a file system by writing on the special file according to the
directions found in the remainder of the command line. If the second
argument is given as a string of digits, mkfs builds a file system with a sin­
gle empty directory on it. The size of the file system is the value of blocks
interpreted as a decimal number. This is the number of physical disk blocks
the file system will occupy. The boot program is left uninitialized. If the
optional number of inodes is not given, the default is the number of logical
blocks divided by 4.

If the second argument is a file name that can be opened, mkfs assumes it
to be a prototype file proto, and will take its directions from that file. The
prototype file contains tokens separated by spaces or new-lines. The first
token is the name of a file to be copied onto block zero as the bootstrap
program (see 3B20boot(8) or unixboot(8». The second token is a number
specifying the size of the created file system in physical disk blocks. Typi­
cally it will be the number of blocks on the device, perhaps diminished by
space for swapping. The next token is the number of inodes in the file sys­
tem. The maximum number of inodes configurable is 65500. The next set
of tokens comprise the specification for the root file. File specifications
consist of tokens giving the mode, the user 10, the group 10, and the initial
contents of the file. The syntax of the contents field depends on the mode.

The mode token for a file is a 6 character string. The first character
specifies the type of the file. (The characters -bed specify regular, block
special, character special and directory files respectively.) The second char­
acter of the type is either u or - to specify set-user-id mode or not. The
third is g or - for the set-group-id mode. The rest of the mode is a three
digit octal number giving the owner, group, and other read, write, execute
permissions (see chmod(l».

Two decimal number tokens come after the mode; they specify the user
and group lO's of the owner of the file.

If the file is a regular file, the next token is a path name whence the con­
tents and size are copied. If the file is a block or character special file, two
decimal number tokens follow which give the major and minor device
numbers. If the file is a directory, mkfs makes the entries. and •• and
then reads a list of names and (recursively) file specifications for the entries
in the directory. The scan is terminated with the token $.

A sample prototype specification follows:

/stand/diskboot
4872 110
d--77731
usr d - -777 3 1

sh - - -755 3 1 /binjsh
ken d--7556 1

$
bO b--6443100
cO c- -6443 1 00
$

$

- 1 -

MKFS(IM) MKFS(1M)

In both command syntaxes, the rotational gap and the number of blocksjcyl
can be specified. The following values are recommended:

Device Gap Size BlksjCyl
RLOlj02 7 40
RP03 5 200
RP04/05j06 7 418
RP07 7 400
RM03 7 160
RM05 7 608
RM80 9 434
3B2OS MHD 7 608
default 7 400

The default will be used if the supplied gap and blocksjcyl are considered
illegal values or if a short argument count occurs.

SEE ALSO

BUGS

dir(4), fs(4), unixboot(8), 3B20boot(8).

If a prototype is used, it is not possible to initialize a file larger than 64K
bytes, nor is there a way to specify links.

- 2 -

I

I

MKNOD(IM) MKNOD(lM)

NAME
mknod - build special file

SYNOPSIS
/etc/mknod name c I b major minor
/etc/mknod name p

DESCRIPTION
Mknod makes a directory entry and corresponding i-node for a special file.
The first argument is the name of the entry. In the first case, the second is
b if the special file is block-type (disks, tape) or c if it is character-type
(other devices). The last two arguments are numbers specifying the major
device type and the minor device (e.g. unit, drive, or line number), which
may be either decimal or octal.

The assignment of major device numbers is specific to each system. They
have to be dug out of the system source file conf.c.

Mknod can also be used to create fifo's (a.k.a named pipes) (second case in
SYNOPSIS above).

SEE ALSO
mknod(2).

- 1 -

MOUNT(lM) MOUNT(lM)

NAME
mount, umount - mount and dismount file system

SYNOPSIS
/etc/mount [special directory [-r]]

/etc/umount special

DESCRIPTION

FILES

Mount announces to the system that a removable file system is present on
the device special. The directory must exist already; it becomes the name of
the root of the newly mounted file system.

These commands maintain a table of mounted devices. If invoked with no
arguments, mount prints the table.

The optional last argument indicates that the file is to be mounted read­
only. Physically write-protected and magnetic tape file systems must be
mounted in this way or errors will occur when access times are updated,
whether or not any explicit write is attempted.

Umount announces to the system that the removable file system previously
mounted on device special is to be removed.

/etc/mnttab mount table

SEE ALSO
setmnt(lM), mount(2), mnttab(4).

DIAGNOSTICS

BUGS

!rfount issues a warning if the file system to be mounted is currently
mounted under another name.

Umount complains if the special file is not mounted or if it is busy. The file
system is busy if it contains an open file or some user's working directory.

Some degree of validation is done on the file system, however it is gen­
erally unwise to mount garbage file systems.

- 1 -

I

I

MSI(1M) (382OS only} MSI(1M)

NAME
msi - memory system diagnostic interface

SYNOPSIS
/etc/msi
/etc/msi rmy cap
/etc/msi rst cap
/etc/msi elr cap
/etc/msi enb
/etc/msi dis
/etc/msi find cap
/etc/msi kill cap

DESCRIPTION
Msi provides the facility for controlling the memory system of the proces­
sor. The granularity for memory management is a 2K page. A physical
memory board (or array) can contain from 64 to 512 pages, depending on
board type. There can be 16 arrays on a memory controller and 2 controll­
ers on a system. Hence, to completely specify a memory page requires the
controller number, array number and page number indicated by c, a, and p
respectively, in the argument list. These numbers are supplied by the
operating system in the event of a memory system error.

Msi will become interactive if invoked without arguments. Valid arguments
are:

Rmy will queue the addressed page for removal. The page cannot
be removed immediately if it is currently in use, but must be
delayed until the process claiming it moves or terminates. Certain
memory system errors will automatically queue a page for removal.

Rst will return a previously removed page back to the system for
re-use.

elr will clear the addressed page, typically removing any parity
errors in the page at the expense of lost data.

Enb will enable the hardware refresh and correctable parity error
detection for the entire memory system.

Dis will disable the hardware error detection. This must be done
before a new array is installed to prevent a flood of refresh parity
errors before the new pages are cleared.

Find will search for the first process claiming the addressed page.

Kill will terminate all processes using the addressed page.

SEE ALSO
3B20ops(8).

- 1 -

MVDIR(IM)

NAME
mvdir - move a"directory

SYNOPSIS
/etc/mvdir dirname name

DESCRIPTION

MVDlR(IM)

Mvdir renames directories within a file system. Dirname must be a direc­
tory; name must not exist. Neither name may be a sub-set of the other
(/x/y cannot be moved to /x/y /z, nor vice versa).

Only super-user can use mvdir.

SEE ALSO
mkdir(l).

- 1 -

I

I

NCHECK(IM) NCHECK(1M)

NAME
ncheck - generate names from i-numbers

SYNOPSIS
fetefRebeek [-j numbers] [-a] [-5] [file-system]

DESCRIPTION
Ncheck with no argument generates a patb name vs. i-number list of all
files on a set of default file systems. Names of directory files are followed
by f.. The -j option reduces the report to only those files whose i­
numbers follow. The -a option allows printing of the names • and •• ,
which are ordinarily suppressed. The -5 option reduces the report to spe­
cial files and files with set-user-ID mode; it is intended to discover con­
cealed violations of security policy.

A file system may be specified.

The report is in no useful order, and probably should be sorted.

SEE ALSO
fsck(1 M), sort(1).

DIAGNOSTICS
When the file system structure is improper, ?? denotes the "parent" of a
parentless file and a path name beginning with ••. denotes a loop.

- 1 -

NEWBOOT(1M) (3B208 only) NEWBOOT(1M)

NAME
newboot - load VTOC, prom patch, or lboot

SYNOPSIS
/etc/newboot boot-special [- v vtoc] [- u prompat] [-I lboot]

DESCRIPTION
Newboot replaces the entries specified by its options on the given boot­
special section of a disk. Newboot verifies that each given file will fit in the
specified entry, and calls dd(l) to move it in.

Lboot is a file containing the boot program that is loaded by the 3B20S
firmware and executed to boot UNIX.

Prompat is a file containing patches to the system microcode that are read in
by the 3B2OS firmware when the machine is booted.

Vtoc is a file containing a volume table of contents used by the 3B2OS
firmware to find the prom patch and lboot locations on disk and is used by
Iboot to find the root and backup root file systems.

SEE ALSO
dd(l), mkboot(lM), 3B20boot(8).

DIAGNOSTICS
FILE too large (BLKS blocks max.)
unknown option X
can't open file FILE

WARNINGS

FILE is too big for the specified entry.
Option X not recognized.
FILE not found.

Installing a bad vtoc, prom pat , or lboot may make the affected disk pack
unbootable. Be sure you have a good backup disk before newboot is run.

- 1 -

NSCLOOP(1M) NSCLOOP (1M)

NAME
nscloop - perform the NSC local network loop back functions

SYNOPSIS
/usr /nse/nscloop [netname •••] [-I] [- s] [-c) [- u units] [-d names]
[-f file] [-m login]

DESCRIPTION

FILES

Nsc/oop uses the message loopback feature of the NSC adapter hardware to
gather network statistics and to operationally query the availability of
remote adapters. Nsc/oop genemtes and prints a brief report on the stan­
dard output. The first argument to nsc/oop may be one or more network
names (see nscmon(JM) for a complete description of a network). If no
network is given, all the networks specified in the network file,
/usr/nse/nets will be accessed. If more than one network is specified, the
-f, -d, -u options are disabled. For each network specified, the -I, -s,
and/or -e functions are performed on all known adapters, as determined
by the network topological file, /ete/nse. Nsc/oop recognizes the following
options:

-I

-s

-e

-f file

Loop a message and associated data block off each specified
adapter. Compare each byte sent with each byte returned and
report comparison errors. This is the default mode.

Gather and report the trunk statistics for the specified adapters.

Gather, report, and clear the trunk statistics for the specified
adapters. This function is reserved to the super-user.

Use file as the network topological file for the specified net­
work. This file contains the symbolic names of each machine
on the network. A report is genemted for each unique adapter
that configured hosts are connected to. File format is assumed
to be as follows:

machincname:anything:anything:device

-d names Perform the indicated function to only those adapters on the
specified network where the host name is connected.

-u units Perform the indicated functions to only those adapters on the
specified network whose unit number is unit.

- m login Send mail to login if any error is detected.

By default, option -I is enabled. If more that one of -I, -s, or -e are
specified, each function will be performed on the indicated adapters. If no
adapters are explicitly selected for reporting, nsc/oop will query all adapters
for the specified network found in the network topological file, /ete/use.

/etc/nsc the NSC network topological file

SEE ALSO
nscmon(lM).

DIAGNOSTICS
All error messages are designed to be self-explanatory.

- 1 -

NSCMON(lM) NSCMON(lM)

NAME
nscmon - operationally control the NSC local network

SYNOPSIS
/ete/nscmon options

DFSCRIPTION
Nscmon provides the operational interface to control the NSC local network.
Nscmon starts and stops all network transfers; nscmon enables and inhibits
transfers to individual nodes. All operations are in the eyes of the local
node only.

The nusend(l C) software allows the support of more than one adapter on a
host, where each adapter defines a separate network. The network file
/usr/nsc/nets contains all the networks known to the local node. Most
operations require the specification of one or more networks. If more than
one netname is given, the operation is performed on each network in turn.
Every option that requires a netname may optionally take the special case
all. In that case, the option will perform its operation for all the networks
known, as specified in the network file /usr/nsc/nets. The following
options are recognized:

-start netname
Start up the nusend(1C) software on the local node for the
specified network. This command initializes the NSC listener
process for each network, marks all the currently configured
nodes online, and enables the routing of file transfers across
the NSC network. This command will not clear a hung
adapter or NSC driver. The converse of this option is -stop.

-stop netname
Terminate the nusend(lC) software on the local node for the
specified network. Any files currently queued as well as all
subsequent jobs will be routed across the RJE link (if it
exists). This command inhibits any incoming or outgoing file
transfers. This command will not clear a hung adapter or
hung NSC driver.

-cancel netname
Cancel the current active adapter operation (within the driver)
for the driver associated with the specified network. The
operation is marked as though it had failed. An error will be
returned to the user process and suspended processes will
continue normally. This command is especially useful for
clearing hung processes within the driver.

- halt netname
Disable (via software) all operations to the adapter for the
specified network. The driver will process opens normally,
but all functions to the adapter will be inhibited. This com­
mand does not clear a hung driver or hung processes, but
inhibits all operations to the adapter. The converse of this
command is -restart.

-restart netname
Enable (via software) all adapter operations for the adapter
associated with the specified network. This command restarts
any suspended processes within the driver. This function is
the converse of - halt.

- 1 -

NSCMON(lM) NSCMON(IM)

- t netname Turn off the NSC adapter to adapter protocol process tracing
for the adapter associated with the specified network. The
binary trace files may be found in /usr /nse/log/nselog.*,
where the * is the process ID of the read/send process.

+t netname Turn on the NSC adapter protocol process tracing for the
adapter associated with the specified netwOTk.

-e netname Turn off the NSC adapter to adapter protocol error logging for
the adapter associated with the specified network. The binary
error files may be found in /usr/nse/log/nseerr.*, where the
* is the process ID of the read/send process.

+ e netname Turn on the NSC adapter protocol error logging for the
adapter associated with the specified network.

-ps Print certain information about active nusend(lC) processes.
The format of the listing is:

PID TIME CMD

Nscsend and nscread processes are listed under their parents.
The format for orphan processes is:

PID PPID TIME CMD

The cumulaive execution time (TIME) is not displayed on the
UNIX/370 implementation.

-on netname names
Mark all nodes in the name list for the specified network
online and notify the node to forward all queued files to the
local machine. If name is the special case all all nodes for the
specified network are marked up, as configured in the network
topological file, /ete/nse. Any files currently queued for the
named node(s) and all subsequent submitted transfers to the
named node(s) will be routed across the NSC network. This
function is automatically performed if the -start option is
used.

-off netname names
Mark all the nodes in the name list for the specified network
offline. If name is the special case all all the nodes for the
specified network are marked offline, as configure in the net­
work topological file, /ete/nse. Any files currently queued for
the named node(s) and all subsequent jobs submitted to the
specified node(s) will be routed across the RJE link (if it
exists).

- p netname names
Same as -on option.

- clear Clear the process table of (kill off) all nusend (1 C) processes
that did not die normally.

-loop

-stat

Perform the NSC local loopback function. Same as nscloop
-1.

Query the operational status of the NSC network. Same as
nsestat -I.

All options may be freely interdispersed; the operations will be performed
in the order given on the command line.

- 2 -

NSCMON(lM)

FILES
/etc/nsc
/usr/nsc/nets

/usr / nsc/log/ nsclog.*
/usr/nsc/log/nscerr.*
/usr/nsc/online/*
/usr/nsc/cons/*
/usr/nsc/rvchan
/usr/nsc/nsctorje

/usr/nsc/nsccmd

/usr/nsc/nsclisten
/usr/nsc/nscd
/usr/nsc/nscrecv

SEE ALSO

NSCMON(lM)

the network topological file
the networks known to the local node and the asso­
ciated devices
binary trace log
binary NSC error log
the NSC network is enabled for this network
remote nodes currently considered online locally
nodes currently configured on the network
program that routes jobs on inactive nodes across
the RJE line
program that sends a message to a remote machine
telling it to send any queued jobs to the local
machine
the NSC network listen daemon
the NSC network send daemon
the NSC network receive daemon

nscloop(lM), nscstat(lC), nsctorje(lC).
DIAGNOSTICS

All error messages are designed to be self explanatory.

- 3 -

I

PCLDAEMON(IM) (DEC only) PCLDAEMON (1M)

NAME
pcldaemon - PCL link monitor

SYNOPSIS
/usr/lib/pcldaemon

DESCRIPTION
PC/daemon monitors the pcl(7) control channel, servicing requests as they
arrive. Requests are transmitted via net(IC).

FILES
/dev/pcl/?[O-7] PCL channel interfaces for system?
/dev /pcl/ctrl PCL control channel.
/usr/adm/pcllog activity log.

SEE ALSO
net(lC), pcl(7).

DIAGNOSTICS
cannot open pcl control channel

Another pcldaemon is running.
WARNINGS

Running pcldaemon may present security hazards. A super-user may
net(lC) to any system on the PCL bus that is running pcldaemon and exe­
cute any command on that system.

- I -

PRM(1M) (3B2OS only) PRM(lM)

NAME
prm - send a Processor Recovery Message

SYNOPSIS
jetcjprm message

DESCRIPTION
Prm sends a Processor Recovery Message (PRM) to the Emergency Action
Interface (EAI).

Message is converted to a 16 nibble sequence and must therefore contain
only the digits 1 through 9 and the characters a through f. After the com­
mand, message will appear in the PRM field of the EAI display.

SEE ALSO
3B20ops(8).

BUGS
Because of the design of the EAI it is possible to miss a PRM if insufficient
time has passed since the last message.

- 1 -

PROFILBR(1M) PROFILBR(1M)

NAMB
prftd, prfstat, prfdc, prfsnap, prfpr - operating system pro filer

SYNOPSIS
/ete/prld [namelist]
/ete/prfstat [on I oft']
/ete/prfde file [period [off_hour]]
/ete/prfsnap file
/ete/prfpr file [cutoff [n~melist]]

DBSClUPTION

FILES

PrjId, prfstat, prfde, prfsnap, and prfpr form a system of programs to facili­
tate an activity study of the UNIX operating system.

PrjId is used to initialize the recording mechanism in the system. It gen­
erates a table containing the starting address of each system subroutine as
extracted from namelist.

PrJstat is used to '6nable or disable tI,e sampling mechanism. Profiler over­
head is less than 1 % as calculated for 500 text addresses. Prlstat will also
reveal the number of text addresses being measured.

Pride and prfsnap perform the data collection function of the profiler by
copying the current value of all the text address counters to a file where the
data can be analyzed. Pride will store the counters into file every period
minutes and will tum off at off_hour (valid values for off Jour are 0-24).
PrjSnap collects data at the time of invocation only, appending the counter
values to file.

PrJpr formats the data collected by prfdc or prfsnap. Each text address is
converted to the nearest text symbol (as found in namelist) and is printed if
the percent activity for that range is greater than cutoff.

/dev/prf
/unix

interface to profile data and text addresses
default for namelist file

SBBALSO
prf(7).

- 1 -

PWCK(IM) PWCK(1M)

NAME
pwck, grpck - password/group file checkers

SYNOPSIS
/ete/pwek [file]
/ete/grpek [file]

DESCRIPTION

FILES

Pwck scans the password file and notes any inconsistencies. The checks
include validation of the number of fields, login name, user 10, group 10,
and whether the login directory and optional program name exist. The cri­
teria for determining a valid login name is derived from Setting up UNIX in
the UNIX System Administrator's Guide. The default password file is
/ete/passwd.
Grpck verifies all entries in the group file. This verification includes a check
of the number. of fields, group name, group 10, and whether all login
names appear in the password file. The default group file is fete/group.

/etc/group
/etc/passwd

SEE ALSO
group(4), passwd(4).
Setting up UNIX in the UNIX System Administrator's Guide.

DIAGNOSTICS
Group entries in fete/group with no login names are flagged.

- 1 -

I

REBOOT(lM) (3B2OS only) REBOOT (1M)

NAME
reboot - reboot the system

SYNOPSIS
fete/reboot

DESCRIPTION
Reboot generates a Maintenance Reset Function (MRF), causing the proces­
sor to enter its system bootstrap code thereby rebooting the system. It can
be used to reboot the processor remotely, but this is practical only if a ter­
minal line is enabled in /ete/inittab for state I so that the file systems can
be checked and state 2 entered.

Since the boot sequence will prompt for a path name at the system console
if PROMPT UNIX is set in the EAI, make sure that this is not the case by
using ipb(lM) beforehand.

Reboot will enter the boot sequence immediately, without flushing the
internal system buffers. It must be used with extreme caution.

SEE ALSO
ipb(1 M), 3B200ps(8).

- 1 -

RMV(1M) (38205 only)

NAME
rmv - remove unit from service before on-line diagnostics

SYNOPSIS
jdgnjbinjrmv name unit

DESCRIPTION

RMV(lM)

Rmv removes the device specified by name and unit from service. For
example, the following command line removes DFC 1 (Disk File Controller
1) from service:

rmv dfc 1

SEE ALSO
dgn(lM), rst(lM).
3B DMERT Output Messages, OM-4COOO-Ol.

WARNING
Diagnostic commands are intended for use only by trained hardware
maintenance personnel.

- 1 -

RST(IM) (38208 only) RST(lM)

NAME
rst - restore unit to service after on-line diagnostics

SYNOPSIS
/dgn/bin/rst name unit [options]

DESCRIPTION
Rst restores the device identified by name and unit into service according to
the options specified. A device can be restored to service conditionally or
unconditionally. By default, rst restores a device into service conditionally,
unless the the option uel is specified. A conditional restore implies that
diagnostics will first be performed, and the final results must be A TP (All
Tests Passed) before the device will be restored to service. Otherwise the
device is left out of service; If the device is restored unconditionally (i.e.,
uel option is specified), then no diagnostics are performed.

The following options are recognized, each as a separate argument:

raw Print the diagnostic results of every phase and all failures. By
default, only the final results and first five failures of each failing
phase will be printed.

uel Unconditionally restore the device specified by name and unit
into service. Note this option implies that no diagnostics will be
performed.

tip Executes the Trouble Location Procedure at the conclusion of
the diagnostic. This procedure analyzes all diagnostic failures
and generates a weighted list of faulty circuit packs. This option
must not be used in conjunction with uel.

liIe=fllename
Routes all output messages into a file named filename instead of
the user's terminal. Filename is opened for appending and is
relative to the directory /dgn/dgne unless a full path name is
specified.

eont This option is only effective when name and unit is an Input­
Output Processor (lOP). By default, rst will restore an lOP and
its associated peripheral controllers (PCs) into service. Use of
this option restores only the lOP and not its PCs. Note that res­
toring a Disk File Controller (DPC) never implies restoring its
Moving Head Disks (MHDs).

hu=name unit

EXAMPLES

This option allows a helper unit identified by name and unit to be
specified. For example, when diagnosing the magnetic tape con­
troller (i.e., UN32), a diagnostic test tape with a write ring must
be mounted on the specified helper unit. The following example
shows how one might invoke diagnostics using the helper unit
option:
dgn un32 0 ph=5 hu=mt 2

The following two examples show how one might invoke this command for
either an unconditional or conditional restore, respectively.

Example 1:
rst dfc 1 ucl
would restore the device dfe 1 into service unconditionally.
The option uel is the only valid option for an unconditional
restore request.

Example 2:
rst dfc 1 raw tlpfile=filename
would restore the device dfe 1 to service if all diagnostics

- 1 -

RST(lM)

SEE ALSO

(382OS only) RST(IM)

results were ATP. The remaining options are applied as
described above.

dgn(lM), rmv(1M).
3B DMERT Output Messages, OM-4COOO-Ol.

WARNING
Diagnostic commands are intended for use only by trained hardware
maintenance personnel.

- 2 -

I

I

RUNACCT(1M) RUNACCT(IM)

NAME
runacct - run daily accounting

SYNOPSIS
/usr/lib/acct/runacct [mmdd [state]]

DESCRIPTION
Runacct is the main daily accounting shell procedure. It is normally ini­
tiated via cron{lM). Runacct processes connect, fee, disk, and process
accounting files. It also prepares summary files for [N'daily or billing pur­
poses.

Runacct takes care not to damage active accounting files or summary files
in the event of errors. It records its progress by writing descriptive diagnos­
tic messages into active. When an error is detected, a message is written to
/de,/console, mail (see mail(l» is sent to root and adm, and runacct ter­
minates. Runacct uses a series of lock files to protect against re-invocation.
The files lock and lockl are used to prevent simultaneous invocation, and
lastdate is used to prevent more than one invocation per day.

Runacct breaks its processing into separate, restartable states using statefile
to remember the last state completed. It accomplishes this by writing the
state name into statefile. Runacct then looks in stdefile to see what it has
done and to determine what to process next. States are executed in the fol­
lowing order:

SETUP

WTMPFIX

Move active accounting files into working files.

Verify integrity of wtmp file, correcting date
changes if necessary.

CONNECT! Produce connect session records in ctmp.h format.

CONNECTl Convert ctmp.h records into tacct.h format.

PROCESS Convert process accounting records into tacet.h
format.

MERGE Merge the connect and process accounting records.

FEES Convert output of chargefee into tacet.h format and
merge with connect and process accounting records.

DISK Merge disk accounting records with connect, pro­
cess, and fee accounting records.

MERGETACCT Merge the daily total accounting records in daytacet
with the summary total accounting records in
/usr/adm/acet/sum/tacet.

CMS

USEREXIT

CLEANUP

Produce command summaries.

Any installation-dependent accounting programs
can be included here.

Cleanup temporary files and exit.

To restart runacct after a failure, first check the active file for diagnostics,
then fix up any corrupted data files such as pacet or wtmp. The lock files
and lastdate file must be removed before runacct can be restarted. The
argument mmdd is necessary if runacct is being restarted, and specifies the
month and day for which runacct will rerun the accounting. Entry point for
processing is based on the contents of statefile; to override this, include the
desired state on the command line to designate where processing should
begin.

- 1 -

RUNACCT(1M) RUNACCT(1M)

EXAMPLES

FILES

To start runacct.
nohup runacct 2> /usr/adm/acct/nite/fd210g &

To restart runacct.
nohup runacct 0601 2» /usr/adm/acct/nite/fd210g &

To restart runacct at a specific state.
nohup runacct 0601 MERGE 2» /usr/adm/acct/nite/fd210g &

/etc/wtmp
/usr/adm/pacct*
/usr/src/cmd/acct/tacct.h
/usr/src/cmd/acct/ctmp.h
/usr/adm/acct/nite/active
/usr/adm/acct/nite/daytacct
/usr/adm/acct/nite/lock
/usr/adm/acct/nite/lockl
/usr/adm/acct/nite/lastdate
/usr/adm/acct/nite/statefile
/usr/adm/acct/nite/ptacct*.mmdd

SEE ALSO
acct(IM), acctcms(IM), acctcom(1), acctcon(IM), acctmerg(IM),
acctprc(IM), acctsh(lM), cron(lM), fwtmp(1M), acct(2), acct(4),
utmp(4).
UNIX Accounting System in the UNIX System Administrator's Guide.

DIAGNOSTICS

BUGS

The accounting system will start complaining with -RECOMPILE popsplit
WITH NEW HOLIDAYS ... after the last holiday of the year. See The UNIX
Accounting System for more on how to correct this condition. Other diag­
nostics are placed in various error and log files.

Normally it is not a good idea to restart runacct in the SETUP state. Run
SETUP manually and restart via:

ruoaect mmdd WTMPFJX

If runacct failed in the PROCESS state, remove the last ptaect file because it
will not be complete.

- 2 -

I

SAR(IM) SAR(IM)

NAME
sal, sa2, sadc - system activity report package

SYNOPSIS
/usr /lib/sa/sade h n] [ofile]

/usr/lib/sa/sal h n]
/usr/lib/sa/sa2 [-ubdyewaq,m] [-s time] [-e time] [-i sec]

DESCRIPTION
System activity data can be accessed at the special request of a user (see
sar(l» and automatically on a routine basis as described here. The
operating system contains a number of counters that are incremented as
various system actions occur. These include CPU utilization counters,
buffer usage counters, disk and tape I/O activity counters, TTY device
activity counters, switching and system-call counters, file-access counters,
queue activity counters, and counters for inter-process communications.

Sadc and shell procedures sal and sa2 are used to sample, save and process
this data.

Sadc, the data collector, samples system data n times every t seconds and
writes in binary format to ofile or to standard output. If t and n are
omitted, a special record is written. This facility is used at system boot
time to mark the time at which the counters restart from zero. The /etc/rc
entry:

su sys -c "/usr/lib/sa/sadc /usr/adm/sa/sa'date +%d'&"
writes the special record to the daily data file to mark the system restart.

The shell script sal, a variant of sadc, is used to collect and store· data in
binary file /usr/adm/sa/satid where tid is the current day. The arguments t
and n cause records to be written n times at an interval of t seconds, or
once if omitted. The entries in erontab (see cron(lM»:

0** * 0,6 su sys -c "/usr/lib/sa/sal"
08-17 * * 1-5 su sys -c "/usr/lib/sa/sal 1200 3"
018-7 * * 1-5 su sys -c "/usr/lib/sa/sal"

will produce records every 20 minutes during working hours and hourly
otherwise.

The shell script sa2, a variant of sar(l), writes a daily report in file
/usr/adm/sa/sartid. The options are explained in sar(1). The erontab
entry:

5 18 * * 1-5 su adm -c "/usr/lib/sa/sa2 -s 8:00 -e 18:01 -i 3600 - A"

will report important activities hourly during the working day.

- 1 -

SAR(lM) SAR(lM)

FILES

The structure of the binary daily data file is:

struct sa {
struct sysinfo si; /* see /usr/include/sys/sysinfo.h */
int szinode; /* current entries of inode table */
int szfile; /* current entries of file table */
int sztext; /* current entries of text table */
int szproc; /* current entries of proc table */
int mszinode; /* size of inode table */
int mszfile; /* size of file table */
int msztext; /* size of text table */
int mszproc; /* size of proc table */
long inodeovf; /* cumul. overflows of inode table */
long inodeovf; /* cumul. overflows of file table */
long textovf; /* cumul. overflows of text table */
long procovf; /* cumul. overflows of proc table */
time_t ts; /* time stamp, seconds */
long devio[NDEVS][4]; /* device info for up to NDEVS units */

define IO_OPS 0 /* cumul. I/O requests */
define IO_BCNT 1 /* cumul. blocks transferred */
define 10_ACT 2 /* cumul. drive busy time in ticks */
define IO_RESP 3 /* cumul. I/O resp time in ticks */
};

/usr/adm/sa/sadd
/usr/adm/sa/sardd
/tmp/sa.adrfl

daily data file
daily report file
address file

SEE ALSO
sag(lG), sar(1), timex(1).

- 2 -

SETMNT(lM) SETMNT(lM)

NAME
setmnt - establish mount table

SYNOPSIS
/etc/setmnt

DESCRIPTION

FILES

Setmnt creates the /etc/mnttab table (see mnttab(4», which is needed for
both the mount(lM) and umount commands. Setmnt reads standard input
and creates a mnttab entry for each line. Input lines have the format:

filesys node

where jilesys is the name of the file system's specialjile (e.g., "rp??") and
node is the root name of that file system. Thus jilesys and node become the
first two strings in the mnttab(4) entry.

/etc/mnttab

SEE ALSO
mnttab(4).

BUGS
Evil things will happen if jilesys or node are longer than 10 characters.
Setmnt silently enforces an upper limit on the maximum number of mnttab
entries.

- 1 -

SETMRF(lM) (38208 ollly) SETMRF(lM)

NAME
setmrf - override system MRF action

SYNOPSIS
/etc/setmrf [diD I h I H I r]

DESClUPTION
Setmrf overrides the default action taken by the system in the event of a
Maintenance Reset Function (MRF). A MRF can be caused by a hardware
fault in the processor or as a result of a panic call in the operating system.
The default action is to reboot the processor.
The h ftag will cause the processor to enter an idle loop, resetting the inter­
nal sanity timer. The H ftag will execute a halt instruction, causing all pro­
cessor activity to stop. However, if the sanity timer is not inhibited at the
BAl, the processor will reboot when the timer expires.

The d ftag sets the MRF action to its default value of dump to disk followed
by reboot. The D ftag causes the processor to idle after the dump is taken.

The r ftag causes the processor to reboot immediately, without taking a
dump.

All other values are not implemented and are treated as in the default case.

SEE ALSO
3B20ops(8).

- 1 -

I

SHUTDOWN (1M) SHUTDOWN (1M)

NAME
shutdown - terminate all processing

SYNOPSIS
fete/shutdown

DESCRIPTION
Shutdown is part of the UNIX operation procedures. Its primary function is
to terminate all currently running processes in an orderly and cautious
manner. The procedure is designed to interact with the operator (i.e., the
person who invoked shutdown). Shutdown may instruct the operator to per­
form some specific tasks, or to supply certain responses before execution
can resume. Shutdown goes through the following steps:

SEE ALSO

All users logged on the system are notified to log off the system by a
broadcasted message. The operator may display his/her own message at
this time. Otherwise, the standard file save message is displayed.

If the operator wishes to run the file-save procedure, shutdown
un mounts all file systems.

All file systems' super blocks are updated before the system is to be
stopped (see sync(l». This must be done before re-booting the system,
to insure file system integrity. The most common error diagnostic that
will occur is device busy. This diagnostic happens when a particular file
system could not be unmounted.

mount(lM), sync(l).

- 1 -

SSR(1M) (38208 only) SSR(lM)

NAME
ssr, setssr, clrssr - print or modify the System Status Register

SYNOPSIS
/ete/ssr

/ete/setssr [bit ...]

/ete/c1rssr [bit ...]

DESCRIPTION

FILES

The System Status Register (SSR) serves as both a display for certain pro­
cessor information as well as a mechanism for controlling various processor
actions. Although implemented with negative logic in the hardware, these
commands function in the normal logic sensj:. The bit argument is a
decimal integer specifying the bit position in the SSR.

Ssr prints the current value of the SSR.

Setssr asserts the specified bit positions in the SSR.

Clrssr clears the specified bit positions in the SSR.

Extreme caution must be exercised when using these commands as the Sys­
tem Status Regist.er can alter processor behavior. In particular, certain bits
will isolate the I/O system from the processor, causing the system to crash.

Setssr and clrssr are most commonly used with bit 13 as an argument in
order to enable or disable the cache bypass. .

/usr/include/sys/ssr.h

SEE ALSO
3B200ps(8).

- 1 -

I

I

ST(IM) ST(IM)

NAME
st - synchronous terminal control

SYNOPSIS
/etc/stload
/etc/stcntrl control action
/etc/stprint line device

DESCR.IPTION

FILES

The stlDad command file is used to load the synchronous terminal prototype
script, /lib/stscr, into the designated VPM hardware, and start execution of
the script. As supplied, stlDad uses VPM hardware unit 0 and /dev /stO; it
will need local modification to use a different hardware unit or to start more
than one synchronous communications line.

The stcntrl command is used to activate and deactivate synchronous com­
munications lines. The line that will be acted on is specified by control,
(e.g. /dev /stO). The action argument may be either on, to activate the
line, or off, to deactivate the line. The activation of a started line or the
deactivation of a stopped line will result in an error. Note that stlDad
activates the lines associated with the scripts that it loads.

The /etc/rc file should contain the following multi-user entry:

jetcjstload

while each active synchronous line should be deactivated in jete/shutdown
by a line similar to the following:

jetcjstcntrl jdev jstO off

The stprint command associates a /dev /sp. file with a printer on synchro­
nous communication line line with the ASCII device address character dev­
ice. The stprint command prints the associated file name on its standard
output.

jlibjstscr
jdev jun53.?
jdevjkmc?
jdevjst?
jdevjtty*
jdevjsp*

synchronous terminal prototype script
1N82/UN53 peripheral controller pair (38208 only)
KMCll-8 microprocessor (DEC only)
synchronous communications line control channels
synchronous terminal user channels
synchronous printer user channels

SEE ALSO
kmc(7), st(7), trace(7), un53(7), vpm(7).

- 1 -

STA(1M) (38205 only) STA(1M)

NAME
sta - find status of pending on-line diagnostic requests

SYNOPSIS
/dgn/bin/sta

DESCRIPTION
The diagnostic command sta reports the status of all currently pending diag­
nostic requests within the Maintenance Input Request Administrator
(MIRA). The contents of both the waiting and active diagnostic requests
are printed along with their respective slot numbers.

SEE ALSO
dgn(lM), rmv(lM), rst(lM).
3B DMERT Output Messages, OM-4COOO-Ol.

WARNING
Diagnostic commands are intended for use only by trained hardware
maintenance personnel.

- 1 -

STGETIY(1M) STGETIY(1M)

NAME
stgetty - wait on synchronous login line for use

SYNOPSIS
jetcjstgetty name type delay

DESCRIPTION
Stgetty is normally invoked by init(lM) as the first step in allowing users to
login to the system. Lines in jetcjinittab tell init to invoke stgetty with the
proper arguments.

Name should be the name of a terminal in jde, (e.g., tty93); type should
be a single character chosen from -, which is used to start up a line, or !,
which tells stgetty to update jetcjutmp and exit; delay is relevant for dial-up
ports only. It specifies the time in seconds that should elapse before the
port is disconnected if the user does not respond to the login: request.

Stlogin(1) is called with delay as an argument.

SEE ALSO
stlogin(l), init(lM), inittab(4), utmp(4), stermio(7).

- 1 -

SYSDEF(lM) SYSDEF(lM)

NAME
sysdef - system definition

SYNOPSIS
/etc/sysdef [opsys [master]]

DESClUPTION

FILES

Sysdef analyzes the named operating system file and extracts configuration
information. This includes all hardware devices as well as system devices
and all tunable parameters.

The output of sysdef can usually be used directly by config(1M) to regen­
erate the appropriate configuration files.

/unix
/etc/master

default operating system file
default table for hardware specifications

SEE ALSO

BUGS

config(lM), master(4).

For devices that have interrupt vectors but are not interrupt-driven, the
output of sysdef cannot be used for config. Because information regarding
config aliases is not preserved by the system, device names returned might
not be accurate.

- 1 -

I

I

UUCLEAN(1M) UUCLEAN(1M)

NAME
uuclean - uucp spool directory clean-up

SYNOPSIS
jusrjlibjuucpjuuclean [options]

DESCRIPTION

FILES

Uuclean will scan the spool directory for files with the specified prefix and
delete all those which are older than the specified number of hours.

The following options are available.

-ddirectory Clean directory instead of the spool directory.

-ppre

-ntime

-wfile

-ssys

-mfile

Scan for files with pre as the file prefix. Up to 10 - P argu­
ments may be specified. A -p without any pre following will
cause all files older than the specified time to be deleted.

Files whose age is more than time hours will be deleted if the
prefix test is satisfied. (default time is 72 hours)

The default action for uuclean is to remove files which are
older than a specified time (see -n option). The -w option
is used to find those files older than time hours, however, the
files are not deleted. If the argument file is present the warn­
ing is placed in file, otherwise, the warnings will go to the
standard output.

Only files destined for system sys are examined. Up to 10 -s
arguments may be specified.

The - m option sends mail to the owner of the file when it is
deleted. If a file is specified then an entry is placed in file.

This program is typically started by cron(IM).

jusrjlib/uucp
/usr/spool/uucp

directory with commands used by uuclean internally
spool directory

SEE ALSO
cron(IM), uucp(IC), uux(IC).

- 1 -

UUSUB(lM) UUSUB(lM)

NAME
uusub - monitor uucp network

SYNOPSlS
jusr jlibjuucpjuusub [options]

DESCRIPTION

FILES

Uusub defines a uucp subnetwork and monitors the connection and traffic
among the members of the subnetwork. The following options are avail­
able:

-asys
-dsys
-I
-r
-f
-uhr
-csys

Add sys to the subnetwork.
Delete sys from the subnetwork.
Report the statistics on connections.
Report the statistics on traffic amount.
Flush the connection statistics.
Gather the traffic statistics over the past hr hours.
Exercise the connection to the system sys. If sys is specified as
all, then exercise the connection to all the systems in the subnet-
work.

The meanings of the connections report are:

sys II call II ok time II dev II login II nack II other

where sys is the remote system name, IIcall is the number of times the
local system tries to call sys since the last flush was done, II ok is the
number of successful connections, time is the latest successful connect
time, IIdev is the number of unsuccessful connections because of no avail­
able device (e.g. ACU), IIlogin is the number of unsuccessful connections
because of login failure, II nack is the number of unsuccessful connections
because of no response (e.g. line busy, system down), and lIother is the
number of unsuccessful connections because of other reasons.

The meanings of the traffic statistics are:

sfile sbyte rfile rbyte

where sfile is the number of files sent and sbyte is the number of bytes sent
over the period of time indicated in the latest uusub command with the
-uhr option. Similarly, rfile and rbyte are the numbers of files and bytes
received.

The command:

uusub -c all -u 24

is typically started by cron(1M) once a day.

jusrjspooljuucpjSYSLOG
jusrjlibjuucpjL_sub
jusrjlibjuucpjR_sub

system log file
connection statistics
traffic statistics

SEE ALSO
uucp(lC), uustat(lC).

- 1 -

I

I

VCF(IM) (VAX-II/780 stand-alone only) VCF(IM)

NAME
vcf - VAX-ll/7S0 configuration verification program

DESCRIPTION

FILES

This program scans hardware registers and software configuration tables in
order to verify device availability and addressing.

With the system halted, any of the console commands may beex'ecuted as
described in 780ops(S) under Console Operation. The following is an exam­
ple of execution of vel as seen on the console, starting with a halted system:

»>H<cr>
HALTED AT nnnnnnnn

»>B<cr>

$$

CPU HALTED
INIT SEQ DONE
HALT INST EXECUTED
HALTED AT nnnnnnnn
LOAD DONE, nnnnnnnn BYTES LOADED

The SS prompt indicates that the stand-alone shell (sash) is ready to accept'
commands. To execute the configuration verification program, type:

$$ stand/vcf [unix_a.but]

Default for the unix_a.out file is lunix.
Vel will scan the VAX machine registers looking for Memory, MASSBUS
Adapters (MBAs), and UNIBUS Adapters (UBAs). For memory and
MASSBUS devices, hardware status information is reported. Information on
UNIBUS devices is obtained from configuration information in the UNIX
executable, and an attempt is made to verify device address and interrupt
vectors.

/unix (or other UNIX executable)
Istand/vcf

SEE ALSO
7S00ps(S).

- I -

VLX(lM) (VAX-1l/780 only) VLX(lM)

NAME
vlx - V AX-ll/7S0 LSI console floppy interface

SYNOPSIS
vlx key [files]

DESClUPTION

FILES

V1x is used to maintain the console floppy. The floppy is in DEC RT-ll for­
mat. Hence, a file name is restricted to a 1- to 6-chamcter alphanumeric
name optionally followed by a • chamcter sepamtor and a 1- to 3-chamcter
alphanumeric extension. Upper and lower cases are mapped together.
Only the last component of a path name is used.

Key is one chamcter from the set drtx, optionally concatenated with one or
both of vr. The meanings of the key chamcters are:

d Delete the named files from the floppy.

r Replace the named files on the floppy.

t Print a table of contents of the floppy. If no names are given, all file$
are tabled. If names are given, only those files are tabled.

x Extract the named files from the floppy. If no names are given, all
files are extmcted.

v Verbose. When used with t, it gives a long listing of all information
about the files. When used with x, it precedes each file with a name.

r Use the next name as the floppy file name, instead of the default
Idev lconllp.

/dev /conflp

SEE ALSO
7S00ps(S).

console floppy

BUGS
Dependent on knowledge and correctness of DEC software.

- 1 -

I

VOLCOPY(IM) VOLCOPY(1M)

NAME
volcopy, Iabelit - copy file systems with label checking

SYNOPSIS
/etc/,olc:opy [options] fsname speciall volnamel special2 volname2

/etc/labelit special [fsname volume [-a]]

DESCRIPTION

FILES

Volcopy makes a literal copy of the file system using ablocksize matched to
the device. Options are:

-a invoke a verification sequence requiring a positive operator
response instead of the standard 10 second delay before the
copy is made,

-s (default) invoke the DEL if wroag verification sequence.

Other lJptions are used only with tapes:
-bpidensity bits-per-inch (i.e., 800/1600/(250),
-feetsize size of reel in feet (i.e., 1200/2400),
-reelnum beginning reel number for a restarted copy,
-buf use double buffered I/O.

The program requests length and density information if it is not given on
the command line or is not recorded on an input tape label. If the file sys­
tem is too large to fit on one reel, volcopy will prompt for additional reels.
Labels of aU reels are checked. Tapes may be mounted alternately on two
or more drives.

Thefsnameargument represents the mounted name (e.g.: root, ul, etc.) of
the filsystem being copied.

The special should be the physical disk section or tape (e.g.: /de,/rdsk15,
Ide, /rmtO, etc.).

The yo/name is the physical volume name (e.g.: pk3, tOl22, etc.) and
should match the extemallabel sticker. Such label names are, limited to six
or fewer characters. Volname may be - to use the existing volume name.

Speciall and yo/name] are the device and volume from which the copy of
the file system is being extracted. Special2 and volname2 are the target dev-
ice and volume. ' •

Fsname and yo/name are recorded in the'last 12 characters of the superblock
(char fsaame['], ,olaame[6];).

Labelit can be used to provide initial labels for unmounted disk or tape file
systems. With the optional arguments omitted, labelit prints current label
values. The -a option provides for initial labeling of new tapes only (this
destroys previous contents).

/etc/log/filesave.log a record of file systems/volumes copied

SEE ALSO

BUGS

fs(4).

Only device names beginning /de,/rmt (on DEC systems) or /de,/rtp (on
3B2OS systems) are treated as tapes.

- 1 -

VPMC(lM) (DEC only) VPMC(IM)

NAME
vpmc - compiler for the virtual protocol machine

SYNOPSIS
'pmc [-mrcx] [-s sfile] [-Ilfile] [-i ifile] [-0 ofile] file

DESCRIPTION
Vpmc is the compiler for a language that is used to describe communica­
tions link protocols. The output of vpmc is a load module for the virtual
protocol machine (VPM), which is a software construct for implementing
communications link protocols (e.g., BISYNC) on the OEC KMCII-B
microprocessor. VPM is implemented by an interpreter in the KMC which
cooperates with a driver in the UNIX host computer to transfer data over a
communications link in accordance with a specified link protocol. UNIX
user processes transfer data to or from a remote terminal or computer sys­
tem through VPM using normal UNIX open, read, write, and close opera­
tions. The VPM program in the KMC provides error control and flow con­
trol using the conventions specified in the protocol.

The language accepted by vpmc is essentially a subset of C; the implemen­
tation of vpmc uses the RATFOR preprocessor (raifor(l» as a front end;
this leads to a few minor differences, mostly syntactic.

There are two versions of the interpreter. The appropriate version for a
particular application is selected by means of the -i option. The BISYNC
version (-i bisync) supports half-duplex, character-oriented protocols such
as the various forms of BISYNC. The HOLC version (-i bdlc) supports
full-duplex, bit-oriented protocols such as HOLC. There is a separate HOLC
interpreter for the KMSII eight-line multiplexor; this version is selected by
-j bdlc/kms. The communications primitives used with the BISYNC ver­
sion are character-oriented and blocking; the primitives used with the HOLC
versions are frame-oriented and non-blocking.

Options
The meanings of the command-line options are:

-m
-r

-c
-x

-8 sfile
-I/file
-i ifile
-oofile

Use m4(1) instead of cpp as the macro preprocessor.
Produce RATFOR output on the standard output and suppress
the remaining compiler phases.
Compile only (suppress the assembly and linking phases).
Retain the intermediate files used for communication between
passes.
Save the generated VPM assembly language on file sfile.
Produce a VPM assembly-language listing on file lfile.
Use the interpreter version specified by ifile (default bisync).
Write the executable object file on file ofile (default a.out).

These options may be given in any order.

Programs
Input to vpmc consists of a (possibly null) sequence of array declarations,
followed by one or more function definitions. The first defined function is
invoked (on command from the UNIX VPM driver) to begin program exe­
cution.

Functions
A function definition has the following form:

function name ()
statemenclist
end

- 1 -

I

I

VPMC(lM) (DEC only) VPMC(lM)

Function arguments (formal parameters) are not allowed. The effect of a
function call with arguments can be obtained by invoking the function via a
macro that first assigns the value of each argument to a global variable
reserved for that purpose. See EXAMPLES below.

A statemenClist is a (possibly null) sequence of labeled statements. A
labeled_statement is a statement preceded by a (possibly null) sequence of
labels. A label is either a name followed by a colon (:) or a decimal integer
optionally followed by a colon.

The statements that make up a statement list must be separated by semi­
colons (;). (A semicolon at the end of a line can usually be omitted; refer
to the description of RATFOR for details.) Null statements are allowed.

Statement Syntax
The following types of statements are allowed:

expression
lvalue = expression
lvalue + = expression
lvalue - = expression
lvalue I = expression
lvalue & = expression
Ivalue A = expression
Ivalue« = expression
Ivalue» = expression
if(expression)statement
if(expression) statement else statement
while(expression)statement
for(statement; expression; statement)statement
repeat statement
repeat statement until expression
break
next
switch (expression){ease_list}
return (expression)
return
goto name
goto deeimaCeonstant
{statemenUist}

repeat is equivalent to the do keyword in C; next is equivalent to continue.

A case_list is a sequence of statement lists, each of which is preceded by a
label of the form:

case constant:

The label for the last statemenUist in a easeJist may be of the form:

default:

Unlike C, RATFOR supplies an automatic break preceding each new case
label.

Expression Syntax
A primary3xpression (abbreviated primary) is an lvalue or a constant. An
Ivalue is one of the following:

name
name [constant]

A unary_expression (abbreviated unary) is one of the following:

- 2 -

VPMC(IM)

primary
name ()
system3all
++Ivalue
--Ivalue
(expression)
lunary
.... unary

(DEC only) VPMC(IM)

The following types of expressions are allowed:

unary
unary + primary
unary -primary
unary IPrimary
unary&primary
unary& primary
unary ~ primary
unary «primary
unary» primary
unary = = primary
unary! = primary
unary>primary
unary <primary
unary> = primary
unary < = primary

Note that the right operand of a binary operator can only be a constant, a
name, or a name with a constant subscript.

System Calls
A VPM program interacts with a communications device and a driver in the
host computer by means of system calls (primitives).

The following primitives are available only in the BISYNC version of the
interpreter:

atoe(primary)
Translate ASCII to EBCDIC. The returned value is the EBCDIC
character that corresponds to the ASCII character represented by
the value of the primary expression. The translation tables reflect
the prejudices of a particular installation.

crcl6(primary)
The value of the primary expression is combined with the cyclic
redundancy check-sum at the location passed by a previous crcloc
system call. The CRC-16 polynomial (X I6+X 1S+x2.t-l) is used for
the check-sum calculation.

crcIoc(name)
The two-byte array starting at the location specified by name is
cleared. The address of the array is recorded as the location to be
updated by subsequent crcl6 system calls.

etoa(primary)
Translate EBCDIC to ASCII. The returned value is the ASCII
character that corresponds to the EBCDIC character represented by
the value of the primary expression. The translation tables reflect
the prejudices of a particular installation.

get(lvalue)
Get a byte from the current transmit buffer. The next available

- 3 -

I

I

VPMC(IM) (DEC only) VPMC(IM)

byte, if any, is copied into the location specified by lvalue. The
returned value is zero if a byte was obtained, otherwise it is non­
zero.

getrbuf(name)
Get (open) a receive buffer. The returned value is zero if a buffer
is available, otherwise it is non-zero. If a buffer is obtained, the
buffer parameters are copied into the array specified by name. The
array should be large enough to hold at least three bytes. The
meaning of the buffer parameters is driver-dependent. If a receive
buffer has previously been opened via a getrbuf call but has not yet
been closed via a call to rtnrbuf, that buffer is reinitialized and
remains the current buffer.

getxbuf(name)
Get (open) a transmit buffer. The returned value is zero if a buffer
is available, otherwise it is non-zero. If a buffer is obtained, the
buffer parameters are copied into the array specified by name. The
array should be large enough to hold at least three bytes. The
meaning of the buffer parameters is driver-dependent. If a transmit
buffer has previously been opened via a getxbuf call but has not yet
been closed via a call to rtnxbuf, that buffer is reinitialized and
remains the current buffer.

put (primary)
Put a byte into the current receive buffer. The value of the primary
expression is inserted into the next available position, if any, in the
current receive buffer. The returned value is zero if a byte was
transferred, otherwise it is non-zero.

rev (lvalue)
Receive a character. The process delays until a character is available
in the input silo. The character is then moved to the location
specified by lvalue and the process is reactivated.

rsom(constant)
Skip to the beginning of a new receive frame. The receiver
hardware is cleared and the value of constant is stored as the
receive sync character. This call is used to synchronize the local
receiver and remote transmitter when the process is ready to accept
a new receive frame. .

rtnrbuf(name)
Return a receive buffer. The original values of the buffer parame­
ters for the current receive buffer are replaced with values from the
array specified by name. The current receive buffer is then released
to the driver.

rtnxbuf(name)
Return a transmit buffer. The original values of the buffer parame­
ters for the current transmit buffer are replaced with values from
the array specified by name. The current transmit buffer is then
released to the driver.

xeom(constant)
Transmit end-of-message. The value of the constant is transmitted,
then the transmitter is shut down.

xmt(primary)
Transmit a character. The value of the primary expression is
transmitted over the communications line. If the output silo is full,
the process waits until there is room in the silo.

- 4 -

VPMC(lM) (DEC only) VPMC(lM)

xsom (constant)
Transmit start-of-message. The transmitter is cleared, then the
value of constant is transmitted six times. This call is used to syn­
chronize the local transmitter and the remote receiver at the begin­
ning of a frame.

The following primitives are available only with the HDLe version of the
interpreter:

abtxfrm()
The current transmission, if any, is aborted, if possible, by sending
a frame-abort sequence (seven one bits, followed immediately by a
terminating flag). This operation is not feasible with some
hardware interfaces, in which case this primitive is a no-operation.

getxfrm (primary)
Get a transmit buffer. If the transmit-buffer queue is not empty,
the buffer at the head of the queue is removed from the queue and
attached to the sequence number specified by the value of the pri­
mary expression If the sequence number is greater than seven or
the sequence number already has a buffer attached, the process is
terminated in error. The returned value is zero if a buffer was
obtained, otherwise non-zero.

norbufO
Test for the availability of an empty receive buffer. The returned
value is true (non-zero) if the queue of empty receive buffers is
currently empty;otherwise the returned value is false (zero).

rcvfrm(name)
Get a completed receive frame. If the queue of completed receive
frames is non-empty, the frame at the head of the queue is
removed and becomes the current receive frame. If a frame is
obtained, the first five bytes of the frame are copied into the array
specified by name. The returned value is true (non-zero) if a
frame was obtained; otherwise, it is false (zero). The rightmost
four bits of the returned value indicate the frame length as follows:
if the value of the rightmost four bits is equal to fifteen, the frame
length is greater than or equal to 15; otherwise the frame length is
equal to the value of the rightmost four bits. The frame length
includes the two eRe bytes at the end of the frame and any control
information at the beginning of the frame. Bytes following the first
two bytes of the frame, but not including the two eRe bytes, are
copied into a receive buffer, if one is available at the time the
frame is received. Bit 020 of the returned value is zero if a receive
buffer was available, otherwise non-zero. The values of the left­
most three bits of the returned value are currently unspecified. If a
frame was obtained, the first five bytes of the frame are copied into
the array specified by name. Frames with errors are discarded; a
count is kept for each type of error. Frames may be discarded for
any of the following reasons: (1) CRe error, (2) frame too short
(less than four bytes), (3) frame too long (buffer size exceeded),
or (4) no receive buffer available. If a frame with a buffer attached
was previously obtained with rcvfrm, but the buffer has not been
released to the driver with rtnrfrm, that buffer is returned to the
queue of empty receive buffers. At most one receive frame with
no buffer attached is retained by the interpreter; if a new frame
arrives before the frame with no buffer attached has been obtained
with rcvfrm, the new frame is discarded.

- 5 -

I

VPMC(lM) (DEC only) VPMC(lM)

rtnrfrm()
Return a receive buffer. The current receive buffer (the one
obtained by the most recent rcvfrm primitive) is returned to the
driver. If there is no current receive buffer, the process is ter­
minated in error.

rsxmtq()
Reset the transmit-buffer queue. The sequence number assignment
is removed from all transmit buffers. If a transmission is currently
in progress, the transmission is aborted, if possible.

rtnxfrm(primary)
Return a transmit buffer. The transmit buffer currently attached to
the sequence number specified by the value of the primary expres­
sion is returned to the driver and the sequence number assignment
is removed from that buffer. If the specified sequence number
does not have a buffer attached, the process is terminated in error.
Transmit buffers must be returned in the same sequence in which
they were obtained, otherwise the process is terminated in error.

setctl(name ,primary)
Specify transmit-control information. The number of bytes
specified by the primary expression are copied from the array
specified by name and saved for use with subsequent xmtfrm or
xmtdl primitives. If the transmitter is currently busy, the process
is terminated in error.

xmtbusy()
Test for transmitter busy. If a frame is currently being transmitted,
the returned value is true (non-zero); otherwise the returned value
is false (zero).

xmtctl()
Transmit a control frame. If a transmission is not already in pro­
gress, a new transmission is initiated. The transmitted frame will
contain the control information specified by the most recent setdl
primitive, followed by a two-byte CRC. The CRC-CCITT polynomial
(x 16+X I~XS+ 1) is used for the CRC calculation. The returned
value is zero if a new transmission was initiated, otherwise non­
zero.

xmtfrm (primary)
Transmit an information frame. If a transmission is not already in
progress, a new transmission is initiated. The transmitted frame
will contain the control information specified by the most recent
setdl primitive, followed by the contents of the buffer which is
currently attached to the sequence number specified by the value of
the primary expression followed by a two-byte CRC. The CRC­
CCITT polynomial (XI6+XI2+XS+1) is used for the CRC calculation.
The returned value is zero if a new transmission was initiated,
otherwise non-zero. If the sequence number is greater than seven
or the sequence number does not have a buffer attached, the pro­
cess is terminated in error.

The following primitives are available with all versions of the interpreter:

dsrwait()
Wait for modem-ready and then set modem-ready mode. The pro­
cess delays until the modem-ready signal from the modem interface
is asserted. If the modem-ready signal subsequently drops. the pro­
cess is terminated. If dsrwait is never invoked, the modem-ready

- 6 -

VPMC(lM) (DEC only) VPMC(1M)

signal is ignored.

exit (primary)
Terminate execution. The process is halted and the value of the
primary expression is passed to the driver.

getcmd(name)
Get a command from the driver. If a command has been received
from the driver since the last call to getcmd, four bytes of com­
mand information are copied into the array specified by name and a
value of true (non-zero) is returned. If no command is available,
the returned value is false (zero).

getopt()
Get the script options. Script options are passed from the protocol
driver to the VPM interpreter by means of the common synchro-
nous interface (CSI). These bits are recorded by CSI; the most
recent value is passed to the VPM interpreter each time the protocol
script is started. This value is saved by the interpreter and can be
retrieved as many times as desired using the getopt primitive. The
low-order bit of this value is used by the BX.25 level 2 script I
(cslapb.r) to determine whether to use address A or address B.

pause()
Return control to the dispatcher. This primitive informs the
dispatcher that the virtual process may be suspended until the next
occurrence of an event that might affect the state of the protocol
for this line. Examples of such events are: (1) completion of an
output transfer, (2) completion of an input transfer, (3) timer
expiration, and (4) a buffer-in command from the driver. In a
multi-line implementation, the pause primitive allows the process
for a given line to give up control to allow the processor to service
another line. In a single-line implementation this primitive has no
effect.

snap(name)
Create a snap event record. Four bytes from the array specified by
name are passed to the driver, which prefixes a time stamp and
sequence number and creates a trace event record containing the
data. If minor device 1 of the trace driver is currently open, the
record is placed on the read queue for that device; otherwise the
event record is discarded. The information passed via the snap
primitive can be displayed using the vpmsave and vpmfmt commands
(see vpmsave(1M».

rtnrpt(name)
Return a report to the driver. Four bytes from the array specified
by name are transferred to the driver. The process delays until the
transfer is complete.

testop(primary)
Test for odd parity. The returned value is true (non-zero) if the
value of the primary expression has odd parity, otherwise the
returned value is false (zero).

timeout(primary)
Schedule or cancel a timer interrupt. If the value of the primary
expression is non-zero, the current values of the program counter
and stack pointer are saved and a timer is loaded with the value of
the primary expression. The system call then returns immediately
with a value of false (zero) as the returned value. The timer is

- 7 -

I

VPMC(lM) (DBC only) VPMC(lM)

decremented each tenth of a second thereafter. If the timer is
decremented to zero, the saved values of the program counter and
stack pointer are restored and the system call returns with a value
of true (non-zero). The effect of the timer interrupt is to return
control to the code immediately following the timeout system call,
at which point a non-zero return value indicates that the timer has
expired. The timeout system call with a non-zero argument is nor­
mally written as the condition part of an if statement. A timeout
system call with a zero argument value cancels all previous timeout
requests, as does a return from the function in which the timeout
system call was made. A timeout system call with a non-zero argu­
ment value overrides all previous timeout requests. The maximum
permissible value for the argument is 255, which gives a timeout
period of 25.5 seconds.

timer(primary)
Start a timer or test for timer expiration. If the value of the pri­
mary expression is non-zero, a software timer is loaded with the
value of the primary expression and a value of true (non-zero) is
retur.ned. The timer is decremented each tenth of a second
thereafter until it reaches zero. If the value of the primary expres­
sion is zero, the returned value is the current value of the timer;
this will be true (non-zero) if the value of the timer is currently
non-zero, otherwise false (zero). The timer used by this primitive
is different from the timer used by the timeout primitive.

trace (primary [,primary])

Constants

The values of the two primary expressions and the current value of
the script location counter are passed to the driver, which prefixes a
sequence number and creates a trace event record containing the
data. If minor device 0 of the trace driver is currently open, the
record is placed on the read queue for that device; otherwise the
event record is discarded. The information passed via the trace
primitive can be displayed using the vpmsave and vP"ifmt commands
(see lIpmsave(lM». If the second argument is omitted, a zero is
used instead. The process delays until the values have been
accepted by the host computer.

A constant is a decimal, octal, or hexadecimal integer, or a single character
enclosed in single quotes. A token consisting of a string of digits is taken
to be an octal integer if the first digit is a zero, otherwise the string is inter­
preted as a decimal integer. If a token begins with Ox or OX, the remainder
of the token is interpreted as a hexadecimal integer. The hexadecimal
digits include a through f or, equivalently, A through F.

Variables
V;1riable names may be used without having been previously declared. All
names are global. All values are treated as 8-bit unsigned integers.

Arrays of contiguous storage may be allocated using the array declaration:

array name [constant]

where constant is a decimal integer. Elements of arrays can be referenced
using constant subscripts:

name [constant]

Indexing of arrays assumes that the first element has an index of zero.

- 8 -

VPMC(lM) (DEC only) VPMC(lM)

Names
A name is a sequence of letters and digits; the first character must be a
letter. Upper- and lower-case letters are considered to be distinct. Names
longer than 31 characters are truncated to 31 characters. The underscore
(_) may be used within a name to improve readability, but is discarded by
RATFOR.

Preprocessor Commands
If the - m option is omitted, comments, macro definitions, and file inclu­
sion statements are written as in C. Otherwise, the following rules apply:

I. If the character # appears in an input line, the remainder of the line is
treated as a comment.

2. A statement of the form:

define(name ,text)

causes every subsequent appearance of name to be replaced by text.
The defining text includes everything after the comma up to the
balancing right parenthesis; multi-line definitions are allowed. Macros
may have arguments. Any occurrence of Sn within the replacement
text for a macro will be replaced by the nth actual argument when tl\e
macro is invoked.

3. A statement of the form:

include(file)

inserts the contents of file in place of the include command. The con­
tents of the included file is often a set of definitions.

EXAMPLFS
These examples require the use of the -m option.

The function defined below transmits a frame in transparent BISYNC.
A transmit buffer must be obtained with getxbuf before the function
is invoked.

Define symbolic constants:

define(DLE,OxlO)
define(ETB,Ox26)
define(PAD,Oxff)
define(STX,Ox02)
define(SYNC,Ox32)

Define a macro with an argument:

define(xmtcrc, {crcI6($1); xmt($1);})

Declare an array:

array crc[2];

Define the function:

function xmtblk()

crcloc(crc) ;
xsom(SYNC);
xmt(DLE);
xmt(STX);

- 9 -

I

VPMC(lM) (DEC only) VPMC(IM)

FILES

while(get(byte) = =O){
if(byte = = DLE)

xmt(DLE);
xmtcrc(byte);

end

}
xmt(DLE);
xmtcrc(ETB);
xmt(crc[O»;
xmt(crc[I»;
xeom(PAD);

The following example illustrates the use of macros to simulate a
function call with arguments.

The macro definition:

define(xmtctl,{c=$1 ;d=$2;xmtctll ()})

The function definition:

function xmtctll ()

xsom(SYNC);
xmt(c);
if(d!=O)

end

xmt(d);
xeom(PAD);

Sample invocation:

function test()

xmtctl(DLE,Ox70);
end

sas_temp*
/tmp/sas_ta??
/tmp/sas_tb? ?
/usr/lib/vpm/pass*
/usr/lib/vpm/pl
/usr/lib/vpm/vratfor
/lib/cpp
/usr/bin/m4
/bin/kasb
/usr/lib/vpm/bisync/*
/usr/lib/vpm/hdlc/*

temporaries
temporary
temporary
compiler phases
compiler phase
compiler phase
preprocessor
preprocessor
KMCII-B assembler
interpreter source for the BISYNC interpreter
interpreter source for the HDLC interpreter

SEE ALSO
m4(1), ratfor(I), vpmsave(IM), vpm(7).
C Reference Manual by D. M. Ritchie.
RATFOR-A Preprocessor for a Rational Fortran by B. W. Kernighan.
The M4 Macro Processor by B. W. Kernighan and D .. M. Ritchie.
Software Tools by B. W. Kernighan and P. J. Plauger (pp. 28-30).

- 10 -

VPMC(IM) (38208 only) VPMC(IM)

NAME
vpmc - compiler for the virtual protocol machine

SYNOPSIS
'pme [-m] [-e] [-8 sfile] [-I lfile] [-0 ofile] file

DESCRIPTION
Vpmc is the compiler used for C programs written to describe communica­
tions link protocols. The output of vpmc is a load module for the virtual
protocol machine (VPM) , which is a software construct for implementing
communications link protocols (e.g., BISYNC) on the UN53) device. VPM is
implemented by a program in the UN53 which cooperates with a driver in
the UNIX host computer to transfer data over a communications link in
accordance with a specified link protocol. UNIX user processes transfer data
to or from a remote terminal or computer system through VPM using nor­
mal UNIX open, read, write, and close operations. The VPM program in the
UN53 provides error control and flow control using the conventions
specified in the protocol.

Options
The meanings of the command-line options are:

-m
-e
-8 sfile
-Ilfile

Use m4(l) instead of cpp as the macro preprocessor.
Compile only (suppress the assembly and linking phases).
Save the generated assembly language on file sfile.
Produce an assembly-language listing on file lfile.

-oofile Write the executable object file on file ofile (default a.out).

These options may be given in any order.

Programs
Input to vpmc consists of a C program with one or more function
definitions. The first defined function is invoked (on command from the
UNIX VPM driver) to begin program execution.

System CaUs
A VPM program interacts with a communications device and a driver in the
host computer by means of system calls (primitives).

The following primitives are available:

atoe(primary)
Translate ASCD to EBCDIC. The returned value is the EBCDIC
character that corresponds to the ASCD character represented by the
value of the primary expression. The translation tables reflect the
prejudices of a particular installation.

ercl6(primary)
The value of the primary expression is combined with the cyclic
redundancy check-sum at the location passed by a previous ercloc
system call. The CRC-16 polynomial (X I6+X 1S+x2f-l) is used for
the check-sum calculation.

ercloc(name)
The two-byte array starting at the lo~tion specified by name is
cleared. The address of the array is recorded as the location to be
updated by subsequent ercl6 system calls.

etoa(pri(nDry)
Translate EBCDIC to ASCII. The returned value is the ASCII charac­
ter that corresponds to the EBCDIC character represented by the
value of the primary expression. The translation tables reflect the
prejudices of a particular installation.

- 1 -

VPMC(1M) (38208 .only) VPMC(IM)

get (/value)
Get a byte from the current transmit buffer. The next available
byte, if any, is copied into the location specified by lvalue. The
returned value is zero if a byte was obtained, otherwise it is non­
zero.

getrbuf(name)
Get (open) a receive buffer. The returned value is zero if a buffer
is available, otherwise it is non-zero. If a buffer is obtained, the
buffer parameters are copied into the array specified by name. The
array should be large enough to hold at least three bytes. The
meaning of the buffer parameters is driver-dependent. If a receive
buffer has previously been opened via a getrbuf call but has not yet
been closed via a call to rtnrbuf, that buffer is reinitialized and
remains the current buffer.

getxbuf(name)
Get (open) a transmit buffer. The returned value is zero if a buffer
is available, otherwise it is non-zero. If a buffer is obtained, the
buffer parameters are copied into the array specified by name. The
array should be large enough to hold at least three bytes. The
meaning of the buffer parameters is driver-dependent. If a transmit
buffer has previously been opened via a getxbuf call but has not yet
been closed via a call to rtnxbuf, that buffer is reinitialized and
remains the current bu.ffer.

,ut(primary)
Put a byte into the current receive buffer. The value of the primary
expression is inserted into the next available position, if any, in the
current receive buffer. The returned value is zero if a byte was
transferred, otherwise it is non-zero.

rc,(lvalue)
Receive a character. The process delays until a character is available
in the input silo. The character is then moved to the location
specified by /value and the process is reactivated.

rsom(constant)
Skip to the beginning of a new receive frame. The receiver
hardware is cleared and the value of constant is stored as the
receive sync character. This call is used to synchronize the local
receiver and remote transmitter when the process is ready to accept
a new receive frame.

rtnrbuf(name)
Return a receive buffer. The original values of the buffer parame­
ters for the current receive buffer are replaced with values from the
array specified by name. The current receive buffer is then released
to the driver.

rtnxbuf(name)
Return a transmit buffer. The original values of the buffer parame­
ters for the current transmit buffer are replaced with values from
the array specified by name. The current transmit buffer is then
released to the driver.

xeom(constant)
Transmit end-of-message. The value of the constant is transmitted,
then the transmitter is shut down.

xmt(primary)
Transmit a character. The value of the primary expression is

- 2 -

VPMC(IM) (382OS only) VPMC(IM)

transmitted over the communications line. If the output silo is full,
the process waits until there is room in the silo.

xsom (constant)
Transmit start-of-message. The transmitter is cleared, then the
value of constant is transmitted six times. This call is used to syn­
chronize the local transmitter and the remote receiver at the begin­
ning of a frame.

dsrwait()
Wait for modem-ready and then set modem-ready mode. The pro­
cess delays until the modem-ready signal from the modem interface
is asserted. If the modem-ready signal subsequently drops, the pro­
cess is terminated. If dsrwait is never invoked, the modem-ready
signal is ignored.

exit (primary)
Terminate execution. The process is halted and the value of the
primary expression is passed to the driver.

getcmd (name)
Get a command from the driver. If a command has been received
from the driver since the last call to getcmd, four bytes of com­
mand information are copied into the array specified by name and a
value of true (non-zero) is returned. If no command is available,
the returned value is false (zero).

pause()
Return control to the dispatcher. This primitive informs the
dispatcher that the virtual process may be suspended until the next
occurrence of an event that might affect the state of the protocol
for this line. Examples of such events are: (1) completion of an
output transfer, (2) completion of an input transfer, (3) timer
expiration, and (4) a buffer-in command from the driver. In a
multi-line implementation, the pause primitive allows the process
for a given line to give up control to allow the processor to service
another line. In a single-line implementation this primitive has no
effect.

snap(name)
Create a snap event record. Four bytes from the array specified by
name are passed to the driver, which prefixes a time stamp and
sequence number and creates a trace event record containing the
data. If minor device 1 of the trace driver is currently open, the
record is placed on the read queue for that device; otherwise the
event record is discarded. The information passed via the snap
primitive can be displayed using the vpmsnap command (see
vpmstart).

rtnrpt(name)
Return a report to the driver. Four bytes from the array specified
by name are transferred to the driver. The process delays until the
transfer is complete.

testop(primary)
Test for odd parity. The returned value is true (non-zero) if the
value of the primary expression has odd parity, otherwise the
returned value is false (zero).

timeout(primary)
Schedule or cancel a timer interrupt. If the value of the primary
expression is non-zero, the current values of the program counter

- 3 -

VPMC(lM) (38208 only) VPMC(lM)

and stack pointer are saved and a timer is loaded with the value of
the primary expression. The system call then returns immediately
with a value of false (zero) as the returned value. The timer is
decremented each tenth of a second thereafter. If the timer is
decremented to zero, the saved values of the program counter and
stack pointer are restored and the system call returns with a value
of true (non-zero). The effect of the timer interrupt is to return
control to the code immediately following the timeout system call,
at which point a non-zero return value indicates that the timer has
expired. The timeout system call with a non-zero argument is nor­
mally written as the condition part of an if statement. A timeout
system call with a zero argument value cancels all previous timeout
requests, as does a return from the function in which the timeout
system call was made. A timeout system call with a non-zero argu­
ment value overrides all previous timeout requests. The maximum
permissible value for the argument is 255, which gives a timeout
period of 25.5 seconds.

timer(primary)
Start a timer or test for timer expiration. If the value of the pri­
mary expression is non-zero, a software timer is loaded with the
value of the primary expression and a value of true (non-zero) is
returned. The timer is decremented each tenth of a second
thereafter until it reaches zero. If the value of the primary expres­
sion is zero, the returned value is the current value of the timer;
this will be true (non-zero) if the value of the timer is currently
non-zero, otherwise false (zero). The timer used by this primitive
is different from the timer used by the timeout primitive.

trace (primary [,primary I)
The values of the two primary expressions and the current value of
the script location counter are passed to the driver, which prefixes a
sequence number and creates a trace event record containing the
data. If minor device 0 of the trace driver is currently open, the
record is placed on the read queue for that device; otherwise the
event record is discarded. The information passed· via the trace
primitive can be displayed using the vpmtrace command (see
vpmsave). If the second argument is omitted, a zero is used
instead. The process delays until the values have been accepted by
the host computer.

Preprocessor Commands
If the - m option is omitted, comments, macro definitions, and file inclu­
sion statemen.ts are written as in C. Otherwise, the following rules apply:

I. If the character # appears in an input line, the remainder of the line is
treated as a comment.

2. A statement of the form:

define(name ,text)

causes every subsequent appearance of name to be replaced by text.
The defining text includes everything after the comma up to the
balancing right parenthesis; multi-line definitions are allowed. Macros
may have arguments. Any occurrence of Sn within the replacement
text for a macro will be replaced by the nth actual argument when the
macro is invoked.

3. A statement of the form:

include (file)

- 4-

VPMC(IM)

SEE ALSO

(38208 only) VPMC(1M)

inserts the contents of file in place of the include command. The con­
tents of the included file is often a set of definitions.

m4(1), vpmset(lM).
C Reference Manual by D. M. Ritchie.
The M4 Macro Processor by B. W. Kernighan and D. M. Ritchie.
Software Tools by B. W. Kernighan and P. J. Plauger (pp. 28-30).

- 5 -

VPMSAVE{IM) VPMSAVE(IM)

NAME
vpmsave, vpmfmt - save and print VPM event traces

SYNOPSIS
/etc/'prnsave mask device

/etc/'prnfrnt [-t]

DESCRIPTION
Vpmsave opens the minor device of the trace driver specified by device,
enables the channels specified by mask (octal), and then reads event
records and writes them to its standard output (unformatted) until killed.
Bit 0 of mask enables channel zero, bit 1 channel one, etc. The Common
Synchronous Interface (CSI) routines and the CSI-based protocol drivers
use the CSI index number (modulo 16) to select their trace channels. Each
protocol driver provides an ioctl command that can be used to get this
number.

VJ»1ifmt reads its standard input, which it assumes was generated by
vpmsave, and prints it (formatted) to its standard output until killed. The
-t option when used with the level 2 script trcslapb., provides a detailed
event trace of the operation of level 2 of BX.2S. When used with other
scripts the result may not be meaningful.

Support for the commands vpmtrace and vpmsnap has been dropped. The
function of vpmtrace can be obtained using vpmsave and vJ»1ifmt as follows:

vpmsave mask device I vpmfmt

where device is the name of minor device 0 of the trace dri~er.

The event records generated by calls to the vpmc snap primitive are now
directed to minor device 0 along with other event records. The need to
keep the snap event record separate no longer exists since all event records
now contain a time stamp.

EXAMPLE

SEE ALSO

vpmsave mask device > t &

vpmfmt < t

vpmc{lM), trace(7), vpm(7).

- 1 -

VPMSET(IM) VPMSET(IM)

NAME
vpmset, vpmstart - connect/load VPM drivers and programmable com­
munication devices

SYNOPSIS
/etc/vpmset [-b] [-d] [-s] tdev pdev [lineno]

/etc/vpmstart [-r] device n [filen]

DESCRIPTION
The vpmset command provides a means for associating dynamically a VPM
protocol driver minor device with a particular synchronous line on a pro­
grammable communication device (PCD). Tdev is the protocol driver minor
device name; pdev is the PCD minor device name; and lineno is the number
of a synchronous line if a DEC KMSI} was specified. Until these connec­
tions have been made, a user program cannot open the VPM protocol driver
minor device for reading or writing.

The -b option causes bit zero of the protocol option bits to be set. Some
protocol scripts such as cslapb.r (level 2 of BX.25) use this bit to specify
address B as the local address. These bits are stored by the protocol driver
and passed to the PCD when the VPM protocol minor device is opened for
reading and/or writing. These bits are available to the protocol script via
the getopt primitive.

The -d option disconnects the VPM protocol minor device from the syn­
chronous line on the PCD. This disconnect will fail if the VPM protocol
minor device is open for reading and/or writing.

The -s option prints to stdout a message indicating which Common Syn­
chronous Interface (CSI) index is associated with the protocol minor device.
This number modulo 16 indicates the channel number used for tracing
events with the vpmsave(lM) command.

Vpmstart writes filen (a.out by default) to the KMCl1(DEC) or UN53(3B2OS)
specified by device. The argument n is a magic number that the PCD driver
saves to identify the program. This number is checked when the VPM
driver is opened to provide some assurance that the program loaded into
the PCD is the one expected. The magic number for any standard VPM
program running in the PCD is 6 (7 indicates a V.35 interface on the
3B2OS). While filen may be any file that is executable by the PCD, it will
normally have been prepared using vpmc(lM).

The PCD control program waits for the VPM protocol minor device to be
opened for reading and/or writing before beginning execution of the proto­
col script. The -r option may be specified only when using a DEC KMCII.
When this option is specified, the queue of commands to the KMCII driver
is not flushed prior to starting the PCD program. This option must be used
to reload the KMCII when recovering from a power-fail.

SEE ALSO
vpm(7), vpmc(lM).

- 1 -

VPMTEST(1M) (DEC only) VPMTEST (1M)

NAME
vpmtest - test KMC lines

SYNOPSIS
jetcj'pmtest -t top -k kmc -0 line

DESCRIPTION
Vpmtest performs a series of loop back tests on a specified synchronous line
interface of a specified KMC. Top is a path name that specifies the VPM
protocol driver minor device to be used for the test. Kmc is the path name
for the KMC on which the test is to be run. Line specifies the particular
line number (0-7) on a KMS; for a KMC equipped with a single-line line
interface line should be O. The KMC must have been previously loaded
with the LAPB script (cslapb.r) using vpmstart. The top device must not be
open for reading or writing; this is the same restriction as for doing a
vpmset. The equivalent of a vpmset is performed to associate the specified
top device with the specified KMC and line number.

The first test uses the maintenance mode of the line unit hardware to per­
form an internal loopback test; this test is independent of the modem to
which the line is attached. A failure at this point indicates a problem with
the KMC or line unit hardware or with the VPM or KMC software. The
second test requires the local (near end) modem to be placed in the analog
loopback mode; on a WECO 209A dataset this is accomplished by depress­
ing the AL button on the front of the dataset. A failure at this point indi­
cates a problem with the modem or with the interface between the modem
and the line unit; a faulty or disconnected cable is the most likely possibil­
ity. The third test performs a loopback from the remote (far end) modem.
This requires placing the remote modem in the digital loop back mode; on a
WECO 209A dataset this is accomplished by depressing the DL button on
the front of the dataset. The local (near end) modem should be in the nor­
mal mode for this test. A failure at this point indicates trouble with one or
both of the modems or with the telephone line connecting them. At the
end of each test the VPM error counters associated with the particular line
are printed.

EXAMPLE
/etc/vpmtest -t /dev/vpml -k /dev/kmcl -n 7

SEE ALSO
kmc(7), vpm(7).

- 1 -

WALL(IM) WALL(IM)

NAME
wall - write to all users

SYNOPSIS
fetefwall

DFSCRIPTION
WaD reads its standard input until an end-of-file. It then sends this mes­
sage to all currently logged in users preceded by:

FlLFS

Broadcast Message from •••

It is used to warn all users, typically prior to shutting down the system.

The sender must be super-user to override any protections the users may
have invoked (see mesg(1».

/dev/tty*
SEE ALSO

mesg(l), write(l).

DIAGNOSTICS
"Cannot send to ... " when the open on a user's tty file fails.

- 1 -

I

I

WlI0DO(lM) WHODO(lM)

NAME
whodo - who is doing what

SYNOPSIS
jetcjwhodo

DESCRIPTION
WhOdo produces merged. reformatted. and dated output from the who(l)
and ps(1) commands.

SEE ALSO
ps(1). who(l).

- 1 -

XlSPVC(lM) X2SPVC(lM)

NAME
x2Spvc, x2S1nk - install, remove, or get status for a BX.2S minor device or
link

SYNOPSIS
/ete/x15p,e options

/ete/x.l5lnk options

DI!SCRIPTION
X25pvc may be used to install or remove a BX.2S Permanent Virtual Circuit
(PVC) on a specified BX.2S interface (link), or to display the status of a
specified BX.2S minor device (slot). Exactly one of the following options
(i.e. -i, -r, -8, -e) must be used:

-I [-s] [-R] [-N] -m slotname -e chno -Ilinkno
Slotname is a path name that specifies a BX.2S minor device (slot).
If that minor device is currently connected to some logical channel
on some BX.2S interface (link), then first that minor device will be
removed, if possible (see the -r option). If that minor device is
now available, it is connected to logical channel chno on link
number Iinkno. Chno must be in the range of 1 to 4,09S and must
not currently be in use for any other BX.2S minor device associated
with that link. Exactly one of three session-establishment options
must be used: -S, which is the preferred option, indicates that
session-layer connect/accept/disconnect qualified data messages are
to be used; - R indicates that RESET in-order/out-of-order packets
will be recognized but not transmitted; - N indicates that the "no
protocol" session mode will be used. The - Rand - N options are
provided only for compatibility with non-UNIX implementations of
BX.2S. This command will fail if the link, channel, or minor devicc=
number is out of range, or if the slot is in use.

-r slotname
Remove the association between BX.2S minor device slotname and
the link and channel number to which it is currently connected.
The command will fail if the minor device number is out of range,
the slot is not installed, the slot is open, packets are waiting to be
transmitted, or there are unacknowledged packets outstanding.

-8 slotname
Print abbreviated status information for BX.2S minor device s1ot­
name. The information printed consists of s1otname, the logical
channel number, the link number, and the session-establishment
option. This command will fail if the minor device number is out of
range or the slot is not installed.

-e slotname
Print extended status information for BX.2S minor device slotname.
The information printed consists of most of the information that is
stored in the internal data structures associated with this device.
This information is useful for determining the state of the PVC
associated with this device when hardware or software anomalies
are suspected and .is intended for use by developers and sophisti­
cated users. This command will fail if the minor device number is
out of range or the slot is not installed.

X251nk is used to attach, detach, activate, deactivate, get status for and per­
form a changeover on a specified BX.2S interface (link). Exactly one of the
following options (i.e. -a, -d, -i, -h, -8, -c) must be used:

-a I -k] -m device [-n Iineno] [-0 modcd] -Ilinlcno
Attach the BX.2S link that is specified by Iinkno to the level 2 device

- 1 -

I

I

X2SPVC(lM) X2SPVC(lM)

whose name is device. This command makes the necessary connec­
tions between data structures. Linkno is the number of the BX.25
link to be attached; links are numbered starting with o. If a line
number must be specified for the device, (e.g. the device is a
KMSII), the - n option is used. If the device is a KMSll and
modem control is needed, the -0 option is used a:nd modetl is the
path name of the DMll-BA modem control unit associated with a
particular KMC as part of a KMSII. If the - k option is used, this
command will attach device as a backup for link linkno; otherwise,
device is the primary. This command will fail if the link number is
out of range, the link is already attached, or the device is already
attached.

-d [-k] -I/inkno
Detach the BX.25 link that is specified by linkno. This command
removes the logical connections that were made by the -a option.
If the - k option is used, this command will detach the backup dev­
ice associated with linkno; otherwise the primary device is detached.
This command will fail if the link number is out of range, the dev­
ice is not attached, or the device has not been halted.

-i [-k] [-b] [-p pktsize] [-f] -I/inkno
Activate the BX.25 link that is specified by linkno. The -b option
specifies that the link-level protocol will use address B; the default
is address A,. The - p option specifies the packet size; if it is used,
pktsize must be a number that is a power of 2 and lies between 16
and 1,024 inclusive. The default packet size is 128. The -f option,
which is used only on the 3B208, indicates that the speed of the
device associated with link linkno is greater than 9.6KB. If the -k
option is used, this command will start the level 2 protocol on the
backup device associated with link linkno; otherwise, the BX.25 level
2 and level 3 protocols will be started on the primary device associ­
ated with link linkno. This command will fail if the link number is
out of range, the link is not attached, the device is already started,
or the packet size is invalid.

-h [-k] -I/inkno
Halt the link specified by linkno. If the -k option is used, the level
2 protocol on the backup device will be stopped provided the level 3
protocol is not running on the backup device. If the - k option is
not used, the level 3 protocol is stopped (wherever it is running)
and the level 2 protocol on the primary device is stopped. If a
backup device has been attached and started, the level 2 protocol on
the backup will also be stopped. This .command will fail if the link
number is out of range or the link is not attached.

-s -I/inkno
Print the status of the link specified by linkno. The information
printed consists of the link number, the packet size used on that
link, and internal status information including whether or not the
level 2 queue is full, the restart state of the link, whether or not the
high and low priority queues are empty, and whether or not a res­
tart packet is on the level 2 queue. Information about level 2 status
is printed for the primary device and also for the backup device, if
it has been attached. The value of csidev modulo 16 indicates the
channel number used for tracing events with the vpmsave command.
This command will fail if the link number is out of range or the
linkis not attached to either a primary or backup device.

-c -I/inkno
Changeover to the standby synchronous device associated with link

- 2 -

X2SPVC(IM)

SEE ALSO

X2SPVC(1M)

linkno. If the standby device is synchronized at level 2, level 3 will
now run on that device. This command will fail if the link number
is out of range, the link is not attached to both a primary and
backup device, or a backup device has not been started.

vpmsave(lM), nc(7), x25(7).

- 3 •

I

INTRO(7) INTRO(7)

NAME
intro - introduction to special files

DESCRIPTION

BUGS

This section describes various special files that refer to specific hardware
peripherals and UNIX device drivers. The names of the entries are gen­
erally derived from names for the hardware, as opposed to the names of
the special files themselves. Characteristics of both the hardware device
and the corresponding UNIX device driver are discussed where applicable.

While the names of the entries generally refer to vendor hardware names,
in certain cases these names are seemingly arbitrary for various historical
reasons.

- 1 -

ACU(7) ACU(7)

NAME
acu, dn - Automatic Call Unit (ACU) interface

DESCRIPTION
The ACU drivers support open. close. and write system calls. In addition,
the tn8 driver on the 3B208 supports an ioetl system call. The acu? and
dn? files are write-only. The write system call sends the telephone number
to be dialed to the ACU. The permissible codes are:

0-9 dial 0-9
* or : dial *
or; dial #

4 second delay for second dial tone
e or < end-of-number
w or = wait for secondary dial tone
f flash off hook for 1 second

The entire telephone number must be presented in a single write system
call.

The ioell system call (In8 only) is invoked as follows:

include <sys/acu.h>
int fildes, cmd;
struct acutab *acutp;
ioctl (fildes, cmd, acutp);

Acutab is a table specifying the connections between ACU minor devices
and communication lines:

struct acutab {
int minor;
int unit;
int port;
int line;

} acutab[NACU];

The NACU parameter is a constant from acu.h that specifies the number of
lines the TN8 ACUs can dial out on.

The ioetl cmds are:

ACUSDEV-Specifya connection between an ACU minor device and a tele­
phone line. This command makes an entryin acutab, the table that
specifies associations between ACU minor devices and dial-out lines.
Before the ACUs can be used, and after any ACU reconfiguration,
this table must be sent to the ACU peripheral controller via the
ACUSTART command.

ACUSTART-Connect ACU minor devices to telephone lines. This com­
mand informs the ACU peripheral controller of the connections set
up by the ACUSDEV command and enables it.

SEE ALSO
acuset(lM).

FILES
/dev/acu?
/dev/tn8
/dev/dn?

(3B20S only)
(3B20S only)
(DEC only)

- 1 -

CAT(7) (PDP-II only) CAT(7)

NAME
cat - phototypesetter interface

DESCRIPTION
Cat provides the interface to a Wang Laboratories, Inc. C/ A/T photo­
typesetter. Bytes written on the file specify font, size, and other control
information as well as the characters to be flashed. The coding will not be
described here.

Only one process may have this file open at a time. It is write-only.

FILES
/dev/cat

SEE ALSO
troff(l).

- 1 -

DGN(7) (38208 only) DGN(7)

NAME
dgn - on-line diagnostic interface

DESCRIPTION

FILES

Files in the directory Idev Idgn provide the interface between on-line diag­
nostic commands and device drivers. The files in this directory are
intended to be accessed only by diagnostic commands.

Idev/dgn/*
SEE ALSO

abt(IM), chmap(IM), dgn(IM), dstart(lM), rmv(IM), r8t(IM), sta(lM).

WARNING
Diagnostic commands are intended for use only by trained hardware
maintenance personnel.

- 1 -

DMC(7) (DEC only) DMC(7)

NAME
dmc - communications link with built-in DDCMP protocol

DESCRIPTION

FILES

BUGS

The DMCll allows local connection of PDP-II systems over high-speed
(1Mb or 56kb) links and remote connection over leased (up to 19.2kb) or
dial-up (up to 4,800b) lines. It implements in hardware the DDCMP data­
link protocol, which includes error control. This driver handles two DMCll
devices.

/dev/dmc

There are quite a few bugs in the DEC microcode for the different versions
of the DMCl1.

- 1 -

DMK(7) (DEC only) DMK(7)

NAME
dmk - DMll-BA modem control multiplexor

DFSCRIPTION

FlLFS

The files Idev Idmk? are used to access DMll-BA modem control units.
Each DMll-BA provides modem control and status information for eight
synchronous lines. The DMll-BA is an optional component of the KMSll
communications processor (see vpm(7)). Since the VPM software for the
KMSll does not provide any access to the DMll-BA, it is necessary to use
the dmk driver if modem control is required with the KMSII.

The iocd(2) function is used to provide access to the basic modem control
capabilities:

include <sys/dmk.h>
ioctl (fildes, command, arg)
struct dmkctl {

} .arg;

short line;
short mode;

The only command available is DMKSETM. The effect of this command is
to set the control leads in the modem interface for the line (0-7) specified
by line to the state specified by mode. The bits in mode specify control leads
to be asserted as follows:

Name Bit
DMKDTR 002
DMKRTS 004
DMKNS 010

Idev/dmk?

Meaning
Data Terminal Ready
Request to Send
New Sync

SEE ALSO
x25pvc(IM), vpm(7).
"KMSll-A/B Communications Processor Option Description", YM­
CI26C-00, Digital Equipment Corporation.
"DMll-BA Modem Control Multiplexor Option Description", YM-C138C-
00, Digital Equipment Corporation.

- I -

DSK(7) (38208 only) DSK(7)

NAME
dsk - 3820S moving-head disk

DESCRIPTION

FILES

The files dskO, .'" dskS refer to sections of the disk drive unit number O.
The files dsklO, ••• , dsklS refer to drive unit number I, etc. This slicing
allows the pack to be broken up into more manageable pieces.

The origin and size of the sections on each drive are as follows:

section start length
o 1 494304
1 101 433504
2 251 342304
3 326 296704
4 476 205504
5 551 159904
6 701 68704
7 775 23712
8 0 495520

The start address is a cylinder address, with each cylinder containing 608
blocks on the 300 megabyte drive. Also it should be noted that the first
cylinder is reserved for booting and the last cylinder for diagnostics.

The dsk files access the disk via the system's normal buffering mechanism
and may be read and written without regard to physical disk records. There
is also a "raw" interface which provides for direct transmission between
the disk and the user's read or write buffer. A single read or write call
results in exactly one I/O operation and therefore raw I/O is considerably
more efficient when many words are transmitted. The names of the raw
disk files begin with rdsk and end with a number which selects the same
disk section as the corresponding dsk file.

In raw I/O the buffer must begin on a word boundary, and counts must be
a multiple of 64 bytes.

In addition to the sections defined above two other special files have been
created to define areas on the disk. The first is /dev /dump?, where? is the
disk unit number, which provides raw access to the section on the disk
where dumps will be put. The second file is /dev /boot? which provides
raw access to the boot section.

/dev/dsk*, /dev/rdsk*, /dev/dump?, /dev/boot?

- 1 -

DU(7) (PDP-II oaly) DU(7)

NAMB
du - DU-II synchronous line interface

DESCRIPTION

FILES

The files duO, dal, etc., represent interfaces to synchronous modems such
as the Bell System 200-series synchronous DATA-PHON~ sets. Read and
write calls to da? are unlimited, but work best when restricted to less than
512 bytes. Each write call is sent as a single record. Seven bits from each
byte are written, along with an eighth, odd-parity, bit. The "sync" charac­
ters must be supplied by the user. Each read call returns the characters
read from a single record. Seven bits are returned unaltered; the eighth bit
is set if the byte was not received in odd parity. An error is returned if
data-set ready is not present.

/dev/du?

SBBALSO
acu(7).

- 1 -

DZ(7) (DEC only) DZ(7)

NAME
dz, dzb, dh - DZ-ll, DZ-ll/KMC-llB, DH-ll asynchronous multiplexers

DESCRIPTION

FILES

Each line attached to a DH-ll or DZ-ll communications multiplexer
behaves as described in tennio(7). Input and output for each line may
independently be set to run at any of 16 speeds; see tennio(7) for the
encoding. (For DZ-ll lines, output speed is always the same as input speed.
The 200 speed and the two externally clocked speeds (exta, extb) are miss­
ing on the DZ-Il.) The behavior of dzb lines is indistinguishable from that
of dz lines, except that on the dzb backspace delays are implemented using
fill characters (rubouts) instead of timed delays.

Note that the DH-ll is considered obsolete and is not supported on the
VAX-ll/780.

/dev/uy*
SEE ALSO

kmc(7), termio(7).

- 1 -

EMUUO(7) (3BlOS 081y) BMUUO(7)

NAMB
emulio - 3270 emulation interface

SYNOPSIS
,include <sys/file.lt>

DESCRIPTION
3270 emulation makes use of the UNS3 driver and associated VPM software
to simulate a 3270-type controller (e.g., a 40/4 controller). Users may
communicate with a remote host as a 3270-type peripheral (e.g., a 40/4 ter­
minal) through terminal emulation special files. 3270 emulation consists of
two UNIX drivers and a protocol script. The erne driver provides an admin­
istrative interface to the ·controller". The em driver provides the users
interface to the remote system. The protocol script runs in the UNS3 and
handles the line protocol. Both ASCII (jlib/a3170ser), and EBCDIC
(jlib/e3170ser) scripts are available. All structures described here are
defined in <sys/eDl.b>.

Administrative Interface
This section describes the interface to the erne driver. Each emulated con­
troller is represented by a character special file (jde, /eDle1). To use 3270
emulation the erne device must be associated (using vpmset) with the physi­
cal device to be used. For example to associate controller 2 and device 3:

/etc/vpmset /dev/emc2 /dev/unS3.3
The appropriate protocol script must also be loaded (using vpmstart) on the
physical device. For example, to load the EBCDIC script on device 3:

/etc/vpmstart /dev/unS3.3 6 /lib/e3270scr
The remaining administrative functions are performed using ioctl(2) calls
on the erne device. The valid ioctl requests and the corresponding arg are as
follows: .

EMCNTRS Return script error counters. kg must be the address of a
counters structure (see below).

EMINFO Return information about this controller. kg must be the
address of a information structure (see below).

EMPOLL Set the polling character to arg. The default is space (con­
troller 0).

EMSELECT Set the selection character to argo The default is - (con­
troller 0).

EMEOTD Set the time delay before transmitting EOT's to tug/lO
seconds. The default is 2 seconds.

EMSTART Start the corresponding protocol script.

EMHALT Halt the corresponding protocol script.
EMSETFL Set the controller flags as specified in argo

EMCLRFL Clear the controller flags as specified in argo

If request is EMCNTRS, arg must be the address of a structure with the fol­
lowing format:

- 1 -

EMULlO(7) (38208 oDly) EMULlO(7)

struct emcntrs {
short rtmout; /* 3 sec rcv timeouts */
short xtmout; /* 1.5 sec timeouts, getxbuf */
short ptmout; /* 1.5 sec timeout on POLL */
short revnak; /* NAK's received */
short xmtnak; /* NAK's transmitted */
short rcvenq; /* ENQ's received */
short xmtenq; /* ENQ's transmitted */
short crcerrs; /* CRC errors */
short roflo; /* receive blocks to large */
short rgarb;. /* Junk receive messages */
short xgarb; /* Garbage xmit buffers */
short rparerr;, /* Bad parity on rev blocks */
short xparerr; /* Bad parity on xmit bufs */
short lreerrs; /* LRC errors */
short eotrmsg; /* EOT's when block expected */
short cmgarb; /* Junk in LISTEN state */
short gmgarb; /* Junk in TRASH state */

};

If request is EMINFO, arg must be the address of a structure with the fol­
lowing format:

struct eminfo {
short em_flags; /* Flags */
short em_code; /* Code */
char em_staid; /* Polling character */
char em_termid; /* Selection character */
char em_rdev; /* Real device */

};

The values used in the emJlags field are:

define EMflC OxOI /* The controller is ASCII */
define EM_RUN Ox02 /* The controller is usable */
define EM...sTATS Ox04 /* The cntrs are available */
define EM..RBUF Ox08 /* Rcv buffers are needed */
define EM_SCERR OxlO /* Script error (ERRTERM) */
define EM_STERR Ox20 /* Startup error */
define EM_TRACE Ox40 /* Script tracing flag */
define EM...sTOK Ox80 /* Started OK */

In general, all administrative functions can be performed from user level by
using the emulcntrl(IM) and emulstat(IM) commands.

User Interface
This section describes the interface to the em driver. The em driver
represents each terminal on a controller as a character special file
(/dev/emr.). Up to 32 terminals are allowed per controller. The minor dev­
ice number of each terminal specifies the controller and terminal; The low­
order 8 bits specify the terminal number, and the remaining high-order bits
specify the controller number. The id character for each terminal is deter­
mined as follows:

- 2 -

EMULlO(7) (38208 only) EMULlO(7)

FILES

Term Id Term Id
0 SP 16 &
1 A 17 J
2 8 18 K
3 C 19 L
4 D 20 M
5 E 21 N
6 F 22 0
7 G 23 P
8 H 24 Q
9 I 25 R

10 [¢ 26] !
11 27 $
12 < 28 •
13 (29)
14 ~ 30 ;
15 31

. ...,

Where 2 characters appear, the second is EBCDIC. UNIX user processes use
the terminal files to simulate active terminals. To start a terminal the
appropriate device is opened. Data transfers are performed using read(2),
and write(2). The EMCNTRS and EMINFO ioctl(2) requests described in the
previous section can be used in the same way with terminal files. The gen­
eral operations are performed as follows:

Starting The open(2) call will wait for a physical connection to be esta­
blished before returning. Immediate return is obtained using the
FNDELA Y open flag. This call will fail if the connection is not
available (with FNDELAY flag), or the terminal is already in use.

Transfers Once a terminal has been opened, a user process may transmit a
"screen" using write(2). Data written must be in the expected
form (control fields, etc.) and must be surrounded by the start­
of-text (STX) and end-of-text (ETX) or end-of-block (ETB) char­
acters. When using the ETB end character, subsequent writes
must complete the block according to the block protocol (Le., the
last block must end in ETX). The two bytes following the STX
character (in the first block of a message) are reserved for the
station and device identification characters. The proper values of
these bytes are inserted by the driver, however the space in the
block must be provided by the user. All block check characters
are added internally. Remote messages are received using
read(2). The format of these blocks is the same as received
from the remote system (Le., the blocks are passed directly). All
line protocol, and verification is performed internally. Reads and
writes will fail if the communications line has dropped.

Stopping To deactivate a terminal, the corresponding device is simply
closed. Currently, any messages to be received by a deactivated
(closed) terminal device are discarded.

jdevjemc?
jdevjemt·
jlibja3270scr
jlibje3270scr

3270 emulation controller devices
3270 emulation terminals
Ascn 3270 script
EBCDIC 3270 script

SEE ALSO
emulcntrl(lM), emulload(lM), emulstat(lM), vpmset(1M).

- 3 -

ERR(7) ERR(7)

NAME
err - error-logging interface

DESCRIPTION

FILES

Minor device 0 of the e" driver is the interface between a process and the
system's error-record collection routines. The driver may be opened only
for reading by a single process with super-user permissions. Each read
causes an entire error record to be retrieved; the record is truncated if the
read request is for less than the record's length.

/dev terror special file

SEE ALSO
errdemon(lM).

- 1 -

GD(7) (DEC only) GD(7)

NAME
gd - general driver for moving-head disks

DESCRIPTION

FILES

Gd provides a general interface to the RM05, RM80, RP04, RP04, RP05,
RP06, and RP1 moving head disks. In addition to the capability of mixing
these mediums on the same controller, the driver will handle up to four
co ntrollers.

The driver reads the disk hardware drive-type register to determine access
partitioning and other drive dependent attributes. Thus, the manual entries
describing the above disk drives should be used for information regarding
that particular drive.

The configuration name of disk should be specified when generating a sys­
tem with config(lM).

/dev/rp*, /dev/rrp*
SEE ALSO

config(1M), master(4), hm(7), hp(7), rm80(7), rp(7).

- 1 -

GT(7) (DEC only) GT(7)

NAME
gt - general driver for tape drives

DESCRIPTION

FILES

Gt provides a general interface to the TE16 and TU8 tape drives. In addi­
tion to the capability of mixing these mediums on the same controller, the
driver will handle up to two controllers.

The driver reads the tape hardware drive-type register to determine drive
dependent attributes. Thus, the manual entries describing the above tape
drives should be used for information regarding that particular drive.

The configuration name of tu1678 should be specified when generating a
system with config(lM).

/dev /mt*, /dev /rmt*
SEE ALSO

config(lM), master(4). ht(7), tu78(7),

- 1 -

HM(7) (DEC only) HM(7)

NAME
hm - RM05 moving-head disk

DESCRIPTION

FILES

The files rpO ••••• rp7 refer to sections of the RM05 disk drive o. The files
rplO ••••• rp17 refer to drive 1. etc. This slicing allows the pack to be bro­
ken up into more manageable pieces.

The origin and size of the sections on each drive are as follows:

section start length
o 0 24320
1 40 476064
2 160 403104
3 280 330144
4 400 257184
5 520 184224
6 640 111264
7 0 500384

The start address is a cylinder address. with each cylinder containing 608
blocks. It is extremely unwise for all of these files to be present in one
installation. since there is overlap in addresses and protection becomes a
sticky matter.

The rp files access the disk via the system's normal buffering mechanism
and may be read and written without regard to physical disk records. There
is also a "raw" interface which provides for direct transmission between
the disk and the user's read or write buffer. A single read or write call
results in exactly one I/O operation and therefore raw I/O is considerably
more efficient when many words are transmitted. The names of the raw RP
files begin with rrp and end with a number which selects the same disk sec­
tion as the corresponding rp file.

In raw I/O the buffer must begin on a word boundary. and counts should
be a multiple of 512 bytes (a disk block). Likewise Iseek(2) calls should
specify a multiple of 512 bytes.

/dev/rp •• /dev/rrp.
SEE ALSO

gd(7). hp(7). rm80(7). rp07(7).

- 1 -

HP(7) (DEC only) HP(7)

NAME
hp - RP04/RP05/RP06 moving-head disk

DESCRIPTION

FILES

The files rpO ••••• rp7 refer to sections of the RP04/RP05/RP06 disk drive O.
The files rplO ••••• rp17 refer to drive 1. etc. This slicing allows the pack to
be broken up into more manageable pieces.

The origin and size of the sections on each drive are as follows:

section
o
1
2
3
4
5
6
7

section
0
1
2
3
4
5
6
7

RP04/05
start

o
44

201
358

o

RP06
start

0
44

201
358
515
672

0

length
18392

153406
87780
22154

171798

length
18392

322278
256652
191026
125400
59774

340670

The start address is a cylinder address. with each cylinder containing 418
blocks. It is extremely unwise for all of these files to be present in one
installation. since there is overlap in addresses and protection becomes a
sticky matter.

The rp files access the disk via the system's normal buffering mechanism
and may be read and written without regard to physical disk records. There
is also a "raw" interface which provides for direct transmission between
the disk and the user's read or write buffer. A single read or write call
results in exactly one I/0 operation and therefore raw I/O is considerably
more efficient when many words are transmitted. The names of the raw RP
files begin with rrp and end with a number which selects the same disk sec­
tion as the corresponding rp file.

In raw I/O the buffer must begin on a word boundary. and counts should
be a multiple of 512 bytes (a disk block). Likewise Iseek(2) calls should
specify a multiple of 512 bytes.

/dev/rp*. /dev/rrp*
SEE ALSO

gd(7). hm(7). hp(7). rm80(7). rp07(7).

- 1 -

HS(7) (PDP-ll only) HS(7)

NAME
hs - RHll/RJS03-RJS04 fixed-head disk file

DESCRIPTION

FILES

The files hsO, "', hs7 refer to RJS03 disk drives 0 through 7. The files hs8,
"" hslS refer to RJS04 disk drives 0 through 7. The RJS03 drives are each
1024 blocks long and the RJS04 drives are 2048 blocks long.

The hs files access the disk via the system's normal buffering mechanism
and may be read and written without regard to physical disk records. There
is also a "raw" interface which provides for direct transmission between
the disk and the user's read or write buffer. A single read or write call
results in exactly one I/O operation and therefore raw I/O is considerably
more efficient when many words are transmitted. The names of the raw HS
files begin with rhs. The same minor device considerations hold for the
raw interface as for the normal interface.

In raw I/O the buffer must begin on a word boundary, and counts should
be a multiple of 512 bytes (a disk block). Likewise Iseek(2) calls should
specify a multiple of 512 bytes.

/dev/hs*, /dev/rhs*

- 1 -

HT(7) (DEC only) HT(7)

NAME
ht - TUI6/TEI6 magnetic tape interface

DFSCRIPTION

FlLFS

BUGS

The files mtO, ••• , mtl5 refer to the Digital Equipment Corporation TU16
magnetic tape control and transports. The files mtO, ••• , mt7 are 800bpi,
and the files miS, ••• , mtl5 are 1600bpi. The files mtO, ••• , mt3, mtS, ••• ,
mtll are designated normal-rewind on close, and the files mt4, ••• , mt7,
mtll, ••• , mtl5 are no-rewind on close. When opened for reading or writ­
ing, the tape is assumed to be positioned as desired. When a file is closed,
a double end-of-file (double tape mark) is written if the file was opened for
writing. If the file was normal-rewind, the tape is rewound. If it is no­
rewind and the file was open for writing, the tape is positioned before the
second EOF just written. If the file was no-rewind and opened read-only,
the tape is positioned after the EOF following the data just read. Once
opened, reading is restricted to between the position when opened and the
next EOF or the last write. The EOF is returned as a zero-length read. By
judiciously choosing mt files, it is possible to read and write multi-file tapes.

A standard tape consists of several 512 byte records terminated by an EOF.
To the extent possible, the system makes it possible, if inefficient, to treat
the tape like any other file. Seeks have their usual meaning and it is possi­
ble to read or write a byte at a time (although very inadvisable).

The mt files discussed above are useful when it is desired to access the tape
in a way compatible with ordinary files. When foreign tapes are to be dealt
with, and especially when long records are to be read or written, the "raw"
interface is appropriate. The associated files are named rmtO, ••• , rmtl5.
Each read or write call reads or writes the next record on the tape. In the
write case the record has the same length as the buffer given. During a
read, the record size is passed back as the number of bytes read, up to the
buffer size specified. In raw tape I/O, the buffer must begin on a word
boundary and the count must be even. Seeks are ignored. An EOF is
returned as a zero-length read, with the tape positioned after the EOF, so
that the next read will return the next record.

/dev /mt., /dev /rmt.

If any non-data error is encountered, it refuses to do anything more until
closed. The driver is limited to four transports.

SEE ALSO
gt(7), tu78(7).

- 1 -

KL(7) (PDP-ll only) KL(7)

NAME
kl - KL-ll or DL-ll asynchronous interface

DESCRIPTION

FILES

The discussion of typewriter I/O given in tty(7) applies to these devices.

Since they run at a constant speed, attempts to change the speed are
ignored.

The on-line console typewriter is normally interfaced using a KL-ll or DL-
11.

Jdev /console

SEE ALSO
init(lM), tty(7).

BUGS
Modem control for the DL-llE is not implemented.

- 1 -

DlC(7) (DBC oBly) DlC(7)

NAMB
kmc - KMC-1IB/KMS1I rpicroprocessor

DESCRIPTION

FILES

The files kme? are used to manipulate the KMCIl-8 or KMS1I microproces­
sor. The device handler provides the basic mechanism needed to load, run,
and debug programs on the microprocessor. The open is exdusive; at' most
one open at a time.

Addresses 0-8195 reference the 4096 words of instructions in the control
memory of the microprocessor. This portion is word oriented, that is, the
address and byte count must be even.
Addresses 8196-12211 reference the 4096 bytes of data in the data
memory of the microprocessor. The data portion may be read or written
with no restrictions on addressing.
The ioct/(2) function is used to provide access to the basic microprocessor
capabilities. * include <sys/kmc.h>

ioctl (fildes, command, arg)
struet kmcntl {

} .. rg;

int kmd;
short *kcsr;
int kval;

The only command available is KCSETA. The pointer Iccsr contains the
address of a 4 word buffer for the UNIBUS Control and Status Registers
associated with the microprocessor. The value of kmd determines the func­
tion:

1 single step and return CSRs in Iccsr.
2 maintenance step: execute value and then return CSRs.
3 return CSRs.
4 stop: clear the run bit.
S reset: set then clear the master clear bit.
6 run: set the run bit and set the software state to leval and

running.
7 line unit maintenance: set the line unit bits from leval.
8 set CSR sel6 to leval.
9 clear: first reset, then empty the input queue.

/dev/kmc?
SBBALSO

kasb(I), dz(7), vpm(7).

- 1 -

LP(7) (DEC only) LP(7)

NAME
lp - line printer

DESCRIPTION

FILES

Lp provides the interface to any of the standard Digital Equipment Cor­
poration LP-ll UNIBUS line printers. When it is opened or closed, a suit­
able number of page ejects is generated. Bytes written are printed.

An internal parameter within the driver determines whether or not the dev­
ice is treated as having a 96- or 64-character set. In half-ASCII mode, lower
case letters are turned into upper case and certain characters are escaped
according to the following table:

{ t
} t

+

The driver correctly interprets carriage returns, backspaces, tabs, and
form-feeds. A new-line that extends over the end of a page is turned into
a form-feed. The default line length is 132 characters, indent is 4. charac­
ters and lines per page is 66. Lines longer than the line length minus the
indent (i.e. 128 characters,. using the above defaults) are truncated.

Two ioctl(2) system calls are available:

(I include <sys/lprio.h>
ioctl (fildes, command, arg)
struct Iprio *lirg;

The commands are:

LPRGET Get the current indent, columns per line, and lines per
page and store in the lprio structure referenced by argo

LPRSBT Set the current indent, columns per line, and lines per
page from the structure referenced by arg.

Thus, indent, page width and page length can be set with an external pro­
gram.

/dev/lp
SEE ALSO

Ipr(I).

- 1 -

MEM(7) MEM(7)

NAME
mem, kmem - core memory

DESCRIPTION

FILES

BUGS

Mem is a special file that is an image of the core memory of the computer.
It may be used, for example, to examine, and even to patch the system.

Byte addresses in mem are interpreted as memory addresses. References to
non-existent locations cause errors to be returned.

Examining and patching device registers is likely to lead to unexpected
results when read-only or write-only bits are present.

The file kmem is the same as mem except that kernel virtual memory rather
than physical memory is accessed.

On the PDP-ll, the I/O page begins at location 0160000 of kmem and per­
process data for the current process begins at 0140000.

/dev /mem, /dev /kmem

On the PDP-ll,memory files are accessed one byte at a time, an inap­
propriate method for some device registers.

- 1 -

MLII (7) (DBC only) MLlI(7)

NAMB
mill - MLiI solid-state disk

DESCRIPTION

FILES

The MLlI is a solid state disk manufactured by Digital Equipment Cor­
poration. It has a capacity of one to four megabytes and a transfer rate of
0.25 to 2.00 megabytes per second. It is supported as part of the general
disk driver (see gd(7». The device is not usable as either a boot device or
an initial load device. It is intended for use on the PDP-ll line for faster
Ide'/swap, Ibin or Itmp operations.

Idev Irp*, Idev Irrp*, Idev Iswap

SBB ALSO
gd(7), hm(7), hp(7), rp(7), rp07(7), rmSO(7).

- I -

NC(7) NC(7)

NAME
nc - network control

DESCRIPTION
The network control pseudo-device provides a means by which a privileged
user process can install, remove, and get the status of a BX.25 Permanent
Virtual Circuit (PVC), and attach, detach, start, stop, get the status of, and
perform a changeover on a BX.25 link. Additional functions are planned
for this driver when the virtual-call feature and additional layers of BX.25
are added to the UNIX BX.25 implementation. The BX.25 driver supports
open(2), c/ose(2), and ioctl(2) system calls. Definitions of constants and
declarations for the data structures mentioned can be obtained by:

include <sys/nc.h>

The network-control ioctl system call has the following form:

ioctl (fildes, cmd, arg)

where fildes is the file descriptor returned by the open of the nc device and
emd is one of the following constants:

NCPVCI - Install a PVC. This command creates one end of a PVC by con­
necting a minor device of the BX.25 driver (slot) to a particular logical
channel on a specified link. Arg is a pointer to a ncpve data structure where
slot is the minor device number of the slot to be used as the end point of
the PVC, ehno is the logical channel number to be used, and link is the
number of the BX.25 link to be used. Links are numbered starting with O.
Chno must be in the range 1 to 4,095 and must not be currently in use on
this link. The following errors may be returned: ENXIO if the minor device
number is out of range; ECHRNG if the channel number is out of range;
ELNRNG if the link number is out of range; EBUSY if the slot is in use. The
two low-order bits of options specify one of three possible session­
establishment protocols:

PVC-.8ESS session-layer open/close protocol
PVC_RST reset in-order/out-of-order protocol
PVC_NONE "no-protocol" session mode

These protocols are explained in x25 (i). The constants PVC-.8ESS,
PVC_RST, and PVC_NONE are defined in jusrjinciudejsysjx2Su.h. If the
link on which the PVC is installed is currently active (i.e., not in the halted
state), the BX.25 reset procedure will be initiated for the logical channel.
When the reset procedure is completed, the PVC is ready for data transfer.

NCPVCR - Remove a PVC. If arg is the minor device number of a slot
that is currently associated with a PVC and is not open, the local end of that
PVC is removed, i.e., disconnected. The slot and logical channel number
become available for reuse. The following errors may be returned: ENXIO
if the minor device number is out of range; ENODEV if the minor device is
not installed; EBUSY if the slot is in use.

NCPVCSTAT - Get the status of a PVC. This command gets the connec­
tion and status information for slot slot and places it in the nepvestat data
structure pointed to by argo The following errors may be returned: ENXIO if
the minor device number is out of range; ENODEV if the minor device is
not installed.

NCATTACH, NCBKATTACH - Associate a link with a specified communi­
cations device and mark the device as primary (NCATTACH) or backup
(NCBKATTACH). Arg is a pointer to an neatteh data structure that contains
the link number and major/minor device number of the device. The fol­
lowing errors may be returned: ELNRNG if the link number is out of range;

- 1 -

NC(7) NC(7)

EACCFS if the link is already attached; EBUSY if the device is already
attached; ENOCSI if no CSI structure is available; ENXIO if the minor device
number of the communications device is out of range.

NCDETACH, NCBKDETACH - Disassociate the link specified byarg from
its associated primary (NCDETACH) or backup (NCBKDETACH) device.
The link and device become available for reuse. The following errors may
be returned: ELNRNG if the link number is out of range; EUNATCH if the
link is not attached to a device; ENODEV if the device is not attached;
EBUSY if the device has not been halted.

NCSTART, NCBKSTART - Start a specified link. The level 2 protocol is
started on the primary (NCSTART) or backup (NCBKSTART) device associ­
ated with the link specified. Arg is a pointer to an ncstart data structure
that contains information such as the link number and packet size. The
level 3 restart procedure is then initiated for the link if NCSTART is the
command used. The following errors may be returned: ELNRNG if the link
number is out of range; EUNATCH if the link is not attached to a device;
EBUSY if the device is already started; EINV AL if the packet size specified
with NCSTART is different from that specified with NCBKSTART.

NCSTOP, NCBKSTOP - Stop a BX.2S link. The NCSTOP command stops
the level 3 protocol on the link specified by arg and the link data structure
is reinitialized. For either command, the level 2 protocol is stopped on the
associated primary or backup device. For NCSTOP, if a backup device has
been attached, the level 2 protocol is also stopped on that device. The fol­
lowing errors may be returned: ELNRNG if the link number is out of range;
EUNATCH if the link is not attached to a device; EBUSY if the level 3 pro­
tocol is running on the backup device (NCSTOP).

NCCHNGE - Changeover to the standby device associated with the link
specified by argo If the standby device is synchronized at level 2, the level
3 protocol will now run on that device. The following errors may be
returned: ELNRNG if the link number is out of range; EUNATCH if the link
is not attached to both a primary and backup device; EACCFS if the backup
device was not started.

NCLNKST AT - Get the status of a link. This command gets the connec­
tions and status information for link link and places it in the nclnkstat data
structure pointed to by argo The following errors may be returned: ELNRNG
if the link number is out of range; EUNATCH if the link is not attached to
either a primary or backup device.

SEE ALSO
x2Spvc(lM), x25(7).

- 2 -

NSC(7) NSC(7)

NAMB
nsc - NSC adapter interface specification

DBSClUPTION
The special files DIcO, ••• , DICD refer to the control of a Network Systems
Corporation (NSC) A-410 processor adapter. Each special file multiplexes
across the transmission medium the full-duplex network operations of
twenty (20) simultaneous opens.

Physical NSC network transmissions occur in two parts and in the following
order: a 64-byte message block and an n-byte associated data block. The
64-byte message contains network control and routing information. The
network message has the following structure:

struct nmsg
{

};

char nm..adata;
char nm_trunk;
char nm..acode;
char nm_vchan;
short nm_tonad;
short nmJrnad;
char nmJnc;
char nm_opcod;
char nm_data[54];

/* associated data flag */
/* trunk selection */
/* access code */
/* virtual channel */
/* "to" network address */
/* "from" network address */
/* protocol function */
/* adapter operation code */
/* control info */

The associated data block transfers large, variable-length data blocks. The
NSC driver currently limits the associated data block size to 4096 bytes.

The driver issues the proper function code sequences to the A-410 adapter.
The available function codes are defined as follows:

ATM 0005 /* Transmit Message */
ATD 0010 /* Transmit Data */
ATLSTD 0014 /* Transmit Last Data */
ATLM 0021 /* Transmit Local Message */
AIM 0045 /* Input Message */
AID 0050 /* Input Data */
ASTAT 0101 /* Status */
AMDPO 0140 /* Mark Down Port 0 */
AMDPI 0144 /* Mark Down Port 1 */
AMDP2 0150 /* Mark Down Port 2 */
AMDP3 0154 /* Mark Down Port 3 */
AMDRO 0160 /* Mark Down Port 0 & Reroute Msgs */
AMDRI 0164 /* Mark Down Port 1 & Reroute Msgs */
AMDR2 0170 /* Mark Down Port 2 & Reroute Msgs */
AMDR3 0174 /* Mark Down Port 3 & Reroute Msgs */
ARST 0241 /* Read Statistics */
ARCST 0245 /* Read & Clear Statistics */
AS'IST 0300 /* Set Test */
ASAL 0305 /* Set Address & Length */
AWA 0310 /* Write Adapter */
ARA 0314 /* Read Adapter */
ACA 0340 /* Clear Adapter */
AEOP 0344 /* End Operation */
ACLWM 0346 /* Clear Wait For Message State */
A W AITM 0350 /* Wait Message */

- 1 -

NSC(7) NSC(7)

The driver always saves the network status bytes on failed or aborted
transfer attempts. The user may retrieve the eight bytes of adapter status
and perform the appropriate error recovery procedures. The eight adapter
status bytes are defined by the following structure:

struct adptrst
{

};

char sCafc;
char st..gsw;
char sctrkst;
char sCtrkrsp;
char scerr;
char sCinternal;
char sU1nrsp;
char sCspare[3];

/* last function code */
/* general status word */
/* trunk status */ .
/* trunk response */
/* adapter error code */
/* reserved for adapter use */
/* remote returned response */

After successful open(2) completion and before reading and writing to the
network, the user must establish a virtual channel. Both the local and the
remote machines must agree on this virtual channel to properly transfer
data. A virtual channel is defined to be a destination network address and
a virtual channel number. The driver enforces mutually exclusive virtual
channels to properly route incoming network transmissions. There are
currently 256 virtual channel numbers (0-255) supported. If the user
specifies a zero destination address in the virtual channel, that process will
receive the incoming transmissions from all remote nodes on the specified
virtual channel number. If, however, another process establishes a virtual
connection with the same virtual channel number but with a specific (non­
zero) destination address, the specific connection will preempt the non­
specific (zero destination address) connection and receive all incoming mes­
sage transmissions from the particular remote node.
The NSC driver supports two modes of transfer: data and control. Data
mode is the default mode. After virtual channel configuration, the user
process performs simple reads and writes. The process does not need to
know that it is transmitting across the NSC bus. Placement of the data into
the message, the associated data block, or both is completely transparent ..
The user may optionally specify, however, that the first n-bytes of the
transfer buffer be always placed into the NSC message (0 <= n <= 52).
This may be particularly useful when transferring combinations of binary
(i.e protocol headers) and character data (i.e. files) between heterogeneous
machines (see the NSCIOASMB NSC ioctl(2) command). Reads and writes
in data mode return the total number of user bytes transferred.

In control mode, the user has direct access to the NSC control information
within the NSC message. The user process specifies to the driver two
pointers to static buffer areas, one for reads and one for writes. For write
operations, the user builds a modified version of the NSC message in the
write static buffer area. When the write(2) system call is made, the driver
retrieves the data from this buffer to build the outgoing NSC message. The
structure for the write static buffer area is:

struct nsctrl {
short cnJIags;
short cn_tonad;
char cnJnc;
char cn_opcode;
char cn_data[54];

/* associated data flag */
/* destination address */
/* adapter function code */
/* adapter operation code */
/*unused data area */

- 2 -

NSC(7) NSC(7)

H the user sets the associated data flag in eD_lIals (NSCADATA), the buffer
pointer in the write(2) call is sent in the associated data block. Otherwise,
the driver transfers a message alone.

On control mode read operations, the driver places the entire 64-byte NSC
message into the read static buffer area. H the message has an associated
data block, the received data is placed into the buffer area specified in the
read(2) system call.

For both control mode reads and writes, the NSC driver returns the number
of bytes transferred in the associated data block. The driver returns a
count of ODe (1) if a message alone was transmitted or received.

User processes configure parameters into the driver through ioctl(2). The
driver recognizes the following ioetl requests:

NSCIODATA (struct datam *) argp
NSCIODATA places the virtual connection into data mode (the default
mode for successful opens). The user specifies the number of data
bytes always contained in the NSC message on reads and writes. Argp
is a pointer to the following structure:

struct datam {
short Lmbytes; ,* bytes in msg on reads *,
short o.-mbytes; ,- bytes in Jilsg on write *,

};

NSCIOCTiU. (struct ctrlm *) argp
NSCIOCTRL places the virtual connection into control mode. Argp is a
pointer to the following structure:

struct ctrlm {
struct nmsg *Lmptr; ,* read static area *,
struct nsctrl *o.-mptr; ,* write static area *,

};

NSCIOVCHAN (struct nscvchan *) argp
NSCIOVCHAN configures the virtual channel for the specified open.
Argp is a pointer to the following structure:

struct nscvchan {
short v _tonad;
char v_vchan;
char v _tmsk;
char v....acode;

};

,* destination network addr *,
,* virtual channel number *,
,* trUnk mask *'
,* access code *,

V Jonad and ,,-,!chan configure the virtual channel for all subsequent
reads and writes to the network. V...Jmsk sets the trunk transfer mask
for network transfers. For trunk transfers, each bit in the trunk mask
is cleared in the trunk specification of the NSC network message
(nmjlUnk). V_acode is the hardware access code place into the outgo­
ing NSC network message (nm_acode).

NSCIOESTAT (struct adptrst *) argp
NSCIOESTAT retrieves into the user buffer specified by argp the 8
bytes of adapter status from the last failed network operation. After
the status bytes are retrieved, the buffer area in the driver is cleared.

NSCIOGETP . (struct nscgetty *) argp
NSCIOGETP retrieves netwprk connection parameters from the driver.

- 3 "

NSC(7)

Argp is a pointer to the following structure:

struct nscgetty {

};

short gjlags; /* connection flags */
char Lopenm; /* file open mode */
char Lvchan; /* virtual channel number */
short Ltaddr; /* destination network addr */
char &.,acode; /* access code */
char Ltmsk; /* trunk mask */
struct nscasmb &.,asm; /* assembly modes */

NSCIOASMB (struct nscasmb *) argp

NSC(7)

NSCIOASMB selects the assembly/disassembly modes for network
message and associated data block transmission and reception.
Assembly modes are not necessary unless data is transferred between
heterogeneous processors. Assembly mode 0 causes the hardware to
swap incoming and outgoing bytes. This one is used primarily when
transferring character data. Assembly mode 1 causes no swapping.
This one is used primarily when transferring binary data. Assembly
mode 1 is defaulted for the NSC message; assembly mode 0 is
defaulted for the associated data block. Argp is a pointer to the fol­
lowing structure:

struct nscasmb {
unsigned Lmsg : 2;
unsigned Ldata : 2;
unsigned o_msg : 2;
unsigned o_data : 2;

};

/* input msg */
/* input data */
/* output msg */
/* output data */

NSCIOADDR (short *) argp
NSCIOADDR returns to the calling process the network address of the
local node. The local address is generated from data retrieved from
the adapter.

NSCIOBYE (char *) 0
NSCIOBYE disconnects the user process from the driver. This func­
tion performs the necessary cleanup to ensure proper driver operation.

NSCIOFCODE (struct nscfcode *) argp
NSCIOFCODE allows the user to issue any function to the adapter.
The super-user is allowed to issue any function; others may issue only
the status function (ASTAT). Argp is a pointer to the following struc-
ture: •

struct nscfcode {
char *Cbase;
short Ccnt;
short fJcode;

};

/* buffer area */
/* no. of bytes to xfer */
/* func. code to issue */

NSCIOCANCEL (char *) 0
NSCIOCANCEL is a super-user only function. This command cancels
the currently active adapter operation and returns an error to the
effected user process. This command is used to clear hung processes.

NSClOOFFLINE (char *) 0
NSClOOFFUNE is a super-user only function. This command inhibits
via software all function code issuance. Opens will occur normally,

- 4-

NSC(7)

FILES

NSC(7)

but all reads and writes will block. There is one exception: the super­
user (by an NSCIOFCODE command) may issue any function.

NSCIOONLINE (char *) 0
NSCIOONLINE is a super-user only function. This command enables
via software all function code issuance. This command is the con­
verse of NSCIOOFFLINE.

/usr/src/cmd/nusend/nscdef.h
/usr/include/sys/nsc.h

SEE ALSO
nusend(IC), ioctl(2), read(2), write(2).

DIAGNOSTICS

BUGS

Read(2) and write (2) both return the number of bytes successfully
transferred. A -1 is returned on error.

An error return does not necessarily mean that the network is down.
Whenever an error occurs, adapter status should be retrieved from the
driver. Most failed operations should be retried several times before giving
up.

In control mode, 1 is returned if a message alone is transmitted or received.

- 5 -

NULL(7) NULL(7)

NAME
null - the null file

DESCRIPTION
Data written on a null special file is discarded.

Reads from a null special file always return 0 bytes.

FILES
/dev/null

- 1 -

OSM(7) (38205 oDly) OSM(7)

NAME
osm - interface to UNIX system messages

DFSCRlPTlON

FILFS

Operating system messages are stored in a circular buffer in the system and
can be read or written using the special files Ide, los.... A. read from the
file Ide'/osm. will return some portion of the data in the circular buffer.
A write to the file Ide'/osm. win add the user data to the current end of
the circular buffer. Any number of users can use the osm interface at once.
In particular: Reads from the file Ide, los 81 start at the current end of the
circular buffer and wait for new data to be, added. Reads from the file
Ide'/osm.cur start at the begining of the circular buffer and return zero
bytes when the current end of the circular buffer is reached. Reads from
the file Ide'/osm.all start at the begining of the circular buffer, go to the
current end of the circular buffer, and then wait for new data to be added.
The easiest way to use the osm interface is by typing:

cat -u /dev/osm &

or by typing:

echo message > /dev /osm

/dev/osm.

- 1 -

PCL(7) (DEC only) PCL(7)

NAME
pcl - parallel cOmmunications link interface

DESCRIPTION

FILES

Pel provides the interface for up to two Digital Equipment Corporation
PCL-llB network buses. Each bus can be used to interconnect up to 16
CPU's, providing relatively fast communication without individual point.to­
point connections.

The interface permits simultaneous bi-directional communication between
any machines on a single bus. Additionally, each such path is further sub­
divided into 8 independent channels. A single control interface is provided
to reduce the line monitoring overhead for a daemon process.

The minor device number for a PCL channel is constructed as follows:

the low order 3 bits specify a channel number.

the next 4 bits specify one of 16 machines. (This number must be
one less than the PCL Time Division Multiplexed bus
number set in the hardware.)

the next bit specifies one of 2 PCL's.

/dev /pcl/?[O-7] normal machine and subchannel interface.
/dev /pcl/ctrl control interface.

SEE ALSO
net(lC), pcldaemon(IM).

- 1 -

PRF(7) PRF(7)

NAME
prf - operating system profiler

DESCRIPTION

FILES

The file prf provides access to activity information in the operating system.
Writing the file loads the measurement facility with text addresses to be
monitored. Reading the file returns these addresses and a set of counters
indicative of activity between adjacent text addresses.

The recording mechanism is driven by the system clock and samples the
program counter at line frequency. Samples that catch the operating system
are matched against the stored text addresses and increment corresponding
counters for later processing.

The file prf is a pseudo-device with no associated hardware.

/dev/prf
SEE ALSO

config(lM), profiler(lM).

- 1 -

RF(7) (PDP-II only) RF(7)

NAME
rf - RFll/RSll fixed-head disk file

DESCRIPTION

FILES

BUGS

This file refers to the concatenation of all RS-J J disks.

Each disk contains 1024 256-word blocks. The length of the combined RF
file is 1024X(minor+ 1) blocks. That is minor device zero is taken to be
1024 blocks long; minor device one is 2048, etc.

The rfO file accesses the disk via the system's normal buffering mechanism
and may be read and written without regard to physical disk records. There
is also a "raw" interface which provides for direct transmission between
the disk and the user's read or write buffer. A single read or write call
results in exactly one I/O operation and therefore raw I/O is considerably
more efficient when many words are transmitted. The name of the raw RF
file is rrfO. The same minor device considerations hold for the raw inter­
face as for the normal interface.

In raw I/O the buffer must begin on a word boundary, and counts should
be a multiple of 512 bytes (a disk block). Likewise Iseek(2) calls should
specify a multiple of 512 bytes.

jdev jrfO, jdev jrrfO

The 512-byte restrictions on the raw device are not physically necessary,
but are still imposed.

- 1 -

IlK(7) (PDP-ll oaly) 1lK(7)

NAME
rk - IlK-II/RK03 or RKOS disk

DESCRIPTION

FILES

The file rk? refers to an entire RK03 disk as a single sequentially-addressed
file. Its 256-word blocks are numbered 0 to 4871.

The rk files access the disk via the system's normal buffering mechanism
and may be read and written without regard to physical disk records. There
is also a "raw" interface which provides for direct transmission between
the disk and the user's read or write buffer. A single read or write call
results in exactly one I/O operation and therefore raw I/O is considerably
more efficient when many words are transmitted. The names of the raw ilK
files begin with rrk and end with a number which selects the same disk as
the corresponding rk file.

In raw I/O the buffer must begin on a word boundary, and counts should
be a multiple of 512 bytes (a disk block). Likewise lseek(2) calls should
specify a multiple of 512 bytes.

/dev/rb, /dev/rrb

- 1 -

RL(7) (DEC only) RL(7)

NAME
rl - RL-ll/RLOI disk

DESCRIPTION

FILES

riO, "" rl3 refer to an entire RLOI disk drive as a single sequentially­
addressed file. Its 256-word blocks are numbered 0 to 10239.

The rI files access the disk via the system's normal buffering mechanism
and may be read and written without regard to physical disk records. There
is also a "raw" interface which provides for direct transmission between
the disk and the user's read or write buffer. A single read or write call
results in exactly one I/O call and therefore raw I/O is considerably more
efficient when many words are transmitted. The names of the raw RL files
begin with rrl and end with a number which selects the same disk as the
corresponding rl file.

In raw I/O the buffer must begin on a word boundary, and counts should
be a multiple of 512 bytes (a disk block). Likewise Iseek(2) calls should
specify a multiple of 512 bytes.

/dev /rl., /dev /rrl.

- 1 -

RMSO(7) (DEC only) RMSO(7)

NAME
rm80 - RM80 moving-head disk

DESCRIPTION

FILES

The files rpO, "" rp7 refer to sections of the RM80 disk drive O. The files
rpl0, ... , rp17 refer to drive I, etc. This slicing allows the pack to be bro­
ken up into more manageable pieces.

The origin and size of the sections on each drive are as follows:

section start length
o 0 18228
1 42 224378
2 194 158410
3 346 92442
4 498 26474
5
6
7 0 242606

The start address is a cylinder address, with each cylinder containing 434
blocks. It is extremely unwise for all of these files to be present in one
installation, since there is overlap in addresses and protection becomes a
sticky matter.

The rp files access the disk via the system's normal buffering mechanism
and may be read and written without regard to physical disk records. There
is also a "raw" interface which provides for direct transmission between
the disk and the user's read or write buffer. A single read or write call
results in exactly one I/O operation and therefore raw I/O is considerably
more efficient when many words are transmitted. The names of the raw
RM files begin with rrp and end with a number which selects the same disk
section as the corresponding rp file.

In raw I/O the buffer must begin on a word boundary, and counts should
be a multiple of 512 bytes (a disk block). Likewise Iseek(2) calls should
specify a multiple of 512 bytes.

/dev/rp*, /dev/rrp*
SEE ALSO

gd(7), hm(7), hp(7), rp(7), rp07(7).

- 1 -

RP(7) (PDP-II only) RP(7)

NAME
rp - RP-ll/RP03 moving-head disk

DESCRIPTION

FILFS

The files rpO, "" rp7 refer to sections of the RP03 disk drive O. The files
rpl0, "" rp17 refer to drive 1, etc. This slicing allows the pack to be bro­
ken up into more manageable pieces.

The origin and size of the sections on each drive are as follows:

section start length
o 0 10000
1 50 71200
2 203 40600
3
4
5
6
7 0 81200

The start address is a cylinder address, with each cylinder containing 200
blocks. It is extremely unwise for all of these files to be present in one
installation, since there is overlap in addresses and protection becomes a
sticky matter.

The rp files access the disk via the system's normal buffering mechanism
and may be read and written without regard to physical disk records. There
is also a "raw" interface which provides for direct transmission between
the disk and the user's read or write buffer. A single read or write call
results in exactly one I/O operation and therefore raw I/O is considerably
more efficient when many words are transmitted. The names of the raw RP
files begin with rrp and end with a number which selects the same disk sec­
tion as the corresponding rp file.

In raw I/0 the buffer must begin on a word boundary, and counts should
be a multiple of 512 bytes (a disk block). Likewise Iseek(2) calls should
specify a multiple of 512 bytes.

/dev /rp*, /dev /rrp*
SEE ALSO

hp(7).

- 1 -

RP07(7) (VAX-ll/780 only) RP07(7)

NAME
rp07 - RP07 non-removable medium moving-head disk

DESCRIPTION

FILES

The files rpO, "', rp7 refer to sections of the RP07 disk drive O. The files
rplO, "', rpl7 refer to drive I, etc. This slicing allows the pack to be bro­
ken up into more manageable pieces.

The origin and size of the sections on eacl;l drive are as follows:

section start length
o 0 64000
I 40 944000
2 105 840000
3 210 672000
4 315 504000
5 420 336000
6 525 168000
7 0 1008000

The start address is a cylinder address, with each cylinder containing 1600
blocks. It is extremely unwise for all of these files to be present in one
installation, since there is overlap in addresses and protection becomes a
sticky matter.

The rp files access the disk via the system's normal buffering mechanism
and may be read and written without regard to physical disk records. There
is also a "raw" interface which provides for direct transmission between
the disk and the user's read or write buffer. A single read or write call
results in exactly one I/O operation and therefore raw I/O is considerably
more efficient when many words are transmitted. The names of the raw RP'
files begin with rrp and end with a number which selects the same disk sec­
tion as the corresponding rp file.

In raw I/O the buffer must begin on a word boundary, and counts should
be a multiple of 512 bytes (a disk block). Likewise Iseek(2) calls should
specify a multiple of 512 bytes.

/dev/rp., /dev/rrp.

SEE ALSO
gd(7), hm(7), hp(7), rp(7), rm80(7).

- 1 -

ST(7) ST(7)

NAME
st - synchronous terminal interface

DESCRIPTION

FILES

The synchronous terminal interface isa pseudo-device driver that enables a
UNIX system to communicate with TELETYPE~ Model 4540 compatible
Ascn synchronous terminals. The driver utilizes the bottom half of the
Virtual Protocol Machine (VPM) to perform the end-to-end protocol and
transmission assurance for the synchronous line.

There are two modes of operation for synchronous terminals; application
mode and line mode. In application mode, the user must be familiar with
the operation of the Model 4540 terminal. Screen management functions
are completely controlled by the user process; when formating a screen, the
user must supply everything from the initial STX (Start-of-Text) character
to the ETX (End-of-Text) character.

In line mode, the basic screen management functions are handled by the
driver to make the synchronous terminal usable as a login terminal for
most of the standard UNIX commands. (Commands that put the terminal
in raw mode or write any control characters to the screen will probably not
work as expected.) Writes to the terminal will be packaged in the n~essary
protocol so that only terminal operator input will be returned to the user
process on a read(2). See stty(l) for details on setting these modes and
other available options.

By convention, Ide'/st? is the synchronous terminal control channel for
communications line ? Communication with the control channel is han­
dled by the stcntrl and stprint commands (see st(IM».

A user process will sleep when trying to open a terminal channel, until a
terminal requests service. At that time, a channel will be assigned to that
terminal, and it will remain allocated until the user process closes the termi­
nal.

A user process will not sleep when trying to open a printer channel. Printer
channel connections are established by stprint and remain in effect until the
associated communications line drops.

In addition to the synchronous terminal equipment, appropriate synchro­
nous VPM hardware is required.

/lib/stscr synchronous terminal prototype script
/dev /un53.? TN82/UN53 peripheral controller pair (3B2OS only)
/dev/kmc? KMCll-B microprocessor (DEC only)
/dev/vpb? VPM bottom half (DEC only)
/dev/st? synchronous terminal control channels
/dev/tty* synchronous terminal user channels
/dev/sp* synchronous printer user channels

In addition to the standard ioctl functions listed in stermio(7) , the com­
mands defined in lusr/include/sys/stermio.h are provided with the follow­
ing interfaces:

ioctl(stcontrolfd, STPRINT, device)
char device;

tells the driver that a printer is at the device address specified by device on
the synchronous communications line associated with stcontrolfd. The
return value is the minor device number associated with the printer. A-I
is returned if the association can't be made. (Too many printers are
already associated or the communications line is not connected.)

- 1 -

ST(7) ST(7)

ioctl(stcontrolfd, VPMSDEV, arg);

will assign VPM minor device number arg to the line associated with ateon­
trolld.

ioctl(slcontrolfd, S1START);

tells the driver to start up the line associated with stcontrolld. If this is the
first line started, buffer space will be allocated from physical memory for
use by alllincs.

ioctl(stcontrolfd, STHALT);

tells the driver to stop the line associated with stcontrolld. If this is the last
active line, the buffer space allocated on the first S1START will be returned
to the system.

ioctl(stfd, STWLINE);

returns the synchronous communications line number associated with the
terminal, printer, or control channel file descriptor atld.

SBEALSO
st(lM), kmc(7), stermio(7), trace(7), unS3(7), vpm(7).

- 2 -

STERMIO(7) STERMIO(7)

NAME
stermio - general synchronous terminal interface

DESCRIPTION
All of the synchronous communications ports use the same general inter­
face, no matter what hardware is involved. The remainder of this section
discusses the common features of this interface.

When a terminal file is opened, it normally causes the process to wait until
a connection is established. In practice, users' programs seldom open these
files; they are opened by stgetty and become a user's standard input, output,
and error files. The very first terminal file opened by the process group
leader of a terminal file not already associated with a process group
becomes the control terminal for that process group. The control terminal
plays a special role in handling quit and interrupt signals, as discussed
below. The control terminal is inherited by a child process during a
fork (2). A process can break this association by changing its process group
using setpgrp(2).

A terminal associated with one of these files operates in half-duplex mode.
Characters may be typed only when the terminal is in local mode.

When the user channel is in line mode, terminal input is processed in units
of lines. A line is delimited by a new-line (ASCII LF) character that is sup­
plied by the driver at the end of each field from the terminal. No matter
how many characters are requested in the read call, at most one line will be
returned. It is not, however, necessary to read a whole line at once; any
number of characters may be requested in a read, even one, without losing
information.

When the user channel is in application mode, full blocks of data from the
terminal may be requested in a read. As in line mode, any number may be
requested without losing information. The program must know how to
interpret the protocol and field separation characters to understand the data
returned.

Certain characters have special functions on input when the user channel is
in line mode. These functions and their default key assignments are sum­
marized as follows:

INTR

QUIT

EOF

CTAB

SEND

(PAl) generates an interrupt signal which is sent to all processes
with the associated control terminal. Normally, each such pro­
cess is forced to terminate, but arrangements may be made either
to ignore the signal or to receive a trap to an agreed-upon loca­
tion; see signal(2).

(PA2) generates a quit signal. Its treatment is identical to the
interrupt signal except that, unless a receiving process has made
other arrangements, it will not only be terminated but a core
image file (called core) will be created in the current working
directory.

(PF12) may be used to generate an end-of-file from a terminal.
When received, all characters changed in the terminal's buffer
are queued to be passed to the program and the EOF is discarded.
Thus, if there are no changes in the terminal's buffer, zero char­
acters will be passed back, which is the standard end-of-file indi­
cation.

(@) will be translated to an ASCII HT character.

(SIR, PFI through PFll) may be used to send modified fields to
the program. In line mode, each modified field is packaged as an

- 1 -

STBR.MIO(7) STBRMIO(7)

input line with a trailing new-line character. In application mode,
the entire transmission block is given to the progra~.

CLBAR (CLEAR.) clears the screen. In line mode, the screen will be
reformatted so that each line is a separate field. In application
mode, reformatting the screen is the program's responsibility.

The character value for CTAB may be changed to suit individual tastes.

When the carrier signal from the data-set drops, a hangup signal is sent to
all processes that have this terminal as the control terminal. Unless other
arrangements have been made, this signal causes the processes to ter­
minate. If the hangup signal is ignored, any subsequent read returns with
an end-of-file indication. Thus programs that read a terminal and test for
end-of-file can terminate appropriately when hung up on.
Several ioed(2) system calls apply to synchronous terminal files. Several of
these calls use the same structure defined in /usr/include/sys/termio.h as
described in termio(7) and accept the same TCGETA, TCSETA, TCSETAW,
and TCSETAF commands that are described there. When these calls are
used, however, only the cJflag, c_oflag, and cJflag fields are used with
these fields corresponding, respectively to the imode, omode, and lmode
fields described in the following description of the stermio structure that is
defined in /usr/include/sys/stermio.h. Within those fields, only the
values described below, some of which overlap those described in ter­
mio(7), are used.

struct stermio {
unsigned short
char

};

char
char
char
char
char
char
char
unsigned short
unsigned short
unsigned short

ttyid;
row;
col;
orow;
ocol;
tab;
aid;
ssl;
ss2;
imode;
lmode;
omode;

/* station and device id's */
/* cursor row position at last SEND */
/* cursor col position at last SEND */
/* next output cursor row position */
/* next output cursor col position */
/* translate to tab on input */
/* function key identification code */
/* status and sense character 1 */
/* status and sense character 2 */
/* input modes */
/* local modes */
/* output modes */

The ttyid field contains the station selection character in the high order byte
and the device selection character in the low order byte.

The row and col fields contain the row and column numbers of the screen
position of the cursor when the last SEND key was hit. Rows are numbered
from 1 through 24. Columns are numbered from 1 through 80.
The OI'OW and oeol fields specify the next screen position that will be writ­
ten.

The tab field contains the character that will be translated to an ASCII TAB
character on input if line mode is enabled. .

The aid field contains the function key identification code signifying the ter­
minal key that caused the last buffer to be sent.

The ssl and ss2 fields contain the last status and sense characters received
from the terminal.

The imode field describes the basic terminal input control:

- 2-

STERMIO(7) STERMIO(7)

IUCLC 0001000 Map upper-case to lower-case on input.

If IUCLC is set and line mode is enabled, a received upper-case alphabetic
character is translated into the corresponding lower-case character.

The initial input control value is all bits clear.

The onwde field specifies the system treatment of output:

OLCUC 0000002 Map lower case to upper on output.
TABDLY 0014000 Select horizontal-tab translation option:
TABO 0 Don't modify tabs.
TAB3 0014000 Expand tabs to spaces.

If OLCUC is set and line mode is enabled, a lower-case alphabetic character
is transmitted as the corresponding upper-case character. This function is
often used in conjunction with IUCLC.

Horizontal-tab type o· specifies that tabs are not to be modified. Type 3
specifies that tabs are to be expanded into spaces.

The initial output control value is TAB3.

The Imode field of the argument structure is used by the line discipline to
control terminal functions. The synchronous terminal line discipline pro­
vides the following:

XCASE
STFLUSH
STWRAP
STAPPL

0000004
0000400
0001000
0002000

Canonical upper/lower presentation.
Flush output on each write(2).
Wrap around long lines.
Use application mode.

If XCASE is set and line mode is enabled, an upper-case letter is accepted
on input by preceding it with a \ character, and on output is preceded by a
\ character. In this mode, the following escape sequences are generated on
output and accepted on input:

[or: use: - \~

-I \!
\-

{ \(
} \)
\ \\

For example, A is input as \a, \0 as \\0, and \N as \\\0.
If STAPPL is set, application mode is enabled. Read requests are satisfied
directly from the terminal input buffer, and the user is responsible for han­
dling all terminal protocol from the STX character through the ETX charac­
ter on output.

If STAPPL is not set, line mode processing is enabled. This enables the
input fields from the terminal to be broken into lines terminated with a
new-line chracter and the actions to provide the IUCLC, TAB3, OLCUC,
XCASE, STFLUSH, and STWRAP processing to be performed. For output,
the screen is formatted so that each terminal line is a separate field. New­
line characters cause the remainder of the current line to be cleared and the
cursor to be positioned at the beginning of the next field. If data overflows
the last line of the terminal, the cursor is repositioned to the beginning of
the first field on the screen and output is halted until one of the SEND
keys, the PF12 key, or the CLEAR key is hit to restart output. This allows
the terminal operator to read a screen full of data before it is overwritten.

- 3 -

STERMIO(7) STERMIO(7)

FILES

The initial value for terminal modes has the STAPPL and STWRAP modes
enabled.

The primary ioetl(2) system calls using the stermio structure have the form:

ioctl (fildes, command, arg)
struct stermio *arg;

The commands using this form are:

STGET Get the parameters associated with the terminal and store
in the stermio structure referenced by argo

STSET Set the parameters associated with the terminal from the
structure referenced by argo Only the imode, Imode, oeol,
omode, Of'OW, and tab fields are affected. The change is
immediate. A switch from application mode to line mode
will cause the screen to be reformatted by the driver.

/dev/tty*

SEE ALSO
stty(l), ioctl(2), st(7),termio(7).

- 4 -

TERMIO(7) TERMIO(7)

NAME
termio - general terminal interface

DESCRIPTION
All of the asynchronous communications ports use the same general inter­
face, no matter what hardware is involved. The remainder of this section
discusses the common features of this interface.

When a terminal file is opened, it normally causes the process to wait until
a connection is established. In practice, users' programs seldom open these
files; they are opened by getty and become a user's standard input, output,
and error files. The very first terminal file opened by the process group
leader of a terminal file not already associated with a process group
becomes the control terminal for that process group. The control terminal
plays a special role in handling quit and interrupt signals, as discussed
below. The control terminal is inherited by a child process during a
fork (2). A process can break this association by changing its process group
using setpgrp(2).

A terminal associated with one of these files ordinarily operates in full­
duplex mode. Characters may be typed at any time, even while output is
occurring, and are only lost when the system's character input buffers
become completely full, which is rare, or when the user has accumulated
the maximum allowed number of input characters that have not yet been
read by some program. Currently, this limit is 256 characters. When the
input limit is reached, all the saved characters are thrown away without
notice.

Normally, terminal input is processed in units of lines. A line is delimited
by a new-line (ASCII LF) character, an end-of-file (ASCII EOT) character, or
an end-of-line character. This means that a program attempting to read will
be suspended until an entire line has been typed. Also, no matter how
many characters are requested in the read call, at most one line will be
returned. It is not, however, necessary to read a whole line at once; any
number of characters may be requested in a read, even one, without losing
information.

During input, erase and kill processing is normally done. By default, the
. character # erases the last character typed, except that it will not erase

beyond the beginning of the line. By default, the character @ kills
(deletes) the entire input line, and optionally outputs a new-line character.
Both these characters operate on a key-stroke basis, independently of any
backspacing or tabbing that may have been done. Both the erase and kill
characters may be entered literally by preceding them with the escape char­
acter (\). In this case the escape character is not read. The erase and kill
characters may be changed.

Certain characters have special functions on input. These functions and
their default character values are summarized as follows:

INTR (Rubout or ASCII DEL) generates an interrupt signal which is sent
to all processes with the associated control terminal. Normally,
each such process is forced to terminate, but arrangements may
be made either to ignore the signal or to receive a trap to an
agreed-upon location; see signal(2).

QUIT (Control-lor ASCII FS) generates a quit signal. Its treatment is
identical to the interrupt signal except that, unless a receiving
process has made other arrangements, it will not only be ter­
minated but a core image file (called core) will be created in the
current working directory.

- 1 -

TERMIO(7) TERMIO(7)

ERASE (#) erases the preceding character. It will not erase beyond the
start of a line, as delimited by a NL, EOF, or EOL character.

KILL (@) deletes the entire line, as delimited by a NL, EOF, or EOL
character.

EOF (Control-d or ASCII EOT) may be used to generate an end-of-file
from a terminal. When received, all the characters waiting to be
read are immediately passed to the program, without waiting for a
new-line; and the EOF is discarded. Thus, if there are no charac­
ters waiting, which is to say the EOF occurred at the beginning of
a line, zero characters will be passed back, which is the standard
end-of-file indication.

NL (ASCII LF) is the normal line delimiter. It can not be changed or
escaped.

EOL (ASCII NUL) is an additional line delimiter, like NL. It is not nor­
mally used.

STOP (Control-s or ASCII DC3) can be used to temporarily suspend out­
put. It is useful with CRT terminals to prevent output from
disappearing before it can be read. While output is suspended,
STOP characters are ignored and not read.

START (Control-q or ASCII DCI) is used to resume output which has
been suspended by a STOP character. While output is not
suspended, START characters are ignored and not read. The
start/stop characters can not be changed or escaped.

The character values for INTR, QUIT, ERASE, KILL, EOF, and EOL may be
changed to suit individual tastes. The ERASE, KILL, and EOF characters
may be escaped by a preceding \ character, in which case no special func­
tion is done.

When the carrier signal from the data-set drops, a hangup signal is sent to
all processes that have this terminal as the control terminal. Unless other
arrangements have been made, this signal causes the processes to ter­
minate. If the hangup signal is ignored, any subsequent read returns with
an end-of-file indication. Thus programs that read a terminal and test for
end-of-file can terminate appropriately when hung up on.

When one or more characters are written, they are transmitted to the ter­
minal as soon as previously-written characters have finished typing. Input
characters are echoed by putting them in the output queue as they arrive.
If a process produces characters more rapidly than they can be typed, it will
be suspended when its output queue exceeds some limit. When the queue
has drained down to some threshold, the program is resumed.

Several ioctl(2) system calls apply to terminal files. The primary calls use
the following structure, defined in <termio.h>:

define Nce 8
struct termio {

unsigned
unsigned
unsigned
unsigned
char

short
short
short
short

unsigned char
};

- 2 -

c_iflag;
c_oflag;
c_cflag;
c_lflag;
c_line;
c_cc[NCC];

/* input modes */
/* output modes */
/* control modes */
/* local modes */
/* line discipline */
/* control chars */

TERMIO(7) TERMIO(7)

The special control characters are defined by the array C3C. The relative
positions and initial values for each function are as follows:

o INTR DEL
1 QUIT FS
2 ERASE ,
3 KILL @
4 EOF EOT
5 EOL NUL
6 reserved
7 reserved

The c.Jjlag field describes the basic terminal input control:

IGNBRK 0000001 Ignore break condition.
BRKINT 0000002 Signal interrupt on break.
IGNPAR 0000004 Ignore characters with parity errors.
PARMRK 0000010 Mark parity errors.
INPCK 0000020 Enable input parity check.
ISTRIP 0000040 Strip character.
INLCR 0000100 Map NL to CR on input.
IGNCR 0000200 Ignore CR.
ICRNL 0000400 Map CR to NL on input.
IUCLC 0001000 Map upper-case to lower-case on input.
IXON 0002000 Enable start/stop output control.
IXANY 0004000 Enable any character to restart output.
IXOFF 0010000 Enable start/stop input control.

If IGNBRK is set, the break condition (a character framing error with data
all zeros) is ignored, that .is, not put on the input queue and therefore not
read by any process. Otherwise if BRKINT is set, the break condition will
generate an interrupt signal and flush both the input and output queues. If
IGNPAR is set, characters with other framing and parity errors are ignored.

If PARMRK is set, a character with a framing or parity error which is not
ignored is read as the three character sequence: 0377, 0, X, where X is the
data of the character received in error. To avoid ambiguity in this case, if
ISTRIP is not set, a valid character of 0377 is read as 0377, 0377. If
PARMRK is not set, a framing or parity error which is not ignored is read as
the character NUL (0).

If INPCK is set, input parity checking is enabled. If INPCK is not set, input
parity checking is disabled. This allows output parity generation without
input parity errors.

If ISTRIP is set, valid input characters are first stripped to 7-bits, otherwise
all 8-bits are processed.

If INLCR is set, a received NL character is translated into a CR character. If
IGNCR is set, a received CR character is ignored (not read). Otherwise if
ICRNL is set, a received CR character is translated into a NL character.

If IUCLC is set, a received upper-case alphabetic character is translated into
the corresponding lower-case character.

If IXON is set, start/stop 9utput control is enabled. A received STOP char­
acter will suspend output and a received START character will restart out­
put. All start/stop characters are ignored and not read. If IXANY is set,
any input character, will restart output which has been suspended.

If IXOFF is set, the system will transmit START/STOP characters when the
input queue is nearly empty/full.

- 3 -

TERMIO(7) TERMIO(7)

The initial input control value is all bits clear.

The coflag field specifies the system treatment of output:

OPOST
OLCUC
ONLCR
OCRNL
ONOCR
ONLRET
OFILL
OFDEL
NLDLY
NLO
NLl
CRDLY
CRO
CRI
ClU
CR3
TABDLY
TABO
TABI
TAB2
TAB3
BSDLY
BSO
BSI
VTDLY
VTO
VTl
FFDLY
FFO
FFI

0000001 Postprocess output.
0000002 Map lower case to upper on output.
0000004 Map NL to CR-NL on output.
0000010 Map CR to NL on output.
0000020 No CR output at column O.
0000040 NL performs CR function.
0000100 Use fill characters for delay.
0000200 Fill is DEL, else NUL.
0000400 Select new-line delays:
o
0000400
0003000 Select carriage-return delays:
o
0001000
0002000
0003000
0014000 Select horizontal-tab delays:
o
0004000
0010000
0014000 Expand tabs to spaces.
0020000 Select backspace delays:
o
0020000
0040000 Select vertical-tab delays:
o
0040000
0100000 Select form-feed delays:
o
0100000

If OPOST is set, output characters are post-processed as indicated by the
remaining flags, otherwise characters are transmitted without change.

If OLCUC is set, a lower-case alphabetic character is transmitted as the
corresponding upper-case character. This function is often used in conjunc­
tion with IUCLC.

If ONLCR is set, the NL character is transmitted as the CR-NL character
pair. If OCRNL is set, the CR character is transmitted as the NL character.
If ONOCR is set, no CR character is transmitted when at column 0 (first
position). If ONLRET is set, the NL character is assumed to do the
carriage-return function; the column pointer will be set to 0 and the delays
specified for CR will be used. Otherwise the NL character is assumed to do
just the line-feed function; the column pointer will remain unchanged. The
column pointer is also set to 0 if the CR character is actually transmitted.

The delay bits specify how long transmission stops to allow for mechanical
or other movement when certain characters are sent to the terminal. In all
cases a value of 0 indicates no delay. If OFILL is set, fill characters will be
transmitted for delay instead of a timed delay. This is useful for high baud
rate terminals which need only a minimal delay. If OFDEL is set, the fill
character is DEL, otherwise NUL.

If a form-feed or vertical-tab delay is specified, it lasts for about 2 seconds.

- 4 -

TERMIO(7) TERMIO(7)

New-line delay lasts about 0.10 seconds. If ONLRET is set, the carriage­
return delays are used instead of the new-line delays. If OFILL is set, two
fill characters will be transmitted.

Carriage-return delay type 1 is dependent on the current column position,
type 2 is about 0.10 seconds, and type 3 is about 0.15 seconds. If OFILL is
set, delay type 1 transmits two fill characters, and type 2 four fill characters.

Horizontal-tab delay type 1 is dependent on the current column positio~.
Type 2 is about 0.10 seconds. Type 3 specifies that tabs are to be expanded
into spaces. If OFILL is set, two fill characters will be transmitted for any
delay.

Backspace delay lasts about 0.05 seconds. If OFILL is set, one fill character
will be transmitted.

The actual delays depend on line speed and system load.

The initial output control value is all bits clear.

The c3jlag field describes the hardware control of the terminal:

CBAUD 0000017 Baud rate:
BO 0 Hang up
B50 0000001 50 baud
B75 0000002 75 baud
B110 0000003 110 baud
B134 0000004 134.5 baud
B150 0000005 150 baud
B200 0000006 200 baud
B300 0000007 300 baud
B600 0000010 600 baud
B1200 0000011 1200 baud
B1800 0000012 1800 baud
B2400 0000013 2400 baud
B4800 0000014 4800 baud
B9600 0000015 9600 baud
EXTA 0000016 External A
EXTB 0000017 External B
CSIZE 0000060 Character size:
CS5 0 5 bits
CS6 0000020 6 bits
CS7 0000040 7 bits
CS8 0000060 8 bits
CSTOPB 0000100 Send two stop bits, else one.
CREAD 0000200 Enable receiver.
PARENB 0000400 Parity enable.
PARODD 0001000 Odd.parity, else even.
HUPCL 0002000 Hang up on last close.
CLOCAL 0004000 Local line, else dial-up.

The CBAUD bits specify the baud rate. The zero baud rate, DO, is used to
hang up the connection. If DO is specified, the data-terminal-ready signal
will not be asserted. Normally, this will disconnect the line. For any par­
ticular hardware, impossible speed changes are ignored.

The CSIZE bits specify the character size in bits for both transmission and
reception. This size does not include the parity bit, if any. If CSTOPB is
set, two stop bits are used, otherwise one stop bit. For example, at 110
baud, two stops bits are required.

- 5 -

TBR.MJO(7) TERMIO(7)

If PARENB is set, parity generation and detection is enabled and a parity bit
is added to each character. If parity is enabled, the PARODD flag specifies
odd parity if set, otherwise even parity is used.

If CREAD is set, the receiver is enabled. Otherwise no characters will be
received.

If HUPCL is set, the line will be disconnected when the last process with the
line open closes it or terminates. That is, the data-terminal-ready signal
will not be asserted.

If CLOCAL is set, the line is assumed to be a local, direct connection with
no modem control. Otherwise modem control is assumed.

The initial hardware control value after open is 8300, CS8, CREAD,
HUPCL.

The cJftag field of the argument structure is used by the line discipline to
control terminal functions. The basic line discipline (0) provides the fol­
lowing:

ISIG
ICANON
XCASE
ECHO
ECHOE
ECHOK
ECHONL
NOFLSH

0000001
0000002
0000004
0000010
0000020
0000040
0000100
0000200

Enable signals.
Canonical input (erase and kill processing).
Canonical upper/lower presentation.
Enable echo.
Echo erase character as BS-8P-BS.
Echo NL after kill character.
Echo NL
Disable flush after interrupt or quit.

If ISIG is set, each input character is checked against the special control
characters INTR and QUIT. If an input character matches one of these con­
trol characters, the function associated with that character is performed. If
ISIG is not set, no checking is done. Thus these special input functions are
possible only if ISIG is set. These functions may be disabled individually by
changing the value of the control character to an unlikely or impossible
value (e.g. 0377).

If ICANON is set, canonical processing is enabled. This enables the erase
and kill edit functions, and the assembly of input characters into lines del­
imited by NL, EOF, and EOL. If ICANON is not set, read requests are
satisfied directly from the input queue. A read will not be satisfied until at
least MIN characters have been received or the timeout value TIME has
expired. This allows fast bursts of input to be read efficiently while still
allowing single character input. The MIN and TIME values are stored in the
position for the EOF and EOL characters respectively. The time value
represents tenths of seconds.

If XCASE is set, and if ICANON is set, an upper-case letter is accepted on
input by preceding it with a \ character, and is output preceded by a \ char­
acter. In this mode, the following escape sequences are generated on out­
put and accepted on input:

fi .. or: use: yo
1 \! - \-
{ \(
} \)
\ \\

For example, A is input as \a, \. as \\D, and \N as \\ \D.

- 6 -

TERMIO(7) TERMIO(7)

FILES

If ECHO is set, characters are echoed as received.

When ICANON is set, the following echo functions are possible. If ECHO
and ECHOE are set, the erase character is echoed as ASCD BS SP BS, which
will clear the last character from a CRT screen. If ECHOE is set and ECHO
is not set, the erase character is echoed as ASCD SP BS. If ECHOK is set,
the NL character will be echoed after the kill character to emphasize that
the line will be deleted. Note that an escape character preceding the erase
or kill character removes any special function. If ECHONL is set, the NL
character will be echoed even if ECHO is not set. This is useful for termi­
nals set to local echo (so-called half duplex). Unless escaped, the EOF
character is not echoed. Because EOT is the default EOF character, this
prevents terminals that respond to EOT from hanging up.

If NOFLSH is set, the normal Bush of the input and output queues associ­
ated with the quit and interrupt characters will not be done.

The initial line-discipline control value is all bits clear.

The primary ioctl(2) system calls have the form:

ioctl (fildes, command, arg)
struct termio *arg;

The commands using this form are:

TCGETA Get the parameters associated with the terminal and
store in the termio structure referenced byarg.

TCSETA Set the parameters associated with the terminal from
the structure referenced by argo The change is
immediate.

TCSETAW Wait for the output to drain before setting the new
parameters. This form should be used when changing
parameters that will affect output.

TCSETAF Wait for the output to drain, then Bush the input
queue and set the new parameters.

Additional ioctl(2) calls have the form:

ioctl (fildes, command, arg)
int arg;

The commands using this form are:

TCSBRK Wait for the output to drain. If arg is 0, then send a
break (zero bits for 0.25 seconds).

TCXONC

TCFLSH

Start/stop control. If arg is 0, suspend output; if 1,
restart suspended output.

If arg is 0, Bush the input queue; if 1, Bush the out­
put queue; if 2, Bush both the input and output
queues.

/dev/tty*
SEE ALSO

stty(1), ioctl(2).

- 7 -

TM(7) (PDP-II only) TM(7)

NAME
tm - TMII/TUIO magnetic tape interface

DESCRIPTION

FILES

BUGS

The files mtO, ••• , mt7 refer to the Digital Equipment Corporation
TMll/TUlO magnetic tape control and transports at 800bpi. The files mtO,
••• , mt3 are designated normal-rewind on close, and the files mt4, ••• , mt7
are no-rewind on close. When opened for reading or writing, the tape is
assumed to be positioned as desired. When a file is closed, a double end­
of-file (double tape mark) is written if the file was opened for writing. If
the file was normal-rewind, the tape is rewound. If it is no-rewind and the
file was open for writing, the tape is positioned before the second EOF just
written. If the file was no-rewind and opened read-only, the tape is posi­
tioned after the EOF following the data just read. Once opened, reading is
restricted to between the position when opened and the next EOF or the
last write. The EOF is returned as a zero-length read. By judiciously choos­
ing mt files, it is possible to read and write multi-file tapes.

A standard tape consists of several 512 byte records terminated by an EOF.
To the extent possible, the system makes it possible, if inefficient, to treat
the tape like any other file. Seeks have their usual meaning and it is possi­
ble to read or write a byte at a time (although very inadvisable).

The mt files discussed above are useful when it is desired to acceSs the tape
in a way compatible with ordinary files. When foreign tapes are to be dealt
with, and especially when long records are to be read or written, the "raw"
interface is appropriate. The associated files are named rmtO, .•• , rmt7
Each read or write call reads or writes the next record on the tape. In the
write case the record has the same length as the buffer given. During a
read, the record size is passed back as the number of bytes read, up to the
buffer size specified. In raw tape I/O, the buffer must begin on a word
boundary and the count must be even. Seeks are ignored. An EOF is
returned as a zero-length read, with the tape positioned after the EOF, so
that the next read will return the next record.

/dev /mt?, /dev /rmt?

If any non-data error is encountered, it refuses to do anything more until
closed. The driver is limited to four transports.

- 1 -

TN4(7) (3B208 only) TN4(7)

NAME
tn4 - eight line asynchronous interface

DESCRIPTION

FILES

Each of the eight lines attached to a TN4 behaves as described in termio(7).
The c_cjlag items of BlOG, EXTA, and EXTB are not available.

/dev/tty.

SEE ALSO
termio(7), tn74(7).

- I -

TN74(7) (3B208 only)

NAME
tn74 - two line asynchronous interface

DESCRIPTION

TN74(7)

Each of the two lines attached to a TN74 behaves as described in termio(7).
The c_cflag items of 8100, EXTA, and EXTB are not available.

FILES
/dev/tty*

SEE ALSO
termio(7), tn4(7).

- 1 -

TN83(7) (38208 oDly) TN83(7)

NAMB
tn83 - console/printer interface

DFSCRIPTION

FILFS

The TN83 is a specialized controller that provides the operator interface to
the 38208. It supports the Emergency Action Interface. See eai(8).

The files Ide'/console and Ide'lrop refer to the system console and the
receive-only printer. These special files implement a subset of those
features described in termio(7). Among the differences are:

Hardware options such as line· speed are not selectable. The console
runs at 9600 baud while the receive-only printer at 1200 baud.

The ICANON option (raw mode) does not work.

The START/STOP (control-s/control-q) characters only have a tem­
porary affect. Use control-x/control-z instead.

Data read and/or written to/from Ide'/console is automatically written to
the receive-only printer. The command line stty -echo < Ide'lrop will
turn off this feature while stty echo < Ide'lrop will turn it on.

System messages are normally printed to the console and the receive-only
printer. These messages may be turned on or off by typing a control-o at
the console.

/dev /console, /dev /rop

SBEALSO
termio(7), eai(8).

- 1 -

TNBS(7) (382OS only) TNBS(7)

NAME
tn85 - medium speed line printer controller

DESCRIPTION

FILES

The TN85 provides a parallel interface to either one or two medium speed
line printers which can operate at up to 2000 lines per minute (132 columns
per line, 96 character AScn set). If two printers are connected to a TN85,
then the combined throughput cannot exceed 2000 lines per minute total.
For example, it can handle two 1000 line per minute printers or one 2000
line per minute printer.

jdevjlp*

- 1 -

TRACE(7) TRACE (7)

NAME
trace - event-tracing driver

DESCRIPTION
Trace is a special file that allows event records generated within the UNIX
kernel to be passed to a user program so that the activity of a driver or
other system routines can be monitored for debugging purposes.

An event record is generated from within a kernel driver or system routine
by invoking the trsave function:

trsave (dev, chno, buf, cnt)
char dev, chno, .buf, cnt;

Dev is a minor device number of the trace driver; chno is an integer
between 0 and 15 inclusive that identifies the data stream (channel) to
which the record belongs; buf is a buffer containing the data for an event;
and cnt is the number of bytes in buf. Calls to trsave will result in data
being placed on a queue, provided that some user program has opened the
trace minor device dev and has enabled channel chno. Event records con­
sisting of a time stamp (4 bytes), the channel number (1 byte), the count
(1 byte), and the event data (cnt bytes) are stored on a queue until a
system-defined maximum (TRQMAX) is reached; an event record is dis­
carded if there is not sufficient room on the queue for the entire record.
The queue is emptied by a user program reading the trace driver. Each
read returns an integral number of event records; the read count must,
therefore, be at least equal to cnt plus six.

The trace driver supports open. close. read. and ;octJ system calls. The ;octJ
system call is invoked as follows:

include <sys/vpm.h>
int fildes, cmd, arg;
ioctl (fildes, cmd, arg);

The values for the cmd argument are:

VPMSETC - Enable trace channels. This command enables each channel
indicated by a 1 in the bit mask found in argo The low-order bit
(bit 0) corresponds to channel zero, the next bit (bit 1) corresponds
to channell, etc.

VPMGETC-Get enabled channels. This command returns in arg a bit
mask containing a 1 for each channel that is currently enabled.

VPMCLRC- Disable channels. This command disables the channels indi­
cated by a 1 in the bit mask found in argo

SEE ALSO
vpmsave(lM), vpm(7).

- 1 -

1'811 (7) (VAX-ll/7S0 only) 1'811(7)

NAME
ts - 1'811 magnetic tape interface

DESCRIPTION

FILES

BUGS

The files mtO, ••• , mtl5 refer to the Digital Equipment Corporation 1'811
magnetic tape control and transports at 1600bpi. The files miG, ••• , mt3,
mt8, ••• , mtll are designated normal-rewind on close, and the files mt4,
••• , mt7, mtll, ••• , mtl5 are no-rewind on close. When opened for reading
or writing, the tape is assumed to be positioned as desired. When a file is
closed, a double end-of-file (double tape mark) is written if the file was
opened for writing. If the file was normal-rewind, the tape is rewound. If
it is no-rewind and the file was open for writing, the tape is positioned
before the second EOF just written. If the file was no-rewind and opened
read-only, the tape is positioned after the EOF following the data just read.
Once opened, reading is restricted to between the position when opened
and the next EOF or the last write. The EOF is returned as a zero-length
read. By judiciously choosing mt files, it is possible to read and write
multi-file tapes.

A standard tape consists of several 512 byte records terminated by an EOF.
To the extent possible, the system makes it possible, if inefficient, to treat
the tape like any other file. Seeks have their usual meaning and it is possi­
ble to read or write a byte at a time (although very inadvisable).

The mt files discussed above are useful when it is desired to access the tape
in a way compatible with ordinary files. When foreign tapes are to be dealt
with, and especially when long records are to be read or written, the "raw"
interface is appropriate. The associated files are named rmtO, ••• , rmtl5.
Each read or write call reads or writes the next record on the tape. In the
write case the record has the same length as the buffer given. During a
read, the record size is passed back as the number of bytes read, up to the
buffer size specified. In raw tape I/O, the buffer must begin on a word
boundary and the count must be even. Seeks are ignored. An EOF is
returned as a zero-length read, with the tape positioned after the EOF, so
that the next read will return the next record.

/dev /mt*, /dev /rmt*

If any non-data error is encountered, it refuses to do anything more until
closed. Note that during a rewind or space-forward operation, control is
not returned until the operation has completed. The driver is limited to
one transport.

- 1 -

TI'Y(7) TI'Y(7)

NAME
tty - controlling terminal interface

DESCRIPTION

FILES

The file Ide, /tty is, in each process, a synonym for the control terminal
associated with the process group of that process, if any. It is useful for
programs or shell sequences that wish to be sure of writing messages on the
terminal no matter how output has been redirected. It can also be used for
programs that demand the name of a file for output, when typed output is
desired and it is tiresome to find out what terminal is currently in use.

/dev/tty
/dev/tty*

SEE ALSO
dz(7), tn4(7), tn74(7).

- 1 -

TU78(7) (VAX-ll/780 only) TU78(7)

NAME
tu78 - TU78 magnetic tape interface

DESCRIPTION

FILES

BUGS

The files mtO, ••• , mtlS refer to the Digital Equipment Corporation TU78
magnetic tape control and transports. The files mtO, ••• , mt7 are 1600bpi,
and the files mtS, ••• , mtlS are 6250bpi. The files mtO, ••• , mt3, md, ••• ,
mtll are designated normal-rewind on close, and the files mt4, ••• , mt7,
mtl2, ••• , mtlS are no-rewind on close. When opened for reading or writ­
ing, the tape is assumed to be positioned as desired. When a file is closed,
a double end-of-file (double tape mark) is written if the file was opened for
writing. If the file was normal-rewind, the tape is rewound. If it is no­
rewind and the file was open for writing, the tape is positioned before the
second EOF just written. If the file was no-rewind and opened read-only,
the tape is positioned after the EOF following the data just read. Once
opened, reading is restricted to between the position when opened and the
next EOF or the last write. The EOF is returned as a zero-length read. By
judiciously choosing mt files, it is possible to read and write multi-file tapes.

A standard tape consists of several 512 byte records terminated by an EOF.
To the extent possible, the system makes it possible, if inefficient, to treat
the tape like any other file. Seeks have their usual meaning and it is possi­
ble to read or write a byte at a time (although very inadvisable).

The mt files discussed above are useful when it is desired to access the tape
in a way compatible with ordinary files. When foreign tapes are to be dealt
with, and especially when long records are to be read or written, the "raw"
interface is appropriate. The associated files are named raltO, ••• , rmtlS.
Each read or write call reads or writes the next record on the tape. In the
write case the record has the same length as the buffer given. During a
read, the record size is passed back as the number of bytes read, up to the
buffer size specified. In raw tape I/O, the buffer must begin on a word
boundary and the count must be even. Seeks are ignored. An EOF is
returned as a zero-length read, with the tape positioned after the EOF, so
that the next read will return the next record.

/dev /mt., /dev /rmt.

If any non-data error is encountered, it refuses to do anything more until
closed. The driver is limited to four transports.

SEE ALSO
gt(7), ht(7).

- 1 -

UN32(7) (382OS oaly) UN32(7)

NAME
un32 - magnetic tape interface

DFSCRIPTION

FILES

The files tp? and tp?n refer to the UN32 magnetic tape controllers and
associated transports. Only 1600bpi is available. The files tp? are desig­
nated normal-rewind on close, and the files tp?n are no-rewind on close.
When opened for reading or writing, the tape is assumed to be positioned
as desired. When a file is closed, a double end-of-file (double tape mark) is
written if the file was opened for writing. If the file was normal-rewind, the
tape is rewound. If it is no-rewind and the file was open for writing, the
tape is positioned before the second BOF just written. If the file was no­
rewind and opened read-only, the tape is positioned after the BOF following
the data just read. Once opened, reading is restricted to between the posi­
tion when opened and the next BOF or the last write. The BOF is returned
as a zero-length read. By judiciously choosing tp files, it is possible to read
and write multi-file tapes.

A standard tape consists of several 512 byte records terminated by an BOF.
To the extent possible, the system makes it possible, if inefficient, to treat
the tape like any other file. Seeks have their usual meaning and it is possi­
ble to read or write a byte at a time (although very inadvisable).

The tp files discussed above are useful when it is desired to access the tape
in a way compatible with ordinary files. When foreign tapes are to be dealt
with, and especially when long records are to be read or written, the "raw"
interface is appropriate. The associated files are named rtp? and rtp?n.
Each read or write call reads or writes the next record on the tape. In the
write case the record has the same length as the buffer given. During a
read, the record size is passed back as the number of bytes read, up to the
buffer size specified. In raw tape I/O, the buffer must begin on a word
boundary and the count cannot be greater tban 2048 bytes. Seeks are
ignored. An EOF is returned as a zero-length read, with the tape positioned
after the BOF, so that the next read will return the next record.

/dev /tp*, /dev /rtp*

- 1 -

UNS2(7) (3B208 only) UNS2(7)

NAME
un52 - magnetic tape interface

DESCRIPTION

FILES

BUGS

The files tp?, tp?h, tp?n and tp?hD refer to the UN52 magnetic tape con­
trollers and associated transports. Only 1600bpi is available on the UN52,
while 1600/6250bpi densities are available on the UN52B. The files are
designated tp? for 1600bpi rewind-on-close, tp?D for 1600bpi no-rewind on
close, tp?h for 6250bpi rewind-on-close, and tp?hD for 6250bpi no-rewind
on close.

The tape is assumed to be positioned as desired when opened. If the file
was opened for writing a double file mark is written on the tape when
closed; if the file was normal-rewind, the tape is rewound, otherwise the
tape is positioned before the second file mark. If the file was opened read­
only, and if the file was normal-rewind, the tape is rewound, otherwise the
tape is positioned after the file mark following the data just read. Once
opened, reading is restricted to between the position when opened and the
next file mark or the last write. A file mark is returned as a zero-length
read.

A standard tape consists of several 512 byte records terminated by a file
mark. To the extent possible, the system makes it possible to treat the tape
like any other file. Seeks have their usual meaning and it is p.ossible to
read or write a byte at a time (although inadvisable).

The tp files discussed above are useful when it is desired to access the tape
in a way compatible with ordinary files. When foreign tapes are to be dealt
with, or when large records are to be read or written, the "raw" interface is
appropriate. The associated files are named rtp?, rtp?D, rtp?h and rtp?hD.
Each read or write call reads or writes the next record on the tape. During
a write, the record has the same length as the buffer given. During a read,
the record size is passed back as the number of bytes read, up to the buffer
size specified. If the record was larger than the buffer size, the extra data is
discarded. The buffer must begin on a word boundary, and the count must
be an even number and cannot be greater than 6144 bytes. Seeks are
ignored.

Idev Itp*, Idev Irtp*

Once a file mark or any drive error is encountered, it refuses to do any­
thing more until closed.

- 1 -

UNS3(7) (38208 only) UNS3(7)

NAME
un53 - UN53/TN82 synchronous device interface

DESCRIPTION

FILES

The files uD53. refer to the UN53 synchronous communications devices.
Each physical UN53/TN82 pair provides for either one high speed (up to
50KB) or three low speed (up to 9.6KB) synchronous communications
line(s).

The device interface permits simultaneous communication on multiple logi­
cal devices on a single UN53/TN82 pair.

/dev/un53· logical communications lines.

- 1 -

VP(7) (DEC only) VP(7)

NAME
vp - Versatec printer

DESCRIPTION
Vp provides the interface to the Versatec electro-static line printer. Both
printing and plotting capabilities are implemented.

FILES

Two ioctl(2) system calls are available:

II include <sys/lprio.h>
ioctl (fildes, command, arg)
int arg;

The commands are:

LPRGETV Return the state of the printer.

LPRSETV Set the state of the printer to argo

/dev/vp
SEE ALSO

vpr(l),lp(7).

- 1 -

VPM(7) VPM(7)

NAME
vpm - Virtual Protocol Machine

DFSCRIPTION
This entry describes the VPM protocol driver and gives an introduction to
the Virtual Protocol Machine (VPM).

VPM is a software package for implementing link-level protocols on Pro­
grammable Communication Devices (PCDs) in a high-level language. This
is accomplished by a compiler that runs on UNIX and translates a high-level
language description of a protocol into an intermediate language that is exe­
cuted by the PCD.

The VPM software consists of the following components:

1. A compiler (vpmc(lM» for the protocol description language; it
runs on UNIX.

2. A program that controls the overall operation of the PCD and exe­
cutes the protocol script.

3. A protocol driver.
4. vpmstart: a UNIX command that copies a load module into the PCD

and starts it.
5. vpmset(lM): a UNIX command that logically connects VPM minor

devices with PCD synchronous lines.
6. vpmsave(lM): a UNIX command that writes unformatted trace data

to its standard output.
7. vp"lfmt: a UNIX command that formats the output of vpmsave(lM).

Operation of the VPM Protocol Driver
The VPM protocol driver provides a simple user interface to a synchronous
line controlled by a link-level protocol executing in a PCD. It supports the
following UNIX system calls: open, read, write, close, and ioctl. If higher
levels of protocol are required, the VPM protocol driver may be modified or
replaced.

The VPM protocol driver communicates with the level 2 protocol executing
in the PCD using the Common Synchronous Interface (CSI). CSI is a
device-independent interface between a level 3 protocol executing as part of
the UNIX operating system and a level 2 protocol executing in a PCD. The
interface consists of procedure calls implementing a number of commands
and reports.

Before a VPM protocol driver minor device can be used, it must be logically
connected to a synchronous line of some PCD. This connection can be
made by means of ioctl commands (see below). The command vpmset(lM)
uses these ioctl commands to make these connections.

This driver allows UNIX user processes to transfer data to or from a remote
terminal or computer system through VPM. Flow control and error
recovery are provided by the level 2 protocol executed by the PCD.

The VPM protocol driver open for reading-and-writing is exclusive; opens
for reading-only or writing-only are not exclusive. The open sends a com­
mand to the peD which causes it to start executing the protocol. The pro­
tocol driver then supplies one or more 512-byte receive buffers to the PCD.

The read returns either the number of bytes requested or the number
remaining in the current receive buffer, whichever is less; any remaining
bytes in the current receive buffer are used to satisfy subsequent reads.
The data from each user write is copied into one or more 512-byte buffers
and passed to the PCD for transmission.

- 1 -

VPM(7) VPM(7)

The close arranges for the return of buffers and for a general cleanup when
the last transmit buffer has been returned by the interpreter. It also stops
the execution of the protocol.

The VPM protocol driver ioet! system call has the form:

ioctl (fildes, cmd, arg)

Possible values for the emil argument are:

VPMCMD -Send a command to the protocol script. The first four bytes of
the array pointed to by arg are passed to the PCD, which saves them
and passes them to the protocol script when it requests them via a
getemll primitive. Only the most recent command is kept by the
PCD.

VPMERRSET -Set the maximum values for the error counters to the values
in the array pointed to by argo The array is assumed to contain
eight (short) values. When a VPMERRS joet! is executed the VPM
protocol driver returns the current values of the error counters and
sets them to the values defined by the VPMERRSET command. The
error counters are then decremented when errors occur until they
reach zero. If VPMERRSET is not done all reset values will default
to zero. If a reset value is zero the corresponding error counter will
be ignored.

VPMERRS - Get and then reset the error counters. The error counters are
copied to the array pointed to by arg, which must be large enough
to contain eight (short) counters. The error counters are then set
to the values specified by a previous VPMERRSET, if any, zero oth­
erwise.

VPMRPT-Get the latest script report. When the protocol script executes a
rtnrpt primitive, a four-byte report is passed from the protocol script
to the VPM protocol driver which saves it for later use. Only the
most recent script report is kept by the driver. If there is a script
report that has not previously been passed to a user via this joet!
command, that report is copied to the array pointed to by arg and a
1 is passed as the return value. If no script report is available, a
zero is passed as the return value.

VPMSDEV -Connect a protocol driver minor device to a synchronous line
of apeD. Arg is an jnt containing the major and minor device
numbers of the peD. When using a DEe peD the synchronous line
number is encoded in bits 5-7 of the major/minor device number.
To invoke this joet! command, the file status flag O_NDELA Y must
be set.

VPMDETACH - Disconnect the protocol driver minor device and the PCD
synchronous line. To invoke this joet! command, the file status flag
O_NDELA Y must be set. .

VPMOPTS -Set the protocol options. The previous options are cleared and
the options represented by arg are set. The protocol options may be
retrieved by the protocol script using the getopt primitive (see
vpmc(lM». When running es!apb.r as the level 2 protocol script,
an octal 01 in arg will indicate to the script that it should use the B
address (see vpmset(lM». To invoke this ioet! command, the file
status flag O_NDELAY must be set.

VPMPCDOPTS -Set the PCD options. If the PCD requires options, the pre­
vious options are cleared and the option represented by arg are set.
To invoke this ioet! command, the file status flag O_NDELA Y must

- 2 -

VPM(7) VPM(7)

be set. The following constants, which may be combined with the
OR operator to form arg, apply only to the HDLC versions of the
VPM interpreter as implemented on the DEC KMC and KMS:

HWLOOP - This option causes the interpreter to set maintenance
loopback mode on the synchronous line interface associated with a
particular line. This option is used by vpmtest(1M).

ADRSWTCH -This option causes the interpreter to invert (comple­
ment) the address bit (bit 2 of byte 0) of each transmitted frame.
This allows the BX.25 level 2 protocol script cslapb.r to operate in a
loopback mode. This option is used by vpmtest(IM).

X25MODE - If this option is set, the interpreter places the first three
bytes of the data portion of each received frame into the octet por­
tion of the buffer descriptor instead of into the data buffer. Simi­
larly, the first three bytes of the data portion of each transmitted
frame are taken from the octet portion of the buffer descriptor.
This mode is used by the PDP!! version of the BX.25 level 3 driver.

VPMSTAT-This puts into the integer variable pointed to by arg the CSI
index associated with the protocol minor device.

The VPM Event Trace
The VPM protocol driver and CSI routines generate a number of event
records to allow the activity of the protocol driver, the interface routines
and the protocol script to be monitored for debugging purposes. If a pro­
gram such as vpmsave(IM) has opened minor device 0 of the trace driver
and has enabled the appropriate channels on that device, these event
records are queued for reading; otherwise the event records are discarded
by the trace driver. Event records associated with CSI interface index n
modulo 16 are put on the read queue for minor device 0 of the trace driver
with a channel number of n. Calls to the system functions vpmopen,
vpmread, vpmwrite, and vpmclose generate event records identified respec­
tively by open, read, write, and close when the output of vpmsave is format­
ted and printed by vprr!fmt. Calls to the vpmc(IM) primitive trace(argl,
arg2) cause the PCD to pass argl and arg2 along with the current value of
the script location counter to the VPM driver, which generates an event
record identified by trace.

When the script terminates for any reason, the driver is notified and gen­
erates an event record identified by INTterm. This record also contains the
CSI minor device number, the script location counter, and a termination
code; the code indicates the reason for termination as follows:

o Normal termination; the PCD received a HALT command from the
driver.

1 Undefined virtual-machine operation code.
2 Script program counter out of bounds.
3 Interpreter stack overflow or underflow.
4 Jump address not even.
S UNIBUS error.
6 Transmit buffer has an odd address; or the driver tried to give the

PCD too many transmit buffers; or a get or rtnxbuJ was executed
while no transmit buffer was open, i.e., no getxbuJ was executed
prior to the get or rtnxbuJ.

7 Receive buffer has an odd address; or the driver tried to give the
PCD too many receive buffers; or a put or rtnrbuJ was executed
while no receive buffer was open, i.e., no getrbuJ was executed prior

- 3 -

VPM(7) VPM(7)

to the get or rtnxbuf.
8 The script executed an exit primitive.
9 A ercJ6 was executed without a preceding erc/oc execution.

10 The PCD detected loss of the modem-ready signal at the modem
interface.

11 Transmit-buffer sequence-number error (internal error).
12 Command error: an invalid command or an improper sequence of

commands was received from the driver.
13 Not used.
14 Invalid transmit state (internal error).
15 Invalid receive state (internal error).
16 Not used.
17 Xmtctl or setctl attempted while transmitter was still busy.
18 Not used.
19 Same as error code 6.
20 Same as error code 7.
21 Script too large.
22 Used for debugging the PCD.
23 The driver's OK-check has timed out.
24 The array specified as an argument to a getemd primative is too

close to end of user's data space in the PCD.
25 PCD driver unable to accept command.
26 The PCD's OK-check has timed out.
27 No such line number on PCD.

SBB ALSO
vpmc(IM), vpmsave(1M), vpmset(IM), trace(7), x25(7).

- 4 -

X2S(7) X2S(7)

NAME
x25 - BX.25 network interface

DESCRIPTION
The X25 driver provides multiplexed channels over one or more synchro­
nous communications lines using the Bell System standard BX.25 Level 3
protocol. The current implementation supports permanent virtual circuits
(PVCs) only; the call set-up features needed to support virtual calls have
not yet been implemented. There is a separate and independent Level 3
interface for each communications line. Point-to-point connections
between hosts are supported as well as connections via an X.25 network.

The X25 uses the Common Synchronous Interface (CSI) to access communi­
cations lines controlled by various kinds of programmable communications
devices (PCDs). Level 2 of BX.25, the link level, is implemented by
software or firmware in the PCD. On DEC machines, the PCD is a DEC
KMCll-B microprocessor, using the UNIX Virtual Protocol Machine (VPM)
software package. On the 3B2OS, the PCD is a TN75B or TN82 peripheral
controller.

The special files Ide'/dS/5? refer to the minor devices of the X25 driver.
Each such minor device, also referred to as a slot, can be connected by
means of a network control device (see nc(7» to an arbitrary logical channel
(1-4095) on a specified X25 interface. Provided the other end of the logical
channel has been connected in an analogous fashion, each slot so con­
nected is the terminus of a permanent virtual circuit, which is a full-duplex
connection between a set of user processes on the local host and another
set of user processes on a remote host. A logical channel is a connection
which may be multiplexed with other channels over a physical link to a
remote host or an X.25 network. Each X25 interface (also referred to as a
link) must be connected via the network-control device to a particular syn­
chronous line.

The X.25 driver includes the BX.25 link backup facility. This facility pro­
vides for automatic changeover to a backup synchronous line which may be
configured for any X25 interface. A changeover could occur for several
reasons: if there is a failure on the link, i.e. physical severing of the link
(Levell) or a failure at Level 2; the link is noisy and produces too many
errors; a changeover to the backup link is requested via the nc device; or
the remote end of the link initiates a changeover. Level 3 will be unaware
of the changeover and any lost packets will be recovered by the Level 3
recovery procedures. The procedures for configuring backup links and
requesting a changeover to the· backup link are described in the manual
entries for x25pvc(lM) and nc(7).

A user process accesses a BX.25 minor device (slot) using open, close, read,
write, and ioetl system calls.

There are several internal flags that are maintained by the X25 driver for
each slot. The values of these flags can be read and in some cases modified
by means of the ioetl system call (see below).

An open and return the error ENXIO if the specified slot is not configured,
ENODEV if the slot is not currently connected to a logical channel on some
link, or EL3HLT if the link to which the slot is connected is not currently
active. The user may request the normal open options O_RDONLY,
O_WRONLY, and Q RDWR. The user may also request that reads with no
data available should not sleep by using the O_NDELA Y open flag, or that
the open is to be exclusive by using the O_EXCL open flag. If an exclusive
open is requested and the slot is already in use, the error EACCFS will be

- 1 -

X2S(7) X2S(7)

returned. A successful open will clear the isreset status bit (see the discus­
sion of ioetl below).

An open mayor may not block until the far end is also open, depending on
the session-establishment protocol requested. The choice of session­
establishment protocol is made by means of the network-control device at
the time the permanent virtual circuit is installed. There are three possibili­
ties: the first mode, referred to as the "no-protocol" session mode, is for
the open to return immediately. This puts the burden on the user program
to determine whether the far end is actually open. The reset session mode,
intended only for compatibility with certain non-UNIX implementations of
BX.2S; uses a RFSET in-order packet to indicate to the far end that the slot
has been opened and a RFSET out-of-order packet to indicate to the far end
that the slot has been closed. In the current implementation, the RFSET
in-order and RFSET out-of-order packets are recognized when they are
received, but are not transmitted (so-called "passive" mode). To avoid
data loss with this mode, the application on the non-UNIX side must wait
until it receives data from the UNIX side (allow the UNIX side to perform
the first write) before it sends any data to UNIX. The third mode, which is
the one recommended for most applications, uses BX.25 ses&ion-layer
Connect/Accept qualified data messages to indicate that a slot has been
opened and session-layer Disconnect qualified data messages to indicate that
a close has occurred. In the last two modes, an open will block until the
indication that the far end is open has been received, unless the O_NDELA Y
open option was specified, in which case the status of the far end of the PVC
must be obtained by using ioetl (see below).

Regardless of the session-establishment protocol in effect, data which is
received while a slot is not open will be acknowledged and silently dis­
carded. However, if the session-layer open/close protocol is selected, no
data can be transmitted until both ends of the PVC have been opened.

The data specified by each write is transmitted as a single BX.2S message,
possibly multi-packet. The user has the option of waiting for acknowledge­
ment of the last packet of each message before the write returns; this
feature. is called delivery confirmation (see the discussion of joetl below).
Even if the O_NDELA Y mode was requested, the user process will be put to
sleep if the amount of data in the transmit queue for the slot exceeds some
high-water mark; the process will be given a wake-up when the transmit
queue has been drained to the low-water mark. If the slot is not open for
writing and a write system call is issued, the error EBADF is returned.

A user reads in record mode, which means that each read will return data
from a single message only. If the slot is not open for reading and a read
system call is issued, the error EBADF is returned. If the count specified on
the read request is not large enough to accommodate the entire message,
the remainder of the message will be returned on subsequent reads. The
message-continued flag (messcont) will be set when a partial read occurs;
this flag will be cleared when the last byte of the message is finally read. If
no data is available, the user process will be put to sleep, unless the
O_NDELA Y option was specified on the open or the equivalent mode was set
via an fcntl system call. If O.-NDELA Y was specified and no data is avail­
able, the read will return zero bytes. If a partial message is available and
O_NDELA Y has been set, the read will return zero until the end of the mes­
sage has been received or the count can be filled. However, if the channel
is flow-controlled, the read will return the partial message even if
O_NDELAY is set. If O_NDELAY is not set, the read will sleep until the
entire message has been received or the count has been satisfied.

- 2 -

X2S(7) X2S(7) •

Zero-length messages will be sent and received as such (but see BUGS
below).

If the jaropen flag (described below) is not set, a write will return immedi­
ately with a count of zero. A read will return a zero-length record (indicat­
ing end-of-file) if jaropen is not set and the receive queue is empty. If the
end of a message is on the input queue, a read will not return a zero indi­
cating end-of-file, regardless of the state of the slot. Note that this means
that the flags returned by ioetl, indicating that the far end has closed or a
RESET has occurred, may be set before they take effect on user reads.

Except as just noted, once a'RESET has occurred (indicating possible data
loss), all reads and writes will fail, returning the error ELJRST, until the
isreset flag is cleared by an ioetl or a successful open.

If the state of the channel is halted, all calls to the BX.25 subsystem for that
channel will fail with error EL3HLT. This occurs when a link dies or a
severe error causes the protocol to be stopped on the channel or link. If
the channel is not in the halted state but level 2 has lost synchronization,
the error EL2NSYNC is returned.

Signals will cause reads and writes to return the amount actually read or
written, unless it was zero bytes, in which case the error EINTR will be
returned. However, if O_NDELAY was specified, the amount actually read
or written will be returned, whether zero or greater. If a write is interrupted
by a signal, the data already packetized will be transmitted as a BX.25 mes­
sage; that is, a subsequent write will always begin a new message. The
return value from the write will indicate the number of bytes actually
queued for transmission.

When the last user closes, any unread data in the receive queue will be dis­
carded. Data in the transmit queue will not be discarded, but will be
transmitted normally. When the transmit queue has been drained, the ses­
sion take-down protocol, if any, is then followed (either to send a session­
layer Disconnect message or to mark the channel as being out of use, so
that incoming packets can be discarded).

Several options and actions can be requested via the ioetl system call, which
takes three arguments: fildes, request, and arg. To use this ioetl system call,
the line

include <sys/x25user.h>

must be included in the user program. Possible values for the request argu­
ment are:

X25SET Set the flags and options for the slot or channel.

X25GET Return the status information for the channel and its
associated link. The structure pointed to by arg will
receive the values described below.

The structure pointed to by arg for X25SET is:

struct x25sctl {
ushort

};

c_delconf: 1, /* delivery confirmation */
c_isreset : 1, /* channel reset not cleared */
c_ndelay : 1; /* no delay requested */

Only the delconf and isreset flags can be changed by ioetl.

The flag bits are further explained as follows:

- 3 -

X2S(7) X2S(7)

c_delconf
While this bit is set, each write system call will block until the last
packet of the corresponding message has been acknowledged; another
writer, if one exists, will also be blocked until the previous writer's
message is acknowledged. If this bit is not set, a user write can return
immediately after the message has been completely packetized and
queued for transmission, possibly allowing several out-going messages
to be unacknowledged at the same time.

c-isreset
This flag if set indicates that a RESET has occurred. The user may
clear this flag by setting the corresponding flag bit to 1 in the value
passed by X25SET. (The user may not set this flag). If the value for
this flag passed by X25SET is 0, the internal value of this flag will not
be changed. This flag is always cleared by a successful open.

cJndelay
This flag if set indicates that the O_NDELA Y flag has been set. If this
flag is not set on an open system call, it can be set or cleared on the
fcntl system call. The value of this bit may not be changed by using
the ioctl system call.

The structure pointed to by arg for X25GET is:

struct x25gctl {

};

struct Cstate c_Cstate; /* tab state structure */
struct Cstate c_Cstate; /* link state structure */
struct s_flags c_s_flags; /* slot flags structure */
unsigned char c_xmtq; /* length of lev 3 xmtq */
unsigned char c_recvq; /* length of lev 3 recvq */
unsigned char c_rststate; /* restart state of link */
struct Uine c_primline; /* primary line info */
struct Uine c_bckline; /* backup line info */

The structure returned contains information about the channel and its asso­
ciated link. Macros are provided to obtain some of the more useful infor­
mation. These macros are especially useful in determining the conditions
of the channel and link when a system call to a BX.25 minor device returns
an error indicating an abnormal situation. To use the macros, a user must
issue an ioctl using the file descriptor of the BX.25 minor device. Each
macro has an argument arg which is a pointer to an x25gctl structure. The
following macros are provided:

X25LRDY true if the link has completed restart procedures

X25LHLT true if the link is halted

X25L2FUL true if the level 2 queue of the link is full

X25ABNHLTP true if the link is halted because of an abnormal
condition on the primary device

X25NRMHLTP true if the link is halted because of a normal halt
command on the primary device

X25L2ERRP the value of the error code returned by the primary
device when it last halted

X25L2RDVP true if level 2 is synchronized on the primary device

X25L2FCP the number of times the level 2 retry counter
reached its maximum

- 4 -

X2S(7) X2S(7)

X25LATCHP true if the link is attached to a primary device

X25CHLT true if the state of the channel is halted

X25CRDY true if the channel is in the data transfer state

X25FAROPN true if the far end of the channel is open

X25ISRESET true if the channel has just completed reset pro­
cedures

X25MSGCON true if the message was not completely consumed by
last user read

X25L3XQFUL true if the level 3 transmit queue is full

X25L3RQFUL true if the level 3 receive queue is full

In order to access information not obtained using the macros, the user may
look at the structures declared in /usr/include/sys/x25u.h and
/usr/include/sys/x25.h to determine how to access the desired values directly.

The following is an example of a situation where an ioetl call would be use­
ful. Assume that only a primary device has been attached to the link asso­
ciated with the channel being used. If the error EL3HLT is returned when a
system call is issued, an ioetl call would then be issued. The EL3HLT error
return indicates that the link is in the halted state and the macros can pro­
vide more useful information. The macro UABNHLTP(arg) will return true
if the link halted abnormally. The macro UL2ERRP(arg) will then return
the value of the error code returned by the primary device. The manual
entry vpm(7) describes what the error codes mean and the file
/usr/include/sys/csie"s.h contains defines for these errors. If the link halted
normally, this indicates that someone entered a command to halt the link.

SEE ALSO

BUGS

x25pvc(lM), fcntl(2), ioctl(2), open(2), read(2), write(2), nc(7), vpm(7).
Operations Systems Network Protoeol Specification: BX.25 Issue 2.

The multiplicity of options for the open/close protocol reflects a lack of stan­
dardization and a certain amount of confusion. However, in the near
future, the session layer will be implemented and will handle this problem
so that the user will not have to select an option or have to worry about
open/close synchronization.

It is not clear that the treatment of the O_NDELA Y flag is correct; this is an
area that is particularly likely to change. In particular, the read partial
message/return zero dilemma for read O..NDELA Y calls is puzzling. One
would like to return zero until the entire message has been received, but a
long, multi-packet message could deadlock such a scheme. Thus, the "read
something if flow-controlled" method was used.

At present, there is no way to tell whether a return value of zero for a no­
delay read is due to a zero-length message or to the lack of anything to
read.

It would be dangerous to assume that zero-length messages will be pro­
pagated correctly through an X25 network or that they will be treated in a
compatible manner by other implementations of BX.25.

There is no way to send an INTERRUPT packet. An INTERRUPT packet
received from the far end will be confirmed and discarded.

- 5 -

INTRO(B) INTRO(B)

NAMB
intro - introduction to system maintenance procedures

DESCRIPTION

BUGS

This section outlines certain procedures that will be of interest to those
charged with the task of system maintenance; Included are discussions on
such topics as boot procedures, recovery from crashes, file backups, etc.

No manual can take the place of good, solid experience.

- 1 -

3B20 BooT(8) (3B2OS only) 3B20 BOOT (8)

NAME
3B20boot - 3B20S bootstrap procedures

DESCRIPTION
Lboot is a program that is read in from the boot section of the disk in
response to the BOOT command on the EAI page at the console. See eai(8)
for a description of the console operations. Other options specified on the
EAI page control the functions performed by [boot.

If the SEC- DISK flag is clear on the EAI page when the BOOT command is
issued, moving head disk 0 is used as the boot device. If the SEC- DISK
flag is set, moving head disk 1 will be used as the boot device. The
BACKUP-ROOT flag controls which one of two file systems on the chosen
disk will be used. If the flag is clear, the primary root file system on the
disk will be used. If the flag is set, the backup root file system will be used.

The PROMPT-UNIX flag is used to specify the name of the program to be
booted. If the PROMPT-UNIX flag is clear, /unix on the chosen file sys­
tem will be booted. If the PROMPT-UNIX flag is set, [boot will ask for the
name of the program to be booted. (NOTE: To respond to [boot, you
must be out of the EAI command area. Use the NORM DISP or CMD- MSG
key to get out of the command area.) If the name given is a directory on
the chosen file system, [boot will respond with a listing of the files present
in the directory. If the name given is a normal, executable file in a.out for­
mat, it will be loaded into memory and control will be transferred to it.

Any standard /unix file will look at the MIN-CONFIG and INH-CACHE
flags when it begins execution. If the MIN -CONFIG flag is clear, all of the
peripheral devices will be brought into service. See don(1M) for the nor­
mal device configuration mechanism. If the MIN-CONFIG flag is set,
/unix will only bring the boot device, the system console, and a tape
drive into service and only the first megabyte of main memory will be used.
If the INH-CACHE flag is set, /unix will leave the cache memory dis­
abled. If the INH-CACHE flag is clear, the cache will be enabled.

SEE ALSO
don(lM), newboot(lM), dsk(7), eai(8), prm(8).

DIAGNOSTICS

BUGS

Self-explanatory messages about bad directory entries and bad file formats.
The following code words are used in success PRMs:

Code Meaning
dfcn DFC number
dskn Moving head disk number

The success PRM's issued during the boot process are:

PRM Meaning
E 1 0 0 0000 dfcn dskn DFC is in service
E 1 0 0 BBBB 3B3B 3B3B Specified program loaded into memory
E200 0000 0000 OADD UNIX is checking memory
E 2 00 0000 0000 000 1 UNIX is initializing I/O devices
E200 0000 0000 0002 UNIX is ready to mount ROOTDEV
ECOO 3B3B 3B3B 3B3B UNIX is ready to run user processes

Failure PRM's can be found in prm(8).

Lboot never uses the cache memory. Lboot isn't smart enough to know
what a.out files can be used as bootable programs. If an a.out is specified
that is not a bootable program, lboot will load it in and branch to it. What
happens after that is unpredictable.

- 1 -

38200PS(8) (38208 only) 38200PS(8)

NAME
3B200ps - 3B2OS console operations

DESCRIPTION
The daily procedures involved in running UNIX: on the 3B2OS system are
described here.

Disk Boot
See 3B20boot(8) for a complete description of how to boot the machine
from disk. The I prompt indicates that the system has come up through
init S (see init(lM» and that the shell is ready to accept commands.

This is the appropriate time to do file system backups, andJsck(lM) should
be executed. One must never operate the system with a defective file sys­
tem.

After successful completion of Jsck, the operator can bring the system to
multi-user operation by executing init 2.

Brin8in8 the System Down
The shutdown procedure is designed to gracefully turn off all processes and
bring the system back to single user state with all buffers flushed. To do
this the operator can execute shutdown(lM) or the following sequence of
commands:

killall
sync
telinit 6
fsck (optional)

The system may then be halted using the Emergency Action Interface (see
eai(8».

System Dumps
After a system crash the procedure outlined in eai(8) should be followed to
dump the contents of memory to the disk. Then the dump can be analyzed
using crash(1M) and the /de,/dump? file (see dsk(7». To save the dump
for later examination, the dump may be copied to a file using the com­
mand:

dd if= /dev /dumpU ~f=savefile
where U is the unit (drive) number of the disk containing the dump.

$EEALSO
crash(lM), date(1), filesave(lM), fsck(lM), init(1M), shutdown(1M), sys­
tem(4), 3B20boot(8), eai(8).

- 1 -

11/70 BOOT(8) (PDP-II only) 11/70 BOOT(8)

NAME
70boot - 11/70 bootstrap procedures

DESCRIPTION
To bootstrap programs from a wide range of storage media, the PDP-Uj70
has a dedicated diagnostic bootstrap loader called the M9301-YC. The
M9301-YC contains two 256 word ROMs (17765000 to 17765776 and
17 773 000 to 17 773 776) which contain hardware verification diagnostic
routines and bootstrap loader routines.

The diagnostic portion tests the basic CPU to verify correct operation. The
branches, registers, all addressing modes, and most of the instructions are
checked. If requested, memory management and the UNIBUS map are
turned on. Then memory is tested from virtual address 001 000 to 157 776
with the cache disabled. Next the cache is enabled and tested.

The physical memory tested is determined by the console switches. Con­
sole switches <15:12> are used to set physical address bits <19:16>. If
console switches <15:12> are zero, memory management and the UNIBUS
map will not be enabled, so that physical memory 0 to 157 776 will be used.
If console switches <15:12> are non-zero, then memory management, the
UNIBUS map. and 22-bit mapping will be enabled. Table I describes the
physical address ranges for each switch setting. In all cases, virtual
addresses 160000 to 177 776 are mapped to the peripheral page, physical
addresses 11 600 000 to 17 771176. Note that physical memory above
512K words is not accessible by this program even though the physical
memory maximum is 1920K words.

The bootstrap portion of the M9301-YC attempts to BOOT from the device
and drive number specified in the console switches. Console switches
<7:3> select the device and console switches <2:0> select the drive
number. Table II describes the devices selected for each switch setting. If
console switches <7:0> are zero. the program will read a set of switches
on the M9301-YC. set by field service, to determine a default boot device
and drive number. These switches appear at location 17773 024, however
bits <8:4> select the device and bits <3:1> select the drive number.

Having selected a boot device, the program will read a block of data into
memory starting at virtual address 0, and then jump to virtual address O.
Table III describes the details of booting for each device. Note that the
physical address selection is the same as described above for the diagnostic
portion. Excluding the RXll/RXOI floppy disk, bootstrap programs must
fit in one block of 256 words, even though this program may read in more.

To start operation of the bootstrap loader, halt the CPU by depressing the
HALT switch, set the Address Display select switch to Console Physical, set
the Console Switch Register to 165000, and depress the Load Address
switch. Then reset the console switches to 0 and set switches <15:12> for
the desired physical memory (normally 0) and switches <7:0> for the
desired device (normally 0 for the default boot). Put the HALT switch in
the ENABLE position and depress the START switch. The diagnostic portion
will then run followed by the boot from the selected media. This takes
approximately three seconds.

Any error during the diagnostic portion will cause the CPU to halt. Table
IV lists the addresses and error indications. Only cache errors are recover­
able in that by pressing the CONTINUE switch the program will disable the
cache by forcing misses and proceed to the bootstrap section. If there is an
error in reading the boot block, the program will do a RESET instruction
and jump back to the memory test section (test 24) and then attempt to

- 1 -

11/70 BOOT(8) (PDP-ll only)

boot again.

SEE AlSO
romboot(8), unixboot(8).

Table I - Physical Memory Selection

Console switches <15:12>
00
01
02
03
04
05
06
07
10
11
12
13
14
15
16
17

Physical addresses
00000000 - 00 157 776
00 200 000 - 00 357 776
00 400 000 - 00 557 776
00 600 000 - 00 757 776
01 000000 - 01 157776
01 200000 - 01 357 776
01 400000 - 01 557 776
01 600 000 - 01 757 776
02000000 - 02 157 776
02 200 000 - 02 357 776
02 400 000 - 02 557 776
02600000 - 02757 776
03 000000 - 03 157 776
03 200 000 - 03 357 776
03 400 000 - 03 557 776
03 600 000 - 03 757 776

Table II - Device selection

Console switches <7:3>
00
01
02
03
04
05
06
07
10
11
12-37

Device
illegal
TMII/TUlO Magnetic tape
TCll/TU56 DECtape
RKII/RK05 Disk pack
RPII/RP03 Disk pack
reserved
RH70/TU16 Magnetic tape
RH70/RP04 Disk pack
RH70/RS04 Fixed head disk
RX11/RXOI Diskette
illegal

- 2 -

11/70 BOOT (8)

11/70 BOOT(8)

TUI0:

TU56:

(PDP-ll only)

Table III - Boot procedures

Select drive, wait until online,
set to 800 bpi, rewind,
space forward 1 record,
read 1 record (maximum of 256 words).
Select drive, rewind, read 512 words.

RK05 or
RP03: Seiect drive, start at block 0, read 512 words.

Select drive on first TM02, wait until online,
set to 800 bpi, PDP format, rewind,

TU16:

RP04:

RS04:
RX01:

space forward 1 record,
read 1 record (maximum of 512 words).
Select drive, read-in preset,
set to 16-bits/word, Bee inhibit,
start at block 0, read 512 words.
Select drive, start at block 0, read 512 words.
Select drive 0 or 1,
start at track 1, sector 1 (IBM standard),
read 64 words.

- 3 -

11/70 BOOT(8)

11/70 BOOT(8) (PDP-lI only) 11/70 BOOT(8)

Table IV - Error halts

Address displayed Test
17765004 1
17765020 2
17765036 3
17765052 4
17765066 5
17765076 6
17765 134 7
17765 146 10
17765 166 11
17765204 12
17765214 13
17765222 14
17765236 14
17765260 15
17765270 16
17765312 16
17765346 17
17765360 20
17765374 20
17765450 21
17765474 22
17765510 23
17765520 23
17765530 23
17765542 23
17765550 23
17765742 25
17765760 25
17776000 25

17773644
17773654
17773736
17773746
17773764

26
26
27
27
25/26

Subsystem under test
Branch
Branch
Branch
Branch
Branch
Branch
Register data path
Branch
CPU instruction
CPU instruction
CPU instruction
CPU instruction
CPU instruction
CPU instruction
Branch
CPU instruction
CPU instruction
CPU instruction
CPU instruction
Kernel PAR
Kernel PDR
JSR
JSR
RlS
RTI
JMP
Main memory data compare error
Main memory data compare error
Main memory parity error;

no recovery possible from this error
Cache memory data compare error
Cache memory no hit, recoverable
Cache memory data compare error
Cache memory no hit, recoverable
Cache memory parity error, recoverable

- 4 -

11/7500PS(8) (VAX-11/750 only) 11/7500PS(8)

NAME
7S00ps - VAX-11/7S0 console operations

DFSCRIPTION
The procedures described here include the major operational sequences
involved in running UNIX on the VAX-ll/7S0 system. Note that these pro­
cedures are different from those used on the VAX-11/780. For the VAX-
11/780, see 780ops(8). The following notation is used:

1. Special characters are enclosed in < > (e.g., <ctl> represents the
"control" key, and <cr> stands for the "carriage return" key).

2. Items within {}s are mandatory substitutions.

3. Items within [Is are optional.

DAILY PROCEDURFS
Disk Boot

There is no floppy disk drive and controller supplied with the console sub­
system of the VAX-11/7S0, nor an LSI-11 microprocessor as in the VAX-
11/780. Instead a TUS8 tape cartridge is provided in the CPU cabinet. It
may be used to boot the system (i.e., the bootstrap procedure can be stored
in this cartridge).

When the system is first turned on, the console prompt »> is printed. If
UNIX has been shut down, but not halted (see Bringing the System Down),
the operator must type <ctl>p to get into console mode. This also halts
the cPU.

With the system halted, any of the console commands may be executed as
described below under Console Operation.

To boot the stand-alone shell (sash) from the default disk drive, the opera­
tor types B<cr>. The following is an example of this operation as seen
on the console, picking up after the <ctl>p:

»>B<cr>
%%

$$

There is a four-position switch in the front panel that selects the boot dev­
ice. The boot command will boot from the device selected by this switch.
Alternately, the boot command may have an argument that selects the boot
device superseding the switch-selected one.

»>B [ddcu] <cr>

where dd is a dev'ric:::e:...c:::o::.:d:.:e~f:.!.r.:::.om=: _________ --,
Code Device
DL RLOI/02
DB RP04/0S/06/07, RM03, RM&80
DD DECTAPE II Cartridge (TUS8)
DM RK06/07

c specifies the I/O channel adapter and u is one digit identifying the device
drive number. For example,

»>B DDAO <cr>

will boot from the TUS8.

The $$ prompt indicates that the stand-alone shell (sash) is ready to accept
commands. If it is desired to run stand-alone fsck(IM) (or other stand­
alone functions), this is the time to do it. The commands have the form
/stand/program where program can be any name from a limited list of

- 1 -

11/7500PS(8) (VAX-I1/750 only) 11/7500PS(8)

UNIX commands found in the directory Istand. To perform a file system
consistency check, type:

$$ Istand/fsck Idev IrpO

To bring up UNIX, the operator must type unix<cr>. The system will
come up through init S (see init(IM».

This is the appropriate time to do file system backups, andfsck(1M) should
be executed if it was not executed in the stand-alone section of the boot.
One must never operate UNIX with a defective file system.

After successful completion ofjSck(lM), the operator can bring the system
to multi-user operation by executing init 1.

Bringing the System Down
The shutdown procedure is designed to gracefully turn off all processes and
bring the system back to single user state with all buffers flushed. To do
this the operator should execute shutdown (1M). If shutdown is not success­
ful, use the following sequence of commands:

killall
sync
telinit 6
fsck (optional)

The system may then be halted by typing <ctl>p.

System Dumps
After a system crash, the following procedure should be used to get a sys­
tem dump on tape.

1. Mount a tape with write ring and bring it on-line.
2. Halt the system and enter console mode with <ctl>p.
3. Issue the following command sequence, each command followed by

<cr>:
E/G 0 (Keep typing E's until all registers have been examined: RO thru

R15)
S 400 (Start execution at 400, i.e., dump to tape)

4. Before returning to UNIX, execute the stand-alonefsck(1M).

INSTALLATION BOOT PR.OCEDURE
Tape Boot

The user must type in the following program to read the first record on
tape drive o. Type <cr> at the end of each input line:

»>H
»>1

»> DIG E 20000
»> DIP 20000 F5508FDO
»> D + D05000FF
»> D + F308008F
»>D + AOB451oo
»> D + 00421002
»> D + 000OOO8F
»> D + 8FD06180
»> D + 80000100
»> D + CFDE04Al
»> D + CA53OO3A
»> D + FFFEOO8F
»> D + 8FC853FF
»> D + 00000200

- 2 -

11/7500PS(8) (VAX-11/750 only)

»> D + 6053B053
»> D + 8FBOlBI0
»> D + 25CF0200
»>D + 1 DCFB400
»> D + 018FBooO
»> D + 0014CFCO
»> D + F46053BO
»> D + BF002BCF
»> D + 808FB300
»> D + 1302AOOO
»> D + 000005F8
»> D + 029AC004
»> D + 00080000
»> D + 00000000
»> D + 00000000
»> D + 00000000
»> D + 028COOOO
»> D + OOOEOOOO
»> D + 00010000
»> D + 00000000
»> S 20000 (Start tape load)

00020055 06

11/7500PS(8)

»>S 0 (Execute boot program loaded from tape)

From this point the loader initiates a question and answer sequence to con­
trol the remainder of the load process.

CONSOLB OPBRA TION
The following is condensed from Chapter 6 of the V AX Hardware Hand­
book, DBC, 1980-81.

The following are the standard console commands. The most abbreviated
form is shown in parentheses.

<ctl> P Puts the machine in Console I/O mode and halts the pro-
cessor. A halt message is printed.

<ctl> U Deletes the current input line.

 Deletes the previous character.

{B)XAMINE {address}
Displays 8-digit hexadecimal address and its contents.

{D)BPOSIT {address} {data}
Enters data to address. (Refer to VAX Hardware Handbook
for EXAMINB and DEPOSIT qualifiers.)

(I)NITIALIZB Initializes CPU.

{H)ALT The HALT command is implemented on the VAX-ll/750
for the sake of consistency with the VAX-ll/780. It does
not actually halt the CPU since the CPU must already be
halted to respond to the command {see <ctl>P above}. It
does reset the console defaults.

{S)TART {address}
Initializes CPU, enters address to PC, issues CONTINUE to
CPU, and puts console into Program I/O mode.

{C)ONTINUE Allows the user to restart a halted program without altering
the state of the machine.

- 3 -

11/7500PS(8)

FILES
fete/shutdown
/stAnd/-

SEE ALSO

(VAX-ll/750 oBly) 11/7500PS(I)

filesave(lM), fsek(lM), init(lM), shutdown(lM), tApeboot(8).

- 4 -

1l/780 OPS(8) (VAX-ll/'780 only) 11/7800PS(8)

NAME
7800ps - VAX-II /780 console operations

DESCRIPTION
The procedures described here include the major operational sequences
involved in running UNIX on the VAX-ll/780 system. Note that these pro­
cedures are different from those used on the VAX-ll/750. For the VAX-
11/750, see 750ops(8). The following notation is used:

1. Special characters are enclosed in < > (e.g., <ctl> represents the
"control" key, and <cr> stands for the "carriage return" key).

2. Items within {Is are mandatory substitutions.

DAILY PR.OCEDUR.ES
Disk Boot

This procedure can be used only on a system with a floppy disk updated for
use with UNIX. If the floppy disk has not been so updated, the sequences
shown below under UNIX Floppy Update must be performed.

When the system is first turned on, the console prompt »> is printed. If
UNIX has been shut down, but not halted (see Bringing the System Down),
the operator must type <ctl>p to get into console mode. After the
prompt, type H<cr> to halt the system.

With the system halted, any of the console commands may be executed as
described below under Console Operation.

To boot the stand-alone shell (sash) from the default disk drive, the opera­
tor types B<cr>. Alternatively, the boot command may have an argu­
ment that selects the boot device superceding the default. For example,

B R.PO

will boot from disk drive 0, and

BRPI

will boot from drive I.

The following is an example of this operation, starting after the <ctl>p
command:

»>H<cr>
HALTED AT nnnnnnnn

»>B<cr>

$$

CPU HALTED
INIT SEQ DONE
HALT INST EXECUTED
HALTED AT nnnnnnnn
LOAD DONE, nnnnnnnn BYTES LOADED

The $$ prompt indicates that the stand-alone shell (sash) is ready to accept
commands. If it is desired to run stand-alone fsck(IM) (or other stand­
alone functions), this is the time to do it. The commands have the form
/stand/program where program can be any name from a limited list of
UNIX commands found in the directory /stand. To perform a file system
consistency check, type:

$$ /stand/fsck /dev /rpO

To bring up UNIX, the operator must type unix<cr>. The system will
come up through init S (see init(IM».

- 1 -

1I/7800PS(8) (VAX-II/780 only) 11/780 OPS(8)

This is the appropriate time to do file system backups, andfsck(lM) should
be executed if it was not executed in the stand-alone section of the boot.
One must never operate UNIX with a defective file system.

After successful completion of fsck(lM), the operator can bring the system
to multi-user operation by executing init 1.

Bringing the System Down
The shutdown procedure is designed to gracefully turn off all processes and
bring the system back to single user state with all buffers flushed. To do
this the operator should execute shutdown (1M). If shutdown is not success­
ful, use the following sequence of commands:

killall
sync
telinit 6
fsck (optional)

The system may then be halted by typing the <ctl>p and H<cr>
sequence.

System Dumps
After a system crash, the following procedure should be used to get a sys­
tem dump on tape.

1. Mount a tape with write ring and bring it on-line.
2. Enter console mode with <ctl>p.
3. After the »> prompt, halt the system with H<cr>.
4. Issue the following command sequence, each command followed by

<cr>:
E RO/N:F
ESP
E/V @/N:3F

(Examine RO thru R15)
(Get the stack pointer for the next command)
(Examine virtual memory beginning at the address from the
previous instruction, and continuing for the next 63 loca-
tions; i.e., examine the stack)

S 400 (Start execution at 400, i.e., dump to tape)
5. Before returning to UNIX, execute the stand-alonefsck(1M).

To read the dump tape into a file for examination by crash(lM) or any
other debugging program, use dd(1). For example, the following will read
the dump and create a file named core in the current directory:

dd if=/dev/rmtO of=core bs=16b

System Faults
On occasion, the UNIBUS or its devices fail in such a manner as to flood the
console with error messages and suspend operations on UNIBUS devices. It
may be possible under these conditions to bring the system down gracefully
from an internal point-of-view, by inhibiting UNIBUS interrupts and run­
ning a normal shutdown. The following sequence can be executed:

<ctl>p
»>H
»> E 20006004
»>D * 1
»>C

(Look at U BA control register)
(Clear the U BA)
(Return to UNIX)

You should now be able to login as root and run a normal shutdown
sequence. Reboot the system by normal means, ensuringfsck(lM) is per­
formed.

- 2 -

11/7800PS(8) (VAX-1l/780 only) 11/7800PS(8)

INSTALLATION BOOT PROCEDURF.S
Tape Boot

The floppy disk delivered with the VAX-ll/780 does not have tape-boot
capability. The user must type in a program to read the first record on tape
drive o. If tape drive 0 is a TEl6-type tape drive, use the first program pro­
vided below. For a TU78 tape drive, use the second program. Type <cr>
at the end of each input line:

TE16 Tape Drive
»>H
»>U
»>1

INIT SEQ DONE

»> D 20000 20008FDO
»> D + D0502001
»> D + 3204AOOI
»> D + C003C08F
»> D + AOD40424
»> D + 8FDOOC
»> D + C0800000
»> D + 8F320800
»> D + 10AOFEOO
»> D + C007DO
»> D + C039D004
»>D + 400
»> S 20000 (Start tape load)

HALT INST EXECUTED
HALTED AT 0002002F

»>S 0 (Execute boot program loaded from tape)

TU78 Tape Drive
»>H
»>U
»>1

INIT SEQ DONE

»> D 20000 20008FDO
»> D + D4502001
»> D -f 8FDOOCAO
»> D + 80000000
»> D + 320800CO
»> D + AOFE008F
»> D + C004DOIO
»> D + 39320404
»> D + 000400CO
»>S 20000 (Start tape load)

HALT INST EXECUTED
HALTED AT 00020029

»>S 0 (Execute boot program loaded from tape)

From this point the loader initiates a question and answer sequence to con­
trol the remainder of the load process.

Disk Boot
The floppy disk delivered with the VAX-ll/780 does not have UNIX disk­
boot capability. The user must type in the following program to read the

- 3 -

11/7800PS(8) (VAX-ll/780 only) 11/780 OPS(8)

first block on disk drive O. Type <cr> at the end of each line.

»>H
»>LINK

«<H
«<U
«<I
«< D II 11 20003800
«<D RO 0
«<D Rl 8
«<D R2 0
«<D R3 0
«<D R4 0
«<D R5 8
«<D FP 0
«< S 20003000
«< WAIT DONE
«<E SP
«< L VMB.EXE/S:@
«<S @
««ctl>C
»>

(Save the following sequence on the floppy)
(The prompt should change to «<)
Halt processor
Un jam the SBI
Initialize the processor
Register initialization
Device type code
NEXUS number of MBA in hex
drive number
drive number

Software boot flags
Set "no machine check expected"
Start rom program

Show address of working memory +Ox200
Load primary bootstrap
and start it
(Exit LINK mode)

You are now ready to boot UNIX. Each time it is necessary to boot (or
reboot) UNIX, simply follow the sequence:

»> P<cr> (Execute the commands saved in floppy link file; the
console should echo each command in the file.)

$$ unix<cr> (Load and execute lunix)

UNIX Floppy Update
To update the console floppy for UNIX operation, one must have brought
UNIX up by one of the initial-load procedures describtld above. The follow­
ing sequence can then be executed.

/I cd Istand/conflp
/I sh update

Update prints commentary during the update operation indicating the files
that are being replaced or added. Finally, a new table of contents is printed
and the available space is indicated.

CONSOLE OPERATION
The following is condensed from Chapter 14 oi the VAX-llj780 Hardware
Handbook, DEC, 1980.

The following are the standard console commands. The most abbreviated
form is shown in parentheses.

<ctl>P Causes console to exit Program I/O mode (talking to the
VAX-1l/780 program). This does not halt the VAX CPU.

<ctl>U

<ctl>C

Deletes the current input line.

Deletes the previous character.

Interrupts printout.

(HE)LP Prints "help" file of which this is a part.

(E)XAMINE {addre~}
Displays 8-digitbexadecimal address and its contents. See
"help" file for qualifiers.

- 4 -

11/7800PS(8) (VAX-ll/780 only) 11/7800PS(8)

(D)EPOSIT {address} {data}
Enters data to address.

(I)NITIALIZE Initializes CPU.

(U)NJAM Unjams the SBI.

(SH)OW Displays console and CPU state.

(H)ALT Halts execution of VAX CPU instructions.

(S)TART {address}
Initializes CPU, enters address to PC, issues CONTINUE to
CPU, and puts console into Program I/O mode.

(C)ONTINUE Starts execution of V AX CPU instructions.

(SE)T (T)ERMINAL (P)ROGRAM
Puts console into Program I/O mode.

@{file} Causes the named floppy file to be printed and executed.

WARNINGS

FILFS

Only <ctl>p can be executed from Program I/O mode. It does not stop
the VAX CPU from running. Only HALT can be executed while the VAX
CPU is running and not in Program I/O mode; therefore, the sequence to
stop the VAX-l 1/780 while running UNIX (Program I/O mode) is:

<ctl>p
»>H<cr>

/etc/shutdown
/stand/.

SEE ALSO
filesave(lM), fsck(lM), init(lM), shutdown(lM), tapeboot(8).

- 5 -

CRASH(8) (DEC only) CRASH (8)

NAME
crash - what to do when the system crashes

DESCRIPTION
This entry gives at least a few clues about how to proceed if the system
crashes. It can't pretend to be complete.

How to bring it back up. If the reason for the crash is not evident (see
below for guidance on "evident") you may want to try to dump the system
if you feel up to debugging. At the moment a dump can be taken only on
magtape. With a tape mounted and ready, stop the machine, load address
44(8) (on the PDP-ll), 400(16) (on the VAX-ll/780; see 7800ps(8», and
start. This should write a copy of all of core on the tape with an EOF mark.
Be sure the ring is in, the tape is ready, and the tape is clean and new.

In restarting after a crash, always bring up the system single-user, as
specified in unixboot(8) as modified for your particular installation. Then
perform an fsck(IM) on all file systems which could have been in use at
the time of the crash. If any serious file system problems are found, they
should be repaired. When you are satisfied with the health of your disks,
check and set the date if necessary, then come up multi-user.

To even boot UNIX at all, three files (and the directories leading to them)
must be intact. First, the initialization program /etc/init must be present
and executable. If it is not, the CPU will loop in user mode at location 6(8)
(PDP-ll), 13(16) (VAX-ll/780). For init to work correctly, /de'l/console
and /bin/sh must be present. If either does not exist, the symptom is best
described as thrashing. Init will go into a fork/exec loop trying to create a
shell with proper standard input and output.

If you cannot get the system to boot, a runnable system must be obtained
from a backup medium. The root file system may then be doctored as a
mounted file system as described below. If there are any problems with the
root file system, it is probably prudent to go to a backup system to avoid
working on a mounted file system.

Repairing disks. The first rule to keep in mind is that an addled disk should
be treated gently; it shouldn't be mounted unless necessary, and if it is very
valuable yet in quite bad shape, perhaps it should be copied before trying
surgery on it. This is an area where experience and informed courage
count for much.

Fsck(IM) is adept at diagnosing and repairing file system problems. It first
identifies all of the files that contain bad (out of range) blocks or blocks
that appear in more than one file. Any such files are then identified by
name and fsck requests permission to remove them from the file system.
Files with bad blocks should be removed. In the case of duplicate blocks,
all of the files except the most recently modified should be removed. The
contents of the survivor should be checked after the file system is repaired
to ensure that it contains the proper data. (Note that runningfsck with the
-n option will cause it to report all problems without attempting any
repair.)

Fsck will also report on incorrect link counts and will request permission to
adjust any that are erroneous. In addition, it will reconnect any files or
directories that are allocated but have no file system references to a
"lost+found" directory. Finally, if the free list is bad (out of range, miss­
ing, or duplicate blocks) fsck will, with the operators concurrence, construct
a new one.

- 1 -

CRASH(8) (DEC only) CRASH(8)

Why did it crash? UNIX types a message on the console typewriter when it
voluntarily crashes. Here is the current list of such messages, with enough
information to provide a hope at least of the remedy. The message has the
form "panic: ... " , possibly accompanied by other information. Left
unstated in all cases is the possibility that hardware or software error pro­
duced the message in some unexpected way.

blkdev
The getblk routine was called with a nonexistent major device as argu­
ment. Definitely hardware or software error.

devtab
Null device table entry for the major device used as argument to
getblk. Definitely hardware or software error.

iinit An I/O error reading the super-block for the root file system during
initialization.

no fs
A device has disappeared from the mounted-device table. Definitely
hardware or software error.

no imt
Like "no fs", but produced elsewhere.

no clock
During initialization, neither the line nor programmable clock was
found to exist.

I/O error in swap
An unrecoverable I/O error during a swap. Really shouldn't be a
panic, but it is hard to fix.

out of swap space
A program needs to be swapped out, and there is no more swap
space. It has to be increased. This really shouldn't be a panic, but
there is no easy fix.

trap An unexpected trap has occurred within the system. This is accom­
panied by three numbers: a "ka6", which is the contents of the seg­
mentation register for the area in which the system's stack is kept;
"aps", which is the location where the hardware stored the program
status word during the trap; and a "trap type" which encodes which
trap occurred. The trap types are:

PDP-ll:
o bus error
1 illegal instruction
2 BPT/trace
3 lOT
4 power fail
5 EMT
6 recursive system call (TRAP instruction)
7 11/70 cache parity, or programmed interrupt
8 floating point trap
9 segmentation violation

VAX-ll/780:
o reserved addressing fault
1 illegal instruction
2 BPT instruction trap
3 XFC instruction trap

- 2 -

CRASH (8) (DEC oDly) CRASH (8)

4 reserved operand fault
5 recursive system call (CHMK instruction)
6 floating point trap
7 software level I (reschedule) trap
8 segmentation violation
9 protection fault
10 trace trap
11 compatibility mode fault

In some of these cases it is possible for octal 40 to be added into the trap
type; this indicates that the processor was in user mode when the trap
occurred. H you wish to examine the stack after such a trap, either dump
the system, or use the console switches to examine core; the required
address mapping is described below.
Interpreting dumps. All file system problems should be taken care of before
attempting to look at dumps. The dump should be read into the file
/alr/tmp/core; cp(l) will do. At this point, you should execute ps -ei -c
/usrftmp/core and who to print the process table and the users who were on
at the time of the crash.
AlJditionai information for the PDP-H. You should dump (adb(l» the first
30 bytes of /alr/tmp/core. Starting at location 4, the registers RO, RI, R2,
R3, R4, as, SP and KDSA6 (KISA6 for 11/40s) are stored. H the dump had
to be restarted, RO will not be correct. Next, take the value of KA6 (loca­
tion 22(8) in the dump) multiplied by 100(8) and dump 2000(8) bytes
starting from there. This is the per-process data associated with the process
running at the time of the crash. Relabel the addresses 140000 to 141776.
as is C's frame or display pointer. Stored at (RS) is the old RS pointing to
the previous stack frame. At (RS)+2 is the saved PC of the calling pro­
cedure. Trace this calling chain until you obtain an RS value of 141756,
which is where the user's as is stored. H the chain is broken, you have to
look for a plausible RS, PC pair and continue from there. Each PC should
be looked up in the system's name list using adb(l) and its : command, to
get a reverse calling order. In most cases this procedure will give an idea of
what is wrong. A more complete discussion of system debugging is impos­
sible.

SEE ALSO
adb(1), fsck(IM), 7800ps(8), unixboot(8).

- 3 -

CRASH (8) (38208 only) CRASH(8)

NAME
crash - what to do when the system crashes

DFSCRIPTION
This entry gives at least a few clues about how to proceed if the system
crashes. It can't pretend to be complete.

How to bring it baek up. If UNIX voluntarily crashed, it will take a memory
dump to disk and attempt to reboot itself. If the system appears to be
"hung" for unknown reasons, a memory dump should be taken. See
3B20ops(8) for this procedure.

After a crash, it is imperative that the file systems be checked for con­
sistency. Perform an fsek(iM) on all file systems that were in use at the
time of the crash. If any serious file system problems are found, they
should be repaired. When you are satisfied with the health of your disks,
check and set the date if necessary, then come up multi-user.

If it will not boot. There are many reasons why UNIX might not boot,
including: hardware problems, an improperly configured system, a cor­
rupted boot section on disk, or a corrupted root file system. Most boot
failures will cause a processor recovery message (PRM) to be displayed on
the system console. See prm(8) for a list of failure messages. If
Ide, /coosole or /bio/sb cannot be accessed, the system will just appear to
"hang" without any failure message. If lboot cannot be loaded into
memory by Mieroboot (indicated by PRM's starting with FO), suspect
hardware problems or a corrupted boot section on disk. If UNIX runs and
then "hangs" or "panics", suspect an improperly configured system or a
corrupted root file system. As a general strategy, try the following in order:
boot an older system version and/or minimally configured, boot from the
back-up root file system, boot from another disk pack or the secondary disk
drive, have the hardware checked out.

Repairing disks. The first rule to keep in mind is that an addled disk should
be treated gently; it shouldn't be mounted unless necessary, and if it is very
valuable yet in quite bad shape, perhaps it should be copied before trying
surgery on it. This is an area where experience and informed courage
count for much.

Fsek(lM) is adept at diagnosing and repairing file system problems. It first
identifies all of the files that contain bad (out of range) blocks or blocks
that appear in more than one file. Any such files are then identified by
name and /sek requests permission to remove them from the file system.
Files with bad blocks should be removed. In the case of duplicate blocks,
all of the files except the most recently modified should be removed. The
contents of the survivor should be checked after the file system is repaired
to ensure that it contains the proper data. (Note that runningfsek with the
-0 option will cause it to report all problems without attempting any
repair.)

Fsek will also report on incorrect link counts and will request permission to
adjust any that are erroneous. In addition, it will reconnect any files or
directories that are allocated but have no file system references to a
"lost+found" directory. Finally, if the free list is bad (out of range, miss­
ing, or duplicate blocks) fsek will, with the operators concurrence, construct
a new one.

Why did it erash? All messages printed by UNIX are saved in a circular
buffer contained in memory starting at the symbol putbuf. These messages
can be looked at by examining the memory dump using erash(lM).

- 1 -

CRASH (B) (3B20S only) CRASH (B·)

UNIX prints a message of the form "panic: ... " when it voluntarily crashes.
Here is an incomplete list of such messages.

cannot mount root
An I/O error occurred while trying to mount the root file system.
Most likely caused by an improperly configured system.

cannot allocate system buffers
Too many "butTers" have been configured into the system.

cannot allocate character buffers
Too many "clists" have been configured into the system.

i/o error in swap
A hardware error occurred while swapping a process.

trap An unexpected hardware trap has occurred. This message is accom­
panied by the physical page addresses of the UAREA of the last run­
ning process, the interrupt stack pointer, the program counter, the
processor status word, and a short message describing the type of
trap:

Protection violation - an attempt to access memory in a way
that is not permitted, e.g. writing a read-only segment.

Segmentation violation - an attempt to access memory not
within the kernel's address space.

Addressing Alignment Error - an attempt to access a data
object at an improper boundary, e.g. a word at an .odd address.

Other "panics" are possible but in almost all cases indicate hardware prob­
lems or that UNIX has been tampered with.

SEE ALSO
crash(lM), fsck(lM), 3B20ops(8), 3B20boot(8), prm(8).

- 2-

DISK BOOT(8) (PDP-ll only) DISK BOOT(8)

NAME
diskboot - disk bootstrap programs

DESCRIPTION

FILES

There are several programs available to accomplish bootstraps off of a
variety of disks. These programs reside in the directory fstand.

The program must be located in block 0 of the disk pack. The space avail­
able for the program is thus only one block (256 words) which severely
constrains the amount of error handling. Block 0 is unused by the UNIX
file system, so this does not affect normal file system operation. To boot,
the program must be read into memory starting at address 0 and started at
address O. This may be accomplished by standard DEC ROM bootstraps,
special ROM bootstraps, or manual procedures.

After initial load, the program relocates itself to high core as specified when
assembled (typically 24K words, maximum of 28K). Next, memory below
the program is cleared and the prompt , is typed on the console. A one
digit field specifying the disk drive is expected. For example, 2 would
correspond to drive 2, starting at cylinder O. The last word in the boot
block contains a cylinder offset, initially zero, which may be changed to
access another section of the disk pack. No error checking is done on this
field; invalid data will cause unpredictable results. Also, there is no error
checking on disk reads.

After the file system select, the program prompts with =. The user must
then enter the UNIX path name of the desired file. The (I character will
erase the last character typed, the @ character will kill the entire line, and
A through Z is translated to a through z. Also, carriage return (CR) is
mapped into line-feed (LF) on input, and LF is output as CR-LF. The
upper-case to lower-case conversion is used to handle upper-case-only ter­
minals such as the TELETYPE. Model 33 or the DEC LA30. Therefore, a
file name with upper case characters cannot be booted using this procedure.

After the name has been completely entered by typing CR or LF, the pro­
gram searches the file system specified for the path name. Note, the path
name may be any valid UNIX file system path name. If the file does not
exist, or if the file is a directory or special file, the bootstrap starts over and
prompts with IJ.. Otherwise, the file is read into memory starting at address
O. If address 0 contains 000 407, a UNIX a.out program is assumed and the
first 8 words are stripped off by relocating the loaded program toward
address O. Finally, a jump to address 0 is done by executing jsr pet-SO.

/usr/src/stand source directory

SEE ALSO
a.out(4), fs(4), tapeboot(8), unixboot(8).

- 1 -

EAI(8) (38208 only) EAI(8)

NAME
eai - 3820S emergency action interface

DESCRIPTION
The functions of the 3820S Emergency Action Interface (EAI) on the sys­
tem console are described below.

Function Keys
Four special function keys, labeled EA OISP, NORM OISP, CMO/MSG and
ALM RLS are on the keyboard of the system console:

EA OISP This key starts the emergency action mode and causes the
EAI display, consisting of status indicators and a menu of
commands, to appear on the top half of the screen. Status
indicators are updated every two seconds or as changes
occur. If UNIX is running, then the bottom half of the
screen may be used as a login terminal and will scroll
without affecting the EAI display. If the EAI display is
already present, then depressing this key will cause the
screen to be updated.

NORM OISP This key ends the EAI mode, erases the EAI display and
leaves the screen blank. The full screen is now available as
a UNIX login terminal.

CMO/MSG

ALMRLS

Status Indicators
MTrY

3BCC

OPCC

sces
EAI

This key toggles the cursor between the command entry area
and the UNIX portion (bottom half message section) of the
screen. EAI commands can be entered only when the cursor
is in the command entry position (next to CMD:). This key
is effective only when the screen is in EAI mode.

This key currently performs no function.

A single digit incremented once every two seconds that indi­
cates the ability of the Maintenance TrY Peripheral Con­
troller (MTIYPC) to update the EAI display.

A series of five indicators describing the current state of the
3820S processor as seen by the EAI.

ACT The 3820S processor is on-line (it has I/O access).

RUN The 3B2OS is processing instructions (not stopped
or halted).

FONL

FOFL

The 3820S is forced to be the on-line processor
(I/O is allowed) and the Diagnostic Processor (OP)
cannot gain I/O access.

The 3820S is forced to be the off-line processor
(I/O is inhibited) and cannot gain I/O access.

RCVRY 3B2OS microcode has signaled the start of proces-
sor recovery.

A series of five indicators describing the current state of the
DP as seen by OP microcode. These are the same as the
indicators for 3BCC above, with the role of the 3820S and
the OP interchanged.

currently unused.

A single indicator with three possible states describing the
state of the link between the EAI and the MTTYPC.

- 1 -

EAI(8)

DPI

TIMEOUT

3BPRM

DPPRM

(382OS only) EAI(8)

ASW All Seems Well.

ERR The EAI can communicate with the MITYPC but there
are problems.

OOS The EAI is unable to communicate with the MITYPC.

Same as EAI, but indicates the state of the link between the
DP and the MITVPC.

This appears only if the EAI has not received a low priority
Processor Recovery Message (PRM) within a seventy second
time period. This is an indication of lack of sanity of the
3B20S processor.

Processor Recovery Message (PRM) from the 3B20S proces­
sor.

PRM from the Diagnostic Processor.

Commands
Commands can be entered only when the cursor is positioned in the top
left-hand corner of the screen next to CMD:. A command is entered by
keying in the number associated with the command by the EAI display
menu. Commands may be terminated either by a carriage return or by an
exclamation point (!). A character may be erased by a backspace or an
underscore. A line may be killed with a dollar sign ($). When a line is
entered, the EAI responds with OK for a successfully entered command, or
NG for an invalid command.

Commands 60-65 cause immediate action when they are entered. Com­
mands 60-62 refer to the Diagnostic Processor (DP), which will be sup­
plied in the future as an option.

603B-FONL Forces the 3B20S processor on-line, allowing the 3B20S
processor I/O access and inhibiting the DP I/O access.
Any diagnostics that were running on the DP are
aborted.

61 DP-FONL Forces the 3B20S processor off-line, inhibiting the
3B20S processor I/O access and allowing the DP I/O
access. If UNIX was running on the 3B2OS, then it is
aborted. The DP executes lOP diagnostics, reads a diag­
nostic tape and then establishes an interface to the
MITVPC in order to accept diagnostic commands.

62 DP- INIT Initializes the DP.

63 CFT- INIT Currently not implemented.

64 PRM-DUMP Currently not implemented.

65 CLR - EAI Resets all functions on the EAI display and zeroes the
3BPRM and DPPRM fields. All SET/CLR functions are
reset to CLR.

Commands 70-73 and 76-93 set or clear options to be used during and
after the next initialization, disk boot, disk dump or load from tape. They
cause no immediate action. Commands 74 and 75 affect only the EAI
display and not the UNIX software. In each pair below, the even number
sets the option and is displayed as SET, and the odd number clears the
option and is displayed as CLR. The description below represents the
option that is selected when the even command of the pair is entered.
Unless explicitly noted otherwise, the corresponding odd command undoes
this option.

- 2 -

EAI(8)

70-71 SEC-DISK

(3820S only) EAI(8)

Causes moving head disk 1 on disk file controller 0 to
be used as the boot device or the disk to be loaded by
LDTAPE (see 98 below). Clearing this option causes
moving head disk 0 on disk file controller 0 to be used.

72-73INH-TIMER
Inhibits automatic recovery when a sanity timeout
occurs.

74-75 PRM-TRAP
Freezes the next failing PRM on the EAI display.

76-77 PARAMETER
Sets a parameter which is used to determine the action
taken by INIT (see 95 below) or by automatic recovery
after a failure. When the 76 command is entered, the
user is prompted for a single character parameter value
on the command entry line in the EAI display. After the
character is entered, it will be displayed next to the word
PARAMETER on the display. Possible values for the
parameter are:

h causes the system to idle.

H causes the system to halt. The system will reboot if
the sanity timer is not inhibited.

d causes the system to dump a memory image to disk
and then reboot.

D causes the system to dump a memory image to disk
and then idle.

r causes the system to reboot.

If the parameter is cleared or if it is set to a value not
mentioned above, then the default action will be reboot
the processor.

80-81 PROMPT-UNIX
If set, this causes the disk bootstrap program to prompt
the user for the name of the program to be booted. If
clear, /unix will be chosen as the program to be booted.
See 3B20boot(8).

82-83 BACKUP-ROOT
Causes the disk bootstrap program to find the program
to be booted on the backup root file system. If clear,
the normal root file system is used (see dsk(7».

84-85 MIN-CONFIG
Causes UNIX to bring only the boot device, the system
console and a tape drive into service and only the first
megabyte of main memory will be used.

86-87 INH-HDW-CHK
Causes UNIX to disable refresh and correctable main
store parity error detection.

88-89 INH-SFT-CHK
Currently unused.

90-91 INH-ERR-INT
Currently unused.

- 3 -

BAI(S) (38208 oaly) BAI(S)

92-93 INH-CACHE
Disables the use of cache memory.

Commands 95-99 cause immediate action which is affected by options
70"':"73 and 76-93 above. If these commands fail, they will output PRMs
in the 3BPRM field of the display. An explanation of failure PRMs is found
in pnn(8).

9S INIT

96 BOOT

97 DUMP

98 LDTAPE

99 HALT

Causes different action' depending on the parameter
value set by command 76.

Causes a disk bootstrap. See3B20boot(8).

Causes a memory image of the operating system to be
dumped to disk followed by a disk bootstrap.

Causes a disk to be loaded from tape. See /dtape(8).

Causes UNIX to idle.

SEE ALSO
dsk(7), 3B20boot(8), Idtape(8), prm(8).
UNIX System Operator's Guide.

·4·

LDTAPE(8) (38208 only) LDTAPE(8)

NAME
ldtape - load disk from tape procedures

DESCRIPTION
Ldft is a program loaded from tape into memory and executed in response
to the LDTAPE command on the EAI page of the con'!ole. (See eai(8) and
Setting up UNIX in the UNIX System Administrator's Guide for further details
on the use of the console and setting up UNIX.) Ldft is intended for use
only to create a disk pack in a proper format when a new release of UNIX is
installed.

To run Idft, mount the disk pack that is to be loaded on moving head disk
drive 0 or 1, mount LDFT tape number 0 on tape drive unit 0, and issue
the LDTAPE command on the EAI page at the console.

Ldft will look at the SEC-DISK flag and the PARAMETER field on the EAI
when the LDTAPE command is issued. The disk to be loaded is specified
by the SEC-DISK flag. Moving head disk 0 is used if the flag is clear.
Moving head disk 1 is used if the flag is set.

If the PARAMETER field contains an f or an F, Idft will format the disk in
the specified drive before continuing. (The format should be done unless it
is known that the disk pack has already been formatted.)

Ldft will then rewind the tape and issue a success Processor Recovery Mes­
sage (PRM) asking for LDFT tape number 1 to be mounted. (See the diag­
nostics section below.) Mount the next tape and issue another LDTAPE
command. Ldft will read the tape copying data to disk as it is read. When
the end of tape is found, Idft will rewind the tape. If another LDFT tape is
expected, Idft will issue a success PRM requesting the next tape. When the
last LDFT tape has been read, Idft will issue a success PRM similar to a
request for the next tape with the tape number field containing BBBB.
When this point is reached, the disk has been loaded and can be booted.
See 3B20boot(8) for boot procedures.

SEE ALSO
3B20boot(8), eai(8), prm(8).
Setting up UNIX in the UNIX System Administrator's Guide.

DIAGNOSTICS
The following code words are used in success PRM's from Idft:

Code Meaning
cyls 50 cylinder disk section number
sect Tape section number
tape Tape reel number

The following success PRM's are generated by Idft:

PRM Meaning
E100 7000 0000 0000 lOP, tape, and DFC in service
E 1 00 7100 tape 0000 Request to mount tape
E 1 00 7500 sect tape Section header read successfully
EFOO 0000 cyls 0000 Starting disk section format

Failure PRM's are listed in prm(8).

- 1 -

MK(8) MK(8)

NAME
mk - how to remake the system and commands

DESCRIPTION
All source for UNIX is in a source tree distributed in the directory /uar /sre.
This includes source for the operating system, libraries, commands, miscel­
laneous files necessary to the running system, and procedures to create
everything from this source.

The top level consists of the directories emd, lib, uts, bead, and stand as
well as commands to remake each of these "directories". These com­
mands are named :mk, which remakes everything, and :mkdir where dir is
the directory to be recreated. Each recreation command will make all or
part of the piece; over which it has control. :mk will run each of these
commands and thus recreate the whole system.

The lib directory contains libraries used when loading user programs. The
largest and most important of these is the C library. All libraries are in
sub-directories and are created by a makefile or runcom. A runcom is a
Shell command procedure used specifically to remake a piece of the system.
:mklib will rebuild the libraries that are given as arguments. The argument
* will cause it to remake all libraries.

The bead directory contains the header files, usually found in /usr /inelude
on the running system. :mkhead will install those header files that are
given as arguments. The argument * will cause it to install all header files.

The uts directory contains the source for the UNIX operating system.
:mkuts (no arguments) invokes a series of makefiles that will recreate the
operating system.

The stand directory contains stand-alone commands and boot programs.
:mkstand will rebuild and install these programs.

The emd directory contains files and directories. :mkcmd transforms source
into a command based upon its suffix (.1, .y, .e, .s, .sb), or its makefile
(see make(l» or runcom. A directory is assumed to have a makefile or a
runcom that will take care of creating everything associated with that direc­
tory and its sub-directories. Makefiles and runcoms are named
command.mk and command.re respectively.

:mkcmd will recreate commands based upon a makefile or runcom if one of
them exists; alternatively commands are recreated in a standard way based
on the suffix of the source file. All commands requiring more than one file
of source are grouped in sub-directories, and must have a makefile or a
runcom. C programs (.e) are compiled by the C compiler and loaded
stripped with shared text. Assembly language programs (.s) are assembled
with /usr/inelude/sys.s which contains the system call definitions. Yacc
programs (.y) and lex programs (.1) are processed by yacc(l) and lex(l)
respectively before C compilation. Shell programs (.sb) are copied to
create the command. Each of these operations leaves a command in ./emd
which is then installed by using /ete/install.

The arguments to :mkcmd are either command names, or subsystem
names. The subsystems distributed with UNIX are: acct, graf, rje, secs,
and text. Prefacing the :mkcmd instruction with an assignment to the Shell
variable SARGS will cause the indicated components of the subsystem to be
rebuilt.

The entire sees subsystem can be rebuilt by:

/usr/src/:mkcmd sees

- 1 -

MK(8) MK(8)

while the delta component of sees can be rebuilt by:

ARGS="delta" /usr/src/:mkcmd sees

The log command, which is a part of the stat package, which is itself a part
of the graf package, can be rebuilt by:

ARGS="stat log" /usr/src/:mkcmd graf

The argument * will cause all commands and subsystems to be rebuilt.

Makefiles, both in ./emd and in sub-directories, have a standard format. In
particular :mkcmd depends on there being entries for install and clobber.
Install should cause everything over which the makefile has jurisdiction to
be made and installed by /ete/install. Clobber should cause a complete
cleanup of all unnecessary files resulting from the previous invocation.

Most of the runcoms in ./emd (as opposed to sub-directories) relate in par­
ticular to a need for separated instruction and data (I and D) space.

In the past, dependency on the C library routine ctime(3C) was also impor­
tant. Ctime had to be modified for all systems located outside of the
eastern time zone, and all commands that referenced it had to be recom­
piled. Ctime has been rewritten to check the environment (see environ(5»
for the time zone. This results in time zone conversions possible on a per­
process basis. /ete/profile sets the initial environment for each user, and
/ete/re sets it for certain system daemons. These two programs are the
only ones which must be modified outside of the eastern time zone.

An effort has been made to separate the creation of a command from
source, and its installation on the running system. The command
/ete/install is used by :mkcmd and most makefiles to install commands in
the proper place on the running system. The use of install allows max­
imum flexibility in the administration of the system. Install makes very few
assumptions about where a command is located, who owns it, and what
modes are in effect. All assumptions may be overridden on invocation of
the command, or more permanently by redefining a few variables in install.
The object is to install a new version of a command in the same place, with
the same attributes as the prior version.

In addition, the use of a separate command to perform installation allows
for the creation of test systems in other than standard places, easy move­
ment of commands to balance load, and independent maintenance of
makefiles. The minimization of makefiles in most cases, and the site
independence of the others should greatly reduce the necessary mainte­
nance, and allow makefiles to be considered part of the standard source.

SEE AlSO
install(lM), make(l).

- 2 -

PRM(8) (3B2OS oaly) PRM(8)

NAME
prm - 3B2OS Processor Recovery Messages

DESClUPTION
This manual page describes the Processor Recovery Messages (PRM's) pro­
duced by the 3B208 processor.

SEE ALSO
3B20boot(8), eai(8), Idtape(8).

DIAGNOSTICS
These code words appear in the following list of PRM's:
Code Meaning

cc. DFC job completion code
dcod 3/6 code for disk device
dfca High order 16 bits of DFC 2nd status word
dfcb Low order 16 bits of DFC 2nd status word
dmpct Number of tries necessary to get a dump
flag Root or backup root filesystem flag
resp lOP command completion response
sect Tape section number
stat Channel status
tape Tape reel number
tcod 3/6 code for tape device

Non-error PRM's:

PRM
BOOO 0000 0000 0000
BOOO 0100 0000 0000
BQOO 0200 0000 0000
BOOO 0300 0000 0000
BOOO 0400 0000 0000
BOOO 0500 0000 0000
BOOO 0600 0000 0000
BOOO 0000 0070 dmpct

Failure PRM's:

PRM
FOOO 0800 0000 0000
FOOO 0900 0000 0000
FOOO OAOO 0000 0000
FOOO 0800 0000 0000
FOOO oeoo 0000 0000
FOOO ODOO 0000 0000
FOOO OBOO 0000 0000

FOOO 1000 0000 0000
FOOO 1100 0000 0000
FOOO 1200 0000 0000
FOOO 1300 0000 0000
FOOO 1400 0000 0000
FOOO 1500 0000 0000
FOOO 1600 0000 0000
FOOO 1700 0000 0000

FOOO t800 0000 0000
FOOO 1900 0000 0000
FOOO 1AOO 0000 0000

Meaning
MRF entered
MRF successfully exited to PINIT
MRF successfully exited to STOP It SWITCH
Successful exit from micro boot
MRF exited to POWER CLEAR halt
Pump successfully exited to PINIT
Successful exit from tapeboot ucode
Completed dump

Meaning
Microboot-lboot job-channel init failed
Microboot-vtoc job-dma setup failed
Microboot-vtoc job-bic init failed
Microboot-vtoc job-pic init failed
Microboot-vtoc job-boot command failed
Microboot-vtoc job-disk job timed out
Microboot-vtoc job-disk job error

Microboot-ucode pump-channel init failed
Microboot-ucode pump-dma setup failed
Microboot-ucode pump-bic init failed
Microboot-ucode pump-pic init failed
Microboot-ucode pump-boot command failed
Microboot-ucode pump-disk job timed out
Microboot-ucode pump-disk job error
Microboot-ucode pump-error in ucode file

Microboot-lbootjob-channel init failed
Microboot-lbootjob-dma setup failed
Microboot-lbootjob-bic init failed

- 1 -

PRM(I)

FOOO 1BOO 0000 0000
FOOO 1COO 0000 0000
FOOO 1DOO 0000 0000
FOOO 1EOO 0000 0000

FOOO 2100 0000 0000
FOOO 2200 0000 0000
FOOO 2300 0000 0000
FOOO 2400 0000 0000
FOOO 2500 0000 0000
FOOO 2600 0000 0000
FOOO 2700 0000 0000
FOOO 2800 0000 0000
FOOO 2900 0000 0000
FOOO 2AOO 0000 0000
FOOO 2BOO 0000 0000
FOOO 2COO 0000 0000
FOOO 2DOO 0000 0000
FOOO 2EOO 0000 0000

F100 0100 0000 stat
F100 0200 0000 stat
F100 0300 0000 stat
F100 1000 0000 stat
F100 1100 0000 0000
F100 1200 0000 stat
F100 1300 0000 stat
F100 1400 0000 stat

F100 1500 0000 stat
F100 1600 0000 stat
F100 2000 0000 stat
F100 3100 0000 stat
F100 3200 0000 stat
F100 4000 0000 'stat
F100 4100 0000 ~1at
F100 4200 0000 stat
F100 4300 0000 stat
F 1 00 44cc 4fca 4fcb
F100 4500 0000 stat

F100 5000 0000 stat
F100 5001 0000 stat
F100 5002 0000 stat
F100 5003 0000 stat
F100 5004 0000 stat
F100 5005 0000 stat
F100 5006 0000 0000

F100 5010 0000 0000
F100 5011 0000 stat
F100 5012 0000 stat
F100 5013 0000 stat
F100 5020 0000 stat
F100 5021 0000 stat
F100 5022 0000 stat

(3B208 ollly) PRM(I)

Microboot-Iboot job-pic init failed
Microboot-Iboot job-boot command failed
Microboot-Iboot job-disk job timed out
Microboot-Iboot job-disk job error

LDFT-channel or bic init failed
LDFT-pic init failed
LDFT-dma setup for tape failed
LDFT-quick sysgen for tape failed
LDFT-tape rewind failed
LDFT-tape read of ucode header failed
LDFT-bad ucode header
LDFT-tape read of ucode failed
LDFT-invalid ucode file t

LDFT-tape read of LDFT header failed
LDFT-invalid LDFT header
LDFT-tape read of LDFT failed
LDFT-bic init for disk failed
LDFT-pic init for disk failed

Can't initialize DMAC
Can't initialize DSCH
Can't enable DMA access to MAS
Can't write DMAC ram
Can't clear DBS
Can't initialize DIC
Can't enable DIC/PIC interface
Can't enable DIC interrupts

Can't sysgen the DFC
Can't bring the DFC into service
Can't bring the disk into service
Can't read DFC status
Can't read DFC status
Can't reset DIC interrupt
Can't send status command to DFC
Can't read 1st DFC status word
Can't read 2nd DFC status word
Bad DFC response
Can't enable DIC interrupt

Can't write DMAC ram
Can't clear DDBS
Can't send DIC command
Can't'send DIC command
Can't enable lOP interrupts
Can't send lOP sysgen
lOP sysgen failed

lOP interrupt error
Can't sense DDBS status
DDBS status error
Can't reset DIC interrupt
Can't sense DIC status
Can't sense DIC status
DIC status error

- 2-

PRM(S)

F100 5023 0000 stat
F100 5030 0000 resp
F100 5040 0000 resp
F100 5050 0000 0000

F100 5060 0000 resp
F100 5061 0000 resp
F100 5062 0000 resp
F100 5063 0000 resp
F100 5064 0000 resp
F100 5065 0000 resp
F100 5066 0000 resp
F100 5070 0000 resp
F100 5080 0000 resp
F100 5081 0000 resp
F100 5082 0000 resp

F100 7200 tcad 0000
F100 7300 dcad 0000
F100 7400 sect tape
F 1 0 0 800 0 0 0 0 0 flag
F100 COOO 0000 0000

0000 0000 DDDD 0002
0000 0000 DDDD 0003
0000 0000 DDDD 0005
0000 0000 DDDD 0006
0000 0000 DDDD 0007
0000 0000 DDDD 0008
0000 0000 DDDD 0009
0000 0000 DDDD 0010
0000 0000 DDDD 0011
0000 0000 DDDD 0012
0000 0000 DDDD 0014
0000 0000 DDDD 0015
0000 0000 DDDD 0016
0000 0000 DDDD 0017
0000 0000 DDDD 0018
0000 0000 DDDD 0019
0000 0000 DDDD 0020
0000 0000 DDDD 0021

F200 DEAD DEAD DEAD
F300 FFFF FFFF FFFF

(38208 only)

Can't send PIC command
Tape read failed
Tape rewind failed
lOP response queue empty

PC community configure failed
Clear PC micro failed
Console failed to come into service
Console pump failed
Console exec failed
Console restore failed
Console connect failed
Console I/O failed

PRM(S)

PC community failed to come into service
Clear PC micro failed
Tape PC failed to come into service

Bad 3/6 code for tape from micro boot
Bad 3/6 code for disk from microboot
Bad tape section header
VTOC has no entry for filesystem
File size too big

Dump can't initialize DSCH
Dump can't initialize DMA
Dump can't enable DMA interupts
Dump can't load DMAC ram
Dump can't clear dual bus selector
Dump can't initialize DIC
Dump can't enable DIC interface
Dump can't enable device interupts
Dump can't sysgen the DFC
Dump can't bring DFC into service
Dump can't bring disk into service
Dump can't reset DIC interupts
Dump can't get job states
Dump can't job completion word
Dump can't get job error word
Dump can't get job error word
Dump can't enable DIC interupts
Dump can't send job pending command

Panic in UNIX
"UNIX can't execute /etc/init

- 3 -

RJE(8) RJE(8)

NAME
rje - RJE (Remote Job Entry) to IBM

SYNOPSIS
/usr /rje/rjeinit
/usr /rje/rjebalt

DFSCRIPTION
RJE is the communal name for a collection of programs and a file organiza­
tion that allows a UNIX system, equipped with the appropriate hardware and
associated Virtual Protocol Machine (VPM) software, to communicate with
IBM's Job Entry Subsystems by mimicking an IBM 360 remote multileaving
work station.

Implementation.
RJB is initiated by the command rjeinit and is terminated gracefully by the
command rjehalt. While active, RJE runs in the background and requires
no human supervision. It quietly transmits, to the IBM system, jobs that
have been queued by the send(lC) command, and operator requests that
have been entered by the rjestat(lC) command. It receives, from the IBM
system, print and punch data sets and message output. It enters the data
sets into the proper UNIX directory and notifies the appropriate user of their
arrival. It scans the message output to maintain a record on each of its
jobs. It also makes these messages available for public inspection, so that
rjestat(lC), in particular, may extract responses.

Unless otherwise specified, all files and commands describ~d below reside
in directory /usr/rje (first exceptions: send and rjestat).

There are two sources of data to be transmitted by RJB from UNIX to an
IBM System/370. In both cases, the data is organized as files in the
/usr/rje/squeue directory. The first are files named CO* which are created
by the enquiry command rjestat(lC). The second source, containing the
bulk of the ,data, are files named rd- or sq- which have been created by
send and queued by the program rjeqer. On completion of processing send
invokes rjeqer. Rjeqer and rjestat inform the program rjexmit that a file has
been queued via the file joblog. Upon successful transmission of the data
to the IBM machine, rjexmit removes the queued file. As files are transmit­
ted and received, the program rjedisp writes an entry containing the date,
time, file name, logname, and number of records in the file aeetlog, if it
exists. This file can be used for local logging or accounting information,
but is not used elsewhere by RJE. The use of this information is up to the
RJB administrator.

Each time rjeinit is invoked, the joblog file is truncated and recreated from
the contents of the /usr/rje/squeue directory. During this time, rjeinit
prevents simultaneous updating of the joblog file.
Output from the IBM system is classified as either a print data set, a punch
data set, or message output. Print output is converted to an AScn text file,
with standard tabs. Form feeds are suppressed, but the last line of each
page is distinguished by the presence of an extraneous trailing space.
Punch output is converted to pnch(4) format. This classification and both
conversions occur as the output is received. Files are moved or copied into
the appropriate user's directory and assigned the name prnt- or pnch,
respectively, or placed into user directories under user-specified names, or
used as input to programs to be automatically executed, as specified by the
user. This process is driven by the "usr= specification. RJB retains
ownership of these files and permits read-only access to them. Message
output is digested by RJB immediately and is not retained.

- 1 -

RJE(8) RJE(8)

A record is maintained for each job that passes through RJE. Identifying
information is extracted contextually from files transmitted to and received
from the IBM system. This information is stored and us~d by the rjedisp
program for IBM job acknowledgements and delivery of output files.

The IBM system automatically returns an acknowledgement message for
each job it receives. Other status messages are returned in response to
enquiries entered by users. All messages received by RJE are appended to
the resp file. The resp file is automatically truncated when it reaches
70,000 bytes. Each enquiry is preceded and followed by an identification
card image of the form "SUX<process id>". The IBM system will echo
this back as an illegal command. The appearance of process ids in the
response stream permits responses to be passed on to the proper users.

While it is active, RJE occupies at least the three process slots that are
appropriated by rjeinit. These slots are used to run rjexmit, the transmitter,
rjerecv, the receiver, and rjedisp, the dispatcher. These three processes are
connected by pipes. The function of each is as follows:

rjexmit Cycles repetitively, looking for data to transmit to the IBM system.
After transmission, rjexmit passes an event notice to rjedisp. If rjex­
mit encounters a stop file, (created by rjehalt), it exits normally. In
the case of error termination, rjexmit reboots RJE by executing
rjeinit.

rjerecv Cycles repetitively, looking for data returning from the IBM
machine. Upon receipt of data, rjerecv notifies either rjexmit or
rjedisp of the event (transfer information is sometimes passed to
rjexmit). Rjerecv exits normally at the first appropriate moment
when it encounters the file stop, or exits reluctantly when it
encounters a run of errors.

rjedisp Follows up event notices by directing output files, updating records,
and notifying users. - Rjedisp references the system files
/etc/passwd and /ete/utmp to correlate user names, numeric ids,
and terminals. Termination of rjerecv causes rjedisp to exit also.

Rjeinit has the capability of dialing any remote IBM system with the proper
hardware and software configuration.

Most RJE files and directories are protected from unauthorized tampering.
The exception is the spool directory. It is used by send(lC) to create tem­
porary files in the correct file system. Rjeqer and rjestat(lC), the user's
interfaces to RJE, operate in setuid mode to contribute the necessary permis­
sion modes.

Administration.
Some minimal oversight of each RJE subsystem is required. The RJE mail­
box should be inspected and cleaned out periodically. The job directory
should also be checked. The only files placed there are output files whose
destination file systems are out of space. Users should be given a short
period of time (say, a day or two), and then these files should be removed.

The configuration table /usr/rje/lines is 'accessed by all .components of
RJE.Each line of the table (maximum of 8) defines an RJE connection. Its
seven columns may be labeled host, system, directory, prefix, device, peri­
pherals and parameters. These columns are described as follows:

host
The name of a remote IBM computer (e.g., A B C). This string can
be up to 5 characters.

- 2 -

RJE(8)

system

RJE(8)

The name of a UNIX system. This name should be the same as the
system name from uname(I).

directory

prefix

device

This is the directory name of the servicing RJE subsystem (e.g.,
lusr/rjel).

This is the string prefixed (redundantly) to several crucial files and
programs in directory (e.g., rjel, rjel, rje3).

This is the name of the controlling VPM device, with Idev I excised.

peripberals
This field contains information on the logical devices (readers,
printers, punches) used by RJE. Each subfield is separated by:,
and is described as follows:

(1) Number of logical readers.
(2) Number of logical printers.
(3) Number of logical punches.

Note: the number of peripherals specified for an RJE subsystem
must agree with the number of peripherals which have been
described on the remote machine for that line.

parameters
This field contains information on the type of connection to make.
Each subfield is separated by:. Any or all fields may be omitted;
however, the fields are positional. All but trailing delimiters must
be present. For example, in

1200:512:::9-555-1212
subfields 3 and 4 are missing, but the delimiters are present. Each
subfield is defined as follows:

(1) space

(2) size

This subfield specifies the amount of space (S) in blocks
that RJE tries to maintain on file systems it touches. The
default is 0 blocks. Send will not submit jobs and rjeinit
issues a warning when less than I.5S blocks are available;
rjerecv stops accepting output from the host when the capa­
city falls to S blocks; RJE becomes dormant, until conditions
improve. If the space on the file system specified by the
user on the "usr=" card would be depleted to a point
below S, the file will be put in the job subdirectory of the
connection's home directory, rather than in the place that
the user requested.

This subfield specifies the size in blocks of the largest file
that can be accepted from the host without truncation tak­
ing place. The default is no truncation.

(3) badjobs
This subfield specifies what to do with undeliverable return­
ing jobs. If an output file is undeliverable for any reason
other than file system space limitations (e.g., missing or
invalid "usr=" card) and this subfield contains the letter y,
the output will be retained in the job subdirectory of the

- 3 -

RJE(8) RJE(8)

home directory, and login rje is notified. If this subfield
contains an n or has any other value, undeliverable output
will be discarded. The default is n.

(4) console
This subfield specifies the status of the interactive status
terminal for this line. If the subfield contains an i, all con­
sole status facilities are inhibited (e.g., rjestat (1 C) will not
behave like a status terminal). In all cases, the normal
non-interactive uses of rjestat(lC) will continue to function.
The default is y.

(5) dial-up
This subfield contains a telephone number to be used to call
a host machine. The telephone number may contain the
digits 0 thru 9 and the character - which denotes a pause.
If the telephone number is not present, no dialing is
attempted and a leased line is assumed.

Sign-on is controlled by the existence of a signon file in the home direc­
tory. If this file is present, its contents are sent as a sign-on message to the
host system. If this file does not exist, a blank card is sent. Sign-off is
controlled in the same way, except that the signoff file is sent by rjehalt if it
exists. If the signoff file does not exist, a "/.signo8'" card is sent. These
files should be ASCII text and no more than 80 characters.

Send(lC) and rjestat(lC) select an available connection by indexing on the
host field of the configuration table. RIE programs index on the prefix
field. A subordinate directory, sque, exists in /usr/rje for use by rjedisp
and shqer programs. This directory holds those output files that have been
designated as standard input to some executable file. This designation is
done via the "usr= ••• " specification. Rjedisp places the output files here
and updates the file log to specify the order of execution, arguments to be
passed, etc. Shqer executes the appropriate files.

All RIE programs are shared text; therefore, if more than one RIE is to be
run on a given UNIX system, simply link (via In) RJE2 program names to
RIE names in /usr.

SEE ALSO
cp(l), rjestat(lC), send(lC), pnch(4), un53(7), vpm(7), mk(8).
UNIX System User's Guide.
UNIX Remote Job Entry Administrator's Guide in the UNIX System
Administrator's Guide.
Setting up UNIX in the UNIX System Administrator's Guide.

DIAGNOSTICS
Rjeinit provides brief error messages describing obstacles encountered while
bringing up RIE. They can best be understood in the context of the RJE
source code. The most frequently occurring one is "cannot open
/dev/vpm?". This may occur if the VPM script has not been started, or if
another process already has the VPM device open.

Once RJE has been started, users should assist in monitoring its perfor­
mance, and should notify operations personnel of any perceived need for
remedial action. Rjestat(lC) will aid in diagnosing the current state of RJE.
It can detect, with some reliability, when the far end of the communica­
tions line has gone dead, and will report in this case that the host computer
is not responding to RIE.

- 4-

ROM BOOT(8) (PDP-ll only) ROM BOOT(8)

NAME
romboot - special ROM bootstrap loaders

DESCRIPTION
To bootstrap programs from various storage media, standard DEC ROM
bootstrap loaders are often used. However, such standard loaders may not
be compatible with UNIX bootstrap programs or may not exist on a particu­
lar system. Thus, special bootstrap loaders were designed that may be cut
into a programmable ROM (M792 read-only-memory) or manually toggled
into memory.

Each program is position-independent, that is, it may be located anywhere
in memory. Normally, it is loaded into high core to avoid being overwrit­
ten. Each reads one block from drive 0 into memory starting at address 0
and then jumps to address O. To minimize the size, each assumes that a
system INIT was generated prior to execution. Also, the address of one of
the device registers is used to set the byte count register or word count
register. In each case, this will read in at least 256 words, which is the
maximum size of bootstrap programs.

On disk devices, block 0 is read; on tape devices, one block from the
current position. Thus, the tape should be positioned at the load point
(endzone if DECtape) prior to booting. Also, the standard DEC bootstrap
loader for magnetic tape may be emulated by positioning the tape at the
load point and executing the bootstrap loader twice.

By convention, on PDP 11/45 systems, address 773 000 is the start of a
tape bootstrap loader, and 773 020 the start of a disk bootstrap loader. The
actual loaders used depend on the particular hardware configuration.

SEE ALSO
70boot(8), unixboot(8).

CODE
Tell - DECtape

012700 mov $tcba,rO
177346
010040 mov rO,-(rO) fuse tc addr for wc
012740 mov $3,-(rO) /read bn forward
000003
105710 I: tstb (rO) /wait for ready
002376 bge Ib
112710 movb $5,(rO) /read forward
000005
105710 I: tstb (rO) /wait for ready
002376 bge Ib
005007 clr pc /transfer to zero

TUIO - Magnetic Tape
012700 mov $mtcma,rO
172526
010040 mov rO,-(rO) fuse mt addr for bc
012740 mov $60003,-(rO) fread, 800 bpi, 9 track
060003
105710 1 : tstb (rO) /wait for ready
002376 bge Ib
005007 clr pc /transfer to zero

- 1 -

ROM BOOT(8) (PDP-ll only) ROM BOOT(8)

TUI6 - Magnetie Tape
012700 mov Smtwe,rO
172442
012760 mov S1300,30(rO) /set 800 bpi, PDP format
001300
000030
010010 mov rO,(rO) fuse mt addr for we
012740 mov S71,-(rO) /read
000071
105710 1 : tstb (rO) /wait for ready
002376 bge Ib
005007 elr pe /transfer to zero

RK05 - Disk Paek
012700 mov Srkda,rO
177412
005040 elr -(rO)
010040 mov rO,-(rO) fuse rk addr for we
012740 mov S5,-(rO) /read
000005
105710 1 : tstb (rO) /wait for ready
002376 bge Ib
005007 elr pe /transfer to zero

RP03 - Disk Paek
012700 mov Srpmr,rO
176726
005040 elr -(rO)
005040 elr -(rO)
005040 elr -(rO)
010040 mov rO,-(rO) fuse rp addr for we
012740 mov S5,-(rO) /read
000005
105710 1 : tstb (rO) /wait for ready
002376 bge Ib
005007 elr pe /transfer to zero

RP04 - Disk Paek
012700 mov Srpesl,rO
176700
012720 mov S21,(rO)+ fread-in preset
000021
012760 mov SI0000,30(rO) /set to 16-bits/word
010000
000030
010010 mov rO,(rO) fuse rp addr for we
012740 mov S71,-(rO) /read
000071
105710 1 : tstb (rO) /wait for ready
002376 bge Ib
005007 elr pe /transfer to zero

- 2 -

TAPE BOOT(8) (PDP-ll only) TAPE BOOT(8)

NAME
tapeboot - magnetic tape bootstrap program

DESClUPTION

FILES

Tapeboot handles the problem of booting a PDP-ll/45 or PDP-ll/10 from a
TUIO or TUI6 tape transport. In both cases, the tape density is 800 bpi.
The complete program fits in one 512 byte block, but is duplicated so that
one copy resides in block 0 and another in block I. Thus, both the stan­
dard DEC ROM bootstrap loaders and the special ROM loaders will work.
For example, to create a boot tape, execute:

cat /stand/tapeboot program-la-boot > /dev /mtO

To boot from magnetic tape, read the first record of the tape into memory
starting at address 0 and then jump to address 0, using a special ROM or
some manual procedure (toggle in the program). The bootstrap program
relocates itself to high core as specified when assembled (typically 24K
words, maximum of 28K). It then determines whether to use the TUIO
code or the TUI6 code. The TUIO is used if the TMll command register
(772 522) exists and the function (bits <3:1» is non-zero, otherwise the
TUI6 is used. It then types on the console UNIX tape boot loader, rewinds
the tape, reads two blocks to skip past itself on the tape, clears memory,
and reads the rest of the tape, to the tape mark, into memory starting at
address O. If address 0 contains 000 407, a UNIX a.out program is assumed
and the first 8 words are stripped off by relocating the loaded program
toward address O. Finally, a jump to address 0 is done by executing
jsr pc,.so.
If there is an error while reading the tape, the bootstrap program will type
tape error and attempt to read the record again.

/stand/tapeboot
/usr/src/stand

SEE ALSO
unixboot(8).

TUlO/TUI6 magtape bootstrap
source directory

- 1 -

TROUBLE(8) TROUBLE(8)

NAME
trouble - trouble reporting system

DESCRIPTION
The first line of the /usr/lib/trouble/trsh file must have the correct com­
pany code for your site; a local modification is necessary. The trouble com­
mand will not run until this change is made.

The official company codes are as follows:

at AT&T
bl Bell Labs
cb Cincinnati Bell
cd C&P of Washington
em C&P of Maryland
cv C&P of Virginia
cw C&P of West Virginia
lb Illinois Bell
11 AT&T Long Lines
m b Michigan Bell
ms Mountain States Telephone
nb Indiana Bell
ne New England Telephone
nj New Jersey Bell
nv Nevada Bell
nw Northwestern Bell
ny New York Telephone
ob Ohio Bell
pa Bell of Pennsylvania
pn Pacific Northwest Bell
pt Pacific Telephone & Telegraph
sb Southern Bell
sc South Central Bell
sn Southern New England Telephone
sw Southwestern Bell
we Western Electric
wt Wisconsin Telephone

All trouble reports are archived in /usr/lib/trouble/tr.a; this file should be
checked weekly to ensure that it does not get too large. If it gets too large,
it should be moved to /usr/lib/trouble/otr.a; after a week or so, the old
archive can be thrown away.

The trouble login is intended to be used only for administering the trouble
system. If uucp cannot deliver a trouble report, mail(l) will be returned to
the trouble login. Any trouble reports not delivered may be retransmitted
by using the trxmit command with the trouble report numbers as argu­
ments. (Hence, the reason for saving the archive for a while.)

The /usr/lib/trouble/names file can be expanded to include the names of
additional people at your site.

The per-line format of this file is as follows:

letter-IDs(3-6) location phone name(with appropriate blanks)

The above fields are separated by blanks and/or tabs. When the letter-ID is
identified, the name, location and phone will be taken from this file (pro­
vided they have legal formats). Note that the name field is the only one
that can have blanks.

- 1 -

TROUBLE(8)

FILES
JusrJlibJtroubleJtr.a
J usr JlibJtrou bleJinstruct
JusrJlibJtroubleJtrsh
Jusr JlibJtrou bleJtrxmit
JusrJlibJtroubleJnames

SEE ALSO
trouble(l), uucp(lC).

archived trouble reports
instructions
trouble report shell
re-transmission shell
letter ID data base

- 2 -

TROUBLE(8)

UNIX BOOT (8) (PDP-ll o",ly) UNIX BOOT (8)

NAME
unixboot - UNIX startup and boot procedures

DESCRIPTION

FILES

How to start UNIX. UNIX is started by placing it in core at location zero and
transferring to zero. Since the system is not reenterable, it is necessary to
read it in from disk or tape. See diskboot(8) or tapeboot(8).

The switches. On systems with console switches, the switches are examined
60 times per second, and the contents of the address specified by the
switches are displayed in the display register. If the switch address is even,
the address is interpreted in kernel (system) space; if odd, the rounded­
down address is interpreted in the current user space.

Init. The operating system invokes init(lM) as process number 1. It
comes up conventionally in single-user mode.

/unix UNIX code

SEE ALSO
init(lM), 70boot(8), diskboot(8), romboot(8), tapeboot(8).

- 1 -

