
UNIX PROGRAMMER'S MANUAL

Third Edition.

1<. Thompson

D. M. Ritchie

February, 1973

Copyright @ 1 972
Bell Telephone Laboratories, Inc.

No part of this document may be reproduced~
or distributed outside: the Laboratori.es, without

the written permission of Bell Telephone Laboratories.

PREFACE
to the Third Edition

In the 'months since the last appearance of this manual, many
Changes have occurred both in the system itself and in the way it
is used.

Perhaps most obviously, there have been additions, deletions, and
rrodifications to the system and its software. It is these,
changes, of course, that caused the appearance of this revised
manual.

Second, the number of people spending an appreciable amount of
time writing UNIX software has increased. Credit is due to
L. L. Cherry, M. D. McIlroy, L. E. MCMahon, R. MorriS,
J. F. Ossanna, and E. N. Pinson for their contributions.

Finally, the number of UNIX installations has grown to 16, with
more expected. None of these has exactly the same complement of
hardware or software. Therefore, at an¥ particular installation,
it is quite possible that this manual will give inappropriate
informa tion.

In- particular, any system which.!!.!!.! .! fl2E-ll/-'.Q processor ill!
!!2.!: include'.!!! ~ software described herein, .!!2!: will the
software behave ~ .!!!!!! way,.' The second, or even the first,
edition of this manual is likely to be more appropriate.

Besides additions, deletions, and modifications to the writeups
in each section, this manual differs from its predecessors in two
ways: all the commands used for system maintenance and not in
tended for normal users have beenrnoved to a new section VIII;
and there is a new "How to Get Started" chapter that gives some
elementary facts and many pOinters to other sections.

- ii -

INTRODUCTION TO THIS MANUAL

This manual gives descriptions of the 'publicly available features
of UNIX. It provides neither a general overview (see "The UNIX
Time-sharing system" for that) nor details of the implementation
of the system (which remain to be disclosed).

Within the area it surveys, this manual attempts to be as com
plete and timely as possible. A conscious decision was made to
describe each program in exactly the state it was in at the time
its manual section was prepared. In particular, the desire to
describe something as it should, be, not as it is, was resisted.
Inevitably, this means that many sections will soon be out of
date. (The rate 'of change of the system is so great that a
dismayingly large number of early sections had to be modified
while. the rest were being written.. The unbounded effort required
to stay up-tO-date is best indicated by the fact that several of
the programs described were written specifically to aid in
preparation of this manuall)

This manual is divided into eight sections:

I.
II.
III.
IV.
V.
VI.
VII.
VIII.

Commands
System calls
Subroutines
Special files
File formats
User-maintained programs
Miscellaneous
Maintenance

Commands are programs intended to be invoked directly by the
user, in contradistinction to subroutines, which are intended to
be called by the user's programs. Commands generally reside in
directory /bin (for E.!naryprograms). This directory is searched
automatically by the command line interpreter. Some programs
classified as commands are located elsewhere; this fact is indi
cated in the appropriate sections.

System calls are entries into the UNIX supervisor. .n a,sembly
language, they are coded -with the use of the opcode sys, a
S¥nonym for the·trap instruction.

A small assortment of subroutines is available; they are
described in section III •. The binary form of most of them is
kept in the system library /lib/liba.a.

The special files section IV discusses the characteristics of
each system "file" which actually refers to an.I/O device.
Unlike previous editions, the names in this section refer to the
DEC device names for the hardware, ~nstead of the names of the
special files themselves.

iii -

The file formats section V documents the structure of particular
kinds of files; for example, the form of the output of the loader
and assembler is given. Excluded are files used by only one com
mand, for example the assembler's intermediate files.

User-maintained programs (section VI) are not considered part of
the UNIX system, and the prinCipal reason for listing them is to
indicate their existence without necessarily giving a complete
description. The author should be consulted for information.

The miscellaneous section (VII) gathers odds and ends.

Section VIII discusses commands which are not intended for ~se by
the ordinary user, in some cases because they disclose informa
tion in which he is presumably not interested, and in others
because they perform privileged functions.

Each section conSists o'f a number ,of independent entries of a
page· or so each. The name of the entry is in the upper corners
of its pages, its preparation date in the upper middle. Entries
within each section are alphabetized. The page numbers of each
entry start at 1. (The earlier hope for frequent, partial up
dates of the manual is clearly in vain, but in any event it is
not feasible to maintain consecutive page numbering in a document
like this.)

All entries have a common format.

The n!m! section repeats the entry name and gives a very
short description o,f its, purpose.

The synopSiS summarizes the use of the program being
described. A few conventions are used, particularly in the
Commands section:

Underlined words are considered literals, and are typed
just as they appear.

Square brackets ([]) around an argument indicate that the
argument is optional. 'When an argument is given as
" " name , it always refers to a file name.

Ellipses " ••• " are used to show that the previous
argument-prototype may be repeated.

A final convention is used by the commands themselves.
An argument beginning with a minus s'ign "-" is often tak
en to mean some sort of flag argument even if it appears
in a position where a file name could appear. Therefore,

" " it is unwise to have files whose names begin with -.

The description section discusses in detail the subject at
hand.

The files section gives the names of files which are built

- iv -

into the program.

A ~ !!!Qsection gives pOinters to related information.

A diagnostics section discusses the diagnostics that may be
produced. This section tends to be as terse as the diagnos
tics themselves.

The bugs section gives known bugs and sometimes deficien
cies. Occasionally also the suggested fix is described.

Previous edition of this manual had an owner section, which has
been dropped from this edition because the "owners" of many
routines became fairly hard to pin down. The major contributors
to UNIX, (cast in order of appearance) together with their login
names and most notable contributions, are

ken K. Thompson . (UNIX" many commands)
dmr D. M. Ritchie (many commands, as, ld, C)
jfo J. F. Ossanna (roff, nroff)
doug M. D. McIlroy (tmg, m6)
rhm R. Morris (dc, much of library)
1em L. E. McMahon (cref)
llc L. L. Cherry, (form, fed, sal1oc)
csr C'. s. Roberts (tss)
enp E. N. Pinson (proof)

At the beginning of this document is a table of contents, organ
Ized by section and alphabetically within each section. There is
also a permuted index derived from the table of contents. Within
each index entrY, the title of the writ,eup to which it refers is
followed by the appropriatesect1on number in parentheses. This
fact is important because there is considerable name duplication
among the sections·, arising principally from commands which exist
only to exercise a particular system call.

This manual was prepared using the UNIX text editor ed and the
formatting program ~.

The assistance of R. ,Morris is gratefully acknowledged.

HOW TO GET STARTED

This section provides the basic information you need to get.
started on UNIX: how to log in and log out, how to communicate·
through your terminal, and how to run a program.

Logging in

You must call UNIX from an appropriate terminal. UNIX supports
ASCII terminals typified by the TTY 37, the GE Terminet 300, the
Memorex 1240, and various graphical terminals on the one hand,
and IBM 2741-type terminals on the other.

To use UNIX, you must have a valid UNIX user name, which may be
obtained, together with the telephone number, from the system
administrators.

The same telephone number serves terminals operating at all the
standa·rd speeds.· After a data connection is established, the
login procedure depends on what kind of terminal you are using.

I!X 37 terminal

UNIX will type out "login: "; you respond with your user
name. From the TTY 37 terminal, and any other which has the
"new-line" function (combined carriage .. return and linefeed),
term!nate e~ch line you type with the new line key (~
the return key).

lQ,Q-baud terminals

Such terminals include the GE Terminet 300, most display
terminals, Execuport,. TI, and certain Anderson-Jacobson te·r
minals. These terminals generally have a speed switch which
should be set at "300" (or "30" for 30 characters per
second) and a half/full duplex switch which should be set at
full-duplex. (Note tha·t this switch will often have to be
changed since MH-TSS requires half-duplex). When a connec
tion with UNIX is established, a few garbage characters are
~yped 1the login message at the wrong.speed)~ Depress the
break key; ·this is a speed-independent signal" to UNIX .. that

a 300~baud terminal is in use. UNIX will type login: at
the correct speed; you type your user name, followed by the
" " " .." " .. return '~ey. Henceforth, the return, new line , or
linefeed keys will give :ex8ctly the same re.sults. Each

line must be terminated with one of these keys; no one is
listening to you until the return is received.

Selectric terminals

From an IBM 2741 or the Anderson-Jacobson Selectric termi
nal, no message will apeear. ~fter the ,data connection is
!stablisbed, press the return key. UNIX should type

login: as described above. If the greeting does not

- vi -

appear after a few seconds, unlock the keyboard by switching
the terminal to local and back to remote, and type "return".
If necessary, hang up and try again; something has gone
wrong.

For all these terminals, it is important that you type your name
in lower·case if possible; if you type upper case letters, UNIX
will assume that your terminal cannot generate lower-case letters
and will translate all subsequent upper-case letters to lower
case.

The evidence that you have successfully logged in is that a UNIX
"ev" (program, the Shell, will type a 10 to you." The Shell is

described below under How to run a program •

For more information, consult getty(VII) which discusses the
login sequence in more detail, and dC(IV~, which discusses type
writer I/O.

Logging 2Y!

There are three ways to log out:

You can simply hang up the phone. Hanging up is safe if you
are at command leVll. that is, if the Shell has just typed
its prompt signal % • It is also safe if you are in in
teractive system programs, for example the editor. It is
unsafe if you are executing a non-interactive program, or
one of your own programs., which either does no·tread the
typewriter or ignores the end-of-file indications which will

,result from hanging up •. The reason is that UNIX, unlike
most systems, does not terminate a program simply because it
has been hung-up upon.

You can log out by tyeing an end-of-file indication (EOT
character, control "d) to the Shell. The Shell will ter
minate and the "login: " message will appear again.

You can also log· in directly as another user by giving a·
login command (login (I».

~ ~ communicate through your terminal

When you type to UNIX, a gnome deep in the system is· gathering
.your characters and saving them in a secret place. The charac
ters will not be given to a program until you type a return, as
described above in Logging !n.

UNIX·typewriter I/O is full-duplex (except for Selectric termi
nals). It has full read-ahead, which means that you can type at
any time, even while a program is typing at you. Of course, if
~u type during output·, the output will ·have the input characters
interSpersed. However, whatever you type will be saved up and
interpreted in correct sequence.

There is a limit to the amount of read-ahead, but it is generous

vii"-

and not likely to be exceeded unless the system is in trouble •
. When the read-ahead limit is exceeded. ~he system stops echoing
input characters, am starts echoing , no matter what you .
typed.·. The las.t character which was echoed correctly will be
received correctly by the program to which you were talking; sub
sequent characters have been thrown away.

. " " On a typewri ter i'nput line, the character @ kills all the char-
acters typed before it, so typing mistakes can be repaired on a
single line. Also, the character "," erases the last character
typed. Successive uses o'f "," erase characters back to, but not

" " " " beyond, the beginning of the line. @ and II can be transmit-
ted to a prog.aW by preceding them with "\ft. (so, to erase "\",
}'Ou need two # s). .

ft " (" ") The ASCII delete a.k.a.·· rubout character is not passed to
programs but instead generates an interrupt signal. This signal
generally causes whatever program you are running to terminate.
It is typically used to stop a long printout that you don't want.
However, programs can arrange either to ignore this signal alto
gether, or to be notified when it happens (instead of being ter
minated). The editor, for example, catches interrupts and stops
What. it is doing, instead of terminating, so that an interrupt
can be used to halt an editor printout without losing the file
being edited.

The quit signal is generated by typinq the ASCII FS character.
It not only c;:auses a running program to terminate but also gen
erates a file with the core image of the terminated process.
Quit is useful for debugging.

Besides adapting· to the speed of the terminal,' UNIX tries to ·be
intelligent about whether you have a terminal with the "new line"
function or whether it must be simulated with carriage-return and
line-feed. In the latter case all input carriage returns are
turned to new-line characters l the standard line delimiter) and
both a carriage return 'and a line feed are echoed to the termi
nal. If you get into the wrong mode, the stty command (I) will
rescue you.

Tab characters are used freely in UNIX source programs. If your
terminal does ,not have the tab functlon, you can arrange to have
them turned into spaces during output, and echoed as 'spaces dur
ing'input. The system assumes that tabs are set every eight
columns. Again, the stty command (I) will set'or reset this
mode. Also,there is a file which, if printed on TTY 37 or Ter-
miNet 300 terminals, will set the tab stops correctly
(tabs (VII)) •

Section dc(IV) discusses typewriter I/O more fully. Section
kl(IV) discusses the console typewriter.

~ £2 ~ ~'program; 1h! Shell

When you have successfully logged into UNIX, a program called the
Shell is listening to your terminal. The Shell reads typed-in

- viii -

lines, splits them up into a command name and arguments, and exe
cutes the command. A command is simply an executable program.
The Shell looKs first in your current directory (see next sec
tion) for a program with the .givenname, and if none is there,
then in a system directory. There is nothing special about
s¥stem-provided commands except that they are kept in a directory
Where the Shell can find them.

The command name is always the first word on an input. line; it
and its arguments are separated from one another by spaces.

When a program terminates,the Shell will ordinarily regain con
trol and type a "%" at you to indicate that it is ready for
anothe r command.

The Shell has many other capabilities, which are described in
detail in section sh(l).

The current directory

UNIX has a file system arranged in a hierarchy of directories.
When the system administrator gave you a user name, he also
created a directory for you (ordinarily with the same name as
your user name). 'When you log in, any file name you type is by
default in this directory. Since you are the owner of this
directory, you have full permissions to read, write, alter,. or
destroy its contents. Permissions to have your will with other
directories and files will have been·granted·or denied- to you by
their owners. As a matter of observed fact,· few UNIX users pro
tect their files from destruction, let alone perusal, by other
users.

To change the current directory (but not the set of permissions
you were endowed with at login) use chdir(I).

~ names

To' reference files not in the current directory, you must use a
path name.

"I" Full path names begin with , the name of the root directory of
the whole file system. After the slash comes the name of each
directory containing the next sub-directory (followed by a "I" l
until finally the file name is reached. E.i.: lusr/lem/filex

. refers to file "filex"1n directory "lem";· lem" is itself a
sub-directory of "usr"; "usr" springs directly from the root
directory.

If your current directory has subdirectories, the path names of
files therein begin with the name of the subdirectory (no pre-
fixed "I"). .

Without important exception, a path name may be used anywhere a
file name is required.

Important commands which modify the contents of files are Cp(I),

- ix -

rov(I), and rm (I), which re specti ve ly copy, move (i.e. rename) and
remove files. To find out the status of files or directories,
use 1s(1) and stat(I). See mkdir(I) for making directories;
rmdir(I) for dest+oying them.

For a 'fuller discUssion of the file system, see MM-71-1273-4. It
may also be useful to glance through section II of this manual,
which discusses system calls, even if you don't intend to deal
with the system at the assembly-language level.

Writing ~ program

To enter the text of a source program into a UNIX file, use
ed (I) • The three princ ipal languages in UNIX are assembly
language (see as(I»,Fortran (see fcCI», and C ,(see cC(I».
After the program text has been ,entered through the editor and
written on a file, you can give the file to the appropriate
language processor as an argument. The output of the language
ilrocessor will be left on a file in the current directory named
a.out" • (If the output is precious, use mv to· move it to a less

exposed name soon.) If you wrote in assembly language, you will
probably need to load the program with library subroutines; see
Id(I). The other two language processors call the loader au
tomatically.

When you have finally gone through this entire process without
provoking any diagnostics, the resulting program can be run by
giving its name to the Shell in response to the "%" prompt.

The next command you will need is db(I). As a debugger, db is
better than average for assembly-language programs,marginally
useful for C programs (when completed,cdb{I) will be a boon),
and virtually useless for .Fortran.

Your programs can receive' arguments from the command line just as
&yst'em programs do. For assembly language programs, see
exec(II) ..

~ processing

Almost.all text is entered through the editor •. The commands most
often used to write text on a terminal are: cat(I), 'pr(I),
roff(I), or nroff(I).

The cat command simply dumps ASCII text on the terminal, with no
processing at all. The pr command paginates the text and sup
plies headings. The nroff command is an elaborate text format
tinq program, and requires careful forethought in entering both
the text and the formatting commands into the input file. The
roff command is a somewhat less elaborate formatting program, and
require~ somewhat less forethought.

Surprises

Certain' commands provide inter-user communication. Even if you
do not plan to use them, it would be well to learn something

- x -

about them, because someone else may aim them at you.

To communic"ate with another user currently logged in, write(I) is
used. To leave a message. the presenc.e of which will be announced
to another user when he next logs in, mail(I) is used. The
write-ups in the manual also suggest how to respond to the two
commands if you are a target.

When you log in, a message-of-the-day may greet you before the
first "%".

- xi -

TABLE OF CONTENTS

I. COMMANDS

• • • ••••••••••••••••••••••••••
ar ••••••••••••••••••••••••••
as
bas
cat
cc

•
•
•

•
cdb -•••••••••••••••••••••••••
chdir
chmod
chown

• · -
• ••••••••••••••••••••••

Q'Ilp •••••••••••••••••••••••••
cp ••••••••••••••••••••••••••
cref ••••••••••••••••••••••••
crypt •••••••••••••••••••••••
date ••••••••••••••••••••••••
db ••••••••••••••••••••••••••
dc ••••••••••••••••••••••••••
df ••••••••••••••••••••••••••
dsw •••••••••••••••••••••••••
du ••••••••••••••••••••••••••
echo ••••••••••••••••••••••••
ai • •••••••••••••••••••••••••
exit ••••••••••••••••••••••••
factor ••••••••••••••••••••••
fc ••••••••••••••••••••••••••
fed •••••••••••••••••••••••••
form ••••••••••••••••••••••••
forml • ••••••••••••••••••••••
~ot() ••••••••••••••••••••••••
h.y'phen •••••••••••••••.•••••••
ti ••••••••••••••••••••••••••
ld ••••••••••••••••••••••••••
In • •••••••••••••••••••••••••
login ••••••••• ~ •••••••••••••
ls ••••••••••••••••••••••••••
n15 ••••••••••••••••••••••••••
mail ••••••••••••••••••••••••
man •••••••••••••••••••••••••
mesg ~ •••••••••••••••••••••••
mkdir ••••••••••••••••••••••• -
mt ••••••••••••••••••••••••••
rnv ••••••••••••••••••••••••••
run ••••••••••••••••••••••••••
nroff •••••••••••••••••••••••
ad. ••••••••••••••••••••••••••
cpr •••••••••••••••••••••••••
0'.1 ••••••••••••••••••••••••••
passwd ••••••••••••••••••••••
pr ••••••••••••••••••••••••••
proof •••••••••••••••••••••••
reloc •••••••••••••••••••••••

place label
archive (combine) files
assembler
BASIC dialect
concatenate (or print) files
compileC program
C debugger
change working directory
change access mode of files
change owner of files
compare file contents
copy file
cross· reference table
encrypt, decrypt a file
get date and time of day
symbolic debugger
desk calculator
find free disk space
delete files interactively
find disk usage
print command arguments
text editor
-end .command sequencE!
factor a number
compile Fortran program
'form letter editor
generate form letter
generate form letters
command transfer
find hyphenated words
conditional commana
link editor (loader)
link to file
log on to system
list content~ of directory
macroprocessor
send mail to another user
run off manual section
permit or deny'messages
create directory
save, restore files on magtape
move or rename file
print namelist
format text for printing
octal dump of file
print file off-line
page overlay file print
set login password
print file with headings
compare-text files
relocate object files

- xii -

rew •••••••••••••••••••••••••
rm ••••••••••••••••••••••••••
rmdir •••••••••••••••••••••••
roff ••••••••••••••••••••••••
sh ••••••• ' ••••••••••••.•••••••
size ••••••••••••••••••••••••
ano •••••••••••••••••••••••••
sort ••••••••••••••••••••••••
speak •••••••••••••••••••••••
split •••••••••••••••••••••••
stat •••• ~ •••••••••••••••••••
strip •••••••••••••••••••••••
stty ••••••••••••••••••••••••
S\1m •••••••••••••••••••••••••

tap •••••••••••••••••••••••••
time ••••••••••••••••••••••••
tmg •••••••••••••••••••••••••
tss •••••••••••••••••••••••••
tty •••••••••••••••••••••••••
type ••••••••••••••••••••••••
typo ••••••••••••••••••••••••
\.l'l ••••••••••••••••••••••••••
uniq ••••••••••••••••••••••••
vs ••••••••••••••••••••••••••
~
w'tlo. • ••••••••••••••••••••••••
write •••••••••••••••••••••••

II. SYSTEM CALLS

boot ••••••••••••••••••••••••
break •••••••••••••••••••••••
cemt ••••••••••••••••••••••••
chdir •••••••••••••••••••••••
chmod •••••••••••••••••••••••
chown •••••••••••••••••••••••
close •••••••••••••••••••••••
creat •••••••••••••••••••••••
csw •••••••••••••••••••••••••
dup ••• , ••••••••••••••••••••• '.'
exec ••••••••••••••••••••••••
exit ••••••••••••••••••••••••
fork ••••••••••••••••••••••••
fpe •••••••••••••••••••••••••
fstat •••••••••••••••••••••••
qetuid ••••••••••••••••••••••
qtty ••••••••••••••• ' •••••••••
ilqins ••••••••••••••••••••••
intr ••••••••••••••••••••••••
kill ••••••••••••••••••••••••
link. ••••••••••••••••••••••••
makdir ••••••••••••••••••••••
mdate •••••••••••••••••••••••
nount •••••••••••••••••••••••
nice ••••••••••••••••••••••••

rewind DECtape
remove (delete) file
remove (delete) directory
format text for, printing
command interpreter
get executable program size
compile Snobol program
sort ASCII file
send words to voice synthesizer
brea~ a file ,into pieces
get file status
remove symbols, relocation bits
set typewriter modes
sum file
save, restore files on DECtape
get time information
compile tmgl program
communicate with MH-TSS (GCOS)
find name of terminal.
print file page-by-page
find typographic errors
find undefined symbols
find duplicate.lines in a file
generate voice synthesizer phonemes
get (English) word count
who is on the system
write to another user

,reboot the system
set program b~eak
catch EMT traps
change working directory
change mode of file
change owner of file
close open file
create file
read the console switches
duplicate an open f~le
execute program file
terminate execution
create new process
catch floating exception errors
status of open file
get user ID'
get typewriter mode,
catch illegal instruction trap
catch or inhibit interrupts
destroy process
link to file
create directory
set date modified of file
mount file system
set low-priority status

xiii -

• ••••••••••••••••••••••• · ... '
• •••••••••••••••••••••••
•
••••••••••••••••••••••••

open
pipe
quit
read
rele
seek • •••••••••••••••••••••••
setuid ••••••••••••••••••••••
.sleep •••••••••••••••••••••••
sta t ••••••••••••••••••••••••
~ime •••••••••••••••••••••••
stty ••••••••••••••••••••••••
sync ••••••••••••••••••••••••
time ••••••••••••••••••••••••
times •••••••••••••••••••••••
\lnount ••••••••••••••••••••••
tJ:llink ••••••••••••••••••••••
wait ••••••••••••••••••••••••
write •

III. SUBROUTINES

• •••••••••••••••••••••••
••••••••••••••••••••••••

atan
atof
atoi ••••••••••••••••••••••••
oompar ••••••••••••••••••••••
crypt •••••••••••••••••••••••
ctime •••••••••••••••••••••••
ddsput ••••••••••••••••••••••
ecyt ••••••••••••••••.••••••••
expo •••••••••••••••••••••••••
ftoa ••••••••••••••••••••••••
ftoo .~ ••••••••.••••••••••••••
qerts •••••••••••••••••••••••
getc .•••••••••••••••••.•••••••
11ypot ••••••••••••••••••••••• -
~oa ••••••••••••••••••••••••
loq •••••••••••••••••••••••••
mesq ••••••••••••••••••••••••
nlist •••••••••••••••••••••••
pow ••••••••••••.•••••••••••••
ptime •••••••••••••••••••••••
putc ••••••••••••••••••••••••
qsort •••••••••.••••••••••••••
rand ••••••••••••••••••••••••
salloc ••••••••••••••••••••••
sin •••••••••••••••••••••••••
SCIrt ••••••••••••••••••••••••
switch ••••••••••••••••••••••
ttyn ••••••••••••••••••••••••

IV. SPECIAL FILES

dc
dn

••••••••••••••••••••••••••
••••••••••••••••••••••••••

open file
open inter process ehannel
'inhibit quits
re·ad file
release processor
move read'or write pointer
set· user ID
delay execution
qet file status
set system time
set mode of typewriter
assure synchronization
get time of year
qet execution times
dismount file system
remove (delete) file
wait for process
write file

arctangent
convert ASCII'to floatinq
convert ASCII to integer
string compare for -sort
encrypt accordinq to a keyword
convert time to ASCII
display character on picturephone
edited output conversion
exponential function
convert floatinq to ASCII
convert floatinq to octal
communicate with GCOS
qet character
compute hypotenuse
conv~rt integer to ASCII
loqarithm base e
print strinq on typewriter
read name list
take powers of numbers
print time
write character or word
quicker sort
pseudo random number qenerator
storage allocator
sine, cosine
square root
transfer depending on value
find teletype name

remote typewriter
801 ACU

- xiv -

ci~ ••••••••••••••••••••••••••
~
rnem •••••••••••••••••••••••••
pc
rf
rk

••••••••••••••••••••••••••
••••••••••••••••••••••••••
••••••••••••••••••••••••••

t:c ••••••••••••••••••••••••••
tin •••••••••••••••••••••••••••
vt: ••••••••••••••••••••••••••

v. FILE FORMATS

a.out: •••••••••••••••••••••••
archive •••••••••••••••••••••
oore ' ••••••••••••••••••••••••
direct:ory •••••••••••••••••••
file system •••••••••••••••••
passwd ••••••••••••••••••••••
ta~ •••••••••••••••••••••••••
utm~ ••••••••••••••••••••••••
wtm~ ••••••••••••••••••••••••

VI • USER MAI.NTAINED PROGRAMS

201 Dataphone
console typewriter
core memory
punched paper tape
RF disk
RI< disk
DECta~
9-track magtape
st:orage-tube display

assembler and loader output
archive file
core image ,file
directory format
file system format
password file
DECtape and magt:ape format
logged-in user information
accountinq files

be: •••••••••••••••••••••••••• compile B program
bj •••••••••••••••••••••••••• blackjack
ptx ••••••••••••••••••••••••• permuted index
yacc •••••••••••••••••••••••• yet another compiler-compiler

VII. MISCELLANEOUS

ascii •••••••••••••••••••••••
d~d_ •••••••••••••••••••••••••
getty •••••••••••••••••••••••
glob •••••••••••••••••••••••.•
greek •••••••••••••••••••••••
ini t ••••••••••••••••••••••• '.
rnsh •• ' •••••••••••••••••••••••
tabs ••••••••••••••• ~ ••••••••
vs~ •••••••••••••••••••••••••

VIII. SYSTEM MAINTAINANCE

20boot ••••••••••••••••••••••
acct ••••••••••••••••••••••••
bproc •••••••••••••••••••••••
Check •••••••••••••••••••••••
dhk •••••••••••••••••••••••••
clr1 ••••••••••••••••••••••••
dcheck ••••••••••••••••••••••
dli •••••••••••••••••••••••••
istat •••••••••••••••••••••••

map of ASCII
spawn dat:&phone daemon
adapt to typewriter
arqument expander"
extended TTY 37 typebox map
in~tializer process
mini Shell
set tab stops on typewriter
voice synthesizer phonemes

reboot 11/20 system
get connect-time accounting
boot procedure
check cons iste'ncy of file system
check all file systems
clear file~s i-node
verify directory hierarchy
load DEC binary paper tapes
file status by i-number

- xv -

kill ••••••••••••••••••••••••
nount •••••••••••••••••••••••
ps ••••••••••••••••••••••••••
salv ••••••••••••••••••••••••
enJ ••••••••••••••••••••••••••

swtmp •••••••••••••••••••••••
tm ••••••••••••••••••••••••••
umount ••••••••••••••••••••••

terminate a process
mount removable file system
get process status
repair damaged file system
become super-user
truneate accounting files
qet system time information
dismount removable file system

- xvi -

INDEX

20boot(VIII): reboot
dp(IV) :

greek(VII): extended TTY
dn (IV) :
tm(IV):

chmod (I): change
crypt(III): encrypt

wtrnp (V) :
acct(VIII): get connect-time

dn(IV): 801
getty(VII):

chk(VIII): check
salloc(III): storage

dup(II): duplicate
yacc (VI): yet

mail(I): send mail to
write(I): write to

are I) :
archive (V) :

atan(III) :
glob(VII):

echo(I): print command

sort(I): sort
atof(III): convert
atoi(III): convert

ascii(VII): ~ap ~f
ctime(III): convert time to

convert floating to
itoa(III): convert integer to

a.out(v) :
as (I) :

sync(II):

bc (VI): compile
10g(III): logarithm

bas(I) :

dli(VIII): load DEC
remove symbols, relocation

bj (VI) :

11/20 system
201 Dataphone
20boot(VIII): reboot 11/20 system
37 typebox map
801 ACU
9-track magtape
: (I): place label
a.out(v): assembler and loader output

'access mode of files
according to a keyword
accounting files
accounting
acct(VIII),: get connect-time accounting
ACU
adapt to typewriter
all file systems
allocator
an open file
another compiler-compiler
another user
another user
archive (combine) files
archive file
archive(v): archive file
arctangent
argument expander
arguments
ar(I): archive (combine) files
ASCII file
ASCII to floating
ASCII to integer
ascii(VII): map of ASCII
ASCII
ASCII
ASCII ••• ftoa(III):
ASCII
asCI): assembler
assembler and loader output
assembler
assure synchronization
atan(III): arctangent
atof(III): convert ASCII to floating
atoi(III): convert ASCII to integer
B program
base e
bas(I): BASIC dialect

, BASIC dialect
bC(VI): compile B program
binary paper tapes
bits ••• strip(I):
bj(VI): blackjack
blackjack

- xvii -

bproc(VIII):

split(I) :

break(II): set program
istat(VIII): file status

cdb(I) :
cc(I): compile

dc(I): desk
cemt(II):
fpe(II):

ilgins(II):
intr(II):

chmod(I):
chmod(II):

chown(I):
chown(II)':
chdir(I) :

chd1r(II):
pipe(II): open ihter process

ddsput(III): display
putc(III): write

getc (III): get

chk(VIII) :
check(VIII):

system •••

clri(VIII):
close(II):

are I): archive
echo (I): print

shCI) :
exit(I): end

goto(I):
if(I): conditional

gerts;(III) :
tss (I) :
cmp(I):

compar(III): string
proof(I):

bC(VI} :

boot procedure
boot(II): reboot the system
bproc(VIII): boot procedure
break a file·into pieces
break(II): set program break
break
by i-number
C debugger
e program
calculator
catch EMT traps
catch floating exception errors
catch illegal instruction trap

. catch or inhibit interrupts
cat(I): concatenate (or print) files
cc(I): compile e program
cdb(I): e debugger
cemt(II): catch' EMT traps
'change acce.ssmode of files
change mode of file
change owner of files
change owner of file
change working directory
change working directory
channel
character on Picturephone
character or word
character

. chdir(I): change working directory
chdlr (II): change working directory
check all file systems
check consistency of file system
check(VIII): check consistency of file
chk(VIII): check all file systems
chmod(I): change access mode of files
chmod(II): change mode of file
chown(I l: change owner of files
chown(II): change owner of file
clear f11e's i-node
close open f1le
close(II): close open file
clri(VIII): clear file's i-node
cmp(I'): compare file contents
(combine) files
command arguments
command ,interpreter
comman~'sequence .
command transfer
command
communicate wit~ GeOS
communicate with MH-TSS (GCOS)
compare file contents
compare for so·rt
compare text files
compar(III): string compare for sort
compile B program

- xviii -

cC(I):
fc(I):

sno(I) :
tmg(I):

yacc (VI): yet another
hypot (III) :

cat(I) :
if (I) :

acct(VIII): qet'
check(VIII): check
csw(II): read the

kl(IV):
la(I): list

cmp(I): compare file
ecvt(III): edited output

atof(III):
atoi(III) :
ftoa(III):
ftoo(III):
itoa(III):

ctime(III):
cp(I):

core(V):
mem(IV} :

sine III): sine,
wc(I): qet (Enqlish) word

makdir(II):
mkdir(I}:

create II) :
fork(II):

cref(I) :

dpd(VII): spawn dataphone
aalv(VIII): repair

dpd(VII): spawn
dp(IV): 201

date (I): get
mdate (II): set

date(I): qet date and time of

P icturephone •••
. cdb(I): C

db(I): symbolic
dli{VIII): load·

crypt{I): encrypt,

compile C program
compile Fortran proqram
compile Snobol program
compile tmq1 program
compiler-compiler
compute hypotenuse
concatenate (or print) files
conditional command
connect-time accountinq
consistency of file system
console switches
console typewriter
contents of directory
contents
conversion
convert ASCII to floating
convert ASCII to integer
convert floating to ASCII
convert floating to octal
convert integer to ASCII
convert time to ASCII
copy file
core image file
core memory
core{V) : core image file
cosine
count
cp{I): copy file
create directory
create directory
create file
create new process
creat(II): create file
cref(I): cross reference table
cross reference table
crypt(I): encrypt, decrypt a file
crypt(III): encrypt according to a keyworc
csw(II): read the console switches
ctime(III): convert time to ASCII
daemon
damaged file system
dataphone daemon
Dataphone
date and time' of day
date. modified of file
date(I): qet date and time of day
day .
db(I): symbolic debugger
dcheck(VIII): verify directory hierarchy
dC(I): desk' calculator'
dC(IV): remote typewriter
ddsput(III): display character on
debugger
debugger
DEC binary paper tapes
decrypt a file

- xix -

tap(V):
rew(I): rewind

save, restore files on
tc(IV):

sleep(II):
dsw (I):

rmdir(I): remove
rm(I): remove

unlink(II): remove
mesg(I): permit or

switch(III): transfer
dc(I):

kill(II):

bas (I): BASIC
directory(V):

dcheck(VIII): verify

chdir(I): change working
chdir(II): change working

Is(I): list contents of
makdir(II): create

mkdir(I): create
rmdir(I): remove (delete)

df(I): find free
du(I): find
rf (IV): RF
rk(IV): RK

umount (II) :
ddsput(III):

vt(IV): storage-tube

od (I): octal

dup (II): .
uniq(I): find

ecvt(III):
Id(I): link
ed(I): text

fed(I): form letter
cemt(II): catch

crypt(III):
crypt(I):
exit (I) :

wc(I): get
catch floating exception

typo(I): find typographic
fpe(II): catch floating

DECtape and magtape format
DECtape
DECtape ••• tap(I):
DECtape
delay execution
delete files interactively
(delete) directory
(delete) file
(delete) file
deny messages
depending on value
desk calculator
destroy process
df(I): find free disk space
dialect
directory format
directory hierarchy
directory(V): directory format
directory
directory
directory
directory
directory
directory
disk space
disk usage
disk
disk
dismount file system
display character on Picturephone
display
dli(VIII): load DEC binary paper tapes
dn(IV): 801 ACU
dpd(VII) : spawn dataphone daemon
dp(IV): 201 Dataphone
dsw(I): delete files interactively
du(I): find disk usage
dump of file
dup(II): duplicate an open file
duplicate an open file
duplicate lines in a file
echo(I): print command arguments
ecvt(III): edited output conversion
ed(I): text editor
edited output conversion
editor (loader)
editor
editor
EMT traps
encrypt according to a keyword
encrypt, decrypt a file
end command sequence
(English) word count
errors ••• fpe(II):
errors
exception errors

- xx -

size(I): get
exec (II) :

times(II): get
exit(II): terminate

sl eep (II): delay

glob(VII): argument

exp(III):
greek(VII):

log(III): logarithm base
factor(I):

cmp(I): compare
split(I): break a

opr(I): print
type(I): print

ov(I): page overlay
istat (VIII) :
stat(I): get

stat(II): get
file system (V):

chk(VIII): check all

check consistency of
mount(II): mount

mount(VIII): mount removable
salv(VIII): repair damaged

umount(II): dismount
. pr (I): pr in t

clri(VIII): clear
dsw(I): delete

tap(I): save, restore
mt(I): save, restore

ar(I): archive (combine)
concatenate (or print)

change access mode of
chown(I): change owner of

proof(I): compare text
reloc(I): relocate object

wtmp(V): accounting
archive(V): archive

chmod(II): change mode of
chown(II): change owner of

close(II): close open
core(V): core image

cp(I): copy
creat(II): create

crypt(I): encrypt, decrypt a
dup(II): duplicate an open
exec(II): execute program
fstat(II): status of open

exec(lI): execute program file
executable program size
execute program file
execution times
execution
execution
exit(I): end command sequence
exit(II): terminate execution
expander
exp(lII): exponential function
exponential function
extended TTY 37 typebox map
e
factor a number
factor(I): factor a number
fc(I): compile Fortran program
fed(I): form letter editor
file contents
file into pieces
file off-line
file page-by-page
file print
file status by i-number
file status
file status
file system format
file systems
file system(V): file system format
file system ••• check(VIII):
file system
file system
file system
file system
file with headings
file's i-node
files interactively
files on DECtape
files on magtape
files
files ••• cat (I) :
files ••• chmod(I):
files
files
files
files
file
file
file
file
file
file
file
file
file
file
file

- xxi -

link(II): link to
In(I): link to

set date modified of
mv(I): move or rename
od(I): octal dump of

open(II): open
passwd(V): password

read(II): read
rm(I): remove (del ete)

sort(I}: sort ASCII
sum(I): sum

find duplicate lines in a
unlink(II}: remove (delete)

write(II): write
du (I) :

uniq (I):
df(I):

hyphen(I):
tty (I) :

ttyn(III):
typo(I}:

unCI}:
fpe(II): catch

ftoa(III): convert
ftoo(III): convert

atof(III): convert ASCII to

fed(I) :
forml(I): generate
form(I): generate

nroff(I):
roff(I):

directory(V): directory
file system(V): file system
tap(V): DECtape and magtape

fc(I): compile

df(I): find

exp(llI): exponential
communicate with MH-TSS

gerts(IlI): communicate with
forml(I):

forme I):
vs(I):

pseudo random number

getc(III):
acct(VIII):

date(I):
wc(I):

size(I):

file
file
file ••• mdate(II):
file
file
file
file
file
file
file
file
file ••• uniq (I):
file
file
find disk usage
find duplicate lines in a file
find free disk space
find hyphenated words
find name of terminal
find teletype name
find typographic errors
find undefined symbols
floating exception errors
floating to ASCII
floating to octal
floating
fork(II): create new process
form letter editor
form letters
form letter
format text for printing
format text for printing
format
format
format
forme I): generate form letter
forml(I): generate form letters
Fortran progran
fpe(II): catch floating exception errors
free disk space
fstat(II): status of open file
ftoa(III): convert floating to ASCII
ftoo(III): convert floating to octal
function
(GCOS) ••• tss(I):
GCOS
generate form letters
generate form letter
generate voice synthesizer phonemes
generator ••• rand(IlI):
gerts(III): communicate with GCOS .
get character
get connect-time accounting
get date and time of day
get (English) word count
get executable program size

- xxii -

times(II):
stat(I) :

stat(II):
ps(VIII):
time(I):

time(II):
gtty(II) :

getuid(II):

pr(I): print file with
verify directory

hyphen(I): find

hypot(III): compute

clri(VIII): clear file's
istat(VIII): file status by

getuid(II): get user
setuid(II): set user

ilgins(II): catch
core(V): core

uniq(I): find duplicate lines
ptx(VI): permuted
time(I): get time

utmp(V): logged-in user
intr(II): catch or

quit(II):
init(VII):

ilgins(II): catch illegal
itoa(III): convert

atoi(III): convert ASCII to
pipe(II): open

dsw(I): delete files
sh(I): command

intr(II): catch or inhibit
split(I): break a file

encrypt according to a

: (I): place

fed (I): form
forml(I): generate form

get execution times
get file status
get fil e status
get process status
get time information
get time of year
get typewriter mode
get user ID
getc(III): get character
getty(VII): adapt to typewriter
getuid(II): get user ID
glob(VII): argument expander
goto(I): command transfer
greek(VII): extended TTY 37 typebox map
gtty(II): get typewriter mode
headings
hierarchy ••• dcheck(VIII):
hyphenated words
hyphen(I): find hyphenated words
hypotenuse
hypot(III): compute hypotenuse
i-node
i-number
ID
ID
if(I): conditional command
ilgins(II): catch illegal instruction trap
illegal instruction trap
image file
in a file
index
information
information
inhibit interrupts
inhibit quits
initializer process
init(VII): initializer process
instruction trap
integer to ASCII
integer·
inter process channel
interactively
interpreter
interrupts
into pieces
intr(II): catch or inhibit interrupts
istat(VIII): file status by i-number
itoa(III): convert integer to ASCII
keyword ••• crypt(III):
kill(II): destroy process
kill(VIII): terminate a process
kl(IV): console typewriter
label
Id(I): link editor (loader)
letter editor
letters

- xxiii -

mt (I) :

form{I): generate form
uniq(I): find duplicate

ld (I) :
link(II):

In(I) :

ls (I) :
n1ist(III): read name

dli(VIII):
a.out(v): assembler and

ld(I): link editor
login(I) :
10g(III):

utmp(V) :

passwd (I): set

nice(II): set

m6(I) :
tap(v): DECtape and

save, restore files on
tm (IV): 9-track

mail(I): send

mane I): run off
ascii(VII):

extended TTY 37 type box

mem(IV): core

mesg(I): permit or deny
tss(I): communicate with

msh(VII):

chmod(I): change access
chmod(II): change

stty(II): set
stty(I}: set typewriter

gtty(II}: get typewriter
mdate (II): set date

mount(II):
mount(VIII) :

mv(I) :
seek(II) :

letter
lines in a file
link editor (loader)
link to file
link to file
link(II): link to file
list contents of directory
list
lnCI): link to file
load DEC binary paper tapes
loader output
(loader)
log on to system
logarithm base e
logged-in user information
-log(III): logarithm base e
login password
10gin(I): log on to system
low-~riority status
ls(I): list contents of directory
m6(I): macroprocessor
macroprocessor
magtape format
magtape
magtape
mail to another user
mail(I): send mail to another user
makdir(II): create directory
man(I): run off manual section
ma·nual section
map of ASCII
map ••• greek{VII):
mdate{II): set date modified of file.
mem(IV): core memory
memory
mesg(I): permit or deny messages
mesg(lll): print string on typewriter
messages
MH-TSS (GCOS)
mini Shell
mkdir(I)': create directory
mode of files
mode of file
mode of typewriter
modes
mode
modified of file
mount file system
mount removable file system
mountelI): mount file system
mount(VIlI): mount removable file system
move· or rename file
move read or write pointer
msh(VII): mini Shell
mt(I): save, restore files on magtape
mv(l): move or rename file

- xxiv -

nlist(III): read
tty(I): find
nm(I): print

ttyn(III): find teletype
fork(II): create

rand(III): pseudo random
pow(III): take powers of

factor(I): factor a
reloc(I): relocate

od(I):
convert floating to

man(I): run
opr(I): print file

close(II): close
. dup(II): duplicate an

fstat(II): status of
open(II):'
pipe(II):

cat(I): concatenate
ecvt(III): edited

assembler and loader
ov(I): page

chown(I): change
chown(II): change

ov{ I) :
t¥pe(I): print file

dli(VIII): load DEC binary
pc (IV): punched

passwd(V) :
passwd{I): set login

mesg(I):
ptx(VI):

generate voice synthesizer
vsp(VII): voice synthesizer

display character on
split(I): break a file into

: (I) :
seek(II): move read or write

pow (III): take

echo(I):
opr (I) :

type(I):

name list
name of terminal
namelist
name
new process
nice(II): set low-priority status
nlist(III): read name list
nm(I): print namelist
nroff(I): format text for printing
number generator
numbers
number
object files
octal dump of file
octal ••• ftoo(III):
od(I): octal dump of file
off manual section
off-line
open file
open file
open file
open file
open inter process channel
open(II): open file
opr(I): print file off-line
(or print) files
output conversion
output ••• a.out(V):
overlay file print
ov(I): page overlay file print
owner of files
owner of file
page overlay file print
page-by-page
paper tapes
paper tape
passwd(I): set login password
passwd(V): password file
password file
password
pc(IV): punched paper tape
permit or deny messages
permuted index
phonemes ••• vs (I) :
phonemes
Picturephone ••• ddsput(IIl):
pieces
pipe(II): open inter process channel
place label
pOinter
powers of numbers
pow(lII): take powers of numbers
pr(I): print file with headings
print command arguments
print file off-line
print file page-by-page

- xxv -

pr (I) :
nm (I) :

mesg(III):
ptime (III) :

cat(I): concatenate (or
nroff(I): format text for
roff(I): format text for
oV(I): page overlay file

bproc(VIII): boot
pipe(II): open inter

ps(VIII): get
rele(II): release

fork(II): create new
init(VII): initializer

kill(II): destroy
kill(VIII): terminate a

wait(II): wait for
break(II): set

exec(II): execute
size(I): get executable

bc(VI): compile B
cc(I): compile C

fc(I): compile Fortran
sno(I): compile Snobol

tmg(I): compile tmgl

rand(III) :

pc(IV) :

qsort(III):

quit(II): inhibit

rand(III): pseudo
read(II) :

nlist(III):
seek (II): move

csw(II) :

20boot(VIII):
boot(II):

cref (I): cross
rele(II):

reloc(I):
strip(I): remove symbols,

dc(IV):
mount(VIII): mount

rmdir(I):
rm(I) :

unlink(II) :

print file with h~adings
pr int n amel i st
print string on typewriter
print time
print) files
printing
printing
print
procedure
process channel
process status
processor
process
process
process
process
process
program break
program file
program size
program
program
program
program
program
proof(I): compare text files
pseudo random number generator
ps(VIII): get process status
ptime(III): print time
ptx(VI): permuted index
punched paper tape
putc(III): write character or word
qsort(III): quicker sort
quicker sort
quit(II): inhibit quits
quits
rand(III): pseudo random number generator
random number generator
read file
read name list
read or write pointer
read the console switches
read(II): read file
reboot 11/20 system
reboot the system
reference table
release processor
rele(II): release processor
relocate object files
relocati'on bits
reloc(I): relocate object files
remote typewriter
removable file system
r emov e (del et e) dir ectory
remove (delete) file
remove (delete) file

- xxvi -

strip ('I) :
mv (I): move or

salv(VIII):
tap(I): save,
mt(I): save,

rew (I) :
rf (IV) :

rk(IV):

sqrt(III): square
man(I):

tap (I) :
mt (I) :

man{I): run off manual

mail(I):
speak (I):

exit(I): end command
mdate(II):
passwd(I) :
nice(II) :
stty(II) :

break(II) :
stime(II):
tabs (VII):

stty(I):
setuid(II):

msh(VII): mini

sin(III):

get executable program

sno(I): compile

sort(I):

string compare for
qsort(III): quicker

df(I): find free disk
dpd(VII):

sqrt(III):

remove symbols, relocation bits
rename file
repair damaged file system
restore files on DECtape
restore files on magtape
rew(I): rewind DECtape
rewind DECtape
RF disk
rf(IV): RF disk
RK disk
rk (IV): RK di sk
rmdir(I): remove (delete) directory
rm(I): remove (delete) file
roff{I): format text for printing
root
run off manual section
salloc(III): storage allocator
salv(VIII): repair damaged file system
save, restore files on DECtape
save, restore files on magtape
section
seek(II): move read or write pointer
send mail to another user
send words to voice synthesizer
sequence
set date modified of file
set login password
set low-priority status
set mode of typewriter
set program break
set system time
set tab stops on typewriter
set typewriter modes
set user ID
setuid(II): set user ID

. Shell
sh(I): command interpreter
sine, cosine
sin (III): _sin e, cosine
size(I): get executable program size
size ••• size(I):
sleep(II): delay execution
Snobol program
sno(I): compile Snobol program
sort ASCII file
sort(I): sort ASCII file
sort ••• compar(III):
sort
space
spawn dataphone daemon
speak(I): send words to voice synthesizer
split(I): break a file into pieces
sqrt(III): square root
square root
stat(I): get file status
stat(II): get file status

- xxvii -

istat(VIII): file
fstat(II):

nice(II): set low-priority
ps(VIII): get process

stat(I): get file
stat(II): get file

tabs(VII): set tab
salloc(III):

vt(IV):
compar(III) :

mesg(III): print

sum (I) :

csw(II): read the console

db (I) :
stripe I): remove

unCI): find undefined
sync(II): assure

vs(I): generate voice
vsp(VII): voice

speak(I): send words to voice
file system(V): file

stime(II): set
chk(VIIl): check all file

file
20boot(VIII): reboot 11/20

boot(lI): reboot the
check consistency of file

login(I): log on to
mount(Il): mount file

mount removable file
repair damaged file

umount(II): dismount file
who(I): who is on the

tabs(VII): set
cref(I): cross reference

·pow{ III):
load DEC binary paper
pc(IV): punched paper

ttyn(III): find
tty(I): find name of

kill(VIII):
exit(lI) :

ed(I) :
proof(I): compare
nroff(I): format

status by i-number
status of open file
status
status
status
status
stime(II): set system time
stops on typewriter
storage allocator
storage-tube display
string compare for sort
string on typewriter
strip(I): remove symbols, relocation bits
stty(l): set typewriter modes
stty(II): set mode of typewriter
sum file
sum(l): sum file
switches
switch(llI): transfer depending on value
symbolic debugger
symbols, relocation bits
symbols
synchronization
sync(II): assure synchronization
synthesizer phonemes
synthesizer phonemes
synthesizer
system format
system time
systems
system(V): file system format
system
system
system ••• check(Vlll):
system
system
system ••• mount(Vlll):
system ••• salv(Vlll):
system
system
tab stops on typewriter
table
tabs(VII): set tab ·stops on typewriter
take powers of numbers
tapes ••• dli(VIIl):
tape
tap(l): save, restore files on DECtape
tap(V): DECtape and magtape format
tc(IV): DECtape
teletype. name
terminal
terminate a process
terminate execution
text editor
text files
text for printing

:.-. xxviii -

roff(I): format
, time(I): get

date(I): get date and
time(II): get

ctime(III): convert

times(II): get execution
ptime(III): print

stime(II): set system

tmg(I): compile
swi tch(III) :

goto(I): command
cemt(II): catch EMT

catch illegal instruction

greek(VII): extended

greek(VII): extended TTY 37

stty(I) : set
gtty(II): get

dc (IV): remote
getty(VII): adapt to

kl (IV): console
mesg(III): print string on

stty(II): set mode of
tabs(VII): set tab stops on

. typo (I): find

unCI): find

dU(I): find disk
getuid(II): get
setuid(II): set

utmp(V): logged-in
mail(I): send mail to another

write(I): write to another

transfer depending on
dcheck(VIII):

vs (I): generate
vsp(VII):

speak(I): send words to

wait(II):

text for printing
time information
time of day
time of year
time to ASCII
time(I): get time information
time(II): qet time of year
times(II): get execution times
times
time
time
tm(IV): 9-track magtape
tmg(I): compile tmgl program
tmgl program
transfer depending on value
transfer
traps
trap ••• ilgins(II):
tss(I): communicate with MH-TSS (GCOS)
TTY 37 typebox map
tty(I): find name of terminal
ttyn(III): find teletype name
type box map
type(I): print file page-by-page
typewriter modes
typewriter mode
typewriter
typewriter
typewriter
typewriter
typewriter
typewriter
typographic errors
typo{I): find typographic errors
umount(II): dismount file system
undefined symbols
unCI}: find undefined symbols
uniq(I): find duplicate lines in a file
unlink{II): remove (delete) file
usage
user ID
user·ID
user information
user
user
utmp(V): logged-in user information
value ••• switch (III):
verify directory hierarchy
voice synthes1zerphonemes
voice synthesizer phonemes
voice synthesizer
va(I): generate voice synthesizer phoneme
vsp(VII): voice synthesizer phonemes
vt(IV): storage-tube display
wait for process
wait(II): wait for process

- xxix -

who (I):

gerts(III): communicate
pr(l): print file

tss(l): communicate
wc(l): get (English)

speak(l): send
hyphen(I): find hyphenated

putc(lII): write character or
chdir(I): change

chdir(II): change
putc(IIl):
write(II):

seek(II): move read or
write(I):

time(II): get time of
yacc(Vl) :

wc(I): get (English) word count
who is on the system
who(l): who is on the system
with GCOS
with headings
with MH-TSS (GCOS)
word count
words to voice synthesizer
words '
word
working directory
working directory
write character or word
write file
write pointer
write to another user
write(I): write to another user
write(ll): write f1le
wtmp(V): accounting files
yacc(Vl): yet another compiler-compiler
year
yet another compiler-compiler

- xxx -

: (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72

• • place a label

J. [label]

: (I)

The purpose of ~ is to place a label for the goto
command. It has no effect when executed.

goto(I)

- 1 -

AR (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

3/15/72 AR (I)

ar archive

!! key afile name1 •••

~ maintains groups of files combined into a sin
gle archive file. Its main use is to create and
update library files as used by the loader. It
can be used, though, for any similar purpose.

key is one character from the set drtux, option
ally concatenated with~. afile is the archive
file. The names are constituent files in the
archive file. The meanings of the key characters
are:

d means delete the named files from the archive
f1le.

r means replace the named files in the archive
f1le. If the archive file does not exist, r will
create it. If the named files are not in tne
archive file, they are appended.

! prints a table of contents of the archive file.
If no names are qiven, all files in the archive
are tabled. If names are qiven, only those files
are tabled.

~ is similar to ~ except that only those files
that have 'been modified are replaced. If no
names are qiven, all files in the arc1:tive that
have been modified will be replaced by the modi
fied version.

x will extract the named files. If no names are
given, all files in the archive are extracted.
In neither case does ~ alter the archive file.

~ means verbose. Under the verbose option, !!
gives a file-by-file description of the making of
a new archive file from the old archive and the
constituent files. The following abbreviations
are used:

oS copy
.! append
g delete
1: replace
~ extract

/tmp/vtm?

Id(I), archive(V)

temporary

" - "" " "Bad usage, afile --"no~ in archive format ~
cannot open temp file, name -- cannot open t

- 1

AR (I)

BUGS

3/15/72 AR (I)

" " " " name phase error, name -- cannot create ~
" " " " no archive file, cannot create archive file ,
" " name -- not found •

Option ~ should be implemented as a table with
more information.

There should be a way to specify the placement of
a new file in an archive. currently, it is
placed at the end.

" " ar x changes the modified-date of the current
directory to a random number.

- 2 -

AS (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

1/15/73 AS (I)

as assembler

~ [=] name1 •••

as assembles the concatenation of name1 , If
the optional first argument = is used, all unde
fined symbols in the assembly are treated as glo
bal.

The output of the assembly is left on the file
" " a.out. It is executable if no errors occurred
during the assembly.

/etc/as2
/tmp/atm1?
/tmp/atm2?
/tmp/atm3?
a.out

pass 2 of the assembler
temporary
temporary
temporary
object

ld(I), nm(I), uniI), db(I), a.out{v), "UNIX
Assembler Manual •

When an input file cannot be read, its name fol
lowed by a question mark is typed and assembly
ceases. When syntactic or semantic errors occur,
a single-character diagnostic is typed out to
gether with the line number and the filename in
which it occurred. Errors in pass 1 cause can
cellation of pass 2. The possible errors are:

)
]
<
*
•
A
B
E
F
G
I
M
o
P
R
U
X

parentheses error
parentheses error
String not terminated properly
Indirection ("~") used"i!legally
Illegal assignment to •
error in Address
j!ranch instruction is odd or too remote
error in Express~on
error in local (E" or "b") type symbol
garbage (unknown)' character
End of file inside an If
Hultiply defined symbor-as label
Odd-- word quantity assembled at odd address - " " fhase error-- • different in pass 1 and 2
Relocation error
yndefined symbol
syntaz error

Symbol table overflow 1s not checked.

- 1 -

BAS (I)

NAME

SYNOPSIS

DESCRIPTION

1/15/73 BAS"(I)

bas - basic

l2!J! [file]

l2!J! is a dialect of basic [1]. If a file argu
ment is provided, the file is used for input
before the console is read.

E!.! accepts lines of the form:

statement
integer statement

Integer numbered statements (known. as internal
statements) are stored for later execution. They
are stored in sorted ascending order. Non
numbered statements are immediately executed.
The result of an immediate expression statement
(that does not have '=' as its highest operator)
is printed.

Statements have the following syntax:

expression
The expression is executed for its side
effects (assignment or function call) or
for printing as described above.

done
~eturn to system level.

~ expression expression expression
A line is drawn on the Tektronix 611
display (/dev/vtO) from the current display
position to the XY co-ordinates specified
by the first two expressions. (The scale
is zero to one in both X and Y directions)
If the third expreSSion is zero the line
is inVisible. The current display position
is set to the end point •.

display list
The list of expressions and strings is con
catenated and displayed (i.e. printed) on
the 611 starting at the current display
position. The current display position is
not changed.

erase
The 611 screen is erased.

for name - expression expression statement
for name ; expression expression

•••
~

The !2!: statement repetitively executes a

- 1 -

BAS (I) 1/15/73 BAS (I)

statement (first form) or a group of state
ments (second form) under control of a
named variable. The variable takes on the
value of the first expression, then 1s
incremented by one on each loop, not to
exceed the value of the second expression.

goto expression
The expression is evaluated, truncated to
an integer and execution goes to the
corresponding integer numbered statment.
If executed from immediate mode, the inter
nal statements are compiled first.

!! expression statement
The statement is executed if the expression
evaluates to non-zero.

~ [expression [expression]]
~ is used to print out the stored inter
nal statements. If no arguments are given,
all internal statements are printed. If
one argument is given, only that internal
statement is listed. If two arguments are
given, all internal statements inclusively
between the arguments are printed.

print list
The list of expressions and strings are
concatenated and printed. (A string is
delimited by • characters.)

return [expression]
The expression is evaluated and the result
is passed back as the value of a function
call. If no expression is given, zero is
returned.

run
---The internal statements are compiled. The

symbol table is re-initialized. The random
number generator is re-set. control is
passed to the lowest numbered internal
statement.

Expressions have the following syntax:

name
A name is used "to specify a variable.
Names are composed of a letter ('a' - 'z')
followed by letters and digits. The first
four characters of a name are significant.

number
A number is used to represent a constant
value. A number is composed of digits, at

2 -

BAS (I) 1/15/73 BAS (I)

most one decimal point ('.') and possibly a
scale factor of the form ~ digits or ~
digits.

1 expression 1
parentheses are used to alter normal order
of evaluation.

expression operator expression
Common fUnctions of two arguments are ab
breviated by the two arguments separated by
an operator denoting the function. A com
plete list of operators is given below.

expression 1 [expre ssion L.L expre ssion •••]] 1
Functions of an ar·bitrary number of argu
ments can be called by an expression fol
lowed by the arguments in parentheses
separated b¥ commas. The expression evalu
ates to the line number of the entry of the
function in the internally stored state
ments. This causes the internal statements
to be compiled. If the expression evalu
ates negative, a builtin fUnction is
called. The list of builtin fUnctions
appears below.

name 1 expression [~ expression •••] 1
Each expression is truncated to an integer
and used as a specifier for the name. The
result is syntactically.identical to a
name. a[1,2] is the same as a[1] [2]. The
truncated expressions are restricted to
values between 0 and 32767.

The following is the list of operators:

=

& I

= is the assignment operator. The left
operand must be a name or an array element.
The result is the right operand. Assign
ment binds right to left, all other opera
tors bind left to right.

~ (logical and) has result zero if either
of its arguments are zero. It has result
one if both its arguments are non-zero. 1
(logical or)'has result zero if both of its
arguments are zero. It has result one if
either of its arguments are non-zero.

< <= > >= == <>
The relational operators « less than, <=
less than or equal, > greater than, >=
greater than or equal, == equal to, <> not

- 3 -

BAS (I)

FILES

SEE ALSO

DIAGNOSTICS

1/15/73 BAS (I)

equal to) return one if their arguments are
in the specified relation. They return
zero otherwise. Relational operators at
the same level extend as follows: a)b>c is
the same as a)b&b)c.

+ -
Add and subtract.

* /
Multiply and divide.

Exponentiation.

The following is a list of builtin functions:

arg

exp

Arg(i) is the value of the ith actual
parameter on the current level of function
call.

Exp(x) is the exponential function of x.

log
Log(x) is the logarithm base e of x.

sin
Sin(x) is the sine of x (radians).

cos
Cos (x) is the cosine of x (radians).

atn
Atn(x) is the arctangent of x.

rnd .
Rnd() is a uniformly distributed random
number between zero and one.

expr

1nt

Expr() is the only form of program input.
A line is read from the input and evaluated
as an expression. The resultant value is
returned.

Int(x) returns x truncated to an integer.

/tap/btm? temporary

[1] DEC-11 -AJPB-D

Syntax errors cause the incorrect line to be
typed with an underscore where the parse failed.

- 4 -

CAT (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

1/15/73 CAT (I)

cat concatenate and print

.£!! file 1 •••

cat reads each file in sequence and writes it on
the standard output. Thus:

.£ll~

is about the easiest way to print a file. Also:

.£ll file1 file2)file3

is about the easiest way to concatenate files.

If no input fil~ is qiven £!! reads from the
sta.ndard input file.

" " If the argument - 1s encountered, cat reads
from the standard input file.

pr(I), cp (I)

none; 1f a f1le cannot be found it is iqnored.

cat x y)x and cat x y)y cause strange
results.

- 1 -

CC (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 CC (I)

cc -- C compiler

.££ [.:.£] sfile1~ ••• ofile1 •••

.££ is the UNIX C.compiler. It accepts three
types of arquments:

" " Arguments whose names end with .c are assumed
, to be C source proqrams; they are compiled, and

the object program is left on the file sfile1 .0
(i.e. the file whose name is that of the source

" " " ") with .0 substituted for .c •

Other arguments (except for "-c") are assumed to
be either loader flag arquments, or C-compatib1e
object programs, typically produced by an earlier
££ run, or perhaps libraries of C-compatib1e
routines. These programs, together with the
results of any compilations specified, are loaded
(in the order given) to produce an executable
program with name a.out.

The "-c" argument suppresses the loading phase,
as does any syntax error in any of the routines
being compiled.

file.c
file.o
a.out
/tmp/ctm?
/lib/c [01]
/lib/crtO.o
/lib/libc.a
/lib/liba.a

input file
object file
loaded output
temporary
compiler
runtime startoff
builtin functions, etc.
system· library

C reference manual (in preparation), cdb(I)

Diagnostics are intended to be self-explanatory.

- 1 -

CDB (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

1/1 5/73 CDB (I)

cdb -- C deblgger

£SE [core [a .out]]

£9E 1.s a deblgg ing program for use with C pro
grams. It is by no means completed, and this
section is essentially only a placeholder for the
actual description.

Cdb resembles db in many respects, except that
all integers are decimal.

Even the present cdb has one useful feature: the
command

$

will give a stack trace of the core image of a
terminated C program. The calls are listed in
the order made; the actual arguments to each
routine are given in octal.

cc(I), db(I), C Reference Manual

" " ?

- 1 ...

CHDIR (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 CHDIR (I)

chdir change working directory

chdir directory

directory becomes the new working directory.

Because a new process is created to execute each
command, chdir would be ineffective if it were
written as a normal command. It is therefore
recognized and executed by the Shell.

sh(I)

" " Bad directory if the directory cannot be
changed to.

- 1 -

CHMOD (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 CHMOD (I)

chmod change mode

chmod octal f1le 1 •••

The octal mode replaces the mode of each of the
files. The mode is constructed from the OR of,
the following modes:

01 write for non-owner
02 read for non-owner
04 write for owner
10 read for owner
20 executable
40 set-UID

Only the owner of a file may chanqe its mode.

stat(I), la(I)

" " ?

- 1 -

CHOWN (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 CHOWN (I)

chown change owner

chown owner file1 •••

owner becomes the new owner of the files. The
owner may be either a decimal UID or a login name
found in the password file.

Only the owner of a file is allowed to change the
owner. It is illegal to change the owner of a
file with the set-user-ID mode.

/etc/passwd

stat(I)

"Who?" if owner cannot be found, "file?" if file
cannot be found.

- 1 -

CMP (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

1/15/73 CMP (I)

cmp compare two files

cmp file1 file 2
The two files are compared for identical con
tents. Discrepancies are noted by giving the
offset and the differing words, all in octal.

proof(I)

Messages are given for inability to open either
argument, premature EOF on either argument, and
incorrect usage.

If the shorter of the two files is of' odd length,
cmp acts as if a null byte had been appended to
it.

- 1 -

CP (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

1/24/73 CP (I)

cp - copy

£e file 1 file2

The first file is copied onto the second. The
mode and owner of the target file are preserved
if it already existed; the mode of the source
file is used otherwise.

If file 2 is a directory, then the target file is
a file 1n that directory with the file-name of
file 1 •

cat(I), pr(I), mV(I)

Error returns are checked at every system call,
and appropriate diagnostics are produced.

Copying a file onto itself destroys its contents.

- 1 -

CREF (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

2/5/1973 CREF (I)

cref make cross reference listing

.£!!! [::..!Q!] name1 •••

CREF makes a cross reference listing of files in
assembler format (see AS(I». The files named as
arguments in the command line are searched for
symbols (defined as a succession of alphabetics,
numerics, ' .', or ' " beginning with an alpha-
b i " , ')etc, ., or _ •

The output report is in four columns:

(1)
symbol

(2)
file

(3)
see
below

(4)
text as it appears in file

The third column contains the line number in the
file by default; the =! option will cause the
most recent name symbol to appear there instead.

CREF uses either an ignore file or an only file.
If the -i option is given, it will take the next
filename to be an ignore file; if the :9 option
is given, the next filename will be taken as an
only file. Ignore and only files should be lists
of symbols separated by new lines. If an ignore
file is given, all the symbols in the file will
be ignored in columns (1) and (3) of the output.
If an only file is given, only symbols appearing
in the file will appear in column (1), but column
(3) will still contain the most recent name en-
countered. Only one of the options .:.! or ::Q may
be used. The default setting is -i; all symbols
predefined in the assembler are ignored, except
system call names, which are collected.

Files t.O, t.1, t.2, t.3 are created (i.e.
DESTROYED) in the working directory of anyone
using S!!!. This nuisance will be repaired soon.
The output is left in file s.out in the working
directory.

/usr/lem/s.tab is the default ignore file.

as(I)

"line too long" -- input line)131 characters

" " symbol too long -- symbol)20 characters

"too many symbols" -)10 symbols in line

" " cannot open t.? -- bug; see LEM

" " , cannot fork; examine t.out -- can t start ~

- 1 -

CREF (I)

BUGS

2/5/1973 CREF (I)

process; intermediate results are on files
t.O, ~,t.2,t,3. These may be sorted in
dependently and the results concatenated by
the user,

" " cannot sort -- odd response from~; examine
intermediate results, as above.

"impossible situation" -- system bug

" " cannot open file -- one of the input names
cannot be opened for reading.

The destruction of unsuspecting users' files
should soon be fixed. A limitation that may
eventually go away is the restriction to assem
bler lanquage format. There should be options for
FORTRAN, Enqlish, etc., lexical analysis,

File names longer than eight characters cause
misalignment in the output if tabs are set at
every eighth column.

It should write on the standard output, not
s.out,

- 2 -

CRYPT (1)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

10/23/71 CRYPT (I)

crypt encode/decode

crypt [password]

Crypt is an exact implementation of Boris_
Hagelin's cryptographic machine called the M-209
by the U. S. Army [1] •

crypt reads from the standard input file and
writes on the standard output. For a given pass
word, the encryption process is idempotent; that
is,

crypt znorkle <clear)cypher
crypt znorkle <cypher

will print the clear.

crypt 1s suitable for use as a filter:

pr ("crypt bandersnatch"(cypher

[1] U. S. Patent 2,089,603.

- 1 -

DATE (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 DATE (I)

date print and set the date

~ [mmddhhmm]

If no argument is qiven, the current date is
printed to the second. If an arqument is given,
the current date is set. mID is the month number;
dd is the day number in the month; ~ is the hour
number (24 hour system); 1m!! is the minute number.
For example:

date 10080045

sets the date to Oct 8, 12:45 AM.

" " ? if the arqument is syntactically incorrect.

- 1 -

DB (I)

NAME

SYNOPSIS

DESCRIPTION

3/15/72 DB (I)

db -- debug

ga [core [namelist]] [=]

Unlike many debugging packages (including DEC's
ODT, on which ~ is loosely based) ~ is not
loaded as part of the core image which it is used
to examine; instead it examines files. Typical
ly, the file will be either a core image produced
after a fault or the binary output of the assem
blera ~ is the file being debugged; if omit
ted core is assumed. namelist is a file con
taining a symbol table. If it is omitted, the
symbol table is obtained from the file being
debugged, or if nO't there from a.out. If no
appropriate name list file can be found, db can
still be used but some of its symbolic facilities
become unavailable.

For ,the meaninq of the optional third arqument,
see the last paragraph below.

The format for most db requests is an address
followed by a one character command.

Addresses are expressions built up as follows:

1. A name has the value aSSigned to it when
the input file was assembled. It may be
relocatable or not· depending on the use of
the name during the assembly.

2. An octal number is an absolute quantity
with the appropriate value.

3. A decimal number immediately followed ~
"." is an absolute quantity with the ap
propriate value.

4. An octal number immediately followed by
is a relocatable quantity with the ap
propriate value.

" " 5. The symbol • indicates the current

" " r

pOinter of~. The current pOinter is set
by many ~ requests.

6. A "*" before an expression forms an expres
sion whose value is the number in the word
addressed by the first IXP,ession. A "*"
alone is equivalent to * ••

"" "" () 6. Expressions separated by + or blank
are expressions with value equal to the sum
of the components. At most one of the com
ponents may be relocatable.

- 1

DB (I) 3/15/72 DB (I)

8. Expressions separated by, "-" form an ex
pression with value equal to the difference
to the components. If the right component
is relocatable, the left component must be
relocatable.

9. Expressions are evaluated left to right.

Names for registers are built in:

rO ••• rS
sp
pc
frO ••• frS

These may be examined. Their values are deduced
from the contents of the stack in a core image
file. They are meaningless in a file that is not

,a core image.

If no address is given for a command, the current
address (also specified by ".") is assumed. In

" " general, • points to the last word or byte
printed by 9l2.

There are db commands for examining locations
interpreted as octal numbers, machine instruc
tions, ASCII characters, and addresses. For
numbers and characters, either bytes or words may
be' examined. The following commands are used to
examine the specified file.

/

\

"

,

The addressed

The addressed

The addressed
characters.

The addressed
character.

The addressed

word is printed in octal.

byte is printed in octal.

word is printed as two ASCII

byte is printed as an ASCII

word is printed in decimal.

? The addressed word is interpreted as a
machine instruction and a symbolic form of
the instruction, including symbolic ad
dresses, is printed. Often, the result
will appear exactly as it was written in
the source program.

& The addressed word is interpreted as a sym
bolic address and 1s printed as the name of
the symbol whose value is closest to the
addressed word, possibly followed ~ a
Signed offset.

- 2 -

DB (I) 3/15/72 DB (I)

(nl> (i. e., the character "new line") This
command advances the current location
counter "." and prints the resulting loca
tion in the mode' last specified by one of
the above requests.

- " " This character decrements • and prints
the resulting location in the mode last
selected one of the above requests. It is
a converse to <nl>.

Exit.

Odd addresses to word-oriented commands are
rounded down. The incrementing and decrementing
of "." done by the <nl> and - requests is by one
or two depending on whether the last command was
word or byte oriented.

The address portion of any of the above commands
may be followed by a comma and then by an expres
sion. In this case that number of sequential
words or ~tss specified by the expreSSion is
printed. • is advanced so that it pOints at
the last thing printed.

There are two commands to interpret the value of
expressions.

= When preceded by an expression, the value
of the expression is typed in octal. When
po~ preceded by an expression, the value of

• is indicated. This command does not
" " change the value of ••

: An attempt is made to print the given ex
pression asa symbolic address. If the
expression is relocatable·, that symbol is
found whose value is nearest that of the
expression, and the symbol is typed, fol
lowed by a sign and the appropriate offset.
If the value of the expression is absolute,
a symbol with exactly the indicated value
is sought and printed if found; ·if no
matching symbol is· discovered,the octal
value of the expression is given.

The following command may be used to patch the
file beinq debugqed.

! Th~CO~and must be preceded by an expres
si '. ~ value of the expression is
sto~tt .. ~at the loc!t~on addressed by the
cur,.. tlue of •• The opcodes do not
appear·' i .ttle symbol ~able, so the user
must III ssemble th~m 1::("" hand •

- 3 -

DB (I) 3/15/72 DB (I)

The following command is used after a fault has
caused a core image file to be produced.

$ causes the fault type and the contents of
the general registers and several other
registers to be printed both in octal and
symbolic format. The values are as they
were at the time of the fault.

£E should not be used to examine special files,
for example disks and tapes, since it reads one
byte at a time. Use od(l) instead.

For some purposes, it is important to know how
addresses .typed by the user correspond with loca
tions in the file being debugged. Themapping
algorithm employed by db is non-trivial for two
reasons: First, in an a.out file, there is a
20(8) byte header which will not appear when the
file is loaded into core for execution. There
fore, apparent location 0 should correspond w~th
actual file offset 20. Second, some systems

" " cause a . squashed core image to be written. In
such a core image, addresses in the stack must be
mapped according to the degree of squashing which
has been employed. !2l2 obeys the following rules:

If exactly one argument is given, and if it ap
pears to be an a,out file, the 20-byte header is
skipped during addressing, l.e., 20 is added to
all addresses typed. As a consequence, the
header can be examined beginning at location -20.

If exactly one argument is given and if the file
does not appear to be an a.out file, no mapping
is done,

If zero or two arguments are given, the mapping
appropriate to a core image file is employed.
This means that locations above the program break
and below the stack effectively do not exist (and
are not, in fact, recorded in the core file).
Locations above the user's stack pOinter are
mapped, in looking at the core file, to the place
where they are really stored. The pe·r-process
data kept by the system, which is stored in the
last 512(10) bytes of the core file, can be ad
dressed at apparent locations 160000-160777.

If one wants to examine a file which has an asso
ciated name list, ~u~ is not a~core image file,
the last argument - can be used (actually the
only purpose of the last argument is to make the
number of arguments not equal to two). This
feature is used most frequently in examining the'
memory file /dev/mem.

- 4 -

DB (I)

FILES

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 DB (I)

asCI), core(v), a.out(v), od(I)

"File not fOUnd""i: the first argument cannot be
read; otherwise ?

- 5 -

DC (I)

NAME

SYNOPSIS

DESCRIPTION

1/15/73 DC (I)

dc -- desk calculator

~ [file]

dc is an arbitrary precision integer arithmetic
package. The overall structure of dc is a stack
ing (reverse polish) calculator. The following
constructions are recognized by the calculator:

number
The value of the number is pushed on the
stack. A number is an unbroken string of the
digits 0-9. It may be preceded by an under
score (_) to input a negative number.

:J:.=~L%:
The top two values on the stack are added (±),

!.X

.e

subtracted (-) t multiplied (~") t diyided (L) t

·remaindered (!) or exponentiated (). The two
entries are popped off the· stack; the result
is pushed on the stack in their place.

The top of the stack is popped and stored into
a register named x, where x may be any charac
ter.

The value in register x is pushed on the
stack. The register x is not altered. All
registers start with zero value.

The top value on the stack is pushed on the
stack. Thus the top value is duplicated •

The top value on the stack is printed. The
top value remains unchanged.

All values on the stack and in registers are
printed.

exits the program. If executing a string, the
nesting level 1s popped by two.

treats the top element of the stack as a char
acter string and executes it as a string of dc
commands.

[••• J
puts the bracketed ascii string onto the top
of the stack.

- 1-

DC (I) 1/15/73 DC (I)

~x .=x 2.x

v

1

1

The top two elements of the stack are popped
and compared. Register x is executed if they
obey the stated relation.

replaces the top element on the stack by its
square root.

interprets the rest of the line as a UNIX com
mand.

All values on the stack are popped.

The top value on the stack is popped and used
as the number radix for further input.

the top value on the stack 'is popped and used
as the number radix for further output.

the stack level is pushed onto the stack.

a line of input is taken from the input source
(usually the console) and executed.

new-line
ignored except as the name of a register or to
end the response to a 1.

space'
ignored except as the name of a register or to
terminate a number.

If a file name is given, input is taken from that
file until end-of-file, then input is taken from
the console.

An example to calculate the monthly, weekly and
hourly rates for a $10,000/year salary.

10000
100*
dsa
12/
1a52/
d10*
375/
f

(now in cents)
(non-destructive store)
(pennies per month)
(pennies per week)
(deei-pennies per week)
(pennies per hour)
(print all results)

512
19230

- 2 -

DC (I)

FILES

SEE ALSO

DIAGNOSTICS

BUGS

'1/15/73 DC (I)

83333
" " a 1000000

An example which prints the first ten values of nI is
[la1+dsa*pla10)x]sx
Osa1
lxx

msh(VII), salloc(lII}

(x) ? for unrecognized character x.
(x) ? for not enough elements on the stack to do
what was asked by command x.
"out of space" when the free list is exhausted
1too many digit!).
out of headers for too many numbers being kept

around. '
" " Out of pushdown for too many items on the
stack.
" " 'Nesting Depth for too many levels of nested
execution.

- 3 -

DF (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

1/20/73 DF (I)

df -- disk free

~ [file system]

9! prints out the number of free blocks available
on a file system. If the file system is unspeci
fied, the free space on all of the normally
mounted file systems is printed.

/dev/rf?, /dev/rk?, /dev/rp?

check(VIII)

- 1 -

DSW (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 DSW (I)

dsw delete interactively

~ [directory].

For each file in the given directo~ i"." if not
specified) ~ types its name. If y is typed,
the file is deleted; if "x", ~ exits; if any
thing else, the file is not removed.

rm(I)

" " ?

" " The name dsw i8 a carryover from the ancient
past. Its etymology is amusinq but the name is
nonetheless ill-advised.

- 1 -

DU (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

1/20/73 DU (I)

du summarize disk usage

~ [=.!!] [=.!] [name •••]

du gives the number of blocks contained in all
files and (recursively) directories within each
specified directory or file~. If ~ is
missing, ~ is used.

The optional arqument ::! causes only the grand
total to be given. The optional argument =!
causes an entry to be generated for each file.
Absence of either causes an entry to be generated
for each directory only.

A file which has two links to it is only counted
once.

•

Non-directories given as arguments (not under -a
option) are not listed.

Removable file systems do· not work correctly
since i-numbers may be repeated while the
corresponding files are distinct. Du should
maintain ·an i-number list per root directory
encountered.

- 1 -

ECHO (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 ECHO (I)

echo --echo arguments

~ [arg1 •••]

echo writes all its arquments in order as a line
on-the standard output file. It is mainly useful
for producing diaqnostics in command files.

- 1 -

ED (I) 1/15/73 ED (I)

NAME
ed editor

SYNOPSIS
ed [name] -

DESCRIPTION
ed is the standard text editor.

If the optional arqument is given, ed simulates an e com
mand on the named file; that is to say, the file is-read
into !2's buffer so that it can be edited.

~ operates on a copy of any file it is editing; changes
made in the copy have no effect on the file until a write
(~)- command is given. The copy of the text being edited
resides in a temporary file called the buffer. There is
only one buffer.

Commands to ~ have a simple and regular structure: zero
or more addresses followed by a single character command,
possibly followed by parameters to-the command. These
addresses specify one or more lines in the buffer. Every
command which requires addresses has default addresses,
so that the addresses can often be omitted.

In general, only one command may appear on a line. Cer
tain commands allow the input of text. This text is
placed in the appropriate place in the buffer. - While ~
is accepting text, it is said to be in input !!!!29.!'. In
this mode, no commands are recognized; all input is mere
ly collected. Input mode is left by typing a period (.)
alone at the beginning of a line.

!9 supports a limited form of regular expression nota
tion. A regular expression is an expression which speci
fies a set of strinqs of characters. A member of this
set of strings is said to be matched by the regular ex
pression. The regular expressions allowed by !9 are con
structed as follows:

1. An ordinary character (not one of those discussed
below) is a regular expression and matches that
character.

2. A circumflex (-) at the beginning of a regular
expression matches the null character at the begin
ning of a line.

3. A currency symbol ($) at the end of a regular ex
pression matches the null character at the end of a
line.

4. A period' (.) matches any character but a new-line
character.

- 1 -

ED (1) 1/15/73 ED (I)

5. A reqular expression' followed by an asterisk (*)
matches any number of adjacent occurrences (includ
ing zero) of the regular expression it follows.

6. A string of characters enclosed in square brackets
([]) matches any character in the string but no
others. If, however, the first character of the
string is a circumflex(-) the regular expression
matches any character but new-line and the charac
ters in the string.

7. The concatenation of regular expressions is a regu
lar expression which matches the concatenation of
the strings matched by the components of the regu
lar expre ssion.

8. The null regular expression standing alone is
equivalent to the last regular expression encoun
tered.

Regular expressions are used in addresses to specify
lines and in one command (~, see below) to specify a por
tion of a line which is to be replaced.

If it is desired to use one of the regular expression
metacharacters as aD- ~rdinary character, that character
may be preceded by \. This also applies to the charac
ter bounding the regular expression (often "I") and to
"\" itself. '

Addresses are constructed as follows. To understand
addressinq in .!S it is necessary to know that at any t'ime
there is a current lina. ' Generally speaking, the current
line is the last line affected by a command; however, the
exact effect on' the current line by each command is dis
cussed under the description of the command.

1. The character " " • addresses the current line •

"-" 2. The character addresses the line immediately
before the, current line.

3. The character "$" addresses the last line of the
buffer.

4. A decimal number B addresses the nth line of the
buffer.

6. A regula'r expression enclosed in slashes" /" ad
dresses the first line found by searching toward
the end of the buffer and stopping· at the first
line containinq a string matching the regular ex
pression. If necessary the search wraps around to
the beginning of the buffer.

5.A regular expression enclosed in queries " " ?

- 2 -

ED (I) 1/15/73 ED (I)

addresses the first line found by searchinq toward
the beginninq of the buffer and stoppinq at the
first line found containing a strinq matchinq the
regular expression. If necessary the search wraps
around to the end of the buffer.

. " " 7. An address followed by ~ plus sign + or a minus
sign "_". followed by a decimal number specifies
that address plus (resp. minus) the indicated
number of lines. The plus sign may be omitted.

8. "'x" addresses the line associated (marked) with
the mark name character "x" which must be a print-

" " able character. Lines may be marked with the k
command described below.

Commands may require zero, one, or two addresses. Com
mands which require no addresses regard the presence of
an address as an error. Commands which accept one or two
addresses assume default addresses when insufficient are
given. If more addresses axe given than such a command
requixes, the last one or two (dependinq on what is ac
cepted) are used.

Addresses are separated from each other typically by a
comma (,). They may also be separat!d.by a semicolon'
(;). In this case the current line • is set to the
previous address before the next address is interpreted.
This feature can be used to determine the startinq line

("/" "") for forward and backward searches ,.? The second
address of any two-address sequence must correspond toa
line following the line correspondinq to the first ad
dress.-

In the followinq list of ~ commands, the default ad
dresses are shown in parentheses. The parentheses are
not part of the address, but are used to show that the
given addresses are the default.

As mentioned,it is qenerally illegal for more than one
command to allPtar on ! line" However, any command may·.be
suffixed by p (for print). In that case, the curr~nt
line is printed after the command is complete.

(.)a
<text>
•

The !ppend command reads the given text and appends
it after the addressed line •. "." is le.ft on the
last line input, if there wert eny, otherwise at
the addressed line. Address 0 1s legal for this
command; text is placed at the beginning of the
buffer.

(.,.)c
<text>

- 3 -

ED (I)

•

1/15/73 ED (I)

The s.hanqe command deletes the addressed ,lines,
then accepts input text which replaces these lines.
"." is left at the last line input; if theze were
none, it is left at the first line not chanqed.

(.,.)d
The delete command deletes the, addressed' 'lines from
the'buffer. The line oriqinally after the last
line deleted becomes the current line; if the lines
deleted were originally at the end, the new last
line becomes the current line.

e filename
The edit command causes the entire contents of the
buffer to be deleted, and then the named file to be
read in. "." is set to the last line of the
buffer. The number of characters read is typed.
"filename" is remembered for possible use as a
default file name in a subsequent ~ or ~ command.

f filename
The filename command
bered file name. If
currently remembered
"filename".

erints th, currently remem
filename is qiven, the

file name is changed to

(1 ,$)q/regular expreSSion/command list
, In the global command, the first step is to mark
every line which matches the given regular expres
sion. Then for every such line, ,the given command
list is executed with initially set to that
line. A Single command or the first of multiple
commands appears on the same, line with the global
command. All lines of a multi-1ine list except the
last line must be ended with \. ~,.it and .£"cs>m
mands and associated input are permitted; the •
tertninatinq inpu't mode may be omitted if it would
be on the last line of the command list. The (glo
bal) commands, g and ~, are not permitted in the
command list.

(~)i
<text>
•

This command inserts the given text before the
addressed line. "." is left at the ,last line
input; if there were none,' at, the addressed line.
This command differs from the ~ command only in the
placement of the text.

(.)kx
The mar5 command associates or marks the Idgressed
line with the single character mark name x. The
ten most recent mark names are remembered. The
current mark names may be printed with the ~

- 4 -

ED (I) 1/15/73 ED (I)

command.

(.,.)mA

n

The move command will reposition t~e"addressed
lines after the line addressed by A. The line
oriqinally after the las.t. line moved becomes the
current line; if the lines moved were oriqinally at
the end, the new last line becomes the current
line.

The marknames command will print the current mark
·names.

(.,.)p
The'.,Erint command ·prints the addressed lines. •
is left at the last line printed. The 2 command
may be placed on the same line after any command.

The guit command causes .!f! to exit. No automatic
write of a file is done.

($)r filename
The ~ead command reads in the qiven file after the
addressed line. If no f11e name isqiven, the
remembered file name, if any, is used (see!. andf
commands) • The remembe red file name is not chanqed
unless "filename" is the very first file name men-

" " tioned. Address 0 is legal for ~ and causes the
file to be read at the beqinninqof the buffer. If
the read is succ~sl·ful, the number of characters
read is typed.· • is left at the last line read
in from the file.

(.,.)s/regular expression/replacement/ or,
(.,.)s/regular expression/replacement/q

The SUbstitute command searches each addressed line
for an occurrence of the specified reqular expres-

.sion. On each line in which a match is found,all
matched strinqsare replaced by ,the replacement" ..
specified,· if the global replacement indicator q
appears after the command. If the global indicator
does not appear, only the first occurrence of the
matched string is replaced. It ·is an error for the
substitution to fail on all addressed lines. Any
characte·r o~h,r than space or new-line may be used
instead of / to delimit the regular expression
and the replacement. "." is left at the last line
substituted.

The ampersand "&" appearing in the replacement is
replaced by the regular expressioQ ~hat was
matched. The special meaninq of & in this con
text may be suppressed by precedinq it by "\".

- 5 -

ED (I)

SEE ALSO

1/15/73 ED (I)

(1,$)v/regular expression/command list
This command is the same as the global command
except that the command list is executed with "."
initially set to every line except those matching
the regular expression

(1 ,$)w filename
The write command writes the addressed lines onto
the given file. If the file does not exist, it is
created mode 17 (readable and writeable by every
one). The remembered file name is not changed
unless "filename" is the very first file name men
tioned. If no file name is given, the remembered
!i!e name, if any, is used (see ~ and ! commands).

• is unchansed. If the command is successful,
the number of characters written is typed.

($)=
The line number of the addressed line is typed.
" " • is unchanged by this command.

!UNIX command
The remainder of the line after the "I" is sent to

" " UNIX to be interpreted as a command. • is un-
changed.

(.+1) (newline>
An address alone on a line causes that line to be
erint!d. A blank line alone is equivalent to

.+1p ; it is useful for stepping through text.

If an interrupt Signal (ASCII DEL) is sent, !9 will print
a "?" and return to its command level.

If invoked with the comma~ name '-', (s!e init) !2 will
sign on with the message Editing system and print "*"
as the command level prompt character.

Ed has size limitations on the maximum number of lines
that can be edited, and on the maximum number of charac
ters in a line, in a global's command list, and in a
remembered file name. These limitations vary with the
physical core size of the PDP11 computer on which .!.9 is
being used. The range of limiting sizes for the above
mentioned items is; 1300 - 4000 lines per file, 256 - 512
characters per line, 63 - 256 characters per global com
mand list, and 64 characters per file name.

FILES
/tmp/etm?
/etc/msh

temporary
" " to implement the I command.

DIAGNOSTICS "?" for any error

- 6 -

EXIT(I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 EXIT(I)

exit terminate command file

~

~ performs a ~ to the end of its standard
input file. Thus, if it is invoked inside a file
of commands, upon return from ~ the shell will
discover an end-of-file and terminate.

if(I), qoto(I), sheIl

- 1 -

FACTOR (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

1/15/73 FACTOR (I)

factor discover prime factors of a number

factor

" " When factor is invoked, it types out Enter: at
you. If you type in a positive number less than
2

A
S6 (about 7.2E16), it will repeat the number

back at you and then its prime factors each one
erintedftthe proper number of times. Then it says
Enter: again. To exit, feed it an EOT or a

delete.

Maximum time to factor is proportional to sqrt(n)
and occurs when n is prime. It takes 1 minute to
factor a prime near 10

A
13.

" ft Ouch. for input out of range or for garbage
input.

- 1 -

FC (I)

NAME

SYNOPSIS

DESCRIPTION

9/1/72 FC (I)

fc fortran compiler

fc [=s] sfile1~ ••• ofile1 •••
1£ is the UNIX Fortran compiler. It accepts
three types of arguments:

Arquments whose names end with ".f" ·are assumed
to be Fortran source program units; they are com
piled, and the object program is left on the file
sfile1 .o (i.e. the file whose name is that of
the sOurce with ".0" substituted for ".f").

(" " Other arguments except for -c) are assumed to
be either lOader flags, or object programs, typi
cally produced by an earlier fc run, or perhaps
libraries of Fortran-compatible routines. These
programs, together with the results of any compi
lations specified, are loaded (in the order
given) to produce an executable program with name
a.out.

The "-c" argument suppresses the loading phase,
as does any syntax error in any of the routines
beinq compiled.

The followinq is a list of differences between !2
and ANSI standard Fortran (also see the BUGS
section) :

1. Arbitrary combination of types is allowed in'
expressions. Not all combinations are expect
ed to be supported at runtime. All of the
normal conversions involving integer, real,
double precision and complex are ·allowed.

2. The ·standard' implicit statement is recog
nized.

3. The types doublecomplex, loqical*1, integer*2
and real*8 (doubleprecision) are supported.

4. ~ as the first character of a line signals a
continuation card.

5. g as the first character of a line signals a
comment.

6. All keywords are recognized in lower case.

7. The notion of 'column 7' is not implemented.

8. G-format input ·is free form-- leadinq blanks
are ignored, the first blank after the start
of the number terminates the field.

-.1 -

Fe (I)

FILES

SEE ALSO

DIAGNOSTICS

9/1/72 FC (I)

9. A comma in any nUmeric or logical input field
terminates the field.

10. There is no carriage control on output.

In I/O statements, only unit numbers 0-19 are
!upporte9. Uni t numbe r !!D corrf! sponds .. to f.ile
fortnn; (e.g. unit 9 is file fort09). For

input, the file must exist; for output, it will
be created.

Unit 5 is. permanently associated with the'stan
dard input file; unit 6 with the standard output
file.

f1le.f
a.out
f. tmp[1 23]
/usr/fort/fc[1234]
/usr/lib/frO.o
/usr/lib/filib.a
/usr/lib/libf.a
/usr/lib/liba.a

ANSI standard

input file
loaded output
temporary (deleted)
compilation phases
runtime startoff
interpreter library
builtin functions, etc.
system library

Compile-time diagnostics are given by number. If
the source code is available, it is printed with
an underline at the current character pointer.
Errors possible are:

1 statement too long
2 syntax error in type statement
3 redeclaration
4 missing (in array declarator
5 syntax error in dimension statement
6 inappropriate or gratuitous array de-

clarator
7 syntax error in subscript b~und
8 illegal character
9 common variable is a parameter or already

in common
10 common syntax error
11 subroutine/blockdata/function not first

statement
12 subroutine/function syntax error
13 block data syntax error
14 redeclaration in external
15 external syntax er~or
16 implicit syntax error
17 subscrip~ on non-.array
18 incorrect subscript count
19 subscript out of range
20 subscript syntax error
21 DATA syntax error
22 DATA semantics error
23 Illegal variable in DATA

- 2 -

FC (I) 9/1/72

23 equivalence inconsistency
24 equivalence syntax error
25 separate common blocks equivalenced
26 common block illegally extended b¥

equivalence
27 common inconsistency created by

equivalence
28 DATA table overflow
29 () imbalance in expre ssion
30 expression syntax error
31 illegal variable in equivalence
32 Storage initialized twice by DATA
33 non array/function used with

subscripts/arguments
35 goto syntax error
37 illegal return

FC (I)

38 continue, return, stop, call, end, or
pause syntax error

39 assign syntax error
40 if syntax error
41 I/O syntax error
42 do or I/O iteration error
43 do end missing
50 illegal statement in block data
51 multiply defined labels
52 undefined label
53 dimension mismatch
54 expression syntax error.
55 end of statement in hollerith constant
56 array too large
99 ~ table overflow
101 unrecognized· statement

Runtime diagnostics:

1 invalid log argument
2 bad arg c.ount to amod
3 bad ·arg count to atan2
4 excessive argument to cabs
5 exp too large in cexp
6 bad arg count to cmplx
7 bad arq count to dim
8 excessive argument to exp
9 bad arq count t~ idim
10 bad arq count to isign
11 bad arg count to mod
12 bad arq count to sign
13 illegal argument to sqrt
14 assigned/computed goto out of range
15 subscript out'of range
16 real**real overflow

100 illegal I/O unit number-
101 inconsistent use of I/O unit
102 cannot create output file
103 cannot open input file

- 3 -

FC (1)

BUGS

9/1/72 FC (1)

104 EOF on input file
105 illegal character in format
106 format does not begin with (
107 no conversion in format but non-empty

list
108 excessive parenthesis depth in format
109 illegal format specification
110 illegal character in input ·field
111 end of format in hollerith specification
999 unimplemented input conversion

The followinq is a list of those features not yet
implemented:

ar1 thInetic statement functions

backspace, endfile, rewind runtime

binary I/O

no scale factors on input

- 4 -

FED (I)

NAME

SYNOPSIS

DESCRIPTION

1/15/73 FED (I)

fed -- edit associative memory for form letter

fed is used to edit a form letter associative
memory file,form.m, which consists of' named
strings. Commands consist of single letters fol
lowed .by a list of string names separated by a
single space and e·nding with a new line. The
conventions of the Shell with respect to '*' and
'?' hold for all commands but m where literal
string names are expected. The commands are:

e name1 •••

.!!dit writes the string whose name is name
1 onto a temporary file and executes the sys

tem editor~.. On exit from the system edi
tor the temporary file is copied back into
the associative memory. Each argument is
operated on separately. The sequence of
commands to add .the string from 'file' to
memory with name 'newname'- is as follows:

e newname
o (printed by ed)
r file
200
w
200
q (get out of ed)
q (get out of fe)

To dump a string onto a file:

e name
200 (printed by ed)
w filename
200
q
q

d [name1 •••]

(g·et out of ed)
(get out of fe)

geletes a string and its name from the
memory. When called with no arguments ~
operates i·n a verbose 'mode typing each
string name and deleting only if a 'y' is
typed. A 'q' response returns to fed's com
mand level. Arty other response does noth
ing.

- 1. -

FED (1)

FILES

SEE ALSO

DIAGNOSTICS

BUGS

WARNING

1/15/73 FED (1)

m name1 name2 •••

(move) changes the name of name
1

to name
2 and removes previous string name if one

exists. Several pairs of argume6ts may be
given.

n [name
1

•••]

(~ames) lists the string names in the
memory. If called with the optional argu
ments, it just lists those requested.

p name1 •••

Erints the contents of the strings with
names given by the arguments.

q (guit) returns to the system.

c [.e) [!]

£hecks the associative memory file for con
sistency and reports the number of free
headers and blocks. The optional arguments
do the following:

p causes any unaccounted for string to be
printed

f fixes broken memories by adding
unaccounted-for headers to free storage
and removing references to released
headers from associative memory.

/tmp!ftmp? temporary
form.m associative memory

form(I), ed(l),sh(I)

'?' unknown command
'Cannot open temp. file'-- cannot create a tem
porary file for ed command
'name not in memory.' if string 'name' is not in
the associative memory and is. used as an argument
for 9 or m.

It is legal but an unwise idea to have string
names with blanks, ":" or "?" in them.

- 2 -

FORM (I)

NAME

SYNOPSIS

DESCRIPTION

6/15/72 FORM (I)

form -- form letter generator

!E.!m proto a rq 1 •••

form generates a form letter from a prototype
retter, anassoeiative memory, arguments and in a
special case, the current date.

If -!2.!:!!1 is invoked' with the proto argument ~x',
the associative memory is' searched for an entry
wlthname 'x' and the contents filed under that
name are used as the prototype. If the search
fails, the message "[x]:" is typed on the console
and'whatever text is typed in from the console,
term-inated by two new lines, is used as the pro
totype.

If the prototype argument is missing, '{letter}'
is assumed.

BaSically, !2!!!! is a copy process from the proto
type to the output file. If an element of the
form [n] (where,!! is a digit from 1 to 9) is
encountered, the ,!!th argument arg is inserted in
its place, ,and that argument 1s tHen rescanned.
If {oJ is encountered, the·current date is in
serted. If the desired ·argument ha,s not been
given, a message of the form "[n]:" is typed.
The response typed in then is used for· that argu
ment.

If an element of the form [name] or {name} is,
encountered, the name is looked up in the associ
ative memory. If it is found, the contents of
the memory under this name replaces the original
element (a9ain rescanned). If the .name is not .. ']" found, a message of the form . [name: is. typed.
The response typed in is used for that element.
The response is entered in the memory under the
name if the name is enclosed in []. The response
is· not entered in_the memorY but is remembered
for the duration of the letter if the name is
enclosed in {}.

In both of the above cases, the response is typed
in by entering arbitrary text terminated by two
new lines. only the first of the two new lines
is passed with the text.

If one of the special characters [{]}\ is preced
ed by a \, it loses its special character.

If a file named "forma" already exists 1n the

1 -

FORM (I)

FILES

SEE ALSO

DIAGNOSTICS

BUGS

6/15/72 FORM (I)

. n n
users directory, forwb isnused as the output
file and so forth to formz.

" " The file form.m is created if none exists.
Because form.m is operated on by the disc allo
cater, it should only be chanqed by usinq £!.g,
the form letter editor, or ~.

form.m
form?

associative memory
output file (read only)

fed(I), type(I), roff(I)

"cannot open output file" "cannot open memory
file" when the appropriate files cannot be locat
ed or created.

An unbalanced] or } acts as an end, of file but
may add a few stranqe entries to the associative
memory.

- 2 -

FORML (I)

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

10/24/72 FORML (I)

forml [name] •••

A streamlined program for typing form letters.
The names pick out pre stored . form letters
prepared according to the conventions of ~ and
~. The program prompts to get each blank
filled i~. When al! the forms are. completed, it
prompts Set paper. It waits for a newline be
fore printing each letter.

If more than one name is given, the name of each
letter is :announced before the prompts for it
begin. If no na·mes are given, the program asks
" . " which letter? before each. Respond with the
name and a newline, or newline only when done.

On a 2741 type terminal, the program assumes the
letter is to bet~ped with a correspondence ball,
and also prompts Change ball." Replace the ball
at the end.

form.m (memory),
forma, formb, ••• temporaries

form(l), fed(l), roff(l)

"Try again"--can't qet a process

- 1 -

GOTO (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 GOTO (I)

goto command transfer

goto label

goto is only allowed when·the Shell is takin~
commands from a file. The file is searched {from
the beginninq} for' a line beginninq with":" fol
lowed by one or more spaces followed by the
'label. If such a' line is found, the Sloto command
returns. Since the read pointer in the command
file points to the line after the label, the
effect is to cause the Shell to transfer to the
'labelled line.

" " : is a do-nothing command that only serves to
place a label.

sh(I), :(I)

" " goto error , 1f the input file is a typewriter;
" " label not found •

- 1 -

HYPHEN (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

1/15/73 HYPHEN (I)

hyphen find hyphenated words

hyphen f11e 1 •••

It finds all of the words in a document which are
hyphenated across lines and prints them back at
you in a convenient format. .

If no arguments are given, the standard input 1s
used. Thus hyphen may be used as a filter.

yes

yes, it gets confused, but with no ill effects
other than spurious extra output;

- 1 -

IF (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 IF (I)

if conditional command

if expr command [arq1 •••]

g evaluates the expression ~, and if its
value is~, executes the given command with
the given arguments.

The following primitives are used to construct
the ~:

:I file
true if the file exists and is readable.

~ file
true if the file exists and is writable

s1 .: s2
true if the strings .!..1 and ~ are equal.

s1 .!..: s 2
true if the strings .!..1 and .!1 are not
equal.

These primaries may be combined with the follow
ing operators:

1
unary negation operator

binary !nS opezator

binary 2£ operator

lexprl
parentheses for grouping.

=! haa higher precedence than :2.' Notice that
all the operators and flags are separate argu
ments to !! and hence must be surrounded by
spaces.

sheIl

"if error", if the expression has the wrong
" " syntax; command not found.

- 1 -

LD (I)

NAME

SYNOPSIS

DESCRIPTION

3/15/72 LD (I)

ld link editor

ld [-sulxr] name1 • • •

12 combines several object programs into one;
resolves external references; and searches li
braries. In the simplest case the names of
several object programs are given, and ld com
bines them, producing an object module which can
be either executed or become the input for a
further ld run. In the latter case, the "-r"
option must be given to preserve the relocation
bits.

The argument routines are concatenated in the
order specified. The entry point of the output
is the beginning of the first routine.

If any argument is a library, it ·is searched
exactly once. Only those routines defini'ng an
unresolved external reference are loaded. If a
routine from a library references another routine
in the library, the referenced routine must ap
pear after the referencing routine in the li
brary. Thus the order of programs within li
braries is important.

ld understands several"f!ag arguments which are
written preceded by a -:

-s "squash" the output, that is, remove the
symbol table and relocation bits to save
space (but impair the usefulness of the
debugger). This information can also be
removed by strip.

-u take the following argument as a symbol and
enter it as undefined in the symbol table.
This is useful for loading wholly from a
library, since initially the symbol table
is empty and an unresolved reference is
needed to force the loading of the first
routine.

-1 This option is an abbreviation for a li
brary name. "-1" alone stands for
"/usr/lib/liba.a", which is the standard
system libra~ for assembly language pro-

" " " / " grams. -lx stands for /usr/lib libx.a
where x is any character. There are li
braries for Fortran (x="f"l, C (x="c"),
Explor (x="e") and B (x="b).

-x Do not preserve local (non-.globl) symbols
in the output symbol table; only enter
external symbols. This option saves some

- 1 -

LD (I)

FILES

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 LD (I)

space in the output file.

-r generate relocation bits in the output file
so that it can be the subject of another 19
run.

The output of Id is left on a.out. This file is
executable onlY-if no errors occurred during the
load.

/usr/lib/lib?a libraries
a.out output file

asCI), ar(I)

"file not found"-- bad arqument

"bad format"-- bad argument

" " (relocation error -- bad argument relocation
bits corrupted)

" " multiply defined -- same symbol defined twice in
same load

"un"- stands for "undefined symbol"

" " symbol not found ~ loader bug

"can't move output file"- can't move temporary
to a.out file

"no relocation bits"- an input file lacks relo
cation information

" " . too many symbols - too many references to
external symbols in a given routine

" " prem~ture EOF

"can't create l.out"-- cannot make temporary file

"multiple entry point"-- more than one entry
pOint specified (not possible yet).

2 -

LN (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 LN (I)

In make a link

In name1' [name2]

ln creates a link to an eXisting .file name. If
name2 is given., the link, has that name; ot~erwise
it i~ placed in the current directory and its
name is the last component of name1 •

It is forbidden to link to a directory or to link
across file systems.

rm(I)

" .. ?

There is nothing particularly wrong with ln, but
links ,don't work right with respect to the-backup
system: one copy i$ backed up ,for each link, and
(more serious) in case of a file system reload
both copies are restored and the information that
a link was involved is lost.

- 1 -

LOGIN (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 LOGIN (I)

login sign onto UNIX

login [username [password]]

The login command is used when a user initially
signs onto UNIX,or it may be used at any time to
change from one user to another. The latter case
is the onesummar1zed above and described here.
See "How to Get started" (P. vi) for how to dial
up initially.

If login is invoked without an argument, it will
ask for a user name, and, if appropriate, a pass
word. Echoing is turned off (if possible) during
the typing of the password, so it will not appear
on the written record of the session.

After a successful login, accounting files are
updated and the user is informed of the existence
of mailbox and message-of-the-day files.

Login is recognized by the Shell and executed
directly (without forking).

/tmp/utmp
/tmp/wtmp
mailbox
/etc/motd
/etc/passwd

accounting
accounting
mail
message-of-the-day
password file

init(VII),getty(VII), mail(I)

" " . . login incorrect , if the name or the password is
ead. "NO Shell,", "cannot open passw~rd file,"

no directory: consult a UNIX programming coun
Cilor.

- 1 -

LS (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 LS (I)

ls list contents of directory

ls [-ltasd] name
1

•••

ls'lists the contents of one or more directories
\i'D:ier control of several options:

-1 list in long format, giving i-number, mode,
owner, size in bytes, and time of last
modification for each file. (see stat for
format of the mode) -

~t sort by time modified (latest first) instead
of by ~ame, as 1s normal

-a list all entries; usually those beginninq
H H\

with • are suppressed '

-s qive,size in blocKs for each entry

-d if argument ,is a directory, list only its
name, not its contents (mostly used with
"-1" to qet status on directory)

" " If no argument is given, • is listed. Ifan
argument is not a directory, its name is given.

/etc/passwd to get user ID's for ls -1

stat(I)

"name nonex1stent"; "name unreadable";
unsta table.

- 1 -

" name

M6 (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

11/15/72 M6 (I)

m6 general purpose macro processor

m§ [=£ arg1 J [arg2 [arg3] J

m§ takes input from file arg2 (or standard input
if arg2 is missing) and places output on file
arq3 (or stangard o~tput). A workinq file of
definitions, m.def, is initialized from file
arq1 if that is supplied. M6 differs from the
standard [1J in these respects:

.Itrace:, Isource: and lend: are not defined.

Imeta,arq1,arq2: transfers the role of metachar
acter arg1 to character arq2. If two metacharac
ters become identical thereby, the outcome of
further processinq is not quaranteed. For exam
ple, to make [J{} play the roles of #:<> type

\#meta,<\#>,[:
[meta, < : >,] :
[meta,[substr,«»,1,1;,{]
[meta,[substr,{{»,2,1;,}]

Idel,arq1: deletes the definition of macro arq1.

#save: and #rest: save and restore the definition
table together with the current metacharacters on
file m.def.

#def,arq1,arq2,arg3: works as in the standard
with the extension that an integer may be sup
plied to arg3 to cause the new macro to perform
the action of a specified builtin before its
replacement text is evaluated. Thus all builtins
except #def: can be .retrieved even after dele
tion. Codes for arg3 are:

o - no function
1,2,3,4,5,6 - qt,eq,ge,lt,ne,le
7,8 - seq,sne
9,10,11,12,13 - add,sub,mpy,div,exp
20 - if
21,22 - def,copy
23 - meta
24 - size
25 - substr
26,27 -go,gobk
28 - del
29 - dnl
30,31 - save,rest

m.def--working file of definitions
/usr/lang/mdir/m6a--m6 processor proper
(/usr/bin/m6 is only an initializer)
/usr/lanq/mdir/m6b--default initialization for

- 1 -

M6 (I)

SEE ALSO

DIAGNOSTICS

BUGS

11/15/72 M6 (I)

m.def
/bin/cp--used for copying initial value of m.def

[1] A. D. Hall, The M6 Macroprocessor, Bell Tele
phone· Laboratories, 1969

" " err -- a bug, an unknown builtin or a bad de-
finition table
" " , oprd --can t open input or initial definitions
" " ., opwr --can t open output
" " ova -- overflow of nested arguments
" " ovc -- overflow of calls
"ovd" -- overflow of definitions
" . " Try again -- no process available for copying
m.def

Characters in internal tables are stored one per
word. They really should be packed to improve
capacity. For want of space (and because of
unpacked formats) no file arguments have been
provided to Isave: or Irest:, and. no check is
made on the actual opening of file m.def. Again
to save space, garbage collection makes calls on
Isave: and 'rest: and so overwrites m.def.

- 2 -

MAIL (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

10/25/72

mail send mail to another user

mail [-yn]
maTI letter person
mail person

•••

MAIL (I)

mail without an argument searches for a file
called mailbox, prints it if present, e.n~ ask-s if
it should be saved. If the answer is y.f the
mail is renamed ~, otherwise it is deleted.
!:1!!1 with a -yn argument works the same way,
except that the answer to the question is sup
plied by the argument.

When followed by the ·names of a letter and one or
more people, the letter is appended to each
person's mailbox. When a person is specified
without a letter, the letter is taken from the
sender's standard ·input up' to an EOT. Each
letter is preceded by the sender's name and a
postmark.

A person is either a user name recognized by
login, in which case the mail is sent to the
default workinq directory of that user, or the
path. name of a directory, in which case mailbox
in that directory is used.

When a user logs in he is informed of the pres
ence of mail.

/etc/passwd

mailbox
mbox

login(I)

to identify sender
to locate persons
input mail
saved mail

.. . ..
Who are yOU? if the user cannot be identified

for some reason (a bug). "~annot send to user"
if mailbox cannot be opened.

- 1 -

MAN (I)

NAME

SYNOPSIS

DEseRI PTION.

FILES

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 MAN (I)

man -- run off section of UNIX manual

m!n title [section]

ID!n is a shell command file that will locate and
runoff a particular section of this manual.
Title is the the desired part of the manual.
Section is the section number of the· manual. (In
ArabiC, not Roman numerals.) If section is miss
ing, ! is assumed. For example,

man man

would reproduce this page.

/sys/man/man?/*

sh(I), roff(I)

"File not found", " " Usage ••

- 1 -

MESG (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 MESG (I)

mesg permit or deny messages

mesg n forbids messages via write by revoking
non-user write permission on the user·'s typewrit
er •. mesg ~ reinstates permission. mesq with no
argument reverses the current permission. In all
cases the previous state is reported.

/dev/tty?

write(I)

" " ? if the standard input file 1s not a typewrit-
er

- 1 -

MKDIR (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 MKDIR (I)

mkdir make a directory

mkdir dirname •••

mkdir creates specified directories in mode 17.

The standard entries
tomatically.

rmdir(I)

"dirname ?"

- 1 -

" " • and W •• " are made au-

MT (I)

NAME

SYNOPSIS

DESCRIPTION

6/1 2/72 MT (I)

mt manipulate magtape

~ [key] [name •••]

mt saves and restores selected portions of the
file system hierarchy on magtape. Its "actions
are controlled by the keyarqument. The key is a
string of characters containing at most one func
tion letter and possibly one or more function
modifiers. Other arguments to the command are
file or directory names specifying "which files
are to be dumped, restored, or tabled.

The function portion of the key is specified by
one of the following letters:

r The indicated files and directories, to
gether with all subdirectories, are dumped
onto the tape. The old contents of the
tape are lost.

x extracts' the named files from the tape to
the file system. The owner, mode, and
date-modified are restored to what they
were when the file was dumped. If no file
argument is given, the entire contents of
the tape are extracted.

t lists the names of all files stored on" the
tape which are the same as or are hierarch
ically below the file arguments. If no
file arqument is given, the entire contents
of the tape are tabled.

1 is the same as ~ except that an"expanded
listing is produced giving all the avail
able information about the listed files.

The following characters may be used in addition
to the letter which selects the function desired.

0, ••• , 7 This modifier selects the drive on
which the tape is mounted. "0" is the
default.

v Normally ms does its work silently. The ~
(verbose) 'option causes it to type the name
of each file it treats preceded bya letter
to indicate what is happening.

a file is being added
x file is being extracted

The :! option can be used with ~ and ~ only.

f causes new entries copied on tape to be

- 1 -

MT (1)

FILES

SEE ALSO

DIAGNOSTICS

BUGS

6/1 2/72 MT (I)

'fake' in that only the entries, not the
data associated w·ith the entries are updat

. ed. Such fake entries cannot be extracted.
Usable only with £.

w causes m! to pause before treating each
file, type the indicative letter and the
file name (as with.Yl tndawaik tht user~s
response. Response y means yes , so the
file is treated. Null response means "no",
and the file does not take nart in whatever

" 'it "" is being done. Response x means exit;
the IDS command terminates immediately. In
the ~ function, files previously asked
about have been extracted already. With~,
no change has been made to the tape.

m make (create) directories during an ~ if
necessary •

/dev/mt?

tap(I), tap(v)

Tape open .error
Tape'read error
Tape write error
Directory checksum
Directory overflow
Seek error
Tape overflow .
Phase error (a file has changed after it was
selected for dumping rut before it was dumped)

If, during an "x", the files are specified in a
different order than they are on the tape, seek
errors will result because the tape cannot be
rewound.

- 2, -

MV (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

2/9/73 MV (I)

mv move or rename a file

!uy name1 name2

!uy chanqes the name of name1 to name2 • If name2 is a directory, name! is moved to th3t directory
with its original fi e-name. Directories may
only be moved within the same parent directory
(just renamed).

DIAGNOSTICS yes

BUGS

- 1 -

NM (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 NM (I)

nm print name list

1l!!! [name]

1l!!! prints the symbol table from the output file
of an assembler or lo·a~er run. Each symbol name
is preceded by its value iblanks· if undefined)
and one of the letters "u (undefined) "A" (abso
lute) "T" (text segment symbol), "0" (data seg
ment symbol), or "B" (bss segment . symbol). Glo
bal symbols have their first character under
lined. The output is sorted alphabetically.

If no file is given, the symbols in a.out are
listed.

a.out

as (I), ld (I)

" " ?

- 1 -

NROFF (I) 1/15/73 NROFF

REQUEST REFERENCE AND INDEX

Request Initial If no Cause
~ Value Argument Break Explanation

I. Page <l:>ntrol

.pl .±N N=66 N=66 no . Page ~ength.

.bp .±N N=1 yes Begin fage •
• pn .±N N=1 ignored no fage liumber •
.po .±N N=O N=prev no fage Qffset.
• ne N N=1 no ~ed N lines •

II • ~ Filling, Ad 1usting, and Centering

• br yes ~eak.
.fi fill yes £:111 output lines.
.nf fill yes lio!:ill.
.ad c adj,norm adjust no ~just lrode on.
• na adjust no .t!0~djust •
.ce N off N=1 yes gnter N input text lines.

III. Line Spacing ~ Blank Lines

• ls .±N
.sp N
.lv N
.sv N
• os
• ns
• rs
.xh

N=1

space

off

N=prev
N=1
N=1
N=1

no
yes
no
no
no
no
no
no

IV • ~ Length and 100 ent ing

.11 .tN
• in .tN
• ti .±N

N=65
N=O

N=prev
N=prev
N=1

no
yes
yes

Line .§pacing •
SPace N lines
OR-
.§.aye N lines.
Qutput ~aved lines •
No-§.p ace mode on •
,Restore .§pacing •
~tra-1!alf-line mode on.

!tine !tength.
~ent •
l:emporary.!ndent •

V. Macros, Diversion, and Line Traps

.de xx ignored no DEfine or redefine a macro.
• rm xx
.d1 xx end
• wh =N xx
.ch =N =M
.ch xx -M
.ch =N y
.ch xx y

VI. Number Registers

.nr a +N -M

.nr ab-+N--M

.nc c - \n
• ar arabic

\n

no
no
no
no
no
no
no

no
no
no
no

ReJ:!ove macro name •
Rlvert output to macro
WHen-- , set a line trap.
OR-
OR-
OR-
gange trap line.

OR-
l!umber Register.
~umber ~haracter.
Arabic numbers •

A1 -

" " xx •

(I)

NROFF (I)

.ro

.RO
arabic
arabic

no
no

1/15/73

Roman numbers.
ROMAN numbers.

NROFF (I)

VIr. Input 1!.!l9 Output CDnventions and Character Translations

• ta
• tc
• lc
.ul
• cc
.c2
.li
• tr

N,M, •••
c space
c •
N
c •
c •
N
abcd ••••

none
space
•
N=1
• •
N=1

VIII. Hyphenation.

• nh
• hy
• hc c

on
on
none none

IX. Three ~ Titles •

• tl 'left 'ceat.er'right·
• It N N=65 N=prev

X. output ~ Numbering.

.nm .±N M S I
~np M S I

off
reset

no
no
no
no
no
no
no
no

no
no
no

no
no

no
no

Pseudolabs setting •
lab replacement ~haracter •
~eader replacement ~aracter •
UNderline input text lines.
Basic ~ontrol Character •
Nobreak control character.
Accept input lines yt erally.
TRanslate on output •

lIo liYPh en •
Hyphenate •
~yphenation indicator ~aracter •

TitLe.
~ength of ~itle •

.Humber ,!1ode on or off, set parameters.

.Humber ~arameters set or reset.

XI. Ck>nditional Input ~ Acceptance

.if c anything

.1f !c anything
• if N anything
• if ! N anything

no
no

·no
no

XII. Environment SWitching.

.ev N N=O N=prev no

OR
OR-

OR- "" 1l true accept line of anything •

~nXironment switched.

XIII. Insertions from the Standard Input Stream

• rd prompt bell
• ex

XIV. Input ~ SWitching

• so filename
.nx filename
.sp
XV. Miscellaneous

.1g
• fl
.ab

no
no

no
no

no
no
no

ReaD insert •
Exit •

Switch ~urce file (push down) •
!i~t file.

~nore.
nush output buffer •
Mort.

A2 -

OD (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

1/15/73 OD (I)

od octal dump

29 [-abcdho] [file] [[±] offset[.!.] []a]]

od dumps file in one or more formats as selected
bY the fi~argument. (If the first argument is
missing, =2 is default.) The meaninqs of the for
mat arqument characters ares

a interprets words·asPDP-11 instructions and
dis-assembles the operation code. Unknown
operation codes print as'???

b interprets bytes in octal.

S interprets bytes in' ascii. Unknown ascii
charac.ters are printed as \?

.9 interprets words in decimal •

l:! interprets words in hex.

2 interprets words in octal.

The file arqument specifies which file is to be
dumped. If no file arqument is specified, the
standard inpu.t is used. Thus od can be used as a
filter.

The offset·argument specifies the offset in the
file where dumpinq is to commence. This arqument
is normally interpreted as octal bytes. If'.'
is.appended. the offset is.interpreted in de
cimal. If b' i8 appended, the offset is inter
preted in blocks. (A block is 512 bytes.) If the
file argument is omitted, the offset argument
must be preceded by , +'. .

Dumpinq continues until an end-of-file condition
or until halted by sending an interrupt siqnal.

db(I)

- 1 -

OPR (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

1/15/73 OPR (I)

opr -- off line print

opr [=] [=] [±] I +-) file 1 •••

opr will arrange,to have the 201 data phone dae
mon su1::mit a "job to the Honeywell 6070 to print
the file arguments. ' Normally, 'the' output appears
at the GCOS central site. If the first argument
is ==. the output is remoted to station R1 •
(Station R1 has a 1403 printer.)

Normally. each file is printed in the state it is
found when the data phone daemOn' reads it. If a
particular file' argument is preceded by ±, or a
preceding argument of ± has been encountered.
then opr will make ,a copy for the daemon to
print. If the file argument is preceded b¥ =, or
a preceding arqument of = has been encountered,
then opr will unlink (remove) the file.

If there are no arguments except for the optional ==, then the standard input is read and off-line
printed. Thus opr may be used as a filter.

/usr/dpd/*
/etc/passwd
/etc/dpd

spool area
pe'rsonal ident cards
daemon

dpd(I), passwd(V)

- 1 -

OV (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

6/12/72 OV (I)

ov overlay pages

2Y [file]

ov is a postprocessor for producing double column
rormatted text when using nroff (I). Q.Y li terally
overlays successive pairs of 66-line pages.

If the file argument is missinq, the standard
input is used. Thus 2Y may be used as a filter.

none

nroff(I), pr(I)

none

Other page lengths should be permitted.

- 1 -

PASSWD '(I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

9/1/72 PASSWD (I)

passwd set loqin password

passwd name password

The password is plac'ed on the given login name.
,This can only be done by the user ID correspond
ing to the login name or p.Y the super-user. An

"") explicit null argument (for the password
argument will remove any password from the login
name.

, /etc/passwd

login(I) t pa'sswd (V) t crypt (III)

Diagnostics are given for a non-match of the
login name, lack of permission and for password
file format errors.

- 1 -

PR (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS.

1/15/73 PR (I)

pr print file

:e.£ L=~] [-h name] [=n] [±n] [file1 •••]

l2£ produces a printed listing of o·ne or more
files. The output is separated into pages headed
by a date, the name of the file or a header (if
any), and the page number. If there are no file
arguments, ~ prints the'standard input file, and
is thus usable as a filter.

Options apply to all following files but may be
reset between files:

=£ print current date
=m print date file last modified (default)

=n produce n-column output

±n.begin printing with page n

=b treats the next argument as a header

If there is a header in force, it is printed in
place of the file name.

Interconsole messages via write{I) are forbidden
during a.e.£.

/dev/tty? to suspend messages.

ca t (I), cp (I) ,

none (files not found are ignored)

In multi-column output, non-printing 'characters
other than new-line cause misalignment.

- 1 -

PROOF (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

1/15/73

proof -- compare two text files

proof oldfile newfile

PROOF (I)

proof lists those lines of newfile that diffe'r
from corresponding lines in oldfile. The line
number in newfile is given. When changes, inser
tions or deletions have been made the program
attempts to resynchronize the text in the two
files by finding a sequence of lines in both
files that again agree.

cmp(I)

" " yes, but they are undecipherable, e.g. ?1 •

proof is stillevolvinq. Any bugs discovered or
'" ~sugqestions should be brought to ENP.

- 1 -

RELOC (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

2/7/73 RELOC (I)

reloc relocate object files

reloc file [=]octal [=]

reloc modifies the named object program file so
that it will operate correctly at a different.,
core origin than the one for which it was assem
bled or loaded.

The new core origin is the old origin' increased
by the given octal number (or decreased if·the
num be r ha s a " - " sign).

If the object file was generated by the link-
" " editor ld, 'the -r ld option must have been

given to preserve the relocation information in
the file.

If the optional last argument is given, then any
"setd" instruction at the start of the file will
be replaced by a no-oPe

The purpose of this command is to simplify the
preparation of object programs for systems which
have .no relocation hardware. It is hard to ima
gine a situation in which it would be useful to
attempt directly to execute a program treated by
reloc.

asCI), ld(I), a.out{V)

As appropriate

- 1 -

REW (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

1/15/73 REW (I)

rew rewind tape

~ [[m]diq1t]

~ rewinds DECtape or magtape drives. The digit
is the logical tape number, and should range from
o to 7. If the' digit 1.s preceded by 'm', ~
applies to magtape rather than DECtape. A miss
ing digit indicates drive O.

/dev/tap?
/dev/mt?

.. ..
? if there is no tape mounted on the indicated

drive or if the file cannot be opened.

- 1 -

RM (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

1/20/73 RM (I)

rm remove (unlink) files

•••

m removes the entries for one or more files from
a directory. If'an entry was the last link to
the file,· the file is destroyed. Removal of a
file requires write permission in its directory,
but neither read nor write permission on the file
itself.

If there is no write permission to a file desig
nated to be removed,!m will print the file name,
its mode and then read a line from the standard
input. If· the line begins with 'y', the file is
removed, otherwise' it is not. The optional argu
ment =! prevents the above interaction.

If a deSignated file is a directory, an error
comment is printed unless the optional argument
-rhas been used. In that case, !l!! recursively
deletes the entire contents of the specified
directory. To remove directories per se see
rmdir(I).

/etc/glob to implement :[flag

rmdir(I)

:name: non existent"
name: not removed" if cannot remove

" " name: try again error from fork

When rm removes the contents of a directory under
the ~ flag, full pathnames are not printed in
diagnostics.

- 1 -

RMDIR (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 RMDIR (I)

rmdir remove directory

rmdir dir1 •••

rmdlr removes (deletes) directories. The direc
tory must be empt~ (except for the standard en
tries" ." and " •• , which rmdir itself removes).
Write permission is required in the directory in
which the directory appears.

none

" " . dir? is printed if directory dir cannot be
found, is not a directory, or is not removable.

" " dir -- directory not empty is printed if _dir
"" "" has entries other than • or •••

- 1 -

ROFF (I)

NAME

SYOOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

6/12/72 ROFF (I)

roff format text

roff [±number] [.:!] [-h] file1 •••

~ formats text according to control lines
embedded in the text in files name t ••••

Encountering a nonexistent file tetminates print-
" " ing. The optional argument ±number causes

printing to begin at the first eag~ with that
number. The optional argument .::! causes print
ing to stop before each page including the first
to allow paper manipulation; printing is resumed
upon receipt of an interrupt signal. The option-

" " al argument -h causes the output to cont ain
horizontal tabs for two or more spaces that end
on a tab stop. An interrupt signal received dur
ing printing terminates all printing. Incoming
interconsole messages are turned off during
printing, and the original message acceptance
state is restored upon termination.

At the present t1me~ there is no document
describing ROFF in full~ A Request Summary is
attached.

/ etc/ suft ab
/tmp/rtm?

none

suffix hyphenation tables
temporary

1 -

ROFF (I)

Request Break

• ad
.ar
.br

• bl n

• bp +n

• cc c
.ce n

.de xx

.ds

.ef t
• eh t
.f1
.fo
• hc c
• he t
• hx
.hy n

.ig

• in +n
• ix +n
.li n
.11 +n

.ls +n

.m1 n

.m2 n

.m3 n

.m4 n

.na

.ne n

• nn +n
.n1

• n2

• ni +n

yes
no
yes

yes

yes

no
yes

no

yes
no
no
yes
no
no
no
no
no

no

yes
no
no
no

yes

no

no

no

no

yes
no

no
no

no

no

1/15/73 ROFF (I)

REQUEST SUMMARY

Initial Meaning

yes
arabic

n=1

c= •

no
t='" ,
t='" ,
yes
t="''''
none
t =""

n=1

n=65

n=1

n=2

n=2

n=1

n=3

no

no

no

n=O

Begin adjusting right margins •
Arabic page numbers.
Causes a line break -- the filling of the
current line is stopped.
Insert cont iguous block of n bl ank lines •
If necessary, a new page will be started
to acconiodate the entire block •
Begin new page and number it n. If n is
not given, normal sequencing occurs.
Control character becomes 'c'.
Center the next n input lines, without
filling. " "
Define macro named xx (definition ends

" ") with a line beginning with •• •
" " Doubl e space; same as .ls 2 •

Even foot title becomes t.
Even head title becomes t •
Begin filling output lines.
All foot titles are t.
Hyphenation character set to 'c' •
All head t itl es are t •
Title lines are suppressed •
HYphenation is done, if n=1; and is not
done, if n=O.
Ignore input lines until and including a

" " line beginning with" •••
Indent n spaces from left margin •

" " Same as .in but without break •
Literal, treat nextn lines as text.
Line length including indent is n charac
ters.
Line spacing set to n lines per output
line.
n blank lines are put between the top of
a new paqe and the head title.
n blanks lines put between head title and
beginning of text on page.
n blank lines put between the end of text
and the foot title.
n bl ank lines put between the foot t itl e
and the bottom of page.
Stop adjusting the right margin.
Begin new page, if n output lines cannot
fit on pre~ent page.
The next n output lines are not numbered •
Output lines are numbered' s"equent ially
beginning with 1 on each n"ew page. Head
am foot titles are not numbered •
Output lines are numbered sequentially
beginning with 1 on the next output line •
Line numbers are imented n.

- A1 -

ROFF (I)

.nf yes
• nx filename
.of t no
.oh t no
• pa +n yes
.pl +n no
.po +n no

• ro no
.sk n no

.sp n yes

.ss yes

.ta N M •••

• tc c no
.ti +n yes

• tr abed •• no
.ul n no

no

t=""
t=""
n=1
n=66
n=O

arabic

yes

.. " c=

1/15/73 ROFF (I)

stop filling output lines.
" .. Change to input file filename •

Odd foot title becomes t.
Odd head title becomes t.
Same as .bp •
Total paper length taken to be n lines.
Page offset. All lines are preceded by N
spaces.
Roman page numbers •
n pages with head and foot titles but
otherwise blank will be output beginning
with the next page containing text.
Insert block of n blank lines. If the
bottom of a page is reached, remaining
lines are.n2:!: put on next page.
Single space output lines, equivalent to
.. n
.ls 1 •

Pseudotab settings. Initial tab settings
are columns 9,17,25,...
Tab replacement character becomes c •
Temporarily indent next output line n
spaces.
Translate a into b, c into d, etc •
Ur¥ierline the letters and numbers on the
next n input lines.

- A2 -

SH (I) 1/15/73 SH (I)

NAME sh shell (command interpreter)

SYNOPSIS !.b [name [arg 1 ••• [arg 9]]]

DESCRIPTION
sh is the standard command interpreter. It is the pro
gram which reads and arranges the execution of the com
mand lines typed by most users. It may itself be called
as a command to interpret files of commands. Before dis
cussing the arguments to the shell used as a command,. the
structure of command lines themselves will be given.

Command lines

Command lines are sequences of commands separated by com
mand delimiters. Each command is a sequence of non-blank
command arguments separated by blanks. The first argu
ment specifies the name of a command to be executed.
Except for certain types of special arguments discussed
below, the arguments other than the command name are
passed without interpretation to the invoked command.

If the first argument is.the name of Han ex!cutable file,
it is invoked; otherwise the string /bin/ is prepended
to the argument. (In this way most standard commands,
whlch reside in "/bin", are found.) If no .such command is
f,ound, the string"" /usr" is fu~ther prepended (to give
/usr/bin/command) and another attempt is made to exe-

(" " cute the resultini file. . Certain overflow commands
live in "/usr/bin.) If the "/usr/bin" file exists, but
is not executable, it is used by the shell as a command
file. That is to say it is executed as though it were'
typed from the console. If all attempts fail, a diagnos
tic is printed.

The remaining non-special arguments are simply passed to
the command without further interpretation by the shell.

Command delimiters

" " There are three command se!imiters: the new-line, ;,
and "&". The semicolon ; specifies sequential execu
tion of the commands so separated; that is,

coma; comb

causes the execution first of command ~, then of ~.
The ampersand "&" causes simultaneous execution:

coma & comb

causes ~ to be called, followed immediately by ~
without waiting for £2m! to finish. Thus coma and comb
execute simultaneously. As a special case-;--

coma &

- 1. -

SH (I) 1/15/73 SH (I)

causes coma to be executed and the shell immediately to
r·equest--ariOther command without waiting for ~ •.

Termination Reporting

Ifa command (not followed by ".&") terminates abnormally,
a message is printed. (All terminations other than exit
and interrupt are considered abnormal.) The following is
a list of the abnormal termination messages:

Bus error
Trace/BPT trap
Illegal instruction
lOT trap.
Power fail trap
EMT trap
Bad system call
Quit
PIR trap
Floating exception
Memory violation
Killed
User I/O
Error

If a ~ore image is produced, n -- Core dumped" is append
ed to the appropriate message.

Redirection 2! !/Q

Three character sequences cause the immediately following
string to be interpreted as a special argument to the
shell itself, not passed to the command.

An argument of the form "<arg" causes the file arg to be
used as the standard input file of the given command.

An argument of the form ")arg" causes file "arg" to be
used as the standard output file for the given command.
"" . Arg is created if it did not exist, and in any case is
truncated at the outset.

An argument of the form "»arg" causes file "arg" to be
used as the standard output for the given command. If
" " arg did not eXist, it is created; if it did exist, the
command output is appended to the file.

Pipes ~ Filters

A ~ is a channel such that information can be written
into one end of the pipe by one program, and read at the
other end by another program. {See:ei.e§! (II». A filter
is a program which reads the standard' input file, per
forms some transformation, and writes the result on the
standard output file. By extending the syntax used for
redirection of I/O, a command line can specify that the

- 2 -

SH (I) 1/15/73 SH (I)

output produced by a command be passed via a pipe through
another command which acts as a filter. For example:

command)filter>

More generally, special arguments of the form

>f1)f2 > ••• >

specify that output is to be passed successively through
the filters f! f, ••• , and end up on the standard out

, , ,
put stream. y s ying instead

>f1)f2)···)file

,the output finallt er.ds up in file. (The last ") •• could
also have been a » to specify concatenation onto the
end of file.)

In exactly analogous manner input filtering can be speci
fied via one of

<f1<f2<···<
<f1<f2<···<file

Both input and output filtering can be specified in the
same command, though not in the same special argument.

For ,example:

ls)pr)

produces a listing of the current directory with page
headings, while ,

ls)pr)xx

puts the paginated listing into the file xx.

If any of the filters needs arguments, quotes can be used
to prevent the required blank characters from·violatin~
the blankless syntax of filters. For example:

ls)"pr -h 'My directory'")

uses quotes tWice, once to protect the entire ~ command,
once 'to protect the heading argument of~. (Quotes are
discussed fully below.)

Generation of argument lists

".. "*" If an¥ argument contains any of the characters ?,
or '[, i~is treated specially as follows. The current
directory is searched for files which match the given
argument.

- 3 -

SH (I) 1/15/73 SH (I)

" " . The character * in an argument matches any string of
characters in a file name (including the null string).

The character "?" matches any single character in a file
name.

"[]" Square brackets ••• specify a class of characters
which matches. any Single file-name character in the
class. Within the brackets, each ordinary character is
taken to·' be a"m!mber of the. class. A pair of characters
separated by -. places in the class each character lexi-
'cally greater than or equal to the first and less than or
equal to the second member of the pair.

Other characters match only the same character in the
file name.

For example, "*" matches all file names; "?" matches all
one-character file names·, "[abl*.s" matches all -File

""" . R" ~ame8 be~inning with a or b and ending with· .8;
?[zi-ml matches all two-character file names ending

with "z or the letters "i" through "m".

"" "" "I'" If the argument with * or ? also contains a·, a
slightly different procedure is used: instead of the
current directory, the directory' used is the one obtained

"I" " It py taking the argument up to the last before a * or
It?". The matching process matches the remainder of the
argument after this "/" against the files in the derived
directory. For example: "/usr/dmr/a*.s" matches all
files in gir~ctory "/usr/dmr" which begin with "a" and
end with .8.

In any event, a list of names is obtained which match the
argument. This list is sorted into alphabetical order, '
and the resulting sequence of arquments replaces the sin
gle argument containing the "*", "["',or "?". The same
process is carried out for each argument (the resulting
lists are ~merged) and finally the command is called
with the resulting list of argumen~s.

For example: directory lusr/dmr contains the files a1.s,
a2.s, ••• , a9.s. From a~ directory, the command

as /usr/dmr/a?s

calls as with arguments /u8r/dmr/a 1 .8, lusr/dmr/a2.s, •••
lusr/dmr/a9.s in that order.

Quoting

The character "," causes the immediately following char
'acter,to lose any special meaning it may have to the

, "" "" ' shell; in this way <, >, and other characte,rs mean-
ingful to the shell may be passed as part of arguments.
A special case of this feature allows the continuation of

- 4 -

SH (I)

FILES

1/15/73 SH (I)

commands onto more than one line: a new-line preceded by
"\" is translated into a blank.

Sequences of characters enclosed in double (") or single
(') quotes are also taken literally.

Argument passing

When the shell is invoked as a command, it has additional
stringprocessinq capabilities. Recall that the form in
which the shell is invoked is

_ sh [name [arq1 ••• [argg]]]

The ~ is the name of a file which will be read and
interpreted. If not given', this subinstance- of the shell
will continue to read the standard input file.

In command lines in the file (not ip command input).
character sequences of the -form $n-, where.!! is a digit
0, ••• , 9. are replaced by th~ ~~h argument to the invo
cation of 'the shell (argn). $0 is replaced ~~.

~ Q! fil!

An end-of-file in the shell's input causes it to. exit. A
side effect of this fact means that the way to log out
from UNIX is to type an end of file.

Special commands

Two commands are treated specially by the shell.-

"Chdir"- is done without spawning a new process by execut
ing the sys chdir primitive.

"Login" is done by executing /bin/login without creating
a new process.

These peculiarities are inexorably imposed upon the.shell
by the basic structure of-the UNIX process control sys
tem. It is a rewarding exercise to work out why.

Command fil! errors; interrupts

Any shell-detected error, or an interrupt signal, during
the execution· of a command file causes the shell to cease
execution of that file.

/etc/glob, which interprets "*", "?",. and "[".

SEE ALSO "The UNIX Time-sharing system", which gives the
theory of operation of the shell.

DIAGNOSTICS
"Input not found", when a cQmmand file 1s specified which

...

5

SH (I)

BUGS

1/15/73 SH (I)

cannot be read;
"Arq count", if the number of arquments to the chdir

"" "" " [" pseudo-command is not exactly 1, or if *, 1, or
is used inappropriately;
"Bad directory", if the directory given in "chdir" cannot
be switched to;
"Try again", if no new process can be created to execute
the specified command;
"" # imbalance" t if single or double quotes are not
matched;
"Input file", if an argument after "~" cannot be read;
"output file t if an argument after >" or "»" cannot be
written (or created);
" " Command not found , if the specified command cannot be
executed.
"NO match", if no ar~uments are generated for a command
which contains' "*", ?", or .. [" •
Termination messages described above.

If any argument contains' a quoted "*", "1", or ". [", then
all instances of these characters must be quoted. This
is because sh calls the glob routine whenever an unquoted
"*", "?", orne" is noticed; the fact 'that other in
stances of these characters occurred quoted is not no
ticed by glob.

When output is redirected, particularly through a ,filter,
diagnostics tend to be sent down the pipe and are some
times lost altogether.

- 6 -

SIZE (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

9/2/72

size -- size of an object file

~ [object •••]

SIZE (I)

The .size, in bytes, of the object files are
printed. If no file is given, a.out is default.
The size is printed in octal for the text, data,
and bss portions of each file. The sum of these
is also printed in octal and decimal.

a.out default

" " object not found if·the input cannot be read.
"bad format: object" if the input file does not
have a valid object header.

- 1

SNO (I)

NAME

SYNOPSIS

DESCRIPTION

2/9/73 SNO (I)

sno -- SNOBOL interpreter

.!.D2 [file-]

~ is a SNOBOL III (with slight differences) -
compiler and interpreter. ~obtains input from
the concatenation of file and the standard input.
All in~ut through a statementcontaininq the
label end' is considered proqram and is com
piled. The rest is available to 'syspit'.

The followinq is a list of differences between
~ and SNOBOL III:

There are no unanchored searches. To get the
same effect:

a ** b
a *x*' b = x c

unanchored search for b
unanchored assignment

No back referencinq

x = "abc"
a *x* x unanchored search for "abc"

Different fUnction declaration. The function
declaration is done at compile time by the use
of the label 'define'. Thus there ·is no abil
ity to define functions at runtime and the
use of the name 'define' is preempted. There
is also no provision for 'automatic' variables
other than the parameters.

define f()
or

define f(a,b,c)

All labels except 'define' (even 'end') must
have a non-empty statement.

If 'start' is a label in the program,. proqram
ex~cution- will start there. If not, execution
beqinswith the first executable statement.
('define' is not an executable statement)

There are no builtin functions.

- Variable length patterns a-t -the end of a pat
tern match are not treated specially. They
still match the shortest rather than longest
text.

Parentheses for arithmetic are not needed.
Normal (eg FORTRAN) precedence applies. Be
cause of this, the arithmetic operators '/'
and '*' must be set off by space.

- 1 -

SNO (I)

FILES

SEE ALSO

DIAGNOSTICS

BUGS

2/9/73 SNO (I)

The riqht side of assiqnments must be non
empty.

" Either or may be used for literal quotes.

The pseudo-variable 'sysppt' is not available.

SNOBOL III manual. (~; Vol. 11 No.1; Jan
1964; PP .21)

As appropriate

Runtime di.aqnost.ics qive the last program line
number rather than the executing statement lirie
number.

- 2 -

SORT (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

.9/2/72 SORT (I)

sort -- sort a file

.!.2tl [=] [oinput [ooutp~t]]

sort will sorOt the °input file and write ° the ° sort
'idfiole on the output file. If the output file
is not given, the input file is rewritten. If
the input file ismissinq, sort uses the standard
input as input and the standard output for out
put. Thus.!.2tl may be used as a filter.

The sort is l1ne-by-line in increasing- ASCII col
lating sequence, except that upper-case letters
aore· considered the same as the lower-case
letters.

The optional argument
sort •

will cause a
O

reverse

.!.2tl is implemented in such a way that

sort /dev/mtO

works correctly provided the tape is not too big.

/tmp/stm?

The largest file that can be sorted is about 128K
bytes.

- 1 -

SPLIT (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

1/15/73 SPLIT (I)

split split a file into pieces

split [[file1] file2]

Split reads file1 and writes it in 1000-1ine
pieces, as many as are necessary, onto a set of
output f1les. The name of the first output file
1s f1le2 with an "a" appended, and so on through
the alphabet and beyond. If no output name is
given, "x" is default.

If no input file is given, or the first argument
is "-", then the standard input file is used.

yes

Watch out for 8-character file names.

- 1 -

SPEAK (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

BUGS

2/1/73 SPEAK (I)

speak word to voice translator

speak [=] [vocabulary]

speak turns a stream of ascii words into utter
ances and outputs them to a voice synthesizer.
It has facilities for maintaining a vocabulary.
It receives, from the standard input

workinq lines - text of words separated by
blanks.

- phonetic lines - strings of phonemes for one
word preceded and separated by commas. The
phonetic code is given in vsp(VII).

- empty lines
- command lines - beginning with l. The follow-

ing forms are recognized:

Ir file
TW file
JR
II

1£ word

l! file

replace.coded vocabulary from file
write coded vocabulary on file
print phonetics for working word
list vocabulary on standard output
with phonetics
copy phonetics from working word to
specified word
(save) append working word and phonet
ics to file in style of 11

Each working line teplaces its eredecessor. Its
first word is the· working word. Each phonetic
line replaces the phonetics stored for the work
ing word. Each workinq line, phonetic line or
empty line causes the working line to be uttered.
The process terminates at the end of input.

Unknown words are spelled as strings of one
letter words. Unknown one-letter words burp.

A phonetic line of comma only will delete the
entry for the working word.

speak is initialized with a coded vocabulary
stored in file /!!£/speak.m. The vocabulary
option substitutes a different file for speak.m.

The = option suppresses all utterances.

/etc/speak.m

vsp(VII), speakm(V), vt{IV)

Vocabulary overflow is unchecked. Exce.ssively
lonq words cause dumps. Space is not reclaimed
from deleted entries.

- 1 -

STAT (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

3/15/72 STAT (I)

stat get file status

~ name1 •••

stat gives several kinds of information about one
or-more files:

i-number
access mode
number of links
owner
size in byte s
date and time of last modification
name (useful when several files are named)

All information is self-explanatory except the·
mode. The mode is· a six-character string whose
characters mean the following:

1 s: file is small (smaller than 4096 bytes)
1: file is large

2 d: file is a directory
x: file is executable

3

4

5

6

us set user ID on execution
-: none of the above

r: owner can read
-: owner cannot read

w: owner can write --. owner cannot write

r: non-owner can read
-: non-owner cannot read

w: non-owner can write
-: non-owner cannot write

The owner is almost always given in symbolic
form; however if he cannot be found in
"/etc/passwd" a number is given.

If the number of arguments to ~ is not exactly
1a header is generated identifying the fields of
the status information.

/etc/passwd

istat(I), lS{I) (-1 option)

" " name? for any error.

- 1 -

STRIP (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 STRIP (I)

str~p remove symbols and relocation bits

strip name1 •••

strip removes the symbol table and relocation
bits ordinarily attached to the output of the
assembler and loader. This is useful to save
space after a program has been debugged.

The effect of strip is the same as use of the .=!
option of ld.

/tmp/stm?

ld(I), as(I)

temporary file

Diagnostic's are given for: non-existent argument;
inability to create temporary file;
improper format (not an.object file);
inability to re-read temporary file.

- 1 -

STTY (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

6/12/72 STTY (I)

stty -- set teletype options

stty option1 •••

Stty will set certain I/O options on the current
output teletype. The option strings are selected
from the following set:

.!.Y.!.!!
-even
odd
-odd
~

-raw ::nr
nr
echo
-echo
lcase
-lcase
-tabs
tabs
delay
-delay
ebcdic
corres

allow even parity •
disallow even parity.
allow odd parity'
disallow odd parity
raw mode· input
(no erase/kill/lnterrupt/qult/EOT)
negate raw mode
allow cr for If (and echo If cr)
allow nl only
echo back every character typed.
do not, echo cha'racters.
map upper case to lower case
do not map case
replace tabs by spaces
preserve tab~
calculatecr and tab delays.
no cr/tab delays
ebcdic ball 'conversion (2741 only)
correspondence ball conversion (2741 only)

standard output.

stty(II)

"Bad options"

- 1 -

SUM (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 SUM (I)

sum sum file

.!.BID name1 •••

~ sums the contents of the bytes (mod 2~16) of
one or more files 'and prints the answer in octal.
A separate sum is printed for each file speci
fied, along with the number of whole or partial
512-byte blocks read.

In practice, .!1!!!!' is often used to verify that all
of a special file can be read without error.

none

" " " " oprd if the file cannot be opened; ? if an
error is discovered during the read.

none

- 1 -

TAP (I)

NAME

SYNOPSIS

DESCRIPTION

3/15/72 TAP (I)

tap manipulate DECtape

tap [key] [name •••]

tap saves and restores selected portions of the
file system hierarchy on DECtape. Its actions
are controlled by the key arqument. The key is a
strinq of characters containinq at most one func
tion letter and possibly one or more function
modifiers. Other arqumentsto the command are
file or directory names specifyinq which files
are to be dumped, restored, or tabled.

The function portion of the key is specified by
one of the followinq letters:

r The indicated files and directories, to
qether with all subdirectories, are dumped
onto the tape. If files with the same
names already exist, they are replaced
("")"" hence the r • same is determined by

"/ " strinq comparison, so • abc can never be
the same as "/usr/dmr/abc" even if
"/usr/dmr" is the current directory. If no

. " " file arqument is qiven, • 1s the default.

u updates the tape. ~ is the same as ~t but
a file is replaced only if its modification
date is later than the date stored on the
tape; that is to say, if it has chanqed
since it was dumped. ~ is the default com
mand if none is qiven.

d deletes the named files and directories
from the tape. At least one file arqument
must be qiven.

x extracts the named files from the tape to
the file system. The owner, mode, and
date-modified are restored to what they
were when the file was dumped. If no file
arqument is qiven, the entire contents of
the tape are extracted.

t lists the names of all files stored on the
tape which are the same a·s or are hierarch
ically below the file arquments. If no
file arqument is qiven, the entire contents
of the tape are tabled.

1 is the same as ~ except that an expanded
listinq is produced qivinq all the avail
able information about the listed files.

The followinq characters may be used in addition
to the letter which selects the function desired.

- 1 -

TAP (I)

FILES

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 TAP (I)

0, ••• , 7 This modifier selects the drive on
" " which the tape is mounted. 0 is the

default.

v Normally tap does its work silently. The ~
(verbose) option causes it to type the name
of each file it treats preceded by a letter
to indicate what is happening.

r file is beinq replaced
a file is beinq . added (not there before)
x file is being extracted
d file is being deleted

The ~ option can be used with .It !!, d, and
as only.

c means a fresh dump is being created; the
tape directory will be zeroed before begin
ning. Usable <;>nly with .I and !!.

f causes new entries copied on tape to be
'fake' in that no data is present for these
entries. Such fake entries cannot be ex
tracted. Usable only with!. and !:!.

w causes tap to pause before treating each
file, type the indicative letter and the
file name (as with yl ~nd awai~ th~ user's
response. Response y means yes, s~ toe
file is treated. Null response means no,
and the file does not take Dart in whatever

" 'it "" is beinq done. Response 'x means exit;
the tap command terminates immediately. In
the.! function, files previ.ously asked
about have been extracted already.' With!"
~, and g no chanqe has been made to the
tape.

m make (create) directories during an ~ if
necessary.

/dev/tap?

mt(I)

Tape open error
Tape read error
.Tape write error
Directory cbecksum
Directory overflow
Tape overflow
Phase error (a file has·changed after it was
selected for dumpinq but before it was dumped)

be "fake" " " ASKS a ut entries on xw, when it should

- 2

TAP (I) 3/15/72 TAP (I)

ignore them. If a fake entry is extracted, and
the file already exists on disk, the extraction
does not take place (as is correct), but the mode
and user ID of the file are set to O.

- 3 -

TIME (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

10/26/72 TIME (I)

time time a command

~ command

The qiven command is timed; after it is complete,
~ prints the time spent in the system, waitinq
for disk, and in execution of the command.

The disk I/O time can be variable dependinq on
other activity in the system.

tm (VIII)

" " ?
"command terminated abnormally"
"Command not found."

- 1 -

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

10/21/72 TMG (I)

tmg -- compiler compiler

tmg, name

tmq produces a translator for the language whose
parsing and translation rules are described in
file name~. The new translator appears in a.out
and may be used thus:

a.out input [output]

Except in rare cases input must be a 'randomly
addressable file. If no output file is speci
fied, the standard output file is assumed.

/sys/tmg/tmgl.o -- the compiler-compiler
/sys/tmg[abc} - libraries
alloc.d -- table storage

A Manual for the Tmg Compiler-writing Language,
MM-72-1271-8.

Syntactic errors result in "???" followed by the
offending line.
Situations such as space overflow with which the
Tmg processor or a Tmg-produced processor cannot
cope resul~ in a descriptive comment and a dump.

9.2 footnote 1 is not enforced, causing trouble.
Restrictions (7.'> against mixing bundling primi
tives should be lifted.
Certain hidden reserved words exist: gpar,
classtab, trans.
Octal digits include 8=10 and 9=11.

- 1 -

TSS (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 TSS (I)

tas interface to Honeywell TSS

~ will call the Honeywell 6070 on the 201 data
phone. It will then go into direct access with
TSS. Output generated by TSS is typed on the
standard output and input requested by TSS is
read from the standard input with UNIX typing
conventions.

An interrupt signal (ASCII DEL) is transmitted as
a "break" to TSS.

Input lines beginning with i-are interprete2 as
UNIX commands. Input lines beginning with _ ~re
interpreted as commands to the interface routine.

-(file insert input from named UNIX file

-)fi1e deliver tss output _to named UNIX file

-p pop the output file

-q disconnect from tss (quit)

-r file receive from HIS routine CSR/DACCOPY

-s file send file to HIS routine CSR/DACCOPY

Ascii files may be most eft:iciently transmitted
using the HIS routine CSR/DACCOPY in this
fashion. Underlined text comes from TSS.
AFTname is the 6070 file to be dealt with.

SYSTEM? CSR/DACCOPY (s) AFTname
Send Encoded File -8 file

SYSTEM? CSR/DACCOPY (r) AFTname
Receive Encoded File -r file

/dev/dnO, /dev/dpO

DONE when communication is broken.

When diagnostic problems occur, ~ exits rather
abruptly.

- 1 -

TTY (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

tty

tty

3/15/72

get tty name

TTY (I)

tty gives the name of the user~s typewriter in
the form nttyon, for .n andigit. The actual path
name is then /dev/ttyn.

,. n
not a tty if the standard input file is not a

typewriter.

- 1 -

TYPE (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

6/12/72 TYPE (1)

type type on single sheet paper

~ file 1 •••

~ copies its input files to the standard out
put. Before each new page (66 lines) and before
each new file, type stops and reads the standard
input for a new line character before continuing.
This allows time for insertion of single sheet
paper.

- 1 -

TYPO (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

1/15/73

typo -- find possible typo's

~ [=] f1le 1 •••

TYPO (I)

typo hunts through a document for unusual words,
typographic errors, and hapax legomena and prints
them on the standard output.

All words used in the document are printed out in
decreasing order of peculiarity along with an
index of peculiarity. An index of 10 or more is
considered peculiar. Printing of certain very
common English words is suppressed.

The statistics for judging words a·re taken from
the document itself; with so!,e"help fJ:'om known
statistics. of English. The - option suppresses
the help from English and should be used 1f the
document is written in, for example, Urdu.

Roff and Nroff control lines are ignored. Upper
case is mapped into lower case. Quote marks,
vertical bars, hyphens, and ampersands are
stripped from within words. Words hyphenated
across lines are put back together.

/tmp/ttmp??, /etc/salt, /etc/w2006

yes, lots

Because of the mapping into lower case and the
stripping of special characters, words may be
hard to locate in the original text.

- 1 -

UN (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 UN (I)

un undefined symbols

!:m [name]

~ prints a list of undefined symbols from an
assembly or loader run. If the file argument is
not specified, a.out ~s the default. Names are
listed alphabe'tically except that non-global sym
bols come first. Undefined global symbols (un
resolved external' references) have their first
character underlined.

a.out

as (I), ld (I)

" " ? if the file cannot be found.

- 1 -

UNIQ (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

12/1/72 UNIQ (I)

uniq report repeated lines in a file

unig [~] [input [output]]

unig reads the input file comparing adjacent
lines. In the normal case, the second and
s'ucceeding copies of repeated lines are removed;
the remainder is written on the output file.
Note that repeated lines must be adjacent in ord
er to be found. (see sort(I» If the ~ flag is
used, just the lines that are not repeated in the
original file are output. The =9.option speci
fies that one copy of just the repeated lines -is
to be written. Note that the normal mode output
is the union of the =y and =2 mode outputs.

The- following example will print one copy of all
lines in the file ~ that do not occur in E:

$ort a x
uniq x a1
sort b x
uniq x b1
cat &1 b1 >x
sort x
uniq -u x »&1
sort &1
uniq -d &1

sort(I)
..
cannot open input, cannot create output

- 1 -

VS (I)

NAME

SYNOPSIS

DESCRIPT ION

FILES

SEE ALSO

DIAGONOSTICS

BUGS

2/13/73 VS(I}

vs phoneme list to voice synthesizer

~. accepts phoneme descriptor lists and
translates them into byte strings suitable for
the Federal Screw Works Voice Synthesizer.
Phoneme descritors should ~e sep~rated b~ c~mmas
am have the general form %NIxx where xx is a

" " one or two character phoneme name, I is an
optional inflection parameter, and" %N" is an
optional count of the number of times the phoneme
is to be repeated (maximum 9). "I" can have the
values 0, 1, 2, 3 representing decreasing
strength (default is 2). A description of the
phonemes and their names can be found in the file
vsp(VII). For example,

aO,o1,t,r,1ai,1ay,d,j,ih,u1,%2s

" " will generate the word outrageous. The output
is buffered; a newline will cause the buffered
output to be sent to the Voice Synthesizer.

vsp(VII), speak(I)

- 1 -

WC (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 WC (I)

wc -- get (English) word count

~ name1 •••

. ~ provides a count of the words, text lines, and
control lines for each argument file.

A text line i, I- s,qvence,,9' characters not·be-
ginning with ., I or and ended by a new-
line. A control line is a line beginning with
".", "I" or ",H. A word is a sequence of charac
ters bounded by the beginning of a line, by the
end of a line, or by a blank or .a tab •

. When there is more than one input file, a grand
total is also printed.

roff(I)

none; arguments not found are ignored.

- 1 -

WHO (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 WHO (I)

who who is on the system

~ [who-file]

~, without an arqument, lists the name, type
writer channel, and loqin time for each current
UNIX user.

Without an argument, ~ examines the /tmp/utmp
file to obtain its information. If a file is
qiven, that file is examined. Typically the
qiven file will be /tmp/wtmp, which contains a
record of all the loqins since it was created.
Then who will list loqins, loqouts, and crashes
since the creation of the wtmp file.

Each loqin is listed with user name, last charac
ter of input device name (with /dev/tty
suppressed), date and time. Certain loqouts pro
duce a similar line without a user· name. Reboots
produce a line with "x" in the place of the dev
ice name, and a fossil time indicative of when
the system went down.

/tmp/utmp

loqin(I), init(VII)

"?" if a named file cannot be read.

- 1 -

WRITE (I)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 WRITE (I)

write write to another user

write user

write copies lines from your typewriter to that
of another user. When first called, write sends
the message

message from yourname •••

The recipient of the message' should write back at
this pOint. Communication conti"nues until an end
of file is read from the typewriter or an inter-

" " rupt is sent. At that point write writes EOT
on the other terminal.

Permission to write may be denied or granted by
use of the mesg command. At the' outset writing
is allowed. Certain commands, in particular ~
and l2.!:, disallow messages in order to prevent
messy output.

If the character "I" is found at the beginning of
a line, write calls the mini-shell m!h to execute
the rest of the line as a command.

The following protocol is suggested for using
write: When you first write to another user, wait
for him to write back before starting to send.
Each party should end each messa~e with a dis
tinctive signal ("(0)" for "ove, is convention
al) that the other may reply. (00)" (for "over
and out") is suggested when conversation is about
to be terminated.

/tmp/utmp
/etc/msh

to find user
to execute I

mesg(I), msh(VII)

" " " " user not logged in; permission denied •

write should check the mode of the other user~s
typewriter and refuse to proceed unless non-user
write permission is given. Currently it is pos
sible to write to another person with the same
user-ID even though he has forbi~den messages.

write should also allow specification of .the
typewriter name of a user who is logged in
several times instead of picking out the instance
with the lowest name.

- 1 -

BOOT (II)

NAME·

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGNOSTICS

BUGS

7/29/72 BOOT (II)

boot - reboot UNIX

sys boot / boot = 39. not in assembler

UNIX will clean up outstanding I/O, and then exe
cute the reboot read-only program. This call is
restricted to the super-user. All users will be
logged out.

boot procedures (VII)

the c-bit is set if you are not the super-user

It often doesn' t work (for unknown reasons).
It depends on switch settings.

- 1 -

BREAK (~I)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 BREAK (II)

break set. program break

sys break; addr / break = 17.

break set.s t.he syst.em's idea of t.he highest. loca
tion used by the program to .~. Locat.ions
greater than ~ and below the stack pointer are
not swapped and are thus liable t.o unexpected
modification.

An argument of 0 is taken to mean 1 6K bytes.. If
the argument is higher than the stack pointer the
entire user core area 1s swapped.

When a program begins execution via ~ the
break is set at the highest location defined by
theproqram and data storage areas. Ordinarily,

. therefore, only programs with growing data areas
need to use break.

exec(II)

none; strange addresses cause t.he break to be set
at 16K bytes.

- 1 -

CEMT (II)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGNOSTICS

BUGS

9/4/72 CEMT (II)

cemt catch emt traps

sys cemt; arg / cemt = 29.

This call allows one to catch traps resulting
from the ~ instruction.- Arg is a location
within the program; emt traps are sent to that
location. The normar-iffect of ~ traps may be
restored by giving an arq equal to O.

To return after catching the ~ trap, execute
the !S! instruction.

- 1 -

CHDIR (II)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGNOSTICS

BUGS·

3/15/72 CHDIR (II)

chd1r change work~ng directory

sys chdir; d1rname / chdir = 12.

dirname is the address of the pathname of a
directory, terminated by a 0 byte. chdir causes
this directory to become the current working
directory •

chdir(I)

The error bit (c-bit) is set 1f the given name is
not that of a directory or is not readable.

- 1 -

CHMOD (II)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 CHMOD (II)

chmod change mode of file

sys chmod; name; mode. / chmod = 1 5.

The file whose name is given as the null
terminated string pointed to by ~ has its mode
changed to~. Modes are constructed by 2!ing
together some combination of the following:

01 write, non-owner
02 read, non-owner
04 write, owner
10 read, owner
20 executable
40 set user ID on execution

Only the owner of a file (or the super-user) may
change the mode.

chmod{I)

Error bit (c-bit) set if name cannot be found or
if current user is neithe~e owner of the file
nor the super-user.

- 1 -

CHOWN (II)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 CHOWN (II)

chown change owner of file

sys chown; name; owner / chown = 16.

The file whose name is given by the null
terminated string pointed to by ~ has its own
er changed to owner. Only the present owner of a
file (or the super-user) may donate the file to
another user. Also, one may not change the owner
of a file with the set-user-ID bit on, otherwise
one could create Trojan Horses.

chown(I), uids(V)

The error bit (c-bit) is set on illegal owner
changes.

- 1 -

CLOSE (II)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72

close close a file

(file descriptor in rO)
sys close / close = 6.

CLOSE (II)

Given a file descriptor such as returned from an
open or creat call, close closes the associated
file. A close of all files is automatic on exit,
but st-nce processes are limited to 10 simultane
ously open files, close is necessary for programs.
which deal with many files.

creat(II), open(II)

The error bit (c-bit) is set for an unknown file
descriptor.

- 1 -

CREAT (II)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 CREAT (II)

creat create a new file

sys creat; name; mode
(file descriptor in rO)

/ creat = 8.

creat creates a new file or prepares to rewrite
an existing file called'~; ~ is the address
of a null-terminated·string. If the file did not
exist, it is given mode ~; if it did exist,
its mode and owner remain unchanged but it is
truncated to 0 length.

The file is also opened for writing, and its file
descriptor is returned in rO.

The ~ given is arbitrary; it need not allow
wri ting • This feature is u sed by programs Which
deal with temporary files of fixed names. The
creation is done with a mode that forbids writ
inq.· Then if a second instance of the program
attempts a creat, an error is returned and the
program knows that the name is unusable for the
moment.

write(II). close(II)

The error bit (c-bit) may be set if: a needed
dire'ctory is not readable; the file does not

. exist and the directory in which it is to be
created is not writable; the file does exist and
1s unwr1table; the file is a directory; there are
already 10 files open.

CSW (II)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGNOSTICS

BUGS

7/29/72

csw -- read console switches

sys csw / csw = 38. not in assembler
(value of csw in rO)
(value of buttons in r1)

CSW (II)

The setting of: the console switches is returned
in rOe The setting of the external buttons is
returned in r1. The return is synced to a 30 CPS
clock for graphical applications.

none

CUrrently the buttons are unavailable.

- 1 -

DUP (II)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGOOSTICS

BUGS

1/15/73

dup -- duplicate an open file descriptor

(file descriptor in rO)
sys dup / dup = 41.; not in assembler
(file descriptor in rO)

DUP (II)

Given a file descriptor returned from an open or
creat call, dup will allocate another file
descriptor synonymous with the original. The new
fi~e descriptor is returned in rOe

Dup is used more to manipulate the value of file
descriptors than to genuinely duplicate a file
descriptor. Since the algorithm to allocate file
descriptors is known to use the lowest available
valu·e between 0 and 9, combinations of dup and
close can be used to manipulate file descriptors
in a general way. This is handy for manipulating
stand~rd input and/or standard output.

creat(II), open(II), close(II)

The error bit (c-bit) is set if: the qiven file
descriptor is invalid; there are a~ready 10 open
files •.

- 1 -

EXEC (II)

NAME

SYNOPSIS

3/15/72

exec execute a file

sys exec; name; args / exec = 11.
•••

name: (••• \0)

•••
arqs: arg1; arg2; ••• ; 0
arg1: < ••• \0)

•••

EXEC (II)

DESCRIPTION ~ oV$rlays the calling process with the named
file, then transfers to the beginning of the core
image of the file. The first argument to ~ is
a pointer, to the, name of the file to be executed.
The second is the address of a list of pointers
to arguments to be passed to the file. Conven
tionally, the first argument is the name of the
file. Each pOinter addresses a string terminated
by a null byte.

There can be no return from the file; the calling
core image is lost.

The program break is set from the executed file;
see the ,format of a.out.

Once the called file starts execution, the argu
ments are available as follows. The stack
pointer pOints to a word containing the number of
arguments. ' Just above this number is a list of
pOinters to the argument strings.

sp-) nargs
arg1
' ...
argn

arg1: (arq1 \0)

•••
argn: (arqn\O)

The arguments are placed as high as possible in
core: just below 57000(8).

Files remain open across ~ calls. However,
the,illegal instruction, ~,quit, and interrupt
trap specifications are reset to the standard
values. (se'e ilgins, ~, quit, ~.)

Each user has a real user ID and an effective
user ID (The rearm identifies the person using
the system; the effective ID determines his ac
cess privileges.) ~ changes the effective user
ID to the owner of the executed file if the file
has the set-user-ID mode.' The real user ID is
not affected.

- 1 '-

ExEC (II)

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 EXEC (II)

fork(II)

If the file cannot be read or if it is not exe
cutable, a return from exec constitutes the diag
nostic. The error bit (c-bit) is set.

Very high core and very low core are used by ~
to construct the argument list for the new core
image. If the original copies of the arguments
reside in these places, problems can result.

- 2 -

EXIT (II)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 EXIT (II)

exit terminate process

(status in rO)
sys exit / exit = 1

exit is the normal means of terminatinq a process. Exit closes all the process' files and
notifies the parent process if it is executing a
.~. The low byte of rO is available as status
to the parent process.

This call can never return.

wait(II)

- 1 -

FORK (II)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72

fork spawn new process

sys fork / fork = 2.
(new process return)
(old process return)

FORK (II)

~ is the only way new' processes are created.
The new.process's core image is a copy of that of
the caller of ~; the only distinction is the
return location and the fact that rO in the old
process contains' the process ID of the new pro
cess. This process ID is used by ~.

waite II), exec(II)

The error bit (c-bit) is set in' the old process
if a new process could not be created because of
lack of process space.

See wait(II) for a subtile bug in process des
truction.

- 1 -

FPE (II)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGNOSTICS

BUGS

9/2/72 FPE (II)

fpe -- set floating exception handling

ays fpe; arg / fpe = 40. not in assembler

This call allows one to catch traps resulting
from floating point exceptions. Arg is a loca
tion within the program; floating exception traps
are sent·to that location. The normal effect of
floating exception traps may be restored by giv
ing an arg equal to O.

To return after catching the fpe trap, execute
the !!! instruction.

The floating pOint exception (FEC) register is
not saved per process. Examining this register
for possible remedial action after a floating
point exception trap is not guaranteed to work.

- 1 -

FSTAT (II)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGNOSTICS

BUGS

3/15/12 FSTAT (II)

fstat qet status of open file

(file descriptor in.rO)
sys fstat; buf / fstat = 28.

This call is identical to ~, except that it
operates on open·files instead of files qiven by
name. It is most often used to qet the status of
the standard input and output files, whose names
are unknown.

stat(II)

The error bit (c-bit) is set if the f1le descrip
tor 1s unknown.

- 1 -

GETUID (II)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72

getuid get user identification

sys getuid / getuid = 24.
(user ID ,in rO)

GETUID (II)

getuid returns the real user ID of the current
process. The real user ID identifies the person
who is logged in, in contradistinction to the
effective user ID, which determines his access
permission at each moment. It is thus useful to

," " programs which operate using the set user ID
mode, to find out who invoked them.

setuid(II)

- 1 -

GTTY (II) 3/15/72 GTTY (II)

NAME qtty qet typewriter status

SYNOPSIS (file descriptor in rO)
sys qtty; arq / gtty = 32 •
•• •

arg: .= .+6

DESCRIPTION ~ stores in the three words addressed by arg
.the statu$ of the typewriter whose file descrip
tor is' given in rOe The format is the same as
that passed by stty.

SEE ALSO stty(II) .

DIAGNOSTICS Error bit (c-bit) is set if the file descriptor
does not refer to a typewriter.

BUGS

-1 -

ILGINS (II)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 ILGINS (II)

ilgins catch illegal instruction trap

sys ilgins; arq / ilgins = 33.

ilgins allows a program to catch illegal instruc
tion traps. If arg is zero, the normal instruc
tion trap handling is done: the process is ter
minated and a cpre image is produced. If arg is
a location within the program, control is passed
to arq when the trap occurs.

This call is used to implement the floating point
simulator, which catches and interprets 11/45
floating pOint instructions.

To return after catching the ilgins trap, execute
the !S! instruction.

PDP-11 manual

- 1 -

INTR (II)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 INTR (iI)

intr set interrupt handling

sys intr; arg / intr = 27.

When arg is 0, interrupts (ASCII' 'DELETE) are
ignored. When arg is 1, interrupts cause their
normal result, that is, force an~. When arg
is a location within the program, control is
transferred to that location when ~n interrupt
occurs.

After an interrupt is caught, it is possible to
resume execution by means of an ~ instruction;
however, ,great care must be exercised, since all
I/O is terminated abruptly,upon an interrupt. In
particular, reads of the typewriter tend to re
turn with 0 characters read, thus simulating an
end of file.

quit(II)

- 1 -

KILL (II)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGNOSTICS

BUGS

6/12/72

kill -- destroy process

(process number in rO)

KILL (II)

sys kill/kill = 37.; not in assembler

~ destroys·a process, given its process
number. The process leaves a core image.

This call is restricted to the super-user, and is
intended only to kill an otherwise unstoppable
process.

c-bit set if user is not the super-user, or if
process does not exist.

Under strange circumstances, ~ is ineffective.

- 1 -

LINK (II)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 LINK (II)

link -- link to a file

sys link; name1 ; name2 / link = 9.

A link to name1 is created; the link has' name
~2. Either name may be an arbitrary path
name.

link(I), unlink(II)

'1'he error bit (c-bit) .is set when.!!!!!!.!!1 cannot be
found; when ~2 already exists; when the direc
tory of ~2 cannot be written; when an attempt
is made to lxnk to a directory by a user other
than the super-user; when an attempt is made to
link to a file on another file system.

1 -

MAKDIR (II)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 MAKDIR (II)

makdir make a dir~ctory

sys makdir; name; mode / makdir = 14.

makdir creates an empty directory whose name is
the null-terminated string pOinted to by n!m!.
The modeftof the ~ir!ctory is~. The special
entries' • and •• are not present.

makdir may be invoked only by the supe~-user.

mkdir(I)

Error bit (c-bit) is set if the directory already
exists or if the user is not the super-user.

- 1 -

MDATE (II)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 MDATE (II)

mdate set modified date on file

(time to rO-r1)
sys mdate; file / mdate = 30.

File is the address of a null-terminated strinq
giving the name of a file. The modified time of
the file is set to the time given in the rO-r1
register~ •

This call is allowed only to the super-user or to
the owner of the file.

Error bit 1s set if the user is -neither the owner
nor the super-user or if the file cannot be
found.

- 1 -

MOUNT (II)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 MOUNT (II)

mount mount file system

sys mou.nt; special; name / mount = 21.

mount announces to the system that a removable
fllesystem has been mounted on special file
special; from now on, references to file ~
will refe'r to the root file on the newly mounted
file system. Special and ~ are pointers to
null-terminated stripqs containing the appropri
ate path names.

~ must exi'st already. If it had contents,
they are inaccessible while the file system is
mounted •

. mount (I), umount (II)

Error bit (c-bit) set if: special is
inaccessible; ~ does not eXist; special is·
already mounted; ~ is not on the RF; there are
already four special files mounted.

At most four removable devices can be mounted at
a time. This call should be restricted to the
super-used.

- 1 -

NICE (II)-

NAME

SYNOPSIS

DESCRIPTION

SEE, ALSO

DIAGNOSTICS

BUGS

3/15/72

nice -- set program in low priority

sys nice, / nice = 34.

NICE (II)

The currently executing process is set into the
lowest priority execution queue. Background jobs
that'execute a very long time should do this.
Once done, thexe is no way to restore a process
to normal priority.

" " formerly known as hog

- 1 -

OPEN (II)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72

open open for reading or writinqr

sys open; name; mode / open = 5.
(descriptor in rO)

OPEN (II)

0yen opens the file n!!! for reading (if ~ is
o or writing (if ~ is non~zero). ~ is the
address of a string of ASCII characters
representing a path name, terminated by a null
character.

The file descriptor should be saved for subse
quent calls to read (or wri te) and close.

In both the read and write c'ase the file' pOinter
is set to the beginning of the file.

creat(II), read(II), write(II), close(1I)

The error bit (c-bit) is set if the file does not
exist, if one of the necessary directories ,does
not exist or is unreadable, if the file is not
readable (resp. writable), or if 10 files are
open.

- 1 -

PIPE (II)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGNOSTICS

BUGS

1/15/73 PIPE (II)

pipe create a pipe

sys pipe / pipe = 42.; not in assembler
(f1l~ descriptor in rO)

The E.!.e.! system call creates an I/O mechanism
called a pipe. The file descriptor returned can
be used in both read and write operations. When
the pipe is written, the data is buffered up to
504 bytes at which time the writing process is
suspended. A read on the pipe will pick up the
buffered data.

It is assumed that after the ~ has been set
up, two (or more) cooperating processes (created
by subsequent ~ calls) will pass data through
the pipe with ~ and write calls.

The'shell has' a syntax to 'set up a linear array
of processes connected by pipes.

Read calls on an empty pipe (no buffered data)
with only one end (no synonymous file descriptors
resulting from ~ or dup) return an end~f
file. Write calls under similar conditions are
ignored.

sh{I), read(II), write(II), fork{II)

The. error bit (c-bit) i8 set if 10 files are
already .open.

- 1 -

QUIT (II)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 QUIT (II)

quit turn off quit signal

sye quit; flag / quit = 26.

When flag is 0, this call disables quit signals
from the typewriter (ASCII FS). When flag is
non-zero, quits are re-enabled, and cause execu
tion to cease and a core image to be produced.

Quits should be turned off only with due con
sideration.

intr{II)

- 1 -

READ (II)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72

read read from file

(file descriptor in rO)
sye read; buffer; nbytes / read = 3.
(nread in rO)

READ (II)

A file descriptor is a word returned from a suc
cessful open or creat call.

Buffer is the location of nbytes contiguous bytes
into which the input will be placed. It is not
guaranteed that all nbytes bytes will be read;
for example if the file refers to a typewriter at
most one line will be returned. In any event the
number of characters read is returned in rOe

If rO returns with value 0, then end-of-file has
be~n reached.

open(II), creat(II)

As mentioned,rO is 0 on return when the end of
the file has been reached. If the read was
otherwise unsuccessful the error bit (c-bit) is
set. Many conditions, can generate an error:
physical I/O errors, ·bad buffer address, prepos
terous nbytes, file descriptor not that of an
input file.

- 1 -

RELE (II)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 RELE (II)

rele release processor

sys rele / rele = 0; not in assembler

This call causes the process to be swapped out
immediately if another process wants to run. Its
main reason for being is internal to the system,
namely to implement timer-runout swaps. However,
it can be used beneficially by programs which
wish to loop for some reason without consuming
more processor time than necessary.

- 1 -

SEEK (II)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 SEEK (II)

seek move read/write pOinter

(file descriptor in rO)
sys seek; offset; ptrname / seek = 19.

The file descriptor refers to a file open for
reading or writing. The read (resp. write)
pointer for the file is set as follows:

1f ptrname is 0, the pOinter 1s set to offset.

1f ptrname is 1~ the pointer is set to its
current location plus offset.

if 'ptrname is 2, the pointer 1s set to the
size of the file plus offset.

The error bit (c-bit) is set for an undefined
file descriptor.

A file can conceptually be as large as 2**20
bytes. Clearly only 2**16 bytes can be addressed
by~. The problem 1s most acute on the large
special files.

- 1 -

SETUID (II)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 SETUID (II)

setuid set process ID

(process ID in rO)
sys setu1d / setuid = 23.

The user ID of the current process is set to the
argument in rO. Both the effective.and the real
user ID are set. This call is only permitted to
the super-user or if rO is the real user ID.

qetuid(II)

Error bit (c-bit) is set as indicated.

- 1 -

SLEEP (II)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGNOSTICS

BUGS

9/4/72

sleep -- stop execution for interval

(seconds in rO)

SLEEP (II)·

sys sleep / sleep = 35.; not in assembler

The cur~ent process is suspended from execution
for the number of seconds specified by the con
tents of register O.

Due to the implementation, the sleep interval is
only accurate to 256 60ths of a second (4.26
sec). Even then, the process is placed on a low
priority queue and must be scheduled.

1

STAT (II)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 STAT (II)

stat qet file status

sys stat; name; buf / stat = 18.

~ pOints to a null-terminated strinq naminq a
file; ~ is the address of a 34(10) byte buffer
into which information is placed concerninq the
file. It is unnecessary to have any permissions
at all with respect to the file, but all direc
tories leadinq to the file must be readable.

After ~, ~ has the followinq format:

OOf,.+1
+2,+3
+4
+5
+6,+7
+8,+9
•••

i-number
flaqs (see below)
number of links
user ID of owner
size in bytes
first indirect block or contents block

+22,+23 eiqhth indirect block or contents block
+24,+25,+26,+27 creation time
+28,+29,+30,+31 modification time
+32,+33 unused

The flaqs are as follows:

100000
040000
020000
010000
000040
000020
000010
000004
000002
000001

used {always on}
directory ..
file has been modified (always on)
large file
set user ID
executable
read, owner
write, owner
read, non-owner
write, non-owner

stat(I), fstat(II)

Error bit (c-bit) is set if the file cannot be
fOUnd.

- 1 -

STIME (II)

NAME

SYNOPSIS

DESCRIPTION

/SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 STIME (II)

stime set time

(time in rO-r1)
sys stim~ / stime = 25.

st1me sets the system's idea of the time and
date. Only the super-user may use this call.

date(I), time(II)

Error bit (c-bit) set if user is not the super
user.

1 -

STTY (II) 6/12/72 STTY (II)

NAME stty set mode of typewriter

SYNOPSIS (file descriptor in rO)
sys stty; arg / stty = 31 •
•••

arq: dcrsr; dctsr; mode

DESCRIPTION stty sets, mode bits for a typewriter whose file
descriptor is passed in rOe First, the system
delays until the typewriter is quiescent. Then,
the argument dcrsr is placed into the' typewri
ter's receiver control and status register, and
dctsr is placed in the transmitter control and
status registe~. The DC-11 manual must be con
sulted for the format of these words. For the
purpose ,of this call, the most important role of
these arguments is to adjust to the speed of the
typewriter.

The ~ ,argument contains several bits which
determine the system's treatment of the
typewriter:

200 even parity allowed on input (e. q. for M37s)
100 odd parity allowed on input
040 raw mode: wake up on all characters
020 map CRinto LF; echo LF or CR as LF-CR
010 echo (full duplex)
004 map upper case to lower on input (e. q. M33)
002 echo and print tabs as spaces
001 inhibit all function delays (e. g. CRTs)'

Characters with the wrong parity, as determined
by bits 200 and 100, are ignored.

In raw mode, every character is passed baCK im
mediately to the program. No erase or kill pro~
cessing is done; the end-of-file character (EOT),
the interrupt character (DELETE) and the 'quit
character (FS) are not treated specially,.

Mode 020 cause,s input carriage returns to be
turned into new-lines; input of, either CR or LF
causes LF-CR both to be echoed (used for GETer
miNet 300's'and other terminals without the new
line function).

Additional bits in the high order byte of the
mode argument are used to indicate that the ter
minal is an IBM 2741 and to specify 2741 modes.
These mode bits are:

400 terminal is an IBM 2741
1000 the 2741 has the transmit interrupt feature

(currently ignored)
2000 use correspondence code conversion on output

- 1 -

STTY (II)

SEE ALSO

DIAGNOSTICS

BUGS

6/12/72 STTY (II)

4000 use correspondence code conversion on input
(currently ignored)

Normal input and output code conversion for 2741s
is EBCDIC (e. g. 963 ball and corresponding key
board). The presence of the transmit interrupt
feature permits the sys.tem to do read-ahead while
no output is in progress. In 2741 mode, the low
order bits 331 are ignored.

stty(I.). gtty(II)

The error bit (c-bit) is set if the file descrip
tor does not refer to a typewriter.

This call should be used with care.

- 2 -

SYNC (II)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGNOSTICS

BUGS

6/12/72 SYNC (II)

sync -- update super-block

ays sync / sync = 36.; not in assembler

sync causes the super block for all file systems
to be written out. It is only necessary on sys
tems in which this writing may be delayed for a
long time, i.e., those which incorporate hardware
protection facilities.

It should be used by programs which examine a
file system, for example check, df, tm, etc.

- 1 -

TIME (II)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72

time get time of year

sys time / time = 13.
(time rO-r1)

TIME (II)

!!m! returns the time since 00:00:00, Jan. 1,
1972, measured in sixtieths of a second. The
high order word is in the rO register and the low
order is in the r1.

date(I). mdate(II)

The time is stored in 32 bits. This guarantees a
crisis every 2.26 years.

- 1 -

TIMES(II) 2/10/73 TIMES{II)

NAME times -- get process times

SYNOPSIS sys times; buffer / times = 43.; not in assembler
•••

buffer: .=.+ [24. * 3]

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

times returns time-accounting information for the
system as a who.!e, for the current process, and
for the terminated child processes of the current
process. All the times are 2-word (32-bit)
numbers, and the unit of measurement is 1/60
second.

After the call, the buffer will appear as
follows:

buffer:
system:

.=.+4

.=.+4

.=.+4

.=.+4

.=.+4

.=.+4

process:
.=.+4
.=.+4
.=.+4
.=.+4
.=.+4
.=.+4

child:
.=.+24.

/ a·bsolute time
I total system time
I total swap time
/ other I/O wait time
I idle time
/ total user time

/. (ignore)
I time in system
I (ignore)
/ I/O wait time
/ (ignore)
I processor time

The format of the "Child" times is the same as
that for the process times; the numbers are the
sum of the times for all terminated direct or
indirect·descendants of the current process.

. w . w
The .absolute time returned i8 the same as that
given by time(II). The "total system times" are
times since the last cold boot.

time(II), time(I)

- 1 -

UMOUNT (II)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 UMOUNT (II)

umount dismount file system

sys umount; special / umount = 22.

umount announces to the system that special file
special is. no long·er to contain a removable file
system. The file associated with the special
file reverts to its ordinary interpretation (see
mount) •

The user' must take care that all activity on the
file system has ceased.

umount(I). mount(II)

Error bit (c-bit) set if no file system was
mounted on the special file.

Use of this call .should be restricted to the
super-user.

- 1 -

UNLINK (II)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 UNLINK (II)

unlink remove directory entry

sys unlink; name / unlink = 10.

li!m!! points to a null-terminated string. unlink
removes the entry for the file pOinted to by n!m!
from its directory. If this entry was the last
link to the file, the contents of the file .are
freed and the file is destroyed. If, howeve·r,
the file was open in any process, the actual des
truction is· delayed until it· is closed, even
though the directory entry has disappeared.

rm(~), rmdir(I), link(II)

The error bit (c-bit) is set to indicate that the
file does not.exist or that its directory cannot
be written. Write permission is not required on
the file itself. It is also illegal to unlink a
directory (except for the super-user).

- 1 -

WAIT (II)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGNOSTICS

BUGS

9/4/72

wait wait for process to die

eye wait / wait = 7.
(process ID in rO)
(termination status/user status in r1)

WAIT (II)

!!!.!! causes its caller to delay until. one of its
child processes terminates. If any child has
died since the last !!!.!!, return is immediate; if
there are no children, return is immediate with
the error bit set. In the case of several chil
dren· several waits are needed to learn of all the
deaths. ----

If the error bit is not set on return., the r1
high byte contains the low byte of the child pro
cess rO when it terminated. The r1 low byte con
tains the termination status of the process from
the following list:

o exit
1 bus error
2 illegal instruction
3 trace trap
4 lOT trap
5 power fail trap
6 EMT trap
7 bad system cal~
8 PIR interrupt
9 floating point exception

10 memory violation
11 quit
12 interrupt
13 kill (see kill(II»
14 User I/O {not currently possible}

+16 core image produced

exit(II}, fork(II)

error bit (c-bit) on if no children not previous
ly waited for.

A child which die·s·, but is never waited for con
sumes a slot in the process table. ',When this
table is full, the system is effectively hunq.

- 1 -

WRITE (II)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72

write write on file

(file descriptor in rO)
sys write; buffer; nbytes
(number written in rOJ

WRITE (II)

/ write = 4.

A file descriptor iea' word returned from a suc
cessful open or creat call.

buffer is the address of nbytes contiguous,bytes
which are wri tten on the output file., The number
of characters actually written is returned in rOe
It should be regarded as an error if this is not
the s~me as requested.

Writes which are multiples of 512 characters long
and begin on a 512-byte boundary are more effi
Cient than any others.

c re at (I I), ope n (I I)

The error bit (c-bit) is set on an error: bad
descriptor, buffer address, or count; physical
I/O errors.

- 1 -

ATAN, ATAN2 (III) 1/15/73 ATAN, ATAN2 (III)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

atan arc tangent fUnction

jsr r5,atan[2]

The atan entry returns the arc tangent of frO in
frO. The range is -n/2 to n/2.

The atan2 entry returns the arc tangent of
frO/fr1 in frO. The range is ~ to n.

kept in /lib/l1ba.a

there is no error return

- 1 -

ATOF (III)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

1/15/73 AToF (III)

atof ascii to floating

jsr r5,ateSf; subr

atof will· convert an ascii stream to a floating
number returned in frO.

The subroutine ~ (supplied by the caller) is
called on r5 for each character of the ascii
stream. subr should return the character in rOe
The first-cniracter not used in the conversion is
left in rOe

The only numbers recoqnized are: an optional
minus siqn followed by a strinq of diqits option
ally containinq one decim!l"point, then followed
optionally by the letter e followed by a siqned
inteqer. .

The subroutine ~ must not disturb any regis
ters.

kept in /lib/liba.a

Calls a toi (III)

There are none; overflow results in avery larqe
number and qarbaqe characters terminate the scan.

The routine should accept initial "+", initial
blanks, and "E" for "e".

Overflow should be siqnalled with the carry bit.

- 1 -

ATOI (III)

NAME

SYNOPSIS
" DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

1/15/73 ATOI (III)

atoi ascii to integer

jsr r5,atoi; subr

atoi will convert an ascii stream to a binary
number returned in r1.

The subroutine ~ (supplied ~ the caller) is
called on rS for each character of the ascii
stream. subr should return the character in rO.
The firstCharacter not used in the conversion is
left in rO.

The numbers recognized are: an optional minus
sign followed by a string of digits.

The subroutine ~ must not disturb any regis
ters.

kept in /lib/liba.a

There are none; the routine charges on regardless
of consequences; see BUGS.

It pays no attention to overflow - you get what
ever the machine instructions mul and div happen
to leave in the low order half - in fact, the
carry bit should be set and isn't.

The routine should accept initial
blanks.

- 1 -

" " + and initial

COMPAR (III)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

1/15/73 COMPAR (III)

compar -- default comparison routine for qsort

jsr pC,compar·

Compar is the default comparison routine called
by qsort and is separated out so that the user
can supply his own comparison.

The routine is called with the width (in bytes)
of an element in ·r3 and it compares byte-by~byte
the element pointed to by rO with the element
pOinted to by r4.

Return is via the. condition"ced!s, wh!ch ~re
tested by the instructions bIt and bgt. That
i·s, in the absence of overflow, then the condi
tion (rO) < (r4) should leave the Z-bit off and
N-bit on while (rO) > (r4) should leave Z and N
off. Still another way of putting it 1s that
for elements of length 1 the instruction

cmpb (rO},(r4)

suffices.

Only rO is changed by the call.

kept in /lib/liba.a

qsort (III)

It could be receded to run faster.

- 1 -

CRYPT (III)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

1/15/73

crypt password encoding

mov $key,rO
jsr pc,crypt

CRYPT (III)

On entry, rO should point to a string of charac
ters terminated by an ASCII NULL. The routine
performs an operation 'on the key which is diffi
c'ult to invert (i.e. encrypts it) and leaves the
resulting eight bytes' of ASCII alphanumerics in a
global cell called "word".

Login uses this result as a password.

kept in /l1b/liba.a

passwd(I),passwd(V), login(I)

there are none; garbage 1s accepted.

- 1 -

CTIME (III)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

1/15/73 CTIME (III)

ctime -- convert date and time to ASCII

. ays
mov
jar

time
$buffer,r2
pc,ctime

The output buffer is 16 characters long and the
time has the format

.Oct 9 17:32:24\0

The input time must be in the rO and r1 registers
in the form returned by sys ~.

kept in /lib/liba.a

ptime(III), time(II)

The routine must be reassembled for leap year.
Dec 31 is followed by Dec 32 and so on.

- 1 -

DDS PUT , DDSINIT (III) 1/15/73 DDSPUT, DDSINIT (III)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ·ALSO

ddsput -- put a character on display data set

(file descriptor in rO)
jsr pc,ddsinit

(character in rO)
jsr pC,ddsput

These. routines provide an interface to the
Display Data Set, a peculiar device which can be
called by Picturephone sets and. which will
display some of the ASCII character set and cer
tain other graphics on the Picturephone screen.

If the DC11 or other interface hardware is not
already set up to talk to the Display Data Set,
the·ddsinit entry should be called with the ap
propriate file descriptor in rOe On the only
known DDS att.ached to UNIX,· the associated spe
cial file is called "/dev/ttyc". ddsinit also
clears the display.

Thereafter, characters may be displayed by .cal
ling ddsput. To the extent possible, ddsput
simulates an ordinary terminal. Characters fal
ling to the right of the 22X22 screen area are

. ignored; the 23rd line on the screen causes·· the
screen to be erased and that line to be put at
the top of the new display. Certain ASCII char
acters are interpreted specially as follows:

FF clear screen, go to top left
HT expand to right number· of spaces
DC1 treat as reverse line feed (move N)
DC2 move cursor 1 place right (move E)
DC3 forward line. feed (move S)
DC4 backspace 1 position (move w)
SO enter graph mode .
S1 leave graph mode
CR put cursor at start of current line

Graph mode allows display of the non-ASCII char
acters and will be described when hell freezes
over.

Lower-case ASCII·alphabetics are mapped into
upper case. Several ASCII non-alphabetic graph
ics are unavailable as well. Also the lower
right circle of the "I" character is miss·ing.
Also one of the circuit cards in the DDS has a
crack in it and sometimes it doesn't work. All
in all, it is best to avoid this device.

kept in /lib/liba.a

AT&T writeup on DDS

1 -

ECVT, FCVT (III)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

1/15/73 ECVT, FCVT (III)

ecvt, fcvt -- output conversion

jsr pc,ecvt

or

jsr pc,fcvt

Ecvt is called with a floatinq point number in
frO.

O·n exit, the number has been converted into a
string·of ascii digits in a buffer pOinted to by
rO. The number of diiitsprod~ced is controlled
by a global variable _ndigits •

Moreover. the position of the decimal point is
contained in r2: r2=O means the d.p. is at the
left· hand end of the string of digits; r2)0 means
the d.p. is within or to the right of. the string.

The sign of the number is indicated by r1 (0 for
+; 1 for -).

The low order digit has suffered decimal rounding
(i. e. may have been carried into).

FCvt is identical to ecvt, except that the
correct digit has had decimal rounding for F
!tyle outeut of the number of digits specified by
_ndigits •

kept in /lib/liba.a

ftoa(III)

- 1 -

EXP (III)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

exp

jsr

1/15/73

exponential function

r5,exp

EXP (III)

The exponential of frO is returned in frO.

kept in /lib/liba.a

If the result is not representable, the c-bit is
set and the largest positive number is returned.

Zero 1s returned if the result would underflow.

-.1 -

FTOA (III)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

1/15/73 FTOA (III)

ftoa floating to ascii conversion

jsr r5,ftoa; subr

ftoa will convert the floating pOint number in
~into ascii in the form

[-]ddddd.dd*

if poSSible, otherwise in the form

For each character generated by ftoa, the
subroutine ~ (supplied by the caller) is
called on register r5 with the character in rOe

The number of digits can be changed by changing
the value of "_ndigits" in ecvt (default is 10.).

The subroutine ~ must not disturb any regis
ters.

kept in /11b/liba.a

ecvt(III), 1toa(III)

- 1 -

FTOO (III)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

1/15/73 FTOO (III)

ftoo floating to octal conversion

jsr r5,ftoo; subr

ftoo wil convert the floating pOint number in frO
into ascii in the conventional octal form

000000;000000;000000;000000

For each character generated by ftoo, the
subroutine ~ (supplied by the caller) is
called on register r5 with the character in rO.

The subroutine ~ must not disturb any regis
ters.

kept in /lib/liba.a

- 1 -

CONNECT, GERTS (III) 3/15/72 CONNECT, GERTS (III)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

connect, gerts -- Gerts communication over 201

jsr r5,connect
(error return) .
•••

jsr r5,gerts; fc; oc; ibuf; obuf
(error return)
•••

other entry points: gcset, gout

The GCOS GERTS interface is so bad that a
description here is1nappropriate. A~one need
ing to use this interface should seek divine gui
dance.

/dev/dnO, /dev/dpO
kept in /lib/liba.a

dn(IV), dp(IV}, HIS documentation

- 1 -

GETC, GETW, FOPEN (III) 3/15/72 GETC, GETW, FOPEN (III)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

getw, getc, fopen

mov
jsr

$filename,rO
rS,fopen; iobuf

jsr rS,getc; iobuf
(character in rO)

jsr rS,getw; iobuf
(word in. rO)

buffered input

These routines are used to provide a buffered
input facility. iobuf is the address of a
S"18(1 0) byte buffer 'area whose contents are main
tained by these routines. Its format is:.

ioptr: .= .+2
.=.+2
.=.+2
.=.+S12.

/ file descriptor
/ characters left in buffer
/ ptr to next character
/ the buffer

fopen may be' called initially to open the file.·
On return', the error bit ·(c-bit) is set if the
ope·n fa·iled. If fopen is never· called, get will
read from the standard input file.

getc returns the'next byte from the file in rOe
The error bit is set on end of file or a read
error.

getw returns'· the next word i'n rOe getc and getw
may be used alternately; there are no odd/even
problems.

iobuf must be provided by the user; it must be on
a word boundary.

To reuse the same buffer for another file, it is
sufficient to close the original file and call
fopen again.

kept in /lib/liba.a

open(II}, read(II), putC(III)

c-bit set on EOF or error

- 1 -

HYPOT (III)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

hypot

movf
movf
jsr
movf

6/12/72

calculate hypotenuse

a,frO
b, fr1
rS,hypot
frO, •••

HYPOT (III)

The square root of frO*frO + fr1*fr1 is returned
in frO. The calculation is done in such a way
that overflow will not occur unless the answer is
not representable in floating point.

kept in /l1b/liba.a

sqrt(III)"

The c-bit is set if the result cannot be
represented.

- 1 -

ITOA (III)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 lTOA (III)

itoa integer to ascii conversion

jsr rS,itoaj subr

itoa will convert the number in rO into ascii
deCImal preceded by a - sign if appropriate. For
each character generated by itoa, the subroutine
~ (supplied by the caller) is called on regis
ter r5 with the character in rOe

The subroutine ~ must not disturb any regis
ters.

kept in /lib/liba.a

- 1 -

LOG (III')

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

log

jsr

3/15/72

logarithm (base e)

rS,log

LOG (III)

The logarithm (base e) of frO is returned in frO.

kept in /lib/liba.a

The error bit (c-bit) is set if the input argu
ment 1s less than or equal'to zero and the result
is set to the largest negative number.

- 1 -

MESG (III)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

mesq

jar

3/15/72 MESG (III)

write message on typewriter

r5.mesg; (Now is the t1me\O); .even

mesg writes the string ·immediately following its
call onto the standard output file. The string
must be terminated by an ASCII NULL byte.

kept in /11b/l1ba.a

- 1 -

NLIST (III) 6/12/72 NLIST (III)

NAME nlist -- get entries from name list

SYNOPSIS jsr rS,nlist; f1le; list
•••

file: '<file name\O); .even
list:

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

<name1xxx); type1; value1
<name2xxx); type2; value2
••• o

nlist will examine the name list in the given
assembler output file and selectively extract a
list of values. The· name list consists of a list
of a-character names (null padded) each followed
by two words. The list is terminated with a
zero. Each name is looked up in the name list of
the file. If the name is found, the type and
value of the name are placed in the two words
following the name. If the name is not found,
the type entry is set to -1.

This subroutine is useful for examining the sys
tem name list kept in the file lsys/sys/unix. In
this way programs can obtain system 'magic'
numbers that are up to date.

kept in./lib/liba.a

a.out(v)

All type entries are set to -1 if the file cannot
be found or if it is not a valid namelist.

- 1 -

POW (III)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

1/15/73

A

pOW -- floating exponentiation x y

movf
movf
jsr
movf

x,frO
y,fr1
pc ,pow
frO, •••

POW (III)

The value of xAy (i.e. xY) is returned in frO.

OAX returns zero for all x.

(_X)Ay returns a result only if y is an integer.

kept in /lib/liba.a

exp (III), loge 11°1)

The carry bit is set on return in case of over
flow or in case of OAO or (_X)Ay for y non
integer.

- 1 -

PTIME (III)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 PTIME (III)

ptime print date and time

sys time
mov ·file,r2
jsr pc,ptime

ptime prints the date and time in the form

Oct 9 17:20:33

on the file whose file descriptor is in r2. The
string is 15 characters long. The time to be
printed must be placed in the rO and r1 registers
in the form returned by sya !!m!.

kept in /11b/liba.a

time(II), ctime(III) (used to do the conversion)

see ctime

- 1 -

PUTC,PUTW,FCREAT,FLUSH (III) 6/12/72.PUTC,PUTW,FCREAT,FLUSH (III)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

putc, putw, fcreat, flush buffered output

mov $filename,rO
jsr rS, fcreat; iobuf

(get byte in rO)
jsr rS,putc; iobuf

(get word in. rO)
jsr rS ,putw; iobuf

jsr rS, flush; iobuf

fcreat creates the given file (mode 17) and sets
up the buffer iobuf (size S18(10) bytes); putc
and putw write a byte or word respectively onto
the file; flush forces the contents of the buffer
to be written, but does not close the file. The
format of the buffer is:

iobuf: .= .+2
.=.+2
.=.+2
.=.+512.

/ file descriptor
/ characters unused in buffer
/ ptr to next free character
/ buffer

fcreat sets the· error bit (c-bit) if the file
~reation failed; none of the other routines re
turn error information.

Before terminating, a proqram should call flush
to force out the last of the output.

The user must supply iobuf, which should begin on
a word boundary.

To write a new file using the same buffer, it'
suffices to call flush, close the file, and call
fcreat again.

kept in /lib/liba.a

creat(II), write(II), getc(III)

error bit possible on fcreat call

- 1 .-

'QSORT (III)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

6/12/72

qsort --quicker sort

(base of data in r1)
(end+1 of data in r2')
(element width in r3)
jsr pc,qsort

QSORT (III)

gsort is an implementation of the quicker sort
algorithm. It is designed to sort equal length
elements. Registers r1 and r2 delimit the region
of core containing the array of· byte strings to
be sorted: r1 points to the start of the first
string, r2 to the first location 'above the last
string. Register r3 contains the length of each
string. r2-r1 should be a multiple of r3. on
re turn, rO, r1, r2, r 3, r4 .re destroyed.

The routine compar (q.v.) is called to compare
elements and may be replaced by the user.

kept in /lib/liba.a

compar(III)

It scribbles on r4.

- 1 -

RAND (III)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

WARNING

1/15/73 RAND (III)

rand random number generator

jsr pc ,srand
jsr pc,rand

Ito initialize
Ito get a random number

The routine uses a multiplicative congruential
random number generator to return successive
pseudo-random numbers in rO in the range from 1
to 2"'1 5-1 •

The generator is reinitialized by calling srand
with 1 in rO.

It can be set to a random starting point by cal
ling srand with whatever you like in rO, for
example the result left in r1 from ~ ~.

kept in Ilib/liba.a

The author of ·this routine has been writing
random-number generators for many years and has
never been known to write one that worked.

- 1 -

SALLoe (III)

NAME

SYNOPSIS

6/15/72 SALLoe (III)

salloe -- strinq manipulation routines

(qet size in rO)
jsr pc,allocate

(get source pointer in rOt
destination pointer in r1)
jsr pc.copy

jsr pc .wc

(all following instructions assume r1 contains pOinter)

jsr pc.release

(get character in rO)
jsr pc,putchar

jsr pc,lookchar
(character in rO)

jsrpc,qetchar
(character in rO)

(qet character in rO)
jsr pc,alterchar

(get pos~tion in rO)
jsr pc,seekchar

jsr pc ,backspace
(character in rO)

(get word in rO)
jsr pc,putword

jar pc,lookword
(word in rO)

jar pc,getword
(word in rO)

·(qet word in rO)
jsr pc,alterword

jar pc,backword
(word in rO)

jar . pc,lenqth
(length in rO)

jsr . pc ,position
(position in rO)

jsr pc ,rewind

- 1

SALLOC (III)

DESCRIPTION

6/15/72 SALLOC (III)

jsr pc,create

jsr pc,fsfile

jsr pc,zero

This package is a complete set of routines for
dealing with almost arbitrary length strings of
w·ords 'and bytes.· The strings are stored on a
disk file, so the sum of their lengths can be
cons.idera bly larger than the available core.

Fo·reach string there is a header of four words,
namely a write pOinter, a read pOinter and
pointe'rs to the beginning and end of the block
containing the string. Initially the read and
write pOinters point to the beginning of the
string. All routines that refer to a string
require the header address in r1. Unless the
string is· destroyed by the call, ~pon return r1
will point to the same' string, although the
string may have grown to the extent that it had
to be be ~oved.

allocate obtains a string of the requested size
and returns a pointer to its header in r1 •

release releases a string back to free storage.

putcha·r and putword write a byte. or word respec
tively into the string and advance the write
pointer.

lookchar and lookword read a byte or word respec
tively from the string but do not advance the
read pointer.

getchar and getword read a byte or word respec
tively from the string and advance the read
pointer.

alt·erc.har andalterword wri~e a byte or word
respectively into the 'string where the read
po~nter is pointing and advance the read pointer.

backspace and backword read the last byte or word
written and decrement the write pointer.

All write operations will automatically get a
larger block if the current block is Eu(ceeded~
All read operations return with the error bit set
if attempting to· read beyond. the write pointer.

seekchar moves the read pointer t~~e ~ffset
specified in rOe

- 2-

SALLoe (111-)

FILES

SEE ALSO

DIAGNOSTICS

BUGS

6/15/72 SALLOC (III)

length returns the current length of the string
(beginning pointer to write pointer) in rOe -

position returns the current offset of the read
pOinter in rOe

rewind moves the read pOinter to the beginning of
the ,string.

create returns the read and write pOinters to the
beginning of the string.

fsfile moves- the read pOinter to the current
position of the write pointer.

~ zeros the whole string and sets the write
pOinter to the beginning of th~ string.

~ copies the string whose header pOinter is in
rO to the string whose- header pOinter is in r1.
Care should be taken in using the -copy ins-truc
tion since r1 will be changed if the contents of
the source string is bigger than the destination
string.

wc forces the contents of the i-nternal buffers
and the header blocks to be written on disc.

The allocator is in /lib/libs.a; -the =! option to
Id will link edit references to the allocator.

alloc.d is the temporary file used to contain the
strings.

" -" error-in copy if a disk write error occurs dur-
~ng tpe execution o£ the copy instruction'.
error in allocator if any -routine is called

" with"a bad header pOinter. Cannot-open output
file if file alloc.d cannot be -created or
opened. "out of space" if there·s no available
block of the requested size or no headers avail
able for a new block.

- 3 -

SIN, COS (III)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 SIN, COS (III)

sin, cos -- sine cosine

jsr r5,sin (cos)

The sine (cosine) of frO in radians is returned
in frO.

The magnitude of the argument should be checked
by the caller to make sure the resu,lt is meaning
ful.

kept in /lib/liba.a

there are none

- 1 -

SQRT (III)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 SQRT (III)

sqrt square root function

jsr r5,sqrt

The square root of frO is returned in frO.

kept in /lib/liba.a

The c-bit is set on negative arguments and 0 is
returned.

- 1 -

SWITCH (III) 3/15/72 SWITCH (III)

NAME switch switch on value

SYNOPSIS (switch value in rO)
jsr r5,switchi swtab
(not-found return)
•••

swtab: val1; lab1;

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

•••
valn; labn
•• ; 0

switch compares the value of rO against each of
the val • if a match is found, control is.
transfe!red to the corresponding lab i (afte~ pop
ping the stack once). If no match has been found
by the time a ,null lab! occurs, switch returns.

kept in /lib/liba.a

- 1 -

TTYN (III)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

1/15/73 TTYN (III)

ttyn -- return name of current tty

jsr pc,ttyn

The routine hunts up the name Of. the input tty
attached to the process (one byte from the set
{012345678abc} at present) and returns it in rOe

.. " x is returned if no genuine input tty is at-
tached to the proc'ess.

kept in /lib/liba.a

fstat(II)

- 1 -

DC (IV) 6/12/72 DC (IV)

NAME . dc -- DC-11 communications interfaces

DESCRIPTION
The special files /dev/ttyO~ /dev/tty1, •••
DC11 asynchronous communications interfaces.
moment there are ,ten of them, but the nu.mber
to change.

refer to the
At the

is subject

When one of these files is opened, it causes the process
to wait until a connection is established. (In practice,
however, user's programs seldom open these files; they
are opened by init and become a us~r's standard input and
output file.) The very first typewriter file open in a
process becomes the control typewriter for that process.
The control typewriter plays a special role i~ handling
quit or interrupt ,s ignals, as discussed below. The con
trol typewriter is inherited by a child process during a
for~.

A terminal ,associated with· one of these files ordinarily
operates in full-duplex mode. Characters may be typed at
any time, even while output is occurring, and, are only
lost when the 'system's character input buffers become

,completely choked, which is rare, or when the user has
accumulated the maximum allowed number of input charac
ters which have not yet been read by some·program.
Currently this limit is 150 characters. When this is
happening the character "," is echoed for every lost
input character.

Whe'n first opened, the interface mode is ASCII
characters; 150 baud; even parity only accepted;' 10
bits/character (one stop bit); and newline action 'charac
ter. The system delays transmi'ssion after sending cer
tain 'functi,on characters. Delays for horizontal tab,
newline, and form feed are calculated for the Teletype
·Model 37; the delay for carriage return is calculated for.
the GE TermiNet 300. Most of these operating states can
be changed by using the system call stty(II). In partic
ularthe following hardware states are program settable
independentlyfQr input and output (see DC11 manual):
134.5, ,150,. 300, or 1200 baud; one .or two stop bits on)
output;' and 5, 6, 7, or 8 data bit's/character. In addi
tion, the followinq software modes can be invoked: accep
tance of even parity, odd parity, or both; a raw mode in
which all·' characters may be read one at a time; a c'ar
riage return '(CR) mode in which CR is mapped' into newline
on input and either CR or line feed (LF) causeechoinq of
the sequence LF-CR; mapping of upper case letters into
lower case; suppressio~ of echoing; suppression of delays
after function characters; the printing of tabs as '
spaces; and setting the system to handle IBM 2741s. See
getty(VII) for the way that terminal speed and type are
detected.

Normally, typewriter input is processed in units of

- 1 -

DC (IV) 6/12/72 DC (IV)

lines. This means that 'a'program attempting to read will
be suspended until an entire line has been typed. ,Also,
no matter how many characters axe requested in the read
call, at most.one ,line will be returned. It is not
however necessary to read a whole' Ilne at once; any
number of characters may be requested in a read, even
one, without losing information.

During input, erase and kill processing is normally done.
The character "I" erases the last character typed, except
that it ~ill -not erase, ee,):ond the beginning of a line or
an EOT. The character 8 kills the entire line up to
the point where it was typed, but not beyond an EOT.
Both these characters operate on a keystroke basis in
dependently of any backspacing or tabbing that may have
been done. ,Either "8" or "I" may be entered literally, by
precedin~ ~t by "\"; the erase or kill character remains,
but the \ disappears.

It is possible to use raw mode in which the program read
ing is awakened on each character.' I~raw mode, no'erase
or kill processing is done; and the EOT, quit and inter
rupt characters are not treated specially.

The ASC~I EOT character may be used to generate 'an end of
file from a typewriter., When an EOT is received,' a,ll the
characters waiting to be read are immediately passed to
the program, without waiting for a new-l'ine. Thus if
there are no, characters wait'lng, which is'to say the EOT
occurred at the be'ginning of a' li,ne, zero cl)aracters will
be passed back, and,this is, the standard end,-of-file sig
nal. The EOT, is not passed on excep~ in raw mode.

When the carrier signal from the da,taset drops (,usually
because the user has hung up his terminal) any read re
turns with an end-of-file indication,. Thus programs
which read a typewriter and test for end-of-file on their
input ~an terminate appropriately when hung up on.

Two characters have a special meaning when tyeed. The
ASCII DEL character (sometimes called "'rubout l is 'the
interrupt Signal. When this character is,received from a
given typewriter, 'a search is made for all processes
which have this,typewriter as'their control typewriter,
~nd which, have' not informed the system that they wlshto
ignore interrupts. If there is more than one such 'pro'
cess,one of these is selected, for practical purposes at
random.' The process is either forced to exit or a trap
is Simulated to an agreed-upon location in the process.
See intr(II).

The ASCII character FS 'is the quit signal. Its treatment
is identical to the interrupt signal except that unless
the receiving process has made other arrangements it will
not only be terminated but a core image file will begen
erated. See quit(II). The character is not passed on

2

DC (IV)

FILES

6/12/72 DC (IV)

except. in raw mode.

Output is prpsaic compared to input •. Whe·n· one or more
characters axe written, they are actually transmitted to
the terminal as soon as previously-written characters
have finished typing. Input characters are echoed by
puttinqthem in the output queue as they arrive. When a
process produces characters more rapidly than they can be
typed. it will be suspended when its output queue exceeds
some limit. When the queue has drained down to some
threshold the program is resumed. Even-parity is always
generated on output. The EOT character ·is not transmit
ted to prevent terminals which respond to it from being
hung up. .

The system will handle IBM 2741 terminals. See
getty(VII) for the way that 2741s are detected. In 2741
mode, the hardware state is: 134.5 baud; one· output stop
bit; and 7 bits/character. Because the 2741 is inherent
ly half-duplex, input is not echoed. proper function
delays are provided.. For 2741 s without· a· feature known
as "transmit interrupt" it is not· possible to· colle·ct
input ahead of the time that a program reads the type
writer, becau·se once the keyboard has been enabled there
is no way to send further output to the 2741. It is
currently assumed that the feature is absent; thus the
keyboard is unlocked only when some proqram reads. The
interrupt slgnal (normally ·ASCII·DEL.) is simulated when
the 2741·· "attention" key is pushed to generate either a
2741 style EOT or a;break. It is not possible to qen
erate a·nythinq correspondinq to the end-of-file EOT or
the quit signal.. Currently IBM EBCDIC is default· for
input and output; correspondence code output is settable
(see stty(Il)" . !h~f~l! A§C!I, 5~!r~cter set is not ..
available: [,], {, } ,'.. ,tr~ miSSing on ipPUt
and are erinted as blank on outputt ~ is used for ~;
" ... " for"," for :both "," and" WI on output; and ".
maps into .. J .. on input. Similar mappings occur with
correspondence code output.

/dev/tty[01234567ab]
/dev/ttyc
/dev/ttyd

11 3B dataphones
display data set
113B with /dev/dn1

SEE ALSO kl(IV), qetty(VII)

BUGS The primarily Model 37 oriented delays may not be
appropriate for all other ASCII terminals.

- 3 -

NAME

DESCRIPTION

FILES

SEE ALSO

BUGS

3/15/72 DN (IV)

dn -- dn-11 ACU interface

~ is a write~only f1le. Bytes written on dn?
must be ASCII as follows:

0-9 dial 0~9
: dial *
; dial II
= end-of-number

The entire telephone number must be presented in
a sing Ie wr,i te system call.

It is recommended that an end-of-number code be
given even though only one of the ACU's (113C)
actually requires it.

/dev/dnO
/dev/dn1
/dev/dn2

connected to 801 with dpO
connected to 113C with ttyd
not currently connected

dp(IV), dC(IV), write(II)

- 1 -

DP (IV)

NAME

DESCRIPTION

FILES

SEE ALSO

BUGS

3/15/72 DP (IV)

dp - dp-11 201 data-phone i·nterface

dp? 1s a 201 data-phone interface file. ~ and
write calls to dp? are' limited to a maximum of
400 bytes~ Each write call is sent as a single
record. Seven bits from each byte are written
along wi·th ·an eighth odd parity bit. The sync'
must be user' supplied.· Each read call returns
characters received from a single record. Seven
bits are returned unaltered; the eighth bit is
set 1f the byte was not received in odd parity.
A 20 second time out is set and a zero byte
record is returned if nothing is received in that
time.

/dev/dpO 201 dataphone used to call GCOS

dn(IV), gerts{III)

The 9R file is GCOS oriented. It should be more
flexible.

- 1 -

KL (IV)

NAME

DESCRIPTION

FILES

SEE ALSO

BUGS

3/15/72 KL (IV)

kl -- KL-11/TTY-33 console typewriter

tty (as distinct from tty?) refers to the console
typewriter hard-wired to the PDP-11 via a KL-11
interface.

Generally, the disciplines involved in dealing
with ttl are similar to those for tty? and sec
tion dc IV) should be·consulted. The following
diffe~ences are salient:

The system calls sttY and ~ do not apply to
this device. It cannot be placed in raw mode; on
input, upper case letters are always mapped into
lower case letters; a carriage return is echoed
when a line-feed is typed.

The quit character is not FS (as ~ith tty?)"but
is generated by the key labelled alt mode.

By appropriate~console switch settings, it is
possible to cause UNIX to come up as a sinqle
user system with I/O on this device.

/dev/tty
/dev/tty8 synonym for /dev/tty

dC(IV), init(VII)

- 1 -

MEM (IV)

NAME

DESCRIPTION

FILES

SEE ALSO

BUGS

3/15/72 MEM (IV)

mem core memory

mem 1s a special· file that is an image of the
c:Ore memory of the computer. It may be used, for
example·, to examine, and even to pa tch the system
usi·ng the debugger.

!1.!!!! is a byte-oriented file; its bytes are num
bered 0 to 65,535.

If a non-existent· memory location is referenced,
the user suffers the resultant bus error.

Memory referenced through the file is treated
with ~ instructions. Certain device registers
do not implement DATOB cycles to odd addresse.s.
Other registers react strangely to this address
ing.

/dev/mem

- 1 -

PC (IV)

NAME

DESCRIPTION

FILES

SEE ALSO

BUGS

3/15/72 PC (IV)

pc PC-11 paper tape reader/punch

~ refers to the PC-11 paper tape reader or
punch, depending on whether it is read or writ
ten.

When :e.e! is opened for wri tlnq, a 1 aO-character·
leader is punched. Thereafter each byte written
1 s punched on the tape. No edt ting of the char
acters is performed. When the file is closed, a
100-character trailer is punched.

When ~ 1s opened for reading, the procesawaits
until tape is placed in the reader' and the reader
is on~line. Then requests to read cause the
characte.rs read to be passed back to the program,
again without any. editing. Th1.s means that
several null leader character~ will usually ap
pear at the beginning of the file. Likewise
several nulls are likely to appear at the end.
Em-of-file is ge.nerated when the tap~ runs out.

Seek calls for this file are meaningless.

/dev/ppt

- 1 -

RF (IV)

NAME

DESCRIPTION

FILES

SEE ALSO

BUGS

3/15/72 RF (IV)

rf RF11-RS11 fixed-head disk file

This file refers to the concatenation of both
RS-11 disks. It may be either read or written,
although writing is inherently very dangerous,
since a file system resides there.

The disk contains 2048 256-word bloCkS, numbered
o to 2047. Like the other block-structured dev
ices (TC, RK) this file is addressed in bloCks,
not bytes. This has two consequences: seek calls
refer to block numbers, not byte numbers; and
sequential reading or writing always advance the
read pr write· pointer by at least one block.
Thus successive reads of 10 characters· from this
file actually read the first 10 characters from
successive blocks.

/dev/rfO

tC(IV), rk(IV)

The fact that this device is addressed in terms
of blocks, not ·bytes, i.s extremely unfortunate.
It is due entirely to the fact that read and.
write pointers (and consequently the arguments to
~) are single-precision numbers.

- 1 -

RI< (IV)

NAME

DESCRIPTION

FILES

SEE ALSO

BUGS

3/15/72 RK (IV)

rk RK-11/RK03 (or ~K05) disk

rk? refers to an entire RK03
sequentially-addressed file.
are numbe red 0 to 4871. Like
tape file s , its addre Baing is
Consult the rf(IV) section.

disk as a single

/dev/rkO
/dev/rk1
/dev/rk2
/dev/rk3

rf(IV), tC(IV)

See rf(IV)

Its 256-word blocks
the RF disk and the
block-oriented.

user available' drive
/usr file system
jsys file system
/crp file system

- 1 -

TC (IV)

NAME

DESCRIPTION

FILES

SEE ALSO

BUGS

3/15/72 TC (IV)

tc -- TC-11/TU56 DECtape

The files tapO ••• tap7 refer to the TC-11/TU56
DECtape drives. 0 to 7. Since the loqical drive
number can be manually set, all eight files exist
even though at present there are fewer physical
drives.

The 256-word plocks on a ·standard DECtape are
numbered 0 to 577. However, the system makes no
assumption about this number; a block can be read
or written if it exists on the tape and not oth
erwise. An error is returned if a transaction is
attempted for a block which does not exist.

Addressing on the tape files·, like that on the RK
and RF disks, is blOCk-oriented.

/dev/tap?

rf(IV), tap(I)

see rf(IV)

- 1 -

TM (IV)

NAME

DESCRIPTION

FILES

SEE ALSO

BUGS

6/12/72 TM (IV)

tm -- TM-11/TU-10 magtape interface

!!!!Z is the DEC TU10/TM11 magtape. When opened
for reading or writing, the magtape is rewound.
A tape consists of a series of 512 byte records
terminated by an end-of-file. Reading less than
512 bytes causes the rest of a record to be' ig
nored. Writing le·ss than a record causes null
padding to 512 bytes. When the magtape is closed
after writing, ,an end-of-file is wri tten.

Seek has no effect on the magtape. The magtape
can only be opened once at any instant.

/dev/mtO

mtCI)

selected drive 0

Seek should work on the magtape. Also, a provi
sion of having the tape open for reading and
writing should exist. A multi-file and multi
reel facility should be incorporated.

- 1 -

VT (IV) 2/11/73 VT (IV)

NAME vt -- 11/20 (vt01) interface

DESCRIPTION
The file' vtO provides the interface to a PDP 11/20 which
runs both a VT01A-controlled Tektronix 611 storage
display, and a Federal Screw Works (Vocal Interface Divi
sion) voice synthesizer. The inter-computer interface is
a pair of DR-11C word interfaces.

Althouqh the display has essentially onl~ two commands,
namely "erase screen" and ~display pOint, the 11/20 pro
gram will ~raw points, lines, and arcs, and print text o'n
the screen. The 11/20 can also type information on the
at·tached 33 TTY and generate utterances via the voice
synthesizer.

This special file operates in two basic modes, selected
by.bit"2 (octal 04) on the 11/20's console switches. If
this bit· is on at the opening of the file, all bytes
written on the file are interpreted as ASCII characters
and written on the screen •. The' sC'reen has 33 lines (1/2
a standard page). The file simulates a 37 ·TTY: the con
trol characters NL, CR, BS, and TAB are i~terpreted
correctly. It also interprets the usual escape sequences
for forward and·reverse half-line motion and for full
line reverse. Greek is not available yet. Normally,
when-the screen is full (i.e. the 34th line is started)
the screen is erased before starting anew page. To
allow perusal of the displayed text, i·t is usual to as
sert bit 0 of the console switches \octal 01)~ As ex
plained below, this causes the program to pause before
erasing until one of the attached pushbuttons is
depressed.

If bit 2 of the switches is down, the display is in ..
graphic mode. In this case bytes written on the file are
interpreted as di.splay _ and vocal commands. Each command
consists of a Single byte usually followed by parameter
bytes. Often the parameter bytes represent points in the
plotting area. Each pOint coordinate consists 'of 2 bytes
interprete~ as a 2's complement 16-bit number. The plot
ting area 1 tself measures (,±03777)X (±03777) (numbers in
octal); that is, 12 bits of precision. Attempts to plot
points outside the screen limits are ignored.

The graphic and sonic commands are:

order -(1); ·1 parameter byte
The· parameter indicates a subcommand, possibly fol
lowed by subparameter bytes, as follows:

erase (1)
The. sc'reen is erased. This action may be de
layed, as explained below, until a pushbutton
is depressed.

- 1

VT (IV) 2/11/73 VT (IV)

label (2); several subparameter bytes
The followinq bytes up to a null character are
taken as a label and typed on the console T~Y.
One of the console switches gives labels a spe
cial interpretation, as explained below.

display label (3); several subparameter bytes
The following bytes up to a null byte are
printed as ASCII text on the screen. The ori
qin of the text is the last previous point·
plotted; or the upper left hand of the screen
if there were none.

pOint (2); 4 parameter bytes
The 4 parameter bytes are taken as a pair of coordi
nates representing a point to be plotted.

line (3); 8 parameter bytes
The parameter bytes are taken as 2 pairs of coordi
nates representinq the ends of a line segment which
is plotted. Only the portion lyinq wi'thin the
screen is displayed.

frame (4); 1 parameter byte
The' parameter byte is taken as a number of sixtieths
of a second; an externally-available lead is assert
ed for that time. Typically the lead is connected
to an automatic camera which advances its film and
opens the shutter for the specified time.

circle - (5-); 6 parameter bytes
The parameter bytes are taken as a coordinate pair
representing the origin, and a word representing the
radius of a circle. That portion of the circle
which lies within the screen is plotted.

arc (6); 12 parameter bytes
The first 4 parameter bytes are taken to be a
coordinate-pair repre-sentinq the center of a circle.
The next 4 represent a coordinate-pair' specifying a
poi.nt on this circle. The last 4 should represent
another.point on the circle. An arc isdr~wn
counter-clockwise from ~he first circle point to the
second. If the two pOints are the same·, the whole
circle is·drawn. For the second pOint,only the
smaller-in magnitude oftts two coordinates is
significant; the other is used only to find the qua
drant of the end of the arc. In any event only
pOints within the screen limits are plotted.

dot-line (7);-at least 6 parameter bytes
The first 4 parameter bytes are taken as a
coordinate-pair representinq the origin of a dot
line •. The next byte is taken as a signed x
increment. The next byte is an unsiqned word-count,
with "0" meaning "256". The indicated number of

-2 -

VT (IV)

FILES

2/11/73 VT (IV)

words is picked up. For each bit in each word a
II " point is plotted which is visible if the bit is 1 ,

invisible if not. High-order bits are plotted
first. Each successive point (or non-point) is
offset rightward by the given x-increment.

speak(8); several parameter bytes
The following bytes' up to a null byte are 'taken to
represent phonemes which are fed to the voice syn
thesizer. vsp(VII) gives the encoding.

The 3 low-order con'sole switches of the 11/20 modify the
operat~on of the display as follows.

Bit 2 (octal 04) is examined at the time the display file
is opened (more precisely, when the first byte is written
after an open); as indicated, when 2n it selects charac-
ter mode, otherwise graphic mode. '

Bit 1 (octal 02) determines whether TTY labels are to be
interpreted. Unless ,this bit is Qn, labels are ignored.
(except to terminate skip mode, see below).

Bit 0 (octal01l determines whether' the display will
pause before e,rasing'the screen; if off there will be no
pause. If bit' 0 is 2.!l, ,the erase will occur and' display
ing 'will resUme only when one of the 16 pushbuttons is
depressed.

There is a box with 16 pushbuttons con'nected to the
11/20. Their state is at all times available in the ..
11/ 45 by executing the £!!!' system call (. II) • They 'are
used by the '11/20 when it 1:s pausing before an erase. 14
of the buttons merely serve to allow the display to con
,tinue., If, however, button 7 '1·s pushed, the display will
ignore commands up to the next erase command, then ring
the TTY console's bell, thereby skipping an entire pic
ture.

If button 8 i8 ,depressed, the display will ignore com
mands up to the next' TTY label (whether or not its typing
is suppressed) before resuming the displays. Thus a
sequence of frames may be skipped.

/dev/vtO

SEE ALSO caw(II), vsp(VII)

BUGS Two users using vtO simultaneously can interfere
with each other,e.g. plot phonemes or speak
display coordinates.

- 3 -

A.OUT (v) 3/15/72 A.OUT (V)

NAME a.out assembler and link editor output

DESCRIPTION
a.out is the output file of the assembler as and the link
editor ld. In both cases,·a.out may be executed provided
there were no errors and no unresolved external refer
ences.

This file has four sections: a header, the program and
data text, a symbol table, and relocation bits (in that
order). The last two may be empty if the program was
loaded with the· "-s" option of·ld or if the symbols and
relocation have been removed by strip.

The header always contains 8 words:

1 A magic number (407(8»
2 The· size of the program text segment
3 The· size of the· ini tialf zed data segment
4 The size of the uninitialized (bss) segment
5 The size of the symbol table
6 The entry location (always 0 at present)
7 The stack size required (0 at present)
8 A flag indicat1nq relocation bits have been

suppressed

The sizes· of each segment are i·n bytes but are even. The
size of the header is not included in any of the other
sizes.

When a file produced by the assembler or loader is loaded
into core for execution, three segments are set up: the
text s·egment, the data segment, and thebes (uninit1al-
1zed data·) segment, in that order. The text segment
begins at the lowest location in the core image; the
header 1s not loaded. The data segment begins immediate
ly after the text segment, and the bss segment immediate-

.ly·after the data segment. The bss segment is initial
ized by O's. In the future the text segment will be
write-protected and shared.

The start of the text segment in the· file is 20(8); the
start of· the data segment is 20+S (the size of the text)
the start of· the relocation info~ation is 20+St +Sd ; the
start ·of the symbol table is 20+2(St+Sd) if the reJ:oca
tion i~format.ion is present, 20+St +Sd 1f .not.

The symbol table consists of 6-word entries. The·first
four contain the ASCII name of the·symbol, null-padded.
The next word is a flag indicating the type of symbol.
The following values are possible:

00 undefined symbol
01 absolute symbol
02 text segment symbol
03 data segment symbol

- 1 -

A.OUT (v) 3/15/72

04 bss segment symbol
40 undefined external (.globl) symbol
41 absolute external symbol
42 text. segment external symbol
43 data' segment external symbol
44 bss segment external symbol

A.OUT (V)

Values other than those given above may occur if the user
has defined some of his own instructions.

The last word of a symbol table entry contains the value
of the symbol.

If the symbol's type is undefined external, and the value
field is non-zero, the symbol is interpreted by the
loader ld as th.e name of a common region whose size is
indicated by the value of .the symbol.

The value of a word in the text or data portions which is
not a reference to an undefined externa·l symbol is exact
ly·that value which will appea~ in core when the file 1s
executed. If a word i·n the text or data portion involves
a reference to an undefined external symbol, as indicated

·by the relocation bits for that word, then the value of
the word as stored in the file is an offset from the
associated external symbol •. When the file is processed
by the link editor a'nd the external symbol becomes de
fined, the value of the symbol will be added into the
word in the file.

If relocation information is present, it amounts to one
word per word of program text or initialized data. There
is no relocation information if the "suppress relocation"
flag in the header is on.

SEE ALSO

Bits 3-1 of a relocation word indicate the· segment re
ferred to by the text or data word associated with the
relocation word:

00 indicates the reference is absolute
02 indicates the reference is to the text segment
04 indicates 1=.he reference is to the data segment
06 indicates the reference is to the bss segment
10 indicates the reference is to an undefined external

symbol.

Bit 0 of the reloc.ation word . indicates if on that the
reference is relative to the pc (e.g. "clr-X"l; if 2!!,
the reference is to the a~tual symbol (e.g., clr *$x).

The remainder of the' relocation word (bits 15-4) contains
a symbol number in the case of external references, and
is unused otherwise. The first symbol is numbered 0, the
second 1, etc.

~, ld, strip, nID, ~(I)

- 2 -

ARCHIVE (V)

NAME

DESCRIPTION

SEE ALSO

3/15/72 ARCHIVE (V)

archive (library) file format

The archive command !£.is used to combine several
files into one. Archives are used mainly as
libraries to be searched by the link-editor ld.

" " A file produced by !E has a magic number at the
start, followed by the constituent files, each
preceded by a file header. The magic number is
177555(8) (it was chosen to be unlikely to occur
anywhere else). The header of each file is 16
bytes long:

0-7
file name, null padded on the right

8-11
Modification time of the file

12
User ID of file owner

13
file mode

14-15
file size

If the file is an ·odd number of bytes long, it is
padded with a null byte, but the size in the
header is correct.

Notice there is no provision for empty areas in
an archive file.

- 1 -

'CORE (v)

NAME

DESCRIPTION

SEE ALSO

2/7/73 CORE (V)

format of core image

UNIX writes out a core image of a terminated pro
cess when any of various errors occur. See
~(II) for the list of reasons; the most common
are memory violations, illegal . instructions , bus
errors, and user-generated quit signals.

". " The core image is called core and is written in
. the process's working directory (provided it can
be; normal access controls apply).

The size and structure of the core image file
depend to some extent on which system is in
volved. In general there is a 512-byte area at
the end which conta'ins the system's per-process
data for that process. (64 bytes in older sys
terns) • The remainder represents the actual con
tents of the user's core area when the core image
was written. In the current system, this area is
variable in size in that only the locations from
user 0 to the program break, plus the stack, are
dumped.

When any fatal trap occurs, all the useful regis
ters are stored on .the stack. In the current
system, which has relocation and protection
hardware, the stack used is the system stack,
which is kept in the per-process area; in older
systems, there is only one stack, and it is lo
cated in the user's core area.

The actual format of the information is compli
cated because it depends on what· hardware is
present (EAE, floating-po.int option), whether
single- or double-precision floating mode is in
effect,' a·nd also involves relocating addresses in
the system's address space. A guru will have to
be c~nsulted if enli9htenment is required.

In general the debugger db(I) should be used to
deal with core images.

db(I), wait(II)

- 1 -

DIRECTORY (V)

NAME

DESCRIPTION

SEE ALSO

3/15/72 DIRECTORY (V)

format of directories

A directory· behaves exactly like an ordinary
file, save that no user may write into a directo
ry. The fact that a file is a directory is indi
cated by a bit in the flag word of its i-node
entry.

Directory entries are 10 bytes long. The firs't
word is the i-number of the file represented by
the entry, if non-zero; if zero, the entry is
empty.

Bytes 2-9 represent the (8-character) file name,
null padded on the right. These bytes are not
cleared for empty slots.

By convention, the first two entries in each
" " "" directory are for • and ••• The first is an

entry for the directory·itself. The second is
for the parent directory •. The meaning of " •• " is
modified for the· root directory of the master
file system and for the root directories of re
movable file systems.. In the first case, there
is no· parent, and' in the· second, the system does
not permit off-device references. Therefore in
both cases " •• " has the same meaning as ".".

file system (V)

- 1 -

FILE SYSTEM (V) 3/15/72 FILE SYSTEM (V)

NAME format of file system

DESCRIPTION,
Every ,file system storage volume (e.g. RF disk, RK disk,
DECtape reel) has a common format for certain vital in
formation.

Every such volume is divided into a certain number of 256
word (512 byte) blocks. Blocks 0 and 1 are collectively
known as the super-block for the device; they define its
extent and contain an i-node map and a free-storage map.
The first word contains the number of bytes in the free
storage map; it is always even. It is followed by the
map. There is one bit for each block on the device; the

" " bit is 1 if the block is free. Thus if the number ,of
free-map bytes' is .!!, the blocks on the device are num
bered 0 through 8,n-1. The free-map count is' followed by
the free map itself. The bit for block k of the dev1ce
is in byte ~/8 of the map; 1t is offset ~(mod 8) bits
from the right. Notice that bits exist for ,the super-

·block and the i-list, even though they are never al~ocat-
ed,or freed. '

After the fre'e map is a word containing the byte count
for the i-node map. It too is always even. I-numbers
below 41(10) are reserved for special f1les, and are
never allocated; the first bit in the i-node free map
refers to i-number 41. Therefore the bfte number in the
i-node map for i-node 1: is (!-41)/8. It is offset (!-~1)
(mod 8) bits from the right; unlike the free map, a 0
bit indicates an available i-node.

I-numbers begin at 1, and the'storage for i-nodes begins
at block 2. Also, i-nodes are 32 bftes long,' so 1 6 of
them fit into a bloc'k.Therefore, i-node 1 is located in
block (.!+31)/16 ,of the ,file system, and' begins
32·«!.+31)-(mod 16» bytes from its start.

There is always one, file system which is always mounted;
in s.tandard UNIX it resides on the RF disk. This device
is also used. for swa,pping. On the primary file systemi

device, there are seve~l pieces of information following
that previously 'discussed. There are two words with the
calendar' time (measured since 00:00 Jan 1, 1972); two
words with the' time spent executing in the system; two
words'with the time spent waiting for I/O on the RF and
RK disks; two words with the time spent executing in a'
user's core; one byte with the count,of errors on the RF
disk; and one byte with the count of errors on theRK
disk. All the times are measured in sixtieths of a
second.

I-node 41 (10) is reserved for the root directory of the
file system. No l-numbe'rs other than this one and those
from 1 to 40 (which represent special files) have a
built-in meaning. Each i-node represents one file. The

- 1 -

FILE SYSTEM (V) 3/15/72 FILE SYSTEM (V)

BUGS

format of an i-node is as follows, where the left column
represents the offset from the beginning of the i-node:

0-1 flags (see below)
2 number of links
3 user ID of owner
4-5 size in bytes
6-7 first indirect block or contents block
•••
20-21
22-25
26-29
30-31

eighth indirect block or contents block
creation time
modification time

unused

The flags are as follows:

100000
040000
020000
010000
000040
000020
000010
000004
000002
000001

i-node is allocated
directory
file has been modified (always on)
large file
set user. ID on execution
executable'
read, owner
write, owner
read, non-owner
wri te, non-owner

The allocated bit (flag 100000) is believed even if the
i-node map says the i-node is free; thus corruption of
the map may cause i-nodes .to become unallocatable, but
will not cause active nodes to be reused.

Byte number n of a file is accessed as follows: n is
divided by' 512 to find its logical block number (say E)
in the file·. If the file is small (flag 010000 is 0),
then Bmust be less than 8, and the physi"cal block number
corresponding to E is the ~th entry in the address por
tion of the i-node.

Even if the file is large, b will be less than 128 .
(128*512 = 2-16). The first number in· the i-node address
portion gives' the physical block number of the indirect
block •. b is doubled to give a byte offset in the in
direct block and the word there found is the physical
address of the block corresponding to .:E.

For block E .. in a file to eXist, it is not necessary ·that
all blocks less than E exist. ·A zero block number elther
in. the address words of the i-node or in an indirect
block indicates that the corresponding block has never
been allocated. Such a missing block reads as if it con
tained all zero words.

Two blocks are not enough to handle the i- and
free-storage maps for an RP02 disk pack, which
contains around 10 million words.

- 2 -

PASSWD (v)

NAME

DESCRIPTION

SEE ALSO

1 2/11/72 PASSWD (V)

passwd password file

passwd contains for each user the following
information:

name (logi-n name, contains no upper case)
encrypted password
numerical user ID
GCOS job number and box number
initial working directory
program to use as Shell

This is an ASCII file. Each field within each
user's entry is separated from the next bya
colon. The job and box numbers are separated by
a comma. Each user is separated from the next by
a new-line. If the password field is null, no
password is demanded; if the Shell field is null,
the Shell itself is used.

This file resides in directory lete. Because of
the encrypted -passwords, it can and -does have
general read permission and can be used, for
example, to map nUmerical user ID's to names.

login(I), crypt{III), passwd(I)

- 1 -

TAP (V)

NAME

DESCRIPTION

SEE ,ALSO

6/12/72 TAP (V)

tap -- DE~/mag tape formats

The DECtape command tap and the magtape command
m·t dump and extract files to and from their
respective tape media. The formats of these
tapes are the-same except that magtapes have
larger directories.

Block zero of the tape is not used. It is avail
able to contain a boot program to be used in a
stand-alone environment. This has proved valu
able for DEC diagnostic programs.

Blocks 1 through 24 for DECtape (1 through 146
for magtape) cO'ntain a directory of the tape.
There are 192 (resp.,1168) entries in the
directory; 8 entries per bloCk; 64 ~tes per
entry. Each entry has the following format:

path name
mode
uid
size
time modified
tape address
unused -
check sum

32 bytes
1 byte
1 byte
2 bytes

- 4 bytes
2 bytes
20 bytes
2 bytes

The path name entry, is the path name of the file
when put on the tape. If the 'pathname starts
with-a zero word, the entry 1s empty. It is at
most 32 bytes long and ends in a null byte. .
Mode, uid, size and time modified are ,the same as
described under i-nodes (see file system (V» The
tape address is the tape block number of the
start of the contents of the'file. Every file
starts on a block boundary. The file occupies
(size+511)/512 blocks of continuous tape. The
checksum entry has a value such that the sum of
th~ 32 words of the directory entry is zero.

Blocks 25 (resp. 147) on are available for file
storage.

A fake entry (see mt(I), tap(I» has a size of
zero.

filesystem(V), mt(I), tap(I)

- 1 -

UTMP (v)

NAME

DESCRIPTION

SEE ALSO

3/15/72 UTMP (V)

/tmp/utmp -- user information

This file allows one to discover information
about'who is currently usin~ UNIX. The file is
binary; each entry is 16(10) bytes long. The
first eight 'bytes contain a user's login name or
are null if the table slot is unused. The low
order byte of the next word contains the last
character of a typewriter name. The next two
words contain the user's login time. The last
word is unused.

This file resides in directory /tmp.

/etc/1nit, whichmainta1ns the file;
who(I), which interprets it.

- 1 -

WTMP (v)

NAME

DESCRIPTION

SEE ALSO

3/15/72 WTMP (V)

/tmp/wtmp -~ user login hi~tory

This file records all logins and logouts. Its
format is exactly like utmp(V) except that a null
User name indicates a logout· on the associated
typewriter, and the typewriter name 'x' indicates
that UNIX was rebooted at that pOint.

Wtmp is maintained by login(I) and init(VII).
Neither of these programs creates the file, so if
it is removed record-keeping is turned off.

This file resides in directory /tmp.

init(VII), login(I), acct(VIII), swtmp(VIII)

- 1 -

BC (VI)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

6/12/72 Be (VI)

bc -- B interpreter

l?£ [-c
, -] sfile1~ ••• ofi~e1 • • •

bc is the UNIX B interpreter. It accepts three
types of arguments:

" " Arguments whose names end with .b are assumed
to be B source programs; they are compiled, and
the object program 1s left on the file'sfile

1
.0

(i.e. the file whose name is that of the source
" " " ") with .0 substituted for .b •

(" ") Other arguments except for -c are assumed to
be either loader flag arguments, or B-compatible
object programs, typically produced by an earlier
££ run, or perhaps libraries of B-compatible
routines. These programs, together with the
results of any compilations specified, are loaded
(in the order given) to produce an executable '
program with name a.out.

The "-c" argument suppresses the loading phase,
as does any syntax error in any of the routines
being compiled.

The language itself is described in [1].

The future of B is uncertain. The language has
been totally eclipsed by the newer, more power
ful, more compact, and faster language c.

file.b
a.out
b.tmp1
b.tmp2
/u sr /Ia.ng /bd i r /b [c a]
/usr/lang/bdir/brt [12]
/usr/lib/libb.a
/usr/lang/bdir/bilib.a

input, file,
lo~ded output
temporary {deleted)
temporary (deleted)
translator
runtime initialization
builtin functions, etc.
interpreter library

[1] K. Thompson; MM-72-1271-1; Users' Reference
to B.
cC{I)

see [1].

Certain external initializations are illegal.
(In particular: strings and addresses of exter
nals.)

- 1 -

BJ (VI)

NAME

SYNOPSIS

3/15/72

bj -- the game of black jack

/usr/games/bj

BJ (VI)

DESCRIPTION
BJ is a serious attempt at simulating the dealer in the
game of black jack (or twenty-one) as might be found in
Reno. The following rules apply:

The bet is $2 every hand.

A player "natural' (black jack) pays $3. A dealer·
natural loses $2. Both dealer .and player naturals is
a ' push' (no mC?ney exchang.e).

If the dealer. has an ace up, the player is allowed to
make an 'insurance' bet against the chance of a dealer
natural. If this bet is not taken, play resumes as
normal. If the bet is taken, it is a side bet where
the player wins $2 if the dealer has a natural and
loses $1 if the dealer does not.

If the player is dealt two cards of the same value, he
is allowed to "double'. He is allowed to play two
hands, each with one of these cards. (The bet is dou
bled also; $2 on each hand.)

If a dealt hand has a total of ten or eleven,the
player may 'double down". He may double the· bet ($2
to $4) and receive exactly one more card on that hand.

Under normal play, the player may 'hit' (draw a card)
as long as his total is not over twenty-one. If the
player 'busts' (goes over twenty-one), the dealer wins
the bet.

When the player 'stands" (decides not to· hit), the
dealer hits until he attains a total of seventeen or
more. If the dealer busts, the player wins the bet.

If both player and dealer stand, the one with the
largest total wins. A tie is a push.

The machine deals and keeps score. The followi·ng ques
tions w.ill be asked at appropriate times.· E'ach question
is answered by ~ followed by a new line for 'yes', or
just new line for 'no'.

?
Insurance?
Double down?

(mean's, "do you want a hit?")

Every time the deck is shuffled, the dealer so states and
the 'action' (total bet) and 'standing' '(total won or
loss) is printed. ' To exit, hi t the interrupt key (DEL)
and the action and standing will be printed.

- 1 -

PTX (VI)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 PTX (VI)

ptx permuted index

ptx input output

Etx generates a permuted index from file input on
file output. It has three phases: the first does
the permutation, generating one line for each
keyword in an input line. The keyword is rotated
to the front. "The permuted file is then sorted.
Finally the sorted l~nesare rotated so the key
word comes at the middle of the page.

input ,should be edited to remove usel~se 1!nes3
1he"fo!10~ini w0f.ds"ar~ s~ppf.es!edl "a ' .. a~d ,
as, is, for, of, on, or, the, to,

" " up •

The index for this manual was generated using
ptx.

sort(I)

some

- 1 -

YACC (VI)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

1/20/73 YACC (VI)

yacc -- yet another compiler compiler

/crp/sc1/yacc [(grammar]

Yacc converts 'a context-free grammar into a set
of tables for a simple automaton which executes
an LR(1)parsinq algorithm. The tables are pro-,
vided in readable form on the standard output and
in,b-compiler format on file actn.b; the program
/crp/scj/bpar.b will parse strings using the
actn.b file.

If your grammar is too big for yacc, you may try
/crp/scj/bigyacc, some of whose size limits are
larger, and othere smaller. '

actn.b output tables
actn.,tmp temporary storage
Note that the'se files are created in the
invoker's directory. The file actn.tmp is only
cre;ated by /crp/scj/biqyacc (see above).

Yacc manual, by scj (available from ,ek); "LR
" parsing, by A. V. Aho and S. C. Johnson, to be

published.

There are various diagnostics, but only one can
be obtained in each run.

The maximum number of terminal and non-terminal
symbols is 50 each, and this is not checked.
There are undoubtedly other bugs too.

- 1 -

ASCII (VII) 6/12/72 ASCII (VII)

NAME ascii map of ASCII character set

SYNOPSIS £!! /usr/pub/ascii

DESCRIPTION ascii is a' map of the ASCII character set, to be
printed as needed. It contains:

000 nul 001 sohlo02 stx 003 etx 004 eot 005 enq 006 ack 007 bel
010 bs 011 ht 1012 nl 013 vt 014 np 015 cr 016 so 017 8i
020 dIe 021 dc1 1022 dc2 023 dc3 024 dc4 025 nak 026 syn 027 etb
030 can 031 em 1032 sub 033 esc 034 fs 035 gs 036 rs 0·37 us
040 041 ! 1042 " 043 # 044 $ 045 % 046 & 047

,
sp

050 (051) 052 * 053 + 054 , 055 056 • 057 /
060 0 061 1 062 2 063 3 064 4 065 5 066 6 067 7
070 8 071 9 072 • 073 . 074 < 075 = 1·076 > 077 ? . ,
100 @ 101 A 102 B 103 C 104 D 105 E 1106 F 107 G
110 H 111 I 11 2 J 113 K 114 L 115 M 116 N 117 0
120 P 1 21 Q 122 R 1 23 S 124 T 125 U 126 V 127 W
1 30 X 1 31 y 132 133 [134 \ 135] 136

,..
11 37 Z

140
,

141 a 142 b 143 144 d 145 146 f 1147 I c e q
150 h 1 51 i 152 j 153 k 154 I 155 rn 156 n 1157 0 1 1
160 P 1 61 q 162 r 163 s 164 t 165 u 166 v 1167 wi
170 171 172 173 { 174 I 175 } 176 - 1177 dell x y z

FILES found in /usr/pub

- 1 -

DPD (VII)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 DPD (VII)

dpd -- spawn data phone daemon

/etc/dpd

dpd is the 201 data phone daemon. It is designed
to submit jobs to the Honeywell 6070 computer via
the gerts interface.

~ uses the directory /usr/dpd.' The file lOCK
in that directory is used to prevent two daemons
from becoming active. After the daemon has suc
cessfully set the lOCK, it forks and the main
path exits, thus spawning the daemon. /usr/dpd
is scanned for any file beginning with df. Each
such file is submitted as a job. Each line of a
job file must begin with a 'key character to
specify what to do with the remainder of the line

.2 directs' dpd to generate a unique,. snumb card.
This card is generated by incrementing the
first word of the file /usr/dpd/snumb and con
verting that to decimal concatenated with the
station ID.

~ specifies that the remainder of the line is
tO,be sent as a literal.

~ specifies that the rest of the line is a
file name. That file is to be sent as binary
cards.

!: is the same as !l except a form feed is
prepended to the file.

11 s'pecifies that the rest of the line is a
file name. After the job has been transmit
ted, the file is unlinked.

Any error encountered will cause the daemon to
drop the call, wait up to 20 minutes and start
over. This means that an improperly constructed
df file may cause the same job to be submitted
every 20 minutes.

While waiting, the·daemon checKs· to see that the
lock file still exists. If the lock is gone, the
daemon will exit.

/dev/dnO, /dev/dpO, /usr/dpd/*

opr(I)

- 1 -

12/11/72 GETTY (VII)

NAME getty -- set typewriter mode and get user's name

SYNOPSIS /etc/getty

DESCRIPTION

FILES

getty is invoked by init (VII)· immediately after a type
writer is opened following a dial-in. The user's login
name is read and the 10gin(I) command is called with this
name as an argument. While reading this name getty at
tempts to adapt the system to the speed and type of ter
minal being used.

getty initially sets the speed of the interface to 150
baud, specifies that raw mode is to be used (break on
every character), that echo is' to be suppressed, and
either parity allowed. It types the "login:" message
(which includes the characters which put the 37 Teletype
terminal 'into full-duplex and unlock its keyboard). Then
the user's name is read, a character at a time. If a
null character is received, it is assumed to be the

" " (" ") result of the user pushing the . break . inter;upt ~ey.
The speed is then changed to'300 baud and the login: is
typed again, this time w'i th the appropriate sequence
which puts a GE TermiNet 300 .into full-duplex. This
sequence is acceptable to other 300·baud terminals also.
If a subsequent null 'character is received, the speed is
changed again. The general approach is to cycle through
a set of speeds in response to n~ll characters caused by
breaks. The sequence at this installation is 150, 300,
and 134.5 baud.

Detection of IBM 2741s is accomplished while t~e seeed is
set to 150 baud. The user sends a 2741 style eot char
acter by pushing the attention key or by typing rt'sHrn;
at 150 baud, this character lool<s like the ascii
(1749)·. Upon receipS of the,," eot", the system is set to
operate 2741 sand a login: message is typed. .

The user's name is terminated by a new-line or carriage
return character. The latter results in the system being
set·to to treat carriage returns appropriately (see
stty(II».

The user's name is scanned to see if it contains any
lower-case alphabetic characters; if not, and if the name
is nonempty, the system is told to map any future upper
case characters into the· 'corresponding lower-case charac
ters. Thus UNIX is usable from upper-'case-only termi
nals.

Finally, login is called with the user's name as argu
ment.

SEE ALSO init(VII), login(I), stty(II)

- 1 -

GLOB (VII)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

glob

/etc/glob

6/15/72

generate command arguments

GLOB (VII)

glob is used to expand arguments to the shell
containing "*", '[', or It?". It is passed the
argument list containing the metacharacters; glob
expands the list arid calls the command itself.
The actions of glob are detailed in the Shell
writeup.

found in letc/glob

sh(I)

It " " .. " ." No match, No command, No directory

If any-of '*', '[', or '?' occurs both quoted and
unquotedin the original command line, even the
quoted metacharacters are expanded.

glob gives the "NO match" diagnostic only if no
arguments at all -re-sult. This is never the case
if there is any argument without a metacharacter.

- 1 -

GREEK (VII)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

10/31/72 GREEK (VII)

greek -- graphics for extended ascii type box

~ /usr/pub/qreek

" greek gives the mapping from ascii to the shift
out" graphics in effect between SO and SI on
model 37 teletypes with a 128-character type box.
It contains:

alpha ex A beta a B gamma Y
GAMMA r G delta 8 D DELTA I:::.
epsilon e S zeta ~ Q eta 11
theta e T THETA 9 0 lambda A
LAMBDA A E mu· 1l M nu v
xi ~ X pi 7t J PI II
rho p K sigma C1 y SIGMA 2:
tau 1" I phi cp U PHI ~
psi .. V PSI \}I H omega w
OMEGA 0 Z nabla v r not -.
partial b] integral .f

ascii (VII)

- 1 -

\
W
N
L
@

P
R
F
C

INIT (VII) 6/15/72 INIT (VII)

NAME init process control initialization

SYNOPSIS /etc/init

DESCRIPTION

FILES

~ is invoked inside UNIX as the last step in the boot
procedure. Generally its role is to create a process for
each typewriter on which a user may log in.

First, init checks to see if the console switches, contain
173030.~his number is likely to vary between systems.)
If so, the console typewriter tty is opened for reading
and writing and the shell is invoked immediately. This
feature is used to bring up a test system, or one which
does not contain DC-11 communications interfaces. When
the s'ystem is brought up in this way, the getty and login
routines mentioned below and described elsewhere are not
needed.

Otherwise, init does some housekeeping: the mode of each
DECtape file is changed to 17 (in case the system crashed
during a tap command); directory /usr is mounted on the
RKO disk; directory /sys is mounted on the RK1 disk.
Also a data-phone daemon is spawned to restart any jobs
being sent.

Then init forks several times to create a process for
each typewriter mentioned iri an internal table. Each of
these processes opens the-appropriate typewriter for
reading and writing •. These channels' thus receive file
descriptors 0 and 1, the standard input and output.
Opening the typewriter will usually 'involve a delay,
since the open is not completed until someone is dialled
in (and carrier established) on the channel. Then the
proces's e.xecutes the program / etc/getty (q. v.) • getty
will read the user's name and InVoke login (q.v.) to log
in the user and execute the shell.

Ultimately ~he shell will 'terminate because of an end
of-file either typed explicitly· or generated as a result
of hanqinq up.' The main path of init, which has been
waitinq for such an event, ,wakes up and removes the ap
propriate entry from the file utmp, which records current
users, and makes an entry in wtmp, which maintains a his
tory of logins and'!ogouts. Then the appropriate type
writer is reopened and getty reinvoked.

/dev/tap?, /dev/tty, /dev/tty?, /tmp/utmp,
/tmp/wtmp

SEE ALSO login(I), loqin(VII), getty(VII), sh{I), dpd{VII)

DIAGNOSTICS none possible

BUGS none possible

- 1 -

MSH (VII)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

6/15/72 MSH (VII)

msh mini-shell

/etc/msh

msh is a heavily'simplified version of the Shell.
It reads one line from the standard input file,
interprets it as a command, and calls the com
mand •.

The mini-shell supports few of the advanced
features of the· Shell; none of the following
characters 1s special:

> < $ \ ; &

However, "*", "[", and "?" are recognized and
glob is called. The main use of msh is to pro
vide a command-executing facility for various
interactive sUb-systems.

sh{I), glob(VII)

" " ?

- 1 -

TABS (VII)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

6/15/72 TABS (VII)

tabs set tab stops

cat /usr/pub/tabs

When printed on a suitable terminal, this file
will set tab stops every 8 columns. Suitable
terminals include the Teletype model 37 and the
GE TermiNet 300.

These tab stop settings are desirable because
UNIX assumes them in calculating delays.

- 1 -

VSP (VII)

NAME

SYNOPSIS

DESCRIPTION

o = 300
1 = 200
2 = 100
3 = 000

aw = 02
ie = 03
eO = 04
e1 = 76
e2 = 77
er = 05
th = 06
dh = 07
yu = 27
iu = 10
ju = 11
00 = 31
01 = 12
02 = 13
uO = 14
u1 = 15
u2 = 16
u3 = 34
ae = 21
ea = 20
w = 22
ee = 2'3·
r = 24
t = 25
ey = 26
iO = 30
i1 = 64
i2 = 65

SEE ALSO

2/2/73 VSP (VII)

vsp -- voice synthesizer code

cat /usr/pub/vsp

vsp contains a list of phonemes understood by the
voice synthesizer on device vt. Phonemes are
usually written in the form

. comma inflection phoneme

T·he inflection and the phoneme codes are or-ed
together. The phoneme codes are as follows
(numbers in octal).

stronq inflection

weak inflection

~ful l~
z.!!:o
~nter m,!!t
s~ven

sev!!n
weather
~ree·thick
':y:!i s . j:he n
~se yoy
!:!nite
n!!w YQu
,2nly nQ
hell,2
notice
but must
,!!ncle-
st1rryp
app_le ab_le
c,!t s,!t
,!ntenna
won wish
three
!:adio ,Iada£
two time
sixtX eighty
s'ix mix
inept-inside
cryptic static·

speak(I), vt(IV)

- 1 -

p = 32
aO = 33
a1 = 52
ai = 37
aj = 71'
s = 40
d = 41
f = 42
9 = 43
h = 44
j = 45
k = 46
1 = 47
00 = 50
ou = 51
ng = 53
z = 55
sh = 56
ch = 57
v = 60
b = 61
n = 62
m = 63
iy = 66
zh = 70
ih =.72
ay = 36

-0 = 35
-1' = 17
-2 = 01
-3 = 74

:eenny Eound
c,2nt·act c,!r
c52nnect
name came
nimely
seven' six'
~o giet
four five

. set grand
hello how.
JUdge edge
came lock'
hello light
look book
good. shOud
ri.!1Sl angle
zero ha~
show shIp
chair £bime.
seven even
ball bed
nine seven
mile men
lie
azure pleasure
station condition
may lay -

long space

short delay

20BOOT (VIII)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

1/25/73 20BOOT (VIII)

20boot install new 11/20 system

20boot [~]

This shell command file copies the current ver
sion of the 11/20 program used to run the VT01
display onto the /dev/vtO file.

If no argument is given, the 11/20 program should
be executing b~t 'idlel the 11/20 program is sent
preceded by a reboot command. If an argument
is given, the 11/20 should have been restarted at
its ROM. location 777300.

/dev/vtO;
/sys/mdec/20.o (11/20 program)

vtO (IV)

- 1 -

ACCT (VIII)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

1/20/73 ACCT (VIII)

acct login accounting

~ [~ wtmp] [~] [-d] people

~ produces a printout giving connect time for
each user who has logged in during the life of
the current wtmp file. A total is also produced.
~ is used to specify an alternate wtmp file. ~
prints· individual totals; without this option,
only totals are printed. =9 causes a printout
for each midnight to midnight period. The people
argument will limit the printout to only the
specified login names. If no wtmp file is given,
lusr/adm/wtmp is used.

/usr/adm/wtmp

init(VII), login(I), wtmp(V).

"cannot open 'wtmp'" if argument is unreadable.

- 1 -

BOOT PROCEDURES (VIII) 2/6/73 BOOT PROCEDURES (VIII)

NAME bos, maKi, vcboot, mays, et ale

DESCRIPTION
On the RF disK, the highest 16K words are reserved for
stand-alone programs., These 1 6K words are allocated as
follows:

bos
Warm UNIX
Cold UNIX

(1 K)
(7K)
(8K)

The program 122.!! (Bootstrap Operating System) examines the
console switches and executes one of'several internal
programs depending on the settinq. The following set
tings are currently recognized:

???

1

10

20

40

o

77500

Will read Warm UNIX from the RF into core loca
tion 0 and transfer to 600.

Will read Cold UNIX from the RF into core loca
tion 0 and transfer to 600.

Will dump all of memory from core location 0 onto
DECtape drive 7 and then halt.

Will read 256 words from RKO into core 0 and
transfer to zero. This 1s the procedure to boot
DOS from an RK.

This is the same as 10 above, but instead of
halting, UNIX warm is loaded.

Will load 'a standard UNIX binary paper tape into
core location 0 and transfer to O.

Will load the standard DEC absolute and binary
loaders and transfer to 77500.

All manual methods 'of booting the system involve manipu
lation of the console switches. In order for this to be
possible, the panel" must be unloCked and the machine must
be halted. Also, remember that at the time UNIX comes
up, the console switches mustconta'in773030 for a
single-user system; anything else gives a multi-user sys
tem.

There are, four temperatures of boots. They are:

Hot boot: restart the system without refreshing its
code, that is Simply by transferring to, its start.
The only use for this procedure is 1f the system has
been patched and one doesn't wish to redo the
patches. The procedure is:

600 in switches
Load address

- 1

BOOT PROCEDURES (VIII) 2/6/73 BOOT PROCEDURES (VIII)

(773030 in switches for single-user system)
start

Warm"boot:"refresh system code from the RF disk, but
the panic routine must be in core. Best for gen
eral use if it works,since outstanding I/O is
cleaned up. Procedure:

602 in switches
load address
(773030 ·in switches for single-user system)
start (flushes any I/O, then executes bos)

Cool boot: RF disk is OK, but nothing in core.
Procedure:

UTIL DECtape on drive 0
773030 in switches
load address
(602 -in switches for mul ti-user system)
start
type "boot" on console tty to load bos

Cold boot: nothing in core, nothinq on RF.Best to
have an expert aro~nd for this one. Procedure:

INIT DECtape on drive 0
773030 in switches
load address
1 ·in switches
start
(machine halts. last chance to preserve RF!)
773030 in switches
continue
(reads in basic files)

UNIX is then uP, but .for various reasons, one should
do a warm -boot \ single -user) right·. away. At this
pOint also, one might consider whether the 'INIT tape
UNIX is the latest version •. If there ·is reason for
doubt, mount She /sys dis~ pa'ck, ch-anqe to .directory
/sys/sys, do msys u unix, and reboot. Then get the
/bin-/etc-/lib tape which contains the rest of of the
RF -disk, and do an "mt x". Conceivably, "create
errors" due to lack of some directories will occur;
make the directories, then try again. Set the date
correctly; the system starts off at time O.

At this point UNIX is in full operation and can be
rebooted for a multi-user system.

Here is what happens during a cold boot: the INIT tape
contains a program calledvcboot. The ROM program reads
vcboot from the tape into core location 0 and transfers
to it. vcboot then reads 16K words from the DEC tape
(blocks 1-32) and copies the data to the highest 16K

- 2 -

BOOT PROCEDURES (VIII) 2/6/73 BOOT PROCEDURES (VIII)

FILES

words of the RF. Thus this initializes the read-only
part of the RF. vcboot then reads in bos and executes
it. B2! reads in Cold UNIX and executes that. Cold UNIX
halts for a last chance before it completely initializes
the RF file system. When continue is pressed, Cold UNIX
initializes the RF. It then reads the DECtape for ini
tializa·tion files starting from block 33. Normal opera-

" / " tion then commences with the execution of /etc init •

The INIT tape is made by the program maki running under
UNIX. !!l21s.! writes vcboot on block 0 O'f7dev/tap7. It
then copies the RF 16K words (using /dev/rfO) onto blocks
1 thru 32. It has internally a list of files to be
copied from block 33 on. This list follows:

/etc/1nit
/bin/chmod
/bin/date
/bin/login
/bin/ls
/bin/mkdir
fete/mount
/bin/sh
/bin/tap
/bin/mt

Thus this is the set of programs available after a cold
boot. init and .!hare mandatory. For multi-user UNIX,
getty and login are also necessary. mkdir is necessary
due to a bug in.tap. IDS,· tap and mount are useful to
bring in new files. As soon'as possible, date should be
done. That leaves Is and chmod as fr.osting.

The last link in this incestuous daisy chain is the pro
gram msys.

msys char file

will copy the file !!!! onto the RF read only slot speci
fied by the character~. Char is taken from the fol
lowing set:

12 bos·
u Warm UNIX
1 Cold UNIX

/dev/rfO, /dev/tap?

SEE ALSO init(VII), tap(I), sh(l), mkdir.(I)

DIAGNOSTICS

BUGS This section is very configuration dependent.

- 3 -

CHECK (VIII)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

1/20/73 CHECK (VIII)

check file system consistency check

check [filesystem [blockno1 •••] J

check will examine a file system, build a bit map
of used blocks, and compare this bit ,map against
the bit map maintained on the fil~ system. If
the file system is not specified, a check of all
of the normally mounted file' systems is per
formed. output includes the number ,of files on
the file system, the number of these that are
, large', the number of indirect blocks, the
number of used bloCks, and the number of free
blocks.

check works by .examining the i-nodes on the file
system and is entirely independent of its direc
tory hierarchy. The file system may be, but need
not be, mounted.

/dev/rf?, /dev/rk?, /dev/rp?

find (I), ds CI)

Diagnostics are produced for blocks missing,
duplicated, and bad block addresses. Diagnostics
are also produced for, block numbers passed as
parameters. In each case, the block number,
i-number, and block class (~ = inode, ~ indirect,
! free) is printed.

The checking process is two pass in nature. If
checking is done on an active file system, ex
traneous diagnostics may occur.

- 1 -

CHI< (VIII)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

1/20/73 CHK (VIII)

chk -- check + dcheck

chk

This command file does a cheek and a dcheck of
all of the normally mounted file systems.

/dev/ [fkp] *
check (VIII), dcheck (VIII)

" .. see SEE ALSO

- 1 -

CLRI (VIII)

NAME

SYNOPSIS

DESCRIPTION

DIAGNOSTICS

1/20/73 CLRI (VIII)

clri clear i-node

clri i-number [file system]

£.!£! writes zeros on the. 32 bytes occupied by the
i-node numbered i-number. If the file system
argument is given, the i-node resides·on the·
given device, otherwise on a default file system.
The file system argument must be a special file
name referring to a device containing a file sys
tem.

After £lri'nany bloSKs in the affected file will
show up as missing in a cheCK of the file sys-
tem.

Read and write permission is required on the
specified file system device. The i-node becomes
allocatable.

The primary purpose of this routine is to remove
a file which for some reason appears in no direc
tory.

" " error

- 1 -

DCHECK (VIII)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

1/20/73 DCHECK (VIII)

dcheck directory consistency check

dcheck [-1] [device]

dcheck builds an image of the directory hierarchy
o'f the specified device by reading all its direc
tories (using physical I/O guided by the i-nodes
on the .device). A list entry is made for each
file encount.ered. A second pass reads the i
nodes and for each file compares the number of
links specified in its i-node with the number of
entries actually seen. All discrepancies are
noted.

If no device is specified, a default device is
assumed.

The argument -1 causes a complete listing of the
file names on the device in i-node order.

/dev/rk?

check(VIII)

inconsistent i-numbers, unnamed files, unreach
able files, loops in directory "hierarchy".

'Unreachabl! f~les and loops are discovered only
under the -1 option.

- 1 -

DLI (VIII)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72

dli -- load DEC binary paper tapes

dli output [input]

DLI (VIII)

dli will load a DEC binary paper 'tape into the
OUtput file. The binary format paper tape is
read from the input file (/dev/ppt is default.)

/dev/ppt

"checksum"

- 1 -

ISTAT (VIII)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

1/20/73 ISTAT (VIII)

istat get inode status

istat [filesystem] inumber1
istat gives information about one or more i-nodes
on the given file system or on /dev/rkO if no
file system is given.

The inf·ormation is in exactly the same form as
that for stat(I), except that mode letter "a" is
used to indicate that the i-node is allocated,
"un that it is unallocated.

/etc/uids, /dev/rkO

stat(I), ls(I) (-1 option)

istatignores any read error and pretends to give
status even if the file system is not physically
present.

- 1 -

KILL (VIII)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

1/20/73 KILL (VIII)

kill -- terminate process with extreme prejudice

/usr/adm/kill processnumber

~fter .e.! (q.v.) has given you the unique ID of a
process, you can terminate it by this' command. A
core image is produced in the process's working
directory.

Only the super-user can exercise this privilege.

ps (VIII)

yes

If the process ha's executed sys nice (II) and
the,re is ·another· process which has not, but which
loops, the first process cannot be done in prop
erly, since it has to be swapped in so as
cooperate in its own murder.

It would also be nice if ordinary people could
kill their own processes.

- 1 -

MOUNT (VIII)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

1/20/73 MOUNT (VIII)

mount mount file system

/etc/mount special file

mount 'announces to the system that a removable
file system is present on· the device correspond
ing to special file special (which must refer to
a disk or possibly DEctape). The file must exist
already; it becomes ,the name of the root of the
newly mounted file system.

umount(VIII)

"?", if. the special file is already in use, can
not be read, or if !!l! does not exist.

Should be usable only by the super-user. Mount
ing file systems full of garbage can crash the
system.

- 1 -

PS (VIII) 1/20/73 PS (VIII)

NAME ps -- process status

SYNOPSIS /usr/adm/ps [~]

DESCRIPTION

FILES

SEE ALSO

2! prints certain facts about active processes. The
information is columnar and consists of:

The (numerical) ID of the user associated with t,he
process;

The last character of·the control typewriter of the
process or "x" if there is no cootiol typewriter; "x"
lines are suppressed unless the x option is given.

The number of 512-byte disk blocks holding the core
image of the process;

The process's unique ID (only with "1" option)

The number of hours (m~ 100) and minutes of system,
disk, and user-process time accumulated by the"Ptocess
and all its terminated descendants (only with t
option)

An' educated guess as to the command line which caused
the process to be created.

Some caveats:

The guess as to the command name and arguments· is ob
tained by examining the process's stack. The process is
entitled to destroy this information. Also, onl.y
processes whose core images·are on disk have visible
names. The.e.!' ~ommand in particular does not, nor does
any other process which happens to be in core at the same
time. E.! tries to overcome· this limitation bY. spawning a
subprocess designed :to take up the'other core slot, and
is usually successful. Because E.! examines a dynamically
changing data structure, it can produce incorrect
results; for example if a process's core image moves
between the time E! gets i~s disk address and reads its
stack.

Besides its utility for simple spying, B! is the only
plausible way to find the process number of someone you
are trying to kill (VIII).

/dev/rfO, /sys/sys/unix (to get magic numbers).

kill (VIII)

DIAGNOSTICS
.. ..

Bad RF , if a bad swap address turns up; various
missing-file diagnostics.

BUGS As described.

- 1 -

SALV (VIII) 1/20/73 SALV (VIII)

NAME salv -- file system salvage

SYNOPSIS /etc/salv filesystem [-akfs]

DESCRIPTION
salv wil~ place a given file system in a consistent state
WIt'h almost no loss of information.' This is the first
step in putting things together after a bad crash. Salv
performs the following functions:

A valid free list is constructed.

The previous step is always performed; the following
steps are performed only if the "a" option is given. If
the file system·s only defect is missing blocks, "a"
should not be specified.

All bad pointers in the file system are zeroed.

All duplicate pointers to the same block are resolved
by changing one Qf the pointers to point at a new
block containing a copy of the data.

Inodes . (not directory entries) for special files are
generated (mode 16).

File's whose size, is too large for the number of blocks
they contain (after bad pOinters are zeroed) have
their size revised downward.

The file system should be unmounted while it is being
salvaged. In cases of extreme need the permanently
mounted file system may be salvaqed; in such a case the
system must be rebooted before it has a chance to write
out the old, bad super-block.

, "" "" " " ' The' k, f t and s options tell salvwhat magic
numbers to use to generate the size of the free list and
the i-node map. !'k" 1s default (RK disk); "f" .is RF; '"s"
isRK with swap space on it. If sa1vis to be used away
from the mother system its code should be checked to ver
ify the numbers.

After a salv, files may be safely created and.removed
without causing more trouble. If the "a" option had to
be used, a dcheck (VIII) should be done to find the de
gree of the damage to the hierarchy.

SEE ALSO check(VIII), dcheck(VIII)

BUGS In only one (known) way does salv destroy information: if
some rand0W block appea,s to be an indirect block for a
file, all bad pOinters (for example, ASCII text) in it
will be zeroed. If the block also appears in another
file, it may be scribbled on before it is copied.

- 1

SU (VIII)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

. 1/20/73 SU (VIII)

su become privileged user

su allows one to become the super-user, who has
all sorts of marvelous (and correspondingly
dangerous) powers. In order for su to do its
magic, the user must supply a password •. If the
password is correct, su will execute the shell
with the UID set to that of th~·super-user. To
restore normalUID privileges, type an end-of
file to the super-user shell.

To remind the super-user of his responsibilities,
the shell substitutes "," for its usual prompt
"%" •

sheIl

" " Sorry if password is wrong

- 1 -

SWTMP (VIII)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

2/11/73 SWTMP (VIII)

swtmp -- update accounting file

swtmp

This shell sequence concatenates /tmp/wtmp onto
/usr/adm/wtmp and truncates /tmp/wtmp. It should
be used before using acct{VIII). and every so
often in any case if accounting is to be main-
tained. .

/tmp/wtmp, /usr/adm/wtmp

acct(VIII), wtmp(V)

- 1 -

UMOUNT (VIII)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

1/20/73 UMOUNT (VIII)

umount dismount file system

/etc/umount special

umount announces to the system that the removable
·file system previously mounted on special file
special 1s to be removed.

The u'ser must take care not only that all I/O
activity on the file system has ceased, but that
no one has his current directory on it.

Only the super-user may issue this command.

mount(VIII)

" " ?

This command 1s not, in fact, restricted to the
super-user.

- 1 -

TM (VIII)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

DIAGNOSTICS

BUGS

3/15/72 TM (VIII)

tm provide time information

.En

tm is used to provide timing information. Output
like the following is given:

tim 371 :51:09 2:00.8
. ovh 20:00:33 17.0

swp 13 :43 :20 4.6
dsk 27:14:35 4.5
.idl 533:08:03 1 : 33.3
usr 24:53:50 1 .2
der 0, 54 0, 0

The first' column of numbers gives totals in the
named categories since the last time the system
was cold-booted; .the second column gives .the
changes since the lasttimetm- was invoked •. The
top left number is badly truncated and should be
ignored. ~ is time spent executing in the
system; swp is time waiting for swap I/O; dsk is
time spent waiting for file syst.em disk I;O:;-idl
is idle time; ~ is user execution time; der is
RFdisk error count (left number) and RK disk
error count (riqht number).

/dev/rfO (for absolute times); /tmp/ttmp for dif
ferential timing history.

time(I), file system(V)

- 1 -

	00_001
	00_002
	00_003
	00_004
	00_005
	00_006
	00_007
	00_008
	00_009
	00_010
	00_011
	00_012
	00_013
	00_014
	00_015
	00_016
	00_017
	00_018
	00_019
	00_020
	00_021
	00_022
	00_023
	00_024
	00_025
	00_026
	00_027
	00_028
	00_029
	00_030
	01_01-01
	01_02-01_ar
	01_02-02
	01_03-01_as
	01_04-01_bas
	01_04-02
	01_04-03
	01_04-04
	01_05-01_cat
	01_06-01_cc
	01_07-01_cdb
	01_08-01_chdir
	01_09-01_chmod
	01_10-01_chown
	01_11-01_cmp
	01_12-01_cp
	01_13-01_cref
	01_13-02
	01_14-01_crypt
	01_15-01_date
	01_16-01_db
	01_16-02
	01_16-03
	01_16-04
	01_16-05
	01_17-01_dc
	01_17-02
	01_17-03
	01_18-01_df
	01_19-01_dsw
	01_20-01_du
	01_21-01_echo
	01_22-01_ed
	01_22-02
	01_22-03
	01_22-04
	01_22-05
	01_22-06
	01_23-01_exit
	01_24-01_factor
	01_25-01_fc
	01_25-02
	01_25-03
	01_25-04
	01_26-01_fed
	01_26-02
	01_27-01_form
	01_27-02
	01_28-01_forml
	01_29-01_goto
	01_30-01_hyphen
	01_31-01_if
	01_32-01_ld
	01_32-02
	01_33-01_ln
	01_34-01_login
	01_35-01_ls
	01_36-01_m6
	01_36-02
	01_37-01_mail
	01_38-01_man
	01_39-01_mesg
	01_40-01_mkdir
	01_41-01_mt
	01_41-02
	01_42-01_mv
	01_43-01_nm
	01_44-01_nroff
	01_44-02
	01_45-01_od
	01_46-01_opr
	01_47-01_ov
	01_48-01_passwd
	01_49-01_pr
	01_50-01_proof
	01_51-01_reloc
	01_52-01_rew
	01_53-01_rm
	01_54-01_rmdir
	01_55-01_roff
	01_56-01
	01_56-02
	01_57-01_sh
	01_57-02
	01_57-03
	01_57-04
	01_57-05
	01_57-06
	01_58-01_size
	01_59-01_sno
	01_59-02
	01_60-01_sort
	01_61-01_split
	01_62-01_speak
	01_63-01_stat
	01_64-01_strip
	01_65-01_stty
	01_66-01_sum
	01_67-01_tap
	01_67-02
	01_67-03
	01_68-01_time
	01_69-01_tmg
	01_70-01_tss
	01_71-01_tty
	01_72-01_type
	01_73-01_typo
	01_74-01_un
	01_75-01_uniq
	01_76-01_vs
	01_77-01_wc
	01_78-01_who
	01_79-01_write
	02_01-01_boot
	02_02-01_break
	02_03-01_cemt
	02_04-01_chdir
	02_05-01_chmod
	02_06-01_chown
	02_07-01_close
	02_08-01_creat
	02_09-01_csw
	02_10-01_dup
	02_11-01_exec
	02_11-02
	02_12-01_exit
	02_13-01_fork
	02_14-01_fpe
	02_15-01_fstat
	02_16-01_getuid
	02_17-01_gtty
	02_18-01_ilgins
	02_19-01_intr
	02_20-01_kill
	02_21-01_link
	02_22-01_makdir
	02_23-01_mdate
	02_24-01_mount
	02_25-01_nice
	02_26-01_open
	02_27-01_pipe
	02_28-01_quit
	02_29-01_read
	02_30-01_rele
	02_31-01_seek
	02_32-01_setuid
	02_33-01_sleep
	02_34-01_stat
	02_35-01_stime
	02_36-01_stty
	02_36-02
	02_37-01_sync
	02_38-01_time
	02_39-01_times
	02_40-01_umount
	02_41-01_unlink
	02_42-01_wait
	02_43-01_write
	03_01-01_atan
	03_02-01_atof
	03_03-01_atoi
	03_04-01_compar
	03_05-01_crypt
	03_06-01_ctime
	03_07-01_ddsput
	03_08-01_ecvt
	03_09-01_exp
	03_10-01_ftoa
	03_11-01_ftoo
	03_12-01_connect
	03_13-01_getc
	03_14-01_hypot
	03_15-01_itoa
	03_16-01_log
	03_17-01_mesg
	03_18-01_nlist
	03_19-01_pow
	03_20-01_ptime
	03_21-01_putc
	03_22-01_qsort
	03_23-01_rand
	03_24-01_salloc
	03_24-02
	03_25-03
	03_26-01_sin
	03_27-01_sqrt
	03_28-01_switch
	03_29-01_ttyn
	04_01-01_dc
	04_01-02
	04_01-03
	04_02-01_dn
	04_03-01_dp
	04_04-01_kl
	04_05-01_mem
	04_06-01_pc
	04_07-01_rf
	04_08-01_rk
	04_09-01_tc
	04_10-01_tm
	04_11-01_vt
	04_11-02
	04_11-03
	05_01-01_a.out
	05_01-02
	05_02-01_archive
	05_03-01_core
	05_04-01_directory
	05_05-01_file_system
	05_05-02
	05_06-01_passwd
	05_07-01_tap
	05_08-01_utmp
	05_09-01_wtmp
	06_01-01_bc
	06_02-01_bj
	06_03-01_ptx
	06_04-01_yacc
	07_01-01_acsii
	07_02-01_dpd
	07_03-01_getty
	07_04-01_glob
	07_05-01_greek
	07_06-01_init
	07_07-01_msh
	07_08-01_tabs
	07_09-01_vsp
	08_01-01_20boot
	08_02-01_acct
	08_03-01_boot_procedures
	08_03-02
	08_03-03
	08_04-01_check
	08_05-01_chk
	08_06-01_clri
	08_07-01_dcheck
	08_08-01_dli
	08_09-01_istat
	08_10-01_kill
	08_11-01_mount
	08_12-01_ps
	08_13-01_salv
	08_14-01_su
	08_15-01_swtmp
	08_16-01_umount
	08_17-01_tm

