

©1984, 1985 AT&T
All Rights Reserved
Printed in USA

NOTICE

The information in this document is subject to change without notice.
AT&T assumes no responsibility for any errors that may appear in
this document.

MS-DOS is a registered trademark of Microsoft Corp.

1
2

3

4

System
Programmers

Guide

Contents

System Programming Concepts
Purpose of this Manual 1-2
Notation 1-3
Programming Steps 1-:4

MS-LINK
Overview 2-2
MS-LINK File Usage 2-3
Segments, Groups, and Classes 2-7
Invoking MS-LINK 2-9
Sample MS-LINK Session 2-21
MS-LINK Error Messages 2-24

DEBUG
Overview 3-2
How to Invoke DEBUG 3-3
Debugging Commands 3-6
Command Parameters 3-7
DEBUG Error Messages 3-44

8086 Addressing Scheme
Overview 4-2
The 20-Bit Address 4-3
Aligned andNon-Aligned Words 4-5
Registers and Flags 4-6
Code, Data, and Stack Segments 4-11
Addressing Modes 4-12

System
Programmers
Guide

5

6

7

Memory Maps Control Blocks
Diskette Allocation
Overview
The Address Space
Low Memory Map
ROM BIOS Data Area
File Control Blocks
ASCIIZ Strings
Handles
Diskette La.yout
Diskette Directory
File Allocation Table
Diskette Formats

Program File Structure
and Loading
Overview
Pros and Cons for Selecting a

Program Format
EXE2BIN
File Header Format
Relocation Process for .EXE Files
Program Segment Prefix
Program Loading Process

System Calls
Quick Reference: Functions and Interrupts
Overview .
Programming Considerations
Interrupts
Functions
System Calls Description

5-2
5-3
5-4
5-5
5-6

5-11
5-12
5-13
5-14
5-18
5-22

6-2

6-3
6-5

6-10
6-13
6-15
6-18

7-2
7-5
7-6
7-7
7-8

7-10

System
Programmers

Guide

8

9

ROM BIOS Service Routines
Overview
Conventions
Interrupt Vector List
Video Control
Diskette Services
Communications Services
Keyboard Handling
Printer Routines
Miscellaneous ROM-BIOS Services
Bypassing the BIOS
CONFIG.SYS

MS-DOS Device Drivers
Overview
MS-DOS Device Drivers
Asynchronous Communications Element
DMA Controller
Floppy Diskette Interface and Controller
Hard Disk Controller
Keyboard Interface
Parallel Printer Interface
Programmable Interrupt Controller
Programmable Interval Timer
Real Time Clock and Calendar
Serial Communications Controller
Speaker
Video Controller

8-2
8-3
8-4
8-5

8-17
8-19
8-22
8-29
8-30
8-32
8-33

9-2
9-8

9-27
9-36
9-45
9-66
9-94

9-100
9-105
9-116
9-123
9-128
9-147
9-150

System
Programmers
Guide

Supplement: The Display Enhancement Board

1
System

Programming
Concepts

• Purpose of this Manual

• Notation

• Programming Steps

System
Programming
Concepts

1-2

Purpose of this Manual

This guide provides you with in-depth informa
tion on the AT&T Personal Computer program
development tools. The guide focuses on what
you need to know to make use of the existing
AT&T Personal Computer 6300 hardware and
hardware interfaces.

The final chapter on programming devices
assumes that you have a working knowledge of
the principles of designing device drivers and
need the technical details on how to program the
AT&T Personal Computer.

System
Programming

Concepts

Notation

The following syntax is used throughout this
manual in descriptions of command and state
ment syntax:

[] Square brackets indicate that the enclosed
entry is optional.

{} Braces indicate a choice between two or
more entries. At least one of the entries
enclosed in braces must be chosen.

Ellipses indicate that an entry may be
repeated as many times as needed.

This guide contains examples of prompts and
messages displayed on the screen. These system
displayed items are indented from the main
body of the text so that you can easily distin
guish them. For example, MS-LINK prompts:

OBJECT MODULES[.OBJ]

Descriptions or examples that show a required
response are indented and presented in boldface
type:

LINK OBI 1+OBJ2+0BJ3,MAP

1-3

System
Programming
Concepts

Programming Steps

This section shows where to go for information
on the task you are performing.

Running
High-Level
Language

Writing
Assembler
Programs

Writing
Utilities

If you are running a program via the BASIC
interpreter, the section on "System Calls" is
applicable, since you can call these functions via
a BASIC program.

If you are running a compiled program, read the
section on MS-LINK as well as the section on
System Calls.

The first eight chapters are aimed at pro
grammers writing assembler programs. If you
have not used the 8088 or 8086 assembly lan
guage, the section "8086 Addressing Scheme"
gives you a good start. The sections on the linker
and debugger are fundamental to writing and
debugging assembler programs. Also read the
sections on "System Calls" and "ROM BIOS
Service Calls."

If you are writing a supplementary utility pro
gram, read the sections on assembly programs,
the sections on "Memory Maps, Control Blocks,
and Diskette Allocation," and "Program File
Structure and Loading."

Programming Every section applies to writing device drivers,
Devices especially the chapter on "MS-DOS Device
Directly Drivers."

1-4

2
MS-LINK

• Overview

• MS-LINK File Usage

• Segments, Groups, and Classes

• Invoking MS-LINK

• Sample MS-LINK Session

• MS-LINK Error Messages

2·1

MS-LINK

j

2-2

Overview

MS-LINK is art executable program on your
DOS Supplemental Programs diskette. MS
LINK combines object modules that are the
output of the MACRO-86 assembler or a
compatible compiler. It produces a relocatable
run file (load module) and a list file of external
references and error messages.

To run MS-LINK, you provide object, run, list,
and library file parameters. You may optionally
enter switches that modify the operation of
MS-LINK.

"Invoking the Linker" describes the three ways
to run MS-LINK: interactive entry, command
line entry, and automatic response file entry.
Interactive entry is used most frequently, so its
section contains information common to all
three methods.

If you are linking a high-level language
program, the compiler determines the
arrangement of your object modules in memory.
If you are using assembler, however, you have
more control over your program's organization.
The section "Segments, Groups, and Classes"
shows you how to specify the order of your
object modules at run time.

MS-LINK

MS-LINK File Usage

The link process involves the use of several files.

MS-LINK:

• Works with one or more input files

• Produces two output files

• Creates a temporary disk file if necessary

• Searches up to eight library files

2-3

MS-LINK

Syntax

d:

path

filename

ext

2-4

The format for MS-LINK file specifications is
the same as that of any disk file:

[d:][path]filename[.ext]

the drive designation. Permissible drive designa
tions for MS-LINK are A: through 0:.

a path of directory names.

any legal filename of one to eight characters.

a one- to three-character extension to the
filename.

If no filename extensions are given in the input
(object) file specifications, MS-LINK recognizes
the following extensions by default:

.OBJ Object

.LIB Library

MS-LINK appends the following default exten
sions to the output (Run and List) files:

.EXE Run (may not be overridden)

.MAP List (may be overridden)

MS-LINK

VM.TMP File MS-LINK uses available memory for the link
session. If an output file exceeds available
memory, MS-LINK creates a temporary file,
names it VM.TMP, and puts it on the disk in the
default drive. If MS-LINK creates VM.TMP, it
will display the message:

VM.TMP has been created.
Do not change diskette in drive, <d:>

Once this message is displayed, do not remove
the diskette from the default drive until the link
session ends. If the diskette is removed, the
operation of MS-LINK is unpredictable and MS
LINK usually displays the error message:

Unexpected end of file on VM.TMP

MS-LINK writes the contents of VM.TMP to the
file named following the Run File: prompt.
VM.TMP is a working file only and is deleted at
the end of the linking session.

Do not use VM.TMP as a filename for any file.
If MS-LINK requires the VM.TMP file, MS
LINK deletes the VM.TMP already on disk and
creates a new VM.TMP. Thus, the contents of
the previous VM.TMP file are lost.

2-5

MS-LINK

Changing
diskettes

2-6

You may want to change diskettes during the
link operation. If MS-LINK cannot find an
object file on the specified diskette, it prompts
you to change diskettes rather than aborting the
session. If you enter the /PAUSE switch, MS
LINK pauses and prompts you to change
diskettes before it creates the run file. You may
change diskettes when prompted except in the
following cases:

• the diskette you want to change has a VM.TMP
file on it.

• you have requested a list file on the diskette you
want to change.

Segment

Class

MS-LINK

Segments, Groups, and Classes

Below terms are explained to help you under
stand how MS-LINK works; Generally, if you
are linking object modules from a high-level
language compiler, you do not need to know
these terms. If you are linking assembly lan
guage modules, read this section carefully.

The segment is one of the most basic units of
program memory organization. A segment is a
contiguous area of memory up to 64K bytes long,
and may be located anywhere in RAM. The con
tents of a·segment are addressed by a seg
ment:offset address pair, where "segment" is the
segment's base or lowest address (see "The 20
Bit Address" in chapter 4).

Each segment has a class name in addition to
its segment name. All segments with the same
class name are loaded into memory contiguously
bythe linker from the first segment of that class
to the last.

A class is a collection of related segments. By
naming the segments of your assembly lan
guage program to classes, you control the order
in W;hich they are loaded into memory (for high
level languages, the compiler does this for you).

MS-LINK loads segments into memory on a
class-by-class basis. Starting with the first class
encountered in the first object file, all of the
segments of each class are loaded. Within each
class, the linker loads the segments in the order
in which it finds them in the object files. There
fore, you can control the order in which classes
are loaded by the order in which segments from
different classes appear in the object files.

2-7

MS-LINK

Group

2-8

To ensure that classes are loaded in the order
you desire, you can create a dummy module to
feed to the linker as the first object file. This
module declares empty-segment classes in the
order you want the classes loaded. For example,
one such file might look like this:

A SEGMENT 'CODE'
A ENDS
B SEGMENT 'CONST'
BENDS
C SEGMENT 'DATA'
C ENDS
D SEGMENT STACK 'STACK'
D ENDS

If this method is used, be sure to declare all the
classes used in your program in the dummy
module; otherwise, you lose absolute control over
the ordering of classes. Also, this method should
only be used when linking assembly language
programs. Do not create a dummy module if link
ing object files for a compiler, or unpredictable
results may occur. Classes may be any length.

Just as classes allow you to combine segments
in a way that is logical, groups combine seg
ments in 64K byte chunks to make them easily
addressable. The segments in a group need not
be contiguous, but when loaded they must fit
within 64K bytes. This way each segment in the
group can be fully addressed by an offset to one
segment address, which is the start address of
the lowest segment in the group. Segments are
named to groups by the assembler or compiler
or, as is possible in assembly language pro
grams, by the programmer. Note that a segment
can be large enough to be an entire group by
itself.

Ways
to Invoke
MS-LINK

MS-LINK

Invoking MS-LINK

MS-LINK is invoked in one of three ways. The
first method, interactive entry, requires you to
respond to individual prompts.

For the second method, command line entry,
type all commands on the same line used to start
MS-LINK.

To use the third method, automatic response file
entry, create a response file that contains all the
necessary commands and tell MS-LINK where
that file is when you run MS-LINK.

Interactive Entry

Command Line Entry

Automatic Response
File Entry

LINK

LINK filenames[/switches]

LINK @filespec

Interactive
Entry

To invoke MS-LINK interactively, type:

LINK

MS-LINK loads into memory, then displays four
prompts, one at a time. At the end of each line,
after typing your response to the prompt, you
may type one or more switches preceded by a
forward slash.

The command prompts are summarized below.
Defaults appear in square brackets ([]) after the
prompt. Object Modules is the only prompt that
requires a response.

2-9

MS-LINK

MS-LINK
Prompts

Prompt Responses

Object Modules[.OBJ]: [d:)[path)filename[.ext)
[+[[d:)[path)filename[.ext))...)

Run File[filename.EXT): [d:)[path)[filename[.ext))

List File[NUL.MAP):

Libraries[.LIB):

Notes:

[d:)[path)[filename[.ext))

[d:][path)[filename[.ext))
[+[d:][[path)filename[.ext))...]

2-10

• If you enter a filename without specifying the
drive, the default drive is assumed. Ifyou enter a
filename without specifYing the path, the default
path is assumed.The libraries prompt is an
exception - if the linker looks for the libraries
on the default drive and doesn't find them, it
looks on the drive specified by the compiler.

• To select default responses to all remaining
prompts, use a single semicolon (;) followed
immediately by <return> at any time after the
second prompt (Run File:).

Once you enter the semicolon, you can no longer
respond to any of the prompts for that link ses
sion. Use the <RETURN> key to skip prompts.

• Use <CONTROL-C> to abort the link session at
any time.

Object
Modules
to be
Included

Load
Module

Listing

MS-LINK

Object Modules [.OBJ]:

List .OBJ files to be linked. They must be separ
ated by blank spaces or plus signs (+). If the plus
sign is the last character typed, this prompt will
reappear so that you can enter more object
modules.

MS-LINK assumes that object modules have the
extension .OBJ unless you explicitly specify
some other extension. Object filenames may not
begin with the @ symbol (@ is used for specify
ing an automatic response file).

The order in which you key in the the object files
is significant. See section on segments, groups,
and classes for more information.

Run File [Obj-file.EXE]:

Give filename for executable object code. The
default is: <first-object-filename>.EXE. (You
cannot change the output extension.)You can
specify just the drive designation or just a path
for this prompt.

List File [NUL. MAP]:

Give filename for listing (also known as a linker
map). The listing is not created if you select the
default. You can request a listing by entering a
drive designator, path, or filename[.ext]. If you
do not specify an extension, the default .MAP is
used.

2-11

MS-LINK

Libraries
to be
Searched

2-12

You can have the listing printed by specifYing a
print device instead of a filename or have the
listing displayed on the screen by specifYing
CON. If you display the linker map, you can
also print it by pressing Ctrl-PrtSc.

Libraries [.LIB]:

List filenames to be searched separated by blank
spaces or plus signs (+). If a plus sign is the last
character typed, the prompt will reappear.

MS-LINK searches library files in the order
listed to resolve external references. When it
finds the module that defines the external sym
bol, MS-LINK processes that module as another
object module.

There is no default library search for MACRO
assembler object modules. For compiled
modules, if you select the default for this prompt,
MS-LINK looks for the compiler package's
library on the default drive. If not found there,
MS-LINK looks on the drive specified by the
compiler.

If MS-LINK cannot find a library file, it
displays:

Cannot find library <library-name>
Type new drive letter:

Press the letter for the drive designation (for
example, B).

If two libraries have the same filename, only the
first in the list is searched.

MS-LINK
Switches

MS-LINK

The seven MS-LINK switches control various
MS-LINK functions. Type switches at the end of
a prompt response regardless of which method
you use to start MS-LINK. Switches may be
grouped at the end of any response, o'r may be
scattered at the end of several. Even if you type
more than one switch at the end of one response,
each switch must be preceded by a forward slash
(I).

All switches may be abbreviated. The only re
striction is that an abbreviation must be sequen
tial from the first letter through the last typed;
no gaps or transpositions are allowed. For
example:

Legal

ID
IDS
IDSA
IDSALLOCA

Illegal

IDSL
IDAl
IDle
IDSALLOCT

2-13

MS-LINK

IDSALLOCATE
IDSALLOCATE tells MS-LINK to load all data
at the high end of the Data Segment. Otherwise,
MS-LINK loads all data at the low end of the
Data Segment. At runtime, the DS pointer is set
to the lowest possible address to allow the entire
DS segment to be used. Use of IDSALLOCATE
in combination with the default load low (that
is, the IHIGH switch is not used) permits the
user application to dynamically allocate any
available memory below the area specifically
allocated within DGroup yet to remain address
able by the same DS pointer. This dynamic allo
cation is needed for Pascal and FORTRAN
programs.

Your application program may dynamically
allocate up to 64K bytes (or the actual amount of
memory available) less the amount allocated
within DGroup.

IHIGH

2-14

IHIGH causes MS-LINK to place the Run file as
high as possible in memory. Otherwise, MS
LINK places the Run file as low as possible.

Note:
Do not use IHIGH with Pascal or FORTRAN
programs.

MS-LINK

ILINENUMBERS
ILINENUMBERS tells MS-LINK to include in
the List file the line numbers and addresses of
the source statements in the input modules.
Otherwise, line numbers are not included in the
List file.

Not all compilers produce object modules that
contain line number information. In these cases,
of course, MS-LINK cannot include line
numbers.

IMAP

IPAUSE

IMAP directs MS-LINK to list all public (global)
symbols defined in the input modules. If IMAP
is not given, MS-LINK will list only errors
(including undefined globals).

The symbols are listed alphabetically. For
each symbol, MS-LINK lists its value and its
segment:offset location in the Run file. The
symbols are listed at the end of the List file.

IPAUSE causes MS-LINK to pause in the link
session when the switch is encountered. Nor
mally, MS-LINK performs the linking session
from beginning to end without stopping. This
switch enables you to swap the diskettes before
MS-LINK outputs the Run (.EXE) file.

2-15

MS-LINK

/STACK:
<number>

2-16

When MS-LINK encounters /PAUSE, it dis
plays the message:

About to generate .EXE file
Change disks <hit any key>

MS-LINK resumes processing when you press
any key.

Note
Do not remove the disk which will receive the
List file, or the disk used for the VM.TMP file, if
one has been created.

Stack number represents any positive numeric
value (in hexadecimal radix) up to 65536 bytes.
If a value from 1 to 511 is typed, MS-LINK will
use 512. If /STACK is not used for a link ses
sion, MS-LINK calculates the necessary stack
size automatically.

All compilers and assemblers should provide
information in the object modules that allow the
linker to compute the required stack size.

At least one object (input) module must contain
a stack allocation statement. If not, MS-LINK
will display the following error message:

WARNING: NO STACK STATEMENT

INO

MS-LINK

INO is short for NODEFAULTLIBRARY
SEARCH. This switch applies only to higher
level language modules. This switch tells MS
LINK not to search the default libraries in the
object modules. For example, if you are linking
object modules in Pascal, specifying INO tells
MS-LINK not to automatically search the
library named PASCAL.LIB to resolve external
references.

2-17

MS-LINK

Purpose

Syntax

obj-list

runfile

listfile

lib-list

/switch

2-18

Command Line Entry

You may invoke MS-LINK by typing all com
mands on one line. The entries following LINK
are responses to the command prompts. The
entry fields for the different prompts must be
separated by commas. Use the following syntax:

LINK <obj -list>,<runfile>,<listfile>,
<lib-list>[Iswitch...]

a list of object modules, separated by plus signs
or spaces.

name of the file to receive the executable output.

name of the file to receive the listing.

list of library modules to be searched, separated
by spaces or plus signs.

refers to optional switches which may be placed
following any of the response entries (just before
any of the commas or after the <lib-list>, as
shown).

To select the default for a field, simply type a
second comma with no spaces between the two
commas.

Automatic
Response
File
Entry

MS-LINK

Example:

LINK FUN+TEXT+TABLE+CARE,
FUNLIST, COBLIB.LIB

This command causes MS-LINK to load. Then
the object modules FUN.OBJ, TEXT.OBJ,
TABLE.OBJ and CARE.OBJ are loaded. MS
LINK links the object modules and writes the
output to FUN.EXE (by default), creates a List
file named FUNLIST.MAP, and searches the
library file COBLIB.LIB.

It is often convenient to save responses to the
linker for re-use at a later time. This is especially
useful when a long list of object modules needs
to be specified. The use of an automatic response
file allows you to do this.

/

Before using this option, you must create the
response file. Each line of text corresponds to
one MS-LINK prompt. The responses must be
typed in the same order as they are when
entered interactively. To continue a line, type a
plus sign (+) at the end of the line.

You can enter the name of more than one auto
matic response file on the command line and
combine response file names with additional
parameters. The combined series of resulting
parameters must be a valid sequence of MS
LINK prompts.

Use switches and special characters (+ and ;) in
the response file the same way they are used
when entered interactively.

2-19

MS-LINK

2·20

To invoke the linker using a response file, type

LINK @ <filespec>

Filespec is the name of a response file.

When the session begins, MS-LINK displays
each prompt with the corresponding response
from the response file. If the response file does
not contain answers for all the prompts, MS
LINK displays the prompt which does not have
a response and waits for a response. When you
type a legal response, MS-LINK continues the
link session.

Example:

FUN TEXT TABLE CARE
IPAUSE/MAP
FUNLIST
COBLIB.LIB

This response file tells MS-LINK to load the four
object modules named FUN.OBJ, TEXT.OBJ,
TABLE.OBJ, and CARE.OBJ. MS-LINK pauses
before producing a public symbol map to permit
you to swap disks. When you press any key, the
output files will be named FUN.EXE and
FUNLIST.MAP. MS-LINK will search the
library file COBLIB.LIB.

MS-LINK

Sample MS-LINK Session

This sample shows you the type of information
displayed during an MS-LINK session.

In response to the MS-DOS prompt, type:

LINK

The system displays the following messages and
prompts:

Microsoft Object Linker V2.01 (Large)
(C) Copyright 1982,1983 by Microsoft Inc.

Object Modules [.OB]]: 10 SYSINIT
Run File [IO.EXE]:
List File [NUL.MAP]: PRN IMAP ILINE
Libraries [.LIB]: ;

Notes:

• By specifYing IMAP, you get both an alphabetic
listing and a chronologjcallisting of public
symbols.

• By responding PRN to the List File: prompt, you
can redirect your output to the printer.

• By specifYing the ILINE switch, MS-LINK
gives you a listing of all line numbers for all
modules. (Note that ILINE can generate a large
volume of output.)

2-21

MS-LINK

2-22

Once MS-LINK locates all libraries, the linker
map displays a list of segments in the order of
their appearance within the load module. The
list might look like this:

Start Stop Length Name
OOOOOH 009ECH 09EDH CODE
009FOH· Ol166H 0777H SYSINITSEG

The information in the Start and Stop columns
shows the 20-bit hex address of each segment
relative to location zero. Location zero is the
beginning of the load module.

The addresses displayed are not the absolute
addresses where these segments are loaded. See
the following section on the MS-LINK DEBUG
program for information on how to determine
the absolute address of a segment.

MS-LINK

Because the IMAP switch was used, MS-LINK
displays the public symbols by name and value.
For example:

ADDRESS
009F:0012
009F:0005
009F:OOll
009F:OOOB
009F:0013
009F:0009
009F:OOOF
009F:OOOO

ADDRESS
009F:OOOO
009F:0005
009F:0009
009F:OOOB
009F:OOOF
009F:OOll
009F:0012
009F:0013

PUBLICS BY NAME
BUFFERS
CURRENT DOS LOCATION
DEFAULT DRIVE
DEVICE LIST
FILES
FINAL DOS LOCATION
MEMORY SIZE
SYSINIT

PUBLICS BY VALUE
SYSINIT
CURRENT DOS LOCATION
FINAL DOS LOCATION
DEVICE LIST
MEMORY SIZE
DEFAULT DRIVE
BUFFERS
FILES

The final line in the listing file describes the
program's entry point:

Program entry point at 0009F:OOOO

2-23

MS-LINK

MS-LINK Error Messages

All errors, except for the two warning messages,
cause the link session to abort. After the cause
has been found and corrected, MS-LINK must be
rerun. The following error messages are
displayed by MS-LINK:

Attempt to access data outside of segment bounds,
possibly bad object module

There is probably a bad object file.

Bad numeric parameter

Numeric value is not in digits.

Cannot open temporary file

MS-LINK is unable to create the file VM.TMP
because the disk directory is full. Insert a new
disk. Do not remove the disk that will receive the
List. MAP file.

Error: dup record too complex

DUP record in assembly language module is too
complex. Simplify DUP record in assembly lan
guage program.

2-24

MS-LINK

Error: fixup ()ffset exceeds field width

An assembly language instruction references an
address with a short or near instruction instead
of a long or far instruction. Edit assembly
language source and reassemble.

Input file read error

There is probably a bad object file.

Invalid object module

An object module(s) is incorrectly formed or
incomplete (as when assembly is stopped in the
middle).

Symbol defined more than once

MS-LINK found two or more modules that
define a single symbol name.

Program size or number of segments exceeds capacity of
linker

The total size may not exceed 384K bytes and
the number of segments may not exceed 255.

Requested stack size exceeds 64K

Specify a size less than or equal to 64K bytes
with the /STACK switch.

2-25

MS-LINK

Segment size exceeds 64K

64K bytes is the addressing system limit.

Symbol table capacity exceeded

Very many and/or very long names were typed
exceeding the limit of approximately 50K bytes.

Too many external symbols in one module

The limit is 256 external symbols per module.

Too many groups

The limit is ten groups.

Too many libraries specified

The limit is 8 libraries.

Too many public symbols

The limit is 1024 public symbols.

Too many segments or classes

The limit is 256 (segments and classes together
must total 256 or less).

2-26

MS-LINK

Unresolved externals: <list>

The external symbols listed have no defining
module among the modules or library files
specified.

VM read error

This is a disk error; it is not caused by
MS-LINK.

Warning: no stack segment

None of the object modules specified contains a
statement allocating stack space.

Warning: segment of absolute or unknown type

There is a bad object module or an attempt has
been made to link modules that MS-LINK
cannot handle (e.g., an absolute object module).

Write error in TMP file

No more disk space remains to expand the
VM.TMP file.

Write error on run file

Usually, this means there is not enough disk
space for the Run file.

2-27

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

3
• Overview

DEBUG

• How to Invoke DEBUG

• Debugging Commands

• Command Parameters

A Assemble
C Compare
D Display
E Enter
F Fill
G Go
H Hexarithmetic
I Input
L Load
M Move
N Name
o Output
Q Quit
R Register
S Search
T Trace
U Unassemble
W Write

• DEBUG Error Messages

3-1

DEBUG

3-2

Overview

The DEBUG utility is an executable object program
that resides on your MS-DOS diskette. DEBUG per
forms the following functions:

• Allows you to single step through a program, instruc
tion by instruction, for testing purposes.

• Changes register and file contents during the
DEBUG session so that you can test a code change
without reassembling your program.

• Makes permanent changes to diskette files so you can
use DEBUG to recover files that may otherwise be
lost.

• Supports a disassemble command so you can
translate machine code instructions into their assem
bly language equivalents for testing purposes.

filespec

arglist

DEBUG

How to Invoke DEBUG

The DEBUG program is invoked as follows:

DEBUG [filespec [,arglist]]

the name of the program file to be debugged.

An optional list of file name parameters and
switches. These will be passed to the program
specified by the filespec parameter. When the
program is loaded into memory, it is loaded as if
it had been invoked with the command

filespec arglist

That is, filespec indicates the file to be debugged,
and arglist is the rest of the command line that
is used when the file is invoked and loaded in
memory via COMMAND.COM.

If you enter DEBUG without parameters, since
no file name has been specified, current memory,
disk blocks, or disk files can be manipulated.

3·3

DEBUG

Comments

Examples

3-4

On entering the DEBUG environment DEBUG
responds with the hyphen (-) prompt and under
line (_) cursor. You now may enter any DEBUG
command.

If you include the filespec in the command line,
the specified file is loaded into memory starting
at location 100 (hexadecimal). However, if you
specify a file with a .EXE extension, the pro
gram is relocated to the address specified in the
header of the file. See the chapter on "Program
Structure and Loading" for information on the
format of the file header.

If the file has the HEX extension, the file is
loaded beginning at the address specified in the
HEX file. HEX files are in INTEL hex format
and are converted to memory image format by
DEBUG.

All DEBUG commands may be aborted at any
time by pressing <CTRL-C>. Pressing
<CTRL-S> suspends the display, so that you
can read it before the output scrolls away. After
suspending the display, press any key (except
<CTRL-S> or <CTRL-C» to continue scrolling.

DEBUG <CR>.

The DEBUG session begins, but without loading
a file.

DEBUG b:rnyprog <CR>.

The DEBUG environment is entered and the file
named "myprog" is loaded into memory from
drive B.

DEBUG

When you invoke DEBUG, it sets up a program
segment prefix at offset 0 in the program work
area. You can overwrite this area if you enter
DEBUG without parameters. Moreover, if you
are debugging a file with a COM or EXE exten
sion, do not tamper with the program header
below location 5CH, or DEBUG will terminate.

Do not restart a program after a "Program ter
minated normally" message is displayed. You
must reload the program with the Nand L
commands for it to run properly.

3·5

DEBUG

3-6

Debugging Commands

This section describes the DEBUG commands in
alphabetical order for ease of reference.

• Commands can be entered in either upper or
lower case.

• Command keywords and command parameters
can be separated from each other by spaces or
commas for readability but need not be, except
where two hexadecimal numbers are entered as
parameters, in which case they must be sepa
rated by a comma or space. For brevity, the syn
tax of this chapter will always indicate a comma
where separation is obligatory, but note that a
space can alternatively be used.

• Commands only become effective after entering
<CR>.

• If you make a syntax error when entering a
command, the message "Error" will be dis
played. You must re-enter the command using
the correct syntax.

DEBUG

Command Parameters

The following DEBUG command parameters
require definition.

address a hex value in one of the following formats:

• a segment register designation and a hex offset
separated from each other by a colon. For
example:

D8:0300

• a hexadecimal segment and offset separated
from each other by a colon. For example:

9DO:0100

• a hexadecimal offset value. The DEBUG
command will use a default segment value from
either the DS or CS registers, depending on the
command. For example:

200

byte

drive

a one or two character hexadecimal value.

0,1, or 2 depending on whether you wish to
select drive A, drive B or drive C, respectively.

3-7

DEBUG

range

value

3-8

a range of addresses. The range can be specified
as

address L value

where address specifies the start of the range and
value specifies the length of the range. For
example:

DS:300L30

indicates a range of 48 locations starting at
address 300 in the segment indicated by the DS
register.

The specified range cannot be greater than 10000
(hexadecimal). To specify this value enter 0000 (or
0) as the value parameter.

A range can also be specified as:

address, address

where the two addresses indicate the limits of the
range. A space may be used instead of a comma.

a 1 to 4 character hexadecimal value.

DEBUG

A (ASSEMBLE)

Assembles 8086 mnemonics directly into
memory.

Syntax A [address]

Address is the start address into which the sub
sequently entered line of mnemonics is to be
assembled. If this parameter is omitted, offset
100 from the segment in the CS register is
assumed, if you did not enter an Assemble
command previously. If you did enter Assemble
previously, the code assembles into the address
following the last instruction loaded by the pre
vious Assemble command.

Comments • After you enter the Assemble command,
DEBUG displays the specified address followed
by the cursor. You may then enter a line of 8086
assembler mnemonics. On terminating the line
with <CR>, the line will be assembled into
memory starting at the specified location. The
address of the byte subsequent to the assembled
code will be displayed on the next line along
with the cursor to enable you to enter the next
line of code. If, instead of a line of 8086 mnemon
ics, you simply enter <CR>, the Assemble com
mand terminates and the DEBUG prompt
reappears.

• All numeric values are hexadecimal and must be
entered as 1 to 4 characters without a trailing H.
Prefix mnemonics must be specified in front of
the opcode to which they refer. You may also
enter them on a separate line.

• The segment override mnemonics are CS:, DS:,
ES: and SS:. The mnemonic for the far return is
RETF. String manipulation mnemonics must
explicitly state the string size. For example, use
MOVSB to move byte strings.

3-9

DEBUG

• The Assemble command will automatically
assemble short, near, or far jumps and calls,
depending on byte displacement with respect to
the destination address. These may be overrid
den with the NEAR or FAR prefix. For example:

0100:0500 IMP 502

0100:0502 IMP NEAR 505

0100:505 IMP FAR 50A

;a two-byte
;short jump
;a three-byte
;near jump
;a five-byte far
;jump

The NEAR prefix may be abbreviated to NE,
but the FAR prefix cannot be abbreviated.

• DEBUG cannot tell whether some operands
refer to a word memory location or to a byte
memory location. In this case the data type must
be explicitly stated with the prefix "WORD
PTR" or "BYTE PTR". Acceptable abbrevia
tions are "wo" and "BY". For example:

NEG BYTE PTR [128]
DEC WO [81]

• DEBUG cannot distinguish whether an operand
refers to a memory location or to an immediate
operand. Enclose operands that refer to memory
locations in square brackets. For example:

3-10

MOVAX,21
MOV AX,[21]

;Load AX with 21H
;Load AX with the contents of
;location 21H

DEBUG

• Two pseudo-instructions are available with the
Assemble command. The DB opcode will assem
ble byte values directly into memory. The DW
opcode assembles word values into memory. For
example:

DB 1,2,;3;4,"THIS ISAN EXAMPLE"
DB 'THIS IS A QUOTE:" ,
DB "THIS IS A QUOTE' "
DW iOOO,2000,3000,"BACH"

• The Assemble command supports all forms of
register indirect addressing. For example:

ADD BX,34[BP+2]. [SI-1]
POP [BP+DI]
PUSH [SI]

All opcode synonyms are supported. For
example:

LOOPZ 100
LOOPE 100
JA 200
JNBE 200

3-11

DEBUG

Example 1 Enter A200 <CR>.

2 DEBUG displays 09AC:0200_.

3 Enter MOV AX,[21] <CR>.

4 The 8086 mnemonics are assembled starting at
location 200. The byte location subsequent to the
assembled code is then displayed:

09AC:0203_

5 Enter <CR>.

6 The Assemble command terminates and the
DEBUG prompt reappears.

3-12

DEBUG

C(COMPARE)

Compares the contents of two areas of memory.

Syntax C range,address

range the range of addresses defining the first area to
be compared. If no segment is specified, then the
segment specified in the DS register is assumed.

address the start of the area to be compared with the
area specified by the range parameter.

Comments • The Compare command compares the area of
memory specified by the range parameter with
an area of the same size starting at the location
specified by the address parameter.

• If the contents of the two areas are identical,
nothing is displayed. If there are differences,
then the differences are displayed in the form

<address1> <contents1> <contents2> <address2>

<addressl> indicates the address in the first
area and <contentsl> its contents. <address2>
indicates the corresponding address in the
second area and <contents2> its contents.

3-13

DEBUG

Example 1 Enter C 100,1FF,300 <CR> or

C1OOL 100, 300 <CR>.

2 The area of memory from 100 to IFF is com
pared with the area of memory from 300 to 3FF.

3-14

DEBUG

D (DISPLAY)

Displays an area of memory.

Syntax D [range] or
D [address]

range the range of addresses whose contents are to be
displayed. If you enter only offsets, then the
segment specified in the DS register is assumed.

address the address from which the display is to start.
The contents of this address and the subsequent
127 locations are displayed. If only an offset is
entered, then the segment specified in the DS
register is assumed.

Comments. If D is specified without parameters, then the
128 bytes following the last address to be dis
played are displayed. If no location has yet been
accessed, the display will start from location
DS:100.

• If D and the range parameter are specified, the
contents of that range of addresses are dis
played. If this takes more than 24 screen lines,
the display is scrolled until the contents of the
final address in the range are displayed on line
24.

• The display is displayed in two portions:

A hexadecimal display, where each byte is
represented by its hexadecimal value, and an
ASCII display, where the equivalent ASCII
character for the byte is displayed. If there is no
corresponding printable ASCII character, a
period (.) is displayed.

3-15

DEBUG

• Each line of the display begins with an address
followed by the hexadecimal contents of the 16
bytes starting from the addressed location. The
eighth and ninth bytes are separated by a
hyphen (-). The right-hand columns display the
equivalent ASCII values. Each line of the dis
play, except possibly the first, begins on a 16
byte boundary.

Example 1 Enter D 100,110 <CR>.

2 Lines 100H to 110H (inclusive) are displayed.

3 Enter D <CR>.

4 The 128 bytes starting from location 111H are
displayed.

5 Enter D200 <CR>.

6 The 128 bytes starting from location 200H are
displayed.

3·16

DEBUG

E (ENTER)

Replaces the contents of memory locations at
the byte address(es) specified.

Syntax E address[,bytevalue[,bytevalue...]]

address the address of the location whose value is to be
replaced; or the address of the first of a succes
sion of locations whose contents are to be
replaced. If only an offset is specified, then the
segment indicated by the DS register is
assumed.

bytevalue the value that is to replace the contents of the
specified address. The first bytevalue parameter
will replace the contents of the location specified
by the address parameter. A second bytevalue
will replace the contents of the location follow
ing that specified by the address parameter, and
so on.

Comments • If the command is entered without the byte
value list, then DEBUG displays the specified
address and its contents. The Enter command
then waits for you to perform one of the
following:

1 Replace the displayed bytevalue by entering
another value. Enter the new value after the cur
rent value. If you enter an illegal value, or if you
type more than two dig. \.s, the illegal or extra
character is not echoed.

2 Advance to the next byte by pressing
<SPACE>. To change the value of this byte
simply enter the value as described above. If you

3-17

DEBUG

advance beyond an eight-byte boundary,
DEBUG starts a new display line with the
address displayed at the start of the line. To
advance to the next byte without changing the
current byte, press <SPACE> again.

3 To return to the previous byte enter hyphen (-).
DEBUG then starts a new display line with the
address of the byte you have returned to and its
contents. You can then change the contents of
this location as described above. To move back
one byte further without changing this value,
enter hyphen again, and another new display
line will be generated.

4 Terminate the Enter command by pressing
<CR>. This key may be pressed in any byte
position.

• If you specify byte values in the command line,
then the first of these byte values will replace
the contents of the location specified by the
address parameter. Subsequent entries in the list
of byte values will replace subsequent bytes in
memory.

Enter E 100 <CR>.

DEBUG displays something like 0680:0100
co._

3 Enter 26.

4 the value of location 100 is changed to 26 and
DEBUG displays:

Example 1

2

0680:0100 CO.26_

3-18

DEBUG

5 Enter <SPACE>.

6 The next byte (location 101) is displayed

058D:OIOO CD.26 20._

7 Enter <SPACE>.

8 The next byte (location 102) is displayed

058D:IOO CD.26 20. 00._

9 Enter <->.

10 The previous byte (location 101) is displayed on
the next line

058D:OIOO CD.26 20. 00.
058D:OIOI 20._

11 Enter 30 <CR>.

12 The contents of location 101 are changed to 30
and the Enter command is terminated.

058D:OIOO CD.26. 20. 00.
058D:OIOI 20.30

13 Enter E 200,26,OA, 19,23 <CR>.

14 The contents of byte locations 200, 201, 202
and 203 are changed to 26, OA, 19 and 23,
respectively.

3-19

DEBUG

F (FILL)

Fills an area of memory with specified byte
values.

Syntax F range,bytevalue[,bytevalue...]

range the range of addresses whose contents are to be
overwritten with the specified bytevalues. If only
the offset is specified, then the segment indi
cated by the DS register is assumed.

bytevalue a two digit hexadecimal value that is to over
write the contents of the specified address(es).

Comments· If the specified range contains more bytes than
the list of byte values, then the list of byte values
is repeated until the specified range is filled.

• If the list of byte values is longer than the speci
fied range, the extra byte values are ignored.

Example 1 Enter F04BA: 100L100,42,45,48,37,20 <CR>.

2 DEBUG fills memory locations 04BA: 100 to
04BA:IFF with the byte values specified. The
five values are repeated until all 256 locations
are filled.

3-20

Syntax

=address

address

Comments

DEBUG

G(GO)

Executes the program currently in memory,
optionally halting at specified breakpoint(s) and
displaying information about the system and
program environment.

G [=address][,address...]

the address in memory at which program execu
tion is to start. "=" must be entered to distin
guish a start address from a breakpoint address.

the breakpoint address. You can specify up to
ten breakpoints, in any order.

If you enter G without parameters, the program
currently in memory is executed starting from
the address specified by the CS and IP registers.

If you specify the =address parameter, the con
tents of the CS and IP registers are changed to
those specified by the =address parameter and
the program in memory is executed, starting
from the address you specified.

If you specify one or more breakpoint addresses,
program execution stops at the first such
address encountered and displays the contents
of the registers, the state of the flags and the
next instruction to be executed (see the Register
command for a description of the display).

• If only an offset is entered for an address, the
GO command assumes the segment in the CS
register.

3-21

DEBUG

3-22

• If you enter more than ten breakpoints, DEBUG
will display

BP Error

• Before executing the program, the GO command
replaces the contents of the breakpoint locations
with an interrupt instruction (hexadecimal CC).
Therefore, each breakpoint address that you
specify must point to the first byte of an 8086
instruction, or unpredictable results occur.

When program execution halts at a breakpoint
DEBUG restores the original values of all the
specified breakpoint locations. However, if the
program terminates normally (that is, not at a
specified breakpoint), the original values are not
restored.

Note: Once a program has reached completion
(DEBUG has displayed "Program terminated
normally") you must reload the program before
you can re-execute it.

The stack segment must have six bytes avail
able at the stack pointer for this command,
otherwise unpredictable results occur. This is
because the GO command jumps into the user
program with the IRET instruction. The flag,
CS, and IP registers have to be pushed onto the
stack in preparation for the IRET, taking up six
bytes. '

DEBUG

Example 1 Enter G=200,lAF,141 <CR>.

2 The program currently in memory is executed
starting from location 200. Assuming location
141 is encountered before 1AF, then the program
halts at location 141 and the register and flag
values are displayed along with the next
instruction to be executed. If neither breakpoint
location is encountered, then the program ter
minates normally.

3 Enter G <CR>.

4 If, in step two, the program had halted at
location 141, then program execution continues
from that address.

3-23

DEBUG

Syntax

Comments

H (HEXARITHMETIC)

Calculates and displays the sum and the differ
ence of two hexadecimal values.

The first of two hexadecimal values.

The hexadecimal value that is to be added to or
subtracted from value_a.

The hexadecimal values may be up to four digits
long.

The Hex command displays two four-digit
values:

the first is the result of adding value_b to
value_a

the second is the result of subtracting value_b
from value_a

Example 1 Enter H 19F, 10A <CR>.

2 DEBUG displays

02A9009S

3 Enter HFFFF,2 <CR>.

4 DEBUG displays

0001 FFFD

3-24

Syntax

value

Comments

Example 1

2

DEBUG

I (INPUT)

Inputs and displays (in hexadecimal) one byte
from the specified port.

I value

the address of the port that the byte is to be
input from.

The port address can be up to 16 bits.

Enter I2F8.

the byte at the addressed port is input and
displayed.

3-25

DEBUG

L(LOAD)

Loads a file or absolute disk blocks into memory.

Syntax

address

drive

block

count

L [address[,drive,block,count]]

the address in memory at which the file or range
of blocks is to be loaded. If only an offset is
entered, then the segment indicated by the CS
register is assumed.

the drive from which disk blocks are to be
loaded. For drive A you must enter 0, for drive B
you must enter 1, etc.

the first of a range of blocks to be loaded from
the disk specified by the drive parameter.

the number of blocks to be loaded.

Comments • If all parameters are specified, then DEBUG
loads blocks of information from disk into
memory.

• If you enter L without parameters, or with just
the address parameter, the file whose file control
block is correctly formatted at location CS:5C is
loaded into memory. The file control block at
CS:5C is set either to the filespec specified when
the DEBUG command was invoked, or to the
filespec specified by the most recent "Narne"
command.

• The default location for programs to load is at
CS:100. If you specify L and the address
parameter, the file is loaded at the specified

3-26

DEBUG

address unless it is a .EXE or .HEX file. In any
case DEBUG sets the BX:CX registers to the
number of bytes loaded.

• If the file has an EXE extension, then it is relo
cated to the load address specified in the header
of the .EXE file. That is, the address parameter
to the Load command is ignored. The header
itself is stripped off the .EXE file before the file
is loaded into memory. Thus the size of the .EXE
file on disk will differ from its size in memory.

• If the file is a .HEX file, entering the Load com
mand with no parameters causes the file to be
loaded starting at the address specified within
the .HEX file. If the address parameter,
however, is specified, then loading starts at the
address which is the sum of the address
specified and the address in the .HEX file.

Examples The following examples assume the system to be
initially in MS-DOS.

1 Enter debug <CR>
Nb:file.com <CR>
L<CR>.

Debug is entered and the subsequent Name
command sets the file control block at CS:5C to
identify file "file.com" on the diskette inserted in
drive B. The Load command then loads this file
into memory starting at CS:I00 (the default
address).

2 Enter debug b:file.com <CR>
L300<CR>.

file.com is loaded into memory at location
CS:I00 by the DEBUG command. It is then
relocated to CS:300 by the Load command.

3-27

DEBUG

M(MOVE)

Moves the contents of a specified range of
memory addresses to the locations starting at a
specified address.

Syntax

range

address

Comments

M range,address

The area of memory whose contents are to be
moved. If you only enter an offset, the segment
indicated in the DS register is assumed.

The start of the destination area. If you only
enter an offset, then the segment indicated by
the DS register is assumed.

If the source and destination areas overlap, the
move is performed without loss of data.

The contents of the source area are not changed
by the move, unless the destination area over
laps it.

If you specify an address as the end of the
range, you must only enter the offset. The seg
ment specified, or defaulted to, in the start
address of the range is assumed.

Example 1 Enter MCS: 100,110,CS:500 <CR> or
MCS: 1OOL II,CS:500 <CR>.

2 The 17 bytes starting at location CS:100 are
copied to the 17 bytes starting at location
CS:500.

3-28

Syntax

filespec

Comments

DEBUG

N(NAME)

Provides file nameS for the Load and Write
commands or file name parameters for the pro
gram to be debugged.

N filespec[,filespec...]

the file specifier of a file to be loaded into
memory, written to diskette, or used as a file
name parameter to the file currently in memory.

The Name command can be used to provide:

the name of the disk file to be loaded into
memory by a subsequent Load command

the name to be assigned to the file currently in
memory when the file is subsequently written to
disk

file name parameters to the file in memory to be
debugged.

The first case enables you to specify the file you
wish to debug after entering the DEBUG envi
ronment. That is, you can enter DEBUG without
specifying parameters, then use the Name com
mand to name the disk file you wish to deQug,
then load the file into memory using the Load
command. This has the same effect as entering
the file name as the first parameter to the
DEBUG command upon invocation. In either
case the file control block for the file to be
debugged is setup at location CS:5C and the file
is loaded.

3-29

DEBUG

In the second case, the file is already in memory
and the Name command sets up the file control
block for the specified file name at location
CS:5G. When a Write command is subsequently
entered the file in memory is written to disk with
the file name whose file control block is set up at
location CS:5C.

In the third case, the Name command provides
file name parameters for the program currently
in memory. Whatever file control block was set
at CS:5C is replaced by that of the first such
parameter. If a second file parameter is speci
fied, its file control block is set up at location
CS:6C. Only two file control blocks are set up,
although additional file name parameters may
be included if required. All the specified
including any delimiters ~nd switches that may
have been typed - are placed in a save area at
CS:81, with·CS:80 containing a character count.
Parameters specified in this way are analogous
to file names specified in the argument list to the
DEBUG command.

Examples 1 Enter DEBUG <CR>
Nb:file.com <CR>
L<CR>.

The system enters the DEBUG environment and
FILE.COM resident on drive B has its file con
trol block set up at location CS:5C. The Load
command subsequently loads this file into
memory.

This sequence has the same effect as entering

"DEBUG b:file.com"

3-30

DEBUG

2 Enter Nb:newfile.eorn <CR>
W<CR>

The file control block is set up at location CS:5C
for the file specifier "b:newfile.com". The subse
quent Write command writes the file currently in
memory to drive B and names the file
"newfile.com".

3 Enter DEBUG b:file l.eorn <CR>
Nfile2.dat,file3.dat <CR>
G<CR>

The DEBUG command loads the file named
"filel. com" from drive B to be debugged. The
Narne command sets up two file control blocks
at locations CS:5C and CS:6C for the file specifi·
ers b:file2.dat and b:file3.dat, respectively. These
files then become parameters to filel.COM when
the subsequent GO command executes filel
.COM. Therefore, the file is executed as if the fol
lowing command line had been typed:

b:file 1 file2.dat file3.dat

3-31

DEBUG

o (OUTPUT)

Sends a specified byte to an output port.

Syntax

value

byte

o value,byte

the address of the output port. It must be speci
fied in hexadecimal and can be up to 16 bits.

a two-digit hexadecimal value to be sent to the
specified port.

Example 1 OlE, 27 <CR>

2 the byte value 27H is output to the port 1EH.

3-32

Syntax

Comments

DEBUG

Q (QUIT)

Terminates the DEBUG program.

Q

The Quit command terminates the debugger
without saving the file you are working on. Con
trol is returned to MS-DOS command mode.

3-33

DEBUG

Syntax

register
name

F

Comments

3-34

R (REGISTER)

Displays the contents of the registers and flag
settings, or displays the contents of a specified
register with the option to change that value, or
displays the flag settings with the option of
reversing any number of those settings.

R [register-name pipe: F]

any valid register name whose contents are to be
examined and optionally changed. This may be
one of:

AX DX SI ES IP
BX SP DI SS PC
CX BP DS CS

Note: IP and PC both refer to the Instruction
Pointer.

the flag settings are to be displayed and option
ally changed.

If you enter R without parameters, then the con
tents of all registers are displayed along with the
flag settings and the next instruction to be exe
cuted. For Example:

AX=058D BX=OOOO CS=OOOO DX=OOOO
SP=FFFO BP=OOOO SI=OOOO DI=OOOO DS=058D
ES=058D CS=058D IP=013B
NV UP EI PL NZ NA PO NC
058D:013B 83D8 MOV DS,AX

If you enter R with a register name, then
DEBUG displays the contents of that register.
The command then waits for you to do one of
the following:

DEBUG

press <CR> to terminate the Register
command without changing the value of the
displayed register. .

change the value of the register by entering
the four-digit hexadecimal value, then
terminate the Register command by entering
<CR>.

The valid flag values are shown in the following
table:

Flag Name Set Clear

Overflow OV (yes) NV (no)
Direction DN (decrement) UP (increment)
Interrupt EI (enabled) DI (disabled)
Sign NG (negative) PL (plus)
Zero ZR (yes) NZ (no)
Auxiliary AC (yes) NA (no)
Carry
Parity PE (even) PO (odd)
Carry CY (yes) NC (no)

If you enter RF, then the current flag settings
are displayed. You can then either

press <CR> to terminate the Register
command without changing the flag values,
or

change the setting of one or more flags by
entering the alternate value of the
appropriate flags. The new values may be
entered in any order, with or without
delimiters.

3-35

DEBUG

Example 1 Enter R <CR>.

2 DEBUG displays the contents of all registers,
flag settings and the next instruction to be exe
cuted.

3 Enter RIP <CR>.

4 DEBUG displays the contents of the Instruction
Pointer. For example:

IP 0139

5 Enter 0138 <CR>.

6 the contents of the Instruction Pointer are
changed to 0138.

7 Enter RF <CR>.

8 DEBUG displays the flag settings. For example:

NV UP EI PL NZ NA PO NC-

9 Enter PE ZR 01 NG<CR>.

10 The Parity flag is set to even (PE), the Zero flag
is set (ZR), the Interrupt flag is cleared (DI), and
the Sign flag is set (NG).

11 Enter RF <CR>.

12 DEBUG displays the new state of the flags

NV UP DI NG ZR NA PE NC-

3-36

Syntax

range

list

Comments

DEBUG

S (SEARCH)

Searches a specified range for a list of bytes.

S range,list

the range of addresses within which the search
is to be made. If you only enter the offset, the
segment indicated by the DS register is
assumed.

the list of one or more bytes to be searched for.
Bytes in the list must be separated by a space or
a comma.

For each occurrence of the list of bytes within
the specified range, DEBUG returns the address
of the first byte. If no address is returned, no
match was found.

Example 1 Enter S 1OOL 100,20 <CR> or
S 100,lFF,20 <CR>.

2 DEBUG displays the address of every occur
rence of byte value 20 in the address range 100
to IFF, inclusive, for example:

058D:OIOC
058D:OIIO
058D:0115
058D:0118
058D:0120
058D:0128
058D: OICE

3-37

DEBUG

T(TRACE)

Executes one or more instructions and displays
the register contents, flag settings and the next
instruction to be executed.

Syntax

=address

value

Comments

T [=address][,value]

DEBUG is to commence execution at this
address.

the number of instructions to be executed.

If the =address parameter is not specified, execu
tion begins at C8:IP.

If the value parameter is not specified, only one
instruction is executed.

The display generated is of the same format as
that of the Register command (without
parameters).

Example 1 Enter T =200,6 <CR>.

2 Five instructions, starting with the one at loca
tion C8:200, are executed, and the register and
flag values following each instruction are
displayed along with the next instruction to be
executed.

3 Enter T <CR>.

4 The instruction pointed to by C8:IP is executed
and the register and flag contents are displayed
along with the next instruction to be executed.

3-38

DEBUG

U (UNASSEMBLE)

Disassembles strings of bytes in memory and
displays them as assembler-like statements
along with their corresponding addresses.

Syntax U [range]
or

U [address]

range the range of addresses whose byte values are to
be disassembled. If you do not specify the seg
ment, then the segment indicated by the CS reg
ister is assumed.

address the start of a 32 byte area of memory to be dis
assembled. If you only enter an offset, then the
segment indicated by the CS register is
assumed.

Comments • If neither the range nor address parameter is
specified, then 32 bytes are disassembled start
ing at location CS:IP. If the Unassemble
command is given more than once, each
subsequent invocation starts at the address
following the last disassembled location.

• The number of bytes disassembled may be
slightly more than the number you specified.
This is because instructions are not always the
same length and the final address in a range
will not always contain the last byte of ,an
instruction.

• The first address of a range, or the address
parameter, must always refer to the first byte of
an 8086 instruction, otherwise results are
unpredictable.

3-39

DEBUG

Example

3-40

1 Enter U058D:204L8 <CR>.

2 Eight bytes starting at location 058D:204 are
disassembled and the result displayed:

058D:0204 8D16DFOD LEA DX,[ODDF]
058D:0208 42 INC DX
058D:0209 03DO ADD DX,AX
058D:020B 8916E50B MOV [OBE5],DX

DEBUG

W(WRITE)

Writes the file being debugged to disk.

Syntax W [address[,drive,block,count]

address the start address of the code in memory that is
to be written to disk. If you enter only an offset,
then the segment indicated in the CS register is
assumed.

drive the drive containing the specified blocks to
which code in memory is to be written. For drive
A you must enter 0, for drive B you must enter 1,
etc.

block the block number on disk that is the first of a
contiguous range of blocks to be overwritten
with code from memory.

count the number of disk blocks to be overwritten with
code from memory.

Comments • If you enter the WRITE command without
parameters, then the file is written to disk start
ing from memory address CS:I00. If you specify
the address parameter, then the file in memory,
starting from the specified address, is written to
disk.

• In either case, before executing the WRITE
command, BX:CX must be set to the number of
bytes to be written if the count parameter is not
included. This value was set up correctly when
the file was loaded (either by the Load command
or the DEBUG command itself). However, if,
since loading the file, you have executed a GO or

3-41

DEBUG

TRACE command, then the value of BX:CX will
have been changed. Be sure this value is set up
correctly.

• When the WRITE command writes a file to disk,
it obtains the drive specifier and file name via
the file control block set up at CS:5C. If no drive
specifier is set up, then the default is assumed.
This file control block is set up either by the
DEBUG command (for the file you specify as a
parameter to DEBUG) or by a subsequent
NAME command. If it does not indicate the file
specifier you require, you must set up this file
control block using the NAME command. Refer
to "Memory Maps, Control Blocks, and Diskette
Allocation" for further details.

• When the file is written to disk it overwrites the
version currently on disk unless the specified file
name does not exist, in which case a new file is
created.

• If all parameters are specified, then the code in
memory is written to the drive specified by the
parameter. The data to be written starts at the
memory location specified by the address .
parameter, and is written to the blocks on the
disk specified by the block and count parame
ters. Be extremely careful to correctly specify the
blocks, since information stored there previously
will be destroyed by this operation.

Examples 1 Enter W <CR>.

The file in memory, starting from location
CS:100, is written to disk with the file specifier
defined by the file control block set up at
location CS:5C. The number of bytes written is
given by BX:CX.

3-42

DEBUG

2 Enter W200 <CR>.

The file in memory, starting from location
CS:200, is written to disk with the file specifier
defined by the file control block set up at loca
tion CS:5C. The number of bytes written is given
by BX:CX.

3 Enter W200,l,lF,20 <CR>.

Blocks IF through 3F on drive B are overwritten
with the data starting at memory location
CS:200.

3-43

DEBUG

BF

BP

BR

DF

3-44

DEBUG ERROR MESSAGES

Bad Flag
You attempted to alter a flag, but entered some
characters that are not acceptable pairs of flag
values. See R (Register) command for the list of
acceptable flag entries.

Too many Breakpoints
You specified more than ten breakpoints as
parameters to the GO command. Reenter the
command with ten or fewer breakpoints.

Bad Register
You entered the R command with an invalid reg
ister name.

Double Flag
You entered two values for one flag.

4
• Overview

8086
Addressing

Scheme

• The 20-Bit Address

• Aligned and Non-Aligned Words

• Registers and Flags

• Code, Data, and Stack Segments

• Addressing Modes

4-1

8086
Addressing
Scheme

4-2

Overview

The 8086 microprocessor has an extremely flexible
addressing scheme. The 8086 uses a 16-bit word, but
can address a megabyte of memory. The 8086 sup
ports seven different addressing modes.

To take advantage of the flexibility of the 8086, so
that you can write assembly language code and navi
gate through programs while debugging, study the
addressing scheme by carefully reading this chapter.

8086
Addressing

Scheme

The 20-Bit Address

The AT&T Personal Computer 6300 utilizes the
full address space that is available due to the
design of the 8086 microprocessor. The
addresses are 20 bits long, so the address space
is two to the twentieth power, 1024K, or one
megabyte.

The 8086 has a 16-bit word. To convert 16-bit
words to a 20-bit address, the 8086 uses "seg
mented addressing." A 20-bit address is created
by using values from two separate registers.
Two 16-bit numbers are used.

The binary representation of the first number is
considered to have four binary zeroes tacked on
to its end. This effectively multiplies the number
by 16. This value is known as the segment por
tion of the address. The segment portion can
point to any 16-byte segment of memory in the
megabyte address space. However, with four
zeroes as its least significant bits, it cannot
"zero in" on individual bytes. The segment reg
ister's function is just to point to a 16-byte bound
ary (also known as a paragraph boundary).

Once a segment is located, the other register
comes into play. This "offset register" points to
the relative part of the address. The 16 bits that
comprise the offset register point to an individ
ual byte which is relative to the start of the
segment.

4-3

8086
Addressing
Scheme

Syntax

Example

The 8086 locates a particular address by:

1 Shifting the segment register to the left by four
bits

2 Adding the contents of the offset register

The 20-bit address is conventionally expressed
in special notation:

<segment register>:<offset register>

009F:0012

4-4

Segment address
+ Relative address

=Actual Address

009FO
0012

00A02

8086
Addressing

Scheme
Aligned and

Non-Aligned Words

The instructions for the 8086 are made up of
from one to six bytes. Instructions can start at
either an even or odd address. The 8086 is capa
ble of accessing two bytes of data in memory in
a single memory cycle. When the CPU accesses
a word (16 bits) located at an even address, it is
accessing an "aligned" word. The word is
aligned because both bytes are located at the
same word address and can be accessed in a
single memory cycle.

When the CPU accesses a word starting at an
odd address, it is accessing a "non-aligned"
word. Since the two bytes comprising the word
do not occupy the same word address, two
memory cycles are required to read the entire
word.

The importance of aligned or non-aligned words
is determined by the importance of execution
speed in your application. It is good program
ming practice to store data starting at an even
address. If your program accesses or manipu
lates many word quantities, this will help speed
program execution. If you are writing a device
driver and instruction cycle times affect the
execution of your program, the impact of aligned
and non-aligned words should be taken into
consideration.

4·5

8086
Addressing
Scheme

General
Registers

4-6

Registers and Flags

There are two main groups of general registers
used by the 8086: the data group and the pointer
and index group. Each register is 16 bits wide.

• The data registers are AX, BX, CX, and DX.
Each can be used as a single 16-bit register or as
two 8-bit registers. When they are used as two
8-bit registers, they are divided into an upper(H)
and lower(L) half and called AH, AL, BH, BL,
CH, CL, DH, and DL.

• The pointer and index registers are 16-bit regis
ters. They are named according to their func
tions: SP (stack pointer), BP (base pointer), SI
(source index), and DI (destination index);

Segment
Registers

Instruction
Pointer

Flags

8086
Addressing

Scheme

There are four segment registers in the 8086.
Each register is 16 bits and their names reflect
their use:

• CS - Code Segment
Always defines the current code segment.

• DS - Data Segment
Usually defines the current data segment.

• SS - Stack Segment
Always defines the current stack segment.

• ES - Extra Segment
Can define an auxiliary data segment.

These registers are used in combination with
other registers to form the 20-bit address. Each
segment begins on a paragraph (16 byte) bound
ary. There are four "current" segments at any
one time. The contents of each segment register
is called the "segment base value". The sections
on "Code, Data, and Stack Segments" and
"Addressing Modes" give details on how these
registers are utilized.

The instruction pointer (IP) is used in conjunc
tion with the Code Segment register to point to
the address of the next executable instruction.
The IP is also a 16-bit register.

The 8086 has nine I-bit status or condition flags
that are used to indicate the condition of the
result of an arithmetic or logical operation that
has just occurred. Some of the assembly lan
guage instructions use these flags to condition
ally change the execution path of a program.

4-7

8086
Addressing
Scheme

Flag
Definitions

4-8

AF Auxiliary Carry Flag
This flag is set (Le., equal to 1) under two
conditions:

During addition there is a carry of the low
nybble to the high nybble. (nybble = 4 bits)

During subtraction there is a borrow from
the low nybble to the high.

CF Carry Flag
This flag is set when there has been a carry
or a borrow to the high-order bit of the (8- or
16-bit) result of an operation.

OF Overflow Flag
When this flag is set, an arithmetic over
flow has occurred and a significant digit
has been lost.

SF Sign Flag
This flag is set when the high-order bit of
the result of an operation is a logical l.
Since negative binary numbers are
represented using two's complement
notation, SF reflects the sign of the result: 0
indicates a positive number and 1 indicates
a negative number.

PF Parity Flag
If this flag is set, the result of the operation
has an even number of ones in it. Use this
flag to check for data transmission errors.

ZF Zero Flag
This flag is set when the result of an opera
tion is zero.

Flag
Definitions
(Cont'd)

8086
Addressing

Scheme

TF Trap Flag
When set, the trap flag puts the system into
single-step mode for the purposes of debug
ging. An internal interrupt is generated
after each instruction so that you can
inspect your program one instruction at a
time.

IF Interrupt-enable Flag
If this flag is set, external (maskable) inter
rupts are recognized by the 8086.

DF Direction Flag
This flag is set and cleared by the STD (Set
Direction Flag) and CLD (Clear Direction
Flag) instructions. If it has the value 1, SI
and DI are decremented during string move
operations. If it has the value of 0, SI and
DI are incremented during string move
operations. This flag is used for the follow
ing instructions: MOVS, MOVSB,
MOVSW, CMPS, CMPSB, and CMPSW.

The flag register looks like this:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FLAGSh FLAGS1

4-9

8086
Addressing
Scheme

AH AL

BH BL

CH CL

DH DL

BX base

AX accumulator

CX count

DX d~a

CPU
Registers

SP stack pointer

BP base pointer

SI source index

DI destination index

IP instruction pointer

FLGSh I FLGSI flags

CS code segment

DS data seg

ES extra seg

SS stack seg

4-10

Code, Data, and
Stack Segments

8086
Addressing

Scheme

Code
Segment

Data
Segment

Extra
Segment

Stack
Segment

•
•
•

When you invoke a program, MS-DOS loads all
of its segments into memory on paragraph
boundaries. The segment registers are set to
point to these locations. The data, code, and
stack segments aren't necessarily far apart in
memory; they may, in fact, overlap. Each seg
ment may be up to 64 KB in length.

Programs are limited to 64K of code, unless they
change the value in the CS register. If a pro
gram changes the CS register, it may address up
to 1024K of code.

The CS register is modified by the FAR CALL
and FAR RETurn instructions. Use these
instructions to execute code that is located out
side the bounds of the current segment.

Most programs use a maximum of 64 KB of
memory for data. This includes Pascal and
compiled BASIC. Assembly language programs,
however, can use additional memory for data by
emploYing the Extra Segment.

The extra segment may be used in any manner
you wish but is often used for transferring large
blocks of data quickly in memory or as a storage
area for a second stack.

Stacks are used for temporarily storing register
contents and other important values under these
conditions:

Interrupts
Inter-segment calls
One program calls another

4-11

8086
Addressing
Scheme

General
Comments

Immediate
Addressing

Register
Addressing

4-12

Addressing Modes

The flexible architecture of the 8086 supports
many different memory-addressing modes.
These can be broken down into six main types of
addressing: immediate, register, direct, register
indirect, and two kinds of calculated addressing.
The following section discusses these modes and
concerns the nature of the operand.

In the immediate addressing mode, the operand
appears in the instruction. For example,

Mav AX,333

moves the constant value 333 into the AX
register.

The register addressing mode uses the contents
of one of the registers as the operand for the
instruction. The instruction can specify that
either 8 bits or 16 bits are to be manipulated. For
example:

Mav AX,BX ;moves 16 bits from BX to AX

Mav AL,BL ;moves 8 bits from BL to AL

Direct
Addressing

Register
Indirect
Addressing

8086
Addressing

Scheme

The direct addressing mode specifies a location
in memory whose contents are used as the ope
rand for the instruction. Example:

MOV CX,COUNT

This instruction uses the value found in the
memory location designated by the symbol
COUNT. Unless otherwise specified, COUNT is
expected to be somewhere in the Data Segment.
To specify that the operand is located in a seg
ment other than the data segment, use the
"segment override prefix:"

MOV CX,ES:COUNT

This syntax specifies that COUNT is located in
the Extra Segment.

With the register indirect addressing mode, the
16-bit offset address is contained in a base or
index register. That is, the offset address resides
in the BX, BP, 81, or DI register. Example:

MOV AX,[SI]

The 16-bit offset contained in the SI register is
combined with the data segment register to
compute the 20-bit address of the operand to
move into register AX. Which segment register
is used to compute the address depends on which
instruction you are using (Le., data segment or
segment override for MOV, code segment for
JMP or CALL, etc.).

4-13

8086
Addressing
Scheme

Calculated
Addressing
Modes

4-14

The calculated addressing modes are like a com
bination of register indirect mode and direct
addressing mode. There are two calculated
addressing modes: single index and double
index. In single index addressing, a 16-bit offset
from the BX, BP, 81 or DI register is added to an
offset location in memory specified in the in
struction. The combined value of these two items
provides the offset into memory from which the
operand is fetched. If the BP register is used the
offset is from within the stack segment; other
wise the offset is from within the data segment.
As always, use of a segment override prefix can
change this. Examples:

MOV AX, COUNT[DI]
MOV AX, RECORD[BP]

In double index calculated addressing mode,
values from two 16-bit registers are added to an
optionally specified location in memory to pro
duce the final offset. Either the BX or BP regis
ter is used for one of the register values, and the
81 or DI register is used for the other one. If only
two registers are given with no memory location,
the memory location defaults to 0000 (start of
segment). Once again, the default calculation is
from the stack segment if the BP register is
used; if BX is used the default is from the data
segment. Examples:

MOV AX, COUNT[BX+81]
MOV AX, RECORD[BP] [DI]
MOV AX, [BX] [DI]

Memory Maps

5 Control Blocks
Diskette Allocation

• Overview

• The Address Space

• Low Memory Map

• ROM BIOS Data Area

• File Control Blocks

• ASCIIZ Strings

• Handles

• Diskette Layout

• Diskette Directory

• File Allocation Table

• Diskette Formats

5-1

Memory Maps
Control Blocks
Diskette Allocation

5-2

Overview

The purpose of this chapter is to enable you to
locate items in memory or on diskette for the
purposes of programming and debugging.

The first portion of the chapter contains detailed
memory maps of the RAM and ROM memory
areas. The sections on control blocks deal with
program file formats and I/O data structures.
The last part of this chapter describes how data
is organized on the diskette.

Memory Maps
Control Blocks

Diskette Allocation

The Address Space

Hex Decimal Contents

00000 OK Interrupt vectors (see detail in low memory
map)

04000 16K DOS software

08000 32K Language, applications programs and
data

Note: There is at least 98,000 hex or 608K
of address space reserved for user pro-
grams and data. To take advantage of the
full amount, you must have purchased and
installed the physical memory.

•
•
•

AOOOO 640K Reserved for extended graphics

BOOOO 704K Monochrome display buffer - Not used

B8000 736K Color/graphics display buffer(s)

C800Q 800K Fixed disk adapter's ROM (Optional)

FOOOO 960K Reserved for ROM expansion

FCOOO 1008K ROM BIOS

5-3

Memory Maps
Control Blocks
Diskette Allocation

Low Memory Map

Hexadecimal addresses are in segment:offset format.

Hex Decimal

0:0000 0

0:0040 64

0:0080 128

0:0100 256

Contents

Interrupt vectors 0 - 7
8259 interrupt controller vectors (8-F)

BIOS interrupt vectors 10-lF

MS-DOS interrupt vectors 20-3F

0:0400

0:0500

0:0600

5-4

1024

1280

1536

Assignable interrupt vectors (40-FF)

Note: These vectors may be assigned to
non-Intel hardware and software
products.

ROM BIOS data area (also called BIOS
communications ~rea) See map on next
page.

DOS data area (also called DOS com
munications area)

Memory Maps
Control Blocks

Diskette Allocation

ROM BIOS Data Area

Hex addresses are in segment:offset format.

Hex Decimal

0:0400 1024

0:0417 1047

0:043E 1086

0:0449 1097

Contents

Hardware environment parameters
(printer and RS232C device addresses,
memory size, etc.)

Keyboard buffer and status bytes

Floppy and hard disk status bytes

0:0467

0:0471

0:0488

0:0500

1127

1137

1160

1280

Video display area (current mode, color
pallette, cursor position, active page
numbers, etc.)

Data area for option ROM and 8253
timer chip

Fixed disk, I/O timeouts, and more key
board status information

RESERVED

Inter-applications communications area

5-5

Memory Maps
Control Blocks
Diskette Allocation

FeB
Format

5-6

File Control Blocks

The standard File Control Block (FCB) contains
37 bytes of file control information. The extend
ed File Control Block is used to create or search
for files in the disk directory that have special
attributes. If the extended FCB is used, it adds a
7-byte prefix to the standard FCB.

Any of the DOS functions which employ FCBs
may use either an FCB or an extended FCB.
(See chapter 7 for a description of each DOS
function call.)

If you are using an extended FCB, set the appro
priate register to the first byte of the prefix, not
to the first byte of the standard FCB, before exe
cuting the function call.

Memory Maps
Control Blocks

Diskette Allocation

o

8

10

18

20

-7

FFH Zeros
attri-
bute

Drive Filename (first 7 bytes) or Reserved
Device Name

File-
Filename Current Record

name
extension block size(1 byte)

(*) (*) (*) (*)
File size File size Date of Time of
(low part) (high part) last write last write

(*)
Reserved for system use

Current Random record Random record
record no. (low part) no. (high part)

(1)

(2)

(1) FeB extension
(2) Standard FCB

(*) Areas with an asterisk are filled by DOS and must not be modified.
Other areas must be filled by the using program.

5-7

Memory Maps
Control Blocks
Diskette Allocation

Offsets are in decimal.

Byte Function

0 Drive number

Before open: 0 - default drive
1- drive A
2 - drive B etc.

After open: 1- drive A
2 - drive B etc.

A 0 is replaced by the actual drive
number when the file is opened.

1-8 Filename, left-justified, padded with
trailing blanks. If a reserved device
name is placed here (e.g., LPT1,) do not
include the optional colon.

9-0B Filename extension, left-justified, with
trailing blanks (may be all blanks).

OC-OD Current block number relative to the
beginning of the file (starting at zero).
A block is defined as a group of 128
records. This field is set to 0 when the
file is opened. This field and the Cur-
rent Record field (offset 20H) make up
the record pointer that is used for
sequential reads and writes.

OE-OF Logical record size in bytes. Automati-
cally set to 80H during open. If this is
not correct, set it to the correct value.

10-13 File size in bytes. The first word of the
field is the low-order part of the size.

5-8

Byte

14-15

Memory Maps
Control Blocks

Diskette AllocatIon

Function

Date the file was created or last up
dated. The bits correspond to the date
as follows:

< 15 > < 1-4 >
15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
y y y y y y ymmmmddddd

yy =0 - 119 (1980 to 2099)
mm = 1-12
dd = 1 - 31

16-17 Time the file was created or last up
dated. The bits correspond to the time
as follows:

< 17 > < 16 >
15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
h h h h hmmmmmmsssss

hh = 0 - 23
mm = 0 - 59
ss =0 - 30 (number of 2-second

increments)

18-1F Reserved for use by DOS.

20 Current relative record number (0-127)
within the current block. Set this field
before doing sequential read/write
operations; it is not initialized by the
Open File function call.

21-24 Relative record number; relative to the
beginning of the file, starting with zero.

5-9

Memory Maps
Control Blocks
Diskette Allocation

Extended
Control
Block

Byt~

Byte

FCB-7

Function

This field is not initialized by the Open
File function call and must be set before
doing a random read or write. If the
record size is less than 64 bytes, both
words of the field are used; otherwise,
only the first three bytes are used.

Note: If you use the FCB at offset 5CH
of the Program Segment Prefix, the last
byte of the Relative Record field is the
first byte of the unformatted parameter
area that starts at offset BOH. This is
the default Disk Transfer Address.

Function

Contains hex FF to indicate this
is extended FCB.

5-10

FCB-6 to Reserved
FCB-2

FCB-l Attribute byte. 02 =Hidden file
04 = System file

ASCIIZ
String
Format

Memory Maps
Control Blocks

Diskette Allocation

ASCIIZ Strings

MS-DOS version 2.11 provides a set of new func
tion calls for file I/O that are easier to use than
the "traditional" calls that were used in past
versions. These new calls do not utilize file con
trol blocks. To open a diskette file, you simply
provide information to identify the file in the
form of an ASCIIZ string. DOS returns a
numeric value, a "handle", that you use to refer
to the file once you have opened it.

The older function calls that require the use of
file control blocks and do not utilize ASCIIZ
strings and handles are supported in MS-DOS
2.11 to provide upward compatibility. Use the
newer function calls whenever possible. See
Chapter 7 for details of function calls.

An ASCIIZ string, also known as a pathname
string, has the following format: an optional
drive specifier, followed by a directory path, and
where applicable, a filename. The last byte must
be binary zeroes. For example:

A:\LEVELA\LEVELB\FILEA

(followed by a byte of zeroes)

Either back slash (\) or forward slash (I) are
valid path-separator characters.

5-11

Memory Maps
Control Blocks
Diskette Allocation

5-12

Handles

Several of the new function calls that support
files or devices use an identifier known as a
"handle" (also kilown as a "token"). When you
create or open a file or device with these function
calls, a 16-bit value is returned in register AX.
Use this handle to refer to the file after it has
been opened.

The following handles are pre-defined by DOS
for your use. You need not open them before
usihgthem:

0000 Standard input device
0001 Standard output device
0002 Standard error output device
0003 Standard auxiliary device
0004 Standard printer device

Note:
See your MS-DOS User's Guide for information
on redirecting I/O for the first two handles.

Clusters

Memory Maps
Control Blocks

Diskette Allocation

Diskette Layout

The DOS area of the diskette is formatted as
follows:

Reserved Area - variable size

First copy of file allocation table - variable size

Second copy of file allocation table - variable
SIze

Root directory - variable size

File data area

Space for a file in the data area is not preallo
cated. The space is allocated one "cluster" at a
time. A cluster consists ofone or more consecu
tive sectors; all of the clusters for a file are
"chained" together in the File Allocation Table
(FAT). On diskettes formatted by MS-DOS 2.11,
there are two copies of the FAT kept, for consis
tency. Should the disk develop a bad sector in
the middle of the first FAT, the second is used
as a backup.

5-13

Memory Maps
Control Blocks
Diskette Allocation

Directory
Format

5-14

Diskette Directory

The FORMAT command builds the root direc
tory for all disks. Its location on disk and the
maximum number of entries are dependent on
the media.

Since directories other than the root directory
are regarded as files by MS-DOS, there is no
limit to the number of files they may contain.

All directory entries are 32 bytes in length, and
are in the following format (byte offsets are in
hexadecimal):

0-7 Filename. Eight characters, left aligned
and padded, if necessary, with blanks. If
this is not currently a file directory entry,
the first byte of this field indicates the
status as follows:

DOH The directory entry has never been
used. This is used to mark the end of
the allocated directory and limit the
length of directory searches, for per
formance reasons.

2EH The entry is for a directory (2EH is
the ASCII code for the dot'.' char
acter used to represent a directory). If
the second byte is also 2EH (i.e., the
entry is '.. '), then the cluster field con
tains the cluster number of this direc
tory's parent directory (OOOOH if the
parent directory is the root directory).
Otherwise, bytes OIH through OAH
are all spaces (i.e., the entry is '.') and
the cluster field contains the cluster
number of this directory.

E5H The file was used, but it has been
erased.

Any other character is the first character of
a filename.

Directory
Format
(cont'd)

Memory Maps
Control Blocks

Diskette Allocation

8-0A Filename extension.

OB File attribute. The attribute byte is
mapped as follows (values are in hex):

01 File is marked read-only. An
attempt to open the file for writing
using the Open a File system call
(Function Request 3DH) results in
an error code being returned. This
value can be used along with other
values below. Attempts to delete the
file with the Delete File system call
(13H) or Delete a Directory Entry
(41H) will also fail.

02 Hidden file. The file is excluded
from normal directory searches.

04 System file. The file is excluded
from normal directory searches.

08 The entry contains the volume label
in the first 11 bytes. The entry con
tains no other usable information
(except date and time of creation),
and may exist only in the root
directory.

10 The entry defines a sub-directory,
and is excluded from normal direc
tory searches.

20 Archive bit. The bit is set to "on"
whenever the file has been written
to and closed. It is used by
BACKUP and RESTORE com
mands for determining whether or
not a file has changed since its last
backup. The BACKUP command
clears this attribute on all files
backed up.

5-15

Memory Maps
Control Blocks
Diskette Allocation

Directory
Format
(cont'd)

5-16

The system files (IO.8Y8 and
M8D08.8Y8) are marked as read-only,
hidden, and system files. Files can be
marked hidden when they are created.
Also, the read-only, hidden, system, and
archive attributes may be changed
through the Change Attributes system
call (Function Request 43H).

OC-15 Reserved.

16-17 Time the file was created or last updated.
The hour, minutes, and seconds are
mapped into two bytes as follows:

Offset 17H
IHIHIHIHIHIMIMIMI

7 6 5 4 3 2 1 0
Offset 16H
IMIMIMI 81 81 81 8181

7 6 5 4 3 2 1 0

H is the number of hours (0-23)
M is the number of minutes (0-59)
8 is the number of two-second

increments

The time is stored with the least signifi
cant bit first.

Directory
Format
(cont'd)

Memory Maps
Control Blocks

Diskette Allocation

18-19 Date the file was created or last updated.
The year, month, and day are mapped
into two bytes as follows:

Offset 19H
IYIYIYIYIYIYIYIM

7 6 5 4 3 2 1 0

Offset 18H
IMIMIMIDIDIDIDID

7 6 5 4 3 2 1 0

Y is the number of years since 1980,
0-119 (1980-2099)

M is the month number 1-12
D is the day of the month 1-31

The date is stored with its least signifi
cant byte first.

lA-IB The cluster number of the first cluster in
the file. The first cluster for data space
on all disks is cluster 002.

The cluster number is stored with the
least significant byte first.

Note:

Refer to "How to Use the File Allocation Table"
for details on converting cluster numbers to logi
cal sector numbers.

1C-IF File size in bytes. The first word of this
four-byte field is the low-order part of the
SIze.

5-17

Memory Maps
Control Blocks
Diskette Allocations

File Allocation Table (FAT)

The following information is included primarily
for system programmers who are writing install
able device drivers. This section explains how
MS-DOS uses the File Allocation Table to con
vert the clusters of a file to logical sector num
bers. The driver program is then responsible for
locating the logical sector on disk. If you are
writing a system utility, use the MS-DOS file
management function calls for accessing files;
programs that access the FAT directly are not
guaranteed to be upwardly-compatible with
future releases of MS-DOS.

FAT
Entries

5-18

The File Allocation Table is an array of 12-bit
entries (1.5 bytes) for each cluster on the disk.

• The first two FAT entries map a portion of the
directory; these FAT entries indicate the size
and format of the disk.

• The second and third bytes currently always
contain FFH.

• The third FAT entry, which starts at byte offset
4, begins the mapping of the data area (cluster
002). Files in the data area are not always writ
ten sequentially on the disk. The data area is
allocated one cluster at a time, skipping over
clusters already allocated.The first free cluster
found will be the next cluster allocated, regard
less of its physical location on the disk. This
permits the most efficient utilization of disk
space because clusters made available by eras
ing files can be allocated for new files.

Memory Maps
Control Blocks

Diskette Allocation

Each FAT entry contains three hexadecimal
characters:

• 000

• FF7

If the cluster is unused and avail
able.

The cluster has a bad sector in it.
MS-DOS will not allocate such a
cluster. CHKDSK counts the number
of bad clusters for its report. These
bad clusters are riot part of any allo
cation chain.

• FF8-FFF Indicates the last cluster of a file.

• XXX The cluster number of the next clus
ter in the file. The cluster number of
the first cluster in the file is kept in
the file's directory entry.

The File Allocation Table always begins on the
first sector after the reserved sectors. If the FAT
is larger than one sector, the sectors are contigu
ous. Two copies of the FAT are usually written
for data integrity; The FAT is read into one of
the MS-DOS buffers as needed (open, read, write,
etc.). For performance reasons, this buffer is
given a high priority so that it stays in memory
as long as possible.

5-19

Memory Maps
Control Blocks
Diskette Allocation

How to Use
the File
Allocation
Table

1

2

3

4

5

5-20

Use the directory entry to find the starting clus
ter of the file. Next, to locate each subsequent
ch1ster of the file:

Multiply the cluster number just used by 1.5
(each FAT entry is 1.5 bytes long).

The whole part of the product is an offset into
the FAT, pointing to the entry that maps the
cluster just used. That entry contains the cluster
number of the next cluster of the file.

Use a MOV instruction to move the word at the
calculated FAT offset into a register.

If the last cluster used was an even number,
keep the low-order 1,2 bits of the register by
ANDing it with FFF; otherwise, keep the high
order 12 bits by shifting the register right 4 bits
with a SHR instruction.

If the resultant 12 bits are FF8H-FFFH, the file
contains no more clusters. Otherwise, the 12 bits
contain the cluster number of the next cluster in
the file.

Memory Maps
Control Blocks

Diskette Allocations

To convert the cluster to a logical sector number
(relative sector, such as that used by Interrupts
25H and 26H and by DEBUG):

1 Subtract 2 from the cluster number.

2 Multiply the result by the number of sectors per
cluster.

3 Add to this result the logical sector number of
the beginning of the data area.

5-21

Memory Maps
Control Blocks
Diskette Allocations

5-22

Diskette Formats

On an MS-DOS disk, the clusters are arranged
on diskette to minimize head movement for
multi-sided media. All of the space on a track (or
cylinder) is allocated before moving on to the
next track. This is accomplished by using the
sequential sectors on the lowest-numbered head,
then all the sectors on the next head, and so on
until all sectors on all heads of the track are
used. The next sector to be used will be sector 1
on head°of the next track.

The first byte of the FAT, called the Media De
scriptor Byte, can sometimes be used to deter
mine the format of the disk. The following for
mats have been defined for the AT&T Personal
Computer 6300, based on values of the first byte
of the FAT.

Memory Maps
Control Blocks

Diskette Allocation

MS-DOS No. sides 1 1 2 2
Standard
Diskette Tracks/side 40 40 40 40

Formats Bytes/sector 512 512 512 512

Sectors/track 8 9 8 9

Sectors/cluster 1 1 2 2

Reserved
sectors 1 1 1 1

No. FATs 2 2 2 2

Root directory
entries 64 64 112 112

No. sectors 320 360 640 720

Media
Descriptor
Byte FE Fe FF FD

Sectors for
1 FAT 1 2 1 2

5-23

6
• Overview

Program
Structure

and Loading

• Pros and Cons for Selecting a
Program File Format

• EXE2BIN

• File Header Format

• Relocation Process for .EXE
Files

• Program Segment Prefix

• Program Loading Process

6-1

Program Structure
and Loading

6-2

Overview

This chapter describes the MS-DOS program file
formats and procedures for loading them into
memory. MS-DOS supports two main program
file formats: .EXE and .COM.

The .EXE format is the more flexible program
type. An .EXE file is limited in size only by the
amount of user memory installed in your
system.

Programs linked by MS-LINK are output in
.EXE format. .EXE files can be executed either
by COMMAND.COM orby an EXEC system
call (Function Request 4BH) in your program.

A .COM program file cannot exceed 64K bytes
in length. However, because it does not have the
same lengthy header that an .EXE file does, a
.COM file takes up less diskette storage space
and loads into memory more quickly than an
.EXE file.

After assembling and linking your program, it
must be converted to .COM format. The easiest
way to do this is with the EXE2BIN utility pro
vided on your MS-DOS Supplemental Programs
diskette.

Program Structure
and Loading

Pros and Cons for Selecting
a Program File Format

This section is concerned with the pros and cons
of selecting between a .EXE program format and
the .COM program type.

PROS for .EXE
• Can be larger than 64 K

• Can cross segment boundaries

• Can run .EXE immediately after linking, i.e.,
you need not take the extra step of running
EXE2BIN

• Can declare a stack segment in the assembly
program

CONS for .EXE
• Disk file has large "header" containing reloca

tion information. .EXE therefore takes more
space on disk and takes longer to load into
memory at execution time.

6-3

Program Structure
and Loading

PROfor.COM
• .COM files are smaller and faster loading

because .COM does not have a file header
containing relocation information.

CONS for .COM
• .COM files can be no larger than one 64K

segment.

• .COM is segment-relocatable; the segment can
be relocated at run time. However, all of the
addresses in the program must be relative to the
same segment address.

6-4

EXE2BIN

Program Structure
and Loading

EXE2BIN

EXE2BIN is an executable program available
on your MS-DOS system diskette. It converts
programs that are in .EXE format (as they are
after having been linked) into the .COM format.

EXE2BIN can generate two types of .COM files:
relocatable and non-relocatable.

6-5

Program Structure
and Loading

Syntax

Example

Discussion

6-6

EXE2BIN <input filename> <output file
name>

Both file names are in the form:

[d:][path][filename[.ext]]

EXE2BIN B:PROG.EXE B:PROG.COM

In specifying the input file, everything except
the file name is optional. If you do not specify a
drive, the default is used. If you do not specify a
path, the default path is used. If you do not spec
ify an extension, the default is .EXE. The input
file is converted to .COM file format (memory
image of the program) and placed in the output
file.

You are not required to enter any part of the
output file specification. If you do not specify a
drive, the drive of the input file will be used. If
you do not specify an output path or filename,
the input path or filename will be used. If you do
not specify a filename extension in the output
filename, the new file will be given an extension
of .BIN.

The input file must be in valid .EXE format pro
duced by the linker. The resident, or actual code
and data part of the file must be less than 64K.
There must be no STACK segment.

Program Structure
and Loading

Two kinds of conversions are possible, depend
ing on the initial CS:IP (Code Segment: Instruc
tion Pointer) specified in the .EXE file:

1 If CS:IP is specified as OOOO:lOOH, it is assumed
that the file is to be run as a .COM file with the
location pointer set at lOOH by the assembler
statement ORG; the first lOOH bytes of the file
are deleted. No segment address fixups (that is,
instructions that contain a reference to an abso
lute segment address) are allowed, as .COM files
must be segment relocatable. Once the conver
sion is complete, rename the resulting file with a
.COM extension. The command processor can
load and execute the program in the same way
as the .COM programs supplied on your MS
DOS diskettes.

2 If CS:IP is not specified in the .EXE file, a pure
binary conversion is assumed. If segment fixups
are necessary (i.e., the program contains instruc
tions requiring a segment address), you are
prompted for the fixup value. This value is the
absolute segment at which the program is to be
loaded. The resulting program is usable only
when loaded at the absolute memory address
specified by your application. The command
processor is not capable of properly loading the
program. This is the case when writing a .BIN
program to use in an application such as a
device driver that is always loaded at the same
absolute address.

6-7

Program Structure
and Loading

EXE2BIN
Messages

Amount read less than size in header
The program portion of the file was smaller than
indicated in the file's header. You should reas
semble and relink your program.

File cannot be converted
CS:IP does not meet either of the criteria speci
fied above, or it meets the .COM file criterion but
has segment fixups. This message is also dis
played if the file is not a valid executable file.

File creation error
EXE2BIN cannot create the output file. Run
CHKDSK to determine if the directory is full or
if some other condition caused the error.

File not found
The file is not on the diskette specified.

Fixups needed - base segment (hex):
The source (.EXE) file contained information
indicating that a load segment is required for
the file. Specify the absolute segment address at
which the finished module is to be located.

6-8

Program Structure
and Loading

Insufficient disk space
There is not enough disk space to create a new
file.

Insufficient memory
There is not enough memory to run EXE2BIN.

WARNING - Read error in EXE file
Amount read less than size in header. This is a
warning message only. However, it is usually a
good idea to reassemhIe and relink your source
program when this message appears.

6-9

Program Structure
and Loading

File Header Format

The .EXE files produced by MS-LINK consist of
two parts:

• Control and relocation information

• The load module

The control and relocation information is at the
beginning of the file in an area called the
header. The load module immediately follows
the header.

Note:
.COM files do not have file headers.

6-10

Program Structure
and Loading

The header is formatted as follows (offsets are in
hexadecimal):

Offset Contents

00-01 Must contain 4DH, 5AH.

02-03 Number of bytes contained in last
page; used for reading overlays.

04-05 Size of the file in 512-byte pages,
including the header.

06-07 Number of relocation entries in
table.

08-09 Size of the header in 16-byte para
graphs. This is used to locate the
beginning of the load module in
the file.

OA-OB Minimum number of 16-byte para
graphs required above the end of
the loaded program (minalloc).

OC-OD Maximum number of 16-byte para
graphs required above the end of
the loaded program (maxalloc). If
both minalloc and maxalloc are 0,
then the program will be loaded as
high as possible.

6-11

Program Structure
and Loading

6-12

DE-OF Initial value to be loaded into stack
segment before starting program
execution. This must be adjusted
by relocation.

10-11 Value to be loaded into the SP reg
ister before starting program exe
cution.

12-13 Negative sum of all the words in
the file.

14-15 Initial value to be loaded into the
IP register before starting program
execution.

16-17 Initial value to be loaded into the
CS register before starting pro
gram execution. This must be
adjusted by relocation.

18-19 Relative byte offset from beginning
of run file to relocation table.

1A-IB The number of the overlays gener
ated by MS-LINK.

This is followed by the relocation table. The
table consists of a variable number of relocation
items. Each relocation item contains two fields:
a two-byte offset value, followed by a two-byte
segment value. These two fields contain the
offset into the load module of a word which
requires modification before the module is given
control.

Program Structure
and Loading

Relocation Process for .EXE Files

The following steps describe the relocation
process:

1 The formatted part of the header is read into
memory. Its size is IBH.

2 A portion of memory is allocated depending on
the size of the load module and the allocation
numbers (OA-OB and OC-OD). MS-DOS attempts
to allocate FFFFH paragraphs. This will always
fail, returning the size of the largest free block. If
this block is smaller than minalloc and loadsize,
then there will be a no memory error. If this
block is larger than maxalloc and loadsize, MS
DOS will allocate (maxalloc + loadsize). Other
wise, MS-DOS will allocate the largest free block
of memory.

3 A Program Segment Prefix is built in the lowest
part of the allocated memory.

4 The load module size is calculated by subtract
ing the header size from the file size. Offsets 04
05 and 08-09 can be used for this calculation.
The actual size is downward-adjusted based on
the contents of offsets 02-03. Based on the set
ting of the high/low loader switch, an appropri
ate segment is determined at which to load the
load module. This segment is called the start
segment.

6-13

Program Structure
and Loading

5 The load module is read into memory beginning
with the start segment.

6 The relocation table items are read into a work
area.

7 Each relocation table item segment value is
added to the start segment value. This calcu
lated segment, plus the relocation item offset
value, points to a word in the load module to
which is added the start segment value. The
result is placed back into the word in the load
module.

8 Once all relocation items have been processed,
the SS and SP registers are set from the values
in the header. Then, the start segment value is
added to SS. The ES and DS registers are set to
the segment address of the Program Segment
Prefix. The start segment value is added to the
header CS register value. The result, along with
the header IP value, is the initial CS:IP to
transfer to before starting execution of the
program.

6-14

Program Structure
and Loading

Program Segment Prefix

Unless you specify otherwise when linking your
program, DOS loads your program in the lowest
memory address available, immediately follow
ing the DOS code. This occurs whether the pro
gram loads as a result of your entering its name
at the DOS prompt or through your use of the
EXEC (4BH) function call. The area into which
your program is loaded is called the Program
Segment.

DOS requires control information for each run
ning program: it builds a Program Segment
Prefix and places it at offset awithin the pro
gram segment. The Program Segment Prefix is
hex 100 bytes long, so your program is loaded at
relative address 10GH.

6-15

Program Structure
and Loading

PSPFormat

HEXO

8

10

50

80

100

6-16

End of Length of program
INT 20H alloc. Reserved segment, in

block bytes

Terminate address CTRL-C exit
(IP,CS) address(IP)

CTRL-C exit Hard error exit address
address(CS) (IP,CS)

Used by DOS

2CH

5CH

Function dispatch call

Formatted Parameter Area 1 formatted as standard
unopened FCB

6CH I

Formatted Parameter Area 2 formatted as standard
unopened FCB (overlaid ifFCB at 5CH is opened)

Unformatted Parameter Area
(default Disk Transfer Area)

Program Structure
and Loading

flEX
OFFSET CONTENTS

o Return address used by interrupt hex 20

2 Segment address of allocatable memory following this
program (If this program calls a memory management
function to get more memory, this is its starting
address.)

4 Reserved

6 Number of bytes in this program segment (2 byte value)

8 Not used

A Terminate address: IP

C Terminate address: CS

E Ctrl break exit: IP

10 Ctrl break exit: CS

12 Critical error exit: IP

14 Critical error exit: CS

2C Segment address of the USED
environment by DOS

50 Code to call function dispatcher for
DOS (INT 21H) interrupts

5C Formatted parameter area 1:
formatted as standard, unopened FCB

6C Formatted parameter area 2:
formatted as standard, unopened FCB

80 Count of argument characters that These comprise
follow the command name. the default DTA:

Disk Transfer
81 The argument characters Area(80H - FFH)

themselves.

6-17

Program Structure
and Loading

Program Loading Process

PSP
Conditions
upon
Program
Initiation

6-18

When a program receives control, the following
conditions are in effect:

• The segment address of the passed environment
is contained at offset 2CH in the Program Seg
ment Prefix. The environment is a series of
ASCII strings (totaling less than 32K) in the
form:

NAME = parameter

Each string is terminated by a byte of zeros, and
the set of strings is terminated by another byte
of zeros. The environment built by the command
processor contains at least a COMSPEC= string
(the parameters on COMSPEC define the path
used by MS-DOS to locate COMMAND.COM on
disk). The last PATH and PROMPT commands
issued will also be in the environment, along
with any environment strings defined with the
MS-DOS SET command.

The environment that is passed is a copy of the
invoking process environment. If your applica
tion uses a "keep process" concept, be aware
that the copy of the environment passed to you
is static. That is, it will not change even if sub
sequent SET, PATH, or PROMPT commands
are issued.

Program Structure
and Loading

• Offset 50H in the Program Segment Prefix con
tains code to call the MS-DOS function dis
patcher. After correctly loading the registers, a
program can issue a far call to offset 50H to
invoke an MS-DOS function, rather than issuing
an Interrupt 21H. Since this is a call and not an
interrupt, MS-DOS may place any code appro
priate to making a system call at this position.
This makes the process of calling the system
portable.

• The Disk Transfer Address (DTA) is set to BOH
(default DTA in the Program Segment Prefix).

• File control blocks at 5CH and 6CH are format
ted from the first two parameters typed when
the command was entered. If either parameter
contains a pathname, then the corresponding
FCB contains only the valid drive number. The
filename field will not be valid.

• An unformatted parameter area at BIH contains
all the characters typed after the command
(including leading and imbedded delimiters),
with the byte at BOH set to the number of char
acters. If the < or > parameters were typed on
the command line, they (and the filenames asso
ciated with them) do not appear in this area or
in the character count; redirection of standard
input and output is transparent to applications.

• Offset 6 (one word) contains the number of bytes
available in the segment.

6-19

Program Structure
and Loading

• Register AX indicates whether or not the drive
specifiers (entered with the first two parameters)
are valid, as follows:

AL=FF if the first parameter contained an invalid
drive specifier (otherwise AL=QO)

AH=FF if the second parameter contained an
invalid drive specifier (otherwise AH=OO)

• Offset 2 (one word) contains the segment
address of the first byte of unavailable memory.
Programs must not modify addresses beyond
this point unless they were obtained by allocat
ing memory via the Allocate Memory system
call (Function Request 48H).

Initial •
Conditions
for .EXE
Programs •

6-20

DS and ES registers are set to point to the Pro
gram Segment Prefix.

CS, IP, SS, and SP registers are set to the values
passed by MS-LINK.

Initial
Conditions
for .COM
Programs

Program Structure
and Loading

• All four segment registers contain the segment
address of the initial allocation block that starts
with the Program Segment Prefix control block.

• The Instruction Pointer (IP) is set to lOOH.

• The Stack Pointer register is set to the end of the
program's segment. The segment size at offset 6
is reduced by lOOH to allow for a stack of that
size.

• A word of zeros is placed on top of the stack.
This allows your program to exit to COM
MAND.COM by doing a RET instruction last.
Make sure, however, to maintain your stack and
code segments.

6-21

Program Structure
and Loading

Other Uses of In MS-DOS versions prior to 2.0, the PSP con
the Program tained the mechanism for program terminatio,n.
Segment One of these four techniques had to be used to
Prefix terminate your programs:

1 A long jump to offset 0 in the Program Segment
Prefix.

2 By issuing an INT 20H with CS:O pointing at
the PSP.

3 By issuing an INT 21H with register AH =0 and
CS:O pointing at the PSP.

4 By a long call to location 50H in the Program
Segment Prefix with AH = 0 and CS:O pointing
at the PSP.

It is the responsibility of all programs to ensure
that the CS register contains the segment
address of the Program Segment Prefix when
terminating via any of these methods.

However, with the 2.0 Terminate a Process sys
tem call (Function Request 4CH), the CS register
need not point to the Program Segment Prefix.
For this reason, Function Request 4CH is the
preferred method. It may be invoked by loading
the AH register with 4CH and issuing an INT
21H (or a long call to offset 50H in the Program
Segment Prefix).

6-22

7
System Calls

• Quick Reference: Functions and
Interrupts

• Overview

• Programming Considerations

• Interrupts

• Functions

• System Call Descriptions

7-1

System Calls

Functions

Number Function Name Number Function N arne

OOH Terminate Program 30H Get DOS Version
OIH Read Keyboard and Number

Echo 3IH Keep Process
02H Display Character 33H <CTRL C> Check
03H Auxiliary Input 35H Get Interrupt Vector
04H Auxiliary Output 36H Get Disk Free Space
05H Print Character 38H Return Country-
06H Direct Console I/O Dependent Info.
07H Direct Console Input 39H Create Sub-Directory
08H Read Keyboard 3AH Remove a Directory
09H Display String 3BH Change the Current
OAH Buffered Keyboard Directory

Input 3CH Create a File
OBH Check Keyboard Status 3DH Open a File Handle
OCH Flush Buffer, Read 3EH Close a File Handle

Keyboard 3FH Read From File/Device
ODH Disk Reset 40H Write to a File/Device
OEH Select Disk 4IH Delete a Directory Entry
OFH Open File 42H Move a File Pointer
IOH Close File 43H Change Attributes
IIH Search for First Entry 44H I/O Control for Devices
I2H Search for Next Entry 45H Duplicate a File Handle
I3H Delete File 46H Force a Duplicate of a
I4H Sequential Read Handle
I5H Sequential Write 47H Return Name of Current
I6H Create File Directory
I7H Rename File 48H Allocate Memory
I9H Current Disk 49H Free Allocated Memory
IAH Set Disk Transfer 4AH Modify Allocated

Address Memory Blocks
2IH Random Read 4BH Load and Execute a
22H Random Write Program (EXEC)
23H File Size 4CH Terminate a Process
24H Set Relative Record 4DH Retrieve the Return
25H Set Vector Code of a Child
27H Random Block Read 4EH Find Match File
28H Random Block Write 4FH Step Through a Di-
29H Parse File Name rectory Matching Files
2AH Get Date 54H Return Current Setting
2BH Set Date of Verify
2CH Get Time 56H Move a Directory Entry
2DH Set Time 57H Get/Set Date/Time of
2EH Set/Reset Verify Flag File
2FH Get Disk Transfer

Address

7-2

System Calls

Function Name Number Function Name Number

Allocate Memory 48H Modify Allocated
Auxiliary Input 03H Memory Blocks 4AH
Auxiliary Output 04H Move a Directory Entry 56H
Buffered Keyboard Move a. File Pointer 42H
Input OAH Open a File Handle 3DH
Change Attributes 43H Open File OFH
Change the Current Parse File Name 29H
Directory 3BH Print Character 05H
Check Keyboard Status OBH Random Block Read 27H
Close a File Handle 3EH Random Block Write 28H
Close File IOH Random Read 2IH
CTRLC Check 33H Random Write 22H
Create a File 3CH Read From File/Device 3FH
Create File I6H Read Keyboard 08H
Create Sub-Directory 39H Read Keyboard and
Current Disk I9H Echo OIH
Delete a Directory Entry 4IH Remove a Directory 3AH
Delete File I3H Rename File I7H
Oirect Console Input 07H Retrieve the Return
Direct Console I/O 06H Code of a Child 4DH
Disk Reset ODH Return Current Setting
Display Character 02H of Verify 54H
Display String 09H Return Country-
Duplicate a File Handle 45H Dependent Info. 38H
File Size 23H Return Name of Current
Find Match File 4EH Directory 47H
Flush Buffer, Read Search for First Entry IIH
Keyboard OCH Search for Next Entry I2H
Force a Duplicate of a Select Disk OEH
Handle 46H Sequential Read 14H
Free Allocated Memory 49H Sequential Write I5H
Get Date 2AH Set Date 2BH
Get Disk Free Space 36H Set Disk Transfer
Get Disk Transfer Address IAH
Address 2FH Set Relative Record 24H
Get DOS Version Set Time 2DH
Number 30H Set Vector 25H
Get Interrupt Vector 35H Set/Reset Verify Flag 2EH
Get Time 2CH Step Through a Di-
Get/Set Date/Time of rectory Matching 4FH
File 57H Terminate a Process 4CH
I/O Control for Devices 44H Terminate Program OOH
Keep Process 3IH Write to a File/Device 40H
Load and Execute a
Program (EXEC) 4BH

7-3

System Calls

Interrupts

Interrupts Interrupt Interrupt
(in Numerical (Hex) (Decimal) Description
Order)

20H 32 Program Terminate
21H 33 Function Request
22H 34 Terminate Address
23H 35 <CTRL C> Exit Address
24H 36 Fatal Error Abort

Address
25H 37 Absolute Disk Read
26H 38 Absolute Disk Write
27H 39 Terminate But Stay

Resident
28-40H 40-64 RESERVED - DO NOT

USE

Interrupts Interrupt Interrupt
in Alphabetical Description in flex in Dec
Order

Absolute Disk Read 25H 37
Absolute Disk Write 26H 38
<CTRL C> Exit Address 23H 35
Fatal Error Abort
Address 24H 36
Function Request 21H 33
Program Terminate 20H 32
RESERVED - DO NOT
USE 28-40H 40-64
Terminate Address 22H 34
Terminate But Stay
Resident 27H 39

7-4

System Calls

Overview

System Calls are procedures used to interface
with I/O or to manage memory. They can be
accessed from utility programs written in
assembly language, and from some high level
languages. Their use frees the programmer from
having to perform primitive functions, and
makes it easier to write machine-independent
programs.

MS-DOS provides two types of system calls:
interrupts and function requests. This chapter
describes the environments from which these
routines cali be called, how to call them, and the
processing performed by each.

7-5

System Calls

Programming Considerations

System calls can be invoked froni Assembly
Language, from GW BASIC, or from high-level
languages like PASCAL and FORTRAN. This
section describes the techniques for invoking
calls and for returning control to MS-DOS.

Calling from
Assembly
Language

Calling from
GWBASIC

7-6

The system calls can be invoked from Assembly
Language simply by moving any required data
into registers and issuing an interrupt. Some of
the calls destroy registers, so you may have to
save registers before using a system call.

The BLOAD and BSAVE commands are used
for loading and saving machine language pro
grams. These are then called, using the CALL
statement.

The USR function calls an indicated machine
language subroutine. The starting address of the
subroutine must first be specified in a DEF USR
statement.

System Calls

Interrupts

MS-DOS reserves interrupts 20H through 3FH
for its own use. The table of interrupt routine
addresses (vectors) is maintained in locations
BOH-FCH. User programs should only issue
Interrupts 20H, 21H, 25H, 26H, and 27H. (Func
tions Requests 4CH and 31H are the preferred
method for Interrupts 20H and 27H for versions
of MS-DOS that are 2.0 and higher.

Interrupts 22H, 23H, and 24H are not interrupts
that can be issued by user programs; they are
simply locations where a segment and offset
address are stored. For a discussion, see the sec
tion on Address Interrupts in this chapter.

7-7

System Calls

Functions

Requirements Most of the MS-DOS function calls require input
to be passed to them in registers. After setting
the proper register values, the function may be
invoked in one of the following ways:

• Place the function number in AH and execute a
long call to offset 50H in your Program Segment
Prefix. Note that programs using this method
will not operate correctly on versions of MS-DOS
that are lower than 2.0.

• Place the function number in AH and issue
Interrupt 21H. All of the examples in this chap
ter use this method.

• An additional method exists for programs that
were written with different calling conventions.
This method should be avoided for all new pro
grams. The function number is placed in the CL
register and other registers are set according to
the function specification. Then, an intraseg
ment call is made to location 5 in the current
code segment. That location contains a long call
to the MS-DOS function dispatcher. Register AX
is always destroyed if this method is used; other
wise, it is the same as normal function calls.
Note that this method is valid only for Function
Requests OOH through 024H.

7-8

System Calls

This chapter provides the following type of
information for each DOS interrupt and func
tion call:

• a description of the register contents required
before the system call

• a description of the register contents after the
system call

• a description of the processing performed

• an example of its use.

Registers When MS-DOS takes control after a function
call, it switches to an internal stack. Registers
not used to return information (except AX) are
preserved. The calling program's stack must be
large enough to accommodate the interrupt sys
tem - at least 128 bytes in addition to other
needs.

Note The macro definitions and extended example for
MS-DOS system calls OOH through 2EH can be
found at the end of this chapter.

7-9

System Calls

System Call Descriptions

Interrupts The following are not true interrupts but rather
storage locations for a segment and offset
address:

• Terminate Address (Interrupt 22H)
• CTRL C Exit Address (Interrupt 23H)
• Fatal Error Abort Address (Interrupt 24H)

The interrupts are issued by MS-DOS under the
specified circumstance. You can change any of
these addresses with Function Request 25H (Set
Vector) if you prefer to write your own interrupt
handlers.

Programming
Examples

Note

7-10

A macro is defined for most system calls, then
used in some examples. In addition, a few other
macros are defined for use in the examples. The
use of macros allows the examples to be more
complete programs, rather than isolated uses of
the system calls. All macro definitions are listed
at the end of the chapter.

The examples are not intended to represent good
programming practice. In particular, error check
ing and good human interface design have been
sacrificed to conserve space. You may, however,
find the macros a convenient way to include sys
tem calls in your assembly language programs.

A detailed description of each system call follows.
They are listed in numeric order; the interrupts
are described first, then the function requests.

Unless otherwise stated, all numbers in the sys
tem call descriptions, both text and code, are in
hex.

Call

Return

Remarks

20H
Program Terminate

CS
Segment address of Program Segment
Prefix

None

All open file handles are closed and the disk
cache is cleaned. The current process is termi
nated and control returns to the parent process.
This interrupt is almost always used in old
.COM files for termination.

The CS register must contain the segment
address of the Program Segment Prefix before
you call this interrupt.

The following exit addresses are restored from
the Program Segment Prefix:

Exit Address

Program Terminate
<CTRL C>
Critical Error

Offset

OAH
OEH
12H

All file buffers are f1ushed to disk.

7-11

20H
Program Terminate

Note

Macro

Example

7-12

Close all files that have changed in length
before issuing this interrupt. If a changed file is
not closed, its length is not recorded correctly in
the directory. See Functions 10H and 3EH for a
description of the Close File system calls.

Interrupt 20H is provided for compatibility with
versions of MS-DOS prior to 2.0. New programs
should use Function Request 4CH, Terminate a
Process.

terminate macro
int 20H
endm

;CS must be equal to PSP values given at program
;start
;(ES and DS values)

INT 20H
;There is no return from this interrupt

Call

Return

Remarks

Note

Example

21H
Function Request

AH
Function number

Other registers as specified in
individual function

As specified in individual function

The AH register must contain the number of the
system function. See the following section on
Function Requests, in this chapter, for a descrip
tion of the MS-DOS system functions.

No macro is defined for this interrupt, because
all function request descriptions in this chapter
that define a macro include Interrupt 21H.

To call the Get Time function:

mov ah,2CH
int 21H

;Get Time is Function 2CH
;THIS INTERRUPT

7-13

22H
Terminate Address

When a program terminates, control transfers to
the address at offset OAH of the Program Seg
ment Prefix. This address is copied into the Pro
gram Segment Prefix, from the Interrupt 22H
vector, when the segment is created. Interrupt
22H, then, is just a storage location for an
address rather than a true interrupt.

7-14

23H
<CTRL C> Exit Address

If the user types CTRL C during keyboard input
or display output, control transfers to the INT
23H vector in the interrupt table. This address is
copied into the Program Segment Prefix, from
the Interrupt 23H vector, when the segment is
created.

If the CTRL C routine preserves all registers, it
can end with an IRET instruction (return from
interrupt) to continue program execution. When
the interrupt occurs, all registers are set to the
value they had when the original call to MS
DOS was made. There are no restrictions on
what a CTRL C handler can do - including
MS-DOS function calls - so long as the regis
ters are unchanged if IRET is used.

If Function 09H or OAH (Display String or Buf·
fered Keyboard Input) is interrupted by CTRL
C, the three-byte sequence 03H-ODH-OAH (ETX
CR-LF) is sent to the display and the function
resumes at the beginning of the next line.

If the program creates a new segment and loads
a second program that changes the CTRL C
address, termination of the second program re
stores the CTRL C address to its value before
execution of the second program.

Like INT 22H, this is really not a true interrupt,
but a storage location.

7-15

24H
Fatal Error Abort Address

Call If a fatal disk error occurs during execution of
one of the disk I/O function calls, control
transfers to the INT 24H vector in the vector
table. This address is copied into the Program
Segment Prefix, from the Interrupt 24H vector,
when the segment is created.

Return BP:SI contains the address of a Device Header
Control Block from which additional informa
tion can be retrieved.

Note Interrupt 24H is not issued if the failure occurs
during execution of Interrupt 25H (Absolute
Disk Read) or Interrupt 26H (Absolute Disk
Write). These errors are usually handled by the
MS-DOS error routine in COMMAND.COM that
retries the disk operation, then gives the user the
choice of aborting, retrying the operation, or
ignoring the error. The following topics give you
the information you need about interpreting the
error codes, managing the registers and stack,
and controlling the system's response to the
error in order to write your own error-handling
routines.

Error Codes When an error-handling program gains control
from Interrupt 24H, the AX and DI registers can
contain codes that describe the error. If Bit 7 of
AH is 1, the error is either a bad image of the
File Allocation Table or an error which has oc
curred on a character device. The device header
passed in BP:SI can be examined to determine
which case exists. If the attribute byte high
order bit indicates a block device, then the error
was a bad FAT. Otherwise, the error is on a
character device.

7-16

24H
Fatal Error Abort Address

The following are error codes for Interrupt 24H:

Error Code

o

1
2
3
4
5
6
7
8
9
A
B
C

Description

Attempt to write on write
protected disk
Unknown unit
Drive not ready
Unknown command
Data error
Bad request structure length
Seek error
Unknown media type
Sector not found
Printer out of paper
Write fault
Read fault
General failure

The user stack will be in effect (the first item
described below is at the top of the stack), and
will contain the following from top to bottom:

IP
es
FLAGS
AX
BX
ex
DX
SI
DI
BP
DS
ES
IP
es
FLAGS

MS-DOS registers from
issuing INT 24H

User registers at time of original
INT 21H request

From the original INT 21H
from the user to MS-DOS

The registers are set such that if an IRET is exe
cuted, MS-DOS will respond according to (AL)
as follows:

7-17

24H
Fatal Error Abort Address

(AL) =0 ignore the error
=1 retry the operation
=2 terminate the program via INT 23H

Note

7-18

• Before giving this routine control for disk errors,
MS-DOS performs five retries.

• For disk errors, this exit is taken only for errors
occurring during an Interrupt 2IH.lt is not used
for errors during Interrupts 25H or 26H.

• This routine is entered in a disabled state.

• The SS,SP,DS,ES,BX,CX, and DX registers must
be preserved.

• The interrupt handler should refrain from using
MS-DOS function calls. If necessary, it may use
calls OIH through OCH. Use of any other call
will destroy the MS-DOS stack and will leave
MS-DOS in an unpredictable state.

• The interrupt handler must not change the con
tents of the device header.

• If the interrupt handler will handle errors rather
than returning to MS-DOS, it should restore the
application program's registers from the stack,
remove all but the last three words on the stack,
then issue an IRET. This will return to the pro
gram immediately after the INT 21H that expe
rienced the error. Note that if this is done, MS
DOS will be in an unstable state until a function
call higher than OCH is issued.

Call

Return

Remarks

25H
Absolute Disk Read

AL
Drive number (0 =A, 1 =B, etc.)

DS:BX
Disk Transfer Address

CX
Number of sectors

DX
Beginning relative sector

Flags
CF =0 if successful

=1 if not successful
AL

Error code if CF =1

This interrupt transfers control to the MS-DOS
BIOS. The number of sectors specified in CX is
read from the disk to the Disk Transfer Address.
Its requirements and processing are identical to
Interrupt 26H, except data is read rather than
written.

7-19

25H
Absolute Disk Read

Note

Macro

All registers except the segment registers are
destroyed by this call. Be sure to save any regis
ters your program uses before issuing the
interrupt.

The system pushes the flags at the time of the
call; they are still there upon return. (This is
necessary because data is passed back in the
flags). Be sure to pop the stack upon return to
restore your stack pointer at the point of
invocation.

If the disk operation was successful, the Carry
Flag (CF) is O. If the disk operation was not suc
cessful, CF is 1 and AL contains the MS-DOS
error code (see Interrupt 24H earlier in this sec
tion for the codes and their meaning).

ab~Ldisk_readmacro disk,buffer,num_seetors, start
mov al,disk
mov bx,offset buffer

7-20

mov
mov
int
endm

ex, n um-sectors
dx,start
25H

Example

25H
Absolute Disk Read

The following program copies the contents of a
single-sided disk in drive A: to the disk in drive
B:. It uses a buffer of 32K bytes:

prompt

start
buffer

inL25H:

db "Source in A, target in B", 13, 10
db "Any key to start. $"
dw 0
db 64 dup (512 dup (7)) ;64 sectors

display prompt ;see Function 09H
read_kbd ;see Function OSH

mov cx,5 ;copy 5 groups of
;64 sectors

copy: push cx ;savetheloop
;counter

abs_disk_read O,buffer, 64,start ;THIS
;INTERRUPT

abs_disk_write 1, buffer, 64, start ;see lNT
;26H

add start,64 ;do the next 64
;sectors

pop cx ;restore the loop
;counter

loop copy

7-21

26H
Absolute Disk Write

Call

Return

Remarks

7-22

AL
Driv~ number (0 = A, 1 = B, etc.)

DS:BX
Disk Transfer Address

CX
Number of sectors

DX
Beginning relative sector

FLAGS
CF =0 if successful

=1 if not successful
AL

Error code if CF =1

This interrupt transfers control to the MS-DOS
BIOS. The number of sectors specified in CX is
written from the Disk Transfer Address to the
disk. Its requirements and processing are identi
cal to Interrupt 25H, except data is written to the
disk rather than read from it.

Note

Macro

26H
Absolute Disk Write

All registers except the segment registers are
destroyed by this call. Be sure to save any regis
ters your program uses before issuing the
interrupt.

The system pushes the flags at the time of the
call; they are still there upon return. (This is
necessary because data is passed back in the
flags). Be sure to pop the stack upon return to
restore your stack pointer at the point of
invocation.

If the disk operation was successful, the Carry
Flag (CF) is o. If the disk operation was not suc
cessful, CF is 1 and AL contains the MS-DOS
error code (see Interrupt 24H earlier in this sec
tion for the codes and their meaning).

abs_disk_write maero disk,buffer,num_sectors, start
mov aI,disk
mov bx,offset buffer
mov ex, n urn_sectors
mov dx, start
int 26H
endm

7-23

26H
Absolute Disk Write

Example The following program copies the contents of a
single-sided disk in drive A: to the disk in drive
B:, verifying each write. It uses a buffer of 32K
bytes:

off equ 0
on equ 1

prompt db "Source in A, target in B", 13,10
db "Any key to start. $"

start dw 0

buffer db 64 dup (512 dup (?)) ; 64 sectors

inL26H: display prompt
read_kbd
verify on
mov cx,5

pop cx

push ex

add start,64

;see Function 09H
;see Function 08H
;see Function 2EH
;copy 5 groups of
;64 sectors
;save the loop
;counter

abs_disk_read O,buffer, 64,start ;see INT
;25H

abs_disk_write l,buffer, 64,start ;THIS
;INTERRUPT
;do the next 64
;seetors
;restore the loop
;counter

copy:

loop copy
verify off ;see Function 2EH

7-24

Call

Return

Remarks

Macro

27H
Terminate But Stay Resident

CCS:DX
First byte following
last byte of code

None

The Terminate But Stay Resident call is used to
make a piece of code remain resident in the sys
tem after its termination. Typically, this call is
used in .COM files to allow some device-specific
interrupt handler to remain resident to process
asynchronous interrupts.

DX must contain the number of bytes in the CS
segment to be reserved. When Interrupt 27H is
executed, the program terminates but is treated
as an extension of MS-DOS; it remains resident
and is not overlaid by other programs when it
terminates.

If an executable file whose extension is .COM or
.EXE ends with this interrupt, it becomes a resi
dent operating system command.

This interrupt is provided for compatibility with
versions of MS-DOS prior to 2.0. New programs
should use Function 3IH, Keep Process.

stay_resident macro lasLinstruc
mov dx, offset lasLinstruc
inc dx
int 27H
endm

7-25

27H
Terminate But Stay Resident

Example

7-26

;CS must be equal to PSP values given at program
;start
;(ES and OS values)
;the variable Last Address must be equal
;to the offset of the last byte in the
;program.

mov OX,LastAddress
inc dx
int 27H

;There is no return from this interrupt

Call

Return

Remarks

Warning

OOH
Terminate Program

AR =OOR
CS

Segment address of
Program Segment Prefix

None

Function OOR is called by Interrupt 20R; it per
forms the same processing.

The CS register must contain the segment
address of the Program Segment Prefix before
you call this interrupt.

The following exit addresses are restored from
the specified offsets in the Program Segment
Prefix:

Program terminate OAH
<CTRLC> OEH
Critical error 12H

All file buffers are f1ushed to disk.

Close all files that have changed in length be
fore calling this function. If a changed file is not
closed, its length is not recorded correctly in the
directory. See Function lOR for a description of
the Close File system call.

7-27

OOH
Terminate Program

Macro

Example

7-28

terminate_program macro
xor ah,ah
int 21H
endm

;CS must be equal to PSP values given at program start
;(ES and DS values)

mov ah,O
int 21H

;There are no returns from this interrupt

Call

Return

Remarks

Macro

Example

OIH
Read Keyboard and Echo

AH =OlH

AL
Character typed

Function OIH waits for a character to be typed
at the keyboard, then echoes the character to the
display and returns it in AL. If the character is
CTRL C, Interrupt 23H is executed.

read_kdb_and_echo macro
mov ah,OIH
int 21H
endm

The following program both displays and prints
characters as they are typed. If CR is pressed,
the program sends Line Feed-Carriage Return to
both the display and the printer:

func_OlH: read_kbd_and_ echo ;THIS FUNCTION
prinLchar al ;see Function 05H
cmp al,ODH ;is it a CR?
jne func_OlH ;no, print it
prinLchar 10 ;see Function 05H
display_char 10 ;see Function 02H
jmp func_OlH ;get another character

7-29

02H
Display Character

Call

Return

Remarks

Macro

Example

7-30

AH =02H
DL

Character to be displayed

None

If CTRL C is typed, Interrupt 23H is issued.

display_char macro character
mov dl,character
mov ah,02H
int 21H
endm

The following program converts lowercase char
acters to uppercase before displaying them:

func_02H: read_kbd ;see FUNCTION 08H
cmp aI, "a"
jl uppercase ;don't convert
cmp aI, "z"
jg uppercase ;don't convert
sub al,20H ;convert to ASCII code

;for uppercase
uppercase: display_char al ;THIS FUNCTION

jmp func_02H ;get another character

Call

Return

Remarks

Macro

Example

03H
Auxiliary Input

AH =03H

AL
Character from auxiliary device

Function 03H waits for a character from the
auxiliary input device, then returns the
character in AL.

This system call does not return a status or error
code.

If a CTRL C has been typed at console input,
Interrupt 23H is issued.

aux-input macro
mov ah,03H
int 21H
endm

The following program prints characters as they
are received from the auxiliary device. It stops
printing when an end-of-file character (ASCII
26, or CTRL Z) is received:

func_03H: aux-input
cmp al,lAH
je continue
prinLchar al
jmp func_03H

continue:

;THIS FUNCTION
;end of file?
;yes, all done
;see Function OSH
;get another character

7-31

04H
Auxiliary Output

Call

Return

Remarks

Macro

Example

AH =04H
DL

Character for auxiliary device

None

This system call does not return a status or error
code.

If a CTRL C has been typed at console input,
Interrupt 23H is issued.

aux-Output macro character
mov dl,character
mov ah,04H
int 2lH
endm

The following program gets a series of strings of
up to 80 bytes from the keyboard, sending each
to the auxiliary device. It stops when a null
string (CR only) is typed:

string db 82 dup(?) ;see Function OAH

7-32

func_04H: geLstring 80,string
cmp string[l],O
je continue
xor ch,ch
mov cl, byte ptr string[l]
mov bx,O

send_it: aux_output string[bx+2]
inc bx
loop send_it
jmp func_04H

continue:

;see Function OAH
;null string?
;yes, all done
;zero high byte
;get string length
;set index to 0
;THIS FUNCTION
;bump index
;send another character
;get another string

Call

Return

Remarks

Macro

05H
Print Character

AH =05H
DL

Character for printer

None

If CTRL C has been typed at console input,
Interrupt 23H is issued.

prinLchar macro character
mov dl,character
mov ah,05H
int 21H
endm

7-33

05H
Print Character

Example The following program prints a walking test pat
tern on the printer. It stops if CTRL C is pressed.

prinLit:

mov bl,33

add bl,line_num
mov cx,80
prinLchar bl
inc bl
cmp bl,126

jle no_reset
mov bl,33

;first printable ASCII
;character (!)
;to offset next character
;loop counter for line
;THIS FUNCTION
;move to next ASCII character
;last printable ASCII
;character (~)

;not there yet
;starl over with (!)

no_reset: loop prinLit ;print another character
prinLchar 13 ;carriage return
prinLchar 10 ;line feed
inc line_num ;to offset 1st char. of line
cmp line_num, 93 ;end of cycle?
jle func_05H ;nope, not yet
mov line_num, ° ;reset char offset
jmp func_05H ;continue

7-34

Call

Return

Remarks

Macro

06H
Direct Console I/O

AH =06H
DL

See Text

AL
If DL =FFH before call

If Zero flag not set:
Character from keyboard

If Zero flag set:
No character input

Processing depends on the value in DL when the
function is called:

DLis FFH.
If a character has been typed at the keyboard,
it is returned in AL and the Zero flag is 0; if
a character has not been typed, the Zero flag
is 1.

DL is not FFH.
The character in DL is displayed.

This function does not check for CTRL C.

dir_console_io macro switch
mov dl,switch
mov ah,06H
int 21H
endm

7-35

06H
Direct Console 1/0

Example

time
ten

The following program acts as a stopwatch.
When a character is typed, it sets the system
clock to zero and begins to continuously display
the time. When a second character is typed the
system stops updating the time display.

db\\OO:00:00.00",13, \\$"
db 10

7-36

func_06H: dir_console_io OFFH
jz func_06H
set_time 0,0,0,0

read_clock: geLtime
convert ch, ten, time
convert cl,ten,time[3]
convert dh,ten,time[6]
convert dl, ten, time[9]
display time
dir_console_io OFFH
j z read_clock

continue:

;THIS FUNCTION
;wait for keystroke
;see Function 2DH
;see Function 2CH
;see end of chapter
;see end of chapter
;see end of chapter
;see end of chapter
;see Function 09H
;THIS FUNCTION
;no char, keep updating

Call

Return

Remarks

Macro

Example

07H
Direct Console Input

AH =07H

AL
Character from keyboard

This function does not echo the character or
check for CTRL C. (For a keyboard input func
tion that echoes or checks for CTRL C, see
Functions OlH or 08H.)

dir_console_input macro
mov ah,07H
int 21H
endm

The following program fragment prompts for a
password (8 characters maximum) and places
the characters into a string without echoing
them:

password db
prompt db

8 dup(?)
"Password: $" ;see Function 09H for

;explanation of $

geLpass:

continue:

display prompt
mov cx,8
xor bx,bx
dir_console_input
cmp al,ODH
je continue
mov password[bxJ,al
inc bx
loop geLpass

;see Function 09H
;maximum length of password
;so BL can be used as index
;THIS FUNCTION
;was it a CR?
;yes, all done
;no, put character in string
;bump index
;get another character
;BX has length of password

7-37

08H
Read Keyboard

Call

Return

Remarks

Macro

Example

AH =08H

AL
Character from keyboard

If CTRL C is pressed, Interrupt 23H is executed.
This function does not echo the character. (For a
keyboard input function that echoes the charac
ter or does not check for CTRL C, see Functions
OIH or 07H.)

read_kbd macro
mov ah,08H
int 21H
endm

The following program fragment prompts for a
password (8 characters maximum) and places
the characters into a string without echoing
them:

password db
prompt db

8 dup(?)
"Password: $" ;see Function 09H

;for explanation of $

func_08H:

geLpass:

continue:

7-38

display prompt
mov cx,8
xor bx,bx
read_kbd;
cmp al,ODH
je continue
mov password[bx],al
inc bx
loop geLpass

;see Function 09H
;maximum length of password
;BL can be an index
;THIS FUNCTION
;was it a CR?
;yes, all done
;no, put char. in string
;bump index
;get another character
;BX has length of password

Call

Return

Remarks

Macro

Example

090
Display String

AH =09H
DS:DX

String to be displayed

None

DX must contain the offset (from the segment
address in DS) of a string that ends with "$".
The string is displayed (the $ is not displayed).

display macro string
mov dX,offset string
mov ah,09H
int 21H
endm

The following program displays the hexadec
imal code of the key that is typed:

table
sixteen
result

db "0123456789ABCDEF"
db 16
db "-OOH", 13,10, "$" ;see text for

;explanation of $

func_09H: read_kbd_and_echo ;see Function 01H
convert al,sixteen,result [1] ;see end of chapter
display result ;THIS FUNCTION
jmp func_09H ;do it again

7-39

OAH
Buffered Keyboard Input

Call

Return

Remarks

7-40

AH=OAH
DS:DX

Input buffer

None

DX must contain the offset (from the segment
address in DS) of an input buffer of the
following form:

Byte Contents

1 Maximum number of characters in
buffer, including the CR (you must set
this value),

2 Actual number of characters typed, not
counting the CR (the function sets this
value).

3-n Buffer; must be at least as long as the
number in byte 1.

This function waits for characters to be typed.
Characters are read from the keyboard and
placed in the buffer beginning at the third byte
until CR is pressed. If the buffer fills to one less
than the maximum, additional characters typed
are ignored and ASCII 7 (BEL) is sent to the
display until CR is pressed. The string can be
edited as it is being entered. If CTRL C is typed,
Interrupt 23H is issued.

The second byte of the buffer is set to the
number of characters entered (not counting the
CR).

Macro

Example

OAH
Buffered Keyboard Input

geLstring macro limit, string
mov dx,offset string
mov string, limit
mov ah,OAH
int 21H
endm.

The following program gets a 16-byte (maxi
mum) string from the keyboard and fills a 24
line by 80-character screen with it:

buffer label byte
max_length db ? ;maximum length
chars_entered db ? ;number of chars.
string db 17dup(?) ;16 chars + CR
strings_per_line dw 0 ;how many strings

;fit on line
crlf db 13,10, "$/f

func_OAH: geLstring 17,buffer ;THIS FUNCTION
xor bx,bx ;so byte can be

;used as index
mov bl, chars_entered ;get string length
mov buffer[bx+2l, "$/f ;see Function 09H
mov at50H ;columns per line
cbw
div chars_entered ;times string fits

;on line
xor ah,ah ;clear remainder
mov strings_per_line, ax ;save col. counter
mov cx,24 ;row counter

display_screen: push cx ;save it
mov cx, strings_per_line ;get col. counter

display_line: display string ;see Function 09H
loop display_line
display crlf ;see Function 09H
pop cx ;get line counter
loop display_screen ;display 1 more line

7-41

OBH
Check Keyboard Status

Call AH =OBH

Return AL
FFH =characters in type-ahead buffer
o=no characters in type-ahead buffer

Remarks Checks whether there are characters in the type
ahead buffer. If so, AL returns FFH; if not, AL
returns O. If CTRL C is in the buffer, Interrupt
23H is executed.

Macro check_kbd_status macro
mov ah,OBH
int 21H
endm

Example The following program fragment continuously
displays the time until any key is pressed.

time db "00:00:00.00",13,10,"$"
ten db 10

7-42

func_OBH: geLtime
convert ch, ten, time
convert cl,ten,time[3]
convert dh,ten,time[6]
convert dl,ten,time[9]
display time
check_kbd_status
cmp al,OFFH
je alLdone
jmp func_OBH

alLdone:

;see Function 2CH
;see end of chapter
;see end of chapter
;see end of chapter
;see end of chapter
;see Function 09H
;THIS FUNCTION
;has a key been typed
;yes, go home
;no, keep displaying
;time

Call

Return

Remarks

Macro

OCH
Flush Buffer, Read Keyboard

AH =OCH
AL

1,6,7,8, or OAH = The corresponding
function is called. Any other value
= return from function.

AL
o= Type-ahead buffer was flushed; no
other processing performed.

The keyboard type-ahead buffer is emptied.
Further processing depends on the value in AL
when the function is called:

1, 6, 7, 8, or A:
The corresponding MS-DOS function is
executed.

Any other value:
No further processing; AL returns O.

flush_and_read_kbd macro switch
mov aI/switch
mov ah/OCH
int 2IH
endm

7-43

OCH
Flush Buffer, Read Keyboard

Example The following program both displays and prints
characters as they are typed. If CR is pressed,
the program sends Carriage Return-Line Feed to
both the display and the printer.

7-44

prinLchar
cmp
jne
prinLchar
display_char
prinLchar
display_char
jmp

al
al,ODH
func_OCH
10
10
13
13
func_OCH

;THIS FUNCTION
;see Function 05H
;is it a CR?
;no, print it
;see Function 05H
;see Function 02H
;see Function 05H
;see Function 02H
;get another character

Call

Return

Remarks

Macro

Example

ODH
Disk Reset

AH=ODH

None

Function ODH is used to ensure that the internal
buffer cache matches the disks in the drives. If
buffers have been modified, but not yet written
to disk, this function writes them out and marks
all buffers in the internal cache as free.

Function ODH flushes (frees) all file buffers. It
does not update directory entries; you must close
files that have changed to update their directory
entries (see Function lOH, Close File). This func
tion need not be called before a disk change if all
files that changed were closed. It is generally
used to force a known state of the system;
CTRL C interrupt handlers should call this
function.

disk_reset macro disk
mov ah,ODH
int 21H
endm

mov ah,ODH
int 21H

;There are no errors returned by this call.

7-45

OEH
Select Disk

Call

Return

Remarks

Macro

Example

AH =OEH
DL

Drive number
(0 =A:, 1 =B:, etc.)

AL
Number of logical drives

The drive specified in DL (0 =A:, 1 =B:, etc.) is
selected as the default disk. The number of
drives is returned in AL.

selecLdisk macro disk
mov dl,disk[-65] ;ASCII offset
mov ah,OEH
int 21H
endm

The following program fragment selects the
drive not currently selected in a 2-drive system:

7-46

func_OEH: currenLdisk
cmp al,OOH
je selecLb
selecLdisk "A"
jmp continue

select-h: selecLdisk "B"
continue:

;see Function 19H
;drive A: selected?
;yes, select B
;THIS FUNCTION

;THIS FUNCTION

Call

Return

Remarks

OFH
Open File

AH =OFH
DS:DX

Unopened FCB

AL
o= Directory entry found
FFH = No directory entry found

DX must contain the offset (from the segment
address in DS) of an unopened File Control
Block (FCB). The disk directory is searched for
the named file.

If a directory entry for the file is found, AL
returns 0 and the FCB is filled as follows:

• If the drive code was 0 (default disk), it is
changed to the actual disk used (1 = A:, 2 = B:,
etc.). This lets you change the default disk with
out interfering with subsequent operations on
this file.

• The Current Block field (offset OCH) is set to
zero.

• The Record Size (offset OEH) is set to the system
default of 128.

• The File Size (offset 10H), Date of Last Write
(offset 14H), and Time of Last Write (offset 16H)
are set from the directory entry.

Before performing a sequential disk operation
on the file, you must set the Current Record field
(offset 20H). Before performing a random disk
operation on the file, you must set the Relative
Record field (offset 21H). If the default record
size (128 bytes) is not correct, set it to the correct
length.

7-47

OFH
Open File

If a directory entry for the file is not found, AL
returns FFH.

Macro

Example

open macro feb
mov dx, offset feb
mov ah,OFH
int 21H
endm

The following program prints the file named
TEXTFILE. ASC that is on the disk in drive B:.
If a partial record is in the buffer at end-of-file,
the routine that prints the partial record prints
characters until it encounters an end-of-file mark
(ASCII 26, or CTRL Z):

feb

buffer

db
db
db

2, "TEXTFILEASC"
25 dup (?)
128 dup (?)

7-48

prinLit:

check_more:

seLdta buffer
open feb
read_seq feb
cmp al,OlH
je alLdone
cmp al,OOH
jg check_more

mov cx,128
xor si,si
prinLchar buffer[si]
inc si
loop prinLit
jmp read_line
cmp al,03H
jne alLdone

;see Function 1AH
;THIS FUNCTION
;see Function 14H
;end of file?
;yes, go home
;more to come?
;no, check for partial
;record
;yes, print the buffer
;set index to °
;see Function 05H
;bump index
;print next character
;read another record
;part. record to print?
;no

OFH
Open File

mov cx,128 ;yes, print it
xor si,si ;set index to 0

find_eof: cmp buffer[si],26 ;end-of-file mark?
je alLdone ;yes
prinLchar buffer[si] ;see Function OSH
inc si ;bump index to next

;character
loop find_eof

alLdone: close fcb ;see Function lOH

7-49

lOH
Close File

Call

Return

Remarks

Macro

7·50

AH =lOH
DS:DX

Opened FCB

AL
o=Directory entry found
FFH =No directory entry found

DX must contain the offset (to the segment
address in DS) of an opened FCB. The disk
directory is searched for the file named in the
FCB. This function must be called after a file is
changed to update the directory entry.

If a directory entry for the file is found, the entry
is compared with the corresponding entries in
the FCB. The directory entry is updated, if
necessary, to match the FCB, and AL returns O.

If a directory entry for the file is not found, AL
returns FFH.

close maero feb
mov dx,offset feb
mov ah,lOH
int 21H
endm

Example

lOH
Close File

The following program checks the first byte of
the file named MOD1.BAS in drive B: to see if it
is FFH, and prints a message if it is:

message db "Not saved in ASCII format",13,10, "$"
fcb db 2, "MOD1 BASil

db 25 dup (?)
buffer db 128 dup (?)

func_10H: seLdta buffer ;see Function 1AH
open fcb ;see Function OFH
read-seq fcb ;see Function 14H
cmp buffer,OFFH lis first byte FFH?
j ne alLdone ;no
display message ;see Function 09H

alLdone close fcb ;THIS FUNCTION

7-51

IlH
Search for First Entry

Call

Return

Remarks

Note

7-52

AH =IlH
DS:DX

Unopened FCB

AL
0= Directory entry found
FFH =No directory entry found

DX must contain the offset (from the segment
address in DS) of an unopened FCB. The disk
directory is searched for the first matching
name. The name can have the? wild card char
acter to match any character. To search for hid
den or system files, DX must point to the first
byte of the extended FCB prefix.

If a directory entry for the filename in the FCB
is found, AL returns 0 and an unopened FCB of
the same type (normal or extended) is created at
the Disk Transfer Address.

If a directory entry for the filename in the FeB
is not found, AL returns FFH.

If an extended FCB is used, the following search
pattern is·used:

• If the FCB attribute is zero, only normal file
entries are found. Entries for volume label, sub
directories, hidden, and system files will not be
returned.

IlH
Search for First Entry

• If the attribute field is set for hidden or system
files, or directory entries, it is to be considered as
an inclusive search. All normal file entries plus
all entries matching the specified attributes are
returned. To look at all directory entnes except
the volume label, the attribute byte may be set to
hidden + system + directory (all 3 bits on).

• If the attribute field is set for the volume label, it
is considered an·exclusive search, and only the
volume label entry is returned.

Macro search-first macro fcb
mov dx,offset fcb
mov ah,11H
int 21H
endm

Example The following program verifies the existence of a
file named REPORT. ASM on the disk in drive
B..

yes
no
feb

buffer
crlf

db "FILE EXISTS.$"
db "FILE DOES NOT EXIST.$"
db 2, "REPORT ASM"
db 25 dup (?)
db 128dup (7)
db 13,10 "$"

noLthere:
continue:

seLdta buffer
search_first fcb
cmp al,OFFH
je noLthere
display yes
jmp continue
display no
display crlf

;see Function 1AH
;THIS FUNCTION
;directory entry found?
;no
;see Function 09H

;see Function 09H
;see Function 09H

7-53

12H
Search for Next Entry

Call

Return

Remarks

Macro

7-54

AlI = 12H
DS:DX

Unopened FCB

AL
o=Directory entry found
FFH = No directory entry found

DX must contain the offset (from the segment
address in DS) of an FCB previously specified in
a call to Function IlH (Search for First Entry).
Function 12H is used after Function IlH to find
additional directory entries that match a file
name that contains wild card characters. The
disk directory is searched for the ne~t matching
name.

If a directory entry for the filename in the FCB
is found, AL returns 0 and an unopened FCB of
the same type (normal or extended) is created at
the Disk Transfer Address.

If a directory entry for the filename in the FCB
is not found, AL returns FFH.

search_next macro fcb
mov dx,offset fcb
mov ah,12H
int 21H
endm

Example

message
files
ten
fcb

buffer

12H
Search for Next Entry

The following program displays the number of
files on the disk in drive B:

db "No files", 10, 13, "$"
db 0
db 10
db 2, "???????????"
db 25dup (?)
db 128 dup (?)

search_dir: search_next fcb
cmp al,OFFH
je done
inc files

func_12H: seLdta buffer
search.Jirst fcb
cmp al,OFFH
je alLdone
inc files

done:
alLdone:

jmp search_dir
convert files, ten, message
display message

;see Function lAH
;see Function IIH
;directory entry found?
;no, no files on disk
;yes, increment file
;counter
;THIS FUNCTION
;directory entry found?
;no
;yes, increment file
;counter
;check again
;see end of chapter
;see Function 09H

7-55

13H
Delete File

Call

Return

Remarks

Macro

7-56

AH =I3H
DS:DX

Unopened FCB

AL
o= Directory entry found
FFH = No directory entry found

DX must contain the offset (from the segment
address in DS) of an unopened FCB. The direc
tory is searched for a matching filename. The
filename in the FCB can contain the? wild card
character to match any character.

If a matching directory entry is found, it is
deleted from the directory. If the? wild card
character is used in the filename, all matching
directory entries are deleted. AL returns O.

If no matching directory entry is found, AL
returns FFH.

delete maero feb
mov dx,offset feb
mov ah,13H
int 21H
endm

Example

year
month
day
files
ten
message

fcb

buffer

13H
Delete File

The following deletes each file on the disk in
drive B: that was last written before June 30,
1984:

dw 1984
db 6
db 30
db 0
db 10
db "NO FILES DELETED.", 13, 10, "$"

;see Function 09H for
;explanation of $

db 2, "???????????"
db 25 dup(?)

db 128 dup (?)

func_13H: set_dta buffer ;see Function lAH
search_first fcb ;see Function IIH
cmp al,OFFH ;directory entry found?
je alLdone ;no, no files on disk

compare: convert_date buffer ;see end of chapter
cmp cx,year ;next several lines
jg next ;check date in directory
cmp dl,month ;entry against date
jg next ;above & check next file
cmp dh,day ;if date in directory
jge next ;entry isn't earlier.
delete buffer ;THIS FUNCTION
inc files ;bump deleted-files

;counter
next: search_next fcb ;see Function 12H

cmp al,OOH ;directory entry found?
je compare ;yes, check date
cmp files, 0 ;any files deleted?
je alLdone ;no, display NO FILES

7-57

13H
Delete File

alLdone:

7-58

convert files, ten, message
display message

;message.
;see end of chapter
;see Function 09H

Call

Return

Remarks

14H
Sequential Read

AH = 14H
DS:DX

Opened FCB

AL
0= Read completed successfully
1 =EOF
2 = DTA too small
3 = EOF, partial record

DX must contain the offset (from the segment
address in DS) of an opened FCB. The record
pointed to by the current block (offset OCH) and
Current Record (offset 20H) fields is loaded at
the Disk Transfer Address, then the Current
Record and, if necessary, the Current Block
fields are incremented. .

The record size is set to the value at offset OEH
in the FCB.

AL returns a code that describes the processing:

Code Meaning

o Read completed successfully.

1 End-of-file, no data in the record.

2 Not enough room at the Disk
Transfer Address to read one
record; read canceled.

3 End-of-file; a partial recorci was
read and padded to the record
length with zeros.

7-59

14H
Sequential Read

Macro read-seq macro fcb
mov dx,offset feb
mov ah,14H
int 21H
endm

Example

fcb

buffer

The following program displays the file named
TEXTFILE.ASC that is on the disk in drive B:;
its function is similar to the MS-DOS TYPE
command. If a partial record is in the buffer at
end of file, the routine that displays the partial
record displays characters until it encounters an
end-of-file mark (ASCII 26, or CTRL Z):

db 2, "TEXTFILEASC"
db 25 dup (?)
db 128 dup (?), "$"

7-60

set_dta buffer
open fcb
read_seq fcb
cmp al,OlH
je alLdone
cmp al,OOH
jg check_more
display buffer
jmp read_line
cmp al,03H
jne alLdone
xor si,si
cmp buffer[si],26
je alLdone
display_char buffer[si]
inc si

;see Function 1AH
;see Function OFH
;THIS FUNCTION
;end-of-file?
;yes
;more to come?
;no, check for partial record
;see Function 09H
;get another record
;partial record in buffer?
;no, go home
;set index to 0
;is character EOF?
;yes, no more to display
;see Function 02H
;bump index to next

alLdone:
jmp
close

find_eof
fcb

14H
Sequential Read

;character
;check next character
;see Function lOH

7-61

I5H
Sequential Write

Call

Return

Remarks

7-62

AH =15H
DS:DX

Opened FCB

AL
OOH = Write completed successfully
01H = Disk full
02H =DTA too small

DX must contain the offset (from the segment
address in DS) of an opened FCB. The record
pointed to by Current Block (offset OCH) and
Current Record (offset 20H) fields is written from
the Disk Transfer Address, then the fields are
incremented as necessary.

The record size is set to the value at offset OEH
in the FCB. If the Record Size is less than a sec
tor, the data at the Disk Transfer Address is
written to a buffer; the buffer is written to disk
when it contains a full sector of data, or the file
is closed, or a Reset Disk system call (Function
ODH) is issued.

AL returns a code that describes the processing:

Code Meaning

o transfer completed successfully

1 disk full; write canceled

2 write canceled; the area beginning at
the Disk Transfer Address is too small
to hold a record of data without over
flowing or wrapping around a seg
ment boundary.

Macro

Example

I5H
Sequential Write

write_seq macro fcb
mov dx,offset fcb
mov ah,15H
int 21H
endm

The following program creates a file named
DIR.TMP on the disk in drive B: that contains
the disk number (0 =A:, 1 =B:, etc.) and file
name from each directory entry on the disk:

record_size equ 14 ;offset of Record Size
;field in FCB

fcbl db 2, "DIR TMP"
db 25 dup (?)

fcb2 db 2, "???????????"
db 25 dup (?)

buffer db 128 dup (?)

func_15H: set_dta buffer ;see Function lAH
search_first fcb2 ;see Function IlH
cmp al,OFFH ;directory entry found?
je alLdone ;no, no files on disk
create fcbl ;see Function 16H
mov fcbl[record_sizel,12

;set record size to 12
write_it: write_seq fcbl ;THIS FUNCTION

search_next fcb2 ;see Function 12H
cmp al,OFFH ;directory entry found?
je alLdone ;no, go home
jmp write_it ;yes, write the record

alLdone: close fcbl ;see Function lOH

7-63

16H
Create File

Call

Return

Remarks

7-64

AH = I6H
DS:DX

Unopened FCB

AL
OOH =Empty directory entry found
FFH = No empty entry directory available

DX must contain the offset (from the segment
address in DS) of an unopened FCB. The direc
tory is searched for an empty entry or an exist
ing entry for the specified filename.

If an empty directory entry is found, it is initial
ized to a zero-length file, the Open File system
call (Function OFH) is called, and AL returns O.
You can create a hidden file by using an extend
ed FCB with the attribute byte (offset FCB-I) set
to 2.

If an entry is found for the specified filename, all
data in the file is released, making a zero-length
file, and the Open File system call (Function
OFH) is issued for the filename (in other words,
if you try to create a file that already exists, the
existing file is erased, and a new, empty file is
created).

If an empty directory entry is not found and
there is no entry for the specified filename, AL
returns FFH.

Macro

Example

16H
Create File

create macro fcb
mov dx,offset fcb
mov ah,16H
int 21H
endm

The following program creates a file named
DIR.TMP on the disk in drive B: that contains
the disk number (0 =A:, 1 =B:, etc.) and file
name from each directory entry on the disk:

record _size equ 14 ;offset of Record Size
;field of FCB

fcbl db 2,"DIR TMP"
db 25 dup (?)

fcb2 db 2, "???????????"
db 25 dup (?)

buffer db 128 dup (?)

func_16H: set_dta buffer ;see Function lAH
search _first fcb2 ;see Function IIH
cmp al,OFFH ;directory entry found?
je alLdone ;no, no files on disk
create fcbl ;THIS FUNCTION
mov fcbl[record_size],12

;set record size to 12
write_it: write_seq fcbl ;see Function ISH

search_next fcb2 ;see Function 12H
cmp al,OFFH ;directory entry found?
je alLdone ;no, go home
jmp write_it ;yes, write the record

alLdone: close fcbl ;see Function 10H

7-65

17H
Rename File

Call

Return

Remarks

7-66

AH =I7H
DS:DX

Modified FCB

AL
OOH =Directory entry found
FFH =No directory entry found or
destination already exists

DX must contain the offset (from the segment
address in DS) of an FCB with the drive number
and filename filled in, followed by a second file
name at offset IIH. The disk directory is search
ed for an entry that matches the first filename,
which can contain the? wild card character.

If a matching directory entry is found, the file
name in the directory entry is changed to match
the second filename in the modified FCB (the
two filenames cannot be the same name). If the ?
wild card character is used in the second file
name, the corresponding characters in the file
name of the directory entry are not changed. AL
returns O.

If a matching directory entry is not found or an
entry is found for the second filename, AL
returns FFH.

Macro

Example

17H
Rename File

rename macro speciaLfeb
mov dx,offset special...Jeb
mov ah,17H
int 21H
endm

The following program prompts for the name of
a file and a new name, then renames the file:

feb
promptl
prompt2
reply
erlf

db 37 dup (?)
db "Filename: $"
db "New name: $"
db 17 dup(?)
db 13,10, "$"

fune_17H: display promptl ;see Function 09H
get_string 15,reply ;see Function OAH
display erlf ;see Function 09H
parse reply[2l,feb ;see Function 29H
display prompt2 ;see Function 09H
get_string 15,reply ;see Function OAH
display erlf ;see FunCtion 09H
parse reply[2l,feb[16l

;see Function 29H
rename feb ;THIS FUNCTION

7·67

19H
Current Disk

Call

Return

Macro

Example

AH =19H

AL
Currently selected drive
(0 =A:, 1 =B:, etc.)

currenLdisk macro
niov ah,19H
int 21H
endm

The following program displays the currently
selected (default) drive:

message db "Current disk is $" ;see Function 09H
;for explanation of $

crlf db 13,10, "$"

7-68

func_19H: display message
current_disk
add al,41H
display_char a 1
display crlf

;see Function 09H
;THIS FUNCTION
;ASCII offset
;see function 02H
;see function 09H

Call

Return

Remarks

Note:

Macro

lAH
Set Disk Transfer Address

AH =lAH
DS:DX
Disk Transfer Address

None

DX must contain the offset (from the segment
address in DS) of the Disk Transfer Address.
Disk transfers cannot wrap around from the end
of the segment to the beginning, nor can they
overflow into another segment.

If you do not set the Disk Transfer Address,
MS-DOS defaults to offset BOH in the Program
Segment Prefix.

The size of the buffer that the DTA points to
must be greater than or equal to the record size
at open file time.

set_dta macro buffer
mov dX,offset buffer
mov ah,lAH
int 21H
endm

7-69

lAH
Set Disk Transfer Address

Example The following program prompts for a letter, con
verts the letter to its alphabetic sequence (A =1,
B = 2, etc.), then reads and displays the corre
sponding record from a file named ALPHABET.
DAT on the disk in drive B:. The file contains 26
records; each record is 28 bytes long:

relative_record equ 33

record _size equ 14 ;offset of Record Size
;field of FCB
;offset of Relative Record
;field of FCB

display crlf
read_ran fcb
display buffer
display crlf
jmp get_char
close fcb

7-70

fcb

buffer
prompt
crlf

geLchar:

db 2, "ALPHABETDAT"
db 25 dup (?)
db 34 dup(?), "$"
db "Enter letter: $"
db 13,10, "$"

set_dta buffer ;THIS FUNCTION
open fcb ;see Function OFH
mov fcb[record_size],28 ;set record size
display prompt ;see Function 09H
read_kbd_and_echo ;see Function OlH
cmp al,ODH ;just a CR?
je alLdone ;yes, go home
sub al,41H ;convert ASCII

;code to record #
mov fcb[relative_record],al

;set relative record
;see Function 09H
;see Function 21H
;see Function 09H
;see Function 09H
;get another character
;see Function 10H

Call

Return

Remarks

Macro

21H
Random Read

AH =21H
DS:DX

Opened FCB

AL
OOH =Read completed successfully
OlH =EOF
02H =DTA too small
03H = EOF, partial record

DX must contain the offset (from the segment
address in DS) of an opened FCB. The Current
Block (offset OCH) and Current Record (offset
20H) fields are set to agree with the Relative
Record field (offset 21H), then the record
addressed by these fields is loaded at the Disk
Transfer Address.

AL returns a code that describes the processing:

Code Meaning

o read completed successfully

1 End-of-file; no data in the record

2 not enough room at the Disk Transfer
Address to read one record; read can
celed

3 End-of-file; a partial record was read
and padded to the record length with
zeros.

read_ran maero feb
mov dx,offset feb
mov ah,21H
int 21H
endm

7-71

21H
Random Read

Example The following program prompts for a letter, con
verts the letter to its alphabetic sequence (A =1,
B =2, etc.), then reads and displays the corre
sponding record from a file named ALPHABET.
DAT on the disk in drive B:. The file contains 26
records; each record is 28 bytes long:

relative_record equ 33

record_size equ 14 ;offset of Record Size
;field of FCB
;offset of Relative Record
;field of FCB

display crlf
read_ran fcb
display buffer
display crlf
jmp get_char
close fcb

7-72

fcb

buffer
prompt
crlf

db 2, "ALPHABETDAT"
db 25 dup (?)
db 34 dup(?), "$"
db "Enter letter: $"
db 13,10, "$"

set_dta buffer ;see Function 1AH
open fcb ;see Function OFH
mov fcb[record_sizel,28 ;set record size
display prompt ;see Function 09H
read_kbd_and_echo ;see Function 01H
cmp al,ODH ;just a CR?
je alLdone ;yes, go home
sub al,41H ;convert ASCII

;code to record #
mov fcb[relative_recordl,al

;set relative record
;see Function 09H
;THIS FUNCTION
;see Function 09H
;see Function 09H
;get another character
;see Function 10H

Call

Return

Remarks

Macro

22H
Random Write

AH =22H
DS:DX

Opened FCB

AL
OOH = Write completed successfully
01H = Disk full
02H = DTA too small

DX must contain the offset from the segment
address in DS of an opened FCB. The Current
Block (offset OCH) and Current Record (offset
20H) fields are set to agree with the Relative
Record field (offset 21H), then the record
addressed by these fields is written from the
Disk Transfer Address. If the record size is
smaller than a sector (512 bytes), the records are
buffered until a sector is ready to write.

AL returns a code that describes the processing:

Code Meaning

o Write completed successfully

1 disk is full

2 write canceled; the area beginning at
the Disk Transfer Area is too small to
hold a record of data without over
flowing or wrapping around a seg
ment boundary.

write_ran maero feb
mov dx,offset feb
mov ah,22H
int 21H
endm

7-73

22H
Random Write

Example The following program prompts for a letter, con
verts the letter to its alphabetic sequence (A = 1,

.B = 2, etc.), then reads and displays the corre
sponding record from a file named ALPHABET.
DAT on the disk in drive B:. After displaYing the
record, it prompts the user to enter a changed
record. If the user types a new record, it is writ
ten to the file; if the user just presses CR ,the
record is not replaced. The file contains 26
records; each record is 28 bytes long:

relative_record equ 33

record_size equ 14 ;offset of Record Size
;field of FCB
;offset of Relative Record
;field of FCB

7-74

fcb

buffer
promptl
prompt2
crlf
reply
blanks

db 2, "ALPHABETDAT"
db 25 dup (?)
db 28 dup(?),13,10, "$"
db "Enter letter: $"
db "New record(CR for no change): $"
db 13,10, \\$/1
db 30 dup (32)
db 28 dup (32)

set_dta buffer ;see Function lAH
open fcb ;see Function OFH
mov fcb[record_sizel,28 ;set record size
display promptl ;see Function 09H
read_kbd_and_echo ;see Function 01H
cmp al,ODH ;just a CR?
je alLdone ;yes, go home
sub al,41H ;cenvert ASCII

;code to record #
mov fcb[relative_recordl,al

;set relative record

22H
Random Write

display cdf
read_ran fcb
display buffer
display crlf
display prompt2
get_string 29, reply
display crlf
cmp reply[l],O

;see Function 09H
;THIS FUNCTION
;see Function 09H
;see Function 09H
;see Function 09H
;see Function 09H
;see Function 09H
;was anything typed
;besides cr?

write_ran fcb
jmp geLchar
close fcb

bx,bx
bl;reply[l]mov

je ;no
;get another character
;to load a byte
;use reply length as
;counter

move_string blanks, buffer, 28
;see chapter end

move_string reply[2], buffer, bx
;see chapter end
;THIS FUNCTION
;get another character
;see Function lOH

xor

alLdone:

7-75

23H
File Size

Call

Return

Remarks

Note

7-76

AH =23H
DS:DX

Unopened FCB

AL
DOH =Directory entry found
FFH =No directory entry found

DX must contain the offset (from the segment
address in DS) of an unopened FCB. You must
set the Record Size field (offset OEH) to the
proper value before calling this function. The
disk directory is searched for the first matching
entry.

If a matching directory entry is found, the Rela
tive Record field (offset 21H) is set to the number
of records in the file, calculated from the total
file size in the directory entry (offset 10H) and
the Record Size field of the FCB (offset OEH). AL
returns 00.

If no matching directory entry is found, AL
returns FFH.

If the value of the Record Size field of the FCB
(offset OEH) doesn't match the actual number of
characters in a record, this function may not
return the correct file size. If the default record
size (128) is not correct, you must set the Record
Size field to the correct value before using this
function.

Macro

Example

23H
File Size

file_size macro fcb
mov dx/offset fcb
mov ah/23H
int 21H
endm

The following program prompts for the name of
a file, opens the file to set the Record Size field of
the FeB to BOH, issues a File Size system call,
and displays the file size and number ofrecords
in hexadecimal:

fcb
prompt
msg1
msg2
crlf
reply
sixteen

db
db
db
db
db
db
db

37 dup(?)
"File name: $11
"Record length: 11/13/10/ "$11
"Records: II/ 13/ 10/ \\$11
13/10/ "$11
17 dup(?)
16

func_23H: display prompt
get_string 17/reply
cmp reply[lJO
jne get_length
jmp all_done

get_length: display crlf
parse
open
file_size fcb
mov

mov
converLit: cmp

je

reply[2Ucb
fcb

si/33

di/9
fcb[si]/O
show_it

;see Function 09H
;see Function OAH
;just a CR?
;no/ keep going
;yes, go home
;see Function 09H
;see Function 29H
;see Function OFH
;THIS FUNCTION
;offset to Relative
;Record field
;reply in msg2
;digit to convert?
;no/ prepare message

7-77

23H
File Size

convert fcb[si],sixteen,msg2[di]
inc si ;bump n-o-r index
inc di ;bump message index
jmp convert_it ;check for a digit

show_it: convert fcb[14],sixteen,msgl[15]
display msg 1 ;see Function 09H
display msg2 ;see Function 09H
jmp func23H ;get a filename

all_done: close fcb ;see Function lOH

7-78

Call

Return

Remarks

Macro

Example

24H
Set Relative Record

AH =24H
DS:DX

Opened FCB

None

DX must contain the offset (from the segment
address in DS) of an opened FCB. The Relative
Record field (offset 21H) is set to the same file
address as the Current Block (offset OCH) and
Current Record (offset 20H) fields.

set_relative_record macro fcb
mov dx,offset fcb
mov ah,24H
int 21H
endm

The following program copies a file using the
Random Block Read and Random Block Write
system calls. It speeds the copy by setting the
record length equal to the file size and the record
count to 1, and using a buffer of 32K bytes. It
positions the file pointer by setting the Current
Record field (offset 20H) to 0 and using Set Rela
tive Record to make the Relative Record field
(offset 21H) point to the same record as the com
bination of the Current Block (offset OCH) and
Current Record (offset 20H) fields:

7-79

24H
Set Relative Record

current_record equ

fsize equ

32

16

;offset of Current Record
;field of FCB
;offset of File Size
;field of FCB

fcb db 37 dup (?)
filename db 17 dup(?)
promptl db "File to copy: $/1 ;see Function 09H for
prompt2 db "Name of copy: $" ;explanation of $
crlf db 13,10,"$"

file_length dw ?
buffer db 32767 dup(?)

set_dta buffer
display prompt!
get_string IS,filename
display cdf
parse filename[2],fcb
open fcb
mov fcb[current_record],O

set_relative_record fcb
mov ax,word ptr fcb[fsize]
mov file_length, ax

ran_block_read fcb,l,ax
display prompt2
get_string IS,filename
display crlf
parse filename[2],fcb
set_relative_record fcb

;see Function lAH
;see Function 09H
;see Function OAH
;see Function 09H
;see Function 29H
;see Function OFH
;set Current Record
;field
;THIS FUNCTION
;get file size
;save it for
;ran_block_write
;see Function 27H
;see Function 09H
;see Function OAH
;see Function 09H
;see Function 29H
;THIS FUNCTION

7-80

mc;>v ax,file_length

ran_block_write fcb, l,ax
close fcb

24H
Set Relative Record

;get original file
;length
;see Function 28H
;see Function lOH

7-81

25H
Set Vector

Call

Return

Remarks

Macro

Example

7-82

AH =25H
AL

Interrupt number
DS:DX

Interrupt-handling routine

None

Function 25H should be used to set a particular
interrupt vector. The operating system can then
manage the interrupts on a per-process basis.
Note that programs should never set interrupt
vectors by writing them directly in the low
memory vector table.

DX must contain the offset (to the segment
address in DS) of an interrupt-handling routine.
AL must contain the number of the interrupt
handled by the routine. The address in the vec
tor table for the specified interrupt is set to
DS:DX.

set_vector macro interrupt, seg_addr,off_addr
push ds
mov ax,seg _addr
mov ds,ax
mov dx,off_addr
mov aI, interrupt
mov ah,25H
int 21H
pop ds
endm

Ids dx,intvector
mov ah,25H
mov aI,intnumber
int 21H
;There are no errors returned

Call

Return

Remarks

27H
Random Block Read

AH =27H
DS:DX

·OpenedFCB
CX

Number of blocks to read

AL
OOH =Read completed successfully
OlH =EOF
02H =End of segment
03H =EOF, partial record

CX
Number of blocks read

DX must contain the offset (to the segment
address in DS) of anopened FCB. CX must con
tain the number of records to read; if it contains
0, the function returns without reading any
records (no operation). The specified number of
records, calculated from the Record Size field
(offset OEH), is read starting at the record speci
fied by the Relative Record field (offset 21H).
The records are placed at the Disk Transfer
Address.

AL returns a code that describes the processing:

Code
o
1

2

3

Meaning

Read completed successfully

End-of-file; no data in the record

not enough room at the Disk Transfer
Address to read one record without
overflowing a·segment boundary; read
cancelled

End-of-file; a partial record was read
and padded to the record length with
l;eros

7-83

27H
Random Block Read

CX returns the number of records read; the Cur
rent Block (offset OCH), Current Record (offset
20H), and Relative Record (offset 21H) fields are
set to address the next record.

Macro

Example

ran_block_read macro fcb,count,rec_size
mov dx,offset fcb
mov cx,count
mov word ptr fcb[14],rec_size
mov ah,27H
int 21H
endm

The following program copies a file using the
Random Block Read system call. It speeds the
copy by specifying a record count of 1 and a
record length equal to the file size, and using a
buffer of 32K bytes; the file is read as a single
record (compare to the sample program for
Function 28H that specifies a record length of 1
and a record count equal to the file size):

currenLrecord equ 32

7-84

fsize

fcb
filename
promptl
prompt2
crlf

file_length
buffer

equ 16

db 37 dup (?)
db 17 dup(?)
db "File to copy: $"
db "Name of copy: $"
db 13,10,"$"

dw ?
db 32767 dup(?)

set_dta buffer

;offset of Current :Record
;field
;offset of File Size
;f~eld

;see Function 09H for
;explanation of $

;see Function 1AH

display promptl
get_string I5,filename
display crlf
parse filename[2l£cb
open fcb
mov fcb[currenLrecordlO

set_relative_record fcb
mov ax, word ptr fcb[fsizel
mov file_Iength,C!-x

ran_block_read fcb,l,ax
display prompt2
get_string I5,filename
display crlf
parse filename[2l£cb
create· fcb
moy fcb[current_recordl,O

set_relative_record fcb
mov ax,file_Iength

ran_block_write fcb,l,ax
close feb

27H
Random Block Read

;see Function 09H
;see Function OAH
;see Function Q9H
;see Function 29H
;see Function OFH
;set Current Record
;£ield
;see Function 24H
;get file size
;save it for
;ran_block_write
;THIS FUNCTION
;see Function 09H
;see Function OAH
;see Function 09H
;see Function 29H
;see Function I6H
;!:!et Current Recoid
;£ield
;see Function 24:fI
;get original file
;size
;see Function 28H

7-85

28H
Random Block Write

Ca:ll

Return

Remarks

7-86

AH =28H
DS:DX

Opened FCB
CX

Number of blocks to write
(0 =set File Size field)

AL
OOH =Write completed successfully
OIH = Disk full
02H =End of segment

CX
Number of blocks written

DX must contain the offset (to the segment
address in DS) of an opened FeB; CX must con
tain either the number of records to write or o.
The specified number of records (calculated from
the Record Size field, Qff~et OEH) is written from
the Disk Transfer Address. The records are writ
ten to the file starting at the record specified in
the Relative Record field (offset 21H) of the FCB.
If CX is 0, no records are written, but the File
Size field of the directory entry (offset IOH) is set
to the number of records specified by the Rela
tive Record field of the FCB (offset 2IH); alloca
tion units are allocated or released, as required.

AL returns a code that describes the processing:

Code Meaning

o Write completed successfully

I Disk full. No records writ~en.

2 Not enough room at the Disk Transfer
Address to write one record without
overflowing a segment boundary;
write canceled.

Macro

Example

28H
Random Block Write

CX returns the number of records written; the
current block (offset OCH), Current Record
(offset 20H), and Relative Record (offset 21H)
fields are set to address the next record.

ran_block_write macro fcb,count,rec_size
mov dx,offset fcb
mov cx,count
mov word ph fcb[14],rec_size
mov ah,28H
int 21H
endm

The following program copies a file using the
Random Block Read and Random Block Write
system calls. It copies by specifYing a record
count equal to the file size and a record length of
1, and using a buffer of 32K bytes; the file is
copied with one disk access each to read and
write (compare to the sample program of Func
tion 27H, that specifies a record count of 1 and a
record length equal to file size):

currenLrecord equ 32

fsize equ 16

;offset of Current Record
;£ield
;offset of File Size
;£ield

fcb db 37 dup (?)
filename db 17 dup(?)
promptl db "File to copy: $/1 ;see Function 09H for
prompt2 db "Narne of copy: $/1 ;explanation of $
cdf db 13,10,"$/1

num_recs dw ?
buffer db 32767 dup(?)

7-87

28H
Random Block Write

func_28H: set_dta buffer ;see Function IAH
display prompt! ;see Function 09H
get_string I5,filename ;see Function OAH
display crlf ;see Function 09H
parse filename[2],fcb ;see Function 29H
open fcb ;see Function OFH
mov fcb[current_record],O ;set Current Record

;field
set_relative_record fcb ;see Function 24H
mov ax,word ph fcb[fsize] ;get file size
mov num _recs, ax ;save it for

;ran_block_write
ran_block_read fcb,num_recs, I ;see Function 27H
display prompt2 ;see Function 09H
get_string IS,filename ;see Function OAH
display crlf ;see Function 09H
parse filename[2],fcb ;see Function 29H
create fcb ;see Function I6H
mov fcb[current_record],O ;set Current Record

;field
set_relative_record fcb ;see Function 24H
ran_block_write fcb,num _recs, I ;THIS FUNCTION
close fcb ;see Function IOH

7-88

Call

Return

Remarks

29H
Parse File Narne

AH =29H
AL

Controls parsing (see text)
DS:SI

String to parse
ES:DI

Unopened FCB

AL
OOH =No wild card characters
OIH =Wild-card characters used
FFH =Drive letter invalid

DS:SI
First byte past string that was parsed

ES:DI
Unopened FCB

SI must contain the offset (to the segment ad
dress in DS) of a string (command line) to parse;
DI must contain the offset (to the segment ad
dress in ES) of an unopened FCB. The string is
parsed for a filename of the form d:filename.ext;
if one is found, a corresponding unopened FCB
is created at ES:DI.

Bits 0-3 of AL control the parsing and process
ing. Bits 4-7 are ignored:

7-89

29H
Parse File N arne

Bit Value Meaning

0 0 All parsing stops if a file separator
is encountered.

1 Leading separators are ignored.

1 0 The drive number in the FCB is set
to 0 (default drive) if the string does
not contain a drive number.

1 The drive number in the FCB is not
changed if the string does not con-
tain a drive number.

2 0 The filename in the FCB is set to 8
blanks if the string does not contain
a filename.

1 The filename in the FCB is not
changed if the string does not con-
tain a filename.

3 0 The extension in the FCB is set to 3
blanks if the string does not contain
an extension.

1 The extension in the FCB is not
changed if the string does not con-
tain an extension.

If the filename or extension inc!udes an asterisk
(*), all remaining characters in the name or
extension are set to question mark (?).

7-90

29H
Parse File Nam.e

Filename separators:

: . ; , =+ / " [] \ < >I space tab

Filename terminators include all the filename
separators plus any control character. A file
name cannot contain a filename terminator; if
one is encountered, parsing stops.

If the string contains a valid filename:

• AL returns 1 if the filename or extension con
tains a wild card character (* or ?); AL returns 0
if neither the filename nor extension contains a
wild card character.

• DS:SI point to the first character following the
string that was parsed. .

• ES:DI point to the first byte of the unopened
FCB.

If the drive letter is invalid, AL returns FFH. If
the string does not contain a valid filename,
ES:DI+1 points to a blank (ASCII 20H).

'7 {\1

29H
Parse File Name

Example

fcb
prompt
reply
yes
no
crlf

parse macro string, fcb
mov si, offset string
mov di, offset feb
push es
push ds
pop es
mov al,OFH ;bits 0, 1,2,3 on
mov ah,29H '
int 21H
pop es
endm

The following program verifies the existence of
the file named in reply to the prompt:

db 37 dup (?)

db "Fil~name:$"
db 17 dup (?)
db ~\FILE EXISTS", 13,10,"$"
db "FILE DO~S NOT EXIST", 13,10, "$"
db 13,14, "$1'

func_29H:

not_there:
continue:

display
get_string
display
parse
search _first
cmp
je
display
jmp
display

prompt
IS,reply
crlf
reply[2],fcb
fcb
al,OFFH
noLthere
yes
continue
no

;see Function 09H
;see Function OAH
;see Function 09H
;THIS FUNCTION
;see Function IIH
;dir. entry found?
;no
;see Function 09H

Call

Return

Remarks

Macro

Example

2AH
Get Date

AH=2AH

ex
Year (1980-2099)

DH
Month (1-12)

DL
Day (1-31)

AL
Day of week (0 = Sunday, 6 = Saturday)

This function returns the current date set in the
operating system as binary numbers in ex and
DX:

CJ.{ Year (1980-2099)
DH Month (1 = January, 2 = February, etc.)
DL Day (1-31)
AL Day of week (0 = Sunday, 1 = Monday,

etc.)

get_date macro
mov ah,2AH
int 21H
endm

The following program gets the date, increments
the day, increments the month or year, ifneces
sary, and sets the new date:

7-93

2AH
Get Date

month db 31,28,31,30,31,30,31,31,30,31,30,31

func_2AH: get_date isee above
inc dl iincrement day
xor bx,bx iSO BL can be used as index
mov bl,dh imove month to index register
dec bx ;month table starts with 0
cmp dl,month[bx] ipast end of month?
jle month_ok ino, set the new date
mov dl,l iyes; set day to 1
inc dh iand increment month
cmp dh,12 ipast end of year?
jle month_ok inc, set the new date
mov dh,l iyes, set the month to 1
inc cx iincrement year

month_ok: set_date cX,dh,dl iTHIS FUNCTION

7-94

Call

Return

Remarks

Macro

2BH
Set Date

AH=2BH
ex

Year (1980-2099)
DH

Month (1-12)
DL

Day (1-31)

AL
OOH = Date was valid
FFH = Date was invalid

Registers ex and DX must contain a valid date
in binary:

ex Year (1980-2099)
DH Month (1 = January, 2 = February, etc.)
DL Day (1-31)

If the date is valid, the date is set and AL
returns O. If the date is not valid, the function is
canceled and AL returns FFH.

set_date maero year/month/day
mov ex/year
mov dh/month
mov dl/day
mov ah/2BH
int 21H
endm

7-95

2BH
Set Date

Example

month db

The following program gets the date, increments
the day, increments the month or year, ifneces
sary, and sets the new date:

31,28,31,30,31,30,31,31,30,31,30,31

func_2BH: get_date ;see Function 2AH
inc dl ;increment day
xor bx,bx ;so BL can be used as index
mov bl,dh ;move month to index register
dec bx ;month table starts with 0
cmp dl,month[bx] ;past end of month?
jle month_ok ;no, set the new date
mov dl,l ;yes, set day to 1
inc dh ;and increment month
cmp dh,12 ;past end of year?
jle month_ok ;no, set the new date
mov dh,l ;yes, set the month to 1
inc cx ;increment year

month_ok: set date cx,dh,dl ;THIS FUNCTION

7-96

Call

Return

Remarks

Macro

Example

2CH
Get Time

AH=2CH

CH
Hour (0-23)

CL
Minutes (0-59)

DH
Seconds (0-59)

DL
Hundredths (0-99)

This function returns the current time set in the
operating system as binary numbers in CX and
DX:

CH Hour (0-23)
CL Minutes (0-59)
DH Seconds (0-59)
DL Hundredths of a second (0-99)

get_time macro
mov ah,2CH
int 21H
endm

The following program continuously displays
the time until any key is pressed:

7-97

2CH
Get Time

time
ten

db
db

"00:00:00.00",13, "$"
10

7-98

func_2CH: get_time
convert ch,ten,time
convert c1,ten,time[3]
convert dh,ten,time[6]
convert d1,ten,time[9]
display time
check_kbd_status
cmp a1,OFFH
je all_done
jmp func_2CH

alLdone:

;THIS FUNCTION
;see end of chapter
;see end of chapter
;see end of chapter
;see end of chapter
;see Function 09H
;see Function OBH
;has a key been pressed?
;yes, terminate
;no, display time

Call

Returrt

Remarks

Macro

2DH
Set Time

AH=2DH
CH

Hour (0-23)
CL

~inutes (0-59)
DH

Seconds (0-59)
DL

Hundredths (0-99)

AL
OOH = Time was valid
FFH (255) = Time was invalid

Registers CX and DX must contain a valid time
in binary:

CH Hour (0-23)
CL Minutes (0-59)
DH .Seconds (0-59)
DL Hundredths of a second (0-99)

If the time is valid, the time is set and AL
returns O. If the time is not valid, the function is
canceled and AL returns FFH (255).

set_time macro hour, minutes, seconds,hundredths
mov ch,hour
mov el,minutes
mov dh, seconds
mbv dl,hundredths
mov ah,2DH
int 21H
endm

7-99

2DH
Set Time

Example

time
ten

db
db

The following program acts as a stopwatch.
When a character is typed, it sets the system
clock to zero and begins to continuously display
the time. When a second character is typed the
system stops updating the time display.

"00:00:00.00",13, "$"
10

func_2DH: dir_console_io OFFH
jz func_2DH
set_time 0,0,0,0

read_clock: get_time
convert ch, ten, time
convert cl,ten,time[3]
convert dh, ten, time[6]
convert d I, tert, tirile[9]
display time
dir_console_io OFFH
jz read_clock

continue:

7-100

;see Function 06H
;wait for keystroke
;THis FUNCTION
;see Function 2CH
;see end of chapter
;see end of chapter
;see end of chapter
;see erid of chapter
;see Function 09H
;THIS FUNCTION
;no char, keep updating

Call

Return

Remarks

Macro

Example

2EH
Set/Reset Verify Flag

AH= 2EH
AL

OOH =Do not verify
OlH =Verify

None

AL must be either 1 (verify after each disk write)
or 0 (write without verifying). MS-DOS checks
this flag each time it writes to a disk.

The flag is normally off; you may wish to turn it
on when writing critical data to disk. Because
disk errors a.re rare and verification slows writ
ing, you will probably want to leave it off at
other times.

verify macro switch
mov aI, switch
mov ah,2EH
int 21H
endm

The following program copies the contents of a
single-sided disk in drive A: to the disk in drive
B:, verifying each write. It uses a buffer of 32K
bytes: ..

on
off

prompt

start
buffer

equ
equ

db
db
dw
db

1
o

"Source in A, target in B",13, 10
"Any key to start. $"
o
64 dup (512 dup(?)) ;64 sectors

7-101

2EH
Set/Reset Verify Flag

func_2EH: display prompt
read_kbd
verify on
mov cx,S

copy: push cx
abs_disk_read O,buffer,64,start
abs_disk_write 1,buffer,64,start
add start,64
pop ex
loop copy
verify off

7-102

;see Function 09H
;see Function 08H
;THIS FUNCTION
;copy 64 sectors
;5 times
;save counter
;see Interrupt 25H
;see Interrupt 26H
;do next 64 sectors
;restore counter
;do it again
;THIS FUNCTION

Call

Return

Macro

2FH
Get Disk Transfer Address

AH=2FH

ES:BX
Points to Disk Transfer Address

,
geLdta macro

mov 2h,2fh
int 21h
endm

7-103

30H
Get DOS Version Number

Call

Return

Remarks

Macro

7·104

AH=30H

AL
Major version number

AH
Minor version number

BH
OEM number

BL:CX
User number (24 bits)

On return, AL.AH will be the two-part version
designation; Le., for MS-DOS 1.28, AL would be
1 and AH would be 28. For pre-1.28 DOS AL = O.
Note that version 1.1 is the same as 1.10, not the
same as 1.01.

get_version_num macro
mov ah,30h
int 21h
endm

Call

Return

Remarks

Macro

31H
Keep Process

AH = 3IH
AL

Exit code
DX

Memory size, in paragraphs

None

This call terminates the current process and
attempts to set the initial allocation block to a
specific size in paragraphs. It will not free up
any other allocation blocks belonging to that
process. The exit code passed in AX is retriev
able by the parent via Function 4DH.

This method is preferred over Interrupt 27H and
has the advantage of allowing more than 64K to
be kept.

keep_process macro exitcode,parasize
mov al,exitcode
mov dx,parasize
mov ah,31h
int 21h
endm

7-105

33H
<CTRL C> Check

Call

Return

Remarks

Note

Error
Returns

7-106

AH =33H
AL

Function
OOH = Request current state
OIH = Set state

DL (if setting state)
OOH = Off
OIH = On

DL
OOH = Off
OIH = On

MS-DOS ordinarily checks for a CTRL C on the
controlling device only when doing function call
operations OIH-OCH to that device. Function
33H allows the user to expand this checking to
include any system call. For example, with the
CTRL C trapping off, all disk 110 will proceed
without interruption; with CTRL C trapping on,
the CTRL C interrupt is given at the system call
that initiates the disk operation.

Programs that wish to use calls 06H or 07H to
read CTRL C's as data must ensure that the
CTRL C check is off.

AL=FF

The function passed in AL was not in the range
0:1.

Macro
ctrl_c_che(.;k macro switch,val

mov dl,val
mov al,switch
mov ah,33h
int 2Ih
endm

33H
<CTRL C> Check

7-107

35H
Get Interrupt Vector

Call

Return

Remarks

Macro

7-108

AH =35H
AL

Interrupt number

ES:BX
Pointer to interrupt routine

This function returns the interrupt vector asso
ciatedwith an interrupt. Note that programs
should never get an interrupt vector by reading
the low memory vector table directly.

geLvector macro interrupt
mov aI/interrupt
mov ah/35h
int 2Ih
endm

Call

Return

Remarks

Error
Returns

Macro

36H
Get Disk Free Space

AH =36H
DL

Drive (0 =Default, 1 =A, etc.)

AX
FFFF if drive nurnb~r is invalid; otherwise
sectors per cluster

BX
Available clusters

CX
Bytes per sector

DX
Clusters per drive

This function returns free space on a disk along
with additional information about the disk.

AX=FFFF

The drive number given in DL was invalid.

get_disk_space macro drive
mov dl,drive
mov ah,36h
int 21h
endm

3SH
Return Country-Dependent Information

Call

Return

Remarks

Note

7-110

AH =38H
DS:DX

Pointer to 32-byte memory area
AL .

Function code.

Carry set:
AX

2 =file not found
Carry not set:

DX:DS filled in with country data

The value passed in AL is either 0 (for current
country) or a country code. Country codes are
typically the international telephone prefix code
for the country.

If DX =-1, then the call sets the current country
(as returned by the AL = 0 call) to the country
code in AL. If the country code is not found, the
current country is not changed.

Applications must assume 32 bytes of informa
tion. This means the buffer pointed to by DS:DX
must be able to accommodate 32 bytes.

This function is fully supported only in versions
of MS-DOS 2.01 and higher. It exists in MS-DOS
2.0, but is not fully implemented.

This function returns, in the block of memory
pointed to by DS:DX, information pertinent to
international applications. The contents of the
block are shown in the following table.

38H
Return Country-Dependent Information

WORD Date/time format

5 BYTE ASCIIZ string
currency symbol

2 BYTE ASCIIZ string
thousands separator

2 BYTE ASCIIZ string
decimal separator

2 BYTE ASCIIZ string
date separator

2 BYTE ASCIIZ string
time separator

1 BYTE Bit field

1 BYTE
Currency places

1 BYTE
time format

DWORD
Case Mapping call

2 BYTE ASCIIZ string
data list separator

7-111

38H
Return Country-Dependent Information

The format of most of the entries is ASCIIZ (a
NUL terminated ASCII string), but a fixed size
is allocated for each field for easy indexing into
the table.

The date/time format (see table) has the follow
ing values:

o- USA standard
1 - Europe standard
2 - Japan standard

h:m:s m/d/y
h:m:s dimly
y/m/dh:m:s

The bit field contains 8 bit values. Any bit not
currently defined must be assumed to have a
random value.

Bit 0 = 0 If currency symbol precedes the
currency amount.

=1 If currency symbol comes after the
currency amount.

Bit 1 =0 If the currency symbol is directly
adjacent to the currency amount.

=1 If there is a space between the
currency symbol and the amount.

7-112

Error
Returns

38H
Return Country-Dependent Information

The time format has the following values:

o-12 hour time
1 - 24 hour time

The currency places field indicates the number
of places which appear after the decimal point
on currency amounts.

The Case Mapping call is a FAR procedure
which will perform country specific lower-to
uppercase mapping on character values from
BOH to FFH. It is called with the character to be
mapped in AL. It returns the correct upper case
code for that character, if any, in AL. AL and
the FLAGS are the only registers altered. It is
allowable to pass this routine codes below BOH;
however nothing is done to characters in this
range. In the case where there is no mapping,
AL is not altered.

AX
2 =file not found

The country passed in AL was not found (no
table for specified country).

7-113

38H
Return Country-Dependent Information

Macro
get_country_info macro buffer, country

mov dx,offset buffer
mov al,country ;country = 0
mov ah,38h
int 21h
endm

7·114

Call

Return

Re~arks

Error
Returns

Macro

39H
Create Sub-Directory

AH =39H
DS:DX

Pointer to path name

Carry set:
AX

3 = path not found
5 = access den.ied

Carry not set:
No error

Given a pointer to an ASCIIZ name, this func
tion creates a new directory entry at the end.

AX
3 =path p.ot found

The path specified was invalid or not
found.

5 =access denied

The directory could not be created (no
room in parent directory), the directory/
file already existed or a device name
was specified. '

mkdir macro name
mov dx,offset name
mov ah,39h
int 21h
endm

7-115

3AH
Remove a Directory

Call

Return

Remarks

Error
Returns

Macro

7-116

AH=3AH
DS:DX

Pointer to path name

Carry set:
AX

3 =path not found
5 = access denied

16 =current directory
Carry not set:

No error

F~nction 3AH is given an ASCIIZ name of a
directory. That directory is removed from its
parent directory.

AX
3 = path not found

The path speci:p.ed was invalid pr not
found.

5 =access denied

The path specified w~s not empty, not a
directory, the root directory, or contained
invalid information;

16 =current directory

The path specified was the current direc
tory on a drive.

rmclir macro name
moy clx,offset name
mov ah,3ah
int 21h
enclm

Call

Return

Remarks

Error
Returns

Macro

3BH
Change the Current Directory

AH =3BH
DS:DX

Pointer to path na.me

Carry set:
AX

3 =path not found
Carry not set:

No error

Function 3BH is given the ASCIIZ name of the
directory which is to become the current direc
tory. If any member of the specified pathname
does not exist, then the current directory is
unch~nged.Otherwise, the current directory is
set to the string.

AX
3 =path not found

The path specified in DS:DX either indi
cated a file or the path was invalid.

chdir macro name
mov dx, offset name
mov ah,3bh
int 21h
endm

7-117

3CH
Create a File

Call

Return

Remarks

7-118

AH=3CH
DS:DX

Pointer to path name
CX

File attribute

Carry set:
AX

3 = path not found
4 = too many open files
5 = access denied

Carry not set:
AX is handle number

Function 3CH creates a new file or truncates an
old file to zero length in preparation for writing.
DS:DX must point to an ASCIIZ path to the file.
If the file did not exist, then the file is created in
the appropriate directory and the file is given
the attribute found in CX. The given attribute
byte is placed at offset OBH in the file's directory
entry. See the section on "Diskette Directory" in
chapter 5 for details about the attribute byte.
The file handle returned has been opened for
read/write access.

Error
Returns

Macro

3CH
Create a File

AX
3 =path not found

The path specified was invalid.

4 =too many open files

5 =access denied

The attributes specified in ex contained
one that could not be created (directory,
volume ID), a file already existed with a
more inclusive set of attributes, or a direc
tory existed with the same name.

The file was created with the specified attrib
utes, but there were no free handles available for
the process, or the internal system tables were
full.

create_file macro name,attrib
mov dx,offset name
mov cx,attrib
mov ah,3ch
int 21h
endm

7-119

3DH
Open a File Handle

Call

Return

Remarks

AH=3DH
AL

Access
o= file opened for reading
1 = file opened for writing
2 =file opened for both

reading and writing
DS:DX

pointer to pathname

Carry set:
AX

2 =file not found
4 = too many open files
5 = access denied

12= invalid access
Carry not set

AX is handle number

Function 3DH associates a 16-bit handle with a
file.

The following values are allowed:

ACCESS

o
1
2

Function

opened for reading
opened for writing
opened for both reading
and writing.

7-120

DS:DX point to an ASCIIZ name of the file to be
opened.

The read/write pointer is set at the first byte of
the file.and the record size of the file is 1 byte.
The returned file handle must be used for sub
sequent I/O to the file.

Error
Returns

Macro

3DH
Open a File Handle

AX
2 =file not found

The path specified was invalid or not
found.

4 =too many open files

There were no free handles available in
the current process or the internal system
tables were full.

5 =access denied

The user attempted to open a directory or
volume-id, or open a read-only file for writ
ing.

12 =invalid access

The access specified in AL was not in the
range 0:2.

,
open_handle macro name, access

mov dx,offset name
mov a l,access
mov ah,3dh
int 21h
endm

7-121

3EH
Close a File Handle

Call

Return

Remarks

Error
Returns

Macro

7-122

AH =3EH
BX

File handle

Carry set:
AX

6 =invalid handle
Carry not set:

No error

If BX is passed a file handle (like that returned
by Functions 3CH, 3DH, or 45H), Function 3EH
closes the associated file. Internal buffers are
flushed to disk.

AX
6 =invalid handle

The handle passed in BX was not currently
open.

,
close_handle macro handle

mov bx, handle
mov ah,3eh
int 21h
endm

Call

Return

Remarks

Error
Returns

3FH
Read From File/Device

AH =3FH
DS:DX

Pointer to buffer
CX

Bytes to read
BX

File handle

Carry set:
AX

5 = error set:
6 = invalid handle

Carry not set:.
AX = number of bytes read

Function 3FH transfers a specified number of
bytes from a file into a buffer location. It is not
guaranteed that the number of bytes requested
will be read; for example, reading from the key
board will read at most one line of text. If the
returned value is zero, then the program has
tried to read from the end of file.

All I/O is done using normalized pointers; no
segment wraparound will occur.

AX
5 = access denied

The handle passed in BX was opened in a
mode that did not allow reading.

6 = invalid handle

The h~ndle passed in BX was not cur
rently open.

7-123

3FH
Read From File/Device

Macro
read_from_handle maero buffer, bytes, handle

mov dx,offset buffer
mov ex, bytes
mov bx, handle
mov ah,3fh
int 21h
emdm

7-124

Call

Return

Remarks

40H
Write to a File or Device

AH =40H
DS:DX

Pointer to buffer
CX

Bytes to write
BX

File handle

Carry set:
AX

5 =access denied
6 =invalid handle

Carry not set:
AX =number of bytes written

Function 40H transfers a specified number of
bytes from a buffer into a file. It should be
regarded as an error if the number of bytes writ
ten is not the same as the number requested.

The write system call with a count of zero (CX =
0) will set the file size to the current position.
Allocation units are allocated or released as
required.

All I/O is done using normalized pointers; no
segment wraparound will occur.

7-125

40H
Write to a File or Device

Error
Returns

Macro

7·126

AX
5 = access denied

The handle was not opened in a mode that
allowed writing.

6 =invalid handle

The handle passed in BX was not cur
rently open.

I

write_to_handle macro buffer, bytes,handle
mov dx,offset buffer
mov ex, bytes
mov bx,handle
mov ah,40h
int 21h
endm

Call

Return

Remarks

Error
Returns

Macro

41H
Delete a Directory Entry

AH =41H
DS:DX

Pointer to path name

Carry set:
AX

2 =file not found
5 =access denied

Carry not set:
No error

Function 41H deletes the file named in the
ASCIIZ string pointed to by DS:DX.

AX
2 =file not found

The path specified was invalid or not
found.

5 =access denied

The path specified was a directory or read·
only.

erase macro name
mov dx,offset name
mov ah,41h
int 21h
endm

7-127

42H
Move File Pointer

Call

Return

Remarks

7-128

AH =42H
CX:DX

Distance to move, in bytes
AL

Method of moving:
(see text)

BX
File handle

Carry set:
AX

1 = invalid function
6 = invalid handle

Carry not set:
DX:AX = new pointer location

Function 42H moves the read/write pointer
according to one of the following methods:

Method Function

o the pointer is moved to offset bytes
from the beginning of the file

1 the pointer is moved to the current
location plus offset

2 the pointer is moved to the end of file
plus offset

Offset should be regarded as a 32-bit integer
with CX occuPYing the most significant 16 bits.

Error
Returns

Macro

42H
Move File Pointer

AX
1 = invalid function

The function passed in AL was not in the
range 0:2.

6 =invalid handle

The handle passed in BX was not cur
rentlyopen.

,
move_pointer macro highword,lowword,switch,

handle
mov dx,lowword
mov cx,highword
mov al,switch
mov bx, handle
mov ah,42h
int 2Ih
endm

7-129

43H
Change Attributes

Call

Return

Remarks

7-130

AH =43H
DS:DX

Pointer to path name
AL

Function
00 Return in ex
01 Set to ex

CX (if AL =01)
Attribute to be set

Carry set:
AX

1 =invalid function
3 =path not found
5 = access denied

Carry not set:
ex attributes (if AL = 00)

Given an ASeIIZ name pointed to by DS:DX,
Function 42H will set/get the attributes of the
file to those given in ex. See the section on
"Diskette Directory" in chapter 5 for a descrip
tion of the attribute byte.

A function code is passed in AL:

AL Function

o return the attributes of the file in ex

1 set the attributes of the file to those in ex

Error
Returns

Macro

43B
Change Attributes

AX
1 =invalid function

The function passed in AL was not in the
range 0:1.

3 =p,ath not found

The path specified was invalid.

5 == access denied

The attributes specified in ex contained
one that could not be changed (directory,
volume ID).

change_attrib macro name,attrib,switch
mov dx,offset name
mov cx,attrib
mov ai,switch
mov ah,43h
int 21h
endm

7-131

44H
I/O Control for Devices

Call

Return

Remarks

7-132

AH = 44H
BX

Handle
BL

Drive (for function codes 4 and 5;
0= default, 1 = A:, etc.)

DS:DX
Data or buffer

CX
Bytes to read or write

AL
Function code; see text

Carry set:
AX

1 = invalid function
5 =access denied
6 = invalid handle

13 =invalid data
Carry not set:
Function Code = 2,3,4,5

AX = Count transferred
Function Code =6,7

AL
00 =Not ready
FF =Ready

Function 44H sets or gets device information
associated with an open handle, or sends/
receives a control string to a device handle or
device.

The inputs to AL are function numbers, for
which there are returns. The function number
values and functions are discussed below.

The following values are allowed in AL as func
tion codes:

Calls 0,1:

44H
I/O Control for Devices

Call Function

o get device information (returned in DX)

1 set device information (as determined
byDX)

2 read CX number of bytes into DS:DX
from device control channel

3 write CX number of bytes from DS:DX
to device control channel

4 read CX number of bytes into DS:DX
from disk (drive number in BL)

5 write CX number of bytes from DS:DX
to disk (drive number in BL)

6 get input status

7 get output status

This function can be used to get information
about device channels. Calls can be made on
regular files, but only calls 0,6 and 7 are defined
in that case (AL =0,6,7). All other calls return
an invalid function error.

The bits of DX are defined as follows for calls
AL =°and AL =1. Note that the upper byte
MUST be zero on a set call.

7-133

44H
I/O Control for Devices

15 14 13 12 11 10 9
R C
e T
s R Reserved

L

8 7 6 S 4 3 2 1 0

I E R S I l i I
S 0 A P S S S S
DFWECNCC
E CLUOI
V L K L T N

ISDEV =1 if this channel is a device
=0 if this channel is a disk file

(Bits 8-15 =0 in this case)

If ISDEV =1

EOF =0 if End Of File on input
RAW =1 if this device is in Raw mode

= 0 if this device is cooked
SPECL == 1 if this device is special
ISCLK =1 if this device is the clock device
ISNUL =1 if this device is the null device
ISCOT = 1 if this device is the console output
ISCIN = 1 if this device is the console input

CTRL = 0 if this device cannot do control strings
via calls AL =2 and AL =3
CTRL = 1 if this device can process control
strings via calls AL =2 and AL = 3.
NOTE that this bit cannot be set.

If ISDEV =0

EOF =0 if channel has been written
Bits 0-5 are the block device number for the
channel (0 = A:, 1 = B:, ...)

7-134

Calls 2 ..5:

Calls 6,7:

44H
I/O Control for Devices

NOTE: Bits 15,8-13,4 are reserved and should
not be altered.

These four calls allow arbitrary control strings
to be sent or received from a device. The call
syntax is the same as the read and write system
calls, except for 4 and 5, which take a drive
number in BL instead of a handle in BX.

An invalid function error is returned if the
CTRL bit (see above) is O.

An access denied error is returned by calls AL =
4,5 if the drive number is invalid.

These two calls allow the user to check if a file
handle is ready for input or output. Status of
handles open to a device is the intended use of
these calls, but status of a handle open to a disk
file is allowed, and is defined as follows:

For input:

• Always ready (AL =FF) until EOF reached,
then always not ready (AL = 0) unless current
position changed via Function Request 42H
(LSEEK).

For output:

• Always ready (even if disk full).

The status is defined at the time the system is
CALLED. On future versions, by the time con
trol is returned to the user from the system, the
status returned may NOT correctly reflect the
true current state of the device or file.

7-135

44H
I/O Control for Devices

Error
Returns

Macro

7-136

AX
1 = invalid function

The function passed in AL was not in the
range 0:7.

5 =access denied (calls AL =4,5)

6 = invalid'handle

The handle passed in BX was not cur
rentlyopen.

13 = invalid data

io_ctrl_dev macro handle, buffer, bytes,switch
mov bx,handle ;or a-bit drive number
mov dx,offset buffer
mov ex,bytes
mov al,switch
mov 2h,44h
int 2Ih
endm

Call

Return

Remarks

Error
Returns

Example

45H
Duplicate a File Handle

AH =45H
BX

File handle

Carry set:
AX

4 =too many open files
6 =invalid handle

Carry not set:
AX = new file handle

Function 45H takes an already opened file han
dIe and returns a new handle that refers to the
same file at the same position.

AX
4 =too many open files

There were no free handles available in
the current process or the internal system
tables were full.

6 =invalid handle

The handle passed in BX was not cur
rentlyopen.

mov bx,fh
mov ah,45H
int 21H

;ax has the returned handle

7-137

46H
Force a Duplicate of a Handle

Call

Return

Remarks

Error
Returns

AH =46H
BX

Existing file handle
CX

New file handle

Carry set:
AX

4 = too many open files
6 =invalid handle

Carry not set:
No error

Function 46H takes an already opened file han
dle and returns a new handle that refers to the
same file at the same position. If there was
already a file open on handle CX, it is closed
first.

AX
4 =too many open files

The internal system tables were full.

6 =invalid handle

The handle passed in BX was not cur
rently open.

Example

7-138

mov
mov
mov
int

bx,fh
cx,newfh
ah,46H
21H

Call

Return

47H
Return N arne of Current Directory

AH =47H
DS:SI

Pointer to 64-byte memory area
DL

Drive number

Carry set:
AX

15 =invalid drive
Carry not set:

No error

Remarks

Error
Returns

Macro

Function 47H returns an ASCIIZ string giving
the name of the current directory for a particular
drive. The directory is root-relative and does not
contain the drive specifier or leading path
separator. The drive code passed in DL is 0 =
default, 1 = A:, 2 = B:, etc.

AX
15 =invalid drive

The drive specified in DL was invalid.

,
duplicate_handle macro handle

mov bx,handle
mov ah,45h
int 21h
endm

7-139

48H
Allocate Memory

Call

Return

Remarks

Error
Returns

7-140

AH =48H
BX

Size of memory to be allocated in paragraphs

Carry set:
AX

7 =arena trashed
8 = not enough memory

BX
Maximum size that could be allocated

Carry not set:
AX:O

Pointer to the allocated memory

Function 48H returns a pointer to a free block of
memory that has the requested size in
paragraphs.

AX
7 =arena trashed

The internal consistency of the memory
arena has been destroyed. This is due to a
user program changing memory that does
not belong to it, thus destroying the
memory manager allocation marks.

8 =not enough memory

The largest available free block is smaller
than that requested or there is no free
block.

Macro
force_handle macro old, new

mov bx,old

48H
Allocate Memory

mov
mov
int
endm

ex, new
ah,46h
21h

7-141

49H
Free Allocated Memory

Call

Return

Remarks

Error
Returns

Macro

7-142

AH =49H
ES

Segment address of memory
area to be freed

Carry set:
AX

7 =arena trashed
9 = invalid block

Carry not set:
No error

Function 49H returns a piece of previously allo
cated memory to the system pool.

AX
7 =arena trashed

The internal consistency of the memory
arena has been destroyed. This is due to a
user program changing memory that does
not belong to it, thus destroYing the
memory manager allocation marks.

9 =invalid block

The block passed in ES is not one allo
cated via Function Request 48H.

cur_dir_name macro buffer, drive
mov si,offset buffer
mov d l,drive
mov ah,47h
int 21h
endm

Call

Return

Remarks

Error
Returns

4AH
Modify Allocated Memory Blocks

AH=4AH
ES

Segment address of memory area
BX

Requested memory area size

Carry set:
AX

7 =arena trashed
8 =not enough memory
9 =invalid block

BX
Maximum size possible

Carry not set:
No error

Function 4AH will attempt to grow/shrink an
allocated block of memory.

AX
7 =arena trashed

The internal consistency of the memory
arena has been destroyed. This is due to a
user program changing memory that does
not belong to it, thus destroying the
memory manager allocation marks.

8 = not enough memory

There was not enough free memory after
the specified block to satisfy the grow
request.

9 =invalid block

The block passed in ES is not one allo
cated via this function.

7-143

4AH
Modify Allocated Memory Blocks

Macro
alloc_mem macro size

mov bX,size
mov ah,48h
int 21h
endm

7-144

Call

4BH
Load and Execute a Program (EXEC)

AH=4BH
DS:DX

Pointer to pathname
ES:BX

Pointer to parameter block
AL

00 = Load and execute program
03 = Load program

Return

Remarks

Carry set:
AX

1 =invalid function
2 =file not found
8 =not enough memory

10 = bad environment
11 =bad format

Carry not set:
No error

This function allows a program to load another
program into memory and optionally begin exe
cution of it. DS:DX points to the ASCIIZ name
of the file to be loaded. ES:BX points to a
parameter block for the load.

A function code is passed in AL:

AL Function

o load and execute the program. A pro
gram header is established for the pro
gram and the terminate and CTRL C
addresses are set to the instruction after
the EXEC system call.

3 load (do not create) the program header,
and do not begin execution. This is use
ful in loading program overlays.

7-145

4BH
Load and Execute a Program (EXEC)

For each value of AL, the block has the format
shown in the following table.

AL = 0 - load/execute program

WORD segment address of
environment.

DWORD pointer to command
line at BOH of Program Segment Prefix

DWORD pointer to default
FCB to be passed at 5CH of PSP

DWORD pointer to default
FCB to be passed at 6CH ofPSP

AL =3 - load overlay

WORD segment address where
file will be loaded.

WORD relocation factor to
be applied to the image.

Note that all open files of a process are duplicat
ed in the child process after an EXEC. This is
extremely powerful; the parent process has con
trol over the meanings of stdin, stdout, stderr,
stdaux and stdprn. The parent could, for exam
ple, write a series of records to a file, open the
file as standard input, open a listing file as stan
dard output and then EXEC a sort program that
takes its input from stdin and writes to stdout.

7·146

4BH
Load and Execute a Program (EXEC)

Also inherited (or passed from the parent) is an
"environment." This is a block of text strings
(less than 32K bytes total) that convey various
configurations parameters. The format of the
environment is as follows:

(paragraph boundary)

BYTE ASCIIZ string 1

BYTE ASCIIZ string 2

BYTE ASCIIZ string n

BYTE of zero

Typically the environment strings have the
form:

parameter = value

For example, COMMAND.COM might pass its
execution search path as:

PATH=A:\BIN;B:\BASIC\LIB

A zero value of the environment address causes
the child process to inherit the parent's envi
ronment unchanged.

7-147

4BH
Load and Execute a Program (EXEC)

Error
Jl,eturns

Macro

7-148

AX
1 = invalid function

The function passed in AL was not 0 or 3.

2 =file not found

The path specified was invalid or not
found.

8 =not enough memory

There was not enough memory for the
process to be created.

10 =bad environment

The environment was larger than 32Kb.

11 =bad format

The file pointed to by DS:DX was in .EXE
format and contained information that
was internally inconsistent.

/

free_memory macro address
mov ax/address
moves/ax
mov ah,49h
int 21h
endm

Call

Return

Remarks

Macro

4CH
Termin~tea Process

AH =4CH
AL =R~turn code

None

Function 4CH terminates the current process
and transfers control to the invoking process. In
addition, a return code may be sent. All files
open at the time are closed'.

This method is prefe:rred over all others (Inter
rupt 20H, JMP 0) and has the advantage that
CS:O does not have to P9int to the Program
Header Prefix. . . .

modify_memory macro address, size
mov ax,address
mov
mov
mov
int
endm

es,ax
bx,size
ah,4ah
21h

7-149

4DH
Retrieve the Return Code of a Child

Call

Return

Remarks

Macro

7-150

AH=4DH

AX
Exit code

Function 4DH returns the Exit code specified by
a child process. It returns this Exit code only
once. The'low byte of this code is that sent by
the Exit routine. The high byte is one of the
following: '

o-Terminate/abort
1- CTRLC
2 - Hard error
3 - Terminate and stay resident

!

exec macro path,param,switch
mov dx,offset path
mov bx,offset param
mov al,switch
mov ahAbh
int 2Ih
e11-dm

Call

Return

Remarks

4EH
Find Match File

AH=4EH
DS:DX

Pointer to pathname
CX

Search attributes

Carry set:
AX

2 = file not found
18 = no more files

Carry not set:
No error

Function 4EH takes a pathname with wild card
characters in the last component (passed in an
ASCIIZ string pointed to by DS:DX) along with
a set of attributes (passed in CX) and attempts
to find all files that match the pathname and
have a subset of the required attributes. A
datablock at the current DTA is written that
contains information in the following form:

find_buLreserved DB 21 DUP (?); Reserved*
find_buLattr DB? ;attribute found
find_buf..lime DW ? ;time
find_buLdate DW ? ;date
find_buLsize_1 DW ? ;low(size)
find_buLsize~h DW ? ;high(size)
find_buLpname DB 13 DUP (?) ;packed name
find_buf ENDS

*Reserved for MS-DOS internal use on subsequent
find_nexts

To obtain the subsequent matches of the path
name, see the description of Function 4FH.

7-151

4EH
Find Match File

Error
Returns

Macro

7-152

AX
2 =file not found

The path specified in DS:DX was an
invalid path.

18 = no more files

There were no files matching this specifi
cation.

,
terminate_process macro code

mov al,code
mov ah,4ch
int 21h
endm

Call

Return

4FH
Step Through a Directory Matching

Files

AH=4FH

Carry set:
AX

18 = no more files
Carry not set:

No error

Remarks

Error
Returns

Macro

The current DTA address must point at a block
returned by Function 4EH (see Function 4EH).

AX
18 = no more files

There are no more files matching this
pattern.

,
retrieve_code macro

mov ah,4dh
int 21h
endm

7-153

54H
Return Current Setting of Verify
After Write Flag

Call

Return

Remarks

Macro

7-154

AH =54H

AL
Current verify flag value

The current value of the verify flag is returned
inAL.

,
find_match macro name,attrib

mov dx,offset name
mov cx,attrib
mov ah,4eh
int 21h
endm

Call

Return

Remarks

Error
Returns

56H
Move a Directory Entry

AH=56H
DS:DX

Pointer to pathname of
existing file

ES:DI
Pointer to new pathname

Carry set:
AX

2 =file not found
5 = access denied

17 =not same devke
Carry not set:

No error

Function 56H attempts to rename a file into
another path. The paths must be on the same
device. '

AX
2 =file not found

The file name ~pecifedby DS:DX was not
found.

5 = access denied

The path specified in DS:DX was a direc
tory or the file specified by ES:DI already
exists or the destination directory entry
could not be created.

17 =not same device

The source and destination are on differ
ent qrives.

7-155

56H
Move a Directory Entry

Macro
step_match macro

mov ah,4fh
int 21h
endm

7-156

Call

Return

Remarks

57H
Get/Set Date/Time of File

AH =57H
AL

00 =get date and time
01 =set date and time

BX
File handle

CX (if AL = 01)
Time to beset

DX (if AL =01)
Date to be set

Carry set:
AX

1 == invalid function
6 =invalid handle

Carry not set:
No error
CX/DX set if function 0

Function 57H returns or sets the last-write time
for a handle. These times are not recorded until
the file is closed.

A function code is passed in AL:

AL Function

o return the time/date of the handle in
eX/DX

1 set the time/date of the handle to
ex/ox

The format for the date and time is the same as
the date and time fields for a directory entry,
except that the individual bytes in each word are
reversed. The high order portion of the time is in
CL, and the high order portion of the date is in
DL.

7-157

57H
Get/Set Date/Time of File

Error
Returns

Macro

7·158

AX
1 =invalid function

The function passed in AL was not in the
range 0:1.

6 == invalid handle

The handle passed in BX was not cur
rentlyopen.

,
check_verify_flag macro

mov ah,54h
int 21h
endm

Macro

Note These macro definitions apply to system call
examples OOH through 57H.

,
.*******************,
; Interrupts
.*******************,

;ABS_DISK_READ
abs_disk_read macro disk, buffer, num_sectors, firsLsector

mov aI,disk
mov bx,offset buffer
mov cx,num_sectors
mov dx,firsLsector
int 25H ;interrupt 25H
popf
endm

;ABS_DISK_WRITE
abs_disk_write macro disk, buffer, num_sectors, firsLsector

mov aI,disk
mov bX,offset buffer
mov cx,num_sectors
mov dx,firsLsector
int 26H ;interrupt 26H
popf
endm

stay_resident macro IasLinstruc
mov dx,offset IasLinstruc
inc dx
int 27H
endm

.*******************,
; Functions
.*******************,

;STAY_RESIDENT

;interrupt 27H

7-159

7-160

read_kbd_and_echo macro
mov ah,l
int 21H
endm

display_char macro character
mov dl,character
mov ah,2
int 21H
endm

aux_input macro
mov ah,3
int 21H
endm

aux_output macro
mov ah,4
int 21H
endm

prinLchar macro character
mov dl,character
mov ah,5
int 21H
endm

dir_console_io macro switch
mov dl,switch
mov ah,6
int 21H
endm

dir_console_input macro
mov ah,7
int 21H
endm

read_kbd macro
mov ah,8
int 21H
endm

;READ_KBD_AND_ECHO
;function 1

;DISPLAY_CHAR

;function 2

;AUX_INPUT
;function 3

;AUX_OUTPUT
;function 4

;PRINT_CHAR

;function 5

;function 6

;DIR_CONSOLE_INPUT
;function 7

;READ_KBD
;function 8

display macro string
mov dx,offset string
mov ah,9
int 21H
endm

geLstring macro limit,string
mov string,limit
mov dx,offset string
mov ah,OAH
int 21H
endm

check_kbd_status macro
mov ah,OBH
int 21H
endm

;DISPLAY

;function 9

;GET_STRING

;function OAH

;CHECK_KBD_STATUS
;function OBH

flush_and_read_kbd macro switch ;FLUSH_AND_READ_KBD
mov al,switch
mov ah,OCH ;function OCH
int 21H
endm

reseLdisk macro
mov ah,ODH
int 21H
endm

selecLdisk macro disk
mov dl,disk[-65]
mov ah,OEH
int 21H
endm

open macro fcb
mov dx,offset fcb
mov ah,OFH
int 21H
endm

;RESET DISK
;function ODH

;SELECT_DISK

;function OEH

;OPEN

;function OFH

7-161

close macro fcb ;CLOSE
mov dx,offset fcb
mov ah,IOH ;function IOH
int 2IH
endm

search_first macro fcb ;SEARCH_FIRST
mov dx,offset fcb
mov ah,llH ;function IIH
int 2IH
endm

search_next macro fcb ;SEARCH_NEXT
mov dx,offset fcb
mov ah,I2H ;function I2H
int 21H
endm

delete macro fcb ;DELETE
mov dx,offset fcb
mov ah,13H ;function I3H
int 21H
endm

read_seq macro fcb ;READ_SEQ
mov dx,offset fcb
mov ah,14H ;function I4H
int 21H
endm

write_seq macro fcb ;WRITE_SEQ
mov dx,offset fcb
mov ah,15H ;function I5H
int 2IH
endm

create macro fcb ;CREATE
mov dx,offset fcb
mov ah,16H ;function I6H
int 2IH
endm

7-162

rename macro speciaLfcb
mov dx,offset special_feb
mov ah,17H
int 21H
endm

currenLdisk macro
mov ah,19H
int 21H
endm

seLdta macro buffer
mov dx,offset buffer
mov ah,lAH
int 21H
endm

reacLran macro feb
mov dx,offset feb
mov ah,21H
int 21H
endm

write_ran macro feb
mov dx,offset feb
mov ah,22H
int 21H
endm

file_size macro feb
mov dx,offset feb
mov ah,23H
int 21H
endm

;RENAME

;function 17H

;CURRENT_DISK
;function 19H

;SET_DTA

;function lAH

;READ_RAN

;function 21H

;function 22H

;FILE_SIZE

;function 23H

7-163

seLrelative__record macro fcb
mov dx,offset fcb
mov ah,24H
int 21H
endm

;function 24H

7-164

seLvector macro interrupt,seg_addr,ofLaddr ;SET_VECTOR
push ds
mov ax, seg_addi
mov ds,ax
mov dx,ofLaddr
mov al,interrupt
mov ah,25H ;function 25H
int 21H
endm

ran_block_read macro fcb, count, rec_size; RAN_BLaCK_READ
mov dx,offset fcb
mov cx, count
mov word ptr fcb[14], rec_size
mov ah,27H ;function 27H
int 21H
endm

ran_block_write macro fcb,count,rec_size;RAN_BLOCK_WRITE
mov dx,offset fcb
mov cx,count
mov word ptr fcb[14], rec_size
mov ah,28H ;function 28H
int 21H
endm

parse macro filename, feb
mov si,offset filename
mov di,offset feb
push es
push ds
pop es
mov al,OFH
mov ah,29H
int 21H
pop es
endin

geLdate macro
mov ah,2AH
int 21H
endm

seLdate macro year,month,day
mov cx,year
mov dh,month
mov dl,day
mov ah,2BH
int 21H
endm

geLtime macro
mov ah,2CH
int 21H
endm

;PARSE

;fundion 29H

;GET_DATE
;functio~ 2AH

;SET-DATE

;fundion 2BH

;GET_TIME
;fundion 2CH

;SET_TIME
seLtime macro hour, minutes, seconds, hundredths

mov ch,hour
mov d,minutes
mov dh,seconds
mov dl,hundredths
mov ah,2DH ;fundion 2DH
int 21H
endm

7-165

verify macro switch
mov aI, switch
mov ah,2EH
int 2IH
endm

;VERIFY

;function 2EH

get_dta macro
mov
int
endm

ah,2FH
2IH

7-166

get_version_num macro ;GET_VERSION_NUM
mov ah; 30H
int 2IH
endm

keep_process macro exitcode,parasize ;KEEP_PROCESS
mov al,exitcode
mov dx,parasize
mov ah,3IH
int 2IH
endm

ctrl_c_check macro switch,val ;CTRL_C_CHECK
mov dl,val
mov a I, switch
mov ah,33H
int 2IH
endm

geL_vector macro interrupt ;GET_VECTOR
mov al,interrupt
mov ah,35H
int 2IH
endm

get_disk_space macro drive ;GET_DISK_SPACE
mov dl,drive
mov 2h,36H
int 2IH
endm

get_countrY_info macro buffer,country ;GET_COUNTRY_INFO
mov dx,offset buffer
mov al,country ;country = 0
mov ah,38H
int 2IH
endm

mkdir macro name ;MKDIR
mov dx,offset name
.mov ah,39H
int 2IH
endm

rmdir macro' name ;RMDIR
mov dx,offset name
mov ah,3AH
int 2IH
endm

chdir macro name ;CHDIR
mov dx,offset name
mav ah,3BH
int 2IH
endm

create_file macro name,attrib ;CREATE_FILE
mov dx,offset name
mov cx,attrib
mov ah,3CH
int 2IH
endm

open_handle macro name,access ;OPEN_HANDLE
mov dx,offset name
mov al,access
mov 2h,3DH
int 2IH
endm

7-167

close_handle macro handle
mov bx,handle
mov 2h,3EH
int 2IH
endm

;CLOSE_HANDLE

read_from_handle macro buffer, bytes,handle
;READ_FROM_HANDLE

mov
mov
mov
mov
int
endm

dx,offset buffer
ex,bytes
bx,handle
ah,3FH
2IH

write_to_handle macro buffer,bytes,handle
;WRITE_TO_HANDLE

mov
mov
mov
mov
int
endm

dx,offset buffer
ex, bytes
bx,handle
ah,40H
2IH

erase macro name
mov dx,offset name
mov ah,4IH
int 2IH
endm

;ERASE

move_pointer macro highword,lowword,switch,handle
;MOVE_POINTER

7-168

mov
mov
mov
mov
mov
int
endm

dx,lowword
cx,highword
al,switch
bx,handle
ah,42H
2IH

change_attrib macro name,attrib,switch ;CHANGE_ATTRIB
mov dx,offset name
mov cx,attrib
mov al,switch
mov 2h,43H
int 2IH
endm

bx,handle
dx,offset buffer
cX,bytes
al,switch
ah,44H
2IH

mov
mov
mov
mov
mov
int
endm

io_ctrl_dev macro handle,buffer,bytes,switch
;IO_CTRL_DEV
;or 8-bit drive number

duplicate_handle macro handle
mov bx,handle
mov ah,45H
int 2IH
endm

;DUPLICATE_HANDLE

force_handle macro old,new
mov bX,old

;FORCE_HANDLE

mov
mov
int
endm

cX,new
ah,46H
2IH

cur_dir_name macro buffer,drive
mov si,offset buffer
mov dl,drive
mov ah,47H
int 2IH
endm

;CUR_DIR_NAME

7-169

alloc_mem macro size
mov bx,size
mov ah,48H
int 2IH
endm

free_memory macro address
mov ax,address

;ALLOC_MEM

;FREE_MEMORY

mov
mov
int
endm

eS,ax
ah,49H
2IH

modify_memory macro address, size ;MODIFY_MEMORY
mov ax, address
mov
mov
mov
int
endm

eS,ax
bx,size
ah,4AH
2IH

7·170

exec macro path,param,switch
mov dx,offset path
mov bx,offset param
mov al,switch
mov ah,4BH
int 2IH
endm

terminate_process macro code
mov al,code
mov ah,4CH
int 2IH
endm

retrieve_code macro
mov ah,4DH
int 2IH
endm

;EXEC

;TERMINATE_PROCESS

;RETRIEVE_CODE

find_match macro name,attrib
mov dx,offset name
mov cx,attrib
mov ah,4EH
int 2IH
endm

step...,match macro
mov ah,4FH
int 2IH
endm

check_verify_flag macro
mov ah,54H
int 2IH
endm

rename macro old,new
mbv dx,offset oid
mov di,offset new
mov ah,56H
int 2IH
endm

;STEP_MATCH

;RENAME

date_time_of_file macro switch,handle,date,time
;DATE_TIME_OF_FILE

mov
mov
mov
mov
mov
int
endm

al,switch
bx,handle
cx,time
dx,date
ah,57H
2IH

7-171

.*******************,
; General
.*******************,
move_string macro source, destination, num_bytes

;MOVE_STRING
push
mov
mov
mov
mov
mov

rep movs
pop
endm

es
ax,ds
eS,ax
si, offset source
di,offset destination
cx, nurn_bytes
es:destination, source
es

7-172

convert macro value, base, destination ;CONVERT
local table, start
jmp start

table db "0123456789ABCDEF"
start: mov aI,value

xor ah,ah
xor bx,bx
div base
mov bl,al
mov al,cs: table[bx]
mov destination, al
mov bl,ah
mov al,cs: tabie[bx]
mov destination[1],al
endm

mov

local
jrnp
db

converLto_binary macro string, number, value
;CONVERT_TO_BINARY

ten, start, calc, m ult,no_mult
start
10
value,O

ten
start:

calc:

mult:

xor cx,cx
mov el,number
XOI si,si
xor aX,ax
mov aI, string[si]
sub al,48
cmp cX,2
jl no_mult
push cx
dec cx
mul cs:ten
loop mult
pop cx
add value,ax
inc si
loop calc
endm

converLdate macro dir_entry
mov dx,word ptr dir_entry[25]
mov el,S.
shr dl,el
mov dh,dir_entry[25]
and dh,lfh

shr
add
endm

xor
mov
el,l
cx,1980

cx,cx
el,dir_entry[26]

7-173

8
ROM BIOS

Service
Routines

• Overview
• Conventions
• Interrupt Vector Listing
• Video Control
• Diskette Services
• Communications Services
• Keyboard Handling
• Printer Routines
• Miscellaneous ROM BIOS

Services

• Bypassing the BIOS
• CONFIG.SYS

8-1

ROM BIOS
Service
Routines

8-2

Overview

This chapter describes the ROM BIOS service
routines that are provided to perform the more
low-level functions that you may need in your
assembly language programs. Because these are
low-level routines, ,they provide more direct
access to the hardware than the DOS routines.
However, they do not provide some of the protec
tion and conveniences that the DOS routines
give. Be sure to check the chapter on "System
Calls" to make your choice between similar DOS
and BIOS calls.

ROM BIOS
Service

Routines

Conventions

Access to the BIOS service routines is through
the 8086 software interrupts. The routines are
called with conventions that are very similar to
the conventions for calling DOS routines.

To issue a BIOS interrupt, use the Interrupt
statement to select the desired interrupt:

INT IlH

Some interrupts, like Interrupt IIH (Equipment
List), perform only one function. Others, like
Interrupt I3H (Diskette Services), have several
sub-functions that you can call. To select a sub
function, move the number of the sub-function
into the AH register.

This chapter describes the register usage for
each of the BIOS service routines. It is usually
wise to save all important registers before call
ing a BIOS service routine.

8-3

ROM BIOS
Service
Routines

8·4

Interrupt Vector List

Interrupt
Number

(Hex) Nam~

5 Print Screen

10 Video

11 Equipment Check

12 Determine Memory Size

13 Diskette

14 Communications

16 Keyboard

17 Printer

19 Bootstrap

Introduction

Monochrome
Text~ode

ROM BIOS
Service

Routines

Video Control

The video controller on the standard AT&T Per
sonal Computer 6300 supports both monochrome
and color monitors and produces text or graph
ics for both color and mOBochrome. Interrupt
10H has the BIOS services'to ~upport all of these
inod~s. This section describes the details that
pertain to each major type Qivideo access.

The monochrome text modes ~re mode 0
40x25 characters and mode 2 - 80x25 charac
ters. ,The monochrome text mode uses 32K start
ing at B8000H. For 'each screen position, there
~re two bytes in memory. The first byte is the
ASCII code for the character to' be displayed.
The second byte is the "attribute" that specifies
how the character is to be displayed. This
attribute byt~ controls brightness, underlining,
and blinking.

The low order nybble of the attribute byte gov
erns the character being displayed according to
the following table:

Value
o
1

7

F

Meaning
Character is black
Character is normal (whit~)
intensity, underlined
Character is normal (white)
intensity
Character is high intensity white

Any other value for the low nybble selects a par
ticular gray character intensity.

The high order nybble of the attribute byte gov
erns the character background and blinking. A
displayed character will blink if the high order
bit of its attribute byte is set.. The remaining

8-5

ROM BIOS
Service
Routines

8-6

three bits select the gray scale of the background
- again, 000 is black and 111 is white. Note that
inv~rsevideo can be obtained by forcing a bla,ck
character on a white background, i.e. an attri
bute byte of 70H.

The first two byte~ in the display memory con
trol the character in the top left corner of the
screen. The next two bytes control the character
in the top row, in the second column position,
and so on. .

At the end of each line, the display memory re
turns to the first column of the next line. There
are no gaps in the display storage, and no bound
aries between one line and the next.

Eight pages of memory are used to build up to
eight separate screens. Only one page is active
at any time, but you ca~ switch the active page
number and thereby display screens very
rapidly. .

The display pages are numbered 0 -7 for 40x25
mode and 0 - 3 for 80x25 mode. Page 0 starts at
:memory location B8000H. For 40 column mode,
the pages occur at 2Kintervals; for 80 column,
at 4K intervals. A total of 32K of memory is
used.

Color Text
Modes

ROM BIOS
Service

Routines

The color text modes are mode 1 - 40x25 color
mode and mode 3 - 80x25 color.

Memory usage for the color text modes is similar
to the method used for monochrome text. Two
bytes of memory are used for each character
position: the first is the ASCII code for the char
acter and the second is the attribute byte. The
attribute byte specifies blinking, brightness, and
color.

The attribute bytes in color text mode operate
much the same way as they do in monochrome
text modes with two major differences:

• Instead of bits 0-3 and 4-7 selecting the gray
scale of the foreground and background, they
select foreground and background colors accord
ing to the following chart:

Bit
deb a

o 0 0 0
000 1
001 0
001 1
o 1 0 0
o 101
o 1 1 0
o 1 1 1
1 000
100 1
1 010
101 1
1 100
1 101
1 110
1 1 1 1

Color

Black
Blue
Green
Cyan
Red
Magenta
13rown
White
Grey
Lt. blue
Lt. green
Lt. cyan
Lt. red
Lt. magenta
Yellow
High intensity white

8-7

ROM BIOS
Service
Routines

Color
Graphics
Mode

8-8

Note that since background color is determined
by a three-bit value, only the first eight colors
apply to that field.

• There is no underline attribute possible in color
mode. As can be seen by the chart above, attri
bute settings that produce an ~nderline in
monochrome mode produce a blue character in
color mode.

The display memory maps to the character posi
tions exactly as it does in monochrome text
mode. .

There is one color graphics mode: mode 4
medium resolution (320x200) color graphics. For
any color display, you can use up to four colors.
You select from one of two "palettes," each of
which provides three colors.You select a "back
ground" color to be used as the fourth color.

Palette 0 contains green, yellow, and red.
Palette 1 contains cyan (light blue), magenta,
and white.

320 pixels can be displayed on each of 200 lines.
Each line takes 80 bytes or 640 bits of display
memory. Each color pixel use two bits of
memory. Since two bits give you four possible
combinations, for efich pixel you specify either
the background color or one of the three colors in
the current palette. The leftmost pixels are
represented by the high order bits in the byte.

High
Resolution
Monochrome
Graphics

ROM BIOS
Service

Routines

Display memory for color graphics mode starts
at location B8000H and is divided into four 8K
blocks. Starting at B8000, the first 8000D bytes
contain the pixel data for the even scan lines on
page zero. That is, the first 80 bytes describe line
0, the next 80H describe line 2, and so on
through line 198. The odd lines are described in
the 8K block starting at BAOOO. The same pat
tern is repeated for page one in the next 16K
block, with the even lines starting at BeOOO and
the odd lines starting at BEOOO.

Memory for high resolution 640x200 mono
chrome graphics is handled similarly to 320x200
color graphics. The only difference is that
instead of memory containing two bits of color
information per pixel, each pixel can only be on
or off and is thus represented by one bit. In this
way eight pixels can be represented in a byte
instead of four, so that a scan line takes as
many bytes as in color graphics mode even
though it contains twice as many pixels. As in
color graphics mode, the leftmost pixels are
represented in the high order bits of each byte.
Line mapping is exactly as described above for
color graphics mode. In high resolution mono
chrome graphics the background color is always
black and the foreground color is chosen by bits
0-3 of the color select register.

8-9

ROM BIOS
Service
Routines

Super High
Resolution
Monochrome
Graphics

Super high resolution 640x400 monochrome
graphics mode maps one bit per pixel with the
leftmost pixel represented at the high end of the
byte, just like high resolution 640x200 mode.
Also like high resolution mode, super high mode
maps onto a black background with a fore
ground color chosen by the color select register.
The memory mapping, however, takes up all
32K of display memory for a single page.
Memory is broken up into four 8K segments,
with each segment containing the data for every
fourth scan line. Thus display memory looks like
this:

Memory
location Contains pixels for line numbers

8-10

B8000

B9F3F

BAOOO

BBF3F

BCOOO

BDF3F

BEOOO

BFF3F

0,4,8, ... 396

Not used.

1,5,9, ... 397

Not used.

2,6,10, ... 398

Not used.

3,7,11, ... 399

Not used.
,--

Set Mode
and Clear
Screen

Set Cursor
Type

Set Cursor
Position

ROM BIOS
Service

Routines

Input:
(AH) =0
(AL) contains the CRT mode value

Text Modes:
(AL) =0 40x25 monochrome
(AL) = 1 40x25 color
(AL) =2 80x25 monochrome
(AL) =3 80x25 color

Graphics modes:
(AL) =4 320x200(medium resolution), color
(AL) =5 320x200(medium resolution),

monochrome
(AL) =6 640x200 black/white (high resolution)
(AL) =40H graphics 640x400 monochrome

super high resolution
(AL) =48H graphics 640x400 monochrome

tiny text (80x50 text)

Input:
(AH) =1
Low order 5 bits of (CH) = start line for cursor.

Note
Do not set the high bits of CH: unpredictable
results will occur.

Low order 5 bits of (CL) =end line for cursor.

Input:
(AH) =2
(DH,DL) =Row,Column (Position 0,0 is upper

left.)
(BH) =page number (must be 0 for super-res

graphics mode.)

8-11

ROM BIOS
Service
Routines

Read
Cursor
Position

Read
Light Pen
Position

Select
Active
Page
Number

8-12

Input:
(AH) =3
(BH) =page number (must be 0 for super-res

graphics mode.)

Output:
(DH,DL) =row, column of current cursor
(CH,CL) =current cursor start and end lines

Input:
(AH) =4

Output:
(AH) =0 light pen switch not triggered
(AH) =1 valid light pen value obtained:

(DH,DL) = row, column of character
light pen position

(CH) =raster line (0-199)
(BX) =pixel column (0-319 for medium

resolution, 0-639 for high
resolution.)

Valid only for modes (0 - 6)

Input:
(AH) =5
(AL) =0-15 for modes 0, 1

=0-7 for modes 2, 3
=0-1 for modes 4, 6

Scroll Active
Page up

Scroll Active
Page Down

Character
Handling

ROM BIOS
Service

Routines

Input:
(AH) =6
(AL) =number of lines blanked at bottom of

window by scrolling ~p. AL =0 means
blank entire window.

(CH,CL) =row, column of upper left corner of
scroll

(DH,DL) =row, column of lower right corner of
scroll

(BH) =attribute to be used on blank line(s).

Input:
(AH) =7
(AL) =number of lines blanked at top of

window by scrolling down. AL = 0 means
blank entire window.

(CH,CL) =row, column of upper left corner of
scroll

(DH,DL) =row, column of lower right corner of
scroll

(BH) =attribute to be used on blank line(s).

The next three video services perform character
input/output for the CRT. If your program dis
plays characters.to the screen while in graphics
modes, the characters are formed from a charac
ter generator image that is maintained in the
ROM. However, only the first 128 characters are
encoded there. If you want to create your pwn
characters, either for the purposes of doing
character gr~phicsor implementing a foreign
language alphabet, you must set up a table of
code points for 128 new characters and initialize
the pointer at interrupt IF (address 0007CJ-I) to
point to the lK table. These codes can then be
accessed py referring to characters 128-255.

8-13

ROM BIOS
Service
Routines

Read
Attribute or
Character at
Current
Cursor
Position

Write
Attribute and
Character at
Current
Cursor
Position

Write
Character
Only at
Current
Cursor
Position

8-14

When you write characters to the screen in text
m~H~~~m~~M~~~~~ilim

than will fit on one line, the extra characters
automatically wrap around to the beginning to
the next line. In graphics mode, the character
handling routines only produce correct results
for characters contained on the same row (con
tinuation to succeeding lines does not work.)

Input:
(AH) = 8
(BH) = current display page

Output:
(AL) = character read
(AH) = attribute of character read

Input:
(AH) = 9
(BH) = current display page
(CX) =count of characters to write
(AL) =character to write
(BL) = attribute of character (if text mode)

=color of character (if graphics mode)

Note
If bit 7 of BL =1, the color value is exclusive
OR'd with the current contents of the dot.

Input:
(AH) =OAH
(BH) = current display page
(CX) = count of characters to write
(AL) = character to write

Set Color
Pallette

Write Dot

Read Dot

ROM BIOS
Service

Routines

Input:
(AH) =OBH
(BH) = color palette ID (0-127)
(BL) =color value to be used with that color ID

Color ID =0 selects the background color (0-15)
Color ID = 1 selects the palette to be used:

0= green/red/yellow
1 = cyan/magenta/white

Input:
(AH) =OCH
(DX) =row number
(CX) =column number
(AL) = color value. If bit 7 of AL = 1, the color

value is exclusive OR'd with the current
contents of the dot.

Input:
(AH) =ODH
(DX) =row number
(CX) =column number

Output:
(AL) =the dot read

8-15

ROM BIOS
Service
Routines

Write
Teletype

Current
Video State

8-16

This routine is used by the "TYPE" command
and other DOS commands to display data on
the screen.

Input:
(AH) =OEH
(AL) =character to write
(BL) =foreground color in graphics mode

Note
Screen width is controlled by previous mode set.

Input:
(AH) =OFH

Output:
(AL) =current mode
(AH) =number of character columns on screen
(BH) =current active display page

ROM BIOS
Service

Routines

Diskette Services

Introduction Interrupt 13H is the BIOS routine for diskette
services. There are six services provided by INT
13H.

Input (AH) = 0 Reset Diskette System
(AH) =1 Read status of diskette system into AL
(AH) =2 Read sectors into memory
(AH) =3 Write sectors from memory to diskette
(AH) =4 Verify the specified sectors
(AH) =5 Format a track

Additional settings for read, write, verify, and
format:

(DL) =drive number (0 - 3 allowed, value
checked)

(DH) =head number (0 - 1 allowed, value not
checked)

(CH) =track number (0-39 allowed, value not
checked)

Additional settings for read, write, and verify:

(CL) =sector number (1-9, value not checked)
(AL) =number of sectors (max =9, value not

checked)

ES:BX = address of buffer (not required for
verify) For the format operation, ES:BX
points to the collection of address fields
for the track. There must be one of these
fields for every sector on the track. Each
field has four bytes:

Offset 0 =track number
1 =head number
2 =sector number
3 =number of bytes/ sector
(00 =128, 01 =256, 02 =512, 03 =1024)

8-17

ROM BIOS
Service
Routines

Output

8-18

(AH) =Status of operation:

01 bad command
02 address mark not found
03 write was requested on write-protected

disk
04 requested sector not found
08 DMA overrun
09 DMA transfer crossed a 64K boundary
10 read data error detected by CRC
20 diskette controller chip failed
40 seek to desired track failed
80 device timeout

(CY) =0 successful operation
(CY) = 1 unsuccessful operation (AH has details)

For read, write, and verify these registers are
preserved: DS, BX, DX, CH, and CL.

(AL) = number of sectors read; this value may
be incorrect if a timeout occurred.

NOTE

If an error is reported by the diskette, reset the
diskette, then retry the operation. On read opera
tions, no motor start delay is taken, so your code
should retry three times to make sure that a read
error is not caused by motor start-up.

ROM BIOS
Service

Routines

Communications Services

Introduction

Initialize the
Communica
tions Port

This set of routines performs serial, RS232C
communications through the communications
port. You should use a polling technique in your
communications; this is not interrupt-driven
I/O. All functions are accessed through BIOS
interrupt 14H.

Input:
(AH) =0
(DX) =selection of RS-232 channel (0 or 1)
(AL) = parameters for initialization in the

following form:

765
-Baud Rate-

000 - 110 baud
001 -150
010 - 300
011- 600
100 - 1200
101- 2400
110 - 4800
111 - 9600

4 3
-Parity-

00 - None
01- Odd
11- Even

2
Stopbit

0-1
1-2

1 0
-Word length-

10 - 7 bits
11 - 8 bits

Output:
Condition is set according to the same conven
tions as in "Get Comm Port Status" (see below),

8-19

ROM BIOS
Service
Routines

Send
Character

Receive
Character

8-20

Input:
(AH) =1
(DX) =RS232 channel to be used (0 or 1)
(AL) = the character to be sent.

Output:
(AL) is preserved.
(AH) - if the operation was unsuccessful, bit 7

is set. The other bits in (AH) are set as
they are in "Get Comm Port Status" if
the operation was successful.

Input:
(AH) =2
(DX) =RS232 channel to be used (0 or 1)

Output:
(AL) =the received character.
(AH) = status of operation, if (AH) = 0, the oper

ation was successful. If the high order bit
of (AH) is set, a timeout error aborted the
operation and the rest of (AH) can be
ignored. Any other setting of (AH) indi
cates errors in the receive character
operation.

GetComm
Port Status

ROM BIOS
Service

Routines

Input:
(AH) =3
(DX) =RS232 channel to be used (0 or 1)

Output
(AX) =status:
(AH) =line control status

bit 7 =timeout
bit 6 =transmission shift reg. empty
bit 5 =transmission holding reg. empty
bit 4 =break detect
bit 3 =framing error
bit 2 = parity error
bit 1 = overrun error
bit 0 =data ready

(AL) =modem status
bit 7 =received line signal detect
bit 6 =ringing detect
bit 5 =data set ready
bit 4 =clear to send
bit 3 =delta receive line signal detect
bit 2 = trailing edge ring detected
bit 1 =delta data set ready
bit 0 =delta clear to send

8-21

ROM BIOS
Service
Routines

Keyboard Handling

Introduction Interrupt 16H provides the keyboard handling
functions through three sub-functions. Most
keys return two values: a scan code and a char
acter code. The scan code is the same as the key
number (see diagram below), and the character
code is the ASCII superset interpretation of the
key (including coincident SHIFTs or CTRLs).
Check the section on "DOS Interrupts and Func
tion Calls" to select either the BIOS keyboard
routines or the DOS routines.

+ SCROll

~~BBBB~~BBB00~G[illITillITill
F3 F4 I~I Q W E R T Y U lOP [{ J\ -I HOME t PGUP -

~~ ~l?~~~l¥J~~l?~l?Sr;JJ8~p~~
GJGJ [E]]0G~B~~B0BB~BDGJ[;]GJ
F7 F8 t , z x C V B N M < > ? t ~~\ END ~ PGDN +

[;] [;] [;]]~~~~~~ [;] GJ [;] G;] [;] [G]] La [;]~GJ [;]
GJB [G] I 39 I[GTI EBJctill

8-22

ROM BIOS
Service

Routines

CHARACTER CODES

ASCII Value Control ASCII Value
Decimal Hex Character Character Decimal Hex Character

000 00 (null) NUL 032 20 (space)
001 01 Q SOH 033 21 !
002 02 e STX 034 22 "
003 03 • ETX 035 23 #
004 04 • EOT 036 24 $
005 05 -It ENQ 037 25 %
006 06 9 ACK 038 26 &
007 07 (beep) BEL 039 27
008 08 a BS 040 28
009 09 (tab) HT 041 29
010 OA (line feed) LF 042 2A *
011 OB (home) VT 043 2B +
012 OC (form feed) FF 044 2C
013 OD (carriage CR 045 2D

return)
014 OE n SO 046 2E
015 OF ~ SI 047 2F /
016 10 • DLE 048 30 0
017 11 ~ DC1 049 31 1
018 12

*
DC2 050 32 2

019 13 !! DC3 051 33 3
020 14 qr DC4 052 34 4
021 15 § NAK 053 35 5
022 16 I SYN 054 36 6
023 17 ETB 055 37 7
024 18 t CAN 056 38 8
025 19 • EM 057 39 9
026 1A ---. SUB 058 3A
027 1B ..- ESC 059 3B
028 1C (cursor FS 060 3C <

right)
029 1D (cursor left) GS 061 3D

030 IE (cursor up) RS 062 3E >
031 IF (cursor US 063 3F ?

down)

8-23

ROM BIOS
Service
Routines

CHARACTER CODES (Cont'd)

ASCII Value Control ASCII Value
Decimal Hex Character Character Decimal Hex Character

064 40 @ 096 60 ©

065 41 A 097 61 a
066 42 B 098 62 b
067 43 C 099 63 c
068 44 D 100 64 d
069 45 E 101 65 e
070 46 F 102 66 f
071 47 G 103 67 g
072 48 H 104 68 h
073 49 I 105 69
074 4A J 106 6A j
075 4B K 107 6B k
076 4C L 108 6C 1
077 4D M 109 6D m
078 4E N 110 6E n
079 4F 0 111 6F 0

080 50 P 112 70 p
081 51 Q 113 71 q
082 52 R 114 72 r
083 53 S 115 73 s
084 54 T 116 74 t
085 55 U 117 75 u
086 56 V 118 76 v
087 57 W 119 77 w
088 58 X 120 78 x
089 59 Y 121 79 y
090 5A Z 122 7A z
091 5B [123 7B
092 5C \ 124 7C
093 5D] 125 7D
094 5E /\ 126 7E
095 5F 127 7F Cl

8-24

ROM BIOS
Service

Routines

CHARACTER CODES (Cont'd)

ASCII Value ASCII Value
Decimal Hex Character Decimal Hex Character

128 80 Q 160 AO
(

a
129 81 ii 161 Al
130 82 e 162 A2 6
131 83 a 163 A3 U
132 84 a 164 A4 il
133 85

\

165 A5 Na
134 86 a 166 A6 ~

135 87 c; 167 A7 9
136 88 " 168 A8 <-e
137 89 e 169 A9 r-

138 8A e 170 AA --,

139 8B Y 171 AB lfz
140 8C i 172 AC %
141 8D ~ 173 AD i1

142 8E A 174 AE «
143 8F A 175 AF »
144 90 E 176 BO ::::;:::::

145 91 ~ 177 B1 :::::::::

146 92 A:: 178 B2 W}.j:

147 93 A 179 B3 I0

148 94 0 180 B4 -1
149 95

,
181 B5 =t0

150 96 U' 182 B6 -11

151 97 ... 183 B7u
152 98

II

184 B8 '9Y.,
153 99 Q 185 B9 ~I

154 9A V 186 BA
155 9B ¢ 187 BB "i1

156 9C £ 188 BC ~

157 9D ¥ 189 BD .J

158 9E Pt 190 BE ..,j

159 9F J 191 BF

8-25

ROM BIOS
Service
Routines

CHARACTER CODES (Cont'd)

ASCII Value ASCII Value
Decimal Hex Character Decimal Hex Character

192 CO L 224 EO a
193 C1 ...L 225 E1 {3
194 C2 'T 226 E2 r
195 C3 .. 227 E3 Tr

196 C4 228 E4 1:
197 C5 + 229 E5 u
198 C6 1= 230 E6 J1
199 C7 I~ 231 E7 T

200 C8 ~ 232 E8 0
201 C9 If 233 E9 +
202 CA :L!: 234 EA n
203 CB :u: 235 EB 0
204 CC I~ 236 EC 00

205 CD 237 ED ¢
206 CE .JL 238 EE (,r

207 CF ~ 239 EF n
208 DO -ll... 240 FO -
209 D1 =r 241 F1 ±
210 D2 242 F2 2::
211 D3 Il.... 243 F3 :S
212 D4 ~ 244 F4 r
213 D5 F 245 F5 J
214 D6 rr 246 F6
215 D7 "*- 247 F7 =
216 D8 =F 248 F8 0

217 D9 .J 249 F9 •
218 DA r 250 FA
219 DB • 251 FB v
220 DC - 252 FC n
221 DD • 253 FD 2

222 DE I 254 FE •
223 DF - 255 FF (blank)

8-26

Read Next
ASCII
Character

Check if
Keystroke
Available

ROM BIOS
Service

Routines

Input:
(AH) =0

Output:
(AL) = character code
(AH) =scan code

Note

This routine will not return execution to the call
ing program until it has a keystroke to report.

This routine is used to check to see if a keystroke
has been entered. Use this function if you want
to continue processing whether or not a key has
been pressed.

Input:
(AH) =1

Output:
Z flag =1 - no code available
Z flag =0 - code is available
If a character is available, it is stored in AX in
the same format as for the "Read Next ASCII
Character" call. However, the code also remains
in the keyboard buffer, so that a "Read Next
ASCII Character" call returns this character's
code value again.

8-27

ROM BIOS
Service
Routines

Get Current
Shift Status

Shift States

Input:
(AH) =2

Output:
(AL) =current shift status

Bit

7
6
5
4
3
2
1
o

8-28

Subject matter

Insert
Caps-Lock
Num-Lock
Scroll-Lock
AU shift
Ctrl shift
left-hand shift
right-hand shift

Meaning, when bit is 1

state active
state active
state active
state active
key depressed
key depressed
key depressed
key depressed

Print a
Character

Initialize
Printer Port

Get Printer
Status

ROM BIOS
Service

Routines

Printer Routines

This set of BIOS routines communicates with
the printer through interrupt 17H.

Input:
(AH) == 0
(AL) =the character to be printed
(DX) =printer port number (0-3)

Output:
(AH) =1 if character not printed due to timeout.

Otherwise, bits a.re set as they are in
"Get Printer Status" call.

Input:
(AH) =1
(DX) =printer port number (0-3)

Output:
(AH) =printer status (see below)

Input:
(AH) =2
(DX) = printer port number (0-3)

Output:

Bit Meaning if Set (equal to 1)

7 not busy
6 acknowledge
5 out of paper
4 selected
3 I/O error
2 not used
1 not used
o timeout (set by software)

If a printer is connected, 10H and 90H are
healthy statuses. Otherwise 30H is healthy.

8-29

ROM BIOS
Service
Routines

Miscellaneous ROM BIOS Services

System
Reset

Print
Screen

8-30

If you issue issue interrupt 19H, the system
bootstraps itself in much the same way as it
does with the Ctrl-Alt-Delete key sequence. The
only difference is that Ctrl-Alt-Delete causes
diagnostics to be run, whereas Interrupt 19H
causes an immediate system load.

To obtain a printed copy of what is on the
screen, issue a request for interrupt 5H. This
produces exactly the same result as pressing the
shift and PrtSc k~ys. This routine works in
either text or graphics modes. Unrecognizable
characters are printed as blanks.

ROM BIOS
Service

Routines

Equipment
List

You can use this routine to obtain a list of the
optional equipment attached to your system.
Simply issue an interrupt IIH; no register set-up
is necessary. Output (starting with the most sig
nificant bit of (AX» is as follows:

Meaning

number of printer adapters (0-3)
not used
game adapter attached, or not
number of communications
adapters (0-7)
not used

number of diskette drives minus 1,
if bit 0 is set.
starting video mode:
01 - graphics card display,40

columns,b/w
10 - graphics card

display,80 columns,b/w
11 -monochrome card display

3-2 amount of memory on system
board:
00 -16KB Base
01- 32KB Base
10 - 48KB Base
11 - 64KB Base

1 not used
o diskettes are attached; refer to

bits 7 and 6.

Bit

AH 7-6
5
4

3-1

0

AL 7-6

5-4

Determine
Memory
Size

Interrupt 12H gives the total amount of memory
in the address space, up to a megabyte. No regis
terset-up is required. The BIOS reads the
switches on the system board and adds the
amount of memory on a memory expansion
board and returns the total in (AX). The amount
of memory is expressed as the number of lK
blocks.

8-3i

ROM BIOS
Service
Routines

8-32

Bypassing the BIOS

This section explains how you can either replace
one of the BIOS service routines with a program
of your own or add a "front-end" so that you per
form some preprocessing immediately prior to
using a particular BIOS routine.

When the system is powered on, low memory is
initialized with the addr~ssesof all of the BIOS
interrupt routines. To replace a BIOS routine,
changethe address in the interrupt table to the
address of the code which you want to execute in
pla~e of the BIOS code. To perform preprocess
ing before handing execution on to the BIOS
code:

1 replace the address of the BIOS routine with the
address of your program

2 transfer execution to the BIOS routine at the end
of your program.

Be sure to use the "Set Vector" system call
(Function R:equest 25H) to replace the BIOS rou
tIne addresses instead of writing directly to low
memory.

Break

ROM BIOS
Service

Routines

CONFIG.SYS

The special file CONFIG.SYS is processed
automatically when DOS starts. As with the
batch file AUTOEXEC.BAT, this processing is
automatic. DOS will simply look at the root
directory to see if the file is there.

CONFIG.SYS is a text file that can be edited by
EDLIN or any other text editor that produces
ASCII files. Five commands can be used in the
CONFIG.SYS file. Each command changes a
system parameter.

G BREAK ON/OFF
Changes the way DOS checks for a
CTRL/BREAK

• BUFFERS=xx
Sets the number of data buffers that DOS uses.

• DEVICE=[d:] [path] filename [.ext]
Adds a nonstandard device driver to DOS.

• FILES=xx
Sets the number of files that can use ASCIIZ
strings.

• SHELL=[d:] [path] filename [.ext] [d:] [path] IP
Specifies an alternate command processor.

Normally, DOS checks for a CTRL/BREAK
only when it is doing input or output. Some pro
grams do very little (if any) input or output for
long periods of time. The BREAK ON command
sets DOS to check for a CTRL/BREAK when
any DOS function is called.

8-33

ROM BIOS
Service
Routines

Buffers

Device

8-34

BREAK OFF resets the default so that DOS
only checks for a CTRL/BREAK during input
and output. This command can be used to over
ride a BREAK ON that was set by CONFIG.
SYS.

The number of buffers has an effect on both the
speed of disk I/O and available memory. A
larger number of buffers allocates more memory
to the system for operations. This is highly
desir...able:for-systems with large amounts of
RAM that will be used for database applica
tions. It is highly undesirable for systems with
minimal RAM that do little work with disk files.

The system default is BUFFERS=2, which is
adequate for most purposes and requires only lK
of RAM. If your system will be doing a signifi
cant amount of data handling, especially on a
hard disk, BUFFERS=4 would improve access
times at a cost of only lK of internal memory.

When DOS is first started, it loads all of the
standard device drivers for the keyboard, screen
and so on. If your system requires a special
device driver, this command tells DOS where to
find it. The device driver will then be loaded as
an extension to DOS.

Device drivers are .COM files with a specific
structure described in Chapter 9. The command
DEVICE=ANSLSYS causes DOS to replace the
standard display and keyboard device drivers
with the extended screen and keyboard support
that the extended functions require.

Files

Shell

ROM BIOS
Service

Routines

If you wish to load several special device drivers,
you must use a DEVICE command for each one.

Opening a file with an ASCIIZ string eliminates
the traditional direct handling of a File Control
Block (FCB). DOS will handle all these things
for you by creating and maintaining FCBs
internally. To do this, it needs memory. Each file
requires 39 bytes of memory.

The FILES command sets aside memory for this
operation. The default is FILES=8. The maxi
mum is FILES=99. This is the limit for the
entire system. A particular process (or program)
can still have only 20 files open at once.

The COMMAND.COM file that DOS uses as its
"front end" processor can be replaced by another
command processor. The SHELL command spec
ifies the file to be used and the default path for
processing commands. The command processor
must be able to read and execute commands,
and handle interrupts 22H, 23H, and 24H.

Since COMMAND.COM handles internal com
mands, .BAT file execution, and .EXE file load
ing, these functions will be unavailable unless
the new command processor duplicates them.

8-35

8-36

(This page intentionally left blank)

9 MS-DOS
Device Drivers

• Overview

• MS-DOS Device Drivers

• Asynchronous Communications
Element .

• DMA Controller

• Floppy Diskette Interface and
Controller

• Hard Disk Controller

• Keyboard Interface

• Parellel Printer Interface

• Programmable Interrupt
Controller

• Programmable Interval Timer

• Real Time Clock and Calendar

• Serial Communications
Controller

• Speaker

• Video Controller

9-1

Interested
Audience

Overview

This section contains information on how to
write device drivers. You may not use it often
since many input and output capabilities are
implemented by the BIOS routines discussed in
Section 6. BIOS routines allow you to do general
input and output without a detailed understand
ing of the hardware and shield your program
from hardware changes.

However, there are times when BIOS routines do
not perform the necessary function or do so in
an inefficient fashion. Then your own driver is
necessary. Implementation of operating sys
tems, of high speed graphics packages, and of
unusual keyboard mapping are examples of
software which require specialized drivers.

Pro- This is a list of programmable devices.
grammable
Devices INS 8350B Asynchronous Communications

Element
INTEL 8237A DMA Controller
NECE uPD765 Floppy Diskette Controller
DTC 5150BX Hard Disk Controller
INTEL 8041 Keyboard Interface
INTEL 8259A Programmable Interrupt

Controller
INTEL 8253 Programmable Interval Timer

58174A Real Time Clock and Calendar
AMD Z8530 Serial Communications

Controller
Speaker Interface

HD 6845 Video Controller

9-2

Port
Addresses

I/O
Instructions

Overview

A port is a place to read or write information to
an I/O device. An I/O device is hardware which
the CPU controls. It is both input and output
peripherals as well as hardware such as the
DMA controller, the Interrupt controller and the
Interval Timer. Each device needs different
information, but they all need some combination
of control, status, and data.

Each port has an address. Sixteen of the twenty
possible address lines are available for I/O
addressing. This means there are 65,535 possible
port addresses.

IN and OUT instructions distinguish an I/O
access from a memory access. These instructions
translate into control signals which define the
direction and path of the data.

The port address can be specified in one of two
ways - fixed or variable. In the fixed method,
the absolute port address is specified in the
instruction. The following instruction is an
example of fixed port addressing:

OUT020H,AL

Only 8-bit port addresses can be used in this
format.

The variable method allows 16-bit port
addresses to be specified. In this case, the port
address is loaded into the DX register and then
the DX register is used in the I/O instruction.
An example of variable port addressing follows:

MOV DX,03F2H
OUT DX,AL

9-3

Overview

Interrupts

9-4

External devices do not need the CPU's atten
tion all the time. When they need servicing, they
ask for it either by interrupting or by setting a
polled flag. External interrupts are ignored
when the CLI instruction has cleared the inter
rupt enable flag and are recognized when the
STI instruction has set the flag.

The first 1024 bytes of memory contain an inter
rupt table. This table has 255 interrupt pointers
defining the start address of interrupt service
routines. This is the pointer format.

INT~RRUPTPOINTER

IP
cs

When the CPU recognizes the interrupt, an 8-bit
interrupt type identifies the device. The interrupt
type is an index into the table of pointers. To
obtain the interrupt pointer address, the type is
multiplied by four. The CPU saves the flag reg
ister on the stack, disables interrupts and single
step mode, and saves the CS and IP registers on
the stack. Then the interrupt pointer is loaded
into IP and CS, and control is transferred to the
interrupt service routine. The stack looks like
this when the service routine gets control.

Interrupt
Devices

Overview

SYSTEM STACK

IP
CS

FLAGS
When the service routine begins, interrupts are
disabled. Depending on the nature of the appli
cation, interrupts can be enabled immediately or
just prior to releasing control.

The service routine must preserve the value of
all internal registers. Therefore it saves the reg
isters it uses on the stack. Before returning, it
restores these registers from the stack.

To return control to the interrupt program, the
service routine executes IRET. All the informa
tion necessary to do this was carefully placed on
the stack

Interrupt INS 8250B Asynchronous Communi-
Devices cations Element

INTEL 8237A DMA Controller
NEC uPD765 Floppy Diskette Controller
DTC 5150BX Hard Disk Controller
INTEL 8041 Keyboard Interface
INTEL 8259A Programmable Interrupt

Controller
INTEL 8253 Programmable Interval

Timer
58174A Real Time Clock and

Calendar
AMD Z8530 Serial Communications

Controller

9-5

Overview

Block
Diagrams

9-6

Block diagrams are a pictorial description of the
electrical connection between the CPU, the inter
face, and the external device. In general, the
CPU's bus signals appear on the left. The mid
dle of the diagram describes the internals of the
interface. The right side of the diagram de
scribes the electrical interface. This physically
connects the interface to the external device. The
connection is often through a dual inline pack
age (DIP) of pins. Each pin carries one signal.

Individual signals are represented by lines.
Busses are shown as double lines. Each of these
have arrows which indicate the direction of the
data. Often they are bidirectional.

There are several common CPU control bus sig
nals. There mnemonics and definitions follow:

• AO-A19
These are the lines used to transmit the address
of memory or the address of an I/O port. Only
AO-A15 are used for I/O addressing.

• CS
This signal selects the chip. No reading or writ-
ing will occur unless the device is selected.

• DO-D7
These are the bidirectional data lines used to
exchange information with a memory location
or an I/O port. D7 is the most significant bit.

• INTO-INT7
These are the priority interrupt request lines. See
the description of the Interrupt Controller.

Overview

• lORD
This signal indicates that an input port address
has been placed on the address bus. The data at
the specified port is to be placed on the data bus.

• IOWR
This signal indicates that an output port
address has been placed on the address bus and
the data has been placed on the data bus to be
output to the specified port.

• RESET
This signal resets the system to a predetermined
state.

9-7

What Is
a Device
Driver?

9-8

MS-DOS Device
Drivers

A device driver is binary code which manipu
lates hardware in the MS-DOS environment. A
special header at the beginning identifies it as a
driver, defines the strategy and interrupt entry
points, and describes various attributes of the
device. The file must have an origin of zero.

There are two kinds of devices:

• Character devices

• Block devices

Character devices perform serial character 1/0
like CONSOLE, AUXILIARY, and PRINTER.
These devices are named and users open chan
nels to do 1/0 to them.

Block devices are the disk drivers on the system.
They perform random 110 in pieces called
blocks. This is usually the physical sector size.
These devices are not named as the character
devices are, and cannot be opened directly.
Instead they are identified by drive letters
(A:,B:,C:, etc.).

Drive letters are assigned to device drivers based
on their ordering in the CONFIG.SYS file. Start
ing with the letter 'A', each device driver is
assigned as many consecutive alphabetic char
acters as the driver has units. The theoretical
limit is 63, but after 26 the drive letters are non
alphabetic (such as] and /\).

Character devices cannot define multiple units
because they have only one name.

Device
Headers

MS-DOS Device
Drivers

A device header is required at the beginning of a
device driver. A device header looks like this:

DWORD pointer to next device
(Must be set to -1)

WORD attributes
Bit 15 =1 if char device, 0 if blk
if bit 15 is 1

Bit 0 =1 if current sti device
Bit 1 =1 if current sto device
Bit 2 =1 if current NUL device
Bit 3 =1 if current CLOCK dev
Bit 4 =1 if special
Bits 5-12 Reserved; must be set

to 0
Bit 14 is the IOCTL bit
Bit 13 is the NON IBM FORMAT bit

WORD pointer to device strategy
entry point

WORD pointer to device interrupt
entry point

8-BYTE character device name field
Character devices set a device name.
For block devices the first byte is
the number of units

The strategy and interrupt routines are in the
same segment as this device header.

9-9

MS-DOS Device
Drivers

Pointer to
Next Device
Field

Attribute
Field

9-10

The pointer to the next device header field is a
double word field, offset followed by segment.
MS-DOS chains the device headers together
using this field. If you have a single device
header in your driver, initialize this field to -1. If
you have more than one device header, the first
word of the double word pointer is the offset of
the next driver's Device Header.

The attribute field is used to tell the system
whether this device is a block or character
device (Bit 15). Most other bits are used to give
selected character devices special treatment and
are meaningless on a block device. For example,
assume that you have a new standard input and
output device driver. Besides installing the
driver, you must tell MS-DOS that you want this
new driver to override the current standard
input and standard output device. This is
accomplished by setting the attributes to the
desired characteristics, so you set Bits 0 and 1 to
1. Similarly, a new CLOCK device could be
installed by setting the appropriate attribute.
Although there is a NUL device attribute, it is
reserved for MS-DOS.

The NON PC-DOS FORMAT bit applies only to
block devices and affects the operation of the
BUILD BPB (Bios Parameter Block) device call.
The implementation of all block devices is PC
DOS software and hardware compatible.

The IOCTL bit is meaningful for both types of
devices. This bit tells MS-DOS whether the
device can handle control strings with the
IOCTL system call, Function 44H.

MS-DOS Device
Drivers

If a driver cannot process control strings, this
bit is O. MS-DOS returns an error if an attempt
is made to handle control strings. A device
which can process control strings sets the
IOCTL bit to 1. For drivers of this type, MS-DOS
calls IOCTL INPUT and OUTPUT device func
tions to send and receive IOCTL strings.

The IOCTL functions allow data outside of the
normal user's reads and writes to be sent to the
driver. The interpretation of this information is
up to the driver.

Strategy and These two fields are the entry points of the strat-
Interrupt egy and interrupt routines. They are word values
Routines and they must be in the same segment as the

Device Header.

Name Field

How to
Create a
Device
Driver

This 8-byte field contains the name of a charac
ter device or the number of units of a block
device. If it is a block device, the number of units
can be put in the first byte. This is optional
because MS-DOS fills in this location with the
value returned by the driver's INIT code.

To create a device driver, write a binary file with
a Device Header at the beginning of the file. The
code originates at O.

9-11

MS-DOS Device
Drivers

Installation
of Device
Drivers

9-12

MS-DOS always processes installable device
drivers before handling the default devices. To
install a new CON device, simply name the
device CON. Remember to set the standard
input device and standard output device bits in
the attribute word on the new CON device. The
scan of the device list stops on the first match,
so the installable device driver takes precedence.

MS-DOS installs the driver anywhere in
memory; therefore, be careful with memory ref
erences. Do not expect the driver to be loaded in
the same place.

MS-DOS allows new device drivers to be
installed dynamically at boot time. This is
accomplished by INIT code in the BIOS which
processes the CONFIG.SYS file.

At load time, DOS searches the root directory for
a file named CONFIG.SYS. Declare the files
containing your device drivers using the
DEVICE command.

DEVICE = [C:] [path] filename [.ext]

DOS loads your drivers as an extension of itself.
Include a separate DEVICE command for each
driver to be loaded.

Request
Header

Unit Code

MS-DOS Device
Drivers

When MS-DOS calls a device driver to perform a
function, it passes a Request Header in ES:BX to
the strategy entry point. This is a fixed length
header followed by data pertinent to the opera
tion being performed. It is the device driver's
responsibility to preserve the machine state. For
example, save all registers on entry and restore
them on exit. There is enough room on the stack
when strategy or interrupt is called to do about
20 pushes. If more stack is needed, the driver
sets up its own stack.

The following figure illustrates a Request
Header.

REQUEST HEADER ->
BYTE length of record (the
length in bytes of perti-
nent data, plus the length
of this Request Header)

BYTE unit code
The subunit the operation
is for (minor device)
(no meaning on character
devices)

BYTE command code

WORD status

8 bytes RESERVED

If your device driver has three units, then the
possible values of the unit code field are 0,1,
and 2.

9-13

MS-DOS Device
Drivers

Command
Code Field

The command code field in the Request Header
can have the following values:

Command
Code Function

"
"

"
"

INIT
MEDIA CHECK
(Block only, NOP for character)
BUILD BPB "
IOCTLINPUT
(Only called if device has IOCTL)
INPUT (Read)
NON-DESTRUCTIVE INPUT NO WAIT
(Char devices only)
INPUT STATUS
INPUT FLUSH
OUTPUT (Write)
OUTPUT (Write) with verify
OUTPUT STATUS
OUTPUT FLUSH
IOCTL OUTPUT
(Only called if device has IOCTL)

4
5

2
3

6
7
8
9
10
11
12

o
1

Status Word The following figure illustrates the status word
in the Request Header.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0. I .. .
E B D
R RESERVED U 0 ERROR CODE
R SN (bit 15 on)

I ..
• I

The status word is set by the driver interrupt
routine.

Bit 8 is the done bit. When set, it means the
operation is complete.

9-14

MS-DOS Device
Drivers

Bit 15 is the error bit. If it is set, then the low 8
bits indicate the error. The errors are:

o Write protect violation
1 Unknown Unit
2 Drive not ready
3 Unknown command
4 CRC error
5 Bad drive request structure length
6 Seek error
7 Unknown media
8 Sector not found
9 Printer out of paper
A Write fault
B Read Fault
C General failure

Bit 9 is the busy bit which is set only by status
calls.

• For output on character devices:
If bit 9 is 1 on return, a write request waits for
completion of a current request. If it is 0, there is
no current request and a write request starts
immediately.

• For input on character devices with a buffer:
If bit 9 is 1 on return, a read request goes to the
physical device. If it is 0 on return, then there
are characters in the device buffer and a read
returns quickly. MS-DOS assumes all character
devices have an input type-ahead buffer. Devices
that do not have a type-ahead buffer return
busy=O so that MS-DOS does not wait for non
existent buffer input.

9-15

MS-DOS Device
Drivers

Media Check
and Build
BPB

MEDIA CHECK and BUILD BPB are used with
block devices only. MS-DOS calls MEDIA
CHECK first for a drive unit and passes its cur
rent media descriptor byte. MEDIA CHECK
returns one of the following results:

• Media Not Changed - current DPB and media
byte are OK.

• Media Changed - Current DPB and media are
wrong. MS-DOS invalidates buffers for this unit
and calls the device driver to build the BPB.

• Not Sure - If there are dirty buffers for this
unit, MS-DOS assumes the DPB and media byte
are OK. If nothing is dirty, MS-DOS assumes
the media has changed. It invalidates buffers for
the unit and calls the device driver to build the
BPB.

• Error - If an error occurs, MS-DOS sets the
error code.

MS-DOS calls BUILD BPB under the following
conditions:

• If Media Changed is returned

• If Not Sure is returned and there are no dirty
buffers

Init Routine The Init Routine is called only once when the
device is installed. It returns a location DS:DX
which is a pointer to the first free byte of
memory after the device driver. To save space,
this pointer method can be used to delete initial
ization code that is only used once.

9-16

MS-DOS Device
Drivers

Additional information that block drivers return
is:

• The number of units

• A pointer to a BPB

• The media decriptor

The number of units determines the logical
device names. This mapping is determined by
the position of the driver in the device list and
by the number of units on the device.

BPB blocks are used to build an internal MS
DOS data structure for each of the units. The
driver passes MS-DOS a pointer to an array of n
word BPB pointers, where n is the number of
units. If all units are the same, they can share a
BPB to save space. This array must be before
the free space pointer since MS-DOS builds an
internal DOS structure starting at this free byte.
The defined sector size must be less than or
equal to the maximum sector size defined at
INIT time; otherwise, the install fails.

The media descriptor byte means nothing to MS
DOS. It is passed to drivers so that they know
what parameters MS-DOS is currently using for
a drive unit.

Block devices are either dumb or smart. A dumb
device defines a unit and an internal DOS struc
ture for each possible media drive combination.
For example, unit 0 =drive 0 single side, unit 1 =
drive 0 double side. In this case, media descrip
tor bytes mean nothing.

9-17

MS-DOS Device
Drivers

Function
Call
Parameters

9-18

A smart device allows multiple media per unit.
In this case, the BPB table returned by INIT
defines space large enough to accommodate the
largest possible media supported. Smart drivers
use the media descriptor byte to pass informa
tion about the media currently in a unit.

Strategy routines are called with ES:BX point
ing to the Request Header. The interrupt rou
tines get the pointers to the Request Header
from the queue that the strategy routines store
them in. The command code in the Request
Header tells the driver which function to
perform.

All DWORD pointers are stored offset first, then
segment.

INIT

Command code =0

INIT - ES:BX ->

13-BYTE Request Header

BYTE # of units

DWORD break address

DWORD pointer to BPB array
(Not set by character devices)

The number of units, break address, and BPB
pointer are set by the driver. On entry, the
DWORD points to the character after the '=' on
the line in CONFIG.SYS. This allows drivers to
scan the CONFIG.SYS invocation line for
arguments.

Media Check

MS-DOS Device
Drivers

If there are multiple device drivers in a single
.COM file, the ending address returned by the
last INIT is the one MS-DOS uses. All of the
device drivers in a single .COM file return the
same ending address.

Command Code = 1

MEDIA CHECK - ES:BX->

13-BYTE Request Header

BYTE media descriptor from DPB

BYTE returned

In addition to setting the status word, the driver
sets the return byte to one of the following:

-1 Media has been changed
oDon't know if media has been changed
1 Media has not been changed

If the driver can return -lor 1 because it has
a door-lock or other interlock mechanism,
MS-DOS performance is enhanced because
MS-DOS does not need to reread the FAT
for each directory access.

9-19

MS-DOS Device
Drivers

Build BPB
(BIOS
Parameter
Block)

9-20

Command code =2

BUILD BPB - ES:BX ->

13-BYTE Request Header

BYTE media descriptor from DPB

DWORD transfer address
(Points to one sector worth of
scratch space or first sector
of FAT depending on the value
of the NON PC-DOS FORMAT bit)

DWORD pointer to BPB

If the NON PC-DOS FORMAT bit is 1, then the
DWORD transfer address points to a sector
scratch buffer.

If the NON PC-DOS FORMAT bit is 0, then this
buffer contains the first sector of the first FAT
and the driver must not alter this buffer.

The first sector of the first FAT must be located
in the same sector for all media. This is because
the FAT sector is read BEFORE the media is
actually determined. Use this mode to read the
FAT ID byte.

In addition to setting status word, the driver
must set the pointer to the BPB on return.

To allow different OEMs to read each other's
disks, the information relating to the BPB for
the media is kept in the boot sector of the media.
The format of the boot sector is:

MS-DOS Device
Drivers

3 BYTE near JUMP to boot code

8 BYTES OEM name and version

WORD bytes per sector

BYTE sectors per allocation unit

WORD reserved sectors
B

BYTE number of FATs
P

WORD number of root dir entries
B

WORD number of sectors in logical image

BYTE media descriptor

WORD number of FAT sectors

WORD sectors per track

WORD number of heads

WORD number of hidden sectors

Sectors per track, number of heads, and number
of hidden sectors are optional. They are intended
to help the BIOS understand the media. Sectors
per track may be redundant since it can be cal
culated from total size of the disk. Number of
heads supports different multi-head drives with
the same storage capacity but a different
number of surfaces. Number of hidden sectors
supports drive-partitioning schemes.

9-21

MS-DOS Device
Drivers

Media
Descriptor
Byte

The last two digits of the FAT ID byte are called
the media descriptor byte. Currently, the media
descriptor byte has been defined for a few media
types.

Bit Meaning

0 1 = 2 sided; o= not 2 sided

1 1 = 8 sector; o= not 8 sector

2 1 = removable; o= not removable

3-6 must be set to 1

7 1 = not 80 track; 0= 80 track

5 1/4" disks:
FEh 160K
FCh 180K
FFh 320K
FDh 360K
7Dh 720K

HDU: F8h

formatted single sided
formatted single sided

9-22

Although these media bytes map directly to FAT
ID bytes which must be F8-FF, media bytes can,
in general, be any value in the range O-FF.

Read or
Write

MS·DOS Device
Drivers

Command codes =3,4,8,9, and 12

READ or WRITE - ES:BX (Including IOCTL) ->

13-BYTE Request Header

BYTE media descriptor from DPB

DWORD transfer address

WORD byte/sector count

WORD starting sector number
(Ignored on character devices)

In addition to setting the status word, the driver
must set the sector count to the actual number of
sectors (or bytes) transferred. No error check is
performed on an IOCTL I/O call. The driver
must set the return sector (byte) count to the
actual number of bytes transferred.

A user program can not request an I/O of more
than FFFFH bytes and cannot wrap around in
the transfer segment.

9-23

MS-DOS Device
Drivers

Non
Destructive
Read No
Wait

9-24

Command code = 5

NON DESTRUCTIVE READ NO WAIT
ES:BX->

I3-BYTE Request Header

BYTE read from device

If the character device returns busy bit =0
(characters in buffer), then the next character
that would be read is returned. This character is
not removed from the input buffer, hence the
term Non Destructive Read. Basically, this call
allows MS-DOS to look ahead one input
character.

Status

MS-DOS Device
Drivers

Command codes =6 and 10

STATUS Calls - ES:BX->

13-BYTE Request Header

The driver sets the status word and the busy bit
as follows:

• For output on character devices:
If bit 9 is 1 on return, a write request waits for
completion of a current request. If it is 0, there is
no current request and a write request starts
immediately.

• For input on character devices with a buffer:
A return of 1 means a read request goes to the
physical device. If it is 0 on return, then there
are characters in the device's buffer and a read
returns quickly. A return of 0 also indicates that
the user has typed something. MS-DOS assumes
that all character devices have an input type
ahead buffer. Devices that do not have a type
ahead buffer return busy = 0 so that the DOS
does not wait for something to get into a non
existent buffer.

9-25

MS-DOS Device
Drivers

Flush· Command codes =7 and 11

FLUSH Calls - ES:BX ->

I l3-BYTE Request Header

The FLUSH call tells the driver to terminate all
pending requests. This call is used to flush the
input queue on character devices.

Clock Device' One of the special enhancements for the Safari-3
is the battery-backed 58174A clock-calender chip
and related driver. This chip is integrated into
the system as the CLOCK device and is accessed
with the TIME and DATE command.

This CLOCK device defines and performs func
tions like any other character device. When a
read or write to this device occurs, exactly 6
bytes are transferred. The first two bytes are the
count of days since 1-1-80. The third byte is min
utes, the fourth, hours, the fifth, hundredths of
seconds, and the sixth, seconds.

Reading the CLOCK device gets the date and
time; writing to it sets the date and time.

9-26

Asynchronous Communications
Element

Functional
Description

Block
Diagram

The Asynchronous Communications Element
(ACE) performs serial-to-parallel conversion on
input data characters received from a modem
and parallel-to-serial conversion on output data
characters received from the CPU. You can read
the status of transfer operations at any time.
This device gives you modem control capability.

The baud rate and serial interface characteris
tics are programmable. The ACE has a software
tailored interrupt system whose interrupt
request is on INT4.

9-27

Asynchronous Communications
Element

Registers

PORT NAME
A B

READ/ DESCRIPTION
WRITE

3F8 2F8 DATA

3F9 2F9 INTERRUPT ENABLE
3FA 2FA INTERRUPT IDENTIFICATION
3FB 2FB LINE CONTROL
3FC 2FC MODEM CONTROL
3FD 2FD LINE STATUS
3FE 2FE MODEM STATUS
3FF 2FF SCRATCH
3F8 2F8 DIVISOR LATCH
3F9 2F9 DIVISOR LATCH

Layout

INTERRUPT ENABLE REGISTER

o

R/W
W

W
R

R/W
R/W

R
R/W
R/W
W
W

Receive Buffer,
Transmitter Holding
Register
See layout
See layout
See layout
See layout
See layout
See layout
Scratch pad register
Least significant byte
Most significant byte

1

9-28

Asynchronous Communications
Element

INTERRUPT IDENTIFICATION REGISTER

o 1

LINE CONTROL REGISTER

o 1

9-29

Asynchronous Communications
Element

MODEM CONTROL REGISTER
o 1

LINE STATUS
o 1

9-30

MODEM STATUS REGISTER

o

Asynchronous Communications
Element

1

Functions • IDENTIFY INTERRUPTS
INPUT: INTERRUPT IDENTIFICATION
REGISTER

• READ LINE STATUS
INPUT: LINE STATUS REGISTER

• READ MODEM STATUS
INPUT: MODEM STATUS REGISTER

• RECEIVE CHARACTER
INPUT: DATA

• SEND CHARACTER
OUTPUT: DATA

9-31

Asynchronous Communications
Element

• SET BAUD RATE
To set the baud rate, you load the divisor which
Yields the correct rate (16 x divisor = clock fre
quency (1.8432 MHz)/baud rate x 16)

OUTPUT: LINE CONTROL REGISTER
BIT 7 =1

DIVISOR LATCH - Least significant byte
DIVISOR LATCH - Most significant byte

• SET INTERRUPTS
OUTPUT: INTERRUPT ENABLE
REGISTER

• WRITE LINE CONTROL
CHARACTERISTICS

OUTPUT: LINE CONTROL REGISTER

• WRITE MODEM CONTROL
CHARACTERISTICS

OUTPUT: MODEM CONTROL REGISTER

Sequencing
and Timing

9·32

To transmit a character, first issue a Request to
Send and Data Terminal Ready to the Modem
Control Register. Then wait for the Modem Stat
us to have Data Set Ready and Clear to Send
set. When the Transmitter Holding Register is
empty as indicated in the Line Status Register,
write the character to the data register.

To receive a character, set Data Terminal Ready
in the Modem Control Register. Then wait for
Data Set Ready in the Modem Status Register.
When Data Ready in the Line Status Register is
set, input the character from the data register.

Asynchronous Communications
Element

The following table states the divisors to use to
obtain a given baud rate.

BAUD RATES USING 1.8432 MHz CLOCK

BAUD RATE
110
150
300
600

1200
1800
2000
2400
3600
4800
7200
9600

DIVISOR
1047
768
384
192
96
64
58
48
32
24
16
12

If you wish to use the break control feature to
alert a terminal in a communication system, the
following sequence assures that no erroneous or
extraneous characters are transmitted.

• Load an all 0's pad character into the transmit
ter holding register.

• Set break when the transmitter holding register
is empty.

• Wait for transmitter empty (Bit 6 = 1 in Line
Status Register) and clear break.

Note that the transmitter operates normally dur
ing a break sequence and can be used as a char
acter timer to establish an accurate break
length.

9-33

Asynchronous Communications
Element

If the ACE is programmmed to interrupt, the
interrupt is on INT4. The ACE acknowledges
the highest priority interrupt as indicated in this
chart. The Interrupt Identification Register
states which interrupt is pending.

TYPE SOURCE -RESET

Receiver Line Status

Received Data Ready
Transmitter Holding
Register Empty
Modem Status

9-34

Overrun Error - Read Line Status
Register

Parity Error
Framing Error
Break Interrupt
Receive Data Ready - Read data
Transmitter Holding - Write data
Register Empty
Clear To Send - Read Modem Status

Register
Data Set Ready
Ring Indicator
Data Carrier Detect

Sample
Program

Asynchronous Communications
Element

;This program sets the baud rate to 1200 baud
LINE_CTL EQU 3FB
DVSR-e-L EQU 3F8
DVSR-eM EQU 3F9

SET_BAUD:
MOV AL,080H ;access divisor
MOV DX,LINE_CTL ;latch
OUT DX,AL

MOV AX,096 ;divisor for 1200 baud
MOV DX,DVSR_L
OUT DX,AL ;least significant byte

MOV DX,DVSR_M
MOVAL,AH
OUT DX,AL ;most significant byte

XOR AL,AL ;turn off access to latch
MOV DX,LINE_CTL
OUT DX,AL
RET

9-35

Functional
Description

9-36

DMA Controller

The DMA controller allows devices to transfer
data directly to and from memory without CPU
involvement. It has four channels.

Channel 0 has the highest priority and is used to
refresh memory. The Interval Timer is pro
grammed to periodically request a dummy DMA
transfer. This creates a memory read cycle
which refreshes memory.

Channell is available on the I/O expansion bus
to support high speed transfer between I/O
devices and memory. Channel 3 has the lowest
priority.

Channel 3 is dedicated to the hard disk con
troller. Channel 2 is dedicated to the floppy disk
controller.

The DMA controller has four transfer modes.
Single transfer mode makes only one transfer.
Block transfer mode continues transferring until
the count goes from 0 to FFFFH. Demand
transfer allows transfers to continue until the
I/O device has exhausted its capacity. The cas
cade mode allows more than one DMA controller
to be used and is not applicable in the AT&T
Personal Computer 6300.

When autoinitialize is requested, the original
values of the Current Address and Current
Count registers are restored at the end of the
operation.

Block
Diagram

-EOP

RESET

CLOCK

ADSTB

-MEMR

-MEMW

lORD

IOWR

CREOO, 4
CRE03

HLDA

HRQ
DACKO, 4
DACK3

DMA Controller

The DMA controller has two types of priority
schemes. The fixed scheme bases the priority on
the descending value of their numbers. In this
scheme, Channel 3 has the lowest priority. The
second scheme is rotating priority. The last
channel to get service becomes the lowest prior
ity channel.

Compressed Timing allows greater throughput
by compressing the transfer time into two clock
cycles.

9-37

DMA Controller

Registers

PORT NAME READ/ DESCRIPTION
WRITE

0 CHANNEL 0 ADDRESS W 16 bit address
1 CHANNEL 0 COUNT W l's complement of # of bytes

to transfer
0 CHANNEL 0 CURRENT ADDRESS R 16 bit address
1 CHANNEL 0 CURRENT COUNT R l's complement of # of bytes

to transfer
2 CHANNEL 1 ADDRESS W 16 bit address
3 CHANNEL 1 COUNT W l's complement of # of bytes

to transfer
2 CHANNEL 1 CURRENT ADDRESS R 16 bit address
3 CHANNEL 1 CURRENT COUNT R l's complement of # of bytes

to transfer
4 CHANNEL 2 ADDRESS W 16 bit address
5 CHANNEL 2 COUNT W l's complement of # of bytes

to transfer
4 CHANNEL 2 CURRENT ADDRESS R 16 bit address
5 CHANNEL 2 CURRENT COUNT R l's complement of # of bytes

to transfer
6 CHANNEL 3 ADDRESS W 16 bit address
7 CHANNEL 3 COUNT W l's complement of # of bytes

to transfer
6 CHANNEL 3 CURRENT ADDRESS R 16 bit address
7 CHANNEL 3 CURRENT COUNT R l's complement of # of bytes

to transfer
8 STATUS R See layout
8 COMMAND W See layout
9 REQUEST W See layout
A SINGLE MASK W See layout
B MODE W See layout
C CLEAR FLIP/FLOP W Execute prior to read or

write of address or count
D TEMPORARY R Contains last byte of

memory-to-memory transfer

9-38

Registers

D MASTER CLEAR
E CLEARMASK

F WRITE ALL MASK
80 CHANNEL 0 SEGMENT
82 CHANNEL 1 SEGMENT
81 CHANNEL 2 SEGMENT
83 CHANNEL 3 SEGMENT

DMA Controller

W Any write clears controller
W Clear mask, all channels

accept DMA commands
W See layout
W Address segment nybble
W Address segment nybble
W Address segment nybble
W Address segment nybble

Layout

COMMAND o 1

STATUS o 1

9-39

DMA Controller

REQUEST REGISTER

o 1

MARK REGISTER

o 1

9-40

WRITE ALL MASK REGISTER

o 1

DMA Controller

MODE

o 1

9-41

DMA Controller

Functions • DISABLE CONTROLLER
This function disables the controller.
OUTPUT: COMMAND REGISTER

BIT 2 =1

• MASTER CLEAR CONTROLLER
This function clears the controller. The
Command, Status, Request, Temporary and
Flip/Flop Registers are cleared.
OUTPUT: MASTER CLEAR

• DMA READ, WRITE OR VERIFY
This function sets up the controller to do the
desired operation.
OUTPUT: CLEAR FLIP/FLOP

MODE REGISTER
BITS 0-1 channel
BITS 2-3 function
BIT 4 autoinitialize
BIT 5 address increment or

decrement
BITS 6-7 mode

ADDRESS REGISTER
16 BIT address, first output the
LSB and then the MSB

SEGMENT NYBBLE
One nybble. The significant nybble
of the segment register is in bits
12-15. Rotate to Bits 0-3 before
output.

COUNT REGISTER
16 bit l's complement of the # of
bytes. First output the LSB and
then the MSB.

9-42

DMA Controller

• REQUEST DMA SERVICE
This is a software request for DMA services.
OUTPUT: REQUEST REGISTER

• READ STATUS
This function reads the channel status.
INPUT: STATUS REGISTER

• WRITE COMMAND REGISTER
This function controls the operation of the DMA
controller.
OUTPUT: COMMAND REGISTER

• WRITE ALL MASK REGISTER
This function enables and disables automatic
DMA transfer for all channels.
OUTPUT: WRITE ALL MASKS REGISTER

• WRITE MASK REGISTER
This function enables and disables automatic
DMA transfers for a channel.
OUTPUT: MASK REGISTER

• WRITE MODE REGISTER
This function specifies the mode for the specified
channel.
OUTPUT: MODE REGISTER

• CLEAR MASKS
This function clears all the masks so that all
channels accept DMA commands.
OUTPUT: CLEAR MASK REGISTER

9-43

EQU8
EQUB

OUT MODE,AL
RET

DMA Controller

Sequencing
and Timing

Sample
Program

9-44

Wh€m the system is powered-up, it is recom
mended that all mode registers be set with valid
data even if the channel is not used.

Before loading the address and count registers,
disable the controller (BIT 2 of COMMAND
REGISTER) or mask the channel. This prevents
erroneous transfers before a complete address is
loaded.

A write to the Clear Flip/Flop sets the controller
so that an access to an address or count is to the
upper and lower byte in the correct sequence.

;This program initializes an unused channel
;at start-up
COMMAND
MODE
INIT_CHAN:

MOV AL,04H ;disable controller
OUT COMMAND,AL
MOV AL,041H ;channell, verify, inc.

;addr
;single mode
;now setup other
;channels

Functional
Description

Block
Diagrams

Floppy Diskette
Interface and Controller

The diskette interface and NEe uPD765 con
troller read and write 5 1/4 inch diskettes on as
many as two drives. Single density (FM) or dou
ble density (MFM) formats are supported. Single
density diskettes contain 163,840 bytes and dou
ble density diskettes contain 327,680 bytes.

Each sector on the diskette contains an ID field
and the Data field. The ID field contains the
cylinder number, the head number, the sector
number and the number of bytes per sector.

The diskette controller performs 15 separate
functions. It operates in either DMA or non
DMA mode. Interrupts can be enabled on INT6.

PIN"

22

30

28
26

8

32
20
18

24

12

14
10
16

9-45

Floppy Diskette
Interface and Controller

00:7

DRO----fi'
-DACK

INT

RESET

-CS------J

CLK---~

Registers

PORT NAME

3F2 INTERFACE OUTPUT CONTROL
3F4 FDC MAIN STATUS REGISTER
3F5 FDCDATA

9-46

READ/
WRITE

W
R

R/W

WRCLOCK
WR DATA
WR ENABLE
PRE-SHIFTO
PRE-SHIFT 1

RO DATA
READ DATA WINDOW

VCD SYNC

READY
WRITE PROTECT/TWO
SIDE
INDEX

- FAULT/TRACK 0

UNIT SELECT 0
UNIT SELECT 1
MFM MODE

-RW/SEEK
HEAD LOAD
HEAD SELECT
LOW CURRENT/
DIRECTION
FAULT RESET/STEP

DESCRIPTION

See layout
See layout
Transfers data, commands,
parameters, and status

Layout

INTERFACE OUTPUT CONTROL

o

Floppy Diskette
Interface and Controller

1

FDC MAIN STATUS REGISTER (MSR)

o 1

9-47

Floppy Diskette
Interface and Controller

STATUS REGISTER 0

o 1

STATUS REGISTER 1

o 1

9-48

STATUS REGISTER 2

o

Floppy Diskette
Interface and Controller

1

STATUS REGISTER 3

o 1

9-49

Floppy Diskette
Interface and Controller

Parameters

SYMBOL

DTL

EOT

GPL

HD
HLT

HUT

MF
MT

N

ND
SRT

STO-ST3
STP

USO,US1

9-50

NAME

Data Length

End of Track

Gap Length

Head
Head Load Time

Head Unload Time

MF or MFM Mode
Multi-track

Number of bytes/
sector
Non-DMA
Step Rate Time

Status Registers
Scan Test Flag

Unit Select

DESCRIPTION

Only applies when there are 128 bytes per
sector. If so, number of bytes to read or
write. Otherwise, DTL = FF.
Last sector number on cylinder. If there are
8 sectors per cylinder, then EOT = 8.
Gap 3 length between sectors. Different for
format and read/write commands.
Selected Head number.
4ms to 508ms in 4ms increments for 8Mhz
clock. In this case, 4ms.
Oms to 480ms in 32ms increments for 8Mhz
clock. This is the amount of time to wait
after a read or write before the heads are
unloaded. If a new command is issued
quickly, this saves head load time.
O=MF,l =MFM
MT = 1, multi-track operation. After com
pleting an operation on side 0, the FDC con
tinues on side 1.
o == 128 bytes, 1 = 256 bytes, 2 = 512 bytes
3 = 1024 bytes
0= DMA mode, 1 = non-DMA mode
32ms to 2ms in 2 ms increments for 8Mhz
clock. This is the amount of time to move
the head from track to track. At 48 TPI,
SRT = 6 ms. At 96 TPI, SRT = 4ms.
See layout
STP = 1, sector by sector compare
STP = 2, alternate sectors
USx = 0, drive not selected
USx = 1, drive selected

Floppy Diskette
Interface and Controller

Functions • FORMAT A TRACK
This function formats an entire track. The ID
Field for each sector is supplied by the pro
grammer during the execution phase.

OUTPUT:

EXECUTION:
INPUT:

POSSIBLE
ERRORS:

Nurnber of bytes/sector
Sector/track
Gap Length

Filler Byte
Sector ID Field transfer

Status Register 0
Status Register 1
Status Register 2
Cylinder
Head
Sector

Number of bytes/sector

Equipment check, and not ready

9-51

Floppy Diskette
Interface and Controller

• READ DATA
This function reads data from the diskette.

9-52

OUTPUT:

EXECUTION:
INPUT:

POSSIBLE
ERRORS:

Cylinder
Head
Sector
Number of bytes/sector
End of Track
Gap Length
Data Length
Data Transfer
Status Register 0
Status Register 1
Status Register 2
Cylinder
Head
Sector
Number of bytes/sector

No data, data error, data error
in data field, and control mark

Floppy Diskette
Interface and Controller

• READ DELETED DATA
This function reads deleted data.

OUTPUT:

EXECUTION:
INPUT:

Cylinder
Head
Sector
Number of bytes/sector
End of Track
Gap Length
Data Length
Data Transfer
Status Register 0
Status Register 1
Status Register 2
Cylinder
Head
Sector
Number of bytes/sector

• READ ID
This function reads the first correct sector ID
field.

OUTPUT:

EXECUTION:
INPUT: Status Register 0

Status Register 1
Status Register 2
Cylinder
Head

9-53

Floppy Diskette
Interface and Controller

POSSIBLE
ERRORS:

Sector
Number of bytes/sector

Missing address mark and
no data

• READTRACK
This function reads all data fields from the
index hole to EOT. The FDC continues reading
even if it finds a CRC error in the ID or data
fields.

9-54

OUTPUT:

EXECUTION:
INPUT:

POSSIBLE
ERRORS:

Cylinder
Head
Sector
Number of bytes/sector
End of Track
Gap Length
Data Length
Data transfer
Status Register 0
Status Register 1
Status Register 2
Cylinder
Head
Sector
Number of bytes/sector

No data, data error and missing
address mark

Floppy Diskette
Interface and Controller

• RECALIBRATE
This function positions the head to head 0,
cylinder or track 0.

OUTPUT:

EXECUTION:

POSSIBLE
ERRORS:

Head repositioned

Equipment check

• SCANEQUAL
This function scans for an equal data compare.

OUTPUT:

EXECUTION:
INPUT:

Cylinder
Head
Sector
Number of bytes/sector
End of track
Gap Length
Contiguous or alternate sectors
Data transfer
Status Register °
Status Register 1
Status Register 2
Cylinder
Head
Sector
Number of bytes/sector

9-55

Floppy Diskette
Interface and Controller

• SCAN LOW OR EQUAL
This function scans for a low or equal data
compare.

9-56

OUTPUT:

EXECUTION:
INPUT:

Cylinder
Head
Sector
Number of bytes/sector
End of track
Gap Length
Contiguous or alternate sectors
Data transfer
Status Register 0
Status Register 1
Status Register 2
Cylinder
Head
Sector
Number of bytes/sector

Floppy Diskette
Interface and Controller

• SCAN HIGH OR EQUAL
This function scans for a high or equal data
compare.

OUTPUT:

EXECUTION:
INPUT:

Cylinder
Head
Sector
Number of bytes/sector
End of track
Gap Length
Contiguous or alternate sectors
Data transfer
Status Register 0
Status Register 1
Status Register 2
Cylinder
Head
Sector
Number of bytes/sector

• SEEK
This function positions the head at the requested
cylinder.

OUTPUT:

New cylinder number
EXECUTION: Heads repositioned

9-57

Floppy Diskette
Interface and Controller

• SENSE DRIVE STATUS
This function obtains the current drive status.

OUTPUT:

INPUT: Status Register 0

• SPECIFY
This function defines the drive parameters.

OUTPUT:

SRT HUT I
HLT l~

• WRITE DATA
This functIOn writes data.

9-58

OUTPUT:

EXECUTION:
INPUT:

Cylinder
Head
Sector
Number of bytes/sector
End of Track
Gap Length
Data Length
Data Transfer
Status Register 0
Status Register 1
Status Register 2
Cylinder
Head
Sector
Number of bytes/sector

Floppy Diskette
Interface and Controller

• WRITE DELETE DATA
This function writes deleted data.

OUTPUT:

EXECUTION:
INPUT:

Cylinder
Head
Sector
Number of bytes/sector
End of Track
Gap Length
Data Length
Data Transfer
Status Register 0
Status Register 1
Status Register 2
Cylinder
Head
Sector
Number of bytes/sector

Sequencing There are three phases to each function:
and Timing

• command - The programmer writes the required
information to the FDC.

• execution - The FDC performs the operation.

• result - The programmer reads the FDC's status.

9-59

Floppy Diskette
Interface and Controller

Before any data can be read or written to the
FDC the Main Status Register (MSR) must be
read to determine the status of Bit 6 and Bit 7.
In the command phase, Bit 6 must be 0 and Bit 7
must be 1. In the result phase both bits must be
1. You must wait 12 usec after a data read or
write before reading the MSR.

In the command phases, all output must be writ
ten. The same is true in the result stage. All sta
tus information must be read.

During the execution phase, the FDC operates in
DMA mode or non-DMA mode. In DMA mode,
there is one interrupt at the end of the phase. In
non-DMA mode, there is an interrupt after the
transfer of each byte. In the format command,
the ID field information for all the sectors in a
track is sent to the FDC (cylinder, head, sector
and bytes/sector). In DMA mode, 4 DMA
requests per sector are issued. In non-DMA
mode, there are 4 interrupts per sector. If inter
rupts cannot be handled every 13 ms in MFM
mode or every 27 ms in FM then the FDC is
polled. When polling, Bit 7 in the MSR functions
just like the interrupt.

When it is not executing a command, the FDC
polls the drives looking for a change in drive
ready. If there is a change, the FDC interrupts.
You can determine the cause of the unexpected
interrupt with the Sense Drive Status function.

The drive motors should be off whep the drives
are not in use. However, they must be on prior to
a drive select.

During the execution phase of read and write
commands, the following occurs:

9-60

Floppy Diskette
Interface and Controller

• The heads are loaded if unloaded.

• The FDC waits for the head settle time to elapse.

• The FDC begins reading the ID address marks
and ID field.

• When the requestep. sector number compares
with the one on the diskette, the transfer begins.

• After completion of the transfer, the FDC waits
the head unload time before unloading the
heads.

The amount of data that can be transferred in
one instruction depends on MT, MF, and N.

Multi-Track MFM/FM Bytes/Sector Maximum Transfer
MT MF N (Bytes/Sector)(Number of Sectors)

0 0 00 128*26 = 3,328
0 1 01 256*26 = 6,656

1 0 00 128*52 = 6,656
1 1 01 256*52 =13,312

0 0 01 256*15 = 3,840
0 1 02 512*15 = 7,680

1 0 01 256*30 = 7,680
1 1 02 512*30 =15,360

0 0 02 512*8 4,096
0 1 03 1024*8 8,192

1 0 02 512*16 = 8,192
1 1 03 1024*16 =16,384

If a read or write terminates on error, then the
values for cylinder, head, sector, and number of
bytes per cylinder depends on the state of MT
and EOT.

9-61

Floppy Diskette
Interface and Controller

LAST SECTOR
MT HD TRANSFERRED ID INFORMATION IN RESULTS

EOT C H S N

0 0 Less than EOT NC NC S+l NC
0 0 Equal to EOT C+1 NC S=l NC
0 1 Less than EOT NC NC S+l NC
0 1 Equal to EOT C+1 NC S=l NC
1 0 Less than EOT NC NC S+l NC
1 0 Equal to EOT NC LSB S=l NC
1 1 Less than EOT NC NC S+l NC
1 1 Equal to EOT C+l LSB S=l NC

NC = No Change
LSB = Least Significant Bit

The Write Deleted Data is the same as Write
Data except that the FDC writes a Deleted Data
Address mark at the beginning of the Data Field
instead of the normal Data Address Mark. When
reading deleted data, the FDC sets the CM error
in Status Register 2 and reads the data. A Read
Data would not read the data. If SK = 1, then
the FDC skips the sector with the Deleted Data
Address mark and reads the next one.

The Gap Length is different for read, write, and
format commands. This table suggests approp
riate values.

9-62

Floppy Diskette
Interface and Controller

FORMAT SECTOR SIZE N SC GPL(I) GPL(2)

FM 128 00 12 07 09
FM 128 00 10 10 19
FM 256 01 08 18 30
FM 512 02 04 46 87
FM 1024 03 02 C8 FF
FM 2048 04 01 C8 FF
MFM 256 01 12 OA OC
MFM 256 01 10 20 32
MFM 512 02 08 2A 50
MFM 1024 03 04 80 FO
MFM 2048 04 02 C8 FF
MFM 4096 05 01 C8 FF

GPL(I) - Suggested GPL in read and write commands
GPL(2) - Suggested GPL in format commands

The scan commands terminate when a scan
condition is met, last sector on the track is
reached, or a terminal count is received. The
DMA issues the terminal count when it has no
more data to send. This chart determines the
result of the scan.

COMMAND STATUS REGISTER 2 COMMENT

SCAN EQUAL
SCAN EQUAL
SCAN LOW OR EQUAL
SCAN LOW OR EQUAL
SCAN LOW OR EQUAL
SCAN HIGH OR EQUAL
SCAN HIGH OR EQUAL
SCAN HIGH OR EQUAL

BIT 2 BIT 3
o 1 DISKE'ITE DATA = PROCESSOR DATA
1 0 DISKE'ITE DATA><PROCESSORDATA
o 1 DISKE'ITE DATA = PROCESSOR DATA
o 0 DISKE'ITE DATA < PROCESSOR DATA
1 0 DISKE'ITE DATA> PROCESSOR DATA
o 1 DISKE'ITE DATA = PROCESSOR DATA
o 0 DISKE'ITE DATA> PROCESSOR DATA
1 0 DISKETTE DATA < PROCESSOR DATA

Scans allow the compare to be on contiguous
sectors (STP =1) or alternate sectors (STP =2).
However, for normal termination of the com
mand the last sector on the track must be
compared.

9-63

Floppy Diskette
Interface and Controller

When a seek is requested, the FDC checks its
current position and decides in which direction
to move. Then step pulses are issued to move the
heads. The speed of the pulse is controlled by the
Step Rate Time in the Specify function. While
the drive is seeking, the seek bit in the MSR is
set. It must be cleared by Sense Interrupt Status
at the completion interrupt. While a drive is
seeking, the FDC is not busy. Another seek
command to the other drive can be requested.

Interrupts occur as the result of:

1) Entering Result Phase of:
Read Data
Read Track
Read Deleted Data
Write Data
Write Deleted Data
Format Track
Scans

2) The execution phase in non-DMA mode
3) The Drive Ready line changing state
4) The end of Seek or Recalibrate

When the latter two occur, a Sense Drive Status
determines the cause of the interrupt. It is man
datory to follow Seek and Recalibrate functions
with a Sense Drive Status. This chart shows
how to interpret the results of a Sense Drive
Status.

STATUS REGISTER 0 CAUSE
BIT 5 BIT 6 BIT 7

9-64

o
1

1

1
o

1

1
o

o

Ready line changed state
Normal termination of Seek or
Recalibrate
Abnormal termination of Seek or
Recalibrate

Floppy Diskette
Interface and Controller

The Specify command defines internal timers.
Head Unload Time (HUT) is programmable
from 32ms to 480ms in increments of 32ms.
Therefore 1 =32ms, 2 =64ms, and F =480ms.
The Step Rate Time is programmable from 2ms
to 32ms in increments of 2ms. In this case, F =
2ms, E =4ms, and 1 =32ms. The Head Load
Time is programmable from 4ms to 508ms in
increments of 4ms. In this case, 1 =4ms, 2 =
8ms, 7F = 508ms.

Sample
Program ; GET_RESULTS

This subroutine obtains a variable amount
of status information in the result phase.

; INPUT: ES:DI points to the area that receives
the status bytes

;port address of MSR
;get MSR
;Data register ready to
;send or receive
;jump if not ready yet
;direction bit
;jump if wrong
;direction
;port addr of data
;register
;get one byte of status
;move it to status area
;maximum number
;jump if not max yet

;max. bytes in status

EQU 3F4

JZ GETl
TEST AL,40H
JZ GET2

INCDX

IN AL,DX
STOSB
DECCX
JNZ GETl

GET2:RET

NEC_STATUS

GET_RESULTS:
MOVCX,7

GETl:
MOV DX, NEC_STATUS
IN AL,DX
TEST AL,080H

9-65

Functional
Description

Hard Disk
Controller

The DTC-5150BX hard disk controller reads and
writes to a maximum of two standard 5 1/4"
Winchester disk drives. A sector size of 256,512,
or 1024 bytes is selectable. The sectors can be
interleaved in 16 different ways.

The hard disk controller operates in DMA or
non-DMA mode. Interrupts can be enabled on
INT5.

Extensive diagnostics are implemented. If a cor
rectable data error is discovered, the error is
automatically corrected using ECC.

Registers

PORT # NAME READ/ DESCRIPTION
WRITE

320 COMPLETION STATUS R See layout
REGISTER

320 DATA R/W Transfers data, function bytes, and
controller sense bytes. See layout.

321 RESET CONTROLLER W Initialize Controller
321 STATUS R See layout
322 SELECT CONTROLLER W Select Controller
322 DRf-VETYPE R See layout
323 CONTROL REGISTER W See layout

9-66

Layout

COMPLETION STATUS REGISTER

o 1

Hard Disk
Controller

CONTROL REGISTER

o 1

9-67

Hard Disk
Controller

STATUS REGISTER

o 1

CONTROL COMMAND

o 1

9-68

SENSE BYTE o

Hard Disk
Controller

1

DRIVE TYPE o 1

NUMBER
o
1
2
3
4
5

DRIVE TYPE
5MB
24MB
15MB
10MB
SQ306
CDC Wren

9-69

Hard Disk
Controller

Error Codes

TYPE CODE DESCRIPTION

0 0 No error status
0 1 No index signal
0 2 No seek complete within 1.0 seconds
0 3 Write fault
0 4 Drive not ready
0 6 No track 0
0 8 Seek in progress
1 0 ID read error. ECC error in the ID field.
1 1 Uncorrectable data error during a read
1 2 Address Mark not found
1 4 Record not found. Found correct cylinder and

head.
1 5 Seek error. Read/Write head positioned on

wrong cylinder and/or wrong head selected.
1 8 Correctable data field error
1 9 Bad sector found
1 A Format error. An unexpected format

discovered during the Check Track function.
1 C Unable to read the alternate track address
1 E Attempted to directly access and alternate

track
2 0 Invalid function
2 1 Illegal disk address. Address is beyond

maximum.
3 0 RAM error. Data error detected during RAM

diagnostic
3 1 Program Memory Checksum error
3 2 ECC Polynominal error

9-70

Hard Disk
Controller

Function
Parameters

NAME DESCRIPTION

TYPE

HEAD #
LUN#

CYLINDER LOW

CYLINDER HIGH

CONTROL COMMAND Tells controller how to react to an error
condition and defines step mode. See
layout.
Eight least significant bits of the
cylinder number
Two most significant bits of the
cylinder number
ECC bytes of sector. ECCO is least sig
nificant byte.
Head number
Logical Unit Number. Winchester Drive
1 =Lun 0, Winchester Drive 2 =Lun 1.
Sector number
Gives detailed error information. See
layout.
0= good track, 1 = alternate track,
2 =bad track, 3 =alternate bad track

ECCO,ECC1,ECC2

SECTOR #
SENSE BYTE

Functions • ASSIGN ALTERNATE TRACK
This function formats the primary track speci
fied in the function block with the alternated
and bad track flags set in the ID fields and with
the track address of the alternate track written
in the data fields. The data field is written with
the data in the sector buffer.

Future read/write accesses to the primary track
cause the drive to seek to the alternate track and
to perform the operation there. This is transpar
ent to the software. Alternate tracks can be
Q~signed once. An alternate track cannot point
"0 another alternate track.

9-71

Hard Disk
Controller

OUTPUT:

DATA
OUTPUT:

71 65 41 3 12
1

1 1 0

11

LUN PRIMARY
HEAD #

CYL
HI a

PRIMARY CYLINDER
LOW

INTERLEAVE

CONTROL

7 6 5 41 3
1

2 1 1
1

0

a 0 0 SECONDARY
HEAD #

CYLHI I 0

SECONDARY CYLINDER
LOW

0

9-72

• CHECK TRACK
This function checks the track format on the
specified track for the correctness of the ID fields
and the interleave of the sectors. It does not read
the data.

Hard Disk
Controller

OUTPUT: 716151413121110

10

LUN I HEAD #

CYLHI\ 0

CYLINDER LOW

INTERLEAVE

CONTROL

• CONTROLLER INTERNAL DIAGNOSTICS
This function performs the controller internal
diagnostics. The controller checks the internal
processor, data buffer, ECC circuit and the
checksum.

OUTPUT: 7 I61 5 I 4 I3 I 2 11 I0

E4

0

0

0

0

0

• COPY
This function transfers the data blocks from the
source unit to the destination unit. The number
of sectors to copy is specified in the number of
blocks field. If the field is zero, 15,777,216 sectors
are copied.

9-73

Hard Disk
Controller

OUTPUT:
o

AO

CYL HIlS

HEAD#/S

SECTOR#/S

CYLINDER LOWIS

HEAD#/D

9-74

CYL HI/D SECTOR #/D

CYLINDER LOWID

OF BLOCKS 2

OF BLOCKS 1

OF BLOCKS 0

0

CONTROL

S =Source D =Destination

• DRIVE DIAGNOSTIC
This function performs a diagnostic on the spec
ified unit. It reads sector 0 on sequential tracks
and then reads sector 0 on 256 random tracks.

Hard Disk
Controller

OUTPUT:
716151413121110

E3

LUN I 0

0

0

0

CONTROL

• FORMAT BAD TRACK
This function formats the track with the bad
block flag set in all ID fields. It fills the data
field with the data pattern in the sector buffer.
The interleave must be the same for the entire
drive.

OUTPUT:
7 o

7

CYLHI

HEAD #

o

CYLINDER LOW

INTERLEAVE

CONTROL

9-75

Itard Disk
Controller

• FORMAT TRACK
This ftinction formats the specified track with
no flags set in the ID fields. It fills the data field
with the data pattern in the sector buffer. The
interleave must be the same for the entire drive.

OUTPUT: 7 I 6 I5 I 4 I 3 I 2 I 1 I 0

6

LUNI HEAD #

CYLHII 0

CYLINDER LOW

INTERLEAVE

CONTROL

• FORMAT DRIVE
This function formats all of the tracks starting
with the one specified in the function block to
the end of the drive. The selected track format is
used. The sectors are placed on the tracks
according to the interleave code. The data fields
are filled with the data pattern from the sector
buffer.

9-76

OUTPUT: 716151413121110
4

LUNI HEAD #

CYLHII 0
CYLINDER LOW

INTERLEAVE

CONTROL

Hard Disk
Controller

• INITIALIZE DRIVE CHARACTERISTICS
This function sets up the drive with different
capacities and characteristics.

OUTPUT:

DATA
OUTPUT:

716151413121110
C

LUN I 0
0
0
0
0

MAX # OF CYLINDERS HIGH

MAX # OF CYLINDERS LOW

MAX # OF HEADS

REDUCED WR. CUR.
CYLINDER HIGH

REDUCED WR. CUR.
CYLINDER LOW

WRITE PRECOMP.
CYLINDER

HIGH

WRITE PRECOMP.
CYLINDER

LOW

MAX ECC DATA BURST
LENGTH

9-77

Hard Disk
Controller

• RAM DIAGNOSTIC
This function performs a data pattern test on
the controller RAM.

OUTPUT:
7 1 6 1 5 I 4 I 3 1 2 1 1 I 0

EO

0

0

0

0

0

• READ
This function reads the specified number of
blocks. The function specifies the initial sector
address. The data is transferred to the CPU.

OUTPUT:
o

8

CYLHI

HEAD #

SECTOR #

9-78

CYLINDER LOW

OF BLOCKS

CONTROL

Hard Disk
Controller

• READ ECC BURST ERROR LENGTH
This function transfers one byte of data to the
CPU. This byte contains the ECC burst length
that the controller detected for the correctable
ECC data error during the last read function.

OUTPUT:

7 I 6 1 5 1 4 I 3 1 2 1 1 I 0

D

0

0

0

0

0

DATA
INPUT:

ECC BURST LENGTH

9-79

Hard Disk
Controller

• READID
This function reads three bytes and three ECC
bytes from the specified sector address given in
the function block and transfers them to the
CPU.

9-80

OUTPUT:

DATA
INPUT:

716151413121110

E2

LUN I HEAD #

CYLHI I SECTOR #

CYLINDER LOW

INTERLEAVE

CONTROL

7 I 6 I5 1 4 1 3 I2 I1 I0

CYLINDER LOW

TYPEICYL HI I HEAD #

SECTOR #

ECC2

ECC 1

ECCO

Hard Disk
Controller

• READ LONG
This function reads sectors of data and ECC
bytes from the disk and transfers them to the
CPU. If an ECC error occurs during the read,
the controller does not attempt to correct the
data.

OUTPUT:

7 I 6 I 5 I 4 1 3 1 2 I 1 I 0

E5

LUN I HEAD #

CYLHI I SECTOR #

CYLINDER LOW

OF BLOCKS

CONTROL

DATA
INPUT:

256/512/1024 E E E 0
BYTES OF DATA C C C 0

2 1 0

• READ SECTOR BUFFER
This function reads one sector from the con
troller sector buffer. No data transfer occurs
between the controller and the drives.

9-81

Hard Disk
Controller

OUTPUT:
7 I 6 15 1 4 I 3 I 2 I 1 I 0

E

0

0

0

0

0

• READ VERIFY
This function reads the specified number of
blocks but does not transfer the data to the CPU.
The function specifies the sector number where
verification begins.

OUTPUT:

716 15 41 3 -1 2 11 10

5

LUN HEAD #

CYLHI SECTOR #

CYLINDER LOW

OF BLOCKS

CONTROL

9-82

• RECALIBRATE
This function positions the read/write arm at
track 0 and clears errors in the drive.

Hard Disk
Controller

OUTPUT:

716151413121110
1

LUN I 0

0

0

0

CONTROL

• REQUEST LOGOUT
This function retrieves the four bytes of error log
for the specified unit. Each device has its own
error log which is incremented every time cer
tain errors occur and is cleared after this func
tion is executed.

OUTPUT:

716151413121110
E7

LUN I 0

0

0

0

0

9-83

Hard Disk
Controller

DATA
INPUT: RETRY COUNT HIGH

RETRY COUNT LOW

PERMANENT ERROR HIGH

PERMANENT ERROR LOW

• REQUEST SENSE
This function sends the four Sense Bytes to the
CPU as data.

OUTPUT:

7 I 6 1 5 1 4 I 3 I 2 I 1 I 0

3

LUN I 0

0

0

0

0

DATA
INPUT:

SENSE BYTE

o

CYLHI

HEAD #

SECTOR #

9-84

CYLINDER LOW

Hard Disk
Controller

• REQUEST SYNDROME
This function returns the four bytes of the ECC
syndrome to the CPU as data.

OUTPUT:

71615141312111 0

2
LUN I 0

0

0

0

0

DATA
INPUT:

7

MSB bit offset

LSB bit offset

o

o MASK

o

9-85

Hard Disk
Controller

• SEEK
This function seeks to the cylinder of the speci
fied block. For Winchester drives capable of
overlap seeks, this function returns completion
status before the seek is complete.

OUTPUT:

716 15 41 3121110
B

LUN HEAD #

CYLHI 0
CYLINDER LOW

0
CONTROL

• TEST DRIVE READY
This function selects the specified drive and
verifies the drive is ready, the seek is complete,
and there are no drive faults.

9-86

OUTPUT: 716151413121110
0

LUN I 0
0
0
0
0

Hard Disk
Controller

• WRITE
This function writes the data starting at the
initial block address given in the function.

OUTPUT: 7 '6 15 4 1 3 1 2 1 1 I 0

A

LUN HEAD #

CYLHI SECTOR #

CYLINDER LOW

OF BLOCKS

CONTROL

• WRITE LONG
This function writes blocks of data and ECC
bytes from the CPU to the disk without generat
ing ECC for the data.

OUTPUT: 7 16 151413121110

E6

LUN I HEAD #

CYLHI I SECTOR #

CYLINDER LOW

OF BLOCKS

CONTROL

256/512/1024 E E E 0
BYTES OF DATA C C C 0

2 1 0

DATA
OUTPUT:

9-87

Hard Disk
Controller

• WRITE SECTOR BUFFER
This function writes one sector's worth of data
to the controller sector buffer. No data transfer
occurs between the controller and the drives.

OUTPUT:
716151413121110

F

0
0
0
0

Sequencing There are three phases to each function:
and Timing

• function initiation

• function execution

• function results

To initiate a function, you select the controller
with the Select Controller Register. Then you
wait for Ready in the Status Register to be set.
The In/Out bit and the Command/Data bit
should indicate function transfer to the con
troller. You then write six function bytes to the
Data Register.

If the Ready is set after this transfer, either
there was an error in the function bytes or the
controller is ready to receive another group of six
function bytes and/or data.

9-88

Hard Disk
Controller

Data can be transferred in DMA or non-DMA
mod.e. If the transfer is in DMA mode, the DMA
Controller is programmed in Single Transfer
mode (See DMA Controller). The count word is
set to:

(number of sectors to transfer)(bytes/sector) - 1

If data is transferred in non:~DMA,you use
Ready, In/Out, Command/Data and Interrupt
Request to time the transfer during execution.

Execution begins when the last function byte is
received. In data transfer functions, the con
troller temporarily stores the data in the sector
buffer. This prevents data overruns. When the
function completes and the Completion Status
byte is loaded, the controller issues interrupts if
requested.

You clear the Interrupt Enable and the DMA
enable bits in the Control Register after reading
the Completion Status. This allows the con
troller to clear Interrupt Request and Data
1{equest in the Status Register. It also clears the
Selected bit.

The controller does extensive error recovery. If
an error is found, four retries are attempted. If a
retry is successful, the error is not reported; how
ever, the retry count is incremented.

The following errors result in a retry:

• Seek error

• Sector not found

• Uncorrectable data error

9-89

Hard Disk
Controller

• Correctable data error

• No data address mark

• No ID address mark

• ECC error in ID field

On a seek error, a recalibrate and reseek is done
by the controller.

The following errors are accumulated in the log:

• ECC error in ID field

• Correctable error in data field

• Uncorrectable error in data field

• No ID address mark

• No data address mark

• Seek error

• Record not found

If rereads are disabled, the controller does not
reread before applying the ECC correction.

When a reset is done, the controller defaults to
the following characteristics:

• Maximum number of cylinders =306

• Maximum number of heads =4

• Starting reduced write current cylinder =306

• Starting write precompensation cylinder =0

• Maximum ECC data burst length = 4 bits

9-90

Hard Disk
Controller

The interleave factor states how many physical
sectors logical sectors are apart. For example, if
the Interleave Factor is 6 and there are 16 sec
tors in a track, then a sector looks like this:

Physical
Sector 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Logical
Sector 036 9 12 15 1 4 7 10 13 16 2 5 8 11 14

The track layout for 256 bytes per sector, 33 sec-
tors per track is:

13 a F c h s e 0 0 13 a F 256 e 0 0 10
bytes m E y d e c 0 0 bytes m 8 bytes c 0 0 bytes
OO's 1 c c OO's data c 4E's

am, FE, cyl, hd, sec, 00, F8 = 1 byte
ecc = 3 bytes

Track capacity =10416

16 =Index Gap (4E)
10197 =33 sectors@ 309 bytes/sector

203 =Speed Tolerance Gap (4E)
10416

309 bytes/sector including ID and overhead

The track layout for 512 bytes per sector, 17 sec
tors per track is:

13 a F c h s e 0 0 13 a F 512 e 0 0 37
bytes m E y d e c 0 0 bytes m 8 bytes c 0 0 bytes
OO's 1 c c OO's data c 4E's

am, FE, cyl, hd, sec, 00, F8 = 1 byte
ecc = 3 bytes

9-91

Hard Disk
Controller

Track capacity =10416

16 = Index Gap (4E)
10064 = 17 sectors @ 592 bytes/sector

336 = Speed Tolerance Gap (4E)
10416

592 bytes/sector including ID and overhead

The track layout for 1024 bytes per sector, 9 sec
tors per track is:

13 a F c h s e 0 0 13 a F 1024 e 0 0 58
bytes m E y d e c 0 0 bytes m8 bytes c 0 0 bytes
OO's 1 c c OO's data c 4E's

am, FE, cyl, hd, sec, 00, F8 =1 byte
ecc =3 bytes

Track capacity =10416

16 =Index Gap (4E)
10125 = 9 sectors @ 1125 bytes/sector

275 =Speed Tolerance Gap (4E)
10416

1125 bytes/sector including ID and overhead

9-92

Hard Disk
Controller

;Status Port Address

;Get status
;Is it ready?
;Loop if not ready
;Jump if ready for a
;function and selected
;Flag error

;Select Port Address
;Output anything
;Control Port Address
;Enable interrupts and
;DMA

; INIT_CTLR
This routine prepares the controller to
receive a function.

OUTPUT: Carry set if error
SELECT EQU 322
STATUS EQU 321
CONTROL EQU 323
INIT-CTLR:

MOV DX,SELECT
OUT DX,AL
MOV DX,CONTROL
MOVAL,3H

OUT DX,AL
MOV DX,STATUS

INIT1:
IN AL,DX
TESTAL,lH
LOOPZ INIT1
CMPAL,DH
JE INIT2
STC
RET

INIT2:
CLC
RET

Sample
Program

9-93

Functional
Description

Keyboard
Interface

The keyboard interface converts the parallel
data into serial data for transmission to and
from the keyboard.

To provide maximum flexibility in defining key
board operations, the keyboard uses scan codes
rather than ASCII codes. In addition, all keys
generate a make scan code when pressed and a
break scan code when released. The break scan
code is 80H plus the make scan code.

The keyboard is responsible for keeping track of
the amount of time a key is depressed and for
generating the repeat key signal. All the keys
have this repeat function.

Block
Diagram 74L8322

PAO----+-
PA1----+-

PA2----+-
PA3----+-
PA4----+-

PA5---+
PA6----+

PA7----+-

PB7-'---+-~

P86-----------+----'

74874

.........--.--KEYBOARD CLOCK

4.7KOHM

PCLK---------.....J

9-94

Registers

PORT NAME

60 DATA

60 DATA
60 CONTROL
64 STATUS

Layout

CONTROL

o

READ/
WRITE

R

W
R/W

R

Keyboard
Interface

DESCRIPTION

8 bit scan code when pressed, 8 bit
scan code plus 80H when released
See scan code chart.
Keyboard command codes
See layout
See layout

1

9-95

Keyboard
Interface

STATUS

o 1

Functions • READ STATUS
This function allows you to determine when
there is a character to read and when the key
board is ready to receive a character.
INPUT: STATUS

• READDATA
This function allows you to read the scan code of
the key that was pressed or released.
INPUT: DATA

• WRITE CONTROL
This function allows you to issue control com
mands to the keyboard.
OUTPUT: CONTROL

9-96

Keyboard
Interface

• GET KEYBOARD TYPE
This function determines if the keyboard is an
Olivetti M20 type keyboard.
OUTPUT: DATA REGISTER

5
INPUT: DATA REGISTER

I = Olivetti M20 keyboard

• KEYBOARD LEDS
This function controls the illuminations of the
CAPS LOCK and NUM LOCK LEDS.
OUTPUT: DATA REGISTER

ISH

Value Operation
OOh No operation
OIh Cap lock LED OFF
02h Num lock LED OFF
OSh Both LEDS OFF
80h No operation
8Ih Caps lock LED ON
82h Num lock LED ON
8Sh Both LEDS ON

Any other value will cause one of the above
operations.

9-97

Keyboard
Interface

Scan Codes

KEY NO SCAN CODE KEY NO SCAN CODE KEY NO SCAN CODE

1 01H 36 24H 71 47H
2 02H 37 25H 72 48H
3 03H 38 26H 73 49H
4 04H 39 27H 74 4AH
5 05H 40 28H 75 4BH
6 06H 41 29H 76 4CH
7 07H 42 2AH 77 4DH
8 08H 43 2BH 78 4EH
9 09H 44 2CH 79 4FH

10 OAH 45 2DH 80 50H
11 OBH 46 2EH 81 51H
12 OCH 47 2FH 82 52H
13 ODH 48 30H 83 53H
14 OEH 49 31H 84 54H
15 OFH 50 32H 85 55H
16 10H 51 33H 86 56H
17 11H 52 34H 87 57H
18 12H 53 35H 88 58H
19 13H 54 36H 89 59H
20 14H 55 37H 90 5AH
21 15H 56 38H 91 5BH
22 16H 57 39H 92 5CH
23 17H 58 3AH 93 5DH
24 18H 59 3BH 94 5EH
25 19H 60 3CH 95 5FH
26 1AH 61 3DH 96 60H
27 1BH 62 3EH 97 61H
28 1CH 63 3FH 98 62H
29 1DH 64 40H 99 63H
30 1EH 65 41H 100 64H
31 1FH 66 42H 101 65H
32 20H 67 43H 102 66H
33 21H 68 44H 103 67H
34 22H 69 45H 104 68H
35 23H 70 46H

9-98

;read status
;keyboard ready to receive
;input? Jump if ready.
;keyboard LED command

Sequencing
and Timing

Sample
Program

Keyboard
Interface

To send a character to the keyboard, wait for Bit
I of the Status Register to be set and write the
byte to the data register.

To receive a character, wait for Bit°of the Sta
tus Register to be set and read the character.
The keyboard interface can be programmed to
interrupt on INTI when there is a character to
read.

;This program sets the CAPS LOCK LED
STATUS EQU 64
DATA EQU60
SET_LED:

IN AL,STATUS
TESTAL,2
JNZSET_LED
MOV AL,OI3H
OUTDATA,AL

SETI:
IN AL,STATUS
TESTAL,2
JNZ SETI
MOV AL,8I
OUTDATA,AL
RET

;read status
;ready to receive input?
;jump if not
;CAPSLOCK
;write out code

9-99

Parallel Printer
Interface

Functional
Description

The parallel printer interface connects to print
ers with a Centro:p.ics-like parallel interface or
any other device with identical interface charac
teristics. The input and output signals are pre
sented to the external device through a 25-pin
"D" type connector.

The interface has 5 buffered outputs - data,
strobe, initialize printer, automatic linefeed, and
select. These can be read and written. In addi
tion, the interface has five inputs - acknowl
edge, busy, paper out, error and select. An inter
rupt can be enabled on INT7.

PIN'll 2·9

15
13

12

10
11

INT7

·RESET 1

14

·IOWR 16

·IORD 17

-PNTRCS

AO

A1

Registers

Block
Diagram

PORT #

378
379
37A

NAME

DATA
STATUS
CONTROL

READ/
WRITE

R/W
R

R/W

DESCRIPTION

Print character
S~e layout
See layout

9-100

Layout

STATUS

o 1

Parallel Printer
Interface

CONTROL

o 1

9-101

Parallel Printer
Interface

Functions • RESET
After a power on or a hardware reset, the data
buffer is cleared and the control register is
initialized to:

bit 0: 0
bit 1: 0
bit 2: 0
bit 3: 0
bit 4: 0

• WRITE DATA
This instruction enables the data on the data
bus to be written to the printer data bus. The
actual writing occurs when the strobe line is
activated.
OUTPUT: DATA

• WRITE CONTROL
This instruction inverts DO, D1, and D3 on the
data bus and writes the data to the control regis
ter. If D4 is a 1 then interrupts are requested.
OUTPUT: CONTROL

• READDATA
This instruction enables the data on the printer
data bus to be read onto the data bus. It normal
ly is the last character written to the printer.
INPUT: DATA

• READ CONTROL
This instruction enables the data on the printer
control lines and the interrupt control bit to be
placed on the data bus.
INPUT: CONTROL

• READ STATUS
This instruction enables the data on the printer
status lines to be placed on the data bus.
INPUT: STATUS

9-102

Sequencing
and Timing

Parallel Printer
Interface

To send a character to the printer, the character
is put on the data bus. When the printer is not
busy, it is ready to accept the next character.
The character must be strobed into the printer
by setting the strobe bit to 1 for at least 5/l
seconds and then resetting it.

Interrupt can be enabled on INT7 by writing D4
=1 in the control register. An interrupt will be
triggered everytime Bit 6 of the status register
goes from 0 to 1 (end of the acknowledge cycle
from the printer).

To initialize the printer, first select it. Then issue
the initialize command setting the automatic
line feed and interrupt parameters.

9-103

Parallel Printer
Interface

Sample
Program

; PRINT_CHAR
Send character to printer and get status
INPUT AL - character to print
OUTPUT: AL - status

9·104

DATA EQU 378H
PRINT_CHAR:

MOVDX,DATA
OUT DX,AL

INCDX
IN AL,DX
TEST AL,080H
JNZ PRINT_NOT_BUSY

PRINT_NOT_BUSY:
MOV AL,ODH
INCDX
OUT DX,AL
NOP
NOP
MOV AL,OCH
OUT DX,AL
DECDX
IN AL,DX
RET

;get data port
;put char on data
;line
;get status port
;read in status
;is the printer busy?
;jump if not busy

;strobe high
;get control port
;to control register
;wait
;wait
;strobe low
;to control register
;get status port
;read in status

Functional
Description

Programmable
Interrupt Controller

The Intel 8259A Programmable Interrupt Con
troller (PIC) manages external interrqpts. It
receives requests from peripheral equipment,
decides which request has the highest priority,
and issues an interrupt to the CPU. Each PIC
handles 8 maskable priority interrupts. PIC's
can be cascaded allowing up to 64 priority inter
rupts. However, on the AT&T Personal Comput
er 6300 this is not done.

Each interrupt device runs to one of eight inter
rupt lines (INTO-INT7). If more than onedevice
interrupts at once, the PIC decides which device
to service according to one of several schemes.

The following schemes apply to a single PIC:

• Fully Nested Mode
This is the default mode. The interrupt requests
have an ordered priority from 0 (highest) to 7
(lowest). The highest priority is acknowledged
first and those of lower priority are inhibited.

• Special Mask Mode
This mode is similar to fully nested mode except
that the interrupt mask register (IMR) deter
mines which interrupts are disabled.

• Polled
This mode allows the CPU to poll the devices. It
is selected by disabling interrupts with the CLI
instruction. Periodically the CPU polls the PIC
to receive the interrupt type of the highest prior
ity device requesting service.

9·105

Programmable
Interrupt Controller

• Automatic Rotation
In this mode, a device receives the lowest prior
ity after it is serviced. All other devices have
their priorities adjusted accordingly. The next
highest interrupt line receives the highest
priority.

• Programmable Rotation
In this mode, the programmer declares the low
est priority device.

The PIC keeps track of devices that are waiting
for service in the interrupt request register (IRR).
If not in polled mode, the PIC notifies the CPU
of the pending interrupt. When it receives an
interrupt acknowlege from the CPU (INTA), it
sends the interrupt type of the device to the
CPU. The device is then in-service. This is noted
in the in-service register (ISR). The type of INTO
is programmable. It must be a multiple of 8.

After the interrupt service routine services the
interrupt, it notifies the PIC of end of interrupt
(EOI). The device is then removed from the in
service register.

Block
Diagram

9-106

Programmable
Interrupt Controller

Registers

PORT # NAME READ/ DESCRIPTION
WRITE

20 INIT COMMAND WORD 1 (ICW1) W See layout
21 INIT COMMAND WORD 2 (ICW2) W INTO interrupt type,

multiple of 8
21 INIT COMMAND WORD 3 (ICW3) W Cascade mode only
21 INIT COMMAND WORD 4 (ICW4) W See layout
21 OPERATION COMMAND WORD 1 R/W Interrupt Mask

Register
(OCW1, IMR) See layout

20 OPERATION COMMAND WORD 2 W See layout
(OCW2)

20 OPERATION COMMAND WORD 3 W See layout
(OCW3)

20 IN-SERVICE REGISTER (ISR) R See layout
21 INTERRUPT LEVEL R See layout
20 INTERRUPT REQUEST REGISTER R See layout

(IRR)

9-107

Programmable
Interrupt Controller

Layout

ICWl

o 1

ICW4

9-108

oeWl or INTERRUPT MASK REGISTER'

o

Programmable
Interrupt Controller

1

oeW2

o 1

9-109

Programmable
Interrupt Controller

OCW3

o 1

IN SERVICE REGISTER

o 1

9-110

Programmable
Interrupt Controller

INTERRUPT REQUEST REGISTER

o 1

INTERRUPT LEVEL

o 1

9-111

Programmable
Interrupt Controller

Functions • INITIALIZATION
This function prepares the PIC to accept inter
rupts by setting it to an initial state.

OUTPUT: ICWl
ICW2
ICW3 (Cascaded PIC's only)
ICW4

• SET SPECIAL MASK MODE
This function sets the priority scheme to Special
Mask Mode. The Interrupt Mask Register (IMR)
defines enabled priorities.

OUTPUT: OCW3 BITS 5-6 =3
IMR

• RESET SPECIAL MASK MODE
This function resets the priority structure to the
Fully Nested Mode. The IMR is ignored.

OUTPUT: OCW3 BITS 5-6 =1

• SET POLLED MODE
This function sets the priority scheme to Polled
Mode. The CLI instruction must be executed to
disable external interrupts. The next read
fetches the interrupt level.

OUTPUT: OCW3 BIT 2 =1
INPUT: interrupt level

• AUTOMATIC ROTATION OF PRIORITIES
ATEOI
This function requests an automatic rotation of
priorities at EOI.

OUTPUT: ICW2 BITS 5-7 = 5

• PROGRAMMED ROTATION AT EOI
This function requests a specific change in prior
ities at EOI.

OUTPUT: ICW2 BITS 5-7 =7
ICW2 BITS 0-2 =level of lowest

priority

9-112

Programmable
Interrupt Controller

• ROTATION OF PRIORITIES INDEPENDENT
OFEOI
This function requests an immediate change in
priorities.

OUTPUT: OCW2 BITS 5-7 =6
OCW2 BITS 0-2 =level of lowest

priority

• SPECIFIC END OF INTERRUPT (SEOI)
This function is issued in an interrupt service
routine to declare end of interrupt service for the
specified level.

OUTPUT: OCW2 BITS 5-7 =:3
BITS 0-2 = interrupt level

• NON-SPECIFIC END OF INTERRUPT (EOI)
When the PIC is operating in Fully Nested
Mode, it can determine which interrupt is com
pleting. This function signals completion of an
interrupt service routine.

OUTPUT: OCW2 BITS 5-7 = 1

• AUTOMATIC END OF INTERRUPT
This function requests the PIC to declare end of
interrupt automatically after delivering the
interrupt to the CPU.

OUTPUT: ICW4 BIT 1 =1

• READIRR
This function reads the devices requesting
service.

OUTPUT: OCW3 BITS 0-1 =2
INPUT: IRR

• READISR
This function reads the in-service register.

OUTPUT: OCW3 BITS 0-1 =3
INPUT: ISR

9-113

Programmable
Interrupt Controller

•

Sequencing
and Timing

•

READIMR
This function reads the interrupt mask register.

INPUT: OCWl

When the ICWl command is issued, the initiali
zation process begins. The following automati
cally occurs:

IMR is cleared.

• INT7 is assigried the lowest priority.

it Single mode is assumed.

• Special Mask Mode is cleared.

• A status read fetches IRR.

• If Bit 0 equals zero, then ICW4 functions are set
to zero.

Next ICW2 is output. ICW3 is skipped in all sin
gle PIC systems. If the ICW4 was requested by
ICWl then it is output. This completes
initialization.

Once the initialization process is complete, the
PIC is ready to accept interrupts. Any of the
functions to change the priority scheme can be
executed. In addition, the IRR, IMR, and ISR
can be read.

If automatic EOI is not specified then the inter
rupt service routine must declare EOI. Either
specific or non-specific EOI can be used depehd~

ing on the priority scheme in use.

9-114

Programmable
Interrupt Controller

When a write command is issued to the PIC, 480
nanoseconds must elapse before another com
mand is issued. In the read case, 395 nanosec
onds must elapse.

Sample '.
Program ; SEND_SEOI

Send end of INTI service at the end of the
interrupt service routine.

OCW2
COMMAND

EQU 20 ;port address of OCW2
EQU 61 ;6 = SEOI, 1 = INTI

SEND_SEOI:
MOV AL,COMMAND
MOVDX,OCW2
OUT DX,AL
STI
RET

;set AL =command
;set DX =port address
;send command
;enable external interrupts
;return to service routine

9-115

Functional
Description

Programmable
Interval Timer

The Intel 8253 Interval Timer has three identi
cal, 16-bit, settable, decrementing counters. Each
counter is totally independent. The counters
have either a BCD or binary value and operate
in one of five modes:

• Interrupt on Terminal Count
The output remains low after the mode is set. It
continues low after the counter is loaded until
the counter counts down to zero. Then the output
goes high. It remains high until a new mode is
selected or a new count is loaded.

• Programmable One-Shot
The output goes low one count following the ris
ing edge of the gate input. The output goes high
on the terminal count.

• Rate Generator
The output is low for one period of the input
clock. The period from one output pulse to the
next equals the number of input counts in the
count register.

• Square Wave Rate Generator
The output remains low for one period of the
input clock. The output remains high until one
half the count has elapsed. If the count is odd,
the output is high for (n+1)/2 and low for
(n-1)/2.

• Software Triggered Strobe
After the mode is set, the output will be high.
When the count is loaded, the counter begins
counting. On the terminal count,the output goes
low for one clock period and then goes high.

9-116

Programmable
Interval Timer

• Hardware Triggered Strobe
The counter starts counting after the rising edge
of the trigger input and goes low for one clock
period when terminal count is reached.

These timing diagrams illustrate the different
modes.

-DSR2+--------
-RI2+--------

Z8350 CHANNEL B
CONNECTOR

PIN #

2

4

23

24

15
3
5
6

22
8

17

MARKING LINE
LL:......:..:.--L...

ASYNCHRONOUS

MONOSYNC

EXTERNAL SYNC

SDLC/HDLC/X25

9-117

Programmable
Interval Timer

Block
Diagram

07:00(22)

-IORO-----t~

-IOWRi----1to

AO

A1

-CS

9-118

In the AT&T Personal Computer 6300 system,
Counter 0 provides real time interrupts on INTO,
counter 1 requests memory refreshes, and count
er 2 generates a pulse train for the audio
speaker.

ClK2

GATE 2 --'TMR2GSPKR

OUT2

ClK 1

GATE 1

OUTl

ClKO

GATED

OUTO --'INTO

Programmable
Interval Timer

Registers

PORT # NAME READ/ DESCRIPTION
WRITE

40 COUNTER 0 R/W Provides real time interrupt INTO
41 COUNTER 1 R/W Provides signals to refresh memory
42 COUNTER 2 R/W Generate pulse train for the audio

speaker
43 CONTROL W See Layout

Layout

CONTROL

o 1

9-119

Programmable
Interval Timer

Functions 4:: LOAD COUNTER
This function allows you to set a specific
counter.
OUTPUT: CONTROL REGISTER

BITS 0 binary or BCD
BITS 1-3 mode
BITS 4-5 1,2 or 3
BITS 6-7 counter

8 or 16 bit count value

• READ COUNTER
This function allows you to read a specific
counter.
OUTPUT: CONTROL REGISTER

BITS 4-5 0
BITS 6-7 counter

9-120

Sequencing
and Timing

Programmable
Interval Timer

All counters must be initialized with the control
register. The control register specifies the
number of bytes which must be loaded.

Whenever a read or a load command is issued,
the requested counter bytes must be read or writ
ten. In the read case, two reads are necessary,
the first for the least significant byte (LSB) and
the last for the most significant byte (MSB). In
the write case, the control register specifies the
byte to write.

1 microsecond recovery time is required between
a read or a load and any other control signal.

Input to the timer is 1.2288MHz. Therefore, there
are 18.75 interrupts per second. To generate a
1.00 KHz tone with the audio speaker, a square
wave rate generator is used with a count of614
(1.2288MHz/2*614 =1KHz).

9-121

Programmable
Interval Timer

Sample
Program ; ASILFOR_INTR

This program requests an interrupt in
approximately 10 usec (9765.6 nsec)

TIMER_CONTROL EQU 43
TIMERO EQU 40

INT.-MASK EQU21

;output counter, LSB
;then MSB

OUT INT_MASK,AL
MOV AL,00110000B

;allow only INTO
;interrupt
;sendmask
;binary counter,
;interrupt on terminal
;count, set counter 0

OUT TIME_CONTROL,AL
MOV AX,12 ;12 *813.8 nsec
OUT TIMERO,AL
MOVAL,AH

ASK_FOR_INTR:
MOV AL,OFEH

OUT TIMERO,AL
RET

9-122

Real Time Clock
and Calendar

Functional
Description

The real time clock and calendar keep the cur
rent data and time. All of the date and time
fields can be read but the second fields cannot be
written. The calendar keeps up to eight years. A
rechargeable battery keeps the unit running
even when the computeris turned off.

~0..;:..3-----------l083
--=0:.=..2 --1082
-::0'71 --1081
-=0=° ----1080

INT---

.-------.--~XI N
32.768 KHz

T

-=- BATIERY

r
A3
-------------IA03
...c.A.c::...2 ----IA02
-:.A.:...:...1 ----IA01
-'A..:.:.O -lAOO

Block
Diagram

9-123

Real Time Clock
and Calendar

Registers

PORT # NAME READ/ DESCRIPTION
WRITE

70 TEST PORT W O=not test mode, 1=test mode
71 1/10 OF A SECOND R nybble, 0-9
72 UNIT SECONDS R nybble, 0-9
73 10'S OF SECONDS R nybble, 0-5
74 UNIT MINUTES R/W nybble, 0-9
75 10'S OF MINUTES R/W nybble, 0-5
76 UNIT HOURS R/W nybble, 0-9
77 10'S OF HOURS R/W nybble, 0-1
78 UNIT DAYS R/W nybble, 0-9
79 10'SOFDAYS R/W nybble, 0-3
7A DAY OF WEEK R/W nybble, 1-7
7B UNIT MONTHS R/W nybble, 0-9
7C 10'S OF MONTES R/W nybble,Oe1
7D LEAP YEAR W See layout
7E STOP/START W o= stop, FF = start
7F INTERRUPT/YEAR R/W See layout

MOD 8

9-124

Layout

INTERRUPT/YEAR MOD 8

o 1

Real Time Clock
and Calendar

LEAP YEAR

o 1

9-125

Real Time Clock
and Calendar

Functions • READ CALENDAR AND CLOCK
All of the calendar and time registers are read
able. Those from port address 71 to 7D and 7F
contain a nibble of data.

• WRITE CALENDAR AND CLOCK
All of the calendar and time registers except
seconds are writable. The registers from port
address 74 to 7D and 7F each contain a nibble of
data.

Sequencing
and Timing

9-126

To write data to the clock and time registers, the
unit must be out of test mode and stopped. After
writing to the clock, it must be restarted.

To initialize interrupts, set Bit 4 in the Inter
rupt/Year mod 8 register. Write the register once
and then read it in three times.

If an update occurs while reading a register, the
illegal code of F is returned.

Real Time Clock
and Calendar

EQU70
EQU7E
EQU77

; SET TIME
This routine sets the time to 12:00 noon

;AX=O
;setup dx
;take out of
;test mode

OUT STOP_START,AL ;stop the clock

MOV DX,TENS_HOURS ;port addr of
;10's of hours

,
TEST_PORT
STOP_START
TENS_HOURS
WRITE_TIME:

XORAX,AX
MOV DX,TEST_PORT
OUT DX,AL

Sample
Program

MOV AL,l
OUT DX,AL ;ten's of hours

;= 1

DECDX
MOV AL,2
OUT DX,AL

DECDX
XORAL,AL
OUT DX,AL

;unit hours = 2

;tens of minutes
;= 0

DECDX
OUT DX,AL

MOV AL,OFFH
OUT STOP_START,AL

RET

;minutes = 0

;start the clock

9-127

Functional
Description

Serial Communications
Controller

Z8530 Serial Communications Controller (SCC)
performs serial-to-parallel conversion on input
data characters received from a modem and
parallel-to-serial conversion on output data
characters received from the CPU. It supports
the following common asynchronous and syn
chronous data communication protocols.

-DSR2+---------
-RI2+__-------

Z8350 CHANNEL B
CONNECTOR

PIN#

2

4

C§)'VO

24

15
3
5
6

22
8

17

MARKING LINE
L....l-~--L...J

ASYNCHRONOUS

MONOSYNC

9-128

SIGNAL BISYNC

EXTERNAL SYNC

SDLC/HDLC/X25

Serial Communications
Controller

In addition, the sec supports five encoding
methods - NRZ, NRZI, FMl (hi-phase mark),
FMO (hi-phase space), and Manchester (hi-phase
level).

Figure 20

0 0 0

\ I "--
\ I "--

DATA

NRZ -------

NRZ1 -------

FM1

FMO

MANCHESTER

9-129

Serial Communications
Controller

The SCC has the following capabilities:

Asynchronous
• 5, 6, 7, or 8 bits per character
• 1, 11/2, or 2 stop bits
• Odd or even parity
• Times 1, 16, 32, or 64 clock modes
• Break generation and detection
• Parity, overrun and framing error detection

Byte-oriented synchronous
• Internal or external character synchronization
• 1 or 2 sync characters in separate registers
• Automatic sync character insertion and deletion
• Cyclic redundancy check (CRC) generation/

detection
• 6- or 8-bit sync character

SDLC/HDLC
• Abort sequence generation and checking
• Automatic zero insertion and deletion
• Automatic flag insertion between messages
• Address field recognition
• I-field residue handling
• GRC generation/detection
• SDLC loop mode with EOP recognition/loop

entry and exit

The baud rate is programmable for both
channels.

Registers

PORT #
A B

NAME READ/
WRITE

DESCRIPTION

51 53 DATA R/W Transfer data
50 52 SCC REGISTER POINTER R/W Transfer SCC register number

and SCC register data

9-130

Serial Communications
Controller

see Registers

READ/ NO NAME DESCRIPTION
WRITE

R 0 Buffer and External Status See layout
R 1 Special Receive Condition Status See layout
R 2 Modified Interrupt Vector (Channel B)

Unmodified Interrupt Vector (Channel A)
R 3 Interrupt Pending Bits (Channel A) See layout
R 8 Receive Buffer See layout
R 10 Miscellaneous Status See layout
R 12 Low Byte of Baud Rate Generator Constant
R 13 High Byte of Baud Rate Generator Constant
R 15 External/Status Interrupt Information See layout
W 0 CRC Initialize See layout
W 1 Transmit/Receive Interrupt and Data Transfer

Mode Definition See layout
W 2 Interrupt Vector
W 3 Receive Parameters and Control See layout
W 4 Transmit/Receive Miscellaneous Parameters

and Modes See layout
W 5 Transmit Parameters and Control See layout
W 6 Sync Characters or SDLC Address Field See layout
W 7 Sync Characters or SDLC Flag See layout
W 8 Transmit Buffer See layout
W 9 Master Interrupt Control and Reset See layout
W 10 Miscellaneous Transmit/Receive

Control Bits See layout
W 11 Clock Mode Control See layout
W 12 Low Byte of Baud Rate Generator Constant
W 13 High Byte of Baud Rate Generator Constant
W 14 Miscellaneous Control Bits See layout
W 15 External/Status Interrupt Control See layout

9-131

Serial Communications
Controller

Layout

READ REGISTER 0

o 1

READ REGISTER 1

o 1

9-132

READ REGISTER 3

o

Serial Communications
Controller

1

READ REGISTER 10

o 1

9-133

Serial Communications
Controller

READ REGISTER 15

o 1

WRITE REGISTER 0

o 1

9-134

WRITE REGISTER 1

o

Serial Communications
Controller

1

WRITE REGISTER 3

o 1

9-135

Serial Communications
Controller

WRITE REGISTER 4

o 1

WRITE REGISTER 5

o 1

9-136

Serial Communications
Controller

WRITE REGISTER 6

MONO,8BITS MONO,16 BITS BISYNC,16 BITS BISYNC,12 BITS SDLC SDLC
0 SYNCO SYNCO SYNCO 1 ADRO X
1 SYNC1 SYNCI SYNCI 1 ADRI X
2 SYNC2 SYNC2 SYNC2 1 ADR2 X
3 SYNC3 SYNC3 SYNC3 1 ADR3 X
4 SYNC4 SYNC4 SYNC4 SYNCO ADR4 ADR4
5 SYNC5 SYNC5 SYNC5 SYNCI ADR5 ADR5
6 SYNC6 SYNCO SYNC6 SYNC2 ADR6 ADR6
7 SYNC7 SYNCI SYNC7 SYNC3 ADR7 ADR7

WRITE REGISTER 7

MONO,8BITS MONO,16 BITS BISYNC,16 BITS BISYNC,12 BITS SDLC
0 SYNCO X SYNC8 SYNC4 0
1 SYNCI X SYNC9 SYNC5 1
2 SYNC2 SYNCO SYNCIO SYNC6 1
3 SYNC3 SYNCI SYNC11 SYNC7 1
4 SYNC4 SYNC2 SYNC12 SYNC8 1
5 SYNC5 SYNC3 SYNC13 SYNC9 1
6 SYNC6 SYNC4 SYNC14 SYNClO 1
7 SYNC7 SYNC5 SYNC15 SYNC11 0

9-137

Serial Communications
Controller

WRITE REGISTER 9

o

WRITE REGISTER 10

o

1

Vector Includes 3 Bits of Status

1

9-138

Serial Communications
Controller

WRITE REGISTER 11

WRITE REGISTER 14

9-139

Serial Communications
Controller

WRITE REGISTER 15

o

Functions • READ DATA
This function reads character data.
INPUT: DATA

• READ see REGISTERS
This function reads Read Register 0-15.
OUTPUT: see REGISTER POINTER =

register #
INPUT: see REGISTER POINTER =data

• WRITE DATA
This function writes character data.
OUTPUT: DATA

• WRITE see REGISTER
OUTPUT: see REGISTER POINTER =

register #
OUTPUT: see REGISTER POINTER = data

9-140

Sequencing
and Timing

Serial Communications
Controller

The SCC has direct addressing for the data reg
ister only. To access the other SCC registers,
first write the register number to the SCC Regis
ter Pointer and then read or write the register
using the SCC Register Pointer.

The SCC can operate in three basic modes to
transfer data, status and control information:

• polling

• interrupt

• block

The block mode is not used on the AT&T Per
sonal Computer 6300.

In the polling mode, Receive Character Availa
ble and Transmit Buffer Empty in Read Register
oare examined before receiving and sending a
character. All interrupt functions must be dis
able. To do this, clear the Master Bit Enable and
set the No Vector bit in Write Register 9. Then
clear Write Register 1. This disables specific
types of interrupts.

For interrupt mode, the Master Interrupt Enable
in Write Register 9 must be set. In addition, bits
3-4 in Write Register 1 specify interrupts on
receive character conditions. Bit 1 in Write Reg
ister 1 enables interrupts on Transmit Buffer
Empty. Bit 0 enables External/Status interrupt.
This interrupt is caused by transmit underrun
condition, a zero count in the baud rate genera
tor, a break detection (Asynchronous Mode),
Abort (SDLC Mode), or EOP (SDLC Loop Mode).
Write Register 15 enables or disables more spe
cific types of interrupts.

9-141

Serial Communications
Controller

Interrupt sources have the following priority:

Receive Channel A
Transmit Channel A
External/Status Channel A
Receive Channel B
Transmit Channel B
Receive Channel B

A bit in Read Register 3 is set to indicate the
highest priority device needing service. You can
read the vector address of the interrupt service
routine in Read Register 2 if it was programmed.
If this vector is read on Channel B, it includes
status bits. Vectors are initialized with Write
Register 2. The interrupt service routine resets
the Highest Interrupt Under Service in Write
Register O. Other interrupts are reset in Write
Register O.

To set the baud rate, first clear bits 0-1 in Write
Register 14. Then load Write Register 12 and 13
with the time constant. Last set bit 0-1 in Write
Register 14 to enable the baud rate generator. To
use the baud rate, set the transmit and receive
clocks in Write Register 11 to the baud rate
generator.

To determine the time constant to use for a
given baud rate, use this formula:

3,686,400 -2 = Time Constant
(16)(2)(Baud Rate)

The following table states the divisors to use to
obtain a given baud rate.

9-142

Serial Communications
Controller

BAUD RATES USING 3.6864 MHZ CLOCK

BAUD RATE
110
150
300
600

1200
2400
4800
9600

TIME CONSTANT
1045

766
382
190
94
46
22
10

In Asynchronous mode, you initialize:

• Write Register 1 to disable DMA transfers and to
enable or disable interrupts,

• Write Register 3 to set Receive Enable and the
number of bits per receive character, to disable
synchronous functions, and to enable or disable
Auto Enable,

• Write Register 4 to set parity, stop bits, and data
rate, and to disable synchronous mode,

• Write Register 5 to set Transmit Enable and the
number of bits per transmit character, to enable
or disable Request to Send, Data Terminal
Ready and Send Break, and disable synchro
nous functions,

• Write Register 9 to force a reset and set interrupt
parameters,

• Write Register 10 to choose an encoding method,

• Write Register 11 to select clock sources,

• Write Register 12 and 13 to set the baud rate
time constant, and

• Write Register 15 to enable the baud rate
generator.

9-143

Serial Communications
Controller

To transmit a character, wait for Transmit
Buffer Empty to be set in Read Register 1 of the
SCC. Then write the character to the Data
Register.

To receive a character, wait for Receive Charac
ter Ready in the Read Register 1 of the SCC.
Then read the character from the Data Register.

In synchronous mode, you must transfer the
data using interrupts. The External/Status
interrupt is used to monitor the status of Clear to
Send and Transmit Underrun/EOM latch.

In bisynchronous mode, you initialize:

• Write Register 0 to reset Transmit Under
run/EOM Latch, receive CRC checker, external/
status interrupts, and enable interrupts on next
receive character,

• Write Register 3 to enable the receiver, and to
program Sync Character Load Inhibit, Enter
Hunt For Sync Character, and number of bits
per receive character,

• Write Register 4 to set parity, enable sync
modes, number of bits per sync character, and
clock mode,

• Write Register 5 to enable Transmit CRC, to
request 16-bit CRC polynomial, enable transmit,
transmit 8 bits per character, and to set Data
Terminal Ready and Request to Send,

• Write Register 6 and 7 to set the sync bytes,

• Write Register 9 first to reset the hardware and
later to set interrupts and vector variables,

9-144

Serial Communications
Controller

• Write Register 10 to set length of sync character,
the encoding method, to preset the CRC genera
tor and to setthe loop mode and go active on
poll if wanted,

• Write Register 11 to set the clock sources, and

• Write Register 15 to set interrupt enable
conditions.

The monosync transmitter is initialized as a
bisynchronous transmitter with two exceptions:

• Only one sync character is written, and

• The 6-bit or 8-bit selection in Write Register 10
must be made.

In SDLC mode, you initialize:

• Write Register 0 to reset the transmit CRC gen
erator after transmit enable has been done and
to enable interrupts,

• Write Register 1 to enable interrupts,

• Write Register 3 to select bits per receive charac
ter, to set address search mode, to enable CRC
receiver and receive enable,

• Write Register 4 to set SDLC mode before any
thing else is initialized and later to set clock
mode,

• Write Register 5 to select the SDLC-CRC poly
nomial, to set Request to Send, Data Terminal
Ready, transmit character length, transmit en
able, and transmit CRC enable

• Write Register 6 to contain the secondary
address field,

9-145

Serial Communications
Controller

• Write Register 7 to contain flag character
01111110,

• Write Register 9 to reset the hardware and to set
interrupt parameters,

• Write Register 10 to set loop mode, Go Active on
Poll, Mark/Idle Flag, Abort on Underrun, the
CRC preset condition, and the encoding mode,

• Write Register 11 to set clock sources,

• Write Register 14 to set the clock source for the
DPLL, and

• Write Register 15 to set interrupt enable
condition.

Sample
Program

; RECEIVE
This routine receives one character

EQU50
EQU51

9-146

PTER
DATA
RECEIVE:

MOVDX,PTER
XORAL,AL
OUT DX,AL

REC1:
IN AL,DX
TESTAL,l
JZ REC1
MOVDX,DATA
IN AL,DX
RET

;Pointer Port Address
;AL=O
;Select Read Register 0

;Get Read Register 0
;Receive character available
;Jump if no character
;Data Port Address
;Read character

Functional
Description

Block
Diagram

1.2288 MHz

TMR2GSPKR

DO, PORT ADDRESS 61

Speaker

The speaker uses a permanent magnet speaker
which is driven by one of two sources. Counter 2
of the Interval Timer can be programmed to
automatically generate a pulse train. A bit in the
Keyboard Control Register controls this pulse
train. A bit in the Keyboard Control Register
can also be programmed to manually generate a
pulse train.

PORTS PD5

SPKRDATA
01, PORT ADDRESS G1

AUDIO

9-147

Speaker

Registers

PORT # NAME

61 KEYBOARD CONTROL

42 COUNTER 2

43 TIMER CONTROL

READ/ DESCRIPTION
WRITE

W Contains speaker enable and
manual pulse train bits. See
Keyboard documentation.

R/W Counter for audio speaker tone
generation. See Timer
documentation.

W Control register for Interval
Timer. See Interval Timer
documentation.

Functions • AUTOMATIC PULSE TRAIN
This function automatically generates an audi
ble sound.
OUTPUT:
INTERVAL TIMER CONTROL REGISTER

BITS 1-3 = 3, square wave rate
generator

BITS 4-5 =3, set counter
BITS 6-7 = 2, generator

INTERVAL TIME COUNTER 2
KEYBOARD CONTROL

BIT 0= 1, turns on speaker

• MANUAL PULSE TRAIN
This function manually generates an audible
sound.
OUTPUT: KEYBOARD CONTROL

BIT 1 This bit is set and cleared to
generate a pulse train.

9-148

EQU6I
EQU43

Sequencing
and Timing

Sample
Program

Speaker

Input to the timer is 1.2288MHz. To generate a
1.00 KHz tone with the audio speaker, a square
wave rate generator is used with a count of 614
(1.2288MHz/2*614 =1KHz).

BEEP
: This program sounds the beep manually

KEY_CONTROL
TIMER_CONTROL
BEEP:

MOV DX, TIMER_CONTROL ;port address
MOV AL, B8H ;of timer
OUT DX, AL ;set channel 2

;in mode 4
MOV DX, KEY_CONTROL
IN AL,DX
MOVAH,AL
OR AH, OIH ;tum on Gate
MOVBL,80H

BEEPI:

MOV AL, AH ;restore value
ANDAL,OFDH
OUT DX, AL
MOVCX,48H
LOOP $
MOVAL,AH
ORAL,02H
OUT DX, AL
MOVE CX, 48H
LOOP $
DECBL
JNZBEEPI
MOVAL,AH
OUT DX,AL
RET

9-149

Functional
Description

Video Controller

The AT&T Personal Computer 6300 Display
Controller interfaces the CPU to either mono
chrome or color displays. It uses a HD6845 CRT
Controller. The Display Controller operates in
two basic modes - text or all points addressable
(APR) graphics. Several resolutions are avail
able depending on the mode and display.

RESOLUTION PC GRAPHICI COLORI
COMPATIBLE TEXT MONOCHROME

80X25 YES T CIM
40X25 YES T CIM
640X400 NO G M
640X200 YES G M
320X200 YES G C

In text mode, character attributes include
reverse video, blinking, highlight, hide and
underline. In color mode if blinking is not
requested, one of 16 colors can be chosen. Other
wise, one of 8 colors can be chosen.

In graphic mode, each pixel on a color monitor is
one of four selected colors. These four colors are
from a choice of 16. In a monochrome monitor,
these 16 colors are shades of gray from black to
white.

The Display Controller has 32K of RAM to
refresh one screen page.

9-150

Block
Diagram

Video Controller

The Display Controller can be upgraded with an
optional board. This board gives you the follow
ing features:

• Up to three additional screen pages in RAM

• Software controlled look-up table for an interna
tional character set

• High resolution characters (16 X 16 pixels
instead of 8 X 16 pixels)

• Hardware smooth scroll

• The ability to mix text and graphic modes
simultaneously

• Up to 16 colors can be displayed at once

9-151

Video Controller

Registers

PORT # NAME

3D8 MODE SELECT REGISTER 1
3D9 COLOR SELECT REGISTER
3DA STATUS REGISTER
3DE MODE SELECT REGISTER 2
3D4 POINTER TO HD6845 REGISTER
3D5 HD6845 DATA REGISTER

READ/ DESCRIPTION
WRITE

W See layout
W See layout
R SeeJayout
W See layout
W

R/W

HD6845 Registers

NO NAME READ/ INITIALIZATION VALUE
WRITE 40X25 80X25 GRAPHIC

0 HORIZONTAL TOTAL W 38 71 38
1 HORIZONTAL DISPLAYED W 28 50 28
2 HORIZONTAL SYNC POSITION W 2D 5A 2D
3 HORIZONTAL SYNC WIDTH W 06 OC 06
4 VERTICAL TOTAL W IF IF 7F
5 VERTICAL TOTAL ADJUST W 06 06 06
6 VERTICAL DISPLAYED W 19 19 64
7 VERTICAL SYNC POSITION W lC lC 70
8 INTERLACE MODE W 02 02 02
9 MAX. SCAN LINE ADDRESS W 07 07 01
A CURSOR START LINE (SIZE) W 06 06 06
B CURSOR END LINE W 07 07 07
C ACTIVE PAGE START ADDR (H) W 00 00 00
D ACTIVE PAGE START ADDR (L) W 00 00 00
E CURSOR ADDRESS (H) R/W
F CURSOR ADDRESS (L) R/W
10 LIGHT PEN (H) R
11 LIGHT PEN (L) R

9-152

Layout

MODE SELECT REGISTER 1

o

MODE SELECT REGISTER 2

Video Controller

9-153

Video Controller

COLOR SELECT REGISTER 1 (Graphics Mode Only)

o 1

STATUS REGISTER

o 1

9-154

Video Controller

Text Mode Every character position is defined by two bytes:

15 14 13 12 11 10 9 8 716151413·121110

I R G B I R G B ASCII CHAR CODE
Background Foreground

Attribute Byte

If neither the underline or blinking capabilities
are specified, the color choice for foreground and
background with a color monitor is:

Black
Blue
Green
Cyan
Dark Gray
Light Blue
Light Green
Light Cyan

Red
Magenta
Brown
Light Gray
Light Red
Light Magenta
Yellow
White

With a monochrome monitor, the color choice is:

Black
Darkest Gray

Lightest Gray

White

The codes for common monochrome choices
follow:

normal 00001111
reverse video 11110000
non-display black 00000000
non-display white 11111111

9-155

Video Controller

When the blinking capability is specified in
Mode Select 1, then Bit 15 of the attribute byte
specifies whether the character blinks.

If the underline capability is specified in the
Mode Select Register 2, then Bit 11 specifies
whether the character is underlined.

The first position in the left-hand corner of the
screen is defined in the first two bytes of
memory starting at BOOOO. The next position,
one column to the right, is defined in the next
two bytes of memory at B0002. The first charac
ter in the next row follows immediately after the
definition for the last character in the first row.
For 80 column X 25 rows, memory looks like
this:

BOOOO
BOOAO
B0140

BOE60
BOFOO

Row 1
Row 2
Row 3

Row 24
Row 25

9-156

The 80 column display uses 4K of RAM and the
40 column display uses 2K of RAM. The rest of
the 32K is used for multiple screen images called
pages. There are either 16 or eight pages
available.

Graphics
Mode

Video Controller

In graphics mode, the display screen is a grid of
pixels, the smallest displayable unit on a video
monitor. In medium resolution, there are 640
across and either 200 or 400 down.

In high resolution, each pixel is defined by one
,bit. Bit 7 of each byte defines the first pixel and
bit 0 defines the last pixel to be displayed. The
background color is always black and is dis
played when the pixel is off. When the pixel is
on, the foreground color is one of 16 shades of
gray as defined in the Color Select Register Bits
0-2 and 3.

In medium resolution, each pixel is defined by
two bits:

76 54 32 10

1st 2nd 3rd 4th PIXELS

The value of two bits define one of four prese
lected colors.

o- background color
1 - color 1
2 - color 2
3 - color 3

The background color is defined by Bits 0-3 in
the Color Select Register. Colors 1,2, and 3 are
cyan, magenta and white if Bit 5 of the Color
Select Register is zero and are green, red, and
yellow if Bit 5 is one.

Unlike the text mode, rows of pixels do not fol
low one after another in memory. The following
memory maps illustrate the layouts.

9-157

Video Controller

MEMORY MAP (640 X 400 GRAPHICS MODE)

B8000

9-158

B9F3F

BAOOO

BBF3F

BCOOO

BDF3F

BEOOO

BFF3F

NOT USED

NOT USED

NOT USED

LINES 0,4,8,....396
8000 BYTES

LINES 1,5,9,....397
8000 BYTES

LINES 2,6,10,....398
8000 BYTES

LINES 3,7,11,....399
8000 BYTES

Video Controller

MEMORY MAP (320 X 200 GRAPHICS MODE)

B8000

B9F3F

BAOOO

BBF3F

BCOOO

BDF3F

BEOOO

BFF3F

NOT USED

NOT USED

NOT USED

EVEN LINES 0,2,4,.....198
8000 BYTES
PAGE 0

ODD LINES 1,3,5,.....199
8000 BYTES
PAGE 0

EVEN LINES
8000 BYTES
PAGEl

ODD LINES
8000 BYTES

9-159

Video Controller

Functions • INITIALIZE HD6845
This function initializes the 16 registers of the
HD6845 with predetermined values.
OUTPUT: POINTER TO HD6845 REGISTER

Number of HD6845 register
HD6845 DATA REGISTER

Value of HD6845 register
(Repeat 16 times for each register)

• SET MODE
Set different mode characteristics such as text or
graphics, type of graphics, blinking character,
etc.
OUTPU~MODESELECT1

MODE SELECT 2

• SET COLOR TYPE
Choose the different color or shades of gray to
display.
OUTPUT: COLOR SELECT REGISTER

• SET CURSOR SIZE
Set starting and ending line for cursor.
OUTPUT: POINTER TO HD6845 REGISTER

OAH
HD6845 DATA REGISTER

start line
POINTER TO HD6845 REGISTER

OBH
HD6845 DATA REGISTER

end line

9·160

Video Controller

• SET CURSOR POSITION
Set cursor to location in memory.
OUTPUT: POINTER TO HD6845 REGISTER

OEH
HD6845 DATA REGISTER

most significant byte of address
POINTER TO H36845 REGISTER

OFH
HD6845 DATA REGISTER

least significant byte of address

• READ CURSOR POSITION
Read the current position of the cursor.
INPUT: POINTER TO HD6845 REGISTER

OEH
HD6845 DATA REGISTER

most significant byte of address
POINTER TO H36845 REGISTER

OFH
HD6845 DATA REGISTER

least significant byte of address

• SET ACTIVE PAGE
Set the address of the current page to display.
OUTPUT: POINTER TO HD6845 REGISTER

OCH
HD6845 DATA REGISTER

most significant byte of address
POINTER TO H36845 REGISTER

ODH
HD6845 DATA REGISTER

least significant byte of address

Sequencing
and Timing

There are two methods of communicating with
the video display. One is with 110 commands.
This method is used to set the modes of opera
tion, the cursor position, the cursor size or the
current active page.

9-161

Video Controller

Scrambler ROM

For' programs which do not use the regular
BIOS calls, the 6845 CRT controller requires
some additional circuitry to translate the data
sent to it by application programs into the
appropriate data for the display controller.
This circuitry (called the scrambler circuitry)
converts the IBM6845 register values to the
values which the display controller requires.
A listing of these conversions follows. For
additional information see the AT&T Per
sonal Computer 6300 reference manual.

SCRAM7 (USED ON REV. P1-P2A)
Unrecognized command
*01::; .. :350
0000 :33:33:33:33:33:33:33:33
0010 :33:33:33 33 33 :33 :33 33
0020 33:33:33 33 33 :33 :33 :33
00:30 33 33 33 33 :33 :33 :33 :33
0040 33 33 :33 33 :33 39 :39 :39
0050 33:33 33 33 :33 39 73 7:3
0060 73?3 73 73 73 73 73 73

0070 7:3 7:3 73 7:3 73 73 73 7:3
0080 00 01 02 0:3 04 05 05 07
0090 10 11 12 1:3 14 15 15 17
OOAO 20 21 22 2:3 24 25 25 27
0080 30:31:32 3:3 :34 35 :35 :37
OOCO 40 41 42 4:3 44 45 45 47
0000 50 51 52 5:3 54 55 55 57
OOEO 50 51 52 5:3 54 55 55 57
OOFO 70 71 72 7:3 74 75 75 77
0100 00 01 02 0:3 04 05 05 07
0110 10 11 12 1:3 14 15 15 17
0120 20 21 22 23 24 25 26 27
0130 30:31:32 3:3 :34 :35 :35 :37
0140 40 41 42 4:3 44 45 45 47
0150 50 51 52 5:3 54 55 55 57
0150 50 51 52 5:3 54 55 55 57
0170 70 71 72 7:3 74 75 75 77
0180 00 01 02 0:3 04 05 05 07
0190 10 11 12 1:3 14 15 15 17
01A0 20 21 22 23 24 25 26 27
0180 30 31 :32 3:3 :34 :35 :35 :37
01CO 40 41 42 4:3 44 45 45 47
0100 50 51 52 5:3 54 55 55 57
OlEO 50 51 52 5:3 54 55 55 57
01FO 70 07 72 7:3 74 75 75 77

9-162

39 39 39 39 39 39 39 39

:33 :33 39 :39 :39 :39 :39 33
33 33 39 :39 :39 39 :39 :39
39 39 39 39 39 39 39 39

39 33 :39 :39 39 :39 :33 :39
73 73 73 73 73 73 73 73

73 73 ?3 73 73 73 73 73

~3 73 73 73 73 73 73 73

08 09 OA 08 OC 00 OE OF
18 13 1A 18 1C 10 1E 1F
28 29 2A 28 2C 20 2E 2F
:38 :39 3A :38 3C :30 3E :3F
48 43 4A 48 4C 40 4E 4F
58 53 5A 58 5C 50 5E 5F
58 53 5A 58 SC 50 SE SF
78 73 7A 76 7C 70 7E 7F
08 09 OA 08 OC 00 OE OF
18 19 1A 18 1C 10 1E 1F
28 29 2A 28 2C 20 2E 2F
:38 33 3A :38 :3C :30 :3~ :3F
48 43 4A 48 4C 40 4E 4F
58 59 5A 58 5C 50 5E 5F
58 59 GA 58 5C 50 5E 5F
78 79 7A 78 7C 70 7E 7F
08 03 OA 08 OC 00 OE OF
18 19 1A 18 1C 10 IE 1F
28 23 2A 28 2C 20 2E 2F
:38 33 3A :38 :3C :30 :3E :3F
48 43 4A 48 4C 40 4E 4F
58 59 5A 58 5C 50 5E SF
58 59 5A 58 5C 50 5E 5F
78 73 7A 78 7C 70 7E 7F

3939993399999993
9999993399939993
9333993399939993
9333393999999999
9333993399999999
3333398888888888
ssssssssssssssss

ssssssssssssssss

!>'#$%g' (I *+, -./

0123455789:;<=>7
@A8COEFGHIJKLMNO
POPSTUVNXYZ[\]A_
, abcdefghi,jklnmo
pql'8 tU\I\'J);:',Jz{ I}~.

! '#$%~" ' () *+, -. ,/
012:3455789:;<=>7
@A8COEFGHIJKLMNO
PORSTUVNXYZ[\]A_
'abcdefghi,jklmno
pqt-·8tu'.)I.'J/I~lZ{l}~.

!'#$n' ()*+,-J

0123456789: ;<=>7
@A8CDEFGHIJKLMNO
PORSTUVNXYZ[\]A_
'abcdefghi,jklmno
p. r-:=; tU")l..J/I~~z{ i}~.

(l200
(1210
(1220
0230
0240
02.50
(l250
0270
0280
(l2'30
(12AO
026(l
02C(l
0200
()2E0
02F(l
0300
031(1
032(l
(G3(l

034()

03E:;19
0370
033(l

0390
03A0
1)360
03C0
0300
03E0
(OF0

(1400
0410
0420
0430
(14419
04519
04E:;(l
(l47(l
0480
04'30
12l4A0
04Ei(l
(14C()

0400
04E0
04F(1
05(10
05Hl
052(l

~l530

02 03 04 05 06 07 08 09
12 13 14 15 16 17 18 19
22 23 24 25 26 27 28 29
32 33 34 35 36 37 38 39
42 43 44 45 46 47 48 49
52 53 54 55 56 57 58 59
62 63 64 65 66 67 68 69
72 ~3 74 75 76 77 78 79

00 01 02 03 04 05 06 07
10 11 12 13 14 15 16 17
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37

40 41 42 43 44 45 46 47
50 51 52 53 54 55 56 57
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76

06 06 06 06 06 06 06 06
09 09 09 09 09 09 09 09
09 09 09 09 09 09 09 09
09 09 09 09 09 09 09 09
09 09 09 09 09 09 09 09
09 09 09 09 09 09 09 09
09 09 09 09 09 09 09 09
09 09 09 09 09 09 09 09
09 09 09 09 09 09 09 09
09 09 09 09 09 09 09 09
09 09 09 09 09 09 09 09
09 09 09 09 09 09 09 09
09 09 09 09 09 09 09 09
09 09 09 09 09 09 09 09
09 09 09 09 09 09 09 09
09 09 09 09 09 09 09 09
lA lA lA lA lA lA lA lA
lA lA lA lA lA lA lA lA
lA lA lA lA lA lA lA lA
lA lA lA lA lA lA lA lA
lA 68 68 68 68 68 68 68
68 68 68 68 68 68 68 68
68 68 68 68 68 68 68 68
68 68 68 68 68 68 68 68
68 68 68 68 68 68 68 68
68 68 68 68 68 68 68 68
68 68 68 68 68 68 68 68
68 68 68 68 68 68 68 68
68 68 68 68 68 68 68 68
68 68 68 68 68 68 68 68
68 68 68 68 68 68 68 68
58 68 68 68 68 68 68 68
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

OA 08 OC 00 OE OF 10 11
lA 18 lC 10 IE IF 20 21
2A 28 2C 20 2E 2F 30 31
3A 38 3C 30 3E 3F 40 41
4A 48 4C 40 4E 4F 50 51
SA 58 5C 50 5E 5F 60 61
6A 68 6C 60 6E 6F 70 71
7A 78 7C 70 7E 7F 80 81
08 09 OA 08 OC 00 OE OF
18 19 lA 18 lC 10 IE IF
28 29 2A 28 2C 20 2E 2F
38 39 3A 38 3C 3D 3E 3F
48 49 4A 48 4C 40 4E 4F
58 59 SA 58 5C 50 5E SF
68 69 6A 68 6C 60 6E 6F
78 79 7A 78 7C 70 7E 7F
06 06 09 06 OC OC OC OC
09 09 09 09 09 09 09 09
09 09 ~3 09 09 09 09 09
09 09 09 09 09 09 09 09
09 09 09 09 09 09 09 09
09 09 09 09 09 09 09 09
09 09 09 09 09 09 09 09
09 09 09 09 09 09 09 09
09 09 09 09 09 09 09 09
09 09 09 09 09 09 09 09
09 09 09 09 09 09 09 08
09 09 ~3 09 09 ~3 09 09
09 09 09 09 09 09 09 09
09 09 09 09 09 09 09 09
09 09 09 09 09 09 09 09
09 09 09 09 09 09 09 06
lA lA lA lA lA lA lA lA
lA lA lA lA lA lA lA lA
lA lA lA lA lA lA lA lA
lA lA lA lA lA lA lA lA
68 68 68 68 68 68 68 68
68 68 68 68 68 68 68 68
68 68 68 68 68 68 68 68
68 68 68 68 68 68 66 68
68 68 68 68 68 68 66 68
68 68 68 68 68 68 66 68
68 68 68 68 68 68 66 68
68 68 68 68 68 68 66 68
68 68 68 68 68 68 66 68
68 68 68 68 68 68 66 68
68 68 68 68 68 68 66 68
68 68 68 68 68 68 66 68
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

Video Controller

'#$;'6t,' ()*+,-./01
23456789:;<=>7@A
8COEFGHIJKLMNOPO
R5TUVWXYZ[\]A_'a
bcdefghijklmnopq
r':=: tU")('J><I"jz{ : }~ •••

I'"#$:%r' ()*+,-./
0123456789:;<=>7
@A8COEFGHIJKLMNO
POR5TUVWXYZ[\]A_
'abcdefghijklmno
pqr:3 tu',..... c..J><I"IZ{ : }~.

. kkkkkl<kkl<kkkkkk
kkkkk~kkkkk~<kkk

kk~~<k~<~<k~<kkk

k~<kkk~<~<kkkk~<

kkkk~<kkkkk~<~<k

kkkkk~<kkkk~<k~<

k~<~<~<kkkkkk~4

kkkkkk~<k~<kkk~<

k~<kkkkk~<kkkkkk

kk~<~<kkkkkkk~<~

kkl<kkkkkkkkkkl<kl,:
kkl<kkkkkkkkkkkl<I--

9-163

Video Controller

0540 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0550 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0560 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0570 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0580 (,)0 00 00 '1l0 00 00 00 00 00 00 00 00 00 00 00 00
0590 00 00 00 00 00 ~00 00 00 00 00 00 (1)0 00 00 00 00
05A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
05B0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
05C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0500 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
05E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
05F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0600 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 00 0E 0F
0610 10 11 12 13 14 15 16 17 18 19 lA lB lC 10 lE IF
0620 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 20 2E 2F ! "#$%8, ' ()*+, -./
0630 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 30 3E 3F 0123456789:;<=>7
0640 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 40 4E 4F @ABCOEFGHIJKLMNO

0650 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 50 5E 5F PQRSTUVNXYZ[\]A_
0660 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 60 6E 6F 'abcdefghijklmno
0670 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 70 7E 7F pql'stUVl',IX1dZ { I}~.
0580 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 80 8E 8F
0690 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 90 9E 9F
06A0 A0 Ai A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AO AE AF
06B0 B0 81 B2 83 84 B5 B6 B7 B8 B9 BA 8B 8C 80 BE 8F
06C0 C0 Cl C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CO CE CF
0500 00 01 02 03 04 05 06 D7 08 09 OA OB OC 00 OE OF
05E0 E0 El E2 E3 E4 E5 E5 E7 E8 E9 EA E8 EC EO EE EF
05F0 F0 F1 F2 F3 F4 F5 F5 F7 F8 F9 FA FB FC FO FE FF
0700 19 19 19 19 19 19 19 19 19 19 19 19 19 19 1'3 1'3
0710 19 19 19 19 19 19 1'3 19 19 19 19 1'3 19 19 19 19
0720 19 19 19 19 19 19 19 19 19 19 19 19 19 i9 19 19
0730 19 19 19 19 19 19 19 1'3 19 19 1'3 19 19 19 19 19
0740 19 64 64 64 fA 54 64 54 54 64 54 64 64 64 64 64 . ddddddddddddddd
0750 fA 64 64 64 64 fA 54 64 64 64 64 64 64 64 64 64 dddddddddddddddd
0760 64 64 64 64 64 64 64 54 54 64 64 64 64 64 64 64 dddddddddddddddd
0770 54 64 64 64 64 64 54 54 64 64 54 64 64 64 64 64 dddddddddddddddd
0780 64 64 64 64 64 64 64 54 54 64 54 64 64 64 64 64 dddddddddddddddd
0790 64 64 64 64 64 54 54 54 54 54 64 64 54 64 64 64 dddddddddddddddd
07A0 64 64 64 64 64 54 54 54 54 54 54 64 64 64 64 64 dddddddddddddddd
0780 64 64 64 64 64 64 64 54 64 54 54 64 64 64 64 64 dddddddddddddddd
07C0 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 dddddddddddddddd
0700 64 64 64 64 64 64 54 64 54 64 54 64 54 64 fA fA dddddddddddddddd
07E0 64 64 64 64 64 64 64 64 54 54 64 64 64 64 64 64 dddddddddddddddd
'1OF0 64 64 64 64 64 64 64 64 64 54 54 64 64 64 64 64 dddddddddddddddd
08Q10 00 00 00 03 00 00 (1)0 00 00 00 00 0(1) 00 00 00 00
0810 00 00 00 00 00 00 00 00 00 00 00 00 00 (,)0 00 00
0820 00 00 00 0(1) 00 (10 (,)0 00 0'1l 00 00 00 00 00 00 (1)0
0830 00 00 00 00 00 00 00 0~) 00 00 00 00 00 0(1) 00 00
0840 00 00 00 00 00 00 00 00 00 00 0(1 00 00 00 00 00
0850 00 00 00 00 (2)0 00 0(1 00 00 00 0(j 0(1) 00 00 00 (10
086(2) 00 00 00 00 00 (1)0 (1)0 00 00 00 Q10 00 00 00 00 00

(,)870 00 00 00 00 00 (1)0 (1)0 '1l(1) 00 00 00 '1l0 00 0(1) (1)0 00

9-164

Video Controller

0880 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0890 00 00 00 00 00 00 00 (,)0 00 00 00 00 00 00 0(1 00
08A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ")0

0880 00 00 00 00 00 00 00 00 00 00 00 00 (00 00 00 00
08C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0800 00 00 00 00 00 00 00 00 00 00 00 00 0(2) 00 00 00
08E0 00 00 00 00 00 00 00 00 00 00 00 0(2) 0~1 00 00 0(1
08F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0900 01 03 05 03 09 0El 00 0F 11 13 15 17 19 18 10 0F
0910 21 23 25 27 29 28 20 2F 31 33 35 37 3'3 38 3D 3F ! #:%') +-/1357'3; ='7

0920 41 43 45 47 4'3 48 40 4F 51 53 .55 57 5'3 58 5D SF ACEGIKMOQ5UWY[]_

0930 61 63 65 67 8'3 68 60 6F 71 73 75 77 79 78 70 7F acegi kmoqsLJI. ..JI~jO.

0940 81 83 85 87 8'3 88 80 8F '31 '33 95 97 '3'3 38 9D 3F

0950 A1 A3 AS A7 A3 A8 AD AF B1 8'" 85 87 8'3 88 8D 8F...J

0960 C1 C3 C5 C7 C3 C8 CO CF D1 OJ 05 D7 0'3 08 DD OF

097~1 E1 E3 E5 E7 E'3 E8 ED EF F1 F3 F5 F7 F3 F8 FD FF

0980 ()1 03 ()5 07 0'3 08 00 0F 11 13 15 17 1'3 18 1D 1F

0990 21 23 25 27 23 28 20 2F 31 33 35 37 39 38 3D 3F !#%')+-/13579;=?

09A0 41 43 45 47 43 48 40 4F 51 53 .55 .57 53 58 5D SF ACEGIKMOQ5UWY[]_

0980 61 83 65 67 63 68 60 6F 71 73 75 77 79 78 70 7F aceg i kmoq3ul.·JljO.

09C0 81 133 85 87 8'3 88 80 8F '31 93 '35 97 '33 38 9D 3F

0900 A1 A3 A5 A7 A3 A8 AD AF 81 63 85 87 63 68 6D 8F
09E0 C1 C3 C5 C7 C9 C8 CD CF 01 0'0 05 07 03 08 DD OF..J

09F0 E1 E3 E5 E7 E9 E8 ED EF F1 F3 F5 F7 F9 F8 FD FF

(2)A00 00 02 04 06 08 0A 0C 0E 10 10 10 10 IV) 10 10 10
0Al0 10 10 10 10 10 10 10 1(2) 10 10 10 H) 10 10 10 10

0A20 20 22 24 26 28 2A 2C 2E 30 30 30 30 30 30 30 30 "'$t (* , .0000")0(1)0

0A30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 3(21 3") 0000000000000000

0A40 40 42 44 46 48 4A 4C 4E 50 =,0 50 50 50 50 50 50 @80FHJU,jPPPPPPP

0A50 50 50 50 50 50 5(1 50 50 50 50 5(1 50 50 50 50 50 PPPPPPPPPPPPPPPP

0A60 60 62 64 66 68 6A 6C 6E 70 70 70 70 70 70 70 70 'bdfhJlnpppppppp
0A70 70 70 70 70 70 70 70 70 70 70 70 70 70 7(1) 70 70 pppppppppppppppp
0A80 0(1 02 04 06 08 0A 0C 0E 10 10 10 10 10 10 10 10
0A90 10 10 10 10 10 10 10 10 10 10 l() 10 10 10 10 10
0AA0 20 22 24 26 28 2A 2C 2E 30 30 30 30 30 30 30 30 "$t (* , . 00(2100000

0AB0 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 0000000000000000

0AC0 40 42 44 46 48 4A 4C 4E 50 50 50 5(21 50 50 50 50 @80FHJLNPPPPPPP

0AD0 50 50 50 50 50 5(0 50 50 50 50 50 50 50 50 50 50 PPPPPPPPPPPPPPPP

0AE0 60 62 64 66 68 6A 6C 6E 70 70 70 70 70 70 70 70 'bdfhJlnpppppppp
0AF0 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 pppppppppppppppp
0800 00 02 04 06 08 0A 0C 0E 10 12 14 16 18 1A lC 1E
0810 20 22 24 26 28 2A 2C 2E 30 32 34 36 38 3A 3C 3E N$t(*,.02468:< >
0820 40 42 44 46 48 4A 4C 4E 50 52 54 56 58 SA 5C 5E @80FH.JLNPRTVXZ\

0830 60 62 64 66 68 6A 6C 6E 70 72 74 76 78 7A 7C 7E 'bdfhJ Inpt'tvxz ~

0840 80 82 84 86 88 8A 8C 8E 90 92 94 96 98 9A 9C 9E
0B50 A0 A2 A4 A6 A8 AA AC AE 80 82 84 86 88 8A 8C 8E
0860 C0 C2 C4 C6 C8 CA CC CE 00 02 04 06 08 OA DC DE
0870 E0 E2 E4 E6 E8 EA EC EE F0 F2 F4 F6 F8 FA FC FE
0B80 00 02 04 06 08 0A 0C 0E 10 12 14 16 18 1A 1C 1E
0890 20 22 24 26 28 2A 2C 2E 30 32 34 36 38 3A 3C 3E N$t(*,.02468:< >
0BA0 40 42 44 46 48 4A 4C 4E 50 52 54 56 58 SA 5C 5E @80FHJL~jPRTlJXZ\

0B80 60 62 64 66 68 6A 6C 6E 70 72 74 76 78 7A 78 7E 'bdfhJ Inpt-t',nz ~

9-165

Video Controller

08CO
0800

. v)8EO
08FO
OCOO
OC10
OC20
OC30
OC40
OC50
OC60
OC7(1
OC80
OC90
OCAO
OC80
(ICCO
OCOO
OCEO
OCFO
(lOOO
ODlO
0020
0030
0040
0050
0060
(1[170
(10:30
0090
OOAO
0080
OOCO
0000
OOEO
OOFO
OEOO
OElO
OE20
OE30
0E40
(lE50
0E60
OE70
OE80
OE90
0EA0
OE80
OECO
OEDO
(IEEO
OEFO

9-166

80 82 84 86 88 8A 8C 8E
AO A2 A4 A6 A8 AA AC AE
CO C2 C4 C6 C8 CA CC CE
EO E2 E4 E6 E8 EA EC EE
00 01 02 03 04 05 06 07
10 11 12 13 14 15 16 17
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37
40 41 42 43 44 45 46 47
50 51 52 53 54 55 56 57
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77
80 81 82 83 84 85 86 87
90 91 92 93 94 95 96 97
AO Ai A2 A3 A4 AS A6 A7
60 81 82 83 84 85 66 87
CO Cl C2 C3 C4 C5 C6 C7
DO 01 02 03 04 05 06 07
EO El E2 E3 E4 E5 E6 E7
FO Fl F2 F3 F4 F5 F6 F7
00 01 02 03 04 05 06 07
10 11 12 13 14 15 15 17
20 21 22 23 24 25 26 27
30 31 32 33 34 35 35 37
40 41 42 43 44 45 46 47
50 51 52 53 54 55 56 57
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77
80 81 82 83 84 85 86 87
90 91 92 93 94 95 96 97
AO Ai A2 A3 A4 AS A6 A7
60 61 62 83 64 65 86 87
CO Cl C2 C3 C4 C5 C6 C7
DO 01 02 03 04 05 06 07
EO El E2 E3 E4 E5 E6 E7
FO Fl F2 F3 F4 F5 F6 F7
00 01 02 03 04 05 06 07
10 11 12 13 14 15 15 17
20 21 22 23 24 25 25 27
30 31 32 33 34 35 35 37
40 41 42 43 44 45 45 47
50 51 52 53 54 55 56 57
50 61 52 53 64 55 55 57
70 71 72 73 74 75 76 77
80 81 82 83 84 85 86 87
90 91 92 93 94 95 96 97
A0 Ai A2 A3 A4 A5 A5 A7
60 61 82 83 64 65 66 67
C0 Cl C2 C3 C4 C5 C6 C7
00 01 02 03 04 05 06 07
E0 El E2 E3 E4 E5 E6 E7
F0 Fl F2 F3 F4 F5 F6 F7

90 92 94 96 98 9A 9C 9E
80 82 84 86 88 8A 8C 8E
00 02 04 06 08 OA DC DE
FO F2 F4 F6 F8 FA FC FE
08 09 OA 08 0C 00 0E OF
18 19 lA 18 lC iDlE iF
28 23 2A 28 2C 20 2E 2F
38 33 3A 38 3C 3D 3E 3F
48 43 4A 48 4C 40 4E 4F
58 53 SA 58 5C 50 5E 5F
68 63 6A 68 6C 60 6E 6F
78 73 7A 78 7C 70 7E 7F
88 89 8A 88 8C 80 8E 8F
98 39 9A 98 3C 90 9E 9F
A8 A9 AA A8 AC AD AE AF
88 89 8A 88 8C 80 6E 6F
C8 C9 CA C8 CC CO CE CF
08 09 OA 08 DC 00 OE OF
E8 E9 EA E8 EC ED EE EF
F8 F9 FA F8 FC FO FE FF
08 09 OA 08 0C 00 OE OF
18 19 lA 18 lC iDlE iF
28 29 2A 28 2C 20 2E 2F
38 39 3A 38 3C 3D 3E 3F
48 49 4A 48 4C 40 4E 4F
58 59 SA 58 5C 50 5E SF
68 69 6A 68 6C 60 6E 6F
78 79 7A 76 7C 70 7E 7F
88 89 8A 88 8C 80 8E 8F
98 99 9A 38 9C 90 9E 9F
A8 A9 AA A8 AC AD AE AF
88 89 8A 88 8C 80 8E 8F
C8 C9 CA C8 CC CO CE CF
08 03 OA 08 DC 00 DE OF
E8 E3 EA E8 EC ED EE EF
F8 F9 FA F8 FC FO FE FF
08 09 0A 08 OC 00 OE OF
18 19 lA 18 lC iDlE iF
28 29 2A 28 2C 20 2E 2F
38 39 3A 38 3C 3D 3E 3F
48 49 4A 46 4C 40 4E 4F
58 -~9 SA 58 5C 50 5E SF
68 69 6A 68 6C 60 6E 6F
78 79 7A 76 7C 70 7E 7F
88 89 8A 88 8C 80 8E 8F
98 99 9A 98 3C 90 9E 9F
A8 A9 AA A8 AC AD AE AF
88 89 8A 88 8C 80 8E 8F
C8 C9 CA C8 CC CO CE CF
08 09 OA 08 DC DO DE OF
E8 E9 EA E8 EC ED EE EF
F8 F3 FA F8 FC FO FE FF

! n#$%&' (J*+,-J

0123455789: ; <=>?
@A8COEFGHIJKLMNO
PQRSTUVWXYZ[\]ft_
'abcdefghijklmno
pqrstuVlJ><'dZ{: }~.

!"#$%&' (J*+,-J

0123455789: ;<=>?
@A8COEFGHIJKLMNO
PORSTUVWXYZ[\]ft_
, abcdefl~hijklmno
pqr-stuvl,.j~":l::Jz{ !}~.

!n#$%t.,'(P'+,-J

0123456789:;<=>?
@A6CDEFGHIJKLMNO
PQR:3TUVWX\'Z [\]ft _
'abcdefghijklrnno
pqrstuVlJ::<l,.IZ{ i}~.

0F00 00 01 02 03 04 05 05 07
0F10 10 11 12 13 14 15 15 17
0F20 20 21 22 23 24 25 25 27
0F30 30 31 32 33 34 35 35 37
0F40 40 41 42 43 44 45 45 47
0F50 50 51 52 53 54 55 55 57
0F60 50 51 52 53 64 55 55 57
0F70 70 71 72 73 74 75 75 77
0F80 80 81 82 83 84 85 85 87
0F90 90 91 32 33 34 35 95 97
0FA0 A0 A1 A2 A3 A4 A5 A5 A7
0F80 80 B1 B2 B3 B4 B5 B5 B7
0FC0 C0 C1 C2 C3 C4 C5 C5 C7
0F00 00 01 02 03 04 05 05 07
0FE0 E0 E1 E2 E3 E4 E5 E5 E7
0FF0 F0 F1 F2 F3 F4 F5 F5 F7
At end of current range

*

08 09 0A 0B 0C 0D 0E 0F
18 19 1A 1B 1C 10 1E 1F
28 29 2A 28 ZC 20 ZE 2F
38 39 3A 3B 3C 3D 3E 3F
48 49 4A 4B 4C 4D 4E 4F
58 59 5A 5B 5C 50 5E 5F
58 53 5A 6B 6C 50 6E 5F
78 79 7A 7B 7C 7D 7E 7F
88 89 8A 8B 8C 8D 8E 8F
98 99 3A 9B 9C 90 9E 9F
A8 A9 AA AB AC AD AE AF
B8 B9 BA BB BC BO BE BF
C8 C9 CA CB CC CO CE CF
08 09 DA OB DC 00 OE OF
E8 E9 EA EB EC ED EE EF
F8 F9 FA FB FC FD FE FF

Video Controller

I "#$%.~' ()*+,_./

0123455789:;<=>?
@ABCOEFGHIJKLMNO
PQPSTUVWXYZ[\]A_
'abcdefghijl<lmno
pq 1-:3 tU"')l.I><I,jZ{ : }~.

33 39 39 39 39 39 39 39
39 39 39 39 39 39 39 39
39 39 39 39 39 39 39 39
39 39 39 39 39 33 39 39
39 39 39 39 39 39 39 39
73 73 73 73 73 73 73 73
73 73 73 73 73 73 73 73
73 73 73 73 73 73 73 73
08 09 0A 0B 0C 00 0E 0F
18 19 1A 1B 1C 10 1E 1F
28 29 2A 2B 2C 2D 2E 2F
38 39 3A 3B 3C 3D 3E 3F
48 49 4A 4B 4C 4D 4E 4F
58 59 5A 5B 5C 5D 5E 5F
68 59 5A 5B 5C 50 5E 5F
78 79 7A 7B 7C 70 7E 7F
08 09 0A 0B 0C 0D 0E 0F
18 19 1A 1B lC ID 1E IF
28 29 2A 2B 2C 2D 2E 2F
38 39 3A 3B 3C 3D 3E 3F
48 49 4A 4B 4C 40 4E 4F
58 59 5A 5B 5C 5D 5E 5F
58 59 5A 5B 5C 5D 5E 5F
78 79 7A 78 7C 7D 7E 7F
88 89 8A 88 8C 80 8E 8F
98 99 3A 9B 9C 9D 9E 9F
A8 A9 AA A8 AC AO AE AF
B8 B9 BA 8B 8C 8D BE 8F

SCRAM8B (USEO ON REV. P3 ANO LATER)
Unrecognized command
*D15 .. 350
0000 33 33 39 39 39 39 39 39
0010 39 33 39 39 39 39 39 39
0020 39 39 39 39 39 39 33 39
0030 39 39 39 39 39 39 39 39
0040 39 39 39 39 39 39 39 39
0050 39 39 39 39 39 39 73 73
0060 73 73 73 73 73 73 73 73
0070 73 73 73 73 73 73 73 73
0080 00 01 02 03 04 05 05 07
0090 10 11 12 13 14 15 15 17
00A0 20 21 22 23 24 25 25 27
0080 30 31 32 33 34 35 35 37
00C0 40 41 42 43 44 45 45 47
0000 50 51 52 53 54 55 55 57
00E0 60 51 52 63 54 55 56 57
00F0 70 71 72 73 74 75 75 77
0100 00 01 02 03 04 05 06 07
0110 10 11 12 13 14 15 15 17
0120 20 21 LL 23 24 25 25 27
0130 30 31 32 33 34 35 35 37
0140 40 41 42 43 44 45 45 47
0150 50 51 52 53 54 55 55 57
0160 50 51 52 53 64 55 65 67
0170 70 71 72 73 74 75 75 77
0180 80 81 82 83 p~ 85 87
0190 90 31 92 93 94 95 95 97
01A0 A0 Al A2 A3 A4 A5 A5 A7
0180 B0 B1 B2 B3 B4 B5 B5 B7

9999999999999999
9999999999999993
9999999999999993
9399999999999999
9999999999999399
993999:3:3:3:3:3:3:3:3:3:3
ssssssssssssssss

ssssssssssssssss

! "#$%&' ()*+,-J

0123455789:;<=>?
@A8COEFGHIJKLMNO
PQPSTUVWXYZ[\]A_
'abcdefghijl<lmno
peW:3 tUVI"J>:l,jz{ : }~.

!'#$%~~ , () *+, -. /

0123455783:;<=>?
@A8COEFGHIJKLMNO
PQPSTUVWXYZ[\]A_
, abcdefgrlij Idmno
pq~;3 tUVI,.J><l,jZ{! }~.

9-167

Video Controller

01CO co Cl C2 C3 C4 C5 C6 C7 C8 C9 CA C8 CC co CE CF
0100 00 01 02 03 04 05 06 D7 08 09 OA 08 OC 00 OE OF
OlEO EO El E2 E3 E4 E5 E6 E7 E8 E9 EA E8 EC ED EE EF

01FO FO Fl F2 F3 F4 F5 F6 F7 F8 F9 FA F8 FC FO FE FF
0200 02 03 04 ~J5 06 07 08 Ql9 OR 08 OC 00 OE OF 10 11
0210 12 13 14 15 16 17 18 19 lR 18 lC 10 lE IF 20 21
0220 22 23 24 25 26 27 28 29 2A 28 2C 20 2E 2F 30 31 "#$%&'()*+,-./01
0230 32 33 34 35 36 37 38 39 3A 3E: 3C 30 3E 3F 40 41 23456789: ;<=>?@R
0240 42 43 44 45 46 47 48 49 4A 48 4C 40 4E 4F 50 51 8COEFGHIJKLMNOPO
0250 52 53 54 55 56 57 58 59 SA 58 5C 50 5E SF 60 61 RSTUVWXYZ[\]A_'a
0260 62 63 64 65 E;6 67 68 69 6A 68 6C 60 6E 6F 70 71 bcdefghijklmnopq
0270 72 73 74 75 76 77 78 79 7A 78 7C 70' 7E 7F 8Ql 81 rs tU\)l.JXI~Z{ :}-...
0280 00 01 02 ~J3 04 05 QlE; 07 08 0'3 OA 08 OC 00 OE OF

0290 10 11 12 13 14 15 16 17 18 19 1A 18 lC 10 1E IF
02AO 20 21 22 23 24 25 26 27 28 2'3 2A 28 2C 20 2E 2F !"#$%&'()*+,-./
l2l280 30 31 32 33 34 35 36 37 38 39 3A 38 3C 30 3E 3F l2l123456789: ; <=>?
02CO 40 41 42 43 44 45 46 47 48 49 4A 48 4C 40 4E 4F @A8COEFGHIJKLMNO
0200 50 51 52 53 54 .5.5 56 57 58 59 SA 58 5C 50 5E SF PORSTUVWXYZ[\]A_
02EO 60) 61 62 63 64 65 E;6 67 68 69 E;A 68 6C 60 6E 6F 'abcdefghijklmno
02FO 70 71 72 73 74 75 76 77 78 79 7A 78 7C 70 7E 7F pqrstU\"lol>,=!Z{:}- .
0300 OE OE OE QIE OE OE ~JE OE QlE OE OE OE QlE OE OE OE
0310 OE OE OE OE OE OE OE OE OE OE OE OE OE OE OE OE
0320 OE OE OE OE OE OE OE OE OE OE OE OE QlE OE OE OE
0330 OE OE OE OE OE OE OE OE OE OE OE OE l2lE OE OE OE
0340 OE OE OE OE OE OE o)E QIE OE OE OE OE OE OE OE OE
0350 OE OE OE OE OE OE OE QIE OE QlE OE OE OE OE OE ~JE
0360 OE OE OE QIE OE OE OE OE OE OE OE OE OE OE OE OE

0370 OE 0E OE OE OE OE QIE OE OE OE OE OE OE OE OE OE

0380 OE OE OE ~JE OE OE 0E OE OE OE OE OE OE OE OE OE
0390 OE OE OE OE OE OE 0E OE QIE OE OE OE QlE OE OE OE
03AO OE OE OE OE OE OE OE OE OE OE OE OE OE OE OE OE
0380 OE OE OE OE OE OE OE o)E OE OE OE OE OE OE OE OE
03CO OE OE OE OE OE ~jE OE v)E OE OE OE OE OE OE OE OE
0300 OE OE OE OE OE OE OE OE OE OE OE OE OE OE OE OE
03EO l2lE l2lE OE 111E OE OE OE OE OE o)E OE OE OE OE OE l2lE
03FO OE OE OE 11JE l2lE OE QlE OE OE OE OE OE OE OE OE OE
041210 1A 1A 1A lR 1A lA lA lR 1R lR 1A lA lA 1A 1A lA
0410 lA 1A 1A lA 1A lA 1A lA 1R 1A 1A 1A lA lA 1A lA
0420 1A 1R 1A lR 1A lA 1A 1A 1A 1A 1A 1A lA 1A lA lA
12143121 lA 1A 1A lR 1A 1A 1A 1A lA 1A 1A 1A 1R 1A lA lA
044121 1A 68 68 68 68 68 68 68 68 68 68 68 68 68 E8 68 .kkkkkl<kkkkkkkkk
0450 68 E;8 68 68 68 68 68 68 68 68 68 68 68 68 68 68 kkkkkkkl<kkkkkkkl<
04EO 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 kl<kl<kkkkkkkkkkkl<
047121 68 68 68 68 68 68 68 68 68 68 68 E8 68 68 68 E8 kl<kkkkkkkkl<kkkl<k
048121 00 01 02 03 1214 05 06 1217 1218 1219 l2lA 1218 l2lC 00 OE OF
0490 10 11 12 13 14 15 16 17 18 19 1A 18 le 10 lE IF
04AO 20 21 22 23 24 2.5 26 27 28 29 2A 28 2C 20 2E 2F !"#$%8,' ()*+,-J

0480 3121 31 32 33 34 35 3E; 37 38 39 3A 38 3C 30 3E 3F 0123456789:;<=>7
04CO 40 41 42 43 44 45 46 47 48 49 4A 48 4C 40 4E 4F @A8COEFGHIJKLMNO
0400 50 51 52 53 54 55 56 57 58 59 SA 58 5C 50 5E SF POR5TUVWXYZ[\]A_
04EO 60 61 62 63 64 65 66 67 E;8 69 6A 68 6C 60 6E 6F 'abcdefghijklmno
04FO 70 71 72 73 74 7.5 76 77 78 79 7A 78 7C 70 7E 7F pcwstUVI,'Jx'=!z{: }-.

9-168

Video Controller

0500 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0510 00 00 00 00 00 ~j0 00 00 00 00 00 00 0(» 00 00 00
0520 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0530 00 O~j 00 00 00 00 00 00 00 00 00 00 00 00 00 0(»
0540 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0550 00 00 00 00 00 00 00 00 00 0(» 00 00 0(2) 0(2) 00 00
05S0 00 00 00 (210 (»0 00 00 00 00 00 00 00 00 0~j 00 00
0570 00 01) 00 00 00 00 00 00 00 00 00 00 00 00 (2)0 00
0580 00 01 02 03 04 05 0S 07 08 03 0A 0B 0C (2)D 0E 0F
0530 10 11 12 13 14 15 113 17 18 13 lA lB lC 10 lE IF
05A0 20 21 22 23 24 2.5 213 27 28 23 2A 2B 2C 2D 2E 2F ! "#$%& ' ()*+, - ./

05B0 30 31 32 33 34 35 313 37 38 33 3A 3B 3C 3D 3E 3F 012345B789:;<=>?
05C0 40 41 42 43 44 45 413 47 48 4'3 4A 4B 4C 4D 4E 4F @ABCDEFGHIJKLMNO
05D0 50 51 52 53 54 55 513 57 58 53 SA 5B 5C 5D 5E SF PORSTUVWXYZ[\]A_
05E0 GO 131 132 133 134 S5 1313 137 138 139 BA BB BC GO BE BF 'abcdefghi,jklmtlD
05F0 70 71 72 73 74 75 713 77 78 73 7A 7B 7C 7D 7E 7F pqr·stuljl..n<':!z{ :}~.

01300 (»0 01 02 03 04 05 013 07 08 03 OA 0B Oc OD 0E 0F
01310 10 11 12 13 14 15 113 17 18 1'3 lA lB lC 10 1E 1F
01320 20 21 22 23 24 25 213 27 28 2'3 2A 2B 2C 2D 2E 2F !"#$%8,'()*+,-./

01330 30 31 32 33 34 35 313 37 38 39 3A 3B 3C 3D 3E 3F 012345B783:;<=>?
ljB40 40 41 42 43 44 45 413 47 48 49 4A 4B 4C 4D 4E 4F @ABCDEFGHIJKLMNO
01350 50 51 "" 53 54 55 513 57 58 53 SA 5B 5C 5D 5E SF PORSTUVWXYZ[\]A__c-

0BSO 130 131 132 133 134 E" SB 137 58 133 BA BB BC GO BE SF 'abcdefghi,jklmtlD'..J

(»57~j 70 71 72 73 74 75 713 77 78 79 7A 7B 7C 7D 7E 7F pqrstLNtJ>,:!Z{:}~ •

0680 80 81 82 83 84 85 813 87 88 83 8A 8B 8C 8D 8E 8F
013'30 90 31 32 93 34 95 3b 97 38 99 3A 9B 3C 3D 3E 9F
(2lBA0 A0 Al A2 A3 A4 A5 AB A7 A8 A3 AA AB AC AD AE AF
01380 80 B1 82 B3 B4 E:5 813 B7 B8 83 BA BB BC BD BE BF
0BC0 CO C1 C2 C3 C4 C5 CB C7 C8 C9 CA CB CC CD CE CF
l;')bD0 D0 Dl D2 D3 D4 D5 DB D7 D8 D3 DA DB DC DD DE DF
OBE0 E0 E1 E2 E3 E4 E5 EB E7 E8 E3 EA EB EC ED EE EF
(2)BFO F0 Fl F2 F3 F4 F5 FB F7 F8 F3 FA FB FC FD FE FF

(2)700 19 1'3 1'3 19 19 13 13 13 13 13 1'3 13 1'3 13 1'3 13
07HI 13 13 1'3 13 13 19 13 13 13 13 1'3 13 13 13 1'3 13 ,
072(21 13 19 13 1'3 13 13 13 13 13 19 1'3 13 13 13 13 13
0730 13 13 1'3 1'3 13 13 13 13 13 13 13 13 13 13 13 13

0740 1'3 134 134 134 134 134 134 134 S4 134 134 134 134 134 134 134 .ddddddddddddddd
0750 134 134 134 134 134 134 134 EA 134 134 134 134 EA 134 EA 134 dddddddddddddddd
0760 134 134 EA 134 134 134 134 134 ,134 EA 134 134 134 64 134 134 dddddddddddddddd
0770 134 134 134 134 EA 134 134 134 134 134 134 134 134 134 134 134 qddddddddddddddd
0780 00 01 02 03 04 05 013 07 08 03 0A 0B 0C 0D 0E OF
07'30 10 11 12 13 14 15 113 17 18 13 1A 1B 1C 1D 1E 1F
07A0 20 21 22 23 24 25 213 27 28 2'3 2A 2B 2C 2D 2E 2F !"#$%t' ()*+,-./

0780 30 31 32 33 34 35 3b 37 38 33 3A 3B 3C 3D 3E 3F 01234513783: ; <=>?
07C0 40 41 42 43 44 45 413 47 48 43 4A 4B 4C 4D 4E 4F @ABCDEFGHIJKLMNO
0700 50 51 52 53 54 55 5E; 57 58 53 SA 5B 5C 5[1 5E SF PORSTUVWXYZ[\]A_
07E0 60 131 132 63 64 135 BS 67 68 133 BA 66 6C GO BE BF 'abcdefghi,jklmnD
07F0 70 71 72 73 74 75 713 77 78 73 7A 7B 7C 7D 7E 7F pqt-stuI)t.J/':!z{: }~.

Ol:M0 00 00 0(» 03 (10 00 00 00 (2)0 0(2) 00 (2l0 (»0 00 00 00
0810 00 00 0(» 00 00 1;')0 00 00 00 00 (2)(2) GO 00 00 (2)0 (21(2)
0820 00 00 GO 0G 00 00 00 00 00 00 00 00 00 00 00 O~j
1;')830 00 00 (210 00 00 (2)0 00 00 (2)0 0(» 00 00 00 00 00 00

9-169

Video Controller

0840
~)850

08E;0
087~l

@3::30
0830
~l8A~l

088~l

08C0
080~l

08E(1
08F0
0300
0310
~)320

0330
(1340
035()
0%0
037lj
0380
0330
~l3A0

0380
l113C0
0300
03E0
~l'3F(j

0A12l1j
~lA10

0A20
v)A3v)
(jA40
(jA5(l

0A60
0A70
0A80
0A30
0AA0
0A8lj
(1AC0
(,lA00
~lAE0

~)AF0

08l:;l(1
(j81(»

0E:20
(,1830
~l84(2)

085(1
~l860

0870

9-170

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
01 03 05 03 03 08 00 0F
21 23 25 27 23 28 20 2F
41 43 45 47 43 48 40 4F
61 63 65 67 63 68 60 6F
81 83 85 87 83 88 80 8F
Al A3 AS A7 A3 A8 AD AF
Cl C3 C5 C7 C3 C8 CO CF
El E3 E5 E7 E3 E8 ED EF
00 01 02 03 04 05 06 07
10 11 12 13 14 15 16 17
20 21 23 24 25 26 27
30 31 32 33 34 35 36 37
40 41 42 43 44 45 46 47
50 51 52 53 54 55 56 57
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77
00 02 04 06 08 0A 0C 0E
10 10 10 10 10 10 10 10
20 22 24 26 28 2A 2C 2E

30 30 30 30 30 30 30 30
40 42 44 46 48 4A 4C 4E
50 50 50 50 50 50 50 50
60 62 64 66 68 6A 6C 6E
70 70 70 70 70 70 70 70
00 01 02 03 04 05 06 07
10 11 12 13 14 15 16 17
20 21 22 23 24 25 26 27

30 31 32 33 34 35 36 37
40 41 42 43 44 45 46 47
50 51 52 53 54 55 56 57

60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77
00 02 04 06 08 0A 0C 0E
20 22 24 26 28 2A 2C 2E
40 42 44 46 48 4A 4C 4E
60 62 64 56 68 SA 6C 6E
80 82 84 86 88 8A 8C 8E
A0 A2 A4 A6 A8 AA AC AE
C0 C2 C4 C6 C8 CA CC CE
E0 E2 E4 E6 E8 EA EC EE

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
11 13 15 17 13 18 10 0F
31 33 35 37 33 38 3D 3F
51 53 55 57 53 58 50 SF
71 73 75 77 73 78 70 7F
31 33 35 37 33 38 3D 3F
81 83 85 B7 83 88 80 8F
01 03 05 07 03 08 DO OF
Fl F3 ~5 F7 F3 F8 FO FF
08 03 0A 08 0C 00 0E 0F
18 13 lA 18 lC 10 lE IF
28 23 2A 2B 2C 20 2E 2F
38 33 3A 38 3C 3D 3E 3F
48 43 4A 48 4C 40 4E 4F
58 53 SA 58 5C 50 5E SF
68 63 6A 68 6C 60 6E 6F
78 73 7A 78 7C 70 7E 7F
10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10
30 30 30 30 30 30 30 30
30 30 30 30 30 30 30 30
50 50 50 50 50 50 50 50
50 50 50 50 50 50 50 50
70 70 70 70 70 70 70 70
70 70 70 70 70 70 70 70
08 03 0A 0B 0C 00 0E 0F
18 13 lA 18 lC 10 lE IF
28 23 2A 28 2C 2D 2E 2F

38 33 3A 38 3C 3D 3E 3F
48 43 4A 4B 4C 40 4E 4F
58 59 SA 58 5C 50 5E SF

68 63 6A 68 6C 60 6E 6F
78 73 7A 78 7C 70 7E 7F
10 12 14 16 18 lA 1C lE
30 32 34 36 38 3A 3C 3E
50 52 54 56 58 SA 5C 5E
70 7? 74 76 78 7A 7B 7E
90 92 94 96 98 9A 9C 9E
B0 82 84 86 88 8A 8C 8E
00 02 04 06 08 OA DC DE
F0 F2 F4 F6 F8 FA FC FE

! #:~1:') +-'13579; =?
ACEGIK~JqSUWY[]_

aceg i k:rflCJq:=;UI..J'~I{}.

!'#$%t, ' () *+, - ../

0123456783: ;<=>?
@A8COEFGHIJKLMNO
pqRSTUVW~iZ[\]A_

, abcdefr;lhij k1 rfiliD

pql··stU\/I....Ji::'~IZ{!}~ •

'~$~~ (*, .(1000(l0(j0
0000000000000000
@80FHJLI,jPF'PF'F'PP
PPPPPPPPPPPPPPPP

'bdfhj1IiPPPPPPPP
ppppppppp~pppppp

!"#$n' (P'+,-J
0123456789:;<=>?
@ABCDEFGHIJKLMNO
pqRSTUVWXYZ[\]A_
, abcdef';Jhij IdmliD

pqr:3tu"/I..J/:'~IZ{!}-•

"M!*, .~)246::3:<>

@80FHJLt,IPRTV>:Z\
, bdfhj lliprt·,//z -

Video Controller

20 21 22 23 24 25 26 27

01 02 03 04 05
11 12 13 14 15

80 81 82 83 84 85 86 87
90 91 92 93 94 95 96 97
AO Al A2 A3 A4 A5 A6 A7
BO Bl B2 B3 B4 B5 B6 B7

"'#$:',:&' () *+, - ...

0123456713'3: ; <=>7
@ABCOEFGHIJkLMNO
PQRSTUVWXYZ[\]A_
, abcdefghij klrnno

pq r":3 tUI)VJ:>:':JZ{ :}-•

!"#$%&' () *+, -. /

0123456789:;<=>7
@ABCOEFGHIJkLMNO
PQRSTUVWXYZ[\]ft_
, abcdefghij klrnno

pq r"=' tLJIJ!,.J>::'"IZ{ :}-•

!"#$%&'()*+,-./

0123456789:;<=>7
@ABCOEFGHIJkLMNO
PQRSTUVWXYZ[\]ft_
'abcdefghijklrnno

pqrstuI/l.J><'"jz{!}- •

! "#$%&' ()*+, -. /

0123456789:;<=>7
@ABCOEFGHIJkLMNO
PQRSTUVWXYZ[\]A_
, abcdefghij Idrnno

pq rs tU\.'l.J/':JZ{ !}- •

08 09 OA OB OC 00 OE OF
18 19 lA 18 lC 10 lE IF
28 29 2A 28 2C 20 2E 2F
38 39 3A 38 3C 30 3E 3F
48 49 4A 48 4C 40 4E 4F
58 59 5A 58 5C 50 5E 5F
68 69 6A 68 6C 60 6E 6F
78 79 7A 78 7C 70 7E 7F
08 09 OA 08 OC 00 OE OF
18 19 lA 18 lC 10 lE IF
28 29 2A 28 2C 20 2E 2F
38 39 3A 38 3C 30 3E 3F
48 49 4A 48 4C 40 4E 4F
58 59 5A 58 5C 50 5E 5F
68 6§ 6A 68 6C 60 6E 6F
78 79 7A 78 7C 70 7E 7F
88 89 8A 88 8C 80 8E 8F
98 99 9A 98 9C 90 9E 9F
A8 A9 AA A8 AC AO AE AF
88 89 BA B8 8C BO 8E BF
C8 C9 CA C8 CC CO CE CF
~3 09 OA 08 OC DO OE OF
E8 E9 EA E8 EC EO EE EF
F8 F9 FA F8 FC FO FE FF
08 09 OA 08 OC 00 OE OF
18 19 lA 18 lC 10 lE IF
28 29 2A 28 2C 20 2E 2F
38 39 3A 38 3C 30 3E 3F
48 49 4A 48 4C 40 4E 4F
58 59 5A 58 5C 50 5E 5F
68 69 6A 68 6C 60 6E 6F
78 79 7A 78 7C 70 7E 7F
88 89 8A 88 8C 80 8E 8F
98 99 9A 98 9C 90 9E 9F
A8 A9 AA A8 AC AO AE AF
88 B9 BA BB BC BO BE BF
C8 C9 CA CB CC CO CE CF
08 09 OA DB OC DO OE OF
E8 E9 EA EB EC EO EE EF
F8 F9 FA FB FC FO FE FF
08 09 OA OB OC 00 OE OF
18 19 lA lB lC 10 lE IF
28 29 2A 2B 2C 20 2E 2F
38 39 3A 3B 3C 30 3E 3F
48 49 4A 4B 4C 40 4E 4F
58 59 5A 5B 5C 50 5E 5F
68 69 6A 6B 6C 60 6E 6F
78 79 7A 7B 7C 70 7E 7F
88 89 8A 8B 8C 80 8E 8F
98 99 9A 9B 9C 90 9E 9F
A8 A9 AA AB AC AO AE AF
BI3 B'3 BA B'B BC EiO BE BF

25 26 27
15 16 17

84 85 13E:; 87
'34 95 % 97
A4 A5 AE:; A7
B4 B5 EIE:; B7
C4 C5 C6 1~7

04 05 OE:; 07
E4 E5 E6 E7
F4 F5 FE:; F7

53 54 55

73 74 75

A2 A3
B2 Ei3

1214 05 06 07
14

22 23 24
34 35 36 37
44 45 46 47

56 57
E:;6 67
76 77
06 07
H; 17

C2 C3
02 03
E2 E3
F2 F3

82 83

'32 93

71 72

20 21

O~l 01 ~12 03
10 11 12 13

01 02 03 04 05 06 07
11 12 13 14 15 16 17

20 21 22 23 24 25 26 27

30 31 32 33 34 35 36 37
40 41 42 43 44 45 46 47
50 51 52 53 54 55 56 57
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77

30 31 32 33
40 41 42 43
50 51 52
60
70
00
10

30 31 32 33 34 35 36 37
40 41 42 43 44 45 46 47
50 51 52 53 54 55 56 57
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77
80 81 82 83 84 85 86 87
90 91 92 93 94 95 96 97
AO Al A2 A3 A4 A5 A6 A7
BO Bl B2 B3 B4 R5 B6 B7
CO Cl C2 C3 C4 [:5 C6 C7

DO 01 02 03 04 05 06 07
EO El E2 E3 E4 E5 E6 E7
FO Fl F2 F3 F4 F5 F6 F7
00 01 02 03 04 05 06 07
10 11 12 13 14 15 16 17
20 21 22 23 24 25 26 27

30 31 32 33 34 35 36 37
40 41 42 43 44 45 46 47
50 51 52 53 54 55 56 57
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77
130 81

90 91
AO Al
B~I Bl
CO Cl
Ol21 D1

E~I El
F~I Fl
00
10

ljB80
OEI9~1

OEiAO
08BO
08CO
080v)
08EO
08FO
ljCOO
(lCIO
OC20
ljC30
ljC40
ljC50
~lC60

OC70
OC81j
ljC9(1
OCAO
OCBO
~lCCO

~ICOlj

OCEO
OCFlj
12l [H)0
lj010
0020
Ij030
0040
0050
~l060

lj070
0080
0091j
OOAlj
v)OBO
OOCO
~IOOO

OOEO
OOFlj
OEOO
OElO
OE20
OE30
OE41j
OE51j
OE E:; (1

OE70
~IE80

OE90
OEAO
OEBO

9-171

Video Controller

0EC0 C0 Cl C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC co CE CF
0E00 00 01 02 03 04 05 06 07 08 09 OA DB DC 00 DE OF
0EE0 E0 El E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC EO EE EF
0EF0 F0 F1 F2 F3 F4 F5 F6 f7 F8 F9 FA FB FC FO FE FF
0F00 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 00 0E 0F
0F10 10 11 12 13 14 15 16 17 18 19 lA lB lC 10 lE iF
0F20 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 20 2E 2F !"#$%K' ()*+,-J

0F30 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 0123456789: ; <=>7
0F40 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 40 4E 4F @ABCOEFGHIJKLMNO
0F50 50 51 52 53 54 55 56 57 58 59 SA 5B 5C 50 5E SF POR5TUVWXYZ[\]A_
0F60 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 60 6E 6F 'abcdefghi,jklmno
0F70 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 70 7E 7F pqrs tlM.J:X\JZ{: }-.
0F80 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 80 8E 8F
0F90 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 90 9E 9F
0FA0 A0 Ai A2 A3 A4 AS A6 A7 A8 A9 AA AB AC AD AE AF
0FB0 B0 Bl B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BO BE BF
0FC0 C0 Cl C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF .. ~.......................

0F00 00 01 02 03 04 05 06 07 08 09 OA DB DC DO DE OF
0FE0 E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF
0FF0 F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FO FE FF
At end of current r'ange

*

9-172

System
Programer's

Guide

Index

A
A (assemble) DEBUG
command 3-9 to 3-12
Absolute disk read (INT 25H)
7-19 to 7-21
Absolute disk write (INT 26H)
7-22 to 7-24
Addressing 4-1 to 4-14
Aligned words 4-5
Allocate memory (Function
48H) 7-140 to 7-141
ASCII 3-15, 8-22 to 8-27
ASCIIZ strings 5-11 to 5-12
Assembler 1-4

modules 2-7 to 2-8, 2-12
in DEBUG 3-9 to 3-12
DEBUG list 3-39 to 3-40
using system calls 7-6

Attribute (see File attribute
and Video control)
ARF (see Automatic response
file)
Asynchronous communica
tions (see communications)
Automatic response file 2-9,
2-19 to 2-20
Auxiliary input (Function 03H)
7-31
Auxiliary output (Function
04H) 7-32

B
BASIC 1-4, 7-6
BIOS

Memory usage 5-4, 5-5
Service routines 8-1 to 8-36

Block devices 9-8

Bootstrap loader (INT 19H) 8-4,
8-30
Break ON/OFF Command 8-33
Breakpoints 3-21 to 3-23
Buffered keyboard input
(Function OAH) 7-40 to 7-41
Buffers Command 8-34
Bus lines 9-6 to 9-7

c
C (compare) DEBUG command
3-13 to 3-14
Calendar (see Clock)
Calculated addressing 4-14
Change file attributes (Function
43H) 7-130 to 7-131
Change current directory
(Function 3BH) 7-117
Character devices 9-8
Control-C check (Function
33H) 7-106 to 7-107
Check keyboard status
(Function OBH) 7-42
Class 2-7
CLOCK

device 9-26, 9-123 to 9-127
(also see Time and Date)

Close file
(Function 10H) 7-50 to 7-51
(Function 3EH) 7-122

Clusters 5-13 to 5-23,7-109
COM files 3-5, 3-26, 3-30, 6-1 to
6-7, 6-10, 6-21
Command line

MS-LINK 2-9, 2-18 to 2-19
DEBUG 3-3,3-7 to 3-8
direct commands 6-18

I-I

System
Programer's
Guide

COMMUNICATIONS
BIOS routines (INT 14H) 8-4,
8-19 to 8-21
device drivers 9-27 to 9-35,
9-128 to 9-146

Compilers 1-4
COMSPEC 6-18
CON device (see Console)
CONFIG.SYS

Break ONIOFF 8-33
Buffer 8-34
Device 8-34
Files 8-35
Shell 8-35

Console 2-12
Direct 1/0 7-35 to 7-36
Direct input 7-37
(also see Keyboard and
Video)

Control blocks (see File
control block)
Control-C check (Function
33H) 7-106 to 7-107
Country-dependent informa
tion 7-110 to 7-114
Create file

(Function 16H) 7-64 to 7-65
(Function 3CH) 7-118 to 7-119

Create sub-directory (Function
39H) 7-115
Current disk (Function 19H)
7-68

D
D (display) DEBUG command
3-15 to 3-16

1-2

Date
read 7-93 to 7-94, 7-157 to
7-158
set 7-95 to 7-96, 7-157 to
7-158

DEBUG 3-1 to 3-44
Commands:
A (assemble) 3-9 to 3-12
C (compare) 3-13 to 3-14
D (display) 3-15 to 3-16
E (enter) 3-17 to 3-19
F (fill) 3-20
G (go) 3-21 to 3-23
H (hexarithmetic) 3-24
I (input) 3-25
L (load) 3-26
M (move) 3-28
N (name) 3-5, 3-29 to 3-31
o (output) 3-32
Q (quit) 3-33
R (register) 3-34 to 3-36
S (search) 3-37
T (trace) 3-38
U (unassemble) 3-39 to 3-40
W (write) 3-41 to 3-43

Delete directory entry (Function
41H) 7-127
Delete file (Function 13H)
7-56 to 7-58
Determine memory size (INT
12H) 8-4, 8-31
DEVICES

character 9-8
drivers 1-4,9-4 to 9-161
installation 9-12
read 7-123 to 7-124

Device header 9-9 to 9-12
Direct addressing 4-13

Direct console I/O (Function
06H) 7-35 to 7-36
Direct console input (Function
07H) 7-37
Directory 5-14 to 5-17,5-23

Change 7-117
Create sub-directory 7-115
Delete entry 7-127
Delete file 7-56 to 7-58
Move entry 7-115 to 7-156
Remove directory 7-116
Return current 7-139
Step through 7-153

Diskette
allocation 5-13 to 5-23
BIOS routines (INT 13H) 8-4,
8-17 to 8-18

Disk operations:
(also see Files)
Create sub-directory 7-115
Current disk 7-68
Select 7-46
Current directory 7-139
Delete directory entry 7-127
Duplicate file handle 7-137
Move directory entry 7-155 to
7-156
Read absolute 7-19 to 7-21
Remove directory 7-116
Reset 7-45
Space 7-109
Step through directory 7-153
Transfer address 7-69 to 7-70,
7-103
Verify flag 7-101 to 7-102,
7-154
Write absolute 7-22 to 7-24

System
Programer's

Guide

Display character (Function
02H) 7-30
Display string (Function 09H)
7-39
DMA controller 9-36 to 9-44
DOS version number 7-104
DSALLOCATE link switch
2-14
Duplicate file handle (Function
45H) 7-137

E
E (enter) DEBUG command
3-17 to 3-19
Equipment check (INT IIH)
8-4,8-31
Error messages

MS-LINK 2-24 to 2-27
DEBUG 3-22, 3-44
EXE2BIN 6-8 to 6-9

EXE files (see Run files)
EXE2BIN 6-2, 6-5 to 6-9
EXEC (see Load and execute
program)
Exit address (INT 23H) 7-15

F
F (fill) DEBUG command 3-20
FAT (see File Allocation Table)
Fatal error abort address (INT
24H) 7-16 to 7-18
FCB (see File control block)
FILES

(also see Disk operations)
allocation table 5-13, 5-18 to
5-21,5-22, 5-23
attribute 5-15, 7-53

1-3

System
Programer's
Guide

change 7-130 to 7-131
close file 7-50 to 7-51, 7-122
control block 3-30, 5-6 to 5-12,
6-16 to 6-19
create file 7-64 to 7-65, 7-118
to 7-119
delete file 7-56 to 7-58
disk transfer address 7-69 to
7-70, 7-103
duplicate file handle 7-137
forced 7-138
find 7-151 to 7-152, 7-52 to
7-53, 7-54 to 7-55
header (Run files) 6-10 to 6-14
load and execute program
file 7-145 to 7-148
names 7-89 to 7-92, 7-66 to
7-67
open file 7-47 to 7-49,7-120 to
7-121
pointer 7-128 to 7-129
random operations

block read 7-83 to 7-85
block write 7-86 to 7-88
record read 7-71 to 7-72
record write 7-73 to 7-75
set relative record 7-79 to
7-81

read 7-123 to 7-124
sequential operations

read 7-59 to 7-61
write 7-62 to 7-63

size 7-76 to 7-78
usage 2-3 to 2-6
write 7-125 to 7-126

Files Command 8-35

1-4

Find file (Function 4EH)
7-151 to 7-152
Flags 4-8 to 4-9
Floppy diskette interface
controller 9-45 to 9-65
Flush buffer, read keyboard
(Function OCH) 7-43 to 7-44
Force duplicate of handle
(Function 46H) 7-138
Free allocated memory
(Function 49H) 7-142
Function request (INT 21H)
7-13, 7-29 to 7-173
Functions (DOS) 7-2 to 7-3, 7-8
to 7-9, 7-13, 7-29 to 7-173, 7-160
to 7-173
FORTRAN 2-14, 7-6

G
G (go) DEBUG command 3-21
to 3-23
Get date

(Function 2AH) 7-93 to 7-94
(Function 57H) 7-157 to 7-158

Get disk free space
(Function 36H) 7-109

Get disk transfer address
(Function 2FH) 7-103

Get DOS version number
(Function 30H) 7-104

Get interrupt vector
(Function 35H) 7-108

Get time
(Function 2CH) 7-97 to 7-98
(Function 57H) 7-157 to 7-158

Global symbols (see Public
symbols)
Group 2-8, 2-14

H
H (hexarithmetic) DEBUG
command 3-24
Handles 5-12
Hard disk controller 9-66 to
9-93
HEX files 3-4, 3-27
HIGH Link switch 2-14

I
I (input) DEBUG command
3-25
I/O control for devices
(Function 44H) 7-132 to 7-136
I/O ports 9-3
Immediate addressing 4-12
Indirect addressing 4-13
INPUT

(also see files)
auxiliary device7-31
control devices 7-132 to 7-136
file or device 7-123 to 7-124
keyboard

buffered 7-40 to 7-41
direct 7-38
echo 7-29
flush buffer 7-43 to 7-44

Installing a device driver 9-12
Interrupts

in general 5-3, 5-4, 7-4, 7-7,
7-10 to 7-28, 7-159, 8-1 to 8-32,
9-4 to 9-5

System
Programer's

Guide

Get vector 7-108
Set vector 7-82

Interrupt controller 9-105
to 9-115
Interval timer 9-116 to 9-122

K
Keep process (Function 31H)
7-105
KEYBOARD

(also see Console)
BIOS routines 8-4, 8-22 to
8-28
Buffered input 7-40 to 7-41
Control-C check 7-106 to
7-107
Device driver 9-94 to 9-99
Flush buffer read 7-43 to 7-44
Status check 7-42

L
L (load) DEBUG command 3-5
LIB files (see Libraries)
Libraries 2-4, 2-10, 2-12, 2-17,
2-18, 2-19, 2-22
LINENUMBERS link switch
2-15,2-21
Linking object modules (see
MS-LINK)
List files (see MAP files)
Load module (see Run files)
Loading programs 6-18 to 6-22,
7-145 to 7-148
Load and execute program
(Function 4BH) 7-145 to 7-148
Logic lines (see Bus lines)

1-5

System
Programer's
Guide

M
M (move) DEBUG command
3-28
Macro assembler (see
Assembler)
MAP files 2-4, 2-10, 2-11, 2-15,
2-16, 2-18, 2-19, 2-23
MAP link switch 2-15, 2-21,
2-23
Media check 2-19, 9-19
Memory

addressing 4-1 to 4-14
allocation 7-142 to 7-144
maps 5-1 to 5-5
size 8-4, 8-31

Messages (also see Error
messages) 1-3, 3-5, 3-6, 3-35
Modifications to BIOS 8-32 to
8-36
Modify allocated memory
blocks (Function 4AH) 7-143 to
7-144
Move directory entry (Function
56H) 7-155 to 7-156
Move file pointer (Function
42H) 7-128 to 7-129
MS-LINK 1-4,2-1 to 2-27

N
N (name) DEBUG command
3-5, 3-29 to 3-31
NO link switch 2-1 7
Non-aligned words 4-5
Notation 1-3

1-6

o
o (output) DEBUG command
3-32
OBJ files (see Object modules)
Object modules 2-2, 2-4, 2-10,
2-11, 2-18, 2-19, 2-20
Open file

(Function OFH) 7-47 to 7-49
(Function 3DH) 7-120 to 7-121

OUTPUT
Auxiliary device 7-32
Character 7-30, 7-33 to 7-34
Control devices 7-132 to 7-136
File or device 7-125 to 7-126
Printer BIOS routines 8-4,
8-29
Screen dump 8-4,8-30
String 7-39

p
Parallel printer interface
9-100 to 9-104
Parse file name (Function 29H)
7-89 to 7-92
Pascal 2-14, 2-17, 7-6
PATH command 6-18
Pathname string (see ASCIIZ
strings)
PAUSE link switch 2-15 to
2-16, 2-20
Print character (Function 05H)
7-33 to 7-34
Print screen (INT 05H)
8-4,8-30
Printer routines (INT 17H)
8-4,8-29

Printer 2-12, 2-21, 8-4
(also see Output)
PRN device (see Printer)
Process control (also see
Memory allocation)

Keep process 7-105
Load and execute program
7-145 to 7-148
Return code 7-150
Terminate 7-11 to 7-12,
7-25 to 7-28,7-149

Program files (also see Run
files and COM files)

Load and execute 7-145 to
7-148
Structure 6-1 to 6-22

Program segment prefix 3-5,
6-15 to 6-17, 6-19, 6-21, 7-11
Program terminate (INT 20H)
7-11 to 7-12
PROMPT command 6-18
Prompts 1-3, 2-10, 2-12, 3-4, 3-12
Public symbols 2-15, 2-20, 2-23

Q
Q (quit) DEBUG command
3-33

R
R (register) DEBUG command
3-34 to 3-36
Random block read (Function
27H) 7-83 to 7-85
Random block write (Function
28H) 7-86 to 7-88
Random Read (Function 21H)
7-71 to 7-72

System
Programer's

Guide

Random Write (Function 22H)
7-73 to 7-75
Read from file or device
(Function 3FH) 7-123 to 7-124
Read keyboard (Function 08H)
7-38
Read keyboard and echo
(Function 01H) 7-29
Registers 4-6 to 4-10, 7-9
Register addressing 4-12
Remove directory (Function
3AH) 7-116
Rename file (Function 17H)
7-66 to 7-67
Request header 9-13 to 9-15,
9-18 to 9-28
Reset disks (Function ODH)
7-45
Reset verify flag (Function
2EH) 7-101 to 7-102
Retrieve return code of child
(Function 4DH) 7-150
Return country-dependent info.
(Function 38H) 7-110 to 7-114
Return current verify flag
(Function 54H) 7-154
Return current directory
(Function 47H) 7-139
Run files 2-4,2-11,2-14,2-15,
2-18,2-19,2-21,3-4,3-5,3-27,6-1
to 6-3, 6-5 to 6-7, 6-13 to 6-14,
6-20

s
S (search) DEBUG command
3-37
Scrambler ROM 9-162

1-7

System
Programer's
Guide

Search for first entry (Function
11H) 7-52 to 7-53
Search for next entry (Function
12H) 7-54 to 7-55
Sector 5-21,5-22,5-23, 7-109,
8-17
Segment 2-7,2-14,2-21,3-7,3-8,
3-10,3-21, 3-28,3-37,4-3 to 4-4,
4-7,4-11,6-6,6-7,6-16,6-18,6-21
Select disk (Function OEH) 7-46
Sequential read (Function
14H) 7-59 to 7-61
Sequential write (Function
15H) 7-62 to 7-63
SET command 6-18
Set date

(Function 2BH) 7-95 to 7-96
(Function 57H) 7-157 to 7-158

Set time
(Function 2DH) 7-99 to 7-100
(Function 57H) 7-157 to 7-158

Set disk transfer address
(Function 1AH) 7-69 to 7-70
Set relative record (Function
24H) 7-79 to 7-81
Set interrupt vector (Function
25H) 7-82
Set verify flag (Function 2EH)
7-101 to 7-102
Shell command 8-35
Speaker 9-147 to 9-149
STACK link switch 2-16
Status byte 5-5
Step through directory files
(Function 4FH) 7-153
Switches 2-13 to 2-17, 2-19
Syntax (general) 1-3
System calls 7-1 to 7-173

1-8

T
T (trace) DEBUG command 3-38
Terminate address (INT 22H)
7-14
Terminate but stay resident
(INT 27H) 7-25 to 7-26
Terminate process (Function
4CH) 7-149
Terminate program (Function
OOH) 7-27 to 7-28
Time

get 7-97 to 7-98, 7-157 to 7-158
set 7-99 to 7-100, 7-157 to
7-158

Token (see Handle)

u
U (unassemble) DEBUG
command 3-39 to 3-40
Utility programs 1-4

v
Video control (also see Console
and Output)

BIOS routine (INT 10H) 8-4,
8-5 to 8-16

Video controller 9-150 to 9-161
VM.TMP file 2-5,2-6,2-16

w
W (write) DEBUG command
3-41 to 3-43
Write to file or device (Function
41H) 7-125 to 7-126

The Display Enhancement
Board

Table of Contents

1

2
3

DEB Capabilities
Introduction
The DEB Driver
16-Color Graphics
Look-Up Table (LUT)
Overlay Modes

Programming Tips
Presence of Hardware/Software
Hardware/Software Compatibility
Setup

How to Program the DEB
Overview
Mode Setting
Setting Colors and Effects
Displaying Graphics Images

1-2
1-4
1-5
1-7
1-8

2-2
2-3
2-4

3-2
3-3
3-5
3-6

4
5

Interrupt lOH Functions
Introduction
Functions

Programming the LUT
Overview
16-Color Graphics LUT Programming
Overlay Modes LUT Programming
Programming the Bit Planes

4-2
4-4

5-2
5-3

5-23
5-34

1 DEB Capabilities

• Introduction

• The DEB Driver

• 16-Color Graphics

• Look-Up Table (LUT)

• Overlay Modes

DEB Capabilities

1-2

Introduction

The Display Enhancement Board (DEB) option
adds improved color and graphics functionality to
your AT&T PC 6300. When you use the DEB with
the PC 6300 color monitor, you can display graph
ics in up to 16 color combinations simultaneously
or treat the screen as two screens in one and over
lay one screen treatment on top of the other. When
you use the DEB with the PC 6300 monochrome
monitor, you have the same capabilities you have
with the color monitor, except that colors are dis
played as "shades of green."

The DEB is compatible with existing software, so
all the programs you have already can be used now
as if the DEB were not installed. Of course, these
programs may not have access to any of the new
capabilities.

This supplement describes the functionality of the
DEB device driver. Although it is not necessary to
use the driver in order to use the DEB, the driver
is designed to work with MS-DOS, GWBASIC, and
other AT&T software products. If you wish to pro
gram the DEB hardware directly, you must con
sult the AT&T Technical Reference Manual. Such
programming is considered a circumvention of the
AT&T operating system and we advise against it.

This supplement assumes that you are familiar
with video programming through the Interrupt
10H interface and with INTEL® 8086 assembler
programming. Information on the Interrupt 10H
interface can be found in the System Program
mer's Guide, in the section on the ROM BIOS Ser
vice Routines.

DEB Capabilities

Before you begin writing programs for the DEB,
follow the procedures in the DEB Installation
Manual for installing the DEB hardware and
device driver software.

The DEB is an optional hardware component for
the AT&T PC 6300 that works in conjunction with
the PC 6300's built-in Video Display Controller
(VDC) to provide improved color and graphics
functionality.

The built-in VDC contains circuitry and memory
that support either 4 color medium resolution
(320 x 200 pixels) graphics, 1 color high reso
lution (640 x 200 pixels) graphics, or 1 color
super resolution (640 x 400 pixels) graphics.

The DEB contains additional circuitry and mem
ory that can be combined with the capabilities of
the built-in VDC to produce up to 16 color combi
nations in either high or super resolution. You can
also program the VDC and DEB separately, treat
ing them as two separate images that are com
bined on one screen to produce an overlaying
effect. The overlay modes let you use up to 8 colors
on the DEB screen and up to 16 colors on the VDC
screen.

1-3

DEB Capabilities

1-4

The DEB Driver

You load the DEB device driver by entering a
"DEVICE" statement in the CONFIG.SYS file
(see Chapter 2, Programming Tips). The driver
installs an Interrupt lOH "filter" during the load
ing process.

When you are using the DEB and are running
some programs that use the DEB and some that
do not, the "filter" provides video support for both
kinds of programs. For programs that do not use
the DEB, the filter passes control to the standard
Interrupt lOH ROM BIOS routine.

The DEB driver installs a filter for Interrupt 9H.
This filter resets the DEB to transparent mode
whenever you warmstart the system through
CTRL/ALT/DEL. The filter controls scrolling
when you press CTRL/NUMLOCK.

DEB Capabilities

16-Color Graphics

This feature lets you display 16 color combinations
in either high resolution (640 x 200) or super reso
lution (640 x 400). Not only can you use the stan
dard 16 colors, you can also combine colors to form
new colors and cause pixels to blink from one color
to another.

The DEB provides 5 palettes for you to use when
programming in color. At any point in your pro
gram, you select one of the palettes as the "active"
palette. The color combinations contained in that
palette determine what colors and effects show on
the screen.

Each of the first 4 palettes contains a default set of
16 color combinations, but to suit the needs of your
program you can change the contents of the palette
to anyone of the following:

• any of the 16 standard colors with which you are
already familiar from the standard applications.
The standard colors are:

o = black
1 = blue
2 = green
3 = cyan
4 = red
5 = magenta
6 = brown
7 = white

8 = gray
9 = light blue

10 = light green
11 = light cyan
12 = light red
13 = light magenta
14 = yellow
15 = high intensity white

• a mixture, or "dithering," of any 2 of the 16 stan
dard colors

• an alternation, or blinking, between any 2 of the
standard 16 colors

1-5

DEB Capabilities

1-6

The last palette contains no default combinations.
You program the fifth palette by loading color val
ues into a 256-byte array. The DEB device driver
uses this special palette to program the DEB's
color Look-Up Table (LUT). By using the LUT you
can add the capability of dithering or blinking
between any four colors.

DEB Capabilities

Look-Up Table (LUT)

The LUT resides in RAM on the DEB board, and is
accessed through write-only hardware registers.
The device driver keeps a copy of the register val
ues in the LUT. The register values are accessible
to software applications through the device driver.
The LUT contains 256 values that determine the
colors, blinking, and dithering that appear on the
screen. Whether you need to learn about the use
and layout of the LUT depends on the application
you are writing.

Ifyou use the standard palettes, you need not be
concerned with the LUT. The DEB device driver
automatically programs the LUT to correspond to
the way you set up the palettes. Ifyou program a
custom LUT, you greatly increase the color combi
nations and blinking effects available to you.

1·7

DEB Capabilities

1-8

Overlay Modes

The overlay modes let you use the screen to
display two images at once, independently. For
example, you can display a high resolution color
graphics image with its own foreground and back
ground. Then, on "top" of that image, you can dis
playa box of text and scroll the text without
affecting the graphics image.

The overlay modes use the DEB to control one
image and use the standard controller board to
control the other image. You can select from many
combinations of graphics, text, color, and high or
super resolution in designing the two images.

DEB Capabilities

The overlay modes offer 5 palettes. Each of the
first 4 palettes has 8 positions. These four palettes
have default colors that you can change to suit
your needs. You can choose 8 color combinations
from any ofthe 16 standard colors, or blink
between 2 ofthe standard colors. The dithering
combinations of the 16-color graphics modes are
not available. You can also use the last palette to
custom program the LUT.

1-9

2 Programming Tips

• Presence of Hardware/Software

• Hardware/Software Compatibility

• Setup

2-1

Programming Tips

2-2

Presence of Hardware/Software

Whenever you plan an application, it is important
to use the DEB device driver to test for the pres
ence ofboth the DEB and the associated driver.
Test for the presence of the hardware by checking
for DEB video memory. This is accomplished by
writing and reading back data patterns into mem
ory, in the range AOOOH:OH to B800H:OH. Test for
the software device driver by issuing a function
call to open the device called "DEBDRIVE," then
immediately issuing a call to close "DEBDRIVE."
If the open fails (carry set on return from Inter
rupt 21H) then the driver is not present. No func
tions are implemented in the driver, which is used
only to detect the presence of the software.

Programming Tips

Hardware/Software
Compatibility

The driver software has been designed to fit into
the structure ofMS-DOS programs. The DEB
hardware uses the same range of addresses as the
standard video ports on any compatible machine.
Ifyour application uses a light pen, consult the
DEB supplement in the AT&TPersonal Computer
Technical Reference Guide.

The DEB driver makes minor modifications to the
ROM BIOS video interrupt. Mode setting and color
selection offer additional functionality. Be careful
when you use the following functions.

• SET MODE - uses an additional register BL
• SCROLLING - uses an additional register BH
• STATUS - returns an additional register pair

ES:DI. No application should count on
ES:DI not changing.

2-3

Programming Tips

2-4

Setup

Install the DEB driver just as you would install
any device driver. Be sure the CONFIG.SYS file
is in the root directory. Put the line DEVICE =
DEDRIVER.DEV in CONFIG.SYS. This line puts
the DEB driver in the device driver chain. The
driver makes patches in INT lOlf and INT 9H to
add the new functionality. The driver has two
features:

• the INIT function, which deallqcates itself after
it runs

• chaining, which allows you to test for the driver's
presence by issuing an open function call

3 How to Program
the DEB

• Overview

• Mode Setting

• Setting Colors and Effects

• Displaying Graphics Images

3·1

How to Program
the DEB

3-2

Overview

There are three steps for video programming that
apply whether or not you are using the DEB
capability:

1 Set the hardware's mode. You also must set the
active page ifyou are in an overlay mode and want
to select the DEB screen.

2 Select the color combinations and effects you want
to use.

3 Construct the graphics images you want to display.

This chapter describes each of these steps in
detail. This chapter does not describe how to pro
gram the LUT directly (see Chapter 5, "Pro
gramming the LUT").

16-Color
Graphics
Modes

Overlay
Modes

How to Program
the DEB

Mode Setting

The DEB is controlled by invoking one of the DEB
video modes through the Set Mode function (INT
10H, function OH). The Set Mode function estab
lishes the mode for both the DEB and the VDC.
These modes fall into four categories: 16-color
graphics, overlay, transparent, and disabled.

There are two DEB modes that provide 16-color
graphics: high resolution and super resolution.
Both these modes let you use 5 palettes and dis
play up to 16 color combinations simultaneously.

When overlaying the VDC on the DEB output,
you specify one of the modes for the VDC and one
mode for the DEB. The VDC modes are a subset of
the modes for non-DEB graphics: 80 x 25 text
mode, high and super resolution modes. The DEB
modes are both graphics modes: high and super
resolution.

Ifyou are using one of the four standard palettes,
the VDC's output takes precedence over the output
of the DEB, so that if each board writes a pixel to
the same screen location, the pixel sent by the
VDC is displayed. This precedence is programmed
into the LUT. Ifyou want to have the DEB take
precedence over the VDC, you must change the
values in the LUT. (For more information, see
Chapter 5, "Programming the LUT.")

3-3

How to Program
the DEB

Transparent
Mode

Disabled
Mode

3-4

The non-DEB modes, modes 0-40H and mode 48H,
work exactly as they work without the DEB device
driver installed.

In the disabled mode, you can cause the output of
the VDC, the DEB, or both to be blacked out. This
allows you to draw a graphics image or to fill a
screen with text and not have them displayed
while you are building them. You can then have
the image "pop up" by taking VDC or DEB out of
the disabled mode. You can also achieve this result
by using the programmable palettes and the LUT.

How to Program
the DEB

Setting Colors and Effects

Colors and effects are controlled by the Set Color
Palette command" (INT lOll function OBH). Use
this function to set color values in one ofthe four
palettes, to switch between palettes, or to reset
palettes to their default values. You also lise Set
Color Palette to program the LUT directly. .

3-5

How to Program
the DEB

3-6

Displaying Graphics Images

There are two methods for displaying graphics
images using the DEB: writing dots at screen
locations or directly programming the VDC and
DEB memory.

To write dots (pixels) to the screen, use the Write
Dot function (INT lOR, function OCR). Write Dot
requires that you specify the display page, the row
and column where you want the dot to appear, and
the color or pattern for the dot.

Ifyou want to program the VDC and DEB graph
ics memory directly , you need to learn the details
of how the LUTis structured and how LUT
addresses are formed (see the section on "Pro
gramming the Bit Planes" in Chapter 5).

4
• Introduction

• Functions

Interrupt lOH
Functions

4-1

Interrupt lOH
Functions

4-2

Introduction

The following section describes the DEB device
drIver software functions. This interface is an
extension of the INT 10H software function to the
PC6300 ROM BIOS that controls the VDC. The
ROM BIOS screen driver has 16 functions:

OH set the display mode

2H set the cursor position

3H read the cursor position

5H select the active display page

6H scroll the active page up

7H scroll the active page down

8H read character/attribute at the current cur
sor position

9H write character/attribute at cursor position

AH write only the character at current cursor
position

BH change the color palette

CH write a point on the screen

Interrupt lOH
Functions

DH read a point on the screen

EH write in teletype styIe to the active page

FH return information about the active video
state

Not all these functions are applicable to the DEB.
The filter receives the Interrupt lOH function call,
filters the functions that are applicable to the DEB
and performs them. The functions that are not
applicable to the DEB are passed on to the ROM
BIOS INT lOH routine or to a previously installed
filter or driver routine. The following section
describes the functions which are processed by the
DEB Interrupt lOH filter.

4-3

Interrupt lOR
Functions

Set Mode

Functions

The function establishes the mode for both the
DEB and the VDC. Ifyou select a non-DEB related
mode, control is passed to the ROM resident Set
Mode function. Set Mode initializes palette 0 as
the active palette.

Input (AH)
(AL)
(BL)

= OH function number for Set Mode
= newmode
= optional overlay mode

4-4

Setting AL bit 7 = 0 puts you in either the DEB
transparent mode or 16-color graphics mode:

(AL) = OH 40 x 25 monochrome, text
(AL) = IH 40 x 25 color, text
(AL) = 2H 80 x 25 monochrome, text
(AL) = 3H 80 x 25 color, text
(AL) = 4H 320 x 200 color
(AL) = 5H 320 x 200 monochrome
(AL) = 6H 640 x 200 color
(AL) = 40H 640 x 400 with 2-position program

mable palette, defaulting to black
and white

(AL) = 41H 640 x 200 16-color graphics with
four palettes

(AL) = 42H 640 x 400 16-color graphics with
four palettes

(AL) = 44H Disable mode (disables both DEB
and VDC output)

Interrupt lOH
Functions

Setting AL bit 7 = 1 puts you in overlay mode. The
following values are only used in overlay mode. AL
contains the setting for the VDC; BL contains the
mode setting for the DEB. In overlay modes, the
active page defaults to zero.

VDC Settings (AL) = 82H
(AL) = 83H
(AL) = 86H
(AL) = OCOH
(AL) = OC4H

80 x 25 monochrome, text
80 x 25 color, text
640 x 200 color graphics
640 x 400 color graphics
Disable mode. Disables only the
VDC.

DEB settings (BL) = 6H 640 x 200 graphics with four
8-position palettes.

(BL) = 40H 640 x 400 graphics with four
8-position palettes.

(BL) = 44H Disable mode. Disables only the
DEB.

Output Contents of all registers are preserved.

Example MOVAH,O
MOVAL,41H
INT 10H

j Select Set Mode
j Select 16 color graphics
j Change the mode

4-5

Interrupt lOH
Functions

Set Cursor
Position

This function sets the cursor position for either the
DEB, the VDC, or both.

Input (AH)

(DH,DL)
(BH)

= 2H Function number for Set Cursor
Position

= row, column ofnew position
= page number

Valid page numbers for DEB modes
are 0 for the VDC and 80H for the
DEB in overlay mode. Row values
are 0 thru 23, column values are 0
thru 79, in DEB modes.

Output

Example

4-6

Contents of all registers are preserved.

MOV AH,2 ; SCP function
MOVDH,ROW
MOVDL,COL
MOVBH,PAGE
INT 10H ; Moves cursor to position defined In

above variables.

Read Cursor
Position

Input

Output

Example

Interrupt lOH
Functions

This ftinction returns the position of the cursor for
the DEB, VDC, or both.

(AR) = 3H Function number for Read Cursor
Position

(BH) = page number
Valid page numbers for DEB modes are
ofor VDC and BOH for the DEB in over
lay mode. Row values are 0 thru 23, col
umn values are 0 thru 79, in DEB
modes.

(DH,DL) = row, column of current position.

Contents of all other registers are preserved.

MOVAH,3
MOVBH,:pAGE
INT 10H
MOVROW,DH
MOVCOL,DL

4-7

Interrupt lOH
Functions

Select
Active
Display

Input

Output

Example

4-8

This commandallows selection of the DEB display
in overlay mode.

(AH) = 5H Function number for Select Action
Display

(AL) = active page
Values for the active page in DEB modes
are, 0 for the VDC and BOH for the DEB.

Contents of all registers are preserved.

MOVAH,5
MOVAL,PAGE
INT 10H

Scroll
Active
Page Up

Interrupt lOR
Functions

This function defines a pattern that is to be dis
played on the blank lines as the screen scrolls. The
pattern consists ofones and zeros. Zeros are inter
preted as the background color (palette position
zero). Ones are interpreted as the foreground color,
which is defined in BL. Care should be taken when
scrolling in DEB modes, to insure that all applica
tions set the additional argument in BH correctly.

Input (AH)

(AL)
(CH,CL)

(DH,DL)

(BH)
(BL)

= 6H function number for Scroll
Active Page Up

= number of lines to scroll
= row, column of upper left corner to

scroll
= row, column of lower right corner to

scroll
= pattern to be used on blank lines
= foreground color

The range of lines to be scrolled is
othru 23 (where 0 specifies clear
screen).
Row values are 0 thru 23, column
values are 0 thru 79, in DEB modes.
Valid foreground colors are specified
by palette position 0-FH for 16-color
graphics, and 0-7H for 8-color
graphics.

Output

Example

Contents of all registers are preserved.

MOV AH,6 jScroll Active Page Up
MOV AL,LINES
MOVCH,UPROW
MOV CL,UPCOL
MOV DH,LOWROW
MOV DL,LOWCOL
MOVBH,O
MOV BL,FGCOLOR
INT 10H

4-9

Interrupt 10H
Functions

Scroll
Active
Page Down

This function permits you to define a pattern that
is to be displayed on the blank lines as the screen
scrolls downward. The pattern consists of ones and
zeros. Zeros are interpreted as the background
color (palette position zero). Ones are interpreted
as the foreground color, which is defined in BL.
Care should be taken when scrolling in DEB
modes, to insure that all applications set the addi
tional argument in BH correctly.

Input (AH)

(AL)
(CH,CL)

(DH,DL)

(BH)
(BL)

= 7H function number for Scroll
Active Page Down

= number of lines to scroll
= row, column of upper left corner to

scroll
= row, column of lower right corner to

scroll
= pattern to be used on blank lines
= foreground color

The range of lines to be scrolled is
othru 23 (where 0 specifies clear
screen).
Row values are 0 thru 23, column
values are 0 thru 79, in DEB modes.
Valid foreground colors are specified
by palette position 0-FH for 16-color
graphics, and 0-7H for 8-color
graphics.

Output

Example

4-10

Contents of all registers are preserved.

MOV AH,7 j Scroll Active Page Down
MOV AL,LINES
MOVCH,UPROW
MOVCL,UPCOL
MOV DH,LOWROW
MOV DL,LOWCOL
MOVBH,O
MOV BL,FGCOLOR
INT 10H

Read
Character
and
Attribute
at Current
Cursor
Position

Interrupt lOR
Functions

This function returns the value of the character at
the current cursor position. The value of the char
acter's foreground color is returned in AR.

Input

Output

CAR)

CBR)

CAL)
CAR)

= 8 Function number for Read Character
and Attribute at Current Cursor
Position.

= Valid page numbers for DEB modes are
ofor the VDC and 80R for the DEB in
overlay mode.

= ASCII character code
= foreground palette position or VDC

attribute

Example

Contents of all other registers are preserved.

MOVAH,8 jRead CHR function
MOVBH,PAGE
INT IOH
MOV CHAR,AL jSave CHAR/COLOR
MOV CURCOLOR,AH

4-11

Interrupt lOH
Functions

Write
Character
and
Attribute
at Current
Cursor
Position

This function displays the character whose ASCII
code is in register AL. The character is displayed
according to the color values in BL.

Input (AH)
(AL)
(BL)
(BH)
(CX)

= 9H Write Character function
= ASCII character code
= foreground color
= page
= count of characters to write

Output

Example

4-12

Ifbit 7 ofBL = 1, the color value is XOR'd with the
current dots in that location. Valid page numbers
for DEB modes are 0 for the VDC and 80H for the
DEB in overlay mode.

Valid foreground colors are specified by palette
position O-FH for 16-color graphics, and 0-7H for 8
color graphics.

Contents of all registers are preserved.

MOVAH,9
MOVAL,CHAR
MOV BL,CURCOLOR
MOVBH,PAGE
MOVCX,l
INT IOH

Write
Character
Only at
Current
Cursor
Position

Interrupt 10H
Functions

In DEB modes, this function is the same as "Write
Character and Attribute."

4-13

Interrupt 10H
Functions

Set Color
Palette

4-14

This function is used to set color values in one of
the four palettes, to switch between palettes, or to
reset palettes to their default values.

In the overlay modes, the Set Color Palette func
tion works on the active page. If the active page
is set to display to the VDC board, this function
works the same as the standard ROM BIOS INT
10H (function OBH).

Ifyou specify a palette position greater than the
value allowed for the mode in which you are work
ing, the value you specify will be put in that
palette's highest position. For example, if you
attempted to set palette position 13 to red when
working in overlay mode, which has 8-position pal
ettes, the 8th palette position would be set to red.

Note:
The following discussion covers the use of the sim
pIe palette programming functions. You can also
use "Set Color Palette" to program the LUT. (For
more information, see Chapter 5, "Program
ming the LUT").

Input (AH)

(AL)
(BH)
(BL)

Interrupt lOR
Functions

= OBH Function number for Set Color
Palette

= palette function selector
= positional pointer
= color value

For simple palette programming functions, use the
following

(AL) = 0
(BH) = palette color ID

BH = FFH switches to the palette
specified in BL, without
changing to the default
palettes unless there is a
change in palette type
(e.g., change from a 16
position palette to an 8
position palette).

BH = 80H switches to the palette
specified in BL and resets
the palette to its default.

BH = 0-16 sets this palette position to
the color or attribute in
BL.

(BL) = actual color value or code for blinking
and dithering

4-15

Interrupt lOR
Functions

Input

4-16

The special settings for using a customized LUT in
Set Color Palette are as follows:

(AL) = non-zero (a zero here selects a standard
palette)

AL bit 0 = 1 means use ES:SI to program the
palette and registers BH and BL to
indicate an.offset and length into
the LUT. ES:SI points to the LUT
table (in the above example,
LUT-STRING).

In this case, BH = offset into LUT
and BL = length of portion ofLUT
to be changed. Ifyou are loading
an entire new table, set BH and BL
to O.

AL bit 1 = 1 means use BH and BL to program
the LUT one location at a time.

In this case, BH = position in LUT
and BL = the value to put in that
position.

AL bit 2 = 1 means use the short LUT address
ing mode. (Only uses the first 16
LUT entries).

LUT-STRING

Interrupt lOR
Functions

The DEB driver lets you automatically load
your customized LUT and use it in place ofone of
the standard palettes.

The steps for loading and using the customized
LUTare:

1 Define the table with DB (Define Byte)
statements.

2 Load the table in by using the Set Color Palette
command.

3 Use the Read Dot and Write Dot commands to
access the LUT (see Chapter 4, "Interrupt lOR
Functions") .

The code for defining the table would be similar to
this:

DB 4 ! Signifies active palette 4
DB 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
DB 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
D~ 1,2,3,4,5,6,7,8,9,10,11,12,l3,14,15,
DB 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,

DB 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,

4-17

Interrupt lOR
Functions

4-18

To load a new table ofvalues into the LUT, where
the table in your program is named LUT-STRING,
you can use these statements:

PUSH DS ! save the data segment address
POPES
MOV S1,LUT -STRING
MOV AL,I
MOV AH,II
XOR .,H,BX ! Sets BH=BL=O
INT 10

Default
Palettes

Interrupt lOR
Functions

The defaults for each of the four palettes are:

Palette Number 0
Position Color

o 0= black
1 2 = green
2 4=red
3 6 = brown
4 1 = blue
5 3 = cyan
6 5 = magenta
7 7 = white
8 8 = gray
9 9 = light blue

10 10 = light green
11 11 = light cyan
12 12 = light red
13 13 = light magenta
14 14 = yellow
15 15 = high-intensity white

. 4-19

Interrupt lOR
Functions

4-20

Palette Number 1
Position Color

o 0= black
1 3 = cyan
2 5 = magenta
3 7 = white
4 1 = blue
5 2 = green
6 4=red
7 6 = brown
8 8=gray
9 9 = light blue

10 10 = light green
11 11 = light cyan
12 12 = light red
13 13 = light magenta
14 14 = yellow
15 15 = high-intensity white

Interrupt lOR
Functions

Palettes 2 and 3 are the same, and they contain the
standard colors in numerical order.

Palette Number 2 and Palette Number 3
Position Color

o o= black
1 1 = blue
2 2=green
3 3 = cyan
4 4=red
5 5 = magenta
6 6 = brown
7 7 = white
8 8=gray
9 9 = light blue

10 10 = light green
11 11 = light cyan
12 12 = light red
13 13 = light magenta
14 14 = yellow
15 15 = high-intensity white

4-21

~
-joJ

~
~

s:: Q)
Q) Q) b..O

~ ;:l Q) ~ "0 ~...,
:0 So G Q) s

~
~ ~ Q)

.... ~

B'"
~

Q) Q) ~ §1 ~
...,

~
..., ..., ..., ..., ...,

,.$u

~ ~ ~ ~ ~ ~~ ;:l Q)

~
"0 ~ 0

~:0 :0 So f: S
,.Q

Interrupt lOH
Functions

DITHER COMBINATIONS FOR
DEB PALETTES 0-3

Color combinations 136-255 have been pre-assigned to allow you easy
access to dithering effects while using the standard palettes. The fol
lowing table describes the available combinations.

A
~

black
blue 136
green 137 138
cyan 139 140 141
red 142 143 144 145
magenta 146 147 148 149 150
brown 151 152 153 154 155 156
white 157 158 159 160 161 162 163
gray 164 165 166 167 168 169 170 171
light blue 172 173 174 175 176 177 178 179 180
light green 181 182 183 184 185 186 187 188 189 190
light cyan 191 192 193 194 195 196 197 198 199 200 201
light red 202 203 204 205 206 207 208 209 210 211 212 213
light magenta 214 215 216 217 218 219 220 221 222 223 224 225 226
yellow 227 228 229 230 231 232 233 234235 236 237 238 239 240
high-intensity 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

white

NOTE: To select a value that combines colors A and B to create a new color, find
the number at the intersection of row A and column B.

4-22

Interrupt 10H
Functions

BLINKING COLOR EFFECTS
FOR DEB PALETTES 0-3

Color combinations 16-135 have been pre-assigned to allow you easy
access to blinking effects while using the standard palettes. The fol
lowing table describes the available combinations.

<J).....,
:.E
~

~ 0.....,

I::
I:: '00

I::
<J) I::

~
<J) <J) co <J)
;:J <J) ~ "'0 ~,.....,

:D So >. <J) S .SI::
I:: I:: <J) u ~<J)

~
.....,,,,,

~<J) <J) I:: co, >. ,£
;:J <J) ~ "'0 ~ 0 :.E ~

,J:: ,J::

~ ~ ~
b.O

B-:D sn >. <J) S
~ So ~ ~

a; :Eu0 >.
A
~ black 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

blue 31 32 33 34 35 36 37 38 39 40 41 42 43 44
green 45 46 47 48 49 50 51 52 53 54 55 56 57
cyan 58 59 60 61 62 63 64 65 66 67 68 69

red 70 71 72 73 74 75 76 77 78 79 80
magenta 81 82 83 84 85 86 87 88 89 90

brown 91 92 93 94 95 96 97 98 99
white 100 101 102 103 104 105 106 107
gray 108 109 110 111 112 113114

light blue 115 116 117 118 119 120
light green 121 122 123 124 125
light cyan 126 127 128 129

light red 130 131132
light magenta 133134

yellow 135

NOTE: To select a value that will cause blinking between colors A and B, find
the number at the intersection of row A and column B.

4-23

Interrupt lOll
Functions

Write
Dot

The Write function writes a pixel to the location on
the screen that you specify. If the screen is in the
DEB mode, Write Dot may also write a pattern.

Input (AH)
(AL)
(BH)

(CX)
(DX)

= OCH, Function number for Write Dot
= Palette position to be written.
= display page designator (bit 7 = 1

selects the DEB)
= column number
= row number

Output

Example

4-24

Contents of all registers are preserved.

MOVAH,OCH
MOV AL,PALPOS
MOVBH,PAGE
MOVCX,COL
MOVDX,ROW
INT jWrite the Dot

Read Dot

Interrupt lOH
Function

This function reads a dot from the screen. If the
screen is in the DEB mode this function returns
the value in the LUT that corresponds to this dot.
(For more information, see Chapter 5, "Pro
gramming the LUT.")

Input

Output

(AB)
(BH)

(CX)
(DX)

(AH)

= ODH Function number for Read Dot
= display page designator (bit 7 = 1

selects the DEB)
= column number
= row number

= VDC value or DEB palette position
Contents of all other registers are
preserved.

Example MOVAH,ODH
MOVBH,PAGE
MOVCX,COL
MOVDX,ROW
INT
MOV DOTCOL,AH iSClve the Dot

4-25

Interrupt lOH
Commands

Input (AH)

(AL)
(BL)

= OEH, Function number for Write
Teletype

= character to write
= foreground color (in graphics modes)

Ifbit 7 = 1, color is XOR'd to current
contents.

Output

Example

4-26

Contents ofall registers are preserved.

MOVAH,OEH
MOVAL,CRAR
MOV BL,FGlCOL
INT lOR

Read
Current
Video
State

Interrupt lOH
Commands

This function returns the current video state. It
indicates whether the DEB or VDC is active in the
overlay mode and returns the number of the active
palette.

Input

Output

(AH)

(BH)
(AL)
(ES:DD

= OFH Function number for Read Cur
rent Video State

= display page designator
= mode currently set
= pointer to a copy of the current LUT

Example MOVAH,OFH
INT 10H

4-27

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

!

5 Programming the
LUT

• Overview

• 16-Color Graphics LUT
Programming

• Overlay Modes LUT Programming

• Programming the Bit Planes

Programming the LUT

Overview

This chapter describes programming the DEB
Look-Up Table (LUT). By programming the LUT
yourself, you can create color patterns that are not
available when you use standard palettes. You
need not read this chapter ifyou do not want to use
this extended functionality.

The hardware uses the LUT to translate the con
tents ofvideo memory patterns into graphics
effects. In the standard palettes, INT lOH filter
programs the LUT for you and thereby provides the
preassigned color combinations and effects as
described in previous chapters.

To program the LUT directly, you select Palette 4
in Set Color Palette function. Palette 4, also called
the "LUT palette," has a minimum of256 posi
tions. Each palette position contains a value
between 0 and 15. These values map into the LUT
locations on the DEB. The 256 locations on the
DEB collectively determine the color and special
effects displayed when you specify a particular
palette position. The color and special effect for
each pixel on the screen are determined by:

• the palette position you specify

• the values in the LUT

• the active mode

There are some differences in the way the LUT is
structured for 16-color graphics modes and overlay
modes. This chapter describes LUT operation for
16-color graphics modes and overlay modes
separately.

5-2

Programming the LUT

16-Color Graphics Lut
Programming

In these modes, the LUT can be viewed as a two
dimensional array (16 x 16). Each location con
tains one of the standar.d 16 colors.

Palette Position
Column

LUT
Row

o

15

o 15

The locations in the LUT are numbered consecu
tively from left to right and top to bottom. Thus,
location 17 corresponds to Row 1, palette position 1.

5-3

Programming the LUT

In the 16-color graphics mode, the LUT is divided
into four "time states." At anyone time, only one
quarter of the LUT determines the display on the
screen.

Palette Position

0

0

•
3

4
LUT
Row

7

8

11

12

•
15

15

teo)

t(l)

t(2)

t(3)

5-4

The hardware cycles through the LUT every sec
ond, so each quarter of the LUT is active for 1/4 of
each second. The cycling mechanism produces
blinking. The following examples show the details
ofhow you can produce several different blinking
effects by setting different values in the LUT.

Programming the LUT

In this example, the Write Dot or Write Character
functions specify palette position 7 and the LUT is
set up as shown. Pixels are displayed as a solid red
color. In the first 1J4 second, the DEB displays the
color in the first quarter of the LUT, which in this
case is red. In the second, third, and fourth 1J4 sec
onds, the DEB displays the color in the second,
third, and fourth quarters of the LUT, respec
tively. In this example, the DEB keeps finding the
color value for red, so what you see on the screen is
a solid (non-blinking) red color.

Palette Position

LUT
Row 0

0

teO)

3

4

t(l)

7

8

t(2)

11

12

t(3)

15

Non-Blinking Color

7

r
e
d

r
e
d

r
e
d

r
e
d

15

5-5

Programming the LUT

In this example, any item displayed on the screen
with palette position 7 blinks between red and
blue. For the first two 1/4 seconds, the DEB picks
up the color value for red from the first and second
quarters of the LUT. For the second two 1J4 seconds,
the DEB obtains the color value ofblue from the
LUT. The net effect is a slow blink between red
and blue.

Palette Position

LUT
Row 0

0

teO)

3

4

t(l)

7

8

t(2)

11

12

t(3)
•
15

Slow Blink

5-6

7

r
e
d

r
e
d

b
I
u
e

b
I
u
e

15

Programming the LUT

In this example, any item displayed using palette
position 7 blinks rapidly between red, blue, green,
and brown.

Palette Position

LUT
Row 0 7 15

0 r
teO) e

d
3

4 b
I

t(l) u

7
e

8 g
r

t(2) e
e

11 n

12 b
r

t(3) 0
w

15 n

4-Color Fast Blink

5-7

Programming the LUT

5-8

For dithering colors, the DEB uses a scheme simi
lar to the blinking scheme. Dithering is accom
plished by manipulating groups of4 adjacent
pixels. The screen is divided into blocks of4 pixels.

--1--1--]-- - - - - ---

Programming the LUT

Each of the 4 time states is divided into four dither
states that determine the dithering effect. The
rows of the time state blocks correspond to the 4
pixel blocks on the screen in the following way:

E _
LUT
Row

o
1
2
3

Time
Block
Row 0

o
1
2
3

Palette Position

. . .
t(O)

15

4 0
5 1 t(1)
6 2
7 3

8 0 [9 1 t(2)
10 2
11 3

12 0
13 1 t(3)
14 2
15 3

5-9

Programming the LUT

The pixels in the pixel blocks are so close together
that our eyes cannot perceive them as separate. If
each of the pixels in a pixel block is a different
color, our eyes perceive the pixel block as one color
- a combination of the color of the individual pix
els. If the adjacent pixels are the same color, our
eyes see just that one color.

~
red red

red red

------------Palette Position

Time
Block
Row

t(O)

t(l)

t(2)

t(3)

0 7 15

0 red
1 red
2 red
3 red

0 red
1 red
2 red
3 red

0 red
1 red
2 red
3 red

0 red
1 red
2 red
3 red

"Solid" Dither showing correspondence between pixel
positions in a pixel block and time state rows

5-10

Programming the LUT

Remember the table of"pre-assigned" dithered
colors. To combine colors, you check the table for
the color number for a particular dither effect. For
example, you would choose this number to produce
a dither between red and blue.

RED----....--.....~143

BLUE

5-11

Programming the LUT

Ifyou want to program the LUT directly to dither
red and blue together, the LUTwould look like
this:

blue I red Iblue I red I
blue I red I blue I red I

Time Palette Position
Block
Row 0 7 15

0 blue
1 red

t(O) 2 blue
3 red

t(1)

t(2)

t(3)

5-12

o
1
2
3

o
1
2
3

o
1
2
3

blue
red

blue
red

blue
red

blue
red

blue
red

blue
red

2-Color Dither

Programming the LUT

You can set up the LUT to dither two, three, or four
colors together.

~grn brn

Palette Position
Time

Block
Row 0 7 15

0 red
I blue

t(O) 2 green
3 brown

t(l)

t(2)

t(3)

o
1
2
3

o
I
2
3

o
I
2
3

red
blue

green
brown

red
blue

green
brown

red
blue

green
brown

4-Color Dither

5-13

Programming the LUT

The following examples show the actual LUT val
ues for each of the previous cases ofblinking anq
dithering.

Palette Position

LUT
Row 0 7 15

0 4 (red)
1 4

teO) 2 4
3 4

t(l)

t(2)

t(3)

4
5
6
7

8
9

10
11

12
13
14
15

4
4
4
4

4
4
4
4

4
4
4
4

5-14

!
Palette Position 7 programmed for Non-Blinking Red

Programming the LUT

Palette Position

LUT
Row 0 7 15

0 4 (red)
1 4

teO) 2 4
3 4

t(l)

t(2)

4
5
6
7

8
9

10
11

4
4
4
4

1 (blue)
1
1
1

t(3) !~ I !
Palette Position 7 programmed to blink slowly between red
and blue.

5-15

Programming the LUT

Palette Position

LUT
Row 0 7 15

0 4 (red)
1 4

teO) 2 4
3 4

t(l)

4
5
6
7

1 (blue)
1
1
1

8 2 (green)
9 2

t(2) 10 2
11 2

12

I

6 (brown)
13 6

t(3) 14 6
15 6

4-Color Fast Blink

5-16

Programming the LUT

Palette Position
LUT
Row 0 7 15

0 4 (red)
1 4

teO) 2 4
3 4

t(l)

4
5
6
7

4
4
4
4

8 4
9 4

t(2) 10 4
11 4

12

I

4
13 4

t(3) 14 4
15 4

Solid Red Dither

5-17

Programming the LUT

Palette Position
LUT
Row 0 7 15

0 1 (blue)
1 4 (red)

teO) 2 1 (blue)
3 4.(red)

4 1
5 4

t(l) 6 1
7 4

8 1
9 4

t(2) 10 1
11 4

12

I

1
13 4

t(3) 14 1
15 4

2-Color Dither: Red and Blue

5-18

Programming the LUT

Palette Position

LUT
Row 0 7 15

0 4 (red)
1 2 (green)

teO) 2 1 (blue)
3 6 (brown)

4 4
5 2

t(l) 6 1
7 6

8
9

t(2) 10
11

12
13

t(3) 14
15

4
2
1
6

4
2
1
6

4-Color Dither Between Red, Green, Blue, and
Brown

5-19

Programming the LUT

The following is an example that combines blink
ing and dithering:

Palette Position

LUT
Row 0 7 15

0 1 (blue)
1 4 (red)

tCO) 2 1
3 4

4
5

t(l) 6
7

8
9

t(2) 10
11

12
13

t(3) 14
15

5-20

1
4
1
4

2 (green)
6 (brown)
2
6

2
6
2
6

Programming the LUT

The following table of values can be used to pro
gram the LUT for normal 16-color graphics.

Palette Position

LUT
Row °1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

°1
teo) 2

3

4
5

t(1) 6
7

8
9

t(2) 10
11

12
13

t(3) 14
15

0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14;15,

0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,

0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
0,1,2,3,4,5,6,7,8,9,10,11,12;13,14,15,

0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,

Non-Blinking Staridard Colors

5-21

Programming the LUT

Note that palette position 7 in the first two time
states has been programmed to show white and in
the second two time states to show red.

Palette Position

LUT
Row 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

°1
t(o) 2

3

4
5

t(l) 6
7

8
9

t(2) 10
11

12
13

t(3) 14
15

0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,

0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,

0,1,2,3,4,5,6,4,8,9,10;il,12,13,14,15,
0,1,2,3,4,5,6,4,8,9,10,11,12,13,14,15,
0,1,2,3,4,5,6,4,8,9,10,11,12,13,14,15,
0,1,2,3,4,5,6,4,8,9,10,11,12,13,14,15,

0,1,2,3,4,5,6,4,8,9,10,11,12,13,14,15,
0,1,2,3,4,5,6,4,8,9,10,11,12,13,14,15,
0,1,2,3,4,5,6,4,8,9,10,11,12,13,14,15,
0,1,2,3,4,5,6,4,8,9,10,11,12,13,14,15,

LUT for Blinking Between White and Red in Palette
Position 7

5-22

Overlay
ModesLUT
Programming

Programming the LUT

Overlay Modes LUT
Programming

When the LUT is used in the overlay modes it can
be viewed as a two-dimensional array with 8 col
umns and 32 rows. The column values are DEB
palette positions. The row values are VDC color
values.

In overlay modes, there are 2 separately controlled
images: the VDC image and the DEB image. The
2 images are combined on the display screen. Each
pixel on the screen has 2 values associated with it:
the VDC color and the DEB palette position. The
LUT is used to resolve contention between the 2
values associated with each pixel.

VDC DEB
image image

page 0 page 128

" {

I LUT I
+

Screen Display

5-23

Programming the LUT

The LUT for overlay modes looks like this:

DEB
Palette

VDC Color Position o ••••• 7

0= black
1 = blue

15 :high

intensity

white

------------0
1

This LUT entry contains the
color that will appear on the
screen for the particular
combination ofVDC color
and DEB palette position

As in the 16-color graphics modes, the locations in
the LUT are numbered consecutively from left to
right and top to bottom. For example, location 17
corresponds to Row 2, Palette Position o.

5-24

Programming the LUT

In the overlay modes, as in the 16-color graphics
mode, the LUT is divided into time states that
control blinking effects. However, in the overlay
modes, the LUT is only divided into two time
states. Halfof the LUT determines what is being
displayed at any time. The top half is used for the
first lf2 ofeach second and the bottom half is used
for the second 1/2 of each second.

Using the overlay modes, you create blinking by
making the values in the top half of the table dif
ferent from the corresponding values in the bottom
halfof the table.

DEB Palette Position

LUT
Row 0

o

15

16

31

teO)

t(l)

7

5-25

Programming the LUT

The following example shows the LUT values for
standard Palette 2 of an ov~rlaymode. The LUT is
programmed so that the DEB image is displayed
only if the VDC color is°(black). If the VDC
requests any other color, then that color is dis
played no matter what the DEB requests. This has
the effect of overlaying the VDC image "on top" of
the DEB image.

DEB Palette Position
VDC
Color

Values ° 1 2 3 4 5 6 7

o
1
2
3

teO) 4
5
6
7
8
9

10
11
12
13
14
15

0, 1, 2, 3, 4, 5, 6, 7,
1, 1, 1, 1, 1, 1, 1, 1,
2, 2, 2, 2, 2, 2, 2, 2,
3, 3, 3, 3, 3, 3, 3, 3,
4, 4, 4, 4, 4, 4, 4, 4,
5, 5, 5, 5, 5, 5, 5, 5,
6, 6, 6, 6, 6, 6, 6, 6,
7, 7, 7, 7, 7, 7, 7, 7,
8, 8, 8, 8, 8, 8, 8, 8,
9, 9, 9, 9, 9, 9, 9, 9,
10,10,10,10,10,10,10,10,
11,11,11,11,11,11,11,11,
12,12,12,12,12,12,12,12,
13,13,13,13,13,13,13,13,
14,14,14,14,14,14,14,14,
15 15,15 15,15,15,15,15,

5-26

DEB Palette Position
VDC
Color

Values ° 1 2 3 4 5 6 7

Programming the LUT

o
1
2
3

t(l) 4
5
6
7
8
9

10
11
12
13
14
15

0, 1, 2, 3, 4, 5, 6, 7;
1, 1, 1, 1, 1, 1, 1, 1,
2, 2, 2, 2, 2, 2, 2, 2,
3, 3, 3, 3, 3, 3, 3, 3;
4, 4, 4, 4, 4, 4, 4, 4,
5, 5, 5, 5, 5, 5, 5, 5,
6, 6, 6, 6, 6, 6, 6, 6,
7, 7, 7, 7, 7, 7, 7, 7,
8; 8, 8, 8, 8, 8, 8, 8,
9, 9, 9, 9, 9, 9, 9, 9,
10,10,10,10,10,10,10,10,
11,11,11,11,11,11,11,11,
12,12,12,12,12,12,12,12,
13,13,13,13,13,13,13,13,
14,14,14,14,14,14,14,14,
15,15,15 15,15,15,15 15,

5-27

Programmirig the LUT

In this example, the standard Palette 2 is modified
so that position 2 is a blinking between blue (color
1) and red (color 4).

DEB Palette Position
VDC
Color

Values ° 1 2 3 4 5 6 7

°1
2
3

teO) 4
5
6
7
8
9

10
11
12
13
14
15

5-28

0, 1, 1, 3, 4, 5, 6, 7,
1, 1, 1, 1, 1, 1, 1, 1,
2, 2, 2, 2, 2, 2, 2, 2,
3, 3, 3, 3, 3, 3, 3, 3,
4, 4, 4, 4, 4, 4, 4, 4,
5, 5, 5, 5, 5, 5, 5, 5,
6, 6, 6, 6, 6, 6, 6, 6,
7, 7, 7, 7, 7, 7, 7, 7,
8, 8, 8, 8, 8, 8, 8, 8,
9, 9, 9, 9, 9, 9, 9, 9,
10,10,10,10,10,10,10,10,
11,11,11,11,11,11,11,11,
12,i2, 12, 12, 12, 12, 12, 12,
13,13,13,13,13,13,13,13,
14,14,14,14,14,14,14,14,
15,15 15,15 15,15,15,15,

DEB Palette Position
VDC
Color

Values ° 1 2 3 4 5 6 7

Programming the LUT

°1
2
3

t(l) 4
5
6
7
8
9

10
11
12
13
14
15

0, 1, 4, 3, 4, 5, 6, 7,
1, 1, 1, 1, 1, 1, 1, 1,
2, 2, 2, 2, 2, 2, 2, 2,
3, 3, 3, 3, 3, 3, 3, 3,
4, 4, 4, 4, 4, 4, 4, 4,
5, 5, 5, 5, 5, 5, 5, 5,
6, 6, 6, 6, 6, 6, 6, 6,
7, 7, 7, 7, 7, 7, 7, 7,
8, 8, 8, 8, 8, 8, 8, 8,
9, 9, 9, 9, 9, 9, 9, 9,
10,10,10,10,10,10,10,10,
11,11,11,11,11,11,11,11,
12,12,12,12,12,12,12,12,
13,13,13,13,13,13,13,13,
14,14,14,14,14,14,14,14,
1515,15,15,15,15 15,15,

5-29

Programming the LUT

In this example, values in the LOT cause the
DEB's output to take precedence over the VDC's
output. The VDC's output is only displayed when
you specify DEB palette position 0 in a graphics
statement.

DEB Palette Positions
VDC
Color

Values 0 1 2 3 4 5 6 7

o 0,1,2,3,4,5,6, 7,
1 1,1,2,3,4,5,6, 7,
2 2, 1,2,3,4,5, 6, 7,
3 3, 1,2,3,4,5,6, 7,
4 4, 1, 2,3,4, 5, 6, 7,
5 5, 1, 2,3,4, 5, 6, 7,
6 6,1,2,3,4,5,6,7,

teO) 7 7,1,2,3,4,5,6, 7,
8 8,1,2,3,4,5,6, 7,
9 9, 1,2,3,4,5,6, 7,

10 10,1,2,3,4,5,6,7,
11 11,1,2,3,4,5,6,7,
12 12,1,2,3,4,5,6,7,
13 13,1,2,3,4,5,6,7,
14 14,1,2,3,4,5,6,7,
15 15,1,2,3,4,5,6, 7,

5-30

DEB Palette Positions
VDC
Color

Values 0 1 2 3 4 5 6 7

Programming the LUT

t(l)

1
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0,1,2,3,4,5,6,7,
0,1,2,3,4,5,6,7,
2,1,2,3,4,5,6,7,
3,1,2,3,4,5,6,7,
4,1,2,3,4,5,6,7,
5,1,2,3,4,5,6,7,
6,1,2,3,4,5,6,7,
7,1,2,3,4,5,6,7,
8,1,2,3,4,5,6,7,
9,1,2,3,4,5,6,7,

10,1,2,3,4,5,6,7,
11,1,2,3,4,5,6,7,
12,1,2,3,4,5,6,7,
13,1,2,3,4,5,6,7,
14,1,2,3,4,5,6,7,
15,1,2,3,4,5,6,7,

5·31

Programming the LUT

The following LUT entirely blocks out VDC output:

DEB Palette Positions
VDC
Color

Values °1 2 3 4 5 6 7

5-32

teO)

°1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0,1,2,3,4,5,6,7,
0,1,2,3,4,5,6,7,
0, 1,2,3,4,5,6, 7,
0,1,2,3,4,5,6,7,
0, 1,2,3,4,5,6, 7,
0,1,2,3,4,5,6,7,
0,1,2,3,4,5,6,7,
0,1,2,3,4,5,6,7,
0,1,2,3,4,5,6,7,
0,1,2,3,4,5,6,7,
0,1,2,3,4,5,6,7,
0,1,2,3,4,5,6,7,
0, 1,2,3,4,5,6, 7,
0,1,2,3,4,5,6,7,
0,1,2,3,4,5,6,7,
0,1 2,3,4,5,6,7,

DEB Palette Positions
VDC
Color

Values °1 2 3 4 5 6 7

Programming the LUT

t(l)

°1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0,1,2,3,4,5,6,7,
0,1,2,3,4,5,6,7,
0, 1,2,3,4,5,6, 7,
0,1,2,3,4,5,6,7,
0,1,2,3,4,5,6,7,
0, 1,2,3,4,5,6, 7,
0,1,2,3,4,5,6,7,
0,1,2,3,4,5,6,7,
0, 1,2,3,4, 5, 6, 7,
0,1,2,3,4,5,6,7,
0, 1,2,3,4, 5, 6, 7,
0,1,2,3,4,5,6,7,
0,1,2,3,4,5,6,7,
0,1,2,3,4,5,6,7,
0,1,2,3,4,5,6,7,
0,1,2 3,4,5,6,7,

5-33

Programming the LUT

Programming the Bit Planes

Introduction

AOOOO:O

A8000:0

BOOO:O

B8000:0

5-34

Once you have learned to program the LUT
directly using the Set Color Palette command, you
can make further use of the LUT's capabilities by
programming the VDC and DEB video memory
directly.

By directly programming the video memory of the
VDC and DEB boards, you can increase the graph
ics display speed. The values you load into the
video memory planes determine how the LUT is
accessed. This section assumes that you have read
and understood how to program the LUT directly.

In the l6-color graphics modes, the device driver
combines the 3 bit planes of the DEB with one bit
plane from the VDC to create the four bit planes
necessary for l6-color graphics.

In the overlay modes, the device driver uses the 3
DEB bit planes for 8-color graphics output and
uses the VDC board separately for either text or
graphics output.

DEB Bitplane
0

DEB Bitplane
1

DEB Bitplane 2

VDC Bitplane

Memory Map

LUT
Addressing

Timing Bits

Programming the LUT

A LUT address is an 8-bit value that points to one
of the 256 locations within the LUT. The method of
address formation depends on the current video
mode.

For transparent and disabled modes, LUT address
ing is irrelevant. In the transparent mode, VDC
color values bypass the LUT processing and go
directly to the monitor output. In the disabled
mode, all output from the LUT is forced to the
value ofzero.

For the l6-color graphics and overlay modes, the
LUT address is composed of bits from the DEB
video bit planes, the VDC's video output, and DEB
timing bits.

The timing bits are called BLINKl, BLINK2,
PATl; and PAT2. BLINKl and BLINK2 effect
blinking; PATl and PAT2 effect patterning
(dithering) .

All of the timing bits are applicable in the l6-color
graphics mode; only BLINKl is part of the address
formation in the overlay mode. Therefore, you have
fewer options for blinking and no ability to dither
in the overlay mode.

The operation of the timing bits is very fundamen
tal to creation of special effects. The bits always
cycle on and off, each at a different rate. BLINKl
cycles on and off each 1/4 second. BLINK2 cycles
on and off each 1/8 second.

5-35

Programming the LUT

5-36

PAT1 and PAT2 cycle on and off so fast that the eye
cannot perceive a blink (PAT1 is the fastest). A
dithered color is really 2-4 separate colors that are
changing so rapidly that the eye perceives them as
one solid color.

PAT1 changes value at the same rate that the mon
itor's cathode ray moves from one pixel to the next.
PAT1's effect on LUT addressing is that it switches
the address by 16 LUT entries - in the previous
table, between pairs of rows. PAT2 changes value
at the same rate that the cathode ray changes
scanlines - in the previous table, between one
pair of rows and the next pair of rows.

PAT2 PAT1 Portion of LUT

0 0 1st 16 entries ofeach quarter
0 1 2nd 16 entries of each quarter
1 0 3rd 16 entries of each quarter
1 1 4th 16 entries of each quarter

1. 16-color Graphics Mode

Programming the LUT

DEB Timing Bits

r~--'-""-"'A...-"....._--...~-'"
IND

Video
Output

Video Ram

00

L

BLUE

U

DEB

VID

2

T

DEB

VID

1

DEB

VID

o

8-bit
LUT

Address

FF

4-bit
Color Value

IMONITOR I
To output a color to the monitor, the DEB concat
enates the DEB timing bits BLINKl, BLINK2,
PATl, PAT2, the BLUE output bit from the VDC,
and a bit from corresponding locations on each of
the three DEB bit planes.

Programming the LUT

2. Overlay Mode

IND Video Output DEB Video Ram
DEB
Timing / ~ ~ r -'" ,
bit

IND
IND IND IND

DEB DEB DEB
HI-

REE RED BLUE
VID VID VID

LIGHT 2 1 0

8-bit
LUT

Address

00

L U

4-bit
Color Value

I MONITOR I

T

FF

5-38

To output a color to the monitor, the DEB concat
enates the following bits: BLINKl, the HILIGHT,
GREEN, RED, and BLUE output bits from the
VDC, and a bit from corresponding locations on
each of the three DEB bit planes.

ShortLUT
Addresses

Programming the LUT

The DEB supports a method for you to access only
the first sixteen LUT locations. This lets you use
normal 16-color graphics without needing to man
age all of the 256 LUT locations. You invoke this
short addressing mode by a setting bit 2 in AL in
the "Set Color Palette" command.

3. Short LUT Addresses

DEB Mode Control Register
76543210

~
bit3:

(LITTLEBIT)
1= "BLOCK BITS"
0= "PASS BITS"

8-bit 4/8-bit
LUT LUT

address address
DEB v OOh

timing 7 0
bits, 6 0

•
L

IND 5 0
board 4 0 U
Output 3 0
bits, 2 0 T

DEB 1 0
video 0 0
RAM bits 0 FFh

C

R

T

5-39

Programming the LUT

4. Modes, Address Formation, & DEB Mode Control Register

8-bit
bit3 LUT

l=OFF
O=ON

DEB
timing bitsBLK1__~

BLK2_-_1111111
PAT2 ---
PAT1----

IND vid output
HI
GRN--..II-....
RED--·I
BLU

DEB
bit
planes2 _

1 _

0---

5-40

bitO
=0

	Contents
	1 System Programming Concepts
	2 MS-LINK
	3 DEBUG
	4 8086 Addressing Scheme
	5 Memory Maps Control Blocks Diskette Allocation
	6 Program File Structure and Loading
	7 System Calls
	8 ROM BIOS Service Routines
	9 MS-DOS Device Drivers
	Index
	Supplement: The Display Enhancement Board
	Table of Contents
	1 DEB Capabilities
	2 Programming Tips
	3 How to Program the DEB
	4 Interrupt 10H Functions
	5 Programming the LUT

