

©1986, 1985 AT&T
All Rights Reserved
Printed in USA

NOTICE

The information in this document is subject to change without
notice. AT&T assumes no responsibility for any errors that may
appear in this document.

DEC, PDP and VAX are trademarks of Digital Equipment Corporation.

HYPERchannel is a trademark of Network Systems Corporation.

Ethernet is a trademark of Xerox Corporation.

IBM is a trademark of International Business Machines, Inc.

CONTENTS

Chapter 1. INTRODUCTION

Chapter 2. C LANGUAGE

Chapter 3. C LIBRARIES

Chapter 4. THE OBJECT AND MATH
LIBRARIES

Chapter 5. COMPILER AND C
LANGUAGE

Chapter 6. A C PROGRAM CHECKER-
"lint"

Chapter 7. SYMBOLIC DEBUGGING
PROGRAM-"sdb"

Chapter 8. UNIX SYSTEM ASSEMBLER
GUIDE FOR UNIX PC

Chapter 9. THE "curses" PACKAGE

Chapter 10. USING SHELL COMMANDS

Chapter 11. SHELL PROGRAMMING

Chapter 12. EXAMPLES OF SHELL
PROCEDURES

Chapter 13. A PROGRAM FOR
MAINTAINING COMPUTER
PROGRAMS-"make"

- 1 -

Chapter 14. SOURCE CODE CONTROL
SYSTEM USER GUIDE

Chapter 15. THE "m4" MACRO
PROCESSOR

Chapter 16. THE "awk" PROGRAMMING
LANGUAGE

Chapter 17. THE LINK EDITOR

Chapter 18. THE COMMON OBJECT FILE
FORMAT

Chapter 19. ARBITRARY PRECISION
DESK CALCULATOR
LANGUAGE-"bc"

Chapter 20. INTERACTIVE DESK
CALCULATOR-"dc"

Chapter 21. LEXICAL ANALYZER
GENERA TOR-"lex"

Chapter 22. YET ANOTHER COMPILER-
COMPILER-"yacc"

Chapter 23. UNIX SYSTEM TO UNIX
SYSTEM COpy -"uucp"

APPENDIX A-SYSTEM
SOFTW ARE FILE LIST

- 11 -

Chapter 1

INTRODUCTION

This AT&T UNIX* PC UNIX System V Programmer's Guide
describes:

• C Language, the main programming language available on
the UNIX system

• the shell Language available on the UNIX system

• support tools, various software tools that aid the UNIX
operating system user.

C Language, a medium-level programming language, was used
to write most of the UNIX operating system. Chapter 2
describes the C language. Chapters 3 through 7 describe the
libraries and support tools available with the UNIX system for
the benefit of the C language programmer. These chapters
contain the following:

C LANGUAGE- Chapter 2 provides a summary of the
grammar and rules of the C programming language.
Chapter 2 describes the C language as it is implemented
and supported on the UNIX PC, the PDP:j:-ll computer, and
the VAX:j:-11/780 computer. Where differences exist, these
chapters try to point out implementation-dependent details.
Wi th few exceptions, such dependencies follow directly

* Trademark of AT&T

=I: Trademarks of Digital Equipment Corporation

1-1

INTRODUCTION

from the properties of the hardware. The various compilers
are generally quite compatible.

LIBRARIES- Chapters 3 and 4 describe functions and
declarations that support the C Language and how to use
these functions. Chapter 3 describes the C Library and
Chapter 4 describes the Object File and Math Libraries.

THE "cc" COMMAND- Chapter 5 describes the
command used to compile C language programs, produce
assembly language programs, and produce executable
programs.

A C PROGRAM CHECKER "lint" - Chapter 6
describes a program that attempts to detect compile-time
bugs and non-portable features in C programs.

A SYMBOLIC DEBUGGER "sdb" - Chapter 7
describes a symbolic debugging program that is used to
debug compiled C language programs.

Chapter 8 contains a reference manual for the UNIX System
Assembler for the UNIX PC.

Chapter 9 describes the curses package that provides a
programmer with screen-oriented programming capabilities.

Chapters 10 through 12 provide information on how to use the
shell Language.

1-2

USING SHELL COMMANDS- Chapter 10 builds on
the UNIX System User Guide or the "hands-on" experience
some have acquired. It is intended for those users who
have some basic familiarity with shell but desire more
detailed information.

SHELL PROGRAMMING- Chapter 11 provides
information for programming with shell. Those users that

INTRODUCTION

intend to do shell programming should read Chapter 11 as
well as Chapter 12.

EXAMPLES OF SHELL PROCEDURES- Chapter 12
contains examples of shell programs.

It is important to note a few things about shell. The shell
functions as a:

• Command language-The shell reads command lines
entered at a terminal and interprets the lines as requests
to execute other programs.

• Programming language-The shell is a programming
language just like BASIC, COBOL, FORTRAN, and other
languages. The shell is a high-level programming language
that is easy to learn. The programs written using the shell
programming language are called shell scripts, procedures,
or commands. These programs are stored in files and
executed just like commands. The shell provides variables,
conditional constructs, and iterative constructs.

• Working environment-The shell also provides an
environment that can be tailored to an individual's or
group's needs by manipulating environment variables.

Support tools provide an added dimension to the basic UNIX
software commands. The tools described in the following
chapters enable users to fully use the capabilities of the UNIX
operating system.

A PROGRAM FOR MAINTAINING COMPUTER
PROGRAMS "make" - Chapter 13 describes a software
tool for maintaining, updating, and regenerating groups of
computer programs. The many activities of program
development and maintenance are made simpler by the
make program.

1-3

INTRODUCTION

1-4

SOURCE CODE CONTROL SYSTEM (SCCS)
USER'S GUIDE- Chapter 14 describes the collection of
SCCS programs provided under the UNIX operating
system. The SCCS programs act as a "custodian" over the
UNIX system files.

"m4" MACRO PROCESSOR- Chapter 15 describes a
general purpose macro processor that may be used as a
front end for rational Fortran, C, and other programming
languages.

"awk" PROGRAMMING LANGUAGE- Chapter 16
descri bes a software tool designed to make many common
information retrieval and text manipulation tasks easy to
state and to perform.

LINK EDITOR- Chapter 17 describes a software tool
(ld) that creates load files by combining object files,
performing relocation, and resolving internal references.

COMMON OBJECT FILE FORMAT "eoff"- Chapter
18 describes the output file produced on some UNIX
systems by the assembler and the link editor.

ARBITRARY PRECISION DESK CALCULATOR
LANGUAGE "be" - Chapter 19 describes a compiler for
doing arbitrary precision arithmetic on the UNIX operating
system.

INTERACTIVE DESK CALCULATOR "de"
Chapter 20 describes a program implemented on the UNIX

operating system to do arbitrary-precision integer
arithmetic.

LEXICAL ANALYZER GENERATOR "lex"
Chapter 21 describes a software tool that lexically

processes character input streams.

YET ANOTHER COMPILER-COMPILER "yaee"
Chapter 22 describes the yaee program. The yace

INTRODUCTION

program provides a general tool for imposing structure on
the input to a computer program.

UNIX SYSTEM TO UNIX SYSTEM COpy "uucp"
Chapter 23 describes a network that provides information

exchange (between UNIX systems) over the direct distance
dialing network.

Some examples in this guide are based on the Document
Preparation software which is available independently for the
UNIX system. Make sure that the system has Document
Preparation software available before trying any of those
examples.

Throughout this document, each reference of the form
name(N), where possibly followed by a letter, refers to entry
name In section N of the AT&T UNIX PC UNIX System V
Manual.

Normally when the system is ready for a command from a
terminal, a prompt is displayed on the terminal (# by default).
With certain commands, the system expects more than one line
of terminal input. When this is the case, a secondary prompt is
displayed (> by default). To avoid confusion with what the
system displays and what the user types, this document does
not show prompts displayed by the system unless noted
otherwise.

1-5

Chapter 2

C LANGUAGE

PAGE

LEXICAL CONVENTIONS................................ 2-1

SYNTAX NOTATION..................................... 2-6

NAMES... 2-7

OBJECTS AND LVALUES 2-9

CONVERSIONS. 2-9

EXPRESSIONS. .. 2-13

DECLARATIONS 2-26

STATEMENTS .. 2-43

EXTERNAL DEFINITIONS............................... 2-49

SCOPE RULES..................... 2-51

COMPILER CONTROL LINES. .. 2-53

IMPLICIT DECLARATIONS "............... 2-58

TYPES REVISITED .. 2-58

CONSTANT EXPRESSIONS. .. 2-64

PORTABILITY CONSIDERATIONS. .. 2-65

SYNTAX SUMMARy 2-66

Chapter 2

C LANGUAGE

LEXICAL CONVENTIONS
There are six classes of tokens-identifiers, keywords,
constants, strings, operators, and other separators. Blanks,
tabs, new-lines, and comments (collectively, "white space") as
described below are ignored except as they serve to separate
tokens. Some white space is required to separate otherwise
adjacent identifiers, keywords, and constants.

If the input stream has been parsed into tokens up to a given
character, the next token is taken to include the longest string
of characters which could possibly constitute a token.

Comments

The characters 1* introduce a comment which terminates with
the characters *1. Comments do not nest.

Identifiers (Names)

An identifier is a sequence of letters and digits. The first
character must be a letter. The underscore (_) counts as a
letter. Uppercase and lowercase letters are different. Although
there is no limit on the length of a name, only initial characters
are significant: at least eight characters of a non-external
name, and perhaps fewer for external names. Moreover, some
implementations may collapse case distinctions for external
names. The external name sizes include:

2·1

C LANGUAGE

PDP-11
VAX-11
AT&T 3B20
AT&T UNIX PC

Keywords

7 characters, 2 cases
>100 characters, 2 cases
>100 characters, 2 cases
>100 characters, 2 cases

The following identifiers are reserved for use as keywords and
may not be used otherwise:

auto do goto short typedef
break double if signed union
case else int sizeof unsigned
char enum long static void
const external register struct volatile
continue float return switch while
default for

This implementation reserves the word asm.

Constants

There are several kinds of constants. Each has a type; an
introduction to types is given in "NAMES." Hardware
characteristics that affect sizes are summarized in "Hardware
Characteristics" under "LEXICAL CONVENTIONS."

Integer Constants

An integer constant consisting of a sequence of digits is taken
to be octal if it begins with 0 (digit zero). An octal constant
consists of the digits 0 through 7 only. A sequence of digits
preceded by Ox or OX (digit zero) is taken to be a hexadecimal
integer. The hexadecimal digits include a or A through f or F
with values 10 through 15. Otherwise, the integer constant is
taken to be decimal. A decimal constant whose value exceeds
the largest signed machine integer is taken to be long; an octal
or hex constant which exceeds the largest unsigned machine

2-2

C LANGUAGE

integer is likewise taken to be long. Otherwise, integer
constants are into

Explicit Long Constants

A decimal, octal, or hexadecimal integer constant immediately
followed by I (letter ell) or L is a long constant. As discussed
below, on some machines integer and long values may be
considered identical.

Character Constants

A character constant is a character enclosed in single quotes, as
in 'x'. The value of a character constant is the numerical value
of the character in the machine's character set.

Certain nongraphic characters, the single quote (') and the
backslash (\), may be represented according to the following
table of escape sequences:

escape ESC \e
new-line NL (LF) \n
horizontal tab HT \t
vertical tab VT \v
backspace BS \b
carriage return CR \r
form feed FF \f
backs lash \ \\

single quote \'
bit pattern ddd \ddd
double quote " \"

The escape \ddd consists of the backslash followed by 1, 2, or 3
octal digits which are taken to specify the value of the desired
character. A special case of this construction is \0 (not
followed by a digit), which indicates the character NUL. If the
character following a backslash is not one of those specified,
the behavior is undefined. A new-line character is illegal in a

2-3

C LANGUAGE

character constant. The type of a character constant is into

Floating Constants

A floating constant consists of an integer part, a decimal point,
a fraction part, an e or E, and an optionally signed integer
exponent. The integer and fraction parts both consist of a
sequence of digits. Either the integer part or the fraction part
(not both) may be missing. Either the decimal point or the e
and the exponent (not both) may be missing.

Enumeration Constants

Names declared as enumerators (see "Structure, Union, and
Enumeration Declarations" under "DECLARATIONS") have
type into

Strings

A string is a sequence of characters surrounded by double
quotes, as in " ... ". A string has type "array of char" and
storage class static (see "NAMES") and is initialized with the
given characters. The compiler places a null byte (\0) at the
end of each string so that programs which scan the string can
find its end. In a string, the double quote character (") must
be preceded by a \; in addition, the same escapes as described
for character constants may be used.

A \ and the immediately following new-line are ignored. All
strings, even when written identically, are distinct.

Hardware Characteristics

The following figures summarize certain hardware properties
that vary from machine to machine.

2-4

DEC PDP-11
(ASCII)

char 8 bits
int 16
short 16
long 32
float 32
double 64

float range ±10
±38

double range ±10
±38

Figure 2-1. DEC PDP-11 HARDWARE
CHARACTERISTICS

DEC VAX-11
(ASCII)

char 8 bits
int 32
short 16
long 32
float 32
double 64

float range ±10
±38

double range ±10
±38

Figure 2-2. DEC VAX-11 HARDWARE
CHARACTERISTICS

C LANGUAGE

2-5

CLANGUAGE

AT&T UNIX PC
AT&T 3B

(ASCII)

char 8 bits
int 32
short 16
long 32
float 32
double 64

float range ±10
±38

double range ±10
±308

Figure 2-3. AT&T UNIX PC/3B HARDWARE
CHARACTERISTICS

SYNTAX NOTATION
Syntactic categories are indicated by italic type and literal
words and characters in bold type. Alternative categories are
listed on separate lines. An optional terminal or nonterminal
symbol is indicated by the subscript "opt," so that

{expression t} op

indicates an optional expression enclosed in braces. The syntax
is summarized in "SYNTAX SUMMARY".

2-6

C LANGUAGE

NAMES

The C language bases the interpretation of an identifier upon
two attributes of the identifier-its storage class and its type.
The storage class determines the location and lifetime of the
storage associated with an identifier; the type determines the
meaning of the values found in the identifier's storage.

Storage Class

There are four declarable storage classes:

• Automatic
• Static
• External
• Register.

Automatic variables are local to each invocation of a block (see
"Compound Statement or Block" in "STATEMENTS") and are
discarded upon exit from the block. Static variables are local to
a block but retain their values upon reentry to a block even
after control has left the block. External variables exist and
retain their values throughout the execution of the entire
program and may be used for communication between
functions, even separately compiled functions. Register
variables are (if possible) stored in the fast registers of the
machine; like automatic variables, they are local to each block
and disappear on exit from the block.

Type

The C language supports several fundamental types of objects.
Objects declared as characters (char) are large enough to store
any member of the implementation's character set. If a
genuine character from that character set is stored in a char
variable, its value is equivalent to the integer code for that
character. Other quantities may be stored into character
variables, but the implementation is machine dependent. In
particular, char may be signed or unsigned by default.

2-7

C LANGUAGE

Up to three sizes of integer, declared short int, int, and long
int, are available. Longer integers provide no less storage than
shorter ones, but the implementation may make either short
integers or long integers, or both, equivalent to plain integers.
"Plain" integers have the natural size suggested by the host
machine architecture. The other sizes are provided to meet
special needs.

The properties of enum types (see "Structure, Union, and
Enumeration Declarations" under "DECLARATIONS") are
identical to those of some integer types. The implementation
may use the range of values to determine how to allot storage.

Unsigned integers, declared unsigned, obey the laws of
arithmetic modulo 2

n
where n is the number of bits in the

representation. (On the PDP-II, unsigned long quantities are
not supported.)

Single-precision floating point (float) and double precision
floating point (double) may be synonymous in some
implementations.

Because objects of the foregoing types can usefully be
interpreted as numbers, they will be referred to as arithmetic
types. Char, int of all sizes whether unsigned or not, and
enum will collectively be called integral types. The float and
double types will collectively be called floating types.

The void type specifies an empty set of values. It is used as
the type returned by functions that generate no value.

Besides the fundamental arithmetic types, there is a
conceptually infinite class of derived types constructed from the
fundamental types in the following ways:

• Arrays of objects of most types
• Functions which return objects of a given type

2-8

C LANGUAGE

• Pointers to objects of a given type
• Structures containing a sequence of objects of various

types
• Unions capable of containing anyone of several objects

of various types.

In general these methods of constructing objects can be applied
recursively.

OBJECTS AND LVALUES
An object is a manipulatable region of storage. An lvalue is an
expression referring to an object. An obvious example of an
lvalue expression is an identifier. There are operators which
yield lvalues: for example, if E is an expression of pointer type,
then *E is an lvalue expression referring to the object to which
E points. The name "lvalue" coines from the assignment
expression El = E2 in which the left operand El must be an
lvalue expression. The discussion of each operator below
indicates whether it expects lvalue operands and whether it
yields an lvalue.

CONVERSIONS
A number of operators may, depending on their operands, cause
conversion of the value of an operand from one type to another.
This part explains the result to be expected from such
conversions. The conversions demanded by most ordinary
operators are summarized under "Arithmetic Conversions."
The summary will be supplemented as required by the
discussion of each operator.

2-9

C LANGUAGE

Characters and Integers

A character or a short integer may be used wherever an integer
may be used. In all cases the value is converted to an integer.
Conversion of a shorter integer to a longer preserves sign.
Whether or not sign-extension occurs for characters is machine
dependent, but it is guaranteed that a member of the standard
character set is non-negative. Of the machines treated here,
only the PDP-II, VAX-II, and UNIX PC sign-extend. On these
machines, char variables range in value from -128 to 127. The
more explicit type unsigned char forces the values to range
from 0 to 255.

On machines that treat characters as signed, the characters of
the ASCII set are all non-negative. However, a character
constant specified with an octal escape suffers sign extension
and may appear negative; for example, \377' has the value -1.

When a longer integer is converted to a shorter integer or to a
char, it is truncated on the left. Excess bits are simply
discarded.

Float and Double

All floating arithmetic in C is carried out in double precision.
Whenever a float appears in an expression it is lengthened to
double by zero padding its fraction. When a double must be
converted to float, for example by an assignment, the double
is rounded before truncation to float length. This result is
undefined if it cannot be represented as a float.

Floating and Integral

Conversions of floating values to integral type are rather
machine dependent. In particular, the direction of truncation
of negative numbers varies. The result is undefined if it will
not fit in the space provided. Positive and negative floating
point values are truncated to their integer portions.

2-10

C LANGUAGE

1 . 1 ->

1 .9 ->

-1 .1 -> -1
-1 .9 -> -1

Conversions of integral values to floating type are well behaved.
Some loss of accuracy occurs if the destination lacks sufficient
bits.

Pointers and Integers

An expression of integral type may be added to or subtracted
from a pointer; in such a case, the first is converted as specified
in the discussion of the addition operator. Two pointers to
objects of the same type may be subtracted; in this case, the
result is converted to an integer as specified in the discussion of
the subtraction operator.

Unsigned

Whenever an unsigned integer and a plain integer are
combined, the plain integer is converted to unsigned and the
result is unsigned. The value is the least unsigned integer
congruent to the signed integer (modulo 2wordsize). In a 2's
complement representation, this conversion is conceptual; and
there is no actual change in the bit pattern.

When an unsigned short integer is converted to long, the
value of the result is the same numerically as that of the
unsigned integer. Thus the conversion amounts to padding with
zeros on the left.

2-11

CLANGUAGE

Arithmetic Conversions

A great many operators cause conversions and yield result
types in a similar way. This pattern will be called the "usual
ari thmetic con versions."

1. First, any operands of type char or short are converted
to int, and any operands of type unsigned char or
unsigned short are converted to unsigned into

2. Then, if either operand is double, the other is converted
to double and that is the type of the result.

3. Otherwise, if either operand is float, the other is
converted to float and that is the type of the result.

4. Otherwise, if either operand is unsigned long, the other
is converted to unsigned long and that is the type of
the result.

5. Otherwise, if either operand is long, the other is
converted to long and that is the type of the result.

6. Otherwise, if one operand is long, and the other is
unsigned int, they are both converted to unsigned
long and that is the type of the result.

7. Otherwise, if either operand is unsigned, the other is
converted to unsigned and that is the type of the result.

8. Otherwise, both operands must be int, and that is the
type of the result.

Void

The (nonexistent) value of a void object may not be used in
any way, and neither explicit nor implicit conversion may be
applied. Because a void expression denotes a nonexistent value,
such an expression may be used only as an expression
statement (see "Expression Statement" under

2-12

C LANGUAGE

"STA TEMENTS") or as the left operand of a comma expression
(see "Comma Operator" under "EXPRESSIONS").

An expression may be converted to type void by use of a cast.
For example, this makes explicit the discarding of the value of
a function call used as an expression statement.

EXPRESSIONS

The precedence of expression operators is the same as the order
of the major subsections of this section, highest precedence
first. Thus, for example, the expressions referred to as the
operands of + (see "Additive Operators") are those expressions
defined under "Primary Expressions", "Unary Operators", and
"Multiplicative Operators". Within each subpart, the operators
have the same precedence. Left- or right-associativity is
specified in each subsection for the operators discussed therein.
The precedence and associativity of all the expression operators
are summarized in the grammar of "SYNTAX SUMMARY".

Otherwise, the order of evaluation of expressions is undefined.
In particular, the compiler considers itself free to compute
subexpressions in the order it believes most efficient even if the
subexpressions involve side effects. The order in which
subexpression evaluation takes place is unspecified.
Expressions involving a commutative and associative operator
(*, +, &, I, ~) may be rearranged arbitrarily even in the
presence of parentheses; to force a particular order of
evaluation, an explicit temporary must be used.

The handling of overflow and divide check in expression
evaluation is undefined. Most existing implementations of C
ignore integer overflows; treatment of division by 0 and all
floating-point exceptions varies between machines and is
usually adjustable by a library function.

2-13

C LANGUAGE

Primary Expressions

Primary expressions involving ., ->, subscripting, and function
calls group left to right.

primary-expression:
identifier
constant
string
(expression)
primary-expression [expression]
primary-expression (expression-list t)
primary-expression . identifier op
primary-expression -> identifier

expression-list:
expression
expression-list , expression

An identifier is a primary expression provided it has been
suitably declared as discussed below. Its type is specified by its
declaration. If the type of the identifier is "array of ... ", then
the value of the identifier expression is a pointer to the first
object in the array; and the type of the expression is "pointer to
... ". Moreover, an array identifier is not an lvalue expression.
Likewise, an identifier which is declared "function returning
... ", when used except in the function-name position of a call, is
converted to "pointer to function returning ... ".

A constant is a primary expression. Its type may be int, long,
or double depending on its form. Character constants have
type int and floating constants have type double.

A string is a primary expression. Its type is originally "array
of char", but following the same rule given above for
identifiers, this is modified to "pointer to char" and the result
is a pointer to the first character in the string. (There is an
exception in certain initializers; see "Initialization" under

2-14

C LANGUAGE

"DECLARATIONS.")

A parenthesized expression is a primary expression whose type
and value are identical to those of the unadorned expression.
The presence of parentheses does not affect whether the
expression is an Ivalue.

A primary expression followed by an expression in square
brackets is a primary expression. The intuitive meaning is that
of a subscript. Usually, the primary expression has type
"pointer to ... ", the subscript expression is int, and the type of
the result is " ... ". The expression El[E2] is identical (by
definition) to *«El)+(E2». All the clues needed to
understand this notation are contained in this subpart together
with the discussions in "Unary Operators" and "Additive
Operators" on identifiers, * and +, respectively. The
implications are summarized under "Arrays, Pointers, and
Subscripting" under "TYPES REVISITED."

A function call is a primary expression followed by parentheses
containing a possibly empty, comma-separated list of
expressions which constitute the actual arguments to the
function. The primary expression must be of type "function
returning ... ," and the result of the function call is of type
" ... ". As indicated below, a hitherto unseen identifier followed
immediately by a left parenthesis is contextually declared to
represent a function returning an integer; thus in the most
common case, integer-valued functions need not be declared.

Any actual arguments of type float are converted to double
before the call. Any of type char or short are converted to
into Array names are converted to pointers. No other
conversions are performed automatically; in particular, the
compiler does not compare the types of actual arguments with
those of formal arguments. If conversion is needed, use a cast;
see "Unary Operators" and "Type Names" under
"DECLARATIONS."

2-15

C LANGUAGE

In preparing for the call to a function, a copy is made of each
actual parameter. Thus, all argument passing in C is strictly
by value. A function may change the values of its formal
parameters, but these changes cannot affect the values of the
actual parameters. It is possible to pass a pointer on the
understanding that the function may change the value of the
object to which the pointer points. An array name is a pointer
expression. The order of evaluation of arguments is undefined
by the language; take note that the various compilers differ.
Recursive calls to any function are permitted.

A primary expression followed by a dot followed by an
identifier is an expression. The first expression must be a
structure or a union, and the identifier must name a member of
the structure or union. The value is the named member of the
structure or union, and it is an lvalue if the first expression is
an lvalue.

A primary expression followed by an arrow (built from - and
» followed by an identifier is an expression. The first
expression must be a pointer to a structure or a union and the
identifier must name a member of that structure or union. The
result is an lvalue referring to the named member of the
structure or union to which the pointer expression points. Thus
the expression El->MOS is the same as (*El).MOS.
Structures and unions are discussed in "Structure, Union, and
Enumeration Declarations" under "DECLARATIONS."

Unary Operators

Expressions with unary operators group right to left.

2-16

unary-expression:
* expression
& lvalue
- expression
! expression

expression
++ lvalue
--lvalue
lvalue ++
lvalue --
(type-name) expression
sizeof expression
sizeof (type-name)

C LANGUAGE

The unary * operator means indirection; the expression must
be a pointer, and the result is an lvalue referring to the object
to which the expression points. If the type of the expression is
"pointer to ... ," the type of the result is " ... ".

The result of the unary & operator is a pointer to the object
referred to by the lvalue. If the type of the lvalue is " ... ", the
type of the result is "pointer to ... ".

The result of the unary - operator is the negative of its
operand. The usual arithmetic conversions are performed. The
negative of an unsigned quantity is computed by subtracting its
value from 2

n where n is the number of bits in the
corresponding signed type.

There is no unary + operator.

The result of the logical negation operator! is one if the value
of its operand is zero, zero if the value of its operand is
nonzero. The type of the result is into It is applicable to any
ari thmetic type or to pointers.

The N operator yields the one's complement of its operand. The
usual arithmetic conversions are performed. The type of the

2-17

C LANGUAGE

operand must be integral.

The object referred to by the lvalue operand of prefix ++ is
incremented. The value is the new value of the operand but is
not an lvalue. The expression ++x is equivalent to x=x+ 1.
See the discussions "Additive Operators" and "Assignment
Operators" for information on conversions.

The lvalue operand of prefix -- is decremented in a similar
manner: the expression --x is equivalent to x=x-l.

When postfix ++ is applied to an lvalue, the result is the value
of the object referred to by the lvalue. After the result is
noted, the object is incremented in the same manner as for the
prefix ++ operator. The type of the result is the same as the
type of the lvalue expression.

When postfix -- is applied to an lvalue, the result is the value
of the object referred to by the lvalue. After the result is
noted, the object is decremented in the manner as for the prefix
-- operator. The type of the result is the same as the type of
the lvalue expression.

An expression preceded by the parenthesized name of a data
type causes conversion of the value of the expression to the
named type. This construction is called a cast. Type names are
described in "Type Names" under "Declarations."

The sizeof operator yields the size in bytes of its operand. (A
byte is the space required to hold a char.) When applied to an
array, the result is the total number of bytes in the array. The
size is determined from the declarations of the objects in the
expression. This expression is semantically an unsigned
constant and may be used anywhere a constant is required. Its
major use is in communication with routines like storage
allocators and 1/0 systems.

2-18

C LANGUAGE

The size of operator may also be applied to a parenthesized
type name. In that case it yields the size in bytes of an object
of the indica ted type.

The construction sizeof(type) is taken to be a unit, so the
expression sizeof(type)-2 is the same as (sizeof(type »-2.

Multiplicative Operators

The multiplicative operators *, /, and % group left to right.
The usual arithmetic conversions are performed.

multiplicative expression:
expression * expression
expression / expression
expression % expression

The binary * operator indicates multiplication. The * operator
is associative, and expressions with several multiplications at
the same level may be rearranged by the compiler. The binary
/ operator indicates division.

The binary % operator yields the remainder from the division
of the first expression by the second. The operands must be
integral.

When positive integers are divided, truncation is toward 0; but
the form of truncation is machine-dependent if either operand
is negative. On all machines covered by this manual, the
remainder has the same sign as the dividend. It is always true
that (a/b)*b + a%b is equal to a (if b is not 0).

2-19

C LANGUAGE

Additive Operators

The additive operators + and - group left to right. The usual
arithmetic conversions are performed. There are some
additional type possibilities for each operator.

additive-expression:
expression + expression
expression - expression

The result of the + operator is the sum of the operands. A
pointer to an object in an array and a value of any integral
type may be added. The latter is in all cases converted to an
address offset by multiplying it by the length of the object to
which the pointer points. The result is a pointer of the same
type as the original pointer which points to another object in
the same array, appropriately offset from the original object.
Thus if P is a pointer to an object in an array, the expression
P+ 1 is a pointer to the next object in the array. No further
type combinations are allowed for pointers.

The + operator is associative, and expressions with several
additions at the same level may be rearranged by the compiler.

The result of the - operator is the difference of the operands.
The usual arithmetic conversions are performed. Additionally,
a value of any integral type may be subtracted from a pointer,
and then the same conversions for addition apply.

If two pointers to objects of the same type are subtracted, the
result is converted (by division by the length of the object) to
an int representing the number of objects separating the
pointed-to objects. This conversion will in general give
unexpected results unless the pointers point to objects in the
same array, since pointers, even to objects of the same type, do
not necessarily differ by a multiple of the object length.

2-20

C LANGUAGE

Shift Operators

The shift operators « and » group left to right. Both
perform the usual arithmetic conversions on their operands,
each of which must be integral. Then the right operand is
converted to int; the type of the result is that of the left
operand. The result is undefined if the right operand is
negative or greater than or equal to the length of the object in
bits.

shift-expression:
expression < < expression
expression> > expression

The value of El«E2 is El (interpreted as a bit pattern) left
shifted E2 bits. Vacated bits are 0 filled. The value of
El»E2 is El right-shifted E2 bit positions. The right shift
is guaranteed to be logical (0 fill) if E1 is unsigned; otherwise,
it may be arithmetic.

Relational Operators

The relational operators group left to right.

relational-expression:
expression < expression
expression > expression
expression <= expression
expression >= expression

The operators < (less than), > (greater than), <= (less than or
equal to), and >= (greater than or equal to) all yield 0 if the
specified relation is false and 1 if it is true. The type of the
result is into The usual arithmetic conversions are performed.
Two pointers may be compared; the result depends on the
relative locations in the address space of the pointed-to objects.
Pointer comparison is portable only when the pointers point to
objects in the same array.

2-21

C LANGUAGE

Equality Operators

equality-expression:
expression == expression
expression 1= expression

The == (equal to) and the != (not equal to) operators are
exactly analogous to the relational operators except for their
lower precedence. (Thus a<b == c<d is 1 whenever a<b and
c<d have the same truth value).

A pointer may be compared to an integer only if the integer is
the constant O. A pointer to which 0 has been assigned is
guaranteed not to point to any object and will appear to be
equal to o. In conventional usage, such a pointer is considered
to be null.

Bitwise AND Operator

and-expression:
expression & expression

The & operator is associative, and expressions involving & may
be rearranged. The usual arithmetic conversions are
performed. The result is the bitwise AND function of the
operands. The operator applies only to integral operands.

Bitwise Exclusive OR Operator

exclusive-or-expression:
expression expression

The A operator is associative, and expressions involving A may
be rearranged. The usual arithmetic conversions are
performed; the result is the bitwise exclusive OR function of the

2-22

C LANGUAGE

operands. The operator applies only to integral operands.

Bitwise Inclusive OR Operator

inclusive-or-expression:
expression I expression

The I operator is associative, and expressions involving I may
be rearranged. The usual arithmetic conversions are
performed; the result is the bitwise inclusive OR function of its
operands. The operator applies only to integral operands.

Logical AND Operator

logical-and-expression:
expression && expression

The && operator groups left to right. It returns 1 if both its
operands evaluate to nonzero, 0 otherwise. Unlike &, &&
guarantees left to right evaluation; moreover, the second
operand is not evaluated if the first operand is O.

The operands need not have the same type, but each must have
one of the fundamental types or be a pointer. The result is
always into

Logical OR Operator

logical-or-expression:
expression I I expression

The I I operator groups left to right. It returns 1 if either of
its operands evaluate to nonzero, 0 otherwise. Unlike I, I I
guarantees left to right evaluation; moreover, the second

2-23

C LANGUAGE

operand is not evaluated if the value of the first operand is
nonzero.

The operands need not have the same type, but each must have
one of the fundamental types or be a pointer. The result is
always into

Conditional Operator

conditional-expression:
expression ? expression : expression

Conditional expressions group right to left. The first
expression is evaluated; and if it is nonzero, the result is the
value of the second expression, otherwise that of third
expression. If possible, the usual arithmetic conversions are
performed to bring the second and third expressions to a
common type. If both are structures or unions of the same
type, the result has the type of the structure or union. If both
pointers are of the same type, the result has the common type.
Otherwise, one must be a pointer and the other the constant 0,
and the result has the type of the pointer. Only one of the
second and third expressions is evaluated.

Assignment Operators

There are a number of assignment operators, all of which group
right to left. All require an lvalue as their left operand, and
the type of an assignment expression is that of its left operand.
The value is the value stored in the left operand after the
assignment has taken place. The two parts of a compound
assignment operator are separate tokens.

2-24

assignment-expression:
lvalue = expression
lvalue + = expression
lvalue -= expression
lvalue *= expression
lvalue /= expression
lvalue %= expression
lvalue > > = expression
lvalue < <= expression
lvalue &= expression
lvalue ~ = expression
lvalue I = expression

C LANGUAGE

In the simple assignment with =, the value of the expression
replaces that of the object referred to by the lvalue. If both
operands have arithmetic type, the right operand is converted
to the type of the left preparatory to the assignment. Second,
both operands may be structures or unions of the same type.
Finally, if the left operand is a pointer, the right operand must
in general be a pointer of the same type. However, the
constant 0 may be assigned to a pointer; it is guaranteed that
this value will produce a null pointer distinguishable from a
pointer to any object.

The behavior of an expression of the form El op = E2 may be
inferred by taking it as equivalent to El = El op (E2);
however, El is evaluated only once. In += and -=, the left
operand may be a pointer; in which case, the (integral) right
operand is converted as explained in "Additive Operators." All
right operands and all nonpointer left operands must have
arithmetic type.

Comma Operator

comma-expression:
expression , expression

2-25

C LANGUAGE

A pair of expressions separated by a comma is evaluated left to
right, and the value of the left expression is discarded. The
type and value of the result are the type and value of the right
operand. This operator groups left to right. In contexts where
comma is given a special meaning, e.g., in lists of actual
arguments to functions (see "Primary Expressions") and lists of
initializers (see "Initialization" under "DECLARATIONS"), the
comma operator as described in this subpart can only appear in
parentheses. For example,

f(a, (t=3, t+2), c)

has three arguments, the second of which has the value 5.

DECLARATIONS
Declarations are used to specify the interpretation which C
gives to each identifier; they do not necessarily reserve storage
associated with the identifier. Declarations have the form

declaration:
decl-specifiers declarator-list t; op

The declarators in the declarator-list contain the identifiers
being declared. The decl-specifiers consist of a sequence of type
and storage class specifiers.

decl-specifiers:
type-specifier decl-specifiers t
sc-specifier decl-specifiers tOP

op

The list must be self-consistent in a way described below.

2-26

Storage Class Specifiers

The sc-specifiers are:

sc-specijier:
auto
static
extern
register
typedef

C LANGUAGE

The typedef specifier does not reserve storage and is called a
"storage class specifier" only for syntactic convenience. See
"Typedef" for more information. The meanings of the various
storage classes were discussed in "Names."

The auto, static, and register declarations also serve as
definitions in that they cause an appropriate amount of storage
to be reserved. In the extern case, there must be an external
definition (see "External Definitions") for the given identifiers
somewhere outside the function in which they are declared.

A register declaration is best thought of as an auto
declaration, together with a hint to the compiler that the
variables declared will be heavily used. Only the first few such
declarations in each function are effective. Moreover, only
variables of certain types will be stored in registers; on the
PDP-II, they are int or pointer. One other restriction applies
to register variables: the address-of operator & cannot be
applied to them. Smaller, faster programs can be expected if
register declarations are used appropriately, but future
improvements In code generation may render them
unnecessary.

At most, one sc-specifier may be given in a declaration. If the
sc-specifier is missing from a declaration, it is taken to be auto
inside a function, extern outside. Exception: functions are
never automatic.

2-27

C LANGUAGE

Type Specifiers

The type-specifiers are

type-specifier:
struct-or-union-specijier
typedef-name
enum-specijier

basic-type-specifier:
basic-type
basic-type basic-type-specifiers

basic-type:
char
short
int
long
unsigned
float
double
void

At most one of the words long or short may be specified in
conjunction with int; the meaning is the same as if int were
not mentioned. The word long may be specified in conjunction
with float; the meaning is the same as double. The word
unsigned may be specified alone, or in conjunction with int or
any of its short or long varieties, or with char.

Otherwise, at most one type-specifier may be given in a
declaration. In particular, adjectival use of long, short, or
unsigned is not permitted with typedef names. If the type
specifier is missing from a declaration, it is taken to be into

Specifiers for structures, unions, and enumerations are
discussed in "Structure, Union, and Enumeration Declarations."
Declarations with typedef names are discussed in "Typedef."

2-28

C LANGUAGE

Declarators

The declarator-list appearing in a declaration is a comma
separated sequence of declarators, each of which may have an
ini tializer.

declarator-list:
init-declarator
init-declarator, declarator-list

init-declarator:
declarator initializer t op

Initializers are discussed in "Initialization". The specifiers in
the declaration indicate the type and storage class of the
objects to which the declarators refer. Declarators have the
syntax:

declarator:
identifier
(declarator)
* declarator
declarator ()
declarator [constant-expression t J op

The grouping is the same as in expressions .

. Meaning of Declarators

Each declarator is taken to be an assertion that when a
construction of the same form as the declarator appears in an
expression, it yields an object of the indicated type and storage
class.

Each declarator contains exactly one identifier; it is this
identifier that is declared. If an unadorned identifier appears
as a declarator, then it has the type indicated by the specifier

2-29

C LANGUAGE

heading the declaration.

A declarator in parentheses is identical to the unadorned
declarator, but the binding of complex declarators may be
altered by parentheses. See the examples below.

Now imagine a declaration

TDl

where T is a type-specifier (like int, etc.) and Dl is a
declarator. Suppose this declaration makes the identifier have
type" ... T ," where the" ... " is empty if Dl is just a plain
identifier (so that the type of x in 'int x" is just int). Then if
D 1 has the form

*D

the type of the contained identifier is " ... pointer to T ."

If D 1 has the form

DO

then the contained identifier has the type "
returning T."

If D 1 has the form

D[constant-expression]

or

2-30

function

C LANGUAGE

D[]

then the contained identifier has type" ... array of T." In the
first case, the constant expression is an expression whose value
is determinable at compile time, whose type is int, and whose
value is positive. (Constant expressions are defined precisely in
"Constant Expressions.") When several "array of"
specifications are adjacent, a multidimensional array is created;
the constant expressions which specify the bounds of the arrays
may be missing only for the first member of the sequence. This
elision is useful when the array is external and the actual
definition, which allocates storage, is given elsewhere. The first
constant expression may also be omitted when the declarator is
followed by initialization. In this case the size is calculated
from the number of initial elements supplied.

An array may be constructed from one of the basic types, from
a pointer, from a structure or union, or from another array (to
generate a multidimensional array).

Not all the possibilities allowed by the syntax above are
actually permitted. The restrictions are as follows: functions
may not return arrays or functions although they may return
pointers; there are no arrays of functions although there may
be arrays of pointers to functions. Likewise, a structure or
union may not contain a function; but it may contain a pointer
to a function.

As an example, the declaration

int i, *ip, fO, *fipO, (*pfi)O;

declares an integer i, a pointer ip to an integer, a function f
returning an integer, a function fip returning a pointer to an
integer, and a pointer pfi to a function which returns an
integer. It is especially useful to compare the last two. The
binding of *fipO is *(fipO). The declaration suggests, and the

2-31

C LANGUAGE

same construction in an expression requires, the calling of a
function fip. Using indirection through the (pointer) result to
yield an integer. In the declarator (*pfi)O, the extra
parentheses are necessary, as they are also in an expression, to
indicate that indirection through a pointer to a function yields
a function, which is then called; it returns an integer.

As another example,

float fa[17], *afp[17];

declares an array of float numbers and an array of pointers to
float numbers. Finally,

static int x3d[3][5][7];

declares a static 3-dimensional array of integers, with rank
3x5x7. In complete detail, x3d is an array of three items; each
item is an array of five arrays; each of the latter arrays is an
array of seven integers. Any of the expressions x3d, x3d[i],
x3d[i][j], x3d[i][j][k] may reasonably appear in an expression.
The first three have type "array" and the last has type into

Structure and Union Declarations

A structure is an object consisting of a sequence of named
members. Each member may have any type. A union is an
object which may, at a given time, contain anyone of several
members. Structure and union specifiers have the same form.

struct-or-union-specifier:

2-32

struct-or-union { struct-decl-list }
struct-or-union identifier { struct-decl-list }
struct-or-union identifier

struct-or-union:
struct
union

C LANGUAGE

The struct-decl-list is a sequence of declarations for the
members of the structure or union:

struct-decl-l ist:
struct-declaration
struct-declaration struct-decl-list

struct-declaration:
type-specifier struct-declarator-list ,.

struct-declarator-list:
struct-declarator
struct-declarator , struct-declarator-list

In the usual case, a struct-declarator is just a declarator for a
member of a structure or union. A structure member may also
consist of a specified number of bits. Such a member is also
called a field,. its length, a non-negative constant expression, is
set off from the field name by a colon.

struct-declarator:
declarator
declarator: constant-expression
: constant-expression

Within a structure, the objects declared have addresses which
increase as the declarations are read left to right. Each
nonfield member of a structure begins on an addressing
boundary appropriate to its type; therefore, there may be
unnamed holes in a structure. Field members are packed into
machine integers; they do not straddle words. A field which
does not fit into the space remaining in a word is put into the
next word. No field may be wider than a word.

2-33

C LANGUAGE

Fields are assigned right to left on the PDP-II and VAX-II,
left to right on the 3B20.

A struct-declarator with no declarator, only a colon and a
width, indicates an unnamed field useful for padding to
conform to externally-imposed layouts. As a special case, a
field with a width of 0 specifies alignment of the next field at
an implementation dependent boundary.

The language does not restrict the types of things that are
declared as fields, but implementations are not required to
support any but integer fields. Moreover, even int fields may
be considered to be unsigned. On the UNIX PC and PDP-II,
fields are not signed and have only integer values; on the
VAX-II, fields declared with int are treated as containing a
sign. For these reasons, it is strongly recommended that fields
be declared as unsigned. In all implementations, there are no
arrays of fields, and the address-of operator & may not be
applied to them, so that there are no pointers to fields.

A union may be thought of as a structure all of whose members
begin at offset 0 and whose size is sufficient to contain any of
its members. At most, one of the members can be stored in a
union at any time.

A structure or union specifier of the second form, that is, one of

struct identifier { struct-decl-list }
union identifier { struct-decl-list }

declares the identifier to be the structure tag (or union tag) of
the structure specified by the list. A subsequent declaration
may then use the third form of specifier, one of

2-34

struct identifier
union identifier

C LANGUAGE

Structure tags allow definition of self-referential structures.
Structure tags also permit the long part of the declaration to be
given once and used several times. It is illegal to declare a
structure or union which contains an instance of itself, but a
structure or union may contain a pointer to an instance of
itself.

The third form of a structure or union specifier may be used
prior to a declaration which gives the complete specification of
the structure or union in situations in which the size of the
structure or union is unnecessary. The size is unnecessary in
two situations: when a pointer to a structure or union is being
declared and when a typedef name is declared to be a
synonym for a structure or union. This, for example, allows the
declaration of a pair of structures which contain pointers to
each other.

The names of members and tags do not conflict with each other
or with ordinary variables. A particular name may not be used
twice in the same structure, but the same name may be used in
several different structures in the same scope.

A simple but important example of a structure declaration IS

the following binary tree structure:

struct tnode
{

};

char tword[20];
int count;
struct tnode *left;
struct tnode *right;

which contains an array of 20 characters, an integer, and two
pointers to similar structures. Once this declaration has been
given, the declaration

2-35

C LANGUAGE

struct tnode s, *sp;

declares s to be a structure of the given sort and sp to be a
pointer to a structure of the given sort. With these
declarations, the expression

sp->count

refers to the count field of the structure to which sp points;

s.left

refers to the left subtree pointer of the structure s; and

s.right->tword[O]

refers to the first character of the tword member of the right
subtree of s.

Enumeration Declarations

Enumeration variables and constants have integral type.

enum-specifier:
enum { enum-list }
enum identifier { enum-list }
enum identifier

enum-list:
enumerator
enum-list , enumerator

enumerator:
identifier
identifier = constant-expression

2-36

C LANGUAGE

The identifiers in an enum-list are declared as constants and
may appear wherever constants are required. If no
enumerators with appear, then the values of the
corresponding constants begin at ° and increase by 1 as the
declaration is read from left to right. An enumerator with =
gives the associated identifier the value indicated; subsequent
identifiers continue the progression from the assigned value.

The names of enumerators in the same scope must all be
distinct from each other and from those of ordinary variables.

The role of the identifier in the enum-specifier is entirely
analogous to that of the structure tag in a struct-specifier; it
names a particular enumeration. For example,

enum color { green, burgundy, claret=20, wined ark };

enum color *cp, col;

col = claret;
cp = &col;

if (*cp == burgundy) ...

makes color the enumeration-tag of a type describing various
colors, and then declares cp as a pointer to an object of that
type, and col as an object of that type. The possible values are
drawn from the set {O,1,20,21}.

Initialization

A declarator may specify an initial value for the identifier
being declared. The initializer is preceded by = and consists of
an expression or a list of values nested in braces.

2-37

CLANGUAGE

initializer:
= expression
= { initializer-list }
= { initializer-list , }

initializer-list:
expression
initializer-list , initializer-list
{ initializer-list }
{ initializer-list , }

All the expressions in an initializer for a static or external
variable must be constant expressions, which are described in
"CONSTANT EXPRESSIONS", or expressions which reduce to
the address of a previously declared variable, possibly offset by
a constant expression. Automatic or register variables may be
initialized by arbitrary expressions involving constants and
previously declared variables and functions.

Static and external variables that are not initialized are
guaranteed to start off as zero. Automatic and register
variables that are not initialized are guaranteed to start off as
garbage.

When an initializer applies to a scalar (a pointer or an object of
arithmetic type), it consists of a single expression, perhaps in
braces. The initial value of the object is taken from the
expression; the same conversions as for assignment are
performed.

When the declared variable is an aggregate (a structure or
array), the initializer consists of a brace-enclosed, comma
separated list of initializers for the members of the aggregate
written in increasing subscript or member order. If the
aggregate contains subaggregates, this rule applies recursively
to the members of the aggregate. If there are fewer initializers
in the list than there are members of the aggregate, then the
aggregate is padded with zeros. It is not permitted to initialize

2-38

C LANGUAGE

unions or automatic aggregates.

Braces may in some cases be omitted. If the initializer begins
with a left brace, then the succeeding comma-separated list of
initializers initializes the members of the aggregate; it is
erroneous for there to be more initializers than members. If,
however, the initializer does not begin with a left brace, then
only enough elements from the list are taken to account for the
members of the aggregate; any remaining members are left to
initialize the next member of the aggregate of which the
current aggregate is a part.

A final abbreviation allows a char array to be initialized by a
string. In this case successive characters of the string initialize
the members of the array.

For example,

int x[] = { I, 3, 5 };

declares and initializes x as a one-dimensional array which has
three members, since no size was specified and there are three
ini tializers.

float y[4][3] =
{

};

{ I, 3, 5 },
{ 2, 4, 6 },
{ 3, 5, 7 },

is a completely-bracketed initialization: 1, 3, and 5 initialize the
first row of the array y[O], namely y[O][O], y[O][I], and y[O][2].
Likewise, the next two lines initialize y[l] and y[2]. The
initializer ends early and therefore y[3] is initialized with o.
Precisely, the same effect could have been achieved by

2-39

C LANGUAGE

float y[4][3] =
{

1,3,~2,4,6,3,5,7

};

The initializer for y begins with a left brace but that for y[O]
does not; therefore, three elements from the list are used.
Likewise, the next three are taken successively for y[l] and
y[2]. Also,

float y[4][3] =
{

{ 1 }, { 2 }, { 3 }, { 4 }
};

initializes the first column of y (regarded as a two-dimensional
array) and leaves the rest o.

Finally,

char msg[] = " Syntax error on line %s\n" ;

shows a character array whose members are initialized with a
string.

Type Names

In two contexts (to specify type conversions explicitly by means
of a cast and as an argument of sizeof), it is desired to supply
the name of a data type. This is accomplished using a "type
name", which in essence is a declaration for an object of that
type which omits the name of the object.

type-name:
type-specifier abstract-declarator

2-40

C LANGUAGE

abstract-declarator:
empty
(abstract-declarator)
* abstract-declarator
abstract-declarator ()
abstract-declarator [constant-expression t] op

To avoid ambiguity, in the construction

(abstract-declarator)

the abstract-declarator is required to be nonempty. Under this
restriction, it is possible to identify uniquely the location in the
abstract-declarator' where the identifier would appear if the
construction were a declarator in a declaration. The named
type is then the same as the type of the hypothetical identifier.
For example,

int
int *
int *[3]
int (*)[3]
int *()
int (*)()
int (*[3]) ()

name respectively the types "integer," "pointer to integer,"
"array of three pointers to integers," "pointer to an array of
three integers," "function returning pointer to integer,"
"pointer to function returning an integer," and "array of three
pointers to functions returning an integer."

2-41

C LANGUAGE

Typedef

Declarations whose "storage class" is typedef do not define
storage but instead define identifiers which can be used later as
if they were type keywords naming fundamental or derived
types.

typedef-name:
identifier

Within the scope of a declaration involving typedef, each
identifier appearing as part of any declarator therein becomes
syntactically equivalent to the type keyword naming the type
associated with the identifier in the way described in "Meaning
of Declarators." For example, after

typedef int MILES, *KLICKSP;
typedef struct { double re, im; } complex;

the constructions

MILES distance;
extern KLICKSP metricp;
complex z, *zp;

are all legal declarations; the type of distance is int, that of
metricp is "pointer to int," and that of z is the specified
structure. The zp is a pointer to such a structure.

The typedef does not introduce brand-new types, only
synonyms for types which could be specified in another way.
Thus in the example above distance is considered to have
exactly the same type as any other int object.

2-42

C LANGUAGE

STATEMENTS

Except as indicated, statements are executed in sequence.

Expression Statement

Most statements are expression statements, which have the
form

expression ;

Usually expression statements are assignments or function
calls.

Compound Statement or Block

So that several statements can be used where one is expected,
the compound statement (also, and equivalently, called "block")
is provided:

compound-statement:
{declaration-list t statement-list t} op op

declaration-list:
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

If any of the identifiers in the declaration-list were previously
declared, the outer declaration is pushed down for the duration
of the block, after which it resumes its force.

2-43

C LANGUAGE

Any initializations of auto or register variables are
performed each time the block is entered at the top. It is
currently possible (but a bad practice) to transfer into a block;
in that case the initializations are not performed.
Initializations of static variables are performed only once
when the program begins execution. Inside a block, extern
declarations do not reserve storage so initialization is not
permitted.

Conditional Statement

The two forms of the conditional statement are

if (expression) statement
if (expression) statement else statement

In both cases, the expression is evaluated; and if it is nonzero,
the first substatement is executed. In the second case, the
second substatement is executed if the expression is O. The
"else" ambiguity is resolved by connecting an else with the last
encountered else-less if.

While Statement

The while statement has the form

while (expression) statement

The substatement is executed repeatedly so long as the value of
the expression remains nonzero. The test takes place before
each execution of the statement.

2-44

C LANGUAGE

Do Statement

The do statement has the form

do statement while (expression) ;

The substatement is executed repeatedly until the value of the
expression becomes O. The test takes place after each execution
of the statement.

For Statement

The for statement has the form:

for (exp-l t" exp-2 t" exp-3 t) statement op op op

Except for the behavior of continue, this statement is
equivalent to

exp-l ;
while (exp-2)
{

}

statement
exp-3,.

Thus the first expression specifies initialization for the loop;
the second specifies a test, made before each iteration, such
that the loop is exited when the expression becomes O. The
third expression often specifies an incrementing that is
performed after each iteration.

Any or all of the expressions may be dropped. A missing exp-2
makes the implied while clause equivalent to while(l); other
missing expressions are simply dropped from the expansion
above.

2-45

C LANGUAGE

Switch Statement

The switch statement causes control to be transferred to one
of several statements depending on the value of an expression.
It has the form

switch (expression) statement

The usual arithmetic conversion is performed on the expression,
but the result must be into The statement is typically
compound. Any statement within the statement may be labeled
wi th one or more case prefixes as follows:

case constant-expression:

where the constant expression must be into No two of the case
constants in the same switch may have the same value.
Constant expressions are precisely defined in "CONSTANT
EXPRESSIONS."

There may also be at most one statement prefix of the form

default :

When the switch statement is executed, its expression is
evaluated and compared with each case constant. If one of the
case constants is equal to the value of the expression, control is
passed to the statement following the matched case prefix. If
no case constant matches the expression and if there is a
default, prefix, control passes to the prefixed statement. If no
case matches and if there is no default, then none of the
statements in the switch is executed.

The prefixes case and default do not alter the flow of control,
which continues unimpeded across such prefixes. To exit from
a switch, see "Break Statement."

2-46

C LANGUAGE

Usually, the statement that is the subject of a switch is
compound. Declarations may appear at the head of this
statement, but initializations of automatic or register variables
are ineffective.

Break Statement

The statement

break;

causes termination of the smallest enclosing while, do, for, or
switch statement; control passes to the statement following
the terminated statement.

Continue Statement

The statement

continue;

causes control to pass to the loop-continuation portion of the
smallest enclosing while, do, or for statement; that is to the
end of the loop. More precisely, in each of the statements

while (...) do for (...)
{ {

contin: ; contin: ; contin: ;
} } while (...); }

a continue is equivalent to goto contino (Following the
contin: is a null statement, see "Null Statement".)

2-47

C LANGUAGE

Return Statement

A function returns to its caller by means of the return
statement which has one of the forms

return;
return expression;

In the first case, the returned value is undefined. In the second
case, the value of the expression is returned to the caller of the
function. If required, the expression is converted, as if by
assignment, to the type of function in which it appears.
Flowing off the end of a function is equivalent to a return with
no returned value. The expression may be parenthesized.

Goto Statement

Control may be transferred unconditionally by means of the
statement

goto identifier;

The identifier must be a label (see "Labeled Statement")
located in the current function.

Labeled Statement

Any statement may be preceded by label prefixes of the form

identifier :

which serve to declare the identifier as a label. The only use of
a label is as a target of a goto. The scope of a label is the
current function, excluding any subblocks in which the same
identifier has been redeclared. See "SCOPE RULES."

2-48

C LANGUAGE

Null Statement

The null statement has the form

A null statement is useful to carry a label just before the} of a
compound statement or to supply a null body to a looping
statement such as while.

EXTERNAL DEFINITIONS
A C program consists of a sequence of external definitions. An
external definition declares an identifier to have storage class
extern (by default) or perhaps static, and a specified type.
The type-specifier (see "Type Specifiers" in
"DECLARATIONS") may also be empty, in which case the type
is taken to be into The scope of external definitions persists to
the end of the file in which they are declared just as the effect
of declarations persists to the end of a block. The syntax of
external definitions is the same as that of all declarations
except that only at this level may the code for functions be
given.

External Function Definitions

Function definitions have the form

function-definition:
decl-specifiers t function-declarator function-body op

The only sc-specifiers allowed among the decl-specifiers are
extern or static; see "Scope of Externals" in "SCOPE
RULES" for the distinction between them. A function
declarator is similar to a declarator for a "function returning
... " except that it lists the formal parameters of the function
being defined.

2-49

C LANGUAGE

function-declarator:
declarator (parameter-list t) op

parameter-list:
identifier
identifier, parameter-list

The function-body has the form

function-body:
declaration-list t compound-statement op

The identifiers in the parameter list, and only those identifiers,
may be declared in the declaration list. Any identifiers whose
type is not given are taken to be into The only storage class
which may be specified is register; if it is specified, the
corresponding actual parameter will be copied, if possible, into
a register at the outset of the function.

A simple example of a complete function definition is

int max(a, b, c)
int a, b, c;

}

int m;

m = (a > b) ? a : b;
return«m > c) ? m : c);

Here int is the type-specifier; max(a, b, c) is the function
declarator; int a, b, c; is the declaration-list for the formal
parameters; {ooo} is the block giving the code for the
statement.

2-50

C LANGUAGE

The C program converts all float actual parameters to double,
so formal parameters declared float have their declaration
adjusted to read double. All char and short formal
parameter declarations are similarly adjusted to read into
Also, since a reference to an array in any context (in particular
as an actual parameter) is taken to mean a pointer to the first
element of the array, declarations of formal parameters
declared "array of ... " are adjusted to read "pointer to ... ".

External Data Definitions

An external data definition has the form

data-definition:
declaration

The storage class of such data may be extern (which is the
default) or static but not auto or register.

SCOPE RULES
A C program need not all be compiled at the same time. The
source text of the program may be kept in several files, and
precompiled routines may be loaded from libraries.
Communication among the functions of a program may be
carried out both through explicit calls and through
manipulation of external data.

Therefore, there are two kinds of scopes to consider: first, what
may be called the lexical scope of an identifier, which is
essentially the region of a program during which it may be
used without drawing "undefined identifier" diagnostics; and
second, the scope associated with external identifiers, which is
characterized by the rule that references to the same external
identifier are references to the same object.

2-51

C LANGUAGE

Lexical Scope

The lexical scope of identifiers declared in external definitions
persists from the definition through the end of the source file
in which they appear. The lexical scope of identifiers which are
formal parameters persists through the function with which
they are associated. The lexical scope of identifiers declared at
the head of a block persists until the end of the· block. The
lexical scope of labels is the whole of the function in which they
appear.

In all cases, however, if an identifier is explicitly declared at
the head of a block, including the block constituting a function,
any declaration of that identifier outside the block is suspended
until the end of the block.

Remember also (see "Structure, Union, and Enumeration
Declarations" in "DECLARATIONS") that tags, identifiers
associated with ordinary variables, and identities associated
with structure and union members form three disjoint classes
which do not conflict. Members and tags follow the same scope
rules as other identifiers. The enum constants are in the same
class as ordinary variables and follow the same scope rules.
The typedef names are in the same class as ordinary
identifiers. They may be redeclared in inner blocks, but an
explicit type must be given in the inner declaration:

typedef float distance;

{
auto int distance;

The int must be present in the second declaration, or it would
be taken to be a declaration with no declarators and type
distance.

2-52

C LANGUAGE

Scope of Externals

If a function refers to an identifier declared to be extern, then
somewhere among the files or libraries constituting the
complete program there must be at least one external definition
for the identifier. All functions in a given program which refer
to the same external identifier refer to the same object, so care
must be taken that the type and size specified in the definition
are compatible with those specified by each function which
references the data.

It is illegal to explicitly initialize any external identifier more
than once in the set of files and libraries comprising a multi
file program. It is legal to have more than one data definition
for any external non-function identifier; explicit use of extern
does not change the meaning of an external declaration.

In restricted environments, the use of the extern storage class
takes on an additional meaning. In these environments, the
explicit appearance of the extern keyword in external data
declarations of identities without initialization indicates that
the storage for the identifiers is allocated elsewhere, either in
this file or another file. It is required that there be exactly one
definition of each external identifier (without extern) in the
set of files and libraries comprising a multi-file program.

Identifiers declared static at the top level in external
definitions are not visible in other files. Functions may be
declared static.

COMPILER CONTROL LINES

The C compiler contains a preprocessor capable of macro
substitution, conditional compilation, and inclusion of named
files. Lines beginning with # communicate with this
preprocessor. There may be any number of blanks and
horizontal tabs between the # and the directive. These lines
have syntax independent of the rest of the language; they may

2-53

C LANGUAGE

appear anywhere and have effect which lasts (independent of
scope) until the end of the source program file.

Token Replacement

A compiler-control line of the form

#define identifier token-string t
op

causes the preprocessor to replace subsequent instances of the
identifier with the given string of tokens. Semicolons in or at
the end of the token-string are part of that string. A line of
the form

#define identifier(identifier, ...)token-string t
op

where there is no space between the first identifier and the (, is
a macro definition with arguments. There may be zero or more
formal parameters. Subsequent instances of the first identifier
followed by a (, a sequence of tokens delimited by commas, and
a) are replaced by the token string in the definition. Each
occurrence of an identifier mentioned in the formal parameter
list of the definition is replaced by the corresponding token
string from the call. The actual arguments in the call are token
strings separated by commas; however, commas in quoted
strings or protected by parentheses do not separate arguments.
The number of formal and actual parameters must be the same.
Strings and character constants in the token-string are scanned
for formal parameters, but strings and character constants in
the rest of the program are not scanned for defined identifiers
to replacement.

In both forms the replacement string is rescanned for more
defined identifiers. In both forms a long definition may be
continued on another line by writing \ at the end of the line to
be continued.

2-54

C LANGUAGE

This facility is most valuable for defining constants in order to
improve the code's readability. For example:

#define T ABSIZE 100

int table[TABSIZE];

A control line of the form

#undef identifier

causes the identifier's preprocessor definition (if any) to be
forgotten.

If a #defined identifier is the subject of a subsequent #define
with no intervening #undef, then the two token-strings are
compared textually. If the two token-strings are not identical
(all white space is considered as equivalent), then the identifier
is considered to be redefined.

Note that #define and #undef declarations do not nest. The
value of an identifier is solely determined by the most recent
#define or #undef.

File Inclusion

A compiler control line of the form

#include "filename"

causes the replacement of that line by the entire contents of the
file filename. The named file is searched for first in the
directory of the file containing the #include, and then in a
sequence of specified or standard places. Alternatively, a
control line of the form

2-55

C LANGUAGE

#include <filename>

searches only the specified or standard places and not the
directory of the #include. (How the places are specified is not
part of the language.)

#includes may be nested.

Conditional Compilation

A compiler control line of the form

#if restricted-constant-expression

checks whether the restricted-constant expression evaluates to
nonzero. (Constant expressions are discussed in "CONSTANT
EXPRESSIONS"; the following additional restrictions apply
here: the constant expression may not contain sizeof casts, or
an enumeration constant.)

A restricted constant expression may also contain the
additional unary expression

defined identifier
or
defined(identifier

which evaluates to one if the identifier is currently defined in
the preprocessor and zero if it is not.

All currently defined identifiers in restricted-constant
expressions are replaced by their token-strings (except those
identifiers modified by defined) just as in normal text. The
restricted constant expression will be evaluated only after all
expressions have finished. During this evaluation, all undefined
(to the procedure) identifiers evaluate to zero.

2-56

C LANGUAGE

A control line of the form

#ifdef identifier

checks whether the identifier is currently defined in the
preprocessor; i.e., whether it has been the subject of a #define
control line. It is equivalent to #ifdef(identifier). A control
line of the form

#ifndef identifier

checks whether the identifier is currently undefined in the
preprocessor. It is equivalent to #if!defined(identifier).

All three forms are followed by an arbitrary number of lines,
possibly containing a control line

HeIse

and then by a control line

#endif

If the checked condition is true, then any lines between HeIse
and the matching #endif are ignored. If the checked condition
is false, then any lines between the test and the matching
HeIse or, lacking a HeIse, the matching #endif are ignored.

These constructions may be nested.

2-57

C LANGUAGE

Line Control

For the benefit of other preprocessors which generate C
programs, a line of the form

#line constant" filename"

causes the compiler to believe, for purposes of error diagnostics,
that the line number of the next source line is given by the
constant and the current input file is named by "filename". If
"filename" is absent, the remembered file name does not
change.

IMPLICIT DECLARATIONS

It is not always necessary to specify both the storage class and
the type of identifiers in a declaration. The storage class is
supplied by the context in external definitions and in
declarations of formal parameters and structure members. In a
declaration inside a function, if a storage class but no type is
given, the identifier is assumed to be int; if a type but no
storage class is indicated, the identifier is assumed to be auto.
An exception to the latter rule is made for functions because
auto functions do not exist. If the type of an identifier is
"function returning ... ," it is implicitly declared to be extern.

In an expression, an identifier followed by (and not already
declared is contextually declared to be "function returning int.N

TYPES REVISITED
This part summarizes the operations which can be performed
on objects of certain types.

2-58

C LANGUAGE

Structures and Unions

Structures and unions may be assigned, passed as arguments to
functions, and returned by functions. Other plausible
operators, such as equality comparison and structure casts, are
not implemented.

In a reference to a structure or union member, the name on the
right of the -> or the . must specify a member of the
aggregate named or pointed to by the expression on the left. In
general, a member of a union may not be inspected unless the
value of the union has been assigned using that same member.
However, one special guarantee is made by the language in
order to simplify the use of unions: if a union contains several
structures that share a common initial sequence and if the
union currently contains one of these structures, it is permitted
to inspect the common initial part of any of the contained
structures. For example, the following is a legal fragment:

2-59

C LANGUAGE

union
{

} u;

struct
{

int type;
} n;
struct
{

int type;
int intnode;

} ni;
struct
{

int
float

} nf;

type;
floatnode;

u.nf.type = FLOAT;
u.nf.floatnode = 3.14;

if (u.n.type == FLOAT)
... sin(u.nf.floatnode) ...

Functions

There are only two things that can be done with a function: call
it or take its address. If the name of a function appears in an
expression not in the function-name position of a call, a pointer
to the function is generated. Thus, to pass one function to
another, one might say

int fO;

g(f);

2-60

C LANGUAGE

Then the definition of g might read

g(funcp)
int (*funcp)();

(*funcp)();

Notice that f must be declared explicitly in the calling routine
since its appearance in g(f) was not followed by (.

Arrays, Pointers, and Subscripting

Every time an identifier of array type appears in an expression,
it is converted into a pointer to the first member of the array.
Because of this conversion, arrays are not lvalues. By
definition, the subscript operator [] is interpreted in such a way
that E1[E2] is identical to *«E1)+(E2». Because of the
conversion rules which apply to +, if E1 is an array and E2 an
integer, then E1[E2] refers to the E2 -th member of E1.
Therefore, despite its asymmetric appearance, subscripting is a
commutative operation.

A consistent rule is followed in the case of multidimensional
arrays. If E is an n-dimensional array of rank iXjx ... xk, then
E appearing in an expression is converted to a pointer to an
(n-l)-dimensional array with rank jx ... xk. If the * operator,
either explicitly or implicitly as a result of subscripting, is
applied to this pointer, the result is the pointed-to (n-l)
dimensional array, which itself is immediately converted into a
pointer.

For example, consider

2-61

C LANGUAGE

int x[3][5];

Here x is a 3X5 array of integers. When x appears in an
expression, it is converted to a pointer to (the first of three) 5-
membered arrays of integers. In the expression x[i], which is
equivalent to *(x+i), x is first converted to a pointer as
described; then i is converted to the type of x, which involves
multiplying i by the length the object to which the pointer
points, namely 5-integer objects. The results are added and
indirection applied to yield an array (of five integers) which in
turn is converted to a pointer to the first of the integers. If
there is another subscript, the same argument applies again;
this time the result is an integer.

Arrays in C are stored row-wise (last subscript varies fastest)
and the first subscript in the declaration helps determine the
amount of storage consumed by an array. Arrays play no other
part in subscript calculations.

Explicit Pointer Conversions

Certain conversions involving pointers are permitted but have
implementation-dependent aspects. They are all specified by
means of an explicit type-conversion operator, see "Unary
Operators" under"EXPRESSIONS" and "Type Names"under
"DECLARATIONS."

A pointer may be converted to any of the integral types large
enough to hold it. Whether an int or long is required is
machine dependent and may also depend on the pointer type.
The mapping function is also machine dependent but is
in tended to be unsurprising to those who know the addressing
structure of the machine. Details for some particular machines
are given below.

An object of integral type may be explicitly converted to a
pointer. The mapping always carries an integer converted from
a pointer back to a pointer which points to the same location

2-62

C LANGUAGE

but is otherwise machine dependent.

A pointer to one type may be converted to a pointer to another
type. The resulting pointer may cause addressing exceptions
upon use if the subject pointer does not refer to an object
sui tably aligned in storage.

For example, a storage-allocation routine might accept a size
(in bytes) of an object to allocate, and return a char pointer; it
might be used in this way.

extern char *alloc();
double *dp;

dp = (double *) alloc(sizeof(double»;
*dp = 22.0 / 7.0;

The alloc must ensure (in a machine-dependent way) that its
return value is suitable for conversion to a pointer to double;
then the use of the function is portable.

The pointer representation on the PDP-11 corresponds to a 16-
bit integer and measures bytes. The char's have no alignment
requirements; everything else must have an even address.

On the VAX-11, pointers are 32 bits long and measure bytes.
Elementary objects are aligned on a boundary equal to their
length, except that double quantities need be aligned only on
even 4-byte boundaries. Aggregates are aligned on the strictest
boundary required by any of their constituents.

The 3B20 has 24-bit pointers placed into 32-bit quantities.

The UNIX PC has 32-bit pointers. Most objects are aligned on
4-byte boundaries. Shorts are aligned in all cases on 2-byte
boundaries. Arrays of characters, all structures, ints, longs,

2-63

C LANGUAGE

floats, and doubles are aligned on 4-byte boundries; but
structure members may be packed tighter.

CONSTANT EXPRESSIONS

In several places C requires expressions that evaluate to a
constant: after case, as array bounds, and in initializers. In
the first two cases, the expression can involve only integer
constants, character constants, casts to integral types,
enumeration constants, and sizeof expressions, possibly
connected by the binary operators

+ - * / % & I «» == != < > <= >= && I I

or by the unary operators

or by the ternary operator

?:

Parentheses can be used for grouping but not for function calls.

More latitude is permitted for initializers; besides constant
expressions as discussed above, one can also use floating
constants and arbitrary casts and can also apply the unary &
operator to external or static objects and to external or static
arrays subscripted with a constant expression. The unary &
can also be applied implicitly by appearance of unsubscripted
arrays and functions. The basic rule is that initializers must
evaluate either to a constant or to the address of a previously
declared external or static object plus or minus a constant.

2-64

CLANGUAGE

PORTABILITY CONSIDERATIONS
Certain parts of C are inherently machine dependent. The
following list of potential trouble spots is not meant to be all
inclusive but to point out the main ones.

Purely hardware issues like word size and the properties of
floating point arithmetic and integer division have proven in
practice to be not much of a problem. Other facets of the
hardware are reflected in differing implementations. Some of
these, particularly sign extension (converting a negative
character into a negative integer) and the order in which bytes
are placed in a word, are nuisances that must be carefully
watched. Note that unsigned chars do not have this problem

The number of register variables that can actually be placed
in registers varies from machine to machine as does the set of
valid types. Nonetheless, the compilers all do things properly
for their own machine; excess or invalid register declarations
are ignored.

Dubious codingpractices, such as neglecting type conversions
when passing arguments to functions, can cause trouble. Lint
can be used to detect problems of this type.

The order of evaluation of function arguments is not specified
by the language. The order in which side effects take place is
also unspecified.

Since character constants are really objects of type int,
multi character character constants may be permitted. The
specific implementation is very machine dependent because the
order in which characters are assigned to a word varies from
one machine to another.

Fields are assigned to words and characters to integers right to
left on some machines and left to right on other machines.
These differences are invisible to isolated programs that do not

2-65

C LANGUAGE

indulge in type punning (e.g., by converting an int pointer to a
char pointer and inspecting the pointed-to storage) but must
be accounted for when conforming to externally-imposed
storage layouts.

SYNTAX SUMMARY
This summary of C syntax is intended more for aiding
comprehension than as an exact statement of the language.

Expressions

The basic expressions are:

expression:
primary

2-66

* expression
&lvalue
- expression
! expression

expression
++ lvalue
--lvalue
lvalue ++
lvalue --
sizeof expression
sizeof (type-name)
(type-name) expression
expression binop expression
expression ? expression : expression
lvalue asgnop expression
expression , expression

primary:
identifier
constant
string
(expression)
primary (expression-list t)
primary [expression J op
primary. identifier
primary - > identifier

lvalue:
identifier
primary [expression J
lvalue . identifier
primary - > identifier
* expression
(lvalue)

The primary-expression operators

() [] . ->

C LANGUAGE

have highest priority and group left to right. The unary
operators

* & - ! - ++ -- sizeof (type-name)

have priority below the primary operators but higher than any
binary operator and group right to left. Binary operators group
left to right; they have priority decreasing as indicated below.

2-67

C LANGUAGE

binop:
* / %
+
» «
< > <= >=

I
&&
II

!=

The conditional operator groups right to left.

Assignment operators all have the same priority and all group
right to left.

asgnop:
+= -= *= /= %= »= «= &= 1=

The comma operator has the lowest priority and groups left to
right.

Declarations

declaration:
decl-specifiers init-declarator-list t; op

decl-specifiers:

2-68

type-specifier decl-specifiers t
sc-specifier decl-specifiers tOP

op

sc-specijier:
auto
static
extern
register
typedef

type-specifier:
struct-or-union-specifier
typedef-name
enum-specifier

basic-type-specifier:
basic-type
basic-type basic-type-specifiers

basic-type:
char
short
int
long
unsigned
float
double
void

enum-specifier:
enum { enum-list }
enum identifier { enum-list }
enum identifier

enum-list:
enumerator
enum-list , enumerator

enumerator:
identifier
identifier = constant-expression

C LANGUAGE

2-69

C LANGUAGE

init-declarator-list:
init-declarator
init-declarator , init-declarator-list

init-declarator:
declarator initializer t op

declarator:
identifier
(declarator)
* declarator
declarator ()
declarator [constant-expression t J op

struct-or-union-specifier:
struct { struct-decl-list }
struct identifier { struct-decl-list }
struct identifier
union { struct-decl-list }
union identifier { struct-decl-list }
union identifier

struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

struct-declaration:
type-specifier struct-declarator-list ;

struct-declarator-list:
struct-declarator
struct-declarator, struct-declarator-list

2-70

C LANGUAGE

struct-declarator:
declarator
declarator: constant-expression
: constant-expression

initializer:
= expression
= { initializer-list }
= { initializer-list , }

initializer-list:
expression
initializer-list , initializer-list
{ initializer-list }
{ initializer-list , }

type-name:
type-specifier abstract-declarator

abstract-declarator:
empty
(abstract-declarator)
* abstract-declarator
abstract-declarator ()
abstract-declarator [constant-expression t] op

typedef-name:
identifier

Statements

compound-statement:
{declaration-list t statement-list t} op op

2-71

C LANGUAGE

declaration-list:
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

statement:
compound-statement
expression ;
if (expression) statement
if (expression) statement else statement
while (expression) statement
do statement while (expression) ;
for (exp opt;eXp opt;exp op,) statement
switch (expression) statement
case constant-expression: statement
default: statement
break;
continue;
return;
return expression;
goto identifier;
identifier: statement

External definitions

program:
external-definition
external-definition program

external-definition:
function-definition
data-definition

2-72

C LANGUAGE

function-definition:
decl-specifier t function-declarator function-body op

function-declarator:
declarator (parameter-list t) op

parameter-list:
identifier
identifier, parameter-list

function-body:
declaration-list t compound-statement op

data-definition:
extern declaration;
static declaration;

Preprocessor

#define identifier token-stringo t
#define identifier (identifier, ... ltoken-string t
#undef identifier op
#include "filename"
#include <filename>
#if restricted-constant-expression
#ifdef identifier
#ifndef identifier
#else
#endif
#line constant" filename"

2-73

Chapter 3

C LIBRARIES

PAGE

GENERAL

Including Functions

Including Declarations

THE C LIBRARY

Input/Output Control

File Access Functions

File Status Functions

Input Functions

Output Functions

Miscellaneous Functions

String Manipulation Functions

Character Manipulation

Character Testing Functions

Character Translation Functions

Time Functions

Miscellaneous Functions

Numerical Conversion

DES Algorithm Access

Group File Access

Password File Access

Parameter Access

Hash Table Management

Binary Tree Management

Table Management

Memory Allocation

Pseudorandom Number Generation ,

Signal Handling Functions

Miscellaneous

3-1

3-2

3-3

3-4

3-4

3-5

3-6

3-6

3-7

3-8

3-9

3-10

3-11

3-12

3-12

3-13

3-14

3-15

3-15

3-16

3-17

3-17

3-18

3-19

3-19

3-20

3-22

3-22

Chapter 3

C LIBRARIES

GENERAL
This chapter and Chapter 4 describe the libraries that are
supported on the UNIX operating system. A library is a
collection of related functions and/or declarations that simplify
programming effort by linking only what is needed, allowing
use of locally produced functions, etc. All of the functions
described are also described in Section 3 of the AT&T UNIX
PC UNIX System V Manual. Most of the declarations
described are in Section 5 of the AT&T UNIX PC UNIX
System V Manual. The main libraries on the UNIX system are:

C library

Object file library

Math library

This is the basic library for C language
programs. The C library is composed of
functions and declarations used for file
access, string testing and manipulation,
character testing and manipulation,
memory allocation, and other functions.
This library is described later in this
chapter.

This library provides functions for the
access and manipulation of object files.
This library is described in Chapter 4.

This library provides exponential, bessel
functions, logarithmic, hyperbolic, and
trigonometric functions. This library is
described in Chapter 4.

3-1

C LIBRARIES

tam library This library contains the AT&T UNIX
PC "terminal access method" (tam)
functions.

Some libraries consist of two portions-functions and
declarations. In some cases, the user must request that the
functions (and/or declarations) of a specific library be included
in a program being compiled. In other cases, the functions
(and/or declarations) are included automatically.

Including Functions

When a program is being compiled, the compiler will
automatically search the C language library to locate and
include functions that are used in the program. This is the case
only for the C library and no other library. In order for the
compiler to locate and include functions from other libraries,
the user must specify these libraries on the command line for
the compiler. For example, when using functions of the math
library, the user must request that the math library be
searched by including the argument -1m on the command line,
such as:

cc file.c -1m

The argument -1m must come after all files that reference
functions in the math library in order for the link editor to
know which functions to include in the a.out file.

This method should be used for all functions that are not part
of the C language library.

3-2

C LIBRARIES

Including Declarations

Some functions require a set of declarations in order to operate
properly. A set of declarations is stored in a file under the
/usr/include directory. These files are referred to as header
files. In order to include a certain header file, the user must
specify this request within the C language program. The
request is in the form:

#include <file.h>

w here file. h is the name of the file. Since the header files
define the type of the functions and various preprocessor
constants, they must be included before invoking the functions
they declare.

The remainder of this chapter describes the functions and
header files of the C Library. The description of the library
begins with the actions required by the user to include the
functions and/or header files in a program being compiled (if
any). Following the description of the actions required is
information in three-column format of the form:

function reference (N) Brief description.

The functions are grouped by type while the reference refers to
section 'N' in the AT&T UNIX PC UNIX System V Manual.
Following this, are descriptions of the header files associated
with these functions (if any).

3-3

C LIBRARIES

THE C LIBRARY
The C library consists of several types of functions. All the
functions of the C library are loaded automatically by the
compiler. Various declarations must sometimes be included by
the user as required. The functions of the C library are divided
in to the following types:

• Input/output control
• String manipulation
• Character manipulation
• Time functions
• Miscellaneous functions.

Input/Output Control

These functions of the C library are automatically included as
needed during the compiling of a C language program. No
command line request is needed.

The header file required by the input/output functions should
be included in the program being compiled. This is
accomplished by including the line:

#include <stdio.h>

near the beginning of each file that references an input or
output function.

The input/output functions are grouped into the following
categories:

• File access
• File status
• Input
• Output
• Miscellaneous.

3-4

C LIBRARIES

File Access Functions

FUNCTION REFERENCE BRIEF DESCRIPTION

fclose fclose(3S) Close an open stream.

fdopen fopen(3S) Associate stream with
an open(2) ed file.

fileno ferror(3S) File descriptor associated
with an open stream.

fopen fopen(3S) Open a file with
specified permissions.
Fopen returns a pointer
to a stream which is
used in subsequent
references to the file.

freopen fopen(3S) Substitute named file
in place of open
stream.

fseek fseek(3S) Reposition the file
pointer.

pclose popen(3S) Close a stream opened
by popen.

popen popen(3S) Create pipe as a stream
between calling process
and command.

rewind fseek(3S) Reposi tion file
pointer at beginning
of file.

3-5

C LIBRARIES

setbuf setbuf(3S)

File Status Functions

Assign buffering to
stream.

FUNCTION REFERENCE BRIEF DESCRIPTION

clearerr

feof

ferror

ftell

Input Functions

ferror(3S)

ferror(3S)

ferror(3S)

fseek(3S)

Reset error condition on
stream.

Test for "end of file"
on stream.

Test for error condition
on stream.

Return current position
in the file.

FUNCTION REFERENCE BRIEF DESCRIPTION

fgetc getc(3S) True function for getc
(3S).

fgets gets(3S) Read string from stream.

fread fread(3S) General buffered read
from stream.

fscanf scanf(3S) Formatted read from
stream.

3-6

C LIBRARIES

getc getc(3S) Read character from
stream.

getchar getc(3S) Read character from
standard input.

gets gets(3S) Read string from standard input.

getw getc(3S) Read word from stream.

scanf scanf(3S) Read using format from
standard input.

sscanf scanf(3S) Formatted from
string.

ungetc ungetc(3S) Put back one character on
stream.

Output Functions

FUNCTION REFERENCE BRIEF DESCRIPTION

fflush fclose(3S) Write all currently buffered
characters from stream.

fprintf printf(3S) Formatted write to
stream.

fputc putc(3S) True function for putc
(3S).

fputs puts(3S) Write string to stream.

fwrite fread(3S) General buffered write to

3-7

C LIBRARIES

printf printf(3S)

putc putc(3S)

putchar putc(3S)

puts puts(3S)

putw putc(3S)

sprintf printf(3S)

Miscellaneous Functions

FUNCTION REFERENCE

ctermid ctermid(3S)

cuserid cuserid(3S)

system system(3S)

tempnam tempnam(3S)

3-8

stream.

Print using format to
standard output.

W ri te character to
standard output.

W ri te character to
standard output.

Write string to
standard output.

Write word to stream.

Formatted write to
string.

BRIEF DESCRIPTION

Return file name for
controlling terminal.

Return login name for
owner of current process.

Execute shell command.

Create temporary file
name using directory and
prefix.

tmpnam tmpnam(3S)

tmpfile tmpfile (3S)

String Manipulation Functions

C LIBRARIES

Create temporary file
name.

Create temporary file.

These functions are used to locate characters within a string,
copy, concatenate, and compare strings. These functions are
automatically located and loaded during the compiling of a C
language program. No command line request is needed since
these functions are part of the C library. The string
manipulation functions are declared in a header file that may
be included in the program being compiled. This is
accomplished by including the line:

#include <string.h>

near the beginning of each file that uses one of these functions.

FUNCTION REFERENCE BRIEF DESCRIPTION

strcat string(3C) Concatenate two strings.

strchr string(3C) Search string for
character.

strcmp string(3C) Compares two strings.

strcpy string(3C) Copy string.

strcspn string(3C) Length of initial string
not containing set of
characters.

3-9

C LIBRARIES

strlen string(3C)

strncat string(3C)

strncmp string(3C)

strncpy string(3C)

strpbrk string(3C)

strrchr string(3C)

strspn string(3C)

strtok string(3C)

Character Manipulation

Length of string.

Conca tena te two strings
with a maximum length.

Com pares two strings
with a maximum length.

Copy string over string
with a maximum length.

Search string for any
set of characters.

Search string backwards
for character.

Length of initial string
containing set of
characters.

Search string for token
separated by any of a
set of characters.

The following functions and declarations are used for testing
and translating ASCII characters. These functions are located
and loaded automatically during the compiling of a C language
program. No command line request is needed since these
functions are part of the C library.

The declarations associated with these functions should be
included in the program being compiled. This is accomplished
by including the line:

#include <ctype.h>

3-10

C LIBRARIES

near the beginning of the file being com piled.

Character Testing Functions

These functions can be used to identify characters as uppercase
or lowercase letters, digits, punctuation, etc.

FUNCTION REFERENCE

isalnum ctype(3C)

isalpha ctype(3C)

is ascii ctype(3C)

iscntrl ctype(3C)

isdigit ctype(3C)

is graph ctype(3C)

islower ctype(3C)

isprint ctype(3C)

ispunct ctype(3C)

isspace ctype(3C)

BRIEF DESCRIPTION

Is character
alphanumeric?

Is character alphabetic?

Is integer ASCII
character?

Is character a control
character?

Is character a digit?

Is character a printable
character?

Is character a
lowercase letter?

Is character a printing
character including
space?

Is character a
punctuation character?

Is character a w hi te

3-11

C LIBRARIES

isupper ctype(3C)

isxdigit ctype(3C)

Character Translation Functions

space character?

Is character an uppercase
letter?

Is character a hex digit?

These functions provide translation of uppercase to lowercase,
lowercase to uppercase, and integer to ASCII.

FUNCTION REFERENCE BRIEF DESCRIPTION

to ascii conv(3C) Convert integer to
ASCII character.

tolower conv(3C) Convert character to
lowercase.

toupper conv(3C) Convert character to
uppercase.

Time Functions

These functions are used for accessing and reformatting the
system's idea of the current date and time. These functions are
located and loaded automatically during the compiling of a C
language program. No command line request is needed since
these functions are part of the C library.

The header file associated with these functions should be
included in the program being compiled. This is accomplished
by including the line:

#include <time.h>

3-12

C LIBRARIES

near the beginning of any file using the time functions.

These functions (except tzset) convert a time such as returned
by time(2).

FUNCTION REFERENCE

asctime ctime(3C)

ctime ctime(3C)

gmtime ctime(3C)

localtime ctime(3C)

tzset ctime(3C)

Miscellaneous Functions

BRIEF DESCRIPTION

Return string
representation
of date and time.

Return string
representation of
date and time, given
integer form.

Return Greenwich
Mean Time.

Return local time.

Set time zone field
from environment
variable.

These functions support a wide variety of operations. Some of
these are numerical conversion, password file and group file
access, memory allocation, random number generation, and
table management. These functions are automatically located
and included in a program being compiled. No command line
request is needed since these functions are part of the C
library.

Some of these functions require declarations to be included.
These are described following the descriptions of the functions.

3-13

C LIBRARIES

Numerical Conversion

The following functions perform numerical conversion.

FUNCTION REFERENCE BRIEF DESCRIPTION

a641 a641(3C) Convert string to
base 64 ASCII.

atof atof(3C) Convert string to
floating.

atoi atof(3C) Convert string to
integer.

atol atof(3C) Convert string to long.

frexp frexp(3C) Split floating into
mantissa and exponent.

13tol 13tol(3C) Convert 3-byte integer
to long.

ltol3 13tol(3C) Convert long to 3-byte
integer.

Idexp frexp(3C) Combine mantissa and
exponent.

164a a641(3C) Convert base 64 ASCII
to string.

modf frexp(3C) Split mantissa into
integer and fraction.

3-14

C LIBRARIES

DES Algorithm Access

The following functions allow access to the Data Encryption
Standard (DES) algorithm used on the UNIX operating system.
The DES algorithm is implemented with variations to frustrate
use of hardware implementations of the DES for key search.

FUNCTION REFERENCE BRIEF DESCRIPTION

crypt crypt(3C) Encode string.

encrypt crypt(3C) Encode/ decode string of
Os and Is.

setkey crypt(3C) Initialize for subsequent
use of encrypt.

Group File Access

The following functions are used to obtain entries from the
group file. Declarations for these functions must be included in
the program being compiled with the line:

#include <grp.h>

FUNCTION REFERENCE

endgrent getgrent (3C)

getgrent getgrent (3C)

BRIEF DESCRIPTION

Close group file being
processed.

Get next group file
entry.

3-15

C LIBRARIES

getgrgid getgrent (3C)

getgrnam getgrent(3C)

setgrent getgrent (3C)

Password File Access

Return next group with
matching gid.

Return next group with
matching name.

Rewind group file being
processed.

These functions are used to search and access information
stored in the password file (I etc/passwd). Some functions
require declarations that can be included in the program being
compiled by adding the line:

#include <pwd.h>

FUNCTION REFERENCE

endpwent getpwent(3C)

getpw getpw(3C)

getpwent getpwent(3C)

getpwnam getpwent(3C)

3-16

BRIEF DESCRIPTION

Close password file
being processed.

Search password file
for uid.

Get next password file
entry.

Return next entry with
matching name.

getpwuid getpwent(3C)

putpwent putpwent(3C)

setpwent getpwent(3C)

Parameter Access

C LIBRARIES

Return next en try with
matching uid.

Write entry on stream.

Rewind password file
being accessed.

The following functions provide access to several different types
of paramenters. None require any declarations.

FUNCTION REFERENCE

getopt getopt(3C)

getcwd getcwd(3C)

getenv getenv(3C)

getpass getpass (3C)

Hash Table Management

BRIEF DESCRIPTION

Get next option from
option list.

Return string
representation of
current working directory.

Return string value
associa ted with
environment variable.

Read string from terminal
withou t echoing.

The following functions are used to manage nash search tables.
The header file associated with these functions should be
included in the program being compiled. This is accomplished
by including the line:

#include <search.h>

3-17

C LIBRARIES

near the beginning of any file using the search functions.

FUNCTION REFERENCE

here ate hseareh(3C)

hdestroy hseareh (3C)

hseareh hseareh(3C)

Binary Tree Management

BRIEF DESCRIPTION

Crea te hash table.

Destroy hash table.

Search hash table for
entry.

The following functions are used to manage a binary tree. The
header file associated with these functions should be included
in the program being compiled. This is accomplished by
including the line:

#include <search.h>

near the beginning of any file using the search functions.

FUNCTION

tdelete

tseareh

3-18

REFERENCE

tseareh (3C)

tseareh (3C)

BRIEF DESCRIPTION

Deletes nodes from
binary tree.

Look for and add
element to binary
tree.

C LIBRARIES

twalk tsearch(3C) Walk binary tree.

Table Management

The following functions are used to manage a table. Since none
of these functions allocate storage, sufficient memory must be
allocated before using these functions. The header file
associated with these functions should be included in the
program being compiled. This is accomplished by including the
line:

#include <search.h>

near the beginning of any file using the search functions.

FUNCTION REFERENCE

bsearch bsearch(3C)

lsearch Isearch(3C)

qsort qsort(3C)

Memory Allocation

BRIEF DESCRIPTION

Search table using
binary search.

Look for and add
element in binary
tree.

Sort table using
quick-sort algorithm.

The following functions provide a means by which memory can
be dynamically allocated or freed.

3-19

C LIBRARIES

FUNCTION

calloc

free

malloc

realloc

REFERENCE

malloc(3C)

malloc(3C)

malloc(3C)

malloc(3C)

BRIEF DESCRIPTION

Allocate zeroed storage.

Free previously allocated
storage.

Alloca te storage.

Change size of allocated
storage.

The following is another set of memory allocation functions
available.

FUNCTION REFERENCE BRIEF DESCRIPTION

calloc malloc(3X) Allocate zeroed storage.

free malloc(3X) Free previously allocated
storage.

malloc malloc(3X) Allocate storage.

Pseudorandom Number Generation

The following functions are used to generate pseudorandom
numbers. The functions that end with 48 are a family of
interfaces to a pseudorandom number generator based upon the
linear congruent algorithm and 48-bit integer arithmetic. The
rand and srand functions provide an interface to a
multiplicative congruential random number generator with
period of 232.

3-20

C LIBRARIES

FUNCTION REFERENCE BRIEF DESCRIPTION

drand48 drand48(3C) Random double over
the interval [0 to 1).

Icong48 drand48(3C) Set parameters for
drand48, Irand48,
and mrand48.

Irand48 drand48(3C) Random long over the
interval [0 to 231).

mrand48 drand48(3C) Random lon:fi over the
interval [-2 to 231).

rand rand(3C) Random integer over the
interval [0 to 32767).

seed48 drand48(3C) Seed the generator for
drand48, Irand48, and
mrand48.

srand rand(3C) Seed the genera tor
for rand.

srand48 drand48(3C) Seed the generator for
drand48,hand48,and
mrand48 using a long.

3-21

C LIBRARIES

Signal Handling Functions

The functions gsignal and ssignal implement a software
facility similar to signal(2) in the AT&T UNIX System V
Manual. This facility enables users to indicate the disposition
of error conditions and allows users to handle signals for their
own purposes. The declarations associated with these functions
can be included in the program being complied by the line

#include <signal.h>

These declarations define ASCII names for the 15 software
signals.

FUNCTION

gsignal

ssignal

Miscellaneous

REFERENCE

ssignal(3C)

ssignal(3C)

BRIEF DESCRIPTION

Send a software signal.

Arrange for handling
of software signals.

The following functions do not fall into any previously
described category.

FUNCTION

abort

3-22

REFERENCE

abort(3C)

BRIEF DESCRIPTION

Cause an lOT signal
to be sent to the
process.

C LIBRARIES

abs abs(3C) Return the absolute
integer value.

ecvt ecvt(3C) Convert double to
string.

fcvt ecvt(3C) Convert double to
string using Fortran
Format.

gcvt ecvt(3C) Convert double to
string using Fortran
F or E format.

isatty ttyname(3C) Test whether integer
file descriptor is
associated with a
terminal.

mktemp mktemp(3C) Create file name
using tem pIa teo

monitor monitor(3C) Cause process to record
a histogram of program
counter location.

swab swab(3C) Swap and copy bytes.

ttyname ttyname(3C) Return pathname of
terminal associated with
integer file descriptor.

3-23

Chapter 4

THE OBJECT AND MATH LIBRARIES

PAGE

GENERAL .. 4-1

THE OBJECT FILE LIBRARy 4-2

Common Object File Interface Macros (Idfcn.h) 4-5

THE MATH LIBRARY. .. 4-6

Trigonometric Functions .. 4-7

Bessel Functions .. 4-8

Hyperbolic Functions .. 4-8

Miscellaneous Functions 4-8

Chapter 4

THE OBJECT AND MATH LIBRARIES

GENERAL
This chapter describes the Object and Math Libraries that are
supported on the UNIX operating system. A library is a
collection of related functions and/or declarations that simplify
programming effort. All of the functions described are also
described in Section 3 of the AT&T UNIX PC UNIX System V
Manual. Most of the declarations described are in Section 5 of
the AT&T UNIX PC UNIX System Manual. The main
libraries on the UNIX system are:

C library

Object file library

Math library

tam library

This is the basic library for C language
programs. The C library is composed of
functions and declarations used for file
access, string testing and manipulation,
character testing and manipulation,
memory allocation, and other functions.
This library is described in Chapter 3.

This library provides functions for the
access and manipulation of object files.
This library is described later in this
chapter.

This library provides exponential, bessel
functions, logarithmic, hyperbolic, and
trigonometric functions. This library is
also described later in this chapter.

This library contains the AT&T UNIX
PC "terminal access library" (tam)

4-1

THE OBJECT AND MATH LIBRARIES

functions.

THE OBJECT FILE LIBRARY
The object file library provides functions for the access and
manipulation of object files. Some functions locate portions of
an object file such as the symbol table, the file header, sections,
and line number entries associated with a function. Other
functions read these types of entries into memory. For a
description of the format of an object file, see "The Common
Object File Format" in Chapter 18.

This library consists of several portions. The functions reside
in /usr/lib/libld.a and are located and loaded during the
compiling of a C language program by a command line request.
The form of this request is:

cc file -lId

which causes the link editor to search the object file library.
The argument -lId must appear after all files that reference
functions in libld.aR.

In addition, various header files must be included. This is
accomplished by including the line:

4-2

#include <stdio.h>
#include <a.out.h>
#include <ldfcn.h>

THE OBJECT AND MATH LIBRARIES

FUNCTION REFERENCE BRIEF DESCRIPTION

ldaclose ldclose (3X) Close object file being
processed.

ldahread Idahread(3X) Read archive header.

ldaopen Idopen(3X) Open object file for
reading.

ldclose ldclose (3X) Close object file being
processed.

ldfhread Idfhread(3X) Read file header of
object file being
processed.

ldgetname Idgetname(3X) Retrieve the name of
an object file symbol
table entry.

ldlinit Idlread(3X) Prepare object file for
reading line number
entries via ldlitem.

ldlitem Idlread(3X) Read line number entry
from object file after
ldlinit.

ldlread Idlread(3X) Read line number entry
from object file.

ldlseek Idlseek(3X) Seeks to the line number
entries of the object
file being processed.

4-3

THE OBJECT AND MATH LIBRARIES

ldnlseek Idlseek(3X) Seeks to the line number
entries of the object file
being processed given
the name of a section.

ldnrseek Idrseek(3X) Seeks to the relocation
entries of the object file
being processed given
the name of a section.

ldnshread ldshread (3X) Read section header of
the named section of the
obj ect file being
processed.

ldnsseek Idsseek(3X) Seeks to the section of
the object file being
processed given the
name of a section.

ldohseek Idohseek(3X) Seeks to the optional
file header of the object
file being processed.

ldopen Idopen(3X) Open object file for
reading.

ldrseek Idrseek(3X) Seeks to the relocation
entries of the object file
being processed.

ldshread ldshread (3X) Read section header of
an object file being
processed.

ldsseek Idsseek(3X) Seeks to the section of
the object file being

4-4

THE OBJECT AND MATH LIBRARIES

processed.

ldtbindex Idtbindex(3X) Returns the long index
of the symbol table entry
at the current position of
the 0 bj ect file being
processed.

ldtbread Idtbread(3X) Reads a specific
symbol table entry
of the object file
being processed.

ldtbseek Idtbseek(3X) Seeks to the symbol
table of the object file
being processed.

sgetl sputl(3X) Access long integer data
in a machine independent
format.

sputl sputl(3X) Translate a long integer
into a machine
independent format.

Common Object File Interface Macros (ldfcn.h)

The interface between the calling program and the object file
access routines is based on the defined type LDFILE which is
defined in the header file ldfcn.h (see Idfcn(4». The primary
purpose of this structure is to provide uniform access to both
simple object files and to object files that are members of an
archive file.

The function Idopen(3X) allocates and initializes the LDFILE
structure and returns a pointer to the structure to the calling
program. The fields of the LDFILE structure may be accessed
individually through the following macros: the type macro
returns the magic number of the file, which is used to

4-5

THE OBJECT AND MATH LIBRARIES

distinguish between archive files and simple object files. The
IOPTR macro returns the file pointer which was opened by
Idopen(3X) and is used by the input/output functions of the C
library. The OFFSET macro returns the file address of the
beginning of the object file. This value is non-zero only if the
object file is a member of the archive file. The HEADER
macro accesses the file header structure of the object file.

Additional macros are provided to access an object file. These
macros parallel the input/output functions in the C library;
each macro translates a reference to an LDFILE structure
into a reference to its file descriptor field. The available
macros are described in Idfcn(4) in the AT&T UNIX System V
Manual.

THE MATH LIBRARY
The math library consists of functions and a header file. The
functions are located and loaded during the compiling of a C
language program by a command line request. The form of this
request is:

cc file -1m

which causes the link editor to search the math library. In
addition to the request to load the functions, the header file of
the math library should be included in the program being
compiled. This is accomplished by including the line:

#include <math.h>

near the beginning of the (first) file being compiled.

The functions are grouped into the following categories:

4-6

THE OBJECT AND MATH LIBRARIES

• Trigonometric functions

• Bessel functions

• Hyperbolic functions

• Miscellaneous functions.

Trigonometric Functions

These functions are used to compute angles (in radian
measure), sines, cosines, and tangents. All of these values are
expressed in double precision.

FUNCTION REFERENCE BRIEF DESCRIPTION

acos trig(3M) Return arc cosine.

asin trig(3M) Return arc sine.

atan trig(3M) Return arc tangent.

atan2 trig(3M) Return arc tangent of
a ratio.

cos trig(3M) Return cosine.

sin trig(3M) Return sine.

tan trig(3M) Return tangent.

4-7

THE OBJECT AND MATH LIBRARIES

Bessel Functions

These functions calculate bessel functions of the first and
second kinds of several orders for real values. The bessel
functions are jO, jI, jn, yO, yI, and yn. The functions are
located in section bessel(3M).

Hyperbolic Functions

These functions are used to compute the hyperbolic sine, cosine,
and tangent for real values.

FUNCTION REFERENCE BRIEF DESCRIPTION

cosh sinh(3M) Return hyperbolic cosine.

sinh sinh (3M) Return hyperbolic sine.

tanh sinh(3M) Return hyperbolic tangent.

Miscellaneous Functions

These functions cover a wide variety of operations, such as
natural logarithm, exponential, and absolute value. In addition,
several are provided to truncate the integer portion of double
precision numbers.

FUNCTION REFERENCE BRIEF DESCRIPTION

ceil floor(3M) Returns the smallest
integer not less than a
given value.

exp exp(3M) Returns the exponential
function of a given value.

4-8

THE OBJECT AND MATH LIBRARIES

fabs floor(3M) Returns the absolute value
of a given value.

floor floor(3M) Returns the largest integer
not greater than a given
value.

fmod floor(3M) Returns the remainder
produced by the division of
two given values.

gamma gamma(3M) Returns the natural log of
the absolute value of the
result of applying the
gamma function to a
given value.

hypot hypot(3M) Returns the square root
of the sum of the squares
of two numbers.

log exp(3M) Returns the natural
logarithm of a given
value.

loglO exp(3M) Returns the logarithm base
ten of a given value.

matherr matherr(3M) Error-handling function.

pow exp(3M) Returns the result of a
given value raised to
another given value.

sqrt exp(3M) Returns the square root
of a given value.

4-9

Chapter 5

COMPILER AND C LANGUAGE

PAGE

USE OF THE COMPILER 5-1

COMPILER OPTIONS 5-3

Chapter 5

COMPILER AND C LANGUAGE

This chapter describes the UNIX System's C compiler, cc, and
the C programming language that the compiler translates. The
compiler is part of the UNIX System Software Generation
System (SGS).

The SGS is a package of tools used to create and test programs
for UNIX Systems. These tools allow high-level program
coding and source-level testing of code. The C language is
implemented for high-level programming; it contains many
control and structuring facilities that greatly simplify the task
of algorithm construction. Within the SGS, a C compiler
converts C programs into assembly language programs that are
ultimately translated into object files by the assembler, as.
The link editor, Id, collects and merges object files into
executable load modules. Each of these tools preserves all
symbolic information necessary for meaningful symbolic testing
at C-Ianguage source level. In addition, a utility package aids
in testing and debugging.

USE OF THE COMPILER
The main command of the SGS is cc; it operates much like the
UNIX system cc command. To use the compiler, first create a
file (typically by using the UNIX system text editor) containing
C source code. The name of the file created must have a special
format; the last two characters of the file name must be .c as
in jile1.c.

Next, enter the SGS command

5-1

COMPILER AND C LANGUAGE

cc options file. c

to invoke the compiler on the C source file file.c with the
appropriate options selected. The compilation process creates
an absolute binary file named a.out that reflects the contents
of file.c and any referenced library routines. The resulting
binary file, a.out, can then be executed on the target system.

Options can control the steps in the compilation process. When
none of the controlling options are used, and only one file is
named, cc automatically calls the assembler, as, and the link
editor, ld, thus resulting in an executable file, named a.out. If
more than one file is named in a command,

cc file1.c file2.c file3.c

then the output will be placed on files file 1. 0, file2.0, and file3.o.
These files can then be linked and executed through the ld
command.

The cc compiler also accepts input file names with the last two
characters .s. The .s signifies a source file in assembly
language. The cc compiler passes this type of file directly to
as, which assembles the file and places the output on a file of
the same name with .0 substituted for .s.

Cc is based on a portable C compiler and translates C source
files into assembly code. Whenever the command cc is used,
the standard C preprocessor (which resides on the file llih/cpp)
is called. The preprocessor performs file inclusion and macro
substitution. The preprocessor is always invoked by cc and
need not be called directly by the programmer. Then, unless
the appropriate flags are set, cc calls the assembler and the
link editor to produce an executable file.

5-2

COMPILER AND C LANGUAGE

COMPILER OPTIONS
All options recognized by the cc command are listed below:

Option Argument Description

-# none Display without executing each
command that cc generates.

-c none Suppress the link-editing phase
of compilation and force an
object file to be produced
even if only one file is
compiled.

-p none Arrange for the compiler to produce
code which counts the number
of times each routine is called;
also, if link editing takes
place, replace the standard
startoff routine by one which
automatically calls monitor(3C)
at the start and arrange
to write out a mon.out file
at normal termination of
execution of the object program.
An execution profile can be
generated by use of prof(l).

-f none Link the object program with the
floating-point interpreter
for systems without
hard ware £loa ting-poin t.

-g none Cause the compiler to generate
additional information needed
for the use of sdb(l).

5-3

COMPILER AND C LANGUAGE

-0 none

-8 none

-E none

-P none

-B string

-t [pO 12al)Find only the

5-4

This flag and -0 takes
(described below) are mutually
exclusive. -g takes precedence
when both are specified.

Invoke an object-code
optimizer. This flag and -g
(described above) are mutually
exclusive. -g takes precedence
w hen both are specified.

Com pile the named C program
and leave the assembler
language ou tpu t on corre
sponding files suffixed .s.

Run only cpp(l)
on the named C programs
and send the result to
standard output.

Run only cpp(l) on
the named C programs,
and leave the result on
corresponding files suffixed .i.

Construct pathnames
for subsitute compiler,
assem bIer and link editor
passes by concatenating
string with the
suffixes cpp, cl, c2, as
and ld. If string is
empty it is taken to be /lib/ o.

designated compiler,

-w

-d

COMPILER AND C LANGUAGE

assembler and link editor
passes in the file whose
names are constructed by
a - B option. In the absence
of a - B option, the string
is taken to be I llibl In -t
"" is equivalent to -tp012.

c,argl[,arg2 ...]Hand off the argument(s) argi

none

to pass c, where c is one of
[p012al], indicating preprocessor,
compiler first pass, compiler second
pass, optimizer, assembler, or link
editor, respectively.

This option is no longer
allowed because of a conflict of
meaning. The - W option must be used
to specify precisely its destination.
To indicate the -dn option for the
VAX assembler use -Wa, -dn. To
indicate the -d option for the link
editor, use -WI,-d.

This part provides additional information for those options not
completely described above.

By using appropriate options, compilation can be terminated
early to produce one of several intermediate translations such
as relocatable object files (-c option), assembly source
expansions for C code (-8 option), or the output of the
preprocessor (-P option). In general, the intermediate files
may be saved and later resubmitted to the cc command, with
other files or libraries included as necessary.

When compiling C source files, the most common practice is to
use the -c option to save relocatable files. Subsequent changes

5-5

COMPILER AND C LANGUAGE

to one file do not then require that the others be recompiled. A
separate call to cc without the -c option then creates the linked
executable a.out file. A relocatable object file created under
the -c option is named by adding a .0 suffix to the source file
name.

The -W option provides the mechanism to specify options for
each step that is normally invoked from the cc command line.
These steps are preprocessing, the first pass of the compiler,
the second pass of the compiler, optimization, assembly, and
link editing. At this time, only assembler and link editor
options can be used with the -W option.

When the -P option is used, the compilation process stops after
only preprocessing, with output left on file. i. This file will be
unsuitable for subsequent processing by cc.

The -0 option decreases the size and increases the execution
speed of programs by moving, merging, and deleting code.

The -g option produces information for a symbolic debugger.
The SGS currently supports the SDB symbolic debugger.

5-6

Chapter 6

A C PROGRAM CHECKER-"lint"

PAGE

GENERAL.. 6-1

Usage " 6-1

TYPES OF MESSAGES 6-3

Unused Variables and Functions. 6-4

Set/U sed Information. 6-5

Flow of Control. 6-6 ,
Function Values. 6-7

Type Checking. 6-8

Type Casts. .. 6-10

Nonportable Character Use. .. 6-10

Strange Constructions .. 6-11

Old Syntax. .. 6-13

Pointer Alignment. .. 6-14

Multiple Uses and Side Effects 6-14

Chapter 6

A C PROGRAM CHECKER-"lint"

GENERAL
The lint program examines C language source programs
detecting a number of bugs and obscurities. It enforces the
type rules of C language more strictly than the C compiler. It
may also be used to enforce a number of portability restrictions
involved in moving programs between different machines
and/ or operating systems. Another option detects a number of
wasteful or error prone constructions which nevertheless are
legal. The lint program accepts multiple input files and library
specifications and checks them for consistency.

Usage

The lint command has the form:

lint [options] files '" library-descriptors ...

where options are optional flags to control lint checking and
messages; files are the files to be checked which end with .c or
.In; and library-descriptors are the names of libraries to be used
in checking the program.

The options that are currently supported by the lint command
are:

-a

-b

Suppress messages about assignments of long
values to variables that are not long.

Suppress messages about break statements that
cannot be reached.

A C PROGRAM CHECKER-"lint"

-c

-h

-n

-0 name

-p

-u

-v

-x

Only check for intra-file bugs; leave external
information in files suffixed with .In.

Do not apply heuristics (which attempt to detect
bugs, improve style, and reduce waste).

Do not check for compatibility with either the
standard or the portable lint library.

Create a lint library from input files named llib
lname.ln.

Attempt to check portability to other dialects of C
language.

Suppress messages about function and external
variables used and not defined or defined and not
used.

Suppress messages about unused arguments in
functions.

Do not report variables referred to by external
declarations but never used.

When more than one option is used, they should be combined
into a single argument, such as -ab or -xha.

The names of files that contain C language programs should
end with the suffix .c which is mandatory for lint and the C
compiler.

The lint program accepts certain arguments, such as:

-ly

These arguments specify libraries that contain functions used
in the C language program. The source code is tested for

6-2

A C PROGRAM CHECKER-"lint"

compatibility with these libraries. This is done by accessing
library description files whose names are constructed from the
library arguments. These files all begin with the comment:

/* LINTLIBRARY * /

which is followed by a series of dummy function definitions.
The critical parts of these definitions are the declaration of the
function return type, whether the dummy function returns a
value, and the number and types of arguments to the function.
The V ARARGS and ARGSUSED comments can be used to
specify features of the library functions.

The lint library files are processed almost exactly like ordinary
source files. The only difference is that functions which are
defined on a library file but are not used on a source file do not
result in messages. The lint program does not simulate a full
library search algorithm and will print messages if the source
files contain a redefinition of a library routine.

By default, lint checks the programs it is given against a
standard library file which contains descriptions of the
programs which are normally loaded when a C language
program is run. When the -p option is used, another file is
checked containing descriptions of the standard library routines
which are expected to be portable across various machines. The
-n option can be used to suppress all library checking.

TYPES OF MESSAGES
The following paragraphs describe the major categories of
messages printed by lint.

6-3

A C PROGRAM CHECKER-"lint"

Unused Variables and Functions

As sets of programs evolve and develop, previously used
variables and arguments to functions may become unused. It is
not uncommon for external variables or even entire functions to
become unnecessary and yet not be removed from the source.
These types of errors rarely cause working programs to fail, but
are a source of inefficiency and make programs harder to
understand and change. Also, information about such unused
variables and functions can occasionally serve to discover bugs.

The lint program prints messages about variables and
functions which are defined but not otherwise mentioned. An
exception is variables which are declared through explicit
extern statements but are never referenced; thus the
statement

extern double sin();

will evoke no comment if sin is never used. Note that this
agrees with the semantics of the C compiler. In some cases,
these unused external declarations might be of some interest
and can be discovered by using the -x option with the lint
command.

Certain styles of programming require many functions to be
written with similar interfaces; frequently, some of the
arguments may be unused in many of the calls. The -v option
is available to suppress the printing of messages about unused
arguments. When -v is in effect, no messages are produced
about unused arguments except for those arguments which are
unused and also declared as register arguments. This can be
considered an active (and preventable) waste of the register
resources of the machine.

Messages about unused arguments can be suppressed for one
function by adding the comment:

6-4

A C PROGRAM CHECKER-"lint"

/* ARGSUSED * /

to the program before the function. This has the effect of the
-v option for only one function. Also, the comment:

/* V ARARGS * /

can be used to suppress messages about variable number of
arguments in calls to a function. The comment should be added
before the function definition. In some cases, it is desirable to
check the first several arguments and leave the later arguments
unchecked. This can be done with a digit giving the number of
arguments which should be checked. For example:

/* V ARARGS2 * /

will cause only the first two arguments to be checked.

There is one case where information about unused or undefined
variables is more distracting than helpful. This is when lint is
applied to some but not all files out of a -collection which are to
be loaded together. In this case, many of the functions and
variables defined may not be used. Conversely, many functions
and variables defined elsewhere may be used. The -u option
may be used to suppress the spurious messages which might
otherwise appear.

Set/U sed Information

The lint program attempts to detect cases where a variable is
used before it is set. The lint program detects local variables
(automatic and register storage classes) whose first use appears
physically earlier in the input file than the first assignment to
the variable. It assumes that taking the address of a variable
constitutes a "use", since the actual use may occur at any later
time, in a data dependent fashion.

6-5

A C PROGRAM CHECKER-"lint"

The restriction to the physical appearance of variables in the
file makes the algorithm very simple and quick to implement
since the true flow of control need not be discovered. It does
mean that lint can print messages about some programs which
are legal, but these programs would probably be considered bad
on stylistic grounds. Because static and external variables are
initialized to zero, no meaningful information can be discovered
about their uses. The lint program does deal with initialized
automatic variables.

The set/used information also permits recognition of those local
variables which are set and never used. These form a frequent
source of inefficiencies and may also be symptomatic of bugs.

Flow of Control

The lint program attempts to detect unreachable portions of
the programs which it processes. It will print messages about
unlabeled statements immediately following goto, break,
continue, or return statements. An attempt is made to
detect loops which can never be left at the bottom and to
recognize the special cases while(l) and for(;;) as infinite
loops. The lint program also prints messages about loops
which cannot be entered at the top. Some valid programs may
have such loops which are considered to be bad style at best
and bugs at worst.

The lint program has no way of detecting functions which are
called and never returned. Thus, a call to exit may cause an
unreachable code which lint does not detect. The most serious
effects of this are in the determination of returned function
values (see "Function Values"). If a particular place in the
program cannot be reached but it is not apparent to lint, the
comment

/* NOTREACHED */

6-6

A C PROGRAM CHECKER-"lint"

can be added at the appropriate place. This comment will
inform lint that a portion of the program cannot be reached.

The lint program will not print a message about unreachable
break statements. Programs generated by yacc and
especially lex may have hundreds of unreachable break
statements. The -0 option in the C compiler will often
eliminate the resulting object code inefficiency. Thus, these
unreached statements are of little importance. There is
typically nothing the user can do about them, and the resulting
messages would clutter up the lint output. If these messages
are desired, lint can be invoked with the -b option.

Function Values

Sometimes functions return values that are never used.
Sometimes programs incorrectly use function "values" that
have never been returned. The lint program addresses this
problem in a number of ways.

Locally, within a function definition, the appearance of both

return(expr);

and

return;

statements is cause for alarm; the lint program will give the
message

function name contains return(e) and return

The most serious difficulty with this is detecting when a
function return is implied by flow of control reaching the end
of the function. This can be seen with a simple example:

6-7

A C PROGRAM CHECKER-"lint"

f (a) {
if (a) return (3);
g ();
}

Notice that, if a tests false, f will call g and then return with
no defined return value; this will trigger a message from lint.
If g, like exit, never returns, the message will still be produced
when in fact nothing is wrong.

In practice, some potentially serious bugs have been discovered
by this feature.

On a global scale, lint detects cases where a function returns a
value that is sometimes or never used. When the value is never
used, it may constitute an inefficiency in the function
definition. When the value is sometimes unused, it may
represent bad style (e.g., not testing for error conditions).

The dual problem, using a function value when the function
does not return one, is also detected. This is a serious problem.

Type Checking

The lint program enforces the type checking rules of C
language more strictly than the compilers do. The additional
checking is in four major areas:

• Across certain binary operators and implied assignments

• At the structure selection operators

• Between the definition and uses of functions

• In the use of enumerations.

6-8

A C PROGRAM CHECKER-"lint"

There are a number of operators which have an implied
balancing between types of the operands. The assignment,
conditional (?:), and relational operators have this property.
The argument of a return statement and expressions used in
initialization suffer similar conversions. In these operations,
char, short, int, long, unsigned, float, and double types
may be freely intermixed. The types of pointers must agree
exactly except that arrays of x's can, of course, be intermixed
with pointers to x's.

The type checking rules also require that, in structure
references, the left operand of the -> be a pointer to structure,
the left operand of the. be a structure, and the right operand
of these operators be a member of the structure implied by the
left operand. Similar checking is done for references to unions.

Strict rules apply to function argument and return value
matching. The types float and double may be freely matched,
as may the types char, short, int, and unsigned. Also,
pointers can be matched with the associated arrays. Aside
from this, all actual arguments must agree in type with their
declared counterparts.

With enumerations, checks are made that enumeration
variables or members are not mixed with -other types or other
enumerations and that the only operations applied are =,
initialization, ==, !=, and function arguments and return
values.

If it is desired to turn off strict type checking for an expression,
the comment

/* NOSTRICT */

should be added to the program immediately before the
expression. This comment will prevent strict type checking for
only the next line in the program.

6-9

A C PROGRAM CHECKER-"lint"

Type Casts

The type cast feature in C language was introduced largely as
an aid to producing more portable programs. Consider the
assignment

p = 1;

where p is a character pointer. The lint program will print a
message as a result of detecting this. Consider the assignment

p = (char *)1 ;

in which a cast has been used to convert the integer to a
character pointer. The programmer obviously had a strong
motivation for doing this and has clearly signaled his
intentions. It seems harsh for lint to continue to print
messages about this. On the other hand, if this code is moved
to another machine, such code should be looked at carefully.
The -c flag controls the printing of comments about casts.
When -c is in effect, casts are treated as though they were
assignments subject to messages; otherwise, all legal casts are
passed without comment, no matter how strange the type
mixing seems to be.

N onportable Character Use

On some systems, characters are signed quantities with a range
from -128 to 127. On other C language implementations,
characters take on only positive values. Thus, lint will print
messages about certain comparisons and assignments as being
illegal or nonportable. For example, the fragment

char c;

if((c = getchar(» < 0) .,.

6-10

A C PROGRAM CHECKER-"lint"

will work on one machine but will fail on machines where
characters always take on positive values. The real solution is
to declare c as an integer since getchar is actually returning
integer values. In any case, lint will print the message
"nonportable character comparison".

A similar issue arises with bit fields. When assignments of
constant values are made to bit fields, the field may be too
small to hold the value. This is especially true because on some
machines bit fields are considered as signed quantities. While
it may seem logical to consider that a two-bit field declared of
type int cannot hold the value 3, the problem disappears if the
bit field is declared to have type unsigned.

Strange Constructions

Several perfectly legal, but somewhat strange, constructions are
detected by lint. The messages hopefully encourage better code
quality, clearer style, and may even point out bugs. The-h
option is used to supress these checks. For example, in the
statement

*p++ ;

the * does nothing. This provokes the message "null effect"
from lint. The following program fragment:

unsigned x ;
if(x < 0) ...

results in a test that will never succeed. Similarly, the test

if(x > 0) ...

is equivalent to

6-11

A C PROGRAM CHECKER-"lint"

if(x != 0)

which may not be the intended action. The lint program will
print the message "degenerate unsigned comparison" in these
cases. If a program contains something similar to

if(1 != 0) ...

lint will print the message "constant in conditional context"
since the comparison of 1 with 0 gives a constant result.

Another construction detected by lint involves operator
precedence. Bugs which arise from misunderstandings about
the precedence of operators can be accentuated by spacing '.md
formatting, making such bugs extremely hard to find. For
example, the statement

if(x&077 == 0) ...

or

x«2 + 40

probably do not do what was intended. The best solution is to
parenthesize such expressions, and lint encourages this by an
appropriate message.

Finally, when the -h option has not been used, lint prints
messages about variables which are redeclared in inner blocks
in a way that conflicts with their use in outer blocks. This is
legal but is considered to be bad style, usually unnecessary,
and frequently a bug.

6-12

A C PROGRAM CHECKER-"lint"

Old Syntax

Several forms of older syntax are now illegal. These fall into
two classes, assignment operators and initialization.

The older forms of assignment operators (e.g., =+, 000)
could cause ambiguous expressions, such as:

a =-1;

which could be taken as either

a =-1;

or

a = -1;

The situation is especially perplexing if this kind of ambiguity
arises as the result of a macro substitution. The newer and
preferred operators (e.g., +=, , ...) have no such
ambiguities. To encourage the abandonment of the older forms,
lint prints messages about these old-fashioned operators.

A similar issue arises with initialization. The older language
allowed

int x 1 ;

to initialize x to 1. This also caused syntactic difficulties. For
example, the initialization

int x (-1) ;

6-13

A C PROGRAM CHECKER-"lint"

looks somewhat like the beginning of a function definition:

int x (y) { ...

and the compiler must read past x in order to determine the
correct meaning. Again, the problem is even more perplexing
when the initializer involves a macro. The current syntax
places an equals sign between the variable and the initializer:

int x = -1 ;

This is free of any possible syntactic ambiguity.

Pointer Alignment

Certain pointer assignments may be reasonable on some
machines and illegal on others due entirely to alignment
restrictions. The lint program tries to detect cases where
pointers are assigned to other pointers and such alignment
problems might arise. The message "possible pointer alignment
problem" results from this situation.

Multiple Uses and Side Effects

In complicated expressions, the best order in which to evaluate
subexpressions may be highly machine dependent. For
example, on machines (like the PDP-II) in which the stack runs
backwards, function arguments will probably be best evaluated
from right to left. On machines with a stack running forward,
left to right seems most attractive. Function calls embedded as
arguments of other functions mayor may not be treated
similarly to ordinary arguments. Similar issues arise with
other operators which have side effects, such as the assignment
operators and the increment and decrement operators.

In order that the efficiency of C language on a particular
machine not be unduly compromised, the C language leaves the

6-14

A C PROGRAM CHECKER-"lint"

order of evaluation of complicated expressions up to the local
compiler. In fact, the various C compilers have considerable
differences in the order in which they will evaluate complicated
expressions. In particular, if any variable is changed by a side
effect and also used elsewhere in the same expression, the
result is explicitly undefined.

The lint program checks for the important special case where a
simple scalar variable is affected. For example, the statement

a[i] = b[i++];

will cause lint to print the message

warning: i evaluation order undefined

in order to call attention to this condition.

6-15

Chapter 7

SYMBOLIC DEBUGGING PROGRAM-"sdb"

PAGE

GENERAL .. 7-1

USAGE... 7-1

Printing a Stack Trace 7-3

Examining Variables . 7-3

SOURCE FILE DISPLAY AND MANIPULATION............ 7-8

Displaying the Source File 7-8

Changing the Current Source File or

Function ... 7-9

Changing the Current Line in the Source

File. 7-9

A CONTROLLED ENVIRONMENT FOR PROGRAM

TESTING. .. 7-10

Setting and Deleting Breakpoints .. 7-11

Running the Program. .. 7-12

Calling Functions 7-14

MACHINE LANGUAGE DEBUGGING. .. 7-14

Displaying Machine Language Statements. 7-15

Manipulating Registers. .. 7-16

OTHER COMMANDS 7-16

Chapter 7

SYMBOLIC DEBUGGING
PROGRAM-"sdb"

GENERAL
This chapter describes the symbolic debugger sdb(l) as
implemented for C language programs on the UNIX operating
system. The sdb program is useful both for examining "core
images" of aborted programs and for providing an environment
in which execution of a program can be monitored and
controlled.

The sdb program allows interaction with a debugged program
at the source language level. When debugging a core image
from an aborted program, sdb reports which line in the source
program caused the error and allows all variables to be
accessed symbolically and displayed in the correct format.

Breakpoints may be placed at selected statements or the
program may be single stepped on a line-by-line basis. To
facilitate specification of lines in the program without a source
listing, sdb provides a mechanism for examining the source
text. Procedures may be called directly from the debugger.
This feature is useful both for testing individual procedures and
for calling user-provided routines which provided formatted
printout of structured data.

USAGE
In order to use the full capabilities of sdb, it is necessary to
compile the source program with the -g option. This causes
the compiler to generate additional information about the
variables and statements of the compiled program. When the
-g option has been specified, sdb can be used to obtain a trace

7-1

sdb

of the called functions at the time of the abort and interactively
display the values of variables.

A typical sequence of shell commands for debugging a core
image is

$ cc -g prgm.c -0 prgm
$ prgm
Bus error - core dumped
$ sdb prgm
main:25: x[i] = 0;
*

The program prgm was compiled with the -g option and then
executed. An error occurred which caused a core dump. The
sdb program is then invoked to examine the core dump to
determine the cause of the error. It reports that the bus error
occurred in function main at line 25 (line numbers are always
relative to the beginning of the file) and outputs the source text
of the offending line. The sdb program then prompts the user
with an * indicating that it awaits a command.

It is useful to know that sdb has a notion of current function
and current line. In this example, they are initially set to main
and "25", respectively.

In the above example, sdb was called with one argument,
prgm. In general, it takes three arguments on the command
line. The first is the name of the executable file which is to be
debugged; it defaults to a.out when not specified. The second is
the name of the core file, defaulting to core; and the third is
the name of the directory containing the source of the program
being debugged. The sdb program currently requires all source
to reside in a single directory. The default is the working
directory. In the example, the second and third arguments
defaulted to the correct values, so only the first was specified.

7-2

sdb

It is possible that the error occurred in a function which was
not compiled with the -g option. In this case, sdb prints the
function name and the address at which the error occurred.
The current line and function are set to the first executable line
in main. The sdb program will print an error message if main
was not compiled with the -g option, but debugging can
continue for those routines compiled with the -g option.
Figure 7-1 shows a typical example of sdb usage.

Printing a Stack Trace

It is often useful to obtain a listing of the function calls which
led to the error. This is obtained with the t command. For
example:

*t
sub(x=2,y=3) [prgm.c:25]
inter(i=16012) [prgm.c:96]
maine argc= 1,argv=Ox7fffff5·4,envp=Ox7fffff5c) [prgm.c:15]

This indicates that the error occurred within the function sub
at line 25 in file prgm.c. The sub function was called with the
arguments x=2 and y=3 from inter at line 96. The inter
function was called from main at line 15. The main function is
always called by the shell with three arguments often referred
to as argc, argv, and envp. Note that argv and envp are
pointers, so their values are printed in hexadecimal.

Examining Variables

The sdb program can be used to display variables in the
stopped program. Variables are displayed by typing their name
followed by a slash, so

*errflagl

7-3

sdb

causes sdb to display the value of variable errjlag. Unless
otherwise specified, variables are assumed to be either local to
or accessible from the current function. To specify a different
function, use the form

*sub:i1

to display variable i in function sub. F77 users can specify a
common block variable in the same manner.

The sdb program supports a limited form of pattern matching
for variable and function names. The symbol * is used to
match any sequence of characters of a variable name and? to
match any single character. Consider the following commands

x/
*sub:y?/
**/

The first prints the values of all variables beginning with x, the
second prints the values of all two letter variables in function
sub beginning with y, and the last prints all variables. In the
first and last examples, only variables accessible from the
current function are printed. The command

**:*/

displays the variables for each function on the call stack.

The sdb program normally displays the variable in a format
determined by its type as declared in the source program. To
request a different format, a specifier is placed after the slash.
The specifier consists of an optional length specification
followed by the format. The length specifiers are:

7-4

sdb

b One byte

h Two bytes (half word)

I Four bytes (long word).

The lengths are effective only with the formats d, 0, x, and u.
If no length is specified, the word length of the host machine is
used. A numeric length specifier may be used for the s or a
commands. These commands normally print characters until
either a null is reached or 128 characters are printed. The
number specifies how many characters should be printed.

There are a number of format specifiers available:

c

d

u

o

x

f

g

s

a

p

Character.

Decimal.

Decimal unsigned.

Octal.

Hexadecimal.

32-bit single-precision floating point.

64-bit double-precision floating point.

Assume variable is a string pointer and print
characters starting at the address pointed to by
the variable until a null is reached.

Print characters starting at the variable's address
until a null is reached.

Pointer to function.

7-5

sdb

i Interpret as a machine-language instruction.

For example, the variable i can be displayed with

*i/x

which prints out the value of i in hexadecimal.

The sdb program also knows about structures, arrays, and
pointers so that all of the following commands work.

*array[2] [3]/
*sym.id/
*psym-> usage/
*xsym[20].p->usage/

The only restriction is that array subscripts must be numbers.
Depending on your machine, accessing arrays may be limited to
I-dimensional arrays. Note that as a special case:

*psym->/d

displays the location pointed to by psym in decimal.

Core locations can also be displayed by specifying their absolute
addresses. The command

*1024/

displays location 1024 in decimal. As in C language, numbers
may also be specified in octal or hexadecimal so the above
command is equivalent to both

7-6

sdb

*02000/

and

*Ox400/

It is possible to mix numbers and variables so that

*1000.x/

refers to an element of a structure starting at address 1000, and

*1000->x/

refers to an element of a structure whose address is at 1000.
For commands of the type *1000.x/ and *1000->x/, the sdb
program uses the structure template of the last structure
referenced.

The address of a variable is printed with the =, so

*i=

displays the address of i. Another feature whose usefulness
will become apparent later is the command

*.1

which redisplays the last variable typed.

7-7

sdb

SOURCE FILE DISPLAY AND
MANIPULATION

The sdb program has been designed to make it easy to debug a
program without constant reference to a current source listing.
Facilities are provided which perform context searches within
the source files of the program being debugged and display
selected portions of the source files. The commands are similar
to those of the UNIX system text editor ed(l). Like the editor,
sdb has a notion of current file and line within the file. The
sdb program also knows how the lines of a file are partitioned
into functions, so it also has a notion of current function. As
noted in other parts of this document, the current function is
used by a number of sdb commands.

Displaying the Source File

Four commands exist for displaying lines in the source file.
They are useful for perusing the source program and for
determining the context of the current line. The commands
are:

p

w

z

control-d

Prints the current line.

Window; prints a window of ten lines around
the current line.

Prints ten lines starting at the current line.
Advances the current line by ten.

Scrolls; prints the next ten lines and advances
the current line by ten. This command is used
to cleanly display long segmen ts of the
program.

When a line from a file is printed, it is preceded by its line
number. This not only gives an indication of its relative
position in the file but is also used as input by some sdb
commands.

7-8

sdb

Changing the Current Source File or Function

The e command is used to change the current source file.
Ei ther of the forms

*e function
*e file.c

may be used. The first causes the file containing the named
function to become the current file, and the current line
becomes the first line of the function. The other form causes
the named file to become current. In this case, the current line
is set to the first line of the named file. Finally, an e command
with no argument causes the current function and file named to
be printed.

Changing the Current Line in the Source File

The z and control-d commands have a side effect of changing
the current line in the source file. The following paragraphs
describe other commands that change the current line.

There are two commands for searching for instances of regular
expressions in source files. They are

* /regular expression/
*?regular expression?

The first command searches forward through the file for a line
containing a string that matches the regular expression and the
second searches backwards. The trailing / and ? may be
omitted from these commands. Regular expression matching is
identical to that of ed(l).

The + and - commands may be used to move the current line
forwards or backwards by a specified number of lines. Typing
a new-line advances the current line by one, and typing a

7-9

sdb

number causes that line to become the current line in the file.
These commands may be combined with the display commands
so that

*+15z

advances the current line by 15 and then prints ten lines.

A CONTROLLED ENVIRONMENT FOR
PROGRAM TESTING

One very useful feature of sdb is breakpoint debugging. After
entering sdb, certain lines in the source program may be
specified to be breakpoints. The program is then started with
an sdb command. Execution of the program proceeds as
normal until it is about to execute one of the lines at which a
breakpoint has been set. The program stops and sdb reports
the breakpoint where the program stopped. Now, sdb
commands may be used to display the trace of function calls
and the values of variables. If the user is satisfied the program
is working correctly to this point, some breakpoints can be
deleted and others set; then program execution may be
continued from the point where it stopped.

A useful alternative to setting breakpoints is single stepping.
The sdb program can be requested to execute the next line of
the program and then stop. This feature is especially useful for
testing new programs, so they can be verified on a statement
by-statement basis. If an attempt is made to single step
through a function which has not been compiled with the -g
option, execution proceeds until a statement in a function
compiled with the -g option is reached. It is also possible to
have the program execute one machine level instruction at a
time. This is particularly useful when the program has not been
compiled with the -g option.

7-10

sdb

Setting and Deleting Breakpoints

Breakpoints can be set at any line in a function which contains
executable code. The command format is:

*12b
*proc:12b
*proc:b
*b

The first form sets a breakpoint at line 12 in the current file.
The line numbers are relative to the beginning of the file as
printed by the source file display commands. The second form
sets a breakpoint at line 12 of function proc, and the third sets
a breakpoint at the first line of proc. The last sets a
breakpoint at the current line.

Breakpoints are deleted similarly with the commands

*12d
*proc:12d
*proc:d

In addition, if the command d is given alone, the breakpoints
are deleted interactively. Each breakpoint location is printed,
and a line is read from the user. If the line begins with a y or
d, the breakpoint is deleted.

A list of the current breakpoints is printed in response to a B
command, and the D command deletes all breakpoints. It is
sometimes desirable to have sdb automatically perform a
sequence of commands at a breakpoint and then have execution
continue. This is achieved with another form of the b
command.

*12b t;x/

7-11

sdb

causes both a trace back and the value of x to be printed each
time execution gets to line 12. The a command is a variation of
the above command. There are two forms:

*proc:a
*proc:12a

The first prints the function name and its arguments each time
it is called, and the second prints the source line each time it is
about to be executed. For both forms of the a command,
execution continues after the function name or source line is
printed.

Running the Program

The r command is used to begin program execution. It restarts
the program as if it were invoked from the shell. The
command

*r args

runs the program with the given arguments as if they had been
typed on the shell command line. If no arguments are
specified, then the arguments from the last execution of the
program are used. To run a program with no arguments, use
the R command.

After the program is started, execution continues until a
breakpoint is encountered, a signal such as INTERRUPT or QUIT
occurs, or the program terminates. In all cases after an
appropriate message is printed, control returns to sdb.

The c command may be used to continue execution of a stopped
program. A line number may be specified, as in:

7-12

sdb

*proc:12c

This places a temporary breakpoint at the named line. The
breakpoint is deleted when the c command finishes. There is
also a c command which continues but passes the signal which
stopped the program back to the program. This is useful for
testing user-written signal handlers. Execution may be
continued at a specified line with the g command. For
example:

*17 g

continues at line 17 of the current function. A use for this
command is to avoid executing a section of code which is known
to be bad. The user should not attempt to continue execution in
a function different than that of the breakpoint.

The s command is used to run the program for a single line. It
is useful for slowly executing the program to examine its
behavior in detail. An important alternative is the S command.
This command is like the s command but does not stop within
called functions. It is often used when one is confident that the
called function works correctly but is interested in testing the
calling routine.

The i command is used to run the program one machine level
instruction at a time while ignoring the signal which stopped
the program. Its uses are similar to the s command. There is
also an I command which causes the program to execute one
machine level instruction at a time, but also passes the signal
which stopped the program back to the program.

7-13

sdb

Calling Functions

I t is possible to call any of the functions of the program from
sdb. This feature is useful both for testing individual functions
with different arguments and for calling a function which
prints structured data in a nice way. There are two ways to
call a function:

*proc(argl, arg2, ...)
*proc(argl, arg2, ...)/m

The first simply executes the function. The second is intended
for calling functions (it executes the function and prints the
value that it returns). The value is printed in decimal unless
some other format is specified by m. Arguments to functions
may be integer, character or string constants, or values of
variables which are accessible from the current function.

An unfortunate bug in the current implementation is that if a
function is called when the program is not stopped at a
breakpoint (such as when a core image is being debugged) all
variables are initialized before the function is started. This
makes it impossible to use a function which formats data from
a dump.

MACHINE LANGUAGE DEBUGGING
The sdb program has facilities for examining programs at the
machine language level. It is possible to print the machine
language statements associated with a line in the source and to
place breakpoints at arbitrary addresses. The sdb program can
also be used to display or modify the contents of the machine
registers.

7-14

sdb

Displaying Machine Language Statements

To display the machine language statements associated with
line 25 in function main, use the command

*main:25?

The? command is identical to the / command except that it
displays from text space. The default format for printing text
space is the i format which interprets the machine language
instruction. The control-d command may be used to print the
next ten instructions.

Absolute addresses may be specified instead of line numbers by
appending a : to them so that

*Oxl024:?

displays the contents of address Oxl02-'+ in text space. Note that
the command

*Oxl024?

displays the instruction corresponding to line Oxl02-'+ in the
current function. It is also possible to set or delete a
breakpoint by specifying its absolute address:

*Oxl024:b

sets a breakpoint at address Oxl02-'+.

7-15

sdb

Manipulating Registers

The x command prints the values of all the registers. Also,
individual registers may be named instead of variables by
appending a % to their name so that

*r3%

displays the value of register r3.

OTHER COMMANDS
To exit sdb, use the q command.

The! command is identical to that in ed(l) and is used to have
the shell execute a command.

It is possible to change the values of variables when the
program is stopped at a breakpoint. This is done with the
command

*variable!value

which sets the variable to the given value. The value may be a
number, character constant, register, or the name of another
variable. If the variable is of type float or double, the value can
also be a floating-point constant.

7-16

$ cat testdiv2.c
main(argc, argv, envp)
char **argv, **envp; {

int i;
i = div2(-1);
printf(" -1/2 = % d\n" , i);

}
div2(i) {

int j;

}

j = i»I;
return(j);

$ cc -g testdiv2.c
$ a.out
-1/2 = -1
$ sdb
No core image
*/~div2

7: div2(i) {

Warning message from sdb
Search for function II div2"
It starts on line 7

*z # Print the next few lines
7: div2(i) {
8: int j;
9: j = i»I;
10: return(j);
11: }
*div2:b # Place breakpoint at beginning of II div2"
div2:9 b # Sdb echoes proc name and line number
*r # Run the function
a.out # Sdb echoes command line executed
Breakpoint at # Executions stops just before line 9
div2:9: j = i»I;
*t # Print trace of subroutine calls
div2(i=-I) [testdiv2.c:9]

sdb

main(argc= l,argv=Ox7fffff50,envp=Ox7fffff58) [testdi v2.c:4]
*i/ # Print i
-1
*s # Single step
div2:10: return(j); # Execution stops before line 10
*j/ # Print j
-1

7-17

Chapter 8

UNIX SYSTEM ASSEMBLER GUIDE FOR
UNIX PC

PAGE

INTRODUCTION .. 8-1

Warnings .. 8-1

Comparison Instructions. 8-1

Overloading of Opcodes . 8-2

USE Of THE ASSEMBLER . 8-3

GENERAL SYNTAX RULES............................... 8-4

Format of Assembly Language Line. 8-4

Comments. 8-5

Identifiers ... 8-5

Register Identifiers 8-6

Constants . 8-6

Numerical Constants. 8-6

Character Constants 8-7

Other Syntactic Details . 8-8

SEGMENTS, LOCATION COUNTERS, AND

LABELS.. 8-8

Segments .. 8-8

Location Counters and Labels 8-9

TyPES... 8-10

EXPRESSIONS ,. 8-10

PSEUDO-OPERATIONS 8-12

Data Initialization Operations. .. 8-12

Symbol Counter Control Operations. 8-14

Location Counter Control Operations. 8-15

Symbolic Debugging Operations. 8-15

Switch Table Operation. .. 8-18

SPAN-DEPENDENT OPTIMIZATION. .. 8-20

Chapter 8

UNIX SYSTEM ASSEMBLER GUIDE
FOR UNIX PC

INTRODUCTION

This is a reference manual for MAS, the UNIX System
assembler for the Motorola 68010 [for historical reasons as(1)
and mas(1) are synonymous]. Programmers familiar with the
MC68010 should be able to program in MAS referring to this
manual, but this is not a manual for the processor itself.
Details about the effects of instructions, meaning of status
register bits, handling of interrupts, and many other issues are
not dealt with here. This manual, therefore, should be used in
conjunction with the Motorola publication, MC68010 16-Bit
Virtual Memory Microprocessor Manual.

Warnings

A few important warnings to the MAS user should be
emphasized at the outset. Though for the most part there is a
direct correspondence between MAS notation and the notation
used in the MC68010 User's Manual, the following exceptions
could lead the unsuspecting user to write incorrect code.

Comparison Instructions

First, the order of the operands in compare instructions follows
one convention in the MC68010. Using the convention of the
MC68010 User's Manual one might write

CMPW 05,03

BLE IS LESS

Is (03-05) less than or
equal to zero?
Branch if yes.

8-1

UNIX SYSTEM ASSEMBLER FOR UNIX PC

Using the MAS convention one would write rather

cmp.w

ble

%d3, %d5

is less

Is (d3-d5) less than or
equal to zero?
Branch if yes.

MAS follows the convention used by other assemblers
supported in the UNIX System (both the 3B20S and the VAX
follow this convention). This convention makes for
straightforward reading of compare-and-branch instruction
sequences, but does nonetheless lead to the peculiarity that if a
compare instruction is replaced by a subtract instruction, the
effect on the condition codes will be entirely different. This
may be confusing to programmers who are used to thinking of
a comparison as a subtraction whose result is not stored. But
users of MAS who become accustomed to the convention will
find that both the compare and subtract notations make sense
in their respective contexts.

Overloading of Opcodes

Another issue that users must be aware of arises from the
MC68010's use of several different instructions to do more or
less the same thing. For example, the MC68010 User's Manual
lists the instructions SUB, SUBA, SUBI, and SUBQ, which all
have the effect of subtracting their source operand from their
destination operand. MAS provides the convenience of allowing
all these operations to be specified by a single assembly
instruction sub. On the basis of the operands given to the sub
instruction, the MAS assembler selects the appropriate
MC68010 operation code.

The danger created by this convenience is that it could leave
the misleading impression that all forms of the SUB operation
are semantically identical. In fact, they are not. The careful
reader of the MC68010 User's Manual will notice that whereas
SUB, SUBI, and SUBQ all affect the condition codes in a
consistent way, SUBA does not affect the condition codes at all.

8-2

UNIX SYSTEM ASSEMBLER FOR UNIX PC

Consequently, the MAS user must be aware that when the
destination of a sub instruction is an address register (which
causes the sub to be mapped into the operation code for SUBA),
the condition codes will not be affected.

USE Of THE ASSEMBLER
The UNIX System command mas invokes the assembler and
has the following syntax:

mas [-0 output] file

or

as [-0 output] file

This causes the named file to be assembled. The output of the
assembly is left on the file output specified with the -0 flag. If
no such specification is made, the output is left in the file
whose name is formed by removing the .s suffix, if there is one,
from the input file name and appending a .0 suffix.

8-3

UNIX SYSTEM ASSEMBLER FOR UNIX PC

GENERAL SYNTAX RULES

Format of Assembly Language Line

Typical lines of MAS assembly code look like these:

Clear a block of memory at location %a3

text 2
mov.w

loop: clr.l
dbf

&const,%dl
(%a3)+
%dl,loop # go back for const

repetitions

init2: clr.l count; clr.l credit;
clr.l debit;

These general points about the example should be noted:

8-4

An identifier occurring at the beginning of a line and
followed by a colon (:) is a label. One or more labels may
precede any assembly language instruction or pseudo
operation. See also Location Counters and Labels which
follows.

A line of assembly code need not include an instruction. It
may consist of a comment alone (introduced by #), a label
alone (terminated by:), or it may be entirely blank.

It is good practice to use tabs to align assembly language
operations and their operands into columns, but this is not
a requirement of the assembler. An opcode may appear at
the beginning of the line, if desired, and spaces may
precede a label. A single blank or tab suffices to separate
an opcode from its operands. Additional blanks and tabs
are ignored by the assembler.

UNIX SYSTEM ASSEMBLER FOR UNIX PC

It is permissible to write several instructions on one line by
separating them by semicolons. The semicolon is
syntactically equivalent to a newline. But a semicolon
inside a comment is ignored.

Comments

Comments are introduced by the character # and continue to
the end of the line. Comments may appear anywhere and are
completely disregarded by the assembler.

Identifiers

An identifier is a string of characters taken from the set a-z,
A-Z, _, -, %, and 0-9. The first character of an identifier must
be a letter (upper or lower case) or an underscore. Upper and
lower case letters are distinguished;

con35 and CON35

are two distinct identifiers.

There is no limit on the length of an identifier.

The value of an identifier is established by the set pseudo
opera tion (see Symbol Counter Control Operations) or by using
it as a label (see Location Counters and Labels).

The character - has special significance to the assembler. A
used alone, as an identifier, means "the current location." A
used as the first character in an identifier becomes a "." in the
symbol table, allowing symbols such as .eos and .Ofake to make
it into the symbol table, as required by the Common Object File
Format.

8-5

UNIX SYSTEM ASSEMBLER FOR UNIX PC

Register Identifiers

A register identifier is an identifier preceded by the character
%, and represents one of the MC68010 processor's registers.
The predefined resister identifiers are:

%dO %d4 %aO %a4 %cc %usp
%d1 %d5 %a1 $a5 %pc %fp
%d2 %d6 %a2 %a6 %sp
%d3 %d7 %a3 %a7 %sr

Note: The identifiers % a7 and % sp represent one and
the same machine register. Likewise, % a6 and % fp are
equivalent. Use of both % a7 and % sp, or % a6 and % fp,
in the same program may result in confusion.

Constants

MAS deals only with integer constants. They may be entered
in decimal, octal, or hexadecimal, or they may be entered as
character constants. Internally, MAS treats all constants as
32-bit binary two's complement quantities.

Numerical Constants

A decimal constant is a string of digits beginning with a non
zero digit.

An octal constant is a string of digits beginning with zero.

A hexadecimal constant consists of the characters Ox or OX
followed by a string of characters from the set 0-9, a-f, and A
F. In hexadecimal constants, upper and lower case letters are
not distinguished.

8-6

UNIX SYSTEM ASSEMBLER FOR UNIX PC

Examples:

se't const, 35
mov.w &035,%dl
set const,Ox35
mov.w &Oxff,%dl

Character Constants

Decimal 35
Octal 35 (decimal 29)
Hex 35 (decimal 53)
Hex ff (decimal 255)

An ordinary character constant consists of single-quote (')
followed by an arbitrary ASCII character other than \. The
value of the constant is equal to the ASCII code for the
character. Special meaning of characters are overridden when
used in character constants; for example, if # is used, the # is
not introducing a comment.

A special character constant consists of '\ followed by another
character. All the special constants, and examples of ordinary
character constants, are listed here:

Constant Value Meaning

,\b Ox08 Backspace
,\t Ox09 Horizontal Tab
,\n OxOa Newline (Line Feed)
,\v OxOb Vertical Tab
,\f OxOc Form Feed
,\r OxOd Carriage Return
'\\ Ox05c Backslash (\)
" Ox27 Single-Quote
'0 Ox30 Zero
'A Ox41 Capital A
'a Ox61 Lower Case A

8-7

UNIX SYSTEM ASSEMBLER FOR UNIX PC

Other Syntactic Details

A discussion of expression syntax appears in EXPRESSIONS.
Information about the syntax of specific components of MAS
instructions and pseudo-operations is given later in the sections
entitled PSEUDO-OPERATIONS, SPAN-DEPENDENT
OPTIMIZATION, and ADDRESS MODE SYNTAX.

SEGMENTS, LOCATION COUNTERS, AND
LABELS

Segments

A program in MAS assembly language may be broken into
segments known as text, data, and bss segments. The
convention regarding the use of these segments is to place
instructions in text segments, initialized data in data segments,
and uninitialized data in bss segments. However, the assembler
does not enforce this convention; for example, it permits
intermixing of instructions and data in a text segment.

Primarily to simplify compiler code generation, the assembler
permits up to four separate text segments and four separate
data segments named 0, 1, 2, and 3. The assembly language
program may switch freely between them by using assembler
pseudo-operations. (See the section entitled Location Counter
Control Operations.) When generating the object file, the
assembler concatenates the text segments to generate a single
text segment, and the data segments to generate a single data
segment. Thus, the object file contains only one text segment
and only one data segment.

There is only one bss segment to begin with, and it maps
directly into the object file.

Because the assembler keeps together everything from a given
segment when generating the object file, the order in which
information appears in the object file may not be the same as

8-8

UNIX SYSTEM ASSEMBLER FOR UNIX PC

in the assembly language file. For example, if the data for a
program consisted of

data 1 # segment
word Ox1111
data 0 # segment 0
long Oxffffffff
data 1 # segment 1
byte Ox2222

then equivalent object code would be generated by

data
long
word
word

o
Oxffffffff
Ox1111
Ox2222

Location Counters and Labels

The assembler maintains separate location counters for the bss
segment and for each of the text and data segments. The
location counter for a given segment is incremented by one for
each byte generated in that segment.

The location counters allow values to be assigned to labels.
When an identifier is used as a label in the assembly language
input, the current value of the current location counter is
assigned to the identifier. The assembler also keeps track of
which segment the label appeared in. Thus, the identifier
represents a memory location relative to the beginning of a
particular segment.

8-9

UNIX SYSTEM ASSEMBLER FOR UNIX PC

TYPES

Identifiers and expressions may have values of different types:

In the simplest case, an expression (or identifier) may have
an absolute value, such as 29, -5000, or 262143.

An expression (or identifier) may have a value relative to
the start of a particular segment. Such a value is known as
a relocatable value. The memory location represented by
such an expression cannot be known at assembly time, but
the relative values (Le. the difference) of two such
expressions can be known if they refer to the same
segment.

Identifiers which appear as labels have relocatable values:

If an identifier is never assigned a value, it is assumed to
be an undefined external. Such identifiers may be used
with the expectation that their values will be defined in
another program, and hence known at load time; but the
relative values of undefined externals cannot be known.

EXPRESSIONS
For conciseness, the following abbreviations will be useful:

abs absolute expression
reI relocatable expression
ext undefined external

All constants are absolute expressions. An identifier may be
thought of as an expression having the identifier's type.
Expressions may be built up from lesser expressions using the
operators +, -, *. and / according to the following type rules:

8-10

UNIX SYSTEM ASSEMBLER FOR UNIX PC

abs + abs = abs
abs + reI = reI + abs = reI
abs + ext ext + abs ext

abs - abs
reI - abs
ext - abs
reI - reI

abs
reI
ext
abs,

abs * abs = abs
abs / abs = abs
- abs = abs

provided that the two
relocatable expressions
are relative to the
same segment.

Note: Use of a reI-reI expression is dangerous,
particularly when dealing with identifiers from text
segments. The problem is that the assembler will
determine the value of the expression before it has
resolved all questions concerning span-dependent
optimizations. Use this feature at your own risk!

The unary minus operator takes the highest precedence; the
next highest precedence is given to * and /, and lowest
precedence is given to + and binary -. Parentheses may be
used to coerce the order of evaluation.

If the result of a division is a positive non-integer, it will be
truncated towards zero. If the result is a negative non-integer,
the direction of truncation cannot be guaranteed.

8-11

UNIX SYSTEM ASSEMBLER FOR UNIX PC

PSEUDO-OPERATIONS

Data Initialization Operations

byte abs, abs, ...

short abs, abs, ...

long expr, expr, ...

8-12

One or more arguments, separated by
commas, may be given. The values of the
arguments are computed to produce
successive bytes in the assembly output.

One or more arguments, separated by
commas, may be given. The values of the
arguments are computed to produce
successive I6-bit words in the assembly
output.

One or more arguments, separated by
commas, may be given. Each expression
may be absolute, relocatable, or undefined
external. A 32-bit quantity is generated for
each such argument (in the case of
relocatable or undefined external
expressions, the actual value may not be
filled in until load time).

Alternatively, the arguments may be bit
field expressions. A bit-field expression has
the form

n value

where both n and value denote absolute
expression. The quantity n represents a
field width; the low-order n bits of value
become the contents of the bit-field.

space abs

UNIX SYSTEM ASSEMBLER FOR UNIX PC

Successive bit-fields fill up 32-bit long
quantities starting with the high-order part.
If the sum of the lengths of the bit-fields is
less than 32 bits, the assembler creates a
32-bit long with zeros filling out the low
order bits. For example,

long 4:-1, 16:0x7f, 12:0, 5000
and

long 4:-1, 16:0x7f, 5000

are equivalent to

long Oxf007fOOO, 5000

Bit-fields may not span pairs of 32-bit longs.
Thus,

long 24:0xa, 24:0xb, 24:0xc

yields the same thing as

long OxOOOOOaOO, OxOO.OOObOO,
OxOOOOOcOO

The value of abs is computed, and the
resultant number of bytes of zero data is
generated. For example,

space 6

is equivalent to

8-13

UNIX SYSTEM ASSEMBLER FOR UNIX PC

byte 0, 0, 0, 0, 0, 0,

Symbol Counter Control Operations

set identifier, expr
The value of identifier is set equal to expr,
which may be absolute or relocatable.

comm identifier, abs
The named identifier is to be assigned to a
common area of size abs bytes. If identifier
is not defined by another program, the
loader will allocate space for it.

The type of identifier becomes undefined
external.

lcomm identifier, abs

global identifier

8-14

The named identifier is assigned to a local
common of size abs bytes. This results in
allocation of space in the bss segment.

The type of identifier becomes relocatable.

This causes identifier to be externally
visible. If identifier is defined in the
current program, then declaring it global
allows the loader to resolve references to
identifier in other programs.

If identifier is not defined in the current
program, the assembler expects an external
resolution; in this case, therefore, identifier
is global by default.

UNIX SYSTEM ASSEMBLER FOR UNIX PC

Location Counter Control Operations

data abs

text abs

org expr

even

The argument, if present, must evaluate to
0, 1, 2, or 3; this indicates the number of the
data segment into which assembly is to be
directed. If no argument is present,
assembly is directed into data segment O.

The argument, if present, must evaluate to
0, 1, 2, or 3; this indicates the number of the
text segment into which assembly is to be
directed. If no argument is present,
assembly is directed into text segment O.

Before the first data or text operation is
encountered, assembly is by default directed
into text segment O.

The current location counter is set to expr.
Expr must represent a value in the current
segment, and must not be less than the
current location counter.

The current location counter is rounded up
to the next even value.

Symbolic Debugging Operations

The assembler allows for symbolic debugging information to be
placed into the object code file with special pseudo-operations.
The information typically includes line numbers and
information about C language symbols, such as their type and
storage class. the Motorola 68010 SGS C compiler generates
symbolic debugging information when the -g option is used.
Assembler programmers may also include such information in

8-15

UNIX SYSTEM ASSEMBLER FOR UNIX PC

source files.

file and in

The file pseudo-operation passes the name of the source file
into the object file symbol table. It has the form

file "filename"

where filename consists of one to 14 characters.

The in pseudo-operation makes a line number table entry in the
object file. That is, it associates a line number with a memory
location. Usually the memory location is the current location in
text. The format is

in line [,value]

where line is the line number. The optional value is the
address in text, data, or bss to associate with the line number.
the default when value is omitted (which is usually the case) is
the current location in text.

Symbol Attribute Operations

The basic symbolic testing pseudo-operations are def and endef.
These operations enclose other pseudo-operations that assign
attributes to a symbol and must be paired.

def name

endef

8-16

Attribute
Assigning
Operations

UNIX SYSTEM ASSEMBLER FOR UNIX PC

Note 1: def does not define the symbol, although it
does create a symbol table entry. Because an undefined
symbol is treated as external, a symbol which appears in
a def, but which never acquires a value, will ultimately
result in an error at link edit time.

Note 2: To allow the assembler to calculate the sizes of
functions for other SGS tools, each def/endef pair that
defines a function name must be matched by a def/endef
pair after the function in which a storage class of 1-1 is
assigned.

The paragraphs below describe the attribute-assigning
operations. Keep in mind that all of these operations apply to
the symbol name which appeared in the opening def pseudo
operation.

val expr

scl expr

type expr

Assigns the value expr to name. The type of
the expression expr determines with which
section name is associated. If value is -, the
current location in the text section is used.

Declares a storage class for name. the
expression expr must yield an ABSOLUTE
value that corresponds to the C compiler's
internal representation of a storage class.
The special value -1 designates the physical
end of a function.

Declares the C language type of name. The
expression expr must yield an ABSOLUTE
value that corresponds to the C compiler's
internal representation of a basic or derived
type.

8-17

UNIX SYSTEM ASSEMBLER FOR UNIX PC

tag str

line expr

size expr

Associates name with the structure,
enumeration, or union names str which
must have already been declared with
def/ ended pair.

Provides the line number of name, where
name is a block symbol. the expression expr
should yield an ABSOLUTE value that
represents a line number.

Gives a size for name. The expression expr
must yield an ABSOLUTE value. When
name is a structure or an array with a
predetermined extent, expr gives the size in
bytes. For bit fields, the size is in bits.

dim expr 1, expr2, ...
Indicates that name is an array. Each of
the expressions must yield an ABSOLUTE
value that provides the corresponding array
dimension.

Switch Table Operation

The MC68010 SGS C compiler generates a compact set of
instructions for the C language switch construct, of which an
example is shown below.

8-18

UNIX SYSTEM ASSEMBLER FOR UNIX PC

sub.l % 1 , %dO
cmp.l %dO,&4
bhi L%21
add.w %dO,%dO
mov.w 10(%pc,%dO.w),%dO
jmp 6(%pc,%dO.w)
swbeg &5

L%22:
short L%15-L%22
short L%21-L%22
short L%16-L%22
short L%21-L%22
short L%17-L%22

The special swbeg pseudo-operation communicates to the
assembler that the lines following it contain reI-reI
subtractions. Remember that ordinarily such subtractions are
risky because of span-dependent optimization. In this case,
however, the assembler makes special allowances for the
subtraction because the compiler guarantees that both symbols
will be defined in the current assembler file, that one of the
symbols is a fixed distance away from the current location.

The swbeg pseudo-operation takes an argument that looks like
an immediate operand. The argument is the number of lines
that follow swbeg and that contain switch table entries. Swbeg
inserts two words into text. The first is the ILLEGAL
instruction code. The second is the number of table entries that
follow. The, Motorola 68010 SGS disassembler needs the
ILLEGAL instruction as a hint that what follows is a switch
table. Otherwise it would get confused when it tried to decode
the table entries, differences between two symbols, as
instructions.

8-19

UNIX SYSTEM ASSEMBLER FOR UNIX PC

SPAN-DEPENDENT OPTIMIZATION
The assembler makes certain choices about the object code it
generates based on the distance between an instruction and its
operand(s). Choosing the smallest, fastest form is called span
dependent optimization. Span-dependent optimization occurs
most obviously in the choice of object code for branches and
jumps. It also occurs when an operand may be represented by
the program counter relative address mode instead of as an
absolute 2-word (long) address. The span-dependent
optimization capability is normally enabled; the -n command
line flag disables it. When this capability is disabled, the
assembler makes worst-case assumptions about the types of
object code that must be generated.

In the MC68010 Software Generation System, the compiler
generates branch instructions without a specific offset size.
When the optimizer is used, it identifies branches which could
be represented by the short form, and it changes the operation
accordingly. The assembler chooses only between long
and very-long representations for branches.

Branch instructions, such as bra, bsr, bgt, and so on, can have
either a byte or a word pc-relative address operand. A byte
size specification should be used only when the user is sure that
the address intended can be represented in the byte allowed.
The assembler will take one of these instructions with
a byte size specification and generate the byte form of
the instruction without asking questions.

Although the largest offset specification allowed is a word,
large programs could conceivably have need for a branch to a
location not reachable by a word displacement. Therefore,
equivalent long forms of these instructions might be needed.
When the assembler encounters a branch instruction without a
size specification, or with a word size specification, it tries to
choose between the long and very-long forms of the instruction.
If the operand can be represented in a word, then the word
form of the instruction will be generated. Otherwise the very
long form will be generated. For unconditional branches, e.g.,

8-20

UNIX SYSTEM ASSEMBLER FOR UNIX PC

br, bra and bsr, the very-long form is just the equivalent jump
(jmp and jsr) with an absolute address operand (instead of pc
relative). For conditional branches, the equivalent very-long
form is a conditional branch around a jump, where the
conditional test has been reversed.

The following table summarizes span-dependent optimizations.
The assembler chooses only between the long form and very
long form, while the optimizer chooses between the short and
long form for branches (but not bsr).

Assembler Span-Dependent Optimizations

Instruction Short Form Long Form Very Long Form

br,bra,bsr byte offset word offset jmp or jsr with
absolute long
address

conditional byte offset word offset short conditional
branch branch with

reversed condition
around jmp with
absolute long
address

jmp,jsr - pc-rela ti ve absolute long
address address

lea,pea - pc-relative absolute long
address address

8-21

UNIX SYSTEM ASSEMBLER FOR UNIX PC

ADDRESS MODE SYNTAX

The following table summarizes the MAS syntax for MC68010
addressing modes.

In the table, the letter n, as in An or Dn, an or dn, represents
any digit from 0 to 7. The notations Ri and ri represent any of
the MC68010 data or address registers.

The letter d, where it is used to represent a displacement, may
stand for any absolute expression.

It is important to note that expressions used for the Absolute
addressing modes need not be absolute expressions in the sense
defined in TYPES. Although the addresses used in those
addressing modes must ultimately be filled in with constants,
that can be done by the loader-there is no need for the
assembler to be able to compute them. Indeed, the Absolute
Long addressing mode is commonly used for accessing
undefined external addresses.

Effective Address Modes

Motorola MAS Effective Address Mode
Notation Notation

Dn %dn Data Register Direct

An %an Address Register Direct

(An) (%an) Address Register Indirect

An@+ (%an)+ Address Register Indirect
with Postincrement

An@- -(%an) Address Register Indirect
with Predecrement

8-22

UNIX SYSTEM ASSEMBLER FOR UNIX PC

An@(d) d(%an) Address Register Indirect
with Displacement
(d signifies a signed 16-bit
absolute displacement)

An@(d,RLW) d(% an, % rLw) Address Register
An@(d,RLL) d(% an, % ri.l) Indirect with Index

(d signifies a signed
8-bit absolute
displacemen t)

xxx.W xxx Absolute Short Address

(xxx signifies an expression
yielding a signed 16-bit
memory address)

xxx.L xxx Absolute Long Address

(xxx signifies an expression
yielding a 32-bit memory
address)

PC@(d) d(%pc) Program Counter with
Displacement

(d signifies a signed 16-
bit absolute displacement)

PC@(d,RLW) d(% pc. % n.w) Program Counter with Index
PC@(d,RLL) d(% pc, % n.l) (d signifies a signed 8-bit

absolute displacement)

#xxx &xxx Immediate Data

(xxx signifies an absolute
constant expression)

8-23

UNIX SYSTEM ASSEMBLER FOR UNIX PC

MACHINE INSTRUCTIONS
The following table shows how MC68010 instructions should be
written in order to be understood correctly by the MAS
assembler. Several abbreviations are used in the table:

S The letter S, as in add.S, stands for one of the operation
size attribute letters b, w, or 1, representing a byte, word,
or long operation.

A The letter A, as in add.A, stands for one of the address
operation size attribute letters w or 1, representing a word
or long operation.

CC In the context bCC, dbCC, and sec, the letters CC
represent any of the following condition code designations
(except that f and t may not be used in the bCC
instruction):

cc carry clear Is low or same
cs carry set It less than
eq equal mi minus
f false ne not equal
ge greater or equal pI plus
gt greater than t true
hi high vc over clear
hs high or same (=cc) vs overflow set
Ie less or equal
10 low (=cs)

EA This represents an arbitrary effective address.

I An absolute expression, used as an immediate operand.

Q An absolute expression evaluating to a number from 1 to
8.

L A label reference, or any expression representing a
memory address in the current segment. % dx, % dy, % dn,

8-24

UNIX SYSTEM ASSEMBLER FOR UNIX PC

% ax, % ay, and % an represent registers.

MC68010 Instruction Formats

Operation MAS Syntax Meaning

ABCD abcd.b % dy,% dx Add Decimal with
-(%ay) Extend
-(%ax)

ADD add.S EA, %dn Add Binary
%dn,EA

ADDA add.A EA, %an Add Address

ADD I add.S &I,EA Add Immediate

ADDQ add.S &Q,EA Add Quick

ADDX addx.S %dy,%dx Add Extended
-(%ay)
-(%ax)

AND and.S EA, %dn AND Logical
%dn,EA

AND I and.S &I,EA AND Immediate

ANDI and.b &I,%cc AND Immediate
to CCR to Condition Codes

ANDI and.w &I,%sr AND Immediate
to SR to the Status Register

ASL asl.S %ds,%dy Ari thmetic Shift (Left)
&Q,%dy

asl.w &I,EA

8-25

UNIX SYSTEM ASSEMBLER FOR UNIX PC

MC68010 Instruction Formats

Operation MAS Syntax Meaning

ASR asr.S %dx,%dy Arithmetic Shift (Right)
&Q,%dy

asr.w &I,EA

Bcc bCC L Branch Conditionally
(16-bit Displacement)

bCC.b L Branch Conditionally
(Short)
(8-bit Displacement)

BCRG bchg %dn,EA Test a Bit and Change
&I,EA

Note: bchg should be
written with no suffix.
If the second operand is
a data register, .1 is
assumed; otherwise .b is.

BCLR bclr %dn,EA Test a Bit and Clear
&I,EA

Note: bclr should be
written with no suffix.
If the second operand
is a data register, .1 is
assumed; otherwise .b is.

BRA bra L Branch Always
(16-bit Displacement)

bra.b L Branch Always (Short)
(8-bit Displacement)

br L Same as bra

8-26

UNIX SYSTEM ASSEMBLER FOR UNIX PC

MC680I0 Instruction Formats

Operation MAS Syntax Meaning

br.b L Same as bra. b

BSET bset %dn,EA Test a Bit and Set
&I,EA

Note: bset should be
wri tten with no suffix.
If the second operand is a
data register, .1 is
assumed; otherwise .b is.

BSR bsr L Branch to Subroutine
(16-bit Displacement)

bsr.b L Branch to Subroutine
(Short)
(8-bit Displacement)

BTST btst %dn,EA Test a Bit and Set
&I,EA

Note: btst should be
wri tten with no suffix.
If the second operand is a
data register, .1 is
assumed; otherwise . b is.

CHK chk.w EA,%dn Check Register Against
Bounds

CLR clr.S EA Clear an Operand

CMP cmp.S %dn,EA Compare

CMPA cmp.A %an,EA Compare Address

8-27

UNIX SYSTEM ASSEMBLER FOR UNIX PC

MC68010 Instruction Formats

Operation MAS Syntax Meaning
CMPI cmp.S EA,&I Compare Immediate

CMPM cmp.S (%ax)+ Compare Memory
(%ay)+

Note: Order of operands
in MAS is reverse of
that in MC68010 User's
Manual

DBcc dbCC %dn,L Test Condition,
Decrement, and Branch

dbra %dn,L Decrement and Branch
Always

dbr %dn,L Same as dbra

DIVS divs.w EA,%dn Signed Divide

DIVU divu.w EA,%dn Unsigned Divide

EOR eor.S %dn,EA Exclusive OR Logical
EORI eor.S &I,EA Exclusive OR Immediate

EORI eor.b &I,%cc Exclusive OR Immediate
to CCR to Condition Codes

EORI eor.w &I,%ar Exclusive OR Immediate
to SR to the Status Register

EXG exg %rx,%ry Exchange Registers

EXT ext.A %dn Sign Extend

8-28

UNIX SYSTEM ASSEMBLER FOR UNIX PC

MC68010 Instruction Formats

Operation MAS Syntax Meaning
JMP jmp EA Jump

JSR jsr EA Jump to Subroutine

LEA lea] EA,%an Load Effective Address

LINK link %an,&I Link and Allocate

LSL Is1.S %dx,%dy Logical Shift (Left)
&Q,%dy

Is1.w &I,EA

LSR Isr.S %dx,%dy Logical Shift (Right)
&Q,%dy

Isr.w &I,EA

MOVE mov.S EA,EA Move Data from Source
to Destination

Note: If the destination
is an address register,
the instruction generated
is MOVEA.

MOVE mov.w EA,%cc Move to Condition Codes
to CCR

MOVE mov.w %ar,EA Move from Condition Codes
from CCR

MOVE mov.w EA,%ar Move to Status Register
to SR

8-29

UNIX SYSTEM ASSEMBLER FOR UNIX PC

MC68010 Instruction Formats

Operation MAS Syntax Meaning

MOVE mov.w %ar,EA Move from Status Register
from SR

MOVE mov.l %usp,%an Move User Stack Pointer
USP %an,%usp

MOVE A mov.A EA,%an Move Address

MOVEC Move Control Register

MOVEM movm.A &I,EA Move Multiple registers
EA,&I

Note: Immediate operand
is a mask designating
which registers are to
be moved to memory or
which registers are to
receive memory data.
Not all addressing modes
are permitted, and the
correspondence between
mask bits and register
numbers depends on the
addressing mode used.
See MC68010 User's Manual
for details.

MOVEQ mov.l &I,%dn Move Quick (when I fits
in byte)

MOVES movs.S EA,EA Move Alternate Address
Space

8-30

UNIX SYSTEM ASSEMBLER FOR UNIX PC

MC68010 Instruction Formats

Operation MAS Syntax Meaning
MULS muls.w EA,%dn Signed Multiply

MULU mulu.w EA,%dn Unsigned Multiply

NBCD nbcd.b EA Negate Decimal
with Extend

NEG neg.S EA Negate

NEGX negx.S EA Negate with Extend

NOP nop No operation

NOT not.S EA Logical Complement

OR or.S EA,%dn Inclusive OR Logical
%dn,EA

ORI or.S &I,EA Inclusive OR Immediate

ORI or.b &I,%cc Inclusive OR Immediate
to CCR to Condition Codes

ORI or.w &I,%sr Inclusive OR Immediate
to CCR to the Status Register

PEA pea EA Push Effective Address

RESET reset Reset External Devices

ROL rol.S %dx,%dy Rotate
&Q,%dy (without Extend) (left)

rol.w &I,EA

8-31

UNIX SYSTEM ASSEMBLER FOR UNIX PC

MC68010 Instruction Formats

Operation MAS Syntax Meaning
ROR ror.S %dx,%dy Rotate

&Q,%dy (without Extend) (Right)

ror.w &I,EA

ROXL roxl.S %dx,%dy Rotate with Extend(Left)
&Q,%dy

roxl.W &I,EA

ROXR roxr.S %dx,%dy Rotate with Extend(Right)
&Q,%dy

roxr.w &I,EA

RTE rte Return from Exception

RTD rtd Return and Deallocate
Stack

RTR rtr Return and Restore
Condition Codes

RTS rts Return from Subroutine

SBCD sbcd.b %dy,%dx Subtract Decimal with
-(%ay) Extend
-(%ax)

Scc sCC.b EA Set According to Condition

STOP stop &1 Load Status Register
and Stop

SUB sub.S EA, %dn Subtract Binary

8-32

UNIX SYSTEM ASSEMBLER FOR UNIX PC

MC68010 Instruction Formats

Operation MAS Syntax Meaning
%dn,EA

SUBA sub.A EA,%an Subtract Address

SUBI sub.S &I,EA Subtract Immediate

SUBQ sub.S &Q,EA Subtract Quick

SUBX subx.S %dy,%dx Subtract with Extend
-(%ay)
-(%ax)

SWAP swap.w %dn Swap Register Halves

TAS tas.b EA Test and Set an Operand

TRAP trap &1 Trap

TRAPV trapv Trap on Overflow

TST tst.S EA Test an Operand

UNLK unlk %an Unlink

8-33

Chapter 9

THE "curses" PACKAGE

PAGE

INTRODUCTION .. 9-1

Output. 9-2

Input.. 9-4

getstr.. 9-5

Highlighting. 9-5

Multiple Windows. 9-5

LIST OF ROUTINES 9-7

Structure .. 9-7

Initialization 9-8

Option Setting . 9-8

Terminal Mode Setting 9-9

Window Manipulation. .. 9-11

Causing Output to the Terminal. .. 9-12

Writing on Window Structures. .. 9-12

Input from a Window. .. 9-15

Input from the Terminal. .. 9-16

Video Attributes. .. 9-17

Lower Level Functions 9-17

Additional Terminals. .. 9-18

Chapter 9

THE "curses" PACKAGE

INTRODUCTION

The UNIX PC software development system includes two
different terminal virtualization packages, terminal access
method (tam) and curses. Each provides device independent
terminal input/output.

The tam package is recommended for programming on the
UNIX PC because it offers more capabilities than curses.
tam has the following features that are not available in
curses:

• The shared library feature of the UNIX PC is used, so
programs written with tam can be significantly smaller
than those written with curses.

• Real, overlapping windows are supported.

• Context sensitive help messages are supported.

• Device independent input is supported. (curses only
supports deyice independence on output.)

• Menus, forms, and messages are supported.

• Both high and low level mouse support routines are
provided.

• The most frequently used curses calls are emulated by
tam to allow easy porting of code already written using
curses.

9-1

THE CURSES PACKAGE

Programs previously written with curses can be ported using
the UNIX PC curses package.

The full curses package that is supported on the UNIX PC is
documented in the curses(3) manual page. This chapter is an
introduction to curses(3X). It is intended for the programmer
who must write a screen-oriented program using the curses
package. This chapter also documents curses functions.

For curses to be able to produce terminal dependent output, it
has to know what kind of terminal you have. The UNIX system
convention for this is to put the name of the terminal in the
variable TERM in the environment. Thus, a user on a DEC
VT100 would set TERM=vt 1 00 when logging in. Curses uses
this convention.

Output

A program using curses always starts by calling
in its c r (). (See Figure 9-1.) Other modes can then be set
as needed by the program. During the execution of the
program, output to the screen is done with routines such as
addch (ch) and printw (fmt, args). (These routines
behave just like putchar and printf except that they go
through curses.) The cursor can be moved with the call
move (row, col). These routines only output to a data
structure called a window, not to the actual screen. A window
is a representation of a CRT screen, containing such things as
an array of characters to be displayed on the screen, a cursor, a
current set of video attributes, and various modes and options.
You don't need to worry about windows unless you use more
than one of them, except to realize that a window is buffering
your requests to output to the screen.

To send all accumulated output, it is necessary to call

9-2

THE CURSES PACKAGE

re fre sh (). (This can be thought of as a flush.) Finally,
before the program exits, it should call endwin (), which
restores all terminal settings and positions the cursor at the
bottom ot the screen.

#include <curses.h>

initscr(); 1* Initialization *1

raw(); 1* Various optional mode settings *1
nonl();
noecho () ;

while (!done) {/* Main body of program *1

1* Sample calls to draw on screen *1
move (row, col);
addch(ch) ;
printw("Formatted print with value %d'n",value);

1* Flush output *1
refresh();

endwin () ; 1* Clean up * I
exi t (0) ;

Figure 9-1 - Framework of a Curses Program

Some programs assume all screens are 24 lines by 80 columns.
It is important to understand that many are not. The variables
LINES and eOLS are defined by ini tscr with the current
screen size. Programs should use them instead of assuming a
24x80 screen.

9-3

THE CURSES PACKAGE

No output to the terminal actually happens until refresh is
called. Instead, routines such as move and addch draw on a
window data structure called stdscr (standard screen).
Curses always keeps track of what is on the physical screen,
as well as what is in stdscr.

When ref res h is called, curses compares the two screen
images and sends a stream of characters to the terminal that
will turn the current screen into what is desired. Curses
considers many different ways to do this, taking into account
the various capabilities of the terminal, similarities between
what is on the screen and what is desired. It usually outputs as
few characters as is possible. This function is called cursor
optimization and is the source of the name of the curses
package.

NOTE: Due to the hardware scrolling of terminals,
writing to the lower righthand character position
is impossible.

Input

Curses can do more than just draw on the screen. Functions
are also provided for input from the keyboard. The primary
function is getch () which waits for the user to type a
character on the keyboard, and then returns that character.
This function is like getchar except that it goes through
curses. Its use is recommended for programs using the
raw () or no e c h 0 () options, since several terminal or
system dependent options become available that are not
possible with getchar. ,The routine getstr (str) can be
called, allowing input of an entire line, up to a newline. This
routine handles echoing and the erase and kill characters of the
user.

9-4

THE CURSES PACKAGE

getstr

No matter what the setting of echo is, strings typed in here are
echoed at the current cursor location. The user's erase and kill
characters are understood and handled. This makes it
unnecessary for an interactive program to deal with erase, kill,
and echoing when the user is typing a line of text.

Highlighting

Characters can be written with the standout attribute. This
attribute is used to make text attract the attention of the user.
The particular hardware attribute used for standout varies
from terminal to terminal, and is chosen to be the most visually
pleasing attribute the terminal has. Standout is typically
implemented as reverse video or bold. Many programs don't
really need a specific attribute, such as bold or inverse video,
but instead just need to highlight some text. Two functions,
standout () and standend () turn on and off this
attribute.

Multiple Windows

A window is a data structure representing all or part of the
CRT screen. It has room for a two dimensional array of
characters, with a standout bit for each character (a total of 8
bits per character: 7 for text and 1 for attribute), a cursor, a set
of current attributes, and a number of flags. Curses provides a
full screen window, called stdscr, and a set of functions
that use stdscr. Another window is provided called
curscr, representing the physical screen.

It is important to understand that a window is only a data
structure. Use of more than one window does not imply use of
more than one terminal, nor does it involve more than one
process. A window is merely an object which can be copied to
all or part of the terminal screen. The current implementation
of curses does not allow windows which are bigger than the
screen.

9-5

THE CURSES PACKAGE

The programmer can create additional windows with the
function newwin(lines, cols, begin_row,
begin_col). This function returns a pointer to a newly
created window. The window will be 1 in e s by col s, and
the upper left corner of the window will be at screen position
(begin_row, begin_col). All operations that affect
stdscr have corresponding functions that affect an arbitrary
named window. Generally, these functions have names formed
by putting a "w" on the front of the stdscr function, and the
window name is added as the first parameter. Thus,
waddch (my win , c) would write the character c to window
mywin. The wrefresh(win) function is used to flush the
contents of a window to the screen.

Windows are useful for maintaining several different screen
images, and alternating the user among them. Also, it is
possible to subdivide the screen into several windows,
refreshing each of them as desired. When windows overlap, the
contents of the screen will be the more recently refreshed
window.

In all cases, the non-w version of the function calls the w
version of the function, using s t d s c r as the additional
argument. Thus, a call to addch (c) results in a call to
waddch(stdscr, c).

The main display is kept in s t d s cr. When the user
temporarily wants to put something else on the screen, a new
window is created covering part of the screen. A call to
wr e f res h on that window causes the window to be written
over stdscr on the screen. Calling refresh on stdscr
results in the original window being redrawn on the screen. If
you have trouble refreshing a new window which overlaps an
old window, it may be necessary to call touchwin on the new
window to get it completely written out.

For convenience, a set of "move" functions are also provided for
most of the common functions. These result in a call to move

9-6

THE CURSES PACKAGE

before the other function. For example, mvaddch (row,
col, c) is the same as move (row, col); addch (c).
Combinations, e.g. mvwaddch (row, col, win, c) also
exist.

LIST OF ROUTINES
This section describes all the routines available to the
programmer in the curses package. The routines are
organized by function. For an alphabetical list, see
curses(3X).

Structure

All programs using curses should include the file
< cur s e s . h>. This file defines several curses functions as
macros, and defines several global variables and the datatype
WINDOW. References to windows are always of type WINDOW
* Curses also defines WINDOW * constants stdscr (the
standard screen, used as a default to routines expecting a
window), and curser (the current screen, used only for
certain low level operations like clearing and redrawing a
garbaged screen). Integer constants LINES and eOLS are
defined, containing the size of the screen. Constants TRUE

and F AL S E are defined, with values 1 and 0, respectively.
Additional constants which are values returned from most
curses functions are ERR and OK. OK is returned if the
function could be properly completed, and ERR is returned if
there was some error, such as moving the cursor outside of a
window.

The incl ude file < cur s e s . h> au toma tically incl udes
<stdio. h> and the tty driver interface file, <termio. h>.
Including <stdio. h> again is harmless but wasteful.

A program using curses should include the loader option
-1 cur s e s in the makefile. This is true for both the termcap

9-7

THE CURSES PACKAGE

level and the curses level.

Initializa tion

These functions are called when initializing a program.

ini tscr ()
The first function called should always be in its cr. This
will determine the terminal type and initialize curses data
structures. in its c r also arranges that the first call to
ref res h will clear the screen.

endwin ()
A program should always call endwin before exiting. This
function will restore tty modes, move the cursor to the lower
left corner of the screen, reset the terminal into the proper
non-visual mode, and tear down all appropriate data structures.

longname(termbuf, name)
This function returns a pointer to a static area containing a
verbose description of the current terminal, after a call to
initscr.

Option Setting

These functions set options within curses. In each case, win
is the window affected, and bf is a boolean flag with value
TRUE or FALSE indicating whether to enable or disable the
option. All options are initially FALSE. It is not necessary
to turn these options off before calling end win.

9-8

THE CURSES PACKAGE

clearok(win,bf)
If set, the next call to w ref res h with this window will clear
the screen and redraw the entire screen. If win is curser,
the next call to wrefresh with any window will cause the
screen to be cleared. This is useful when the contents of the
screen are uncertain, or in some cases for a more pleasing
visual effect.

leaveok(win,bf)
Normally, the hardware cursor is left at the location of the
window cursor being refreshed. This option allows the cursor
to be left wherever the update happens to leave it. It is useful
for applications where the cursor is not used, since it reduces
the need for cursor motions. If possible, the cursor is made
invisible when this option is enabled.

scrollok(win,bf)
This option controls what happens when the cursor of a window
is moved off the edge of the window, either from a newline on
the bottom line, or typing the last character of the last line. If
disabled, the cursor is left on the bottom line. If enabled,
wr e f res h is called on the window, and then the physical
terminal and window are scrolled up one line. Note that in
order to get the physical scrolling effect on the terminal, it is
also necessary to call idlok.

Terminal Mode Setting

These functions are used to set modes in the tty driver. The
ini tial mode usually depends on the setting when the program
was called: the initial modes documented here represent the
normal situation.

9-9

THE CURSES PACKAGE

echo ()
noecho ()
These functions control whether characters typed by the user
are echoed as typed. Initially, characters typed are echoed by
the teletype driver. Authors of many interactive programs
prefer to do their own echoing in a controlled area of the
screen, or not to echo at all, so they disable echoing.

nl ()
nonl ()
These functions control whether newline is translated into
carriage return and linefeed on output, and whether return is
translated into newline on input. Initially, the translations do
occur. By disabling these translations, curses is able to make
better use of the linefeed capability, resulting in faster cursor
motion.

raw ()
noraw ()
The terminal is placed into or out of raw mode. Raw mode is
similar to cbreak mode in that characters typed are
immediately passed through to the user program. The
differences are that in RAW mode, the interrupt, quit, and
suspend characters are passed through uninterpreted instead of
generating a signal. RAW mode also causes 8 bit input and
output. The behavior of the BREAK key may be different on
different systems.

resetty()
savetty ()
These functions save and restore the state of the tty modes.
savetty saves the current state in a buffer, resetty
restores the state to what it was at the last call to savetty.

9-10

THE CURSES PACKAGE

Window Manipulation

newwin(nurn_lines, nurn_cols, beg_row,
beg_col)
Create a new window with the given number of lines and
columns. The upper left corner of the window is at line
beg_row column beg_col. If either nurn_lines or
n urn _ col s is zero, they will be defaulted to LIN E S -
beg_row and COLS-beg_col. A new full-screen window is
created by calling newwin (0 , 0 , 0 , 0) .

subwin(orig, nurn_lines, nurn_cols, begy,
begx)
Create a new window with the given number of lines and
columns. The window is at position (begy, begx) on the screen.
(It is relative to the screen, not orig.) The window is made
in the middle of the window 0 rig, so that changes made to
one window will affect both windows. When using this
function, often it will be necessary to call touchwin before
calling wrefre sh.

delwin(win)
Deletes the named window, freeing up all memory associated
with it. In the case of overlapping windows, subwindows should
be deleted before the main window.

rnvwin(win, br, bc)
Move the window so that the upper left corner will be at
position (br, bc). If the move would cause the window to
be off the screen, it is an error and the window is not moved.

touchwin(win)
Throwaway all optimization information about which parts of
the window have been touched, by pretending the entire window
has been drawn on. This is sometimes necessary when using
overlapping windows, since a change to one window will affect
the other window, but the records of which lines have been
changed in the other window will not reflect the change.

9-11

THE CURSES PACKAGE

overlay(win1, win2)
overwrite(win1, win2)
These functions overlay win 1 on top of win2; that is, all
text in win 1 is copied into win2. The difference is that
overlay is nondestructive (blanks are not copied) while
overwri te is destructive.

Causing Output to the Terminal

refresh()
wrefresh(win)
These functions must be called to get any output on the
terminal, as other routines merely manipulate data structures.
wr e f res h copies the named window to the physical terminal
screen, taking into account what is already there in order to do
optimizations. refresh is the same, using stdscr as a
default screen. Unless lea veok has been enabled, the physical
cursor of the terminal is left at the location of the window's
cursor.

Writing on Window Structures

These routines are used to "draw" text on windows. In all
cases, a missing win is taken to be s t d s cr. y and x are
the row and column, respectively. The upper left corner is
always (0,0), not (1,1). The mv functions imply a call to move
before the call to the other function.

Moving the Cursor

move(y, x)
wmove(win, y, x)
The cursor associated with the window is moved to the given
location. This does not move the physical cursor of the
terminal until refresh is called. The position specified is
relative to the upper left corner of the window.

9-12

Writing One Character

addch(ch)
waddch(win, ch)
mvaddch(y, x, ch)
mvwaddch(win, y, x, ch)

THE CURSES PACKAGE

The character ch is put in the window at the current cursor
position of the window. If ch is a tab, newline, or backspace,
the cursor will be moved appropriately in the window. If ch is
a different control character, it will be drawn in the AX
notation. The position of the window cursor is advanced. At
the right margin, an automatic newline is performed. At the
bottom of the scrolling region, if scrollok is enabled, the
scrolling region will be scrolled up one line.

Writing a String

addstr(str)
waddstr(win,str)
mvaddstr(y,x,str)
mvwaddstr(win,y,x,str)
These functions write all the characters of the null terminated
character string s tr on the given window. They are identical
to a series of calls to addch.

Clearing Areas of the Screen

erase ()
werase(win)
These functions copy blanks to every position in the window.

clear()
wclear(win)
These functions are like era s e and we r a s e bu t they also
call c 1 ear 0 k, arranging that the screen will be cleared on
the next call to refresh for that window.

9-13

THE CURSES PACKAGE

clrtobot()
wclrtobot(win)
All lines below the cursor in this window are erased. Also, the
current line to the right of the cursor is erased.

clrtoeol()
wclrtoeol(win)
The current line to the right of the cursor is erased.

Inserting and Deleting Text

delch()
wdelch(win)
mvdelch(y,x)
mvwdelch(win,y,x)
The character under the cursor in the window is deleted. All
characters to the right on the same line are moved to the left
one position. This does not imply use of the hardware delete
character feature.

deleteln ()
wdeleteln(win)
The line under the cursor in the window is deleted. All lines
below the current line are moved up one line. The bottom line
of the window is cleared. This does not imply use of the
hardware delete line feature.

insch(c)
winsch(win, c)
mvinsch(y,x,c)
mvwinsch(win,y,x,c)
The character c is inserted before the character under the
cursor. All characters to the right are moved one space to the
right, possibly losing the rightmost character on the line. This
does not imply use of the hardware insert character feature.

9-14

THE CURSES PACKAGE

insertln ()
winsertln(win)
A blank line is inserted above the current line. The bottom line
is lost. This does not imply use of the hardware insert line
feature.

Formatted Output

printw(fmt, args)
wprintw(win, fmt, args)
mvprintw(y, x, frot, args)
mvwprintw(win, y, x, fmt, args)
These functions correspond to printf. The characters which
would be output by pr in t f are instead output using
waddch on the given window.

Miscellaneous

box(win, vert, h~r)

A box is drawn around the edge of the window. vert and
hor are the characters the box is to be drawn with.

scroll(win)
The window is scrolled up one line. This involves moving the
lines in the window data structure. As an optimization, if the
window is s t d s c r and the scrolling region is the en tire
window, the physical screen will be scrolled at the same time.

Input from a Window

getyx(win,y,x)
The cursor position of the window is placed in the two integer
variables y and x. Since this is a macro, no & is necessary.

9-15

THE CURSES PACKAGE

inch ()
winch(win}
mvinch(y,x}
mvwinch(win,y,x}
The character at the current position in the named window is
returned.

Input from the Terminal

getch(}
wgetch(win}
mvgetch(y,x}
mvwgetch(win,y,x}
A character is read from the terminal associated with the
window. The program will wait until the system passes text
through to the program. Depending on the setting of raw, this
will be after one character, or after the first newline.

getstr(str}
wgetstr(win,str}
mvgetstr(y,x,str}
mvwgetstr(win,y,x,str}
A series of calls to getch is made, until a newline is received.
The resulting value is placed in the area pointed at by the
character pointer s t r . The user's erase and kill characters
are interpreted.

scanw(fmt, args}
wscanw(win, fmt, args}
mvscanw(y, x, fmt, args}
mvwscanw(win, y, x, fmt, args}
This function corresponds to scanf. wgetstr is called on
the window, and the resulting line is used as input for the scan.

9-16

THE CURSES PACKAGE

Video Attributes

standout()
standend()
wstandout(win)
wstandend(win)
The current attributes of a window are applied to all characters
that are written into the window with waddch. Attributes
are a property of the character, and move with the character
through any scrolling and insert/ delete line/ character
operations. To the extent possible on the particular terminal,
they will be displayed as the graphic rendition of characters
put on the screen.

standout()
turns on highlighting for subsequent characters.
standend()
turns off highlighting.

Lower Level Functions

These functions are provided for programs not needing the
screen optimization capabilities of curses. Programs are
discouraged from working at this level, since they must handle
various glitches in certain terminals. However, a program can
be smaller if it only brings in the low level routines.

Cursor Motion

mvcur(oldrow, oldcol, newrow, newcol)
This routine optimally moves the cursor from (oldrow, oldcol)
to (newrow, newcol). The user program is expected to keep
track of the current cursor position. Note that unless a full
screen image is kept, curses will have to make pessimistic
assumptions, sometimes resulting in less than optimal cursor

9-17

THE CURSES PACKAGE

motion. For example, moving the cursor a few spaces to the
right can be done by transmitting the characters being moved
over, but if curses does not have access to the screen image, it
doesn't know what these characters are.

Additional Terminals

Curses will work even if absolute cursor addressing is not
possible, as long as the cursor can be moved from any location
to any other location. It considers local motions, parameterized
motions, home, and carriage return.

Curses is aimed at full duplex, alphanumeric, video terminals.
No attempt is made to handle half-duplex, synchronous, hard
copy, or bitmapped terminals. Bitmapped terminals can be
handled by programming the bitmapped terminal to emulate an
ordinary alphanumeric terminal or by using the tam(3) library.

9-18

Chapter 10

USING SHELL COMMANDS

PAGE

INTRODUCTION. 10-1

EXECUTING SIMPLE SHELL COMMANDS............... 10-1

INPUT/OUTPUT REDIRECTION. 10-2

PIPELINES AND FILTERS 10-3

PERMISSION MODES. 10-4

FILE NAME GENERATION.............................. 10-6

QUOTING.. 10-8

EXECUTING COMMANDS IN THE

BACKGROUND. 10-9

Determining Completion of Background

Commands . 10-9

Terminating Background Commands.... 10-10

SHELL VARIABLES 10-11

Positional Parameters. .. 10-11

Keyword Parameters 10-13

User Defined Variables. .. 10-17

SPECIAL COMMANDS. .. 10-19

cd .. 10-19

exec. .. 10-20

newgrp .. 10-21
pwd .. 10-21

set. .. 10-21

ulimit. .. 10-22

umask " 10-23

RESTRICTED SHELL................................... 10-23

Chapter 10

USING SHELL COMMANDS

INTRODUCTION
This chapter provides information to enhance uses of the shell.
Most information should be useful to both the programmer and
nonprogrammer alike. Some information may be of more use
to the more advanced user. It is assumed that the user has
been introduced to the UNIX system and understands such
basics as how to log in, set the terminal baud rate, etc.

EXECUTING SIMPLE SHELL COMMANDS
A simple shell command consists of the command name
possibly followed by some arguments such as

cmd argl arg2 arg3 '"

where cmd is the command name consisting of a sequence of
letters, digits, or underscores beginning with a letter or
underscore. For example, the shell command

Is

prints a list of files in the current directory.

10-1

USING SHELL COMMANDS

INPUT/OUTPUT REDIRECTION
Most commands produce output to a terminal. Output can be
redirected to a file in two different ways. First, standard
output may be redirected to a file by the notation" >" , thus

Is -I > tempfile

causes the shell to redirect the output of the command Is to be
put in tempfile. If there is no file tempfile, one is created by the
shell. Any previous contents of tempfile are destroyed.

Standard output may be appended to the end of a file by the
notation" »" , thus

Is -I » tempfile

causes the shell to append the output of the command Is to the
end of the contents of tempfile. If tempfile does not already
exist, it is created.

Although input is normally from a terminal, it can also be
redirected by the" <" notation. Thus

wc < tempfile

would send the contents of tempfile to the we command which
would give a character, word, and line count of tempfile.
Another modification of input is possible with the "«"
notation. The form

cmd« word

would send standard input to the specified command until a
line the same as word is input. As an example

10-2

USING SHELL COMMANDS

sort < < finished

would send all the standard input to sort until finished is
input. Then the input would be sorted and output to the
terminal. If the notation" «_" is used, then all leading tabs
would be stripped. As an example, the following is entered at
the terminal (note that the primary system prompt # and the
secondary system prompt> provided by the system are shown
in this example):

$sort «end
>no one does anything about it
>everyone talks about the weather but
>end

and the following would be returned:

everyone talks about the weather but
no one does anything about it

PIPELINES AND FILTERS

The standard output of one command may be connected to the
standard input of another by using the pipe (I) operator
between commands as in

Is -1 I wc

A sequence of one or more commands connected in this way
constitutes a pipeline, and the overall effect is the same as

Is -1 > file; wc < file

except no file is used. Instead the two processes are connected
together by a pipe [see pipe(2)] and are run in parallel. Each

10-3

USING SHELL COMMANDS

command is run as a separate process.

Pipes allow one to execute several commands sequentially from
left to right with the standard output from each command
becoming the standard input of the next command. This
prevents creating temporary files and is faster than not using
pipes. Pipes are unidirectional. Synchronization is achieved by
halting we when there is nothing to read and halting Is when
the pipe is full.

A filter is a command that reads its standard input, transforms
it in some way, and prints the result as output. One such filter,
grep(l), selects from its input those lines that contain some
specified string. For example,

Is I grep old

prints those lines that contain the string" old". Another filter
is the sort(l) command that gives alphabetical listings.

PERMISSION MODES

All UNIX system files have three independent attributes (often
called "permissions"), read, write, and execute (rwx). These
three permissions are assigned to three different levels of users.
The first level is the owner level. Normally, the creator of the
file is the owner. This ownership can be changed with the
ehown(l) command. The second level is the group level. The
third level is the others level. The permission for each level
must be set to allow reading, writing, or executing a file.

The Is command will display among other things the
permissions for a file when used as follows

Is -1 filename

10-4

USING SHELL COMMANDS

The general format of the permissions is

-rwxrwxrwx

where the first character will be a dash if it is an ordinary file.
The second, third and fourth characters (the first rwx)
indicate the permission modes for the owner. The fifth, sixth,
and seventh characters (the second rwx) indicate the
permission modes of the group. And the eighth, ninth, and
tenth characters (the last rwx) indicate the permission modes
of others. A dash in any permission mode position indicates
that the mode is not allowed.

For example, the input

Is -1 wg

displays the permissions of wg as follows:

-rwxr-x--- 1 abc UNIX 66 May 4 09:25 wg

In this case, the owner has read (r), write (w), and execute (x)
permission, the group has read and execute permission, and all
others are denied (-) permission to wg.

The chmod(1) command is used by the owner to change the
permission modes of a file. To change the permissions of wg so
that everyone could execute the procedure, enter the following
command:

chmod 751 wg

which would result in a permission mode of rwxr-x--x. The 7
assigns the owner read, write, and execute permission [4 (read)
+ 2 (write) + 1 (execute) = 7]. The 5 assigns the group read

10-5

USING SHELL COMMANDS

and execute permISSIOn [4 (read) + 1 (execute)
assigns others execute permission.

5]. The 1

The chmod command could also be entered as

chmod +x wg

which would add execute permission for owner, group, and all
others.

FILE NAME GENERATION
The shell provides a mechanism for generating a list of file
names that match a pattern. For example,

Is -1 *.c

generates as arguments to Is(1) all file names in the current
directory that end in .c. The character "*,, is a pattern that
will match any string including the null string. In general,
patterns are specified as follows:

*

?

[...]

10-6

Matches any string of characters
including the null string.

Matches any single character.

Matches any character enclosed. A pair
of characters separated by a minus will
rna tch any character lexically between the
pair.

USING SHELL COMMANDS

For example,

Is -1 [a-z]*

matches all names in the current directory beginning with
letters a through z. The input

Is -1 lusr/fred/test/?

matches all names in the directory /usr/fred/test that consist
of a single character. This mechanism is useful both to save
typing and to select names according to some pattern.

There is one exception to the general rules given for patterns.
The character "0" at the start of a file name must be explicitly
matched. The input

echo *

prints all file names in the current directory not beginning with
"0'" The input

echo .*

prints all those file names that begin with "0'" This avoids
inadvertently matching the names "0" and "00" that mean "the
current directory" and "the parent directory," respectively.
[Notice that 18(1) suppresses information for the files "0" and
"00" .]

10-7

USING SHELL COMMANDS

QUOTING
Characters that have a special meaning to the shell, such as

<> * ? I &$;\" "[]

are called metacharacters.

The shell can be inhibited from interpreting and acting upon
the special meaning assigned metacharacters by preceding them
with a backslash (\). Any character preceded by a \ loses its
special meaning. For example

echo *

prints all the file names in the current directory. To echo an
asterisk, enter

echo \ *

The backslash turns off any special meaning of a
metacharacter.

To allow long strings to be continued over more than one line,
the sequence \new line (or RETURN) is ignored. The \ is
convenient for quoting single characters. When more than one
character needs quoting, the above mechanism is clumsy and
error prone. A string of characters may be quoted by enclosing
the string between single quotes. All characters enclosed
between a pair of single quote marks are quoted except for a
single quote. For example,

echo xx'****'xx

will print

10-8

USING SHELL COMMANDS

xx****xx

The quoted string may not contain a single quote but may
contain new lines that are preserved. This quoting mechanism
is the simplest and is recommended for casual use.

EXECUTING COMMANDS IN THE
BACKGROUND

To execute a command, the shell normally creates a new
process and waits for it to finish. A command may be run
without waiting for it to finish. Executing commands in the
background enables the terminal to be used for other tasks.
Adding an ampersand (&) at the end of a command line before
the RETURN starts the execution of a command and
immediately returns to the shell command level. For example,

cc pgm.c &

calls the C compiler to compile the file pgm.c. The trailing "&"
is an operator that instructs the shell not to wait for the
command to finish. To help keep track of such a process, the
shell reports its process number following its creation. This
means the system will respond with a process number followed
by the primary shell prompt.

Determining Completion of Background Commands

When a command is executed in the background, a prompt is
not received when the command completes execution. The only
way to see that the command is either in process or complete is
to request process status. The status of all active processes
assigned to a user can be reported as follows

ps -u ulist

10-9

USING SHELL COMMANDS

where "ulist" is the login name. If the process number and
associated command name are output by the ps command, then
the command is running in the background. If the process
number and associated command name are not output by the
ps command, then the command has finished executing.

Terminating Background Commands

Once a command starts in the background, it will run until it is
finished or is stopped. The BREAK, RUBOUT, DELETE, or
other keys will not stop a command running in the background.
Instead, the process must be "killed" with the kill(l) command
as follows:

kill PID

where" PID" is the process identification number. The shell
variable $! contains the PID of the last process run in the
background and can be obtained as follows:

echo $!

All nonessential background processes can be stopped by
executing the following command:

kill 0

Some processes can ignore the software termination signal. To
stop these processes, enter the following:

kill -9 PID

A process running in the background is automatically killed
when the user logs out. The nohup(l) command can be used to
continue the process after logging off or hanging up. For
example,

10-10

USING SHELL COMMANDS

nohup nroff text &

would continue the formatting of the file text using the
nroff(l) formatter even if one logged off or the telephone line
to the computer went down. The system responds with the
lines:

28096
$ Sending output to nohup.out

The 28096 is the process ID number. A file nohup.out is
created by the nohup command, and all output of the process
is directed to this file. To redirect the output to a particular
file, use the redirect command as follows:

nohup nroff text & > formatted

to direct the output to the file formatted.

SHELL VARIABLES

A variable is a name representing a string value. (Loosely
defined, a string is a combination of one or more alphanumeric
characters or symbols.) Variables that are normally set on a
command line are called parameters. There are two types of
parameters in the shell-positional and keyword.

Positional Parameters

When a shell procedure is invoked, the shell implicitly creates
positional parameters. The shell assigns the positional
parameters as follows:

${O} ${l} ${2} ${3} ... ${9}

10-11

USING SHELL COMMANDS

Since the general form of a simple command is

cmd argl arg2 arg3 ...

then the values of the positional parameters are

cmd argl arg2 arg3 ... arg9
${O} ${l} ${2} ${3} ... ${9}

For instance, if the following command is entered

cmd tempI temp2 temp3

then the positional parameter ${ I} would have the value
tempI. Notice that the command procedure name is always
assigned to $ { 0 } .

The positional parameters are used often in shell programs. If
a shell program, wg, contained

who Igrep $1

then the call to run the program

sh wg fred

is equivalent to

who I grep fred

The variable $* is a special shell parameter used to substitute
for all positional parameters except $0. Certain other similar
variables are used by the shell. The following are set by the
shell:

10-12

USING SHELL COMMANDS

$? The exit status (return code) of the last command
executed as a decimal string. Most commands return
a zero exit status if they complete successfully;
otherwise, a nonzero exit status is returned. Testing
the value of return codes is dealt with later under if
and while commands.

$# The number of positional parameters in decimal.

$$ The process number of this shell in decimal. Since
process numbers are different from all other existing
processes, this string is frequently used to generate
temporary file names. For example,

ps -a >/tmp/ps$$

rm /tmp/ps$$

$1 The process number of the last process run in the
background (in decimal).

$- The current shell flags, such as -x and -v.

Keyword Parameters

The shell uses certain variables known as keyword parameters
for specific purposes. The following variables are discussed in
this portion of the document:

HOME
PATH
CDPATH
MAIL
PSI
PS2
IFS
SHELL.

10-13

USING SHELL COMMANDS

HOME

The variable HOME is used by the shell as the default value
for the cd(l) command. Entering

cd

is equivalent to entering

cd $HOME

where the value of HOME is substituted by the shell. If
$HOME=/d3/abc/def, then each of the above two entries would
be equivalent to

cd I d31 abel def

Normally, HOME is initialized by login(l) to the login
directory. The value of HOME can be changed to /d3/abc/ghi
by entering the following

HOME=/d3/abc/ghi

No spaces are permitted. The change of the variable will have
no effect unless the value is exported [see export in Chapter
11 under "Special Commands" and in sh(I)]. All variables
(with their associated values) that are known to a command at
the beginning of execution of that command constitute its
environment. To change the environment to a new variable
setting, the following must be entered:

export variable-name

For instance, if HOME has been modified, then the command

10-14

USING SHELL COMMANDS

export HOME

will cause the environment to be modified accordingly. The
variable HOME need be exported only once. At login the next
time, the original variable settings will be reestablished. A
change to the .profile would modify the environment for each
new login.

PATH

The variable PATH is used by the shell to specify the
directories to be searched to find commands. Each directory
entry in the PATH variable is separated by a colon (:). Several
directories can be specified in the PATH variable but each
directory before the command is found consumes processor
time. Obviously, the directories that contain the most often
used commands should be specified first to reduce searching
time. The following is the default PATH value:

PATH =:/bin:/usr /bin

Since no value precedes the first :, then the current directory is
the first directory searched. Then directory /bin is searched
followed by /usr/bin. To change the PATH variable, simply
enter PATH= followed by the directories to be searched. Each
directory should be separated by a colon. As when changing all
variables, no spaces are allowed before or after the =.

CDPATH

The variable CDP ATH specifies where the shell is to look
when it is searching for the argument of the cd command if
that argument is not null and does not begin with . ./, ./, or I.
For example, if the CD PATH variable were

CDP ATH =:/ d3/ abc/ def:/ d3/ abc

10-15

USING SHELL COMMANDS

then the command

cd ghi

would cause the current directory, /d3/abc/dej directory, and
/d3/abc directory to be searched for the subdirectory ghi. If
found in the /d3/abc/dej directory, the full path name of the
subdirectory would be printed and the current working
directory would be changed to /d3/abc/dej/ghi.

MAIL

The shell looks at the file specified by the MAIL variable and
informs the user if there are any modifications.

PSI

The variable PSI is used by the shell to specify the primary
shell prompt. This is displayed at a terminal whenever the
shell is awaiting a command input. The default primary
prompt is $. To change the prompt to <>, for example, the
following is entered:

PSI=" <>"

PS2

The variable PS2 is used by the shell to specify the secondary
shell prompt. This is displayed whenever the shell receives a
newline in its input but more is expected. The default value of
PS2 is >. To change the prompt to <more> for example, the
following is entered:

PS2=" <more>"

10-16

USING SHELL COMMANDS

IFS

The variable IFS is used by the shell to specify the internal
field separators. Normally, the space, tab, and newline
characters are used. After parameter and command
substitution, internal field separators are used to split the
results of substitution into distinct arguments where such
characters are found. Explicit null arguments (" " and") are
retained.

User Defined Variables

A user variable can be defined using an assignment statement
of the form name=value. The name must begin with a letter or
underscore and may then consist of any sequence of letters,
digits, or underscores. The name is the variable. Positional
parameters cannot be in the name.

The shell provides string-valued variables. Variable names
begin with a letter and consist of letters, digits, and
underscores. Variables may be given values by entering

user=fred box=mOOO acct=mhOOO

to assign values to the variables user, box, and acct. A variable
may be set to the null string by entering

null=

The value of a variable is substituted by preceding its name
with $. For example,

echo $user

will print fred.

10-17

USING SHELL COMMANDS

Variables may be used interactively to provide abbreviations
for frequently used strings. For example,

b=/usr/fred/bin
mv file $b

moves the file from the current directory to the directory
/usr/fred/bin. A more general notation is available for
parameter (or variable) substitution as in

echo $ { user}

This is equivalent to

echo $user

and is used when the parameter name is followed by a letter or
digit. For example,

tmp=/tmp/ps
ps a >${tmp}a

directs the output of ps(l) to the file /tmp/psa, whereas,

ps a >$tmpa

causes the value of the variable tmpa to be substituted.

10-18

USING SHELL COMMANDS

SPECIAL COMMANDS

The following special commands are used in writing shell
procedures. Many of the commands are only needed when
programming. Others have nonprogramming uses.

read
readonly

break return
continue set
cd shift
echo test
eval times
exec trap
exit type
export ul imi t
hash umask
newgrp unset
pwd wait

The ones that are useful to the casual (nonprogramming) user
are described below.

cd

The cd command is used to change the current working
directory as follows:

cd [arg]

where arg specifies the new directory desired. For instance,

cd /d3/abc/ghi

moves the user from anywhere in the file system to the
directory /d3/abc/ghi. The full directory pathname must be
specified to be used in this way. Execute permissions must be

10-19

USING SHELL COMMANDS

set in the desired directory.

If only the desired directory name is specified and the
CDPATH variable is not set, then the current directory is
searched for a subdirectory by that name. For instance, if the
current directory /d3/abc contains a subdirectory subdir, then
the command

cd subdir

changes the current working directory to /d3/abc/subdir. If the
argument begins with . ./, the current working directory is
changed relative to its parent directory. If the argument begins
with ./, the current directory value precedes additional
arguments. For instance, if the current working directory is
/d3/abc, the following command:

cd ./ghi

changes the current directory to /d3/abc/ghi.

If the variable CDPATH is set, the shell searches each
directory specified in CDPATH for the directory specified by
the cd command. If the directory is present, the directory
becomes the new working directory. (See "CD PATH" under
"Keyword Parameters.")

exec

The command

exec [arg ...]

causes the command specified by arg to be executed in place of
the shell without creating a new process. Input/output
arguments may appear and, if no other arguments are given,

10-20

USING SHELL COMMANDS

cause the shell input/output to be modified.

newgrp

By issuing the command newgrp(l), the user is assigned a new
group identification. The command is of the form

newgrp [-] [group]

All access permissions are then evaluated with the new group.
This allows access to files with different group ID permissions.

Entering newgrp with no argument changes the group
identification back to the original group. When a - is entered,
the environment is changed to the login environment.

pwd

The pwd command prints the full pathname of the current
working directory. This command is especially useful when
working directories are changed often.

set

The set command provides the capability of altering several
aspects of the behavior of the shell by setting certain shell
flags. Some of the more useful flags for the nonprogrammer
and their meanings are:

-a Mark variables that are modified or created for
export.

-f Disable file name generation.

-v Print lines as they are read by the shell. The
commands on each input line are executed after that
input line is printed.

10-21

USING SHELL COMMANDS

-x Print commands and their arguments as they are
executed. This causes a trace of only those
commands that are actually executed.

To set the x flag for example, enter

set -x

To turn the x flag off for example, enter

set +x

These commands are especially useful for troubleshooting
within shell procedures.

The set command entered with no arguments will display the
values of variables in the environment.

ulimit

The ulimit command has the form

ulimit [-f] [n]

When the option -f is used or if no option is specified, this
command imposes a limit of n blocks on the size of files written
by the shell and its child processes. Any size files may be
read. If n is omitted, the current value of this limit is printed.
The default value for n varies from one installation to another.

10-22

USING SHELL COMMANDS

umask

The umask command has the form

umask [nnn]

The user file creation mask is set to nnn. This mask is used to
determine the permission modes set on a file when it is created.
For instance,

umask 033

causes a newly created file to be assigned the permission set of
744. (See "PERMISSION MODES.")

RESTRICTED SHELL
A restricted shell is also available with the UNIX system.
This restricted version of shell is used to create an
environment that controls and limits the capabilities. The
actions of rsh are identical to those of sh, except that the
following are disallowed:

• Changing directory

• Setting the value of PATH variable

• Specifying path or command names containing /

• Redirecting output (> and »).

The system administrator often sets up a directory of
commands that can be safely invoked by rsh. A restricted
edi tor may also be provided.

10-23

Chapter 11

SHELL PROGRAMMING

PAGE

INTRODUCTION. 11-1

INVOKING THE SHELL................................. 11-1

INPUT/OUTPUT. 11-2

Single Line. 11-2

Printing Error Messages. 11-2

Multiline Input (Here Documents) 11-2

SHELL VARIABLES...................... 11-3

CONDITIONAL SUBSTITUTION. 11-9

CONTROL COMMANDS................................. 11-11

Programming Constructs 11-13

SPECIAL COMMANDS.................................. 11-24

: (Colon) .. 11-25

. (Period) .. 11-25

break .. 11-26

continue .. 11-27

echo. .. 11-27

eval .. 11-28

exit .. 11-29

export. .. 11-30

read. 11-30

readonly .. 11-31

return .. 11-32

shift. .. 11-32

test .. 11-33

times. 11-36

trap. .. 11-36

wait. .. 11-40

COMMAND GROUPING. 11-41

A COMMAND'S ENVIRONMENT 11-42

DEBUGGING SHELL PROCEDURES 11-44

Chapter 11

SHELL PROGRAMMING

INTRODUCTION

This chapter describes shell as a programming language and
builds upon the information provided in Chapter 10. It is
expected that the reader has read Chapter 10 and has
experience with UNIX system commands.

INVOKING THE SHELL
The shell is an ordinary command and may be invoked in the
same way as other commands:

sh proc [arg ...]

sh -v proc [arg ...]

proc [arg ...]

A new instance of the shell is
explicitly invoked to read proc.

This is equivalent to putting set
-vat the beginning of proc.
Similarly for other set flags
including x, e, U, and n flags.

If proc is marked executable, and
is not a compiled, executable
program, the effect is similar to
that of the sh proc [args ...]
command. An advantage of this
form is that proc may be found
by the search procedure.

11-1

SHELL PROGRAMMING

INPUT/OUTPUT
Unless redirected by a command inside the program, a shell
program uses the input and output connections of the shell
program. A redirection on a command changes redirection for
tha t command only.

Single Line

The following could be used to print a line from a program:

echo The date is:
date

and would result in:

The date is:
Tue May 2116:13:38 EDT 1984

Printing Error Messages

Normally, error messages are associated with file descriptor 2
and are sent to standard error. Error messages can be
redirected to a file with the following command:

sample 2>ERROR

If an error message is produced when running the program
sample, the error output is redirected to the file ERROR.

Multiline Input (Here Documents)

One way to input several lines to programs is with what is
referred to as "Here Documents." The general form is

11-2

SHELL PROGRAMMING

cmd argl arg2 ... < < word

where everything entered at this command is accepted until
word is entered on a line by itself. For example,

sort «finish

sends all the standard input to sort until finish is inputted.
Then the input would be sorted and output to the terminal. For
example

$ sort < <finish
> def
> abc
> finish
abc
def

Note that the primary system prompt ($) and the secondary
system prompt (» are shown. The final two lines are returned
by the system.

The command

sort «-word

removes all leading spaces or tabs.

SHELL VARIABLES
The shell has several mechanisms for creating variables. A
variable is a name representing a string value. Certain
variables are usually referred to as parameters. Parameters
are the variables normally set only on a command line. There
are also positional parameters and keyword parameters. Other

11-3

SHELL PROGRAMMING

variables are simply names to which the user or the shell itself
may assign string values.

Positional Parameters: When a shell procedure is invoked,
the shell implicitly creates positional parameters. The
argument in position zero on the command line (the name of
the shell procedure itself) is called $0, the first argument is
called $1, and so on. The shift command may be used to access
arguments in positions numbered higher than nine.

One can explicitly force values into these positional parameters
by using the set command

set abc def ghi

which assigns "abc" to the first positional parameter ($1),
"def" to the second ($2), and" ghi" to the third ($3). For this
example, set also unsets $4, $5, etc. even if they were
previously set. Positional parameter $0 may not be assigned a
value so that it always refers to the name of the shell
procedure or to the name of the shell (in the login shell).

For instance,

set abc def ghi
echo $3 $2 $1

prints

ghi def abc

User-defined Variables: The shell also recognizes
alphanumeric variables to which string values may be assigned.
Positional parameters may not appear on the left-hand side of
an assignment statement. Positional parameters can only be set
as described in "Positional Parameters." A simple assignment

11-4

SHELL PROGRAMMING

is of the form

name = string

Thereafter, $name yields the value" string". A name is a
sequence of letters, digits, and underscores that begins with a
letter or an underscore. Note that no spaces surround the = in
an assignment statement.

More than one assignment may appear in an assignment
statement, but beware since the shell performs the assignments
from right to left. The following command line results in the
variable a acquiring the value" abc" :

a=$b b=abc

The following are examples of simple assignments. Double
quotes around the right-hand side allow blanks, tabs,
semicolons, and newlines to be included in " string" , while also
allowing variable substitution (also known as parameter
substitution) to occur. In parameter substitution, references to
positional parameters and other variable names that are
prefaced by $ are replaced by the corresponding values, if any.
Single quotes inhibit variable substitution. Some examples
follow:

MAIL=/usr /mail/ gas
var=" $1 $2 $3 $4"
stars=*****
asterisks='$stars'

The variable var has as its value the string consisting of the
values of the first four positional parameters, separated by
blanks. No quotes are needed around the string of asterisks
being assigned to stars because pattern matching (expansion
of *, ?, [...]) does not apply in this context. Note that the value
of $asterisks is the literal string" $stars", not the string

11-5

SHELL PROGRAMMING

" *****" , because the single quotes inhibit substitution.

In assignments, blanks are not reinterpreted after variable
substitution, so that the following example results in $first
and $second having the same value:

first=' a string with embedded blanks'
second =$first

In accessing the value of a variable, one may enclose the
variable's name (or the digit designating the positional
parameter) in braces {} to delimit the variable name from any
following string. In particular, if the character immediately
following the name is a letter, digit, or underscore (digit only
for positional parameters), then the braces are required

a='This is a string'
echo" ${ a }ent test"

returns the following message

This is a stringent test

Command Substitution: Any command line can be placed
within grave accents (' ... ') to capture the output of the
command. This concept is known as command substitution.
The command or commands enclosed between grave accents are
first executed by the shell and then their output replaces the
whole expression, grave accents and all. This feature is often
combined with shell variables so that

today= ' date'

assigns the string representing the current date to the variable
today (e.g., Tue Nov 27 16:01:09 EST 1984). The command

11-6

SHELL PROGRAMMING

users='who I wc -1'

saves the number of logged-in users in the variable users. Any
command that writes to the standard output can be enclosed in
grave accents. Grave accents may be nested. The inside sets
must be escaped with \. For example

logmsg='echo Your login directory is \'pwd\"

Shell variables can also be given values indirectly by using the
shell built-in command read. The read command takes a line
from the standard input (usually the terminal) and assigns
consecutive words on that line to any variables named. For
example,

read first init last

will take an input line of the form:

A. A. Smith

and has the same effect as if

first=A. init=A. last=Smith

had been typed.

The read command assigns any excess "words" to the last
variable.

Predefined Special Variables: Several variables have special
meanings. The following are set only by the shell:

11-7

SHELL PROGRAMMING

$# records the number of positional arguments passed
to the shell, not counting the name of the shell
procedure itself. The variable $# yields the number
of the highest-numbered positional parameter that is
set. Thus, sh x abc sets $# to 3. One of its
primary uses is in checking for the presence of the
required number of arguments:

if test $# -It 2
then

echo 'two or more args required'; exit
fi

$? is the exit status (also referred to as return code,
exit code, or value) of the last command executed.
I ts value is a decimal string. Most UNIX system
commands return 0 to indicate successful
completion. The shell itself returns the current
value of $? as its exit status.

$$ is the process number of the current process. Since
process numbers are unique among all existing
processes, this string of up to five digits is often used
to generate unique names for temporary files. The
UNIX system provides no mechanism for the
automatic creation and deletion of temporary files.
A file exists until it is explicitly removed.
Temporary files are generally undesirable. The
UNIX system pipe mechanism is far superior for
many applications. However, the need for
uniquely-named temporary files does occasionally
occur. The following example also illustrates the
recommended practice of creating temporary files in
a directory used only for that purpose:

11-8

SHELL PROGRAMMING

temp=$HOME/temp/$$
Is > $temp
commands, some of which use $temp, go here
rm $temp

$! is the process number of the last process run in the
background. Again, this is a string of up to five
digits.

$- is a string consisting of names of execution flags
currently turned on in the shell. The $- variable
has the value xv when tracing output.

CONDITIONAL SUBSTITUTION
Normally, the shell replaces occurrences of $variable by the
string value assigned to variable, if any. However, there exists
a special notation to allow conditional substitution depending
upon whether the variable is set and/or not null. By definition,
a variable is setif it has ever been assigned a value. The value
of a variable can be the null string which may be assigned to a
variable in anyone of the following ways:

A=
bcd=" "
Ef_g="
set" " "

The first three of these examples assign the null string to each
of the corresponding shell variables. The last example sets the
first and second positional parameters to the null string and
unsets all other positional parameters.

The following conditional expressions depend upon whether a
variable is set and not null. (Note that, in these expressions,
variable refers to either a digit or a variable name.

11-9

SHELL PROGRAMMING

${variable:-string} If variable is set and is non-null, then
substitute the value $variable in place of this expression.
Otherwise, replace the expression with string. Note that
the value of variable is not changed by the evaluation of
this expression.

$ { variable:=string} If variable is set and is non-null, then
substitute the value $variable in place of this expression.
Otherwise, set variable to string, and then substitute the
value $variable in place of this expression. Positional
parameters may not be assigned values in this fashion.

${ variable:?string} If variable is set and is non-null, then
substitute the value of variable for the expression.
Otherwise, print a message of the form:

variable: string

and exit from the current shell. (If the shell is the
login shell, it is not exited.) If string is omitted in this
form, then the message

variable: parameter null or not set

is printed instead.

${ variable:+string} If variable is set and is non-null, then
substitute string for this expression; otherwise, substitute
the null string. Note that the value of variable is not
altered by the evaluation of this expression.

These expressions may also be used without the colon (:). In
this case, tile shell does not check whether variable is null or
not. It only checks whether variable has ever been set.

The two examples below illustrate the use of this facility:

11-10

SHELL PROGRAMMING

1. If PATH has ever been set and is not null, then keep its
current value. Otherwise, set it to the string
:/bin:/usr/bin. Note that one needs an explicit
assignment to set PATH in this form:

P ATH=${PATH:-':/bin:/usr/bin'}

2. If HOME is set and is not null, then change directory to
it; otherwise, set it to /usr/gas and change directory to
it. Note that HOME is automatically assigned a value in
this case:

cd ${HOME:=' /usr/gas'}

CONTROL COMMANDS
The shell provides several commands that are useful in
creating shell procedures. A few definitions are needed before
explaining the commands.

A simple command is defined as a sequence of" nonblank
arguments separated by blanks or tabs. The first argument
usually specifies the name of the command to be executed. Any
remaining arguments, with a few exceptions, are passed to the
command. Input/output redirection arguments can appear in a
simple command line and are passed to the shell, not to the
command.

A command is a simple command or any of the shell
commands described below. A pipeline is a sequence of one or
more commands separated by I. (For historical reasons, A is a
synonym for 1 in this context.) The standard output of each
command but the last in a pipeline is connected [by a pipe(2)]
to the standard input of the next command. Each command in
a pipeline is run separately. The shell waits for the last
command to finish. If no exit status argument is specified, the

11-11

SHELL PROGRAMMING

exit status is that of the last command executed (an end-of-file
will also cause the shell to exit).

A command list is a sequence of one or more pipelines
separated by;, &, &&, or I I, and optionally terminated by ;
or &. A semicolon (;) causes sequential execution of the
previous pipeline (that is, the shell waits for the pipeline to
finish before reading the next pipeline), while & causes
asynchronous execution of the preceding pipeline. Both
sequential and asynchronous execution are thus allowed. An
asynchronous pipeline continues execution until it terminates
voluntarily or until its processes are killed.

More typical uses of & include off-line printing, background
compilation, and generation of jobs to be sent to other
computers. For example, typing

nohup cc prog.c &

allows one to continue working while the C compiler runs in the
background. A command line ending with & is immune to
interrupts and quits, but it is wise to make it immune to
hang-ups as well. The nohup command is used for this
purpose. Without nohup, if one hangs up while cc in the above
example is still executing, cc will be killed and the output will
disappear.

The && and I I operators, which are of equal precedence (but
lower than & and I), cause conditional execution of pipelines.
In cmdl I I cmd2, cmdl is executed and its exit status
examined. Only if cmdl fails (i.e., has a nonzero exit status) is
cmd2 executed. This is thus a more terse notation for:

11-12

SHELL PROGRAMMING

if cmdl
test $? != 0

then
cmd2

fi

The && operator yields the complementary test: in cmdl &&
cmd2, the second command is executed only if the first
succeeds (has a zero exit status). In the sequence below, each
command is executed in order until one fails:

cmdl && cmd2 && cmd3 && ... && cmdn

A simple command in a pipeline may be replaced by a command
list enclosed in either parentheses or braces. The output of all
the commands so enclosed is combined into one stream that
becomes the input to the next command in the pipeline. The
following line prints two separate documents:

{ nroff -cm textl; nroff -cm text2; } I col

Programming Constructs

Several control flow commands are provided in the shell that
are especially useful in programming. These are referred to as
programming constructs and are described below.

A command often used with programming constructs is the
test(l) command. An example of the use of the test command
is:

test -f file

This command returns zero exit status (true) if file exists and
nonzero exit status otherwise. In general, test evaluates a
predicate and returns the result as its exit status. Some of the

11-13

SHELL PROGRAMMING

more frequently used test arguments are given below [see
test(l) and "Test" under "SPECIAL COMMANDS" for more
information].

test s true if the argument s is not
the null string

test -f file true if file exists

test -r file true if file is readable

test -w file true if file is writable

test -d file true if file is a directory.

Control Flow-while

The actions of the for loop and the case branch are
determined by data available to the shell. A while or until
loop and an if then else branch are also provided whose
actions are determined by the exit status returned by
commands. A while loop has the general form:

while command-listl
do

command -list2
done

The value tested by the while command is the exit status of
the last simple command following while. Each time around
the loop command-listl is executed. If a zero exit status is
returned, then command-list2 is executed; otherwise, the loop
stops. For exam pIe,

11-14

SHELL PROGRAMMING

while test $1
do

shift
done

The shift command is a shell command that renames the
posi tional parameters $2, $3, ... as $1, $2, ... and loses $1.

Another use for the while/until loop is to wait until some
external event occurs and then run some commands. In an
until loop, the termination condition is reversed. For example,

until test -f file
do

sleep 300
done
commands

will loop until file exists. Each time round the loop, it waits for
5 minutes (300 seconds) before trying again. (Presumably,
another process will eventually create the file.)

A file print could be written to use while and test -as follows:

while test $# != 0
do

echo" $1 being submitted"
lp -dprtd42 -c -012 -w -tuser1 $1
shift

done
lpstat -oprtd42

11-15

SHELL PROGRAMMING

Control Flow-if

Also available is a general conditional branch of the form:

if command -list
then

command-list
else

command -list
fi

that tests the value returned by the last simple command
following if. If a zero exit status is returned, the command-list
following the then is executed. If a zero exit status is not
returned, the command-list following the else is executed.

The if command may be used with the test command to test
for the existence of a file as in:

if test - f file
then

process file
else

do something else
fi

A multiple test if command of the form:

11-16

SHELL PROGRAMMING

if ...
then

else
if ...
then

else
if ...

fi
fi

fi

may be written using an extension of the if notation as:

if ...
then

elif ...
then

elif ...

fi

11-17

SHELL PROGRAMMING

A file could be written to include the use of if and test as
follows:

if test $# = 0
then

echo" enter a filename after $0"
else

fi

if [! -f $1]
then

echo" $1 does not exist"
echo" Enter a filename that exists" ; exit

else
echo" $1 being submitted"
lp -dprtd42 -c -012 -w -tuser1 $*
lpstat -oprtd42
fi

The [...] is shorthand for test. The if [! -f $1] means if the
file $1 does not exist then do this.

The sequence

if command1
then

command2
fi

may be written

command1 && command2

Conversely,

command1 I I command2

11-18

SHELL PROGRAMMING

executes command2 only if command 1 fails. In each case,
the value returned is that of the last simple command executed.

Control Flow-for

A frequent use of shell procedures is to loop through the
arguments ($1, $2, ...) executing commands once for each
argument. An example of such a procedure is tel that searches
the file /usr/lib/telnos that contains lines of the form:

fred mh0123
bert mh0789

The text of tel is:

for i
do

grep $i lusr/lib/telnos
done

The command

tel fred

prints those lines in /usr/lib/telnos that contain the string
"fred" .

The command

tel fred bert

prints those lines containing "fred" followed by those for
"bert" .

11-19

SHELL PROGRAMMING

The for loop notation is recognized by the shell and has the
general form:

for name in words
do

command-list
done

A command-list is a sequence of one or more simple
commands separated or ended by a newline or a semicolon. A
name is a shell variable that is set to words ... in turn each
time the command-list following do is executed. If words ...
is omitted, then the loop is executed once for each positional
parameter; that is, in $* is assumed. Execution ends when
there are no more words in the list.

An example of the use of the for loop is the create command
whose text is:

for i do >$i; done

The command

create alpha beta

ensures that two empty files alpha and beta exist and are
empty. The notation >file may be used on its own to create or
clear the contents of a file. Notice also that a semicolon (or
newline) is required before done.

The for can also be used in a program. Assume a document is
formatted and stored in chapters (files) that begin with the
letters" ch" (chI, ch2, ch3, and chtoc). A program can be
written to send the document to the line printer. The program
contains:

11-20

SHELL PROGRAMMING

for i in ch*
do

lp -dprtd42 -c -012 -w -tuser1 $i
done

lpstat -oprtd42

This will send each chapter as a separate job. Notice that $i is
used instead of $*.

Control Flow-case

A multiple way (choice) branch IS provided for by the case
notation. For example,

case $# in
1) cat »$1 ;;
2) cat »$2 <$1 ;;
*) echo 'usage: append [from] to' ;;

esac

is an append command. (Note the use of semicolons to delimit
the cases.) When called with one argument as in

append file

$# is the string "1", and the standard input is appended
(copied) onto the end of file using the cat(l) command.

append file1 file2

appends the contents of filel onto file2. If the number of
arguments supplied to append is other than 1 or 2, then a
message is printed indicating proper usage.

The general form of the case command is

11-21

SHELL PROGRAMMING

case word in
patternlpattern) command-list;;

esac

The shell attempts to match word with each pattern in the
order that the patterns appear.--If a match is found, the
associated command-list is executed; and execution of the
case is complete. Since * is the pattern that matches any
string, it can be used for the default case.

Caution: No check is made to ensure that only one
pattern matches the case argument.

The first match found defines the set of commands to be
executed. In the example below, the commands following the
second "*" will never be executed since the first "*" executes
everything it receives.

case $# in
*) ... ;;
*) ... ;;

esac

A program print can be used to send a document to different
line printers. Assume there are two line printers named
"prtd42" and "prtd43". Send a document to "prtd42" as
follows:

print 42 files

Send a document to" prtd43" as follows:

print 43 files

11-22

SHELL PROGRAMMING

The print program contains the following:

case $1 in
42) shift;lp -dprtd42 -c -012 -w -tuser1 $*;lpstat -oprtd42;;
43) shift;lp -dprtd43 -c -012 -w -tuser1 $*;lpstat -oprtd43;;
*) echo" line printer does not exist" ;;

esac

Another example of the use of the case construction is to
distinguish between different forms of an argument. The
following example is a fragment of a cc(1) command.

for i
do

case $i in
-[ocs]) ... ;;
-*) echo 'unknown flag $i' ;;
*.c) llib/cO $i ... ;;
*) echo 'unexpected argument $i' ;;

esac
done

To allow the same commands to be associated with more than
one pattern, the case command provides for alternative
patterns separated by a I . For example,

case $i in
-xl-y) ...

esac

is equivalent to

case $i in
-[xy]) ...

esac

11-23

SHELL PROGRAMMING

The usual quoting conventions apply so that

case $i in
\?) ...

will match the character?

SPECIAL COMMANDS
There are several special commands that are internal to the
shell (some of which have already been mentioned). These
commands should be used in preference to other UNIX system
commands whenever possible because they are faster and more
efficient. The shell does not fork to execute these commands,
so no additional processes are spawned.

Many of these special commands were described in Chapter 10.
These commands include:

cd
exec
hash
newgrp
pwd
set
type
ulimit
umask
unset.

Descriptions of the remaining special commands follow. These
commands include:

11-24

break
continue
echo
eval
exit
export
read
readonly
return
shift
test
times
trap
wait.

: (Colon)

SHELL PROGRAMMING

The : command is the null command. This command can be
used to return a zero (true) exit status .

. (Period)

The. command has the form:

. file

This command reads and executes commands from file and
returns. The search path specified by PATH is used to find the
directory containing file. If the file command1 contained the
following

echo Today is:
date

then the command

11-25

SHELL PROGRAMMING

. command1

returns

Today is:
Thu Sep 22 14:40:04 EDT 1984

Any currently defined variable can be used in the shell
procedure called.

break

This command has the form:

break [n]

This command is used to exit from the enclosing for, until, or
while loop. If n is specified, then exit n levels. An example of
break is as follows:

This procedure is interactive; the 'break'
command is used to allow
the user to control data entry.
while true
do

echo" Please enter data"
read response
case" $response" in

" done") break ..
" *)

no more data

process the data here
..
" esac

done

11-26

SHELL PROGRAMMING

continue

This command has the form:

continue [nJ

This command causes the resumption of an enclosing for,
until, or while loop. If n is specified, then it resumes at the
n-th enclosing loop.

echo

The form of the echo command is:

echo [arg ... J

The echo command writes its arguments separated by blanks
and terminated by a newline on the standard output. For
instance, the input:

echo Message to be printed.

returns

Message to be printed.

The following escapes can be used with echo:

11-27

SHELL PROGRAMMING

\b backspace
\c print line without new-line
\f new-line
\r carriage return
\t tab
\ backslash
\n the 8-bit character whose ASCII code is the 1-,

2-, or 3-digit octal number, which must start
with a zero.

\ v vertical tab

For example,

echo" The current date is \c"
date

would return

The current date is Tue May 16 08:00:30 EDT 1984

eval

Sometimes, one builds command lines inside a shell procedure.
In this case, one might want to have the shell res can the
command line after all the initial substitutions and expansions
are done. The special command eval is available for this
purpose. The form of this command is:

eva I [arg ...]

The eval command takes a command line as its argument and
simply rescans the line performing any variable or command
substitutions that are specified. Consider the following
situation:

11-28

command=who
output='lwc -1'
eval $command $output

SHELL PROGRAMMING

This segment of code results in the pipeline who I we -I being
executed.

The uses of eval can be nested.

exit

A shell program may be terminated at any place by using the
exit command. The form of the exit command is:

exit [n]

The exit command can also be used to pass a return code (n) to
the shell. By convention, a 0 return code means true and a 1
to 255 return code means false. The return code can be found
by $? For instance, if the executable procedure testexit
contained

exit 5

then

testexit

would execute testexit. The command:

echo $?

would return

11-29

SHELL PROGRAMMING

5

export

The form of the export command is:

export [name ...]

The export command places the named variables in the
environments of both the shell and all its future child
processes. Normally, all variables are local to the shell
program. Commands executed from within the shell program
do not have access to the local variables. If a variable is
exported, then the commands within the shell program will
be able to access the variable.

To export variables, the following command is used

export variablel variable2 ...

To obtain a list of variables exported, the following command
is entered

export

read

A variable may also be set using the read command. The
read command reads one line from the standard input of the
shell procedure and puts that line in the variables which are
its arguments. Leading spaces and tabs are stripped off. The
general form of the command is:

read variablel variable2 ...

11-30

SHELL PROGRAMMING

The last variable gets what is left over. For example, if
testread contains the following

echo 'Please type your first and last name:\c'
read first_name last_name
echo Your name is $ {first_name } $ {last_name }

then when the program is run the first line would be printed:

Please type your first and last name:

and would wait for the input. (The input would appear on the
same line.) Assuming the name is Jane Doe, after the input,
the following line would be printed:

Your name is Jane Doe

readonly

Variables can be made readonly. After becoming readonly, a
variable cannot receive a new value. The general form of the
command is

readonly variable-name variable-name ...

To print the names of variables that are readonly, enter

readonly

11-31

SHELL PROGRAMMING

return

The return command causes a function to exit with a specified
return value. The form of the command is:

return [n]

where n is the desired return value. When n is omitted, the
return status of the last command executed is displayed.

shift

The shift[sh(l)] command reassigns the positional parameters.
Positional parameter $1 would receive the value of $2, $2
would receive the value of $3, etc. Notice that $0 (the
procedure name) is unchanged and that the number of
positional parameters ($#) is decremented.

If the executable program shifter contains the following:

echo ${#} positional parameters
echo ${*}
echo Now shift
shift
echo ${#} positional parameters
echo ${*}

then the command:

shifter first second third

would result in

11-32

SHELL PROGRAMMING

3 positional parameters
first second third
Now shift
2 positional parameters
second third

test

The test(l) command evaluates the expression specified by its
arguments and, if the expression is true, returns a zero exit
status. Otherwise, a nonzero (false) exit status is returned. The
test command also returns a nonzero exit status if it has no
arguments. Often it is convenient to use the test command as
the first command in the command list following an if or a
while. Shell variables used in test expressions should be
enclosed in double quotes if there is any chance of their being
null or not set.

The square brackets ([]) may be used as an alias for test; e.g.,
[expression] has the same effect as test expression.

The following is a partial list of the primaries that can be used
to construct a conditional expression:

-r file

-w file

-x file

-8 file

true if the named file exists and is
readable by the user.

true if the named file exists and is
writable by the user.

true if the named file exists and is
executable by the user.

true if the named file exists and has a size
greater than zero.

11-33

SHELL PROGRAMMING

-dfile

-f file

-pfile

-z sl

-n sl

-tfildes

sl = s2

sl != s2

sl

n1 -eq n2

true if the named file exists and is a
directory.

true if the named file exists and is an
ordinary file.

true if the named file exists and is a
named pipe (fifo).

true if the length of string" s1" is zero.

true if the length of the string "s1" is
nonzero.

true if the open file whose file descriptor
number is fildes is associated with a
terminal device. If fildes is not specified,
file descriptor 1 is used by default.

true if strings "s1" and "s2" are
identical.

true if strings "s1" and" s2" are not
identical.

true if " s1" is not the null string.

true if the integers n1 and n2 are
algebraically equal. Other algebraic
comparisons are indicated by -ne, -gt,
-ge, -It, and -Ie.

These primaries may be combined with the following operators:

11-34

-a

-0

SHELL PROGRAMMING

unary negation operator.

binary logical and operator.

binary logical or operator. The -0 has
lower precedence than - a.

(expr) parentheses for grouping; they must be
escaped to remove their significance to
the shell. When parentheses are absent,
the evaluation proceeds from left to right.

Note that all primaries, operators, file names, etc. are separate
arguments to test.

For example, consider the procedure nametest:

if test -d $1
then echo $1 is a directory

elif test -f $1
then echo $1 is a file

else echo $1 does not exist
fi

If the file bucket existed, then

bucket is a file

would be returned.

11-35

SHELL PROGRAMMING

times

The times command prints the accumulated user and system
times for processes run from the shell. The times command is
entered on a line by itself. For example, the command

times

returns

Om3s OmlOs

trap

A shell program may handle interrupts by using the trap
command. The trap command interfaces with the underlying
UNIX operating system mechanism for handling interupts.

The UNIX opera ting system provides signals tha t tell a
program when some unusual condition has occurred. These
signals may be from the keyboard or from other programs.

By default, if a program receives a signal, the program will
terminate. However, these signals may be caught, the program
suspended, the interrupt routine run, and the program
restarted at the point it was suspended. Or these signals may
be ignored.

trap arg signal-list

is the form of the trap command, where arg is a string to be
interpreted as a command list and signal-list consists of one or
more signal numbers [as described in signal(2)].

11-36

SHELL PROGRAMMING

The following signals are used in the UNIX system:

01 hangup
02 interrupt
03 quit
04 illegal instruction
05 trace trap
06 lOT instruction
07 EMT instruction
08 floating point exception
09 kill
10 bus error
11 segmentation violation
12 bad argument to system call
13 write on a pipe with no one to read it
14 alarm clock
15 software termination signal
16 user defined signal 1
17 user defined signal 2
18 death of a child
19 power fail
20 window change
21 handset line status change.

The commands in arg are scanned at least once when the shell
first encounters the trap command. Because of this, it is
usually wise to use single rather than double quotes to
surround these commands. The single quotes inhibit immediate
command and variable substitution. This becomes important,
for instance, when one wishes to remove temporary files and
the names of those files have not yet been determined when the
trap command is first read by the shell. The following
procedure will print the name of the current directory on the
file errdirect when it is interrupted, thus giving the user
information as to how much of the job was done:

11-37

SHELL PROGRAMMING

trap 'echo 'pwd' >errdirect' 2 3 15
for i in Ibin lusr/bin lusr/gas/bin
do

cd $i
commands to be executed in directory $i here

done

The same procedure with double (rather than single) quotes
(trap" echo 'pwd' >errdirect" 2 3 15) will, instead, print
the name of the directory from which the procedure was
executed.

Signal 11 (SEGMENTATION VIOLATION) may never be
trapped because the shell itself needs to catch it to deal with
memory allocation. Zero is not a UNIX system signal. Zero is
effectively interpreted by the trap command as a signal
generated by exiting from a shell (either via an exit command
or by "falling through" the end of a procedure). If arg is not
specified, then the action taken upon receipt of any of the
signals in signal-list is reset to the default system action. If arg
is an explicit null string C or""), then the signals in signal-list
are ignored by the shell.

The most frequent use of trap is to assure removal of
temporary files upon termination of a procedure. The second
example of "Predefined Special Variables" in subpart D, "Shell
Variables," would be written more typically as follows:

temp=$HOME/temp/$$
trap 'rm $temp; trap 0; exit' 0 1 2 3 15
Is > $temp

commands, some of which use $temp, go here

In this example whenever signals 1 (HANGUP), 2
(INTERRUPT), 3 (QUIT), or 15 (SOFTWARE TERMINATION)
are received by the shell procedure or whenever the shell
procedure is about to exit, the commands enclosed between the
single quotes will be executed. The exit command must be

11-38

SHELL PROGRAMMING

included or else the shell continues reading commands where it
left off when the signal was received. The trap 0 turns off the
original trap on exits from the shell so that the exit command
does not reactivate the execution of the trap commands.

Sometimes it is useful to take advantage of the fact that the
shell continues reading commands after executing the trap
commands. The following procedure takes each directory in the
current directory, changes to it, prompts with its name, and
executes commands typed at the terminal until an end-of-file
(control-d) or an interrupt is received. An end-of-file causes
the read command to return a nonzero exit status, thus
terminating the while loop and restarting the cycle for the
next directory. The entire procedure is terminated if
interrupted when waiting for input; but during the execution of
a command, an interrupt terminates only that command.

dir='pwd'
for i in *
do

if test -d $dir I$i
then

fi
done

cd $dir/$i
while echo " $i:"

trap exit 2
read x

do
trap: 2 # ignore interrupts
eval $x

done

Several traps may be in effect at the same time. If multiple
signals are received simultaneously, they are serviced in
ascending order. To check what traps are currently set, type:

11-39

SHELL PROGRAMMING

trap

It is important to understand some things about the way the
shell implements the trap command in order not to be
surprised. When a signal (other than 11) is received by the
shell, it is passed on to whatever child processes are currently
executing. When those (synchronous) processes terminate,
normally or abnormally, the shell then polls any traps that
happen to be set and executes the appropriate trap commands.
This process is straightforward except in the case of traps set
at the command (outermost or login) level. In this case, it is
possible that no child process is running, so the shell waits for
the termination of the first process spawned after the signal is
received before it polls the traps.

For internal commands, the shell normally polls traps on
completion of the command. An exception to this rule is made
for the read, hash, and echo commands.

wait

The wait command has the following form

wait [n]

With this command, the shell waits for the child process whose
process number is n to terminate. The exit status of the wait
command is that of the process waited on. If n is omitted or is
not a child of the current shell, then all currently active
processes are waited for and the return code of the wait
command is zero. For example, the executable program
format:

11-40

SHELL PROGRAMMING

while test" $1" !=""
nroff $1»junk&
shift
wait $!
done
echo ***nroff complete***

envokes the nroff formatter for each file specified and informs
the user when it is finished. If the files chapterl and chapter2
required formatting, the entry:

format chapter1 chapter2

would format the two chapters and when they are finished
return

nroff complete

COMMAND GROUPING
Commands may be grouped in two ways

{ command-list; }

and

(command-list)

The first form, command-list, is simply executed. The second
form executes command-list as a separate process. If a list of
commands is enclosed in a pair of parentheses, the list is
executed as a subshell. The subshell inherits the environment
of the main shell. The subshell does not change the
environment of the main shell. For example,

11-41

SHELL PROGRAMMING

(cd x; rm junk)

executes rm junk in the directory x without changing the
current directory of the invoking shell.

The commands

cd x; rm junk

have the same effect but leave the invoking shell in the
directory x.

A COMMAND'S ENVIRONMENT
All the variables (with their associated values) known to a
command at the beginning of execution of that command
constitute its environment. This environment includes
variables that the command inherits from its parent process
and variables specified as keyword parameters on the command
line that invokes the command.

The variables that a shell passes to its child processes are
those that have been named as arguments to the export
command. The export command places the named variables in
the environments of both the shell and its future child
processes.

Keyword parameters are variable-value pairs that appear in the
form of assignments, normally before the procedure name on a
command line. Such variables are placed in the environment of
the procedure being invoked. For example,

key_command
echo $a $b

11-42

SHELL PROGRAMMING

is a simple procedure that echoes the values of two variables.
IfU is invoked as

a=keyl b=key2 key_command

then the output is

keyl key2

A procedure's keyword parameters are not included in the
argument count $#.

A procedure may access the value of any variable in its
environment. However, if changes are made to the value of a
variable, these changes are not reflected in the environment.
The changes are local to the procedure in question. In order for
these changes to be placed in the environment that the
procedure passes to its child processes, the variable must be
named as an argument to the export command within that
procedure. To obtain a list of variables that have been made
exportable from the current shell, type:

export

To get a list of name-value pairs in the current environment,
type:

env

11-43

SHELL PROGRAMMING

DEBUGGING SHELL PROCEDURES
The shell provides two tracing mechanisms to help when
debugging shell procedures. The first is invoked within the
procedure as

set -v

(v for verbose) and causes lines of the procedure to be printed
as they are read. It is useful to help isolate syntax errors. It
may be invoked without changing the procedure by entering:

sh -v proc ...

where proc is the name of the shell procedure. This flag may
be used with the -n flag to prevent execution of later
commands. (Note that typing "set -n" at a terminal will
render the terminal useless until an end-of-file is typed.)

The command:

set -x

will produce an execution trace with flag -x. Following
parameter substitution, each command is printed as it is
executed. (Try the above at the terminal to see the effect it
has.) Both flags may be turned off by typing:

set -

and the current setting of the shell flags is availabl,e)as $-.
I.

11-44

Chapter 12

EXAMPLES OF SHELL PROCEDURES

copypairs

copy to .. .

distinct

draft

edfind .. .

edlast .. .

fsplit

initvars

merge .. .

mkfiles

mmt .. .

null .. .

phone

writemail

PAGE

12-1

12-2

12-3

12-4

12-5

12-5

12-6

12-7

12-8

12-9

12-10

12-12

12-12

12-13

Chapter 12

EXAMPLES OF SHELL PROCEDURES
Some examples in this subpart are quite difficult for beginners.
For ease of reference, the examples are arranged alphabetically
by name, rather than by degree of difficulty.

copypairs

usage: copypairs file1 file2 ...
copy file1 to file2, file3 to file4, ...
while test" $2" 1=""
do

cp $1 $2
shift; shift

done
if test" $1" 1=""
then

echo" $0: odd number of arguments"
fi

Note: This procedure illustrates the use of a while
loop to process a list of positional parameters that are
somehow related to one another. Here a while loop is
much better than a for loop because you can adj ust the
positional parameters via shift to handle related
arguments.

12-1

EXAMPLES OF SHELL PROCEDURES

copy to

usage: copy to dir file ...
copy argument files to 'dir',
making sure that at least
two arguments exist and that 'dir'
is a directory
if test $# -It 2
then

echo" $0: usage: copy to directory file ... "
elif test ! -d $1
then

echo " $0: $1 is not a directory" ;
else

dir=$l; shift
for eachfile
do

done
fi

cp $eachfile $dir

Note: This procedure uses an if command with two
tests in order to screen out improper usage. The for
loop at the end of the procedure loops over all of the
arguments to copy to but the first. The original $1 is
shifted off.

12-2

EXAMPLES OF SHELL PROCEDURES

distinct

usage: distinct
reads standard input and reports
list of alphanumeric strings
that differ only in case,
giving lower-case form of each
tr -cs '[A-Z] [a-z] [0-9]' '[\012*], I sort -u I

tr '[A-Z]' '[a-z]' I sort I uniq -d

Note: This procedure is an example of the kind of
process that is created by the left-to-right construction
of a long pipeline. It may not be immediately obvious
how this works. [See tr(l), sort(l), and uniq (1) if you
are completely unfamiliar with these commands.] The
tr translates all characters except letters and digits into
newline characters and then squeezes out repeated
newline characters. This leaves each string (in this case,
any contiguous sequence of letters and digits) on a
separate line. The sort command sorts the lines and
emits only one line from any sequence of one or more
repeated lines. The next tr converts everything to
lowercase so that identifiers differing only in case
become identical. The output is sorted again to bring
such duplicates together. The uniq -d prints (once)
only those lines that occur more than once yielding the
desired list.

The process of building such a pipeline uses the fact that pipes
and files can usually be interchanged. The two lines below are
equivalent assuming that sufficient disk space is available:

cmd1 I cmd2 I cmd3
cmd1>temp1;cmd2<temp1>temp2;cmd3<temp2;rm temp[12]

Starting with a file of test data on the standard input and
working from left to right, each command is executed taking its

12-3

EXAMPLES OF SHELL PROCEDURES

input from the previous file and putting its output in the next
file. The final output is then examined to make sure that it
contains the expected result. The goal is to create a series of
transformations that will convert the input to the desired
output. As an exercise, try to mimic distinct with such a
step-by-step process using a file of test data containing:

ABC:DEF/DEF
ABCl ABC
Abc abc

Although pipelines can give a concise notation for complex
processes, exercise some restraint lest you succumb to the
"one-line syndrome" sometimes found among users of especially
concise languages. This syndrome often yields
incomprehensible code.

draft

usage: draft file(s)
prints the draft (-rC3) of a document on a DASI 450
terminal in l2-pitch using memorandum macros (MM).
nroff -rC3 -T450-l2 -cm $*

Note: Users often write this kind of procedure for
convenience in dealing with commands that require the
use of many distinct flags. These flags cannot be given
default values that are reasonable for all (or even most)
users.

12-4

EXAMPLES OF SHELL PROCEDURES

edfind

usage: edfind file arg
find the last occurrence in 'file' of a line whose
beginning matches 'arg', then print 3 lines (the one
before, the line itself, and the one after)
ed - $1 «~I
H
?A$2?;_,+p
!

Note: This procedure illustrates the practice of using
editor (ed) inline input scripts into which the shell can
substitute the values of variables. It is a good idea to
turn on the H option of ed when embedding an ed
script in a shell procedure [see ed(1)].

edlast

usage: edlast file
prints the last line of file, then deletes that line
ed - $1 «-\eof # no variable substitutions in "ed" script

H
$p
$d
w
q

eof
echo Done.

Note: This procedure contains an in-line input
document or script; it also illustrates the effect of
inhibiting substitution by escaping a character in the
eo/string (here, eof) of the input redirection. If this had
not been done, $p and $d would have been treated as

12-5

EXAMPLES OF SHELL PROCEDURES

shell variables.

fsplit

usage: fsplit file1 file2
read standard input and divide it into three parts:
append any line containing at least one letter
to file1, any line containing at least one digit
but no letters to file2, and throw the rest away
total =0 10st=0
while read next
do

done

total =" 'expr $t<;>tal + 1 '"
case "$next" in
[A-Za-z])

echo "$next" > > $1 ;;
[0-9])

echo "$next" > > $2 ;;
*)

lost=" 'expr $lost + 1 '"
esac

echo" $total lines read, $lost thrown away"

Note: In this procedure, each iteration of the while
loop reads a line from the input and analyzes it. The
loop terminates only when read encounters an
end-of-file.

Do not use the shell to read a line at a time unless you
must - it can be grotesquely slow.

12-6

EXAMPLES OF SHELL PROCEDURES

initvars

usage: . initvars
use carriage return to indicate" no change"
echo " ini tializa tions? \ c"
read response
if test "$response" = y
then

fi

echo" PS1=\c"; read temp
PSl =$ {temp:-$PSl }

echo" PS2= \ c" ; read temp
PS2=${ temp:-$PS2}

echo" PATH=\c"; read temp
PATH=${temp:-$PATH}

echo" TERM=\c"; read temp
TERM=${ temp:-$TERM}

Note: This procedure would be invoked by a user at the
terminal or as part of a file. The assignments are
effective even when the procedure is finished because the
dot command is used to invoke it. To better understand
the dot command, invoke initvars as indicated above
and check the values of PSI, PS2, PATH, and TERM;
then make initvars executable, type initvars, assign
different values to the three variables, and check again
the values of these three shell variables after initvars
terminates. It is assumed that PSI, PS2, PATH, and
TERM have been exported, presumably by your
.profile.

12-7

EXAMPLES OF SHELL PROCEDURES

merge

usage: merge src1 src2 [dest]
merge two files, every other line.
the first argument starts off the merge,
excess lines of the longer
file are appended to
the end of the resultant file
exec 4<$1 5<$2
dest=${3-$1.m}# default destination file is named $1.m
while true
do

alternate reading from the files;
'more' represents the file descriptor
of the longer file

line <&4 »$dest I I { more=5; break ;}
line <&5 > >$dest I I {more=4; break ;}

done
delete the last line of destination
file, because it is blank.

ed - $dest «\eof
H
$d
w
q

eof
while line <&$more > > $dest
do :; done # read the remainder of the longer

file-the body of the 'while' loop
does nothing; the work of the loop
is done in the command list following
'while'

Note: This procedure illustrates a technique for
reading sequential lines from a file or files without
creating any subshells to do so. When the file descriptor
is used to access a file, the effect is that of opening the
file and moving a file pointer along until the end of the
file is read. If the input redirections used srcl and

12-8

EXAMPLES OF SHELL PROCEDURES

src2 explicitly rather than the associated file
descriptors, this procedure would never terminate
because the first line of each file would be read over and
over again.

mkfiles

usage: mkfiles pref [quantity]
makes 'quantity' (default = 5) files,
named prefl, pref2, ...
quantity=${2-5}
i=l
while test" $i" -Ie" $quantity"
do

> li
i=" 'expr $i + 1'"

done

Note: This procedure uses input/output redirection to
create zero-length files. The expr command is used for
counting iterations of the while loop. Compare this
procedure with procedure null below.

12-9

EXAMPLES OF SHELL PROCEDURES

mmt

if test" $#" = 0; then cat «\!
Usage: "mmt [options] files" where" options" are:
-a => output to terminal
-e => preprocess input with eqn
-t => preprocess input with tbl
- Tst => output to STARE phototypesetter by Honeywell
-T4014 => output to 4014 manufactured by Tektronix
- Tvp => output to printer manufactured by Versatec
- => use instead of" files" when mmt used inside a pipeline.
Other options as required by TROFF and the MM macros.
!

exit 1
fi
PATH='/bin:/usr/bin'; O='-g'; 0=' I gcat -ph';
Assumes typesetter is accessed via gcat(l)
If typesetter is on-line, use 0="; 0="
while test -n "$1" -a! -r " $1"
do

case" $1" In
-a) 0=' -a'; 0=" ;;
-Tst) O='-g'; 0=' I gcat -st';;

Above line for STARE only
-T4014) O='-t'; 0=' I tc';;
-Tvp) O='-t'; 0=' I vpr -t';;
-e) e='eqn';;
-t) f='tbl';;
-) break;;
*) a=" $a $1" ;;

esac
shift

done
if test -z " $1"
then

fi

echo 'mmt: no input file'
exit 1

if test "$0" =' -g'
then

12-10

EXAMPLES OF SHELL PROCEDURES

fi
d=" $*"
if test" $d"
then

fi
if test -n " $f"
then

fi
if test -n " $e"
then

x=" -f$1"

, ,

shift
x="
d="

f=" tbl $* I"
d="

if test -n " $f"

fi
fi

then e='eqn I '
else e=" eqn $* I "
d="

eval " $f $e troff $0 -cm $a $d $0 $x" ; exit 0

Note: This is a slightly simplified version of an actual
UNIX system command. It uses many of the features
available in the shell. If you can follow through it
without getting lost, you have a good understanding of
shell programming. Pay particular attention to the
process of building a command line from shell variables
and then using eval to execute it.

12-11

EXAMPLES OF SHELL PROCEDURES

null

usage: null file
crea te each of the named files
as an empty file
for eachfile
do

> $eachfile
done

Note: This procedure uses the fact that output
redirection creates the (empty) output file if that file
does not already exist. Compare this procedure with
procedure mkfiles above.

phone

usage: phone initials
prints the phone number(s) of person
with given initials
echo 'inits ext home'
grep "A$l" «\!
abc 1234
def 2234
ghi 3342
xyz 4567
!

999-2345
583-2245
988-1010
555-1234

Note: This procedure is an example of using an inline
input document or script to maintain a small data base.

12-12

EXAMPLES OF SHELL PROCEDURES

writemail

usage: writemail message user
if user is logged in, write message on terminal;
otherwise, mail it to user
echo" $1" I {write" $2" II mail" $2" ;}

Note: This procedure illustrates command grouping.
The message specified by $1 is piped to the write
command and, if write fails, to the mail command.

12-13

Chapter 13

A PROGRAM FOR MAINTAINING
COMPUTER PROGRAMS-"make"

PAGE

GENERAL... 13-1

BASIC FEATURES. 13-3

DESCRIPTION FILES AND SUBSTITUTIONS............. 13-9

EXTENSIONS OF $*, $@, AND $< 13-12

OUTPUT TRANSLATIONS 13-12

COMMAND USAGE 13-14

THE ENVIRONMENT VARIABLES....................... 13-16

RECURSIVE MAKEFILES 13-22

SUFFIXES AND TRANSFORMATION RULES. 13-23

IMPLICIT RULES...................................... 13-25

FORMAT OF SHELL COMMANDS WITHIN

make.. 13-27

ARCHIVE LIBRARIES.................................. 13-27

SOURCE CODE CONTROL SYSTEM FILE NAMES: THE

TILDE. .. 13-33

THE NULL SUFFIX..................................... 13-35

INCLUDE FILES....................................... 13-36

INVISIBLE SCCS MAKEFILES .. 13-36

DYNAMIC DEPENDENCY PARAMETERS 13-36

SUGGESTIONS AND WARNINGS 13-38

Chapter 13

A PROGRAM FOR MAINTAINING
COMPUTER PROGRAMS-"make"

GENERAL
In a programming proj ect, a common practice is to divide large
programs into smaller pieces that are more manageable. The
pieces may require several different treatments such as being
processed by a macro processor or sophisticated program
generators (e.g., Yacc or Lex). The project continues to
become more complex as the output of these generators is
compiled with special options and with certain definitions and
declarations. A sequence of code transformations develops
which is difficult to remember. The resulting code may need
further transformation by loading the code with certain
libraries under control of special options. Related maintenance
activities also complicate the process further by running test
scripts and installing validated modules. Another activity that
complicates program development is a long editing session. A
programmer may lose track of the files changed and the object
modules still valid, especially when a change to a declaration
can make a dozen other files obsolete. The programmer must
also remember to compile a routine that has been changed or
that uses changed declarations.

The "make" command is a software tool that maintains,
updates, and regenerates groups of computer programs.

A programmer can easily forget

• Files that are dependent upon other files .

• Files that were modified recently.

13-1

MAKE

• Files that need to be reprocessed or recompiled after a
change in the source.

• The exact sequence of operations needed to make and
exercise a new version of the program.

The many activities of program development and maintenance
are made simpler by the make program.

The make program provides a method for maintaining up-to
date versions of programs that result from many operations on
a number of files. The make program keeps track of the
sequence of commands that create certain files and the list of
files that require other files to be current before the operations
can be done. Whenever a change is made in any part of a
program, the make command creates the proper files simply,
correctly, and with a minimum amount of effort. The make
program also provides a simple macro substitution facility and
the ability to encapsulate commands in a single file for
convenient administration.

The basic operation of make is to

• Find the name of the needed target file in the description.

• Ensure that all of the files, on which it depends, exist and
are up to date.

• Create the target file if it has not been modified since its
generators were modified.

The descriptor file really defines the graph of dependencies.
The make program determines the necessary work by
performing a depth-first search of the graph of dependencies.

If the information on interfile dependencies and command
sequences is stored in a file (makefile or Makefile), the simple
command

13-2

MAKE

make

is frequently sufficient to update the interesting files regardless
of the number edited since the last make. In most cases, the
description file is easy to write and changes infrequently. It is
usually easier to type the make command than to issue even
one of the needed operations, so the typical cycle of program
development operations becomes

think - edit - make - test ...

The make program is most useful for medium-sized
programming projects. The make program does not solve the
problems of maintaining multiple source versions or of
describing huge programs.

BASIC FEATURES

The basic operation of make is to update a target file by
ensuring that all of the files on which the target file depends
exist and are up to date. The target file is created if it has not
been modified since the dependents were modified. The make
program does a depth-first search of the graph of dependencies.
The operation of the command depends on the ability to find
the date and time that a file was last modified.

To illustrate, consider a simple example in which a program
named prog is made by compiling and loading three C language
files x.c, y.c, and z.c with the ld library. By convention, the
output of the C language compilations will be found in files
named x.o, y.o, and z.o. Assume that the files x.c and y.c share
some declarations in a file named defs, but that z.c does not.
That is, x.c and y.c have the line

#include " defs"

13-3

MAKE

The following text describes the relationships and operations:

prog: x.o y.o z.o
cc x.o y.o z.o -lId -0 prog

x.o y.o: defs

If this information were stored in a file named makefile, the
command

make

would perform the operations needed to recreate prog after any
changes had been made to any of the four source files x.c, y.c,
z.c, or defs.

The make program operates using the following three sources
of information:

• A user-supplied description file

• File names and "last-modified" times from the file system

• Built-in rules to bridge some of the gaps.

In the example, the first line states that prog depends on three
".0" files. Once these object files are current, the second line
describes how to load them to create prog. The third line states
that x.o and y.o depend on the file defs. From the file system,
make discovers that there are three ".c" files corresponding to
the needed ".0" files and uses built-in information on how to
generate an object from a source file (Le., issue a "cc -c"
command).

By not taking advantage of make's innate knowledge, the
following longer descriptive file results.

13-4

MAKE

prog: x.o y.o z.o
cc x.o y.o z.o -lId -0 prog

x.o: x.c defs
cc -c x.c

y.o: y.c defs
cc -c y.c

z.o : z.c
cc -c z.c

If none of the source or object files have changed since the last
time prog was made, all of the files are current, and the
command

make

announces this fact and stops. If, however, the defs file has
been edited, x.c and y.c (but not z.c) are recompiled; and then
prog is created from the new ".0" files. If only the file y.c had
changed, only it is recompiled; but it is still necessary to reload
prog. If no target name is given on the make command line,
the first target mentioned in the description is created;
otherwise, the specified targets are made. The command

make x.o

would recompile x.o if x.c or defs had changed.

A method, often useful to programmers, is to include rules with
mnemonic names and commands that do not actually produce a
file with that name. These entries can take advantage of
make's ability to generate files and substitute macros. Thus,
an entry "save" might be included to copy a certain set of files,
or an entry "cleanup" might be used to throwaway unneeded
intermediate files.

If the file exists after the commands are executed, the file's
time of last modification is used in further decisions. If the file

13-5

MAKE

does not exist after the commands are executed, the current
time is used in making further decisions.

You may maintain a zero-length file purely to keep track of the
time at which certain actions were performed. This technique
is useful for maintaining remote archives and listings.

A simple macro mechanism for substituting in dependency lines
and command strings is used by the make program. Macros
are defined by command arguments or description file lines
with embedded equal signs. A macro is invoked by preceding
the name by a dollar sign. Macro names longer than one
character must be parenthesized. The name of the macro is
either the single character after the dollar sign or a name
inside parentheses. The following are valid macro invocations:

$(CFLAGS)
$2
$(xy)
$Z
$(Z)

The last two invocations are identical. A $$ is a dollar sign.

The $*, $@, $?, and $< are four special macros which change
values during the execution of the command. (These four
macros are described in the part "DESCRIPTION FILES AND
SUBSTITUTIONS".) The following fragment shows assignment
and use of some macros:

OBJECTS = x.o y.o z.o
LIBES = -lId
prog: $(OBJECTS)

cc $(OBJECTS) $(LIBES) -0 prog

13-6

MAKE

The command

make" LIBES= -11 -lId"

loads the three objects with the Lex (-11) library since macro
definitions on the command line override definitions in the
description. Arguments must be quoted with embedded blanks
in UNIX software commands.

As an example of the use of make, the description file used to
maintain the make command is given. The code for make is
spread over a number of C language source files and a Yacc
grammar. The description file contains:

Description file for the Make command

p = lp
FILES = Makefile version.c defs main.c doname.c

misc.c files.c dosys.c gram.y lex.c gcos.c
OBJECTS = version.o main.o doname.o misc.o files.o

dosys.o gram.o
LIBES= -lId
LINT = lint -p
CFLAGS =-0

make: $(OBJECTS)
cc $(CFLAGS) $(OBJECTS) $(LIBES) -0 make
@size make

$(OBJECTS): defs
gram.o: lex.c

cleanup:
-rm *.0 gram.c
-du

install:
@size make lusr/bin/make
cp make lusr/bin/make ; rm make

13-7

MAKE

print: $(FILES)
pr $? I $P
touch print

test:

print recently changed files

make -dp I grep -v TIME >lzap
lusr/bin/make -dp I grep -v TIME >2zap
diff 1zap 2zap
rm 1zap 2zap

lint: dosys.c doname.c files.c main.c misc.c version.c \
gram.c

arch:

$(LINT) dosys.c doname.c files.c main.c misc.c \
version.c gram.c

ar uv Isys/source/s2/make.a $(FILES)

The make program usually prints out each command before
issuing it.

The following output results from typing the simple command
make in a directory containing only the source and description
files:

cc -0 -c version.c
cc -0 -c main.c
cc -0 -c doname.c
cc -0 -c misc.c
cc -0 -c files.c
cc -0 -c dosys.c
yacc gram.y
mv y.tab.c gram.c
cc -0 -c gram.c
cc version.o main.o doname.o misc.o files.o dosys.o

gram.o -lId -0 make
13188+3348+3044 = 19580b = 046174b

13-8

MAKE

Although none of the source files or grammars were mentioned
by name in the description file, make found them using its
suffix rules and issued the needed commands. The string of
digits results from the size make command. The printing of
the command line itself was suppressed by an @ sign. The @
sign on the size command in the description file suppressed the
printing of the command, so only the sizes are written.

The last few entries in the description file are useful
maintenance sequences. The "print" entry prints only the files
changed since the last make print command. A zero-length
file print is maintained to keep track of the time of the
printing. The $? macro in the command line then picks up only
the names of the files changed since print was touched. The
printed output can be sent to a different printer or to a file by
changing the definition of the P macro as follows:

make print" P= cat >zap"

DESCRIPTION FILES AND
SUBSTITUTIONS

A description file contains the following information:

• Comments
The comment convention is that a sharp (#) and all
characters on the same line after a sharp are ignored.
Blank lines and lines beginning with a sharp (#) are totally
ignored. If a noncomment line is too long, the line can be
continued by using a backslash. If the last character of a
line is a backslash, then the backslash, the new line, and all
following blanks and tabs are replaced by a single blank.

• Macro definitions
A macro definition is a line containing an equal sign not

13-9

MAKE

preceded by a colon or a tab. The name (string of letters
and digits) to the left of the equal sign (trailing blanks and
tabs are stripped) is assigned the string of characters
following the equal sign (leading blanks and tabs are
stripped). The following are valid macro definitions:

2 = xyz
abc = -11 -ly -lId
LIBES =

The last definition assigns LIBES the null string. A macro
that is never explicitly defined has the null string as the
macro's value.

Macro definitions may also appear on the make command
line while other lines give information about target files.
The general form of an entry is

targetl [target2 ..] :[:] [dependentl ..] [; commands]
[# ..] [(tab) commands] [# ...]

Items inside brackets may be omitted and targets and
dependents are strings of letters, digits, periods, and
slashes. Shell metacharacters such as "*,, and "?" are
expanded. Commands may appear either after a semicolon
on a dependency line or on lines beginning with a tab
immediately following a dependency line. A command is
any string of characters not including a sharp (#) except
when the sharp is in quotes or not including a new line .

• Dependency information
A dependency line may have either a single or a double
colon. A target name may appear on more than one
dependency line, but all of those lines must be of the same
(single or double colon) type. For the usual single-colon
case, a command sequence may be associated with at most
one dependency line. If the target is out of date with any

13-10

MAKE

of the dependents on any of the lines and a command
sequence is specified (even a null one following a semicolon
or tab), it is executed; otherwise, a default creation rule
may be invoked. In the double-colon case, a command
sequence may be associated with each dependency line; if
the target is out of date with any of the files on a
particular line, the associated commands are executed. A
built-in rule may also be executed. This detailed form is of
particular value in updating archive-type files .

• Executable commands
If a target must be created, the sequence of commands is
executed. Normally, each command line is printed and
then passed to a separate invocation of the shell after
substituting for macros. The printing is suppressed in the
silent mode or if the command line begins with an @ sign.
Make normally stops if any command signals an error by
returning a nonzero error code. Errors are ignored if the
-i flags have been specified on the make command line, if
the fake target name ".IGNORE" appears in the
description file, or if the command string in the description
file begins with a hyphen. Some UNIX software commands
return meaningless status. Because each command line is
passed to a separate invocation of the shell, care must be
taken with certain commands (e.g., cd and shell control
commands) that have meaning only within a single shell
process. These results are forgotten before the next line is
executed.

Before issuing any command, certain internally maintained
macros are set. The $@ macro is set to the full target name
of the current target. The $@ macro is evaluated only for
explicitly named dependencies. The $? macro is set to the
string of names that were found to be younger than the
target. The $? macro is evaluated when explicit rules from
the makefile are evaluated. If the command was generated
by an implicit rule, the $< macro is the name of the related
file that caused the action; and the $* macro is the prefix
shared by the current and the dependent file names. If a
file must be made but there are no explicit commands or

13-11

MAKE

relevant built-in rules, the commands associated with the
name ".DEFAULT" are used. If there is no such name,
make prints a message and stops.

EXTENSIONS OF $*, $@, AND $<
The internally generated macros $*, $@, and $< are useful
generic terms for current targets and out-of-date relatives. To
this list has been added the following related macros: $(@D),
$(@F), $(*D), $(*F), $«D), and $«F). The "D" refers to the
directory part of the single letter macro. The "F" refers to the
file name part of the single letter macro. These additions are
useful when building hierarchical makefiles. They allow access
to directory names for purposes of using the cd command of
the shell. Thus, a shell command can be

cd $(<D); $(M A KR) $(<F)

The following command forces a complete rebuild of the
opera ting system:

FRC=FRC make -f 70.mk

where the current directory is ucb. The FRC is a convention for
FoRCing make to completely rebuild a target starting from
scratch.

OUTPUT TRANSLATIONS
Macros in shell commands can now be translated when
evaluated. The form is as follows:

$(macro:stringl =string2)

13-12

MAKE

The meaning of $(macro) is evaluated. For each appearance of
stringl in the evaluated macro, string2 is substituted. The
meaning of finding stringl in $(macro) is that the evaluated
$(macro) is considered as a bunch of strings each delimited by
white space (blanks or tabs). Thus, the occurrence of stringl in
$(macro) means that a regular expression of the following
form has been found:

.*<stringl> [TAB I BLANK]

This particular form was chosen because make usually
concerns itself with suffixes. A more general regular
expression match could be implemented if the need arises. The
usefulness of this type of translation occurs when maintaining
archive libraries. Now, all that is necessary is to accumulate
the out-of-date members and write a shell script which can
handle all the C language programs (Le., those files ending in
".c"). Thus, the following fragment optimizes the executions of
make for maintaining an archive library:

$(LIB): $(LIB)(a.o) $(LIB)(b.o) $(LIB)c.o)
$(CC) -c $(CFLAGS) $(?:.o=.c)
ar rv $(LIB) $?
rm $?

A dependency of the preceding form is necessary for each of the
different types of source files (suffices) which define the
archive library. These translations are added in an effort to
make more general use of the wealth of information which
make generates.

13-13

MAKE

COMMAND USAGE

The make command takes macro definitions, flags, description
file names, and target file names as arguments in the form:

make [flags] [macro definitions] [targets]

The following summary of command operations explains how
these arguments are interpreted.

First, all macro definition arguments (arguments with
embedded equal signs) are analyzed and the assignments made.
Command-line macros override corresponding definitions found
in the description files. Next, the flag arguments are examined.
The permissible flags are as follows:

-i

-s

-r

-n

-t

-q

13-14

Ignore error codes returned by invoked
commands. This mode is entered if the
fake target name ".IGNORE" appears in
the description file.

Silent mode. Do not print command lines
before executing. This mode is also
entered if the fake target name
".SILENT" appears in the description file.

Do not use the built-in rules.

No execute mode. Print commands, but do
not execute them. Even lines beginning
wi th an "@" sign are printed.

Touch the target files (causing them to be
up to date) rather than issue the usual
commands.

Question. The make command returns a
zero or nonzero status code depending on
whether the target file is or is not up to

-p

-m

-b

-k

.DEFAULT

-e

.PRECIOUS

-d

-f

MAKE

date.

Print out the complete set of macro
definitions and target descriptions.

Print a memory map showing text, data,
and stack. This option is a no-operation
on systems without the getu system call.

Compatibility mode for old makefiles.

Abandon work on the current entry but
continue on other branches that do not
depend on the current entry.

If a file must be made but there are no
explicit commands or relevant built-in
rules, the commands associated with the
name DEFAULT are used if it exists.

Environment variables override
assignments within makefiles.

Dependents on this target are not
removed when quit or interrupt is pressed.

Debug mode. Print out detailed
information on files and times examined.

Description file name. The next argument
is assumed to be the name of a description
file. A file name of "-" denotes the
standard input. If there are no "-f'
arguments, the file named makefile or
Makefile in the current directory is read.
The contents of the description files
override the built-in rules if they are
present.

13-15

MAKE

Finally, the remaining arguments are assumed to be the names
of targets to be made and the arguments are done in left-to
right order. If there are no such arguments, the first name in
the description files that does not begin with a period is
"made".

THE ENVIRONMENT VARIABLES

Environment variables are read and added to the macro
definitions each time make executes. Precedence i,s a prime
consideration in doing this properly. The following describes
make's interaction with the environment. A new macro,
MAKEFLAGS, is maintained by make. The new macro is
defined as the collection of all input flag arguments into a
string (without minus signs). The new macro is exported and
thus accessible to further invocations of make. Command line
flags and assignments in the makefile update MAKEFLAGS.
Thus, to describe how the environment interacts with make,
the MAKEFLAGS macro (environment variable) must be
considered.

When executed, make assigns macro definitions in the
following order:

1. Read the MAKEFLAGS environment variable. If it is
not present or null, the internal make variable
MAKEFLAGS is set to the null string. Otherwise, each
letter in MAKEFLAGS is assumed to be an input flag
argument and is processed as such. (The only exceptions
are the -f, -p, and -r flags.)

2. Read and set the input flags from the command line.
The command line adds to the previous settings from the
MAKEFLAGS environment variable.

3. Read macro definitions from the command line. These
are made not resettable. Thus, any further assignments to

13-16

MAKE

these names are ignored.

4. Read the internal list of macro definitions. These are
found in the file rules.c of the source. for make. Figure
13-1 contains the complete makefile that represents the
internally defined macros and rules of the current
version of make. Thus, if make -r ... is typed and a
makefile includes the makefile in Figure 13-1, the results
would be identical to excluding the -r option and the
include line in the makefile. The Figure 13-1 output can
be reproduced by the following:

make -fp - < Idev/null 2>/dev/null

The output appears on the standard output.
They give default definitions for the C language compiler
(CC=cc), the assembler (AS=as), etc.

5. Read the environment. The environment variables are
treated as macro definitions and marked as exported (in
the shell sense). However, since MAKEFLAGS* is not
an internally defined variable (in rules. c), this has the
effect of doing the same assignment twice. The exception
to this is when MAKEFLAGS is assigned on the
command line. (The reason it was read previously was to
turn the debug flag on before anything else was done.)

6. Read the makefile(s). The assignments in the makefile(s)
overrides the environment. This order is chosen so that
when a makefile is read and executed, you know what to
expect. That is, you get what is seen unless the -e flag is
used. The -e is an additional command line flag which
tells make to have the environment override the
makefile assignments. Thus, if make -e ... is typed, the

* MAKEFLAGS are read and set again.

13-17

MAKE

variables in the environment override the definitions in
the makefile*. Also MAKEFLAGS override the
environment if assigned. This is useful for further
invocations of make from the current makefile.

LIST OF SUFFIXES

.SUFFIXES: .0 .c .cN .y .yN .I .IN .s .SN
.sh .shN .h .hN

PRESET VARIABLES

MAKE=make
YACC=yacc
YFLAGS=
LEX=lex
LFLAGS=
LD=ld
LDFLAGS=
CC=cc
CFLAGS=-O
AS=as
ASFLAGS=
GET=get
GFLAGS=

Figure 13-1. Example of Internal Definitions (Sheet 1
of 4)

* There is no way to override the command line assignments.

13·18

MAKE

SINGLE SUFFIX RULES

.c:

.sh:

.sh-:

$(CC) $(CFLAGS) $(LDFLAGS) $< -0 $@

$(GET) $(GFLAGS) -p $< > $*.c
$(CC) $(CFAGS) $(LDFLAGS) $*.c $*
-rm -f $*.c

cp $< @;chmod 0777 $@

$(GET) &(GFLAGS) -p $< > **.sh
cp $* .sh $*;chmod 0777 $@
-rm -f $* .sh

DOUBLE SUFFIX RULES

.c.o:
$(CC) $(CFLAGS) -c $<

Figure 13-1. Example of Internal Definitions (Sheet 2
of 4)

13-19

MAKE

.c- .c:

.8.0:

.y.o:

.y-.o:

.l.o:

$(GET) $(CFLAGS) -p $< > $*.c
$(CC) $(CFLAGS) -c $*.c
-rm -f $*.c

$(GET) $(GFLAGS) -p $< >$*.c

$(AS) $(ASFLAGS) -0 $@ $<

$(GET) $(GFLAGS) -p $< > $*.8
$(AS) $(ASFLAGS) -0 $* .0 $* .8
-rm -f $*.8

$(YACC) $(YFLAGS) $<
$(CC) $(CFLAGS) -c y.tab.c
rm y.tab.c

$(GET) $(GFLAG) -p $< > $*.y
$(YACC) $(YFLAGS) $*.y
$(CC) $(CFLAG) -c y.tab.c
rm -f y.tab.c $*.y
mv y.tab.o $*.0

$(LEX) $(LFLAGS) $<
$(CC) $(CFLAGS) -c lex.yy.c
rm lex.yy.c
mv lex.yy.o $@

Figure 13-1. Example of Internal Definitions (Sheet 3
of 4)

13-20

.y-.c:

.l.c:

.c.a:

.s-.a:

$(GET) $(GFLAGS) -p $< > $*.1
$(LEX) $(LFLAGS) $*.1
$(CC) $(CFLAGS) -c lex.yy.c
rm -f lex.yy.c $*.1
mv lex.yy.o $*.0

$(YACC) $(YFLAGS) $<
mv y.tab.c $@

$(GET) $(GFLAGS) -p $< > $*.y
$(Y ACC) $(YFLAGS) $*.y
-rm -f $*.y

$(LEX) $<
mv lex.yy.c $@

$(CC) -c $(CFLAGS) $<
ar rv $@ $*.0
rm -f $*.0

$(GET) $(GFLAGS) -p $< > $*.c
$(CC) -c $(CFLAGS) $*.c
ar rv $@ $*.0

$(GET) $(GFLAGS) -p $< > $*.8
$(AS) $(ASFLAGS) -0 $*.0 $*.8
ar rv $@ $*.0
-rm -f $*.[80]

$(GET) $(GFLAGS) -p $< > $*.h

MAKE

Figure 13-1. Example of Internal Definitions (Sheet 4
of 4)

13-21

MAKE

It may be clearer to list the precedence of assignments. Thus,
in order from least binding to most binding, the precedence of
assignments is as follows:

1. internal definitions (from rules. c)

2. environment

3. makefile(s)

4. command line.

The -e flag has the effect of changing the order to:

1. internal definitions (from rules.c)

2. makefile(s)

3. environment

4. command line.

This order is general enough to allow a programmer to define a
makefile or set of makefiles whose parameters are dynamically
definable.

RECURSIVE MAKEFILES
Another feature was added to make concerning the
environment and recursive invocations. If the sequence
"$(MAKE)" appears anywhere in a shell command line, the line
is executed even if the -n flag is set. Since the -n flag is
exported across invocations of make (through the
MAKEFLAGS variable), the only thing that actually gets

13-22

MAKE

executed is the make command itself. This feature is useful
when a hierarchy of makefile(s) describes a set of software
subsystems. For testing purposes, make -n ... can be
executed and everything that would have been done will get
printed out including output from lower level invocations of
make.

SUFFIXES AND TRANSFORMATION RULES
The make program does not know what file name suffixes are
interesting or how to transform a file with one suffix into a file
with another suffix. This information is stored in an internal
table that has the form of a description file. If the -r flag is
used, the internal table is not used.

The list of suffixes is actually the dependency list for the name
".SUFFIXES". The make program searches for a file with any
of the suffixes on the list. If such a file exists and if there is a
transformation rule for that combination, make transforms a
file with one suffix into a file with another suffix. The
transformation rule names are the concatenation of the two
suffixes. The name of the rule to transform a .r file to a .0 file
is thus .r.o. If the rule is present and no explicit command
sequence has been given in the user's description files, the
command sequence for the rule .r.o is used. If a command is
generated by using one of these suffixing rules, the macro $* is
given the value of the stem (everything but the suffix) of the
name of the file to be made; and the macro $< is the name of
the dependent that caused the action.

The order of the suffix list is significant since the list is
scanned from left to right. The first name formed that has both
a file and a rule associated with it is used. If new names are to
be appended, the user can add an entry for ".SUFFIXES" in his
own description file. The dependents are added to the usual list.
A ".SUFFIXES" line without any dependents deletes the
current list. It is necessary to clear the current list if the order
of names is to be changed. The following is an excerpt from

13-23

MAKE

the default rules file:

.SUFFIXES : .0 .c .e .r .f .y .yr .ye .1 .s
YACC = yacc
YACCR = yacc -r
YACCE = yacc-e
YFLAGS =
LEX = lex
LFLAGS =
CC = cc
AS = as-
CFLAGS =
RC = ec
RFLAGS =
EC = ec
EFLAGS =
FFlags =
.C.O:

$(CC) $(CFLAGS) -c $<
.e.o .r.o .f.o :

.s.o:

.y.o:

.y.c:

13-24

$(EC) $(RFLAGS) $(EFLAGS) $(FFLAGS) -c $<

$(AS) -0 $@ $<

$(YACC) $(YFLAGS) $<
$(CC) $(CFLAGS) -c y.tab.c
rm y.tab.c
mv y.tab.o $@

$(YACC) $(YFLAGS) $<
mv y.tab.c $@

MAKE

IMPLICIT RULES

The make program uses a table of interesting suffixes and a
set of transformation rules to supply default dependency
information and implied commands. The default suffix list is
as follows:

.0 Object file

.0 * sees Object file

.c C source file

.c * sees e source file

.s Assembler source file

.s * sees Assembler source file

.y Yacc-e source grammar

.y * sees Yacc e source grammar

.h Header file

.h* sees Header file

.sh Shell file

.sh- sees Shell file

.l Lex source grammar.

. r sees Lex source grammar .

Figure 13-2 summarizes the default transformation paths. If
there are two paths connecting a pair of suffixes, the longer one
is used only if the intermediate file exists or is named in the
description.

13-25

MAKE

.0

.C .r .e .f .S .y .yr .ye .1 .d

A
.y .1 .yr .ye

Figure 13-2. Summary of Default Transformation Path

If the file x.o were needed and there were an x.c in the
description or directory, the x.o file would be compiled. If there
were also an x.l, that grammar would be run through Lex
before compiling the result. However, if there were no x.c but
there were an x.l, make would discard the intermediate C
language file and use the direct link as shown in Figure 13-3.

It is possible to change the names of some of the compilers used
in the default or the flag arguments with which they are
invoked by knowing the macro names used. The compiler
names are the macros AS, CC, YACC and LEX. The
command

make CC=newcc

will cause the newcc command to be used instead of the usual
C language compiler. The macros CFLAGS, RFLAGS,
EFLAGS, YFLAGS, and LFLAGS may be set to cause these
commands to be issued with optional flags. Thus

13-26

make" CFLAGS=-O"

causes the optimizing C language compiler to be used.

FORMAT OF SHELL COMMANDS
WITHIN make

MAKE

The make program remembers embedded newlines and tabs in
shell command sequences. Thus, if the programmer puts a for
loop in the makefile with indentation, when make prints it out,
it retains the indentation and backslashes. The output can still
be piped to the shell and is readable. This is obviously a
cosmetic change; no new function is gained.

ARCHIVE LIBRARIES

The make program has an improved interface to archive
libraries. Due to a lack of documentation, most people are
probably not aware of the current syntax of addressing
members of archive libraries. The previous version of make
allows a user to name a member of a library in the following
manner:

lib(object.o)
or

li b((_local time)

where the second method actually refers to an entry point of an
object file within the library. (Make looks through the
library, locates the entry point, and translates it to the correct
object file name.)

To use this procedure to maintain an archive library, the
following type of makefile is required:

13-27

MAKE

lib:: lib(ctime.o)
$(CC) -c -0 ctime.c
ar rv lib ctime.o
rm ctime.o

lib:: lib(fopen.o)
$(CC) -c -0 fopen.c
ar rv lib fopen.o
rm fopen.o

... and so on for each object ...

This is tedious and error prone. Obviously, the command
sequences for adding a C language file to a library are the same
for each invocation; the file name being the only difference each
time. (This is true in most cases.)

The current version gives the user access to a rule for building
libraries. The handle for the rule is the ".a" suffix. Thus, a
".c.a" rule is the rule for compiling a C language source file,
adding it to the library, and removing the ".0" cadaver.
Similarly, the ".y.a", the ".s.a", and the ".l.a" rules rebuild
YACC, assembler, and LEX files, respectively. The current
archive rules defined internally are ".c.a", ".cN.a", and ".SN.a".
[The tilde C) syntax will be described shortly.] The user may
define in makefile other rules needed.

The above 2-member library is then maintained with the
following shorter makefile:

lib: lib(ctime.o) lib(fopen.o)
echo lib up-to-date.

The in ternal rules are already defined to com plete the
preceding library maintenance. The actual ".c.a" rules are as
follows:

13-28

.c.a:
$(CC) -c $(CFLAGS) $<
ar rv $@ $*.0
rm -f $*.0

MAKE

Thus, the $@ macro is the ".a" target (lib); the $< and $*
macros are set to the out-of-date C language file; and the file
name scans the suffix, respectively (ctime.c and ctime). The $<
macro (in the preceding rule) could have been changed to $*.c.

It might be useful to go into some detail about exactly what
make does when it sees the construction

lib: lib(ctime.o)
@echo lib up-to-date

Assume the object in the library is out of date with respect to
ctime.c. Also, there is no ctime.o file.

1. Do lib.

2. To do lib, do each dependent of lib.

3. Do lib (ctime. 0).

4. To do lib (ctime.o), do each dependent of lib (ctime.o).
(There are none.)

5. Use internal rules to try to build lib (ctime. 0). (There is
no explicit rule.) Note that lib (ctime. 0) has a parenthesis
in the name to identify the target suffix as ".a". This is
the key. There is no explicit ".a" at the end of the lib
library name. The parenthesis forces the ".a" suffix. In
this sense, the ".a" is hard wired into make.

6. Break the name lib (ctime. 0) up into lib and ctime.o.
Define two macros, $@ (=lib) and $* (=ctime).

13-29

MAKE

7. Look for a rule ".X.a" and a file $*.X. The first ".X" (in
the .SUFFIXES list) which fulfills these conditions is
".c" so the rule is ".c.a", and the file is ctime.c. Set $< to
be ctime.c and execute the rule. In fact, make must
then do ctime.c. However, the search of the current
directory yields no other candidates, and the search ends.

8. The library has been updated. Do the rule associated
with the "lib:" dependency; namely

echo lib up-to-date

It should be noted that to let ctime.o have dependencies, the
following syntax is required:

lib(ctime.o): $(lNCD IR)/ stdio.h

Thus, explicit references to .0 files are unnecessary. There is
also a new macro for referencing the archive member name
when this form is used. The $% macro is evaluated each time
$@ is evaluated. If there is no current archive member, $% is
null. If an archive member exists, then $% evaluates to the
expression between the parenthesis.

An example make/ile for a larger library is given in Figure 13-
3.

13-30

MAKE

@(#)/usr/src/cmd/make/make.tm 3.2
LIB =lsxlib
PR=lp
INSDIR = /rllflopO/
INS = eval
lsx: $(LIB) low.o mch.o

Id -x low.o mch.o $(LIB)
mv a.out lsx
@size lsx

Here, $(INS) as either"." or" eval" .
lsx:

print:

$(lNS)'cp lsx $(lNSDIR)lsx ..
strip $(lNSDIR)lsx ..
Is -1 $(lNSDIR)lsx'

$(PR) header.slow.smch.s*.h*.c Makefile

Figure 13-3. Example of Library Makefile (Sheet 1 of
3)

13-31

MAKE

$(LIB):
$(LIB)(CLOCK.o)
$(LIB)(main.o)
$(LIB)(tty.o)
$(LIB)(trap.o)
$(LIB)(sysent.o)
$(LIB)(sys2.0)
$(LIB)(syn3.0)
$(LIB)(syn4.0)
$(LIB)(sys1.o)
$(LIB)(sig.o)
$(LIB)(fio.o)
$(LIB)(kl.o)
$(LIB)(alloc.o)
$(LIB)(namLo)
$(LIB)(iget.o)
$(LIB)(rdwrLo)
$(LIB)(subr.o)

Figure 13-3. Example of Library Makefile (Sheet 2 of
3)

13-32

. s.o:

.o.a:

.s.a:

$(LIB)(bio.o)
$(LIB)(decfd.o)
$(LIB)(sip.o)
$(LIB)(space.o)
$(LIB)(puts.o)
@echo $(LIB) now up to date .

as -0 $*.0 header.s $*.s

ar rv $@ $<
rm -f $<

as -0 $*.0 header.s $*.s
ar rv $@ $*.0
rm -f $*.0

.PRECIOUS:$(LIB)

MAKE

Figure 13-3. Example of Library Makefile (Sheet 3 of
3)

The reader will note also that there are no lingering "*.0" files
left around. The result is a library maintained directly from
the source files (or more generally from the SCCS files).

SOURCE CODE CONTROL SYSTEM FILE
NAMES: THE TILDE

The syntax of make does not directly permit referencing of
prefixes. For most types of files on UNIX operating system
machines, this is acceptable since nearly everyone uses a suffix
to distinguish different types of files. The sces files are the
exception. Here, "s." precedes the file name part of the
complete pathname.

13-33

MAKE

To allow make easy access to the prefix "s." requires either a
redefinition of the rule naming syntax of make or a trick. The
trick is to use the tilde C) as an identifier of SCCS files.
Hence, ".c-.o" refers to the rule which transforms an sces C
language source file into an object. Specifically, the internal
rule is

$(GET) $(GFLAGS) -p $< > $*.c
$(CC) $(CFLAGS) -c $*.c
-rm -f $*.c

Thus, the tilde appended to any suffix transforms the file
search in to an SCCS file name search with the actual suffix
named by the dot and all characters up to (but not including)
the tilde.

The following sces suffixes are internally defined:

.c

.y

.s

.sh

.h-

The following rules involving SCCS transformations are
internally defined:

13-34

.cN

:

.sh N

:

.CN.O:

.SN.O:

.yN.o:

.IN.O:

.yN.c:

.cN.a:

.SN.a:

.hN.h:

MAKE

Obviously, the user can define other rules and suffixes which
may prove useful. The tilde gives him a handle on the sees
file name format so that this is possible.

THE NULL SUFFIX
In the UNIX system source code, there are many commands
which consist of a single source file. It was wasteful to
maintain an object of such files for make. The current
implementation supports single suffix rules (a null suffix).
Thus, to maintain the program cat, a rule in the makefile of
the following form is needed:

.c:
$(CC) -n -0 $< -0 $@

In fact, this ".c:" rule is internally defined so no makefile is
necessary at all. The user only needs to type

make cat dd echo date

(these are notable single file programs) and all four e language
source files are passed through the above shell command line
associated with the ".c:" rule. The internally defined single

13-35

MAKE

suffix rules are

.c:

.c-:

.sh:

.sh-:

Others may be added in the makefile by the user.

INCLUDE FILES

The make program has an include file capability. If the string
include appears as the first seven letters of a line in a makefile
and is followed by a blank or a tab, the string is assumed to be
a file name which the current invocation of make will read.
The file descriptors are stacked for reading include files so that
no more than about 16 levels of nested includes are supported.

INVISIBLE SCCS MAKEFILES

The sees makefiles are invisible to make. That is, if make
is typed and only a file named s. makefile exists, make will do
a get on the file, then read and remove the file. Using the -f,
make will get, read, and remove arguments and include files.

DYNAMIC DEPENDENCY PARAMETERS

A new dependency parameter has been defined. The parameter
has meaning only on the dependency line in a makefile. The
$$@ refers to the current "thing" to the left of the colon (which
is $@). Also the form $$(@F) exists which allows access to the
file part of $@. Thus, in the following:

13-36

MAKE

cat: $$@.c

the dependency is translated at execution time to the string
"cat.c". This is useful for building a large number of executable
files, each of which has only one source file. For instance, the
UNIX software command directory could have a makefile like:

CMDS = cat dd echo date cc cmp comm ar ld chown

$(CMDS): $$@.c
$(CC) -0 $? -0 $@

Obviously, this is a subset of all the single file programs. For
multiple file programs, a directory is usually allocated and a
separate makefile is made. For any particular file that has a
peculiar compilation procedure, a specific entry must be made
in the makefile.

The second useful form of the dependency parameter is $$(@F).
It represents the file name part of $$@. Again, it is evaluated
at execution time. Its usefulness becomes evident when trying
to maintain the /usr/include directory from a makefile in the
/usr/src/head directory. Thus, the /usr/src/head/makefile
would look like

INCDIR = lusr/include

INCLUDES = \
$(INCDIR)/stdio:h \
$(INCDIR)/pwd.h \
$(lNCIDR)/dir.h \
$(INCDIR)/a.out.h

$(INCLUDES): $$(@F)
cp $? $@
chmod 0444 $@

13-37

MAKE

This would completely maintain the /usr/include directory
whenever one of the above files in /usr/src/head was updated.

SUGGESTIONS AND WARNINGS

The most common difficulties arise from make's specific
meaning of dependency. If file x.c has a "#include " defs" " line,
then the object file x.o depends on defs; the source file x.c does
not. If defs is changed, nothing is done to the file x.c while file
x.o must be recreated.

To discover what make would do, the -n option is very useful.
The command

make -n

orders make to print out the commands which make would
issue without actually taking the time to execute them. If a
change to a file is absolutely certain to be mild in character
(e.g., adding a new definition to an include file), the -t (touch)
option can save a lot of time. Instead of issuing a large number
of superfluous recompilations, make updates the modification
times on the affected file. Thus, the command

make -ts

("touch silently") causes the relevant files to appear up to date.
Obvious care is necessary since this mode of operation subverts
the intention of make and destroys all memory of the previous
relationships.

The debugging flag (-d) causes make to print out a very
detailed description of what it is doing including the file times.
The output is verbose and recommended only as a last resort.

13-38

Chapter 14

SOURCE CODE CONTROL SYSTEM USER
GUIDE

PAGE

GENERAL ... 14-1

secs FOR BEGINNERS ... 14-3

DELTA NUMBERING................................... 14-10

secs COMMAND CONVENTIONS. .. 14-15

secs COMMANDS...................................... 14-17

secs FILES. 14-52

AN SCCS INTERFACE PROGRAM........................ 14-57

Chapter 14

SOURCE CODE CONTROL SYSTEM
USER GUIDE

GENERAL
The Source Code Control System (SCCS) is a collection of the
UNIX software commands that help individuals or projects
control and account for changes to files of text. The source code
and documentation of software systems are typical examples of
files of text to be changed. SCCS is a collection of programs
that run under the UNIX operating system. It is convenient to
conceive of SCCS as a custodian of files. The SCCS provides
facilities for

• Storing files of text

• Retrieving particular versions of the files

• Controlling updating privileges to files

• Identifying the version of a retrieved file

• Recording when, where, and why the change was made and
who made each change to a file.

These types of facilities are important when programs and
documentation undergo frequent changes because of
maintenance and/or enhancement work. It is often desirable to
regenerate the version of a program or document as it existed
before changes were applied to it. This can be done by keeping
copies (on paper or other media), but this method quickly
becomes unmanageable and wasteful as the number of
programs and documents increases. SCCS provides an
attractive solution because the original file is stored on disk.
Whenever changes are made to the file, SCCS adds only the

14-1

sees

changes to the file. The tracking information is also maintained
as part of the same file. Each set of changes is called a "delta".

This chapter, together with relevant portions of the AT&T
UNIX PC UNIX System V Manual is a complete user's guide to
SCCS. The following topics are covered:

• sees for Beginners: How to make an sees file, how to
update it, and how to retrieve a version thereof.

• How Deltas Are Numbered: How versions of secs files are
numbered and named.

• sces Command Conventions: Conventions and rules
generally applicable to all secs commands.

• sees Commands: Explanation of all sees commands with
discussions of the more useful arguments.

• sees Files: Protection, format, and auditing of SCCS files
including a discussion of the differences between using
sces as an individual and using it as a member of a group
or proj ect. The role of a "proj ect sees administrator" is
introduced.

Neither the implementation of sees nor the installation
procedure for sees is described in this section.

Throughout this section, each reference of the form name (1M),
name (7), or name (8) refers to entries in the AT&T UNIX PC
UNIX System V Manual. All other references to entries of the
form name(N), where "N" is a number (1 through 5) possibly
followed by a letter, refer to entry name in section N of the
AT&T UNIX PC UNIX System V Manual

14-2

sees

sees FOR BEGINNERS
It is assumed that the reader knows how to log onto a UNIX
system, create files, and use the text editor. A number of
terminal-session fragments are presented. All of them should
be tried since the best way to learn sees is to use it.

To supplement the material in this section, the detailed sees
command descriptions in the AT&T UNIX PC UNIX System V
Manual should be consulted.

A. Terminology

Each sees file is composed of one or more sets of changes
applied to the null (empty) version of the file, with each set of
changes usually depending on all previous sets. Each set of
changes is called a "delta" and is assigned a name, called the
sees IDentification string (SID). The SID is composed of at
most four components. The first two components are the
"release" and "level" numbers which are separated by a period.
Hence, the first delta (for the original file) is called "1.1", the
second "1.2", the third "1.3", etc. The release number can also
be changed allowing, for example, deltas "2.1", "3.1", etc. The
change in the release number usually indicates a maj or change
to the file.

Each delta of an sees file defines a particular version of the
file. For example, delta 1.5 defines version 1.5 of the sees file,
obtained by applying to the null (empty) version of the file the
changes that constitute deltas 1.1, 1.2, etc., up to and including
delta 1.5 itself, in that order.

14-3

sees

B. Creating an sees File via "admin"

Consider, for example, a file called lang that contains a list of
programming languages.

c
pl/i
fortran
cobol
algol

Custody of the lang file can be given to sees. The following
admin command (used to "administer" sees files) creates an
sees file and initializes delta 1.1 from the file lang:

admin - ilang s.lang

All sees files must have names that begin with "s.", hence,
s.lang. The -i keyletter, together with its value lang, indicates
that admin is to create a new sees file and "initialize" the
new sees file with the contents of the file lang. This initial
version is a set of changes (delta 1.1) applied to the null sees
file.

The admin command replies

No id keywords (cm 7)

This is a warning message (which may also be issued by other
sees commands) that is to be ignored for the purposes of this
section. Its significance is described under the get command in
the section "sees COMMANDS." In the following examples,
this warning message is not shown although it may actually be
issued by the various commands. The file lang should now be
removed (because it can be easily reconstructed using the get
command) as follows:

14-4

sccs

rm lang

c. Retrieving a File via "get"

The lang file can be reconstructed by using the following get
command:

get s.lang

The command causes the creation (retrieval) of the latest
version of file s.lang and prints the following messages:

1.1
5 lines

This means that get retrieved version 1.1 of the file, which is
made up of five lines of text. The retrieved text is placed in a
file whose name is formed by deleting the "s." prefix from the
name of the sees file. Hence, the file lang is created.

The "get s.lang" command simply creates the file lang (read
only) and keeps no information regarding its creation. On the
other hand, in order to be able to subsequently apply changes to
an sees file with the delta command, the get command must
be informed of your intention to do so. This is done as follows:

get -e s.lang

The -e keyletter causes get to create a file lang for both
reading and writing (so it may be edited) and places certain
information about the sees file in another new file. The new
file, called the p-Jile, will be read by the delta command. The
get command prints the same messages as before except that
the SID of the version to be created through the use of delta is
also issued. For example,

14-5

SCCS

get -e s.lang
1.1
new delta 1.2
5 lines

The file lang may now be changed, for example, by

ed lang
27
$a
snobol
ratfor

w
41
q

D. Recording Changes via "delta"

In order to record within the sees file the changes that have
been applied to lang, execute the following command:

del ta s.lang

Delta prompts with

comments?

The response should be a description of why the changes were
made. For example,

comments? added more languages

The delta command then reads the p-file and determines what
changes were made to the file lang. The delta command does

14-6

sees

this by doing its own get to retrieve the original version and by
applying the diff(l) command to the original version and the
edi ted version.

When this process is complete, at which point the changes to
lang have been stored in s.lang, delta outputs

1.2
2 inserted
o deleted
5 unchanged

The number "1.2" is the name of the delta just created, and the
next three lines of output refer to the number of lines in the
file s.lang.

E. Additional Information About "get"

As shown in the previous example, the command

get s.lang

retrieves the latest version (now 1.2) of the file s.lang. This is
done by starting with the original version of the file and
successively applying deltas (the changes) in order until all
have been applied.

14-7

sees

In the example chosen, the following commands are all
equivalent:

get s.lang
get -rl s.lang
get -r1.2 s.lang

The numbers following the -r keyletter are SIDs. Note that
omitting the level number of the SID (as in "get -r1 s.lang") is
equivalent to specifying the highest level number that exists
within the specified release. Thus, the second command
requests the retrieval of the latest version in release 1, namely
1.2. The third command specifically requests the retrieval of a
particular version, in this case, also 1.2.

Whenever a truly maj or change is made to a file, the
significance of that change is usually indicated by changing the
release number (first component of the SID) of the delta being
made. Since normal automatic numbering of deltas proceeds by
incrementing the level number (second component of the SID),
the user must indicate to sees the need to change the release
number. This is done with the get command.

get -e - r2 s.lang

Because release 2 does not exist, get retrieves the latest version
before release 2. The get command also interprets this as a
request to change the release number of the delta which the

. user desires to create to 2, thereby causing it to be named 2.1,
rather than 1.3. This information is conveyed to delta via the
p-file. The get command then outputs

1.2
new delta 2.1
7 lines

14-8

SCCS

which indicates that version 1.2 has been retrieved and that 2.1
is the version delta will create. If the file is now edited, for
example, by

ed lang
41
/cobol/d
w
35
q

and delta executed

delta s.lang
comments? deleted cobol from list of languages

the user will see by delta's output that version 2.1 is indeed
created.

2.1
o inserted
1 deleted
6 unchanged

Deltas may now be created in release 2 (deltas 2.2, 2.3, etc.), or
another new release may be created in a similar manner. This
process may be continued as desired.

F. The "help" Command

If the command

get abc

14-9

sees

is executed, the following message will be output:

ERROR [abc]: not an sees file (col)

The string "col" is a code for the diagnostic message and may
be used to obtain a fuller explanation of that message by use of
the help command.

help col

This produces the following output:

col:
" not an sees file"
A file that you think is an sees file
does not begin with the characters" s." .

Thus, help is a useful command to use whenever there is any
doubt about the meaning of an sees message. Detailed
explanations of almost all sees messages may be found in this
manner.

DELTA NUMBERING
It is convenient to conceive of the deltas applied to an sees file
as the nodes of a tree in which the root is the initial version of
the file. The root delta (node) is normally named "1.1" and
successor deltas (nodes) are named "1.2", "1.3", etc. The
components of the names of the deltas are called the "release"
and the "level" numbers, respectively. Thus, normal naming of
successor deltas proceeds by incrementing the level number,
which is performed automatically by sees whenever a delta is
made. In addition, the user may wish to change the release
number when making a delta to indicate that a major change is
being made. When this is done, the release number also applies

14-10

sees

to all successor deltas unless specifically changed again. Thus,
the evolution of a particular file may be represented as in
Figure 14-1.

1.1 1.2

RELEASE

1.3 1.4 2.1 2.2

RELEASE 2

Figure 14-1. Evolution of an sees File

Such a structure may be termed the "trunk" of the sees tree.
Figure 14-1 represents the normal sequential development of an
sees file in which changes that are part of any given delta are
dependent upon all the preceding deltas.

However, there are situations in which it is necessary to cause
a branching in the tree in that changes applied as part of a
given delta are not dependent upon all previous deltas. As an
example, consider a program which is in production use at
version 1.3 and for which development work on release 2 is
already in progress. Thus, release 2 may already have some
deltas precisely as shown in Figure 14-1. Assume that a
production user reports a problem in version 1.3 and that the
nature of the problem is such that it cannot wait to be repaired
in release 2. The changes necessary to repair the trouble will
be applied as a delta to version 1.3 (the version in production
use). This creates a new version that will then be released to
the user but will not affect the changes being applied for
release 2 (Le., deltas 1.4, 2.1, 2.2, etc.).

The new delta is a node on a branch of the tree. Its name
consists of four components; the release number and the level
number (as with trunk deltas) plus the "branch" number and
the "sequence" number. The delta name appears as follows:

release.level.branch.sequence

14-11

sees

The branch number is assigned to each branch that is a
descendant of a particular trunk delta with the first such
branch being 1, the next one 2, etc. The sequence number is
assigned, in order, to each delta on a particular branch. Thus,
1.3.1.2 identifies the second delta of the first branch that
derives from delta 1.3. This is shown in Figure 14-2.

1.1 1.2 1.3 1.4 2.1 2.2

Figure 14-2. Tree Structure With Branch Deltas

The concept of branching may be extended to any delta in the
tree. The naming of the resulting deltas proceeds in the
manner just illustrated.

Two observations are of importance with regard to naming
deltas. First, the names of trunk deltas contain exactly two
components, and the names of branch deltas contain exactly
four components. Second, the first two components of the name
of branch deltas are always those of the ancestral trunk delta,
and the branch component is assigned in the order of creation
of the branch independently of its location relative to the trunk
delta. Thus, a branch delta may always be identified as such
from its name. Although the ancestral trunk delta may be
identified from the branch delta's name, it is not possible to
determine the entire path leading from the trunk delta to the
branch delta. For example, if delta 1.3 has one branch
emanating from it, all deltas on that branch will be named
1.3.1.n. If a delta on this branch then has another branch
emanating from it, all deltas on the new branch will be named
1.3.2.n (see Figure 14-3) The only information that may be
14-12

sees

derived from the name of delta 1.3.2.2 is that it is the
chronologically second delta on the chronologically second
branch whose trunk ancestor is delta 1.3. In particular, it is not
possible to determine from the name of delta 1.3.2.2 all the
deltas between it and trunk ancestor 1.3.

14-13

SCCS

1.1 1.2 1.3 1.4 2.1 2.2

Figure 14-3. Extending the Branching Concept

14-14

sees

It is obvious that the concept of branch deltas allows the
generation of arbitrarily complex tree structures. Although
this capability has been provided for certain specialized uses, it
is strongly recommended that the sees tree be kept as simple
as possible because comprehension of its structure becomes
extremely difficult as the tree becomes more complex.

SCCS COMMAND CONVENTIONS
This part discusses the conventions and rules that apply to
sees commands. These rules and conventions are generally
applicable to all sees commands with exceptions indicated.
The sees commands accept two types of arguments:

• Keyletter arguments

• File arguments.

Keyletter arguments (hereafter called simply "keyletters")
begin with a minus sign (-), followed by a lowercase alphabetic
character, and in some cases, followed by a value. These
keyletters control the execution of the command to which they
are supplied.

File arguments (names of files and/or directories) specify the
file(s) that the given sees command is to process. Naming a
directory is equivalent to naming all the sees files within the
directory. Non-SeeS files and unreadable files [because of
permission modes via chmod(l)] in the named directories are
silently ignored.

In general, file arguments may not begin with a minus sign.
However, if the name "-" (a lone minus sign) is specified as an

14-15

sees

argument to a command, the command reads the standard
input for lines and takes each line as the name of an sees file
to be processed. The standard input is read until end-of-file.
This feature is often used in pipelines with, for example, the
find(l) or Is(l) commands. Again, names of non-SeeS files
and of unreadable files are silently ignored.

All keyletters specified for a given command apply to all file
arguments of that command. All keyletters are processed
before any file arguments with the result that the placement of
keyletters is arbitrary (i.e., keyletters may be interspersed with
file arguments). File arguments, however, are processed left to
right. Somewhat different argument conventions apply to the
help, what, sccsdiff, and val commands.

Certain actions of various sees commands are controlled by
flags appearing in sees files. Some of these flags are
discussed in this part. For a complete description of all such
flags, see admin(l) section in the AT&T UNIX PC UNIX
System V Manual.

The distinction between the real user [see passwd(l)] and the
effective user of a UNIX system is of concern in discussing
various actions of sees commands. For the present, it is
assumed that both the real user and the effective user are one
and the same (i.e., the user who is logged into a UNIX system).
This subject is discussed further in "sees FILES."

The balance of this section does not discuss command
conventions, it covers temporary files generated by sees.

All sees commands that modify an sees file do so by writing
a temporary copy, called the x-file. This file ensures that the
sees file is not damaged if processing should termina te
abnormally. The name of the x-file is formed by replacing the
"s." of the sees file name with "x.". When processing is
complete, the old sees file is removed and the x-file is
renamed to be the sees file. The x-file is crea ted in the

14-16

sees

directory containing the sees file, given the same mode [see
chmod(l)] as the sees file, and owned by the effective user.

To prevent simultaneous updates to an sees file, commands
that modify sees files create a lock-file, called the z-file, whose
name is formed by replacing the "s." of the sees file name
with "z.". The z-file contains the process number of the
command that creates it, and its existence is an indication to
other commands that the sees file is being updated. Thus,
other commands that modify sees files do not process an
sees file if the corresponding z-file exists. The z-file is created
with mode 444 (read-only) in the directory containing the sees
file and is owned by the effective user. This file exists only for
the duration of the execution of the command that creates it.
In general, users can ignore x-files and z-files. The files may be
useful in the event of system crashes or similar situations.

The sees commands produce diagnostics (on the diagnostic
output) of the form:

ERROR [name-of-file-being-processed]: message text (code)

The code in parentheses may be used as an argument to the
help command to obtain a further explanation of the
diagnostic message. Detection of a fatal error during the
processing of a file causes the sees command to terminate
processing of that file and to proceed with the next file, in
order, if more than one file has been named.

sees COMMANDS

This part describes the major features of all the sees
commands. Detailed descriptions of the commands and of all
their arguments are given in the AT&T UNIX PC UNIX
System V Mnaual and should be consulted for further
information. The discussion below covers only the more

14-17

sees

common arguments of the various sees commands.

The commands follow in approximate order of importance. The
following is a summary of all the sees commands and of their
maj or functions:

get

delta

admin

prs

help

rmdel

cdc

what

sccsdiff

comb

14-18

Retrieves versions of sees files.

A pplies changes (deltas) to the text of
sees files, i.e., creates new versions.

Creates sees files and applies changes to
parameters of sees files.

Prints portions of an sees file in user
specified format.

Gives explanations of diagnostic messages.

Removes a delta from an sees file; allows
the removal of deltas that were created by
mistake.

Changes the commentary associated with
a delta.

Searches any UNIX system file(s) for all
occurrences of a special pattern and prints
out what follows it; is useful in finding
identifying information expanded by the
get command.

Shows the differences between any two
versions of an sees file.

Combines two or more consecutive deltas
of an sees file into a single delta; often
reduces the size of the sees file.

SCCS

val Valida tes an sees file.

A. The "get" Command

The get command creates a text file that contains a particular
version of an sees file. The particular version is retrieved by
beginning with the initial version and then applying deltas, in
order, until the desired version is obtained. The created file is
called the g-file. The g-file name is formed by removing the
"s." from the sees file name. The g-file is created in the
current directory and is owned by the real user. The mode
assigned to the g-file depends on how the get command is
invoked.

The most common invocation of get is

get s.abc

which normally retrieves the latest version on the trunk of the
sees file tree and produces (for example) on the standard
output

1.3
67 lines
No id keywords (cm 7)

which indicates that

1. Version 1.3 of file "s.abc" was retrieved (1.3 is the latest
trunk delta).

2. This version has 67 lines of text.

3. No ID keywords were substituted in the file.

14-19

sees

The generated g-file (file "abc") is given mode 444 (read-only).
This particular way of invoking get is intended to produce g
files only for inspection, compilation, etc. It is not intended for
editing (Le., not for making deltas).

In the case of several file arguments (or directory-name
arguments), similar information is given for each file processed,
but the sees file name precedes it. For example,

get s.abc s.def

produces

s.abc:
1.3
67 lines
No id keywords (cm7)

s.def:
1.7
85 lines
No id keywords (cm7)

IDKeywords

In generating a g-file to be used for compilation, it is useful and
informative to record the date and time of creation, the version
retrieved, the module's name, etc. within the g-file. This
information appears in a load module when one is eventually
created. sees provides a convenient mechanism for doing this
automatically. Identification (ID) keywords appearing
anywhere in the generated file are replaced by appropriate
values according to the definitions of these ID keywords. The
format of an ID keyword is an uppercase letter enclosed by
percent signs (%). For example,

14-20

sees

%1%

is defined as the ID keyword that is replaced by the SID of the
retrieved version of a file. Similarly, %H% is defined as the
ID keyword for the current date (in the form "mm/dd/yy"),
and %M% is defined as the name of the g-file. Thus, executing
get on an SCCS file that contains the PL/I declaration,

DCL ID CHAR(lOO) VAR INIT('%M% %1% %H%');

gives (for example) the following:

DCL ID CHAR(lOO) VAR INIT('MODNAME 2.3 07/07/77');

When no ID keywords are substituted by get, the following
message is issued:

No id keywords (cm 7)

This message is normally treated as a warning by get,
although the presence of the i flag in the SCCS file causes it to
be treated as an error. For a complete list of the
approximately 20 ID keywords provided, see get(l) in the
AT&T UNIX PC UNIX System V Manual.

Retrieval of Different Versions

Various key letters are provided to allow the retrieval of other
than the default version of an SCCS file. Normally, the default
version is the most recent delta of the highest-numbered
release on the trunk of the SCCS file tree. However, if the
SCCS file being processed has a d (default SID) flag, the SID
specified as the value of this flag is used as a default. The
default SID is interpreted in exactly the same way as the value
supplied with the -r keyletter of get.

14-21

sees

The -r keyletter is used to specify an SID to be retrieved, in
which case the d (default SID) flag (if any) is ignored. For
example,

get -r1.3 s.abc

retrieves version 1.3 of file s.abc and produces (for example) on
the standard output

1.3
64 lines

A branch delta may be retrieved similarly,

get -r1.5.2.3 s.abc

which produces (for example) on the standard output

1.5.2.3
234 lines

When a 2- or 4-component SID is specified as a value for the
-r keyletter (as above) and the particular version does not
exist in the sees file, the following error message results.

ERROR[s.filename]: nonexistent SID (ge5)

Omission of the level number, as in

get - r3 s.abc

causes retrieval of the trunk delta with the highest level
number within the given release if the given release exists.
Thus, the above command might output,

14-22

sees

3.7
213 lines

If the given release does not exist, get retrieves the trunk delta
with the highest level number within the highest-numbered
existing release that is lower than the given release. For
example, assuming release 9 does not exist in file s.abc and that
release 7 is actually the highest-numbered release below 9,
execution of

get -r9 s.abc

might produce

7.6
420 lines

which indicates that trunk delta 7.6 is the latest version of file
s.abc below release 9. Similarly, omission of the sequence
number, as in

get -r4.3.2 s.abc

results in the retrieval of the branch delta with the highest
sequence number on the given branch if it exists. (If the given
branch does not exist, an error message results.) This might
result in the following output:

4.3.2.8
89 lines

The -t keyletter is used to retrieve the latest (top) version in a
particular release (Le., when no -r keyletter is supplied or
when its value is simply a release number). The latest version
is defined as that delta which was produced most recently,
independent of its location on the sees file tree. Thus, if the

14-23

sees

most recent delta in release 3 is 3.5,

get -r3 -t s.abc

might produce

3.5
59 lines

However, if branch delta 3.2.1.5 were the latest delta (created
after delta 3.5), the same command might produce

3.2.1.5
46 lines

Retrieval With Intent to Make a Delta

Specification of the -e keyletter to the get command is an
indication of the intent to make a delta, and as such, its use is
restricted. The presence of this keyletter causes get to check

1. The user list (a list of login names and/or group IDs of
users allowed to make deltas) to determine if the login
name or group ID of the user executing get is on that
list. Note that a null (empty) user list behaves as if it
contained all possible login names.

2. The release (R) of the version being retrieved satisfies
the relation:

floor is < or = to R which is
< or = to ceiling

to determine if the release being accessed is a protected
release. The "floor" and "ceiling" are specified as flags in
the sees file.

14-24

sees

3. The R is not locked against editing. The "lock" is
specified as a flag in the sees file.

4. Whether or not multiple concurrent edits are allowed for
the sees file as specified by the j flag in the sees file.

A failure of any of the first three conditions causes the
processing of the corresponding sees file to terminate.

If the above checks succeed, the -e keyletter causes the
creation of a g-file in the current directory with mode 644
(readable by everyone, writable only by the owner) owned by
the real user. If a writable g-file already exists, get terminates
with an error. This is to prevent inadvertent destruction of a
g-file that already exists and is being edited for the purpose of
making a delta.

Any ID keywords appearing in the g-file are not substituted by
get (when the -e keyletter is specified) because the generated
g-file is subsequently used to create another delta.
Replacement of ID keywords causes them to be permanently
changed within the sees file. In view of this, get does not
need to check for the presence of ID keywords within the g-file,
so the message

No id keywords (cm 7)

is never output when get is invoked with the -e keyletter.

In addition, the -e keyletter causes the creation (or updating)
of a p-file which is used to pass information to the delta
command.

The following is an example of the use of the -e keyletter:

14-25

sees

get -e s.abc

which produces (for example) on the standard output

1.3
new delta 1.4
67 lines

If the -r and/or -t keyletters are used together with the -e
key letter, the version retrieved for editing is as specified by the
-r and/or -t keyletters. However, it is redundant to use both
the -r and -t keyletters.

The keyletters -i and -x may be used to specify a list [see
get(1) in the AT&T UNIX PC UNIX System V Manual for the
syntax of such a list] of deltas to be included and excluded,
respectively, by get. Including a delta means forcing the
changes that constitute the particular delta to be included in
the retrieved version. This is useful if one wants to apply the
same changes to more than one version of the sees file.
Excluding a delta means forcing it not to be applied. This may
be used to undo (in the version of the sees file to be created)
the effects of a previous delta. Whenever deltas are included or
excluded, get checks for possible interference between such
deltas and those deltas that are normally used in retrieving the
particular version of the sees file. Two deltas can interfere,
for example, when each one changes the same line of the
retrieved g-file. Any interference is indicated by a warning
that shows the range of lines within the retrieved g-file in
which the problem may ex:ist. The user is expected to examine
the g-file to determine whether a problem actually exists and to
take whatever corrective measures (if any) are deemed
necessary (e.g., edit the file).

Warning: The -i and -x keyletters should be used with
extreme care.

14-26

sees

The - k keyletter is provided to facilitate regeneration of a g
file that may have been accidentally removed or ruined
subsequent to the execution of get with the -e keyletter or to
simply generate a g-file in which the replacement of ID
keywords has been suppressed. Thus, a g-file generated by the
- k keyletter is identical to one produced by get and executed
with the -e keyletter. However, no processing related to the
p-file takes place.

Concurrent Edits of Different SID

The ability to retrieve different versions of an sees file allows
a number of deltas to be "in progress" at any given time. This
means that a number of get commands with the -e keyletter
may be executed on the same file provided that no two
executions retrieve the same version (unless multiple
concurrent edits are allowed).

The p-file (created by the get command invoked with the -e
keyletter) is named by replacing the "s." in the sees file name
with "p.". It is created in the directory containing the sees
file, given mode 644 (readable by everyone, writable only by the
owner), and owned by the effective user. The p-file contains the
following information for each delta that is still "in progress":

• The SID of the retrieved version.

• The SID that is given to the new delta when it is created.

• The login name of the real user executing get.

The first execution of get -e causes the creation of the p-file
for the corresponding sees file. Subsequent executions only
update the p-file with a line containing the above information.
Before updating, however, get checks to assure that no entry
(already in the p-file) specifies that the SID (of the version to
be retrieved) is already retrieved (unless multiple concurrent
edits are allowed).

14-27

sees

If both checks succeed, the user is informed that other deltas
are in progress and processing continues. If either check fails,
an error message results. It is important to note that the
various executions of get should be carried out from different
directories. Otherwise, only the first execution succeeds since
subsequent executions would attempt to overwrite a writable g
file, which is an sees error condition. In practice, such
multiple executions are performed by different users so that
this problem does not arise since each user normally has a
different working directory. See "Protection" under the part
"sees FILES" for a discussion of how different users are
permitted to use sees commands on the same files.

Figure 14-4 shows, for the most useful cases, the version of an
sees file retrieved by get, as well as the SID of the version to
be eventually created by delta, as a function of the SID
specified to get.

14-28

SCCS

SID -b KEY- OTHER SID SID OF
SPECI- LETTER CONDI- RETRI- DATA
FIED* USEDt TIONS EVED TO BE

CREATED

nonet no R default mRmL mR(mL+1)
tomR

none* yes R default mRmL mRmL.(mB+ 1)
to mR

R no R>mR mRmL R.1§
R no R==mR mRmL mR.(mL+1)
R yes R>mR mRmL mR.mL.(mB+ 1).1
R yes R==mR mR.mL mR.mL.(mB+ 1).1
R R<mR

R R<mR hR.mL** hR.mL.(mB+ 1).1
and
does
not
exist

R Trunk R.mL R.mL.(mB+ 1).1
successor
in release
> Rand
R exists

See footnotes on sheet 3 of 3.

Figure 14-4. Determination of New SID (Sheet 1 of 3)

14-29

SCCS

SID -b KEY- OTHER SID SID OF
SPECI LETTER CONDI- RETRI- DELTA
FIED* USEDt TIONS EVED TO BE

CREATED

R.L. no No trunk R.L R.(L+1)
successor

R.L. yes No trunks R.L R.L.(mB+ 1).1
successor

R.L Trunk R.L R.L.(mS+ 1).1
in release
>= R

R.L.b no No branch R.L.B.mS R.L.B.(mS+ 1)
successor

R.L.B yes No branch R.L.B.mS R.L.(mB+ 1).1
successor

R.L.B.S no No branch R.L.B.S R.L.B.(S+ 1)
successor

R.L.B.S no No branch R.L.B.S R.L.(mB+ 1).1
successor

R.L.B.S Branch R.L.B.S R.L.(mB+ 1).1
successor

See footnotes on sheet 3 of 3.

Figure 14-4. Determination of New SID (Sheet 2 of 3)

14-30

sees

Footnotes:

* "R" , "L" , "B", and "S" are" release" , "level" , "branch" ,
and "sequence" components of the SID, respectively; "m"
means "maximum". Thus, for example, "R.mL" means "the
maximum level number within release R"; "R.L.(mB+ 1).1"
means "the first sequence number on the (Le., maximum
branch number plus 1) of level L within release R". Also note
that if the SID specified is of the form "R.L", "R.L.B", or
" R.L.B.S" , each of the specified components must exist.

t The -b keyletter is effective only if the b flag [see
admin(1)] is present in the file. In this state, an entry of " -"
means" irrelevant" .

t This case applies if the d (default SID) flag is not present in
the file. If the d flag is present in the file, the SID obtained
from the d flag is interrupted as if it had been specified on
the command line. Thus, one of the other cases in this figure
applies.

§ This case is used to force the creation of the first delta in the
new release.

** "hR" is the highest existing release that is lower than the
specified, nonexisting, release R.

Figure 14-4. Determination of New SID (Sheet 3 of 3)

Concurrent Edits of Same SID

Under normal conditions, gets for editing (-e keyletter is
specified) based on the same SID are not permitted to occur
concurrently. That is, delta must be executed before a
subsequent get for editing is executed at the same SID as the
previous get. However, multiple concurrent edits (defined to

14-31

sees

be two or more successive executions of get for editing based
on the same retrieved SID) are allowed if the j flag is set in the
sees file. Thus:

get -e s.abc
1.1
new delta 1.2
5 lines

may be immediately followed by

get -e s.abc
1.1
new delta 1.1.1.1
5 lines

without an intervening execution of delta. In this case, a
delta command corresponding to the first get produces delta
1.2 [assuming 1.1 is the latest (most recent) trunk delta], and
the delta command corresponding to the second get produces
delta 1.1.1.1. If there is concurrent editing taking place the
user will have to specify the release level information within
the delta command.

Keyletters That Affect Output

Specification of the -p key letter causes get to write the
retrieved text to the standard output rather than to a g-file. In
addition, all output normally directed to the standard output
(such as the SID of the version retrieved and the number of
lines retrieved) is directed instead to the diagnostic output.
This may be used, for example, to create g-files with arbitrary
names.

get -p s.abc > arbitrary-file-name

14-32

sees

The -s keyletter suppresses all output that is normally directed
to the standard output. Thus, the SID of the retrieved version,
the number of lines retrieved, etc., are not output. This does
not, however, affect messages to the diagnostic output. This
keyletter is used to prevent nondiagnostic messages from
appearing on the user's terminal and is often used in
conjunction with the -p keyletter to "pipe" the output of get,
as in

get -p -s s.abc I nroff

The -g keyletter is supplied to suppress the actual retrieval of
the text of a version of the sees file. This may be useful in a
number of ways. For example, to verify the existence of a
particular SID in an sees file, one may execute

get -g -r4.3 s.abc

This outputs the given SID if it exists in the sees file or it
generates an error message if it does not. Another use of the
-g keyletter is in regenerating a p-file that may have been
accidentally destroyed.

get -e -g s.abc

The -I keyletter causes the creation of an l-file, which is named
by replacing the "s." of the sees file name with "1.". This file
is created in the current directory with mode 444 (read-only)
and is owned by the real user. It contains a table [whose
format is described in get(l) in the AT&T UNIX PC UNIX
System V Manual showing the deltas used in constructing a
particular version of the sees file. For example,

get -r2.3 -1 s.abc

14-33

sees

generates an l-file showing the deltas applied to retrieve version
2.3 of the sees file. Specifying a value of "p" with the -}
keyletter, as in

get -lp -r2.3 s.abc

causes the generated output to be written to the standard
output rather than to the l-file. The -g keyletter may be used
with the -} keyletter to suppress the actual retrieval of the
text.

The -m keyletter is of use in identifying, line by line, the
changes applied to an sees file. Specification of this keyletter
causes each line of the generated g-file to be preceded by the
SID of the delta that caused that line to be inserted. The SID
is separated from the text of the line by a tab character.

The -n keyletter causes each line of the generated g-file to be
preceded by the value of the seesl ID keyword and a tab
character. The -n keyletter is most often used in a pipeline
with grep(l). For example, to find all lines that match a given
pattern in the latest version of each sees file in a directory,
the following may be executed:

get -p -n -s directory I grep pattern

If both the -m and -n keyletters are specified, each line of the
generated g-file is preceded by the value of the %M% ID
keyword and a tab (this is the effect of the -n keyletter) and
followed by the line in the format produced by the -m
keyletter. Because use of the -m keyletter and/or the -n
keyletter causes the contents of the g-file to be modified, such a
g-file must not be used for creating a delta. Therefore, neither
the -m keyletter nor the -n keyletter may be specified
together with the -e keyletter.

14-34

SCCS

See get(l) in the AT&T UNIX PC UNIX Systen V Manual for
a full description of additional get keyletters.

B. The "delta" Command

The delta command is used to incorporate the changes made to
a g-file into the corresponding sees file, i.e., to create a delta,
and therefore, a new version of the file.

Invocation of the delta command requires the existence of a p
file. The delta command examines the p-file to verify the
presence of an entry containing the user's login name. If none
is found, an error message results. The delta command
performs the same permission checks that get performs when
invoked by the -e keyletter. If all checks are successful, delta
determines what has been change.d in the g-file by comparing it
via diff(l) with its own temporary copy of the g-file as it was
before editing. This temporary copy of the g-file is called the
d-file (its name is formed by replacing the "s." of the sees file
name with "d.") and is obtained by performing an internal get
at the SID specified in the p-file entry.

The required p-file entry is the one containing the login name
of the user executing delta because the user who retrieved the
g-file must be the one who creates the delta. However, if the
login name of the user appears in more than one entry, the
same user has executed get with the -e keyletter more than
once on the same sees file. The -r keyletter must then be
used with delta to specify the SID that uniquely identifies the
p-file entry. This entry is the one used to obtain the SID of the
delta to be created.

In practice, the most common invocation of delta is

delta s.abc

14-35

sees

which prompts on the standard output (but only if it is a
terminal)

comments?

to which the user replies with a description of why the delta is
being made, terminating the reply with a newline character.
The user's response may be up to 512 characters long with
newlines (not intended to terminate the response) escaped by
backslashes "\".

If the sees file has a v flag, delta first prompts with

MRs? (Modification Requests)

on the standard output. (Again, this prompt is printed only if
the standard output is a terminal.) The standard input is then
read for MR numbers, separated by blanks and/ or tabs,
terminated in the same manner as the response to the prompt
"comments?". In a tightly controlled environment, it is
expected that deltas are created only as a result of some trouble
report, change request, trouble ticket, etc., collectively called
[MRs]. It is desirable (or necessary) to record such MR
n urn ber(s) wi thin each delta.

The -y and/or -m keyletters may be used to supply the
commentary (comments and MR numbers, respectively) on the
command line rather than through the standard input.

delta -y" descriptive comment" -m" mrnum1 mrnum2"

In this case, the corresponding prompts are not printed, and the
standard input is not read. The -m keyletter is allowed only if
the sees file has a v flag. These keyletters are useful when
delta is executed from within a shell procedure [see sh(l) in
the AT&T UNIX PC UNIX System V Manual.]

14-36

sees

The commentary (comments and/or MR numbers), whether
solicited by delta or supplied via keyletters, is recorded as part
of the entry for the delta being created and applies to all sees
files processed by the same invocation of delta. This implies
that (if delta is invoked with more than one file argument and
the first file named has a v flag) all files named must have this
flag. Similarly, if the first file named does not have this flag,
then none of the files named may have it. Any file that does
not conform to these rules is not processed.

When processing is complete, delta outputs (on the standard
output) the SID of the created delta (obtained from the p-file
entry) and the counts of lines inserted, deleted, and left
unchanged by the delta. Thus, a typical output might be

1.4
14 inserted
7 deleted
345 unchanged

It is possible that the counts of lines reported as inserted,
deleted, or unchanged by delta do not agree with the user's
perception of the changes applied to the g-file. The reason for
this is that there usually are a number of ways to describe a set
of such changes, especially if lines are moved around in the g
file, and delta is likely to find a description that differs from
the user's perception. However, the total number of lines of the
new delta (the number inserted plus the number left
unchanged) should agree with the number of lines in the edited
g-file.

If (in the process of making a delta) delta finds no ID
keywords in the edited g-file, the message

No id keywords (cm 7)

14-37

sees

is issued after the prompts for commentary but before any
other output. This indicates that any ID keywords that may
have existed in the sees file have been replaced by their values
or deleted during the editing process. This could be caused by
creating a delta from a g-file that was created by a get without
the -e keyletter (recall that ID keywords are replaced by get
in that case). This could also be caused by accidentally deleting
or changing the ID keywords during the editing of the g-file.
Another possibility is that the file had no ID keywords. In any
case, it is left up to the user to determine what remedial action
is necessary. However, the delta is made unless there is an i
flag in the sees file indicating that this should be treated as a
fatal error. In this last case, the delta is not created.

After the processing of an sees file is complete, the
corresponding p-file entry is removed from the p-file. All
updates to the p-file are made to a temporary copy, the q-file,
whose use is similar to the use of the x-file which is described
in the part "sees COMMAND CONVENTIONS". If there is
only one entry in the p-file, then the p-file itself is removed.

In addition, delta removes the edited g-file unless the -n
keyletter is specified. Thus:

delta -n s.abc

will keep the g-file upon completion of processing.

The -s (silent) keyletter suppresses all output that is normally
directed to the standard output, other than the prompts
"comments?" and "MRs?". Thus, use of the -s keyletter
together with the -y keyletter (and possibly, the -m keyletter)
causes delta neither to read the standard input nor to write
the standard output.

The differences between the g-file and the d-file (see above),
constitute the delta and may be printed on the standard output

14-38

SCCS

by using the -p keyletter. The format of this output is similar
to that produced by diff(l).

C. The "admin" Command

The admin command is used to administer sees files, that is,
to create new sees files and to change parameters of existing
ones. When an sees file is created, its parameters are
initialized by use of keyletters or are assigned default values if
no keyletters are supplied. The same keyletters are used to
change the parameters of existing files.

Two keyletters are supplied for use in conjunction with
detecting and correcting "corrupted" sees files (see "Auditing"
in part "sees FILES"). Newly created sees files are given
mode 444 (read-only) and are owned by the effective user. Only
a user with write permission in the directory containing the
sees file may use the admin command upon that file.

Creation of SCCS Files

An sees file may be created by executing the command

admin -Hirst s.abc

in which the value "first" of the -i keyletter specifies the name
of a file from which the text of the initial delta of the sees file
s.abc is to be taken. Omission of the value of the -i keyletter
indicates that admin is to read the standard input for the text
of the initial delta. Thus, the command

admin -i s.abc < first

is equivalent to the previous example. If the text of the initial
delta does not contain ID keywords, the message

14-39

sees

No id keywords (cm 7)

is issued by admin as a warning. However, if the same
invocation of the command also sets the i flag (not to be
confused with the -i keyletter), the message is treated as an
error and the sees file is not created. Only one sees file may
be created at a time using the -i keyletter.

When an sees file is created, the release number assigned to
its first delta is normally "I", and its level number is always
"I". Thus, the first delta of an sees file is normally "1.1".
The -r keyletter is used to specify the release number to be
assigned to the first delta. Thus:

admin -ifirst -r3 s.abc

indicates that the first delta should be named "3.1" rather than
"1.1". Because this keyletter is only meaningful in creating the
first delta, its use is only permitted with the -i keyletter.

Inserting Commentary for the Initial Delta

When an sees file is created, the user may choose to supply
commentary stating the reason for creation of the file. This is
done by supplying comments (-y keyletter) and/or MR
numbers (-m keyletter) in exactly the same manner as for
delta. The creation of an sees file may sometimes be the
direct result of an MR. If comments (-y keyletter) are
omitted, a comment line of the form

date and time created YY /MM/DD HH:MM:SS by lognan

is automatically generated.

If it is desired to supply MR numbers (-m keyletter), the v
flag must also be set (using the -f keyletter described below).

14-40

sees

The v flag simply determines whether or not MR numbers must
be supplied when using any sees command that modifies a
"delta commentary" [see sccsfile(4) in the AT&T UNIX PC
UNIX System V Manual] in the sees file. Thus:

admin -ifirst -mmrnuml -fv s.abc

Note that the -y and -m keyletters are only effective if a new
sees file is being created.

Initialization and Modification of sees File Parameters

The portion of the sees file reserved for descriptive text may
be initialized or changed through the use of the -t keyletter.
The descriptive text is intended as a summary of the contents
and purpose of the sees file.

When an sees file is being created and the -t keyletter is
supplied, it must be followed by the name of a file from which
the descriptive text is to be taken. For example, the command

admin -ifirst -tdesc s.abc

specifies that the descriptive text is to be taken from file desc;.

When processing an existing sees file, the -t keyletter
specifies that the descriptive text (if any) currently in the file
is to be replaced with the text in the named file. Thus:

admin - tdesc s.abc

specifies that the descriptive text of the sees file is to be
replaced by the contents of desc; omission of the file name after
the -t keyletter as in

14-41

sees

admin -t s.abc

causes the removal of the descriptive text from the sees file.

The flags of an sees file may be initialized, changed, or
deleted through the use of the -f and -d keyletters,
respectively. The flags of an sees file are used to direct
certain actions of the various commands. See admin(l) in the
AT&T UNIX PC UNIX System V Manual for a description of
all the flags. For example, the i flag specifies that the warning
message (stating that there are no ID keywords contained in
the sees file) should be treated as an error. Also the d
(default SID) flag specifies the default version of the sees file
to be retrieved by the get command. The -f keyletter is used
to set a flag and, possibly, to set its value. For example,

admin -ifirst -fi -fmmodname s.abc

sets the i flag and the m (module name) flag. The value
"modname" specified for the m flag is the value that the get
command will use to replace the % M % ID keyword. (In the
absence of the m flag, the name of the g-file is used as the
replacement for the %M% ID keyword.) Note that several -f
keyletters may be supplied on a single invocation of admin and
that -f keyletters may be supplied whether the command is
creating a new sees file or processing an existing one.

The -d keyletter is used to delete a flag from an sees file and
may only be specified when processing an existing file. As an
exam pIe, the command

admin -dm s.abc

removes the m flag from the sees file. Several -d keyletters
may be supplied on a single invocation of admin and may be
intermixed with -f keyletters.

14-42

SCCS

The sees files contain a list (user list) of login names and/or
group IDs of users who are allowed to create deltas. This list is
empty by default which implies that anyone may create deltas.
To add login names and/or group IDs to the list, the -a
keyletter is used. For example,

admin -axyz -awql -a1234 s.abc

adds the login names "xyz" and "wql" and the group ID "1234"
to the list. The -a keyletter may be used whether admin is
creating a new sees file or processing an existing one and may
appear several times. The -e keyletter is used in an analogous
manner if one wishes to remove (erase) login names or group
IDs from the list.

D. The "prs" Command

The prs command is used to print on the standard output all or
parts of an sees file in a format, called the output "data
specification," supplied by the user via the -d keyletter. The
data specification is a string consisting of sees file data
keywords (not to be confused with get ID keywords)
interspersed with optional user text.

Data keywords are replaced by appropriate values according to
their definitions. For example,

:1:

is defined as the data keyword that is replaced by the SID of a
specified delta. Similarly, :F: is defined as the data keyword
for the sees file name currently being processed, and :C: is
defined as the comment line associated with a specified delta.
All parts of an sees file have an associated data keyword. For
a complete list of the data keywords, see prs(1) in the AT&T
UNIX PC UNIX System V Manual.

14-43

sees

There is no limit to the number of times a data keyword may
appear in a data specification. Thus, for example,

prs -d" :1: this is the top delta for :F: :1:" s.abc

may produce on the standard output

2.1 this is the top delta for s.abc 2.1

Information may be obtained from a single delta by specifying
the SID of that delta using the -r keyletter. For example,

prs -d" :F:: :1: comment line is: :C:" -r1A s.abc

may produce the following output:

s.abc: 104 comment line is: THIS IS A COMMENT

If the -r keyletter is not specified, the value of the SID
defaults to the most recently created delta.

In addition, information from a range of deltas may be
obtained by specifying the -lor -e keyletters. The -e
keyletter substitutes data keywords for the SID designated via
the -r keyletter and all deltas created earlier. The -1 keyletter
substitutes data keywords for the SID designated via the -r
keyletter and all deltas created later. Thus, the command

prs -d:l: -r1A -e s.abc

may output

14-44

1.4
1.3
1.2.1.1
1.2
1.1

and the command

prs -d:I: -r1.4 -1 s.abc

may produce

3.3
3.2
3.1
2.2.1.1
2.2
2.1
1.4

SCCS

Substitution of data keywords for all deltas of the sees file
may be obtained by specifying both the -e and -I keyletters.

E. The "help" Command

The help command prints explanations of sees commands and
of messages that these commands may print. Arguments to
help, zero or more of which may be supplied, are simply the
names of sees commands or the code numbers that appear in
parentheses after sees messages. If no argument is given,
help prompts for one. The help command has no concept of
keyletter arguments or file arguments. Explanatory
information related to an argument, if it exists, is printed on
the standard output. If no information is found, an error
message is printed. Note that each argument is processed
independently, and an error resulting from one argument will
not terminate the processing of the other arguments.

14-45

SCCS

Explanatory information related to a command is a synopsis of
the command. For example,

help ge5 rmdel

produces

ge5:
" nonexistent sid"
The specified sid does not exist in the
given file.
eheck for typos.

rmdel:
rmdel - rSID name ...

F. The "rmdel" Command

The rmdel command is provided to allow removal of a delta
from an sees file. Its use should be reserved for those cases in
which incorrect global changes were made a part of the delta to
be removed.

The delta to be removed must be a "leaf" delta. That is, it
must be the latest (most recently created) delta on its branch
or on the trunk of the sees file tree. In Figure 14-3, only
deltas 1.3.1.2, 1.3.2.2, and 2.2 can be removed; once they are
removed, then deltas 1.3.2.1 and 2.1 can be removed, etc.

To be allowed to remove a delta, the effective user must have
write permission in the directory containing the sees file. In
addition, the real user must either be the one who created the
delta being removed or be the owner of the sees file and its
directory.

The -1' keyletter, which is mandatory, is used to specify the
complete SID of the delta to be removed (Le., it must have two

14-46

SCCS

components for a trunk delta and four components for a branch
delta). Thus:

rmdel -r2.3 s.abc

specifies the removal of (trunk) delta "2.3" of the sees file.
Before removal of the delta, rmdel checks that the release
number (R) of the given SID satisfies the relation:

floor <= R <= ceiling

The rmdel command also checks that the SID specified is not
that of a version for which a get for editing has been executed
and whose associated delta has not yet been made. In
addition, the login name or group ID of the user must appear in
the file's "user list", or the "user list" must be empty. Also,
the release specified cannot be locked against editing. That is,
if the 1 flag is set [see admin(l) in the AT&T UNIX PC UNIX
System V Manual], the release specified must not be contained
in the list. If these conditions are not satisfied, processing is
terminated, and the delta is not removed. After the specified
delta has been removed, its type indicator in the "delta table"
of the sees file is changed from "D" ("delta") to "R"
("removed").

G. The "cdc" Command

The cdc command is used to change a delta's commentary that
was supplied when that delta was created. Its invocation is
analogous to that of the rmdel command, except that the delta
to be processed is not required to be a leaf delta. For example,

cdc -r3.4 s.abc

specifies that the commentary of delta" 3.4" of the sees file is
to be changed.

14-47

SCCS

The new commentary is solicited by cdc in the same manner as
that of delta. The old commentary associated with the
specified delta is kept, but it is preceded by a comment line
indicating that it has been changed (i.e., superseded), and the
new commentary is entered ahead of this comment line. The
"inserted" comment line records the login name of the user
executing cdc and the time of its execution.

The cdc command also allows for the deletion of selected MR
numbers associated with the specified delta. This is specified
by preceding the selected MR numbers by the character "!".
Thus:

cdc -r1.4 s.abc
MRs? mrnum3 !mrnum1
comments? deleted wrong MR number and inserted

correct MR number

inserts "mrnum3" and deletes "mrnum1" for delta 1.4.

H. The "what" Command

The what command is used to find identifying information
within any UNIX system file whose name is given as an
argument to what. Directory names and a name of "-" (a lone
minus sign) are not treated specially as they are by other sees
commands and no keyletters are accepted by the command.

The what command searches the given file(s) for all
occurrences of the string "@(#)", which is the replacement for
the @(#) ID keyword [see get(l)], and prints (on the standard
output) the balance following that string until the first double
quote ("), greater than (», backslash (\), newline, or
(nonprinting) NUL character. For example, if the sees file
s.prog.c (a e language program) contains the following line:

14-48

SCCS

char id[] "@(#)sccs2:5.1";

and then the command

get -r3.4 s.prog.c

is executed, the resulting g-file is compiled to produce "prog.o"
and "a. out". Then the command

what prog.c prog.o a.out

produces

prog.c:
prog.c:3.4

prog.o:
prog.c:3.4

a.out:
prog.c:3.4

The string searched for by what need not be inserted via an ID
keyword of get; it may be inserted in any convenient manner.

I. The "sccsdiff" Command

The sccsdiff command determines (and prints on the standard
output) the differences between two specified versions of one or
more sees files. The versions to be compared are specified by
using the -r keyletter, whose format is the same as for the get
command. The two versions must be specified as the first two
arguments to this command in the order they were created, i.e.,
the older version is specified first. Any following keyletters are
interpreted as arguments to the pr(l) command (which actually
prints the differences) and must appear before any file names.
The sees files to be processed are named last. Directory
names and a name of "-" (a lone minus sign) are not acceptable

14-49

SCCS

to sccsdiff.

The differences are printed in the form generated by diff(l).
The following is an example of the invocation of sccsdiff:

sccsdiff -r3.4 -r5.6 s.abc

J. The "comb" Command

The comb command generates a "shell procedure" [see sh(l) in
the AT&T UNIX PC UNIX System V Manual] which attempts
to reconstruct the named sees files so that the reconstructed
files are smaller than the originals. The generated shell
procedure is written on the standard output. Named sees files
are reconstructed by discarding unwanted deltas and combining
other specified deltas. The sees files that contain deltas no
longer useful should be discarded. It is not recommended that
comb be used as a matter of routine; its use should be
restricted to a very small number of times in the life of an
sees file.

In the absence of any keyletters, comb preserves only leaf
deltas and the minimum number of ancestor deltas necessary to
preserve the "shape" of the sees file tree. The effect of this is
to eliminate middle deltas on the trunk and on all branches of
the tree. Thus, in Figure 14-3, deltas 1.2, 1.3.2.1, 1.4, and 2.1
would be eliminated. Some of the keyletters are summarized as
follows:

The -p keyletter specifies the oldest delta that is to be
preserved in the reconstruction. All older deltas are
discarded.

14-50

SCCS

The -c keyletter specifies a list [see get(l) in the AT&T
UNIX PC UNIX System V Manual for the syntax of such a
list] of deltas to be preserved. All other deltas are
discarded.

The -s keyletter causes the generation of a shell
procedure, which when run, produces only a report
summarizing the percentage space (if any) to be saved by
reconstructing each named sees file. It is recommended
that comb be run with this keyletter (in addition to any
others desired) before any actual reconstructions.

It should be noted that the shell procedure generated by comb
is not guaranteed to save space. In fact, it is possible for the
reconstructed file to be larger than the original. Note, too, that
the shape of the sees file tree may be altered by the
reconstruction process.

K. The "val'~ Command

The val command is used to determine if a file is an sees file
meeting the characteristics specified by an optional list of
keyletter arguments. Any characteristics not met are
considered errors.

The val command checks for the existence of a particular delta
when the SID for that delta is explicitly specified via the -r
keyletter. The string following the -y or -m keyletter is used
to check the value set by the t or m flag, respectively [see
admin(l) in the AT&T UNIX PC UNIX System V Manual for
a description of the flags].

The val command treats the special argument "-" differently
from other sees commands. This argument allows val to read
the argument list from the standard input as opposed to
obtaining it from the command line. The standard input is
read until end of file. This capability allows for one invocation
of val with different values for the keyletter and file

14-51

sees

arguments. For example,

val -
-yc -mabc s.abc
-mxyz -ypll s.xyz

first checks if file s.abc has a value "c" for its "type" flag and
value "abc" for the "module name" flag. Once processing of the
first file is completed, val then processes the remaining files,
in this case, s.XYZ, to determine if they meet the characteristics
specified by the keyletter arguments associated with them.

The val command returns an 8-bit code; each bit set indicates
the occurrence of a specific error [see val(l) for a description
of possible errors and the codes]. In addition, an appropriate
diagnostic is printed unless suppressed by the -s keyletter. A
return code of "0" indicates all named files met the
characteristics specified.

sees FILES
This part discusses several topics that must be considered
before extensive use is made of sees. These topics deal with
the protection mechanisms relied upon by sees, the format of
sees files, and the recommended procedures for auditing
sees files.

A. Protection

The sees relies on the capabilities of the UNIX software for
most of the protection mechanisms required to prevent
unauthorized changes to sees files (Le., changes made by non
sees commands). The only protection features provided
directly by sees are the "release lock" flag, the "release floor"
and "ceiling" flags, and the "user list".

14-52

sees

New sees files created by the admin command are given
mode 444 (read-only). It is recommended that this mode
remain unchanged as it prevents any direct modification of the
files by non-SeeS commands. It is further recommended that
the directories containing sees files be given mode 755 which
allows only the owner of the directory to modify its contents.

The sees files should be kept in directories that contain only
sees files and any temporary files created by sees commands.
This simplifies protection and auditing of sees files. The
contents of directories should correspond to convenient logical
groupings, e.g., subsystems of a large project.

The sees files must have only one link (name) because the
commands that modify sees files do so by creating a copy of
the file (the x-file, see "sees COMMAND CONVENTIONS").
Upon completion of processing, remove the old file and rename
the x-file. If the old file has more than one link, this would
break such additional links. Rather than process such files,
sees commands produce an error message. All sees files
must have names that begin with "s.".

When only one user uses sees, the real and effective user IDs
are the same; and the user ID owns the directories containing
sees files. Therefore, sees may be used directly without any
preliminary preparation.

However, in those situations in which several users with unique
user IDs are assigned responsibility for one sees file (e.g., in
large software development projects), one user (equivalently,
one user ID) must be chosen as the "owner" of the sees files
and be the one who will "administer" them (e.g., by using the
admin command). This user is termed the "sees
administrator" for that project. Because other users of sees
do not have the same privileges and permissions as the sees
administrator, they are not able to execute directly those
commands that require write permission in the directory
containing the sees files. Therefore, a project-dependent

14-53

sees

program is required to provide an interface to the get, delta,
and if desired, rmdel and cdc commands.

The interface program must be owned by the sees
administrator and must have the "set user ID on execution" bit
"on" [see chmod(l) in the AT&T UNIX PC UNIX Systen V
Manual]. This assures that the effective user ID is the user ID
of the administrator. This program invokes the desired sees
command and causes it to inherit the privileges of the interface
program for the duration of that command's execution. Thus,
the owner of an sees file can modify it at will. Other users
whose login names or group IDs are in the "user list" for that
file (but are not the owner) are given the necessary permissions
only for the duration of the execution of the interface program.
Other users are thus able to modify the sees files only
through the use of delta and, possibly, rmdel and cdc. The
project-dependent interface program, as its name implies, must
be custom-built for each project.

B. Formatting

The sees files are composed of lines of ASeII text arranged in
six parts as follows:

Checksum

Delta Table

User Names

Flags

14-54

A line containing the "logical" sum of all
the characters of the file (not including
this checksum itself).

Information about each delta, such as
type, SID, date and time of creation, and
commentary.

List of login names and/or group IDs of
users who are allowed to modify the file
by adding or removing deltas.

Indicators that control certain actions of
various sees commands.

Descriptive Text

Body

SCCS

Arbitrary text provided by the user;
usually a summary of the contents and
purpose of the file.

Actual text that is being administered by
sees, intermixed with internal sees
control lines.

Detailed information about the contents of the various sections
of the file may be found in sccsfile(5). The checksum is the
only portion of the file that is of interest below.

It is important to note that because sees files are ASeII files
they may be processed by various UNIX software commands,
such as ed(l), grep(l), and cat(l). This is very convenient in
those instances in which an sees file must be modified
manually (e.g., when the time and date of a delta was recorded
incorrectly because the system clock was set incorrectly) or
when it is desired to simply look at the file.

Caution: Extreme care should be exercised when
modifying SCCS files with non-SCCS commands.

C. Auditing

On rare occasions, perhaps due to an operating system or
hardware malfunction, an sees file or portions of it (Le., one
or more "blocks") can be destroyed. The sees commands (like
most UNIX software commands) issue an error message when a
file does not exist. In addition, sees commands use the
checksum stored in the sees file to determine whether a file
has been corrupted since it was last accessed [possibly by
having lost one or more blocks or by having been modified with
ed(l)]. No sees command will process a corrupted sees file
except the admin command with the -h or -z keyletters, as
described below.

14-55

sees

It is recommended that sees files be audited for possible
corruptions on a regular basis. The simplest and fastest way to
perform an audit is to execute the admin command with the
-h keyletter on all sees files.

admin -h s.file1 s.file2 ...
or

admin -h directory1 directory2

If the new checksum of any file is not equal to the checksum in
the first line of that file, the message

corrupted file (co6)

is produced for that file. This process continues until all the
files have been examined. When examining directories (as in
the second example above), the process just described will not
detect missing files. A simple way to detect whether any files
are missing from a directory is to periodically execute the 18(1)
command on that directory and compare the outputs of the
most current and the previous executions. Any file whose name
appears in the previous output but not in the current one has
been removed by some means.

Whenever a file has been corrupted, the manner in which the
file is restored depends upon the extent of the corruption. If
damage is extensive, the best solution is to contact the local
UNIX system operations group and request that the file be
restored from a backup copy. In the case of minor damage,
repair through use of the editor ed(1) may be possible. In the
latter case after such repair, the following command must be
executed:

admin -z s.file

The purpose of this is to recompute the checksum to bring it
into agreement with the actual contents of the file. After this

14-56

sees

command is executed on a file, any corruption that existed in
the file will no longer be detectable.

AN SCCS INTERFACE PROGRAM

A. General

In order to permit UNIX system users [with different user
identification numbers (user IDs)] to use sees commands upon
the same files, an sees interface program is provided. It
temporarily grants the necessary file access permissions to
these users. This part discusses the creation and use of such an
interface program. The sees interface program may also be
used as a preprocessor to sees commands since it can perform
operations upon its arguments.

B. Function

When only one user uses sees, the real and effective user IDs
are the same; and that user's ID owns the directories
containing sees files. However, there are situations (e.g., in
large software development projects) in which it is practical to
allow more than one user to make changes to the same set of
sees files. In these cases, one user must be chosen as the
"owner" of the sees files and be the one who will "administer"
them (e.g., by using the admin command). This user is termed
the "sees administrator" for that project. Since other users of
sees do not have the same privileges and permissions as the
sees administrator, the other users are not able to execute
directly those commands that require write permission in the
directory containing the sees files. Therefore, a project
dependent program is required to provide an interface to the
get, delta, and if desired, rmdel, cdc, and unget commands.
Other sees commands either do not require write permission
in the directory containing sees files or are (generally)
reserved for use only by the administrator.

14-57

sccs

The interface program

• Must be owned by the sees administrator

• Must be executable by the new owner

• Must have the "set user on execution" bit "on" [see
chmod(l) in the AT&T UNIX PC UNIX System V
Manual].

Then when executed, the effective user ID is the user ID of the
administrator. This program's function is to invoke the desired
sees command and to cause it to inherit the privileges of the
sees administrator for the duration of that command's
execution. In this manner, the owner of an sees file (the
administrator) can modify it at will. Other users whose login
names are in the user list for that file (but who are not its
owners) are given the necessary permissions only for the
duration of the execution of the interface program. They are
thus able to modify the sees files only through the use of
delta and, possibly, rmdel and cdc.

c. Basic Program

When a UNIX system program is executed, the program is
passed as argument 0, which is the name that invoked the
program, and followed by any additional user-supplied
arguments. Thus, if a program is given a number of links
(names), the program may alter its processing depending upon
which link invokes the program. This mechanism is used by an
sees interface program to determine the sees command it
should subsequently invoke [see exec(2) in the AT&T UNIX
PC UNIX System V Manual].

A generic interface program (inter.c, written in e language) is
shown in Figure 14-5. Note the reference to the (unsupplied)
function "filearg". This is intended to demonstrate that the
interface program may also be used as a preprocessor to sees

14-58

sees

commands. For example, function "filearg" could be used to
modify file arguments to be passed to the sees command by
supplying the full pathname of a file, thus avoiding extraneous
typing by the user. Also, the program could supply any
additional (default) keyletter arguments desired.

D. Linking and Use

In general, the following demonstrates the steps to be
performed by the sees administrator to create the sees
interface program. It is assumed, for the purposes of the
discussion, that the interface program inter.c resides in
directory "/xl/xyz/sccs". Thus, the command sequence

cd /xl/xyz/sccs
cc ... inter.c -0 inter ...

compiles inter.c to produce the executable module inter (the
" ... " represents other arguments that may be required). The
proper mode and the "set user ID on execution" bit are set by
executing

chmod 4755 inter

For example, new links are created by

In inter get
In inter delta
In inter rmdel

The names of the links may be arbitrary if the interface
program is able to determine from them the names of sees
commands to be invoked. Subsequently, any user whose shell
parameter PATH [see sh(l) in the AT&T UNIX PC UNIX
Systen V Manual] specifies directory "/xl/xyz/sccs" as the one
to be searched first for executable commands may execute

14-59

sees

get -e /xl/xyz/sccs/s.abc

from any directory to invoke the interface program (via its link
"get"). The interface program then executes "/usr/bin/get"
(the actual sees get command) upon the named file. As
previously mentioned, the interface program could be used to
supply the path name "/xl/xyz/sccs" so that the user would
only have to specify

get -e s.abc

to achieve the same results.

14-60

Chapter 15

THE "m4" MACRO PROCESSOR

PAGE

GENERAL... 15-1

DEFINING MACROS.................................... 15-6

ARGUMENTS.. 15-11

ARITHMETIC BUILT-INS. 15-12

FILE MANIPULATION.................................. 15-13

SYSTEM COMMAND. .. 15-15

CONDITIONALS.. 15-15

STRING MANIPULATION. 15-16

PRINTING. .. 15-18

Chapter 15

THE "m4" MACRO PROCESSOR

GENERAL
The m4 macro processor is a front end for rational Fortran
(Ratfor) and the C programming languages. The "#define"
statement in C language and the analogous "define" in Ratfor
are examples of the basic facility provided by any macro
processor.

At the beginning of a program, a symbolic name or symbolic
constant can be defined as a particular string of characters.
The compiler will then replace later un quoted occurrences of
the symbolic name with the corresponding string. Besides the
straightforward replacement of one string of text by another,
the m4 macro processor provides the following features:

• arguments

• arithmetic capabilities

• file manipulation

• conditional macro expansion

• string and substring functions.

The basic operation of m4 is to read every alphanumeric token
(string of letters and digits) input and determine if the token is
the name of a macro. The name of the macro is replaced by its
defining text, and the resulting string is pushed back onto the
input to be rescanned. Macros may be called with arguments.
The arguments are collected and substituted into the right
places in the defining text before the defining text is rescanned.

15-1

M4 MACROS

The user also has the capability to define new macros. Built-ins
and user-defined macros work exactly the same way except that
some of the built-in macros have side effects on the state of the
process. A list of 21 built-in macros provided by the m4 macro
processor can be found in Figure 15-1.

Macro Function
Name

changequote Restores original
characters or
makes new quote
characters the
left and right
brackets.

changescom Changes left and right
comment markers from
the default # and new
line.

deer Returns the value of
its argument decremented
by 1.

define Defines new macros.
defn Returns the quoted

definition of its
argument(s).

divert Diverts output to
1-out-of-10
diversions.

Figure 15-1. Built-in Macros (Sheet 1 of 4)

15-2

M4MACROS

Macro Function
Name

divnum Returns the number
of the currently
active diversion.

dnl Reads and discards
characters up to
and including the
next new line.

dumpdef Dumps the current
names and definitions
of items named as
arguments.

errprint Prints its arguments
on the standard
error file.

eval Prints arbitrary
arithmetic on
integers.

ifdef Determines if a
macro is currently
defined.

ifelse Performs arbitrary
conditional testing.

include Returns the con ten ts
of the file named
in the argument. A
fa tal error occurs
if the file name
cannot be accessed.

Figure 15-1. Built-in Macros (Sheet 2 of 4)

15-3

M4MACROS

Macro Function
Name

iner Returns the value of
its argument
incremented by l.

index Returns the position
w here the second
argument begins in
the first argument
pf index.

len Returns the number of
characters that makes
its argument.

m4exit Causes immediate
exit from m4.

m4wrap Pushes the exit code
back at final EOF.

maketemp Facilitates making
unique file names.

popdef Removes current
definition of its
argumen t(s)
exposing any previous
definitions.

pushdef Defines new macros
but saves any
previous definition.

Figure 15-1. Built-in Macros (Sheet 3 of 4)

15-4

M4 MACROS

Macro Function
Name

shift Returns all arguments
of shift except the
first argument.

sinclude Returns the contents
of the file named
in the arguments.
The macro remains
silent and continues
if the file is
inaccessible.

substr Produces substrings
of strings.

syscmd Executes the UNIX System
command given in
the first argument.

traceoff Turns macro trace off.
traceon Turns the macro trace on.
translit Performs character

transli tera tion.
undefine Removes user-defined

or buil t-in macro
definitions.

undivert Discards the diverted
text.

Figure 15-1. Built-in Macros (Sheet 4 of 4)

To use the m4 macro processor, input the following command:

15-5

M4MACROS

m4 [optional files]

Each argument file is processed in order. If there are no
arguments or if an argument is "-", the standard input is read
at that point. The processed text is written on the standard
output which may be captured for subsequent processing with
the following input:

m4 [files] >outputfile

DEFINING MACROS
The primary built-in function of m4 is define. Define is used
to define new macros. The following input:

define(name, stuff)

causes the string name to be defined as stuff All subsequent
occurrences of name will be replaced by stuff Name must be
alphanumeric and must begin with a letter (the underscore
counts as a letter). Stuff is any text that contains balanced
parentheses. Use of a backslash may stretch stuff over multiple
lines. Thus, as a typical example,

define(N, 100)

if (i > N)

defines N to be 100 and uses the symbolic constant N in a later
if statement.

15-6

M4MACROS

The left parenthesis must immediately follow the word define
to signal that define has arguments. If a user-defined macro
or built-in name is not followed immediately by "(", it is
assumed to have no arguments. Macro calls have the following
general form:

name(arg1,arg2, ... argn)

A macro name is only recognized as such if it appears
surrounded by nonalphanumerics. Using the following example:

define(N, 100)

if (NNN > 100)

the variable NNN is absolutely unrelated to the defined macro
N even though the variable contains a lot of Ns.

Macros may be defined in terms of other names. For example,

define(N, 100)
define(M, N)

defines both M and N to be 100. If N is redefined and
subsequently changes, M retains the value of 100 not N.

The m4 macro processor expands macro names into their
defining text as soon as possible. The string N is immediately
replaced by 100. Then the string M is also immediately
replaced by 100. The overall result is the same as using the
following input in the first place:

define(M, 100)

15-7

M4MACROS

The order of the definitions can be interchanged as follows:

define(M, N)
define(N, 100)

Now M is defined to be the string N, so when the value of M is
requested later, the result is the value of N at that time
(because the M will be replaced by N which will be replaced by
100).

The more general solution is to delay the expansion of the
arguments of define by quoting them. Any text surrounded by
left and right single quotes is not expanded immediately but
has the quotes stripped off. The value of a quoted string is the
string stripped of the quotes. If the input is

define(N, 100)
define(M, 'N')

the quotes around the N are stripped off as the argument is
being collected. The results of using quotes is to define M as
the string N, not 100. The general rule is that m4 always
strips off one level of single quotes whenever it evaluates
something. This is true even outside of macros. If the word
define is to appear in the output, the word must be quoted in
the input as follows:

'define' = 1;

Another example of using quotes is redefining N. To redefine
N, the evaluation must be delayed by quoting

15-8

M4MACROS

define(N, 100)

define('N', 200)

In m4, it is often wise to quote the first argument of a macro.
The following example will not redefine N:

define(N, 100)

define(N, 200)

The N in the second definition is replaced by 100. The result is
equivalent to the following statement:

define(100, 200)

This statement is ignored by m4 since only things that look
like names can be defined.

If left and right single quotes are not convenient for some
reason, the quote characters can be changed with the following
built-in macro:

changequote([,])

The built-in changequote makes the new quote characters the
left and right brackets. The original characters can be restored
by using changequote without arguments as follows:

changequote

15-9

M4MACROS

There are two additional built-ins related to define. The
undefine macro removes the definition of some macro or
built-in as follows:

undefine('N')

The macro removes the definition of N. Built-ins can be
removed with undefine, as follows:

undefine('define')

But once removed, the definition cannot be reused.

The built-in ifdef provides a way to determine if a macro is
currently defined. Depending on the system, a definition
appropriate for the particular machine can be made as follows:

ifdef('pdpll', 'define(wordsize,16),)
ifdef('u3b', 'define(wordsize,32),)

Remember to use the quotes.

The ifdef macro actually permits three arguments. If the first
argument is defined, the value of ifdef is the second argument.
If the first argument is not defined, the value of ifdef is the
third argument. If there is no third argument, the value of
ifdef is null. If the name is undefined, the value of ifdef is
then the third argument, as in

ifdef('unix', on UNIX, not on UNIX)

15-10

M4MACROS

ARGUMENTS

So far the simplest form of macro processing has been
discussed which is replacing one string by another (fixed)
string. User-defined macros may also have arguments, so
different invocations can have different results. Within the
replacement text for a macro (the second argument of its
define), any occurrence of $n is replaced by the nth argument
when the macro is actually used. Thus, the macro bump
defined as

define(bump, $1 = $1 + 1)

generates code to increment its argument by 1. The 'bump(x)'
statement is equivalent to 'x = x + 1.'

A macro can have as many arguments as needed, but only the
first nine are accessible ($1 through $9). The macro name is
$0 although that is less commonly used. Arguments that are
not supplied are replaced by null strings, so a macro can be
defined which simply concatenates its arguments like this:

define(cat, $1$2$3$4$5$6$7$8$9)

Thus, 'cat(x, y, z)' is equivalent to 'xyz'. Arguments $4 through
$9 are null since no corresponding arguments were provided.
Leading unquoted blanks, tabs, or newlines that occur during
argument collection are discarded. All other white space is
retained. Thus:

define(a, b c)

defines 'a' to be 'b c'.

15-11

M4MACROS

Arguments are separated by commas; however, when commas
are within parentheses, the argument is not terminated nor
separated. For example,

define(a, (b,c»

has only two arguments. The first argument is a. The second
is literally (b,e). A bare comma or parenthesis can be inserted
by quoting it.

ARITHMETIC BUILT-INS
The m4 provides three built-in functions for doing arithmetic
on integers (only). The simplest is iner which increments its
numeric argument by 1. The built-in deer decrements by 1.
Thus to handle the common programming situation where a
variable is to be defined as "one more than N', use the
following:

define(N, 100)
define(N1, 'incr(N)')

Then Nl is defined as one more than the current value of N.

The more general mechanism for arithmetic is a built-in called
eval which is capable of arbitrary arithmetic on integers. The
operators in decreasing order of precedence are

15-12

unary + and-
** or A (exponentiation)
* / % (modulus)
+ -
== != < <= > >=
! (not)
& or && (logical and)
I or I I (logical or).

M4MACROS

Parentheses may be used to group operations where needed.
All the operands of an expression given to eval must
ultimately be numeric. The numeric value of a true relation
(like 1>0) is 1 and false is O. The precision in eval is 32 bits
under the UNIX operating system.

As a simple example, define M to be "2==N+ I" using eval as
follows:

define(N, 3)
define(M, 'eval(2==N+ 1)')

The defining text for a macro should be quoted unless the text
is very simple. Quoting the defining text usually gives the
desired result and is a good habit to get into.

FILE MANIPULATION
A new file can be included in the input at any time by the
built-in function include. For example,

include(filename)

inserts the contents of filename in place of the include
command. The contents of the file is often a set of definitions.

15-13

M4MACROS

The value of include (include's replacement text) is the
contents of the file. If needed, the contents can be captured in
definitions, etc.

A fatal error occurs if the file named in include cannot be
accessed. To get some control over this situation, the alternate
form sinclude can be used. The built-in sinclude (silent
include) says nothing and continues if the file named cannot be
accessed.

The output of m4 can be diverted to temporary files during
processing, and the collected material can be output upon
command. The m4 maintains nine of these diversions,
numbered 1 through 9. If the built-in macro

divert(n)

is used, all subsequent output is put onto the end of a
temporary file referred to as n. Diverting to this file is stopped
by the divert or divert(O) command which resumes the
normal output process.

Diverted text is normally output all at once at the end of
processing with the diversions output in numerical order.
Diversions can be brought back at any time by appending the
new diversion to the current diversion. Output diverted to a
stream other than 0 through 9 is discarded. The built-in
undivert brings back all diversions in numerical order. The
built-in undivert with arguments brings back the selected
diversions in the order given. The act of undiverting discards
the diverted text (as does diverting) into a diversion whose
number is not between 0 and 9, inclusive.

The value of undivert is not the diverted text. Furthermore,
the diverted material is not rescanned for macros. The built-in
divnum returns the number of the currently active diversion.

15-14

M4MACROS

The current output stream is zero during normal processing.

SYSTEM COMMAND

Any program in the local operating system can be run by using
the syscmd built-in. For example,

syscmd(date)

on the UNIX system runs the date command. Normally,
syscmd would be used to create a file for a subsequent
include. To facilitate making unique file names, the built-in
maketemp is provided with specifications identical to the
system function mktemp. The maketemp macro fills in a
string of XXXXX in the argument with the process ID of the
current process.

CONDITIONALS

Arbitrary conditional testing is performed via built-in ifelse.
In the simplest form

ifelse(a, b, c, d)

compares the two strings a and b. If a and b are identical,
ifelse returns the string c. Otherwise, string d is returned.
Thus, a macro called compare can be defined as one which
compares two strings and returns "yes" or "no" if they are the
same or different as follows:

define(compare, 'ifelse($l, $2, yes, no)')

15-15

M4MACROS

Note the quotes which prevent evaluation of ifelse occurring
too early. If the fourth argument is missing, it is treated as
empty.

The built-in ifelse can actually have any number of arguments
and provides a limited form of multiway decision capability. In
the input

ifelse(a, b, c, d, e, f, g)

if the string a matches the string b, the result is c. Otherwise,
if d is the same as e, the result is f Otherwise, the result is g.
If the final argument is omitted, the result is null, so

ifelse(a, b, c)

is c if a matches b, and null otherwise.

STRING MANIPULATION

The built-in len returns the length of the string (number of
characters) that makes up its argument. Thus:

len(abcdef)

is 6, and len«a,b» is 5.

The built-in substr can be used to produce substrings of
strings. Using input, substr(s, i, n) returns the substring of s
that starts at the ith position (origin zero) and is n characters
long. If n is omitted, the rest of the string is returned.
Inputting

15-16

M4MACROS

substr('now is the time',l)

returns the following string:

ow is the time.

If i or n are out of range, various actions occur.

The built-in index(sl, s2) returns the index (position) in 81
where the string 82 occurs or -1 if it does not occur. As with
substr, the origin for strings is o.

The built-in trans lit performs character transliteration and
has the general form

translit(s, f, t)

which modifies 8 by replacing any character found in f by the
corresponding character of t. Using input

translit(s, aeiou, 12345)

replaces the vowels by the corresponding digits. If t is shorter
than f, characters that do not have an entry in t are deleted. As
a limiting case, if t is not present at all, characters from fare
deleted from 8. So

translit(s, aeiou)

would delete vowels from 8.

15-17

M4MACROS

There is also a built-in called dnl that deletes all characters
that follow it up to and including the next new line. The dnl
macro is useful mainly for throwing away empty lines that
otherwise tend to clutter up m4 output. Using input

define(N, 100)
define(M, 200)
define(L, 300)

results in a new line at the end of each line that is not part of
the definition. So the new line is copied into the output where
it may not be wanted. If the built-in dnl is added to each of
these lines, the newlines will disappear. Another method of
achieving the same results is to input

divert(-1)
define(...)

divert.

PRINTING
The built-in errprint writes its arguments out on the standard
error file. An example would be

errprint('fatal error')

The built-in dumpdef is a debugging aid that dumps the
current names and definitions of items named as arguments. If
no arguments are given, then all current names and definitions
are printed. Do not forget to quote the names.

15-18

Chapter 16

THE "awk" PROGRAMMING LANGUAGE

PAGE

GENERAL... 16-1

PROGRAM STRUCTURE. 16-1

LEXICAL CONVENTION................................ 16-3

PRIMARY EXPRESSIONS............................... 16-12

TERMS.. 16-18

EXPRESSIONS. .. 16-20

USING awk . • 16-22

INPUT: RECORDS AND FIELDS......................... 16-24

INPUT: FROM THE COMMAND LINE. 16-26

OUTPUT: PRINTING. .. 16-28

OUTPUT: TO DIFFERENT FILES......................... 16-34

OUTPUT: TO PIPES..................................... 16-36

COMMENTS ... 16-37

PATTERNS.. 16-38

ACTIONS. .. 16-48

BUILT IN FUNCTIONS. .. 16-57

FLOW OF CONTROL. .. 16-61

REPORT GENERATION................................. 16-66

COOPERATION WITH THE SHELL. .. 16-68

MISCELLANEOUS HINTS............................... 16-70

Chapter 16

THE "awk" PROGRAMMING
LANGUAGE

GENERAL

The awk is a file-processing programming language designed
to make many common information and retrieval text
manipulation tasks easy to state and perform. The awk:

• Generates reports

• Matches patterns

• Valida tes data

• Filters data for transmission.

PROGRAM STRUCTURE

The a w k program is a sequence of statements of the form

pattern {action}
pa ttern {action}

The awk program is run on a set of input files. The basic
operation of awk is to scan a set of input lines, in order, one at
a time. In each line, awk searches for the pattern described in
the awk program, then if that pattern is found in the input
line, a corresponding action is performed. In this way, each

16-1

AWK

statement of the awk program is executed for a given input
line. When all the patterns are tested, the next input line is
fetched; and the a w k program is once again executed from the
beginning.

In the awk command, either the pattern or the action is
omitted, but not both. If there is no action for a pattern, the
matching line is simply printed. If there is no pattern for an
action, then the action is performed for every input line. The
null awk program does nothing. Since patterns and actions
are both optional, actions are enclosed in braces to distinguish
them from patterns.

For example, this awk program

Ixl {print}

prints every input line that has an II xl! in it.

An a w k program has the following structure:

- a <BEG IN> section
- a <record> or main section
- an <END> section.

The <BEGIN> section is run before any input lines are read,
and the <END> section is run after all the data files are
processed. The <record> section is data driven. That is, it is the
section that is run over and over for each separate line of input.

Values are assigned to variables from the awk command line.
The <BEGIN> section is run before these assignments are
made.

16-2

AWK

The words "BEGIN" and "END" are actually patterns
recognized by awk. These are discussed further in the pattern
section of this guide.

LEXICAL CONVENTION

All awk programs are made up of lexical units called tokens.
In awk there are eight token types:

l. numeric constants

2. string constants

3. keywords

4. identifiers

5. operators

6. record and file tokens

7. comments

8. separators.

Numeric Constants

A numeric constant is either a decimal constant or a floating
constant. A decimal constant is a nonnull sequence of digits
containing at most one decimal point as in 12, 12., 1.2, and
.12. A floating constant is a decimal constant followed by e or
E followed by an optional + or - sign followed by a nonnull
sequence of digits as in 12e3, 1.2e3, 1.2e-3, and 1.2E+3.
The maximum size and precision of a numeric constant are
machine dependent.

16-3

AWK

String Constants

A string constant is a sequence of zero or more characters
surrounded by double quotes as in "," "a"," ab" , and" 12" .
A double quote is put in a string by proceeding it with \ as in
"He said, \ Sit! \"" . A newline is put in a string by using \n in
its place. No other characters need to be escaped. Strings can
be (almost) any length.

Keywords

Strings used as keywords are shown in Figure 16-1.

Keywords

begin break length
end close log
FILENAME continue next
FS close number
NF exit print
NR exp printf
OFS for split
ORS getline sprintf
OFMT if sqrt
RS in string

index substr
int while

Figure 16-1. Strings Used as Keywords

16-4

AWK

Identifiers

Identifiers in a w k serve to denote variables and arrays. An
identifier is a sequence of letters, digits, and underscores,
beginning with a letter or an underscore. Uppercase and
lowercase letters are different.

Operators

The awk has assignment, arithmetic, relational, and logical
operators similar to those in the C programming language and
regular expression pattern matching operators similar to those
in the UNIX operating system program egrep and lex.

16-5

AWK

Assignment operators are shown in Figure 16-2.

Assignment Operators
Symbol Usage Description

= assignment
+= plus-equals X += Y is similar

toX=X+Y

-- minus-equals X-= Y is similar
to X = X-Y

*= times-equals X *= Y is similar
toX=X*Y

/= divide-equals X = Y is similar
toX=X/Y

%= mod-equals X%=Y is similar
toX = X%Y

++ prefix and ++X and FBX++ are similar
postfix to X=X+l
increments

- prefix and - and X similar
postfix toX=X-l
decrements

Figure 16-2. Symbols and Descriptions for Assignment
Operators

16-6

AWK

Arithmetic operators are shown in Figure 16-3.

Arithmetic Operators

Symbol Description
.R

+ unary binary plus
- unary and binary minus

* multiplication
/ division
% modulus
(...) grouping

Figure 16-3. Symbols and Descriptions for Arithmetic
Operators

16-7

AWK

Relational operators are shown in Figure 16-4.

Relational Operators

Symbol Description

< ,less than
<= less than or equal to
-- equal to
!= not equal to
>= greater than or equal to
> greater than

Figure 16-4. Symbols and Descriptions for Relational
Operators

16-8

AWK

Logical operators are shown in Figure 16-5.

Logical Operators

Symbol Description

&& and
! ! or
! not

Figure 16-5. Symbols and Descriptions for Logical
Operators

Regular expression matching operators are shown in the Figure 16-6.

Regular Expression Pattern Matching Operators

Symbol Description

- matches
!- does not match

Figure 16-6. Symbols and Descriptions for Regular
Expression Pattern

16-9

AWK

Record and Field Tokens

The $0 is a special variable whose value is that of the current
input record. The $1, $2 •.. are special variables whose values
are those of the first field, the second field, ... , respectively,
of the current input record. The keyword NF (Number of
Fields) is a special variable whose value is the number of fields
in the current input records. Thus $NF has, as its value, the
value of the last field of the current input records. Notice that
the field of each record is numbered 1 and that the number of
fields can vary from record to record. None of these variables is
defined in the action associated with a BEGIN or END pattern,
where there is no current input record.

The keyword NR (Number of Records) is a variable whose
value is the number of input records read so far. The first
input record read is 1.

Record Separators

The keyword RS (Record Separators) is a variable whose value
is the current record separator. The value of RS is initially set
to newline, indicating that adjacent input records are separated
by a newline. Keyword RS is changed to any character c by
including the assignment statement RS = "c" in an action.

Field Separator

The keyword FS (Field Separator) is a variable indicating the
current field separator. Initially, the value of FS is a blank,
indicating that fields are separated by white space, i.e., any
nonnull sequence of blanks and tabs. Keyword FS is changed to
any single character c by including the assignment statement F
= "c" in an action or by using the optional command line
argument - Fc. Two values of c have special meaning, space
and t. The assignment statement FS =" " makes white space
in field separator; and on the command line, -Ft makes tab the
field separator.

16-10

AWK

If the field separator is not a blank, then there is a field in the
record on each side of the separator. For instance, if the field
separator is 1, the record IXXXI has three fields. The first
and last are null. If the field separator is blank, then fields are
separated by white space, and none of the NF fields are null.

Multiline Records

The assignment RS = " " makes an empty line the record
separator and makes a nonnull sequence (consisting of blanks,
tabs, and possibly a newline) the field separator. With this
setting, none of the first NF fields of any record are null.

Output Record and Field Separators

The value of OFS (Output Field Separator) is the output field
separator. It is put between fields by print. The value of ORS
(Output Record Separators) is put after each record by print.
Initially, ORS is set to a newline and OFS to a space. These
values may change to any string by assignments such as ORS
= "abc" and OFS = " xyz" .

Comments

A comment is introduced by a # and terminated by a newline.
For example:

part of the line is a comment

A comment can be appended to the end of any line of an awk
program.

Separators and Brackets

Tokens in awk are usually separated by nonnull sequences of
blank, tabs, and newlines, or by other punctuation symbols such
as commas and semicolons. Braces { ... } surround actions,
slashes I .. j surround regular expression patterns, and double
quotes" ... " surround strings.

16-11

AWK

PRIMARY EXPRESSIONS

In awk, patterns and actions are made up of expressions. The
basic building blocks of expressions are the primary
expressions:

numeric constants
string constant
var
function

Each expression has both a numeric and a string value, one of
which is usually preferred. The rules for determining the
preferred value of an expression are explained below.

Numeric Constants

The format of a numeric constant was defined previously in
LEXICAL CONVENTIONS. Numeric values are stored as
floating point numbers. Both the numeric and string value of a
numeric constant is the decimal number represented by the
constant. The preferred value is the numeric value.

16-12

AWK

Numeric values for string constants are in Figure 16-7.

Numeric Constants

Numeric Numeric String
Constant Value Value

0 0 0
1 1 1

.5 0.5 .5

.5e2 50 50

Figure 16-7. Numeric Values for String Constants

String Constants

The format of a string constant was defined previously in
LEXICAL CONVENTIONS. The numeric value of a string
constant is 0 unless the string is a numeric constant enclosed
in double quotes. In this case, the numeric value is the number
represented. The preferred value of a string constant is its
string value. The string value of a string constant is always
the string itself.

16-13

AWK

String values for string constants are in Figure 16-8.

String Constants

String Numeric String
Constant Value Value

"" 0 empty space
" a" 0 a
"XYZ" 0 xyz
" 0" 0 0
" 1" 1 1
" .5" 0.5 .5
" .5e2" 0.5 .5e2a

Figure 16-8. String Values for String Constants

Vars

A var is one of the following:

identifier
identifier { expression}
$term

The numeric value of any uninitialized var is 0, and the string
value is the empty string.

An identifier by itself is a simple variable. A var of the form
identifier {expression} represents an element of an associative
array named by identifier. The string value of expression is
used as the index into the array. The preferred value of

16-14

AWK

identifier or identifier {expression} is determined by context.

The var $0 refers to the current input record. Its string and
numeric values are those of the current input record. If the
current input record represents a number, then the numeric
value of $0 is the number and the string value is the literal
string. The preferred value of $0 is string unless the current
input record is a number. The $0 cannot be changed by
assignment.

The var $1, $2, ... refer to fields 1, 2, ... of the current input
record. The string and numeric value of $i for 1<=i<=NF are
those of the ith field of the current input record. As with $0, if
the ith field represents a number, then the numeric value of $i
is the number and the string value is the literal string. The
preferred value of $i is string unless the ith field is a number.
The $i is changed by assignment. The $0 is then changed
accordingly.

In general, $term refers to the input record if term has the
numeric value 0 and to field i if the greatest integer in the
numeric value of term is i. If i<O or if i>=100, then accessing
$i causes awk to produce an error diagnostic. If NF<i<=100,
then $i behaves like an uninitialized var. Accessing $i for i >
NF does not change the value of NF.

Function

The awk has a number of built-in functions that perform
common arithmetic and string operations.

16-15

AWK

The arithmetic functions are in Figure 16-9.

Functions

exp (expression)
int (expression)
log (expression)
sqrt (expression)

Figure 16-9. Built-in Functions for Arithmetic and
String Operations

These functions (exp, int, log, and sqrt) compute the
exponential, integer part, natural logarithm, and square root,
respectively, of the numeric value of expression. The
(expression) may be omitted; then the function is applied to $0.
The preferred value of an arithmetic function is numeric.

16-16

AWK

String functions are shown in Figure 16-10.

String Functions

getline
index (expression1, expression2)
length (expression)
split (expression, identifier, expression2)
split (expression, identifier)
sprintf (format, expression1, expression2 ...)
substr (expression1, expression2)
substr (expression1, expression2, expression3)

Figure 16-10. Expressions for String Functions

The function getline causes the next input record to replace the
current record. It returns 1 if there is a next input record or a 0
if there is no next input record. The value of NR is updated.

The function index (e1,e2) takes the string value of expressions
e1 and e2 and returns the first position of where e2 occurs as a
substring in el. If e2 does not occur in e1, index returns o. For
example, index (" abc", "be")=2 and index (" abc" ,
"ac")=0.

The function length without an argument returns the number
of characters in the current input record. With an expression
argument, length (e) returns the number of characters in the
string value of e. For example, length (" abc")=3 and length
(17)=2.

The function split (e array, sep) splits the string value of
expression e into fields that are then stored in array [lJ, array

16-17

AWK

[2], ... , array [n] using the string value of sep as the field
separator. Split returns the number of fields found in e. The
function split (e, array) uses the current value of FS to indicate
the field separator. For example, after invoking n = split ($0),
a[l], a[2], ... , a[n] is the same sequence of values as $1, $2 ... ,
$NF.

The function splitf (f, el, e2 ...) produces the value of
expressions el, e2 ... in the format specified by the string
value of the expression f. The format control conventions are
those of the printf statement in the C programming language
[KR].

The function substr (string, pos) returns the suffix of string
starting at position pos. The function substr (string, pos,
length) returns the substring of string that begins at position
pos and is length characters long. If pos + length is greater
than the length of string then substr (string, pos, length) is
equivalent to substr (string, pos). For example, substr (" abc" ,
2, 1) = II b" , substr (" abc" , 2, 2) = " be" , and subtr (" abe" ,
2, 3) = II be" . Positions less than 1 are taken as 1. A negative
or zero length produces a null result.

The preferred value of sprintf and substr is string. The
preferred value of the remaining string functions is numeric.

TERMS
Various arithmetic operators are applied to primary
expressions to produce larger syntactic units called terms. All
arithmetic is done in floating point. A term has one of the
following forms:

16-18

primary expression
term binop term
unop term
incremented var
(term)

Binary Terms

In a term of the form

term 1
binop
term2

AWK

binop can be one of the five binary arithmetic operators +, -, *
(multiplication), / (division), % (modulus). The binary operator
is applied to the numeric value of the operand terml and term2,
and the result is the usual numeric value. This numeric value is
the preferred value, but it can be interpreted as a string value
(see Numeric Constants). The operators * , /, and % have
higher precedence than + and - All opdrators are left
associative.

Unary Term

In a term of the form

unop term

unop can be unary + or -. The unary operator is applied to the
numeric value of term, and the result is the usual numeric
value which is preferred. However, it can be interpreted as a
string value. Unary + and - have higher precedence than *, /,
and %.

16-19

AWK

Incremented Vars

An incremented var has one of the forms

+ + var
- - var
var + +
var --

The + + var has the value var + 1 and has the effect of var =
var + 1. Similarly, - - var has the value var - 1 and has the
effect of var = var - 1. Therefore, var + + has the same value
as var and has the effect of var = var + 1. Similarly, var - -
has the same value as var and has the effect of var = var - 1.
The preferred value of an incremented var is numeric.

Parenthesized Terms

Parentheses are used to group terms in the usual manner.

EXPRESSIONS
An awk expression is one of the following:

term
term term ...
var asgnop expression

Concatenation of Terms

In an expression of the form terml term2 ... , the string value of
the terms are concatenated. The preferred value of the
resulting expression is a string value that can be interpreted as
a numeric value. Concatenation of terms has lower precedence
than binary + and -. For example, 1+2 3=4 has the string (and
numeric) value 37.

16-20

AWK

Assignment Expressions

An assignment expression is one of the forms

var asgnop expression

where asgnop is one of the six assignment operators:

+=

*=
/=
%=

The preferred value of var is the same as that of expression.

In an expression of the form

var = expression

the numeric and string values of var become those of
expression.

var op = expression

is equivalent to

var = var op expression

where op is one of; +, -, *, /, %. The asgnops are right
associative and have the lowest precedence of any operator.
Thus, a += b *= c-2 is equivalent to the sequence of
assignments

16-21

AWK

b = b * (0-2)
a = a+2

USING awk

There are two ways in which to present your awk program of
pattern-action statements to awk for processing:

1. If the program is short (a line or two), it is often easiest to
make the program the first argument on the command line:

awk ' program' files

where "files" is an optional list of input files and
"program" is your awk program. Note that there are
single quotes around the program in order for the shell to
accept the entire string (program) as the first argument to
awk. For example, write to the shell

awk ' Ixl {print} , files

to run the awk script Ixl {print} on the input file" files" .
If no input files are specified, awk takes input from the
standard input stdin. You can also specify that input
comes from stdin by using" -" (the hyphen) as one of the
files. The pattern-action statement

awk 'program' files -

looks for input from "files" and from stdin and processes
.first from" files" and then from stdin.

16-22

AWK

2. Alternately, if your awk program is long, it is more
convenient to put the program in a separate file, awkprog,
and tell awk to fetch it from there. This is done by using
the" -f" option after the awk command as follows:

awk -f awkprog files

where" files" is an optional list of input files that may
include stdin as is indicated by a hyphen (-).

For example:

awk' BEGIN {

}

prints

hello, world

print" hello, world"
exit

on the standard output when given to the shell. Recall that the
word" BEGIN" is a special pattern indicating that the action
following in braces is run before any data is read. Words
"print" and" exit" are both discussed in later sections.

This a w k program could be run by putting

BEGIN {
prin t " hello, world"
exit
}

in a file named awkprog , and then the command

awk -f awkprog

16-23

AWK

given to the shell. This would have the same effect as the first
procedure.

INPUT: RECORDS AND FIELDS
The awk reads its input one record at a time unless changed
by you. A record is a sequence of characters from the input
ending with a newline character or with an end of file. Thus, a
record is a line of input. The awk program reads in characters
until it encounters a newline or end of file. The string of
characters, thus read, is assigned to the variable $0. You can
change the character that indicates the end of a record by
assigning a new character to the special variable RS (the
record separator). Assignment of values to variables and these
special variables such as RS are discussed later.

Once awk has read in a record, it then splits the record into
" fields" . A field is a string of characters separated by blanks
or tabs, unless you specify otherwise. You may change field
separators from blanks or tabs to whatever characters you
choose in the same way that record separators are changed.
That is, the special variable FS is assigned a different value.

As an example, let us suppose that the file" countries" contains
the area in thousands of square miles, the population in
millions, and the continent for the ten largest countries in the
world. (Figures are from 1978; Russia is placed in Asia.)

16-24

AWK

Sample Input File" countries" :

Russia 8650 262 Asia
Canada 3852 24 North America
China 3692 866 Asia
USA 3615 219 North America
Brazil 3286 116 South America
Australia 68 14 Australia
India 1269 637 Asia
Argentina 72 26 South America
Sudan 968 19 Africa
Algeria 920 18 Africa

The wide spaces are tabs in the original input and a single
blank separates North and South from America. We use this
data as the input for many of the awk programs in this guide
since it is typical of the type of material that awk is best at
processing (a mixture of words and numbers separated into
fields or columns separated by blanks and tabs).

Each of these lines has either four or five fields if blanks
and/or tabs separate the fields. This is what awk assumes
unless told otherwise. In the above example, the first record is

Russia 8650 262 Asia

When this record is read by awk, it is assigned to the variable
$0. If you want to refer to this entire record, it is done through
the variable, $0.

For example, the following input:

{print $O}

16-25

AWK

prints the entire record. Fields within a record are assigned to
the variables $1, $2, $3, and so forth; that is, the first field of
the present record is referred to as $1 by the awk program.
The second field of the present record is referred to as $2 by
the awk program. The ith field of the present record is referred
to as $i by the awk program. Thus, in the above example of the
file countries, in the first record;

$1 is equal to the string" Russia"
$2 is equal to the integer 8650
$3 is equal to the integer 262
$4 is equal to the string" Asia"
$5 is equal to the null string

... and so forth.

To print the continent, followed by the name of the country,
followed by its population, use the following awk script:

{print $4, $1, $3}

Note that awk does not require type declarations.

INPUT: FROM THE COMMAND LINE
It is possible to assign values to variables from within an awk
program. Because you do not declare types of variables, a
variable is created simply by referring to it. An example of
assigning a value to a variable is:

x=5

This statement in an awk program assigns the value 5 to the
variable x. It is also possible to assign values to variables from

16-26

AWK

the command line. This provides another way to supply input
values to awk programs.

For example

awk ' {print x }' x=5 -

will print the value 5 on the standard output. The minus sign at
the end of this command is necessary to indicate that input is
coming from stdin instead of a file called " x=5" . Similarly if
the input comes from a file named" file" , the command is

awk '{print x}' file

It is not possible to assign values to variables used in the
BEGIN section in this way.

If it is necessary to change the record separator and the field
separator, it is useful to do so from the command line as in the
following example:

awk -f awk.program RS=":" file

Here, the record separator is changed to the character"·"
This causes your program in the file" awk.program" to run
with records separated by the colon instead of the newline
character and with input coming from the file, "file". It is
similarly useful to change the field separator from the
command line.

This operation is so common that there is yet another way to
change the field separator from the command line. There is a
separate option "-Fx" that is placed directly after the
command awk. This changes the field separator from blank or
tab to the character" x" .

For example

16-27

AWK

awk -F: -f awk.program file

changes the field separator FS to the character" :". Note that
if the field separator is specifically set to a tab, (that is, with
the -F option or by making a direct assignment to FS) then
blanks are recognized by awk as separating fields. However,
even if the field separator is specifically set to a blank, tabs are
STILL recognized by awk as separating fields.

An exercise:

Using the input file (" countries" described earlier) write an
awk script that prints the name of a country followed by the
continent that it is on. Do this in such a way that continents
composed of two words (e. g., North America) are processed as
only one field and not two.

OUTPUT: PRINTING
An action may have no pattern; in this case, the action is
executed for all lines as in the simple printing program

{print}

This is one of the simplest actions performed by awk. It
prints each line of the input to the output. More useful is to
print one or more fields from each line. For instance, using the
file" countries" , that was used earlier,

awk '{ print $1, $3 }' countries

prints the name of the country and the population:

16-28

Russia 262
Canada 24
China 866
USA 219
Brazil 116
Australia 14
India 637
Argentina 14
Sudan 19
Algeria 18

AWK

Note that the use of a semicolon at the end of statements in
awk programs is optional. Awk accepts

{print $1 }

and

{print $1; }

equally and takes them to mean the same thing. If you want to
put two awk statements on the same line of an awk script,
the semicolon is necessary. For example, the following
semicolon is necessary if you want the number 5 printed:

{x=5; print x }

Parentheses are also optional with the print statement.

print $3, $2

is the same as

print ($3, $2)

Items separated by a comma in a print statement are separated
by the current output field separators (normally spaces, even
though the input is separated by tabs) when printed. The OFS
is another special variable that can be changed by you. These

16-29

AWK

special variables are summarized in a later section.

An exercise:

Using the input file, " countries" , print the continent followed
by the country followed by the population for each input record.
Then pipe the output to the UNIX operating system command
"sort" so that all countries from a given continent are printed
together.

Print also prints strings directly from your programs with the
awk script

{print" hello, world" }

from an earlier section.

An exercise:

Print a header to the output of the previous exercise that says
"Population of Largest Countries" followed by headers to the
columns that follow describing what is in that column, for
example, Country or Population.

As we have already seen, awk makes available a number of
special variables with useful values, for example, FS and RS.
We now introduce another special variable in the next example.
NR and NF are both integers that contain the number of the
present record and the number of fields in the present record,
respectively. Thus,

{print NR, NF, $O}

prints each record number and the number of fields in each
record followed by the record itself. Using this program on the

16-30

file, "countries" yields:

1 4 Russia
2 5 Canada
34 China
45 USA
55 Brazil
64 Australia
74 India
8 5 Argentina
94 Sudan
10 4 Algeria

and the program

prints

1 Russia
2 Canada
3 China
4 USA
5 Brazil
6 Australia
7 India
8 Argentina
9 Sudan
10 Algeria

8650 262 Asia
3852 24 North America
3692 866 Asia
3615 219 North America
3286 116 South America
2968 14 Australia
1269 637 Asia
1072 26 South America
968 19 Africa
920 18 Africa

{print NR, $1 }

AWK

This is an easy way to supply sequence numbers to a list.
Print, by itself, prints the input record. Use

print" "

to print the empty line.

16-31

AWK

Awk also provides the statement printf so that you can format
output as desired. Print uses the default format " % .6g" for
each variable printed.

printf format, expr, expr,

formats the expressions in the list according to the
specification in the string, format, and prints them. The format
statement is exactly that of the printf in the C library. For
example,

{ printf " % lOs % 6dO, $1, $2, $3 }

prints $1 as a string of 10 characters (right justified). The
second and third fields (6-digit numbers) make a neatly
columned table.

Russia 8650 262
Canada 3852 244
China 3692 866
USA 3615 219
Brazil 3286 116
Australia 2968 14
India 1269 637
Argentina 1072 26
Sudan 968 19
Algeria 920 18

With printf, no output separators or newlines are produced
automatically. You must add them as in this example. In the C
library version of printf, the various escape characters "\n",
" \t", "\b" (backspace) and" \r" (carriage return) are valid
with the awk printf.

There is a third way that printing can occur on standard output
when a pattern is specified but there is no action to go with it.

16-32

AWK

In this case, the entire record $0 is printed. For example, the
program

Ixl

prints any record that contains the character" x" .

There are two special variables that go with printing, OFS and
ORS. These are by default set to blank and the newline
character, respectively. The variable OFS is printed on the
standard output when a comma occurs in a print statement
such as

{ x=" hello" ; y=" world"
print x,y
}

which prints

hello world

However, without the comma in the print statement as

{ x=" hello" ; y=" world"
print x y
}

you get

helloworld

To get a comma on the output, you can either insert it in the
print statement as in this case

16-33

AWK

{ x=" hello" ; y=" world"
print x" ," y
}

or you can change OFS in a BEGIN section as in

BEGIN {OFS=" , " }
{ x=" hello" ; y=" world"
print x, y
}

both of these last two scripts yields

hello, world

Note that the output field separator is not used when $0 is
printed.

OUTPUT: TO DIFFERENT FILES
The UNIX operating system shell allows you to redirect
standard output to a file. The awk program also lets you
direct output to many different files from within your awk
program. For example, with our input file" countries", we
want to print all the data from countries of Asia in a file called
" ASIA" , all the data from countries in Africa in a file called
" AFRICA" , and so forth. This is done with the following awk
program:

16-34

{ if ($4 == " Asia") print> " ASIA"

}

if ($4 == "Europe") print> "EUROPE"
if ($4 == " North") print> " NORTH_AMERICA"
if ($4 == " South") print> " SOUTH_AMERICA"
if ($4 == " Australia") print> " AUSTRALIA"
if ($4 == " Africa") print> " AFRICA"

AWK

The flow of control statements (for example, "if") are
discussed later.

In general, you may direct output into a file after a print or a
printf statement by using a statement of the form

prin t > " FILE"

where FILE is the name of the file receiving the data, and the
print statement may have any legal arguments to it.

Notice that the file names are quoted. Without quotes, the file
names are treated as uninitialized variables and all output then
goesl to the same file.

If > is replaced by», output is appended to the file rather
than overwriting it.

Users should also note that there is an upper limit to the
number of files that are written in this way. At present it is
ten.

16-35

AWK

OUTPUT: TO PIPES
It is also possible to direct printing into a pipe instead of a file.
For example,

{

}
if ($2 ==" XX") print I" mail mary"

where" mary" is someone's login name, any record is sent
(with the second field equal to "XX") to the user, mary, as
mail. Awk waits until the entire program is run before it
executes the command that was piped to, in this case the
"mail" command.

For example:
{
print $11" sort"
}

takes the first field of each input record, sorts these fields, and
then prints them. The command in parentheses is any UNIX
opera ting system command.

An exercise:

Write an awk script that uses the input file to

• List countries that were used previously

• Print the name of the countries

16-36

AWK

• Print the population of each country

• Sort the data so that countries with the largest
population appear first

• Mail the resulting list to yourself.

Another example of using a pipe for output is the following
idiom which guarantees that its output always goes to your
terminal:

print ... 1" cat -u > /dev/tty"

Only one output statement to a pipe is permitted in an awk
program. In all output statements involving redirection of
output, the files or pipes are identified by their names but they
are created and opened only once in the entire run.

COMMENTS
Comments are placed in awk programs; they begin with the
character # and end with the end of the line as in

print x, Y # this is a comment

16-37

AWK

PATTERNS
A pattern in front of an action acts as a selector that
determines if the action is to be executed. A variety of
expressions are used as patterns:

• Regular expressions

• Arithmetic relational expressions

• String valued expressions

• Combinations of these.

BEGIN and END

The special pattern, BEGIN, matches the beginning of the input
before the first record is read. The pattern, END, matches the
end of the input after the last line is processed. BEGIN and
END thus provide a way to gain control before and after
processing for initialization and wrapping up.

An example:

As you have seen, you can use BEGIN to put column headings
on the output

BEGIN {print" Country" , " Area" , "Population" , "Continent"
{print}

which produces

Country Area Population Continent

16-38

AWK

Russia 8650 262 Asia
Canada 3852 24 North America
China 3692 866 Asia
USA 3615 219 North America
Brazil 3286 116 South America
Australia 2968 14 Australia
India 1269 637 Asia
Argentina 1072 26South America
Sudan 968 19 Africa
Algeria 920 18 Africa

Formatting is not very good here; printf would do a better job
and is usually mandatory if you really care about appearance.

Recall also, that the BEG IN section is a good place to change
special variables such as FS or RS.

Example:

BEGIN { FS=" "
print" Countries" , " Area" , " Population" , " Continent"
}
{print}

END {print" The number of records is" , NR}

In this program, FS is set to a tab in the BEG IN section and as
a result all records (in the file countries) have exactly four
fields.

Note that if BEGIN is present it is the first pattern; END is
the last if it is used.

16-39

AWK

Relational Expressions

An awk pattern is any expression involving comparisons
between strings of characters or numbers. For example, if you
want to print only countries with more than 100 million
population, use

$3 >100

This tiny awk program is a pattern without an action so it
prints each line whose third field is greater than 100 as follows:

Russia 8650 262 Asia
China 3692 866 Asia
USA 3615 219 North America
Brazil 3286 116 South America
India 1269 637 Asia

To print the names of the countries that are in Asia, type

$4 == "Asia" {print $1}

which produces

Russia
China
India

The conditions tested are <, <=,

16-40

, 1=, >=, and >. In such

AWK

relational tests if both operands are numeric, a numerical
comparison is made. Otherwise, the operands are compared as
strings. Thus,

$1 >=" S"

selects lines that begin with S, T, U, and so forth which in this
case is

USA 3615 219 North America
Sudan 968 19 Africa

In the absence of other information, fields are treated as
strings, so the program

$1 == $4

compares the first and fourth fields as strings of characters
and prints the single line

Australia 2968 14 Australia

If fields appear as numbers, the comparisons are done
numerically.

16-41

AWK

Regular Expressions

Awk provides more powerful capabilities for searching for
strings of characters than were illustrated in the previous
section. These are regular expressions. The simplest regular
expression is a literal string of characters enclosed in slashes.

/ Asia/

This is a complete awk program that prints all lines which
contain any occurrence of the name" Asia" . If a line contains
"Asia" as part of a larger word like "Asiatic", it is also
printed (but there are no such words in the countries file.)

A w k regular expressions include

• Regular expression forms found in the text editor

• ed and the pattern finder

• grep in which certain characters have special meanings.

For example, we could print all lines that begin with A with

or all lines that begin with A, B, or C with

16-42

AWK

or all lines that end with "ia" with

lia$1

In general, the circumflex () indicates the beginning of a line.
The dollar sign ($) indicates the end of the line and characters
enclosed in brackets ,{}, match anyone of the characters
enclosed. In addition, awk allows parentheses for grouping, the
pipe (I) for alternatives, + for" one or more" occurrences, and
? for" zero or one" occurrences. For example,

Ix I yl {print}

prints all records that contain either an "x" or a "y" .

lax+bl {print}

prints all records that contain an "a" followed by one or more
"x's" followed by a "b". For example, axb, Paxxxxxxxb,
QaxxbR.

lax?bl {print}

prints all records that contain an "a" followed by zero or one
"x" followed by a II b". For example: ab, axb, yaxbPPP, CabD.

The two characters "." and" *" have the same meaning as they
have in ed: namely, "." can stand for any character and" *"

16-43

AWK

means zero or more occurrences of the character preceding it.
For example,

la.bl

matches any record that contains an "a" followed by any
character followed by a "b" . That is, the record must contain
an "a" and a "b" separated by exactly one character. For
example, la.bl matches axb, aPb and xxxxaXbxx, but NOT ab,
axxb.

lab*cl

matches a record that contains an II an followed by zero or more
"b" 's followed by a" c" . For example, it matches

ac
abc
pqrabbbbbbbbbbc901

Just as in ed, it is possible to turn off the special meaning of
these metacharacters such as "A" and" *" by preceding these
characters with a backslash. An example of this is the pattern

11.*1 I

which matches any string of characters enclosed in slashes.

One can also specify that any field or variable matches a
regular expression (or does not match it) by using the operators

16-44

AWK

or !'. For example, with the input file countries as before, the
program

$1 - lia$1 {print $1}

prints all countries whose name ends in " ia":

Russia
Australia
India
Algeria

that is indeed different from lines which end in " ia" .

Combinations of Patterns

A pattern is made up of similar patterns combined with the
operators II (OR), && (AND), ! (NOT), and parentheses. For
example,

$2 >= 3000 && $3 >=100

selects lines where both area AND population are large. For
example,

Russia
China
USA
Brazil

while

8650 262
3692 866
3615 219
3286 116

Asia
Asia
North America
South America

16-45

AWK

$4 == "Asia" II $4 == " Africa"

selects lines with Asia or Africa as the fourth field. An
alternate way to write this last expression is with a regular
expression:

$1 - /A(Asia I Africa»$/

&& and I I guarantee that their operands are evaluated from
left to right; evaluation stops as soon as truth or falsehood is
determined.

Pattern Ranges

The" pattern" that selects an action may also consist of two
patterns separated by a comma as in

patternl, pattern2 { ... }

In this case, the action is performed for each line between an
occurrence of patternl and the next occurrence of pattern2
(inclusive). As an example with no action

/ Canada/ ,IBrazil!

prints all lines between the one containing" Canada" and the
line containing" Brazil". For example,

16-46

Canada
China
USA
Brazil

while

3852
3692
3615
3286

24
866
219
116

North America
Asia
North America
South America

NR == 2, NR == 5 { ... }

AWK

does the action for lines 2 through 5 of the input. Different
types of patterns are mixed as in

/Canada/, $4 == " Africa"

and prints all lines from the first line containing" Canada" up
to and including the next record whose fourth field is " Africa" .

Users should note that patterns in this form occur OUTSIDE of
the action parts of the awk programs (outside of the braces
that define awk actions). If you need to check patterns inside
an awk action (inside the braces), use a flow of control
statement such as an "if" statement or a "while" statement.
Flow of control statements are discussed in the part" BUILT
IN FUNCTIONS" .

16-47

AWK

ACTIONS
An awk action is a sequence of action statements separated by
newlines or semicolons. These action statements do a variety of
bookkeeping and string manipulating tasks.

Variables, Expressions, and Assignments

The awk provides the ability to do arithmetic and to store the
results in variables for later use in the program. However,
variables can also store strings of characters. You cannot do
arithmetic on character strings, but you can stick them
together and pull them apart as shown. As an example,
consider printing the population density for each country in the
file countries.

{print $1, (1000000 * $3)/($2 * 1000) }

(Recall that in this file the population is in millions and the
area in thousands.) The result is population density in people
per square mile.

Russia 30.289
Canada 6.23053
China 234.561
USA 60.5809
Brazil 35.3013
Australia 4.71698
India 501.97
Argentina 24.2537
Sudan 19.6281
Algeria 19.5652

The formatting is bad; so using printf instead gives the
program

16-48

AWK

{printf" % lOs % 6.1fO, $1, (1000000 * $3)/($2 * 1000) }

and the output

Russia 30.3
Canada 6.2

China 234.6
USA 60.6

Brazil 35.3
Australia 4.7

India 502.0
Argentina 24.3

Sudan 19.6
Algeria 19.6

Arithmetic is done internally in floating point. The arithmetic
operators are +. -, *, 1 and % (mod or remainder).

To compute the total population and number of countries from
Asia, we could write

{ pop = pop + $3; n = n + 1 } 1 Asial
END {print" total population of" , n, " Asian countries is" , pop}

which produces total population of three Asian countries is
1765.

Actually, no experienced programmer would write

16-49

AWK

{pop = pop + $3; n = n + 1 }

since both assignments are written more clearly and concisely.
The better way is

{pop += $3; ++n }

Indeed, these operators, ++, --, -=, /=, * =, +=, and % = are
available in awk as they are in C. Operator x += y has the
same effect as x = x + y but += is shorter and runs faster.
The same is true of the ++ operator; it adds one to the value of
a variable. The increment operators ++ and -- (as in C) are
used as prefix or as postfix operators. These operators are also
used in expressions.

Initialization of Variables

In the previous example, we did not initialize pop nor n; yet,
everything worked properly. This is because (by default)
variables are initialized to the null string which has a
numerical value of O. This eliminates the need for most
initialization of variables in BEGIN sections. We can use
default initialization to advantage in this program which finds
the country with the largest population.

maxpop < $3 {
maxpop = $3
country = $1
}

END {print country, maxpop}

16-50

AWK

which produces

China 866

Field Variables

Fields in awk share essentially all of the properties of
variables. They are used in arithmetic and string operations
and may be assigned to and initialized to the null string. Thus,
divide the second field by 1000 to convert the area to millions of
square miles by

{ $2 1= 1000; print}

or process two fields into a third with

BEGIN {FS = " " }
{ $4 = 1000 * $3 I $2; print}

or assign strings to a field as in

IUSAI { $1 = "United States" ; print}

which replaces USA by United States and prints the affected
line

16-51

AWK

United States 3615 219 North America

Fields are accessed by expressions; thus, $NF is the last field
and $(NF-l) is the second to the last. Note that the
parentheses are needed since $NF -1 is 1 less than the values in
the last field.

String Concatenation

Strings are concatenated by writing them one after the other as
in the following example:

{ x = "hello"
x = x " , world"
print x

}

prints the usual

hello, world

With input from the file" countries" , the following program:

I AI { s = s" " $1 }
END { print s }

prints

Australia Argentina Algeria

16-52

AWK

Variables, string expressions, and numeric expressions may
appear in concatenations; the numeric expressions are treated
as strings in this case.

Special Variables

Some variables in awk have special meanings. These are
detailed here and the complete list given.

NR

NF

FS

RS

$i

$0

OFS

ORS

OFMT

FILENAME

Number of the current record.

Number of fields in the current record.

Input field separator, by default it is set
to a blank or tab.

Input record separator, by default it is set
to the newline character.

The ith input field of the current record.

The entire current input record.

Output field separator, by default it is set
to a blank.

Output record separator, by default it is
set to the newline character.

The format for printing numbers, with
the print statement, by default is " % .6g" .

The name of the input file currently being
read. This is useful because awk
commands are typically of the form

awk -f program filel file2 filea ...

16-53

AWK

Type

Variables (and fields) take on numeric or string values
according to context. For example, in

pop += $3

pop is presumably a number, while in

country = $1

country is a string. In

maxpop < $3

the type of maxpop depends on the data found in $3. It is
determined when the program is run.

In general, each variable and field is potentially a string or a
number or both at any time. When a variable is set by the
assignment

v = expr

its type is set to that of expr. (Assignment also includes +=,
++, -=, and so forth.) An arithmetic expression is of the type,
" number" ; a concatenation of strings is of type" string" . If the
assignment is a simple copy as in

16-54

AWK

vI = v2

then the type of vI becomes that of v2.

In comparisons, if both operands are numeric, the comparison
is made numerically. Otherwise, operands are coerced to strings
if necessary and the comparison is made on strings.

The type of any expression is coerced to numeric by subterfuges
such as

expr + 0

and to string by

expr ""

This last expression is string concatenated with the null string.

Arrays

As well as ordinary variables, a w k provides I-dimensional
arrays. Array elements are not declared; they spring into
existence by being mentioned. Subscripts may have any non
null value including non-numeric strings.

As an example of a conventional numeric subscript, the
statement

16-55

AWK

x[NR] = $0

assigns the current input line to the NRth element of the array
x. In fact, it is possible in principle (though perhaps slow) to
process the entire input in a random order with the following
awk program:

{ x[NR] = $0 }
END { ... program ... }

The first line of this program records each input line into the
array x. In particular, the following program

{ x[NR] = $1}

(when run on the file countries) produces an array of elements
with

x[l] = " Russia"
x[2] = " Canada"
x[3] = " China"

... and so forth.

Arrays are also indexed by non-numeric values that give awk a
capability rather like the associative memory of Snobol tables.
For example, we can write

16-56

/ Asia/ {pOp[" Asia"] += $3 }
/ Africa/ {pop [Africa] += $3 }

AWK

END print II Asia=" pop[" Asia"], " Africa=" pop[" Africa"] }

which produces

Asia=1765 Africa=37

Notice the concatenation. Also, any expression can be used as a
subscript in an array reference. Thus,

area[$l] = $2

uses the first field of a line (as a string) to index the array
area.

BUILT IN FUNCTIONS

The function

length

is provided by awk to compute the length of a string of
characters. The following program prints each record preceded
by its length:

16-57

AWK

{print length, $0 }

In this case (the variable) length means length($O), the length
of the present record. In general, length(x) will return the
length of x as a string.

Example:

With input from the file countries, the following awk program
will print the longest country name:

length($l) > max {max = length($l); name = $1 }
END {print name}

The function

split

split (s, array) assigns the fields of the string" sIt to successive
elements of the array, " array" .

For example;

split(" Now is the time" , w)

assigns the value" Now" to w[l], "is" to w[2], "the" to w[3]
and" time" to w[4]. All other elements of the array w[], if any,
are set to the null string. It is possible to have a character
other than a blank as the separator for the elements of w. For
this, use split with three elements.

16-58

AWK

n = split(s, array, sep)

This splits the string s into array[l], ... , array[n]. The number
of elements found is returned as the value of split. If the sep
argument is present, its first character is used as the field
separator; otherwise, FS is used. This is useful if in the middle
of an awk script, it is necessary to change the record separator
for one record.

Also provided by the awk are the

Math Functions

sqrt,
log,
exp,
into

They provide the square root function, the base e logarithm
function, exponential and integral part functions. This last
function returns the greatest integer less than or equal to its
argument. These functions are the same as those of the C
library (int corresponds to the libc floor function) and so they
have the same return on error as those in libc. (See UNIX
System V User's Manual.)

The substring function

substr

extracts portions of strings. For example, substr(s,m,n)
produces the substring of s that begins at position m and is at
most n characters long. If the third argument (n in this case) is
omitted, the substring goes to the end of s. For example, we

16-59

AWK

could abbreviate the country names in the file countries by

{ $1 = substr($l, 1, 3); print}

which produces

Rus 8650 262 Asia
Can 3852 24 North America
Chi 3692 866 Asia
USA 3615 219 North America
Bra 3286 116 South America
Aus 2968 14 ,Australia
Ind 1269 637 Asia
Arg 1072 26 South America
Sud 968 19 Africa
Alg 920 18 Africa

If s is a number, substr uses its printed image;
substr(123456789,3,4) =3456.

The function

index:

index (sl,s2) returns the leftmost position where the string s2
occurs in sl or zero if s2 does not occur in s1.

The function

sprintf

16-60

AWK

formats expressions as the printf statement does but will
assign the resulting expression to a variable instead of sending
the results to stdout. For example,

x = sprintf(" %10s %6d ", $1, $2)

sets x to the string produced by formatting the values of $1 and
$2. The x is then used in subsequent computations.

The function

getline

immediately reads the next input record. Fields NR and $0 are
all set but control is left at exactly the same spot in the awk
program. Getline returns 0 for the end of file and a 1 for a
normal record.

FLOW OF CONTROL
The awk provides the basic flow of control statements

• if-else

• while/fR

• for

with statement grouping as in C language.

The if statement is used as follows:

16-61

AWK

if (condition) statementl else statement2

The condition is evaluated; and if it is true, statementl is
executed; otherwise, statement2 is executed. The else part is
optional. Several statements enclosed in braces ({,}) are treated
as a single statement. Rewriting the maximum population
computation from the pattern section with an if statement
results in

{ if (maxpop < $3) {
maxpop= $3
country= $1
} }

END { print country, maxpop }

There is also a while statement in awk.

while (condition) statement

The condition is evaluated; if it is true, the statement is
executed. The condition is evaluated again, and if true, the
statement is executed. The cycle repeats as long as the
condition is true. For example, the following prints all input
fields one per line:

16-62

{ i = 1
while (i <= NF) {

pint $i
++i
}

}

AWK

Another example is the Euclidean algorithm for finding the
greatest common divisor of $1 and $2:

{printf" the greatest common divisor of" $1 "and" , $2, "is"
while ($1 != $2) {

if ($1 > $2) $1 = $1 - $2

printf $1 " 0
}

else $2 = $2 - $1
}

The for statement is like that of C.

for (expression1 ; condition; expression2) statement

has the same effect as

expression1
while (condition) {

statement
expression2
}

16-63

AWK

so

{ for (i=l ; i <= NF; i++)
print $i

}

is another awk program that prints all input fields one per
line.

This is an alternate form of the or statement that is suited for
accessing the elements of an associative array as is in awk.

for (i in array) statement

executes statement with the variable i set in turn to each
subscript of array. The subscripts are each accessed once but in
random order. Chaos will ensue if the variable i is altered or if
any new elements are created within the loop. For example,
you could use the" for" statement to print the irecord number
followed by the record of all input records after the main
program is executed.

{ x[NR] = $0 }
END { for(i in x) { print i, x[i] }

A more practical example is the following use of strings to
index arrays to add the populations of countries by continents:

16-64

BEGIN {FS=""}
{population[$4] =+ $3}

END {for(i in population)
print i, population[i]

}

AWK

In this program, the body of the for loop is executed for i
equal to the string "Asia", then for i equal to the string
"North America" , and so forth until all the possible values of i
are exhausted; that is, until all the strings of names of
countries are used. Note, however, that the order the loops are
executed is not specified. If the loop associated with" Canada"
is executed before the loop associated with the string" Russia" ,
such 'a program produces

South America 26
Africa 16
Asia 637
Australia 14
North America 219

Note that the expression in the condition part of an if, while,
or for statement can include relational operators like <, <=, >,
>=, ==, and !=; it can include regular expressions that are used
with the "matching" operators - and r; it can include the
logical operators Il &&, and !; and it can also include
parentheses for grouping.

The break statement (when it occurs within a while or for
loop) causes an immediate exit from the while or for loop.

The continue statement (when it occurs within a while or for
loop) causes the next iteration of the loop to begin.

16-65

AWK

The next statement in an awk program causes awk to skip
immediately to the next record and begin scanning patterns
from the top of the program. (Note the difference between
getline and next. Getline does not skip to the top of the awk
program.)

If an exit statement occurs in the BEGIN section of an awk
program, the program stops executing and the END section is
not executed (if there is one).

An exit that occurs in the main body of the awk program
causes execution of the main body of the a w k program to stop.
No more records are read, and the END section is executed.

An exit in the END section causes execution to terminate at
that point.

REPORT GENERATION
The flow of control statements in the last section are especially
useful when awk is used as a report generator. Awk is useful
for tabulating, summarizing, and formatting information. We
have seen an example of awk tabulating in the last section
with the tabulation of populations. Here is another example of
this. Suppose you have a file" prog.usage" that contains lines
of three fields; name, program, and usage:

Smith draw 3
Brown eqn 1
Jones nroff 4
Smith nroff 1
Jones spell 5
Brown spell 9
Smith draw 6

16-66

AWK

The first line indicates that Smith used the draw program
three times. If you want to create a program that has the total
usage of each program along with the names in alphabetical
order and the total usage, use the following program, called
list. a:

{ use[$1 "" $2] += $3}
END {for (np in use)

print np " " use[np] I" sort +0 +2nr" }

This program produces the following output when used on the
input file, prog.usage.

Brown eqn 1
Brown spell 9
Jones nroff 4
Jones spell 5
Smith draw 9
Smith nroff 1

If you would like to format the previous output so that each
name is printed only once, pipe the output of the previous awk
program into the following program, called" format.a":

{ if ($1 != prev) {

}

print $1":"
prev = $1
}

prin t" " $2" " $3

The variable prev prints the unique values of the first field.

16-67

AWK

The command

awk -f list.a prog.usage I awk -f format. a

gives the output

Brown:
eqn 1
spell 9

Jones:
nroff 4
spell 5

Smith:
draw 9
nroff 1

It is often useful to combine different awk scripts and other
shell commands such as sort as was done in the last script.

COOPERATION WITH THE SHELL
Normally, an awk program is either contained in a file or
enclosed within single quotes as in

awk '{print $1}' ...

Awk uses many of the same characters that the shell does, such
as $ and the double quote. Surrounding the program by , ... '
ensures that the shell passes the awk program to awk intact.

16-68

AWK

Consider writing an awk program to print the nth field, where
n is a parameter determined when the program is run. That is,
we want a program called field such that

field n

runs the a w k program

awk ' {print $n}'

How does the value of n get into the awk program?

There are several ways to do this. One is to define field as
follows:

awk ' {print $'$1'}'

Spaces are critical here: as written there is only one argument,
even though there are two sets of quotes. The $1 is outside the
quotes, visible to the shell, and therefore substituted properly
when field is invoked.

Another way to do this job relies on the fact that the shell
substitutes for $ parameters within double quotes.

awk" {print $1}"

16-69

AWK

Here the trick is to protect the first $ with a \ \; the $1 is again
replaced by the number when field is invoked.

This kind of trickery is extended in remarkable ways, but it is
hard to understand quickly.

MISCELLANEOUS HINTS
You can simulate the effect of multidimensional arrays by
creating your own subscripts. For example,

for (i = 1; i <= 10; i ++)
for (j = 1; j <= 10; j ++)

mult[i "," j] = ...

creates an array whose subscripts have the form i,j; that is, 1,1;
1,2; and so forth, and thus simulates a 2-dimensional array.

16-70

Chapter 17

THE LINK EDITOR·

PAGE

GENERAL... 17-1

USING THE LINK EDITOR. 17-4

LINK EDITOR COMMAND LANGUAGE.. 17-10

NOTES AND SPECIAL CONSIDERATIONS................ 17-29

ERROR MESSAGES. .. 17-39

SYNTAX DIAGRAM FOR INPUT DIRECTIVES............ 17-50

Chapter 17

THE LINK EDITOR

GENERAL
The link editor [ld(I)*] is a UNIX system support tool used on
the VAXt processor and UNIX PC. The ld creates executable
object files by combining object files, performing relocation,
and resolving external references. The ld also processes
symbolic debugging information. The inputs to ld are
relocatable object files produced either by the compiler [cc(I)],
the assembler [as(I)], or by a previous ld run. The ld combines
these object files to form either a relocatable or an absolute
(i.e., executable) object file.

The ld also supports a command language that allows users to
control the ld process with great flexibility and precision. The
UNIX system ld shares most of its source with other Ids in-use
on other processors and operating systems. Therefore, the
UNIX system ld provides many powerful features that mayor
may not be useful on a UNIX system.

Although the link edit process is controlled in detail through
use of the ld command language described later, most users do
not require this degree of flexibility, and the manual page is
sufficient instruction in the use of ld.

The command language (described later) supports the ability to

* Part 1 of the UNIX system User Manual

t Trademark of Digital Equipment Corporation

17-1

LINK EDITOR

• Specify the memory configuration of the machine

• Combine object file sections in particular fashions

• Cause the files to be bound to specific addresses or within
specific portions of memory

• Define or redefine global symbols at link edit time.

There are several concepts and definitions with which you
should familiarize yourself before proceeding further.

Memory Configuration

The virtual memory of the target machine is, for purposes of
allocation, partitioned into configured and unconfigured
memory. The default condition is to treat all memory as
configured. It is common with microprocessor applications,
however, to have different types of memory at different
addresses. For example, an application might have 3K of
PROM (Programmable Read-Only Memory) beginning at
address 0, and 8K of RAM (Read-Only Memory) starting at
20K. Addresses in the range 3K to 20K -1 are then not
configured. Unconfigured memory is treated as "reserved" or
"unusable" by the ld. Nothing can ever be linked into
unconfigured memory. Thus, specifying a certain memory
range to be unconfigured is one way of marking the addresses
(in that range) "illegal" or "nonexistent" with respect to the
linking process. Memory configurations other than the default
must be explicitly specified by you (the user).

Unless otherwise specified, all discussions in this document of
memory, addresses, etc. are with respect to the configured
sections of the address space.

17-2

LINK EDITOR

Section

A section of an object file is the smallest unit of relocation and
must be a contiguous block of memory. A section is identified
by a starting address and a size. Information describing all
the sections in a file is stored in "section headers" at the start
of the file. Sections from input files are combined to form
output sections that contain executable text, data, or a mixture
of both. Although there may be "holes" or gaps between input
sections and between output sections, storage is allocated
contiguously within each output section and may not overlap a
hole in memory.

Addresses

The physical address of a section or symbol is the relative
offset from address zero of the address space. The physical
address of an object is not necessarily the location at which it is
placed when the process is executed. For example, on a system
with paging, the address is with respect to address zero of the
virtual space, and the system performs another address
translation.

Binding

It is often necessary to have a section begin at a specific,
predefined address in the address space. The process of
specifying this starting address is called "binding", and the
section in question is said to be "bound to" or "bound at" the
required address. While binding is most commonly relevant to
output sections, it is also possible to bind global symbols with
an assignment statement in the ld command language.

17-3

LINK EDITOR

Object File

Object files are produced both by the assembler (typically as a
result of calling the compiler) and by the ld. The ld accepts
relocatable object files as input and produces an output object
file that mayor may not be relocatable. Under certain special
circumstances, the input object files given to the ld can also be
absolute files.

Files produced from the compiler/assembler always contain
three sections, called . text, . data, and .bss. The .text section
contains the instruction text (for example, executable
instructions), .data contains initialized data variables, and .bss
contains uninitialized data variables. For example, if a C
program contained the global (Le., not inside a function)
declarations

int i = 100;
char abc[200];

and the assignment

abc[i] = 0;

then compiled code from the C assignment is stored in . text.
The variable i is located in . data, and abc is located in .bss.
There is an exception to the rule however; both initialized and
uninitialized statics are allocated into the .data section. The
value of an uninitialized static in a .data section is zero.

USING THE LINK EDITOR

The ld is called by the command

ld [options] filenamel filename2 ...

17-4

LINK EDITOR

Files passed to the ld must be object files, archive libraries
containing object files, or text source files containing ld
directives. The ld uses the "magic number" (in the first two
bytes of the file) to determine which type of file is encountered.
If the ld does not recognize the magic number, it assumes the
file is a text file containing ld directives and attempts to parse
it.

Input object files and archive libraries of object files are linked
together to form an output object file. If there are no
unresolved references, this file is executable on the target
machine. An input file containing directives is referred to as
an ifile in this document. Object files have the form "name.o"
throughout the examples in this chapter. The names of actual
input object files need not follow this convention.

If you merely want to link the object files file1.o and file2.o, the
following command is sufficient:

Id file1.o file2.o

No directives to the ld are needed. If no errors are encountered
during the link edit, the output is left on the default file a.out.
The sections of the input files are combined in order. That is,
if file1.o and file2.o each contain the standard sections . text,
. data, and .bss, the output object file also contains these three
sections. The output .text section is a concatenation of .text
from file1.o and . text from file2.o. The . data and . bss sections
are formed similarly. The output .text section is then bound at
an address appropriate for the target machine (OX80000 on the
UNIX PC). The output .data and .bss sections are link edited
together into contiguous addresses (the particular address
depending on the particular processor).

Instead of entering the names of files to be link edited (as well
as ld options on the ld command line), this information can be
placed into an ifile, and just the ifile passed to Id. For example,
if you are going to frequently link the object files file1.o, file2.o,

17-5

LINK EDITOR

and file3.o with the same options f1 and f2, then enter the
command

ld -f1 -f2 file1.o file2.o file3.o

each time it is necessary to invoke ld. Alternatively, an ifile
containing the statements

-£1
-f2
file1.o
file2.o
file3.o

could be created, and then the following UNIX system
command would serve:

ld ifilename

Note that it is perfectly permissible to specify some of the
object files to be link edited in the ifile and others on the
command line-as well as some options in the ifile and others
on the command line. Input object files are link edited in the
order they are encountered, whether this occurs on the
command line or in an ifile. As an example, if a command line
were

ld file1.o ifile file2.o

and the ifile contained

file3.o
file4.o

then the order of link editing would be: file1.o, file3.o, file4.o,

17-6

LINK EDITOR

and file2.o. Note from this example that an ifile is read and
processed immediately upon being encountered in the command
line.

Options may be interspersed with file names both on the
command line and in an ifile. The ordering of options is not
significant, except for the "1" and "L" options for specifying
libraries. The "1" option is a shorthand notation for specifying
an archive library, and an archive library is just a collection of
object files. Thus, as is the case with any object file, libraries
are searched as they are encountered. The "L" specifies an
alternative directory for searching for libraries. Therefore, to
be effective, a "-L" option must appear before any "-1" options.

All options for ld must be preceded by a hyphen (-) whether in
the ifile or on the ld command line. Options that have an
argument (except for the "-1" and "-L" options) are separated
from the argument by white space (blanks or tabs). The
following options (in alphabetical order) are supported, though
not all options are available on each processor.

-e epsym Defines the primary entry point of the output file to
be the symbol given by the argument "ss". See
"Changing the Entry Point" in "NOTES AND
SPECIAL CONSIDERATIONS" for a discussion of
how the option is used.

-f fill Sets the default fill value. This value is used to fill
"holes" formed within output sections. Also, it is
used to initialize input .bss sections when they are
combined with other non-.bss input sections. The
argument "bb" is a 2-byte constant. If the "-f"
option is not used, the default fill value is zero.

-Ix Specifies a UNIX system archive library file as ld
input. The argument is a character string (less than
10 characters) immediately following the "-1"
without any intervening white space. As an
example, -lc refers to libc.a, -lC to libC.a, etc. The

17-7

LINK EDITOR

given archive library must contain valid object files
as its members.

-m Produces a map or listing of the input/output
sections (including "holes") on the standard output.

-ooutfile
Names the output object file. The argument "name"
is the name of the UNIX system file to be used as
the output file. The default output object file name
is "a.out". The "name" can be a full or partial UNIX
system pathname.

-r Retains relocation entries in the output object file.
Relocation entries must be saved if the output file is
to be used as an input file in a subsequent ld call. If
the -r option is used, unresolved references do not
prevent the creation of an output object file.

-s Strips line number entries and symbol table
information from the output object file. Relocation
entries ("-r" option) are meaningless without the
symbol table, hence use of "-s" precludes the use of
"_r". All symbols are stripped, including global and
undefined symbols.

-u symname
Introduces an unresolved external symbol into the
output file's symbol table. The argument "sym" is
the name of the symbol. This is useful for linking
entirely from a library, since initially the symbol
table is empty and an unresolved reference is needed
to force the linking of an initial routine from the
library.

-x Does not preserve any local (nonglobal) symbols in
the output symbol table; enter external and static
symbols only. This option saves some space in the
output file.

17-8

-L dir

-N

-v

LINK EDITOR

Changes the algorithm for searching for libraries to
look in dir before looking in the default location.
This option is for ld libraries as the -I option is for
compiler #include files. The "-L" option is useful for
finding libraries that are not in the standard library
directory. To be useful, this 'option must appear
before the "-1" option.

Places the data section immediately following the
text section in memory and stores the magic number
0407 in the UNIX system header. This prevents the
text from being shared (the default).

Prints on the standard error output a "version id"
identifying the ld being run.

- VS num Takes num as a decimal version number identifying
the a.out file that is produced. The version stamp is
stored in the UNIX system header.

-n Separate text data/bss, shared text not writable.

17-9

LINK EDITOR

LINK EDITOR COMMAND LANGUAGE

Expressions

Expressions may contain global symbols, constants, and most of
the basic C language operators. (See Figure 17-2, "SYNTAX
DIAGRAM FOR INPUT DIRECTIVES".) Constants are as in
C with a number recognized as decimal unless preceded with
"0" for octal or "Ox" for hexadecimal. All numbers are treated
as long ints. Symbol names may contain uppercase or
lowercase letters, digits, and the underscore ('_'). Symbols
within an expression have the value of the address of the
symbol only. The ld does not do symbol table lookup to find the
contents of a symbol, the dimensionality of an array, structure
elements declared in a C program, etc.

The ld uses a lex-generated input scanner to identify symbols,
numbers, operators, etc. The current scanner design makes the
following names reserved and unavailable as symbol names or
section names:

ALIGN DSECT MEMORY PRY SECTIONS
ASSIGN GROUP NOLOAD RANGE SPARE
BLOCK LENGTH ORIGIN REGION TV

align group length origin spare
assign I 0 phy
block len org range

The operators that are supported, in order of precedence from
high to low, are shown in Figure 17-1:

17-10

LINK EDITOR

symbol

!--(UNARY Minus)
* / %

+ -(BINARY Minus)
» «
-- != > < <= >=
&
I
&&
II
= += -- *= /=

Figure 17-1. Symbols and Functions of Operators

The above operators have the same meaning as in the C
language. Opera tors on the same line have the same
precedence.

Assignment Statements

External symbols may be defined and assigned addresses via
the assignment statement. The syntax of the assignment
statement is

symbol = expression;

or

symbol op= expression;

17-11

LINK EDITOR

where op is one of the operators +, -, *, or /.

Assignment statements must be terminated by a semicolon.

All assignment statements (with the exception of the one case
described in the following paragraph) are evaluated after
allocation has been performed. This occurs after all input-file
defined symbols are appropriately relocated but before the
actual relocation of the text and data itself. Therefore, if an
assignment statement expression contains any symbol name,
the address used for that symbol in the evaluation of the
expression reflects the symbol address in the output object file.
References within text and data (to symbols given a value
through an assignment statement) access this latest assigned
value. Assignment statements are processed in the same order
in which they are input to ld.

Assignment statements are normally placed outside the scope
of section-definition directive (see "Section Definition
Directive" under "LINK EDITOR COMMAND LANGUAGE").
However, there exists a special symbol, called ".", that can
occur only within a section-definition directive. This symbol
refers to the current R address of the ld's location counter.
Thus, assignment expressions involving ". " are evaluated during
the allocation phase of ld. Assigning a value to the "." symbol
within a section-definition directive increments/resets ld's
location counter and can create "holes" within the section, as
described in "Section Definition Directives". Assigning the
value of the "." symbol to a conventional symbol permits the
final allocated address (of a particular point within the link
edi t run) to be saved.

Align is provided as a shorthand notation to allow alignment of
a symbol to an n-byte boundary within an output section, where
n is a power of 2. For exam.pIe, the expression

align(n)

17-12

LINK EDITOR

is equivalent to

(. + n - 1) &-(n - 1)

Link editor expressions may have either an absolute or a
relocatable value. When the ld creates a symbol through an
assignment statement, the symbol's value takes on that type of
expression. That type depends on the following rules:

• An expression with a single relocatable symbol (and zero or
more constants or absolute symbols) is relocatable. The
value is in relation to the section of the referenced symbol.

• All other expressions have absolute values.

Specifying a Memory Configuration

MEMORY directives are used to specify

a. The total size of the virtual space of the target
machine.

b. The configured and unconfigured areas of the
virtual space.

If no directives are supplied, the ld assumes that all memory is
configured. The size of the default memory is dependent upon
the target machine.

By means of MEMORY directives, an arbitrary name of up to
eight characters is assigned to a virtual address range. Output
sections can then be forced to be bound to virtual addresses
wi thin specifically named memory areas. Memory names may
contain uppercase or lowercase letters, digits, and the special
characters '$', '.', or '_'. N ames of memory ranges are used by
ld only and are not carried in the output file symbol table or
headers.

17-13

LINK EDITOR

When MEMORY directives are used, all virtual memory not
described in a MEMORY directive is considered to be
unconfigured. U nconfigured memory is not used in the Id's
alloca tion process, and hence nothing can be link edited, bound,
or assigned to any address within unconfigured memory.

As an option on the MEMORY directive, attributes may be
associated with a named memory area. This restricts the
memory areas (with specific attributes) to which an output
section can be bound. The attributes assigned to output
sections in this manner are recorded in the appropriate section
headers in the output file to allow for possible error checking in
the future. For example, putting a text section into writable
memory is one potential error condition. Currently, error
checking of this type is not implemented.

The attributes currently accepted are

a. R: readable memory.

b. W: writable memory.

c. X: executable, i.e., instructions may reside in this
memory.

d. I: initializable, i.e., stack areas are typically not
initialized.

Other attributes may be added in the future if necessary. If no
attributes are specified on a MEMORY directive or if no
MEMORY directives are supplied, memory areas assume the
attributes of W, R, I, and X.

The syntax of the MEMORY directive is

17-14

LINK EDITOR

MEMORY
{

namel (attr) :
name2 (attr) :
etc.

origin = nl, length = n2
origin = n3, length = n4

The keyword "origin" (or "org" or "0") must precede the origin
of a memory range, and "length" (or "len" or "1") must precede
the length as shown in the above prototype. The origin operand
refers to the virtual address of the memory range. Origin and
length are entered as long integer constants in either decimal,
octal, or hexadecimal (standard C syntax). Origin and length
specifications, as well as individual MEMORY directives, may
be separated by white space or a comma.

By specifying MEMORY directives, the ld can be told that
memory is configured in some manner other than the default.
For example, if it is necessary to prevent anything from being
linked to the first OxlOOOO words of memory, a MEMORY
directive can accomplish this.

MEMORY
{

valid: org = OxlOOOO, len = OxFEOOOO
}

Section Definition Dire,ctives

The purpose of the SECTIONS directive is to describe how
input sections are to be combined, to direct where to place
output sections (both in relation to each other and to the entire
virtual memory space), and to permit the renaming of output
sections.

17-15

LINK EDITOR

In the default case where no SECTIONS directives are given,
all input sections of the same name appear in an output section
of that name. For example, if a number of object files from the
compiler are linked, each containing the three sections . text,
. data, and .bss, the output object file also contains three
sections, .text, .data, and .bss. If two object files are linked (one
that contains sections sl and s2 and the other containing
sections s3 and s4), the output object file contains the four
sections sl, s2, s3, and s4. The order of these sections would
depend on the order in which the link editor sees the input
files.

The basic syntax of the SECTIONS directive is

SECTIONS
{

etc.
}

secnamel :

}

file_specifications,
assignmen t_sta temen ts *

secname2 :
{

}

file_specifications,
assignmen t_sta temen ts *

The various types of section definition directives are discussed
in the remainder of this section.

* These may be intermixed.

17-16

LINK EDITOR

File Specifications

Within a section definition, the files and sections of files to be
included in the output section are listed in the order in which
they are to appear in the output section. Sections from an
input file are specified by

filename (secname)

or

filename (secnaml secnam2 . . .)

Sections of an input file are separated either by white space or
commas as are the file specifications themselves.

If a file name appears with no sections listed, then all sections
from the file are linked into the current output section. For
example,

SECTIONS
{

outsecl:
{

}
}

file1.o (secl)
file2.o
file3.o (secl, sec2)

The order in which the input sections appears In the output
section "outsecl" is given by

17-17

LINK EDITOR

a. Section secl from file file1.o

b. All sections from file2.o, in the order they appear
in the file

c. Section secl from file file3.o, and then section sec2
from file file3.o.

If there are any additional input files that contained input
sections also named "outsecl", these sections are linked
following the last section named in the definition of "outsecl".
If there are any other input sections in file1.0 or file3.0, they
will be placed in output sections with the same names as the
input sections unless they are included in other file
specifica tions.

Load a Section at a Specified Address

Bonding of an output section to a specific virtual address is
accomplished by an ld option as shown on the following
SECTIONS directive example:

SECTIONS
{

outsec addr:
{

}
etc.

}

The "addr" is the bonding address expressed as a C constant.
If "outsec" does not fit at "addr" (perhaps because of holes in
the memory configuration or because "outsec" is too large to fit
without overlapping some other output section), ld issues an
appropriate error message.

17-18

LINK EDITOR

So long as output sections do not overlap and there is enough
space, they can be bound anywhere in configured memory. The
SECTIONS directives defining output sections need not be given
to ld in any particular order.

The ld does not ensure that each section's size consists of an
even number of bytes or that each section starts on an even
byte boundary. The assembler ensures that the size (in bytes)
of a section is evenly divisible by 4. The ld directives can be
used to force a section to start on an odd byte boundary
although this is not recommended. If a section starts on an odd
byte boundary, the section's contents are either accessed
incorrectly or are not executed properly. When a user specifies
an odd byte boundary, the ld issues a warning message.

Aligning an Output Section

It is possible to request that an output section be bound to a
virtual address that falls on an n-byte boundary, where n is a
power of 2. The ALIGN option of the SECTIONS directive
performs this function, so that the option

ALIGN(n)

is equivalent to specifying a bonding address of

(. + n - 1) &-(n - 1)

For example

17-19

LINK EDITOR

SECTIONS
{

outsec ALIGN(Ox20000):
{

etc.

The output section "outsec" is not bound to any given address
but is linked to some virtual address that is a multiple of
Ox20000 (e.g., at address OxO, Ox20000, Ox40000, Ox60000, etc.).

Grouping Sections Together

The default allocation algorithm for ld

a. Links all input .text sections together into one
output section. This output section is called .text
and is bound to an address of OxO.

h. Links all input .data sections together into one
output section. This output section is called .data
and is bound to an address aligned to a machine
dependent constant.

c. Links all input .bss sections together into one
output section. This output section is called .bss
and is allocated so as to immediately follow the
output section . data. Note that the output section
.bss is not given any particular address alignment.

Specifying any SECTIONS directives results in this default
allocation not being performed.

The default allocation of ld is equivalent to supplying the
following directive:

17-20

SECTIONS
{

.text : { }
GROUP ALIGN(align_value) :
{

.data : { }

.bss : { }
}

LINK EDITOR

where align_value is a machine dependent constant. The
GROUP command ensures that the two output sections, .data
and .bss, are allocated (e.g., "grouped") together. Bonding or
alignment information is supplied only for the group and not
for the output sections contained within the group. The
sections making up the group are allocated in the order listed
in the directive.

If .text, .data, and .bss are to be placed in the same segment, the
following SECTIONS directive is used:

SECTIONS
{

GROUP
{

.text : { }

.data : { }

.bss : { }
}

}

Note that there are still three output sections (.text, . data, and
.bss), but now they are allocated into consecutive virtual
memory.

This entire group of output sections. could be bound to a
starting address or aligned simply by adding a field to the
GROUP directive. To bind to OxCOOOO, use

17-21

LINK EDITOR

GROUP OxCOOOO : {

To align to OxlOOOO, use

GROUP ALIGN(OxlOOOO) : {

With this addition, first the output section .text is bound at
OxCOOOO (or is aligned to OxlOOOO); then the remaining
members of the group are allocated in order of their
appearance into the next available memory locations.

When the GROUP directive is not used, each output section is
treated as an independent entity:

SECTIONS
{

.text : { }

.data ALIGN(Ox20000) : { }

.bss : { }

The .text section starts at virtual address OxO and the .data
section at a virtual address aligned to Ox20000. The .bss section
follows immediately after the .text section if there is enough
space. If there is not, it follows the .data section.

The order in which output sections are defined to the Id cannot
be used to force a certain allocation order in the output file.

Creating Holes Within Output Sections

The special symbol dot (.) appears only within section
definitions and assignment statements. vVhen it appears on the
left side of an assignment statement, "." causes the Id's
location counter to be incremented or reset and a "hole" left in
the output section. "Holes" built into output sections in this

17-22

LINK EDITOR

manner take up physical space in the output file and are
initialized using a fill character (either the default fill
character (OxOO) or a supplied fill character). See the definition
of the "-f" option in "USING THE LINK EDITOR" and the
discussion of filling holes in "Initialized Section Holes or .bss
Sections" under "LINK EDITOR COMMAND LANGUAGE".

Consider the following section definition:

outsec:
{

}

· += OxlOOO;
fLo (.text)
· += OxlOO;
f2.0 (. text)
· = align (4);
f3.0 (.text)

The effect of this command is as follows:

a. A OxlOOO byte hole, filled with the default fill
character, is left at the beginning of the section.
Input file fl.o(.text) is linked after this hole.

b. The text of input file f2.0 begins at OxlOO bytes
following the end of fl.o(. text).

c. The text of f3.0 is linked to start at the next full
word bounda'ry following the text of f2.0 with
respect to the beginning of "outsec".

For the purposes of allocating and aligning addresses within an
output section, the ld treats the output section as if it began at
address zero. As a result, if, in the above example, "outsec"
ultimately is linked to start at an odd address, then the part of
"outsec" built from f3.0(.text) also starts at an odd address-

17-23

LINK EDITOR

even though f3.o(.text) is aligned to a full word boundary. This
is prevented by specifying an alignment factor for the entire
output section.

outsec ALIGN(4) : {

It should be noted that the assembler, as, always pads the
sections it generates to a full word length making explicit
alignment specifications unnecessary. This also holds true for
the compiler.

Expressions that decrement "." are illegal. For example,
subtracting a value from the location counter is not allowed
since overwrites are not allowed. The most common operators
in expressions that assign a value to "." are "+=" and "align".

Creating and Defining Symbols at Link=Edit Time

The assignment instruction of the ld can be used to give
symbols a value that is link-edit dependent. Typically, there
are three types of assignments:

a. Use of "." to adjust ld's location counter during allocation

b. Use of
symbol

"" to assign an allocation-dependent value to a

c. Assigning an allocation-independent value to a symbol.

Case a) has already been discussed in the previous section.

Case b) provides a means to assign addresses (known only after
allocation) to symbols. For example

17-24

SECTIONS
{

outsc1: { ... }
outsc2:
{

}

file1.o (s1)
s2_start = . ;
file2.o (s2)
s2_end = . - 1;

LINK EDITOR

The symbol "s2_start" is defined to be the address of file2.o(s2),
and "s2_end" is the address of the last byte of file2.o(s2).

Consider the following example:

SECTIONS
{

outsc1:
{

}
}

file1.o (.data)
mark =.;
. += 4;
file2.o (.da ta)

In this example, the symbol "mark" is created and is equal to
the address of the first byte beyond the end of file1.o's . data
section. Four bytes are reserved for a future run-time
initialization of the symbol mark. The type of the symbol is a
long integer (32 bits).

Assignment instructions involving "." must appear within
SECTIONS definitions since they are evaluated during
allocation. Assignment instructions that do not involve "." can
appear within SECTIONS definitions but typically do not. Such

17-25

LINK EDITOR

instructions are evaluated after allocation is complete.
Reassignment of a defined symbol to a different address is
dangerous. For example, if a symbol within .data is defined,
initialized, and referenced within a set of object files being
link-edited, the symbol table entry for that symbol is changed
to reflect the new, reassigned physical address. However, the
associated initialized data is not moved to the new address.
The ld issues warning messages for each defined symbol that is
being redefined within an ifile. However, assignments of
absolute values to new symbols are safe because there are no
references or initialized data associated with the symbol.

Allocating a Section Into Named Memory

It is possible to specify that a section be linked (somewhere)
wi thin a specific named memory (as previously specified on a
MEMORY directive). (The ">" notation is borrowed from the
UNIX system concept of "redirected output".)

For example

MEMORY
{

meml: o=OxOOOOOO l=OxlOOOO
mem2 (RW): o=Ox020000 l=Ox40000
mem3 (RW): o=Ox070000 l=Ox40000
meml: o=Oxl20000 1 =Ox04000

}

SECTIONS
{

}

outsecl: { f1.o(.data) } > meml
outsec2: { f2.o(.data) } > mem3

This directs ld to place "outsecl" anywhere within the memory
area named "meml" (i.e., somewhere within the address range
OxO-OxFFFF or Oxl20000-0xl23FF). The "outsec2" is to be

17-26

LINK EDITOR

placed somewhere in the address range Ox70000-0xAFFFF.

Initialized Section Holes or BSS Sections

When "holes" are created within a section (as in the example in
"LINK EDITOR COMMAND LANGUAGE"), the ld normally
puts out bytes of zero as "fill". By default, .bss sections are not
initialized at all; that is, no initialized data is generated for any
.bss section by the assembler nor supplied by the link editor,
not even zeros.

Initialization options can be used in a SECTIONS directive to
set such "holes" or output .bss sections to an arbitrary 2-byte
pattern. Such initialization options apply only to .bss sections
or "holes". As an example, an application might want an
un initialized data table to be initialized to a constant value
without recompiling the ".0" file or a "hole" in the text area to
be filled with a transfer to an error routine.

Either specific areas within an output section or the entire
output section may be specified as being initialized. However,
since no text is generated for an uninitialized .bss section, if
part of such a section is initialized, then the entire section is
ini tialized. In other words, if a .bss section is to be combined
with a .text or .data section (both of which are initialized) or if
part of an output .bss section is to be initialized, then one of the
following will hold:

a. Explicit initialization options must be used to
initialize all .bss sections in the output section.

b. The ld will use the default fill value to initialize all
.bss sections in the output section.

Consider the following ld ifile:

17-27

LINK EDITOR

SECTIONS
{

}

secl:
{

fLo
. =+ Ox200;
f2.0 (. text)

} = OxDFFF
sec2:
{

fLo (.bss)
f2.0 (.bss) = Ox1234

}
sec3:
{

f3.o (.bss)

} = OxFFFF
sec4: { f4.0 (.bss) }

In the example above, the Ox200 byte "hole" in section "secl" is
filled with the value OxDFFF. In section "sec2", f1.o(.bss) is
initialized to the default fill value of OxOO, and f2.0(.bss) is
initialized to Oxl234. All .bss sections within "sec3" as well as
all "holes" are initialized to OxFFFF. Section "sec4" is not
initialized; that is, no data is written to the object file for this
section.

17-28

LINK EDITOR

NOTES AND SPECIAL CONSIDERATIONS

Changing the Entry Point

The a.out header contains a field for the (primary) entry point
of the file. This field is set using one of the following rules
(listed in the order they are applied):

a. The value of the symbol specified with the "-e"
option, if present, is used.

b. The value of the symbol "_start", if present, is
used.

c. The value of the symbol "main", if present, is used.

d. The value zero is used.

Thus, an explicit entry point can be assigned to this a.out
header field through the "-e" option or by using an assignment
instruction in an ifile of the form

expression;

If the ld is called through cc(l), a startup routine is
automatically linked in. Then, when the program is executed,
the routine exit(l) is called after the main routine finishes to
close file descriptors and do other cleanup. The user must
therefore be careful when calling the ld directly or when
changing the entry point. The user must supply the startup
routine ormake sure that the program always calls exit rather
than falling through the end. Otherwise, the program will dump
core.

17-29

LINK EDITOR

Use of Archive Libraries

Each member of an archive library (e.g., libc.a) is a complete
object file typically consisting of the standard three sections:
.text, .data, and .bss. Archive libraries are created through the
use of the UNIX system "ar" command from object files
generated by running the cc or as.

An archive library is always processed using selective inclusion:
Only those members that resolve existing undefined-symbol
references are taken from the library for link editing.

Libraries can be placed both inside and outside section
definitions. In both cases, a member of a library is included for
linking whenever

a. There exists a reference to a symbol defined In
that member.

b. The reference is found by the ld prior to the actual
scanning of the library.

When a library member is included by searching the library
inside a SECTIONS directive, all input sections from the
library member are included in the output section being
defined. When a library member is included by searching the
library outside of a SECTIONS directive, all input sections from
the library member are included into the output section with
the same name. That is, the .text section of the member goes
into the output section named . text, the .data section of the
member into .data, the .bss section of the member into .bss, etc.
H necessary, new output sections are defined to provide a place
to put the input sections. Note, however, that

17-30

a. Specific members of a library cannot be referenced
explicitly in an ifile.

LINK EDITOR

b. The default rules for the placement of members
and sections cannot be overridden when they apply
to archive library members.

The "-1" option is a shorthand notation for specifying an input
file coming from a predefined set of directories and having a
predefined name. By convention, such files are archive
libraries. However, they need not be so. Furthermore, archive
libraries can be specified without using the "-1" option by
simply giving the (full or relative) UNIX system file path.

The ordering of archive libraries is important since for a
member to be extracted from the library it must satisfy a
reference that is known to be unresolved at the time the library
is searched. Archive libraries can be specified more than once.
They are searched every time they are encountered. Archive
files have a symbol table at the beginning of the archive. The
ld will cycle through, this symbol table until it has determined
that it cannot resolve any more references from that library.

Consider the following example:

a. The input files filel.o and file2.0 each contain a
reference to the external function FCN.

b. Input file 1. 0 contains a reference to symbol ABC.

c. Input file2.0 contains a reference to symbol XYZ.

d. Library liba.a, member 0, contains a definition of
XYZ.

e. Library libc.a, member 0, contains a definition of
ABC.

f. Both libraries have a member 1 that defines FCN.

If the ld command were entered as

17-31

LINK EDITOR

ld file1.o -la file2.o -lc

then the FCN references are satisfied by liba.a, member 1, ABC
is obtained from libc.a, member 0, and XYZ remains undefined
(since the library liba.a is searched before file2.o is specified).
If the ld command were entered as

ld file1.o file2.o -la -lc

then the FCN references are satisfied by liba.a, member 1, ABC
is obtained from libc.a, member 0, and XYZ is obtained from
liba.a, member o. If the ld command were entered as

ld file1.o file2.o -lc -la

then the FCN references are satisfied by libc.a, member 1, ABC
is obtained from libc.a; member 0; and XYZ is obtained from
liba.a, member o.

The "-u" option is used to force the linking of library members
when the link edit run does not contain an actual external
reference to the members. For example,

ld -u routl -la

creates an undefined symbol called "routl" in the ld's global
symbol table. If any member of library liba.a defines this
symbol, it (and perhaps other members as well) is extracted.
Without the "-u" option, there would have been no "trigger" to
cause ld to search the archive library.

17-32

LINK EDITOR

Dealing With Holes in Physical Memory

When memory configurations are defined such that
unconfigured areas exist in the virtual memory, each
application or user must assume the responsibility of forming
output sections that will fit into memory. For example, assume
that memory is configured as follows:

MEMORY
{

}

mem1:
mem2:
merna:

o = OxOOOOO
o = Ox40000
o = Ox20000

I = Ox02000
I = Ox05000
I = OxlOOOO

Let the files fLo, f2.0, ... fn.o each contain the standard three
sections . text, . data, and .bss, and suppose the combined .text
section is Ox12000 bytes. There is no configured area of
memory in which this section can be placed. Appropriate
directives must be supplied to break up the .text output section
so ld may do allocation. For example,

SECTIONS
{

txt1:
{

}
txt2:
{

}
etc.

}

fLo (.text)
f2.0 (. text)
f3.o (.text)

f4.0 (.text)
f5.0 (.text)
f6.0 (.text)

17-33

LINK EDITOR

Allocation Algorithm

An output section is formed either as a result of a SECTIONS
directive or by combining input sections of the same name. An
output section can have zero or more input sections comprising
it. After the composition of an output section is determined, it
must then be allocated into configured virtual memory. Ld uses
an algorithm that attempts to minimize fragmentation of
memory, and hence increases the possibility that a link edit run
will be able to allocate all output sections within the specified
virtual memory configura tion. The algori thm proceeds as
follows:

a. Any output sections for which explicit bonding
addresses were specified are allocated.

b. Any output sections to be included in a specific
named memory are allocated. In both this and the
succeeding step, each output section is placed into
the first available space within the (named)
memory with any alignment taken into
considera tion.

c. Output sections not handled by one of the above
steps are allocated.

If all memory is contiguous and configured (the default case),
and no SECTIONS directives are given, then output sections are
allocated in the order they appear to the ld, normally . text,
.data, .bss. Otherwise, output sections are allocated in the order
they were defined or made known to the ld into the first
available space they fit.

17-34

LINK EDITOR

Incremental Link Editing

As previously mentioned, the output of the ld can be used as an
input file to subsequent ld runs providing that the relocation
information is retained ("-r" option). Large applications may
find it desirable to partition their C programs into
"subsystems", link each subsystem independently, and then link
edit the entire application. For example,

Step 1:
ld -r -00utfile1 ifile1

/* ifile1 * /
SECTIONS
{

ss1:
{

fLo
f2.0

fn.o
}

}

Step 2:
ld -r -0· ou tfile2 ifile2

/* ifile2 * /
SECTIONS
{

ss2:
{

g1.o
g2.0

gn.o
}

}

17-35

LINK EDITOR

Step 3:
ld -a -m -0 final.out outfilel outfile2

By judiciously forming subsystems, applications may achieve a
form of "incremental link editing" whereby it is necessary to
relink only a portion of the total link edit when a few programs
are recompiled.

To apply this technique, there are two simple rules

a. Intermediate link edits should contain only
SECTIONS declarations and be concerned only
with the formation of output sections from input
files and input sections. No binding of output
sections should be done in these runs.

b. All allocation and memory directives, as well as
any assignment statements, are included only in
the final ld call.

DSECT, COPY, and NOLOAD Sections

Sections may be given a "type" in a section definition as shown
in the following example:

SECTIONS
{

}

namel Ox200000 (DSECT)
name2 Ox400000 (COPY)
name3 Ox600000 (NOLOAD)

: { filel.o }
: { file2.0 }

: { file3.0 }

The DSECT option creates what is called a "dummy section".
A "dummy section" has the following properties:

17-36

LINK EDITOR

a. It does not participate in the memory allocation
for output sections. As a result, it takes up no
memory and does not show up in the memory map
(the "-m" option) generated by the ld.

b. It may overlay other output sections and even
unconfigured memory. DSECTs may overlay other
DSECTs.

c. The global symbols defined within the "dummy
section" are relocated normally. That is, they
appear in the output file's symbol table with the
same value they would have had if the DSECT
were actually loaded at its virtual address.
DSECT -defined symbols may be referenced by
other input sections. Undefined external symbols
found within a DSECT cause specified archive
libraries to be searched and any members which
define such symbols are link edited normally (Le.,
not in the DSECT or as a DSECT).

d. None of the section contents, relocation
information, or line number information
associated with the section is written to the output
file.

In the above example, none of the sections from filel.o are
allocated, but all symbols are relocated as though the sections
were link edited at the specified address. Other sections could
refer to any of the global symbols and they are resolved
correctly.

A "copy section" created by the COpy option is similar to a
"dummy section". The only difference between a "copy section"
and a "dummy section" is that the contents of a "copy section"
and all associated information is written to the output file.

A section with the "type" of NOLOAD differs in only one
respect from a normal output section: its text and/or data is not

17-37

LINK EDITOR

written to the output file. A NOLOAD section is allocated
virtual space, appears in the memory map, etc.

Output File Blocking

The BLOCK option (applied to any output section or GROUP
directive) is used to direct ld to align a section at a specified
byte offset in the output file. It has no effect on the address at
which the section is allocated nor on any part of the link edit
process. It is used purely to adjust the physical position of the
section in the output file.

SECTIONS
{

. text BLOCK(Ox200) : { }

.data ALIGN(Ox20000) BLOCK(Ox200) : { }
}

With this SECTIONS directive, ld assures that each section,
.text and .data, is physically written at a file offset which is a
multiple of Ox200 (e.g., at an offset of 0, Ox200, Ox400, ... , etc. in
the file).

Nonrelocatable Input Files

If a file produced by the ld is intended to be used in a
subsequent Id run, the first ld run has the "-r" option set. This
preserves relocation information and permits the sections of the
file to be relocated by the subsequent Id run.

When the ld detects an input file (that does not have relocation
or symbol table information), a warning message is given. Such
information can be removed by the ld (see the "-a" and "-s"
options in the part USING THE LINK EDITOR) or by the
strip(l) program. However, the link edit run continues using
the nonrelocatable input file.

17-38

LINK EDITOR

For such a link edit to be successful (i.e., to actually and
correctly link edit all input files, relocate all symbols, resolve
unresolved references, etc.), two conditions on the
nonrelocatable input files must be met.

a. Each input file must have no unresolved external
references.

b. Each input file must be bound to the exact same
virtual address as it was bound to in the ld run
that created it.

Note that if these two conditions are not met for all
nonrelocatable input files, no error messages are issued.
Because of this fact, extreme care must be taken when
supplying such input files to the ld.

ERROR MESSAGES

Corrupt Input Files

The following error messages indicate that the input file is
corrupt, nonexistent, or unreadable. The user should check that ,
the file is in the correct directory with the correct permissions.
If the object file is corrupt, try recompiling or reassembling it.

• Can't open name

• Can't read archive header from archive name

• Can't read file header of archive name

• Can't read 1st word of file name

• Can't seek to the beginning of file name

17-39

LINK EDITOR

• Fail to read file header of name

• Fail to read lnno of section sect of file name

• Fail to read magic number of file name

• Fail to read section headers of file name

• Fail to read section headers of library name member
number

• Fail to read symbol table of file name

• Fail to read symbol table when searching libraries

• Fail to read the aux entry of file name

• Fail to read the field to be relocated

• Fail to seek to symbol table of file name

• Fail to seek to symbol table when searching libraries

• Fail to seek to the end of library name member number

• Fail to skip aux entries when searching libraries

• Fail to skip the mem of struct of name

• Illegal relocation type

• No reloc entry found for symbol

• Reloc entries out of order in section sect of file name

• Seek to name section sect failed

• Seek to name section sect lnno failed

17-40

LINK EDITOR

• Seek to name section sect reloc entries failed

• Seek to relocation entries for section sect in file name
failed.

Errors During Output

These errors occur because the ld cannot write to the output
file. This usually indicates that the file system is out of space.

• Cannot complete output file name. Write error.

• Fail to copy the rest of section num of file name

• Fail to copy the bytes that need no reloc of section num of
file

• name I/O error on output file name.

Internal Errors

These messages indicate that something is wrong with the ld
internally. There is probably nothing the user can do except get
help.

• Attempt to free nonallocated memory

• Attempt to reinitialize the SDP aux space

• Attempt to reinitialize the SDP slot space

• Default allocation did not put .data and .bss into the same
region

• Failed to close SDP symbol space

• Failure dumping an AIDFNxxx data structure

17 .. 41

LINK EDITOR

• Failure in closing SDP aux space

• Failure to initialize the SDP aux space

• Failure to initialize the SDP slot space

• Internal error: audit~roups, address mismatch

• Internal error: audit~roup, finds a node failure

• Internal error: fail to seek to the member of name

• Internal error: in allocate lists, list confusion (num num)

• Internal error: invalid aux table id

• Internal error: invalid symbol table id

• Internal error: negative aux table ld

• Internal error: negative symbol table id

• Internal error: no symtab entry for DOT

• Internal error: split_scns, size of sect exceeds its new
displacemen t.

Allocation Errors

These error messages appear during the allocation phase of the
link edit. They generally appear if a section or group does not
fit at a certain address or if the given MEMORY or SECTION
directives in some way conflict. If you are using an ifile, check
that MEMORY and SECTION directives allow enough room for
the sections to ensure that nothing overlaps and that nothing is
being placed in unconfigured memory. For more information,
see "LINK EDITOR COMMAND LANGUAGE" and "NOTES
AND SPECIAL CONSIDERATIONS".

17-42

LINK EDITOR

• Bond address address for sect is not in configured memory

• Bond address address for sect overlays previously allocated
section sect at address

• Can't allocate output section sect, of size num

• Can't allocate section sect into owner mem

• Default allocation failed: name is too large

• GROUP containing section sect is too big

• Memory types namel and name2 overlap

• Output section sect not allocated into a region

• Sect at address overlays previously allocated section sect at
address

• Sect, bonded at address, won't fit into configured memory

• Sect enters unconfigured memory at address

• Section sect in file name is too big.

Misuse of Link Editor Directives

These errors arise from the misuse of an input directive. Please
review the appropriate section in the manual.

• Adding name(sect) to multiple output sections.

The input section is mentioned twice in the SECTION directive.

• Bad attribute value in MEMORY directive: c.

17-43

LINK EDITOR

An attribute must be one of "R", "W", "X", or "I".

• Bad flag value in SECTIONS directive, option.

Only the "-I" option is allowed inside of a'SECTIONS directive.

• Bad fill value.

The fill value must be a 2-byte constant.

• Bonding excludes alignment.

The section will be bound at the given address regardless of the
alignment of that address.

• Cannot align a section within a group

• Cannot bond a section within a group

• Cannot specify an owner for sections within a group.

The entire group is treated as one unit, so the group may be
aligned or bound to an address, but the sections making up the
group may not be handled individually.

• DSECT sect can't be given an owner

• DSECT sect can't be linked to an attribute.

Since dummy sections do not participate in the memory
allocation, it is meaningless for a dummy section to be given an
owner or an attribute.

• Region commands not allowed

17-44

LINK EDITOR

The UNIX system link editor does not accept the REGION
commands.

• Section sect not built.

The most likely cause of this is a syntax error in the
SECTIONS directive.

• Semicolon required after expression

• Statement ignored.

Caused by a syntax error in an expression.

• Usage of unimplemented syntax.

The UNIX system ld does not accept all possible ld commands.

Misuse of Expressions

These errors arise from the misuse of an input expression.
Please review the appropriate section in the manual.

• Absolute symbol name being redefined.

An absolute symbol may not be redefined.

• ALIGN illegal in this context.

Alignment of a symbol may only be done within a SECTIONS
directive.

• Attempt to decrement DOT

17-45

LINK EDITOR

• Illegal assignment of physical address to DOT .

.. Illegal operator in expression

• Misuse of DOT symbol in assignment instruction.

The DOT symbol (".") cannot be used in assignment statements
that are outside SECTIONS directives.

• Symbol name is undefined.

All symbols referenced in an assignment statement must be
defined.

• Symbol name from file name being redefined.

A defined symbol may not be redefined in an assignment
statement.

• Undefined symbol in expression.

Misuse of Options

These errors arise from the misuse of options. Please review
the appropriate section of the manual.

• Both -r and -s flags are set. The -s flag is turned off.

Further relocation requires a symbol table.

• Can't find library libx.a

• -L path too long (string)

17-46

LINK EDITOR

• -0 file name too large (>128 char), truncated to (string)

• Too many -L options, seven allowed.

Some options require white space before the argument, some do
not; see "USING THE LINK EDITOR". Including extra white
space or not including the required white space is the most
likely cause of the following messages.

• option flag does not specify a number

• option is an invalid flag

• -e flag does not specify a legal symbol name name

• -f flag does not specify a 2-byte number

• No directory given with -L

• -0 flag does not specify a valid file name: string

• the -1 flag (specifying a default library) is not supported

• -u flag does not specify a legal symbol name: name.

Space Restraints

The following error messages may occur if the ld attempts to
allocate more space than is available. The user should attempt
to decrease· the amount of space used by the ld. This may be
accomplished by making the ifile less complicated or by using
the "-r" option to create intermediate files.

• Fail to allocate num bytes for slotvec table

• Internal error: aux table overflow

17-47

LINK EDITOR

• Internal error: symbol table overflow

• ~.:1emory allocation failure on num-byte 'calloc' call

• Memory allocation failure on realloc call

• Run is too large and complex.

Miscellaneous Errors

These errors occur for many reasons. Refer to the error
message for an indication of where to look in the manual.

• Archive symbol table is empty in archive name, execute 'ar
ts name' to restore archive symbol table.

On systems with a random access archive capability, the link
editor requires that all archives have a symbol table. This
symbol table may have been removed by strip.

• Cannot create output file name.

The user may not have write permission in the directory where
the output file is to be written.

• File name has no relocation information.

See "NOTES AND SPECIAL CONSIDERATIONS."

• File name is of unknown type, magic number = num

• !file nesting limit exceeded with file name.

!files may be nested 16 deep.

17-48

LINK EDITOR

• Library name, member has no relocation information.

• Line nbr entry (num num) found for nonrelocatable
symbol.

Section sect, file name

This is generally caused by an interaction of yacc(1) and cc(1).
Re-yacc the offending file with the "-1" option of yacc.

See the part" NOTES AND SPECIAL CONSIDERATIONS" .

• Multiply defined symbol sym, in name has more than one
size.

A multiply defined symbol may not have been defined in the
same manner in all files.

• name(sect) not found.

An input section specified in a SECTIONS directive was not
found in the input file.

• Section sect starts on an odd byte boundary!

This will happen only if the user specifically binds a section at
an odd boundary.

• Sections .text, .data, or .bss not found. Optional header may
be useless.

The UNIX system a.out header uses values found in the . text,
.data, and .bss section headers.

17-49

LINK EDITOR

• Undefined symbol sym first referenced in file name.

Unless the -r option is used, the ld requires that all referenced
symbols are defined .

• Unexpected EOF (End Of File).

Syntax error in the ifile.

SYNT AX DIAGRAM FOR INPUT
DIRECTIVES

A syntax diagram for input directives is found in Figure 17-2.

17-50

LINK EDITOR

directives -> expanded directives

<file> -> { <cmd> }
<cmd> -> <memory>

-> <sections>
-> <assignment>
-> <filename>
-> <flags>

<memory -> MEMORY { <memory_spec>
{ [,] <memory_spec> }}

<memory_spec> -> <name> [<attributes>] :
<origin_spec> [,] <length_spec>

<attributes> -> ({RIWIXII})
<origin_spec> -> <origin> = <long>
<lenth_spec> -> <length> = <long>
<origin> -> ORIGIN I 0 I org I origin
<length> -> LENGTH II lIen I length

<sections> -> SECTIONS { { <sec_or~roup> } }
<sec_or~roup> -> <section> I <group> I <library>
<group> -> GROUP <group_options> : {

<seCtion_list> } [<mem_spec>]

<section_list> -> <section> { [,] <section> }

Figure 17-2. Syntax Diagram for Input Directives
(Sheet 1 of 4)

17-51

LINK EDITOR

directives expanded directives

<section> -> <name> <sec_options> : {
<statement_list> }
[<fill>] [<mem_spec>]

<group_options> -> [<addr>] [<align_option>]

<sec_options> -> [<addr>] [<align_option>]
[<block_option>] [<type_option>]

<addr> -> <long>
<align_option> -> <align> (<long>)
<align> -> ALIGN 1 align
<block_option> -> <block> (<long>)
<block> -> BLOCK 1 block
<type_option> -> (DSECT) 1 (NOLOAD) 1 (COPY)
<fill> -> = <long>
<mem_spec> -> > <name>

-> > <attributes>
<statement> -> <file_name> [(<name_list>)]

[<fill>] <library> <assignment>

<name_list> -> <name> { [,] <name> }
<library> -> -l<name>

<assignment> -> <lside> <assign_op> <expr> <end>
<lsi de> -> <name> I.
<assign_op> -> = 1 += 1-= 1 *= ~ =
<end> -> ;I,
<expr> -> <expr> <binary_op> <expr>

-> <term>
<binary _op> -> *1/1 %

-> + 1-
-> »1«

Figure 17-2. Syntax Diagram for Input Directives
(Sheet 2 of 4)

17-52

LINK EDITOR

directives -> expanded directives

-> == I != I > I < I <= I >=
-> &
-> I
-> &&
-> II

<term> -> <long>
-> <name>
-> <align> (<term>)
-> (<expr)
-> <unary _op> <term>

<unary_op> -> ! 1-
<flags> -> -e<wht_space><name>

-> -f <wht_space> <long>
-> -h <wht_space> <long>
-> -l<name>
-> -m
-> -o<wht_space> <filename>
-> -r
-> -s
-> -t
-> -u<wht_space> <name>
-> -z
-> -H
-> -L<pathname>
-> -M
-> -N
-> -S
-> -v
-> -VS<wht_space><long>
-> -a
-> -x

Figure 17-2. Syntax Diagram for Input Directives
(Sheet 3 of 4)

17-53

LINK EDITOR

directives -> expanded directives

<name> -> Any valid symbol name
<long> -> Any valid long integer constant
<wht_space> -> Blanks, tabs, and newlines

<filename> -> Any valid UNIX operating system
filename. This may include a
full or partial pathname.

<pathname> -> Any valid UNIX operating system
pathname (full or partial)

Figure 17-2. Syntax Diagram for Input Directives
(Sheet 4 of 4)

17-54

Chapter 18

THE COMMON OBJECT FILE FORMAT

PAGE

GENERAL 18-1

DEFINITIONS AND CONVENTIONS. 18-4

FILE HEADER ... 18-5

OPTIONAL HEADER INFORMATION..................... 18-11

SECTION HEADERS. .. 18-16

SECTIONS. .. 18-21

RELOCATION INFORMATION. .. 18-21

LINE NUMBERS....................................... 18-27

SYMBOL TABLE....................................... 18-28

STRING TABLE.. 18-65

ACCESS ROUTINES 18-66

Chapter 18

THE COMMON OBJECT FILE
FORMAT

GENERAL
This chapter describes the Common Object File Format (COFF)
used on several processors and operating systems, including the
AT&T Technologies 3B Computer family and the UNIX
operating system. The COFF is simple enough to be easily
incorporated into existing projects, yet flexible enough to meet
the needs of most projects. The COFF is the output file
produced on some UNIX systems by the assembler (as) and the
link editor (ld). This format is also used by other operating
systems; hence, the word common is both descriptive and widely
recognized. Currently, this object file format is used for the
AT&T UNIX PC, AT&T Technologies 3B Computer, including
the 3B20D, the 3B20S, the 3B5 and 3B2 Computers, and on the
VAX*-11/780 and 11/750 UNIX operating systems. Some key
features of COFF are

• Applications may add system-dependent information to the
object file without causing access utilities to become
obsolete

• Space is provided for symbolic information used by
debuggers and other applications

• Users may make some modifications in the object file
construction at compile time.

* Trademark of Digital Equipment Corporation

lS-l

COFF

The object file supports user-defined sections and contains
extensive information for symbolic software testing. An object
file contains

• A file header

• Optional header information

• A table of section headers

• Data corresponding to the section header

• Relocation information

• Line numbers

• A symbol table

• A string table.

Figure 18-1 shows the overall structure.

18-2

COFF

FILE HEADER

Optional Information

Section 1 Header

...
Section n Header

Raw Data for Section 1

...
Raw Data for Section n

Relocation Info for Sect. 1

...
Relocation Info for Sect. n

Line Numbers for Sect. 1

...

Line Numbers for Sect. n

SYMBOL TABLE

STRING TABLE

Figure 18-1. Object File Format

The last four sections (relocation, line numbers, symbol table,
and the string table) may be missing if the program is linked
with the -s option of the UNIX system link editor or if the line
number information, symbol table, and string table are
removed by the strip command. The line number information
does not appear unless the program is compiled with the -g
option of the compiler (CC) command. Also, if there are no
unresolved external references after linking, the relocation
information is no longer needed and is absent. The string table
is also absent if the source file does not contain any symbols

18-3

COFF

with names longer than eight characters.

An object file that contains no errors or unresolved references
can be executed on the target machine.

DEFINITIONS AND CONVENTIONS

Before proceeding further, you should become familiar with the
following terms and conventions:

Sections

A section is the smallest portion of an object file that is
relocated and treated as one separate and distinct entity. In
the default case, there are three sections named .text, .data,
and .hss. Additional sections accommodate multiple text or
data segments, shared data segments, or user-specified sections.
However, the UNIX operating system loads only the .text, .data,
and .bss into memory when the file is executed.

Physical and Virtual Addresses

The physical address of a section or symbol is the offset of that
section or symbol from address zero of the address space. The
term physical address as used in COFF does not correspond to
the general usage. The physical address of an obj ect is not
necessarily the address at which the object is placed when the
process is executed. For example, on a system with paging, the
address is located with respect to address zero of virtual
memory and the system performs another address translation.
The section heading contains two address fields, a physical
address, and a virtual address; but in all versions of COFF on
UNIX systems, the physical address is equivalent to the virtual
address.

18-4

COFF

FILE HEADER
The file header contains the 20 bytes of information shown in
Figure 18-2. The last 2 bytes are flags that are used by ld and
object file utilities.

Bytes Declaration Name Description

0-1 unsigned short Cmagic Magic
number, see
Figure 18-3.

2-3 unsigned short Cnscns Number of
section
headers
(equals the
number of
sections)

4-7 long int Ctimdat Time and
date stamp
indicating
when the file
was created
relative to the
number of
elapsed
seconds since
00:00:00 GMT,
January 1,
1970.

Figure 18-2. File Header Contents (Sheet 1 of 2)

18-5

COFF

Bytes Declaration Name Description
o 11 long int Csymptr File pomter 0-.1..1.

containing
the starting
address of the
symbol table

12-15 long int Cnsyms Number of
entries in the
symbol table

16-17 unsigned short Copthdr Number of
bytes in the
optional
header

18-19 unsigned short Cflags Flags (see
Figure 18-4)

Figure 18-2. File Header Contents (Sheet 2 of 2)

The size of optional header information (f_opthdr) is used by
all referencing programs that seek to the beginning of the
section header table. This enables the same utility programs to
work correctly on files targeted for different systems.

Magic Numbers

The magic number specifies the target machine on which the
object file is executable. The currently defined magic numbers
are in Figure 18-3.

18-6

COFF

Mnemonic Magic Number System

N3B MAGIC 0550 3B20S Computers *
FBOMAGIC 0560 3B2 and 3B5

Computers *
VAXWRMAGIC 0570 V AX -11/750 and

VAX-11/780
(writable text
segments)

VAXROMAGIC 0575 V AX -11/750 and
VAX-11780
(read-only text
segments)

MC68KRMAGIC 0520 Motorola (writable
text segment)

MC68KROMAGIC 0521 Motorola (read-only
sharable text
segment)

MC68KPGMAGIC 0522 Motorola (demand-paged
text segment)

U370WRMAGIC 0530 IBM 370 (writable
text segments)

U370ROMAGIC 0535 IBM 370 (read-only
sharable text
segments)

Figure 18-3. Magic Numbers

* Trademark of AT&T

18-7

COFF

Flags

The last 2 bytes of the file header are flags that describe the
type of the object file. The currently defined flags are given in
Figure 18-4.

18-8

COFF

Mnemonic Flag Meaning

F_RELFLG 00001 Relocation
information
stripped from the
file

F_EXEC 00002 File is executable
(Le., no
unresolved
external
references)

F_LNNO 00004 Line numbers
stripped from the
file

F_LSYMS 00010 Local symbols
stripped from the
file

F_MINMAL 00020 Not used by the
UNIX system

F_UPDATE 00040 Not used by the
UNIX system

F_SWABD 00100 Not used by the
UNIX system

F_AR16WR 00200 File has the byte
ordering used by
the PDP*-U/70
processor.

Figure 18-4. File Header Flags (Sheet 1 of 2)

18-9

COFF

Mnemonic Flag Meaning

F_AR32WR 00400 File has the byte
ordering used by
the VAX-11/780
(Le., 32 bits per
word, least
significant byte
first).

F_AR32W 01000 File has the byte
ordering used by
the UNIX PC
and 3B
computers (Le.,
32 bits per word,
most significant
byte first).

F_PATCH 02000 Not used by the
UNIX system

F_BM32ID 0160000 WE 32000
processor ID
field.

Figure 18-4. File Header Flags (Sheet 2 of 2)

* Trademark of Digital Equipment Corporation

18-10

COFF

File Header Declaration

The C structure declaration for the file header is given in
Figure 18-5. This declaration may be found in the header file
filehdr.h.

struct filehdr {
unsigned short
unsigned short
long
long

Lmagic; /* magic number */
Lnscns; /* number of section *
Ltimdat; /* time and data stamp /*
Lsymptr; /* file ptr to symbol table */

long
unsigned short
unsigned short

f-nsyms; /* number entries in the symbol table * /
Lopthdr; /* size of optional header * /
Lflags; /* flags * /

};

#define FILHDR struct filehdr
#define FILHSZ sizeof(FILHDR)

Figure 18-5. File Header Declaration

OPTIONAL HEADER INFORMATION
The template for optional information varies among different
systems that use the COFF. Applications place all system
dependent information into this record. This allows different
operating systems access to information that only that
operating system uses without forcing all COFF files to save
space for that information. General utility programs (for

18-11

COFF

example, the symbol table access library functions, the
disassembler, etc.) are made to work properly on any common
object file. This is done by seeking past this record using the
size of optional header information in the file header
f_opthdr.

Standard UNIX System a.out Header

By default, files produced by the link editor for a UNIX system
always have a standard UNIX system a.out header in the
optional header field. The UNIX system a.out header is 28
bytes. The fields of the optional header are described in Figure
18-6 and 18-7.

18-12

COFF

Bytes Declaration Name Description

0-1 short magic Magic number

2-3 short vstamp Version stamp

4-7 long int tsize Size of text
in bytes

8-11 long int dsize Size of initialized
da ta in bytes

12-15 long int bsize Size of uninitialized
da ta in bytes

16-19 long int dum1 Unused dummy field

20-23 long int dum2 Unused dummy field

24-27 long int entry Entry point

27-31 long int texCstart Base address of text

32-35 long int data_start Base address of data

Figure 18-6. Optional Header Contents
(3B208 Computers Only)

18-13

COFF

Bytes Declaration Name Description

0-1 short magic Magic number

2-3 short vstamp Version stamp

4-7 long int tsize Size of text in bytes

8-11 long int dsize Size of initialized
data in bytes

12-15 long int bsize Size of uninitialized
data in bytes

16-19 long int entry Entry point

20-23 long int texCstart Base address
of text

24-37 long int data_start Base address of data

Figure 18-7. Optional Header Contents (UNIX PC and
Processors other than the 3B20S)

The magic number in the optional header supplies operating
system dependent information about the object file, whereas
the magic number in the file header specifies the machine on
which the object file runs. The magic number in the optional
header supplies information telling the operating system on
that machine how that file should be executed.

The magic numbers recognized by the UNIX operating system
are given in Figure 18-8.

18-14

Value Meaning

0407 The text segment is not
write-protected or
sharable; the data
segment is contiguous
with the text segment.

0410 The data segment
starts at the next
segment following the
text segment and the
text segment is write
protected.

0413 The data segment
starts at a certain
boundary within the
next segment following
the text segment. The
text segment is shared,
demand paged, and
wri te protected.

Figure 18-8. UNIX System Magic Numbers

UNIX PC Shared Library

COFF

Programs which use the UNIX PC shared library (see
shlib(4)) have a magic number of 0413. They are identified as
shared library programs NOT by the magic number but by
having an extra section (.lib) link into the program. This extra
section is the result of invoking the Id(l) command as described
in the shlib(4) manual page. In addition the UNIX size(l)

18-15

COFF

command will report the presence of this extra section.

Optional Header Declaration

The C language structure declaration currently used for the
UNIX system a.out file header is given in Figure 18-9. This
declaration may be found in the header file aouthdr.h.

typedef struct aouthdr {
short magic; /* magic number * /
short vstamp; /* version stamp * /
long tsize; /* text size in bytes, padded * /

long
long
long

dsize;
bsize;
~ntry;

long text_start;
long data_start

} AOUTHDR;

/* to full word boundary * /
/* initialized data size * /
/* uninitialized data size * /
/* entry point * /
/* base of text for this file * /
/* base of data for this file * /

Figure 18-9. Aouthdr Declaration

SECTION HEADERS
Every object file has a table of section headers to specify the
layout of data within the file. The section header table consists
of one entry for every section in the file. The information in
the section header is described in Figure 18-10.

18-16

COFF

Bytes Declaration Name Description

0-7 char s_name 8-char null
padded section
name

8-11 long int s_paddr Physical
address of section

12-15 long int s_vaddr Virtual
address of section

16-19 long int s_size Section
size in bytes

20-23 long int s_scnptr File pointer
to raw data

24-27 long int s_relptr File ptr to
relocation
entries

28-31 long int s_lnnoptr File ptr to line
number entries

32-33 unsigned s_nreloc Number of
short entries

34-35 unsigned s_nlnno Number of line
short number entries

36-39 long int s3lags Flags (see
Figure 18-11)

Figure 1S-10. Section Header Contents

The size of a section is padded to a multiple of 4 bytes.

1S-17

COFF

File pointers are byte offsets that can be used to locate the
start of data, relocation, or line number entries for the section.
They can be readily used with the UNIX system function
fseek(3S).

Flags

The lower 4 bits of the flag field indicate a section type. The
flags are described in Figure 18-11.

Mnemonic Flag Meaning

STYP_REG OxOO Regular section
(allocated,
relocated, loaded)

STYP_DSECT OxOl Dummy section
(not allocated,
relocated, not
loaded)

STYP _NOLOAD Ox02 Noload section
(allocated,
relocated, not
loaded)

Figure 18-11. Section Header Flags (Sheet 1 of 2)

18-18

COFF

Mnemonic Flag Meaning

STYP_GROUP Ox04 Grouped section
(formed from
input sections)

STYP_PAD Ox08 Padding section
(not allocated,
not relocated,
loaded)

STYP_COPY OxlO Copy section (for
a decision
function used in
updating fields;
not allocated, not
relocated, loaded,
relocation and
line number
entries processed
normally)

Figure 18-11. Section Header Flags (Sheet 2 of 2)

Section Header Declaration

The C structure declaration for the section headers is described
in Figure 18-12. This declaration may be found in the header
file scnhdr. h.

18 .. 1~

COFF

struct scnhdr
char s_name[8]; /* section name * /
long s_paddr; /* physical address * /
long s_vaddr; /* virtual address * /
long s_size; /* section size * /
long s_scnptr; /* file ptr to * /

/* section raw data * /
long s_relptr; /* file ptr to relocation * /
long s_lnnoptr; /* file ptr to line number * /
unsigned short s_nreloc; /* number of relocation * /

/* entries * /
unsigned short s_nlnno; /* number of line number * /

/* entries * /
long s_flags; /* flags */

} ;

#define SCNHDR struct scnhdr
#define SCNHSZ sizeof(SCNHDR)

Figure 18-12. Section Header Declaration

.bss Section Header

The one deviation from the normal rule in the section header
table is the entry for uninitialized data in a .bss section. A
.bss section has a size and symbols that refer to it, and
symbols that are defined in it. At the same time, a .bss
section has no relocation entries, no line number entries, and no
data. Therefore, a .DSS section has an entry in the section
header table but occupies no space elsewhere in the file. In this
case, the number of relocation and line number entries, as well
as all file pointers in a .bss section header, are O.

18-20

COFF

SECTIONS
Figure 18-1 shows that section headers are followed by the
appropriate number of bytes of text or data. The raw data for
each section begins on a full word boundary in the file.

Files produced by the cc and the as always contain three
sections, called .text, .data, and .hss. The .text section
contains the instruction text (i.e., executable code), the .data
section contains initialized data variables, and the .hss section
contains uninitialized data variables.

The link editor "SECTIONS directives" (see Chapter 17) allows
users to

• Describe how input sections are to be combined.

• Direct the placement of output sections.

• Rename output sections.

If no SECTIONS directives are given, each input section
appears in an output section of the same name. For example, if
a number of object files from the" cc" are linked together
(each containing the three sections .text, .data, and .hss), the
output object file contains three sections, .text, .data, and
.hss.

RELOCATION INFORMATION

Object files have one relocation entry for each relocatable
reference in the text or data. The relocation information
consists of entries with the format described in Figure 18-13.

18-21

COFF

Bytes Declaration Name Description

0-3 long int r_symndx (Virtual)
address
of reference

4-7 long int r_symndx Symbol
table
index

8-9 unsigned short r_type Relocation
type

Figure 18-13. Relocation Section Contents

The first 4 bytes of the entry are the virtual address of the text
or data to which this entry applies. The next field is the index,
counted from 0, of the symbol table entry that is being
referenced. The type field indicates the type of relocation to be
applied.

As the link editor reads each input section and performs
relocation, the relocation entries are read. They direct how
references found within the input section are treated.

The currently recognized relocation types are given in Figures
18-14 through 18-16.

18-22

Mnemonic Flag Meaning

R_ABS 0 Reference is
absolute; no
relocation is
necessary. The
entry will be
ignored.

R_DIR24 04 Direct 24-bit
reference to the,
symbol's virtual
address.

R_REL24 05 A "PC-relative"
24-bit reference
to the symbol's
virtual address.
Actual address is
calculated by
adding a constant
to the PC value.

Figure 18-14. UNIX PC and 3B20S Computers
Relocation Types

COFF

18-23

COFF

Mnemonic Flag Meaning

R_BS 0 Reference is
absolute; no
relocation is
necessary. The
entry will be
ignored.

R_DIR32 06 Direct 32-bit
reference to the
symbol's virtual
address.

R_DIR32S 012 Direct 32-bit
reference to the
symbol's virtual
address, with the
32-bit value
stored in the
reverse order in
the object file.

Figure 18·15. 3B5 and 3B2 Relocation Types

18-24

COFF

Mnemonic Flag Meaning

R_ABS 0 Reference is
absolute; no
relocation is
necessary. The
entry will be
ignored.

R_RELBYTE 017 Direct 8-bit
reference to the
symbol's virtual
address.

R_RELWORD 020 Direct 16-bit
reference to the
symbol's virtual
address.

R_RELLONG 021 Direct 32-bit
reference to the
symbol's virtual
address.

R_PCRBYTE 022 A "PC-relative"
8-bit reference to
the symbol's
virtual address.

R_PCRWORD 023 A "PC-relative"
I6-bit reference
to the symbol's
virtual address.

R_PCRLONG 024 A "PC-relative"
32-bit reference
to the symbol's
virtual address.

Figure 18-16. UNIX PC VAX Relocation Types

18-25

COFF

On the VAX processors, relocation of a symbol index of -1
indicates that the amount by which the section is being
relocated is added to the relocatable address.

The as automatically generates relocation entries which are
then used by the link editor. The link editor uses this
information to resolve external references in the file.

Relocation Entry Declaration

The structure declaration for relocation entries is given in
Figure 18-17. This declaration may be found in the header file
reloc.h.

struct reloc {
long

};

long

unsigned short

#define RELOC
#define RELSZ

r _ vaddr; /* virtual address * /
/* of reference * /

r _symndx; /* index into symbol * /
/* table */

r_type; /* relocation type * /

struct reloc
10 0

Figure 18-17. Relocation Entry Declaration

18-26

COFF

LINE NUMBERS
When invoked with the -g option, UNIX system ccs (cc, /77)
generates an entry in the object file for every C language
source line where a breakpoint can be inserted. You can then
reference line numbers when using a software debugger like
sdb. All line numbers in a section are grouped by function as
shown in Figure 18-18.

symbol index 0

physical address line number

physical address line number

symbol index 0

physical address line number

physical address line number

Figure 18-18. Line Number Grouping

The first entry in a function grouping has line number 0 and
has, in place of the physical address, an index into the symbol
table for the entry containing the function name. Subsequent
entries have actual line numbers and addresses of the text
corresponding to the line numbers. The line number entries
appear in increasing order of address.

18-27

COFF

Line Number Declaration

The structure declaration currently used for line number
entries is given in Figure 18-19.

struct lineno {
union

long Lsymndx;

long Lpaddr;
} Laddr;
unsigned short Llnno;

} ;

#define LINENO
#define LINESZ

struct lineno
6 0

/* symtbl index of * /
/* fune name * /
/* paddr of line number * /

/* line number * /

Figure 18-19. Line Number Entry Declaration

Because of symbolic debugging requirements, the order of
symbols in the symbol table is very important. Symbols appear
in the sequence shown in Figure 18-20.

18-28

COFF

file name 1

function 1

local symbols
for function 1

function 2

local symbols
for function 2

statics

file name 2

function 1

local symbols
for function 1

statics

defined global
symbols

undefined global
symbols

Figure 18-20. COFF Global Symbol Table

The word "statics" in Figure 18-20 means symbols defined in
the C language storage class static outside any function. The
symbol table consists of at least one fixed-length entry per
symbol with some symbols followed by auxiliary entries of the
same size. The entry for each symbol is a structure that holds
the value, the type, and other information.

18-29

COFF

Special Symbols

The symbol table contains some special symbols that are
generated by the cc, as, and other tools. These symbols are
given in Figure 18-21.

Symbol Meaning

.file file name

.text address of .text section

.data address of .data section

.bss address of .bss section

.bb address of start of inner block

.eb address of end of inner block

.bf address of start of function

.ef address of end of function

.target pointer to the structure or
union returned by a function

.xfake dummy tag name for
structure, union, or enumeran

Figure 18·21. Special Symbols in the Symbol Table
(Sheet 1 of 2)

18-30

COFF

Symbol Meaning

.eos end of members of
structure, union, or
enumeration

_etext,etext next available address
after the end of the
output section .text

_edata,edata next available address
after the end of the
output section .data

_end,end next available address
after the end of the
output section .bss.

Figure 18-21. Special Symbols in the Symbol Table
(Sheet 2 of 2)

Six of these special symbols occur in pairs. The .bb and .eb
symbols indicate the boundaries of inner blocks. A .bf and .ef
pair brackets each function; and a .xfake and .eos pair names
and defines the limit of structures, unions, and enumerations
that were not named. The .eos symbol also appears after
named structures, unions, and enumerations.

When a structure, union, or enumeration has no tag name, the
cc invents a name to be used in the symbol table. The name
chosen for the symbol table is .xfake, where "x" is an integer.
If there are three unnamed structures, unions, or enumerations
in the source, their tag names are ".Ofake", ".lfake", and
".2fake".

Each of the special symbols has different information stored in
the symbol table entry as well as the auxiliary entry.

18-31

COFF

Inner Blocks

The C language defines a block as a compound statement that
begins and ends with braces ({ and}). An inner block is a
block that occurs within a function (which is also a block).

For each inner block that has local symbols defined, a special
symbol .bb is put in the symbol table immediately before the
first local symbol of that block. Also a special symbol, .eb is
put in the symbol table immediately after the last local symbol
of that block. The sequence is shown in Figure 18-22 .

. bb

local symbols
for that block

.eb

Figure 18-22. Special Symbols (.bb and .eb)

Because inner blocks can be nested by several levels, the .bb
.eb pairs and associated symbols may also be nested. See
Figure 18-23.

18-32

COFF

/* block 1 */
int i;
char c;

/* block 2 */
long a;

/* block 3 */
int x;

/* block 3 */
/* block 2 */

/* block 4 */
long i;

/* block 4 */
/* block 1 */

Figure 18-23. Nested blocks

The symbol table would look like Figure 18-24.

18-33

COFF

.bb for block 1

i

c

.bb for block 2

a

.bb for block 3

x

.eb for block 3

.e b for block 2

.bb for block 4

i

.bb for block 4

.eb for block 1

Figure 18-24. Example of the Symbol Table

Symbols and Functions

For each function, a special symbol .bf is put between the
function name and the first local symbol of the function in the
symbol table. Also, a special symbol .ef is put immediately
after the last local symbol of the function in the symbol table.
The sequence is shown in Figure 18-25.

18-34

COFF

function name

.bf

local signal

.ef

Figure 18-25. Symbols for Functions

If the return value of the function is a structure or union, a
special symbol .target is put between the function name and
the .bf. The sequence is shown in Figure 18-26.

function name

.target

.bf

local symbols

.ef

Figure 18-26. Special Symbol.Target

The cc invents .target to store the function-return structure or
union. The symbol .target is an automatic variable with
"pointer" type. Its value field in the symbol is always o.

18 .. 35

COFF

Symbol Table Entries

All symbols, regardless of storage class and type, have the same
format for their entries in the symbol table. The symbol table
entries each contain the 18 bytes of information. The meaning
of each of the fields in the symbol table entry is described in
Figure 18-27

It should be noted that indices for symbol table entries begin at
o and count upward. Each auxiliary entry also counts as one
symbol.

Bytes Declaration Name Description

0-7 (see text below) - n These 8 bytes
contain either
the name of a
pointer or the
name of a
symbol.

8-11 long int n_value Symbol value;
storage class
dependent

12-13 short n_scnum Section
number of
symbol

14-15 unsigned short n_type Basic and
derived type
specifica tion

16 char n_sclass Storage class
of symbol

17 char n_numaux Number of
auxiliary
entries.

Figure 18-27. Symboi Tabie Entry Format

18-36

COFF

Symbol Names

The first 8 bytes in the symbol table entry are a union of a
character array and two longs. If the symbol name is eight
characters or less, the (null-padded) symbol name is stored
there. If the symbol name is longer than eight characters, then
the entire symbol name is stored in the string table. In this
case, the 8 bytes contain two long integers, the first is zero, and
the second is the offset (relative to the beginning of the string
table) of the name in the string table. Since there can be no
symbols with a null name, the zeroes on the first 4 bytes serve
to distinguish a symbol table entry with an offset from one
with a name in the first 8 bytes as shown in Figure 18-28.

Bytes Declara tion Name Description

0-7 char n_name 8-character
null-padded
symbol name

0-3 long n_zeroes Zero in this
field indicates
the name is
in the string
table

4-7 long n_offset Offset of the
name in the
string table

Figure 18-28. Name Field

Some special symbols are generated by the cc and link editor as
discussed in " special symbols" .

18-37

COFF

Storage Classes

The storage class field has one of the values described in Figure
18-29. These "defines" may be found in the header file
storclass. h.

18 .. 38

COFF

Mnemonic Value Storage Class

C_EFCN -1 physical end of a function

C_NULL 0 -

C_AUTO 1 automatic variable

C_EXT 2 external symbol

C_STAT 3 static

C_REG 4 register variable

C_EXTDEF 5 external definition

C_LABEL 6 label

C_ULABEL 7 undefined label

C_MOS 8 member of structure

C_ARG 9 function argument

C_STRTAG 10 structure tag

C_MOU 11 member of union

C_UNTAG 12 union tag

C_TPDEF 13 type definition

C_USTATIC 14 uninitialized static

C_ENTAG 15 enumeration tag

C_MOE 16 member of enumeration

C_REGPARM 17 register parameter

C_FIELD 18 bit field

Figure 18-29. Storage Classes (Sheet 1 of 2)

18-39

COFF

Mnemonic Value Storage Class

C_BLOCK 100 beginning and end of block

C_FCN 101 beginning and end of function

C_EOS 102 end of structure

C_FILE 103 file name

C_LINE 104 used only by utility programs

C_ALIAS 105 duplicated tag

C_HIDDEN 106 like static, used to avoid
name conflicts

Figure 18-29. Storage Classes (Sheet 2 of 2)

All of these storage classes except for C_ALIAS and C
HIDDEN are generated by the" cc" or" as". The compress
utility, cprs, generates the C_ALIAS mnemonic. This utility
(described in the UNIX System Reference Manual) removes
duplicated structure, union, and enumeration definitions and
puts ALIAS entries in their places. The storage class C-

I

HIDD~N is not used by any UNIX system tools.

Some of these storage classes are used only internally by the
"cc" and the "as". These storage classes are C_EFCN,
C_EXTDEF, C_ULABEL, C_USTATIC, and C_LINE.

Storage Classes for Special Symbols

Some special symbols are restricted to certain storage classes.
They are given in Figure 18-30.

18 .. 40

COFF

Special Symbol Storage Class

.file C_FILE

.bb C_BLOCK

.eb C_BLOCK

.bf C_FCN

.ef C_FCN

.target C_AUTO

.xfake C_STRTAG, C_UNTAG, C_ENTAG

.eos C_EOS

.text C_STAT

.data C_STAT

.bss C_STAT

Figure 18-30. Storage Class by Special Symbols

Also some storage classes are used only for certain special
symbols. They are summarized in Figure 18-31.

18-41

COFF

Storage Class Special Symbol

C_BLOCK .bb, .eb

C_FCN .bf, .ef

C_EOS .eos

C_FILE .file

Figure 18-31. Restricted Storage Classes

Symbol Value Field

The meaning of the "value" of a symbol depends on its storage
class. This relationship is summarized in Figure 18-32.

18-42

COFF

Storage Class Meaning

C_AUTO stack offset in bytes

C_EXT relocatable address

C_STAT relocatable address

C_REG register number

C_LABEL relocatable address

C_MOS offset in bytes

C_ARG stack offset in bytes

C_STRTAG 0

C_MOU 0

C_UNTAG 0

C_TPDEF 0

C_ENTAG 0

C_MOE enumeration value

C_REGPARM register number

C_FIELD bit displacement

C_BLOCK relocatable address

C_FCN relocatable address

C_EOS size

C_FILE (see text below)

C_ALIAS tag index

C_HIDDEN relocatable address

Figure 18-32. Storage Class and Value

If a symbol has storage class C_FILE, the value of that symbol
equals the symbol table entry index of the next .tile symbol.
That is, the .file entries form a l-way linked list in the symbol

18 .. 43

COFF

table. If there are no more .file entries in the symbol table,
the value of the symbol is the index of the first global symbol.

Relocatable symbols have a value equal to the virtual address
of that symbol. When the section is relocated by the link
editor, the value of these symbols changes.

Section Number Field

Section numbers are listed in Figure 18-33.

Mnemonic Section N um her Meaning

N_DEBUG -2 Special symbolic
debugging
symbol

N_ABS -1 Absolute symbol

N_UNDEF 0 Undefined
external symbol

N_SCNUM 1-077777 Section number
where symbol
was defined

Figure 18-33. Section Number

A special section number (-2) marks symbolic debugging
symbols, including structure/union/ enumeration tag names,
typedefs, and the name of the file. A section number of -1
indicates that the symbol has a value but is not relocatable.
Examples of absolute-valued symbols include automatic and
register variables, function arguments, and .eos symbols. The
.text, .data, and .bss symbols default to section numbers 1, 2,

18-44

COFF

and 3, respectively.

With one exception, a section number of 0 indicates a
relocatable external symbol that is not defined in the current
file. The one exception is a multiply defined external symbol
(Le., FORTRAN common or an uninitialized variable defined
external to a function in C). In the symbol table of each file
where the symbol is defined, the section number of the symbol
is 0 and the value of the symbol is a positive number giving the
size of the symbol. When the files are combined, the link editor
combines all the input symbols into one symbol with the section
number of the .bss section. The maximum size of all the input
symbols with the same name is used to allocate space for the
symbol and the value becomes the address of the symbol. This
is the only case where a symbol has a section number of 0 and
a non-zero value.

Section Numbers and Storage Classes

Symbols having certain storage classes are also restricted to
certain section numbers. They are summarized in Figure 18-34.

18-45

COFF

Storage Class Section Number

C_AUTO N_ABS

C_EXT N_ABS, N_UNDEF, N_SCNUM

C_STAT N_SCNUM

C_REG N_ABS

C_LABEL N_UNDEF, N_SCNUM

C_MOS N_ABS

C_ARG N_ABS

C_STRTAG N_DEBUG

C_MOU N_ABS

C_UNTAG N_DEBUG

C_TPDEF N_DEBUG

C_ENTAG N_DEBUG

C_MOE N_ABS

C_REGPARM N_ABS

C_FIELD N_ABS

C_BLOCK N_SCNUM

C_FCN N_SCNUM

C_EOS N_ABS

C_FILE N_DEBUG

C_ALIAS N_DEBUG

Figure 18-34. Section Number and Storage Class

18-46

COFF

Type Entry

The type field in the symbol table entry contains information
about the basic and derived type for the symbol. This
information is generated by the" cc" . The VAX" cc" generates
this information only if the -g option is used. Each symbol
has exactly one basic or fundamental type but can have more
than one derived type. The format of the 16-bit type entry is

I d61 d5! d4! d3! d2! dl ! typ I

Bits 0 through 3, called "typ", indicate one of the fundamental
types given in Figure 18-35.

18-47

COFF

Mnemonic Value Type

T_NULL 0 type not assigned

T_CHAR 2 character

T_SHORT 3 short integer

T_INT 4 integer

T_LONG 5 long integer

T_FLOAT 6 floating point

T_DOUBLE 7 double word

T_STRUCT 8 structure

T_UNION 9 union

T_ENUM 10 enumeration

T_MOE 11 member of enumeration

T_UCHAR 12 unsigned character

T_USHORT 13 unsigned short

T_UINT 14 unsigned integer

T_ULONG 15 unsigned long

Figure 18-35. Fundamental Types

Bits 4 through 15 are arranged as six 2-bit fields marked "dl"
through "d6." These "d" fields represent levels of the derived
types given in Figure 18-36.

18-48

COFF

Mnemonic Value Type

DT_NON 0 no derived type

DT_PTR 1 pointer
DT_FCN 2 function

DT_ARY 3 array

Figure 18-36. Derived Types

The following examples demonstrate the interpretation of the
symbol table entry representing type.

char *func();

Here June is the name of a function that returns a pointer to a
character. The fundamental type of June is 2 (character), the
dl field is 2 (function), and the d2 field is 1 (pointer).
Therefore, the type word in the symbol table for June contains
the hexadecimal number Ox62, which is interpreted to mean
"function that returns a pointer to a character."

short *tabptr[10J [25J [3J;

Here tabptr is a 3-dimensional array of pointers to short
integers. The fundamental type of tabptr is 3 (short integer);
the dl, d2, and d3 fields each contains a 3 (array), and the d4
field is 1 (pointer). Therefore, the type entry in the symbol
table contains the hexadecimal number Ox7f3 indicating a "3-
dimensional array of pointers to short integers."

18-49

COFF

Type Entries and Storage Classes

Figure 18-37 shows the type entries that are legal for each
storage class.

Storage ----------"d" entry---------- "typ" entry

Class Function? Array?

C_AUTO no yes

C_EXT yes yes

C_STAT yes yes

C_REG no no

C_LABEL no no

C_MOS no yes

C_ARG yes no

C_STRTAG no no

C_MOU no yes

C_UNTAG no no

Figure 18-37. Type Entries
(Sheet 1 of 2)

18-50

Pointer? Basic Type

yes Any except
T_MOE

yes Any except
T_MOE

yes Any except
T_MOE

yes Any except
T_MOE

no T_NULL

yes Any except
T_MOE

yes Any except
T_MOE

no T_STRUCT

yes Any except
T_MOE

no T_UNION

by Storage Class

COFF

Storage ----------"d" entry---------- "typ" entry

Class Function? Array?

C_TPDEF no yes

C_ENTAG no no

C_MOE no no

C_REGPARM no no

C_FIELD no no

C_BLOCK no no

C_FCN no no

C_EOS no no

C_FILE no no

C_ALIAS no no

Pigu:te 18-37. Type Entries
(Sheet 2 of 2)

Pointer? Basic Type

yes Any except
T_MOE

no T_ENUM

no T_MOE

yes Any except
T_MOE

no T_ENUM,
T_UCHAR,
T_USHORT,
T_UNIT,
T_ULONG

no T_NULL

no T_NULL

no T_NULL

no T_NULL

no T_STRUCT,
T_UNION<,
T_ENUM

by Storage Class

Conditions for the "d" entries apply to dl through d6, except
that it is impossible to have two consecutive derived types of
"function. "

18 .. 51

COFF

Although function arguments can be declared as arrays, they
are changed to pointers by default. Therefore, no function
argument can have "array" as its first derived type.

Structure for Symbol Table Entries

The C language structure declaration for the symbol table entry
is given in Figure 18-38. This declaration may be found in the
header file syms.h.

18-52

struct symen t

1.
J'

union

char _n_name[SYMNMLEN];

struct

] _n;
long

short

long

long

/* symbol name* /

_n_zeroes;
/* symbol name * /

_n_offset;
/* location in string table * /

_n_nptr[2];
/* allows overlaying * /

n_value;
/* value of symbol * /

n_scnum;
/* section number * /

unsigned short n_type;
/* type and derived * /

char n_sclass;
/* storage class * /

char n_numaux;

#define n_name
#define n_zeroes
#define n_offset
#define n_nptr

/* number of aux entries * /

_n._n_name
_n._n_n._n_zeroes
_n._n_n._n_offset
_n._n_nptr[l]

#define SYMNMLEN 8
#define SYMESZ 18 /* size of a symbol table entry * /

COFF

Figure 18-38. Symbol Table Entry Declaration

18-53

COFF

Auxiliary Table Entries

Currently, there is at most one auxiliary entry per symbol. The
auxiliary table entry contains the same number of bytes as the
symbol table entry. However, unlike symbol table entries, the
format of an auxiliary table entry of a symbol depends on its
type and storage class. They are summarized in Figure 18-39.

18-54

COFF

Storage Type Entry Auxiliary
Name

Class dl typ Entry Format

.file C_FILE DT_NON T_NULL file name

.text,.data, C_STAT DT_NON T_NULL section

.bss

tagname C_STRTAG DT_NON T_NULL tag name
C_UNTAG
C_ENTAG

.eos C_EOS DT_NON T_NULL end of
structure

fcname C_EXT DT_FCN (Note 1) function
C_STAT

arrname (Note 2) DT_ARY (Note 1) array
.bb C_BLOCK DT_NON T_NULL beginning

of block

.eb C_BLOCK DT_NON T_NULL end of block

.bf,.ef C_FCN DT_NON T_NULL beginning
and end of
function

name related (Note 2) DT_PTR T_STRUCT, name related
to structure DT_ARR, T_UNION, to structure,
union, DT_NON T_ENUM union,
enumeration enumeration

Notes:
1. Any except T_MOE.
2. C_AUTO, C_STAT, C_MOS, C_MOU, C_TPDEF.

Figure IS-39. Auxiliary Symbol Table Entries

In Figure 18-39, "tagname" means any symbol name including
the special symbol .xfake, and "fename" and "arrname"

IS-55

COFF

represent any symbol name.

Any symbol that satisfies more than one condition in Figure
18-39 should have a union format in its auxiliary entry.
Symbols that do not satisfy any of the above conditions should
NOT have any auxiliary entry.

File Names

Each of the auxiliary table entries for a file name contains a
14-character file name in bytes 0 through 13. The remaining
bytes are 0, regardless of the size of the entry.

Sections

The auxiliary table entries for sections have the format as
shown in Figure 18-40.

Bytes Declaration Name Description

0-3 long int x_scnlen section
length

4-6 unsigned short x_nreloc number of
relocation
entries

6-7 unsigned short x_nlinno number of
line numbers

8-17 - - unused (filled
wi th zeroes)

Figure 18-40. Format for AuxHiary Tabie Entries

18-56

COFF

Tag Names

The auxiliary table entries for tag names have the format
shown in Figure 18-41.

Bytes Declaration Name Description

0-5 - - unused (filled
with zeros)

6-7 unsigned short x_size size of strucrt,
union,and
enumeration

8-11 - - unused (filled
wi th zeroes)

12-15 long int x_endndx index of next
entry beyond
this structure,
union, or
enumeration

16-17 - - unused (filled
wi th zeroes)

Figure 18-41. Tag Names Table Entries

End of Structures

The auxiliary table entries for the end of structures have the
format shown in Figure 18-42:

18-57

COFF

Bytes Declaration Name Description

0-3 long int x_tagndx tag index

4-5 - - unused (filled
wi th zeroes)

6-7 unsigned short x_size size of struct,
union, or
enumeration

8-17 - - unused (filled
wi th zeroes)

Figure 18-42. Table Entries for End of Structures

Functions

The auxiliary table entries for functions have the format shown
in Figure 18-43:

18-58

COFF

Bytes Declaration Name Description

0-3 long int x_tagndx tag index

4-7 long int x_fsize size of
function
(in bytes)

8-11 long int x-Innoptr file pointer
to line number

12-15 long int x_endndx index of
next entry
beyond this
point

16-17 unsigned short x_tvndx index of the
function's address
in the transfer
vector table (not
used in UNIX system)

Figure 18-43. Table Entries for Functions

Arrays

The auxiliary table entries for arrays have the format shown in
Figure 18-44:

18-59

COFF

Bytes Declaration Name Description

0-3 long int x_tagndx tag index

4-5 unsigned short x_Inno line number of
declaration

6-7 unsigned short x_size size of array

8-9 unsigned short x_dimen[O] first dimension

10-11 unsigned short x_dimen[l] second dimension

12-13 unsigned short x_dimen[2] third dimension

14-15 unsigned short x_dimen[3] fourth dimension

16-17 - - unused (filled
wi th zeroes)

Figure 18-44. Table Entries for Arrays

End of Blocks and Functions

The auxiliary table entries for the end of !:>locks and functions
have the format shown in Figure 18-45:

18-60

COFF

Bytes Declaration Name Description

0-3 - - used (filled
with zeroes)

4-5 unsigned short x_lnno C-source line
number

6-17 - - unused (filled
wi th zeroes)

Figure 18-45. End of Block and Function Entries

Beginning of Blocks and Functions

The auxiliary table entries for the beginning of blocks and
functions have the format shown in Figure 18-46:

18-61

COFF

Bytes Declaration Name Description

0-3 - - unused (filled
wi th zeroes)

4-5 unsigned short x_Inno C-source line
number

6-11 - - unused (filled
wi th zeroes)

12-15 long int x_endndx index of next
entry past
this block

16-17 - - unused (filled
wi th zeroes)

Figure 18-46. Format for Beginning of Block and
Function

Names Related to Structures, Unions, and Enumerations

The auxiliary table entries for structure, union, and
enumerations symbols have the format shown in Figure 18-47:

18-62

COFF

Bytes Declaration Name Description

0-3 long int x_tagndx tag index

4-5 - - unused (filled
wi th zeroes)

6-7 unsigned short x_size size of the
structure, union,
or numeration

8-17 - - unused (filled
wi th zeroes)

Figure 18-47. Entries for Structures, Unions, and
Numerations

Names defined by "typedef" mayor may not have auxiliary
table entries. For example,

typedef struct people STUDENT;

struct people {
char name[20];
long id;
};

typedef struct people EMPLOYEE;

The symbol "EMPLOYEE" has an auxiliary table entry in the
symbol table but symbol "STUDENT" will not.

18-63

COFF

Auxiliary Entry Declaration

The C language structure declaration for an auxiliary symbol
table entry is given in Figure 18-48. This declaration may be
found in the header file syms.h.

union auxent {
struct {

}

union {
struct {

} x_misc;
union {

struct {

} x_fcn;
struct {

} x_ary;
} x_fcnary;

} x_sym;
struct {

} x_file;
struct {

} x_scn;
struct {

long x_tagndx;

unsigned short x_Inno;
unsigned short x_size;

long x_Innoptr;
long x_endndx;

unsigned short x_dimen[DIMNUM];

unsigned short x_tvndx;

char x_fname [FILNMLEN];

long x_scnlen;
unsigned short x_nreloc;
unsigned short x_nlinno;

long x_tvfill;
unsigned short x_tvlen;
unsigned short x_tvran[2];

#define FILNMLEN 14
#define DIMNUM 4
#define AUXENT union auxent
#define A UXESZ 18

Figure 18-48. Auxiliary Symbol Table Entry

18-64

COFF

STRING TABLE
Symbol table names longer than eight characters are stored
contiguously in the string table with -each symbol name
delimited by a null byte. The first four bytes of the string
table are the size of the string table in bytes; offsets into the
string table therefore are greater than or equal to 4.

For example, given a file containing two symbols (with names
longer then eight characters, long_name_l and another_one)
the string table has the format as shown in Figure 18-49:

18-65

COFF

28

'1' '0' 'n' 'g'

,
-
,

'n' 'a' 'm'

'e'
,
-
, '1' ,\0'

'a' 'n' '0' 't'

'h' 'e' 'r' ,
-
,

'n' 'n' ,~'
, ,

I ~ I ~. I ~ I \0
I

Figure 18-49. String Table

The index of lonQ_name_l in the string table is 4 and the index
of another _one is 16.

ACCESS ROUTINES
Supplied with every standard UNIX system release is a set of
access routines that are used for reading the various parts of a
common object file. Although the calling program must know
the detailed structure of the parts of the object file it processes,
the routines effectively insulate the calling program from the
knowledge of the overall structure of the object file. In this
way, you can concern yourself with the section you are

18-66

COFF

interested in without knowing all the object file details.

The access routines can be divided into four categories:

1. Functions that open or close an object file.

2. Functions that read header or symbol table information.

3. Functions that position an object file at the start of a
particular section of the object file.

4. A function that returns the symbol table index for a
particular symbol.

These routines can be found in the library libld.a and are listed
in Section 3 of the UNIX System V User's Manual. A summary
of what is available can be found in the UNIXSystem V User's
Manual under LDFCN(4).

18 .. 67

Chapter 19

ARBITRARY PRECISION DESK
CALCULATOR LANGUAGE-"bc"

PAGE

GENERAL... 19-1

BASES.. 19-4

SCALING.. 19-6

FUNCTIONS ... 19-7

SUBSCRIPTED VARIABLES. 19-9

CONTROL STATEMENTS............................... 19-10

ADDITIONAL FEATURES. .. 19-13

APPENDIX 8.1 ... 19-16

Chapter 19

ARBITRARY PRECISION DESK
CALCULATOR LANGUAGE-"bc"

GENERAL
The arbitrary precision desk calculator language (be) is a
language and compiler for doing arbitrary precision arithmetic
under the UNIX operating system. The output of the compiler
is interpreted and executed by a collection of routines that can
input, output, and do arithmetic on infinitely large integers and
on scaled fixed-point numbers. These routines are based on a
dynamic storage allocator. Overflow does not occur until all
available core storage is exhausted.

The be language has a complete control structure as well as
immediate-mode operation. Functions can be defined and saved
for later execution. A small collection of library functions is
also available, including sin, cos, arctan, log, exponential, and
Bessel functions of integer order.

The be compiler was written to make conveniently available a
collection of routines (called dc) that are capable of doing
arithmetic on integers of arbitrary size. The compiler is not
intended to provide a complete programming language. It is a
minimal language facility.

Some of the uses of this compiler are:

• Compile large integers

• Compute accurately to many decimal places

• Convert numbers from one base to another base.

19-1

Be

There is a scaling prOVISIOn that permits the use of decimal
point notation. Provision is also made for input and output in
bases other than decimal. Numbers can be converted from
decimal to octal by simply setting the output base to equal
eight.

The actual limit on the number of digits that can be handled
depends on the amount of core storage available. This is
possible even on the smallest versions of the UNIX operating
system.

The syntax of be is very similar to that of the C language.
This enables users who are familiar with C language to easily
work with be.

The simplest kind of statement is an arithmetic expression on a
line by itself. For instance, if you type in the addition of two
numbers (with the + operator) such as

142857 + 285714

the program responds immediately with the sum

428571.

The operators -, *, /, %, and can also be used. They indicate
subtraction, multiplication, division, remaindering, and integer
result truncated toward zero. Division by zero produces an
error comment.

Any term in an expression may be prefixed by a minus sign to
indicate that it is to be negated (the unary minus sign). The
expression

7+-3

19-2

Be

is interpreted to mean that -3 is to be added to 7.

More complex expressions with several operators and with
parentheses are interpreted just as in power, then *, %, and /,
and finally, + and -. Contents of parentheses are evaluated
before material outside the parentheses. Exponentiations are
performed from right to left and the other operators from left
to right.

are equivalent as are the two expressions

However, be shares with Fortran and C language the
undesirable convention that

a/b*c is equivalent to (a/b)*c.

Internal storage registers to hold numbers have single
lowercase letter names. The value of an expression can be
assigned to a register in the usual way. The statement

x=x+3

has the effect of increasing by three the value of the contents
of the register named x. When, as in this case, the outermost
operator is an "=", the assignment is performed; but the result
is not printed. Only 26 of these named storage registers are
available.

There is a built-in square root function whose result is
truncated to an integer (see the part on "SCALING"). Entering
the lines

19-3

Be

x = sqrt(191)
x

produces the printed result

13

BASES
There are two special internal quantities; ibase (input base)
and obase (output base). The contents of ibase, initially set
to 10 (decimal), determines the base used for interpreting
numbers read in. For example, the input lines

ibase = 8
11

produces the output line

9.
\

and the \sfstem is ready to do octal to decimal conversions.
Beware, h&~ever, of trying to change the input base back to
decimal by t~ing

\
ibase = 10

Because the numb~f 10 is interpreted as octal, this statement
has no effect. Fril' dealing in hexadecimal notation, the
characters A through F are permitted in numbers (regardless
of what base is in effect) and are int~~~ted as digits having
values 10 through 15, respectively. The \tement

19-4

Be

ibase = A

changes the base to decimal regardless of what the current
input base is. Negative and large positive input bases are
permitted but are useless. No mechanism has been provided for
the input of arbitrary numbers in bases less than 1 and greater
than 16.

The content of obase, initially 10 (decimal), is used as the base
for output numbers. The input lines

obase = 16
1000

produces the output line

3E8

which is to be interpreted as a 3-digit hexadecimal number.
Very large output bases are permitted and are sometimes
useful. For example, large numbers can be output in groups of
five digits by setting obase to 100000. Strange output bases
(Le., 1, 0, or negative) are handled appropriately.

Very large numbers are split across lines with 70 characters per
line. Lines which are continued end with a backs lash (\).
Decimal output conversion is practically instantaneous, but
output of very large numbers (Le., more than 100 digits) with
other bases is rather slow. Nondecirnal output conversion of a
100-digit number takes about 3 seconds.

The ibase and obase have no effect on the course of internal
computation or on the evaluation of expressions. They only
affect input and output conversions, respectively.

19 .. 5

Be

SCALING
A third special internal quantity called scale is used to
determine the scale of calculated quantities. The number of
digits after the decimal point of a number is referred to as its
scale. Numbers may have up to 99 decimal digits after the
decimal point. This fractional part is retained in further
com pu ta tions.

The contents of scale must be no greater than 99 and no less
than o. It is initially set to O. However, appropriate scaling
can be arranged when more than 99 fraction digits are
required.

When two scaled numbers are combined by means of one of the
arithmetic operations, the result has a scale determined by the
following rules:

• Addition and subtraction-The scale of the result is the
larger of the scales of the two operands. In this case, there
is never any truncation of the result.

• Multiplication-The scale of the result is never less than
the maximum of the two scales of the operands and never
more than the sum of the scales of the operands. Subject
to those two restrictions, the scale of the result is set equal
to the contents of the internal quantity scale.

• Division-The scale of a quotient is the contents of the
internal quantity scale. The scale of a remainder is the
sum of the scales of the quotient and the divisor.

• Exponentiation-The result of an exponentiation is scaled
as if the implied multiplications were performed. An
exponent must be an integer.

• Square root-The scale of a square root is set to the
maximum of the scale of the argument and the contents of
scale.

19-6

Be

All of the internal operations are actually carried out in terms
of integers with digits being discarded when necessary. In
every case where digits are discarded, truncation and not
rounding is p~rformed.

The internal quantities scale, ibase, and obase can be used
in expressions just like other variables. The input line

scale = scale + 1

increases the value of scale by one, and the input line

scale

causes the current value of scale to be printed.

The value of scale retains its meaning as a number of decimal
digits to be retained in internal computation even when ibase
or obase are not equal to 10. The internal computations
(which are still conducted in decimal regardless of the bases)
are performed to the specified number of decimal digits, never
hexadecimal, octal, or any other kind of digits.

FUNCTIONS

The name of a function is a single lowercase letter. Function
names are permitted to coincide with simple variable names.
Twenty-six different defined functions are permitted in
addition to the 26 variable names. The input line

define a(x){

begins the definition of a function with one argument. This
line must be followed by one or more statements which make

·19-7

Be

up the body of the function ending with a right brace (}). The
general form of a function is

define a(x) {

return
}

Return of control from a function occurs when a return
statement is executed or when the end of the function is
reached. The return statement can take either of the two
forms:

return
return(x)

In the first case, the value of the function is 0; and in the
second, the value of the function is the expression in
parentheses.

Variables used in the function can be declared as automatic by
a statement of the form

auto x,y,z

There can be only one auto statement in a function, and it
must be the first statement in the definition. These automatic
variables are allocated space and initialized to zero on entry to
the function and thrown away on return (exit). The values of
any variables with the same names outside the function are not
disturbed. Functions may be called recursively and the
automatic variables at each level of call are protected. The
parameters named in a function definition are treated in the
same way as the automatic variables of that function with the
single exception that they are given a value on entry to the
function. An example of a function definition is

19-8

define a(x,y){
auto z
z = x*y
return(z)

BC

The value of this function a, when called, is the product of its
two arguments, "x" and "y".

A function is called by the appearance of its name followed by
a string of arguments enclosed in parentheses and separated by
commas. The result is unpredictable if the wrong number of
arguments is used.

Functions with no arguments are defined and called using
parentheses with nothing between them: O.

If the function a above has been defined, then the line

a(7,3.14)

causes the result 21.98 to be printed, and the line

z = a(a(3,4),5)

causes the result 60 to be printed.

SUBSCRIPTED VARIABLES
A single lowercase letter variable name followed by an
expression in brackets is called a subscripted variable (an array
element). The variable name is called the array name, and the
expression in brackets is called the subscript. Only 1-
dimensional arrays are permitted. The names of arrays are

19-9

Be

permitted to coincide with the names of simple variables and
function names. Any fractional part of a subscript is discarded
before use. Subscripts must be greater than or equal to 0 and
less than or equal to 2047.

Subscripted variables may be used in expressions, in function
calls, and in return statements.

An array name may be used as an argument to a function or
may be declared as automatic in a function definition by the
use of empty brackets:

f(a[])
define f(a[])
auto a[]

When an array name is so used, the whole contents of the array
are copied for the use of the function and thrown away on exit
from the function. Array names that refer to whole arrays
cannot be used in any other contexts.

CONTROL STATEMENTS
The if, while, and for statements may be used to alter the
flow within programs or to cause iteration. The range of each
of them is a statement or a compound statement consisting of a
collection of statements enclosed in braces. They are written in
the following way:

or

if(relation) statement
while(relation) statement
for(expression1; relation; expression2) statement

19-10

if(relation) {statements}
while(relation) {statements}
for(expression1; relation; expression2) {statements}

Be

A relation in one of the control statements is an expression of
the form

x>y

where two expressions are related by one of the following six
relational operators:

< less than
> greater than
<= less than or equal to
>= greater than or equal to
== equal to
!= not equal to

Beware of using "=" instead of "==" as a relational operator.
Unfortunately, both of these are legal, so there will be no
diagnostic message, but "=" will not do a comparison.

The if statement causes execution of its range if and only if the
relation is true. Then control passes to the next statement in
sequence.

The while statement causes execution of its range repeatedly
as long as the relation is true. The relation is tested before
each execution of its range; and if the relation is false, control
passes to the next statement beyond the range of the while
statement.

The for statement begins by executing expressionl. Then the
relation is tested; and if true, the statements in the range of
the for are executed. Then expression2 is executed. The

19-11

Be

relation is then tested, etc. The typical use of the for
statement is for a controlled iteration, as in the statement

for(i=l; i<=10; i=i+ 1) i

which prints the integers from one to ten. The following are
some examples of the use of the control statements:

define fen) {
auto i, x
x=l
for(i=l; i<=n; i=i+ 1) x=x*i
return(x)
}

The input line

f(a)

prints "a" factorial if "a" is a positive integer. The following is
the definition of a function that computes values of the
binomial coefficient (m and n are assumed to be positive
integers):

define b(n,m){
auto x, j
x=l
for(j=l; j<=m; j=j+ 1) x=x*(n-j+ l)/j
return(x)
}

The following function computes values of the exponential
function by summing the appropriate series without regard for
possible truncation errors:

19-12

scale = 20
define e(x) {

}

auto a, b, c, d, n
a=l
b=l
c=l
d=O
n=l
while(l==l){

}

a = a*x
b = b*n
c = c + alb
n=n+l
if(c==d) return(c)
d=c

ADDITIONAL FEATURES
There are some additional language features that every user
should know.

Normally, statements are typed one to a line. It is also
permissible, however, to type several statements on a line by
separating the statements by semicolons.

If an assignment statement is parenthesized, it then has a
value; and it can be used anywhere that an expression can. For
example, the input line

(x=y+17)

not only makes the indicated assignment, but also prints the
resulting value.

19-13

Be

The following is an example of a use of the value of an
assignment statement even when it is not parenthesized. The
input line

x = a[i=i+l]

causes a value to be assigned to x and also increments i before
it is used as a subscript.

The following constructs work in be in exactly the same
manner as they do in the C language. Refer to Appendix 7.1 or
the C language programming documents for more details.

x=y=z is the same as x=(y=z)
x =+ Y " x = x+y
x =- y " x = x-y
x =* y " x = x*y
x =/ y " x = x/y
x =:0 Y " x = x%y
x= y " X=XY
x++ " (x=x+l)-1
x-- " (x=x-l)+1
++x x = x+l
--x " x = x-I

Warning: In some of these constructions, spaces are
significant. There is a real difference between
x=-y and x= -yo The first replaces x by
x-y and the second by -yo

The following are three important things to remember when
using be programs:

19-14

Be

• To exit a be program, type quit.

• There is a comment convention identical to that of the C
language. Comments begin with 1* and end with *1.

• There is a library of math functions that may be obtained
by typing at command level:

be -1

This command loads a set of ·library functions that includes
sine (8), cosine (e), arctangent (a), natural logarithm (1),
exponential (e), and Bessel functions of integer order [j(n,x)].
The library sets the scale to 20, but it can be reset to another
value.

If you type

bc file ...

the be program reads and executes the named file or files
before accepting commands from the keyboard. In this way,
programs and function definitions are loaded.

19-15

BC

APPENDIX 8.1

NOTATION

In the following pages, syntactic categories are in italics and
literals are in bold. Material in brackets "[]" is optional.

TOKENS

Tokens consist of keywords, identifiers, constants, operators,
and separators. Token separators may be blanks, tabs, or
comments. Newline characters or semicolons separate
statements.

Comments are introduced by the characters 1* and terminated
by *1.

There are three kinds of identifiers-ordinary, array, and
function. All three types consist of single lowercase letters.
Array identifiers are followed by square brackets, possibly
enclosing an expression describing a subscript. Arrays are
singly dimensioned and may contain up to 2048 elements.
Indexing begins at zero so an array may be indexed from 0 to
2047. Subscripts are truncated to integers. Function identifiers
are followed by parentheses, possibly enclosing arguments. The
three types of identifiers do not conflict. A program can have a
variable named x, an array named x, and a function named x;
all of which are separate and distinct.

The following are reserved keywords:

19-16

ibase
obase
scale
sqrt
length
while
for

if
break
define
auto
return
quit

Be

Constants consist of arbitrarily long numbers with an optional
decimal point. The hexadecimal digits A through F are also
recognized as digits with values 10 through 15, respectively.

EXPRESSIONS

The value of an expression is printed unless the main operator
is an assignment. Precedence is the same as the order of
presentation here with highest appearing first. Left or right
associativity, where applicable, is discussed with each operator.

Named Expressions

Named expressions are places where values are stored. Simply
stated, named expressions are legal on the left side of an
assignment. The value of a named expression is the value
stored in the place named.

identifiers

Simple identifiers are named expressions. They have an initial
value of zero.

array-namefexpressionJ

Array elements are named expressions. They have an initial
value of zero.

19-17

Be

scale, ibase, and obase

The internal registers scale, ibase, and obase are all named
expressions. The scale register is the number of digits after
the decimal point to be retained in arithmetic operations. It
has an initial value of zero. The ibase and obase registers
are the input and output number radix, respectively. Both
ibase and obase have initial values of ten.

Function Calls

function name (fexpression[,expression .. JJ)

A function call consists of a function name followed by
parentheses containing a comma-separated list of expressions,
which are the function arguments. A whole array passed as an
argument is specified by the array name followed by empty
square brackets. All function arguments are passed by value.
As a result, changes made to the formal parameters have no
effect on the actual arguments. If the function terminates by
executing a return statement, the value of the function is the
value of the expression in the parentheses of the return
statement or is zero if no expression is provided or if there is
no return statement.

sqrt(expression)

The result is the square root of the expression. The result is
truncated in the least significant decimal place. The scale of
the result is the scale of the expression or the value of scale,
whichever is larger.

19-18

Be

length (expression)

The result is the total number of significant decimal digits in
the expression. The scale of the result is zero.

scale(expression)

The result is the scale of the expression. The scale of the result
is zero.

Constants

Constants are primitive expressions.

Parentheses

An expression surrounded by parentheses is a primitive
expression. The parentheses are used to alter the normal
precedence.

The unary operators bind right to left.

-expression

The result is the negative of the expression.

+ + named-expression

The named expression is incremented by one. The result is the
value of the named expression after incrementing.

19-19

Be

--named-expression

The named expression is decremented by one. The result is the
value of the named expression after decrementing.

named-expression++

The named expression is incremented by one. The result is the
value of the named expression before incrementing.

named-expression--

The named expression is deere men ted by one. The result is the
value of the named expression before decrementing.

The exponentiation operator binds right to left.

expression ~ expression

The result is the first expression raised to the power of the
second expression. The second expression must be an integer.
If a is the scale of the left expression and b is the absolute
value of the right expression, then the scale of the result is

min(axb,max(scale,a»

The operators *, /, and % bind left to right.

expression * expression

The result is the product of the two expressions. If a and bare
the scales of the two expressions, then the scale of the result is

min(a + b,max(scale,a, b »

19-20

Be

expression / expression

The result is the quotient of the two expressions. The scale of
the result is the value of scale.

expression % expression

The % operator produces the remainder of the division of the
two expressions. More precisely, a % b is a-alb*b.

The scale of the result is the sum of the scale of the divisor and
the value of scale.

The additive operators bind left to right.

expression + expression

The result is the sum of the two expressions. The scale of the
result is the maximum of the scales of the expressions.

expression - expression

The result is the difference of the two expressions. The scale of
the result is the maximum of the scales of the expressions.

The assignment operators bind right to left.

named-expression = expression

This expression results in assigning the value of the expression
on the right to the named expression on the left.

19-21

BC

named-expression =+ expression
named-expression =- expression
named-expression =* expression
named-expression =/ expression
named-expression = % expression
named-expression = A expression

The result of the above expressions is equivalent to "named
expression = named expression OP expression", where OP is
the operator after the = sign.

RELATIONAL OPERATORS

Unlike all other operators, the relational operators are only
valid as the object of an if or while statement or inside a for
statement.

expression < expression
expression > expression
expression <= expression
expression >= expression
expression == expression
expression != expression

STORAGE CLASSES

There are only two storage classes in be-global and automatic
(local). Only identifiers that are to be local to a function need
be declared with the auto command. The arguments to a
function are local to the function. All other identifiers are
assumed to be global and available to all functions. All
identifiers, global and local, have initial values of zero.
Identifiers declared as auto are allocated on entry to the
function and released on returning from the function. They
therefore do not retain values between function calls. The auto
arrays are specified by the array name followed by empty
square brackets.

19-22

Be

Automatic variables in be do not work in exactly the same way
as in C language. On entry to a function, the old values of the
names that appear as parameters and as automatic variables
are pushed onto a stack. U ntH return is made from the
function, reference to these names refers only to the new
values.

STATEMENTS

Statements must be separated by a semicolon or newline.
Except where altered by control statements, execution is
sequential.

When a statement is an expression unless the main operator is
an assignment, the value of the expression is printed followed
by a newline character.

Statements may be grouped together and used when one
statement is expected by surrounding them with braces { }.

The following statement prints the string inside the quotes.

" any string"

if (relation)statement

The substatement is executed if the relation is true.

while (relation)statement

The while statement is executed while the relation is true.
The test occurs before each execution of the statement.

for (expression; relation; expression)statement

19-23

Be

The for statement is the same as

first-expression
while (relation) {

statement
last-expression

}

All three expressions must be present.

break

The break statement causes termination of a for or while
statement.

a u to identifier [, identifier]

The auto statement causes the values of the identifiers to be
pushed down. The identifiers can be ordinary identifiers or
array identifiers. Array identifiers are specified by following
the array name with empty square brackets. The auto
statement must be the first statement in a function definition.

define ([parameter[,parameter ...]]){
statements}

The define statement defines a function. The parameters may
be ordinary identifiers or array names. Array names must be
followed by empty square brackets.

return
return (expression)

19-24

Be

The return statement causes the following:

• Termination of a function

• Popping of the auto variables on the stack

• Specifies the results of the function.

The first form is equivalent to return(O). The result of the
function is the result of the expression in parentheses.

The quit statement stops execution of a be program and
returns control to the UNIX system software when it is first
encountered. Because it is not treated as an executable
statement, it cannot be used in a function definition or in an if,
for, or while statement.

19-25

Chapter 20

INTERACTIVE DESK CALCULATOR-"dc"

PAGE

GENERAL ... 20-1

DC COMMANDS. 20-2

INTERNAL REPRESENTATION OF

NUMBERS. 20-6

THE ALLOCATOR...................................... 20-7

INTERNAL ARITHMETIC............................... 20-8

ADDITION AND SUBTRACTION. 20-9

MULTIPLICATION. 20-9

DIVISION ... 20-10

REMAINDER .. 20-10

SQUARE ROOT ... 20-11

EXPONENTIATION 20-11 /

INPUT CONVERSION AND BASE........................ 20-11

OUTPUT COMMANDS 20-12

OUTPUT FORMAT AND BASE 20-12

INTERNAL REGISTERS 20-13

STACK COMMANDS 20-13

SUBROUTINE DEFINITIONS AND CALLS................ 20-13

INTERNAL REGISTERS-PROGRAMMING

DC .. 20-13

PUSHDOWN REGISTERS AND ARRAYS. 20-14

MISCELLANEOUS COMMANDS 20-15

DESIGN CHOICES. .. 20-15

Chapter 20

INTERACTIVE DESK
CALCULA TOR-"dc"

GENERAL
The de program is an interactive desk calculator program
implemented on the UNIX operating system to do arbitrary
precision integer arithmetic. It has provisions for manipulating
scaled fixed-point numbers and for input and output in bases
other than decimal.

The size of numbers that can be manipulated by de is limited
only by available core storage. On typical implementations of
the UNIX system, the size of numbers that can be handled
varies from several hundred on the smallest systems to several
thousand on the largest.

The de program works like a stacking calculator using reverse
Polish notation. Ordinarily, de operates on decimal integers;
but an input base, output base, and a number of fractional
digits to be maintained can be specified.

A language called Be has been developed which accepts
programs written in the familiar style of higher-level
programming languages and compiles the output which is
interpreted by de. Some of the commands described below
were designed for the compiler interface and are not easy for a
human user to manipulate.

Numbers that are typed into de are put on a pushdown stack.
The de commands work by taking the top number or two off
the stack, performing the desired operation, and pushing the
result on the stack. If an argument is given, input is taken
from that file until its end, then it is taken from the standard

20-1

DC

input.

DC COMMANDS

Any number of commands are permitted on a line. Blanks and
new-line characters are ignored except within numbers and in
places where a register name is expected.

The following constructions are recognized:

number (e.g. 244)

The value of a number is pushed onto the stack. A number is
an unbroken string of digits 0 through 9 and uppercase letters
A through F (treated as digits with values 10 through 15,
respectively). The number may be preceded by an underscore
(_) -to input a negative number and numbers may contain
decimal points.

The top two values on the stack are added (+), subtracted (-),
multiplied (*), divided (I), remaindered (%), or exponentiated
() by using

+ - * / %

The two entries are popped off the stack, and the result is
pushed on the stack in their place. The result of a division is
an integer truncated toward zero. An exponent must not have
any digits after the decimal point.

sx

The top of the main stack is popped and stored in a register
named X (where x may be any character). If s is uppercase, x

20-2

DC

is treated as a stack; and the value is pushed onto it. Any
character, even blank or newline, is a valid register name.

The value of register x is pushed onto the stack. Register x is
not altered. If the I in

Ix

is uppercase, register x is treated as a stack, and its top value is
popped onto the main stack. All registers start with empty
value which is treated as a zero by the command 1 and is
treated as an error by the command L.

The following characters perform the stated tasks:

d

The top value on the stack is duplicated.

p

The top value on the stack is printed. The top value remains
unchanged.

f

All values on the stack and in registers are printed.

x

Treats the top element of the stack as a character string,
removes it from the stack, and executes it as a string of de
commands.

20-3

DC

[...]

Puts the bracketed character string onto the top of the stack.

q

Exits the program. If executing a string, the recursion level is
popped by two. If q is uppercase, the top value on the stack is
popped; and the string execution level is popped by that value.

<x >x =x !<x !>x !=x

The top two elements of the stack are popped and compared.
Register x is executed if they obey the stated relation.
Exclamation point is negation.

v

Replaces the top element on the stack by its square root. The
square root of an integer is truncated to an integer.

Interprets the rest of the line as a UNIX software command.
Control returns to de when the command terminates.

c

All values on the stack are popped; the stack becomes empty.

The top value on the stack is popped and used as the number
radix for further input. If i is uppercase, the value of the input

20-4

DC

base is pushed onto the stack. No mechanism has been
provided for the input of arbitrary numbers in bases less than 1
or greater than 16.

o

The top value on the stack is popped and used as the number
radix for further output. If 0 is uppercase, the value of the
output base is pushed onto the stack.

k

The top of the stack is popped, and that value is used as a scale
factor that influences the number of decimal places that are
maintained during multiplication, division, and exponentiation.
The scale factor must be greater than or equal to zero and less
than 100. If k is uppercase, the value of the scale factor is
pushed onto the stack.

z

The value of the stack level is pushed onto the stack.

?

A line of input is taken from the input source (usually the
console) and executed.

20-5

DC

INTERNAL REPRESENTATION OF
NUMBERS

Numbers are stored internally using a dynamic storage
allocator. Numbers are kept in the form of a string of digits to
the base 100 stored one digit per byte (centennial digits). The
string is stored with the low-order digit at the beginning of the
string. For example, the representation of 157 is 57,1. After
any arithmetic operation on a number, care is taken that all
digits are in the range 0 to 99 and that the number has no
leading zeros. The number zero is represented by the empty
string. •

Negative numbers are represented in the 100s complement
notation, which is analogous to twos complement notation for
binary numbers. The high-order digit of a negative number is
always -1 and all other digits are in the range 0 to 99. The
digit preceding the high-order -1 digit is never a 99. The
representation of -157 is 43,98,-1. This is called the canonical
form of a number. The advantage of this kind of
representation of negative numbers is ease of addition. When
addition is performed digit by digit, the result is formally
correct. The result need only be modified, if necessary, to put it
into canonical form.

Because the largest valid digit is 99 and the byte can hold
numbers twice that large, addition can be carried out and the
handling of carries done later when it is convenient.

An additional byte is stored with each number beyond the
high-order digit to indicate the number of assumed decimal
digits after the decimal point. The representation of .001 is 1,3
where the scale has been italicized to emphasize the fact that it
is not the high-order digit. The value of this extra byte is
called the scale factor of the number.

20-6

DC

THE ALLOCATOR
The de program uses a dynamic string storage allocator for all
of its internal storage. All reading and writing of numbers
internally is through the allocator. Associated with each string
in the allocator is a 4-word header containing pointers to the
beginning of the string, the end of the string, the next place to
write, and the next place to read. Communication between the
allocator and de is via pointers to these headers.

The allocator initially has one large string on a list of free
strings. All headers except the one pointing to this string are
on a list of free headers. Requests for strings are made by size.
The size of the string actually supplied is the next higher power
of two. When a request for a string is made, the allocator first
checks the free list to see if there is a string of the desired size.
If none is found, the allocator finds the next larger free string
and splits it repeatedly until it has a string of the right size.
Leftover strings are put on the free list. If there are no larger
strings, the allocator tries to combine smaller free strings into
larger ones. Since all strings are the result of splitting large
strings, each string has a neighbor that is next to it in core
and, if free, can be combined with it to make a string twice as
long.

If a string of the proper length cannot be found, the allocator
asks the system for more space. The amount of space on the
system is the only limitation on the size and number of strings
in de. If the allocator runs out of headers at any time in the
process of trying to allocate a string, it also asks the system for
more space.

There are routines in the allocator for reading, writing,
copying, rewinding, forward spacing, and backspacing strings.
All string manipulation is done using these routines.

The reading and writing routines increment the read pointer or
write pointer so that the characters of a string are read or
written in succession by a series of read or write calls. The

20·7

DC

write pointer is interpreted as the end of the information
containing portion of a string and a call to read beyond that
point returns an end of string indication. An attempt to write
beyond the end of a string causes the allocator to allocate a
larger space and then copy the old string into the larger block.

INTERNAL ARITHMETIC
All arithmetic operations are done on integers. The operands
(or operand) needed for the operation are popped from the
main stack and their scale factors stripped off. Zeros are added
or digits removed as necessary to get a properly scaled result
from the internal arithmetic routine. For example, if the scale
of the operands is different and decimal alignment is required,
as it is for addition, zeros are appended to the operand with the
smaller scale. After performing the required arithmetic
operation, the proper scale factor is appended to the end of the
number before it is pushed on the stack.

A register called scale plays a part in the results of most
arithmetic operations. The scale register limits the number of
decimal places retained in arithmetic computations. The scale
register may be set to the number on the top of the stack
truncated to an integer with the k command. The K command
may be used to push the value of scale on the stack. The value
of scale must be greater than or equal to 0 and less than 100.
The descriptions of the individual arithmetic operations
includes the exact effect of scale on the computations.

20-8

DC

ADDITION AND SUBTRACTION
The scales of the two numbers are compared and trailing zeros
are supplied to the number with the lower scale to give both
numbers the same scale. The number with the smaller scale is
multiplied by 10 if the difference of the scales is odd. The scale
of the result is then set to the larger of the scales of the two
operands.

Subtraction is performed by negating the number to be
subtracted and proceeding as in addition.

The addition is performed digit by digit from the low-order end
of the number. The carries are propagated in the usual way.
The resulting number is brought into canonical form, which
may require stripping of leading zeros, or for negative numbers,
replacing the high-order configuration 99,-1 by the digit -1. In
any case, digits that are not in the range 0 through 99 must be
brought into that range, propagating any carries or borrows
that result.

MULTIPLICATION
The scales are removed from the two operands and saved. The
operands are both made positive. Then multiplication is
performed in a digit by digit manner that exactly follows the
hand method of multiplying. The first number is multiplied by
each digit of the second number, beginning with its low-order
digit. The intermediate products are accumulated into a partial
sum which becomes the final product. The product is put into
the canonical form and its sign is computed from the signs of
the original operands.

The scale of the result is set equal to the sum of the scales of
the two operands. If that scale is larger than the internal
register scale and also larger than both of the scales of the
two operands, then the scale of the result is set equal to the

20-9

DC

largest of these three last quantities.

DIVISION
The scales are removed from the two o·perands. Zeros are
appended, or digits are removed from the dividend to make the
scale of the result of the integer division equal to the internal
quantity scale. The signs are removed and saved.

Division is performed much as it would be done by hand. The
difference of the lengths of the two numbers is computed. If
the divisor is longer than the dividend, zero is returned.
Otherwise, the top digit of the divisor is divided into the top
two digits of the dividend. The result is used as the first
(high-order) digit of the quotient. If it turns out to be one unit
too low, the next trial quotient is larger than 99; and this is
adjusted at the end of the process. The trial digit is multiplied
by the divisor, the result subtracted from the dividend, and the
process is repeated to get additional quotient digits until the
remaining dividend is smaller than the divisor. At the end, the
digits of the quotient are put into the canonical form with
propagation of carry as needed. The sign is set from the sign of
the operands.

REMAINDER
The division routine is called, and division is performed exactly
as described. The quantity returned is the remains of the
dividend at the end of the divide process. Since division
truncates toward zero, remainders have the same sign as the
dividend. The scale of the remainder is set to the maximum of
the scale of the dividend and the scale of the quotient plus the
scale of the divisor.

20-10

DC

SQUARE ROOT

The scale is removed from the operand. Zeros are added if
necessary to make the integer result have a scale that is the
larger of the internal quantity scale and the scale of the
operand. The method used to compute the square root is
Newton's method with successive approximations by the rule.

The initial guess is found by taking the integer square root of
the top two digits.

EXPONENTIATION

Only exponents with 0 scale factor are handled. If the exponent
is 0, then the result is 1. If the exponent is negative, then it is
made positive; and the base is divided into 1. The scale of the
base is removed.

The integer exponent is viewed as a binary number. The base
is repeatedly squared, and the result is obtained as a product of
those powers of the base that correspond to the positions of the
one-bits in the binary representation of the exponent. Enough
digits of the result are removed to make the scale of the result
the same as if the indicated multiplication had been performed.

INPUT CONVERSION AND BASE

Numbers are converted to the internal representation as they
are read in. The scale stored with a number is simply the
number of fractional digits input. Negative numbers are
indicated by preceding the number with an underscore <_).
The hexadecimal digits A through F correspond to the numbers

20-11

DC

10 through 15 regardless of input base. The i command can be
used to change the base of the input numbers. This command
pops the stack, truncates the resulting number to an integer,
and uses it as the input base for all further input. The input
base (ibase) is initialized to 10 (decimal) but may, for example,
be changed to 8 or 16 for octal or hexadecimal to decimal
conversions. The command I pushes the value of the input base
on the stack.

OUTPUT COMMANDS
The command p causes the top of the stack to be printed. It
does not remove the top of the stack. All of the stack and
internal registers are output by typing the command f. The 0

command is used to change the output base (obase). This
command uses the top of the stack truncated to an integer as
the base for all further output. The output base in initialized
to 10 (decimal). It works correctly for any base. The command
o pushes the value of the output base on the stack.

OUTPUT FORMAT AND BASE

The input and output bases only affect the interpretation of
numbers on input and output; they have no effect on arithmetic
computations. Large numbers are output with 70 characters
per line; a backslash (\) indicates a continued line. All choices
of input and output bases work correctly, although not all are
useful. A particularly useful output base is 100000, which has
the effect of grouping digits in fives. Bases of 8 and 16 are used
for decimal-octal or decimal-hexadecimal conversions.

20-12

DC

INTERNAL REGISTERS

Numbers or strings may be stored in internal registers or
loaded on the stack from registers with the commands sand 1.
The command sx pops the top of the stack and stores the result
in register x. The x can be any character. The command Ix
puts the contents of register x on the top of the stack. The I
command has no effect on the contents of register x. The s
command, however, is destructive.

STACK COMMANDS

The command e clears the stack. The command d pushes a
duplicate of the number on the top of the stack onto the stack.
The command z pushes the stack size on the stack. The
command X replaces the number on the top of the stack with
its scale factor. The command Z replaces the top of the stack
with its length.

SUBROUTINE DEFINITIONS AND CALLS
Enclosing a string in brackets "[]" pushes the ASCII string on
the stack. The q command quits or (in executing a string) pops
the recursion levels by two.

INTERN AL REGISTERS-PROGRAMMING
DC

The load and store commands, together with "[]" to store
strings, the x command to execute, and the testing commands
«, >, =, !<, I>, !=), can be used to program de. The x
command assumes the top of the stack is a string of de
commands and executes it. The testing commands compare the

20-13

DC

top two elements on the stack and, if the relation holds, execute
the register that follows the relation. For example, to print the
numbers 0 through 9,

[lipl + si lilO>a]sa
Osi lax

PUSHDOWN REGISTERS AND ARRAYS

These commands are designed for use by a compiler, not
directly by programmers. They involve pushdown registers and
arrays. In addition to the stack that commands work on, de
can be thought of as having individual stacks for each register.
These registers are operated on by the commands Sand L. Sx
pushes the top value of the main stack onto the stack for the
register x. Lx pops the stack for register x and puts the result
on the main stack. The commands s and I also work on
registers but not as pushdown stacks. The command I does not
affect the top of the register stack, but s destroys what was
there before.

The commands to work on arrays are: and;. The command :x
pops the stack and uses this value as an index into the array x.
The next element on the stack is stored at this index in x. An
index must be greater than or equal to 0 and less than 2048.
The command ;x loads the main stack from the array x. The
value on the top of the stack is the index into the array x of the
value to be loaded.

20-14

DC

MISCELLANEOUS COMMANDS
The command ! interprets the rest of the line as a UNIX
software command and passes it to the UNIX operating system
to execute. One other compiler command is Q. This command
uses the top of the stack as the number of levels of recursion to
skip.

DESIGN CHOICES
The real reason for the use of a dynamic storage allocator is
that a general purpose program can be used for a variety of
other tasks. The allocator has some value for input and for
compiling (i.e., the bracket [...] commands) where it cannot be
known in advance how long a string will be. The result is that
at a modest cost in execution time:

• All considerations of string allocation and sizes of strings
are removed from the remainder of the program.

• Debugging is made easier.

• The allocation method used wastes approximately 25
percent of available space.

The choice of 100 as a base for internal arithmetic seemingly
has no compelling advantage. Yet the base cannot exceed 127
because of hardware limitations and at the cost of 5 percent in
space debugging was made a great deal easier, and decimal
output was made much faster.

The reason for a stack-type arithmetic design was to permit all
de commands from addition to subroutine execution to be
implemented in essentially the same way. The result was a
considerable degree of logical separation of the final program
into modules with very little communication between modules.

20-15

DC

The rationale for the lack of interaction between the scale and
the bases is to provide an understandable means of proceeding
after a change of base or scale (when numbers had already been
entered). An earlier implementation which had global notions
of scale and base did not work out well. If the value of scale is
interpreted in the current input or output base, then a change
of base or scale in the midst of a computation causes great
confusion in the interpretation of the results. The current
scheme has the advantage that the value of the input and
output bases are only used for input and output, respectively,
and they are ignored in all other operations. The value of scale
is not used for any essential purpose by any part of the
program. It is used only to prevent the number of decimal
places resulting from the arithmetic operations from growing
beyond all bounds.

The rationale for the choices for the scales of the results of
arithmetic is that in no case should any significant digits be
thrown away if, on appearances, the user actually wanted them.
Thus, if the user wants to add the numbers 1.5 and 3.517, it
seemed reasonable to give them the result 5.017 without
requiring to unnecessarily specify rather obvious requirements
for precision.

On the other hand, multiplication and exponentiation produce
results with many more digits than their operands. It seemed
reasonable to give as a minimum the number of decimal places
in the operands but not to give more than that number of digits
unless the user asked for them by specifying a value for scale.
Square root can be handled in just the same way as
multiplication. The operation of division gives arbitrarily many
decimal places, and there is simply no way to guess how many
places the user wants. In this case only, the user must specify a
scale to get any decimal places at all.

The scale of remainder was chosen to make it possible to
recreate the dividend from the quotient and remainder. This is
easy to implement; no digits are thrown away.

20-16

Chapter 21

LEXICAL ANALYZER GENERATOR-"lex"

PAGE

GENERAL... 21-1

lex SOURCE. 21-5

lex REGULAR EXPRESSIONS. 21-6

lex ACTIONS. .. 21-13

AMBIGUOUS SOURCE RULES. .. 21-18

LEX SOURCE DEFINITIONS 21-22

USAGE. .. 21-24

LEX AND YACC .. 21-25

EXAMPLES.. 21-25

LEFT CONTEXT SENSITIVITY 21-27

CHARACTER SET 21-31

SUMMARY OF SOURCE FORMAT 21-31

CAVEATS AND BUGS................................... 21-33

Chapter 21

LEXICAL ANALYZER GENERATOR-
"lex"

GENERAL
The lex is a program generator that produces a program in a
general purpose language that recognizes regular expressions.
It is designed for lexical processing of character input streams.
It accepts a high-level, problem oriented specification for
character string matching. The regular expressions are
specified by you (the user) in the source specifications given to
lex. The lex program generator source is a table of regular
expressions and corresponding program fragments. The table
is translated to a program that reads an input stream, copies
the input stream to an output stream, and partitions the input
into strings that match the given expressions. As each such
string is recognized, the corresponding program fragment is
executed. The recognition of the expressions is performed by a
deterministic finite automaton generated by lex. The program
fragments written by you are executed in the order in which
the corresponding regular expressions occur in the input
stream.

The user supplies the additional code beyond expression
matching needed to complete the tasks, possibly including codes
written by other generators. The program that recognizes the
expressions is generated in the general purpose programming
language employed for your program fragments. Thus, a high
level expression language is provided to write the string
expressions to be matched while your freedom to write actions
is unimpaired.

The lex written code is not a complete language, but rather a
generator representing a new language feature which can be
added to different programming languages, called "host

21-1

LEX

languages". Just as general purpose languages can produce
code to run on different computer hardware, lex can write code
in different host languages. The host language is used for the
output code generated by lex and also for the program
fragments added by the user. Compatible run-time libraries for
the different host languages are also provided. This makes lex
adaptable to different environments and different users. Each
application may be directed to the combination of hardware
and host language appropriate to the task, the user's
background, and the properties of local implementations. At
present, the only supported host language is the C language,
although Fortran (in the form of Ratfor) has been available in
the past. The lex generator exists on the UNIX operating
system, but the codes generated by lex may be taken anywhere
the appropriate compilers exist.

The lex program generator turns the user's expressions and
actions (called source) into the host general purpose language;
the generated program is named yylex. The yylex program
recognizes expressions in a stream (called input) and performs
the specified actions for each expression as it is detected. See
Figure 21-1.

Source_ G- yylex

Input _ 1 yylex 1- Output

Figure 21-1. Overview of lex

21-2

LEX

For example, consider a program to delete from the input all
blanks or tabs at the ends of lines.

%%
[\t]+$

is all that is required. The program contains a % % delimiter
to mark the beginning of the rules. This rule contains a regular
expression that matches one or more instances of the
cJ:!aracters blank or tab (written \t for visibility, in accordance
with the C language convention) and occurs prior to the end of
a line. The brackets indicate the character class made of blank
and tab; the + indicates "one or more ... "; and the $ indicates
"end of line," as in QED. No action is specified, so the
program generated by lex yylexO ignores these characters.
Everything else is copied. To change any remaining string of
blanks or tabs to a single blank, add another rule.

%%
[\t]+$
[\t]+ printf(" ");

The coded instructions (generated for this source) scan for both
rules at once, observe (at the termination of the string of
blanks or tabs) whether or not there is a newline character, and
then execute the desired rule action. The first rule matches all
strings of blanks or tabs at the end of lines, and the second rule
matches all remaining strings of blanks or tabs.

The lex program generator can be used alone for simple
transformations or for analysis and statistics gathering on a
lexical level. The lex generator can also be used with a parser
generator to perform the lexical analysis phase; it is
particularly easy to interface lex and yacc. The lex program
recognizes only regular expressions; yacc writes parsers that

21-3

LEX

accept a large class of context free grammars but requires a
lower level analyzer to recognize input tokens. Thus, a
combination of lex and yacc is often appropriate. When used
as a preprocessor for a later parser generator, lex is used to
partition the input stream; and the parser generator assigns
structure to the resulting pieces. The flow of control in such a
case is shown in Figure 21-2.

lexical grammar
rules rules

1 1

B Yace

1 1
Input- I yylex I-I yyparse I-parsed input

Figure 21-2. Lex With Yacc

Additional programs, written by other generators or by hand,
can be added easily to programs written by lex. You will
realize that the name yylex is what yacc expects its lexical
analyzer to be named, so that the use of this name by lex
simplifies interfacing.

In the program written by lex, the user's fragments
(representing the actions to be performed as each regular
expression is found) are gathered as cases of a switch. The
automaton interpreter directs the control flow. Opportunity is
provided for the user to insert either declarations or additional
statements in the routine containing the actions or to add
subroutines outside this action routine.

The lex program generator is not limited to a source that can
be interpreted on the basis of one character look-ahead. For
example, if there are two rules, one looking for "ab" and
another for "abcdefg" and the input stream is "abcdefh," lex
recognizes "ab" and leaves the input pointer just before "cd ... ".
21-4

LEX

Such backup is more costly than the processing of simpler
languages.

lex SOURCE

The general format of lex source is

{definitions}
%%
{rules}
%%
{user subroutines}

where the definitions and the user subroutines are often
omitted. The first % % is required to mark the beginning of
the rules, but the second % % is optional. The absolute
minimum Lex program is

%%

(no definitions, no rules) which translates into a program that
copies the input to the output unchanged.

In the outline of lex programs shown above, the rules represent
your control decisions. They are in a table containing

• A left column with regular expressions

• A right column with actions and program fragments to be
executed when the expressions are recognized.

Thus an individual rule might be

integer printf(" found keyword INT");

21-5

LEX

to look for the string integer in the input stream and print the
message" found keyword INTI whenever it appears. In this
example, the host procedural language is C, and the C language
library function printf is used to print the string. The end of
the expression is indicated by the first blank or tab character.
If the action is merely a single C language expression, it can
just be given on the right side of the line; if it is compound or
takes more than a line, it should be enclosed in braces. As a
more useful example, suppose you desire to change a number of
words from British to American spelling. The lex rules such
as:

colour
mechanise
petrol

printf(" color");
printf(" mechanize");

printf(" gas");

would be a start. These rules are not sufficient since the word
"petroleum" would become" gaseum" .

lex REGULAR EXPRESSIONS

The definitions of regular expressions are very similar to those
in QED. A regular expression specifies a set of strings to be
matched. It contains text characters (which match the
corresponding characters in the strings being compared) and
operator characters (which specify repetitions, choices, and
other features). The letters of the alphabet and the digits are
always text characters; the regular expression

integer

matches the string "integer" wherever it appears, and the
expression

a57D

21-6

LEX

looks for the string "a57D".

Operators

The operator characters are

,,\[]A_?*+ I ()$/{} % <>

and if they are to be used as text characters, an escape should
be used. The quotation mark operator " indicates that
whatever is contained between a pair of quotes is to be taken as
text characters. Thus:

xyz" ++"

matches the string xyz++ when it appears. Note that a part
of a string may be quoted. It is harmless, but unnecessary, to
quote an ordinary text character; the expression

" xyz++"

is equivalent to the one above. Thus, by quoting every
nonalphanumeric character being used as a text character, the
user can avoid remembering the list above of current operator
characters and is safe should further extensions to lex
lengthen the list.

An operator character may also be turned into a text character
by preceding it with a backslash (\) as in

xyz\+\+

which is another, less readable, equivalent of the above
expressions. Another use of the quoting mechanism is to get a
blank into an expression; normally, as explained above, blanks

21-7

LEX

or tabs end a rule. Any blank character not contained within []
(see below) must be quoted. Several normal C language escapes
with \ are recognized: \n is newline, \t is tab, and \b is
backspace. To enter \ itself, use \ \. Since newline is illegal in
an expression, \n must be used; it is not required to escape tab
and backspace. Every character except blank, tab, newline, and
the list of operator characters above is always a text character.

Character Classes

Classes of characters can be specified using the operator pair [].
The construction [abc] matches a single character which may
be "a", "b", or "c". Within square brackets, most operator
meanings are ignored. Only three characters are special; these
are \, -, and A The - character indicates ranges. For
example,

[a-zO-9<> _]

indicates the character class containing all the lowercase
letters, the digits, the angle brackets, and underline. Ranges
may be given in either order. Using - between any pair of
characters which are not both uppercase letters, both lowercase
letters, or both digits is implementation dependent and gets a
warning message (e.g., [O-z] in ASCII is many more characters
than in EBCDIC). If it is desired to include the character - in
a character class, it should be first or last; thus:

[-+0-9]

matches all the digits and the two signs.

In character classes, the A operator must appear as the first
character after the left bracket to indicate that the resulting
string is complemented with respect to the computer character
set. Thus:

21-8

LEX

(abc]

matches all characters except "a", "b", or "c", including all
special or control characters; or

C a-zA-Z]

is any character that is not a letter. The \ character provides
the usual escapes within character class brackets.

Arbitrary Character

To match almost any character, the operator character (dot)

is the class of all characters except newline. Escaping into
octal is possible although nonportable.

[\40-\176]

matches all printable ASCII characters from octal 40 (blank) to
octal 176 (tilde).

Optional Expressions

The operator? indicates an optional element of an expression.
Thus:

ab?c

matches either "ac" or "abc".

21-9

LEX

Repea ted Expressions

Repetitions of classes are indicated by the operators * and +.
For example,

a*

is any number of consecutive "a" characters, including zero;
while

a+

is one or more instances of "a". For example,

[a-z]+

is all strings of lowercase letters, and

[A-Za-z] [A-Za-zO-9]*

indicates all alphanumeric strings with a leading alphabetic
character. This is a typical expression for recognizing
identifiers in computer languages.

Alternation and Grouping

The operator I indicates alternation. For example,

(ab I cd)

matches either "ab" or "cd". Note that parentheses are used
for grouping, although they are not necessary on the outside
level. For example,

21-10

LEX

ab I cd

would have sufficed. Parentheses can be used for more complex
expressions:

(ab I cd+)?(ef)*

matches such strings as "abefef", "efefef", "cdef", or "cddd";
but not "abc", "abcd", or "abcdef".

Context Sensitivity

The lex program recognizes a small amount of surrounding
context. The two simplest operators for this are A and $. If the
first character of an expression is A, the expression is only
matched at the beginning of a line (after a newline character or
at the beginning of the input stream). This never conflicts with
the other meaning of A (complementation of character classes)
since that only applies within the [] operators. If the very last
character is $, the expression is only matched at the end of a
line (when immediately followed by newline). The latter
operator is a special case of the / operator character which
indicates trailing context. The expression

ab/cd

matches the string "ab" but only if followed by "cd". Thus:

ab$

is the same as

ab/\n

21-11

LEX

Left context is handled in lex by "start conditions" as
explained later. If a rule is only to be executed when the lex
automaton interpreter is in start condition x, the rule should be
prefixed by

<x>

using the angle bracket operator characters. If we considered
"being at the beginning of a line" to be start condition ONE,
then the A operator would be equivalent to

<ONE>

Start conditions are explained more fully later.

Repetitions and Definitions

The operators {} specify either repetitions (if they enclose
numbers) or definition expansion (if they enclose a name). For
example,

{digit }

looks for a predefined string named "digit" and inserts it at
that point in the expression. The definitions are given in the
first part of the lex input before the rules. In contrast,

a{1,5}

looks for 1 to 5 occurrences of "a".

Finally, initial % is special, being the separator for lex source
segments.

21-12

LEX

lex ACTIONS

When an expression written as above is matched, lex executes
the corresponding action. This part describes some features of
lex that aid in writing actions. Note that there is a default
action that consists of copying the input to the output. This is
performed on all strings not otherwise matched. Thus, the lex
user who wishes to absorb the entire input, without producing
any output, must provide rules to match everything. When lex
is being used with yacc, this is the normal situation. One may
consider that actions are what is done instead of copying the
input to the output; thus, in general, a rule that merely copies
can be omitted. Also, a character combination that is omitted
from the rules and that appears as input is likely to be printed
on the output, thus calling attention to the gap in the rules.

One of the simplest things that can be done is to ignore the
input. Specifying a C language null statement, ; as an action
causes this result. A frequent rule is

[\t\n]

which causes the three spacing characters (blank, tab, and
newline) to be ignored.

Another easy way to avoid writing actions is the action
character I which indicates that the action for this rule is the
action for the next rule. The previous example could also have
been written

" "
" \t"
"\n"

I
I

with the same result although in different style. The quotes
around \n and \t are not required.

21-13

LEX

In more complex actions, you may often want to know the
actual text that matched some expression like "[a-z]+". The
lex program leaves this text in an external character array.
Thus, to print the name found, a rule like

[a-z]+ printf(" % s" , yytext);

prints the string in yytext[j. The C language function printf
accepts a format argument and data to be printed; in this case,
the format is "print string" (% indicating data conversion, and
s indicating string type), and the data are the characters in
yytext[j. This places the matched string on the output. This
action is so common that it may be written as ECHO:

[a-z]+ ECHO;

is the same as the above. Since the default action is just to
print the characters found, one might ask why give a rule like
this one which merely specifies the default action. Such rules
are often required to avoid matching some other rule that is
not desired. For example, if there is a rule that matches read,
it normally matches the instances of read contained in bread
or readjust. To avoid this, a rule of the form "[a-z]+" is
needed. This is explained further below.

Sometimes it is more convenient to know the end of what has
been found; hence, lex also provides a count yyleng of the
number of characters matched. To count both the number of
words and the number of characters in words in the input,
write

[a-zA-Z]+ {words++; chars += yyleng;}

which accumulates in chars the number of characters in the
words recognized. The last character in the string matched can
be accessed by

21-14

LEX

yytext [yy leng -1]

Occasionally, a lex action may decide that a rule has not
recognized the correct span of characters. Two routines are
provided to aid with this situation. First, yymore() can be
called to indicate that the next input expression recognized is to
be tacked on to the end of this input. Normally, the next input
string would overwrite the current entry in yytext. Second,
yyless(n) may be called to indicate that not all the characters
matched by the currently successful expression are wanted
right now. The argument "n" indicates the number of
characters in yytext to be retained. Further characters
previously matched are returned to the input. This provides
the same sort of look ahead offered by the / operator but in a
different form.

Example:

Consider a language that defines a string as a set of characters
between quotation (") marks and provides that to include a (")
in a string it must be preceded by a \. The regular expression
which matches that is somewhat confusing, so that it might be
preferable to write

\" e"]* {
if (yytext[yyleng-1] == '\ \')

yymoreO;
else

... normal user processing
}

will, when faced with a string such as" abc\" def" , first match
the five characters II abc\; then the call to yymore() will cause
the next part of the string II def to be tacked on the end. Note
that the final quote terminating the string should be picked up
in the code labeled "normal processing".

21-15

LEX

The function yylessO might be used to reprocess text in various
circumstances. Consider the C language problem of
distinguishing the ambiguity of "=-a ". Suppose it is desired to
treat this as "=- a" but also to print a message: a rule might be

=-[a-zA-Z] {
printf(" Operator (=-) ambiguous\n");
yyless(yyleng-l);
... action for =- ...
}

which prints a message, returns the letter after the operator to
the input stream, and treats the operator as "=- ".
Alternatively, it might be desired to treat this as "=-a ". To do
this, just return the minus sign as well as the letter to the
input.

=-[a-zA-Z] {
printf(n Operator (=-) ambiguous\nn);
yyless(yyleng-2);
... action for = ...
}

performs the other interpretation. Note that the expressions
for the two cases might more easily be written

=-/[A-Za-z]

in the first case, and

=/ -[A-Za-z]

in the second; no backup is required in the rule action. It is not
necessary to recognize the whole identifier to observe the
ambiguity. The possibility of "=-3", however, makes

21-16

LEX

=-/C \t\n]

a still better rule.

In addition to these routines, lex also permits access to the I/O
routines it uses. They are as follows:

1. input() returns the next input character.

2. output(c) writes the character "c" on the output.

3. unput(c) pushes the character "c" back onto the input
stream to be read later by input().

By default, these routines are provided as macro definitions;
but the user can override them and supply private versions.
These routines define the relationship between external files
and internal characters and must all be retained or modified
consistently. They may be redefined to cause input or output to
be transmitted to or from strange places including other
programs or internal memory. The character set used must be
consistent in all routines and a value of zero returned by input
must mean end of file. The relationship between unput and
input must be retained or the lex look ahead will not work.
The lex program does not look ahead at all if it does not have
to, but every rule ending in +, *, ?, or $ or containing / implies
look ahead. Look ahead is also necessary to match an
expression that is a prefix of another expression. The standard
lex library imposes a 100-character limit on backup.

Another lex library routine that you may sometimes want to
redefine is yywrap() which is called whenever lex reaches an
end of file. If yywrap returns a 1, lex continues with the
normal wrap up on end of input. Sometimes, however, it is
convenient to arrange for more input to arrive from a new
source. In this case, the user should provide a yywrap which
arranges for new input and returns O. This instructs lex to

21-17

LEX

continue processing. The default yywrap always returns 1.

This routine is also a convenient place to print tables,
summaries, etc., at the end of a program. Note that it is not
possible to write a normal rule that recognizes end of file; the
only access to this condition is through yywrap. In fact, unless
a private version of input(j is supplied, a file containing nulls
cannot be handled since a value of 0 returned by input is taken
to be end of file.

AMBIGUOUS SOURCE RULES
The lex program can handle ambiguous specifications. When
more than one expression can match the current input, lex
chooses as follows:

1. The longest match is preferred.

2. Among rules that matched the same number of
characters, the rule given first is preferred.

Thus, suppose the rules

integer
[a-z]+

keyword action ... ;
identifier action ... ;

are to be given in that order. If the input is "integers", it is
taken as an identifier because

"[a-z]+"

matches eight characters while "integer" matches only seven.
If the input is "integer", both rules match seven characters; and
the keyword rule is selected because it was given first.
Anything shorter (e.g., "int") does not match the expression

21-18

LEX

"integer" and so the identifier interpretation is used.

The principle of preferring the longest match makes rules
containing expressions like .* dangerous. For example:

, *'

might appear to be a good way of recognizing a string in single
quotes. However, it is an invitation for the program to read far
ahead looking for a distant single quote. Presented with the
input

'first' quoted string here, 'second' here

the above expression will match

'first' quoted string here, 'second'

which is probably not what was wanted. A better rule is of the
form

'('\n]*'

which, on the above input, stops after ('first'). The
consequences of errors like this are mitigated by the fact that
the dot (.) operator does not match newline. Thus expressions
like .* stop on the current line. Do not try to defeat this with
expressions like [.\n]+ or equivalents; the lex generated
program tries to read the entire input file causing internal
buffer overflows.

Note that lex is normally partitioning the input stream not
searching for all possible matches of each expression. This
means that each character is accounted for once and only once.
For example, suppose it is desired to count occurrences of both

21-19

LEX

"she" and "he" in an input text. Some lex rules to do this
might be

she s++;
he h++;
\n I

w here the last two rules ignore everything besides "he" and
"she". Remember that dot (.) does not include newline. Since
"she" includes "he", lex normally does not recognize the
instances of "he" included in "she" since once it has passed a
"she" those characters are gone.

Sometimes the user desires to override this choice. The action
REJECT means "go do the next alternative". It causes
whatever rule was second choice after the current rule to be
executed. The position of the input pointer is adjusted
accordingly. Suppose you really want to count the included
instances of "he". Use the following rule to change the
previous example to accomplish the task.

she {s++; REJECT;}
he {h++; REJECT;}
\n I

After counting each expression, it is rejected; whenever
appropriate, the other expression is then counted. In this
example, you could note that "she" includes "he" but not vice
versa and omit the REJECT action on "he". In other cases, it
is not possible to state which input characters are in both
classes.

Consider the two rules

21-20

a[bc]+
a[cd]+

{ ... ; REJECT;}
{ ... ; REJECT;}

LEX

If the input is "ab", only the first rule matches, and on "ad"
only the second matches. The input string "accb" matches the
first rule for four characters and then the second rule for three
characters. In contrast, the input "aced" agrees with the
second rule for four characters and then the first rule for three.

In general, REJECT is useful whenever the purpose of lex is
not to partition the input stream but to detect all examples of
some items in the input, and the instances of these items may
overlap or include each other. Suppose a digram table of the
input is desired; normally, the digrams overlap, that is the
word "the" is considered to contain both "th" and "he".
Assuming a 2-dimensional array named digram[] to be
incremented, the appropriate source is

%%
[a-z][a-z]

\n

{digram [yytext[O]] [yytext[l]]++; REJECT;}

w here the REJECT is necessary to pick up a letter pair
beginning at every character rather than at every other
character.

The action REJECT does not rescan the input; instead it
remembers the results of the previous scan. This means that if
a rule with trailing context is found and REJECT executed the
user must not have used unput to change the characters
forthcoming from the input stream. This is the only restriction
on the user's ability to manipulate the not-yet-processed input.

21-21

LEX

LEX SOURCE DEFINITIONS
Recalling the format of the lex source,

{ definitions}
%%
{rules}
%%
{user routines}

So far, only the rules have been described. You need additional
options to define variables for use in the program and for use
by Lex. Variables can go either in the definitions section or in
the rules section.

Remember lex is generating the rules into a program. Any
source not intercepted by lex is copied into the generated
program. There are three classes of such things.

1. Any line not part of a lex rule or action that begins with
a blank or tab is copied into the lex generated program.
Such source input prior to the first % % delimiter is
external to any function in the code; if it appears
immediately after the first % %, it appears in an
appropriate place for declarations in the function written
by lex which contains the actions. This material must
look like program fragments and should precede the first
lex rule.

Lines that begin with a blank or tab and that contain a
comment are passed through to the generated program.
This can be used to include comments in either the lex
source or the generated code; the comments should follow
the host language convention.

2. Anything included between lines containing only % { and
%} is copied out as above. The delimiters are discarded.
This format permits entering text like preprocessor
statements that must begin in column 1 or copying lines

21-22

LEX

that do not look like programs.

3. Anything after the third % % delimiter, regardless of
formats, etc., is copied out after the lex output.

Definitions intended for lex are given before the first % %
delimiter. Any line in this section not contained between % {
and %} and beginning in column 1 is assumed to define lex
substitution strings. The format of such lines is:

name translation

This format causes the string given as a translation to be
associated with the name. The name and translation must be
separated by at least one blank or tab, and the name must
begin with a letter. The translation can then be called out by
the {name} syntax in a rule. Using {D} for the digits and {E}
for an exponent field, for example, abbreviate rules to recognize
numbers:

D
E
%%

[0-9]
[DEdeH-+]?{D}+

{D}+ printf(" integer");
{D}+" ." {D}*({E})?
{D}*" ." {D}+({E})?
{D}+{E} printf(" real");

Note the first two rules for real numbers; both require a
decimal point and contain an optional exponent field. The first
requires at least one digit before the decimal point, and the
second requires at least one digit after the decimal point. To
correctly handle the problem posed by a Fortran expression
such as "35.EQ.I", which does not contain a real number, a
context-sensitive rule such as:

21-23

LEX

[0-9]+/" ." EQ printf(" integer");

could be used in addition to the normal rule for integers.

The definitions section may also contain other commands
including the selection of a host language, a character set table,
a list of start conditions, or adjustments to the default size of
arrays within lex itself for larger source programs. These
possibilities are discussed later.

USAGE
There are two steps in compiling a lex source program. First,
the lex source must be turned into a generated program in the
host general purpose language. Then this program must be
compiled and loaded usually with a library of lex subroutines.
The generated program is on a file named lex.yy.c. The I/O
library is defined in terms of the C language standard library.

On the UNIX operating system, the library is accessed by the
loader flag -11. So an appropriate set of commands is

lex source
cc lex.yy.c -11

The resulting program is placed on the usual file a.out for later
execution. To use lex with yacc, see "LEX AND YACC"
below. Although the default lex I/O routines use the C
language standard library, the lex automata themselves do not
do so; if private versions of input, output, and unput are given,
the library is avoided.

21-24

LEX

LEX AND YACC

To use lex with yacc, observe that lex writes a program
named yylexO (the name required by yacc for its analyzer).
Normally, the default main program on the lex library calls
this routine; but if yacc is loaded and its main program is
used, yacc calls yylexO. In this case, each lex rule ends with

return(token);

where the appropriate token value is returned. An easy way to
get access to yacc's names for tokens is to compile the lex
output file as part of the yacc output file by placing the line

include" lex.yy.c"

in the last section of yacc input. If the grammar is to be
named "good" and the lexical rules are to be named "better",
the UNIX software command sequence could be

yacc good
lex better
cc y.tab.c -ly -11

The yacc library (-ly) should be loaded before the lex library
to obtain a main program that invokes the yacc parser. The
generations of lex and yacc programs can be done in either
order.

EXAMPLES

As a problem, consider copying an input file while adding three
to every positive number divisible by seven. A suitable lex
source program follows:

21-25

LEX

%%
int k;

[0-9]+ {
k = atoi(yytext);
if (k%7 == 0)

printf(" % d" , k+3);
else

printf(" % d" ,k);
}

The rule "[0-9]+" recognizes strings of digits; atoiO converts
the digits to binary and stores the result in "k". The operator
% (remainder) is used to check whether "k" is divisible by
seven; if it is, "k" is incremented by three as it is written out.
It may be objected that this program alters such input items as
"49.63" or "X7". Furthermore, it increments the absolute value
of all negative numbers divisible by seven. To avoid this, add a
few more rules after the active one, as here:

%%

-?[0-9]+
int k;

{
k = atoi(yytext);
printf(" % d" , k% 7 == 0 ? k+3 : k);
}

-?[0-9.]+ ECHO;
[A-Za-z][A-Za-zO-9]+ ECHO;

Numerical strings containing a dot (.) or preceded by a letter
will be picked up by one of the last two rules and not changed.
The "if-else" has been replaced by a C language conditional
expression to save space; the form "a ?b:c" means "if a then b
else c".

For an example of statistics gathering, here is a program that
histograms the lengths of words, where a word is defined as a
string of letters:

21-26

%%
[a-z]+

\n
%%
yywrap()
{
int i;

int lengs[lOO];

lengs[yyleng]++;

printf(" Length No. words\n");
for(i=O; i<lOO; i++)

if (lengs[i] > 0)
printf(" % 5d % 10d\n" ,i,lengs[i]);

return(l);
}

LEX

This program accumulates the histogram while producing no
output. At the end of the input, it prints the table. The final
statement "return(l);" indicates that lex is to perform wrap
up. If yywrap returns zero (false), it implies that further input
is available and the program is to continue reading and
processing. Providing a yywrap (that never returns true)
causes an infinite loop.

LEFT CONTEXT SENSITIVITY
Sometimes it is desirable to have several sets of lexical rules to
be applied at different times in the input. For example, a
compiler preprocessor might distinguish preprocessor
statements and analyze them differently from ordinary
statements. This requires sensitivity to prior context, and
there are several ways of handling such problems. The A

operator, for example, is a prior context operator recognizing
immediately preceding left context just as $ recognizes
immediately following right context. Adjacent left context
could be extended to produce a facility similar to that for
adjacent right context, but it is unlikely to be as useful since
often the relevant left context appeared some time earlier such

21-27

LEX

as at the beginning of a line.

This part describes three means of dealing with different
environments: a simple use of flags (when only a few rules
change from one environment to another), the use of "start
conditions" on rules, and the possibility of making multiple
lexical analyzers all run together. In each case, there are rules
that recognize the need to change the environment in which the
following input text is analyzed and that set a parameter to
reflect the change. This may be a flag explicitly tested by the
user's action code; this is the simplest way of dealing with the
problem since lex is not involved at all. It may be more
convenient, however, to have lex remember the flags as initial
conditions on the rules. Any rule may be associated with a
start condition. It is only recognized when lex is in that start
condition. The current start condition may be changed at any
time. Finally, if the sets of rules for the different
environments are very dissimilar, clarity may be best achieved
by writing several distinct lexical analyzers and switching from
one to another as desired.

Consider the following problem: copy the input to the output,
changing the word "magic" to" first" on every line which
began with the letter" a", changing" magic" to" second" on
every line which began with the letter "b", and changing
"magic" to" third" on eVel~y line which began with the letter
" c". All other words and all other lines are left unchanged.

These rules are so simple that the easiest way to do this job is
with a flag.

21-28

int flag.
%%
A a {flag = 'a'; ECHO;}
Ab {flag = 'b'; ECHO;}
AC {flag = 'c'; ECHO;}
\n {flag = 0; ECHO;}
magic {

switch (flag)
{
case 'a': printf(" first"); break;
case 'b': printf(" second"); break;
case 'c': printf(" third"); break;
default: ECHO; break;
}

}

should be adequate.

LEX

To handle the same problem with start conditions, each start
condition must be introduced to lex in the definitions section
with a line reading

% Start namel name2 ...

where the conditions may be named in any order. The word
"Start" may be abbreviated to "s" or "S". The conditions may
be referenced at the head of a rule with <> brackets:

<namel>expression

is a rule that is only recognized when lex is in the start
condition namel. To enter a start condition, execute the
action statement

BEG IN namel;

21-29

LEX

which changes the start condition to namel. To resume the
normal state

BEGIN 0;

resets the initial condition of the lex automaton interpreter. A
rule may be active in several start conditions.

<namel,name2,name3>

is a legal prefix. Any rule not beginning with the <> prefix
operator is always active.

The same example as before can be written as follows:

% START AA BB CC
%%
a

Ab
c

\n
<AA>magic
<BB>magic
<CC>magic

{ECHO; BEGIN AA;}
{ECHO; BEGIN BB;}
{ECHO; BEGIN CC;}
{ECHO; BEGIN O;}

printf(n first");
printf(" second");
prlniJ(" Lhird");

where the logic is exactly the same as in the previous method of
handling the problem, but lex does the work rather than the
user's code.

21-30

LEX

CHARACTER SET

The programs generated by lex handle character I/O only
through the routines input () , output() , and unput(). Thus, the
character representation provided in these routines is accepted
by lex and used to return values in yytext(). For internal use,
a character is represented as a small integer which, if the
standard library is used, has a value equal to the integer value
of the bit pattern representing the character on the host
computer. Normally, the letter a is represented in the same
form as the character constant 'a'. If this interpretation is
changed by providing I/O routines that translate the
characters, lex must be given a translation table that is in the
definitions section and must be bracketed by lines containing
only % T; the translation table contains lines of the form

{integer} {character string}

which indicate the value associated with each character.

SUMMARY OF SOURCE FORMAT
The general form of a lex source file is

{ definitions}
%%
{rules}
%%
{user subroutines}

The definitions section contains a combination of

1. Definitions in the form "name space translation".

2. Included code in the form "space code".

21-31

LEX

3. Included code in the form:

%{
code
%}

4. Start conditions given in the form:

% S namel name2 ...

5. Character set tables in the form:

%T
number space character-string

%T

6. Changes to internal array sizes in the form:

%x nnn

where "nnn" is a decimal integer representing an array size
and !!a~~ selects the parameter as follows:

Letter
p
n
e
a
k
o

Parameter
positions
states
tree nodes
transitions
packed character classes
output array size

Lines in the rules section have the form "expression action"
where the action may be continued on succeeding lines by using
braces to delimit it.

21-32

LEX

Regular expressions in lex use the following operators:

x
" x"
\x
[xy]
[x-z]
(x]

x
<y>x
x$
x?
x*
x+
xly
(x)
x/y
{xx}

x{m,n}

the character " x" .
an " x" , even if x is an opera tor.
an " x" , even if x is an opera tor.
the character x or y.
the characters x, y, or z.
any character but x.
any character but newline.
an x at the beginning of a line.
an x when Lex is in start condition y.
an x at the end of a line.
an optional x.
0,1,2, ... instances of x.
1,2,3, ... instances of x.
an x or a y.
an x.
an x but only if followed by y.
the translation of xx from
the definitions section.
m through n occurrences of x.

CAVEATS AND BUGS
There are pathological expressions that produce exponential
growth of the tables when converted to deterministic machines;
fortunately, they are rare.

REJECT does not rescan the input; instead it remembers the
results of the previous scan. This means that if a rule with
trailing context is found and REJECT executed, the user must
not have used unput to change the characters forthcoming from
the input stream. This is the only restriction on the user's
ability to manipulate the not-yet-processed input.

21-33

Chapter 22

YET ANOTHER COMPILER-COMPILER-
"yacc"

PAGE

GENERAL... 22-1

BASIC SPECIFICATIONS. 22-5

ACTIONS. 22-8

LEXICAL ANALySIS................................... 22-13

PARSER OPERATION. .. 22-15

AMBIGUITY AND CONFLICTS 22-21

PRECEDENCE ... 22-29

ERROR HANDLING. .. 22-33

THE "yacc" ENVIRONMENT. .. 22-37

HINTS FOR PREPARING SPECIFICATIONS............... 22-38

ADVANCED TOPICS 22-43

APPENDIX 1 ... 22-48

APPENDIX 2 .. 22-52

APPENDIX 3 .. 22-55

APPENDIX 4... 22-65

Chapter 22

YET ANOTHER COMPILER
COMPILER-"yacc"

GENERAL
The yacc program provides a general tool for imposing
structure on the input to a computer program. The yacc user
prepares a specification of the input process. This includes rules
describing the input structure, code to be invoked when these
rules are recognized, and a low-level routine to do the basic
input. The yacc program then generates a function to control
the input process. This function, called a parser, calls the
user-supplied low-level input routine (the lexical analyzer) to
pick up the basic items (called tokens) from the input stream.
These tokens are organized according to the input structure
rules, called grammar rules. When one of these rules has been
recognized, then user code (supplied for this rule, an action) is
invoked. Actions have the ability to return values and make use
of the values of other actions.

The yacc program is written in a portable dialect of the C
language, and the actions and output subroutine are in the C
language as well. Moreover, many of the syntactic conventions
of yacc follow the C language.

The heart of the input specification is a collection of grammar
rules. Each rule describes an allowable structure and gives it a
name. For example, one grammar rule might be

date: month_name day',' year

where "date", "month_name", "day", and "year" represent
structures of interest in the input process; presumably, "month
name", "day", and "year" are defined elsewhere. The comma

22-1

YACC

is enclosed in single quotes. This implies that the comma is to
appear literally in the input. The colon and semicolon merely
serve as punctuation in the rule and have no significance in
controlling the input. With proper definitions, the input

July 4, 1776

might be matched by the rule.

An important part of the input process is carried out by the
lexical analyzer. This user routine reads the input stream,
recognizes the lower-level structures, and communicates these
tokens to the parser. For historical reasons, a structure
recognized by the lexical analyzer is called a "terminal symbol",
while the structure recognized by the parser is called a
"nonterminal symbol". To avoid confusion, terminal symbols
will usually be referred to as "tokens".

There is considerable leeway in deciding whether to recognize
structures using the lexical analyzer or grammar rules. For
example, the rules

month_name: 'J' 'a' 'n'
month_name: 'F' 'e' 'b'

month_name: 'D' 'e' 'c'

might be used in the above example. The lexical analyzer only
needs to recognize individual letters, and "month name" is a
nonterminal symbol. Such low-level rules tend to waste time
and space and may complicate the specification beyond the
ability of yacc to deal with it. Usually, the lexical analyzer
recognizes the month names and returns an indication that a
"month name" is seen. In this case, "month name" is a "token".

22-2

YACC

Literal characters such as a comma must also be passed
through the lexical analyzer and are also considered tokens.

Specification files are very flexible. It is relatively easy to add
to the above example the rule

date : month 'I' day 'I' year

allowing

7/4/1776

as a synonym for

July 4,1776

on input. In most cases, this new rule could be "slipped in" to a
working system with minimal effort and little danger of
disrupting existing input.

The input being read may not conform to the specifications.
These input errors are detected as early as is theoretically
possible with a left-to-right scan. Thus, not only is the chance
of reading and computing with bad input data substantially
reduced, but the bad data can usually be quickly found. Error
handling, provided as part of the input specifications, permits
the reentry of bad data or the continuation of the input process
after skipping over the bad data.

In some cases, yacc fails to produce a parser when given a set
of specifications. For example, the specifications may be self
contradictory, or they may require a more powerful recognition
mechanism than that available to yacc. The former cases
represent design errors; the latter cases can often be corrected
by making the lexical analyzer more powerful or by rewriting
some of the grammar rules. While yacc cannot handle all

22-3

YACC

possible specifications, its power compares favorably with
similar systems. Moreover, the constructions which are
difficult for yacc to handle are also frequently difficult for
human beings to handle. Some users have reported that the
discipline of formulating valid yacc specifications for their
input revealed errors of conception or design early in the
program development.

The yacc program has been extensively used in numerous
practical applications, including lint, the Portable C Compiler,
and a system for typesetting mathematics.

The remainder of this document describes the following
subjects as they relate to yacc:

• Basic process of preparing a yacc specification

• Parser operation

• Handling ambiguities

• Handling operator precedences in arithmetic expressions

• Error detection and recovery

• The operating environment and special features of the
parsers yacc produces

• Suggestions to improve the style and efficiency of the
specifications

• Advanced topics.

In addition, there are four appendices. Appendix 1 is a brief
example, and Appendix 2 is a summary of the yacc input
syntax. Appendix 3 gives an example using some of the more
advanced features of yacc, and Appendix 4 describes
mechanisms and syntax no longer actively supported but

22-4

YACC

provided for historical continuity with older versions of yacc.

BASIC SPECIFICATIONS

Names refer to either tokens or nonterminal symbols. The
yacc program requires token names to be declared as such. In
addition, it is often desirable to include the lexical analyzer as
part of the specification file. It may be useful to include other
programs as well. Thus, every specification file consists of
three sections: the declarations, (grammar) rules, and
programs. The sections are separated by double percent (%%)
marks. (The percent symbol is generally used in yacc
specifications as an escape character.)

In other words, a full specification file looks like

declarations
%%
rules
%%
programs

when each section is used.

The declaration section may be empty, and if the programs
section is omitted, the second % % mark may also be omitted.
The smallest legal yacc specification is

%%
rules

since the other two sections may be omitted.

22-5

YACC

Blanks, tabs, and newlines are ignored, but they may not
appear in names or multi character reserved symbols.
Comments may appear wherever a name is legal. They are
enclosed in 1* 000 *1, as in C language.

The rules section is made up of one or more grammar rules. A
grammar rule has the form

A : BODY;

where "A" represents a nonterminal name, and "BODY"
represents a sequence of zero or more names and literals. The
colon and the semicolon are yacc punctuation.

Names may be of arbitrary length and may be made up of
letters, dots, underscores, and nonini tial digi ts. Uppercase and
lowercase letters are distinct. The names used in the body of a
grammar rule may represent tokens or nonterminal symbols.

A literal consists of a character enclosed in single quotes (').
As in C language, the backslash (\) is an escape character
within literals, and all the C language escapes are recognized.
Thus:

,\n' newline
,\r' return
'\" single quote (,)
'\ \' backslash (\)
,\t' tab
,\b' backspace
,\f' form feed
,\xxx' "xxx" in octal

are understood by yacc. For a number of technical reasons,
the NUL character (,\0' or 0) should never be used in grammar
rules.

22-6

YACC

If there are several grammar rules with the same left-hand
side, the vertical bar (I) can be used to avoid rewriting the
left-hand side. In addition, the semicolon at the end of a rule
can be dropped before a vertical bar. Thus the grammar rules:

A
A
A

BCD
E F
G ;

can be given to yacc as:

A : BCD
IE F
IG

by using the vertical bar. It is not necessary that all grammar
rules with the same left side appear together in the grammar
rules section although it makes the input much more readable
and easier to change.

If a nonterminal symbol matches the empty string, this can be
indicated by:

empty:

which is understood by yacc.

Names representing tokens must be declared. This is most
simply done by writing:

% token namel name2 ...

in the declarations section. Every name not defined in the
declarations section is assumed to represent a nonterminal

22-7

YACC

symbol. Every nonterminal symbol must appear on the left
side of at least one rule.

Of all the nonterminal symbols, the start symbol has particular
importance. The parser is designed to recognize the start
symbol. Thus, this symbol represents the largest, most general
structure described by the grammar rules. By default, the start
symbol is taken to be the left-hand side of the first grammar
rule in the rules section. It is possible and desirable to declare
the start symbol explicitly in the declarations section using the
% start keyword

% start symbol

to define the start symbol.

The end of the input to the parser is signaled by a special
token, called the end-marker. If the tokens up to but not
including the end-marker form a structure that matches the
start symbol, the parser function returns to its caller after the
end-marker is seen and accepts the input. If the end-marker is
seen in any other context, it is an error.

It is the job of the user-supplied lexical analyzer to return the
end-marker when appropriate. Usually the end-marker
represents some reasonably obvious I/O status, such as "end of
file" or "end of record".

ACTIONS

With each grammar rule, the user may associate actions to be
performed each time the rule is recognized in the input process.
These actions may return values and may obtain the values
returned by previous actions. Moreover, the lexical analyzer
can return values for tokens if desired.

22-8

YACC

An action is an arbitrary C language statement and as such can
do input and output, call subprograms, and alter external
vectors and variables. An action is specified by one or more
statements enclosed in curly braces ({) and (}). For example:

and

A : '(' B ')'
{

hello(1, "abc");
}

XXX : YYY ZZZ
{

}

printf(" a message\n");
flag = 25;

are grammar rules with actions.

To facilitate easy communication between the actions and the
parser, the action statements are altered slightly. The dollar
sign symbol ($) is used as a signal to yacc in this context.

To return a value, the action normally sets the pseudo-variable
$$ to some value. For example, the action

{ $$ = 1; }

does nothing but return the value of one.

To obtain the values returned by previous actions and the
lexical analyzer, the action may use the pseudo-variables $1,
$2, 000, which refer to the values returned by the components of
the right side of a rule, reading from left to right. If the rule is

22-9

YACC

A : BCD;

then $2 has the value returned by C, and $3 the value returned
by D.

The rule

expr : '(' expr ')' ;

provides a more concrete example. The value returned by this
rule is usually the value of the "expr" in parentheses. This can
be indicated by

expr : '(' expr ')'
{

$$ = $2;
}

By default, the value of a rule is the value of the first element
in it ($1). Thus, grammar rules of the form

A : B

frequently need not have an explicit action.

In the examples above, all the actions came at the end of rules.
Sometimes, it is desirable to get control before a rule is fully
parsed. The yacc permits an action to be written in the middle
of a rule as well as at the end. This rule is assumed to return a
value accessible through the usual $ mechanism by the actions
to the right of it. In turn, it may access the values returned by
the symbols to its left. Thus, in the rule

22-10

A B
{

}

}
C

$$ =1;

x = $2;
y = $3;

YACC

the effect is to set x to 1 and y to the value returned by C.

Actions that do not terminate a rule are actually handled by
yacc by manufacturing a new nonterminal symbol name and a
new rule matching this name to the empty string. The interior
action is the action triggered off by recognizing this added rule.
The yacc program actually treats the above example as if it
had been written

$ACT /* empty */
{

$$ = 1;
}

A B $ACT C
{

x = $2;
y = $3;

}

where $ACT is an empty action.

In many applications, output is not done directly by the actions.
A data structure, such as a parse tree, is constructed in
memory and transformations are applied to it before output is

22-11

YACC

generated. Parse trees are particularly easy to construct given
routines to build and maintain the tree structure desired. For
example, suppose there is a C function node written so that the
call

node(L, n1, n2)

creates a node with label L and descendants n1 and n2 and
returns the index of the newly created node. Then parse tree
can be built by supplying actions such as

expr : expr '+' expr
{

$$ = node('+', $1, $3);
}

in the specification.

The user may define other variables to be used by the actions.
Declarations and definitions can appear in the declarations
section enclosed in the marks % { and %}. These declarations
and definitions have global scope, so they are known to the
action statements and the lexical analyzer. For example:

% { int variable = 0; %}

could be placed in the declarations section making "variable"
accessible to all of the actions. The yacc parser uses only
names beginning with yy. The user should avoid such names.

In these examples, all the values are integers. A discussion of
values of other types is found in the part "ADVANCED
TOPICS".

22-12

YACC

LEXICAL ANALYSIS

The user must supply a lexical analyzer to read the input
stream and communicate tokens (with values, if desired) to the
parser. The lexical analyzer is an integer-valued function called
yylex. The function returns an integer, the token number,
representing the kind of token read. If there is a value
associated with that token, it should be assigned to the external
variable yylval.

The parser and the lexical analyzer must agree on these token
numbers in order for communication between them to take
place. The numbers may be chosen by yacc or the user. In
either case, the #define mechanism of C language is used to
allow the lexical analyzer to return these numbers symbolically.
For example, suppose that the token name DIGIT has been
defined in the declarations section of the yacc specification
file. The relevant portion of the lexical analyzer might look
like:

yylexO
{

extern int yylval;
int c;

c = getcharO;

switch(c)
{

case '0':
case'1':

case '9':

}

yylval = c-'O';
return(DIGIT);

22-13

YACC

to return the appropriate token.

The intent is to return a token number of DIGIT and a value
equal to the numerical value of the digit. Provided that the
lexical analyzer code is placed in the programs section of the
specification file, the identifier DIGIT is defined as the token
number associated with the token DIGIT.

This mechanism leads to clear, easily modified lexical
analyzers. The only pitfall to avoid is using any token names in
the grammar that are reserved or significant in C language or
the parser. For example, the use of token names if or while
will almost certainly cause severe difficulties when the lexical
analyzer is compiled. The token name error is reserved for
error handling and should not be used naively.

As mentioned above, the token numbers may be chosen by yacc
or the user. In the default situation, the numbers are chosen
by yacc. The default token number for a literal character is
the numerical value of the character in the local character set.
Other names are assigned token numbers starting at 257.

To assign a token number to a token (including literals), the
first appearance of the token name or literal in the declarations
section can be immediately followed by a nonnegative integer.
This integer is taken to be the token number of the name or
literal. Names and literals not defined by this mechanism
retain their default definition. It is important that all token
numbers be distinct.

For historical reasons, the end-marker must have token number
o or negative. This token number cannot be redefined by the
user. Thus, all lexical analyzers should be prepared to return 0
or a negative number as a token upon reaching the end of their
input.

22-14

YACC

A very useful tool for constructing lexical analyzers is the lex
program. These lexical analyzers are designed to work in close
harmony with yacc parsers. The specifications for these
lexical analyzers use regular expressions instead of grammar
rules. Lex can be easily used to produce quite complicated
lexical analyzers, but there remain some languages (such as
FORTRAN) which do not fit any theoretical framework and
whose lexical analyzers must be crafted by hand.

PARSER OPERATION
The yacc program turns the specification file into a C language
program, which parses the input according to the specification
given. The algorithm used to go from the specification to the
parser is complex and will not be discussed here. The parser
itself, however, is relatively simple and understanding how it
works will make treatment of error recovery and ambiguities
much more comprehensible.

The parser produced by yacc consists of a finite state machine
with a stack. The parser is also capable of reading and
remembering the next input token (called the look-ahead
token). The current state is always the one on the top of the
stack. The states of the finite state machine are given small
integer labels. Initially, the machine is in state 0 (the stack
contains only state 0) and no look-ahead token has been read.

The machine has only four actions available-shift, reduce,
accept, and error. A step of the parser is done as follows:

1. Based on its current state, the parser decides if it needs a
look-ahead token to choose the action to be taken. If it
needs one and does not have one, it calls yylex to obtain
the next token.

22-15

YACC

2. Using the current state and the look-ahead token if
needed, the parser decides on its next action and carries
it out. This may result in states being pushed onto the
stack or popped off of the stack and in the look-ahead
token being processed or left alone.

The shift action is the most common action the parser takes.
Whenever a shift action is taken, there is always a look-ahead
token. For example, in state 56 there may be an action

IF shift 34

which says, in state 56, if the look-ahead token is IF, the
current state (56) is pushed down on the stack, and state 34
becomes the current state (on the top of the stack). The look
ahead token is cleared.

The reduce action keeps the stack from growing without
bounds. Reduce actions are appropriate when the parser has
seen the right-hand side of a grammar rule and is prepared to
announce that it has seen an instance of the rule replacing the
right-hand side by the left-hand side. It may be necessary to
consul t the look -ahead token to decide whether to reduce or not
(usually it is not necessary). In fact, the default action
(represented by a dot) is often a reduce action.

Reduce actions are associated with individual grammar rules.
Grammar rules are also given small integer numbers, and this
leads to some confusion. The action

. reduce 18

refers to grammar rule 18, while the action

IF shift 34

22-16

YACC

refers to state 34.

Suppose the rule

A : x y z

is being reduced. The reduce action depends on the left-hand
symbol (A in this case) and the number of symbols on the
right-hand side (three in this case). To reduce, first pop off the
top three states from the stack. (In general, the number of
states popped equals the number of symbols on the right side of
the rule.) In effect, these states were the ones put on the stack
while recognizing x, y, and z and no longer serve any useful
purpose. After popping these states, a state is uncovered which
was the state the parser was in before beginning to process the
rule. Using this uncovered state and the symbol on the left side
of the rule, perform what is in effect a shift of A. A new state
is obtained, pushed onto the stack, and parsing continues.
There are significant differences between the processing of the
left-hand symbol and an ordinary shift of a token, however, so
this action is called a goto action. In particular, the look-ahead
token is cleared by a shift but is not affected by a goto. In any
case, the uncovered state contains an entry such as

A goto 20

causing state 20 to be pushed on to the stack and become the
current state.

In effect, the reduce action "turns back the clock" in the parse
popping the states off the stack to go back to the state where
the right-hand side of the rule was first seen. The parser then
behaves as if it had seen the left side at that time. If the
right-hand side of the rule is empty, no states are popped off of
the stacks. The uncovered state is in fact the current state.

22-17

YACC

The reduce action is also important in the treatment of user
supplied actions and values. When a rule is reduced, the code
supplied with the rule is executed before the stack is adjusted.
In addition to the stack holding the states, another stack
running in parallel with it holds the values returned from the
lexical analyzer and the actions. When a shift takes place, the
external variable "yylval" is copied onto the value stack. After
the return from the user code, the reduction is carried out.
When the goto action is done, the external variable "yyval" is
copied onto the value stack. The pseudo-variables $1, $2, etc.,
refer to the value stack.

The other two parser actions are conceptually much simpler.
The accept action indicates that the entire input has been seen
and that it matches the specification. This action appears only
when the look-ahead token is the end-marker and indicates that
the parser has successfully done its job. The error action, on
the other hand, represents a place where the parser can no
longer continue parsing according to the specification. The
input tokens it has seen (together with the look-ahead token)
cannot be followed by anything that would result in a legal
input. The parser reports an error and attempts to recover the
situation and resume parsing. The error recovery (as opposed to
the detection of error) will be discussed later.

Consider:

%token DING DONG DELL
%%
rhyme sound place

sound DING DONG

place : DELL

as a yacc specification.

22-18

YACC

When yacc is invoked with the -v option, a file called y.output
is produced with a human-readable description of the parser.
The y.output file corresponding to the above grammar (with
some statistics stripped off the end) is:

state 0
$accept : __ rhyme $end

DING shift 3
· error

rhyme goto 1
sound goto 2

state 1
$accept: r hyme __ $end

$end accept
· error

state 2
rhyme : sound __ place

DELL shift 5
· error

place goto 4

state 3
sound : DING __ DONG

DONG shift 6
· error

state 4
rhyme sound place__ (1)

· reduce 1

state 5

22-19

YACC

place: DELL_ (3)

. reduce 3

state 6
sound DING DONG_ (2)

. reduce 2

where the actions for each state are specified and there is a
description of the parsing rules being processed in each state.
The character is used to indicate what has been seen and
what is yet to come in each rule. The following input

DING DONG DELL

can be used to track the operations of the parser. Initially, the
current state is state O. The parser needs to refer to the input
in order to decide between the actions available in state 0, so
the first token, DING, is read and becomes the look-ahead
token. The action in state 0 on DING is shift 3, state 3 is
pushed onto the stack, and the look-ahead token is cleared.
State 3 becomes the current state. The next token, DONG, is
read and becomes the look-ahead token. The action in state 3
on the token DONG is shift 6, state 6 is pushed onto the stack,
and the look-ahead is cleared. The stack now contains 0, 3, and
6. In state 6, without even consulting the look-ahead, the
parser reduces by

sound: DING DONG

which is rule 2. Two states, 6 and 3, are popped off of the stack
uncovering state O. Consulting the description of state 0
(looking for a goto on sound),

sound go to 2

22-20

YACC

is obtained. State 2 is pushed onto the stack and becomes the
current state.

In state 2, the next token, DELL, must be read. The action is
shift 5, so state 5 is pushed onto the stack, which now has 0, 2,
and 5 on it, and the look-ahead token is cleared. In state 5, the
only action is to reduce by rule 3. This has one symbol on the
right-hand side, so one state, 5, is popped off, and state 2 is
uncovered. The goto in state 2 on place (the left side of rule 3)
is state 4. Now, the stack contains 0, 2, and 4. In state 4, the
only action is to reduce by rule 1. There are two symbols on
the right, so the top two states are popped off, uncovering state ° again. In state 0, there is a goto on rhyme causing the parser
to enter state 1. In state 1, the input is read and the end
marker is obtained indicated by $end in the y.output file. The
action in state 1 (when the end-marker is seen) successfully
ends the parse.

The reader is urged to consider how the parser works when
confronted with such incorrect strings as DING DONG DONG,
DING DONG, DING DONG DELL DELL, etc. A few minutes
spent with this and other simple examples is repaid when
problems arise in more complicated contexts.

AMBIGUITY AND CONFLICTS
A set of grammar rules is ambiguous if there is some input
string that can be structured in two or more different ways.
For example, the grammar rule

expr : expr' -' expr

is a natural way of expressing the fact that one way of forming
an arithmetic expression is to put two other expressions
together with a minus sign between them. Unfortunately, this
grammar rule does not completely specify the way that all

22-21

YACC

complex inputs should be structured. For example, if the input
is

expr - expr - expr

the rule allows this input to be structured as either

expr - expr) - expr

or as

expr - (expr - expr)

(The first is called "left association", the second "right
association" .)

The yacc program detects such ambiguities when it is
attempting to build the parser. Given the input

expr - expr - expr

consider the problem that confronts the parser. When the
parser has read the second expr, the input seen

expr - expr

matches the right side of the grammar rule above. The parser
could reduce the input by applying this rule. After applying
the rule, the input is reduced to "expr" (the left side of the
rule). The parser would then read the final part of the input

- expr

22-22

YACC

and again reduce. The effect of this is to take the left
associative interpretation.

Alternatively, if the parser sees

expr - expr

it could defer the immediate application of the rule and
continue reading the input until

expr - expr - expr

is seen. It could then apply the rule to the rightmost three
symbols reducing them to "expr" which results in

expr - expr

being left. Now the rule can be reduced once more. The effect
is to take the right associative interpretation. Thus, having
read

expr - expr

the parser can do one of two legal things, a shift or a reduction.
I t has no way of deciding between them. This is called a
"shift/reduce conflict". It may also happen that the parser has
a choice of two legal reductions. This is called a "reduce/reduce
conflict". Note that there are never any shift/shift conflicts.

When there are shift/reduce or reduce/reduce conflicts, yacc
still produces a parser. It does this by selecting one of the valid
steps wherever it has a choice. A rule describing the choice to
make in a given situation is called a "disambiguating rule".

22-23

YACC

The yacc program invokes two disambiguating rules by
default:

1. In a shift/reduce conflict, the default is to do the shift.

2. In a reduce/reduce conflict, the default is to reduce by
the earlier grammar rule (in the input sequence).

Rule 1 implies that reductions are deferred in favor of shifts
when there is a choice. Rule 2 gives the user rather crude
control over the behavior of the parser in this situation, but
reduce/reduce conflicts should be avoided when possible.

Conflicts may arise because of mistakes in input or logic or
because the grammar rules (while consistent) require a more
com plex parser than yacc can construct. The use of actions
within rules can also cause conflicts if the action must be done
before the parser can be sure which rule is being recognized. In
these cases, the application of disambiguating rules is
inappropriate and leads to an incorrect parser. For this reason,
yacc always reports the number of shift/reduce and
reduce/reduce conflicts resolved by Rule 1 and Rule 2.

In general, whenever it is possible to apply disambiguating
rules to produce a correct parser, it is also possible to rewrite
the grammar rules so that the same inputs are read but there
are no conflicts. For this reason, most previous parser
generators have considered conflicts to be fatal errors. Our
experience has suggested that this rewriting is somewhat
unnatural and produces slower parsers. Thus, yacc will
produce parsers even in the presence of conflicts.

As an example of the power of disambiguating rules, consider

22-24

YACC

stat : IF 'C cond ')' stat
I IF 'C cond ')' stat ELSE stat

which is a fragment from a programming language involving
an "if-then-else" statement. In these rules, "IF" and "ELSE"
are tokens, "cond" is a nonterminal symbol describing
conditional (logical) expressions, and "stat" is a nonterminal
symbol describing statements. The first rule will be called the
"simple-if" rule and the second the "if-else" rule.

These two rules form an ambiguous construction since input of
the form

IF (C1) IF (C2) S1 ELSE S2

can be structured according to these rules in two ways

or

IF (C1)
{

IF (C2)
S1

}
ELSE

S2

IF (C1)
{

}

IF (C2)
S1

ELSE
S2

22-25

YACC

where the second interpretation is the one given in most
programming languages having this construct. Each "ELSE" is
associated with the last preceding "un-ELSE'd" IF. In this
example, consider the situation where the parser has seen

IF (C1) IF (C2) S1

and is looking at the "ELSE". It can immediately reduce by
the simple-if rule to get

IF (C1) stat

and then read the remaining input

ELSE S2

and reduce

IF (C1) stat ELSE S2

by the if-else rule. This leads to the first of the above
groupings of the input.

On the other hand, the "ELSE" may be shifted, "S2" read, and
then the right-hand portion of

IF (C1) IF (C2) S1 ELSE S2

can be reduced by the if-else rule to get

IF (C1) stat

which can be reduced by the simple-if rule. This leads to the
second of the above groupings of the input which is usually

22-26

YACC

desired.

Once again, the parser can do two valid things-there is a
shift/reduce conflict. The application of disambiguating rule 1
tells the parser to shift in this case, which leads to the desired
grouping.

This shift/reduce conflict arises only when there is a particular
current input symbol, "ELSE", and particular inputs, such as

IF (C1) IF (C2) Sl

have already been seen. In general, there may be many
conflicts, and each one will be associated with an input symbol
and a set of previously read inputs. The previously read inputs
are characterized by the state of the parser.

The conflict messages of yacc are best understood by
examining the verbose (-v) option output file. For example,
the output corresponding to the above conflict state might be

23: shift/reduce conflict (shift 45, reduce 18) on ELSE

state 23

stat IF
stat IF

cond
cond

ELSE shift 45
reduce 18

stat (18)
stat_ELSE stat

where the first line describes the conflict-giving the state and
the input symbol. The ordinary state description gives the
grammar rules active in the state and the parser actions.
Recall that the underline marks the portion of the grammar
rules which has been seen. Thus in the example, in state 23 the
parser has seen input corresponding to

22-27

YACC

IF (cond) stat

and the two grammar rules shown are active at this time. The
parser can do two possible things. If the input symbol is
"ELSE", it is possible to shift into state 45. State 45 will have,
as part of its description, the line

stat : IF (cond) stat ELSE_stat

since the "ELSE" will have been shifted in this state. In state
23, the alternative action [describing a dot (.)] is to be done if
the input symbol is not mentioned explicitly in the actions. In
this case, if the input symbol is not "ELSE", the parser reduces
to

stat : IF 'C cond ')' stat

by grammar rule 18.

Once again, notice that the numbers following "shift"
commands refer to other states, while the numbers following
"reduce" commands refer to grammar rule numbers. In the
y.output file, the rule numbers are printed after those rules
which can be reduced. In most one states, there is reduce
action possible in the state and this is the default command.
The user who encounters unexpected shift/reduce conflicts will
probably want to look at the verbose output to decide whether
the default actions are appropriate.

22-28

YACC

PRECEDENCE
There is one common situation where the rules given above for
resolving conflicts are not sufficient. This is in the parsing of
arithmetic expressions. Most of the commonly used
constructions for arithmetic expressions can be naturally
described by the notion of precedence levels for operators,
together with information about left or right associativity. It
turns out that ambiguous grammars with appropriate
disambiguating rules can be used to create parsers that are
faster and easier to write than parsers constructed from
unambiguous grammars. The basic notion is to write grammar
rules of the form

expr : expr OP expr

and

expr : UNARY expr

for all binary and unary operators desired. This creates a very
ambiguous grammar with many parsing conflicts. As
disambiguating rules, the user specifies the precedence or
binding strength of all the operators and the associativity of
the binary operators. This information is sufficient to allow
yacc to resolve the parsing conflicts in accordance with these
rules and construct a parser that realizes the desired
precedences and associativities.

The precedences and associativities are attached to tokens in
the declarations section. This is done by a series of lines
beginning with a yacc keyword: % left, %right, or
%nonassoc, followed by a list of tokens. All of the tokens on
the same line are assumed to have the same precedence level
and associativity; the lines are listed in order of increasing
precedence or binding strength. Thus:

22-29

YACC

%left '+' '-'
% left '*' '/'

describes the precedence and associativity of the four
arithmetic operators. Plus and minus are left associative and
have lower precedence than star and slash, which are also left
associative. The keyword %right is used to describe right
associative operators, and the keyword %nonassoc is used to
describe operators, like the operator .LT. in FORTRAN, that
may not associate with themselves. Thus:

A .LT. B .LT. C

is illegal in FORTRAN and such an operator would be described
with the keyword %nonassoc in yacc. As an example of the
behavior of these declarations, the description

%right '='
%left '+' '-'
% left '*' , /'

%%

expr expr '=' expr
I expr '+' expr
I expr ' , expr
I expr '*' expr
I expr 'I' expr
I NAME

might be used to structure the input

a = b = c*d - e - f*g

as follows

22-30

YACC

a = (b = («c*d)-e) - (f*g)))

in order to perform the correct precedence of operators. When
this mechanism is used, unary operators must, in general, be
given a precedence. Sometimes a unary operator and a binary
operator have the same symbolic representation but different
precedences. An example is unary and binary "-". Unary
minus may be given the same strength as multiplication, or
even higher, while binary minus has a lower strength than
multiplication. The keyword, %prec, changes the precedence
level associated with a particular grammar rule. The keyword
%prec appears immediately after the body of the grammar
rule, before the action or closing semicolon, and is followed by a
token name or literal. It causes the precedence of the grammar
rule to become that of the following token name or literal. For
example, the rules

%left '+' '-'
% left '*' '/'

%%

expr expr '+' expr
I expr ' , expr
I expr '*' expr
I expr 'I' expr
I '-' expr %prec
I NAME

'*'

might be used to give unary minus the same precedence as
multiplication.

A token declared by %left, %right, and %nonassoc need not
be, but may be, declared by %token as well.

The precedences and associativities are used by yacc to resolve
parsing conflicts. They give rise to disambiguating rules.

22-31

YACC

Formally, the rules work as follows:

1. The precedences and associativities are recorded for
those tokens and literals that have them.

2. A precedence and associativity is associated with each
grammar rule. It is the precedence and associativity of
the last token or literal in the body of the rule. If the
%prec construction is used, it overrides this default.
Some grammar rules may have no precedence and
associativity associated with them.

3. When there is a reduce/reduce conflict or there is a
shift/reduce conflict and either the input symbol or the
grammar rule has no precedence and associativity, then
the two disambiguating rules given at the beginning of
the section are used, and the conflicts are reported.

4. If there is a shift/reduce conflict and both the grammar
rule and the input character have precedence and
associativity associated with them, then the conflict is
resolved in favor of the action (shift or reduce)
associated with the higher precedence. If the
precedences are the same, then the associativity is used;
left associative implies reduce, right associative implies
shift, and nonassociating implies error.

Conflicts resolved by precedence are not counted in the number
of shift/reduce and reduce/reduce conflicts reported by yacc.
This means that mistakes in the specification of precedences
may disguise errors in the input grammar. It is a good idea to
be sparing with precedences and use them in an essentially
"cookbook" fashion until some experience has been gained. The
y.output file is very useful in deciding whether the parser is
actually doing what was in tended.

22-32

YACC

ERROR HANDLING

Error handling is an extremely difficult area, and many of the
problems are semantic ones. When an error is found, for
example, it may be necessary to reclaim parse tree storage,
delete or alter symbol table entries, and, typically, set switches
to avoid generating any further output.

It is seldom acceptable to stop all processing when an error is
found. It is more useful to continue scanning the input to find
further syntax errors. This leads to the problem of getting the
parser "restarted" after an error. A general class of
algorithms to do this involves discarding a number of tokens
from the input string and attempting to adjust the parser so
that input can continue.

To allow the user some control over this process, yacc provides
a simple, but reasonably general feature. The token name
"error" is reserved for error handling. This name can be used
in grammar rules. In effect, it suggests places where errors are
expected and recovery might take place. The parser pops its
stack until it enters a state where the token "error" is legal. It
then behaves as if the token "error" were the current look
ahead token and performs the action encountered. The look
ahead token is then reset to the token that caused the error. If
no special error rules have been specified, the processing halts
when an error is detected.

In order to prevent a cascade of error messages, the parser,
after detecting an error, remains in error state until three
tokens have been successfully read and shifted. If an error is
detected when the parser is already in error state, no message
is given, and the input token is quietly deleted.

As an example, a rule of the form

stat : error

22-33

YACC

means that on a syntax error the parser attempts to skip over
the statement in which the error is seen. More precisely, the
parser scans ahead, looking for three tokens that might legally
follow a statement, and starts processing at the first of these.
If the beginnings of statements are not sufficiently distinctive,
it may make a false start in the middle of a statement and end
up reporting a second error where there is in fact no error.

Actions may be used with these special error rules. These
actions might attempt to reinitialize tables, reclaim symbol
table space, etc.

Error rules such as the above are very general but difficult to
control. Rules such as

stat : error ';'

are somewhat easier. Here, when there is an error, the parser
attempts to skip over the statement but does so by skipping to
the next semicolon. All tokens after the error and before the
next semicolon cannot be shifted and are discarded. When the
semicolon is seen, this rule will be reduced and any "cleanup"
action associated with it performed.

Another form of error rule arises in interactive applications
where it may be desirable to permit a line to be reentered after
an error. The following example is one way to do this:

22-34

input

{

}

YACC

error ,\n'
{

printf(" Reenter last line:");
}
input

$$ = $4;

There is one potential difficulty with this approach. The parser
must correctly process three input tokens before it admits that
it has correctly resynchronized after the error. If the reentered
line contains an error in the first two tokens, the parser deletes
the offending tokens and gives no message. This is clearly
unacceptable. For this reason, there is a mechanism that can
force the parser to believe that error recovery has been
accomplished. The statement

yyerrok;

in an action resets the parser to its normal mode. The last
exam pIe can be rewritten as

input : error ,\n'

{

}

{
yyerrok;
printf(" Reenter last line:");

}
input

$$ = $4;

which is somewhat better.

22-35

YACC

As previously mentioned, the token seen immediately after the
"error" symbol is the input token at which the error was
discovered. Sometimes, this is inappropriate; for example, an
error recovery action might take upon itself the job of finding
the correct place to resume input. In this case, the previous
look-ahead token must be cleared. The statement

yyclearin;

in an action will have this effect. For example, suppose the
action after error were to call some sophisticated
resynchronization routine (supplied by the user) that attempted
to advance the input to the beginning of the next valid
statement. After this routine is called, the next token returned
by yylex is presumably the first token in a legal statement.
The old illegal token must be discarded and the error state
reset. A rule similar to

stat : error

resynchO;
yyerrok ;
yyclearin;

could perform this.

These mechanisms are admittedly crude but do allow for a
simple, fairly effective recovery of the parser from many errors.
Moreover, the user can get control to deal with the error
actions required by other portions of the program.

22-36

YACC

THE "yacc" ENVIRONMENT

When the user inputs a specification to yacc, the output is a
file of C language programs, called y.tab.c on most systems.
(Due to local file system conventions, the names may differ
from installation to installation.) The function produced by
yacc is called yyparse(); it is an integer valued function. When
it is called, it in turn repeatedly calls yylex() , the lexical
analyzer supplied by the user (see "LEXICAL ANALYSIS"), to
obtain input tokens. Eventually, an error is detected, yyparse{)
returns the value 1, and no error recovery is possible, or the
lexical analyzer returns the end-marker token and the parser
accepts. In this case, yyparse{) returns the value o.

The user must provide a certain amount of environment for this
parser in order to obtain a working program. For example, as
with every C language program, a program called main() must
be defined that eventually calls yyparse{). In addition, a
routine called yyerrorO prints a message when a syntax error
is detected.

These two routines must be supplied in one form or another by
the user. To ease the initial effort of using yacc, a library has
been provided with default versions of mainO and yyerrorO.
The name of this library is system dependent; on many
systems, the library is accessed by a -ly argument to the
loader. The source codes

mainO
{

return (yyparseO);
}

and

22-37

YACC

include <stdio.h>

yyerror(s)
char *s;

{

}
fprintf(stderr, " % s\n" , s);

show the triviality of these default programs. The argument to
yyerror() is a string containing an error message, usually the
string "syntax error". The average application wants to do
better than this. Ordinarily, the program should keep track of
the input line number and print it along with the message
when a syntax error is detected. The external integer variable
yychar contains the look-ahead token number at the time the
error was detected. This may be of some interest in giving
better diagnostics. Since the mainO program is probably
supplied by the user (to read arguments, etc.), the yacc library
is useful only in small projects or in the earliest stages of
larger ones.

The external integer variable yydebug is normally set to o. If it
is set to a nonzero value, the parser will output a verbose
description of its actions including a discussion of the input
symbols read and what the parser actions are. Depending on
the operating environment, it may be possible to set this
variable by using a debugging system.

HINTS FOR PREPARING SPECIFICATIONS
This part contains miscellaneous hints on preparing efficient,
easy to change, and clear specifications. The individual
subsections are more or less independent.

22-38

YACC

Input Style

It is difficult to provide rules with substantial actions and still
have a readable specification file. The following are a few style
hints.

1. Use all uppercase letters for token names and all
lowercase letters for nonterminal names. This rule
comes under the heading of "knowing who to blame when
things go wrong".

2. Put grammar rules and actions on separate lines. This
allows either to be changed without an automatic need to
change the other.

3. Put all rules with the same left-hand side together. Put
the left-hand side in only once and let all following rules
begin with a vertical bar.

4. Put a semicolon only after the last rule with a given
left-hand side and put the semicolon on a separate line.
This allows new rules to be added easily.

5. Indent rule bodies by two tab stops and action bodies by
three tab stops.

The example in Appendix 1 is written following this style, as
are the examples in this section (where space permits). The
user must make up his own mind about these stylistic
questions. The central problem, however, is to make the rules
visible through the morass of action code.

22-39

YACC

Left Recursion

The algorithm used by the yacc parser encourages so called
"left recursive" grammar rules. Rules of the form

match this algorithm. These rules such as

list item
list ',' item

and

seq item
seq item

frequently arise when writing specifications of sequences and
lists. In each of these cases, the first rule will be reduced for
the first item only; and the second rule will be reduced for the
second and all succeeding items.

With right recursive rules, such as

seq : item
I item seq

the parser is a bit bigger; and the items are seen and reduced
from right to left. More seriously, an internal stack in the
parser is in danger of overflowing if a very long sequence is
read. Thus, the user should use left recursion wherever
reasonable.

22-40

YACC

It is worth considering if a sequence with zero elements has
any meaning, and if so, consider writing the sequence
specification as

seq : /* empty * /
I seq item

using an empty rule. Once again, the first rule would always be
reduced exactly once before the first item was read, and then
the second rule would be reduced once for each item read.
Permitting empty sequences often leads to increased generality.
However, conflicts might arise if yacc is asked to decide which
empty sequence it has seen when it hasn't seen enough to know!

Lexical Tie-ins

Some lexical decisions depend on context. For example, the
lexical analyzer might want to delete blanks normally but not
within quoted strings, or names might be entered into a symbol
table in declarations but not in expressions.

One way of handling this situation is to create a global flag
that is examined by the lexical analyzer and set by actions. For
example,

22-41

YACC

%{
int dflag;

%}
... other declarations ...

%%

prog decls sta ts

decls: /* empty * /
{

dflag = 1;
}
I decls declaration

stats: /* empty */
{

dflag = 0;
}
I stats statement

... other rules ...

specifies a program that consists of zero or more declarations
followed by zero or more statements. The flag "dflag" is now 0
when reading statements and 1 when reading declarations,
except for the first token in the first statement. This token
must be seen by the parser before it can tell that the
declaration section has ended and the statements have begun.
In many cases, this single token exception does not affect the
lexical scan.

This kind of "back-door" approach can be elaborated to a
noxious degree. Nevertheless, it represents a way of doing
some things that are difficult if not impossible to do otherwise.

22-42

YACC

Reserved Words

Some programming languages permit you to use words like "if",
which are normally reserved as label or variable names,
provided that such use does not conflict with the legal use of
these names in the programming language. This is extremely
hard to do in the framework of yacc. It is difficult to pass
information to the lexical analyzer telling it "this instance of if
is a keyword and that instance is a variable". The user can
make a stab at it using the mechanism described in the last
subsection, but it is difficult.

A number of ways of making this easier are under advisement.
Until then, it is better that the keywords be reserved, i.e.,
forbidden for use as variable names. There are powerful
stylistic reasons for preferring this.

ADVANCED TOPICS
This part discusses a number of advanced features of yacc.

Simulating Error and Accept in Actions

The parsing actions of error and accept can be simulated in an
action by use of macros YYACCEPT and YYERROR. The
YYACCEPT macro causes yyparse() to return the value 0;
YYERROR causes the parser to behave as if the current input
symbol had been a syntax error; yyerror() is called, and error
recovery takes place. These mechanisms can be used to
simulate parsers with multiple end-markers or context sensitive
syntax checking.

22-43

YACC

Accessing Values in Enclosing Rules

An action may refer to values returned by actions to the left of
the current rule. The mechanism is simply the same as with
ordinary actions, a dollar sign followed by a digit.

sent : adj noun verb adj noun
{

look at the sentence ...
}

adj THE

$$ = THE;
}
I YOUNG
{

$$ = YOUNG;
}

noun : DOG
{

$$ = DOG;
}
I CRONE
{

}

if($0 == YOUNG)
{

printf("what?\n");
}
$$ = CRONE;

In this case, the digit may be 0 or negative. In the action
following the word CRONE, a check is made that the preceding
token shifted was not YOUNG. Obviously, this is only possible
when a great deal is known about what might precede the

22-44

YACC

symbol "noun" in the input. There is also a distinctly
unstructured flavor about this. Nevertheless, at times this
mechanism prevents a great deal of trouble especially when a
few combinations are to be excluded from an otherwise regular
structure.

Support for Arbitrary Value Types

By default, the values returned by actions and the lexical
analyzer are integers. The yacc program can also support
values of other types including structures. In addition, yacc
keeps track of the types and inserts appropriate union member
names so that the resulting parser is strictly type checked. The
yacc value stack is declared to be a union of the various types
of values desired. The user declares the union and associates
union member names to each token and nonterminal symbol
having a value. When the value is referenced through a $$ or
$n construction, yacc will automatically insert the appropriate
union name so that no unwanted conversions take place. In
addition, type checking commands such as lint are far more
silent.

There are three mechanisms used to provide for this typing.
First, there is a way of defining the union. This must be done
by the user since other programs, notably the lexical analyzer,
must know about the union member names. Second, there is a
way of associating a union member name with tokens and
nonterminals. Finally, there is a mechanism for describing the
type of those few values where yacc cannot easily determine
the type.

To declare the union, the user includes

22-45

YACC

% union
{

body of union ...
}

in the declaration section. This declares the yacc value stack
and the external variables yylval and yyval to have type equal
to this union. If yacc was invoked with the -d option, the
union declaration is copied onto the y.tab.h file. Alternatively,
the union may be declared in a header file, and a typedef used
to define the variable YYSTYPE to represent this union. Thus,
the header file might have said

typedef union
{

body of union ...
}
YYSTYPE;

instead. The header file must be included in the declarations
section by use of % { and %}.

Once YYSTYPE is defined, the union member names must be
associated with the various terminal and nonterminal names.
The construction

< name>

is used to indicate a union member name. If this follows one of
the keywords %token, %left, %right, and %nonassoc, the
union member name is associated with the tokens listed. Thus,
saying

% left <optype> '+' , ,

22-46

YACC

causes any reference to values returned by these two tokens to
be tagged with the union member name optype. Another
keyword, %type, is used to associate union member names
with nonterminals. Thus, one might say

% type <nodetype> expr stat

to associate the union member nodetype with the nonterminal
symbols "expr" and "stat".

There remain a couple of cases where these mechanisms are
insufficient. If there is an action within a rule, the value
returned by this action has no a priori type. Similarly,
reference to left context values (such as $0) leaves yacc with
no easy way of knowing the type. In this case, a type can be
imposed on the reference by inserting a union member name
between < and> immediately after the first $. The example

rule : aaa

{

}

{
$<intval>$ = 3;

}
bbb

fun($<intval>2, $<other>O);

shows this usage. This syntax has little to recommend it, but
the situation arises rarely.

A sample specification is given in Appendix 3. The facilities in
this subsection are not triggered until they are used. In
particular, the use of %type will turn on these mechanisms.
When they are used, there is a fairly strict level of checking.
For example, use of $n or $$ to refer to something with no
defined type is diagnosed. If these facilities are not triggered,

22-47

YACC

the yacc value stack is used to hold int's, as was true
historically.

APPENDIX 1

A Simple Example

This example gives the complete yacc applications for a small
desk calculator; the calculator has 26 registers labeled "a"
through" z" and accepts arithmetic expressions made up of the
operators +, -, *, /, % (med operator), & (bitwise and), I
(bitwise or), and assignments. If an expression at the top level
is an assignment, the value is printed; otherwise, the expression
is printed. As in C language, an integer that begins with 0
(zero) is assumed to be octal; otherwise, it is assumed to be
decimal.

As an example of a yacc specification, the desk calculator does
a reasonable job of showing how precedence and ambiguities
are used and demonstrates simple recovery. The major
oversimplifications are that the lexical analyzer is much
simpler for most applications, and the output is produced
immediately line by line. Note the way that decimal and octal
integers are read in by grammar rules. This job is probably
better done by the lexical analyzer.

%{
includes<stdio.h>
includes<ctype.h>

int regs[26];
int base;

%}

% start list

22-48

%token DIGIT LETTER

% left 'I'
%left '&'
%left '+' '-'
%left '*' 'I' '%'

YACC

% left UMINUS /* supplies precedence for unary minus * /

% % /* beginning of rule section * /

list : /* empty * /
I list stat ,\n'
I list error ,\n'

{

yyerrork;

}

stat expr
{

printf(" % dn" , $1);
}
I LETTER '=' expr
{

regs[$1] = $3
}

expr '(' expr ')'
{

$$ = $2;
}
I expr '+' expr
{

$$ = $1 + $3
}
I expr '-' expr

22-49

YACC

{
$$ = $1 - $3

{
1 expr '*' expr
{

$$ = $1 * $3;
}
1 expr' I' expr
{

$$ = $1/$3;
}
1 exp '%' expr
{

$$ = $1 % $3
}
1 expr' &' expr

{
$$ = $1 & $3;

}
1 expr' 1 ' expr
{

$$ = $11 $3
}
1 '-' expr %prec UMINUS
{

$$ = - $2;
}
1 LETTER
{

$$ = reg[$l];
}
1 number

number : DIGIT

$$ = $1; base = ($1==0) ? 8 ; 10;
}
1 number DIGIT

22-50

{

}
$$ = bas * $1 + $2

YACC

% % 1* start of program *1

yylex()
{

}

1* lexical analysis routine *1
1* return LETTER for lowercase letter,

yylval = 0 through 25*1

1* returns DIGIT for digit, yylval = 0 through 9*1
1* all other characters are returned immediately *1

int c;
I*skip blanks* 1

while (c=getchar()) = = ")

1* c is now nonblank *1

if(islower(c))
{

}

yylval = c- 'a';
return(LETTER);

if(isdigit(c))
}

}

yylval = c-'O';
return(DIG IT);

return(c);

22-51

YACC

APPENDIX 2

Y ACC Input Syntax

This appendix has a description of the yacc input systax as a
yacc specification. Context dependencies, etc. are not
considered. Ironically, the yacc input specification language is
most naturally specified as an LR(2) grammar; the sticky part
comes when an identifier is seen in a rule immediately
following an action. If this identifier is followed by a colon, it is
the start of the next rule; otherwise, it is a continuation of the
current rule which just happens to have an action embedded in
it. As implemented, the lexical analyzer looks ahead after
seeing an identifier and decides whether the next token
(skipping blanks, newlines, and comments, etc.) is a colon. If so,
it returns the token C_IDENTIFIER. Otherwise, it returns
IDENTIFIER. Literals (quoted strings) are also returned as
IDENTIFIERS but never as part of C_IDENTIFIERs.

/* grammar for the input to yacc * /

/* basic entries * /
% token IDENTIFIER /* includes identifiers and literals * /
% token C_IDENTIFIER /* identifier (but not literal)

followed by a colon * /
% token NUMBER /* [0-9]+ */

/*

% token

% token
% token
% token

reserved words: %type=> TYPE %left=>LEFT,etc. */

LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION

MARK /* the % % mark * /
LCURL /* the % { mark * /
RCURL /* the % } mark * /

/* ASCII character literals stand for themselves * /

% token spec

22-52

%%

spec defs MARK rules tail

tail MARK

}

I

defs :
I

defs :
I
{

}

In this action, eat up the rest of the file

/* empty: the second MARK is optional */

/* empty */
defs def

START IDENTIFIER
UNION

Copy union definition to output

I LCURL
{

}

Copy C code to output file
RCURL

I ndefs rword tag nlist

rword : TOKEN
I LEFT
I RIGHT
I NONASSOC
I TYPE

tag : /* empty: union tag is optional * /
I '<' IDENTIFIER '>'

YACC

22-53

YACC

nlist : nmno
I nlist nmno
I nlist','nmno

nmno : IDENTIFIER /*N ote: literal illegal with % type * /
I IDENTIFIER NUMBER /* Note: illegal with % type */

/* rule section * /

rules : C_IDENTIFIER rbody proc
I rules rule

rule : C_IDENTIFIER rbody prec
I 'I' rbody prec

rbody : /* empty */
I rbody IDENTIFIER
I rbodyact

act '{'
{

Copy action translate $$' etc.
}

'}'

Bprec : /* empty * /
I PREC IDENTIFIER
I PREC IDENTIFIER act
I prec';'

22-54

YACC

APPENDIX 3

An Advanced Example

This appendix gives an example of a grammar using some of
the advanced features. The desk calculator example in
Appendix 1 is modified to provide a desk calculator that does
floating point interval arithmetic. The calculator understands
floating point constants; the arithmetic operations +, -, *, /,
unary -, and" a" through" z" . Moreover, it also understands
intervals written

(X,Y)

where X is less than or equal to Y. There are 26 interval valued
variables "A" through" Z" that may also be used. The usage
is similar to that in Appendix 1; assignments return no values
and print nothing while expressions print the (floating or
interval) value.

This example explores a number of interesting features of yacc
and C language. Intervals are represented by a structure
consisting of the left and right endpoint values stored as
doubles. This structure is given a type name, INTERVAL, by
using typedef The yacc value stack can also contain floating
point scalars and integers (used to index into the arrays
holding the variable values). Notice that the entire strategy
depends strongly on being able to assign structures and unions
in C language. In fact, many of the actions call functions that
return structures as well.

It is also worth noting the use of YYERROR to handle error
conditions-division by an interval containing 0 and an interval
presented in the wrong order. The error recovery mechanism of
yacc is used to throwaway the rest of the offending line.

22-55

YACC

In addition to the mIxIng of types on the value stack, this
grammar also demonstrates an interesting use of syntax to
keep track of the type (for example, scalar or interval) of
intermediate expressions. Note that scalar can be
automatically promoted to an interval if the context cmmands
an interval value. This causes a large number of conflicts when
the grammar is run through yacc-18 Shift/Reduce and 26
Reduce/Reduce. The problem can be seen by looking at the two
input lines:

2.5+(3.5-4.)

and

2.5 + (3.5,4)

Notice that the 2.5 is to be used in an interval value expression
in the second example, but this fact is not known until the
comma is read. By this time, 2.5 is finished, and the parser
cannot go back and change its mind. More generally, it might
be necessary to look ahead an arbitrary number of tokens to
decide whether to convert a scalar to an interval. This problem
is evaded by having two rules for each binary interval valued
operator-one when the left operand is a scalar and one when
the left operand is an interval. In the second case, the right
operand must be an interval, so the conversion will be applied
automatically. Despite this evasion, there are still many cases
where the conversion may be applied or not, leading to the
above conflicts. They are resolved by listing the rules that yield
scalars first in the specification file; in this way, the conflict
will be resolved in the direction of keeping scalar valued
expressions scalar valued until they are forced to become
intervals.

This way of handling multiple types is very instructive but not
very general. If there were many kinds of expression types
instead of just two, the number of rules needed would increase
dramatically and the conflicts even more dramatically. Thus,

22-56

YACC

while this example is instructive, it is better practice in a more
normal programming language environment to keep the type
information as part of the value and not as part of the
grammar.

Finally, a word about the lexical analysis. The only unusual
feature is the treatment of floating point constants. The C
language library routine atof() is used to do the actual
conversion from a character string to a double precision value.
If the lexical analyzer detects an error, it responds by returning
a token that is illegal in the grammar provoking a syntax error
in the parser and thence error recovery.

%{

#include<stdio.h>
#include<ctype.h>

typedef struct interval
{

double 10, hi;
} INTERVAL;

INTERVAL vmulO, vdiv();

double atof();

double dreg[26];
INTERVAL vreg[26];

%}

% start line

% union
{

}

int ivaI;
double dval;
INTERV AL vval;

22-57

YACC

% token <ivaI> DREG VREG /*indices into dreg, vreg arrays * /

% token <dval> CONST /* floating point constant * /

% type <dval> dexp /* expression * /

% type <vval> vexp /* interval expression * /

/* precedence information about the operators * /

% left '+' '-'
% left '*" /'
% left UMINUS /* precedence for unary minus * /

%%

lines : /* empty * /
I lines line

line dexp ,\n'
{

}
printf(" % 15.8f\n" .$1);

I vexp ,\n'

{
printf(" (% 15.8f , % 15.8f)O,$1.10,$1.hi);

}
I DREG '=' '\n'
{

dreg[$I] = $3;

}
I VREG '=' vexp '\n'
{

vreg[$I] = $3;

22-58

YACC

}
I error ,\n'
{

yyerrork;

}

dexp : CONST
I DREG
{

$$ = dreg[$l]

}
I dexp '+' dexp
{

$$ = $1 + $3

}
I dexp '-' dexp
{

$$ = $1 - $3
}
I dexp '*' dexp
{

$$ = $1 * $3

}
I dexp' I' dexp
{

$$ = $1 I $3

}
I '-' dexp % prec UMINUS

22-59

YACC

{

$$ =- $2

}
I '(' dexp')'
{

$$ = $2

}

vexpp : dexp
{

$$.hi = $$.10 = $1;

}
I '(' dexp',' dexp')'
{

}
I VREG
{

}

$$.10 = $2;
$$.hi = $4;
If($$.10 > $$.hi)
{

}

printf(" interval out of order n");
YYERROR;

$$ = vreg[$l]

I vexp '+' vexp
{

22-60

$$.hi = $1.hi + $3.hi;
$$.10 = $1.10 + $3.10

}
I dexp '+' vexp
{

}

$$.hi = $1 + $3.hi;
$$.10 = $1 + $3.10

I vexp '=' vexp
{

}

$$.hi = $1.hi - $3.10;
$$.10 = $1.10 - $3.hi

I dvep '-' vdep

{

}

$$.hi = $1 - $3.10;
$$.10 = $1 - $3.hi

I vexp ,*, vexp
{

$$ = vrnul($1.10,$.hi,$3)

}
I dexp ,*, vexp
{

$$ = vrnul($1, $1, $3)

}
I vexp 'I' vexp
{

}

if(dcheck($3)) YYERROR;
$$ = vdiv($1.10, $1.hi, $3)

YACC

22-61

YACC

%%

I dexp 'I' vexp

}

if(dcheck($3)) YYERROR;
$$ = vdiv($1.10, $1.hi, $3)

I '-' vexp % prec UMINUS
{

$$.hi = -$2.10;$$.10 =-$2.hi
}
I 'C vexp ')'
}

$$ = $2
}

define BSZ 50 /* buffer size for floating point number * /

/* lexical analysis * /

yylex()
{

register c;

if(isupper(c))
{

/* skip over blanks * /

yylval.ival = c - 'A'
return(VREG);

}
if(islower(c))
{

22-62

yylval.ival = c - 'a',
return(DREG);

YACC

}

/* gobble up digits. points, exponents * /
if(idigit(c) II c=='.')

{

{

char buf[BSZ+ 1], *cp = buf;
int dot = 0, exp = 0;

for(; (cp-buf)<BSZ ; ++cp,c=getchar())

*cp = c;
if(isdigit(c))

continue;
if(c =='.'
{
if(dot++ II exp)

}

return('.');/* will cause syntax error * /
continue;

if(c == 'e')
{

if(exp++)
return('e'); * /will cause syntax error * /

continue;
}

}

/* end of number * /
break;

*cp = ,\0';
if(cp-buff) >= BSZ)

printcf(" constant too long truncated\n");
else

ungetc(c, stdin); /* push back last char read * /
yylval.dval = atof(buf);
return(CONST);
}
return(c);

22-63

YACC

}

INTERVAL
hilo(a, b, c, d)

{

}

double a, b, c, d;

/* returns the smallest interval containing a, b, c, and d * /

/* used by *,/ routine * /
INTERVAL v;

if(a>b)
{

}
else
{

}

v.hi = a;
v.lo = b;

v.hi = b;
v.lo = a;

if(c>d)
{

}
else
}

}

if(c>v.hi)
v.hi = c;

if(d<v.lo)
v.lo = d;

if(d>v.hi)
v.hi = d;

if(c<v.lo)
v.lo = c;

return(v);

INTERV AL vmul(a, b, v)
double a, b;
INTERVAL v;

22-64

{

}
return(hilo(a*v.hi, a*v,lo, b*v.hi, b*v.lo));

dcheck(v)

{

{

INTERVAL v;

if(v.hi >=0.&& v.lo <=0.)
{

}

printf(" divisor internal contains O.\n");
return(1);

return(0);

INTERV AL vdiv(a, b, v)
double a, b;
INTERVAL v;

{
return(hilo(a/v.hi, a/v,lo, b/v.hi, b/v.lo));

APPENDIX 4

Old Features Supported But Not Encouraged

YACC

This appendix mentions synonyms and features that are
supported for historical continuity but, for various reasons, are
not encouraged.

1. Literals may also be delimited by double quotes.

2. Li terals may be more that one character long. If all the
characters are alphabetic, numeric, or _, the type
number of the literal is defined just as if the literal did
not have the quotes around it. Otherwise, it is difficult

22-65

YACC

to find the value for such literals.

The use of multi character literals is likely to mislead
those unfamiliar with yacc since it suggests that yacc
is doing a job which must actually be done by the lexical
analyzer.

3. Most places where % is legal, backslash "\" may be
used. In particular, \ \ is the same as % %, \left the same
as % left, etc.

4. There are a number of other synonyms:

% < is the same as % left
% > is the same as % right
% binary and % 2 are the same as % nonassoc
% 0 and % term are the same as % token
% = is the same as % prec

5. Action may also have the form

={ ... }

and the curly braces can be dropped if the action is a
single C language statement.

6. The C language code between % { and %} used to be
permitted at the head of the rules section as well as in
the declaration section.

22-66

Chapter 23

UNIX SYSTEM TO UNIX SYSTEM COPY
"uucp"

INTRODUCTION

THE UUCP NETWORK

Network Hardware

Network Topology

Forwarding

Security

Software Structure

Rules of the Road

Special Places: The Public Area

Permissions

PAGE

23-1

23-2

23-2

23-3

23-6

23-7

23-7

23-7

23-9

23-10

NETWORK USAGE 23-11

Name Space. .. 23-11

Forwarding Syntax 23-13

Types of Transfers. .. 23-14

Remote Executions. .. 23-15

Spooling. .. 23-15

Notification. .. 23-16

Tracking and Status 23-17

Job Status .. 23-18

Network Status. .. 23-18

Job Control 23-19

UTILITIES THAT USE UUCP .. 23-20

Mail. 23-20

Uuto ... 23-20

Other Applications. .. 23-21

Chapter 23

UNIX SYSTEM TO UNIX SYSTEM
COpy -"uucp"

INTRODUCTION
The uucp network has provided a means of information
exchange between UNIX systems over the direct distant dialing
network for several years. This chapter provides you with the
background to make use of the network.

The first half of the document discusses concepts.
Understanding these basic principles helps the user make the
best possible use of the uucp network. The second half
explains the use of the user level interface to the network and
provides numerous examples.

There are several major uses of the network. Some of the uses
are:

• Distribution of software

• Distribution of documentation

• Personal communication (mail)

• Data transfer between closely sited machines

• Transmission of debugging dumps and data exposing bugs

• Production of hard copy output on remote printers.

23-1

UUCP

THE UUCP NETWORK
The uucp(l) network is a network of UNIX systems that allows
file transfer and remote execution to occur on a network of
UNIX systems. The extent of the network is a function of both
the interconnection hardware and the controlling network
software. Membership in the network is tightly controlled via
the software to preserve the integrity of all members of the
network. You cannot use the uucp facility to send files to
systems that are not part of the uucp network. The following
parts describe the topology, services, operating rules, etc., of the
network to provide a framework for discussing use of the
network.

Network Hardware

The uucp was originally designed as a dialup network so that
systems in the network could use the DDD network to
communicate with each other. The three most common
methods of connecting systems are:

1. Connecting two UNIX systems directly by cross-coupling
(via a null modem) two of the computers ports. This means
of connection is useful for only short distances (several
hundred feet can be achieved although the RS232 standard
specifies a much shorter distance) and is usually run at
high speed (9600 baud). These connections run on
asynchronous terminal ports.

2. Using a modem (a private line or a limited distance
modem) to directly connect processors over a private line
(using 103- or 212-type data sets).

3. Connecting a processor to another system through a
modem, an automatic calling unit (ACU) or an internal
modem on the UNIX PC, and the DDD network. This is
by far the most common interconnection method, and it
makes available the largest number of connections.

23-2

UUCP

Network Topology

A large number of connections between systems are possible
via the DDD network. The topology of the network is
determined by both the hardware connections and the software
that controls the network. The next two parts deal with how
that topology is controlled.

Hardware Topology

As discussed earlier, it is possible to build a network using
permanent or dial up connections. In Figure 23-1, a group of
systems (A, B, C, D, and E) are shown connected via hard-wired
lines. All systems are assumed to have some answer-only data
sets so that remote users or systems can be connected. A few
systems have automatic calling units (K, D, F, and G) and one
system (H) has no capability for calling other systems. Users
should be aware that the network consists of a series of point
to-point connections (A-B, B-C, D-B, E-B) even though it
appears in Figure 23-1 that A and C are directly connected
through B. The following observations are made:

1. System H is isolated. It can be made part of the network
by arranging for other systems to poll it at fixed intervals.
This is an important concept to remember since transfers
from systems that are polled do not leave the system until
that system is called by a polling system.

2. Systems K, F, G, and D easily reach all other systems since
they have calling units.

3. If system A (E or G) wishes to send a file to H (K, F, or
G), it must first send it to D (via system B) since D is the
only system with a calling unit.

23-3

UUCP

A)--------{ I---------{ C

LEGEND

~ - AUTOMATIC CALLING UNIT

o -COMPUTER SYSTEM

Figure 23-1. UUCP Nodes

Software Topology

®

The hardware capability of systems in the network defines the
maximum number of connections in the network. The software
at each node restricts the access by other systems and thereby
defines the extent of the network. The systems of Figure 23-1
can be configured so that they appear as a network of systems
that have equal access to each other or some restrictions can be
applied. As part of the security mechanism used by uucp, the
extent of access that other systems have can be controlled at
each node. Figures 23-2 and 23-3 show how the network might
appear at one node.

23-4

UUCP

Figure 23-2. UUCP Network Excluding One Node

Figure 23-3. UUCP Network With Several Levels of
Permissions

23-5

UUCP

Access is available from all systems in Figure 23-2, however, in
Figure 23-3 some of the systems have been configured to have
greater or less access privileges than others (i.e., systems C, E,
and G have one set of access privileges, systems F and B have
another set, etc.).

The uucp uses the UNIX system password mechanism coupled
with a system file (/usr/lib/uucp/L.sys) and a file system
permission file (/usr/lib/uucp/USERFILE) to control access
between systems. The password file entries for uucp (usually,
luucp, nuucp, uucp, etc.) allow only those remote systems
that know the passwords for these IDs to access the local
system. (Great care should be taken in revealing the password
for these uucp logins since knowing the password allows a
system to JOIn the network.) The system file
(/usr/lib/uucp/L.sys) defines the remote systems that a local
host knows about. This file contains all information needed for
a local host to contact a remote system (including system name,
password, login sequence, etc.) and as such is protected from
viewing by ordinary users.

In summary, while the available hardware on a network of
systems determines the connectivity of the systems, the
combination of password file entries and the uucp system files
determine the extent of the network.

Forwarding

One of the recent additions to uucp (for UNIX system 5.0) is a
limited forwarding capability whereby systems that are part of
the network can forward files through intermediate nodes. For
example, in Figure 23-1, it is possible to send a file between
node A and C through intermediate node B. For security
reasons, when forwarding, files may only be transmitted to the
public area or fetched from the remote system's public area.

23-6

UUCP

Security

The most critical feature of any network is the security that it
provides. Users are familiar with the security that UNIX
systems provide in protecting files from access by other users
and in accessing the system via passwords. In building a
network of processors, the notion of security is widened because
access by a wider community of users is granted. Access is
granted on a system basis (that is, access is granted to all users
on a remote system). This follows from the fact that the
process of sending (receiving) a file to (from) another system is
done via daemons that use one special user ID(s). This user
ID(s) is granted (denied) access to the system via the uucp
system file (/usr/lib/uucp/L.sys) and the areas that the system
has access to are con trolled by another file
(/usr/lib/uucp/USERFILE). For example, access can be
granted to the entire file system tree or limited to specific
areas.

Software Structure

The uucp network is a batch network. That is, when a request
is made, it is spooled for later transmission by a daemon. This
is important to users because the success or failure of a
command is only known at some later time via mail(l)
notification. For most transfers, there is little trouble in
transmitting files between systems, however, transmissions are
occasionally delayed or fail because a remote system cannot be
reached.

Rules of the Road

There are several rules by which the network runs. These rules
are necessary to provide the smooth flow of data between
systems and to prevent duplicate transmissions and lost jobs.
The following sections outline these rules and their influence on
the network.

23-7

UUCP

Queuing

Jobs submitted to the network are assigned a sequence number
for transmission. Jobs are represented by a file (or files) in a
common spool directory (/usr/spool/uucp). When a file
transfer daemon (uucico) is started to transmit a job, it
selects a system to contact and then transmits all jobs to that
system. Before breaking off the conversation, any jobs to be
received from that remote system are accepted. The system
selected as the one to contact is randomly selected if there is
work for more than one system. In releases of uucp prior to
UNIX system 5.0, the first system appearing in the spool
directory is selected so preference is given to the most recently
spawned jobs. Uucp may be sending to or receiving from
many systems simultaneously. The number of incoming
requests is only limited by the number of connections on the
system, and the number of outgoing transfers is limited by the
number of ACUs (or direct connections).

Dialing and the DDD Network

In order to transfer data between processors that are not
directly connected, an auto dialer is used to contact the remote
system. There are several factors that can make contacting a
remote system difficult.

1. All lines to the remote system may be busy. There is a
mechanism within uucp that restricts contact with a
remote system to certain times of the day (week) to
minimize this problem.

2. The remote system may be down.

3. There may be difficulty in dialing the number (especially if
a large sequence of numbers involving access through PBXs
is involved). The dialing algorithm tries dialing a number
twice and the algorithm used to dial remote systems is not
perfect, particularly when intermediate dial tones are
involved.

23-8

UUCP

Scheduling and Polling

When a job is submitted to the network, an attempt to contact
that system is made immediately. Only one conversation at a
time can exist between the same two systems.

Systems that are polled can do nothing to force immediate
transmission of data. Jobs will only be transmitted when the
system is polled (hourly, daily, etc.) by a remote system.

Retransmissions and Hysteresis

The uucp network is fairly persistent in its attempt to contact
remote systems to complete a transmission. To prevent uucp
from continually calling systems that are unavailable,
hysteresis is built into the algorithm used to contact other
systems. This mechanism forces a minimum fixed delay
(specifiable on a per system basis) to occur before another
transmission can take place to that system.

Purging and Cleanup

Transfers that cannot be completed after a defined period of
time (72 hours is the value that is set when the system is
distributed) are deleted and the user is notified.

Special Places: The Public Area

In order to allow the transfer of files to a system for which a
user does not have a login, the public directory (usually kept in
/usr/spool/uucppublic) is available with general access
privileges. When receiving files in the public area, the user
should dispose of them quickly as the administrative portion of
uucp purges this area on a regular basis.

23-9

UUCP

Permissions

File Level Protection

In transferring files between systems, users should make sure
that the destination area is writable by uucp. The uucp
daemons preserve execute permission between systems and
assign permission 0666 to transferred files.

System Level Protection

The system administrator at each site determines the global
access permissions for that processor. Thus, access between
systems may be confined by the administrator to only some
sections of the file system.

Forwarding Permissions

The forwarding feature is a new addition to the uucp package.
You should be aware that

1. When forwarding is attempted through a node that is
running an old version of uucp, the transmission fails.

2. Nodes that allow forwarding can restrict the forwarding
feature in several ways.

a. Forwarding is allowed for only certain users.

b. Forwarding to certain destination nodes (e.g.,
Australia) should be avoided.

c. Forwarding for selected source nodes is allowed.

3. The most important restriction is that forwarding is
allowed only for files sent to or fetched from the public
area.

23-10

UUCP

NETWORK USAGE
The following parts discuss the user interface to the network
and give examples of command usage.

Name Space

In order to reference files on remote systems, a syntax is
necessary to uniquely identify a file. The notation must also
have several defaults to allow the reference to be compact.
Some restrictions must also be placed on pathnames to prevent
security violations. For example, pathnames may not include
"" as a component because it is difficult to determine
whether the reference is to a restricted area.

Naming Conventions

Uucp uses a special syntax to build references to files on
remote systems. The basic syntax is

system -name!pathname

where the system-name is a system that uucp is aware of. The
pathname part of the name may contain any of the following:

1. A fully qualified pathname such as

mhtsa!lusr /you/file

The pathname may also be a directory name as in

mhtsa!lusr /you/ directory

2. The login directory on a remote may be specified by use of
the - character. The combination -user references the login
directory of a user on the remote system. For example,

23-11

UUCP

mhtsa!-adm/file

would expand to

mhtsa!/usrlsys/adm/file

if the login directory for user adm on the remote system is
/usr/sys/adm. --

3. The public area is referenced by a similar use of the prefix
-luser preceding the pathname. For example,

mhtsa!-Iyou/file

would expand to

mhtsa!/usr I spool/uucp/you/file

if /usr/spool/uucp is used as the spool directory.

4. Pathnames not using any of the combinations or prefixes
discussed above are prefixed with the current directory (or
the login directory on the remote). For example,

mhtsa!file

would expand to

mhtsa!/usr Iyou/file

The naming convention can be used in reference to either the
source or destination file names.

23-12

UUCP

Forwarding Syntax

The newest feature of uucp is the ability to allow files to be
passed between systems via intermediate nodes. This is done
via a variation of the bang (!) syntax that describes the path to
be taken to reach that file. For example, a user on system a
wishing to transmit a file to system e might specify the
transfer as -

uucp file b!c!d!e!-Iyou/file

if the user desires the request to be sent through b, c, and d
before reaching e. Note that the pathname is the path that the
file would take to reach node e. Note also that the destination
must be specified as the public area. Fetching a file from
another system via intermediate nodes is done similarly. For
example,

uucp b!c!d!e!-Iyou/file x

fetches file from system e and renames it x on the local system.
The forwarding prefix is the path from the local system and
not the path from the remote to the local system. The
forwarding feature may also be used in conjunction with
remote execution. For example,

uux mhtsa!uucp mhtsb!mhrtc!/usrlspool/uucppublic/file x

sends a request to mhtsa to execute the uucp command to copy
a file from mhrtc tOxOii'mhtsa.

23-13

UUCP

Types of Transfers

Uucp has a very flexible command syntax for file transmission.
The following sections give examples of different combinations
of transfers.

Transmissions of Files to a Remote

Any number of files can be transferred to a remote system via
uucp. The syntax supports the *, ?and [..] metacharacters.
For example,

uucp *.[ch] mhtsa!dir

transfers all files whose name ends in c or h to the directory
dir in the user's login directory on mhtsa. -

Fetching Files From a Remote

Files can be fetched from a remote system in a similar manner.
For example,

uucp mhtsa!*.[ch] dir

will fetch all files ending in c or h from the user's login
directory on mhtsa and place the copies in the subdirectory dir
on the local system.

Switching

Transmission of files can be arranged in such a way that the
local system effectively acts as a switch. For example,

uucp mhtsb!files mhtsa!filed

23-14

UUCP

will fetch files from the user's login directory on mhtsb, rename
it as filed, and place it in the login directory on mhtsa.

Broadcasting

Broadcast capability (that is, copying a file to many systems) is
not supported by uucp, however, it can be simulated via a shell
script as in

for i in mhtsa mhtsb mhtsd
do

uucp file $i!broad
done

Unfortunately, one uucp command is spawned for each
transmission so that it is not possible to track the transfer as a
single unit.

Remote Executions

The remote execution facility allows commands to be executed
remotely. For example,

uux " !diff mhtsa!! etc/passwd mhtsd!1 etc/passwd > !pass.diff"

will execute the command diff(l) on the password file on mhtsa
and mhtsd and place the result in pass.diff. --

Spooling

To continue modifying a file while a copy is being transmitted
across the network, the -c option should be used. This forces a
copy of the file to be queued. The default for uucp is not to
queue copies of the files since it is wasteful of both CPU time
and storage. For example, the following command forces the
file work to be copied into the spool directory before it is
transmitted:

23-15

UUCP

uucp -c work mhtsa!-/you/work

Notification

The success or failure of a transmission is reported to users
asynchronously via the mail(1) command. A new feature of
uucp is to provide notification to the user in a file (of the
users choice). The choices for notification are:

1. Notification returned to the requester's system (via the -m
option). This is useful when the requesting user is
distributing files to other machines. Instead of logging
onto the remote machine to read mail, mail is sent to the
requester when the copy is finished.

2. A variation of the -m option is to force notification in a
file (using the -mfile option where file is a file name). For
example,

uucp -mans /etc/passwd mhtsb!ldev/null

sends the file /etc/passwd to system mhtsb and places the
file in the bit bucket (/dev/null). The status of the
transfer is reported in the file ans as:

uucp job 0306 (8/20-23:08:09) (0:31:23) /etc/passwd copy succeeded

3. Uux(l) always reports the exit status of the remote
execution unless notification is suppressed (via the -n
option). Notification can be sent to a different user on the
remote system via the -nuser option.

23-16

UUCP

Tracking and Status

The most pervasive change to the uucp package is revising the
internal formatting of jobs so that each invocation of uucp or
uux(l) corresponds to a single job. It is now possible to
associate a single job number with each command execution so
that the job can be terminated or its status obtained.

TheJobID

The default for the uucp and uux command is not to print the
job number for each job. This was done for compatibility with
previous versions of uucp and to prevent the many shell scripts
built around uucp from printing job numbers. If the following
environment variable:

JOBNO=ON

is made part of the user's environment and exported, uucp and
uux print the job number. Similarly, if the user wishes to turn
the job numbers off, the environment variable is set as follows:

JOBNO=OFF

If you wish to force printing of job numbers without using the
environment mechanism, use the -j option. For example,

uucp -j /etc/passwd mhtsb!ldev/null
uucp job 282

forces the job number (282) to be printed. If the -j option is
not used, the IDs of the jobs (belonging to the user) are found
by using the uustat(l) command. This .provides the job
number. For example,

23-17

UUCP

uustat
0282 tom mhtsb 08/20-21:47 08/20-21:47 JOB IS QUEUED
0272 tom mhtsb 08/20-21:46 08/20-21:46 JOB IS QUEUED

shows that the user has two jobs (282 and 272) queued.

Job Status

The uustat command allows a user to check on one or all jobs
that have been queued. The ID printed when a job is queued is
used as a key to query status of the particular job. An example
of a request for the status of a given job is:

uustat -j0711

0711 tom mhtsb 07/30-02:18 07/30-02:18 JOB IS QUEUED

There are several status messages that may be printed for a
given job; the most frequent ones are JOB IS QUEUED and
JOB COMPLETED (meanings are obvious). The manual page
for uustat lists the other status messages.

Network Status

The status of the last transfer to each system on the network is
found by using the uustat command. For example,

uustat -mall

reports the status of the last transfer to all of the systems
known to the local system. The output might appear as

mhb5c
resear
minimo

23-18

08/10-12:35
08/20-17:01
07/22-16:31

CONVERSATION SUCCEEDED
CONVERSATION SUCCEEDED
DIAL FAILED

austra
ucbvax

08/20-18:36
08/20-20:37

WRONG TIME TO CALL
LOG IN FAILED

UUCP

where the status indicates the time and state of the last
transfer to each system. When sending files to a system that
has not been contacted recently, it is a good idea to use uustat
to see when the last access occurred (because the remote system
may be down or out of service).

Job Control

With the unique job ID generated for each uucp or uux
command, it is possible to control jobs in the following ways.

Job Termination

A job that consists of transferring many files from several
different systems can be terminated using the -k option of
uustat. If any part of the job has left the system, then only
the remaining parts of the job on the local system are
terminated.

Requeuing a Job

The uucp package clears jobs out its working area on a regular
basis (usually every 72 hours) to prevent the buildup of jobs
that cannot be delivered. The -r option is used to force the
date of a job to be changed to the current date, thereby
lengthening the time that uucp attempts to transmit the job. It
should be noted that the -r option does not impart immortality
to a job. Rather, it only postpones deleting the job during
housekeeping functions until the next cleanup.

23-19

UUCP

Network Names

Users may find the names of the systems on the network via
the uuname(l) command. Only the names of the systems in
the network are printed. ---

UTILITIES THAT USE UUCP

There are several utilities that rely on uucp or uux(l) to
transfer files to other systems. The following parts outline the
more important of these functions. This increases awareness of
the extent of the use of the network.

Mail

The mai1(l) command uses uux to forward mail to other
systems. For example, when a user types:

mail mhtsa!tom

the mail command invokes uux to execute rmail on the
remote system (rmail is a link to the mail command).
Forwarding mail through several systems (e.g., mail a!b!tom)
does not use the uucp forwarding feature but is simulated by
the mail command itself.

Uuto

The uuto(l) command uses the uucp facility to send files while
allowing the local system to control the file access. Suppose
your login is emsgene and you are on system aaaaa. You have a
friend (David) on system bbbbb with a login name of w1dmc.
Also assume that both systems are networked to each other
[See uuname(l)]. To send files using uuto, enter the
following:

23-20

UUCP

uuto filename aaaaa!wldmc

where filename is the name of a file to be sent. The files are
sent to a public directory defined in the uucp source. In this
example, David will receive the following mail:

From nuucp Tue Jan 25 11:09:55 1983
/usr/spool/uucppublic/receive/w1dmc/aaaaa\
/ /filename from aaaaa!emsgene arrived

See uuto(l) for more details.

Other Applications

Some sites have replaced utilities such as lpr(l), opr(l), etc.,
with shell scripts that invoke uux or uucp. Other sites use the
uucp network as a backup for higher speed networks (e.g.,
peL, NSC HYPERchannel*, etc.).

* Trademark of Network Systems Corporation.

23-21

Appendix A

SYSTEM SOFTWARE FILE LIST
The following lists show the names of all the UNIX system files
contained in the Software Distribution Sets. These Sets consist
of a series of diskettes containing a complete listing of files.
The software diskettes are shown in alpabetical order by the
name of the software set.

Diagnostic Diskette
File Listing

I s4diagnostic
lunix

Floppy Boot Diskette
File Listing

IUNIX3.0
lunix

Floppy Filesystem Diskette
File Listing

Ibin
Ibin/cat
Ibin/cp
Ibin/cpio
Ibin/echo
Ibin/ln
Ibin/ls
Ibin/mkdir
Ibin/mv
Ibin/pwd
Ibin/sh
Idev

Idev/console
Idev/fpOOO
Idev/fp002
Idev/fp003
Idev/fp020
Idev/fp021
Idev/kmem
Idev/lp
Idev/mem
Idev/null
Idev/rawlp
Idev/rfpOOO

A-I

SYSTEM SOFTWARE FILE LIST

/ dey /rfp002
/ dey /rfp003
/ dey /rfp020
/ dey / rfp021
/dev/swap
/dev/syscon
/dev/systty
/dev/tty
/ dey / ttyOOO
/dev/wl
/dev/w2
/dev/w3
/dev/w4
/ dey /window
/etc
/ etc/dismount
/etc/group
/ etc/ldrcpy
/etc/mkfs
/etc/mnttab
/ etc/mnttab.hd
/etc/mount
/ etc/ passwd
/ etc/profile
/ etc/profile.fd
/ etc/profile.hd
/etc/reboot
/ etc/umount
/files2.0
/findem
/lib
/lib/shlib
/list
/mnt
/tmp

Hard Disk Boot Diskette
File Listing

/UNIX3.0

A-2

lunix

Foundation Set
File Listing

Ibin
Ibin/basename
Ibin/cat
Ibin/chgrp
Ibin/chmod
Ibin/chown
Ibin/clear
Ibin/cmp
Ibin/cp
Ibin/cpio
Ibin/date
Ibin/dd
Ibin/df
Ibin/diff
Ibinl dirname
Ibin/du
Ibin/echo
Ibin/ed
Ibin/env
Ibin/expr
Ibin/false
Ibin/file
Ibin/find
Ibin/grep
Ibin/head
Ibin/kill
Ibin/ld
Ibin/line
Ibin/ln
Ibin/login
Ibin/ls
Ibin/mail
Ibin/mc68k
Ibin/mesg

SYSTEM SOFTWARE FILE LIST

Ibin/mkdir
Ibin/mld
Ibin/mv
Ibinl newgrp
Ibin/nice
Ibin/nohup
Ibin/od
Ibin/passwd
Ibin/pdpll
Ibin/pr
Ibin/ps
Ibin/pwd
Ibin/red
Ibin/rm
Ibin/rmail
Ibin/rmdir
Ibin/rsh
Ibinl scrset
Ibin/sed
Ibin/sh
Ibin/size
Ibin/sleep
Ibin/sort
Ibin/stty
Ibin/su
Ibin/sum
Ibin/sync
Ibin/tail
Ibin/tee
Ibin/telinit
Ibin/time
Ibin/touch
Ibin/true
Ibin/tty

A-3

SYSTEM SOFTWARE FILE LIST

Ibin/u370 Idev/w7
Ibin/u3b Idev/w8
Ibin/uname Idev/w9
Ibin/vax Idev/wlO
Ibin/wc Idev/wll
Ibin/who Idev/w12
Ibin/write letc
Idev letc/.cleanup
I dey I console I etcl .drv load
Idev/error I etcl .extra
Idev/fpOOO I etcl .lineone
Idev/fpOO2 I etcl .linetwo
Idev/fpOO3 I etc/.l pstartsched
Idev/fp020 I etcl .rs232
Idev/fp021 I etcl .firstrc
Idev/kmem I etc/. version
Idev/mem letc/TZ
Idev/null I etcl checklist
Idev/lp letc/cleanup.wk
Idev/phO I etcl convert
Idev/phl I etcl convert/CONVERSIONS
Idev/rawlp letc/convert/convert
Idev/rfpOOO I etcl convertl copyback
Idev/rfpOOl letc/convert/formconvert
Idev/rfpOO2 I etcl convertl rcconvert
I dey I rfpOO3 I etcl convert/uaconvert
Idev/rfp020 letc/devnm
Idev/rfp021 I etcl dismount
Idev/swap letc/fsck
I dey I syscon letc/getty
I dey I systty I etcl gettydefs
Idev/tty letc/group
I dey I ttyOOO letc/init
I dey Iwindow I etc/inittab
Idev/wl I etc/ioctl.syscon
Idev/w2 letc/iv
Idev/w3 I etc/killall
Idev/w4 letc/lddrv
Idev/w5 I etc/lddrv IInstDrv
Idev/w6 I etc/lddrv I drivers

A-4

I etc/lddrv Ilddrv
I etc/lddrv IIi pc.o
I etc/lddrv I mkifile
I etc/lddrv lunix.sym
letc/magic
I etc/master
I etc/masterupd
letc/mkfs
letc/mknod
I etc/mnttab
letc/motd
letc/mount
I etc/mountable
I etcl namesys
I etc/passwd
letc/ph
I etc/printers
I etc/profile
I etc I pwcn tl
letc/rc
I etc/reboot
I etcl setmnt
I etcl shu tdown
letc/smgr
I etc/termcap
I etc/umount
I etc/umountable
I etc/update
letc/wall
letc/wmgr
llib
llib/shIib
Imnt
Itmp
lu
lu/install
I u/install/. phdir
I u/install/. profile
I u/install/Environmen t
I u/install/Filecabinet

SYSTEM SOFTWARE FILE LIST

lu/install/Filecabinetl
Profiles

I u/install/Filecabinetl
Profiles/1200bps:Am

lu/install/Filecabinetl
Profiles/300bps:Am

I u/install/Filecabinetl
Profiles/9600bps:A2

lu/installl Administration
lu/install/Software
lu/tutor
lu/tutor/.phdir
lu/tutor/.profile
lu/tu tor IEnvironmen t
lu/tutor/Filecabinet
lu/tutor/Filecabinetl

Profiles
lui tu tor IFilecabinetl

Profiles/1200bps:Am
lui tu tor IFilecabinetl

Profiles/300bps:Am
lu/tutor/Filecabinetl

Profiles/9600bps:A2A
lu/tutor/Filecabinetl

practice
lu/tutor/Filecabinetl

practicel exam pIe. hI p
lu/tutor/Filecabinetl

practicel windows.hl p
I. profile
IUNIX3.0
lunix
lusr
lusr/adm
lusr I adml cronlog
lusr/bin
lusr/bin/.!.
lusr Ibin/Backup.sh
I usr Ibin/Diagnosl sh
lusr/bin/Fcopy.sh

A-5

SYSTEM SOFTWARE FILE LIST

lusr/bin/Fformat.sh
lusr Ibin/FlpyChk.sh
I usr Ibin/Install.sh
I usr Ibin/Instcpio.sh
I usr Ibin/Ldri ver
lusr/bin/Lsys.sh
I usr Ibin/MsdosF .sh
lusr Ibin/MsdosR.sh
I usr Ibin/Msdos W .sh
luysr Ibin/N amesys.sh
lusr/bin/Pclear.sh
lusr Ibin/Phones.sh
I usr Ibin/RS232.sh
I usr Ibin/RSfree.sh
I usr Ibin/Restore.sh
lusr Ibin/Showsoftl sh
I usr Ibin/Ulogin
lusr Ibin/U ninstall.sh
I usr Ibin/U sers.sh
I usr Ibinl getoff .sh
lusr Ibinl geton.sh
lusr/bin/asa
I usr Ibinl async_main
lusr/bin/awk
I usr Ibin/banner
lusr/bin/bc
I usr Ibinl cancel
lusr/bin/comb
lusr Ibinl comm
I usr Ibinl crypt
lusr/binl csplit
lusr/bin/cu
lusr/bin/cut
lusr/bin/dc
I usr Ibinl disable
lusr Ibinl enable
I usr Ibinl erricon
lusr/bin/fc
lusr/bin/fdfmt.nl
lusr/bin/fdfmt.sl

A-6

lusr/bin/fdfmt.vl
I usr Ibinl fgrep
lusr/bin/findem
I usr Ibinl getopt
I usr Ibinl getterm
lusr/bin/id
lusr/bin/info
lusr/bin/join
lusr/bin/lp
lusr/bin/lpinfo
lusr/bin/lpstat
lusr/bin/lpsetup
lusr/bin/message
I usr Ibinl more
I usr Ibinl msdos
lusr Ibin/md_ write
lusr Ibin/md_format
lusr Ihinl newwind
lusr/hin/nl
I usr Ibinl page
I usr Ibinl password
lusr/bin/paste
lusr/bin/path
lusr/bin/phconvert
lusr/bin/phcreate
lusr/bin/phnum
I usr Ibinl ph pref
lusr/bin/phstub
lusr/bin/pwait
lusr/bin/pwdmenu
I usr Ibinl setda te
lusr/bin/setgetty
I usr Ihinl setuname
lusr Ibinl shform
I usr Ibinl split
lusr/bin/spr
I usr Ibinl sprin t
lusr/bin/tr
lusr/bin/tutor
lusr/bin/ua

SYSTEM SOFTWARE FILE LIST

lusr/bin/uahelp
lusr/bin/uaupd
lusr/bin/umodem
lusr/bin/uniq
lusr/bin/uucp
lusr/bin/uucppwd
lusr/bin/uulog
lusr/bin/uuname
lusr/bin/uupick
lusr/bin/uustat
I usr Ibinl u u to
lusr/bin/uux
lusr/installed
lusr linstalledl .list
lusr/lib
lusr/lib/accept
lusr/lib/crontab
lusr/lib/diffh
lusr/lib/iv
lusr/lib/iv/FDnl
lusr/lib/iv/FDsl
lusr/lib/iv/FDvl
I usr llib/i v I a tasi40
lusr/lib/iv/atasi50
lusr/lib/iv/hitachi50
lusr llib/iv Iloader
lusr llib/iv Imaxtor40
lusr llib/iv Iminiscribel0-3
lusr/lib/iv/miniscribe20-4
lusr/lib/iv/rodime40
lusr/lib/iv/s4load.silent
I usr llib/i v I s4load. verbose
lusr/lib/lib.b
lusr/lib/lpadmin
lusr/lib/lpmove
lusr/lib/lpqueue
lusr/lib/lpsched
lusr/lib/lpshut
lusr/lib/makekey
I usr IIi bl more.hel p

lusr/lib/ua
lusr/lib/ua/1200bps:Am
lusr llibl ua/300bps:Am
lusr/lib/ua/9600bps:A2
lusr/lib/ual Administration
lusr llib/ua/Backuser .menu
lusr llib/ua/Environment
I usr llibl ua/Floppy
lusr llibl ua/Hardware
lusr llib/ua/lnstalln.form
lusr llib/ua/Login.form
lusr/lib/ua/Lsys.form
lusr llibl ua/Lsys2.form
I usr llibl ua/Lsys2s.f orm
I usr lli bl ua/Mail
lusr/lib/ua/Mailph.form
lusr/lib/ua/Namesys.form
I usr llibl ual Office
I usr lli bl ual Others
lusr/lib/ua/Phones.form
lusr llibl ua/Preferences
I usr llibl ua/Printers
I usr llibl ua/RS232a.form
I usr llibl ua/RS232b.form
I usr Ilibl ua/RS232c.form
lusr llib/ua/RS232d.form
lusr llib/ua/RS232e.form
lusr/lib/ua/Restore.form
lusr llibl ua/Showsoft.menu
I usr llibl ua/Software
I usr IIi bl ua/Suffixes
I usr/libl ua/U ninstall.men u
lusr/lib/ua/User.form
lusr/lib/ua/admin.hlp
lusr llib/ua/keymap
lusr llib/ua/keynames
lusr llib/ua/kmap.5410
lusr llib/ua/kmap.5420
lusr llib/ua/kmap.5425
lusr llib/ua/kmap.b513

A-7

SYSTEM SOFTWARE FILE LIST

lusr llib/ua/kmap.hp
I usr llibl ua/kma p. tvi925
lusr llib/ua/kmap.vtlOO
lusr/lib/ua/phnum
lusr/lib/ua/phone.hlp
lusr llib/ua/ua.hlp
lusr llib/ua/uasetx
lusr/lib/ua/uasig
lusr/lib/uucp
lusr/lib/uucp/.OLD
lusr llib/uucpl .XQTDIR
lusr llib/uucp/L-devices
I usr IIi b/uucp/L-dialcodes
lusr llib/uucp/L.cmds
lusr llib/uucp/L.sys
lusr llib/uucp/L_stat
lusr llib/uucp/L_sub
lusr/lib/uucp/R_stat
lusr llib/uucp/R_sub
lusr/lib/ucp/USERFILE
lusr llib/uucp/modemcap
lusr llib/uucp/uucico
lusr/lib/uucp/uuclean
lusr/lib/uucp/uudemon.day
lusr/lib/uucp/uudemon.hr
lusr llib/uucp/uudemon.wk
lusr llib/uucp/uusub
lusr llib/uucp/uuxqt
lusr/lib/wfqnt
lusr Ilib/wfont/BLD.ft
lusr llib/wfont/ELD.ft
lusr/lib/wfont/PLAIN.I.E.12.A
lusr llib/wfont/ROMC.ft
lusr llib/wfont/ROMG .ft
lusr llib/wfont/SCLD.ft
I usr IIi bl wf ont/UK.ft
lusr llib/wfont/VBM.ft
lusr/lib/wfont/monitor.8.ft
lusr/lib/wfont/mosaic.8.ft
lusr lIib/wfontl special.S.ft

A-8

I usr Ilib/wfontl system.S.ft
lusr/lib/wfont/system.rIS.ft
lusr/mail
I usr I practice
I usr I practicel practice.hl p
I usr I practicel practice. hI pi

example.hlp
I usr I practicel practice.hl pi

windows. hlp
I usr I practicel tu tor .err
I usr I practicel tu tor .err2
I usr I practicel tu tor .msg
I usr I practicel tu tor .rst
lusrlspool
lusrispoolllp
lusr I spoolllpi class
lusrispoolllp/interface
lusr I spoolllp/member
lusr I spoolllp/model
I usr I spoolll pi modell

dumb
lusr I spoolllp/modell

dumb_S
I usr I spoolll pi modell

dumb-remote
lusr I spoolllp/pstatus
lusr I spoolllpi qstatus
lusr I spoolllp/request
lusrlspoolluucp
lusr I spoolluucppublic
lusr/tmp

Development Set
File Listing

/bin/adb
/bin/ar
/bin/as
/bin/cc
/bin/dump
/bin/ksh
/bin/lorder
/bin/make
/bin/mas
/bin/mcc
/bin/nm
/bin/sdb
/bin/strip
/bin/tset
/etc/bcopy
/ etc/ chroot
/etc/clri
/etc/cron
/etc/fsdb
/ etc/ ncheck
/etc/whodo
/lib/ccom
/lib/crtO.o
/lib/ crtOs.o
/lib/ifile.0407
/lib/ifile.04l0
/lib/ifile.0413
/lib/ shlib.ifile
/lib/libc.a
/lib/libg.a
/lib/libm.a
/lib/libPW.a
/lib/libp
/lib/libp/libc.a
/lib/mccom
/lib/mcpp

/

SYSTEM SOFTWARE FILE LIST

/lib/cpp
/lib/mcrtO.o
/lib/moptim
/lib/optim
/ usr /bin/ admin
/ usr /bin/bdiff
/usr/bin/cal
/usr/bin/cb
/ usr /bin/ cdc
/usr/bin/cflow
/usr/bin/cfont
/usr/bin/cmpdt
/ usr /bin/ cxref
/ usr /bin/ delta
/ usr /bin/ diff3
/ usr /bin/ dircm p
/ usr /bin/ egrep
/ usr /bin/ factor
/ usr /bin/ get
/usr/bin/help
/ usr /bin/i pcrm
/usr/bin/ipcs
/ usr /bin/lex
/usr/bin/lint
/ usr /bin/logname
/usr/bin/m4
/usr/bin/pack
/ usr /bin/ pca t
/usr/bin/prof
/usr/bin/prs
/usr/bin/regcmp
/ usr /bin/ rmchg
/usr/bin/rmdel
/usr/bin/sact
/ usr /binl sccsdiff
/ usr /binl sdiff

A-9

SYSTEM SOFTWARE FILE LIST

lusr/bin/tar
lusr/bin/tsort
lusr Ibin/unget
lusr/bin/units
lusr/bin/unpaek
lusr/binlval
lusr/binlve
lusr/bin/what
I usr Ibinl xargs
lusr/bin/yaee
I usr linel ude
I usr linel udel a.out.h
I usr linel udel alarm.h
I usr lineludel aou thdr.h
lusr/inelude/ar.h
lusr lineludel assert.h
lusr lineludel eore.h
lusr lineludel etype.h
lusr lineludel eurses.h
lusr lineludel dial.h
lusr lineludel

dumprestor.h
lusr lineludel errno.h
lusr/inelude/exeh.h
lusr lineludel exeeargs.h
lusr linelude/fatal.h
lusr linelude/fentl.h
lusr lineludelfilehdr.h
lusr linelude/form.h
lusr/inelude/ftw.h
lusr lineludel gdioetl.h
lusr lineludel grp.h
lusr I inelude/keodes.h
lusr linelude/ldfen.h
lusr linelude/linenum.h
lusr linelude/lp.h
lusr linelude/maeros.h
lusr linelude/Makepre.h
I usr linel ude/Makepost.h
lusr/inelude/math.h

A-lO

lusr linelude/memory.h
lusr/inelude/menu.h
lusr/inelude/message.h
lusr/inelude/mnttab.h
I usr linel udel mon.h
I usr lineludel nan.h
lusr linelude/pbf.h
I usr lineludel pwd.h
lusr linelude/regexp.h
lusr/inelude/reloe.h
lusr/inelude/rje.h
lusr/inelude/senhdr.h
I usr lineludel seareh.h
lusr/inelude/setjmp.h
lusr lineludel sgs.h
lusr/inelude/sgtty.h
lusr lineludel signal.h
lusr lineludel stand.h
lusr lineludel status.h
lusr lineludel stdio.h
I usr lineludel storelass.h
lusr lineludel string.h
lusr lineludel symbol.h
I usr lineludel syms.h
lusr lineludel sys
lusr lineludel sysl aeet.h
lusr/ineludel sys/buf.h
lusr lineludel sysl eallo.h
lusr lineludel sysl emap.h
lusr lineludel sysl eonf.h
I usr lineludel sysl dialer.h
lusr lineludel sysl dir.h
lusr lineludel sysl dmap.h
lusr lineludel sysl drv.h
I usr lineludel sysl err.h
lusr lineludel sysl errno.h
lusr lineludel sys/fblk.h
lusr lineludel sys/file.h
lusr lineludel sys/filsys.h
lusr lineludel sys/font.h

SYSTEM SOFTWARE FILE LIST

I usr lincl udel sysl gdioctl.h
lusr lincludel sysl gdisk.h
lusr lincludel sys/hardware.h
lusr lincludel sys/hardware.m
lusr lincl udel sys/i827 4.h
lusr lincludel sys/ini t.h
I usr lincludel sys/ino.h
lusr lincludel sys/inode.h
lusr lincludel sys/iobuf.h
lusr lincludel sys/ioctl.h
lusr/include/sys/iohw.h
lusr/include/sys/iohw.m
lusr lincludel sys/ipc.h
lusr lincludel sys/kbd.h
I usr lincl udel sys/lap btr.h
lusr lincludel sys/lock.h
lusr/include/sys/lprio.h
lusr lincludel sys/map.h
lusr lincludel sys/modem.h
lusr lincludel sys/mount.h
I usr lincl udel sysl mouse.h
lusr/include/sys/msg.h
lusr/include/sys/param.h
lusr lincludel sys/ph.h
lusr lincl udel sysl phone.h
I usr lincl udel sysl proc.h
I usr lincl udel sys/pte.h
lusr lincludel sys/reg.h
lusr lincludel sys/rtc.h
I usr lincludel sysl sem.h
I usr lincludel sysl shm.h
lusr lincl udel sysl signal.h
lusr lincludel sysl slot.h
lusr lincludel sysl space.h
lusr lincludel sysl spl.h
lusr lincludel sysl st.h
lusr lincludel sysl sta t.h
lusr lincl udel sysl stermio.h
lusr/include/sys/sysinfo.h
lusr lincludel sysl syslocal.h

I usr I incl udel sysl sysmacros.h
lusr lincludel sysl systm.h
lusr lincludel sys/target.h
lusr lincludel sys/termio.h
I usr I includel sysl text.h
I usr I includel sysl times.h
lusr lincludel sys/trap.h
I usr I includel sysl ttold.h
I usr I includel sysl tty.h
lusr lincludel sysl tune.h
lusr lincludel sys/types.h
lusr/include/sys/user.h
lusr lincludel sys/utsname.h
lusr lincludel sys/vadvise.h
lusr lincludel sys/var.h
lusr/include/sys/vlimit.h
I usr lincludel sysl vm.h
lusr lincludel sys/vmmac.h
I usr I includel sysl vmmeter.h
lusr lincludel sys/vmparam.h
I usr lincludel sysl vmsystm.h
lusr lincludel sys/vtimes.h
I usr I includel sysl wai t.h
lusr lincludel sys/wd.h
I usr lincludel sys/window.h
lusr lincludel syslocal.h
I usr lincludel tam.h
I usr lincludel termio.h
lusr linclude/time.h
lusr linclude/tp_defs.h
I usr lincludel track.h
lusr linclude/ustat.h
lusr/include/utmp.h
I usr lincludel values.h
lusr linclude/varargs.h
I usr lincludel wind.h
lusr/lib/dag
lusr llibl diff3prog
lusr/lib/flip
lusr/lib/help

A-II

SYSTEM SOFTWARE FILE LIST

lusr/lib/help/ad
lusr/lib/help/bd
lusr/lib/help/cb
lusr/lib/help/cm
lusr/lib/helpl cmds
lusr/lib/help/co
lusr/lib/helpl de
lusr llib/helpl default
lusr/lib/help/ge
I usr lli b/hel p/he
lusr/lib/help/prs
lusr/lib/help/rc
lusr/lib/help/un
lusr/lib/help/ut
lusr/lib/help/vc
lusr/lib/lex
I usr llib/lexl ncform
I usr lli b/lexl nrform
lusr/lib/lib300.a
I usr lli b/li b300s.a
lusr/lib/lib4014.a
lusr/lib/lib450.a
I usr IIi b/li bcurses.a
lusr/lib/libdev.a
lusr/lih/libl.a
I usr Ilib/li bld.a
I usr lli b/li bma th.a
I usr Ilib/li bplot.a
I usr llib/li btam.a
I usr Ilih/li btermca p.a
I usr lli b/li btermli b.a
lusr/lib/libvtO.a
lusr/lib/liby.a
lusr/lib/lintl
lusr/lib/lint2
lusr/lib/llib-lc
lusr Ilib/llib-lc.ln
lusr llib/llib-port
lusr llib/llih-port.ln
lusr llib/llib-lm

A-12

I usr llib/llib-Im.ln
lusr/lib/lpfx
lusr/lib/nmf
lusr/lib/reject
lusr/lib/ua/DEVSuffixes
lusr/lih/ua/tam.a
lusr/lib/unittab
lusr/lib/xcpp
lusr/lib/xpass
lusr/lib/yaccpar
lusr/preserve

SYSTEM SOFTWARE FILE LIST

Document Preparation Set
File Listing

I usr Ibin/300
I usr Ibin/300s
lusr/bin/4014
lusr/bin/450
lusr/bin/checkcw
lusr/bin/checkeq
lusr/bin/checkmm
lusr/bin/col
lusr/bin/cw
I usr Ibinl deroff
I usr Ibinl diffmk
lusr/bin/eqn
I usr Ibinl greek
lusr/bin/hp
lusr/bin/hyphen
lusr/bin/mm
lusr/bin/mmt
lusr/bin/mvt
lusr/bin/neqn
lusr/bin/newform
lusr/bin/nroff
I usr Ibinl osdd
lusr/bin/ptx
lusr/bin/spell
lusr/bin/tabs
lusr/bin/tbl
lusr/bin/tc
lusr/lib/eign
lusr llib/help/term
lusr llib/help/text
lusr llib/macros
I usr lli bl macrosl an
I usr lli bl macrosl cm p.n.d.an
I usr lli bl macrosl cm p.n.d.m
lusr llib/macrosl cmp.n.t.an
I usr lli bl macrosl cm p.n. t.m

I usr llibl macrosl mmn
I usr llibl macrosl osdd
I usr llibl macrosl ptx
lusr/lib/macros/ucmp.n.an
I usr lli bl macrosl ucm p.n.m
I usr llibl macrosl ymca
I usr lli bl spell
I usr lli bl spelll corn press
lusr llibl spell/hashcheck
lusr llibl spell/hashmake
lusr llibl spell/hlista
I usr llibl spell/hlistb
I usr llibl spelll spellin
lusr llibl spelll spellprog
lusr llibl spell/hstop
lusr/lib/spell/spellhist
lusr/lib/suftab
lusr/lib/tabset
lusr/lib/tabset/3101
lusr llibl tabset/beehive
lusr Ilib/tabsetl diablo
lusr llib/tabsetl std
I usr llibl tabsetl teleray
I usr llibl tabsetl tvi925
lusr llib/tabset/vtlOO
lusr/lib/tabset/xerox1720
lusr/lib/term
lusr/lib/term/tab2631
lusr/lib/term/tab2631-c
I usr llibl terml tab2631-e
I usr llibl terml tab300
lusr/lib/term/tab300-12
I usr llibl terml tab300S
lusr llib/term/tab300S-12
I usr llibl term/tab300s
I usr llibl terml tab300s-12

A-I3

SYSTEM SOFTWARE FILE LIST

I usr IIi bl terml tab37
I usr IIi bl terml tab382
lusr lIib/term/tab4000A
lusr lIib/term/tab4000a
lusr IIib/term/tab450
lusr llib/term/tab450-12
I usr IIi bl terml tab832
I usr IIi bl terml tabX
lusr lIib/term/tabal
lusr/Iib/term/tablp
lusr llib/term/tabtn300
lusr/lib/tmac
I usr IIi bl tmacl tmac.an
lusr llibl tmac/tmac.m
I usr IIi bl tmacl tmac.org
I usr IIi bl tmacl tmac.osd
I usr IIi bl tmacl tmac. ptx
I usr IIi bl tmacl tmac. v
lusr/pub
lusr/pub/eqnchar

Enhanced Editor Set
File Listing

lusr/bin/bfs
lusr/bin/edit
I usr Ibinl ex
lusr/bin/vi
lusr/bin/view
lusr IIibl ex3. 7preserve
lusr/Iib/ex3.7recover
lusr llibl ex3. 7strings

A-14

Important Information for Users of
the UNIX PC UNIX Programmer's Guide

This update package contains additional information for
use with the UNIX Programmer's Guide. Please review
this information and keep it with your Programmer's
Guide.

Chapter 5, Compiler and C Language - Programs that use
a symbol name longer than eight characters are
supported in Version 3.5. When linking the new
flexname code with the preflexname code, symbol
referencing errors may be generated by the loader for
the long symbol names. You can resolve this problem by
doing one of the following:

1 Use the -T option with the cc to cause
truncation of the long symbols.

2 Use the -G option with ld to allow linking of
older libraries to flexname code.

The 3.0 Archive Interface Disk (Disk 12 of the UNIX
Utilities) contains utilities to interact with
preflexname archives.

	0001
	0002
	001
	002
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	02-00_C
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	02-38
	02-39
	02-40
	02-41
	02-42
	02-43
	02-44
	02-45
	02-46
	02-47
	02-48
	02-49
	02-50
	02-51
	02-52
	02-53
	02-54
	02-55
	02-56
	02-57
	02-58
	02-59
	02-60
	02-61
	02-62
	02-63
	02-64
	02-65
	02-66
	02-67
	02-68
	02-69
	02-70
	02-71
	02-72
	02-73
	03-00_C_Librs
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	04-00_Obj_Librs
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	05-00_compiler_usage
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	06-00_lint
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	07-00_sdb
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	08-00_as
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	08-30
	08-31
	08-32
	08-33
	09-00_curses
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	10-00_using_shell_cmds
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	11-001_shell_pgmg
	11-002
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	11-27
	11-28
	11-29
	11-30
	11-31
	11-32
	11-33
	11-34
	11-35
	11-36
	11-37
	11-38
	11-39
	11-40
	11-41
	11-42
	11-43
	11-44
	12-00_shell_examples
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	13-00_make
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	13-19
	13-20
	13-21
	13-22
	13-23
	13-24
	13-25
	13-26
	13-27
	13-28
	13-29
	13-30
	13-31
	13-32
	13-33
	13-34
	13-35
	13-36
	13-37
	13-38
	14-00_sccs
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	14-17
	14-18
	14-19
	14-20
	14-21
	14-22
	14-23
	14-24
	14-25
	14-26
	14-27
	14-28
	14-29
	14-30
	14-31
	14-32
	14-33
	14-34
	14-35
	14-36
	14-37
	14-38
	14-39
	14-40
	14-41
	14-42
	14-43
	14-44
	14-45
	14-46
	14-47
	14-48
	14-49
	14-50
	14-51
	14-52
	14-53
	14-54
	14-55
	14-56
	14-57
	14-58
	14-59
	14-60
	15-00_m4
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-17
	15-18
	16-00_awk
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	16-09
	16-10
	16-11
	16-12
	16-13
	16-14
	16-15
	16-16
	16-17
	16-18
	16-19
	16-20
	16-21
	16-22
	16-23
	16-24
	16-25
	16-26
	16-27
	16-28
	16-29
	16-30
	16-31
	16-32
	16-33
	16-34
	16-35
	16-36
	16-37
	16-38
	16-39
	16-40
	16-41
	16-42
	16-43
	16-44
	16-45
	16-46
	16-47
	16-48
	16-49
	16-50
	16-51
	16-52
	16-53
	16-54
	16-55
	16-56
	16-57
	16-58
	16-59
	16-60
	16-61
	16-62
	16-63
	16-64
	16-65
	16-66
	16-67
	16-68
	16-69
	16-70
	17-00_ld
	17-01
	17-02
	17-03
	17-04
	17-05
	17-06
	17-07
	17-08
	17-09
	17-10
	17-11
	17-12
	17-13
	17-14
	17-15
	17-16
	17-17
	17-18
	17-19
	17-20
	17-21
	17-22
	17-23
	17-24
	17-25
	17-26
	17-27
	17-28
	17-29
	17-30
	17-31
	17-32
	17-33
	17-34
	17-35
	17-36
	17-37
	17-38
	17-39
	17-40
	17-41
	17-42
	17-43
	17-44
	17-45
	17-46
	17-47
	17-48
	17-49
	17-50
	17-51
	17-52
	17-53
	17-54
	18-00_coff
	18-01
	18-02
	18-03
	18-04
	18-05
	18-06
	18-07
	18-08
	18-09
	18-10
	18-11
	18-12
	18-13
	18-14
	18-15
	18-16
	18-17
	18-18
	18-19
	18-20
	18-21
	18-22
	18-23
	18-24
	18-25
	18-26
	18-27
	18-28
	18-29
	18-30
	18-31
	18-32
	18-33
	18-34
	18-35
	18-36
	18-37
	18-38
	18-39
	18-40
	18-41
	18-42
	18-43
	18-44
	18-45
	18-46
	18-47
	18-48
	18-49
	18-50
	18-51
	18-52
	18-53
	18-54
	18-55
	18-56
	18-57
	18-58
	18-59
	18-60
	18-61
	18-62
	18-63
	18-64
	18-65
	18-66
	18-67
	19-00_bc
	19-01
	19-02
	19-03
	19-04
	19-05
	19-06
	19-07
	19-08
	19-09
	19-10
	19-11
	19-12
	19-13
	19-14
	19-15
	19-16
	19-17
	19-18
	19-19
	19-20
	19-21
	19-22
	19-23
	19-24
	19-25
	20-00_dc
	20-01
	20-02
	20-03
	20-04
	20-05
	20-06
	20-07
	20-08
	20-09
	20-10
	20-11
	20-12
	20-13
	20-14
	20-15
	20-16
	21-00_lex
	21-01
	21-02
	21-03
	21-04
	21-05
	21-06
	21-07
	21-08
	21-09
	21-10
	21-11
	21-12
	21-13
	21-14
	21-15
	21-16
	21-17
	21-18
	21-19
	21-20
	21-21
	21-22
	21-23
	21-24
	21-25
	21-26
	21-27
	21-28
	21-29
	21-30
	21-31
	21-32
	21-33
	22-00_yacc
	22-01
	22-02
	22-03
	22-04
	22-05
	22-06
	22-07
	22-08
	22-09
	22-10
	22-11
	22-12
	22-13
	22-14
	22-15
	22-16
	22-17
	22-18
	22-19
	22-20
	22-21
	22-22
	22-23
	22-24
	22-25
	22-26
	22-27
	22-28
	22-29
	22-30
	22-31
	22-32
	22-33
	22-34
	22-35
	22-36
	22-37
	22-38
	22-39
	22-40
	22-41
	22-42
	22-43
	22-44
	22-45
	22-46
	22-47
	22-48
	22-49
	22-50
	22-51
	22-52
	22-53
	22-54
	22-55
	22-56
	22-57
	22-58
	22-59
	22-60
	22-61
	22-62
	22-63
	22-64
	22-65
	22-66
	23-00_uucp
	23-01
	23-02
	23-03
	23-04
	23-05
	23-06
	23-07
	23-08
	23-09
	23-10
	23-11
	23-12
	23-13
	23-14
	23-15
	23-16
	23-17
	23-18
	23-19
	23-20
	23-21
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	B-01

