
ANL-8000

The SPEAKEASY-3 Reference Manual

loproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

us Department of co ... merc•
Springllold, VA. 22151

ANL-8000

ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS

Prepared for the U.S. ATOMIC ENERGY COMMISSION
under Contract W-31-109-Eng-38

The facilities of Argonne National Laboratory are owned by the United States Govern­
ment. Under the term• of a contract (W-31-109-Eng-38) between the U.S. Atomic Energy
Comrniuion, Argonne Universities 4uociation and The University of Chicago, the University
employs the staff and operates the Ljlboratory in accordance with policies and programs formu­
lated, approved and re.viewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona
Carnegie-Mellon University

Kansas State University
The University of Kansas
Loyola University
Marquette University
Michigan State University
The University of Michigan
University of Minnesota
University of Mis1ouri
Northwestern University
Univeraity of Notre Dame

The Ohio State University
Ohio University

Case Western Reserve University
The University of Chicago
Univer1ity of Cincinnati

The Pennsylvania State University
Purdue University
Saint Louis University

Illinois ln1titute of Technology
University of Illinois

Southern Illinois University
The University of Texas at Austin
Washington University Indiana Univer1ity

Iowa State Univer1ity Wayne State University
The University of Iowa The University of Wisconsin

---------NOTICE---------.

This report waa prepared as an account of work sponsored
by the United States Government. Neither the United States
nor the United States Atomic Energy Commission, nor any
of their employees, nor any of their contractors, subcontrac­
tors, or their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility for
the accuracy, completeness or usefulness of any information,
apparatus, product or process disclosed, or represents that
its use would not infringe privately-owned righ.ts.

Printed in the United States of America
Available from

Na.tional Technici!.l Information Service
U.S. Department of Commerce

5Z85 Port Royal Road
Springfield, Virg.ini.a • ZZl 51

Price: Printed Copy $7. 60; Microfiche $1.45

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM TH~

BEST COPY FURNISHED US BY THE SPONSORING

AG~NCY. ALTHOUGH IT IS RECOGNIZED THAT CER­

TAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RE­

LEASED IN THE INTEREST OF MAKING AVAILABLE

AS MUCH INFORMATION AS POSSIBLE.

ANL-8000
Mathematics and Computers

ARGONNE NA TI ON AL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

The SPEAKEASY-3 Reference Manual

Compiled by

Stanley Cohen

Physics Division

May 1973

'·

TABLE OF CONTENTS

ABSTRACT

PART ONE. An Introduction to SPEAKEASY

I. INTRODUCTION .

II. BASIC SPEAKEASY {The Manual Mode).

A. Basic Notions

1. Data.

2 . Names of Objects

3. Classes .

4. Elements of an Object

B. Means of Defining Objects .

1. Explicit Definitions

2. Implicit Definitions

C . Mathematical Ope rations

1. Operators .

2. Mathematical Expressions

3. Mathematical Statements .

4 . Built-in Functions .

D. Logical and Relational Operations

1. Operators .

2. Logical and Relational Expressions

3. Logical and Relational Statements.

E. Conditional Statements .

F. Computational Control Statements

1. Domain

2. Accuracy

3. Freeing Defined Objects

G. Input and Output

1. Input.

2 . Output

1-L The Manual Mode.

iii

vii

l

2

4

4

4

4

5

6

7

7

11

12

12

13

14

18

21

21

21

22

23

24

24

24

24

25

25

27

33

TABLE OF CONTENTS

III. STORED PROGRAMS

A. Structure of a Stored Program

B. Special Statements for Program Mode .

1. RETURN

2. CONTINUE

3. GO TO

4. FOR

5. Nested FOR Loops.

c. Executing a Stored Program

D. Sample Programs.

IV. AIDS TO ERROR DETECTION

A. Error Messages

1. Compilation Errors

2. Manual-Mode Errors.

3. Errors im Execution of the Brogram .

B. Dumps ...

C. AUTOPRINT

D. Error-control Commands

APPENDIX I. Keywotds and Synonyms

APPENDIX II. Card-input SPEAKEASY

APPENDIX III. Schedules

PART TWO. SPEAKEASY-3: The SPEAKEASY System

I. INTRODUCTION ..

II. NEW OPERATIONAL FEATURES.

A. SIZE.

B. VOCABULARY

c. HELP

D. NAMES

E. HENCEFORTH

F. OBJECT .

iv

Page

34

35

36

36

36

36

37

37

39

40

41

43

43

43

43

44

45

46

47

53

55

97

98

. ' . 99

100

103

105

107

108

110

TABLE OF CONTENTS

G. MELD.

H. CONSTRAIN /SELECT.

I. ECHO/NOECHO

J. LISTPROG/DONTLIST

K. MARGINS

III. LIBRARY FACILITIES

A. The LINKULE Libraries

B. The PROCEDURE Libraries .

c. The HELP Library .

D. The DOCUMENT Library

E. LIBINDEX.

F. LIST

G. USE.

H. CREATE

IV. LOGICAL AND RELATIONAL OPERATOR NOTATION.

V. INTERACTIVE SPEAKEASY.

A. The EDIT Mode . . .

B. INPUT /PAUSE/STOP.

VI. VERSIONS. . .

A. STANDARD

B. BABY.

C. GRAPHEZ.

D. CONSOLE

E. SPEK2250

F. TSO .

ACKNOWLEDGMENTS

PART THREE. SPEAKEASY- 3: Linkules and Interfaces

I. LINKULES FOR SPEAKEASY -3

A. Introduction ,

B. How a Linkule Is Activated

v

Page

112

116

118

118

119

121

126

126

127

128

128

129

129

130

130

133

133

138

139

139

140

140

140

141

141

142

143

144

144

145

TABLE OF CONTENTS

C. The Argument List of a Linkule .

D. On Motion of Defined Data

E. Returning from a Linkule

F . On Reusability .

G. Sample Linkule s

II. ONE GENERALIZED LINKULE INTERFACE.

147

154

154

157

158

162

APPENDIX I. Job SpecHication to Create a New Linkule. 168

APPENDIX II. FORTRAN Source Deck for Linkit 169

APPENDIX III. Job Specification Submitted to Argonne Computer 173

APPENDIX IV. Deck to Operate with Routine FUN. 174

APPENDIX V. Output of Run with Linkule FUN 175

PART FOUR. The SPEAKEASY HELP Documents.

I. INTRODUCTION

177

178

II. SPEAKEASY WORDS DEFINED IN THE HELP DOCUMENTS . 181

III. ONE-LINE DEFINITIONS OF THE SPEAKEASY WORDS. 182

IV. THE TREE STRUCTURE OF THE SPEAKEASY
HELP DOCUMENTS 191

V. THE SPEAKEASY HELP DOCUMENTS 210

APPENDIX.

INDEX

Vl

256

258

)r
The SPEAKEASY-3 Reference Manual

ABSTRACT

SPEAKEASY is a computer language designed to

provide access to information stored in a computer. Ease

of use, natural notation, and built-in capabilities for growth

are important features of SPEAKEASY. This book, con­

sisting of four sections, combines most of the available

documentation of the language. The first section is an

introductory specification of the language accompanied by

a large number of illustrative examples of its use in normal

batch processing. The second section de scribes important

extensions to the language. This section emphasizes facil­

ities available for interactive usage. The third section

de scribes the means by which the language itself is ex­

tended. Although not necessary for the casual user of the

language, this . section provides the information necessary

to meet his later needs. The last section is a complete

printout of the documentation internally available to users

through the HELP processor.

This manual is intended as the primary information

source for users of SPEAKEASY. It should enable such

users to make effective use of the computer for their day­

to-day calculations.

vii

··,

PART ONE

AN INTRODUCTION TO SPEAKEASY

by

S. Cohen and C. M. Vincent

1

2

I. INTRODUCTION

SPEAKEASY is a user-oriented language. It is intended

to provide scientists with the means of quickly formulating a problem for

computer processing and for obtaining answers to their problems in a

minimum of time. The language is easily learned since its form is

similar to that of scientific mathematics. Furthermore it has built into

its basic structure the commonly used operations of most scientific

disciplines. The user may freely draw on a very large library of such

operations and may thus formulate his problem with a very concise

directive program.

In designing SPEAKEASY, every effort has b e en made to

keep the language natural as viewed by the scientist. A scientist using

SPEAKEASY need know little about a digital computer and,in particular,

need never concer.n himself with the actual structure of the program as

run by the computer. In a sense, SPEAKEASY is to be viewed as a

humanized interface between a scientist and a computer ; occurences thJ.t

force the user to think about a digital computer rather than about h i s

scientific problem are to be viewed as failures in the ld.ngua.ge.

Because of the concise and natural form. of the language, it

is very likely that a new program Jill give ~orrect answers on the first

trial. If this is not the case, extensive error - detection aids w ill provide

enough information to make the second attempt almost certain to succeed.

The user will therefore obtain an answer to his problem in a very short

time.

This document is a description of the SPEAKE.ASY

programing language. The description is not intended t o be exact m every

detail. To attempt an exact description would so l::urden the reader with

details that he would lose sight of the basic simpltc.. jt y of the language.

Neither is any attempt made to describe the entire language.

The language is still being developed and new features are added as needs

arise. The description here should be viewed as an introduction to the

basic language.

3

Detailed descriptions of parts of the language are given in

the sections that follow. The second section describes the basic language

and shows how this subset of the language can be used in the so-called

manual mode. The third section describes the use of stored programs.

The last section describes the diagnostic features of the language. Each

se c tion contains numerous examples of the features being described. It

is felt that examples provide the best means of demonstrating the capability

of the language. It is hoped that the new user will look carefully at a few

of the major examples and attempt to understand the rather fundamental

differences between this language and other computer languages.

Appendix I is a summary of all of the keywords u~ed in the

language. Several alternative arrangements are given.

Appendix II contains a description of the conventions used

in the card-input version of this language. It also contains samples of the

Job Control Language cards necessary to execute a SPEAKEASY program.

Several alternative sets are described .

Appendix III is the collection of the schedules of this Part.

Since this appendix is intended to serve as a reference manual, it was felt

that the schedules should be arranged for quick access. A list of the titles

of s chedules is given at the beginnip.g of this appendix .

4

II. BASIC SPEAKEASY (The Manual Mode)

In this chapter we describe the basic notation and

conventions of the SPEAKEASY language. The concepts of structured

objects and the algebra for these objects is discussed in detail. The

built-in functions of the language are then enume:tated. In the final

section of this chapter, examples of the use of this part of the language

for realistic calculation are given.

A. Basic Notions

1. Data

All numeric data are specified in decimal form. The lack of a

decimal point in a numeric specification implies that it belo~gs just to the

right of the number.. Numbers can be real, imaginary • . or complex. A

terminal letter I i~plies that the preceding_ number was imaginary.

Examples of numeric . information are:

Real Data:

Imaginary Data:

Complex Data:

2. 14, 27, -. 0025

2. 141, 2 71, -11

6 + 2I. 4 - 6I, 2. 7 + 31

Very large and very small numoers can be expressed by terminating

the numeric field by the letter E followed by the power of 10 associated

with that number. (No spaces should be inserted anywhere in the numeric

specification.)

1. 057E-5 means 1. 057 x 10-S

236E+26 rr1eans 2. 36 x 10
28

6 iIEOS means 61i·x 10 5

Literal data are defined by enclosing the data in apostrophes, e.g.,

'BOOKS' '15EB7'

'***'

5

2. Names of Objects

An object can be given a name consisting of up to eight characters.

The name must begin with an alphabetic character and must have no

imbedded special characters or blank spaces. Any additional characters

beyond the first eight are ignored. Examples of allowed names are:
I

VALUE BOOKMARK 12 I2K7

The examples given below are not-allowed names:

1H27

B*A9

A. 27

A 15

3. Classes

(not allowed)

(not allowed)

(not allowed)

(not allowed)

non-alphabetic leading character

imbedded special character

imbedded special character

imbedded space

The objects used in statements may belong to any of several classes.

Although most comp1.1ter languages provide for construction of multi­

dimensional arrays, SPEAKEASY also provides the mathematical tools for

manipulating the arrays as single entities.

T w o families of objects are available in this language: the matrix-

vector family (MFAM) or (VFAM) aqd the array family (AFAM). In

addition, scalar quantities can be defined. Scalars are implicitly members

of both of the families. The classes of objects that

used in SPEAKEASY are

a) Scalars

Single numbers

Matrix/ vector family

b) Vectors

can be defined and

Class[S]

Class [V]

One-dimensional arrays of numbers that behave like row, column,

.C!:' diagonal mat!:'ice s according to coritext.

c) Matrices Class[M]

Two-dimensional arrays of numbers that obey the rules of

matrix algebra.

6

Array family

d) Arrays (1 dimension) Class r A 1]

One-dimensional array s in which operations take place element­

by-element.

e) Arrays (2 dimension) Class [A2]

Two-dimensional array in which operations take place elemeht ­

by-element.

An object of any class having only a single element is treated as a

scalar in all algebraic operations.

4. Elements of an Object

Individual elements of a structured object are referred to by index

parameters and the name of the variable is attached to that object. Thus

M(1, 3) is the element in row 1 column 3 of M

V{3) is the third element in V
Similarly if K is a scalar variable
F(K) is the Kth element in F.

Each element of any object is a number and is therefore 0f Class (S].

7

B. Means of Defining Objects

In SPEAKEASY, each named entity has certain attributes that describe

the class to which it belongs and other information relating to its size and

structure. In all operations that use this names quantity, these attributes

are examined and are used to decide the contextua Uy-implied operation.

The attributes for a given named variable are not fixed quantities and

may vary dynamically during a calculation.

Each named item appearing on the right-hand side of an equation must

have been assigned attributes- i.e., it must have been defined. Such

definitions can be made by use of explicity defining statements. If the

item appears on the left side of a previously ~xecuted equation, it has an

implied structure and is therefore defined. In most cases it is therefore not

necessary to specify the class to which a variable belongs; this definition

will have been made from the logic of the preceding statements.

In this section the explicit defining statements are described. Little

is said about the implicit defini.tions. It should be understood, however,

that definition by the implicit form is far more common than by the more

cumbersome explicit forms.

1. Explicit Definitions

This section gives a 11 of the explicit defining statements. In each

case they appear as equations in which the named object on the left is

being defined. The right-hand side of the equation is an expression that

specifies the class and often the numerical values of elements of the

object. This form of expression defines a temporary object that can be

used directly in more complicated expressions. They can be considered

as d e fining functions.

In every case, a constant appearing on the right can be replaced by

an expression or named quantity. It is essential, however, that structure­

determining quantities be positive integer scalars. If an object appears

in the definition of the elements of a new object, then the elements of the

old object are inserted into the new object.

8

a) Scalars

Scalars are explicitly defined by statements in which the named

variable is equated to a constant, e.g.,

x = 1. 57

or

x = 2. 36 + 4. 71

b) VectoriJ

A vector is defined by use of the special word VECTOR.

SPEAKEASY vectors are objects that behave like row, colwnn, or

diagonal matrices-depending on their use. They are particularly useful

in operations involving square matrices, where they perform operations

commonly involving transpositions and the like. X is defined as a vector

of 12 components (all of which are set to zero) by the statement

X =VECTOR (12:)

A vector may be defined with its component values set by the

statement

X =VECTOR(:5. 3, 2 + 3. 51, 7, 26. 3 + 21)

If the defining statement has only one argument and if this

argument is real, then the statement defines the nwnber of components

of the vector. In contrast, the second form defines both the number of

components and values of the components.

A third form of definition combines the two forms already

described. It is of the form

X = VECTOR (4: 1, 2, 2)

The number preceding the colon defines the numbe1· of

components of the vector and sets all components equal to zero. The

list of arguments following the colon sets succe r; sive components

starting with the first; any unset components are therefore zero.

9

c) Matrices

Matrices can be defined in a variety of ways to make use of

symmetries. The general nonsquare matrix is defined by the statement

M =MATRIX (3, 4:)

This defines M as a matrix with 3 rows and 4 columns. (All elements

are set to zero.)

Values of components can be set at the time of definition by

placing a colon after the argument and adding values. The equation

defines

M = MAT RIX (3, 3: 1, 2, 5, 7, 3, 8, 9)

1

M = 97
9

: -;1
0 0)

* Symmetric matrices are defined by the expressions

M = SYMMAT (3, 3:) or M = SYMMAT (3:)

for a rank-3 symmetric matrix. Components supplied with the defining

statement give successive elements in the lower diagonal form of the

matrix. Thus

M ::o SYMMAT (3 : 1, 2, 3, 4, 5)

defines

* Note that symmetric matrices etc. are not classes of objects. The

func t ions given here are just convenient ways of defining square matrices

and setting selected components.

10

Similar definitions exist for diagonal and antisymmetric ma.trices.

M = DIAGMAT (:1, 2, 3)

or defines 0 ~ 2 0 (
1 0 0)

M = DIAGMAT (3: 1, 2, 3) 0 I0'\\3

M = ASYMMAT (4: -1, -2, -3, 1) defines

d) Arrays (1 dimension)

Arrays of one dimension are defined by exprc~s sions similar to

those for vectors.

V=ARRAY (5:)

V =ARRAY (:2. 7, 3, SQRT~8))

V = ARRAY (6: 1, 2, 3)

A 5-compopent array all zero.

A 3-component array.

A 6-component 1-dimensional
array with the first 3 components
set. The last 3 are zero.

In addition, a one-dimensional array can be defined as an equally-spaced

grid of points between specified limits by the special defining statement

X = GRID (0, 10)

i.e., Xis

(0, t::.., 2t::.., •.• , 10 - t::.., 10)

where t::.. is chosen by the computer to give a preselected number of griq

points (normally 101).

Specific grid spacing can be obtained by use of a third argument

X = GRID (0, 10, • 05)

i.e., X is defined as

(0, • 05, . 10, • 15, ••• ' 9. 95, 10. 00)

11

Note that a complex set of grid points can be constructed by a statement

such as

X = GRID (0, 10 + 10 I)

e) Arrays (2 dimensions)

A two-dimensional array has a defining statement of the form

V = ARRAY (5, 2: 1, 2, 3)

and its components are set as in the definition of the nonsquare matrix. A

resum6 of the explicit defining expressions is given in Schedules 1, 2.

2. Implicit Definitions

The appearance of an object on the left-hand side of an equation is an

implicit definition of the class of the object. Thus

X =Mi+ M2,

where Mi and M2 are matrices, implicitly defines X as a matrix. No

explicit definition of X need precede such a statement. Indeed if X were

previously defined it would be redefined by this statement.

The appearance of a previously undefined indexed variable on the left

of an equation also implicitly defines it as an array. Thus

V(3)=27.5

implies that V is a one-diqiensional array of 3 components if it is not

previously defined. The third component is set equal to 27. S~

Similarly,

M(2, 1) = S

implies that M is a two-dimensional array with at least 2 rows and 1 column.

If the quantity is not previously defined, it is defined by this statement with

the minimum required number of components. The nondefined components

are zero, the element in the second row and first column is S.

12

C. Mathematical Operations

The notation described in this section will appear at first glance to be

identical to that of FORTRAN. The appearance is deceptive. fORTRAN

is oriented towards operations on scalar quantities only,and the meaning

of statements is restricted to operations that produce a single numerical

result. lrf SPEAKEASY the operations are dependent on the class of

objects involved,and the class of the results will be determined by the

classes of the objects in the statement.

1. Operators

The following are the· allowed operators for arithmetic operations in

SPEAKEASY. The symbols are those· available on input devices to the

IBM 360.

+ plus

minus

* times

I divided by

** raise to a power

The operation implied by these symbols depends on the class of the

elements that appear to the left and right o'f the operator. In gene;ral the

operation is the natural one for the cla:ss. For example, the meaning of

A* B depends on the classes to which A and B belong. If A 'and Bare
,.

matrices, the operation implied is that of matrix multiplication. If A and

B are scalars, it is a scalar multiplication.

Schedules 3-6, pp. 59-62, contain a condensed description of the arithmetic

operations in SPEAKEASY. In these schedules the class and also the form

of each element of the resultant ·is indicated. Those involving mixed

operations between arrays of 1 and 2 dimensions should be noted. They

have been included to provide needed features for a compact directive

program.

In the schedules the structure of objects (i. e. 1 the number of elements,

rows, or columns) is indicated by the parenthetic values. It should be

13

understood that operators must not connect objects with incompatible

structures. For example, it is impossible to add a four - component array

to a seven-component array. Similar restrictions exist in almost all cases.

2. Mathematical Expressions

A mathematical expression is constructed by connectin,J operators

and operands. Redundant blank spaces have no significance, these and

parentheses can be freely used to make the expression easy to read.

Expressions are evaluated beginning with the innermost parentheses and

working up through the entire expression. Within a particular parenthesis,

the evaluation is first carried out for exponentiation, then for multiplication

and division, and finally for addition and subtraction. The evaluation takes

place from left to right. For example:

3 *A+ B/C * E

is equivalent to

(3 *A) + (B/C) * E

As has been stated, the class of operands determines the actual

operations. The expression

A+B*C

can have a variety of meC\nings dependi.ng on the classes of A, B, and C.

Some examples are:

Class A Class B Class C Resultant Class

M M M M

s s s s
v M M M

v M v v
A1 Ai s Ai

v s M M

s v v s

3. Mathematical Statements

a) Replacement Statement

14

Mathematical statements follow the us~al computer notation.

This means that an equal sign is best translated as the expression "is

replaced by." Thus the statement

X=X+A

means that X is now defined as the former X plus the quantity A.

In SPEAKEASY it should be noted that the class and structure

of the object on the left is defined by the classes of the objects on the right

by implication. As an example, in the above statement the class of X on

the left and right need not be the same. If X was originally a scalar and A

a square matrix, then the statement above would have redefined X to be a
I .

square matrix. This is an important property of SPEAKEASY and should

be understood clearly.

Any expression can appear to the right of the equal sign. The left­

hand side 9f the statement must, however, contain a single object name or

an indexed reference to an element. of an object. All objects appearing on

the right-hand side must have been defined by appearing on the left-hand

side of a previous statement. The object .on the left need not have a

previous definition and usually such previous definitions are irrelevant.

SPEAKEASY m~thematical statements therefore can all be viewed

as defining statements-defining the class, structure, and values for

elements of the object on the left-hand side.

Some examples of SPEAKEASY mathematical- replacement

statements are

X = 2. 57 * SIN (X) / (3 * ALPHA)

y = (MAX(X) + MIN(X)) I (MAX(X) MIN(X))

A = 2 * PI * R ** 2

15

b) Operations on Elements of an Object

The orientation of SPEAKEASY is towards operations on arrays 9f

numbe rs treated as single entities. Whenever possible, this is not only

the most convenient way to dire~t execution of a problem, it is also the

most efficient. It is, however, sometimes necessary to use or set values

for particular elements. This can be done by use of index values enclosed

in parentheses following the name of the object. These indices may be

expressions; in such cases they are always truncated to the next lower

integer to obtain the true index value. Thus statements of the form

A(3, 5) = 2 * S (9. 7 * SIN(X), 2 * I + 7)

or

A(2 * I + I) = SIN (X)

are allowed.

In the case of objects with a two-dimensional structure, addressing

the array with a single index is equivalent to addressing the whole row or

colwnn. A comma may be used to indicate the missing index but is not

necessary in addressing rows.

M (1) }
M (1,)

is row 1 of matrix M.

M (, 1) is column 1 of matrix M.

Examples:

M (1) = 1 The entire row is set equal to 1

M (3) = M (, 4) The fourth colwnn replaces the third row.

c) Structured Ind:'..ces

Operations on selected parts of structured objects are also possible.

The indices described in the previous section were scalar quantities. In

this section we shall describe the use of indices that are one-dimensional

arra.ys. This natural extension of the notation provides the means of

avoiding most of the logical branching common to operations on elen .·, ~uts

of an array in usual computer languages.

16

If I is a one-dimensional array and A is a structured object, then

A(I) is a structured resultant of the same class as A but with the Ith

elements selected as described in the previous section. Thus, if

then

I =ARRAY (1,3)

V = VECTOR { 1, 2, 3, 4)

M =MATRIX (3, 3: 1, 2, 3, 4, 5, 6, 7, 8, 9)

A =ARRAY (3, 2: 1, 2, 3, 4, 5, 6)

V(I) is a vector

M{I) is a 2 by 3 matrix

A{I) is a 2 by 2 array

{ 1. 3)

(1. 2. 93)
7, 8,

(
1. 2)
5, 6 J

i.e •• M(I) and A(I) are rows 1 and 3 of M and A, respectively. Similarly

M(, I) is a 3 by 2 matrix (!: ~)
7. 9

i.e., M(, I) consists of columns 1 and 3 of M.

If I and J a.re one-dimensional arrays and A is an object of a two­

dimensional class as are the selected rows and columns, then in the

above examples,

M{I, I) is the matrix

An example of the use of structured indices is

A = ARRAY (1, 2, 3, 4, 5)

I = ARRAY (2, 3, 4)

B = A(I) * I + A(I - 1)

The result will be the array

(5, 11, 19).

17

d) Automatic Extension of Defined Objects

If a defined structured object is referenced on the left-hand aide of

an equation and the indices refer to elements outside the range defined for

that object, then the size of the object is increased to allow room for the

newly defined elements. All extra elements created in this way but not

explicitly set are put equal to z.ero. For example, if A i• a defined three­

component vector and a statement of the form

A(7) = 9

is encountered, then A will be extended to become a seven-eomponent vector

with elements 4, 5 and 6 set equal to zero. The newly created element 7

wi t1 be set equal to 9.

Similarly if A can now be extended to a 12-component vector

by the statements

B =VECTOR (:10, 11, 12)

A(10)=B

The newly created elements 8 and 9 are set equal to zero and

elements 10, 11 and 12 are set equal to the values 10 11 and 12,

respectively.

18

4. Built-in Functions

In designing SPEAKEASY an attempt has been made to provide the

most commonly used operations as an integral part of the language itself.

In order to do this a very large number of special functions have been

included. Many of these are natural extensions of the algebraic operations

described already. Others are the straightforward extension of FORT RAN­

like functions to structured objects. In addition, SPEAKEASY provides a

large number of functions that lend themselves naturally to problems

formulated in terms of structured variables. All of the functions described

here can be used anywhere in any SPEAKEASY statement. The result is

available for use within that statement. For example, the statement

Y = (MAX(X) - MIN(X))*SUM(SIN(X))

makes use of several built-in functions.

a) Element"l"by-Element Functions

This set of functions operates on objects of any class and produces

an object of the same class. Each element of the answer is the result of

applying the function to the corresponding element of the original object.

These functions are shown in Schedule 7. The allowed ranges of values are

also indicated in that schedule.

b) Sums and Products of Elements

Since SPEAKEASY is oriented towards operations on structured

objects as a wl\ole, special functions must be provided to efficiently carry

out the common operations such as obtaining the sums and products of

elements of objects. The functions available are shown in Schedule 8.

c) Structure Functions

In order to obtain information about the structure of defined objects

and specifics about its contents, a few special functions are provided.

These are shown in Schedule 9. The answers in all cases are scalar

objects.

19

d) F~~c:_~i.?~~'?r One-Dimensional Arrays (Functions of 1 Variab!_~)

Although one-dimensional arrays can be used for many purposes,

one rather common use is for defining functions of a single independent

variable. For these applications a set of special SPEAKEASY functions

are pr ovided. In each case the orientation is toward two arrays, one the

function and the other the array for the independent variable. A typical use

might be the following sequence of statements.

X = GRID (0, 10, O. 1)

Y = SIN(X)*EXP(-X)*X*X

T = DERIV(Y:X)

Defines a grid 0, O. 1, 0. 2 · • · , 9. 9, 10.
-X 2

Evaluates the function Y = SIN(X) e X

Differentiates Y with respect to X

The functions of this type are described in Schedule 10.

e) Functions for Matrices

In order to carry out operations of matrix algebra, it is necessary

to provide the standard functions of that field. These forms are given in

Schedule 11. Note that all operations except transposition are restricted

to square matrices.

f) Ranking Functions

Two SPEAKEASY functions are provided to help order (i.e., rank)

the elements of an object according to algebraic size. These functions are

described in Schedule 12.

g) T ransfamily Functions

In order to make the full power of the operations of SPEAKEASY

available to all problems, it is necessary to provide means of effectively

altering the class of objects. This is done in SPEAKEASY by use of the

special function shown in Schedule 13. These functions can be applied

to any object; t he resultant object is identical in structure but belongs to

the specified family.

20

h) L~gic~l Functions

In keeping with the SPEAKEASY approach of dealing with objects

as a whole, it is necessary to provide means of selecting groups of

elements on a logical basis. A bµilt-in SPEAKEASY function has been

included to provide the indices corresponding to nonzero (i.e., 11true 11
)

elements of one-dimensional structures. This function is called LOC or

LOGS.

LOCS(A) gives the locations (indices} of nonzero elements of a

one-dimensional object A. The answer is normally used as a structured

index (as explained in Sec. II. C 3 c). For example,

GOQDVALS = A(LOCS(A. GT .5))

will produce a new array containing only those values of A that are greater

than 5.

21

D. Logical and Relational Ope rations

In addition to the common arithmetic operations described in the

previous section, SPEAKEASY allows for relational and logical operations.

These operations can be applied to variables of any of the classes and

operate on an element-by-element basis. Results of applying these

operators are either 1 (TRUE) or 0 (FALSE). For logical operations

the operands a re either TRUE (nonzero) or FALSE (zero). These

operations provide the means for carrying out rather elaborate masking

operations on arrays.

1. Operators

The logical and relational operators are expressed by special keywords

tha t are enclosed in periods

a) Logical Operators
• NOT. Logical not

• OR.

. AND.

b) Relational Operators

• EQ.

.NE.

.GT.

. L'I.

.GE.

.LE.

Inclusive or

Logica~ sum

Equal to

Not equal to

Greater than

Less than

Greater than or equal to

Less than or equal to

2. Logical and Relational Expressions

Tll.efe cxpressionB can be used to form special-purpose objects. The

logica l and relational operators can connect either two objects of the same

clas s or an object of any class with a scalar. The result of such operations

is an entity of the same class as that of the object and has elements that

a re either 0 (False) or 1 (True). Nonzero input values for logical

expressions are true, zero input values are false. Thus, A. AND. B will

produce an object of the same class as A and B but its elements will be 1

22

wherever the corresponding element of A and B are both nonzero and o

wherever either or both have a zero element. Similarly, .A.GT. 7 will

give a resultant of the same class as A but will have a 1 everywhere that

the corresponding element of A is greater than 7. Similarly A.OR.B

gives a resultant of the same class as A and B but its element will be 1

wherever the corresponding element of either A or B is nonzero.

Finally,. NOT.A is an object with the same structure as A but with a zero

everywhere that A is nonzero. It is 1 elsewhere.

Mixed logical, relational, and arithmetic expressions are allowed. In

such cases the order of evaluation is 1) arithmetic operations, 2) relational

operations, 3) logical NQT operations, and finally 4) logical OR and

logical AND operations. Within each hierarchy. evaluation is from left to

right.

An e»pression of the form

A.GE. B+C.AND.E .NE.F*G+H

is equivalent to

(A·GE ·(B+C))0 AND 0 (E. NE. (F*G+H))

3. Logical and Relational Statements

Any expression of the form described in the previous section can be

used to define a new object whose elements will have the value 0 or 1 at

each prescribed location. In additi on, by proper use of logical expressions

the newly defined variable can be cast into special forms.

Suppose one is dealing with a function of one variable and one wishes to

place an upper and low er bound on the elements. For example, if the

element exceeds 10 or is less than 5 it is to be replaced by 0. This could

be done by the statement

F = ((F.LT. 10).AND.(F.GT. 5)) * F

23

E. Conditional Statements

Two forms of conditional statements are provided within the language.

The first is of the form

IF (Expression) Statement

The expreasion must be a scalar. If the numerical value of this

expression is nonzero, then the associated statement is carried out;

otherwise it is ignored.

Example:

IF(A.GT. B) B=9

The second form of conditional statement is designed for array

operations. It is of the form

WHERE (Expression) Statement

In this statement, the associated statement must be an equation and the

class and structure of the resultant must be the same as that of the test

expression. An element in the "ssociated equation will be replaced only

where the corresponding element in the test expression is true (nonzero).

Example:

WHERE (A .GT. 3) A=A+4

This operation provides essential masking operations within the

SPEAKEASY language.

F. Computational Control Statem.ents

This _section is a description of several control statements that

specify the mode of the calculation. Control st.atements remain in

force until explicitly canceled or overridden by othe.r control statements.

1. Domain

SPEAKEASY is designed to operate either in the domain of real or ·

complex numbers. When ope.rating in the real domain, any calculati9n

that leads to imaginary or complex results is treated as an error. The

user may alter the domain of the computation at will by inserting a

statement of the form

DOMAIN (REAL) or DOMAIN (COMPLEX)

In default of an explicit statement, the domain is real.

2. Accuracy

During .the execution of a SPEAKEASY program, whenever two numbers

are compared for equality any number . less. than a small nun~ber (called the

accuracy) is regarded as zero. The value of this number can be set by

means of a statement of the form

ACCURACY (VAL)

which sets the accuracy equal to VAL. In default of such a statement, the
-8

value for accuracy is 10 •

3. Freeing Defined Objects

At any time during a calculation it is possible to free the definitions of

objects. This can be done for selected variables by the statement

FREE (N1, NZ, • • · • NN)

where Ni, NZ, NN are the names of defined objects. All defined

numerical data can be freed at once by the statement

CLEARDATA

25

G. Input and Output

The design of formats for output often reduces the computer user to

counting on his fingers. This indeed seems odd in the context of the

application.

SPEAKEASY automatically provides a set of output formats that will

be more than satisfactory for most applications. These automatic formats

enable users to forget about this phase of the computer run; he can be

assured that he will obtain legible results without direct intervention.

The reason this section says so little about the standard input/ output

facilities is that the user need not concern himself directly with their

operations. Disproportionately large subsections describe alternative

ways of reading data or producing output; but for the most part these are

specialized features that do not concern most users.

1. Input..

a) Standardinput

Introduction of small arrays of data or individual numbers is part

of the structure of the language as described in Sec. ll. B. Any variable

may be defined. or redefined at any time in order to give it specific values

or structure;for this reason. most applications of SPEAKEASY do not

have ~he programs separated from input data. Instead. · all of the input

data in a normal run will be imbedded directly in the SPEAKEASY

statements. The rest of this section can therefq:te be disregarded for

most applications.

b) The READ Statement

A READ statement has been provided in the language to enable

users to read information that has been punched in some specialized format.

Data produced by other computer programs. or experimental data. normally

will have a specialized format that wou\d c~nflict with the standard·

SPEAKEASY forms. A format for input must be provided for reading these

cards. This format is in fact a standard 360-FORTRAN IV format with the

single restriction that no numerical information can be entered into arrays

in fixed-point form. F. D. or E formats are equally acceptable. The

26

format is defined by defining a literal constant; e.g ••

FMT = '(3X, 5F12. 3)'

The input array must exist. The number of components to be read is

determined by its size; e.g ••

A= ARRAY(15:)

The input data are then read in response to a statement

READ (FMT: A)

Cards will be read until the number of elements required to fill thf! array

have been loaded.

c) The Data File

An intermediate form of input exists for blocks of data that are

too large to fit on a single card. The numbers can be written in any

SPEAKEASY form, separated by commas or spaces. The approach taken

is to define a special area, called a data file, containing the input data..

This file can be loaded into specific defined structures at any later time.

The data file is defined by placing it between two cards. The header card

contains the word DATA followed by a space and then the name to be

assigned to this data file. The last card contains· the single word END.

Once defined, the information in a data block is retrieved by a

LOADDATA statement; e.g.,

LOADDATA (A,NAME)

will load the object A with the first N values fron1 the data file NAME. N

is the number of elements of A or the number of numbers in NAME,

whichever is smaller.

27

Z. Output

In this section we will define the various facilities available to

produce output. In each case, a simple direct statement will produce

output in an acceptable format . Users may, however, exercise control

over the output by special-purpose statements. In the following statements

the word namelist is used to refer to a list of names of defined objects,
""""""'"'"""""""""

each separated from the others by commas.

a) Printed Output

i. Standard print statements

Two standard print options are available in SPEAKEASY. The

first results in the printing of the selected objects. The printed form

reflects both the numerical contents of an object and its structure. This

statement is of. the form

PRlNT (namelist)
""'""'""""'""""'"""

The second form of standard output provides a tabular form for

printing one-dimensional objects. The columns are headed by the names

of the objects and correlated elements of members of the name list are

printed side by side. This statement is of the form

TABULATE (namelist)
""""""~""""""'

The objects whose names appear in namelist should all have the same
""""""""""'""""'

number of elements.

ii. Formatted print statement

A WRITE statement, identical in form to that of the READ

statement described in the previous subsection, is provided for special

applications. The printed output can have all of the carriage-control

characters of FORTRAN. The statement' is of the form

WRITE (FMT: A)

where FMT is the format defined as for READ and A is the d"efined objec~.

28

iii. Print-control statements

The standard print statements described above produce highly

legible output. In designing the format: for output, the SPEAKEASY

processor examines the information to be printed and makes a series of

decision·& on how best to display it. The user is able to co.ntrol these

decis.ions to some extent by the special control statements described here.

The first set of control statements relate to vertical spacing on

the page. The user may reposition the paper by the statements

SPACE(N)

or

NEW PAGE

SPACE(N) causes N lines to be skipped. NEW PAGE causes the

next information printed to appear at the top of the next page.

In printing numerical data, it is possible to specify the number

of sigriificant figures desired. Five significant figures are printed out in

default of explicit specification. The number of significant figures to pe

printed is set by the statement

SIGNIFICANCE(N)

where N is the number of figures desired. In addition one can specify the

range of sizes within which numerical data must fall if they are to be

printed. For this purpose,

. ·. ~t '·· ...
SETNULL(VAL)

requests .~hat any number whose absolute value is less than VAL be printed

as O; a.n4

SETINFINI'LY (VAL)

29

requests that any number whose absolute value is greater than VAL be ,

printed as INF.

Note that the above apply only to the printing of numerical data.

The actual computed values are unaffected by these control statements.

The default options are

SET NULL(10 -
30

)

and

SETINFINITY (10+
3

0)

In using the standard PRINT statement, each object is printed

in an easily read form but no attempt is made to correlate the printing of

several obje;cts. A compact form of output is produced by using a

minimum number of extra spaces to provide a uniform column width for

each object. The user may correlate the printing of several objects by

specifying a minimum column width to be used in printing. The statement

COLWIDTH(N)

preyents the print routine from using a column width of less than N char-

acters. If N is 10 larger than the number of significant figures desired,

the print width will be uniform for all objects composed of real numbers.

This value of N can be obtained automatically by the control statement

A UT OT AB

iv. Implied print statements

For ease of printing individual objects, a special implied print

convention is adopted in SPEAKEASY. If a statement without an equal sign

is processed and that statement cannot be classified as corresponding to

any SPEAKEASY command, the word PJUN'T is assumed to be implied

before that statement. In addition, the original statement itself is printed.

Examples of implied print statements are shown in Schedule 14 •

. '!1.l Punched Output

· ~unched cards can be obtained from SPEAKEASY by a format

statement similar to the READ and WRITE statements described before.

30

This option is provided primarily to offer. the user a means of transmitting

e r'"' non-snXgt'ASY programs. The form of the

statement is

PUNCH(FMT: A)

Here FMT is the predefined FORTRAN format (as in the READ statement)

and A is the array to be punched.

c) Graphical Output

Output in graphical form is a built-in feature of some SPEAKEASY

processors. For those versions the following represent some of the general

control features available. Most are for CALCOMP output. Only certain are

usable for other graphical devices. The descriptions are for CALCOMP plots.

i. Desl.gn statements

Because of the flexibility inherent in this form of output, it is

"' normally necessary that the user design the form of his graphical output.

Default options are provided, but it unlikely that all of those will be proper

·for any application. More automatic facilities will be provided in the future.

The size of a graph can be chosen by the user. The default siz'e

is 8 inches tall and 10 inches wide. The user may override these by control

statements

HSIZE = X

VSIZE = Y where Y ~ 10

where X and Y are the size (in inches) to be used in graphs drawn ~fter

this statement is encountered.

One must select the scale to be used in drawing graphs. This is

done by specifying the numerical values corresponding to the limits for the

vertical and horizontal scales.

HSCALE=(left, right)

VSCALE=(bottom, top)

31

Note that the values along the scales will be labeled at inch marks. The

user should choose scales that provide simple values at such points. The

default values of the scales are 0-8 for the vertical scale and 0-10 for

the horizontal scale.

Several additional options are available for designing the

structure of a graph. The user may select these by the single control

statement

BOX l or l or SET PLOT

SCALES

or

NOBOX J NOSCALES J .

LINES \l

POINTS

The options selected are

BOX

SCALES

LINES

Draw a frame around graph NOBOX

Indicate values at 111 intervals NOSCALES

Join designated points by lines, POINTS
leaving points unmarked

The default options are BOX, SCALES, LINES.

No frame

Omit indication of scales

Mark points with crosses.
without joining points

The point-plotting mode can be generalized by the special control

statement

PLOTSYMB(freq, symb)

where symb is an integer from 0 through 12 whic_h designates one of 13 different

symbols to be used in plotting data, and freq determines the frequency with

which the symbol is plotted (1 means every point, 2 means every other one,

3 every third, etc.). A negative value for freq indicates that only the symbol

should appear. A positive value means that a line should join successive:: points.

Three forms of literal labels are provided. The top of the graph may

be titled by defining the variable

PLOTTITLE = 'any message'

The vertical scale can be labeled by

VLABEL = 'any message•

32

The horizontal scale can be labeled by

HLABEL = 'any message'

ii. Graphing statements

The overall format having been specified~ a new graph is

produced each time the statement

GRAPH (namelist: hobiect)
................... "' """""" ,.1(.,..

is encountered.

,This graph is a gr~ph of the members of ~~~~~~-in the vertical

direction against the object ~~l~.!.. in the horizontal. All <)bjects ~hould be

one-dimensional and real, and have the same number of elements. A two­

dimensional object in namelist is treated as several one·-dimensional obJ"ects
.. ,

each composed of a row of the original object. Therefo ·re if a two­

diinensional object appears in namelist, it must have a.s many columns as.
..

~~l~.!.. has elen:ients.

Each time the GRAPH statement is encountered, a graph is-i drawn

on a new area of paper . All of the design statements accompany GRJ\.PH.

It is possible to add information to a ~raph that has alreaily b~en

drawn, e.g., to add points on a graph containing curves. This is done by

the statement

This statement has the same meaning as the GRAPH stateme;nt iexcept that

a new area of paper is not used. Design statements (except those relating

to BOX, SCALES, and labels) are reexamined prior to adding to the graph.

The user may therefore freely alter the plotting format fo :r each addition.

If no graph has been drawn, the first ADDGRAPH statement acts

as if it were a GRAPH statement. This in conjunction with the statement

NEWGRAPH

which completes references to a previously drawn graph make it possible

to entirely avoid the use of the GRAPH statement.

.. - ---- ---·

33

H. The Manual Mode

A major portion of the SPEAKEASY language has now been described.

No reference has been made to the possibility of conditionally executing

groups of statements, or to the possibility of repeated execution of such a

group a specified number of times. The subset of SPEAKEASY already

described is nevertheless usable. The existence of structured objects and

routines for manipulating them as single entities makes it possible to carry

out many straightforward computations with a series of statements that are

executed only once.

The mode of operation in which each SPEAKEASY statement is processed

but not saved is referred to as the MANUAL MODE of operation. In the

examples shown in Schedules 14-36, we present a set of SPEAKEASY

calculations that use the facilities described in this chapter . The figures

are reproductions of output from the card- input version of SPEAKEASY.

Information relating _to the conventions for card input is given in Appendix II.

34

Ill. STORED PROGRAMS

For all but the most . straightforward calculations. it is

necessary to repeatedly execute groups of statements. The use of

stored programs for such purposes is familiar to most computer users.

The programs~ procedures, and subroutines of languages such as

FORTRAN, PLI, and ALGOL constitute stored programs.

Stored programs are available in SPEAKEASY but they

differ in important aspects from other languages. One of the most

important differences is that defined objects have global definitions. This

means that a given name refers to the same object whether the reference

is in the manual mode or in any stored program. Any number of stored

programs may simultaneously be defined in SPEAKEASY. Execution of

any one of them can be initiated directly from the manual mode or during

execution of any othe'r stored program.

The purpose of this chapter is to describe the construction and

execution of stored programs. Additional statements specific to stored

programs are also described. For reasons of clarity, it is assumed that

the programs are to be input on punched cards.

35

A. Structure of a Stored Program

A stored program is defined by supplying cards beginning with a header

card containing the word PROGRAM followed by a space and then the name

of the pr~gram. The program is terminated by a card containing the single

word END. All cards between these two constitute the program. Any card

except these two may be labeled. The label, a SPEAKEASY name at the

left on the card, is separated from the actual program statements by a colon.

In SPEAKEASY the name of a program is treated as a defined name. It

should therefore never be the same as the name of an object used in

computations.

Multi-statement cards are constructed of several SPEAKEASY statements

separated from each other by semicolons. Multi-card statements can be

constructed. If & is in the first column of a card, it is taken to be a

continuation of the preceding card. Continuation cards may not be labeled.

PROGRAM

x = Q;

SAMPLE

y = 3. 5; z = 27 * x
ALPHA: T = X + Y

GAMMA: W = T + X + Y; U = W +
& Q-3*X

PRINT (X, Y, Z, T, W, U)

END

Header card

Multi-statement card

Labeled card

Continuation of GAMMA

End card

36

B. Special Statements for the Program Mode

The statements described in this section are those whose use is

restricted to the program mode. Two (RETURN and CONTINUE) are

ignored if encountered during manual-mode execution. The others c~nnot

be used in the manual mode since they refer to l.abeled statements . or to

groups of statements.

1. RETURN

The RETURN statement is used within a SPEAKEASY program to

return the path of execution to the statement after the invoking statement.

The next statement to be processed will be the one following the EXECUTE

statement which invoked the program. A RETURN statement is always

implied just before the END card of any program.

2. CONTINUE

A CONTINUE statement is a nonoperational statement to which a label

can be attached.

3. GO TO

A GO TO or GOTO statement is used to alter the sequence of execution

of statements. When a GO TO statement is encountered, the next statement

executed will be the statement with the label indicated by the GO TO

statement : e.g.,

GO TO A3

will transfer the path of execution to the statement with the label A3.

Logical branches are made by combining an IF statement with a GO TO

statement such as

IF (A.GT. 7) GO TO ALPHA

which may be read as "If A is greater than 7 go to ALPHA, otherwise

continue the sequential execution of statements. 11

.~--- - ~ · ~· • . r # , ~~._.. -.

37

4.FOR

A FOR loop is a section of a single program, beginning with a FOR

statement and terminated by a corresponding ENDLOOP statement. All

statements between these two are repeatedly executed as specified in the

FOR statement.

A FOR statement is of the form

FOR n = start, stop

or

FOR n = start, stop, increment

Here n is the name of a scalar which may appear in any context within the

FOR loop that does not alter the value of n; and~..!!:· stop, and increment

are any scalar t:xpressions (not involving n) who~. e values specify,

respectively, the initial value of n, its final value, and the increment to

be added ton every time the loop is repeated. If increment is not specified,

its value is assumed to be 1.

The ENDLOOP statement is of the form

ENDLOOP n

where n is the name appearing in the corresponding FOR statement.

5. Nested FOR Loops

Up to 10 nested FOR loops are allowed in SPEAKEASY. Any FOR loop

started within a FOR loop must be terminated within that loop.

Caution: The use of FOR loops in SPEAKEASY for operations

available within the language is neither compact nor efficient. For

example, if A and B are 5-component arrays, the statements

VAL= 0

FOR I= 1.,5

VAL= A(l) * B(I) + VAL

ENDLOOP I

are equivalent to the single statement

VAL= .SUM (A* B)

38

The latter is much more compact and makes use of the optimized features

of the language.

The use of the built-in functions and structured algebra of SPEAKEASY

is perhaps the most ~ifficult problem facing users who are familiar with

languages such as FORTRAN. It is important to understand that writing

SPEAKEASY programs with FORTRAN conventions (such as extensive loops)

defeats the purpose of the language.

The user is advised to begin by expressing a problem either in matrix

notation or in ordinary mathematical subscript notation, the summations

being explicitly indicated. He will then usually find that the problem can

very readily be translated into a compact SPEAKEASY program without use

of explicit subscript references or FOR loops •

•

39

C. Executing a Stored Program

Once defined, any SPEAKEASY program can be executed by the

statement

EXECUTE name

where name is the name of the program.

The execution of a program starts with its first statement and proceeds

sequentially until this path is altered by a branching statement (GO TO).

FOR loops result in repeated execution of selected sets of statements. If a

RETURN statement or the END statement is encountered, the ex~cution of

this program is terminated ~nd the statement after the one calling for

execution of the program is then executed.

EXECUTE statements may occur in the manual mode or in any stored

program. In the manual mode, the EXECUTE statement should occur alone

and not as part of a multistatement card.

*
* ftROGRAM ONE
* X•l
* EXECUTE TWO
* PRINT X Y
* END
*
*
* PROGRAM TWO
* Y•X+&
* RETURN
* END
*
INPUT ••• EXECUTE ONE

x • 1 y • 9

•

40

D. SAMPLE PROGRAMS

•

*
* PROGRAM LOOK
* MAXX=MAXCX);MINX=MIN(X);NOELSX•NOELS(X)
* AV=AVERAGECX)
* RMS=SQRT(SUMCCX-AV)••2)/NOELSX)
* PRINT CMAXX,MINX,NOELSX,AV,RMS)
* END
*
INPUT •• ~X=l 2 3 4 5
INPUT ••• EXECUTE LOOK
MAXX = 5 MINX = 1 NOELSX = 5 AV = 3 RMS = 1.4142
INPUT ••• X=ARRAYC:X,X)
INPUT ••• EXECUTE LOOK

MAXX = 5 MINX = 1 NOELSX = 10 AV = 3 RMS = 1.4142
INPUT ••• X=X+l
INPUT ••• EXECUTE

MAXX = 6 MINX = 2 NOELSX = 10 AV = 4 RMS = 1.4.142

Other examples of programs are shown on pp. 93 and 137 .

41

IV. AIDS TO ERROR DETECTION

All higher-level computer languages are intended to

provide the means of quickly formulating and carrying out computations.

' A large fraction of the programmer's effort must normally be <;ievoted to

the process of finding and correcting errors in his programs. The extent

to which a language meets its goals is therefore largely determined by

how completely it detects errors and how well it informs the user of the

faults found. Diagnostic facilities are therefore an essential feature of any

higher-level language.

In SPEAKEASY the probability of errors is inherently small

becau l'> e of the compact and natural form of statements. In addition, the

user can concentrate on the logical formulation of his own particular

problem, since the built-in facilities of the language relieve him of the task

of programming standard manipulations. It is therefore lik~ly that even

untrained users of SPEAKEASY will be able to write programs that work

properly on the first attempt.

Correlated with this rather compact and easily used

language is an extremely discriminating processor. The presence of

structured objects in the language provides the SPEAKEASY processor with

much inore information than is available in other languages. Each

algebr3.ic operation, for instance, is preceded by an examination of the

objects involved to see if they are compatible. Continuous checking of the

cal::ulation is therefore automatic and relatively complete. Any structural

error is detected before it is able to propagate to later parts of the

calculation. Thus the user is always presented with, a detected error

before it has had the chance to confuse the output. For involved computations,

the fact that no error has been detected is some assurance that the structural

aspects of the ca1culation are correct.

42

For a simple problem, these features combine to provide

answers on the first try and offer some assurance that the processor

has at least understood and checked the logic of parts of the program.

For any but the rnost trivial problem, however, other facilities must be

provided to enable users to follow the operations. This chapter describes

those facilities and the normal error-detection features of SPEAKEASY.

Two classes of errors exist in SPEAKEASY. The first

comprises the general syntax errors common to any language. Such

errors include the us.e of illegal characters, parenthesis imbalances, etc.

The second class of errors is specific to the structure of SPEAKEASY.

Since definitions of objects may vary during a calculation, many errors

can only be detected during execution. Such errors, referred to as

execution errors, involve attempts to use undefined objects, to combine

two objects that have incompatible structures, or to operate illegally with

some structured object.

43

A. Error Messages

In each case of ambiguity. the most likely intent of the statement is

carried out. If this is not possible. however. a printed error message

quotes the statement involved and describes the difficulty. Scheduler:t 38

and 39 illustrate the form of error messages generated by SPEAKEASY.

1. Compilation Errors

During compilation of any user's SPEAKEASY stored program. the

syntax of the program is examined. All syntactic~l errors are listed at

the end of that program. Such errors do not affect the calculation until

the program is executed.

Z. Manual-Mode Errors

Each manual-mode statement is scanned to chec.k the syntax before

processing is attempted. If errors are detected the statement is printed

along with an error message. Similarly execution errors are printed if

detected during processing.

The next manual-mode statement will be processed in a;ny event.

3. Errors in Execution of the Program

Errors of either class will result in the abortion of the SP~AKEASY

program being executed. The error message will be p:rinted and processing

will normally continue with the next manual-mode statement. All currently

defined information will be dumped. Commands described in Sec. IV. D

can be used to alter these options.

44 .

B. Dumps

It is frequently desirable for a user to examine all the information

defined at a given point in a calculation. He may do this in SPEAKEASY

with the single statement

DUMP

An easily-read complete printout of all defined objects will result. After

this printout the calculation continues in the normal fashion.

When SPEAKEASY is used in an interactive environment the DUMP

option is modified to provide the user with the names of currently defined

objects. He may then selectively print the information of interest.

45

C. AUTOPRINT

SPEAKEASY provides a particularly desirable feature for tracing the

behavior of selected objects. This facility called AUTOPRINT enables a

user to request that specified objects be pri.nted every time they are

evaluated. AUTOPRINT may be turned on or off by the .use of appropriate

statements. (Schedule ZS is an example of its use.)

The statement

A UTOPRINT (name list)
,.....,""'"""'"'""""""

where namelist is a set of object names separated by commas. will result
"""""'""""""~

in automatic printing of each of those objects every time they appear on th~

left in an equation.

The statement

AUTOPRINT

gives a complete printout of all objects as they are defined or altered.

The statement

ENDAUTOPRINT

turns off the automatic printing.

46

D. Error-control Commands

While automatic dumping of currently defined data and continuation

of. computation in the manual mode are felt to be the desirable action

after an error in program execution, p~ovisions for user-chosen options

are inclu~~d in the language. The single command word ONERROR is

used to control the options, the ones allowed at present being

ONERROR (
NODUMP CONTINUE

DUMP MANUAL)
The underlined options are the standard defaults. NODUMP indicates

that no dump of defined data is desired. CONTINUE means that the errors

do not affect the path of execution.

47

' .
'

APPENDIX I. Keywords and Synonyms

Several levels of keywords exist in SPEAKEASY. Some

are restricted words that may be used only for their inte?l.ded purpo-e.

The number of this type is small. The majority of the keY"'ords of the

language are designed so that a user will not be affected by any that ar~

not known to him. In such cases the use of a keyword as the name of an

object automatically eliminates the normal function of tha,t keyword. It•

normal function will resume if the name is freed. For example. if the

user's program has executed a statement of the form

SIN= 2. 73

then the sine function is unavailable until the statement

FREE(SIN)

is encountered.

1. Restricted Words

The following is a list of restricted words. Users may nqt use these •a

names in SPEAKEASY. I~ addition, normal usage of these keywords in the

* manual mode requires that they occur in single-statement cards.

CALL FREE PROCEDURE

CONTINUE FUNCTION PROGRAM ·

DATA GLOBAL RETURN

DO GOTO RUN

END IF SPACE

END LOOP LOADDATA SUBROUTINE

EXECUTE LOCAL USE

FIN NEW PAGE WHE~E

FOR PRINT WHEREVER

* Some of the keywords in this list are included for future additions to the
language. These are not yet restricted words but are included here for
completeness.

48

2. Nonrestricted Keywords and Synonyms

These keywords may also be used as names of objects. During the time

their definitions as objects remain in force, the normal functio:'.ls of these

keywords are suppressed.

In designing the keywords, the objective was always to provide the "right"

word. Often the decision narrowed down to alternative words that seemed

equally good. Sometimes it was apparent that very short words would be

desirable because of the frequency of their use within expressions. These

small words, however, often appeared to reflect a bit of "computerese."

For this reason a large number of synonyms were included. In the following

list, we present the keywords grouped according to operations. Synonyms

follow defined keywords. Examples of the use of these words are given fn the

schedules, as noted.

a) Defining Functions (Schedules 1 and 2)

VECTOR (VEC), MATRIX (MAT)
SYMMAT (SMAT), ASYMMAT (ASMAT), DIAGMAT (DMAT)
ARRAY, ARRA Y2D, INTEGERS
GRID (VARIABLE)

b) Elem,ental Functions (Schedule 7)

ABS, SIGN, SQRT I EXP, LOG
SIN, COS, TAN, COT
ASIN, ACOS, AT AN, ACOT
FRACPART, REALPART, IMAGPART, CONJUGATE (CONJ)
SINH, COSH, GAMMA, LOGGAMMA

c) Sums and Products (Schedule 8)

SUM, SUMSQ, PROD
SUMROWS, SUMSQROWS, PRODROWS
SUMCOLS, SUMSQCOLS, PRODCOLS

I

I

49

d) Structure Functions (Schedule 9)

NOELS (LENGTH), NOROWS, NOCOLS
MIN, LOCMIN, ROWMIN, COLMIN
MAX, LOCMAX, ROWMAX, COLMAX

e) Functions of one variable (Schedule 10)

DERIV, INTEGRAL., TOTALINT
ROOTS, NOROOTS., INTERP

f) Matrix Operators (Schedule 11)

ElGENVALS, EIGENVECS, DET, DIAGELS
INVERSE, TRACE, TRANSPOSE (TRANSP)

g) Ranking Functions (Schedule 12.)

RANKED, RANKER

h) Transfamily Functions (Schedule 13)

AF'AM
VF'AM
MFAM

•
i) Graphics (page 30)

GRAPH, ADDGRAPH, NEWGRAPH
HSCALE, VSCALE, HSIZE, VSIZE
SETPLOT, PLOTSYMB

j) Input/Output (page 25)

PRINT, TABULATE, WRITE, PUNCH
NEWPAGE, SPACE
AUTO TAB, COL WIDTH, SIGNIFICANCE, SETNULL, SETINFINITY
LOADDATA, DATA, READ

k) Commands (page 24)

FREE, DOMAIN, ACCURACY, CLEARI)ATA

1) Program Mode (pages 36-39)

PROGRAM, FOR, ENDLOOP
GOTO, RETURN, CONTINUE
RETURN, END, EXECUTE

m) Others

AUTCPR!NT (page 45)
DUMP (page 44)
ONERROR (page 46)

50

3. Alphabetic Listing of Keywords

This is an alphabetic listing of the keywords. Nonstandard synonyms

have the standard form given in parentheses . Restricted keywords are

underscored. Note that in very long keywords only the first 8 characters

are meaningful; all others are ignored.

The numbers beside the keywords refer to the schedule containing

a description or a sample of the use of the word . If the word does not

occur in a schedule, the reference is to the section describing the word;

this is given by pag~ number and indicated by enclosing parentheses.

ABS 7
ACOS 7
ACOT 7
ACCURACY (24)

ADDGRAPH 36
AFAM 13
AND 24

ARRAY 2
ARRAY2D 2
ASIN 7
ASMA T(ASYMMAT) 1
ASYMMAT 1
ATAN 7
AUTOPRINT 25
AUTOTAB (29)

CALL
CLEARDATA (24)
COLMAX 9
COLMIN 9
COL WIDTH (29)
CONJ(CONJUGATE) 7

CONJUGATE 7
CONTINUE (36)
cos 7
GOSH 7
COT 7

DATA
DE RIV
DET
DIAGELS
DIAGMAT
DO
DOMAIN
DMAT(DIAGMAT)
DUMP

EIGENVALS
EIGENVECS
END
END LOOP
EXECUTE
EXP

FIN(ENDLOOP)
FOR
FRACPART
FREE
FUNCTION

GAMMA
GLOBAL
GOTO
GRAPH
GRID

35
10
11
11

1

14
1

(44)

11
11
37
37
37

7

37
7

(24)

7

37
36

2

51

HSCALE 36 PLOTSYMB (31)
HSIZE 36 PRINT 14

PROCEDURE
IF lS PROD 8
IMAGPAKT 7 PRODCOLS 8
INTEGERS 2 PRODROWS 8
INTEGRAL 10 PROGRAM 37
INT ERP 10 PUNCH (30)
INT PART 7
INVERSE 11 RANKED 12

RANKER 12
READ (25)

LENGTH 9 REALPART 7
LOADDATA 35 ·RETURN (36)
LOC(LOCS} 26 ROOTS 32
LOCAL ROW MAX 9
LOCMAX 9 ROWMIN 9
LOCMIN 9 RUN

26 -LOGS
LOG 7 SET PLOT 36
LOGGAMMA 7 SET NULL (28)

SETINFINIT~ (28)
SIGN 7

MAT {MA TRIX) 1 SIGNIFICANCE 32
MATRIX 1 SIN 7
MAX 9 SlNH 7

MFAM 13 SPACE (28)

MIN 9 SQRT 7
MTYPE(MFAM) 13 SMAT(SYMMAT) 1

SUBROUTINE
SUM 8

NEWGRAPH (32) SUMCO LS 8
NE WP AGE (28) SUM ROWS 8
NOCOLS 9 SUMSQ 8
NOELS 9 SUMSQCOLS 8
NOROOTS 32 SUMSQROWS 8
NO ROWS 9 SYMMAT 1

TABULATE 32
ONERROR TAN 7

TOTALINT 10
TRACE 11
TRANSP(TRANSPOSE) 11
TRANSPOSE 11

52

USE

VARIABLE(GRID) 2
VEC(VECTOR) 1
VECTOR
VFAM
VSCALE 36
VSIZE 36

, '

WHERE 25
WHEREVER(WHERE) 25
WRITE (27)

53

APPENDIX II. Card-input SPEAKEASY

1. Card-Input Conventions

SPEAKEASY jobs can· be submitted on standard 80-c.olUJnn tabular

cards. IBM-029 keypunch should be used in punching the cards. All 80

columns of cards are usable and all input is of a free-format form. Spaces

between terms are usually ignore.d and the user may deeign input to reflect

his own tastes.

It has been found that the usual FORTRAN cards provide a highly

readable input form, i.e., statements normally start in column 7 unless

they are labeled. Labels appear in columns 2-5 and a colon follows in

column 6. It should be noted that these conventions appear desirable but

are not necessary.

A single dollar sign indicates that all the res\; of a card is a comment.

Two dollar signs on a single card indicate that the part of the card between

the dollar signs is a comment and is to be ignored.

Multistatement cards have semicolons separating the statements.

Multicard statements (i.e., continuation cards~ are allowed only in stored

programs and are indicated by an E in column 1 of continued cards.

The processor will accept any number of continuation cards but only

a limited ccmplexity in a stateme:nt. For th:s reason the use of multicard

statements should be avoided when possible and state:ments should be kept

as concise as possible.

2 Job-control Cards

In order to run a SPEAKEASY job on the Argonne 360I1 qs the deck

shown below should be placed in front of your SPEAKEASY cards. *

I I jbname JOB (badge,,.), CLASS=C, REGION=260K

Your a<.:count card

II EXEC SPEAKEZ

Your SPEAKEASY deck

* ' This form of deck is usable as of May 1973.

54

If graphical output is requested, two a.dditiona.l ca.rds a.re needed to

provide access to the Calcomp ta.pe. The deck would then be of the .form

/*SETUP

II

I /PLOTTAPE

II

Your accounting information

UNIT=2400-7, ID=(780300, RING, SAVE, NL), DDNAME=PLOTTA~

EXEC SPEAKEZ, VERS.ION=GRAPHEZ

DD UNIT = TAPE7TRK, DISP = (,PASS). LABEL= (,NL), .

VOL = SER = 780300

Your SPEAKEA~Y deck

The last SPEAKEASY card should read ENDDRAW(O).

55

APPENDIX UI. Schedules

This report is intended both as an introductory writeup and

as a reference manual for users. For the latter role it is ~seful to have

quick access to the tables and examples of the writeup. For this reason all

schedules of the report have been collected together in this appendix. The

titles are summarized here.

Schedule

1. 2

3-6

7

8

9

10

11

12

13

Explicit defining expressions

Description of the algebraic operations

Element-by-element functions

Sum and product functions

Structure functions

Operators for functions of one variable

Matrix functions

Ranking functions

Transfamily functions

The rest of the schedules in this report are actual reproductions

of part of a run made with the SPEAKEASY processor. They provide

examples of the use of the language.

14

15

16

17

18

19

20

21

22

Operations with scalar objects

Examples of explicit definitions (matrix/vector family)

Examples of explicit definitions (array family)

Operations on square matrices ·

Matrix/vector operations

Operations on 1-dimensional arrays

Operations on 2-dimensional arrays

Operations between 1- and 2-dimensional arrays

Simple-index operations
/

Schedule

Z3

24

ZS

Z6

Z7

ZS

Z9

30

31

3Z

33

34

35

36

37

38

39

56

Structured-index operations

Logical and relational operations

The WHERE and IF statements

Sample uses of the logical function LOCS

Sample operations using element-by-element functions

Samples of sum and product functions

Use of built-in structure functions

Examples of the use of ranking functions

Sample tra.nsfamily operations

Samples of the use of special operations for functions of

1 variable

Sample of a function of Z variables

Sample of a crude contour plot

Sample of the construction and use of a data file

Sample of the use of the graphical features of the language

Sample program and its execution

Errors detected during compilation

Execution error mes sages (manual mode)

Expression

VECTOR(n)

MA TRIX(n, m)

Schedule 1. Explicit defining expressions for structured objects
in the matrix- vector family. Note that all structure-defining
quantities (i.e., n and m) must be positive integers.

Meaning

Defines a vecto r with n components
all of which are zero.

Defines an 1-component vector with
components set to e . .

l

Defines an n-component vector with
the first l elements set to e . . All
others are zero.

l

Defines an n X m matrix, all
components of which are zero.

Defines an n X m matrix in which
some elements are preset. They are
entered row by row. All non-preset
elements are zero.

Defines an n X n symmetric matrix.
Elements are loaded in lower diagonal
form by rows and then the portion above
the diagonal is made symmetric,

Defines an n X n antisymmetric matrix.
Elements are loaded in lower diagonal
form by rows and then the portion above
the diagonal is made antisyinmetric.

Defines an n X n matrix with nonzero
elements el' ez, ..• 'e, along the
diagonal.

Comment

l > 1

l ~ n

n rows, m columns

l ~ !n • (n + 1)

l $0 !n • (n - 1)

l .; n

Schedule 2. Explicit defining expressions for array objects.

Expression

ARRAY(n)

ARRA Y(e
1
, e

2
, , e

1
)

ARRA Y(n: e
1
, e

2
, , e

1
)

ARRA Y(n, m :)
or

ARRA Y2D(n, m)

GRID(lim 1, lim2)

GRID(lim 1, lim2, delta)

INTEGERS(n, m)

INTEGERS(n, m,1)

Meaning

Defines a 1-dimensional array with n
components, all of which are zero.

Defines a 1-dimensional array with
components set to e . .

1

Defines a 1 - dimens ional array with the
first 1 elements set to e.. The last
(n - 1) elements are zer~.

Defines a 2-dimensional n X m array
with all elements set to zero .

Defines a 2-dimel'\sional n X m array
with preset elements. Loaded row by
row. Non-set elements are zero.

Defines a 1-dimensional array with 101
equally spaced elements starting at lim 1
and going to lim 2.

Defines a 1-dimensional array with
elements equally spaced starting at
lirn 1 and adding delta until lim 2 is
reached or passed.

Defines a 1-dimensional array with
elements containing the integers from
n to rn.

Defines a 1-dimensional array with
elements containing the integers from
n to rn in steps of 1 •

Comment

Note: ARRA Y(e , e
2

) is
a 2-component, /-dim. array!

e~n

Note colon. (See note above.)

lim1 ~ lim2

lim1 :;a! limZ
delta ~ 0

n and m have integer
values.

All n, m, and 1 are
integers.

.ui
00

.Class of Right Operand

Operator I
M Family A Family

-.t s V(n} M(n,m~ A1(n} A2(n,m}
-

A=L±R A =L :l:R A .. = L6 .. ± R .. A. = L ± R. A .. =L ±R .. i i 1J lJ lJ 1 1 lJ lJ s
n =m

Clau S Class V(n) Class M(m,m) Class A1(n) ; Class A2(n,m)
-

A. =L. ±R A. =L. ±R. A = L.6 .. ± R .
1 l 1 1 l ij l lJ iJ

V(n)
n =m

~
Cl&aa V(n) Claaa V(n) Claaa M(m,m) ... e

If ---- -"4
~ A .. =Lin :l: R6 .. A .. =Li. :l: R.6 .. . A .. = L .. ± Ri"

lJ lJ lJ J 1 lJ lJ lJ J
~ m =n m =n

Class M(n,n) Clasa M{n,n) Class M(n,m)

Ai= Li :l: R A. =L. :l:R.
l l l

A .. = L. ± R ..
lJ l lJ

A1~

>- Claaa Al Class Al(n) Clasa A2(n,m) e
If
"4

A .. = L .. ± R A .. = L.1 ±R. A .. = Lij :l: Rij < lJ lJ lJ lJ J 1J
~n' n' =n p = n, n' =m

Claaa A2{p,n') Class A2(p,n) Class A2(n,m)

Schedule 3. Description of the operation ±between objects of various classes. The subscripts refer to

elements. A is the answer object, L the lefthand object, and R the righthand object.

:l: t ± :l: ± :l: :l: :l: :l: :l: ±

.....
II>
~

'(;
ID
ID
nl
u

Class of Right Operand

Operator M Family A Family

* s V(n) M(n,m) Ai(n) A2(n,m)

A =L*R A. = L * R. A .. = L * R .. A = L * R A .. =L*R 1 1 lJ lJ i i lJ ij
s

Class S Class V(n) Class M(n,m) Class Fi(n) Class FZ(n, m)

A = L * R A=~ L. * R. A. = ~ L. * R .. i i 1 1 1 1 . J Jl
J

V(n)

>-
Class V(n) Class S Class V(m) e inner _Rroduct

nl
~

A.=~ L .. * R. A .. = ~ L.k * Rk. ~ A .. = L * R
lJ ij 1 . lJ J lJ k J.. J

M(p,n) J

Class M(p,n) Class V(p) Class M(p,m}

.,

A. = L. * R A. = L. * R. A .. = L. * R •. 1 l l 1 l lJ l lJ
Ai~

>- Class A1{n) Class A1(n) Class A2(n,m) e
nl

A .. =Li.* Ri. ~ A .. = L .. * R A .. = L .. * R.
< lJ lJ lJ lJ J lJ J J
~,n' if n' =n ifp=n,n' =m

Class A2(p,n') Class A2(p,n) Class A2(n,m)

Schedule 4. Description of the operation *between objects of. various classes. The subscripts refer to

elements. A is the answer object, L the lefthand object, and R the righthand object.

* * * * * * * * * * * * *

....
0
rn
al
nl -u

Class of Right Operand

Operator M Family A Family

I s V(n) M(n,n)* Ai(n) AZ(n,m)

A = L/R A .. = L *I .. A. = L/R. A .. = L/R .. . lJ lJ 1 1 lJ lJ
s

Class S Class M(n,n) Class Al(n) Class AZ(n,m)

A. = L./R Ai = ~ Lk * 1ici 1 1

V(n)

Class V(n) Class V(n)

~ ... e
nl A .. = L . ./R A .. =~ L.k * ~· l.&t lJ 1J lJ 1 J
~ IM(p,n)

Class M(p,n) Class M(p,n)

.
Ai = Li/R A. = L./Ri 1 1 A1. = L/R ..

J 1J
AtW

Class Al(n) Class Al(n) Class AZ(n,m)
>--.... e A .. = L . ./R A .. = Li./R. A .. = L . ./R., nl
l.&t
~~

1J lJ lJ J J 1J 1J 1J

< if n' =n ifp=n,n'=m

Class FZ(n') Class AZ(p,n) Class AZp~

* Here the right operand must be a square matrix and I is its inverse
Schedule 5. Description of the operation I between objects of various classes. The subscripts refer to

elements. A is the answer object, L the lefthand object,and R the righthand object.

7 l I I I I I I I I I I I I I

....
0
Ill
Ill

"'
l.J

Cl ass o ~t ~er an f R" h 0 d
""'

Operator
M Family A Family

** s V(n) M(m,n) A1(n) AZ(n,m)

A= LR A. = L Ri A .. = L Rij
1 lJ

s
Class S Class Ai(n) Class AZ(n,m)

A .. = L . * R.
lJ 1 J

V(m)

>- Class M(m,n)
..... outer product ,..
i::
Ill

"' ::E M(m,n;
th

R power of L

Class M(m,n) t

R R · R -·
A. = L. A. = L. L A .. = L. LJ

1 1 1 1 lJ l

Ai(n)

>-
Class A1(n) Class A1(n) Class AZ(n,m)

.....
6
Ill R R ·· = L Rij ~ A .. = L .. A .. = L .. LJ A ..

< lJ lJ lJ lJ lJ lJ
Al.(p,n~

n' =n p = n, n' =m ,
Class AZ(p,n') Class AZ(p,n) Class AZ(n,m)

t R integer only. L must be square.

Schedule 6. Description of the operation** between _ objects of ~arious classes. The subscripts refer to elements.
A is the answer object, L the lefthand object and R the righthand object. Within the table ** means
exponentiation.

** ** ** ** ** ** **

63

Schedule 7. Element-by-element functions available in SPEAKEASY.

The resultant object in each case is of the same class as X . Each elem ent of the

answer is the result of operation on the corresponding e lement of X.

Function Meaning Comment

SIGN(X) ± 1 where X S O; 0 where X = 0 Real X only

ABS(X) Absolute magnitude
FRACPAR T(X) Fractional part
INTPART(X) Integer part
REALPART(X) Real part
IMAGPART(X) Imaginary part
CONJUGATE(X) Complex conjugate

SQRT(X) Square root
5 x 10

6
EXP(X) Exponent eX Real X ~ 170, jimag xi<
LOG(X) Natural logarithm X ri!O

SIN(X) Sine
COS(X) Cosine lxl < 1015
TAN(X} Tangent
COT(X) Cotangent

ASIN(X} Arc sine lxl ~ 1 >-
ACOS(X) Arc cosine .-4

s=
ATAN(X) Arc tangent

0
ACOT(X} Arc cotangent

·><
SINH(X) Hyperbolic sine lxl < 170 .-4

COSH(X) Hyperbolic cosine
nl

GAMMA(X) r function 10-
50 < x < 56 4)

LOGGAMMA(X) Natural logarithm of r function 0 < x < 4 x 1060 ~

64

Schedule 8. Built-in SPEAKEASY functions for obtaining

sums and products of elements of structured objects.

Function Meaning Comment

SUM(X) Sum of all elements Answer is scalar

SUMSQ(X) Sum of squares of all elements

PROD(X) Product of all elements

SUMROWS(X) L;.x .. Answer is a 1-dimensional
J lJ

SUMSQROWS(X) L.(X ..)z
J lJ

member of the family of X

PRODROWS(X) n.x ..
J lJ

SUMCOLS(X) L;.x .. Answer is a 1-dimensional
1 lJ

SUMSQCOLS(X) l;.CX ..)
1 lJ

z
member of the family of X

PRODCOl.S(X) TI".x ..
1 lJ

65

Schedule 9. The built-in SPEAKEASY functions for obtaining

information about the structure of objects.

Function

NOELS(X)
LENGTH(X)

NOROWS(X)
NOCOLS(X)

MIN{X)
MAX(X)
LOCMIN(X)
LOCMAX(X)
~OWMIN(X)

ROWMAX(X)
COLMIN(X)
COLMAXJX_1

}

Meaning

The number of elements in the object X. If
X is undefined, the answer is zero.

Number of rows in X
Number of columns in X

Minimum element in X
Maximum element in X
Location of minimum of X. X is one-dimensional.
Location of maximum of X. X is one-dimensional.
Row containing minimum element of X
Row containing maximum element of X
Column containing minimum element of X
Column containin_g maximum element of X

66

Schedule 10. Built-in SPEAKEASY operators for functions

of one variable. In these functions Xis a one-dimensional array X =ARRAY

(xi ,xz ,x3' ... ,xn).

Fnnction

DERIV(F:X)

INTEGRAL(F:X)

TOTALINT(F :X)

INTERP(Y ,F ,X)

ROOTS(F:X)

NOROOTS(F)

Meaning

dF /dx (derivative)

x.
l 1Fdx an integral with a

x
1 . bl l" . var1a e upper im1t

x
l n Fdx definite integral
xi

Numerical fitting,
interpolation

Finds x. of roots of F
1

Number of roots of F

Comment

Numerical differentiation

Numerical integration.
(Answer is an array.)

Numerical integration.
(Answer is a scalar.)

Resultant is an array with
values of the function F
evaluated at the points Y.
F(X) must be given.

Trapezoidal interpolation

Uses sign changes

• I ·..__._..

67

Schedule 11. Built-in SPEAKEASY functions for matrices. Note

that aside from TRANSPOSE, these operations can be used only with

square matrices.

Function

EIGENVALS(X)

EIGENVECS(X)

DET(X)

DIAGELS(X)

INVERSE(X)

TRACE(X)

TRANSPOSE(X)

Meaning

Eigenvalues in order of ascending values

Unitary matrix whose columns are eigenvectors
of X, belonging to the corresponding eigenvalues

Determinant of matrix X

Diagonal elements in original order

Inverse matrix
Note: 1/X is also the inverse

Sum of the diagonal elements

Transpose of the object

68

Schedule 12. Built-in SPEAKEASY functions for ranking the elements

of a structured object.

Function

RANKED(X)

RANKER(X)

Meaning

Produces a new object of the same structure
as X but with elements arranged in increasing
nwnerical order.

For a one-dimensional object X. This function
produces the indices of the elements of X arranged
in order of increasing numerical order.

RANKED(X) = X(RANKER(X))

Schedule 13 . The built-in SPEAKEASY functions for

respecifying the family of an object.

Function

AFAM(X)

VFAM(X)
or

MFAM(X)

Meaning

The resultant has the structure of X but
is a member of the array family

The resultant has the structure of X but
is a member of the matrix/vector family

70

IN PUT ••• $
INPUT ••• $
IN PUT •.• $
INPUT •.•

SCHEOULE 14 OPERATIONS WITH SCALAR OBJECTS.

x z:

INPUT ••.
Pl •

INPUT ..•

X=27 ; Y•l6 ; Z•X•Y+8/3 . ;
27 y = 16 z = 434.67

P1•2•ACOS(O) ; PRINTCPI)
3.1416
X•SINC3•Pl/8);PRINT(X)

.92388

PRINT(X,Y,Z)

x •
IN PUT ••• $
INPUT •.• $
IN PUT ••• $

THE IMPLIED PRINT FEATURE IS DEMONSTRATED HERE.

INPUT... SINC2•Pl/3)
SIN(2•Pl/3) = .86603

INPUT... SIN(3)••2+COS(3)••2
SIN(3)••2+COS(3)••2 • 1

INPUT... DOMAIN(~OMPLEX)
INPUT ••• $
INPUT .•• $
IN PUT ..• $

THE COMPLEX DOMAIN IS NOW ALLOWED

INPUT... T•3+41;EXP(T)
EXP(T) • -13.129-15.2011

INPUT... SIN(T)••2+COS(T)••2
SIN(T)••2+COSCT)••2 = 1

INPUT... T••2
T••2 = .-7+241

INPUT... LOG(T)
LOGCT) = l.6094+.92731

71

INPUT ••• $
INPUT ••• $ SCHEDULE 15. EXAMPLES OF EXPLICIT DEFINITIONS (MATRIX/VECTOR
INPUT ••• $ FAMILY)
INPUT ••• $
INPUT... VECTOR(5:);VECTOR(:l,2,3);VECTOR(6:1,2,3,4)

VECTORCS:) (A VECTOR WITH 5 COMPONENTS)
0 0 0 0 0

VECTOR(:l,2,3)
1 2 3

(A VECTOR WITH 3 COMPONENTS)

VECTOR(6:1,2,3,4) (A VECTOR WITH 6 COMPONENTS)
1 2 3 4 0 0

INPUT .•• MATRIX(2,2:);MATRIX(2,2:1,2,3)

MATRIX(2,2:)
0 0
0 0

(A 2 BY 2 MATRIX)

MATRIXC2,2:1,2,3) (A 2 BY 2 MATRIX)
1 2
3 0

INPUT ••• SYMMAT(3:1,2,3,4);ASYMMAT(3:1,2,3,);DIAGMAT(l,2,3,4,)

t

SYMMAT(3:1,2,3,4) CA 3 BY 3 MATRIX)
1 2 4
2 3 0
4 0 0

ASYMMATC3:1,2,3,) (A 3 BY 3 MATRIX)
0 -1 -2
1 0 -3
2 3 0

DIAGMAT(l,2,3,4,) (A 4 BY 4 MATRIX)
1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

•

72

·,I,
INPUT ••• $
INPUT. ~ ;,$
INPUT ••• $
INPUT •••

SCHEDULE 16. EXAMPLES OF EXPLICIT DEFINITIONS (ARRAY FAMILY)

ARRAY(S:);ARRAY(:l,2);ARRAY{S:l,2,3)

ARRAY(5:) CA 5 COMPONENT ARRAY)
0 0 0 0 0

ARRAY(:l,2)
1 2

CA 2 COMPONENT ARRAY)

ARRAYCS:l,2,3) . (~ 5 COMPONENT ARRAY)
1 2 3 o · ·o · ,

INPUT ••• ARRAY(2,3:);ARRAYC2,3:1,2,3,4,5)

ARRAYC2,3:)
0 0 0
0 0 0

CA 2 BY 3 ARRAY)

ARRAYC2,3:1,2,3,4,S) CA 2 BY 3 ARRAY)
1 2 3
4 5 0

INPUT ••• GR .IDCl. 2,1.9, .1); INTEGERSCl,15)

GRIDCl.2,1.9,.1) CA 8 COMPONENT ARRAY)
1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

INTEGERS(l,15) CA 15 COMPONENT ARRAY)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

•

73

IN ftUT ••• $
INPUT ••• $
INPUT ••• $
INPUT •••

SCHEDULE 17. OPERATIONS ON SQUARE MATRICES

X•MATRIX(3,3:1,2,4,l,3) ; PRINT(X)

X (A 3 BY 3 MATRIX)
1 2 4
1 3 ft
0 0 0

INPUT ••• X•X+TRANSPOSE (X); P'R INT(X)

x CA 3 BY 3 MATRIX)
2 3 4
3 6 0
4 0 0

INPUT ••• X(3,3)•5;PRINT(X)

x (A 3 BY 3 MATRIX)
2 3 4
3 6 0
4 0 5

INPUT... DET(X)
DET(X) • -81

1NPUT... TRACE(X)
TRACE ex) • 13

INPUT... EIGENVALS(X)

EIGENVALS(X) (A VECTOR WITH 3 COMPONENTS)
-1.6056 5.6056 9

IN PUT ••• EIGENVECS(X)

EIGENVECSCX) CA 3 BY 3 MATRIX)
-.8105 .098784 .57735

.3197 -.7513 .57735

.4908 .65252 .57735

INPUT .•. $
INPUT ••• $
INPUT ••• $
INPUT ••• $
INPUT •••

THE EIGENVECTORS ARE THE COLUMNS OF THIS MATRIX.
THE VECTOR CORRESPONDING TO THE SMALLEST EIGENVALUE IS FIRST.

l/X

l/X (A 3 BY 3 MATRIX)
-.37037 .18519 .2963

.18519 .074074 -.14815

.2963 -.14815 -.037037

INPUT •••

X••2
29

. 24
28

CA 3 BY 3 MATRIX)
24 28
45 12
12 41

INPUT ••• $
INPUT ••• $
INPUT •• •' $
INPUT •••
INPUT ••• $
INPUT ••• $
INPUT ••• $
INPUT •••

x
1

y
3

(A
2

CA
1

74

SCHEDULE 18. MATRIX/VECTOR OPERATIONS.

X•VECTOR(:l,2,3,4);Y•VECTOR(:3,1,2) ' .

FORM THE OUTER PRODUCT OF X AND Y

Z=X••Y . PRINT(X,Y ,Z) ,

VECTOR WITH 4 COMPONENTS)
3 4

VECTOR WITH 3 COMPONENTS)
2

Z (A 4
3 1
6 2
9 3
12 4

BY 3 MATRIX)
2
4
6
8

INPUT... X•Z

X•Z CA VECTOR WITH 3 COMPONENTS)
90 30 60

INPUT ••• $ THE INNER PRODUCT IS
INPUT ••• X•X

X•X = 30
INPUT ••• Z•Y

Z•Y (A VECTOR WITH 4 COMPONENTS)
14 28 42 56

INPUT ••• T=X••X;PRINT(T)

T CA 4 BY 4 MATRIX)
1 2 3 4
2 4 6 8
3 6 9 12
4 8 12 16

INPUT ••• T+l .

T+l (A 4 BY 4 MATRIX)
2 2 3 4
2 5 6 8
3 6 10 12
4 8 12 17

INPUT ••• T+X

T+X (A 4 BY 4 MATRIX)
2 2 3 4
2 6 6 8
3 6 12 12
4 8 12 20

•

INPUT ••• $
INPUT ••• $
INPUT ••• $
INPUT •••
INPUT •••

75

SCHEDULE 19. OPERATIONS ON I-DIMENSIONAL ARRAYS

X•ARRAYC5:1,2,3,4,5) ; Y•X+3 ; Z•X•Y
PRINT CX,Y ,Z)

X CA 5 COMPONENT ARRAY)
1 2 3 4 5

Y CA 5 COMPONENT ARRAY)
4 5 6 7 8

Z CA 5 COMPONENT ARRAY)
4 10 18 28 40

INPUT... X/ Z

X/Z CA 5 COMPONENT ARRAY)
.25 .2 .16667 .14286 .125

INPUT... XI 3

X/3 CA 5 COMPONENT ARRAY)
.33333 .66667 1 1.3333 1.6667

INPUT... X••X

X••X CA 5 COMPONENT ARRAY)
1 4 27 256 3125

INPUT... X••3

X••3 CA 5 COMPONENT ARRAY)
1 8 27 64 125

76

INPUT ••• $
INPUT ••• $
INPUT ••• $
INPUT •••
INPUT •••

SCHEDULE 20. OPERATIONS ON 2-DIMENSIONAL ARRAYS ' .

X•ARRAYC2,2:1,2,3,4) ; . Y•X+l ; Z•X•Y
PRINT CX,Y~Z) . .

X CA 2 BY 2 ARRAY)
1 2
3 4

Y CA 2 BY 2 ARRAY)
2 3
4 5

Z CA 2 BY 2 ARRAY)
2 6
12 20

INPUT... X/Y

X/Y CA 2 BY 2 ARRAY)
.s .66667
• 75 • 8

INPUT ••• X••Y

X••Y CA 2 BY 2 ARRAY)
1 8
81 1024

INPUT ••• X••3

X••3 CA 2 BY 2 ARRAY)
1 8
27 64

•

77

INPUT ••• $
INPUT ••• $
INPUT ••• $
INPUT ••• $
INPUT ••• $
IN PUT •••
IN PUT •••

SCHEDULE 21. OPERATIONS BETWEEN 1- AND 2-DIMENSIONAL ARRAYS
10 ARRAYS OPERATE FROM THE LEFT ON ROWS, FROM THE

RIGHT ON COLUMNS.

X•ARRAYC3:1,2,3);Y•ARRAYC3,2:1,2,3,4,5,6);Z•ARRAYC2:1,2)
PRINTCX,Y,Z)

INPUT •••

X CA 3 COMPONENT ARRAY)
1 2 3

Y CA 3 BY 2 ARRAY)
1 2
3 4
5 6

Z CA 2 COMPONENT ARRAY)
1 2

X•Y ;Y•Z

X•Y CA 3 BY 2 ARRAY)
1 2
6 8
15 18

·. Y•Z CA 3 BY 2 ARRAY)
1 4
3 8
5 12

IN PUT ••• X+Y;Y+Z

X+Y CA 3 BY 2 ARRAY)
2 3
5 6
8 9

Y+Z CA 3 BY 2 ARRAY)
2 4
4 6
6 8

INPUT ••• X••Y;Y••Z

X••Y CA 3 BY 2 ARRAY)
1 1
8 16
243 729

Y••Z CA 3 BY 2 ARRAY)
1 4
3 16
5 36

J

78

INPUT ••• $
'INPUT •• ~$ · SCHEDUlE 22. SIMPlE INDEX OPERATIONS.

•;. INPUT~~: •• $': . I

INPUT... X=ARRAY(3,3~1,2,3,4,5,6,7,8~9); PRINT CX)
' .. ·; · ~ · CA 3. BY 3 ARRAY)

1 2 3
4 5 6
7 8 9

INPUT ••• XC3,3);X(2);XC,2)
XC3,3) = 9

XC2) CA 3 COMPONENT ARRAY)
4 5 6

XC,2) CA 3 COMPONENT ARRAY)
2 5 8

INPUT ••• X(3)•XC,2) ; PRINTCX)

x CA 3 BY 3 ARRAY)
1 2 3
4 5 6
2 5 8

INPUT ••• x (3) =1 ; PRINTCX)

x CA 3 BY 3 ARRAY)
1 2 3
4 5 6
1 1 1

IN PUT ••• x (, 3) =1 ; PRINTCX)

x (A 3 BY 3 ARRAY)
1 2 1
4 5 1
1 1 1

INPUT ••• $
INPUT ••• $ AUTOMATIC EXTENSION IS ILLUSTRATED BY
IN PUT ••• $
INPUT ••• XC4,5)=1 ; PRINTCX)

x CA 4 BY 5 ARRAY)
1 2 1 0 0
4 5 1 0 0
1 1 1 0 0
0 0 0 0 l

79

INPUT ••• $
IN PUT ••• $
INPUT ••• $
INPUT •••

SCHEDULE 23. EXAMPLES OF STRUCTURED INDEX OPERATIONS

INPUT •••

A•ARRAY(3,3:1,2,3,4,5,6,7,8,9) ; l•ARRAYC:l,2) ; PRINTCA,I)

A CA 3 BY 3 ARRAY)
1 2 3
4 5 6
1 8 9

I (A 2 COMPONENT ARRAY)
1 2

A(I); A(,I) ; A(l,I) ; A(l,1+1)

ACI) (A 2 BY 3 ARRAY)
1 2 3
4 5 6

A(,I) (A 3 BY 2 ARRAY)
1 2
4 5
7 8

ACl,I) CA 2 BY 2 ARRAY)
1 2
4 5

AC I, I +1) (A 2 BY 2 ARRAY)
2 3
5 6

80

INPUT ••• $
I NP~UT ••• $ ·. SCHEDULE . . 24. LOG 1 .. CAL .. AND RELATIONAL OPERATIONS
INPUT ••• $

· I ~PUT ••• $
A=ARRA~C:0,2,0,1) INPUT ••• ; B•ARRAY(:l,2,0,0)

INPUT ••• AORB=A.OR.B
INPUT .•• AANDB=A.AND.B
INPUT ••• NOTA=.NOT.A
INPUT ••• TABULATE CA,B,AORB,AANDB,NOTA)

A B AORB AANDB NOTA

0 1 1 0 1
2 2 1 1 0
0 0 0 0 1
1 0 1 0 0

INPUT ••• $
IN PUT ••• A•ARRAYC:0,1,2,3,4,5);8=6-A
IN PUT ••• AGTB•A.GT.B
IN PUT ••• ALTB=A.LT.B
IN PUT ••• AEQB=A.EQ.B
INPUT ••• AGEB•A.GE.B
IN PUT ••• ALEB=A. LE. B
INPUT ••• ANEB•A.NE.B
IN PUT ••• TABULATE(A,B,AGTB,ALTB,AEQB,AGEB,ALEB,ANEB)

A B AGTB ALTB AEQB AGEB ALEB ANEB

0 6 0 1 0 0 1 1
1 5 0 1 0 0 1 1
2 4 0 1 0 0 1 1
3 3 0 0 1 1 1 0
4 2 1 0 0 1 0 1
5 1 1 0 0 1 0 1

IN PUT .•• $
IN PUT ••• AGTO=A.GT.O
IN PUT ••• ANEl=A.NE.l
INPUT ••. AM B N E 0 =A - B • N E • 0
INPUT ••• TABULATE(A,B,AGTO,ANEl,AMBNEO)

A B AGTO AN El AMBNEO

0 6 0 1 1
1 5 1 0 1
2 4 1 1 1
3 3 1 1 0
4 2 1 1 1
5 1 1 1 1

81

I NftUT ••• $
INPUT ••• $
INPUT ••• $
INPUT •••

SCHEDULE 25. EXAMPLES OF WHERE AND IF STATEMENTS.

X•ARRAYC:l,2,3,4,5,6,7) ; Y•ARRAY(7:) ; PRINT(X,Y)

X CA 7 COMPONENT ARRAY)
1 2 3 4 5 6 7

Y CA 7 COMPONENT ARRAY)
• 0 0 0 0 0 0

AUTOPRINTCY) INPUT •••
INPUT ••• $
INPUT ••• $
INPUT ••• $
INPUT •••

AUTOPRINT IS USED HERE FOR AUTOMATICALLY PRINTING Y • .

WHERE CX.GT.3) Y•4

INPUT •••

IN PUT •••

INPUT •••

INPUT •••
INPUT •••
INPUT •••

INPUT •••

IN PUT •••

Y CA 7 COMPONENT ARRAY)
0 0 0 4 4 4 4

WHERE CX.GT.4) Y•X-1

Y CA 7 COMPONENT ARRAY)
0 0 0 4 4 5 6

y
-1

y
-1

WHERE CY.EQ.O) Y•-X

CA 7 COMPONENT ARRAY)
-2 -3 4 4 5 6

WHERE CX+Y.GT.l.AND.X.LT.7)

CA 7 COMPONENT ARRAY)
-2 -3 9 9 9 6

X•7
IF CX.LT.5) Y•Y-1
PRINTCY)

Y CA 7 COMPONENT ARRAY)
-1 -2 -3 9 9 9 6

IF CX.GT.5) Y•Y-1

Y CA 7 COMPONENT ARRAY)
-2 -3 -4 8 8 8 5

ENDAUTOPRINT

Y•9

INPUT ••• $
I N PUT •. ~, • -$
INPUT ••. $
INPUT •.•.
INPUT •••

82

SCHEDULE · 26. SAMPLE USE OF LOCS (THE TRUTH FUNCTION).

X=ARRAYC:Si3,l,0,2;2.5,7,6.3,0)
LOCS(X); X(LOCS(X))

LOCSCX) CA 7 COMPONENT ARRAY)
1 2 3 5 6 7 8

X(LOCS(X)) CA 7 COMPONENT ARRAY)
5 3 1 2 2.5 7 6.3

INPUT .•• LOCSCFRACPART(X))

LOCSCFRACPART(X)) (A 2 COMPONENT ARRAY)
6 8

INPUT ••• X(LOCS(FRACPART(X)))

X(LOCSCFRACPART(X))) CA 2 COMPONENT ARRAY)
2.5 6.3

INPUT ••• LOCS(X.GT.2)

LOCS(X.GT.2) (A 5 COMPONENT ARRAY)
1 2 6 7 8

INPUT .•. XCLOCS(X.GT .2))

X(LOCS(X.GT.2)) (A 5 COMPONENT ARRAY)
5 3 2.5 7 6.3

INPUT ••• $
INPUT ••• $
INPUT ••• $
INPUT ••• $
INPUT ••• $
INPUT •••
INPUT •••
INPUT •••

83

SCHEDULE 27 • SAMPLE OPERATIONS USING ELEMENT-BY•ELEMENT
FUNCTIONS

X•ARRAYC:-2,-1.s,-1,o,2.S,7);ABSX•ABS(X);SIGNX•SIGN(X)
FRACXmFRACPART(X) ; INTX•INTPART(X)
TABULATE (X,ABSX,SIGNX,FRACX,INTX)

x
-2

ABSX SIGNX FRACX

2 -1 0

INTX

-2

INPUT •••
IN PUT •••
IN PUT •••
INPUT •••

INPUT •••
IN PUT •••
INPUT •••
INPUT •••

-1.5
-1

0
2.5
7

x

1.5 -1 -.5 -1
1 -1 0 -1
0 0 0 0
2.5 1 .5 2
7 1 0 7

DOMAIN COMPLEX
X•ARRAY(:0,1+11,2-31,41)
REALX•REALPART(X);IMAGX•IMAGPART(X);CONJX•CONJUGATE(X)
TABULATE ex REALX IMAGX CONJX)

REALX IMAGX CONJX

0 0
1+11 1
2-31 2

0
1

-3
4

0
1-11
2+31

+41 0 -41

DOMAIN REAL
X•VECTORC:l,2,3,4)
SQRTX•SQRTCX);SINX•SIN(X);SINHX•SINH(X);GAMMAX•GAMMA(X)
TABULATE X SQRTX SINX SINHX GAMMAX

X SQRTX SINX

1 1
2 1.4142
3 1.7321
4 2

.84147
• 9093
.14112

-.7568

SINHX GAMMAX

1.1752 1
3.6269 1
10.018 2
27.29 6

84

INPUT ••• $
. 'INPUT. ·· ·.$

INPUT ••• $
INPUT •••

SCHEDULE ·2s. SAMPLES OF SUM AND PRODUCT FUNCTIONS.

X=MATRIXC2,3:1,2,3,4,5,6);PRINT X

X CA 2 BY 3 MATRIX)
1 2 3
4 5 6

INPUT... SUMCX);SUMSQCX);PRODCX)
SUMCX) a 21
SUMSQCX) = 91
PRODCX) = 720

INPUT... SUMROWSCX); PRODROWSCX)

SUMROWSCX) CA VECTOR WITH 2 COMPONENTS)
6 15

PRODROWSCX) CA VECTOR WITH 2 COMPONENTS)
6 120

INPUT ••• SUMCOLSCX); SUMSQCOLS(X)

SUMCOLSCX) CA VECTOR WITH 3 COMPONENTS)
5 7 9

SUMSQCOLS(X) CA VECTOR WITH 3 COMPONENTS)
17 29 45

INPUT... PROD(INTEGERS(l,10))
PROD(INTEGERSCl,10)) = 3628800

INPUT... SUMCINTEGERS(l,20))
SUM(INTEGERSCl,20)) = 210

85

INPUT ••• $
INPUT ••• $
INPUT ••• $
INPUT •••

SCHEDULE 29. USE OF BUILT-IN STRUCTURE FUNCTIONS.

X•MATRIX(2,3:-1,7,-2,4,l);PRINT(X)

X (A 2 BY 3 MATRIX)
-1 7 -2

4 1 0

INPUT... MIN(X);ROWMIN(X);COLMIN(X)
MIN(X) • -2
ROWM IN (X) • 1
COLMIN(X) • 3

INPUT... MAX(X)
MAX ex) • 7

INPUT... NOELS(X)
NOELS(X) • 6

INPUT... NOCOLS(X)
NOCOLS ex) • 3

86

INPUT ••• $
INPUT,, •.• $
INPUT ••• $
INPUT •••

SCHEDULE 30. EXAMPLES OF THE USE OF RANKING FUNCTIONS.

INPUT •••

X•ARRAYC:l,l~·l,-J,4,·3);Y=X••2;PRINTCX,Y)

X CA 6 COMPONENT ARRAY)
1 2 -1 -7 4 -3

Y CA 6 COMPONENT ARRAY)
1 4 1 49 16 9 .

RANKEDCX)

RANKEDCX) CA 6 COMPONENT ARRAY)
-7 -3 -1 1 2 4

INPUT ••• RANKERCX)

RANKERCX) CA 6 COMPONENT ARRAY)
4 6 3 1 2 5

INPUT ••• X C RANKERCX))

XCRANKERCX)) CA 6 COMPONENT ARRAY)
-7 -3 -1 1 2 4

INPUT ••• YCRANKERCX))

YCRANKER(X)) CA 6 COMPONENT ARRAY)
49 g 1 1 4 16

"'

INPUT ••• $
INPUT ••• $
INPUT ••• $
INPUT •••
INPUT •••

87

SCHEDULE 31. SAMPLE TRANSFAMILY OPERATIONS

X•ARRAYC:l,2,3)
X;VFAMCX)

X CA 3 COMPONENT ARRAY)
1 2 3

VFAMCX) CA VECTOR WITH 3 COMPONENTS)
1 2 3

INPUT... X••X

X••X CA 3 COMPONENT ARRAY)
1 4 27

INPUT ••• $
INPUT... AFAMCVFAMCX)••VFAM(X))

AFAMCVFAMCX)••VFAM(X)) CA 3 BY 3 ARRAY)
1 2 3
2 4 6
3 6 9

88

INPUT • .. • $ SCHEDULE 32. SAMPLES OF THE USE OF SPECIAL OPERATIONS t=OR
INPUT ••• $ FUNCT I ON.S OF ONE VAR.I ABLE.
INPUT ••• $
INPUT ••• Pl•2•ACOS(O);X•GRID(0,2•PI)
INPUT ••• NOROOTS(COS(X));ROOTS(COS(X):X)

NOROOTS(COS(X)) = 2

ROOTS(COS(X):X) CA 2 COMPONENT ARRAY)
1.5708 4.7124

I • •

INPUT ••• COSX=COS(X)
INPUT ••• DCOSX=OERIV(COSX:X)
INPUT ••• ICOSX=INTEGRAL(COSX:X)
INPUT ••• SIGNIFICANCEC4)
INPUT ••• $ SELECT EVERY 4TH ELEMENT
INPUT ••• l=INTEGERS(l,NOELS(X),4);X=X(l);COSX•COSX(I)
INPUT ••• DCOSX=DCOSX(I)
INPUT .•• ICOSX=ICOSXC I)
IN PUT ••• TANX=TAN(X)
IN PUT ••• SINX=SIN(X)
INPUT ••• TABULATE CX~GOSX,DCOSX,ICOSX,SINX,TANX,X)

x cosx ocosx ICOSX SINX TANX x
0 1 -6.197E-5 0 0 0 0
• 2513 • 968 6 -.2485 .2486 .2487 • 25 68 • 2513
.5 0 27 .8763 - • 4814 • 4816 .4818 .5 498 • 5 027
• 75 4 .729 - • 68 41 • 6843 .6845 • 93 91 • 75 4
1.005 .5 358 -.8438 .8441 .8443 1.576 1.005
1. 25 7 • 30 9 - • 95 04 • 95 07 .9511 3.078 1.257
1.508 .06279 -.9974 .9977 .998 15 .8 9 1.508
1.759 -.1874 - • 9816 • 98 2 • 98 23 -5.242 1.759
2.011 -.4258 -.9042 .9045 • 9048 -2 .125 2.011
2.262 -.6374 -.77 .7703 • 7705 -1.209 2.262
2 .513 -.809 -.5874 . 5 87 6 .5878 -.7265 2.513
2. 7 65 - • 92 98 - • 3 67 9 • 3 68 • 3681 - • 3 95 9 2.765
3.016 -.9921 -.1253 .125 3 .1253 -.1263 3. 016·
3.267 -.9921 .125 3 - .125 3 - .125 3 .1263 3.267
3 .519 -.9298 • 3 67 9 - • 3 68 - • 3 681 • 3 95 9 3.519
3.77 -.809 .5874 -.5876 -.5878 .7265 3.77
4.021 -.6374 .77 -.7703 -.7705 1.209 4.021
4.273 -.4258 .9042 -.9045 -.9048 2.125 4.273
4.524 -.1874 .9816 -.982 -.9823 5.242 4 .5 24
4.775 .06279 • 997 4 - • 997 7 -.998 -15 .89 4.775
5.027 .309 • 9504 - • 95 07 - • 9511 -3.078 5.027
5.278 • 5 35 8 .8 438 -.8441 -.8443 -1.576 5.278
5.529 .729 .6841 -.6843 -.6845 - • 93 91 5.529
5.781 • 8 7 63 .4814 -.4816 -.4818 - • 5 4 98 5.781
6.032 • 9 68 6 .2485 -.2486 -.2487 - • 25 68 6 .03 2
6.283 1 6.197E-5 -l.16E-14 -1.157E-14 -l .157E-14 6.283

89

NPUT ••• $
NPUT ••• $ SCHEDULE 33. SAMPLE OF A FUNCTION OF 2 VARIABLES.
NPUT ••• $
NPUT ••• X•GRID(-1,1,.25); Y•GRID(0,2, .20)
NPUT ••• $
NPUT ••• $ FIRST CONSTRUCT A PA IR OF TWO DIMENSIONAL ARRAYS CONTA·IN ING
NPUT ••• $ THE DESIRED VALUES OF X AND Y IN THEIR ROWS AND COLUMNS,
NPUT ••• $ RESPECTIVELY.
NPUT ••• $
NPUT ••• NX•NOELS(X);NY•NOELS(Y);Y•Y+ARRAY(NY,NX:) ;X•ARRAY(NY ,:NX:)+X
NPUT ••• $ NOTE THE ORDER OF THE ADDITIONS. THE RESULTS ARE:
NPUT ••• PRINT(X,Y)

x (A 11 BY 9 ARRAY)
-1 -.75 -.5 - • 25 0 • 25 .5 .75 1
-1 -.75 -.5 - • 25 0 • 25 .5 .75 1
-1 -.75 -.5 -.25 0 .25 .5 .75 1
-1 -.75 -.5 - • 25 0 • 25 .5 .75 1
-1 -.75 -.5 - • 25 0 • 25 .5 .75 1
-1 -.75 -.5 - • 25 0 • 25 .5 .75 1
-1 -.75 -.5 -.25 0 • 25 .5 .75 1
-1 -.75 -.5 -.25 0 • 25 .5 .75 1
-1 -.75 -.5 -.25 0 • 25 .5 .75 1
-1 -.75 -.5 -.25 0 • 25 .5 .75 1
-1 -.75 -.5 -.25 0 • 25 .5 .75 1

y (A 11 BY 9 ARRAY)
0 0 0 0 0 0 0 0 0
• 2 .2 • 2 • 2 .2 • 2 .2 .2 • 2
.4 .4 .4 .4 • 4 .4 .4 .4 .4
.6 • 6 .6 • 6 .6 .6 .6 .6 .6
.8 .8 .8 .8 .8 .8 .8 .8 .8
1 1 1 1 1 1 1 1 1
1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4
1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6
1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8
2 2 2 2 2 2 2 2 2

INPUT ••• $ NOW ANY FUNCTION OF X ANDY CAN EASILY BE CONSTRUCTED:
INPUT ••• FUNXY•X••2 + 3•Y•SIN(X+3/2); PRINT(FUNXY)

FUNXY (A 11 BY 9 ARRAY)
1 .5 625 • 25 .0625 0 .0625 • 25 .5625 1
1.288 • 9715 • 7549 .6319 .5 985 • 65 29 • 7956 1.029 1.359
1.575 1.38 1.26 1.201 1.197 1.243 1.341 1.496 1.718
1.863 1.789 1. 765 1.771 1. 795 1.834 1.887 1.963 .2.077
2.151 2.198 2.27 2.34 2 .394 2.424 2.432 2.43 2 .436
2.439 2.607 2.774 2.909 2.992 3.014 2.978 2 .8 97 2 .795
2.726 3.016 3.279 3.479 3 .5 91 3.605 3.523 3 .364 3.154
3.014 3. 425 3.784 4.048 4 .18 9 4 .195 4.069 3.83 3.514
3.301 3.834 4.289 4.618 4.788 4. 786 4.615 4.297 3.873
3.589 4.243 4. 7 94 5.187 5. 386 5.376 5.16 4.764 4 .232
3.877 4. 65 2 5.299 5. 75 6 5. 985 5.966 5.706 5.231 4 .s 91

INPUT ••• $
INPUT •• ~$
INPUT ••• $
INPUT ••• $
INPUT ••• $
INPUT •••

90

SCHEDULE 34 A SAMPLE OF A CRUOE CONTOUR PLOT

A SIMPLE CONTOUR PLOT OF THE FUNCTION DEFINED IN THE'
PREVIOUS SCHEDULE CAN BE PRODUCED THUS:
STEPal; INTPARTCCFUNXY-MIN(FUNXY))/STEP)

INTPARTCCFUNXY-MINCFUNXY))/STEP) CA 11 BY 9 ARRAY)
1 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 1 1
1 1 1 1 1 1 1 1 1 -/
1 1 1 1 1 1 1 1 2
2 2 2 2 2 2 2 2 2
2 2 2 2 2 3 2 2 2
2 3 3 3 3 3 3 3 3
3 3 3 4 4 4 4 3 3
3 3 4 4 4 4 4 4 3
3 4 4 5 5 5 5 4 4
3 4 5 5 5 5 5 5 4

91

*
*
*
*
*
*

DATA SHOWOFF
1 , 2 3 4 5

6 7 , 8 ,9,10
11 12

END
*
INPUT ••• $
INPUT ••• $
INPUT ••• $
INPUT ••• $
INPUT .••
INPUT •••
INPUT •••

IN THE FIRST EXAMPLE WE USE AN OBJECT SMALLER THAN THE DATA FIL~.

A=ARRAY (7)
LOADDATACA,SHOWOFF)
PRINT(A)

A CA 7 COMPONENT ARRAY)
1 2 3 4 5 6 7

INPUT .•. $
INPUT ••• $
INPUT .•• $
IN PUT •••
INPUT .••
INPUT •••

INPUT ••• $
INPUT .•• $
INPUT ••• $
INPUT ••.
INPUT .•.
INPUT •••

INPUT ••• $
INPUT ••• $
IN PUT ••• $
INPUT ••• $

IN THIS EXAMPLE THE OBJECT HAS THE SAME SIZE AS THE DATA FILE.

A •MAT R I X (3 , 4)
LOADDATACA,SHOWOFF)
PRINT(A)

A (A 3 BY 4 MATRIX)
1 2 3 4
5 6 7 8
9 10 11 12

IN THE LAST EXAMPLE WE USE AN OBJECT LARGER THAN THE DATA FILE.

A=ARRAY (20)
LOADDATACA,SHOWOFF)
PRINT(A)

A (A 20 COMPONENT ARRAY)
1 2 3 4 5 6 7 8 9 10 11 12 0 0 0 0 0 0 0 0

SCHEDULE 35. SAMPLE OF THE CONSTRUCTION AND USE OF A DATA FILE

NPUT ••• $
NPUT ••• $
NPUT ••• $
NPUT ••• $
NPUT •••
NPUT •••
NPUT ••• $
NPUT ••• $
NPUT ••• $
NPUT •••
NPUT •••
NPUT •••
NPUT •••

l,NPUT •••

0
\/') .
'O

0
0 .
0

.
0
I

0
0 .

92

SCHEDULE 36. A SAMPLE OF THE USE OF THE G~APHICAL FEATURES
OF THE LANGUAGE.

X•GRIOC0,10) ; Y=SIN(X)
OaOERIVCY:X)
THE DESIGN FEATURES ARE SETUP HERE.

HSIZE•S ; VSCALE=C-1,1)
GRAPH(Y:X)
SETPLOT(POINTS)
ADDGRAPH(D :X)
ENDDRAW(O)

. ,

+
+
+

+
+
+
+
+
+
+
+
+
+
+
+

+
+

+
+

+
+

+
+

+
+

+

HSCALE•(MIN(X),MAX(X)) ; VSIZE~4

+
+
+
+
+

••/"

+
+
+

+
+
+

-~~~~~...._~~ie:--~~~<--~--+~~~-~-+~·~---~~
10. oo 2. oo ~. oo s. oo a. oo 10. oo ·

x

93

* • • • • • • • • • • • * * • • •
• PROGRAM SAMPLEl
* $
* $ THIS PROGRAM ILLUSTRATES THE FORM OF A PROGRAM
* $
* PRINTC'EXECUTION OF SAMPLEl FOR 1 ,N)
• FOR 1•2,N
* X•VFAM(INTEGERS(l,l));Z•X••X;S•SUMROWS(Z)
* IF (l.GT.2) GO TO A
* PRINTCX,Z,S)
* GO TO B
* A:TABULATE(X,S)
* · B: ENOLOOP I
* END
* • * * * * • • • • • • • * .
INPUT ••• $
INPUT... N•3
INPUT ••• $
INPUT ••. $ THIS SETS THE VALUE OF N. IT IS GLOBAL AND THEREFORE
INPUT ••• $ AVAILABLE TO THE PROGRAM
INPUT ••. $
INPUT... EXECUTE SAMPLE!

EXECUTION OF SAMPLE! FOR N • 3

INPUT ••• $
INPUT ••• $

x
1

z
1
2

s
3

x

1
2
3

(A VECTOR WITH 2 COMPONENTS)
2

CA 2 BY 2 MATRIX)
2
4

CA VECTOR WITH 2 COMPONENTS)
6

s

6
12
18

SCHEDULE 37. A SAMPLE PROGRAM AND ITS EXECUTION

94

* * * * * * , * ~ ~ ~ ~ *
* PROGRAM MISTAKES
* $
* $ THIS PROGRAM DEMONSTRATES SYNTAX ERROR MESSAGES DURING COMPLILATION.
* $
*
*
*
*

X•Y**/ Z
VaA* 0+4

X•S
END

,

;XzY=Z ;X•2.35.7
; ; A•-•B ; X• 11 Y~~ 11

T•7 '•

*
IN STAT. II X=Y**/ z II DOUBLE OP.
IN STAT. II X:sY•Z II DOUBLE EQUAL SIGN.
IN STAT. 11 X=2.35.7 11 MISPLACE DEC. PT.
IN STAT. 11 V=A• (3 +4 11 PARENTHESIS IMBALANCE.
IN STAT. II A=-•B II DOUBLE OP.
IN STAT. 11 X= 11 YES 11 11 ILLEGAL CHAR.
IN STAT. 11 X=S , T•7 11 DOUBLE EQUAL SIGN.

-ERRORS--ERRORS--ERRORS--ERRORS--ERRORS--ERRORS--ERRORS--ERRORS--ERRORS--ERRORS
INPUT ••• $
INPUT ••• $
INPUT .•• $

SCHEDULE 38. ERRORS DETECTED DURING COMPILATION.
INHIBIT EXECUTION

THESE DO NOT

95

INPUT ••• $
INPUT ••• $ SCHEDULE 39. EXECUTION ERROR MESSAGES (MANUAL MOO£)
INPUT ••• S
INPUT... X•WW•lO

WW IS NOT DEFINED IN STAT. "X•WW•lO "
INPUT... X•4•3+2•(1+

IN STAT. " Xc4•3+2•Cl+ " PARENTHESIS IMBALANCE.
INPUT... X•4•3(7+6)

IN STAT. "X•4•3(7+6) " IMPLIED MULT. ?
INPUT... X•MATRIXC3,3)
INPUT... Y•X(4,2)

X IN STAT. " Y•X(4,2) " INDEX OUTSIDE BOUNDS.
INPUT... X•ARRAYC3:);Y•ARRAY(4:);X+Y

IN STAT. "X+Y " X ANDY ARE INCOMPATIBLE FOR OPERATION

X CA 3 COMPONENT ARRAY)
0 0 0

Y CA 4 COMPONENT ARRAY)
0 0 0 0

INPUT... OOMAIN(REAL); X•SQRT(-2)
IN STAT. " X•SQRT(-2) " ENTERED COMPLEX DOMAIN.

PART TWO

SPEAKEASY-3: The SPEAKEASY System

by

S. Cohen

Preceding page blank

97

98

I. INT ROD UC TION

The capabilities of the current (1972) production versions of

SPEAKEASY are greatly enhanced over those available at the time Part One

was written (1968). From the viewpoint of the use rs, the growth has been

in the direction of increases in the available facilities and an enlarged

vocabulary. Actually there have been several major revisions in the struc­

ture of the processor during this period, but none of these have been directly

apparent to the user community.

This report is intended to formally describe some of the

features now available. In part this means describing the new words in the

language. A section of this Part therefore deals with increases in the vocab­

ulary. As will be seen, many of the features of the language now reflect the

coordination of broad- based library facilities with the processor. The evo­

lution of SPEAKEASY into a library-directed processor has had profound

impact on its growth. Part of this report therefore deals with the library

facilities now available and discusses their importance.

No new computational capability is apparent in the increased

vocabulary described here; such improvements are now added to the so-called

LINKULE libraries. These libraries of compiled FORTRAN subroutines are

the means by which all new computational features and most other features

are added to the processors. The LINKULES are discussed only briefly here.

Part Three deals specifically with their capabilities.

Other libraries of the system, such as the documentation

libraries and the libraries of stored SPEAKEASY decks, are dealt with in

general. Specific information about the contents of these libraries can be

obtained by use of the features that are available in the language and are

described in this Part.

"· . '.

99

A change in the specifications of the SPEAKEASY

language is being introduced in Sec. IV. This modification of

the notation for logical and relational operators eliminates some

previously restricted words and therefore will benefit all users.

During a long transition period in which either notation can be used.

existing programs can be converted to the new specifications. This

conversion is not likely to be difficult, however. since the change is

being introduced to eliminate conflicts that only a few users have

encountered.

The use of SPEAKEASY in interactive sessions is growing

in popularity now that TSO (the Time Sharing Option) is available to

tnany institutions. Section V therefore explains the use of the facilities

of this language that are particularly adapted to this operation and also

describes the EDIT mode of operation.

The various processors currently available at Argonne

are described. The choice of the default parameters for each

processor is detailed. This serves both as a guide to the users of the

particular processors and as an indication of the possible choice for

other installations.

II. NEW OPERATIONAL FEATURES

This chapter describes some of the more important

words and concepts that have been added to SPEAKEASY since its

original documentation. In writing SPEAKEASY documentation, the

general approach has always been to describe the particular operation

clearly and concisely. The operation is then illustrated by using the

actual processor to display the effect. It is felt that this form of

documentation lends itself to development of the language and provides

users with some direct contact with the applications of the language.

100

As with all documentations, it is difncult to describe

an operation concisely and at the same time indicate in detail the

applications to which that operation is particularly suited. This

report makes no attempt to do the latter; a separate report

illustrating applications of the language and some of the tricks that

have been developed is planned.

Each of the sections that follow is headed by a major

keyword now available in SPEAKEASY. The operation of that word

is described, and the section concludes with a sample of the use of

the facility in an illustrative run with one of the currently available

processors. In most cases the normal batch version is used because

the format clearly labels the input.

Many of the words described in this section are members

of the LINKULE library of the system. Some are at present built into

the basic processor. Most words now are gradually being shifted

from the processor to the libraries. Users of SPEAKEASY should

be unaware of such changes except when specific inquiries are made
. '

about the contents of the libraries.

A. SIZE

SPEAKEASY has a built-in dynamic-storage allocator

that carefully manages the space available for information defined

during execution. The SPEAKEASY processors themselves are

designed so that parts are dynamically brought into the computer as

dictated by demands of the particular application program.

Unfortunately, it is not yet possible to automatically divide the space

available in the computer between these two uses. While default sizes

for each of the above are normally supplied, it is desirable that the

space allocated to each be based on the actual need.

101

The first card in the SPEAKEASY deck can be used to

inform the processor of the amount of data space needed in the run.

The rest of the allocated space for the job is then available for other

uses. This first card will be inte;rpreted as a size-selecting card if

it carries any of the following words: SIZE, MAIN, LCS, or AUTOCORE.

If none of these occur, the default size selection for that particular

processor is assumed and the first card is interpreted as a normal

SPEAKEASY statement.

should read

or

If the size of data storage is being specified, the card

SIZE= n

SIZE = n, MAIN

SIZE= n, LCS

AUTOCORE

Here n is the numb er of kilobytes of storage to be set aside for

SPEAKEASY data (1 kilobyte is approximately 120 user-defined

numbers). For most applications the card will read

SIZE = n

For machines with LCS (large-core storage) the data

area may be placed in LCS by including the word LCS in the size

selection card. Alternatively, in such machines the selection of

LCS space can be automatically determined by the space allocation

on the job card by use of the word AUTOCORE. This word means

that the largest amount of LCS that is available is to be used for this

job. The word MAIN is a default if SIZE is specified and has been

included here only for completeness of notation.

Initially users will not know how large a data area to

assign to a specific job. The default values should be used in such

cases (i. e,, the user should omit the size-selection card entirely).

102

At the completion of each job, the last line of ou.:put gives three

pieces of information: the current amount of space being used

(labeled NOW). the peak amount needed (labeled PEAK). and the

amount of space allocated (labeled ALLOCATED). These numbers are

the approximate numbers of kilobyte involved. The next run of this

same job should be given a SIZE specification some 10% larger than

the indicated peak value. (The extra space provides for some increase

in efficiency of operation.)

Part of some actual SPEAKEASY runs are shown below.

These indicate the use of SIZE and shows the form of the final line

of output.

SPEAKEASY 3D BETA 7:55 PM 7/20/72
INPUT ••• SIZE=lO
INPUT ••• MARGINSCl,80)
INPUT ••• X=MATRIX(S,5:1NTEGERS(l,25))
INPUT ••. Y=X•X
INPUT .•• PRINT Y

Y CA 5 BY 5 MATRIX)
215 230 245 260 275
490 530 570 610 650
765 83 0 895 960 1025
1040 1130 1220 1310 1400
1315 1430 15 45 1660 1775

*
CORE USED 1 K NOW, 1 K PEAK, ALLOCATE[\

*
SPEAKEASY 30 BETA 8:00 PM 7/20/72

INPUT •.• SIZE=lS
INPUT ••• MARGINS(l,80)
INPUT .•• X=GRIDC0,10)
INPUT .•• Y=SIN(X)•COS(X)+X•EXP(-X)+2•X•X
INPUT .•• AVERAGE(Y)
AVERAGE(Y) = 67.116

* * * * * * *
10 K
* * * * * * *

* * *

* * *

* • * * * * * * * • *
CORE USED 2 K NOW, 5 K PEAK, ALLOCATEO 16 K

* * * * * • • • • • • • • *

103

B. VOCABULARY

The single word VOCABULARY asks the processor

to list the currently defined words in its vocabulary. Most of the

words are described in Part One or are added synonyms for these

words. Others are described in this Part. The rest have not been

documented except internally in the system. A brief description of

any of these words can be obtained by use of the special word HELP

(de scribed in the next subsection).

Changes in response to the word VOCABULARY can

be expected. Eventually it is planned that the combination ?f this

word and the word HELP will be the means by which users are

led to all of the available information in the system. One form

of the response given on the next page is typical of current

processors.

104

:_vocabulary

ABS COSH FOR LENGTH MYPROCS RANKER SUMCO LS
ACCURACY COT FRAC LIB INDEX NAMES RATIONAL SUMP ROD
ACOS CREATE FRACPART LIBNAMES NE READ SUM ROWS
ACOT CREATEME FRE E LI BRAR IE NEUMANN REAL SUMS
ADDGRAPH CUM PROD GAMMA LIRRARYN NEWGRAPH REALPART SUMSQ
ADJOINT GUMS UM GE LINKLIB NEWPAGE REALIJ SUMSQCOL
AFAM DATA GE I GEN LINKULES NEWS REALS SUM SQ ROW
AMAT DEBUGGIN GO LIST NOCOLS RE CLASS SYMBOLS
AND DEC GOTO LISTHEAD NO ECHO RESTRICT SYMMAT
ANGLES DEFINEAl GRAPH LISTMEMB NOELS RESUME TABULATE
ARRAY DEFINEA2 GRA f1H ICS LISTPROG NO RATION RETURN TAN
ARRAYS! DELETE GR I '1 LOADDATA NO ROOTS ROOTS TIME
ARRAYS2 DERIV GT LOC NO ROWS ROWARRAY TOTALI NT
ARRAY2D DERIVATI HEL !-> LOCMAX NOT ROWMAT TOTI NT
ASIN DET HENCEFOR LOCMIN NOZEROS ROWMAX TRACE
ASYMMAT DIAGELS HI ERARCH LOCS NUMBERS ROWMIN TRANS FAM
ATAN DIAGMAT HIGHWIDE LOG OBJECT RUN TRAN SP
AUTOCORE DMAT HIWIDE LOGGAMMA OBJECTS SELECT TRANSPOS
AUTOPRIN DOCUMENT HLABEL LOGIC OMITCLAS SETGAUSS TRIG
AUTOTAB DOMAIN HS CALE LOWERTRI ONEOIMFU SETI NF IN TUTORIAL
AVERAGE DONTLIST HSIZE LT ONERROR SET JACOB TWODIMFU
AlD DOUBLEFA IF MARGINS OR SETLAGUE UMAT
A2D . DUMP IMAG MAT ORDERED SETLEGEN UNITMAT
BESSEL ECHO I MAG PART MATH ORDERER SETLI B UPPERTRI
BESSELK EDIT INOUT MATRICES OTHERS SETNULL USE
BUGS EDITMODE INPUT MATRIX OUTPUT SETPLOT USEMEMBE
CGAMMA EIGENSY::> INPUTS MATRIXDE PAUSE SIGN VARIABLE
CLEAR EIGENVA L INSERT MATRI XOP PLOTSYMB SIGNIFIC VEC
CLEARDAT EIGENVEC INTEG MAX PLOTT I TL SltJEQ VECTOR
COLARRAY ELEMENT A INTEGERS MAXOFCOL PRINT SIN VECTORDE
COLMAT ELLIPE INTEGRAL MAXOFROW PRINTCLA SINGLEVA VECTORS
COLMAX ELLI PK INTEGRAT MELD PROC LIB SINH VERSIONS
COLMIN END INTERP MFAtvi PROO SI Zf:. VFAM
COLWIDTH ENDAUTOP INTERPOL MIN PROD COLS SMAT VLABEL
COMMANDS END LOOP INTPART MINOFCOL PROD ROWS SORT VOCABULA
COMP I LE EONE INTS ~1 1 NOFROW PRODUCTS SPACE VSCALE
CONJ EQ 1Nl2 MISCELLA PROGRAM SPECIAL VSIZE
CONJUGAT ERF INT4 MOVE PROGRAMM SPHBES WHERE
CONSTRAI ERFC INVERSE MY DOCS PROGRAMS S PHBESN WHEREVER
CONTINUE ERRORS KEEP MYHF.LP PUNC '. I SQRT WHOLE
CONVERT EXECUTE KEPT MY KEEP QUIT STOP WRITE
COPY EXP LABEL MY KEPT RANDOM STRUCTUR ZEROS
cos FIN LE MYL INKS RANKED SUM

105

C. HELP

The vocabulary of SPEAKEASY is constantly being

augmented. While documentation such as this report can be used

to communicate new features, it is highly desirable to provide a

less formal and more rapidly altered means of describing specific

words in the language. In interactive usage, it is also extremely

important that both the vocabulary and the documentation for each

word be easily accessible.

The basic vocabulary of the processor is printed out by

the command VOCABULARY described previously. Each word in this

vocabulary and other words in the language are described in a concise

operational form and are available on demand by use of the key word

HELP. The input statement

HELP xxxx

requests that the processor print out a brief description of the word

xxxx. The documents available in this manner are not restricted to

those listed in the vocabulary but are actually a separate document

library that is appended to the various processors (see Part Four).

By using a standard sequence of SPEAKEASY statements, one ca~

ol:tain a catalog of this library. That is, the names of the docu­

ments available by use of the word HELP will be printed in response

to the input

CATALOG= LIBINDEX (HELP)

TABULATE(CATALOG)

The entire set of documents may be printed out by use

of tbe following SPEAKEASY program:

PROGRAM LISTHELP

CATALOG = LIBINDEX (HELP)

FOR I = 1, NOELS (CAT~LOG)

SPACE(2}

106

HELP OBJECT (CATALOG(I))

ENDLOOP I

END

EXECUTE LISTHELP

Although all HELP documents could be printed in this way

this would be a time consuming and expensive means of obtaining such a

listing. Part Four of this report contains a complete printout of the docu­

ments available at this time.

Information necessary to make use of the HELP processor

itself is available by the statement

HELP.

A few of the actual HELP documents are shown below.

: _he 1 p ma t r I x
MATRIXCN,M:) defines an N-by-M matrix.

If no additional arguments are present, the matrix has all
elements set to zero.

A shortened form Is MAT.
MATRIXCN,M:l,J, ••• ,K) defines an N-by-M matrix with preset elements.

The elements are set row by row by use of the values l,J, ••• ,K or
the elements of l,J, ••• ,K if they are structured objects. If
a complex element is encountered, then a complex matrix is
defined. If all the elements are not specified by the element
1 ist, the unspecified elements are set to zero.

:_he 1 p smat
SMAT Is a synonym for SYMMAT.
SMATCN: l,J, ••• ,K) defines a symmetric N-by-N matrix.

The element l lst ts used to fll l the lower trianeular part
(including the elements along the diagonal) by ro\'..rs.
The portion above the diagonal ts then filled by
making the matrix sy11111etric. If any argument in the 1 ist
defining the elements is structured, the elements of that
structured object are used.

:_help average
AVERAGE(X) returns the average value of the elements of X.

X is a structured object.

107

D. NAMES

The single word NAMES requests the processor to

print out the names of all of the currently defined SPEAKEASY

objects. This is extremely useful in the interactive mode since it

provides the user with the means of recollecting the names of

variables that he bas previously defined. Combined with the implied

print statement, the user can quickly examine any currently defined

object.

A section of programming in which objects are defined

and freed is shown below. Between each such command the process o r

was requested to display the defined names.

INPUT ••• Z=S; X=GRID(0,10,2)
INPUT .•• W•30.4
INPUT ••• Y•Z•\'I
INPUT •.• NAMES

CURRENTLY DEFINED NAMES
y , z , x , w

INPUT ••• WORDS•LIBINnEXCHELP)
INPUT .•• N=NOELS(WORDS)
* • * * • * • * PROCEDURE LISTHELP
* TABULATE WORDS
* FOR l•l,N
*USE MEMBER OBJECT(WORDS(I)) OF LIBRARY HELP TO l
* ENDLOOP I
* END
* * • * * * * * * * * * * * * * * * • * * * * * * • * * * * * * * * *
INPUT ••• NAMES

CURRENTLY DEFINED NAMES
y , z , x I w , WORDS , N I LISTHELP CA PROCEDURE)

INPUT •.• FREE LISTHELP
INPUT .•• MAM ES

CURRENTLY DEFINED NAMES
Y , Z , X , W , WORDS , N

INPUT ••• FREE WORDS, N
INPUT ••• NAMES

CURRENTLY DEFINED NAMES
y I z I x I w

INPUT ••• CLEAR
INPUT ••• NAMES

CURRENTLY DEFINED NA~ES

108

E. HENCEFORTH

Although every effort has been made to choose the

names of SPEAKEASY functions with care, it is often desirable to

provide alternatives. Previously this was done by adding synonyms

(for example MAT is equivalent to MATRIX, VEC is equivalent to

VECTOR, etc.). A more flexible facility has now been provided to

enable users to define their own synonyms at execution time. The

statement

means that:

The statement

HENCEFORTH X IS y

Anytime hereafter, if the word X is encountered treat

that word as if it were the word Y (the word Y is still

usable).

HENCEFORTH X IS x
stops the redefinition of X for future use.

There are only a very few words in SPEAKEASY that

may not be given synonyms by this method. They are the words

EXECUTE, PROGRAM, PROCEDURE, DATA,

END, FOR, ENDLOOP, QUIT, LOADDATA,

GOTO

Note that HENCEFORTH itself can be given a synonym by this

method. In addition, the word IS in the expression is an arbitrary .

word chosen to make an easily remembered sentence, any word

can be used. For example, the sequence

HENCEFORTH TREAT IS HENCEFORTH

TREAT S AS SIN

TREAT C AS COS

TREAT LET AS HENCEFORTH

LET M BE MATRIX

109

is acceptable. The statement

HENCEFORTH X IS 'SIN(X)'

is usable with the restriction that the literal quantity can have at

most eight letters. Any of the normal SPEAKEASY character set except

an apostrophe is allowed. This makes it possible to obtain output that

is particularly neat.

HENCEFORTH is a convenient way of compacting a

user's program by eliminating repetitious typing of long words. It

is particularly important when combined with the operation OBJECT

described later in this document.

The use of HENCEFORTH is illustrated below.

INPUT .•• HENCEFORTH M IS MATRIX
INPUT ••• Y•M(2,2:1,5,8 4)
INPUT ••• PRINT Y

Y CA 2 BY 2 MATRIX)
1 5
8 4

INPUT .•• HENCEFORTH TREAT IS HENCEFORTH
INPUT ••• TREAT PAS PRINT
INPUT ... TREAT LET AS TREAT
INPUT ..• LET V BE VECTOR.
INPUT •.• W•V(4:1,2,3,4)
INPUT ••• P ~J

W CA VECTOR WITH 4 COMPONENTS)
1 2 3 4

110

F. OBJECT

It is often desirable to be able to generate the

names of objects. This is particularly true when defining large

numbers of objects, each of which is dependent on particular

parameters of a calculation. A general operation for generating

names has made available.

It should be remembered that names in SPEAKEASY

can have at mo st 8 characters. This restriction holds for names that

are generated by the mechanism described here. Other restrictions

such as the use of special characters do not exist since the names

are generated internally in the processor.

The expression

OBJECT(I J K · · ·) , , ,

may occur anywhere in a SPEAKEASY statement. It means that the

arguments I, J, K, etc. are to be used to generate a name that is to be

substituted for this expression.

Each of the arguments can be either a literal quantity

or a non-negative number. For literals, the expression itself is

used. For numbers, the integer part of the number is used as a literal.

The various arguments are then joined together to make up the name.

Thus

OBJECT ('A', 3, 'B') becomes A3B

OBJECT ('A', 3, 'X', 4) is A3X4

IfX ='XX' ; Y = 'Y'; I= 4then

OBJECT (X, I, 3 Y) becomes XX43Y

The use of literal quantities in expressions means that strange looking

names can be generated. Thus if X ::: 1 >:<4' then

OBJECT (X, X):. becomes *4>:<4

The power provided by the use of the word OBJECT is greatly

111

enhanced when combined with the word HENCEFORTH. The

expression

HENCEFORTH x rs OBJECT ('X', I}

means that the variables X 1, X2, X3, etc. are specified when the

current value of the variable I is 1, 2, 3, etc. The following series

of statements illustrates one of the uses of the feature to obtain a

rather elegant printout which would not otherwise be possible.

INPUT •.• Pl•2 ACOS(O);X=GRID(0,2 Pl,Pl/40)
INPUT ••• N•3;HENCEFORTH Y IS OBJECTC'SINC',N,'X) 1)

INPUT ••• Y=SINCN X)
INPUT ••• TABULATECX,Y)

x SINC3X) x SINC3X) x SINC3X)

0 0 2.1206 .078459 4.2412 .15643
.07854 .23345 2.1991 .30902 4.3197 .38268
.15708 .45399 2.2777 • 5 225 4.3982 .58779
.23562 .64945 2.3562 .70711 4.4768 .76041
.31416 .80902 2.4347 .85264 4.5553 .89101
.3927 • 9 23 8 8 2.5133 .95106 4.6338 .97237
.47124 .98769 2.5918 .99692 4.7124 1
.54978 .99692 2.6704 .98769 4.7909 .97237
.62832 .95106 2.7489 .92388 4.8695 .89101
.70686 .85264 2.8274 .80902 4.948 .76041
.7854 .70711 2.906 .64945 5.0265 .58779
.86394 .5225 2.9845 • 45 3 9 9 5.1051 .38268
.94248 .30902 3.0631 • 23 3 45 5.1836 .15643
1. 021 .078459 3.1416 0 5.2622 -.078459
1. 0996 -.15643 3.2201 -.23345 5.3407 -.30902
1.1781 -.38268 3.2987 -.45399 5.4192 -.5225
1. 2 5 66 -.58779 3.3772 -.64945 5.4978 -.70711
1.3352 -.76041 3.4558 -.80902 5.5763 -.85264
1. 413 7 -.89101 3. 5 3 43 -.92388 5.6549 -.95106 .
1. 4923 -.97237 3.6128 -.98769 5.7331t -.99692
1. 5 7 08 -1 3.6914 -.99692 5.8119 -.98769
1.61t93 -.97237 3.7699 -.95106 5.8905 -.92388
1.7279 -.89101 3.8485 -.85264 5.969 -.80902
1.8064 -.76041 3.927 -.70711 6.0476 -.64945
1.885 -.58779 4.0055 -.5225 6.1261 -.45399
1.9635 -.38268 4. 08 41 -.30902 6.2046 -.23345
2. 042 -.15643 4.1626 -.078459 6.2832 0

G. MELD

as:

112

Some SPEAKEASY programs include a sequence such

FOR I = 1, NOELS(X)

FOR J = 1, NOELS(Y)

F(I, J) = some function of X(I) and Y(J)

ENDLOOP J

ENDLOOP I

Such looping, though logically correct, defeats many of the optimizing

features of the language. Users have been warned of the consequence

of doing element by element operations that do not make use of the

. built-in algebra for structured objects. For a pair of nested loops as

illustrated, the array algebra of the language is usually sufficient to

enable one to . eliminate the loops easily.

The problem of multidimensional arrays with more than

two independent variables is not easily dealt with. For this purpose,

a new concept and a new word has been added to the SPEAKEASY

language. Both the word and the concept are due to Richard Kimmel.

The word MELD provides a major advance in the capabilities of the

language.

Although MELD is a straightforward operator, it differs

from others that have previously been met in SPEAKEASY since it

redefines the arguments occurring in the statement. Thus

MELD(!, J, K)

in fact alters the structure of I, J, and K.

The arguments in the MELD must be 1-dimensional

objects. In essence, the Ml!.:LlJ operation is a simple and direct

means of providing a revised set of objects in which every element

of each of the objects in the argument list is associated with every

element of every other object in that list. In fact, as will be seen,

113

this is a simple way of describing a multidimensional space. A few

examples are sufficient to show how the operator acts. (It is much

easier to show the operation than to describe it in words.) If I is

a 2-component ! -dimensional array and J is a 3-component array,

e.g., if

I=(~). J =(0 .
then MELD (I, J) alters both I and J and produces two 6-component

arrays
1 0
1 5

I
1

J
7 = = 2 0

2 5
2 7

Similarly if I, J, and K are

I = (~) • J = G) .
then MELD (I, J, K) redefines them all to be the 12-component arrays

0 1 8
0 1 9
0 2 8
0 2 9
0 4 8

I
0

J =
4

K 9
= = 1 1 8

1 1 9
1 2 8
1 2 9
1 4 8
1 4 9

Note that after melding, as in the last example, any function of 1,

J, and K can be written in a straightforward manner. Thus

114

F = 3*I t 2 * (I + J), - K * I * SIN (PI >:~ K)

·,

is allowed, The function is then effectively evaluated in the 3-dimensional

space spanned by the three original arrays. A table of the values of

I, J, K, and the resultant could be obtained by

TABULATE (I, J, K, F)

Up to ten arguments are permitted in a single MELD call. Care should

be taken not to produce unreasonably large arrays by this method.

For example, if ten arrays of only 3 components each are melded,
10

then each of the resultant arrays would have 3 elements. This

would, in fact, far exceed the capacity of any available SPEAKEASY

processor.

Melding combined with the use of structured indices

leads to other capabilities that are often needed. If one melds the

indices of an array rather than its elements, then it is possible to

carry out later operations on this and correlated arrays.

115

The use of the MELD operation is shown below. The

evaluation of the function W as a function of the three independent variables

I, J and K is carried out by means of melding.

INPUT .•• l•ARRAYC5:1 2 3 4,5);J•ARRAYC3:7,8,9);K•ARRAY(2:0,6)
INPUT .•• TABULATECl,J,K)

I J K
1 7 0
2 8 6
3 9
4
5

INPUT ••• MELDCl,J,K)
INPUT ••• TABULATECl,J,K)

I J K I J K
1 7 0 3 8 6
1 7 6 3 9 0
1 8 0 3 9 6
1 8 6 4 7 0
1 9 0 4 7 6
1 9 6 4 8 0
2 7 0 4 8 6
2 7 6 4 9 0
2 8 0 4 9 6
2 8 6 5 7 0
2 9 0 5 7 6
2 9 6 5 8 0
3 7 0 5 8 6
3 7 6 5 9 0
3 8 0 5 9 6

INPUT .•• W=3•1+4/J-K
INPUT ••• TABULATECl,J,K,W)

I J K W I J
1 7 0 3.5714 3 8
1 7 6 -2.4286 3 9
1 8 0 3.5 3 9
1 8 6 -2.5 4 7
1 9 0 3.4444 4 7
1 9 6 -2.5556 4 8
2 7 0 6.5714 4 8
2 7 6 .57143 4 9
2 8 0 6.5 4 9
2 8 6 .5 5 7
2 9 0 6.4444 5 7
2 9 6 .44444 5 8
3 7 0 9.5714 5 8
3 7 6 3.5714 5 9
3 8 0 9.5 5 9

K W
6 3.5
0 9.4444
6 3.4444
0 12.571
6 6.5714
0 12.5
6 6.5
0 12.444
6 6.4444
0 15.571
6 9.5714
0 15.5
6 9.5
0 15.444
6 9.4444

116

H. CONSTRAIN/SELECT

As has been mentioned, MELD produces correlated

elements in several objects. It is often then necessary to make

selections based on certain constraints between the elements of

these objects. An operation is provided to carry out such selections

for all of the objects and other correlated objects simultaneously.

For example, the command

CONSTRAIN (A, B, C, D : (A+ B. GT. C) . AND. B. NE. C)

means that the logical expression to the right of the colon is to be

constructed. The objects to the left of the colon are truncated to

leave only elements corresponding to true values in the logical

expression. For example, if X, "'!, and Z describe positions in 3-

space, the statement

CONSTRAIN (X, Y, z :x:;~:;~z+Y>:'*2+Z>:<>:<2, LT. R*>i'2)

would eliminate any point de scribed by X., Y., and Z. lying outside
l l l

the sphere of radius R. Note that all arguments inu st be 1 ~

dimensional or scalar, and all 1-dimensional objects must have the

same length.

SELECT is similar to CONSTRAIN. The effect of the

operator is to truncate (or expand) several correlated !-dimensional

objects by use of a single structured index as the control array.

Thus if

and A, B, and C are all 1-dimensional arrays, each with at least

seven components, then

SELECT (A, B, C I)

117

redefines A, B, C to be 4-component objects with the 1st, 3rd. 5th,

and 7th elements of the original objects. Note that in this operation

A, B, and C need not be the same length.

Samples of the operations CONSTRAIN and SELECT

are shown below.

INPUT ••• l•INTEGERS(3,10)
INPUT ••• J•INTEGERS(20,13)
INPUT ••• L• 1 3 4
INPUT ••• TABULATE I J

I J
3 20
4 19
5 18
6 17
7 16
8 15
9 14
10 13

INPUT ••• SELECT(l,J:L)
INPUT ••• TABULATE I J

I J
3 20
5 18
6 17

INPUT ••• X=GRI0(0,1,.l);Y•X;MELO(Y,X)
INPUT ••• CONSTRAIN(X Y:X••2+2•Y••2 LT
INPUT ••• TABULATE X Y

x y x y x y
0 0 .4 .1 .2 .3
.1 0 .5 .1 .3 .3
• 2 0 .6 .1 .4 .3
.3 0 0 .2 .5 .3
.4 0 .1 .2 0 .4
.5 0 .2 .2 .1 .4
.6 0 .3 .2 .2 .4
.7 0 .4 .2 .3 .4
0 .1 .5 . 2 .4 .4
.1 .1 .6 .2 0 .s
.2 .1 0 .3
.3 .1 .1 .3

.5)

118 : .

I. - ECHO/NOECHO

One featu r e of SPEAKEASY that has proved desirable

in batch operation 'is that of printing the ·actual input information

along with the results. This 11 echoing 11 of the input means that the

user can clearly see what it was that he asked and can see the

response immediately below it.

In other applications, particulariy in interactive usage,

repeating the input information would be redundant since it would

follow immediately below the typed line. The ability to control the

echoing therefore has bee·n added to the language. If the statement

NOECHO is encountered during execution, the echoing of input data is

suppressed. ECHO reinstates it.

One application of this feature in normal batch jobs is

to produce more publishable results. Extraneous commands to the­

processor can be done in the NOECHO mode without thefr oper.ations

appearing on the output.

J. LISTPROG/DONTLIST

The listing of SPEAKEASY programs can be controlled

in much the same way as that of the ECHO facility in the MANUAL

MODE. DONTLIST indicates that such programs should not be printed

in the output. LISTPROG means that they should. If the options

DONTLIST and NOECHO are selected, only the actual results produced

during execution will be printed-as in the operation of conventional

programs such as FORT RAN.

In the interactive operation, DONTLIST and NOECHO

were selected as the preferred mode of operation. Batch processing,

on the other hand, normally uses LISTPROG and ECHO.

119

K. MARGINS

This is a facility that enables a user to control the

width and position of his printed output. This is of particular

importance when devices other than line printers are used for output.

For instance a teletype has only 72 characters on a line and would

not supply the output in the proper format for a printer.

The user specifies the left-hand and right-hand limits

of the printout by executing a statement of the form

MAR GINS (n, m) where n < m

which means that output should be restricted to columns starting at

n and ending with m. Alternatively

MARGINS (rn) is equivalent to MARGINS (1, m).

All printed output normally has a so-called carriage-control

character in its first position. This is not printed but is used to

control vertical spacing and to position output at the top of a new page.

In some applications it is necessary to suppress such control functions.

The statement

MARGINS (O, m) is equivalent to MARGINS (1, m)

except that the carriage-control characters are eliminated.

The SPEAKEASY processor will readjust all of its

printout to conform to the specified margins.

The next- page shows how the word MARGINS can be

used to control the format of output.

INPUT ••• A•AMATC3:1,2,3)
INPUT ••• PRINT A

A CA 3 BY 3 MATRIX)
0 -1 -2
1 0 -3
2 3 0

INPUT ••• S•SMATC3:1,2,3,4,5,6)
INPUT .•• MARGINSC20,40)
INPUT ••• PRINT S

120

S CA 3 BY 3 MATRIX)
1 2 4
2 3 5
4 5 6

INPUT ••• MARGINSC30,120)
INPUT ••• ASaA•S

. INPUT ••• PRINT C'THE PRODUCT IS 'AS)
THE PRODUCT IS

AS CA 3 BY 3 MATRIX)
-10 -13 -17
-11 -13 -14

8 13 23

121

III. LIBRARY FACILITIES

The SPEAKEASY-3 processors were developed with

the intent of making extensive use of libraries that could be attached

to the processors at execution time. Once the means of accessing

such libraries was clearly defined, the processors and the libraries

could be developed independent! y rather than in concert.

The consequences of the separation cannot be over­

emphasized. The processor developments have by and large been

i n the direction of providing very basic facilities; their objective

is always a smaller executable module with as few specialized

features as possible. This is in marked contrast to the developments

in the libraries, in which as many new features as possible are sought.

One wants the ~reatest possible capabilities in general, but for each

specific application one wants to avoid the difficulties associated

with such generality. Libraries answer both needs admirably.

Detached libraries have many additional direct advantages.

Users can freely put information into private libraries without fear of

altering the operations of the processors. Similarly, new words

for the language can be tested and validated by use of standard

processors without the usual problems associated with new releases,

The transfer of information from private to communal libraries is

not a major disturbance to the system. The growth of the over-all

language since the introduction of attachable libraries has been

dramatic. (Most of the words described in this Part are in the

libraries of the system-some were in fact added to fill gaps in this

writeup itself.)

The growth capabilities of the SPEAKEASY system

now rests in the libraries attached to the processors. To a large

extent, the processor can now be viewed as an interface between

the various libraries as well as between the users and the libraries.

122

This section describes the various libraries

in the system. To some extent these descriptions tend to

overemphasize their distinctions. Information (i.e .• computational

techniques or data) can be entered into the system in a variety of

ways. The choice of a particular library or combination of libraries

for the storing of information is somewhat arbitrary and may reflect

personal whims. The system is sufficiently broad-based to accept

several alternatives. There should therefore be no need to be

concerned about following rigid rules in selecting the mode of operation.

Actually there is a growing interconnection between the

libraries that involve the SPEAKEASY processor only as a

communication module. T11.e exciting aspects of the system at this

stage in the growth is in this interconnectivity. Each new feature

added to the system enhances the over-all capabilities of the system,

ri.ot only because of direct contribution but even more by the ways in

which it can be interconnected with other facilities already in the

sy'stem. · The potential power of the SPEAKEASY system rests in this

limitless growth capability.

Each user community exposed to SPEAKEASY can

develop its own library. It can at the same time draw on the other

libraries easily. The major problem being faced is not the

construction nor the operations of the libraries themselves but rather

in the communication between users and between user communities.

This report itself represents a crude method of

communicating facilities, some of which have been available within

the system for a long time. Other major facilities will no doubt

become available before this report is actually distributed. It is for

this reason that the current effort in development is directed towards

techniques for information retrieval within the system, with emphasis

on information available about the syste1n itself. Only a few of the

123

tools are available at present. They are in the process of being

expanded to provide users with the necessary information.

The types of libraries can be divided into two sets,

those that could in principle be read directly by people and those that

represent stored information that is usable only by the computer.

In the former class one can put the various forms of documentation

that are associated with this system or that are stored within the

system for other reasons. In addition, stored decks of SPEAKEASY

statements rep re sent information that is readable by people although

it is also intended to be used directly by the computer.

The latter type of library (i.e., computer-readable

information) for the most part represents stored compiled computer

programs. These are specially designed routines that are compiled

independently from the processors and are placed in accessible

libraries. These libraries, in which the specialized tools intended

to carry out major functions are stored, are the so-called LINKULE

libraries.

LINKULES represent the real operational capability

of the over -all SPEAKEASY system. They usually are efficient

routines for carrying out specific mathematical operations. They

are of use, however, only if there are documents that can explain

how the operation is used and what it does. For each member in the

communal libraries of the system, there must exist documentation.

Such documentation is in one of the other libraries of the system and

is thus readily available to users of the system.

It is obviously necessary to provide some method for

finding the contents of specific libraries. The ability to ask the

system for such informa ti.on is essential so that exploratory searches

can be made. Processors to enable the user to carry out such searches

have been built into the LINKULE library. These have already been

alluded to in the discussion of HELP.

124

Finally it is desirable that a user needing specific

information should be able to carry out systematic searches through

~ll the librarie$ of the system. This can in fact be done by
I .

connecting the facilities of the system desc.ribed above together by

a SPEAKEASY program such as the one described in the HELP

section. Thus one sees that the documentation libraries, the

LINKULE libraries, and the libraries of stored SPEAKEASY statements

can be used together even at this very simple level.

Probably a single LINKULE could be written to carry

out all of these functions. However, it would not have the flexibility

in}\erent in the highly modular interconnected approach outlined above.

There are still problems of communication. A user of

the language processor still can be unaware of how to get to a specific

piece of information, even though that information exists within the

system. To attempt to inventory all of the information available in

the system, even as it exists today, would be a formidable task. It

would surely swamp the user with undesired information. Lest there be

a misunderstanding, it is not felt that this is an unsolvable problem.

It is just that simple techniques of indexing ai:id of report generation

are not satisfactory solutions, and more powerful facilities will have

to be added. A major effort in this direction has now been started.

The sections that follow describe each of the types of

libraries currently considered part of the system. Others will be

added as the need arises. Each section is a rather general over-all

description of the purpose of the library. More specific information

about the individual members of the libraries are to be found within

the system itself. A set of operators for this purpose is described

at the end of this section.

All libraries in the system are, in IBM terminology,

partitioned data sets (PDS). Each such data set is a collection of

members referred to by distinct member names. Although the data

125

sets themselves are named, in this application we are interested

only in the name used to refer to the data set in the SPEAKEASY

run. This name by which we refer to the library is called the

* DDNAME in standard IBM Job-Control Language and the FILE in

TSO usage. t

The SPEAKEASY processor assumes that certain

libraries are attached and checks to see if other specia:l libraries

are available for this run. The specific library names and their

contents are as follows.

1) Libraries that are assumed to be attached are:

LINKULES

PROCLIB

HELP

DOCUMENT

libraries of operations (compiled FORTRAN

routines)

library of stored SPEAKEASY statements

library of brief HELP documents

library of larger documents

2) Optionally attached libraries:

MY LINKS

MYPROCS

MYHELP

MY DOCS

private versions of LINKULES

private library of stored SPEAKEASY statements

private HELP words

private documents

Any additional libraries can be attached to the system

to supplement those listed above. However, it is necessary to

>:'For standard batch jobs, the cards which have the form

I /name DD · · •

are called DD cards. The first field (i.e •• the word name above) h the

DDNAME referrred to and is called the library name in this report.

t In TSO runs, the statement

ALLOCATE FILE (name) DA(' • o)

the equivalent way to define the library name.

126

explicitly communicate the names of such libraries to the processor.

For example, adding additional LINKULES can be done by an explicit

stateme.nt of the form

LINKLIB = 1XXX 1

where XXX is an additional library of LINKULES. Similarly,

document libraries are addressed by indicating the library name in

the reference statement.

A. The LINKULE Libraries

These libraries contain packages of compiled FORTRAN

subroutines. Each of the members of such a library is available to

the processors. If in the execution of any SPEAKEASY statement

a word is encountered that has not been previously defined, then the

system library is searched for a member with that name. If one is

found, then that routine is brought into the computer and control is

transferred to it. The calling sequence for these subroutines is

designed to enable complete information transfer , between processor

and the individual LINKULES. The form of this calling sequence and

the method of communication to the processor is described in

Part Three.

The user library MYLINKS is of the same form as the

system library but represents personal routines. If MYLINKS is an

attached library, then it will be searched for a given member prior

to the search of the LINKULES library.

B. The PROCEDURE Libraries

Instead of distributing listings and copies of commonly

used SPEAKEASY decks, a library named PROCLIB has been created

127

for them. This library is always attached to the SPEAKEASY

processors. The procedures in this library are directly available

as input to the processor and can be used in any program by inserting

a card of the form

USE MEMBER NAME

where NAME is the name of the particular procedure desired.

A user may append his own library of such statements

to the system by assigning it the name MYPROCS. His library. is then

available for use within the run and is considered as part of PROCLIB

for that run.

Since members of the procedure library are to be

considered part of the generally available resources in SPEAKEASY,

a description of the use of each procedure is also included in the

HELP library.

C. The HELP Library

The members of the HELP library (see Part Four) are

concise documents describing words and features available to the

SPEAKEASY processor. These documents are oriented towards the

inte:r;active user who is interested only in making use of the facility anq

not in a detailed description of its internal workings. The intent is to

enable the user to quickly find out about a feature so that he may use it

in the calculation currently before him.

It is intended that a HELP document will exist for

every word used in the processor and for every member attached to

it in a system library.

If the user attaches his own library of such brief

documents, he should give it the name MYHELP. In this case, all

of his documents are also available during that run.

128

Any specific HELP document can be obtained by ~n

input statement

HELP XXX

where XXX is the name of the desired document.

D. The DOCUMENT Library

In many cases the brief HELP documents described

above are too concise to explain details about particular words. A

larger document library is available for more lengthy descriptions.

A member of this library is obtained by use of the statement

DOC UM ENT XXX

where XXX is the name of the desired document. The user may

attach his own library of documents. It should be given the library

name MYDOCS. The library name for the system documents is

DOCUMENT.

E. LIBINDEX

The statement

LIBINDEX (name)

defines a literal 1-dimensional array with the members of the nam~d

library as components of the array. This array can be used in many

ways, the simplest one being to tabul~te it. The statements

LINKS = LIBINDE X (LINKULES)

TABULATE (LINKS)

will produce a table containing the names of all the LINKULES in the

system library. Similarly

129

HELPNMS = LIBINDEX (HELP)

TABULATE (HELPNMS)

will list the names of all of the available HELP documents.

F. LIST

The statement available to list members of a library

has a generalized keyword format. Each keyword encountered is a

signal that the next information is to be associated with the keyed

option. The keywords, their default values, and their functions are

KEYWORD

MEMBER

LIBRARY

FROM

TO

DEFAULT

INDEX

PROCLIB

1

90000

Meaning

Select member to be listed

Select library to search

for member

Start listing from line #

End listing at line #

Any words that are not keywords are ignored. Thus

LIST MEMBER MOON FROM 3 TO 7

will produce a printed copy of lines 3 through 7 of member MOON of

PROCLIB.

G. USE

Since decks of SPEAKEASY statements can·be stored

in libraries, a method must be provided to make these decks

a vaila hle to the processor. Execution of the statement

USE MEMBER memname OF LIBRARY libname

causes the deck of the designated name from the library to be used

130

as input to the processor. If the library reference is omitted,

PROCLIB is assumed. If a library ~amed MYPROCS is attached,

it will be searched before looking in PROCLIB for this particular

member. When the member has been completely read in, the input

will be ~aken from the normal input device.

Such items as SPEAKEASY programs, series of

HENCEFORTH statements, and notes to be printed to the user can

all be in such libraries. The use of this facility in private libraries

is to supply commonly used constants and SPEAKEASY programs to

the processor in a simple way.

H. CREATE

It is possible to create new members of documentation

and procedure libraries while running in SPEAKEASY. This is done

by the . simple command

CREATE MEMBER memname OF LIBRARY libname

This command indicates that the lines that follow are to be used to

define a new library member. The processor itself is p2 ssive in this

operation. The creation of the new member is terminated by a single

word

ENDCREATE

in the input data. All information between those two statements is

saved as the newly created member.

IV. LOGICAL AND RELATIONAL OPERATOR NOTATION

In the original specifications for SPEAKEASY, a

special set of restricted keywords were used as logical and relational

131

operators. This has on occasion caused difficulties because these

words cannot be used as names of objects. For this reason, the

language specifications have been changed. The introduction of

SPEAKEASY 3E {October 1972) began a transition period to a

logical operator notation similar to the FORTRAN convr.ntions.

During the transition period, both the old and new notations will be

accepted.

In order to benefit from the new conventions, however,

it is necessary to provide users with a means of eliminating the older

·restricted words. During the period of transition, therefore, a

SPEAKEASY statement of the form

.NEW.

will deactivate the restricted words for logical operators. The

statement

.OLD.

will reactivate them if it is necessary. The default condition will

be . OLD. -at least during the early part of the transition period.

The transition period will be a long one-users writing new program.a

should make use of the new notation and should gradually replace

statements using the older words. The logical and relational

operators in SPEAKEASY are listed in the following table.

• .
.. ..

132

Older form Newer form Meaning
•

(being phased out) (now acceptable)
.

LT .LT. · Less than

LE • LE. Less than or equal to

NE .NE. Not equal to

EQ .EQ. Equal to

GE .GE. Greater than or equal to

GT .GT. Greater than
'

AND .AND. And

OR .OR. Or

NOT .NOT. Not

....

133

V. INTERACTIVE SPEAKEASY

An interactive version has been available since the

inception of SPEAKEASY. The 2250 version of the language has

been used for a variety of calculations. With the introduction of TSO, .~

an interactive version of SPEAKEASY is now becoming available for

use by a large community. TSO SPEAKEASY differs from conventional

SPEAKEASY only in the interactive capabilities. Users in the

Ml\NUAL MODE of operation are able to direct the processor step

by step through a calculation. They may examine the information,

make corrections to it, and thus proceed directly through the steps

to the completed results. In this mode of operation, the system

can be viewed as a super desk calculator. Operations on whole

arrays of elements can be carried out with a single command. All

oI the large sets of capabilities of SPEAKEASY are literally at the

users' fingertips.

The program mode of operation is similar to the

normal batch operation except that the results are instantaneously

available. Small SPEAKEASY procedures that will be repeated

several times can be programmed during the session at the

terminal and used immediately.

Errors occurring in the manual mode are repaired

by merely retyping the correct input. In the program mode, it is

necessary to edit previously entered information. The EDIT mode

is available for this purpose.

A. The EDIT Mode

In batch processing, there is no need to edit the

statements of a SPEAKEASY program since they can be altered

only after the job has been completed. In interactive usage, on the

134

other hand, such editing is of great importance. Facilities for this .

purpose are provided in SPEAKEASY. All processors include these

features, but they are not normally used except in an interactive

enviz:onment.
,.

The EDIT mode is entered automatically when the

word PROGRAM, PROCEDURE, or DATA is encountered in the

input stream. In the EDIT mode, statements are assigned

successive integer re!erence numbers starting with the number 1.

The program mode is left if the single word END is encountered.
,I

At this time, the program is compacted and the statetnents are
'

individually examined for syntax errors. The stored program is

then defined as a s ingl.e object whose name is the name of the

program~

While the processor is in the EDIT mode, certain

cont,rol function~ are activated. All such functions are selected· by

a % in the first field in the input card. The functions are

o/oLIST

o/oLIST N

%LIST N, M

o/oN Statement

o/oINSERT N

%INSERT N(i)

o/o

%DELETE N

o/oDELETE N, M ,

o/oMOVE N

o/oMOVE N, M

./\ List the entire edit file

List the statement with line number N

List statements with line numbers

between N and M

Assign this statement the number ·N

Insert the statem~nts that follow

at N, N + 1, ' ' '

Insert the statements that follow
'

at N, N + i, N + Zi, • · ·

Stop the insert

Delete statement number N

Delete, statements N thro~h M ,.
Move statement N to the last position

Move statement N through M to the last

positions

%MOVE N, M, K

%MOVE N, M, K(i)

%COPY N

%COPY N, M

%COPY N, M, K

%COPY N, M, K(i)

135

Move statements N through M to

K, K + 1, K + 2, · · •

Move statements N through M to

K, K + i, K + 2i, · •

Copy statement N into the last

position

Copy statements N through M into

the last positions

Copy statements N through M into

K, K + 1, K + 2,

Copy statements N through M into

K, K + i, K + 2i, · · ·

Although integer values are automatically as signed to

s tatement numbers, these numbers can have smaller incremental

values. During normal editing, numbers with increments as small

as 0. 01 are allowed. Thus a statement of the form % COPY 5, 10,

18. 9 (. 01) is acceptable.

If the process of editing generates a statement number

that is identical to a previous one, then the old one is replaced. Care

should be taken to protect previous information when performing.

multiple insertions.

For interactive processing, a second copy of the program

is maintained. This copy contains statements in their original form

and with the associated statement numbers. In such cases, the

processor can be returned to the EDIT mode and a previously defined

program can be activated by the statement

EDIT xxxx:

where xxxx is the name of the program to be edited. This program

can then be corrected by replacing, deleting, or inserting statements.

136

After it is satisfactorily corrected, the single word COMPILE wiU

return SPEAKEASY to the manual mode. The word RUN is equivalent

to the word COMPILE followed by the EXECUTE command.

In the interactive operation of SPEAKEASY, the user

is informed of changes in the mode of operation as they occur. Once

again, this information is suppressed for normal batch operations.

In contrast, the program listing is normally printed in batch operation

and is available only on command in interactive operation.

The following sample of the operation of the EDIT mode

is a run carried out with the interactive version of SPEAKEASY

~perating under TSO.

137

:_program flt
EDIT MODE

:_a•array(noels(x),nflt:) ; l•lntegers(l,nflt)
:_a•mfam((~+a)••Cl-1)) ; y•vfam(y)
: afltcl/(transpose(a)•a)•transpose(a)•y

· ::print(' · the best flt Is ',aflt)
:_end

MANUAL MODE
:_x• 1 2 3 4
:_y•3•x••2+4•x+l
:_nf It •3
:_execute f It

EXECUTION STARTED
THE BEST FIT IS

AFIT (A VECTOR WITH 3 COMPONENTS)
1 4 3

_edit
O.K.-EDIT MODE

:_%list
%1 PROGRAM FIT
%2
%3
%4
%5
%6

A•ARRAYCNOELSCX),NFIT:) ; l•INTEGERS(l,NFIT)
A•MFAM((X+A)••(l-1)) ; Y•VFAM(Y)
AFIT•l/CTRANSPOSE(A)•A)•TRANSPOSE(A)•Y
PRINT(' THE BEST FIT IS 1 ,AFIT)
END

yf lt•a•af It ;tabulate x y yf It :_%5. 5
: trun
EXECUTION STARTED

THE BEST FIT IS
AFIT CA VECTOR WITH 3 COMPONENTS)
1 4 3
X Y YFIT
1 8 8
2 21 21
3 40 40
4 65 65

:_x•l.1 2.03 3.34 4.43 S.16
:_y•2.78 4.4 10.7 19.4 27.1
:_execute

EXECUTION STARTED
THE BEST FIT IS

AFIT CA VECTOR WITH 3 COMPONENTS)
3.8691 -2.4795 1.3526
X Y YFIT
1.1 2.78 2.7782
2.03 4.4 4.4095
3.34 10.7 10.676
4.~3 19.4 19.~29
S.16 27.1 27.087

138

B. INPUT /PAUSE/STOP

In interactive usage of the program mode of SPEAKEASY,

it is often desirable to interrupt the computation at specific places

but to retain the capability of resuming at that point. Three

statements are available in the program mode for this purpose. All

are identical in operation; the choice between them is purely

subjective. If the first word on a SPEAKEASY statement encountered

in the execution mode is INPUT, PAUSE, or STOP, then the entire

statement is printed out and the execution of the program is interrupted.

The system is put into a mode referred to as the HOLDING mode.

This mode is in fact the MANUAL mode with the added

capability of resuming the execution of the SPEAKEASY program at a

later time. All of the facilities of the manual mode are available.

New objects can be defined, old results can be examined, etc.

Whenever the objectives of the interrupt have been met, then the

execution can be resumed by entering a statement with one of the words

RESUME, CONTINUE, or GO. If one desires to terminate the

HOLDING mode, the statement MANUAL places the system in the true

manual mode. In operation a statement of the form

INPUT A, B AND C PLEASE

encountered during execution would print out

INPUT A, BAND C PLEASE

and the user might then type in

A = 4; B = 7; C = 27. 48 ':'W; RESUME

Note that the operations in the HOLDING mode are completely general

and need not be restricted to the in-1plied requests. The only

restriction is that the EXECUTION mode itself may not be used. If

it is used, then one loses the ability to resume from this point at

some later time.

139

VI. VERSIONS

SPEAKEASY is a general processing language. The

modes of operation, even at Argonne, are rather diverse. Card­

input, remote -job-entry, and remote-job-output facilities all imply

slightly different optimal forms of operation. In contrast, in the

truly interactive mode (e.g., on the IBM-2250 console or the newly

available TSO version) the user may need a quite different form.

Instead of attempting to construct specialized processors for each

application, the approach taken has always been to include as many

diverse capabilities in the basic processor as possible. Each use

can then select the available ones that are most clearly desirable in

the application. Specialized input and output requirements are met

by isolating them in two or three replaceable modules. These can

easily be adapted to special devices such as the 2250.

Several different versions of the SPEAKEASY processor

are now available. The computational logic is identical in various

versions. They differ primarily in their space requirements and in

their efficiency of operation. It is expected that some of these

versions will be combined in the near future. The following versions

are available.

A. STANDARD

This is the standard production version of the language

for batch processing. It is a non-overlayed version that occupies
:O:<

260K of core. This version is the fastest running version available

>:<
The size given is a nominal one. It was selected on the

assumption that the size of the LINKULES does not exceed 10 K.

1.f O

b11t does require the largest amount of computer core. The (j 1•faul1

settings can be viewed as

B . BABY

SIZE = 40, MAIN

MARGINS (1, 128)

LIST

ECHO

This is a heavily overlayed version of the above

. processor and is designed to provide rapid batch turnaround at the

sacrifice of execution efficiency. The default settings are

SIZE = 40, MAIN

MARGINS (1, 128)

LIST

ECHO

This processor requires about 160K to operate.

C. GRAPHEZ

The graphical facilities of the language (for use wi~h

the CALCOMP 780 device) are maintained unly in this special

version. The version is identical to the standard version described

above except for these additional features. This version requirl:: S

280K to operate.

D. CONSOLE

This version of the language is adapted to the 2250

display console. His a heavily overlayed ve rsion that i s designed for

141

e x port. The operatiqn ,of this version is , si11filar to that of the TSO

version
t,· .,i

except tha_t graphica'.1 output is directly available. Since the

display is on an oscilloscope, a monitor copy of the input and output

is also produced on <). line printer for later reference. The defaults

arl;

E. · SPEK2250

SIZE = 8

MAR GINS (1, 70)

LIST

ECHO

This is the production console version of the language

for use at Argonne. It is a non-overlayed version, but it is

designed for use with LCS as the primary core storage. This

tailored version is similar to the CONSOLE version except for

the use of LCS.

F. TSO

The adaption of SPEAKEASY to operation with TSO is

re a.tively new. The major difficulty has been one of trimming

th (· processor to a size acceptable for use in TSO regions of normal

si:ve. Since each installation chooses this size to meet its specific

needs, no single generally acceptable size has yet been established.

In decreasing the size of the standard version, the already small

version BABY has been further overlayed. The version that is now

avai:able will operate in a 120K TSO region. Further decreases in

this siz,e are expected; but since further decreases become more a,nd

more difficult, it is unlikely that a much smaller version will be

142

available soon. The default options for this veTsion are

SIZE= 4

MARGINS (1, 128)

NO LIST

NOECHO

ACKNOWLEDGMENTS

SPEAKEASY is a language developed to serve its user

community. Complaints and praise by the users, though apparently

ignored in the short term, have gradually influenced the structure of

the language. It is through discussions with users, particularly in

the Physics Division, that defects and desirable facilities are first

noted. The form and variety of the features available are therefore

mostly due to the users themselves. I wish to thank those who have

expressed their needs and desires and who have thus influenced this

development. In particular, special thanks are due tc Joanne Fink,

Harvey Z. Kriloff, Steve Pieper, Keith Rich, Frank Serdu.ke, and

Martin Vincent, who have been generous with their time and who

have been directly involved in many of the major discussions that

have influenced the development of the language. Since the language

continues to evolve, it is hoped that such direct influences will

continue.

PART THREE

SPEAKEASY-3: Linkules and Interfaces

143

144

I. LINKULES FOR SPEAKEASY-3

by

S. Cohen, F . J. D. Serduke, and K. Rich ':'

A. Introduction

One of the most powerful features of the SPEAKEASY - 3

processors is their ability to operate with attached libraries. By far

the most important of these libraries is the so-called linkule library

that contains individually compiled FORTRAN program packages

. that can be selectively used by SPEAKEASY during execution. The

imp<;>rtance of such libraries becomes clear each time new applications

are found for the SPEAKEASY processors. New words may be added

to the linkule libraries to meet the particular requirements of these

applications. The gradual growth of the basic systems is by the

inclusion of new well-tested linkules into the system libraries. Eac.h

such addition becomes available to the entire user community and thus

·provides a more powerful processor for everyone.

It should be clearly understood that the linkule libraries

are not part of the basic processors. The introduction of new linkules

in no way alters the processors. Although a newly acided linkule may

produce erroneous results, the existence of that linkule will in itseli

not affect programs that do not address it. This means that each of

the modules which provide the SPEAKEASY operational capabilities are

independently correctable without fear of any subtle interconnections.

Individual linkules can be added, altered, or removed from the overall

system without affecting other parts of the system.

Users may have private libraries of linkules that contain

operations that are either of very lirnited application or are not yet

considered trustworthy. Such private libraries function in exactly

the same manner as the communal libraries and are considered part

of them during the computer runs in which they are attached to the

system. When a private linkule is transferred to a comn1unal library

there is no change in the operation of either the linkule or the processor.

*National Accelerator Laboratory.

145

This document describes how linkules are written and

attached to the syste m. The primary purpose in writing this report

is to supply a user community with the means of c.onstructing a

SPEAKEASY processor with a vocabulary tailored to the needs of

t hat group. This document is intended to contain all of the information

necessary t o construct such a new vocabulary. This is not an easy

tas k sinc e s e veral levels of detailed understanding are needed. It is

hoped that the following information contains enough redundancy to

e nable a competent FORTRAN programmer to learn to add words to

SPEAKEASY.

The first section of this report describes how SPEAKEASY

searches for specific names and how this process leads to a particular

linkul e . This is in e ssence a description of the search heirarchy of

the proc e ssor.

The next section deals with the form of the argument

list in a linkule and gives a detailed description of each piece of

information transferred to the linkule for its use. A major part of

this description deals with the form of objects defined in the SPEAKEASY

proc e ssor. The means of defining a new object is also discussed.

The third section deals with the process of returning

c ontr o l from the link ule to the processor and explains the method by

whic :', error messages are transmitted.

Several examples of linkules are given to aid in the

und e rstanding of specific details.

B . H o w a Linkule ls Activated

During execution of a SPEAKEASY program, each word

e ncounter e d is e x am ined for defined meaning in the following sequence

of questio ns.

t. Is it o ne o f the few r e stricted keywords in SPEAKEASY, e.g.,

P R OGRAM, EXECUTE, etc.?

2. Is it a currently defined obj ect, i.e., is it a defined variable,

program, or data file?

146

3. ls it one of the "standard11 words of the language such as PRINT,

TABULATE. SQRT, etc.?

If none of the above is true then the same questions

are asked for the particular linkule libraries attached to the system

for this run. These libraries are identified by their DDNAMES

(!'library names"). The libraries LINKULES and MYLINKS are

automatically searched for a member with a name corresponding to the

word being sought. Additional libraries may also be attached by

defining a SPEAKEASY object called LINKLIB with the library names

of additional libraries to be searched. The statement

LINKLIB = 1XXX 1

will cause the library nam~d XXX to be included in the search. If the

word being sought is not located in any attached library, then an error

mes sage indicating that it is not defined is generated and the search

process is terminated.

If the word is found in any of the libraries, then the

member is brought into core and control is transferred to it. This

is do.ne by use of the standard IBM-supplied LINK macro. The linkule

carries out its operation and returns contro l to SPEAKEASY by

executing a normal RETURN statement.

After returning control, the core space used by the

linkule is available for later use. The operating system attempts to

provide for efficient reuse of the linkule by retaining it in core for

possible later use, but it will make use of the space if necessary. In

order for the operating system to operate in this manner, it is

necessary that linkules be designed and marked REUSABLE (as

explained in Sec. F).

The logical form in which control is passed to a linkule

is exactly the same as that in which a normal FORT RAN function

routine is called. The operating system in es ser..ce performs the

bookkeeping necessary to locate the arguments and to pass them to

147

the linkule. From the user viewpoint, therefore, a linkule is a

standard FORTRAN function routine with a specified argument list.

This routine in turn can call any other routines necessary to carry

out its operation. For any existing FORTRAN routine, a linkule

can be constructed by writing an interface routine by which the

argument list of information supplied by SPEAKEASY is matched to

that used by the FORTRAN routine.

A linkule is an entirely independent program package. Any

subroutines used by the linkule must be contained within that linkule

(certain exceptions will be explained later). This is one reason that

the design of the linkule is of importance. If, for example, any usual

input or output is attempted, then the entire package of routines involved

in formatting information must be included within the linkule. If one

is not careful in the use of routines the size of individual linkules will

force the use of unreasonable core allocations. Moreover, the

structure of SPEAKEASY implies that linkules should represent clean

mathematical operations. This means that, for the most part, the

linkules can and should be srnall packages carrying out very specific

operations.

C. The Argument List of a Linkule

A linkule is an entirely detached programming package.

All information to be transferred between the SPEAKEASY processor

and the linkule must be carried through the argument list used in

: nvoking the linkule. As will be seen, this list is a long one and .is

complete in the sense that all information necessary to write any

possible linkule i s available. For any particular operation, there is

therefore an overabundance of information.

When a linkule is given control, each argument in the

SPEAKEASY statement that invoked the linkule must be described

c ompletely. It should be understood that much of the original

c

c

148

SPEAKEASY statement may already have been evaluated. If a linkule

called JONES is called from SPEAKEASY as a result of the statement

X = JONES (A. B+7. B>:CX+AVERAGE(Y))

then the linkule is invoked as if the statement were

X = JONES(A, ~ ~

there~ and~ are objects whose description will be passed

to the linkule. If B had not been defined, then an error would have

been detected before attempting the call to the linkule since it was

involved in an algebraic statement. On the other hand, if A had not

been defined,. this fact would be conveyed to the linkule. All expressions

such as those above would be conveyed to the linkule and are

evaluated before attempting to locate the linkule.

It has been said the argument list of a linkule is a long
I

one. The first cards of a linkule should read

FUNCTION LINKUL
l(ANS,IGNORE,NOARGS,ICOL,ICOM,IDOM,ACC,ARG,VAL,VALl,IVAL,KIND1
2KLASS,NROWS,NCOLS,NWORDS,LOC,ALLOC,ICLRES,IQUERY, IFREE,IQURES)

IMPLICIT REAL•8 CA-H,0-Z)

DIMENSION ARG(l),VAL(l),VALl(l),IVAL(l),KIND(l),KLASS{l),
1 NROWS(l),NCOLS{l),NWORDS(l),LOC(l),ALLOC{l) .

These cards can be used in exactly this form for all linkules. Each

of the arguments will now be explained.

ANS

IGNORE

This is an eight byte word that contains the name that is

to be used to define the result of this call (if there is a

result). This is a name generated by the SPEAKEASY

processor.

This is an argument useful for multiple-entry forms 9f

LINKULES. Few linkules make use of this argument. It is

therefore being ignored in this report.

NOARGS

ICOL

!COM

!DOM

ACC

149

This parameter is an integer specifing the number of

arguments appearing in the SPEAKEASY statement that

caused this call for the LINKULE.

This indicates the location of the first colon that

appeared in the argum·ent list. If ICOL is zero, no

colon appeared. The integer is the number of the

argument appearing immediately after the colon (1 means

the colon is the first field).

If this is zero, there were no complex or imaginary

arguments. If it is 1 then at least one such argument

was encountered.

If zero, the current domain is set to REAL. It it is 1,

the domain is COMPLEX.

This is the current accuracy setting of the processor.

This number is used whenever a decision involves a

cmnparison between two numbers.

The next ten items are one-dimensional arrays. Ea ch of them describes

some property of an argument in the SPEAKEASY statement. The Ith

element of each array corresponds to the property of the _!_th argument.

These properties are

ARG(I)

VAL(I)

VALI(I)

IVAL(I)

KIND(!)

The name appearing as the _!.th argument in the SPEAKEASY

statement.

The value of the real part of the first element of the Ith

argument.

The value of the imaginary part of the first element of

the .!_th argument.

The value of the integer part of the real part of the first

element oft he _!th argument.

The kind of the _!.th. argument.

For SPEAKEASY users, the following KINDs are normally all that are

encountered.

KIND

0

2

3

4

6

9

Not defined.

A real object.

150

An imaginary object.

A complex object.

A name array (literal 8 byte). ·

A literal array (literal 1-byte objects).

If KIND is negative, the argument is a so-called "in place definition, 11

i.e., it occurred as an explicit co~stant in the statement. For

example, linkule BUD (3, 4, 5+6I) has arguments that are in-place

definitions.

KLASS(I)

0

1

2

5

6

Indicates the class of the _!th argument. The class

describes the structure of the oqject. The ones

encountered in SPEAKEASY are:

A scalar.

A vector.

A matrix.

A 1-dimensional array.

A 2-dimensional array.

Many other kinds and classes are possible, but these are omitted

here because they will not normally be used in writing linkules.

NROWS(I)

NCOLS(I}

Indicates the number of rows or the length of the _!_th

argument.

Indicates the number of columns or the width of the Ith

argument.

If either NROWS(I) or NCOLS(I) is not applicable, it is set equal to 1.

NWORDS(I) Indicates the number of words in the _!th argument. It

is normally the product of · the number of rows by the

number of columns for this object.

151

The next two items are used to address the information in the object

as a whole. Each structured object is to be viewed as located in the

array specified by these two items.

ALLOC

LOC{I)

The name of the array.

The location of the first element of the .!_th argument in

the array ALLOC.

The final four items in the argument list of the linkule

are four subroutines that are used to define, locate, or free objects

in SPEAKEASY. These are used as follows:

LO = ICLRES{ANAME, KIND, KLASS, NROWS, NCOLS) Used to define

a new object with the name contained in ANAME (an 8-

byte literal) and with the properties of the object

described by the rest of the arguments. These are

identical in meaning to the definitions above. The

functional value (in this case LO) is a location in ALLOC

of the newly defined object. All elements of this object

are set equal to zero. The location returned is that of

the first element of the object. Successive ielements (by

rows for 2 dimensional objects) are in succe~>sive

locations of ALLOC.

CALL IFREE(ANAME) Used to free or undefine any object. The

name of the object to be freed is contained in the wend

ANAME

LO = IQUER Y(N, ANAME, KIND, KLASS, NROWS, NCO LS) Used to

locate and obtain the description of some currently

defined object with the name contained in ANAME. The

KIND, KLASS, and dimensions NROWS and NCOLS are

returned by this routine. The location of the object is

152

returned as a functional value and also put into

LOC(N} where LOC is the previously described a r ray.

Note: If N is identical to a previously used locator, it

will overwrite the information that was previously in

that locator. N must be an integer less than 30 and

normally is chosen to be larger than the number of

arguments in the linkule.

LO = IQURES (N, ANAME, KIND, CLASS, NROWS, NCOLS) This routine

combines ICLRES and !QUERY. It defines the object

with the specified name and structure and places its

location into the nth position in, LOC.

The items listed above complete the spe~ifications of the

various arguments in the list that a linkule has available through the

calling sequence. To be sure that the information entries are

understood, a few examples of their forms are given here. Let us

assume that the linkule is called JONES. Then the sequence

x = 9

Y = MATRIX(3, 3: 1, 2, 3, 4, 5, 6, 7, 8, 9}

Z = ARRA Y{7: 2, 3, 4, 5, 6, 7, 8)

T = JONES(7, X: Y, Z, X*Z+9)

will result in the linkule being called with the following information:

NOARGS = 5

!COL = 3

ICOM = 0

I ARG KIND KLASS NROW NCOL VAL !VAL

1 -2 0 1 1 7. 0 7

2 x 2 0 1 1 9.0 9

3 y 2 2 3 3 1. 0 1

4 z 2 5 7 1 2.0 2

5 2 5 7 1 27.0 27

VAL! will be zero in all cases.

153

Similarly the sequence

DOMAIN COMPLEX

X = ARRAY(4: 1, 2, 3, 4)

Y = 3p:cx

Z = MATRIX(3, 2: 2+31, 3+41)

T ='ALPHA'

FREE(W)

TT = JONES(3, 51: X, Y, Z, T, W)

causes the following to be passed to the linkule "JONES. 11

NOARGS = 7

!COL = 3

!COM=

!DOM= 1

I ARG KIND

-2

2 -3

3 x 2

4 y 3

5 z 4

6 T 6

7 w 0

KLASS

0

0

5

5

2

5

0

NROW NCOL LOC VAL

0 3.0

1 1 0 6.0

4 1 non-zero 1

4 1 non-zero

3 2 non-zero 2

1 1 non-zero 'ALPHA'

0 0 0 0

VAL! !VAL

3

5 0

1

3 0

3 2

.....

0 0

For SPEAKEASY users who have any questions about

the form of the elements displayed for any particular situation, a

special linkule in the system is available to resolve test cases by

example. Thus a SPEAKEASY statement of the form

SHOWLINKAGE (A: B, C, D, E, · · ·)

will cause a printout similar to those used above to display the

consequences of particular calls. Before attempting to write

linkules, a new user is advised to make a series of runs to learn the

consequences of specific calls.

154

The above descriptions explain how information describing

particular objects in the argument list are conveyed to the linkules and

how new objects can be defined. A very important consequence of being

able to define objects at execution time (a very fundamental concept of

SPEAKEASY) is that defined objects can be moved to meet the demands

of the operating system. With this in mind, the next section must be

read and understood clearly when defining objects in linkules.

D. On Motion of Defined Data

Each time a new piece of data is defined by .use of

ICLRES or IQURES or if new data is located by !QUERY, there is the

possibility that other defined information will move. (This is the nature

of the storage scheme used by SPEAKEASY.) The locations in the

array LOC are always the correct current locations of the corresponding

objects. In practice it is therefore necessary that the locations of

objects be obtained from the LOC array after any of the above routines

have been made.

If only a single object is being defined in the LINKULES

(as in the case if only the resultant ANS is to be defined), then only

ICLRES need be used. The location returned is the proper one.

All other locations are then obtained from the LOC array. These

locations must be ascertained after the ICLRES routine is called.

If several objects are to be defined, it is necessary to

ensure that the system will keep track of their curr~nt locations. This

is done by using the routine IQURES and specifying a value of N not

currently in use. This will mean that LOC (N) is to be maintained at .the

current location of this object.

E. Returning from a Linkule

To return control to the SPEAKEASY processor, execute

the RETURN statement in the lo g ically top r o utine in the linkule. All

.. . . ,

-·- ·-,.,._

155

information needed by the linkule is communicated through the

argument list. On return, these same arguments are used t,o

communicate with the processor. The only other channels of

communication between the two is the functional value of the linkules.

The information to be returned includes the answer (if

there is one) defined as shown in Secs. Ill and IV. In addition, it is

necessary to tell the processor whether or not such an answer was

created. The presence of an answer is indicated by the functional

value of the routine: if it is 1, then an object with the name contained

in ANS was defined; if it is -1, then no such resultant is to be

expected by the SPEAKEASY processor.

Err6rs are indicated by setting the values of the

arguments !COL and !COM. !COL is always set zero or positive on

input. !COM is either 0 or 1. If either of these is set to another

value on exit, then the processor is aware that an error was detected

and prints an error message.

The errors messages are controlled as follows. (1) If

!COM is not negative and !COL is -N, then the error message

corresponding to Nin the table in Table 1 will be generated. The

message will repeat the input line and then will give the error message.

To indicate that a specific argument is involved in this error, the user

may set NOARGS equal to -M to indicate the Mth argument. <2) If

!COL is positive and equal to N and !COM is positive and greater th.an

1 then the statement

ARGN AND ARGM ARE INCOMPATIBLE FOR OPERATION

is generated. Here ARGN is the name of the Nth argument and ARGM

is the name of the Mth argument. (Note that !COM is never preset to

any number larger than 1. If two arguments are incompatible, set

ICOM to the inde x of the second. (3) If !COM is -N, then the

statement

ARGN IS NOT DEFINED

E 1 ILLEGAL CHAR.
E 2 DOUBLE OP.
E 3 MISPLACE DEC. PT.
E 4 NUMERIC OVERFLOW.
E 5 PARENTHESIS IMBALANCE.
E 6 ~TATEMENT TOO LONG.
E 7 DOUBLE EQUAL SIGN.
E 8 REAL OBJECTS ONLY
E 9 ILLEGAL LOGICAL OPERAND.
E 10 MISPLACED '?'.
E 11 IMPLIED MULT. ?
E 12 ENTERED COMPLEX DOMAIN.
E 13 TRANSLATIO~ ERROR
E 14 OPERATOR SEQUENCE?
E 15 IS NOT A SQ. MATRIX.
E 16 DIVISION BY ZERO.
E 17 IS A SING. MATRIX.

156

E 18 NON-REAL LOGICAL OPERATION.
E 19 INDEX OUTSIDE BOUNDS.
E 20 COMPLEX INDEX.
E 21 PROGRAM IDENT. MISSING.
E 22 ALPHABETIC LEFT SIDE.
E 23 RESTRICTED OPERATION.
E 24 TOO MANY ARGS.
E 25 A BAD ARGUMENT.
E 26 ARGUMENT IS NOT DEFINED.
E 27 FILE NOT DEFINED.
E 28 FI LE PREVIOUSLY DEFINED.
E 29 PROGRAM NOT DEFINED.
E 30 WRONG NUMBER OF ARGS.
E 31 OPS (COMPLEX) ARE LIMITED.
E 32 ZERO OR NEG. LENGTH. DEF.
E 33 SYSTEM FAILURE (OATA MAY BE LOST).
E 34 EXCEEDED CORE SIZE.
E 35 AN IMPROPER ARGUMENT.
E 36 WAIT.
E 37 BRANCH IS NOT DEFINED.
E 38 NO PROGRAM CARD.
E 39 NO FILE NAME.
E 43 . ARG. OUTSIDE ALLOWED BOUNDS.
E 44 NO UPPER FOR BOUND.
E 45 LOOP NOT ACTIVE.
E 46 MAX FOR DEPTH IS 10.
E 47 EITHER: INDEX IS ALREADY IN USE OR REAL PART OF A NON NUMBER.
E 48 INCR. WRONG SIGN.
E 49 DELTA IS ZERO.
E 50 INTERP ERROR IN LOADDATA.
E 51 REAL COMPLEX CONFLICT.
E 62 DEFINITION LARGER THAN .8000 WORDS.
E 63 PROG. TOO BIG.
E 64 NON REAL ARG.
E 65 TWO DIM. HORIZ ARG.
E 67 NON REAL ARG.
E 68 NO. ELS. DIFFER IN ARG LIST.
E 100 NON REAL ARGUMENT.
E 102 LENGTH CONFLICT BETWEEN ARGS.

Table 1. SPEAKEASY Error Messages

:I

,,.. .·

157

is generated. Again ARGN is the name of the Nth argument.

Once control is returned to the processor, the linkule

is logically disconnected from the processor. If this particular linkule

is used again, a fresh copy may be brought in. One should therefore

not assume that information set within a routine in one call will be

there on subsequent calls to the same linkule. If information is to be

retained, it should be stored in an area defined by use of the ICLRES

statement.

F. On Re usability

The dynamic link process . used in transferring control to

a linkule is a standard IBM facility. In attempting to transfer control

. by the s a-called link method, the routines previously linked are searched

to see if the desired routine is already available and usable. If it is

not found, then a copy is loaded into the machine from the appropriate

disk. This loading is a time-consuming operation. Calling a linkule in

a loop in SPEAKEASY could therefore be extremely expensive if the

linkule has to be repeatedly loaded. To avoid this, the link-edit step

should include marking each such linkule "reusable. 11 Unless a load

module is specifically marked as being reusable, it must be reloaded

for each use.

A reusable module can include no previously link-edited

parts that were not reusable. This is a somewhat bothersome feature

since Argonne and all other institutions thus far surveyed have marked

their FORT RAN library routines as being nonreusable. For this

reason (and others), a special set of FORTRAN library routines, called

CONS. LOAD in the examples, has been made available for constructing

linkules. The members of this .library are marked "reusable. 11

The library also serves to hold linkules to a manageable

size. FORTRAN library subprograms are designed to produce error

messages for badly defined arguments. Such error messages require

>:<Many of the subroutines in this library were supplied by
Dr. R. K. Nesbit.

158

that the complete FORTRJ\N input/output package be included in the

linkule. The result of including such a package is to increase the

minimum size of a linkule from 1K byt'es to 25K bytes, For the

reason alone, the special library (designed to eliminate error

mes sages) should be used when constructing linkules.

F. Sample Linkule s

This section is completed by showing a few of the

linkules currently in the SPEAKEASY library. They should be helpful

in understanding some of the specifics about how a linkule is actually

written.

159

//SCUMPROD JOB (F8(888,l,1,1),CLASS=A,REGION=210K
II EXEC SOS,LIB~PHYSICS .

- ~ •.//KE_EP DD DSN•PHYSICSP.LOAD,DISP=OLD ,,,__ ... - -
/,COMP I LE•H

FUNCTION MYWORD CANS,ITH,NOARGS,ICOL,ICOM,IDOM,ACC,
lARG,VAL,VALl,IVL,Kl,KL,NR,NC,NW,LOC,ALLOC,ICLRES)

IMPLICIT REAL•8 CA-H,0-Z)
DIMENSION VAL(l),VALl(l),IVL(l),ARG(l),Kl(l),KL(l),NR(l),

• lNC(l),NW(l),LOC(l),ALLOC(l)
c·
c\
c -
C SPEAKEZ LINKULE FOR THE OPERATOR "CUMPROD"
C Y = CUMPROD(X)
C RETURNS AN OBJECT Y OF THE SAME STRUCTURE AS X
C AND WHOSE N-TH ELEMENT IS THE CUMULATIVE PRODUCT
C OF THE FIRST N ELEMENTS OF X. TWO-DIMENSIONAL
C OBJECTS ARE TREATED ROW-BY-ROW.
c -
c

MYWORD = 0
CAN ONLY HANDLE REAL OBJECTS IN THIS IMPLEMENTATION •••

IF (I COM • NE. 0) GO TO 90 00
CHECK THAT THE INPUT OBJECT IS DEFINED •••

IF (LOC(l).EQ.O .AND. Kl(l).GE.O) GO TO 9001
CONFIRM THAT THERE WAS ONLY ONE INPUT ARGUMENT •••

IF (NOARGS .NE. 1) GO TO 9002
CHECKS PASS ••• SET LOOP LIMIT AND CLEAR SPACE FOR ANSWER •••

NLI MIT = NW Cl)
y = 1.0 .
LOCY = ICLRESCANS,Kl(l),KL(l),NR(l),NC(l))
LOCX = LOC Cl)

CALCULATE THE CUMULATIVE PRODUCT •••
DO 10 N = l,NLIMIT
Y = Y*ALLOCCLOCX+N-1)

10 ALLOCCLOCY+N-1) = Y
MYWORD = 1
RETURN

CAUGHT SOME INVALID INPUT .•. SET THE ERROR CODE .••
9000 ICOL=-31

COMFLEX OPERATIONS NOT AVAILABLE
RETURN

9001 ICOM=-1
CRUMMY ARGUMENT ••• IT IS NOT DEFINED

RETURN
9002 I COL=-24

CUMPROD TAKES ONLY ONE ARGUMENT ••• WAS FED MORE THAN ONE •••
RETURN
END

/~Ef P CUMPROD 'LIST,MAP,REUS,NCAL,LET'

160

llSCEONE JOB (F88888,l,l,l),CLASS•C,RF.n1nN=l&OK,MSnLFVEL=l,PRTY=L
II EXEC FTHCEP,OPTIONS='OPT=2,MAP',
II EDTOPTS='klST,MAP,LET,REUS',LSIZE='ClSOK,SOK)'
l/FTH.SYSIN DD *

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c

c

c

INTEGER FUNCTION ElLINK
& (ANS,ITH,NOARG,ICOL,ICOM,lnOM,ACC,ARG,VAL,VALl,IVL,KI,
u KL,NR,NC,NW,LOC,ALLOC,ICLRF.S)

IMPLICIT REAL*8 CA-H,0-Z)
DIMENSION VAL(30),VALl(30),IVL(30),ARG(30),Kl(30),KL(30),NR(30),

& NC(30),NW(30),LOC(30),ALLOC(30)
- -
THIS IS THE SPEAKEASY LINKULE FOR THE EXPONF.NTIAL INTEGRAL

EONE(X) = INTEGRAL(X,INFINITY) OT EXP(-T) IT

THIS ROUTINE EMPLOYS THREE SEPARATE RATIONAL APPROXIMATIONS
FOR EONE(X) FOR X IN THF RANGES O<X<l , l<X<4 ANO 4<X<l70 •

IF X>l70 THIS ROUTINE SETS EONECX)=O WITH Nn ERROR MF.SSAr.E
THE SPEAKEASY WORD IS EONE(X) WHEqE X IS A REAL

VARIABLE OF ANY STRUCTURE.
THE RATIONAL APPROX1~1ATIONS WERE DEVELOP~D RY W.J. CODY OF
THE ARGONNE NATIONAL LABORATORY APPLIED MATH n1v1s1nN.

REFERENCE: W.J. CODY ANn H.C. THATCHER JR.
"RATIONAL CHEBYSHEV APPROXIMATIONS FOR THE EXPnNENTIAL
INTEGRAL El(X)" MATH COMP 22 (lqfiR)

ARNIE OSTEREE AND FRANK SF.~OUKF. 3122172 - - - - - - - - - - - - - - - ~ - - - - - - - - - - - - -
DATA STATEMENTS FOR CONSTANTS IN THE RATIONAL APPROXIMATIONS
DATA AOIZC093C467E370ROC8/ , AllZ40CllOE996FE317R/
DATA A2IZ402130CCA00570EOI , A3IZ3F629544F2457AA6/
DATA A4IZ3E569nllE23A2DC8/ , A5/Z3D44F80ERCER91CFI
DATA BOIZ4110000000000000I , BllZ405007BAC4D0~4Fq/
DATA B2IZ40146r6nGE730856/ , B3IZ3F2201SnF897CE r. tl
DATA B4/Z3E1FEOE4A6BA9AF71 , BSIZ3CnB33FAB422ElDAI
DATA COIZ3Bl74B1AD3E2E26GI , CllZ4nFFFFR403RBC73n/
DATA C2IZ41BD92AE16CR35qo1 , C3/Z422n970311F7408ll
DATA C4IZ424SE08DCFDnF7F2/ , C5IZ422A852COE1R7B8CI
DATA CG/Z418DG332Rl818C4SI , C7IZ4066COAFC8430717/
DATA DO/Z4110000000000000I , Ol/Z41C0~2336320GBCCI
DATA D2IZ4238717F076R3FA31 , n3/Z426A~S2AC377ROABI
DATA D4IZ4259RB2A019llqq51 , 05IZ421F7F4782BEC4CF/
DATA OGIZ413CBABCqE8qB4781 , n7IZ401743FlOE4FE979/
DATA EOIZCOFFFFFFFFFFF884I , ~1/ZC222fi7FCBOC305CFI
DATA E2IZC31AB885023000Fnl , E3/zc3q5co4F9Rfin432FI
DATA E4/ZC41818DA23430F90I , E5/zr41qao18n42RE7A2/
DATA E6IZC383Al3CE9021BEAI , E7IZC1EF62A6F33R4~A~I
DATA FOIZ4llOOOOOOnononon1 ' FllZ422467FCBOC2F.~OFI
DATA F2IZ431EESP.5685725C3/ , F3/Z43C7645RASC7422F./
DATA F4IZ~428611347~C61CF/ , FSIZ443FC42535094A4nl
DATA FGIZ442R8DC67q374D02/ , F7/Z4394A2394EA643R21
ElLINK = 0

CHECK TO SEE THAT THFRE IS ONLY nNE AR~UMENT
IF (NOARG .Nr. 1) r,n TO 9nn1

CHECK IF ARGUMENT IS DEFINEl1 .••
IF (LOC(l).EQ.O .ANl1. Kl(l).GF.O) r,o Tn 9001i

AND SEE THAT THE ARGW1ENT IS NOT COMPLEX
IF (ICOM .NE. 0) GO TO gnnr~

161

C MAKE SPACE FOR THE ANSWER
LOCANS = ICLRESCANS,IABS(Kl(l)),KL(l),NR(l),Nr,(1))
LIMIT = NR(l)•NC(l)

C -- LOOP ON THE ELEMENTS OF THE INPUT VARIABLE
DO 500 INDEX = 1,LIMIT
I F. (KI Cl) • LT. 0) r, O TO 5 0
X = ALLOC(LOC(l) - 1 + INDEX)
GO TO 100

50 X = VALCl)
100 IF (X .LE. 0.000) GO TO 9002

IF (X.GT.l.00) GO TO 200
C -- RATIONAL APPROXIMATION FOR O<X<l

EONEX=(((((A5•X+A4)•X+A3)•X+A2)•X+Al)•X+AO)/
1 CCCCCBS•X+B4)*X+83)*X+B2)*X+Bl)*X+BO)
2 -DLOG(X)

GO TO 500
C -- FOR X > 170 SET EONE=O
C -- RATIONAL APPROXIMATION FOR l<X<4
200 W=l.DO/X

Y=DEXP(-X)
IF (X.GT.4.DO) GO TO 300
EONEX=Y*(((((((C7*W+C6)•W+C5)•W+C4)•W+C3)•W+

1 C2)*W+Cl)•W+C0)/(((((((07•W+On)•W+ns)•
2 W+04)*W+D3)•W+02)*W+nl)*W+no)

GO TO 500
C -- RATIONAL APPROXIMATION FOR 4<X<17n
300 IF (x .GT. 170.noo) GO TO 400

EONEX=W*Y*(l.DO+W*(((((((E7*W+E6)*W+E5)•W+E4)
1 •W+E3)•W+E2)*W+El)*W+EO)/(((((((F7*W+F6)•W
2 +F5)•W+F4)•W+F3)•W+F2)•W+Fl)•W+FO))

GO TO 500
400 EONEX = O.O
500 ALLOC(LOCANS+INDEX-1) = EONEX

ElllNK = 1
RETURN

C ----- ERROR RETURNS
C -- TOO MANY ARGUMENTS
9001 I COL = -24

RETURN
C -- ARGUMENT OUTSIDE ALLOWEO BOUNDS
9002 !COL = -43

RETURN
C -- ARGUMENT IS NOT DEFINED
9003 I COM=-1

RETURN
C -- COMPLEX ARGUMENT NOT ALLOWED
9 004 ICOL = -31

RETL1R~'
END

/*
//EDT.SYSLIB OD OISP=SHR,OSN=CONS.LOAn
//EDT.SYSPVT on DISP=OLO,DSN=PHYSICS.LOAO,UNIT=2314,VOL=SF~~DISK57
//EDT.SYSIN no *

ENTRY ElLINK
NAME EONE(R)

162

II. ONE GENERALIZED LINKULE INTERf ACE

by

S. Cohen, R. N. Kimmel, and F. J. D. Serduk.e

Only moderate effort is required for a skilled FORTRAN

programmer to learn the technique of interfacing functions to

SPEAKEASY, but even this effort can be substantially reduced for

certain classes of FORTRAN programs by writing interface routines.

The following is a description of a LINKULE interface for the class

of FORT RAN routines satisfying the following restrictions. (1) They

are FUNCTION subprograms, i.e., they return a single number.

(2) All arguments in the calling sequence are scalars. No dimension e d

variable may appear in the argument list. (3) All transfer of information

is through the argument list; no information is transferred through

COMMON areas.

If all of these r.equirements are satisfied, an interfac e

to such a function is almost trivial. An example of such an interface is

given below. This small interface routine together with the FORTRAN

program in question are compiled, link-edited with another special

routine, and then saved as a LINKULE in an appropriate library.

Many commonly used functions satisfy these restrictions and

consequently are simple and straightforward to include in SPEAKEASY.

In addition to saving labor, this proc e ss has the advantage of

automatically providing the standard SPEAKEASY conventions for the

handling of structured arguments that may be used in the SPEAKEASY

call.

This standard treatment of structured arguments is called

the HIGH-WIDE convention; it is easy for SPEAKEASY users to

remember and permits the user to avoid the use of l oops in calculation

involving such functi ons. This HIGH-WIDE c onvention re~a t e s to the

forms of acceptable cornbinations of the structured arguments involved

in the SPEAKEASY call and the definition of the structure of the

answer.

If the SPEAKEASY statem e nt

163

is to invoke a LINKULE that follows the HIGH-WIDE convention, the

arguments in the call are to be considered "compatible" only if (1) the

height (number of rows) of each object in the argument list is either

1 or some constant value NHIGH and (2) the width (number of columns)

of each object in the argument list is either 1 or some constant value

NW IDE.

The resulting object defined by the statement will .be an

object with NHIGH rows and NWIDE columns. The values of its

elements will be those corresponding to a repeated call to the FORTRAN

routine with combinations of arguments generated by expanding each

argument, if needed, into an NHIGH-by-NWIDE object. The structure

of the resulting obje.ct is determined by the following rules. (1) If all

objects are scalars, the answer is a scalar. (2) If no two-dimensional

objects appear but at least one one-dimensional object appears in the

argument list, the answer will be one-dimensional. Furthermore, one­

dimensional arrays take precedence over vectors in the determination

of the structure of the result. (3) If any two-dimensional object appears

in the argument list, the answer will be of the same structure; and again

two-dimensional arrays take precedence over matrices. (4) If both

one- and two-dimensional arguments appear, the one-dimensional

arguments are treated as column-like objects. The structure of the

result will be two-dimensional and will follow rule 3.

These rules may be summarized by saying that (a)

the two-dimensional form takes precedence over the one-dimensional,

(b) the one-dimensional form takes precedence over the scalar, and

(c) for the same number of dimensions, the array form takes

pr e cedence over a matrix or vector form.

The treatment of a given object in an argument list

depends on the structure of other arguments; the "effective

represe~tatic:::i 11 of an argument may be viewed as an expansion of

its structure so that all objects in a particular argument list have

164

the same structure. AssUine that the result is to be a HIGH-by­

WIDE array. Then (1) a scalar argument is expanded into a HIGH­

by-WIDE array with each element equal to that scalar, (2.) a column

array (or matrix) is expanded into a HIGH-by-WIDE array (or

matrix) with all columns equal (and, for purposes of this expansion,

the convention is that one -dimensional arrays and vectors are treated

as columnar structures), (3) a row array (or matrix) is expanded

into a HIGH-by-WIDE array (or matrix) with all rows equal, and (4) a

two-dimensional HIGH-by-WID~ object is its own effective

representation.

As a specific example, let HIGH = 2. and WIDE = 3.

Then the effective representation for the scalar 8 is

(8 8 8) 8 - 888 I

that of a column array (or 1-dimensional array) is

that of a row array is

(
2.46)

(246) - 2.46

and th.at of a 2-dimensional array is

(1 3 5)- (1 3 5).
420 420

As an example of a generalized linkule interface,

suppose BUDDY is the name of a FORTRAN function routine whose

calling sequence in FORT RAN is ·

X = BUDDY (A, B, I)

16 5

where A, B, and I are all numbers. Then this routine can be

interfaced to SPEAKEASY by the technique shown below and can be

as signed any name as its SPEAKEASY representation. Let us

choose BUD as this name. Then the SPEAKEASY statement

X = BUD (3, 5, 9)

will function in exactly the same manner as the FORTRAN statement.

{Only scalar arguments are used in both cases.) Similarly, the

sequ ence

A= ROWARRAY (2: 1, 2); B = COLARRAY (3: s,·6, 7); X=BUD {A, B, 0)

is equivalent to

where X will be a .two-dimensional array whose elements are

[

BUD (1, 5, 8)
BUD (1, 6, 8)
BUD (1, 7, 8)

BUD (2, 5, 8)]
BUD (2, 6, 8)
BUD (2, 7, 8)

How do .ve actually write the interface to the FORTRAN

program BUDDY and create the SPEAKEASY linkule BUD? First

we write a FORTRAN program with two entries: FLINK and

NUMARG. The entry NUMARG returns the valid number of arguments

in the SPEAKEASY call and FLINK returns the functional value for a

give n set of input parameters. The floating-point and integer values .

of the se parameters come in through the arrays X and IX. For

exam ple:

166

FUNCTION FLINKCX,IX)
IMPLICIT REAL•8 CA-H,O-Z)
DIMENSION X(l),IX(l) - - - - - - - - - - - - - ~ - - - - - - - -c - '!"

c X(I) AND IX(I) ARE THE FLOATING-POINT AND INTEGER
VALUES RESPECTIVELY OF THE I-TH ARGUMENT IN THE
SPEAKEASY CALL

c
c
c

c
c
c
c

FLINK a BUDDYCX(l),X(2),IX(3))
RETURN
ENTRY NUMARG(IDUMMY)

THIS ENTRY RETURNS THE VALID NUMBER OF ARGUMENTS
IN THE SPEAKEASY CALL

- -
NUMARG • 3
RETURN
END

This routine is to be compiled with the user subroutine

BUDDY. It must be link-edited with a routine called LINKIT; the

resulting load module is to be saved in an appropriate library and its

member name in the library is the one assigned to the SPEAKEASY

operator-in this case, BUD.

Appendix I shows the form of a job to be used to

create such a LINKULE in the Argonne Physics Library. This is

particularly simple because of the SOS capabilities in the Argonn~

system. New linkules should be created in a private library such as

the Physics library and fully debugged there. Before such a linkule

is introduced into the communal library, it must be validated and

documented.

Appendix II is a listing of the source deck for the

generalized interface routine LINKIT. This routine is contained in

the library CONS. LOAD, w hi.ch normally is available at SPEAKEASY

installations; or its source deck can be reproduced from this listing.

167

Appendix III is a complete listing of a job specification

to create the linkule for the evaluation of e -AX*SIN(M*X} as a function

of A, M, and X. This function has been named FUN(A, M, X) for

SPEAKEASY use.

Appendix IV shows the deck used to operate with the

linkule created by the job shown in Appendix III. Note that the privat~

library PHYSICS. LOAD has been attached to the system for this run

by means of the I /LIB card and the card defining LINKLIB in the

SPEAKEASY run.

Appendix V is the output from a SPEAKEASY run using

the indicated function in a variety of ways. This is the result of the

job shown in Appendix IV.

168

APPENDIX I. Job Specification to Create a New Linkule

A job specification to create a new linkule at Argonne

should be in the form illustrated below. This linkule is created in the

Physics library (not the SPEAKEASY link library). New linkules should

not be placed in the link library until they are validated and documented.

The job-control language for this run is particularly simple because of

the SOS capabilities a~ailable in the Argonne system.

//MYJOB JOB (F88888,l,l,l),CLASS=A,REnloN=200K
II EXEC SOS
//KEEP OD DSN=PHYSICS.LOAO,DISP=OLD
//SYSLIB OD DSN=CONS.LOAD,OISP=SHR
/COMPILE•H

-·--> FORTRAN source for the FLINK

----> FORTRAN source for the BU ODY

/KEEP BUD 'MAP,LIST,LET,REUS'
INCLUDE SYSLl~(LINKIT)
ENTRY LINKIT

program goes

program goes

here

here

169

APPENDIX II. FORTRAN Source Deck for LINKIT

The FORTRAN source deck for the generalized interface

routine LINKIT is listed in this appendix. It is applicable to SPEAKEASY

linkules that are scalar functions of scalar variables. The HIGH-WIDE

argument convention is built into this interface.

c

170

FUNCTION LINKIT
lCANS,ITH,NOARGS,ICOL,ICOM,IDOM,ACC,ARG,PARAM,PARAMI, IPARAM,
2Kl.ND,KLAS,NHIGH,NWIDE,NOELS,LOC,ALLOC, ICLRES,IQUERY,IFREE)

IMPLICIT REAL•B (A-H,0-Z)
c -·-·-·-·-*-·-·-~-·-*-*-*-*-*-•-*-*-•-*-•-*-•-•-*-*-*-·-·-·-
c
c
c
c
c
c
c
c
C ,
c
c

c

SPEAKEASY GENERALIZED INTERFACE FOR LINKULES THAT ARE
SCALAR FUNCTIONS OF SCALAR VARIABLES. THE HIGH-WIDE
ARGUMENT CONVENTION IS BUILT INTO THIS LINKULE.

THIS ROUTINE IS USED RY WRITING A· SUBROUTINE WITH
TWO ENTRIES (1) FLINKCX,IX) AND (2) NUMARGCIDUMMY)
NUMARG RETURNS THE NUMBER OF ARGUMENTS IN THE SPEAKEZ WORD
FLINK IS A FUNCTIONAL ENTRY THAT RETURNS THE FUNCTION TO

BE EVALUATED AS A FUNCTION OF THE SPEAKEZ ARGS THAT
ARE CONTAINED IN THE ARRAYS X ANO IX •

DIMENSION ANS(l),PARAM(l),PARAMl(l),IPARAM(l),ARG(l),KIND(l),
1 KLAS(l),NHIGH(l),NWIDE(l),NOELS(l),LOC(l),ALLOC(l) .

INTEGER HAXSIZ/32000/
c --INTEGER*4 ANKLAS,HEIGHT,WIDTH,TALL(30),FATC30)
c --c

LINKIT=O
HEIGHT•l
WIDTH=l
ANKLAS=O
INDEXA=O

c -
C PHASE O: IS THE NUMBER OF ARGUMENTS IN THE SPEAKEZ CALL CORRECT?
c -
c

c
c -
c
c -
c
c

IF (NOARGS .NE. NUMARGCO)) GO TO 9003

PHASE I: DETERMINATION OF THE STRUCTUR~ OF THE ANSWER

DO 5 N=l,NOARGS

C FIRST TEST IF N-TH ARGUMENT IS OEFINEn
IF (LOC(N).EQ.O .AND. KIND(N).GE.O) GO TO 9004

c
C SET UP SIZE AND DETERMINE CLASS OF ANSWER

c

IF (NWIDE(N) .GT. WIDTH) WIDTH = NWIDE(N)
IF (NHIGH(N) .GT. HEIGHT) HEIGHT= NHIGH(N)
IF (KLAS(N) .GT. ANKLAS) .ANKLAS= KLAS(N)

C SET ROW AND COLUMN LOOP SWITCHES

c

c

FAT(N) = 0
I F (NW I DE (N) • GT • 1) FAT. (N) = 1
TALLCN) = 0
IF (NHIGH(N) .GT. 1) TALL(N) = 1

5 CONTINUE

. . ·.·

c
c
c -
c
c

c

c

171

~ - - -
PHASE II: ERROR CHECKS . . .

- - -.
TEST IF THE RESULTING STRUCTURED OBJ~CT WILL BE TOO LARGE

IF C HE I GHT•WI DTJi • GT. MAXS I Z) GO TO 9002

DO 10 N•l,NOARGS

C IS THE N-TH ARGUMENT ANYTHING BUT A REAL NUMBER?
IF (IABSCKINDCN)) .NE. 2) GO TO 9000

C TEST FOR INCOMPATIBLE DIMENSIONS
C BUT BYPASS TEST FOR AN IN-PLACE DEFINITION

c

IFCKIND(N).LT.0) GO TO 10
IFCNWIDECN).NE.l.AND.NWIDE(N).NE.WIDTH) GO TO 9001
IF(NHIGH(N).NE.l.AND.NHIGH(N).NE.HEIGHT) GO TO 9001

C TEST IF BOTH MATRIX AND 1-D ARRAY INPUT
C OUTPUT WILL BE A MATRIX

IF (ANKLAS.EQ.S .AND. KLAS(N).EQ.2) ANKLAS • 2
c

10 CONTINUE
c
c--~-c
C RESERVE ALLOCATOR SPACE AND DEFINE THE STRUCTURE OF THE ANSWER

LOCANS = ICLRES (ANS , 2 , ANKLAS , HEIGHT, WIDTH)
. c
.c--c
c - - - - - - -
C PHASE I II: DECOMPOSITION OF STRUCTURED INPUT FOR FORTRAN CALL
c - - - - -
c

c

DO 20 l•l,HEIGHT
00 20 J=l,WIDTH

DO 15 N=l,NOARGS

C IF N-TH ARGUMENT IS A SCALAR OR AN IN-PLACE DEFINITION
C BYPASS I ND EX I NG •••••

IF(KIND(N).LE.O) GO TO 15
c
C HERE DEAL WITH STRUCTURED ARr,UMENT

c

c

INDEX=CJ-l)•FATCN)+(l-l)•TALL(N)•NWIDE(N)
PARAMCN)=ALLOC(LOC(N)+INDEX)

15 CONTINUE

C IN CASE INTEGER ARGUMENTS ARE NEEDED
no 16 N=l,NOARGS

16 IPARAM(N)=PARAM(N)+DSIGN(ACC,PARAM(N))

172

c
c *******************************~********************
c
C CALL TO THE USER-WRITTEN FUNCTION 'FLINK'
C WITH THE REAL ANO INTEGER VALUES OF THE
C ARGUMENTS .
c

ALLOCCLOCANS+INDEXA) = FLINKCPARAM,IPARAM)
c **
c
c

c

c

c
c

INDEXA II INDEXA+l

21 CONTINUE

LINKIT=l

30 RETURN

c --c ERROR RETURNS
c

9000
c

ICOL=-100
SOME ARGUMENT NOT A REAL NUMBER
GO TO 30

c
9001 ICOL•-102

C INCOMPATIBLE DIMENSIONS
GO TO 30

c
9002 ICOL•-62

C OVERSIZE OUTPUT ••• ALLOCATOR CAN'T HANDLE IT
GO TO 30

c
9003 ICOL 11 -30

C INCORRECT NUMBER OF ARGUMENTS IN SPEAKEZ CALL
GO TO 30

c
9004 I COMc:-N

C N-TH ARGUMENT IS NOT DEFINED
GO TO 30

c
c --c

END

173

APPENDIX III. Job Specification Submitted to Argonne Computer

The new linkule called FUN was introduced into the private

library PHYSICS. LOAD. This linkule was designed to evaluate e -AX sin(MX)

and to act according to the generalized •rules described in this report.

//MYJOB JOB (F88888,l,l,l),CLASS•A,REGION•240K
/•PROCESS MAIN
/•PROCESS RSOUTlO
I I EXEC SOS
//KEEP DO DSN=PHYSICS.LOAD,OISP•OLO
//SYSLIB 00 OSN=CONS.LOAO,OISP•SHR
/COMPILE•H

FUNCTION FLINKCX,IX)
IMPLICIT REAL•S(A-H,0-Z)
DIMENSION XCl),IX(l)
FLINK•EVALCX(l),IX(2),X(3))
RETURN
ENTRY NUMARGCIDUMMY)
NUMARG=3
RETURN
END
FUNCTION EVAL CA,M,X)
IMPLICIT REAL•8 CA-H,O-Z)
EVAL•OEXPC-A•X)•OSINCM•X)
RETURN
ENO

/KEEP FUN 'MAP,LIST,LET,REUS'
INCLUDE SYSLIBCLINKIT)
ENTRY LINKIT

_APPENDIX IV. Deck to Operate with Routine FUN

The foUowing is the complete deck to run SPEAKEASY

and to use the linkule FUN created in Appendix III. Note the use of

the private library.

//MYSPEAK JOB (F88888,l,1,1),CLASS=C,REGION•220K,PRTY=L
/•PROCESS MAIN
/•PROCESS RSOUTlO
II EXEC SPEAKEZ
//LIB OD OSN=PHYSICS.LOAO,DISP•SHR
SIZE•lO
LINKLIB•'LIB'
X=S
Y=7
$ --- CALL THE NEW FUNCTION 'FUN' WITH SCALAR AND INPLACE ARGS •••
FUNCX,3,Y) '
$ --- CALL THE NEW FUNCTION WITH ARRAY AND SCALAR ARGUMENTS
X = GRIDC0,2.4,.2)
NEWFUNC•FUNCX,3,X)
TABULATE(X,NEWFUNC)
$ --- EXAMPLE OF HIGH-WIDE CONVENTION FOR INPUT ARRAYS ••••
X=ARRAYC4,1: 1 2 3 4)
Y=ARRAYCl,3: 1 2 3)

.FUNCX,6,Y)
$ --- EXAMPLE OF INCOMPATIBLE INPUT ARRAYS •••
X•l 2 3
Y=l 3 4 5 6
FUNCX 2 Y)
$ ---- EXAMPLE OF INCORRECT NUMBER OF ARGUMENTS •••
FUNCX,6)
$----EXAMPLE OF UNDEFINED ARGUMENT •••
FUNCX~6,NOTOEF)

175

APPENDIX V. Output of Run with Linkule FUN

The output generated by the deck listed in Appendix

IV is shown below. This illustrates the variety of ways in which

the linkule can be used and shows the automatic built-in error

messages that result from using the standard interface.

SPEAKEASY 3C 11:16 PM 10/22/72
INPUT ••• LINKLIB•'LIB'
IN PUT ••• Xa5
IN PUT ••• Y=7
INPUT ••• $ --- CALL THE NEW FUNCTION 'FUN' WITH SCALAR AND INPLACE AR~S •••
INPUT ••• FUNCX,3,Y)

FUNCX,3,Y) • 5.2752E-16
INPUT ••• $ --- CALL THE NEW FUNCTION WITH ARRAY AND SCALAR ARGUMENTS
INPUT ••• X • GRID(0,2.4,.2)
INPUT ••• NEWFUNC•FUNCX,3,X)
INPUT ••• TABULATE(X,NEWFUNC)

X NEWFUNC
0 0
• 2 .5425
.4 .79423
.6 .67943
.8 .35617
1 .051915
1.2 -.10485
1.4 -.12277
1.6 -.077008
1.8 -.030264
2 -.0051177
2.2 .0024634
2.4 .0025009

INPUT ••• $ --- EXAMPLE OF HIGH-WIDE CONVE~Tl-ON FOR INPUT ARRAYS ••••
INPUT ••• X•ARRAYC4,l: 1 2 3 4)
INPUT ••• Y=ARRAY(l,3: 1 2 3)
INPUT ••• FUNCX,6,Y)

FUN(X,6,Y) (A 4 BY 3 ARRAY)
-.10279 -.072617 -.037389
-.037815 -.0098277 -.0018615
-.013911 -.00133 -9.2679E-5
-.0051177 -1.8E-4 -4.6142E-6

INPUT ••• $ --- EXAMPLE OF INCOMPATIBLE INPUT ARRAYS •••
I N PUT ••• X = 1 2 3
INPUT ••• Y=l 3 4 5 6
INPUT ••• FUN(X 2 Y)

IN STAT. 11 FUN(X 2 Y) 11 LENGTH CONFLICT BETWEEN ARGS.
INPUT ••• $---- EXAMPLE OF INCORRECT NUMBER OF ARGUMENTS •••
INPUT ••• FUN(X,6)

!N STAT. 11 FUN{X,.6) 11 WRONG NUMBER OF ARGS.
INPUT ••• $---- EXAMPLE OF UNDEFINED ARGUMENT •••
INPUT ••• FUN'(X,6,NOTDEF) .

NOTOEF IS NOT DEFINED IN STAT. 11 FUN(X,6,NOTDEF) 11

* • * * * ~
CORE USED 1 K NOW, 1 K PEAK, ALLOCATED 10 K

*

PART FOUR

The SPEAKEASY HELP Documents

by

J. K. Fink

Preceding page b\ank

177

178

I. INTRODUCTION

•
The user of an interactive language such as TSO

SPEAKEASY needs a means of quickly determining the operations

available to him and of easily learning to use particular features.

To fill this need, a special library named HELP has been created

and attached to all SPEAKEASY processors. The HELP library

consists of concise documents that describe each word of the

SPEAKEASY language. The interactive user may obtain each

document by a simple command from his terminal.

The growth capability of SPEAKEASY has created

difficulties in formally documenting all new features as rapidly as

they are added. Since the HELP documents are available to all

SPEAKEASY processors and thus readily access:j.ble to all users,

they have become the primary method of documentation of new

features. This report collects the currently available SPEAKEASY

documents in· easily read form.

Sec .. II consists of an index to the words described

in the HELP documents. Each entry in the HELP library is given q.

reference name consisting of eight characters. The reference name

is usually identical to the name used in the SPEAKEASY processor.

If the SPEAKEASY word being described is more than eight characters

in length, the reference name consists of the first eight characters.

Short one-line definitions of the words in the HELP

library are given in Sec. III. These one-line definitions are the

first line of each HELP document. Each line contains the word being

defined, its argument(s), and a brief definition.

The organization of the HELP documents is described in

Sec. IV. It is a tree structure designed so that the user can easily

learn the SPEAKEASY words related to a specific topic. The 11 trunk11

of the tree; shown at the left in a diagram at the beginning of the

179

section, consists of the word HELP. HELP refers the user to the first

levels of classification, which form the five branches of the tree and

also refers the user to the tutorial to learn how to use S~EAKEASY,

to NEWS which lists new features, to BUGS which gives current errors,

and tells the user how to leave the SPEAKEASY processor. The

document for HELP is given alone at the beginning of the section.

The HELP tree branches into five main classes. Each

of these five classes branches into subclasses (one group of five sub­

classes branches into further subclasses) and then the branching

terminates in the SPEAKEASY words. The five major classes are

INOUT, MATH, MISCELLANEOUS, OBJECTS, and PROGRAMS.

The listing of the document for each class is followed immediately

by the documents for the subclasses under it, etc. Each branch is

followed to completion before a new branch is begun. The beginning

of each new branch is on a new page so it is easy to locate major

classifications and to quickly learn the subclasses.

All classes, subclasses, and SPEAKEASY words are listed

in alphabetical order to facilitate finding a particular class, subclass,

or word. Each subclass and SPEAKEASY word is explained briefly

unless the meaning is obvious. If the user desires further information

about a particular word, he can refer to the specific HELP document.

The last section consists of the HELP documents

themselves. Each document begins with the word being described

and gives a concise definition of the word, including all possible

SPEAKEASY calls. The word being defined and its arguments are ·

capitalized throughout the document so that they may be easily located.

Most documents are structured in levels; each paragraph gives great~r

detail than its predecessor so an inter.active user can halt the printi~g

of a document at any point by hitting the break key (the attention key

on an IBM-2741 terminal). Whil.e the documents are brief and do not

go into great detail in describing a word, they give sufficient informa-.

tion to enable a user who is unfamiliar with a feature to employ that

180

feature after reading the appropriate HELP document. For the user

interested in further information, the HELP documents refer to longer

and more detailed documents if such documentation exists and is readily

available.

In the program that generated the computer printout

of these documents, the subprogram PRREAD, written by Dr. Steven

Pieper, was used. In addition, Dr. Stanley Cohen gave many helpful

suggestions which were used in writing the HELP documents.

181

II. SPl< AKEA~;y WORDS DEFINED IN THE HELP DOCUMENTS

1' her•• a r<' 100 HF.I.P 1loc11m"nts

A llS CON STRA T EN OA TITOP INTF.G l'lATH OMIT CLAS ROW 11AT SY!'IM AT
fl LT fl RllCY C('INT! NlJF. F.NDLClOP INTEGEPS l'lATRlCES ONEDI!HU ROWl'lA X TABULATE

·' ,:o c; CONV fRT F.ONE INTP.GRAL l'IATlH X ON ERROR BOW P'1N TAN
~ (. 01' CllPY EQ INTl::GRAT l'I ATR IX DE OR RUN Til'lE
fl '1D\.PAPl1 C1 1 S ERF INTP.RP l'lATRIXOP ORDERED SELECT TOT ALI NT

• flJl,lOI N'T' COSH ERFC INTERPOL l'lAX ORDERER SETGAUSS TOTI NT
HAM cnT ERTlOkS IN'Il'ART l'IAXOFCOL OTHERS SET IN FIN TRACE
fl '.1A1' l 'REllTF F.XEC!lTE INTS l'l AXOFROW O!JTPtlT SETJACOB TRANSFAl1
AND l'RE"TF'1E F.XP INT2 rrnLo PAllSf' SETI.AGUE TRAN ST'
fl'JCV:'.~ CIJMPRPll FIN TNT4 MFAl'l Pl.OT SYM B SETLEGl::N TRA NSPOS
Al fl.!\ Y CUMS !JM FOR INVERSf! IHN HCTTITL SET LIA TRIG
ARR A Y ~; 1 OAT/I FR.AC K EF.P 11INOFCOL PRINT SETNIJLL TUTORIAL
APR JI Y :;) Df.1"\llGG IN FRACPART Kl:'. PT MINOFROW PRTNTCLA SET PLOT TWODIM FU
llRRAY.1 11 DEC fREE LAB FL l'IISCELL A PROCL IB SIGN UMAT
.!\') f N PF.F!NEA1 GAMMA LE l'IOV! PROD SIGNIFlC UNITMAT
ASYl'l'1A1' f'IEFINF.A2 GE LENGTH 11 Y DO CS PRODCOLS SIMEQ UPT'ERTRI
r.T AN nn ETE GE!r.f.N LIBTNDF.X 11YHELP PIWD ROWS SIN USE
J\ :JTOCPfiF. DP.RIV GO LI EN AM F.S MYKEEP PRODllCTS SINGLF.VA USE ME MBF.
A11TOPFTN OF.RIVA TT GOTO LI BRA IH E MYKF. PT PROG RA 11 STNH VARIABI.E
A'.li'OTT>l3 OET GRAPH LTBRARYN MYL INKS PROGRAl1M SIZE VEC
.W FR A (; E DH<~ ELS <;RAPHTCS LINKLIB MY PRCCS PROGRAMS SMAT VECTOR
~ 1 j) DT AGl'OT GRID L TNKU LES NAMF.S PIJNCR SORT VECTORDE
A7D D~AT GT LIST NE QUIT SPACE VECTORS
RF.SS FL [)0Cll l"I ENT HF.LP LIST!IEAD NEUMANN RANDOM SPECIAL VERSIONS
BF.SSF.LK DOIU IN HENCEr'OR LTSTMEMA NEWGRAPH RANKED S PH BES VFAM
!Ill GS DONTt.IST HIF.Rl\RCH LISTPROG NF.WP AG P. RANK ER SPHBESN VLABEL
C<~ A:"I MA DO!JAL F.fA HIG HWI Of. LOAOOATA NEWS RATIONAL SQRT VOCABULA
CLEAF DUf'IP HIWIDE toe NOCOT.S READ STOP VSCALE
CL F.A lW AT f.\HO HLABF.L LDC MAX NOECHO REAL STRUCTUR VSIZE
COLARPAY F.MT HS CALF. LOCMIN NOELS REAL PART SUM WHERE
COL MAT EDITMODF. HSIZE LOCS NO RATION REAL4 SUMCOLS WHEREVER
COIMAX F.IGENSYS IF LOG NO ROOTS RF.AL 8 SUM PROD WHOLE
COLI'! IN EI GEN VAL IMA 1; LOG GAMMA NOROWS RECLASS . SU MROWS WRITE
l 'OLW IDTH ETGENVEC IMA. ,-; PART LOGIC NOT RESTRICT SUI'! S ZEROS
!'O l'IMANDS EL El'l ENTA I NO UT LOWF.RTRI NOZEROS RES U 11 E SU MS Q
1·n MPTI.E rn LI P'F INPUT LT Ntll1 BERS RETURN SUMSQCOL
l.: ON,l ELLIPK TN PUTS l'lA'RGINS OBJECT ROOTS SO MSQROW
CO NJllG AT END I NS ERT ~AT OBJECTS ROWARRAY SYMBOLS

182

III. ONE-LINE DEFINITIONS OF THE SPEAKEASY WORDS

Date: 5/25/73

~.BS (X) returns the absolute value of X.
ACCURACY (VAL) specifies the smallest number not to be t.aken as zero.
ACOS(X) ~efines the arccosine of X.
ACOT(X) defines the arccotangent of x.
A DDGRAPH (I :J) plots I VP.rs us J on the previous graph.

AD,lOINT(lC) gives the adjoint of the matrix x.
HAM (X) defines a member of the array family.
AMAT is a synonym for ASYMMAT •
• AND. is the logical operator "and".
ANGLES specifies whether the user is usinq radians or degrees.

ARRAY (N:) defines a 1-dimensional N-component array.
AFRAYS1 arP. words dealing with 1-dimensional arrays.
AFRAYS2 are words ~ealing with 2-dimensional arrays.
ARRAY2D(N,M:) defines a 2-dimensional N-by-M array.
ASTN(X) defines the arcsine of X.

ASYMMAT(N:T,J, .•• ,K) d~fines an N-by-N antisymmetric matrix.
ATAN(X) defines the arctangent of X.
AUTOCORE specifies that the data storage space is in LCS.
AUTOPRTNT(X,Y, ••• ,Z) prints X,Y, ••• ,z each t.ime they are redefined.
AUTOTAB specifies uniform column width for pr~ntout.

AVERAGE (X) returns the average value of the elements of X.
A1D(N:) defines a 1-dimensional array.
A2D is a synonym for ARRAY2D.
BESSRL(NU,X) calculates cylindrical Bessel fn. of the first kind.
B ESSELK (NU, X) returns the modified Bessel function K of X.

aur.s are the current buqs in SPEAKEASY.
CG~.!1MA (X) returns the gamma funct.ion of X (X is complex).
CLfAR erases the entire active data storage.
CLFAROATA frees all previously defined numerical data.
COLARRAY(N:) defines a 2-dim. N-component column array.

COLMAT(N:) defines an N-by-1 mat.ri~ which is a column.
COLMAX(X) specifies the column with the maximum element of X.
COLMIN (X) specifies the column with the minimum element of X.
COLWIDTH(N) specifie5 the minimum·column width to be used in printinq.
COMMANDS are words that are commands in SPEAKEASY.

183

rh~ First Lines Of The SPEAKEASY HELP Documents Date: 5/25/7 3

COMPILE returns the processor to the MANUAL mode from EDIT.
CONJ is a synonym for CONJUGATE.
CONJUGAT E (X) returns the complex conjugate of X.
CO~STRAIN(A,B, ••• ,C:X) constrains A,B, ••• ,c according to condition X.
CONTINUE usad in the program mode causes no operation to be performed.

CONVP.RT are words used for numerical conversions.
COPY N,11,K(I) copies statements N through M to K,K+I,K+2I, •••
COS(X) returns the cosine of X.
COSH(X) de fines the hyperbolic cosine of x.
c o T (X) re t u r n s t he co t a n g e n t. of X •

CRFATE MEMBER x ON LIERARY y creates a new member in a library.
CREATEMEMBER(XX,YY) creates member xx in library YY.
Cllf'!PROD(X) defines the cumulative product of thE> elements of x.
CllMSUl'1 (X) <1P. fines the cumulative sum of thE> elements of x.
DATA NAME marks the begining of a data file.

DEBUGGING are words useful in debugging a program.
DEC(ZA1,ZA7., ••• ,ZAN) converts A1,A2, ••• ,AN from hex to decimal.
nP.FINEA1 are words used in dP.fininq 1-dimensional arrays.
DEFINEA2 are words used in defining 2-dimensional. arrays.
DELETE N,11 deletes the statements N through M.

DERIV is a synonym for DERIVAUVE. ,
DERIVATIVF.(F:X) finds the derivative of P with respect to x.
DET (X) dAfines the determinant of the matrix X.
nrAGELS (X) selects t.he diagonal elements of x.
DIAGMAT(N:I,J, ••• ,K) defines an N-by-N diagonal matrix.

DMAT is a synonym for DIAGMAT.
DOCUMENT is a library of larger documents.
DOMAIN specifies whethE>r real or complex numbers are being used.
DONTLIST indicates that the program is not to be printed.
DOOBLEJ:o'ACTORIAL (X) returns the doublefactorial X! !

DUMP creates an easily read complete printout of all defined objects.
ECHO prints out th~ input along with results.
EDIT is a mode available for editing a progra111.
F.DITMODE are words used in the EDIT mode of TSO SPEAKEASY.
EIGENSYS TEM(SYMMAT) returns all the eigenvalues of SYMMAT.

184

The First Lines Of The SPEAKEASY HELP Documents Date: 5/25/7 3

ETGENVALS {X) gives the eigenvalues of the matrix X.
EIGENVF.CS{X) gives the eigenvectors of the matrix X.
ELE~ENTAL are elemental mathematical functions.
F.LT.IPE(X) calculates t.hc complete elliptical integral E(X).
ELLIPK(X) calculates the complete elliptical integral K(X).

END terminates a SPEAKEASY proqram or datafile.
ENDAUTOPRINT turns off AUTOPRINT.
ENDLOOP N marks the end of the FOR loop N.
EONE(X) calculates the exponential integral from X to infinity •
• EQ. is the relational operator "equal to".

ERF(X) calculates the error function of x.
ERFC (X) calculates the complementary error function of X.
F.RRORS are ambiguities makinq it impossible to carry out a statement.
EXF.CUTR NAME executes the stored program, NAME.
EXP(X) defines the exponential function.

PIN is a synonym for ENDLOOP.
FOR N~STARTJSTOP,TNC designates a loop in a program.
FRAC is a synonym for FRACPART.
FRACPART (X) returns the fractional part of X.
FRF.E(N1,N2, ••• ,NN) frees the definitions of the objects N1,N2, ••• ,NN.

GAMMA(X) define~ the gamma f11nction of X •
• GE. is the relational operator "greater than or equal to".
GE I GEN (M, MP.TR IC) finds the eigenvalues of the matrix M.
~n causes execution of a program to resume from the holding mo~e.
GOTO X causes execution to be transferred to the statement labeled x.

GRAPH(I:J) plots the members of I versus the object J.
GRAPHICS are words for graphical output that are in version GRAPREZ.
GRID(I,J) defines a 1-dim. array of 101 points from I to J •
• GT. is the relational operator "greater than".
H~LP explains how to use the HELP processor.

HENCEFOPTH X IS Y redefines the word X to mean Y.
HIF.R~RCRY is the order in which mathematical operations are done.
HIGDWIDE activates HIGH-WIDE arithmetic for arrays.
HIWIDE is a synonym for HIGHWIDE.
HLABEL='ANY MESSAGE' labels the horizontal scale of a graph.

185

Th~ First Lines Of The SPEAKEASY HELP Documents Da t .e: 5/ 25/7 3

HSCALE=(LEFT,RIGHT) specifies the horizontal limits of a graph.
HSIZF.=X specifies thP. horizontal size of the graph.
IF (X) Y is a conditional statement for scalar operations.
IMAG (X) returns the imaginary part of x.
IMAGPART(X) returns the imaginary part of X.

INOUT arc classes of words dealinq with input ~nd output.
TNPUT A,B, ••• ,c puts the system in a holding mode.
INPUTS are words used for input of data or programs.
INSERT N(T) inserts . the statements that follow at N,N+I,N+2I, •••
INTEG is a synonym for TNTF.GRAL.

INTEGERS(I,J,K) defines an array with the integers I,I+K,I+2K, ••• ,J.
INTEGRAL (P:X) defines the integral of F with a variable upper limit.
INTEGRATION are words dealing with numerical inteqration.
TNTEHP is a synonym for INTERPOL.
TNTERPOL(Y,F,X) defines the function Fat the points Y.

INTPART(X) returns the inteqer part of X.
INTS is a synonym for TNTEGFRS.
INT2(X) is a function that returns an integer2 ohject.
INT4 (X) is a function that returns an integer4 object.
INVERSE (X) defines the inverse ot the matrix X.

KP.EP XX saves the SPEAKEASY object XX.
KEPT(XX) retrieves the SPEAKEASY object xx.
LAREL refers to a statement label •
• LE. is the relational operator "less than or equal to".
LENGTH(X) d~fines a scalar that is the number ot elements in x.

LIB INDEX (Y) defines the names of the members of Y.
LIBNAMPS r"turns the names of the SPEAKEASY libraries.
LTBRARJES are Jords for creating and using members of libraries.
LIDRARYNAMES are the names of the libraries attached to the probessor.
LTNKLIB;•xx• adds the LINKULE library ~x to those available. ·

LINKULES is a library of operations that are FORTRAN subroutines.
LIST MEMRF.R x OF LIBRARY y FROM I TO J lists lines I through J OF x.
LISTHEAD(N,XX,YY) lists N lines of member xx of library YY.
LISTMEMBER(XX,YY) lists member x~ of library YY.
LISTPROG specifies that the program is to he listed.

186

The First. Lines Of The SPEAKRASY HELP Documents Date: 5/25/73

LOADDATA(A,NAME) loads A with N values from the data file NAME.
LOC is a synonym for LOCS.
LOCMAX{X) specifies the location of the maximum element of x.
LOCIHN (X) specifies t.he location of the minimum element of x.
LOCS(X) gives the indices of the nonzero (tru~) elements of x.

LOG (X) returns the natural logarithm of x.
LOGGAMMA (X) defines the natural logarithm of the gamma function of x.
LOGIC are the logical, relational, and conditional operators.
LOWERTRT(X) returns the lower triangular part of x •
• LT. is the relational operator "less than".

MARGINS enables the user to contol the margins of the output.
MAT is a synonym for MATRIX.
MATH are classes of words dealing with mathematical fun6tions.
MATRICF.S are classes of words dealing with matrices.
MATRIX(N,M:) defines an N-by-M matrix.

MATRIXDEF are words used in defining a matrix.
MATRIXOPS lists words that are matrix operators.
MAX(X) splcifies the value of t.he maximum element in x. .
MAXOFCOL (X) returns the largest element in each column o.f" X.
MAXOFROW(X.) returns the largest element. in each row of X~.

MELD(I,J, ,. .,K) gives an odometer ordering of elPments ot ... :;r,J, ••• ,K.
MFAM(X) defines a member of the matrix/vector family.
MIN (X) specifies the value of t.he miniruu111 element in X.
~ INOFCOL(X) returns the smallest element in each column of x.
', TNOFROW(X) returns the smallest element in each row of X.

~ ISC~LLANEOUS are classes of words not in any other clas~ifl~ation.
MOVE N,M,K(t) moves statements N through M to K,K•I,K+2r; .•••
"IYDOCS is the library name tor private documents. ·
MYHELP is the library na~e for private HELP documents.
MYKEEP is a library for private information.

MYKEPT is a library for previously kept private informat~on.
MYLINKS is the library name for private linkules.
MYPROCS is a private library.
NAMES prints the names of all currently defined SPEAKEAS~ OQjects •
• N~. is the relational operator. "not equal to". . ~·· ' .

· \:·;~ -i.··
. •': _.._n

<:. :; ~ ~ ,.., .
. ·· ·.'

·. ~·~ ~ . ' .

···· ·.

187

Th 0 First Lines Of The SPEAKEASY HELP Documents Date: 5/25/73

~EOPIANN (NTT,X) returns cylindrical Bessel fns. of the second kind.
~EWGRAPH causes the next graph to be drawn on a new area of paper.
NEWPAGF. causes the printer to start a new page.
NF.WS is information of current interest to users.
NOCOLS(X) defines a scalar which is the number of columns in X.

NOFCHO suppresses the echoing of input data.
NOELS(X) defines a scalar equal to the number of elements in X.
NOFATIONALIZE stops rationalization of subsequent output.
NOFOOTS(P) qives the number of roots of the function F.
NOFOWS(X) defines a scalar equal to the number of rows in x •

• NOT. is the logical operator "not".
N02'.EROS (F) gives the number of zeros of the function F.
NUMBERS refers to numerical data.
OEIJECT(I,<l, ••• ,K) generates an inplace name.•
OBJECTS are classes of words dealing with structured objects.

OMITCLASS suppresses the printing of the class.
ONEDIMFUNCTIONS are words that deal with 1-dim. objects.
ONF.RROR(X,Y) specifies the action to be taken after an error •
• OR. is the logical operator "or".
OROERED(X) gives the elements of X in increasing order.

ORDERER(X) gives the indices of the ordered elements of X.
OTHERS are miscellaneous words not under a specific classification.
OUTPUT are words related to output.
PATTSE puts the system in a holding mode.
PLOTSYMB(N,M) specifies the symbols used and frequency of points.

PLOTTITLE='ANY MESSAGE' titles a graph.
PRI~T(A,B,C, ••. ,Z) specifies that A,B,C, ••• ,z are to be printed.
PRTNTCLASS prints the class of structured objects.
poocLIB is a library of stored SPEAKEASY statements.
PROD(X) d~fines the product of the elements of x.

PRODCOLS(X) multipli~s the elements in each column of X.
PROD ROWS (X) multiplies the elements in each row of X.
PRODUCTS arc words for products of elements of objects.
PROGRA~ NAME gives a name to a program.
PROGRAMMODE are words restricted to the PROGRAM mode.

188

The Pirst Lines Of The SPEAKEASY HELP Documents Date: 5/25/7 3

PROGRAMS are classes of words that are useful in writing programs.
PUNCH(F:X) punches the object X on cards in the format F.
QUIT terminates execution of a SPEAKEASY program.
RANDOM (X) generates ranc'lom numbers.
RAN~ED(X) gives the elements of X in increasing order.

RANKER(X) gives the indices of the ordered elements of X.
RATIONALIZE (EPS, NDIGITS) causes rationalization of output.
READ(F:X) reads data from cards punched in format F and puts
REAL is a synonym for REALPART.
REALPART{X) returns the real part of x.

REAL4 (X) is a function that retu·rns a real4 number.
REALB(X) is a function that retu~ns a real8 number.
RECLASS (A:R,c, .•• ,Z) alters the structure of B,c, ••• ,z.
RESTRICTED are the restricted words that cannot be names of variables.
RESUME causes execution of a progr.am to resume from the holding mo\'le.

RfTURN returns execution to the program calling the stored program~
ROOTS (F: X) finds the roots of the function F.
ROWARRAY(N:) defines a 2-dim. N-component array that is a row.
ROWMAT(N:) defines a 1-by-N 11atrix which is a row.
ROWMAX{X) specifies the row containing the maximum element of x.

ROWMTN(X) specifies the row containing the minimum element of X.
RUN is equivalent to COMPILE followed by the command EXECUTE.
SELf.CT{A,A, ••• ,c:r) truncates or expands A,B, .•• ,c using the index• r.
SETGAUSS(N,X,W,XLO,XlfI) returns Gauss-Legendre coords. and weights.
SETINFINITY(VAL) specifies an upper limit to the numbers printed.

SETJACOBI(N,X,W,A,B,TX,TW} defines Gauss-Jacobi coords. and weights.
SETLAG!TERRE(N,X,'W,A) returns Gauss-Laguerre cooras. and wei·ghts.
SETLEGENDRE(N,X,W,XLO,XH~ returns Gauss-Legendre coord. and weights.
SETLIB(XX,YY) changes the name of library I~ to YY.
SETNULL{VAL) specifies a lower limit to numbers printed.

SETPLOT(X,Y,Z) specifies BOX, NOBOX; SCALES, NOSCALES; LINES, POINTS.
SIGN {X) specifies whether X is positive or negative.
SIGNIPICANCE(N) gives the number of significant figures to be prin~ed.
SIMEQ (A,B) solves a set of simultaneous linear equations.
SIN (X) returns the sinP. of x.

189

The First Lines Of The SPEAKEASY HELP Documents .Date: 5/25/7 3

SINGLEVAR are operations on functions of one variable.
SINH(X) defines the hyperbolic sine of x.
SIZE=N,X specifies space for data and must be the first card.
SMAT is a synonym for SYMMAT.
SOFT are sortinq or ranking functions.

SP ACE (N) skips N lines.
SPF.CIAL are special mathematical functions.
s PHB ES (L, X) returns the spherical Bessel fn. of the first kind.
SPHBESN (L,X) returns the spherical Bessel fn. of the second kind.
SQRT (X) defines t.he square root of X.

STOP puts the system in the holding mode.
STRUCTURE are functions giving information on the structure of objects.
SUM (X> sums the elements of x.
SUMCOLS(X) sums the elements in each column of X.
SUMPROD are words for sums or products of elements of objects.

SUMROWS(X) sums the elements in each row of X.
SUMS are words for sums of elements of 2-dim. structured objects.
SUMSQ (X) sums the squares of the elements of x.
SUl'ISQCOLS (X) sums the squares of the elements in each column.
SUl'ISQROWS(X) sums the squares of the elements in each row.

SYMBOLS designate mathematical operations or special cards.
SYMM~T(N:I,J, ••• ,K) defines a symmetric N-ty-N matrix.
TARUl.ATF.(A,B, •.• ,C) prints 1-dim. objects A,B, ••• ,C in tabular form.
TAN (X) ret.urns t.he tan gent of X.
TIME gives the time in seconas from which one starts.

T0TALTNT(F:X) defines the definite integral of F over the array X.
TOTINT is a synonym for TOTALINT.
TR.ll.CE(X) gives the trace of the matrix X.
TRANSFAMILY ar~ functions to go from one family to another.
TRANSP is a synonym for TRANSPOSE.

'rR AN SPO SE (X) def in es the transpose of X.
TRIG are the trigonometric functions.
TOTORIAL teaches you about SPEAKEASY.
TWODIMFUNCTIONS are words that deal with 2-dim. objects.
JMAT is a synonym for UNITMAT.

190

ThP Fir.st Lines Of The SPEAKEASY HELP Documents Date: 5/25/73

UN!TMAT(N) defines an N-by-N unit matrix.
UPPERTRI(I) returns the upper triangular part of x.
USE MEMBER X OF LIBRARY Y causes the member X to be used as input.
USEMEMBF.R(XX,YY) causes input of the member XX of library YY.
VARIABLE(I,J) defines a 1-d~m. array of 101 points from I to J,

VEC is a synonym for VF.CTOR.
VF.CTOH (N:) defines a vector wit.b N components.
VECTORDEP are words used in defining a vector.
VECTO~S are classes of words dealing vith vectors.
VERSIONS refers to the various versions of the SPEAKEASY processor.

VFAM(X) defines a member of the matrix/vector family.
VLABEL='ANY MESSAGE' labels the vertical scale.
VOCABULARY generates a list of all currently defined words.
VSCALE= (BOTTOM, TOP) specifies t.he vertical limits of a graph.
vsrzi=Y specifies the vertical size of the graph.

WHERE (X) Y is a conditional statement for array operations.
WHEREVER (X) Y is a conditional statement for array operations.
WHOLE (X) returns the integer part of x.
WRITE(F:X) prints the defined object X in the format P.
ZP.ROS (F:X) finds the zeros of the function F.

HE LP

191.

IV. THE TREE STRUCTURE OF THE

SPEAKEASY HELP DOCUMENTS

Date: 5/25/73

HELP explains how to use the HELP processor.
RELP INOUT lists words used in input, output and graphing.
HELP MATH lists mathematical functions.
HELP MISCELLANEOUS lists other SPEAKEASY words.
HELP OBJECTS lists words dealing with structured objects.
HELP PROGRAMS lists words used in writing prograPs.
HELP BUGS gives the known errors and stage of correction.
HELP NEWS gives recent modifications and nev features.
HELP TUTORIAL tells hov to use the SPEAKEASY tutorial.
QUIT is the command to leave SPEAKEASY.
VOCABULARY lists all the words in SPEAKEASY.
HELP XX qives an explanation of the word XX.

XX is any SPEAKEASY word.

0

. HELP

192

~GRAPHICS
INOUT INPUTS

OUTPUT

J;:LEMENTA

H~~:::::======INTEGRAT MAT SINGLEVA
SPECIAL
TRIG

COMMANDS
CONVERT

""""1ft::.:::::--- LI BRAR YN
LOGIC
OTHERS
RESTRICT
SORT

DEFINEA2
___ PRODUCTS

ARRAYS2~~=-~~STRUCTUR

OBJECTS

SUMS
TWODIMFU

MATRIXDE
~MATRIXOP

MATRICES~PRODUCTS
STRUCTUR
SUMS
TWODIMFU

TRANSFAM

193

The Tree Structure Of The SPEAKEASY HELP Documents Date: 5/25/73

I NOIJT INOUT are classes of words dealing with input and output.
GRAPHICS (Graphical output)
INPUTS (Words used for input)
OUTPUT (Words used for outpu~

To obtain the vords in a given subclJt.Ss sc. enter
HELP SC

GRAPHICS GRAPHICS are words for graphical out'put that are in version GRAPHEZ.

INPUTS

ADDGRAPH adds a graph to a previous graph.
GRAPH graphs an array vs another array.
HLABEL labels the horizontal scale.
RSCALE specifies the limits of the horizontal scale.
HSIZE specifies the length of the horizont~l scale in inches.
NEWGRAPR causes the next graph to be·on a new area of paper.
PLOTSYMB specifies the symbols to be used in graphing.
PLOTTITLE titles the graph.
SETPLOT specifies box, nobox; scales, noscales; lines, points.
VLABEL labels the vertical scale.
VSCALE specifies the limits of the vertical scale.
VSIZE specifies the length of the vertical scale in inches.

To ob ta in a description of a given word XXX, enter
HELP XXX

INPUTS
CONTINUE
DATA
END
GO
INPUT
KEPT
LOADDATA
P.lUSE
READ
F ES II 11 E
STOP

are words used for input of data or programs.
causes execution to continue after input in the holding mode.
begins and names a data file.
terminates a data file.
causes execution to continue after input in the holding mode.
puts the system in the holding mode for input.
retrieves information from a library.
puts data into an array.
puts the system in the holding mode for input.
reads cards of specified format.
causes execution to resume after pausing for input.
puts the system in a holding mode for input.

To obtain a description of a given word XXX, enter
HF.LP XXX

194

The Tree Structure Of The SPEAKEASY HELP Documents Date: 5/25/73

OUTPUT OUTPUT are
ANr.t F.S
A UTOPBI NT
AUTO TAB
COL WIDTH
DONTLIST
DUMP
ECHO
ENDAUTOPBINT
KEEP
LISTPROG
MARGINS
NEWPAGF.
NO ECHO
NORA TI ON ALI ZF.
OMITCLASS
PRINT
PRINTCLASS
P!lNCH
RATIONALIZE
SETT NFI NITY
SETNULL
ST.G NIFICANCE
SPACE
TABULATE
WRITE

words related to output.
specifies if angles are in radians or degrees.
is used to control • automatic printing.
specifies uniform column width for printing.
specifies a minimum column width.
indicates that ~ program is not to be listed.
creates a printout of ~11 defined objects.
prints input along with output.
turns off automatic printing.
keeps an object in a library.
indicates that the program is to be listed.
specifies the margins.
causes the printer to start a new page.
suppresses the echoing of input.
turns off the rationalization of numbers.
suppresses the printing of the class of objects.
specifies printing.
prints the class of structured objects.
punches cards in a specified format.
causes rationalization of output.
specifies an upper limit to numbers printed.
specifies a lower limit to numbers printed.
gives the number of significant figures printed.
skips spaces.
tabulates 1-dimensional objects.
prints output in a specified format.

To obtain a descriptron of a given word XXX, enter
HELP XXX

195

The Tree Structure Of The SPEAKEASY HELP Documents Date: 5/25/73

MATH MATH are classes of words dealing with mathematical functions.

F.L EM ENTA

ELEMENTAL . (Elemental mathematical functions)
INTEGRATION (Words used for numerical integrations)
StNGLEVAR (Functions of one variable)
SPP.CIAL (Special functions)
TRIG (Trigonometric functions)

To. obtain the words in a given subclass SC, enter ·
HF.LP SC

ELEMENTAL are elemental mathematical functions.
ABS
CONJ
CONJUGATE
EXP
FRAC
FRACPART
TMAG
H!AGPART
INT PART
LOG
NUMBERS
RE AL
REAL PART
SIGN
SQRT
SYMROLS
WHOLE

finds the absolute value.
returns the complex conju9ate.
returns the complex conju~ate.
returns the exponential.
returns the fractional part.
returns the fractional part.
returns the imaginary part.
returns the imaginary part.
returns the integer part.
returns the natural logarithm.
explains how numbers are represented.
returns the real part.
returns the real part.
returns the sign.
returns the square root.
explains the mathematical symbols.
returns the integer part.

To obtain a description of a given word XXX, enter
HELP XXX

INTF.GRAT INTEGRATION are words dealing with numerical integration.
INTEG defines an integral with a variable upper limit.
INTEGRAL defines an integral with a variable upper limit.
SETGAUSS gives Gauss-Legendre coordinates and weights.
SETJACOBI gives Gauss-Jacobi coordinates and weights.
SETLA GUERRE gives Gauss-Laguerre coordinates and weights.
SETLEGENDRE gives Gauss-Legendre coordinates and weights.
TOTALINT defines a definite integral.
TOTTNT d~fines a definite integral.

To obtain a description of a given word XXX, enter
RELP XXX

196

·rhP. Tree Structure Of The SPEAKEASY HELP Documents Date: 5/.25/73

SINGL EVA

SP EC I AL

STNGLEVAR are operations on functions of one variable.
DER IV
D.ER I VAT!VE
TNTEG
INTEGRAL
INTERP
INTERPOL
NO ROOTS
NOZ EROS
ROOTS
TOTAL INT
TOTI NT
ZEROS

finds the derivative of a function.
finds the derivative of a function.
defines an integral with a variable upper limit.
defines an integral with a variable upper limit~
does numerical interpolation.
does numerical interpolation.
gives the number of zeros or roots of a function.
gives the number of zeros or roots of a function.
qives the zeros or roots of a function.
defines a definite integral.
defines a definite integral.
gives the zeros or roots of a function.

To obtain a description of a givei word XXX, enter
HELP XXX

SPECIAL
B RS SF.L
BES SELK
CGAMMA
DOUB LEF AC
ELL IPE
ELLI PK
EONE
ERF
ERPC
GAM!'llA
LOGGAMl'IA
NEtJl'fANN
SPHBES
SPHBESN

are special mathematical functions.
returns cylindrical Bessel fn. of the first kind.
returns the modified Bessel function K.
returns the gamma function of a complex argument.
returns the doublefactorial.
returns the complete elliptical integral E.
returns the complete elliptical integral K.
returns the exponential integral from x to ~nfinity.
returns the error function.
returns the cqmplementary error function.
returns the gamma function of a real argument.
returns the logarithm of the gamma function.
returns cylindrical Bessel fn. of the second kind.
returns sperical Bessel fn. of the first kind.
ret. urns spherical Bessel f .n. of the second kind.

To obtain a description of a given vord XXX, enter
HF.LP XXX

TRIG TRIG are the trigonometric functions.
ACOS
ACOT
AStN
ATAN
cos
COSH
COT
SIN
SINH
'J'AN

To obtain a description of a given word XXX, enter
HP!LP XIX

197

Th~ Tree Structure Of The SPEAKEASY HELP Documents Oat~: 5/25/73

MTSCF.LLA MISCELLANEOUS are classes of words not in any other classification.
CO~MANDS

CONVERT
LIBRARYNAMES
LOGIC
OTRP.RS
RESTRICTF.D
SORT

(SPEAKEASY commands)
(Integer-real-hex conversions)
(SPEAKEASY librarie~
(Logical, conditional, and relational operators)
(Miscellaneous words)
(Restricted words-words which may not be used as names)
(Sorting or ranking ~unctions)

To obtain the words in a given subclass SC, enter
HELP SC

COMMANOS COMMANDS are words that are commands in SPEAKEASY.
ACCURACY controls the accuracy of tests.
ANGLES specifies if angles are in radians or degrees.
AUTOCORE is used to set the users space allocator.
AUTOPR!NT is used to control automatic printing.
CLEAR removes all definitions.
CLEARDATA removes all defined numerical objects.
PO~AIN sets the REAL/COMPLEX domain.
DONTLIST indicates that the program is not to be listed.
ECHO prints input along with output.
ENDAOTOPRINT terminates automatic printing.
EXECUTE executes a program.
FREF. eliminates selected defined objects.
HIGRWIDE activates HIGH-WIDE arithmetic for arrays.
HIWIDE activates HIGH-WIDE arithmetic for arrays.
LISTPROG indicates that the program is to be listed.
MARGINS controls the margins.
NAMES tells the currently defined names.
NOECHO suppresses the echoing of input. •
NORATIONALIZE turns off RATIONALIZE.
OMITCLASS suppresses the printing of the class of objects.
PRINTCLASS prints the class of structured objects.
OUTT terminates a SPEAKEASY session.
FATIONALJZF. causes rationalization of output.
SIGNI,ICANCE controls printed output.
SIZE sets the user's space allocator.
TIME tells the time since the start of the run.

To obtain a description of a given word XXX, enter
HELP XXX

198

The Tree Structure Of The SPEAKEASY HELP Documents Date: 5/25/73

CONVERT CONVERT are words used for numerical conversions.
D~C converts hexidecimal to decimal form.
INT2 converts to integer 2.
INT4 converts to integer 4.
REAL4 converts to real 4.
REALS converts to real 8.

To obtain a description of a given word XXX, enter
HELP XXX

LIBRARYN LIRRARYNAMES are the names of the libraries attached to the processor.

LOGIC .

DOCUMENTS
HELP
LINK UL F.S
MYDOCS
MY HELP
MY KEEP
MYKEPT
MYLI NKS
MYPROCS
PROCLI B

To obtain a description of a given word XXX, enter
RF.LP XXX

LOGIC are the logical, relational, and conditional operators.
EQ
GR
GT
LE
LT•
NE
AND
NOT
OR
IF is a conditional operator for scalars.
WHERE is a conditional operator for arrays.
WHEREVER is a conditional operator for arrays.

To obtain a description of a given operator XXX, enter
HELP XXX

199

The TreA Structure Of .The SPEAKEASY HELP Documents Date: 5/25/73

or HP.RS

RE STRI er

SORT

OTHERS are miscellaneous words not under a specific classification.
P.RRORS explains arrors in SPEAKEASY.
HENCEFORTH redefines words.
HIERARCHY gives the hierarchy of arithmetic operations.
LOC is a logical operator that gives indices of true elements.
LOCS is a logical operator that gives indices of true elements.
NUMBERS explains how numbers are represented.
OBJECT generates an inplace name.
RANDOM generates random numbers.
SIMEQ solves simultaneous linear equations.
SYMAOLS explains the symbols used in SPEAKEASY.
VERSIONS gives the versions of SPEAKEASY.
VOCABULARY lists the words found in the HELP documents.

To obtain a description of a given word XXX, enter
HELP XXX

RESTRICTED are the restricted words that cannot be names of vari abl es.
CONTINUE
DATA
END
ENDLOOP
Er TT
RX EC UTE
FIN
FOR
FREE
GOTO
IF
LOADDATA
PRINT
PROGRAM
NE WP AGE
RETURN
SPACE
TJSE
WHERE
WHEREVER

To obtain a description of a given word XXX, enter
HELP XXX

SORT 1 are sorting or ranking functions.
ORDERED
ORDERER
RANK ED
RANKER

g i VP.S

gives
gives
gives

elements of
the ind ices
elements of
the indices

a structured object in
of ordered elements.
a structured object in
of ordered elements.

increasing o rder.

increasing order.

To obtain a description of a given word XXX, enter
HELP ~U

200

Thn Tree Structure Of The SPEAKEASY RELP Documents Date: 5/25/73

OBJECTS OBJECTS are classes of words dealing with structured objects.
ARRAYS1 (1-dimensional arrays)
ARRAYS2 (2-dimensional arrays)
MATRICES
TRANSFAMILY (Functions to go from one family of structured objec~s

to another)
VECTORS

To obtain the words in a given subclass SC, enter
HELP SC

ARRAYS1 ARRAYS1 are words dealing with 1-dimensional arrays.
DEFINEA1 (Functions definin9 1-dim. arrays)
ONEDTMFUNCTIONS (Functions of 1-dim. objects)
STRUCTURE (Fuctions which give information about the

structure of structured objects)
SUMPROD (Sums and products of elements of

structured objects)

To obtain the words in a given subclass SC, enter
HELP SC

v~FINEA1 DEFINF.A1 are words used in defining 1-dimensional array3.
AFAM .defines a member of the array family.
ARRAY defines a~ array.
A10 defines a 1-dia. array.
DIAGELS returns the diagonal elements of a matrix.
GRID defines a 1-dim. array of equally spaced points.
INTEGERS defines a 1-dim. array of integers.
INTS defines a 1-dim. array of integers.
LOWERTRI gives the lover triangular part of a 2-dim. array.
UPPEP.TRI qives the upper triangular part of a 2-dim. array.
VARIABLF. defines a 1-dim. array of equally spaced points.

To obtain a ~escription of a given word XXX, enter
HELP XXX

201

The TrPP Structure Of The SPEAKEASY HELP Documents Date: 5/25/73

ONEDIMFU ONEDIMFUNCTTONS are words that deal with)-dim. objects.
AVERAGE returns the average value of the elements of the object.
CONSTRAIN constrains obiects according to a specified condition.

STRUCTIJF

LENGTH gives the number of elements in the object.
LOCMAX gives the location of the maximum element.
LOCMIN gives the location of the minimum element.
MAX gives the value of the maximum element.
MELD qives an odometer ordering of elements.
MTN qives the value of the minimum element.
NOELS gives the number of elements of the object.
SELECT truncates or expands objects according to an index.

To obtain a description of a given word XXX, enter
HELP XXX

STFUCTURE are functions giving information on the
LF.NGTH returns the number of elements.
NOCOLS returns the number of columns.
NOELS rPturns the number of elements.
NORO WS returns the number of rows.

To obtain a description of a given word XXX, enter
HELP XXX

struct.ure of

SCTMPROD SUMPROD are words for sums or products of elements of objects.
CUMPROD returns the cumulative product of elements.
CCTMSU~ returns the cumulative sum of elements.
PROD returns the product of elements.
SUM returns the sum of elements.
SUMSQ returns the sum of the squares of elements.

To obtain a description of a given word XXX, enter
HELP X'XX

ARRAYS2 ARFAYS2 are words dealing with 2-dimensional arrays.
DEF'INEA2 (Functions defining 2-dim. arrays)
PRODUCTS (Products of elements of 2-dim. objects)
STRUCTURE (Functions which give information about the

structure of structured objects)
SUM s (Sums of elements of 2-dim. objects)
TWODIMFUNCTTONS (Functions of 2-dim. objects)

To obtain the words in a given subclass SC, enter
HP.LP SC

objects.

202

The Tree Structure Of The SPEAKEASY HELP Documents Date: 5/25/73

DF.FINEA2 DEFINEA2 are words used in defining 2-dimensional arrays .
APAM define~ a member of the array family.
ARRAY defines an array.
ARRAY2D defines a 2-dim. array.
A2D defines a 2-dim. array.
COLARRAY defines a 2-dim. column array.
ROWARRAY defines a 2-dim. row array.

To obtain a description of a given vord XXX, enter
HELP XXX

PRODUCTS PRODnCTS are words for products of elements of objects.
CUMPROD defines the cumulative product of elements.
PROD defines the product of elements of a structured object.
PRODCOLS multiplies the elements in each column.
PRODROWS multiples the elements in each rov.

To obtain a description of a given word XXX, enter
HP.LP XXX

STRUCTUR STRUCTURE are functions giving information on the structure of obj~cts.

SU MS

LENGTH returns the number of elements.
NOCOLS returns the number of columns.
NOELS returns the number of elements.
NOROWS returns the number of rovs.

To obtain a description of a given word XXX, enter
HELP XXX

SUMS are words for sums of elements of 2-di m. structured
CUMS UM returns the cu mu lat i ve sum of elements.
SIJM returns the sum of elements.
SUM COLS sums the elements in each column.
SUI"! ROWS sums the elements in each rov.
SUM SQ sums the squares of the f>lements.
SUMS QCOLS sums the squares of the elements in each column.
SUMSQROWS sums the squares of the elements in each rov.

To obtain a df>scription of a givf>n word XXX, enter
HELP XXX

objects.

203

ThP. Tree Structure Of The SPEAKEASY HELP Documents Date: 5/25/73

TWODI MFU TWODI MFUNCTTONS are words that deal with 2-dim. objects.

MATRICES

COLMAX specifies the column with the largest element.
COLMTN specifies the column with the smallest element.
DIAGELS returns the diagonal elements of a matrix.
LENGTH returns the number of elements.
LOWERTRI returns the lower triangular part of a 2-dim. object.
HIGHWIDE activates HIGH-WIDE arithmetic for arrays.
llIWIDE activates HIGH-WIDE arithmetic for arrays.
MAX returns the maximum element.
MAXOFCOL returns the maximum element in each column.
MAXOFROW returns the maximum element in each row.
MIN returns the smallest element.
MINOFCOL returns the smallest element in each column.
MINOFROW returns the smallest element in each rov.
NOELS returns the number of elements.
ROWMAX specifies the row with the largest element.
ROWMIN specifies the row with the smallest element.
UPPERTRI returns the upper triangular part of a 2-dim. object.

To obtain a description of a qiven word XXX, enter
!IE LP XXX

MATRTCES are
MAT!UXDEF
MATRIIOPS
PRO DUCTS
STROCTURE

SHMS
TWO DIM FUNCTIONS

classes of words dealing with matrices.
(Fu net ions defining ma trices)
(Matrix operations)
(Products of elements of structured objects)
(Functions which give information about
the structure of structured objects)

(Sums of elements of structured objects)
(Functions of 2-dim. objects)

To obtain the words in a given subclass SC, enter
HELP SC

204

The Tree Structure Of The SPEAKEASY HELP Documents Date: 5/25/73

P1ATRIXDE l'UTRIXDEP are words used in defining a matrix.
AMAT definPs an antisymmetric matrix.
ASYMMAT defines an antisymmetric matrix.
COLMAT defines a column matrix.
DIA GM AT defines a diagonal matrix.
DMAT do fines a diagonal matrix.
MAT defines a matrix.
l'IATRTX defines a matrix.
!HAM defines a member of the matrix/vector family.
ROW MAT defines a row matrix.
SP1AT defines a symmetric matrix.
S YMMAT defines a symmetric matrix.

' UM AT defines a unit matrix.
UNI THAT defines a unit matrix.
V P'AM def in es a member of the matrix/vector family.

To obtain a description of a given word XXX, enter
HELP XXX

MATRTXOP MATRIXOPS lists words that are matrix operators.
ADJOINT returns the transpose complex conjugate of a matrix.
DET returns the determinant of a matrix. ·
DIAGF.LS returns the diagonal elements of a matrix.
EIGENSYSTEM returns the eigenvalues of a symmetric matrix.
F.IGF.NVALS returns the eigenvalues of a matrix.
E!GENVECS returns the eigenvectors of a matrix.
GEIGEN returns the eigenvalues of a symmetric matrix.
INVERSE finds the inverse of a matrix.
LOWERTRI returns the lower triangular part of a matrix.
TRACE finds the trace of a matrix.
TRANSP returns the transpose of a matrix.
TRANSPOSE returns the transpose of a matrix.
UPPP.RTRI returns the uppper triangular part of a matrir..

To obtain a description of a given word XXX, enter
HF.LP XXX

PRODUCTS PRODUCTS are words for products of elements of objects.
CUMPROD defines the cumulative product of elements.
PROD defines the product of elements of a structured object.
PRODCOLS multiplies the elements in each column.
PRODROWS multiples the elements in each row.

To obtain a description of a given word XXX, enter
Hf.LP XX X

205

The TrP.c StructurP. Of The SPEAKEASY HELP Documents Date: 5/25/73

ST RUCTllF

STIMS

TWODTMPU

STRUCTURE are functions giving information on the structure of objects.
LENCaH returns the number of elements.
NOCOLS returns the number of columns.
NOELS returns t.he number of elemP.nts.
NOROWS returns the number of rows.

To obtain a description· of a given word XXX, enter
HP:LP XXX

SUMS are words for sums of elements of 2-dim. structured objects.
CUMSOM returns the cumulative sum of elements.
SUM returns the sum of elements.
SllMCOLS sums the elementE in each column.
SUMROWS sums the elements in each rov.
SUMSQ sums the squares of the elements.
SllMSQCOLS sums the squares of the elements in each column.
SUMSQROWS sums the squares of the elements in each row.

To obtain a description of a given word XXX, enter
HP.LP XXX

TWODIMFUNCTTONS are words that deal with 2-dim. objects.
COLMAX specifies the column with the largest element.
COLMIN specifies the column with the smallest element.
DIAGELS returns the diagonal elements of a matrix. ·
LENGTH returns the number of elements.
LOWERTRT returns the lower triangular part of a 2-dim. object.
HTGHWIDE activates HIGH-WIDE arithmetic for arrays.
HIWIDE activates HIGH-WIDE arithmetic for arrays.
MAX returns the maximum element.
MAXOFCOL returns the maximum element in each column.
MAXOfROW returns the maximum element in each row.
MIN returns t.he smallest element.
MINOFCOL returns the smallest element in each column.
MINOFROW returns the smallest element in each row.
NOELS returns the number of elements.
POWMAX specifies the row with the largest element.
ROWMTN specifies the row with the smallest element.
UPPERTRI returns the upper triangular part of a 2-dim. object.

· To obtain a description of a given word XXX, enter
HELP XXX

206

The Tree Stru~ture Of The SPEAKEASY HELP Documents Date: 5/25/73

TR ANSFAM TRANSFAMILY are functions to go from one family to another.
A FA !"I defines a member of the array family.
MFAM defines a member of the matrix/vector family.
RECLASS alters the structure of objects.
VFAM defines a member of the matrix/vector family.

To obtain a description of a given word XXX, enter
HELP XXX

VECTORS VECTORS are classes of words dealing with vectors.

ONEDIMFU

ONEDTMFUNCTIONS (Functions of 1-.dim objects)
STR!JCT!TRE (Functions which give information about the

structure of structured objects)
SUMPROD (Sums and products of elements)
VF.CTORDEF (Functions defining vectors)

To obtain the words in a given subclass SC, enter
HELP SC

ONEDIMFUNCTIONS are words that deal with 1-dim. objects.
AVERAGE
CONSTRAIN
LENGTH
LOCM AX
LOC MIN
MAX
MELD
MIN
NOELS
SELECT

returns the average value of the elements of the object.
constrains objects according to a specified condition.
gives the number of elements in the object.
gives the location of the maximum element.
gives the location of the minimum element.
qives the value of the maximum element.
gives an odometer ordering of elements.
gives the value of the minimum element.
gives the number of elements of the object.
truncates or expands objects accor~ing to an index.

To obtain a description of a given word XXX, enter
HELP XXX

STRUCTUR STROCTURR are functions qiving information on the structure df objects.
LENGTH returns the number of elements.
NOCOLS returns the number of columns.
NOELS returns the number of elements.
NORO~S returns the number of rows.

To obtain a description of a given vord XXX, enter
HELP XXX

ZO?

ThP. Tree St~ucture Of The SPEAKEASY HELP Documents Date: 5/25/73

SUMPROD SOMPROD are words for sums or product~ of elements of objects.
CUMPROn returns the cumulative product of elements.
CUMSOM returns the cumulative sum of elements.
PROD returns the. product of elements.
SUM returns the sum of elements.
SCTMSQ returns the sum of the squares of elements.

To obtain a description of a given vord XXX, enter
HF.LP XXX

VECTORDP. VECTORDEF are words used in defining a vector.
MFAM defines a member of the matrix/vector family.
VEC defines a vector.
VECTOR defines a vector.
VFAM defines a member of the matrix/vector family.

To obtain a description of a given vord XXX, enter
HELP XXX

•

208

The Tree structure Of The SPEAKEASY HELP Documents Date: 5/25/73

PROGRAMS

D]'!BUGGIN

PROGRAMS
DEBUGGING
EDIT!'!ODE
LIBRARIES
PROGRAMMODE

are classes of words that are useful in
(Words useful in debugginq a program)
(Words restricted to the edit mode)
(Library creation and use)
(Words restricted to the program mode)

writing proqra•s.

To obtain the words in a given subclass SC, enter
HELP SC

DEBUGGING
AUTOPRINT
DUMP
END AU TOP R IN T
ONF. RROR

are words useful in debugging a program.
prints words each time they are used.
creates a printout of all defined objects.
turns off AUTOPRINT.
specifies action to be taken after an error.

To obtain a description of a given word XXX, enter
HELP XXX

EDTT!'!ODE EDJTMODE are words used in the EDIT mode of TSO SPEAKEASY.
COMPILE compiles the program.
COPY copies a statement or statements.
DATA qets one into t he EDIT mode to create a datafile.
DELETE deletes a statement or statements.
EDIT ~ets one into the EDIT mode.
INSERT inserts statements at a specific location.
LIST lists the program or a series of statements.
MOVE moves a statement or group of statements.
PROGRAM gets one into the EDIT mode to create a program.
RON compiles and executes the program.

F.DIT, DATA, and PROGRAM are words to get one into the
EnTT mode.

To obtain a description of a given word XXX, enter
HELP XXX

209

The Tree Structure Of The SPEAKEASY HELP Documents Date: 5/25/73

LIBRARIF. LIBRARIES are words for creating and using members of libraries.
CREATE creates a member of a private library.
CREATEMEMBER creates a member of a private library.
LIBTNDEX defines the names of members of a library.
LIBNAMES returns the names of the SPEAKEASY libraries.
LINKLTB adds a linkule library to those available.
LIST lists a member of a library.
LISTHEAO lists a specified no. of lines of a member of a library.
LISTMEMBER lists a member of a library.
SF.TLIB changes the name of a library.
OSF. uses a member of a library as input.
USEMEMBER uses a member of a library as input.

To obtain a description of a given word XXX, enter
HF.LP XXX

PROGRAMM PROGRAMMODE are words restricted to the PROGRAM mode.
CONTINUE causes no operat~on in the PROGRAM mode.
ENO denotes the end of a program.
ENDLOOP denotes the end of a FOR loop.
EXECUTE executes a program.
FIN marks the end of a FOR loop.
FOR designates a loop.
GOTO branches to a specified statement.
INPUT puts · the system in a holding mode for input.
LABEL labels a statement.
PROGRAM names a program and puts the system in the EDIT mode.
PAUSE puts the system in the holding mode for input.
RETURN returns execution to the program calling the subprogram.
STOP puts the system in a holding mode for input.

To obtain a description of a given word XXX, enter
HELP XXX

210

V . THE SPEAKEASY HELP DOCUMENTS

Date: 5/25/73

ABS ABS(X) returns the absolute value of x.
ABS(X) defines an object with the same structure as x but with elements
of the result equal to the absolute values of the corresponding
elements of X.

ACCflRACY ACCURACY (VAL) specifies the smallest number not to be taken as ze~.
Whenever the equality of two numbers is checked during the
execution of a program, any numher less than a certain number
is reqarded as zero. The value of this number may be set ~o ~e any
number VAL by the statement ACCURACY(VAL).

If not specified, the value of VAL is 1.E-8.

ACOS ACOS(X) defines the arccosine of X.
ACOS(X) defines an object with the same structure as X with elements
that are the arccosine of the corresponding elements of x.

All the elements Xi of X must be real and sdtisfy the condition
IXi1<1 or the condition 1Xi1=1.

ACOT ACOT(X) defin~s the arccotangent of X.
ACOT (X) defines an object with the same structure as X with elements
that are the arccotangent of the corresponding elements of X.

All elements Xi of X must be real.

ADD\, 'RA PH ADDGRAPH (I :J) plots I versus J on the previous graph.
ADDGRAPH has the same meaning as graph except a new
area of paper is not used. Design statements except
the scale statements and the label statements are
reexamined prior to adding the graph. Thus the
plotting format may be changed for each additional
qraph.

I is plotted along the vertical axis and J is along
th~ horizontal. All objects should be 1-dimensional
and rP.al and have the same number of elements. A
2-dimensional object in I is trP.ated as several 1-dimensional
objects each consisting of a row of the original
2-dimensional object.. Thus a 2-dimensional object in
I must have as many columns as J has elemP.nts.

If no previous graph has been drawn, ADDGRAPH acts
as GRAPH.

ADDGRAPH is available only in version GRAPHEZ.

ADJOINT ADJOINT(X) qives the adjoint Of the matrix x.
The adioint of X is the transpose complex conjugate of X.

211

The SPEAKEASY HELP Documents Date: 5/25/73

AM A 'l'

AND

AMGT,ES

AFAM(X) defines a member of the array family.
The result has the same structure as X but is an array.
If X is a vector or a 1-dimensional array, the result is
a 1-dimensional array. If X is a matrix or a 2-dimensional
array, the result is a 2-dimensional array.

A~AT is a synonym foe ASYMMAT.
AMAT(N:I,J, ••• ,K) defines an N-by-N antisymmetric matrix.

The element list is used to fill the lower triangular pact
(excluding the diagonal elements which will be set to zero)
hy rows. The portion above the diagonal is then filled by
making the matrix antisymmetric. If any object in the list
defininq the elements is structured, the elements of that.
structured object ace used •

• AND. is thP. logical operator "and".
The periods must appear on both sides of the operator.
A .AND. R = 1 if both A and B are not equal to zero;
otherwisP A • AND. B = 0. A and R may be any real numbers.

ANGLES specifies whether the user is using radians or degrees.
RADIANS is default.

ANGLES IN ' DEGREES specifies that angles are in deqrees.
The word TN may be omitted in the SPEAKEASY calling sequence.
DEGREES may be abbreviated by DEG or DEGS.

ANGLES IN RADIANS specifies that angles are in radians.
The word IN may be omitted in the SPEAKEASY calling sequence.
R~DIANS may be abbreviated by RAD or FADS.

212

The SPEAKEASY HF.LP Documents Date: 5/25/73

ARRAY ARRAY(N:) defines a 1-dimensional N-component array.
If no further arguments are given, all the components
are set equal to zero.

An alternative form is A1D.
ARRAY(:I,J, ••• ,K) defines a 1-dim. array and specifies the elements.

The elements are preset by the argument list I,J, ••• ,K.
If any argument of the defining argument List is structured,
the elements of the structured object are used. The size of
the array is equal to the total number of elements specified.
If a complex element is encountered, then a complex
1-dimensional array is defined.

ARRAY (N:I,J, ••• ,K) defines a 1-dim. N-component array.
The elements are preset by the element list I,J, ••• ,K.
If any argument in the. element list is structured, the
elements of the structured object are used. If a complex
element is encountered, then a complex 1-dimensional
array is defined. If all N-components are not spetified,
the unspecified components are set equal to zero.

ARRAY (N,M:) defines a 2-dimensional N-by-M array.
If no further arguments are given, all elements are set
egual to zero.

An alternative form is ARRAY2D.
ARRAY (N,!1: I,J, ••• ,K) defin~s a 2-dim. N-by-M array with preset els.

The elements are preset by the element list I,J, ••• ,K. If
any argument in the element list is structured, then the elements
of the structured object are used. If a complex element is
encountered, then a two-dimensional N-by-~ complex array is
defined. All the elements not preset by the element list are
set equal to zero.

ARRAY2n ARRAY2n(N,l"I:) defines a 2-dimensional N-by-M array.

ASTN

If no further arguments are given, all the elements are set
equal to zero.

An al terna ti VP form is ARRAY (N, M:) •
A shortened form is A2D •
.a.RRAY2D (N,M:I,J, ••. ,K) defines a 2-dim. N-by-11 array.

The elements are preset by the element list T,J, ••• ,K.
If any obiect of the defining element list is structured, the
elem~nts of the structured object are used. If a complex element
is encountered, then a 2-dimensional N-by-~ complex array is
defined. All elements not preset by the element list are set
equal to zero.

ASTN (X) defines the arcsine of X.
ASIN (X) de fines an object with the same structure as X with elements
that are the arcsine of the corre~ponding elements of X.

All the elements Xi of X must be real and satisfy the condition
1Xi1<1 or the condition 1Xi1=1.

213

The SPEA~EASY HELP Documents Date: 5/25/7 3

ASYMMAT ASYMMAT(N:I,J, ••• ,K) defines an N-by-N antisymmetric matrix.

A'l' AN

The element list is used to fill the lower triangular part
(excluding the diagonal elements which are set to zero)
hy rows. The portion above the diagonal is then filled by
making the matrix •ntisymmetric. If ani object i~ the list
defining the elements is . structured, the elements of that
structured object are used.

A shortenen form is AMAT.

A'T'AN(X) defines the arctangent of x.
ATAN(X) defines an object with the same str~cture as X with elements
that are the arctangent of the co.rrespo·nding elements of X.

All elements Xi of X must be real.

A(ITOCORE AIJTOCORE specifies that the data storage space is in LCS.
AUTOCORE means that the largest amount of LCS available is to be
used for the job. If LCS does n'ot exist, main core is used.
CAUTION: If LCS does not exist, usinq AtiTOCORE may result in
no core being left for subsequent use by LINKULP.S.

If AUTOCORE is to be us e d, it should be the first card in the
SPEAK EA SY job.

ADTOPRIN AnTOPRINT(l,Y, .•• ,Z) prints X,Y, ••• ,z each time they are redefinen.
Each object of the name list X,Y, ••• ,z is printed whenever it appears
on the left of an equation.

AnTOPRINT prints all objects as they are defined or altered.
AUTOPRINT with no arguments prints all objects as they are defined
or al teren. The statement ENDAUTOPRHfT turns off autoprint.

AnTOTAO AUTOTAR specifies uniform column width for printout.
The value of N for the column width is automatically set at 10
greater than the number of significant figures so that the print
is uniform for all objects composed of real numbers. ·

~ VERAGF. AVF.RAG ~ (X) returns the average value of the elements of x.
x is a structured object.

214

ThA SPEAKEASY HELP Documents Pate: 5/25/73

A 1D

1\2 D

RF',SSF.L

A1D(N:) tlefinPs a 1-dimensional art'ay.
If no further' arquments are given, all the components are
set P.qual to zero.

A1D is a synonym for ARRAY{N:).
A10(:I,,l, ••• ,K) defines a 1-dim. at'ray and specifies the elements.

The components are pt'eset by the argument list T,J, ••• ,K,
If any argument in the at'gument. list is structuren, then the
elements of the structured object are used. The ~ize of the
at'ray is equal to the total number of ele~ents specified.
Tf a complex element is encountered, then a complex
1-nimensional at'ray is defined.

A1D(N:T,.l, ••• ,K) definPs a 1-dim. N-component at'ray.
The components are preset by the element list I,J, ••• ,K.
If any argument of the element list is structured, then
the elements of the sti::uctured object are used. If a
complex element is encountered. then a cqmplex 1-diminsion­
al array is defined. If all N-components are not specified,
the unspecifien components at'e set equal to zero.

A2n is a synonym for ARRAY2D.
A2D(N,M:) d 0 fines a 2-dimensional N-by-M at'ray.

rt no further arguments are given, the elements at'e set
equal to zero.

A2D(N,M:I,J, .•• ,K) defines a 2-dim. N-by-M array with !Jreset el~.
The elements are pt'eset by the element list I,J, ••• ,K.
If any ob;ect of the defining element list is structut'ed, the
elements of the structured object are used. If a complex
element is encountet'ed, then a 2-dimensional N-by-M co~plex
array is defined. All elements not preset by the element list
are set equal to zero.

AESSF.L(NU,X) calculates cylindrical Bessel fQ. of the first kind.
The result is the Bessel function J sub NU of X. ·
Nn and x must be real and nonnPgativc. There exists a restriction
in the SPEAKEASY linkule that (X+NU) <400.

BESSELK BESSELK(NU,X) retut'ns the modified Eessel function K of X.

B[J GS

The result is the modified Bessel function K sub Ntl of x.
NU and X must be real and nonnegative. There exists a
restt'iction in the SPEAKF.ASY linkule that (X+NU)<400.

HUGS are the current bugs in SPEAKP.ASY.
This document will list. the current errors in SPE~KEASY and
their' status of correction.

215

ThP. SPEAKEASY HELP Documents Date: 5/25/7 J

CG AM MA CGAMMA (X) returns the gamma function of X (X is complex).
The result has the same structure as X with elements equal
to the gamma function of the corresponding elements of x.

If X is real, the gamma function of X may be obtained from
GAMMA(X).

CLEAR CLF.AR erases the entire active data storage.
After the execution of the statement CLEAR there are no
user-defined objects, proqrams, or henceforth definitions.

CLEARDAT CLEARDATA frePG all previously defined numerical data.
CLEARDATA does not free programs or hencforth definitions.

COLARRAY COLARRAY (N:) defines a 2-dim. N-component column array.
If no further arguments are given, all N-components are
set equal to zero.

COLARRAY (:I,J, .•• ,K) defines a 2-dim • . column array with preset els.
The components are preset by the .element list I,J, ••• ,K • If
any argument of the element list is structured, then the elements
of that structured object are used. If a complex element is
encountered, then a comlex 2-dimensional column array is
defined.

COLARRAY(N!T,J, ••• ,K) defines a 2-dim. N-component column array.
The components are preset by the element list I,J, ••• ,K • If
any argument of the elem~nt list is structured, then the
~lements of that structured obiect are used. If a complex
element is encountered, then a complex 2-dimensional column array
is defined. If all N-components are not preset by the element
list the unspecified components are set equal to zero.

COL~AT COLMAT(N:) defines an N-by-1 matrix which is a column.
If no further arguments are given, all N elements are
set equal to zero.

cn1M.a.T(:T,.J, ••• ,K) defines a column matrix by specifying th'::! els.
The element list I,J, ••• ,K is used to preset the elements of the
column matrix. If one of the arguments of the element list is
structured, the elements of that structured object are used. If
one of the elements is complex, the column matrix is complex.

COLMAT(N:r,.1, ••. ,K) defines an N-by-1 column matrix with. preset els.
The eleme~ts are specified by the element list I,J, ••• ,K. If one of
the arguments of the list is structured, the elements of the structured
object are used. The column matrix is complex if one of the preset
elements is complex. If all N elements are not preset by the element
list, the unspecified elements are set equal to zero.

COlMAX COLMAX (X) specifies the column with the maximum element of X.

216

The SPEAKEASY HELP Documents Date: 5/25/7 3

coL~TN COLMIN(X) specifies the column vith the minimum element of x.

COLWIDTH COLWIDTH(N) specifies the m1n1mum column vidth to he used in printing.
This statement prevents the 'column width of the print routine trqm
being less than N characters. tf N is 10 larger than the numher of
significant figures desired, the print will he u~iform for all
objects composed of real numbers.

COMPTLF. COMPILF. returns the processor to the MANUAL mode from EDIT.
COMPILE is used after a program has been edited to return from
the EDIT mode to the MANUAL mode.

CONJ CONJ is a synonym for CONJUGATE.
CONJ (X) n~turns the complex conjugat.e of x.

CONJ(X) defines an object with the same structure as x
hut with elements equal to the ~omplex conjugate of the
corresponding elements of X. ·

CONJOGAT CONJUGATE(X) returns the complex conjugate of x.
CONJUGATE (X) defines an object vi th the same structure
as X but with elements equal to the complex
conjugatt> 0.f the corresponding elements of x.

A shortened form is CONJ.

CONSTRAI CONSTRAtN(A,B, ••• ,C:X) constrains A,B, ••• ,c according to conditio~ x.
A,B, ••• ,c are 1-dimensional objects of the same length. X is a logical
expression of the same length as the objects to the left of the
colon. The objects to the lPf t of the colon are truncated so that
they contain only those elements satisfying the logical expression t.

All 1-dimensional objects must have the same lengt~.
For an example refer to the SPEAKEASY-3 manual.

CONTINUE CONTINUE used in the program mode causes no operation to be perfor~ed.
The CONTINUF. statement is a nonoperational statement to which a
label may be attached. CONTINUE is ignored in the manual mode.

CONTINUE causes execution of a program to resume from the holding
moda. CONTINUE is used in the holding mode after statements are
entered to cause execution of the program to continue from the point
where it was interrupted by PAUSE, INPUT. or STOP.

Synonyms for CONTINUE are Gp, RESUME, and a null line.
CONTINUE is a cestricted word.

217

The SPEAKEASY HELP Documents Date: 5/25/7.1

CCPY

, .. , '
~

COPY N, M, K (I) copies st-atements N throuqh M to K, K+I, K+2I, •••
COPY N,M,K copies statements N through M to K,K+1,K+2, •••
COPY N copies statement N to the last posit.ion.
COPY N, M .copies statements N through M to the last positions.
COPY is a command available in the EDIT mode.

c os COS(X) returns the cosine of x.

COSI!

COS (X) defines an object with the same structure as X but
the Plements of the result are the cosine of the
corresponding elements of X.

Each element Xi of X must satisfy the condition
1Xil<1.E15.

COSH(X) defines the hyperbolic cosine of X.
COSH(X) defines an object with the same structure as X but with elements
equal to the hyperbolic cosine ot the corresponding elements of X.

'The elements Xi of X must be real and must satisfy the condition
)Xi1<170.

COT COT (X) returns the cotangent of X.
COT (X) <lefin?.s an object with the same structure as X but the elements
of the result are the cotangent of the corresponding elements of
x.

Each element Xi of X must satisfy the condition JXif<1.E15.

CREATE CREATE MEMBER X ON LIBR~RY Y creates a new member in a library.
All input following the input CREATE MEMBER until the input
ENDCREATE is encountered is put into the member with the
name X in library Y.
' CREATE MEMRER x creates a member x in the library MYPROCS.

CR EATF:~ E CR EATEMEMBER (XX, YY) creates member xx in library yy.
XX is the name of the memher that is created.
YY is th e name of the library into which XX is put.
All the input following the CREATEMEMBER input is put into
the member named XX in library YY until the input ENDCREATE
is encountered.

CREA'T'EMEMBEB (X) creates member X in the library MYPROCS.
An alternative form is CREATE MEMBER XX ON LIBRARY YY.

CTi'1PTWD CU MPROD(X) oefi11es the cumulative product of the elements of x.
CUMPROD(X) defines an object with the same structure as X vith
elements that are the cumulative product of all previous
elP.ments of X. Two-aimensional objects are treated rov by row.

218

Tr~ SPEAKEASY HELP Documents Date: 5/25/73

cnMSU!'I

DATA

DEC

DELETE

DER TV

CUMSU!'l(X) d~fines the cumulative sum of the elements of x.
CUMSU!'I (X) defines an object with the same structure as x with
elements that are the cumulative sum of all previous elements
of X. Two-dimensional objects are treated rov by row.

DATA NAME marks the beqining of a data file.
NAME is the name given to the data file. The data file is
terminated by the single word END. All cards between the
card DATA NAME and the card END contain data that may b~
punched in any format. It is read into a specified array
hy a LOADDATA statement.

DATA is a restricted word.

DEC(ZA1,ZA2, ••• ,ZAN) converts A1,A2, ••• ,AN from hex to decimal.
The hexidecimal numbers A1,A2, ••• ,AN must be prefixed by a letter
to prevent their conversion to numbers by SPEAKEASY. They
may be 7 hexidecimal figures in length. The first character
must be a letter so they are 8-character words.

The cesult is an array with Ple~ents that are the decimal
equivalents of the hex arguments.

DELETE N,M deletes the statements N through M.
DELETE N deletes the statement numbered N.
DELETE is ·one of the commands available in the F.DIT mode.

DELETE may be abbreviated by D.

DERIV is a synonym for DERIVATIVE.
DER IV (F:X) finds the derivative of the function r 'iith respect to X .•

X and F are a 1-dimensional arrays and so is the result. F.ach
element of the result is dF/dXi, where Xi is the correspondi~g
element of x.

DERTVATI DERIVATIVE(F:X) finds the derivative of F with respect to x.
F and X are a 1-dimensional arrays and so i~ the result. Each
element of the result is dF/dXi, where Xi is the corresponding
element of x.

~ shortened form is DERIV.

DET DET(X) defines the determinant of the matrix X.

DTAr.ELS DIAGELS (X) selects the diaqonal elements of X.
The diaqonal elements are given in the order in which they
occur in x. x must be a square matrix or array. The result
is a 1-dlmensional array.

219

The SPEAKEASY HELP Documents Date: 5/25/73

DIAGMAT DIAGMAT(N:I,J, ••• ,K) defines an N-by-N diagonal matrix.
All elements are zero except for those along the diagonal,
which are defined by the element list I,J, ••• ,K. If any
object in the element list is structured, the elements
of that structured object are used.

A shortene~ form is DMAT.

DMAT DMAT is a synonym for DIAGMAT.
DMAT(N:T,J, ••. ,K) defines an N-by-N diagonal matrix.

All elements are zero except for those along the diagonal,
that are defined by the element list I,J, ••• ,K. If any
object in the element list is structured, the elements of
that structured object are used~

DOCOMENT DOCUMENT is a lihrary of larger documents.
The document library contains the documents of the system
other than the HELP documents.

t)OMAIN DOMAIN specifies whether real or complex numberti are being used.
Tf no domain is specified by the user, it is assumed to be
the real domain. The domain may be altered at will by the user
by the statements DOMATN(REAL) or DOMAIN(COMPLEX).

DOMAIN(REAL) specifies that real numbers are to be used.
Any calculation leading to an imaginary or complex result is
treated as an error.

DOMAIN(COMPLF.X) specifies that complex numbers are allowed.

DONTLTST DONTLIST indicates that the program is not to be printed.
If not specified, DONTLIST is default for the interactive
operation; LISTPROG is usually default for batch jobs.

DOUBL~FA DOUBLEFACTORIAL(X) returns the doublefactorial X!! .

DOMP

DOCTBLEFACTORTAL(X) defines an object with the same structure
as X with elements that are equal to the doublefactorial of
the corresponding elements of x.

DUMP creates an easily
DUMP enables the user to
point in a calculation.
continues.

DUMP is not availablP.

read complete printout of all defined objects.
examine all the information at a givAn
After the printout, the calculation

i~ TSO.

I ·•

220

The SPEAKEASY HELP Documents Date: 5/25/73

ECHO

RDT'T'

f.CHO prints out the input along with results.
The first line of output is the user's input. Immediately followin~
are the results or the response to the input.

ECHO is default for batch jobs; NOECHP is default for th~
interactive operation.

EDTT is a mode available for editinq a program.
The EDIT mode is automatically entered when one of the
words PROGRAM, PROCEDURE, EDI~, or DATA is encountered.

There are two modes available vhen using the SPEAKEASY editor.
You can change from one mode to the other at any time by
entering a null input line or by entering the command %FLIP.

In the EDIT COMMAND MODE, you may only issue commands.
~h?. commands available are:
LIST (may he abbreviated by L)
DELETE (may be abbreviated by D)
MOVE
COPY
NN followed by a statement to put in location NN
INSERT (may be abbreviated by I)
A null line stops an insPrt.
In the COMMAND MODE, you are prompted with the characters
:% or % so you need not. preceed your command with a %. (It
is already supplied in this mode.)

In the INPUT MODE, you are prompted with the line number into
which your · input will go. This number will normally be
incremented by 1 for each new line. While in the INPUT MODE
you can issue a command by preficing it with the character %.
Thus %LI~T in the INPUT MODE will produce a listing at your file.

For a description of most of these commands, type
HELP COMMAND
where COMMAND is the nam~ of the command desired.

EDIT XX returns the processor to the EDIT MODE with the prpgram
or datafile XX. XX is the name of a previously defined program or
datafile that is to be edited.

The EDIT MODE is available on all processors but it is
normally not used except for interactive operations.

221

The SPEAKF.ASY HELP Documents Date: 5/25/73

EIGENSYS EIGENSYSTEM (SYMMAT) returns all the eigenvalues of SYMMAT.
The eigP.nvalues are returned as a vector. If the SPEAKEASY call
is Y=EIGF.NSYSTEM(SYMMAT), then Y is a vector containg the eigen­
values of SYMMAT.

SYMMAT must be a real symmetric matrix.
EIGENSYTEM(SYMMAT:+M) returns th~ M largest eigenvalues of SYMMAT.

The M eigenvalues are in descending order as the M-components
of a vector.

SYMMAT must be a real symmetric matrix.
ETGENSYSTEM(SYMMAT:-M) returns the M lowest eigenvalues of SYMMAT.

The M lowest eigenvalues are returned in ascending order as the
M-components of a vector.

SYMMAT must be a real symmetric matrix.
EIGENSYSTEM(X,F.VECS) returns the eigenvalues and eigenvectors of x.

Tf the SPEAKEASY call is Y=EIGENSYSTEM(X,EVECS), then Y is a
vector containg the eigenvalues of X. The corresponding eigen­
vectors are stored row-wise in the N-by-N matrix, EVECS.

X must be a real symmetric matrix.
ETGENSYSTEM(X,V:+M) gives the M largest eigenvalues and eigenvecto· s.

The M largest eigenvalues are returned in descending order as a
vector. Their corresponding eigenvectors are returned as the rows
of the M-by-N matrix V.

X must be a real symmetric matrix.
EIGENSYSTEM(X,V:-M) gives the M smallest eigenvalues and eigenvector.

The M smallest eigenvalues of X are returned as a vector. V is
returned as an M-by-N matrix containing M eigenvectors corresponding
to the M smallest eigenvalues. The eigenvectors are stored row-wise
in v.

X must be a real symmetric matrix.

F.TGf.N v AL EIGENVALS(X) qives the eigenvalues of the matrix X.
The eigenvalues are listed in order of ascending values.

EIGENVALS{X:V) qives the eigenvalues and eigenvectors of x.
EIGENVALS(X:V) defines a vector containing the eigenvalues of X
in ascending order. V is a matrix whose columns are the
eigenvectors of X.

EIGf.NVEC EIGENVECS(X) gives the eigenvectors of the matrix X.

EL LIPE

RIGENVECS(X) defines a matrix whose columns are the eigenvectors
of x. The resulting matrix is unitary.

EIGENVECS (X:V) gives the eigenvectors and eigenvalues of x.
EIGf.NVECS (X: V) defines a matrix whose columns are the eigenvectors
of x. v is a vector containing the eigenvalues in ascending
order.

ELLIPE(X) calculates the complete elliptical integral E(X).
X is restricted to real values between 0 and 1. X=O and X=1
are included.

222

The SPEAKEASY HELP Documents Oa te: 5/25/7 3

ELL TPK ELLIPK(X) calculates the complete elliptical integral K(X).
X is restricted to real values between 0 and 1. X=O and X=1
are included.

~ND F.ND terminates a SPEAKEASY program or datafile.
During execution in the program mode, the single vord END
corresponds to a return. In the manual mode of SPEAKEASY, the word
END is ignored.

ENDAUTOP ENDAUTOPRINT turns off AUTOPRINT.

ENDLOOP ENDLOO~ N marks the end of the POR loop N.
N is the name of the FOR loop that occurs in the corresponding
FOR statement.

ENDLOOP is a restricted word.
FIN and NEXT are synonyms for ENDLOOP.

EONE EONE(X) calculates the exponential integral from X to infinity.
EONE (X) calculates the exponential integral, (exp (-t)/t) dt
from X to infinity. X may be in the ranges O<x<170.
If X>170, this routine sets EONE(X) =O with no error messages.
X is a real variable of any structure.

EQ .EQ. is the relational operator "equal to".
The periods must appear on both sides of the operator.
The result of A .EQ. B is the logical value true or false.
In SPEAKEASY, thesP. are defined as real numbers with the
values 1 and 0 respectively.

ERP ERF(X) calculates the error function of X.
ERP(X) = 2/sqrt(pi) intergral(O,X) exp(-t••2)dt
The result has the same structure as x with elements equal
to the error function of the corresponding elements of X.

The elements of X must be real.

ERFC ERFC(X) calculates the complementary error function of X.
ERFC (X) = 1-ERP (X)
The result has the same structure as X with elements that
correspond to the co~plementary error functions of the correspond­
ing elements of X.

The elements of X must be real.

223

The SPEAKEASY HELP Documents Date: 5/25/73

F.~RORS ERRORS are ambiguities making it impossible to carry out a statement.
There are two types of errors in SPEAKEASY. They are
syntax errors and execution errors. Syntax errors are those
due to misuse of symbols such as parenthesis imbalence.
Such errors are detected before execution of the SPEAKEASY
statement. Execution errors relate to an inconsistency in the
use of defined objects. Errors encountered during compilation
of a SPEAKEASY program do not inhibit later execution.

EXP.CUTE EXECUTE NAME executes the stored program, NAME.
The stored program is executed by this command and continues
until a RETURN statement or END statement is encountered.
These statements terminate the execution of the stored program
and the statement following the one calling for the . execution
ot the stored program is then executed.

EXECOTE NAME:LABEL executes the program NAME beginning at LAHEL.
EXECUTE NAME: LABEL causes the stored program with this name to
begin execution at the d~signated internal label.

P.XECUTR statements may occur in U.e manual mode or in any
;;tared program. In the manual mode, the Execute statement
should occur alone; not as part of a multistatement card.

EXECUTE is a restricted word.

EXP EXP(X) defines the exponential function.
EXP (X) defines an object with the same structure as X but with elements
equal to the exponential of the corresponding elements of x.

Each element Xi of X must satisfy the conditions Real (Xi)<170 and
I Tmag (Xi) I <5E6.

FIN FIN is a synonym for ENDLOOP.
FIN N marks the end of the FOR loop N.

N is the name of the loop appearing j~ the corresponding FOR
statement.

FIN is a restricted word.

224

The SPEAKEASY HELP Documents Date: 5/25/73

FOR FOR N=START,STOP,INC designates a loop in a program.
N is the name of a scalar that may appear in any context in
the loop without altering its value. START, STOP, and
INC are scalar expressions not involving N.
START is the initial value of N.
STOP is the final value of N.
INC is the increment to be added to N every time the loop is repeated~
START, STOP, and INC may be any real numbers. ThP. loop is
executed for N=START,START+INC, ••• and is done for all values
of N that are inside the closed ranqe (START STOP) or (STOP START)
if STOP<START. Note that STOP may be <START in which case INC
must be <O. If INC is not specified, it is assumed to be
+1 or -1, which ever is appropriate.

A FOR loop is terminated by an ENDLOOP statement or by a
· FIN statement.

Up to 10 nested FOR loops are allowed. A FOR loop
started within a FOR loop must be terminated withip that loop.

Since FOR loops are neither efficient nor compact in SPEAKEASY,
they should be avoided. Logical transfers into and out of
FOR loops should be used with extreme caution.

FOR is a restricted word.

FRAC FRAC is a synonym for FRACPART.
F'RAC(X) returns the fractional part of x.

FRAC(X) defines dn object with the same structure as X but the
elements of the result are the fractional part of the corresponding
elements of X. The fractional part of a negative number is
the negative of the digits to the right of the decimal point; ie
FRAC(-1.2) = -.2

PRACPART FRACPART(X) returns the fractional part of x.
FRACPART(X) defines an object with the same structure as X but the
elements of the result are the fractional part of the corresponding
elements of X. The fractional part of a negative number is
th~·neqative of the digits to the right of the decimal point; ie
FRACPART(-1.2) = -.2

A synonym is FRAC.

FREF. FREE(N1,N2, ••• ,NN) frees the definitions of the objects N1,N2, ••• ,N~.
The core is then available for use by other objects.
N1,N2, ••• ,NN are names of defined objects or programs.

GAMMA GAMMA(X) defines the gamma function of X.
GAMMA(X) defines an object with the same structure as X but with
element~ equal to the gamma function of the corresponding elements
of X.

The elements Xi of X must be real and must satisfy the condition
10E-50<Xi<S6.

225

The SPF.AKEASY HELP Documents Date: 5/25/73

GE

GF.IGEN

GO

GOTO

GRAPH

.GF.. is the relational operator "greater than or equal to".
The periods must be on both sides of the operator.
The result of A .GE. H is the logical value true or false.
In SPEAKEASY, these are defined as real numbers with the
values of 1 or O respectively.

GEIGEN(M,~F.TRIC) finds the eigenvalues of the matrix M.
M is a real symmetric matrix in a non-orthogonal basis.
METRIC is the positive definite matrix of the inner products
of the basis states. The eigenvalues of 11 are returned as
the components of a vector.

GEJGEN (M,METRIC ,EVECS) finds the eigenvalues and eigenvectors of 11.
M is a real symmetric matrix in a nonorthogonal basis.
METRIC is the positive definite matrix of the inner products
of the basis states. EVECS is a matrix containing fhe eigenvectors
of M stored row-wise. The eigenvalues of 11 are returned as the
components of a vector.

GO causes execution of a program to resume from the holding mode.
GO is used in the holding mode after statements are entered to
cause execution of the program to continue from the point where it was
interrupted by PAUSE, INPUT, or STOP.

Synonyms for GO are CONTINUE, RESUME, and a null line.
GO may only be used in the holding mode.

GOTO X causes execution to be transferred to the statement labeled x.
The GOTO statement is used to alter the sequence of execution of
statements. Logical branches are created by combining an IF
statement with a GOTO statement.

GOTO is a restricted word.
An equivalent form is GO TO.

GRAPH (T :J) plots the mf!mbers of I versus the object J.
I is in the vertical direction and J is along the horizontal.

All objects snould be 1-dimensional and real and have
the same number of elements. A 2-dimensional object
in I is treated as several 1-dimensional obiects,
each consisting of a row of the original 2-dimensional
object. Thus a 2-dimensional object in I must have
as many columns as J has elements.

Each timP. GRAPH is encountered, a graph is drawn on a
new area of paper. A 11 of the dei:;ign statements should
<.1 ccompany GRAPH.

The graphical output from GRAPH in the program mode
;s plotted by CALCOMP.

GRAPH is available only in version GRAPHEZ.

:;

226

The SPEAKEASY HELP Documents Date: 5/25/7 3

GRID GRTD(I,J) defines a 1-dim. array of 101 points from r to J.
The increment is chosen by the computer so that the points
are equally spaced. Both points I and J arc included.

A synonym is VARIABLES (I,J).
GPID(I,J,K) defines a 1-dim. array I,J+K,I•2K ••• until J is reached.

The last element is equal to or less than J depending on the
increment K.

GRID(I,J,K) is not equal to VARIABI.E(T,J,K) unless K is such
that I+NK=J.

GT .GT. is t~e relational operator "greater than".
The periods must be on both sides of the operator.
The result of A .GT. B is the logical value true or false.
In SPEAKEASY, these are defined as real numbers with the
values of 1 or 0 respectively.

HENCEFOR HENCEFORTH X IS Y redefines the word X to mean Y.
After this statement, anytime the word X is encountered it will
be treated as if it were the word Y.

The word 'Is• in the expression is arbi trar ·y. Any word may
he used.

Restricted words may not be given synonyms by this method.

HIF.RARCH HIERARCHY is the order in which mathematical operations are done.
The HIERARCHY in SPEAKEASY is:
•• raising to a power,
;,• division and multiplication,
+,- addition and subtraction.

Operations of the same hierarchy are done left to right.

HIGAWIDE HIGHWIDE activates HIGH-WIDE arithmetic for arrays.
HIGH-WIDE arithmetic conforms to the HIGH-WIDE convention.
The HIGH-WIDE convention is that 2-dimensional arrays are compatible
for arithmetic operations if the height (number of rows) of each
array is either 1 or some constant value H and ~he width (number of
columns) of each array is either 1 or some constant value w. The
resulting array defined by the operation has R rows and W columns.

For example, an Nx1 array times an NxM array yields an NxM array;
an NxM array times a 1xM array yields an NxM array; an Nx1 array
times a 1xM array yields an NxM array.

An alternate call to turn on the HIGH-WIDE convention is
HIGH WIDE (ON).

HIGHWIDE(OFF) turns off the HIGH-WIDE conventiqn for array
operations.

A shortened form is HIWIDE.

227

The SPEAKEASY HP.LP Documents Date: 5/25/7 3

HIWIDE

HUBEL

tSCA LE

H~IZf.

IF

HIWIDE is a synonym for HIGHWIDE.
HIWIDE activates HIGH-WIDE arithmetic for arrays. HIGH-WIDE arith­
metic c onforms to the HIGH-ijIDE convention for arithmetic operations.
Th?. HIGH-WIDE convention is that 2-dimensional arrays are compatihle
for arithmetic operations if the height (number of rows) of each
array is either 1 or some constant value H and the width (number of
columns) of each array is either 1 or some constant value w. The
resulting array defined by the operation has H rows and W columns.

For example, an Nx1 array times an NxM array yields an Nx~ array;
an NxM array times a 1xM array yields an NxM array; an Nx1 array
times a 1xM array yielns an NxM array.

An alternate call to turn on the HIGH-WIDE convention is
HIWIDE (ON) •

HTWIDE(OFF) turns off the HIGH-WIDE convention for array
operations.

ALABF.L='ANY MESSAGE' labels the horizontal scale of a graph.
The desired label may be anything. Its beginning and end
are marked by apostrophes in the specifying statement.

HLABEL is available only in version GRAPHEZ.

HSCALE= (LEFT,RIGHT) specifies the horizontal limits of a graph.
LEFT is the left limit and RIGHT is the right limit
of the scale. Values are labeled at inch marks. The
default limits for the horizontal scale are 0 for the
left and 10 for the right.

HSCALE is used for graphical output.

HSIZE=X specifies the horizontal size of the graph.
X is in inches. The default is 10 inches.

HSIZE is used for graphical output.

IF (X) Y is a conditional statement for scalar operations.
X is a scalar expression. If the numerical value of the
expression X is nonzero, then the associated statement Y is
carried out; otherwise the statement Y is ignored.

IF is a restricted word.

IMAG(X) returns the imaginary part of X.
IMAG{X) defines an object with the same structure as X but with
elements that are the imaginary part of the corresponding elements
of x.

A synonym is IMAGPART.

228

~he SPEAKEASY HELP Documents Date: 5/25/73

I~AGPART IMAGPART(X) returns the imaginary part of X.
IMAGPART(X) defines an object with the same structure as x but wi\h
elements that are the imaginary part of the correspond~~g element~
of x.

A synonym is IMAG.

INPUT JNPUT A,B, ••• ,c puts the system in a holding mode.

I NSF.RT

INTEG

rNTEGRRS

The word INPUT may be followed by any statement.
Statements entered in the holding mode are not restricted

to the implied requests of the INPUT statement. The only
restriction is that the EXECUTION mode may not be used for if
it is used, the ability to resume from t~is point at a later time
is lost . •

Execution of the program is resumed by entering either
RESUME, CONTINUE, GO, or a null line.

Synonyms for INPUT are PAUSE and STOP.
INPUT is only available in the PROGPAM mode.

INSERT N (I) inserts the statements that follow at N, N+I, N+2I, •••.
INSERT N(I) · inserts the statements that follow the words
INSERT N(I) i~to the positions N,N+T,N+2I, •••

INSERT N inserts the statements that follow at N, N+1,N+2, •••
!NSF.RT N inserts the statements that follow the insert command
into locations labeled by N,N+1,N+2, •••

A null line stops the insert.
INSERT may be abbreviated by I.
INSERT is one of the commands available in the EDIT mode.

INTEG is a synonym for INTEGRAL.
INTEG(F:X) defines the integral of F with a variable upper limit~

X is a 1-dimesional array (X1,X2,X3, ••• ,XN). Fis a 1-dimensional
array which is a function of the array x. The result is a
1-dimensional array the same size as X. Each element of the
result is the integral from X1 to Xi where Xi is the
corresponding element of x. The integration is aone by the
trapezoidal rule.

INTEGERS(I,J,K) defines an array with the integers I,I+K,I+2K, •• ~,J.
The array ends when the value J is reached or p~ssed.

INTEGERS(I,K) defines an array with the integers I,1+1,!+2, ••• ,K.
If K is less than I, INTEGERS(I,K) defines the integer array
I,I-1,T-2, ••• ,K.

A shortened form is INTS.

229
The SPEAKEASY HELP Documents oa te: 5/25/7 3

I~TEGRAL INTEGRAL(F:X) defines the integral of F with a variable upper limit.
X is a 1-dimensional array (X1, X2,X3, ••• ,XN). F is a 1-dimensional
array which is a function of the array X. The result is a
1-dimensional array the same size as X. Each element of the
result is the integral from X1 to Xi where Xi is the corresponding
element of X. The integration is done by the trapezoidal rule.

A shortened form is INTEG.

TNTERP INTERP is a synonym for INTERPOL.
INTERP(Y,F,X) defines the function Fat the points Y.

INTERP(Y,F,X) is an interpolation method which is cubic
except in the first and last intervals where it is quadratic.
The result is an ar~ay with the values of the function
F evaluated at the points Y. X and Y are arrays.
If points in Y are outside the range, the interpolation is
based on the last 3 points in the range. F(X) must he given.

TNTeRPOL INTERPOL(Y,F,X) defines the function Fat the points Y.
INTERPOL(Y,F,X) is an interpolation method which is cubic
except in the first and last intervals where it is quadratic.
The result is an array with the values of the function
F evaluated at the points Y. X and Y are arrays.
If points in Y are outside the range, the interpolation is
based on the last 3 points in the range. P(X) must be given.

A synonym is . INT ERP.

INTPART INTPART(X) returns the integer part of X.
INTPART(X) defines an object with the same structure as X but the
elements of the result are the integer part of the corresponding
~lements of I. The integer part of a negative numbers is
the ne qative of the integers to the left of tbe decimal point; ie
INTPAR T (-1.2) = -1

A synonym is ~HOLE.

INT S INTS is a synonym fo~ INTEGERS.

TN T2

INTS(I,J,K) defines an array with the integers I,I+K,I+2K, ••• ,J.
The array ends when the value J is reached or passed.

INTS(I,K) defines an array with the integers I,I+1,I+2, ••• ,K.
If K is less than I, I NTS (I,K) defines the integer array
I,I-1,T-2, ••. ,K.

INT2 (X) i s a function that returns an integer2 object.
x may be r e al8, real4, or integer4. The result is INTEGER2.
This operation is used to store large arrays in packed form -
it is not need ed in most applications.

230

The SPEAKEASY HELP Documents Date: 5/25/73

INT4 INT4 (X) is a function that returns an integer4 object.
X may be real4, real8, or integer2. The result is inteqer4.
This operation is used to store larqe arrays in packed form -
it is not needed in most applications.

INVERSE TNVERSE(X) defines the inverse of the matrix x.

KF.EP

KEPT

LA BEL

u:

The result is a matrix.
An alternative statement to obtain the inverse of the

matrix X is 1/X.

KEEP XX saves the SPEAKEASY object XX.
The object XX (either a variable, program or data file) is saved in f.hP.
private library defined by the MYKEEP tile. KEPT may be used to
retrieve the object at a later time. The TSO command ISPEAKEP may b~
U5e to create a partioned data set for KEEP and the TSO command
SPEAKEEP may be used to start a SPEAKEASY session that may use KEF.~ or
KEPT (i.e. SPEAKEEP is typed instead of SPEAKEZ).

The most general form of KEEP is
KEEP XX AS YY ON ZZ which causes XX to be saved in the file zz with
the name YY. KEEP XX AS YY is an intermediate form.

KEPT (XX) retrieves the SPEAK FASY object XX.
The object XX (either a variable, program or data file) is retrieved
from the ptivate library defined by the MYKEPT filP or if tberP is
no MYKEPT file from the MYKEEP file. XX must previously have been
put in the library by means of the KERP statement. If XX is a
variable, KEPT(XX) is a variable of the same type and may be used in
expressions such as

XX= KEPT(XX) or Z = KEPT(XX)/5 + KEPT(Y).
If XX is a program or data file the statAment KEPT (XX) restores XX
to core and makes it available for subsequent use (EPIT, EXECUTE, et~.)

The most general form of KEPT is
KEPT (XX ON ZZ) which uses the file ZZ for the library.

See KEEP for the TSO commands for using KEEP and KEPT.

LABEL refers to a statement label.
SPEAKEASY statements are labeled by a name of 8 syabols or less­
beginning with an alphabetic character. This label is separated
from the statement by a colon. The label may be in any column
but preceeds the statement •

• LE. is the relational operator "less than or equal to".
The periods must appear on both sides of the operator.
The result of A .LE. B is the logical value true or false.
In SPEAKEASY, these are defined as real numbers with the
values of 1 or 0 respectively.

231

The SPEAKEASY HELP Documents Date: 5/25/7 3

LENGTH LENG TH {X) defines a sea lar that is the number of elements in X.
If X is undefined, the result is zero.

A synonym is NOELS.

LIRTNDEX LtBINDEX(Y) defines the names of the members of Y.
LTBINDEX(Y) defines a literal 1-dimensional array with the
names of the members of the library Y as components of the
array.

LIBNAMES LIBNAMES returns the names of the SPEAKEASY libraries.
LIBNAMES defines an array whose elements are the names of
the libraries attached to the SPEAKEASY processor.

LINKLIB LINKLIB='XX' adds the LINKULE library xx to those available.
XX is an additional library of linkules that is searched if
a designated member is not found in the other libraries.

LINKULES LINKULF.S is a library of operations that are FORTRAN subroutines.

i..TST

LlNKULES are usually efficient routines for carrying out specific
mathematical operations. However, any FORTRAN subroutine can
be joined to SPEAKEASY by an appropriate interface and become
a LT NKTJ!..F.

To obtain a listing of the present LINKULES, use the statements
T=LIBINDEX{KEPT)
TABULATE T

LIST MEMBER x OF LIBRARY y FROM I TO J lists lines I through J OF x.
X is the name of a member of library Y to be listed. The words
ME!1BF.R, LIBRARY, FROM, and TO are keywords. If TO is omitted,
the listing begins at line I and goes to the end of the member.
If FROM is also omitted, the entire member is listed. LIBRARY Y
specifies the library to be searched for the member. The default
libt"ary is PROCLIB. If the member is not specified, the iibrary
in'1ex is listP.d.

LIST in the EDIT mode lists the edit file.
ThP entire file is listed unless statement numbers follow the
woca LIST. LIST may be abbreviated by L in the EDIT mode.

LIST N in the EDIT mode lists line N of ~he edit file.
LIST N,M in the EDIT mode lists lines N through M.

LISTHF.AD LISTHEAD(N,XX,YY) lists N lines of member XX of library YY.
N spPcifies the maximum number of lines of XX to be listed.
XX is the name of the member to be listed.
YY is the name of the library to be searched for member XX.
If YY is not specified, PROCLIB is default.

232

The SPEAKEASY HELP Documents Date: 5/25/73

LISTMEMB LISTMEMAER(XX,YY) lists member xx of library YY.
XX is the name of the member to be listed.
YY is the name of the library.
If YY is omitted, the default is PROCLIB.

The entire member is listed.
An alternative form is LIST MEMBER xx OP LIBRARY YY.

LTSTPROG LISTPROG specifies that the program is to be listed.
If not specified, the default for batch jobs is usually LISTPROG.
In the interactive operation, DONTLIST is default.

LOADDATA LOADDATA(A,NA~E) loads A vith N values from the data file NAME.

toe

LOCMAX

LOC!'IIN

LOCS

N is the number of elements of A or the number of numbers in
NAME, whichever is smaller.

LOADDATA is a restricted word.

LOC is a synonym for LOCS.
LOC (X) gives the indices of the nonzero (true) elements of X.

X is a 1-dimenional object. LOC is a logical function and
t ~ e argument X is often an array with a relational operator.
The result is usually used as a structured index to produce a new
array.

LOCMAX(X) specifies the location of the maxim um element of x.
x must be a 1-dimensional array.

LOCMT N (X) spec if ies the location of the minimum element of x.
x must be a 1- dimensiona 1 array.

LOCS(X) gives the indices of the nonzero (true) elements of X.
X is a 1-dimensional object. LOCS is a logical function and
the argument is often an array with a relational operator. ~he
result is usually used as a structured index to produce a new
array.

LOC is a synonym for LOCS.

LOG LOG(X) returns the natural logarithm of X.
LOG(X) defines an object with the same structure as X but with elements
equal to the natural logarithm of the corresponding elements of X.

LOG {X) is not defined if any element in X is 0.

233

The SPEAKEASY HELP Documents Date: 5/25/73

LOG~AMMA LOGGAMMA(X) defines the natural logarithm of the gamma function of x.
LOGGAHHA(X) defines an object with the same structure as X but with
elements that are the natural logarithm of the gamma function of the
correspondinq elements of X.

The elements Xi of X must be real and satisfy the condition
O<Xi<4E60.

tOWERTR1 LOWERTRI(X) returns the lower trianqular part of x.
The result is a 1-dimensional object of the same family as
X with elements corresponding to the lover triangular elements
and the diagonal elements of X.

X must be a 2-dimensional square object.

LT .LT. is the relational operator "less than".
The periods must be on both sides of the operator.
The result of A .LT. 8 is ·the logical value true or false.
In SPEAKEASY, these are defined as real numbers with the
values of 1 or 0 respectively.

MARGINS MARGINS enables the user to contol the margins of the output.
MARGINS(N,M) specifies the left and right limits of output.

MARGINS (N,M) means that the output is restricted to columns
starting at N and ending with M.

!'lARGD!S(H) is equivalent to MARGINS(1,M).
M!RGINS(0,11) is equal to MARGINS(1,M) without control functions.

MARGINS (0,11) eliminates all carriage control characters that are
used to control the vertical spacing and to position output on
the top of a new page.

MAT MAT is a synonym for MATRIX.
MAT(N,M:) defines an N-by-11 matrix.

If no additional arguments are given, the matrix has all
elements set to zero.

MAT(N,M:I,J, ••• ,K) nefines an N-by-11 matrix and presets the elements.
The elements are set row by row by use of the values I,J, ••• ,K or
the elements of I,J, ••• ,K if they are structured objects. If a
complex element is encountered, then a complex matrix is defined.
Tf all the elements are not preset by the element list, the
unspecified elements are set to zero.

234

The SPEAKEASY HELP Documents Date: 5/25/73

MATRIX MATRIX(N,M:) dPfines an N-by-M matrix.
If no additional arguments are present, the matrix has all
elements set to zero.

A shortened form is MAT. .
IHTRTX(N,M:I,J, ••• ,K) defines an N-by-M matrix with preset. e lemen t s.

The elements are set row by row by use of the values I,J, ••• ,K o r
the elements of I ,J, ... , K if they are st.ructured objects . If
a complex element is encountered, then a complex matrix is
defined. If all the elements are not specified by thP element
list, the unspecified elements are set to ~ero.

MAX MAX (X) specifies the value of the maximum element in X.

MAXOFCOL MAXOFCOL(X) returns the larqest element in each column of x.
X is a 2-dimensional array or a matrix. The result is a
1-dimensional object of the same family as X with element.s
that are the largest element of each column of x.

MAXOFROW MAXOFROW(X) returns the largest clement in each row of x.
X is a 2-dimensional array or a matrix. The result is
a 1-dimensional object of the same family as X with elements
that are the largest element of each row of X.

MELD MELD(I,J, ••• ,K) gives an odometer ordering of elements of I,J, • • • ,~.
The arguments I,J, ••• ,K must be 1-dimensional objects. MELD
alters the structure of I,J, ••• ,K so that every element in each
object of the argument list is associated with every element
of every other object in the List. The last argument varies
most rapidly.

After the statement MELD(I,J, ••• ,K), any function of I,J, ••• ,K can
be written in a straightforward manner.

For a further explanation and examples, refer to the SPEAKEASY-3
manual or the linkule document.

MFAM MFAM(X) de fines a member of the matrix/vector family.
The result has the same structure as X. If X is
a 1-dimensional array or a vector, the result is
a vector. If X is a 2- dimensional array or a matrix,
the result is a matrix.

MFAM and VFAM are synonyms.

MIN MIN(X) specifies the value of the minimum element in x.

235

The SPEAKEASY HELP Document& - -Date: 5/25/73

MINOFCOL MINOFCOL(X) returns the smallest element in ~ach column of x.
X is a 2-dimensional array or a matrix. The result is a
1-dimensionaJ object of the same family as X with elements
that are the smallest element of each column of x.

MINOFROW MINOFROW(X) returns the smallest element in each row of X.
X is a 2-dimensional array or a matrix. The result is a
1-dimensional object of the same family as X with elements
that are the smallest element of each row of x.

MO VP. MOVE N,M,K(I) moves statements N through M to K,K+I,K+2I, •••
MOVE N,M,K moves statements N through M to K,K+1,K+2, •••
MOVE N moves statement N to the last position.
MOVE N,M moves statements N through M to the last positions.
MOVE is a command available in the EDIT mode.

MYDOCS MYDOCS is the library name for private documents.
MYDOCS is the library name for private documents other
than the private HELP documents that are attached to the
SPEAKEASY processor.

MYHELP MYHELP is the library name for private HELP documents.
MYHELP is the library name for private HELP documents that
are attached to the SPEAKEASY processor.

MYKEEP MYKF.EP is a library for private information.
MYKERP is a library used to save information. Information is
stored in this library by the use of the command REEP. It can
he retrieved by the use of the word KEPT. The contents of this
library can he listed by the use of the command LIBINDEX.

MYKEPT MYREPT is a library for previously kept private information.
Information is retrieved from this library by the use of the command
KEPT. The names of information stored in this library are obtained
by use of the LIBINDEX command.

MYLTNKS MYLINKS is the library name for private linkules.
MYLINKS is the library name for private linkules to be attached
to the SPEAKEASY processor. It is of the same form as the
system libra r y but con ta ins personal routines. If MY LINKS
is an attached library, it will be searched for a given
member prior to the search of the LINKULE library.

236

Th~ SPEAKEASY HELP Documents · Date: 5/ 25/7 3

MYPROCS MYPROCS is a private library.

NA MES

If no library is specifierl when CREATE or CREATF.MF.MBER is used, the me~ber
created is put in the library MYPROCS. .Information in the library
MYPROCS may be listed by use of the commands LIST or LISTMEMBER.
' member of MYPROCS may be used by use of the commands USE or USEMEMAER.

NAMES prints the names of all currently defined SPEAKEASY objects.
The command NAMES is particularly useful in the interactive
mo~e since it provides the user with a means of obtaininq
a listing of the names of variables that he has previously
defined.

NE .NE. is the relational operator "not equal to".
The periods must appear on both sides of the operator.
The result of A .NE. B is the loqical value true or false.
In SPEAKEASY, these are defined as real numbers with the
values of 1 or 0 respectively.

NEU'1AtlN NEUMANN(NO,X) returns cylindrical Bessel fns. of the second kind.
NO and X are real and nonnegative. There is a SPEAKEASY
restiction that (X+N0)<400.

Por further details of accuracy and the method used for the
calculation · refer to the linkule document.

NEWGRAPH NEWGRAPH causes the next graph to be drawn on a new area of paper.
NEWGRAPH may be used in conjunction with ADDGRAPH to completely
avoid the use of the statement GRAPH.

NEWGRAPH is available only in version GRAPHEZ.

NEWPAGE NEWPAGE causes the printer to start a new page.

NEWS

NO COLS

NO ECHO

The output following the control statement NEWPAGE is printP.d on
the top of th e next page.

NEWPAGE is a restricted word.

NEWS is information of current interest to users.
This document will list current news about the SPEAKEASY system.

NOCOLS (X) defines a sea lar which is the number of columns in X.

NOECHO suppresses the echoing of input data.
This command causes just the results to be printed out. This
statement may occur at any place in the program.

NOECHO is default for the interactive operatioµ; ECHO is default
for batch jobs.

237

The SPEAKEASY HF.LP Documents Date: 5/25/73

NOELS NOELS(X) defines a scalar equal to the number of elements in X.
If X is undefined, the result is zero.

A synonym is LENGTH.

NORATION NORATIONALIZE stops rationalization of subsequent output.
There are no arguments for NORATIONALIZE.
R ATI ONA LIZE (see HELP document) is use~ to initiate the ra tionali za ti on
of output.

NOROOTS NOROOTS(F) gives the number of roots of the function F.
The number of times the function F chanqes sign (goes through
zero) is found.

A synonym is NOZEROS.

NOROWS NOROWS(X) defines a scalar equal to the number of rovs in X.

NOT • NOT. is the logical operator "not".
The periods must be on both sides of the operator •
• NOT. A= 1 if A is zero; otherwise .NOT. A= 0.
A may be any real number.

NOZRROS NOZEROS(F) qives the number of zeros of the function F.
The number of times the function P changes sign (goes through
zero) is found.

A synonym is NOROOTS.

NnMRERS NUMBERS refers to numerical data.
All numerical data are specified in decimal form. The lack of a
decimal point implies that it belongs just to the right of t he
last diqit.

NUMBERS can be real, imaginary, or complex.
A terminal I implies that the previous number was imaginary.
Examples of imaginary and complex numbers are: 21.61; 6.1+5 . 21

Very large or very small numbers may be expressed by ending
the num ber in E followed by the power of 10 associated with that
number. F'or example, 1.052E .. 2 means 105.2. If a number is
imaqina r. y, the I comes before the E, eg., 6.2IE-3.

238

The SPEAKEASY HELP Documents Date: 5/25/73

OBJECT OBJECT(I,J, ••• ,K) generates an inplace name.
Rach of the arguments I,J, ••• ,K can be either a literal quantity
or a nonnegative number. For literals, the expression itself
is used. For numbers, the integer part of the number is used
as a literal. The various arguments are then joined together
to compose the name.

The expression OBJECT(I,J, ••• ,K) may occur anywhere in a
SPEAKEASY statement. It is particularly usefull combined with
the word HENCEFORTH.

OMITCLAS OMITCLASS suppresses the printing of the class.
If OMITCLASS is not specified, the class of the resulting
structured objects is printed out when they are printed.
The statement OMITCLASS suppresses the printing of the class.

ONERROR ONFRROR(X,Y) specifies the action to be taken after an error.
X may be DOMP or NODUMP • .

The options DUMP or NODUMP sp~cify whether all defined data is
to be printed or not.

Y may be MANUAL or CONTINUE.
MANUAL means that computation is continued in the manual mode.
CONTINUE means that the error does not affect the path of
execution.

The default options are DUMP,MANUAL.

OR .OR. is the logical operator "or".
The periods must be on both sides of the operator.
A .OR. B = 1 if either A or ~ is nonz~ro; otherwise
A .OR. B = 0. A and B may be any real numbers.

ORDERED ORDERED(X) gives the elements of X in increasing order.
ORDERED(X) defines an object with the same structure as X but
whose elements are the elements of X arranged in order of
increasing magnitude.

A synonym is RANKED.

ORDF.RER ORDERER(X) qives the indices of the ordered elements of X.
OBDERER(X) gives the indices of the elem~nts of X arranged in
order of increasing magnitude. X must be a 1-dimensional
object.

A synonym is RANKER.

239

The SPEAKEASY HELP Documents Date: 5/25/73

PACTSE PAOSE puts the system in a holding mode.
The vord PAUSE may be followed by any statement such as
P A CT S E FO R IN P U T
Operations in the holding mode are completely general except that the
EXECUTION mo de should not be used for if it is used the ab i lity to resume
from this point at a later time is lost.

F.xecution of the program is resumed by entering either
RESUME, CONTINCTE, GO, or a null line.

Synonyms for PAUSF. are STOP and INPUT.
PAUSE is only available in the program mode .

PLOTSYMB PLOTSYMB(N,M) specifies the symbols used and frequenc y of points.

PLOT 'T T TL

N is an integer which determines the frequency with which
each symbol is plo~ted. (1 means every p oint, 2 m~ans e very other
point, 3 means every third, etc.) A negative value f o r N indicates
that only the symbol should appear. A positive value me ans
that a line should join successive point s .

M is an integer O through 12 that de s igna tes one o f 13
different symbols to be used in plotting data. The inte gers
and their corresponding symbols are:

0 is a s quare.
1 is a c ircle.
2 is a triangle.
3 is a plus(+).
4 is an X.
5 is a diamond.
6 is an arrow pointing u~ward.
7 is an X with a bar on top.
8 is a z.
g is a Y.

10 is an X wit h a circle.
11isanasterisk (*).
12 is an X with a bar on top and bottom.

PLOTSYMB i s used for graphical output.

•
PLO'I'TI TLE= ' ft.N Y ME SS AGE' titles a graph.

','he title ma y be anything. Its beginning
~ postroph es in the specifying statement.
the top of a graph.

and end are desi gnat e d by
The title is pri nt ed at

PLOTTITL E is only a vailable in version GRAPHEZ.

PRIN T (A, D, C, •• • ,Z) specifies that A,B,C, ••• , Z are to be pr i nt ed.
Th e use r ma y control th e form of output ~y using the control
~ords MAF GI NS , SIGNIFICANCE, AUTOTAB, TABULATE, and CO LW IDTH.

PRINT is a re s tricte d word.

240

The SPEAKEASY HELP Documents Oat e: 5/25/7 3

PRINTCLA PRINTCLASS prints the class of structured objects.
PRINTCLASS causes the class of structured objects to be
printed when the structured objects are printed.
PRINTCLASS is default. To turn it off, use OMITCLASS.

PROCLIR PROCLIR is a library of stored SPEAKEASY statements.

PROD

PRODCOLS

PR on BOWS

PROG RP.M

•

PUNCH

The proceedures in this library are available as input and
may be used by a statement of the form
rlSE l'!El'IBER NAME
where NAME is a proceedure in PROCLIB.

PROD (X) defines the product of the elements of x.
The result is a scalar.

PRODCOLS(X) multiplies the elements in each column of X.
PRODCOLS(X) defines a 1-dimensional object that is a
member of the tamily of X. Each element of the result
is the product of the elements in a column of X.

PRODROWS (X) multiplies the elements in each row of x.
PRODROWS(X) rlefines a 1-dimensional object that is a
member of the family of X. Each eiement of the result
is the product of the elements in a row of X.

PROGRAM NAME qives a name to a proqram.
A program is a SPEAKEASY procedure. Naming a program enables
the user to refer to that progra~ by name to store it, to use
it within another program, or to execute it.

A program is a defined object. If its name is identical to
a previously defined object, its definition will replace that
obiect •

PROGRAM is a restricted word.

PrlNCH(F:X) punches the objP.ct X on cards in the format F.
The PU~CH statement gives the user a means of transmitting
information to other no~-SPEAKEASY programs.

The format F is specified by a statement of the form
F= •(FORMAT) 1 whece FORMAT is the standard 360-FOFTRAN IV format •
excluding fixed-point form (integers). The F, D, and E
formats are equally acceptabl~.

X is the array to he punched • . '

241

The SPEAKEASY HELP Documents Date: 5/25/73

QUIT QOTT terminates execution of a SPEAKEASY program.
When all input is processed in normal batch operation,
execution automatically terminates. This word is
thArefore not normally used for such cases.

RANDOM RANDOM(X} generates random numbers.
The result has the same class and structure as X but its
elements are random numbers between 0.0 and 1.0.

RANDOM wilL produce the same numbers on successive calls
unl8ss the first use of it is preceded by the statement
L 0 A D (R A N DOM) •

RANKED RANKED(X) gives the el~ments of X in increasing order.
RANKED(X) defines an obiect with the same structure as X but
whose elements are the elements of X in increasing order.

A synonym is ORDERED.

RANKER RANKER(X) gives the indices of the ordered elements of X.
RANKER(X) gives the indices of the elements of X arranged in
order of increasing Magnitude. X must be a 1-dimensional
obiect. .

A synonym is ORDERER.

RATION~. L RA TI ONA LT ZF. (EPS, NDIGITS) causes rationalization of output.
subsequPnt speakeasy output vill be printed as rational fractions
if the difference of the rational form and the actual number is less
than EPS in magnitude and if the total number of digits required to
express the numerator and denominator of the fractional part is
approximately less than NDIGITS.

EPS may be entered in one of two ways:
1) as a number of the form 10••(-N) i.e. .00 ••• 01
2) as a positive integer N in which case EPS will be 10**(-N)

Note that in the first form, EPS must be a negative power. of 10;
.025 is, for example, invalid.
Tn both cases 1 <= N <= 20 must be satisfied.
The default value of N is 14 (EPS = 10** (-14)) •

NDIGITS must be an integer in the range 2 <= NDIGITS <= 18.
The default value of NDIGITS is 6.

If either or both of EPS or NDIGITS is zero, the rationalization
process is suppressed on future output. (The command NORATIONAL
(see HELP document) also stops rationalization.)

Alternate forms of the RATIONALIZE statement are
RATIONALIZE (EPS)
RATIONALIZE

in which the default valuPs are used for the omitted arguments.

242

The SPEAKEASY HELP Documents Date: 5/25/73

RF.AD

REAL

RF.AD(F:X) reads data from cards punched in format F and puts
them into X. The READ statement enables the user to read infor­
mation that has been punched in some specialized format.

The format F is specified by a statement of the form
F=' (FORMAT)' where .FORMAT is the standard 360-FORTRAN IV
format excluding fixed-point form (integers).

X is the array (structured object) into which the data are put.
It must exist and its size must be specified. The
number of cards read is the number needed to fill the
array.

READ is not availahle in all versions of SPEAKEASY.

REAL is a synonym for REALPART.
REAL(X) returns the real part of x.

REA.L (X) defines an object with the sa11e structure as X but the ele­
ments of the result are the real part of the corresponding element~
of X.

REALPART REALPART(X) returns the real part of x.

RE AL4

REALS

REALPART(X) defines an object with the same structure as X but the
elements of the result are the real part of the corresponding
elements of x.

A synonym is REAL.

REAL4(X) is a function that returns a real4 number.
x may be real 8, integer4, or i nt.eger 2. The result is rea 14.

REALS (X) is a function that returns a real8 number.
x may be real4, inteqer4, or in teger2. The result is rea18.

RECLASS RECL~SS(A:B,C, ••• ,Z) alters the structure of B,C, ••• ,z.
RECLl\SS (A:R,C, ••• ,'Z) alters the structure of B,C, ••• ,Z to
agree with A. B,C, ••• ,Z are previously defined objects wit.h
the same number of elements as A.

RESUME RF.SOME causes execution of a proqram to Lesume from the holding mode.
RESUME is used in the holding mode after statements are enterred to
cause execution of the program to continue from the point where it w~s
interrupted by PAUSE, INPUT, or STOP.

Synonyms for RESUME are CONTINUE, GO, and a null line.
RESUME may only be used in fhe holding mode.

243

The SPEAKEASY HELP Documents Date: 5/25/73

RBTURN RRTURN returns execution to the program calling the stored program.
The statement executed after the statement RETURN is the one
following the EXECUTE statement that invoked the stored program.
A RETURN statement is always implied before the END card of
any program.

RETURN is restricted to the program mode. It is ignored if
it is used in the manual mode.

RETURN is a restricted word.

ROOTS ROOTS(F:X) finds the roots of the function F.
ThP. result is a 1-dimensional array. X is a 1-dimensional
array of the same length as F. Roots defines a nev object
whose elements correspond to the zeros of the function
~ . The method of trapezoidal interpolation is used.

A synonym is ZEROS.

ROWARRAY ROWARRAY(N:) defines a 2-dim. N-component array that is a row.
If no further arguments are given, all N-components are set
equal to zero.

ROWARRAY(:I,J, ••• ,K) defines a 2-dim. row array with preset els.
The components are preset by the element list I,J, ••• ,K. If
any argument of the clement list is structured, then the
elements of that structured object are used. If a complex
element is encountered, then a complex 2-dimensional row
array is defined.

ROWAR RAY(N:I,J, ••• ,K) defines a 2-dim. N-component row array.
The components are preset by the element list I,J, ••• ,K. If
any arqument of the element list is struct~red, then the
elemPnts of that structured object are used. If a complex
elemP.nt is encountered, then a complex 2-dimensional row
array is defined. If all N-components are not preset by
the element list, the unspecified components are set
equal to zero.

~OW~ AT ROWMAT(N:) defines a 1-by-N matrix which is a row.
If no further arguments are given, all N elements are
set equal to zero.

ROWMAT(:I,J, ••• ,K) defines a row matrix and specifies the els.
The element list I,J, ••• ,K specifies the elements of the matrix.
If an arqument of the list is structured, the elements of that
structur~d object are used. If one of the elements is complexi
the matrix is complex.

ROWMAT(N:T,J, .•• ,K) defines a 1-by-N row matrix and specifies the els.
The elements are preset by the element list I,J, ••• ,K. If an
argument of the element list is structured, the elements of that struc­
tured object are used. If an element is complex, the matrix is
complex. If all N elements are not specified by the element list,
the unspecified elements are set equal to zero.

244

i~e SPEAKEASY HELP Documents Date: 5/25/73

ROW "!IN

RUN

SF. LEC T

ROWMAX (X) specifies the row containing the maximum element of x.

ROWl'IIN (X) specifies the row containing the minimum element of x.

RUN is equivalent to COMPILE followed by the command EXECUTE.
RUN used in the EDIT mode returns the processor from the EDIT
mode to the MANUAL mode, compiles the edited program,
and then executes it.

SELECT(A,B, ••• ,C:I) truncates or expands A,D, ••• ,c using the index r.
A,B, ••• ,c are 1-dimensional objects. I is a structured index that
acts as a control array. A,B, ••• ,c arc truncated or expanded so
their final com~onents are those indexed by the elements of the
control array I.

For an example, refer to the SPEAKEASY-3 manual.

SP.TGAUSS SETGAUSS(N,X,W,XLO,XHI) returns Gauss-Legendre coords. and weights.
SET GA oss (N, x, w, x LO, XHI) def in es th~ N- point Ga USS-Legendre
quadrature coordinates and weights with the coordinates in the
interval XLO to XHI. The arguments XLO and XHI may be omitted.
If XLO and XUI are omitted, the interval is -1 to +1.

N is the number of points required. N ~ust satisfy the
con~ition O<N<51.

X is returned as a 1-dimensional array whose elements are
the coordinates.

W is returned as a 1-dimensional array whose elements are
the weigh ts.

The points and weights are used as
In t?.qral (XLO to x HI) F (x) dx = SUM (W• F (X)) •

For further information about the method of calculation and
the accuracy, refer to the LINKULE document.

SETINFTN SETTNFTNITY(VAL) specifies an upper limit to the numbers printed.
Any number whose absolute value is greater than VAL is printed as
INF for infinity. The default value is 1.E+30.

.. 245

The SPF.~KEASY HELP Document s nate: 5/25/7 3

SETJACOR SF.TJACOBI(N,X,W,A,B,TX,TW) defines Gauss-Jacobi coords. and weights.
SETJACOBI (N,X,W,A,B,rX,TW). defines the Gauss-Jacobi quadrature
coordinates and weights for the interval -1 to +1 and gives t he
u~er an idea of the precision with which the coordinates and weights
are calculated. The coordinates are the roots of the Ja cobi
polynomial of deqree N and order (A,B). A, B, TX, and T W are
optional arguments and may be omitted. If A and B are o mitted,
the order of the polynomial is 0.

N is the number of points required. N must be an inte ge r
satisfying the condition O<N<51.

X is returned as a 1-dimensional array whose elements are
the roots of the Jacobi polynomial of clegree N and order (A, B).

W is returned as a 1-dimensional array whose elements are
the weights of the integration proceedure.

A and B are real numbers specifying t.he order of the polynomial.
A must satisfy the condition A>-1. B must satisfy the c o ndition
B>1. The default value for A and Bis O.

TX is the theoretical sum of the coordinates.
TW is the theoretical sum of the weights.
The coordinates and weights are used as

Integral(-1,1) (1-x)••A (1+x)**B F(X) dx = SOM(W*F{X))
For further information about the method of calculation and

the accuracy, refer to the LINKULE document.

SETLAGOP. SETL AG UER RE (N, X, W, A) returns Gauss -Laguerre coords. and weig hts .
SETLAGUEFRE(N,X,W,A) defines the Gauss-Laguerre quadra t u r e
integration points X and weights W appropriate for evalu a t ing
an inteqral from 0 to infinity with weight points of X** A e xp(-X).
The integration poipts are the roots of the Laguerre polyn om i al of
degree N and order A. A may be omitted. If A is omitte d , the
polynomial calculated is order 0.

N is the numb e r of points required. N must be an integer and
satisfy the condition 1<N<33.

X is r e turned as a 1-dimensional array whose elements are the
roots of the Laguerr P. polynomial of order A and degree N.

W is r e turned as a 1-dimensional array with the weights of
t.he int e gra t ion proccedure. The factor X**A exp(-X) is . in clude d
in w.

A is t he ord e r of the polynomial. The default is 0. A must be
a r e al numb e r greater than -1. A value of A of the order 20 could
cause overflows in the determination of the weights for l arg e values
of N.

The points and we ig hts are used as
Tnt. <> gral(O to inf) F(x) x**A exp(-x) dx = SUM(W • F(X)) .

246

~L~ SPEAKEASY HELP Documents Date: 5/2">/7 3

SFrLEGRN SETLEGENDRE(N,X,W,ILO,XHI) returns Gauss-Legendre coord. and weigh~s.
SETLEGENDRP.(N,X,W,XLO,XHI) returns the coordinates X and weights w
for the Nth order Gauss-Legendre quadrature formula in the
interval XLO to XHI. The arguments XLO and XHI may be omitted.
If XLO and XHI are omitted, the interval is -1 to +1.

N is the number of points required. N must satisfy one of
the conditions O<N<51, N=64, or N=96.

X is returned as a 1-dimensional array whose elements are
the coordinates.

w is returned as a 1-dimensional array whose elements
are the weights.

The points and weights are used as
Integral (XLO to XHI) F (X) ox = SUI! (W*F (X)).

SETLEGENDRE is equivalent to SETGAUSS for O<N<51.
The only difference is that SETLEGENDRE includes N=64 and
N:q6 while SETGAUSS does not.

SE'fLIB SETLIB (XX,YY) changes the name of library XX t.o YY.

SETNULL SRTNULL(VAL) specifies a lower limit to numbers printed.
Any numher whose absolute value is less than VAL is to be
printed as O. The default value is 1.F.-30.

SRTPLOT SETPLOT(X,Y,Z) specifies BOX, NOBOX; SCALES, NOSCALES; LINES, POIWTS.
x is either BOX or NOBOX.

BOX means to draw a frame around the graph.
NOBOX specifies no frame.

y is either SCALES or NOSCALES.
SCALF.S specifies that values at inch in~ervals are to
he indicated. NOSCALES causes the inrlication of
scales to be omitted.

Z is either LINES or POINTS.
LINES specifies that points are t.o be joined by lines leaving
the points unmarked. POINTS specifies that the points are
to be marked with crosses and not joined by lines.

The default options are BOX, SCALES, and LINES.
SETPLOT is available only in version GRAPHEZ.

SIGN SIGN(X) specifies whether X is positive or negative.
SIGN (X) defines an obiect with the same structure as X but with ele~en t s
of the result equal to +1 for elements of X >O, equal to -1 for eleae nts
of X <O, and equal to 0 for elements of X equal to O.

All the elements of X must be real.

STGNIFTC SIGNIFICANCE(N) gives the number of significant fig ures to be printed.
N is the number of significant figures desired. The defau l t is 5
significant figures.

247

The SPEAKEASY HELP Documents Date: 5/25/73

SIMP.Q SI~F.O(A,B) solves a set of simultaneous linear equations.
A is an N-by-N matrix. B is an N-by-M matrix of constants.
The result, X has the same structure as B and is the matrix
that satisfies the simultaneous linear equation A•X=B.

SIN SIN{X) returns the sine of X.

SINH

SIZF.

SM JIT

SPACE

STN(X) defines an object vith the same structure as X but
t.he elemPnts of the result are the sine of the
corresponding elements of X.

Each element Xi of X must satisfy the condition
fXif<1.E15.

SINH(X) defines the hyperbolic sine of X.
SINH (X) defines an ob"ject with thP. same structure as X but with elements
equal to the hyperbolic sine of thP. corresponding elements of x.

The elements Xi of X must be real and are restricted by the inequality
1Xi1<170.

STZF.=N,X specifies space for data and must be the first card.
SIZE=N,X specifies the amo1rnt of data space needed and its
loca t.ion.

N is the number of kilobytes of storage to be set aside for
SPEAKEASY data. One kilobyte is approximately 120 user-defined
numbers.

X may he MAIN or LCS. LCS means the data storage area may
be placed in LCS. MAIN is default..

The card specifying the size is the first one in the SPEAKEASY
deck.

SMAT is a synonym for SYMMAT.
SMAT(N:I,J, .•. ,K) defines a symmetric N-by-N matrix.

The element list is used to fill the lower triangular part
(including the elements alonq the diagonal) by ro-ws.
The portion above the diagonal is then filled by
making the matrix symmetric. If any argument. in the list
defining the elements is structured, the elements of that
structured object are use~.

SPACE(N) skips N lines.
SPACE is a restricted war~.

248

·, e S PEAK EASY HELP Documents Date: 5/25/73

Sl- HBES SPHBRS(L,X) returns the spherical Bessel fn. of the first kind.
The result is j sub L of X (little j). L must be a nonnegative
integer. Underflow will occur for excessively large L. x mu s t bP.
real and nonnegative. There is a SPEAKEASY restriction that
(X+L)<400.

For information on the method of calculation, refer t o t he
LINKULE document.

SP RBESN SPHBESN (L,X) returns the spherical Bessel fn. of the sec ond k i nd ~
The result is n sub L of X (little n). L must be a nonnegative
integer. Overflow will occur for excessively large L. X must be
real and nonnegative. There is a SPEAKEASY restriction t hat
(L+X) <400.

for information on the method of calculation, refer to t he
LINKULE document.

SQRT SQRT(X) defines thP. square root of x.
SQRT(X) defines an object with the same structure as X but with
elements· equal to the square root of the corresponding elements
of X.

If the domain of the calculation is complex, complex roots
can be obtained. Otherwise, the square root of a negative
number leads to an error message.

STOP STOP puts the system in the holding mode.
The word STOP may be followed by any statement such as
STOP FOR INPUT PLEASE
Any statements may he entered in the holding mode except that the
EXECUTION mode should not be used since if it is used, the ability ·
to res11111e from this point at a later time is lost.

Execution of the program is resumed by entering either
RESUME, CONTINUF., GO, or a null line.

Synonyms for STOP are INPUT and PAUSE.
STOP is only available in the program mode.

SUM S!JM (X) sums the elements of X.
SOM (X) defines a scalar object equal to the sum of the elements
of X.

SUMCOLS SUMCOLS (X) sums the elements in each column of X.
SUMCOLS (X) defines a 1-dimensional object that is a
member of the family of x. Each element of the result
is the sum of the elements in a column of X.

249

The SPEAKEASY HELP Documents Date: 5/25/73

surrnows SUMROWS (X) sums the elements in each row of x.
SrJMROWS (X) defines a 1-dimensional object that is a
member of the family of X. Each element of the result
is the sum of all the elements in a row of X.

SUMSQ SUMSQ(X) sums the squares of the elements of x.
SUMSQ(X) defines a scalar that is the sum of the squares of
all the elements of X.

SUMSQCOL SUMSOCOLS(X) sums the squares of the elements in each co l umn.
SUMSQCOLS ~) defines a 1-dimensional object that is a
member of the same family as x. Each element of the result
is the sum of the squares of elements in a column of x.

SUMSQROW SOMSQROWS (X~ sums the squares of the elements in each row.
SrJMSQROWS(X) defines a 1-dimensional object that is a
member of the family of X. E~ch element of the result
is the sum of the squares of the elements in a row of X.

SYMBOLS SYMBOLS designate mathematical operations or special cards.
The symbols and a brief description of their meanings are:

+ is the addition operator.
- is the subtraction operator.
• is the multiplication operator.

For matrices, • implies matrix multiplication.
For vectors, • implies take the inner (dot) product.
For arrays, • is element-by-element multiplication.
Tf A and B are 1-dim. arrays, C=A•B is Ci=Ai•Bi, where i impl ies
the ith element.

/ is the division operator.
Por matrices, A/B implies matrix multiplication of the matrix A
times the inverse of matrix B.
For vectors, / is not defined.
For arrays, division is defined element-by-element.
•• raises to a power.

** is not defined for matrices.
For vectors, •• means to take the outer (cross) product.
For ar ra ys, the operation is done element-by-element.

= means replace the object on the left by the exfression on
the right.

: separates the statement label from the statement or
separates arguments in some words.

: separates successive state~ents on a single card.
& designates a continuation of the previous card.
$ sets off a comment. The comment is written between two S.

There is an implied $ at the end of a card that has a single S on
it.

250

The SPEAKEASY HELP Documents Date: 5/~5/73

SYMPUT SYMMAT(N:I.J, ••• ,K) defines a sy1111etric N-by-N matrix.
The element list is us~d to fill the lover triangular
part (including the diagonal elements) by rows. The
portion above the diagonal is then filled by making the
aatrix symmetric. If any arguaent in the element list is
structured, the elements of that structured object are used •
• A shortened form is SPUT.

TABULATE TABULATE(A,B, ••• ,C) prints 1-dim. objects A,B, ••• ,c in tabular form.
Each column is labeled by the name of the corresponding object.

The user may control the tabulation by the specifications
MARGINS, COLWIDTH, and SIGNIFICANCE. All tables •ay be made
uniform by using AUTOTAB.

Only 1-dimensional objects may be tabulated.

TAN TAN(X) returns the tangent of X.
TAN (X) defines an object. with the same structure as X but
the elements of the result are the tangents of the
corresponding elements of x.

Each element Xi of X must satisfy the condition
1Xi)<1.E15.

TIME TIME gives the time in seconds from which one starts.
TIME gives the total "clock on the wall" time in seconds
elaspsed since the start of the SPEAKEASY step.

TIME(O) gives the elapsed time since the start of a SPEAKEASY step.
This fora can be used in SPEAKEASY statements.

TOTALINT TOTALINT(F:X) defines the definite integral of F over the array x.
X is a 1-dimensional array, (X1 ,X2,X3, ••• ,XN). F is a 1-dimensional
array which is a function of x. The result is a scalar equal
to the definite integral from X1 to XN. The integration is
done by the trapezoidal rule.

A shortened form is TOTINT.

TOTINT TOTINT is a synonym for TOTALINT.
TOTINT(F:X) defines the definite integral of F over the array X.

x is a 1-dimensional array (X1,X2,X3, •••• XN). Pis a
1-dimensional array vhich is a function of x. The result is
a scalar equal to the definite integral from X1 to IN. The
integration is done by the trapezoidal rule.

TRACE TRACE(X) gives the trace of the matrix x.
The trace is the sum of the diagonal elements.

251

ThA SPEAKEASY HELP Documents Date: 5/ 25/7 3

TRAN SP TRANSP is a synonym for TRANSPOSE.
TRANSP(X) defines the transpose of X.

TRANSP(X) defines an object that is of the same class as X and is
the transpose of the object X.

TR.aNSPOS TRANSPOSE(X) defines the tr-anspose of x.
TRANSPOSE(X) defines an object that is of the same class as X and is
the tr-anspose of the object x.

A shor-tened for-m is TRANSP.

TllTO R I AL TTITORI AI. teaches you about s PE AK EASY.

!J "l AT

Type TCTTORIAL to tur-n on the tutor-ial session.
Type MORE to get the first and subsequent paqes of the tutorial.
Only a few pages are available at this time; more will follow •

•
!JMAT is a synonym for UNTTMAT.
llMAT(N) defines an N-hy-N unit matrix.

All elements are zer-o except the elements along the
diagonal, which have the value 1.

UNTTMAT UNTTMA't' (N) defines an N-by-N unit matrix.
All elements are zer-o except the elements along the
diagonal, which have the value 1.

A shortened form is UMAT.

nPPERTRT UPPERTRT(X) r-eturns the upper triangular part of x.
X must be a square 2-dimensional object. The result is
a 1-dimensional object that is of the same family as X and whose ele­
ment~ are the upper- triangular elements including those along the
diagonal of X.

USE USE MEMBER X OF LIBRARY Y causes the member X to be used as input.
If the library refer-ence is omitted, PROCLIB is assumed. If the ·
library MYPROCS is attached, it will be searched for the member
X before the library PROCLIB is S€arched.

This pr-ovides the user with a simple means of supplying commonly
usen constants or SPEAKEASY programs to the processor.

USE is a restricted word.

252

~he SPEAKEASY RELP Documents Oa te: 5/25/7 3

'JSEIHPiBE USEMEMBER (XX, YY) causes input of the member XX of library YY.
XX is the name of the member desired.
YY is the name of the library to be searched for member XX.

If the library reference is omitted, PROCLIB is assumed.
If the library MYPROCS is attached, it will be searched for
member XX before PROCLIB is searched.

This provides the user with a means of supplying commonly
used constants or SPEAKEASY programs to the processor.

An alternative form is USE MEMBER XX OF LIBRARY YY.

VARIABLE VARIABLE(T,J) defines a 1-dim. array of 101 points from I to J.
The increment is chosen by the computer so that the points
are equally spaced. Both points I and J are included.

A synonym is GRID (I , J) •
VARIABLE(I,J,K) defines the 1-dim. array I,I+K,I+2K, ••• ,J.

The last element in the array is J. If the increment K is not
such that I+NK=J, then a new incremen•t. K' is chosen by the
computer so that the last element is J and the elements are
equally spaced.

VARIABLE(I,J,K) is equivalent to GRID (I,J,K) only when K is
such that I+NK=J.

VEC VEC is a synonym for VECTOR.
VEC(N:) defines a vector with N components.

If ther~ are no additional arguments, the values of the
components are set equal to zero.

VEC (: I,J, ••• ,K) defines a vector and specifies the components.
The components are preset by the argument list I, J, ••• ,K.
Tf any argument of the argument list is structured, then
the elements of that structured object are used. The size
of the vector is equal to the total number of elements specified.
If a complex element is encountered, then a complex vector
is defined.

VEC(N:I.J, ••• ,K) defines an N-component vector with preset els.
The components are specified by the element list I,J, ••• ,K.
If any argument of the element list is structured, then the
elements of that structured object are used. If a
complex element is encountered, then a complex vector is
defined. If all N components are not specified, the
unspecified components are set equal to zero.

253

The SPEAKEASY HELP Documents Date: 5/25/73

VECTOR VECTOR(N:) defines a vector with N components.
If there are no additional arguments, the values of the
components are set equal to zero.

A vector is a 1-dimensional member of the Natrix/vector family.
A shortened form is VEC.

VECTOR(:I,J, ••• ,K) defines a vector by presetting the components.
The components are preset by the argument list I, J, ••• ,K.
If any argument of the argument list is structured, then
the elements of that structured object are used. The size
of the vector is equal to the total number of elements
specified. T f a complex element is encountered, then a
complex vector is defined.

VECTOR (N:I,J, ••• ,K) defines an N-component vector with preset els.
The components are specified by the element list I,J, ••• ,K.
If any argument of the element list is structured, then the
elements of that structured object are used. If a
complex element is encountered, then a complex vector is
defined. If all N components are not specified, the
unspecified components are set equal to zero.

VERSIONS VERSIONS refers to the various versions of the SPEAKEASY processor.
These versions differ in their space requirements and in their
efficiency of operation. The present versions are:

STAN DARO
BABY
GRA PREZ
CONSO.LE
TSO

For further detail about these versions, refer to the SPEAKEASY-3
manual.

VFAM VFAM(X) defines a member of the matrix/vector family.
The result has the same structure as X. If X is
a 1-dimensional array or a vector, the result is
a vector. If X is a 2-dimensional array or a matrix,
the result is a matrix.

VLABEL VLABF.L='ANY MESSAGE' labels the vertical scale.
The desired label is enclosed between apostrophes.

VLABEL is available only in version GRAPHEZ.

VOCABULA VOCABULARY genPrates a list of all currently defined words.
The list is the actual list used by the processor in deciphering
the user's SPEAKEASY proqram. The printout in response
to the word VOCABULARY will change whenever a nev vord is
added to the language.

254

Tu~ SPEAKEASY RELP Documents Date: 5/25/73

7! CALE VSCALE=(BOTTOM,TOP) specifies the vertical limits of a graph.
BOTTO" refers to the lover liait and TOP the upper
limit of the vertical scale. Default values of the
limits on the vertical scale are 0 and 8. The scale
is labeled at inch marks.

VSCALE is used for versions with graphical output.

VSIZE VSIZE=Y specifies the vertical size of the graph.
Y is in inches. The default is 8 inches. Y cannot
exceed 10.

VSIZE is used for versions vith graphical output.

WHERE WHERE{X) Y is a conditional statement for array operations.
The statement X contains a structured object. The associated
statement Y is an equation defining a structured object of the sam'
siz~ and class as th~ structured object in the statement x. Only
the elements of the structured object in X for vbich the
statement X is true are replaced by elements of the structured
object defined by Y.

WHERE is a synonym for WHEREVER.

WRF.REVER WHEREVER(X) Y is a conditional statement for array operations.
The statement X contains a structured object. The associated
statement · Y is an equation defining a struttured object of the
same size and class as the structured object in the statement x.
Only the elements of the structured object in X for which the
statement X is true are replaced by elements of the structured
object defined by Y.

A shortened form is WHERE.

WHOLE WHOLE{X) returns the integer part of x.
WHOLE{X) defines an object vith the same structure as X but the
elements of the result are the integer part of the corresponding
elements of x. The integer part of a negative number consists of
the negative of the integers to the left of the decimal point; ie
WHOLE(-1.2) = -1

A synonym is INTPART.

WRITE WRITE(F:X) prints the defined object X in the foraat F.
The WRITE statement enables the user to print information
in a specific format.

The format F is specified by a statement of the fora
F=' (FOR~A~ 1 where FORMAT is the standard 360-FORTRAN IV format
excluding fixed-point form {integers).

x is the defined object to be printed in the specific format.
WRITE is not available in all versions of SPEAKEASY.

255

The SPEAKEASY HELP Documents Date: 5/25/73

ZEROS ZEROS(P:X) finds the zeros of the function F.
The result is a 1-dimensional array. X is a 1-di•ensional
array of the same length as F• ZEROS defines a new object
whose elements correspond to the zeros of the function
F. The method of trapezoidal interpolation is used.

A synonym is ROOTS.

256

APPENDIX

HELP documents are written as follows. Each

word in the HELP documents is written in a specific format for

retrieval of various levels of information. The first line of each

document may be obtained by itself. Consequently, it is a one-line

definition of the word. The information in each document is structured

in levels so that each paragraph goes into greater detail. Eventually,

the printing of a document will be halted after each paragraph so

that the user will have the option of stopping or requesting further

information. If further information is requested, the next paragraph

will be printed.

To facilitate obtaining output on various devices, the

length of each line is limited to 72 characters. For uniforn1ity, a new

paragraph is indented two spaces. Thus a line that begins a new

paragraph is limited to 70 characters.

The first line of each document consists of (1) the

word being defined (in capital letters), (2) the arguments of the word

(in capital letters), and (3) a concise definition of the word. Since

the first line is the beginning of a paragraph, it is indented two spaces

so 70 characters are left for the word, argument list, and definition.

Ideally this should be a complete sentence. Sometimes abbreviations

must be used in order to convey the meaning of the word in so little

space.

In addition to the restriction that the rest of the

paragraph and the following paragraphs have lines of 72 characters

or less, there is the convention that the word being defined and any of

the arguments appear in capital letters throughout the document. If

a word has more than one calling sequence, it is listed with each

calling seqnence as a new parae; :r:aph. The first line of this new

paragraph begins with the word being defined and follows the same

format as the first line of the document.

257

The last line of the document should have the initials

of the contributor in columns 68-72. The contributor assumes

r e sponsibility for the validity of operation of the word described.

The documents created in this way are placed into

a staging data s-et for validation before introducing them into the

system library. However, the newly defined documents are available

to SPEAKEASY users at Argonne.

HELP documents are written in upper and lower case.

Consequently, words may be put in only on devices that have both

upper and lower case, e.g., on the IBM-2741 terminal.

HELP documents are written in TSO EDIT using TEXT

to provide upper and lower case letters. Note that the HELP documents

have a blocksize of 1680 and a logical record length of 80 unlike

datasets produc ed via the TSO EDIT TEXT NEW command.

Consequently, a new HELP document is most easily created by

editing an old HELP docum e nt using TEXT OLD NONUM and saving

it under a new name.

258
INDEX

Capitalized entries are words available in one form or other to users of the current

SPEAKEASY processors. References in parentheses refer to examples of the use of the word. Under­

scored references refer to HELP documents. All of the HELP documents are separately indexed (see

pp. 181- 185). Extensive aids to locating specific words are provided there. For this reason not all

HELP documents are referred to in this index.

ABS, 63, (83). ~
ACCURACY, 24, 210
ACOS (arccosine),63, (70), 210
ACOT (arccotangent). 63, 210
Activating a linkule, 145
ADDGRAPH, 32, 210
ADJOINT, 21 0
AFAM , 69,(87). 211
Algebra of mixed 1-and 2-dimensional

arrays, (77)
Algebra

summary of rules, 59-62
hierarchy of operations, 12, 22
for vectors and matrices, 8, (74)

AMAT (see ASYMMAT). 211
AND (logical and). 21, (8~~
ANGLES (degrees or radians). ~
Arithmetic expressions, 12, 13, 22
Argument s to a linkule, 147-154
ARRAY, 10, 11, (58). (72). 200, 201, 212
Arrays as indices, 16 -- --

Array family, 6
ASIN (arcsine). 63, ~
ASYMMAT, 10, 57, (71). 213
ATAN (arctangent), 6 '3, 213
AUTOCORE, 101, ~
Automatic creation of structured objects, 11 ·
Automatic extension of defined objects, 17, (78)
AUTOPRINT, 45, (81). 213
AUTOTAB, 29, ~
AVERAGE, (1 02). 213
Bessel functions

cylindrical
BESSEL,~
BESSELK, 219
NEUMANN, 236

spherical
SPHBES, 248
BPHBESN, 248

Branching within a stored program, 36
Built-in functions, 18-20, 63, ..1..12.. ~
Card input conventions, 53
C l«s s dependence of ope rations 12, 13, 59-62
Classes of HELP documents, 179
Classes of objects, 5
CLEAR, 207, ~
CLEARDATA, 24, ~
Cross sections of objects, 15, 16, (78). (79)
Contour plot (sample job), (90)
Columns of objects, 15
COLARRAY, ~
COLMAT, 215
COLMAX, 65," 215
COLMIN, 65, (Bs\. 216
COLWIDTH, 29, 216-
Commands, .!12.
Compilation errors, 43
COMPILE, 136, ~
Complex arithmetic, 24, (70). (83)

Complex numbers, 4, (7.0) ·
Computational control statements, 24
Conditional statements, 23, (81). (82)
CONJUGATE, 63, (83), 216
CONSTRAIN, 116, 117, 216
Continuation statements, 3 5, 53
CONTINUE, 36, 138, 216
Control over graphica~tput, 30-32
Control over printed output, 28, 29
COPY (an edit command). 13 5, 217
COS (cosine). 63, ~ -­
COSH (hyperbolic cosine). 63, 217
COT (cotangenl), 6 3, 21 7
CREATE, 130, 217
CUMPROD, ~-
CUMSUM, 218
DATA, 26, (91), 218
Data file, 26, (91_)_
Debugging aids, 44-46
Default settings, 118, 140
Defined objects, 107 •
Defining

objects, 7-11, 57-58
arrays, 10
antisymmetric matrices, 10
diagonal matrices, 10
n1atrices, 9
pi, (70)
programs, 35
scalars, 8
symmetric matrices, 9
vectors, 8

DELETE (an edit command). 134, 218
DERIV, 66, (88). ~
DERIVATIVE (see DERIV). 218
DET, 67, (73), 218
DIAGELS, 67, 218
DIAGMAT, (71). ~
DOCUMENT library, 128, 219
DOMAIN, 24, (70), (83), 219
DONTLIST, 118, ~
DOUBLEFAC, ~
DUMP, 44, ~
ECHO, 118, 220
Editing a program, 135
EDIT, 133-136, (137). 220
Eigenvalues and eigenvectors, 67, (73). 221, 225
Element- by-element functions, 48, 63, 19s
Elements of an object, 6, 15, 16, (78). (79)
Elliptic integrals, 221, 222
END (terminating definition of a program). 35, 222
ENDAUTOPRINT, 45, (81). 222
ENDLOOP, 37, 222 -
Entering blocks of numerical data, 26

'EQ (logical equality). 21, (80), 222
Error detection facilities, 41

in the manual mode, 43, (95)
during program compilation, (94)
control co1n1nands, 46

messages, table of, 156

Examples of basic SPEAKEASY (see pp. 55-56
for separate index), 55-96

EXECUTE, 39, (93), ~
Executing one program from another, 39
Execution errors, 42, 43, (95)
EXP, 63, (70). 223
Expanding objects-;- 17, 116, 117, (78)
Families. of objects, 5
Family modification, 69, (87)
FOR, 37, (93). 112, 224
Formatted

input, 25
output, 27

FRACPART, 63, 224
FREE, 24, 10 7, 224
Functions

of 1 variable, 66, (88)
of 2 variables, (89)
of several variables, 112
trigonometric, 63, ~
built-in, 18-20
available special functions, ~

GAMMA, 63, (83), 224
Gauss integration (see integration)
Generalized linkule interface, 162
GO, 138, 225
GOTO, 36:-(93), 22S
Graphical output, 30-32, (92). .!12.. 225, ~
GRAPHEZ, 54, 140
G~ID. 10, (72), 226
:JT (greater than). 21, (80), 226
HELP, 105, 106, 128, _!£

library structure, 178
documents, 210-255
document names, 181
:. ree structure of 191-209

HENCEFORTH, 108, 109, 226
Hierarchy of arithmetic oper~tions, 13, 226

with logical and relational operators, 22
of search for words, 145

HI GHWIDE, ' 62, 226
Hl.ABEL, 32, (92['22 7
HSCALE, 30, 227
HSI Z E, 30, E:}_
I Iypc rbolic functions, 63
l.F , 23, (81). 227
] :c'lag\nary numbers, 4
u .. :AGPARI, 63, (83), 227
Im p licit defi •litiou of objects, 11
Irn j' lied print, 29, (70)
lndrx (obla\n an index to a library, e.g.,

H ELP), 1 28
index to the !ELF library, 181
~ n cie x oper~l i.' ns, 15, 16, (78), (79)
Tndi cc s

scahr, 6, 15, (78)
structured, 16, (82)

iNPUT. 138, 228
Input ar:d output, 2 5 - 3 2, -1:.12_, .!1,i
1NSER1 (an l <lit c o~·r11 ; and). 134, 228
l N1r2G£RS, (72), (84), 228
i NTEGRAL, (,6, (88), 229, ~
' n tegration t e?c hniques, 195

INTEGRAL, 66, (8 8). 229
SET GA USS, 244
SETJACOBI, 245

259
INDEX

SETLAGUER, 245
SETLEr~r£N, 2~

INTERPOLATE:-66, 229
INTPART, 63, (83), 229
INVERSE, 67, 230 -

Job Control Language for
batch ope ration, 5 3
creating a new linkule, 160, 168
graphical operation, 54
using a new linkule, 174

KEEP,~

KEPT,~
Keywords, 47-52, 103
Labels for statements, 35, 230
LE (less than or equal to), ~ (80)
LENGTH, 65, ~
LCS (use of large core storage), 101
LIBINDEX, 105, 128, 231
Libraries, 121-130, 198

private, 125 --

LINKIT, 166, 169, 173
LINKLIB, 126, 146, 231
LINKULES, 124, 143~5, 231

samples of 159, 160
Linkule libraries, 126
LIST, 129, 134, ~
LISTPROG, 118, 232
Literals, 4, 110
LOADDATA, 26, (91)
LOC, LOCS, 20, (82)
LOCMAX, 65, 232
LOCMIN, 65, 232

, LOG, 63, (70),D2
LOGGAMMA, 63, 233
LOGIC, ..!.1§_

logical and relational statements, 22, (80)
logical ope raters, 21, (80)
logical functions, 20
modification to notation, 99, 130- 132

Loops, 37
LT (less than), 21, (80), ~
Manual mode, 33
MARGINS, 119, (120), 2 33
MAT (see MATRIX)
Mathematical

operators, 12
expressions, 13
functions, .!12
replacement statement, 14

MATRICES, ~
MATRIX

definitions of various types of, 9, 71, 204
·functions for, 67, (73)
matrix-vector family, 5
matrix algebra, (73), (74)
matrix-vector operators, (74), 204

MAX, 65, 234
MAXOFCOL, 234
MAXOFROW, 234
MELD, 112, 115, 234
MFAM, 69, (137), D4
MIN, 65, (85). 234-
MINOFCOL, 235
MINOFROW, 235
MODES

manual, 33
edit, 133-136

program, 3 4-3 8
holding, 13 8
execution, 39

MOVE (an edit command), 1)4, 235
Multicard statements, 35, 53
Multistatement cards, 35, 5 3
Multidimensional calcs., 112
MYHELP, 127, 235
MYKEEP, ~
MYKEPT, 235
MYLINKS, 126, 235
MYPROCS, 125, 236
Names of objects, 5

of libraries, 126
NAMES, 107, 236
NE (logical not equal to). 21, (80), 236
Nested loops, :}_7
NEUMANN (see also Bessel). 236
NEWGRAPH, 32, 236
NEWPAGE, 28, 2~
NOCOLS, 65, (8~236
NOECHO, 118, 236 -
NOELS, 65, (85f:"237
NOROOTS, 66, (88~237
NOROWS, 6 5, ~ -
NOT (logical not). 21, (80), 237
Notation

names, 4
nun1bers, 4
literals, 4
elements of objects, 6, 15, 16

mathematical opetators, 12
logical operators, ·21

Numbers, 4, 237 ·
OBJECT, 106;-110, (t 11, 238
One-dimensional array algebra, (75)
One-dimensi~nal functions, 206
One-line definitions of HELP words, 182-190
ONERROR, 46, 238

operations on elements of an object, 15
OR (logical or), 21, (80)
OUT PUT, _!.2.i
Output format controls

AUTOTAB, 29, 213
ECHO /NOECH0,118, 220, 236
LISTPROG/DONTLIST, 118, 232, 218
MARGINS, 119, 233
RATIONAL,~

SETINFINITY, 28, 244
SF;:TNULL, 28, 246-
SIGNIFICANCE, Zs, 246

PAUSE, 138, 239
PLOTSYMBOL, 31, 239
Plotting (see graphing)
PRINT, 27, (70). ~
Printing output, 27-29
PROCLIB, 126, 240
PROD, 64, (84). MO
PRODCOL, 64, 24Q
PRODROW, 64, 240
PRODUCTS (of elements). 64, ~
Program

construction under 'lSU, !3'1
structure of, 34-39
execution of, 40

PUNCH, 30, 240
QUIT, 241

260
INDEX

RANKED, 68, 241
RANKER, 68, '{"86), 241
RATIONAL,~

READ, 25, 242
REALPART:-63, 242
Redefining object names, l 08
Region specification for

user data, l 00
job, 53, 54.

Relational '.
operators, 21, (80). ~
notation, 99
restricted words, 47, 208, _!.12.

RESUME, 138, 242
RETURN, 36 -
Reusability, 146, 157
ROOTS, 66, (88), ~
Rows of objects, 15
ROW ARRAY, 243
ROWMAX, 65,244
ROWMIN, 65, (85), 244
RUN, 136, 244
Scalars, 5, 8
Search hierarchy for words, 145
SELECT, 115, 117, 244
Selecting parts of an object, 15, (78)
SETINFINITY, 28, 244
SETNULL, 28, 246-
SHOW LINKAGE, 1 53
SIGN, 63, 83, 246
SIGNIFICANCE, 28, (88), 246
SIN (sine), 63, (83). 247
SINH (hyperbolic sine~63, 83, 247
SIZE, 100-102, 247
SMAT, 9, (57), (71), 247
Sorting elements of an object, 68, _!.12.
SPACE, 28, 247
Space allocator, 100-102
Special functions, ~
Spherical Beasel functions (see Bessel)
SQRT (square root), 63, (83). 248
Statement labels, 35, 230
STOP, 138, 248
Stored programs, 34-40

special word used in, 209
Structural information (functions for), 65, (85). 206
Structured indices, 15, (79). 82
SUM, 64, 84, 248
SUMCOLS, 64,(84). 248
Sums and products, 64~(84). 207
SUMROWS, 64, (84), 249
SUMSQ, 64, (84). 249-
SUMSQCOLS, 64, (84). 249
SYMBOLS, 12, 249 -
SYMMAT, 9, (57). (71). 250
Syntax errors, 43, (94)
Synonyms for many of the words, 48
TABULATE, 27, (83). (88), 111, 115, 250
TAN (tangent). 63, (88). 250
TOTALINT, 66, 250
TRACE, 67, (73), 250
Transfamily operations, 69, (87). 206
TRANSPOSE, 67, (73). ~ -
Tre" structure of HELP document, 178, (191).

191-209
Trigono1netric functions, 63, ~
Truncating objects, 116-147

TSO-SPEAKEASY, 133
sample construction of a program,
version, 141

TUTORIAL,~

Two-dimension array algebra, (76)
Two-dim, I-dim mixed algebra, 12,
UNITMAT, 251
USE, 127, i29, ~
Use of LCS for storage, l!Jl ' ' '
Using the HELP processor, 179, .!1.!_

261
INDEX

Using the TUTORIAL, 251
137 VARIABLE, ~

VECTOR, 5, 8, (57), (71),
VERSIONS of SPEAKEASY,
VFAM, 69, (87), (93), 253

59-62, (77) VLABEL, 31, (92), 253-

253
139-142

VOCABULARY, 103, 104, 253
, ,&:t , .. ;; ~CALE, 30, (92), 254

VSIZE, 30, (92), 254
WHERE, 23, (81),Zs4

GPO 8 81·91 0

