ANL-8000 ANL-8000

The SPEAKEASY-3 Reference Manual

<y =
9 T

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

US Department of Commerce
Springfield, VA. 22151

U of C-AUA- USAEC

ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS

Prepared for the U.S. ATOMIC ENERGY COMMISSION
under Contract W-31-109-Eng-38 |

The facilities of Argonne National Laboratory are owned by the United States Govern-
ment. Under the terms of a contract (W-31-109-Eng-38) between the U. S. Atomic Energy
Commission, Argonne Universities Association and The University of Chicago, the University
employs the staff and operates the Laboratory in accordance with policies and programs formu-
lated, approved and reviewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona Kansas State University The Ohio State University
Carnegie-Mellon University The University of Kansas Ohio University

Case Western Reserve University Loyola University The Pennsylvania State University
The University of Chicago Marquette University Purdue University

University of Cincinnati Michigan State University Saint Louis University

Illinois Institute of Technology The University of Michigan Southern Illinois University
University of Illinois University of Minnesota The University of Texas at Austin
Indiana University University of Missouri Washington University

Iowa State University Northwestern University Wayne State University

The University of Iowa University of Notre Dame The University of Wisconsin

NOTICE

This report was prepared as an account of work sponsored
by the United States Government. Neither the United States
nor the United States Atomic Energy Commission, nor any
of their employees, nor any of their contractors, subcontrac-
tors, or their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility for
the accuracy, completeness or ysefulness of any information,
apparatus, product or process disclosed, or represents that
its use would not infringe privately-owned rights.

Printed in the United States of America
Avzilable from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, Virginia. 22151
Price: Printed Copy $7.60; Microfiche $1.45

d.‘.-

NOTTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE
BEST COPY FURNISHED US BY THE SPONSORING
AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CER-
TAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RE-
LEASED IN THE INTEREST OF MAKING AVAILABLE
AS MUCH INFORMATION AS POSSIBLE.

ANL-8000
Mathematics and Computers

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

The SPEAKEASY -3 Reference Manual
Compiled by

Stanley Cohen

Physics Division

May 1973

A

TABLE OF CONTENTS

ABSTRACT

PART ONE. An Introduction to SPEAKEASY

1
IT.

INTRODUCTION .
BASIC SPEAKEASY (The Manual Mode).
A. Basic Notions
1. Data.
2. Names of Objects .
3. Classes
4. Elements of an Object .
B. Means of Defining Objects .
1. Explicit Definitions
2. Implicit Definitions
C. Mathematical Operations
1. Operators
2. Mathematical Expressions .
3. Mathematical Statements.
4. Built-in Functions.
D. Logical and Relational Operations
1. Operators
2. Logical and Relational Expressions .
3. Logical and Relational Statements.
E. Conditional Statements
F. Computational Control Statements
1. Domain
2. Accuracy
3. Freeing Defined Objects .
G. Input and Output
t.,. Iaput.
2, Output .
H. The Manual Mode.

e N B e L S ™ R A B o

Wi N NN N RN DR BN N AR RN R T e e R e ek
w =3 U U B D R WY =, =, =, 00 R WDN N -

III.

TABLE OF CONTENTS

STORED PROGRAMS .

A
B.

i
D.

Structure of a Stored Program .
Special Statements for Program Mode .

1. RETURN .

2. CONTINUE .

8 GOTQ .

& FOR .

5. Nested FOR Loops.

Executing a Stored Program .

Sample Programs.

IV. AIDS TO ERROR DETECTION .

A,

B.
G
8

Error Messages
1. Compilation Errors

2. Manual-Mode Errors.

3. Errors in Execution of the Program .

Dumps .
AUTOPRINT

Error-control Commands

APPENDIX I. Keywords and Synonyms

APPENDIX II. Card-input SPEAKEASY

APPENDIX III. Schedules .

PART TWO. SPEAKEASY-3:
1.
15

INTRODUCTION
NEW OPERATIONAL FEATURES.

WiRED Qe =

SIZE.
VOCABULARY .
HELP .

NAMES
HENCEFORTH .
OBJECT .

iv

The SPEAKEASY System .

34
35
36
36
36
36
31
37
39
40
41
43
43
43
43
44
45
46
47
53
55
9
98
99
100
103
105
107
108
110

N o= mQ

TABLE OF CONTENTS

MELD.
CONSTRAIN/SELECT.
ECHO/NOECHO
LISTPROG/DONTLIST
MARGINS .

III. LIBRARY FACILITIES .

IV. LOGICAL AND RELATIONAL OPERATOR NOTATION .

=R Nl

The LINKULE Libraries

The PROCEDURE Libraries.
The HELP Library .

The DOCUMENT Library .
LIBINDEX .

LIST

USE.

CREATE

V. INTERACTIVE SPEAKEASY.

A,
B.

The EDIT Mode
INPUT /PAUSE/STOP.

VI. VERSIONS.

A. STANDARD

B. BABY.

C. GRAPHEZ.

D. CONSOLE .

E. SPEK2250 .

. TS50
ACKNOWLEDGMENTS

PART THREE. SPEAKEASY-3: Linkules and Interfaces
I. LINKULES FOR SPEAKEASY-3 .

A,
B.

Int¥oduction . = . . 5 « %

How a Linkule Is Activated

112
116
118
118
119
121
126
126
127
128
128
129
129
130
130
133
133
138
139
139
140
140
140
141
141
142
143
144
144
145

1L

TABLE OF CONTENTS

The Argument List of a Linkule.
On Motion of Defined Data .
Returning from a Linkule .

On Reusability

o O

Sample Linkules

ONE GENERALIZED LINKULE INTERFACE,

APPENDIX I. Job Specification to Create a New Linkule.
APPENDIX II. FORTRAN Source Deck for Linkit .

APPENDIX III. Job Specification Submitted to Argonne Computer

APPENDIX IV. Deck to Operate with Routine FUN .

APPENDIX V. Output of Run with Linkule FUN .

PART FOUR. The SPEAKEASY HELP Documents.

I
II.
11T,
1V

Vi

INTRODUCTION
SPEAKEASY WORDS DEFINED IN THE HELP DOCUMENTS,
ONE-LINE DEFINITIONS OF THE SPEAKEASY WORDS,

THE TREE STRUCTURE OF THE SPEAKEASY
HELP DOCUMENTS

THE SPEAKEASY HELP DOCUMENTS

APPENDIX .

- INDEX .

vi

147
154
154
157
158
162
168
169
173
174
175
177
178
181
182

191
210
256
258

The SPEAKEASY-3 Reference Manual

ABSTRACT

SPEAKEASY is a computer language designed to
provide access to information stored in a computer. Ease
of use, natural notation, and built-in capabilities for growth
are important features of SPEAKEASY, This book, con-
sisting of four sections, combines most of the available
documentation of the language. The first section is an
introductory specification of the language accompanied by
a large number of illustrative examples of itsuse in normal
batch processing. The second section describes important
extensions to the language. This section emphasizes facil-
ities available for interactive usage. The third section
describes the means by which the language itself is ex-
tended. Although not necessary for the casual user of the
language, this section provides the information necessary
to meet his later needs. The last section is a complete
printout of the documentation internally available to users
through the HELP processor,

This manual is intended as the primary information
source for users of SPEAKEASY. It should enable such
users to make effective use of the computer for their day-

to-day calculations.

vii

PART ONE

AN INTRODUCTION TO SPEAKEASY

by

S. Cohen and C. M. Vincent

I. INTRODUCTION

SPEAKEASY is a user-oriented language., It is intended
to provide scientists with the means of quickly formulating a problem for
computer processing and for obtaining answers to their problems in a
minimum of time. The language is easily learned since its form is
similar to that of scientific mathematics. Furthermore it has built into
its basic structure the commonly used operations of most scientific
disciplines. The user may freely draw on a very large library of such
operations and may thus formulate his problem with a very concise
directive program.

In designing SPEAKEASY, every effort has been made to
keep the language natural as viewed by the scientist. A scientist using
SPEAKEASY need know little about a digital computer and,in particular,
need never concern himself with the actual structure of the program as
run by the computer. In a sense, SPEAKEASY is to be viewed as a
humanized interface between a scientist and a computer; occurences that
force the user to think about a dig‘ital computer rather than about his
scientific problem are to be viewed as failures in the language.

Because of the concise and natural form of the language, it
is very likely that a new program vill give correct answers on the first
trial., If this is not the case, extensive error-detection aids will provide
enough information to make the second attempt almost cerfain to succeed,
The user will therefore obtain an answer to his problem in a very short
time,

This document is a description of the SPEAKEASY
programing language. The description is not intended to be exact in every
detail. To attenipt an exact description would so kurden the reader with
details that he would lose sight of the basic simplicity of the language.

Neither is any attempt made to describe the entire language.
The language is still being developed and new features are added as needs
arise, The description here should be viewed as an introduction to the

basic language.

Detailed descriptions of parts of the language are given in
the sections that follow. The second section describes the basic language
and shows how this subset of the language can be used in the so-called
manual mode. The third section describes the use of stored programs.
The last section describes the diagnostic features of the language. Each
section contains numerous examples of the features being described. It
is felt that examples provide the best means of demonstrating the capability
of the language. It is hoped that the new user will look carefully at a few
of the major examples and attempt to understand the rather fundamental
differences between this language and other computer languages.

Appendix I is a summary of all of the keywords used in the
language. Several alternative arrangements are given.

Appendix II contains a description of the conventions used
in the card-input version of this language. It also contains samples of the
Job Control Language cards necessary to execute a SPEAKEASY program.
Several alternative sets are described.

Appendix III is the collection of the schedules of this Part.
Since this appendix is intended to serve as a reference manual, it was felt
that the schedules should be arranged for quick access. A list of the titles

of schedules is given at the beginning of this appendix.

II. BASIC SPEAKEASY (The Manual Mode}

In this chapter we describe the basic notation and
conventions of the SPEAKEASY language. The concepts' of structured
objects and the algebra for these objects is discussed in detail. The
built-in functions of the language are then enume.ra.ted. In the final
section of this chapter, examples of the use of this part of the language

for realistic calculation are given,

A. Basic Notions

1. Data

All numeric data are specified in decimal form. The lack of a
decimal point in a numeric specification implies that it belongs just to the
right of the number. Numbers can be real, imaginary, or complex. A
terminal letter I implies that the preceding number was imaginary.

Examples of numeric information are:

Real Data: 2,14, 27, -.0025
Imaginary Data: 2,141, 271, -11
Complex Data: 6 +2I, 4 -6I, 2.7+ 31

Very large and very small numbers can be expressed by terminating
the numeric field by the letter E followed by the power of 10 associated
with that number. (No spaces should be inserted anywhere in the numeric

specification.)

1,057E-5 means 1.057 X 10’5
236E+26 means 2.36 X 1028
611E05 means 641 X 10S

Literal data are defined by enclosing the data in apostrophes, e.g.,

'BOOKS' 15EB7'

1 ! 1sle sk !

2. Names of Objects

An object can be given a name consisting of up to eight characters.
The name must begin with an alphabetic character and must have no
imbedded special characters or blank spaces. Any additional characters

beyond the first eight are ignored. Examples of allowed names are:

VALUE BOOKMARK 12 I12K7

The examples given below are not-allowed names:

1H27 (not allowed) non-alphabetic leading character
B*A9 (not allowed) imbedded special character
A.27 (not allowed) imbedded special character

A 15 (not allowed) imbedded space

3. Classes

The objects used in statements may belong to any of several classes,

- Although most computer languages provide for construction of multi-
dimensional arrays, SPEAKEASY also provides the mathematical tools for
manipulating the arrays as single entities.

Two families of objects are available in this language: the matrix-
vector family (MFAM) or (VFAM) and the array family (AFAM). In
addition, scalar quantities can be defined. Scalars are implicitly members
of both of the families. The classes of objects that can be defined and

used in SPEAKEASY are

a) Scalars Class [S]
Single numbers

Matrix/vector family

b) Vectors Class [V]
One-dimensional arrays of numbers that behave like row, column,
or diagonal matrices according to context,

c) Matrices Class [M]
Two-dimensional arrays of numbers that obey the rules of

matrix algebra.

Array family

d) Arrays (1 dimension) Class [A1l]
One-dimensional arrays in which operations take place element-
by-element.

e) Arrays (2 dimension) ' Class [A2]
Two-dimensional array in which operations take place element-

by-element.

An object of any class having only a single element is treated as a
scalar in all algebraic operations.

4. Elements of an Object

Individual elements of a structured object are referred tc by index

parameters and the name of the variable is attached to that object. Thus

M(1, 3) is the element in row | column 3 of M

M3) is the third element in V
Similarly if K is a scalar variable
F(K) is the Kth element in F.

Each element of any object is a number and is therefore of Class [S].

B. Means of Defining Objects

In SPEAKEASY, each named entity has certain attributes that describe
the class to which it belongs and other information relating to its size and
structure. In all operations that use this names quantity, these attributes
are examined and are used to decide the contextually-implied operation,

The attributes for a given named variable are not fixed quantities and
may vary dynamically during a calculation.

Each named item appearing on the right-hand side of an equation must
have been assigned attributes — i.e., it must have been defined. Such
definitions can be made by use of explicity defining statements. If the
item appears on the left side of a previously executed equation, it has an
implied structure and is therefore defined. In most cases it is therefore not
necessary to specify the class to which a variable belongs; this definition
will have been made from the logic of the preceding statements.

In this section the explicit defining statements are described. Little
is said about the implicit definitions. It should be understood, however,
that definition by the implicit form is far more common than by the more
cumbersome explicit forms.

1. Explicit Definitions

This section gives all of the explicit def'u_l'mg statements. In each
case they appear as equations in which the named object on the left is
being defined. The right-hand side of the equation is an expression that
specifies the class and often the numerical values of elements of the
object. This form of expression defines a temporary object that can be
used directly in more complicated expressions. They can be considered
as defining functions.

In every case, a constant appearing on the right can be replaced by
an expression or named quantity. It is essential, however, that structure-
determining quantities be positive integer scalars. If an object appears
in the definition of the elements of a new object, then the elements of the

old object are inserted into the new object.

a) Scalars

Scalars are explicitly defined by statements in which the named

variable is equated to a constant, e.g.,

X =4.57
or
X=2,36+4.T1 4

b) Vectors

A vector is defined by use of the special word VECTCR.
SPEAKEASY vectors are objects that behave like row, column, or
diagonal matrices —depending on their use. They are particularly useful
in operations involving square matrices,where they perform operations
commonly involving transpositions and the like. X is defined as a vector

of 12 components (all of which are set to zero) by the statement
X = VECTOR (12:)

A vector may be defined with its component values set by the
statement

X = VECTOR(:5.3, 24 3.5, 7, 2603 %21)

1f the defining statement ha.ls only one argument and if this
argument is real, then the statement defines the number of components
of the vector. In contrast, the second form defines both the number of
components and values of the components.

A third form of definition combines the two forms already

described. It is of the form
X = VECTOR (4: 1, 2, 2)

The number preceding the colon defines the number of
components of the vector and sets all components equal to zero. The
list of arguments following the colon sets successive components

starting with the first; any unset components are therefore zero.

c) Matrices
Matrices can be defined in a variety of ways to make use of

symmetries. The general nonsquare matrix is defined by the statement
M = MATRIX (3, 4:)

This defines M as a matrix with 3 rows and 4 columns. (All elements
are set to zero.)
Values of components can be set at the time of definition by

placing a colon after the argument and adding values. The equation

M = MATRIX (3, 3: 1, 2, 5, 7, 3, 8, 9)
defines
R
M= [§7 I
0

3
90
%

Symmetric matrices are defined by the expressions

M = SYMMAT (3, 3:) or M =SYMMAT (3:)

for a rank-3 symmetric matrix. Components supplied with the defining
statement give successive elements in the lower diagonal form of the
matrix. Thus

M

1]

SYMMAT (3: 1, 2, 3, 4, 5)

defines

%
Note that symmetric matrices etc. are not classes of objects. The
functions given here are just convenient ways of defining square matrices

and setting selected components.

10

Similar definitions exist for diagonal and antisymmetric matrices.

M = DIAGMAT (:1, 2, 3) ' 1\ 0 0

or defines 0 20

M = DIAGMAT (3: 1, 2, 3) o oVs
RN R

~ N

Xi\ Nty 20

= S el 2 . ¢ N
M = ASYMMAT (4: -1, -2, -3, 1) defines S N
m’ oN o
Ny

d) Arrays (1 dimension)

Arrays of one dimension are defined by expressions similar to

those for vectors.

V = ARRAY (5:) A 5-component array all zero.
V = ARRAY (:2.7, 3, SQRT(8)) A 3-component array.
V = ARRAY (6: 1, 2, 3) A 6-component i-dimensional

array with the first 3 components
set. The last 3 are zero.

In addition, a one-dimensional array can be defined as an equally-spaced

grid of points between specified limits by the special defining statement
X = GRID (0, 10)

1e €o; X158

(0, &, Z&; % s, 10 = A, 10)

where A is chosen by the computer to give a preselected number of grid
points (normally 101).

Specific grid spacing can be obtained by use of a third argument
X = GRID (0, 10, .05)
i.e., X is defined as

(0, 205, X0, -, 15, = * * 97950 SN0

11

Note that a complex set of grid points can be constructed by a statement

such as

X =GRID (0, 10 + 101I)

e) Arrays (2 dimensions)

A two-dimensional array has a defining statement of the form
V = ARRAY (5, 2: 1, 2, 3)

and its components are set as in the definition of the nonsquare matrix. A
resumé of the explicit defining expressions is given in Schedules 1, 2.

2, Implicit Definitions

The appearance of an object on the left-hand side of an equation is an

implicit definition of the class of the object. Thus
X = M1 + M2,

§vhere M1 and M2 are matrices, implicitly defines X as a matrix, No
explicit definition of X need precede such a statement. Indeed if X were
previously defined it would be redefined by this statement.

The appearance of a previously undefined indexed variable on the left

of an equation also implicitly defines it as an array. Thus
V(3) = 27.5

implies that V is a one-dimensional array of 3 components if it is not
previously defined. The third component is set equal to 27. 5,
Similarly,

M(2, 1) =5

implies that M is a two-dimensional array with at least 2 rows and 1 column.
If the quantity is not previously defined,it is defined by this statement with
the minimum required number of components. The nondefined components

are zero, the element in the second row and first column is 5.

12

C. Mathematical Operations

The notéi:ionl described in this section will appear at.fizrst glance to be
identical to that of FORTRAN. The appearance is deceptive., FORTRAN
is oriented towards operations on scalar quantities only,and the meaning
of statements is restricted to operations that produce a single numerical
result. InSPEAKEASY the operations are dependent on the class of
objects involved,and the class of the results will be determined by the
classes of the objects in the statement.

{. Operators

The following are the-allowed operators for arithmetic operations in
SPEAKEASY. The symbols are those available on input devices to the
I1BM 360. - .

+ plus
- minus
* times
/ ~ divided by
*K raise to a power

The operation implied by these symbols depends on the class of the
elements that appear to the left and right of the operator. In general the
operation is the natural one for the class. For example, the meaning of
‘A ¥ B depends on the classes to which A and B belong. If A'and B are
matrices, f};e operation implied is that of matrix multiplication. If A and
B are scalars, it is a scalar multiplication.

Schedules 3 —6, pp. 59—62, containa condensed description of the arithmetic
operations in SPEAKEASY. In these schedules the class and also the form
of each element of the resultant is indicated. Those involving mixed
operations between arrays of 1 and 2 dimensions should be noted. They
have been included to provide needed features for a compact directive
program.

In the schedules the structure of objects (i. e., the number of elements,

rows, or columns) is indicated by the parenthetic values. It should be

13

understood that operators must not connect objects with incompatible
structures. For example, it is impossible to add a four-component array

to a seven-component array. Similar restrictions exist in almost all cases,

2, Mathematical Expressions

A mathematical expression is constructed by connecting operators
and operands. Redundant blank spaces have no significance, these and
parentheses can be freely used to make the expression easy to read.
Expressions are evaluated beginning with the innermost parentheses and
working up through the entire expression. Within a particular parenthesis,
the evaluation is first carried out for exponentiation, then for multiplication
and division, and finally for addition and subtraction. The evaluation takes

place from left to right. For example:

3%*A+ B/C*E
is equivalent to

(3 % A) + (B/C) *E

As has been stated, the class of operands determines the actual

operations. The expression
A+B*C

can have a variety of meanings depending on the classes of A, B, and C.

Some examples are:

Class A Class B Class C Resultant Class
M M M M
S S S

<
g
g

w < > <
L O
4 2.0 gy W
w2 > <

14

3. Mathematical Statements

a) Replacement Statement

Mathematical statements follow the usyal computer notation.
This means that an equal sign is best translated as the expression ''is

replaced by.'!" Thus the statement
X=X+A

means that X is now defined as the former X plus the quantity A,

In SPEAKEASY it should be noted that the class and structure
of the object on the left is defined by the classes of the objects on the right
by implication. As an example, in the above statement the class of X on
the left and right need not be the same. If X was originally a scalar and A
a square matrix, then the statement’above would have redefined X to be a
square matrix. This is an important property of SPEAKEASY and should
be understood clearly.

Any expression can appear to the right of the equal sign. The left-
hand side of the statement must, however, contain a single object name or
an indexed reference to an element.of an object. All objects appearing on
the right-ha.nd side must have been defined by appearing on the left-hand
side of a previous statement. The object on the left need not have a
previous definition and usually such previous definitions are irrelevant.

SPEAKEASY mathematical statements therefore can all be viewed
as defining statements—defining the class, structure, and values for
elements of the object on the left-hand side.

Some examples of SPEAKEASY mathematical-replacement

statements are

X = 2.57 * SIN (X) / (3 * ALPHA)
Y = (MAX(X) + MIN(X))/(MAX(X) - MIN(X))
A =2 % Pl % R %% 2

15

b) Operations on Elements of an Object

The orientation of SPEAKEASY is towards operations on arrays of
numbers treated as single entities. Whenever possible, this is not only
the most convenient way to direct execution of a problem, it is also the
most efficient. It is, however, sometimes necessary to use or set values
for particular elements. This can be done by use of index values enclosed
in parentheses following the name of the object. These indices may be
expressions; in such cases they are always truncated to the next lower

integer to obtain the true index value. Thus statements of the form
A(3,5)=2%S (9.7 *SIN(X), 2*1+7)

or

A(2 * 1+ 1) = SIN (X)

are allowed.

In the case of objects with a two-dimensional structure, addressing
the array with a singlle index is equivalent to addressing the whole row or
column. A comma may be used to indicate the missing index but is not

necessary in addressing rows.

M (1)
is row 1of matrix M.
M(1,)
M (,1) is column { of matrix M.
Examples:
M()=1 The entire row is set equal to 1 .
M (3) =

M (, 4) The fourth column replaces the third row.

c) Structured Indices

Operations on selected parts of structured objects are also possible.
The indices described in the previous section were scalar quantities. In
this section we shall describe the use of indices that are one-dimensional
arrays. This natural extension of the notation provides the means of
avoiding most of the logical branching common to operations on elemn:cuis

of an array in usual computer languages.

16

1If 1 is a one-dimensional array and A is a structured object, then

A(I) is a structured resultant of the same class as A but with the Ith

elements selected as described in the previous section. Thus, if

I = ARRAY (1,3)

V = VECTOR (1, 2, 3, 4)

M = MATRIX (3,3: 1,2,3,4,5,6, 7,8, 9)
A = ARRAY (3,2: 1,2,3,4,5,6)

then
V(I) is 2 vector (1, 3)

. . 3 2 3
M(I) is a 2 by 3 matrix (7, 8, 9)

1. &
A(I) is a 2 by 2 array <5' 6)

i.e., M(I) and A(I) are rows | and 3 of M and A, respectively. Similarly

3

M(,I) is a 3 by 2 matrix [4, 6

7, 9

i.e., M(,I) consists of columns 1 and 3 of M.

If I and J are one-dimensional arrays and A is an object of a two-

dimensional class as are the selected rows and columns, then in the

above examples,

1 3
M(I, I) is the matrix (7 9>

An example of the use of structured indices is

A = ARRAY (1,2, 3, 4, 5)
I = ARRAY (2, 3, 4)
B=A(l) *1+A(I - 1)

The result will be the array

(5, 11, 19).

44

d) Automatic Extension of Defined Objects

If a defined structured object is referenced on the left-hand side of
an equation and the indices refer to elements outside the range defined for
that object, then the size of the object is increased to allow room for the
newly defined elements. All extra elements created in this way but not
explicitly set are put equal to zero. For example, if A is a defined three-

component vector and a statement of the form
A(7) =9

is encountered, then A will be extended to become a seven-component vector
with elements 4, 5 and 6 set equal to zero. The newly created element 7
will be set equal to 9.
Similarly if A can now be extended to a 12-component vector
by the statements
B = VECTOR (:10, 11, 12)
A(10) = B '

]

The newly created elements 8 and 9 are set equal to zero and
elements 10, 11 and 12 are set equal to the values 10 11 and 12,

respectively.

18

4, Built-in Functions

In ciesigning SPEAKEASY an attempt has been made to provide the
most commonly used operations as an integral part of the language itself,
In order to do this a very large number of special functions have been
included. Many of these are natural extensions of the algebraic operations
described already. Others are the straightforward extension of FORTRAN-
like functions to structured objects. In addition, SPEAKEASY provides a
large number of functions that lend themselves naturally tc problems
formulated in terms of structured variables., All of the functions described
here can be used anywhere in any SPEAKEASY statement. The result is

available for use within that statement. For example, the statement
Y = (MAX(X) - MIN(X))*SUM(SIN(X))

makes use of several built-in functions.

a) Element-by-Element Functions

This set of functions operates on objects of any class and produces
an object of the same class. Each element of the answer is the result of
applying the function to the corresponding element of the original object.
These functions are shown in Schedule 7. The allowed ranges of values are
also indicated in that schedule.

b) Sums and Products of Elements

Since SPEAKEASY is oriented towards operations on structured
objects as a whole, special functions must be provided to efficiently carry
out the common operations such as obtaining the sums and products of
elements of objects. The functions available are shown in Schedule 8.

c) Structure Functions

In order to obtain information about the structure of defined objects
and specifics about its contents, a few special functions are provided.
These are shown in Schedule 9. The answers in all cases are scalar

objects.

19

d) Functions for One-Dimensional Arrays (Functions of 1 Variable)

Although one-dimensional arrays can be used for many purposes,
one rather common use is for defining functions of a single independent
variable. For these applications a set of special SPEAKEASY functions
are provided. In each case the orientation is toward two arrays, one the
function and the other the array for the independent variable. A typical use

might be the following sequence of statements.

X = GRID (0, 10, 0. 1) Defines a grid 0, 0.1, 0.2 . . -, 9.9, 10,
-X_ 2

Y = SIN(X)*EXP(-X)*X*X Evaluates the function Y = SIN(X)e xX

T = DERIV(Y:X) Differentiates Y with respect to X

The functions of this type are described in Schedule 10.

e) Functions for Matrices

In order to carry out operations of matrix algebra, it is necessary
to provide the standard functions of that field. @ These forms are given in
Schedule 11. Note that all operations except transposition are restricted
to square matrices,

f) Ranking Functions

Two SPEAKEASY functions are provided to help order (i.e., rank)
the elements of an object according to algebraic size. These functions are
described in Schedule 12,

g) Transfamily Functions

In order to make the full power of the operations of SPEAKEASY
available to all problems, it is necessary to provide means of effectively
altering the class of objects. This is dohe in SPEAKEASY by use of the
special function shown in Schedule 13. These functions can be applied
to any object; the resultant object is identical in structure but belongs to

the specified family.

20

h) Logical Functions

In keeping with the SPEAKEASY approach of dealing with objects
as a whole, it is necessary to provide means of selecting groups of
elements on a logical basis. A built-in SPEAKEASY function has been
included to provide the indices corresponding to nonzero (i.e., '"true")
elements of one-dimensional structures, This function is called LOC or
LOCS.

LOCS(A) gives the locations (indices) of nonzero elements of a
one-dimensional object A, The answer is normally used as a structured

index (as explained in Sec. II.C3c). For example,
GOODVALS = A(LOCS(A. GT.5))

will produce a new array containing only those values of A that are greater

than 5.

21

D. Logical and Relational Operations

In addition to the common arithmetic operations described in the
previous section, SPEAKEASY allows for relational and logical operations.
These operations can be applied to variables of any of the classes and
operate on an element-by-~element basis. Results of applying these
operators are either 1 (TRUE) or 0 (FALSE). For logical operations
the operands are either TRUE (nonzero) or FALSE (zero). These
operations provide the means for carrying out rather elaborate masking
operations on arrays.

1. Operators

The logical and relational operators are expressed by special keywords

that are enclosed in periods
a) Logical Operators

+NOT., Logical not
. OR., Inclusive or
. AND. Logical sum

b) Relational Operators

.EQ. Equal to

. NE. Not equal to

.GT. Greater than

+LT. Less than

.GE. Greater than or equal to
. LE. Less than or equal to

2. Logical and Relational Expressions

Thecse expressions can be used to form special-purpose objects. The
logical and relational operators can connect either two objects of the same
class or an object of any class with a scalar., The result of such operations
is an entity of the same class as that of the object and has elements that
are either 0 (False) or 1 (True). Nonzero input values for logical
expressions are true, zero input values are false. Thus, A.AND. B will

produce an object of the same class as A and B but its elements will be 1

22

wherever the corresponding element of A and B are both nonzero and 0
wherever either or both have a zero element. Similarly, A.GT.7 will
give a resultant of the same class as A but will have a 1 everywhere that
the corresponding element of A is greater than 7. Similarly A.OR.B
gives a resultant of the same class as A and B but its element will be 1
wherever the corresponding element of either A or B is nonzero.
Finally, .NOT.A is an object with the same structure as A but with a zero
everywhere that A is nonzero. Itis i1 elsewhere,

Mixed logical, relational, and arithmetic expressions are allowed. In
such cases the order of evaluation is 1) arithmetic operations, 2) relational
operations, 3) logical N®T operations, and finally 4) logical OR and
logical AND operations. Within each hierarchy, evaluation is from left to
right.

An expression of the form
A.GE. B+C.AND.E .NE.F*G+H
is equivalent to
(A-GE «(B+C))- AND.(E. NE. (F*G+H))

3 Logical and Relational Statements

Any expression of the form described in the previous section can be
used to define a new object whose elements will have the value 0 or 1 at
each prescribed location. In addition, by proper use of logical expressions
the newly defined variable can be cast into special forms.

Suppose one is dealing with a function of one variable and one wishes to
place an upper and lower bound on the elements. For example, if the
element exceeds 10 or is less than 5 it is to be replaced by 0. This could

be done by the statement

F = ((F.LT. 10),AND.(F.GT. 5)) * F

23

E. Conditional Statements

Two forms of conditional statements are provided within the language.

The first is of the form
IF (Expression) Statement

The expression must be a scalar. If the numerical value of this
expression is nonzero, then the associated statement is carried out;
otherwise it is ignored.

Example:

IF(A.GT.B) B=9

The second form of conditional statement is designed for array

operations. It is of the form
WHERE (Expression) Statement

In this statement, the associated statement must be an equation and the

~ class and structure of the resultant must be the same as that of the test

expression. An element in the associated equation will be replaced only

where the corresponding element in the test expression is true (nonzero).
Example:

WHERE (A .GT,3) A=A+ 4

This operation provides essential masking operations within the

SPEAKEASY language.

®

F. Computational Control Statements

This section is a description of several control statements that
specify the mode of the calculation. Control statements remain in
force until explicitly canceled or overridden by other control statements,

1. Domain -

SPEAKEASY is designed to operate either in the domain of real or
complex numbers. When operating in the real domain, any calculation
that leads to imaginary or complex results is treated as an error. The
user may alter th.e domain of the computation at will by inserting a

statement of the form
DOMAIN (REAL) or DOMAIN (COMPLEX)

In default of an explicit statement, the domain is rea;L

2. Accuracy |

During the execution of a SPEAKEASY program, whenever two numbers
are compared for equality any number less than a small number (called the
accuracy) is regarded as zero. The value of this number can be set by

means of a statement of the form
ACCURACY (VAL)

which sets the accuracy equal to VAL. In default of such a statement, the
value for accuracy is 10-8.

3. Freeing Defined Objects

At any time during a calculation it is possible to free the definitions of

objects. This can be done for selected variables by the statement
FREE (Ni, N2, . « - , NN)

where Ni, N2, .. , NN are the names of defined objects., All defined

numerical data can be freed at once by the statement

CLEARDATA

25

G. Input and Output

The design of formats for output often reduces the computer user to
counting on his fingers. This indeed seems odd in the context of the
application.

SPEAKEASY automatically provides a set of output formats that will
be more than satisfactory for most applications. These automatic formats
enable users to forget about this phase of the computer run; he can be
assured that he will obtain legible results without direct intervention.

The reason this section says so little about the standard input/output
facilities is that the user need not concern himself directly with their
operations. Disproportionately large subsections describe alternative
ways of reading data or producing output; but for the most part these are
specialized features that do not concern most users.

L. Input

a) StandardInput

Introduction'of small arrays of data or individual numbers is part
of the structure of the language as described in Sec. II. B. Any variable
may be defined or redefined at any time in order to give it specific values
or structure;for this reason, most applications of SPEAKEASY do not
have the programs separated from input data. Instead, "all of the input
data in a normal run will be imbedded directly in the SPEAKEASY
statements. The rest of this section can therefore be disregarded for
most applications.

b) The READ Statement

A READ statement has been provided in the language to enable
users to read information that has been punched in some specialized format.
Data produced by other computer programs, or experimental data, normally
will have a specialized format that would conflict with the standard
SPEAKEASY forms. A format for input must be provided for reading these
cards. This format is in fact a standard 360-FORTRAN IV format with the
single restriction that no numerical information can be entered into arrays

in fixed-point form. F, D, or E formats are equally acceptable. The

26

format is defined by defining a literal constant; e.g.,
FMT = '(3X, 5F12, 3)'

The input array must exist. The number of components to be read is

determined by its size; e.g.,
A = ARRAY(15:)

The input data are then read in response to a statement
READ (FMT: A)

Cards will be read until the number of elements required to fill the array
have been loaded.

c) The Data File

An intermediate form of input exists for blocks of data that are
too large to fit on a single card. The numbers can be written in any
SPEAKEASY form, separated by commas or spaces. The approach taken
is to define a special area, called a data file, containing the input data.
This fi,lé can be loaded into. specific defined structures at any later time.
The data file is defined by placing it between two cards. The header card
contains the word DATA followed by a space and then the name to be
assigned to this data file. The last card contains the single word END.

Once defined, the information in a data block is retrieved by a

LOADDATA statement; e.g.',
LOADDATA (A,NAME)

will load the object A with the first N values from the data file NAME. N
is the number of elements of A or the number of numbers in NAME,

whichever is smaller.

27

5 Output

In this section we will define the various facilities available to
produce output. In each case, a simple direct statement will produce
output in an acceptable format. Users may, however, exercise control
over the output by special-purpose statements. In the following statements
the word r.l,a.\,nl?\l,ifiis used to refer to a list of names of defined objects,

each separated from the others by commas.

a) Printed OQutput

i. Standard print statements

Two standard print options are available in SPEAKEASY. The
first results in the printing of the selected objects. The printed form
reflects both the numerical contents of an object and its structure. This

statement is of the form

PRINT (namelist)

The second form of standard output provides a tabular form for
printing one-dimensional objects. The columns are headed by the names
of the objects and correlated elements of members of the name list are

printed side by side. This statement is of the form

TABULATE (namelist)

The objects whose names appear in namelist should all have the same
number of elements.

ii. Formatted print statement

A WRITE statement, identical in form to that of the READ
statement described in the previous subsection, is provided for special
applications. The printed output can have all of the carriage-control

characters of FORTRAN. The statement is of the form
WRITE (FMT: A)

where FMT is the format defined as for READ and A is the defined object.

28

iii. Print-control statements

.The standard print statements . described above produce highly
legible output. In designing the format for output, the SPEAKEASY
processor examines the information to be printed and makes a series of
decisions on how best to display it. The user is able to control these
decisions to some extent by the special control statements described here.

rThe first set of control statements relate to vgrtical spacing on

the page. The user may reposition the paper by the statements

SPACE(N)
or

NEWPAGE

SIIPACE(N) causes N lines to be skipped. NEWPAGE causes the

next information printed to appear at the top of the next page.

In printing numerical data, it is possible to specify the number
~ of significant figures desired. Five significant figures are printed out in
default of explicit specification. The number of significant figures to be

printed is set by the statement
SIGNIFICANCE(N)

where N is the number of figures desired. In addition one can specify the
range of sizes within which numerical data must fall if they are to be

printed. For this purpose,

SETNULL(VAL)

requests that any number whose absolute value is less than VAL be printed
as 0; and

SETINFINITY(VAL)

29

requests that any number whose absolute value is greater than VAL be
printed as INF,

Note that the above apply only to the printing of numerical data.
The actual computed values are unaffected by these control statements.
The default options are ‘

SETNULL(10~29)

and

SETINFINITY (10729

In using the standard PRINT statement, each object is printed
in an easily read form but no attempt is made to correlate the printing of
several objects. A compact form of output is produced by using a
minimum number of extra spaces to provide a uniform column width for
each object. The user may correlate the printing of several objects by

specifying a minimum column width to be used in printing. The statement
- COLWIDTH(N)

prevents the print routine from using a column width of less than N char-
acters. I1f N is 10 larger than the number of significant figures desired,
the print width will be uniform for all objects composed of real numbers.

This value of N can be obtained automatically by the control statement
AUTOTAB

iv. Implied print statements

For ease of printing individual objects, a special implied print
convention is adopted in SPEAKEASY. If a statement without an equal sign
is processed and that statement cannot be classified as corresponding to
any SPEAKEASY command, the word PRINT is assumed to be implied
before that statement. In addition, the original statement itself is printed.
Examples of implied print statements are shown in Schedule 14.

H) Punched Output
“i’unched cards can be obtained from SPEAKEASY by a format

statement similar to the READ and WRITE statements described before._

30

This option is provided primarily to offer the user a means of transmitting
M o Thaation to other non-SPEAKEASY programs, The form of the
statement is

PUNCH(FMT: A)

L 3

Here FMT is the predefined FORTRAN format (as in the READ statement)
and A is the array to be punched.
c) Graphical Qutput

Output in graphical form is a built-in feature of some SPEAKEASY
processors, For those versions the following represent some of the general
control features available. Most are for CALCOMP output. Only certain are

usable for other graphical devices. The descriptions are for CALCOMP plots.

i. Design statements

Because of the flexibility inherent in this form of output, it is
normally necessary that the user design the form of his graphical outpﬁt.
Default options are provided, but it unlikely that all of those will be proper
for any applicatioﬁ. More automatic facilities will be provided in the future.

The size of a graph can be chosen by the user. The default size
is 8 inches tall and 10 inches wide. The user may override these by control

statements

HSIZE
VSIZE

X

Y where Y < 10

where X and Y are the size (in inches) to be used in graphs drawn after
this statement is encountered.

One must select the scale to be used in drawing graphs. This is
done by specifying the numerical values corresponding to the limits for the

vertical and horizontal scales.

HSCALE=left, right)
VSCALE=bottom, top)

31

Note that the values along the scales will be labeled at inch marks. The
user should choose scales that provide simple values at such points. The
default values of the scales are 0—8 for the vertical scale and 0—10 for
the horizontal scale.

Several additional options are available for designing the

structure of a graph. The user may select these by the single control

statermnent
BOX [SCALES l | LINES
SETPLOT or 5 or ; or
NOBOX NOSCALES J POINTS

The options selected are

BOX Draw a frame around graph NOBOX No frame
SCALES Indicate values at {' intervals NOSCALES Omit indication of scales

LINES Join designated points by lines,| POINTS Mark points with crosses
leaving points unmarked without joining points

The default options are BOX, SCALES, LINES.

The point-plotting mode can be generalized by the special control

statement

PLOTSYMB(freq, symb)

where symb is an integer from 0 through 12 which designates one of 13 different

symbols to be used in plotting data, and freq determines the frequency with

which the symbol is plotted (1 means every point, 2 means every other one,

3 every third, etc.). A negative value for freq indicates that only the symbol

should appear. A positive value means that a line should join successive points.
Three forms of literal labels are provided. The top of the graph may

be titled by defining the variable '

PLOTTITLE = 'any message'
The vertical scale can be labeled by

VLABEL = 'any message'

32

The horizontal scale can be labeled by
HLABEL = 'any message'

ii. Graphing statements

The overall format having been specified, a new graph is

produced each time the statement

GRAPH (namelist: hobiecQ

NN NN ~~ ~
is encountered.

This graph is a graph of the members of namelist in the vertical
direction against the object hobject in the horizontal. All objects should be
one-dimensional and real, and have the same number of elements. A two-
dimensional object in namelist is treated as several one-dimensional objec:ts,
each composed of a row of the original object. Therefore if a two-
dimensional object appears in 21’2‘1133& it must have a.s many columns as
hobject has elements.

Each time the GRAPH statement is encountered, a graph is firawn
on a new area of paper. All of the design statements accompany GR/APH.

It is possible to add information to a graph that has already been
drawn, e.g., to add points on a graph containing curves. This is clone by
the statement

ADDGRAPH (namelist: hob 'q&&)

This statement has the same meaning as the GRAPH statement except that
a new area of paper is not used. Design statements (except those relating
to BOX, SCALES, and labels) are reexamined prior to adding to the graph.
The user may therefore freely alter the plotting format for each addition.
1f no graph has been drawn, the first ADDGRAPH statement acts

as if it were a GRAPH statement. This in conjunction with the statement
NEWGRAPH

which completes references to a previously drawn graph make it possible

to entirely avoid the use of the GRAPH statement.

33

H. The Manual Mode

A major portion of the SPEAKEASY language has now been described.
No reference has been made to the possibility of conditionally executing
groups of statements, or to the possibility of repeated execution of such a
group a specifiéd number of times. The subset of SPEAKEASY already
described is nevertheless usable. The existence of structured objects and
routines for manipulating them as single entities makes it possible to carry
out many straightforward computations with a series of statements that are
executed only once.

The mode of operation in which each SPEAKEASY statement is processed
but not saved is referred to as the MANUAL MODE of operation. In the
examples shown in Schedules 14—36, we present a set of SPEAKEASY
calculations that use the facilities described in this chapter. The figures
are reproductions of output from the card-input version of SPEAKEASY.

Information relating to the conventions for card input is given in Appendix II.

34

III. STORED PROGRAMS

For all but the most straightforward calculations, it is
necessary to repeat_edly execute groups of statements. The use of
stored programs for such purposes is familiar to most computer users.
The programs, procedures, and subroutines of languages such as
FORTRAN, PLI, and ALGOL constitute stored programs.

Stored programs are available in SPEAKEASY but they
differ in important aspects from other languages. One of the most
important differences is that defined objects have global definitions. This
means that a given name refers to the same object whether the reference
is in the m'anual mode or in any stored program. Any number of stored
programs may simultaneously be defined in SPEAKEASY. Execution of
any one of them can be initiated directly from the manual mode or during
execufion of any other stored program.

The purpose of this chapter is to describe the construction and
_executit;n of‘stored programs., Additional statements specific to stored
programs are also described. For reasons of clarity, it is assumed that

the programs are to be input on punched cards.

35

A. Structure of a Stored Program

A stored program is defined by supplying cards beginning with a header
card containing the word PROGRAM followed by a space and then the name
of the program. The program is terminated by a card containing the single
word END. All cards between these two constitute the program. Any card ‘
except these two may be labeled. The label, a SPEAKEASY name at the
left on the card, is separated from the actual program statements by a colon.

In SPEAKEASY the name of a program is treated as a defined name. It
should therefore never be the same as the name of an object used in
computations.

Multi-statement cards are constructed of several SPEAKEASY statements
separated from each other by semicolons. Multi-card statements can be
constructed. If & is in the first column of a card, it is taken to be a

continuation of the preceding card. Continuation cards may not be labeled.

PROGRAM SAMPLE Header card
X =Q; Y = 3.5; Z=27 %X Multi-statement card
ALPHA: T=X%+Y Labeled card
GAMMA: W=T+X+Y;, U=W+
& Q-3%X Continuation of GAMMA

PRINT (X, Y, Z, T, W, U)
END End card

36

B. Special Statements for the Program Mode

The statements described in this section are those whose use is
restricted to the program mode. Two (RETURN and CONTINUE) are
ignored if encountered during manual-mode execution. The others cannot
be used in the manual mode since they refer to labeled statements or to
groups of statements. |

1. RETURN

The RETURN statement is used within a SPEAKEASY program to
return the path of execution to the statement after the invoking statement.
The next statement to be processed will be the one following the EXECUTE
statement which invoked the program. A RETURN statement is always
implied just before the END card of any program.

2. CONTINUE ‘

A CONTINUE statement is a nonoperational statement to which a label
can be atutached.

3.GO 10O

A GO TO or GOTO statement is used to alter the sequence of execution
of statements. When a GO TO statement is encountered, the next statement
executed will be the statement with the label indicated by the GO TO
statement: e. g.,

GO TO A3

will transfer the path of execution to the statement with the label A3,
Logical branches are made by combining an IF statement with a GO TO
statement such as

IF (A.GT.7) GO TO ALPHA

which may be read as "'If A is greater than 7 go to ALPHA, otherwise

continue the sequential execution of statements, '

3

4. FOR

A FOR loop is a section of a single program, beginning with a FOR
statement and terminated by a corresponding ENDLOOP statement. All
statements between these two are repeatedly executed as specified in the
FOR statement,

A FOR statement is of the form

FOR n = start, stop
or

FOR n = start, stop, increment

Here n is the name of a scalar which may appear in any context within the
FOR loop that does not alter the value of n; and start, stop, and increment
are any scalar expressions (not involving n) who+e values specify,
respectively, the initial value of n, its final value, and the increment to

be added to n every time the loop is repeated. If increment is not specified,
its value is assumed to be 1.

The ENDLOOP statement is of the form
ENDLOOP n

where n is the name appearing in the corresponding FOR statement.
5. Nested FOR Loops '
Up to 10 nested FOR loops are allowed in SPEAKEASY. Any FOR loop

started within a FOR loop must be terminated within that loop.
Caution: The use of FOR loops in SPEAKEASY for operations
available within the language is neither compact nor efficient. For

example, if A and B are 5-component a.Arra.ys, the statements

VAL =0
FOR 1=1,5

VAL = A(I) * B(I) + VAL
ENDLOOP I

are equivalent to the single statement

VAL = SUM (A * B)

ERRE A o i

38

The latter is much more compact and makes use of the optimized features
of the language.

The use of the built-in functions and structured algebra of SPEAKEASY
is perhaps the most difficult problem facing users who are familiar with
languages such as FORTRAN. It is important to understand that writing
SPEAKEASY programs with FORTRAN conventions (such as extensive loops)
defeats the purpose of the language.

The user is advised to begin by expressing a problem either in matrix
notation or in ordinary mathematical subscript notation, the summations
being explicitly indicated. He will then usually find that the problem can
very readily be translated into a compact SPEAKEASY program without use

of explicit subscript references or FOR loops.

39

C. Executing a Stored Program

Once defined, any SPEAKEASY program can be executed by the

statement

EXECUTE name

where name is the name of the program.

The execution of a program' starts with its first statement and proceeds
sequentially until this path is altered by a branching statement (GO TO).
FOR loops result in repeated execution of selected sets of statements. If a
RETURN statement or the END statement is encountered, the execution of
this program is terminated and the statement after the one calling' for
execution of the program is then executed.

EXECUTE statements may occur in the manual mode or in any stored
program. In the manual mode, the EXECUTE statement should occur alone

and not as part of a multistatement card.

* * % % ¥ ® & & & * % & ® * & & ® * *F *® * ¥ * * & F * * ¥ * * *
= PROGRAM ONE
tx-l ‘
= EXECUTE TWO
* PRINT X Y
= END
* & & * % % k ¥ ¥ & * & * & & X B ® * ¥ * Kk * Xk * ¥ # &
* & ® % & ® * * & &
* PROGRAM TWO
* Y=X+§
* RETURN
+* END
* % % * % * & R ¥ * ® ® ® * & * ® * & * * * * ¥ * & ¥ ¥ & ¥ & ¥
INPUT...EXECUTE ONE
X= 1Y= 9

40

D. SAMPLE PROGRAMS

*® % % % & * * * & * % * * ¥ * * * * * * * & * * * * *® * * *
PROGRAM LOOK

MAXX=MAX (X);MINX=MIN(X);NOELSX=NOELS(X)

AV=AVERAGE (X)

RMS=SQRT (SUM((X~AV)*#2)/NOELSX)

PRINT (MAXX,MINX,NOELSX,AV,RMS)

END

* % * * * * * * * * ® * * * * ®* * * X ¥ & * * ¥ * * * * * * *
INPUT...X=1 2 3 &4 &

INPUT...EXECUTE LOOK

MAXX = 5 MINX = 1 NOELSX = 5 AV = 3 RMS = 1,4142
INPUT...X=ARRAY (:X,X)

INPUT...EXECUTE LOOK

MAXX = 5 MINX = 1 NOELSX = 10 AV = 3 RMS = 11,4142
INPUT...X=X+1

INPUT...EXECUTE

MAXX = 6 MINX = 2 NOELSX = 10 AV = L RMS = 1,4142

* % % % % % %

Other examples of programs are shown on pp. 93 and 137.

41
IV. AIDS TO ERROR DETECTION

All higher-level computer languages are intended to
provide the means of quickly formulating and carrying out computations.

"A large fraction of the programmer's effort must normally be devoted to
the process of finding and correcting errors in his programs. The extent
to which a language meets its goals is therefore largely determined by

how completely it detects errors and how well it informs the user of the
faults found. Diagnostic facilities are therefore an essential feature of any
higher-level language.

In SPEAKEASY the probability of errors is inherently small
because of the compact and natural form of statements. In addition, the
user can concentrate on the logical formulation of his own particular
problem, since the built-in facilities of the language relieve him of the task
of programming standard manipulations. It is therefore likely that even
untrained users of SPEAKEASY will be able to write programs that work
properly on the first attempt.

Correlated with this rather compact and easily used
language is an extremely discriminating processor. The presence of
structured objects in the language provides the SPEAKEASY processor with
much more information than is available in other languages. Each
algebraic operation, for instance, is preceded by an examination of the
objects involved to see if they are compatible. Continuous checking of the
caizulation is therefore automatic and relatively complete. Any structural
crror is detected before it is able to propagate to later parts of the
calculation. Thus the user is always presented with a detected error
before it has had the chance to confuse the output. For involved computations,
the fact that no error has been detected is some assurance that the structural

aspects of the caiculation are correct.

42

For a simple problem, these features combine to provide
answers on the first try and offer some assurance that the processor
has at least understood and checked the logic of parts of the program.
For any but the most trivial problem, however, other facilities must be
provided to enable users to follow the operations. This chapter describes
those facilities and the normal error-detection features of SPEAKEASY.
Two classes of errors exist in SPEAKEASY. The first
comprises the general syntax errors common to any language. Such
errors include the use of illegal characters, parenthesis imbalances, etc.
The second class of errors is specific to the structure of SPEAKEASY.
Since definitions of objects may vary during a calculation, many errors
can only be detected during execution. Such errors, referred to as

execution errors, involve attempts to use undefined objects, to combine

two objects that have incompatible structures, or to operate illegally with

some structured object.

43

A. Error Messages

In each case of ambiguity, the most likely intent of the statement is
carried out. If this is not possible, however, a printed error message
quotes the statement involved and describes the difficulty. Schedules 38
and 39 ijllustrate the form of error messages generated by SPEAKEASY.

1. Compilation Errors

During compilation of any user's SPEAKEASY stored program, the
syntax of the program is examined. All syntactical errors are listed at
the end of that program. Such errors do not affect the calculation until
the program is executed.

2. Manual-Mode Errors

Each manual-mode statement is scanned to check the syntax before
processing is attempted. If errors are detected the statement is printed
along with an error message. Similarly execution errors are printed if
detected during processing.

The next manual-mode statement will be processed in any event.

3. Errors in Execution of the Program

Errors of either class will result in the abortion of the SPEAKEASY
program being executed. The error message will be printed and processing
will normally continue with the next manual-mode statement. All cur.rently
defined information will be dumped. Commands described in Sec. IV.D

can be used to alter these options.

44

B. Dumps

It is frequently desirable for a user to examine all the information

defined at a given point in a calculation. He may do this in SPEAKEASY

with the single statement
DUMP

An easily-read complete printout of all defined objects will result. After
this printout the calculation continues in the normal fashion.

When SPEAKEASY is used in an interactive environment the DUMP
option is modified to provide the user with the names of currently defined

objects. He may then selectively print the information of interest.

45

C. AUTOPRINT

SPEAKEASY provides a particularly desirable feature for tracing the
behavior of selected objects. This facility called AUTOPRINT enables a
user to request that specified objects be printed every time they are
evaluated. AUTOPRINT may be turned on or off by the use of appropriate
statements. (Schedule 25 is an example of its use.)

The statement
AUTOPRINT (xla,.\'nle'\l‘i&a“‘t)

where namelist is a set of object names separated by commas, will result
in automatic printing of each of those objects every time they appear on the
left in an equation.

The statement

AUTOPRINT

gives a complete printout of all objects as they are defined or altered.
The statement

ENDAUTOPRINT

turns off the automatic printing.

46

D. Error-control Commands

While automatic dumping of currently defined data and continuation
of computation in the manual mode are felt to be the desirable action
after an error in program execution, provisions for user-chosen options
are included in the language. The single command word ONERROR is

used to control the options, the ones allowed at present being

DUMP MANUAL
ONERROR ,
' NODUMP CONTINUE

The underlined options are the standard defaults. NODUMP indicates

that no dump of defined data is desired. CONTINUE means that the errors

do not affect the path of execution.

e

47

APPENDIX I. Keywords and Synonyms

Several levels of keywords exist in SPEAKEASY. Some
are restricted words that may be used only for their intended purpose.
The number of this type is small. The majority of the keywords of the
language are designed so that a user will not be affected by any that are
not known to him. In such cases the use of a keyword as the name of an
object automatically eliminates the normal function of that keyword. Its
normal function will resume if the name is freed. For example, if the

user's program has executed a statement of the form
SIN = 2,73

then the sine function is unavailable until the statement
FREE(SIN)

is encountered.

1. Restricted Words

The following is a list of restricted words. Users may not use these as
names in SPEAKEASY. In addition,normal usage of these keywords in the

manual mode requires that they occur in single-statement cards.

CALL FREE PROCEDURE
CONTINUE FUNCTION PROGRAM
DATA GLOBAL RETURN

DO GOTO RUN

END IF SPACE
ENDLOOP LOADDATA SUBROUTINE
EXECUTE LOCAL USE

FIN NEWPAGE WHERE

FOR PRINT WHEREVER

&

Some of the keywords in this list are included for future additions to the

language. These are not yet restricted words but are included here for
completeness. ‘

48

2, Nonrestricted Keywords and Synonyms

These keywords may also be used as names of objects. During the time
their definitions as objects remain in force, the normal functions of these
keywords are suppressed.

In designing the keywords, the objective was always to provide the '""right''
word. Ofte;l the decision narrowed down to alternative words that seemed
equally good. Sometimes it was apparent that very short words would be
desirable because of the frequency of their use within expressions. These
small words, however, often appeared to reflect a bit of '"computerese. '
For this reason a large number of synonyms were included. In the following
list, we present the keywords grouped according to operations. Synonyms
follow defined keywords. Examples of the use of these words are given in the
schedules, as noted.

a) Defining Functions (Schedules 1 and 2)

VECTOR (VEC), MATRIX (MAT)

SYMMAT (SMAT), ASYMMAT (ASMAT), DIAGMAT (DMAT)
ARRAY, ARRAY2D, INTEGERS

GRID (VARIABLE)

b) Elemental Functions (Schedule 7)

‘ABS, SIGN, SQRT, EXP, LOG

SIN, COS, TAN, COT

ASIN, ACOS, ATAN, ACOT

FRACPART, REALPART, IMAGPART, CONJUGATE (CONJ)
SINH, COSH, GAMMA, LOGGAMMA

c) Sums and Products (Schedule 8)

SUM, SUMSQ, PROD
SUMROWS, SUMSQROWS, PRODROWS
SUMCOLS, SUMSQCOLS, PRODCOLS

49

d) Structure Functions {Schedule 9)

NOELS (LENGTH), NOROWS, NOCOLS
MIN, LOCMIN, ROWMIN, COLMIN
MAX, LOCMAX, ROWMAX, COLMAX

e) Functions of one variable (Schedule 10)

DERIV, INTEGRAL, TOTALINT
ROOTS, NOROOTS, INTERP

f) Matrix Operators (Schedule 11)

EIGENVALS, EIGENVECS, DET, DIAGELS
INVERSE, TRACE, TRANSPOSE (TRANSP)

g) Ranking Functions (Schedule 12)
RANKED, RANKER

h) Transfamily Functions (Schedule 13)
AFAM
VFAM
MFAM

i) Graphics (page 30)

GRAPH, ADDGRAPH, NEWGRAPH
HSCALE, VSCALE, HSIZE, VSIZE
SETPLOT, PLOTSYMB

j) Input/Output (page 25)

PRINT, TABULATE, WRITE, PUNCH

NEWPAGE, SPACE

AUTOTAB, COLWIDTH, SIGNIFICANCE, SETNULL, SETINFINITY
LOADDATA, DATA, READ

k) Commands (page 24)
FREE, DOMAIN, ACCURACY, CLEARDATA
L) Program Mode (pages 36-39)

PROGRAM, FOR, ENDLOOP
GOTO, RETURN, CONTINUE
RETURN, END, EXECUTE

m) Others

AUTOPRINT (page 45)
DUMP (page 44)
ONERROR (page 46)

50

3. Alphabetic Listing of Keywords

This is an alphabetic listing of the keywords. Nonstandard synonyms
have the standard form given in parentheses. Restricted keywords are
underscored. Note that in very long keywords only the first 8 characters
are meaningful; all others are ignored.

The numbers beside the keywords refer to the schedule containing
a description or a sample of the use of the word. If the word does not
occur in a schedule, the reference is to the section describing the word;

this is given by page number and indicated by enclosing parentheses.

ABS 7 DATA 35

ACOS 7 DERIV 10

ACOT 7 DET 11

ACCURACY (24) DIAGELS 11

ADDGRAPH 36 DIAGMAT 1

AFAM 13 DO

AND 24 DOMAIN 14

ARRAY 2 DMAT(DIAGMAT) 1

ARRAY2D 2 DUMP (44)

ASIN 7

ASMAT(ASYMMAT) 1

ASYMMAT 1 EIGENVALS 11

ATAN 7 EIGENVECS 11

AUTOPRINT 25 END 37

AUTOTAB (29) ENDLOOP 37
EXECUTE 37
EXP 7

CALL

CLEARDATA (24) FIN(ENDLOOP)

COLMAX 9 FOR 37

COLMIN 9 FRACPART 7

COLWIDTH (29) FREE (24)

CONJ(CONJUGATE) 7 FUNCTION

CONJUGATE 7

CONTINUE (36)

cos 7 GAMMA 7

COSH 7 GLOBAL

COT 7 GOTO 37
GRAPH 36
GRID 2

HSCALE
HSIZE

IF
IMAGPART
INTEGERS
INTEGRAL
INTERP
INT PART
INVERSE

LENGTH
LOADDATA
LOC(LOCS)
LOCAL
LOCMAX
LOCMIN
LOCS

LOG
LOGGAMMA

MAT{MATRIX)
MATRIX

MAX

MFAM

MIN
MTYPE(MFAM)

NEWGRAPH
NEWPAGE
NOCOLS
NOELS
NOROOTS
NOROWS

ONERROR

36
36

25
10
10

i1

35
26

(32)
(28)

32

51

PLOTSYMB
PRINT
PROCEDURE
PROD
PRODCOLS
PRODROWS
PROGRAM
PUNCH

RANKED
RANKER
READ
REALPART

‘RETURN

ROOTS
ROWMAX
ROWMIN
RUN

SETPLOT
SETNULL
SETINFINITY
SIGN
SIGNIFICANCE
SIN

SINH

SPACE

SQRT
SMAT(SYMMAT)
SUBROUTINE

SUM
SUMCOLS
SUMROWS
SUMSQ
SUMSQCOLS
SUMSQROWS
SYMMAT

TABULATE

TAN

TOTALINT

TRACE
TRANSP(TRANSPOSE)
TRANSPOSE

(25)

(36)

USE

VARIABLE(GRID)
VEC(VECTOR)
VECTOR

VFAM

VSCALE

VSIZE

WHERE
WHEREVER(WHERE)
WRITE

P

36
36

25
25
(27)

52

53

APPENDIX II. Card-input SPEAKEASY

1. Card-Input Conventions

SP'EAKEASY jobs can be submitted on standard 80-column tabular
cards. IBM-029 keypunch should be used in punching the cards. All 80
columns of cards are usable and all input is of a free-format form. Spaces
between terms are usually ignored and the user may design input to reflect
his own tastes,

It has been found that the usual FORTRAN cards provide a highly
readable input form, i.e., statements normally start in column 7 unless
they are labeled. Labels appear in columns 2—5 and a colon follows in
column 6. It should be noted that these conventions appear desirable but
are not necessary.

A single dollar sign indicates that all the rest of a card is a comment.
Two dollar signs on a single card indicate that the part of the card between
the dollar signs is a comment and is to be ignored.

Multistatement cards have semicolons separating the statements.
Multicard statements (i. e., continuation cards) are allowed only in stored
programs and are indicated by an € in cclumn 1 of continued cards.

The processor will accept any number of continuation cards but only
a limited ccmplexity in a statement. For this reason the use of multicard
statements should be avoided when possible and statements should be kept
as concise as possible.

2 Job-control Cards

In order to run a SPEAKEASY job on the Argonne 360/195 the deck
shown below should be placed in front of your SPEAKEASY cards. *

// jbname JOB (badge,,,), CLASS=C, REGION=260K
Your account card

/1 EXEC SPEAKEZ
Your SPEAKEASY deck

i
This form of deck is usable as of May 1973,

54

1f graphical output is requested, two additional cards are needed to

provide access to the Calcomp tape. The deck would then be of the form

Your accounting information

/*SETUP UNIT=2400—7, ID=(780300, RING, SAVE, NL), DDNAME=PLOTTARE
/! EXEC SPEAKEZ, VERSION=GRAPHEZ

//PLOTTAPE DD UNIT = TAPE7TRK, DISP = (, PASS), LABEL = (, NL),

/1 VOL = SER = 780300

Your SPEAKEASY deck

The last SPEAKEASY card should read ENDDRAW(0).

55

APPENDIX III. Schedules

This report is intended both as an introductory writeup and f

as a reference manual for users. For the latter role it is useful to have

quick access to the tables and examples of the writeup. For this reason all

schedules of the report have been collected together in this appendix. The

titles are summarized here.

Schedule

10
i1
12
13

Explicit defining expressions
Description of the algebraic operations
Element-by-element functions

Sum and product functions

Structure functions

Operators for functions of one variable
Matri# functions

Ranking functions

Transfamily functions

The rest of the schedules in this report are actual reproductions

of part of a run made with the SPEAKEASY processor. They provide

examples of the use of the language.

14
15
16
17
18
19
20
21
22

Operations with scalar objects

Examples of explicit definitions (matrix/vector family)
Examples of explicit definitions (array family)
Operations on square matrices

Matrix/vector operations -
Operations on 1-dimensional arrays

Operations on 2-dimensional arrays

Operations between i{- and 2-dimensional arrays

Simple-index operations

Schedule

23
24
25
26
27
28
29
30
31
32

- 33
34
35
36
37
38
39

56

Structured-index operations

Logical and relational operations

The WHERE and IF statements

Sample uses of the logical function LOCS

Sample operations using element-by-element functions
Samples of sum and product functions

Use of built-in structure functions

Examples of the use of ranking functions

Sample transfamily operations

Samples of the use of special operations for functions of
i variable

Sample of a function of 2 variables

Sample of a crude contour plot

Sample of the construction and use of a data file

Sample of the use of the graphical features of the language
Sample program and its execution

Errors detected during compilation

Execution error messages (manual mode)

Schedule 1. Explicit defining expressions for structured objects

in the matrix- vector family.

quantities (i.e., n and m) must be positive integers.

Note that all structure-defining

Expression

Meaning

Comment

VECTOR(n)

VECTOR(e,, e,, - - .

VECTOR(n: el, ez, i

Defines a vector with n components
all of which are zero.

Defines an f -component vector with
components set to ei.

Defines an n-component vector with
the first £ elements set to ei. All
others are zero.

£1>1

MATRIX(n, m)

MATRIX(n, m: e

SYMMAT (n: el, ez, oy

ASYMMAT (n: e €y - -

DIAGMAT((n: e

1r 8 v

ey - -

)

.,€

1

« i@

L

.,€

Defines an n X m matrix, all
components of which are zero.

Defines an n X m matrix in which
some elements are preset. They are
entered row by row. All non-preset
elements are zero.

Defines an n X n symmetric matrix.
Elements are loaded in lower diagonal
form by rows and then the portion above
the diagonal is made symmetric.

Defines an n X n antisymmetric matrix.
Elements are loaded in lower diagonal
form by rows and then the portion above
the diagonal is made antisymmetric.

Defines an n X n matrix with nonzero
elements el, ez, IR along the
diagonal.

n rows, m columns

L £in: (n+1)

£ <4n° (n-1)

L €n

LS

Schedule 2.

Explicit defining expressions for array objects.

Expression Meaning Comment
ARRAY(n) Defines a {-dimensional array with n
components, all of which are zero.
ARRAY(el, ez, 3 el) Defines a 1-dimensional array with Note: ARRAY(e, e,) is
components set to e.- a 2-component, il-dim.array‘.
ARRAY(n: el, ez, ST e‘) Defines a 1-dimensional array with the e <n
first £ elements set to e.. The last
(n -) elemients are zero.
ARBAY(n i) Defines a 2-dimensional n X m array Note colon. (See note above.)
AR;Z\YZD(n, o) with all elements set to zero.
ARRAY(n, m: €pey o -, el) Defines a 2-dimensional n X m array 1 €£n-m

GRID(lim1, 1im2)

GRID(lim1, 1im2, delta)

INTEGERS(n, m)

INTEGERS(n, m,!)

with preset elements. Loaded row by
row. Non-set elements are zero.

Defines a 1-dimensional array with 101

equally spaced elements starting at lim 1

and going to lim 2.

Defines a 1-dimensional array with
elements equally spaced starting at
lim 1 and adding delta until lim 2 is
reached or passed.

Defines a i-dimensional array with
elements containing the integers from
n to m.

Defines a i{-dimensional array with
elements containing the integers from
n to m in steps of £.

limi # lim2

limi # lim2
delta = 0

n and m have integer
values,

Alln, m, and ! are
integers.

Class of Left Operand

Class of Right Operand

Operator M Family A Family
2 s V(n) M(n, m) Al(n) A2(n,m)
A=LztR A, =L tR, A =L5_+R A, =L$R, S e 3
1 1 i) 1) i) 1 1 1) ij
S
n=m
Class S Class V(n) Class M(m,m) Class Ai(n) Class A2(n,m)
A =L R A =L %R, A =215 R
i i i i i ij iij ij
V(n) %
5
':'E Class V(n) Class V(n) Class M(m,m)
© |-
58
= A =L 2R, |A, =L, RS . |"A, =L 2R,
ij in ij ij ij i1} ij ij ij
io,m) m=n m=n
Class M(n,n) Class M(n,n) Class M(n,m)
= = p -
A =L tR Do i tRe L b s B 2R
Alfp)
> Class Al Class Ai(n) Class A2(n,m)
ord
E
&
= + A.=L;tR, A =L R
< ¢ Vi, e ke Rk i T4)
A2p,n') a' =n P=n,n' =m
Class A2(p,n') Class A2(p,n) Class A2(n,m)
Schedule 3. Description of the operation * between objects of various classes.

The subscripts refer to

elements. A is the answer object, L the lefthand object, and R the righthand object.

%

- - - - < * - + 4

- - < - <

6S

Class of Left Operand

Class of Right Operand

Operator M Family A Family
*
S V(n) M(n, m) Al(n) A2(n, m)
A=L*R A =L *R, A . =L*R,_, AL =L*R, A..=L*R_,
i i ij ij i i ij ij
S
Class S Class V(n) Class M(n,m) Class Fi(n) Class F2(n,m)
= * = * = *
A =L *R A 4‘: L *R, A ? L *Ry
V(n)
>
ol Class V(n) Class S Class V(m)
£ inner product
]
€9
A = % = * = *
2 e T il A=) By * By g g: Ay * By
M(p;n) ;
Class M(p,n) Class V(p) Class M(p, m)
A =L, *R A, =L *R, Al =il ® R
i i i i i ij i ij
Alfp) :
35 Class Al(n) Class Ai(n) Class AZ2(n,m)
g
f A..=L _*R A,.=L,.*R, A..=L_*R_,
< ij ij ij ij J ij ij ij
A2’
;n] ifn' =n ifp=n,n' =m
Class A2(p,n') Class A2(p,n) | Class A2(n,m)

Schedule 4.

Description of the operation * between objects of various classes.

The subscripts refer to

elements. A is the answer object, L the lefthand object, and R the righthand object.

%*

%

* & *

* * *

%

* *

* P

09

Class of Right Operand

Operator M Family A Family
/ S V(n) M(n,n)* Al(n) A2(n,m)
A =L/R A, L=L=*]I A, =L/R, =
- 13 ij i / i Aij L/Rij
S
Class S Class M(n,n) Class Ai(n) Class A2(n,m)
A, =L./R Ai=§Lk*Lki
V(n)
Class V(n) Class V(n)
=
E A L./R
= = %k
s i =M A5 ; Lie * By
A rw(p,n)
g Class M(p,n) Class M(p,n)
)
S
% Ai = Li/R Ai = Li/Ri Aij B Li/Rij
- Alf) :
K Class Ai(n) Class Ai(n) Class A2(n, m)
-l =
21 2
o] E A.=L_/R A =L R | A =L IR
fo e R g ij i
A 2p:n
< ifn' =n # p=n,n'=m
Class F2(n'") Class A2(pn) Class A2f{,m)

Schedule 5,

¥ Here the right operand must be a square matrix and I is its inverse
Description of the operation / between objects of various classes. The subscripts refer to

elements.

/ /

/

/

/

/

/

/

/

/

A is the answer object, L the lefthand object,and R the righthand object.
/ / / /

/

19

Class of Right Operand

Class of Left Operand

M(m,nT Rth power of L

Class M(m,n)

Operator M Family A Family
sk S V(n) M(m,n) Al(n) A2(n,m)
A=L® A =L} A, =LR
i ij
S
Class S Class Ai(n) Class A2(n,m)
A,.=L *R,
ij i j
V(m)r
Class M(m,n)
-_-? outer prod\’xct
g
2
fx,
p>

Class A2(p,n')

Class A2(p,n)

TS P B A, =L
i i i i ij i
Al(n)
= Class Ai(n) Class Ai(n) Class A2(n,m)
-t
g R Rl -
Fy A..=L A.. =L . "H A= Y
< ij ij ij ij ij ij
A%:u,n_'*) n' =n p=n,n' =m

Class A2(n,m)

29

:+ R integer only. L must be square.

Description of the operation *% between objects of various classes. The subscripts refer to elements.
A is the answer object, I, the lefthand object and R the righthand object. Within the table %% means
exponentiation.

Schedule 6.

%k %% ek Ak Ak Hek sk

Schedule 7.

63

The resultant object in each case is of the same class as X. Each element of the

answer is the result of operation on the corresponding element of X.

Element-by-element functions available in SPEAKEASY.

Function Meaning Comment
SIGN(X) + 1 where X § 0; 0 where X = 0| Real X only
ABS(X) Absolute magnitude
FRACPART(X) Fractional part
INTPART(X) Integer part
REALPART(X) Real part
IMAGPART(X) Imaginary part
CONJUGATE(X) Complex conjugate
SQR T(X) Square root 6
EXP(X) Exponent eX Real X < 170, |imag X| < 5 X 10
LOG(X) Natural logarithm X =0
SIN(X) Sine
COS(X) Cosine 15
TAN(X) Tangent le <1
COT(X) Cotangent
ASIN(X) Arc sme’f |X| < 1 o
ACOS(X) Arc cosine .
=
ATAN(X) Arc tangent &
ACOT(X) Arc cotangent
o
SINH(X) Hyperbolic sine
COSH(X) Hyperbolic cosine le = e :
GAMMA (X) I' function P < X < 56 ®
LOGGAMMA (X) Natural logarithm of I function [0 < X < 4 x 1060 0

64

Schedule 8. Built-in SPEAKEASY functions for obtaining

sums and products of elements of structured objects.

Function Meaning Comment
SUM(X) Sum of all elements Answer is scalar
SUMSQ(X) Sum of squares of all elements
PROD(X) Product of all elements
SUMROWS(X) ijij Answer is a {-dimensional
_ > :
SUMSQROWS(X) Zj(xij) member of the family of X
PRODROWS(X) Irjxij
SUMCOLS(X) Zixij Answer is a 1-dimensional
2
SUMSQCOLS(X) Ei(xij) member of the family of X
PRODCOLS(X) T .x

65

Schedule 9. The built-in SPEAKEASY functions for obtaining

information about the structure of objects.

Function Meaning
NOE LS(X) The number of elements in the object X. If
LENGTH(X) X is undefined, the answer is zero.
NOROWS(X) Number of rows in X
NOCOLS(X) Number of columns in X
MIN(X) Minimum element in X
MAX(X) Maximum element in X
LOCMIN(X) Location of minimum of X. X is one-dimensional.
LOCMAX(X) Location of maximum of X. X is one-dimensional.
ROWMIN(X) Row containing minimum element of X
ROWMAX(X) Row containing maximum element of X
CO LMIN(X) Column containing minimum element of X

COLMAX(X) Column containing maximum element of X

Schedule 10.

of one variable.

(xi,xz,x3, Vi

66

Built-in SPEAKEASY operators for functions

In these functions X is a one-dimensional array X = ARRAY

Function

Meaning

Comment

DERIV(F:X)

INTEGRAL(F:X)

TOTALINT(F:X)

INTERP(Y,F,X)

ROOTS(F :X)

NOROOTS(F)

dF /dx (derivative)

X,
fx 'Fdx an integral with a

variable upper limit
X
fx " Fdx definite integral
1

Numerical fitting,
interpolation

Finds xi of roots of F

Number of roots of F

Numerical differentiation

Numerical integration.
(Answer is an array.)

Numerical integration.
(Answer is a scalar.)

Resultant is an array with
values of the function F
evaluated at the points Y.
F(X) must be given.

Trapezoidal interpolation

Uses sign changes

67

Schedule {1. Built-in SPEAKEASY functions for matrices. Note
that aside from TRANSPOSE, these operations can be used only with

square matrices.

Function Meaning
EIGENVALS(X) Eigenvalues in order of ascending values
EIGENVECS(X) Unitary matrix whose columns are eigenvectors

of X, belonging to the corresponding eigenvalues

DET(X) Determinant of matrix X
DIAGELS(X) Diagonal elements in original order

INVERSE(X) Inverse matrix
. Note: 1/X is also the inverse

TRACE(X) Sum of the diagonal elements

TRANSPOSE(X) Transpose of the object

68

Schedule 12. Built-in SPEAKEASY functions for ranking the elements

of a structured object.

Function Meaning

RANKED(X) Produces a new object of the same structure
as X but with elements arranged in increasing
numerical order.

RANKER (X) For a one-dimensional object X. This function

produces the indices of the elements of X arranged

in order of increasing numerical order.
RANKED(X) = X(RANKER(X))

69

Schedule 13. The built-in SPEAKEASY functions for
respecifying the family of an object.

Function Meaning

AFAM(X) The resultant has the structure of X but
is a member of the array family

VFAM(X)
or
MFAM(X)

The resultant has the structure of X but
is a member of the matrix/vector family

70

INPUT...$
lNPU;...: SCHEDULE 14 OPERATIONS WITH SCALAR OBJECTS.
INPUT... '
INPUT... X=27 ; Y=16 ; Z=X*Y+8/3 ; PRINT(X,Y,Z)
X= 27Y= 16172 = 434,67
INPUT... PI=2«AC0OS(0) ; PRINT(PI)
Pl = 3.1416
INPUT... X=SIN(3#P1/8);PRINT(X)
X = ,92388
INPUT...$
INPUT...$ THE IMPLIED PRINT FEATURE IS DEMONSTRATED HERE.
INPUT...$:
INPUT... SIN(2+P1/3)
SIN(2#+PI/3) = .86603
INPUT... SIN(3)*%2+C0S(3)w*2
SIN(3)*#2+COS(3)#*+2 = 1
INPUT... DOMAIN(COMPLEX)
INPUT...$:
INPUT...$ THE COMPLEX DOMAIN IS NOW ALLOWED
INPUT...$
INPUT... T=3+L1;EXP(T)
EXP(T) = -13.,129-15.2011
INPUT... SIN(T)**2+COS(T)*=2
SIN(T)*#*2+COS(T)**2 = 1
INPUR sy Toe2 ‘
Taw2 = -7+24|
INPUT... LOG(T)

LOG(T) = 1.6094+,92731

71

INPUT...$

INPUT...$ SCHEDULE 15. EXAMPLES OF EXPLICIT DEFINITIONS (MATRIX/VECTOR
INPUT...$ FAMILY)

INPUT...$

INPUT... VECTOR(5:);VECTOR(:1,2,3);VECTOR(6:1,2,3,4)

VECTOR(5:) (A VECTOR WITH 5 COMPONENTS)
0o 0 0 0 O

VECTOR(:1,2,3) (A VECTOR WITH 3 COMPONENTS)
&g 3

VECTOR(6:1,2,3,4) (A VECTOR WITH 6 COMPONENTS)
1.2 3 & 0 9

INPUT... MATRIX(2,2:);MATRIX(2,2:1,2,3)
MATRIX(2,2:) (A 2 BY 2 MATRIX)
0 0
0 O
MATRIX(2,2:1,2,3) (A 2 BY 2 MATRIX)
L 2
3. =4
INPUT... SYMMAT(3:1,2,3,4);ASYMMAT(3:1,2,3,);DIAGMAT(1,2,3,4,)
SYMMAT(3:1,2,3,4) (A 3 BY 3 MATRIX)
1 2 &
e -3 0
L 0 0
ASYMMAT(3:1,2,3,) (A 3 BY 3 MATRIX)
i ~] =2
1 0 =3
2 5 0

DIAGMAT(1,2,3,4,) (A 4 BY 4 MATRIX)
4

ocooNO
oOWOoOOo
OO0

0
0
0

12

INPUT...$ s 2w

INPUT...$ SCHEDULE 16. EXAMPLES OF EXPLICIT DEFINITIONS (ARRAY FAMILY)
INPUT...$

INPUT... ARRAY (5:);ARRAY(:1,2);ARRAY(5:1,2,3)

| ARRAY (5:) (A 5 COMPONENT ARRAY)
| g9 0 0 0 ”

ARRAY(:1,2) (A 2 COMPONENT ARRAY)
} e

ARRAY(5:1,2,3) (A 5 COMPONENT ARRAY)
g3 00 :

INPUT... ARRAY(2,3:);ARRAY(2,3:1,2,3,4,5)
ARRAY(2,3:) (A 2 BY 3 ARRAY)
S R
0 0 O
ARRAY(2,3:1,2,3,4,5) (A 2 BY 3 ARRAY)
! R S
4 5 0
INPUT... GRID(1.2,1.9,.1); INTEGERS(1,15)

GRID(1.2,1.9,.1) (A 8 COMPONENT ARRAY)
11,5 1.% 1.5 1500 1:F 1.8 1.8

INTEGERS(1,15) (A 15 COMPONENT ARRAY)
1 2 3 L 5 6 7 8 9 20-731 12 FITARN A5

73

INPUT...$
:::UT...: SCHEDULE 17. OPERATIONS ON SQUARE MATRICES
UT...
INPUT... X=MATRIX(3,3:1,2,4,1,3) ; PRINT(X)
X (A 3 BY 3 MATRIX)
1.2 %
1 3°0
0 0 0
INPUT... X=X+TRANSPOSE(X);PRINT(X)
X (A 3 BY 3 MATRIX)
2 3 &
3 6. 0
L 0 O
INPUT... X(3,3)=5;PRINT(X)
X (A 3 BY 3 MATRIX)
2 3 b
3 D
L 0 5
INPUT... DET(X)
DET(X) = -81
INPUT. .. TRACE(X)
TRACE(X) = 13
INPUT... EIGENVALS(X)

EIGENVALS(X) (A VECTOR WITH 3 COMPONENTS)
-1.6056 5.6056 9

INPUT... EIGENVECS(X)

EIGENVECS(X) (A 3 BY 3 MATRIX)

-.8105 .098784 57735
.3197 =.7513 57735
4908 .65252 «57735

INPUT...$

INPUT...$ THE EIGENVECTORS ARE THE COLUMNS OF THIS MATRIX,

INPUT...$ THE VECTOR CORRESPONDING TO THE SMALLEST EIGENVALUE IS FIRST,
INPUT...$

INPUT... 1/X

1/X (A 3 BY 3 MATRIX)

-.37037 .18519 «2963
.18519 074074 -.14815
.2963 -.14815 ~-.037037

INPUT... Xx#2

X«+2 (A 3 BY 3 MATRIX)
29 24 28

- 24 45 12
28 12 41

INPUT...$
INPUT...$
INPUT...$
INPUT.. .

INPUT...$
INPUT...$
INPUT...$
INPUT .. &

INPUT, . .
X%
INPUT...$
INPUT...
X=»
INPUT ...

%

INPUT...

INPUT. ..
T+

INPUT. ..
T+

14

SCHEDULE 18. MATRIX/VECTOR OPERATIONS.

X=VECTOR(:1,2,3,4);Y=VECTOR(:3,1,2)
FORM THE OUTER PRODUCT OF X AND Y
Z=X*«Y ; PRINT(X,Y,Z)

(A VECTOR WITH 4 COMPONENTS)
- S T

X
£ ;
Y (A VECTOR WITH 3 COMPONENTS)
- [Ay

(A 4 BY 3 MATRIX)

EWo =
B FEN

X*Z

Z (A VECTOR WITH 3 COMPONENTS)
90 30 60

THE INNER PRODUCT IS
X*X

X = 30
ZxY

Y (A VECTOR WITH & COMPONENTS)
14 28 42 56

T=X*+X;PRINT(T)

T (A 4 BY 4 MATRIX)
1 2 3 L
2 L 6 8
3 6 9 12
L 8 12 '16
T+1
1 (A 4 BY 4 MATRIX)
2 2 3 b
2 5 6 8
3 6 10 12
L 8 1217
T+X
X (A 4 BY 4 MATRIX)
2 2 3 L
2 6 6 8
3 6 2 12
n 8 12 20

75

INPUT...$ i
INPU¥...: SCHEDULE 19. OPERATIONS ON 1-DIMENSIONAL ARRAYS
INPUT. ..

INPUT. .. X=ARRAY(5:1,2,3,4,5) ; Y=X+3 ; Z=XsY

INPUT. .. PRINT (X,Y ,Z)

(A 5 COMPONENT ARRAY)
2 3 4 5

X

1

Y (A 5 COMPONENT ARRAY)
L 5 6 7 8

Z (A 5 COMPONENT ARRAY)
4 10 18 28 40

INPUT... X/Z
X/Z (A 5 COMPONENT ARRAY)
«25 o2 .16667 .14286 .125
INPUT... X/3
X/3 (A 5 COMPONENT ARRAY)
.33333 ,66667 1 1.3333 1.6667
INPUT... X#xX
X*«X (A 5 COMPONENT ARRAY)
1 4 27 256 3125
INPUT... X#w3

X#+#3 (A 5 COMPONENT ARRAY)
1 8 27 (10 125

76

INPUT...$
INPUT...$ SCHEDULE 20. OPERATIONS ON 2-DIMENSIONAL ARRAYS
'NPUT...s I ;
INPUT... X=ARRAY(2,2:1,2,3,4) ; Y=X+1 ; Z=X#Y
INPUT . PRINT (X,Y,Z)

X (A 2 BY 2 ARRAY)

: S

3 4

Y (A 2 BY 2 ARRAY)

2 .5

. TS

Z (A 2 BY 2 ARRAY)

2 6

34 20
INPUT. .. X/Y

X/Y (A 2 BY 2 ARRAY)

.o .66667

.75 .8
INPUT... XenY

X+#*Y (A 2 BY 2 ARRAY)

1 8

81 1024
INPUT... X#x3

X+#+3 (A 2 BY 2 ARRAY)
1 8
27 64

77

INPUT...$
INPUT...$ SCHEDULE 21. OPERATIONS BETWEEN 1- AND 2-DIMENSIONAL ARRAYS
INPUT...$ 1D ARRAYS OPERATE FROM THE LEFT ON ROWS, FROM THE
INPUT...$ RIGHT ON COLUMNS.
INPUT...$ '
INPUT. .. X=ARRAY(3:1,2,3);Y=ARRAY(3,2:1,2,3,4,5,6);Z=ARRAY(2:1,2)
INPUT. .. PRINT(X,Y,Z)
X (A 3 COMPONENT ARRAY)
G
Y (A 3 BY 2 ARRAY)
;
3 4
5 6
Z (A 2 COMPONENT ARRAY)
S
INPUT. .. X*Y ;Y*2Z |
X#Y (A 3 BY 2 ARRAY)
¥ g
§ 8
15 18
" Y#Z (A 3 BY 2 ARRAY)
308
S
INPUT. .. X+Y;3Y+2Z
X+Y (A 3 BY 2 ARRAY)
2 3
5 6
8 9
Y+Z (A 3 BY 2 ARRAY)
2 4
4 6
6 8
INPUT. .. X#xY;YenZ
X**Y (A 3 BY 2 ARRAY)
1 1
8 16
243 729
Y#*Z (A 3 BY 2 ARRAY)
b i
L B §

5 36

78

INPUT...$
INPUT...$ "+ SCHEDULE 22. SIMPLE: INDEX OPERATIONS.
'NPUT.E:"Q . $. ; : _> i g
INPUT... X=ARRAY(3,3:1,2,3,4,5,6,7,8,9); PRINT (X)
-X- (A 3. BY 3 ARRAY)
S B
L 5 6
7859
INPUT... X(3,3);X(2);X(,2)
X(3,3) = 9
X(2) (A 3 COMPONENT ARRAY)
SR
X(,2) (A 3 COMPONENT ARRAY)
< SR T
INPUT . .. X(3)=X(,2) ; PRINT(X)
X (A 3 BY 3 ARRAY)
. 2 3
RS S
2 5 3
INPUT... X(3)=1 ; PRINT(X)
X (A 3 BY 3 ARRAY)
N
4 5 -8
T
INPUT . .. X(,3)=1 ; PRINT(X)
X (A 3 BY 3 ARRAY)
e S S |
e B |
L SRl |
INPUT...$
INPUT...$ AUTOMATIC EXTENSION IS ILLUSTRATED BY
INBUT, . . $
INPUT... X(4,5)=1 ; PRINT(X)
X (A 4 BY 5 ARRAY)
F B U R I
. SR RO Tk Eh
iy el TR B
s SR | B | SO B |

79

INPUT...$
INPUT...$ SCHEDULE 23. EXAMPLES OF STRUCTURED INDEX OPERATIONS
INPUT...$

INPUT... A=ARRAY(3,3:1,2,3,4,5,6,7,8,9) ; 1=ARRAY(:1,2) ; PRINT(A,I)

A (A 3 BY 3 ARRAY)
S N

k56
-8 -8

I (A 2 COMPONENT ARRAY)
1 2

INPUT. .. ACL) 5 ACG, 1) 3 ACL,L) ; ACL,1+1)

ACl) (A 2 BY 3 ARRAY)

R R
L 5 6
AC, 1) (A 3 BY 2 ARRAY)

ACL, 1) (A 2 BY 2 ARRAY)

1 -2

L 5

ACl,1+1) (A 2 BY 2 ARRAY)
e

oes

INPUT...$
INPUT...$
INPUT...$
INPUT...$
INPUT...
INPUT...
INPUT...
INPUT...
INPUT...

HoMNnO >

INPUT...$
INPUT...
INPUT...
INPUT...
INPUT...
INPUT...
INPUT...
INPUT...
INPUT...

>

MMEWNEHEO

INPUT...$
INPUT...
INPUT...
INPUT...
INPUT...

b

VWO

oo o=}

HpoWeEUToO

HroWE U

80

SCHEDULE 24. LOGICAL AND RELATIONAL OPERATIONS

A=ARRAY(:0,2,0,1) ; B=ARRAY(:1,2,0,0)
AORB=A.OR.B

AANDB=A.AND.B

NOTA=.NOT.A

TABULATE (A,B,AORB,AANDB,NOTA)

AORB AANDB NOTA

O

0
1
0
0

S =O

A=ARRAY(:0,1,2,3,4,5);B=6-A

AGTB=A.GT.B

ALTB=A.LT.B

AEQB=A.EQ.B

AGEB=A,.GE.B

ALEB=A,LE.B

ANEB=A .NE.B
TABULATE(A,B,AGTB,ALTB,AEQB,AGEB,ALEB, ANEB)

AGTB ALTB AEQB AGEB ALEB ANEB

HHOOOO
COoOO MM
co+HooO©
HHMHOOO
OO
O e

AGTO0=A.GT.O0

ANEl=A . NE.1

AMBNEO=A~B.NE.O
TABULATE(A,B,AGT0,ANE1, AMBNEO)

AGTO ANE1 AMBNEO

O
O
O

81

INPUT...$;
INPUT...$ SCHEDULE 25. EXAMPLES OF WHERE AND IF STATEMENTS.
INPUT...$
INPUT. .. X=ARRAY(:1,2,3,4,5,6,7) ; Y=ARRAY(7:) ; PRINT(X,Y)

X (A 7 COMPONENT ARRAY)

1o 3% 8 % 7

Y (A 7 COMPONENT ARRAY)

® 0 0 0 0 0 O
INPUT. .. AUTOPRINT(Y)
INPUT...$

INPUT...$ AUTOPRINT IS USED HERE FOR AUTOMATICALLY PRINTING Y. .
INPUT...$
INPUT... WHERE (X.GT.3) Y=4

Y (A 7 COMPONENT ARRAY)
0 0 0 & 4 & &

INPUT... WHERE (X.GT.4) Y=X-1

Y (A 7 COMPONENT ARRAY)
0 0 0 4 & S5 6

INPUT... WHERE (Y.EQ.0) Y=-=X

Y (A 7 COMPONENT ARRAY)
o S Al T SRS R s

INPUT... WHERE (X+Y.GT.1.AND.X.LT.7) Y=9

Y (A 7 COMPONENT ARRAY)
“y = *3 9 99 6

INPUT... X=7
INPUT... IF (X.LT.5) Y=Y-1
INPUT... PRINT(Y)

Y (A 7 COMPONENT ARRAY)
=1 -2+ 9 9 9 &

INPUT... IF (X.GT.5) Y=Y-1

Y (A 7 COMPONENT ARRAY)
=g 3 =4 5 8 8 5

INPUT. .. ENDAUTOPRINT

82

INPUT...$

INPUT...$. SCHEDULE:26. SAMPLE USE OF LOCS (THE TRUTH FUNCTION).
INPUT...$

INPUT. .. X=ARRAY(:5,3,1,0,2,2.5,7,6.3,0)

INPUT. .. LOCS(X); X(LOCS(X))

LOCS(X) (A 7 COMPONENT ARRAY)
el o3 o8 F 8

X(LOCS(X)) (A 7 COMPONENT ARRAY)
5 3 1 2 2.9 7 6.3

INPUT. .. LOCS(FRACPART(X))

" LOCS(FRACPART(X)) (A 2 COMPONENT ARRAY)
b 3

INPUT... X(LOCS(FRACPART(X)))

X(LOCS(FRACPART(X))) (A 2 COMPONENT ARRAY)
2.5 6.3

INPUT . ¢ s LOCS(X.GT.2)

LOCS(X.GT.2) (A 5 COMPONENT ARRAY)
g2 6 7.8

INPUT... X(LOCS(X.GT.2))

X(LOCS(X.GT.2)) (A 5 CCMPONENT ARRAY)
5 3 2+5° 1 6.3

83

INPUT...$

INPUT...$ SCHEDULE 27 . SAMPLE OPERATIONS USING ELEMENT-BY~-ELEMENT
INPUT...$ FUNCTIONS

INPUT...$

INPUT...$

INPUT... X=ARRAY(:-2,-1.5,-1,0,2,.5,7);ABSX=ABS(X);SIGNX=SIGN(X)
INPUT... FRACX=FRACPART(X) ; INTX=INTPART(X)

INPUT. .. TABULATE (X,ABSX,SIGNX,FRACX, INTX)

X ABSX SIGNX FRACX INTX

-2 2 =1 0 -2
-1.5 1.5 -1 -5 =1
-1 1 -1 0 -1
0 0 0 0 0
53,8 % .5 2
7 7 1 0 7
INPUT. .. DOMAIN COMPLEX
INPUT... X=ARRAY(:0,1+11,2=31,41)
INPUT... REALX=REALPART(X); IMAGX-IMAGPART(X) CONJX=CONJUGATE(X)
INPUT. .. TABULATE (X REALX IMAGX CONJX)
X REALX IMAGX CONJX
0 0 0 0
1+11 1 1 1-11
2-3] 2 -3 243
+4 | 0 L -4
INPUT. .. DOMAIN REAL
INPUT. .. X=VECTOR(:1,2,3,4)
INPUT... SQRTX=SQRT(X):SINX=SIN(X);SINHX=S INH(X) ; GAMMAX =GAMMA (X)
INPUT. .. TABULATE X SQRTX SINX SINHX GAMMAX
X SQRTX SINX SINHX GAMMAX
1.4 84147 1.1752 1
2 1.4142 .9093 3.6269 1
31,7321 .14112 10.018 2
4 2 -.7568 27.29 6

84

lNPUTooo$ 3

. JNPU;..;: SCHEDULE 28. SAMPLES OF SUM AND PRODUCT FUNCTIONS.
INPUT...

INPUT. .. X=MATRIX(2,3:1,2,3,4,5,6);PRINT X

X (A 2 BY 3 MATRIX)

: B S

L 5 6

INPUT... SUM(X) ; SUMSQ(X) ;PROD(X)
SUM(X) = 21

SUMSQ(X) = 91
PROD(X) = 720

INPUT ... SUMROWS(X); PRODROWS(X)
SUMROWS (X) (A VECTOR WITH 2 COMPONENTS)
6 15
PRODROWS(X) (A VECTOR WITH 2 COMPONENTS)
6 120
INPUT... SUMCOLS(X); SUMSQCOLS(X)
SUMCOLS (X) (A VECTOR WITH 3 COMPONENTS)
-
SUMSQCOLS(X) (A VECTOR WITH 3 COMPONENTS)
27 29 U5
INPUT. .. PROD(INTEGERS(1,10))
PROD(INTEGERS(1,10)) = 3628800
INPUT... SUM(INTEGERS(1,20))

SUM(INTEGERS(1,20)) = 210

85

INPUT...$

INPUT...S$ SCHEDULE 29. USE OF BUILT=IN STRUCTURE FUNCTIONS.
INPUT...$

INPUT... X=MATRIX(2,3:-1,7,-2,4,1);PRINT(X)

X (A 2 BY 3 MATRIX)
Y Tomg.
4 1 0

INPUT. .. MIN(X) ; ROWMIN(X) ; COLMIN(X)
MIN(X) a =2
ROWMIN(X) e |
COLMIN(X) = 3
INPUT... MAX (X)
MAX(X) = 7
INPUT... NOELS(X)
NOELS(X) = 6
INPUT... NOCOLS(X)
NOCOLS(X) = 3

86

INPUT...$ SCHEDULE 30. EXAMPLES OF THE USE OF RANKING FUNCTIONS.
' NPUTL L) s ; ‘

INPUT...$

INPUT... X=ARRAY(:1,2,~1,-7,4,=3);Y=X*+2;PRINT(X,Y)

X (A 6 COMPONENT ARRAY)
Nt =l =% =3

Y (A 6 COMPONENT ARRAY)
1 L 1 49 16 9.

INPUT... RANKED (X)

RANKED(X) (A 6 COMPONENT ARRAY)
wxowge =] 1 2§

INPUT... RANKER(X)

RANKER(X) (A 6 COMPONENT ARRAY)
T e NS RS- S

INPUT... X (RANKER(X))

X(RANKER(X)) (A 6 COMPONENT ARRAY)
miomy-=l Y 4 W

INPUT. .. Y (RANKER(X))

Y (RANKER(X)) (A 6 COMPONENT ARRAY)
49 9 1 1 L 16

87

INPUT...$

INPUT...$ SCHEDULE 31. SAMPLE TRANSFAMILY O?ERATIONS
INPUT...$

INPUT... X=ARRAY(:1,2,3)

INPUT... X;VFAM(X)

X (A 3 COMPONENT ARRAY)
1 2 3

VFAM(X) (A VECTOR WITH 3 COMPONENTS)
T 2 3

INPUT... XewX

X#+X (A 3 COMPONENT ARRAY)
1 L 27

INPUT...$
INPUT... AFAM(VFAM(X) **VFAM(X))

AFAM(VFAM(X)**VFAM(X)) (A 3 BY 3 ARRAY)
i 2 3
2 4L 6
. B

88

INPUT. . .$ SCHEDULE 32, SAMPLES OF THE USE OF SPECIAL OPERATIONS FOR
INPUT...$ - FUNCTIONS OF ONE VARIABLE.

INPUT...$ '

INPUT. .. PI=2+ACOS(0);X=GRID(0,2*P1)

INPUT... NOROOTS (COS(X)); ROOTS(COS(X):X)

NOROOTS(COS (X)) = 2

ROOTS(COS(X):X) (A 2 COMPONENT ARRAY)
1.5708 4.7124

&40

INPUT... COSX=CO0S(X)

INPUT... DCOSX=DERIV(COSX:X)

INPUT; .. ICOSX=INTEGRAL(COSX:X)

INPUT... SIGNIFICANCE(4)

INPUT...$ SELECT EVERY 4TH ELEMENT

INPUT... I=INTEGERS(1 ,NOELS(X),4);X=X(1);COSX=COSX(I)

INPUT. .. DCOSX=CCOSX(1)

INPUT... ICOSX=1COSX (1)

INPUT. .. TANX=TAN(X)

INPUT... SINX=SIN(X)

INPUT. .. TABULATE (X,COSX,DCOSX,1COSX,SINX,TANX,X)
X CosX DCOSX 1COSX S INX TANX X
0 1 =§.497TE=5 (0 0 0 0
«2513 .9686 ~-.2485 .2486 . 2487 .2568 «2513
.5027 .8763 -.4814 .4816 .4818 5498 5027
754 .729 -.6841 . 6843 .6845 . 9391 754
1.005 .5358 ~-.8438 8441 8443 1.576 1.005
1.257 .309 -.9504 «9507 « 9511 3.078 1,257
1.508 .06279 -.9974 J9977 .998 15.89 - 1,508
1,759 =.,1874 ~,9816 .982 .9823 =-5.242 1,759
2.011 -.4258 =-,9042 . 9045 .9048 -2.125 2.011
2,862 =.6374 =77 .7703 .7705 «1.208 2,262
2.513 -.809 -.5874 .5876 .5878 -.7265 2.513
dafh5 ~,9298 -,%3679 .368 .3681 =, 3929 2.765
3.016 -.9921 ~-,1253 .1253 <1253 -.1263 3.016
3.267 =-.9921 «1253 ot T3 -+1 253 .1263 3.267
3.219 -,9298 .3679 -.368 -.3681 .3959 3.519
3.77 -.809 5874 -,5876 -.5878 .7265 3.77
4L.021 -.6374 77 wsd LAD =, 7705 1.209 4L.021
4L.273 -.4258 .9042 -.9045 -.9048 2,125 L.273
4L.524 -.1874 .9816 -.982 =+ 98¢5 5.242 L.524
4,775 .06279 ,9974 =,9977 -.998 15,89 4.775
5.027 .309 .950L -.9507 =, 9311 -3.078 5.027
5:278 5358 .8L438 -.84041 -.8443 -1.576 5.278
5.929 .729 .6841 -.6843 -.6845 -,9381 5.529
5.781 .8763 4814 -.4816 -.4818 -.5498 5.781
6.032 .9686 . 2485 -.2486 -.2487 -.2568 6.032

6.283 1 6. 197E=5 «1.16E>1% =1.157E~1h =~1.157E=18 6.283

89

INPUT...$

INPUT...$ SCHEDULE 33. SAMPLE OF A FUNCTION OF 2 VARIABLES.
INPUT...$

INPUT. .. X=GRID(-1,1,.25); Y=GRID(0,2, .20)

INPUT...$

INPUT...$ FIRST CONSTRUCT A PAIR OF TWO DIMENSIONAL ARRAYS CONTA:INING
INPUT...$ THE DESIRED VALUES OF X AND Y IN THEIR ROWS AND COLUMNS,
INPUT...$ RESPECTIVELY.

INPUT...$ F '
INPUT. .. NX=NOELS(X);NY=NOELS(Y);Y=Y+ARRAY(NY , NX:) ;X=ARRAY(NY,NX:)+X
INPUT...$ NOTE THE ORDER OF THE ADDITIONS. THE RESULTS ARE:

INPUT. .. PRINT(X,Y)

X (A 11 BY 9 ARRAY)

=1 w09 =5 =35 0 «25 5 75 1
=1 S539 *u9 =350 «25 5 75 1
-3 modS w8 =35 D « 29 - 49 75 1
=1 wols W, = 35 0 2D a9 5 1
-3 B dS =S o ds) 25 5 75 1
el | Wad3 =B e g8 U 25 5 19 1
=F “dy =57 =, 50 L of5 3
' | *etd =8 =23 1 «25 .5 09 1
»l - T8 =S = 25 0 29 45 75 1
o | “old =5 =« 25 0 +25 D o132 1
-3 o dD B =20 -0 . T oid 1
Y (A 11 BY 9 ARRAY)
0 0 0 0 0 0 0 0 0
«2 o2 o2 o2 o2 «2 2 o2 e2
ol b 4 U U b o4 b b
.6 .6 .6 .6 .6 6 .6 .6 .6
.8 .8 .8 .8 .8 .8 .8 .8 .8
1 1 1 1 1 | 1 1 1
12 3.2 1.2 1.0 3.2 1.2 1.2 1.2 1.2
1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4
1.6 1.6 1,6 1.6 1.6 1.6 1.6 1.6 1.6
1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8
2 2 2 2 2 2 2 2 2
INPUT...$ NOW ANY FUNCTION OF X AND Y CAN EASILY BE CONSTRUCTED:
INPUT... FUNXY=X*#2 + 3+Y«SIN(X+3/2); PRINT(FUNXY)

FUNXY (A 11 BY 9 ARRAY)

1 5628 .25 .0625 0 .0625 .25 5625 1
1.288 .9715 .7549 .6319 .5985 .6529 .7956 1.029 1.359
1,575 1.38 1.26 1.201 1,197 1.243 1,341 1.496 1.718
1.863 1.789 1.765 1,771 1.795 1.834 1.887 1.963 .2.077
2,351 2,198 2.37 2.34 2,394 2,424 2,432 2.43 2.436
2.438 2,607 2.774 2,909 2.992 3.014 2,978 2.897 Q.795
2,726 3.016 3.279 3.479 3,591 3.605 3.52%5 3.366 3.15%
3.014 3.425 3.784 4.0L8 4,189 4,195 4.069 3.83 3,514
3,301 3.834 4,289 4.618 4,788 4,786 4.615 4.297 3,873
3,589 4.243 4,794 5,187 5.386 5.376 5.16 L.764 4,232
3.877 4.652 5.299 5.756 5.985 5.966 5.706 5.231 4.591

INPUT...$
'NPUT’ . ..s
INPUT...$
INPUT...$
INPUT...$
INPUT...

INTPART ((FUNXY=-MIN(FUNXY))/STEP)

WWWWNRNN

FEEWUWUWNODONEHEEHOO

A SIMPLE CONTOUR PLOT OF THE FUNCTION DEFINED

SCHEDULE 34

90

A SAMPLE OF A CRUDE CONTOUR PLOT

PREVIOUS SCHEDULE CAN BE PRODUCED THUS:
INTPART((FUNXY-MIN(FUNXY))/STEP)

STEP=1;

VigsssFuwWwuwpopNoO-HEEHOO

vuinmeEssWwWwNoNN-HMFOO

0

nunegssWNohNNEHEHEO

vumeEsEswWwuwWwNoHMFNEOO

0

mupepsuwnhnNoHEEO

MEsWWNNNNFHEHEE-EO

EEWWWNRNNN R

(A 11 BY 9 ARRAY)

IN THE

91

*******i*******tt*t*t*t*t****t*i*t‘t*tt
* DATA SHOWOFF

* | P 3 b 5

* 6 y 8 ,9,10

* 1l 12

* END

* % * *k % * & * * & * & & *& * * * ¥ ® * k¥ * * X * * ¥ * ® * * & * & * & € ® &

INPUT...$
INPUT...

$ ‘ :
INPUT...$ IN THE FIRST EXAMPLE WE USE AN OBJECT SMALLER THAN THE DATA FILE.
INPUT...$

INPUT. .. A=ARRAY (7)
INPUT. .. LOADDATA (A, SHOWOFF)
INPUT... PRINT(A)

A (A 7 COMPONENT ARRAY)
1-2-°-3 & 58 7

INPUT...$

INPUT...$ IN THIS EXAMPLE THE OBJECT HAS THE SAME SIZE AS THE DATA FILE.
INPUT...$

INPUT. .. A=MATRIX (3 ,4)
INPUT... LOADDATA (A, SHOWOFF)
INPUT. .. PRINT(A)

A (A 3 BY 4 MATRIX)
1 2 3 L

5 6 7 8

9 Lo 3l 12

INPUT...$

INPUT...$ IN THE LAST EXAMPLE WE USE AN OBJECT LARGER THAN THE DATA FILE.
INPUT...$

INPUT. .. A=ARRAY (20)
INPUT, .. LOADDATA(A, SHOWOFF)
INPUT... PRINT(A)

A (A 20 COMPONENT ARRAY)
1 - =2°3% L°'s 6 7 8 910 13 712 0. 0.0 @ 0 0O 0.0

INPUT...$: '
INPUT...$

INPUT...$ SCHEDULE 35. SAMPLE OF THE CONSTRUCTION AND USE OF A DATA FILE
INPUT...$

INPUT...$
INPUT. ..$
INPUT...$
INPUT. ..$
INPUT. ..
INPUT...
INPUT...$
INPUT...$
INPUT...$
INPUT...
INPUT. ..
INPUT. ..
INPUT. ..
INPUT. ..

92

SCHEDULE 36. A SAMPLE OF THE USE OF THE GRAPHICAL FEATURES

OF THE LANGUAGE.

X=GRID(0,10) ; Y=SIN(X)
D=DERIV(Y:X)

THE DESIGN FEATURES ARE SETUP HERE.

HSIZE=5 ; VSCALE=(-1,1)
GRAPH(Y:X)
SETPLOT(POINTS)
ADDGRAPH(D :X)
ENDDRAW(0)

.
’

HSCALE=(MIN(X) ,MAX (X))

’

VS IZE=Y

93

* & % * ¥ & * ¥ ® ¥ & ¥ & & ® ¥ F * F A FH RN TR PR R P E TSN EE N

PROGRAM SAMPLE1 3

$
$ THIS PROGRAM ILLUSTRATES THE FORM OF A PROGRAM
$

PRINT('EXECUTION OF SAMPLE1l FOR',N)
FOR 1=2,N
X=VFAM(INTEGERS(1,1));Z=X##X;S=SUMROWS(Z)
IF (1.GT.2) GO TO A
PRINT(X,Z,S)
GO TO B
A:TABULATE(X,S)
B: ENDLOOP |
* END :
IR SE B A IR AR SR AR SR AR SR B SR AE SR IR 2R 2K 2 2R AR IR IR IR R R R K AR IR B A

INPUT...$

* % % % % % % % % ¥ ¥ * ¥

INPUT... N=3

INPUT ... $

INPUT...$ THIS SETS THE VALUE OF N. IT IS GLOBAL AND THEREFORE
INPUT,..% AVAILABLE TO THE PROGRAM

|NPUT..-$

INPUT: o . EXECUTE SAMPLE1

EXECUTION OF SAMPLE1 FOR N = 3

(A VECTOR WITH 2 COMPONENTS)
2

X

1

Z (A 2 BY 2 MATRIX)
)

2 4

S
3
X

(A VECTOR WITH 2 COMPONENTS)
6

S
L =6

2 &3
3 18

INPUT...$
INPUT...$ SCHEDULE 37. A SAMPLE PROGRAM AND ITS EXECUTION

$
$
$

* % % % ¥ * ¥ * ¥ ¥

94

P . R S
i'ﬁ***'*'***i*******i'****t******ﬁ****ﬁi

PROGRAM MISTAKES

THIS PROGRAM DEMONSTRATES SYNTAX ERROR MESSAGES DURING COMPLILATION.

X=Ys#/Z ;X=Y=Z ;X=2.35.7

V=A* (344 ; ; A=-#B ; X="YES"
Xe5 , Ts7 S

END

N R RS R R TR R R YR TR R R ERNEETETET RN YR

IN STAT. " X=Y*%/Z ' DOUBLE OP.

IN STAT, " X=Y=Z " DOUBLE EQUAL SIGN.

IN STAT. " X=2.35.7 " MISPLACE DEC. PT.

IN STAT. " V=A#*(3+4 " PARENTHESIS IMBALANCE,
IN STAT. " A=-*B ' DOUBLE OP.

IN STAT. " X="YES" " ILLEGAL CHAR.

IN STAT. " X=5 , T=7 ' DOUBLE EQUAL SIGN,

-ERRORS-~ERRORS=-~ERRORS~--ERRORS-~ERRORS~-ERRORS~~ERRORS--ERRORS-~-ERRORS~-~-ERRORS
INPUT...$:
INPUT...$ SCHEDULE 38. ERRORS DETECTED DURING COMPILATION. THESE DO NOT
INPUT...$ INHIBIT EXECUTION

95

3

INPUT...$
lNPU¥...$ SCHEDULE 39. EXECUTION ERROR MESSAGES (MANUAL MODE)
INPUT...$
INPUT... X=WW*10
WW IS NOT DEFINED IN STAT. " X=Wwel0o "
INPUT... X=h#3+2«(1+

IN STAT. " X=4#3+2«(1+ " PARENTHESIS IMBALANCE. ’
INPUT... X=4#3(7+6)

IN STAT. " X=4#3(7+46) " IMPLIED MULT, ?

INPUT... X=MATRIX(3,3)
INPUT... Y=X(4,2)

X IN STAT. " Y=X(4,2) " INDEX OUTSIDE BOUNDS,
INPUT... X=ARRAY(3:);Y=ARRAY (h:);X+Y

IN STAT. " X+Y " X AND Y ARE INCOMPATIBLE FOR OPERATION

X (A 3 COMPONENT ARRAY)
0 0 O

Y (A 4 COMPONENT ARRAY)
0o 0 0 O

INPUT... DOMAIN(REAL); X=SQRT(-2) '
IN STAT. " X=SQRT(-2) " ENTERED COMPLEX DOMAIN.

PART TWO

SPEAKEASY-3: The SPEAKEASY System

by

S. Cohen

Preceding page blank

97

98

I. INTRODUCTION

The capabilities of the current (1972) production versions of
SPEAKEASY are greatly enhanced over those available at the time Part One
was written (1968). From the viewpoint of the users, the growth has been
in the direction of increases in the available facilities and an enlarged
vocabulary. Actually there have been several major revisions in the struc-
ture of the processor during this period, but none of these have been directly
apparent to the user community.

This report is intended to formally describe some of the
features now available. In part this means describing the new words in the
language. A section of this Part therefore deals with increases in the vocab-
ulary. As will be seen, many of the features of the language now reflect the
coordination of broad-based library facilities with the processor. The evo-
lution of SPEAKEASY into a library-directed processor has had profound
impact on its growth. Part of this report therefore deals with the library
facilities now available and discusses their importance.

No new computational capability is apparent in the increased
vocabulary described here; such improvements are now added to the so-called
LINKULE libraries. These libraries of compiled FORTRAN subroutines are
the means by which all new computational features and most other features
are added to the processors. The LINKULES are discussedonlybriefly here.
Part Three deals specifically with their capabilities.

Other libraries of the system, such as the documentation
libraries and the libraries of stored SPEAKEASY decks, are dealt with in
general. Specific information about the contents of these libraries can be
obtained by use of the features that are available in the language and are’

described in this Part.

99

A change in the specifications of the SPEAKEASY
language is being introduced in Sec. IV. This modification of
the notation for logical and relational operators eliminates some
previously restricted words and therefore will benefit all users.

During a long transition period in which either notation can be used,
existing programs can be converted to the new specifications. This
conversion is not likely to be difficult, however, since the change is
being introduced to eliminate conflicts that only a few users have
encountered.

The use of SPEAKEASY in interactive sessions is growing
in popularity now that TSO (the Time Sharing Option) is available to
many institutions. Section V therefore explains the use of the facilities
of this language that are particularly adapted to this operation and also
describes the EDIT mode of operation.

The various processors currently available at Argonne
are described. The choice of the default parameters for each
processor is detailed. This serves both as a guide to the users of the
particular processors and as an indication of the possible choice for

other installations.
II. NEW OPERATIONAL FEATURES

This chapter describes some of the more important
words and concepts that have been added to SPEAKEASY since its
original documentation. In writing SPEAKEASY documentation, the
general approach has always been to describe the particular operation
clearly and concisely. The operation is then illustrated by using the
actual processor to display the effect. It is felt that this form of
documentation lends itself to development of the language and prpvides

users with some direct contact with the applications of the language.

100

As with all documentations, it is difficult to describe
an operation concisely and at the same time indicate in detail the
applications to which that operation is particularly suited. This
report makes no attempt to do the latter; a separate report
illustrating applications of the language and some of the tricks that
have Ibeen developed is planned.

Each of the sections that follow is headed by a major
keyword now available in SPEAKEASY. The operation of that word
is described, and the section concludes with a sample of the use of
the facility in an illustrative run with one of the currently available
processors. In most cases the normal batch version is used because
the format clearly labels the input.

Many of the words described in this section are members
of the LINKULE library of the system. Some are at present built into
the basic processor. Most words now are gradually being shifted
from the processor to the libraries, Users of SPEAKEASY should
be unaware of such changes except when specific inquiries are made

3

about the contents of the libraries.

A, SIZE

SPEAKEASY has a built-in dynamic-storage allocator
that care‘fully manages the space available for information defined
during execution. The SPEAKEASY processors themselves are
designed so that parts are dynamically brought into the computer as
dictated by demands of the particular application program.
Unfortunately, it is not yet possible to automatically divide the .space
available in the computer between these two uses. While default sizes
for each of the above are normally supplied, it is desirable that the

space allocated to each be based on the actual need.

101

The first card in the SPEAKEASY deck can be used to
inform the processor of the amount of data space needed in the run.
The rest of the allocated space for the job is then available for other
uses. This first card will be interpreted as a size-selecting card if
it carries any of the following words: SIZE, MAIN, LCS, or AUTOCORE,
If none of these occur, the default size selection for that particular
processor is assumed and the first card is interpreted as a normal
SPEAKEASY statement.

If the size of data storage. is being specified, the card
should read

SIZE

=n
SIZE = n, MAIN
SIZE = n, LCS
or AUTOCORE

Here n is the number of kilobytes of storage to be set aside for
SPEAKEASY data (1 kilobyte is approximately 120 user-defined
numbers). For most applications the card will read

SIZE =n

For machines with LCS (large-core storage) the data
area may be placed in LCS by including the word LCS in the size
selection card. Alternatively, in such machines the selection of
LCS space can be automatically determined by the space allocation
on the job card by use of the word AUTOCORE, This word means
that the largest amount of LLCS that is available is to be used for this
job. The word MAIN is a default if SIZE is specified and has been
included here only for completeness of notation.

Initially users will not know how large a data area to
aasign to a specific job. The default values should be used in such

cases (i.e., the user should omit the size-selection card entirely).

102

At the completion of each job, the last line of oucput gives three
pieces of information: the current amount of space being used
(labeled NOW), the peak amount needed (labeled PEAK), and the
amount of space allocated (labeled ALLOCATED). These numbers are
the approximate numbers of kilobyte involved. The next run of this
same job should be given a SIZE specification some 10% larger than
the indicated peak value. (The extra space provides for some increase
in efficiency of operation.)

Part of some actual SPEAKEASY runs are shown below.
Tﬁese indicate the use of SIZE and shows the form of the final line

of output.

SPEAKEASY 3D BETA 7:55 PM 7/20/72
INPUT...SIZE=10

INPUT...MARGINS(1,80)

INPUT...X=MATRIX(5,5: INTEGERS(1,25))
INPUT. . .Y=X#X

INPUT...PRINT Y

Y (A 5 BY 5 MATRIX)
215 230 245 260 275
490 530 570 €10 650
765 830 895 960 1025
1040 1130 1220 1310 1400
1315 1430 1545 1660 177%
I I I I I R EEE R EEEE R
CORE USED 1 K NOW, 1 K PEAK, ALLOCATED 10 K
R EEEEREEREEIEITIEIEIE I I I I I I I I R
SPEAKEASY 3D BETA 8:00 PM 7/20/72
INPUT...SIZE=15
INPUT...MARGINS(1,80)
INPUT...X=GRID(0,10)
INPUT...Y=SIN(X)*COS(X)+X*EXP(-X)+2xX*X
INPUT...AVERAGE(Y)
AVERAGE(Y) = 67.116
I R I I I I A I A A A A I I I E R E R

CORE USED 2 K NOW, 5 K PEAK, ALLOCATED 16 K

* % % % * W ®* * * X * ¥ ® *F ® %X Kk * %k *k * & *k * * * * & * * &

103

B. VOCABULARY

The single word VOCABULARY asks the processor
to list the currently defined words in its vocabulary. Most of the
words are described in Part One or are added synonyms for these
words. Others are described in this Part. The rest have not been
documented except internally in the system. A brief description of
any of these words can be obtained by use of the special word HELP
(described in the next subsection).

Changes in response to the word VOCABULARY can
be expected. Eventually it is planned that the combination of this
word and the word HELP will be the means by which users are
led to all of the available information in the system. One form
of the response given on the next page is typiéal of current

processors.

:_vocabulary

ABS
ACCURACY
ACOS
ACOT
ADDGRAPH
ADJOINT
AFAM
AMAT

AND
ANGLES
ARRAY
ARRAYS1
ARRAYS2
ARRAY 2D
ASIN
ASYMMAT
ATAN
AUTOCORE
AUTOPRIN
AUTOTAB
AVERAGE
AlD

A2D
BESSEL
BESSELK
BUGS
CGAMMA
CLEAR
CLEARDAT
COLARRAY
COLMAT
COLMAX
COLMIN
COLWIDTH
COMMANDS
COMPILE
CONJ
CONJUGAT
CONSTRAI
CONTINUE
CONVERT
cory

Cos

COSH

coT
CREATE
CREATEME
CUMPROD
CUMSUM
DATA
DEBUGGIN
DEC

DEF INEA1
DEF INEA2
DELETE
DERIV
DERIVATI
DET
DIAGELS
D IAGMAT
DMAT
DOCUMENT
DOMAIN
DONTLIST
DOUBLEFA
DUMP
ECHO
EDIT

ED I TMODE
EIGENSYS
EIGENVAL
EIGENVEC
ELEMENTA
ELLIPE
ELLIPK
END
ENDAUTOP
ENDLOOP
EONE

EQ

ERF

ERFC
ERRORS
EXECUTE
EXP

FIN

FOR

FRAC
FRACPART
FREE
GAMMA

GE
GEIGEN
GO

GOTO
GRAPH
GRAVHICS
GRID

GT

HELP
HENCEFOR
HIERARCH
HIGHWIDE
HIWIDE
HLABEL
HSCALE
HSIZE

IF

IMAG
IMAGPART
INOUT
INPUT
INPUTS
INSERT
INTEG
INTEGERS
INTEGRAL
INTEGRAT
INTERP
INTERPOL
INTPART
INTS
INT2
INTY
INVERSE
KEEP
KEPT
LABEL

LE

104

LENGTH
LIBINDEX
L IBNAMES
LIBRARIE
L IBRARYN
LINKLIB
L INKULES
LIST
LISTHEAD
LI STMEMB
LISTPROG
LCADDATA
LOC
LOCMAX
LOCMIN
LOCS

LOG
LOGGAMMA
LOGIC
LOWERTRI
=
MARGINS
MAT

MATH
MATRICES
MATRIX
MATRIXDE
MATRIXOP
MAX
MAXOFCOL
MAXOFROW
MELD
MFAM

MIN
MINOFCOL
MINOFROW
MISCELLA
MOVE
MYDOCS
MYHFELP
MYKEEP
MYKEPT
MYL INKS

MYPROCS
NAMES

NE
NEUMANN
NEWGRAPH
NEWPAGE
NEWS
NOCOLS
NOECHO
NOELS
NORATION
NOROOTS
NOROWS
NOT
NOZEROS
NUMBERS
OBJECT
CBJECTS
OMITCLAS
ONED IMFU
ONERROR
OR
ORDERED
ORDERER
OTHERS
ouTPUT
PAUSE
PLOTSYMB
PLOTTITL
PRINT
PRINTCLA
PROCLIB
PROD
PRODCOLS
PRODROWS
PRODUCTS
PROGRAM
PROGRAMM
PROGRAMS
PUNC'H
QUIT
RANDOM
RANKED

RANKER
RATIONAL
READ
REAL
REALPART
REALY
REALS
RECLASS
RESTRICT
RESUME
RETURN
ROOTS
ROWARRAY
ROWMAT
ROWMAX
ROWMIN
RUN
SELECT
SETGAUSS
SETINFIN
SETJACOB
SETLAGUE
SETLEGEN
SETLIE
SETNULL
SETPLOT
SIGN
SIGNIFIC
SIMEQ
SIN
SINGLEVA
S INH
SIZE
SMAT
SORT
SPACE
SPECIAL
SPHBES
SPHBESN
SQRT
STOP
STRUCTUR
SUM

SUMCOLS
SUMPROD
SUMROWS
SUMS
SUMSQ
SUMSQCOL
SUMSQROW
SYMBOLS
SYMMAT
TABULATE
TAN

TIME
TOTALINT
TOTINT
TRACE
TRANSFAM
TRANSP
TRANSPOS
TRIG
TUTORIAL
TWODIMFU
UMAT
UN I TMAT
UPPERTRI
USE
USEMEMBE
VARIABLE
VEC
VECTOR
VECTORDE
VECTORS
VERS IONS
VFAM
VLABEL
VOCABULA
VSCALE
VSIZE
WHERE
WHEREVER
WHOLE
WRITE
ZEROS

105

C. HELP

The vocabulary of SPEAKEASY is constantly being
augmented. While documentation such as this report can be used
to communicate new features, it is highly desirable to provide a
less formal and more rapidly altered means of describing specific
words in the language. In interactive usage, it is also extremely
important that both the vocabulary and the documentation for each
word be easily accessible.

The basic vocabulary of the processor is printed out by
the command VOCABULARY described previously. Each word in this
vocabulary and other words in the language are described in a concise
operational form and are available on demand by use of the key word

HELP. The input statement
HELP xxxx

requests that the processor print out a brief description of the word
xxxx. The documents available in this manner are not restricted to
those listed in the vocabulary but are actually a separate document
library that is appended to the various processors (see Part Four).
By using a standard sequence of SPEAKEASY statements, one can
oktain a catalog of this library. That is, the names of the docu-
ments available by use of the word HELP will be printed in response
to the input

CATALOG = LIBINDEX (HELP)

TABULATE (CATALOG)

The entire set of documents may be printed out by use

of the following SPEAKEASY program:

PROGRAM LISTHELP
CATALOG = LIBINDEX (HELP)
FOR I =1, NOELS (CATALOG)
SPACE(2)

106

HELP OBJECT (CATALOG(I))
ENDLOOP 1
END

EXECUTE LISTHELP

Although all HELP documents could be printed in this way

this would be a time consuming and expensive means of obtaining such a

listing. Part Four of this report contains a complete printout of the docu-

ments available at this time.

Information necessary to make use of the HELP processor

itself is available by the statement
HELP.

A few of the actual HELP documents are shown below.,

:_help matrix

MATRIX(N,M:) defines an N-by-M matrix.

If no additional arguments are present, the matrix has all
elements set to zero,

A shortened form is MAT,

MATRIX(N,M:1,J,...,K) defines an N-by-M matrix with preset elements.
The elements are set row by row by use of the values |,J,...,K or
the elements of 1,J,...,K if they are structured objects., |If
a complex element is encountered, then a complex matrix is
defined. If all the elements are not specified by the element
list, the unspecified elements are set to zero.

:_help smat

SMAT is a synonym for SYMMAT,.

SMAT(N:I1,J,...,K) defines a symmetric N-by-N matrix.,

The element list is used to fill the lower triangular part
(including the elements along the diagonal) by rows.

The portion above the diagonal is then filled by

making the matrix symmetric. |If any argument in the list
defining the elements is structured, the elements of that
structured object are used.

:_help average

AVERAGE(X) returns the average value of the elements of X.
X is a structured object.

107

D. NAMES

The single word NAMES requests the processor to
print out the names of all of the currently defined SPEAKEASY
objects. This is extremely useful in the interactive mode since it
provides the user with the means of recollecting the names of
variables that he has previously defined. Combined with the implied
print statement, the user can quickly examine any currently defined
object.

A section of programming in which objects are defined
and freed is shown below. Between each such command the processor

was requested to display the defined names.

INPUT...Z=5; X=GRID(0,10,2)
INPUT.. . W=30.4
INPUT...Y=Z*V
INPUT...NAMES
CURRENTLY DEFINED MNAMES
X ;& oK% 2+ W
INPUT...WORDS=LIBINDPEX(HELP)
INPUT...N=NOELS(WORDS)

* % & * & *k k Kk * * K * * * * & * *k * * * * * * * * * &k * * ® & ® & @®

* PROCEDURE LISTHELP

* TABULATE WORDS

* FOR I=1,N

* USE MEMBER OBJECT(WORDS(!)) OF LIRRARY HELP TO 1

* ENDLOOP 1|

* END

* % Kk * % * Kk Kk % % & * & Kk & * & % *k * * * * ® * ¥ * * & * * & & &® @
|

NPUT...MNAMES
CURRENTLY DEFINED NAMES
Y, Z, X, W, WORDS , N , LISTHELP (A PROCEDURE)
INPUT...FREE LISTHELP
INPUT...MNAMES
CURRENTLY DEFINED NAMES
Y.,Z , X, W, WORDS , N
INPUT...FREE WORDS, N
INPUT...NAMES
CURRENTLY DEFINED MNAMES
Yoiz. L ¢ K15 W
INPUT...CLEAR
INPUT...NAMES
CURRENTLY DEFINED MNAMES

108

E. HENCEFORTH

Although every effort has been made to choose the
names of SPEAKEASY functions with care, it is often desirable to
provide alternatives. Previously this was done by adding synonyms
(for example MAT is equivalent to MATRIX, VEC is equivalent to
VECTOR, etc.). A more flexible facility has now been provided to

enable users to define their own synonyms at execution time. The

statement

HENCEFQGRTH X IS Y

means that:
Anytime hereafter, if the word X is encountered treat
that word as if it were the word Y (the word Y is still
usable).
The statement
HENCEFQRTH X IS X
stops the redefinition of X for future use.
There are only a very few words in SPEAKEASY that
may not be given synonyms by this method. They are the words

EXECUTE, PROGRAM, PROCEDURE, DATA,
END, FOR, ENDLOOP, QUIT, LOADDATA,
GOTO

Note that HENCEFORTH itself can be given a synonym bf this
method. In addition, the word IS in the expression is an arbitrary
word chosen to make an easily remembered sentence, any word

can be used. For example, the sequence

HENCEFORTH TREAT IS HENCEFORTH
TREAT S AS SIN

TREAT C AS COS

TREAT LET AS HENCEFORTH

LET M BE MATRIX

109

is acceptable. The statement

HENCEFORTH X IS 'SIN(X)'

is usable with the restriction that the literal quantity can have at

most eight letters. Any of the normal SPEAKEASY character set except

an apostrophe is allowed. This makes it possible to obtain output that

is particularly neat.

HENCEFORTH is a convenient way of compacting a
user's program by eliminating repetitious typing of long words. It
is particularly important when combined with the operation OBJECT
described later in this document.

The use of HENCEFORTH is illustrated below.

INPUT...HENCEFORTH M IS MATRIX
INPUT...Y=M(2,2:1,5,8 L)
INPUT...PRINT Y

Y (A 2 BY 2 MATRIX)

=5

8 &
INPUT...HENCEFORTH TREAT IS HENCEFORTH
INPUT...TREAT P AS PRINT
INPUT...TREAT LET AS TREAT
INPUT...LET V BE VECTOR
INPUT...W=V(L4:1,2,3,4)
INPUT...P W

W (A VECTOR WITH 4 COMPONENTS)

1 2 3 &%

110
F. OBJECT

It is often desirable to be able to generate the
names of objects. This is particularly true when defining large
numbers of objects, each of which is dependent on particular
parameters of a calculation. A general operation for generating
names has made available,

It should be remembered that names in SPEAKEASY
can have at most 8 characters. This restriction holds for na').mes that
are gex‘xerat‘ed by the mechanism described here, Other restrictions
such as the use of special characters do not exist since the names
are generated internally in the processor.

The expression
OBJECT(I, J,K, - - *)

may occur anywhere in a SPEAKEASY statement. It means that the
arguments I, J, K, etc. are to be used to generate a name that is to be
subst'ituted for this expression.

Each of the arguments can be either a literal quantity
or a non-negative number., For literals, th;e expression itself is
used. For numbers, the integer part of the number is used as a literal.
The various arguments are then joined together to make up the name.
Thus

OBJECT ('A', 3, 'B') becomes A3B

OBJECT ('A', 3, 'X', 4) is A3X4
If X ='XX"; Y="Y";1I =4 then

OBJECT (X,I,3 Y) becomes XX43Y

The use of literal quantities in expressions means that strange looking

names can be generated. Thus if X = '¥4' then
OBJECT (X, X) becomes *4%4

The power provided by the use of the word OBJECT is greatly

111

enhanced when combined with the word HENCEFORTH. The

expression

HENCEFORTH X IS OBJECT ('X',1I)

means that the variables X1, X2, X3, etc., are specified when the

current value of the variable I is 1, 2, 3, etc.

The following series

of statements illustrates one of the uses of the feature to obtain a

rather elegant printout which would not otherwise be possible.

INPUT...PI=2 ACOS(0);X=GRID(0,2 PI, 0)
INPUT...N=3;HENCEFORTH Y IS OBJECT('SIN(',N,
INPUT...Y=SIN(N X)

INPUT...TABULATE(X,Y)

X

0
.07854
.15708
«23562
.31416
«3927
47124
.54978
.62832
.70686
L7854
.86394
.9L248
.021
.0996
.1781
.2566
«2392
L4137
.L923
.5708
L6493
.7279
.8064
.883
<9635
.0L2

Y e el ol el el

SIN(3X)

0
«23345
45399
64945
.80902
.92388
.98769
.99692
.95106
.85264
70711
v D425
.30902
.078459
-.15643
-.358268
-, 58718
.760L41
.89101
.97237
pd
.97237
.86101
.76041

ERT77Q
s JOIT I

.58268
-.15643

X

2.1206
2.1991
2.2777
2.3562
2.4347
2.29133
2.5918
2.6704
2.7489
2.8274
2.906

2.9845
3.0631
3.1416
3.2201
3.2987
3.3112
3.4558
3.5343
3.6128
3.691k4
3.7699
3.8485
3.927

4.0055
4L.0841
4L.1626

PI/b

SIN(3X)

.078L59
.30902
5225
.70711
.85264
.95106
.99692
.98769
.92388
.80902
64945
45399
.23345
0
-.233u45
-.45399
-.64945
-.80902
-.92388
-.98769
-.99692
-,95106
-.85264
-.70711
-, 5225
-.30902
-.078459

X

4.2412
4.3197
L.3982
L.L768
4.5553
4L.6338
L.7124
4.7909
L.8695
L.948

5.0265
5.1051
5.1836
52622
5.3407
5.4192
5.4978
5.5763
5.6549
5.7334
5.8119
5.8905
5.969

6.0476
6.1261
6.2046
6.2832

SIN(3X)

15643
.38268
.58779
.76041
.89101
.97237
1
.97237
.89101
.76041

.58779
.38268
15643

-.078459

-.30902

-.5225

-.70711

-.8526k

-.95106

-.99692

-.98769

-.92388

-.80902

-.6L9L5

-.45399

-.23345
0

112

G. MELD

Some SPEAKEASY programs include a sequence such
as:

FOR I =1, NOELS(X)

FOR J =1, NOELS(Y)

F(I, J) = some function of X(I) and Y(J)

ENDLOOP J

ENDLOOP 1

Such looping, though logically correct, defeats many of the optimizing
features of the language. Users have been warned of the consequence
of doing element by element operations that do not make use of the
built-in algebra for structured objects. For a pair of nested loops as
illustrated, the array algebra of the language is usually sufficient to
'enable one to eliminate the loops easily.

The problem of multidimensional arrays with more than
two independent variables is not easily dealt with. For this purpose,
a new concept and a new word has been added to the SPEAKEASY
language. Both the word and the concept are due to Richard Kimmel.
The word MELD provides a major advance in the capabilities of the
language.

Although MELD is a straightforward operator, it differs
from others that have previously been met in SPEAKEASY since it

redefines the arguments occurring in the statement. Thus
MELD(I, J, K)

in fact alters the structure of I, J, and K.

The arguments in the MELD must be 1-dimensional
objects. In essence, the MELD operation is a simple and direct
means of providing a revised set of objects in which every element
of each of the objects in the argument list is associated with every

element of every other object in that list. In fact, as will be seen,

113

this is a simple way of describing a multidimensional space. A few
examples are sufficient to show how the operator acts. (It is much
easier to show the operation than to describe it in words.) If I is

a 2-component | -dimensional array and J is a 3-component array,

i, if

then MELD (I, J) alters both I and J and produces two 6 -component

arrays

NIV = - -
-
NN o, o

Similarly if I, J, and K are

(0 o) x=0):

then MELD (I, J, K) redefines them all to be the 12-component arrays

_— e e e = O OO0 O OO0
~
1]

O 00O 0P W O O

\

WO VN = = B R NN - e
-

Note that after melding, as in the last example, any function of I,

J, and K can be written in a straightforward manner. Thus

114
F=3%+2%*(I+J) - K*I* SIN (PI * K)

is allowed. The function is then éffectively evaluated in the 3-dimensional
space spanned by the three 6rigina1 arrays. A table of the values of

I, ik ‘K,‘ and the res ultant co‘uld bé obtaiﬁed bSr

TABULATE (I, J, K, F)

Up to ten arguments are permitted in a single MELD call. Care should
be taken not to produce unreasonably large arrays by this method.
For example, if ten arrays of only 3 components each are melded,
then each of the resultant arrays would have 310 elements. This
would, in fact, far exceed the capacity of any available SPEAKEASY
processor.

Melding combined with the use of structured indices
leads to other capabilities that are often needed. If one melds the
indices of an array rather than its elements, then it is possible to

carry out later operations on this and correlated arrays.

115

The use of the MELD operation is shown below. The
evaluation of the function W as a function of the three independent variables

I, J and K is carried out by means of melding.

INPUT...I=ARRAY(5:1 2 3 4,5);J=ARRAY(3:7,8,9);K=ARRAY(2:0,6)
INPUT...TABULATE(I ,J,K)
S R

7.0
2 8 6
9

INPUT...MELD(I,J,K)
INPUT...TABULATE(!,J,K)

I J K N
) IR 2. 4.6
T > 9 0
i BN 3 9 ¢
1 8 6 4 7 0
1 9 90 L 7 6
1 9 6 L 8 0
2 7 0 L 8 6 :
2 71 6 4 9 0
e 8 4 L 9 6
2 8.8 ¥ 7 8
2 9 0 T
2 948 5 8 0
3 &8 S & B
3 ¥ b 5 9 0
3 8 0 5 9 6

INPUT.. W=3#1+L4/J-K
INPUT...TABULATE(I,J,K,W)

I J K W 1 J K W

1 7 0 3.5714 3 .. 8- 6 35

1 7 6 -2.4286 3 9 0 9.LuLuk
1 &0 3.5 3 9 6 3.LLuL
1..8. .6 22:5 4 7 0 12,571
1 9 0 3.4bLuy L 7 6 6.5714
1 8 6 =2,55586 L 8 0 12.5

2 7 0 6.5714 L 8 6 6.5

2 7 6 57143 b 9 0 12.44L
2 8 0 6.5 L 9 6 6.44LL
2 8 6 .5 5 T 8 15,971
2 9 0 6.4L4L 5 7 6 9.571%
2 9 6 .hLhuuy 5 8§ 0 155

3 7 0 9.5714 5 8 6 9.5

3 7 6 3.5714 5 9 0 15.b4Ly
3 8 ¢ 9.5 5 9 6 9.4Luy

116

H. CONSTRAIN/SELECT

As has been mehtioned, MELD produces correlated
elements in several objects. It is often then necessary to make
selections based on certain constraints between the elements of
these objects. An operation is provided to carry out such selections
for all of the objects and other correlated objects simultaneously.

For example, the command

CONSTRAIN (A, B,C,D: (A + B,GT.C) . AND. B, NE. C)

means that the logical expression to the right of the colon is to be
constructed. The objects to the left of the colon are truncated to
leave only elements corresponding to true values in the logical
expression. For example, if X, Y, and Z describe positions in 3-

space, the statement
CONSTRAIN (X, Y, Z:X*%2+Y*%2+Z%%2, LT, R¥%2)

would eliminate any point described by Xi’ Yi’ and Zi lying outside
the sphere of radius R. Note that all arguments must be 1-
dimensional or scalar, and all 1-dimensional objects must have the
same length.

SELECT is similar to CONSTRAIN. The effect of the
operator is to truncate (or expand) several correlated 1-dimensional
objects by use of a single structured index as the control array.

Thus if

~N U W o

and A, B, and C are all 1-dimensional arrays, each with at least

seven components, then

SELECT (A, B, C : I)

117 *

redefines A, B, C to be 4-component objects with the 1st, 3rd, 5th,
and 7th elements of the original objects. Note that in this operation
A, B, and C need not be the same length.

Samples of the operations CONSTRAIN and SELECT

are shown below.

INPUT...!=INTEGERS(3,10)
INPUT...J=INTEGERS(20,13)
INPUT...L= 1 3 4
INPUT...TABULATE | J

WoO~NOWV &5 WN -
[
~

10 13
INPUT...SELECT(I,J:L)
INPUT...TABULATE I J

I J

3 20
5 18
6 17

INPUT...X=GRID(O0,1,.1);Y=X;MELD(Y,X)
INPUT...CONSTRAIN(X Y:X##2+22Y#x2 LT ,.5)
INPUT...TABULATE X Y

X ¥ X 4 4 S |
0 0 S | P SR
1 0 - | 0 R
-2 0 R | 4 .3
o3 .0 0 o2 oI 43
.4 0 o 0 ol
B9 k. el S S—
6 B 59 Oee 2 b
.7 0 A4 .2 3 b
0 .1 5 2 -
sk . ad 6 .2 0 <5
iy Y 0 o3

o3 al od 9

118 ;.
I. ECHO/NOECHO

One feature of SPEAKEASY that has proved desirable
in batch operation is that.of printing the actual input information
along with the results. This ""echoing'' of the input means that the
user can clearly see what it was that he asked and can see the
response immediately below it.

In other applications, particularly in interactive usage,
repeating the input information would be redundant s'mée it would
follow immediately below the typed line. The ability to control the ;
echoing therefore has been added to the language. If the statement
NOECHO is encountered during execution, the echoing of input data is
suppressed. ECHO reinstates it.

One application of this feature in normal batch jobs is
to produce more publishable results. Extraneous commands to the
processor can be done in the NOECHO mode without their operations

appearing on the output.

J. LISTPROG/DONTLIST

The listing of SPEAKEASY programs can be controlled
in much the same way as that of the ECHO facility in the MANUAL
MODE. DONTLIST indicatesthat such programs should not be printed
in the output. LISTPROG means that ‘they should. If the options
DONTLIST and NOECHO are selected, only the actual results produced
during execution will be printed—as in the operation of conventional
programs such as FORTRAN.

In the interactive Operatmn DONTLIST and NOECHO
were selected as the preferred mode of operation. Batch processing,

on the other hand, normally uses LISTPROG and ECHO.

119
K. MARGINS

This is a facility that enables a user to control the
width and position of his printed output. This is of particular
importance when devices other thanline printers are used for output.
For instance a teletype has only 72 characters on a line and would
not supply the output in the proper format for a printer.

The user specifies the left-hand and right-hand limits

of the printout by executing a statement of the form
MARGINS (n, m) where n < m

which means that output should be restricted to columns starting at

n and ending with m. Alternatively

MARGINS (m) 1is equivalent to MARGINS (1, m).

All printed output normally has a so-called carriage-control
character in its first position. This is not printed but is used to
control vertical spacing and to position output at the top of a new page.

In some applications it is necessary to suppress such control functions.

The statement

MARGINS (0, m) is equivalentto MARGINS (i, m)

except that the carriage-control characters are eliminated.

The SPEAKEASY processor will readjust all of its
printout to conform to the specified margins.

The next page shows how the word MARGINS can be

used to control the format of output.

120

INPUT...A=AMAT(3:1,2,3)
INPUT...PRINT A

A (A 3 BY 3 MATRIX)
0e] =3
20 =3
d 5.0

INPUT...S=SMAT(3:1,2,3,4,5,6)
INPUT...MARGINS(20,40)
INPUT...PRINT §

S (A 3 BY 3 MATRIX)
1 2 4
AT S
e S

INPUT...MARGINS(30,120)
INPUT...AS=A*S

~INPUT...PRINT ('THE PRODUCT IS 'AS)

THE PRODUCT IS

AS (A 3 BY 3 MATRIX)
=30 =13 =17
e R B

8 45 .23

121

III. LIBRARY FACILITIES

The SPEAKEASY -3 processors were developed with
the intent of making extensive use of libraries that could be attached
to the processors at execution time. Once the means of accessing
such libraries was clearly defined, the processors and the libraries
could be developed independently rather than in concert.

The consequences of the separation cannot be over-
emphasized. The processor developments have by and large been
in the direction of providing very basic facilities; their objective
is always a smaller executable module with as few specialized
features as possible. This is in marked contrast to the developments
in the libraries, in which as many new features as possible are sought.
One wants the greatest possible capabilities in general, but for each
specific application one wants to avoid the difficulties associated
with such generality. Libraries answer both needs admirably.

Detached libraries have many additional direct advantages.
Users can freely put information into private libraries without fear of
altering the operations of the processors. Similarly, new words
for the language can be tested and validated by use of standard
processors without the usual problems associated with new releases,
The transfer of information from ‘priva.te to communal libraries is
not a major disturbance to the system. The growth of the over-all
language since the introduction of attachable libraries has been
dramatic. (Most of the words described in this Part are in the
libraries of the system-—some were in fact added to fill gaps in this
writeup itself.)

The growth capabilities of the SPEAKEASY system
now rests in the libraries attached to the processors. To a large
extent, the processor can now be viewed as an interface between

the various libraries as well as between the users and the libraries.

122

This section describes the various libraries
in the system. To some extent these descriptions tend to
overemphasize their distinctions. Information (i.e., computational
techniques or data) can be entered into the system in a variety of
ways. The choice of a particular library or combination of libraries
for the storing of information is somewhat arbitrary and may reflect
personal whims. The system is sufficiently broad-based to accept
several alternatives. There should therefore be no need to be
concerned about following rigid rules in selecting the mode of operation.

Actually there is a growing interconnection between the
libraries that involve the SPEAKEASY processor only as a
communication module. The exciting aspects of the system at this
stage in the growth is in this interconnectivity. Each new feature
added to the system enhances the over-all capabilities of the system,
not only because of direct contribution but even more by the ways in
which it can be interconnected with other facilities already in the
system. The potential power of the SPEAKEASY system rests in this
limitless growth capability.

Each user community exposed to SPEAKEASY can
develop its own library. It can at the same time draw on the other
libraries easily. The major problem being faced is not the :
construction nor the operations of the libraries themselves but rather
in the communication between users and between user communities.

This report itself represents a crude method of
communicating facilities, some of which have been available within
the system for a long time. Other major facilities will no doubt
'become available before this report is actually distributed. It is for
this reason that the current effort in development is directed towards
techniques for information retrieval within the system, with emphasis

on information available about the system itself. Only a few of the

123

tools are available at present. They are in the process of being
expanded to provide users with the necessary information.

The types of libraries can be divided into two sets,
those that could in principle be read directly by people and those that
represent stored information that is usable only by the computer,

In the former class one can put the various forms of documentation
that are associated with this system or that are stored within the
system for other reasons. In addition, stored decks of SPEAKEASY
statements represent information that is readable by people although
it is also intended to be used directly by the computer.

The latter type of library (i.e., computer-readable
information) for the most part represents stored compiled computer
programs. These are specially designed routines that are compiled
independently from the processors and are placed in accessible
libraries. These libraries, in which the specialized tools intended
to carry out major functions are stored, are the so-called LINKULE
libraries,

LINKULES represent the real operational capability
of the over-all SPEAKEASY system. They usually are efficient
routines for carrying out specific mathematical operations. They
are of use, however, only if there are documents that can explain
how the operation is used and what it does. For each member in the
communal libraries of the system, there must exist documentation.
Such documentation is in one of the other libraries of the system and
is thus readily available to users of the system.

It is obviously necessary to provide some method for
finding the contents of specific libraries. The ability to ask the
system for such information is essential so that exploratory searches
can be made. Processors to enable the user to carry out such searches
have been built into the LINKULE library. These have already been

alluded to in the discussion of HELP,

124

Finally it is desirable that a user needing specific
information should be able to carry out systematic searches through
all the libraries of the system. This can in fact be done by
connecting the facilities of the system described above together by
a SPEAKEASY program such as the one described in the HELP
section. Thus one sees that the documentation libraries, the
LINKULE libraries, and the libraries of stored SPEAKEASY statements
can be used together even at this very simple level.

Probably a single LINKULE could be written to carry
out all of these functions. However, it would not have the flexibility
inherent in the highly modular interconnected approach outlined above.

There are still problems of communication. A user of
the language processor still can be unaware of how to get to a specific
piece of information, even though that information exists within the
system. To attempt to inventory all of the information available in
the system, even as it exists today, would be a formidable task. It
would surely swamp the user with undesired information. ILest there be
a misunderstanding, it is not felt that this is an unsolvable problem.
It is just that simple techniques of indexing and of report generation
are not satisfactor‘y solutions, and more powerful facilities will have
to be added. A major effort in this direction has now been started.

The sections that follow describe each of the types of
libraries currently considered part of the system. Others will be
added as the need arises. KEach section is a rather general over-all
description of the purpose of the library. More specific information
about the individual members of the libraries are to be found within
the system itself. A set of operators for this purpose is described
at the end of this section.

All libraries in the system are, in IBM terminology,
partitioned data sets (PDS). Each such data set is a collection of

members referred to by distinct member names. Although the data

125

sets themselves are named, in this application we are interested
only in the name used to refer to the data set in the SPEAKEASY
run. This name by which we refer to the library is called the
DDNAME in standard IBM Job-Control Language* and the FILE in
TSO usage. y

The SPEAKEASY processor assumes that certain
libraries are attached and checks to see if other special libraries
are available for this run. The specific library names and their

contents are as follows.

1) Libraries that are assumed to be attached are:

LINKULES libraries of operations (compiled FORTRAN
routines)

PROCLIB library of stored SPEAKEASY statements

HELP library of brief HELP documents

DOCUMENT library of larger documents

2) Optionally attached libraries:

MYLINKS private versions of LINKULES

MYPROCS private library of stored SPEAKEASY statements
MYHELP private HELP words '
MYDOCS ‘ private documents

Any additional libraries can be attached to the system

to supplement those listed above. However, it is necessary to

*For standard batch jobs, the cards which have the form
//name DD + -+ -«
are called DD cards. The first field (i.e., the word name above) is the
DDNAME referrred to and is called the library name in this report.
TIn TSO runs, the statement
ALLOCATE FILE (name) DA(* *)

the equivalent way to define the library name.

126

explicitly communicate the names of such libraries to the processor.
For example, adding additional LINKULES can be done by an explicit

statement of the form
LINKLIB = 'XXX!

where XXX is an additional library of LINKULES. Similarly,
document libraries are addressed by indicating the library name in

the reference statement.

A. The LINKULE Libraries

These libraries contain packages of compiled FORTRAN
subroutines. Each of the members of such a library is available to
the processors. If in the execution of any SPEAKEASY statement
a word is encountered that hasnot been previously defined, then the
system library is searched for a member with that name. If one is
found, then that routine is brought into the computer and control is
transferred to it. The calling sequence for these subroutines is
designed to enable complete information transfer between processor
and the individual LINKULES. The form of this calling sequence and
the method of communication to the processor is described in
Part Three.

The user library MYLINKS is of the same form as the
system library but represents personal routines. If MYLINKS is an
attached library, then it will be searched for a given member prior

to the search of the LINKULES library.

B. The PROCEDURE Libraries

Instead of distributing listings and copies of commonly

used SPEAKEASY decks, a library named PROCLIB has been created

127

for them. This library is always attached to the SPEAKEASY
processors. The procedures in this library are directly available
as input to the processor and can be used in any program by inserting

a card of the form
USE MEMBER NAME

where NAME is the name of the particular procedure desired.

A user may append his own library of such statements
to the system by assigning it the name MYPROCS. His library is then
available for use within the run and is considered as part of PROCLIB
for that run.

Since members of the procedure library are to be
considered part of the generally available resources in SPEAKEASY,
a description of the use of each procedure is also included in the

HELP library.

C. The HELP Library

The members of the HELP library (see Part Four) are
concise documents describing words and features available to the
SPEAKEASY processor. These documents are oriented towards the
interactive user who is interested only in making use of the facility and
not in a detailed description of its internal workings. The intent is to
enable the user to quickly find out about a feature so that he may use it
in the calculation currently before him.

It is intended that a HELP document will exist for
every word used in the processor and for every member attached to
it in a system library.

If the user attaches his own library of such brief
documents, he should give it the name MYHELP. In this case, all

of his documents are also available during that run.

128

Any specific HELP document can be obtained by an

input statement
HELP XXX

where XXX is the name of the desired document.

D. The DOCUMENT Library

In many cases the brief HELP documents described
above are too concise to explain details about particular words. A
larger document library is available for more lengthy descriptions.

A member of this library is obtained by use of the statement
DOCUMENT XXX

where XXX is the name of the desired document. The user may
attach his own library of documents. It should be given the library
name MYDOCS. The library name for the system documents is

DOCUMENT.

E. LIBINDEX

The statement
LIBINDEX (name)

defines a literal 1-dimensional array with the members of the named
library as components of the array. This array can be used in many

ways, the simplest one being to tabulate it. The statements

LINKS = LIBINDE X (LINKULES)
TABULATE (LINKS)

will produce a table containing the names of all the LINKULES in the

system library., Similarly

129

HELPNMS = LIBINDEX (HELP)
TABULATE (HELPNMS)

will list the names of all of the available HELP documents.
¥, ST

The statement available to list members of a library
has a generalized keyword format. Each keyword encountered is a
signal that the next information is to be associated with the keyed

option. The keywords, their default values, and their functions are

KEYWORD DEFAULT Meaning

MEMBER INDEX Select member to be listed

LIBRARY PROCLIB Select library to search
for member

FROM | Start listing from line #

TO 90000 End listing at line #

Any words that are not keywords are ignored. Thus

LIST MEMBER MOON FROM 3 TO 7

will produce a printed copy of lines 3 through 7 of member MOON of
PROCLIB.

G. UBE

Since decks of SPEAKEASY statements can-be stored
in libraries, a method must be provided to make these decks
availahle to the processor, Execution of the statement

USE MEMBER memname OF LIBRARY libname

causes the deck of the designated name from the library to be used

130

as input to the processor. If the library reference is omitted,
PROCLIB is assumed. If a library named MYPROCS is attached,
it will be searched before looking in PROCLIB for this particular
member. When the rhember has been completely read in, the input
will be taken from the normal input device. .
Such items as SPEAKEASY programs, series of
HENCEFORTH statements, and notes to be printed to the user can
all be in such libraries., The use of this facility in private libraries
is to supply commonly used constants and SPEAKEASY programs to

the processor in a simple way.
H. CREATE

It is possible to create new members of documentation
and procedure libraries while running in SPEAKEASY. This is done

by the simple command
CREATE MEMBER memname OF LIBRARY libname

This command indicates that the lines that folléw are to be used to
define a new library member. The processor itself is passive in this
operation. The creation of the new member is terminated by a sing.le
word

ENDCREATE

in the input data. All information between those two statements is

saved as the newly created member,
IV. LOGICAL AND RELATIONAL OPERATOR NOTATION

In the original specifications for SPEAKEASY, a

special set of restricted keywords were used as logical and relational

131

operators. This has on occasion caused difficulties because thes‘e
words cannot be used as names of objects. For this reason, the
language specifications have been changed. The introduction of
SPEAKEASY 3E (October 1972) began a transition period to a
logical operator notation similar to the FORTRAN conventions.
During the transition period, both the old and new notations will be
accepted. _

In order to benefit from the new conventions, however,
it is necessary to provide users with a means of eliminating the older
restricted words. During the period of transition, therefore, a

SPEAKEASY statement of the form
. NEW.

will deactivate the restricted words for logical operators. The
statement

. OLD.

will reactivate them if it is necessary. The default condition will

be . OLD. —at least during the early part of the transition period.

The transition period will be a long one—users writing new programs
should make use of the new notation and should gradually replace
statements using the older words. The logical and relational

operators in SPEAKEASY are listed in the following table.

-

132

Older form Newer form - Meaning
(being phased out) (now acceptable)
LT o #y * Less than
LE . LE, Less than or equal to
NE . NE. Not equal to
EQ . EQ. Equal to
GE . GE, Greater than or equal to
GT ; « G, Greater than ¢
AND .AND., And
OR « ORe Or
NOT .NOT, Not

133
V. INTERACTIVE SPEAKEASY

An interactive version has been available since the
inception of SPEAKEASY. The 2250 version of the language has
been used for a variety of calculations. With the introduction of TSO,
an interactive version of SPEAKEASY is now becoming available for
use by a large community. TSO SPEAKEASY differs from conventional
SPEAKEASY only in the interactive capabilities. Users in the
MANUAL MODE of operation are able to direct the processor step
by step through a calculation. They may examine the information,
make corrections to it, and thus proceed directly through the steps
to the completed results. In this mode of operation, the system
can be viewed as a super desk calculator. Operations on whole
arrays of elements can be carried out with a single command. All
of the large sets of capabilities of SPEAKEASY are literally at the
users' fingertips.

The program mode of operation is similar to the
normal batch operation except that the results are instantaneously
available. Small SPEAKEASY procedures that will be repeated
several times can be programmed during the session at the
terminal and used immediately. .

Errors occurring in the manual mode are repaired
by merely retyping the correct input. In the program mode, it is
necessary to edit previously entered information. The EDIT mode

is available for this purpose.

A. The EDIT Mode

In batch processing, there is no need to edit the
statements of a SPEAKEASY program since they can be altered

only after the job has been completed. In interactive usage, on the

134

other hand, such editing is of great importance. Facilities for this
purpose are provided in SPEAKEASY. All processors include these
features, but they are not normally used except in an interactive
environment.

The EDIT mode is entered automatically when the
wqrd PROGRAM, PROCEDURE, or DATA is encountered in the
input stream. In the EDIT mode, statements are assigned
successive integer reference numbers starting with the number 1,
The program mode is left if the single word END is encountered.

At this time, the program is compacted and the stategiaents are
individually examined for syntax errors. The storedmprogram is
then defined as a single object whose name is the name of the
program,

_ While the processor is in the EDIT mode, certain
control functions are activated. All such functions are selected by

a % in the first field in the input card. The functions are

%LIST - List the entire edit file
%LIST N List the statement with line number N
%LIST N, M List statements with line numbers

between N and M

%N Statement Assign this statement the number N
%INSERT N L, Insert the statem_énts that follow
e at N, N+, **°

%NINSERT N(i) Insert the statem;nts that follow
NP NS e

% Stop the insert

%DELETE N Delete statement number N

f/oDELETE N, M » Delete statements N through M

%MOVE N Move statement N to the la.s‘t‘: position

%MOVE N, M : Move statement N through M to the last

positions

135

%MOVE N, M, K Move statements N through M to
K K+l K2 ' s

%MOVE N, M, K(i) Move statements N through M to
K, K+i, K+ 2i,

%COPY N Copy statement N into the last
position

%COPY N, M Copy statements N through M into

the last positions

%COPY N, M, K Copy statements N through M into
K, K+1, K+ 2,

%COPY N, M, K(i) Copy statements N through M into
K, K+i, K+2i,+ + «

Although integer values are automatically assigned to
statement numbers, these numbers can have smaller incremental
values. During normal editing, numbers with increments as small
as 0.01 are allowed. Thus a statement of the form % COPY 5, 10,
18.9 (. 01) is acceptable.

If the process of editing generates a statement number
that is identical to a previous one, then the old one is replaced. Care
should be taken to protect previous information when performing
multiple insertions.

For interactive processing, a second copy of the program
is maintained. This copy contains statements in their original form
and with the associated statement numbers. In such cases, the
processor can be returned to the EDIT mode and a previously defined

program can be activated by the statement
EDIT XXXX

where xxxx is the name of the program to be edited. This program

can then be corrected by replacing, deleting, or inserting statements.

136

After it is satisfactorily corrected, the single word COMPILE will
return SPEAKEASY to the manual mode. The word RUN is equivalent
to the word COMPILE followed by the EXECUTE command.

In the interactive operation of SPEAKEASY, the user
is informed of changes in the mode of operation as they occur. Once
again, this information is suppressed for normal batch operations.

In contrast, the program listing is normally printed in batch operation
and is available only on command in interactive operation.

The following sample of the operation of the EDIT mode

is a run carried out with the interactive version of SPEAKEASY

6pe rating under TSO.

137

:_program fit
EDIT MODE
i_a=array(noels(x),nfit:) ; Ii=integers(l,nfit)
s_a=mfam((x+a)**(i-1)) ; yavfam(y)
s_afit=1/(transpose(a)+*a)*transpose(a)+y
:_print(’ the best fit iIs ',afit)
:_end
MANUAL MODE
$ioxmi] 2% K
_ys3exendeluxe]
:_nfit=3
:_execute fit
EXECUTION STARTED
THE BEST FIT IS
AFIT (A VECTOR WITH 3 COMPONENTS)

1 4 3
_edit
0.K.=-EDIT MODE
%list
21 PROGRAM FIT
%2 A=ARRAY (NOELS(X) ,NFIT:) ; I=INTEGERS(1,NFIT)
%3 A=MFAM((X+A)#»x(1=-1)) ; Y=VFAM(Y)
%4 AFIT=1/(TRANSPOSE(A)*A) *TRANSPOSE(A)*Y
%5 PRINT(' THE BEST FIT IS ',AFIT)
%6 END
:_%5.5 yfit=arafit ;tabulate x y yfit
:_%run

EXECUTION STARTED
THE BEST FIT IS
AFIT (A VECTOR WITH 3 COMPONENTS)
T S
' S | YFIT
1 8 8
2 22 21
3 40 &0
L 65 65
. x=1.1 2.03 3.34 L4.43 5.16
_y=2.78 4.4 10.7 19.4 27.1
:_execute
EXECUTION STARTED
THE BEST FIT IS
AFIT (A VECTOR WITH 3 COMPONENTS)
3.8691 -2.4795 1.3526
X Y YFIT
Lad 2.78 2.7782
2.03 4.4 b.4095
3.34 10.7 10.676
b.u3 19.4 19.429
$.16~ 27.1 27.087

138

B. INPUT/PAUSE/STOP

In interactive usage of the program mode of SPEAKEASY,
it is often desirable to interrupt the computation at specific places
but to retain the capability of resuming at that point. Three
statements are available in the program mode for this purpose. All
are identical in operation; the choice between them is purely
subjective. If the first word on a SPEAKEASY statement encountered
in the execution mode is INPUT, PAUSE, or STOP, then the entire
statement is printed out and the execution of the program is interrupted.
'The system is put into a mode referred to as the HOLDING mode.

This mode is in fact the MANUAL mode with the added
capability of resuming the execution of the SPEAKEASY program at a
later time. All of the facilities of the manual mode are available.
New objects can be defined, old results can be examined, etc.
Whenever the objectives of the interrupt have been met, then the
execution can be resumed by entering a statement with one of the words
RESUME, CONTINUE, or GO. If one desires to terminate the
HOLDING mode, the statement MANUAL places the system in the true

manual mode. In operation a statement of the form
INPUT A, B AND C PLEASE

encountered during execution would print out
INPUT A, B AND C PLEASE

and the user might then type in
A=4,B=17C=2T7 48*W; RESUME

Note that the operations in the HOLDING mode are completely general
and need not be restricted to the implied requests. The only
restriction is that the EXECUTION mode itself may not be used. If

it is used, then one loses the ability to resume from this point at

some later time.

139
VI. VERSIONS

SPEAKEASY is a general processing language. The
modes of operation, even at Argonne, are rather diverse. Card-
input, remote-job-entry, and remote-job-output facilities all imply
slightly different optimal forms of operation. In contrast, inthe
truly interactive mode (e.g., on the IBM-2250 console or the newly
available TSO version) the user may need a quite different form.
Instead of attempting to construct specialized processors for each
application, the approach taken has always been to include as many
diverse capabilities in the basic processor as possible. Each use
can then select the available ones that are most clearly desirable in
the application. Specialized input and output requirements are met
by isolating them in two or three replaceable modules. These can
easily be adapted to special devices such as the 2250.

Several different versions of the SPEAKEASY processor
are now available. The computational logic is identical in various
versions. They differ primarily in their space requirements and in
their efficiency of operation. It is expected that some of these
versions will be combined in the near future. The following versions

are available.
A. STANDARD
This is the standard production version of the language

for batch processing. It is a non-overlayed version that occupies

%
260K of core. This version is the fastest running version available

The size given is a nominal one. It was selected on the

assumption that the size of the LINKULES does not exceed 10 K.

140

but does require the largest amount of computer core. The defaualt

settings can be viewed as

SIZE = 40, MAIN
MARGINS (1, 128)
LIST

- ECHO

B BABY

This is a heavily overlayed version of the above
_processor and is designed to provide rapid batch turnaround at the

sacrifice of execution efficiency. The default settings are

SIZE = 40, MAIN
MARGINS (1, 128)
LIST

ECHO

This processor requires about 160K to operate.
C. GRAPHEZ

The graphical facilities of the language (for use with
the CALCOMP 780 device) are maintained only in this special
version. The version is identical to the standard version described
above except for these additional features. This version requircs

280K to operate.

D. CONSOLE

This version of the language is adapted to the 2250

display console. It is a heavily overlayed version that is designed for

141
export. The operation of this version is similar to that of the TSO
version except that graphicé’f-l output is direétly available. Since the
display is on an oscilloscope, a monitor copy of the input and output

is also produced on a line printer for later reference. The defaults

are
SIZE = 8
MARGINS (1, 70)
LIST
ECHO

E. - SPEK2250

This is the production console version of the language
for use at Argonne. It is a non-overlayed version, but it is
designed for use with LLCS as the primary core storage. This
tailored version is similar to the CONSOLE vers ion except for

the use of LL.CS.
F. “I80

The adaption of SPEAKEASY to operation with TSO is
re atively new. The major difficulty has been one of trimming
the processor to a size acceptable for use in TSO regions of normal
sire. Since each installation chooses this size to meet its specific
needs, no single generally acceptable size has yet been established.
In decreasing the size of the standard version, the already small
version BABY has been further overlayed. The version that is now
available will operate in a 120K TSO region. Further decreases in
this size are expected; but since further decreases become more and

more difficult, it is unlikely that a much smaller version will be

142

available soon. The default options for this version are

SIZE = 4 |
~ MARGINS (1, 128)

NOLIST

NOECHO

ACKNOWLEDGMENTS

SPEAKEASY is a language developed to serve its user
community. Complaints and praise by the users, though apparently
ignored in the short term, have gradually influenced the structure of
the language. It is through discussions with users, particularly in
the Physics Division, that defects and desirable facilities are first
noted. The form and variety of the features available are therefore
mostly due to the users themselves. I wish to thank those who have
expressed their needs and desires and who have thus influenced this
development. In particular, special thanks are due tc Joanne Fink,
Harvey Z. Kriloff, Steve Pieper, Keith Rich, Frank Serduke, and
Martin Vincent, who have been generous with their time and who
have been directly involved in many of the major discussions that
have influenced the development of the language. Since the language
continues to evolve, it is hoped that such direct influences will

continue.

PART THREE

SPEAKEASY-3: Linkules and Interfaces

143

144

I. LINKULES FOR SPEAKEASY-3

by
S. Cohen, F. J. D. Serduke, and K. Rich*

A. Introduction

One of the most powerful features of the SPEAKEASY-3
processors is their ability to operate with attached libraries. By far
the most important of these libraries is the so-called linkule library
that contains individually compiled FORTRAN program packages
.that can be selectively used by SPEAKEASY during execution. The .
importance of such libraries becomes clear each time new applications
are found for the SPEAKEASY processors. New words may be added
to the linkule libraries to meet the particular requirements of these
applications. The gradual growth of the basic systems is by the
inclusion of new well-tested linkules into the system libraries. Each
such addition becomes available to the entire user community and thus

.'provides a more powerful processor for everyone.

It should be clearly understood that the linkule libraries
are not part of the basic processors, The introduction of new linkules
in no way alters the processors. Although a newly added linkule may
produce erroneous results, the existence of that linkule will in itself
not affect programs that do not address it. This means that each of
the modules which provide the SPEAKEASY operational capabilities are
independently correctable without fear of any subtle interconnections.
Individual linkules can be added, altered, or removed from the overall
system without affecting other parts of the system.

Users may have private libraries of linkules that contaiﬁ
operations that are either of very limited application or are not yet
considered trustworthy. Such private libraries function in exactly
the same manner as the communal libraries and are considered part
of them during the computer runs in which they are attached to the
system. When a private linkule is transferred to a communal 1ibrary.

- there is no change in the operation of either the linkule or the processor,

*National Accelerator Laboratory.

145

This document describes how linkules are written and
attached to the system. The primary purpose in writing this report
is to supply a user community with the means of constructing a
SPEAKEASY processor with a vocabulary tailored to the needs of
that group. This document is intended to contain all of the information
necessary to construct such a new vocabulary. This is not an easy
task since several levels of detailed understanding are needed. It is
hoped that the following information contains enough redundancy to
enable a competent FORTRAN programmer to learn to add words to
SPEAKEASY.

The first section of this report describes how SPEAKEASY
searches for specific names and how this process leads to a particular,
linkule. This is in essence a description of the search heirarchy of
the processor,

T he next section deals with the form of the argument
list in a linkule and gives a detailed description of each piece of
information transferred to the linkule for its use. A major part of
this description deals with the form of objects defined in the SPEAKEASY
processor. The means of defining a new object is also discussed.

The third section deals with the process of returning
control from the linkule to the processor and explains the method by
whicn error messages are transmitted.

Several examples of linkules are given to aid in the

understanding of specific details.

B. How a Linkule Is Activated

During execution of a SPEAKEASY program, each word
encountered is examined for defined meaning in the following sequence

of questions.

1. Is it one of the few restricted keywords in SPEAKEASY, e.g.,
PROGRAM, EXECUTE, etc.? :
2. Is it a currently defined object, i.e., is it a defined variable,

program, or data file?

146

3. Isit one.of the ""standard" words of the language such as PRINT,
TABULATE, SQRT, etc.?

If none of the above is true then the same questions
are asked for the particular linkule libraries attached to the system
for this run., These libraries are identified by their DDNAMES
("library names''). The libraries LINKULES and MYLINKS are
automatically searched for a member with a name corresponding to the
word being sought. Additional libraries may also be attached by
defining a SPEAKEASY object called LINKLIB with the library names

of additional libraries to be searched. The statement
LINKLIB = 'XXX!

will cause the library named XXX to be included in the search. If the
word being sought is not located in any attached library, then an error
message indicating that it is not defined is generated and the search
process is terminated,

If the word is found in any of the libraries, then the
member is brought into core and control is transferred to it. This
is done by use of the standard IBM-supplied LINK macro. The linkule
carries out its operation and returns control to SPEAKEASY by
executing a normal RETURN statement.

After returning control, the core space used by the
linkule is available for later use. The operating system attempts to
provide for efficient reuse of the linkule by retaining it in core for
possible later use, but it will make use of the space if necessary. In
order for the operating system to operate in this manner, it is
necessary that linkules be designed and marked REUSABLE (as
explained in Sec. 17).

The logical form in which control is passed to a linkule
is exactly the same as that in which a normal FORTRAN function
routine is called. The operating system in essence performs the ‘

bookkeeping necessary to locate the arguments and to pass them to

147

the linkule. From the user viewpoint, therefore, a linkule is a
standard FORTRAN function routine with a specified é.rgument list.
This routine in turn can call any other routines necessary to carry
out its operation. For any existing FORTRAN routine, a linkule
can be constructed by writing an interface routine by which the
argument list of information supplied by SPEAKEASY is matched to
that used by the FORTRAN routine.

A linkule is an entirely independent program package. Any
subroutines used by the linkule must be contained within that linkule
(certain exceptions will be explained later). This is one reason that
the design of the linkule is of importance. If, for example, any usual
input or output is attempted, then the entire package of routines involved
in formatting information must be included within the linkule. If one
is not careful in the use of routines the size of individual linkules will
force the use of unreasonable core allocations. Moreover, the
structure of SPEAKEASY implies that linkules should represent clean
mathematical operations. This means that, for the most part, the
linkules can and should be small packages carrying out very specific

operations.

C. The Argument List of a Linkule

A linkule is an entirely detached programming package.
All information to be transferred between the SPEAKEASY processor
and the linkule must be carried through the argument list used in
‘nvoking the linkule. As will be seen, this list is a long one and.is
complete in the sense that all information necessary to write any
possible linkule is available. For any particular operation, there is
therefore an overabundance of information.

When a linkule is given control, each argument in the
SPEAKEASY statement that invoked the linkule must be described

completely. It should be understood that much of the original

148

SPEAKEASY statement may already have been evaluated. If a linkule
called JONES is called from SPEAKEASY as a result of the statement

X = JONES (A, B+7, B*X+AVERAGE(Y))

then the linkule is invoked as if the statement were

= JONES(A, temp b temp 2)

there temp | and temp 2 are objects whose description will be passed
to the linkule. If B had not been defined, then an error would have
been detected before attempting the call to the linkule since it was
involved in an algebraic statement. On the other hand, if A had not
been defined, this fact would be conveyed to the linkule. All expressions
such as those above would be conveyed to the linkule and are
evaluated before attempting to locate the linkule,

It has been said the argument list of a linkule is a long

one. The first cards of a linkule should read

FUNCTION LINKUL
1(ANS, | GNORE ,NOARGS, | COL, 1 COM, I DOM, ACC, ARG, VAL, VALI, IVAL,KIND,
2KLASS,NROWS,NCOLS,NWORDS, LOC, ALLOC,ICLRES lQUERY,lFREE 1QURES)

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION ARG(1),VAL(1),VALI(1),IVAL(1),KIND(1),6KLASS(1),
1 NRONS(I) NCOLS(I) NNORDS(I) LOC(I) ALLOC(l)

These cards can be used in exactly this form for all linkules, Each

of the arguments will now be explained.

ANS This is an eight byte word that contains the name that is
to be used to define the result of this call (if there is a
result). This is a name generated by the SPEAKEASY
processor,

IGNORE This is an argument useful for multiple-entry forms of
LINKULES. Few linkules make use of this argument. It is

therefore being ignored in this report.

149

NOARGS This parameter is an integer specifing the number of
arguments appearing in the SPEAKEASY statement that
caused this call for the LINKULE,

ICOL This indicates the location of the first colon that
appeared in the argument list. If ICOL is zero, no
colon appeared. The integer is the number of the
argument appearing immediately after the colon (1 means
the colon is the first field).

ICOM If this is zero, there were no complex or imaginary
arguments, If it is 1 then at least one such argument
was encountered.

IDOM If zero, the current domain is set to REAL. It it is 1,
the domain is COMPLEX.

ACC This is the current accuracy setting of the processor,
This number is used whenever a decision involves a

comparison between two numbers.

The next ten items are one-dimensional arrays. Each of them describes
some property of an argument in the SPEAKEASY statement. The Ith
element of each array corresponds to the property of the Ith argument.

These properties are

ARGI(I) The name appearing as the Ith argument in the SPEAKEASY
statement.

VAL(I) The value of the real part of the first element of the Ith
argument,

VALI(I) The value of the imaginary part of the first element of

the I1th argument.
IVAL(I) The value of the integer part of the real part of the first
element of the Ith argument.

KIND(I) The kind of the Ith argument.

For SPEAKEASY users, the following KINDs are normally all that are

encountered.

150

KIND

0 Not defined.

2 A real object.

3 An imaginary object.

4 A complex object.

6 A name array (literal 8 byte).

9 A literal array (literal 1-byte objects).

If KIND is negative, the argument is a so-called "in place definition, "
i.e., it occurred as an explicit constant in the statement. For
example, linkule BUD (3, 4, 5+6I) has arguments that are in-place

definitions.

KLASS(I) Indicates the class of the Ith argument. The class
describes the structure of the object. The ones

encountered in SPEAKEASY are:

0 A scalar.

1 A vector.

2 A matrix,
" 5 A 1-dimensional array.,
6 A 2-dimensional array.

Many other kinds and classes are possible, but these are omitted

here because they will not normally be used in writing linkules.

NROWS(I) Indicates the number of rows or the length of the Ith
argument.
NCOLS(I) Indicates the number of columns or the width of the Ith

argument.
If either NROWS(I) or NCOLS(I) is not applicable, it is set equal to 1.

NWORDS(I) Indicates the number of words in the Ith argument. It
is normally the product of the number of rows by the

number of columns for this object.

151

The next two items are used to address the information in the object
as a whole. Each structured object is to be viewed as located in the

array specified by these two items.

ALLOC The name of the array.
LOC(I) The location of the first element of the Ith argument in
the array ALLOC.

The final four items in the argument list of the linkule
are four subroutines that are used to define, locate, or free objects

in SPEAKEASY. These are used as follows:

LO = ICLRES(ANAME, KIND, KLASS, NROWS, NCOLS) Used to define
a new object with the name contained in ANAME (an 8-
byte literal) and with the properties of the object
described by the rest of the arguments. These are
identical in meaning to the definitions above. The
functional value (in this case LO) is a location in ALLOC
of the newly defined object. All elements of this object
are set equal to zero. The location returned is that of
the first element of the object, Successive elements (by
rows for 2 dimensional objects) are in successive

locations of ALLOC.

CALL IFREE(ANAME) Used to free or undefine any object. The
name of the object to be freed is contained in the word

ANAME

LO = IQUERY(N, ANAME, KIND, KLASS, NROWS, NCOLS) Used to
locate and obtain the description of some currently
defined object with the name contained in ANAME. The
KIND, KLASS, and dimensions NROWS and NCOLS are

returned by this routine. The location of the object is

152

returned as a functional value and alsc put into
LOC(N) where LOC 'is the previously described array,
Note: If N is identical to a previously used locator, it
will overwrite the information that was previously in
that locator. N must be an integer less than 30 and
normally is chosen to be larger than the number of

arguments in the linkule.

-LO = IQURES (N, ANAME, KIND, CLASS, NROWS, NCOLS) This routine
combines ICLRES and IQUERY. It defines the object
with the specified name and structure and places its

location into the nth position in LOC.

The items listed above complete the specifications of the
various arguments in the list that a linkule has available through the
calling sequence. To' be sure that the information entries are
understood, a few examples of their forms are given here. Let us

assume that the linkule is called JONES. Then the secuence
X=9

Y = MATRIX(3,3:1,2,3,4,5,6,7,8,9)

Z = ARRAY(7:2,3,4,5,6,7,8)

T = JONES(7,X: Y, Z, X*Z+9)

will result in the linkule being called with the following information:

NOARGS = 5

ICOL = 3

ICOM = 0

I ARG KIND KLASS NROW NCOL VAL IVAL
1 — -2 0. 1 1 10 i

2 X 2 0 1 1 9.0 9

3 b 4 2 2 3 3 1.0 1

4 Z 2 5 7 1 2.0 23
5 —_ 2 5 i

| 27.0 27

VALI will be zero in all cases.

153

Similarly the sequence

DOMAIN COMPLEX

X = ARRAY(4: 1,2, 3, 4)

Y = 3I*X ;

Z = MATRIX(3, 2 : 2+31, 3+4I)
T = 'ALPHA'

FREE (W)

TT = JONES(3,51:X, Y, Z, T, W)

causes the following to be passed to the linkule "JONES. "

NOARGS = 7

ICOL =3

ICOM =1

IDOM = 1

I ARG KIND KLASS NROW NCOL LOC VAL VALI
1 - -2 0 1 1 Y 3.0

2 -3 0 1 1 0 6.0 5
3 X 2 5 4 | non-zero 1 -_
4 Y 3 5 4 | ‘non-zero — 3
5 Z 4 2 3 2 non-zero 2 5
6 T 6 5 1 1 non-zero 'ALLPHA'
7 W 0 0 0 0 0 0 0

0

For SPEAKEASY users who have any questions about

the form of the elements displayed for any particular situation, a

special linkule in the system is available to resolve test cases by

example. Thus a SPEAKEASY statement of the form
SHOWLINKAGE (A:B,C,D,E, »~ « *)

will cause a printout similar to those used above to display the

consequences of particular calls. Before attempting to write

linkules, a new user is advised to make a series of runs to learn the

consequences of specific calls.

154

The above descriptions explain how information describing
particular objects in the argument list are conveyed to the linkules and
how new objects can be defined. A very important consequence of being
able to define objects at execution time (a very fundamental concept of
SPEAKEASY) is that defined objects can be moved to meet the demands
of the operating system. With this in mind, the next section must be

read and understood clearly when defining objects in linkules.

D. On Motion of Defined Data

Each time a new piece of data is defined by use of
ICLRES or IQURES or if new data is located by IQUERY, there is the
possibility that other defined information will move. (This is the nature
of the storage scheme used by SPEAKEASY.) The locations in the
array LOC are always the correct current locations of the corresponding
objects. In practice it is therefore necessary that the locations of
objects be obtained from the LLOC array after any of the above routines
have been made..

If only a single object is being defined in the LINKULES
(as in the case if only the resultant ANS is to be defined), then only
IC'LRES need be used. The location returned is the proper one,

All other locations are then obtained from the LOC array., These
locations must be ascertained after the ICLRES routine is called.

If several objects are to be defined, it is necessary to
ensure that the system will keep track of their current locations. This
is done by using the routine IQURES and specifying a value of N not
currently in use. This will mean that LOC(N) is to be maintained at the

current location of this object.

E. Returning from a Linkule

To return control to the SPEAKEASY processor, execute
the RETURN statement in the logically top routine in the linkule. All

155

information needed by the linkule is communicated through the
argument list. On return, these same arguments are used to
communicate with the processor. The only other channels of
communication between the two is the functional value of the iinkules.

- The information to be returned includes the answer (if
there is one) defined as shown in Secs, IIl and IV, In addition, it is
necessary to tell the processor whether or not such an answer was
created. The presence of an answer is indicated by the functional
value of the routine: if it is 1, then an object with the name contained
in ANS was defined; if it is -1, then no such resultant is to be
expected by the SPEAKEASY processor.

Erré6rs are indicated by setting the values of the
arguments ICOL and ICOM, ICOL is always set zero or positive on
input. ICOM is either 0 or 1. If either of these is set to another
value on exit, then the processor is aware that an error was detected
and prints an error message.

The errors messages are controlled as follows. (1) If
ICOM is not negative and ICOL is -N, then the error message
corresponding to N in the table in Table 1 will be generated. The
message will repeat the input line and then will give the error message.
To indicate that a specific argument is involved in this error, the user
may set NOARGS equal to -M to indicate the Mth argument. {2) If
ICOL is positive and equal to N and ICOM is positive and greater than

1 then the statement
ARGN AND ARGM ARE INCOMPATIBLE FOR OPERATION

is generated. Here ARGN is the name of the Nth argument and ARGM
is the name of the Mth argument. (Note that ICOM is never preset to
any number larger than 1. If two arguments are incompatible, set
ICOM to the index of the second. (3) If ICOM is -N, then the
statement ‘

ARGN IS NOT DEFINED

mmmMmMMmMMmMmMmMMmMMmMMmMmMMmMMMmMMmMmMmMMmMMmMmMMmMmmMmMmMMmMmMmMmMmMMmMmMMmMMMmMMmMMmmMmmMmMmMmMMmMmmMmmMmmMmMmMmmMmMmMmmMmmMmmMmmMmmMm

LooNOTWMEWN -

156

ILLEGAL CHAR,

DOUBLE OP.

MISPLACE DEC. PT.

NUMERIC OVERFLOW.
PARENTHESIS IMBALANCE.
STATEMENT TOO LONG.
DOUBLE EQUAL SIGN.

REAL OBJECTS ONLY

ILLEGAL LOGICAL OPERAND,
MISPLACED '?°',

IMPLIED MULT. ?

ENTERED COMPLEX DOMAIN,
TRANSLATION ERROR
OPERATOR SEQUENCE?

IS NOT A SQ. MATRIX,
DIVISION BY ZERO,.

IS A SING. MATRIX.
NON-REAL LOGICAL OPERATION,
INDEX OUTSIDE BOUNDS.
COMPLEX INDEX,

PROGRAM IDENT, MISSING,
ALPHABETIC LEFT SIDE.
RESTRICTED OPERATION,

TOO MANY ARGS.

A BAD ARGUMENT,

ARGUMENT IS NOT DEFINED.
FILE NOT DEFINED.

FILE PREVIOUSLY DEFINED.
PROGRAM NOT DEFINED,
WRONG NUMBER OF ARGS.

OPS (COMPLEX) ARE LIMITED.
ZERO OR NEG. LENGTH. DEF,
SYSTEM FAILURE (DATA MAY BE LOST).
EXCEEDED CORE SIZE.

AN IMPROPER ARGUMENT,
WAIT., '
BRANCH IS NOT DEFINED.

NO PROGRAM CARD.

NO FILE NAME.

- ARG. OUTSIDE ALLOWED BOUNDS.

NO UPPER FOR BOUND.
LOOP NOT ACTIVE,
MAX FOR DEPTH 1S 10.
EITHER: INDEX 1S ALREADY IN USE OR REAL PART
INCR., WRONG SIGN,
DELTA IS ZERO,
INTERP ERROR IN LOADDATA,
REAL COMPLEX CONFLICT.
DEFINITION LARGER THAN 8000 WORDS.
PROG. TOO BIG.
NON REAL ARG.
TWO DIM. HORIZ ARG,
NON REAL ARG.
NO. ELS. DIFFER IN ARG LIST.
NON REAL ARGUMENT. '
LENGTH CONFLICT BETWEEN ARGS.

Table 1. SPEAKEASY Error Messages

OF A NON

NUMBER.

157

is generated. Again ARGN is the name of the Nth argument.

Once control is returned to the processor, the linkule
is logically disconnected from the processor. If this particular linkule
is used again, a fresh copy may be brought in. One should therefore
not assume that information set wifhin a routine in one call will be
there on subsequent calls to the same linkule. If information is to be
retained, it should be stored in an area defined by use of the ICLRES

statement.

F. On Reusability

The dynamic link process used in transferring control to
a linkule is a standard IBM facility. In attempting to transfer control
by the so-called link method, the routines previously linked are searched
to see if the desired routine is already available and usable. If it is
not found, then a copy is loaded into the machine from the appropriate
disk. This loadiﬁg is a time-consuming operation. Calling a linkule in
a loop in SPEAKEASY could therefore be extremely expensive if the
linkule has to be repeatedly loaded. To avoid this, the link-edit step

should include marking each such linkule '"'reusable.' Unless a load

module is specifically marked as being reusable, it must be reloaded

for each use.

A reusable module can include no previously link-edited
parts that were not reusable. This is a somewhat bothersome feature
since Argonne and all other institutions thus far surveyed have marked
th;eir FORTRAN library routines as being nonreusable. For this
reason (and others), a special set of FORTRAN library routines, called
CONS. LOAD in the examples, has been made available for constructing
linkules. The members of this 'library are marked '"reusable. "

The library also serves to hold linkules to a manageable
size, FORTRAN library subprograms are designed to produce error

messages for badly defined arguments. Such error messages require

*Many of the subroutines in this library were supplied by
Dr. R. K. Nesbit.

158

that the complete FORTRAN input/output package be included in the
linkule. The result of including such a package is to increase the
minimum size of a linkule from 1K bytes to 25K bytes, For the
reason alone, the special library (designed to eliminate error

messages) should be used when constructing linkules.

F. Sample Linkules

This section iscompleted by showing a few of the
linkules currently in the SPEAKEASY library. They should be helpful
in underétand'mg some of the specifics about how a linkule is actually

written.

s

=+ //KEEP DD DSN=PHYSICSP.LOAD,DISP=0LD

159

//SCUMPROD JOB (F88888,1,1,1),CLASS=A,REGIQN=210K
// EXEC SOS,LIB=PHYSICS

/COMPILE=H
FUNCTION MYWORD (ANS,ITH,NOARGS,ICOL,ICOM, IDOM,ACC,
1ARG,VAL,VAL!,IVL,KI ,KL,NR,NC,NW,LOC,ALLOC, ICLRES)
IMPLICIT REAL*8 (A-H,0-Z)

Vg -

DIMENSION VAL(1),VALI(1),1VL(1),ARG(1),KI(1),KL(1),NR(1),

y INC(1) ,NW(1),LOC(1),ALLOC(1)

SPEAKEZ LINKULE FOR THE OPERATOR '"CUMPROD"

Y = CUMPROD(X)
RETURNS AN OBJECT Y OF THE SAME STRUCTURE AS X
AND WHOSE N-TH ELEMENT IS THE CUMULATIVE PRODUCT
OF THE FIRST N ELEMENTS OF X. TWO-DIMENSIONAL
OBJECTS ARE TREATED ROW-BY-ROW,

00000000000

MYWORD = 0 ;
CAN ONLY HANDLE REAL OBJECTS IN THIS IMPLEMENTATION...
IF (ICOM .NE. 0) GO TO 9000
CHECK THAT THE INPUT OBJECT IS DEFINED...
IF (LOoC(1).EQ.0 .AND. KI(1).GE.O0) GO TO 9001
CONFIRM THAT THERE WAS ONLY ONE INPUT ARGUMENT...
IF (NOARGS .NE. 1) GO TO 9002
CHECKS PASS...SET LOOP LIMIT AND CLEAR SPACE FOR ANSWER...
NLIMIT = NW(1)
¥ «.1.0 3
LOCY = ICLRES(ANS,KI(1),KL(1),NR(1),NC(1))
LOCX = LOC(1)
CALCULATE THE CUMULATIVE PRODUCT...
DO 10 N = 1,NLIMIT
Y = Y*ALLOC(LOCX+N-1)
10 ALLOC(LOCY+N-1) =Y
MYWORD = 1
RETURN
CAUGHT SOME INVALID INPUT,...SET THE ERROR CODE...
9000 ICOL=-31
COMFLEX OPERATIONS NOT AVAILABLE
RETURN
9001 1COM=-~1
CRUMMY ARGUMENT...IT IS NOT DEFINED
RETURN
9002 ICOL=-24
CUMPROD TAKES ONLY ONE ARGUMENT...WAS FED MORE THAN ONE...
RETURN :
END
/XEE® CUMPROD 'LIST,MAP,REUS,NCAL,LET'

160

//SCEONE JOB (F88888,1,1,1),CLASS=C,REGINN=160K, MSGLEVEL=1,PRTY=L
// EXEC FTHCEP, 0PT|0NS='0PT 2 ,MAP!
// EDTOPTS='LIST MAP,LET, REUS'
//FTH.SYSIN DD =»
INTEGER FUNCTION E1LINK
& (ANS, ITH,NOARG, ICOL, | COM, INOM,ACC,ARG,VAL,VALI, IVL,KI,
& KL,NR,NC, Nw LOC ALLOC IPLRFS)
IMPLICIT REAL#8 (A-H, O Z)
DIMENSION VAL(30), VALI(BO),lVL(BO) ARG(30),KI(30),KL(3N0),NR(3N),
& NC(30), NW(BO) Loc(sn), ALLOF(SO)

LSIZE="(150K,50K)*

R L, ek e e e e, e e e e e e e T e W R e e e ae. e e e

THIS IS THE SPEAKEASY LINKULE FOR THE EXPONFNTIAL INTEGRAL

EONE(X) = INTEGRAL(X DEEXP(=-T)Y / T

c
C
c
C »INFINITY)
C ' :

C THIS ROUTINE EMPLOYS THREE SEPARATE RATIONAL APPROXIMATIONS

C FOR EONE(X) FOR X IN THE RANGES 0<X<1 , 1<X<4 AND 4<X<170 .,
C IF X>170 THIS ROUTINE SETS EONE(X)=0 WITH NO FRRNR MESSAGE

C THE SPEAKEASY WORD IS EONE(X) WHERE X IS A RFAL

c VARIABLE OF ANY STRUCTURE,

C THE RATIOMNAL APPROX IMATIONS WERE DEVELOPFD RY W.J. CODY OF

C THE ARGONNE NATIONAL LABNORATORY APPLIED MATH DIVISION,

C REFERENCE: W.J. CODY AND H.C. THATCHER JR,

(o "RATIONAL CHEBYSHEV APPROXIMATIONS FOR THFE EXPONENTIAL

C INTEGRAL E1(X)" MATH COMP 22 (1968)

C ARNIE OSTEREE AND FRANK SFRDUKF 8/22/72

C

C === DATA STATEMENTS FOR CONSTANTS IN THFE RATIONAL APPROXIMATIONS
: DATA A0/ZCO093C467E37DRNC8/ , A1/ZuLNC110E996FFE3178/

DATA A2/ZL0213DCCAONS70ED/ , A3/Z3F629544F2457AA6/
DATA AL/Z3E569n11E23A2DC8/ , AS/Z3DuLF8OERCERI1CF/
DATA BO/Zul10000n0n00000N0/ , B1/ZLOGDN7BACLDOLLEG/
DATA B2/ZLO14L6CHENGE730856/ , B3/Z3F22N1SDE897CE: =/
DATA B4L/Z3E1FEOELAGBA9AF7/ , B5/Z3CDB33FABL22F1DA/
DATA CO0/Z3B174B1AD3FE2E266G/ , Cl1/ZUNFFFFB4ND38BC730n/
DATA C2/ZL1BDI92AE16CB369D/ , €3/Z422N97D311F74N81/
DATA CL/ZL2LS5EDSDCFDDF7E2/ , C5/Z4L22A852CNE1R7B8C/
DATA C6/Z418D633281818CL5/ , C7/Z4066COAFC843N717/
DATA DO/Z41100000000000C0/ , P1/Z4ICDN233632NGBCC/
DATA D2/Z4238717FD76B3FA3/ , D3/ZL4L26AA52AC377R0AR/
DATA DL/ZL259BB2AN1911995/ , D5/ZL21F7F4782BFCLCF/
DATA D6/Z413CBABCOEBABLT7./ , DN7/ZUN17L3F1INELFFQ79/
DATA EO/ZCOFFFFFFFFFFF884/ , F1/ZC222R67FCBNC3N5CF/
DATA E2/ZC31AB885D23D0ONFN/ , E3/ZC395COLF9R6N432F/
DATA EL/ZCL1818DA23430FID/ , ES5/ZCLI9BO18NL2BF7A2/
DATA EG6/ZC383A13CEAD21BEA/ , E7/ZCl1EF62A6F33BLOAN/
DATA FO0O/zZui100n0000000N00N/ , F1/ZL2246T7FCBNC2ENNF/
DATA F2/Zu31EE585685725€C3/ , F3/ZL3C76LS5BASCTL22F/
DATA FuL/ZL4U4286113476CELICF/ , F5/Z4L3FCL2536N9LALND/
DATA FG/ZuL2B8DC679374D02/ , F7/Z4304A239LFAGL382/
EILINK =0

C -- CHECK TO SEE THAT THFERE 1S ONLY ONE ARGUMENT
IF (NOARG .NE. 1) RO TN 9001

C -- CHECK IF ARGUMENT IS DEFINED, ..
IF (LOC(1).EQ.0 .AND. KI(1).GE.0) RO TN 9nN3

C =-- AND SEE THAT THE ARGUMENT IS NOT COMPLEX

.

ICOM ,NE,

0) GO Tn 9nny

161

C -- MAKE SPACE FOR THE ANSWER
LOCANS = ICLRES(ANS, |ABS(KI(1)),KL(1),NR(1),NC(1))
LIMIT = NR(1)*NC(1) ;
C -- LOOP ON THE ELEMENTS OF THE INPUT VARIABLE
DO 500 INDEX = 1,LIMIT
IE (KI(1) .LT. 0) GO TO 50
X = ALLOC(LOC(1) - 1 + INDEX)
GO TO 100
50 X = VAL(1)
100 IF (X .LE. 0,0D0) GO TO 9002
IF (X.GT.1.D0) GO TO 200
C -- RATIONAL APPROXIMATION FOR 0<X<1
EONEX=(((((AS*X+AL)*X+A3)*X+A2)xX+A1)*X+AN)/

3 (CCC(B5*X+BL)*X+B3)*X+B2)*X+B1)*X+B0)
2 =DLOG(X)
GO TO 500

C -- FOR X > 170 SET EONE=0

C -- RATIONAL APPROXIMATION FOR 1<X<U

200 W=1.D0/X
Y=DEXP(-X)
IF (X.GT.4.D0) GO TO 300
EONEX=Y*(((((((C7*W+CE)*W+C5)*W+Cl) *W+C3) W+

1 C2)*W+C1)*W+CN)/ (((CC((D7*W+DE)*xW+N5) =
2 W+DL) *W+D3) *W+D2) *W+N1)*W+NO)
GO TO 500

C == RATIONAL APPROXIMATION FOR 4<X<1790
300 IF (X .GT. 170.0D0) GO TO 400
EONEX=WxY*(1 .DO+W* (((((((E7*W+E6)*W+ES5)*W+EL)

1 *W+E3) *W+E2) *W+E1)*W+EO0)/ (((((((F7*W+FB)*W
2 +F5)*W+FL)*W+F3)*W+F2)*W+F1)*W+F0))
GO TO 500

L00 EONEX = 0.0
500 ALLOC(LOCANS+INDEX=-1) = EONEX

EILINK =1
RETURN
C awmes ERROR RETURNS

C -- TOO MANY ARGUMENTS
9001 ICOL = =24
RETURN
C -- ARGUMENT OUTSIDE ALLOWED BOUNDS
9002 ICOL = -43
RETURN
C -- ARGUMENT IS NOT DEFINED
9003 ICOM=-1

RETURN
C -- COMPLEX ARGUMENT NOT ALLOWED
9004 I1COL = -31

RETURN

END

/* :
//EDT.SYSLIB DD DISP=SHR,DSN=CONS.LOAD
//EDT.SYSFVT DD DISP=0LD,DSN=PHYSICS.LOAD,UNIT=2314,V0L=SFR=N|SK57
//EDT.SYSIN DD =* :
ENTRY EILINK
NAME EONE(R)

162

II. ONE GENERALIZED LINKULE INTERFACE

by
S. Cohen, R. N, Kimmel, and F. J. D. Serduke

Only moderate effort is required for a skilled FORTRAN
programmer to learn the technique of interfacing functionsv to
SPEAKEASY, but even this effort can be substantially reduced for
certain classes of FORTRAN programs by writing interface routines.
The following is a description of a LINKULE interface for the class
of FORTRAN routines satisfying the following re'strictions.. (1) They
are FUNCTION subprograms, i.e., they return a single number.

(2) All arguments in the calling sequence are scalars. No dimensioned
variable may appear in the argument list. (3) All transfer of information
is through the argument list; no information is transferred through
COMMON areas.

if all of these requirements are satisfied, an interface
to such a function is almost trivial. An example of such an interface is
given below. This small interface routine together with the FORTRAN
program in question are compiled, link-edited with another special
routine, and then saved as a LINKULE in an appropriate library.

Many commonly used functions satisfy these restrictions and ;
consequently are simple and straightforward to include in SPEAKEASY,
In addition to saving labor, this process has the advantage of
automatically providing the standard SPEAKEASY conventions for the
handling of structured arguments that may be used in the SPEAKEASY
call.

This standard treatment of structured arguments is called
the HHIGH-WIDE convention; it is easy for SPEAKEASY users to
remember and permits the user to avoid the use of loops in calculation
involving such functions. This I—IIGH-WIDE convention relates to the
forms of acceptable combinations of the structured arguments involved
in the SPEAKEASY call and the definition of the structure of the
answer,

1f the SPEAKEASY statement

163

is to invoke a LINKULE that follows the HIGH-WIDE convention, the
arguments in the call are to be considered "compatible' only if (1) the
height (number of rows) of each object in the argument list is either

1 or some constant value NHIGH and (2) the v;/idth (number of columns)
of each object in the argument list is either 1 or some constant value
NWIDE.

The resulting object defined by the statement will be an
object with NHIGH rows and NWIDE columns. The values of its
elements will be those corresponding to a repeated call tothe FORTRAN
routine with combinations of arguments generated by expanding each
argument, if needed, into an NHIGH-by-NWIDE object. The structure
of the resulting object is determined by the following rules. (1) If all
objects are scalars, the answer is a scalar. (2) If no two-dimensional
objects appear but at least one one-dimensional object appears in the
argument list, the answer will be one-dimensional. Furthermore, one-
dimensional arrays take precedence over vectors in the determination
of the structure of the result. (3) If any two-dimensional object appears
in the argument list, the answer will be of the same structure; and again
two-dimensional arrays take precedence over matrices. (4) If both
one- and two-dimensional arguments appear, the one-dimensional
arguments are treated as column-like objects. The structure of the
result will be two-dimensional and will follow rule 3.

These rules may be summarized by saying that (a)
the two-dimensional form takes precedence over the one-dimensional,
(b) the one-dimensional form takes precedence over the scalar, and
(c) for the same number of dimensions, the array form takes
precedence over a matrix or vector form.

The treatment of a given object in an argument list
depends on the structure of other arguments; the ""effective
"

representation' of an argument may be viewed as an expansion of

its structure so that all objects in a pa‘rticular argument list have

164

the same structure. Assume that the result is to be a HIGH-by-
WIDE array. Then (1) a scalar argument is expanded into a HIGH-
by-WIDE array with each element equal to that scalar, (2) a column
array (or matrix) is expanded into a HIGH-by-WIDE array (or
matrix) with all columns equal (and, for purposes of this expansion,
the convention is that one-dimensional arrays and vectors are treated
as columnar structures), (3) a row array (or matrix) is expanded
into a HIGH-by-WIDE array (or matrix) with all rows equal, and (4) a
two-dimensional HIGH-by-WIDE object is its own effective
representation. '

As a specific example, let HIGH = 2 and WIDE = 3,

Then the effective representation for the scalar 8 is
888
5 (s 8 8)’
that of a column array (or 1-dimensional array) is
1 11 1)
g7 ’
2 222
that of a row array is

246
2 4 6] "(246)

and that of a 2-dimensional array is
(1 3 5) (1 3 5)
420 420
As an example of a generalized linkule interface,

suppose BUDDY is the name of a FORTRAN function routine whose
calling sequence in FORTRAN is

X = BUDDY (A, B, I)

165

where A, B, and I are all numbers., Then this routine can be
interfaced to SPEAKEASY by the technique shown below and can be
assigned any name as its SPEAKEASY representation. Let us
choose BUD as this name. Then the SPEAKEASY statement

X = BUD (3, 5, 9)

will function in exactly the same manner as the FORTRAN statement.
(Only scalar arguments are used in both cases.) Similarly, the

sequence
A = ROWARRAY (2:1,2); B = COLARRAY (3:5,6, 7); X=BUD (A, B, 5)

is equivalent to

{2 5 5 8 8
x=BUD|[1 2], (66], (88
{2 7.7 8 8

where X will be a.two-dimensional array whose elements are

BUD (1, 5, 8) BUYD (2, 5, 8) :

BUD (1, 6, 8) BUD (2, 6, 8)

BUD {1, 7, 8) BUD (2, 7, 8)

How do we actually write the interface to the FORTRAN
program BUDDY and create the SPEAKEASY linkule BUD? I'irst
we write a FORTRAN program with two entries: FLINK and
NUMARG. The entry NUMARG returns the valid number of arguments
in the SPEAKEASY call and FLINK returns the functional value for a
given set of input parameters. The floating-point and integer values.
of these parameters come in through the arrays X and IX. For

example:

166

FUNCTION FLINK(X,1X)
IMPLICIT REAL#8 (A-H,0-Z)
DIMENSION X(1),1X(1)

- P @ @ @ e @ @ @ @ W W e @ e @ ® = e = M e e & e w -

X(1) AND I1X(1) ARE THE FLOATING- POINT AND INTEGER
VALUES RESPECTIVELY OF THE I|~TH ARGUMENT IN THE
SPEAKEASY CALL

FLINK = BUDDY(X(1),X(2),1X(3))

RETURN

ENTRY NUMARG(|DUMMY)
THIS ENTRY RETURNS THE VALID NUMBER OF ARGUMENTS
IN THE SPEAKEASY CALL

OOO0O0

OOO0

NUMARG = 3
RETURN
END

This routine is to be compiled with the user subroutine
BUDDY. It must be link-edited with a routine called LINKIT; the
resulting loaa module is to be saved in an appropriate library and its
member name in the library is the one assigned to the SPEAKEASY
operator —in this case, BUD.

Appendix I shows the form of a job to be used to
create such a LINKULE in the Argonne Physics Library. This is
particularly simple because of the SOS capabilities in the Argonne
system. New linkules should be created in a private library such as
the Physics library and fully debugged there. Before such a linkule
is introduced into the communal library, it must be validated and
documented.

Appendix II is a listing of the source deck for the
generalized interface routine LINKIT. This routine is contained in
the library CONS, LOAD, which normally is available at SPEAKEASY

installations; or its source deck can be reproduced from this listing.

167

Appendix III is a complete listing of a job specification
AX*SIN(M*X) as a function
of A, M, and X. This function has been named FUN(A, M, X) for
SPEAKEASY use.

to create the linkule for the evaluation of e

Appendix IV shows the deck used to operate with the
linkule created by the job shown in Appendix III. Note that the private
library PHYSICS. LOAD has been attached to the system for this run
by means of the //LIB card and the card defining LINKLIB in the
SPEAKEASY run.

Appendix V is the output from a SPEAKEASY run using
the indicated function in a variety of ways. This is the result of the

job shown in Appendix IV,

168

APPENDIX I. Job Specification to Create a New Linkule

A job specification to create a new linkule at Argonne
should be in the form illustrated below. This linkule is created in the
Physics library (not the SPEAKEASY link library). New linkules should
not be placed in the link library until they are validated and documented.
The job-control language for this run is particularly simple because of

the SOS capabilities available in the Argonne system.

//MYJoB JOB (F88888,1,1,1),CLASS=A,REGION=200K
// EXEC SOS

//KEEP DD DSN=PHYSICS.LOAD,DISP=0LD

//SYSLIB DD DSN=CONS.LOAD,DISP=SHR

/COMPI LE=H

-===> FORTRAN source for the FLINK program goes here
--=-=> FORTRAN source for the BUDDY program goes here
/KEEP BUD 'MAP,LIST,LET,REUS'

INCLUDE SYSLIB(LINKIT)
ENTRY LINKIT

169

APPENDIX II. FORTRAN Source Deck for LINKIT

The FORTRAN source deck for the generalized interface
routine LINKIT is listed in this appendix. It is applicable to SPEAKEASY
linkules that are scalar functions of scalar variables. The HIGH-WIDE

argument convention is built into this interface.

OO0 OOOOO0D (@]

gy Il o N o SRS o

170

FUNCTION LINKIT :
1(ANS, ITH,NOARGS, I1COL, I COM, IDOM,ACC, ARG, PARAM, PARAMI , | PARAM,
2KIND,KLAS ,NHIGH,NWIDE,NOELS,LOC,ALLOC, ICLRES, IQUERY, I FREE)

IMPLICIT REAL#8 (A-H,0-Z)

A Al A2 B2 R A R R R R A R SR RS A2 B A SR R B R R RS A B B TR TR T
SPEAKEASY GENERALIZED INTERFACE FOR LINKULES THAT ARE
SCALAR FUNCTIONS OF SCALAR VARIABLES. THE HIGH-WIDE
ARGUMENT CONVENTION IS BUILT INTO THI!S LINKULE,

THIS ROUTINE IS USED BY WRITING A SUBROUTINE WITH
TWO ENTRIES (1) FLINK(X,I1X) AND (2) NUMARG(!IDUMMY)
NUMARG RETURNS THE NUMBER OF ARGUMENTS IN THE SPEAKEZ WORD
FLINK IS A FUNCTIONAL ENTRY THAT RETURNS THE FUNCT!ION TO
BE EVALUATED AS A FUNCTION OF THE SPEAKEZ ARGS THAT
ARE CONTAINED IN THE ARRAYS X AND 1IX .

cekefofteoteateatoftoteatotaftotoatoteftotolatofteatotoaftotatotoateboabats

DIMENSION ANS(1),PARAM(1),PARAM| (1), 1PARAM(1),ARG(1),KIND(1),
1 KLAS(1),NHIGH(1),NWIDE(1),NOELS(1),LOC(1),ALLOC(L)

INTEGER MAXS1Z/32000/

LINKIT=0
HEIGHT=1
WIDTH=1

ANKLAS=0
INDEXA=0

PHASE 0: IS THE NUMBER OF ARGUMENTS IN THE SPEAKEZ CALL CORRECT?

IF (NOARGS .NE. NUMARG(0)) GO TO 9n03

DO 5 N=1,NOARGS

FIRST TEST IF N-TH ARGUMENT IS DEFINED
IF (LOC(N).EQ.0 .AND. KIND(N).GE.O0) GO TO 9004

SET UP SIZE AND DETERMINE CLASS OF ANSWER
IF (NWIDE(N) .GT. WIDTH) WIDTH = NWIDE(N)
IF (NHIGH(N) .GT. HEIGHT) HEIGHT= NHIGH(N)
IF (KLAS(N) .GT. ANKLAS) ANKLAS= KLAS(N)

SET ROW AND COLUMN LOOP SWITCHES

FAT(N) = 0
IF (NWIDE(N) .GT. 1) FAT(N) =1
TALL(N) = 0

IF (NHIGH(N) .GT. 1) TALL(N) =1
5 CONTINUE

\

o] OO0

OO0

171

TEST IF THE RESULTING STRUCTURED OBJECT WILL BE TOO LARGE
IF (HEIGHT*WIDTH .GT. MAXSIZ) GO TO 9002

DO 10 N=1,NOARGS

IS THE N-TH ARGUMENT ANYTHING BUT A REAL NUMBER?
IF (1ABS(KIND(N)) .NE. 2) GO TO 9000
TEST FOR INCOMPATIBLE DIMENSIONS
BUT BYPASS TEST FOR AN IN-PLACE DEFINITION
IF(KIND(N),LT.0) GO TO 10
IF(NWIDE(N) .NE,1.AND.NWIDE(N) ,NE.WIDTH) GO TO 9001
IF(NHIGH(N) .NE.1.AND.NHIGH(N).NE ,HEIGHT) GO TO 9001

TEST IF BOTH MATRIX AND 1-D ARRAY INPUT
OUTPUT WILL BE A MATRIX \ :
IF (ANKLAS.EQ.5 .AND. KLAS(N).EQ.2) ANKLAS = 2
10 CONTINUE

-- - .-

RESERVE ALLOCATOR SPACE AND DEFINE THE STRUCTURE OF THE ANSWER
LOCANS = ICLRES (ANS , 2 , ANKLAS , HEIGHT , WIDTH)

OO0

DO 20 I=1,HEIGHT
DO 20 J=1,WIDTH
DO 15 N=1,NOARGS

IF N-TH ARGUMENT IS A SCALAR OR AN IN-PLACE DEFINfTION
BYPASS INDEXING.....
IF(KIND(N).LE.O0) GO TO 15

HERE DEAL WITH STRUCTURED ARGUMENT
INDEX=(J=-1)*FAT(N)+(1-1)*TALL(N)*NWIDE(N)
PARAM(N)=ALLOC(LOC(N)+INDEX)

15 CONTINUE
IN CASE INTEGER ARGUMENTS ARE NEEDED

DO 16 N=1,NOARGS
16 IPARAM(N)=PARAM(N)+DSIGN(ACC, PARAM(N))

172

C
C I R R R R R R R TR R R R e I R I
c
c CALL TO THE USER-WRITTEN FUNCTION 'FLINK'
C WITH THE REAL AND INTEGER VALUES OF THE
C ARGUMENTS
C
ALLOC(LOCANS+INDEXA) = FLINK(PARAM, | PARAM)
C I A R R R R R T R e Y TR R R R R R R RS2 R2L
c
INDEXA = INDEXA+l
c
20 CONTINUE
c .
LINKIT=1
c
30 RETURN
C
C
0 0 o 5 i A s A o i s S v B e
C ERROR RETURNS
C

9000 ICOL=-100
SOME ARGUMENT NOT A REAL NUMBER
GO TO 30

9001 1COL=-102
INCOMPATIBLE DIMENS IONS
© G0 TO 30
9002 1COL==62
OVERS 1 ZE OUTPUT...ALLOCATOR CAN'T HANDLE IT
GO TO 30

c
c
C
C
c
C
9003 1COL=-30
C |INCORRECT NUMBER OF ARGUMENTS IN SPEAKEZ CALL
GO TO 30
C
9004 1COM=-~N
C N-TH ARGUMENT IS NOT DEFINED
GO TO 30

173

APPENDIX III. Job Specification Submitted to Argonne Computer

The new linkule called FUN was introduced into the private
library PHYSICS. LOAD. This linkule was designed to evaluate e-Ax sin(MX)

and to act according to the generalized rules described in this report.

//MYJOB JOB (F38888,1,1,1),CLASS=A,REGION=240K

/*PROCESS MAIN

/*PROCESS RSOUT10

// EXEC SOS

//KEEP DD DSN=PHYSICS.LOAD,DISP=0LD

//SYSLIB DD DSN=CONS.LOAD,DISP=SHR

/ COMPI LE=H
FUNCTION FLINK(X,1X)
IMPLICIT REAL*8(A-H,0-Z)
DIMENSION X(1),1X(1)
FLINK=EVAL(X(1),1X(2),X(3))
RETURN
ENTRY NUMARG(IDUMMY)
NUMARG=3
RETURN
END
FUNCTION EVAL (A,M,X)
IMPLICIT REAL+*8 (A-H,0-Z)
EVAL=DEXP(-A*X)*DSIN(M*X)
RETURN
END

/KEEP FUN 'MAP,LIST,LET,REUS'

INCLUDE SYSLIB(LINKIT)
ENTRY LINKIT

APPENDIX IV. Deck to Operate with Routine FUN

The following is the complete deck to run SPEAKEASY
and to use the linkule FUN created in Appendix III. Note the use of

the private library.

//MYSPEAK JOB (F88888,1,1,1),CLASS=C,REGION=220K, PRTY=L
/*PROCESS MAIN

/ *PROCESS RSOUT10

// EXEC SPEAKEZ

//LIB DD DSN=PHYS!CS.LOAD,DISP=SHR

S1ZE=10

LINKLIB="LIB"

X=5

Y=7 _

$ --- CALL THE NEW FUNCTION 'FUN' WITH SCALAR AND INPLACE ARGS...
FUN(X,3,Y)

$ --- CALL THE NEW FUNCTION WITH ARRAY AND SCALAR ARGUMENTS
X = GRID(0,2.4,.2)

NEWFUNC=FUN(X, 3,X)

TABULATE(X, NEWFUNC)

$ --- EXAMPLE OF HIGH-WIDE CONVENTION FOR INPUT ARRAYS....
X=ARRAY(k,1: 1 2 3 &)

Y=ARRAY(1,3: 1 2 3)

'FUN(X,6,Y)

$ --- EXAMPLE OF INCOMPATIBLE INPUT ARRAYS...

X=1 2 3

Y=1 3 4 5 6

FUNCX 2 Y)

$ ---- EXAMPLE OF INCORRECT NUMBER OF ARGUMENTS...
FUN(X,6) .

¢ ---- EXAMPLE OF UNDEFINED ARGUMENT...

FUN(X,6,NOTDEF)

115

APPENDIX V. Output of Run with Linkule FUN

The output generated by the deck listed in Appendix
IV is shown below. This illustrates the variety of ways in which
the linkule can be used and shows the automatic built-in error

messages that result from using the standard interface.

SPEAKEASY 3C 11:16 PM 10/22/72
INPUT...LINKLIB="LIB'
INPUT. ..X=5
INPUT.,.Y=7
INPUT,,.$ === CALL THE NEW FUNCTION 'FUN' WITH SCALAR AND INPLACE ARGS...
INPUT...FUN(X,3,Y)
FUN(X,3,Y) = 5,2752E-16
INPUT...$ === CALL THE NEW FUNCTION WITH ARRAY AND SCALAR ARGUMENTS
INPUT, .. X = GRID(0,2.4,.2)
INPUT. . .NEWFUNC=FUN(X,3,X)
INPUT. . . TABULATE(X,NEWFUNC)
X NEWFUNC
0
2 5425
B 79423
6 .67943
8 +35617
+051915
2 -,10L85
b = 12277
6 -.077008
8 -.030264
-.0051177
2 .0024634
L ,0025009
INPUT,.,.$ --- EXAMPLE OF HIGH-WIDE CONVENTION FOR INPUT ARRAYS....
INPUT...X=ARRAY(4,1: 1 2 3 4)
INPUT...Y=ARRAY(1,3: 1 2 3)
INPUT...FUN(X,6,Y)
FUN(X,6,Y) (A 4 BY 3 ARRAY)

-.10279 -.072617 -.037389
-.037815 -.0098277 -.0018615
-,013911 -.00133 «9.2079E=5
-.0051177 ~1.8E~4 -4 ,61L42E-6
INPUT...$ --- EXAMPLE OF INCOMPATIBLE INPUT ARRAYS...

INPUT, .. X=1 2 3
INPUT...Y=1 3 4 5 b
INPUT...FUN(X 2 Y)

IN STAT. " FUN(X 2 Y) " LENGTH CONFLICT BETWEEN ARGS.
INPUT,..$ ---- EXAMPLE OF INCORRECT NUMBER OF ARGUMENTS...
INPUT...FUN(X,6)

IN STAT. " FUN(X,6) " WRONG NUMBER OF ARGS.

INPUT...$ ---- EXAMPLE OF UNDEFINED ARGUMENT...
INPUT. . .FUN(X,6,NOTDEF) :
NOTDEF 1S NOT DEFINED IN STAT. " FUN(X,6,NOTDEF) "

"I IE IR T T2 T T T T S T I I IR TR TR N N N R TR 2 I I)

CORE USED 1 K NOW, - 1 K PEAK, ALLOCATED 10 K

* & &% ®* & & * * & & & X * & * * & * & & * & ® &* ¥ & & & & & * & ¥ * &

PART FOUR

The SPEAKEASY HELP Documents

by

J. K. Fink

Preceding page blank

177

178

I. INTRODUCTION

The user of an interactive language such as TSO
SPEAKEASY needs a means of quickly determining the operations
available to him and of easily learning to use particular features.

To fill this need, a special library named HELP has been created
and attached to all SPEAKEASY processors. The HELP library
consists of concise documents that describe each word of the
SPEAKEASY language. The interactive user may obtain each
document by a simple command from his terminal.

The growth capability of SPEAKEASY has created
difficulties in formally<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>