
R&D University

PowerPC Runtime
Arch itectu re

PowerPC Runtime Architecture, October 14, 192

(..

R&D University

PowerPC Runtime
Architecture

••

PowerPC Runtime Archttecture
Version 1.1

II

Alan Lillich
Developer Tools Group

• • Itt t I

-" ... _._-_. __ ._-----._. _. --_._ .. _ .. _. -_.-_ .. _ ... _----_. --_ .. -

1

Day 1 Content
. . .

. :' ': :: ::. :.'
· ·
· ~.:. : :.~ ::,:., ~': .. ~.\: :;::. .

. ...

~ 'C' ''- • ',' • '- • '- • '-'-

P_PC Runtime Archlectu ..
Version 1.1

R&D University
Alan Lilich

" Apple Confidential 2
11·10--112

2

c

c

Schedule for Today
.

First Day of Course
a I lUlU urluan II I II UDDUDI

• Background Information

• Program Components

• Global Addressing

• Stack Frames

• Calling Conventions

p""""pc Runtime Architecture
Version 1.1

I II r

R&D University
Alan Lillich

- Apple Confidential 3
11·1D--92

3

Background Information .. '

• Hardware Architecture

- Review features that influence software architecture

• Miscellaneous

- Software architecture derived from AIX

- Assembly programmers must do what compilers do!

- We're only talking about 32-bit software
• Special code can take advantage of 620

• No fully 64-bit O/S planned yet

P rPC Runtime Architecture
Version 1.1

,.

R&D Unive .. iy
Alan LiNich

" Apple Confidential 4
11-10-·92

4

c'
Background Information ..

. ..

Definitions

• Effective Address: 3~b;-t-5
- The "register size" addresses used by PowerPC software.

• Virtual Address: L '.1-
'80 ~

- A "large" address used by PowerPC hardware during address
translation.

• Volatile Register:
- A register whose contents need not be the same on return from a

call as before.

PowerPC Runtime Archftec:ture
V.aion 1.1

R&D UnivelSiIy
Alan UHich

It Apple Confidential 5
11·10--92

5

CPU Architecture

Key Instruction Set Features
alia IIU II UIIUIIUI I I 11111111111111 "nann I I a I 1111111 1m III I II I I I

• Three basic units => cheap branches

• Typical load/store architecture

• Generally three register operands

• Fixed length instructions

- Few memory addressing modes

• 32 bit only

PowerPC Runlime Architecture
Version 1_1

R&D University
Alan URich

" Apple Confidential 6
11-10--92

6

CPU Architecture .

Key Instruction Set Features
, , II I I I II 1111 I

• Lots of registers

- 32 General Purpose (32/64 bit)

- 32 Floating Point (64 bit)

- 8 Condition Code "Fields" (4 bits: LT, GT, EQ, SO)

• A large set of (mostly) reduced instructions

• Effective Address versus Virtual Address

PowerPC Runtime AR:hilectU18
Version 1.1

R&D University
Alan LiRich

II Apple Confidential 7
11-10--92

7

(~::

CPU Architecture .'

. ~v-L*,o 5

• Unconditional Branches ~D'J... ~~ ~s
- PC relative, 24-bit ~diate displacement (+32MBr

• Conditional Branches

- PC relative, 14-bit immediate displacement (+32KB)

- Indirect through Link or Count Register

• Displacements

- Are signed and in words (instructions), not bytes

- May be taken as absolute address (lowest & highest 32xB)

• Calls save return address in Link Register

P.-rPC Runtime Architecture
Version 1.1

R&D University
Alan URich

~ Apple Confidential 8
11-10--92

8

CPU Architecture

l~~ D~,!,~ ~~,dressing Mod,es

• Base + Displacement Addressing Mode (D-form)

- Base: Any GPR other than RO (RO ~ zero for base)
May be updated with Effective Address

- Disp.: 16-bit signed immediate value (+32KB)

• Base + Index Addressing Mode (X-form)

- Base: Same as D-form

- Index: Any GPR (including RO)

• Large displacements need multiple instructions

- Construct absolute address

- Construct 32-bit offset

- Load pointer

PowerPC Runtime Architecture
Version 1_1

R&DUniveraity
Alan URich

11 Apple Confidential 9
11-10--92

9

CPU Architecture .

(.~. ,~,!,~fo~,~~,~,~,!"!~~~~~,~"""",, """""""'" """'"
• Operand availability

• Instruction latency

• Hardware Implementation

- Number of functional units
- Register renaming support
- Special instruction support

PowerPC Runtime Arch_ecture
V .. ionl.l

R&D Univenlity
Alan LiHich

Ii Apple Confidential 1 0
11-1()'-92

10

Register Conventions .
GPR Usage
, " a or, , au,

• Size is 32 bits or 64 bits

• Volatile Registers (may be clobbered by calls)

o ~ Scratch, glue, prologues, and epilogues

3:10 ~ Scratch, "integer" and composite parameters

11: 12 ~ Scratch, glue, prologues, and epilogues

• Nonvolatile Registers (preserved by calls)

1 ~ Stack pointer

2 ~ TOe pointer

13:31 ~ Local storage

PCMerPC Runtime Archlecture
Version 1.1

R&D University
Alan LiNich

• Apple Confidential 11
11-1~92

11

Register Conventions

FPR Usage
ID

• Size is always 64 bits

• Volatile Registers

o => Scratch

1 : 13 => Scratch, floating point parameters

• Non-volatile Registers

- 14:31 => Local storage

PowerPC Runtime Archilec:tu ...
Version ,_,

R&D University
Alan URich

• Apple Confidential 1 2 ,,-,0--92

12

(~'

Register Conventions .. ':"
CR Usage

• Size is always 32 bits (8 fields of 4 bits each)
• Bits set as "LT, GT, EQ, SO/FU" or "FX, FEX, VX, OX"

• Volatile Fields
o => Scratch, set by integer Rc

1 => Scratch, set by floating point Rc

6:7 => Scratch

• Non-volatile Fields
2:5 => Local storage

PCMerPC Runtime Architer:ture
V_ion 1.1

R&D UnlvelSiIy
Alan Lilich

• Apple Confidential 1 3
11-10--92

13

Register Conventions

(:,' Special Register Usage

/',
:~,
't

{ ','"

~ ,,1'

FPSCft etatue bite are volatile, control bite are nonvolatl

PowerPC Runtime An:hileclu ..
Varaion1.1

R&D Univelsly
Alan Ulich

It Apple Confidential 1 4
11·10--92

14

Register to Register Transfers
~ a III

• GPR toGPR
• GPR to/from LR, CTR, XER, and CR fields

• FPR toFPR

• No GPR to/from FPR

• CR bit to bit and field to field

P_PC Runtime Architectu18
Vnon 1.1

R&DUnw-i!y
Alan Lilich

.. Apple Confidentiel 1 5
11·10--92

15

(

Register Conventions .

• Questions?

P_PC Runtime Architecture
Version 1.1

RaD Univenlily
Alan URich

• Apple Confidential 1 6
11-10--92

16

('

Program Components
Basic physical building blocks

• Differentiated by:

- Usage

• Applications

• O/S and Toolbox

• "Extensions"

- Capabilities
• Supports static data ("AS world")

• Size limitations

- Storage location and form
• In resource or data fork

• Type and number of resources

• Internal format of storage

PowerPC Runtime Architecture
Version 1.1

R&DUn ity
Alan Lilich

• Apple Confidential 1 7
11·1D--92

17

Program Components

Definitions

• Application:
- Software launched by the Finder to process documents.

• Shared Library:
- Software used at link time to resolve external symbols and again

(automatically) at runtime to provide implementation of those
resolved symbols.

• Extension:
- Software that is neither an application nor a shared library.
Activated~ at runtime. Examples XCMD, LDEF, DRVR,
INIT, CDEV. h'1 p~

I ,

PowerPC Runtime Architecture
V ion 1.1

R&D Univeraily
Alan Ulich

41 Apple Confidential 1 8
11-10--92

18

680xO Components
. .

f~" Differing Capabilities and Forms
, __ , .. 1 a 1111 n I

• Usage determines capabilities and form

• Application
- Collection of interdependent "CODE" resources

- Has a static (AS) world

• O/S & Toolbox
- Amalgam of ROM resources, INITs, patches, etc.

- Lacks a static world

• Extension
- Usually a single stand-alone resource

- Lacks a static world

PowerPC Runtime Architecture
Version 1.1

R&DUniv ... iIy
Alan URich

" Apple Confidential 1 9
11-10-92

19

PowerPC Components

Everything is a Fragment
,

• Fragment:
- A logical packaging of software encompassing common aspects of

applications, shared libraries, and extensions.

• Usage influences storage location and external attributes
• All fragments have important common capabilities

- Code and static data

- External interface

- Automated connections to other fragments

PowerPC Runtime Archlecture
Version 1.1

R&DUniveralty
Alan lilich

II Apple Confid.~a/ 20
11-10--92

20

PowerPC Components
.. .

Everything is a Fragment
nuannnaann n naannnnnrr nnnnnnnnaaannann s nann nun I uUlIanaa IIU' un un

• Container:
- The physical storage of a fragment.

• Storage location can be anywhere

• Internal storage formats hidden by loader API

• Linker creates fragments

- One link => one fragment 0<: ''''''i~ . _
. h.er\' No,.c.. ~'I\b

- Fragments are not segments JL

• Section:
- A region of memory occupied by part of a loaded fragment

P_PC Runtime Architecture
V.sian 1.1

R&DUnw-iIy
Alan URich

" Apple Confidential 21
11-10--92

21

PowerPC Components .,

CFM & CFL
(I II I I all a a a n III IIIIU nua lUI III I III I 11111111 IIUU 1IIIIIIIat

• Logical/physical separation
• Code Fragment Manager (CFM)

- Manages contexts and instances

- Manages export/import tables

- Uses CFL to process container

• Code Fragment Loader (CFL)
- Provides API to process container

- Fully shields higher layers from container format

- Finds proper loader at runtime

- PEF and XCOFF loaders are standard

PCMerPC Runtime ArchMecture
Version 1.1

R&D University
Alan LiHich

• Apple Confidential 22
11-10--92

22

PEF & XCOFF Containers

(~ Similar Organization

('

• Single contiguous piece of storage

• Headers are of fixed length
• Typically three sections:

- Code (loaded)

- Static data (loaded)

- Loader information (not loaded)

• Loader information describes
- Loaded sections

- Exports & Imports

- Runtime relocations

P-"C Runtime Architecture
Version 1.1

R&D University
Alan Ulich

... :..
': OVER1tJ.l. HE~DER

,'. SECTION. H~ER

:.' 5ECi10~HS)JjER' ..

:: SECTION. CONTENTS :

:'. SECTION:! CONTENTS .

" Apple Confidential 23
11-10--92

23

Differences in Usage
I H II 'm;' un a aD r ,n n r

• XCOFF headers and sections tied to UNIX memory model

• PEF truly supports multiple code and data sections

• PEF is defined only as an executable format

- No defined sections for linker relocations, debugging, etc.

- Could be extended, but there are no plans to do so

• Tool usage

- IBM's linker only generates XCOFF

- Apple's linker initially generates XCOFF

- A conversion tool reads XCOFF and writes PEF

PCIIIII8rPC Runtime Archlecture
Version 1.1

R&D University
Alan URich

~ Apple Confidenlial 24
11·10--92

24

PEF & XCOFF Containers

Differences in Features
nn a, If nl" fTaUI" unn 1111 un un """ unune ann, ,un u , '"

• PEF has smaller headers
• PEF supports .••

- ... data sharing attributes

- ... packing for initialized data

- ... bidirectional version checks for imports

- ... initialization and termination routines

• PEF has a dramatically improved loader section
- Tremendous savings for runtime relocations

- Better organization for export/import tables

P_PC Runtime Archaecture
V .. ionl.l

R&D University
Alan UUich

• Apple Confidential 25
11·1()'·92

25

(,

PEF & XCOFF Containers "
.

Loader Section Improvements

• Runtime relocations (all are 32-bit pointers)
- XCOFF uses 12 bytes per relocation

- PEF uses one 2 byte item for many relocations

- PEF takes advantage of relocation patterns
• Linker groups all transition vectors together

• TOC pointers to imported symbols are often contiguous

• TOC pointers to own code or data are often contiguous

• Initialized data like C++ VTables include relocation

• ExportlImport tables
- XCOFF merges, PEF organizes by usage

- PEF contains hash tables for CFM

PlWMrPC Runtime Alchlecture
Version 1.1

R&D Univenlily
Alan Lilich

" Apple Confidential 26
11·10--92

26

PowerPC Components ,
(-~ Everything is a Fragment

('

,"

PClMlrPC Runtime Alchilecture
Version 1.1

R&DUnivelsity
Alan Lilich

~ Apple Coniiclenlial 27
11·1()".Q2

27

~.'--"

il
..., ~,

PowerPC Components
Fragment Usage Differences
ana aalllluaUllllunauuaunUUlllllUI aaaaaauuuaaaulau a

• Application
- Extra information in "SIZE" resource, etc.

- Stored in data fork of application file

• Shared library
- Connected automatically at runtime to clients

- Often stored in data fork of library file or ROM

• Extension
- Connected by explicit request

- Often stored in a resource

PCMI!IrPC Runtime Archftecture
V.-.ion 1.1

R&D University
Alan Ulich

• Apple Confidential 28
11-10--92

28

PowerPC Components :"

f' Everything is a Fragment
""-, ~ .. /

(

C'

• All fragments are first class programming citizens
- Source language usage is not restricted by fragment usage

• Stored in containers with flexible format
- May be in data fork, as resource content, in ROM

- Appropriate low level loader found at runtime

- PEF and XCOFF loaders are standard

• Loading API provided by Code Fragment Manager
- Used by Process Manager to launch applications

pr~f~~~a.t.~
- Directly callable to man:ua:11¥ nandle extensions

- CFM handles automated connections and other preparation

POWIIrPC Runtime Architeeture
V.sian 1.1

R&D University
Alan Lllich

• Apple Confidential 29
11·1~92

29

Capabilities of Fragments .

Every Fragment Has ...
un at 1 1 nnunuuulunuuaunn In

• "Loaded" sections of code and static data
- Transparent static world switching on routine calls

• Exported symbols for others to use
- Defined manually at link time

• Optional initialization, main, and termination routines
• Imported symbols from shared libraries

- Created by linker during symbol resolution

- Connected by CFM automatically at runtime

PCNMrPC Runtime Architecture
Version 1.1

R&DUn ity
Alan UUich

• Apple Confidential 30
11-10--92

30

(

Capabilities of Fragments
.

• Code
- Pure code ~ ROMable & directly pageable

- Position independent
• Code can be placed anywhere => no absolute branches in code

• Data can be placed anywhere => no absolute data addresses in code

• Static Data
- Contains pointers for position independence of code

- Flexible sharing of data sections:
• Global: One system-wide copy

• Context: One copy per context (context = application; the norm)

• Never: Fresh copy for each load request

POIMIrPC Runtime Alchitecture
Version 1.1

R&DUniversily
Alan LiHich

It Apple Confidential 31
11·10--92

31

Fragment Reality Today .. '
, ,

(~~ •.• and in the Immediate Future

(

• Conventional languages need only two sections

• At most one section of code per fragment
- Not intended for 680xO--style segmentation

- Data-only fragments are useful

• One section of static data
- Includes both ".data" and ".bss"

- Code-only fragments are not "conventional"

PowerPC Runtime Architecture
Version 1_1

R&D Univenlity
Alan LiUich

" Apple Confidential 32
11-10--92

32

Exports and Imports .. '

• Exports
- Definition: a symbol provided to the outside world by a fragment.

It has a name and location (section + offset.) Used by imports. May
be looked-up manually.

- You give linker a list of global symbols to be exported
- Both routines and static data can be exported
- (FYI: Actually only data symbols are exported)

PowerPC Runtime Architecture
Version 1.1

R&D University
Alan LiUich

" Apple Confidential 33
ll-lD-92

33

Exports and Imports " .. "

(~~/: Both are created by the linker
II I naaaaannaauaa annan

• Imports
- Definition: a reference in a fragment to an export from a shared

library. Created at link time as part of the esternal symbol
resolution. Final address binding is automatically perfrom at
runtime.

- You give linker shared libraries to link with

- Shared library exports used for global symbol resolution

- Symbols resolved to exports become imports

- Imports recorded as library-name/export-name pair

- Linker resolves symbols, CFM binds addresses

PowerPC Runtime Archilecture
Version 1.1

R&D University
Alan Lillich

• Apple Confidential 34
11-10--92

34

Exports and Imports
Linker Creation of Imports

PowerPC Runtime Architecture
V.sian 1.1

R&D University
Alan Ulich

lt Apple Confidenlial 35
11-10-92

35

Exports and Imports
. .

(~ Runtime Binding
" na 11 I un un an ann an an ann un aD a

• To load a fragment, the Code Fragment Manager
- Finds and loads the necessary imported libraries

• Full closure of libraries is loaded (not "on demand")

• Runtime library must be compatible with linktime library

- Binds imported symbols to actual addresses of exports

• Compatibility Checks
- Library version recorded by linker, checked by CFM

- All imports must be bound at runtime, except ...

- Specific imports may be named at linktime as "soft"

• Allowed to be missing at runtime

• Programmer is responsible for checking before use

PowerPC Runtime Architecture
Version 1.1

R&D University
Alan lilich

It Apple Confidential 3 6
11·10-··92

36

PowerPC Fragments

Anonymous Special Routines
lua ." .fllIlIlIll1n un r 1 IUIa I UIIIII' III II I CD I au

-Main
- Useful for applications and single-entry extensions

- Returned by CFM when loading a fragment

- Initialization
- Allows self-initialization of static data before use

- Called automatically by CFM when data sections are created
• Called in order of import dependency

• Order may be explicit for mutual dependencies

- Termination
- Obvious counterpart to initialization routine

PowerPC Runtime Archftecture
Veraion 1.1

R&D Univenlly
AIanUUich

" Apple Confidential 37
11·10-·92

37

Fragments in Action

Building a Shared Library

PowerPC Runtime Architectu18
Version 1.1

RaDUn",-iIy
Alan URich

• Apple Confidential 38
11·1()'-92

38

(
Fragments in Action
Building a Shared Library

p""""pc Runtime Architecture
Version 1.1

R&D Universily
Alan Lili:h

4i Apple Confidential 39
11-11H12

39

Building a Shared Library

PowerPC Runtime Archilecture
Version 1.1

R&DUniversily
Alan Ulich

II Apple Confidenlial 40
11·10--92

40

Fragments in Action .

Building an Application

PCMerPC Runtime Arch~eetul8
Version 1.1

R&DUn iIy
Alan Lilich

" Apple Confidential 4 1
11-10--92

41

(

c

Fragments in Action

Building an Application

P.-rPC Run1ime Architecture
Version 1.1

R&D Universily
Alan Lilich

• Apple Confidential 42
11-10--92

42

Fragments in Action
(" Building an Application

P_PC Runtime Architecture
Version 1.1

R&DUniveNity
Alan URich

II Apple Confidential 43
11·10--92

43

Fragments in Action

App, Shared Libs, & Extension
... GlII .un r ,

PowerPC Runtime ArchMecture
Version 1.1

J .1.

R&D University
Alan Lillich

Ini.tGraf
Wai.tNextEvent
MenuSelect
Exi.tToShell

neTo
raseRect

GetNewDi.alog
GetNewWi.ndow

Apple Confidential 44
11-1Q..-92

44

(/

Fragments in Action

Extension Exporting Fu II API

PowerPC Runtime ArchRecture
Version 1.1

Open Channel
CloseChannel
TransferData
PacketAccount
ErrorCount

R&D University
Alan Lillich

Apple Confidential 45
11·10··92

--------------------._._._ _---.--.--_.-.--._-------------

45

(

Fragments in Action

App with Custom Extensions
H,."nN ..

··.· ... ;~::·i
::.f~o~e IT data ,.....!

~_;. ~~~?-;~~r .;~·~:;,..:i;·;,,:..;;:x' :~~!-;;.?.,~~; ;.:_:--:-;;., _ ~;;;::,:,< ~ .. ;:::i:;~ .• ;.;.;·!~f

OpenTool
CloseTool
ActivateTool

PowerPC Runtime Archftecture
Version 1.1

,.

J I IS

GetConrnand
TrackMouse
SetPenColor
SetFi llPattern
MoveGroup

". f~
;~

··',I:ode ·lfd~taJ.l
:i;·::.; ;.::::.-;-;: -: .. ~:.:~·:::::;f:i:::::.;:.':.: .• :~-::~~-;;::::-~:-:;:'~(»'··:.:"i;: :-;;., :~:~)~

OpenTool
CloseTool
Acti vate Tool

R&D University
Alan Lillich

OpenTool
Clos eTool
ActivateTool

Apple Confidential 46
11-10--92

46

PowerPC Fragments ..

• Questions?

PCM8I'PC Runtime Archlecture
Version 1.1

R&DUn",-iIy
Alan Lilich

" Apple Confidential 47
11-1()'·92

47

Global Addressing

The Table of Contents (TOC)
m P II II .. II S S

• The TOe is .••
- The code's gateway to the world

• More akin to personal address book than table of contents

- Buried in the static data
• Addressed through a dedicated register (R2 a.k.a. RTOC)

PowerPC Runtime Archftecture
Version 1.1

LNew

DrawText

R&D UnlversRy
Alen Lillich

Apple Confidential 48
11-10-·92

48

Global Addressing
(The Table of Contents (TOC)

('

• The TOe collects pointers to support addressing model
- Localizes memory modified during loading

- Static data is addressed indirectly through the TOe

- Imported routines are called indirectly through the TOe
• (We'll see later that they actually use pointers to data to do this)

... ,.----. ...----t~ ----.

PCllMlrPC Runtime Architecture
V .. ion1.1

data
i[10001

-,--
k

data x
y

Toe

L-............................... . -_ .. _ .. _.j]
TOC ~---.f ~ ;---. -----'J""---'.

~L-IJ----'
R&D University
Alan Lillich

II Apple Confidential 49
11-10--92

49

Global Addressing .
.

('~ The Table of Contents (TO C)

• Explicit (source) pointers do not use the TOe
- Initialized static pointers get relocated (e.g. C++ VTables)

PCMerPC Runtime Architecture
Version 1.1

Oda~ i i
i ~ !

f"Toc············-··=··-+···E:; ~~~U-l-----~l--:-da-:-ta--=-X -._-:.1• ..-....,
! = 1 TOC-' '=!-i-.....I
L-._----l : :

R&D University
Alan UKich

• Apple Confidential 50
11·1().·92

50

Global Addressing .
....

The Table of Contents (TOC)

• The TOe supports ..•
- Purity and position independence of code

- Separate static worlds ...
• For separate fragments

• For separate instances of one fragment

- Addressing of large numbers of static data items

- Unbounded size for individual static data items

• The TOe really belongs to routines, not fragments
- It is where RTOe points when a routine is called

- RTOe is switched as part of cross-TOe calls

- A linker is free to build multiple TOes in one fragment

PowerPC Runtime Archileclu18
Version 1.1

R&D Univelllily
Alan Ulich

II Apple Confidential 51
11·10-92

51

Global Addressing .

The Table of Contents (TOC)
naanaallaanuua ~nallllnllaaanaallnillnaannlneaannaaniinallnlaall una IIlunuunUlIllIlIlI1 III III

• Compilers create some TOC entries, e.g. C uses:

- One pointer for each "extern" variable

- One pointer for a compilation's pool of "static" variables

- One pointer for each routine whose address is taken
• Routine pointers are to "Transition Vectors", not code

• Linker creates other TOe entries:

- One pointer for each imported routine

• Linker does final arrangement, discards unused pointers

- All offsets to TOe entries are fixed after linking

- TOe entries are not created at runtime

- TOe entries are initialized/setlfilled-in at runtime

PowerPC Runtime Architecture
Version 1.1

R&D University
Alan Lilich

• Apple Confidential 52
11-10--92

52

Global Addressing

(-: Transition Vector (TVector)

c

• Two or three word structure:

- [Environment word]

• Created by compilers
• In static data, same fragment as code
• The address of a routine is the address of the TVector

- Export TV ector address, not code address

• Not the "Routine Descriptor" of Mixed Mode

PowerPC Run1ime Architeclure
V«sion 1.1

R&D Univenlily
Alan Lilich

~ Apple Confidential 53
11·1().·92

53

(

Fragments in Action

App & Friends, with TOe
I 11I1.1iI II If

PowerPC Runtime ArcMecture
Version 1.1

R&D University
Alan Lillich

Apple Confidential 54
11-10--92

54

Global Addressing

• Questions?

P_PC Runtime Architecture
Version 1.1

R&D Univenoity
Alan LiHich

II Apple Confidential 55
11-10--92

55

Calling Conventions

• Stack Usage
- Radically different from 680xO approach

• Parameter Passing
- Largely register-based, influenced by stack model

• Code Generation for Calls
- Compiler & Linker cooperate on cross-TOC calls

P_PC Runtime Architecture
Version 1.1

R&D University
Alan linich

• Apple Confidential 56
11-10--92

56

Stack Usage

(680xO Stack Model

('

("

, .'

• Conventional grow-down stack 0 .
- Separate frame pointer (FP) and stack

pointer (SP)

- Parameters above FP, locals below FP

- Push and pop at will using SP

• Pascal and C have different protocols
(Unnecessarily!)
- Order of parameter processing

- Which side pops parameters

- Where function results are returned

• Hardware enforces 16-bit alignment
- 32-bit alignment preferred

PowerPC Runtime Archfteclure
Version 1.1

R&D University
Alan Lillich

00

FP'

SP

Apple Confidential 5 7
11-10--92

57

(
Stack Usage

PowerPC Stack Model
,a.,._ D D : ... P" ... PUWI_

• Still a grow-down stack, but ..•
- Single top of stack pointer (SP)

- Special areas for linkage, parameters,
locals, etc.

- No "trivial" pushing and popping

• Uniform usage for aU languages (We
hope!)

• Alignment enforced by software

• Organized to reduce common-case
memory references

PowerPC Runtime Archfteclure
Version 1.1

R&D University
Alan Lillich

Apple Confldenllal 58
11-10··92

58

PowerPC Stack Frames

Contents of Special Areas

• The "RedZone"TM

• Callee's linkage area

• Callee's parameter area

• Callee's local variables

• Callee's FPRlGPR save areas

• Caller's linkage area

+
c:

L&.I
L&.I
-l
-l
a:
Col

• Caller's parameter area

;[.

iCC

PowerPC Runtime ArchKec!ure
Version 1.1

R&D University
Alan Lillich

Apple Confidential 59
11·10··92

59

PowerPC Stack Frames

Stack Linkage Area
PP •• H«F~P" •• a •••• r .. JIll ... ' I_au

Set in own area at frame creation

Reserved (not used at present) Ii~;;~;;;-
Used by "patching" mechanism

Set in own area by cross-TOC glue

Set tn coller's area by callee's prolog
Set in coller's area by cal lee's prolog

PowerPC Runtime Archnecture
Version 1.1

1------
L...-___ -'§m

~----

1------

R&D UnlversHy
Alan Lillich

Apple Confidential 60
11-10--92

60

PowerPC Stack Frames

General Responsibilities
_IBn. ,un.II' r 'II J a .. r II II" F If •• "n " .. ,." , I

• Caller prepares parameters then
performs call

• RTOC saved in caller's linkage area
(by glue or caller)

• Callee saves link and condition
registers in caller's linkage area

• Callee saves nonvolatile FPRs and
GPRs on the stack

• Callee allocates frame, preserving
alignment and linkage (old SP)

• Order of callee actions is by
convention, not requirement

PowerPC Runtime Archftecture
Version 1.1

R&D University
Alan Lillich

+
c:

LLI
LLI
.....r
-.oJ
a:
u

LLI
LLI
.....r
-.oJ
a:
c.,)

~[
,00

Apple Confidential 61
11·10··92

61

('
PowerPC Stack Frames

Alignment Issues
nO.Mun.An If If r r 110* a1 a I r n 'Tn.'

• Alignment is maintained totally +

by software c
UJ
UJ

• GPR Load/Store multiple have
-l
-l
a:
u

hardware impact

- Require "natural" alignment UJ
UJ
-l

- Prefer quadword (16-byte)
-l
a:
u

alignment at high address end
- Instruction: ;[stmw start_reg, start_address

• SP presumed to be kept
quadword aligned !OO

PowerPC Runtime ArcMecture
Version 1.1

R&D University
Alan Lillich

stal"t
address

a I ignment
. boundal"Y

Apple Confidential 62
11-10--92

-----"-.-.---.-.-.~-.. -.----------

62

(.•.

~,

PowerPC Stack Model

Register Saving & Restoring
, m I I • 14.... TF r I

• Callee saves & restores almost
all nonvolatile registers

- Link (LR) & condition (CR)
registers in caller's linkage area

- "High" GPRs (13-31) & FPRs
(14-31) in own save areas

• RTOC is special

- Saved "between" caller and
callee in caller's linkage area

- Restored by caller immediately
upon return

• Leaf routines use ''top'' linkage
area and the RedZone™

PowerPC Runtime Archftecture
Version 1.1

R&D University
Alan Lillich

Apple Confidential 63
11-10--92

63

PowerPC Stack Model

Interrupt Issues
F F J 1'

• The RedZone™
- Must allow for maximum use

- Decrement SP by 224 before using stack
• 19x4 (GPRs) + 18x8 (FPRs) rounded to quadword

• Alignment
- Assume preserved by PowerPC code

- Assume not preserved by emulated code

- Save current value and clear low 4 bits of SP
• Don't save old SP on stack without skipping RedZone™ first!

PowerPC Runtime Arohttecture
Version 1.1

R&D University
Alan Lillich

Apple Confidential 64
11-10--92

64

(

Calling Conventions

Parameter Passing
-... :I. a ".USII.

• Single parameter area in each
frame

- Used by caller to prepare
parameters

- Used by callee to access
parameters

- Large enough for largest
parameter list

PowerPC Runtime ArcMec!ure
Version 1.1

R&D University
Alan Lillich

+
c

UJ
UJ
...J
...J
a:
CJ

UJ
UJ
...J
...J
a:
CJ

0

Apple Confidential 65
11-10·-92

65

(. Parameter Passing

• Layout parameters like a record
- Leftmost parameter as first "field"

- Each field aligned to a word boundary

- Small "integers" extended to a word

- Composites not affected internally

• Some parameter values passed in registers
- First 8 words mapped to GPRs 3-10, except ...

- First 13 "visible" floats passed in FPR 1-13

PowerPC Runtime Architecture
Version 1.1

R&D University
Alan Uli:h

• Apple Confidential 66
11-10--92

66

(:

Calling Conventions
.. . ..

Function Results
e a e a a , at la, ln n

• Simple function results in R3 or FPRI

• Composite results of known size

- Caller allocates space for the result

- Address of result passed as implicit leftmost parameter (R3)

P_PC Runtime Architecture
Version 1.1

R&D University
Alan URich

It Apple Confidential 67
11·10-·92

67

Calling Conventions
(GPR and FPR examples

PowerPC Runtime ArchReciure
Version 1.1

R&D University
Alen Lllich

• Apple Confidential 68
11-10--92

68

Calling Conventions
(~~- Parameter Hacks for C

(,

• Variable numbers of parameters =>
Minimum of 8 word parameter area
- Callee doesn't know how many were passed

- Callee saves R3 through RlO into the parameter area

- Callee walks through parameter area to access values

>:~, '.::~.'1.:;!:;::;"; .. ::~:'.f.r.~;"';'. (Ett·· .. · .".;:' :'. :.: . '. . . : " ... :".. ~,: .. ' ~,.:.~;;" ", '; ... },: , ", ">.\ ;-:;:\:... :'<.1''';' .

\ .".
'-

.'"."

. :.':. ". . ,.;.:: .. ,~;'. ': . "
: ,:: . ~~ ... ' :~' :', :'" :~ : •. ~... ::", .,<,t<· ' .. " . :~ :~~>~\., . i.: \" :~. ~ :":~< "Y:~\>~~.~.\ <~'::' .:: ::\:;~,.. " ,

PowerPC Runtime ArchHecture
Version 1.1

R&D University
Alan URich

Low

• Apple Confidential 69
11-10--92

69

Calling Conventions
(_'- Parameter Hacks for C

• Lack of prototypes =>
Floats in both GPR and FPR

- Caller doesn't know if callee expects floats or not
Callee always knows what it expects

. +r-.-.. --.,,-.. -, ---EITHER -------........ ,
.. "

:~~~Jn:.jj:~~~~i~
-.~/oi.ij:iIILini1:l'J:~,~ {oj, nt·:~,;:;·~ '.J '"

.,:./::" .. ~.~ ... ',~:'. ! .~":: ..

:';"::\':;:> <.:'

PowerPC Runtime Archftecture
Version 1.1

R&D University
Alan LiUich

;,i::'%:~ii}}~i",(J?:;~{;:j~'C

Ii Apple Confidential 70
11-10-92

70

Parameter Passing
(- Example Showing Code & Stack

PowerPC Runtime ArcMec\ure
Version 1.1

• OxOOOOOOOi
• Ox00000006
• OxOOOOOOOc
• OxOOOOOOlt
• Ox00000016

R&D University
Alan LiRlch

• Apple Confidential 71
11-10--92

71

Calling Conventions

Code Generation for Calls
• ~ I r ~ I

• Local call, a "compiled-in" call without a TOe switch

- Direct branch to ca11ee

PowerPC Runtime Archttecture
Version 1.1

.....

. ... \ :,::.::;:~\:~: ·.>::f60 '
" '~'. " ':.' .: ... ','

: ~ ,:- :': '.~ ~ ,: -, " ::,' ',_. '. , ::.: ', ...
\r.:~ti_st§.~t.5.i@.~\t&i. ju.J.a(:-: "', '

R&D University
Alan LlHlch

Apple Confidential 72
11-10--92

72

(
Calling Conventions

Code Generation for Calls
J,. J U U PeI __ , I II. r H I f

• Non-local call, "compiled-in" call with a TOe switch

Compiler prepares, linker finishes cross-TOC connection

PowerPC Runtime ArchHeclure
Version 1.1

.';:~1~t'1~!~i~:'
. . , vcr\:(J .. bqr .:o{ .. .

/;;'t::~Wc·.,;: ••

R&D University
Alan Lillich

Apple Confidential 73
11-10--92

73

Calling Conventions

Code Generation for Calls
I " 11"._. II' •

• Pointer-based call, a call through a routine pointer
- Very similar to cross-TOe case

PowerPC Runtime ArchHeoIure
Version 1.1

R&D University
Alan Lillich

Apple Confidential 74
t1-10--92

74

Code Generation for Calls

• Cross-TOC Call Details

• Compiler generates RTOC reload slot wI NOP

• Linker ''f'lXes'' RTOC reload, appends custom glue

• Linker may create TOC pointer to TVector

• Optional "environment" word ignored

. :; e.~~~~~:;Y~{~~¢:9In~~tA:. :b.:'.} .~:;

::fii.·l·s~~~~t:n.·.;;~~f;X;·:~·::~::':: /"\.:
:-,: -;<! .•.

,.:: '~s'~~~~0L,:,\:5:~f';"
;.. ; ~ .. , . . ;··r;' ?> : i·:. :" ',; -,!
>} ... ':/ : .. ", :.,"

'" .:. ',,:

:'m~rf;~~,.~iL:·,·'.·.
.;.... :": .. -".. ': ,'

PowerPC Runtime ArchKeclure
Version 1.1

. . ':;

R&D University
Alan Lillich

. '" .

/~~:1:r~·~~~·~\,\::::· .;';",:::;:::/ ';'. ';'::": .
• ,: ,,- :" ~ • • '.,. • ". .,' • - ,'- " • 0" .', :,. :'. • •• ', ' •

..•. i .. ·::~i ,·r ') -:S~g~~~t~j~~~ .:: ',::
. ·.;.::!Lwz.:. R'fQ~;' .20(SPD, ; " '::

:: .. ':;' L :' .!, .. ~: :.: ~;:. ·r::! .:< ;':: ':y '~ .. : ',,, " ~::'

, ::";:'\:: ... ,:;;\:::> :.' '.:
~·::.$e~~~t.A}A:uE!(·:· ':\'
. : :., lwz; .' Ri2,-' T'.-S~gnieEitA(RT()(.

.. ·;?~tw··::·RTQC,. Z0(SfY:"
':;:. ;.·Jwi: ;:' ·.::fU;l;, 0(R1Z'):' . ;,)

.:··:::1~~~~:-~~~~r;~~~~~<:.". :':
··~l~~~~:;~:!~iI~~:~\~~~~;;.'

Apple Confidential 75
11-10--92

75

(
Code Generation for Calls .

. .

• Cross-TOC Call Details

• Compiler generates RTOC reload slot wI NOP

• Linker "fixes" RTOC reload, appends custom glue

• Linker may create TOe pointer to TVector

• Optional "environment" word ignored

PCMerPC Runtime Architecture
Version 1.1

glue:

S ierpinski • 5 code Sierpinski • s data

bi· glue ...
Toe

lwz r12. TVPtr T.SegmentA: ...

s ;ell!lentA' 5 code
... I

I
TOC:

R&D University
Alan Lilich

SegnentA' 5 data

-- I

11 Apple Confidential 76
11·1Q.-92

76

I
I
!1
'i

(~
Code Generation for Calls

• Pointer-based Call Details

PowerPC Runtime ArchRecture
Version 1.1

R&DUnlverslly
Alan UHlch

It Apple Confidential 77
11·10--92

77

Code Generation for Calls

• Pointer-based Call Details

• Compiler calls standard glue, passing TVector address

• Environment word passed in Rtt

P_PC Runtime Archfteclure
Version 1.1

Sier inski's code Sier inski's data

lwz rll, TVPtr SegnentA:
bl glue

TOCI---~

glue: ••. T. SegnentA:
1-----1

l~ntA'scodi~ ____ ~~~~nt~A'=s=datta~

? ~===t.-J Toe:

R&D Unlve .. ity
Alan LlRich

II Apple Confidential 78
11·l().·Q2

78

Calling Conventions .

• Questions?

PowerPC Runtime Alchiteclu ..
Version 1.1

R&D University
Alan Lilich

~ Apple Confidential 79
11·10-92

79

Had Enough? ...
. .

(End of First Day

• Tomorrow's agenda
- Object modules

- IBM's "dis" tool

- Sierpinski example

- Shared libraries

- System software issues

• Questions?

P_PC Runtime Architecture
Version 1.1

R&D Univenlity
Alan LiHich

• Apple Confidential 80
11-10--92

80

(
Day 2 Content

PowerPC Runtime ArchKecture
Version 1.1

R&DUniverslly
Alan Lillich

'* Apple Confidential 81
11-10--92

81

Schedule for Day 2 .
. .

(Second Day of Course

• Object modules

• IBM's "dis" tool

• Sierpinski example

• Shared libraries

• System software issues

PowerPC Runtime Architeclure
Version 1.1

RiD University
Alan UUich

II Apple Confidential 82
11-10-92

82

Object Modules ...
(" File Formats

• Highlights, details later
• Compiler output is XCOFF
• IBM linker output is XCOFF
• Preferred Macintosh executable format is PEF

- Format defined by Apple to address XC OFF problems

- Generate today via XCOFF=>PEF conversion tool

- Very similar in overall concept to XCOFF

- Considerably smaller and faster to load

- More expressive than XCOFF for runtime needs

- Lacks defined object module capabilities

PcwerPC Runti Architecture
Version 1.1

R&D University
Alan LiHich

II Apple Confidential 83
11·10-92

83

Object Modules
, ,

(' Symbol Names & Classes

• Symbols are identified by both name and class

- Written as "name{class}" or "name[class]"

• Common symbol classes:

- PR ~ code (program)

- RW ~ initialized static data

- BS ~ uninitialized static data

- TC ~ TOC (note special TOC{TCO} symbol)

- UA ~ unassigned (static data)

- DS ~ transition vector (descriptor to IBM)
- GL ~ linker created call glue

POWIIrPC Runtime Archilecture
Version 1.1

R&D Univenlly
Alan Ulich

.. Apple Confidential 84
11·10-92

84

Object Modules ..
.

(CSECTs (Control Sections)

• Similar to MPW "modules"

• Linker includes only referenced CSECTs

• Have name and class like other symbols

• Note IBM compilers generate only one code CSECT!

PowerF'C Runtime Architectunt
Version 1.1

R&D University
Alan LiHich

Ii Apple Confidential 85
11·10--92

85

('

Object Modules

The" .tc" macro

• Format:

label .tc name, contents

• Equivalent:

label
.csect name{TC}
.Iong contents

PowerPC Runtime ArchKecture
Version 1.1

R&D University
Alan Lillich

Apple Confidential 86
11-10--92

86

(

Object Modules .
.

• Questions?

P~PC Runtime Architecture
Version 1.1

R&D Unjy"",iIy
Alan URich

" Apple Confidential 8 7
11·10--92

87

Review of Yesterday
(Sierpinski Example

• (See handouts)

P_PC Runtime Archilecture
V_ion 1.1

R&DUnivemily
Alan Ulich

~ Apple Confidential 88
11-1Q..-92

88

(
Shared Libraries
.

• Why they're a Good Thing
- Smaller executables

- Facilitate updates to common code

- Foundation for software components

- Simplify concurrent development

• Important features
- Ease/fransparency of use

- Automatic and on-demand connections

- Access to language features

- Sharing of code at runtime

- Flexibility of data instantiation

P_PC Runtime Archilecture
Version 1.1

R&D Univenlily
Alan Ulich

II Apple Confidential 8 9
11·10--92

89

I

il

I~

(

(

Shared Libraries

• Available Implementations
- CFM on PowerPC
- SLM on 680xO
- Dinker on 680xO

• Feature Matrix

PowerPC Runtime ArchReclure
Version 1.1

R&D University
Alan LlHlch

• Apple Confidential 90
11-10--92

90

I,
I
I,

III•.. ~ i
,

I!

(Status of CFM & CFL

• Intrinsic part of PowerPC runtime
• In operation today
• Fully source transparent
• Most flexible data support
• Additional Features

- Bidirectional version checking

- Supports alternate internal models

- Integrated with Mixed Mode

- Partial library updates

PawerPC Runtime Alchiteclure
Version 1.1

R&DUn iIy
Alan LiRich

• Apple Conlidenlial 91
11·1()'-92

91

Shared Libraries .. "
......

(' Status of SLM

{

• Hacked on top of 680xO runtime

• Will layer on CFM for PowerPC

• Almost source transparent

• Additional tools to simplify C++ work

• Only supports system-wide data today

PowerPC Runtime Archileclure
Version 1.1

R&D University
Alan Ulich

Ii Apple Confidential 92
11-10--92

92

Shared Libraries
. .. .

Status of Dinker

• Hacked on top 680xO runtime
• Unsupported effort from ADG

PowerPC Runtime Archileclure
Version 1,1

R&DUn iIy
Alan UMich

" Apple Confidential 93
11-1~92

93

:l

,

Shared Libraries

(What to Expect (Nay, Demand)

• Common Capabilities and API
- Transparent use for C

- Flexible data instantiation

- Automatic and on-demand loading

- Iteration through entry points

- Source portability

PCM8.PC Runtime Architecture
Version 1.1

R&DUnivenily
Alan Lilich

• Apple Confidential 94
11-10--92

94

1,
"

I'
i'

Shared Libraries

• Questions?

P_PC Runtime Architecture
V .. ion 1.1

R&D University
Alan Lilich

• Apple Confidential 95
11-1Q..-92

95

(
System Software Issues ..

• Access to O/S and Toolbox

• Mixed Mode

• Micro-kernel

P.-rPC Runtime Architecture
Version 1.'

R&D University
Alan URich

II Apple Confidential 9 6
'1-'0--92

96

II
!l
" •

System Software Issues ..

(Access to O/S and Toolbox

(

• "Old modified" API today for compatibility
- Only changes are for callbacks, due to mixed mode

- Low memory globals still around and switched

• New API coming for growth & evolution

- Will provide better error handling

- Will allow transition to preemptive scheduling

P_PC Runtime Architecture
Ver.ion 1.1

R&DUn ity
Alan Lilich

II Apple Confidential 97
11-10--92

97

Access to 0/5 and Toolbox .

(680xO System Services

{

• Parameter Passing
- Pascal conventions

- Assembler conventions

• Invocation
- A-Line trap, possibly with selector

- Inline expansion, e.g. for low-mem "functions"

- JSR to glue

P ,PC Runtime Architect
Version 1.1

R&D University
Alan UKich

~ Apple Confidential 98
11-10--92

98

Access to 0/5 and Toolbox·
(PowerPC System Services

(

(

• Services invoked as normal routines, not via traps
- Standard parameter conventions

- Standard routine call

• Packaged as one or more" shared libraries"
- Connections via standard fragment imports for code

- Low memory global locations hidden from client

P.....,PC Runti ... Archilecture
Version 1.1

R&D University
Alan URich

- Apple Confidential 99
11·1~

99

System Software Issues

(~ Mixed Mode

(

(

• Allows mix of emulated and native code

• Static division at the fragment level
- "Fat" files and resources contain both fonns

• Dynamic division at the procedure call level

- 68OXO side may be ignorant

- PowerPC side must be aware

• API changes for callback pointers
• New service for callback invocation

P_PC Runtime Architectu18
Version 1.1

R&D University
Alan Lilich

" Apple Confidential 1 00
".'D--92

100

Mixed Mode
(Routine Descriptors

(

• For flexibility use mixed mode descriptor pointers, not C routine
pointers (to PowerPC Transition Vector)

• Dispatch service accepts calling info separately

PowerPC Runtime Archftecture
Version 1.1

R&D University
Alan Lillich

'* Apple Confidential 1 0 1
11·10-·92

101

Mixed Mode
(That's all there is to Mixed Mode?

(

• Except for simple tools, yes

• This is the external view for developers

• More internally to support O/S and Toolbox

• Big goals

- Simplicity for developers

- Invisibility for end users

• (OK, the debugging story is not the best)

P_PC Runtime Archlecture
Version 1.1

R&DUn",-iIy
AlanUlich

II Apple Confidential 1 02
11-10--92

102

System Software Issues ..

(Micro-kernel

• Won't be in first PowerPC release
• Features will appear over several releases

• Won't change low-level runtime model
- Nature of fragments (sections, exports, imports)

- Global addressing (TOC, TV ectors)

- Calling conventions (parameter passing, register saving)

• Will eyentually change system software model
- First micro-kernel release supports faceless background tasks

• Preemptively scheduled, probably just one address space

- Toolbox will not be re-entrant & preemptive until later
• Process Manager & cooperative switching will be with us for a while

P_PC Runti Architecture
Venlion 1.1

R&D Univelsily
Alan LiHich

• Apple Confidential 1 03
11-10-92

103

(

(

System Software Issues .

• Questions?

PcMerPC Runtime Architecture
Version 1.1

R&D University
Alan Ulich

II Apple Confidential 1 04
l1-1Cl--92

104

(-
Th-Th-That's all Folks! .

• Any Last Questions?

....... PC Runtime Architecture
Venion q

. ..

R&DUn iIy
Alan Lilich

II Apple Confidential 1 05
11-10--92

105

!
I
I
I
1
:1
I

PowerPC Native Runtime Architecture Draft 6, July 27, 1992

PowerPC Native Runtime Architecture

This is the specification of the native runtime architecture for Macintosh programs on the PowerPC It
deals only with the more primitive levels of the programming model. . It speCifically does not deal
with the organization of the Toolbox, internals of the heap implementation, etc. Thisis written for a
technical audience. Although written by the PowerPC Native Runtime team~ the architecture is .
intended to be CPU neutral, presuming only a large fl~t" address space arid paged memory management.

Please send comments to Alan Lillich
AppleLink: A.Lillich
QuickMail: Development Tools:DSGMAlL
Telephone: 408-862-0029
Mail stop: 37-R

Revision history:

Initial release to PowerPC Ruhtime and DTE teams only. 29-Sept-91
04-Oct-91
14-Oct-91
ll-Nov-91
27-Jan-92
27-July-92

Expanded in an attempt to at least note all important issues. Sorry, no change bars.
Reorganization of contents to focus more on specific native issues. Still no change bars.
Add details on stac~framf' register usage, and parameter passing.
Add shared library information, improve illustrations, reformat slightly.
Major revision to improve content and style.

I

• APPLE CONFIDENTIAL Page 1

Draft 6, July 27, 1992

J'b~~~'S\~:mntirjie.mOd~1 ;{o~JWadritosh·programs on the PowerPC. It deals only with
,the m:or~ primjtiv~!1e~~I$ Qf:tt\epro~ming'model. It specifically does not deal with the
organi~ti9,n: ,of '~i"l~ '199i~~, ,~.~~mals.of the various managers, etc. Our working definition of runtime
architecture coverS,~ic,OI:ganization and protocols, not specific services. Of course services must be
docu~,;but~Wh.~reJhan:,:this arcnitecturat'cte£rii::lon.'

~(~n~f}-~l.6~~.:r.;:~::{~,iif:)~,~.i;Li~··:·t ._"-.>; I"',. . j!;.< ,JdJC\'/ :~::.; :<",;,

Alt~~\i:~~ .~~.~~·bY .the'Bo~erPC Native Runtin\etea~~nd containing PowerPC code fragments,
the sys~ acch,itecili.re;·i$,intendedAoIbe :pdl"table ta-othet processors. The design is biased towards
systemS ~th har,d,w~re :in~mory management, ignoring .the probl~ms of I:eal memory systems with small
phYsi~I,~~~1j. ' .. ~~ :~~ i~ most obvious in the removal of s,9ftware controlled code segmentation.

ThiS, (~:i'i'.~~~ AS desi~ documentation for the implementors of programming tools and system
coll\ponen~suchas(~he runtime loader. Jt Inayalso seC"r-e as background for application and library
autho/~ :1:ileA~(;)1·;~tion presented maybe redundant {er many, ~ut .this is written to be a standalone
docum~nt. ,~~~~~l.covered p.r:oceeds roughly from the more g~neral to the more specific, from the
lar~r.gr~~~,t9 ~~e'sinaUer gra~nCd.JFe mor~~¥.~lw~pics, such as use of address space, apply to
userlevelc()(l{~,~t:td ,notn(!CeSSarilYJo.privil¢ged.il~vel ~~~. Mor;e detailed topics, such as procedure
caliing~~v~x\f;i~~,apply to both. -, .. '., .S.:"))9.' . ~:h; :1./ '

.T.his.-i$ a standard model, nOi: a :,·~uired. m.c:..~eL It is sufficient for the needs of current procedural
l~,n~~ ,It defines the !p,tcmperab:" ' '~ .J:el.,:mong languages and between user code and system
~V;~ Additional Jexibility 's riesi£rtecl in:;\;- low levels of the implementation to support the
~~~~.}~ of hngda~ that requi.re'3. <~ih'~rent internalmod~L, ;r,~~ areas are only briefly . 
idet:ttili~(\rhere" Full details "rl" found~n the documentation 'for thePcwerPC Code Fragment Manager 
andCGd'¢ Fragwent .Loader. 

" .','., ~ - -

Much ,of the tenninology.and,conceptscome straight from th~:tBM: implementation of AIX, on the 
RS/6OQO. They have' alreactydeveloped adequate .sd(~tiori? to several problems. Following their lead 
also simpHfl~ use of the AIX t091s for initial prototyping and testing. We deviate t\-om the AIX usage 
only where it is inadequate for our needs or where antique UNIX baggage can be disposed of at low cost. 

The cod~ lragments shown het;e am>f~JtilU~~brposes:a:.Adrepresent the PowerPC based 
Macintosi:t pt;Qdqct. The aCl,uiil ~UeJl£~sed.<Jnayrhe"slig~lyJCitifferent.. Compromises may also be 
maqe :for .h.~g~er<:Qmpati~Uity :wit~ ";A,;(X ;tQ;Je~i:im~ ie!tWitblt;d Use'Qi· the AIX model will be 
f\~es~ry9u,\~~-;~,~I~~~~~~~~~tmriiQd',)iv '9?- r;:~1?.'{~101.0!1f;1dil :~?;f, > 

,(.···~~Ln.ij.£,.rl J,lniJC!~}):{~ :,il""~l1;j ·''is 10: .~:,':.J ,2')].l.J.}~~?~ ... (;-j U] , . 

. . ,,"-" ',.m?ii'Sfb~rjj 11cizn~.jx:} ')"GW1)Oc lO:;£:l:k' 

~~oIWl ~Ss'wne;! rllJi~ »1l9,t .a I;nww~lj~t ,pp'd>())f?th-e~Jf'lf~5e:ht~xO model. 
••• _".~~ •• "" ..... _ ••••• _ ••• ; •• ,. __ ..... __ ,." •• ,,- , • ..> •••• ". - • " •••• ~ .... _.__ •• - _. _eo .~...... "., " •• 

,,A ~ e-fJ~t;tE.~~ ;~ 0 N :.F I DE N T I A L 
'" 

Page 2 



PowerPC Native Runtime Architecture ' 

II. Requirements & Goals 

These are the project goals from the specific perspeCti~~:Qfth~ N'~tjve~R~ntrmel6.w.'r~~r 
minimize the work and responsibilities of other groups, but'.:~hquldmMdnliie'tf{e\~.J-¥,t~lllgrotiPnilq ~:nom 9rll 

productivity and product quality. ,..;"~,;,; ,~:l ::r i 102f'\';;';..:}fI! ,:/,:X':,oofs!H 10"lOi:-~$Sit1bg;o 
'f ,'r"('1(',·' "'.j"sS;rl/;",·;n:j';:G ~'i~VO:> ~'-\'J;:)9Jif{':-Il~ 

Requirements are defined as those items for,w~h:~tip.P.~~flrl;\t~~nj;n'~o~idf;na~ig~if~fr.u:lob 
impact on the initial PowerPC products. Requirements would not be modified without visible warnings 
to project management. Goals are those items t~iW,~i~~1l})pQ~ntblttwhiCKrhay[bec:modifie~fijL\ 
over time for pragmatic reasons. Changes woulq..Re I?.Ul?I!c!y9i~ribut:-without the'ifla:m8aTId;iIags,{z 9tH 
of requirements changes. ... .. ~ r : ••• 

Requirements: 

• ShipproductbytheendofQ11994) j 

• Design a forward looking execution en-vifurimen..t f6rnM1~e progtams: ." ',. ;':' '''; 
• Focus primarily on future hardware plalformsppema~iexdUt:iingioaafs low en<P 
• Allow reasonable source portability for well behaved code. '":", 

Goals: 

• Be CPU and operating system kerrieti\eut~l .... (' 
• Minimize historical pollution. ,f) •. , ,J, .1 , , 

• Reduce difficulties for other elements of the PowerPC Task Force. 
• Maximize portability of existing ¥:~~~nt8??IS9!-,:rce:.9H4i.mag~~<~. 

, , . 

Strategies: 

• Make minimal assumptions abo!-lUhe Qi.5:;pro\fideps-mem~lIirluddls 9, ~'ri nwoil<: 2ln~mgs11 "9bo:> 9fl~ 
• Provide fast register based subprogram 'i:~j.(\g conv.en~ons~tii~Tla,n~tfgeS:.'~·~' .JJIJ :,e 1~ ,rlzo,lm? ,; f/ 
• Provide an easy to use anq pow~rf.J4.tsha£d:idibrmymi~sJii)1:.('!j\ iitiYJ ',,::·;,dr;.£}(c.':'" ,: FH!c Ii1 '1'01,9:;[;,' 

• Use subprogram calls to shared libraries for system servkeSifulqemti~~!~tJ411mp~Mt:lUb ''{1.6G29:';',,·,; 

• Define full user access to CPU features, e.g. for arithmetic exception handlers. 
• Propose a unified application software extension mechanism. " ,'. ','" '. '" ..' ',' ' 
• Follow existing AfX N~~f~~"A~sroClb~J;;,jeiI5minim·i;1oi! ... ~i)lf-irr!::bnl:1e:e§16J'I·loq 

The first requirement is by far the most important, deser~ing ofits $Cparate listlng.Oui- :initi~l 
success or failure will be heavily judged by this although over the longer term other issucsillay gafh 
importance. A primary tactic is to adopt existing RS/6000 A1X solutions where reasonable. 

APPLE CONFIDENTIAL 



PowerPC Native Runtime Architec-ture----- Oraft-6. July 27;-1992 

The next two requirements are closely related. The first is more of an internal issue. We must design 
a system that will carry Macintosh forward for another decade. The second is more external. 
recognizing that the base level of hardware will continue to improve rapidly. 

Two key aspects of this forward view are provisions for shared code with dynamic binding and fast 
register based calling conventions. The first allows ~pple and ISVs to deliver shareable ~mages of 
common code to end users and have applic~tions CO~P~~!~ .. their binding to sha~ed routines at load time. 
The second takes advantage of the largeregtstersets.f<ffi~al!, modern CPUs to Improve general 
perfonnance. Combined with shared code and dynamlc'1$(riding, fast calls allow dramatic improvement 

, .. \ .• , .t(! 

in system service response over a trap based mechanism. There is nothing to prevent the use of traps for 
system services, but they should not be necessary and we recommend that they not be used. 

,',,' 

The last requirement is admittedly a declaration of freedom as much as a requirement. The source 
level portability of well behaved code is important, but most code should be dealing with internal 
algorithms or Toolbox. We will strive.~orportabmty but ~gt e~lave ourselves to 100% portability. 
. ", .f.<.: . """ ~l: ;;., :.'\-, .. " . .: ".; ':;! )..;,~ ) 

The iirst\~~l~ is ~lrric)st a requirement; bu-t.do.wngrcidi8\fu ~goal since we won't be immediately 
proving our neutrality .. Also, some of the architecture defined here is inherently CPU specific, for . 
example the subprogram calling conventions. We intend to avoid concepts that could not be reasonably 
implemented on other platforms, especially 68030 based Macintoshes. (By which we mean 020 with 
J?MMU,,030, and 040.) Being operating sys.tem kernel neutral emphasizes that the runtime architecture 
is largely layered on top of the kernel and should not make numerous or highly specific demands on the 
kernel. _ ...... ~.---. 

,!:~~r:::\; •.. ~r_:, '~".;'~;-,~~,. ,.,1"':'·~ .. _\'!I··-------,r· .......... ~· ... ' .. ~":~ ... i,,· t;:··!(,· -<::" .. 

,.;;.: !:ttgThel~~J¢Omple1ifeb'PS"lfiJt~f~:,~~~dilooklng" requirE~nie~t. We should not carry forward all 
. ~ ': ioflhee~~~~hitecture ~flhpif ~4~JlexiSt~;Pragmatic d~mands for backward compatibility 

-may requim.SQn.'t~ amoimt'bf Iiis~oh~t'Ponution, but this should be isolated into specific toxic waste 
dumps with hopes of ev:ellrual d~anli.p .. ,. , 

The last two goals mainly say that this is not a research projeCt and we should not fixate on an 
isolated perfection that risks global failure . 

. ", : . 

• APPLE CONFIDENTIAL Page 4 



PowerPC Native Runtime Architecture Draft 6. July 27,1992 

III. System Memory Model 
~ ; £ i .. 1 

j' 

Use of Address Space ", .~"' 

:! . 

The use of address space is quite simple, flexibility for:the O/S kernel is maintained by making as"" .... . 
few assumptions as possible. Programmers should expe~i.t~,~ a large flat address space with "register'--:",',:':;', 
size" pointers. There may be a separate address space £WJ~A'7h application, but this is not guaranteed.' .• 'G 

The address space will be large enough to give each appUcation plenty of elbow room, even if the ,),2 ( 

address space is shared. The runtime model does not presume that common structures are at the same . ' ... n 

logical address for all running applications as is done on many UNIX systems. Wild applications might ,,'I <"" •.. ,': 
, .' ",' !~~ •• , • .• ~\i.' 

clobberinnocentbystanders~ ~ '~o·,;;';f,l· ;u 2.i::.'\·:1~~ri 
f 'j"-' ',;0.\0 

The model is biased towards systems with virtual memorY.ib~t;dbes not require it. We' intel1tionaUy;. , .. C': 

ignore the problems of small real memory systems that led to the adoption of softw~re~,based·: code k".' . ..' -,," " 
segmentation in the current 680xO model. We do not ~~u.i~.)~.Jl\Citrt'ently exeehting applications·: 'j uJ~ ~'.'1 . 

have independent address spaces, but we don't prevent that either. Applications should not make' "":':, . . .' .. 
assumptions about whether memory is real or virtual nor about the number of address spaces. Sonie" .~~~~.::): ,/~.: '. '. 
protection may be provided, e.g. that an application may not overwrite its code or that a section of'· ;-.'.c·~.·:'.'"i 
memory belonging wholly to one application may not be read or written by another,. ...... ,';, ci:,'-;~N.r.:.1 '<Yo,;; '., 

.. , j' ,(1 ')i.,: ~: ... l,' ,- .. ~d. ':". ";';:.' .. , ... 1.' 

--Explanatory Note . r . 
To dat~ only 32~bit o~eration ~as bee~ planned. Except ~h~n exp~icitl¥~~?i\<?~j-tJli""lqfl1ro ~(O~"~'?~x::'~;,h l' 
paper m only dlscussmg 32-blt operatIon .. , :,\lrt,ltou?l:t ~~~tAm.plert'l~~~~!~RS ?<tr ~h~ 9Wi }:;'lJb~' ~n.;1~Dru.' . 
PowerPC ~re alrea~y underway, fu.ll 64-blt'Op~rat.lOn IS npt:plann~a~ffl!~~~11i '~~i~:f}~(": '~:i ' ? 

of the runtime architecture has obVIOUS extensIon mto a whoUy641btt\.wortH,);i~t nq.S\1ch If) ?' .. J. . 

operating system support is planned at present. Limited 64-bit operatior\''\vill be . 
allowed, this is described later. 

The address space seen by an application is divided into large blocks of contiguous storage, called 
sections in this paper. A section of memory is characterized by: 

• a base address and length 
• whether it contains code, read-write data, or read-only data 
• whether it is private or shareable 
• the form and location of backing store (none, paging file, applic~tion file, etc.) 

Shared memory sections are guaranteed to appear at the sa~e logical location for all concurrent 
users. This allows the use of normal linked data structures and .paSSinz·of pointer-s -among clients. The 
operating system will choose the address at the time the shared section is created. If the contents of a 
shared section are to be saved to disk and later recreated it is the programmer's responsibility to 
preserve all embedded pointers. The operating system may allow you to request a specific address 
when creating a shared section, but such requests may fail even if that space is not in usc locally. 

" APPLE CONFIDENTIAL Page 5 



PowerPC Native Runtime--Architecture-' -- ---_ ... -.- . Draft 6, July 27, '1992 

An application may have separate sections for its code, static data, heap, and stack. All code will 
typically be in a single section, with all static data in another. The heap may a<:tually be multiple 
discontiguous sections, new ones being added as existing ones become fulL Ideally the heap and stack 
will be in separate sections, but the architecture does not mandate this. 

An application may also utilize shared libraries having their own code and static data sections but 
sharing the application's heap and stack. These are described in more detail later. Th~ shared 
libraries are identified when the application is linked and connected automatically when the 
application is launched. Their presence is generally invisible at the source code level. Resource and 
file based extensions are also supported, with even more power than in the present 680xO model. 

--Explanatory Note-----------------------
The shared libraries discussed in this paper are an intrinsic part of this software 
architecture. As such they will be provided first on the PowerPC and may never 
appear on 680xO machines. They are particularly convenient for procedural languages 
like C, allowing a shared library to export both routines and data, and supporting 
flexible rules for the creation of instances of the "static data world". They do not 
provide explicit support for higher level notions such as the export of entire C++ classes 
as a single entity. A separate, higher level shared library system is under development 
that will provide explicit C++ support. This other system is less convenient to use for 
vanilla C and lacks some flexibility, particularly in regard to exporting data. This 
other system will be available on both PowerPC and 680xO platforms. On the PowerPC 
it·will be bu~lt ~9-top of the base system. 

';-•. ".::." :-.-.:. t _ 

Figun~Tshows·aconcepffiai model of multiple address spaces. (With heavy emphasis on the 
conceptu{ll!)J1)e" .vertiCal orientation does not imply high or low address values, and the relative 
positioning of the sections is not significant. The horizontal orientation does imply equal logical 
addresses. This is significant only in the case of the sharcid code sections. Shared sections not "used" 
might still be accessible, depending on the complexity and tradeoffs of the virtual memory 
implementation. For example, user address space #2 might be able to see the code of library #3. In a 
single address space implementation the unshared sections of the the three user spaces mayor may not 
be arbitrarily interleaved. There is no guarantee that the three portions would be segregated in 
private partitions, nor that they won't . 

• APPLE CONFIDENTIAL Page 6 



PowerPC Native Runtime Architecture Draft 6, July 27,1992 --

User space 1 User space 2 User space 3 

Figure 1. Conceptual model of mUltiple address spaces. 

--Explanatory Note -----------------------
The existing Macintosh Memory Manager may not be modified to support the split, 
extensible heap model. The intent is to allow developer's to wean themselves from 
handle-based data. One possible implementation is to have one heap section reserved 
for the Memory Manager's handle-based allocation. NewPtr, malloc, and related 
routines would use other heap sections. 

--Explanatory Note ------------------------
The bounded application partition of the current 680xO model is deemphasized if not 
outright removed. The amount of code an application may have should not be bounded. 
The amount of static data, stack, and heap should not be bounded either. Whether 
they are bounded by the SIZE resource, whether the SIZE resource indicates an initial 
heap allocation, or whether the SIZE resource is removed remains a policy decision for 
human interface experts. The runtime architecture is neutral in this regard. Using the 

"c APPLE CONFIDENTIAL Page 7 



PowerPC Native Runtime Architeeture "Draft 6, July 27, 1992-

SIZE resource to indicate the stack size and an initial heap size would allow a program 
to state minimal requirements on machines lacking virtual memory or having a limited 
System 7 style virtual memory capability. Should such machines exist. 

--Explanatory Note -----------------------
We have consciously not defined a multi-section extensible stack model. To bedo~e 
properly this requires hardware, operating system, compiler, and runtime support for 
the detection of overflow and "underflow" back across the boundary of stack sections. 
The lack of this capability is not seen as a major impediment to software development. 
With the removal of the Process Manager's partitioning and proper virtual memory 
support we will be able to efficiently handle very large stack sections. The virtual 
memory support is to allocate paging file space to the stack section only as needed. 

--Implementation Note ----------------------
The initial PowerPC products may still have the System 7 Process Manager and virtual 
memory models. In this case the static data, stack, and heap may be bounded by the 
application partition's size and reside in one section of memory. The code may be 
mapped into a separate section and paged directly from the application file, but this is 
not guaranteed. If this mapping is not provided, the partition size will be 

"automatically increased by the size of the code to account for the concurrent residence of 
all code. This should allow the same partition size to be tolerable for both 680xO and 
PowerPC versions of an application. 

--WeaselNote ---------------------------
It may seem like few concrete statements are made about the use of address space. 
Everything from the System 7 Process Manager to' fully separate address spaces can be 
defined to fit. To a certain extent this is a fair criticism. This is an architecture that 
must be implementable with several different 0/5 bases. The important concepts to 
walk away with are that code space is not bounded and managed in the ways that led 
to the segmentation model on the 680xO and that shared structures are guaranteed to be 
at the same address for all clients. 

Constraints and Caveats 

The PowerPC hardware notion of segmentation is not presumed. A particular implementation may 
introduce hardware related limitations, but that is not part of the runtime architecture. For example, 
on the PowerPC a section might be limited to 256MB if the O/S does not support sections spanning 
hardware segments. 

The maximum section size supported by the 0/5 must not be smaller than 16MB. This provides an 
arbitrary guarantee for a maximum size of code sections. Programmers should consider the use of shared 

c APPLE CONFIDENTIAL Page 8 



PowerPC Native Runtime Architecture Draft 6, July 27, 1992 

libraries for larger amounts of code. The programming tools on each platform must in some way support 
code sections up to 16MB, they may optionally support larger sizes. A major factor is the displacement 
range for relative branches. Compilers may limit the amount of code that may be generated from one 
routine or source file. References outside of a source file should be assumed to be long and across code 
sections. Compilers and linkers should cooperate to optimize situations where such calls actually 
remain within a code section. 

Of course a friendly operating system will support sections considerably larger than 16MB. This is 
particularly important for large data structures, which cannot be conveniently broken apart in the 
manner that code can with shared libraries. 

A very important point is that code sections are intended to be .used at a much coarser granularity 
than the present 680xO segments. While virtual memory is not absolutely required, it is presumed to 
exist and code/constants should be paged directly from the executable file. Compilers, linkers, and 
loaders should preserve some notion of smaller scale segmentation both for source compatibility and 
control of locality. For example, the linker could arrange the code section by "segment" to improve 
locality of reference. The loader and O/S might use that information as a hint to improve paging 
performance. 

This view of code sections is seen as a way to simplify application development. [n exchange it 
requires that the memory management system perform in such a way that applications do not suffer 
from the lack of explicit segmentation. This implies a certain level of sophistication in the area of 
working set management and a certain minimum disk throughput. This approach is felt to have both 
high risk and high return. 

" APPLE CONFIDENTIAL Page 9 



PowerPC Native Runtime Architecture- - ---~----- ------ Draft 6, Ju1y 27, -1992 

IV. Executable Fragments. 

Fundamental Properties of Fragments 

One very important and universal concept of this model is the notion of execution units composed of 
blocks of code and associated static data. We've called these "fragments" to avoid conflict with other 
popular terms like module, object, and component. Everything that can be placed into memory and run is 
a fragment. Examples include applications, shared libraries, generic extensions like CDEFs, LDEFs, or 
WDEFs, and custom application extensions such as HypetCard XCMDs, Canvas tools, or 4th Dimension 
externals. 

Fragments can be roughly divided into three classes, applications, shared libraries, and extensions. 
These classes are based on typical usage and properties beyond the notion of "fragmentness". 
Applications are things that can be launched to operate on documents. They may cooperate but are 
capable of independent operation. Shared libraries are special forms of extensions. Developers use 
them at link time to satisfy unresolved external symbols in the fragment being linked. Shared libraries 
are found automatically at runtime and connected to the fragment. Extensions are everything else. 
They are not identified at link time. They are explicitly looked up and connected at runtime. 

Fragments have four fundamental properties: 

• Loadable memory sections (code and static data), 
• Exported symbols, 
• Imported symbols, and 
• Initialization, main, and termination routines. 

--Explanatory Note ---------~--------------
Every fragment is a first class citizen, having all of the fundamental properties defined 
here. This is not to say that all fragments are created equaL Just as only police have 
the power of arrest and only the independently wealthy have the power of total 
leisure, some fragments have properties beyond the fundamental ones. Only 
applicatiOns have a SIZE resource defining stack and heap requirements. Only shared 
libraries are automatically connected at runtime. Discovering other usage examples are 
left as an exercise. 

--Explanatory Note ------------------------
Three areas where we've gone beyond strict adoption of the AIX conventions are in 
support for multiple code and data sections, support for multiple container formats, and 
support for initialization and termination routines. These are all new in the runtime 
architecture defined by Apple. They are covered somewhat later in this paper and 
more fully in the documentation for the PowerPC Code Fragment Manager . 

• APPLE CONFIDENTIAL Page 10 



PowerPC Native Runtime Architecture Draft 6, July 27, 1992 

Code and Static Data Sections 

Loadable memory sections are areas of code and static data that comprise the fragment's. 
"executable image". In the prototypical case there is one section of rode and one section of static data 
for each fragment. Code is not segmented as in the 68OXO case, we are not concerned about reducing the 
address space footprint. Large fragments are expected to be stored in the data fork of files, with virtual 
memory support for direct, read-only paging of the code. Shared libraries will typically have a 
separate copy of their static data for each concurrent use. This is invisible to the code, and is covered 
more in later sections. 

--Explanatory Note -------------:-----------
The address space footprint of code is of less concern than in the present 680xO model for 
two main reasons. First, we are presuming a large address space with respectable 
virtual memory support. The 680xO model was designed to shoehorn programs into the 
very limited space on the original 128KB Macintosh. Second the PowerPC, along with 
the 68020 and better, has an unconditional branch with a decently long displacement. 

--Explanatory Note ------------------------
The external storage of a fragment is known as a container. The runtime loader supports 
multiple container formats, as described later. Some formats, such as PEF and XCOFF 
use the term section internally, with some of their internal sections used only in support 
of runtime loading. These are not "loaded sections" as defined here. 

Once loaded, the code and data of a fragment do not move around. The term loaded here means 
"prepared for execution", not simply "placed into memory". In the case of code bearing resources 
LoadResource simply places the contents into memory. The runtime loader prepares it for execution 
after it has been placed into memory and before it is used. If the resource is unlocked and moved the 
runtime loader must prepare it for execution again at its new location. The loader is not connected to the 
Resource Manager or Memory Manager. It will not automatically detect movement of a resource and 
reload the fragment. Unless otherwise noted, the term "load" means "prepare for execution" when 
applied to fragments, even when those fragments are the contents of resources. 

--Implementation Note ----------------------
The Mixed Mode mechanism, used to support intermingled 680xO emulation and native 
PowerPC execution, does provide some automation to allow old 68OXO code to properly 
use resources containing native PowerPC code. Programs compiled for the Pm-.:erPC 
should use the runtime loader to prepare the fragnlent whenever the resource contents 
are locked in memory. This has "zero" cost if the fragment is at the same location as 
the last time it was loaded. 

The contents of code sections must be pure and position independent with regard to both code and 
static data. Pure code needs no modification to execute. (For example, standard 680xO Macintosh code is 

" APPLE CONFIDENTIAL Page 11 

!1 
I'! 
i·, 



PowerPC Native, Runtime Architecture, - .-,0 0.- Draft 6, July ·27, 1-992--

pure. The implementation of "32-bit everything" utilizes impure code, having absolute data addresses 
that are relocated by the Segment Loader.} Pure code allows paging from application files, ROM 
execution, and makes code sharing casier. In this model on the PowerPC pure code is achieved by using 
self-relative branches within a fragment, indirect branches through pointers in static data between 
fragments, and addressing static data through a combination of a dedicated base register and 
indirection. The details of addressing are given in subsequent sections. 

Position independence with regard to code means that the code will execute properly from any 
location in memory. It does not necessarily mean that the code can be moved in memory without 
modifying anything. It means that the code does not know or care where it is placed in memory. 
Generally this implies having no absolute code addresses within the code for branches to this or other 
fragments, case statement jump tables, etc. (Code can be pure and not position independent, as long as 
everything is placed at the right address.) We achieve position independence with regard to code on 
the PowerPC through the first two tactics for pure code, self-relative branches within a fragment and 
indirect branches through pointers in static data between fragments. 

Position independence with regard to data means that the code will execute properly no matter 
where its static data is placed. It does not necessarily mean that the data can be moved in memory 
without modifying anything. It means that the code does not know or care where the data is placed in 
memory. Generally this implies having no absolute static data addresses within the code. We achieve 
position independence with regard to data on the PowerPC through the third tactic for pure code, a 
combination of a dedicated base register and indirection. Static data that is not directly addressable 
off of the base register is accessed indirectly through a pointer that is directly addressable. 

--ExplanatOIy Note ------------------------
The combination of pure code and position independence, along with calling conventions 
for switching the dedicated base register make shared libraries "almost free". This 
model also supports multiple instantiations of fragments at the cost of just replicated 
static data. Consider writing a protocol handler In C with normal static variables 
maintaining the state of one connection. The handler can then be very easily 
instantiated once for each connection. 

The architecture and runtime software support multiple sections of code and data. This is done to 
avoid designed-in limitations for "nontraditional" languages and unanticipated future use. The use of a 
single code section and a single data section is adequate for today's common procedural languages. That 
is the standard output model of the linker. Again, multiple code sections are not intended to be used in 
the same fine grained manner as 680xO code segments. 

Exports and Imports 

A fragment may export symbols defined within any of its sections for use by other fragments. These 
are exported by namc. The namcs of the global symbols to be exported must be explicitly given to the 
linker when the fragment is linked. Exports from shared libraries are used during the linking process to 
resolve undefined external symbols into imports and again during the loading process to resolve imports 

C APPLE CONfiDENTIAL Page 12 



PowerPGNative Runtime Architecture Draft 6, July 27, 1992 

into addresses. 

After loading the locations of exports from a fragment may also be determined by query using the 
export's name. This is particularly useful for extensions that are loaded on explicit request. They may 
export an entire API. 

--Explanatory Note . 
Although code symbols may be exported, the addressing model is such that only data 
symbols are normally exported. Routines are exported through a descriptor in the data. 
There are conventions for compilers that make this transparent to programmers. A 
routine named "foo" in the source should have a code label of ".foo", and a descriptor 
named "foo". Telling the linker to export "foo" then does the right thing. Global data 
items keep their source names. . 

Imports are code and data items that a fragment requires from other fragments. They are denoted 
with a library-name/symbol-name pair. Programmers present shared libraries to the linker just as 
they present traditional linker libraries today. The symbols exported from the shared library become 
available during the link like ordinary global symbols. When the linker resolves an undefined 
external symbol to an exported symbol it will record that as an import in the new fragment rather than 
actually copying the referenced code or data. 

" APPLE CONFIDENTIAL Page 13 



PowerPC Native -Runtime-Architecture -- -----~-- -.----

MondoWrite object module, 
having unresolved symbols: 

DrawText, 
GetCommand, 
GetNewDialog, 
GetNewWindow, 
LNew, 
StartApp, 
StopApp 

Mondo Tools shared library, 
having exported symbols: 

GetCommand, 
StartApp, 
StopApp 

MondoWrite application, 
having imported symbols 
from MondoTools: 

GetCommand, 
StartApp, 
StopApp 

and from MacToolbox: 
DrawText, 
GetNewQialog, 
GetNewWindow, 
LNew 

- Draft 6, July 27, 1992 - -

MacTooibox shared library, 
having exported symbols: 

DrawText, 
EraseRect, 
ExitToShell, 
GetNewDialog, 
GetNeWWindow, 
InitGraf, 
UneTo, 
LNew, 
MenuSelect, 
WaitNextEvent, 

Figure 2. An illustration of export and import handling by the linker. 

Figure 2 is an illustration of the linking process induding resolution of undefined external symbols to 
imports from shared libraries. It is worth noting that the shared library used for linking need not be an 
actual implementation. The link time library need only export the right names and contain 
appropriate version information. This can simplify development considerably. A dummy linking 
shared library can be created as soon as an API is defined, allowing coding and linking of clients to 
proceed. Implementations are only needed to test the client, these could be evolving versions supplying 
partial functionality. 

The imports are automatically resolved during loading to exports from shared library fragments, 
providing the actual runtime address. The imported library will itself be loaded if necessary. The 

" APPLE CONFIDENTIAL Page 14 



PowerPC. Native Runtime Architecture Draft 6, July 27, 1992 .. 

runtime resolution must be to the "same" library as the link time resolution. The runtime library must 
have the same name and compatible version numbers. This is described more in a later section on shared 
libraries. The code generation details related to the use of imported symbols are given in later sections 
dealing with the addressing of global data and procedure calling conventions. 

--Explanatory Note -----------------------
This approach is probably better called "dynamic binding" than "dynamic linking". It 
is very important to realize that all symbols must be resolved at link time. Those 
symbols that are resolved to exports from a shared library become imports and have 
their actual addresses bound at runtime. Each import specifies both the symbol name 
resolved by the linker and the name of the shared library in which it was found. Each 
imported symbol is looked up in the same library at runtime. 

--Implementation Note ----------------------
The precise definition of a "shared library" is expected to evolve as tools and runtime 
software become more sophisticated. Initially shared libraries may be files of type 
"shIb", whose name is taken as the simple file name. They will be found at runtime 
through a simple search path including at least the application folder and system 
extensions folder. Special libraries such as a ROM-based toolbox would be specially 
known. It is desirable to move as soon as possible to a general registration scheme, 
allowing libraries to be found anywhere in the network. 

Figure 3 is an illustration of application, shared library, and extension fragments in operation. (As 
with figure I, heavy emphasis on illustration!) MondoWrite and MondoDraw are applications. 
MondoToois and MacToolbox are shared libraries. MondoTools is a "normal" shared library, having a 
separate static data instance for each application. MacToolbox is "abnormal", having global shared 
static data. MondoLDEF is an LDEF resource. 

The solid arrows represent imports, for example MondoWrite imports from MondoTools and 
MacToolbox, while MondoTools imports only from MacToolbox. The names by the arrows are the 
symbols being imported. They must of course be exports from the library at the arrowhead. 

The dashed line from MondoWrite to MondoLDEF signifies that MondoWrite does not access the 
LDEF as an import. It must load the resource (in both senses), and obtain a procedure pointer to the 
LDEE This could either be via an agreed upon export name or via the main routine of the LDEF 
fragment. The LDEF itself does have imports just like any fragment. They are automatically resolved 
when the fragment is loaded . 

• APPLE CONFIDENTIAL Page 15 



PowerPC Native Runtime Architecture .----- ... -- ... --

MondoWrite 

LNew 
OrawText 
GetNewOialog 
GetNewWindow 

StartApp 
GetCommand 
StopApp 

MondoTools 

InitGraf 
WaitNextEvent 
MenuSelect 
ExitToShell 

Draft 6, July 27 , 1992 

MondoOraw 

EraseRect 
GetNewOialog 
GetNewWindow 

Figure 3. An illustration of application, shared library, and extension fragments in operation. 

Initialization, Main, and Termination Routines 

The remaining basic capabilities are the initialization, main, and termination routines_ Every 
fragment may define these three routines, separate from its list of exports_ The initialization and 
tennination routines may be left undefined for any fragment. Applications must have a main routine, 
others need not. These rules are generalities based on typical usage, other specific uses may have their 
own specific requirements. 

The initialization routine is called as part of the loading process. It provides a place for specific 
language runtime support or even hand written code to perform initializatio.n before the fragment is 
considered fully loaded. Integration of language initialization code and hand written code into a single 
call is to be defined by compiler vendors and perhaps supported by linkers. The termination routine 
provides the inverse, aIlowing cleanup before unloading. 

" APPLE CONFIDENTIAL Page 16 



PowerPC Native Runtime Architecture Draft 6, July 27, 1992 

The interpretation of a main routine depends on the use of the fragment. For applications it is the 
usual main entry point. For shared libraries it is ignored. For extensions with a single entry it could be 
used instead of an export to avoid standardizing on a particular name. The main routine can be found by 
query after a fragment is loaded. 

When the loading of one fragment causes a (currently unloaded) shared library to be l.oaded (to 
resolve imports), the initialization routine of the new shared library is called before that of the 
fragment. This allows the fragment's initialization to utilize the shared library. Mutually dependent 
libraries may Specify which must be initialized first. Termination routines are called in the inverse 
order of initialization routines. This process is described more in a later section. 

The initialization and termination routines provide significant power. They are crucial in 
supporting the full use of C++, allowing any fragment to contain static objects having constructors and 
destructors. The also allow the creation of self-initializing managers. Combined with initialization 
ordering, suites of managers can be self-initializing in the proper order. 

Fragment Storage 

The external storage of a fragment is called a contai nero A container may exist as any contiguous 
piece of storage, such as the data fork of a file (or a portion thereoO, in ROM, or the contents of a 
resource. The notion of container is separate from a fragment to clearly separate the logical properties 
of fragments from the physical organizatioi1 of containers. 

Fragments are managed at runtime by the PowerPC Code Fragment Manager (CFM) and Code 
Fragment Loader (CFL). The CFM does the high level work, knowing what is loaded, creating the code 
and data sections, connecting imports and exports, etc. It,operates transparently, much like the 680xO 
Segment Loader. The CFM also supplies an API allowing fragments to loaded on explicit request. This 
API is defined elsewhere. The CFM does not supplant services like the Quicklime Component Manager. 
The Component Manager finds a container, the CFM prepares it for execution. 

--Explanatory Note ------------------------
The general term "runtime loader' used earlier refers to the CFM, not the CFl. 

The CFL provides low level services, mainly to the CFM. Its API provides routines and a loading 
protocol, shielding the CFM from the physical format of the container. Following the loading protocol, 
the CFM asks the CFL about the number of memory sections and their characteristics, the exported 
symbols, the imported libraries and symbols, etc. The CFM tells the CFL where the memory sections 
are placed, the addresses of imported symbols, and when to perform relocations. The CFL performs the 
actual relocations. 

The CFL design includes support for multiple container formats and loader implementations. [t will 
find the appropriate loader for a container at runtime. Standard implementations include XCOFF and 
PEF. The CFL is intended provide adequate support to integrate languages such as Lisp or Dylan with 

• APPLE CONFIDENTIAL Page 17 



PowerPC Native Runtime -Arcmtectare--- ---------.--.--- .. -Draft6, July 27, 1992 

significantly different internal runtime models than C. By utilizing a Dylan container and loader, 
shared libraries written in Dylan could transparently interoperate with "normal" languages. The CFL 
API is defined elsewhere. 

--Explanatory Note ------------------------
The CFL API is available to support the implementation of alternate loaders. Except 
in very restricted circumstances developers should call the CFM for loading servi~ 
and not the CFL The CFM implements the semantics of fragments, the CFL allows it to 
do so without knowing the external storage format. 

--Openlssue----------------------------
The exact means by which loaders are found at runtime is somewhat open. Ideally a 
registration scheme would be available. Initially a file scan at boot time may be used. 

XCOFF is the standard object and executable format used in AIX and PowerOpen. While an XCOFF 
loader is provided, arbitrary UNIX programs and libraries are not guaranteed to be usable under the 
Macintosh 0/5. Use of UNIX memory or process services, dependence on the AIX memory model, etc., 
v.ill cause problems. 

PEF is the £.owerPC .£.xecutable format for Macintosh. It provides a dramatically smaller container 
than XCOFF, mainly in the representation of the load time relocations. This reduces both disk usage 
and load time. PEF is a format for executable containers only, not a relocatable object module format. 
Details of PEF are documented elsewhere. 

--Implementation Note ---------------------------------------
The IBM linker and initial Apple linker will take XCOFF as input and produce XCOFF 
as output. A conversion tool exists to convert IinkecI XCOFF into PEF. Later versions of 
the Apple linker may produce PEF output directly . 

• APPLE CONFIDENTIAL Page 18 



PowerPG Native Runtime Architecture Draft 6, July 27, 1992 

v. Global Addressing, the TOe. 

This section discusses the standard model for the addressing of global code and data. This includes 
how one fragment accesses its own static data and how it accesses the code and static data of other 
fragments. The dreaded TOC will be introduced, demystified, and vanquished. 

--Motivational Note ------------------------
The PowerPC along with other RISC machines has a load/store architecture and fixed 
length instructions. One effect of this is that immediate displacements for addressing 
are limited in size, 16 bits in the case of the PowerPC. Loading a value at an arbitrary 
32-bit offset from a base register requires at least two instructions on the PowerPC, three 
instructions and an additional register if you want to savethe address. Constructing a 
pointer takes two instructions. 

Using 32-bit offsets for static data would either require multiple instructions for all 
static data references or compile time segregation of static data items into 16-bit and 
32-bit pools, with the associated risk of 16-bit pool overflow at link time. 

Another approach is to address static data items indirectly. A dedicated base register 
is kept to a pool of pointers. A 16-bit offset allows 16K pointers, which means 16K 
individual items addressable from one place regardless of their aggregate size. 
Loading an item takes at most two instructions, obtaining a pointer takes one instruction. 

Frequently used items should have their pointers kept in a register as part of a 
compiler's standard common subexpression and register allocation processing. A read, 
modify, and write cycle takes just one extra instruction to load the pointer.. 

This approach has the further benefit of implicitly supporting address independence 
for individual static data items. This allows shared libraries written in such deficient 
languages as C to transparently export and import static data. (C is a problem because 
you cannot tell at compile time whether a particular external variable will belong to 
you or someone else.> Static data items known to belong to a single unit, such as those 
with the C keyword "static", can be grouped together and share a single pointer. 

The indirect addressing approach is the one used here. Yes, the two instruction case 
does involve two data memory references, one for the pointer and one for the value. But 
a good compiler and decent coding habits will reduce the loading of pointers. In return 
we gain Significant expressive power and growth space for larger programs. 

This model is taken directly from IBM's RS/6000 AIX implementation. It works. We 
have defined some details from a different view, but the basics are unchanged. 

We'll first present the TOe in the framework of typical C usage, taking advantage of concrete 
examples. We'll then provide the formal notions and generalized nature of the TOC. 

" APPLE CONFIDENTIAL Page 19 



PowerPC Native Runtime Architecture Draft 6, July 27, 1992 

The TOe Nextdoor 

The addressing of all static data and routines across fragment boundaries is done indirectly, through 
pointers kept in an area known as the TOe. Although an acronym for "Table Of Contents", the TOC is 
more like a personal address book. [t belongs to a fragment and tells that fragment wher~ other bits of 
the world are. The TOC does not tell the outside world where to find things within its own fragment. 
The TOC does tell a fragment where its own static data is. This allows code to be shared among 
multiple clients, each having their own copy of the TOC and static data. 

--Explanatory Note ------------------------
The first sentence in the above paragraph should be parsed as 

" ... (all static data) and (routines across fragment boundaries) ... " 
not as 

" ... all (static data and routines) across fragment boundaries ... ". 
This should become clear later in this section. 

We're talking here only about "direct" source references, that is source that does not explicitly 
involve a pointer. The explicit use of pointers, whether for data or routines, does not involve the Toe. 
(Except perhaps to obtain the pointer value if it is itself a static variable.) The initialization of the 
pointeris presumed to be done correctly. This may involve static initialization with relocation by the 
runtime loader or code actually copying a pointer from the TOe. 

--Explanatory Note ------------------------
For example; consider this (contrived and useless) C code: 

extern int foo; 
extern int "bar = &foo; 

foo = foo + 1; 
""bar = ""bar + 1; 

The use of foo is direct at the source level, bar is not. Assuming the TOC pointer to the 
value of bar is already in a register, both assignments generate the same instructions. 
The first uses the implicit Toe pointer associated with foo in this unit. The second uses 
the explicit storage of bar for the pointer. The initialization of the TOC pointer for foo 
and for bar itself are accomplished in the same way. 

Add a picture here. 

On the PowerPC, general purpose register 2 is dedicated to point to the Toe. It is commonly called 
RTOC. The contents of this register are saved, modified, and restored for calls across fragments. Every 
routine assumes that RTOC is pointing to its TOC upon entry. The details of this are presented later 

• APPLE CONFIDENTIAL Page 20 



PowerPC Native Runtime Architecture Draft 6, July 27, 1992 

with other calling conventions. 

The TOC is just a portion of the static data section described earlier. Whether before, after, or in 
the midst of programmer declared static data does not really matter except as it affects the . 
performance of runtime loading. For now the TOC is simply somewhere in the data section of a 
fragment and GPR2 is loaded with its address before entering any routine in the fragment. 

--Explanatory Note ------------------------
A reminder that this section presents the TOC in its standard C usage. The actual rules 
are somewhat more general and presented later. 

The pointers in the TOC are allocated by both the compiler and linker, never.at runtime. The TOC 
entries are filled in with addresses during runtime loading; new entries are not allocated at runtime. 
Code is pure and ROM-ready after linking, all offsets to TOC pointers are fixed. Runtime loading may 
also involve the relocation of pointers outside of the TOC. One example was given earlier, others will 
be covered later. 

The C language has two classes of static data, "extern" variables visible across compilations and 
"static" variables visible only within a compilation. If neither keyword is used for data outside of a 
procedure, "extern" is presumed. 

Keyword "static" variables are known at compile time to belong to the fragment of the source being 
compiled. All "static" variables in a compilation are placed contiguously in the static data section by 
the compiler and accessed through a single TOC pointer. The compiler allocates the TOC pointer. 
References to a "static" variable first load the common TOC pointer then load at the appropriate offset 
from it. 

For "extern" variables the compiler does not generally know which fragment will contain the 
storage. [t may end up in the fragment being compik>d or it may end up coming from a shared library. 
Each "extern" variable is addressed through a separate TOC pointer. These pointers are also allocated 
by the compiler. References to "extern" variables of course first load the pointer (r9m the TOe then the 
value of the variable. . . 

--Picture Place ---------------------------
Put in a picture showing a simpie-C source, generated code, and storage diagram. Use 
dis output to illustrate assembly programming at the same time. 

--Programming Note ------------------------
By using "static" instead of "extern" where possible programmers give the compiler a 
better chance to keep a variable's TOC pointer in a register. This allows later 
references to be done with a single instruction. 

Assembly language programmers may utilize whatever clustering is appropriate. As always, they 

" APPLE CONFIDENTIAL Page 21 



PowerPC Native HUlltime' Archi-teetuf€-- -. -_ .. ------ Draft 6, July 27,1992 . 

must do manually everything that compilers do. In this case that means creating Toe pointers 
explicitly in their source. 

--Explanatory Note ------------------------
The pointers in the Toe are to the actual referenced items. This includes all Toe 
pointers, whether to a fragment's own data or data imported from another fragment. 
There has been some confusion in the past that the roc pointer for an import pointed to 
the Toe pointer in the owning fragment, that in turn pointed to the imported item. (As 
though the import had a handle and the owner had a pointer.) This is not true. AU 
1DC pointers point directly to the referenced item. It becomes obvious when you note 
that the compiler generates one form of code not knowing whether the final reference 
will be an import or to "owned" data. The linker decides that. 

A similar situation occurs for "extern" routines. The compiler does not know whether they will end 
up being in the same fragment or will involve a cross-fragment call. The details are more complex than 
for data, with the compiler doing a little of the work and the linker doing a larger part. The details 
are given in a later section dealing with calling conventions. For now it suffices to say that the linker 
allocates a Toe pointer in the calling fragment, and code in the calling fragment that uses that pointer 
to complete the call. 

--Anticipatory Note ------------------------
An earlier note mentioned that code symbols are not usually exported. Each externally 
visible routine has a descriptor associated with it. The descriptor contains the code 
address for the routine and the address of the TOC for the routine. The TOe pointer 
involved in cross-fragment calls points to the descriptor. Each caller has a pOinter to 
the descriptor, just like references to any external variable. Glue code involved in cross
fragment calls uses this TOe pointer. This will all be detailed in a later section on 
calling conventions. ' 

In summary, a TOC contains: 

• One pointer for each "extern" data item used by the fragment. 
• One pointer for the "static" pool of each compilation unit in the fragment. 
• One pointer for each imported routine called by the fragment. 
• Actual static variables if a compiler were to put any there. 
• Anything an assembly language programmer tosses in. 

The linker performs the final allocation of TOe space and optimizes the use of TOe elements. 
Compilers allocate TOC pointers symbolically to "data item foo", "routine descriptor bar", etc. When 
combining separately compiled units into a fragment the linker will recognize common references and 
merge the TOe pointers. Each TOe will normally have just one pointer to any given routine or data 
item. 

--Implementation Note ------~----------------

« APPLE CONFIDENTIAL Page 22 



PowerPC Native Runtime Architecture Draft 6. July 27. 1992 

The linkers (IBM's and Apple's) only combine TOC entries whose name and contents 
both match. Using lBM's assembler syntax, a TOC pointer to a static variable named 
foo could be declared via: 

label: .tc foo[teJ, foo{rw) 

The label is strictly for local reference to the pointer. The name of the TOC entry. is 
"foo[tc]", its contents is the address of "foo[rw]". The name and contents are used by the 
linker in merging TOe entries, the label is not. Compilers of course always generate 
TOC entries in the same way, ensuring that they will be folded. Assembly language 
programmers can follow the same rules, given in a later section. 

The Zen of TOe 

No, Zen-o-TOC is not a new candy bar. Let's put on the rose colored glasses and meditate. 

• The roc is a collection of code generation and system software conventions. 

• The TOC is the static storage to which RTOC points on entry to a routine. 

• The TOC is the static storage which can .be addressed in one instruction. 

• The TOC is that which provides a dynamically bound gateway to the outside world. 

• The TOC is that which provides a dynamically bound gateway to non-TOC static data. 

• The TOC is what the 680xO AS world should have been. 

The TOC is not an inviolate barrier. There are no TOC Police at compile time, link time, or runtime. 
There are a set of code generation and system software conventions that support reasonably efficient 
pure code, dynamic binding, and componentized software construction. It has particular value on 
machines like the PowerPC that lack memory reference instructions with large displacements. 

The TOC is there to let routines find the static data and external routines they are interested in, 
where that interest is a direct reference in the source. The compilers, linker, and system software 
coI't5f'if'c cooperate to add a level of indirection in these cases, providing wondrous benefits to 
programmers without extra (visible) cost. As mentioned earlier, explicit use of pointers need not and 
should not go through the TOC. 

--Explanatory Note ------------------------
The compilers mentioned here are those for conventional procedure languages. Other 
languages, particularly dynamic languages such as LISP, are free to use other 
conventions internally. These conventions are necessary for interaction with system 
software and allow transparent mixing of code from compliant languages. You a)Uld 

C APPLE CONFIDENTIAL Page 23 



P owerPC Native' -Au ntime" A-rchitecture.- . -'--'-""--"." .... Draft 6, July 27, 1992 

implement a shared library in one language today and another language tomorrow with 
no impact on its clients. 

TOCs are really properties of routines. When calling into a fragment the new TOC value is known 
separately for each routine. The routine descriptors mentioned above provide this. There is no 
constraint that all routines in one fragment share the same TOe i.e. that the Toe value. in all of their 
descriptors be the same. This is a decision between compilers and linkers. There is no constraint that a 
fragment have a single data section with the Toe inside it. A linker is free to create code and data 
sections in any way it chooses, placing the TOC in any data section. The only constraint on the linker is 
that it not violate the legitimate assumptions of compiled code. 

--Implementation Note ------------------------
The general nature of these legitimate assumptions should be clear from this paper. (If 
not the paper is deficient.) They are implicitly presented in various rules and 
examples. They include such notions as the declaration and use of Toe pointers, the 
initialization of non-Toe pointers in the static data, linker processing of calls across 
compilation units, etc. Their details are to be found in documentation on the linker's 
input and internal processing. 

-- Implementation Note -----------------'------
Static data sections of fragments have an attribute that describes a granularity of 
sharing for them. This is discussed in a later section. Note that should a linker be 
implemented to create. multiple data sections with different levels of sharing, the TOC . 
should be placed in the least sharable, perhaps in a section by itself. The TOC should 
be replicated at least as often as anything else since it contains the pointers to address 
the other sections. 

Compilers decide whether particular calls within a source file are strictly local or might possibly 
involve a TOC switch. Compilers provide with each compilation a description of the individual TOC 
pointers necessary for that unit. Compilers do not create a "TOC area", they do not deal with 
relationships between Toe pointers. The linker makes the final determination of whether potentially 
switching calls actually do switch. The linker makes the final decision of where individual pointers 
appear in the Toe. The linker makes the final decision about collapsing identical TOC pointers. 

Compilers for various languages may all have their own rules for the creation of TOC pointers, 
association of multiple variables with one TOC pointer, switching of the Toe on particular calls, etc. 
Languages with a module/package/unit concept and hierarchical separate compilation in particular 
may have more stringent rules than C. (Hierarchical separate compilation allows nested procedures to 
be separately compiled while keeping their nested context.) 

So far everything in the TOC has been a pointer. There is no constraint on the TOC to contain only 
pointers. Compilers and assembly language programmers are free to place any static data in the TOC. 
This view is encouraged by the first two bullets above, i.e. that the Toe is the "easy access static 

" APPLE CONFIDENTIAL Page 24 



PowerPC Native Runtime Architecture ... Draft 6, July 27, 1992 

data". 

There are of course linguistic and usage constraints on placing data directly in the TOC. The 
compiler may only place directly in the TOC items that it knows will be owned by the unit being 
compiled. The cases in which placement of variables in the TOe is profitable are not obvious. The 
decisions require the same kind of usage information necessary for register allocation. 

For example, C items declared with the "static" keyword have just file scope and could always be 
placed in the TOe. But if the compiler uses a single TOC pointer for all statics in a compilation, this 
pointer may end up in a register anyway, giving easy access to all "static" variables. 

Items declared with the "extern" keyword have global scope and could only be placed in the TOC if 
the source contained the defining occurrence. If the unit being compiled does not have a defining 
occurrence it is possible that the variable will end up coming from a shared library. It would be 
perfectly fine for the unit with the defining occurrence to place the storage in its TOC and export the 
variable. Other units would reference the variable through a TOC pointer as usual. This might even 
include separately compiled units linked into the same fragment. 

Putting a frequently used item directly in the TOe might benefit the owner of the data by removing 
the indirection for loads and stores. But with a large register set the TOe pointer for that frequently 
used item might stay in a register anyway, an optimization available to all users of the data. The big 
beneficiary of allocation in the TOe is probably a frequently called routine with few references to the 
static data. They would save the load of the TOe pointer on each pass through the routine. 

A variable's size also plays a role in deciding where to allocate it. A single item of four bytes or 
less will take no more space in the TOe than the pointer. Larger items use up TOe space faster, 
increasing the risk of TOC overflow. e "static" versus "extern" are different here too. The former share 
a pointer, the latter have one pointer per item. 

This is dearly an area ripe with opportunity for compiler optimization and pragmas. 

-- Implementation Note ----------------------
Neither the IBM nor Apple compilers put data directly in the TOe yet. 

£t is also desirable to reserve some space in all TOes at fixed offsets for usc by system software. 
This provides a place to store context that should be associated with fragments and switched cheaply 
with cross-fragment calls. We are proposing that 64 bytes (16 pointers worth) be reserved at offsets 0 to 
63. No specific use for this space is defined yet. This space is reserved for use by Apple. 

--Open Issue-----------------------------------
Some space will be reserved, v,'hat is proposed is that the exact amount be 64 bytes. We 
have arbitrarily proposed that 64 bytes at offsets zero to 63 be reserved. Nothing has 
been decided about use of this space by the Resource Manager or other components of 
system software . 

• APPLE CONFIDENTIAL Page 25 

II 



PowerPC Native Ru.ntjm~ Architecture .. - --·Draft 6, July 27, 1992········ 

--Rationale Note -------------------------
The 680xO use of O(AS) as the QuickDraw globals pointer springs to mind, but that is 
actually a poor example. There is one set of QuickDraw globals per appli<:ation. This 
pointer should be kept as a static variable in a Toolbox shared library, with one 
instance of the library's static data for each application. 

A more interesting possibility occurs for the Resource Manager, introduced because of 
shared libraries. This concept was first proposed in the Dinker design by Jed Harris. 
There is currently one resource chain per application. With the advent of shared 
libraries it becomes very desirable to have one resource chain per shared library, with 
automatic switching during procedure calls. Consider an application using several 
shared libraries, each with a DLOG resource number 123, and one of them wants to use 
theirs. Who's on first? 

Since the TOC is already switched during procedure calls, that becomes a handy place 
to store the head of the resource chain. The linker could reserve space, say starting at 
zero. One word of that is assigned to the resource manager, say at offset 4. This word 
would be initialized to zero by the linker. The resource manager would store the 
application's "standard" head in a static variable of its own, as suggested above for the 
QuickDraw globals pointer. It would also be stored in the application's TOe. When 
asked to open a resource file it would look in the TOe of the caller and if the word is 
zero add the new file to the standard chain then store this new chain in the caller's 
Toe. If the Toe word is non-zero the new file gets added to thatchain. LoadResource 
would use the chain from its caller's TOC. . 

Further complications, such as how to track and close all resource files at exit and what 
LoadResource should do if its caller's TOe does not have a resource chain, are left as 
exercises. 

--Open Issue-----------------------------------
The example given of use by the Resource Manager is not a complete proposal. The 
calling conventions do make it possible to find the caller's Toe in certain cases. Calls 
within a shared library may not "do the right thing", depending on the compiler and 
linker used. This is discussed later. 

--Implementation Note ----------------------------------
We can "fool" the IBM linker into "reserving" slots at the beginning of the TOC by 
providing a special module at the front of a link. This module would ensure that the 
reserved TOC entries get created at the right location. We would be depending on the 
implicit linker behavior for TOC layout. The Apple linker will always reserve space. 

---Open Issue----------------------------------------

• APPLE CONFIDENTIAL Page 26 



PowerPC Native Runtime Architecture-' - Draft 6, July 27, 1992 

One of the interesting aspects of adopting the AIX runtime model is the opportunity to 
utilize AIX software easily under the Macintosh 0/5. This may be rather difficult for 
arbitrary UNIX applications, but should be easier for standalone shared libraries. 
Such libraries won't have this reserved TOC space, but then they shouldn't be dealing 
with the Macintosh Toolbox either. We need to document what UNIX software can be 
used, how to use it, and what might go wrong. 

We've been speaking of just a single TOC register. The architecture in fact only defines one 
dedicated register as a TOC pointer. With a 16 bit offset on the PowerPC this limits a TOC to 64KB, or 
16K pointers. The extension of the architecture to use multiple TOC registers could obviously be made 
without conceptual violence. This was considered and rejected as unnecessary. The nature of the TOC 
itself, including code generation conventions, results in surprisingly modest demands on it. Other 
manual and tool-based approaches can reduce the risk of roc overflow. Defining a second TOC register 
would remove that register from general use to the benefit of a very small number of "pig" programs. 

The roc provides addresses for the static data items used by a fragment and the routines in other 
fragments that are called. It does not provide a complete dictionary for its own fragment, nor is it a 
catenation of complete dictionaries for referenced fragments. Nor does it contain pointers to data and 
routines that are not actually used. Compiler conventions help, such as C's use of a single TOC pointer 
for all "static" variables in a compilation. It is rather difficult and unusual to actually construct a body 
of software that makes use of over 16,000 external variables and routines. 

--Rationale Note -------------------------
For example, we have taken a pure C++ version of MacApp and built an A[X shared 
library from it to study TOC use and other issues. The shared library exports over 4500 
symbols. We arbitrarily made every external variable and routine an export, although 
some should probably be kept internal to MacApp itself. The TOC for the MacApp 
shared library contains about 1050 pointers. ' 

All Macintosh Toolbox services used by MacApp are treated as cross-fragment calls, 
each has a TOC pointer. There are around 300 of these. As an artifact of the MPW C 
headers and their conversion for test use on the PowerPC references to low memory 
globals appears as pointer casts of literals, not as references to external data. But there 
are only about 25 low mems accessible through the MPW headers, so this is noise. 

Since there are currently around 2000 to 2500 routines defined in the MPW headers and 
around 220 low memory globals in the 1M X-Ref, a worst case scenario for a "full" 
PowerPC implementation would give MacApp a TOC with less than 4000 pointers. 

The TOC for a client of MacApp would only contain what it used, an amount related to 
how much of MacApp was overridden. [n a worst case of overriding everything and 
calling all system services directly, the client would have a TOC with around 7000 
pointers plus its own static data, C library stuff, etc. 

" APPLE CONFIDENTIAL Page 27 



PowerPC Native Rtmtime-Arcflttecture Draft 6, July 27,1992-~-- -------------

The size of the Toe could be manually managed by separating major subsystems into shared 
libraries of their own. This would require no source changes, only possible changes in linker scripts to 
name the additional libraries. It is quite likely that large pieces of software have large numbers of 
external references that can be segregated into subsystems, where the connections between the 
subsystems are fewer in number. This allows each subsystem to have a Toe dedicated to its own 
external needs and interconnections, without overcrowding from the external needs of others. 

A linker could reduce the risk of TOC overflow by producing multiple TOCs in one fragment. All 
routines from one compilation would use a common TOC Separate compilations could share a TOe as 
long as the TOC did not overflow. Since separate compilations are prepared for cross-fragment calls 
anyway, the linker can freely make them perform TOC switches within a fragment. This simple view 
only works for C though. More modular languages with hierarchical separate compilation might well 
require that subsidiary compilation units share the TOC of their-top level ancestor. 

--Implementation Note ----------------------
The PowerPC has 16-bit signed offsets in its memory reference instructions. To support a 
full 64KB TOC requires using the full range from -32,768 to 32,767. There are a variety 
of ways to clo this, the choice being almost entirely up to the linker. A debugger might 
need to know what the linker did, but could accept any approach. We propose to first 
assign from zero to 32,767. Then if more space is needed it will be assigned downward 
from -1 to -32,768. The TOC is always a contiguous piece of storage. RTOC points to the 
beginning if the size is 32KB or less. RTOC points 32KB before the high address end if 
the size is greater than 32KB. 

--Rationale Note -------------------------
One possibility for addressing a 64KB Toe is to use a "biased" TOe pointer, pointing 
32KB beyond the actual start of the TOe. Items in the TOC would have offsets starting 
at -32,768 and ranging steadily up through zero to 32,767. This has the advantage of 
being simple to describe and easy to layout. Another possibility is to first assign from 
zero to 32,767. Then if more space is needed start assigning downward from -1 to 
-32,768. This meets naive expectations in the common case of a TOC smaller than 32KB. 
It also preserves compatibility with IBM in that case. A third poSSibility is to place 
the TOC pointer in the middle, using offsets from -n/2 to n/2. This doesn't seem to have 
any unique advantages. 

All three approaches have a contiguous, minimally sized block of storage for the TOe. 
Since tests so far indicate that a TOC larger than 32KB is unlikely, the second 
approach provides a simple rule in virtually all cases. Being compatible with IBM 
also allows us to use the previously mentioned trick to provide reserved slots in the 
TOC at fixed offsets. The biased pointer approach was previously advocated, then 
dropped as the above reasoning evolved. 

--Management Note -----------------------
lBM's tools presently use only non-negative offsets, limiting the TOC to 32KB. They 

• APPLE CONFIDENTIAL Page 28 



PowerPC Native Runtime Architecture- Draft 6, July 27,1992 

have talked about having their compilers place small static objects directly in the TOC 
and having their linker extend the limit beyond 32KB. We should track their plans 
and try to maintain consistency, perhaps through the PowerOpen group. 

Enough TOC, Just Do It! 

--Reality Check ------------------------
There are a lot of things that may happen with fragments and the TOC, but in point of 
fact today's linker creates just one code and data section for each fragment. The linker 
also creates just one TOC per fragment buried within the fragment's data section. Under 
UNIX the .text section corresponds to our code section and-the .data and .bss sections 
together correspond to our data section. Compilers do not presently put any data 
directly in the Toe. IBM's linker only supports a 32KB TOC, using just non-negative 
offsets. Apple's linker will support a 64KB Toe as described earlier. 

--Unreality Check -----------------------
Reality not withstanding, programmers should not assume that there is just one code 
and data section per fragment, nor just one TOC in that one data section. Assumptions 
should not be made about the offsets used for TOC entries. This is especially true for 
debugger writers. The TOC is something that allows a routine to find its way in the 
world. Static variables have offsets within data sections where they are allocated. 
The offset of any particular TOC pointer to a static variable is relevant only to code 
using that TOC to access the variable. A debugger could go directly to the location, not 
using any particular Toe. Similar arguments hold for external routines . 

• APPLE CONFIDENTIAL Page 29 



PowerPC Native Runtime Architecture - . ---Draft 6, July 27,l992-

VI. Subprogram Invocation 

This section presents some general calling conventions for any platform and specific code sequences 
for the PowerPc' It only covers calls and returns, not parameter passing. The framework for this section 
is the invocation of a parameterless procedure containing nothing but a return instruction. While any 
compiler is free to use its own conventions internally, these are the "Apple standard" conventions that 
will be followed by Apple language products. They are largely the conventions developed by mM for 
AD< on the RS/6000. There are some minor preferences that differ. These are pointed out below. 

There are three flavors of calls to consider, local, cross-TOe, and pointer based. Local calls are 
known at compile-time to not require a change of the TOe register. Typically these are calls within a 
source file. Cross-TOC calls may require a change of the TOe register, whether this is actually true is 
not determined until link time. Typically these are calls outside of a source file. Code generation for 
cross-TOC calls entails only minor overhead on the caller's side, additional code may be created by the 
linker. Pointer based calls are those through procedure variables. They always "switch" the TOC 
register, even though the new value may be the same as the old. The called routine is always ignorant 
of the nature of the call. TheTOC register is presumed to be properly set on entry to any routine. 

Local Calls 

Local calls use PC relative branches, straight to the destination routine. As should be expected 
they involve no additional overhead. Calls to C "static" routines should always be loca\. 

Calls to "extern" routines in the same source file are not so obvious. At first glance they won't· 
involve a TOC switch if the linker prod uces just one TOC per fragment, or at most one TOC per 
compilation unit. However, a "patching" mechanism has'been designed for PowerPC shared libraries 
that provides analogous capabilities to the 680xO trap patching mechanism. The PowerPC patching 
mechanism depends on aspects of the cross-TOC call implementation. It is desirable for C compilers to 
provide an option to make all calls to "extern" routines be compiled like cross-TOC calls. The linker 
should have an option to make calls to exported routines actually utilize the cross-TOC mechanism so 
that patching will work. Were this not done calls within the library to patched routines would bypass 
the patches. 

-- Implementation Note ----------------------
The PowerPC unconditional branch has a 24 bit signed instruction offset, allowing 
simple code generation for a code section of up to 32MB. Unlike the 680xO, the PowerPC 
is intelligent enough to know that instructions are in 32-bit chunks and that using byte 
offsets for instructions is silly and wasteful. The 16-bit signed byte offsets on the 680xO 
are not an insurmountable barrier but do require additional linker smarts to create 
branch islands and the like. 

-- Implementation Note -----------------------

" APPLE CONFIDENTIAL Page 30 



PowerPC Native Runtime Architecture- " Draft 6, July 27, 1992 

At the time of this writing the compilers from IBM do not supply the suggested option. 
Later versions wilL The IBM linker will not ever supply the corresponding option, the 
Apple linker wilL 

Routine Descriptors 

An earlier note anticipated the need to understand routine descriptors. The story may now be told. 

Each externally visible routine has a descriptor associated with it. The descriptor is created by 
the compiler as a normal piece of static data in the same unit as th~ code, for the routine. The descriptor 
does not~ repeat~ does not live in the TOC. There is a one-t~ne association of descriptors and routines. 
The descriptor is always in the same fragment as the code of the routine that it describes. At the 
language level a pointer to a routine is actually a pointer to its descriptor~ not the code entry point. 

The d.escriptor may be two or three words long at the discretion of the compiler. The first word is 
the entry point of the associated routine. The second word is the TOC address for that routine. These 
two words are another example of non-TOe static data that is relocated by the runtime loader. The 
third word, if present, is an undefined "environment" word. 

-- Implementation Note ----------------------
The third word of the descriptor is not used by typical e compilers, although IBM's 
compilers do allocate it. A language such as Pascal with nested routines might use the 
environment word as the static link. Taking the address of a nested routine results in 
the creation of a descriptor whose third word is filled in with the latest stack frame 
address for the routine's lexical parent Other languages may define their own usage. 

The descriptor contains the code address for the routine and the address of the TOe for the routine. 
As you might guess, the descriptor contents are relocated as part of the runtime loading process. This is 
one of the examples of non-TOe relocation mentioned earlier. The TOC pointer involved in cross
fragment calls points to the descriptor. Each caller has a pointer to the descriptor in its own TOe, just 
like references to any external variable. Glue code involved in cross-fragment calls uses this TOC 
pointer. It saves the current value of RTOC, loads the new RTOC value from the descriptor and 
branches to the code address in the descriptor. The original RTOC value is restored on return. This will 
all be detailed in a later section on caIling conventions. 

--CaveatCoder-------------------------------------------------
The Mixed Mode mechanism also has a notion of descriptor for routines, with an 
uncomfortably similar name. We need better terms. 

Cross-TOC Calls 

• APPLE CONFIDENTIAL Page 31 

I' ! 

J 

11 
I: 



PowerPC Native Runtime- Architecture Draft 6, July 27,-1992 

Cross-TOe calls are generated by compilers as a PC relative branch followed by an instruction to 
restore the TOC register. If the linker determines that the call is in fact local it will replace the TOC 
reload instruction with a NOP instruction. Otherwise the linker will create a small, customized piece 
of glue code in the code section of the call. The compiler generated branch is directed to this glue. 
There is one piece of glue in each fragment for each distinct destination routine. 

--Implementation Note ----------------------
In actuality linkers must be prepared to recognize the TOC reload or at least three 
possible NOP instructions and do the right thing. The POWER (hardware) 
architecture specified one preferred NOP, early versions of the PowerPC architecture a 
second and current versions of the PowerPC architecture a third. There is no single NOP 
instruction. One of many "ineffectual" instructions is defined as preferred by CPUs. 

The glue saves the current roc register contents, loads the new value, and jumps to the actual 
destination. The caller reserves a standard slot in its stack frame to save the TOC register. The return 
is made to the original caller, specifically to the roc reload instruction. Any epilogue for parameter 
cleanup or function results is performed after this. 

The linker created glue uses the first two words of the destination routine's descriptor to obtain the 
destination address and new TOC value. The third word of the descriptor, if any, is ignored by this 
glue. The glue accesses the descriptor just like any static variable, via a pointer in the TOC of the 
calling fragment. The glue is a stub inside the calling fragment. The linker will create this TOC 
pointer if necessary. 

--Implementation Note ----------------------
These cross-TOC c~ns are optimized on the presumption that they are to top level 
routines and that common procedural languages dominate which do not need the 
environment word for top level routines. If the destination never needs the environment 
word it is silly to pass it. (Please read the pointer based call section before flaming.) 

On the PowerPC the glue to call a routine named faa would be something like: 

bl 
lwz 

foo_glue 
RTOC, TOC_save_offset(SP) 

foo glue: 
lwz R12, descr of foo(RTOC) 
stw RTOC, TOC save offset (SP) 
lwz RO, 0 (Rl2) -
lwz RTOC, 4 (R12) 
mtctr RO 
bctr 

• APPLE CONFIDENTIAL 

* Call the cross-TOC glue * Restore the callerls TOC pointer 

# Get pointer to fools descriptor 
# Save the callerls TOC pointer 
# Get fools entry point 
# Load fools TOC pointe~ 
# Move entry point to cc~nt register 
# and jump to faa 

Page 32 



PowerPC Native Runtime ArchiteCture Draft6, July 27, 1992 

--Explanatory Note ------------------------
The compiler generates the call as a call to "foo". The linker figures out that this is a 
cross-TOe call, adds the glue, and directs the call there. Custom glue for each 
destination is necessary because the glue has embedded in it the offset of the TOe 
pointer to the descriptor of the destination routine. 

--Implementation Note ----------------------
This is the code currently generated by IBM's compilers and linker. We could do 
slightly better with our own compilers and linker at the risk of not being able to link 
Apple compiled code with an IBM linker. The compiler could emit a TOe save 
instruction as part of a routine's prologue, tagged by a special form of relocation. If the 
linker found any cross-TOe calls in the routine it would leave the reload alone, 
otherwise it would replace it with a NOP. The glue could then omit the TOe save 
instruction. This would reduce the size of the glue but possibly not its speed since the 
TOC save sits in the delay slot between the load of the pointer to the descriptor and 
the load of the entry point from the descriptor. 

--Management Note -----------------------
Upcoming versions of AIX are reported to drop use of the descriptor for cross-TOe calls. 
They might place the code address and new TOC address directly in the caller's TOe. 
This saves one instruction in the glue. However the proposed "patching" strategy for 
Apple relies on the use of the descriptors. fnternally we can simply stick to use of the 
current IBM linker. We should address this issue in the PowerOpen standards since it 
affects binary compatibility. Libraries imported with the new IBM model would 
operate OK except that patches applied to them would not always be called. (In fact 
this has not yet happened as of AfX 3.2.) 

Pointer Based Calls 

As mentioned earlier, taking the address of a routine or passing a routine as a parameter uses the 
address of the routine descriptor since the eventual call may be cross-TOe. This is the address of the 
descriptor, not the descriptor itself. That is, a rO,utine pointer is still a 32-bit pointer albeit to the 
descriptor instead of the code. . .-

The instruction sequence in this case is very similar to that for the cross-TOe call, with just two 
Significant differences. The compiler generates three instructions to load the descriptor pointer into a 
scratch register, to call a standard glue routine, and to reload the caller's TOC. This standard glue 
routine operates like the cross-TOe glue, in addition it loads the environment word into a standard 
register. 

-- Implementation Note -----------------------

• APPLE CONFIDENTIAL Page 33 



PowerPC Native Runtime Architectum· . -.. - '-' .. - -_.. ...... ···-Ofaft6; Juty27. 1992·_· 

Passing the environment word allows nested routines in languages like Pascal to be 
properly passed as pointers and called from anywhere, even from other languages. This 
also provides flexibility to other language models that wish to always use the 
environment pointer. They may cast their external AP( in terms of routine pointers 
instead of direct routine names. This allows them to still interoperate cleanly with 
other languages. 

The code for the PowerPC to call through a routine pointer might be something like: 

lwz 
bl 
lwz 

ptr_glue: 

RII, address of descriptor 
ptr glue --
RToC, TOC_save_offset(SP) 

lwz RO, 0 (RlI) 
stw RTOC, TOC save_offset(SP) 
mtctr RO 
lwz RTOC, 4 (Rll) 
lwz Rll, 8 (Rll) 
bctr 

i Restore the caller's TOC pointer 

i Get the entry point 
11= Save the caller's TOC pointer 
11= Move entry point to count register 
i Load the new TOe pointer 
t Load the environment pointer 
11= Jump through the count register 

--Implementation Note----------------------
The optimization of the TOC save mentioned above should obviously be extended to 
include pointer based calls. 

--Open~sue------------------------~-----

The astute reader will notice that the cross-TOC example loaded the descriptor pointer 
into R12 and the pointer based example uses R11. These are the actual code sequences 
currently used by lBM's tools. There may be advantages to low level bits of software 
like debuggers or the patching mechanism if common conventions were used. The 
flexibility is limited since the caller of ptr...glue passes the pointer in a non-standard 
register. This logic is coded into compilers. Similarly coded into compilers is the 
assumption that the environment word is passed in Rl1. The proposed approach is to 
define another version of ptr...glue with a different name that takes the descriptor 
address in R12. Compilers could evolve to use that version over time. This allov"s new 
code to call existing binaries properly and vice versa . 

• APPLE CONFIDENTIAL Page 34 



PowerPC Native Runtime.Architecture· Draft 6, July 27. 1992 

VII. Stack Frames 

Stack Frame Organization 

The stack layout is conventional enough to appear familiar, yet different enough to clobber the 
unwary. The most significant difference is the use of just one stack pointer instead of two. Another is 
that a bounded amount of memory beyond the end of the stack may be used. A third difference is that 
stack frame boundaries are blurred, with portions of the caller's frame explicitly used by the callee. 

-- Explanatory Note ------------------------
The almost universal convention for grow-down stacks is to have one register point to 
the low address end of the stack, the stack top or stack pointer, and another point to the 
high address end of the stack frame, the frame pointer. Parameters are addressed with 
positive offsets from the frame pointer and local variables with negative offsets from 
the frame pointer. The stack top floats during expression evaluation, parameter 
passing, etc., as values are pushed and popped. 

This model uses a grow-down stack with a single pointer at the low address end. The stack pointer 
does not generally move after the frame is created. This ignores the case of dynamically sized local 
variables, which is discussed later. The definition of stack frame here is the section of memory between 
the caller's stack pointer and the caIlee's stack pointer. 

--Rationale Note -------------------------
This model is optimized for the predominant case of routines with fixed sized frames 
whose size is known at compile time and for frameless leaf routines. C does not allow 
the deClaration of variable sized locals. In those languages that do, most routines still 
have fixed size frames. 

Of course the protocols defined here are loose standards in that any language can use 
almost any approach it desires for execution within its own domain. Adherence to 
these standards will greatly simplify the development of multilingual tools such as 
debuggers, applications with components written in different languages, callback 
routines written in arbitrary languages, and software substitutions (analogous to trap 
patching on the 680xO). 

Figure 4 shows the general layout of the stack. The stack is drawn using IBM's convention of low 
addresses on the top, counter to typical 680xO usage. This makes it easier to visualize some of the 
s&.4:ions as structures with positive offsets. Taking that view makes it easier to understand and accept 
some of the unconventional aspects of this model. 

« APPLE CONFIDENTIAL Page 35 



PowerPC Native Runtime Architecture 

!Oirection 
of growth 

Low Address 

GPR save area 

Stack Pointer after prolog • FPR save area 

Callee's 
linkage area 

Callee's 
parameter area 

Callee's local 
variables 

GPR save area 

Stack Pointer before call .. 
FPR save area 

Caller's 
linkage area 

Caller's 
parameter area 

Caller's local 
variables 

High Address 

Figure 4. Stack layout 

- Draft 6; July 27,· 1992 . 

May be used by frameless 
routines called by callee 

Complicated, see figure 2 

Written by callee 
for calls to others 

Private to calfee 

Written by callee 
during prolog 

Complicated, see figure 2 

Written by caller, 
read and written by callee 

Private to caller 

The callee's frame is the memory between the two stack pointer values, although the callee also 
uses portions of the caller's linkage and parameter areas. Working from the before call stack pointer 
up, the FPR and CPR save areas are used by the callce to save those non-volatile registers that it uses. 
The local variables are obvious. The parameter area is used to store parameters passed to called 
routines. The linkage area contains a six word structure described later. Finally the FPR and CPR save 
areas beyond the new stack pointer are used by frameless leaf routines called by the cal Ice. This 
expands the powers of frameless routines by allowing them to use non-volatile registers. 

c APPLE CONFIDENTIAL Page 36 



PowerPCNative Runtime Arcnitecture Draft 6, July 27, 1992 

The caller's parameter area is also known as the callce's argument area. When the callce is 
running the parameters passed to it are in the callce's argument area, the same as the caller's 
parameter area. The callce's parameter area is used to pass parameters to other routines called by the 
callee. 

--Implementation Note ----------------------
The save area on the low address side of the stack pointer is used only as needed by 
frameless leaf routines. They only save as many of the non-volatile registers as they 
use. However any software operating asynchronously on the stack must account for the 
largest possible save area. The stack pointer must be decremented by that amount 
before anything is placed on the stack by the asynchronous operation. This amount is 
224 bytes, which includes alignment to a quad word boundary. 

Ron Hochsprung has dubbed these save areas the "R(~ Zone" . 

Set in own area 
Callee's linkage area 0 Stack frame back link at frame creation 

Set in caller's area 
Callee's parameter area 4 Saved condition register by callee's prolog 

area 
Callee's local variables 8 Saved link register by callee's prolog 

Reserved 
Callee's GPR save area 12 reserved word used at present) 

Callee's FPR save area 16 
Used by "patching" 

reserved word mechanism 

Set in caller's area 
Caller's linkage area 20 Saved TOC pointer by cross-TOC glue 

Figure S. Details of stack frame linkage area 

Figure 5 shows the structure and use of the stack frame linkage area. Portions of the linkage area 
are used by the caller and other portions by the callee. Put another way, the callce uses portions of the 
callers linkage area and portions of its o\,,'n linkage area, with the unused portions of the callce's own 
linkage area used by other routines that it calls. 

The stack frame back link points to the immediately preceding frame, i.e. the contents of SP before 
the call. It is set by the callce in its own linkage area when creating the frame. The saved TOC pointer 
is the caller's RTOC contents. It is saved by the glue for cross-TOC calls in the caller's linkage area 
before jumping to the callce and restored by the caller after return. The saved condition and link 

« APPLE CONFIDENTIAL Page 37 



PowerPC Native Runtlme Architecture" '-'.- .----.----.- " . - --Draf-t'6,July 27, 199-2 --

register slots are set by the callee in the caller's linkage area if the callee modifies those registers. 
The use of the reserved "patching" word is described in a different document. 

--Explanatory Note ------------------------
The diagram may look funny because the saved TOC slot is connected to the callee's 
linkage area. The drawing is from the view of callee. The saved TOC slot in the 
callee's linkage area holds the calIee's roc pointer when it calls other routines .. A 
routine reloads its RTOC from the save slot in its own frame after a cross-TOC call. 

--Open Issue---------------------------
IBM documentation claims that the word at offset 12 is used by the C library routines 
setjmp and 100~gjmp. Disassembly of their code and tracing with a debugger did not 
show this use. We're assuming that the documentation is out of date. The use of these 
fields should be coordinated with IBM to enhance interoperability of application and 
shared library binaries between Macintosh and PowerOpen. This is best approached 
through the PowerOpen standards but the mechanism for influencing them is not clear. 

On the PowerPC the stack should be kept quad word aligned. It must be at least word aligned for 
the load-multiple-word and store-multiple-word instructions to operate at all. For performance the 
high address end of the GPR save area should be quad word aligned. The suggested approach is to save 
only the necessary FPRs, possibly leave an alignment gap between the GPR and FPR save areas, save 
only the necessary number of GPRs, and possibly leave another alignment gap between the local 
variables and the GPR save area. 

--Explanatory Note -----------------------
The load-multiple-word and store-multiple-word instructions take a starting register 
number and save from that register through R31: The PowerPC hardware architecture 
states a preference for the contents of R31 to be the last word in a quad word. This is true 
for both 32-bit and 64-bit CPUs, and for both the word and doubleword loads and stores. 
On 64-bit CPUs, the load-multiple-doubleword and store-multiple-doubleword 
instructions will require doubleword alignment. Using just word alignment saves little 
space, slows everybody else down, and will break 64-bit software. Don't do it. 

--Explanatory Note -----------------------
Computing the size of this second gap is a little tricky because sizes of the GPR save 
area, local variables, and parameter area must all be considered. Also, the linkage 
area has six words, throwing simple expectations off by two words. 

--Explanatory Note ------------------------
The suggested approach should slightly improve performance in two ways. First the 
minimum number of non-volatile registers are saved and restored. Putting the second 
gap between the locals and erRs keeps the parameters and locals together, increasing 

« APPLE CONFIDENTIAL Page 38 



PowerPC Native Runtime Architecture Draft 6, July 27, 1992 

the chance of keeping dead space (the gap) out of the data cache. The gap cannot go 
between the parameter and the linkage areas, the parameters must start at offset 24. 

Some Apple operating systems may provide guard space at the low address end of a stack to support 
overflow checking. Where this is the case the guard space will be at least 4K bytes long. Safe checking 
for larger allocations requi res probes in 4K byte increments or use of a checking service. 

----Open Issue------------------------------------------------------
The 4KB size was arbitrarily chosen as a likely virtual memory page size. On the 
PowerPC frames up to 32KB can be created in a single instruction. Larger frames require 
first computing the frame size in a register. Perhaps 32KB would be a better buffer size, 
requiring a check only when extra code is being generated anyway. 

The standard stack frame model does not specify a mechanism for up level references in languages 
that support nested routines. The choice of static links or displays is controversial and very dependent 
on usage patterns, optimization technology, available registers, etc. This is left up to individual 
compiler implementors. 

Using the Stack 

The usage of the stack is best understood in ternlS of three phases of subprogram calls: 

1. Processing parameters before the call instruction, 
2. Glue and prologue before frame creation, and 
3. Normal execution after frame creation. 

First, the caller places each parameter in the caller's parameter area. The layout of this area is 
defined later. Since all calls use this one parameter area, temporary storage in non-volatile registers 
or the local variable area must be used when parameter lists themselves contain calls with parameters. 
After the .parameters are prepared the call is made. 

---- Explanatory Note ------------------------------------------------
The discussion of parameter passing is slightly obscured by the fact that parameters 
are-usually passed in registers. We'll ignore this for now. 

---- Explanatory Note -------------------------------------------------
The problem of parameter processing for nested calls simply does not occur for models 
that push parameters on the stack. For example in "£oo(a, bar(i, j, k), C)" , the values of 
a and c cannot be put in the parameter area until after the call of bar since a and i use 
the same slot as do c and k. 

" APPLE CONFIDENTIAL Page 39 

i. 
I 

I 



PowerPC Native Runtime Architecture Dratt 6, July 27,.1992 

If this is a cross-TOC call, control goes next to the glue stub in the current code section. As seen 
before, the stub will save the current value of RTOC in the last word of the caller's stack linkage area, 
load the new RTOC value, and branch to the actual callee. If this is not a cross-TOC call control goes 
directly to the callee. 

The callee's prologue will create the frame, store the back link, save the link register if any non
leaf routines are called, save the entire condition register if any of its non-volatile fields are used, and 
save any non-volatile GPRs and FPRs that are used. The frame creation and store of the back link are 
actually done with a single store-word-with-update instruction. 

-- Implementation Note ----------------------
As suggested in an earlier note, we may include saving the TOC value in the prologue. 

-- Implementation Note ----------------------
The prologue may save the registers either before or after creating the frame. The link 
register and condition register are saved in the caller's linkage area, which is already 
available. The GPRs and FPRs may be saved-before frame creation by taking 
advantage of the "Red Zonc"TM. Allocation of the frame will then magically 
neutralize the red menace. 

--Rationale Note -------------------------
One could imagine "optimizing" the code to save registers only when first needed, 
especially if conditional paths had quite different needs. Saving the registers within 
the prologue can greatIy,simplify any facilities that need to unwind stack frames and 
do so by examining code. Examples include the proposed C++ exception mechanism and 
display of register based variables during debugging. On high-end CPUs the 
store-multiple instruction is likely to receive particular hardware attention. 

These protocols allow leaf routines (those that make no calls) to do non-trivial work without 
creating a stack frame. This can give a considerable performance improvement, especially with modern 
trends towards large numbers of very small routines. If parameters, local variables, results, and the 
return address all stay in registers the only memory references made by leaf routines will be for code. 

Possible PowerPC prologue code for a routine might be something like: 

.foo: 
mflr RO It Extract the return ad~ess 
mfcr Rl2 It Extract the condition register 
bl $SaveFPR25 It Save FPR25-FPR3I 
stmw R18, -120(SP) It Save GPR18-GPR3I 
stw RO, 8(SP) It Save the return address 
stw R12, 4 (SP) It Save the condition reg:'ster 
stwu SP, -208 (SP) It Allocate the new frame 

" APPLE CONFIDENTIAL Page 40 



PowerPCNative Runtime Architecture Draft 6, July 27, 1992 

--Implementation Note -----------------------
The $SaveFPRn routines are hypothetical standard runtime routines that save from 
FPRn through FPR31 into the "Red Zonc"TM. There is no store multiple instruction on 
the PowerPC for the floating point registers. The CPR save offset includes alignment 
padding, being computed as "-56-8-56" for "-FPRSize-alignment-CPRSize". The stack 
allocation includes 64 bytes for the parameter area, local variables, and alignment. 
The division of this space is left as an exercise to the reader. 

--Open~sue------------------------------------

The $SaveFPRn routines cannot be in a shared library. The simplest approach is to get 
them from a standard linker library, Le. have them copied into every fragment that 
needs them. Since all PowerPC branches can be relative or absolute, the unconditional 
branch-and-Iink can go straight to the low or high 32MB of memory. AIX takes 
advantage of this for common utility routines, perhaps we should too. 

This needs to be verified with a real example. AIX documentation and reality are not 
always in synch. If true it represents a serious compatibility problem in using AIX 
binaries under the Macintosh 015. 

--Implementation Note ------------------------------------
Use of the store-with-update instruction to create the frame is important to guarantee 
that the stack linkage is always valid, making life a bit nicer for debuggers. 

--Implementation Note ---------------------------------
On the PowerPC the largest stack frame that may be allocated with the one instruction 
shown above is 32KB. Larger frames are created by first computing the size in a register 
then using the indexed form of the store-word-with-update instruction. RO and R 12 are 
available, as is Rll if not used as for the environment word. R13-R31 are availabl0 if 
sa ved first. 

Finally the callee will access its parameters directly from the caller's parameter area (a.k.a. 
callee's argument area). Note that this is done without indirection through the back link since the 
callee knows its own frame size and the parameters always start 24 bytes beyond the end of its frame. 
The calIee's parameter area is used to pass parameters to routines that it calls. 

The epilogue code is very analogous to the prologue code. One performance hint is to deallocate the 
frame by incrementing the stack pointer instead of loading the back link. This saves a memory 
reference. 

Dynamically Sized Locals 

« APPLE CONFIDENTIAL Page 41 

1 
! 

II 
" 



PowerPC Native HuntimeArchit.ecture-- __ ._. __ .... _ . . Draft 6., July 27.. 1992 

C does not directly support dynamically sized local variables, although the alloca service does 
allow their manual creation. Other languages support them directly. Dynamically sized locals are 
generally allocated "beyond" the fixed size portion of the stack frame and accessed through a pointer 
in the fixed size portion. They require separate notions of a frame pointer for addressing the fixed size 
portion of the frame and a stack pointer to denote the end of allocation for the stack. 

Because called routines utilize the caller's linkage and parameter areas, these portio.ns of the 
standard stack frame must always be located at the top of the stack. A dynamic allocation proceeds as 
follows: 

• Create a frame pointer if this is the first dynamic allocation. 
• Decrement the stack pointer by the size of the allocation, maintaining the back link and 

copying the saved RTOC value (if any). 
• Set the new object's address to SP+24+Param_Size, i.e. between the new linkage/parameter 

areas and the fixed size local variables. 
• Address the fixed size portion of the frame via the frame pointer from now on. 

--Implementation Note----------------------
The size of the allocation and the new objects address may both need padding to 
maintain quad word alignment of the stack and to properly align the new object itself. 

--Implementation Note ----------------------
Since the use of the frame pointer is entirely local to a routine there are no defined rules 
in the architecture. Common practice would reduce debugging confusion though. We 
suggest that R31 be used as the frame pointer, that it be captured in the prologue just 
after frame creation, and that its value be the initial stack pointer va hie. This last 
point keeps variable offsets from the frame pointer "consistent" with those from the 
stack pointer, again to reduce debugging confusion: 

When doing a dynamic allocation, the "Red Zone"TM is known to be empty, it is for frameless leaf 
routines. Except for the stack back link and saved RTOC slot the linkage area is also empty. The link 
register and condition register save slots are for called routines. The use of the reserved words is 
constrained by definition to not require copying them. 

--Implementation Note ----------------------
The cross-TOC glue shown earlier saves RTOC on each call, so the save slot would not 
need to be copied. [f the suggested optimization to save RTOC just once in the prologue 
were implemented, then the RTOC save slot would need to be copied. 

The copying of the parameter area depends on programming language semantics and the details of a 
particular allocation, specifically whether the allocation occurs in the midst of a processing a 
parameter list. A language such as C which performs dynamic stack allocations through a library 
routine (alloca) is one example. Others include languages with dynamically sized declarations and 

• APPLE CONFIDENTIAL Page 42 



PowerPC Native Runtime ArchHecture Draft 6, July 27, 1992 

inline routine expansion or blocks within expressions. 

Figure 6 shows shows the stack after two dynamic allocations. Note the the frame pointer points 
where the stack pointer did before the first dynamic allocation. 

Low Address 

Stack Pointer .-

.. 

Frame Pointer .. 

High Address 

t Direction 

IOfgmwth 

GPR save area 

FPR save area 

Current 
linkage area 

Current 
parameter area 

Second dynamic 
allocation 

First dynamic allocation 

Current local 
variables 

GPR save area 

FPR save area 

~ 

"' 

.... 
"' 

~ 

Figure 6. Dynamically sized local variables 

" APPLE CONFIDENTIAL Page 43 



PowerPC Native Runtime-Architecture .. ~DraU6,JuJ.¥-27 ,1992-

VIII. Parameter Passing 

The parameter passing protocols utilize registers for the transmission of most arguments with a 
shadow storage area in the caller's frame. It is best viewcd by first considering the caller's parameter 
area as a structure containing all of the parameter values, then using registers as an optimization. 
There is just one parameter area in each frame, it must be as large as the largest parameter list used by 
calls from that routine. The internal use of the parameter area, i.e. the mapping of parameters to 
parameter area offsets, is of course determined for each call. 

The parameters are laid out in the parameter area in textual order with the left most parameter at 
the lowest offset. Each parameter starts at a word boundary regardless of size (e.g. characters occupy a 
word and double floats are not necessarily on a double word boundary). 

--Implementation Note----------------------
Ideally double floats should be on a doubleword boundary. However this is the current 
AIX standard and is retained for compatibility .. As will be shown later, floating point 
parameters, single and double precision, will almost always be passed in registers. The 
effect of odd word alignment will hopefully be minimal. 

Of course parameters passed by reference use one word for the address. Parameters passed by copy 
may be either input or output parameters. Neither C nor Pascal support output parameters by copy but 
other languages do. Byte and halfword scalars (things with integer-like values) that are passed by 
copy are sign extended to a word. Unsigned bytes and halfwords are of course zero extended. Composite 
types that are passed by copy use as many words as necessary with extra space at the high address end 
being undefined. Floats and double floats take one and two words respectively. 

--Implementation Note ----------'''---------------
The C notion of extending shorter values to words is standardized for all languages to 
simplify interlanguage calls. It is worth noting that the PowerPC can load and zero or 
sign extend half words in one instruction but can only load and zero extend bytes. All 
four cases can be handled in one instruction for values already in a register. 

-- Implementation Note ----------------------
There is a feature in the IBM C compiler where it uses a sequence of word loads for 
composites, fetching up to 3 extra bytes beyond the needed storage. This would cause 
problems if say a six byte array happens to end exactly at an addressing boundary. 
You'll get an access error for the extra two bytes that you don't even want. The IBM 
linker and AIX avoid this by always padding data sections with an extra word. A 
doubleword pad should probably be used in anticipation of using doubleword loads on 
64-bit CPU implementations. 

The method of passing is language dependent. C has only input parameters, passes all scalars and 

• APPLE CONFIDENTIAL Page 44 



PowerPG- Native Runtime Architecture Draft 6, July 27, 1992 

structures by value, and all arrays by reference. Pascal passes scalar input parameters by copy, record 
and array input parameters by reference with callec copy, and all VAR parameters by reference. Other 
languages may have different rules, for example FORTRAN passes all parameters by reference and 
Ada passes all scalars by copy whether input or output. [t is up to each compiler vendor to define how 
to call subprograms written in other languages and to document the protocols used for internal calls. 

This does not imply arbitrary deviation from these standards but documentation of t~e language 
implementation and suggested mappings to other languages. For example, in-out scalars could not be 
passed between C and Ada unless the Ada compiler allowed selection of reference passing to the C 
routine. In that case the C routine would pretend that it got a pointer, or a ref for C++. 

Figure 7 shows the layout of the parameter area for the following C procedure. The offsets are 
those from the stack pointer as the caller prepares the parameters. 

typedef struct rec {short sl, s2, s3;} rec; 
void foo (char c1, char *c2, short sl, 

long a[], rec r1, rec *r2); 

24 cl (zero extended) 

28 address of c2 

32 sl (sign extended) 

36 address of a 

40 r1.s1 r1.sZ 

44 r1.s3 

48 address of rZ 

. '. ~ .... 
Figure 7: Parameter area example 

A number of registers on the PowerPC are utilized for parameter passing in order to avoid memory 
references to the parameter area. The rules governing this are not complicated but are easy to 
misunderstand. 

The first rule is that the first eight words of the parameter area are mapped to the general purpose 
registers R3 through R1O. Except for floating point parameters, these eight words are placed in the 

c APPLE CONFIDENTIAL Page 45 

it 
! 



· PowerPC Native Runtime Architecture. Draft 6,July 27, 199? 

corresponding register on a word-for-word basis. Scalars and pointers occupy one register each, 
composites occupy as many consecutive registers as needed. Note that composites are mapped to the 
registers as a memory image, not as components. An array of six bytes uses two registers, all of the first 
and the top half of the second. The lower half of the second is undefined, as is the lower half of the 
corresponding parameter area word. 

The next rule is that the first 13 floating point parameters are passed in the floating point registers 
FPRI through FPR13. This only applies to "free" float parameters, floats embedded in composites do 
not count. If the floating point parameter appears within the first eight words the corresponding 
general register or register pair is not used. The general register is not used later, it is simply skipped. 
The floating point registers are used for consecutive floating point values, they are not mapped to fixed 
slots in the parameter area like the genera) registers. 

The final rule is that all values not in registers are in fact stored in the parameter area. Note that 
a multi-word composite parameter may be partially in the GPRs and partially in the parameter area 
if it starts in the eighth word or earlier and ends after the eighth word. 

Figure 8 shows the parameter layout and register usage for the following C procedure: 

typedef struct rec {int i; float f; double d;} rec; 
void foo (int iI, float fl, double dl, rec r, 

int i3, float f3, double d3); 

There are three things to take not of. First, R4, RS, and R6 are not used. Second, the floating point 
fields of the structure are not "pulled out" into the floating point registers. Third, the floating point 
registers are used contiguously although the float parameters are not contiguous. 

--Picture Fix ---------------------------
Tweak the example to show the structure partially in registers and partially on the 
stack. 

" APPLE CONFIDENTIAL Page 46 



PowerPC Native Runtime Architecture Draft 6, July 27, 1992 

24 i1 R3 

28 f1 FP1 

32 d1 (first word) 

----------- FP2 

36 d1 (second word) 

40 rec.i R7 

44 rec.f R8 

48 rec.d (first word) R9 
1------:-------

S2 rec.d (second word) R10· 

S6 i3 stack 

60 f3 FP3 

64 d3 (first word) 

1----------- FP4 

68 d3 (second word) 
-. 

Rgure 8. Register mapping example 

[f a parameter value is passed in a register the corresponding space in the parameter area must still 
be available, but is not set by the caller. The callee may use the caller's parameter area to spill the 
parameter registers if desired. Parameter registers not used are considered scratch by the callec. The 
caller must store all parameter registers before calling other routines, even if those routines have few 
parameters, since they may in turn call routines with several parameters. 

-- Implementation Note ----------------------
As an architectural rule the parameter area need be no bigger than the largest 
parameter list. C compilers have to modify this in three special cases. In the first 
case, routines with a variable number of parameters must be called with a parameter 
area no less than eight words long. ll1cse routines will store R3 through RIO on entry 
then access the parameters through a pointer into the caller's parameter area. 

" APPLE CONFIDENTIAL Page 47 

.! 
:1 
II 
I 

! 



PowerPC Native Runtime- Architecture - Draft 6, Ju~y"·27, 1992·· 

Routines that do not have prototypes must be assumed to have a variable number of 
parameters. In the second case, routines with floating point values in the ellipsis C .. ) 
portion of a variable length parameter list must pass those floating point values as non
floats, i.e. either in the GPRs or in the parameter area. These routines won't know they 
are getting floating point values for those parameters. Finally, C routines without 
prototypes must have floating point values passed both in the FPRs and GPRs/stack. 
Without a prototype the caller cannot tell if the callee expects a float or has a 
variable length parameter list. 

The final rule applies to C calls when a prototype is not around for the callee. In this case floats 
are treated like both floats and non-floats. That is the first eight words are passed in the general 
registers regardless of whether or not they are floats. The first 13 floats are still passed in the floating 
registers. This is done because the caUee could be expecting things either way. If the callee definition 
specifies floats then it will be looking in the floating registers. If it is a routine like printf that accepts 
anything and interprets it internally it will be looking in the general registers. 

--Implementation Note ----------------------
IBM standardizes on a minimum 8 word parameter area 

Function Results 

Functions with scalar results return them in R3. Single and double precision floating point results 
are returned in FPRl, long double results are returned in FPRI and FPR2. Composite results whose size is 
known by the caller are returned in storage allocated by the caller. The address of this storage is 
passed in as an implicit left most parameter, i.e. in R3. 

--Open Issue--------------------------
The handling of function results may need more investigation. This covers the 
capabilities of just C and Pascal. At least FORTRAN should be covered in addition. 

--Open Issue----------------------------
Some IBM documentation mentions all of R3-RlO and FPRI-FPR13 as function result 
registers, although it is not clear where extra registers are used. The only common 
known case is FORTRAN's COMPLEX type, returned in FPRI and FPR2. LISP has also 
been mentioned as a possible user of more registers . 

• APPLE CONFIDENTIAL Page 48 



PowerPGNative Runtime Architecture Draft 6, July 27, 1992 

IX. PowerPC Register Conventions 

Figures 9, 10, 11, and 12 summarize the general, floating point, condition register, and special 
purpose register usage conventions for the PowerPC. The condition register conventions are shown for 
each 4-bit field. A non-volatile register is guaranteed to have the same value upon return as before the 
call. 

GPR Volatile? Usage 

0 Yes Scratch, used in glue and prologs 

1 No Stack pointer (SP) 

2 No TOe pointer (RTOC) 

3-10 Yes Rrst 8 parameter words. 
R3 is used for non-float results. 

11-12 Yes Scratch, used in glue and prologs 

13-31 No Non-volatile local storage 

Figure 9. General purpose register conventions 

FPR Volatile? Usage 
, 

0 Yes Scratch 

1-13 Yes First 1 3 floating point parameters. 
FPR 1 & FPR 2 used for float results. 

14-31 No Non-volatile local storage 

Figure 10. Floating point register conventions 

" APPLE CONFIDENTIAL Page 49 



. PowerPC Native Runtime Architecture .. _ ... ---. -. _.- ·--Draft 6, July-27,~992 -

CR Volatile? Usage 

0-1 Yes Scratch, set by fixed (0) and float 
(1) operations via record bit (Rc) 

2-5 No Non-volatile local storage 

6-7 Yes Scratch 

Figure 11. Condition register conventions 

SPR Volatile? Usage 

LR Yes Procedure call and return 

CTR Yes Loops, computed branches 

PMR No Major CPU modes 

XER Yes Fixed point status 

FPSCR Yes Floating point status and control 

Figure 12. Special purpose register conventions 

• APPLE CONFIDENTIAL Page 50 



PowerPC Native Runtime -Architecture Draft 6, July 27, 1992 

x. Shared Libraries 

This section discusses the inner workings of shared libraries. It also covers a couple of general issues 
that apply equally to any fragment. The discussion here is in more depth than appropriate for the 
earlier discussion on fragments. 

There are actually two shared library systems to be aware of on the PowerPC Macintosh. The 
system described in this paper is an intrinsic part of the runtime architecture. It may never be 
available on 680xO machines. It provides very transparent, easy to use facilities for traditional 
procedural languages. AU~se of the term "shared library" in this paper is to this intrinsic system. 

The intrinsic shared library system is managed by the PowerPC Code Fragment Manager (CFM) in 
conjunction with the PowerPC Code Fragment Loader (CFL). The APIs for these are found elsewhere. 

The second shared library system is focused specifically at sharing C++ classes. It will exist on 
both 680xO and PowerPC machines. On the PowerPC it will be layered on top of the intrinsic system. 
This second system is documented elsewhere, and not discussed further here. 

--Implementation Note ----------------------
The term "build time" is used frequently in this section. It refers to "around link time", 
i.e. after compilation and before execution, either during or after linking. Some of the 
operations discussed are not handled by IBM's linker and will be handled initially by 
post processing tools. These mayor may not be rolled into Apple's linker. 

Overview 

As described earlier, the TOC addressing model provides independence among execution units. They 
can appear anywhere in memory relative to one another and only a comparatively small number of 
addresses in the TOC and other static data need to be relocated at load time. This model supports 
shared libraries with dynamic binding at low cost. Each concurrent use of a shared library typically 
has a private copy of the static data and shares the code. 

The shared library design provides both static and dynamic benefits. The primary static benefit is 
reduced application file size by extracting common portions into shared libraries. The dynamic benefits 
include improved functional coherence by having all applications use one version of a library, the 
ability to upgrade common portions without modifying all applications, and improved RAM 
utilization by sharing code. 

Fully generalized symbol resolution at runtime is not supported. This model is oriented more 
towards benefits for the end user than the programmer. Choices which reduce problems for the consumer 
are taken over generality for the programmer. In particular the approach to dynamic binding allows 
good runtime performance and fewer surprises by limiting the size of name spaces and the amount of 

« APPLE CONFIDENTIAL Page 51 



PowerPC Native Runtime Architecture Oraft6, July 27, 1992 

relocation performed. The runtime actions are to bind existing symbolic linkages to addresses. The 
~csymbolic linkages are determined in a traditional manner at link time. 

Having imports name both the library and symbol improves lookup performance and reduces 
possible confusion. The TOC model already condenses the references across execution units, reducing the 
amount of relocation to perform at load time. Further simplification is obtained by reducing the visible 
name space of libraries and resolving external references to specific libraries at link time .. The name 
space is reduced when the shared library is linked. Exports must be explicitly selected. 

When a fragment is linked some form of the shared library must be available and given to the 
linker just like a traditional linker library. language level external references to routines and data are 
created as always. Uthe linker resolves a reference to a name exported from a shared library it creates 
infonnation for the loader noting the use of that name in that library and relocation information for the 
reference. The runtime loader will lookup that name in that library and fiII in the appropriate 
address .. This adds security since the application will not become erroneously connected to some totally 
unrelated library on the user's machine that happened to export the same name. 

An API for the Code Fragment Manager will be openly available. This allows programmers to 
utilize PowerPC code fragments from files or resources in any manner they choose. A single fragment 
may be loaded multiple times, each creating a different instance of the fragment with a new static data 
area. Addresses for individual routines and data may then be looked up and accessed through normal 
routine or data pOinters. This lookup is within the context of a specific instance of a fragment, necessary 
to properly find exported data items and to ensure that calls (through descriptors> use the proper static 
data instance. This greatly expands the power of software components over the 
single-entry-point-no-static-data model in use for the 680xO. 

'€rsion Checking 

Bidirectional version checking is supported between a shared library and its clients. This gives 
robust, automatic, overall compatibility checking at low cost. Other schemes such as Gestalt or a 
version number for each export either require manual intervention and/or much higher cost. Of course a 
Gestalt-like scheme could be used in addition to the automatic checking. Like any version number 
scheme, the success of it depends heavily on the proper use of version numbers by library developers. 

For the sake of discussion we'll focus on an application using one shared library. The checking is 
actually done between any PowerPC fragment and each of the shared libraries that it imports from. 
The checking is entirely automatic, being performed as part of the runtime loading process. 

When the application is created it is linked with a version of the shared library. Symbols in the 
shared library that are visible to the outside world are called exports. Unresolved external symbols in 
the application that are resolved by the linker to exports from the shared library are called imports. 
The version of the shared library used at link time is called the definition version. It supplies the 
definitions of symbols (the APl), not the actual implementation of routines and variables <the code). 

When the application is executed it must be connected to a version of the shared library. The 

" APPLE CONFIDENTIAL Page 52 



PowerPC Native Runtime Architecture Draft 6, July 27, 1992 

imports in the application are connected to the associated exports in the shared library. This version of 
the shared library is called the implementation version. It supplies the actual implementation of 
routines and variables (the code). 

There is a contract between the application and the shared library that the version of the shared 
library used at runtime must be compatible with the version of the shared library used at link time. 
The code must satisfy the API. 

When the application is linked version information is copied from the shared library to the 
application. When the application is executed version information from the application and shared 
library are compared. This comparison is bidirectional, looking at the expectations of both the 
application and shared library. 

The bidirectional nature of the checking is necessary because the definition version of the shared 
library might be newer or older than the implementation version. The basic approach is to let whoever 
is newer decide if they are compatible, on the premise that understanding the past is easier than 
predicting the future. 

Let's suppose the application is linked with version 3 of the shared library and imports routine foo. 
If the application is run on a machine ,vith version 1 of the library, foo might not exist at all or might 
have an incompatible implementation. (Yes, we would detect the missing foo anyway, the version 
check does it much more quickly if many exports are involved.) When version 3 of the library was 
created the library developer should know what older implementations (code) could satisfy the current 
definition (API). 

-- Anticipatory Note -------------------------
Actually imports are allowed to go unmatched at load time in very specific 
circumstances. These are described later. 

If the application is run on a machine with version 5 of the library, an analogous situation holds. 
Foo might have been removed or have changed in an incompatible manner. When version 5 of the 
shared library was created the library developer should kno\ll.' what older definitions (API) could be 
satisfied by the current implementation (code). 

Every shared library has three version numbers, the current version (Current), the old definition 
version (Old_API), and the old implementation version (Old_Code). These numbers must be set by the 
shared library developer when creating the shared library. Old_API and Old_Code must always be 
less than or equal to Current. 

The value for Current ought to be obvious. Of course if the application is linked and executed with 
the same version of the shared library everything is assumed to be OK. 

The value for Old_API is the oldest version for which the current implementation (code) is still 
compatible with the old definition (API). It says whose old expectations are still being satisfied. An 
old application linked with a definition of the shared library whose version is greater th<lll or equal to 

• APPLE CONFIDENTIAL Page 53 



PowerPC Native Runtime Architecture Draft 6, July 27, 1992 

Old_API (and implicitly less than Current) is assumed to be compatible and may execute with the 
current (newer) implementation of the shared library. 

The value for Old_Code is the oldest version for which the current definition (API) is still 
compatible with the old implementation (code). It says who can still satisfy today's expectations. An 
old implementation of the shared library with a version number greater than or equal to Old_Code 
(and implicitly less than Current) is assumed to be compatible and may execute with applications 
linked with the current definition of the shared library. 

The linker copies the Current and Old_Code values from the definition library into the 
application. At runtime these values from the application are used along with the Current and 
Old_API values from the implementation library. Again, these values are actually copied and tested 
separately for each shared library used. The following C pseudo-<ode shows the tests are made at 
runtime: 

if Definition.Current == Implementation.Current 
all OK 

else if Definition.Current > Implementation.Current 
II Have new definition (API) with old implementation (code) 
if Definition.Old Code <= Implementation.Current 

all OK 
else 

the library is too old for the application 
else II Implementation.Current > Definition.Current 

II Have new implementation (code) with old definition (API) 
if Implementation.Old API <= Definition.Current 

all OK -
else 

the application is too old for the library 

----Open Issue-----------------------------------------------------
. The exact format of version numbers has not been settled. 

Creating and Using Shared Libraries 

Supporting this model means that the shared library developer must do some up front work for the 
application developer. The library developer must provide some form of header files for the exported 
names and at least a definition library exporting those names. The definition library need not be a 
fully operational version. The application developer needs only a library exporting the correct names 
to link the application. Working versions of the shared library are only needed for executing the 
application. 

--- Explanatory Note ------------------------------------------------
This section generally mentions applications and shared libraries. This is done only to 
enforce a dear mental model of the client of a service (the application) and the 

• APPLE CONFIDENTIAL Page 54 



PowerPC Native Runtime Architecture Draft 6, July 27, 1992 

provider of the service (the shared library). As discussed earlier, all fragments are 
first class citizens and may be clients of shared libraries. Shared libraries are by 
definition those things used at link time and automatically found at runtime. Not all 
fragments are shared libraries. 

The shared library is created in a normal link operation, specifying that the output is a shared 
library instead of an application and what the exported names are. Note that a shared library 
containing only data is perfectly acceptable. A shared library containing only code can be built and 
managed by CFM, but it is a morally suspect creature. If it only has code, it does not have the standard 
routine descriptors since they require relocation and hence go in a data section. 

The application developer first obtains the headers and definition library. The headers are used 
in compiling the application in the time honored fashion. The definition library is used when linking 
the application, exactly as one uses "traditional" linker libraries. The definition library may be 
located anywhere in the file system, it does not have to be at the same location as the implementation 
library used at runtime. The linker records in the application a simple name for the shared library, the 
version numbers, and imported symbol names. 

When ready to test, the application developer must obtain a working implementation of the 
shared library. This can be placed in the same folder as the application, or within the system folder 
much like extensions. When launching ail application the necessary shared libraries are looked for 
first in the application folder then within the system folder. The search looks for the libraries by 
their simple name and performs the ve(Sion checks. If an incompatible version is found the search 
continues, allowing multiple versions to coexist. 

----Open Issue-----------------------------------------------------
There are some open issues regarding the naminKand lookup of shared libraries. We 
would like to satisfy the following goals: 

• Shared library names are not bound to the file names 
• Shared libraries can be found quickly at runtime 
• Shared libraries can be found anywhere on the network 
• Multiple versions can coexist and the "best" one found 
• Shared libraries can receive "partial updates" 

Partial updates allow a large shared library to be updated without complete 
replacement. Exports from the update library shadow corresponding exports from the 
original library. 

The classical way to handle the first goal is to put the shared library name in a 
resource. This presents no problem for the linker. It could make lookup slow however, 
opening the resource forks for numerous files is a considerable burden. 

The whole set of goals could be met by a robust, network aware shared library registry. 
However creating such a registry is beyond the scope of this one use. Ideally Apple 

• APPLE CONFIDENTIAL Page 55 

Ii 
iii 
i 



PowerPC Native Runtime Architecture Draft 6, July 27, 1992 

should have a general registry for n,1any things such as shared libraries, Quick'lime 
components, system extensions like printer drivers, etc. 

An intermediate, pragmatic approach could be based on the following: 

• Shared libraries will have type "shlb" and a resource giving their name. 
• The name will be captured from the resource by the linker. 
• At boot, the CFM wiII scan specific folders to "register" shared libraries. 
• The Finder may inform the CFM of other libraries added later. 
• The CFM uses the following search rules: 

1. In the application folder by file name 
2. In the application folder by file type and resource 
3. In the "registry" 

• Search all locations for an exact match first 
• If no exact match is found search all locations for a compatible match 
• If no match yet perform a wider search by file type and resource 
• Finally abort the load. 

The compatibility search could give preference to newer versions of the shared library, 
on the presumption that newer is better, less buggy, etc. 

The specific folders scanned at boot are undefined. System software and human 
interface experts should determine whether shared libraries go in the current 
Extensions folder, a new Shared Libraries folder, or elsewhere. Subfolders should also 
be searched, allowing major developers to collect their libraries together. 

Unmatched Imports at Runtime 

All external symbols must be resolved at link time or the link will faiL Normally all imports must 
be matched at runtime or the load will fail. There are times, common in Macintosh programming, 
where it is necessary to be compatible with multiple versions of external software that have 
incompatible APIs. Explicitly coded checks are used to determine on-the-fly which API to use. The 
significant evolution of Macintosh system software has caused a lot of this. The TrapAvailable and 
Gestalt services were created to support the necessary checks. 

. As alluded to in an earlier note, the application developer may specify that certain imported 
symbols should be allowed to go unmatched at runtime. These imports are "tagged" at build time. 
Normally all imports must be matched to exports for the loading process to succeed. However if an 
unmatched import has been tagged the loading will succeed. The application is presumed to be making 
explicit checks before using such an imported routine or variable. A CFM service is available to check 
the status of any import by name. The standard Gestalt service will probably also be used in specific 
cases. 

This feature does not circumvent the version checks. The versions must be compatible before an 

• APPLE CONFIDENTIAL Page 56 



PowerPC Native Runtime Architecture Draft 6, July 27, 1992 

attempt is even made to match the imports. 

--Rationale Note --------------------------
Forcing the application developer to specifically identify these special imports at 
build time improves the likelihood that the explicit availability checks are really 
made. This reduces the chance of obscure crashes on your mother's laptop while she is 
writing your evil twin out of her wilL 

--Implementation Note -----------------------
Using unresolved imports probably also means manually "tweaking" the Old_Code 
version number captured at link time. The tools to do this are defined elsewhere. 

Fragment Instances in Memory 

Earlier diagrams and discussion introduced the notions that code is always shared and that each 
shared library used by an application has a separate copy of its static data for that application. The 
shared library code is totally ignorant of this, as seen in the discussion of global addressing. Each copy 
of a fragment section in memory is an instance of that section. 

Fragments are loaded into memory in specific contexts. A context defines the scope of a collection of 
interconnected fragments. Its primary effect is on the creation section instances. A separa te context 
typically exists for each application (or Process Manager process, or whatever). The definition of a 
context is not hardwired into the CFM. The caller of the CFM, such as the Process Manager, defines a 
new context as necessary through a CFM service. 

--Explanatory Note -------------------------
Flogging that horse: Every fragment's sections have instances and live in contexts, not 
just applications and shared libraries. Ya-dec-ya-dee-ya ... 

The CFL API allows each memory section to have a separate sharing attribute. The most common 
form of sharing is context sharing. Each context will have at most one copy of a context shared section. 
Two extreme forms of sharing are global and never. At most one copy of a globally shared section exists 
on a machine. Pure, read-only sections like code should be globally sharccl. Sections that are never 
shared have a separate instance for each load. 

-- Implementation Note -----------------------
Additional levels of sharing arc defined for microkerncl supported tasks and teams. 

--Explanatory Note ------------------------
A common example of context sharing occurs with standard language libraries lik~ libc. 
[f the application uses libc there will be a copy of libc's static data in the applic,:tion's 

" APPLE CONFIDENTIAL Page 57 



PowerPC Native Runtime Architecture .Oraft6, July 27, 1992 

context. If the application then explicitly loads a fragment from a resource that also 
uses libe, the new fragment will be connected to the existing instance of libe. 

Globally shared data sections should be used with great care. In particular shared libraries that 
have code sections should not have their static data set as globally shared. Since there would only be 
one instance of the shared library's TOC, it would only see one instance of its imports. TI1is means that 
the full transitive closure of referenced libraries would be globally shared by implication. Globally 
shared data is best implemented as a data-only library. 

--Implementation Note -----------------------
This provides a convenient future path for cleaning up low memory globals and their 
switching by the Process Manager. Truly global items would go in a data-only 
globally-shared library. Switched items would go in a context-shared library. 

Never shared data is appropriate for fragments that are intended to be used multiple times in a 
context, with a fresh copy of static data each time. Examples include filters and protocol handlers that 
are written to have static variables maintaining information about a single data stream or connection. 

Fragment Initialization and Termination 

Any fragment can have an initialization and/or termination routine, not just shared libraries. But 
they are especially valuable for shared libraries and this discussion had to go somewhere. 

As mentioned earlier, initialization, main, and termination routines may be optionally specified 
when building a fragment. The initialization and termination routines have comparable meaning for 
any fragment. The use of the main routine depends on the nature of the fragment. 

The initialization routine is intended to be used for any necessary non-static initialization. One 
common use of this is to create self-initializing fragments. Instead of requiring all clients to invoke the 
InitMondoLib routine, the library developer can simply make InitMondoLib be the initialization 
routine. Another common use is for initializations required by programming languages. The best known 
example are C++ static objects, which require invocation of the appropriate constructors. Other 
languages allow static variables to be initialized with arbitrary expressions that are evaluated at 
runtime. 

The termination routine is an obvious counterpart, allowing a fragment to clean up after itself. 
Typical uses include a place to call C++ destructors, to release system resources, to record statistics, etc. 

-----Open Issue-------------------------------------------------------
There are coordination issues to be resolved in order to support a mixture of both 
language required initialization and hand-written initialization. Required 
initialization from multiple languages Ill.USt also be supported. L.nguage implementors 
must be open and document their required initialization and termination protocols. 

" APPLE CONFIDENTIAL Page 58 



PowerPC Native Runtime Architecture Draft 6, July 27, 1992 

including external dependencies. Ideally this should be a pair of routine calls. This 
will allow developers to use those routines directly, or to wrap them in their own 
initialization and termination routines. 

Le. no mysterious, undocumented C++ munchers and _mains! 

The initialization routine is called whenever a fragment is loaded, that is whenever an instance of 
it is created. If multiple instances of a fragment are created by direct calls to the CFM, the 
initialization routine will be called each time. The simple rule is that each time a new instance of a 
data section is created the initialization routine will be called. 

If the loading of a fragment causes the loading of shared libraries that it needs then those shared 
libraries will of course be initialized too. If the fragment is connected to existing instances of the 
shared libraries then the libraries are not reinitialized. 

When the loading of a fragment brings in new shared libraries, the complete set of libraries needed 
is first determined, then initialization ordering for the fragment and new libraries is determined. If 
fragment A depends on fragment B then an attempt is made to have B initialized before A. This cannot 
be done in the case of mutual dependencies. Longer circularities must also be detected, for example A 
requires B, B requires C, and C requires A. The default resolution of circularities is to arbitrarily pick 
which one is initialized first. 

In many cases of mutual or circular dependencies the initialization ordering will not in fact matter. 
The initialization order only matters when the initialization of A depends on the initialization of B. 
In other words if the initialization code for A is using B in a manner that requires B to have been 
initialized. 

To handle these cases, a fragment may specify which ·of the libraries that it depends on must be 
initialized first. This is done at build time by simply naming those special libraries. Circularities in 
required initializations will cause the load to fail. 

-- Explanatory Note ------------------------
Again, the initialization only includes the newly loaded libraries. If A depends on B 
and B is already loaded then B is assumed to be initialized. When a library is loaded 
it is connected to a specific instance of the libraries that it needs. [f A and Bare 
mutually dependent where B must be initialized first, and brought in together, then 
they will be connected together and initialized properly. If a new instance of B is 
brought in to the same context it will be connected to the old instance of A. The old 
instance of A will still be connected to the old instance of B. Only the new B will be 
initialized, after the A to which it is connected. 

-- Rationale Note --------------------------
The approach in the above note is reasonable when you consider that it is A who 
specifies that B must be initialized first, because A uses B in its own initialization. B 

" APPLE CONFIDENTIAL Page 59 



PowerPC Native Runtime Architecture Draft 6, July 27, 1992 

says nothing. A is in fact connected to a copy of B that was initialized before it. The 
design is robust, and implementable. The example above is pathological and used only 
to illustrate the point of which initializations are called when . 

• APPLE CONFIDENTIAL Page 60 



PowerPC Native Runtime Architecture Draft 6, July 27, 1992 

XI. PowerPC Primitive Types 

Integer Types 

The PowerPC provides only unsigned (zero-fill) loads for byte (8-bit) integers. Both signed and 
unsigned loads are provided for halfword (16-bit) integers. A 64-bit CPU supports both signed and 
unsigned loads for word (32-bit) integers along with loads for doubleword (64-bit) integers. By signed 
and unsigned is meant only what happens to the high order bits of the register on a load. They are 
never left alone. Loads never set condition codes, so that aspect of sign is not an issue. 

-- Implementation Note -------------'-----------
The word load instruction of 32-bit CPUs does zero extension on a 64-bit CPU, not sign 
extension. This was chosen to preserve address semantics. 

There are also instructions to sign extend bytes and halfwords already in a register, and words too on 
64-bit CPUs. Zero extension is of done via the rotate-and-mask instructions. 

All arithmetic and logical operations are done on values in registers. Both signed and unsigned 
comparisons are available. 

Floating Point Types 

The PowerPC supports single precision (32-bit) and double precision (64-bit) IEEE floating point 
formats in hardware. A 128-bit format wiII be supported in software, composed of two double precision 
values. The 128-bit format is anticipated to have "reasOl\able" performance. For bacb\'ard 
compatibility 80-bit and 96-bit extended formats from the 680xO world will be supported at some level 
by system software. These two formats are anticipated to have performance considerably worse than 
the 12S-bit format. Details on all three software formats are found elsewhere. 

" APPLE CONFIDENTIAL Page 61 



PowerPC Native Runtime Architecture __ Draft 6, July 27, 1992 _ 

XII. PowerPC Coding Conventions 

This section does not cover high levcllanguage source conventions but code generation conventions 
that compilers and assembly language programmers should follow. 

Data Alignment 

The PowerPC hardware architecture supports unaligned accesses, but allows them to be slow. 

The default type alignment rule is that scalar types are aligned to their size. That is words go on 
32 bit boundaries, long floats go on 64 bit boundaries, etc. Composite types are aligned according to their 
most restrictive component. An array is aligned according to the element type and a structure is aligned 
according to the largest scalar it contains directly or in a substructure. This alignment is applied by 
compilers when laying out composite types and data areas such as stack frames. They are applied by 
the linker (under the compiler's direction) when laying out static data areas. 

Compiler pragmas should be provided to pack structure fields on byte and halfword boundaries. 
The halfword packing is necessary to build 680xO compatible structures without introducing visible pad 
fields. Compilers are free to rearrange unpacked structures to minimize the holes, they must not 
rearrange packed structures. 

Global Item Naming Rules 

Some of the rules for the naming of routines (code an~ descriptors), static data, and TOC entries 
have already been given in examples. These rules are taken from AIX on the RS/6000 for compatibility. 

XCOFF has a notion of CSECf, much like the module in the MPW object module fonnat. It is the 
unit in which clusters of code or data are included in a link. CSECTs have a class which reflects their 
use; common classes are PR (code), DS (routine descriptor), RW (static variable), and TC (TOC entry). 
CSECTs are denoted by their name and class as Name{Classl or Name{Class}. In effect the class is part 
of the name and is used in reference matching by the linker. 

Routines conventionally have a code label which is the routine name prefixed with a period. They 
have a descriptor in a DS CSECT whose name is the unadorned routine name. Calls to external routines 
are compiled as calls to the external symbol ".name[PRj". If the linker cannot resolve the symbol it 
will look for a shared library export of the form "name[DSI". 

Global variables (C "extern" variables) arc each put in a separate RW CSECT with the name of 
the variable. 

TOC pointers are each in a separate TC CSECT with the name of the itcnl they are pointing to. 
This is important only for the folding of duplicate TOC pointers, not for their proper resolution . 

• APPLE CONFIDENTIAL Page 62 



PowerPC Native Runtime Architecture Draft 6, July 27, 1992 

--Picture Place --------------------------
Put in some assembly language examples. Explain the .te macro. 

Using 64-bit CPUs 

The PowerPC hardware architecture is defined in terms of a 64-bit model and 32-bit and 64-bit 
CPU implementations. There arc actua!ly three classes of execution: 

• Execution on a 32-bit CPU. In this case 64-bit instructions are not available. 
• Execution in 32-bit mode on a 64-bit CPU. Addresses are still 32-bits, but 64-bit instructions are 

available for data movement. Most arithmetic works properly, except for the use of the Rc bit. 
• Execution in 64-bit mode on a 64-bit CPU. 

This software architecture does not define a full 64-bit model. Doing this properly requires system 
software support for addressing. Allowing arbitrarily intermingled 32-bit and 64-bit routines is 
difficult because of the split use of caller's and caIIce's stack frames. Rules are given to allow software 
to take limited advantage of 64-bit CPUs: 

• There will be no support for 64-bit addressing in the defined future. Software running in 64-bit 
mode must ensure that all addresses stay in the range of 0 to 2 ...... 32. (Be sure to use full 64-bit 
values for negative offsets!) 

• Operation in 64-bit mode will be interrupt and task switch safe. 

• Routine calls must all be made in 32-bit mode. The O/S will ensure this for callbacks. Callers 
using the high order part of a non-volatile register must save it themselves. 

• The Apple C and C++ compilers may provide options to generate 64-bit data movement 
instructions and/or 64-bit arithmetic. In the latter case a "long long" integer type will be 
supported. The existing integer types will keep their present sizes. 

Handling Optimization 

Compilers must recognize that 680xO style heap compaction may occur and avoid generating code 
that would fail in this case. For example the left hand side of assignments should be evaluated after 
the right hand side. Aliasing must be carefully (properly) implemented to avoid erroneously keeping 
dereferenced handles in registers. This will help avoid the problems illustrated by: 

**handle.field = functioI1_causing_compaction; 

proc (funci causing compaction(**handle.fieldi), 
func2=causing=compaction(**handle.field2}); 

« APPLE CONFIDENTIAL Page 63 



PowerPC NativB- Runtime Architecture 

Open work: 

Add a glossary 

Mention special restrictions on native resources, namely expansion of BSS. 

Add discussion of traceback tables 

Document the PowerPC patching model here 

Draft 6, July 27, 1992 

Discuss extra possible sections in containers for language exception handling or debugging 

Document "update" libraries here (at least a little) 

• APPLE CONfiDENTIAL Page 64 


