
R&D University

(Porting to PowerPC

sitv
,"

{
...

PowerPC .dl

ij''":oftllb :)dt\Ulration strategies for PowerPC
,.";' : .,.J:>£,--:1 :.' '>~", '. , .. , .. ' .

d'C ,an4'~;Th1i;-,b~YF;become the ~~9h~p()~~~§ this decade, and most of the development tools
that are available are geared towards these languages. Because of this, the earliest PowerPC
development tools will be oriented towards C and C+ + programmers. However, since many

,". devel~ve WtlitmrlttlllffiIlflmductsirt Wt~es.()ther than C or C+ +, we'll take a quick look at
theii:i{iptions WffioVing11OipowerPC. ' '.

811'r g.lig;,_"j:)IDilor-:;n, '. , li1 ~)!i;, Gii'. ,., ..).)" _ .

"

Pascal Development ,')JHJO?, I"IJ ~i;'

Pascal developers have a{ew:~when ~~ng-the.ir code to PowerPC:
- Wai~ for:a third-party Pasca[compiler~MetroWer~ is producing a Pascal compilers for PowerPC.

~:~b::~~~~~!~j~~~~~.oo:~t~p~:who
- Re~ U'fC or C+ +: This approach, while potentially difficult, gives you the widest range of

po :::.;Wityloptions to PowerPC and other p1a,tfonJ1S (if you should ever choose to go cross-
pla tp', - ';

1;HH rol
- uset~:;:;as.ql t~~conversion tool: Sierra ~~are has produced "~2C", which converts P~ or

Object PjlSCal to QC+ +. Several groups Wlthm Apple have used thIS too~ and most of them didn't

like~W~fe ~ loo~~g for a better solution. , '

uJ~h~I;j~!~~Hd:_:(a spin-off of Bell Labs) makes "FlashPort", a tool which
treats your compiled application as the input to a compiler which emits PowerPC object code. This
yields an application which is faster than a strictly emulated 680xO application, but somewhat
slower and larger than an applkation re-compiled for PowerPC from its original sources.

- Port as ~tich as ~ible/and emulate non-portable parts via Mixed mode: This is a reasonable
) ~atq~gy.~rtt}t.~a~~me parts of your code that are not processor intensive and which would be
(,~~4hp:~()!f/«Q~ever, remember that you will not get the full performance benefits that a
.lm~re '&rWplele pbhmg job would yield.

Assembly-Language Development
Assembly-language programmers cannot simply re-compile for PowerPC; some sort of porting will be
required

Our recommendation is that you re-write your assembly code as portable C source code. While many
assembly language programmers feel that this is a poor chOice, the design of the PowerPC Macintosh
removes many of the reasons that developers write in assembly language.

The 4 major reasons developers write in assembly language are 1) speed, 2) linking different calling
conventions together, 3) addressing custom hardware installed in a particular machine, or 4) a need to
jump to a particular routine instead of using a subroutine call. We'll look at how the PowerPC
programming model addresses each of these issues.

Migration Strategies for PowerPC Page 1

• The first case, speed, should be handled adequately by the optimizing C compilers. Creating
optimized code for the PowerPC is no easy feat, and it is easy to overlook one rule or another
when hand-optimizing code. Additionally, a piece of code that is pecfectly optimized on one version
ofpowerPC may be slightly sub-optimal on another implementation. The C compilers do an
excellent job of optimizing your code, and you can re-compile for different PowerPC
implementations much more easily than you could re-optimize your assembly code for each new
processor ...

• The second case, multiple calling conventions, has been eliminated by the uniform calling
conventions for all PowerPC code, and Mixed Mode handles this for non·PowerPC code which
calls PowerPC code (and vice versa.)

- Case 3, addressing custom hardware, is inherently non-portable, and should be done through the
appropriate managers.

- This leaves the final case - jumping to a particular location. This typically occurs at the end of a
'fhead patch" to a trap. The PowerPC Macintosh uses Mixed Mode to invoke traps, via the
ICaURoutineDescriptor'" command. You should use this command to jump to a patched trap instead
of using an explicit branch. (Note that since CaURoutineDesaiptor will return control to ')'Out code
after the patched trap executes, aU patches become both head and taU patches.)

If you choose not to re-write your assembly language code as portable C, you have 2 other porting
options: re-write into PowerPC assembler or use a conversion tool to convert your 680x0 code into
PowerPC assembly language. The "PortASM" tool from MicroAPL converts 680x0 assembly language
into PowerPC assembler.

Remember: we feel that the best solution is to re-write your assembly code as portable C.

Other Languages
Unless a third party steps in with a solution for a particular language, developers who use other than C,
C+ +, Pascal, or Assembler have very few options. Your options are limited to re-coding in ClC+ +,
using a binary translator, or running under emulation.

Migration Strategies for PowerPC Page 2

I class note

Iclass note

.afpmlumes and -

Using the RS/6000 development system

This lab will walk you through the process of compiling, linking, and running a PowerPC
application using MPWs remote tool and an RS/6000.

Install MacTCP
If you don't have MacTCP installed, you'll need it for the remote tool. (We've already
installed it for you.)

Mount the remote volume and set the current directory
Even though all of the compiling and liking will take place on an RS/6000, the MPW remote
tool needs to "see" the target directory in order to select the appropriate directory on the
UNIX machine. Therefore, you will need to mount the UNIX volume (if not already there)
and set MPWs directory appropriately.

The class' server is located on "tomselVO", which is located in the "Development Tools"
zone on the Engineering net You should log in as "student", with a password of "student".
Mount the "student" volume, then set the directory to the folder indicated by your student
number, e.g. "student:studentl:". (Remember that the UNIX file selVer is case sensitive,
so you have to supply the right case to MPWas well.)

The UserStartup· MountMuslin file automatically mounts the RS/6000 and sets the current
directory.

By default, Helios (the AppleS hare Filing Protocol seLVerwe're running on the RS/6(00)
exports your "home" UNIX directory as - your-user-name since - is the UNIX
symbol for "home directory." Since MPW has problems with the - symbol in file and
volume names, we've created an .afpvolumes file which re-exports your home directory as
your-user-name without the -. (See the following figure.) You can see this file by
downloading it to your machine (from the setver), removing the leading".", and opening it
in any text editor.

~ santateresa

Select the items you want to use:

local 0 {}
rdclarlc 0 :I
santateresa 0
"'rdclarlc 0 {}

Checlced items ([8J) will be opened at
system startup time.

Lab: Using the RS/6000 development system
Revised: 6/24/93

1

Set the remote machine, user, and port (in MPW)
Remote executes commands on the RS/6000 by sending TCP messages to a "Tool
[):emon" running on the remote machine. Remote uses two MPW shell variables to
determine where the command should besen~ and' one variable to control access to the
remote system:

RemoteUser· Your UNIX user name
RemoteHost· The name of the remote machine
RemotePort • (optionaQ The port # on which ToolD is listening. This is only

required if the port number is different than the delault value
of 5000. (We're using 5105)

(there is no "remote passwooo" variable since having to mount the UNIX volume provides
a reasonable degree of passwooo protection.) ,:~::,_" . .,

setting the variables You can check to see if these variables are set by executing the MPW
set var iabl e-name command, which will echo the value of the corresponding
variable.

set RemoteHost
set RemoteBost tomservo ,~:,c, (,)ffi 101"t.

If you need to set these variables, you can also use ~ s~~command, followtd'byan
ex ort command: 'f:[j, .:c;, :ji ',,;{)l ",
p, , , ..

set RemoteHost tomservo : export 'RemoteHost

detem1ining the port
number

If you are uncertain about the port number you need, contact your system administrator.
You can also determine the port number by logging c;nto the UNIX system using Telnet,
and executing the ps -efa I grep ToolD command (but make sure you get the
case right!) The result should look like this:

starting T0010

$ ps -efa 1 grep ToolD
rdc~ark 16045 16547
rdc~ark ~9556 1
francis 19752 1

1 11:18:11 pts/3 0:00 grep Too~D
o Apr 29 - 0:00 /usr/bin/mac/Too1D 5104
o Apr 30 - 0:01 Too~D 6969

This shows that the Tool Dremon for ooclarkwas started on port 5104, and the Tool
Dremon for francis was started on port 6969. If you see multiple copies ofToolD running
on different ports, then you will need to pick your own port number> 5000. However, if
you see a line that looks like:
root 19500 1 0 Apr 30 0:01 ToolD 5000
then there is probably a system-wide copy of ToolD ,which is shared by all usel'S.

,.i l .•

IfToolD isn't running (as indicated by the ps command above or by an error when
attempting to run remote), you will need to start it yourself or call your system
administrator to start it. You start ToolD r<?~(~lfbylogging in via Telnet, and executing
the command: .:,'-~ ...

ToolD port-number &
where port-number is a unique number you've seletted. If you get an error stating that
ToolO isn't fOund, you'll need to supply the full path:

/usr /bin/mac/ToolD port-number,&i)i bl mo',:, (:~::r!irrwn 5il151ongi
If this fails, call your system administrator for assistance. ,

Lab: Using the RS/6000 development system
Revised: 6/24/93

! ~rlj ;~l'IlllU :d~i,
-\.~'.:: J :~~')~tv.::;,~

Iclass note

common error messages
and their solutions))

ignore the warnings from-ld

The variables should have the following values:
RemoteUser student
RemoteHost tomselVO

~~~;'~;,(,Rem~~~port set if needed, i.e. the remote system doesn't have a single 
defaultport5000. We're using 5105. 

These are already defined in "UserStartup·aStudentlD" foryou. 

Try.a remote command 
OncerOli've set up the shell variables (and started TooID, if necessary), you can try out a 
simple remote command. The Print Working Directory (pwd) command is as good as any, 
so try executing the following command in MPW: 

remote ,pwd 
If everything woties, the beach ball will spin for a moment, and you should see something 
like: 

/home/student 
appear in the worksheet. 

The most common errors come from setting the RemoteXXX variables incorrectly: 
Cannot connect to port 5000 ... -You have either specified an incorrect port number, 
~r'toolOis not'running. Review the sections on "determining the port number" and 

;:¥starting ToolO" above. 
Cannot change directory to ... -The most common cause of this is that you forgot to 
set MPW's default directory. Make sure that you have the volume which corresponds with 
your UNIX home directory mounted, and select that volume as MPW's default directory. 

" 

Build the application 
Now comes the easy part. Since we've supplied a makefile, just select "Build ... " from 
MPW's Build menu, and type in "Muslin". This will begin issuing commands to the RS/6000 
via remote. 

The commands you'll see executed include: 
UNIX commands 
cmac 
11 
makepef 

The C compiler, with "Macintosh compatibility" options set 
The linker 
Converts XCOFF files to PEF files, and supplies names for some 
of the file-based libraries. 
Create .SYM files from the XCOFF files 
Delete one or more intermediate files 
Remove the traceback tables (AIX debugging information) from 
XCOFF files. This is done to reduce the amount of disk storage 

" _' _ ,. _ needed, and in on way affects makesym. 
ill d" ··· .. MPW commands 

setfile Set a file's creator, type, and finder flags 
JJ¥ez The resource compiler 

Id,will issue several warnings about "import version ofx replaced by import definition." You 
may ignore these, as they indicate the presence of some old (incomplete) glue code in the 
libraries being replaced by newer versions from a different library. 

~b: using the RS/6000 development system 
Revised: 6/24/93 

3 



finding the application 

optional step 

Ignore the warnings 

'. ':;:;1\1 
Transfer the application to the P01lfitifPC Macintosh 
Once you have compiled Muslin, you n~ to transfer it to your PowerPC machine. You 
can do this by mounting the UNIXlfile seri'tt~ PowerPC MiciYrt&ltfhttdrngging 
the application across. .;~;;:;'>. ~2~!12b1J;W(JJ)J; .~ ~id.r;ii.!:"i: ~','l.': Jhiis 

') bnr; :j ?lnsv,OJ 1.'.::n5no ~d :Joe.: 115mqGl~d:.b 
Our makefile places the completedf~btio",in ;tbm.dtB&liublOlder "di:~nJolder. 
(Chis folder should have a tools subfOlder to hold the finishedtools..} 'll).e zXC~8.ibJj 
subfolder contains the intennediate XCOFF versions and the symbolic debugging files. The 
xTools subfOlder contains ihe tool sourees. 

CI ToolSupport.h !r!'.I7 "f,Cilqqr. Gid'l' " 
CI T 00 lSupport-.~':l 'l:nilo bm: ;)Q15W' 

CJ xTools 

CJ zPEFs . 
<S& Mu;s)irt ;' 

'" Ji1s::: 'l(P: ~J_ ":;QJ';.:" -1',5, 

Run the application",) ;:1 ,;< ::oil;,:iiIq; tr; (' ". 

Just go over to the PowerPC Macintosh and do ~~!qq~ 1':: 'i5gJf:n;;'l:~', '.' 

Build the tools & transfer them to the PowerPC 
; """1-

Macintosh ".-,' ~"f:" .;71' ., ;, j~ • 

The tool sourees are located in the xTools subfolder, ~ii¥;ne$,l~~Jtwf~i;~ default 
directoty befOre running remote. You can build alJ of the tools by ~~iitg ~:~ shell 
script' ." ,,', 

AIITools.build 
or you can build an individual tool using the command 

AnyTool.build tool-name 
as fOllows: 

AnyTool.build Square # Note: Do not type "SquareTool", 
and look out for case 

Most tools require the PolyUtils Iibraty, which can be built by running 
PolyUtils. build 

This is also created automatically by the All Tools. build script 

The linker will complain while linking the tools since main doesn't represent the address of 
some code, but is a pointer to a data structure. This is a perfectly legal thing.to do, as long 
as the application which loads the tools knows about it (as ours does.) 

Lab: USing the RS/6000 development system 
Revised: 6/24193 

4 



handling some special data 
types 

Adding #include directives 

Converting THINK C code to PowerPC 

This lab looks at the steps required to convert a simple (but old) TInNK C application for 
use with the PowerPC compilers. The first part of the conversion is done in MPW, and the 
latter part is done on the RSj6000. 

Create a .r file for use with Rez 
If your TIllNK C projet uses a stand-alone resource file (as created by ResEdit or 
Resorcerer), you probably should convert this into a .r file. MPW's DeRez command can 
do this for you, using a command similar to the following: 

DeRez myFile {Rincludes}Types.r > myFile.r 
This command isn't perfect, as it won't handle the "new" System-7 dialog and window 
centering options properly, nor does it know about 'vers' resources. (Both of these 
resource types will appear as hexidecimal data in the output file.) 

You can tell DeRez to parse the new window and dialog positioning options by including 
-d SystemSevenOrLater=l on the command line, and include the definition for 
'vers' resources by adding the file {RIncludes} SysTypes. r to the end of the 
file list (but before the ">" redirection character.) 

The resource file that Derez generates isn't complete - it requires that you include 
"Types.r" (and possibly a definition for SystemSevenOrLater and SysTypes.r if you included 
those options on the command line.) Therefore, you should add the following lines to the 
start of the resource file: 
*define SystemSevenOrLater 1 

*include "Types.r" 
*include "SysTypes.r" 

II only include this if 
II you used the -d option 
II mentioned above 

II only if you included 
II "SysTypes.r" on the 
II command line 

Use the C compiler to locate basic portability problems 
The code that we're supplying was written using an older version of THINK C. As such, it 
has one or more of the following problems which you will need to locate and fix. (Hint: 
Use the MPW C compiler with the -r option, and then fIX the errors that arise. If you fix 
things in the order shown, life will be much simpler.) 

1. Missing #include files 
Including < Types. h > , < QuickOraw.h> , and <Windows.h> is a good place to start 

2. TRUE and FAlSE should be in lower case (per MPW's Types.h) 
3. Fix references to qd variables, for example: "thePort" becomes "qd.thePort", and 

"ltGray" becomes "qd.ltGray". 
4. Add function prototypes for all functions, if missing 

Lab: Porting TH1NK C code to PowerPC 
Revised: 7{28193 

1 



Change the C and link 
commands 

Add makepef and 
makesym 

Look for callback pointers 
and convert for Mixed 
Mode 

Build and test on the 68K machine 
Select Build:Create Build Commands ... in MPW to create a makefile for this 
application. Build and test the resulting application on the 68K machine. Once you are 
satisfied that the 68K version works, you can move over to PowerPC. 

Transfer the code to the RS/6000 
Once your 68K verSion works correcdy, drag the entire folder over to your folder on the 
RS/6000, and then set the MPW directory to that folder. 

Construct a makefile for the PowerPC version 
To create a new makefile, duplicate the old one and rename it to "PowerPCApp.make", 
then change the target application's name to PowerPCApp within the make file. 

The build process is essentially the same (i.e. Rcz, compile, link) except that the link step 
emits an XCOFF file and you need to include a call to makepef to convert the XCOFF file 
to a PEF file (which becomes the application once you add the usual window and menu 
resources and execute a SetFile to set the type and creator.) 

You'll need to modify the compile and link commands to use remote. Use your class notes 
or Muslin's makefile as a guide. The output of the link command should be 
PowerPCApp.xcoff. 

While the PowerPC Macintosh can execute XCOFF files directly, you should convert 
XCOFF to PEF for speed reasons. You do this using the makepef tool on the RS/6000. 
Again, use Muslin's makefile as an example (and remove the reference to 
ToolSupportxcoff .) 

Update the .c file for PowerPC 
If you try to build the application now, you'll get some compiler errors and linker errors. 
There are 2 small changes you'll need to make to the source code: Adding a declaration 
for the "qd" global variable, and casting all Pascal-style strings to type StringPtr. 

The declaration for qd should be placed near the start of the file (but after the #includes) 
and look something like this: 
:jj:ifdef ~owerc 

QDGlobals qd; 
:jj:endif 

One of the other problems that you'll encounter is that the compiler complains about a call 
to TrackControl. (JIe're supplying a tracking callback for PageUp and PageDown.) The 
"cheap" way to fIX this is to comment out place we're passing the ProcPtr and substitute 
NUll. The proper way to fix this is to supply a UniversalProcPtr for Mixed Mode, which 
you will do in a later lab. For now, just pass NULL as the last parameter to TrackControl. 

Update the .r file for the PowerPC version 
At this point, you should have an application with PowerPC code in the data fork, and a .r 
file listing the standard resources. However, the Process Manager doesn't know you've 

Lab: Porting THINK C code to PowerPC 
Revised: 7(1.8193 

2 



add a 'dig' resource 

built a PowerPC application, and needs to be Informed of that fact To do this, you have to 
add a special resource of type 'cfrg', ID O. 

This resource's format is defined in CodeFragmentTypes.r (in the RIncludes folder), and 
you should enter the following definition into your resource file: 

finclude "CodeFragmentTypes.r" 

resource 'cfrg' (0) { 

} ; 

kPowerPC, 
kFullLib, 

kNoVersionNum,kNoVersionNum, 
kIsApp,kOnDiskFlat,kZeroOffset,kWholeFork, 
"PowerPCApp" 

Build and test the PowerPC version 
Fix any problems you encounter. 

Lab: Porting TmNK C code to PowerPC 

Revised: 7/28/93 



( 
"": PowerPC Program 

Porting & 
Performance for 

PowerPC 

Apple Confidential- Need To Know 

Porting & Performance for PowerPC 

1 



Course Goals 

After class, you should be able to: 

• Port C/C + + code to PowerPC 

• Set up and use a pdm 

• Debug code on the PowerPC 

• Use Mixed Mode to combine 68K and 
PowerPC code 

• "Tune" ported code for better perfonnance 

~. j'. -----

Course Goals 

/ 

2 



Course Overview 

Lecture/lab 

e Porting to PowerPC 

e Mixed Mode 

• Debugging PowerPC code 

e Perfonnance tuning 

e Building Headers & Glue 

j" ----

Course Overview 

3 



Course Overview 

Handouts 

• Setting up a development system 

• Porting Strategies 

Course Overview 

4 



· . PowerPC Program 

Compiling for 
PowerPC 

Apple Confidential - Need To Know 

Compiling for PowerPC 

5 



Compiling for PowerPC 

• Using the RS/6000 development system 

- aIk/a the "Inside Track" system 

- Occasional comments about the "Fast 
Track" system 

U·~ 

Compiling for PowerPC 
to tJ A) lA.X :5'~S'f-e.v-... T"0I..'S"i-II'''-ck. ~ ~v- H. Pw 011. MA..~ Q) 

6 



Background 

3-machine development system 

• RS/6000 compile server 

- Holds your files 

- Resembles an AppleShare server 

- "Tool D:emon" runs UNIX tools for you 

• 68K-based Macintosh 

- Controls RS/6000 via MPW tool 

• PowerPC Macintosh 

Background 

7 



The build process 

• Standard MPW make file with some changes ... 

- Uses remote tool to send commands to 
the RS/6000 

- OnlyRez, SetFile are local 

- (For FastTrack, everything is local) 

~ .• 

The build process 

8 



Hints for using remote 

• Remote depends on 3 MPW shell variables 

- RemoteUser, RemoteHost, RemotePort 

• Requires MacTCP 

• Remote sets UNIX directory to correspond 
with MPW's current directory 

- Mount the UNIX volume first, and set the 
MPW directory to there 

Hints for using remote 

9 



An RS/6000 Makefile 

• Compiling 

• Linking 

• Rez 
• Converting to PEF 

• Building .SYM files 

An RS/6000 Makefile 

10 



( 

• Fast Track: 

remote -1 cmac -cq -qdbxextra ..l....!OefaultJ.c a 
-I /usr/include/mac 

• Use croac to compile your sources 
Ignore oompiler warnings (remote option) 

- -cg = magic 

- -qdbxexua = Enable apple extensions (pascal and II) 

-~ = Enable symbolic debugging 
(also disables optimizations) 

- ·1 = #include file path 

Compiling 

PowerPCC -appleext on -sym on {default}.c -0 {default} .c.o 

11 



Linking 

remote ld -e main (CObja, (XCOFFLibs, a 
-0 :zXCOFFa:Hualin -bM4:SRE a 
-bEA:HuaUn.exp 

• linking a shared library 
- -e = entry point (usually omitted) 

- 0() = output file 

- -bMl1:SRE = shared library r Ii Is opdoo-j, which "esapes" the : 
..... - -bM:[tle = Exports file 

-
lJ 

Linking 

• Fast Track uses PowerPCUnk 

• See release notes for current options 

12 



Rez 

Rez -rd -a -0 : zPEFs: Muslin Muslin. r 
SetFile -t 'APPL' -c 'maIn' :zPEFa:Muslin 

• Standard MPW Rez command 

- .r file should contain 'cfrg' resource to label 
this as PowerPC code 

- Shared library type is 'shlb', creator is 'cfrg' 

Rez 

13 



Convertin to PEF 

remote luor/bin/mac/makepef a 
:ZXCOFFo:Mua1in -0 :zPEFa:Muo1in a 
-1 InterfaceLib.xcoff-InterfaceLib a 
-1 StdCLib. xcoff-stdCLib 

• Convert XCOFF files to PEP files 
- makepef = XCOFF to PEP tool 

- -0 = output file 

- -I = library name mapping 

Converting to PEF 

• Makepef also exists as a FastTrack tool on the 68K 

\,-- " 

14 



( Building .SYM files 
remote luar/bin/mac/makeaym :zXCOFYa:Mualin 
aetfile -c 'R2Db' -t 'MPSY' :zXCOFFs:Huslin.SYM 
remote strip :zXCOFFa:Muslln 

• The PowerPC debugger uses .SYM files 

- makesym = extract .SYM infonnation from 
XCOFFfiles 

- Need to compile with - symon 

• Optional actions 

- Use "makelines" before running makesym 

- strip = remove debugging info from 
XCOFF 

Building .SYM files 

15 



Summary / 

• Most commands become remote command: 
- Only Rez stays local 

• Extra commands to set file types, build .m 
files 

LJ 

Summary 

16 



Lab 

( 

• Compile some existing code 

- Download and execute 

• Compile and link in another file 

• Convert a file to a Shared Library 

Lab 

17 



(' 
PowerPC Program 

Setting up a 
PowerPC 

development system 

Apple Confidendal- Need To Know 

Setting up a PowerPC development 
system 

1 



Setting up your PowerPC system I 

-pdm 

- EVTI, 2, and 3 

- Cannot support the 21" monitor wI 
built-in video 

- Read the release notes 

- Software 

Setting up your PowerPC system 

2 



( 
Software . I 

• System software 

• ROM images - pdm 

• Debugging tools 

Software 

• System software available from Grand Cherokee 

3 



System software 

• Download from Cherokee releases or 
NuReleases 

System software 

I 

4 

\ 

\---



( 
ROM images - pdm 

• Use the "Flasher" application to load 
ROM image into Flash RAM 

• Suggested sequence: 

- Copy & blass new system folder 

- Flash the ROM (re-boots) 

ROM images - pdm 

I 

5 



Debugging tools 

• R2DB and nub on Cherokee Releases 

• MacsBug is on Cherokee Releases 
(most of the time) 

- Figment-compatible MacsBug on 
LandofOz 

Debugging tools 

I / 

6 



Setting up the 68K system I 

• The MPW "remote" Tool 

• MacTCP 

• Utility scripts 

Setting up the 68K system 

7 



Utility scripts J 

-AutoMount 

- UserStartup-remote 

- RemoteHost, RemoteUser, & 
RemotePort 

Utility scripts 

8 



c Setting up the UNIX system 

• The .rsrc folder 

• .afpvolumes 
·ToolD 

I 

Setting up the UNIX system 

Sample .afpvolumes line: 
(~~' /home/santateresa/rdclark:rdclark::fixed:readwrite 

Sample ToolD command 
/usr/bin/mac/ToolD 5101 & 

9 



Summary 

• 3 machine system 

- Host Macintosh 

- Target PowerPC Macintosh 

- RS/6000 

• Need special software for each 

Summary 

I 

10 



( 

~~ PowerPC Program 

Porting C/C++ To 
PowerPC 

Apple Confidential- Need To Know 

Porting ele + + To powerpe 

18 



Porting to PowerPC 

••• without losing 68K compatibility 

• The strategy 

• Possible trouble areas 

- Compiler issues 

- Linker issues 

- Run-time environment issues 

Porting to PowerPC 

19 



The Strategy 

• Use ANSI C (mostly) 

• Use increasingly strict compilers 

- TIlINK C (ANSI) .> MPW·> PowerPC 

• Conditionalize anything you can't fix 

The Strategy 

20 



General C issues 

• int 

• Trigraphs 

·Pragmas 

• Function prototypes 

• Predefined compile-time variables 

f 

LJ 

General C issues 

21 



int 

long int short 

TIDNKC 32 32/16 16 

MPWC 32 32 16 

PowerPC C 32 32 16 

• "int" is inherently non-portable 
- Define custom types: intl6, int32, intTB 
- Only use Hint" when you need a RW:bine 

Lj 
word 

- loop rounters, array indices 

int 

22 



Trigraphs 

• 3 character sequences beginning with "?,!" 

• Used to replace some special characters that 
aren't in non-US ASCU 

• C7C 
Get1Resource('????', 128); 

...... Get1Resource (I ??" .. , 128); 

• Easiest solution: Replace quoted ? with \? 
~ j'. ---" 

Trigraphs 

23 



( ... 

Pragmas 

~ 

• #pragma OPtiO~lign = Mac68K I PowerPC I 
reset 

- Conflicts with THINK C's #pragma options 

• no register or unused pragmas 

J. '---' 

Pragmas 
5+r~ ,,-li'i"'-~ 

~z: 

3 

s "'- r-t: "

Lo _,,\ b 

fa 8' J<. :. ft, !.. 1't-v J 

fo~fc- .:::: ~ b'1 res 

24 



l-f_ 

Function prototypes 

Use 'em! 

• ANSI technique that provides data type 

checking for parameters & return values 

• example: 
void foo (x) /* old-style */ 
short x; 

void foo (short); /* Prototype * / 
void foo (short x) /* New style */ 

Function prototypes 

"'-.. 

25 



Function Prototypes (2) 

• More suggestions & rules: 

- Always declare your return type 

- Functions with declared types must return 
a value (powerPC compilers and C+ + 
enforce this) 

~-

~t 

Function Prototypes (2) 

26 



Predefined compile-time variables 

symbol 

MPW C applc:c, MC68000, 
macintosh 

PowerPC C applc:c, ---poweR: 

Predefined compile-time variables 

27 



( '., 

-All 
- New "universal" headers 

-MPW 

.-- - "qd" defined in the runtime 

-TIiINKC ... 

- IBM's xle (3/kIa emae) ... 

- Powerl'CC (atkla icc, PPCC) ... 

Compiler Specific Issues 

(.'. 

( 

28 



New "universal" headers 

• 68K inline definitions now use macros 

• Low-memory variables use macros in 
u..--+---.LowMem.h 

• Include structure alignment #pragmas & 
Mixed Mode information 

• Define typed ProcPtrs 

New "universal" headers 

-- .. - -- -----_._-

29 



( THINK C ... 

• Precompiled headers / non-standard headers 

• Base variables 

• Inline assembly 

THINK C ... 

L.o 0 k- ~ V\. 'n ~ f..::> D~"; c...t-s • "- ~Vl..J...s:..u... ~ Vl..d- Y ('l:i .. ~'"1:)~ 
~ .r c::a::fI£. '( (';) c..e. _~ k+l 0""-

30 



IBM's xlc (alk/a cmac) ... 

• #include file names 

- case sensitive w/7-bit characters 

• Bitfields 

- Must use unsigned int or int 

• Strict pointer type checking 

• Unspecified array bounds ... 

• "Idiotsyncracies" 

IBM's xlc (a/kIa cmac) ... 

31 



( 

Unspecified array bounds ... 

ANSI's ambiguous, IBM is not 
typedef struct aStruct { 

intu32 
numElements; 

unsigned char data[l]; 

typedef struct aStruct aStruct; 

• bounds must be > 0 

• Change sizeof calculations, or use offsetof 
(struct, field) 

Unspecified array bounds ... 

32 



=' .. 

"Idiotsyncracies" 

• Change iendif foo to 
iendif 1* foo *1 

• Compiler whines about OSType constants 

"Idiotsyncracies" 

/ 

33 



PowerPCC (a/k/a lec, PPCC) ... 

Shares many traits with xlc 

• Very strict pointer type checking 

• No unspecified array bounds 

• Dislikes token after #endif Oust a warning) 

PowerPCC (alk/a Icc, PPCC) ... 

( 

( 

34 



Linking issues 

• .qd not defined 

- Need to include QDGlobals qdi 

• What's my entry point? 

- Debult = = _start (required for StdCLib) 

• .MemError not defined (et at) ... 

Linking issues 

35 



( 

(". 

.MemError not defined (et. al) ... 

• Low-memory related? 

- Need to include < LowMem.h> 

• Otherwise ... 

- Use DumpXCOFF to list symbols 

- May need to get a 68K .0 library ported 

.MemError not defined (et. al) ... 

36 



Run-time environment Issues 

• Segmentation 

- 1 code fragment 

- LoadSeg & UnloadSeg are no-ops 

• Mixed Mode •.. 

·VBLtasks ... 

• Floating-point. .. 

• UsingA5 ... 

Run-time environment Issues 

i 
~., .... -

37 



( Mixed Mode ... 

When do you need Mixed Mode? 

• Passing code pointers to the toolbox 

- Callback routines, VBL tasks, etc. 

• Patches 
- May be patching 68K or Powerl'C code 

• Calling stand-alone code resources 

• More details later , 

------'" 

Mixed Mode ... 

( 

38 



VBL tasks ... 

-68Kmodel: 
Pointer to VBL block in AO 

• PowerPC model: 
Pointer to VBL block given as a parameter 

-Solve with conditional compilation 

LJ". 

VBL tasks ... 

39 



( Floating-point ... 

float / double extended long comp 
single double 

TIIINKC 32 64 80/96 varies 64 (int) 

MPWC 32 64 80/96 80196 64 (int) 

PowerPC C 32 64 N/A 128 N/A 

• replace math. h with fp. h 
- alternate SAN&like numeries 

---
- fenv.h controls environment 
- Utility functions to com't':ct <.> extended 

Floating-point ... 

40 



Using AS ... 

2 reasons you use AS 

• Getting access to globals 

- Not needed due to automatic RTOC switch 

- Conditionalize 

• Creating a context for other 68K code 

- Use SetA5 and SetCurrentA5 

- See <LowMem.h> 

Using A5 ... 

41 



Converting THINK C - 1 

General language issues 

• Use ANSI settings, with some exceptions 

- "TIUNK C extensions" Q!1. 

"enums ace ints" ..Qf 
- Add "Require prototypes" 

• Add #include statements 

• Create a makefile 

Converting THINK C - 1 

42 



Converting THINK C - 2 

• Remove inUne assembly 

- Seperate files or rewrite in C 

'-Remove base variables 

- Use macros for base variables 

- Can use new headers 

• Declare and use qd 

• Remove "int" (except loop counts & bitfields) 

~-
- Examine "4 byte ints" option, replace "int" 

wI custom type 

Converting THINK C · 2 

43 



Converting THINK & MPW C 

• Replace ProcPtrs with UniversalProcPtrs 

- Declare UPPs as globals, initialize to NUll 

- Where needed, create with 
NewRoutineDescriptor 

- Pass in place of a code address 

• Conditionalize references to A5 

• Use new definition for VBL tasks (conditional) 

Converting THINK & MPW C 

( 

44 



Summary 

• Transfer to ANSI C 

• Find and isolate 68K dependandes 

- low-memory globals 

- InUnes & interface glue 

- Mixed-mode callbacks 

Summary 

45 



( Lab 

• Take a small drawing program from THINK C 
code to PowerPC 

- Convert to work with MPW 

- Convert to work with PowerPC 

- Add resource(s) for PowerPC 

Lab 

( 
46 



( 
... PowerPC Program 
.:.::....-_--------, 

Debugging 

Apple Confidential- Need To Know 

Debugging 

47 



Debugging Overview 

• 2-machine source-level debugger 

- Based on SourceBug 

- Source, .SYM files on host machine 

- Low-level "nub" on target machine 

- Serial cable between both 
• Can use emulated MacsBug on target 

Debugging Overview 

48 



( Source-level debugging 

• Building your code 

• Starting the debugger 

• Setting breakpoints 

• Common error messages 

• Using specific windows 

Source-level debugging 

49 



Building your code 

• Use .~ option with compiler & linker 

- Disables optimizations, copies parameters 
from registers back into stack 

• Use MakeSYM to build .SYM file from XCOFF 
file 

Building your code 

50 



( 

( 

Starting the debugger 

• Copy .SYM file to host machine 

• Open .SYM file on host side 

- Map.SYM to code command (optional) 

• Give control to the remote nub 

- DebuggerO or DebugStrO on target 

- "Stop" button on host 

- Launch wI <control> key on target 

Starting the debugger 

51 



Setting breakpoints 

• Click in left-hand margin 

- <option>-click gives conditiona~ 
counted, and perronnance analysis 
breakpoints 

• Try to set breakpoints only while stopped 

• If you're stopping in odd places, use "clear all 
breakpoints" and re-set 

Setting breakpoints 

52 



Common error messages 

• Access violation - Reference to a bad address 
(usuaUyO) 

• Trap Instruction (NMI, etc.) - Hit "stop" 
button on host, or interrupt button on target 

~-

LJ 

Common error messages 

( 

53 



Using specific windows 
j 

• Stack trace 

• Variable examiner 

• Source I assembly display 

• Log Window 

Using specific windows 

54 



Stack trace 

• Click on a (Powerpc) entry to see that frame's 
variables 

Stack trace 

55 



Variable examiner 

• Use <command>-E to evaluate 

• Can show variable or expression 

• Use menu to change display rormat 

Variable examiner 

56 



Source / assembly display 

• Pop-up in lower left switches between source 
&asm 

• Use <option>-drag to clone 

Source / assembly display 

57 



Log Window j 

• Records output of DebugStrO commands 

Log Window 

58 



( 

( ',--' 
, . 

- ~,./ 

Debugging without .SYM files 

• Compile with traceback tables Qll to put 
function names into xcoff and PEF 

• Using your head 

• MacsBug 

Debugging without .SYM fues 

59 



Using your head 

(il read my code and think really hard" 

• Common porting errors which cause crashes 

- Passing PowerPCaligned structures to the 
toolbox 

- Passing ProcPtrs to the toolbox 

Using your head 

60 



MacsBug 

• MacsBug only "sees" the 68K side 

• Debugging "mixed" code 

- Seta breakpoint on Mixed ModeA-Trap 

- Special PowerPC dcmds 

- c fm symbol-look up the address of an 
exported symbol 

lj - di s address - disassemble PowerPC code 

MacsBug 
Ser - poWJ1...f"c.. 

61 



Caveats 

• Debugging is hard when crashing into 68K 

• Nub disables interrupts, so dismount AFP 
servers 

• Sources seem to be "out of date" 

- Tum off warning via preferences, or ... 

- Make sure you're seeing the right sources , 
LJ·. • R2DB crashes under LaserWriter 8.0 drivers 

Caveats 

,/ 

62 



( Summary 

• Powerful2-machine debugger 

• Can debug any PowerPC code 

- Use something else for 68K 

• Get documentation from Grand Cherokee to 
see all features 

Summary 

63 



Lab 

• Enter the debugger 

• Set a breakpoint 

• Trace through rode & examine variables 

• Look at stack frames 

Lab 

64 



Prerequisites 

Iclass note 

Iclass note 

Keep those source files 
handy! 

Lab: Debugging with R2DB 
Revised: 6124193 

Debugging with R2DB 

This lab walks you through the process of debugging an application using the PowerPC 2-
machine debugger R2DB. 

You should have built your copy of the application once already. If you haven't, get a copy 
of the lab application and .SYM files from the instructor. 

Connect the host and target machines 
The debugger communicates between the 2 machines through a serial cable. Since the 
Printer port is normally used for a LocaITalk connection, we'll connect the 2 machines 
through the Modem pom. 

The machines are already set up, but you should note the position of the cable on the pdm. 
Since the pdm machines are packaged in spare Centris 610 cases, the ports on the 
motherboard don't match up with the labels on the case. So, take a look and remember 
where the cable goes - this will save you some grief later. 

Configure the nub on the target machine 
The debugger nub on the pdm can use either the Printer or Modem pom for 
communicating with the 68K Macintosh. Use the "Debugger Nub Controls" control panel 
to connect the nub to the Serial port, and then re-boot (Note: you only have to do this 
once, as the setting gets recorded in a special preferences file.) 

Build and download the .SYM files 
The debugger uses MPW-style .SYM files which are derived from the XCOFF files created 
by the compiler via the makesym UNIX tool. 

The supplied makefile and 1001 building scripts already do this for you. 

Since the .SYM files are fairly large, you should download them to your host 68K 
Macintosh before using them with the debugger. (Note: You only have to download the 
.SYM files you actually need. If you're only debugging Muslin, just download Muslin.SYM.) 

The debugger will need to read the source files in order to provide source-level debugging, 
so you should either download the sources to the 68K Macintosh, or leave the server 
volume mounted there. (Either way works. The advantage of leaving the selVer mounted 
is that you always have the latest version. The disadvantage is, obviously, speed.) 

Launch the debugger (on the 68K Macintosh) 
The easiest way to launch the debugget.: is by dragging a .sYM file on to it, or by double
clicking the .SYM file (assuming that you set the type and creator in the previous step.) 
OthelWise, you can launch the debugger application directly and use the File:Open __ _ 
menu item to select a .SYM file. 

1 



Selecting the debugging 
port 

Dismount all servers! 

Enter the debugger 

Lab: Debugging with R2DB 
Revised: 6/24/93 

The debugger will ask you which port has the debugger cable. You can set this value and 
eliminate the dialog by selecting Edit:Preferences •.. and setting the connection port 
to be the Modem Port 

Launch the target application & enter the debugger (on 
the PowerPC Macintosh) 
Now, launch the Muslin application on the PowerPC machine. (It doesn't actually matter if 
you start the debugger before running the target application.) But, before you do anything 
else, read the nen paragraph! 

Before doing anything on the pdm that could cause a break into R2DB, make sure you've 
dismounted all AFP selVer volumesl The nub is a very low-level debugger that disables 
interrupts on the target machine Oust as MacsBug does.} This will cause the AppleShare 
code to miss one or more "tickle packets", and your machine could hang for a very long 
time waiting for the connections to time out So, make sure you dismount those serveIS 
before executing the next stepl 

Your code can enter the debugger in several ways, either deliberately (via a call to 
DebuggerO or DebugStrO), or inadvertently through an illegal instruction, bad memory 
reference, or a host of other causes. We'll take the deliberate route, and make a call to 
DebugStrO· 

In the Muslin application, select Debug: I nuoke the debugger now. 

The target machine will appear to hang. The call to DebugStrO has given control to the 
debugger nub, which has no user interface. Go back to the 68K Macintosh and wait (The 
host machine can take upwards of 10 seconds to recognize the first stop request in a given 
session. Be patient) 

After the host machine recognizes that a stop has occurred, it displays a register window. l 

Since we entered via DebugStrO, a Log window appears containing the message passed 
to DebugStr ("Now entering the debugger ... ".) 

Ifthe debugger could find the source files (or you indicated where they are), the source 
browser will display the source code around the breakpoint, with an arrow pointing to the 
current statement, as shown below. 

1 If the debugger asks where the source flies are, tell it. Otherwise, you'll have to debug at the 
assembly level. 

2 



Additional breakpoint 
options 

Lab: Debugging with R2DB 
Revised: 6/24/93 

DooWindow.o 
GenerioWindow.o 
91ink.s 
HandL inkedL ist.o 
100nF amily LDEF.o 

void doDebugMenu <short itemNum) 
{ 

if <itemNum == kCallDebugger) + DebugS tr< .. \pNow en ter i ng the debugger ..... ) ; 
1* doToolsMenu *1 

Set a breakpoint 
Locate the LoadTool routine contained in ToolLoader.c, and place a breakpoint on the line 
containing the call to GetDiskFragment 2 You place a breakpoint by moving the cursor into 
the column on the left hand side of the souoce window (where the cursor will tum into a 
small octagonal "stop" sign) and clicking. 

You can get other breakpoint options (including counted breakpoints, which stop only after 
being executed a certain number of times) by option-clicking in the left hand column. 

2 The Views:Find Source for ... command provides a convenient way to locate any routine by name. 
alternately, you can select the source file in the upper left pane, and the function name in the 
upper right pane. 

3 



lDad a tool to invoke our 
breakpoint 

lab: Debugging with R2DB 
Revised: 6/24.193 

FindOwnedOb ject 
FindTools 
GetF olderDirlD 
GetToolNames 

} break; 

case klnDataFork: 

Run & load a tool 

/I DebugStr ("\pAbout to call GetDi~kIFrt'" 

err = GetDiskFragment(&(*currBlock)-> 
if (err) ( 

A I ertuser(err); 

To continue execution, select the Control:Run menu command or click on the right
pointing arrow in the "control palette." 

f!!~'!~i!,i~i,i~i,~i~ii~~il 

+ 
Click here 

Notice that Muslin's Debug menu un-hilights, and control returns to the pdm. (If you 
foIRot to unmount setVer volumes from the pdm, you'll have to wait several minutes for 
the timeouts or re-boot the machine.) 

Next, selectTools:Rdd Tool to palette in Muslin, and pick a tool. This should invoke 
the debugger at the breakpoint you set Again, the process of transferring control takes 
several seconds, at which time the PowerPC machine will appear to be hung. 

When stopped at a breakpoint, the display should look like this: 

4 



Explore some on your own 

Debugging the plug-in 
tools 

If the connection dies 

Lab: Debugging with R2DB 
Revised: 6/24/93 

Init.c 
Muslin.o 
MuslinErrors .0 

ptrLinkedList .0 

} break; 

case klnDalaFork: 

FindOwnedOb ject 
FindTools 
GetF olderOir 10 

II DebugSlr ("\pAboul to call GelDiskFragmenl 
err = GelDiskFragmenl(&(*currBlock)->looIFSS, 
if (err) { 

A I erlUser(err)' 

The "crooked arrow" indicates that the next "step" command will step into the specified 
call. (GetDiskFragment) Since stepping into this routine would involve looking through 
assembly code, select the "step over" command at the right end of the palette, or set a 
breakpoint on the next executable line and run. (You may need to click "step over" several 
times to get out of the breakpoint) 

By the way, balloon help works inside R2DB. You might want to tum it on and see what 
some of the other buttons on the control palette do. 

You can also load one of the SYM files for a tool (the Square tool is a good one since it is 
so simple) and set breakpoints in the tool's code. You might want to give this a tty ... 

The debugger sometimes loses its connection with the target machine. If that happens, 
just re-launch the target application, and re-invoke the debugger via DebugStrO. (You can 
press command-D in Muslin to do this.) 

Examine some variables 
Afteryou've tried some of the stepping options, load another tool to invoke the breakpoint 
in LoadTool. Now, double click on "currBlock" (in the first parameter to 
GetDiskFragment) and select the second command in the Evaluate menu. (It should read 
Eualuate currBlocl<.) This command evaluates the currently selected variable and 
displays its value: 

5 



Changing the displa~ 
foonat 

Lab: Debugging with R2DB 
Revised: 6/24193 

currBlock 
nextLink 
prevLink 
toolStorageType 
toolFSS 

vRefNum 
parlD 
name 

too I BaseName 
containerAddr 

currBlock 
i** <$00906ABC) 
lni I 
1**<009B7794) 0 
12 
I < $00906AC6 ) 
1-1 
1389 
1[12,84,114,105,97,110,10~ 
; 1" ;[12,84,114,105,97,110,10~ 

!ni I 

The debugger also allows you to evaluate C or Pascal expressions in the "Evaluate an 
expression" window. 

The default fonnat for this display places shows strings as an array of decimal bytes. To 
view "name" as a string, click ~ on the array to the right of name and wait for the line 
to be highlighted. (Yes, it's slow, and the line will seem to disappear. Be patient) Then, 
select Eualuate:Uiew as Str255 and the string will appear properly. 

o 
currBlock 

nextLink 
prevLink 
toolStorageType 
too I FSS 

vRefNum 
parlO 
name 

tool BaseName 
containerAddr 

currBlock 
1** < $00906ABC ) 
!ni I 
1**<009B7794) 0 
12 
1 < $00906AC6 ) 
!-1 
i389 

h 12,84: 1 ~4: 105,97,1 rt;, 10~ 
!ni I 

Examine the stack frames 
If you want to see the calling history up to a certain point, or want to examine several of 
the local variables in a routine, Uiews:Show Stack Crawl will display the following 3· 
part browser: 

6 



40982EEO 
009A8740 
009A868C 
009A8458 
009A8168 
009A7F70 

Examining 68K code 

Comparing assembly & 
source 

Lab: Debugging with R2DB 
Revised: 6/24/93 

0090CACO 68K 
0090CA80 
0090CA20 
0090C9CO 
0090C980 
0090C920 

currBlock ** 
nextLink 
prevLink 
toolStorageType 
too I FSS 

ispatch 
i lableToolsMenu 

I 

Selecting a stack frame in the lower pane will display the appropriate local variables in the 
upper left pane. Double-clicking one of the variables will bring up the variable examiner in 
the upper right pane, just as Eualuate ••• does. 

Global variables can be viewed in a similar fashion by selecting 
Uiews :Show Globals". 

Examine disassembled code 
You can view the assembly-language code for any part of the source in two different 
ways: 1) select Views:Show Instructions which displays the instructions beginning with the 
current program counter, or 2) click on the pop-up menu in the lower left comer of the 
source browser, and select "source" . If you have highlighted some source code, the 
second method will hilight the corresponding part of the disassembly. 

R2DB can also disassemble 68K code, but that's the extent of its 68K abilities. You can't 
set breakpoints or examine variables in 68K code. 

One useful technique involves duplicating a window and displaying source code in one and 
the corresponding disassembly in the other. You can do this by holding down the option key 
and dragging on a source browser window. This will cause a copy of the window to be 
made which you can then switch to source or assembly mode using the pop-up in the 
lower left comer. 

7 



Lab: Debugging with R2DB 
Revised: 6/24/93 

A Quick Escape 
If your program crashes and you want a quick way out, selecting Control:Enter 
MacsBug will drop the target machine into MacsBug, where an ES (Exit to shelQ 
command will kill the current application. 

Further explorations 
Take a look at the Memory, Registers, and FPU registers windows, all accessible from the 
Views menu. Try out the balloon help, and feel free to experiment! 

8 



PowerPC Program 

Mixed mode 

Apple Confidential- Need To Know 

Mixed mode 

(, 
65 



Mixed Mode 

What is it? 

• Allows 68K code to caU PowerPC code (and 
~ceve~)~prurently 

• Works via "Unive~l ProcPtrs" 

- Pointer to 68K code, or ... 

- Pointer to a "routine descriptor" 

- Code type 

- Calling convention infonnation 

- Pointer to actual code 

Mixed Mode 

r{·· 

""L. 

66 



( 

( 

Do you need mixed mode? 

No, if you ••• 

• Write only 68K code 

• Call one PowerPC routine from another 
(directly or via ProcPtr) 

Do you need mixed mode? 

67 



Do you need mixed mode? 

Yes, if you •.• 

• Write PowerlJC code which calls external code 
(which might be 68K) 

• Write stand-alone PowerPC code 

- ... which the toolbox calls 

- ... which 68K apps might call 

• Provide a callback pointer to the OS 

Do you need mixed mode? 

68 



( 

(
····1 

.' 

A Mixed Mode Exam Ie 

Hypercard + Power PC XCMDs 

BRA, 
IMP,or 
JSR 

QlK 
XCMD 

PowerPC 
XCMD 

QlK PowerPC 
XCMD XCMD 

A Mixed Mode Example 

69 



A Mixed Mode 

68K 
XCMD 

PowerPC 
XCMD 

P_PC 
XCMD 

Routine Descriptor 1~, .. ibltdiMeateftlmpk(ptr , proclnfo, 

68K 
XCMD 

~ ............ (ptr, proclnfo, ... ) 

versalProc (ptr, proclnfo, ... ) 

Routine Descriptor 

PowerPC 
XCMD 

bl .ytrgl 

PowerPC 
XCMD 

70 



(~ 

" .". 

{ 

"" 

\ 

How mixed mode works 

From PowerPC 

• Execute CallUniversalProc wi UPP & ProcInfo 

- UPP = = 68K pointer, or pointer to a 
RoutineDescriptor 

• Fonnat parameters for callee 
- 3 stack frames: original, "switch", & target 

• If destination code ! = PowerllC, run emulator 

• On return, reverse switch occurs 

How mixed mode works 

j 

PowerPC 

~ p Frame 
-

Mixed Mode ixed Mode 
Frame Manager 

I !'I 

68000 
~ Frame 

PowerPC 
Registers 

68000 
Registers 

71 



How mixed mode works 

From68K 

• Jump to a UniversalProcPtr 

- If 68K code, nothing happens 

- IfUPP points to a routine descriptor, 
execute "Mixed Mode Magic" trap 

How mixed mode works 

\'-. ~ / 

72 



Routine Descriptors 

MixedMode Trap ($MFE) 
Routine Descriptor Flags 

Ro Jtin 
Routine Count 
Proclnfo 

De jeri to Routine Flags 
ProcPtr 
Selector (optional) 

I 
Code 

I ---
. . Routine Descriptors 

struct pr~vate Rout~neDescr~pto~1 

} i 

long goMixedModei // unused 68R instruction 
long magicCookiei // unique identifier 
SelectorType selectori // mixed mode selector 
short version; // 0 for now, increment as needed 
ProclnfoType proclnfoi 1/ calling conventions 
ProcPtr customParamProci/1 Procedure to convert params 

Code Type 
ProcPtr 
long 

1/ to different types of code 
// Presently unused 

executionModei 1/ 
procDescriptori II Pointer to actual routine 
unusedi II must be 0 

o 
4 
8 
10 
12 
16 

20 
24 
28 

73 

il 

i' II 
I 



Proclnfo 

• 32 bit (unsigned) value which encodes for 

- Calling conventions (stlCk-based, 
register-based, etc.) 

- Location of return result 

- Location of each parameter 

• "Or" special macros I constants to create 

Calling convention types 
kPStackBased 
kCStackBased 
kRegisterBased 
kDODispStackBased 
kDIDispStackBased 
kStackDispStackBased 
kStackDispRegisterBased 
kSpecialCaseProclnfoType 

Parameter Types & Locations 
m68KStackP[1-13] [Byte, Word, Long] 

m68KRegisterP[1-4] [In,Out,InOut] 
m68KRegisterP[1-4] [Byte, Word, Long] 
m68KRegisterP[1-4] (AO,Al,DO,Dl] 

m68KStackSelector(Byte,Word,Long] 
m68KRegSelector (Byte, Word, Long] 

kNoReturnValue 
k68K (Byte, Word, Long] Returned 

Explanation of special cases: 
***************************** 

~~~:lcaSeHighHOOk 
kSpecialCaseCaretHook
kSpecialCaseEOLHook
kSpecialCaseWidthHook
kSpecialCaseNWidthHook
kSpecialCaseTextWidthHook
kSpecialCaseDrawHook
kSpecialCaseHitTestHook
kSpecialCaseTEFindWord
kSpecialCaseADBRoutines
kSpecialCaseProtocolHandler
kSpecialCaseSocketListener

1 = C calling conventions, Rect on stack, pointer in A3, no return value
2 = Register-based; inputs in DO, A3, A4; output is Z flag of

status register (see V1-1S-26)
3 = Register-based; inputs in DO, 01, AD, A3, A4; output in 01 (see V1-1S-27)
4 = Register-based; inputs in DO, 01, 02, AD, A2, A3, A4; output in 01

(see V1-1S-27)
S = Register-based; inputs in DO, 01, AD, A3, A4i output in 01 (see VI-1S-28)
6 = Register-based; inputs in DO, 01, AD, A3, A4; no output (see V1-1S-28)
7 = Register-based; inputs in DO, 01, 021, AD, A3, A4; outputs in

DO, 01, 02 (See V1-1S-29)
8 = Register-based; inputs in DO, 02, A3, A4; outputs in DO, 01 (see VI-1S-30)
9 = Register-based; inputs in AD, A1, A2, DO; no outputs (see V-371)
A = Register-based; inputs in AD, A1, A2, A3, A4, D1.w; output in Z (see 11-326)
B = Register-based; inputs in AD, A1, A2, A3, A4, DO.b, D1.Wi output in Z

(see II-329)

"-.. ...

74

(..

Using mixed mode

• Mixed-Mode ProcPtrs

• Stand-alone code resources

• "Fat" resources

..J'.

Using mixed mode

(J
75

I Mixed-Mode ProcPtrs

II The followinq code createa a univeraalProcptr for
1/ a PowerPC vaL task routine.

1/ Create the Proc:Info, no paramter., no return value
m.yproclnto - kP.8calStackBa.ed I kNoReturnValue I

kNoParams:

1/ Allocate a Routine Descriptor
myuPP - NewRoutineDescriptor «procPtrl lIlyYBLProc,

~~cInfo,

C kCodeTypeCurrentNo~
1/ Us. the Routine Descriptor as a UniveraalProcPtr
if (myUPP !- NIL)

myYBLTaak. vblAddr - IIlYUPP:

LJ

Mixed-Mode ProcPtrs

• Code types:

• unknown
• Current World

• 68K

• PowerPC

76

(Stand-alone code resources

Options for PowerPC Stand-alones

• Create a Mixed mode header on the resource

• Create a "stub" resource

- Put xDEF routine in your application

- Fill in UniversalProcPtr to the routine

Stand-alone code resources

(

77

"Fat" resources

• Resource which contains both PowerPC and
68Kcode

• Requires Mixed mode header

- Insert extra list entries into header

lji

"Fat" resources

78

(Mixed mode limitations

• "Call" not "Jump"

• Mixed mode overhead

- Duplicate stack frames + switch frame

- Mode change lakes about 50 68K
instructions (500 Powerpc)

• Has problems with variable parameter lists
(e.g. many selector-based traps)

Mixed mode limitations

79

Summary

• Use Mixed mode if a caU might change worlds

• PowerPC code must be aware of mixed mode

- 68K code can be ignorant

• Package up resources wi special headers or
provide support from your applicadon

--
Summary

/ -

80

(Lab

• Pass a UniversalProcPtr as a callback pointer

Lab

(~ ..

(
81

PowerPC Program

Performance

Apple Confidential- Need To Know

Performance

82

PDM Performance Goals

• Emulated Apps near Quadra 700 speed

• PowerPC Apps 2-3 times Quadra 700 speed

PDM Performance Goals

83

Performance issues on PowerPC

• The emulator

• Optimized & non-optimized code

• Mixed mode overhead

LJ

Performance issues on PowerPC

84

The emulator

• =10 PowerlJC instructions per emulated
instruction

- Some common patterns have their own
emulation code

- Very cache intensive

• PastATrap dispatcher

• Past SANE

• BlockMove has its own instruction

The emulator

85

Mixed mode overhead

• 15 J.lSecs round bip context switch
- ... 500 PowerPC instructions to switch

worlds & return

- ... 50 PowerPC instructions to remain in
same world

• 0.5 J.lSeCs to call PowerPC ATrap from
PowerPC code

LJl

Mixed mode overhead

(
86

The Performance E uation

The Performance Equation

87

(

Getting the ROM "up to speed"

• Get"" 75% of the time an app spends in the
toolbox to be native

• Native managers

- QuickDraw (+ relatives)

- Resource Manager (partial)

- Memory Manager

Getting the ROM "up to speed"

88

Becoming even faster ...

d.f1J:.r. the first release ships

• Continue timing & porting critical code

• Performance analysis tools

Becoming even faster ...

89

(Performance analysis tools

-MacsTIme

- Power Pro filer

Performance analysis tools

90

MacsTime

• CDEY which watches A-Trap calls

- Determines frequency & execution times of
system calls

- No call chain information

• Output to tab-delimited TEXT file

• Programming API for custom control

-1~

MacsTime

91

PowerProfiler

• Gets the detailed picture

- Records ATrap entries/exits (call chain)

- Head patch on ATraps

- Factors out interrupts

- Shows if an ATrap is in PowerPC

• Post-process with ATG tool

i

I it

PowerProfiler

(-

92

Performance Tuning for Apps

• Avoid Mixed-Mode switches

• Do n iterations per null event

• Parameters vs. parameter blocks ...

• Align your data structures ...

• Optimized and non-optimized code

)~
~)I...(;) ,,)o~

Ys.
~

Performance Tuning for Apps

93

Avoid Mixed-Mode switches

• Event-related: WaitNextEvent, GetNextEvent

• Timing-related: TickCount, VBLs, etc.

• Patching ...

Avoid Mixed-Mode switches

il
I' ,
i

Patching ...

• At least 2x Mixed Mode overhead

• Strategies

- Nopatches

- "fut patches"

• Look out for "spUt patches"

Patching ...

95

(blocks ...

• First 7 or 8 words of (non-FP) parameters
passed in registers

• First 13 floating-point parameters passed in
registers

- Use function prototypes

• Register-based parameters are faster than
parameter blocks

Parameters vs. parameter blocks ...

I
!

~I
I
!

Align your data structures ...

• Misaligned storage accesses are slower than
aligned

• Use #pragma options align to change
alignment

Align your data structures ...

97

(~ Performance analysis for apps

• The "adaptive sampling profiler"

Performance analysis for apps

98

The "adaptive sampling profilerH

• Breaks memory as a series of "buckets" and
samples at regular intervals

• "adaptive" = shows high-activity areas at high
resolution

• Labels buckets according to fragment(s) and
routine(s) covered

lj'-

The "adaptive sampling pro filer"

99

(Summary

• Performance is very important

• MixedMode overhead can limit speed
advantages of going native

• Performance analysis tools are available

j", ----

Summary

(~.

100

Lab

• Time an application with the Adaptive
Sampling Profiler

• Try to make the code fsater

Lab

101

(.,
PowerPC Program

Interfaces & Glue

Apple Confidential- Need To Know

Interfaces & Glue

(
102

68K vs. PowerPC Interfaces

old 68K interfaces

• May contain inline code

• Uses untyped ProcPtrs

.68K Vs. PowerPC Interfaces

103

Ii '.

\
''''-.

(

(.

68K VS. PowerPC Interfaces

NewPowerPC

• No inUnes - all calls through glue

• All ProcPtrs are typed

• Includes Mixed Mode procInfo

• Used #pragma align for 68K structure
. aUgnment

• "Universal" intetfaces work w/68K

68K Vs. PowerPC Interfaces

I
:J
i~
II
I

I

II
It
I

104

Other interface changes

• NIM names for "DisposHandle", et al.

• Some files have been re-organized, re-named

- Text-related code in TextUtils (was
ToolUtils)

- <Process.h> becomes <Processes.h>

Other interface changes

105

How the glue works

• ToolboxlOS calls are calls to a shared Ubrary

- Minor routines implemented in the Ubrary

- Most routines dispatch through trap table

- Get a UniversalProcPtr with
NGetTrapAddress

- Pass to CallUniversalProc

~.

How the glue works

106

Building Interfaces & Glue

• Interfacer
• Converting headers manually

,Building Interfaces & Glue

107

(Interfacer

• Processes 68K interface files (with inline
code) to get:

- New interfaces

- Glue code

- Mixed mode info:
{trap #, selector, procInfo}

• Using Interfacer ...

Interfacer

108

Using Interfacer ...

• Fix struct and enum declarations

• Run Interfacer to create new file

• To build glue:

- Run Interfacer -inlinelist

- Compile result into a tool & run it

- Give result to Interfacer -glue

Using Interfacer ...

109

(Converting headers manually

-Why?

- Interfacer can't recognize all inline
constructs

- Interfacer is an unsupported tool

- The process

Converting headers manually

I

110

,I
j,

The process

• Insert alignment directives

• Use ONEWORDINUNE, etc. fur inlines

• Write/translate glue code by hand

The process

111

Summary

• PowerPC cannot use 68K interfaces
- Interfacer helps build new interfaces

• We're cleaning up other things

,-
lj"'

Summary

112

I
I

il
1*
:

i

:1

l
11

I:
"

Lab

• Process a simple interface file

• Build a glue file

Lab

113

{

Introduction

PowerProfiler
Rev 1.0

Jim Gochee
2/18/93

The PowerProfller is a system profller and timing tool. It's main objective is to time and
show the calling chain of system A Traps. There already exist some excellent A Trap timing tools,
however they currently use the ATrap dispatcher to record trap calls. The PowerProftler head
patches every ATrap to be profiled so that it is 100% guaranteed of intercepting an A Trap call.
This is necessary for Quickdraw which normally jumps through the A Trap vector instead of
paying the overhead of invoking the A-line exception. Also, native code on PowerPC machines
uses MixedMode to make toolbox calls and MixedMode jumps through the vector directly.

Installation
The PowerProfiler comes in three pieces. The fIrst is ZProftleInit, which as its name

suggests is an init that runs very late in the boot process. It is responsible for patching the A Traps
to be profiled. It also allocates a block of memory in the system heap for the proflle data. There
are some MacsBug templates and macros in ZProflleinit which should be copied into the
Debugger Prefs flle in your system folder. If you don't know what a debugger prefs flle is, or you
haven't used MacsBug then you probably should not be using the PowerProfller. The resources
you will need to copy from ZProfIleInit are 'mxbm' and 'mxwt'. When this is done, drag
ZProflleInit into you system folder (extensions folder) and restart to install the profIler.

The other two things you will need are SnarfResults and TrapSum. SnarfResults is an
application that writes the current profIling data to an MPW readable text fIle. The data from the
current proftle is stored in a block in the system heap and is accessed through a data structure
pointed to by location $100 in memory. TrapSum is an MPW tool that can post-process the ftle
produced by SnarfResults and give summary information for each trap in the profIle.

ZProfileInit
At init time, ZProfIleInit does several things. First, it sets up a data structure pointed to by

location $100 in memory. This data structure contains information about the current profIle
setup, the most interesting to the user being the 'state' of the profIle and the remaining buffer
space. By default, the profIler is de-activated (state = 0) and no profiling information is recorded.
The second thing the init does is patch a list of ATraps described in the 'PROF resource of the
file. Then it patches the interrupt vectors.

To display the profiler's data structure, drop into MacsBug and type 'table'. The key fIelds
are 'state', and 'ElementCount', which shows how many ATrap in/out entries have been logged.
Since the proftler is turned off by default, both of these numbers should be O. Note that the
PowerProftler is nevertheless plugged into the A Trap table and is being called through at each
trap instance. This is important because some ATraps don't like to be profiled. The proftler
assumes it can replace the caller's address on the stack with it's own internal address. In this way,
the ATrap will return to the profIler. If the A Trap discards the return address, then the proftler's
internal data structures will be corrupted and the machine will bomb. If this happens, type 'table'
from MacsBug and look at the 'LastTrapReturned' or 'LastTraplnFrom' values. The trap(s) listed
here are probably the culprit. Use ResEdit to zero out the bad trap from the 'PROF resource of
ZProfile Ini t.

To start recording, drop into MacsBug and type 'start'. This sets the 'state' to 1 and triggers
the ATrap patches to save their data. The data is saved as an array of ATrap entries and exits, so
the amount of information you can record is directly related to the size of the profile buffer. The

default buffer size is 300k, which is enough for about 10,000 traps to be profiled. This may seem
like a lot, but it is realistically 3-10 seconds worth of information. To increase the size of the
buffer, use ResEdit to change the hex value in the 'sysz' resource. The actual size of the buffer ('e",
will be the value of 'sysz' minus around 20k.

To stop record, drop back into MacsBug and type 'stop'. You can then type 'table' to see
how many ATraps were recorded ('ElementCount').

SnarfResults.
To recover the stored proflle data, launch the SnarfResults application. A file called

'SnarfResults.out' will be created in the same directory as SnarfResults. It contains the profiling
output in an MPW readable text file. Here's a sample of what's generated:

_DrawText (from 0x00B246EA, ApplZone 0x008410C4) 5 calls, ~secs: 2762
• _StdText (from 0x408712A2. ApplZone 0x008410(4) 4 calls, ~secs: 2675
• _StdTxMeas (from 0x00B2E48C, ApplZone 0x008410(4) 1 calls, ~secs: 408
• _FMSwapFont (from 0x00B2EZAC, ApplZone 0x008410C4) 0 calls, ~secs: 124

_QDExtenstons (from 0x00B2E48C, ApplZone 0x008410C4) 0 calls, ~secs: 39
•• Interrupt
_GetPalette (from 0x00859058, ApplZone 0x008410C4) 0 calls, ~secs: 34
_RGBForeColor (from 0x00859076, ApplZone 0x008410C4) 1 calls, ~secs: 131

_Color2Index (from 0x4088778C, ApplZone 0x008410(4) 0 calls, ~secs: 77

Each line describes an A Trap that was called, including where it was called from, what the
ApplZone was, how many traps were in tum called, and the total trap time not factoring out the
sub calls that were made. The indentation of the trap shows how the calling sequence proceeded.
For instance, DrawText called StdText, which in tum called StdTxMeas and QDExtensions.
StdTxMeas called FMSwapFont.

The bullet in front means that a trap was patched by a PowerPC version. Notice too that an
interrupt occurred and was logged.

TrapSum
TrapSum is the final component of the Profiler. It runs as an MPW tool and takes as a

parameter the name of a file to summarize. You can either summarize an entire SnarfResults.out
file, or cut and paste to get a smaller subset. TrapSum dumps the summary to stdout.

(

(

'd,

1.0 Introduction

This document describes the MacsTime trap timing and profiling tool at both the user
level and the programming level. This document is broken into two main sections. The first
section is the documentation for the tool at the user level. The second section contains the
information needed to program the tool for specialized tasks.

1.1 What MacsTime Is

MacsTime is a tool in the form of an INIT /CDEV which profiles the execution of traps by
the system and applications in a particular test case. It provides the count of trap execution
(selector based traps will be timed individually by selector), the total time spent in the trap, the
minimum and maximum times and the sum of squares of the trap times.

The timing process can be started or stopped on any of the following criteria:
unconditionally via a button press, on some time delta from the present, on the Nth execution
of some trap or on a sequence of 1 to 4 traps. Once a test case is complete, the user may
recover the generated data using the control panel or may write a tool to return the data in
whatever format is required.

Document v1.0 for MacsTime V2.0A3 - 1 - Apr 30, 1993 at 1:37 PM

The division of labor runs as follows: The INIT takes timing commands through its
command procedure, performs the actual trap timing and returns pointers to its database. The
CDEV acts as a user interface to the INIT, sending mode commands and displaying the data C'c j

generated by the INIT.

The nature of the tool requires that the test case take a performance hit, typically about
140 instructions, plus two calls to the _MicroSeconds trap routine, for a total of about 220
instructions per trap, with selector based traps adding about 20 instructions. This is a fairly
major hit and will bias the results of times for traps invoked from within other traps.

1.2 What MacsTime is Not

MacsTime is not a code coverage tool.

MacsTime is not a path analysis tool.

MacsTime is not a non-intrusive trap analysis tool. The tool does take an appreciable
amount of the system to run. Figures of 30% have reached me, and I can easily see a larger hit
for some pathological cases.

2.0 Macstime as a Self Contained Tool

The tool is available on the server "5TM Central" (volume '5TM Tools') in the zone
"ReadMe First!" in the folder "5TM Tools:MacsTime". The current version is 2.0A2 Release 2.
No other version should be used, as the previous versions are not feature complete. (."

Once you have a copy, drop the control panel into your system folder and restart the
machine. The installation is done, and MacsTime is ready to produce timing data. Activating
the control panel will cause the window displayed as Figure 1, below, to display, this provides
a user interface to the INIT portion which loaded as part of the boot process.

Test execution is controlled by the set of buttons along the right side, and given
parameters by the grid of text boxes in the right center under control of the radio buttons along
the left side. The text boxes are initially unlabeled, as the startup mode runs under the control
of the Start and Stop buttons. The boxes acquire labels according to the execution mode as the
radio button mode changes. These modes are described below.

As a first example, clicking on the Start button with no other activity will begin a test of
the Finder idle code. Clicking on the Stop button after a few seconds will result in a set of data
being displayed. The data may be saved to disk by clicking on the Saue button, which will
cause a standard file dialog to appear. The Clear button will clear the data displayed on the
screen and the internal data bases for the next run.

Document v1.0 for MacsTime V2.0A3 -2- Apr 30, 1993 at 1:37 PM

(

(".
2.1

Name

MacsTime
@1992-1993 by Apple Computer J Inc.
MacsTime keeps statistics on A-Trap frequencies and durations.
Code by John Bradley, Icons by Mary Fordham, with thanks.

Selector I Trap Times Called Time in ~ Sec

~

Start Mode

@None

OTime

o Trap

o Sequence

Run State: Idle

Figure 1

Controlling the Timing Mode

(

(

(

(

Start)
stop)

Saue •••)
Clear)

The radio buttons tell the INIT section of the program what start and stop criteria to use.
As you change the radio selection, the labels on the text boxes will change to reflect the
required parameters for the requested test. Note that the default case (above) has no labels on
its text boxes, reflecting the fact that an unconditional start takes no parameters. There are NO
default values to the radio button text fields, all values must be explicitly stated. The radio
buttons work as follows:

None Uses the Start and Stop buttons to initiate timing. Start will
begin timing at the point of mouse release. Stop will cause
timing to end on mouse release. The timing data will be
displayed immediately on mouse release, as well. Since the
text boxes are not used in this mode, they are not labeled, as
in Figure 1, above.

Document v1.0 for MacsTime V2.0A3 -3- Apr 30,1993 at 1:37 PM

Time

Trap

Start Mode (. Start)
ONone Stad Time t

(Stop) @Time End Time 10

o Trap (Saue •••)
o Sequence

(Clear)

Start Mode

ONone

OTime

@Trap

Run state: Idle

Figure 2

Uses the two top left text boxes to receive two decimal
integers. The upper is used as a delta from the time the Start
button is selected to the actual start of trap timing. The
lower is considered a test duration. Both are measured in
seconds, and at the end of the test, the data is displayed
automatically. Figure 2, above, illustrates a ten second run,
starting one second from the time the user clicks on the start
button.

Trap Code Count (Start)
Start Trap 1.000 t

(Stop) End Trap 1.001 1

(Saue •••)
o Sequence

() Clear
Run State: Idle

Figure 3

Receives data entered in the upper half of the grid to get the
A-Trap value and count data. The left pair should contain
the start and stop traps and the right pair contains the count
data (which will typically be one). The INIT will begin
timing when the start trap is seen for the 'count-th' time and
end when the stop trap has been seen for its 'count-th' time.
As usual, the data will be displayed automatically when the
test ends. Figure 3 illustrates the setup for a run which will
start on the first open call and end on the first close call
performed after the start button is pressed.

Document v1.0 for MacsTime V2.0A3 -4- Apr 3D, 1993 at 1:37 PM

\" "

,-

k" \,''''1 ... -.

(
Start Mode Begin Seq End Seq (. start)

(Stop) ONone Trap #1

OTime Trap #2

AOOO AOO3

AOO2 A013

o Trap Trap #3 AOO1 (Saue ••.)
@ Sequence Trap #4

()

Sequence

Clear
Run State: Idle

Figure 4

This mode uses the entire grid to take two 1-4 trap
sequences, one to begin the run (in the left column) and one
to end it (in the right column). The sequences should be
entered from the top of the column to the bottom with the
first trap in the sequence at the top. The two seq~ences do
not have to be the same length, but sequences of a single trap
should use the Trap button, as it is a lower overhead
method. A sequence must have no breaks (no blank entries)
and will be searched for in order of the list, from top to
bottom. Figure 5 gives a sequence pair, the start sequence is
an Open, Read pair, the stop sequence is a Write, Flush,
Close sequence. This will probably never occur in practice
due to the traps invoked internally by these calls, so use this
mode with care.

2.2 Executing a Test

Now you actually do the run. A timing run is started by clicking on the Start button. If
the None button is set, then the INIT will start timing immediately. In any other mode the
INIT will enter Looking mode. This means that the INIT is waiting for the startup conditions to
be met. Once the conditions are met, the INIT will make the transition to Working mode, and
from Working to Done when the end conditions are met.

2.2.1 Saving the Acquired Data

The Saue button performs this function. It causes a standard file dialog to be shown and
requests the output file name and folder. The output file is a tab delimited text file, designed
to be input to any spreadsheet (both Excel and Wingz work for this). The first line is a set of
column headers, the second and successive lines are trap statistics, one trap per line. Note: the
default folder for the save file is the system folder.

2.2.2 Terminating a Test

Yes, it will stop a run in any state. Data mayor may not be consistent at this point, but it
_ generally will be if the current state was Working and will be displayed if so. Owing to a bug

(~ in the control panel, the wall clock time for the run may be displayed in the data area after a

Document v1.0 for MacsTime V2.0A3 -5- Apr 30, 1993 at 1:37 PM

run is ended by using the Stop button. This will occur only if no data had been collected when
the button was clicked.

2.2.3 Clearing the Data Base

The Clear button clears the internal database, the parameter text strings and some
internal state information. To prevent data loss, it can only be used during Idle or Done modes.
Use the Clear button between runs to clear the database of count and time data so that the next
runs data will not be added to the last. On the other hand, if several runs are to be summed,
don't clear the database between them.

2.2.4

MacsTime
@1992-1993 by Apple Computer I Inc.
MacsTime keeps statistics on A-Trap frequencies and durations.
Code by John Bradley I Icons by Mary Fordham, with thanks.

Nam@ Selector I Trap Times Caned Time in ~ Sec

BGetFileInfo A20C 1 610 {}
< < Unknown> > A23C 12 485 m

W
lIFSDispatch A260

8 159 28638 I 48 2 491
NeW'Han.dleClear A322 10 3306
GetOSTrapAddress A346 442 3236
GetWVariant ABOA 295 47363 ..0.

Start Mode (Start)
ONone Start Tim@ 1

(Stop) @Time End Time 1q
o Trap (SalJe •••)
o Sequence

() Clear
Run State: Data is Va lid

Figure 5

The "Run State" Indicator

The ''Run State:" reflects the state of the INIT. On system boot, the INIT is in Idle state,
the various other states are: Looking, Working and Done. The explanation for the modes is:

Idle

Looking

The INIT is simply passing all traps through to the A-Trap handler,
recording no data and introducing about 20 instructions per trap.

The INIT has been given a 'Conditional Proceed' command. This
causes the INIT to begin looking for the conditions to make a state
transition to the Working state. Once found, the engine will transit to ...

Document v1.0 for MacsTime V2.0A3 -6- Apr 30, 1993 at 1:37 PM

(-

I(
C~~~ .. ,

Working

Data is Valid

The INIT is gathering data. It will continue to ,do so until either the
completion criteria are found or the Stop button is clicked. In either
case, the transition will be made to the Done state and the run's data
will be displayed.

The INIT is idling in this state, and data is guaranteed to be consistent.
In this state, the database is displayed by the control panel if it is
active.

2.3 Reading the Data Window

The data area (the large rectangle in the upper, center section of the window) is labeled,
by column. Each of the columns displayed is part of the picture for a given trap.

The leftmost column contains the trap name for each trap. These names are taken from
the file Traps.a. The trap name "«Unknown»" is used where the trap name was unavailable.
Please send the names of any of these that you know to John Bradley, at x4-4677. The name for
a selector-based trap is the name of the base trap and will probably be xxxDispatch, as done
for HFSDispatch, above. The actual names for selector based traps are not currently in the
database, but could be included if you have a need for it, so request selector naming if it would
be useful to you.

The "Selector I Trap" column tag shows either the trap code as a four digit hex number

(.~.', (on the right) or the selector code for the last trap shown with a trap code (on the left). Thus,
. in Figure 1, the lines containing 8 and 48 in the selector field represent the PBGetFCBlnfo and

PBGetVolParms, respectively. These two traps are invoked via the A260 trap, and are selector

('

based within that trap. The selector based traps are displayed in the manner so that selector s
will be set off by having a blank name field and thus will be easily recognized. Each selector
based trap has a line for each selector found during the run.

The ''Times Called" displays a count of the times that any given trap was invoked. Only
traps executed at machine level Dare counted, those executed from interrupt routines are not.
The ''Time in J.I Sec" entry shows the sum of the times in micro-seconds for the trap, exclusive
of the time spent in other traps. The inclusive time is available in the save file Time2 field.

2.4 Reading the Save File

The output file is a tab delimited text file set to be opened by TeachText. The file may be
dropped onto Excel or Wingz to give an easily used spread-sheet of the data. A short sample
of a run's data appears (with appropriate tab stops) as:

Name Va~ue Se~ector Count Timel Tima2 Minimum Maximum Sum of Squares
Read A002 0 106 300747 305618 1471 18922 2077642027
GetVol A014 0 3 496 511 114 264 96616
SetVol A015 0 6 860 882 126 164 124782
Set Zone A01B 0 3 36 36 11 13 434
DisposeHandle A023 0 16 1709 1765 83 116 183363
SetHandleSize A024 0 3 145 145 44 55 7077

Document v1.0 for MacsTime V2.0A3 -7- Apr 30, 1993 at 1:37 PM

I
i.

I
II

The names and their meanings are as follows:

Name

Value

Selector

Count

Time 1

Time2

Minimum

Maximum

The trap name, or the base name of a selector based trap. Since all (""
non-selector based traps have a zero value in the Selector field, it is not
possible to tell whether a trap is selector based by this file format
unless the selector is non-zero. Unlike the display form, the name field
is always stated for traps in the save file. This is to allow the file to be
sorted without losing the trap name information.

This is the value of the A-Trap in hex as executed. This is included so
that traps which have several forms (such as NewPtr) or traps with
selectors can be told apart after a sort operation.

The selector for a selector based trap, zero for all others. Most of the
time, this is a place holder. The field is displayed in decimal. Note:
traps with valid selectors of zero do exist, so be wary of dismissing
zero selectors out of hand.

The number of times this trap was executed during the course of the
test. The various data values are stored as 32-bit unsigned values, and
displayed as signed by Pascal (which does not have an unsigned type).
If any of the counts or other values goes negative, then an overflow has
occurred. The data for that value should not be used, since there is no
way of knowing how many times the overflow occurred. Typically
only the 'Sum of Squares' field will overflow. (

The amount of time (measured in micro-seconds) that the trap spent in
execution, exclusive of the time the trap spent in other traps. The time
is obtained from the _Microseconds trap, which is called via JSR twice
for each trap executed. Time spent in nested traps is added to the start
time so that only time spent executing this trap is counted.

Similar to Time1, except that this time includes the time spent in other
traps. Thus, it will always be greater than or equal to the Time1 value.

The minimum value of the Time1 for all instances of a trap.
Comparing this and the maximum value will give a good indication of
that a bad worst case time exists for a trap, and thus it may be a
candidate for optimization.

Similar to the Minimum value, this is the largest Time1 value.

Sum of Squares This is the sum of squares of the Time1 values. It is kept as a 32-bit
unsigned value, but Pascal displays it as signed. However, since a sign
change would indicate an overflow, negative values should not be
corrected as there is no way to determine how many times the sign 4~
changed. This problem casts a doubt on the worth of the computation,

Document v1.0 for MacsTime V2.0A3 -8- Apr 30, 1993 at 1:37 PM

(

but being able to compute the standard deviation of the time is of
value, even with this problem.

3.0 Programming for MacsTime Users

There are two ways to program the MacsTime !NIT. The first, and simplest is to use a
library of glue routines to perform the _Gestalt based calls necessary to drive the !NIT. This
library is supplied in source form with the package. The second method is to make these calls
directly. Either way, the net result is that you are making calls into the !NIT's control
procedure and taking direct control away from the control panel. This relegates the control
panel to being a convenient means of saving the results of a run. There is no requirement that
the control panel even exist in memory during or after a run for the !NIT to be used.

The !NIT is commanded by a procedure linked in with it. This means that the procedure
is loaded into the system heap. To obtain the address of the procedure, invoke _Gestalt with
the selector 'maxt'. This will return, as the long result parameter, a procedure pointer. The
procedure referred to by this pointer is of the form:

pascal short MacsTimeControl(short
unsigned long
unsigned long
unsigned long
unsigned long

command,
Pl,
P2,
P3,
P4);

The procedure is invoked using a statement of the form:

err = (*macsPtr)(«Command», «Param», <<Param», «Param», «Param»);

This procedure issues the commands detailed below to the !NIT, which checks them for errors
and executes as commanded. Any parameter which is not used is ignored, but may not be
omitted. The command effects are immediate, although the Conditional class of commands
may not show any immediate change in behavior. The short returned by these commands is
an OSErr in all cases except cmdRunState which uses the function result to return the current
run mode of the INIT.

The command set for the !NIT is:

cmdStartNow = 0

cmdStopNow = 4

cmdCondStart = 8

Document v1.0 for MacsTime V2.0A3

Returns either noErr or macsCmdErr (if a test is already
running). No parameters used, the effect is immediate.

Returns either noErr or macsCmdErr (if the tool is in
Idle or similar state). No parameters used, the effect is
immediate.

Returns either noErr or macsCmdErr (if the tool is not
in Idle state). No parameters used, the effect is
immediate.

-9- Apr 30, 1993 at 1:37 PM

If

cmdRunState = 12

cmdSetCountTraps = 16

cmdSetStartSeq = 20

cmdSetStopSeq = 24

cmdSetStartStopTime = 28

cmdSetRunPID = 32

Document vl.0 for MacsTime V2.0A3

No parameters used, the run state result is returned as
the function's return value. This is the only exception
to the rule that these functions return an OSErr as the
function result. The return results are:

sInitIdle = 1 the INIT is in idle state,
sInitLooking = 2 the INIT is looking for a set of start

criteria to be fulfilled,
sInitRunning = 3 the INIT is running, taking trap

times and counts and
sInitComplete = 4 the INIT is idling and the database is

valid.

Returns either noErr or macsCmdErr (if a test is already
running). The parameters are: PI is the start trap code,
P2 is the start count (timing will begin after the count
th trap is executed), P3 is the stop trap code and P4 is
the stop trap count (counting will halt after the count-th
trap is executed).

Returns either noErr or macsCmdErr (if a test is already
running). Parameters PI through P4 are the trap codes
to look for to begin trap timing. Any codes unused
should be passed in as zero. One to four traps may be
specified, and the exact sequence must be issued in
order to begin timing. Note: this includes traps issued ("
within other traps, so use this with care.

Similar to the cmdSetStartSeq command, this specifies
the trap sequence to stop timing on.

Returns either noErr or macsCmdErr (if a test
is already running). The PI parameter specifies the
number of ticks to wait before starting timing. The P2
parameter specifies the number of ticks the test will
run. Both of these are specified in system timer ticks
(about 1/60 th of a second). The engine uses the Ticks
low memory global to determine when the timer has
expired.

Sets the process id for the test. The value is passed as
the PI parameter. The only traps timed will be those
executed during the running of this process. This mode
is independent of the other timing modes and is used to
monitor a single process (such as the Finder). Returns
either noErr or macsCmdErr (if a test is already
running), or macsNoProcess (if the process does not
currently exist).

-10 - Apr 30, 1993 at 1:37 PM

I" . '-~.

(
cmdSetSingleTrap = 36

cmdClearCounts = 40

cmdReturnDataPtrs = 44

cmdReturnClockTime = 48

Sets the single trap to be timed., The value is passed as
the PI parameter. This is also independent of the other
run modes and is used to time a single trap. In
combination with cmdSetRunPID, this can be used to
write a tool to test a single trap in isolation. Returns
either noErr or macsCmdErr (if a test is currently
running).

Clears the count data from a previous run. Used to
clear the count data between run when a test case is
composed of multiple runs. Returns either noErr or
macsCmdErr (if a test is currently running).

Used at any time, this procedure returns a pair of
pointers to the OSTrap and ToolBoxTrap data
structures and the sizes of each in units of structure
entries. The PI and P2 parameters should be pointers
to TrapPtr. These are used to store the addresses of the
OSTrap and ToolBoxTrap tables, respectively. P3 and
P4 should be pointers to short, used to store the OSTrap
and ToolBoxTrap table sizes. The data structures are
described in the MacsTime design document. The sole
returned value is noErr.

This procedure returns the wall clock time during
which the test case was run. All of the parameters are
pointers to the various time values, as follows: PI
should be a pointer to a Micro Time structure which will
contain the start time in ~-seconds of day of the start of
timing, P2 is a pointer to a MicroTime structure which
will contain the ~-seconds of day of the end of timing,
P3 is a pointer to an unsigned long which will contain
the time of start in clock ticks, P4 is a pointer to an
unsigned long which will contain the time of test end in
clock ticks. The errors which maybe returned by this
call are: noErr, or macsCmdErr (if a test is currently
running).

The C Language templates, below, are prototypes for the glue routines used by the
control paneL These detail the easy way to control !NIT. Each procedure invokes _Gestalt to
get the call address and then invokes the command function, passing the parameters as
required by the caller. Full explanations of the functions are given with the command
selectors, above. Note that the parameter set for each procedure has been reduced to that
which is necessary for the command in question. The glue routines will provide any missing
place holderparameters for you. The glue routines are supplied in source form with the

(software distribution.

Document v1.0 for MacsTime V2.0A3 -11- Apr 30, 1993 at 1:37 PM

Ii
I
I

pascal OSErr CmdStartNow();
pascal OSErr CmdStopNow();
pascal OSErr CmdCondStart();
pascal OSErr CmdClearCounts();
pascal short CmdRunState();
pascal OSErr CmdSetCountTraps(

pascal OSErr CmdSetStartSeq(

pascal OSErr CmdSetStopSeq(

pascal OSErr CmdSetStartStopTime(

pascal OSErr CmdSetRunPID(

pascal OSErr CmdSetSingleTrap(
pascal OSErr CmdReturnDataPtrs(

pascal OSErr CmdReturnClockTime(

3.1 Basic Program Flow of Control

unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsi.gned long
unsigned long
unsigned long
unsigned long
TrapPtr
TrapPtr
unsigned long
unsi.gned long
MicroTime
unsigned long
MicroTime
unsigned long

startTrap,
startCount,
stopTrap,
stopCount);
Trapl,
TrapZ,
Trap3,
Trap4);
Trapl,
TrapZ,
Trap3,
Trap4);
startTicks,
stopTicks);
PIDFi.rstLong,
PIDSecondLong);
onlyTrap);
osTrap,
tool BoxTrap,
*OSCount,
*ToolBoxCount);
*startMS,
*startTicks,
*stopMS,
*stopTicks);

Fairly simple. There is a standard sequence of functions to run a test. Build your test
program or tool using variations on the sequence below.

CmdStopNow();

CmdClearCounts();

CmdSetSingleTrap(OxAOOO);

Document v1.0 for MacsTime V2.0A3 -12 -

Use this only if you're feeling paranoid.
The system starts up in idle state, so this
should never be necessary unless a
previous test crashes.

Clear any data currently left over from the
last test case run.

Optional, used to monitor a single trap, in
this case _Open. Use this to determine
whether or not some trap is performing at
speed. The Time2 field is useful in this
case.

Apr 30,1993 at 1:37 PM

("-
\

CmdSetRunPID(high, low); Optional, used to restrict the timing to a
single process.

CmdSetCountTraps(OxAOOO, 1, OxAOOl, 1); Optional, used to set the starting criteria.

CmdCondStart();

CmdStartNow();

while (CmdRunStateO != sInitComplete)
DoEventStuff();

This is the hard part. Only one of the set
(CmdSetCountTraps, CmdSetStartStopTime,
CmdSetStartSeq) can be used on any single
test. These require that the test be started
using the CmdCondStart routine.

Start the search for stated begin condition.
One of the set (CmdSetCountTraps,
CmdSetStartStopTime, CmdSetStartSeq)
must be issued before this command has
any meaning. If you are writing an
application that times a specific set of traps,
then use the unconditional begin/end
setup.

Start timing now. Use this to time specific
scenarios under which you have complete
control. The corresponding call CmdStopNow
will halt the test when it is complete.

Use a sequence like this to wait for the
completion of a test that uses the
conditional calls. Or simple generate the
calls you need to time internal to the test
code.

CmdStopNow(); This will halt the run unconditionally. As
above, use this to halt timing in a scenario
under which you have complete controL

CmdReturnDataPtrs(&OS,&Tool,&Cl,&C2); Use this to return a set of pointers to the
internal database. The pointers are only
valid when counting is not being done, so
bear this in mind when writing applications
which use the database directly.

CmdReturnClockTime(&Tl,&TI,&T3,&T4); Use this to return the wall clock time for the
start and end of a run. This is recorded
from the time of timing start to the time of
timing end. It is returned in both micro
seconds (Tl and T3) and clock ticks (TI and
T4).

Document vl.0 for MacsTime V2.0A3 -13 - Apr 30, 1993 at 1:37 PM

3.2 Internal Data Structures
.

The internal structures are fairly simple, and designed for speed. The first structure is
used to hold a IJ.-second time of day. This is the value returned from the Time Manager (,,- ,/
routine _MicroSeconds, and thus is in true IJ.-seconds (as opposed to the 1.2+ micro-second
units which the VIA chip returns). It is returned to the caller by the CmdReturnClockTimeO
call, otherwise the programmer will never see values of this type.

typedef strud microTime
{

unsigned long
unsigned long
MicroTime;

highTime;
lowTime;

The structure, below, contains the statistical data for a trap. The 'time' value contains the
sum of times spent in this trap, exclusive of the time spent in other traps. 'fullTotal' contains
the time spent in the trap, including the traps which this one called. 'timeSquared' contains the
sum of squares for the 'time' value, use this to compute the standard deviation of the time
spent in the trap. 'count' is the number of times that the trap was executed. 'maximum' and
'minimum' hold the largest and smallest trap time in 'time' terms.

typedef struct data
{

}

unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unSigned long
TimingData;

time;
fullTotal;
timeSquared;
count;
minimum;
maximum;

The Selector blocks are initially held in a free list, linked through the next pointer. As
they are needed, the entries are removed from the list and linked onto the selector chain for the
A-Trap which is used as the basis for the selector. When a selector trap is executed, the list
associated with the trap is searched. If the selector is already in the list, then a pointer to the
selector block is returned. If not, then the following sequence of operations occurs: a selector
block is removed from the free list, the block is added to the selector list associated with the
trap and a pointer to the selector block is returned to the main part of the tool.

typedef struct selectorBlock
{

TimingData
struct selectorBlock
struct selectorBlock
unsigned long

} SelectorBlock;
typedef SelectorBlock
typedef SelectPtr

data;
*next;
*prev;
selector;

* SelectPtr;
* SelectHandle;

Document v1.0 for MacsTime V2.0A3 -14 - Apr 30, 1993 at 1:37 PM

(~.

(
This is the main data structure for the program. Two blocks of th~se structures are

allocated as part of system startup, one each for as Traps and Toolbox Traps. The data
portion of this record contains the information generated for each trap executed as the test case
runs. The head, tail and listCount parameters are used to track the selector driven calls. If the
listCount field is non zero, then the selector list is non-empty and should be searched for data
when the data is being read out. Note: the CmdClearCounts does not free Selector entries, it
just clears the data in them. This means that if the listCount field is non-zero, there may be no
data, because all ofthe selector blocks could be blank.

typedef struct trapEntry
{

TimingData
Selector Block
Selector Block
short

} TrapEntry;
typedef TrapEntry
typedef TrapPtr

data;
* head;
* tail;
listCount;

* TrapPtr;
* TrapHandle;

3.3 Accessing the Data Structures

The CmdReturnDataPtrsO routine returns two pointers of type TrapPtr and the entry
(' counts for each. Use these pointers and counts to traverse the arrays in a manner similar to:

for (i=0; i<Cl; ++i)
{

if ((Pl[iJ.data.count == 0) && (Pl[iJ.listCount == 0)
continue; II no data here

if (Pl[iJ.data.count != 0)
{

... Do something, non-selector trap found ...

continue;
};
if (IsDataPresent(&Pl[i]))
{

II we may have selector data

_Do something, selector data present _

continue;
};

};

IsDataPresentO is a dummy Boolean routine (not provided) which searches for non
empty entries in the selector list. This structure will allow you to search a trap list fairly
quickly and extract the data you need from it.

Document vl.O for MacsTime V2.0A3 -15 - Apr 30, 1993 at 1:37 PM

!I
! ,
:

iW

Application Performance and the ToolBox

Overview

Jim Gochee, PowerPC
1/30/93
Rev 3

The true perfonnance of any machine is measured by how fast its applications run, not
necessarily how fast the CPU is. PowerPC is no exception. While the 601 is 3 to 4 times faster
than a 25mhz 68040 (integer specmarks), applications that are emulated, or applications that call
an emulated ToolBox, may see only a fraction of this horsepower. On average, native code
executes 10 times faster than emulated code, which means an emulated application calling an
emulated ToolBox would be 10 times slower than a fully native machine. Because the first
PowerPC release will have significant amounts of emulated code, it is important to understand
how fast applications can be expected to run in a mixed code environment. By varying the ratio
of emulated instructions to native instructions, we can get a feeling for the machine's overall
perfonnance.

Applications that execute 30% emulated code and 70% native code will be 3.7 times
slower than a fully native machine, or at the speed of a 25mhz 68040. However, as the amount of
emulated code approaches 0%, Amdahl's law points out that gains will be offset by the high cost
of executing emulated code. For instance, even if an application executes 90% native code, it will
only be 2 times as fast as a 25mhz 68040.

The Facts
This table shows the effect of the equation:

NATIVE + (lO)EMULATED = AVG_NATIVE_INSTRUCTIONS
NATIVE is the percentage of time spent executing native code, EMULATED is the

percentage of time spent executing emulated code, and A VG_NA TIVE_INSTRUCTIONS is the
average number of native instructions per mixed instruction type. EMULATED is multiplied by
10 because each emulated instruction takes around 10 cycles, whereas each native instruction
takes one cycle. At 30% emulated code, the machine should perfonn as well as a 25mhz 68040.

% Emulated Code
o
1
2
3
4
5

10
15
20
25
~@
35
40
45
50
55
60

Avg Native Instructions
1

1.09
1.18
1.27
1.36
1.45
1.9

2.35
2.8

3.25
~aV'
4.15
4.6
5.05
5.5

5.95
6.4

65
70
75
80
85
90
95
100

Emulated Application Performance

6.85
7.3

7.75
8.2

8.65
9.1
9.55

10

68k applications will probably not reach 25mhz 68040 performance by YO, though they
will come close. Studies show that applications generally spend 60-80% of their time in the
ToolBox. An average application will execute its own 68k code (30%) plus some amount of 68k
ToolBox code. Given two scenarios, one where 70% of the executed ToolBox instructions are
native, and another where 90% are native, the average emulated application will execute at 74%
of a 25mhz 68040.

(10 * .30) + «(1 * .49) + (10 * .21» = 5.59

(10 * .30) + «1 * .63) + (10 * .07» = 4.33

Average = 4.96, compared with 3.7 for a 25mhz 68040, (3.7/4.96) = 74%

Native Application Performance
For native applications to fully realize the potential of the PowerPC, it is imperative that {

there is as little 68k code as possible. This means that almost all ToolBox routines (and the ' ',-
routines they in turn call) should be native. Since this is unrealistic for YO, there will be a portion
of the ToolBox that is native and the rest will be 68k. To see how quickly the performance of a
native application can deteriorate as the percentage of 68k code increases, let's assume that
applications execute 70% of their instructions in the ToolBox. The worst case scenario is that the
entire ToolBox is emulated, which from the equation below shows the machine running 7.3
times slower than it would if no 68k code were executed. Another way to look at it is that the
native application would be 2 times slower than a 25mhz 68040. This is the worst case.

(1 * .30) + (10 * .70) = 7.3

Now suppose that enough of the ToolBox is ported so that 80% of the instructions
executed in the ToolBox are native. We still find that the machine is more than twice as slow as
its potential and only 61 % faster than a 25mhz 68040.

(1 * .30) + «(1 * .56) + (10 * .14» = 2.26

Just in case you think Amdahl's law is horse radish, assume that 95% of the instructions
executed in the ToolBox are native. We still see that the machine could go approximately 1/3
faster if all the ToolBox was native.

(1 * .30) + «(1 * .665) + (10 * .035» = 1.315

(

(

Context Switches
In the previous calculations, it was assumed that some fraction of the instructions were

68k and some 601. What was left out was the overhead of the machine switching back and forth
between the two code types. This switch incurs a penalty of 1O-14~, or 500-750 native
instructions! Not only is it important to keep the amount of emulated code to a minimum, but it is
crucial to limit the number of switches. For this reason, ToolBox call chains must be completely
ported.

The Plan
Based on the assumption that we have a limited time to port ToolBox routines, it is

imperative that we focus our energy wisely. The fIrst step is to fully understand how applications
interact with the ToolBox. By examining performance sensitive sections of native applications
with the PowerProfiler, we can pinpoint routines to port. Also, the PowerProfiler will enable us
to track context switches so that we can be 100% guaranteed that our execution paths stay native.
Hopefully, we will have areas of the ToolBox where 100% of the code is native, and other areas
where 0% of the code will be native. Decisions will have to be. made about which areas of
performance are most critical to the user.

While it appears that 68k applications should perform well compared to a 25mhz 68040,
native applications will be severely limited unless they access a native ToolBox. We will spend
much of our energy analyzing the Inside Track applications in search of common patterns and
behaviors. With luck and lots of porting we hope to accelerate speed sensitive portions of these
applications and give a sense for what the future of RISC will look like.

Current Status
We are currently focused on porting the ToolBox in the areas of Quickdraw and text

display. All high level APIs are to be ported along with complete call chains. Graphical output is
usually the most speed sensitive part of the ToolBox, so we hope to get big wins from this. The
PowerProfiler is being used on native applications created by MSD and MSSW to determine
what to port next. Our next step is to get Inside Track applications as they are ported native.
Guidance from Pierre Cesarini and Jordan Mattson will help keep us aware of weak spots in the
system and areas where performance is critical. Jordan will coordinate with developers to get
feedback as concerning where they think their applications should perform well.

II
i ,

(

60x System Software Interface Differences

Introduction

Rich Witek
April 23, 1993

V1.3

The bulk of the software interface to the 604 processors is common across the
601, 603, and 604 chips. The differences are grouped into three sets, each
covered in a following section. The first set are the differences visible to both
privileged and nonprivileged modes of the processor. The second set are
differences visible only to privileged mode software. The third set of differences
are where either the 601 was too far along when the change was made or the
601 included some power support to aid in moving the AIX users from Power to
Power PC. The 601 differences were done at request of Apple or with Apples
agreement.

There is a lot of concern over the variations between the chips in the 60x family.
Much of this concern is based on the history of the changes between chips in the
68K family. The situation with the PowerPC chips is different in that there is an
architecture that all chips are following.

Non Privilege Mode Software

Cache organization
The 601 has a combined Instruction and data cache while the 603 and
604 have split instruction and data caches. The PowerPC architecture
allows the instruction cache to be incoherent with the data cache. The
PowerPC architecture encourages operating systems to provide a
system service to make the Istream and Dstream coherent, see
PowerPC Virtual Environment Architecture Book II, Section 3.2.1. The
601 by having a combined instruction and data cache allows one to
"CHEAT" and not call the system service and have code that will work
on a 601 and not work on a 603/604.

Cache size
The 601 has a 32 Kbyte combined instruction and data cache. The 603
has an 8 Kbyte instruction and an 8 Kbyte data cache. The 604 has an
16 Kbyte instruction and an 16 Kbyte data cache. An application that is
tuned to the 32 KByte cache of the 601 will see very different
performance from the smaller 603 cache. The 68K emulator is a good
example of that. We need to set expectations correctly for the 603 or
else people will be surprised in a bad way.

Cache control instructions
The 603 does not broadcast the cache ops icba, dcbt, dcbtst, debz,
dcbst, and debf, on the 60x bus. Since the 603 is targeted at single
processor systems this should not be an issue. This will be a problem if

I

I
II

'I
" i"
I

!

the 603 is used in an multi processor system and the-software depends
on the cache ops working across multiple CPUs.

Unaligned accesses
The 603 does alignment checks on a word (32 bit) basis. This means
that access to unaligned words that do not cross a double word
boundary will cause two bus transactions on the 603 and one on the
604.

Word gathering
The 604 does word gathering in load and store multiple even to a
cache inhibited space. This means that load and store multiples
should not be used to access device registers.

Scheduling
The 601, 603, and 604 need different basic block scheduling for best
performance. Compilers should provide a common and specific
schedulers for these machines.

Privileged Mode Software

Translation buffer control instructions
The 603 does not broadcast the cache ops tlbie, tibia, tlbsync on the
60x bus. Since the 603 is targeted at single processor systems this (,''-_
should not be an issue. This will be a problem if the 603 is used in an
multi processor system and the software depends on the tlb ops
working across multiple CPUs.

Software Table Walk
The 603 does translation buffer reload with a software routine while the
601 and 604 have the hardware do reload. The reload routines use a
vector not used on the 601 or 604 so the reload code can be included
in the ROM of all three machines even though it is only used on the
603. The PowerPC architecture allows the special purpose registers
SRRO and SRR1 to be destroyed when a translation buffer miss
occurs. The 603 takes advantage of this while the 601 and 604 do not.
This means that if 601 system software "CHEATS" and does not
always save/restore SRRO and SRR1 on an interrupt that turns
relocation on it will break on the 603.

Book 4 SPRs
The implementation specific SPRs have been defined to be common as
much as is possible across the four chips. The following tables show
uses of the machine specific SPRs. There are some differences in these
registers so software should isolate access to them to routines that can
contain per CPU type code for each function. In defining these registers

,(the trade off was to make the 603, 604, and 620 common if they needed
to differ from 601.

Book 4 SPRs'
SPR What 601 603 604 620
976 DMISS ...j

977 DCMP ...j

978 HASH1 ...j

979 HASH2 ...j

980 IMISS ...J

981 ICMP ...j

982 RPA ...j

1008 HIDO ...j ...j ...J ...j

1009 HID1 ...j

1010 IABR ...j ...j ...j ...j

1013 DABR ...j ...j ...j ...j

1016 BUSSCR ...j

1017 L2CSR ...j

1018 L2ECCR ...j

1023 PIR ...j ...j ...j

HIDO for 603, 604, and 620:
Bits Name 603 604 620
0 .. 7 Enables ...j ...j ...j ('-

0 EMCP - Machine Check Pin Enable ...j ...j

1 EM - Machine Check checkstop Enable ...j ...j ...j

2 EBA -Bus address parity checking ...j ...j ...j

3 EPD - Bus data parity checking enable ...j ...j ...j

4 EPP - PIO/Direct Store error checking enable ...j

5 EICE - Enable ICE outputs ...j

6 DCLK - Disable external test clock ...j

7 PAR - Disable precharge of ARTRY /shared pins ...j

8 .. 11 Power Management modes
8 Doze ...j

9 Nap ...j

10 Sleep ...j

12 .. 15 Error Logging
16 .. 23 Cache Control
16 ICE - Instruction cache enable ...j ...j ...j

17 DCE - Data cache enable ...j ...j ...j

18 ILOCK - Instruction cache lock ~ . ~?
19 DLOCK - data cache lock ~ ~?
20 ICI - Instruction cache invalidate ~ ~ ~
21 DCI- Data Cache invalidate ~ ~ ~
22 DFWT - Data Force Write Thru ~
23 RISEG - read I seg ~
24 .. 31 Run Modes
24 Dispatch Mode (0 - single instruction, 1 - normal) ...j ~
25 .. 26 Branch Prediction modes ~
27 .. 28 Instruction Fetch Modes ~
31 NOOPTI - Noop Touch Instructions) ~

HIDO for 601 :
Bit Definition
0 e - master Checkstop Enable
1 s - microcode Selftest Checkstop Latch
2 m - checkstop following Mchine check with me=O
3 td - multi-side hit in tlb
4 cd - multi-side hit in the cache
5 sh - sequencer hang
6 dt - dispatch timeout
7 ba - bus address parity error
8 bb - bus data parity error
9 cp - cache parity error
10 iu - invalid microcode instruciton
11 pp- pio bus protocol error
12:14 reserved
15 es - enable for ucode selftest checkstop
16 em - enable for machine check checkstop
17 etd - enable for tlb checkstop
18 ecd - enable for cache directory checkstop
19 esh - enable for sequencer hang checkstop
20 edt - enable for dispatch timeout checkstop
21 eba - enable for bus address parity checkstop
22 ebd - enable for bus data parity checkstop
23 ecp - enable for cache parity checkstop
24 eiu - enable for invalid ucode instruction checkstop
25 epp - enable for pio bus protocol checkstop
26:29 reserved
30 emc - error detected in main cache during

(
initialization

I 31 I reserved

HID1:
only used in 601

IABR register
bits What 601 603 604 620
0 .. 29 Address ..J ..J ..J ..J
30 IE - IBR Enable ..J ..J ..J
31 BT - IBR translation Enable ..J ..J

DABR:
bits What 601 603 604 620
0 .. 28 Address ..J ..J ..J ..J
29 BT Traslation Enable ..J ..J
30 OW Write Enable ..J ..J ..J ..J
31 DR Read Enable ..J ..J ..J

PIR:
bits What 601 603 604 620
27 Implemented ..J
28 .. 3 Implemented ..J ..J ..J
1

601 variances
Block Address Translation

PowerPC now contains four instruction and four data Block Address
Translation registers (BATs). This is different than when the 601 was
being done. The 601 contains only four BATs. The 601 also contains a
support for special direct store segments. These are segments where
the T-bit is set and the BUID field is x07F. The memory management
code will need to deal with both the 601 and PowerPC structures.

Time Base
PowerPC changed the definition of the time base from a nanosecond
counter to a cycle counter. The instructions to access the time base
were done in a way to allow emulation of the cycle counter on all
systems. System software should provide a routine to access the
timebase that can be different on different CPUs that returns cycle
counts. The cycle count can be emulated on the 601 using the
nanosecond counter.

Extra instructions

(

The 601 supports several Power instructions in addition to the
PowerPC instructions. This was done to ease transition from Power to
PowerPC. The PowerPC assemblers and compilers should not
generate anything but PowerPC instructions.

Edit History
24-0ec-1992
18-Jan-1993

20-Jan-1993
23-Apr-1993

First Pass
Add load/store multiple gathering on 604
Add 603 unaligned word access rules
Fix typos
Remove timebase 603/604 difference
Fix few typos for software group

I \
\ "" .. -

(J

DTS PowerPC Porting Tips

Dave Radcliffe

Introduction
So, you want to port your application as a native PowerPC application. What are you in for? This
document may help you answer that question. Rather than being a formal porting guide, this
document is practical tips and advice based on my "hands-on" experience porting the DTS sample
application, Kibitz. While some of this may be covered in the more official documentation, this
document touches on practical issues, such as "what does that weird compiler error mean?"

This document assumes that most of your code is written in fairly portable (i.e. ANSI standard) C.
It does not cover issues of porting massive amounts of Pascal or assembly. What it does cover is
the build process, i.e., getting MPW to compiler your code using the mM C compiler, issues
using the mM C compiler, and issues with the one major interface change - using
RoutineDescriptors instead of ProcPtrs.

Build Process
The first step is to modify your build process for the RS/6000 (herein referred to simply as the
"Unix" system). If you currently build using MPW, this will be pretty easy, but if you use Think
C, you should very strongly consider porting it to MPW flrst. While both Unix and MPW have
similar build facilities ("make") the build process is easist to control from MPW. Since Think now
supports MPW headers and calling conventions, conversion from Think C to MPW C should not
be too difficult and can be done such that a single set of sources can compile with both Think C,
MPW C (and after this port, RS/6000 C). You can use the MPW CreateMake tool to assist
creating the MakefIle for building under MPW.

Pathnames

A short word is in order about pathnames. Unix is a lot pickier about file and pathnames than the
Macintosh. You can save yourself a lot of trouble by simplifying things on the Macintosh side
before moving them to Unix. Unix fllenames are case sensitive and only 7-bit ASCII characters
are allowed. In addition, non-alphanumeric characters often have special meanings, so stick to
upper and lower case alphanumeric characters and don't use spaces or slashes ("!,,).

Here are some examples of ways this can mess you up.

With MPW build scripts, you can ask to build the Kibitz application by asking for either "Kibitz",
or "kibitz", but with Unix, asking for a build of "kibitz" when the Makefile is called "Kibitz.make"
doesn't work because the build script will look for "kibitz. make" and the name won't be found.

Similar problems may exist if fIles within the Makefile or #include fIles in the source are not
consistently cased. As another example,

#include <Quickdraw.h>

works, but

#include <QuickDraw.h>

I'
I

I
:;
Il
il
I
I

doesn't.

Another possible source of confusion is similarity of names between the standard Unix include
files in lusrlinclude and the Macintosh interface files provided. For example there is the standard
Unix include file lusr/include/time.h and the Macintosh include file Time.h. If the case is wrong.
the incorrect include file might be found, leading to all sorts of strange and wonderful errors. So
beware of the following include file names, which have lowercase cousins in the Unix
environment:

Assert.h Float.h Memorv.h StdDef.h Strinqs.h
CType.h Limits.h SetJmp.h StdIO.h Time.h
ErrNo.h Locale.h Signal.h StdLib.h Values.h
FCntl.h Math.h StdArg.h String.h

Another difference between Macintosh and Unix is pathname specification. On the Macintosh.
path elements are delimited with ":". while on Unix they are delimited with "f'. If you use the
remote tool (supplied with the seed tools). it attempts to minimize this difference by doing
pathname conversion for you.

Makefile

Besides the issue of filename case dependency mentioned above. there are other modifications
necessary to allow your Makefile to control the build process on Unix. The first is to override the
default use of the MPW C compiler. You can do this by adding a line:

C remote cmac

This tells MPW to invoke the remote tool to remotely issue the cmac compile command on the
Unix. cmac is just the ffiM xlc compiler with Apple extensions, so refer to xlc documentation for (~
more information on cmac.

If you have custom build rules in your Makefile. be sure it symbolically references the C compiler,
Le.:

.c.o f .c
{C} {COptions} {DepDir}{Default}.c -0 {TargDir}{Default}.c.o

(C) tells MPW to use the value of the C variable (remote cmac in this case) when compiling .c
files.

The ffiM C compiler has completely different compiler options than MPW C so you will need to
override the COptions variable, for example:

COpt ions -c -I :::NativeInterfaces:Public: -Dapplec

This example illustrates some of the commonly used mM C compiler options. "_c" tells the
compiler to stop after creating the object file. Without the option. the compiler attempts to link the
file as well. "-I" specifies paths to interface file directories. It is similar to the "-i" MPW C option.
but uppercase "I" must be used. Note that we can continue to use Macintosh style pathnames
because the remote tool will do the translation for us. The "_D" option defmes preprocessor
constants as though we had used #defme statements. So "-Dapplec" is equivalent to:

#define applec

[There is more to add here on linking and the use of library files, but I haven't actually tried that
yet, so I don't know what's involved -- DR]

Building

Once you have modified the Makefile, you can begin building just as you would under MPW. One
advantage of using MPW and the remote tool to control the build process is that remote filters error
output from the compiler and generates MPW "File" commands that you can execute to open
source files and locate errors.

If you make changes to source files using MPW, you must remember to save changes
before compiling. Unlike MPW C, which is tightly coupled to the MPW Shell, cmac is
completely separate and runs on a different machine. MPW is not in control of file I/O, so changes
must be saved to the Unix system before they can be seen by the Unix compiler.

Compiler issues
pascal functions

The mM compiler has been modified to accept the "pascal" keyword. But when the IBM compiler
encounters this keyword, it doesabsolutely nothing. Unlike MPW C where the pascal
keyword alters parameter ordering and changes how some parameters are passed, "pascal" with the
mM compiler is simply ignored. This has some subtle consequences. For example, consider the
following AppleEvent handler:

pascal OSErr DoAEAnswer(AppleEvent message, AppleEvent reply, long refcon);

In Pascal, an AppleEvent is a record larger than 4 bytes, and so is automatically passed by
reference. MPW C, since DoAEAnswer is declared pascal, will handle the parameter in the same
way. But cmac will treat it as a standard C struct and pass it by value, so if DoAEAnswer were
called by the AppleEvent manager, bad things would happen.

In this case you must explicitly make these parameters pointers, Le.:

pascal OSErr DoAEAnswer(AppleEvent *message, AppleEvent *reply, long refcon);

The new interfaces now declare special ProcPtrs that specify the correct parameters, e.g.:

typedef pascal OSErr (*EventHandlerProcPtr) (const AppleEvent *theAppleEvent,
const AppleEvent *reply, long handleRefcon)i

Unfortunately. in most cases you will now be coercing those special ProcPtrs (such as
EventHandlerProcPtr) into nonnal ProcPtrs for calls to NewRoutineDescriptor (see below).
which means typechecking will be lost. So. double check all of your callback routines.

Assembly wrapper routines

The current Mac toolbox makes all sorts of callbacks into developer code. Many of these have
weird calling conventions. such as parameters in registers. These go away when you are called by
the PowerPC toolbox, which will always call you with standard C calling conventions. So some
of your assembly code probably consists of simple assembly wrapper routines that push
parameters around and call C routines. The good news is that now you can just pass the toolbox
the C routine directly; see the interfaces for the new calling conventions. The bad news is this is

!

It :.
I

I

I
I

not backward compatible to the current 68K API, so you will have to special case these
modifications in your code.

For example, the TextEdit caretHook routine gets called in a truly bizarre way, with a pointer to the
Rect containing the caret on top of the stack (not the return address!) and with a pointer to a locked
edit record in register A3. But with the PowerPC toolbox, you can now just declared a standard C
routine:

pascal void MyCaretHook (Rect boundsRect, struct TERec *pTE);

There is also a corresponding typedef, which is useful to help figure out the routine parameters:

typedef pascal void (*CaretHookProcPtr) (Rect boundsRect, struct TERec *pTE):

Compiler ideosyncracies

Every compiler has its foibles. Here are a few I ran into:

The construct

Hfdef foo
... some stuff

#endif foo

is not strict ANSI C. ANSI C specifies nothing other than a newline after #endif. MPW C just
throws the rest of the line away. cmac, on the other hand, complains. cmac does allow
comments, which also seems like a violation of the standard. For example:

#ifdef foo
... some stuff

#endif II foo

works.

Another warning issued by the compiler is sure to drive you nuts. Use of OSType values, such as
I TEXT I causes the following warning:

1506-076 (W) Character constant has more than one character. Rightmost four
characters are used.

This can generally be ignored as the compiler does the right thing. One case where it can't be
ignored is the sequence 'n??' (and similar sequences starting with 'n'). The compiler confuses
this with ANSI C trigraph sequences and generates the following error message (in addition to the
one above):

506-209 (S) Character constants must be ended before the end of a line.

Use '\?\?\?\? I or Ox3f3f3f3f instead.

You can turn off warnings with the -w compiler option, but it is probably best not to do this until
you are sure all such warnings are harmless.

Miscellaneous tips

Jr~'

{

(

The compiler often generates multiple errors messages for a single error. The first error is often a
generic "syntax. error" while the subsequent error messages are more meaningful. For example:

"Utilities.h", line 140.15: 1506-046 (S) Syntax error.
"Utilities.h", line 140.15: 1506-081 (S) Discarding previously defined typedef
identifier: RectPtr

So, it pays to pay attention to line numbers in the error messages and look for multiple messages.

RoutineDescriptors

The single biggest change developers will have to make to their code is converting ProcPtrs to
RoutineDescriptors. Every place in the interfaces where a type of ProcPtr was declared, Apple
added a similar declaration of type RoutineDescriptor.

Definition RoutineDescriptor: a ProcPtr useful on more than' one chip architecture.

The Macintosh Toolbox relies heavily on ProcPtrs. The toolbox on PowerPC will consist of a
mixture of both 68K and PowerPC code. We needed a generic way of calling code that could be
either PowerPC or 68K, from code that could be either PowerPC or 68K. RoutineDescriptors
describe not only the address of a routine, but its parameters and calling conventions as well.
That's enough information to get us from one type of code to the other and back.

RoutineDescriptors will work with the 68K API. We encourage you to change your code to
support RoutineDescriptors, it will work in 68K-Iand as well.

A RoutineDescriptor is a pointer to a private data structure that, in addition to containing the
function reference, carries additional information on parameter passing and return values. The
internal workings of this data structure are not important (indeed, the data structure is
undocumented to allow us to change it in the future), so it should simply be thought of as a
function reference. This makes a RoutineDescriptor a generic version of a ProcPtr, but it's not
quite as easy to use, because you must manage allocating and deallocating of RoutineDescriptors,
while a ProcPtr is just an address you can pass around (actually, your compiler has always had the
responsibility for this, but we're not changing the compilers to support RoutineDescriptors
specifically).

A lot of thought needs to go into converting ProcPtrs into RoutineDescriptors. With some care it is
possible to get code that works right when compiled for either PowerPC or 68K. But if you're not
careful, subtle bugs can creep in.

Recommended usage

The simplest thing is to allocate a global RoutineDescriptor and if it's never been initialized. initialize it with
NewRoutineDescriptor and forget about it:

in your initialization code:
if (!gVActionDesc)

gVActionDesc = NewRoutineDescriptor «ProcPtr)VActionProc,
rdControlActionProclnfo, kCodeTypeCurrentWorld);

when you use your RoutineDescriptor:
TrackControl(ctlHit, mouseLoc, gVActionDesc);

In the 68K world, a routine descriptor is basically a ProcPtr, so gV ActionDesc just gets initialized
with V ActionProc. Besides the problem of whether you have global variables (in other words, can
you even have gV ActionDesc?), there is the problem of relocation of V ActionProc. Creating a (',
static reference to V ActionProc works fine as long as V ActionProc is referenced via AS, or is in a ,j

permanently resident segment, but it can fail if V ActionProc is an intra-segment reference and the
segment gets unloaded and reloaded. So beware of code compiled with the -b or -b2 MPW C
options. When in doubt, you can use SetTheProcO to update the RoutineDescriptor with the
correct function address.

Scope

Another problem with RoutineDescriptors is scope. Be careful about leaving dangling
RoutineDescriptors. If you create RoutineDescriptors on the fly, dispose of them when you are
done. You should only need to do this for code which you load and execute. You should not do
this for your normal program code which you can make resident for the duration of the application.

For example, consider a procedure doing asynchronous I/O and using a completion routine. If a
local RoutineDescriptor variable is declared to replace the completion routine ProcPtr, the variable
reference could be lost when the procedure exits although the I/O itself has not completed. So,
beware of creating new RoutineDescriptors and not disposing them and beware of disposing them
before the system is done with them. That's why it is best to make RoutineDescriptors global or
static so you don't have to worry about it.

NOTE -- Not all ProcPtrs need to be converted to RoutineDescriptors. If you know the function is
going to be called by code of the same type (e.g. PowerPC code calling a PowerPC function), then
a ProcPtr works just [me. But if there's any chance at all of the ProcPtr being passed to a toolbox
routine, make it a RoutineDescriptor.

i(
(

Macintosh
Technical Notes
o OK as is 0 OK with Changes

10+ Commandments
Overview

RIEVJIJEW JD)RAJFT

o Not OK (You MUST Justify this)

Written by: Rich Collyer & Dave Radcliffe June 1993

Have you ever wondered what all of the rules are to programming the Macintosh? Have you
ever wondered if you application is going to have problems with the future Macintosh OSs and
hardware? Below are the most likely gotchas which are likely to getcha in the not too distant
future. Some will affect your application perfonnance, others will affect whether your
application will run at all. Take a close look and if you see something which might getcha, then
it is time for you to start fixing that code; but Don't Panic!! You're not going to get out of bed
one morning and find that the issues we discuss here have bitten you in the night. However,
these issues seriously affect the ability of Apple to transfonn the Macintosh operating system
into a modern O/S. As you write new code, or review old code, be aware of these issues. If
you can't deal with them immediately, at least flag problem areas with appropriate comments so
you can fix them in the future. By doing so, you'll help Apple bring you those modern O/S
features you 've been screaming for that much sooner.

Topics
• Rules to Compatible Macintosh Programming
• To Live or Die in the Macintosh as
• How to make your Application run into the late Nineties

1) Write in ANSI C or C++

This is a bit of a religious issue. There are some people who I have heard say that they will be
dead and cold before their assembler can be taken from their fist. Unfortunately. assembly code
is very hard to port to new CPUs and Pascal is falling out of favor with the people inside of
Apple who make the Macintosh compilers and write system software. It is very likely that
Pascal will continue to be supported by third-party developers, but the Macintosh OS is slowly
being converted to C and C++. In making this conversion. the special features of C are being
used. As a result Pascal programmers and compiler writers will need to think in C and make
the appropriate conversions of the data and function calls to connect the C conventions with
those of Pascal.

Religious or not, the Macintosh OS is being written in C and C++ and to make sure that your
code is more compatible with our system, we recommend that you learn to love C. If you make
the investment now you are assured the easiest transition possible to new platfonns. Besides, it
is also very hard to make hand tuned assembly which is better than code produced by a good
optimizing C compiler, especially on RISe type machines.

You should take full advantage of the features ANSI e provides. For example, you should turn
on compiler options to require prototypes and make sure that all your own functions have

10+ Commandments 1 of 12

M.OV.IO+Commandments

I' I
II
I

Macintosh Technical Notes REVIEW DRAFT

prototypes. Be aware that use of "old style" function definitions in MPW C will defeat
prototype checking. For example, the following definition of DoEvent allows any 4 byte
parameter to be passed as the evtPt r parameter:

void DoEvent (evtPtr)
EventRecord *evtPtr;
{

Do not assume the C compiler understands Pascal calling conventions. In particular, do not
assume the C compiler will automatically pass toolbox structures larger than 4 bytes by
reference; do it yourself.

Never use the type int. Purists may argue that proper use of int gives you the most portable
code. But the Macintosh Toolbox is pretty rigid in its use of 16-bit and 32-bit values and
experience shows use of int just leads to trouble. Use short and long instead. If you are
uncomfortable with short and long, create your own typedefs such as int16 and int32 so
you can alter them for different compilers.

Using direct functions in MPW C or inline assembly in Think C is often unavoidable with the
current Toolbox, but it is not portable. You should isolate and conditionalize such code. If you
write assembly routines for performance reasons, considering writing a C version, for
portability, at the same time you write the assembly version.

2) Align Data Structures

The Motorola 68K microprocessors have always been very tolerant of misaligned data
structures, but modem, cached computer architectures don't like having to support misaligned
data structures. Chances are that the microprocessors which Apple uses in its CPUs will
continue to support misaligned data structures, but you will probably fmd that applications will
run considerably faster if the data structures are aligned. This is already the case in the 68040,
and it will become more and more important in the future. So if your structure declarations look
something like:

struct MatchRec {
unsigned short red;
unsigned short green;
unsigned short blue;
long matchData;

I;

II 16 bit variable

II 32 bit variable

Then you may want to change them to look more like:

struct MatchRec {

I ;

long matchData;
unsigned short red;
unsigned short green;
unsigned short blue;

2 of 12

II 32 bit variable
II 16 bit variable

10+ Commandments

M.OV.IO+Commandments

(

Developer Support Center REVIEW DRAFT June 1993

The problem with the first example is that the long field matchData is not aligned on a 32 bit
boundary. The third short field, blue, offsets the long field from the 32-bit boundary by 16-
bits.

3) Don't Depend on 68K Runtime Model (Stacks, AS,
Segmentation ...)

The 68K runtime model contains many features which are extremely machine dependent (such
as A5 worlds) or don't make sense in a modem OIS (i.e. segmentation). Such features should
continue to work in a 68K environment, but when you port code to other platforms,
assumptions you make about the runtime environment may no longer be valid.

Beware of the assumptions made in the following areas:

• A5 world. This provides two features: application global data and function references, and
access to QuickDraw globals. Similar functionality 'Hill be provided in other runtime
environments, but the method of access will be different.

• Register conventions. A5 is a specific example of a dependency on register conventions.
Other examples can be found, such as depending on return values in DO, or A 7 being the stack.
Beware of similar dependencies on the 68K register model. It will undoubtedly be different on
other platforms.

• Calling conventions. Besides emphasis on C calling conventions, different runtime
environments are likely to have idiosyncratic calling conventions. Beware of assumptions
based on return values, or parameter ordering, location, size or alignment.

• Stack structure. Different runtime environments will use the stack in different ways. Don't
assume you know the layout of stack frames, or indeed, even the layout within a stack frame.

• Segmentation. Segmentation will certainly be different, or even nonexistent on future
platforms. In most cases this will be a simple and welcome change. For example, you
shouldn't have to change your code because #pragma segment directives will simply be
ignored if they are not appropriate. On the other hand, segmentation involves fine tuning the
memory usage of your application. You may need to rethink your memory strategy in the
absence of segmentation. Also, beware of dependencies on other aspects of segmentation, such
as the Segment Loader.

• Toolbox dispatching. The current toolbox dispatching mechanism (A-traps) is very 68K
dependent and will certainly be different on other platforms. Trap patching is OK, but don't try
to short circuit established mechanisms. Don't assume you know the format of the trap
dispatch table; use GetTrapAddress and SetTrapAddress instead. (See also (11».

4) Isolate and Minimize use of Low-Memory

For as many years as the Macintosh has been shipping there have been applications which have
depended on direct access to low-memory globals. Apple has said for a long time that
developers must not depend on these global variables, but unfortunately there are many cases
where applications MUST access these variables to function. Shared low memory is one area

10+ Commandments 3 of 12

M.OV.IO+Commandments

I

~

Macintosh Technical Notes REVIEW DRAFT

we must wean developers from before we can provide modem features like protected address
spaces and preemptive multitasking.

Low memory usage falls into three categories:

• Documented low memory globals. These are the safest to use as they (or equivalent
functionality) will continue to be available. For example, many applications using Standard File
depend on the low memory globals CurDirStore and SFSaveDisk. We can't just wish
those away.

• Hardware dependent low memory. Some low memory is specific to the 68K, such as
exception and interrupt vectors. Dependence on these locations is bad for two reasons. First,
because it will be different on future platforms, and second, because it implies supervisor level
access, which may not be allowed in the future. Be very careful about depending on this kind
of access. See also (8).

• Undocumented"low memory globals. A lot of low memory is used by the system and has
never been documented. Yet, applications persist in mucking around in them. This has always
been dangerous and unsupported. Apple makes no guarantee that these globals or equivalent
functionality will be available in the future.

Because many applications depend on low memory, we can't just pull the rug from under you
because every application would break. So, what's a developer to do? Isolate and minimize
your dependence on low memory.

If accessor functions exist, you should use them. For example, GetMBarHe ight () returns
the same information as the low memory global MBarHeight.

Eventually, Apple will provide a new API which will include accessor functions for
documented low memory globals and you should use those when available. In the meantime,
you might consider using macros to do the same thing. For example, to access CurDirStore
you might use the C macros:

idefine GetCurDirStore() (*(10ng *)CurDirStore)
idefine SetCurDirStore(dirID) (*(10ng *)CurDirStore = (10ng)dirID)

This at least lets you isolate dependencies on CurDirStore in your source, so when Apple
does change the API, you only need to change your code in one place.

5) Isolate and Minimize use of Internal Toolbox Data Structures

If it isn't documented, don't use it. The data structures which are not documented aren't
documented because we expect they may change in the future. This means that if your
application is dependent on any internal data structures never changing, then it is very likely
that your product will break in the future. There are some major changes being considered for
the Macintosh OS and any major change will include the internal data structures.

So beware of any undocumented features which you depend on.

4 of 12 10+ Commandments

M.OV.IO+Commandments

(

(

Developer SuPPOrt Center REVIEW DRAFT June 1993

6) Don't Intermix use of Data & Code

It will make it easier for the OS to move to a memory protection model, if the code does not
access itself. If you write to the code segments in any way, then we will have problems
protecting that code. The way to protect the code is to make the code read only and if there is
data or code which is being changed in that code, then we either can't write protect the code, or
we break your code. If the data is static, then it is just read only anyway and will not be a
problem.

7) Isolate Dependencies on 80 bit extended

Different FPUs are going to have a different preferred format. On 68K, extended offers the
best precision as well as the best performance and is therefore the "natural" choice. On other
platforms, this may not be the case, so you should be prepared to take these differences into
account For most of you this is not a problem, but it does mean there may be differences in the
size of fields in data structures and on disk, as well as in the size of parameters passed to
functions. You should try to isolate and avoid dependencies on the size of floating point
numbers.

One issue which applications using 80 bit extended numbers might have on the 6888x based
machines is extended numbers are faster to work with than doubles. The 6888x chips convert
all numbers which it works with to extended and then back to whatever they came in as. Since
some other hardware does not necessarily support extended numbers, the fast numbers may be
doubles, or something else.

For some developers there is an issue with the perception that your applications need very high
precision. There are cases where extended number precision is very useful (Le. 3D and CAD),
but it is possible to make a fully 3D graphics app which does not need extended numbers. If
you find that you can not live without extended numbers, then you will find that what you will
need to live with is slow calculations.

8) Don't Depend on Interrupt Level or Supervisor Mode

Interrupt levels, supervisor mode, and exception handling are all very dependent on the
microprocessor which is being used in the computer your code is running on. If your code
thinks that it knows how to manipulate the hardware and system in supervisor mode, then it
will find that it is wrong on the next generation of microprocessors. If you think your code can
alter the interrupt levels, then once again you will be sadly mistaken. If your code changes the
exception handlers, then your code is too dependent on the hardware on which it is running
and will more than likely break on Apple's future products.

One common violation of supervisor mode is the use of privileged instructions. In practice,
because of compatibility reasons, some instructions may be emulated, but you should not rely
on that fact.

The following are the only privileged instructions which are likely to be supported in the
future. Other privileged instructions will likely cause megal Instruction exceptions.

ORI.W
ANDLW

10+ Commandments

M.OV.IO+Commandments

i<value>,SR
i<value>,SR

see note 1
see note 1

5 of 12

Macintosh Technical Notes REVIEW DRAFT

EORI.W
MOVE.W
MOVE.W
FSAVE
FRESTORE
RTE
MOVEC.L
MOVEC.L
CPUSHA

lI<value>,SR
<ea>,SR
SR,<ea>
<ea>
<ea>

<Rn>,CACR
CACR,<Rn>
BC

see note 1
see notes 1, 2
see note 2
see note 2
see note 2
see note 1, 3
see note II
see note II
see note II

Notes:
I It is not possible to alter the values of either the S bit or the M bit with these

instructions. The Sand M bits you supply are simply ignored by the
emulation of these instructions.

2 It should be possible to support all effective address modes for any
instruction which uses an effective address operand providing that mode is
legal for this instruction. Use of illegal addressing modes results in an Dlegal
Instruction exception.

3 Only normal four word frames are supported by the emulation of RTE. Other
frame kinds generate Dlegal Instruction exceptions.

4 Use of MOVBC (or CPUSH and CINV on 68040 machines) to control the
instruction and data caches is strongly discouraged. Developers should use
system software routines such as FlushlnstructionCache () to accomplish
the same thing.

9) 32 Bit Clean Mandatory

Apple has been saying for many years that all applications need to be able to run in a 32-bit
address environment. Not only is this important because it allows users to take full advantage
of the memory of the machine, but it allows Apple to transition from one memory model (24-
bit) to another memory model (32-bit). Supponing two different memory models has allowed
Apple to maintain compatibility, but the cost has been a lot of extra code in the ROM and some
performance penalty. So now we're preparing to take the next step - 32-bit only addressing.
So, be forewarned.

Most developers have by now removed any dependency on a 24-bit environment, but some
developers have cheated a bit. Rather than making use of the upper 8-bits of an address they
use the upper bit, on the assumption (valid for the most part) that everything happens in the
lower 2 gigabytes of the 4 gigabyte address space. In other words, they are only 31-bit clean.
This is very bad as future operating systems will take full advantage of the 4 gigabyte range of
addresses.

So, the message is, not only will we be 32-bit only, but we really mean 32-bit.

10) Keep hands off all Hardware Registers

Apple does not support 3rd party products accessing any of the hardware registers. The reason
for this is that we know that the hardware will change and when it does change, we do not

6 of 12 10+ Commandments

M.OV.IO+Commandments

, "'I..

(

Developer Support Center REVIEW DRAFT June 1993

wish to have a large number of applications breaking. If we did allow products to access the
hardware registers directly, then we would never be able to allow the Macintosh hardware to
evolve as technology evolves. If this were the case, the Macintosh would have been a dead
product by now.

We know that there are products which do depend on our hardware never changing and these
products have had many compatibility problems. We know that these problems will only
continue to get worse with time. The hardware will be going through a great deal of changes in
the coming years and these changes will not be able to include compatibility with any product
which accesses the hardware registers directly.

We don't want to see any of these products break, but the only thing we can do is to encourage
developers not to depend on the Hardware - So Don't

11) Don't directly patch the ROM

Do not access the trap tables directly. Use SetTrapAddress and GetTrapAddress to
guarantee future compatibility. The next major ROM will use a vectorization method for
patching. Vectorization is definitely going to affect the trap tables in the future. In the near
future, we may even bypass the trap table and make Set/GetTrapAddress use the vector
locations. Also for RISe, we may implement two copies of the tables, one being for native
code.

Below is a sample of the correct way to patch a trap. This code is from the 7.0 sample for
making an INIT/cdev .

.. ..
, I ,. ,

; MACRO

;Input:

ChangeTrap &trap, &type, &newAddress, &oldAddressStore

Macro used to change the trap address and optionally save the old
routine's address. You pass in the trap number of the trap you want
to patch, the type of the trap (newTool or newOS), the address of the
routine to store in the trap table, and a pointer to a memory location
that will hold the old address. If &oldAddressStore is some value other
than NIL, this macro will get the old trap's address and save it there.

NOTE: This macro translates &newAddress and &oldAddressStore into
their new locations. To do this, it relies on Al pointing to
the blOCK in the system heap that holds the patch, and for
FirstResByte to be defined.

AI: address of patch code in system heap

;Output:
oldAddressStore: address of old trap routine
DO, AO are destroyed .

.. ..
"""""""""" II""""""", I II I' I I I I I I I I I I I I I I' I I I I """ I' I I I I II' I I I I

MACRO
ChangeTrap

10+ Commandments

&trap,&type, &newAddress, &oldAddressStore

M.OV.IO+Commandments

7 of 12

Macintosh Technical Notes REVIEW DRAFT

IF (&oldAddressStore ~ 'NIL') THEN

ENDIF

ENDM

move.w #&trap,DO
_GetTrapAddress ,&type
move.l AO,&oldAddressStore-FirstResByte(Al)

move.w #&trap,DO
lea &newAddress-FirstResByte(Al),AO
_SetTrapAddress ,&type

·1..;.. .
"'''3 71,

An alternate piece of sample code which works very well for Think C follows:

#include <SetUpA4.h>

/*
*generic code patch loader
*MacDTS/pvh
*@1989-90 Apple Computer, Inc.
*Copies CODE resource into system heap. puts original trap address

;,'

*at head of code in case you need it later. 1his is THINK. C specific of course.
* / ~~J) ,. ,;

#define GetNextEvent_trap OxA970

/*
*this is need because the Quickdraw global thePort is not defined at INIT time

*/
typedef struct myQDGlobalsDef {

char qdPrivates[76];
long randSeed;
BitMap screenBits;
Cursor
Pattern
Pattern
Pattern
Pattern

arrow;
dkGray;
ltGray;
gray;
black;

Pattern white;
GrafPtr thePort;
) myQDGlobalsDef;

/* os traps start with AO, Tool with A8 or AA. *1
short GetTrapType(short theTrap)

if«theTrap & Ox0800) == 0)
return (OSTrap);

else

/*
*The INIT

*1
void main ()

8 of 12

Handle
long
Ptr

return (ToolTrap);

h;
size;
codeSpot;

/* per D.A */

10+ Commandments

M.OV.IO+Commandments

(

Developer Support Center REVIEW DRAFT June 1993

1*

KeyMap
myQDGlobalsDef
long
long

RememberAO(I;
SetUpM (I;

theKeyMap;
myQDGlobals;
trapAddr;
*blah;

InitGraf(&myQDGlobals.thePortl;
GetKeys(&theKeyMapl;

1* don't install ~f shift key is down *1
if (theKeyMap;Key[1 I != lL).

h = Get Resource ('CODE', 12);

if (h!=OL){
size = SizeResource(h);

1* our patch code resource· * /

1* size of our resource + 4 for saved trap address *1
codeSpot = NewPtrSys(size+4L);
HLock(h); 1* lock the resource handle just because *1
1* move in the CODE resource into the SYS heap */
BlockMove(*h, codeSpot+4L, size);
HUnlock (hI; 1* unlock it *1

1* get the 'current' trap.address *1
trapAddr = NGetTrapAddress,(GetNextEvent_trap,

GetTrapType(GetNextEvent_trap»;

1* this is skanky but move the original trap */
blah = (long *) codeSpot;
I*address into the topof the new block. Would *1
*blah = (long) trapAddr;
1* set to the new trap address *1
NSetTrapAddress(codeSpot + 4L, GetNextEvent_trap,

GetTrapType(GetNextEvent_trap) I;

; ... or use this assembler source if you'd rather
asm {

move.l size, dO
add.l #4, dO

NewPtr SYS
move.l aO, codeSpot

move.l h, aO
HLock

move.l size, dO
move.l codeSpot, al
adda.l #4, al

move.l h, aO
move.l (aD), aO

BlockMove

move.l h, aD
HUnlock

size of our resource
add 4 to size for place holder for real trap address
create block in system heap
spot to save pointer

lock the handle of our code

size of our resource
head of block
we want the first 4 bytes for saving original trap
address
handle to our patch code
dereference to actual address
move it in

; unlock the handle

save the real trap address in 4 byte spot at head of block
move.w #GetNextEvent_trap, dO

10+ Commandments

M.OV.IO+Commandments

9 of 12

I
i

r
ij

1:1·1 I.
!

!
I

I

*/

... ,:-_GetTrapAddress
move.l cod~Spot, al
mo~A:!J~,;~·:dil>. , lJ C,L. n ',". ':::: e,l., "r. .

set the ~lJje~M~;:.~~ull'J1,r rfflMch, 4 by~pt.~fffltstr,l'We ,b~9P~ ~eader
(remember the first 4 bytel;},?tp~;:;the sav~~i?Ii?t~l addt~ens. ~J.,

move. w tGetNextEvent_t::ral5: dO'" "vI .Cu...,
move.l codeSpot, aO
adda.l 14, aO
_Set'Vff.ffl<}?re,s_s

"

/1-' Q5C;;"

:,< <'r l~ .

A'~"I J.> ~O O~ '(l~:,jlnL,
~.swilo2 :5ill wd ,:tv:(J;a r

Re~RmM>llib ~1.s1~qO OJ h
::Jri:1lUd t~rn;:;,' ~cb :;('1 ,

,1u){ vi:' 'nr:.i:1 ·1:) .. ~, :5'1££1 t~-:'d ,:J()'! n02.s'!]11~~velb~·
.j'!) ed r:, ~Gi;;;'il .. 1 ,eIdi21~"; " 1~ >~U1liI e,ri1 ill ' .n,

i! 101 oi?i?~oq ")<:.18 2£ ; I .cJmst! cri; !ld 'i MO.H ::Jri l :,'

lB:5m ,mIT .oe 21 MO~., ;..f!/ '.;If''~, .. JIJ:;,;C g':liboou,'

Sample patch code for Get Next Event using THINK C (there is a little assembly
involved) :?,rrlJ b:')!;lO 1~.Y(]LlJ 1~1 ! ' :rm.o'icl !~()i
This would be compiled in a separate project as CODE resource 10=12 Ii ':

pascal Boolean main(short mask, EventRecord *evt)
{

long realTrapAddr ;

as~~ ~S~~tI~.~~i?q~:¥~~~,6,.l]'f~h1gai;\', . ,IB l:5ggi~: . :.i::.~,g 2q~,~jMO_~J 5fU . ~~l.
'Il11jJ~ ~li,..M9J·p~$OPC;~ftelW tM~tI-of' c0f)!f ~~u~ce in;aO.' UJ

; we saved the original trap address just 'ahWad' ;~f'Gur pat'ch; ~so
; let's go get it and save it
move.l aO, al
sub.l t4, al
move.l (al), realTrapAddr
}

/*?J~~~~~~rpJlCGMHff"~ ; '".~~~~~
Remerilbe'iX'o'Rrrq
SetUpA4 () ;

SysBeep(l) ;

movem.l (sp)+, d3-d7/a2-a6
move.l realTrapAddr, aO
unlk a6
jmp (aO)
}

'(.',

get original trap address
unlink

; and jump to it

1 Hi\-! :<;;; .. ,

). "!, (','

." JJC\

,
· ... 1

('; ":,

10 of 12 10+ Commandments;:) +01

M.OV.Io+cortlmandments 10,M

Developer Support Center REVIEW qll*f;~ 'H
. -----'"'-.

12) Don't depend on resources being in the Syste!ll File
'··lC:bo- .1 .,,'

In ta future version of the ROM we plan to put parts of System 7 into the ROM .. 1lhis meam :
that if you expect to see a resource in the ~y~te~ ·t~fi~iJ\~~)t.~u may '~ ~~s~1\~~~~~ ,': '
Some of the System 7 resources and packages WIll soooresl('ie In the ~Q.M:·":' {. ,.~,:.;~..'rf,~1 'J. .'

,qc!r ..

'" ~~.' i. .. f~"<

13) ROM version number may not tell you what you want to' ktfOlV' '

Whatever reason you may have for checking the ROM version, it is unlikely JO be a valid
reason in the future. It is possible that the IDs will be different for each ROM, but the software
in the ROMs will be the same. It is also possible for the same ROM to operate diffet~l!tl~·
depending on what hardware the ROM is on. This means that the IDs will be the same, but the
code will not.

1:. : .. I.} ! 3 J">~s~L1 .. · r.~ : (; 1 ~b< .. ' .1:J ~tf.;("'F ~:1.f qm!.".

As useless as the ROM version information is expected to be, if you still feel that you need this: (f.~'Jn!.
information, use Gestalt to get it. " C OJ_' ::l9.r,lqino,,) "c b.' .? :f:

14) Don't assume ROM size - It will grow

If you have not noticed, the ROM keeps getting bigger and big~",1hY_~~, Q,~a~ if
1 meg and it is going to get even ~bigger w~ eac~cneWt VfJ.s~Pq.jtJ1:l&i ~~_ ~ .~~~;::~~)4inP is
expectedtobeanywherefrom2to4megoin'size'-'L '33,,:')br; q;;'!:; l"dpl.· ,'.; b.':' '0'1/ :.

. op c:. .J!) C ;
.0:- . ,.',\; ~''';

.. ;;:, .~~ ·~.d!J~

15) SCSI "'";:" - - .. "'-' ,_·S· .• 9V-:".

There are some things which you should already know about SCSI, but it is important to
reite~ate some ~otential problems which you may have already experienced Ma Jjtp~~~!Xfi%!Y:;
contInue to see In the future. : ,:' ";.)$2

SCSIStat: '. ' .") '--,:)

Alth~u&h the SCSIStat routine.has been provi~ed in the S~SI Mana~er'evet ~iIiC;9;t\\f¥~~:,\
Plus It IS a mostly useless rounne. Although It does provIde some Inform anon on ru~ ¥fie '
Macintosh computer until the Quadras, this information has encouraged some developers to
design products which did not follow the SCSI specification. If your device is a true SCSI
device, then the device and its driver should never care what the state the SCSI bus is in. Some
developers found on the Quadra computers that we changed the hardware which we were using
to improve the performance and lead Apple's hardware into the future of SCSI. This change
caused several developers to have problems, in part because the new hardware provided no
way for the call SCSIStat to perform with anything which resembled accuracy or reliability.

Protocol:

Another problem which some developers had with SCSI on the Quadras was related to their
not following the SCSI specification on protocol. The Target is in control of the bus and all the
driver does is call the appropriate routines in the correct order. If you depend on these routines
being synchronous and providing feedback as they are being called, then your product had
problems on the Quadras. On the Quadras, the SCSI operations are queued up until the

10+ Commandmen~~l<j' , 11 of 12

M.OV.IO+Commandments

I

1* I

Macintosh Technical Notes REVIEW DRAFT

SCSICmd is sent. At this time the SCSI transaction is done in one big operation. There are no
errors reported along the way. so the drivers must operate on the assumption that the SCSI
Manager knows what it is doing and that the hardware knows what it is doing.

It is very important to follow the SCSI specification.

Patches:

If your products patch any part of the SCSI Manager at this time, be aware that the SCSI
Manager is soon going to go through a major overhaul. Your patches may cause problems with
the new SCSI Manager, so keep an eye out for all documentation which Apple generates on the
SCSI Manager. If you feel that you may need some advanced warning about the new SCSI
Manager, then we highly recommend that you contact Apple Evangelism and make sure they
understand that you feel you might have problems with the new SCSI Manager and that you
would like to receive any documentation they have when it is available.

16) VIAs

There are some 3rd party products which like to interrogate the VIAs for information about
ADB activity or get high resolution timing from the VIAs. There are other products which use
the VIAs to change the interrupt levels of the hardware. Any products which depend on the
VIAs in any way are going to have a great deal of trouble in the future as Apple hardware
gradually depends less and lesson having VIAs. You may have started to see some of the
Macintosh either eliminating one of the VIAs or emulating the VIAs in a big ASIC. As the
hardware continues to evolve, these VIAs will become even less available.

17) Do The Right Thing

"WHY ASK WHY", "JUST 00 IT"

If you need to find out if something is available for your use, then use Gestalt to find out. If
Gestalt does not tell you what you need to know, then you may be looking for something
which you should not be worrying about. There are some cases where this is not true, but in
most cases it is.

It is also important that you look for the exact information which you need to know. If you
want to know if there is an FPU, then check for that - nothing else will tell you the truth.

Last, but not least - when in doubt ASK!

12 of 12 10+ Commandments

M.OV.lo+comrnandments

(
'."

