
R&D University

• Introduction to PowerPC -
Instruction Set

sity

Introduction to PowerPC- Instruction Set: Rev 2, 2/93

~~ 5 'f-Y"Ct_ c'+C) ,

~.:z:::~.-o '"\-<."> P (; «.J'-€Jl Pc

~ 1!:::1I-..~1I'S

PowerPC

(

PowerPC Architecture Overview ~..J

Book I - User Instruction Set
Branch Unit
Fixed Point Unit
Floating Point Unit

Book 11- Virtual Environment

Book III - Operating Environment

The First PowerPC Chips (Book IV)

1P'o~ 1!:::11-.. ~II'S

PowerPC

PowerPC Architecture Overview

Book I - User Instruction Set
Branch Unit
Fixed Point Unit
Floating Point Unit

Book II - Virtual Environment

Book 111- Operating Environment

The First PowerPC Chips (Book IV)

~ 1!:::11-..~

RISC History and Lineages

IBM 801 Branch Processor

-> RT -> POWER -> PowerPC

Berkeley RISC Register Windows

-> 29K, SPARC

Stanford MIPS

-> MIPS, 88K, Alpha, ARM

(
~--

(

~~.~u.

Rise Fundamentals

PipeLined Programming Model
Compiler hae Substantial Effect on Performance

Simple, Fixed Instruction Formats
10Cycie Decode, Large Number of Registers

Simple Semantics
10Cycie Execution Stage

Provide ·Prlmitlves- to Complier

Only Loads & Stores Reference Memory
LoadlStore Architecture

Minimize Use of Critical Resources
•. g., Condition Cod.s

Caches

Ron H 2iMI3

~~.~

Instruction Execution Model

F 1. Fetch Next Instruction

0
2. Decode Instruction,

~calculate Addresses,
etch Operands, etc.)

X 3. Perform Operation

W 4. Write Back Results

5. Goto Step 1.

Ron H.....-uno 21M3

~1ClIme·~NI

Ideal Instruction Sequence
Instructions Require only 1 Clock per Stage

1. Fetch Next Instruction F 11

2. Decode Instruction,
0 Calculate Addresses, 11

Fetch Operands

3. Perform Operation X 11

4. Writ.Back Results W
5. Goto Step 1.

Clocks

"an H IItIt3

12

• We'll look at several
of these
characteristics with
real RiSe examples.

(

(

(

PlpeLinlng
Increase Throughput

by Keeping Resources Busy

Implement Each Instruction Stage
by a Separate Unit - Pipe Stage.

Each Pipe Stage Operates on a
DIHerent Instruction

In a Cycle

Don't Wait for An Instruction to Complete
before Starting the Next

Does Not Reduce Latencyl!

~WMI'IPC~-~11liI

PlpeLined Instruction Sequence

Instructions Require only 1 Clock per Stage

1. Fetch Next Instruction F 11 12 13 14

2. Decode Instruction,
0 Calculate Addresses, 11 12 13

Fetch Operands

3. Perform Operation X 11 12

4. WriteBack Results W 11

5. Goto Step 1.
CI_

Ron H...,..... 2ItIU

~~-~

Instruction Formats

!-form OP Dise24 tid b¥

8-form OP Bol BI Dise14 ~D 1Nl\)tZ

D-form OP RxlRA Imm16
addl 1'5,1'4,123
I. 1'5,211(1'4)

RT IRA RB I n and r),r4,~

X-form OP XOP and. rS,r4,~
I .. r),r4,~

XO-form OP RTIRA RB fl XOP fl add rS,r4,~
addeo. r'.r4.rS

A-form OP RS IRA RB I RC IXOp~ filaddfl,f2,B,fl

15

14

13

12

M-form OP RS IRA RBI MB I ME ~ rl_ rS,r4,~,2II,31

Ron H 2ItII1

~

~

• Cycle Time of ,each
Stage is the same.

opl
op2
B 12
op3
op4

F

D

~1C1JSJM-~

Branches - The Problem
Branches Leave

"Bubbles" In PipeLine

----12: opS
op6

op1 op2 B

op1

X op1op2 B 000

W .op1p2B OO

iP'oWMJ'll!llC a.. -~11QI
SuperScalar RISC

(Instructions/Clock> 1)

Super-Pipellning
PipeLine Stages Take Less Than One Clock

(R4000)

Multi-Issue
Issue more than One Instruction

(to Multiple Units) per Clock

(88110,PowerPC,SuperSparc)

~1C1JSJM-~11QI

PowerPC - The Architecture

Derived from POWER
(performance Optimized With Enhanced RISC)

SImplified; ed inhibitor. to u...lSoalwlmpl.mentotlona

AcIc10d _ •• WlMrt N_ ... ry: t.lI. Synohronlzlng Cpo, SIngI I.I"" Op.
_clod for e.w.. DIIIa • Addr ... , LIIIIt-Endlan Suppon

RonH 2N13

Defined by 4 "Books"

Book I - User Instruction Set Architecture

Book II - Virtual Environment

Book III - Operating Environment

Book IV -Implementation Features

RonH t1M3

Ron NOGhIrpIung 216113

Ron H...,.... 2l1li3

PowerPC • Unusual Features

Branch Processor
B "Folding"

Mis-Aligned LoadslStores
SUpporta .. K IIg 1._ ••••

LoadlStore Multiple
Far Proooduro ProIoglEpIIog Co8

Update Forms of LoadlStore
Roduco. Cod. In Loopo

Move "Assist" Instructions
"StrI"II"~

Synchronization Primitives
ILWARX I STWCX. EIEIO. SYNC)

Floating Multiply-Accumulate
__ ocI F_1ng B_wlcllh

Architecture
vs

Implementation

Some Architectural Features
May Require Software Assist

In An Implementation

SIring Cpo
LoacllStar. Muftlplt

FIooIIng Point "!lwei" c_. I • .g .• NoN)

TLB R._ IPogeTm .. Wolle)

The Code Is Supplied by Implementors
as Part of Book4

P IbIy. bV "F .. toP""''' Intorrupto
with "Hidden" Hordw ... SUppof1

F\I)~a..-~u.

PowerPC
Block Diagram

(
PowerPC Architecture Overview

Book I - User Instruction Set
Branch Unit
Fixed Point Unit
Floating Point Unit

Book 11- Virtual Environment

Book 111- Operating Environment

The First PowerPC Chips (Book IV)

RonN 2IIIU

Book I - User Instruction Set

Defines Basic Programming Model
for Complier and/or Assembler Code

Instruction Set which MUST! be present
to be called a "PowerPC" Chip

Can NOT affect any Privileged Resources

Does NOT discuss Caches or Virtual Memory
(I ••••• Simple IItmory MocltQ

PowerPC Architecture Overview

Book I - User Instruction Set
Branch Unit
Fixed Point Unit
Floating Point Unit

Book 11- Virtual Environment

Book 111- Operating Environment

The First PowerPC Chips (Book IV)

"on HCtCiMpINng II1II3

Branch Unit Concepts

Branch Unit "Process.s" Branch.s
Branche. "Fold" Away

All The Information Necessary
Is Contained Within the Branch Unit

(Condition, Link, Count Regi.ters)

Fixed I Floating Units ''S Only
Flx.d I Floating Instructions

Not Branch .. ,

In Ideal Case, Branch.s are FREEl
Compiler Need. to "Schedule"

Condition. and Branche.

~~-~11111

Branch Unit Diagram

.... INoIlon
Queuo

I Inolruotlon Point .. I

11I111It-

~ I I

I
I D ~ .v ~

Fixed Pt Floating Pt

Condition Register
• Condllian Floldo

32 Bllo for Candlll_1 Bronohoo

Condition Field

Condition Register
• x 4-1>11 CanclltlonFle1clo

Link ReRlst.r

Count R.glster

Should be Considered "Registers" for
Sch.duling of Branch.s

(

Horm

-
XL..farm

RonH~1IM3

XL..farm

Link Register
Set by Branch wI LK=1

or, Move from Fixed Pt Reg (MTSPR)

Can by Copied to Fixed Pt Reg (MFSPR)
Typically used for Subroutine Linkage

Count Register
Set by Move from Fixed Pt Reg (MTSPR)

Altered by Branch wI Decrement
Can by Copied to Fixed Pt Reg (MFSPR)

Typically used for Loop Counting,
and Indirect Branching

~~-~I!!»

Branch Instructions

Iktoondn ,. 2-' Ward DI~'

op I
LK U,* Nt .. IMlrUCllkln"s ,

AA .. tnI.",..DI ,

Cond_,.14-b1'Ward DIopIa_'

op po I BI I Oflp14 sw
ConcIltlanol. thN LR ar CTR

OP I BO I BI I XOP EI
80-Del_ .. I," of I' (e.f., oondIIlon T.".")

81- c.n.lon, 1111. 1M uMd dlllOn ..

System Call

OP I III I111 '" to

bl\\E
bl Ur

Intl\\lZ
bit 1,.

blr
beqctr

Condition Register Logical Instructions
Oper"," upon Bno within the concInlon IIoglotor

OP I BT I BA I Be I xop U
Exomp": CROR 1. '.11

(
11:

",1
cpZ
q:I3

Branch Folding

80NZ

80NZ 11 80NZ op3 80NZ

Ron H JIlIN

op3 - op2

op2 op3 op1

D opt Op2 op3

op3

op2

op1

-
op3

Op2

Branch
Unit

~ 1t-_"I_O_P_1-+_:.;.:_~ -+1_:";:_I-°.;.P~1 I ~~:d Pt

D

X
W

bI
op3
op2

or>l

Il"c~a--~N

Branch Folding
Another Example

opl

~:~ ~f;
bl feD ~
Op4.... ~
ops - lir

01'1 blr

- or>7 opI - op!5
op3 op6 op7 opI op4 op!5
op2 op3 op6 op7 ope op4 op!5

The BL and BLR are Freel!

Il"c~a--~N

Branch Prediction

Used When Branch Unit Does Not Yet
Know Direction of Branch

(e.g., Condition not Set Yet)

Uses Sign of Displacement to
"Predict" If Branch Will Be Taken

«kS>" kb) 11<11»' 1<10>

"Backwards" Branch Assumed Taken
(I.e., End-of-Loop Branches)

Branch
Unit

Software Can Invert Sense of Prediction
(e.g., Based on Tracing)

~CIJ_-~II'II

PowerPC

PowerPC Architecture Overview

Book I • User Instruction Set
Branch Unit
Fixed Point Unit
Floating Point Unit

Book II • Virtual Environment

Book III • Operating Environment

The First PowerPC Chips (Book IV)

Ron HOCiIMIpnInt ItIM

1P'o-nP'IC ~-~II'II

Fixed Point Unit Concepts

Contains 32 General Purpose Registers (GPRs)

Ron H 2l1li1

Conceptually, Performs all LoadslStores

Executes all Fixed Point (Integer) Arithmetic

Executes all Loglcals, Shifts and Rotates

Executes all Compares and Traps

Special Instructions to Move Between
GPRs and Branch Unit Registers

1P'o-nP'IC ~-~II'II

Fixed Point Unit

Branch Unit
I C

~ata Cache

XER

Fixed Pt
Registers
32 x 32(64)

(

Ron HOCIhIaprung 2111U

BIg-End"':

1P'o-nJIIC ame-~N
fiXed Exception Register

(XER)

Contains Fixed Pt Related
"Extra" Data

tift! =-
III CA • c • ..,. (to< fonn'l

ov -OverFlow (when OE=1)

SO - Summary Overftow

~ame-~

Endian-Ness

o

otruct{
x.1O .Ox4O'14243; In! 10;

ohort 114; 0x2021;
oIw' 0I,07j • .01. 0x10j x.o7. 0x11;
Ix;

40 41 42 43
20 21 10 11

7

0
40 41 42 43
11 10 20 21

(xl&,NuBua)
:LlttIeoEncU ..

:LI1IJH!ndIan

Relative Location of Elements Is Different

Ron N 2IIIU

1P'o-nJIIC a.--~N
Byte-Wise Ordering (e.g., to Disk)

Big-Endl .. : 1(40,41,42,43,20,21 ,10,11) 1

1(43,42,41,40,21,20,10,11) 1 :Ll1IJo-Endlon

o
43

21

43

11

42 41 40

20 10 11

f
Big-End ... reeding LI1IJo-End ...

o
42 41 40

10 21 20

LlttleoEndlM roodlng Big-Endl ...

Individual Elements are "Byte Reversed"

(

(~\

~1ClJ.--~1I'GII

Byte-Reverse Forms of LoadlStore

81g-End'" •• Ildlnl LI\tIo-Endl ..

Iwbrx

Ihbrx

L-.;;.;;.._;;;.....;;...-'"_.;;.;... roll.to.

Byte-Reversal "SWaps" Bytes on Element Size

[)..form

X-4orm

~1ClJ.--~1I'GII

Llttle-Endlan Mode

o 4 7

I 11 I 10 I 21 I 20 I 43 I 42 I 41 I 40

1
r1

XORII>110

XORIIt11t

Iw ro,O(r1)

1hz ro,4(r1)

Ibz ro,IIr1)

Llttle-Endlan Mode "Swizzles" Address

1PIowarfP\C a--~
Fixed pt Loads & Stores

1 ... -0..,... 111 .. Indoxlld Fonno

(Willi opIIonal Updoto ., a ...)

OP I Rx IRA Dlop11

OP I Rx IRA I RB XOP vi

Loads & Stores are Overlapped II
(WI" Minimum 01 One Clock Lotoncy)

Iw .3,4(.1)

Iw .3/3"..

Mis-Alignment Is Auto-Magically Handled
Iwllll poo._ porIormono. ponollyl)

Byte-Reversed Forms for Mlxed-Endlan

1 1.
Z addt
3 st.
4 1.
5 addt
6 st

r3.1
r3.r3.'123
r3.1
r3.l

~1QIme.~1J'4I

Load Example

No Complier Optimization

1+= 123j
J-567j

F 1 2 3 ::1:: 4

0 1 ::1: 2 3

r3.r3.'·S67
X 1 2

r3.l W

5 6

4 J:

3 4

2 3

CPI = 1.3

~1QIme.~1J'4I

Load Example

Complier Optimization (Scheduling)

1 1. r3.I
Z 1. r4.l
3 addt r3. r3. '123
4 addt r4.r4.'·S67
5 stw r3.1
6 stw r4.l

F
o
X
W

1+= 123j
J -=567j

1 2 3

1 2

. . 1

.

4 5

3 4

2 3

1 2

CPI=1

Load & Store Multiple
LIIW.STIIW

-. trom/Io RSIRT through R31
Uoed lor __ ProIogIEpIlog

6

5

4

3

•• InIlmphII.lzocl'·1n Arch_

Move Assist (Strings)
LSW~ LSWX, STSWI, STSWX

.
6

5

4

LoMIISt Cano v •• ~. tallrom Roglotor.
Langill 10 In /notNoUon ot XER
_I Loa Z. FlIIad

Synchronization Instructions
SYNC, EIEIO, LWARX, STWCX.

(Do_lbod In Book II SoctIon)

Jf=
5 6

5 6

4 5 6

.
.
6 .
5 6

(

('"
.~~~

[).form

XO..form

Fixed Point Arithmetic

OP I AT I RA Slgnodlmm16 oddl r3 •• 4.-1

OP I Rx I RA I RS fl XOP tl odd r3 •• 4. rS

Differ on use of Carry
(I •••• ADDI ... ADDIe)

(.... CIIrry _ only When _uryll)

Can set CR Field 0 (Rc bit)

Can detect Overflow (OE-blt In XO-form)
(u" 0V0rI0w En_, only when n_orylQ

Carry Usage Example
MuHIProole1on Arlthmotlo

adele ri. ri." ; lets CA
adde "'."'.r7 ; _, lets CA

Arithmetic Instructions Notes

Add _ (ADD~ c .. '1Add to ROI

Sublr.ot From

Immod ,ann Ie Eopoclelly U .. lul

Multiply High

Flot DIYIcI.,or Smoll Conotontl

GOIdi. "','._ 1IJ (f'ractiCII,
addic ... , ... ,8xS55I
.. II", rS,r','" rS. "'"

~~-~

Compares

Sets any CR Field with Compare Results

D-form Slgnedlnvnll cmpI1.r4,-1

X..form O_P_,,;IS;,;,F I;..I 1_RA_.A..;R.;;;s~_.;.;x.;.oP~.....I.IfI ampl 3, .4. r6

Traps
Compares, Traps If specified conditions (TO) are met

D-form OP I TO IRA SlgnICIlnvn11 twn.1 .4.0

X..form OP po IRA RS XOP tl twn. .4.rS

RenH 111113

f

~

~~-~n

Loglcals, Shifts, Rotates
IIA field opecHle. R_a Rogi

Loglcals
D..fonn OP IRS IRA I UnSignecllmml. IIKII. 10, rl, 0x5

X..form OP IRS IRA RS XOP rJ XCII' r3, r', r5

Shifts

X..form OP IRS IRA I SH xop H .. 110,,3,1'

Rotates

M..fonn OP I RS IRA I SH I MS I ME " ,lwlnrn 10, r3,O,27,31

III,"H~1tIIU

rR

rG

rB

,p

rP

rP

rP

~CO--~n

Rotate Example

r--r---r ___ ,....---r1Wlnm rP, rR, 0,8,15

r-...,..--..-........... ,. -"""" r1wlml rP, rG, 24,16,23

:=:::::::::~:=:::~r1Wlml rP, rB, 16,24,31

~~-~

"Special" Moves

_e TalFrom SPR - MTSPRlMFSPR

XFX.fonn OP IRx I SPR xop fI mfapr,O,LR

Move From Candnlon Reg - MFCR ,,",Per
X-farm OP I AT 111/ I 11/ I XOP fI IIIIpIIIr 10

Move To CR Field - MTCRF

XFX.form OP I Rx II FXM fI XOP fI mtcrf Ox3, r3

__ ToCR Field from XER - MCRXR

~

IPowMrflI'IC co_ -~

PowerPC

PowerPC Architecture Overview

Book I • User Instruction Set
Branch Unit
Fixed Point Unit
Floating Point Unit

Book II • Virtual Environment

Book III • Operating Environment

The First PowerPC Chips (Book IV)

.... M II1II3

~co--~

Floating Point Unit Concepts

Contains 32 Floating Point Regs (FPRs)
In Double-Precision (64-blt) Format

Sources & Sinks Floating Point Data
for FP Stores & Loads

Single-Precision Operations Use SubSet
of Double-Precision Data

Performs all Floating Point
Arithmetic, Conversions & Compares

Multiply-Accumulate Is Basic Arithmetic Element

No Direct Path Between Fixed Pt and Floating Pt

1P'oWRI'IFC co--~~
Floating Pt Unit

Branch Unit

Data Cache

FPSCR

Floating Pt
Registers
32x64

ri
'~

~1CIDe-~rr.

Floating Point Status and Control Register
(FPSCR)

Contains Bits Which
Control and Report

Floating Point Operations

Rounding Mode

Exception Enables

Exceptions

etc.

~1CIDe-~rr.

Floating Point Instructions

Multiply-Add
A40rm OP I FRT I FAA I FRB I FRC I xop rJ Imodd 10, t1,I2,13

X40rm

FRT c· FAA • FRC + FRB

Mlsc Arithmetic
Op I FRT I HI I FRB I xop tI 10I1w 10,12

Note: Ro SUm"",,, EJeoopUon .111 lrom FPSCR

Floating Pt Compare
X40rm op !F I" I FAA I FRe I xop III Icmpu 0, t1,12

~~ICIDe-~

PowerPC

PowerPC Architecture Overview

Book I - User Instruction Set
Branch Unit
Fixed Point Unit
Floating Point Unit

Book II - Virtual Environment

Book III - Operating Environment

The First PowerPC Chips (Book IV)

~~-~

Book II • Virtual Environment
Introduces Additional Programming Model Concepts

General Concepts

Caches

Virtual Storage

TIme Base (Real-TIme Clock)

MuHI-Processor Related

Atomicity

Globally Performed

Coherency

PowerPC Cache Concepts

Model Assumes Separate I & 0 Caches

Size and Granularity can be Different for I & 0

Typical Cache Block Size Is 32-64 Bytes

Coherency for Data Caches

ExplicH Cache Management Instructions

~~-~INI

Storage Attributes (WIMG Bits)

W - Write-Through

W 0: 1 -> All Stores MUST go to Memory
W = 0 -> Store-In Is Allowed

I - Cache Inhibited

I = 1 -> All LoadslStores MUST go to Memory
I = 0 -> Data may be Cached

M - Memory Coherency Required

M = 1 -> Data MUST be Maintained Consistent
Mo:O -> Coherency Is NOT Required

G - Guarded Storage

G = 1 -> NOI Speculative access
G = 0 -> Speculative Loads allowed

(
1Pc~a...·~11111

Cache Instructions

I-Cache

Instruction Cache B lock Invalidate· ICBI
Instruction Sychronlze • ISYNC

D-Cache

Data Cache Block Touch· DCBT
Data Cache Block Touch for Store· DCBTST

Data Cache Block set to Zero· DeBZ
Data Cache Block Store· DCBST

Data Cache Block Flush· DCBF

Atomicity of Storage Accesses
Only" Aligned", Scalar Accesses are Atomic

_. AIOIota, LWlllSTWM, FP D«mlo ••• NOT Alomio

Globally Performed
"Appears to be Complete"

WIth Respect to Other Processors & "Mechanisms"
SYNC _Ian __ .. GI_I P.rlarmon ..

Coherency
After a Coherent Storage Access Is Globally Performed,

All Processors (Mechanisms) "See" Latest Version
~oncy opplloo to Cacho BlOOD

RonH IItII:a

MP Caching, Without Coherency

MPU A MPU a MEMORY

B~«·:DD ~
X •• j

MPU A MPU B MEMORY

A~:~~~

(MP Caching, Without Coherency

MPUA MPUII MeMORY

l~wo:DD I·i .1. .1
X •• j

MPUA MPUI MeMORY

A_:~
~ I·~ If. .1 I" ill ·1

~~-~

Coherency Mechanism

e _oy Ie done on elCho BIoo ... ('.g .• 321y1 ..)

e_ lloc ... haw. _ • .". S_o:

M·_11Iod
e ·l!xo lv.
S·Sh •• d
I ·lnvilid

eoo_ ·Snoop" lu. AcUvlly

Star only be don. to l!xo lv. w _Hod 11_

A 0"-. from Sh •• dlbolu.lv. \0 ModHiod mull be
Indlcotod on tho lIu. (.0 _ llean be Snooped)

A elCh. which _opel R.od to on l!xo lv. llook
goo tho llook'o s to Shorod (Ind. lnIormo tho R.ld'r).

A elCh. which Snoopo I R.ld oil Biook which It hoe _H .. d.
·'Rotr Reider. Wrlto. Ito ModHIod Ilook to Momoty

ond ch_ •• Ito Ilook' •• _ to Invilld.

_ •• qUlntro-R.od will got Ioto.t oopy from Memory

At most, One Cache has a Modified copy of a Block

RonH.......,.,.1IIIU

~~-~11W

MP Caching, with Coherency

MPUA MPUI MeMORY

L

:T ~:~ I L rO,T :T ~:~
"

h1
1

II
L A

II~ I~. II Id.il ·1
L • R CA .noope,)

II) I~I II II) I~I II " hll II
:T~~ _,. Clnv .. dII ••)

II: IW. q I , I I ~ · II I. fd I ·1
A rl,1
aT ro,T 8 .. WrtI .. W.' Reut .. 8, A .raH (MIIlru'),. "Wr

IltlTI II "hXI II
Ron H JIIII:I

~a....~1I'\i

Synchronization Primitive.

Synchronize· SYNC

Guarantee. that All Prior Loads & Stores
Have Been Globally Performed.
I OM pwtIolpolo In e, "'_Iom.

Enforce In-order for 110 • EIEIO
(Order Starage Aoco ••• OSA)

Used to Separate Cache·lnhlbited
Loads & Stores to Ensure Program Order

(on the Bus)

~ 1CII8lI!O.~1I'\i

"Semaphore" Primitive.

Load Word and Re.erve (IndeXed)· LWARX

Loado W ... d .. d erea •• 0 ·'Ro.orvollon"
Tho Rooorv_ .. Aoooclel.d wnh III. Dm Addr ••• of III. LWARX

Ron H......,..... tItII3

Ron H 2ItIU

STore Word Conditional (IndeXed) - STWCX.
Iff. R. __ Ex Porfonno tIIo 81

... eRFO to Indloll. _ .. ; EQ.1 -> _0 _ ..
Unoondlllonlolly. e .. __ Ro.orvollon.

A ReeervatJon .. utoaf' When Coherency Detect. Store
totllo Rooorv_·.AcIcI

Lock:
I "'.'.ri i fetch CIft'IIIt val .. ; ,,_01'. add! ,. ••• ·1
Cllpi 1.""'.'
stwcx. rCt.8,r3
line Lock
'*II. 1
b Lock

i check current - e
; st 1" (1)
; loot rvatl ... 1
; Initial - •
; tI'J again

~1CII8lI!O.~

LWARX I STWCX. Example
Link List Update

Insert:
I.... rT. lIICT(rC ...)
ate rT.IIICT(,.
¥c
stwcc. .-. NXT(rCII')
beqlr
b Insert

"_H~IIIIN

Time Base (PowerPC)

64-Blt Counter

Resolution Is Implementation Dependent

User Instructions:

Move From Time Base· MFTB
Move From Time Base Upper· MFTBU

Real·Tlme Clock (601)

As Described In Book II 0.04

~a-.~

PowerPC

PowerPC Architecture Overview

Book I - User Instruction Set
Branch Unit
Fixed Point Unit
Floating Point Unit

Book II - Virtual Environment

Book 111- Operating Environment

The First PowerPC Chips (Book IV)

Ron H 2ItIN

~a-.~1l'II

Book III-Operating Environment

Defines "Privileged" Instructions & Facilities

Storage Control (VIrtual Memory)

Interrupts

Timing Facilities

lPo~co.--~1J'lJ

Branch Unit Additions

Registers

I I SRRO

:====~I SRR1
~ ________ ~I MSR

~---~
SavelllH_ Aeg_ 0 - SAAO

SavelllHtol'e Aeg_1 - SAA1
_ SLo .. Aegl_ - USA

Instruction

Return From Interrupt - RFI

Machine State Register - MSR

III 11111111111111111

Ron H........,.,. 2NI3

It .. HocMprung II1II3

~ULLht"_End'" Mode-LM ~_r lnterrupt- AI

DllaAel_"-DA

InalrUcIIon Aeloo." - IA
Interrupt Prolix -IP

L-___ FP Exoepllon Mode 1 - FE1
..... ____ 8 ... ohT En_ -BE

..... ____ SIng .. _pTr En_ -SE
..... _____ FP Exoepllon Mod. 0 - FEO

'------Machlna Check EnOIb .. - ME
IL------FPAvolllb .. - FP '-------Prob_ SLo" - PA ------ExternaIIn pt Ena - EE

~CO--~1J'lJ

When an Interrupt Is Taken

Save "Current" Instruction Address in SRRO

Copy MSR to SRR1 (possibly. setting SRR1<O:15»

Modify MSR (EE = DR = IR = PR = 0)

Start Executing at Entry of Interrupt

Return From Interrupt (RFI)

Copy SRR1 to MSR

Start Execution at Address In SRRO

Interrupts are Precise
Except for Impreol .. FP Exoepllone

~CO--~N

Fixed Point Unit Additions
Rsglsts ..

-- Sogmenl Rog"tor. (1adZ)

Slar .. Doo...,uon Rog .. tor 1 • SDR1
D_ S lnIemIp1 S_. Rogl.tor· DSISR

------------------------------ aIIan Biook AcIcIr ... T, ... lo1Ian Rogl.1Ire (BAT., ------------------------------------ DoIII Biook Add'H. Tr Uon R.gl., ... (BAT.,
= ------

Fixed Point Unit Additions

instructions

Move ToIFrom MSR - MTMSR, MFMSR

Data Cache Block Invalidate - DCBI

Move ToIFrom Segment Register - MTSRlMFSR

Move ToIFrom Sag Reg Indirect - MTSRINlMFSRIN

Translation Lookaslde Buffer Entry Invalidate - TLBEI

Ron HOCIheprUng 2ItIIS

(New SPRs for MTSPRlMFSPR)

~ce--~

PowerPC
Storage Addressing Model (32-blt)

32-blt Effective Address

52-bH Virtual Address

I
.... T llapplng

• 32·blt Real Address

(

(

~co--~r.

PowerPC
Storage Addressing Model (64-bit)

ESIO 64-blt EA

SO-bit VA

~co--~

PowerPC

PowerPC Architecture Overview

Book I • User Instruction Set
Branch Unit
Fixed Point Unit
Floating Point Unit

Book II • Virtual Environment

64-blt RA

Book III· Operating Environment

The First PowerPC Chips (Book IV)

Ron H.......,.,. 2IIIN til

Ron HoaMprUnl211113

Il'\o~~-~r.

601 - The First (almost) PowerPC Chip

1C1-1n.trucllon lnetruclton au ,
Branch Prediction,
B .. nch Folding
1 FX and 1 FP lnetruouon c_

(
~co--~11S

603 - The Cheapest PowerPC Chip
Static Design - Low Power

Diopotoh .. to 21n.truot_ per Clock
But, only _ to._ unit

~~-~11S

604 - The 601 Replacement

~a--~11S

620 - The First 64-81t PowerPC Chip

Dlapooklh up to • 1n'1rucll_ per Clock
But, only 1 to tach unit.

(~:

flon Hoch.,.-unI"1CW2

Ron Hochlptung 111M2

SP (r1)

Ron Hochsprung 111M2

PowerPC Programming Model

Table Of Contents (TO C)

Inter-Module Calls (Shared Libraries)

Comments on Optimization

Code Examples

i!'@_~ 0 ~fIIlIlivSlO'<l>!Mo_

Register Conventions

Branch Unit Regs

LR • volatile
OR . volatile
CR • Fields 2-5 non·volat; Ie

Fixed Pt Regs

• - scratch/epilog/prolog
1 - Stack. Pointer
2 - Table Of Contents (TOC) ptr
3:10 • Arg.-t/scratch
11 • scratch/fllleti ... ptr
12 - scratdl/epilog/prolog
13:31 - locals (n ... ·volatile)

Floating Pt Regs

e • scratdl/epilog/prolog
1:13 - Arg~t/scratch

14:31 - locals (n ... ·volati Ie)

i!'@_~ 0 ~_!Mo_

Stack Frame

t Params >8

I "Shadow"
for
Params 1·8

r.' d

saved LR

SP BackChaln

[LI"kA~
Red Zone t Space for Saving

This Proc's Regs

"": PowerPC Program

Porting &
Performance for

PowerPC

Apple Confidential- Need To Know

Porting & Performance for PowerPC

1

(

~ "!sIzo"
.'orago

S P(rl)

Rod Zono

Proc Call
Back From BAR

~ldSP

-.-

PC-

Proc Call
Back From FOO

XYZ:
1. r3,argl
I. l'4.ariZ
bl RIO

FOO:
.flr I'll
sto. r30.-I(rl)
stw rIl.l(rl)
st.< rl. -fsize(r1)

bl BAlI

Iw rIl.fsi Cr1)
I. rl.0(rl)
otlr I'll
I ... r30.-I(rl)
blr

BAR:

b1r

XYZ:

~oIdSP

sp-F

1. r3,argl
I. r4.ariZ
bl RIO

pc
FOO:

mflr I'll

Ron Ho.msprung 11'0412

Red Zone

stow r30.-I(r1)
stw rIl.l(r1)
st.< r1.-fsiu(r1)

bl BAlI

I. rIl.fsi (r1)
Iw rl.0(rl)
mtlr I'll
I.... r30.-I(rl)
blr

BAR:

blr

Table Of Contents (TOe)

Each Module Has Its Own

in Data Area (RW)

Contains:
Module's Statics

Procedure Descriptors

Created at Link Time

Filled In as Part of Program Loading

Saved/Restored Across
Inter-Module Calls

Used by Shared Library Mechanism

1F'c_1l'Il:: 0 i!b!JIlIliIllNIlMcliN

Procedure Descriptors

Used for "Pointer to Function"
and InterwModule Call.

The Pointer Is Addres. of D •• criptor
(In Targor. TOe)

Descriptor:

Code Addr ...

TOCaddr •••

environment Pointer

Iw rl1,fao.doscr(rTOC)
bl SPTRQ.

SPTRGL:
Iw .g, 8(rl1)
stw rTOC, 211(1'9)
.tetr r8

Iw rTOC, 2O(rSP)

Ron Hochsprung 111M2

,,_

Iw rTOC, 4(rll)
bct:r

Intermodule Call
Before

I Stl

·PC· -foJ' xy. I ,2 -c~g.--+--rIP~
Cod.

Code

Ron HoCMprung 111M2

Dal. Cod. Data

Module A Module B

Intermodule Call
After

Dat. Code Data

Module A Module B

(

Ron HctcheflNnllltGll2

iP'@_~. ~_ iNJ@\lN

Comments on Code Optimization

"Well Known" Optimizations Are Applicable,
And, Have More Affect

Than Instruction Scheduling

Global Optimization
Common Sub-Expressions

Strength Reduction

General Optimizations Which are
Especially Useful for RISC

Loop UnRolling
Register Allocation

Alignment Considerations

Optimization must be Tempered with
Code/Data Expansion "Hit"

PowerPC Specific Optimizations

Minimize Loads
~.e., Keep Data In Regls.ers)

Minimize Branches
(I ••.• Large aaslc Bloc~11 InLlnlng)

Schedule Loads as Early as Possible from Their Use

Schedule Condition Setting as Early as Possible from hs Use
(I .•.• Conditions .alike Branch Unit "'Loads'')

"Shuffle" Independent Code Sequences
(I .•. , Inte,-$chedute Dependencl ••)

Use MULT by Reciprocal in Place of DIV
,e.g., MULH on Fixed Pt)

iP'@_~. ~~_ iNJ@a

Shading Example (Inner Loop Only)

loop:
rtwinn rP, rtI., 0,a,15
odd r«, r«, rid
rtwimi rP, rG, 24,16,~
odd rG, rG, rGd
rlwi_i rP, re, 1&,24,31
odd r6, re, r6d
500 rP, 4(rPptr)
belli loop

i led
; Next Red
• Green
i next Green
; 81ue
i next Blue
i stash It
; al'Otlld the loop

6011603: 7 clocks

604: 3 clocks

&III: 2 clocks

(

{
"

~to'© 0 $@ffl!\w_ ~IIN

Compiler Listing - div3

Int div3(int I) { return 1/3; }

Q>II', set/used: ,--s ---- ---- ---- ---- ---- ---- ---
fill', set/used: ---- ---- ---- ---- ---- ---- ---- ----
a', set/UIed:

1- PIlEF div3
1- PROC i ,r3

21118011111cau 3CIII! SSSS 1 lIU rt-2114S
21_.i _5556 1 AI ~r9,21W

21_.ul 7010 18116 S Ill. I"I-r0.r3,1IIq"
21-= rli .. S483 1lFF£ 1 Sll r30r9,31
21 800II18 • 7CliG 1114 r3-rO.r3
11 800014 ber 4£88 0B28 SA Ir

St ... i~t-line exec tiAle

Ii'c_~ 0 $@ffl!\w81l!l5 @!J@.

Compiler Listing - bsf.c

doiJJl. bsf(dot.I>l •• ~, doiJJl. 'cp) {
int i; double X • 8.0;
fore i.e; i64; i+.)

X +- *dp+-+- • ·cpt+:
returnC X);
}

1- PMF bsf
, I10OOOII PROC ~,cp,r3,r4

41 I10000II1 80AZ 80119 l 1'500. <lJsf(r2,O)
1I_.i 3084 FFFI AI r40I'4,-8
41_lfd

CI2S _
1 LFL fplo<IJsf(rS,0)

II 800IilIIC cal 3IA8_ I II r5064
01 _1.8 .IIpr 7Cl9 13A6 I lClll rS
81 ClIiJIkl14 ai 3063 FFF8 1 AI r3=f"3 ,-8

a..8:
61 _lIlfdu CIlI38008 1 LFOU fp0, r30(double)(r3.1)
61 _IC Ifdu CC448008 1 LFOU fpZ.r40(doubl.)(I'4,I)
610000Z11f.a FCZII88BA I FMi\ fplofpl. fp0. fpZ
51 IIII0IIZ4 be 4ZII0 FFF4 • BCT a..'

a..3:
11 oooeza ber 4£110 8Il2D • SA Ir

Ro" Hochsprunl1l1M2

~

tC

PowerPC User Instruction Set Architecture

Book I

Version 1.02

January 8, 1993

Distribution for IBM: softcopy on KISS64

Owner: Jack Kemp
KEMP at AUSVM6

E64S/4A-015
IBM Corporation
Austin, TX 78758

Tele 512-838-1846
Tie Line 678-1846

Technical Content: Ed Silha
silha@austin.ibm.com

E22S/4F-019
IBM Corporation
Austin, TX 78758

Tele 512-838-1848
Tie. Line 678-1848

IBM Confidential

NOTES: ---.

• This is a controlled document.
• Verify version and completeness prior to use.
• See the Preface for additional important information.

C> Copyright International Business Machines Corporation, 1993. All rights reserved.

f

(.. ~. \

IBM Confidential

Preface

This document defines the Power PC User Instruction
Set Architecture. It covers the base instruction set
and related facilities available to the application pro
grammer.

Other related documents define the PowerPC Virtual
Environment Architecture, the Power PC Operating
Environment Architecture, and PowerPC Implementa
tion Features. The Power PC Virtual Environment
Architecture defines the storage model and related
instructions and facilities available to the application
programmer, and the TIme Base as seen by the appli
cation programmer. The Power PC Operating Environ
ment Architecture defines the system (privileged)
instructions and related facilities. A PowerPC Imple
mentation Features document defines the
implementation-dependent aspects of a particular
implementation.

The PowerPC Architecture consists of the instructions
and facilities described in the Power PC User Instruc
tion Set Architecture, PowerPC Virtual Environment
Architecture, and Power PC Operating Environment
Architecture documents. However, the complete
description of the PowerPC Architecture as
instantiated in a given implementation includes also
the material in the Power PC Implementation Features
document for that implementation.

User Responsibilities

• 00 not make any unauthorized alterations to the
document (user notes permitted).

• Verify the version prior to use. Version verifica
tion procedure is described below.

• Verify completeness prior to use. The last page
is labeled 'Last Page - End of Document'. The
end of the Table of Contents shows the last page
number. All pages are numbered sequentially.

• Report any deviations from these procedures to
the document owner.

Next Scheduled Review

The next review is expected to be approximately in
March, 1993. At least four weeks before this meeting,
a DRAFT version of this document will be distributed.

Version Verification for ISM

• Unk to the KISS64 disk in Yorktown or a shadow
of this disk. In Yorktown, linking to KISS64 can
be done with the command 'GIME KISS64.'

• Browse the newest file with a name of· the form
'PPC2xxxx LIST3820,' by using the 'browse'
command.

• Verify that your version matches this file.

If your version is not current, please contact the docu
ment owner.

Version Verification for Other Firms

To be supplied.

Approval Process

The following procedure is followed for all changes to
the content of this document:

• The Power Open Architecture Work Group
(PAWG) meets quarterly or more frequently if
necessary.

• At least four weeks before a meeting, a version
of this document is distributed to the PAWG. It is
marked DRAFT. Proposed changes are included
and identified with change bars.

• The PAWG meets and decides each issue.
• Final alterations to this document are made,

change bars are removed, and the entire docu
ment is distributed with a new version number
and the word DRAFT removed.

• At the meeting or a subsequent one, new issues
are discussed.

• The resulting changes are described in a new
version of this document which is derived from
the last non-DRAFT version. Proposed changes
are identified with change bars, and the docu
ment is distributed to the PAWG. This document
has a new version number and is marked DRAFT.

• The cycle repeats from the beginning.

Approvals

This version has been approved for user review by
the document owner.

Preface iii

IBM Confidential

"- -'

iv PowerPC User Instruction Set Architecture

IBM Confidential

Table of Contents

Chapter 1. Introduction
1.1 Overview
1.2 Computation Modes
1.2.1 64-bit Implementations
1.2.2 32-bit Implementations
1.3 Instruction Mnemonics and

Operands
1.4 Compatibility with the Power

Architecture
1.5 Document Conventions
1.5.1 Definitions and Notation
1.5.2 Reserved Fields

1
1
1
1
2

2

2
2
2
3

1.5.3 Description of Instruction Operation 3
1.6 Processor Overview 5
1.7 Instruction Formats 6
1.7.1 I Form 7
1.7.2 B Form 7
1.7.3 SC Form 7
1.7.4 0 Form 7
1.7.5 OS Form 7
1.7.6 X Forms 7
1.7.7 A Form 7
1.7.8 M Form 8
1.7.9 MD Form 8
1.7.10 MDS Form 8
1.7.11 Instruction Fields
1.8 Classes of Instructions
1.8.1 Defined Instruction Class
1.8.2 Illegal Instruction Class
1.8.3 Reserved Instruction Class
1.9 Forms of Defined Instructions
1.9.1 Preferred Instruction Forms
1.9.2 Invalid Instruction Forms

8
9

10
10
10
11
11
11

1.9.3 Optional Instructions 11
1.10 Exceptions 11
1.11 Storage Addressing 12
1.11.1 Storage Operands 12
1.11.2 Effective Address Calculation 12

Chapter 2. Branch Processor 15
2.1 Branch Processor Overview 15
2.2 Instruction Fetching 15
2.3 Branch Processor Registers 15
2.3.1 Condition Register 15

2.3.2 Link Register 17
2.3.3 Count Register 17
2.4 Branch Processor Instructions ... 18
2.4.1 Branch Instructions 18
2.4.2 System Call Instruction 22
2.4.3 Condition Register Logical

Instructions 23
2.4.4 Condition Register Field

Instruction 25

Chapter 3. Fixed-Point Processor 27
3.1 Fixed-Point Processor Overview 27
3.2 Fixed-Point Processor Registers 27
3.2.1 General Purpose Registers 27
3.2.2 Fixed-Point Exception Register 28
3.3 Fixed-Point Processor Instructions 29
3.3.1 Storage Access Instructions 29
3.3.2 Fixed-Point Load Instructions 29
3.3.3 Fixed-Point Store Instructions 36
3.3.4 Fixed-Point Load and Store with

Byte Reversal Instructions 40
3.3.5 Fixed-Point Load and Store

Multiple Instructions 42
3.3.6 Fixed-Point Move Assist

Instructions 43
3.3.7 Storage Synchronization

Instructions 46
3.3.8 Other Fixed-Point Instructions 49
3.3.9 Fixed-Point Arithmetic Instructions 50
3.3.10 Fixed-Point Compare Instructions 59
3.3.11 Fixed-Point Trap Instructions 61
3.3.12 Fixed-Point Logical Instructions 63
3.3.13 Fixed-Point Rotate and Shift

Instructions 69
3.3.14 Move To/From System Register

Instructions 79

Chapter 4. Floating-Point Processor 83
4.1 Floating-Point Processor Overview 83
4.2 Floating-Point Processor Registers 84
4.2.1 Floating-Point Registers 84
4.2.2 Floating-Point Status and Control

Register 85
4.3 Floating-Point Data 87

Table of Contents v

4.3.1 Data Format 87
4.3.2 Value Representation 87
4.3.3 Sign of Result 89
4.3.4 Normalization and

Oenormalization 89
4.3.5 Data Handling and Precision ... 90
4.3.6 Rounding 90
4.4 Floating-Point Exceptions 91
4.4.1 Invalid Operation Exception 93
4.4.2 Zero Divide Exception _. . . 94
4.4.3 Overflow Exception 95
4.4.4 Underflow Exception 95
4.4.5 Inexact Exception 96
4.5 Floating-Point Execution Models .. 96
4.5.1 Execution Model for IEEE

Operations 96
4.5.2 Execution Model for Multiply-Add

Type Instructions 98
4.6 Floating-Point Processor

Instructions 99
4.6.1 Floating-Point Storage Access

Instructions 100
4.6.2 Floating-Point Load Instructions 100
4.6.3 Floating-Point Store Instructions 103
4.6.4 Floating-Point Move Instructions 106
4.6.5 Floating-Point Arithmetic

Instructions 107
4.6.6 Floating-Point Multiply-Add

Instructions 109
4.6.7 Floating-Point Rounding and

Conversion Instructions 111
4.6.8 Floating-Point Compare

Instructions 115
4.6.9 Floating-Point Status and Control

Register Instructions 116

Appendix A. Optional Instructions
A.1 Floating-Point Processor

Instructions
A.1.1 Floating-Point Store Instruction
A.1.2 Floating-Point Arith metic

Instructions
A.1.3 Floating-Point Select Instruction

Appendix B. Suggested
Floating-Point Models

B.1 Floating-Point Round to
Single-Precision Model

B.2 Floating-Point Convert to Integer
Model

B.3 Floating-Point Convert from
Integer Model

119

120
120

120
122

123

123

128

131

IBM Confidential

Appendix C. Assembler Extended
Mnemonics 133

C.1 Branch mnemonics 133
C.1.1 BO and BI fields 133
C.1.2 Simple branch mnemonics ... 134
C.1.3 Branch mnemonics

incorporating conditions 135
C.1.4 Branch prediction 136
C.2 Condition Register logical

mnemonics 137
C.3 Subtract mnemonics 138
C.3.1 Subtract Immediate 138
C.3.2 Subtract 138
C.4 Compare mnemonics 138
C.4.1 Ooubleword comparisons 139
C.4.2 Word comparisons 139
C.5 Trap mnemonics 140
C.6 Rotate and Shift mnemonics ... 141
C.6.1 Operations on doublewords 141
C.6.2 Operations on words 142
C.7 Move To/From Special Purpose

Register mnemonics 143
C.8 Miscellaneous mnemonics 143

Appendix D. Little-Endlan Byte
Ordering

0.1 Byte Ordering
0.2 Structure Mapping Examples
0.2.1 Big-Endian mapping
0.2.2 Little-Endian mapping
0.3 PowerPC Byte Ordering
0.4 PowerPC Data Storage

Addressing with LM = 1
0.4.2 Unaligned Scalars
0.4.3 Non-Scalars
0.5 PowerPC Instruction Storage

Addressing with LM = 1
0.6 PowerPC Input/Output with LM = 1
0.7 Origin of Endian

Appendix E. Programming
Examples

E.1 Synchronization
E.1.1 Synchronization Primitives
E.1.2 List Insertion
E.1.3 Notes
E.2 Multiple-Precision Shifts
E.3 Floating-Point Conversions
E.3.1 Conversion from Floating-Point

Number to Floating-Point Integer ..
E.3.2 Conversion from Floating-Point

Number to Signed Fixed-Point Integer
Ooubleword

145
145
145
146
146
146

146
148
148

149
150
150

153
153
153
154
155
156
159

159

159

vi PowerPC User Instruction Set Architecture

/

IBM Confidential

Eo303 Conversion from Floating-Point
Number to Unsigned Fixed-Point
Integer Doubleword 0 0 0 0 0 0 0 0 0 0 159

Eo304 Conversion from Floating-Point
Number to Signed Fixed-Point Integer
Word 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 159

Eo305 Conversion from Floating-Point
Number to Unsigned Fixed-Point
Integer Word 0 0 0 0 0 0 0 0 0 0 0 0 0 0 160

Eo306 Conversion from Signed
Fixed-Point Integer Doubleword to
Floating-Point Number 0 0 0 0 0 0 0 0 160

Eo307 Conversion from Unsigned
Fixed-Point Integer Doubleword to
Floating-Point Number 0 0 0 0 0 0 0 0 160

Eo308 Conversion from Signed
Fixed-Point Integer Word to
Floating-Point Number 0 0 0 0 0 0 0 0 161

Eo309 Conversion from Unsigned
Fixed-Point Integer Word to
Floating-Point Number 0 0 0 0 0 0 0 0 161

Eo4 Floating-Point Selection 0 0 0 0 0 0 162
Eo401 Comparison to Zero 0 0 0 0 0 0 162
Eo402 Minimum and Maximum 0 0 0 0 162
E.403 Simple if-then-else

Constructions 0 0 0 0 0 0 0 0 0 0 0 0 0 0 162
Eo404 Notes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 162

Appendix F. Cross-Reference for
Changed Power Mnemonics

Appendix G. Incompatibilities with

163

the Power Architecture 0 0 0 0 0 0 0 0 165
Go1 New Instructions, Formerly

Privileged Instructions 0 0 0 0 0 0 0 0 165
Go2 Newly Privileged Instructions 165
Go3 Reserved Bits in Instructions 165
G.4 Reserved Bits in Registers 165
Go5 Alignment Check 0 0 0 0 0 0 0 0 0 165
Go6 Condition Register 0 0 0 0 0 0 0 0 0 166
Go 7 Inappropriate use of LK and Rc

bits 0 166
Go8 BO Field 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 166
Go9 Branch Conditional to Count

Register 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 166
Go10 System Call 0 0 0 0 0 0 0 0 0 0 0 0 166
Go11 Fixed-Point Exception Register

(XER) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 167
Go12 Update Forms of Storage Access 167
Go13 Multiple Register Loads 0 0 0 0 0 167
Go14 Alignment for Load/Store

Multiple 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 167

Go15 Load String Instructions 0 0 0 0 0 167
Go16 Synchronization 0 0 0 0 0 0 0 0 0 167
Go17 Move To/From SPR 0 0 0 0 0 0 0 167
Go18 Effects of Exceptions on FPSCR

Bits FR and FI 0 0 0 0 0 0 0 0 0 0 0 0 0 168
Go19 Floating-Point Store Instructions 168
Go20 Move From FPSCR 0 0 0 0 0 0 0 0 168
Go21 Zeroing Bytes in the Data Cache 168
Go22 Floating-Point Load/Store to

Direct-Store Segment 0 0 0 0 0 0 0 0 0 168
Go23 Segment Register Instructions 168
Go24 TLB Entry Invalidation 0 0 0 0 0 0 169
Go25 Floating-Point Interrupts 169
Go26 Timing Facilities 0 0 0 0 0 0 0 0 0 169
Go2601 Real-Time Clock 0 0 0 0 0 0 0 0 169
Go2602 Decrementer 0 0 0 0 0 0 0 0 0 0 169
Go27 Deleted Instructions 0 0 0 0 0 0 0 170
Go28 Discontinued Opcodes 0 0 0 0 0 170
Go29 Rios-2 Compatibility 0 0 0 0 0 0 0 171
Go2901 Cross-Reference for Changed

Rios-2 Mnemonics 0 0 0 0 0 0 0 0 0 0 0 171
Go2902 Floating-Point Conversion to

Integer 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 171
Go2903 Storage Ordering 0 0 0 0 0 0 0 0 171
Go2904 Floating-Point Interrupts 171
Go2905 Trace Interrupts 0 0 0 0 0 0 0 0 171
Go2906 Deleted Instructions 0 0 0 0 0 0 172
Go2907 Discontinued Opcodes 172

Appendix H. New Instructions 173
Ho1 New Instructions for All

Implementations 0 0 0 0 0 0 0 0 0 0 0 0 173
Ho2 New Instructions for 64-Bit

Implementations Only 0 0 0 0 0 0 0 0 0 173
Ho3 New Instructions for 32-Bit

Implementations Only 0 0 0 0 0 0 0 0 0 174
Ho4 Instructions with Different

Semantics 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 174

Appendix I. Illegal Instructions 0 0 0 175

Appendix J. Reserved Instructions 177

Appendix K. Opcode Maps : 0 0 0 0 0 179

Appendix L. PowerPC Instruction
Set Sorted by Opcode 0 0 0 0 0 0 0 0 0

Appendix M. PowerPC Instruction
Set Sorted by Mnemonic 0 0 0 0 0 0 0

Index

193

199

205

Table of Contents vii

IBM Confidential

;'

viii PowerPC User Instrudion Set Architedure

IBM Confidential

(

Figures

1. Logical Processing Model 5 25. Floating-Point Result Flags 86
2. PowerPC User Register Set 6 26. Floating-Point Single Format 87
3. I Instruction Format 7 27. Floating-Point Double Format 87
4. B Instruction Format 7 28. IEEE Floating-Point Fields .. 87
5. SC Instruction Format 7 29. Approximation to Real Numbers 88
6. o Instruction Format 7 30. Selection of Z1 and Z2 91
7. OS Instruction Format (64-bit 31. IEEE 64-bit Execution Model 97

implementations only) 7 32. Interpretation of G, R, and X bits 97
8. X Instruction Format 7 33. Location of the Guard, Round and Sticky
9. XL Instruction Format 7 Bits 97

10. XFX Instruction Format 7 34. Multiply-Add Execution Model 98
11. XFL Instruction Format 7 35. Example of C structure, showing values of
12. XS Instruction Format (64-bit elements 146

implementations only) 7 36. Big-Endian mapping of structure's' 146
13. XC Instruction Format 7 37. Uttle-Endian mapping of structure's' 146
14. A Instruction Format 7 38. Power PC Uttle-Endian, structure's' in
15. M Instruction Format 8 storage or cache 147
16. MD Instruction Format (64-bit 39. PowerPC Uttle-Endian, structure's' as

(implementations only) 8 seen by processor 148
17. MDS Instruction Format (64-bit 40. PowerPC Uttle-Endian, word stored at

implementations only) 8 address 5 148
18. Condition Register 15 41. Word stored at Uttle-Endian address 5 as
19. Unk Register 17 seen by Big-Endian addressing 148
20. Count Register 17 42. Power PC Big-Endian, instruction sequence
21. General Purpose Registers 27 as seen by processor 149
22. Fixed-Point Exception Register 28 43. Power PC Uttle-Endian, instruction
23. Floating-Point Registers 84 sequence as seen by processor 149
24. Floating-Point Status and Control Register 85·

Figures ix

IBM Confidential

Incomplete as of 1993/01/08

topic reason page

Make documents easy to read by people who are Agreed at several PowerPC meetings.
interested in 32-bit only machines.

Jan Stone's complex programming examples 153, 159
should be added to Appendix E.1, Synchroniza-
tion.

Additional programming examples should be
added to Appendix E.3, Floating-Point Conver-
sions.

Changes as of 1993/01/08 Version 1.02

change reason page

Delete sentence 'In 32-bit mode, the high-order Redundant and possibly confusing. 12+ 1
32 bits of the next instruction address are set to
0' (four places).

Delete RTL that shows clearing of the high-order Redundant and possibly confusing. 20,21
32 bits of the NIA and LR for 64-bit implementa-
tions in 32-bit mode.

Change mull to mullw (Multiply Low Word), and Was difficult to compute OV for mull when in 55
add mulld (Multiply Low Doubleword). Proposal 32-bit mode.
put in early.

Change JCor to nor in example. Typo. 66

For disabled overflow exception, change Correction. 95
'FPSCRFR FI are set to zero' to 'FPSCRFR is set
to one if the result is incremented when rounded,
and otherwise to zero' and 'FPSCRF1 is set to
one.'

Change Rios-2 mnemonics from fcvir/fcvirz to Tracking Rios-2 change. 113, 171
fcir/fcirz.

Remove the explicit grouping of the optional Agreed at Dec. 2 Power Open meeting. 119
instructions, and add a remark that there are
certain defined groups.

Change Architecture Note for strlWJC to say that it Agreed at Dec. 2 Power Open meeting. 120
may eventually be a required instruction.

Change disabled exponent overflow case of trap Correction. 125
model regarding how FPSCR bits FR and FI are
set.

Make floating-point convert to integer model Agreed at Dec. 2 Power Open meeting. 128+1
show that VXSNAN is set if the operand is an
SNaN.

Delete references to lock, lockd. lockr.l. These have been deleted from Rios-2. 172,
186+ 1

Add section "Instructions with Different Seman- Agreed at Dec. 2 Power Open mMting. 173+ 1
tics" (dcbz and tbll.).

x PowerPC User Instruction Set Architecture

IBM Confidential

Changes as of 1992110128

change reason page

Add Uttle-Endian mode, done via a hack on the Austin meeting, 20 October 1992. 145ft, and
low three bits of the EA rather than by actually others
reversing bytes. See Appendix 0, "Uttle-Endian
Byte Ordering" on page 145 for details. Refer-
ences to this appendix placed at start of sections
containing load and store instructions.

Changes as of 1992110105 Version 1.01 DRAFT

change reason page

Clarify that sync need not discard prefetched This has confused people (sync is not context 48
instructions. synchronizing).

Add item to list of general synchronization notes Suggested by Mike Yamamura at 8 Aug. 1992 155
in the Programming Examples appendix, warning meeting at Apple. In some implementations such
against looping on a Iwan that fails to return a looping may flood the bus.
desired value.

Add a caveat to the discussion of instruction Truth. 15
completion in the "Instruction Fetching" section,
citing the "Synchronization Requirements for
Special Registers" appendix in Book III.

Changes as of 1992109129

change reason page

Show that FR and FI are set to 0 by trsp of infin- Requested by Barry Dorfman. These were the 123
ities and ONaNs, in the "Floating-Point Model" only cases in the appendix for which FR and FI
appendix. settings were not specified. Setting them to 0 is

consistent with the definition of these bits.

Make floating-point terminology consistent as Previously we sometimes said "single/double- various
follows. precision format" IEEE uses "single/double

• Use "single/double format" for operand
format," and these terms nicely suggest the

formats.
amount of storage the formats require. IEEE also

• Use "single/double-precision" for operand
uses "double operand," etc., but that sounds
funny (does a double operand have two

values. instances?).
These changes are not marked with change bars.

Changes xi

IBM Confidential

Changes as of 1992/09/28

/
change reason page

Make symbols crO, cr1, •.. , cr7 (used with Fix inconsistency, pointed out by Ron Hochsprung 134
extended mnemonics) always have values 0, 1, and Mike Corrigan, in which the symbols some-
.•. ,7. times had values 0, 4, •.. , 28.

Change basic mnemonic generated by the m, Suggested by Ron Hochsprung. Permits a 144,65
extended mnemonic from orl to 0'. Show it as "recording" variant
example with the 0' instruction.

Add extended mnemonics for sundry CR Logical Suggested by Ron Hochsprung. 137,144
operations and for complementing a GPR. Show
these as examples with the corresponding basic
instructions (ero" eno" erno" c,eqv, and no,).

Add examples, in the Extended Mnemonics· Omission was oversight. 141ff
appendix, for the Rotate and Shift and Move
To/From Special Pu,pose Registe, extended mne-
monics.

Clarify that the SO bit of the XER is cleared only Suggested by Andy Wottreng. Previous wording 28
when software executes mtsp, (to the XER) or confused some people.
mcrx,.
State that early implementations must implement Needed for compatibility with Power, as pointed 28, 167
XER bits 16:23 and allow these bits to be read out by Ron Hochsprung.
and written by software in the normal manner.

Note incompatibilty with Power with respect to Omission was oversight. 169
use of MSR bit 20 to control floating-point inter-
rupts.

Explain the seeming discrepancy between the Some people were confused. 179
extended opcode shown for sradJ in the instruc-
tion description (413) and that shown in the
opcode maps (826 and 827).

Eliminate from instruction descriptions unneces- Such statements did not appear consistently. various
sary statements of the form "x is unchanged." Moreover, they sometimes caused confusion
(Some of these changes are not flagged, because (e.g., for mtlsfl the statement falsely implied that
they occur inside macros which may themselves the FPSCR summary bits were not affected).
occur within flagged areas.)

Clarify what it means for a NaN to be represent- OmiSSion was oversight. 89
able in single format.

Clarify which floating-point operations cause an Requested by Andy Wottreng. 93
exception when an operand is an SNaN.

Show Rios-2 mnemonics for fctiw and fctiwz. Requested by Mark Rogers. 113

Note incompatibilities with Rios-2 for fctiw and Omission was oversight. 171
fctiwz.

xii PowerPC User Instruction Set Architecture

IBM Confidential

Changes as of 1992/09/23

«
change reason page

Add section to Programming Examples appendix It's tricky to use if NaNs, infinities, or IEEE com- 162
showing uses of Ise/. patibility are important.

Revise discussion of Real-Time Clock incompat- Decided at 9-11 Sept. 1992 PowerPC architecture 165
ibilities with Power, to reflect the changes to the meeting.
Time Base instructions.

Changes as of 1992/09/22

change reason page

Specify that the high-order 32 bits of instruction Decided at 9-11 Sept. 1992 Power PC architecture 12
addresses are always 0 in 32-bit mode. meeting.

Note as Power incompatibility the fact that isync Decided at 9-11 Sept. 1992 PowerPC architecture 165
is now stronger than in Power (ics). meeting.

Changes as of 1992/09/21

change reason page

Eliminate Imd and stmd. Decided at 9-11 Sept. 1992 Power PC architecture 42
meeting.

Add a SUbsection to Section 1.9, Forms of Decided at 9-11 Sept. 1992 Power PC architecture 11
Defined Instructions, describing the handling of meeting.
optional instructions that are not implemented.
Add a bullet to Section 1.10, Exceptions, doing
same.

Changes xiii

IBM Confidential

Changes as of 1992/09/18

change reason page

For sync, cite Book Ill's discussion of TLB invali- Decided at 9-11 Sept. 1992 PowerPC architecture 48
dates. meeting.

Make Ires and trsqrta set FPSCR bits FR and FI Decided at 9-11 Sept 1992 PowerPC architecture 121
to undefined values, rather than preserve them. meeting. Ease of implementation.

Make the VXSORT bit of the FPSCR defined even Decided at 9-11 Sept 1992 PowerPC architecture 85
if the implementation does not support either of meeting. Provides uniform interface to software
the instructions that can set it (Isqrt[s] and for reflecting and handling square root
trsqrta). exceptions.

Move the discussion of Power compatibility for That's where Power compatibility considerations 42, 165
Imw and stmw to the "Incompatibilities with the belong.
Power Architecture" appendix, and cite that
appendix in the Load/Store Multiple chapter.
Correct the discussion to permit the implementa-
tion to execute an unaligned Imw or stmw cor-
rectly, without causing Alignment interrupt.

Add RTCU and RTCL to the cases for which Omission was oversight. 165
mfspr must give an Illegal Instruction type
Program interrupt in early implementations for
Power compatibility.

Changes as of 1992/09/17

/

change reason page

Move the strlW" instruction to Appendix A, Decided at 9-11 Sept. 1992 Power PC architecture 120
"Optional Instructions" on page 119, and make it meeting.
optional.

Move the Isal instruction to Appendix A, Decided at 9-11 Sept. 1992 PowerPC architecture 122
"Optional Instructions" on page 119, and make it meeting.
optional. Revise the definition so that it selects
based on a comparison with 0.0, instead of on a
sign bit.

Changes as of 1992/09/16

change reason page

Eliminate PMR. Decided at 9-11 Sept. 1992 PowerPC architecture various
meeting.

/'~""

\,,,,/

xiv PowerPC User Instruction Set Architecture

IBM Confidential

Chapter 1. Introduction

1.1 Overview 1
1.2 Computation Modes 1
1.2.1 64-bit Implementations 1
1.2.2 32-bit Implementations 2
1.3 Instruction Mnemonics and

Operands 2
1.4 Compatibility with the Power

Architecture 2
1.5 Document Conventions 2
1.5.1 Definitions and Notation 2
1.5.2 Reserved Fields 3
1.5.3 Description of Instruction Operation 3
1.6 Processor Overview 5
1.7 Instruction Formats 6
1.7.1 I Form 7
1.7.2 B Form 7
1.7.3 SC Form 7
1.7.4 D Form 7
1.7.5 DS Form 7

1.1 Overview

This chapter describes computation modes, compat
ibility with the Power Architecture, document con
ventions, a processor overview, instruction formats,
storage addressing, and instruction fetching.

1.2 Computation Modes

The PowerPC Architecture allows for the following
types of implementation:

• 64-bit implementations, in which all registers
except some Special Purpose Registers are 64
bits long, and effective addresses are 64 bits
long. All 64-bit implementations have two modes
of operation: 64-bit mode and 32-bit mode. The
mode controls how the effective address is inter
preted, how. status bits are set, and how the
Count Register is tested by Branch Conditional

1.7.6 X Forms 7
1.7.7 A Form 7
1.7.8 M Form 8
1.7.9 MD Form 8
1.7.10 MDS Form 8
1.7.11 Instruction Fields 8
1.8 Classes of Instructions 9
1.8.1 Defined Instruction Class 10
1.8.2 Illegal Instruction Class 10
1.8.3 Reserved Instruction Class 10
1.9 Forms of Defined Instructions 11
1.9.1 Preferred Instruction Forms 11
1.9.2 Invalid Instruction Forms 11
1.9.3 Optional Instructions 11
1.10 Exceptions 11
1.11 Storage Addressing 12
1.11.1 Storage Operands 12
1.11.2 Effective Address Calculation 12

instructions. All instructions provided for 64-bit
implementations are available in both modes.

• 32-bit implementations, in which all registers
except Floating-Point Registers are 32 bits long,
and effective addresses are 32 bits long.

Instructions defined in this document are provided in
both 64-bit implementations and 32-bit implementa
tions unless otherwise stated. Instructions that are
provided only for 64-bit implementations are illegal in
32-bit implementations, and vice versa.

1.2.1 64-bit Implementations

In both 64-bit mode and 32-bit mode of a 64-bit imple
mentation, instructions that set a 64-bit register affect
all 64 bits, and the value placed into the register is
independen(of mode. In both modes, effective
address computations use all 64 bits of the relevant
registers (General Purpose Registers, Link Register,
Count Register, etc.), and produce a 64-bit result.
However, in 32-bit mode, the high-order 32 bits of the
computed effective address are ignored when

Chapter 1. Introduction 1

accessing data, and are set to 0 when fetching
instructions.

1.2.2 32-bit Implementations

For a 32-bit implementation, all references to 64-bit
mode in this document should be disregarded. The
semantics of instructions are as shown in this docu
ment for 32-bit mode in a 64-bit implementation,
except that in a 32-bit implementation all registers
except Floating-Point Registers are 32 bits long. Bit
numbers for registers are shown in braces ({}) when
they differ from the corresponding numbers for a
64-bit implementation, as described in Section 1.5.1,
"Definitions and Notation" on page 2.

1.3 Instruction Mnemonics and
Operands

The description of each instruction includes the mne
monic and a formatted list of operands. Some exam
ples are the following.

stw RS,D(RA)
addis RT,RA,SI

PowerPC-compliant assemblers will support the mne
monics and operand lists exactly as shown. They will
also provide certain extended mnemonics, as
described in Appendix C, "Assembler Extended
Mnemonics" on page 133.

1.4 Compatibility with the Power
Architecture

The PowerPC Architecture provides binary compat
ibility for Power application programs, except as
described in Appendix G, "Incompatibilities with the
Power Architecture" on page 165.

Many of the Power PC instructions are identical to
Power instructions. For some of these the PowerPC
instruction name and/or mnemonic differs from that in
Power. To assist readers familiar with the Power
Architecture, Power mnemonics are shown with the
individual instruction descriptions when they differ
from the Power PC mnemonics. Also, Appendix F,
"Cross-Reference for Changed Power Mnemonics" on
page 163, provides a cross-reference from Power
mnemonics to PowerPC mnemonics for the
instructions in this document.

IBM Confidential

1.5 Document Conventions

1.5.1 Definitions and Notation

The following definitions and notation are used
throughout the PowerPC Architecture documents.

• A program is a sequence of related instructions.

• Quadwords are 128 bits, doublewords are 64 bits,
words are 32 bits, halfwords are 16 bits, and
bytes are 8 bits.

• All numbers are decimal unless specified in some
special way.

Obnnnn means a number expressed in binary
format
Oxnnnn means a number expressed in
hexadecimal format.

Underscores may be used between digits.

• RT, RA. R1, ... refer to General Purpose Regis
ters.

• FRT, FRA. FR1, ... refer to Floating-Point Regis
ters.

• (x) means the contents of register x, where x is
the name of an instruction field. For example,
(RA) means the contents of register RA, and
(FRA) means the contents of register FRA, where
RA and FRA are instruction fields. Names such
as LR and CTR denote registers, not fields, so
parentheses are not used with them. Also, when
register x is assigned to, parentheses are
omitted.

• (RAIO) means the contents of register RA if the
RA field has the value 1-31, or the value 0 if the
RA field is O.

• Bits in registers, instructions, and fields are spec-
ified as follows.

Bits are numbered left to right, starting with
bit O.
Ranges of bits are specified by two numbers
separated by a colon (:). The range p:q con
sists of bits p through q.
For registers that are 64 bits long in 64-bit
implementations and 32 bits long in 32-bit
implementations, bit numbers and ranges are
specified with the values for 32-bit implemen
tations enclosed in braces ({ }). 0 means a
bit that does not exist in 32-bit implementa
tions. {:} means a range that does not exist
in 32-bit implementations.

• Xp means bit p of register/field X.
Xp{r} means bit p of register/field X in a 64-bit
implementation, and bit r of register/field X in a
32-bit implementation.

• Xp:q means bits p through q of register/field X.

2 PowerPC User Instruction Set Architecture

(

IBM Confidential

Xp:q(r.S) means bits p through q of register/field X
in a 64-bit implementation, and bits r through s of
register/field X in a 32-bit implementation.

• Xp q ... means bits p, q, ... of register/field X.
Xp q ... (r s ...) means bits p, q, ... of register/field X
in a 64-bit implementation, and bits r, s, ... of
register/field X in a 32-bit implementation.

• ~ (RA) means the one's complement of the con
tents of register RA.

• Field i refers to bits 4xi to 4xi + 3 of a register.

• A period (.) as the last character of an instruction
mnemonic means that the instruction records
status information in certain fields of certain
Special Purpose Registers as a side effect of exe
cution, as described in Chapter 2 through
Chapter 4.

• The symbol II is used to describe the concat
enation of two values. For example, 010 II 111 is
the same as 010111.

• x" means x raised to the nth power.

• "x means the replication of x, n times (Le., x con
catenated to itself n-1 times). "0 and "1 are
special cases:

"0 means a field of n bits with each bit equal
to O. Thus SO is equivalent to ObOOOOO.
"1 means a field of n bits with each bit equal
to 1. Thus s1 is equivalent to Ob11111.

• Positive means greater than zero.

• Negative means less than zero.

• A system library program is a component of the
system software that can be called by an applica
tion program using a Branch instruction.

• A system service program is a component of the
system software that can be called by an applica
tion program using a System Call instruction.

• The system trap handler is a component of the
system software that receives control when the
conditions specified in a Trap instruction are sat
isfied.

• The system error handler is a component of the
system software that receives control when an
error occurs. The system error handler includes
a component for each of the various kinds of
error. These error-specific components are
referred to as the system alignment error
handler, the system data storage error handler,
etc.

• Each bit and field in instructions, and in status
and control registers (XER and FPSCR) and
Special Purpose Registers, is either defined or
reserved.

• /, II, III, ... denotes a reserved field in an instruc
tion.

• Latency refers to the interval from the time an
instruction begins execution until it produces a
result that is available for use by a subsequent
instruction.

• Unavailable refers to data or instruction storage
that an instruction cannot access for any reason.

1.5.2 Reserved Fields

All reserved fields in instructions should be zero. If
they are not, the instruction form is invalid: see
Section 1.9.2, "Invalid Instruction Forms" on page 11.

The handling of reserved bits in status and control
registers. (XER and FPSCR) and in Special Purpose
Registers (and Segment Registers: see Book III,
PowerPC Operating Environment Architecture) is
implementation dependent. For each such reserved
bit, an implementation shall either:

• ignore the source value for the bit on write, and
return zero for it on read; or

• set the bit from the source value on write, and
return the value last set for it on read.

Programming Note -----------,

It is the responsibility of software to preserve bits
that are now reserved in status and control regis
ters and in Special Purpose Registers (and
Segment Registers: see Book III, PowerPC Oper
ating Environment Architecture), as they may be
assigned a meaning in some tuture version of the
architecture or in Book IV, PowerPC Implementa
tion Features for some implementation. In order
to accomplish this preservation in implementation
independent fashion, software should do the fol
lowing.

• Initialize each such register supplying zeros
for all reserved bits.

• Alter (defined) bites) in the register by reading
the register, altering only the desired bit(s),
and then writing the new value back to the
register.

When a currently reserved bit is subsequently
assigned a meaning, every effort will be made to
have the value to which the system initializes the
bit correspond to the "old behavior."

1.5.3 Description of Instruction
Operation

A formal description is given of the operation of each
instruction. In addition, the operation of most
instructions is described by a semiformal language at
the register transfer level (RTL). This RTL uses the
notation given below, in addition to the definitions and
notation described in Section 1.5.1, "Definitions and

Chapter 1. Introduction 3

Notation" on page 2. RTL notation not summarized
here should be self-explanatory.

The RTL descriptions do not imply any particular
implementation.

The RTL descriptions do not cover the following:

• "Standard" setting of the Condition Register,
Fixed-Point Exception Register, and Floating-Point
Status and Control Register. "Non-standard"
setting of these registers (e.g., the setting of Con
dition Register Field 0 by the sewex. instruction)
is shown.

• Invalid instruction forms.

Notation -
x
+
+

-,r/:
<,:S,>,~

~,:!\.
?
&,1
e,:
CEIl(x)
DOUBLE(x)

EXTS(x)

GPR(x)
MASK(x, y)

MEM(x, y)

ROTLu(x, y)

ROTLs2(x, y)

SINGLE(x)

Meaning
Assignment
NOT logical operator
Multiplication
Division (yielding quotient)
Two's-complement addition
Two's-complement subtraction, unary
minus
Equals and Not Equals relations
Signed comparison relations
Unsigned comparison relations
Unordered comparison relation
AND, OR logical operators
Exclusive-OR, Equivalence logical
operators «a:b) - (ae-'b))
Least integer ~ x
Result of converting x from floating
point single format to floating-point
double format, using the model
shown on page 100
Result of extending x on the left with
sign bits
General Purpose Register x
Mask having 1's in positions x
through y (wrapping if x > y) and O's
elsewhere
Contents of y bytes of memory
starting at address x
Result of rotating the 64-bit value x
left y positions
Result of rotating the 64-bit value xlix
left y positions, where x is 32 bits
long
Result of converting x from floating
point double format to floating-point
single format, using the model shown
on page 103

SPREG(x) Special Purpose Register x
TRAP Invoke the system trap handler
characterization Reference to the setting of status

bits, in a standard way that is
explained in the text

IBM Confidential

undefined An undefined value. The value may
vary from one implementation to
another, and from one execution to
another on the same implementa
tion.

CIA Current Instruction Address, which is
the 64{32}-bit address of the instruc
tion being described by a sequence
of RTL Used by relative branches
to set the Next Instruction Address
(NIA), and by Branch instructions
with LK -1 to set the Unk Register.
In 32-bit mode of 64-bit implementa
tions, the high-order 32 bits of CIA
are always set to O. Does not corre
spond to any architected register.

NIA Next Instruction Address, which is
the 64{32}-bit address of the next
instruction to be executed. For a
successful branch, the next instruc
tion address is the branch target
address: in RTL. this indicated by
assigning a value to NIA. For other
instructions that cause non
sequential instruction fetching (see
Book III, PowerPC Operating Envi
ronment Architecture), the RTL is
similar. For instructions that do not
branch, and do not otherwise cause
instruction fetching to be non
sequential, the next instruction
address is CIA + 4. In 32-bit mode of
64-bit implementations, the high
order 32 bits of NIA are always set
to O. Does not correspond to any
architected register.

if ... then ... else ... Conditional execution, indenting
shows range, else is optional

do Do loop, indenting shows range. "To'
and/or 'by' clauses specify incre
menting an iteration variable, and
'while' and/or 'until' clauses give
termination conditions, in the usual
manner.

leave Leave innermost do loop, or do loop
described in leave statement

The precedence rules for RTL operators are summa
rized in Table 1 on page 5. Operators higher in the
table are applied before those lower in the table.
Operators at the same level in the table associate
from left to right, from right to left, or not at all, as
shown. (For example, - associates from left to right,
so a-b-c - (a-b)-c.) Parentheses are used to
override the evaluation order implied by the table, or
to increase clarity: parenthesized expressions are
evaluated before serving as operands.

4 PowerPC User Instruction Set Architecture

IBM Confidential

Table 1. Operatar Precedence

Operator. A880ciatlvlty

subscript, function evaluation left to right

pre-superscript (replication), right to left
post-superscript (exponentiation)

unary -, right to left

x,+ left to right

+,- left to right

II left to right

-,¢,<,~,>,~,~,~,? left to right

&, $, == left to right

I left to right

: (range) none - none

1.6 Processor Overview

The processor implements the instruction set, the
storage model, and other facilities defined in this doc
ument. Instructions which the processor can execute
fall into the following classes.

• branch instructions,

• fixed-point instructions, and

• floating-point instructions.

Branch instructions are described in Section 2.4,
"Branch Processor Instructions" on page 18. Fixed
point instructions are described in Section 3.3, "Fixed
Point Processor Instructions" on page 29.
Floating-point instructions are described in Section
4.6, "Floating-Point Processor Instructions" on
page 99.

Fixed-point instructions operate on byte, halfword,
word, and, in 64-bit implementations, doubleword
operands. Floating-point instructions operate on
single-precision and double-precision floating-point
operands. The PowerPC Architecture uses

instructions that are four bytes long and word-aligned.
It provides for byte, halfword, word, and, in 64-bit
implementations, doubleword operand fetches and
stores between storage and a set of 32 General
Purpose Registers (GPRs). It also provides for word
and doubleword operand fetches and stores between
storage and a set of 32 Floating-Point Registers
(FPRs).

There are no computational instructions that modify
storage. To use a storage operand in a computation
and then modify the same or another storage
location, the content of storage must be loaded into a
register, modified, and then stored back to the target
location. Figure 1 is a logical representation of
instruction proceSSing. Figure 2 on page 6 shows the
registers of the Power PC User Instruction Set Archi
tecture.

Branch
Processing

Fixed-P
Floatin
Instruc

! !
Fixed-pt Floa
Processing Proc

I
,

Data to/frOll
Storage

1
Storage

In structions
frOil Storage

oint and
g-Point
tions

t-pt
essing

I

Figure 1. Logical Processing Model

Chapter 1. Introduction 5

IBM Confidential

64-blt Implementations 32·blt Implementations

I CR I Condition Register (page 15) I CR I
0 31 0 31

I LR I Unk Register (page 17) I LR I
0 83 0 31

I CTR I Count Register (page 17) I CTR I
0 83 0 31

GPROO GPROO

GPR 01 GPR 01

... General Purpose Registers (page 27) ...

... . ..
GPR 31 GPR31

0 83 0 31

I XER I Fixed·Point Exception Register (page 28) I XER I
0 31 0 31

FPR 00 FPR 00

FPR 01 FPR 01

... Floating·point ...

... Registers (page 84) ...
FPR 31 FPR 31

0 83 0 83

I FPSCR I Floating.Point Status and I FPSCR I
0 31 Control Register (page 85) 0 31

Figure 2. PowerPC User Register Set

1.7 Instruction Formats

All instructions are four bytes long and word·aligned.
Thus, whenever instruction addresses are presented
to the processor (as in Branch instructions) the two
low order bits are ignored. Similarly, whenever the
processor develops an instruction address its two low
order bits are zero.

Bits 0:5 always specify the opcocle (OPCD, below).
Many instructions also have an extended opcoc:le (XO,
below). The remaining bits of the instruction contain
one or more fields as shown below for the different
instruction formats.

In some cases an instruction field is reserved, or
must contain a particular value. These cases are not
shown in the format diagrams given below, but are
shown in the individual instruction layouts as appro
priate. If a reserved field does not have all bits set to
0, or if a field that must contain a particular value

does not contain that value, the instruction form is
invalid and the results are as described in Section
1.9.2, "Invalid Instruction Forms" on page 11.

Split Field Notation

In some cases an instruction field occupies more than
one contiguous sequence of bits, or occupies one con·
tiguous sequence of bits which are used in permuted
order. Such a field is called a "split field." In the
format diagrams given below and in t~e' individual
instruction layouts, the name of a split field is shown
in small letters, once for each of the contiguous
sequences. In the RTL description of an instruction
having a split field, and in certain other places where
individual bits of a split field are identified, the name
of the field in small letters represents the concat
enation of the sequences from left to right. In all
other places, the name of the field is capitalized, and
represents the concatenation of the sequences in
some order, which need not be left to right, as
descri~ for each affected instruction.

6 PowerPC User Instruction Set Architecture

"
" 7' "'--- ~

"

C

f

IBM Confidential

1.7.1 I Form

0 6 30 31

I OPCD I LI I~LKI
Figure 3. I Instruction Format

1.7.2 B Form

0 6 11 16 30 31

I OPCD I
BO BI BD I~LKI

Figura 4. B Instruction Format

1.7.3 se Form

0 6 11 16 30 31

I OPCD I //I
I "' I 1/1 IX9 'I

Figure 5. se Instruction Format

1.7.4 D Form

0 6 11 16 31

I OPCD RT RA D

RS SI

FRT UI

FRS

TO

BF IIIL

Figure 6. D Instruction Format

1.7.5 DS Form

o 6 11 16 30 31

DS IxOI

Figure 7. DS Instruction Format (64-bit implementa.
tlons only)

1.7.6 X Forms

o 6 11 16 21 31

I OPCD RT RA RB XO I Rei

FRT FRA FRB

BF I'lL BFAI" SH

RS NB

FRS U I'

TO

BT

Figura 8. X Instruction Format

o 6 11 16 21 31

I OPCD BT BA BB I xo ILKI

BO BI

BF I" BFAI"

Figure 9. XL Instruction Format

0 6 11 21 31

I OPCD RT

1'1

spr

1,1
XO I Rei

RS FXM

Figure 10. XFX Instruction Format

0 67 1516 21 31

I OPCD 1'1 FLM
1'1 FRB I XO IRel

Figure 11. XFL Instruction Format

0 6 11 16 21 30 31

I OPCD I RS
I

RA
I

sh I xo Is3R9
Figura 12. XS Instruction Format (64-bit implementa.

tions only)

o 6 11 16 21 22 31

I OPCD I RT I RA I RB 10EI XO IRel

Figure 13. XO Instruction Format

1.7.7 A Form

o 6 11 16 21 26 31

I OPCD I FRT I FRA I FRB I FRC I XO IRel

Figure 14. A Instruction Format

Chapter 1. Introduction 7

1.7.8 M Form

o 8 11 18 21 28 31

OPCD RS RA

Figure 15. M Instruction Format

1.7.9 MD Form

o 8 11 18 21 27 30 31

OPCD RS RA sh
&.-:_b --,1xc#4

Figure 1&. MD Instruction Format (&4-blt Implementa.
tions only)

1.7.10 MDS Form

o 8 11 18 21 27 31

OPCD I RS RA RB

Figure 17. MDS Instruction Format (&4-blt implemen.
tations only)

1.7.11 Instruction Fields

AA (30)
Absolute Address bit

o The immediate field represents an address
relative to the current instruction address.
For I·form branches the effective address of
the branch target is the sum of the LI field
sign-extended to 64 bits and the address of
the branch instruction. For B·form branches
the effective address of the branch target is
the sum of the BO field sign-extended to 64
bits and the address of the branch instruc·
tion.

The immediate field represents an absolute
address. For I·form branches the effective
address of the branch target is the LI field
sign-extended to 64 bits. For B-form
branches the effective address of the branch
target is the BO field sign-extended to 64
bits.

BA (11:15)
Field used to specify a bit in the CR to be used as
a source.

IBM Confidential

BB (1&:20)
Field used to specify a bit in the CR to be used as
a source.

BO (1&:29)
Immediate field specifying a 14-bit signed two's
complement branch displacement which is con
catenated on the right with ObOO and sign·
extended to 64 bits.

BF (&:8)
Field used to specify one of the CR fields or one
of the FPSCR fjelds as a target.

BFA (11:13)
Field used to specify one of the CR fields or one
of the FPSCR fields as a source.

BI (11:15)
Field used to specify a bit in the CR to be used as
the condition of a Branch Conditional instruction.

BO (&:10)
Field used to specify options for the Branch Con
ditional instructions. The encoding is described in
Section 2.4. "Branch Processor Instructions" on
page 18.

BT (&:10)
Field used to specify a bit in the CR or in the
FPSCR as the target of the result of an instruc
tion.

D (1&:31)
Immediate field specifying a 16-bit signed two's
complement integer which is sign-extended to 64
bits.

DS (1&:29)
Immediate field specifying a 14-bit signed two's
complement integer which is concatenated on the
right with ObOO and sign-extended to 64 bits. This
field is defined in 64-bit implementations only.

FLM (7:14)
Field mask used to identify the FPSCR fields that
are to be updated by the mtfsf instruction.

FRA (11:15)
Field used to specify an FPR as a source of an
operation.

FRB (16:20)
Field used to specify an FPR as a source of an
operation.

FRC (21:25)
Field used to specify an FPR as a source of an
operation.

FRS (&:10) .
Field used to specify an FPRas a source of an
operation. . .

FRT (6:10)
Field used to specify an FPR as the target of an
operation.

8 PowerPC User Instruction Set Architecture .

IBM Confidential

FXM (12:19)
Field mask used to identify the CR fields that are
to be updated by the mtcrf instruction.

L (10)
Field used to specify whether a Fixed-Point
Compare instruction is to compare 64-bit
numbers or 32-bit numbers. This field is defined
in 64-bit implementations only.

LI (6:29)
Immediate field specifying a 24-bit signed two's
complement integer which is concatenated on the
right with ObOO and sign-extended to 64 bits.

LK (31)
LINK bit.

o [)o not set the Unk Register.

Set the Unk Register. If the instruction is a
Branch instruction, the address of the
instruction following the Branch instruction is
placed into the Unk Register.

MB (21 :25) and ME (26:30)
Fields used in M-form instructions to specify a
64-bit mask consisting of 1-bits from bit MB+32
through bit ME+32 inclusive, and O-bits else
where, as described in Section 3.3.13, "Fixed
Point Rotate and Shift Instructions" on .page 69.

MB (21:26)
Field used in MD-form and MDS-form instructions
to specify the first 1-bit of a 64-bit mask, as
described in Section 3.3.13, "Fixed-Point Rotate
and Shift Instructions" on page 69. This field is
defined in 64-bit implementations only.

ME (21:26)
Field used in MD-form and MDS-form instructions
to specify the last 1-bit of a 64-bit mask, as
described in Section 3.3.13, "Fixed-Point Rotate
and Shift Instructions" on page 69. This field is
defined in 64-bit implementations only.

NB (16:20)
Field used to specify the number of bytes to
move in an immediate string load or store.

opeD (0:5)
Primary opcode field.

OE (21)
Used for extended arithmetic to enable setting
OV and SO in the XER.

RA (11:15)
Field used to specify a GPR to be used as a
source or as a target.

RB (16:20)
Field used to specify a GPR to be used as a
source.

Rc (31)
RECORD bit

o Do not set the Condition Register.

RS (6:10)

Set the Condition Register to reflect the
result of the operation.

For fixed-point instructions, CR bits 0:3 are
set to reflect the result as a signed quantity.
The result as an unsigned quantity or a bit
string can be deduced from the EO bit.

For floating-point instructions, CR bits 4:7
are set to reflect Floating-Point Exception,
Floating-Point Enabled Exception, Floating
Point Invalid Operation Exception, and
Floating-Point Overflow Exception.

Field used to specify a GPR to be used as a
source.

RT (6:10)
Field used to specify a GPR to be .used as a
target.

SH (16:20, or 16:20 and 30)
Field used to specify a shift amount. Location
16:20 and 30 pertains to 64-bit implementations
only.

SI (16:31)
Immediate field used to specify a 16-bit signed
integer.

SPR (11:20)
Field used to specify a Special Purpose Register
for the mtspr and mfspr instructions. The
encoding is described in Section 3.3.14, "Move
To/From System Register Instructions" on
page 79.

TO (6:10)
Field used to specify the conditions on which to
trap. The encoding is described in Section 3.3.11,
"Fixed-Point Trap Instructions" on page 61.

U (16:19)
Immediate field used as the data to be placed
into a field in the FPSCR.

UI (16:31)
Immediate field used to specify a 16-bit unsigned
integer.

XO (21:29, 21:30, 22:30, 26:30, 27:29, 27:30, 30, or
30:31)
Extended opcode field. Locations 21 :29, 27:29,
27:30, and 30:31 pertain to 64-bit implementations
only.

1.8 Classes of Instructions

An instruction falls into exactly one of the following
three classes:

Defined
Illegal
Reserved

Chapter ·1. Introduction 9

The class is determined by examining the opcode, and
the extended opcode if any. If the opcode, or combi
nation of opcode and extended opcode, is not that of
a defined instruction nor of a reserved instruction, the
instruction is illegal.

Some instructions are defined only for 64-bit imple
mentations and a few are defined only for 32-bit
implementations (see 1.8.2, "JlJegal Instruction
Class"). With the exception of these, a given instruc
tion is in the same class for all implementations of the
PowerPC Architecture. In future versions of this
architecture, instructions that are now illegal may
become defined (by being added to the architecture)
or reserved (by being assigned to one of the special
purposes described in Appendix J, "Reserved
Instructions" on page 1n). Similarly, instructions
that are now reserved may become defined.

The results of attempting to execute a given instruc
tion are said to be boundedly undefined if they could
have been achieved by executing an arbitrary
sequence of defined instructions, in valid form (see
below), starting in the state the machine was in
before attempting to execute the given instruction.
Boundedly undefined results for a given instruction
may vary between implementations, and between
execution attempts in the same implementation, and
are not further defined in this document.

1.8.1 Defined Instruction Class

This class of instructions contains all the instructions
defined in the PowerPC User Instruction Set Architec
ture, PowerPC Virtual Environment Architecture, and
PowerPC Operating Environment Architecture.

Defined instructions are guaranteed to be supported
in all implementations, except as stated in the instruc
tion descriptions. (The exceptions are instructions
that are supported only in 64-bit implementations or
only in 32-bit implementations.)

A defined instruction can have preferred and/or
invalid forms, as described in Section 1.9.1, "Pre
ferred Instruction Forms" on page 11, and Section
1.9.2, "Invalid Instruction Forms" on page 11.

1.8.2 Illegal Instruction Class

This class of instructions contains the set of
instructions described in Appendix I, "Illegal
Instructions" on page 175. For 64-bit implementa
tions this class includes all instructions that are
defined only for 32-bit implementations. For 32-bit
implementations it includes all instructions that are
defined only for 64-bit implementations.

IBM Confidential

Excluding instructions that are defined for one type of
implementation but not the other, illegal instructions
are available for future extensions of the Power PC
Architecture: that is, some future version of the
Power PC Architecture may define any of these
instructions to perform new functions.

Any attempt to execute an illegal instruction will
cause the system illegal instruction error handler to
be invoked and will have no other effect.

An instruction consisting entirely of binary O's is guar
anteed always to be an illegal instruction. This
increases the probability that an attempt to execute
data or uninitialized storage will result in the invoca
tion of the system illegal instruction error handler.

Editors' Note -------------.

Instructions in this class were formerly called
"invalid instructions." The term was changed to
"illegal instructions" to reduce confusion between
these instructions and invalid forms of defined
instructions.

1.8.3 Reserved Instruction Class

This class of instructions contains the set of
instructions described in Appendix J, "Reserved
Instructions" on page 1n.

Reserved instructions are allocated to specific pur
poses that are outside the scope of the PowerPC
Architecture.

Any attempt to execute a reserved instruction will
either cause the system illegal instruction error
handler to be invoked or will yield boundedly unde
fined results.

Engineering Note ------------,

Causing the system illegal instruction error
handler to be invoked if attempt is made to
execute a reserved instruction, that is not defined
in Book IV, PowerPC Implementation Features for
the implementation, facilitates the debugging of
software.

10 PowerPC User Instruction Set Architecture .:. ~ ~ ..

('

IBM Confidential

1.9 Fonns of Defined
Instructions

1.9.1 Preferred Instruction Forms

Some of the defined instructions have preferred
forms. For such an instruction, the preferred form will
execute in an efficient manner, but any other form
may take significantly longer to execute than the pre
ferred form.

Instructions having preferred forms are:

• the Load/Store Multiple instructions
• the Load/Store String instructions
• the Or Immediate instruction (preferred form of

no-op)

1.9.2 Invalid Instruction Forms

Some of the defined instructions have invalid forms.
An instruction form is invalid if one or more fields of
the instruction" excluding the opcode field(s), are
coded incorrectly.

Any attempt to execute an invalid form of an instruc
tion will either cause the system illegal instruction
error handler to be invoked or will yield boundedly
undefined results. Exceptions to this rule are stated
in the instruction descriptions.

Some kinds of invalid form can be deduced from the
instruction layout. These are listed below.

• Rc bit shown as '1' but coded as 1, or shown as 1
but coded as O.

• LK bit shown as '1' but coded as 1.

• OE bit shown as '1' but coded as 1.

• Other field shown as 'I'(s) but coded as non-zero.

These invalid forms are not discussed further.

Instructions having invalid forms that cannot be so
deduced are listed below. For these, the invalid
forms are identified in the instruction descriptions.

• the Branch Conditional instructions
• the Load/Store with Update instructions
• the Load Multiple instructions
• the Load String instructions
• the Fixed-Point Compare instructions (invalid

form exists only in 32-bit implementations)
• Move To/From Special Purpose Register (mtspr,

mfspr)
• the Load/Store Floating-Point with Update

instructions

Assembler Note ------------,

To the extent possible, the Assembler should
report uses of invalid instruction forms as errors.

Engineering Note ------------.,

Causing the system illegal instruction error
handler to be invoked if attempt is made to
execute an invalid form of an instruction facili
tates the debugging of software.

1.9.3 Optional Instructions

Some of the defined instructions are optional.

Any attempt to execute an optional instruction that is
not provided by the implementation will cause the
system illegal instruction error handler to be invoked.
Exceptions to this rule are stated in the instruction
descriptions.

1.10 Exceptions

There are two kinds of exception, those caused
directly by the execution of an instruction and those
caused by an asynchronous event. In either case, the
exception may cause one of several components of
the system software to be invoked.

The exceptions that can be caused directly by the
execution of an instruction are the following.

• an attempt to execute an illegal instruction, or an
attempt by an application program to execute a
"privileged" instruction (see Book III, PowerPC
Operating Environment Architecture) (system
illegal instruction error handler or system privi
leged instruction error handler)

• the execution of a defined instruction using an
invalid form (system illegal instruction error
handler or system privileged instruction error
handler)

• the execution of an optional instruction that is not
provided by the implementation (system illegal
instruction error handler)

• an attempt to access a storage location that is
unavailable (system data storage error handler or
system instruction storage error handler)

• an attempt to access storage in a manner that
violates storage protection (system data storage
error handler or system instruction storage error
handler)

• an attempt to access storage with an effective
address alignment that is invalid for the instruc
tion (system alignment error handler)

Chapter 1. Introduction 11

• the execution of a System Call instruction
(system service program)

• the execution of a Trap instruction that traps
(system trap handler)

• the execution of a floating-point instruction when
floating-point instructions are unavailable (system
floating-point unavailable error handler)

• the execution of a floating-point instruction that
causes a floating-point exception that is enabled
(system floating-point enabled exception error
handler)

• the execution of a floating-point instruction that
requires system software assistance (system
floating-point assist error handler; the conditions
under which such software assistance is required
are implementation-dependent)

The exceptions that can be caused by an asynchro
nous event are described in Book III, PowerPC Oper
ating Environment Architecture.

The invocation of the system error handler is precise,
except that if one of the imprecise modes for invoking
the system floating-point enabled exception error
handler is in effect (see page 92) then the invocation
of the system floating-point enabled exception error
handler may be imprecise. When the system error
handler is invoked imprecisely, the excepting instruc
tion does not appear to complete before the next
instruction starts (because one of the effects of the
excepting instruction, namely the invocation of the
system error handler, has not yet occurred).

Additional information about exception handling can
be found in Book III, PowerPC Operating Environment
Architecture.

1.11 Storage AddreSSing

A program references storage using the effective
address computed by the processor when it executes
a Storage Access or Branch instruction (or certain
other instructions described in Book II, PowerPC
Virtual Environment Architecture, and Book III,
PowerPC Operating Environment Architecture), or
when it fetches the next sequential instruction.

1.11.1 Storage Operands

Bytes in storage are numbered consecutively starting
with O. Each number is the address of the corre
sponding byte.

Storage operands may be bytes, halfwords, words, or
doublewords, or, for the Load/Store Multiple and
Move Assist instructions, a sequence of bytes or
words. The address of a storage operand is the

IBM Confidential

address of its first byte (Le., of its lowest-numbered
byte). Byte ordering is Big-Endian by default, but
Power PC can be operated in a mode in which byte
ordering is Uttle-Endian. See Appendix D, HUttle
Endian Byte Ordering" on page 145.

Operand length is implicit for each instruction.

The operand of a single-register Storage Access
instruction has a "natural" alignment boundary equal
to the operand length. In other words, the "natural"
address of an operand is an integral multiple of the
operand length. A storage operand is said to be
"aligned" if it is aligned at its natural boundary: other
wise it is said to be "unaligned."

Storage operands for single-register Storage Access
instructions have the following characteristics.
(Although not permitted as storage operands,
quadwords are shown because quadword alignment is
desirable for certain storage operands.)

Operand Length Addr60:63 if aligned

Byte 8 bits xxxx
Halfword 2 bytes xxxO
Word 4 bytes XXOO
Doubleword 8 bytes XOOO
Ouadword 16 bytes 0000

Note: An "x" in an address bit position indicates
that the bit can be 0 or 1 independent of the state of
other bits in the address.

The concept of alignment is also applied more gener
ally, to any datum in storage. For example, a 12-byte
datum in storage is said to be word-aligned if its
address is an integral multiple of 4.

Some instructions require their storage operands to
have certain alignments. In addition, alignment may
affect performance. For single-register Storage
Access instructions the best performance is obtained
when storage operands are aligned. Additional
effects of data placement on performance are
described in Book II, PowerPC Virtual Environment
Architecture.

Instructions are always four bytes long and word
aligned.

1_11_2 Effective Address Calculation

The 64- or 32-bit address computed by the processor
when executing a Storage Access or Branch instruc
tion (or certain other instructions described in Book II,
PowerPC Virtual Environment Architecture, and Book
III, PowerPC Operating Environment Architecture), or
when fetching the next sequential instruction, is called
the "effective address," and specifies a byte in
storage. For a Storage Access instruction, if the sum
of the effective address and the operand length

12 PowerPC User Instruction Set Architecture .

/

(

IBM Confidential

exceeds the maximum effective address, the storage
operand is considered to wrap around from the
maximum effective address to effective address 0, as
described below.

Effective address computations, for both data and
instruction accesses, use 64{32}bit unsigned binary
arithmetic regardless of mode. A carry from bit 0 is
ignored. In a 64-bit implementation, the 64-bit current
instruction address and next instruction address are
not affected by a change from 32-bit mode to 64-bit
mode, but they are affected by a change from 64-bit
mode to 32-bit mode (the high-order 32 bits are set to
0).

In 64-bit mode, the entire 64-bit result comprises the
64-bit effective address. The effective address arith
metic wraps around from the maximum address,
264-1, to address O.

In 32-bit mode, the low-order 32 bits of the 64-bit
result comprise the effective address for the purpose
of addressing storage. The high-order 32 bits of the
64-bit effective address are ignored for the purpose of
accessing data, but are included whenever a 64-bit
effective address is placed into a GPR by Load with
Update and Store with Update instructions. The high
order 32 bits of the 64-bit effective address are set to
o for the purpose of fetching instructions, and when
ever a 64-bit effective address is placed into the Link
Register by Branch instructions having LK -1. The
high-order 32 bits of the 64-bit effective address are
set to 0 in Special Purpose Registers when the
system error handler is invoked. As used to address
storage, the effective address arithmetic appears to
wrap around from the maximum address, 232_1, to
address O.

A zero in the RA field indicates the absence of the
corresponding address component. For the absent
component, a value of zero is used for the address.
This is shown in the instruction descriptions as (RAIO).

In both 64-bit and 32-bit modes, the calculated Effec
tive Address may be modified in its three low-order
bits before accessing storage if the Power PC system
is operating in Little-Endian mode. See Appendix 0,
"Little-Endian Byte Ordering" on page 145.

Effective addresses are computed as follows. In the
descriptions below, it should be understood that "the

contents of a GPR" refers to the entire 64-bit con
tents, independent of mode, but that in 32-bit mode,
only bits 32:63 of the 64-bit result of the computation
are used to address storage.

• With X-form instructions, in computing the effec
tive address of a data element, the contents of
the GPR designated by RB is added to the con
tents of the GPR designated by RA or to zero if
RA-O.

• With O-form instructions, the 16-bit 0 field is sign
extended to form a 64-bit address component. In
computing the effective address of a data
element, this address component is added to the
contents of the GPR designated by RA or to zero
if RA-O.

• With OS-form instructions, the 14-bit OS field is
concatenated on the right with ObOO and sign
extended to form a 64-bit address component. In
computing the effective address of a data
element, this address component is added to the
contents of the GPR designated by RA or to zero
if RA-O.

• With I-form Branch instructions, the 24-bit LI field
is concatenated on the right with ObOO and sign
extended to form a 64-bit address component. If
AA-O, this address component is added to the
address of the branch instruction to form the
effective address of the next instruction. If
AA -1, this address component is the effective
address of the next instruction.

• With B-form Branch instructions, the 14-bit BO
field is concatenated on the right with ObOO and
sign-extended to form a 64-bit address compo
nent. If AA-O, this address component is added
to the address of the branch instruction to form
the effective address of the next instruction. If
AA-l, this address component is the effective
address of the next instruction.

• With XL-form Branch instructions, bits 0:61 of the
Link Register or the Count Register are concat
enated on the right with ObOO to form the effec
tive address of the next instruction.

• With sequential instruction fetching, the value 4 is
added to the address of the current instruction to
form the effective address of the next instruction.

Chapter 1. Introduction 13

IBM Confidential

,/

14 PowerPC User Instruction Set Architecture

(

IBM Confidential

Chapter 2. Branch Processor

2.1 Branch Processor Overview 15
2.2 Instruction Fetching 15
2.3 Branch Processor Registers 15
2.3.1 Condition Register 15
2.3.2 Link Register 17
2.3.3 Count Register 17
2.4 Branch Processor Instructions 18

2.1 Branch Processor Overview

This chapter describes the registers and instructions
that make up the Branch Processor facilities. Section
2.3, "Branch Processor Registers" on page 15
describes the registers associated with the Branch
Processor. Section 2.4, "Branch Processor
Instructions" on page 18 describes the instructions
associated with the Branch Processor.

2.2 Instruction Fetching

In general, instructions appear to execute sequen
tially, in the order in which they appear in storage.
The exceptions to this rule are listed below.

• Branch instructions for which the branch is taken
cause execution to continue at the target address
generated by the Branch instruction.

• Trap and System Call instructions cause the
appropriate system handler to be invoked.

• Exceptions can cause the system error handler to
be invoked, as described in Section 1.10,
"Exceptions" on page 11.

• The Return From Interrupt instruction, described
in Book III, PowerPC Operating Environment
Architecture, causes execution to continue at the
address contained in a Special Purpose Register.

In general, each instruction appears to complete
before the next instruction starts. The only
exceptions to this rule arise when the system error

2.4.1 Branch Instructions 18
2.4.2 System Call Instruction 22
2.4.3 Condition Register Logical

Instructions 23
2.4.4 Condition Register Field

Instruction 25

handler is invoked imprecisely, as described in
Section 1.10, "Exceptions" on page 11, or when
certain special registers are altered, as described in
the appendix entitled "Synchronization Requirements
for Special Registers" in Book III, PowerPC Operating
Environment Architecture (none of these special reg
isters can be altered by an application program).

Programming Note -----------,

CAUTION
Implementations are allowed to prefetch any
number of instructions before the instructions are
actually executed. If a program modifies the
instructions it intends to execute, it should call a
system library program to ensure that the modifi
cations have been made visible to the instruction
fetching mechanism prior to attempting to execute
the modified instructions.

2.3 Branch Processor Registers

2.3.1 Condition Register

The Condition Register (CR) is a 32-bit register which
reflects the result of certain operations, and provides
a mechanism for testing (and branching).

CR

o 31

Figure 18. Condition Register

Chapter 2. Branch Processor 15

The bits in the Condition Register are grouped into
eight 4-bit fields. named CR Field 0 (CRO) ••••• CR Field
7 (CR7). which are set in one of the following ways:

• Specified fields of the CR can be set by a move
to the CR from a GPR (mtcrl).

• A specified field of the CR can be set by a move
to the CR from the another CR field (mcrt). from
the XER (mcrxr). or from the FPSCR (mcrfs).

• CR Field 0 can be set as the impliCit result of a
fixed-point operation.

• CR Field 1 can be set as the implicit result of a
floating-point operation.

• A specified CR field can be set as the result of
either a fiXed-point or a floating-point Compare
instruction.

Instructions are provided to perform logical oper
ations on individual CR bits. and to test individual CR
bits.

When Rc-1 in most fixed-point instructions. CR Field
o (bits 0:3 of the Condition Register) is set by an alge
braic comparison of the result (the low-order 32 bits
of the result in 32-bit mode) to zero. addie •• andl •• and
andis. set these four bits implicitly. These bits are
interpreted as follows. As used below. "result" refers
~o th~ entir~ 64-bit value placed into the target reg
Ister In 64-blt mode. and to bits 32:63 of the 64-bit
value placed into the target register in 32-bit mode. If
any portion of the result is undefined. then the value
placed into CR Field 0 is undefined.

Bit Description

o Negative (1.1)
The result is negative.

1 Positive (G1)
The result is positive.

2 Zero (EQ)
The result is zero.

3 Summary Overflow (SO)
This is a copy of the final state of XERso at the
completion of the instruction.

When Rc-1 in all floating-point instructions except
floating-point Compare. CR Field 1 (bits 4:7 of the
Condition Register) is set to the Floating-Point excep-

IBM Confidential

tion status, copied from bits 0:3 of the Floating-Point
Status and Control Register. These bits are inter
preted as follows.

Bit Description

4 Floating-Point Exception (FX)
This is a copy of the final state of FPSCRFX at the
completion of the instruction.

S Floating-Point Enabled Exception (FEX)
This is a copy of the final state of FPSCRFEX at
the completion of the instruction.

6 Floating-Point Invalid Operation Exception (VX)
This is a copy of the final state of FPSCRvx at the
completion of the instruction.

7 Floating-Point Overflow Exception (OX)
This is a copy of the final state of FPSCRax at
the completion of the instruction. .

When a specified CR field is set by a Compare
instruction. the bits of the specified field are inter
preted as follows.

Bit Description

o I.ess Than, Floating-Point I.ess Than (I.T, Fl.)
For fixed-point Compare instructions. (RA) < SI,
UI. or (RB) (algebraic comparison) or (RA) J!: SI.
UI. or (RB) (logical comparison). For f1oating
point Compare instructions. (FRA) < (FRB).

1 Greater Than, Floating-Point Greate, Than (GT,
FG)
For fixed-point Compare instructions. (RA) > SI.
UI. or (RB) (algebraic comparison) or (RA) ~ SI.
UI. or (RB) (logical comparison). For floating
point Compare instructions. (FRA) > (FRB).

2 Equal, Floating-Point Equal (EQ, FE)
For fixed-point Compare instructions. (RA) = SI.
UI, or (RB). For floating-point Compare
instructions, (FRA) = (FRB).

3 Summary Overflow, Floating-Point Unordered
(SO, FU)
For fixed-point Compare instructions, this is a
copy of the final state of XERso at the completion
of the instruction. For floating-point Compare
instructions. one or both of (FRA) and (FRB) is a
NaN.

16 PowerPC User Instrudion Set Architedure

(

IBM Confidential

2.3.2 Link Register

The Unk Register (LR) is a 64-bit register. It can be
used to provide the branch target address for the
Branch Conditional to Link Register instruction, and it
holds the return address after Branch and Link
instructions.

LR

o 63

Figure 19. Link Register

2.3.3 Count Register

The Count Register (CTR) is a 64-bit register. It can
be used to hold a loop count that can be decremented
during execution of Branch instructions that contain
an appropriately coded 80 field. If the value in the
Count Register is 0 before being decremented, it is
-1 afterward. The Count Register. can also be used
to provide the branch target address for the Branch
Conditional to Count Register instruction.

CTR

o 63

Figure 20. Count Register

Chapter 2. Branch Processor 17

2.4 Branch Processor Instructions

2.4.1 Branch Instructions

The sequence of instruction execution can be changed
by the Branch instructions. Because all instructions
are on word boundaries, bits 62 and 63 of the gener
ated branch target address are ignored by the
processor in performing the branch. -

The Branch instructions compute the effective
address (EA) of the target in one of the following four
ways, as described in Section 1.11.2, "Effective
Address Calculation" on page 12.

1. Adding a displacement to the address of the
branch instruction (Branch or Branch Conditional
with AA-O).

2. Specifying an absolute address (Branch or
Branch Conditional with AA -1).

3. Using the address contained in the Unk Register
(Branch Conditional to Link Register).

4. Using the address contained in the Count Reg-
ister (Branch Conditional to Count Register).

In all four cases, in 32-bit mode of 64-bit implementa
tions, the final step in the address computation is
setting the high-order 32 bits of the target address to
O.

For the first two methods, the target addresses can
be computed sufficiently ahead of the branch instruc
tion that instructions can be prefetched along the
target path. For the third and fourth methods, pre
fetching instructions along the target path is also pos
sible provided the Unk Register or the Count Register
is loaded sufficiently ahead of the branch instruction.

Branching can be conditional or unconditional, and
the return address can optionally be provided. If the
return address is to be provided (LK -1). the effective
address of the instruction following the branch
instruction is placed into the Unk Register after the
branch target address has been computed: this is
done whether or not the branch is taken.

In Branch Conditional instructions, the BO field speci
fies the conditions under which the branch is taken.
The first four bits of the BO field specify how the
branch is affected by or affects the Condition Register
and the Count Register. The fifth bit, shown below as
having the value "y," may be used by some imple
mentations as described below.

The encoding for the BO field is as follows. Here
M - 32 in 32-bit mode and M - 0 in 64-bit mode. If the
BO field specifies that the CTR is to be decremented,
the entire 64-bit CTR is decremented regardless of
the mode.

IBM Confidential

80 Description

OOOOy Decrement the CTR, then branch if the decre
mented CTRM:63¢O and the condition is
FALSE.

0001y Decrement the CTR, then branch if the decre
mented CTRM:63=O and the condition is
FALSE.

001zy Branch if the condition is FALSE.

0100y Decrement the CTR, then branch if the decre
mented CTRM:63¢O and the condition is
TRUE.

0101y Decrement the CTR, then branch if the decre
mented CTRM:63=O and the condition is
TRUE.

011zy Branch if the condition is TRUE.

1 zOOy Decrement the CTR, then branch if the decre
mented CTRM:a¢O.

1z01y Decrement the CTR, then branch if the decre-
mented CTRM:63=O.

1 z1 zz Branch always.

Above, "z" denotes a bit that must be zero: if it is not
zero the instruction form is invalid.

The "y" bit provides a hint about whether a condi
tional branch is likely to be taken, and may be used
by some implementations to improve performance.

The "branch always" encoding of the BO field does
not have a "y" bit.

For Branch Conditional instructions that have a "y"
bit, using y-O indicates that the following behavior is
likely.

• If the instruction is bc[l][a] with a negative value
in the displacement field, the branch is taken.

• In all other cases (bc[l][a] with a non-negative
value in the displacement field, bclr[I], or
bcctr[1]), the branch falls through (is not taken).

Using y-1 reverses the preceding indications.

The displacement field is used as described above
even if the target is an absolute address.

18 PowerPC User Instrudlon Set Architedura .

(

(/
"1

IBM Confidential

Programming Note -----------,

The default value for the "y" bit should be 0: the
value 1 should be used only if software has deter
mined that the prediction corresponding to y-1 is
more likely to be correct than the prediction cor
responding to y-O.

Engineering Nota ------------,

For all three Branch Conditional instructions, the
branch should be predicted to be taken if the
value of the following expression is " and to fall
through if the value is O.

((BOo & B02) I s) E9 B04

Here "s" is bit 16 of the instruction, which is the
sign bit of the displacement field if the instruction
has a displacement field and is 0 otherwise. B04
is the "y" bit, or 0 for the "branch always"
encoding of the BO field. (Advantage is taken of
the fact that, for bclr[1] and beetr[I], bit 16 of the
instruction is part of a reserved field and there
fore must be 0.)

Extended mnemonics for branches

Many extended mnemonics are provided so that
Branch Conditional instructions can be coded with the
condition as part of the instruction mnemonic rather
than as a numeric operand. Some of these are shown
as examples with the Branch instructions. See
Appendix C, "Assembler Extended Mnemonics" on
page 133 for additional extended mnemonics.

Programming Note ------------,

In some implementations the processor may keep
a stack of the Unk Register values most recently
set by Branch and Link instructions, with the pos
sible exception of the form shown below for
obtaining the address of the next instruction. To
benefit from this stack, the following programming
conventions should be used.

Let A, B, and Glue be programs.

• Obtaining the address of the next instruction:
Use the following form of Branch and Link.

bel 29,31,$+4

• Loop counts:
Keep them in the Count Register, and use
one of the Branch Conditional instructions to
decrement the count and to control branching
(e.g., branching back to the start of a loop if
the decremented counter value is non-zero).

• Computed goto's, case statements, etc.:
Use the Count Register to hold the address to
branch to, and use the beetr instruction
(LK - 0) to branch to the selected address.

• Direct subroutine linkage:
Here A calls Band B returns to A. The two
branches should be as follows.

A calls B: use a Branch instruction that
sets the Unk Register (LK -1).

B returns to A: use the belr instruction
(LK-O) (the return address is in, or can
be restored to, the Unk Register).

• Indirect subroutine linkage:
Here A calls Glue, Glue calls B, and B returns
to A rather than to Glue. (Such a calling
sequence is common in linkage code used
when the subroutine that the programmer
wants to call, here B, is in a different module
from the caller: the Binder inserts "glue"
code to mediate the branch.) The three
branches should be as follows.

A calls Glue: use a Branch instruction
that sets the Unk Register (LK -1).

Glue calls B: place the address of B in
the Count Register, and use the beetr
instruction (LK-O).

B returns to A: use the belr instruction
(LK-O) (the return address is in, or can
be restored to, the Unk Register).

Chapter 2. Branch Processor 19

Branch I-form

b target_addr (AA-O LK-O)
ba target_addr (AA-1 LK-O)
bJ target_addr (AA-O LK-1)
bla target_addr (AA-1 LK-1)

10
18

Is
LI I~~I

if AA then NIA 40 EXTS(LI II abaa)
el se NIA 40 CIA + EXTS(LI " abaa)
if LK then

LR 40 CIA + 4

target_addr specifies the branch target address.

If AA - 0 then the branch target address is the sum of
LI " ObOO sign-extended and the address of this
instruction, with the high-order 32 bits of the branch
target address set to 0 in 32-bit mode of 64-bit imple
mentations.

If AA -1 then the branch target address is the value
LI II ObOO sign-extended, with the high-order 32 bits of
the branch target address set to 0 in 32-bit mode of
64-bit implementations.

If LK -1 then the effective address of the instruction
following the Branch instruction is placed into the Unk
Register.

Special Registers Altered:
LR (if LK-1)

IBM Confidential

Branch Conditional B-form

be
bca
bel
bela

BO,BI,target_addr
BO,BI,target_addr
BO,BI,target_addr
BO,BI,target_addr

BD

(AA-O LK-O)
(AA-1 L.K-O)
(AA-O L.K-1)
(AA-1 L.K-1)

if (54-bit implementation) & (54-bit mode)
then M 40 a
else M 40 32

if ~B02 then CTR 40 CTR - 1
ctr _ok 40 B02 I «CTRM:63 ; a) E9 B03)
cond_ok 40· BOo I (CRel E 80,)
if ctr ok & cond ok then

if Ai. then NIA-4o EXTS(BD II abaa)
el se NIA .. CIA + EXTS(BD II BbBB)

if LK then
LR 40 CIA + 4

The BI field specifies the bit in the Condition Register
to be used as the condition of the branch. The BO
field is used as described above. target_addr speci
fies the branch target address.

If AA - 0 then the branch target address is the sum of
BD II ObOO sign-extended and the address of this
instruction, with the high-order 32 bits of the branch
target address set to 0 in 32-bit mode of 64-bit imple
mentations.

If AA -1 then the branch target address is the value
BD " ObOO sign-extended, with the high-order 32 bits
of the branch target address set to 0 in 32-bit mode of
64-bit implementations.

If L.K -1 then the effective address of the instruction
following the Branch instruction is placed into the Unk
Register.

Special Registers Altered:
CTR
L.R

Extended Mnemonics:

(if B02 -O)
(if L.K-1)

Examples of ·extended mnemonics for Branch Condi
tional:

Extended: Equivalent to:

bit target be 12,0,target
bne cr2,target be 4,10,target
bdnz target be 16,O,target

20 PowerPC User Instruction Set Architecture

/

IBM Confidential

Branch Conditional to Link Register
XL-form

belr
belrl

BO,BI
BO,BI

[Power mnemonics: ber, berl]

/16 111
/ • 21

16

if (54-bit implementation) & (54-bit mode)
then M +- e
else M +- 32

if ~B02 then CTR +- CTR - 1
ctr _ok +- B02 I «CTRM:63 ,,9) E9 B~)
cond_ok +- BOo I (CRsl :: B01)

if ctr ok & cond ok then
NIA ;: LRo:61 II abSS

if LK then
LR +- CIA + 4

(LK-O)
(LK-1)

I~I

The BI field specifies the bit in the Condition Register
to be used as the condition of the branch. The BO
field is used as described above, and the branch
target address is LRo:61 II ObOO, with the high-order 32
bits of the branch target address set to 0 in 32-bit
mode of 64-bit implementations.

If LK -1 then the effective address of the instruction
following the Branch instruction is placed into the Unk
Register.

Special Registers Altered:
CTR
LR

Extended Mnemonics:

(if B02 -O)
(if LK-1)

Examples of extended mnemonics for Branch Condi
tional To Link Register:

Extended:

bltlr
bnelr cr2
bdnzlr

Equivalent to:

belr 12,0
bclr 4,10
belr 16,0

Branch Conditional to Count Register
XL-form

beetr
beetrl

BO,BI
BO,BI

[Power mnemonics: bee, beel]

(LK-O)
(LK-1)

116 111
I

528
. 21

cond_ok +- BOo (CRs1 :: B01)

if cond ok then
NIA +--CTRo:61 II SbSS

if LK then
LR fo CIA + 4

The BI field specifies the bit in the Condition Register
to be used as the condition of the branch. The BO
field is used as described above, and the branch
target address is CTRO:61 II ObOO, with the high-order
32 bits of the branch target address set to 0 in 32-bit
mode of 64-bit implementations.

If LK -1 then the effective address of the instruction
following the Branch instruction is placed into the Unk
Register.

If the "decrement and test CTR" option is specified
(B02 -O), the instruction form is invalid.

Special Registers Altered:
LR (if LK-1)

Extended Mnemonics:

Examples of extended mnemonics for Branch Condi
tional To Count Register:

Extended:

bltctr
bnectr cr2

Equivalent to:

beetr 12,0
beetr 4,10

Chapter 2. Branch Processor 21

2.4.2 System Call Instruction

This instruction provides the means by which a
program can call upon the system to perform· a
service.

System Call SC-form

sc

[Power mnemonic: svca]

//I

This instruction calls the system to perform a service.
A complete description of this instruction can be
found in Book III. PowerPC Operating Environment
Architecture.

When control is returned to the program that exe
cuted the System Call. the content of the registers will
depend on the register conventions used by the
program providing the system service.

This instruction is context synchronizing (see Book III.
PowerPC Operating Environment Architecture).

Special Registers Altered:
Dependent on the system service

IBM Confidential

Compatibility Note -------...,..--.,

For a discussion of Power compatibility with
respect to instruction bits 16:29. please refer to
Appendix G. "Incompatibilities with the Power
Architecture" on page 165. For compatibility with
future versions of this architecture. these bits
should be coded as zero.

22 PowerPC User Instruction Set Architecture

/

(

IBM Confidential

2.4.3 Condition Register Logical Instructions

Extended mnemonics for Condition
Register logical operations

A set of extended mnemonics is provided that allow
additional Condition Register logical operations,

Condition Register AND XL-form

crand BT,BA,BB

257
1:11

CReT ~ CRBA & CRee
The bit in the Condition Register specified by BA is
ANCed with the bit in the Condition Register specified
by BB and the result is placed into the bit in the Con
dition Register specified by BT.

Special Registers Altered:
CR

Condition Register XOR XL-form

crxor BT,BA,BB

193

cReT ~ CRBA E9 CRee
The bit in the Condition Register specified by BA is
XORed with the bit in the Condition Register specified
by BB and the result is placed into the bit in the Con
dition Register specified by BT.

Special Registers Altered:
CR

Extended Mnemonics:

Example of extended mnemonics for Condition Reg
ister XOR:

Extended:

crelr Bx

Equivalent to:

crxor BX,Bx,Bx

beyond those provided by the basic Condition Reg
ister Logical instructions, to be coded easily. Some of
these are shown as examples with the CR. Logical
instructions. See Appendix C, "Assembler Extended
Mnemonics" on page 133 for additional extended
mnemonics.

Condition Register OR XL-form

cror BT,BA,BB

449

cReT ~ CRBA I CRes
The bit in the Condition Register specified by BA is
ORed with the bit in the Condition Register specified
by BB and the result is placed into the bit in the Con
dition Register specified by BT.

Special Registers Altered:
CR

Extended Mnemonics:

Example of extended mnemonics for Condition Reg
ister OR:

Extended:

crmove BX,By

Equivalent to:

cror BX,By,By

Condition Register NAND XL-form

crnand BT,BA,BB

225

CRST ~ ~(CRBA & CRss)
The bit in the Condition Register specified by BA is
ANCed with the bit in the Condition Register specified
by BB and the complemented result is placed into the
bit in the Condition Register specified by BT.

Special Registers Altered:
CR

Chapter 2. Branch Processor 23

Condition Register NOR XL-form

crnor BT,BA,BB

33

1:11

CReT • ~(CRBA I CRee)
The bit in the Condition Register specified by BA is
ORed with the bit in the Condition Register specified
by BB and the complemented result is placed into the
bit in the Condition Register specified by BT.

Special Register. Altered:
CR

Extended Mnemonics:

Example of extended mnemonics for Condition. Reg
ister NOR:

Extended:

crnot BX,By

Equivalent to:

crnor BX,By,By

Condition Register AND With
Complement XL-form

crandc BT,BA,BB

10 19 16 BT 111SA 116 BB 121
129

CRST • CRBA & ~CRss

1:11

The bit in the Condition Register specified by BA is
ANDed with the complement of the bit in the Condi
tion Register specified by BB and the result is placed
into the bit in the Condition Register specified by BT.

Special Registers Altered:
CR

IBM Confidential

Condition Register Equivalent XL-form

creqv BT,BA,BB

1 SA 116 BB 11 .
289

1:11

CReT • CRBA 5 CRee
The bit in the Condition Register specified by BA is
XORed with the bit in the Condition Register specified
by BB and the complemented result is placed into the
bit in the Condition Register specified by BT.

Special Register. Altered:
CR

Extended Mnemonics:

Example of extended mnemonics for Condition Reg
ister Equivalent

Extended:

crset Bx

Equivalent to:

creqv BX,Bx,Bx

Condition Register OR With Complement
XL-form

crorc BT,BA,BB

10 19 16 BT 111 BA 116 BB 12,
417

1:,1

CRST • CRBA I ~CRse
The bit in the Condition Register specified by BA is
ORed with the complement of the bit in the Condition
Register specified by BB and the result is placed into
the bit in the Condition Register specified by ST.

Special Register. Altered:
CR

24 PowerPC User Instruction Set Architecture .

IBM Confidential

2.4.4 Condition Register Field
Instruction

Move Condition Register Field XL-form

mcrf BF,BFA

o

C~XBF:4xBF+3 .. CR4XBFA:4XBFA+3

The contents of Condition Register field BFA are
copied into Condition Register field BF.

Special Registers Altered:
CR

Chapter 2. Branch Processor 25

IBM Confidential

;- .. " ..

26 PowerPC User Instruction Set Architecture

IBM Confidential

Chapter 3. Fixed-Point Processor

3.1 Fixed-Point Processor Overview .. 27
3.2 Fixed-Point Processor Registers .. 27
3.2.1 General Purpose"RegisterS .:. 27
3.2.2 Fixed-Point Exception Register 28
3.3 Fixed-Point Processor Instructions 29
3.3.1 Storage Access Instructions
3.3.1.1 Storage Access Exceptions
3.3.2 Fixed-Point Load Instructions
3.3.3 Fixed-Point Store Instructions
3.3.4 Fixed-Point Load and Store with

29
29
29
36

Byte Reversal Instructions 40
3.3.5 Fixed-Point Load and Store

Multiple Instructions 42
3.3.6 Fixed-Point Move Assist

Instructions 43

3.1 Fixed-Point Processor Overview

This chapter describes the registers and instructions
that make up the Fixed-Point Processor facility.
Section 3.2, "Fixed-Point Processor Registers" on
page 27 describes the registers associated with the
Fixed-Point Processor. Section 3.3, "Fixed-Point
Processor Instructions" on page 29 describes the
instructions associated with the Fixed-Point Processor.

3.2 Fixed-Point Processor
Registers

3.3.7 Storage Synchronization
Instructions 46

3.3~8 Other Fixed-Point Instructions .. 49
3.3.9 Fixed-Point Arithmetic Instructions 50
3.3.10 Fixed-Point Compare Instructions 59
3.3.11 Fixed-Point Trap Instructions . 61
3.3.12 Fixed-Point Logical Instructions 63
3.3.13 Fixed-Point Rotate and Shift

Instructions 69
3.3.13.1 Fixed-Point Rotate Instructions 69
3.3.13.2 Fixed-Point Shift Instructions 75
3.3.14 Move To/From System Register

Instructions 79

3.2.1 General Purpose Registers

All manipulation of information is done in registers
internal to the Fixed-Point Processor. The principal
storage internal to the Fixed-Point Processor is a set
of 32 general purpose registers (GPRs). See
Figure 21.

GPROO

GPR 01

" .
" .

GPR30

GPR31

o 63

Figure 21. General Purpose Registers

Each GPR is a 64-bit register.

Chapter 3. Fixed-Point Processor 27

3.2.2 Fixed-Point Exception Register

The Fixed-Point Exception Register (XER) is a 32-bit
register.

XER
o 31

Figure 22. Flxed.Polnt exception Register

The bit definitions for the Fixed-Point Exception Reg
ister are as shown below. Here M-O in 64-bit mode
and M - 32 in 32-bit mQde.

The bits are set based on the operation of an instruc
tion considered as a whole, not on intermediate
results (e.g., the Subtract From Carrying instruction,
the result of which is specified as the sum of three
values, sets bits in the Fixed-Point Exception Register
based on the entire operation, not on an intermediate
sum).

Blt(s) Description

o

1

Summary Overflow (SO)
The Summary Overflow bit is set to one
whenever an instruction sets the Overflow bit
to indicate overflow and remains set until it is
cleared by an mtspr instruction (specifying
the XER) or an. menr instruction. It is not
altered by Compare instructions, nor by other
instructions (except mtspr to the XER, and
mcrxr) that cannot overflow.

Overflow (OV)
The Overflow bit is set to indicate that an
overflow has occurred during execution of an
instruction. XC-form Add and Subtract

IBM Confidential

instructions having OE-1 set it to one if the
carry out of bit M is not equal to the carry
out of bit M + 1, and set it to zero otherwise.
The OV bit is not altered by Compare
instructions, nor by other instructions (except
mtspr to the XER, and mcrxr) that cannot
overflow.

2 Carry (CA)
In general, the Carry bit is set to indicate that
a carry out of bit M has occurred during exe
cution of an instruction. Add Carrying, Sub
tract From Carrying, Add Extended, and
Subtract From Extended instructions set it to
one if there is a carry out of bit M, and set it
to zero otherwise. However, Shift Right Alge
braic instructions set the CA bit to indicate
whether any '1' bits have been shifted out of
a negative quantity. The CA bit is not altered
by Compare instructions, nor by other
instructions (except Shift Right Algebraic,
mtspr to the XER, and mcrxr) that cannot
carry.

3:24 Reserved

25:31 This field specifies the number of bytes to be
transferred by a Load String Indexed or Store
String Indexed instruction.

Compatibility Note -----------,

For a discussion of Power compatibility with
respect to XER bits 16:23, please refer to
Appendix G, "Incompatibilities with the Power
Architecture" on page 165. For compatibility with
future versions of this architecture, these bits
should be set to zero.

28 PowerPC User Instruction Set Architecture

IBM Confidential

3.3 Fixed-Point Processor Instructions

This section describes the instructions execut8ci by
the Fixed-Point processor.

3.3.1 Storage Access Instructions

The Storage Access instructions compute the effective
address (EA) of the storage to be accessed as
described in Section 1.11.2, "Effective Ac:\dress
Calculation" on page 12.

The order of bytes accessed by halfword, word. and
doubleword loads and stores is Big-Endian. unless
Uttle-Endian storage ordering is selected as
described in Appendix D. "Little-Endian Byte
Ordering" on page 145.

3.3.2 Fixed-Point Load Instructions

The byte. halfword. word, or doubleword in storage
addressed by EA is loaded into register RT.

Byte order of Power PC is Big-Endian by default; see
Appendix D. "Little-Endian Byte Ordering" on
page 145 for PowerPC systems operated with Little
Endian byte ordering.

Many of the Load instructions have an "update" form.
in which register RA is updated with the effective
address. For these forms. if RA¢O and RA¢RT. the
effective address is placed into register RA and the

Programming Note ----------..,

The "I a" extended mnemonic permits computing
an Effective Address as a Load or Store instruc
tion would. but loads the address itself into a GPR
rather than loading the value that is in storage at
that address. This extended mnemonic is
described in "Load Address" on page 144.

3.3.1.1 Storage Access Exceptions

Storage accesses will cause the system data storage
error handler to be invoked . if the program· is not
allowed to modify the target storage (Store only), or if
the program attempts to access storage that is una
vailable to it.

When PowerPC is executing with Little-Endian byte
ordering, the system alignment error handler will be
invoked whenever a load or store instruction is exe
cuted that specifies an unaligned operand. See
Appendix 0, "Little-Endian Byte Ordering" on
page 145.

storage element (byte. halfword. word. or doubleword)
addressed by EA is loaded into RT.

Programming Note ----------...,

In some implementations. the Load Algebraic and
Load with Update instructions may have greater
latency than other types of Load instructions.
Moreover. Load with Update instructions may take
longer to execute in some implementations than
the corresponding pair of a non-update Load
instruction and an Add instruction.

Chapter 3. Fixed-Point Processor 29

Load Byte and Zero D-form

Ibz RT.D(RA)

o

if RA = a then b ~ a
else b ~ (RA)
EA ~ b + EXTS(D)
RT ~ 56a II MEM(EA. 1)

Let the effective address (EA) be the sum (RAIO) + D.
The byte in storage addressed by EA is loaded into
RT 56:83. RT 0:55 are set to o.

Special Registers Altered:
None

Load Byte and Zero with Update
D-form

Ibzu RT.D(RA)

EA ~ (RA) + EXTS(D)
RT ~ 56e II MEM(EA. 1)
RA ~ EA

o

Let the effective address (EA) be the sum (RA)+ D.
The byte in storage addressed by EA is loaded into
RT 56:83. RT 0:55 are set to O.

EA is placed into register RA.

If RA-O or RA-RT. the instruction form is invalid.

Special Registers Altered:
None

IBM Confidential

Load Byte and Zero Indexed X-form

Ibzx RT.RA.RB

11SRB I
. J1

87

if RA = a then b ~ 8
else b +- (RA)
EA ~ b + (RB)
RT ~ 568 U MEM(EA. 1)

Let the effective address (EA) be the sum
(RAIO) + (RB). The byte in storage addressed by EA is
loaded into RT56:83• RTO:55 are set to O.

Special Registers Altered:
None

Load Byte and Zero with Update
Indexed X-form

Ibzux RT.RA.RB

EA ~ (RA) + (RB)
RT ~ 56e II MEM(EA. 1)
RA ~ EA

119

Let the effective address (EA) be the sum (RA)+(RB).
The byte in storage addressed by EA is loaded into
RT 56:83. RT 0:55 are set to O.

EA is placed into register RA.

If RA - 0 or RA - RT. the instruction form is invalid.

Special Registers Altered:
None

30 PowerPC User Instruction Set Architecture .

(

IBM Confidential

Load Halfword and Zero D-form

1hz RT.D(RA)

/0 40 16 RT 1"RA 1,6
0

311

if RA = 9 then b ~ 9
else b ~ (RA)
EA ~ h + EXTS(D)
RT ~ 489 II MEM(EA, 2)

L.et the effective address (EA) be the sum (RAIO) + D.
The halfword in storage addressed by EA is loaded
into RT 48:63. RT 0:47 are set to O.

Special Registers Altered:
None

Load Halfword and Zero with Update
D-form

Ihzu RT.D(RA)

EA ~ (RA) + EXTS(D)
RT ~ 489 " MEM(EA, 2)
RA ~ EA

o

L.et the effective address (EA) be the sum (RA) + D.
The halfword in storage addressed by EA is loaded
into RT 48:63. RT 0:47 are set to o.

EA is placed into register RA.

If RA - 0 or RA - RT, the instruction form is invalid.

Special Registers Altered:
None

Load Halfword and Zero Indexed
X-form

Ihzx RT.RA.RB

10 31 16 RT 1"RA 1,6 RB
121

279
1:,1

if RA = e then b ~ 9
else b ~ (RA)
EA ~ b + (RB)
RT ~ 489 " MEM(EA, 2)

Let the effective address (EA) be the sum
(RAIO) + (RB). The halfword in storage addressed by
EA is loaded into RT48:63. RTO:47 are set to O.

Special Registers Altered:
None

Load Halfword and Zero with Update
Indexed X-form

Ihzux RT,RA,RB

EA ~ (RA) + (RB)
RT ~ 489 " MEM(EA, 2)
RA ~ EA

311 1:,/

Let the effective address (EA) be the sum (RA)+(RB).
The halfword in storage addressed by EA is loaded
into RT48:63. RTo:47 are set to O.

EA is placed into register RA.

If RA - 0 or RA - RT, the instruction form is invalid.

Special Registers Altered:
None

Chapter 3. Fixed-Point Processor 31

Load Halfword Algebraic D-form

Iha RT,O(RA)

10 42 I • .,~T 111~ 116
0

311

if RA = e then h ~ e
else h ~ (RA)
EA ~ h + EXTS(D)
RT ~ EXTS(MEM(EA. 2»
Let the effective address (EA) be the sum (RAIO) + O.
The halfword in storage addressed by EA is loaded
into RT48:63• RTO:47 are filled with a copy of bit 0 of
the loaded halfword.

Special Registers Altered:
None

Load Halfword Algebraic with Update
D-form

Ihau RT,O(RA)

EA ~ (RA) + EXTS(D)
RT ~ EXTS(MEM(EA. 2»
RA ~ EA

o

Let the effective address (EA) be the sum (RA) + O.
The halfword in storage addressed by EA is loaded
into RT48:63• RTO:47 are filled with a copy of bit 0 of
the loaded halfword.

EA is placed into register RA.

If RA - 0 or RA - RT, the instruction form is invalid.

Special Registers Altered:
None

IBM Confidential

Load Halfword Algebraic Indexed
X-form

Ihax RT,RA,RB

10 31 I. RT IuRA 11. RB 12,
343 1:,1

if RA = e then b ~ e
else b ~ (RA)
EA ~ b + (RB)
RT ~ EXTS(MEM(EA. 2»
Let the effective address (EA) be the sum
(RAIO) + (RB). The halfword in storage addressed by
EA is loaded into RT48:63• RTo:47 are filled with a copy
of bit 0 of the loaded halfword ..

Special Registers Altered:
None

Load Halfword Algebraic with Update
Indexed X-form

Ihaux RT,RA,RB

EA ~ (RA) + (RB)
RT ~ EXTS(MEM(EA. 2»
RA ~ EA

375

Let the effective address (EA) be the sum (RA) + (RB).
The halfword in storage addressed by EA is loaded
into RT48:63• RTO:47 are filled with a copy of bit 0 of
the loaded halfword.

EA is placed into register RA.

If RA - 0 or RA - RT, the instruction form is invalid.

Special Registers Altered:
None

32 PowerPC User Instruction Set Architecture

" "- "T I '

\.,j

(

IBM Confidential

Load Word and Zero D-form

Iwz RT,D(RA)

[Power mnemonic: I]

10 32 16 RT 111RA 116

0

311

if RA = 9 then b ~ 9
else b ~ (RA)
EA ~ b + EXTS(O)
RT ~ 328 II MEM(EA, 4)

Let the effective address (EA) be the sum (RAIO) + D.
The word in storage addressed by EA is loaded into
RT32:63. RTo:31 are set to O.

Special Registers Altered:
None

Load Word and Zero with Update
D-form

Iwzu RT,D(RA)

[Power mnemonic: lu]

EA ~ (RA) + EXTS(O)
RT ~ 329 II MEM(EA, 4}
RA ~ EA

o

Let the effective address (EA) be the sum (RA) + D.
The word in storage addressed by EA is loaded into
RT 32:63' RT 0:31 are set to O.

EA is placed into register RA.

If RA - 0 or RA - RT, the instruction form is invalid.

Special Registers Altered:
None

Load Word and Zero Indexed X-form

Iwzx RT,RA,RB

[Power mnemonic: Ix]

10 31 16 RT 111RA 116 RB
121

23

1:11

if RA = 9 then b ~ 9
else b ~ (RA)
EA ~ b + (RB)
RT ~ 328 II MEM(EA, 4)

Let the effective address (EA) be the sum
(RAIO) + (RB). The word in storage addressed by EA
is loaded into RT32:63' RTo:31 are set to O.

Special Registers Altered:
None

Load Word and Zero with Update
Indexed X-form

Iwzux RT,RA,RB

[Power mnemonic: lux]

EA ~ (RA) + (RB)
RT ~ 329 II MEM(EA, 4)
RA ~ EA

55

Let the effective address (EA) be the sum (RA) + (RB).
The word in storage addressed by EA is loaded into
RT 32:63' RT 0:31 are set to O.

EA is placed into register RA.

If RA-O or RA-RT, the instruction form is invalid.

Special Registers Altered:
None

Chapter 3. Fixed-Point Processor 33

Load Word Algebraic OS-form

Iwa RT.DS(RA)

if RA = 9 then b ~ 9
else b ~ (RA)
EA ~ b + EXTS(DSI19b99)
RT ~ EXTS(MEM(EA. 4»
Let the effective address (EA) be the sum
(RAIO) + (DSIIObOO). The ward in starage addressed by
EA is laaded into RT32:63• RTo:31 are filled with a copy
of bit 0 of the loaded wol:d.

This instruction is defined only for 64-bit implementa
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
None

IBM Confidential

Load Word Algebraic Indexed X-form

Iwax RT.RA.RB

341

if RA = 9 then b ~ 9
else b ~ (RA)
EA ~ b + (RB)
RT ~ EXTS(MEM(EA, 4»
Let the effective address (EA) be the sum
(RAIO) + (RB). The word in storage addressed by EA
is loaded into RT 32:63' RT 0:31 are filled with a copy of
bit 0 of the loaded .word.

This instruction is defined only for 64-bit implementa
tions. Using it on a 32·bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
None

Load Word Algebraic with Update
Indexed X-form

Iwaux RT.RA.RB

EA ~ (RA) + (RB)
RT ~ EXTS(MEM(EA, 4»
RA ~ EA

373

Let the effective address (EA) be the sum (RA)+(RB).
The word in storage addressed by EA is loaded into
RT32:63. RTo:31 are filled with a copy of bit 0 of the
loaded word.

EA is placed into register RA.

If RA-O or RA- RT. the instruction form i's invalid.

This instruction is defined only for 64-bit implementa
tions. Using it an a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
Nane

34 PowerPC User Instruction Set Architecture

(

IBM Confidential

Load Doubleword DS-form

Id RT,OS(RA)

if RA = 9 then b ~ 9
else b ~ (RA)
EA ~ b + EXTS(DSII9b88)
RT ~ MEM(EA, 8)

os

Let the effective address (EA) be the sum
(RAIO)+ (OSllObOO). The daubleword in storage
addressed by EA is loaded into RT.

This instruction is defined only far 64-bit implementa
tions. Using it an a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
None

Load Doubleword with Update

Idu RT,OS(RA)

10 58 16 RT 111 RA

EA ~ (RA) + EXTS(DSII9b99)
RT ~ MEM(EA, 8)
RA ~ EA

116

os

DS-form

1~1311

Let the effective address (EA) be the sum
(RA) + (OSllObOO). The daubleward in storage
addressed by EA is loaded into RT.

EA is placed into register RA.

If RA - 0 or RA - RT, the instruction farm is invalid.

This instruction is defined only for 64-bit implementa
tions. Using it an a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
None

Load Doubleword Indexed X-form

Idx RT,RA,RB

21

if RA = 9 then b ~ 9
else b ~ (RA)
EA ~ b + (RS)
RT ~ MEM(EA, 8)

Let the effective address (EA) be the sum
(RAIO)+(RB). The daubleward in storage addressed
by EA is loaded into RT .

. This instruction is defined only for 64-bit implementa
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
None

Load Doubleword with Update Indexed
X-form

Idux RT,RA,RB

10 31 16 RT

EA ~ (RA) + (RS)
RT ~ MEM(EA, 8)
RA ~ EA

111RA 116 RB
121

53

1:11

Let the effective address (EA) be the sum (RA) + (RB).
The doubleward in storage addressed by EA is loaded
into RT.

EA is placed into register RA.

If RA-O or RA-RT, the instruction farm is invalid.

This instruction is defined only for 64-bit implementa
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
None

Chapter 3. Fixed-Point Processor 35

3.3.3 Fixed-Point Store Instructions

The contents of register RS is stored into the byte,
hallward, word, or doubleword in storage addressed
by.EA.

Byte order of PowerPC is Big-Endian by default; see
Appendix 0, "Uttla-Endian Byte Ordering" on
page 145 for PowerPC systems operated with Uttle
Endian byte ordering.

Store Byte D-form

stb RS,D(RA)

if RA = e then b ~ e
else b ~ (RA)
EA ~ b + EXTS(D) .
MEM(EA. 1) ~ (RS)S6:63

o

Let the effective address (EA) be the sum (RAIO)+ D.
(RS)S6:63 is stored into the byte in storage addressed
by EA.

Special Registers Altered:
None

Store Byte with Update D-form

stbu RS,D(RA)

EA ~ (RA) + EXTS(D)
MEM(EA. 1) .. (RS>S6:63
RA ~ EA

o

Let the effective address (EA) be the sum (RA) + D.
(RS)S6:63 is stored into the byte in storage addressed
by EA.

EA is placed into register RA.

If RA - 0, the instruction form is invalid.

Special Registers Altered:
None

IBM Confidentia~

Many of the Store instructions have an "update" form,
in which register RA is updated with the effective
address. For these forms, the following rules apply.

• If RA:;60, the effective address is placed into reg
ister RA.

• If RS - RA, the contents of register RS is copied
to the target storage element and then EA is
placed into RA (RS).

Store Byte Indexed X-form

stbx RS,RA,RB

I RA 116RB
11 .

215

if RA = e then b ~ e
else b .. (RA)
EA .. b + (RB)
MEM(EA. 1) ~ (RS)S6:63

Let the effective address (EA) be the sum
(RAIO)+(RB). (RS)S6:63 is stored into the byte in
storage addressed by EA.

Special Registers Altered:
None

Store Byte with Update Indexed X-form

stbux RS,RA,RB

I RA 116RB
11 .

EA ~ (RA) + (RB)
MEM(EA, 1) ~ (RS)S8:63
RA ~ EA

247

Let the effective address (EA) be the sum (RA)+ (RB).
(RS)S8:63 is stored into the byte in storage addressed
by EA.

EA is placed into register RA.

If RA - 0, the instruction form is invalid.

Special Registers Altered:
None

36 PowerPC User Instruction Set Architecture .

(

IBM Confidential

Store Halfword D-form Store Halfword Indexed X-form

sth RS,D(RA) sthx RS,RA,RB

.... /o_44_--"'le_·R_
S

--'I_"_RA_. _ 1,_6 ____ D ____ 3;;.;"j11 10 31 16 RS I RA l,sRB
11 .

407

if RA = 9 then b ~ e
else b ~ (RA)
EA ~ b + EXTS(D)
MEM(EA, 2) ~ (RS)48:63

Let the effective address (EA) be the sum (RAIO) + D.
(RS)48:63 is stored into the halfword in storage
addressed by EA.

Special Registers Altered:
None

Store Halfword with Update D-form

sthu RS,D(RA)

EA ~ (RA) + EXTS(D)
MEM(EA, 2) ~ (RS)48:63
RA ~ EA

o

Let the effective address (EA) be the sum (RA)+ D.
(RS)48:63 is stored into the halfword in storage
addressed by EA.

EA is placed into register RA.

If RA-O, the instruction form is invalid.

Special Registers Altered:
None

if RA = e then b ~ e
else b ~ (RA)
EA ~ b + (RB)
MEM(EA, 2) ~ (RS)48:63

Let the effective address (EA) be the sum
(RAIO) + (RB). (RS)48:63 is stored into the halfword in
storage addressed by EA.

Special Registers Altered: .
None

Store Halfworcl with Update Indexed
X-form

sthux RS,RA,RB

I RA l,sRB
11 .

EA ~ (RA) + (RB)
MEM(EA, 2) ~ (RS)48:63
RA ~ EA

439

Let the effective address (EA) be the sum (RA) + (RB).
(RS)48:63 is stored into the halfword in storage
addressed by EA.

EA is placed into register RA.

If RA-O, the instruction form is invalid.

Special Registers Altered:
None

Chapter 3. Fixed-Point Processor 37

Store Word D-form

stw RS,D(RA)

[Power mnemonic: st]

if RA = e then b ~ e
else b ~ (RA)
EA ~ b + EXTS(D)
MEM(EA, 4) ~ (RS)It.63

0
311

Let the effective address (EA) be the sum (RAIO) + D.
(RS)It.63 is stored into the word in storage addressed
by EA.

Special Registers Altered:
None

Store Word with Update

stwu RS,D(RA)

[Power mnemonic: stu]

10 37 16 RS 1"RA

EA ~ (RA) + EXTS(D)
MEM(EA, 4) ~ (RS)32:63
RA ~ EA

l,s

D-form

0

311

Let the effective address (EA) be the sum (RA)+ D.
(RSb2:63 is stored into the word in storage addressed
by EA.

EA is placed into register RA.

If RA - 0, the instruction form is invalid.

Special Registers Altered:
None

IBM Confidential

Store Word Indexed X-form

stwx RS,RA,RB

[Power mnemonic: stx]

10

31 '
, 16 RS

1"RA 1,6 RB
121

151

1:,1

if RA = e then b ~ e
else b ~ (RA)
EA ~ b + (RB)
MEM(EA, 4) ~ (RS)It.63

Let the effective address (EA) be the sum
(RAIO) + (RB). (RS)32:63 is stored into the word in
storage addressed by EA.

Special Registers Altered:
None

Store Word with Update Indexed

stwux RS,RA,RB

[Power mnemonic: stux]

10

31
Is RS 1"RA

EA ~ (RA) + (RB)
MEM(EA, 4) ~ (RS)32:63
RA ~ EA

l,sRB
121

183

X-form

1 :,1

Let the effective address (EA) be the sum (RA) + (RB).
(RS)32:63 is stored into the word in storage addressed
by EA.

EA is placed into register RA.

If RA-O, the instruction form is invalid.

Special Registers Altered:
None

38 PowerPC User Instruction Set Architecture

/ ""

/
!

IBM Confidential

Store Doubleword DS-form

std RS,OS(RA)

if RA = 9 then b ~ 9
else b ~ (RA)
EA ~ b + EXTS{DSI19b99)
MEM(EA, 8) ~ (RS)

os

Let the effective address (EA) be the sum
(RAIO) + (OSIIObOO). (RS) is stored into the
doubleword in storage addressed by EA.

This instruction is defined only for 64-bit implementa
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
None

Store Doubleword with Update

stdu RS,OS(RA)

10 62 16 RS 111RA

EA ~ (RA) + EXTS(DSI19bge)
MEM(EA, 8) ~ (RS)
RA ~ EA

116

OS

DS-form

130\,1

Let the effective address (EA) be the sum
(RA) + (OSllObOO). (RS) is stored into the doubleword
in storage addressed by EA.

EA is placed into register RA.

If RA-O, the instruction form is invalid.

This instruction is defined only for 64-bit implementa
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
None

Store Doubleword Indexed X-form

stdx RS,RA,RB

I RA 116RB
11 .

149

if RA = e then b ~ e
else b ~ (RA)
EA ~ b + (RB)
MEM(EA, 8) ~ (RS)

Let the effective address (EA) be the sum
(RAIO) + (RB). (RS) is stored into the doubleword in
storage addressed by EA.

This instruction is defined only for 64-bit implementa
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
None

Store Doubleword with Update Indexed
X-form

stdux RS,RA,RB

10 31 16 RS

EA ~ (RA) + (RS)
MEM(EA, 8) ~ (RS)
RA ~ EA

111 RA 116
RB

121

181

1:11

Let the effective address (EA) be the sum (RA) + (RB).
(RS) is stored into the doubleword in storage
addressed by EA.

EA is placed into register RA.

If RA - 0, the instruction form is invalid.

This instruction is defined only for 64-bit implementa
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
None

Chapter 3. Fixed-Point Processor 39

IBM Confidential

3.3.4 Fixed-Point Load and Store with Byte Reversal Instructions

When used in a PowerPC system operating with Big
Endian byte order (the default), these instructions
have the effect of loading and storing data in Uttl.
Endian order. Ukewise, when used in a Power PC
system operating with Uttle-Endian byte order, these
instructions have the effect of loading and storing
data in Big-Endian order. See Appendix D, "Uttl.

Load Halfword Byte-Reverse Indexed
X-form

Ihbrx RT,RA,RB

Endian Byte Ordering" on page 145 for a discussion
of byte order.

Programming Nate ------------,

In some implementations, the Load Byte-Reverse
instructions may have greater latency than other
Load instructions.

Load Word Byte-Reverse Indexed
X-form

Iwbrx RT,RA,RB

[Power mnemonic: Ibrx]

10 31 I, RT I RA 11,RB I 790 I i I
&,;;. ---&.;;. ;""'_...JL.,;,1.;..1 _--I . .;.;.._......I.,;;.21;..... ___ ..,\,,;3~1 10· 31 I, RT \11 RA \16 RB 534

1:1\
if RA = e then b ~ e
el se b ~ (RA)
EA ~ b + (RB)
RT ~ 489 II MEM(EA+l, 1) II MEM(EA, 1)

Let the effective address (EA) be the sum
(RAIO) + (RB). Bits 0:7 of the halfword in storage
addressed by EA are loaded into RT56:63• Bits 8:15 of
the halfword in storage addressed by EA are loaded
into RT48:55. RTo:47 are set to O.

SpeCial Registers Altered:
None

if RA = e then b ~ e
else b ~ (RA)
EA ~ b + (RB)
RT ~ 329 II MEM(EA+3, 1) II MEM(EA+2, 1)

II MEM(EA+1, 1) II MEM(EA, 1)

Let the effective address (EA) be the sum
(RAIO) + (RB). Bits 0:7 of the word in storage
addressed by EA are loaded into RT 56:63' Bits 8:15 of
the word in storage addressed by EA are loaded into
RT 48:55' Bits 16:23 of the word in storage addressed
by EA are loaded into RT40:47. Bits 24:31 of the word
in storage addressed by EA are loaded into RT 32:39'
RTO:31 are set to O.

Special Registers Altered:
None

40 PowerPC User Instruction Set Architecture

I(

IBM Confidential

Store Halfword Byte-Reverse Indexed
X-form

sthbrx RS,RA,RS

/ RA /lSRS 11 .
918

if RA = e then b ~ e
else b ~ (RA)
EA ~ b + (RB)
MEM(EA, 2) ~ (RS)56:63 II (RS)48:55

Let the effective address (EA) be the sum
(RAIO) + (RS). (RS)56:63 are stored into bits 0:7 of the
halfword in storage addressed by EA. (RS)48:55 are .
stored into bits 8:15 of the halfword in storage
addressed by EA.

Special Registers Altered:
None

Store Word Byte-Reverse Indexed
X-form

stwbrx RS,RA,RS

[Power mnemonic: stbrx]

I RA 11S RS
11 .

662

if RA = e then b ~ 9
else b ~ (RA)
EA to b + (RB)
MEM(EA, 4) ~ (RS)56:63 n (RS)48:55 II (RS)40:47 II (RS)32:39

Let the effective address (EA) be the sum
(RAIO) + (RS). (RS)SS:63 are stored into bits 0:7 of the
word in storage addressed by EA. (RS)48:55 are stored
into bits 8:15 of the word in storage addressed by EA.
(RS)40:47 are stored into bits 16:23 of the word in
storage addressed by EA. (RSb2:39 are stored into
bits 24:31 of the word in storage addressed by EA.

Special Registers Altered:
None

Chapter 3. Fixed-Point Processor 41

IBM Confidential

3.3.5 Fixed-Point Load and Store Multiple Instructions

The Load/Store Multiple instructions have preferred
forms: see Section 1.9.1, "Preferred Instruction
Forms" on page 11. In the preferred forms, storage
alignment satisfies the following rule.

• The combination of the EA and RT (RS) is such
that the low-order byte of GPR 31 is loaded
(stored) from (into) the last byte of an aligned
quadword in storage.

On PowerPC systems operating with Uttle-Endian byte
order, execution of a Load Multiple or Store Multiple
instruction causes the system alignment trap handler
to be invoked. See Appendix 0, "Uttle-Endian Byte
Ordering" on page 145.

Load Multiple .Word D-form

Imw RT,D(RA)

[Power mnemonic: 1m]

if RA = 9 then b ~ 9
else b ~ (RA)
EA ~ b + EXTS(D)
r ~ RT
do while r s 31

GPR(r) ~ 329 II MEM(EA, 4)
r ~ r + 1
EA ~ EA + 4

o

Let n - (32-RT). Let the effective address (EA) be
the sum (RAIO) + D.

n consecutive words starting at EA are loaded into
the low-order 32 bits of GPRs RT through 31. The
high-order 32 bits of these GPRs are set to zero.

EA must be a multiple of 4. If it is not, the system
alignment error handler may be invoked or the results
may be boundedly undefined.

If RA is in the range of registers to be loaded or
RT-RA-O, the instruction form is invalid.

Special Registers Altered:
None

Compatibility Note -----------,

For a discussion of Power compatibility with
respect to the alignment of the EA for the Load
Multiple Word and Store Multiple Word
instructions, please refer to Appendix G, "Incom
patibilities with the Power Architecture" on
page 165. For compatibility with future versions
of this architecture, these EAs should be word
aligned.

Engineering Note ----------......,

Causing the system alignment error handler to be
. invoked if attempt is made to execute· a Load Mul
tiple or Store Multiple instruction having an incor
rectly aligned effective address facilitates the
debugging of software.

Store Multiple Word D-form

stmw RS,D(RA)

[Power mnemonic: stmJ

if RA = 9 then b ~ e
else b ~ (RA)
EA ~ b + EXTS(D)
r ~ RS
do while r s 31

MEM(EA, 4) ~ GPR(r)32:63
r ~ r + 1
EA ~ EA + 4

o

Let n - (32-RS). Let the effective address (EA) be
the sum (RAIO) + D.

n consecutive words starting at EA are stored from
the low-order 32 bits of GPRs RS through 31.

EA must be a multiple of 4. If it is not, the system
alignment error handler may be invoked or the results
may be boundedly undefined.

Special Registers Altered:
None

42 PowerPC User Instruction Set Architecture .

... ./

,
\

(

(

IBM Confidential

3.3.6 Fixed-Point Move Assist Instructions

The Move Assist instructions allow movement of data
from storage to registers or from registers to storage
without concern for alignment. These instructions can
be used for a short move between arbitrary storage
locations or to initiate a long move between unaligned
storage fields.

Load/Store String Indexed instructions of zero length
shall have no effect, except that Load String Indexed
instructions of zero length may set register RT to an
undefined value.

The Load/Store String instructions have preferred
forms: see Section 1.9.1, "Preferred Instruction

Forms" on page 11. In the preferred forms, register
usage satisfies the following rules.

• RS - 5
• RT - 5
• last register loaded/stored :s 12

On Power PC systems operating with Uttle-Endian byte
order, execution of a Load/Store String instruction
causes the system alignment trap handler to be
invoked. See Appendix 0, "Uttle-Endian Byte
Ordering" on page 145.

Chapter 3. Fixed-Point Processor 43

Load String Word Immediate X-form

Iswi RT,RA,NB

[Power mnemonic: lsi]

if RA ~ e then EA ~ 9
el se EA ~ (RA)
if NB = e then n ~ 32
else n~NB
r~RT-l
i ~ 32
do while n > e

if i = 32 then
r ~ r + 1 (mod 32)
GPR(r) ~ 8

GPR(r)i:i+7 ~ MEM(EA, 1)
i ~ i + 8
if i = 64 then i ~ 32
EA ~ EA + 1
n ~ n - 1

597

Let the effective address (EA) be (RAIO). Let n - NB
if NB~O, n - 32 if NB-O: n is the number of bytes to
load. Let nr - CEIL(n+4): nr is the number of regis
ters to receive data.

n consecutive bytes starting at EA are loaded into
GPRs RT through RT + nr-1. Data is loaded into the
low-order four bytes of each GPR; the high-order four
bytes are set to O.

Bytes are loaded left to right in each register. The
sequence of registers wraps around to GPR 0 if
required. If the low-order four bytes of register
RT + nr-1 are only partially filled, the unfilled low
order byte(s) of that register are set to o.

If RA is in the range of registers to be loaded or
RT-RA-O, the instruction form is invalid.

Special Registers Altered:
None

IBM Confidential

Load String Word Indexed X-form

Iswx RT,RA,RB

[Power mnemonic: ISx]

I RA 11"RB
11 ...

if RA = 8 then b ~ 9
else b ~ (RA)
EA ~ b + (RB)
n ~ XER25:31
r ~ RT - 1
i ~ 32
RT ~ undefined
do while n > 8

if i = 32 then
r ~ r + 1 (mod 32)
GPR(r) ~ 8

GPR(r)I:I+7 ~ MEM(EA, 1)
i ~ i + 8
if i = 64 then i ~ 32
EA ~ EA + 1
n ~ n - 1

533

Let the effective address (EA) be the sum
(RAIO)+ (RB). Let n - XER25:31 : n is the number of
bytes to load. Let nr - CEIL(n+4): nr is the number
of registers to receive data.

If n > 0, n consecutive bytes starting at EA are loaded
into GPRs RT through RT + nr-1. Data is loaded into
the low-order four bytes of each GPR; the high-order
four bytes are set to O.

Bytes are loaded left to right in each register. The
sequence of registers wraps around to GPR 0 if
required. If the low-order four bytes of register
RT + nr-1 are only partially filled, the unfilled low
order byte(s) of that register are set to O.

If n - 0, the content of register RT is undefined.

If RA or RB is in the range of registers to be loaded
or RT - RA - 0, the instruction form is invalid.

Special Registers Altered:
None·

44 PowerPC User Instruction Set Architecture

(

IBM Confidential

Store String Word Immediate X-form

stswi RS,RA,NB

[Power mnemonic: stsi]

I RA 116 NB
11 •

if RA = e then EA ~ e
else EA ~ (RA)
if NB = a then n ~ 32
else n ~ NB
r~RS-l

i ~ 32
do while n > a

if i = 32 then r ~ r + 1 (mod 32)
MEM(EA, 1) ~ GPR(r)I:I+7
i ~ i + B
if i = 64 then i ~ 32
EA ~ EA + 1
n ~ n - 1

725

Let the effective address (EA) be (RAIO). Let n - NB
if NB7I=O, n - 32 if NB-O: n is the number of bytes to
store. Let nr - CEIL(n+4): nr is the number of regis
ters to supply data.

n consecutive bytes starting at EA are stored from
GPRs RS through RS+nr-1. Data is stored from the
low-order four bytes of each GPR.

Bytes are stored left to right from each register. The
sequence of registers wraps around to GPR ° if
required.

Special Registers Altered:
None

Store String Word Indexed X-form

stswx RS,RA,RB

[Power mnemonic: stsx]

I RA 1'6RB
11 .

if RA = a then b ~ a
else b ~ (RA)
EA ~ b + (RB)
n ~ XER25:31
r ~ RS - 1
i ~ 32
do while n > a

if i = 32 then r ~ r + 1 (mod 32)
MEM(EA, 1) ~ GPR(r)I:1 +7
i ~ i + 8
if i = 64 then i ~ 32
EA ~ EA + 1
n ~ n - 1

661

Let the effective address (EA) be the sum
(RAIO)+(RB). Let n - XER25:31 : n is the number of
bytes to store. Let nr - CEIL(n+4): nr is the number
of registers to supply data.

n consecutive bytes starting at EA are stored from
GPRs RS through RS+nr-1. Data is stored from the
low-order four bytes of each GPR.

Bytes are stored left to right from each register. The
sequence of registers wraps around to GPR ° if
required.

Special Registers Altered:
None

Chapter 3. Fixed-Point Processor 45

IBM Confidential

3.3.7 Storage Synchronization Instructions

The Storage Synchronization instructions can be used
to control the order in which storage operations are
completed with respect to asynchronous events, and
the order in which storage operations are seen by
other processors and by other mechanisms that
access storage. Additional information about these
instructions, and about related aspects of storage
management, can be found in Book II, PowerPC
Virtual Environment Architecture, and Book III,
PowerPC Operating Environment Architecture.

On a PowerPC system operating with Uttle-Endian
byte order the three low-order bits of the Effective
Address computed by Load Word And Rese",e
Indexed and Store Word Conditional Indexed are
modified before acceSSing storage. See Appendix 0,
"Uttle-Endian Byte Ordering" on page 145.

Load Word And Reserve Indexed
X-form

Iwarx RT,RA,RB

10 31 16 RT I"RA

if RA = e then b ~ 9
else b ~ (RA)
EA ~ b + (RB)
RESERVE ~ 1
RESERVE ADDR ~ func(EA)
RT ~ 32i II MEM(EA. 4)

1,6 RB 12,
20

1:,1

Let the effective address (EA) be the sum
(RAIO) + (RB). The word in storage addressed by EA
is loaded into RT32:63• RTo:3, are set to O.

This instruction creates a reservation for use by a
Store Word Conditional instruction. An address com
puted from the EA is associated with the reservation,
and replaces any address previously associated with
the reservation: the manner in which the address to
be associated with the reservation is computed from
the EA is described in Book II, PowerPC Virtual Envi
ronment Architecture.

EA must be a multiple of 4. If it is not, the system
alignment error handler may be invoked or the results
may be boundedly undefined.

Special Registers Altered:
None

Architecture Note ------------,

The Load and Reserve and Store Conditional
instructions require the EA to be aligned. Soft
ware should not attempt to emulate an unaligned
Load and Reserve or Store Conditional instruc
tion, because there is no correct way to define the
address associated with the reservation.

Engineering Note ------------,

Causing the system alignment error handler to be
invoked if attempt is made to execute a Load and
Reserve or Store Conditional instruction having
an incorrectly aligned effective address facilitates
the debugging of software.

Load Doubleword And Reserve Indexed
X-form

Idarx RT,RA,RB

10 31 16 RT I" RA

if RA = e then b ~ e
else b ~ (RA)
EA ~ b + (RB)
RESERVE ~ 1
RESERVE ADDR ~ func(EA)
RT ~ MEM(EA. 8)

1,6 RB 12,
84

1:,1

Let the effective address (EA) be the sum
(RAIO) + (RB). The doubleword in storage addressed
by EA is loaded into RT.

This instruction creates a reservation for use by a
Store Doubleword Conditional instruction. An
address computed from the EA is associated with the
reservation, and replaces any address previously
associated with the reservation: the manner in which
the address to be associated with the reservation is
computed from the EA is described in Book II,
PowerPC Virtual Environment Architecture.

EA must be a multiple of 8. If it is not, the system
alignment error handler may be invoked or the results
may be boundedly undefined.

This instruction is defined only for 64-bit implementa
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
None

46 PowerPC User Instruction Set Architecture

(

IBM Confidential

Store Word Conditional Indexed X-form

stwcx. RS.RA.RB

Store Doubleword Conditional Indexed
X-form

stdcx. RS.RA.RB

L:IO~3_1_.J.16=-R_S---IIL.;.I.:..1 RA_.....L.ll:.;.6 R_B_..I.1.;.;21~_15_0 __ .L,;13~" I I. 31 I. os I" RA I" RB I~ 214

if RA = e then b ~ a
else b ~ (RA)
EA ~ b + (RB)
if RESERVE then

MEM(EA. 4) ~ (RS)32:63
RESERVE ~ a
eRa ~ abaa II abl II XERso

else
eRa ~ abas II aba II XERso

Let the effective address (EA) be the sum
(RAIO) + (RB).

If a reservation exists. (RS)32:63 is stored into the
word in storage addressed by EA and the reservation
is cleared.

If a reservation does not exist. the instruction com
pletes without aitering storage.

CR Field 0 is set to reflect whether the store opera
tion was performed (i.e.. whether a reservation
existed when the stwCX. instruction commenced exe
cution). as follows.

CROLT GT EO so - ObOO II storeJ)8rformed II XERso

EA must be a multiple of 4. If it is not. the system
alignment error handler may be invoked or the results
may be boundedly undefined.

Special Registers Altered:
CRO

if RA = a then b ~ a
else b ~ (RA)
EA ~ b + (RB)
if RESERVE then

MEM(EA. 8) ~ (RS)
RESERVE ~ a
eRB ~ abBS n Bbl II XERso

else
eRB .. SbaS II BbS'l1 XERso .

Let the effective address (EA) be the sum
(RAIO) + (RB).

If a reservation exists. (RS) is stored into the
doubleword in storage addressed by EA and the res
ervation is cleared.

If a reservation does not exist. the instruction com
pleteswithout altering storage.

CR Field 0 is set to reflect whether the store opera
tion was performed (i.e.. whether a reservation
existed when the stdex. instruction commenced exe
cution). as follows.

CROLT GT EO so - ObOO II storeJ)8rformed II XERso

EA must be a multiple of 8. If it is not. the system
alignment error handler may be invoked or the results
may be boundedly undefined.

This instruction is defined only for 64-bit implementa
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
CRO

Programming Note ----------..

The granularity with which reservations are
managed is implementation-dependent. Therefore
the storage to be accessed by the Load And
Reserve and Store Conditional instructions should
be allocated by a system library program. Addi
tional information can be found in Book II.
PowerPC Virtual Environment Architecture.

Chapter 3. Fixed-Point Processor 47

Programming Nota ----------..,

When correctly used, the Load And Reserve and
Store Conditional instructions can provide an
atomic update function for a single aligned word
(Load Word And Reserve and Store Word Condi
tional) or doubleword (Load Doubleword And
Reserve and Store Doubleword Conditional) of
storage.

One of the requirements for correct use is that
Load Word And Reserve be paired with·· Store
Word Conditional, and Load Doubleword And
Reserve with Store Doubleword Conditional, with
the same effective address used for both
instructions of the pair. Examples of correct uses
of these instructions, to emulate primitives such
as "Fetch and Add," ''Test· and Set," and
"Compare and Swap," can be found in Appendix .
E.1, "Synchronization" on page 153. In general,
these instructions should be used only in system
programs, which can be invoked by application
programs as needed.

At most one reservation exists on any given
processor: there are not separate reservations for
words and for doublewords.

The address associated with the reservation can
be changed by a subsequent Load And Reserve
instruction.

The conditionality of the Store Conditional
instruction's store is based only on whether a res
ervation exists, not on a match between the
address associated with the reservation and the
address computed from the EA of the Store Con
ditional instruction.

A reservation is cleared if any of the following
events occurs.

• the processor having the reservation exe
cutes a Store Conditional instruction to any
address

• another processor executes any Store instruc
tion to the address associated with the reser
vation

• any mechanism, other than the processor
having the reservation, stores to the address
associated with the reservation

IBM Confidential

Synchronize X-form

sync

[Power mnemonic: des]

1'6
111

598 1:,1
The sync instruction provides an ordering function for
the effects of all instructions executed by a given
processor. Executing a sync instruction ensures that
all instructions previously initiated by the given
processor appear to have completed before the sync
instruction completes, and that no subsequent
instructions are initiated by the given processor until
after the sync instruction completes. When the sync
instruction completes, all storage accesses initiated
by the given processor prior to the sync will have
been performed with respect to all other mechanisms
that access storage. (See Book II, PowerPC Virtual
Environment Architecture, for a more complete
description. See also the section entitled ''Table
Update Synchronization Requirements" in Book III,
PowerPC Operating Environment Architecture, for an
exception involving TLB invalidates.)

Spacial Registars Altered:
None

Programming Nota ----------..,

The sync instruction can be used to ensure that
the results of all stores into a data structure, per
formed in a "critical section" of a program, are
seen by other processors before the data struc
ture is seen as unlocked.

The functions performed by the sync instruction
will normally take a significant amount of time to
complete, so indiscriminate use of this instruction
may adversely affect performance. In addition,
the time required to execute sync may vary from
one execution to another.

The Enforce In-order Execution of 110 (eieio)
instruction, described in Book II, PowerPC Virtual
Environment Architecture, may be more appro
priate than sync for cases in which the only
requirement is to control the order in which
storage references are seen by 110 devices.

Engineering Nota ------------,

Unlike a context synchronizing operation, sync
need not discard prefetched instructions.

48 PowerPC User Instruction Set Architecture .

(

IBM Confidential

3.3.8 Other Fixed-Point Instructions

The remainder of the fixed-point instructions use the
content of the General Purpose Registers (GPRs) as
source operands, and place results into GPRs, into the
fixed-point Exception Register (XER) , and into Condi
tion Register fields. In addition, the Trap instructions
compare the contents of one GPR with a second GPR
or immediate data and, if the conditions are met,
invoke the system trap handler.

These instructions treat the source operands as
signed integers unless the instruction is explicitly
identified as performing an unsigned operation.

The X-form and XC-form instructions with Rc-1, and
the D-form instruction addie., andl., and andls., set CR
Field 0 to characterize the result of the operation. In
64-bit mode, CR Field 0 is set as if the 64-bit result
were compared algebraically to zero. In 32-bit mode,
this field is set as if the sign-extended low-order 32
bits of the result were compared algebraically to zero.

addle, addle., subf1c, addc, suble, adde, subfe, addme,
subfme, addze, and subfze always set CA, to reflect
the carry out of bit 0 in 64-bit mode and out of bit 32
in 32-bit mode. The XC-forms set SO and OV when
OE -1, to reflect overflow of the 64-bit result in 64-bit
mode and overflow of the low-order 32-bit result in
32-bit mode.

Unless otherwise noted and when appropriate, when
CR Field 0 and the XER are set they reflect the value
placed in the target register.

Programming Note -----------,

Instructions with the OEbit set or· which set CA
may execute slowly or may prevent the execution
of subsequent instructions until the operation is
completed.

Chapter 3. Fixed-Point Processor 49

3.3.9 Fixed-Point Arithmetic Instructions

Extended mnemonics for addition and
subtraction

Several extended mnemonics are provided that use
the Add Immediate and Add Immediate Shifted
instructions to load an immediate value or an address
into a target register. Some of these are shown as
examples with the two instructions.

The PowerPC Architecture supplies Subtract From
instructions, which subtract the second operand from

Add Immediate D-form

addi RT,RA,SI

[Power mnemonic: cal]

10
14

16 RT 111RA 116

SI

311

if RA = 9 then RT ~ EXTS(SI)
else RT ~ (RA) + EXTS(SI)

The sum (RAIO) + SI is placed into register RT.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Add Immediate:

Extended: Equivalent to:

Ii Rx,value addi RX,O,value
la RX,disp(Ry) addi Rx,Ry,disp
subi Rx,Ry,value addi RX,Ry,-value

IBM Confidential

the third. A set of extended mnemonics is provided
that use the more "normal" order, in which the third
operand is subtracted from the second, with the third
operand being either an immediate field or a register.
Some of these are shown as examples with the appro
priate Add and Subtract From instructions.

See Appendix C, "Assembler Extended Mnemonics"
on page 133 for additional extended mnemonics.

Add Immediate Shifted D-form

addis RT,RA,SI

[Power mnemonic: caul

10
15

16 RT 111RA 116

SI

311

if RA = 9 then RT ~ EXTS(SI " lee)
else RT ~ (RA) + EXTS(SI " 16e)

The sum (RAIO) + (SI" OXOOOO) is placed into register
RT.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Add Immediate
Shifted:

Extended:

lis Rx,value
subis RX,Ry,value

Equivalent to:

addis RX,O,value
addis Rx,Ry,-value

50 PowerPC User Instruction Set Architecture

(

r(

IBM Confidential

Add XO-form

add RT,RA,RB
add. RT,RA,RB
addo RT,RA,RB
addo. RT,RA,RB

[Power mnemonics: cax, cax., caxo, caxo.]

RT ~ (RA) + (RB)

(OE-O Rc-O)
(OE-O Rc-1)
(OE-1 Re-O)
(OE-1 Rc-1)

The sum (RA) + (RB) is placed into register RT.

Special Registers Altered:
CRD
SOOV

(if Rc-1)
(if OE-1)

Subtract From XO-form

subf
subf.
subfo
subfo.

RT,RA,RB
RT,RA,RB
RT,RA,RB
RT,RA,RB

(OE-O Rc-O)
(OE-O Rc-1)
(OE-1 Rc-O)
(OE-1 Rc-1)

I RA 116RB
!1 .

RT ~ ~(RA) + (RB) + 1

The sum (RA) + (RB) + 1 is placed into register
RT.

Special Registers Altered:
CRO
SOOV

Extended Mnemonics:

(if Rc-1)
(if OE-1)

Example of extended mnemonics for Subtract From:

Extended: Equivalent to:

sub RX,Ry,Rz subf Rx, Rz, Ry

Programming Note ------------,

addi, addis, add, and subl are the preferred
instructions for addition and subtraction, because
they set few status bits.

Notice that add/ and addis use the value 0, not the
contents of GPR 0, if RA - O.

Add Immediate Carrying D-form

addic RT,RA,SI

[Power mnemonic: ai]

SI

RT ~ (RA) + EXTS(SI)

The sum (RA) + SI is placed into register RT.

Special Registers Altered:
CA

Extended Mnemonics:

Example of extended mnemonics for Add Immediate
Carrying:

Extended: Equivalent to:

subic Rx,Ry,value addic RX,Ry,-value

Add Immediate Carrying and Record
D-form

addic. RT,RA,SI

[Power mnemonic: ai.]

SI

RT ~ (RA) + EXTS(SI)

The sum (RA) + SI is placed into register RT.

Special Registers Altered:
CROCA

Extended Mnemonics:

Example of extended mnemonics for Add Immediate
Carrying and Record:

Extended: Equivalent to:

subic. RX,Ry,value addic. Rl',Ry,-value

Chapter 3. Fixed-Point Processor 51

Subtract From Immediate Carrying
D-form

subfic RT,RA,SI

[Power mnemonic: Sft]

SI

RT ~ ~(RA) + EXTS(SI) + 1

The sum ... (RA) + SI + 1 is placed into register RT.

Special Registers Altered:
CA

Add Carrying XO-form

acldc
acldc.
addeo
addeo.

RT,RA,RB
RT,RA,RB
RT,RA,RB
RT,RA,RB

[Power mnemonics: a, a., 80, 80.]

I RT I RA 11SRB
S 11 •

RT ~ (RA) + (RB)

IBM Confidential

(OE-O Rc-O)
(OE-O Rc-1)
(OE-1 Rc-O)
(OE-1 Rc-1)

IOE I 10· IR
31
cl

2122 .•

The sum (RA) + (RB) is placed into register RT.

Special Registars Altered:
CA
CRO
SOOV

(if Rc-1)
(if OE-1)

Subtract From Carrying XO-form

subfc
subfc.
subfco
subfeo.

RT,RA,RB
RT,RA,RB
RT,RA,RB
RT,RA,RB

(OE-O Rc-O)
(OE-O Rc-1)
(OE-1 Rc-O)
(OE-1 Rc-1)

[Power mnemonics: sf, sf., sfo, Sfo.]

RT ~ ~(RA) + (RB) + 1

The sum ... (RA) + (RB) + 1 is placed into register
RT.

Special Register. Altered:
CA
CRO
SOOV

Extended Mnemonics:

(if Rc-1)
(if OE-1)

Example of extended mnemonics for Subtract From
Carrying:

Extended:

subc Rx,Ry,Rz

Equivalent to:
subfc Rx,Rz,Ry

52 PowerPC User Instruction Set Architecture

/

IBM Confidential

Add Extended XO-form

adde
adde.
addeo
addeo.

RT,RA,RB
RT,RA,RB
RT,RA,RB
RT,RA,RB

[Power mnemonics: ae, ae., aeo, a8O.]

RT ~ (RA) + (RB) + CA

(OE-O Rc-O)
(OE-O Rc-1)
(OE-1 Rc-O)
(OE-1 Rc-1)

The sum (RA) + (RB) + CA is placed into register
RT.

Special Registers Altered:
CA
eRO
SOOV

(if.Rc-1)
(if OE-1)

Add To Minus One Extended XO-form

addme RT,RA
add me. RT,RA
addmeo RT,RA
addmeo. RT,RA

(OE-O Rc-O)
(OE-O Rc-1)
(OE-1 Rc-O)
(OE-1 Rc-1)

[Power mnemonics: ame, ame., am8O, am8O.]

RT ~ (RA) + CA - 1

The sum (RA) + CA + 641 is placed into register RT.

Special Registers Altered:
CA
CRO
SOOV

(if Rc-1)
(if OE-1)

Subtract From Extended XO-form

subfe
subfe.
subfeo
subfeo.

RT,RA,RB
RT,RA,RB
RT,RA,RB
RT,RA,RB

[Power mnemonics: ste, sfe., sf8O, sf8O.]

RT ~ ~(RA) + (RB) + CA

(OE-O Rc-O)
(oe-o Rc-1)
(OE-1 Rc-O)
(OE-1 Rc-1)

The sum (RA) + (RB) + CA is placed into register
RT.

Special Registers Altered:
CA
CRO
SOOV

(if Rc-1)
(if OE-1)

Subtract From Minus One Extended
XO-form

subfme
subfme.
subfmeo
subfmeo.

RT,RA
RT,RA
RT,RA
RT,RA

(OE-O Rc-O)
(OE-O Rc-1)
(OE-1 Rc-O)
(OE-1 Rc-1)

[Power mnemonics: sfme, sfme., sfm8O, sfm8O.]

RT ~ ~(RA) + CA - 1

The sum (RA) + CA + 641 is placed into register
RT.

Special Registers Altered:
CA
CRO
SOOV

(if Rc-1)
(if OE-1)

Chapter 3. Fixed-Point Processor 53

Add To Zero Extended XO-form

addze
addze.
addzeo
addzeo.

RT,RA
RT,RA
RT,RA
RT,RA

[Power mnemonics: aze, aze., azeo, azeo.]

RT + (RA) + CA

(OE-O Rc-O)
(OE-O Rc-1)
(OE-1 Rc-O)
(OE-1 Rc-1)

The sum (RA) + CA is placed into register RT.

Special Registers Altered:
CA
eRO
SOOV

(if Rc-1)
(if OE-1)

IBM Confidential

Subtract From Zero Extended XO-form

subfze
subfze.
subfzeo
subfzeo.

RT,RA
RT,RA
RT,RA
RT,RA

(OE-O Rc-O)
(OE-O Rc-1)
(OE-1 Rc-O)
(OE-1 Rc-1)

[Power mnemonics: stze, stze., stzeo, stzeo.]

RT + ... (RA) + CA

The sum ... (RA) + CA is placed into register RT.

Special Registers Altered:
CA
eRO
SOOV

(if Rc-1)
(if OE-1)

Programming Note -----------,

The setting of CA by the Add and Subtract
instructions, including the Extended versions
thereof, is mode-dependent. If a sequence of
these instructions is used to perform extended
precision addition or subtraction, the same mode
should be used throughout the sequence.

Negate XO-form

neg RT,RA (OE-O Rc-O)
neg. RT,RA (OE-O Rc-1)
nego RT,RA (OE-1 Rc-O)
nego. RT,RA (OE-1 Rc-1)

10 31 16 RT I"RA 1'6
111 I~~ 122 104 I~~I

RT + ... (RA) + 1

The sum ... (RA) + 1 is placed into register RT.

If executing in 64-bit mode and register RA contains
the most negative 64-bit number (Ox8000 _0000_0000_
0000), the result is the most negative number and, if
OE-1, OV is set. Similarly, if executing in 32-bit
mode and (RAh2:63 contains the most negative 32-bit
number (Ox8000_0000), the low-order 32 bits of the
result contain the most negative 32-bit number and, if
OE-1, OV is set.

Special Registers Altered:
eRO
SOOV

(if Rc-1)
(if OE-1)

54 PowerPC User Instruction Set Architecture .

./

IBM Confidential

Multiply Low Immediate

mulli RT,RA,SI
[Power mnemonic: mUIi]

10
07

16 RT 111RA

prodO:79 to (RA) x SI
RT to prod16:79

116

D-form

SI
311

The 64-bit first multiplicand is (RA). The 16-bit second
multiplicand is SI. The low-order 64 bits of the SO-bit
product of the multiplicands are placed into register RT.

Special Registers Altered:
None

Multiply Low Word XO-form

mullw
mullw.
mullwo
mullwo.

RT,RA,RB
RT,RA,RB
RT,RA,RB
RT,RA,RB

(OE-O Rc-O)
(OE-O Rc-1)
(OE-1 Rc-O)
(OE-1 Rc-1)

[Power mnemonics: mUIS, muls., mulso, mulso.]

I RA 116RB
11 .

RT to (RA h2:63 x (RB h2:63

The 32-bit operands are the low-order 32 bits of RA
and RB. The 64-bit product of the operands is placed
into register RT.

If OE -1, then SO and OV are set to one if the product
cannot be represented in 32 bits.

Both the operands and the product are interpreted as
signed integers.

Special Registers Altered:
eRO
SOOV

(if Rc-1)
(if OE-1)

Programming Notes ----------,

For mulli and mullw, the low-order 32 bits of the
product are the correct 32-bit product for 32-bit
mode.

The XC-form multiply instructions may execute
faster on some implementations if RB contains
the operand having the smaller absolute value.

Multiply Low Doubleword XO-form

mulld
mulld.
mulldo
mulldo.

RT,RA,RB
RT,RA,RB
RT,RA,RB
RT,RA,RB

prodO:l27 to (RA) x (RB)
RT to prod64:127

(OE-O Rc-O)
(OE-O Rc-1)
(OE-1 Rc-O)
(OE-1 Rc-1)

I~~ 122 233

The 64-bit operands are (RA) and (RB). The low-order
64 bits of the 12S-bit product of the operands are
placed into register RT.

If OE -1, then SO and OV are set to one if the product
cannot be represented in 64 bits.

Both the operands and the product are interpreted as
signed integers. (However, the result in RT is inde
pendent of whether the operands are interpreted as
signed or unsigned integers.)

This instruction is defined only for 64-bit implementa
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
eRO
SOOV

(if Rc-1)
(if OE-1)

Editor's Note -------------,

It is proposed to replace the mull instruction by
two: mullw and mulld. This change has not been
officially adopted by the PAWG. However, it is
included here for early dissemination.

Chapter 3. Fixed-Point Processor 55

Multiply High Doubleword

mulhd RT,RA,RB
mUlhd. RT,RA,RB

10 31 Ie RT 111RA

prodO:I27 to (RA) x (RB)
RT to prodO:83

lIe RB

XO-form

(Rc-O)
(Rc-1)

I ~1 122

73 I:~I

The 64-bit multiplicands are (RA) and (RB). The high
order 64 bits of the 128-bit product of the multipli
cands are placed into register RT.

Both the multiplicands and the product are inter,.
preted as signed integers.

This instruction is defined only for 64-bit implementa
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
eRO (if Rc-1)

Multiply High Doubleword Unsigned
XO-form

mulhdu
mulhdu.

RT,RA,RB
RT,RA,RB

prodO:127 to (RA) x (RB)
RT to prodO:83

(Rc-O)
(Rc-1)

The 64-bit multiplicands are (RA) and (RB). The high
order 64 bits of the 128-bit product of the multipli
cands are placed into register RT.

Both the multiplicands and the product are inter
preted as unsigned integers.

This instruction is defined only for 64-bit implementa
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
eRO (if Rc-1)

IBM Confidential

Multiply High Word XO-form

mulhw RT,RA,RB
mulhw. RT,RA,RB

10 31 Ie RT 1,1 RA l,e
RB

prodO:83 to (RA)32:83 x (RBh2:83
RT 32:83 to prodO:31
RTO:31 to undefined

(Rc-O)
(Rc-1)

I ~1 122

75 I:~I

The 32-bit multiplicands are the low-order 32 bits of
RA and of RB. The high-order 32 bits of the 64-bit
product of the multiplicands are placed into RT 32:83'
(RT)0:31 are undefioed.

Both the multiplicands and the product are inter
preted as signed integers.

Special Registers Altered:
eRO (if Rc-1)

Multiply High Word Unsigned XO-form

mulhwu RT,RA,RB
mulhwu. RT,RA,RB

10 31 Ie RT 1" RA 11e
RB

prodO:83 to (RA)32:83 x (RB)32:83
RT 32:83 to prodO:31
RTo:31 to undefined

(Rc-O)
(Rc-1)

I ~1 122

11 I:~I

The 32-bit multiplicands are the low-order 32 bits of
RA and of RB. The high-order 32 bits of the 64-bit
product of the. multiplicands are placed into RT 32:83'
(RT)0:31 are undefined.

Both the multiplicands and the product are inter
preted as unsigned integers.

Special Registers Altered:
eRO (if Rc-1)

56 PowerPC User Instruction Set Architecture

c:

IBM Confidential

Divide Doubleword

divd RT,RA,RB
divd. RT,RA,RB
divdo RT,RA,RB
divdo. RT,RA,RB ..

/0

31
16 RT 1"RA

di videndo:63 to (RA)
divisorO:63 to (RB)
RT to dividend + divisor

XO-form

(OE-O Rc-O)
(OE-O Rc-1)
(OE-1 Rc-O)
(OE-1 Rc-1)

1,6 RB I~~ 122 489 I~~I

The 64-bit dividend is (RA). The 64-bit divisor is (RB).
The 64-bit quotient of the dividend and divisor is
placed into RT. The remainder is nat supplied as a
result.

Bath the dividend and the divisor are interpreted as
signed integers. The quotient is the unique signed
integer that satisfies

dividend = (quotient x divisor) + r

where 0 S r < Idivisorl if the dividend is nonnegative,
and - Idivisorl < r S 0 if the dividend is negative.

If an attempt is made to perform any of the divisions

exsaee eeae aaea eaae + -1
<anything> + e -

then the contents of register RT are undefined as are
(if Rc - 1) the contents of the LT, GT, and EO bits of
CR Field O. In these cases, if OE-1 then OV is set to
1.

This instruction is defined only far 64-bit implementa
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
CRO
SOOV

(if Rc-1)
(if OE-1)

Programming Note -----------,

The 64-bit signed remainder of dividing (RA) by
(RB) can be computed as follows, except in the
case that (RA) - _263 and (RB) - -1.

divd RT,RA,RB
lTI.Ill d RT ,RT ,RB
subf RT ,RT ,RA

II RT = quotient
II RT = quotient*divisor
II RT = remainder

Divide Word XO-form

divw
divw.
divwa
divwo.

RT,RA,RB
RT,RA,RB
RT,RA,RB
RT,RA,RB

(OE-O Rc-O)
(OE-O Rc-1)
(OE-1 Rc-O)
(OE~1 Rc-1)

1 RT 1 RA 1 RB 1~2E, 122 491
6 11 16 ..

d i vi dendo:63 to EXTS ((RA) 32:63)
di vi sorO:63 to EXTS((RB)32:63)
RT32:63 +- dividend + divisor
RT 0:31 to undefi ned

The 64-bit dividend is the sign-extended value of
(RA)32:63. The 64-bit divisor is. the sign-extended
value of (RBh2:63. The 64-bit quotient is formed. The
low-order 32 bits of the 64-bit quotient are placed into
RT 32:63. (RT)O:31 are undefined. The remainder is not
supplied as a result.

Bath the dividend and the divisor are interpreted as
signed integers. The quotient is the unique signed
integer that satisfies

dividend = (quotient x divisor) + r

where 0 S r < I divisor I if the dividend is nonnegative,
and - Idivisorl < r S 0 if the dividend is negative.

If an attempt is made to perform any of the divisions

exsaea aaae + -1
<anything> + a

then the contents of register RT are undefined as are
(if Rc-1) the contents of the LT, GT, and EO bits of
CR Field O. In these cases, if OE -1 then OV is set to
1.

Special Registers Altered:
CRO
SOOV

(if Rc-1)
(if OE-1)

Programming Note -----------,

The 32-bit signed remainder of dividing (RAh2:63
by (RBh2:63 can be computed as fallows, except in
the case that (RA) - _231 and (RB) - -1.

divw RT,RA,RB
lTI.Illw RT,RT,RB
subf RT,RT,RA

II RT = quotient
II RT = quotient*divisor
II RT = remainder

Chapter 3. Fixed-Point Processor 57

Divide Doub/eword Unsigned XO-form

divdu
divdu.
divduo
divduo.

RT,RA,RB
RT,RA,RB
RT,RA,RB
RT,RA,RB

(OE-O Rc-O)
(OE-O Rc-1)
(OE-1 Rc-O)
(OE-1 Rc-1)

I RA 116RS
11 .

di vi dendo:63 ~ (RA)
di vi sorO:63 ~ (RB)
RT ~ dividend + divisor

The 64-bit dividend is (RA). The 64-bit divisor is (RB).
The 64-bit quotient of the dividend and divisor is
placed into RT. The remainder is not supplied as a.
result

Both the dividend and the divisor are interpreted as
unsigned integers. The quotient is the unique
unsigned integer that satisfies

dividend = (quotient x divisor) + r

where 0 ~ r < divisor.

If an attempt is made to perform the division

<anything> + 9

then the contents of register RT are undefined as are
(if Rc-1) the contents of the LT, GT, and EO bits of
CR Field O. In this case, if OE -1 then OV is set to 1.

This instruction is defined only for 64-bit implementa
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
CRO
SOOV

(if Rc-1)
(if OE-1)

Programming Note -----------.

The 64-bit unsigned remainder of dividing (RA) by
(RB) can be computed as follows.

divdu RT,RA,RB
IIlIlld RT ,RT ,RB
subf RT ,RT ,RA

RT = quotient
RT = quotient*divisor
RT = remainder

IBM Confidential

Divide Word Unsigned XO-form

divwu
divwu.
divwuo
divwuo.

RT,RA,RB
RT,RA,RB
RT,RA,RB
RT,RA,RB

I RA 116RB
11 .

dividendo:63 ~ 329 II (RA)32:63
divi sorO:63 ~ 329 II (RB)32:63
RT32:63 ~ dividend + divisor
RT 0:31 ~ undefi ned

(OE-O Rc-O)
(OE-O Rc-1)
(OE-1 Rc-O)
(OE-1 Rc-1)

The 64-bit dividend is the zero-extended value of
(RA)32:63' The 64-bit divisor is the zero-extended
value of (RBls2:63. The 64-bit quotient is formed. The
low-order 32 bits of the 64-bit quotient are placed into
RT 32:63' (RT)0:31 are undefined. The remainder is not
supplied as a result.

Both the dividend and the divisor are interpreted as
unsigned integers. The quotient is the unique
unsigned integer that satisfies

dividend = (quotient x divisor) + r

where 0 ~ r < divisor.

If an attempt is made to perform the division

<anything> + 9

then the contents of register RT are undefined as are
(if Rc -1) the contents of the LT, GT, and EO bits of
CR Field O. In this case, if OE -1 then OV is set to 1.

Special Registers Altered:
CRO
SOOV

(if Rc-1)
(if OE-1)

Programming Note -----------.

The 32·bit unsigned remainder of dividing
(RA)32:63 by (RB)32:63 can be computed as follows.

divwu RT,RA,RB
IIlIllw RT ,RT ,RB
subf RT ,RT ,RA

RT = quotient
RT = quotient*divisor
RT = remainder

58 PowerPC User Instruction Set Architecture

f

IBM Confidential

3.3.10 Fixed-Point Compare Instructions

The Fixed-Point Compare instructions algebraically or
logically compare the contents of register RA with (1)
the sign-extended. value of the SI field, (2) the UI field,
or (3) the contents of register RB. Algebraic compar
ison compares two signed integers. Logical compar
ison compares two unsigned integers.

For 64-bit implementations, the L field controls
whether the operands are treated as 64- or 32-bit
quantities, as follows:

L Operand length
o 32-bit operands
1 64-bit operands

When the operands are treated as 32-bit signed quan
tities, bit 32 of the register (RA or RB) is the sign bit.

For 32-bit implementations, the L field must ~ zero.

The Compare instructions set one bit in the leftmost
three bits of the designated CR field to one, and the

Compare Immediate D-form

cmpi BF,L.RA,SI

if L = a then a .. EXTS«RAh2:63)
else a .. (RA)

if a < EXTS(SI) then c .. ablaa
else if a > EXTS(SI) then c .. abele
el se c .. ebeSl
CR4XBF:4XBF+3 .. c II XERso

SI

The contents of register RA «RAb2:63 sign-extended
to 64 bits if L-O) is compared with the sign-extended
value of the SI field, treating the operands as signed
integers. The result of the comparison is placed into
CR field BF.

In 32-bit implementations, if L-1 the instruction form
is invalid.

Special Registers Altered:
CR field BF

Extended Mnemonics:

Examples of extended mnemonics for Compare Imme
diate:

Extended:

cmpdi RX,value
cmpwi cr3,Rx,value

Equivalent to:

cmpi O,1,Rx,value
cmpi 3,O,Rx,value

other two to zero. XERso is copied into bit 3 of the
designated CR field.

The CR field is set as follows.

Bit
o
1

Description
(RA) < SI, UI, or (RB)
(RA) > SI, UI, or (RB)
(RA) = SI, UI, or (RB) 2

3

Name
LT
GT
EO
SO Summary Overflow from the XER

Extended mnemonics for compares

A set of extended mnemonics is provided so that
compares can be coded ,with the operand length as
part of the instruction mnemonic rather than as a
numeric operand. Some of these are shown as exam
ples with the Compare instructions. The extended
mnemonics for doubleword comparisons are available
only in 64-bit implementations. See Appendix C,
"Assembler Extended Mnemonics" on page 133 for
additional extended mnemonics.

Compare X-form

cmp BF,L.RA,RB

if L = a then a .. EXTS«RAh2:63)
b .. EXTS«RBh2:63)

else a .. (RA)
b .. (RB)

if a < b then c .. eblSS
else if a > b then c .. Shale
else c .. eheel
CR4XBF:4XBF+3 .. c II XERso

o

The contents of register RA «RAb2:63 if L-O) is com
pared with the contents of register RB «RBb2:63 if
L-O), treating the operands as signed integers. The
result of the comparison is placed into CR field BF.

In 32-bit implementations, if L-1 the instruction form
is invalid.

Special Registers Altered:
CR field BF

Extended Mnemonics:

Examples of extended mnemonics for Compare:

Extended:

cmpd RX,Ry
cmpw cr3,Rx,Ry

Equivalent to:

cmp O,1,Rx,Ry
cmp 3,O,Rx,Ry

Chapter 3. Fixed-Point Processor 59

Compare Logical Immediate D-form

cmpli SF,L,RA,UI

if L = e then a .. 32e II {RAh2:83
else a .. (RA)

if a ~ (48e II UI) then e .. eblee
else if a ~ (48e U UI) then e .. 9bele
else e .. 9beel
CR.,.BF:4XBF+3 .. e U XERso

UI

The contents of register RA «RA)32:~. zero-extended
to 64 bits if L-O) is compared with '"'0 II UI, treating
the operands as unsigned integers. The result of the
comparison is placed into CR field SF.

In 32-bit implementations, if L-1 the instruction " form
is invalid.

Special Registers Altered:
CR field SF

Extended Mnemonics:

Examples of extended mnemonics for Compare
Logical Immediate:

Extended:

cmpldi RX,value
cmplwi cr3,Rx,value

Equivalent to:

cmpli O,1,Rx,value
cmpli 3,O,Rx,value

IBM Confidential

Compare Logical X-form

cmpl SF,L,RA,RS

if L = e then a .. 32e II (RAh2:83
b to 32e II (RB)32:83

else a .. (RA)
b .. (RS)

if a ~ b then e .. ebl99
else if a ~ b then e .. 9b9l9
el se c .. ebeel
CR4XBF:4XBF+3 .. c II XERso

32

The contents of register RA CCRA)32:83 if L-O) is com
pared with the Contents of register RS «RS)32:83 if
L-O), treating the operands as unsigned integers.
The result of the comparison is placed into CR field
SF.

In 32-bit implementations, if L-1 the instruction form
is invalid.

Special Registers Altered:
CR field SF

Extended Mnemonics:

Examples of extended mnemonics for Compare
Logical:

Extended:

cmpld Rx,Ry
cmplw cr3,Rx,Ry

Equivalent to:

cmpl O,1,Rx,Ry
cmpl 3,O,Rx,Ry

60 PowerPC User Instruction Set Architecture "

IBM Confidential

3.3.11 Fixed-Point Trap Instructions

The Trap instructions are provided to test for a speci
fied set of conditions. If any of the conditions tested
by a Trap instruction are met, the system trap handler
is invoked. If the tested conditions are not met,
instruction execution continues normally.

The contents of register RA is compared with either
the sign-extended SI field or with the contents of reg
ister RB depending on the Trap instruction. For ttli
and ttl, the entire contents of RA (and RB) participate
in the comparison; for twl and tw, only the contents of
the low-order 32 bits of RA (and RB) participate in the
comparison.

This comparison results in five conditions which are
ANDed with TO. If the result is not 0 the system trap
handler is invoked. These conditions are:

Trap Doubleword Immediate

tdi TO,RA,SI

10 02 16 TO 111RA 116

a .. (RA)
if (a < EXTS(SI» & TOo then TRAP
if (a > EXTS(SI» & T01 then TRAP
if (a = EXTS(SI» & T02 then TRAP
if (a ~ EXTS(SI» & T03 then TRAP
if (a ~ EXTS(SI» & T04 then TRAP

D-form

SI

311

The contents of register RA is compared with the
sign-extended SI field. If any bit in the TO field is set
to 1 and its corresponding condition is met by the
result of the comparison, then the system trap
handler is invoked.

This instruction is defined only for 64-bit implementa
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Trap
Doubleword Immediate:

Extended: Equivalent to:

tdlti RX,value tdi 16,Rx,value
tdnei RX,value tdi 24,Rx,value

TO bit
o
1
2
3
4

ANDed with Condition
Less Than
Greater Than
Equal
Logically Less Than
Logically Greater Than

Extended mnemonics for traps

A set of extended mnemonics is provided so that
traps can be coded with the condition as part of the
instruction mnemonic rather than as a numeric
operand. Some of these are shown as examples with
the Trap instructions. See Appendix C, "Assembler
Extended Mnemonics" on page 133 for additional
extended mnemonics.

Trap Word Immediate D-form

twi TO,RA,SI

[Power mnemonic: tl]

10 03 16 TO 111RA 116

a .. EXTS«RAh2:63)
if (a < EXTS(S!» & TOo then TRAP
if (a > EXTS(S!» & T01 then TRAP
if (a = EXTS(S!» & T02 then TRAP
if (a ~ EXTS(S!» & T03 then TRAP
if (a ~ EXTS(S!» & T04 then TRAP

Sl

311

The contents of RA32:63 is compared with the sign
extended SI field. If any bit in the TO field is set to 1
and its corresponding condition is met by the result of
the comparison, then the system trap handler is
invoked.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Trap Word
Immediate:

Extended:

twgti RX,value
twllei Rx,value

Equivalent to:

twi 8,Rx,value
twi 6,Rx,value

Chapter 3. Fixed-Point Processor 61

Trap Doubleword

td

10
31

a ~ (RA)
b ~ (RB)

TO,RA,RB

Is TO I" RA

X-form

l,sRB

if (a < b) & TOo then TRAP
if (a > b) & TO, then TRAP
if (a = b) & T02 then TRAP
if (a ~ b) & T03 then TRAP
if (a ~ b) & T04 then TRAP

12,
68

1:,1

The contents of register RA is compared with the con
tents of register RB. If any bit in the TO field is set to
.1 and its corresponding condition is met by the result
of the comparison, then the system trap handler is
invoked.

This instruction is defined only for 64-bit implementa
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Trap
Doubleword:

Extended: Equivalent to:

tdge RX,Ry td 12,Rx,Ry
tdlnl Rx,Ry td 5,Rx,Ry

IBM Confidential

Trap Word X-form

tw TO,RA,RB

[Power mnemonic: t]

10 31 Is TO I" RA

a .. EXTS«RA)32:63)
b .. EXTS((RB) 32:63)

I,s RB

if (a < b) & TOo then TRAP
if (a > b) & TO, then TRAP
if (a = b) & T02 then TRAP
if (a ~ b) & T03 then TRAP
if (a ~ b) & T04 then TRAP

12,
4

1:,1

The contents of RA32:63 is compared with the contents
of RB32:63. If any bit in the TO field is set to 1 and its
corresponding condition is met by the result of the
comparison, then the system trap handler is invoked.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Trap Word:

Extended:

tweq RX,Ry
twlge RX,Ry
trap

Equivalent to:

tw 4,Rx,Ry
tw 5,Rx,Ry
tw 31,0,0

62 PowerPC User Instruction Set Architecture

/""',

(

IBM Confidential

3.3.12 Fixed-Point Logical Instructions

The Logical instructions perform bit-parallel oper
ations on 64-bit operands.

The X-form Logical instructions with Rc -1, and the
O-form Logical instructions andl. and andis., set CR
Field 0 to characterize the result of the logical opera
tion. In 64-bit mode, CR Field 0 is set as if the 64-bit
result were algebraically compared to zero. In 32-bit
mode, these fields are set as if the sign-extended low
order 32 bits of the result were algebraically com
pared to zero. The X-form Logical instructions with
Rc-O, and the remaining O-form Logical instructions,
do not change the Condition Register. The Logical
instructions do not change the SO, OV,· and CA bits· in
the XER.

AND Immediate D-form

andi. RA,RS,UI

[Power mnemonic: andil.]

10
28

16 RS 111 RA 116

UI

311

RA .. (RS) & (489 II UI)

The contents of register RS is ANOed with 4BQ II UI and
the result is placed into register RA.

Special Registers Altered:
CRO

Extended mnemonics for logical
operations

An extended mnemonic is provided that generates the
preferred form of "no-op" (an instruction that does
nothing). This is shown as an example with the OR
Immediate instruction.

Extended mnemonics are provided that use the OR
and NOR instructions to copy the contents of one reg
ister to another, with and without complementing.
These are shown as examples with the two
instructions.

See Appendix C, "Assembler Extended Mnemonics"
on page 133 for additional extended mnemonics.

AND Immediate Shifted D-form

andis. RA,RS,UI

[Power mnemonic: andiu.]

10
29

16 RS 111RA 116

UI

311

RA .. (RS) & (329 II UI II 169)

The contents of register RS is ANDed with 32() II UI II
1&0 and the result is placed into register RA.

Special Registers Altered:
CRO

Chapter 3. Fixed-Point Processor 63

OR Immediate D-form

ori RA,RS,UI

[Power mnemonic: orll]

10

24
16 RS 1,1 RA 116

UI

311

RA ~ (RS) I (48a D UI)

The contents of register RS is ORed with "SO II UI and
the result is placed into register RA.

The preferred "no-op" (an instruction that does
nothing) is:

or; a,a,a

Special Registers Altered:
None

Extended Mnemonics:

Example of extended mnemonics for OR Immediate:

Extended:

nop

Equivalent to:

ori 0,0,0

Engineering Note -----------,

It is desirable for implementations to make the
preferred form of "no-op" execute quickly, since
this form should be used by compilers.

XOR Immediate D-form

xori RA,RS,UI

[Power mnemonic: xoril]

10

26
16 RS 111RA 116

UI

3,1

RA ~ (RS) E9 (48a II UI)

The contents of register RS is XORed with "SO II UI
and the result is placed into register RA.

Special Registers Altered:
None

IBM Confidential

OR Immediate Shifted D-form

oris RA,RS,UI

[Power mnemonic: orlu]

10 25 16 RS 11,RA 1,6

UI

311

RA ~ (RS) I (32a II UI II 16a)
The contents of register RS is ORed with 32() II UIII ' SO
and the result is placed into register RA.

Special Registers Altered:
None

XOR Immediate Shifted D-form

xoris RA,RS,UI

[Power mnemonic: XOriu]

10

27
16 RS I"RA 1,6

UI

311

RA ~ (RS) E9 (329 II UI II '6S)

The contents of register RS is XORed with 32Q II UI II
'SO and the result is placed into register RA.

Special Registers Altered:
None

64 PowerPC User Instrudion Set Architedure

(

IBM Confidential

AND X-form

and RA,RS,RB (Rc-O)
and. RA,RS,RB (Rc-1)

10 31 16 RS I"RA 116 RB 121
28 I:~I

RA ~ (RS) & (RB)

The contents of register RS is ANOed with the con
tents of register RB and the result is placed into reg
ister RA.

Special Registers Altered:
eRO

XOR X-form

xor RA,RS,RB
xor. RA,RS,RB

10 31 16 RS I" RA

RA ~ (RS) E9 (RB)

(if Rc-1)

(Rc-O)
(Rc-1)

1'6
RB 12,

316 I:~I

The contents of register RS is XORed with the con
tents of register RB and the result is placed into reg
ister RA.

Special Registers Altered:
eRO (if Rc-1)

OR X-form

or RA,RS,RB (Rc-O)
or. RA,RS,RB (Rc-1)

10 31 16 RS I"RA 116 RB 12,
444 I:~I

RA ~ (RS) I (RB)

The contents of register RS is ORed with the contents
of register RB and the result is placed into register
RA.

Special Registers Altered:
eRO

Extended Mnemonics:

(if Rc-1)

Example of extended mnemonics for OR:

Extended: Equivalent to:

mr RX,Ry or RX,Ry,Ry

NAND X-form

nand RA,RS,RB (Rc-O)
nand. RA,RS,RB (Rc-1)

10 31 16 RS 1,I RA 116 RB 121
476 I:~I

RA ~ ~«RS) & (RB»

The contents of register RS is ANOed with the con
tents of register RB and the complemented result is
placed into register RA.

Special Registers Altered:
eRO (if Rc-1)

Programming Note -----------,

nand or nor with RA - RB can be used to obtain
the one's complement.

Chapter 3. Fixed-Point Processor 65

NOR X-form

nor RA,RS,RB (Re-O)
nor. RA,RS,RB (Re-1)

10 31 Is RS 1"RA l,s RB
121

124 I:~I
RA ~ ~«RS) I (RB»

The contents of register RS is ORed with the contents
of register RB and the complemented result is placecl
into register RA.

Special Registers Altered:
eRO

Extended Mnemonics:

Example of extended mnemonics for NOR:

Extended: Equivalent to:

(if Rc-1)

not Rx,Ry nor Rx,Ry,Ry

AND with Complement X-form

ande RA,RS,RB (Re-O)
ande. RA,RS,RB (Re-1)

10 31 Is RS 1" RA l,s RB
121

60 I:~I
RA ~ (RS) & ~(RB)
The contents of register RS is ANDed with the com
plement of the contents of register RB and the result
is placed into register RA.

Special Registers Altered:
eRO (if Rc-1)

IBM Confidential

Equivalent X-form

eqv RA,RS,RB (Re-O)
eqv. RA,RS,RB (Re-1)

10 31· Is RS ·I" RA l,sRB
121

284 I:~I
RA ~ (RS) = (RB)

The contents of register RS is XORed with the con
tents of register RB and the complemented result is
placed into register RA.

Special Registers Altered:
.. eRO

OR with Complement X-form

arc RA,RS,RB
arc. RA,RS,RB

10 31 Is RS 1"RA l,sRB
121

RA ~ (RS) I ~(RB)

(if Rc-1)

(Re-O)
(Re-1)

412 I:~I

The contents of register RS is ORad with the comple
ment of the contents of register RB and the result is
placed into register RA.

Special Registers Altered:
eRO (if Re-1)

66 PowerPC User Instruction Set Architecture .

(

IBM Confidential

Extend Sign Byte X-form

extsb RA,RS
extsb. RA,RS

10 31 Is RS

5 .. (RS)56
RA56:63 .. (RS)56:63
RAo:55 .. 565

I"RA 116//1

(Rc-O)
(Rc-1)

12,

954 I~~I

(RS)SS:63 are placed into RASS:63' Bit 56 of register RS
is placed into RAO:55'

Special Register. Altered:
eRO

Extend Sign Word X-form

extsw RA,RS
extsw. RA,RS

10 31 Is RS 111RA 116//1

5 .. (RSls2
RA32'63 .. (RS ls2'63
RAo:~1 .. 325 .

(if Rc-1)

(Rc-O)
(Rc-1)

121

986 I~~I

(RSl32:63 are placed into RA32:63• Bit 32 of register RS
is placed into RAo:31'

This instruction is defined only for 64-bit implementa
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
eRO (if Rc-1)

Extend Sign Halfword X-form

extsh
extsh.

RA,RS
RA,RS

[Power mnemonics: exts, exts.]

5 .. (RS)48
RA48:63 .. JRS)48:63
RAo:47" 5

I RA 11s //l
11 .

922

(Rc-O)
(Rc-1)

(RS)48:63 are placed into RA48:63. Bit 48 of register RS
is placed into RAo:47'

Special Registers Altered:
eRO (if Rc-1)

Chapter 3. Fixed-Point Processor 67

Count Leading Zeros Doubleword
X-form

cntlzd
cntlzd.

n .. 9

RA,RS
RA,RS

I RA 1,& /1/ 11 .

do while n < 64
if {RS)n = 1 then leave
n .. n + 1

RA .. n

58

(Rc-O)
(Rc-1)

A count of the number of consecuti.ve zero bits
starting at bit 0 of register RS is placed .into RA. This
number ranges from 0 to 64, inclusive.

If Rc -1, CR Field 0 is set to reflect the result.

This instruction is defined only for 64-bit implementa
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
CRO (if Rc-1)

IBM Confidential

Count Leading Zeros Word X-form

cntlzw RA,RS
cntlzw. RA,RS

[Power mnemonics: cntlz, cntIZ.]

10
31

1& RS 1"RA

n .. 32
do while n < 64

if (RS)n = 1 then leave
n .. n + 1

RA .. n - 32

1,&111

(Rc-O)
(Rc-1)

121
26 I:~I

A count of. the number of consecutive zero bits
starting at bit 32 of of register RS is placed. into RA.
This number ranges from 0 to 32, inclusive.

If Rc -1, CR Field 0 is set to reflect the result.

Special Registers Altered:
CRO (if Rc-1)

Programming Note -----------,

For both Count Leading Zeros instructions, if
Rc-1 then LT is set to zero in CR Field O.

68 PowerPC User Instruction Set Architecture

IBM Confidential

3.3.13 Fixed-Point Rotate and Shift Instructions

The Fixed-Point Processor performs rotation oper
ations on data from a GPR and returns the result, or a
portion of the result, to a GPR.

The rotation operations rotate a 64-bit quantity left by
a specified number of bit positions. Bits that exit from
poSition 0 enter at position 63.

Two types of rotation operation are supported.

For the first type, denoted rotate64 or ROTle4, the
value rotated is the given 64-bit value. The rotate64
operation is used to rotate a given 64-bit quantity.

For the second type, denoted rotatea2 or ROT~2' the
value rotated consists of two copies of bits 32:63 of
the given 64-bit value, one copy in bits 0:31 and the
other in bits 32:63. The rotat8a2 operation is used to
rotate a given 32-bit quantity.

The Rotate and Shift instructions employ a mask gen
erator. The mask is 64 bits long, and consists of
1-bits from a start bit, mstart, through and including a
stop bit, mstop, and O-bits elsewhere. The values of
mstart and mstop range from zero to 63. If mstart >
mstop, the 1-bits wrap around from position 63 to
position O. Thus the mask is formed as follows:

if mstart s mstop then
maskmstart:mstop = ones
maskall other bits = zeros

else
maskmstart:63 = ones
masko:mstop = ones
maskell other bits = zeros

There is no way to specify an all-zero mask.

For instructions that use the rotatea2 operation, the
mask start and stop positions are always in the low
order 32 bits of the register.

The use of the mask is described in following
sections.

If Rc -1, the Rotate and Shift instructions set CR Field
o according to the contents of register RA at the com
pletion of the instruction. Rotate and Shift
instructions do not change the OV and SO bits.
Rotate and Shift instructions, except algebraic right
shifts, do not change the CA bit.

Extended mnemonics for rotates and
shifts

The Rotate and Shift instructions, while powerful, can
be complicated to code (they have up to five oper
ands). A set of extended mnemonics is provided that
allow simpler coding of often-used functions such as
clearing the leftmost or rightmost bits of a register,
left justifying or right justifying an arbitrary field, and
simple rotates and shifts. Some of these are shown
as examples with the Rotate instructions. See
Appendix C, "Assembler Extended Mnemonics" on
page 133 for additional extended mnemonics.

3.3.13.1 Fixed-Point Rotate Instructions

These instructions rotate the contents of a register.
The result of the rotation is

• Inserted into the target register under control of a
mask (if a mask bit is 1 the associated bit of the
rotated data is placed into the target register,
and if the mask bit is 0 the associated bit in the
target register remains unchanged); or

• ANDed with a mask before being placed into the
target register.

The Rotate Left instructions allow right-rotation of the
contents of a register to be performed (in concept) by
a left-rotation of 64-N, where N is the number of bits
by which to rotate right. They allow right-rotation of
the contents of the low-order 32 bits of a register to
be performed (in concept) by a left-rotation of 32-N,
where N is the number of bits by which to rotate right.

Architecture Note ----------___

For MD-form and MDS-form instructions, the MB
and ME fields are used in permuted rather than
sequential order because this is easier for the
processor. Permuting the MB field permits the
processor to obtain the low-order five bits of the
MB value from the same place for all instructions
having an MB field (M-form and MD-form
instructions). Permuting the ME field permits the
processor to treat bits 21:26 of all MD-form
instructions uniformly.

Chapter 3. Fixed-Point Processor 69

Rotate Left Doubleword Immediate then
Clear Left MD-form

rldicl
rldicl.

RA,RS,SH,MB
RA,RS,SH,MB

(Rc-O)
(Rc-1)

I RA 11e Sh
11 .

n to shs II ShO:4
r to ROTLe4«RS). n)
b to mbs II mbO:4
m .. MASK(b. 63)
RA .. r&m

The contents of register RS are rotated64 leftSH bits.
A mask is generated having 1-bits from· bit MB
through bit 63 and O-bits elsewhere. The rotated data
is ANDed with the generated mask and the result is
placed into register RA.

This instruction is defined only for 64-bit implementa
tions. Using it on a 32-bit implementatian will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
eRO

Extended Mnemonics:

(if Rc-1)

Examples of extended mnemonics for Rotate Left
Doub/eword Immediate then Clear Left:

Extended:

extrdi RX,Ry,n,b
srdi RX,Ry,n
clrldi RX,Ry,n

Equivalent to:

rldicl Rx,Ry,b+n,64-n
rldicl RX,Ry,64-n,n
rldicl Rx,Ry,O,n

Programming Note ----------...,

rldlcl can be used to extract an n-bit field, that
starts at bit position b in register RS, right
justified into register RA (clearing the remaining
64-n bits of RA), by setting SH-b+n and
MB-64-n. It can be used to rotate the contents
of a register left (right) by n bits, by setting SH-n
(64-n) and MB-O. It can be used ta shift the
contents af a register right by n bits, by setting
SH-64-n and MB-n. It can be used ta clear
the high-arder n bits of a register, by setting
SH-O and MB-n.

Extended mnemanics are pravided for all of these
uses: see Appendix e, "Assembler Extended
Mnemanics" an page 133.

IBM Confidential

Rotate Left Doubleword Immediate then
Clear Right MD-form

rldicr
rldicr.

RA,RS,SH,ME
RA,RS,SH,ME

n .. shs II ShO:4
r .. ROTLe4«RS). n)
e to mes II meO:4
m .. MASK(S. e)
RAtor&m

(Rc-O)
(Rc-1)

The contents af register RS are ratated64 left SH bits.
A mask is generated .having 1-bits from bit 0 through
bit ME and O-bits elsewhere. The rotated data is
ANDed with the generated mask and the result is
placed into register RA.

This instructian is defined only for 64-bit implementa
tians. Using it on a 32-bit implementation will cause
the system illegal instructian error handler to be
invoked.

Special Registers Altered:
eRO

Extended Mnemonics:

(ifRc-1)

Examples af extended mnemonics for Rotate Left
Doub/eword Immediate then Clear Right

Extended:

extldi Rx,Ry,n,b
sldi RX,Ry,n
clrrdi Rx,Ry,n

Equivalent to:

rtdicr Rx,Ry,b,n-1
rldicr Rx,Ry,n,63-n
rldicr Rx,Ry,O,63-n

Programming Note ----------..,

rldlcr can be used ta extract an n-bit field, that
starts at bit positian b in register RS, left-justified
into register RA (clearing the remaining 64-n bits
af RA), by setting SH-b and ME-n-1. It can be
used ta rotate the contents of a register left
(right) by n bits, by setting SH - n (64-n) and
ME-63. It can be used to shift the contents af a
register left by n bits, by setting SH - nand
ME-63-n. It can be used ta clear the low-arder
n bits of a register, by setting SH-O and
ME-63-n.

Extended mnemonics are pravided for all af these
uses (same devolve to rldlcl): see Appendix e,
"Assembler Extended Mnemanics" an page 133.

70 PowerPC User Instruction Set Architecture

(,
"

IBM Confidential

Rotate Left Doubleword Immediate then
Clear MD-form

rldic
rldic.

RA,RS,SH,MB
RA,RS,SH,MB

(Rc-O)
(Rc-1)

I RA 116 Sh
11 .

n +- sh5 II shO:4
r +- ROTle4((RS), n)
b +- mb5 II mbO:4
m +- MASK(b, ... n)
RA+-r&m

The contents of register RS are rotated64 left SH bits.
A mask is generated having 1-bits from bit MB
through bit 63-SH, and O-bits elsewhere. The rotated
data is ANDed with the generated mask and the result
is placed into register RA.

This instruction is defined only for 64-bit implementa
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
eRO

Extended Mnemonics:

(if Rc-1)

Example of extended mnemonics for Rotate Left
Doubleword Immediate then Clear.

Extended: Equivalent to:

clrlsldi RX,Ry,b,n rldic RX,Ry,n,b-n

Programming Note -----------,

rldic can be used to clear the high-order b bits of
the contents of a register and then shift the result
left by n bits by setting SH-n and MB-b-n. It
can be used to clear the high-order n bits of a
register, by setting SH-O and MB-n.

Extended mnemonics are provided for both of
these uses (the second devolves to rldicl): see
Appendix e, "Assembler Extended Mnemonics"
on page 133.

Rotate Left Word Immediate then AND
with Mask M-form

rlwinm
rlwinm.

RA,RS,SH,MB,ME
RA,RS,SH,MB,ME

[Power mnemonics: rlinm, rlinm.]

(Rc-O)
(Rc-1)

I RA 116SH
11 .

n +- SH
r +- ROTL32 ((RSh2:63' n)
m +- MASK(MB+32, ME+32)
RA+-r&m

The contents of register RS are rotated32 left SH bits.
A mask is generated having 1-bits from bit MB
through bit ME and O-bits elsewhere. The rotated
data is ANDed with the generated mask and the result
is placed into register RA.

Special Registers Altered:
eRO

Extended Mnemonics:

(if Rc-1)

Examples of extended mnemonics for Rotate Left
Word Immediate then AND with Mask:

Extended:

extlwi RX,Ry,n,b
srwi RX,Ry,n
clrrwi Rx,Ry,n

Equivalent to:

rlwinm RX,Ry,b,O,n-1
rlwinm RX,Ry,32-n,n,31
rlwinm RX,Ry,O,O,31-n

Chapter 3. Fixed-Point Processor 71

Programming Note ----------..,

Let RSL represent the low-order 32 bits of reg
ister RS. with the bits numbered from 0 through
31.

rlwinm can be used to extract an n-bit field. that
starts at bit position b in RSL, right-justified into
the low-order 32 bits of register RA (clearing the
remaining 32-n bits of the low-order 32 bits of
RA). by setting SH-b+n. MB-32-n. and
ME - 31. It can be used to extract an n-bit field.
that starts at bit position b in RSL, left-justified
into the low-order 32 bits of register RA (clearing
the remaining 32-n bits of the low-order 32 bits
of RA), by setting SH-b, MB - 0, and ME-n-1.
It can be used to rotate the contents of the low
order 32 bits of a register left (right) by n bits, by
setting SH-n (32-n), MB-O. and ME-31. It can
be used to shift the contents of the low-order 32
bits of a register right by n bits, by setting
SH-32-n, MB-n, and ME-31. It can be used to
clear the high-order b bits of the low-order 32 bits
of the contents of a register and then shift the
result left by n bits by setting SH-n, MB-b-n
and ME-31-n. It can be used to clear the low
order n bits of the low-order 32 bits of a register,
by setting SH-O, MB-O, and ME-31-n.

For all the uses given above, the high-order 32
bits of register RA are cleared.

Extended mnemonics are provided for all of these
uses: see Appendix C, "Assembler Extended
Mnemonics" on page 133.

IBM Confidential

Rotate Left Doubleword then Clear Left
MDS-form

rldcl
rldcl.

RA,RS,RB,MB
RA,RS,RB,MB

n to (RBh8:63
r to ROTLe4«RS). n)
b to rnbs U rnbO:4
m to MASK(b. 63)
RA+-r&m

(Rc-O)
(Rc-1)

The contents.of register RS are rotated84 left the
number of bits specified .by (RB)ss:63' A.mask is gen
erated having 1-bits from bit MB through bit 63 and
O-bits elsewhere. The rotated data is ANDed with the
generated mask and the result is placed into register
RA.

This instruction is defined only for 64-bit implementa
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
CRO (if Rc-1)

Extended Mnemonics:

Example of extended mnemonics for Rotate Left
Doub/eword then Clear Left:

Extended:
rotld Rx,Ry,Rz

Equivalent to:
rldcl RX,Ry,Rz,O

Programming Note ----------..,

rldcl can be used to extract an n-bit field. that
starts at variable bit position b in register RS,
right-justified into register RA (clearing the
remaining 64-n bits of RA), by setting
RBss:63 -b+n and MB-64--n. It can be used to
rotate the contents of a register left (right) by var
iable n bits by setting RBss:63 -n (64-n) and
MB-O.

Extended mnemonics are provided for some of
these uses: see Appendix C, "Assembler
Extended Mnemonics" on page 133.

72 PowerPC User Instruction Set Architecture .

/ '

(

IBM Confidential

Rotate Left Doubleword then Clear Right
MDS-form

rldcr
rldcr.

RA,RS,RB,ME
RA,RS,RB,ME

I RA 116RB
11 .

n to (RB)SS:63
r to ROTLs4«RS). n)
e to mes II meO:4
m to MASK(S. e)
RAtor&m

121 me

(Rc-O)
(Rc-1)

The contents of register RS are rotated64 · left the
number of bits specified by (RB)ss:63' A mask is gen
erated having 1-bits from bit 0 through bit ME and
O-bits elsewhere. The rotated data is ANDed with the
generated mask and the result is placed into register
RA.

This instruction is defined only for 64-bit implementa
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
CRO (if Rc-1)

Programming Note -----------,

rider can be used to extract an n-bit field, that
starts at variable bit position b in register RS, left
justified into register RA (clearing the remaining
64-n bits of RA), by setting RBs8:63 -b and
ME-n-1. It can be used to rotate the contents of
a register left (right) by variable n bits by setting
RBss:63 -n (64-n) and ME-63.

Extended mnemonics are provided for some of
these uses (some devolve to rldel) see
Appendix C, "Assembler Extended Mnemonics"
on page 133.

Rotate Left Word then AND with Mask
M-form

rlwnm
rlwnm.

RA,RS,RB,MB,ME
RA,RS,RB,MB,ME

[Power mnemonics: rlnm, rlnm.]

I RA 116RB
11 .

n to (RBls9:63
r to ROTL32 ((RSl32:63' n)
m to MASK(MB+32. ME+32)
RAtor&m

(Rc-O)
(Rc-1)

The· cOntents of register RS are rotated32 left the
number of bits specified by (RB)59:63' A mask is gen
erated having 1-bits from bit MB through bit ME and
O-bits elsewhere. The rotated data is ANDed with the
generated mask and the result is placed into register
RA.

Special Registers Altered:
CRO (if Rc-1)

Extended Mnemonics:

Example of extended mnemonics for Rotate Left Word
then AND with Mask:

Extended: Equivalent to:
rotlw Rx, Ry,Rz rlwnm Rx,Ry,Rz,O,31

Programming Note -----------,

Let RSL represent the low-order 32 bits of reg
ister RS, with the bits numbered from 0 through
31.

rfwnm can be used to extract an n-bit field, that
starts at variable bit position b in RSL., right
justified into the low-order 32 bits of register RA
(clearing tbe remaining 32-n bits of the low-order
32 bits of RAI, by setting RB59:63 -b+n,
MB-32-n, and ME-31. It can be used to extract
an n-bit field, that starts at variable bit position b
in RSL., left~justified into the low-order 32 bits of
register RA (clearing the remaining 32-n bits of
the low-order 32 bits of RAI, by setting RBS9:63 - b,
MB - 0, and ME-n-1. It can be used to rotate
the contents of the low-order 32 bits of a register
left (right) by variable n bits. by setting RB59:63 -n
(32-nl, MB-O, and ME-31.

For all the uses given above, the high-order 32
bits of register RA are cleared.

Extended mnemonics are provided for some of
these uses: see Appendix C, "Assembler
Extended Mnemonics" on page 133.

Chapter 3. Fixed-Point Processor 73

Rotate Left Doubleword Immediate then
Mask Insert MD-form

rldimi
rldimi.

RA,RS,SH,MB
RA,RS,SH,MB

(Rc-O)
(Rc-1)

I RA Ile Sh
11 .

n .. shs II shO:4
r .. ROTle4«RS), n)
b .. mbs II mbO:4
m .. MASK(b, .. n)
RA .. r&m I (RA) m

The contents of register RS are ratated64 left SH bits.·
A mask is generated having 1-bits from bit MB
through bit 63-SH, and O-bits elsewhere. The rotated
data is inserted into register RA under control of the
generated mask.

This instruction is defined only for 64-bit implementa
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
eRO

Extended Mnemonics:

(if Rc-1)

Example of extended mnemonics for Rotate Left
Doubleword Immediate then Mask Insert:

Extended: Equivalent to:
insrdi RX,Ry,n,b rldimi Rx,Ry,64-(b+ n),b

Programming Note -----------,

rldlmi can be used to insert an n-bit field, that is
right-justified in register RS, into register RA
starting at bit position b, by setting
SH-64-(b+n) and MB-b.

An extended mnemonic is provided for this use:
see Appendix e, "Assembler Extended
Mnemonics" on page 133.

IBM Confidential

Rotate Left Word Immediate then Mask
Insert M-form

rlwimi
rlwimi.

RA,RS,SH,MB,ME
RA,RS,SH,MB,ME

[Power mnemonics: rllml, rllml.]

I RA 11eSH
11 .

n .. SH
r .. ROTL32 ((RS)32:63' n)
m .. MASK(MB+32, ME+32)
RA .. r&m I (RA)&-om

(Rc-O)
(Rc-1)

The contents of register RS are rotated32 left SH bits.
A mask is generated having 1-bits from bit MB
through bit ME and O-bits elsewhere. The rotated
data is inserted into register RA under control of the
generated mask.

Special Registers Altered:
eRO

Extended Mnemonics:

(if Rc-1)

Example of extended mnemonics for Rotate Left Word
Immediate then Mask Insert:

Extended: Equivalent to:
inslwi RX,Ry,n,b rlwimi RX,Ry,32-b,b,b+n-1

Programming Note -----------,

Let RAL represent the low-orcler 32 bits of reg
ister RA, with the bits numbered from 0 through
31.

rlwimi can be used to insert an n-bit field, that is
left-justified in the low-order 32 bits of register
RS, into RAL starting at bit position b, by setting
SH-32-b, MB-b, and ME-(b+n)-1. It can be
used to insert an n-bit field, that is right-justified
in the low-order 32 bits of register RS, into RAL
starting at bit position b, by setting
SH-32-(b+n), MB-b, and ME-(b+n)-1.

Extended mnemonics are provided for both of
these uses: see Appendix e, "Assembler
Extended Mnemonics" on page 133.

74 PowerPC User Instruction Set Architecture

./

(

(

(

IBM Confidential

3.3.13.2 Fixed-Point Shift Instructions

The instructions in this section perform left and right
shifts.

Extended mnemonics for shifts

Immediate-form logical (unsigned) shift operations are
obtained by specifying appropriate masks and shift
values for certain Rotate instructions. A set of
extended mnemonics is provided to make coding of
such shifts simpler and easier to understand. and
simple rotates and shifts. Some of these are shown
as examples with the Rotate instructions. See
Appendix C, "Assembler Extended Mnemonics" on
page 133 for additional extended mnemonics.

Shift Left Doubleword X-form

sid RA,RS,RB
sid. RA,RS,RB

10

31
16 RS 111 RA

n +- (RB >S8:63
r +- ROTLs4«RS), n)
if (RB)57 = 9 then

m +- MASK(S, 63-n)
else m .. 649
RA +- r & m

116
RB

121

(Rc-O)
(Rc-1)

27 I:~I

The contents of register RS are shifted left the
number of bits specified by (RB)57:63' Bits shifted out
of poSition 0 are lost. Zeros are supplied to the
vacated positions on the right. The result is placed
into register RA. Shift amounts from 64 to 127 give a
zero result.

This instruction is defined only for 64-bit implementa
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
CRO (if Rc-1)

Programming Note -----------,

Any Shift Right Algebraic instruction, followed by
addZfI, can be used to divide quickly by 2N. The
setting of the CA bit by the Shift Right Algebraic
instructions is independent of mode.

Programming Note -----------,

Multiple-precision shifts can be programmed as
shown in Appendix E.2, "Multiple-Precision Shifts"
on page 156.

Engineering Note ------------,

The instructions intended for use with 32-bit data
are shown as doing a rotatE1a2 operation. This is
strictly necessary only for setting the CA bit for
sraw; and sraw. sIVI and srw could do a rotate64
operation if that is easier.

Shift Left Word X-form

slw RA,RS,RB
slw. RA,RS,RB

[Power mnemonics: sl, Sl.]

10

31
16 RS 111RA

n +- (RB)59:63
r +- ROTL32 ((RS)32:63' n)
if (RB)ss = 9 then

m .. MASK(32, 63-n)
else m +- 649
RA+-r&m

(Rc-O)
(Rc-1)

116 RB
121

24 I:~I

The contents of the low-order 32 bits of register RS
are shifted left the number of bits specified by
(RB)s8:63' Bits shifted out of poSition 32 are lost.
Zeros are supplied to the vacated positions on the
right. The 32-bit result is placed into RA32:63- RAO:31
are set to zero. Shift amounts from 32 to 63 give a
zero result.

Special Registers Altered:
CRO (if Rc-1)

Chapter 3. Fixed-Point Processor 75

Shift Right Doub/eword

srd RA,RS,RB
srd. RA,RS,RB

10 31 I, RS
1" RA

n to (RB)ss:83
r to ROTle4«RS). 64-n)
if (RB)57 = 9 then

m to MASK(n. 63)
else m to 649
RAtor&m

116 RB

X-form

CRc-O)
(Rc-1)

121
539 I:~I

The contents of register RS are shifted right the
number of bits specified by (RB)57:83' Bits shifted out
of position 63 are lost. Zeros are supplied to the
vacated positions on the left. The result is placec;f into
register RA. Shift amounts from 64 to 127 give a zero
result.

This instruction is defined only for 64-bit implementa
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
CRO (if Rc-1)

Shift Right Word X-form

SN

SN.

RA,RS,RB
RA,RS,RB

[Power mnemonics: sr, sr.]

I RA I'G RB 11 _

n to (RB)59:83
r to ROT~((RS)32:83. 64-n)
if (RB)ss = 9 then

m to MASK(n+32. 63)
else m to 649
RAtor&m

IBM Confidential

536

(Rc-O)
(Rc-1)

The contents of the low-order 32 bits of register RS
are shifted right the number of bits specified by
(RB)ss:83' Bits shifted out of position 63 are lost.
Zeros are supplied to the vacated positions on the
left. The 32-bit result is placed into RA32:83· RAo:31
are set to zero. Shift amounts from 32 to 63 give a
zero result.

Special Registers Altered:
eRO (if Rc-1)

7& PowerPC User Instruction Set Architecture .

IBM Confidential

Shift Right Algebraic Doubleword
Immediate XS-form

sradi
sradi.

RA,RS,SH
RA,RS,SH

n ~ shs II shO:4
r ~ ROTle4«RS). 64-n)
m ~ MASK(n, 63)
5 ~ (RS)o
RA ~ r&m I (64s)s.-.m
CA ~ 5 & «rs.-.m)~9)

413

(Rc-O)
(Rc-1)

The contents of register RS are shifted right SH bits.
Bits shifted out of position 63 are lost. Bit 0 of RS is
replicated to fill the vacated positions on the left. The
result is placed into register RA. CA is set to 1 if (RS)
is negative and any 1-bits are shifted out of position
63; otherwise CA is set to O. A shift amount of zero
causes RA to be set equal to (RS), and CA to be set
to O.

This instruction is defined only for 64-bit implementa
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
CA
CRO (if Rc-1)

Shift Right Algebraic Word Immediate
X-form

srawi
srawi.

RA,RS,SH
RA,RS,SH

[Power mnemonics: sral, sral.]

I RA 1'6SH
11 .

n ~ SH
r ~ ROTL32 ((RS)32:63' 64-n)
m ~ MASK(n+32, 63)
5 ~ (RS)~
RA ~ r&m I (64s)s.-.m
CA ~ 5 & «rs.-.mb2:63~9)

824

(Rc-O)
(Rc-1)

The contents of the low-order 32 bits of register RS
are shifted right SH bits. Bits shifted out of position
63 are lost. Bit 32 of RS is replicated to fill the
vacated positions on the left. The 32-bit result is
placed into RA32:63. Bit 32 of RS is replicated to fill
RAo:3l' CA is set to 1 if the low-order 32 bits of (RS)
contain a negative number and any 1-bits are shifted
out of position 63; otherwise CA is set to O. A shift
amount of zero causes RA to receive EXTSURSb2:63)'
and CA to be set to O.

Special Registers Altered:
CA
CRO (if Rc-1)

Chapter 3. Fixed-Point Processor 77

Shift Right Algebraic Doubleword
X-form

srad
srad.

RA,RS,RB
RA,RS,RB

/ AA /'6RB
11 •

n to (RBh8:63
r to ROTLa4«RS), 64-n)
if (RB)57 = 9 then

m to MASK(n, 63)
else m to 649
5 to (RS)o
RA to rim I (645) &-om
CA to 5 & «r~m)19)

794

(Rc-O)
(Rc-1)

The contents of register RS are shifted right the
number of bits specified by (RB)57:63' Bits shifted out
of position 63 are lost. Bit 0 of RS is replicated to fill
the vacated positions on the left. The result is placed
into register RA. CA is set to 1 if (RS) is negative and
any 1-bits are shifted out of position 63; otherwise CA
is set to O. A shift amount of zero causes RA to be
set equal to (RS), and CA to be set to O. Shift
amounts from 64 to 127 give a result of 64 sign bits in
RA, and cause CA to receive the sign bit of (RS).

This instruction is defined only for 64-bit implementa
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
CA
CRO (if Rc-1)

IBM Confidential

Shift Right Algebraic Word X-form

sraw RA,RS,RB
sraw. RA,RS,RB

[Power mnemonics: sra, sra.]

/ RA /,aRB
11 •

n to (RB)SS:63
r to ROTL32 ((RS) 32:63' 64-n)
if (RB)sa = 9 then

m to MASK(n+32, 63)
else m to 649
S to (RS)~
RA to rim I (645)~m
CA to 5 & «r~m)32:6319)

792

(Rc-O)
(Rc-1)

The contents of the low-order 32 bits of register RS
are shifted right the number of bits specified by
(RB)58:63' Bits shifted out of position 63 are lost. Bit
32 of RS is replicated to fill the vacated positions on
the left. The 32-bit result is placed into RA32:63. Bit
32 of RS is replicated to fill RAo:31' CA is set to 1 if
the low-order 32 bits of (RS) contain a negative
number and any 1-bits are shifted out of position 63;
otherwise CA is set to O. A shift amount of zero
causes RA to receive EXTS«RS)32:63)' and CA to be
set to O. Shift amounts from 32 to 63 give a result of
64 sign bits, and cause CA to receive the sign bit of
(RS)32:63'

Special Registers Altered:
CA
CRO (if Rc-1)

78 PowerPC User Instruction Set Architecture

(

(

IBM Confidential

3.3.14 Move To/From System Register Instructions

Extended mnemonics

A set of extended mnemonics is provided for the
mtspr and mfspr instructions so that they can be
coded with the SPR name as part of the mnemonic
rather than as a numeric operand. Some of these are
shown as examples with the two instructions. See
Appendix C, "Assembler Extended Mnemonics" on
page 133 for additional extended mnemonics.

Move To Special Purpose Register
XFX-form

mtspr SPR,RS

spr

n to sprS:9 II sprO:4
if length(SPREG(n» = 64 then

SPREG(n) to (RS)
else

SPREG(n) to (RSh2:63(O:31}

467

The SPR field denotes a Special Purpose Register,
encoded as shown in the table below. The contents of
register RS are placed into the designated Special
Purpose Register. For Special Purpose Registers that
are 32 bits long, the low-order 32 bits of RS are
placed into the SPR.

SPR- Register
decimal spr5:9 SprO:4 name

1 00000 00001 XER
8 00000 01000 LR
9 00000 01001 CTR

- Note that the order of the two 5-bit
halves of the SPR number is reversed.

Additional values of the SPR field are defined in Book
III, PowerPC Operating Environment Architecture, and
others may be defined in Book IV, PowerPC Imple
mentation Features for the implementation. If the
SPR field contains any value other than one of these
implementation-specific values or one of the values
shown above or in Book III, the instruction form is
invalid. For an invalid instruction form in which
spro-1, the system privileged instruction error
handler may be invoked instead of the system illegal
instruction error handler.

Special Registers Altered:
See above·

Extended Mnemonics:

Examples. of extended mnemonics for Move To
Special Purpose Register:

Extended:

mtxer Rx
mtlr Rx
mtctr Rx

Equivalent to:

mtspr 1,Rx
mtspr 8,Rx
mtspr 9,Rx

Compiler and Assembler Note -------,

For the mtspr and mfspr instructions, the SPR
number coded in assembler language does not
appear directly as a 10-bit binary number in the
instruction. The number coded is split into two
5-bit halves that are reversed in the instruction,
with the high-order 5 bits appearing in bits 16:20
of the instruction and the low-order 5 bits in bits
11:15. This maintains compatibility with Power
SPR encodings, in which these two instructions
had only a 5-bit SPR field occupying bits 11: 15.

Compatibility Note ------------,

For a discussion of Power compatibility with
respect to SPR numbers not shown in the instruc
tion descriptions for mtspr and mfspr, please refer
to Appendix G, "Incompatibilities with the Power
Architecture" on page 165. For compatibility with
future versions of this architecture, only SPR
numbers discussed in these instruction
descriptions should be used.

Chapter 3. Fixed-Point Processor 79

Move From Special Purpose Register
XFX-form

mfspr RT,SPR

spr

n .. sprS:9 n SprO:4
if length(SPREG(n» = 64 then

RT .. SPREG(n)
else

RT .. 32e D SPREG(n)

339

The SPR field denotes a Special Purpose Register,
encoded as shown in the table below. The contents of
the designated Special Purpose Register are placed
into register RT. For Special Purpose Registers that
are 32 bits long, the low-order 32 bits of RT receive
the contents of the Special Purpose Register and the
high-order 32 bits of RT are set to zero.

SPR* Register
decimal sprS:9 SprO:4 name

1 0000000001 XER
8 00000 01000 LR
9 0000001001 CTR

* Note that the order of the two 5-bit
halves of the SPR number is reversed.

Additional values of the SPR field are defined in Book
III, PowerPC Operating Environment Architecture, and
others may be defined in Book IV, PowerPC Imple
mentation Features for the implementation. If the
SPR field contains any value other than one of these
implementation-specific values or one of the values
shown above or in Book III, the instruction form is
invalid. For an invalid instruction form in which
spr 0 -1, the system privileged instruction error
handler may be invoked instead of the system illegal
instruction error handler.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Move From
Special Purpose Register:

Extended:

mfxer Rx
mflr Rx
mfctr Rx

Equivalent to:

mfspr RX,1
mfspr RX,8
mfspr RX,9

[SO CompileriAssemblorlCompotibiUty N ~

See the Notes that appear with mtspr.

80 PowerPC User Instruction Set Architecture

IBM Confidential

(

IBM Confidential

Move To Condition Register Fields
XFX-form

mtcrf FXM,RS

mask .. 4(FXMo) " 4(FXM t) " ••• 4(FX~)
CR .. «RS) 32:63 & mask) I (CR & "mask)

144

The contents of bits 32:63 of register RS are placed
into the Condition Register under control of the field
mask specified by FXM. The field mask identifies the
4-bit fields affected. Let i be an integer in the range
0-7. If FXM(i) - 1 then CR field i (CR bits 4xi through
4xi + 3) is set to the contents of the corresponding
field of the low-order 32 bits of RS.

Special Registers Altered:
CR fields selected by mask

Programming Note ------------,

Updating a proper subset of the eight fields of the
Condition Register may have substantially poorer
performance on some implementations than
updating all of the fields.

Move to Condition Register from XER
X-form

mcrxr BF

C~BF:4xBF+3 .. XERo:3
XERo:3 .. SbSSSS

512

The contents of XERo:3 are copied into the Condition
Register field designated by BF. XERo:3 is set to zero.

Special Registers Altered:
CR XER o:3

Move From Condition Register X-form

mfcr RT

19

RT .. 32SIICR

The contents of the Condition Register are placed into
RT32:63. RTo:3t are set to O.

Special Registers Altered:
None

Chapter 3. Fixed-Point Processor 81

IBM Confidential

82 PowerPC User Instruction Set Architecture .

'" \
/

('

18 M Confidential

Chapter 4. Floating-Point Processor

4.1 Floating-Point Processor Overview 83
4.2 Floating-Point Processor Registers 84
4.2.1 Floating-Point Registers ...•.. 84
4.2.2 Floating-Point Status and Control

Register 85
4.3 Floating-Point Data 87
4.3.1 Data Format 87
4.3.2 Value Representation 87
4.3.3 Sign of Result ... 89
4.3.4 Normalization and

Denormalization
4.3.5 Data Handling and Precision ..
4.3.6 Rounding
4.4 Floating-Point Exceptions ..
4.4.1 Invalid Operation Exception
4.4.1.1 Definition
4.4.1.2 Action
4.4.2 Zero Divide Exception
4.4.2.1 Definition
4.4.2.2 Action
4.4.3 Overflow Exception
4.4.3.1 Definition
4.4.3.2 Action

89
90
90
91
93
93
94
94
94
94
95
95
95

4.4.4 Underflow Exception .. 95
4.4.4.1 Definition 95
4.4.4.2 Action 95

4.1 Floating-Point Processor
Overview

The Floating-Point Processor provides high perform
ance execution of floating-point operations.
Instructions are provided to perform arithmetic, con
version, comparison, and other operations in floating
point registers, and to move floating-point data
between storage and these registers. Instructions in
the first group are called "arithmetic instructions,"
and instructions in the second group are called
"storage access instructions." Instructions are also
provided that manipulate the Floating-Point Status
and Control Register.

4.4.5 Inexact Exception
4.4.5.1 Definition
4.4.5.2 Action
4.5 Floating-Point Execution Msdels
4.5.1 Execution Model for IEEE

Operations
4.5.2 Execution Model for Multiply-Add

Type Instructions
4.6 Floating-Point Processor

Instructions
4.6.1 Floating-Point Storage Access

Instructions
4.6.1.1 Storage Access Exceptions ..
4.6.2 Floating-Point Load Instructions
4.6.3 Floating-Point Store Instructions
4.6.4 Floating-Point Move Instructions
4.6.5 Floating-Point Arithmetic

Instructions
4.6.6 Floating-Point Multiply-Add

Instructions
4.6.7 Floating-Point Rounding and

Conversion Instructions
4.6.8 Floating-Point Compare

Instructions
4.6.9 Floating-Point Status and Control

Register Instructions

96
96
96
96

96

98

99

100
100
100
103
106

107

109

111

115

116

This architecture provides for the processor to imple
ment a floating-point system as defined in ANSI/IEEE
Standard 754-1985, "IEEE Standard for Binary
Floating-Point Arithmetic" (hereafter referred to as
"the IEEE standard"), but has a dependency on sup
porting software to be in "conformance" with that
standard. All floating-point operations conform to that
standard, except if software sets the Floating-Point
Non-IEEE Mode (NI) bit in the Floating-Point Status
and Control Register to 1 (see page 86), in which case
floating-point operations do not necessarily conform
to that standard.

A floating-point number consists of a signed exponent
and a signed significand. The quantity expressed by

Chapter 4. Floating-Point Processor 83

this number is the product of the significand and the
number 28XPOnent. Encodings are provided in the data
format to represent finite numeric values, ±Infinity,
and values which are "Not a Number" (NaN). Oper
ations involving infinities produce results obeying tra
ditional mathematical conventions. NaNs have no
mathematical interpretation. Their encoding permits
a variable diagnostic information field. They may be
used to indicate such things as uninitialized variables
and can be produced by certain invalid operations.

There is one class of exceptional events which occur
during instruction execution which are unique to the
Floating-Point Processor:

• Floating-Point Exception

Floating-point exceptions are signalled with bits set in
the Floating-Point Status and Control Register
(FPSCR). They can cause the system floating-point
enabled exception error handler to be invoked, pre
cisely or imprecisely, if the proper control bits are set.

F/oaUng-I'oint Exceptions

The following floating-point exceptions are detected
by the processor:

• Invalid Operation Exception
SNaN
Infinity-Infinity
Infinity+lnfinity
Zero+Zero
InfinityxZero
Invalid Compare
Software Request
Invalid Square Root
Invalid Integer Convert

• Zero Divide Exception
• Overflow Exception
• Underflow Exception
• Inexact Exception

(VX)
(VXSNAN)

(VXISI)
(VXIDI)

(VXZDZ)
(VXIMZ)
(VXVC)

(VXSOFT)
(VXSORT)

(VXCVI)
(ZX)
(OX)
(UX)
(XX)

Each floating-point exception, and each category of
Invalid Operation Exception, has an exception bit in
the FPSCR. In addition, each ftoating-point exception
has a corresponding enable bit in the FPSCR. See
Section 4.2.2, "Floating-Point Status and Control
Register" on page 85, for a description of these
exception and enable bits, and Section 4.4, "Floating
Point Exceptions" on page 91, for a detailed dis
cussion of floating-point exceptions, including the
effects of the enable bits.

4.2 Floating-Point Processor
Registers

IBM Confidential

4.2.1 Floating-Point Registers

Implementations of this architecture provide 32
floating-point registers (FPR). The floating-Point
instruction formats provide a 5-bit field for specifying
the FPRs to be used in the execution of the instruc
tion. The FPRs are numbered 0-31.

Each FPR contains 64 bits which support the f1oating
point double format. Every instruction that interprets
the contents of an FPR as a floating-point value uses
the floating-point double format for this interpretation.

Every floating-point arithmetic instruction operates on
data located in FPRs and, with the exception of the
Compare instructions, places the result value into an
FPR. Status information is placed into the Floating
Point Status and Control Register and in some cases
into the Condition Register.

Load and store double instructions are provided that
transfer 64 bits of data between storage and the FPRs
in the Floating-Point Processor with no conversion.
Load single instructions are provided to transfer and
convert floating-point values in floating-point single
format from storage to the same value in floating
point double format in the FPRs. Store single
instructions are provided to transfer and convert
floating-point values in ftoating-point double format
from the FPRs to the same value in floating-point
single format in storage.

Single- and double-precision arithmetic instructions
accept values from the FPRs in double format. For
single-preciSion arithmetic instructions, all input
values must be representable in single format: if they
are not, the result placed into the target FPR, and the
setting of status bits in the FPSCR and in the Condi
tion Register (if Rc -1), are undefined.

The arithmetic instructions produce intermediate
results which may be regarded as being infinitely
precise. After normalization or denormalization, if the
infinitely precise intermediate result is not represent
able in the destination format (either 32-bit Dr 64-bit)
then it is rounded. The final result is then placed into
the FPR in the double format.

FPR 00

FPR 01

...

...
FPR 30

FPR 31
o 63

Figura 23. Floating-Point Registers

84 PowerPC User Instruction Set Architecture

(

IBM Confidential

4.2.2 Floating-Point Status and
Control Register

The Floating-Point Status and Control Register
(FPSCR) controls the handling of floating-point
exceptions and records status resulting from the
floating-point operations. Bits 0:23 are status bits.
Bits 24:31 are control bits.

The exception bits in the FPSCR (bits 0:12, 21 :23) are
sticky, with the exception of Floating-Point Enabled
Exception Summary (FEX) and Floating-Point Invalid
Operation Exception Summary (VX). That is, once set
they remain set until they are cleared by an mcrfs,
mtfsfl. mtlsf, or mtisbO instruction.

FEX and VX are simply the ORs of other FPSCR bits.
Therefore these two bits are not listed among the
FPSCR bits affected by the various instructions.

FPSCR
o 31

Figure 24. Floating.Polnt Status and Control Register

The format of the FPSCR is:

Bit(s) Description

o Floating-Point Exception Summary (FX)
Every floating-point instruction shall implicitly
set FPSCRFX if that instruction causes any of
the floating-point exception bits in the FPSCR
to transition from 0 to 1. mcrls shall impliCitly
reset FPSCRFX if the FPSCR field containing
FPSCRFX is copied. mtlsf, mtlsfl, mtlsbO, and
mtlsb1 shall be able to set or clear FPSCRFX
explicitly.

1 Floating-Point Enabled Exception Summary
(FEX)
This bit signals the occurrence of any of the
enabled exception conditions. It is the OR of all
the floating-point exceptions masked with their
respective enables. mcrfs shall implicitly reset
FPSCRFEx if the result of the logical operation
described above becomes zero. mtlsf, mtlsfl,
mUsbO, and mtfsb1 cannot set or clear
FPSCRFEX explicitly.

2 Floating-Point Invalid Operation Exception
Summary (VX)
This bit signals the occurrence of any invalid
operation exception. It is the OR of all the
Invalid Operation exceptions. mcrfs shall
implicitly reset FPSCRvx if the result of the
logical operation described above becomes
zero. mtfsf, mtlsfl, mtlsbO, and mtlsb1 cannot
set or clear FPSCRvx explicitly.

3 FloatIng-Point Overflow Exception (OX)
See Section 4.4.3, "Overflow Exception" on
page 95.

4 FloatIng-Point Underflow Exception (UX)
See Section 4.4.4, "Underflow Exception" on
page 95.

5 Floating-Point Zero Divide Exception (ZX)
See Section 4.4.2, "Zero Divide Exception" on
page 94.

6 Floating-Point Inexact Exception (XX)
See Section 4.4.5, "Inexact Exception" on
page 96.

7 Floating-Point Invalid Operation Exception
(SHaN) (VXSNAN)
See Section 4.4.1. "Invalid Operation Exception"

. on page .93.

8 Floating-Point Invalid Operation Exception
(00-00) (VXISI)
See Section 4.4.1, "Invalid Operation Exception"
on page 93.

9 Floating-Point Invalid Operation Exception
(00+00) (VXIDI)
See Section 4.4.1, "Invalid Operation Exception"
on page 93.

10 Floating-Point Invalid Operation Exception
(0+0) (VXZDZ)
See Section 4.4.1, "Invalid Operation Exception"
on page 93.

11 Floating-Point Invalid Operation Exception
(ooxO) (VXIMZ)
See Section 4.4.1. "Invalid Operation Exception"
on page 93.

12 Floating-Point Invalid Operation Exception
(Invalid Compare) (VXVC)
See Section 4.4.1, "Invalid Operation Exception"
on page 93.

13 Floating-Point Fraction Rounded (FR)
The last floating-point instruction that poten
tially rounded the intermediate result incre
mented the fraction (see Section 4.3.6,
"Rounding" on page 90). This bit is not sticky.

14 Floating-Point Fraction Inexact (FI)
The last floating-point instruction that poten
tially rounded the intermediate result produced
an inexact fraction or a disabled ·exponent over
flow (see Section 4.3.6, "Rounding" on
page 90). This bit is not sticky.

15:19 Floating-Point Result Flags (FPRF)
This field is set as described below. For
floating-point instructions other than the
Compare instructions, the field is set based on
the result placed into the target register, except
that if any portion of the result is undefined
then the value placed into the FPRF is unde
fined.

Chapter 4. Floating-Point Processor 85

15 Floating-Point Result CIa .. Descr/pter (C)
Floating-point instructions other than the
Compare instructions may set this bit with the
FPCC bits, to indicate the class of the result as
shown in Figure 25 on page 86.

16:19 Floating-Point Condition Code (FPCC)
Floating-point Compare instructions set one of
the FPCC bits to one and the other three FPCC
bits to zero. Other floating-point instructions
may set the FPCC bits with the C bit, to indicate
the class of the result as shown in Figure 25 on
page 86. Note that in this case the high-order
three bits of the FPCC retain their relational sig
nificance indicating that the value is less than,
greater than, or equal to zero.

16 Floating-Point Le .. Than or Negative (FL or <)

17 Floating-Point Greater Than or Positive (FG or
»

18 Floating-Point Equal or Zero (FE or -)

19 Floating-Point Unordered or NaN (FU or 1)

20 Reserved

21 Floating-Point In"alld Operation Exception
(Software Request) (VXSOFT)
This bit can be altered only by mcrfs, mtlsfl,
mtfsi, mtlsbt1, or mtfsb1. See Section 4.4.1,
"Invalid Operation Exception" on page 93.

22 Floating-Point Inllalld Operation Exception
(Inllalld Square Root) (VXSORT)
See Section 4.4.1, "Invalid Operation Exception"
on page 93.

Architecture Nota ---------,

This bit is defined even for implementations
that do not support either of the two
optional instructions that set it, namely
Floating Square Root and Floating Recip
rocal Square Root Estimate. Defining it for
all implementations gives software a
standard interface for handling square root
exceptions.

Programming Nota ---------,

If the implementation does not support the
Floating Square Root instruction or the
Floating Reciprocal Square Root Estimate
instruction, software can simulate the
instruction and set this bit to reflect the
exception.

IBM Confidential

23 Floating-Point Inllalld Operation Exception
(Inllalld Integer Conllert) (VXCVI)
See Section 4.4.1, "Invalid Operation Exception"
on page 93.

24 Floating-Point Inllalld Operation Exception
Enable (VE)
See Section 4.4.1, "Invalid Operation Exception"
on page 93.

25 Floating-Point Ollerflow Exception Enable .(OE)
See Section 4.4.3, "Overflow Exception" on
page 95.

26 Floating-Point Underflow Exception Enable (UE)
See Section 4.4.4, "Underflow Exception" on
page 95.

27 Floating-Point Zero Divide Exception Enable
(ZE)
See Section 4.4.2, "Zero Divide Exception" on
page 94.

28 Floating-Point Inexact Exception Enable (XE)
See Section 4,4;5, "Inexact Exception" on
page 96.

29 Floating-Point Non-IEEE Mode (NI)
If this bit is set to 1, the processor need not
produce IEEE-conforming results for f1oating
point instructions, and the remaining FPSCR
bits may have meanings other than those
shown in this document. The operation of the
processor when NI-1 is described in Book IV,
PowerPC Implementation Features for the
implementation, and may differ between imple
mentations.

30:31 Floating-Point Rounding Control (RN)

C

1

See Section 4.3.6, "Rounding" on page 90.

00 Round to Nearest
01 Round toward Zero
10 Round toward +Infinity
11 Round toward -Infinity

Result
Flags Result Value Class

< > -1

000 1 Quiet NaN
o 1 o 0 1 -Infinity
0 1 o 0 0 - Normalized Number
1 1 o 0 0 - Denormalized Number
1 001 0 -Zero
000 1 0 + Zero
1 o 1 0 0 + Denormalized Number
001 0 0 + Normalized Number
001 0 1 + Infinity

Figure 25. Floating-Point Result Flags

86 PowerPC User Instruction Set Architecture

(

(

IBM Confidential

Architecture Note -----------,

Setting Floating-Point Non-IEEE Mode (NI) to 1 is
intended to permit results to be approximate, and
to cause performance to be more predictable and
less data-dependent than when NI-O. For
example, in Non-IEEE Mode an implementation
might return zero instead of a denormalized
result, and a large number instead of an infinity.
In Non-IEEE Mode an implementation should
provide a means for ensuring that all results are
produced without software assistance (i.e., without
causing a Floating-Point Enabled type Program
interrupt, a Floating-Point Assist interrupt, or a
"fast trap": see Book III, PowerPC Operating Envi
ronment Architecture). The means may be con
trolled by one or more other FPSCR bits (recall
that the other FPSCR bits have implementation
dependent meanings when NI-l).

4.3 Floating-Point Data

4.3.1 Data ·Format

This architecture defines the representation of a
floating-point value in two different binary fixed length
formats. The format may be a 32-bit single format for
a single-precision value or a 64-bit double format for
a double-precision value. The single format may be
used for data in storage. The double format format
may be used for data in storage and for data in
floating-point registers.

The length of the exponent and the fraction fields
differ between these two formats. The structure of
the single and double formats is shown below:

EXP FRACTION
01 9 31

Figure 26. Floating-Point Single Format

EXP FRACTION

01 12 63

Figure 27. Floating-Point Double Format

Values in floating-point format are composed of three
fields:

S
EXP
FRACTION

sign bit
exponent + bias
fraction

If only a portion of a floating-point data item in
storage is accessed, such as with a load or store

instruction for a byte or halfword (or word in the case
of floating-point double format), the value affected will
depend on whether the Power PC system is operating
with Big-Endian byte order (the default), or Little
Endian byte order. See Appendix 0, "Little-Endian
Byte Ordering" on page 145.

Representation of numerical values in the floating
point formats consist of a sign bit S, a biased expo
nent EXP, and the fraction portion FRACTION of the
significand. The significand consists of a leading
implied bit concatenated on the right with the FRAC
TION. This leading implied bit is a one for normalized
numbers and a zero for denormalized numbers and is
located in the unit bit position (i.e. the first bit to the
left of the binary point). Values representable within
the two floating-point formats can be specified by the
parameters listed in Figure 28.

Format

Single Double

Exponent Bias +127 +1023
Maximum Exponent + 127 +1023
Minimum Exponent -126 -1022

Widths (bits)
Format 32 64
Sign 1 1
Exponent 8 11
Fraction 23 52
Significand 24 53

Figure 28. IEEE Floating-Point Fields

The architecture requires that the FPRs of the
Floating-Point Processor support the arithmetic
instructions on values in the floating-point double
format only.

4.3.2 Value Representation

This architecture defines numerical and non-numerical
values representable within each of the two supported
formats. The numerical values are approximations to
the real numbers and include the normalized
numbers, denormalized numbers, and zero values.
The non-numerical values representable are the infin
ities, and the Not a Numbers (NaNs). The infinities
are adjoined to the real numbers, but are not
numbers themselves, and the standard rules of arith
metic do not hold when they appear in an operation.
They are related to the reals by order alone. It is
possible however to define restricted operations
among numbers and infinities as defined below. The
relative location on the real number line for each of
the defined entities is shown in Figure 29 on page 88.

Chapter 4. Floating-Point Processor 87

Figura 29. Approximation to Real Numbers

The NaNs are not related to the numbers or infinities
by order or value but are encodings used to convey
diagnostic information such as the representation of
uninitialized variables.

The follOWing is a description of the different floating
point values defined in the architecture:

Binary floaUng-point numbers
Machine representable values used as approxi
mations to real numbers. Three categories of
numbers are supported: normalized numbers, denor
malized numbers, and zero values.

Normalized numbers (±NOR)
These are values which have a biased exponent value
in the range:

1 to 254 in single format
1 to 2046 in double format

They are values in which the implied unit bit is one.
Normalized numbers are interpreted as follows:

NOR - (-1)$ x 2E x (1.fraction)

where (s) is the sign, (E) is the unbiased exponent and
(1.fraction) is the significand which is composed of a
leading unit bit (implied bit) and a fraction part.

The ranges covered by the magnitude (M) of a nor
malized floating-point number are approximately
equal to:

Single Format:

1.2x10-38 ~ M :s 3.4x1038

Double Format:

2.2x10-308 :s M :s 1.8x103OB

Zero values (±O)
These are values which have a biased exponent value
of zero and a fraction value of zero. Zeros can have
a positive or negative sign. The sign of zero is
ignored by comparison operations (i.e., comparison
regards + 0 as equal to -0).

Denormalized numbers (±DEN)
These are values which have a biased exponent value
of zero and a non-zero fraction value. They are non
zero numbers smaller in magnitude than the repre
sentable normalized numbers. They are values in
which the implied unit bit is zero. Denormalized
numbers are interpreted as follows:

DEN - (-1)$ X 2Emin X (O.fraction)

IBM Confidential

where Emin is the minimum representable exponent
value (-126 for single-precision, -1022 for double
precision).

Inflnltles (±ex»)
These are values which have the maximum biased
exponent value:

255 in the single format
2047 in the double format

and a zero fraction value. They are used to approxi
mate values greater in magnitude than the maximum
normalized value.

Infinity arithmetic is defined as the limiting case of
real arithmetic, with restricted operations defined
among numbers and infinities. Infinities and the reals
can be related by ordering in the affine sense:

-00 < every finite number < +00

Arithmetic on infinities is always exact and does not
signal any exception, except when an exception
occurs due to the invalid operations as described in
Section 4.4.1, "Invalid Operation Exception" on
page 93.

Not a Numbers (NaNs)
These are values which have the maximum biased
exponent value and a non-zero fraction value. The
sign bit is ignored (i.e. NaNs are neither positive nor
negative). If the high-order bit of the fraction field is
a zero then the NaN is a Signalling NaN, otherwise it
is a Quiet NaN.

Signalling NaNs are used to signal exceptions when
they appear as arithmetic operands.

Ouiet NaNs are used to represent the results of
certain invalid operations, such as invalid arithmetic
operations on infinities or on NaNs, when Invalid
Operation Exception is disabled (FPSCRVE-O). Ouiet
NaNs propagate through all operations except ordered
comparison, Floating Round to Single-Precision, and
conversion to integer. Quiet NaNs do not signal
exceptions, except for ordered comparison and con
version to integer operations. Specific encDdings, in
ONaNs, can thus be preserved through a sequence of
operations, and used to convey diagnostic information
to help identify results from invalid operations.

When a QNaN is the result of an operation because
one of the operands is a NaN or because a ON aN was
generated due to a disabled Invalid Operation Excep
tion, then the following rule is applied to determine
the NaN with the high-order fraction bit set to one that
is to be stored as the result.

if (FRA) is a NaN
then FRT - (FRA)
else if (FRB) is a NaN

88 PowerPC User Instruction Set Architecture .

IBM Confidential

then if instruction is frsp
then FRT _ (FRB)o:34 II 290
else FRT - (FRB)

else if (FRC) is a NaN
then FRT - (FRC)
else if generated ONaN

then FRT - generated ON aN

If the operand specified by FRA is a NaN, then that
NaN is stored as the result. Otherwise, if the operand
specified by FRB is a NaN (if the instruction specifies
an FRB operand), then that NaN is stored as the
result, with the low-order 29 bits of the result set to 0
if the instruction is trap. Otherwise, if the operand
specified by FRC is a NaN (if the instruction specifies
an FRC operand), then that NaN is stored as the
result. Otherwise, if a ON aN was generated due to a
disabled Invalid Operation Exception, then that ON aN
is stored as the result. If a ONaN is to be generated
as a result, then the ON aN generated has a sign bit of
zero, an exponent field of all ones, and a high-order
fraction bit of one with all other fraction bits zero.
Any instruction that generates a ONaN as the result of
a disabled Invalid Operation must generate this ONaN
(Le., Ox7FF8_0000_0000_0000).

A double-precision NaN is considered to be represent
able in single format if and only if the low-order 29
bits of the double-precision NaN's fraction are zero.

4.3.3 Sign of Result

The following rules govern the sign of the result of an
arithmetic operation, when the operation does not
yield an exception. They apply even when the oper
ands or results are zeros or infinities.

• The sign of the result of an addition operation is
the sign of the input having the larger absolute
value. The sign of the result of the subtraction
operation x-y is the same as the sign of the
result of the addition operation x+(-y).

When the sum of two operands with opposite
sign, or the difference of two operands with the
same sign, is exactly zero, the sign of the result
is positive in all rounding modes except Round
toward -Infinity, in which mode the sign is nega
tive.

• The sign of the result of a multiplication or divi
sion operation is the Exclusive OR of the signs of
the inputs.

• The sign of the result of a Square Root or Recip
rocal Square Root Estimate operation is always
positive, except that the square root of -0 is -0
and the reciprocal square root of -0 is -Infinity.

• The sign of the result of a Round to Single
Precision or Convert tolfrom Integer operation is
the sign of the input.

For the Multiply-Add instructions, the rules given
above are applied first to the multiplication operation
and then to the addition or subtraction operation (one
of the inputs to the addition or subtraction operation
is the result of the multiplication operation).

4.3.4 Normalization and
Denormalization

When an arithmetic operation produces an interme
diate result, consisting of a sign bit, an exponent, and
a nonzero significand with a zero leading bit, it is not
a normalized .number and must be normalized before
it is stored.

A number is normalized by shifting its significand left
while decrementing its exponent by one for each bit
shifted, until the leading significand bit becomes one.
The guard bit and the round bit (see Section 4.5.1,
"Execution Model for IEEE Operations" on page 96)
participate in the shift with zeros shifted into the
round bit. The exponent is regarded as if its range
were unlimited. If the resulting exponent value is less
than the minimum value that can be represented in
the format specified for the result, the intermediate
result is said to be ''Tiny'' and the stored result is
determined by the rules described in Section 4.4.4,
"Underflow Exception" on page 95. The sign of the
number does not change.

When an arithmetic operation produces a non-zero
intermediate result with an exponent value less than
the minimum value that can be represented in the
format specified for the result, the stored result is
determined by the rules described in Section 4.4.4,
"Underflow Exception" on page 95. This process may
require denormalization.

A number is denormalized by shifting its significand
right while incrementing its exponent by one for each
bit shifted, until the exponent is equal to the format's
minimum value. If any significant bits are lost in this
shifting process then "Loss of Accuracy" has occurred
(See Section 4.4.4, "Underflow Exception" on
page 95) and Underflow Exception is signalled. The
sign of the number does not change.

Engineering Note -----------...,

When denormalized numbers are operands of
multiply, divide, and square root operations, some
implementations may prenormalize the operands
internally before performing the operations.

Chapter 4. Floating-Point Processor 89

4.3.5 Data Handling and Precision

Instructions are defined to move floating.point data
between the FPRs and storage. For double format
data the data is not altered during the move. For
single format data, a format conversion from single to
double is performed when loading from storage into
an FPR and a format conversion from double to single
is performed when storing from an FPR to storage.
No floating-point exceptions are raised during these
operations.

All arithmetic operations are performed using
floating-point double format.

Floating-point single-precision is obtained with the
implementation of four types of instruction.

1. Load Floating-Point Single

This form of instruction accesses a single
precision operand in single format in storage,
converts it to double-precision, and loads it into
an FPR. No exceptions are detected on the load
operation.

2. Round to Floating-Point Single-Precision

The Floating Round to Single-Precision instruction
rounds a double-precision operand to single
precision if the operand is not already in single
precision range, checking the exponent for
single-precision range and handling any
exceptions according to respective enable bits,
and places that operand into an FPR as a double
precision operand. For results produced by
single-precision arithmetic instructions and by
single-precision loads, this operation does not
alter the value.

3. Single-Precision Arithmetic Instructions

This f()rm of instruction takes operands from the
FPRs in double format, performs the operation as
if it produced an intermediate result correct to
infinite precision and with unbounded range, and
then coerces this intermediate result to fit in
single format. Status bits, in the FPSCR and in
the Condition Register, are set to reflect the
single-precision result. The result is then con
verted to double format and placed into an FPR.
The result lies in the range supported by the
single format.

All input values must be representable in single
format: if they are not, the result placed into the
target FPR, and the setting of status bits in the
FPSCR and in the Condition Register (if Rc-1),
are undefined.

4. Store Floating-Point Single

This form of instruction converts a double
precision operand to single format and stores
that operand into storage. No exceptions are
detected on the store operation (the value being

IBM Confidential

stored is effectively assumed to be the result of
an instruction of one of the preceding three
types).

When the result of a Load Floating-Point Single,
Floating Round to Single-Precision. or single-precision
arithmetic instruction is stored in an FPR, the low
order 29 FRACTION bits are zero.

Programming Nota ----------,

The Floating Round to Single-Precision instruction
is provided to allow value conversion from
double-precision to single-precision with appro
priate exception checking and rounding. This
instruction should be used to convert double
precision floating-point values (produced by
double-precision load and arithmetic instructions)
to single-precision values prior to storing them
into single format storage elements or using them
as operands for single-precision arithmetic
instructions. Values produced by single-precision
load and arithmetic instructions can be stored
directly. or used directly as operands for single
precision arithmetic instructions, without pre
ceding the store, or the arithmetic instruction, by
a Floating Round to Single-Precision instruction.

Programming Note -----------,

A single-precision value can be used in double
preciSion arithmetic operations. The reverse is
not necessarily true (it is true only if the double
precision value is representable in single format).

Some implementations may execute single
precision arithmetic instructions faster than
double-precision arithmetic instructions. There
fore, if double-precision accuracy is not required.
single-precision data and instructions should be
used.

4.3.6 Rounding

With the exception of the two optional Estimate
instructions, Floating Reciprocal Estimate Single and
Floating Reciprocal Square Root Estimate, all arith
metic instructions defined by this architecture
produce an intermediate result that can be regarded
as being infinitely precise. This result must then be
written with a precision of finite length into an FPR.
After normalization or denormalization, if the infinitely
precise intermediate result is not representable in the
precision required by the instruction then it is
rounded before being placed into the target FPR.

The instructions that potentially round their result are
the Arithmetic, Multiply-Add. and Rounding and Con
version instructions. For a given instance of one of
these instructions, whether rounding occurs depends
on the values of the inputs. Each of these instructions

90 PowerPC User Instruction Set Architecture

./

(

IBM Confidential

sets FPSCR bits FR and FI, according to whether
rounding occurred (FI) and whether the fraction was
incremented (FR). If rounding occurred, FI is set to
one, and FR may be set to either zero or one. If
rounding did not occur, both FR and FI are set to
zero.

The two Estimate instructions set FR and FI to unde
fined values. The remaining Floating-Point
instructions do not alter FR and Fl.

Four modes of rounding are provided which are user
selectable through the Floating-Point Rounding
Control field in the FPSCR. See Section 4.2.2,
"Floating-Point Status and Control Register" on
page 85. These are encoded as follows:

RN Rounding Mode
00 Round to Nearest
01 Round toward Zero
10 Round toward +Infinity
11 Round toward -Infinity

Let Z be the infinitely precise intermediate arithmetic
result or the operand of a convert operation. If Z can
be represented exactly in the target format, then no
rounding occurs, and the result in all rounding modes
is equivalent to truncation of Z. If Z cannot be
represented exactly in the target format, let Z1 and
Z2 be the next larger and next smaller numbers
representable in the target format that bound Z, then
Z1 or Z2 can be used to approximate the result in the
target format.

Figure 30 shows the relation of Z, Z1, and Z2 in this
case. The following rules specify the rounding in the
four modes. "LSB" means "least significant bit."

,...--- By Inc:r_enting LSB of Z ----,
Infinitely Precise Value

By Truncating after LSB

n n 8 n n
Z Z

Negative values -+ ~ Positive values

Figure 30. Selection of Z1 and Z2

Round to Nearest
Choose the best approximation of Z1 or Z2. In
case of a tie, choose the one which is even (least
significant bit 0).

Round toward Zero
Choose the smaller in magnitude (Z1 or Z2).

Round toward +Inflnlty
Choose Z1.

Round toward -Infinity
Choose Z2.

See Section 4.5.1, "Execution Model for IEEE
Operations" on page 96 for a detailed explanation of
rounding.

If Z is to be rounded up and Z1 does not exist (i.e., if
there is no number larger than Z that is representable
in the target format), then an Overflow Exception
occurs if Z is positive and an Underflow Exception
occurs if Z is negative. Similarly, if Z is to be
rounded down and Z2 does not exist, then an Over
flow Exception occurs if Z is negative and an Under
flow Exception occurs if Z is positive. The results in
these cases are defined in Section 4.4, "Floating-Point
Exceptions" on page 91.

4.4 Floating-Point Exceptions

This architecture defines the following floating-point
exceptions:

• Invalid Operation Exception
SNaN
Infinity-Infinity
Infinity+lnfinity
Zero+Zero
InfinityxZero
Invalid Compare
Software Request
Invalid Square Root
Invalid Integer Convert

• Zero Divide Exception
• Overflow Exception
• Underflow Exception
• Inexact Exception

These exceptions may occur during execution of
floating-point arithmetic instructions. In addition, an
Invalid Operation Exception occurs when a Status and
Control Register instruction sets FPSCRVXSOFT to 1
(Software Request). An Invalid Square Root opera
tion can occur only if at least one of the Floating
Square Root instructions defined in Appendix A,
"Optional Instructions" on page 119, is implemented.

Each floating-point exception, and each category of
Invalid Operation Exception, has an exception bit in
the FPSCR. In addition, each floating-point exception
has a corresponding enable bit in the FPSCR. The
exception bit indicates occurrence of the corre
sponding exception. If an exception occurs, the corre
sponding enable bit governs the result produced by
the instruction and, in conjunction with MSR bits FEO
and FE1, whether and how the system floating-point
enabled exception error handler is invoked. The MSR
(Machine State Register) is described in Book III,
PowerPC Operating Environment Architecture. (In
general, the enabling specified by the enable bit is of
invoking the system error handler, not of permitting
the exception to occur. The occurence of an excep
tion depends only on the instruction and its inputs,
not on the setting of any control bits. The only devi
ation from this general rule is that the occurrence of
an Underflow Exception may depend on the setting of
the enable bit.)

Chapter 4. Floating-Point Processor 91

The Floating-Point Exception Summary bit (FX) in the
FPSCR is set when any of the exception bits transi
tions from a zero to a one or when explicitly set by
software. The Floating-Point Enabled Exception
Summary bit (FEX) in the FPSCR is set when any. of
the exceptions is set and the exception is enabled
(enable bit is one).

A single instruction, other than mtfsfl or mtfsl, may
set more than one exception in the following cases:

• Inexact Exception may be set with Overflow
Exception.

• Inexact Exception may be set with Underflow
Exception.

• Invalid Operation Exception (SNaN) may be set
with Invalid Operation Exception (coxO) for
Multiply-Add instructions.

• Invalid Operation Exception (SNaN) may be set
with Invalid Operation Exception (Invalid
Compare) for Compare Ordered instructions.

• Invalid Operation Exception (SNaN) may be set
with Invalid Operation Exception (Invalid Integer
Convert) for Convert to Integer instructions.

When an exception occurs the instruction execution
may be suppressed or a result may be delivered,
depending on the exception.

Instruction execution is suppressed for the following
kinds of exception, so that there is no possibility that
one of the operands is lost.

• Enabled Invalid Operation
• Enabled Zero Divide

For the remaining kinds of exception, a result is gen
erated and written to the destination specified by the
instruction causing the exception. The result may be
a different value for the enabled and disabled condi
tions for some of these exceptions. The kinds of
exception that deliver a result are the following.

• Disabled Invalid Operation
• Disabled Zero Divide
• Disabled Overflow
• Disabled Underflow
• Disabled Inexact
• Enabled Overflow
• Enabled Underflow
• Enabled Inexact

Subsequent sections define each of the floating-point
exceptions and specify the action that is taken when
they are detected.

The IEEE standard specifies the handling of excep
tional conditions in terms of "traps" and "trap han
dlers." In this architecture, an FPSCR exception
enable bit of 1 causes generation of the result value
specified in the IEEE standard for the "trap enabled"
case: the expectation is that the exception will be
detected by software, which will revise the result. An
FPSCR exception enable bit of 0 causes generation of

IBM Confidential

the "default result" value specified for the "trap disa
bled" (or "no trap occurs" or "trap is not imple
mented") case: the expectation is that the exception
will not be detected by software, which will simply use
the default result The result to be delivered in each
case for each exception is described in the sections
below. ,

The IEEE default behavior when an exception occurs
is to generate a default value and not to notify soft
ware. In this architecture, if the IEEE default behavior
when an exception occurs is desired for all
exceptions, all FPSCR exception enable bits should be
set to 0 and Ignore Exceptions Mode (see below)
should be used. In this case the system floating-point
enabled exception error handler is not invoked, even
if floating-point exceptions occur: software can inspect
the FPSCR exception bits if necessary, to determine
whether exceptions have occurred.

In this architecture, if software is to be notified that a
given kind of exception has occurred, the corre
sponding FPSCR exception enable bit must be set to 1
and a mode other than Ignore Exceptions Mode must
be used. In this case the system floating-point
enabled exception error handler is invoked if an
enabled floating-point exception occurs.

Whether and how the system floating-point enabled
exception error handler is invoked if an enabled
floating-point exception occurs is controlled by MSR
bits FEO and FE1, as follows. (The system floating
point enabled exception error handler is never
invoked because of a disabled floating-point excep
tion.)

FED FE1 Description

D D Ignore Exceptions Mode
Floating-point exceptions do not cause the
system floating-point enabled exception
error handler to be invoked.

D 1 Imprecise Nonrecoverable Mode
The system floating-point enabled exception
error handler is invoked at some point at or
beyond the instruction that caused the
enabled exception. The state of the
processor may include conditions and data
affected by the exception (i.e., hazards are
not avoided). It may not be possible to iden
tify the excepting instruction nor the data
that caused the exception (i.e., the data is
not recoverable).

1 0 Imprecise Recoverable Mode
The system floating-point enabled exception
error handler is invoked at some point at or
beyond the instruction that caused the
enabled exception. Sufficient information is
provided to the system floating-point
enabled exception error handler that it can
identify the excepting instruction and the
operands, and correct the result. All

92 PowerPC User Instruction Set Architecture

\ , /1

(

(

IBM Confidential

hazards caused by the exception are
avoided (e.g., use of the data that would
have been produced by the excepting
instruction).

1 1 Precise Mode
The system floating-point enabled exception
error handler is invoked precisely at the
instruction that caused the enabled excep
tion.

In all cases the question of whether or not a floating
point result is stored, and what value is stored, is
governed by the FPSCR exception enable bits, as
described in subsequent sections, and is not affected
by any MSR bits.

In all cases in which the system floating-point enabled
exception error handler is invoked, all instructions
before the instruction at which the system floating
point enabled exception error handler is invoked have
completed, and no instruction after the instruction at
which the system floating-point enabled exception
error handler is invoked has been executed. (Recall
that, for the two Imprecise modes, the instruction at
which the system floating-point enabled exception
error handler is invoked need not be the instruction
that caused the exception.) The instruction at which
the system floating-point enabled exception error
handler is invoked has not been executed, unless it is
the excepting instruction, in which case it has been
executed unless the kind of exception is among those
listed above as suppressed.

Programming Note ----------..,

In any of the three non-Precise modes, a Floating
Point Status and Control Register instruction can
be used to force any exceptions, due to
instructions initiated before the Floating-Point
Status and Control Register instruction, to be
recorded in the FPSCR. (This forcing is super
fluous for Precise Mode.)

In either of the Imprecise modes, a Floating-Point
Status and Control Register instruction can be
used to force any invocations of the system
floating-point enabled exception error handler,
due to instructions initiated before the Floating
Point Status and Control Register instruction, to
occur. (This forcing has no effect in Ignore
Exceptions Mode, and is superfluous for Precise
Mode.)

A sync instruction also has the effects described
above, but is likely to degrade performance more
than a Floating-Point Status and Control Register
instruction.

In order to obtain the best performance across the
widest range of implementations, the programmer
should obey the following guidelines.

• If the IEEE default results are acceptable to the
application, Ignore Exceptions Mode should be
used, with all FPSCR exception enable bits set to
O.

• If the IEEE default results are not acceptable to
the application, Imprecise Non-Recoverable Mode
should be used, or Imprecise Recoverable Mode
if recoverability is needed, with FPSCR exception
enable bits set to 1 for those exceptions for which
the system floating-point enabled exception error
handler is to be invoked.

• Ignore Exceptions Mode should not, in general, be
used when any FPSCR exception enable bits are
set to 1.

• Precise Mode may degrade performance in some
implementations, perhaps substantially, and
therefore should be used only for debugging and
other specialized applications.

Engineering Note -----------.,

It is permissible for the implementation to be
precise in any of the three modes that permit
exceptions, or to be recoverable in Non
Recoverable Mode.

4.4.1 Invalid Operation Exception

4.4.1.1 Definition

An Invalid Operation Exception occurs whenever an
operand is invalid for the specified operation. The
invalid operations are:

• Any operation, except Load, Store, Move, Select,
and mUst, on a signalling NaN (SNaN)

• For add or subtract operations, magnitude sub-
traction of infinities (co-co)

• Division of infinity by infinity (co+co)
• Division of zero by zero (0+0)
• Multiplication of infinity by zero (coxO)
• Ordered comparison involving a NaN (Invalid

Compare)
• Square root or reciprocal square root of a nega

tive (and nonzero) number (Invalid Square Root)
• Integer convert involving a large number, an

infinity, or a NaN (Invalid Integer Convert)

In addition, an Invalid Operation Exception occurs if
software explicitly requests this by executing a mtisfi,
mtfsf, or mtfsb1 instruction that sets FPSCRVXSOFT to
1 (Software Request). An Invalid Square Root opera
tion can occur only if at least one of the Floating
Square Root instructions defined in Appendix A,
"Optional Instructions" on page 119, is implemented .

. Chapter 4. Floating-Point Processor 93

Programming Note -----------.,

The purpose of FPSCRVXSOFT is to allow software
to cause an Invalid Operation Exception for a con
dition that is not necessarily associated with the
execution of a floating-point instruction. For
example, it might be set by a program that com
putes a square root, if the source operand is neg
ative.

4.4.1.2 Adlon

The action to be taken depends on the setting of the
Invalid Operation Exception Enable bit of the FPSCR.

When Invalid Operation Exception is enabled
(FPSCRVE -1) and Invalid Operation ocCurs or soft
ware explicitly requests the exception then the fol
lowing actions are taken:

1. One or two Invalid Operation Exceptions is set
FPSCRvxsNAN (if SNaN)
FPSCRvx1s1 (if 00-00)
FPSCRvx1D1 (if 00+00)
FPSCRvxzDZ (if 0+0)
FPSCRvxlMz (if ooxO)
FPSCRvxvc (if invalid comp)
FPSCRVXSOFT (if software req)
FPSCRVXSQRT (if invalid sqrt)
FPSCRvxcv1 (if invalid int cvrt)

2. If the operation is an arithmetic, Floating Round
to Single-Precision, or convert to integer opera
tion,

the target FPR is unchanged
FPSCRFR FI are set to zero
FPSCRFPRF is unchanged

3. If the operation is a compare,
FPSCRFR FI C are unchanged
FPSCRFPCC is set to reflect unordered

4. If software explicitly requests the exception,
FPSCRFR FI FPRF are as set by the mUsn,
mUs', or mtfsb1 instruction

When Invalid Operation Exception is disabled
(FPSCRVE - 0) and Invalid Operation occurs or soft
ware explicitly requests the exception then the fol
lowing actions are taken:

1. One or two Invalid Operation Exceptions is set
FPSCRvxsNAN (if SNaN)
FPSCRvx1s1 (if 00-00)
FPSCRvx1D1 (if 00+00)
FPSCRvxzDZ (if 0+0)
FPSCRvxlMZ (if ooxO)
FPSCRvxvc (if invalid comp)
FPSCRvxsOFT (if software req)
FPSCRVXSQRT (if invalid sqrt)
FPSCRvxcv1 (if invalid int cvrt)

2. If the operation is an arithmetic or Floating
Round to Single-Precision operation

the target FPR is set to a Quiet NaN
FPSCRFR FI are set to zero

IBM Confidential

FPSCRFPRF is set to indicate the class of the
result (Quiet NaN)

3. If the operation is a convert to 32-bit integer
operation,

the target FPR is set as follows:
FRTo:31 .. undefined
FRT 32:63 .. most negative 32-bit integer

FPSCRFR FI are set to zero
FPSCRFPRF is undefined

4. If the operation is a convert to 64-bit integer
operation,

the target FPR is set as follows:
FRT 0:63 .. most negative 64-bit integer

FPSCRFR FI are set to zero
FPSCRFPRF is undefined

5. If the operation is a compare,
FPSCRFR FI C are unchanged
FPSCRFPCC is set to reflect unordered

6. If software explicitly requests the exception,
FPSCRFR FI FPRF are as set by the mUsn,
mtlsf, or mtlsb1 instruction

4.4.2 Zero Divide Exception

4.4.2.1 Definition

A Zero Divide Exception occurs when a Divide instruc
tion is executed with a zero divisor value and a finite
non-zero dividend value. It also occurs when a Recip
rocal Square Root Estimate instruction is executed
with an operand value of zero.

Architecture Note -----------,

The name is a misnomer used for historical
reasons. The proper name for this exception
should be "Exact Infinite Result from Finite Oper
ands" corresponding to what mathematicians call
a "pole."

4.4.2.2 Adlon

The action to be taken depends on the setting of the
Zero Divide Exception Enable bit of the FPSCR.

When Zero Divide Exception is enabled (FPSCRzE -1)
and Zero Divide occurs then the following actions are
taken:

1. Zero Divide Exception is set
FPSCRzx - 1

2. The target FPR is unchanged
3. FPSCRFR FI are set to zero ~
4. FPSCRFPRF is unchanged

When Zero Divide Exception is disabled (FPSCRzE-O)
and Zero Divide occurs then the following actions are
taken:

1. Zero Divide Exception is set
FPSCRzx .. 1

94 PowerPC User Instrudion Set Architedure .

(

(.'

IBM Confidential

2. The target FPR is set to a ±Infinity, where the
sign is determined by the XOR of the signs of the
operands

3. FPSCRFR FI are set to zero
4. FPSCRFPRF is set to indicate the class and sign of

the result (±Infinity)

4.4.3 Overflow Exception

4.4.3.1 Definition

Overflow occurs when the magnitude of what would
have been the rounded result if the exponent range
were unbounded exceeds that of the largest finite
number of the specified result precision.

4.4.3.2 Action

The action to be taken depends on the setting of the
Overflow Exception Enable bit of the FPSCR.

When Overflow Exception is enabled (FPSCRoE -1)
and exponent overflow occurs then the following
actions are taken:

1. Overflow Exception is set
FPSCRox 1

2. For double-precision arithmetic instructions, the
exponent of the normalized intermediate result is
adjusted by subtracting 1536

3. For single-precision arithmetic instructions and
the Floating Round to Single-Precision instruc
tion, the exponent of the normalized intermediate
result is adjusted by subtracting 192

4. The adjusted rounded result is placed into the
target FPR

5. FPSCRFPRF is set to indicate the class and sign of
the result (±Normal Number)

When Overflow Exception is disabled (FPSCRoE-O)
and overflow occurs then the following actions are
taken:

1. Overflow Exception is set
FPSCRox 1

2. Inexact Exception is set
FPSCRxx 1

3. The result is determined by the rounding mode
(FPSCRRN) and the sign of the intermediate result
as follows:
A. Round to Nearest

B.

C.

D.

Store ± Infinity, where the sign is the sign of
the intermediate result
Round toward Zero
Store the format's largest finite number with
the sign of the intermediate result
Round toward +Infinity
For negative overflows, store the format's
most negative finite number; for positive
overflows, store +Infinity
Round toward -Infinity

For negative overflows, store -Infinity; for
positive overflows, store the format's largest
finite number

4. The result is placed into the target FPR
5. FPSCRFR is set to one if the result is incremented

when rounded, and otherwise to zero
6. FPSCRF1 is set to one
7. FPSCRFPRF is set to indicate the class and sign of

the result (±Infinity or ±Normal Number)

4.4.4 Underflow Exception

4.4.4.1 Definition

Underflow Exception is defined separately for the
enabled and disabled states:

• Enabled:
Underflow occurs when the intermediate result is
"Tiny."

• Disabled:
Underflow occurs when the intermediate result is
"Tiny" and there is "Loss of Accuracy."

A "Tiny" result is detected before rounding, when
a nonzero result value computed as though the
exponent range were unbounded would be less in
magnitude than the smallest normalized number.

If the intermediate result is ''Tiny'' and the Under
flow Exception Enable is off (FPSCRuE-O) then
the intermediate result is to be denormalized
(Section 4.3.4, "Normalization and
Denormalization" on page 89) and rounded
(Section 4.3.6, "Rounding" on page 90).

"Loss of Accuracy" is detected when the deliv
ered result value differs from what would have
been computed were both the exponent range
and precision unbounded.

4.4.4.2 Action

The action to be taken depends on the setting of the
Underflow Exception Enable bit of the FPSCR.

When Underflow Exception is enabled (FPSCRuE -1)
and exponent underflow occurs then the following
actions are taken:

1. Underflow Exception is set
FPSCRux 1

2. For double-precision arithmetic and conversion
instructions, the exponent of the normalized inter
mediate result is adjusted by adding 1536

3. For single-precision arithmetic instructions and
the Floating Round to Single-Precision instruc
tion, the exponent of the normalized intermediate
result is adjusted by adding 192

4. The adjusted rounded result is placed into the
target FPR

5. FPSCRFPRF is set to indicate the class and sign of
the result (±Normalized Number)

Chapter 4. Floating-Point Processor 95

Programming Note ----------...,

The FR and FI bits are provided to allow the
system floating-point enabled exception error
handler, when invoked because of an Underflow
Exception, to simulate a "trap disabled" environ
ment. That is, the FR and FI bits allow the system .
floating-point enabled exception error handler to
unround the result, thus allowing the result to be
denormalized.

When Underflow Exception is disabled (FPSCRuE-O)
and underflow occurs then the following actions are
taken:

1. Underflow Exception is set
FPSCRux -1

2. The rounded result is placed into the target FPR
3. FPSCRFPRF is set to indicate the class and sign of

the result (±Denormalized Number or ±Zero)

4.4.5 Inexact Exception

4.4.5.1 Definition

Inexact Exception occurs when one of two conditions
occur during rounding:

1. The rounded result differs from the intermediate
result assuming the intermediate result exponent
range and precision to be unbounded.

2. The rounded result overflows and Overflow
Exception is disabled.

4.4.5.2 Action

The action to be taken does not depend on the setting
of the Inexact Exception Enable bit of the FPSCR.

When Inexact Exception occurs then the following
actions are taken:

1. Inexact Exception is set
FPSCRxx _1

2. The rounded or overflowed result is placed into
the target FPR

3. FPSCRFPRF is set to indicate the class and sign of
the result

Programming Note -----------,

In some implementations, enabling Inexact
Exceptions may degrade performance more than
enabling other types of floating-point exception.

IBM Confidential

4.5 Floating-Point Execution
Models

All implementations of this architecture must provide
the equivalent of the following execution models to
insure that identical results are obtained.

Special rules are· provided in the definition of the
arithmetic instructions for the infinities, denormalized
numbers and NaNs.

Although the double format specifies an 11-bit expo
nent, exponent arithmetic makes use of two additional
bit positions to avoid potential transient overflow con
ditions. One extra bit is required when denormalized
double-precision numbers are prenormalized. The
second bit is required to permit the computation of
the adjusted exponent value in the following cases
when the corresponding exception enable bits is one:

• Underflow during multiplication using a denormal
ized factor.

• Overflow during division using a denormalized
divisor.

The IEEE standard includes 32-bit and 64-bit arith
metic. The standard requires that single-precision
arithmetic be provided for single-precision operands.
The standard permits double-precision arithmetic
instructions to have either (or both) single-precision
or double-precision operands, but states that single
precision arithmetic instructions should not accept
double-precision operands. The PowerPC Architecture
follows these guidelines: double-precision arithmetic
instructions can have operands of either or both pre
cisions, while single-precision arithmetic instructions
require all operands to be single-precision. Double
precision arithmetic instructions produce double
precision values, while single-precision arithmetic
instructions produce single-precision values.

For arithmetic instructions, conversions from double
precision to single-precision must be done explicitly
by software, while conversions from single-precision
to double-precision are done implicitly.

4.5.1 Execution Model for IEEE
Operations

The following description uses 64-bit arithmetic as an
example. 32-bit arithmetic is similar except that the
FRACTION is a 23-bit field, and the single-precision
Guard, Round, and Sticky bits (described in this
section) are logically adjacent to the 23-bit FRACTION
field.

IEEE-conforming significand arithmetic is considered
to be performed with a floating-point accumulator
having the following format:

96 PowerPC User Instruction Set Architecture

(

(

(/

IBM Confidential

FRACTION

o 1 52

Figure 31. IEEE 64-bit execution Model

The S bit is the sign bit.

The C bit is the carry bit that captures the carry out of
the significand.

The L bit is the leading unit bit of the significand
which receives the implicit bit from the operands.

The FRACTION is a 52-bit field which accepts the frac
tion of the operands.

The Guard (G), Round (R), and Sticky· (X) bits are
extensions to the low order bits of the accumulator.
The G and R bits are required for post normalization
of the result. The G, R, and X bits are required during
rounding to determine if the intermediate result is
equally near the two nearest representable values.
The X bit serves as an extension to the G and R bits
by representing the logical OR of all bits which may
appear to the low-order side of the R bit, either due to
shifting the accumulator right or other generation of
low-order result bits. The G and R bits participate in
the left shifts with zeros being shifted into the R bit.
Figure 32 shows the Significance of the G, R, and X
bits with respect to the intermediate result (IR), the
next lower in magnitude representable number (NL),
and the next higher in magnitude representable
number (NH).

G R X Interpretation

0 0 0 IR is exact

0 0 1
0 1 0 IR closer to NL
0 1 1

1 0 0 IR midway between NL & NH

1 0 1
1 1 0 IR closer to NH
1 1 1

Figure 32. Interpretation of G, R, and X bits

The significand of the intermediate result is made up
of the L bit, the FRACTION, and the G,R and X bits.

The infinitely precise intermediate result of an opera
tion is the result normalized in bits L. FRACTION, G,
R, and X of the floating-point accumulator.

Before the results are stored into an FPR, the
significand is rounded if necessary, using the
rounding mode specified by FPSCRRN• If rounding

results in a carry into C, the significand is shifted right
one position and the exponent incremented by one.
This, in turn, may yield an inexact result and possibly
also exponent overflow. Fraction bits to the left of the
bit position used for rounding are stored into the FPR
and low-order bit positions, if any, are set to zero.

Four rounding modes are provided which are user
selectable through FPSCRRN as decribed in Section
4.3.6, "Rounding" on page 90. For rounding. the con
ceptual Guard, Round, and Sticky bits are defined in
terms of accumulator bits. Figure 33 shows the posi
tions of the Guard, Round, and Sticky bits for double
precision and single-precision floating-point numbers.

Format Guard Round Sticky

Double G bit R bit X bit
Single 24 25 26:52 G,R,X

Figure 33. Location of the Guard, Round and Sticky
Bits

Rounding can be treated as though the significand
were shifted right, if required, until the least signif
icant bit to be retained is in the low-order bit position
of the FRACTION. If any of the Guard, Round, or
Sticky bits are nonzero, then the result is inexact.

Z1 and Z2. as defined on page 91, can be used to
approximate the result in the target format when one
of the following rules is used.

• Round to Nearest

Guard bit = 0
The result is truncated. (Result exact (GRX -
000) or closest to next lower value in magni
tude (GRX - 001,010, or 011))

Guard bit = 1
Depends on Round and Sticky bits:

Cases
If the Round or Sticky bit is one (inclu
sive), the result is incremented. (Result
closest to next higher value in magitude
(GRX - 101,110, or 111»

Case b
If the Round and Sticky bits are zero
(result midway between closest repre
sentable values) then if the low-order bit
of the result is one the result is incre
mented. Otherwise (the low-order bit of
the result is zero) the result is truncated
(this is the case of a tie rounded to
even).

If during the Round to Nearest process, trun
cation of the unrounded number would
produce the maximum magnitude for the
specified preciSion, then the following action
is taken:

Chapter 4. Floating-Point Processor 97

Guard bit = 1
Store infinity with the sign of the
unrounded result.

Guard bit = 0
Store the truncated (maximum magni
tude) value.

• Round toward Zero
Choose the smaller in magnitude of Z1 or Z2.
See "Rounding" on page 91 for the definitions of
Z1 and Z2. If Guard, Round, or Sticky bit is
nonzero, the result is inexact.

• Round toward +lnRnity
Choose Z1. See "Rounding" on page 91 for the
definition of Z1.

• Round toward -lnRnlty
Choose Z2. See "Rounding" on page 91 for the
definition of Z2.

Where the result is to have fewer than 53 bits of pre
cision because the instruction is a Floating Round to
Single-Precision or single-precision arithmetic instruc
tion, the intermediate result either is normalized or is
placed in correct denormalized form before the result
is potentially rounded.

4.5.2 Execution Model for
Multiply-Add Type Instructions

The PowerPC Architecture makes use of a special
form of instruction which performs up to three oper
ations in one instruction (a multiply, an add and a
negate). With this added capability is the special
feature of being able to produce a more exact inter
mediate result as an input to the rounder. 32-bit
arithmetic is similar except that the FRACTION field is
smaller.

The multiply-add operations produce intermediate
results conforming to the follOWing model:

FRACTION Ixj
01 105

Figure 34. Multiply.Add Execution Model

IBM Confidential

The first part of the operation is a multiply. The mul
tiply has two 53-bit significands as inputs, which are
assumed to be prenormalized, and produces a result
conforming to the above model. If there is a carry
out of the significand (into the C bit), then the
significand is shifted right one position, shifting the L
bit (leading unit bit) into the most significant bit of the
fraction and shifting the C bit (carry out) into the L bit.
All 106 bits (L bit, the fraction) of the product take
part in the add operation. If the exponents of the two
inputs to the adder are not equal, the significand of
the operand with the' smaller exponent is aligned
(shifted) to the right by an amount which is added to
that exponent to make it equal to the other input's
exponent. Zeros are shifted into the left of the
significand as it is aligned and bits shifted out of bit
105 of the significand are ORed into the X' bit. The
add operation also produces a result conforming to
the above model with the X' bit taking part in the add
operation.

The result of the add is then normalized, with all bits
of the add reSUlt, except the X' bit, participating in the
shift. The normalized result provides an intermediate
result as input to the rounder which conforms to the
model described in Section 4.5.1, "Execution Model
for IEEE Operations" on page 96, where:

• The Guard bit is bit 53 of the intermediate result.
• The Round bit is bit 54 of the intermediate result.
• The Sticky bit is the OR of all remaining bits to

the right of bit 55, inclusive.

The rules of rounding the intermediate result are the
same as the described in Section 4.5.1, "Execution
Model for IEEE Operations" on page 96.

If the instruction is Floating Negative Multiply-Add or
Floating Negative Multiply-Subtract the final result is
negated.

Status bits are set to reflect the result of the entire
operation: e.g., no status is recorded for the result of
the multiplication part of the operation.

98 PowerPC User Instruction Set Architecture

(

IBM Confidential

4.6 Floating-Point Processor Instructions

Architecture Note

The rules followed in assigning new primary and
extended opcodes, for instructions that are not in the
Power Architecture, are the following.

1. A new primary opcode, 59, has been added. It is
used for the single-precision arithmetic
instructions.

2. The single-precision instructions for which there
is a corresponding double-precision instruction
have the same format and extended opcode as
that double-precision instruction.

3. In assigning new extended opcodes for primary
opcode 63, the following regularities, present in
the Power Architecture, have been maintained.
In addition, all new X-form instructions in primary
opcode 63 have bits 21 :22 - Ob11, which distin
guishes them from the X-form instructions
present in P.ower Architecture.

• Bit 26 - 1 iff the instruction is A-form.

• Bits 26:29 - ObOOOO iff the instruction is a
comparison or mcrfs (Le., iff the instruction
sets an explicitly-designated CR field).

• Bits 26:28 - Ob001 iff the instruction explic
itly refers to or sets the FPSCR (Le., is a
Floating-Point Status and Control Register
instruction) and is not mct1s.

• Bits 26:30 - Ob01000 iff the instruction is a
Move Register instruction, or any other
instruction that does not refer to or set the
FPSCR.

4. In assigning extended opcodes for primary
opcoc:le 59, the following regularities have been
maintained. They are based on those rules for
primary opcode 63 that apply to the instructions
having primary opcode 59. In particular, primary
opcoc:le 59 has no Floating-Point Status and
Control Register instructions, so the corre
sponding rule does not apply.

• If there is a corresponding instruction with
primary opcode 63, its extended opcode is
used.

• Bit 26 - 1 iff the instruction is A-form.

• Bits 26:30 - Ob01000 iff the instruction is. a
Move Register instruction, or any other
instruction that does not refer to or set the
FPSCR.

Chapter 4. Floaling-Point Processor 99

IBM Confidential

4.6.1 Floating-Point Storage Access Instructions

The Storage Access instructions compute the effective
address (EA) of the storage to be accessed as
described in Section 1.11.2, "Effective Address
Calculation" on page 12.

The order of bytes accessed by floating-point loads
and stores is Big-Endian, unless Uttle-Endian storage
ordering is selected as described in Appendix 0,
"Uttle-Endian Byte Ordering" on page 145.

Programming Note ----------...,

The "Ia" extended mnemonic permits computing
an Effective Address as a Load or Store instruc
tion would, but loads the address itself into a GPR
rather than loading the value that is in storage at
that address. This extended mnemonic is
described in "Load Address" on page 144.

4.6.2 Floating-Point Load Instructions

There are two basic forms of load instruction, single
precision and double-precision. Because the FPRs
support only floating-point double format, single
precision Load Floating-Point instructions convert
single-precision data to double format prior to loading
the operands into the target FPR. The conversion and
loading steps are as follows:

Let WORDo:31 be the floating-point single-precision
operand accessed from storage.

Normalized Operand
if WORDu > 0 and WORD1:8 < 255 then

FRTo:1 - WORDo:1
FRT2 - "'WORD1
FRT3 - "'WORD1
FRT4 - "'WORD1
FRT 5:63 - WORD2:31 II 29()

Denonnalized Operand
if WORD1:8 - 0 and WORD9:31 :1= 0 then

sign -WORDo
exp - -126
fraCe:52 - ObO II WORD9:31 II 290
normalize the operand

Do while fraCe - 0
frac - frac1:52II ObO
exp-exp-1

End
FRTo - sign
FRT1:11 - exp + 1023
FRT12:63 - frac1:52

Zero I Infinity I NaN
if WORDu - 255 or WORD1:31 - 0 then

FRTO:1 - WORDo:1
FRT2 - WORD1
FRT3 - WORD1
FRT4 - WORD1
FRT 5:63 - WORD2:31 II 290

4.6.1.1 storage Access Exceptions

Storage accesses will cause the system data storage
error handler to be invoked if the program is not
allowed to modify the target storage (Store only), or if
the program attempts to access storage that is una
vailable to it.

When PowerPC is executing with Uttle-Endian byte
ordering, the system alignment error handler will be
invoked whenever a floating-point load or store
instruction is executed that specifies an unaligned
operand. See Appendix 0, "Uttle-Endian Byte
Ordering" on page 145.

Engineering Note ------------,

The above description of the conversion steps is a
model only. The actual implementation may vary
from this but must produce results equivalent to
what this model would produce.

For double-precision Load Floating-Point instructions,
no conversion is required as the data from storage is
copied directly into the FPR.

Many of the Load Floating-Point instructions have an
"update" form, in which register RA is updated with
the effective address. For these forms, if RA:1=O, the
effective address is placed into register RA and the
storage element (word or doubleword) addressed by
EA is loaded into FRT.

Note: Recall that RA, RB, and RT denote General
Purpose .Registers, while FRA, FRB, FRC and FRT
denote Floating-Point Registers.

Byte order of Power PC is Big-Endian by default; see
Appendix D. "Uttle-Endian Byte Ordering" on
page 145 for Power PC systems operated with Uttle
Endian byte ordering.

100 PowerPC User Instruction Set Architecture.

(

~-.

IBM Confidential

Load Floating-Point Single D-form

Ifs FRT,D(RA)

o

if RA = 9 then b ~ 9
el se b ~ (RA)
EA ~ b + EXTS(D)
FRT ~ DOUBLE(MEM(EA. 4»

Let the effective address (EA) be the sum (RAIO)+ D.

The word in storage addressed by EA is interpreted
as a floating-point -single-precision operand. This
word is converted to floating-point double format (see
page 100) and placed into register FRT.

Special Registers Altered:
None

Load Floating-Point Single with Update
D-form

Ifsu FRT,D(RA)

10 49 16 FRT
IIIRA

EA ~ (RA) + EXTS(D)
FRT ~ DOUBLE(MEM(EA, 4»
RA ~ EA

116
0

Let the effective address (EA) be the sum (RA) + D.

311

The word in storage addressed by EA is interpreted
as a floating-point single-precision operand. This
word is converted to floating-point double format (see
page 100) and placed into register FRT.

EA is placed into register RA.

If RA-O, the instruction form is invalid.

Special Registers Altered:
None

Load Floating-Point Single Indexed
X-form

Ifsx FRT,RA,RB

535

if RA = e then b ~ 9
else b ~ (RA)
EA ~ b + (RB)
FRT ~ DOUBLE(MEM(EA. 4»

Let the effective address (EA) be the sum
(RAIO) + (RB).

The word in storage addressed by EA is interpreted
as a floating-point single-precision operand. This
word is converted to floating-point double format (see
page 100) and placed into register FRT.

Special Registers Altered:
None

Load Floating-Point Single with Update '
Indexed X-form

Ifsux FRT,RA,RB

10 31 I/RT IIIRA

EA ~ (RA) + (RB)
FRT ~ DOUBLE(MEM(EA. 4»
RA ~ EA

116RB 121
567

1 :11

Let the effective address (EA) be the sum (RA) + (Ra).

The word in storage addressed by EA is interpreted
as a floating-point single-precision operand. This
word is converted to floating-point double format (see
page 100) and placed into register FRT.

EA is placed into register RA.

If RA-O, the instruction form is invalid.

Special Registers Altered:
None

Chapter 4. Floating-Point Processor 101

Load Floating-Point Double D-form

Ifd FRT,D(RA)

o

if RA = 9 then b ~ 9
else b ~ (RA)
EA ~ b + EXTS(D)
FRT ~ MEM(EA. 8)

Let the effective address (EA) be the sum (RAID) + D.

The doubleword in storage addressed by EA is placed
into register FRT.

Special Registers Altered:
None

Load Floating-Point Double with Update
D-form

Ifdu FRT,D(RA)

10 51 IsFRT I"RA

EA ~ (RA) + EXTS(D)
FRT ~ MEM(EA, 8)
RA ~ EA

lIS
0

Let the effective address (EA) be the sum (RA) + D.

3,1

The doubleword in storage addressed by EA is placed
into register FRT.

EA is placed into register RA.

If RA-O, the instruction form is invalid.

Special Registers Altered:
None

IBM Confidential

Load Floating-Point Double Indexed
X-form

Ifdx FRT,RA,RB

599

if RA = 9 then b ~ 9
el se b ~ (RA)
EA ~ b + (R8)
FRT ~ MEM(EA. 8)

1:11

Let the effective address (EA) be the sum
(RAIO) + (RB).

The doubleword in storage addressed by EA is placed
into register FRT.

Special Registers Altered:
None

Load Floating-Point Double with Update
Indexed X-form

Ifdux FRT,RA,RB

10 31 Is FRT 111 RA

EA ~ (RA) + (RB)
FRT ~ MEM(EA, 8)
RA ~ EA

I,s RB 121
631

1:,1

Let the effective address (EA) be the sum (RA) + (RB).

The doubleword in storage addressed by EA is placed
into register FRT.

EA is placed into register RA.

If RA - 0, the instruction form is invalid.

Special Registers Altered:
None

102 PowerPC User Instrudion Set Architedure

IBM Confidential

4.6.3 Floating-Point Store Instructions

There are three basic forms of store instruction
single-precision, double-precision, and integer. Th~
integer form is provided by the optional Store
Floating-Point as Integer Word instruction, described
on. page 120. Because the FPRs support only floating
pomt double format for floating-point data, single
precision Store Floating-Point instructions convert
double-precision data to single format prior to storing
the operands into storage. The conversion steps are
as follows:

Let WORDo:31 be the word in storage written to.

No Denormaljzation Required (includes Zero I Infinity
I NaN)
if FRS1:11 > 896 or FRS1:63 - 0 then

WORDo:1 - FRSo:1
WORD2:31 - FRSs:34

Denormaljzation Required
if 874 S FRS1:11 S 896 then

sign - FRSo
exp - FRS1:11 - 1023
frac - Ob1 II FRS12:63
Denormalize operand

Do while exp < -126
frac - ObO II fraCo:62
exp-exp + 1

End
WORDo - sign
WORD1:8 - OxOO
WORD9:31 - frac1:23

else WORD - undefined

Noti~e. that if the value to be stored by a single
precision Store Floating-Point instruction is larger in
magnitude than the maximum number repreSentable
in single format, the first case above (No Denormal
ization Required) applies. The result stored in WORD
is then a well-defined value, but is not numerically
equal to the value in the source register (i.e., the
result of a single-precision Load Floating-Point from
WORD will not compare equal to the contents of the
original source register).

Engineering Note ------------,

The above description of the conversion steps is a
model only. The actual implementation may vary
from this but must produce results equivalent to
what this model would produce.

For double-precision Store Floating-Point instructions
and for the Store Floating-Point as Integer Word
instruction, no conversion is required as the data
from the FPR is copied directly into storage.

Many ~f the Store Floating-Point instructions have an
"update" form, in which register RA is updated with
the effective address. For these forms, if RA~O, the
effective address is placed into register RA.

Note: Recall that RA, RB, and RT denote General
Purpose Registers, while FRA, FRB, FRC and FRT
denote Floating-Point Registers.

Byte order of Power PC is Big-Endian by default; see
Appendix D, "Uttle-Endian Byte Ordering" on
page 145 for Power PC systems operated with Uttle
Endian byte ordering.

Chapter 4. Floating-Point Processor 103

Store Floating-Point Single D-form

stfs FRS,D(RA)

10 52 I/RS 111 RA 116

0
31\

if RA = e then b ~ e
else b ~ (RA)
EA ~ b + EXTS(D)
MEM(EA. 4) ~ SINGLE(FRS)

Let the effective address (EA) be the sum (RAIO) + D.

The contents of register FRS is converted to single
format (see page 103) and stored into the word in
storage addressed by EA.

Special Registers Altered:
None

Store Floating-Point Single with Update
D-form

stfsu FRS,D(RA)

IBM Confidential

Store Floating-Point Single Indexed
X-form

stfsx FRS,RA,RB

10 31 !/RS !l,RA 116 RB
121

663

1:,1

if RA = 8 then b ~ 8
else b ~ (RA)
EA ~ b + (RB)
MEM(EA, 4) ~ SINGLE(FRS)

Let the effective address (EA) be the sum
(RAIO) + (RB).

The contents of register FRS is converted to single
format (see page 103) and stored into the word in
storage addressed by EA.

Special Registers Altered:
None

Store Floating-Point Single with Update
Indexed X-form

stfsux FRS,RA,RB

~10 __ 5_3 __ ~1~6F_R_S __ ~ll~,RA __ ~1~16 _______ D ______ ~311 ~10 __ 3_1 __ .16~F_R_S~!~1~lRA __ ~ll~6R_B __ ~1~21 ___ 6_95 ____ .I~~I
EA ~ (RA) + EXTS(D)
MEM(EA, 4) ~ SINGLE(FRS)
RA ~ EA

Let the effective address (EA) be the sum (RA) + D.

The contents of register FRS is converted to single
format (see page 103) and stored into the word in
storage addressed by EA.

EA is placed into register RA.

If RA-O, the instruction form is invalid.

Special Registers Altered:
None

EA ~ (RA) + (RB)
MEM(EA, 4) ~ SINGLE(FRS)
RA ~ EA

Let the effective address (EA) be the sum (RA) + (RB).

The contents of register FRS is converted to single
format (see page 103) and stored into the word in
storage addressed by EA.

EA is placed into register RA.

If RA - 0, the instruction form is invalid.

Special Registers Altered:
None

104 PowerPC User Instruction Set Architecture

(

IBM Confidential

Store Floating-Point Double

stfd FRS,D(RA)

10 54 I/RS 111RA

if RA = a then b ~ a
else b ~ (RA)
EA ~ b + EXTS(D)
MEM(EA, B) ~ (FRS)

116

D-form

0
311

Let the effective address (EA) be the sum (RAIO)+ D.

The contents of register FRS is stored into the
doubleword in storage addressed by EA.

Special Registers Altered:
None

Store Floating-Point Double with Update
D-form

stfclu FRS,D(RA)

EA ~ (RA) + EXTS(D)
MEM(EA, B) ... (FRS)
RA ~ EA

Let the effective address (EA) be the sum (RA)+D.

The contents of register FRS is stored into the
doubleword in storage addressed by EA.

EA is placed into register RA.

If RA-O, the instruction form is invalid.

Special Registars Altered:
None

Store Floating-Point Double Indexed
X-form

stfdx FRS,RA,RB

10 31 16 FRS 1,1 RA 1,6 RB
121

727

1:,1

if RA = e then b ~ e
else b ~ (RA)
EA ... b + (RB)
MEM(EA. 8) ~ (FRS)

Let the effective address (EA) be the sum
(RAIO) + (RB).

The contents of register FRS is stored into the
doubleword in storage addressed by EA.

Spacial Registers Altered:
None

Store Floating-Point Double with Update
Indexed X-form

stfclux FRS,RA,RB

EA ... (RA) + (RB)
MEM(EA. 8) ~ (FRS)
RA ~ EA

759

Let the effective address (EA) be the sum (RA)+ (RB).

The contents of register FRS is stored into the
doubleword in storage addressed by EA.

EA is placed into register RA.

If RA - 0, the instruction form is invalid.

Special Registers Altered:
None

Chapter 4. Floating-Point Processor 105

4.6.4 Floating-Point Move Instructions

These instructions copy data from one floating-point
register to another with data modifications . as

Floating Move Register X-form

fmr FRT,FRB (Rc-O)
fmr. FRT,FRB (Rc-1)

10 63 16 FRT I" //I I,:RB 12,
72 I:~I

The contents ot register FRB is placed into register
FRT.

Special Registers Altered:
CR1 (it Rc-1)

Floating Absolute Value X-form

tabs FRT,FRB (Rc-O)
tabs. FRT,FRB (Rc-1)

10 63 I/RT 1,11/1 I,:RB 12,
264 I:~I

The contents of register FRB with bit 0 set to zero is
placed into register FRT.

Special Registers Altered:
CR1 (it Rc-1)

IBM Confidential

described for each instruction. These instructions do
not modify the FPSCR.

Floating Negate X-form

tneg FRT,FRB (Rc-O)
tneg. FRT,FRB (Rc-1)

10 63 I/RT 1,,111 I,:RB 12,
40 I:~I

The contents ot register FRB with bit 0 inverted is
placed into register FRT.

Special Registers Altered:
CR1 (it Rc-1)

Floating Negative Absolute Value
X-form

tnabs
tnabs.

FRT,FRB
FRT.FRB

16 FRT 1,,111 116FRB I . 2'

136

(Rc-O)
(Rc-1)

The contents of register FRB with bit 0 set to one is
placed into register FRT.

Special Registers Altered:
CR1 (it Rc-1)

106 PowerPC User Instruction Set Architecture.

(

(

IBM Confidential

4.6.5 Floating-Point Arithmetic Instructions

Floating Add [Single] A-form

fadd
fadd.

FRT,FRA,FRB
FRT,FRA,FRB

[Power mnemonics: ta, ta.]

fadds
fadds.

FRT,FRA,FRS
FRT,FRA,FRB

(Rc-O)
(Rc-l)

(Rc-O)
(Rc-1)

The floating-point operand in register FRA is added to
the floating-point operand in register FRS. If the most
significant bit of the resultant significand is not a one
the result is normalized. The result is rounded to the
target precision under control of the Floating-Point
Rounding Control field RN of the FPSCR and placed
into register FRT.

Floating-point addition is based on exponent compar
ison and addition of the two significands. The expo
nents of the two operands are compared, and the
significand accompanying the smaller exponent is
shifted right, with its exponent increased by one for
each bit shifted, until the two exponents are equal.
The two significands are then added algebraically to
form an intermediate sum. All 53 bits in the
significand as well as all three guard bits (G, R, and
X) enter into the computation.

If a carry occurs, the sum's significand is shifted right
one bit position and the exponent is increased by one.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRve -1.

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN VXISI
CR1 (if Rc-1)

Floating Subtract [Single] A-form

fsub
fsub.

FRT,FRA,FRS
FRT, FRA, FRS

[Power mnemonics: 15, 15.]

fsubs
fsubs.

FRT,FRA,FRB
FRT,FRA, FRS

(Rc-O)
(Rc-l)

(Rc-O)
(Rc-1)

The floating-point operand in register FRS is sub
tracted from the floating-point operand in register
FRA. If the most significant bit of the resultant
significand is not a one the result is normalized. The
result is rounded to the target precision under control
of the Floating-Point Rounding Control field RN of the
FPSCR and placed into register FRT.

The execution of the Floating Subtract instruction is
identical to that of Floating Add, except that the con
tents of FRS participates in the operation with its sign
bit (bit 0) inverted.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRve-l.

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN VXISI
CRl (if Rc-1)

Chapter 4. Floating-Point Processor 107

Floating Multiply [Single] A-form

fmul FRT,FRA,FRC (Rc-O)
fmul. FRT,FRA,FRC (Rc-1)

[Power mnemonics: fin, fin.]

10 63 16 FRT 111FRA 11611/ I 21
FRC

126
25 I~~I

fmuls FRT,FRA,FRC (Rc-O)
fmuls. FRT,FRA,FRC (Rc-1)

10 59 16 FRT I11FRA 11s''' I 21
FRC

126
25 I~:I

The floating-point operand in register FRA is multi
plied by the floating-point operand in register FRC.

If the most significant bit of the resultant significand is
not a one the result is normalized. The result is
rounded to the target precision under control of the
Floating-Point Rounding Control field RN of the FPSCR
and placed into register FRT.

Floating-point multiplication is based on exponent
addition and multiplication of the significands.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRve-1.

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN VXIMZ
CR1 (if Rc-1)

IBM Confidential

Floating Divide [Single] A-form

fdiv FRT,FRA,FRB (Rc-O)
fdiv. FRT,FRA,FRB (Rc-1)

[Power mnemonics: feI, feI.]

10 63 16 FRT 11;RA
11:

RB 121 11/ 126
18 I~~I

fdivs FRT,FRA,FRB (Rc-O)
fdivs. FRT,FRA,FRB (Rc-1)

10 59 16 FRT 11;RA 11:RB 1211/1 126
18 I~I

The floating-point operand in register FRA is divided
by the floating-point operand in register FRB. The
remainder is not supplied as a result.

If the most significant bit of the resultant significand is
not a one the result is normalized. The result is
rounded to the target precision under control of the
Floating-Point Rounding Control field RN of the FPSCR
and placed into register FRT.

Floating-point division is based on exponent sub
traction and division of the significands.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRve -1 and Zero Divide Exceptions when
FPSCRzE-1.

Special Registers Altered:
FPRF FR FI
FX OX UX ZX XX
VXSNAN VXIDI VXZDZ
CR1 (if Rc-1)

108 PowerPC User Instruction Set Architecture

\.

/

(~

IBM Confidential

4.6.6 Floating-Point Multiply-Add Instructions

These instructions combine a multiply and add opera
tion without an intermediate rounding operation. The
fraction part of the intermediate product is 106 bits

Floating Multiply-Add [Single] A-form

fmadd
fmadd.

FRT,FRA,FRC, FRS
FRT,FRA,FRC,FRS

[Power mnemonics: tma, tma.]

fmadds
fmadds.

FRT, FRA,FRC,FRS
FRT,FRA,FRC,FRS

The operation
FRT - [(FRA)x(FRC)] + (FRS)

is performed.

(Rc-O)
(Rc-1)

(Rc-O)
(Rc-1)

The floating-point operand in register FRA is multi
plied by the floating-point operand in register FRC.
The floating-point operand in register FRS is added to
this intermediate result.

If the most significant bit of the resultant significand is
not a one the result is normalized. The result is
rounded to the target precision under control of the
Floating-Point Rounding Control field RN of the FPSCR
and placed into register FRT.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRve -1.

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN VXISI VXIMZ
CR1 (if Rc-1)

wide, and all 106 bits take part in the add/subtract
portion of the instruction.

Floating Multiply-Subtract [Single]
A-form

fmsub
fmsub.

FRT,FRA, FRC,FRS
FRT,FRA,FRC, FRS

[Power mnemonics: fins, tms.]

fmsubs
fmsubs.

FRT,FRA,FRC,FRS
FRT,FRA,FRC,FRS

The operation
FRT - [(FRA)x(FRC)] - (FRS)

is performed.

(Rc-O)
(Rc-1)

(Rc '!"" 0)
(Rc-1)

The floating-point operand in register FRA is mUlti
plied by the floating-point operand in register FRC.
The floating-point operand in register FRS is sub
tracted from this intermediate result.

If the most Significant bit of the resultant significand is
not a one the result is normalized. The result is
rounded to the target precision under control of the
Floating-Point Rounding Control field RN of the FPSCR
and placed into register FRT.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRve -1.

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN VXISI VXIMZ
CR1 (if Rc-1)

Chapter 4. Floating-Point Processor 109

Floating Negative MUltiply-Add [Single]
A-form

fnmadd FRT,FRA,FRC,FRB
fnmadd. FRT, FRA,FRC,FRB

[Power mnemonics: fnma. fnma.]

10
63 I. FRT 11;RA

11:
RB

fnmadds FRT.FRA,FRC,FRB
fnmadds. FRT,FRA,FRC,FRB

The operation

I 21
FRC

(Rc-O)
(Rc-1)

12631 I:~I
(Rc-O)
(Rc-1)

FRT - - ([(FRA)x(FRC)] + (FRB))
is performed.

The floating-point operand in register FRA is multi
plied by the floating-point operand in register FRC.
The floating-point operand in register FRB is added to
this intermediate result.

If the most significant bit of the resultant significand is
not a one the result is normalized. The result is
rounded to the target precision under control of the
Floating-Point Rounding Control field RN of the
FPSCR, then negated and placed into register FRT.

This instruction produces the same result as would be
obtained by using the Floating Multiply-Add instruc
tion and then negating the reSUlt, with the following
exceptions:

• ONaNs propagate with no effect on their "sign"
bit.

• ONaNs that are generated as the result of a disa
bled Invalid Operation Exception have a "sign" bit
of zero.

• SNaNs that are converted to ONaNs as the result
of a disabled Invalid Operation Exception retain
the "sign" bit of the SNaN.

FPSCRFPRF is set to the class and sign of the result.
except for Invalid Operation Exceptions when
FPSCRve-1.

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN VXISI VXIMZ
CR1 (if Rc-1)

IBM Confidential

Floating Negative Multiply-Subtract
[Single] A-form

fnmsub FRT,FRA. FRC, FRB
fnmsub. FRT,FRA,FRC,FRB

[Power mnemonics: fnms, fnms.]

10
63 I. FRT 11;RA 11:

RB

fnmsubs FRT,FRA.FRC,FRB
fnmsubs. FRT,FRA.FRC,FRB

The operation

I 21
FRC

(Rc-O)
(Rc-1)

1263~ I:~I
(Rc-O)
(Rc-1)

FRT - - ([(FRA)x(FRC)] - (FRB))
is performed.

The floating-point operand in register FRA is multi
plied by the floating-point operand in register FRC.
The floating-point operand in register FRB is sub
tracted from this intermediate result.

If the most significant bit of the resultant significand is
not a one the result is normalized. The result is
rounded to the target precision under control of the
Floating-Point Rounding Control field RN of the
FPSCR, then negated and placed into register FRT.

This instruction produces the same result as would be
obtained by using the Floating Multiply-Subtract
instruction and then negating the result. with the fol
lowing exceptions:

• ONaNs propagate with no effect on their "sign"
bit.

• ONaNs that are generated as the result of a disa
bled Invalid Operation Exception have a "sign" bit
of zero.

• SNaNs that are converted to ONaNs as the result
of a disabled Invalid Operation Exception retain
the "sign" bit of the SNaN.

FPSCRFPRF is set to the class and sign of the result.
except for Invalid Operation Exceptions when
FPSCRve -1.

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN VXISI VXIMZ
CR1 (if Rc-1)

110 PowerPC User Instruction Set Architecture

\ ; " /

(

IBM Confidential

4.6.7 Floating-Point Rounding and Conversion Instructions

Programming Note ----------.,

Examples of uses of these instructions to perform
various conversions can be found in Appendix E.3,
"Floating-Point Conversions" on page 159.

Floating Round to Sing/e-Precision
X-form

trsp
trsp.

FRT,FRB
FRT,FRB

16 FRT 11111/ 11sFRB I
. 21

12

(Rc-O)
(Rc-1)

If it is already in single-precision range, the f1oating
point operand in register FRB is placed into register
FRT. Otherwise the floating-point operand in register
FRB is rounded to single-precision using the rounding
mode specified by FPSCRRN and placed into register
FRT.

The rounding is described fully in Appendix B.1,
"Floating-Point Round to Single-Precision Model" on
page 123.

FPSCRFPRF is set to the class and sign of the reSUlt,
except for Invalid Operation Exceptions when
FPSCRve -1.

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN
CR1 (if Rc-1)

Chapter 4. Floating-Point Processor 111

Floating Convert To Integer Doubleword
X-form

fetid
fetid.

FRT,FRB
FRT,FRB

Is FRT 111 11/ 11sFRB I
. 21

814

(Rc-O)
(Rc-1)

The floating-point operand in register FRB is con
verted to a 64-bit signed fixed-point integer, using the
rounding mode specified by FPSCRRN, and placed into
register FRT.

If the operand in FRB is greater than 213 - 1, then
FRT is set to Ox7FFF FFFF FFFF FFFF. If the
operand in FRB is less than - '213, then FRT is set to
Ox8000_oooo_oooo_ooo0.

The conversion is described fully in Appendix B.2,
"Floating-Point Convert to Integer Model" on
page 128.

Except for enabled Invalid Operation Exceptions,
FPSCRFPRF is undefined. FPSCRFR is set if the result
is incremented when rounded. FPSCRFf is set if the
result is inexact.

This instruction is defined only for 64-bit implementa
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Altered:
FPRF (undefined) FR FI
FX XX
VXSNAN VXCVI
CR1 (ifRc-1)

IBM Confidential

Floating Convert To Integer Doubleword
with round toward Zero X-form

fetidz
fetidz.

FRT,FRB
FRT,FRB

Is FRT 111'" 11sFRB I
. 21

815

(Rc-O)
(Rc-1)

The floating-point operand in register FRB is con
verted to a 64-bit signed fixed-point integer, using the
rounding mode Round toward Zero, and placed into
register FRT.

If the operand in FRB is greater than 213 - 1, then
FRT is set to Ox7FFF FFFF FFFF FFFF. If the
operand in FRB is less th-an - '213, then FRT is set to
Ox8000_0000_0000_0000.

The conversion is described fully in Appendix B.2,
"Floating-Point Convert to Integer Model" on
page 128.

Except for enabled Invalid Operation Exceptions,
FPSCRFPRF is undefined. FPSCRFR is set if the result
is incremented when rounded. FPSCRFf is set if the
result is inexact.

This instruction is defined only for 64-bit implementa
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Register. Altered:
FPRF (undefined) FR FI
FX XX
VXSNAN VXCVI
CR1 (if Rc-1)

112 PowerPC User Instruction Set Architecture

/

IBM Confidential

Floating Convert To Integer Word
X-form

fctiw
fctiw.

FRT,FRB
FRT,FRB

[RiOS-2 mnemonics: fcir, fcir.]

Is FRT 111 III 11SFRB I
. 21

14

(Rc-O)
(Rc-1)

The floating-point operand in register FRB is con
verted to a 32-bit signed fixed-point integer, using the
rounding mode specified by FPSCRRN, and placed in
bits 32:63 of register FRT. Bits 0:31 of register FRT
are undefined.

If the operand in FRB is greater than 231 - 1, then bits
32:63 of FRT are set to Ox7FFF _FFFF. If the operand
in FRB is less than - 231 , then bits 32:63 of FRT are
set to Ox8000 _0000.

The conversion is described fully in Appendix B.2,
"Floating-Point Convert to Integer Model" on
page 128.

Except for enabled Invalid Operation Exceptions,
FPSCRFPRF is undefined. FPSCRFR is set if the result
is incremented when rounded. FPSCRF1 is set if the
result is inexact.

Special Registers Altered:
FPRF (undefined) FR FI
FX XX
VXSNAN VXCVI
CR1 (if Rc-1)

Floating Convert To Integer Word with
round toward Zero X-form

fctiwz
fctiwz.

FRT,FRB
FRT,FRB

[RiOS-2 mnemonics: felrz, felrz.]

11SFRB I
. 21

15

(Rc-O)
(Rc-1)

The floating-point operand in register FRB is con
verted to a 32-bit signed fixed-point integer, using the
rounding mode Round toward Zero, and placed in bits
32:63 of register FRT. Bits 0:31 of register FRT are
undefined.

If the operand in FRB is greater than 231 - 1, then bits
32:63 of FRT are set to Ox7FFF]FFF. If the operand
in FRB is less than - 231 , then bits 32:63 of FRT are
set to Ox8000 _0000.

The conversion is described fully in Appendix B.2,
"Floating-Point Convert to Integer Model" on
page 128.

Except for enabled Invalid Operation Exceptions,
FPSCRFPRF is undefined. FPSCRFR is set if the result
is incremented when rounded. FPSCRF1 is set if the
result is inexact.

Special Registers Altered:
FPRF (undefined) FR FI
FX XX
VXSNAN VXCVI
CR1 (if Rc-1)

Editors' Note -------------,

Rios-2 is an unannounced IBM product. If this
Book is published before the Rios-2 product is
announced, the Rios-2 mnemonics shown for
these two instructions (fctiw and fctiwz) should be
omitted.

Chapter 4. Floating-Point Processor 113

Floating Convert From Integer
Doubleword X-form

fcfid
fcfid.

FRT,FRB
FRT,FRB

Is FRT 1" 11/ I'SFRB I
. Jl

846

(Rc-O)
(Rc-1)

The 64-bit signed fixed-point operand in register FRB
is converted to an infinitely precise floating-point
integer. If the result of the conversion is already in
double-precision range it is placed into register FRT.
Otherwise the result of the conversion is rounded to
double-precision using the rounding mode specified
by FPSCRRN and placed into register FRT.

The conversion is described fully in Appendix B.3,
"Floating-Point Convert from Integer Model" on
page 131.

FPSCRFPRF is set to the class and sign of the result
FPSCRFR is set if the result is incremented when
rounded. FPSCRF1 is set if the result is inexact

This instruction is defined only for 64-bit implementa
tions. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be
invoked.

Special Registers Ahered:
FPRF FR FI
FX XX
CR1 (if Rc-1)

114 PowerPC User Instruction Set Architecture

IBM Confidential

IBM Confidential

4.6.8 Floating-Point Compare Instructions

The floating-point Compare instructions compare the
contents of two floating-point registers. Comparison
ignores the sign of zero (i.e., regards + 0 as equal to
-0). The comparison can be ordered or unordered.

The comparison sets one bit in the designated CR
field to one, and the other three to zero. The FPCC is
set in the same way.

Floating Compare Unordered X-form

fcmpu BF,FRA,FRB

o

The floating-point operand in register FRA is com
pared to the floating-point operand in register FRB.
The result of the compare is placed into CR field BF
and the FPCC.

If either of the operands is a NaN, either quiet or sig
nalling, then CR field BF and the FPCC are set to
reflect unordered. If either of the operands is a Sig
nalling NaN, then VXSNAN is set.

Special Registers Altered:
CR field BF
FPCC
FX
VXSNAN

The CR field and the FPCC are interpreted as follows:

Bit
o
1
2
3

Name
FL
FG
FE
FU

Description
(FRA) < (FRB)
(FRA) > (FRB)
(FRA) = (FRB)
(FRA) ? (FRB) (unordered)

Floating Compare Ordered X-form

fcmpo BF,FRA,FRB

32

The floating-point operand in register FRA is com
pared to the floating-point operand in register FRB.
The result of the compare is placed into CR field BF
and the FPCC.

If either of the operands is a NaN, either quiet or sig
nalling, then CR field BF and the FPCC are set to
reflect unordered. If either of the operands is a Sig
nalling NaN, then VXSNAN is set, and if Invalid Opera
tion is disabled (VE - 0) then VXVC is set. Otherwise,
if either of the operands is a Quiet NaN then VXVC is
set.

Special Registers Altered:
CR field BF
FPCC
FX
VXSNAN VXVC

Chapter 4. Floating-Point Processor 115

IBM Confidential

4.6.9 Floating-Point Status and Control Register Instructions

Every Floating-Point Status and Control Register
instruction appears to synchronize the effects of all
floating-point instructions executed by a given
processor. Executing a Floating-Point Status and
Control Register instruction ensures that all floating
point instructions previously initiated by the given
processor appear to have completed before the
Floating-Point Status and Control Register instruction
is initiated, and that no subsequent floating-point
instructions appear to be initiated by the given
processor until the Floating-Point Status and Control
Register instruction has completed. In particular:

• all exceptions that will be caused by the previ
ously initiated instructions· are recorded in the

Move From FPSCR X-form

mffs FRT (Rc-O)
mffs. FRT (Rc-1)

10 63 16 FRT 111 //I 116 III 121
583 I:~I

The contents of the FPSCR is placed into bits 32:63 of
register FRT. Bits 0:31 of register FRT are undefined.

Special Registers Altered:
CR1 (if Rc-1)

FPSCR before the Floating-Point Status and
Control Register instruction is initiated;

• all invocations of the floating-point exception
handler that will be caused by the previously initi
ated instructions have occurred before the
Floating-Point Status and Control Register instruc
tion is initiated; and

• no subsequent floating-point instruction that
depends on or alters the settings of any FPSCR
bits appears to be initiated until the Floating
Point Status and Control Register instruction has
completed.

(Floating-point Storage Access instructions are not
affected.)

Move to Condition Register from FPSCR
X-form

mcrfs BF,BFA

64

The contents of FPSCR field BFA are copied to CR
field BF. All exception bits copied are reset to zero in
the FPSCR.

Special Register. Altered:
CR field BF
FX OX
UX ZX XX VXSNAN
VXISI VXIDI VXZDZ VXIMZ
VXVC
VXSOFT VXSQRT VXCVI

(if BFA-O)
(if BFA-1)
(if BFA-2)
(if BFA-3)
(if BFA-5)

116 PowerPC User Instruction Set Architecture

IBM Confidential

Move To FPSCR Field Immediate
X-form

mtfsfi BF,U
mtfsfi. BF,U

16BF l'g'lll/1/ I U I' I • .• 1620 21

134

(Rc-O)
(Rc-1)

The value of the U field is placed into FPSCR field BF.

Special Registers Altered:
FPSCR field BF
CR1 (if Rc-1)

Programming Note -----------,

When FPSCRo:3 is specified, bits 0 (FX) and 3 (OX)
are set to the values of Uo and· U3 (i.e., e"en if
this instruction causes OX to change from 0 to 1,
FX is set from Uo and not by the usual rule that
FX is set to 1 when an exception bit changes from
o to 1). Bits 1 and 2 (FE>< and VX) are set
according to the usual rule, given on page 85, and
not from U1:2 ..

Move To FPSCR Fields XFL-form

mtfsf FLM,FRB
mtfsf. FLM,FRB

FLM 711

(Rc-O)
(Rc-1)

The contents of bits 32:63 of register FRB are placed
into the FPSCR under control of the field mask speci
fied by FLM. The field mask identifies the 4-bit fields
affected. Let i be an integer in the range 0-7. If
FLMj -1 then FPSCR field i (FPSCR bits 4xi through
4xi + 3) is set to the contents of the corresponding
field of the low-order 32 bits of register FRB.

Special Registers Altered:
FPSCR fields selected by mask
CR1 (if Rc-1)

Programming Note -----------,

Updating fewer than all eight fields of the FPSCR
may have substantially poorer performance on
some implementations than updating all the fields.

Programming Note -----------,

When FPSCRo:3 is specified, bits 0 (FX) and 3 (OX)
are set to the values of (FRB)32 and (FRB)35 (i.e.,
even if this instruction causes OX to change from
o to 1, FX is set from (FRB132 and not by the usual
rule that FX is set to 1 when an exception bit
changes from 0 to 1). Bits 1 and 2 (FE>< and VX)
are set according to the usual rule, given on page
85, and not from (FRB)33:34.

Chapter 4. Floating-Point Processor 117

Move To FPSCR Bit 0 X-form

mtfsbO BT (Re-O)
mtfsbO. BT (Re-1)

/0 63·-
/6 BT /11 //I 116//1 -121

70 I:~I
Bit BT of the FPSCR is set to zero.

Special Registers Altered:
FPSCR bit BT
CR1 (if Rc-1)

Programming Note -----------.

Bits 1 and 2 (FEX and VX) cannot be explicitly
reset.

IBM Confidential

Move To FPSCR Bit 1 X-form

mtfsb1 BT (Re-O)
mtfsb1. BT (Re-1)

/0
63 Ie BT 111 "' 1161/1 121

38 /:~I
Bit BT of the FPSCR is set to one.

Special Registers Altered:
FPSCR bit BT
CR1 (if Rc-1)

Programming Note ----------,

Bits 1 and 2 (FEX and VX) cannot be explicitly set.

11 a PowerPC User Instruction Set Architecture

./

',- ,/

(

(

IBM Confidential

Appendix A. Optional Instructions

The instructions described in this appendix are
optional. If an instruction is implemented that
matches the semantics of an instruction described
here, the implementation should be as specified here.

•

An implementation may provide all, none, or certain
defined groups of these instructions. At present, two
such groups are defined:

General Purpose group: fsqrt and fsqris.

Graphics group: strlll/X, Ise/, Ires, and trsqrte.

Appendix A. Optional Instructions 119

IBM Confidential

A.1 Floating-Point Processor Instructions

A.1.1 Floating-Point Store Instruction

Byte ordering on PowerPC is Big-Endian by default.
See Appendix 0, "Uttle-Endian Byte Ordering" on
page 145 for the effects of operating a PowerPC
system with Uttle-Endian byte ordering.

Store Floating-Point as Integer Word
Indexed X-form

stfiwx FRS,RA,RB

983

if RA = e then b ~ e
else b .. (RA)
EA ~ b + (RB)
MEM(EA, 4) ~ (FRSh2:63

Let the effective address (EA) be the sum
(RAIO) + (RB).

The contents of the low-order 32 bits of register FRS
are stored, without conversion, into the word in
storage addressed by EA.

Special Registers Altered:
None

Architedure Note -----------,

This instruction is intended for general use and
may eventually become part of Chapter 4,
Floating-Point Processor.

A.1.2 Floating-Point Arithmetic
Instructions

Floating Square Root [Single]
A-form

fsqrt FRT,FRB (Rc-O)
fsqrt. FRT.FRB (Rc-1)

10 63 Is FRT .111 111
11:RB 1211/1 1:2 I~~I

fsqrts FRT,FRB (Rc-O)
fsqrts. FRT,FRB (Rc-1)

10 59 16 FRT 11, //I 11:RB 12111/ 12622 I~~I
The square root of the floating-point operand in reg
ister FRB is placed into register FRT.

If the most significant bit of the resultant significand is
not a one the result is normalized. The result is
rounded to the target precision under control of the
Floating-Point Rounding Control field RN of the FPSCR
and placed into register FRT.

Operation with various special values of the operand
is summarized below.

Oeerand Result Excection
-.. QNaN1 VXSQRT
< 9 QNaN' VXSQRT
-9 -9 None None
SNaN QNaN' VXSNAN
QNaN QNaN None

'No result if FPSCRve - 1.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRve -1.

Special Registers Altered:
FPRF FR FI
FX XX
VXSNAN VXSQRT
CR1 (if Rc-1)

120 PowerPC User Instrudion Set Architedure

.,

IBM Confidential

Floating Reciprocal Estimate Single
A-form

fres
fres.

FRT,FRB
FRT,FRB

(Rc-O)
(Rc-1)

A single-precision estimate of the reciprocal of the
floating-point operand in register FRB is placed into
register FRT. The estimate placed into register FRT
is correct to a precision of one part in 256 of the
reciprocal of (FRB).

Operation with various special values of the operand
is summarized below.

Ol!erand Result Excel!tion
-.. -9 None
-9 ... ' ZX
+9 +CD' ZX
+CD +9 None
SNaN QNaN2 VXSNAN
QNaN QNaN None

, No result if FPSCRzE - 1.
2No result if FPSCRve - 1.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRve -1 and Zero Divide Exceptions when
FPSCRzE -1.

Special Registers Altered:
FPRF FR (undefined) FI (undefined)
FX OX UX ZX
VXSNAN
CR1 (if Rc-1)

Architecture Note ------------,

No double-precision version of this instruction is
provided because graphics applications are
expected to need only the single-precision
version, and no other important performance
critical applications are expected to need a
double-precision version.

Floating Reciprocal Square Root
Estimate A-form

frsqrte
frsqrte.

FRT,FRB
FRT,FRS

(Rc-O)
(Rc-1)

A double-precision estimate of the reciprocal of the
square root of the floating-point operand in register
FRS is placed into register FRT. The estimate placed
into register FRT is correct to a precision of one part
in 32 of the reciprocal of the square root of (FRB).

Operation with various special values of the operand
is summarized below.

Dl!erand Result Excel!tion
.111 QNaN2 VXSQRT
< 9 QNaN2 VXSQRT
·9 .111' ZX
+9 +CD' ZX
+CD +9 None
SNaN QNaN2 VXSNAN
QNaN QNaN None

'No result if FPSCRzE - 1.
2No result if FPSCRve - 1.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRve -1 and Zero Divide Exceptions when
FPSCRzE-1.

Special Registers Altered:
FPRF FR (undefined) FI (undefined)
FX ZX
VXSNAN VXSQRT
CR1 (if Rc-1)

Architecture Note -----------,

No single-precision version of this instruction is
provided because it would be superfJous: if (FRS)
is representable in single-precision format, then
so is (FRT).

Appendix A. Optional Instructions 121

A.1.3 Floating-Point Select
Instruction

Floating Se/fitct~. A~form

fsel
fsel.

FRT,FRA,FRC,FRB
FRT,FRA, FRC, FRB

if (FRA) ~ e.e then FRT ~ (FRC)
else FRT ~ (FRB)

(Rc-O)
(Rc-1)

The floating-point operand in register FRA is corn
pared to the value zero. If the operand is greater
than or equal to zero, register FRT is set to the con
tents of register FRC. If the operand is less than zero
or is a NaN, register FRT is set to the contents of reg
ister FRB. The comparison ignores the sign of zero
(i.e., regards + 0 as equal to -0).

Special Register. Altered:
CR1 (if Rc-1)

Architecture Note ---------___

The Select instruction is similar to a Move instruc
tion, and therefore does not alter FPRF.

Programming Note ---------___

Examples of uses of this instruction can be found
in Appendices E.3, "Floating-Point Conversions"
on page 159, and E.4, "Floating-Point Selection"
on page 162.

Warning: Care must be taken in using Isel if IEEE
compatibility is required, or if the values being
tested can be NaNs or infinities; see Section E.4.4.
"Notes" on page 162.

122 PowerPC User Instruction Set Architecture

IBM Confidential

(

IBM Confidential

Appendix B. Suggested Floating-Point Models

B.1 Floating-Point Round to Single-Precision Model

The following describes algorithmically the operation of the Floating Round to Single-Precision instruction.

If (FRB)1:11 < 897 and (FRB)1:63 > 0 then
Do

If FPSCRuE - 0 then goto Disabled'Exponent Underflow
If FPSCRuE - 1 then goto Enabled Exponent Underflow

End

If (FRBk11 > 1150 and (FRB)1:11 < 2047 then
Do .

If FPSCRoE - 0 then goto Disabled Exponent Overflow
If FPSCRoE - 1 then goto Enabled Exponent Overflow

End

If (FRB),;11 > 896 and (FRB)';11 < 1151 then goto Normal Operand

If (FRB)1:63 - 0 then goto Zero Operand

If (FRB)1:11 - 2047 then
Do

If (FRB)12:63 - 0 then goto Infinity Operand
If (FRB)'2 - 1 then goto QNaN Operand
If (FRB)'2 - 0 and (FRB)13:63 > 0 then goto SNaN Operand

End

Appendix B.. Suggested Floating-Point Models 123

Disabled Exponent Underflow:

sign ... (FRB)o
If (FRB),:11 - 0 then

00
exp ... -1022
frac ... ObO II (FRB),2:63

End
If (FRB)';'1 > 0 then

00
exp ... (FRB),:1, - 1023
frac ... Ob1 II (FRB),2:63

End
Oenormalize operand:

G II R II X ... ObOOO
00 while exp < -126

exp ... exp+1
frac II G II R II X ... ObO II frac II G II (R I X)

End
FPSCRux ... frac24:52 II G II R II X > 0
If frac24:S2 II G II R II X > 0 then FPSCRxx ... 1
Round single(sign,exp,frac,G,R,X)
If frac - 0 then

00

End

FRToo'" sign
FRTo1:63 0
If sign - 0 then FPSCRFPRF +zero'
If sign - 1 then FPSCRFPRF ... "-zero"

If frac > 0 then
00

End
Done

If fraeo - 1 then
00

If sign - 0 then FPSCRFPRF ... '+normal number'
If sign - 1 then FPSCRFPRF ... "-normal number'

End
If fraeo - 0 then

00
If sign - 0 then FPSCRFPRF +denormalized number'
If sign - 1 then FPSCRFPRF -denormalized number'

End
Normalize operand:

00 while fraeo - 0
exp - exp-1
frac II G II R ... fracl:52 II G II R II ObO

End
FRTo'" sign
FRT1:11 ... exp + 1023
FRT12:63 ... frac 1: 23 II 290

124 PowerPC User Instruction Set Architecture

IBM Confidential

IBM Confidential

Enabled Exponent Underflow:

FPSCRux. - 1
sign - {/"RB)o
If (FRBkll - 0 then

Do
exp - -1022
frac - ObO II (FRB)12:63

End
If (FRB)':11 > 0 then

Do
exp - (FRBh:11 - 1023
frac - Ob1 II (FRB)12:63

End
Normalize operand:

Do while fraeo - 0
exp-exp-1

End
frac - frac1:52 II ObO

If frac24:52 > 0 then FPSCRxx - 1
Round single(sign,exp,frac,O,O,O)
exp - exp + 192
FRTo - sign
FRT1:11 - exp + 1023
FRT12:63 - frac1:~ 1129()
If sign - 0 then FPSCRFPRF - ' +normal number'
If sign - 1 then FPSCRFPRF - '-normal number'
Done

Disabled Exponent Overflow:

inc-O
FPSCRox - 1
FPSCRxx - 1
If FPSCRRN - ObOO then r Round to Nearest */

Do
inc _ 1
If (FRB)o - 0 then FRT - OX7FFO_OOOO_OOOO_OOOO
If (FRB)o - 1 then FRT - OxFFFO_OOOO_OOOO_OOOO
If (FRB)o - ° then FPSCRFPRF - '+infinity'

End
If (FRB)o - 1 then FPSCRFPRF _ "-infinity"

If FPSCRRN - Ob01 then r Round Truncate */
Do

End

If (ObO " (FRBh:63) < Ox47EF]FFF _EOOO_OOOO then inc _ 1
If (FRB)o - ° then FRT - Ox47EF _FFFF _EOOO_OOOO
If (FRB)o - 1 then FRT - OxC7EF]FFF _EOOO_OOOO
If (FRB)o - ° then FPSCRFPRF - "+normal number'
If (FRB)o - 1 then FPSCRFPRF _ "-normal number'

If FPSCRRN - Ob10 then r Round to + Infinity */
Do

If (FRB)o - ° then inc - 1
If «FRBlo - 1) & «FRS) > OxC7EF _FFFF _EOOO_OOOO) then inc _ 1
If (FRSlo - ° then FRT - Ox7FFO_OOOO_OOOO_OOOO
If (FRBlo - 1 then FRT - OxC7EF]FFF _EOOO_OOOO
If (FRSlo - ° then FPSCRFPRF - "+infinity'
If (FRBlo - 1 then FPSCRFPRF - "-normal number'

End
If FPSCRRN - Ob11 then 1* Round to -Infinity */

Do
If ((FRB)o - 0) & ((FRB) < Ox47EF]FFF _EOOO_OOOO) then inc _ 1
If (FRB)o - 1 then inc - 1
If (FRB)o - ° then FRT - Ox47EF]FFF _EOOO_OOOO
If (FRB)o - 1 then FRT - OxFFFO_OOOO_OOOO_OOOO
If (FRS)o - ° then FPSCRFPRF - "+normal number'
If (FRB)o - 1 then FPSCRFPRF - "-infinity'

End
FPSCRFR - inc
FPSCRF1 -1.
Done

Appendix B. Suggested Floating-Point Models 125

Enabled Exponent O"erllow:

sign - (FRB)o
exp - (FRB)';11 - 1023
frac - Ob1 II (FRB)12:83
If frac24:52 > 0 then FPSCRxx - 1
Round single(sign,exp,frac,O,O,O)·

Enabled Overflow:
FPSCRox -1
exp - exp - 192
FRTo - sign
FRT1:11 +- exp + 1023
FRT12:83 - frac1:23 1129()
If sign - 0 then FPSCRFPRF - ' +normal number'
If sign - 1 then FPSCRFPRF - '-normal number'
Done

Zero Operand:

FRT +- (FRB)
If (FRB)o - 0 then FPSCRFPRF _ '+zero'
If (FRB)o - 1 then FPSCRFPRF - '-zero'
FPSCRFR FI - ObOO
Done

Infinity Operand:

FRT +- (FRB)
If (FRB)o - 0 then FPSCRFPRF +- '+infinity"
If (FRB)o - 1 then FPSCRFPRF +- '-infinity"
FPSCRFR FI - ObOO
Done

QNaN Operand:

FRT - (FRB)o:34II 29()
FPSCRFPRF +- 'ONaN'
FPSCRFR FI - ObOO
Done

SNaN Operand:

FPSCRVXSNAN - 1
If FPSCRVE - 0 then

Do

End

FRTo:11 - (FRB)o:11
FRT12 +- 1
FRTI3:83 - (FRB)13:34 11 290
FPSCRFPRF - "ON aN'

FPSCRFR FI +- ObOO
Done

126 PowerPC User Instruction Set Architecture

IBM Confidential

IBM Confidential

Norma' Operand:

sign (FRB)o
exp (FRB),:" - 1023
frac Ob1 II (FRB),2:63
If frac24:S2 > 0 then FPSCRxx 1
Round single(sign,exp,frac,O,O,O)
If exp > + 127 and FPSCRoE - 0 then go to Disabled Exponent Overflow
If exp > + 127 and FPSCRoE - 1 then go to Enabled Overflow
FRTo"" sign
FRT,:

"
.... exp + 1023

FRT,2:63 frac,:23 11 290
If sign - 0 then FPSCRFPRF +normal number'
If sign - 1 then FPSCRFPRF "-normal number'
Done

Round single(s;gn,exp/rac,G,R,x):

inc- 0
Isb - frac23
gbit frac24
rbit frac2S
xbit (frac26:s2I1GIIRIIX)¢O
If FPSCRRN - ObOO then

Do
If sign Illsb II gbit II rbit II xbit - Obu11 uu then inc - 1 r comparison ignores u bits *'
If sign Illsb II gbit II rbit II xbit - Obu011 u then inc 1 /" comparison ignores u bits *'
If sign IIlsb II gbit II rbit II xbit - Obu01 u1 then inc 1 '* comparison ignores u bits *'

End
If FPSCRRN - Ob10 then

Do
If sign IIlsb II gbit II rbit II xbit - ObOu1 uu then inc 1 r comparison ignores u bits *'
If sign IIlsb II gbit II rbit II xbit - ObOuu1u then inc 1 '* comparison ignores u bits *'
If sign IIlsb II gbit II rbit II xbit - ObOuuu1 then inc 1 r comparison ignores u bits *'

End
If FPSCRRN - Ob11 then

Do
If sign IIlsb II gbit II rbit II xbit - Ob1u1uu then inc 1 '* comparison ignores u bits *'
If sign IIlsb II gbit II rbit II xbit - Ob1 uu1 u then inc 1 '* comparison ignores u bits *'
If sign IIlsb II gbit II rbit II xbit - Ob1 uuu1 then inc 1 /* comparison ignores u bits *'

End
fraCo:23 fraCo:23 + inc
If carry_out - 1 then

Do
fraCo:23 Ob1 II fraCo:22
exp - exp + 1

End
FPSCRFR - inc
FPSCRF1 gbit I rbit I xbit
Return

Appendix B. Suggested Floating-Point Models 127

IBM Confidential

B.2 Floating-Point Convert to Integer Model

The following describes algorithmically the operation of the Floating Convert to Integer instructions.

If Floating Convert to Integer Word
Then 00

Then round_mode - FPSCRRN
tgt"precision - '32-bit integer"

End

If Floating Convert to Integer Word with round toward Zero
Then 00

round_mode - Ob01
tgt"precision - '32-bit integer"

End

If Floating Convert to Integer Doubleword
Then 00

round_mode - FPSCRRN
tgt"precision - '64-bit integer"

End

If Floating Convert to Integer Doubleword with round toward Zero
Then 00

round_mode _ Ob01
tgt"precision - '64-bit integer"

End

If (FRB)I:11 - 2047 and (FRB)12:63 = 0 then gote Infinity Operand
If (FRB)':11 - 2047 and (FRB)12 = 0 then goto SNaN Operand
If (FRB)';11 - 2047 and (FRB)12 = 1 then goto ONaN Operand
If (FRB)';11 > 1086 then goto Large Operand

sign - (FRB)o
If (FRB)';11 > 0 then exp - (FRB)';11 - 1023 r exp - bias */
If (FRB),;11 - 0 then exp _ -1022
If (FRB)';11 > 0 then fraCo:64 - Ob01 II (FRB)12:63 II 110 r normal */
If (FRB)';11 - 0 then fraCo:64 - ObOO II (FRB)12:63 II 110 /* denormal */

gbit II rbit II xbit - ObOOO
00 i -1,63-exp r do the loop 0 times if exp - 63 */

fraCo:64 II gbit II rbit II xbit - ObO II fraCo:64 II gbit II (rbit I xbit)
End

If gbit I rbit I xbit then FPSCRxx - 1

Round Integer(frac,gbit,rbit,xbit,round_mode)

If sign - 1 then fraCo:64 - ... fraCo:64 + 1

If tgt_precision - '32-bit integer" and fraCo:84 > + 231_1 then goto Large Operand
If tgt"precision - '64-bit integer" and fraCo:84 > + 263-1 then goto Large Operand
If tgt"precision - '32-bit integer" and fraCo:84 < _231 then goto Large Operand
If tgt"precision - '64-bit integer" and fraCo:84 < _263 then goto Large Operand

If tgt"precision - '32-bit integer" then FRT - Oxuuuu_uuuu II fraCa3:84 /* u is undefined hex digit */
If tgt_precision - '64-bit integer" then FRT - frac1:84
FPSCRFPRF - undefined
Done

128 PowerPC User Instruction Set Architecture

(

IBM Confidential

Round Integer(frac,gbit,rbit,xbit,round _mode):

inc ... 0
If round_mode - ObOO then

Do
If sign II frac64 II gbit n rbit II xbit - Obu11 ux then inc ... 1 1* comparison ignores u bits *'
If sign II frac64 II gbit II rbit II xbit - Obu011 x then inc ... 1 1* comparison ignores u bits *'
If sign II frac64 II gbit II rbit II xbit - Obu01 u1 then inc ... 1 '* comparison ignores u bits *'

End
If round_mode - Ob10 then

Do
If sign II fra~ II gbit II rbit II xbit - ObOu1 ux then inc ... 1 /* comparison ignores u bits *'
If sign II frac64 II gbit II rbit II xbit - ObOuu1x then inc ... 1 1* comparison ignores u bits *'
If sign II frac64 II gbit II rbit II xbit - ObOuuu1 then inc ... 1 1* comparison ignores u bits */

End
If round_mode - Ob11 then

Do
If sign II fra~ II gbit II rbit II xbit - Ob1 u1 ux then inc ... 1 1* comparison ignores u bits *'
If sign II fra~ II gbit II rbit II xbit - Ob1 uu1 x then inc ... 1 1* comparison ignores u bits */
If sign II frac64 II gbit II rbit II xbit - Ob1uuu1 then inc ... 1 1* comparison ignores u bits *'

End
fraCo:64 ... fraCo:64 + inc
FPSCRFR ... inc
FPSCRF1 - gbit I rbit I xbit
Return

Infinity Operand:

FPSCRFR FI VXCVI ... ObO01
If FPSCRve - 0 then Do

If tgtJ)recision - '"32-bit integer' then
Do

If sign - 0 then FRT ... Oxuuuu_uuuuJFFF _FFFF 1* u is undefined hex digit *'
If sign - 1 then FRT ... Oxuuuu_uuuu_8000_0000 1* u is undefined hex digit *'

End
Else

Do
If sign - ° then FRT ... Ox7FFF _FFFF _FFFF]FFF
If sign - 1 then FRT ... Ox8000_0000_0000_0000

End
FPSCRFPRF ... undefined
End

Done

SHaH Operand:

FPSCRFR FI VXCVI VXSNAN ... ObO011
If FPSCRve - ° then

Do
If tgt_precision - '"32-bit integer' then FRT _ Oxuuuu_uuuu_8000_0000 r u is undefined hex digit */
If tgt_precision - 'S4-bit integer' then FRT ... OX8000_0000_0000_0000

End
Done

FPSCRFPRF ... undefined

Appendix B.. Suggested Floating-Point Models 129

QNaN Operand:

FPSCRFR FI VXCVI - Ob001
If FPSCRve - 0 then

Do

IBM Confidential

If tgtJ)recision - '32-bit integer' then FRT - Oxuuuu_uuuu_8000_0000 1* u is undefined hex digit */
If tgtJ)recision - '64-bit integer' then FRT _ Ox8000_0000_0000_0000
FPSCRFPRF - undefined

End
Done

Large Operand:

FPSCRFR FI VXCVI - Ob001
If FPSCRve - ° then Do

If tgtJ)recision - '32-bit integer' then
Do

If sign - ° then FRT - Oxuuuu_uuuuJFFF]FFF 1* u is undefined hex digit */
If sign - 1 then FRT - Oxuuuu_uuuu_8000_0000 1* u is undefined hex digit */

End
Else

Do
If sign - 0 then FRT - Ox7FFF]FFF]FFF]FFF
If sign - 1 then FRT - Ox8000 _0000_0000_0000

End .
FPSCRFPRF - undefined
End

Done

130 PowerPC User Instruction Set Archltectura

(

IBM Confidential

B.3 Floating-Point Convert from Integer Model

The following describes algorithmically the operation of the Floating Convert from Integer instructions.

sign - (FR~)o
exp - 63
fraCo:63 - (FRB)

If fraCo:63 - 0 then go to Zero Operand

If sign - 1 then fraCo:63 - .., fraCo:63 + 1

Do until fraCo - 1

End

fraCo:63 - frac1:63II ObO
exp-exp-1

Round Float(sign,exp,frac,FPSCRRN)

If sign - 1 then FPSCRFPRF - "-normal number"
If sign - 0 then FPSCRFPRF - "+normal number"
FRTo - sign
FRT1:11 - exp + 1023 r exp + bias */
FRTI2:63 - frac1:S2
Done

Zero Operand:

FPSCRFR FI - ObOO
FPSCRFPRF - "+zero"
FRT - OxOOOO_OOOO_OOOO_OOOO
Done

Appendix B. Suggested Floating-Point Models 131

IBM Confidential

Round F/oat(sign,exp Jracround_mode):

inc ... 0
Isb ... fracS2
gbit ... frac53
rbit ... frac54
xbit ... frac55:63 > 0
If round_mode - ObOO then

Do
If sign Illsb " gbit " rbit " xbit - Obu11 uu then inc ... 1 ,. comparison ignores u bits *'
If sign Illsb " gbit II rbit " xbit - Obu011 u then inc ... 1 ,. comparison ignores u bits *'
If sign U Isb " gbit U rbit " xbit - Obu01 u1 then inc - 1 ,. comparison ignores u bits *'

End
If round_mode - Ob10 then

Do

End

If sign Jllsb II gbit II rbit II xbit - ObOu1 uu then inc ... 1 ,. comparison ignores u bits *'
If sign U Isb II gbit" rbit" xbit - ObOuu1u then inc - 1 ,. comparison ignores u bits *'
If sign IIlsb" gbit II rbit "xbit ... ObOuuu1 then inc -1 ·,,'cOmparison ignores u.bits *'

If round_mode - Ob11 then
Do

If sign U Isb II gbit II rbit II xbit - Ob1 u1 uu then inc ... 1 ,. comparison ignores u bits *'
If sign IIlsb II gbit II rbit II xbit - Ob1 uu1 u then inc ... 1 ,. comparison ignores u bits *'
If sign Illsb II gbit II rbit II xbit - Ob1 uuu1 then inc ... 1 ,. comparison ignores u bits *'

End
fraCo:52 ... fraCo:52 + inc
If carry_out - 1 then exp ... exp + 1
FPSCRFR ... inc
FPSCRF1 ... gbit I rbit I xbit
If (gbit I rbit I xbit) then FPSCRxx ... 1
Return

132 PowerPC User Instruction Set Architecture

(

IBM Confidential

Appendix C. Assembler Extended Mnemonics

C.1 Branch mnemonics
C.1.1 BO and BI fields
C.1.2 Simple branch mnemonics
C.1.3 Branch mnemonics

incorporating conditions
C.1.4 Branch prediction
C.2 Condition Register logical

mnemonics
C.3 Subtract mnemonics
C.3.1 Subtract Immediate
C.3.2 Subtract

133
133
134

135
136

137
138
138
138

C.4 Compare mnemonics 138
C.4.1 Doubleword comparisons 139
C.4.2 Word comparisons 139
C.S Trap mnemonics 140
C.B Rotate and Shift mnemonics 141
C.B.1 Operations on doublewords 141
C.B.2 Operations on words .142
C.7 Move To/From Special Purpose

Register mnemonics 143
C.8 Miscellaneous mnemonics ... 143

In order to make assembler language programs simpler to write and easier to understand, a set of extended
mnemonics and symbols is provided that defines simple shorthand for the most frequently used farms of Branch
Conditional, Compare, Trap, Rotate and Shift, and certain ather instructions.

PowerPC-campliant assemblers will provide the mnemonics and symbols listed here, and possibly others. Pro
grams written to be portable across various assemblers for the Power PC Architecture should not assume the
existence of mnemonics not defined in the Power PC Architecture Books.

C.1 Branch mnemonics

The mnemonics discussed in this section are variations of the Branch Conditional instructions.

C.1.1 BO and BI fields

The 5-bit BO field in Branch Conditional instructions encodes the following operations:

• Decrement CTR
• Test CTR equal to 0
• Test CTR nat equal to 0
• Test condition true
• Test condition false
• Branch prediction (taken, fall through)

The 5-bit BI field in Branch Conditional instructions specifies which of the 32 bits in the CR represents the condi
tion to test.

To provide an extended mnemonic for every possible combination of BO and BI fields would require 210 = 1024
mnemonics. Most of these would be only marginally useful. The fallowing abbreviated set is intended to cover
the mast useful cases. Unusual cases can be coded using a basic Branch Conditional mnemonic (be, bcJr, beetr)
with the condition to be tested specified as a numeric operand.

Appendix C. Assembler Extended Mnemonics 133

IBM Confidential

C.1.2 Simple branch mnemonics

The mnemonics in Table 2 allow all the useful BO encodings to be specified, along with the AA (absolute address)
and LK (~et Unk Register) fields.

Notice that there are no extended mnemonics for relative and absolute unconditional branches. For these the
basic mnemonics b, ba, bl, and bla should be used.

Table 2. Simple branch mnemonics

LR not .. t LR .. t

Branch .. mantles be bea belr beetr bel bela belrl beetrl
Relative Absolute To LR ToCTR Relative Absolute To LR ToCTR

Branch unconditionally - - blr bctr - - blrl bctrl

Branch if condition true bt bta btlr btctr btl btla btlrl btctrl

Branch if condition false bf bfa bflr bfctr btl bfla bflrl . bfctrl

Decrement CTR,
bclnz bclnza bclnzlr - bclnzl bclnzla bdnzlrl -branch if CTR non-zero

Decrement CTR,
branch if CTR non-zero bclnzt bdnzta bclnztlr - bclnztl bclnztla bclnztlrl -
AND condition true

Decrement CTR,
branch if CTR non-zero bdnzf bdnzfa bclnzfJr - bdnzfl bclnzfla bdnzflrl -
AND condition false

Decrement CTR,
bclz bdza bclzlr - bclzi bclzla bdzlrl -branch if CTR zero

Decrement CTR,
branch if CTR zero bclzt bclzta bclztlr - bdztl bclztla bclztlrl -
AND condition true

Decrement CTR,
branch if CTR zero bclzf bclzfa bclzflr - bclzfI bdzfla bclzflrl -
AND condition false

Instructions using one of the mnemonics in Table 2 that tests a condition specify the condition as the first
operand of the instruction. The following symbols are defined for use in such an operand. They can be combined
with other values in an expression that identifies the CR bit (0:31) to be tested. These symbols and expressions
can also be used with the basic Branch Conditional mnemonics, to specify the BI field.

Symbol Value Meaning

It 0 Less than
gt 1 Greater than
eq 2 Equal
so 3 Summary overflow
un 3 Unordered (after floating-point comparison)
crO 0 CR field 0
cr1 1 CR field 1
cr2 2 CR field 2
cr3 3 CR field 3
cr4 4 CR field 4
cr5 5 CR field 5
cr6 6 CR field 6
cr7 7 CR field 7

134 PowerPC User Instruction Set Architecture

(/

IBM Confidential

Examples

1. Decrement CTR and branch if it is still non-zero (closure of a loop controlled by a count loaded into CTR).

bdnz target (equivalent to: be 16,0, target)

2. Same as (1) but branch only if CTR is non zero and condition in 'CRO is "equal."

bdnzt eq,target (equivalent to: be 8,2,target)

3. Same as (2), but "equal" condition is in CR5.

bdnzt 4*cr5 + eq, target (equivalent to: be 8,22, target)

4. Branch if bit 27 of CR is false.

bf 27,target (equivalent to: be 4,27,target)

5. Same as (4), but set the Link Register. This is a form of conditional "call."

bfl 27,target (equivalent to: bel 4,27,target)

C.1.3 Branch mnemonics incorporating conditions

The mnemonics defined in Table 3 on page 136 are variations of the "branch if condition true" and "branch if
condition false" BO encodings, with the most useful values of BI represented in the mnemonic rather than speci
fied as a numeric operand.

A standard set ~f codes has been adopted for the most common combinations of branch conditions.

Code

It
Ie
eq
ge
gt
nl
ne
ng
so
ns
un
nu

Meaning

Less than
Less than or equal
Equal
Greater than or equal
Greater than
Not less than
Not equal
Not greater than
Summary overflow
Not summary overflow
Unordered (after floating-point comparison)
Not unordered (after floating-point comparison)

These codes are reflected in the mnemonics shown in Table 3 on page 136.

Appendix C. Assembler Extended Mnemonics 135

IBM Confidential

Table 3. Branch mnemonics incorporating conditions

LR not set LR set

Branch semantics be bea belr beetr bcl bela belrl beetrl
Relative Absolute ToLR ToCTR Relative Absolute To LR ToCTR

Branch if less than bit blta bltlr bltctr bltl bltla bltlrl bltctrl

Branch if less than or equal ble blea blelr blectr blel blela blelrl blectrl

Branch if equal beq beqa beqlr beqctr beql beqla beqlrl beqctrl

Branch if greater than or equal bge bgea bgelr bgectr bgel bgela bgelrl bgectrl

Branch if greater than bgt bgta bgtlr bgtctr bgtl bgtla bgtlrl bgtctrl

Branch if not less than bnl bnla bnllr bnlctr bnll bnlla bnllrl bnlctrl

Branch if not equal bne bnea bnelr bnectr bnel bnela bnelrl bnectrl

Branch if not greater than bng bnga bnglr bngctr bngl bngla bnglrl bngctrl

Branch if summary overflow bso bsoa bsolr bsoctr bsol bsola bsolrl bsoctrl

Branch if not summary overflow bns bnsa bnslr bnsctr bnsl bnsla bnslrl bnsctrl

Branch if unordered bun buna bunlr bunctr bun I bunla bunlrl bunctrl

Branch if not unordered bnu bnua bnulr bnuctr bnul bnula bnulrl bnuctrl

Instructions using the mnemonics in Table 3 specify the Condition Register field in an optional first operand. If
the CR field being' tested is CRO, this operand need not be specified. Otherwise, one of the CR field symbols
listed earlier is coded as the first operand.

Examples

1. Branch if CRO reflects condition "not equal."

bne target (equivalent to: be 4,2,target)

2. Same as (1), but condition is in CR3.

bne cr3,target (equivalent to: be 4,14,target)

3. Branch to an absolute target if CR4 specifies "greater than," setting the Unk Register. This is a form of
conditional "call. It

bgtla cr4,target (equivalent to: bela 12,17,target)

4. Same as (3), but target address is in the Count Register.

bgtctrl cr4 (equivalent to: bcctrl 12,17)

C.1.4 Branch prediction

In Branch Conditional instructions that are not always taken, the low-order bit ("y" bit) of the BO field provides a
hint about whether the branch is likely to be taken: see the discussion of the "y" bit in Section 2.4.1, Branch
Instructions, on page 18.

PowerPC-compliant assemblers set this bit to 0 unless otherwise directed. This default action means that:

• A Branch Conditional with a negative displacement field is predicted to be taken.

• A Branch Conditional with a non-negative displacement field is predicted not to be taken (fall through).

• A Branch Conditional to an address in the LR or CTR is predicted not to be taken (fall through).

136 PowerPC User Instruction Set Architecture

(

IBM Confidential

If the likely outcome (branch or fall through) of a given Branch Conditional instruction is known, a suffix can be
added to the mnemonic that tells the assembler how to set the "y" bit.

+ Predict branch to be taken.

Predict branch not to be taken.

Such a suffix can be added to any Branch Conditional mnemonic, either basic or extended.

For relative and absolute branches (bc[l][a]), the setting of the "y" bit depends on whether the displacement field
is negative or non-negative. For negative displacement fields, coding the suffix "+ .. causes the bit to be set to 0,
and coding the suffix .. -" causes the bit to be set to 1. For non-negative displacement fields, coding the suffix
.. +" causes the bit to be set to 1, and coding the suffix "-" causes the bit to be set to O.

For branches to an address in the LR or CTR (bclr[1] or bcctr[I]), coding the suffix .. + .. causes the "y" bit to be
set to 1, and coding the suffix "-" causes the bit to be set to O.

Examples

1. Branch if CRO reflects condition "less than," specifying that the branch should be predicted to be taken.

blt+ target

2. Same as (1). but target address is in the Unk Register and the branch should be predicted not to be taken.

bltlr-

C.2 Condition Register logical mnemonics

The Condition Register Logical instructions can be used to set (to 1), clear (to 0), copy, or invert a given Condition
Register bit. Extended mnemonics are provided that allow these operations to be coded easily.

Table 4. Condition Register logical mnemonics

Operation Extended mnemonic Equivalent to

Condition Register set erset bx ereqv bX,bx,bx

Condition Register clear erclr bx crxor bX,bx,bx

Condition Register move ermove bx,by cror bx,by,by

Condition Register not ernot bX,by crnor bX,by,by

Examples

1. Set CR bit 25.

crset 25 (equivalent to: ereqv 25,25,25)

2. Clear the SO bit of eRO.

erclr so (equivalent to: erxor 3,3,3)

3. Same as (2), but SO bit to be cleared is in CR3.

crclr 4*cr3 + so (equivalent to: erxor 15,15,15)

4. Invert the EO bit.

crnot eq,eq (equivalent to: ernor 2,2,2)

5. Same as (4), but EO bit to be inverted is in CR4, and the result is to be placed into the EO bit of CR5.

crnot 4*cr5+eq,4*cr4+eq (equivalent to: ernor 22,18,18)

Appendix C. Assembler Extended Mnemonics 137

IBM Confidential

C.3 Subtract mnemonics

C.3.1 Subtract Immediate

Although there is no "Subtract Immediate" instruction. its effect can be achieved by using an Add Immediate
instruction with the immediate operand negated. Extended mnemonics are provided that include this negation.
making the intent of the computation clearer.

subi Rx.Ry.value

subis Rx.Ry.value

subic Rx.Ry.value

subic. Rx.Ry.value

C.3.2 Subtract

(equivalent to:

(equivalent to:

(equivalent to:

(equivalent to:

addi Rx.Ry. -value)

addis Rx.Ry.-value)

addic Rx.Ry.-value)

addic. Rx.Ry.-value)

The Subtract From instructions subtract the second operand (RA) from the third (RB). Extended mnemonics are
provided that use the more "normal" order. in which the third operand is subtracted from the second. Both these
mnemonics can be coded with a final "0" and/or to cause the OE and/or Rc bit to be set in the underlying
instruction.

sub Rx.Ry.Rz

sube Rx.Ry.Rz

C.4 Compare mnemonics

(equivalent to:

(equivalent to:

subf Rx.Rz.Ry)

subfc Rx.Rz.Ry)

The L. field in the fiXed-point Compare instructions controls whether the operands are treated as 64-bit quantities
(L.-1) or as 32-bit quantities (L.-O). Extended mnemonics are provided that represent the L. value in the mne
monic rather than requiring it to be coded as a numeric operand.

The BF field can be omitted if the result of the comparison is to be placed in CR Field O. Otherwise the target CR
field must be specified as the first operand. using one of the CR field symbols listed above or an explicit field
number.

Note: The basic Compare mnemonics of PowerPC are the same as those of Power. but the Power instructions
have three operands while the PowerPC instructions have four. The assembler will recognize a basic Compare
mnemonic with three operands as the Power form. and will generate the instruction with L.-O. (Thus the assem
bler must require that the BF field. which normally can be omitted when CR Field 0 is the target. be specified
explicitly if L. is.)

138 PowerPC User Instruction Set Architecture

/
;

IBM Confidential

C.4.1 Doubleword comparisons

(These operations are available only in 64-bit implementations.

Table 5. Doubleword compare mnemonics

Operation Extended mnemonic Equivalent to

Compare doubleword immediate cmpdi bf,ra,si cmpi bf,1,ra,si

Compare doubleword cmpd bf,ra,rb cmp bf,1,ra,rb

Compare logical doubleword immediate cmpldi bf,ra,ui cmpli bf,1 ,ra,ui

Compare logical doubleword cmpld bf,ra,rb cmpl bf,1,ra,rb

Examples

1. Compare logical (unsigned) 64 bits in register Rx with immediate value 100 and place result in CRO.

cmpldi Rx,100 (equivalent to: cmpli 0,1,Rx,100)

2. Same as (1), but place results in CR4.

cmpldi cr4, Rx, 1 00 (equivalent to: cmpli 4, 1,Rx, 1 00)

3. Compare registers Rx and Ry as signed 64-bit quantities and place result in CRO.

cmpd Rx,Ry (equivalent to: cmp 0,1,Rx,Ry)

C.4.2 Word comparisons

These operations are available in all implementations.

Table 6. Word compare mnemonics

Operation Extended mnemonic Equivalent to

Compare word immediate cmpwi bf,ra,si cmpi bf,O,ra,si

Compare word cmpw bf,ra,rb cmp bf,O,ra,rb

Compare logical word immediate cmplwi bf,ra,ui cmpli bf,O,ra,ui

Compare logical word cmplw bf,ra,rb cmpl bf,O,ra,rb

Examples

1. Compare 32 bits in register Rx with immediate value 100 and place result in CRO.

cmpwi RX,1 00 (equivalent to: cmpi 0,0,Rx,100)

2. Same as (1), but place results in CR4.

cmpwi cr4,Rx,100 (equivalent to: cmpi 4,O,Rx,100)

3. Compare registers Rx and Ry as logical 32-bit quantities and place result in CRO.

cmplw RX,Ry (equivalent to: cmpl O,O,Rx,Ry)

Appendix C. Assembler Extended Mnemonics 139

IBM Confidential

c.s Trap mnemonics

The mnemonics defined in Table 7 are variations of the Trap instructions, with the most useful values of TO
represented in the mnemonic rather than specified as a numeric operand.

A standard set of codes has been adopted for the most common combinations of trap conditions.

Code Meaning TO encoding <>=<:>
It Less than 16 100 0 0
Ie Less than or equal 20 101 0 0
eq Equal 4 001 0 0
ge Greater than or equal 12 o 1 1 0 0
gt Greater than 8 o 1 0 0 0
nl Not less than 12 o 1 1 0 0
ne Not equal 24 1 1 000
ng Not greater than 20 10100
lit Logically less than 2 00010
lie Logically less than or equal 6 o 0 1 1 0
Ige Logically greater than or equal 5 o 0 1 0 1
Igt Logically greater than 1 00001
Inl Logically not less than 5 00101
Ing Logically not greater than 6 00110

(none) Unconditional 31 111 1 1

These codes are reflected in the mnemonics shown in Table 7.

Table 7. Trap mnemonics

640blt comparison 32·blt comparison
Trap semantics

Trap unconditionally

Trap if less than

Trap if less than or equal

Trap if equal

Trap if greater than or equal

Trap if greater than

Trap if not less than

Trap if not equal

Trap if not greater than

Trap if logically less than

Trap if logically less than or equal

Trap if logically greater than or equal

Trap if logically greater than

Trap if logically not less than

Trap if logically not greater than

Examples

1. Trap if 64-bit register Rx is not O.

tdnei Rx,O

tdi
Immediate

-
tdlti

tdlei

tdeqi

tdgei

tdgti

tdnli

tdnei

tdngi

tdllti

tdllei

tdlgei

tdlgti

tdlnli

tdlngi

(equivalent to:

140 PowerPC User Instruction Set Architecture.

tel twi tw
Register Immediate Register

- - trap

tdlt twlti twit

tdle twlei twle

tdeq tweqi tweq

tdge twgei twge

tdgt twgti twgt

tdnl twnli twnl

tdne twnei twne

tdng twngi twng

tdllt twllti twllt

tdlle twllei twlle

tdlge twlgei twlge

tdlgt twlgti twlgt

tdlnl twlnli twlnl

tdlng twlngi twlng

tdi 24,Rx,0)

(

(,

IBM Confidential

2. Same as (1), but comparison is to register Ry.

tdne RX,Ry (equivalent to: td 24, RX,Ry)

3. Trap if register Rx, considered as a 32-bit quantity, is logically greater than Ox7FF.

twlgti Rx,Ox7FF (equivalent to: twi 1,Rx,Ox7FF)

4. Trap unconditionally.

trap (equivalent to: tw 31,0,0)

C.6 Rotate and Shift mnemonics

The Rotate and Shift instructions provide powerful and general ways to manipulate register contents, but can be
difficult to understand. Extended mnemonics are provided that allow some of the simpler operations to be coded
easily.

Mnemonics are provided for the following types of operation:

Extract Select a field of n bits starting at bit poSition b in the source register; right or left justify this field in
the target register; clear all other bits of the target register to O.

Insert Select a left-justified or right-justified field of n bits in the source register; insert this field starting at
bit position b of the target register; leave other bits of the target register unchanged. (No extended
mnemonic is provided for insertion of a left-justified field when operating on doublewords, because
such an insertion requires more than one instruction.)

Rotate

Shift

Rotate the contents of a register right or left n bits without masking.

Shift the contents of a register right or left n bits, clearing vacated bits to 0 (logical shift).

Clear Clear the leftmost or rightmost n bits of a register to O.

Clear left and shift left
Clear the leftmost b bits of a register, then shift the register left by n bits. This operation can be used
to scale a (known non-negative) array index by the width of an element.

C.6.1 Operations on doublewords

These operations are available only in 64-bit implementations. All these mnemonics can be coded with a final n. n

to cause the Rc bit to be set in the underlying instruction.

Table 8. Doubleword rotate and shift mnemonics

Operation Extended mnemonic Equivalent to

Extract and left justify immediate extldi ra,rs,n,b rldicr ra,rs,b,n-1

Extract and right justify immediate extrdi ra,rs,n,b rldicl ra,rs,b + n,64 - n

Insert from right immediate insrdi ra,rs,n,b rldimi ra,rs,64 - (b + n),b

Rotate left immediate rotldi ra,rs,n rldicl ra,rs,n,O

Rotate right immediate rotrdi ra,rs,n rldicl ra,rs,64-n,O

Rotate left rotld ra,rs,rb rldcl ra,rs,rb,O

Shift left immediate sldi ra,rs,n rldicr ra,rs,n,63 - n

Shift right immediate srdi ra,rs,n rldicl ra,rs,64-n,n

Clear left immediate clrldi ra,rs,n rldicl ra,rs,O,n

Clear right immediate clrrdi ra,rs,n rldicr ra,rs,O,63 - n

Clear left and shift left immediate clrlsldi ra,rs,b,n rldic ra,rs,n,b - n

Appendix C. Assembler Extended Mnemonics 141

IBM Confidential

Examples

1. Extract the sign bit (bit 0) of register Ry and place the result right-justified into register Rx.

extrdi Rx,Ry, 1 ,0 (equivalent to: rldicl Rx,Ry, 1 ,63)

2. Insert the bit extracted in (1) into the sign bit (bit 0) of register Rz.

insrdi Rz,Rx, 1 ,0 (equivalent to: rldimi Rz.Rx,63,O)

3. Shift the contents of register Rx left 8 bits.

sldi RX,Rx,8 (equivalent to: rldicr Rx,Rx,8,55)

4. Clear the high-order 32 bits of Ry and place the result into Rx.

clrldi Rx,Ry,32 (equivalent to: rldicl Rx,Ry,O,32)

C.6.2 Operations on words

These operations are available in all implementations. All these mnemonics can be coded with a final "." to
cause the Rc bit to be set in the underlying instruction.

Table 9. Word rotate and shift mnemonics

Operation Extended mnemonic Equivalent to

Extract and left justify immediate extlwi ra,rs,n,b rlwinm ra,rs,b,O,n-1

Extract and right justify immediate extrwi ra,rs,n,b rlwinm ra,rs,b+n,32-n,31

Insert from left immediate inslwi ra,rs,n,b rlwimi ra,rs,32 - b,b,(b + n)-1

Insert from right immediate insrwi ra,rs,n,b rlwimi ra,rs,32 - (b + n),b,(b + n)-1

Rotate left immediate rotlwi ra,rs,n rlwinm ra,rs,n,O,31

Rotate right immediate rotrwi ra,rs,n rlwinm ra,rs,32-n,O,31

Rotate left rotlw ra,rs,rb rlwnm ra,rs,rb,O,31

Shift left immediate slwi ra,rs,n rlwinm ra,rs,n,O,31 - n

Shift right immediate srwi ra,rs,n rlwinm ra,rs,32 - n,n,31

Clear left immediate clrlwi ra,rs,n rlwinm ra,rs,O,n,31

Clear right immediate clrrwi ra,rs,n rlwinm ra,rs,O,O,31-n

Clear left and shift left immediate clrlslwi ra,rs,b,n rlwinm ra,rs,n,b-n,31-n

Examples

1. Extract the sign bit (bit 32) of register Ry and place the result right-justified into register Rx.

extrwi Rx,Ry,1,O (equivalent to: rlwinm RX,Ry, 1 ,31,31)

2. Insert the bit extracted in (1) into the sign bit (bit 32) of register Rz.

insrwi Rz,Rx, 1 ,0 (equivalent to: rlwimi Rz,Rx,31,O,o)

3. Shift the contents of register Rx left 8 bits, clearing the high-order 32 bits.

slwi RX,Rx,8 (equivalent to: rlwinm Rx,Rx,8,O,23)

4. Clear the high-order 16 bits of the low-order 32 bits of Ry and place the result into Rx, clearing the high-order
32 bits of Rx.

clrlwi Rx,Ry,16 (equivalent to: rlwimn Rx,Ry,O,16,31)

142 PowerPC User Instruction Set Architecture

(

(

IBM Confidential

C.7 Move To/From Special Purpose Register mnemonics

The mapr and mfspr instructions specify a Special Purpose Register (SPR) as a numeric operand. Extended mne
monics are provided that represent the SPR in the mnemonic rather than requiring it to be coded as a numeric
operand.

Table 10. Extended mnemonics for moving tolfrom an SPR

Move To SPR Move From SPR·
Special Purpose Regtater

Extended Equivalent to Extended Equivalent to

Fixed-Point Exception Register (XER) mtxer Rx mtspr 1,Rx mfxer Rx mfspr RX,1

Unk Register (LR) mtlr Rx mtspr 8,Rx mflr Rx mfspr RX,8

Count Register (CTR) mtctr Rx mtspr 9,Rx mfctr Rx mfspr Rx,9

Examples

1. Copy the contents of the low-order 32 bits of Rx to the XER.

mtxer Rx (equivalent to: mtspr 1,Rx)

2. Copy the contents of the LR to register Rx.

mflr Rx (equivalent to: mfspr Rx,8)

3. Copy the contents of Rx to the CTR.

mtctr Rx (equivalent to: mtspr 9,Rx)

C.B Miscellaneous mnemonics

No-op

Many Power PC instructions can be coded in a way such that, effectively, no operation is performed. An extended
mnemonic is provided for the "preferred" form of no-op. If an implementation performs any type of run-time
optimization related to no-ops, the preferred form is the no-op that will trigger this.

nop (equivalent to: ori 0,0,0)

Load Immediate

The add; and addis instructions can be used to load an immediate value into a register. Extended mnemonics are
provided to convey the idea that no addition is being performed but merely data movement (from the imm~iate
field of the instruction to a register).

Load a 16-bit signed immediate value into register Rx:

Ii RX,value (equivalent to: addi RX,O,value)

Load a 16-bit signed immediate value, shifted left by 16 bits, into register Rx:

lis RX,value (equivalent to: addis RX,O,value)

Appendix C. Assembler Extended Mnemonics 143

IBM Confidential

Load Address

This mnemonic permits computing the value of a base-displacement operand, using the addl instruction which
normally requires separate register and immediate operands.

la Rx,D(Ry) (equivalent to: addi Rx,Ry,D)

The I. mnemonic is useful for obtaining the address of a variable specified by name, allowing the assembler to
supply the base register number and compute the displacement. If the variable v is located at offset Dv bytes
from the address in register Rv, and the assembler has been told to use register Rv as a base for references to
the data structure containing v, then the following line causes the address of v to be loaded into register Rx.

la Rx,v (equivalent to: addi Rx,Rv,Dv)

Move Register

Several PowerPC instructions can 'be coded in a'waysuch that they simply copy the contents of one register to
another. An extended mnemonic is provided to convey the idea that no computation is being performed but
merely data movement (from one register to another).

The following instruction copies the contents of register Ry into register Rx. This mnemonic can be coded with a
final " ... to cause the Rc bit to be set in the underlying instruction.

mr RX,Ry (equivalent to: or Rx,Ry,Ry)

Complement Register

Several PowerPC instructions can be coded in a way such that they complement the contents of. one register and
place the result into another register. An extended mnemonic is provided that allows this operation to be coded
easily. ' ./

The following instruction complements the contents of register Ry and places the result into register Rx. This
mnemonic can be coded with a final " ... to cause the Rc bit to be set in the underlying instruction.

not Rx,Ry (equivalent to: nor RX,Ry,Ry)

144 PowerPC User Instruction Set Architecture

(

IBM Confidential

Appendix D. Little-Endian Byte Ordering

It is computed that eleven Thousand Persons have, at several Times, suffered Death, rather than submit
to break their Eggs at the smaller End. Many hundred large Volumes have been published upon this
Controversy.

D.1 Byte Ordering

If scalars (individual computational data items) were
indivisible, then there would be no such concept as
"byte ordering." It is meaningless to talk of the
"order" of bits ·or groups of bits within the smallest
addressable unit of storage, because nothing can be
observed about such order. Only when scalars, which
the programmer and processor regard as indivisible
quantities, can be made up of more than one address
able unit of storage does the question of "order"
arise.

For a machine in which the smallest addressable unit
is the 64-bit doubleword, there is no question of the
ordering of "bytes" within doublewords. All scalar
transfers between registers and storage are for
doublewords, and the address of the "byte" con
taining the high-order 8 bits of a scalar is no different
from the address of a "byte" containing any other
part of the scalar.

For Power PC, as for most computers currently, the
smallest addressable storage unit of storage is the
8-bit byte. Most computational scalars are made up
of groups of bytes (halfwords, words, doublewords).
When a 32-bit scalar is moved from a register to
storage, the scalar occupies four consecutive byte
addresses. It thus becomes meaningful to discuss the
order of the byte addresses with respect to the value
of the scalar: which byte contains the highest-order 8
bits of the scalar, which byte contains the next
highest-order 8 bits, and so on.

Given a scalar that spans multiple bytes, the choice of
byte ordering is essentially arbitrary. There are
4! = 24 ways to specify the ordering of four bytes
within a word, but only two of these orderings are
sensible:

Jonathan Swift, Gulliver's Travels

• The ordering that assigns the lowest address to
the highest-order ("leftmost") 8 bits of the scalar,
the next sequential address to the next-highest
order 8 bits, and so on. This is called Big-Endlan
because the "big end" of the scalar, considered
as a binary number, comes first in storage. IBM
RiSe System/6000, IBM System1370, and
Motorola 680xO are examples of computers using
this byte ordering.

• The ordering that assigns the lowest address to
the lowest-order ("rightmost") 8 bits of the scalar,
the next sequential address to the next-Iowest
order 8 bits, and so on. This is called Little
Endian because the "little end" of the scalar,
considered as a binary number, comes first in
storage. DEC VAX and Intel x86 are examples of
computers using this byte ordering.

D.2 Structure Mapping
Examples

Figure 35 on page 146 shows an example of a e lan
guage structure s containing an assortment of scalars
and one character string. The value presumed to be
in each structure element is shown in hex in the e
comments; these values are used below to show how
the bytes making up each structure element are
mapped into storage.

Note that e structure mapping rules will introduce
padding (skipped bytes) in the map in order to align
the scalars on their proper boundaries: 4 bytes
between a and b, one byte between d and e, and two
bytes between e and f. The same amount of padding
will be present for both Big-Endian and Little-Endian
mappings.

Appendix D. Little-Endian Byte Ordering 145

IBM Confidential

struct {
int a; r Ox11121314 word *' double b; r Ox2122232425262728 doubleword *' char '" c; r Ox31323334 word '"' char d[7]; r 'A', 'B', 'C', '0', 'E', 'F', 'G' array of bytes '"' short e; r Ox5152 halfword '"' int f; r Ox61626364 word '"' } s;

Figure 35. Example of C structure, showing values of elements

D.2.1 Big-Endian mapping

The Big-Endian mapping of structure s is shown in
Figure 36. Addresses are shown in hex at the left of
each doubleword, and in small figures below each
byte. The content of each byte, as indicated in the C
example in Figure 35, is shown in hex (as characters
for the elements of the string).

aa 11 12 13 14
00 01 02 03 04 05 06 07

as 21 22 23 24 25 2& 27 28
08 09 OA 08 oc 00 OE OF

18 31 32 33 34 'A' 'B' 'C' 'D'
10 11 12 13 14 1S 16 17

'E' , F' 'G'I 51
52

1 18 19 1A 18 1C 1D 1E 1F

1S

28 61 62 63 &4

20 21 22 23

Figure 3&. Blg-Endlan mapping of structure '~

D.2.2 Little-Endian mapping

The same structure s is shown mapped Uttle-Endian
style in Figure 37. Doublewords are shown laid out
right-ta-Ieft, the common way of showing storage
maps for Uttle-Endian machines.

11 12 13 14 aa
07 06 05 04 03 02 01 00

21 22 23 24 25 2& 27 28 8S

OF OE OD OC 08 OA 09 08

'D' 'C' 'B' 'A' 31 32 33 34 18
17 16 1S 14 13 12 11 10

I 51 52 I'G' 'F' 'E'
1F 1E 1D 1C 18 1A 19 18

1S

&1 62 63 &4 ze
23 22 21 20

Figure 37. Little-Endian mapping of structure ,~

D.3 PowerPC Byte Ordering

By default, PowerPC's byte ordering Is Blg-Endlan.
Unless an overt action (described below) is taken fol
lOWing power-on reset, byte ordering will be as shown
in Figure 36 above.

However, it is possible to run a PowerPC system in
Little-Endian mode, such that the computational
instruction set behaves as if the byte ordering were
Uttle-Endian as in Figure 37. To do this requires
setting a bit in a Special Purpose Register that con
trols byte ordering. Which bit is used, and which SPR
contains the bit, is implementation-dependent and is
specified in Book IV, PowerPC Implementation Fea
tures for each implementation .. The symbolic name. of
the bit is LM, Uttle-Endian Uapping.

The LU bit is cleared to 0 (Big-Endian mode) on
power-on reset and may be set to 1 (Uttle-Endian
mode) or reset to 0 by a privileged Move To Special
Purpose Register (mtspr) instruction. An implementa
tion may require that the mtspr be accompanied by
certain synchronization instructions or that a specific
sequence of instructions be used to modify L.U; see
Book IV.

D.4 PowerPC Data Storage
Addressing with LM=1

One might expect that a PowerPC system operating
with LU -1 would have to perform a 2-way, 4-way, or
a-way byte swap when transferring a halfword, word,
or doubleword between storage and a general or
floating point register. Instead, Power PC achieves the
effect of Uttle-Endian byte ordering by manipulating
the three low-order bits of the Effective Address (EA)
as described below; no swapping of bytes is done,
and individual multi-byte scalars actually appear in
storage in Big-Endian byte order. The primary effect
of setting L.U -1 is to adjust the way Effective
Addresses are computed, with the transfer of data
between storage and registers unaffected and thus
unencumbered by multiplexors for byte swapping.

146 PowerPC User Instruction Set Architecture

/~--'--

(

(

IBM Confidential

D.4.1.1 Aligned Scalars

This discussion applies to scalar data that are aligned
on their natural boundaries. For unaligned data see
0.4.2, "Unaligned Scalars" on page 148; for non
scalar data see 0.4.3, "Non-Scalars" on page 148.
For the following Load and Store instructions the
Effective Address is computed as specified in the
instruction descriptions and is then modified as shown
in the table below.

Ibz
Ibzx
Ibzu
Ibzux
1hz
Ihzx
Ihzu
Ihzux

Iha
Ihax
Ihau
Ihaux

Ihbne
Iwz
Iwzx
Iwzu
Iwzux
Iwa
Iwax
Iwaux
Iwbne
Iwane
Id
IdlC
Idu
Idux
Idane
lis
Ilsx
lfau
lfaux

ltd
Ildx
Itdu
Ildux

stb
stbx
stbu
stbux
sth
SthlC
sthu
sthux
sthbne
stw
StwlC
stwu
StwulC

Load Byte and Zero
Load Byte and Zero Indexed
Load Byte and Zero with Update
Load Byte and Zero with Update Indexed
Load Halfword and Zero
Load Halfword and Zero Indexed
Load Halfword and Zero with Update
Load Halfword and Zero with Update
Indexed
Load Halfword Algebraic
Load Halfword Algebraic Indexed
Load Halfword Algebraic with Update
Load Halfword Algebraic with Update
Indexed
Load Halfword Byte-Reverse Indexed
Load Word and Zero
Load Word and Zero Indexed
Load Word and Zero with Update
Load Word and Zero with Update Indexed
Load Word Algebraic
Load Word Algebraic Indexed
Load Word Algebraic with Update Indexed
Load Word Byte-Reverse Indexed
Load Word and Reserve Indexed
Load Doubleword
Load Doubleword Indexed
Load Doubleword with Update
Load Doubleword with Update Indexed
Load Doubleword and Reserve Indexed
Load Floating-Point Single
Load Floating-Point Single Indexed
Load Floating-Point Single with Update
Load Floating-Point Single with Update
Indexed
Load Floating-Point Double
Load Floating-Point Double Indexed
Load Floating-Point Double with Update
Load Floating-Point Double with Update
Indexed
Store Byte
Store Byte Indexed
Store Byte with Update
Store Byte with Update Indexed
Store Halfword
Store Halfword Indexed
Store Halfword with Update
Store Halfword with Update Indexed
Store Halfword Byte-Reverse Indexed
Store Word
Store Word Indexed
Store Word with Update
Store Word with Update Indexed

stwbne
stwcx.
sttl
sttlx
sttlu
stdux
sttlcx.
stls
stlsx
stlsu
stlsux

stfd
stfdx
stfdu
stfdux

Sti"IWJC

Store Word Byte-Reverse Indexed
Store Word Conditional Indexed
Store Doubleword
Store Doubleword Indexed
Store Doubleword with Update
Store Doubleword with Update Indexed
Store Doubleword Conditional Indexed
Store Floating-Point Single
Store Floating-Point Single Indexed
Store Floating-Point Single with Update
Store Floating-Point Single with Update
Indexed
Store Floating-Point Double
Store Floating-Point Double Indexed
Store Floating-Point Double with Update
Store Floating-Point Double with Update
Indexed
Store Floating-Point as Integer Word
Indexed

Data width (bytes) EA modified:

8 (no change)

4 XOR with Ob100

2 XOR with Ob11 0

1 XOR with Ob111

The modified EA is then passed to the data cache or
to main storage and the specified width of data is
transferred between a general or floating-point reg
ister and the (as modified) addressed storage
locations(s). The EA modification makes it appear to
the processor that data is stored Uttle-Endian, while
in fact it is stored following Big-Endian byte order but
not in the same bytes within daub/ewords as with
LM-O.

To continue the example of structure s, the structure
would be placed in storage as follows, from the point
of view of the cache and memory subsystem (i.e.,
after the EA modification, above):

aa 11 12 13 14
00 01 02 03 04 05 06 07

as 21 22 23 24 25 26 27 28
08 09 OA OB oc 00 OE OF

18 'D' 'e' 'B' 'A' 31 32 33 34
10 11 12 13 14 15 16 17

I 51 52 I 'G' 'F' 'E'
18 19 lA lB Ie 10 IE IF

18

28 61 62 63 64

20 21 22 23 24 25 26 27

Figure 38. PowerPC Little-Endian, structure's' in
storage or cache

Because of the modifications performed on Effective
Addresses, the same structure s appears to the

Appendix D. Little-Endian Byte Ordering 147

processor to be mapped into storage this way when
lM -1 (Uttle-Endian mapping):

11 12 13 14 99
07 06 05 04 03 02 01 00

21 22 23 24 25 2& 27 28 88
OF OE 00 oc OB CIA 09 08

'D' 'C' 'B' 'A' 31 32 33 34 18
17 16 15 14 13 12 11 10

, 51 52
,'G'

'F' 'E'
IF 1E 10 Ie 1B 1A 19 18

18

&1 &2 &3 &4 29
23 22 21 20

Figure 39. PowerPC Little-Endlsn, atructure '~ as
seen by proCeaor

Note that, as seen by the program executing in the
processor, the mapping for structure s is identical to
the Uttle-Endian mapping shown in Figure 37. From a
point of view outside the processor, however, the
addresses of the bytes making up structure s are as
shown in Figure 38. These addresses match neither
the Big-Endian mapping of Figure 36 nor the Uttle
Endian mapping of Figure 37; allowance must be
made for this when performing 110 in Uttle-Endian
mode (see Section 0.6).

D.4.2 Unaligned Scalars

The "trick" of exclusive-oring the low order bits of the
address of a scalar does not work unless the scalar is
aligned on a boundary equal to a multiple of its
length. When executing in Uttle-Endian mode
(lM -1), PowerPC implementations may take an
Alignment Interrupt (see Book III, PowerPC Operating
Environment Architecture) whenever any of the load
or store instructions listed in Section 0.4.1.1 is issued
with an unaligned Effective Address, regardless of
whether such an access could be handled without
interrupt in Big-Endian mode (LM-O).

PowerPC systems are not required to take an Align
ment Interrupt on unaligned accesses when lM -1.
The hardware may be designed to handle some or all
such accesses just as when lM - o. The architectural
requirement is that halfwords, words, and
doublewords be placed in memory such that the
Uttle-Endian address of the lowest-order byte is the
Effective Address computed by the load or store
instruction, the Uttle-Endian address of the next
lowest-order byte is one greater, and so on. Figure
40 shows an example of a word (4 bytes) stored at
Uttle-Endian address 5. The word is presumed to
contain the binary value Ox11121314.

IBM Confidential

141
05 04 03 01 00

99 12 13
07 06 02

CIA
Tll

09 08

98
OF OE 00 OC OB

figure 40. Pow.rPC LIttI .. Endlsn, word atored at
address 5

This same word, stored by a Uttle-Endian program
but seen from the point of view of the memory sub
system (i.e., using Big-Endian addresses), appears as
shown in Figure 41:

89 14/
02 03 04 05 06 07

12 13
00 01

CIA OB OC 00

98 111
OE OF 08 09

Figure 41. Word stored at Llttle-Endlan addre .. 5 as
.. en by Big-Endian addressing

Note that the unaligned word in this example spans
two doublewords. The two parts of the unaligned
word are not contiguous in Big-Endian addressing
space.

An implementation may choose to support some but
not all unaligned Uttle-Endian accesses. For example,
unaligned Uttle-Endian accesses which are contained
within a single doubleword may be supported, while
those that span doublewords may trigger Alignment
Interrupts.

D.4.3 Non-Scalars

PowerPC has two types of instructions that handle
non-scalars, that is, multiple instances of scalars.
Neither type can deal with the modified Effective
Addresses required in Uttle-Endian mode; both types
cause Alignment Interrupts (see Book III).

0.4.3.1 String Operations

The following instructions cause Alignment Interrupts
when executed in Uttle-Endian mode (lM -1).

'swl Load String Word Immediate
'swx Load String Word Indexed
stswl Store String Word Immediate
stswx Store String Word Indexed

String accesses are inherently unaligned; they
transfer word-length quantities between storage
(cache) and registers, but the quantities are not nec
essarily aligned on word boundaries.

148 PowefPC User Instruction Set Architecture

(

(

IBM Confidential

Programming Note ----------...,

It is up to system software to decide whether to
handle the Alignment Interrupts caused by string
operations in Uttle-Endian mode by emulating the
instructions and resuming the interrupted
program. or to treat the string operations as
illegal and terminate the program.

As Uttle-Endian mode programs on Power PC are
by definition new (not old Power binaries). it is
probably best not to have the compiler generate
these instructions in Uttle-Endian mode since
emulation would be slower than processing the
string in-line or via subroutine call.

0.4.3.2 Load and store Multiple

The following instructions cause Alignment Interrupts
when executed in Ultle-Endian mode (L.M-1).

Imw L.oad Multiple Word
stmw Store Multiple Word

While the words addressed by these instructions are
on word boundaries. each word is in the opposite half
of its containing doubleword from where it would be in
Big-Endian mode.

Programming Note ----------...,

It is up to system software to decide whether to
handle the Alignment Interrupts caused by load
and store multiple operations in Ultle-Endian
mode by emulating the instructions and resuming
the interrupted program. or to treat the string
operations as illegal and terminate the program.

As Ultle-Endian mode programs on Power PC are
by definition new (not old Power binaries). it is
probably best not to have the compiler generate
these instructions in Ultle-Endian mode since
emulation would be slower than a series of in-line
loads and stores or a subroutine call.

D.S PowerPC Instruction
Storage Addressing with LM = 1

Each Power PC instruction occupies 32 bits (one word)
of storage. PowerPC fetches and executes
instructions as if the Current Instruction Address (CIA)
had been advanced one word for each sequential
instruction. When operating with L.M -1. the CIA is
modified according to the Uttle Endian rule for
fetching word-length scalars: it is exclusive-ORed
with Ob100. A program is thus an array of Uttle
Endian words with each word fetched and executed in
order (discounting branches).

As an example. consider
assembly-language code:

the following fragment of

loop:
cmp1wi
beq
1wzux
add

done:

sub;
b

r5, 9
done
r4, r5, r6
r7, r7, r4
r5, 1
loop

stw r7, total

These instructions are mapped into storage for Big
Endian execution in the as shown in Figure 42
(assume the program starts at address 0).

99 loop: c.plwi r5,a beq done
00 01 02 03 04 os 06 07

98 1wzux r4,r5,r& add r7,r7,r4
08 09 OA OB oc 00 OE OF

19 subi r5,1 bloop
10 11 12 13 14 15 16 17

18 done: stw r7,total
18 19 lA lB lC 10 IE IF

Figure 42. PowerPC Blg-End!an. instruction sequence
as seen by processor

If this same program is assembled for and executed
in Uttle-Endian mode. the mapping seen by the
processor appears as shown in Figure 43.

beq done loop: cmplwi ge
07 06 OS 04 03 02 01 00

add r7,r7,r4 1wzux r4,r5,r& a8
OF OE GO oc OB OA 09 08

bloop subi r5,l 19
17 16 15 14 13 12 11 10

done: stw r7,total 18
IF IE 10 lC 18 lA 19 18

Figure 43. PowerPC L.ittle-End!an. Instruction
sequence as seen by processor

Each machine instruction appears in storage as a
32-bit integer containing the value described in the
instruction description. regardless of whether L.M - 0
or L.M -1. This is a consequence of the fact that
scalars are always mapped in storage in Big-Endian
byte order.

When LU -1 (Uttle-Endian mapping). all references to
the instruction stream must follow Uttle-Endian
addressing. including addresses saved in system reg
isters on interrupt. return addresses saved in the Unk
Register. and branch displacements and addresses.

• An instruction address placed in the Unk Register
by Sranch and Unk or an instruction address
saved in a Special Purpose Register on interrupt

Appendix O. Little-Endian Byte Ordering 149

must be the address that a program executing in
Uttle-Endian mode would use to access the
instruction as a word of data using a load instruc
tion.

• An offset in a relative branch instruction must
reflect the difference between the addresses of
the instructions, where the addresses used are
those that a program executing in Uttle-Endian
mode would use to access the instructions as
data words using a load instruction.

• A target address in an absolute branch instruc
tion must be the address that a program exe
cuting in Uttle-Endian mode would use to access
the target instruction as a word of data using a
load instruction.

D.6 PowerPC Input/Output with
LM=1

Input/output, such as writing the contents of a storage
page to disk, transfers a byte stream on both Big
Endian and Uttle-Endian systems. For the disk
transfer, byte 0 of the page is written to the first byte
of the disk record and so on.

For a Power PC system running in Big-Endian mode,
110 transfers happen "naturally" because the byte
that the processor sees as byte 0 is the same one
that the storage subsystem sees as byte O.

For a PowerPC system running in Uttle-Endian mode,
this is not the case because of the modification of the
three low-order bits of the Effective Address when the
processor accesses storage. In order for 110 transfers
to give the appearance of transferring byte streams
properly, in Little-Endian mode (LM = 1) 110 transfers
must be performed u if the bytes transferred were
accessed one byte at a time, using the Little-Endla"
address modification appropriate for single-byte tran.
fer. (eXClusive-or with Ob111). This does not mean
that 110 on Uttle-Endian Power PC machines must be
done using only 1-byte-wide transfers; data transfers
can be as wide as desired, but the order of the bytes
transferred within doublewords must be u if the
bytes were fetched or stored one at a time.

System Architecture Note ---------,

It is beyond the scope of the PowerPC Architec
ture to specify how such byte ordering is done in
the 110 path to memory. System architecture
must provide a means for this to be done in a
system that is to be run in Uttle-Endian mode.

Note that not all 110 done on Power PC systems is for
large blocks as described above. 110 can be per
formed with certain devices by merely storing to or
loading from addresses that are associated with the

IBM Confidential

devices (the terms "memory-mapped 110" and "pro
grammed 110" or "PIO" are used for this). For such
PIO transfers, care must be taken when defining the
addresses to be used, for these addresses will be
subjected to the Effective Address modifications
shown in the table in 0.4.1.1, "Aligned Scalars" on
page 147. A load or store that maps to a control reg
ister on a device may require that the value trans
ferred have its bytes reversed; if this is required, the
loads and stores described in 3.3.4, "Fixed-Point Load
and Store with Byte Reversal Instructions" on
page 40 may be used. Note that any requirement for
such byte reversal for a particular 110 device register
is independent of whether PowerPC is running in Big
Endian or Uttle-Endian mode.

D.7 Origin of Endian

The terms Big-Endian and Utlle-Endian come from
Part I, Chapter 4, of Jonathan Swift's Gulliver'.s
Travels. Here is the complete passage, from the 1734
edition.

Our Histories of six Thousand Moons make
no Mention of any other Regions. than the
two great Empires of Lilliput and Blefuscu.
Which .two mighty Powers have, as I was
going to tell you, been engaged in a most
obstinate War for six and thirty Moons past.
It began upon the following Occasion. It is
allowed on all Hands, that the primitive Way
of breaking Eggs before we eat them, was
upon the larger End: But his present Majes
ty's Grand-father, while he was a Boy, going
to eat an Egg, and breaking it according to
the ancient Practice, happened to cut one of
his Fingers. Whereupon the Emperor his
Father, published an Edict, commanding all
his Subjects, upon great Penalties, to break
the smaller End of their Eggs. The People so
highly resented this Law, that our Histories
tell us, there have been six Rebellions raised
on that Account; wherein one Emperor lost
his Ufe, and another his Crown. These civil
Commotions were constantly fomented by the
Monarchs of Blefuscu; and when they were
quelled, the Exiles always fled for Refuge to
that Empire. It is computed that, eleven
Thousand Persons have, at several TImes,
suffered Death, rather than submit to break
their Eggs at the smaller End. Many hundred
large Volumes have been published upon this
Controversy: But the Books of the Big
Endians have been long forbidden, and the
whole Party rendered incapable by Law of
holding Employments. During the Course of
these Troubles, the Emperors of Blefuscu did
frequently expostulate by their Ambassadors,
accusing us of making a Schism in Religion,
by offending against a fundamental Doctrine
of our great Prophet Lustrog, in the fifty-

150 PowerPC User Instrudion Set Archltedure

/'

IBM Confidential

fourth Chapter of the Brundrecal, (which is
their A/coran.) This, however, is thought to
be a mere Strain upon the text: For the
Words are these; That all true Believers shall
break their Eggs at the convenient End: and
which is the convenient End, seems. in my
humble Opinion. to be left to every Man's
Conscience. or at least in the Power of the
chief Magistrate to determine. Now the Big
Endian Exiles have found so much Credit in
the Emperor of Blefuscu's Court; and so
much private Assistance and Encouragement
from their Party here at home. that a bloody
War has been carried on between the two

Empires for six and thirty Moons with various
Success; during which Time we have lost
Forty Capital Ships. and a much greater
Number of smaller Vessels. together with
thirty thousand of our best Seamen and Sol
diers; and the Damage received by the
Enemy is reckoned to be somewhat greater
than ours. However. they have now
equipped a numerous Fleet. and are just pre
paring to make a Descent upon us: and his
Imperial Majesty. placing great Confidence in
your Valour and Strength. hath commanded
me to lay this Account of his Affairs before
you.

Appendix D. Llttle-Endian Byte Ordering 151

IBM Confidential

152 PowerPC User Instruction Set Architecture

(:

IBM Confidential

Appendix E. Programming Examples

E.1 Synchronization

This appendix gives examples of how the Synchroni
zation instructions can be used to emulate various
synchronization primitives, and to provide more
complex forms of synchronization.

For each of these examples, it is assumed that a
similar sequence of instructions is used by all proc
esses requiring synchronization on the accessed data.

E.1.1 Synchronization Primitives

The following examples show how the #Wan and
stwcx. instructions can be used to emulate various
synchronization primitives.

The sequences used to emulate the various primitives
consist primarily of a loop using #Wan and stwcx.. No
additional synchronization is necessary, because the
stwcx. will fail, setting the EO bit to 0, if the word
loaded by #Wan has changed before the stwcx. is
executed: see Book II, PowerPC Virtual Environment
Architecture for more detail.

Fetch and No-op

The "Fetch and No-op" primitive atomically loads the
current value in a word in storage.

In this example it is assumed that the address of the
word to be loaded is in GPR 3 and the data loaded
are returned in GPR 4.

loop: lwarx r4,9,r3
stwcx. r4,a,r3

bne loop

Notes:

'load and reserve
'store old value if
, still reserved
'loop if lost reserv'n

1. Because stwClC. is not necessarily performed with
respect to all other mechanisms that access
storage (see Book II, PowerPC Virtual Environ
ment Architecture), an ordinary Load instruction,
or even a Load and Reserve instruction, on a dif-

The examples deal with words: they can be used for
doublewords by changing all #Wan instructions to
klan, all stwcx. instructions to stdcx., all stw
instructions to std, and all cmpw[i] extended mne
monics to cmpd[/J,

ferent processor, may return a "stale" value.
However, a subsequent #Wan on the other
processor followed by a successful stwClC. on that
processor is guaranteed to have returned the
value stored by the first processor's stwClC. (in
the absence of other stores to the location).

2. The staring done by the stwcx. instruction in this
example is redundant.

Fetch and Store

The "Fetch and Store" primitive atomically loads and
replaces a word in storage.

In this example it is assumed that the address of the
word to be loaded and replaced is in GPR 3, the new
value is in GPR 4, and the old value is returned in
GPR5.

loop: lwarx r5,e,r3
stwcx. r4,e,r3

bne loop

Fetch and Add

'load and reserve
'store new value if
, still reserved
'loop if lost reserv'n

The "Fetch and Add" primitive atomically increments
a word in storage.

In this example it is assumed that the address of the
word to be incremented is in GPR 3, the increment is
in GPR 4, and the old value is returned in GPR 5.

Appendix E. Programming Examples 153

loop: lwarx r5,8,r3 'load and reserve
add rS,r4,r5 'increment word
stwcx. r8,e,r3 'store new value if , still reserved
bne loop 'loop if lost reserv'n

Fetch and AND

The "Fetch and AND" primitive atomically ANDs a
value into a word in storage.

In this example it is assumed that the address of the
word to be ANDed is in GPR 3, the value to AND into
it is in GPR 4, and the old value is returned in GPR 5.

loop: lwarx r5.8,r3 'load and reserve
and rS.r4.r5 'AND word
stwcx. r8,8,r3 'store new value-if

, still reserved
bne loop 'loop if lost reserv'n

Notes:

1. The sequence given above can be changed to
perform another Boolean operation atomically on
a word in storage, simply by changing the and
instruction to the desired Boolean instruction (or,
xor, etc.).

rest and Set

The "Test and Set" primitive atomically loads a word
from storage, ensures that the word in storage con
tains a non-zero value, and sets the EO bit of CR Field
o according to whether the value loaded is zero.

In this example it is assumed that the address of the
word to be tested is in GPR 3, the new value (non
zero) is in GPR 4, and the old value is returned in
GPR5.

loop: lwarx
cmpwi
bne
stwcx.
bne

Notes:

r5.8,r3
r5.8
$+12
r4,8,r3
loop

'load and reserve
'done if word
, not equal to B
'try to store non-B
'loop if lost reserv'n

1. ''Test and Set" is shown primarily for pedagogical
reasons. It is useful on machines that lack the
better synchronization facilities provided by ""an
and stwex.. A major weakness of ''Test and Set"
is that it does not scale well. Using ''Test and
Set" before a "critical section" allows at most
one process to execute in the critical section at a
time. Using ""an and atwcx. to bracket the crit
ical section allows many processes to execute in
the critical section at once, but at most one will
succeed in exiting from the section with its
results stored.

IBM Confidential

2. Depending on the application, if Test and Set fails
(i.e., sets the EO bit of CR Field 0 to zero) it may
be appropriate to re-execute the Test and Set.

Compare and Swap

The "Compare and Swap" primitive atomicaliy com
pares a value in a register with a word in storage, if
they are surely equal stores the value from a second
register into the word in storage, if they may be
unequal loads the word from storage into the first
register, and sets the EO bit of CR Field 0 to indicate
the result of the comparison.

In this example it is assumed that the address of the
word to be tested is in GPR -3, the comparand is in
GPR 4, the new value is in GPR 5, and the old value is
returned in GPR 6.

Notes:

lwarx
cmpw
bne
stwcx.

r6,e, r3
r4,r6
$+8
r5,8,r3

#load and reserve
#1st 2 operands equal?
#skip if not
'store new value if
, still reserved

1. "Compare and Swap" is shown primarily for ped
agogical reasons. It is useful on machines that
lack the better synchronization facilities provided
by ""an and stwex.. A major weakness of typical
"Compare and Swap" instructions is that they
permit spurious success if the word being tested
has changed and then changed back to its old
value: the sequence shown above does not have
this weakness.

2. Depending on the application, if Compare and
Swap fails (i.e., sets the EO bit of CR Field 0 to
zero) it may be appropriate to recompute the
value potentially to be stored and then re-execute
the Compare and Swap.

E.1.2 List Insertion

The following example shows how the ""an and
stwex. instructions can be used to implement simple
UFO (last in first out) insertion into a singly linked list.
(Complicated list insertion, in which multiple values
must be changed atomically, or in which the correct
order of insertion depends on the contents of the ele
ments, cannot be implemented in the manner shown
below, and requires a more complicated strategy such
as using locks.)

The "next element pointer" from the list element after
which the new element is to be inserted, here called
the "parent element," is stored into the new element,
so that the new element points to the next element in
the list: this store is performed unconditionally. Then
the address of the new element is conditionally stored

154 PowerPC User Instruction Set Architecture

(

(

IBM Confidential

into the parent element, thereby adding the new
element to the list.

In this example it is assumed that the address of the
parent element is in GPR 3, the address of the new
element is in GPR 4, and the next element pointer is
at offset 0 from the start of the element. It is also
assumed that the next element pointer of each list
element is in a "reservation granule" separate from
that of the next element pointer of all other list ele
ments: see Book II, PowerPC Virtual Environment
Architecture.

loop: lwarx r2.9.r3 Iget next pOinter
stw r2.9(r4) 'store in new element
sync Ilet store settle (can

I omit if not MP)
stwcx. r4.9.r3 ladd new element to list
bne loop 'loop if stwcx. failed

In the preceding example, if two list elements have
next element pointers in the same reservation
granule then, in a multiprocessor, "livelock" can
occur. (Uvelock is a state in which processors
interact in a way such that no processor makes
progress.)

If it is not possible to allocate list elements such that
each element's next element pointer is in a different
reservation granule, then livelock can be avoided by
using the following, more complicated, code
sequence.

100p1:

100p2:

lwz
mr
stw
sync
lwarx
cmpw
bne
stwcx.
bne

r2.9(r3)
r5.r2
r2.9(r4)

r2.9.r3
r2.r5
100p1
r4.9,r3
100p2

Iget next pointer
Ikeep a copy
'store in new element
Ilet store settle
Iget it again
Iloop if changed (someone
I else progressed)
'add new element to list
'loop if failed

E.1.3 Notes

1. In general, 'wane and stwcx. instructions should
be paired, with the same effective address used
for both. The exception is an isolated stwcx.
instruction that is used to clear any existing res
ervation on the processor, for which there is no
paired 'wane and for which any (scratch) effective
address can be used.

2. It is acceptable to execute a 'wane instruction for
which no stwa. instruction is executed. For
example, such a "dangling ""ane" occurs if the
value loaded in the ''Test and Set" sequence
shown above is not zero.

3. To increase the likelihood that forward progress
is made, it is important that looping on
Iwane/stwcx. pairs be minimized. For example, in
the sequence shown above for ''Test and Set,"
this is achieved by testing the old value before
attempting the store: were the order reversed,
more stwcx. instructions might be executed, and
reservations might more often be lost between
the ""ane and the stwcx •.

4. The manner in which ""ane and stwcx. are com
municated to other processors and mechanisms,
and between levels of .the storage subsystem
within a given processor (see Book II, PowerPC
Virtual Environment Architecture), is
implementation-dependent. In some implementa
tions performance may be improved by mini
mizing looping on a 'wane instruction that fails to
return a desired value. For example, in the ''Test
and Set" example shown above, if the pro
grammer wishes to stay in the loop until the word
loaded is zero, he could change the "bne $ + 12"
to "bne loop." However, in some implementations
better performance may be obtained by using an
ordinary Load instruction to do the initial
checking of the value, as follows.

loop: lwz r5,9(r3) Iload the word
cmpwi r5.9 1100p back if word
bne loop I not equal to 9
lwarx r5,S,r3 Itry again, reserving
cmpwi r5.9 , (likely to succeed)
bne loop
stwcx. r4,9.r3
bne loop

'try to store non-S
'loop if lost reserv'n

5. In a multiprocessor, livelock is possible if a loop
containing a Iwane/stwcx. pair also contains an
ordinary Store instruction for which any byte of
the affected storage area is in the reservation
granule of the reservation: see Book II, PowerPC
Virtual Environment Architecture. For example,
the first code sequence shown in Section E.1.2,
Ust Insertion, can cause livelock if two list ele
ments have next element pointers in the same
reservation granule.

Appendix E. Programming Examples 155

E.2 Multiple-Precision Shifts

This appendix gives examples of how multiple
precision shifts can be programmed.

A multiple-precision shift is initially defined to be a
shift of an N-doubleword quantity (64-bit mode) or an
N-word quantity (32-bit mode), where N>1. (This defi
nition is relaxed somewhat for 32-bit mode, below.)
The quantity to be shifted is contained in N registers
(in the low-order 32 bits in 32·bit mode). The shift
amount is specified either by an immediate value in
the instruction, or by bits 57:63 (64-bit mode) or 58:63
(32-bit mode) of a register.

The examples shown below distinguish between the
cases N-2 and N>2. If N-2, the shift amount may be
in the range 0 through 127 (64-bit mode) or 0 through
63 (32-bit mode), which are the maximum ranges sup
ported by the Shift instructions used. However if
N>2, the shift amount must be in the range 0 through
63 (64-bit mode) or 0 through 31 (32-bit mode), in
order for the examples to yield the desired result.
The specific instance shown for N>2 is N - 3:
extending those instruction sequences to larger N is
straightforward, as is reducing them to the case N - 2

Multiple-precision shifts In 64-blt mode

Shift Left Immediate, N = 3 (shift amnt < 64)
rldicr r5,r4,sh,63-sh
rldimi r4,r3,O,sh
rldicl r4,r4,sh,O
rldimi r3,r2,O,sh
rldicl r3,r3,sh,O

Shift Left, N = 2 (shift amnt < 128)
subfic r31,r6,64
sid r2,r2,r6
srd rO,r3,r31
or r2,r2,rO
addic r31,r6,-64
sid rO,r3,r31
or r2,r2,rO
sid r3,r3,r6

IBM Confidential

when the more stringent restriction on shift amount is
met. For shifts with immediate shift amounts only the
case N - 3 is shown, because the more stringent
restriction on shift amount is always met.

In the examples it is assumed that GPRs 2 and'3 (and
4) contain the quantity to be shifted, and that the
result is to be placed into the same registers, except
for the immediate left shifts in 64-bit mode for which
the result is placed into GPRs 3, 4, and 5. In all
cases, for both input and result, the lowest-numbered
register contains the highest-order part of the data
and highest-numbered register contains the lowest
order part. In 32-bit mode, thehigh-order 32 bits of
these registers are assumed not to be part of the
quantity to be shifted nor of the result. For non
immediate shifts, the shift amount is assumed to be in
bits 57:63 (64-bit mode) or 58:63 (32-bit mode) of GPR
6. For immediate shifts, the shift amount is assumed
to be greater than O. GPRs 0 and .31 are used as
scratch registers.

For N>2, the number of instructions required is 2N-1
(immediate shifts) or 3N-1 (non-immediate shifts).

Multiple-precision shifts in 32-bit mode

Shift Left Immediate, N = 3 (shift amnt < 32)
rlwinm r2,r2,sh,O,31-sh
rlwimi r2,r3,sh,32-sh,31
rlwinm r3,r3,sh,O,31-sh
rlwimi r3,r4,sh,32-sh,31
rlwinm r4,r4,sh,O,31-sh

Shift Left, N = 2 (shift amnt < 64)
subfic r31,r6,32
slw r2,r2,r6
srw rO,r3,r31
or r2,r2,rO
addic r31,r6,·32
slw rO,r3,r31
or r2,r2,rO
slw r3,fl,r6

156 PowerPC User Instruction Set Architecture

;'1'
:~

IBM Confidential

Multiple-precision shifts In 64-bit mode,
continued

Shift Left, N = 3 (shift amnt < 64)
subfic r31,rS,64
sid r2,r2,rS
srd rO,r3,r31
or r2,r2,rO
sid r3,r3,rS
srd rO,r4,r31
or r3,r3,rO
sid r4,r4,rS

Shift Right Immediate, N = 3 (shift amnt < 64)
rldimi r4,r3,O,64-sh
rldicl r4,r4,64-sh,O
rldimi r3,r2,O,64-sh
rldicl r3,r3,64-sh,O
rldicl r2,r2,64-sh,sh

Shift Right, N = 2 (shift amnt < 128)
subfic r31,rS,64
srd r3,r3,rS
sid rO,r2,r31
or r3,r3,rO
addic r31,rS,-64
srd rO,r2,r31
or r3,r3,rO
srd r2,r2,rS

Shift Right, N = 3 (shift amnt < 64)
subfic r31,rS,64
srd r4,r4,rS
sid rO,r3,r31
or r4,r4,rO
srd r3,r3,rS
sid rO,r2,r31
or r3,r3,rO
srd r2,r2,rS

Shift Right Algebraic Immediate, N = 3 (shift amnt < 64)
rldimi r4,r3,O,64-sh
rldicl r4,r4,64-sh,D
rldimi r3,r2,D,64-sh
rldicl r3,r3,64-sh,D
sradi r2,r2,sh

Shift Right Algebraic, N = 2 (shift amnt < 128)
subfic r31,rS,64
srd r3,r3,rS
sid rO,r2,r31
or r3,r3,rO
addic. r31,rS,-64
srad rO,r2,r31
ble $+8
ori r3,rO,D
srad r2,r2,rS

Multiple-precision shifts in 32-bit mode,
continued

Shift Left, N = 3 (shift amnt < 32)
subfic r31,rS,32
slw r2,r2,rS
srw rO,r3,r31
or r2,r2,rO
slw r3,r3,rS
srw rO,r4,r31
or r3,r3,rO
slw r4,r4,rS

Shift Right Immediate, N = 3 (shift amnt < 32)
rlwinm r4,r4,32-sh,sh,31
rlwimi r4,r3,32-sh,O,sh-1
rlwinm r3,r3,32-sh,sh,31
rlwimi r3,r2,32-sh,O,sh-1
rlwinm r2,r2,32-sh,sh,31

Shift Right, N = 2 (shift amnt < 64)
subfic r31,rS,32
srw r3,r3,rS
slw rO,r2,r31
or r3,r3,rO
addic r31,rS,-32
srw rO,r2,r31
or r3,r3,rO
srw r2,r2,rS

Shift Right, N = 3 (shift amnt < 32)
subfic r31,rS,32
srw r4,r4,rS
slw rO,r3,r31
or r4,r4,rO
srw r3,r3,rS
slw rO,r2,r31
or r3,r3,rO
srw r2,r2,rS

Shift Right Algebraic Immediate, N = 3 (shift amnt < 32)
rlwinm r4,r4,32-sh,sh,31
rlwimi r4,r3,32-sh,D,sh-1
rlwinm r3,r3,32-sh,sh,31
rlwimi r3,r2,32-sh,D,sh-1
srawi r2,r2,sh

Shift Right Algebraic, N = 2 (shift amnt < 64)
subfic r31,rS,32
srw r3,r3,rS
slw rO,r2,r31
or r3,r3,rO
addic. r31,rS,-32
sraw rO,r2,r31
ble $+8
ori r3,rO,D
sraw r2,r2,rS

Appendix E. Programming Examples 157

Multiple-precision shifts in 64-blt mode,
continued

Shift Right Algebraic, N = 3 ,shift amnt < &4)
subfic r31,r6,64
srel r4,r4,r6
sid rO,r3,r31
or r4,r4,rO
srel r3,r3,r6
sid rO,r2,r31
or r3,r3,rO
srad r2,r2,r6

The examples shown above for 32-bit mode work both
in 32-bit mode ofa 64-bit implementation and in a
32-bit implementation. They perform the shift in units
of words. If ability to run in 32-bit implementations is
not required, in a 64-bit implementation better per
formance can be obtained in 32-bit mode than that of
the examples shown above, by using all 64 bits of
GPRs 2 and 3 (and 4) to contain the quantity to be
shifted, and placing the result into all 64 bits of the
same registers.

IBM Confidential

Multiple-precision shifts in 32-blt mode,
continued

Shift Right Algebraic, N = 3 'shift amnt < 32)
subfic r31,r6,32
srw r4,r4,r6
slw rO,r3,r31
or r4,r4,rO
srw r3,r3,r6
slw rO,r2,r31
or r3,r3,rO
sraw r2,r2,r6

Let N be the number of doublewords to be shifted.

The examples shown above for 64-bit mode work
equally well in 32-bit mode of a 64-bit implementation,
using all 64 bits of the registers. For N>2, the
number of instructions required is 2N-1 (immediate
shifts) or 3N-1 (non-immediate shifts), compared with
4N-1 (immediate shifts) or 6N-1 (non-immediate
shifts) for the examples shown above for 32-bit mode.
(The examples shown above require using twice as
many registers to hold the quantity to be Shifted.)

158 PowerPC User Instruction Set Architecture

(

IBM Confidential

E.3 Floating-Point Conversions

This appendix gives examples of how the F/oating
Point Conversion instructions can be used to perform
various conversions.

E.3.1 Conversion from
Floating-Point Number to
Floating-Point Integer

In a 64-blt Implementation

The full convert to floating-point integer function can
be implemented with the sequence shown below,
assuming the floating-point value to be converted is
in FPR " and the result is returned in FPR 3.

mtfsbB 23 'clear VXCVI
fctid[z] f3,fl 'convert to fx int
fcfi d f3, f3 'convert back agai n
mcrfs 7,5 'VXCVI to CR
bf 31,$+B 'skip if VXCVI was e
fmr f3,fl #input was fp int

In a 32-blt Implementation

~Ed .. r"N'"
To be supplied.

E.3.2 Conversion from Floating-Point
Number to Signed Fixed-Point Integer
Doubleword

This example applies to 64-bit implementations only.

The full convert to signed fixed-point integer
doub/eword function can be implemented with the
sequence shown below, assuming the floating-point
value to be converted is in FPR 1, the result is
returned in GPR 3, and a doubleword at displacement
"disp" from the address in GPR 1 can be used as
scratch space.

fctid[z] f2,f1
stfd f2,disp(r1)
ld r3,disp(r1)

'convert to dword int
#store f1 oat
#load dword

Warning: Some of the examples use the fsel instruc
tion. Care must be taken in using fsel if IEEE compat
ibility is required, or if the values being tested can be
NaNs or infinities: see Section E.4.4, "Notes" on
page 162.

E.3.3 Conversion from Floating-Point
Number to Unsigned Fixed-Point
Integer Doubleword

This example applies to 64-bit implementations only.

The full convert to unsigned fixed-point integer
doub/eword function can be implemented with the
sequence shown below, assuming the floating-point
value to be converted is in FPR 1, the value 0 is in
FPR 0, the value 264-2048 is in FPR 3, the value 263 is
in FPR 4 and GPR 4, the result is returned in GPR 3,
and a doubleword at displacement "disp" from the
address in GPR 1 can be used as scratch space.

fsel f2,f1.f1,fe 'use e if < e
fsub f5,f3,f1 'use max if > max
fsel f2,f5,f2.f3
fsub f5,f2,f4
fcmpu cr2,f2,f4
fsel f2,f5,f5,f2
fctid[z] f2,f2
stfd f2,disp(r1)
ld r3,disp(r1)
blt cr2,$+B
add r3,r3,r4

'subtract 2**63
'use diff if ~ 2**63

'convert to fx int
'store float
#load dword
'add 2**63 if input
, was ~ 2**63

E.3.4 Conversion from Floating-Point
Number to Signed Fixed-Point Integer
Word

The full convert to signed fixed-point integer word
function can be implemented with the sequence
shown below, assuming the floating-point value to be
converted is in FPR " the result is returned in GPR 3,
and a doubleword at displacement "disp" from the
address in GPR 1 can be used as scratch space. The
last instruction is needed only if a 64-bit result is
required, and applies to 64-bit implementations only.

fctiw[z] f2,f1 #convert to fx int
stfd f2,disp(r1) #store float
lwz r3,disp+4(rl) 'load word and zero
extsw r3,r3 '(for 54-bit result)

Appendix E. Programming Examples 159

E.3.S Conversion from Floating-Point
Number to Unsigned Fixed-Point
Integer Word

In a 64-blt Implementation

The full convert to unsigned fixed-point integer word
function can be implemented with the sequence
shown below, assuming the floating-point value to be
converted is in FPR 1, the value 0 is in FPR 0, the
value 232-1 is in FPR 3, the result is returned in GPR
3, and a doubleword at displacement "disp" from the
address in GPR 1 can be used as scratch space.

fsel f2,f1,f1,f8 'use 8 if < e
fsub f4,f3,f1 'use max if > max
fsel f2,f4,f2,f3
fctid[z] f2,f2 'convert to fx int
stfd f2,disp(r1) 'store float
lwz r3,disp+4(r1) 'load word and zero

In a 32-blt Implementation

The full convert to unsigned fixed-point integer word
function can be implemented with the sequence
shown below, assuming the floating-point value to be
converted is in FPR 1, the value 0 is in FPR 0, the
value 232 is in FPR 3, the value 231 is in FPR 4 and
GPR 4, the result is returned in GPR 3, and a
doubleword at displacement "disp" from the address
in GPR 1 can be used as scratch space.

fsel f2,fl,f1,f8 'use 8 if < e
fsub fS,f3,f1 'use max if > max
fsel f2,fS,f2,f3
fsub fS,f2,f4 'subtract 2**31
fcmpu cr2,f2,f4 'use diff if ~ 2**31
fsel f2,fS,fS,f2
fctiw[z] f2,f2 'convert to fx int
stfd f2,disp(rl) 'store float
lwz r3,disp+4(rl) 'load word
blt cr2.$+8 'add 2**31 if input
add r3,r3,r4 , was ~ 2**31

IBM Confidential

E.3.6 Conversion from Signed
Fixed-Point Integer Doubleword to
Floating-Point Number

This example applies to 64-bit implementations only.

The full convert from signed fixed-point integer
doub/eword function, using the rounding mode speci
fied by FPSCRRN, can be implemented with the
sequence shown below, assuming the fixed-point
value to be converted is in GPR 3, the result is
returned in FPR 1, and a doubleword at displacement
"disp" from the address in GPR 1 can be used as
scratch space.

std r3,disp(rl) 'store dword
lfd f1,disp(rl) 'load float

'convert to fpu int fcfid fl,fl

E.3.7 Conversion from Unsigned
Fixed-Point Integer Doubleword to
Floating-Point Number

This example applies to 64-bit implementations only.

The full convert from unsigned fixed-point integer
doub/eword function, using the rounding mode speci
fied by FPSCRRN, can be implemented with the
sequence shown below, assuming the fixed-point
value to be converted is in GPR 3, the value 232 is in
FPR 4, the result is returned in FPR 1, and two
doublewords at displacement "disp" from the address
in GPR 1 can be used as scratch space.

rldicl
rldicl
std
std
lfd
lfd
fcfid
fcfid
fmadd

r2,r3,32,32 'isolate high half
r8,r3,8,32 'isolate low half
r2,disp(rl) 'store dword both
r8,disp+8(rl)
f2,disp(rl) 'load float both
fl,disp+8(rl) 'load float both
f2,f2 'convert each half to
fl,f1 , fpu int (no rnd)
f1,f4,f2,f1 '(2**32)*high + low

, (only add can rnd)

An alternative, shorter, sequence can be used if
rounding according to FSCPRRN is desired and
FPSCRRN specifies Round toward +/nfinity or Round
toward -Infinity, or if it is acceptable for a rounded
answer to be either of the two representable floating
point integers nearest algebraically to the given fixed
point integer. In this case the full convert from
unsigned fixed-point integer doub/eword function can
be implemented with the sequence shown below,
assuming the value 264 is in FPR 2.

std r3,disp(rl) 'store dword
lfd f1,disp(rl) 'load float
fcfid fl,fl 'convert to fpu int
fadd f4,f1,f2 'add 2**64
fsel fl,fl,fl,f4' if r3 < 8 "-... ./

160 PowerPC User Instruction Set Architecture

IBM Confidential

E.3.8 Conversion from Signed
Fixed-Point Integer Word to
Floating-Point Number

In a 64-blt Implementation

The full convert from signed fixed-point integer word
function can be implemented with the sequence
shown below, assuming the fixed-point value to be
converted is in GPR 3, the result is returned in FPR 1,
and a doubleword at displacement "disp" from the
address in GPR 1 can be used as scratch space.
(Rounding cannot occur.)

extsw
std
1 fd
fcfid

r3.r3
r3.disp(rl)
fl.disp(rl)
fl.fl

'extend sign
'store dword
'load float
'convert to fpu int

In a 32-bit Implementation

~ ..-""N'"
To be supplied.

E.3.9 Conversion from Unsigned
Fixed-Point Integer Word to
Floating-Point Number

In a 64-blt Implementation

The full convert from unsigned fixed-point integer
word function can be implemented with the sequence
shown below, assuming the fixed-point value to be
converted is in GPR 3, the result is returned in FPR 1,
and a doubleword at displacement "disp" from the
address in GPR 1 can be used as scratch space.
(Rounding cannot occur.)

rldicl
std
lfd
fcfid

r9.r3,9.32
r9.disp(rl)
fl.di sperl)
fl.fl

'zero-extend
'store dword
'load float
'convert to fpu int

In a 32-bit Implementation

~ """"Note
To be supplied.

. Appendix E. Programming Examples 161

E.4 Floating-Point Selection

This appendix gives examples of how the Floating
Select instruction can be used to implement floating
point minimum and maximum functions, and certain
simple forms of if-then-else constructions, without
branching.

The examples show program fragments in an imagi
nary, C-like, high-level programming language, and
the corresponding program fragment using Is., and
other Power PC instructions. In the examples, a, b, x,

E.4.1 Comparison to Zero

High-level language: PowerPC:

if a ~ a.a then x ~ y fsel fx.fa,fy.fz
else x ~ z

if a > B.B then x ~ y fneg fs,fa
else x ~ z fsel fx,fs,fz.fy

if a = B.S then x ~ y fsel fX,fa,fy,fz
else x ~ z fneg fs,fa

fsel fX,fs,fx.fz

E.4.2 Minimum and Maximum

High-level language: PowerPC:

x ~ min(a.b) fsub fs.fa,fb
fsel fx.fs,fb.fa

x ~ max(a.b) fsub fs,fa,fb
fsel fx.fs,fa,fb

E.4.3 Simple if·then-else
Constructions

High-level language:

if a ~ b then x ~ y
else x ~ z

if a > b then x ~ y
else x ~ z

if a = b then x ~ y
else x ~ z

PowerPC:

fsub fs,fa,fb
fsel fX,fs,fy.fz

fsub fs,fb,fa
fsel fx.fs.fz.fy

fsub fs.fa,fb
fsel fx.fs,fy,fz
fneg fs,fs
fsel fx,fs,fx.fz

Notes

(1)

(1.2)

(1)

Notes

(3.4.5)

(3,4.5)

Notes

(4,5)

(3,4,5)

(4,5)

IBM Confidential

y, and z are floating-point variables, which are
assumed to be in FPRs fa, fb, lx, fy, and fz. FPR fs is
assumed to be available for scratch space ..

Additional examples can be found in Section E.3,
"Floating-Point Conversions" on page 159.

Warning: Care must be taken in using 1s.1 if IEEE
compatibility is required, or if the values being tested
can be NaNs or infinities: see Section E.4.4, "Notes."

E.4.4 Notes

The following Notes apply to the preceding examples,
and to the corresponding cases using the other three
arithmetic relations «, S, and ~). They should also
be considered when any other use of Is.' is contem
plated.

In these Notes, the "optimized program" is the
PowerPC program shown, and the "unoptimized
program" is the corresponding PowerPC program that
uses fcmpu and Branch Conditional instructions
instead of 1s.1.

1. The unoptimized program affects the VXSNAN bit
of the FPSCR, and therefore may cause the
system error handler to be invoked if the corre
sponding exception is enabled, while the opti
mized program does not affect this bit. This is
incompatible with the IEEE standard.

2. The optimized program gives the incorrect result
if a is a NaN.

3. The optimized program gives the incorrect result
if a and/or b is a NaN (except that it may give the
correct result in some cases for the minimum and
maximum functions, depending on how those
functions are defined to operate on NaNs).

4. The optimized program gives the incorrect result
if a and b are infinities of the same sign. (Here it
is assumed that Invalid Operation Exceptions are
disabled, in which case the result of the sub-
traction is a NaN. The analysis is more compli-
cated if Invalid Operation Exceptions are enabled,
because in that case the target register of the
subtraction is unchanged.)

5. The optimized program affects the Ox. Ux. xx.
and VXISI bits of the FPSCR, and therefore may
cause the system error handler to be invoked if
the corresponding exceptions are enabled, while
the unoptimized program does not affect these
bits. This is incompatible with the IEEE standard.

162 PowerPC User Instruction Set Architecture

(

{/

IBM Confidential

Appendix F. Cross-Reference for Changed Power Mnemonics

The following table lists the Power instruction mne
monics that have been changed in the PowerPC Archi
tecture, sorted by Power mnemonic.

To determine the PowerPC mnemonic for one of these
Power mnemonics, find the Power mnemonic in the
second column of the table: the remainder of the line
gives the PowerPC mnemonic and the page or Book in
which the instruction is described, as well· as the
instruction names. A page number is shown for
instructions that are defined in this Book (Book I,
PowerPC User Instruction Set Architecture), and the

Page I Power
Bk Mnemonic Instruction

52 a[o][.] Add
53 ae[o][.] Add Extended
51 ai Add Immediate
51 ai. Add Immediate and Record
53 ame[o][.] Add To Minus One Extended
63 andil. AND Immediate Lower
63 andiu. AND Immediate Upper
54 aze[o][.] Add To Zero Extended

Book number is shown for instructions that are
defined in other Books (Book II, PowerPC Virtual Envi
ronment Architecture, and Book III, PowerPC Oper
ating Environment Architecture). If an instruction is
defined in more than one Book, the lowest-numbered
Book is used.

Power mnemonics that have not changed are not
listed. Power instruction names that are the same in
PowerPC are not repeated: i.e., for these, the last
column of the table is blank.

PowerPC

Mnemonic Instruction

addc[o][.] Add Carrying
adde[o][.]
addic Add Immediate Carrying
addic. Add Immediate Carrying and Record
addme[o][.]
andi. AND Immediate
andis. AND Immediate Shifted
addze[o][.]

21 bcc[l] Branch Conditional to Count Register bcctr[l]
21 ber[l] Branch Conditional to Link Register bclr[l]
50 cal Compute Address Lower addi Add Immediate
50 cau Compute Address Upper addis Add Immediate Shifted
51 cax[o][.] Compute Address add[o][.] Add
68 cntlz[.] Count Leading Zeros cntlzw[.] Count Leading Zeros Word

Bk II dclz Data Cache Line Set to Zero dcbz Data Cache Block set to Zero
48 dcs Data Cache Synchronize sync Synchronize
67 exts[.] Extend Sign extsh[.] Extend Sign Halfword

107 fa[.] Floating Add fadd[.]
108 fd[.] Floating Divide fdiv[.]
108 fm[.] Floating Multiply fmul[.]
109 fma[.] Floating Multiply-Add fmadd[.]
109 fms[.] Floating Multiply-Subtract fmsub[.]
110 fnma[.] Floating Negative Multiply-Add fnmadd[.]
110 fnms[.] Floating Negative Multiply-Subtract fnmsub[.]
107 fS[.] Floating Subtract fsub[.]

Bk II ics Instruction Cache Synchronize isync Instruction Synchronize
33 I Load Iwz Load Word and Zero
40 Ibrx Load Byte-Reverse Indexed Iwbrx Load Word Byte-Reverse Indexed
42 1m Load Multiple Imw Load Multiple Word
44 lsi Load String Immediate Iswi Load String Word Immediate
44 Isx Load String Indexed Iswx Load String Word Indexed
33 lu Load with Update Iwzu Load Word and Zero with Update
33 lux Load with Update Indexed Iwzux Load Word and Zero with Update

Indexed

Appendix F. Cross-Reference for Changed Power Mnemonics 163

IBM Confidential

Pagel Power PowerPC
Bk Mnemonic Instruction Mnemonic Instruction

33 Ix Load Indexed Iwzx Load Word and Zero Indexed \ . ./
Bk III mtsri Move To Segment Register Indirect mtsrin

55 muli Multiply Immediate mulli Multiply Low Immediate
55 muls[o][.] Multiply Short mullw[o][.] Multiply Low Word
64 oril OR Immediate Lower ori OR Immediate
64 oriu OR Immediate Upper oris OR Immediate Shifted
74 rlimi[.] Rotate Left Immediate Then Mask rlwimi[.] Rotate Left Word Immediate then

Insert Mask Insert
71 rlinm[.] Rotate Left Immediate Then AND rtwinm[.] Rotate Left Word Immediate then

With Mask AND with Mask
73 rlnm[.] Rotate Left Then AND With Mask rlwnm[.] Rotate Left Word then AND with

Mask
52 sf[o][.] Subtract From subfc[o][.] Subtract From Carrying
53 sfe[o][.] Subtract .From Extended subfe[o][.]
52 sfi Subtract From Immediate subfic Subtract From Immediate Carrying
53 sfme[o][.] Subtract From Minus One Extended subfme[o][.]
54 sfze[o][.] Subtract From Zero Exten~ed subfze[o][.]
75 sl[.] Shift Left slw[.] Shift Left Word
76 sr[.] Shift Right srw[.] Shift Right Word
78 sra[.] Shift Right Algebraic sraw[.] Shift Right Algebraic Word
n srai[.] Shift Right Algebraic Immediate srawi[.] Shift Right Algebraic Word Imme-

diate
38 st Store stw Store Word
41 stbrx Store Byte-Reverse Indexed stwbrx Store Word Byte-Reverse Indexed
42 stm Store Multiple stmw Store Multiple Word
45 stsi Store String Immediate stswi Store String Word Immediate
45 stsx Store String Indexed stswx Store String Word Indexed
38 stu Store with Update stwu Store Word with Update
38 stux Store with Update Indexed stwux Store Word with Update Indexed
38 stx Store Indexed stwx Store Word Indexed ' .

22 svea Supervisor Call sc System Call
62 t Trap tw Trap Word
61 ti Trap Immediate twi Trap Word Immediate

Bk III tlbi TLB Invalidate Entry tlbie TLB Entry Invalidate
64 xoril XOR Immediate Lower xori XOR Immediate
64 xoriu XOR Immediate Upper xoris XOR Immediate Shifted

,,-""

164 PowerPC User Instruction Set Architecture

;t
\\

IBM Confidential

Appendix G. Incompatibilities with the Power Architecture

This section identifies the known incompatibilities that
must be managed in the migration from the Power
Architecture to the PowerPC Architecture. Some of
the incompatibilities can, at least in principle, be
detected by the processor, which could trap and let
software simulate the Power operation.· Others
cannot be detected by the processor even in prin
ciple.

G.1 New Instructions, Formerly
Privileged Instructions

Instructions new to PowerPC typically use opcode
values (including extended opcode) that are illegal in
Power. A few instructions that are privileged in
Power (e.g., ddz, called debz in PowerPC) have been
made non-privileged in PowerPC. Any Power program
that executes one of these now-valid or now-non
privileged instructions, expecting to cause the system
illegal instruction error handler or the system privi
leged instruction error handler to be invoked, will not
execute correctly on PowerPC.

G.2 Newly Privileged
Instructions

The following instructions are non-privileged in Power
but privileged in PowerPC.

mfmsr
mfsr

G.3 Reserved Bits in
Instructions

These are shown with '/'s in the instruction layouts.
In Power such bits are ignored by the processor. In
Power PC they must be 0 or the instruction form is
invalid.

In general, the incompatibilities identified here are
those that affect a Power application program:
incompatiblities for instructions that can be used only
by Power system programs are not necessarily dis
cussed.

In several cases the Power PC Architecture assumes
that such bits in Power instructions are indeed O. The
cases include the following.

• emp;, emp, empli, and emp' assume that bit lOin
the Power instructions is O.

• mtspr and mfspr assume that bits 16:20 in the
Power instructions are O.

G.4 Reserved Bits in Registers

Power defines these bits to be 0 on read, and either 0
or 1 on write. In PowerPC it is implementation
dependent, for each bit. whether the bit is:

• 0 on read and ignored on write; or
• copied from source to target on both read and

write. -

G.S Alignment Check

The Power MSR AL bit (bit 24) is no longer supported:
the bit is reserved in Power PC. The low-order bits of
the EA are always used. (Notice that the value 0 -
the normal value for a reserved SPR bit - means
"ignore the low-order EA bits" in Power, and the
value 1 means "use the low-order EA bits.") However,
MSR bit 24 will not be assigned new meaning in the
near future (see Book III, PowerPC Operating Environ
ment Architecture), and software is permitted to write
the value 1 to the bit.

Appendix G. Incompatibilities with the Power Architecture 165

G.S Condition Register

The following instructions specify a field in the CR
explicitly (via the BF field) and also have the Record
bit. In PowerPC, if Rc -1 for these instructions the
instruction form is invalid. In Power, if Rc-1 the
instructions execute normally except as follows.

cmp CRO is undefined if Rc-1 and BF"O
cmpl CRO is undefined if Rc-1 and BF¢O
men, CRO is undefined if Rc-1 and BF"O
fcmpu CR1 is undefined if Rc-1
tempo CR1 is undefined if Rc-1
mct1s CR1 is undefined if Rc-1 and BF,,1

G.7 Inappropriate use of LK and
Rc bits

For the instructions listed below, if LK-1 or Rc-1
Power executes the instruction normally with the
exception of setting the Unk Register· (if LK -1) or
Condition Register Field 0 or 1 (if Rc -1) to an unde
fined value. In Power PC such instruction forms are
invalid.

Power PC instruction form invalid if LK -1:

sc (sve: in Power)
the Condition Register Logical instructions
mcI'f
isync (ic:s in Power)

PowerPC instruction form invalid if Rc-1:

fixed-point X-form Load and Store instructions
fixed-point X-form Compare instructions
the X-form Trap instruction
mtspr, mfspr, mtc:rf, menr, mfcr
floating-point X-form Load and Store instructions
floating-point Compare instructions
mc:rfs
dcbz (dclz in Power)

G.S BO Field

Power shows certain bits in the BO field - used by
Branch Conditional instructions - as "x." Although
the Power Architecture does not say how these bits
are to be interpreted, they are in fact ignored by the
processor. PowerPC treats these bits differently, as
follows.

BOO:3 Power PC shows the bit as "z." (For the
"branch always" encoding of the BO field, B04
is also shown as "z.") If a "z" bit is not zero
the instruction form is invalid.

IBM Confidential

B04 This bit - which is shown as "x" in Power
independent of the other four bits - is shown
in Power PC as "y" (except for the "branch
always" encoding of the BO field). The "y" bit
gives a hint about whether the branch is likely
to be taken. If a Power program has the
"wrong" value for this bit, the program will run
correctly but performance may suffer.

G.9 Branch Conditional to Count
Register

For the case in which the Count Register is decre
mented and tested (i.e., the case in which B02 - 0),
Power specifies only that the branch target address is
undefined, with the implication that the Count Reg
ister, and the Unk Register if LK-1, are updated in
the normal way. PowerPC considers this instruction
form invalid.

G.10 System Call

There are several respects in which PowerPC is
incompatible with Power for System Call instructions
- which in Power are called Supervisor Call
instructions.

• Power provides a version of the Supervisor Call
instruction (bit 30 - 0) that allows instruction
fetching to continue at anyone of 128 locations.
It is used for 'fast SVCs'. PowerPC provides no
such version: if bit 30 of the instruction is 0 the
instruction is reserved.

• Power provides a version of the Supervisor Call
instruction (bits 30:31 - Ob11) that resumes
instruction fetching at one location and sets the
Unk Register to the address of the next instruc
tion. PowerPC provides no such version: if bit 31
of the instruction is 1 the instruction form is
invalid.

• For Power, information from the MSR is saved in
the Count Register. For Power PC this information
is saved in SRR 1.

• Power permits bits 16:29 of the instruction to be
non-zero, while in Power PC such an instruction
form is invalid.

Architecture and Engineering Note --___

Bits 16:29 should be regarded as reserved for
Power. As long as Power compatibility is
required for this instruction, bits 16:29 should
be ignored by the processor.

166 PowerPC User Instruction Set Architecture

IBM Confidential

• Power saves the low-order 16 bits of the instruc
tion, in the Count Register. Power PC does not
save them.

• The settings of MSR bits by the associated inter
rupt differ between Power and Power PC: see
POWER Processor Architecture and Book III,
PowerPC Operating Environment Architecture.

G.11 Fixed-Point Exception
Register (XER)

Bits 16:23 of the XER are reserved in PowerPC, while
in Power they are defined and contain the comparison
byte for the Iscbx instruction "(which PowerPC lacks).

Engineering Note ----------.......

For reasons of compatibility with the Power Archi
tecture, early implementations must handle XER
bits 16:23 according to the second of the two per
mitted treatments of reserved bits in status and
control registers. That is, early implementations
must set the bits from the source value on write,
and return the value last set for them on read.

G.12 Update Forms of Storage
Access

PowerPC requires that RA not be equal to either RT
(fixed-point Load only) or O. If the restriction is vio
lated the instruction form is invalid. Power permits
these cases, and simply avoids saving the EA.

G.13 Multiple Register Loads

PowerPC requires that RA, and RB if present in the
instruction format, not be in the range of registers to
be loaded, while Power permits this and does not
alter RA or RB in this case. (The PowerPC restriction
applies even if RA - 0, although there is no obvious
benefit to the restriction in this case since RA is not
used to compute the effective address if RA-O.) If
the Power PC restriction is violated, the instruction
form is invalid. The instructions affected are:

Imw (1m in Power)
Iswl (lsi in Power)
Iswx (/sx in Power)

Thus, for example, an Imw instruction that loads all 32
registers is valid in Power but is an invalid form in
Power PC.

G.14 Alignment for Load/Store
Multiple

Power PC requires the EA to be word-aligned, and
yields an Alignment interrupt or boundedly undefined
results if it is not. Power specifies that an Alignment
interrupt occurs (if AL.-1).

Engineering Note ------------,

If attempt is made to execute an Imlll or stmw
instruction having an incorrectly aligned effective
address, early implementations must either cor
rectly transfer the addressed bytes or cause an
Alignment interrupt, for reasons of compatibility
with the Power Architecture.

G.1S Load String Instructions

In PowerPC an Iswx instruction with zero length
leaves the content of RT undefined, while in Power
the corresponding instruction (/sx) does not alter RT.

G.16 Synchronization

The sync instruction (called des in Power) and the
isyne instruction (called ics in Power) cause much
more pervasive synchronization in PowerPC than in
Power.

G.17 Move To/From SPR

There are several respects in which Power PC is
incompatible with Power for Move To/From Special
Purpose Register instructions.

• The SPR field is ten bits long in Power PC, but only
five in Power (see also Section G.3, "Reserved
Bits in Instructions" on page 165).

• mfspr can be used to read the Decrementer in
problem state in Power, but only in privileged
state in Power PC.

• If the SPR value specified in the instruction is not
one of the defined values, PowerPC considers the
instruction form invalid. (In problem state, the
allowed SPR values exclude those accessible only
in privileged state.) Power does not alter any
architected registers in this case, and generates
a Privileged Instruction type Program interrupt if
the instruction is executed in problem state and
SPRo-1.

Appendix G. Incompatibilities with the Power Architecture 167

f

Engineering Note ------------,

For reasons of compatibility with the Power
Architecture, early implementations must
cause an Illegal Instruction type Program
interrupt for an attempt to execute an mtapr
or mfspr instruction with SprO:4 -0 (which
denotes the Power MO register).

Simlarly, early implementations must cause
an Illegal Instruction type Program interrupt
for an attempt to execute an mfspr instruction
with SprO:4 -4 (which denotes reading the
Real-Time Clock Upper in Power), sprO:4-5
(which denotes reading the Real-Time Clock
Lower in Power), or sprO:4-6 (which denotes
reading the Decrementer in Power).

G.18 Effects of Exceptions on
FPSCR Bits FR and FI

For the following cases, Power does not say how FR
and FI are set, while PowerPC preserves them for
Invalid Operation Exceptions caused by Compare
instructions and clears them otherwise.

Invalid Operation Exception (enabled or disabled)

Zero Divide Exception (enabled or disabled)

Disabled Overflow Exception

G.19 Floating-Point Store
Instructions

Power uses FPSCRUE to help determine whether
denormalization should be done, while Power PC does
not. Using FPSCRuE is in fact incorrect: if
FPSCRuE -1 and a denormalized single-precision
number is copied from one storage location to
another by means of Ifs followed by stis, the two
"copies" may not be the same.

G.20 Move From FPSCR

Power defines the high-order 32 bits of the result of
mils to be OxFFFF]FFF, while PowerPC says they are
undefined.

IBM Confidential

G.21 Zeroing Bytes in the Data
Cache

The dctz instruction of Power and the dcbz instruction
of Power PC have the same opcode. However, the
functions differ in the following respects.

• ddz clears a line while dcbz clears a block.
• ddz saves the EA in RA (if RA¢O) while dcbz

does not.
• dctz is privileged while dcbz is not.

G.22 Floating-Point Load/Store
to Direct-Store Segment

In Power a floating-point Load or Store instruction to a
direct-store segment causes a Data Storage
interrrupt, while in PowerPC the instruction either exe
cutes correctly or causes an Alignment interrupt.

G.23 Segment Register
Instructions

The definitions of the four Segment Register
instructions (mtsr, mtsrln, mfsr, and mfsrin) differ in
two respects between Power and PowerPC.
Instructions similar to mtsrin and mfsrin are called
mtsri and mfsrl in Power.

privilege: mfsr and mIsrI are problem state
instructions in Power, while mfsr and
mfsrin are privileged in PowerPC.

function: the "indirect" instructions (mtsrl and
mfsri) in Power use an RA register in
computing the Segment Register number,
and the computed EA is stored into RA (if
RA¢O and RA¢RT), while in PowerPC
mtsrin and mfsrin have no RA field and
EA is not stored.

mtsr, mtsrin (mtsn), and mfsr have the same opcodes
in Power PC as in Power. mfsri (Power) and mfsrin
(PowerPC) have different opcodes.

168 PowerPC User Instruction Set Architecture

IBM Confidential

G.24 TLB Entry Invalidation

The tlbl instruction of Power and the tlble instruction
of PowerPC have the same opcode. However, the
functions differ in the following respects.

• tlbl computes the EA as (RAIO) + (RB), while
tibia lacks an RA field and computes the EA as
(RB).

• tlbi saves the EA in RA (if RA¢O), while tibia
lacks an RA field and does not save the EA.

G.2S Floating-Point Interrupts

Both architectures use MSR bit 20 to control the gen
eration of interrupts for floating-point enabled
exceptions. However, in PowerPC this bit is part of a
two-bit value which controls the occurrence, precision,
and recover ability of the interrupt, while in Power this
bit is used independently to control the occurence of
the interrupt (in Power all floating-point interrupts are
precise).

G.26 Timing Facilities

G.26.1 Real-Time Clock

The Power Real-Time Clock is not supported in
Power pc. Instead, PowerPC provides a Time Base.
Both the RTC and the TB are 64-bit Special Purpose
Registers, but they differ in the following respects.

• The RTC counts seconds and nanoseconds, while
the TB counts "ticks." The ticking rate of the RTC
is implementation-dependent.

• The RTC increments discontinuously: 1 is added
to RTCU when the value in RTCL r-asses
999_999_999. The TB increments continuously: 1
is added to TBU when the value in TBL passes
OxFFFF _FFFF.

• The RTC is written and read by the mtspr and
mfspr instructions, using SPR numbers that
denote the RTCU and RTCL The TB is written by
the mtspr instruction (using new SPR numbers),
and read by the new mftb instruction.

• The SPR numbers that denote Power's RTCL and
RTCU are invalid in Power PC.

• The RTC is guaranteed to increment at least once
in the time required to execute ten Add Imme
diate instructions. No analogous guarantee is
made for the TB.

• Not all bits of RTCL need be implemented, while
all bits of the TB must be implemented.

G.26.2 Decrementer

The Power PC Decrementer differs from the Power
Decrementer in the following respects.

• The PowerPC DEC decrements at the same rate
that the TB increments, while the Power
Decrementer decrements every nanosecond
(which is the same rate that the RTC increments).

• Not all bits of the Power DEC need be imple
mented, while all bits of the Power PC DEC must
be implemented.

• The interrupt caused by the DEC has its own
interrupt vector location in Power PC, but is con
sidered an External interrupt in Power.

.;... -. ~

Appendix G. Incompatibilities with the Power Architecture 169

G.27 Deleted Instructions

The following instructions are part of the Power Archi
tecture but have been dropped from the PowerPC
Architecture.

abs
eles
elf
ell
deist
dlv
dlvs
doz
dozl
Iscb"
maskg
mask/r
mfsrl
mul
nabs
rae
rlml
rrlb
sI.
sleq
sliq
slIiq
sllq
slq
sraiq
sraq
are
area
sreq
sriq
srliq
srlq
srq
sve[1]

Absolute
Cache Une Compute Size
Cache Une Flush
Cache Une Invalidate
Data Cache Une Store
Divide
Divide Short
Difference Or Zero
Difference Or Zero Immediate
Load String And Compare Byte Indexed
Mask Generate
Mask Insert From Register
Move From Segment Register Indirect
Multiply
Negative Absolute
Real Address Compute
Rotate Left Then Mask Insert
Rotate Right And Insert Bit
Shift Left Extended
Shift Left Extended With MQ
Shift Left Immediate With MQ
Shift Left Long Immediate With MQ
Shift Left Long With MQ
Shift Left With MQ
Shift Right Algebraic Immediate With MQ
Shift Right Algebraic With MQ
Shift Right Extended
Shift Right Extended Algebraic
Shift Right Extended With MQ
Shift Right Immediate With MQ
Shift Right Long Immediate With MQ
Shift Right Long With MQ
Shift Right With MQ
Supervisor Call. with SA-O

Nota: Many of these instructions use the MQ reg
ister. The MQ is not defined in the PowerPC Architec
ture.

IBM Confidential

G.28 Discontinued Opcodes

The opcodes listed below are defined in the Power
Architecture but have been dropped from the
PowerPC Architecture. The list contains the old mne
monic (MNEM). the primary opcode (PRI). and the
extended opcode (XOP) if appropriate.

MNEM fB! XOP

abs
eles
elf
ell
deist
dlv
dlvs
doz
dozl
Iscb"
maslcg
masklr
mfsrl
mul
nabS
rae
rlml
rrlb
sle
sleq
sliq
slIIq
slIq
sIq
sraiq
sraq
are
srea
sraq
srlq
srllq
srlq
srq
svc[1]

31
31
31
31
31
31
31
31
09
31
31
31
31
31
31
31
22
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
17

360
531
118
502
630
331
363
264

2n
29

541
627
107
488
818

537
153
217
184
248
216
152
952
920
665
921
729
696
760
728
664

o

Assembler Note ------------,

It might be helpful to current software writers for
the Assembler to flag the discontinued Power
instructions.

170 PowerPC User Instrudlon Set Archltedura

(

('.

/

IBM Confidential

G.29 Rios-2 Compatibility

Editors' Note ------------..,

Rios-2 is an unannounced IBM product. If this
Book is published before the Rios-2 product is
announced, this section should be omitted.

The Rios-2 instruction set is a superset of the Power
instruction set. Some of the instructions added for

Rios-2 are included in the Power PC Architecture.
Those that have been renamed in the Power PC Archi
tecture are listed in this section, as are the new
Rios-2 instructions that are not included in the
Power PC Architecture.

Other incompatibilities are also listed.

G.29.1 Cross-Reference for Changed Rios-2. Mnemonics

The following table lists the new Rios-2 instruction
mnemonics that have been changed in the Power PC
User Instruction Set Architecture, sorted by Rios-2
mnemonic.

To determine the PowerPC mnemonic for one of these
Rios-2 mnemonics, find the Rios-2 mnemonic in the

Rlos-2
Page

Mnemonic Instruction

113 fcir[.] Floating Convert Double to Integer
with Round

113 fcirz[.] Floating Convert Double to Integer
with Round to Zero

G.29.2 Floating-Point Conversion to
Integer

The feir and fcirz instructions of Rios-2 have the same
opcodes as do the fetiw and fctiwz instructions,
respectively, of PowerPC. However, the functions
differ in the following respects.

• fcir and fcin set the high-order 32 bits of the
target FPR to zero, while fctiw and fetiwz set
them to an undefined value.

• Except for enabled Invalid Operation Exceptions,
feir and fcin set the FPRF field of the FPSCR
based on the result, while fctiw and fctiwz set it
to an undefined value.

• feir and fein do not affect the VXSNAN bit of the
FPSCR, while fetiw and fctiwz do.

G.29.3 Storage Ordering

Rios-2 uses MSR bit 28 to control storage ordering.
This bit is reserved in Power PC, and no corresponding
control is provided.

second column of the table: the remainder of the line
gives the PowerPC mnemonic and the page on which
the instruction is described, as well as the instruction
names.

Rios-2 mnemonics that have not changed are not
listed.

PowerPC

Mnemonic Instruction

fctiw[.] Floating Convert to Integer Word

fctiwz[.] Floating Convert to Integer Word
with round toward Zero

G.29.4 Floating-Point Interrupts

Both architectures use MSR bits 20 and 23 to control
the generation of interrupts for floating-point enabled
exceptions. However, in PowerPC these bits comprise
a two-bit value which controls the occurrence, preci
sion, and recoverability of the interrupt, while in
Rios-2 these bits are used independently to control
the occurenee (bit 20) and the preCision (bit 23) of the
interrupt. Moreover, in Power PC all floating-point
interrupts are considered Program interrupts. while in
Rios-2 imprecise floating-point interrupts have their
own interrupt vector location.

G.29.S Trace Interrupts

The interrupt vector location differs between the two
architectures.

Appendix G. Incompatibilities with the Power Architecture 171

G.29.6 Deleted Instructions

The following instructions are new in the Rios-2 Archi
tecture but have been dropped from the PowerPC
Architecture.

Ifq
Ifqu
Ifqux

Ifqx
stfq
stfqu
stfqux

stfqx

L.oad Floating-Point Quad
L.oad Floating-Point Quad with Update
L.oad Floating-Point Quad with Update
Indexed
L.oad Floating-Point Quad Indexed
Store Floating-Point Quad -
Store Floating-Point Quad with Update
Store Floating-Point Quad with Update
Indexed
Store Floating-Point Quad Indexed

IBM Confidential

G.29.7 Discontinued Opcodes

The opcodes listed below are new in the Rios-2 Archi
tecture but have been dropped from the Power PC
Architecture. The list contains the old mnemonic
(MNEM), the primary opcode (PRI), and the extended
opcode (XOP) if appropriate.

MNEM PRI XOP

Ifq 56
Ifqu 57
Ifqux 31 823
Ifqx 31 791
stfq 60
stfqu 61
stfqux 31 951
stfqx 31 919

172 PowerPC User Instruction Set Architecture

(

IBM Confidential

Appendix H. New Instructions

The following instructions in the Power PC Architecture
are new: they are not in the Power Architecture.

They are listed in three groups, according to whether
they exist in all Power PC implementations, only in
64-bit implementations, or only in 32-bit implementa- ,
tions.

The following instructions are optional: eciwx, ecowx,
fres, lraqrle, Isel, Isqrl[s], slbia, slbie, slbiex, strlWX,
tibia, tlbiex,tlbsyne.

H.1 New Instructions for All
Implementations

debf
debi
debst
debt
debtst
dlvw
dlvwu
eciwx
eeowx
eieio
extsb
fadds
letiw
tctiwz

fdivs
fmadds
fmsubs
fmuls
fnmadds
Inmsubs
Ires
fraqrle
Isel
fsqrl[s]
fsubs
iebi
Iwarx
mftb
mulhw
mulhwu
strlWX

stwex.
subf
tibia
tlbJex
tlbsyne

Data Cache Block Flush
Data Cache Block Invalidate
Data Cache Block Store
Data Cache Block Touch
Data Cache Block Touch for Store
Divide Word
Divide Word Unsigned
External Control In Word Indexed
External Control Out Word Indexed
Enforce In-order Execution of 110
Extend Sign Byte
Floating Add Single
Floating Convert To Integer Word
Floating Convert To Integer Word with
round toward Zero
Floating Divide Single
Floating Multiply-Add Single
Floating Multiply-Subtract Single
Floating Multiply Single
Floating Negative Multiply-Add Single
Floating Negative Multiply-Subtract Single
Floating Reciprocal Estimate Single
Floating Reciprocal Square Root Estimate
Floating Select
Floating Square Root [Single]
Floating Subtract Single
Instruction Cache Block Invalidate
Load Word And Reserve Indexed
Move From Time Base
Multiply High Word
Multiply High Word Unsigned
Store Floating-Point as Integer Word
Indexed
Store Word Conditional Indexed
Subtract From
TLB Invalidate All
TLB Invalidate Entry by Index
TLB Synchronize

H.2 New Instructions for 64-Bit
Implementations Only

cntlid
divd
divdu
extsw
fcfJd

fetid
fdldz

Iwa
Iwaux
Iwax
Id
Idarx
Idu
Idux
Idx
mulhd
mulhdu
mulld
rldd
rlder
rldie

rldld

rldier

rldiml

slbia
slbie
slbiex
sid
srad
sradJ

srd
std
stdex.
stdu
stdux
stdx
td
tdl

Count Leading Zeros Doubleword
Divide Doubleword
Divide Doubleword Unsigned
Extend Sign Word
Floating Convert From Integer
Doubleword
Floating Convert To Integer Doubleword
Floating Convert To Integer Doubleword
with round toward Zero
Load Word Algebraic
Load Word Algebraic with Update Indexed
Load Word Algebraic Indexed
Load Doubleword
Load Doubleword And Reserve Indexed
Load Doubleword with Update
Load Doubleword with Update Indexed
Load Doubleword Indexed
Multiply High Doubleword
Multiply High Doubleword Unsigned
Multiply Low Doubleword
Rotate Left Doubleword then Clear Left
Rotate Left Doubleword then Clear Right
Rotate Left Doubleword Immediate then
Clear
Rotate Left Doubleword Immediate then
Clear Left
Rotate Left Doubleword Immediate then
Clear Right
Rotate Left Doubleword Immediate then
Mask Insert
SLB Invalidate All
SLB Invalidate Entry
SLB Invalidate Entry by Index
Shift Left Doubleword
Shift Right Algebraic Doubleword
Shift Right Algebraic Doubleword Imme
diate
Shift Right Doubleword
Store Doubleword
Store Doubleword Conditional Indexed
Store Doubleword with Update
Store Doubleword with Update Indexed
Store Doubleword Indexed
Trap Doubleword
Trap Doubleword Immediate

Appendix H. New Instructions 173

H.3 New Instructions for 32-Bit
Implementations Only

mfsrln Move From Segment Register Indirect

IBM Confidential

H.4 Instructions with Different
Semantics

The following instructions, which are all privileged,
have the same opcode in both PowerPC and Power,
but perform differently.

PowerPC ~

dcbz ddz
flbIe flbl

174 PowerPC User Instrudion Set Architedure

/

(

IBM Confidential

Appendix I. Illegal Instructions

With the exception of the instruction consisting
entirely of binary D's, the instructions in this class are
available for future extensions of the Power PC Archi
tecture: that is, some future version of the PowerPC
Architecture may define any of these instructions to
perform new functions.

The following primary opcodes are illegal.

1, 4, 5, 6, 56, 57, 60, 61

In addition, the following primary opcodes are illegal
for 32-bit implementations (they are defined only for
64-bit implementations).

2,30,58,62

The following primary opcodes have unused extended
opcodes. Their unused extended opcodes can be
determined from the opcode maps in Appendix K,
"Opcode Maps" on page 179. Extended opcodes for
instructions that are defined only for 64-bit implemen
tations are illegal in 32-bit implementations, and
extended opcodes for instructions that are defined
only for 32-bit implementations are illegal in 64-bit
implementations. All unused extended opcodes are
illegal.

17, 19, 30 ' , 31, 59, 621, 63

1 Applies only for 64-bit implementations (illegal
primary opcade for 32-bit implementations)

An instruction consisting entirely of binary O's is
illegal, and is guaranteed to be illegal in all future
versions of this architecture.

Appendix ·1. ·lIIegal Instructions 175

IBM Confidential

176 PowerPC User Instruction Set Architecture

(

IBM Confidential

Appendix J. Reserved Instructions

The instructions in this class are allocated to specific
purposes that are outside the scope of the PowerPC
User Instruction Set Architecture, Power PC Virtual
Environment Architecture, and PowerPC Operating
Environment Architecture.

The following types of instruction are included in this
class.

1. Instructions for the Power Architecture which
have not been included in the PowerPC Architec
ture. These are listed in Appendix G, "Incompat
ibilities with the Power Architecture" on
page 165.

2. Implementation-specific instructions used to
conform to the PowerPC Architecture specifica
tions.

3. The instruction with primary opcode 0, when the
instruction does not consist entirely of binary 0'5.

4. Any other instructions contained in Book IV,
PowerPC Implementation Features for any imple
mentation, which are not defined in the PowerPC
User Instruction Set Architecture, PowerPC
Virtual Environment Architecture, nor Power PC
Operating Environment Architecture.

Appendix J. Reserved Instructions 177

IBM Confidential

178 PowerPC User Instruction Set Architecture

(

IBM Confidential

Appendix K. Opcode Maps

This section contains tables showing the opcodes and
extended opcodes in all members of the Power archi
tecture family.

For the primary opcode table (Table 11 on page 181),
each cell is in the following format.

Opcode in
Decimal

Applicable
Machines

Instruction
Mnemonic

Opcode in
Hexadecimal

Instruction
Format

"Applicable Machines" identifies the Power architec
ture family members that recognize the opcode,
encoded as follows:

P Power PC
2 Rios-2
o Original Power (RS/6000)
All All of the above

Editors' Note -------------,

Rios-2 is an unannounced IBM product. If this
Book is published before the Rios-2 product is
announced, the code "2" should be omitted from
the tables in this appendix, as should all
instructions that exist only in Rios-2.

The extended opcode tables show the extended
opcode in decimal, the instruction mnemonic, the
applicable machines, and the instruction format.
These tables appear in order of primary opcode within
two groups. The first group consists of the primary
opcodes that have small extended opcode fields (2-4
bits), namely 30, 56, 57, 58, 60, 61, and 62. The
second group consists of primary opcodes that have
10-bit extended opcode fields. The tables for the
second group are rotated.

In the extended opcode tables several special
markings are used.

• A prime (') following an instruction mnemonic
denotes an additional cell, after the lowest
numbered one, used by the instruction. For
example, subfc occupies cells 8· and 520 of
primary opcode 31, with the former corresponding
to OE - 0 and the latter to OE -1. Similarly, sradl
occupies cells 826 and 827, with the former corre
sponding to shs-O and the latter to shs-1(the
9-bit extended opcode 413, shown on page 77,
excludes the shs bit).

• Two vertical bars (II) are used instead of primed
mnemonics when an instruction occupies an
entire column of a table. The instruction mne
monic is repeated in the last cell of the column.

• For primary opcode 31, an asterisk (*) in a cell
that would otherwise be empty means that the
cell is reserved because it is "overlaid," by a
fixed-point or Storage Access instruction having
only a primary opcode, by an instruction having
an extended opcode in primary opcode 30, 58, or
62, or by a potential instruction in any of the cate
gories just mentioned. The overlaying instruc
tion, if any, is also shown. A cell thus reserved
should not be assigned to an instruction having
primary opcode 31. (The overlaying is a conse
quence of opcode decoding for fixed-point
instructions: the primary opcode, and the
extended opcode if any, are mapped internally to
a 10-bit "compressed opcode" for ease of subse
quent decoding.)

An empty cell, or a cell containing only an asterisk,
corresponds to an illegal instruction.

When instruction names and/or mnemonics differ
among the family members, the PowerPC terminology
is used.

The instruction consisting of 32 O-bits causes the
system illegal instruction error handler to be invoked
for all members of the Power family, and this is likely
to remain true in future models (it is guaranteed in
the Power PC architecture). An instruction with
primary opcode 0 but not consisting entirely of O-bits
is reserved.

Appendix K. Opcode Maps 179

..

IBM Confidential

,r' ~,

\ '

'- /

180 PowerPC User Instruction Set Architecture

IBM Confidential

Table 11. Primary Opcodes

(00 00 01 01 02 02 03 03
lJIegal, tdi twi

Reserved Trap Ooubleword Immediate
All P o All 0 Trap Word Immediate

04 04 05 05 06 06 07 07
mulli

All 0 Multiply Low Immediate

08 08 09 09 10 OA 11 OB Subtract From Immediate Carrying
subfic dozi cmpli cmpi Difference or Zero Immediate

Compare Logical Immediate
All 020 D All o All D Compare Immediate

12 OC 13 00 14 OE 15 OF Add Immediate Carrying
addic addic. addi addis Add Immediate Carrying and Record

Add Immediate
All o All o All o All 0 Add Immediate Shifted

18 10 17 11 18 12 19 13 Branch Conditional
be sc b CR ops, System Call

etc. Branch
All B All SC All I All XL See Table 19 on page 184

20 14 21 15 22 16 23 17 Rotate Left Word Imm. then Mask Insert
rlwimi rlwinm rlmi rlwnm Rotate Left Word Imm. then AND with Mask

Rotate Left then Mask Insert
All M All M 20 M All M Rotate Left Word then AND with Mask
24 18 25 19 26 1A 27 1B OR Immediate

ori oris xori xoris OR Immediate Shifted
XOR Immediate

All o All o All o All 0 XOR Immediate Shifted
28 1C 29 10 30 1E 31 1F AND Immediate

andi. andis. FX Owd Rot FX AND Immediate Shifted
Extended Ops See Table 12 on page 182

All 0 All o P MO[S] All See Table 20 on page 186

32 20 33 21 34 22 35 23 Load Word and Zero
(

Iwz Iwzu Ibz Ibzu Load Word and Zero with Update
Load Byte and Zero

All 0 All 0 All o All 0 Load Byte and Zero with Update

36 24 37 25 38 26 39 27 Store Word
stw stwu stb stbu Store Word with Update

Store Byte
All 0 All 0 All D All 0 Store Byte with Update

40 28 41 29 42 2A 43 2B Load Half and Zero
1hz Ihzu Iha Ihau Load Half and Zero with Update

Load Half Algebraic
All 0 All 0 All o All 0 Load Half Algebraic with Update

44 2C 45 20 46 2E 47 2F Store Half
sth sthu Imw stmw Store Half with Update

Load Multiple Word
All 0 All 0 All o All 0 Store Multiple Word

48 30 49 31 50 32 51 33 Load Floating-Point Single
Ifs Ifsu Ifd Ifdu Load Floating-Point Single with Update

Load Floating-Point Double
All 0 All 0 All o All 0 Load Floating-Point Double with Update

52 34 53 35 54 38 55 37 Store Floating-Point Single
stfs stfsu stfd stfdu Store Floating-Point Single with Update

Store Floating-Point Double
All 0 All 0 All o All 0 Store Floating-Point Double with Update

58 38 57 39 58 3A 59 3B . See Table 13 on page 183
Ifq, Ifqu, FX OS-form FP Single See Table 14 on page 183

3 illegal 3 illegal Loads Extended Ops See Table 15 on page 183
2 OS 2 OS P OS P A See Table 21 on page 188

60 3C 61 3D 62 3E 63 3F See Table 18 on page 183
stfq, stfqu, FX OS-Form FP Double See Table 17 on page 183

3 illegal 3 illegal Stores Extended Ops See Table 18 on page 183
2 OS 2 OS P OS All See Table 22 on page 190

Appendix K. Opcode Maps 181

IBM Confidential

Table 12. Extended Opcodes for Primary Opcode 30
(instruction bits 27:30)

00 01 10 11
0 1 2 3

00 rld/cl rldlcl' rldler rldlet'
P P P P

MD MD MD MD
4 5 6 7

01 rldic rldic' rldiml rldlm'
P p P P

MD MD MD MD
8 9

10 rldd rldcr
p P

MDS MDS

.. .

11
. . " , .. ·,'1 •

182 PowerPC User Instruction Set Architecture

IBM Confidential

Table 13. Extended Opcodes for Primary Opcode 56 Table 14. Extended Opcodes for Primary Opcode 57
(instruction bits 30:31) (instruction bits 30:31)

0 1 0 1

0 0

0 Ifq
2 0

Ifqu
2

OS OS

1 1
-

Table 15. Extended Opcodes for Primary Opcode 58 Table 16. Extended Opcodes for Primary Opcode 60
(instruction bits 30:31) (instruction bits 30:31)

0 1 0 1

0 1 0

0 Id Idu
P P 0 stfq

2
OS OS OS
2

1 "". P 1

OS

(Table 17. Extended Opcodes for Primary Opcode 61
(instruction bits 30:31)

Table 18. Extended Opcodes for Primary Opcode 62
(instruction bits 30:31)

0 1 0 1

0 0 1

0 stlqu
2 0 sid stdu

P P
OS OS OS

1 1

(-,.

_./

Appendix K. Opcode Maps 183

..a.
00
~

"D

i
=lJ
n
c
I ..
;
~
i! a
o
::I
(I)

!.
»
i1
:r
;:
!l c
i

Table 19 (Page 1 of 2). Extended Opcodes for Primary Opcode 19 (instruction bits 21:30)
00000 oooot OOOtO OOOtt OOtOO OOtOt OOtto OOttt OtOOO OtOOt OtOtO OtOtt OttOO ottot Ottto Otttt toooo tOOOt

0 18

00000 me" bel,
All All
Xl Xl

33

oooot
emo,

All
XL

00010

ooott

121

00100 e,.nd
All
Xl

00101

113

OOttO cr.o,
All
XL
225

OOtt. emM
All
XL
257

01000 e'.n~
All
Xl
281

0100t e, .. "
All
XL

Ot010

OtOtf

01100

417

OttO'
crore

All
XL
441

01ttO
cro,
All
XL

Ott11

'---

-\

''-.

tOOtO tOOft tOtOO tOtOt tOttO

80 ", All
Xl
82

" • .,e
20
Xl

180

"rne
All
XL

tOftt ftOOO ttOOt ftOto ftOtt tttoo fttOt ftttO

\,

tfttt

-UI
a=
~
::I
:!t
D.
CD
::I -!:

IBM Confidential

· · · · ·
· ~ ·
· · 5! ..

..
::
5!

8
i

o

i
-i
~~.~~~----~--~----+----+----+----+----~--~----~--~--~~--4----4----+---~ ~ g .~- .
N 8 = ~<x
In· ~
~ .. .c::
c: ;
~f!
g ::
=r.:~--~----~--~----+----+----+----+----~--~----~--~--~~--4----4----+---~
In 0

g~
~fe!~--~---+---;----r---+---~--~---+--~----~--+---~--~---+--~--~
G) ;
~f..t----r---;----t---;----+--~----+---~---+--~r---+---~---+----r---+---~ o •
8.;
of.o~---t----t----r--~----+----r--~r---+----+----~--4----+----r---~---+--~
>.;
ti ;
E • _8 -. .
~~o~ __ ~ ____ ;-__ ~ ____ +-__ -+ ____ +-__ -+ ____ +-__ -+ ____ ~ __ ~ ____ ~ __ ~ __ -4 ____ 4-__ ~
.e~
III 0
G) •
~::
g 8
Q.o
0::
~~8~--~---+---;----r---+---~---r---+--~~--~--+---~---+---4----r-~ Glo-
~5!
G) 8
')(8

:~8~---r--~----+---;----+--~r---+---~---+----r---+----r---4----r---4---~ N~

O~§r-~~~---+---r--~--+-~~~---+---r--~--r-~~-+--~--~
N5!

&F-!+---+---+---+---+---+---1---1---~--~--~--~--~--~--~--~--~
~~
~F-I~---4----+----4----+----+----+----+----~---+----~--~----~--~---4----4---~

! ~
o

i
.-
8 .. 8

i
..
o

i · · · 5!

.
!

.. · .. · ·
Appendix K. Opcode Maps 185

..a.
GO en

-:
I
=lI n
c
I .,
5i'
sa.
i!
Q.
0-
:I
(I)

!.
~
(I
:r
fi
~
CI

Table 20 (Page 1 of 2). Extended Opcodes for Primary Opcode 31 (instruction bits 21:30)
00000 00001 00010 ooott 00100 00101 OOttO OOUI 01000 01001 01010 010tt OttOO OttOI Ott10 Otttt 10000 10001

0 4 8 • 10 11 11

00000 emp Iw .ub'e mu'h ~dde mu'''' u H.sO"
All All All P All P All
X X XO XO XO XO
32 40 47

cmp' .ub' · 00001 All P
x xo

1/1 73 75 7.

00010
fd mu'h mu'''' fd,.
p p p P
X XO XO 0

104 107 111

OOOtt
n • ., muI fwI"
All 20 All
XO XO 0 13. 138 143 144

.ub'. add. • mfe" 00100 All All All
XO ICO XFlC

171 · 0010.

200 202 207
.ubfz addz. · OOttO All All

XO xo
232 233 234 235 231

OOttl .ub!" !null. addm mu~/. mu'!' All p All All All
XO XO XO XO 0
284 288 271
doz add .~::,' 01000 20 All
XO XO D

303
dozl"

Of 001 20
D

331 335
dlv ~" 01010 20
XO 0

380 383 387
ab. dlv. emp" 010tt 20 20 All
XO XO D

388
addle

OttOO All
D

431
addle

Ottot All
D

417 451 413
dl"du diVWI add,.

01ttO P P All
XO XO D

488 411 411 415
Itab. dl"d di_ a'/:.,. Otttl 20 P P

XO XO XO D

10010 l00tt
11

m'er
All
x

83
m'm.

All
X

141
mlm.

All
X

210
mfar
All
X

242
mf.d

All
X

308
flbl.
All
X

338 33.
flbl." m'lp

P All
X XFlC

370 371
flbla mlfb

P P
X XFlC

434
dbl.

p
X

488 417
dbl. mf.p

P All
X XFlC

488
dbla

P
X

10100 10101 lOttO 'Oltt ttOOO tt001
20 21 23 24

'wan 'd. Iwzx atw
P P All All
x x x x

53 M 1/1
'dux deblf 'wzua

P P All
x X X

84 88 87
'dar. deb' 'bn

P P All
X X X

'" 111
ell 'bz""
20 All
X X

141 lSO 151 112 113
Ifdx .lwCII .twx . ,. " . P P All 20 20

X X X X X
181 .::. 184

"dux 11/9
p All 20
X X X

214 215 21. 217
Ifdex .fb. .,,. at09

P All 20 20
X X X X

241 247 241
debf. .fbUlI ",,.

P All 20
X X X

277 278 278
,.ebx debt 1hz"

20 P All
X X X

310 311
.elWIt 'MUIt

P All
X X

341 343
twalt thalt

P All
X X

373 375
'w~ 'h_

P All
X X

407
.thIt
All
X

438 431
.eo", .thua

P All
X X

470 471
debl 1m

P All
X 0

S02 503
cll Ifm ...
20 All
Ie ~

tto.o ttOtt 1ttOO tt101
28 27 28 28

cntlz aid Md ma.Ir
All P All 20
x x x X

1/1 SO
cntlz ."dc

P All
X X

124
nor
All
X

284
09"
All
X

318
Itor
All
X

412
.re
All
X

444
or
All
X

47'
..... d
All
X

ttttO
30

r'dlcl
P

MO
82

rldlcl
P

MO
84

r'dle,
P

MO
128

r'dle,
P

MD
158

r'dle"
P

MO
180

rldle"
P

MO
222

r'dlm
P

MO
214

rldlm
P

MD
288

rldc"
P

MOS
318

r'de"
P

MOS
3SO •

382 ·
414 •

448 •

478 ·
510 ·

\

\.,)

.tttt

I

I
,

I

118 I
rlwlm

All I
M ,

181 ,
r'w/",

~' i
2231

r'm":
20 I
M !

2SS

r~
M

287
or"
All
0

31.
or/"
All
0

351
"orl"

All
0

383 I

ItNl'j
D !

411'1 ."dM
All '
o I

447.1 Mdi.
All
D

iii
i:

~
:I
::!I
Do
CD
:I
C!!
!.

»
"a
"a
CD
::2
Do
;Co

?\
o
"a

8
Do
CD

s::
I)
"a o

...a.

~

~ ,....."
I :

'.

Table 20 (Page 2 of 2). Extended Opcodes for Primary Opcode 31 (instruction bits 21:30)
00000 00001 00010 OOOft 00100 00101 OOftO OOU1 01000 01001 01010 010ft OftOO 01101 Oft10 011ft 10000 10001 10010

612 520 621 522 523

10000 mc'lt .ub'c mu'h !Addc' mulh "..
All All P All P
X XO XO XO xo

552

1000.t
,ubI'

p
XO

585 587

tOO to mulh' mulln
p P

XO XO
818 "9

100ft no,,' mur
All 20
XO XO
848 850

10tOO .ub'. odd.'
All All
XO XO

10t01

712 714

tOftO • ublz ' oddz •
All All
XO XO
744 745 748 747

10ft1 ":::rn I-tHillfi oddm "'~~/. P All
XO XO XO XO
118 119

11000
doz' odd'
20 All
XO XO

818

1100t roc
20
X

843

ft010
div'
20
XO

872 876

11011
ab,' dill"
20 20
XO XO

1ftOO

U101

989 911

11110 d/pd~ dl!W"
P

XO XO
1000 1001 1003

nUl' d/~d' dlvw'
11t11 20 P P

XO Xo Xo
---~-

100ft 10100 10101 10ftO 10111
531 533 534 135
du ,.WIt Iwbn II ..
20 All All All
x x x x

688 587
flb'r' lcJi,ult

P All
X X

595 597 698 599
m'" I,wl 'rne IIdll

All All All All
x x x X

827 830 831
m,,,1 deist IIdult

20 20 All
X X X

859 .. t 882 883
ml.r; ... WIt Ifwb, .ft ..

P All All All
X X X X

885
.ft.u

All
X

·72. 727
d,wl .ftdll
All All
X X

759
d'du

All
X

790 791
Ihbn IIqll

All Z
X X

823
Ilqull

Z
X

8114 .'0/.
P
X

818 818
dh6r .ftqll

All Z
X X

951
.ftqu

2
X

982 983
Icbl .ftlw

P P
X X

tOt4
dcbz
All
X

11000 11001

638 137 .rw ",6
All 20
x x

884 ..
.'" "0
20 20
X X

.98
"'q
20
X

728 72.
.rlq "" 20 20

X X
780

,,/lq
20
X
7.

.raw
All
X

824
"owl

All
X

820 121

"" I' ••
20 20
X X

952
.,o/q

20
X

l...-

11010 11011

539
ltd
P
x

794
"od

P
X

828 827
"odl .,.,11

P P
XS XS

822
utah

All
X

au
.... b

P
X

988
P
X

11100 11101

1141
mo.I!

20
X

,......,.

1tt10 1tt11

,

I

-OJ s::
g
~
Do
CD
::2 ..
!.

IBM Confidential

~ ;:; Jo.< =--== == ==== === =--== ==== ==== === === == == === === == ==

=== ==== ==== ==== ==--= === === == === === === ==== ==== === ==

=== ==== ==== ==== =-- === === ==== === === === ==== === = ====
=== =--== = == === = = == === == === === ==== === == ..

!
i .. - . ! =)IL< === ==--= = == = === === === === === == ==== = == ==

I :,iIL< === == === === = == =--== == === === ==== ==== === == == -,

-i

---- ---- --- --- ---- --- ---- ---- ---- ---- ---- ---- ---- ---- -------- ---- ---- ---- ---- --- ---- ---- ---- ---- ---- ---- ---- ---- ----
==== ==== == == == === === ==--= === === === === ==== === ===

==== ==== ==== === === ==== === == ==== ==== ==== === ==== === ====

o •
i =ia..c ==== ==== ==== === ==== ==== ==== === ==== ==== ==== ==== ==== ==== ====

.... i
~ ..
~~Ir--+---~---+-~---~---+-~----r---~---~-+---~---r--+---~~

.~----~--~----~--~----~--~----~--~----~--~----~--~----~--~----~--~ :a~
50 ._ ~o :t------+-----~~-----t------+------+------+-----~~-----t------+------+------+-----~~----~------r-----_t------;

~ t:= ;;
~~i:t------+-----~~-----t------+------+------+-----~~-----t------+------+------+-----~~----~------r-----_t------;

c ..
~~0:t------+_----~~----_t------+_----_+------+_----~~----_t------+_----_+------+_----~~----~------r-----_t------; m!
CD ;;
~r._~-----+------~----+-----~-----r-----+------~----+-----~-----r-----i------~----t-----~----~-----i Q ..

~;
of.o~----+-----~---f----~----+-----~---+----~----+-----~---+----~----+-----;-----r----~
>.;; a 0
E .. _8 -.. G.~o~-----+-----+----_+----_+----_i----_i----_i----_i~--__ ~----~----r_----r_----r_----r_----r_--_.,

-&1
• 0

CD :: as
~~o~----~----+-----+-----~--~~--~-----+-----r----~----~----+-----r---~----~-----+----~
0::
~F-8+_--~--_+--~~--+_--~--~--_+----~--+_--~--_+--~----~--+_--~--~ CD ..
~o

is
Jl8

S
N'-
'Oi
F-+---+---4--~--~~--~--+----+----+---+---~---+----+----+---~---r--~ 0

CD i
D) ..

~I - I N

CD
25 I i

0
i I

. ~ .. I . 0 . ! i E ~ i
0 - 8 i S ~ s 8 s ;; ;; 0 0 0 ;; 0 0

188 PowerPC User Instruction Set Architecture

»
'a
'a
CD
:::I
~
;:r
?'
o
'a

9
~
CD

s:
DJ
'a
In

..a.
GO
U)

~ ~,
'\ J

Table 21 (Page 2 of 2). Extended Opcodes for Primary Opcode 59 (instruction bits 21 :30)
00000 00001 00010 00011 00100 00101 00110 00111 01000 01001 01010 01011 01100 01101 01110 01111 10000 10001

10000

1000,1

10010

10011

10100

10101

10110

10111

11000

11001

11010

11011

11100

11101

11110

11111

10010 10011 10100 10101 10110 10111 11000

II
II
II

II
II
II
I

I

II
1\

II
I

I

I

fdill. f.ub. fadd. f.qrta fr ••

11001 11010 11011 11100 11101

I

I

I

I
fmul. fm.uI. Iotm8d

AMI."

11110 11111

I

,

Inm. ~8C 'da

iii
s:
11
i a.
CD
:::I = !.

...
U)
o

"0

i
=l.
n
c
I .,
Ei
sa.
£!
9: o
:I
(I)

!.
l>

is:
£
;

.. . .

Table 22 (Page 1 of 2), Extended Opcodes for Primary Opcode 63 (instruction bits 21:30)
00000 oooot OOOtO OOOtt OOtOO ootOt oottO OOttt otOOO Otoot OtOto OtOtt OttOO OttOt Ott to Otttt toooo tOOOt

0 12 14 111
00000 'emp 'np 'cflw ,cu. ...

All All P2 PI
X X X X

32 31 40

oooot 'cmp mtllb 'nell
All All All
X X X

84 70 72

OOOfO me", mlt.6 'm,
All All All
X X X

OOOtf

134 138

ootOO mit., 'nab.
All All
X X

OOtOf

OOttO

OOfff

214

otOOO
,ab.
All
X

OfOOt

OtOtO

OtOft

Off 00

OttOf

ott to

Otttt

-

J \,

tOOtO tOOtt tOtOO totOt touo tout ttOOO ttoot
18 20 21 22 23 21

'dill """ '.dd ',qlf , .. , lmul
All All All P2 P All
A A A A A A

II II

"
II

I

I I I I

II

I

ttotO ttOtt tttoo fttOf
21 28 28

'nqlf '':luI "".d
P All
A A A

II
II
II
II II

II
II

II
II

,

II ,I

tttto
so

'':a'•
A

I

:(

'-

ftfff
31

~1Im.
All
A

,

,I
II

II
II

-CD
i:
g
~
Do
CD a
I:

l>
'IS
'IS
CD
:::I a.
>C'

?\
o
'IS

B a.
CD

i:
II
'IS
en

...
U) ...

~, ,,~

Table 22 (Page 2 of 2). Extended Opcodes for Primary Opcode 63 (instruction bits 21 :30)
00000 oooot OOOtO OOOtt ootoo OOtOt OOttO OOttt otOOO OtOOt ototO OtOtt OttOO OttOt OtttO Otttt toooo tOOOt

toooo

tOOO,t

S83

tOO"
mff.
All
)(

toott

tOtOO

tOtOt

711
tOftO m"" All

)(FL

tOftt

ttOOO

814 811

ftoot 'etld 'etldz
p p
x X

848

ftOto 'efld
p
X

ttOft

tttOO

tftOt

ftftO

tUft

tOOtO tOOft tOtoo totOt to to tOttt ftOOO ftOOt

I I
I

I I

I
II
II
II I
II II
II

II II I
'dill ,.ub '.dd ,.,If , .. , 'mu'

ftOtO ftOtt tttoo fttOt
I

I

I

I
II
II
II

,,,,If 'm''''' 'mild

~

ftftO ftttt

I

I

Inm. ~Il 'd

m
i:

11
:::I
::!I a.
CD
:::I -!:

IBM Confidential

192 PowerPC User Instruction Set Architecture

IBM Confidential

Appendix L. PowerPC Instruction Set Sorted by Opcode

This appendix lists all the instructions in the PowerPC
Architecture. A page number is shown for
instructions that are defined in this Book (Book I,
PowerPC User Instruction Set Architecture), and the
Book number is, shown for instructions. that are

Form
Opcode Made Page

Mnemonic
Primary Extend Dep.' IBk

D 2 0 61 tdi
D 3 61 twi
D 7 55 mulli
D 8 SR 52 subfic
D 10 60 cmpli
D 11 59 cmpi
D 12 SR 51 addic
D 13 SR 51 addic.
D 14 50 addi
D 15 50 addis
B 16 CT 20 bc[l][a]
SC 17 1 22 sc
I 18 20 b[I][a]
XL 19 0 25 mcrf
XL 19 16 CT 21 bclr[l]
XL 19 33 24 crnor
XL 19 50 Bk III rfi
XL 19 129 24 crandc
XL 19 150 Bk II isync
XL 19 193 23 crxor
XL 19 225 23 cmand
XL 19 257 23 crand
XL 19 289 24 creqv
XL 19 417 24 crorc
XL 19 449 23 cror
XL 19 528 CT 21 bcctr[l]
M 20 SR 74 rlwimi[.]
M 21 SR 71 rlwinm[.]
M 23 SR 73 rlwnm[.]
D 24 64 ori
D 25 64 oris
D 26 64 xori
D 27 64 xoris
D 28 SR 63 andi.
D 29 SR 63 andis.
MD 30 0 (SR) 70 rldicl[.]
MD 30 1 (SR) 70 rldicr[.]
MD 30 2 (SR) 71 rldic[.]
MD 30 3 (SR) 74 rldimi[.]
MDS 30 8 (SR) 72 rldcl[.]
MDS 30 9 (SR) 73 rldcr[.]

defined in other Books (Book II, PowerPC Virtual Envi
ronment Architecture, and Book III, PowerPC Oper
ating Environment Architecture). If an instruction is
defined in more than one Book, the lowest-numbered
Book is used.

Instruction

Trap Doubleword Immediate
Trap Word Immediate
Multiply Low Immediate
Subtract From Immediate Carrying
Compare Logical Immediate
Compare Immediate
Add Immediate Carrying
Add Immediate Carrying and Record
Add Immediate
Add Immediate Shifted
Branch Conditional
System Call
Branch
Move Condition Register Field
Branch Conditional to Link Register
Condition Register NOR
Return From Interrupt
Condition Register AND with Complement
Instruction Synchronize
Condition Register XOR
Condition Register NAND
Condition Register AND
Condition Register Equivalent
Condition Register OR with Complement
Condition Register OR
Branch Conditional to Count Register
Rotate Left Word Immediate then Mask Insert
Rotate Left Word Immediate then AND with Mask
Rotate Left Word then AND with Mask
OR Immediate
OR Immediate Shifted
XOR Immediate
XOR Immediate Shifted
AND Immediate
AND Immediate Shifted
Rotate Left Doubleword Immediate then Clear Left
Rotate Left Doubleword Immediate then Clear Right
Rotate Left Doubleword Immediate then Clear
Rotate Left Doubleword Immediate then Mask Insert
Rotate Left Doubleword then Clear Left
Rotate Left Doubleword then Clear Right

Appendix L. PowerPC Instruction Set Sorted by Opcode 193

IBM Confidential

Form
Opcode Mode Page

Mnemonic Instruction
Primary Extend Dep.1 I Bk

X 31 0 59 cmp Compare
X 31 4 62 tw Trap Word
XO 31 8 SR 52 subfc[o][.] Subtract From Carrying
XO 31 9 (SR) 56 mUlhdu[.] Multiply High Doubleword Unsigned
XO 31 10 SR 52 addc[o][.] Add Carrying
XO 31 11 SR 56 mulhwu[.] Multiply High Word Unsigned
X 31 19 81 mfcr Move From Condition Register
X 31 20 46 Iwarx Load Word And Reserve Indexed
X 31 21 () 35 Idx Load Doubleword Indexed
X 31 23 33 Iwzx Load Word and Zero Indexed
X 31 24 SR 75 slw[.] Shift Left Word
X 31 26 SR 68 cntlzw[.] Count Leading Zeros Word
X 31 27 (SR) 75 sld[.] Shift Left Doubleword
X 31 28 SR 65 and[.] AND
X 31 32 60 cmpl Compare Logical
XO 31 40 SR 51 subf[o][.] Subtract From
X 31 53 () 35 Idux Load Doubleword with Update Indexed
X 31 54 Bk II debst Data Cache Block Store
X 31 55 33 Iwzux Load Word and Zero with Update Indexed
X 31 58 (SR) 68 cntlzd[.] Count Leading Zeros Doubleword
X 31 60 SR 66 andc[.] AND with Complement
X 31 68 () 62 td Trap Doubleword
XO 31 ·73 (SR) 56 mUlhd[.] Multiply High Doubleword
XO 31 75 SR 56 mUlhw[.] Multiply High Word
X 31 83 Bk III mfmsr Move From Machine State Register
X 31 84 () 46 Idarx Load Doubleword And Reserve Indexed
X 31 86 Bk II dcbt Data Cache Block Flush
X 31 87 30 Ibzx Load Byte and Zero Indexed
XO 31 104 SR 54 neg[o][.] Negate
X 31 119 30 Ibzux Load Byte and Zero with Update Indexed
X 31 124 SR 66 nor[.] NOR
XO 31 136 SR 53 subfe[o][.] Subtract From Extended
XO 31 138 SR 53 adde[o][.] Add Extended
XFX 31 144 81 mtcrf Move To Condition Register Fields
X 31 146 Bk III mtmsr Move To Machine State Register
X 31 149 () 39 stdx Store Doubleword Indexed
X 31 150 47 stwcx. Store Word Conditional Indexed
X 31 151 38 stwx Store Word Indexed
X 31 181 () 39 stdux Store Doubleword Indexed with Update
X 31 183 38 stwux Store Word with Update Indexed
XO 31 200 SR 54 subfze[o][.] Subtract From Zero Extended
XO 31 202 SR 54 addze[o][.] Add to Zero Extended
X 31 210 0 Bk III mtsr Move To Segment Register
X 31 214 0 47 stdcx. Store Doubleword Conditional Indexed
X 31 215 36 stbx Store Byte Indexed
XO 31 232 SR 53 subfme[o][.] Subtract From Minus One Extended
XO 31 233 55 mulld[o][.] Multiply Low Doubleword
XO 31 234 SR 53 addme[o][.] Add to Minus One Extended
XO 31 235 55 mullw[o][.] Multiply Low Word
X 31 242 0 Bk III mtsrin Move To Segment Register Indirect
X 31 246 Bk II dcbtst Data Cache Block Touch for Store
X 31 247 36 stbux Store Byte with Update Indexed
XO 31 266 SR 51 add[o][.] Add
X 31 278 Bk II debt Data Cache Block Touch
X 31 279 31 Ihzx Load Halfword and Zero Indexed
X 31 284 SR 66 eqv[.] Equivalent
X 31 306 Bk III tlbie TLB Invalidate Entry
X 31 ·310 Bk III eciwx External Control In Word Indexed

194 PowerPC User Instruction Set Architecture

IBM Confidential

Form
Opcode Mode Page

Mnemonic Instruction
Primary Extend Dep.l I Bk

X 31 311 31 Ihzux Load Haifword and Zero with Update Indexed
X 31 316 SR 65 xor[.] XOR
X 31 338 Bk III tlbiex TLB invalidate Entry by Index
XFX 31 339 80 mfspr Move From Special Purpose Register
X 31 341 0 34 Iwax Load Word Algebraic Indexed
X 31 343 32 Ihax Load Halfword Algebraic Indexed
X 31 370 Bk III tibia TLB Invalidate All
X 31 371 Bk II mftb Move From Time Base
X 31 373 0 34 Iwaux Load Word Algebraic with Update Indexed
X 31 375 32 Ihaux Load Halfword Algebraic with Update indexed
X 31 407 37 sthx Store Halfword Indexed
X 31 412 SR 66 orc[.] OR with Complement
XS 31 413 (SR) 77 sradi[.] Shift Right Algebraic Doubleword Immediate
X 31 434 0 Bk III slbie SLB Invalidate Entry
X 31 438 Bk III ecowx External Control Out Word Indexed
X 31 439 37 sthux Store Halfword with Update Indexed
X 31 444 SR 65 or[.] OR
XO 31 457 (SR) 58 divdu[o][.] Divide Doubleword Unsigned
XO 31 459 SR 58 divwu[o][.] Divide Word Unsigned
X 31 466 0 Bk 11/ slbiex SLB Invalidate Entry by index
XFX 31 467 79 mtspr Move To Special Purpose Register
X 31 470 Bk III dcbi Data Cache Block Invalidate
X 31 476 SR 65 nand[.] NAND
XO 31 489 (SR) 57 divd[o][.] Divide Doubleword
XO 31 491 SR 57 divw[o][.] Divide Word
X 31 498 0 Bk III slbia SLB Invalidate All
X 31 512 81 mcrxr Move to Condition Register from XER
X 31 533 44 Iswx Load String Word Indexed
X 31 534 40 Iwbrx Load Word Byte-Reverse Indexed
X 31 535 101 Ifsx Load Floating-Point Single Indexed
X 31 536 SR 76 srw[.] Shift Right Word
X 31 539 (SR) 76 srd[.] Shift Right Doubleword
X 31 566 Bk 11/ tlbsync TLB Synchronize
X 31 567 101 Ifsux Load Floating-Point Single with Update Indexed
X 31 595 0 Bk 11/ mfsr Move From Segment Register
X 31 597 44 Iswi Load String Word Immediate
X 31 598 48 sync Synchronize
X 31 599 102 Ifdx Load Floating-Point Double Indexed
X 31 631 102 Ifdux Load Floating-Point Double with Update Indexed
X 31 659 0 Bk 1/1 mfsrin Move From Segment Register Indirect
X 31 661 45 stswx Store String Word Indexed
X 31 662 41 stwbrx Store Word Byte-Reverse Indexed
X 31 663 104 stfsx Store Floating-Point Single Indexed
X 31 695 104 stfsux Store Floating-Point Single with Update Indexed
X 31 725 45 stswi Store String Word Immediate
X 31 727 105 stfdx Store Floating-Point Double Indexed
X 31 759 105 stfdux Store Floating-Point Double with Update Indexed
X 31 790 40 Ihbrx Load Halfword Byte-Reverse Indexed
X 31 792 SR 78 sraw[.] Shift Right Algebraic Word
X 31 794 (SR) 78 srad[.] Shift Right Algebraic Doubleword
X 31 824 SR 77 srawi[.] Shift Right Algebraic Word Immediate
X 31 854 Bk II eieio Enforce In-order Execution of I/O
X 31 918 41 sthbrx Store Halfword Byte-Reverse Indexed
X 31 922 SR 67 extsh[.] Extend Sign Halfword
X 31 954 SR 67 extsb[.] Extend Sign Byte
X 31 982 Bk 1/ icbi Instruction Cache Block Invalidate
X 31 983 120 stfiwx Store Floating-Point as Integer Word Indexed
X 31 . 986 (SR) 67 extsw[.] Extend Sign Word

Appendix L. PowerPC Instruction Set Sorted by Opcode 195

IBM Confidential

Form
Opcode Mode Page

Mnemonic Instruction
Primary Extend Dep.' I Bk

X 31 1014 Bk II dcbz Data Cache Block set to Zero
D 32 33 Iwz Load Word and Zero
0 33 33 Iwzu Load Word and Zero with Update
0 34 30 Ibz Load Byte and Zero
0 35 30 Ibzu Load Byte and Zero with Update
0 36 38. stw Store Word
D 37 38 stwu Store Word with Update
0 38 36 stb Store Byte
0 39 36 stbu Store Byte with Update
0 40 31 1hz Load Halfword and Zero
0 41 31 Ihzu Load Halfword and Zero with Update
0 42 32 Iha Load Halfword Algebraic
0 43 32 Ihau Load Halfword Algebraic with Update
0 44 37 sth Store Halfword
0 45 37 sthu Store Halfword with Update
0 46 42 Imw Load Multiple Word
0 47 42 stmw Store Multiple Word
0 48 101 Ifs Load Floating-Point Single
0 49 101 Ifsu Load Floating-Paint Single with Update
0 50 102 ltd Load Floating-Point Double
0 51 102 Itdu Load Floating-Point Double with Update
0 52 104 stfs Store Floating-Point Single
0 53 104 stfsu Store Floating-Point Single with Update
0 54 105 stfd Store Floating-Point Double
0 55 105 stfdu Store Floating-Point Double with Update
OS 58 0 () 35 Id Load Doubleword
OS 58 1 () 35 Idu Load Doubleword with Update
OS 58 2 () 34 Iwa Load Word Algebraic
A 59 18 108 tdivs[.] Floating Divide Single
A 59 20 107 fsubs[.] Floating Subtract Single
A 59 21 107 fadds[.] Floating Add Single
A 59 22 120 fsqrts[.] Floating Square Root Single
A 59 24 121 fres[.] Floating Reciprocal Estimate Single
A 59 25 108 frnuls[.] Floating Multiply Single
A 59 28 109 frnsubs[.] Floating Multiply-Subtract Single
A 59 29 109 fmadds[.] Floating Multiply-Add Single
A 59 30 110 fnmsubs[.] Floating Negative Multiply-Subtract Single
A 59 31 110 fnmadds[.] Floating Negative Multiply-Add Single
OS 62 0 () 39 std Store Doubleword
OS 62 1 () 39 stdu Store Doubleword w.ith Update
X 63 0 115 fcmpu Floating Compare Unordered
X 63 12 111 frsp[.] Floating Round to Single-Precision
X 63 14 113 fctiw[.] Aoating Convert To Integer Word
X 63 15 113 fctiwz[.] Floating Convert To Integer Word with round toward Zero
A 63 18 108 fdiv[.] Floating Divide
A 63 20 107 fsub[.] Floating Subtract
A 63 21 107 fadd[.] Floating Add
A 63 22 120 fsqrt[.] Floating Square Root
A 63 23 122 fsel[.] Floating Select
A 63 25 108 fmul[.] Floating Multiply
A 63 26 121 frsqrte[.] Floating Reciprocal Square Root Estimate
A 63 28 109 frnsub[.] Floating Multiply-Subtract
A 63 29 109 fmadd[.] Floating Multiply-Add
A 63 30 110 fnmsub[.] Floating Negative Multiply-Subtract
A 63 31 110 fnmadd[.] Floating Negative Multiply-Add
X 63 32 115 fcmpo Floating Compare Ordered
X 63 38 118 mtfsb1[.] Move To FPSCR Bit 1
X 63 ·40 106 fneg[.] Floating Negate

196 PowerPC User Instruction Set Architecture

IBM Confidential

(Form
Opcode Mode Page

Mnemonic Instrudion
Primary Extend Dep.l I Bk

X 63 64 116 mcrfs Move to Condition Register from FPSCR
X 63 70 118 mtfsbO[.] Move To FPSCR Bit 0
X 63 72 106 fmr[.] Floating Move Register
X 63 134 117 mtfsfi[.] Move To FPSCR Field Immediate
X 63 136 106 fnabs[.] Floating Negative Absolute Value
X 63 264 106 fabs[.] Floating Absolute Value
X 63 583 116 mffs[.] Move From FPSCR
XFL 63 711 117 mtfsf[.] Move To FPSCR Fields
X 63 814 0 112 fctid[.] Floating Convert To Integer Doubleword
X 63 815 0 112 fctidz[.] Floating Convert To Integer Doubleword with round

toward Zero
X 63 846 0 114 fcfid[.] Floating Convert From Integer Doubleword

lSee key to mode dependency column. on page 203.

(

(-

.-'

Appendix L. PowerPC Instruction Set Sorted by Opcode 197

IBM Confidential

198 PowerPC User Instruction Set Architecture

IBM Confidential

Appendix M. PowerPC Instruction Set Sorted by Mnemonic

This appendix lists all the instructions in the Power PC
Architecture. A page number is shown for
instructions that are defined in this Book (Book I,
PowerPC User Instruction Set Architecture), and the
Book number is shown for instructions that are

Form
Opcoda Mode Page

Mnemonic
Primary Extend Dep.l I Bk

XO 31 266 SR 51 add[o][.]
XO 31 10 SR 52 addc[o][.]
XO 31 138 SR 53 adde[o][.]
0 14 50 addi
0 12 SR 51 addic
0 13 SR 51 addic.
D 15 50 addis
XO 31 234 SR 53 addme[o][.]
XO 31 202 SR 54 addze[o][.]
X 31 28 SR 65 and[.]
X 31 60 SR 66 andc[.]
0 28 SR 63 andi.
0 29 SR 63 andis.
I 18 20 b[l][a]
B 16 CT 20 OO[I][a]
XL 19 528 CT 21 bcctr[l]
XL 19 16 CT 21 bclr[l]
X 31 0 59 cmp
0 11 59 cmpi
X 31 32 60 cmpl
0 10 60 cmpli
X 31 58 (SR) 68 cntlzd[.]
X 31 26 SR 68 cntlzw[.]
XL 19 257 23 crand
XL 19 129 24 crandc
XL 19 289 24 creqv
XL 19 225 23 crnand
XL 19 33 24 crnor
XL 19 449 23 cror
XL 19 417 24 crorc
XL 19 193 23 crxor
X 31 86 Bk II dcbf
X 31 470 Bk III dcbi
X 31 54 Bk II dcbst
X 31 278 Bk II dcbt
X 31 246 Bk II dcbtst
X 31 1014 Bk II dcbz
XO 31 489 (SR) 57 divd[o][.]
XO 31 457 (SR) 58 divdu[o][.]
XO 31 491 SR 57 divw[o][.]
XO 31 459 SR 58 divwu[o][.]

defined in other Books (Book II, PowerPC Virtual Envi
ronment Architecture, and Book III, PowerPC Oper
ating Environment Architecture). If an instruction is
defined in more than one Book, the lowest-numbered
Book is used.

Instruction

Add
Add Carrying
Add Extended
Add Immediate
Add Immediate Carrying
Add Immediate Carrying and Record
Add Immediate Shifted
Add to Minus One Extended
Add to Zero Extended
AND
AND with Complement
AND Immediate
AND Immediate Shifted
Branch
Branch Conditional
Branch Conditional to Count Register
Branch Conditional to Wnk Register
Compare
Compare Immediate
Compare Logical
Compare Logical Immediate
Count Leading Zeros Doubleword
Count Leading Zeros Word
Condition Register AND
Condition Register AND with Complement
Condition Register Equivalent
Condition Register NAND
Condition Register NOR
Condition Register OR
Condition Register OR with Complement
Condition Register XOR
Data Cache Block Flush
Data Cache Block Invalidate
Data Cache Block Store
Data Cache Block Touch
Data Cache Block Touch for Store
Data Cache Block set to Zero
Divide Doubleword
Divide Doubleword Unsigned
Divide Word
Divide Word Unsigned

Appendix M. PowerPC Instruction Set Sorted by Mnemonic 199

IBM Confidential

Form
Opcode Mode Page

Mnemonic Instruction
Primary Extend Dep.1 I Bk

X 31 310 Bk III eciwx External Control In Word Indexed
X 31 438 Bk III ecowx External Control Out Word Indexed
X 31 854 Bk II eieio Enforce In-order Execution of 110
X 31 284 SR 66 eqv[.] Equivalent
X 31 954 SR 67 extsb[.] Extend Sign Byte
X 31 922 SR 67 extsh[.] Extend Sign Halfword
X 31 986 (SR) 67 extsw[.] Extend Sign Word
X 63 264 106 fabs[.] Floating Absolute Value
A 63 21 107 fadd[.] Floating Add
A 59 21 107 fadds[.] Floating Add Single
X 63 846 () 114 fcfid[.] Floating Convert From Integer Doubleword
X 63 32 115 fcmpo Floating Compare Ordered
X 63 0 115 fcmpu Floating Compare Unordered
X 63 814 () 112 fctid[.] Floating Convert To Integer Doubleword
X 63 815 () 112 fctic:lz[.] Floating Convert To Integer Doubleword with round

toward Zero
X 63 14 113 fctiw[.] Floating Convert To Integer Word
X 63 15 113 fctiwz[.] Floating Convert To Integer Word with round toward Zero
A 63 18 108 tdiv[.] Floating Divide
A 59 18 108 fdivs[.] Floating Divide Single
A 63 29 109 fmadd[.] Floating Multiply-Add
A 59 29 109 fmadds[.] Floating Multiply-Add Single
X 63 ·72 106 fmr[.] Floating Move Register
A 63 28 109 fmsub[.] Floating Multiply-Subtract
A 59 28 109 fmsubs[.] Floating Multiply-Subtract Single
A 63 25 108 fmul[.] Floating Multiply
A 59 25 108 fmuls[.] Floating Multiply Single
X 63 136 106 fnabs[.] Floating Negative Absolute Value
X 63 40 106 fneg[.] Floating Negate
A 63 31 110 fnmadd[.] Floating Negative Multiply-Add
A 59 31 110 fnmadds[.] Floating Negative Multiply-Add Single
A 63 30 110 fnmsub[.] Floating Negative Multiply-Subtract
A 59 30 110 fnmsubs[.] Floating Negative Multiply-Subtract Single
A 59 24 121 tres[.] Floating Reciprocal Estimate Single
X 63 12 111 trsp[.] Floating Round to Single-Precision
A 63 26 121 trsqrte[.] Floating Reciprocal Square Root Estimate
A 63 23 122 fseI[.] Floating Select
A 63 22 120 fsqrt[.] Floating Square Root
A 59 22 120 fsqrts[.] Floating Square Root Single
A 63 20 107 fsub[.] Floating Subtract
A 59 20 107 fsubs[.] Floating Subtract Single
X 31 982 Bk II icbi Instruction Cache Block Invalidate
XL 19 150 Bk II isync Instruction Synchronize
0 34 30 Ibz Load Byte and Zero
0 35 30 Ibzu Load Byte and Zero with Update
X 31 119 30 Ibzux Load Byte and Zero with Update Indexed
X 31 87 30 Ibzx Load Byte and Zero Indexed
OS 58 0 () 35 Id Load Doubleword
X 31 84 () 46 Idarx Load Doubleword And Reserve Indexed
OS 58 1 () 35 Idu Load Doubleword with Update
X 31 53 () 35 Idux Load Doubleword with Update Indexed
X 31 21 () 35 Idx Load Doubleword Indexed
0 50 102 ltd Load Floating-Point Double
0 51 102 Ifdu Load Floating-Point Double with Update
X 31 631 102 Itdux Load Floating-Point Double with Update Indexed
X 31 599 102 Ifdx Load Floating-Point Double Indexed
0 48 101 Ifs Load Floating-Point Single
0 49 101 Ifsu Load Floating-Point Single with Update

200 PowerPC User Instruction Set Architecture

IBM Confidential

Form
Opcode Mode Page

Mnemonic Instruction
Primary Extend Dep.1 I Bk

X 31 567 101 Ifsux Load Floating-Point Single with Update Indexed
X 31 535 101 Ifsx Load Floating-Point Single Indexed
0 42 32 Iha Load Halfword Algebraic
0 43 32 Ihau Load Halfword Algebraic with Update
X 31 375 32 Ihaux Load Halfword Algebraic with Update Indexed
X 31 343 32 Ihax Load Halfword Algebraic Indexed
X 31 790 40 Ihbrx Load Halfword Byte-Reverse Indexed
0 40 31 1hz Load Halfword and Zero
0 41 31 Ihzu Load Halfword and Zero with Update
X 31 311 31 Ihzux Load Halfword and Zero with Update Indexed
X 31 279 31 Ihzx Load Halfword and Zero Indexed
0 46 42 Imw Load Multiple Word
X 31 597 44 Iswi Load String Word Immediate
X 31 533 44 Iswx Load String Word Indexed
OS 58 2 () 34 Iwa Load Word Algebraic
X 31 20 46 Iwarx Load Word And Reserve Indexed
X 31 373 () 34 Iwaux Load Word Algebraic with Update Indexed
X 31 341 () 34 Iwax Load Word Algebraic Indexed
X 31 534 40 Iwbrx Load Word Byte-Reverse Indexed
0 32 33 Iwz Load Word and Zero
0 33 33 Iwzu Load Word and Zero with Update
X 31 55 33 Iwzux Load Word and Zero with Update Indexed
X 31 23 33 Iwzx Load Word and Zero Indexed
XL 19 0 25 mcrf Move Condition Register Field
X 63 64 116 mcrfs Move to Condition Register from FPSCR
X 31 512 81 mcrxr Move to Condition Register from XER

(- X 31 19 81 mfcr Move From Condition Register
X 63 583 116 mffs[.] Move From FPSCR
X 31 83 Bk //I mfmsr Move From Machine State Register
XFX 31 339 80 mfspr Move From Special Purpose Register
X 31 595 0 Bk III mfsr Move From Segment Register
X 31 659 0 Bk //I mfsrin Move From Segment Register Indirect
X 31 371 Bk II mftb Move From Time Base
XFX 31 144 81 mtcrf Move To Condition Register Fields
X 63 70 118 mtfsbO[.] Move To FPSCR Bit 0
X 63 38 118 mtfsb1[.] Move To FPSCR Bit 1
XFL 63 711 117 mtfsf[.] Move To FPSCR Fields
X 63 134 117 mtfsfi[.] Move To FPSCR Field Immediate
X 31 146 Bk III mtmsr Move To Machine State Register
XFX 31 467 79 mtspr Move To Special .Purpose Register
X 31 210 0 Bk III mtsr Move To Segment Register
X 31 242 0 Bk III mtsrin Move To Segment Register Indirect
XO 31 73 (SR) 56 mUlhd[.] Multiply High Doubleword
XO 31 9 (SR) 56 mulhdu[.] Multiply High Doubleword Unsigned
XO 31 75 SR 56 mulhw[.] Multiply High Word
XO 31 11 SR 56 mulhwu[.] Multiply High Word Unsigned
XO 31 233 55 mulld[o][.] Multiply Low Doubleword
0 7 55 mulli Multiply Low Immediate
XO 31 235 55 mullw[o][.] Multiply Low Word
X 31 476 SR 65 nand[.] NAND
XO 31 104 SR 54 neg[o][.] Negate
X 31 124 SR 66 nor[.] NOR
X 31 444 SR 65 or[.] OR
X 31 412 SR 66 orc[.] OR with Complement
0 24 64 ori OR Immediate
0 25 64 oris OR Immediate Shifted
XL 19 50 Bklll rfi Return From Interrupt

MDS 30 8 (SR) 72 rldcl[.] Rotate Left Doubleword then Clear Left

Appendix M. PowerPC Instruction Set Sorted by Mnemonic 201

IBM Confidential

Form
Opcode Mode Page

Mnemonic Instruction
Primary Extend Dep.1 I Bk

MDS 30 9 (SR) 73 rldcr[.] Rotate Left Doubleword then Clear Right '''''''

MD 30 2 (SR) 71 rldic[.] Rotate Left Doubleword Immediate then Clear
MD 30 0 (SR) 70 rldicl[.] Rotate Left Doubleword Immediate then Clear Left
MD 30 1 (SR) 70 rldicr[.] Rotate Left Doubleword Immediate then Clear Right
MD 30 3 (SR) 74 rldimi[.] Rotate Left Doubleword Immediate then Mask Insert
M 20 SR 74 rlwimi[.] Rotate Left Word Immediate then Mask Insert
M 21 SR 71 rlwinm[.] Rotate Left Word Immediate then AND with Mask
M 23 SR 73 rlwnm[.] Rotate Left Word then AND with Mask
SC 17 1 22 sc System Call
X 31 498 () Bk III slbia SLB Invalidate All
X 31 434 () Bk III slbie SLB Invalidate Entry
X 31 466 () Bk III slbiex SLB Invalidate Entry by Index
X 31 27 (SR) 75 sld[.] Shift Left Doubleword
X 31 24 SR 75 slw[.] Shift Left Word
X 31 794 (SR) 78 srad[.] Shift Right Algebraic Doubleword
XS 31 413 (SR) 77 sradi[.] Shift Right Algebraic Doubleword Immediate
X 31 792 SR 78 sraw[.] Shift Right Algebraic Word
X 31 824 SR 77 srawi[.] Shift Right Algebraic Word Immediate
X 31 539 (SR) 76 srd[.] Shift Right Doubleword
X 31 536 SR 76 srw[.] Shift Right Word
0 38 36 stb Store Byte
0 39 36 stbu Store Byte with Update
X 31 247 36 stbux Store Byte with Update Indexed
X 31 215 36 stbx Store Byte Indexed
OS 62 0 () 39 std Store Doubleword
X 31 214 () 47 stdcx. Store Doubleword Conditional Indexed
OS 62 1 () 39 stdu Store Doubleword with Update
X 31 181 0 39 stdux Store Doubleword Indexed with Update
X 31 149 () 39 stdx Store Doubleword Indexed
0 54 105 stfd Store Floating-Point Double
0 55 105 stfdu Store Floating-Point Double with Update
X 31 759 105 stfdux Store Floating-Point Double with Update Indexed
X 31 727 105 stfdx Store Floating-Point Double Indexed
X 31 983 120 stfiwx Store Floating-Point as Integer Word Indexed
0 52 104 stfs Store Floating-Point Single
0 53 104 stfsu Store Floating-Point Single with Update
X 31 695 104 stfsux Store Floating-Point Single with Update Indexed
X 31 663 104 stfsx Store Floating-Point Single Indexed
0 44 37 sth Store Halfword
X 31 918 41 sthbrx Store Halfword Byte-Reverse Indexed
0 45 37 sthu Store Halfword with Update
X 31 439 37 sthux Store Halfword with Update Indexed
X 31 407 37 sthx Store Halfword Indexed
D 47 42 stmw Store Multiple Word
X 31 725 45 stswi Store String Word Immediate
X 31 661 45 stswx Store String Word Indexed
0 36 38 stw Store Word
X 31 662 41 stwbrx Store Word Byte-Reverse Indexed
X 31 150 47 stwcx. Store Word Conditional Indexed
0 37 38 stwu Store Word with Update
X 31 183 38 stwux Store Word with Update Indexed
X 31 151 38 stwx Store Word Indexed
XO 31 40 SR 51 subf[o][.] Subtract From
XO 31 8 SR 52 subfc[o][.] Subtract From Carrying
XO 31 136 SR 53 subfe[o][.] Subtract From Extended
0 8 SR 52 subfic Subtract From Immediate Carrying .
XO 31 232 SR 53 subfme[o][.] Subtract From Minus One Extended
XO 31 200 SR 54 subfze[o][.] Subtract From Zero Extended

202 PowerPC User Instrudion Set Architedure

(

IBM Confidential

Form
Opcode Mode Page

Mnemonic Instruction
Primary Extend Oep.l I Bk

X 31 598 48 sync Synchronize
X 31 68 () 62 td Trap Doubleword
D 2 () 61 tdi Trap Doubleword Immediate
X 31 370 Bk III tibia TLB Invalidate All
X 31 306 Bklll tlbie TLB Invalidate Entry
X 31 338 Bk III tlbiex TLB Invalidate Entry by Index
X 31 566 Bk III tlbsync TLB Synchronize
X 31 4 62 tw Trap Word
0 3 61 twi Trap Word Immediate
X 31 316 SR 65 xor[.] XOR
D 26 64 xori XOR Immediate
D 27 64 xoris XOR Immediate Shifted

1 Key to Mode Dependency Column

The entry is shown in parentheses () if the instruction is defined only for 64-bit implementations.

The entry is shown in braces 0 if the instruction is defined only for 32-bit implementations.

blank The instruction has no mode dependence,
except that if the instruction refers to storage
when if! 32-bit mode, only the low-order 32
bits of the 64-bit effective address are used
to address storage. Storage reference
instructions include loads, stores, branch
instructions, etc.

CT

SR

If the instruction tests the Count Register, it
tests the low-order 32 bits when in 32-bit
mode, and all 64 bits when in 64-bit mode.

The instruction's primary function is mode
independent, but the setting of status regis
ters (such as XER and eRO) is
mode-dependent.

Appendix M. PowerPC Instruction Set Sorted by Mnemonic 203

IBM Confidential

,r- '\

204 PowerPC User Instruction Set Architecture

(

IBM Confidential

Index

A-form 7
AA field 8
address 12

effective 12
assembler language

extended mnemonics 133
mnemonics 133
symbols 133

[!J
B-form 7
BA field 8
BB field 8
BO field 8
BF field 8
BFA field 8
BI field 8
Big-Endian 145
BO field 8
BT field 8
byte orderi ng 145
bytes 2

@J
C 86
CA 28
CIA 4
CR 15
CTR 17

@J
o field 8
O-form 7
defined instructions 10
denormalization 89
denormalized number 88
double-precision 90
doublewords 2

OS field 8
OS-form 7

EA 12
effective address 12
EO 16

o
FE 16,86
FEX 85
FG 16,86
FI 85
FL 16,86
FLU field 8
floating-point

denormalization 89
double-precision 90
exceptions 84, 91

inexact 96
invalid operation 93
overflow 95
underflow 95
zero divide 94

execution models 96
normalization 89
number

denorl'1:'alized 88
infinity 88
normalized 88
not a number 88
zero 88

rounding 90
sign 89
single-precision 90

FPCC 86
FPR 84
FPRF 85
FPSCR 85

C 86
FE 86
FEX 85
FG 86

Index 205

IBM Confidential

FPSCR (continued) infinity 88
FI 85 instruction
FL 86 fields 8,9 /rr-----

FPCC 86 AA 8
\........-", / FPRF 85 BA 8

FR 85 BB 8
FU 86 BO 8
FX 85 BF 8
NI 86 BFA 8
OE 86 BI 8
OX 85 BO 8
RN 86 BT 8
UE 86 0 8
UX 85 OS 8
VE 86 FLM 8
VX 85 FRA 8
VXCVI 86 FRB 8
VXIOI 85 FRC 8
VXIMZ 85 FRS 8
VXISI 85 FRT 8
VXSNAN 85 FXM 9
VXSOFT 86 L 9
VXSORT 86 LI 9
VXVC 85 LK 9
VXZOZ 85 MB 9
XE 86 ME 9
XX 85 NB 9
ZE 86 OE 9
ZX 85 RA 9

FR 85 RB 9
FRA field 8 Rc 9
FRB field 8 RS 9
FRC field 8 RT 9
FRS field 8 SH 9
FRT field 8 SI 9
FU 16, 86 SPR 9
FX 85 TO 9
FXM field 9 U 9

UI 9

~
XO 9

formats 6, 7
A-form 7

GPR 27 B-form 7
GT 16 O-form 7
Gulliver's Travels 145 OS-form 7

I-form 6

0 M-form 7
MO-form 8
MOS-form 8 halfwords 2 SC-form 7

hardware description language 3 X-form 7
XFL-form 7

0 XFX-form 7
XL-form 7

I-form 6 XC-form 7

illegal instructions 10 XS-form 7

inexact 96 instructions
classes 9
defined 10

forms 11

206 PowerPC User Instruction Set Architecture

(

IBM Confidential

instructions (continued)
illegal 10
invalid forms 11
optional 11
preferred forms 11
reserved 10

invalid instruction forms 11
invalid operation 93

L field 9
language used for instruction operation description 3
LI field 9
Little-Endian 145
LK field 9
LR 17
LT 16

[!]
M-form 7
MB field 9
MD-form 8
MDS-form 8
ME field 9
mnemonics

extended 133

~
NB field 9
NI 86
NIA 4
no-op 64
normalization 89
normalized number 88
not a number 88

~
OE 86
OE field 9
optional instruction 11
OV 28
overflow 95
OX 85

o
preferred instruction forms 11

[!]
quadwords 2

0
RA field 9
RB field 9
Rc field 9
register transfer level language 3
registers

Condition Register 15
Count Register 17
Fixed-Point Exception Register 28
Floating-Point Registers 84
Floating-Point Status and Control Register 85
General Purpose Registers 27
Link Register 17

reserved field 3
reserved instructions 10
RN 86
rounding 90
RS field 9
RT field 9
RTL 3

~
SC-form 7
SH field 9
SI field 9
sign 89
single-precision 90
SO 16,28
split field notation 6
SPR field 9
storage access

floating-point 100
storage address 12
Swift, Jonathan 145
symbols 133

o
TO field 9

~
U field 9
UE 86
UI field 9
underflow 95
UX 85

Index 207

o
VE 86
VX 85
VXCVI 86
VXIDI 85
VXIMZ 85
VXISI 85
VXSNAN 85
VXSOFT 86
VXSQRT 86
VXVC 85
VXZDZ 85

EJ
words 2

o
X-form 7
XE 86
XER 28
XFL-form 7
XFX-form 7
XL-form 7
XO field 9
XC-form 7
XS-form 7
XX 85

o
ZE 86
zero 88
zero divide 94
ZX 85'

208 PowerPC User Instruction Set Architecture

IBM Confidential

IBM Confidential

(

Last Page - End of Document

Index 209

/

(

PowerPC Virtual Environment Architecture

Book II

Version 1.02

January 8, 1993

Distribution for IBM: softcopy on KISS64

Owner: Jack Kemp
KEMP at AUSVM6

E64S/4A-015
IBM Corporation
Austin, TX 78758

Tele 512-838-1846
Tie Line 678-1846

Technical Content: Ed Silha
silha@austin.ibm.com

E22S/4F-019
IBM Corporation
Austin, TX 78758

Tele 512-838-1848
Tie Line 678-1848

IBM Confidential

NOTES: --~
• This is a controlled document.
• Verify version and completeness prior to use.
• See the Preface for additional important information.

~ Copyright International Business Machines Corporation, 1993. All rights reserved.

IBM Confidential

'''t.. __ . __

II PowerPC Virtual Environment Architecture .

(

(

IBM Confidential

Preface

This document defines the additional instructions and
facilities, beyond those of the PowerPC User Instruc
tion Set Architecture, that are provided by the
PowerPC Virtual Environment Architecture. It covers
the storage model and related instructions and facili
ties available to the application programmer, and the
Time Base as seen by the application programmer.

Other related documents define the PowerPC User
Instruction Set Architecture, the PowerPC Operating
Environment Architecture, and PowerPC Implementa
tion Features. Book I, PowerPC User Instruction Set
Architecture defines the base instruction set and
related facilities available to the application pro
grammer. Book III, PowerPC Operating Environment
Architecture defines the system (privileged)
instructions and related facilities. Book IV, PowerPC
Implementation Features defines the implementation
dependent aspects of a particular implementation.

The Power PC Architecture consists of the instructions
and facilities described in Books I, II, and III.
However, the complete description of the Power PC
Architecture as instantiated in a given implementation
includes also the material in Book IV for that imple
mentation.

User Responsibilities

• Do not make any unauthorized alterations to the
document (user notes permitted).

• Verify the version prior to use. Version verifica
tion procedure is described below.

• Verify completeness prior to use. The last page
is labeled 'Last Page - End of Document'. The
end of the Table of Contents shows the last page
number. All pages are numbered sequentially.

• Report any deviations from these procedures to
the document owner.

Next Scheduled Review

The next review is expected to be approximately in
March, 1993. At least four weeks before this meeting,
a DRAFT version of this document will be distributed.

Version VerNication for laM

• Unk to the KISS64 disk in Yorktown or a shadow
of this disk. In Yorktown, linking to KISS64 can
be done with the command 'GIME KISS64.'

• Browse the newest file with a name of the form
'PPC2xxxx LlST3820," by using the 'browse"
command.

• Verify that your version matches this file.

If your version is not current, please contact the docu
ment owner.

Version Verification for Other Firms

To be supplied.

Approval Process

The following procedure is followed for all changes to
the content of this document:

• The Power Open Architecture Work Group
(PAWG) meets quarterly or more frequently if
necessary.

• At least four weeks before a meeting, a version
of this document is distributed to the PAWG. It is
marked DRAFT. Proposed changes are included
and identified with change bars.

• The PAWG meets and decides each issue.
• Final alterations to this document are made,

change bars are removed, and the entire docu
ment is' distributed with a new version number
and the word DRAFT removed.

• At the meeting or a subsequent one, new issues
are discussed.

• The resulting changes are described in a new
version of this document which is derived from
the last non-DRAFT version. Proposed changes
are identified with change bars, and the docu
ment is distributed to the PAWG. This document
has a new version number and is marked DRAFT.

• The cycle repeats from the beginning.

Approvals

This version has been approved for user review by
the document owner.

Preface iii

IBM Confidential

Iv PowerPC Virtual Environment Architecture

IBM Confidential

Table of Contents

Chapter 1. Storage Model 1
1.1 Definitions and Notation 1
1.2 Introduction 2
1.3 Memory Coherence 2
1.3.1 Coherence Required 2
1.3.2 Coherence Not Required 3
1.4 Storage Control Attributes 4
1.5 Cache Models 5
1.5.1 Split or Dual Caches 5
1.5.2 Combined Cache 7
1.5.3 Write Through Data Cache 7
1.6 Shared Storage 7
1.6.1 Storage Access Ordering 8
1.6.2 Atomic Update Primitives 9
1.7 Virtual Storage 11

(Chapter 2. Effect of Operand
Placement on Performance 13

2.1 Instruction Restart 14
2.2 Atomicity and Order 14

Chapter 3. Storage Control
Instructions 15

3.1 Parameters Useful to Application
Programs 15

(..

~ .•

,.'

3.2 Cache Management Instructions 16
3.2.1 Instruction Cache Instructions .. 16
3.2.2 Data Cache Instructions 17
3.3 Enforce In-order Execution of 1/0

Instruction 19

Chapter 4. Time Base 21
4.1 Time Base Instructions 22
4.2 Reading the Time Base on 64-bit

Implementations 22
4.3 Reading the Time Base on 32-bit

Implementations 22
4.4 Computing Time of Day from the

Time Base 23

Appendix A. Cross-Reference for
Changed Power Mnemonics 25

Appendix B. New Instructions 27

Appendix C. PowerPC Virtual
Environment Instruction Set 29

Index 31

Table of Contents v

IBM Confidential

Changes as of 1993101108 Version 1.02

change reason page

Reworded paragraphs 1 and 2, and deleted para- Agreed at Dec. 2 Power Open meeting. 8
graph 4 in 1.6.1.1, "The Enforce In-order Exe-
cution of I/O Instruction" on page 8.

Replaced Engineering Note that said that TLB Agreed at Dec. 2 Power Open meeting. 14
invalidates must be held off to avoid stuttering,
with a sentence in a Programming Note saying
that unsynchronized invalidates do not have a
defined result.

Five of the Data Cache instructions had the para- Agreed at Dec. 2 Power Open meeting. 16, 17
graph "If EA specifies a storage address for
which T-1 (see Book III ...), the instruction is
treated as a no-op." Replaced these with a
single paragraph at the beginning of the section
saying approximately the same thing. Made the
same wording change for Icbl.

Deleted phrase "and need not be constant over Agreed at Dec. 2 Power Open meeting. 21
long periods of time," and the sentence ''The
TIme Base runs continuously when powered on."

Changes as of 1992110105

change reason page

Stated that cache ops are no-ops in T - 1 space. Clarification requested by B. Dorfman 10/5/92. 16 - 19

Clarified that sync need not discard prefetched This has confused people (sync is not context 8
instructions. synchronizing).

Changes as of 1992109123

change reason page

Said that .1./0 functions in Write Through (as Agreed at Sept. 9 PowerPC meeting. 8,19
well as CI) storage, and can be used to prevent
access combining operations.

Said that operation of dcbst and dcb' is inde- Agreed at Sept. 9 Power PC meeting. 18, 19
pendent of the Write Through and Caching
Inhibited/Allowed modes.

Said that if I.rx/stcx. addresses Write Through Agreed at Sept. 9 PowerPC meeting. 9
storage, it is implementation-dependent whether
it is done correctly or causes a DSI.

Eliminated Imd and stmd from the table in Agreed at Sept. 9 PowerPC meeting. 13
Chapter 2, Effect of Operand Placement on Per-
formance.

vi PowerPC Virtual Environment Architecture

IBM Confidential

Changes as of 1992109117

(
change reason page

Deleted waiting for TLB invalidate operations on Agreed at Sept. 9 Power PC meeting. S
other processors from the list ofthings that sync
does.

Added that sync waits for reference and change Agreed at Sept. 9 PowerPC meeting. S
bits to be updated.

Expanded the functions of Isync to do a context Agreed at Sept. 9 PowerPC meeting. 16
synchronization.

Reworked Time Base section to reflect use of an Agreed at Sept. 9 Power PC meeting. 21ft
mfspr-like instruction to read it, and to allow for
variable update frequencies.

(/

Changes vII

IBM Confidential

vIII PowerPC Virtual Environment Architecture.

(

(

IBM Confidential

Chapter 1. Storage Model

1.1 Definitions and Notation
1.2 Introduction
1.3 Memory Coherence
1.3.1 Coherence Required
1.3.2 Coherence Not Required
1.4 Storage Control Attributes
1.5 Cache Models
1.5.1 Split or Dual Caches ..
1.5.1.1 Instruction Cache Block

Invalidate
1.5.1.2 Data Cache Block Store
1.5.1.3 Data Cache Block Flush
1.5.1.4 Data Cache Block set to Zero
1.5.1.5 Data Cache Block Touch
1.5.2 Combined Cache

1.1 Definitions and Notation

1
2
2
2
3
4
5
5

5
5
6
6
6
7

The following definitions, in addition to those specified
in Book I, are used in this document.

• main storage
The common storage that a processor or other
mechanism accesses when it has no cache or has
no copy of the storage being accessed in its
cache.

• sequential execution
A model for the execution of a sequence of
instructions (program) in which one instruction is
executed and completed before the next instruc
tion is begun. Instructions are executed in the
order in which they appear in the program,
except following the execution of a branch
instruction, which causes sequential execution to
continue at a location specified by the branch
instruction.

• program order
The execution of instructions in the strict order in
which they occur in the program. See sequential
execution above.

• processor
A hardware component that executes the
Power PC instructions specified in a program.

1.5.3 Write Through Data Cache 7
1.5.3.1 Write Through to Main Storage 7
1.5.3.2 Write Through to Multi-Level

Cache 7
1.6 Shared Storage 7
1.6.1 Storage Access Ordering 8
1.6.1.1 The Enforce In-order Execution of

1/0 Instruction 8
1.6.1.2 The Synchronize Instruction 8
1.6.2 Atomic Update Primitives " 9
1.6.2.1 Reservations 10
1.6.2.2 Guaranteeing Forward Progress 11
1.6.2.3 Reservation Loss Due to

Granularity
1.7 Virtual Storage

• storage location

11
11

One or more sequential bytes of storage begin
ning at the address computed by a storage
access instruction. The number of bytes com
prising the location depends on the type of
storage access instruction being executed.

• load
An instruction that copies one or more bytes from
a storage location to one or more registers (GPRs
or FPRs).

• store
An instruction that copies one or more bytes from
one or more registers (GPR's or FPR's) to a
storage location.

• system
A combination of processors, storage, and associ-
ated mechanisms that is capable of executing
programs. Sometimes the reference to system
includes services provided by the operating
system.

• uniprocessor
A system that contains one PowerPC processor.

• multiprocessor
A system that contains two or more PowerPC
processors.

Chapter 1. Storage Model 1

• shared storage multiprocessor
A multiprocessor that contains some common
storage, which all PowerPC processors can
access .

• performed
A load is performed with respect to all other
processors (and mechanisms) when the value to
be returned by the load can no longer be
changed by a subsequent store by any processor
(or other mechanism).
A store is performed with respect to all other
processors (and mechanisms) when any load
from the same location used by the store returns
the value stored (or a value stored subsequently).

• storage page
The unit of storage that is managed by the virtual
storage system and that can be assigned storage
control attributes.

Architecture Note ---------...,

All processors developed in support of Power
Open or MAC-Risc will have a 4096-byte page
size.

• aligned storage access
A load or store is aligned if the address of the
target storage location is a multiple of the size of
the transfer effected by the instruction.

• atomic access
A storage access executed by a processor during
which no other processor or mechanism can
access any byte of the target location between
the time the processor performing the access
accesses any byte of the location and the time
that it completes the access to all bytes of that
location.

1.2 Introduction

The Power PC User Instruction Set Architecture
defines storage as a linear array of bytes indexed
from 0 to a maximum of 284 - 1 {232 - 1}. Each byte is
identified by its index, called its address. Each byte
contains a value. This information is sufficient to
allow the programming of applications which require
no special features of any particular system environ
ment. The PowerPC Virtual Environment Architecture,
described herein, expands this simple storage model
to include caches, virtual storage, and shared
storage multiprocessors. The PowerPC Virtual Envi
ronment Architecture in conjunction with services
based on the PowerPC Operating Environment Archi
tecture and provided by the operating system permit
explicit control of this expanded storage model. A
simple model for sequential execution allows at most
one storage access to be performed at a time, and
requires that all storage accesses appear to be per
formed in program order. This makes the operation
of the model easy to understand and does not require

IBM Confidential

that a program execute any special instructions to
guarantee the current state of storage.

The Power PC architecture specifies a weakly con
sistent storage model and supports shared storage
multiprocessors. In this model, it can be difficult to
envision the state of storage at a given instant. When
two or more programs or instances of programs share
storage, a single program cannot count on the content
of a storage location being correct unless it has exe
cuted the appropriate synchronization instructions.
The features and instructions available in PowerPC
systems to enable programs such as these to execute
correctly and efficiently are described in this book.

1.3 Memory Coherence

In a PowerPC system, when two or more processors
are updating the same storage location, the content of
the storage location may not appear to be the same
when viewed from different processors at the same
instant, nor is the result of stores by two processors
to the same location guaranteed to give a predictable
result. However, the architecture requires that
storage accesses are always performed and that the
result of an access by a correct program is never lost.

Coherence refers to the property of the storage sub
system that manages multiple copies of a storage
location existing in caches and main storage, and to
the manner in which those copies are required to be
identical or allowed to be different. As noted in
Section 1.4, "Storage Control Attributes" on page 4,
the coherence of storage pages may be managed by
hardware or software depending on the setting of the
Memory Coherence attribute.

Memory coherence is managed in blocks called
coherence blocks. Their size is implementation
dependent (see the Book IV, PowerPC Implementation
Features document for the implementation), but is
usually larger than a word and often the size of a
cache block.

1.3.1 Coherence Required

When an accessed page is in Memory Coherence
Required mode, the processor performing the storage
access must participate in a coherence protocol with
other processors and the storage subsystem to
ensure that updates to a storage location are per
formed and are not lost. Storage coherence is partly
dependent on whether the accesses are atomic,
whether they compete, and whether they conflict.

An access is atomic if it is always performed in its
entirety with no visible fragmentation. Atomic
accesses are thus serialized: each happens in its
entirety in some order, even when that order is not

2 PowerPC Virtual Environment Architecture

(

(

IBM Confidential

specified in the program nor enforced between
processors.

In Power PC the following single-register accesses are
always atomic:

• byte accesses (all bytes are aligned on byte
boundaries)

• halfword accesses aligned on halfword bounda
ries

• word accesses aligned on word boundaries

• doubleword accesses aligned on doubleword
boundaries (64-bit implementations only)

No other accesses are guaranteed to be atomic. In
particular, multiple-register loads and stores are not
atomic, nor are floating-point doubleword accesses on
a 32-bit implementation.

Two accesses compete if, in any possible execution,
they overlap, there is no order implied between them,
and they could be performed simultaneously on dif
ferent processors. Coherence does not ensure a pre
dictable result when processors access the same
location in a conflicting manner. Two competing
accesses to the same location conflict if at least one
is a store. Coherence does ensure predictable results
when processors access storage in a manner that
does not conflict. The results for several combina
tions of loads and stores to the same or overlapping
locations are described below.

1. When two processors execute atomic stores to
locations that do not overlap and no other stores
are performed to those locations, the content of
those locations is the same as if the two stores
were performed by a single processor.

2. When two processors execute atomic stores to
the same storage location, and no other store is
performed to that location, the content of that
location will be the result stored by one of the
processors.

3. When two processors execute stores to the same
location that are not atomic, and no other store is
performed to that location, the result is some
combination of the bytes stored by both
processors.

4. When two processors execute stores to over
lapped locations, and no other store is performed
to those locations, the result is some combination
of the bytes stored by the processors to the over
lapping bytes. The portions of the locations that
do not overlap will contain the bytes stored by
the processor storing to the location.

5. When a processor executes an atomic store to a
location, a second processor executes an atomic
load from that location, and no other store is per
formed to that location, the value returned by the

load is the content of the location prior to the
store or the content of the location subsequent to
the store.

6. When conflicting accesses are not atomic, one
access is a load, and no other store is performed
to the location, the value returned by the load
may be some combination of the content of the
location before the store and after the store.

Coherence does not ensure that the result of a store
by one processor will be immediately visible to all
other processors and mechanisms in the system.
Only after a program has executed the sync instruc
tion are previous storage accesses it executed guar
anteed to be globally visible.

1.3.2 Coherence Not Required

When an accessed page is in Memory Coherence Not
Required mode, the processor need not enforce
storage coherence. This coherence mode may be
selected by software to improve performance when it
is known that the particular area of storage the
processor is accessing will not be accessed by
another processor or mechanism. In this mode, soft
ware must ensure that the appropriate Cache Man
agement instructions have been used to put storage
in a consistent state prior to changing the mode or
allowing access to that storage area by a different
processor or mechanism.

Programming Note ----------____

In a single-cache system, Coherence Required is
not necessary for correct coherent execution. In
fact, in such a system, Coherence Not Required
may give better performance.

Engineering Note ---------------,

If 110 is to be memory coherent, 110 must use the
processor's coherence protocol. In such a case,
110 use of the coherence protocol is independent
of the setting of the processor's Memory Coher
ence attribute.

Programming Note ------------,

Software must ensure that all locations in a page
have been purged from the cache prior to
changing the storage mode for the page in such a
manner as to restrict the use of the cache (Write
Through Not Required to Write Through Required,
or Caching Allowed to Caching Inhibited). (See
the following section).

Chapter 1. Storage Model 3

1.4 Storage Control Attributes

Some operating systems may provide means to allow
programs to specify storage control attributes not
described in this document. The definition of these
attributes can be found in Book III, PowerPC Oper
ating Environment Architecture. The following
describes what is expected to be provided when the
operating system supports these functions. The
details may vary among operating systems, so the
details of the specific system being used must be
known before these functions can be used.

Generally, the program may use one of each of the
following pairs of storage attributes:

• Write Through Required or Not Required
• Caching Inhibited Dr Allowed
• Memory Coherence Required or Not Required

Not all combinations of these three modes are sup
ported; see Book III, PowerPC Operating Environment
Architecture for further details.

A program can specify, through an operating system
service, the attributes for each page of storage to
which it has access. Each load or store will be per
formed in the following manner, depending on the
setting of the storage control attributes for the page
of storage containing the addressed storage location.

Write Through
This attribute is meaningful only for Caching
Allowed storage. It provides the program control
over whether

• the processor is required to update the copy of
the storage location in the cache and in main
storage, or

• the processor is allowed to update the copy of
the storage location in the cache and to defer
the update of main storage.

Required
Loads use the copy in the cache if it is there.
Stores update the copy of the storage location
in the cache if it is in the cache and also
update the storage location in main storage.

Not Required
Loads and stores use the copy in the cache if
it is there. The block containing the target
storage location may be copied to the cache.
The storage location in main storage need not
contain the value most recently stored to that
location.

IBM Confidential

Caching

Inhibited
When caching is inhibited, the Write Through
attribute has no meaning. The load or store is
executed in the following manner:

1. The operation is performed to main
storage bypassing the cache (i.e., neither
the target location nor any of the block(s)
containing it are copied into the cache).

2. The operation causes an access
(Ioad/store) of appropriate length (i.e.,
byte, halfword, word, etc.) to the target
location in main storage.

It is considered a programming error if a copy
of the target location of an access to Caching
Inhibited storage is in the cache. Software
must ensure that the location has not previ
ously been brought into the cache or, if it has,
that it has been flushed from the cache. If the
programming error occurs, the result of the
access is boundedly undefined.

Allowed
When caching is allowed, the access is per
formed in the following manner:

1. If the block containing the target storage
location is in the cache, it is used.

2. If the block containing the target location
is not in the cache, the block(s) of storage
containing the target location may be
copied to the cache and, if the access is a
store, the target location is updated in the
cache if it is in the cache.

Memory Coherence
This attribute provides the program control over
whether or not the processor maintains storage
coherence:

Required
Stores by all processors to the same location
are serialized into some order and no
processor is able to observe any subset of
those stores as occurring in a conflicting
order.

Not Required
The order in which one processor observes
the stores performed by one or more other
processors is undefined.

When coherence is required, its serialization func
tion is effective for all supported corTlbinations of
the Write Through and Caching modes (see Book
III, PowerPC Operating Environment Architecture).

When coherence is not required, the programmer
must manage the coherence of storage through use
of sync and Cache Management instructions, and
facilities provided by the operating system.

4 PowerPC Virtual Environment Architecture

IBM Confidential

1.5 Cache Models

The PowerPC architecture does not require any partic
ular cache organization and allows many different
implementations. However, for a program to execute
correctly on all implementations, the programmer
should assume that separate instruction and data
caches exist, and should program to the separate
cache model. The functions of these caches are
affected by the storage control attributes associated
with each storage access as described in 1.4,
"Storage Control Attributes" on page 4. Cache Man
agement instructions are provided so programs can
manage the caches when needed. Depending on the
storage control attributes specified by the program
and the function being performed, the program may
need to use these instructions to guarantee that the
function is performed correctly. The Cache Manage
ment instructions are also useful to optimize the use
of memory bandwidth in such applications as graphics
and numerically intensive computing.

The processor is not required to maintain copies of
storage locations in the instruction cache consistent
with changes to storage resulting from the execution
of store instructions. Program management of the
cache is required when the program generates or
modifies code that will be executed (i.e., when the
program modifies data storage and then attempts to
execute the instructions in the modified storage).

The instructions provided allow the program to

• invalidate the copy of storage in an instruction
cache block (/ebl)

• perform context synchronization, as described in
Book III, PowerPC Operating Environment Archi
tecture (/syne)

• copy the content of a data cache block to main
storage (debst)

• copy the content of a data cache block to main
storage and make the copy of the block in the
data cache invalid (debt)

• set the content of a data cache block to zeroes
(debz)

• give a hint that a block of storage should be
copied into the data cache, so that the copy of
the block may be in the cache when subsequent
accesses to the block occur, thereby reducing
delays (debt, debtst)

The function of the Cache Management instructions
depends on the implementation of the caches and on
the storage control attributes associated with the
cache block that is the target of the cache instruction.

There are many variations of cache implementations
and the following sections do not attempt to describe .
them exhaustively. However, the variations that
affect the function of the Cache Management
instructions are discussed here.

Programming Note ------------,

Implementations will vary as to what instructions
need be executed to perform a function such as
code modification. Operating systems are encour
aged to provide a service (implementation
dependent) to do the function in an efficient
manner.

1.5.1 Split or Dual Caches

Separate caches for instructions and data is called a
"Harvard style" cache. This style is the standard
PowerPC cache model; that is, it is the model
assumed by this architecture and the function of the
Cache Management instructions depends on this
model as well as on the storage control attributes of
the target storage block. A copy of a target block in
the cache is said to be marked Invalid if it will not be
used for subsequent accesses. The following sections
describe the functions performed by each of the
Cache Management instructions in this model.

1.5.1.1 Instruction Cache Block
Invalidate

Invalidating the target block causes any subsequent
fetch request for an instruction in the block to not find
the block in the cache and to be sent to storage. The
instruction performs the following operations:

1. If the target block is not accessible to the
program for loads, the system data storage error
handler may be invoked.

2. The target block in the instruction cache of the
executing processor is marked invalid.

3. If the effective address has an attribute of Coher
ence Required, the block is invalidated in the
instruction caches of all other processors in the
system.

4. This access need not be recorded, but if it is, it is
considered a load and not a store.

Engineering Note ------------,

Causing the system data storage error handler to
be invoked if the target block is not accessible to
the program for loads facilitates the debugging of
software.

1.5.1.2 Data Cache Block Store

This instruction permits the program to ensure that
the latest version of the target storage block is in
main storage. The instruction performs the following
operations:

1. If the target block is not accessible to the
program for loads, the system data storage error
handler may be invoked.

Chapter 1. Storage Model 5

2. Memory Coherence
Required

If the target block is in any of the data caches
in the system and has been modified, the block
is copied to main storage.

Not Required
If the target block is in the data cache of the
executing processor and has been modified,
the block is copied to main storage.

3. This access need not be recorded, but if it is it is
considered a load and not a store.

The above action is taken regardless of the setting of
the other storage control attributes.

Engineering Note ------------.,

Causing the system data storage error handler to
be invoked if the target block is not accessible to
the program for loads facilitates the debugging of
software.

1.5.1.3 Data Cache Block Flush

This instruction permits the program to ensure that
the latest version· of the target storage block is in
main storage and no longer in the data cache. The
instruction performs the same operations as does the
Data Cache Block Store. In addition to those oper
ations, the following is done.

Memory Coherence Required
If the target block is in any of the data caches in
the system, it is marked invalid in those data
caches.

Memory Coherence Not Required
If the target block is in the data cache of the exe
cuting processor, it is marked invalid in that data
cache.

These actions are taken regardless of the setting of
the other storage control attributes.

1.5.1.4 Data Cache Block set to Zero

This instruction permits the program to set large
areas of storage to zeros in an efficient manner. The
instruction performs the following operations:

1. If the target block is not accessible to the
program for stores, the system data storage error
handler is invoked.

2. Caching Inhibited
Either each byte of the block in main storage is
set to OxOO, or the system alignment error
handler is invoked.

3. Write Through Required
Either each byte of the block in main storage is
set to OxOO, or the system alignment error
handler is invoked.

IBM Confidential

4. Memory Coherence
• Required

If the target block is in the data cache of
the executing processor, each byte in the
block is set to OxOO and all copies of the
block in all data caches are made con
sistent.
If the target block is not in the data
cache of the executing processor, the
line is established in the data cache
without fetching it from storage and each
byte in the block is set to OxOO. All
copies of the block in all data caches are
made consistent.

• Not Required
If the target block is in the data cache of
the executing processor, each byte in the
block is set to OxOO.
If the target block is not in the data
cache of the executing processor, the
line is established in the data cache
without fetching it from storage and each
byte in the block is set to OxOO.

5. This access must be recorded. It is considered a
store to the target location.

1.5.1.5 Data Cache Block Touch

The two Touch instructions (one for reading, the other
for writing) provide a mechanism by which a program
may avoid some of the delays due to accessing
storage by attempting to have the target storage
location in the cache prior to its first use. These
instructions are performance hints and operate as
follows:

1. If the target block is not accessible to the
program for loads, no other operation is per
formed.

2. Caching Inhibited
The block is not copied into the cache and no
other operations are performed.

3. Caching Allowed
• Memory Coherence Required

If the block is not in the cache, the most
recent version of the block may be copied
into the cache.

• Memory Coherence Not Required
If the block is not in the cache, the block may
be copied into the cache from main storage
without regard for the location of the most
recently modified version.

4. This access need not be recorded, but if it is it is
considered a load and not a store.

If the instruction is Touch for Store and the block is
copied into the cache, it is copied in a manner such
that a subsequent store to the block will execute effi
ciently.

The execution of either of these instructions never
causes the system data error handler to be invoked.

6 PowerPC Virtual Environment Architecture

(

(

IBM Confidential

1.5.2 Combined Cache

A combined cache implementation provides a single
cache for instructions and data. For this implementa
tion, the Instruction Cache Block Invalidate instruction
need not perform the same operations as it would for
an implementation with separate caches. It can be
treated as a no-op, but it is acceptable to invalidate
the instruction caches of other processors if the
addressed storage is in Coherence Required mode.
Following are recommended and required functions of
this instruction for combined cache implementations.

Prohibited Operations
It must not invalidate a line in the combined cache
that has been modified and the access should not
be treated as a store.

Unnecessary Operations
The access should not be treated as a load or
store, but to treat it as a load is not a violation of
the architecture.

Suggested Operations
If the program executing icbi does not have access
to the target block for loads, the system data
storage error handler should be invoked.

1.5.3 Write Through Data Cache

The Cache Management instructions affected by the
write through implementation are listed in this
section. These instructions must perform all the oper
ations specified for a Harvard style cache except as
specified in this section. Some of the differences
depend on whether the write through implementation
is a write through to main storage or just a write
through to a second level of cache.

1.5.3.1 Write Through to Main Storage

1. Data Cache Block Store
By definition, the cache cannot contain a modified
block. The processor is not required to copy the
target block to main storage.

2. Data Cache Siock Flush
By definition, the cache cannot contain a modified
block. The processor is not required to copy the
target block to main storage.

3. Data Cache Block set to Zero
The processor may invoke the system alignment
error handler regardless of the setting of the
storage control attributes.

1.5.3.2 Write Through to Multi-Level
Cache

For Data Cache Block set to Zero, the processor may
invoke the system alignment error handler regardless
of the setting of the storage control attributes.

If a cache is the interface to main storage for all
processors and other mechanisms that access
storage, that cache can be considered main storage
with respect to the Cache Management instructions.
Otherwise, the cache instructions that cause the
content of a cache block to be copied back to main
storage or to be marked invalid must be performed
against all levels of the cache.

1.6 Shared Storage

This architecture supports the sharing of storage
between programs, between different instances of the
same program on systems with one or more
processors, and between processors and other mech
anisms. It also supports access to a storage location
by one or more programs using different effective
addresses. All these cases are considered storage
sharing. Storage is shared in blocks that are an inte
gral number of pages.

When the same storage location has different effec
tive addresses, the addresses are said to be
"aliases." Each application can be granted separate
access privileges to aliased pages.

Architecture Note ------------,

Systems built from processors developed in
support of Power Open or MAC-Risc will allow ali
asing at the page level. Such systems will accom
plish this in a non-architected way.

Engineering Note -----------.....,

Page level aliasing can be implemented in many
ways, for example with real addressed caches, L2
directories, or an external signal to an inverse
directory. Each processor implementation will
decide on its level of implementation in support of
its system requirements.

Chapter 1. Storage Model 7

1.6.1 Storage Access Ordering

The Power PC architecture specifies a weakly can·
slstent storage model for shared storage multi
processor systems. This model provides an
opportunity for significantly improved performance
over the strongly consistent model, but places the
responsibility on the program to ensure that ordering
or synchronization instructions are properly placed
when necessary for the correct execution of the
program.

In this architecture, the order in which the processor
performs storage accesses, the order in which those
accesses complete in main storage, and the order in
which those accesses are viewed as occurring by
another processor may all be different. This property
is referred to storage access ordering. A means of
enforcing an ordering of storage accesses is provided
to allow programs or instances of programs to share
storage. Similar means are needed to allow pro
grams executing on a processor to share storage with
some other mechanism such as an I/O device that
can also access storage.

The purpose of specifying a weakly consistent storage
model is to allow the processor to run very fast for
most storage accesses. Two instructions, Enforce In
order Execution of 110 and Synchronize, are provided
that enable the program to control the order in which
storage accesses are performed by separate
instructions. No ordering should be assumed for the
storage accesses done by a multiple-register load or
store instruction, and no means are provided for con
trolling that order.

1.6.1.1 The Enforce In-order Execution
of 1/0 Instruction

The elelo instruction permits the program to control
the order in which Loads and Stores are performed in
main storage. The instruction affects only Caching
Inhibited loads and stores, and Write Through
Required stores, and only with respect to the order
that those accesses complete with respect to main
storage. It has no effect on the order that cache
accesses are performed.

e/a/o ensures that all applicable data accesses to
main storage previously initiated by the processor
have completed with respect to main storage before
any applicable storage accesses subsequently initi
ated by the processor access main storage. It acts
like a barrier that flows through the storage queues
and to main storage, preventing the reordering of
storage accesses across the barrier. The a/a/o
instruction may complete before previously initiated
storage accesses have been performed with respect
to other processors and mechanisms.

IBM Confidential

a/aio can be used, for example, to ensure that the
data from a sequence of stores to the control regis
ters of an I/O device update those control registers in
the order specified by the stores as ordered by a/e/o.

If stronger ordering is desired or if it is necessary to
order accesses to storage that may be in the cache,
the sync instruction must be used.

1.6.1.2 The Synchronize Instruction

When a portion of storage must be forced to a known
state, it is necessary to synchronize storage with
respect to all processors. This is accomplished by
requiring programs to indicate explicitly in the instruc
tion stream that synchronization is required, by
inserting a sync instruction. Only when sync com
pletes are the effects of all storage accesses exe
cuted by the program guaranteed to have been
performed with respect to all other processors and
mechanisms.

The sync instruction permits the program to ensure
that all storage accesses it has initiated have been
performed with respect to all other processors and
mechanisms before its next instruction is executed. A
program can use this instruction to ensure that all
updates to a shared data structure are visible to all
other processors prior to executing a store that will
release the lock on that data structure. Execution of
this instruction does the following:

• Performs the functions described for the sync
instruction in Book I, PowerPC User Instruction
Set Architecture.

• Ensures that consistency operations, the effects
of icbl, dcbz, dcbst, debt, and debl (see Book III,
PowerPC Operating Environment Architecture)
executed by the processor executing sync have
completed on all other processors.

• Ensures that TLB invalidates executed by the
processor executing sync have been completed
on that processor. However, sync does not wait
for such invalidates to be completed on other
processors (see the Book III section entitled
"Table Update Synchronization Requirements").

• Ensures that Reference and Change bits in the
Page Table (see Book III, PowerPC Operating
Environment Architecture) are up to date.

Unlike a context synchronizing operation (see Book
III, PowerPC Operating Environment Architecture), the
sync instruction need not discard prefetched
instructions.

For storage that is maintained as Memory Coherence
Not Required, the only effect of sync on storage oper
ations is to ensure that all previous storage accesses
have completed to the level of storage specified by
the Caching and Write Through storage control attri
butes (including the updating of reference and change
bits).

8 PowerPC Virtual Environment Architecture

(

(-

IBM Confidential

Programming Note ----------~

The functions performed by sync will normally
take a significant amount of time to complete, so
the indiscriminate use of this instruction will
adversely affect performance.

1.6.2 Atomic Update Primitives

The Load and Reserve and Store Conditional
instructions together permit atomic update of a
storage location. 64-bit implementations have word
and doubleword forms of each of these instructions.
Described here is the operation of the word forms
(/warx and stwcx.); operation of the doubleword forms
(/darx and stdcx.) is the same except for obvious sub
stitutions.

These instructions function in Caching Inhibited, as
well as in Caching Allowed, storage. The addressed
page must, however, have the Memory Coherence
Required attribute for every processor other than the
one doing the atomic update that might execute a
store to the location being atomically updated. The
remainder of this section assumes that if the system
is a multiprocessor, then all processors have the
addressed page in Memory Coherence Required
mode.

If the addressed storage is in Write Through mode, it
is implementation-dependent whether these
instructions function correctly or cause the system
data storage error handler to be invoked.

The Iwarx is a load from a word-aligned location that
has two side effects.

1. A nonspecific reservation for a subsequent stwcx.
or stdcx. is created.

2. The storage coherence mechanism is notified that
a reservation exists for the real address corre
sponding to the storage location accessed by the
Iwane.

The stwcx. is a store to a word-aligned location that is
conditioned on the existence of the reservation
created by the Iwarx or Idarx. To emulate an atomic
operation with these instructions, it is necessary that

both the Iwane and the stwcx. access the same
storage location even though this requirement is not
enforced by the hardware. Iwarx and stwcx. are
ordered by a dependence on the reservation, and the
program is not required to insert other instructions to
maintain the order of storage accesses by these two
instructions.

Engineering Note

Both Iwarx and stwcx. have a data dependence
on the processor reservation resource.

A stwcx. performs a store to the target storage
location only if the storage location accessed by the
'wane that established the reservation has not been
stored into by another processor or mechanism
between supplying a value for the 'wane and storing
the value supplied by the stwcx.. In this case, CRO is
set to indicate that the store was performed.

If the stwcx. completes but does not perform the
store because a reservation no longer exists, CRO is
set to indicate that the stwcx. completed but storage
was not altered.

Examples of the use of Iwane and stwcx. are given in
the Programming Examples appendix of Book I,
PowerPC User Instruction Set Architecture.

When stwcx. succeeds, its store has been performed
but may not yet be globally visible. As a result, a
subsequent load or Iwarx on another processor may
return a stale value. However, a subsequent 'wane on
the other processor followed by a successful stwcx.
on that processor is guaranteed to have returned the
value stored by the first processor's stwcx. (in the
absence of other stores to the location).

Programming Note

To ensure that a store or stwcx. to a location has
become globally visible, it must be followed by a
sync. A subsequent load or Iwarx by another
processor will then return a value at least as
recent as the value stored. This is often more
synchronization than is actually needed to ensure
program correctness.

Chapter 1. Storage Model 9

1.6.2.1 Reservations

The ability to emulate an atomic operation using
Mane and .twcx. is based on the conditional behavior
of .twcx., the re.ervat/on set by Iwane, and the
clearing of that reservation if the target location is
modified by another processor or other mechanism
before the .twcx. performs.

Programming Nota ----------....,

The combination of Iwane and stwcx. improves
upon compare_and_swap in that the reservation
binds the 'wane and stwcx. together more reliably.
Compare_and_swap can only check that the old
and current values of the variable are equal, and
can cause the program to err if the variable had
been modified and the old value subsequently
restored. The reservation is always lost if the
variable is modified by another processor or
mechanism between the Iwane and stwcx., so the
.twcx. never succeeds unless the variable has not
been stored into (by another processor or mech
anism) since the Mane.

Each processor in a multiprocessor system has at
most one reservation at any time. A reservation is
established by executing a Iwane instruction and is
lost if any of the following occur:

• The processor holding the reservation issues
another 'wane or 'darx; this clears the first reser
vation and establishes a new one.

• The processor holding the, reservation issues any
stwcx. or stdcx., whether or not its address
matches that of the 'wane.

• Some other processor or other mechanism per
forms a store in the same reservation granule.

Programming Nota ------------.,

A system error handler may in some cases clear
the reservation.

Reservations are not lost under any other circum
stances. Specifically, interrupts (see Book III,
PowerPC Operating Environment Architecture) do not
clear reservations (however, system software invoked
by interrupts may clear reservations). Immunity to
random reservation loss ensures that programs using
Iwane and stwcx. can make forward progress.

IBM Confidential

Engineering Nota -----------...,

Reservations must take part in storage coher
ence. A reservation must be cleared if another
processor receives authorization from the coher
ence mechanism to store to the granule associ
ated with the reservation.

If an implementation continues to hold a reserva
tion when the cache block in which the reserva
tion lies is displaced, the reservation inust
continue to participate in the coherence protocol.
In a snooping implementation, it must join in
snooping. In a directory-based implementation, it
must register its interest in the reserved line with
the directory (shared-read access).

If an implementation demands that the reserved
line be held in the cache, it must be able to
protect that line from eviction except by cross
invalidates received from other processors as
long as the reservation persists. Caches in such
an implementation must be sufficiently associative'
that the machine can continue to run with eviction
of the reserved line inhibited.

Programming Note -------------,

Programming convention must ensure that 'wane
and .twcx. addresses match. In proper use, a
stwcx. should be paired with a specific Marx to
the same real address. Situations in which a
.twcx. may erroneously be issued after some
Iwane other than that with which it is intended to
be paired must be scrupulously avoided. For
example, there must not be a context change in
which the old context leaves a 'warx dangling and
the new context resumes after a Iwarx and before
the paired stwcx.. The stwcx. would be success
fully completed, which is not what was intended
by the program.

Such a situation must be prevented by issuing a
stwcx. to a dummy writable word-aligned location,
as part of the context switch, thereby clearing the
reservation of the dangling Iwarx. Executing
stwcx. to a word-aligned location suffices to clear
the reservation, whether it was obtained by 'war.
or 'darx.

1 0 PowerPC Virtual Environment Architecture

'" /

(

(

IBM Confidential

1.6.2.2 Guaranteeing Forward Progress

Forward progress in loops that use 'warx and stwcx.
is guaranteed by a cooperative effort between hard
ware, operating system software, and application soft
ware. Hardware guarantees that:

• one stwcx. among a set of processors holding
reservations to the same real address will
succeed, and

• reservations are not lost unnecessarily, i.e. when
the reserved location has not been modified.

While no general rules can be given regarding oper
ating system guarantees, programs that use the
examples in the Programming Examples appendix of
Book I, PowerPC User Instruction Set Architecture are
guaranteed forward progress.

Architecture Note -------------,

The architecture does not include a "fairness
algorithm." In competing for a reservation, two
processors can indefinitely lock out a third.

1.6_2_3 Reservation Loss Due to
Granularity

When one processor holds a reservation, and another
processor performs a store that might clear that res
ervation, the address comparison is done in a way
that ignores an implementation-dependent number of
low-order bits of the real addresses. The storage
block corresponding to the ignored low-order bits is
called the reservation granule. Its size is
implementation-dependent (see the Book IV, PowerPC
Implementation Features document for the implemen
tation), but is a multiple of the coherence block size.

Lock variables should be allocated such that con
tention for the locks and updates to nearby data
structures do not cause excessive reservation losses
due to false indications of sharing that can occur due
to the reservation granularity.

A processor holding a reservation on the first word of
a reservation granule will lose its reservation if some
other processor stores elsewhere in that granule.
Such problems can be avoided only by ensuring that
few such stores occur. This can most easily be
accomplished by allocating an entire granule for a
lock and wasting all but the first word.

Reservation granularity may vary for each implemen
tation. There are no architectural restrictions
bounding the granularity implementations must
support, so reasonably portable code must dynam
ically allocate aligned and padded storage for locks to
guarantee absence of granularity-induced conflicts.

1.7 Virtual Storage

The PowerPC system implements a virtual storage
model for applications. This means that a combina
tion of hardware and software can present a storage
model which allows applications to exist within a
"virtual" address space larger than either the effec
tive address space or the real address space.

Each program can access 264 {232) bytes of "effective
address" (EA) space, subject to limitations imposed
by the operating system. In a typical Power PC
system, each program's EA space is a subset of a
larger "virtual address" (VA) space managed by the
operating system.

The operating system is responsible for managing the
real (physical) storage resources of the system by
means of a "storage mapping" mechanism. Storage
is always allocated and managed in units of "pages,"
which have a fixed, implementation-dependent size.
The storage mapping process translates accesses to
pages in the EA space into accesses to real pages in
main storage.

In general, main storage may not be large enough,to
contain all of the virtual pages used by the currently
active applications. With support provided by hard
ware mechanisms, the operating system can attempt
to use the available real pages to map a sufficient set
of effective address pages of the applications. If a
sufficient set is maintained, "paging" activity is mini
mized. If not, performance degradation is likely to
occur.

The operating system can support restricted access to
pages (including read-write, read-only, and no
access), based on system standards (e.g., program
code might be read-only) and application requests.

Chapter 1. Storage Model 11

IBM Confidential

12 PowerPC Virtual Environment Architecture .

/ ,

'''<-,,-_ .. ,;;/'

(

IBM Confidential

Chapter 2. Effect of Operand Placement on Performance

The placement (location and alignment) of operands
in storage will affect relative performance of storage
accesses, and in some cases affect it significantly.
The best performance is guaranteed if storage oper
ands are aligned. In order to obtain the best perform
ance across the widest range of implementations, the
programmer should assume the performance model
described in Figure 1 with respect to the placement
of storage operands. Performance of accesses varies
depending on the following:

1. Operand Size
2. Operand Alignment
3. Crossing no boundary
4. Crossing a Cache Une Boundary
5. Crossing a Page Boundary that is also a pro

tection boundary (see Book III, PowerPC Oper
ating Environment Architecture, "Storage
Protection").

6. Crossing a BAT Boundary
See Book III for a description of BAT.

7. Crossing a Segment Boundary
See Book III for a description of storage seg
ments.

The load/store multiple instructions are defined to
operate only on aligned operands. The Move Assist
instructions have no alignment requirements.

For the purposes of Figure 1, crossing pages with dif
ferent storage control attributes is equivalent to
crossing a segment boundary.

Architecture Note -------------,

All processors developed in support of Power
Open or MAC-Risc will provide at a minimum the
level of support implied by Figure 1.

Page crossing is irrelevant for an access in real
mode, within a direct-store segment, and within a
BAT area.

Operand Soundary Crossing

Byte Cache BAT I
Size Align. None Line Page Seg.

Integer

8 Byte 8 optimal - - -
4 good good poor poor
<4 poor poor poor poor

4 Byte 4 optimal - - -
<4 good good poor poor

2 Byte 2 optimal - - -
<2 good good poor poor

1 Byte 1 optimal - - -
Imw, 4 good good good poor
stmw

string good good poor poor

Float

8 Byte 8 optimal - - -
4 good good poor poor
<4 poor poor poor poor

4 Byte 4 optimal - - -
<4 poor poor poor poor

Figure 1. Performance Effects of Storage Operand
Placement

Chapter 2. Effect of Operand Placement on Performance 13

2.1 Instruction Restart

If a storage access crosses a page boundary that is
also a protection boundary, a BAT boundary, or a
segment boundary, a number of conditions could
cause the execution of the instruction to be aborted
after part of the access has been performed. For
example, this may occur when a program attempts to
access a page it has not previously accessed, or
when the processor must check for a possible change
in storage attributes when an access crosses a page
boundary. When this occurs, the implementation or
the operating system may restart the instruction. If
the instruction is restarted, some bytes of the location
may be loaded from or stored to the target location a
second time.

The following rules apply to storage accesses with
regard to restarting the instruction.

Aligned Accesses
A single-register instruction which accesses an
aligned operand is never restarted.

Unaligned Accesses
A single-register instruction which accesses an
unaligned operand may be restarted if the access
crosses a page, BAT, or segment boundary.

Load/Store Multiple, Move Assist
These instructions may be restarted if, in
accessing the locations specified by the instruc
tion, a page, BAT, or segment boundary is
crossed.

Programming Note -------------,

The programmer should assume that any una
ligned access in T - 0 space might be restarted.
Software can ensure this does not occur by use of
direct-store or areas covered by BATs (both of
which do not have page boundaries).

Unsynchronized TLB invalidates do not have a
defined result.

IBM Confidential

2.2 Atomicity and Order

Access Atomicity
With the exception of double-precision floating-paint
operands in 32-bit implementations, all aligned
accesses are atomic. No other access is required to
be atomic. Instructions causing multiple accesses
(Load/Store Multiple and Move Assist) are not atomic.

Engineering Note ------------,

Atomicity of storage accesses is provided by the
processor in conjunction with the storage con
troller. The processor must provide a storage
controller interface that is sufficient to allow a
storage controller to meet the atomicity require
ments specified here.

Access Order
Since the ordering of storage accesses is not guaran
teed unless the programmer inserts the appropriate
ordering instructions, the order of accesses generated
by a single instruction is not guaranteed. Unaligned
accesses, Load/Store Multiple instructions, and Move
Assist instructions have no implicit ordering charac
teristics. For example, processor A may store a word
operand on an odd halfword boundary. It may appear
to processor A that the store completed atomically.
Processor or other mechanism B, executing a load
from the same location, may get a result that is a
combination of the value of the first halfword that
existed prior to the store by processor A and the
value of the second halfword stored by processor A.

14 PowerPC Virtual Environment Architecture

(

(

IBM Confidential

Chapter 3. Storage Control Instructions

3.1 Parameters Useful to Application
Programs 15

3.2 Cache Management Instructions 16
3.2.1 Instruction Cache Instructions 16

The instructions in this chapter are not privileged.
For most of them, if the applicable cache is not
present, the operation is a "nooOp" and has no effect
on any register or on storage. The only exception is
the dcbz instruction. When the data cache does not
exist, dcbz zeros a certain number of bytes of storage
(which has an effect similar to zeroing bytes in a
cache block which are later written to storage) or it
invokes the system alignment error handler (so its
function can be simulated).

As with other storage instructions, the effect of the
Cache Management instructions on storage is weakly
consistent. If the programmer needs to ensure that
Cache Management or other instructions have been
performed with respect to all other processors and
mechanisms, a sync instruction must be placed in the
program following those instructions.

The description of many of the Cache Management
instructions has a statement that defines its storage
semantics, such as ''This instruction is treated as a
store to the addressed byte with respect to address
translation and protection." This statement defines
the operation of the instruction with respect to how it
affects the page reference and change bits, and
whether or not interrupts occur for a translation error
or a protection violation (see Book III, PowerPC Oper
ating Environment Architecture).

Granularity of execution

The maximum allowed cache line size is one page.

The term block is used to refer to the amount of
storage operated on by each Cache Management
instruction. The size of a block is not an architectural
constant but varies by instruction and by implementa
tion.

3.2.2 Data Cache Instructions
3.3 Enforce In-order Execution of I/O

Instruction

3.1 Parameters Useful to
Application Programs

17

19

It is suggested that the operating system provide a
service that allows an application program to obtain
the following information.

1. Page size
2. Coherence block size
3. Granule size for reservations
4. An indicator of whether the processor has (a) a

combined cache or no caches, or (b) some other
cache configuration (split caches or one cache
only; if l-cache fetches pass through the D-cache,
consider it to be a split cache)

5. Instruction cache total size
6. Data cache total size
7. Instruction cache line size
8. Data cache line size
9. Block size for dcbt and dcbt&t (if no D-cache,

number of bytes zeroed by dcbz)
10. Block size for icbi (if no l-cache, number of bytes

zeroed by dcbz)
11. Block size for dcbz, dcbst, dcbf, and dcb; (see

Book III, PowerPC Operating Environment Archi
tecture for a description of dcbl1 (if no D-cache,
number of bytes zeroed by dcbz)

12. Instruction cache associativity
13. Data cache associativity
14. Factor for converting the Time Base to seconds

If the caches are combined, the same value should be
given for an I-cache attribute and the corresponding
D-cache attribute.

Architecture Note -----------.,

All processors in a symmetric multiprocessor
must be identical with respect to the cache model,
the coherence block size, and the reservation
granule size.

Chapter 3. Storage Control Instructions 15

IBM Confidential

3.2 Cache Management Instructions

3.2.1 Instruction Cache Instructions

Instruction caches, if they exist, are not required to be
consistent with data caches, storage, nor 110 data
transfers. Software must use the appropriate Cache
Management instructions to ensure that instruction
caches are kept consistent when instructions are
modified by the processor or by input data transfer.
When a processor alters a storage location that may
be contained in an instruction cache, software must
ensure that updates to storage are visible to the
instruction fetching mechanism. Although the
instructions to accomplish this vary among implemen
tations and hence many operating systems will
provide a system service for this function, the fol
lowing sequence is typical:

Instruction Cache Block Invalidate X-form

icbi RA,RB

982

Let the effective address (EA) be the sum
(RAIO)+ (RB).

If the block containing the byte addressed by EA is in
Coherence Required mode, and a block containing the
byte addressed by EA is in the instruction cache of
any processor, the block is made invalid in all such
processors, so that subsequent references cause the
block to be refetched.

If the block containing the byte addressed by EA is in
Coherence Not Required mode, and a block containing
the byte addressed by EA is in the instruction cache
of this processor, the block is made invalid in this
processor, so that subsequent references cause the
block to be fetched from main storage (or perhaps
from a data cache).

It is acceptable to treat this instruction as a load from
the addressed byte with respect to address trans
lation and protection. Implementations with a com
bined data and instruction cache may treat the lebl
instruction as a no-op, even to the extent of not vali
dating the EA.

If the EA references storage outside of main storage
(see Direct-Store Segments in Book III, PowerPC
Operating Environment Architecture), the instruction
is treated as a no-op.

SpecIal Register. Altered:
None

1. debst - update storage

2. sync - wait for update (see Book I, PowerPC User
Instruction Set Architecture)

3. /cbl- invalidate copy in instruction cache

4. Isyne - perform context synchronization (see Book
III, PowerPC Operating Environment Architecture)

These operations are necessary because the .storage
may be in Write Through Not Required mode. Since
instruction fetching may bypass the data cache,
changes made to items in the data cache may not be
reflected in storage until after the instruction fetch
completes.

EngineerIng Note ------------,

It is preferable not to record the storage refer
ence of Icbi.

Instruction Synchronize XL-form

isync

[Power mnemonic: ics]

150

This instruction waits for all previous instructions to
complete and then discards any prefetched
instructions, causing subsequent instructions to be
fetched (or refetched) from storage and to execute in
the context established by the previous instructions.
This instruction has no effect on other processors or
on their caches.

This instruction is context synchronizing (see Book III,
PowerPC Operating Environment Architecture).

Special Registers Altered:
None

16 PowerPC Virtual Environment Architecture .

(

IBM Confidential

3.2.2 Data Cache Instructions

Data caches and combined caches, if they exist, are
required to be consistent with other data caches,
combined caches, storage, and 110 data transfers.
However, to ensure consistency, aliased effective
addresses (two effective addresses that map to the

Data Cache Block Touch X-form

dcbt RA,RB

278

Let the effective address (EA) be the sum
(RAIO) + (RB).

This instruction is a hint that performance will prob
ably be improved if the block containing the byte
addressed by EA is fetched into the data cache,
because the program will probably soon load from the
addressed byte. Executing debt will not cause the
system error handler to be invoked.

It is acceptable to treat this instruction as a load from
the addressed byte with respect to address trans
lation and protection, except that the system error
handler must not be invoked for a translation or pro
tection violation.

Special Registers Altered:
None

Programming Note -------------,

The purpose of this instruction is to allow the
program to request a cache block fetch before it
is actually needed by the program. The program
can later perform loads to put data into registers.
However, the processor is not obliged to load the
addressed block into the data cache.

Engineering Note ------------,

It is preferable not to record the storage refer
ence of debt.

same real address) must have the same page offset
(see Section 1.6, "Shared Storage" on page 7).

If the effective address references storage outside of
main storage (see Direct-Store Segments in Book III,
PowerPC Operating Environment Architecture), the
instruction is treated as a no-op.

Data Cache Block Touch for Store X-form

dcbtst RA,RB

246

Let the effective address (EA) be the sum
(RAIO)+(RB).

This instruction is a hint that performance will prob
ably be improved if the block containing the byte
addressed by EA is fetched into the data cache,
because the program will probably soon store into the
addressed byte. Executing debtst will not cause the
system error handler to be invoked.

It is acceptable to treat this instruction as a load from
the addressed byte with respect to address trans
lation and protection, except that the system error
handler must not be invoked for a translation or pro
tection violation. Since debtst does not modify
storage, it must not be recorded as a store.

Special Registers Altered:
None

Programming Note ------------,

The purpose of this instruction is to allow the
program to schedule a cache block fetch before it
is actually needed by the program. The program
can later perform stores to put data into storage.
However, the processor is not obliged to load the
addressed block into the data cache.

Engineering Note -----------...,

The Data Cache Block Touch instructions are pro
vided for software performance optimization and
do not affect the correct execution of a program,
regardless of whether they succeed (fetch the
target block) or fail (do not fetch the target block).

Unlike debt, debtst gets exclusive ownership of
the line.

It is preferable not to record the storage refer
ence of debtst.

Chapter 3. Storage Control Instructions 17

Data Cache Block set to Zero X-form

dcbz RA,RB

[Power mnemonic: dCIZ]

10 31 Is 11/ 111 RA 1,6 RB 121
1014

1:,1
Let the effective address (EA) be the sum
(RAIO) + (RB).

If the block containing the byte addressed by EA is in
the data cache, all bytes of the block are set to zero.

If the block containing the byte addressed by EA is
not in the data cache and the corresponding page is
Caching Allowed, the block is established in the data
cache without fetching the block from main storage,
and all bytes of the block are set to zero.

If the page containing the byte addressed by EA is
Caching Inhibited or Write Through, then either (a) all
bytes of the area of main storage that corresponds to
the addressed block are set to zero, or (b) the system
alignment error handler is invoked.

If the block containing the byte addressed by EA is in
Coherence Required mode, and the block exists in the
data cachets) of any other processor(s), it is kept
coherent in those caches.

This instruction is treated as a store to the addressed
byte with respect to address translation and pro
tection.

Special Registers Altered:
None

Programming Note ----------....,

If the page containing the byte addressed by EA is
Caching Inhibited or Write Through, the system
alignment error handler should set to zero all
bytes of the area of main storage that corre
sponds to the addressed block.

See the Interrupt chapter of Book III, PowerPC
Operating Environment Architecture for a dis
cussion about a possible delayed Machine Check
interrupt that can occur by use of dcbz if the oper
ating system has set up an incorrect storage
mapping.

IBM Confidential

Data Cache Block Store X-form

dcbst RA,RB

10 31 16 1/1 111 RA 1,6 RB L, 54
1:,1

Let the effective address (EA) be the sum
(RAIO) + (RB).

If the block containing the byte addressed by EA is in
Coherence Required mode, and a block containing the
byte addressed by EA is in the data cache of any
processor and has been modified, the writing of it to
main storage is initiated.

If the" block containing the byte addressed by EA is in
Coherence Not Required mode, and a block containing
the byte addressed by EA is in the data cache of this
processor and has been modified, the writing of it to
main storage is initiated.

The function of this instruction is independent of the
Write Through and Caching Inhibited/Allowed modes
of the block containing the byte addressed by EA.

It is acceptable to treat this instruction as a load from
the addressed byte with respect to address trans
lation and protection.

Special Register. Altered:
None

Engineering Note ------------,

It is preferable not to record the storage refer
ence of debst.

18 PowerPC Virtual Environment Architecture

(

IBM Confidential

Data Cache Block Flush X-form

dcbf RA,RB

86

3.3 Enforce In-order Execution
of 1/0 Instruction

Enforce In-order Execution of 110
X-form

Let the effective address (EA) be the sum eieio
(RAIO) + (RB).

The action taken depends on the storage mode asso
ciated with the target, and on the state of the block.
The list below describes the action taken for the
various cases. The actions described must be exe
cuted regardless of whether the page containing the
addressed byte is in Caching Inhibited or Caching
Allowed mode.

1. Coherence Required
Unmodified Block

Invalidate copies of the block in the caches of
all processors.

Modified Block
Copy the block to storage. Invalidate copies of
the block in the caches of all processors.

Absent Block
If modified copies of the block are in the
caches of other processors, cause them to be
copied to storage and invalidated. If unmodi
fied copies are in the caches of other
processors, cause those copies to be invali
dated.

2. Coherence Not Required
Unmodified Block

Invalidate the block in the processor's cache.
Modified Block

Copy the block to storage. Invalidate the block
in the processor's cache.

Absent Block
Do nothing.

The function of this instruction is independent of the
Write Through and Caching Inhibited/Allowed modes
of the block containing the byte addressed by EA.

It is acceptable to treat this instruction as a load from
the addressed byte with respect to address trans
lation and protection.

Special Registers Altered:
None

Engineering Note ------------,

It is preferable not to record the storage refer
ence of dcb'.

854

The e;e;o instruction provides an ordering function for
the effects of Load and Store instructions executed by
a given processor. Executing an e;e;o instruction
ensures that all storage accesses previously initiated
by the given processor are complete with respect to
main storage before any storage accesses subse
quently initiated by the given processor access main
storage.

.;e;o orders loads/stores to Caching Inhibited storage
and stores to Write Through Required storage.
Whether or not it orders accesses to a cache is
implementation-dependent.

Special Registers Altered:
None

Programming Note ------------,

The .;e;o instruction is intended for use only in
doing memory-mapped 110 (see Book III, PowerPC
Operating Environment Architecture) and to
prevent load/store combining operations in main
storage. It can be thought of as placing a barrier
into the stream of storage accesses issued by a
processor, such that any given storage access
appears to be on the same side of the barrier to
both the processor and the I/O device.

The e;8;0 instruction may complete before previ
ously initiated storage accesses have been per
formed with respect to other processors and
mechanisms.

Engineering Note -----------...,

Unlike the sync instruction, .,.,0 need not seri
alize the processor. e;e;o need only ensure that
the processor executes storage accesses in the
order described above, and enforces that order in
any queues in the storage subsystem.

It is permissible to implement e;e;o as sync .

. Chapter 3. Storage Control Instructions 19

IBM Confidential

20 PowerPC Virtual Environment Architecture

(

(

IBM Confidential

Chapter 4. Time Base

4.1 Time Base Instructions
4.2 Reading the Time Base on 54-bit

Implementations

22

22

The Time Base (TB) is a 64-bit register (see Figure 2)
containing a 64-bit unsigned integer which is incre
mented periodically. Each increment adds 1 to the
low-order bit (bit 63). The frequency at which the
counter is updated is implementation-dependent.

TBU TBl

o 32 63

Field Description
TBU Upper 32 bits of Time Base
TBl Lower 32 bits of Time Base

Figure 2. Time Base

The Time Base increments until its value becomes
OxFFFF]FFF _FFFF]FFF (284 - 1). At the next incre
ment, its value becomes OxOOOO_OOOO_OOOO_OOOO.
There is no explicit indication (such as an interrupt)
that this has occurred.

The period of the Time Base depends on the driving
frequency. As an order of magnitude example,
suppose that the CPU clock is 100 MHz and that the
Time Base is driven by this frequency divided by 32.
Then the period of the Time Base would be

264 x 32 12
TTS = 100 MHz = 5.90 x 10 seconds

which is approximately 187,000 years. The PowerPC
Architecture does not specify a relationship between

4.3 Reading the Time Base on 32-bit
Implementations 22

4.4 Computing Time of Day from the
Time Base 23

the frequency at which the Time Base is updated and
other frequencies, such as the CPU clock or bus clock,
in a Power PC system. The Time Base update fre
quency is not required to be constant. What is
required, so that system software can keep time of
day and operate interval timers, is:

• The system provides an (implementation
dependent) interrupt to software whenever the
update frequency of the Time Base changes, plus
a means to determine what the current update
frequency is, or

• The update frequency of the Time Base is under
the control of the system software.

Programming Note ------------,

Assuming that the operating system initializes the
Time Base on power-on to some reasonable value
and that the update frequency of the Time Base is
constant, the Time Base can be used as a source
of values which increase at a constant rate, such
as for time stamps in trace entries.

Even if the update frequency is not constant,
values read from the Time Base will be
monotonically increasing. If a trace entry is
recorded each time the update frequency
changes, the sequence of Time Base values can
be post-processed to become actual time values.

Chapter 4. Time Base 21

4.1 Time Base Instructions

Extended mnemonics

A pair of extended mnemonics is provided for the
mftb instruction so that it can be coded with the TBR
name as part of the mnemonic rather than as a
numeric operand. See the Assembler Extended Mne
monics appendix in Book III, PowerPC Operating Envi
ronment Architecture.

Move From Time Base XFX-form

mftb RT,TBR

n .. tbrs:9 II tbrO:4
if n = 268 then

tbr

if (54-bit implementation) then
RT .. TB

else
RT .. TB32:63

else if n = 259 then
if (54-bit implementation) then

RT .. 32e II TBo:31
else

RT .. TBo:31

371

The TBR field denotes either the Time Base or Time
Base Upper, encoded as shown in Figure 3. The con
tents of the designated register are placed into reg
ister RT. When reading Time Base Upper on a 54-bit
implementation, the high-order 32 bits of register RT
are set to zero.

TBR* Register Privi-
decimal tbrs:9 tbro:4 name leged

268 0100001100 TB no
269 0100001101 TBU no

* Note that the order of the two 5-bit halves
of the TBR number is reversed.

Figure 3. TBR encodings for mftb

If the TBR field contains any value other than one of
the values shown above, the instruction form is
invalid.

Special Registers Altered:
None

Extended Mnemonics:

Extended mnemonics for Move From Time Base:

Extended:

mftb Rt
mftbu Rt

Equivalent to:

mftb Rt,268
mftb Rt,269

IBM Confidential

Programming Note -----------,

mftb serves as both a basic and an extended
mnemonic. The assembler will recognize an mftb
mnemonic with two operands as the basic form,
and an mftb mnemonic with one operand as the
extended form. Another way of saying this is that
if mftb is coded with one operand, then that
operand is assumed to be RT. and TBR defaults to
the value corresponding to TB.

Complier and Assembler Note ------..,

For the mftb instruction, the TBR number coded in
assembler language does not appear directly as a
10-bit binary number in the instruction. . The
number coded is split into two 5-bit halves that
are reversed in the instruction, with the high
order 5 bits appearing in bits 16:20 of the instruc
tion and the low-order 5 bits in bits 11: 15.

4.2 Reading the Time Base on
64-bit Implementations

The contents of the Time Base may be read into a
GPR by the mftb extended mnemonic. To read the
contents of the Time Base into register Rx, execute:

mftb Rx

Reading the Time Base has no effect on the value it
contains or the periodic incrementing of that value.

4.3 Reading the Time Base on
32-bit Implementations

On 32-bit implementations, it is not possible to read
the entire 54-bit Time Base in a single instruction.
The mftb extended mnemonic moves from the lower
half of the Time Base (TBL) to a GPR, and the mftbu
extended mnemonic moves from the upper half (TBU)
to a GPR.

Because of the possibility of a carry from TBL to TBU
occurring between reads of TBL and TBU, a sequence
such as the following is necessary to read the Time
Base on 32-bit implementations.

loop:
mftbu Rx
mftb Ry
mftbu Rz
cmpw RZ,Rx
bne loop

#I load from TBU
#I load from TBl
#I load from TBU
#I see if 'old' = 'new'
#I loop if carry occurred

The comparison and loop are necessary to ensure
that a consistent pair of values has been obtained.

22 PowerPC Virtual Environment Architecture .

(

IBM Confidential

4.4 Computing Time of Day
from the Time Base

Since the update frequency of the Time Base is
implementation-dependent, the algorithm for con
verting the current value in the Time Base to time of
day is also implementation-dependent.

As an example, assume that the Time Base is incre
mented at a constant rate of once for every 32 cycles
of a 100 MHZ CPU instruction clock. What is wanted
is the pair of 32-bit values comprising a POSIX
standard clock: the number of whole seconds which
have passed since midnight January 0, 1970, and the
remaining fraction of a second expressed as a
number of nanoseconds.

Assume that:

• The value 0 in the Time Base represents the start
time of the POSIX clock (if this is not true, a
simple 64-bit subtraction will make it so).

• Integer constant ticks"per _sec contains the value

1003~HZ =3,125,000

which is the number of times the Time Base is
updated each second.

• Integer constant ns_adj contains the value

1,000,000,000 = 320
3,125,000

which is the number of nanoseconds per tick of
the Time Base.

64-bit Implementations

The POSIX clock can be computed with an instruction
sequence such as this:

mftb Ry # Ry = Time Base
lwz Rx,ticks per sec
divd Rz,Ry,Rx- -# Rz = whole seconds
stw RZ,posix sec
mull Rz,Rz,Rx- # Rz = quotient * divisor
sub RZ,Ry,Rz # Rz = excess ticks
lwz Rx,ns_adj
mull RZ,Rz,Rx # Rz = excess nanoseconds
stw Rz,posix_ns

32-bit Implementations

On a 32-bit machine, direct implementation of the
code given above for 64-bit machines is awkward, due
mainly to the difficulty of doing 64-bit division.1 Such
division can be avoided entirely if a time of day clock
in POSIX format is updated at least once each second.

Assume that:

• The operating system maintains the following var
iables:

poshUb (64 bits)
- posix_sec (32 bits)
- posix_ns (32 bits)

These variables hold the value of the Time Base
and the computed POSIX seconds and
nanoseconds values from the last time the POSIX
clock was computed.

• The operating system arranges for an interrupt to
occur at least once per second, at which time it
recomputes the POSIX clock values.

• The integer constant billion contains the value
1,000,000,000.

The POSIX clock can be computed with an instruction
sequence such as this:

loop:

mftbu Rx
mftb Ry
mftbu Rz

Rz = TBU
Ry = TBl
Rz = 'new' TBU value

cmpw RZ,Rx # see if 'old' = 'new'
bne loop # loop if carry occurred

now have 54-bit TB in Rx and Ry
lwz Rz,posix tb+4
sub Rz,Ry,Rz- # Rz = delta in ticks
lwz Rw,ns adj
mull Rz,Rz:Rw # Rz = delta in ns
lwz Rw,posix ns
add Rz,Rz,Rw- # Rz = new ns value
lwz Rw,billion
cmpw RZ,Rw # see if past 1 sec
blt nochange # branch if not
sub RZ,Rz,Rw # adjust nanoseconds
lwz Rw,posix sec
addi Rw,Rw,l - # adjust seconds
stw Rw,posix_sec # store new seconds

nochange:
stw Rz,posix ns # store new ns

Rx,posix-tb # store new time base
Ry,posix)b+4

stw
stw

Note that the upper part of the Time Base does not
participate in the calculation to determine the new
POSIX time of day. This is correct as long as the
delta value does not exceed one second.

1 See D. E. Knuth, The Art of Computer Programming. Volume 2. Seminumerical AlgOrithms, section 4.3.1, Algorithm D. Addison-Wesley, 1981.

Chapter4. Time Base 23

Non-constant update frequency

In a system in which the update frequency of the Time
Base may change over time, it is not possible to
convert an isolated Time Base value into time of day.
Instead, a Time Base value has meaning only with
respect to the current update frequency and the time
of day the last time the update frequency was
changed. Each time the update frequency changes,
the system software is notified of the change via
interrupt (or else the change was instigated by the
system software itself). At each such change, the
system software must compute the current time of
day using the old update frequency, compute a new
value of ticks-per_second for the new frequency, and
save the time of day, Time Base value, and tick rate.

IBM Confidential

Subsequent calls to compute time of day use the
current Time Base value and the saved data.

Programming Note -----------,

A generalized service to compute time of day
could take as input

1. Time of day at beginning of current epoch
2. Time Base value at beginning of current

epoch
3. Time Base update frequency
4. Time Base value for which time of day is

desired

For a Power PC system in which the Time Base
update frequency does not vary, the first three
inputs would be constant.

24 PowerPC Virtual Environment Architecture

(

IBM Confidential

Appendix A. Cross-Reference for Changed Power Mnem~nics

The table below lists the Power instruction mnemonics
that have been changed in the Power PC Virtual Envi
ronment Architecture, sorted by Power mnemonic.

To determine the PowerPC mnemonic for one of these
Power mnemonics, find the Power mnemonic in the
second column of the table: the remainder of the line

Power
Page

Mnemonic Instruction

18 dclz Data Cache Line Set to Zero
16 ics Instruction Cache Synchronize

gives the PowerPC mnemonic and the page on which
the instruction is described, as well as the instruction
names.

Power mnemonics that have not changed are not
listed.

PowerPC

Mnemonic Instruction

dcbz Data Cache Block set to Zero
isync Instruction Synchronize

Appendix A. Cross-Reference for Changed Power Mnemonics 25

IBM Confidential

/

26 PowerPC Virtual Environment Architecture

(

(/

IBM Confidential

Appendix B. New Instructions

The following instructions in the PowerPC Virtual Envi
ronment Architecture are new: they are not in the
Power Architecture. They exist in all Power PC imple
mentations.

deb'
debst
debt
debtst
.;.;0
;ebl
mftb

Data Cache Block Flush
Data Cache Block Store
Data Cache Block Touch
Data Cache Block Touch for Store
Enforce In-order Execution of 1/0
Instruction Cache Block Invalidate
Move From Time Base

Appendix B. New Instructions 27

IBM Confidential •

28 PowerPC Virtual Environment Architecture .

(

IBM Confidential

Appendix C. PowerPC Virtual Environment Instrudion Set

Form
Opcode Mode

Page Mnemonic
Primary Extend Dep.t

X 31 86 19 dcbf
X 31 54 18 dcbst
X 31 278 17 dcbt
X 31 246 17 dcbtst
X 31 1014 18 dcbz
X 31 854 19 eieio
X 31 982 16 icbi
XL 19 150 16 isyne
X 31 371 22 mftb

tAli instructions in the PowerPC Virtual Environment
Architecture are mode-independent, except that if the
instruction refers to storage when in 32-bit mode, only
the low-order 32 bits of the 64-bit effective address
are used to address storage.

Instruction

Data Cache Block Flush
Data Cache Block Store
Data Cache Block Touch
Data Cache Block Touch for Store
Data Cache Block set to Zero
Enforce In-order Execution of I/O
Instruction Cache Block Invalidate
Instruction Synchronize
Move From Time Base

Appendix C. PowerPC Virtual Environment Instruction Set 29

IBM Confidential

30 PowerPC Virtual Environment Architecture

(

(

IBM Confidential

Index

aliasing 7
alignment

effect on performance 13
atomic operation 9

~
block 15

@]
cache block 15
cache management instructions 16
cache model 5
cache parameters 15
combined cache 7

~
data cache instructions 17
dcbf 19
dcbst 18
dcbt 17
dcbtst 17
dcbz 18
dual cache 5

o
eieio 8,19

o
icbi 16
instruction cache instructions 16
instructions

dcbt 19
dcbst 18
dcbt 17
dcbtst 17

instructions (continued)
dcbz 18
eieio 8,19
icbi 16
isync 16
Idarx 9
Iwarx 9
stdcx. 9
storage control 15
stwcx. 9
sync 8

isync 16

~
load (def)

main storage

~
program order (def)

registers
Time Base 21

o
split cache 5
storage

access atomicity 14
access order 8, 14
atomic operation 9
coherence 2
instruction restart 14
order 8
ordering 7, 8, 19
reservation 10
shared 7

-,. Index 31

storage access
definitions

load 1
program order
store 1

storage control instructions 15
store (def) 1
sync 8

o
TB 21
TBL 21
TBU 21
Time Base 21

virtual storage 11

write through cache 7

32 PowerPC Virtual Environment Architecture

IBM Confidential

IBM Confidential

(-

(Last Page - End of Document

Index 33

·PowerPC Operating Environment Architecture

Book III

Version 1.02

January 8, 1993

Distribution for IBM: softcopy on KISS64

Owner: Jack Kemp
KEMP at AUSVM6

E64S/4A-015
IBM Corporation
Austin, TX 78758

Tele 512-838-1846
Tie Line 678-1846

Technical Content: Ed Silha
silha@austin.ibm.com

E22S/4F-019
IBM Corporation
Austin, TX 78758

Tele 512-838-1848
Tie Line 678-1848

IBM Confidential

NOTES: --~

• This is a controlled document.
• Verify version and completeness prior to use.
• See the Preface for additional important information.

(c) Copyright International Business Machines Corporation, 1993. All rights reserved.

IBM Confidential

II PowerPC Operating Environment Architecture

(

{

IBM Confidential

Preface

This document defines the additional instructions and
facilities, beyond those of the Power PC User Instruc
tion Set Architecture and PowerPC Virtual Environ
ment Architecture, that are provided by the PowerPC
Operating Environment Architecture. It covers
instructions and facilities not available to the applica
tion programmer, affecting storage control, interrupts,
and timing facilities.

Other related documents define the PowerPC User
Instruction Set Architecture, the Power PC Virtual Envi
ronment Architecture, and PowerPC Implementation
Features. Book I, PowerPC User Instruction Set
Architecture defines the base instruction set and
related facilities available to the application pro
grammer. Book II, PowerPC Virtual Environment
Architecture defines the storage model and related
instructions and facilities available to the application
programmer, and the TIme Base as seen by the appli
cation programmer. Book IV, PowerPC Implementa
tion Features defines the implementation-c:iependent
aspects of a particular implementation.

The PowerPC Architecture consists of the instructions
and facilities described in Books I, II, and III.
However, the complete description of the Power PC
Architecture as instantiated in a given implementation
includes also the material in Book IV for that imple-'
mentation.

User Responsibilities

• Do not make any unauthorized alterations to the
document (user notes permitted).

• Verify the version prior to use. Version verifica
tion procedure is described below.

• Verify completeness prior to use. The last page
is labeled 'Last Page - End of Document'. The
end of the Table of Contents shows the last page
number. All pages are numbered sequentially.

• Report any deviations from these procedures to
the document owner.

Next Scheduled Review

The next review is expected to be approximately in
March, 1993. At least four weeks before this meeting,
a DRAFT version of this document will be distributed.

Version Verification for ISM

• Link to the KISS64 disk in Yorktown or a shadow
of this disk. In Yorktown, linking to KISS64 can
be done with the command 'GIME KISS64.'

• Browse the newest file with a name of the form
"PPC2xxxx LlST3820,' by using the 'browse'
command.

• Verify that your version matches this file.

If your version is not current, please contact the docu
ment owner.

Version Verification for Other Firms

To be supplied.

Approval Process

The following procedure is followed for all changes to
the content of this document:

• The Power Open Architecture Work Group
(PAWG) meets quarterly or more frequently if
necessary.

• At least four weeks before a meeting, a version
of this document is distributed to the PAWG. It is
marked DRAFT. Proposed changes are included
and· identified with change bars.

• The PAWG meets and decides each issue.
• Final alterations to this document are made,

change bars are removed, and the entire docu
ment is distributed with a new version number
and the word DRAFT removed.

• At the meeting or a subsequent one, new issues
are discussed.

• The resulting changes are described in a new
version of this document which is derived from
the last non-DRAFT version. Proposed changes
are identified with change bars, and the docu
ment is distributed to the PAWG. This document
has a new version number and is marked DRAFT.

• The cycle repeats from the beginning.

Approvals

This version has been approved for user review by
the document owner.

Preface iii

IBM Confidential

Iv PowerPC Operating Environment Architecture

(

IBM Confidential

Table of Contents

Chapter 1. Introduction 1
1.1 Overview 1
1.2 Compatibility with the Power

Architecture 1
1.3 Document Conventions 1
1.3.1 Definitions and Notation 2
1.3.2 Reserved Fields 2
1.3.3 Description of Instruction Operation 2
1.4 General Systems Overview 3
1.5 I nstruction Formats 3
1.5.1 Instruction Fields 3
1.5 Exceptions 3
1.7 Synchronization 3
1.7.1 Context Synchronization 3
1.7.2 Execution Synchronization 4

Chapter 2. Branch Processor 5
2.1 Branch Processor Overview 5
2.2 Branch Processor Registers 5
2.2.1 Machine Status Save/Restore

Register 0 5
2.2.2 Machine Status Save/Restore

Register 1 5
2.2.3 Machine State Register 5
2.2.4 Processor Version Register 8
2.3 Branch Processor Instructions 9
2.3.1 System Linkage Instructions 9

Chapter 3. Fixed-Point Processor 11
3.1 Fixed-Point Processor Overview 11
3.2 PowerPC Special Purpose

Registers 11
3.3 Fixed-Point Processor Registers 11
3.3.1 Data Address Register 11
3.3.2 Data Storage Interrupt Status

Register 12
3.3.3 Software-use SPRs 12
3.4 Fixed-Point Processor Privileged

Instructions 12
3.4.1 Move To/From System Registers

Instructions 12

Chapter 4. Storage Control
4.1 Storage Addressing

..... 17
18

4.2 Storage Model
4.2.1 Storage Segments
4.2.2 Storage Exceptions

18
18
19

4.2.3 Instruction Fetch 19
4.2.4 Data Storage Access 19
4.2.5 Speculative Execution 20
4.2.5 Real Addressing Mode 21
4.3 Address Translation Overview ... 22
4.4 Segmented Address Translation,

54-bit Implementations 23
4.4.1 Virtual Address Generation, 54-bit

Implementations 24
4.4.2 Virtual to Real Translation, 54-bit

Implementations 28
4.5 Segmented Address Translation,

32-bit Implementations 32
4.5.1 Virtual Address Generation, 32-bit

Implementations 33
4.5.2 Virtual to Real Translation, 32-bit

Implementations 34
4.6 Direct-Store Segments 37
4.6.1 Completion of direct-store access 37
4.6.2 Direct-store segment protection 38
4.6.3 Instructions not supported for
T=1 38

4.6.4 Instructions with no effect for T= 1 38
4.7 Block Address Translation 38
4.7.1 Recognition of Addresses in BAT

Areas
4.7.2 BAT Registers
4.8 Storage Access Modes
4.8.1 W, I, M and G bits
4.8.2 Supported Storage Modes
4.8.3 Mismatched WIMG Bits' ...
4.9 Reference and Change Recording
4.10 Storage Protection
4.10.1 Page Protection
4.10.2 BAT Protection
4.11 Storage Control Instructions
4.11.1 Cache Management Instructions
4.11.2 Segment Register Manipulation

Instructions
. 4.11.3 Lookaside Buffer Management

38
39
41
41
42
42
43
44
44
44
45
45

45

Instructions (Optional) 47

Table of Contents v

4.12 Table Update Synchronization
Requirements 53

4.12.1 Page Table Updates 53
4.12.2 Segment Table Updates 54
4.12.3 Segment Register Updates ... 55

Chapter 5. Interrupts 57
5.1 Overview 57
5.2 Interrupt Synchronization 57
5.3 Interrupt Classes 57
5.3.1 Precise Interrupt 58
5.3.2 Imprecise Interrupt 58
5.4 Interrupt Processing 58
5.5 Interrupt Definitions 59
5.5.1 System Reset Interrupt 60
5.5.2 Machine Check Interrupt 60
5.5.3 Data Storage Interrupt 61
5.5.4 Instruction Storage Interrupt ... 62
5.5.5 External Interrupt 62
5.5.6 Alignment Interrupt 63
5.5.7 Program Interrupt 64
5.5.8 Floating-Point Unavailable

Interrupt 65
5.5.9 Decrementer Interrupt 65
5.5.10 System Call Interrupt 65
5.5.11 Trace Interrupt 65
5.5.12 Floating-Point Assist Interrupt 66
5.6 Partially Executed Instructions .,. 66
5.7 Exception Ordering 66
5.7.1 Unordered Interrupt Conditions 66
5.7.2 Ordered Exceptions 67
5.8 Interrupt Priorities 67

Chapter 6. Timer Facilities 69
6.1 Overview 69
6.2 Time Base 69
6.2.1 Writing and Reading the Time

Base on 64-bit Implementations 70
6.2.2 Writing and Reading the Time

Base on 32-bit Implementations 70
6.3 Decrementer 71
6.3.1 Writing and Reading the

Decrementer 71

Appendix A. Optional Facilities and
Instructions 73

IBM Confidential

A.1 External Control 73
A.1.1 External Access Register 73
A.1.2 External Access Instructions ... 74

Appendix B. Assembler Extended
Mnemonics 75

B.1 Move To/From Special Purpose
Register mnemonics 76

Appendix C. Cross-Reference for
Changed Power Mnemonics 77

Appendix D. New Instructions 79

Appendix E. Processor Version
Numbers 81

Appendix F. Synchronization
Requirements for Special Registers 83

F.1 Affected Registers 83
F .1.1 I nstruction Fetch 83
F .1.2 Data Access 83
F.2 Context Synchronizing Operations 83
F.3 Software Synchronization

Requirements 84
F.4 Additional Software Requirements 84

Appendix G. Implementation-Specific
SPRs 87

Appendix H. Interpretation of the
DSISR as set by an Alignment
Interrupt 89

Appendix I. Processor
Simplifications for Uniprocessor
Designs 91

Appendix J. PowerPC Operating
Environment Instruction Set 93

Index 95

vi PowerPC Operating Environment Architecture

IBM Confidential

("

Figures

1. Logical View of the PowerPC Processor 19. Address Translation Overview (32-bit
Architecture 3 implementations) 32

2. Save/Restore Register 0 5 20. Translation of 32-bit Effective Address to
3. Save/Restore Register 1 5 Virtual Address 33
4. Machine State Register 6 21. Segment Register format 33
5. Processor Version Register 8 22. Translation of 52-bit Virtual Address to
6. Data Address Register 11 32-bit Real Address 34
7. Data Storage Interrupt Status Register 12 23. Page Table Entry, 32-bit implementations 35
8. Software-use SPRs 12 24. SDR 1, 32-bit implementations 35
9. SPR encodings for mtspr 13 25. BAT Registers, 64-bit implementations 39

10. SPR encodings for mfspr 14 26. BAT Registers, 32-bit implementations 39
11. Power PC Address Translation 22 27. Formation of Real Address via BAT, 54-bit
12. Address Translation Overview (64-bit implementations 40

implementations) 23 28. Formation of Real Address via BAT, 32-bit
13. Translation of 54-bit Effective Address to implementations. 40

Virtual Address 24 29. Protection Key Processing 44
14. Address Space Register 24 30. MSR Setting Due to Interrupt 60
15. Segment Table Entry format 25 31. Offset of First Instruction by Interrupt Type 60
16. Translation of 80-bit Virtual Address to 32. Time Base 69

(64-bit Real Address 28
17. Page Table Entry, 64-bit implementations 29

33. Decrementer 71
34. External Access Register 73

18. SDR 1, 64-bit implementations 29

(

Figures vii

IBM Confidential

Changes as of 1993/01/08 Version 1.02

change reason page

Delete RTL that shows clearing of the high-order Redundant and possibly confusing. 9, 10
32 bits of SRRO and NIA for 64-bit implementa-
tions in 32-bit mode.

Simplify second paragraph of rfl description. Agreed at Dec. 2 Power Open meeting; a f1oating- 10
point imprecise interrupt may also be pending.

Weaken statement that speculative stores are Agreed at Dec. 2 Power Open meeting. 20
prohibited.

Say that if a load or store will be executed, the Agreed at Dec. 2 Power Open meeting. 20,41 + 1
entire cache block(s) may be loaded.

Delete Editor's Note about minimum page table Agreed at Dec. 2 Power Open meeting. 29
size being 2--58 bytes.

Delete Programming Notes about ASR, Segment Agreed at Dec. 2 Power Open meeting. 50
Registers, and SDR 1 reo tlble.

Re. tlbayne, delete "The CPU can be in a multi- Agreed at Dec. 2 Power Open meeting that it is 52
processor system in which other processors have superfluous.
TLBs."

syne required between tlbie and tlbaync. Agreed at Dec. 2 Power Open meeting (otherwise 53 (3
tlbie and tlbsync could get out of order on the places)
bus).

Minor rewording in three Programming Notes. Agreed at Dec. 2 Power Open meeting. 58+1

For process switch, changed reason for aync Agreed at Dec. 2 Power Open meeting. 58+1
from "in case there are data dependences
between the processes" to "to ensure that all
storage operations of an interrupted process are
complete with respect to other processors before
that process begins executing on another
processor."

For process switch, changed "/syne" to "layne or Agreed at Dec. 2 Power Open meeting. 58+1
rfl."

Say that it is the processor that sets SRR 1 bit 30 Clarification. 60
to 0 for a nonrecoverable system reset or
machine check.

Show correct setting of SRR 1 bit 30 for System Agreed at Dec. 2 Power Open meeting (correct 60
Reset interrupt. an oversight).

Add eciwx and ecowx to list of instructions that Agreed at Dec. 2 Power Open meeting (correct 61
can set DSISRs for DSI. an oversight).

Change Programming Note about SRR 0 setting Agreed at Dec. 2 Power Open meeting. Feeling 64
when a pending Imprecise Mode Floating-Point was that if someone didn't read the note, they
interrupt occurs due to enabling it, to regular text might get the architecture wrong.
in SRR 0 description.

Added phrase "by the time of the next synchro- Agreed at Dec. 2 Power Open meeting. 64,67+1
nizing event."

Deleted extraneous text. Text processor error. 67+ 1

Corrected order of operands in mftb, mftbu. Typo. 76

Clarified that alteration of the V bit is permitted Agreed at Dec. 2 Power Open meeting. 84+1
only if the instructions in storage immediately fol-
lowing the mtspr that alters the IBAT register are
also mapped by the segmented address trans-
lation mechanism to the same address, or if the
instructions are duplicated in the newly mapped
space.

Said that when updating an I BAT, synchronization Agreed at Dec. 2 Power Open meeting. 84+1
is required only if fields in both parts of the IBAT
are being altered.

Added eciwx, eeowx, atfiwx to AlignmenUDSISR Omission was an oversight. 90
table.

viii PowerPC Operating Environment Architecture

IBM Confidential

Changes as of 1992/10/09 Version 1.01 DRAFT

change reason page

Noted that System Reset and Machine Check are Side effect of adding the RI bit to the MSR. 57, 83
context synchronizing if they are recoverable
(i.e., if bit 30 of SRR 1 is set to 1 by the inter-
rupt).

Changes as of 1992/10/05

change reason page

Consolidated the various synchronization defi- Clarity. Before, context synchronization was 3
nitions into one place, namely a new section in defined separately for Branch Processor
the Introduction chapter. instructions and for interrupts. And execution

synchronization was defined both in the "Defi-
nitions and Notation" section and with the mtmsr
instruction.

In the new section, stated explicitly that context Clarity. 3
synchronization requires discarding any pre-
fetched instructions. Also, contrasted the syn-
chronization done by the following: context
synchronizing operations, execution synchro-
nizing instructions, and the sync instruction.

(Changes as of 1992/10/01

change reason page

Said that a processor receiving a tlbie/tlbiex PWR_PC FORUM 15:25:57 on 92/09/1S, last sen- 50,51
broadcast will wait for completion of any out- tence.
standing storage instructions including updates to
the reference and change bits associated with the
invalidated entry.

Replaced the concept of "volatile" storage with Addendum to PowerPC meeting of 9-11 Sep- 20ff
that of "guarded" storage, which is controlled by tember 1992.
a "G" bit in the PTE and BAT.

Noted that the PR bit of the MSR affects storage Omission was oversight. S
protection.

Specified how the DAR is set when a Data Omission was oversight. S1
Storage interrupt occurs on an access to a BAT
area.

Added fixed-point doubleword load/store that's Omission was oversight. Book II allows "poor" 63
not word-aligned to the list of potential causes of performance in this case.
an Alignment interrupt.

(~

Changes ix

IBM Confidential

Changes as of 1992/09/25

change reason page

For imprecise Program interrupt. SRR 0 may As agreed at PowerPC architecture meeting. 64
point as far as syncllsync plus four bytes. 9-11 September 1992.

Removed interrupt masking function of MSRFP• As agreed at PowerPC architecture meeting. 6.58
9-11 September 1992.

Clarified that Branch Trace interrupt is taken As agreed at PowerPC architecture meeting. 6
whether or not the branch is taken. 9-11 September 1992.

Added Arch Note mentioning MSR bits that are As agreed at PowerPC architecture meeting. 6
used by speCific implementations. 9-11 September 1992.

Said that some implementations may alter SRR As agreed at PowerPC architecture meeting. 5. 58
0/1 for every instruction fetch or data access with 9-11 September 1992.
IR/DR - 1.

Added a section on mismatched WIM bits. As agreed at PowerPC architecture meeting. 42
9-11 September 1992.

Said that it's a programming error and results As agreed at PowerPC architecture meeting. 41
are boundedly undefined if an access is made to 9-11 September 1992.
CI storage and it's in the cache.

Said that operation of debi is independent of the As agreed at PowerPC architecture meeting. 45
Write Through and Caching Inhibited/Allowed 9-11 September 1992.
modes.

Said that load/store combining may be done in CI As agreed at PowerPC architecture meeting. 41
storage. but that eieio blocks it in CI and in Write 9-11 September 1992.
Through stg.

Added text to rfi definition to specify when As agreed at PowerPC architecture meeting. 10
pending maskable interrupts are taken after exe- 9-11 September 1992.
cuting the rfi.

Added Eng. Note that in some implementations As agreed at PowerPC architecture meeting. 41
performance may be improved if I-fetches are 9-11 September 1992.
done with M - O.

Said that real mode I-fetches may be done with As agreed at Power PC architecture meeting. 21
WIM - 000 or 001. 9-11 September -1992; .

Said that Machine Check will set SRR 1 bit 30 As agreed at PowerPC architecture meeting. 60
(RI) to 1 if it's not recoverable. 9-11 September 1992.

Weakened mtmsr so that it's execution synchro- As agreed at PowerPC architecture meeting. 15
nizing but not context synchronizing. 9-11 September 1992.

Defined execution synchronizing. As agreed at Power PC architecture meeting. 2
9-11 September 1992.

Added that Iwarx Idarx stwex. stdex. to Write As agreed at Power PC architecture meeting. 61
Through storage may cause a OSI with DSISR bit 9-11 September 1992.
5 set.

Eliminated Imd and stmd from the discussion of As agreed at PowerPC architecture meeting. 63. 89
Alignment interrupts and OSISR setting. 9-11 September 1992.

Stated that the optional SLB and TLB instructions As agreed at PowerPC architecture meeting. 47
can be treated as no-ops if the implementation 9-11 September 1992.
does not have an SLB or TLB. (This is an excep-
tion to the general rule that unimplemented
optional instructions must cause an Illegal
Instruction type Program interrupt.)

x PowerPC Operating Environment Architecture

IBM Confidential

change reason page

Added unimplemented optional instruction to the As agreed at Power PC architecture meeting, 64
list of causes of an Illegal Instruction type 9·11 September 1992.
Program interrupt.

Updated the appendix on synchronization As agreed at PowerPC architecture meeting, 83
requirements related to updating any SPR that 9·11 September 1992.
affects address translation, segment registers, or
the MSR.

Specified that the high·order 32 bits of instruction As agreed at PowerPC architecture meeting, 9
addresses are always 0 in 32-bit mode. 9·11 September 1992.

Specified that the high-order 32 bits of SRR 0 and As agreed at PowerPC architecture meeting, 9
the DAR are always 0 when set by an interrupt 9·11 September 1992.
from 32·bit mode.

Changes as of 1992/09/18

change reason page

Changed Time Base definition such that: update As agreed at PowerPC architecture meeting, various
frequency is variable, use mtspr to write TB and 9·11 September 1992.
TBU, use new mfspr·like instruction (mftb) to
read TB and TBU.

Removed requirement that ASR must point to As agreed at Power PC architecture meeting, 48ff
valid segment table when issuing slbie and that 9·11 September 1992.
SDR 1 must point to valid page table when
issuing tlbie Allow tibia to invalidate or not,
broadcast or not, when EA specifies direct·store
segment. Added notes to tlbiex, tibia regarding
what happens when invalidating pages in which
another processor is executing.

Eliminated PMR. As agreed at PowerPC architecture meeting, various
9·11 September 1992.

Expanded Real Address from 52 to 64 bits. As agreed at PowerPC architecture meeting, Chapter 4
Affects PTEs, BATs, and format of SDR 1. 9-11 September 1992.

Explicitly stated that speculative stores are not To fix an oversight; per Rich Oehler. 20
permitted.

Added concept of "volatile storage," an area in As agreed at PowerPC architecture meeting, 20
real storage in which speculative storage oper- 9-11 September 1992.
ations (fetch, load) are not permitted.

Added MSRR1 , the "recoverable interrupt" bit, to As agreed at Power PC architecture meeting, 6f
indicate that state-saving has proceeded far 9·11 September 1992.
enough that another interrupt (Le., Machine
Check) can be accepted. Set to 0 by hardware
on interrupt, set to 1 by software.

Added WIM -010 as a supported storage mode. As agreed at Power PC architecture meeting, 42
9-11 September 1992.

Explained that sync does not wait for TLBI's to be As agreed at Power PC architecture meeting, 53
completed on other processors. 9-11 September 1992.

Added tlbsync instruction. As agreed at Power PC architecture meeting, 52
9·11 September 1992.

Changes xi

IBM Confidential

change reason page

For the Alignment interrupt, added that Im/8tm Correcting "obvious errors." 63
crossing a segment or BAT boundary can cause
it, and (in the Engineering Note) that it's ok to
correctly do the operation.

Added initial settings of bits in MSR. As agreed at PowerPC architecture meeting, 6f
9-11 September 1992.

Relaxed specification of Alignment interrupt's As agreed at PowerPC architecture meeting, 63
DSISR setting for "don't care" situations. 9-11 September 1992.

xii PowerPC Operating Environment Architecture

(

IBM Confidential

Chapter 1. Introduction

1.1 Overview 1
1.2 Compatibility with the Power

Architecture 1
1.3 Document Conventions 1
1.3.1 Definitions and Notation 2
1.3.2 Reserved Fields 2
1.3.3 Description of Instruction Operation 2

1.1 Overview

Chapter 1 of Book I, PowerPC User Instruction Set
Architecture describes computation modes, compat
ibility with the Power Architecture, document con
ventions, a general systems overview, instruction
formats, and storage addressing. This chapter aug
ments that description as necessary for the Power PC
Operating Environment Architecture.

1.2 Compatibility with the Power
Architecture

The PowerPC Architecture provides binary compat
ibility for Power application programs, except as
described in the "Incompatibilities with the Power
Architecture" appendix of Book I, PowerPC User
Instruction Set Architecture. Binary compatibility is
not necessarily provided for privileged Power
instructions.

1.4 General Systems Overview 3
1.5 Instruction Formats 3
1.5.1 Instruction Fields 3
1.6 Exceptions 3
1.7 Synchronization 3
1.7.1 Context Synchronization 3
1.7.2 Execution Synchronization 4

1.3 Document Conventions

The notation and terminology used in Book I applies
to this document also, with the following substitutions.

• For "system alignment error handler" substitute
"Alignment interrupt."

• For "system data storage error handler" substi
tute "Data Storage interrupt."

• For "system error handler" substitute "interrupt."

• For "system floating-point assist error handler"
substitute "Floating-Point Assist interrupt."

• For "system floating-point enabled exception
error handler" substitute "Floating-Point Enabled
Exception type Program interrupt."

• For "system floating-point unavailable error
handler" substitute "Floating-Point Unavailable
interrupt."

• For "system illegal instruction error handler" sub-
stitute "Illegal Instruction type Program
Interrupt."

• For "system instruction storage error handler"
substitute "Instruction Storage interrupt."

• For "system privileged instruction error handler"
substitute "Privileged Instruction type Program
interrupt."

• For "system service program" substitute "System
Call interrupt."

• For "system trap handler" substitute "Trap type
Program interrupt."

Chapter 1. Introduction 1

1.3.1 Definitions and Notation

The following augments the definitions given in Book
I.

• The context of a program is defined by the
content of the MSR when the program is exe
cuting. It defines the manner in which the
program accesses and executes instructions,
accesses data, controls interrupts, accesses the
floating-point unit, and interprets addresses or
fixed-point data (32 bits or 64 bits).

• An exception is an error, unusual condition, or
external signal, that may set a status bit, and
which mayor may not cause an interrupt,
depending upon whether or not the corresponding
interrupt is enabled.

• An interrupt is the act of changing the machine
state in response to an exception, as described in
Chapter 5, "Interrupts" on page 57.

• A trap interrupt is an interrupt that results from
execution of a Trap instruction.

• Hardware means any combination of hard-wired
implementation, "fast trap" to implementation
dependent software assistance, or interrupt for
software assistance. In the last case, the inter
rupt may be to an architected location or to an
implementation-dependent location. Any use of
fast traps or interrupts to implement the architec
ture is described in Book IV, PowerPC Implemen-
tation Features. .

• I, II, III, ... denotes a field that is reserved in an
instruction, a register, or in an architected
storage table.

IBM Confidential

1.3.2 Reserved Fields

System software should initialize reserved fields in
architected storage tables (Segment Table, Page
Table) to Os and not keep data in them, as the fields
may be used in the future by subsequent versions of
PowerPC Architecture.

Some fields of certain storage tables may be written
to automatically by hardware, e.g. Reference and
Change bits in the Page Table. When the hardware
writes to such a table, the following rules must be fol
lowed:

• No defined field other than the one(s) the hard
ware is specifically updating may be modified.

• Contents of reserved fields may be preserved by
hardware or such fields may be written as Os. No
other changes to reserved fields may be made.

The handling of reserved bits in status and control
registers described in Book I applies here as well. In
addition, the reader should be cognizant that reading
and writing of some of these registers (e.g., the MSR)
can occur as a side effect of processing an interrupt
and of returning from an interrupt, as well as when
requested explicitly by the appropriate instruction
(e.g., mtmsr).

Engineering Note ------------,

As noted in Book I, PowerPC User Instruction Set
Architecture, when a reserved bit in a register is
read, the implementation may return either the
last value written or the value zero. If all bits of a
register are implemented, preserving reserved
bits is probably easier. Otherwise, supplying
zeros for reserved bits on read (and ignoring
them on write) is probably easier.

1.3.3 DesCription of Instruction
Operation

The following augments the definitions given in Book I
in the description of the RTL

Notation
SEGREG(x)

Meaning
Segment Register x

2 PowerPC Operating Environment Architecture

IBM Confidential

1.4 General Systems Overview

The processor or processor unit contains the
sequencing and processing controls for instruction
fetch, instruction execution and interrupt action.
Instructions that the processing unit can execute fall
into a number of classes:

• instructions executed in the Branch Processor
• instructions executed in the Fixed-Point Processor
• instructions executed in the Floating-Point

Processor

Almost all instructions executed in the Branch
Processor, Fixed-Point Processor, and Floating-Point
Processor are non-privileged and are described in
Book I, PowerPC User Instruction Set Architecture.
Book II, PowerPC Virtual Environment Architecture
contains some cache management instructions.
Instructions related to the privileged state of the
processor, control of processor resources, control of
the storage hierarchy, and all other privileged
instructions are described here or in Book IV,
PowerPC Implementation Features.

BRANCH

PROCESSOR

INSTRUCTION
CACHE

f-+ FIXED
POINT

I- PROCESSOR

FLOATING
-+ POINT

PROCESSOR

MAIN MEMORY

DIRECT MEMORY ACCESS

DATA
CACHE

Figure 1. Logical View of the PowerPC Processor
Architecture

1.5 Instruction Formats

See Book I, PowerPC User Instruction Set Architec
ture for a description of the instruction formats and
addressing.

1.5.1 Instruction Fields

The following augments the instruction fields
described in Book I.

SPR (11:20)
Special Purpose Register

See the descriptions of the mtspr (page 13) and
mfspr (page 14) instructions for a list of SPR
encodings.

SR (12:15)
Field used to specify one of the 16 Segment Reg
isters.

1.6 Exceptions

The following augments the list, given in Book I, of
exceptions that can be caused by the execution of an
instruction.

• the execution of a Load or Store instruction to a
direct-store segment, in a manner that causes an
exception (direct-store error exception)

• the execution of a traced instruction (Trace
exception)

1-~7· Synchronization

The synchronization described in this section refers to
the state of the processor that is performing the syn
chronization.

1.7.1 Context Synchronization

An instruction or event is "context synchronizing" if it
satisfies the requirements listed below. Such
instructions and events are collectively called
"context synchronizing operations." Examples of
context synchronizing operations include the rfl
instruction and most interrupts.

1. The operation causes instruction dispatching (the
issuance of instructions by the instruction fetch
mechanism to any instruction execution mech
anism) to be halted.

2. The operation is not initiated until all instructions
already in execution have completed to a point at

Chapter 1. Introduction 3

which they have reported all exceptions they will
cause. (If a storage access due to a previously
initiated instruction may cause one or more
Direct-Store Error exceptions, the determination
of whether it does cause such exceptions is made
before the operation is initiated.)

3. If the operation directly causes an interrupt (e.g.,
sc directly causes a System Call interrupt) or is
an interrupt, the operation is not initiated until no
exception exists having higher priority than the
exception associated with the interrupt (see
Section 5.8, "Interrupt Priorities" on page 67).

4. The instructions that precede the operation will
complete execution in the context (privilege, relo
cation, storage protection, etc.) in which they
were initiated.

5. The instructions that follow the operation will be
fetched and executed in the context established
by the operation. (This requires that any pre
fetched instructions be discarded, which in turn
requires that any effects and side effects of spec
ulatively executing them also be discarded. The
only side effects of these instructions that are
permitted to survive are those specified in
Section 4.2.5, "Speculative Execution" on
page 20.)

Unlike the sync instruction (see Book II, PowerPC
Virtual Environment Architecture), a context synchro
nizing operation need not wait for storage-related
operations to complete on other processors, nor for
Reference and Change bits in the Page Table (see
Chapter 4, "Storage Control" on page 17) to be
updated.

IBM Confidential

1.7.2 Execution Synchronization

An instruction is "execution synchronizing" if all pre
viously initiated instructions appear to have com
pleted before the instruction is initiated. An example
of an execution synchronizing instruction is mtmsr.

Unlike a context synchronizing operation, an exe
cution synchronizing instruction need not ensure that
the instructions following that instruction will execute
in the context established by that instruction. This
new context becomes effective sometime after the
execution synchronizing instruction completes and
before or at a subsequent context synchronizing oper
ation.

4 PowerPC Operating Environment Architecture

IBM Confidential

Chapter 2. Branch Processor

2.1 Branch Processor Overview
2.2 Branch Processor Registers
2.2.1 Machine Status Save/Restore

Register 0
2.2.2 Machine Status Save/Restore

Register 1

2.1 Branch Processor Overview

5
5

5

5

This chapter describes the details concerning the reg
isters and the privileged instructions implemented in
the Branch Processor that are in addition to those
shown in Book I, PowerPC User Instruction Set Archi
tecture.

2.2 Branch Processor Registers

2.2.1 Machine Status Save/Restore
Register 0

The Machine Status Save/Restore Register 0 (SRR 0)
is a 32-bit or 64-bit register depending on the version
of the architecture implemented. This register is used
to save machine status on interrupts, and to restore
machine status when a Return From Interrupt (rli)
instruction is executed.

On interrupt, SRR 0 is set to the current or next
instruction address. Thus if the interrupt occurs in
32-bit mode, the high-order 32 bits of SRR 0 are set to
O. When rfi is executed, the contents of SRR 0 are
copied to the current instruction address (CIA), except
that the high-order 32 bits of the CIA are set to 0
when returning to 32-bit mode.

SRR 0

o 63 (31)

Figure 2. Save/Restore Register 0

2.2.3 Machine State Register ...
2.2.4 Processor Version Register
2.3 Branch Processor Instructions
2.3.1 System Linkage Instructions

6
8
9
9

In general, SRR 0 contains the instruction address
that caused the interrupt, or the instruction address to
return to after an interrupt is serviced.

Engineering Note -------------,

Since PowerPC instructions must be on word
boundaries, the low order 2 bits of SRR 0 need
not be implemented. If they are not implemented,
these bit positions must return 0 when SRR 0 is
read.

Programming Note -----------,

In some implementations, every instruction fetch
with MSR'R -1, and every load or. store with
MSRoR -1, may have the side effect of modifying
SRRO.

2.2.2 Machine Status Save/Restore
Register 1

The Machine Status Save/Restore Register 1 (SRR 1)
is a 32-bit register that is used to save machine
status on interrupts, and to restore machine status
when an rli instruction is executed.

SRR 1

o 31

Figure 3. SavelRestore Register 1

In general, when an interrupt occurs, bits 0:15 of SRR
1 are loaded with information specific to the interrupt
type, and bits 16:31 of MSR are placed into bits 16:31
of SRR 1.

Chapter 2. Branch Processor 5

Programming Note -------------,

In some implementations, every instruction fetch
with MSR1R -1, and every load or store with
MSRoR -1, may have the side effect of modifying
SRR 1.

2.2.3 Machine State Register

The Machine State Register (MSR) is a 32-bit register
that defines the state of the processor. On interrupt,
the MSR bits are altered in accordance with
Figure 30 on page 60. The MSR can also be modified
by the mtmsr, sc, and rfI instructions. It can be read
by the mfmsr instruction.

MSR
o 31

Figure 4. Machine State Register

Below are shown the bit definitions for the Machine
State Register.

BIt(s) Description·

0:15 Reserved

16

17

18

19

Architecture Note ----------,

Bits 14 and 15 are used by specific imple
mentations, and a proposal is active to use
bits 12 and 13 for a specific implementa
tion.

External Interrupt Enable (EE)

o the processor is disabled against External
and Decrementer interrupts.
the processor is enabled to take an
External or Decrementer interrupt.

Problem State (PR)

o the processor is privileged to execute any
instruction
the processor can only execute the non
privileged instructions.

MSRpR also affects storage protection, as
described in Chapter 4, "Storage Control" on
page 17.

Floating-Point Available (FP)

o the processor cannot execute any fioating
point instructions, including floating-point
loads, stores and moves.
the processor can execute floating-point
instructions.

Machine Check Enable (ME)

o Machine Check interrupts are disabled.

20

21

22

23

24

25

6 PowerPC Operating Environment Architecture

IBM Confidential

Machine Check interrupts are enabled.

Floating-Point Exception Mode 0 (FEO)
See below.

Single-Step Trace Enable (SE)

o the processor executes instructions
normally.
the proCessor generates a Single-Step type
Trace interrupt upon the successful exe
cution of the next instruction. Successful
execution means the instruction caused no
other interrupt. See Book IV, PowerPC
Implementation Features.

Single-step tracing may not be present on all
implementations. If the function is not imple
mented, MSRse should be treated as a
reserved MSR bit: mfmsr may return the last
value written to the bit, or may return 0
always.

Branch Trace Enable (BE)

o the processor executes branch instructions
normally.

1 the processor generates a Branch type
Trace interrupt after completing the exe
cution of a branch instruction, whether or
not the branch is taken. See Book IV,
PowerPC Implementation Features.

Branch tracing may not be present on all
implementations. If the function is not imple
mented, MSRse should be treated as a
reserved MSR bit: mlmsr may return the last
value written to the bit, or may return 0
always.

Floating-Point Exception Mode 1 (FE1)
See below.

Reserved
This bit corresponds to the AL bit of the Power
Architecture. It will not be assigned new
meaning in the near future. As for any other
reserved bit in a register, software is per
mitted to write the value 1 to this bit, but there
is no guarantee that a subsequent reading of
this bit will yield the value that software
"wrote" there.

Programming Note -----------,

Power-compatible operating systems will
probably write the value 1 to this bit.

Interrupt Prefix (IP)
In the following description, nnnnn is the offset
of the interrupt. See Figure 31 on page 60.

o interrupts vectored to the real address
OxOOOn nnnn in 32-bit versions and real
addres;- OxOOOO_OOOO_OOOn_nnnn in 64-bit
versions

{

(,

IBM Confidential

26

interrupts vectored to the real address
OxFFFn_nnnn in 32-bit versions and real
address OxFFFF JFFF _FFFn_nnnn in 64 bit
versions.

Instruction Relocate (IR)

o instruction address translation is off.
1 instruction address translation is on.

27 Data Relocate (DR)

o data address translation is off.
1 data address translation is on.

28:29 Reserved

30 Recoverable Interrupt (RI)

o interrupt is not recoverable.
1 interrupt is recoverable.

Additional information about the use of this bit
is given in Sections 5.4, "Interrupt Processing"
on page 58, 5.5.1, "System Reset Interrupt" on
page 60, and 5.5.2, "Machine Check Interrupt"
on page 60.

31 S/xty-Four-bit mode (SF) {Reserved}

o the processor runs in 32-bit mode.
1 the processor runs in 64-bit mode.

Engineering Note --------..,

32-bit implementations should ignore
attempts to write 1 to MSRsF and should
always return 0 when this bit is read.

The Floating-Point Exception Mode bits are inter
preted as shown below. For further details see Book
I, PowerPC User Instruction Set Architecture.

FEO FE1
o 0
o 1
1 0
1 1

Mode
Interrupts disabled
Imprecise Nonrecoverable
Imprecise Recoverable
Precise

Architecture Note ------------,

Implementations for use by principal system
developers must conform to the following require
ments to support system bring-up. The normal
sequence of system bring-up is to assert power
on-reset, assert the System Reset interrupt signal,
then de-assert power-on-reset. At this time the
processor should be able to begin fetching and
executing instructions. The initial state of the
MSR must be as follows:

64-blt 32-bit
Bit Name implementation implementatlo

0:15 unspecified· unspecified
16 EE 0 0
17 PR 0 0
18 FP 0 0
19 ME 0 0
20 FEO 0 0
21 SE 0 0
22 BE 0 0
23 FE1 0 0
24 unspecified unspecified
25 IP 1 1
26 IR 0 0
27 DR 0 0
28:29 unspecified unspecified
30 RI 0 0
31 SF 1 0

• Unspecified, can be 0 or 1

Chapter 2. Branch Processor 7

2.2.4 Processor Version Register

The Processor Version Register is a 32-bit read-only
register that contains a value identifying the specific
version (model) and revision level of the PowerPC
processor. The contents of the PVR can be copied to
a GPR by the mfspr instruction. Read access to the
PVR is privileged; write access is not provided.

I Version I Revision I
o 16 31

Figure 5. Processor Version Register

The PVR contains two fields:

Version A l6-bit number that uniquely determines
a particular processor version and
version of the Power PC Architecture.
This number can be used to determine
the version of a processor; it may not dis
tinguish between different product models
if more than one model uses the same
processor.

Revision A 16-bit number that distinguishes
between various releases of a particular
version, i.e. an Engineering Change level.

The value of the Version portion of the PVR is
assigned by the PowerPC Architecture process.
Values assigned to date are listed in Appendix E,
"Processor Version Numbers" on page 81.

The value of the Revision portion of the PVR is imple
mentation defined.

8 PowerPC Operating Environment Architecture

IBM Confidential

(

(---

• _,I

IBM Confidential

2.3 Branch Processor Instructions

2.3.1 System Linkage Instructions

These instructions provide the means by which a
program can call upon the system to perform a
service, and by which the system can return from per
forming a service or from processing an interrupt.

These instructions are context synchronizing, as
defined in Section 1.7.1, "Context Synchronization" on
page 3.

System Call SC-form

sc

[Power mnemonic: svcaJ

SRRa +- CIA + 4
SRR1~15 +- undefined
SRR1 16:31 +- MSR 16:31
MSR +- new_value (see below)
NIA +- base_ea + axcaa (see below)

11/

The effective address of the instruction following the
System Call instruction is placed into SRR O. Bits
16:31 of the MSR are placed into bits 16:31 of SRR 1,
and bits 0:15 of SRR 1 are set to undefined values.

Then a System Call interrupt is generated. The inter
rupt causes the MSR to be altered as described .in
Section 5.5, "Interrupt Definitions" on page 59.

The interrupt causes the next instruction to be fetched
from offset OxCOO from the base real address indi
cated by the new setting of MSR1P•

This instruction is context synchronizing.

Special Registers Altered:
SRRO SRR1 MSR

The System Call instruction is described in Book I,
PowerPC User Instruction Set Architecture, but only at
the level required by an application progra~mer. A
complete description of this instruction appears
below.

Compatibility Note ---------...,

For a discussion of Power compatibility with
respect to instruction bits 16:29, please refer to
the "Incompatibilities with the Power
Architecture" appendix of Book I, PowerPC User
Instruction Set Architecture. For compatibility
with future versions of this architecture, these bits
should be coded as zero.

Chapter 2. Branch Processor 9

Return From Interrupt XL-form

rfi

116
111

I . 21

50

MSR16:31 .. SRRl 16:31
NIA .. SRR90:61 {O:29) II 9bBB

Bits 16:31 of SRR 1 are placed into bits 16:31 of the
MSR. Then the next instruction is fetched, under
control of the new MSR value, from the address
SRR OO:61{O:29) II ObOO (32-bit implementations, and
64-bit implementations when SF -1 in the new MSR
value) or 32() II SRR 032:61 II ObOO (64-bit implementa
tions when SF - 0 in the new MSR value).

If this instruction enables any pending exceptions, the
interrupt associated with the highest priority pending
exception is generated.

This instruction is privileged and context synchro
nizing.

Special Registers Altered:
MSR

10 PowerPC Operating Environment Architecture

IBM Confidential

IBM Confidential

Chapter 3. Fixed-Point Processor

3.1 Fixed-Point Processor Overview
3.2 PowerPC Special Purpose

Registers
3.3 Fixed-Point Processor Registers
3.3.1 Data Address Register
3.3.2 Data Storage Interrupt Status

Register

3.1 Fixed-Point Processor
Overview

11

11
11
11

12

This chapter describes the details concerning the reg
isters and the privileged instructions implemented in
the Fixed-Point Processor that are in addition to those
shown in Book I, PowerPC User Instruction Set Archi
tecture.

3.2 PowerPC Special Purpose
Registers

The Special Purpose Registers are read and written
via the mfspr (page 14) and mtspr (page 13)
instructions. The descriptions of these instructions
list the valid encodings of SPR numbers. Encodings
not listed are reserved for future use or for use as
implementation-specific registers.

Most SPRs are defined in other parts of this book; see
the index to locate those definitions. Some SPRs are
specific to an implementation. See Appendix G,

3.3.3 Software-use SPRs 12
3.4 Fixed-Point Processor Privileged

Instructions 12
3.4.1 Move To/From System Registers

Instructions 12

"Implementation-Specific SPRs" on page &7 and Book
IV, PowerPC Implementation Features.

3.3 Fixed-Point Processor
Registers

3.3.1 Data Address Register

The Data Address Register (DAR) is a 32-bit or 64-bit
register depending on the version of the architecture
implemented. See Sections 5.5.3, "Data Storage
Interrupt" on page 61, and 5.5.6, "Alignment
Interrupt" on page 63.

When an interrupt that uses the DAR occurs, the DAR
is set to the effective address associated with the
interrupting instruction. If the interrupt occurs in
32-bit mode, the high-order 32 bits of the DAR are set
to O.

DAR

o 63 {31}

Figure 6. Data Address Register

Chapter 3. Fixed-Point Processor 11

3.3.2 Data Storage Interrupt Status
Register

The Data Storage Interrupt Status Register (oSISR) is
a 32-bit register that defines the cause of Data
Storage and Alignment interrupts. See Sections 5.5.3,
"Data Storage Interrupt" on page 61 and 5.5.6,
"Alignment Interrupt" on page 63.

oSISR

o 31

Figure 7. Data Storage Interrupt Status Register

3.3.3 Software-use SPRs

SPRGO through SPRG3 are 64-bit {32-bit} registers
provided for operating system use.

SPRGO

SPRG1

SPRG2

SPRG3
o 63 (31)

Figure 8. Software-use SPRs

The following list describes the conventional uses of
SPRGO through SPRG3.

SPRGO
Software may load a unique real address in this
register to identify an area of storage reserved for
use by the first level interrupt handler. This area
must be unique for each processor in the system.

IBM Confidential

SPRG1
This register may be used as a scratch register by
the first level interrupt handler to save the content
of a GPR. That GPR then can be loaded from
SPRGO and used as a base register to save other
GPR's to storage.

SPRG2
This register may be used by the operating system
as needed.

SPRG3
This register may be used by the operating system
as needed.

3.4 Fixed-Point Processor
Privileged Instructions

3.4.1 Move To/From System
Registers Instructions

The Move To Special Purpose Register and Move
From Special Purpose Register instructio.ns are
described in Book I, PowerPC User Instruction Set
Architecture, but only at the level available to an
application programmer. In particular, no mention is
made there of registers that can be accessed only in
privileged state. A complete description of these
instructions appears below.

Extended mnemonics

A set of extended mnemonics is provided for the
mtspr and mfspr instructions so that they can be
coded with the SPR name as part of the mnemonic
rather than as a numeric operand. See Appendix B,
"Assembler Extended .Mnemonics" on page 75.

12 PowerPC Operating Environment Architecture

(

(

IBM Confidential

Move To Special Purpose Register
XFX-form

mtspr SPR,RS

spr

n = sprS:9 II Spr O:4
if length(SPREG(n» = 64 then

SPREG(n) ~ (RS)
else

SPREG(n) ~ (RSh2:63{O:31)

467

The SPR field denotes a Special Purpose Register,
encoded as shown in Figure 9. The contents of reg
ister RS are placed into the designated Special
Purpose Register. For Special Purpose Registers that
are 32 bits long, the low-order 32 bits of RS are
placed into the SPR.

spro-1 if and only if writing the register is privileged.
Execution of this instruction specifying a defined and
privileged register when MSRpR -1 will result in a
Privileged Instruction type Program interrupt.

Additional values of the SPR field, beyond those
shown in Figure 9, may be defined in Book IV,
PowerPC Implementation Features for the implemen
tation (see also Appendix G, "Implementation-Specific
SPRs" on page 87). If the SPR field contains any
value other than one of these implementation-specific
values or one of the values shown in the Figure, the
instruction form is invalid. For an invalid instruction
form in which spro-1, if MSRpR -1 a Privileged
Instruction type Program interrupt may occur instead
of an Illegal Instruction type Program interrupt.

Special Registers Altered:
See Figure 9

Compiler and Assembler Note ------..,

For the mtspr and mfspr instructions, the SPR
number coded in assembler language does not
appear directly as a 10-bit binary number in the
instruction. The number coded is split into two
5-bit halves that are reversed in the instruction,
with the high-order 5 bits appearing in bits 16:20
of the instruction and the low-order 5 bits in bits
11:15. This maintains compatibility with Power
SPR encodings, in which these two instructions
had only a 5-bit SPR field occupying bits 11:15.

Programming Note -----------,

For a discussion of software synchronization
requirements when altering certain Special
Purpose Registers, please refer to Appendix F,
"Synchronization Requirements for Special
Registers" on page 83.

SPR1 Register Privi-
decimal sprS:9 SprO:4 name leged

1 0000000001 XER no
8 0000001000 LR no
9 0000001001 CTR no

18 00000 10010 DSISR yes
19 00000 10011 DAR yes
22 00000 10110 DEC yes
25 00000 11001 SDR 1 yes
26 0000011010 SRR 0 yes
27 00000 11011 SRR 1 yes

272 0100010000 SPRGO yes
273 01000 10001 SPRG1 yes
274 01000 10010 SPRG2 yes
275 0100010011 SPRG3 yes
280 01000 11000 ASR 2 yes
282 01000 11010 EAR yes
284 0100011100 TB yes
285 0100011101 TBU yes

528 10000 10000 IBATOU yes
529 10000 10001 IBATOL yes
530 10000 10010 IBAT1U yes
531 1000010011 IBAT1L yes
532 10000 10100 IBAT2U yes
533 10000 10101 IBAT2L yes
534 1000010110 IBAT3U yes
535 10000 10111 IBAT3L yes

536 10000 11000 DBATOU yes
537 10000 11001 DBATOL yes
538 1000011010 DBAT1U yes
539 10000 11011 DBAT1L yes
540 10000 11100 DBAT2U yes
541 10000 11101 DBAT2L yes
542 10000 11110 DBAT3U yes
543 10000 11111 DBAT3L yes

1 Note that the order of the two 5-bit halves
of the SPR number is reversed.

2 64-bit implementations only

Figure 9. SPR encodings for mtspr

Compatibility Note ----------..,

For a discussion of Power compatibility with
respect to SPR numbers not shown in the instruc
tion descriptions for mtspr and mfspr, please refer
to the "Incompatibilities with the Power Architec
ture" appendix of Book I, PowerPC User Instruc
tion Set Architecture. For compatibility with future
versions of this architecture, only SPR numbers
discussed in these instruction descriptions should
be used.

Chapter 3. Fixed-Point Processor 13

Move From Special Purpose Register
XFX-form

mfspr RT,SPR

spr

n .. sprS:9 II SprO:4
if length(SPREG(n» = 64 then

RT .. SPREG(n)
else

RT .. 32e II SPREG(n)

339 /:,/

The SPR field denotes a Special Purpose Register,
encoded as shown in Figure 10. The contents of the
designated Special Purpose Register are placed into
register RT. For Special Purpose Registers that are
32 bits long, the low-order 32 bits of RT receive the
contents of the Special Purpose Register and the
high-order 32 bits of RT are set to zero.

sprO-1 if and only if reading the register is PriVI

leged. Execution of this instruction specifying a
defined and privileged register when MSRpR -1 will
result in a Privileged Instruction type Program inter
rupt.

Additional values of the SPR field, beyond those
shown in Figure 10, may be defined in Book IV,
PowerPC Implementation Features for the implemen
tation (see also Appendix G, "Implementation-Specific
SPRs" on page 87). If the SPR field contains any
value other than one of these implementation-specific
values or one of the values shown in the Figure, the
instruction form is invalid. For an invalid instruction
form in which spro-1, if MSRpR -1 a Privileged
Instruction type Program interrupt may occur instead
of an Illegal Instruction type Program interrupt.

Special Registers Altered:
None

IBM Confidential

SPR' Register Privi-
decimal sprS:9 SprO:4 name leged

1 0000000001 XER no
8 0000001000 LR no
9 0000001001 CTR no

18 0000010010 DSISR yes
19 0000010011 DAR yes
22 0000010110 DEC yes
25 0000011001 SDR 1 yes
26 0000011010 SRRO yes
27 0000011011 SRR 1 yes

272 01000 10000 SPRGO yes
273 01000 10001 SPRG1 yes
274 01000 10010 SPRG2 yes
275 0100010011 SPRG3 yes
280 01000 11000 ASR 2 yes
282 01000 11010 EAR yes
287 01000 11111 PVR yes

528 1000010000 IBATOU yes
529 10000 10001 IBATOL yes
530 10000 10010 IBAT1U yes
531 10000 10011 IBAT1L yes
532 1000010100 IBAT2U yes
533 10000 10101 IBAT2L yes
534 10000 10110 IBAT3U yes
535 1000010111 IBAT3L yes

536 10000 11000 DBATOU yes
537 1000011001 DBATOL yes
538 1000011010 DBAT1U yes
539 1000011011 DBAT1L yes
540 1000011100 DBAT2U yes
541 1000011101 DBAT2L yes
542 1000011110 DBAT3U yes
543 1000011111 DBAT3L yes

1 Note that the order of the two S-bit halves
of the SPR number is reversed.

2 64-bit implementations only

3 Moving from the Time Base (TB and TBU) is
accomplished with the mftb instruction,
described in Book II.

Figure 10. SPR encodlngs for mfspr r-: Compll.r/AuemblerlCompatlblllty ~

See the Notes that appear with mtspr.

14 PowerPC Operating Environment Architecture

,/

(-

IBM Confidential

Move To Machine State Register X-form

mtmsr RS

10 31 Ie RS I" /1/
I,e/l/ 12,

146

1:,1

MSR f- (RS h2:83{0:31)

Bits 32:63{O:31} of register RS are placed into the
MSR.

This instruction is privileged and execution synchro
nizing.

In addition, alterations to the EE and RI bits are effec
tive as soon as the instruction completes. Thus if
MSREE-O and an External or Decrementer interrupt
is pending, executing an mtmsr instruction that sets
MSREE to 1 will cause the External or Decrementer
interrupt to be taken before the next instruction is
executed.

Special Registers Altered:
MSR

Programming Note -----------,

For a discussion of software synchronization
requirements when altering certain MSR bits,
please refer to Appendix F, "Synchronization
Requirements for Special Registers" on page 83.

Move From Machine State Register
X-form

mfmsr RT

83

RT f- 32eu II MSR

1:,1

The contents of the MSR are placed into RT32:63{0:31}'
RT 0:31 {} are set to O.

This instruction is privileged.

Special Registers Altered:
none

Chapter 3. Fixed-Point Processor 15

IBM Confidential

16 PowerPC Operating Environment Architecture

{

(

IBM Confidential

Chapter 4. Storage Control

4.1 Storage Addressing 18
4.2 Storage Model 18
4.2.1 Storage Segments 18
4.2.2 Storage Exceptions 19
4.2.3 Instruction Fetch 19
4.2.4 Data Storage Access 19
4.2.5 Speculative Execution 20
4.2.6 Real Addressing Mode 21
4.3 Address Translation Overview ... 22
4.4 Segmented Address Translation,

64-bit Implementations 23
4.4.1 Virtual Address Generation, 64-bit

Implementations 24
4.4.1.1 Address Space Register 24
4.4.1.2 Segment Table 25
4.4.1.3 Segment Table Search 25
4.4.1.4 32-bit Execution Mode 26
4.4.2 Virtual to Real Translation, 64-bit

Implementations 28
4.4.2.1 Page Table 29
4.4.2.2 Storage Description Register 1 29
4.4.2.3 Hashed Page Table Search 30
4.5 Segmented Address Translation,

32-bit Implementations 32
4.5.1 Virtual Address Generation, 32-bit

Implementations 33
4.5.1.1 Segment Registers 33
4.5.2 Virtual to Real Translation, 32-bit

Implementations ~ . . . 34
4.5.2.1 Page Table 35
4.5.2.2 Storage Description Register 1 35
4.5.2.3 Hashed Page Table Search 36
4.6 Direct-Store Segments 37
4.6.1 Completion of direct-store access 37
4.6.2 Direct-store segment protection 38

4.6.3 Instructions not supported for
T=1 38

4.6.4 Instructions with no effect for T = 1 38
4.7 Block Address Translation 38
4.7.1 Recognition of Addresses in BAT

Areas 38
4.7.2 BAT Registers 39
4.7.2.1 BAT Storage Protection 40
4.7.2.2 BAT Real Address 40
4.8 Storage Access Modes 41
4.8.1 W, I, M and G bits 41
4.8.2 Supported Storage Modes 42
4.8.3 Mismatched WIMG Bits 42
4.9 Reference and Change Recording 43
4.10 Storage Protection 44
4.10.1 Page Protection 44
4.10.2 BAT Protection 44
4.11 Storage Control Instructions
4.11.1 Cache Management Instructions
4.11.2 Segment Register Manipulation

45
45

Instructions 46
4.11.3 Lookaside Buffer Management

Instructions (Optional) 47
4.12 Table Update Synchronization

Requirements 53
4.12.1 Page Table Updates 53
4.12.1.1 Adding a Page Table Entry 53
4.12.1.2 Modifying a Page Table Entry 53
4.12.1.3 Deleting a Page Table Entry 54
4.12.2 Segment Table Updates 54
4.12.2.1 Adding a Segment Table Entry 54
4.12.2.2 Modifying a Segment Table

Entry 55
4.12.2.3 Deleting a Segment Table Entry 55
4.12.3 Segment Register Updates 55

Chapter 4. Storage Control 17

4.1 Storage Addressing

A program references storage using the Effective
Address computed by the processor when it executes
a load, store, branch, or cache instruction, and when
it fetches the next sequential instruction. The effec
tive address is translated to a real address according
to procedures described in section 4.3, "Address
Translation Overview" on page 22 and following. The
real address is what is sent to the memory sub
system. See Figure 11 on page 22.

For a complete discussion of storage addressing and
effective address calculation, refer to "Storage
Addressing" in Chapter 1 of Book I, PowerPC User
Instruction Set Architecture.

Storage Control Overview

• Page size is 2'2 bytes (4 KB)

• Segment size is 228 bytes (256 MB)

• For 64-bit implementations:

Maximum real memory size 264 bytes (16 EB)

Effective Address Range 264

Virtual Address Range 280

Number of segments 252

• For 32-bit implementations:

Maximum real memory size 232 bytes (4 GB)

Effective Address Range 232

Virtual Address Range 252

Number of segments 224

• Two types of storage segments based on the
state of the T bit in the Segment Table Entry or
segment register selected by the Effective
Address:

T - 0: Ordinary storage segment

T-1: Direct-store segment

IBM Confidential

4.2 Storage Model

The storage model provides the following features:

1. The architecture allows the storage implementa
tions to take advantage of the performance bene
fits of weak ordering of storage access between
processors or between processors and devices.

2. The architecture provides instructions that allow
the programmer to ensure a consistent and
ordered storage state.

• dcb' • Iwane
• dcbst • eie/o
• dcbz • stdclt.
• icbl • SMCIt.

• Isync • sync
• Idane

3. Processor ordering: storage accesses by a single
processor appear to complete sequentially from
the view of the programming model but may com
plete out of order with respect to the ultimate
destination in the storage hierarchy. Order is
guaranteed at each level of the storage hierarchy
for accesses to the same address from Yle same
processor.

4. Storage consistency between processors and
between a processor and I/O is controlled by soft
ware through mode bits in the page table. See
4.8.2, "Supported Storage Modes" on page 42.
Six modes are supported using the control bits:

• write through
• caching inhibited
• memory coherence

Engineering Note -----------..,

The. architecture does .not suggest or preclude any
implementation of storage consistency supporting
the features listed above. In particular, the imple
mentation may be a snoopy bus design, a central
ized cache directory design, or other design.

4.2.1 Storage Segments

Storage is divided into 256 MB (228) segments.

Programming Note -------------.

It is possible to provide larger segments to appli
cation programs by using multiple adjacent seg
ments.

These segments can be of two types:

• An ordinary storage segment, referred to as a
"storage segment" or simply as a "segment."
Address translation is controlled by the setting of
the relocate bits MSRoR for data and MSR'R for

18 PowerPC Operating Environment Architecture

(

(

(~

IBM Confidential

instructions. MSR1R and MSRoR are independent
bits and may be set differently. The state of
these bits may be changed by interrupts or by
executing the appropriate instructions. An effec
tive address in these segments represents a real
or virtual address depending on the setting of the
relocate bits of the MSR.

• A direct-store segment, always referred to by the
entire name "direct-store segment." Such seg
ments may be used for access to 110. Instruction
fetch from direct-store segments is not allowed.
MSRoR must be 1 when accessing data in a
direct-store segment. See 4.6, "Direct-Store
Segments" on page 37 for an explanation of
direct-store segments.

The value of the T bit in the Segment Table Entry or
Segment Register distinguishes between ordinary
storage segments and direct-store segments.

T Segment type

0 Ordinary storage segment

1 Direct-store segment

The T bit in the Segment Table Entry or Segment Reg
ister is ignored when fetching instructions with
MSR1R - 0 or when accessing data with MSRoR - O.
Such accesses are not considered references to
direct-store segments.

See also section 4.6, "Direct-Store Segments" on
page 37.

4.2.2 Storage Exceptions

Each Effective Address must be translated to real in
order to complete the storage access. A storage
exception occurs if this translation fails for one of the
following reasons:

64-blt implementations

• There is no valid entry in the Segment Table
for the segment specified by the Effective
Address.

• The appropriate Segment Table entry is
found, but there is no valid entry in the Page
Table for the page specified by the Effective
Address.

• Both the appropriate Segment Table and
Page Table entries are found, but the access
is not allowed by the storage protection
mechanism.

32-bit implementations

• There is no valid entry in the Page Table for
the page specified by the Effective Address.

• The appropriate Page Table entry is found
but the access is not allowed by the storage
protection mechanism.

Storage exceptions cause Instruction Storage inter
rupts and Data Storage interrupts that identify the
address of the failing instruction.

In certain cases a storage exception may result in the
"restart" of (re-execution of at least part of) a load or
store instruction. See the section entitled "Instruction
Restart" in Book 11, PowerPC Virtual Environment
Architecture

4.2.3 Instruction Fetch

Instructions are fetched under control of MSR1R.
When any context synchronizing event occurs, any
prefetched instructions are discarded, and then
refetched using the then-current state of MSR1R.

MSR1R=O

When instruction relocation is off, MSR1R - 0, the
effective address is interpreted as described in
section 4.2.6, "Real Addressing Mode" on page 21.

MSR1R=1

Instructions are fetched using the address translated
by one of the following mechanisms:

1. Segmented Address Translation Mechanism

2. Block Address Translation Mechanism

Instruction fetch from direct-store segments is not
supported. An attempt to execute an instruction
fetched from a direct-store segment will result in an
Instruction Storage interrupt.

4.2.4 Data Storage Access

Data accesses are controlled by MSRoR• When the
state of MSRoR changes, subsequent accesses are
made using the new state of MSRoR.

MSROR=O

When data relocation is off, MSRoR - 0, the effective
address is interpreted as described in section 4.2.6,
"Real Addressing Mode" on page 21.

MSROR =1

When address relocation is on, MSRoR -1, the effec
tive address is translated by one of the followi":g
mechanisms:

1. Segmented Address Translation Mechanism

2. Block Address Translation Mechanism

3. Direct-Store Segment Translation Mechanism

Chapter 4. Storage Control 19

4.2.5 Speculative Execution

Data Access

A speculative operation is one that a program
"might" perform and that the hardware decides to
execute out of order on the speculation that the result
will be needed. If subsequent events indicate that the
speculative instruction would not have been executed,
the processor abandons any result the instruction
produced. Typically, hardware executes instructions
speculatively when it has resources that would other
wise be idle, so that the operation is done without
cost or almost so.

Most operations can be performed speculatively, as
long as the machine appears to follow a simple
sequential model such as presented in Book I,
PowerPC User Instruction Set Architecture. Certain
speculative operations are not permitted:

• A speculative store may not be performed in such
a manner that the alteration of the target location
can be observed by other processors or mech
anisms until it can be determined that the store is
no longer speculative.

• Speculative loads from direct-store segments
(T - 1) are prohibited.

• Speculative loads from "guarded storage" (see
below) are prohibited, except that if a load or
store operation will be executed, the entire cache
block(s) containing the referenced data may be
loaded into the cache.

• No error of any kind other than Machine Check
may be reported due to the speculative execution
of an instruction, until such time as it is known
that execution of the instruction is required.

Speculative loads are allowed from any storage that
is not "guarded storage." If in doing so a Machine
Check exception results, a Machine Check interrupt
may be generated even though the data access that
caused the Machine Check exception would not have
been performed because a previous uncompleted
operation would have changed the execution path.

Only one side effect (other than Machine Check) of
speculative execution is permitted when a speculative
instruction's result is abandoned: the Reference bit in
a Page Table Entry may be set due to a speculative
load.

Engineering Note -------------.

While speculative execution of the storage syn
chronization instructions (lwanc, IdarJt, siwcJt., and
stdcx.) is permitted by PowerPC architecture,
doing so is extremely complex and should be
avoided.

IBM Confidential

Instruction Prefetch

The processor typically fetches instructions ahead of
the one(s) currently being executed in order to avoid
delay. Such Instruction prefetchlng is a speculative
operation in that prefetched instructions may not be
executed due to intervening branches or interrupts.

Most prefetching is permitted, as long as the machine
appears to follow a simple sequential model such as
presented in Book I, PowerPC User Instruction Set
Architecture. Certain prefetching is not permitted:

• Neither fetching nor prefetching from direct-store
segments (T -1) is permitted.

• Prefetching from "guarded storage" (see below)
is prohibited, except that if an instruction in a
cache block will be executed, the entire cache
block may be loaded.

• No error of any kind other than Machine Check
may be reported due to instruction prefetching,
until such time as the instruction that is the
target of such prefetch becomes the instruction to
be executed.

Speculative instruction fetches are allowed from any
storage that is not "guarded storage." If in doing so,
a Machine Check exception results, a Machine Check
interrupt may be generated even if the instruction
fetch that caused the Machine Check exception would
not have been executed because a previous uncom
pleted operation would have changed the execution
path.

Only one side effect (other than Machine Check) of
instruction prefetching is permitted: the Reference bit
in a Page Table Entry may be set.

Guarded Storage-:

Storage is said to be "guarded" if either (a) the G bit
is one in the relevant PTE or BAT register, or (b) MSR
bit IR or DR is zero for instruction fetches or data
loads respectively. (In case (b) all of storage is
guarded).

Storage in a guarded area may not be well-behaved
with regard to prefetching and other speculative
storage operations. Such storage may represent an
110 device, and a speculative load or instruction fetch
directed to such a device may cause the device to
perform unexpected or incorrect operations.

Storage addresses in a guarded area may not have
successors; that is, there may be "holes" in a
guarded area of the real address space. On any
system, the highest real address has no successor.
Lack of a successor address means that speculative
sequential operations such as instruction prefetching
may fail and may result in a Machine Check.

20 PowerPC Operating Environment Architecture

IBM Confidential

Because of the unpredictable nature of storage in a
guarded area, instruction prefetching and speculative
loads are not permitted in a guarded area unless the
target location is already in the cache. Instruction
prefetching in a guarded area is, however, permitted
to the extent that if any instruction in a cache block
will be executed, the entire cache block containing
that instruction may be prefetched into the cache (and
instruction buffer). In a similar manner, if a load or
store operation will be executed, the entire cache
block(s) containing the referenced data may be
loaded into the cache.

4.2.6 Real Addressing Mode

Whether address translation is enabled is controlled
by MSR1R for instruction fetching and by MSRoR for
data loads and stores. If address translation is disa
bled for a particular access (fetch, load, or store), the
Effective Address is treated as the Real Address and
is passed directly to the memory subsystem.

The EA is a 64-bit {32-bit} quantity computed by the
CPU. The width of the Real Address supported by a
particular implementation will be less than or equal to
this. If it is less, the high-order bits of the EA are
ignored when forming the Real Address.

Accesses in real mode bypass all storage protection
checks (section 4.10) and do not cause the recording
of reference and change information (section 4.9).
Real mode data accesses are executed as though the
storage access mode bits "WIMG" were 0011 (section
4.8). This mode allows accesses to be cached, does
not require the accesses to be written through the
cache to main storage, requires the hardware to
enforce data consistence with storage, 110, and other
processors (caches), and treats all stQrage as
guarded storage. Real mode instruction fetches are
executed as though the "WIMG" bits were either 0001
or 0011. Speculative fetching of instructions and
speculative loads from storage in real mode are pro
hibited (see "Guarded Storage" above).

Access to direct-store segments (section 4.6) is not
possible when translation is disabled, as Segment
Table Entries (section 4.4.1.2) or Segment Registers
(section 4.5.1.1) are not checked for a T -1 specifica
tion.

WARNING: An attempt to fetch from, load from, or
store to a Real Address that is not physically present
in the machine may result in a Machine Check inter
rupt or a Checkstop (Section 5.5.2).

Chapter 4. Storage Control 21

IBM Confidential

4.3 Address Translation Overview

Figure 11 gives an overview of the address translation process on PowerPC.

Virtual
Trans

Looku
Page

I

1
Se,.ented Address

Translation

Lookup In
Segllent Table

Ordinary DI rect-Store
Se,.ent Segllent

1
Address

latlon

p in
Table

1

Effective Address J
I I

Slock Address
Translation

Match against
SAT Registers

Rea I Address I/O Address Rea I Address

Figure 11. PowerPC Address TrenalatlDn

The Effective Address (EA) is the address generated
by the processor for load and store instructions or for
instruction fetch. This address is passed simultane
ously to two translation mechanisms:

• Segmented Address Translation, described in
section 4.4 on page 23for 64-bit implementations,
and in section 4.5 on page 32 for 32-bit implemen
tations .. and

• Block Address Translation, described in section
4.7 on page 38.

A typical Effective Address will be successfully trans
lated by just one of these mechanisms. If neither
mechanism is successful, a storage exception (page
19) results.

An Effective Address that translates successfully via
the Segmented Address Translation mechanism is a
reference to one of two types of segments:

• A ditect.slore segment, in which case the address
is converted directly into an 1/0 address and is
passed to the 1/0 subsystem for further action, or

• An ordinary segment, in which case the address
is converted into a real address that is then used
to access storage.

An Effective Address that translates successfully via
the Block Address Translation mechanism is con
verted directly into a real address that is then used to
access storage.

22 PowerPC Operating Environment Architecture

IBM Confidential

4.4 Segmented Address Translation, 64-bit Implementations

(' Figure 12 shows the steps involved in translating from an Effective Address to a Real Address on a 64-bit imple
mentation.

64-blt EA I 366-r1-----16 I
~ffective Segment ID Page . 11 Byte _

I Lookup

Segment Table

1
as-bit VA 52 I

VI rtua 1 Segaent 1D . Page 11 Byte _

I Lookup

Page Table

1
64-blt RA Real Page Number 11 Byte _

(Figura 12. Address TranslatlDn Overvi_ (54-bit implementatlDns)

The Effective Address (EA) is a 64-bit quantity com
puted by the processor. Bits 0:35 of the EA are the
Effective Segment 10 (ESID); these are looked up in
the Segment Table to produce a Virtual Segment 10
(VSID). Bits 36:51 of the EA are the Page Number
within the segment; these are concatenated with the
VSID from the Segment Table to form the Virtual.Page ..
Number (VPN). The VPN is looked up in the Page
Table to produce a Real Page Number (RPN). Bits
52:63 of the EA are the Byte Offset within the page;
these are concatenated with the RPN to form the Real
Address (RA) that is used to access storage.

If the processor is executing in 32-bit mode
(MSRsF-O), the translation process described above
is followed except that the high-order 32 bits of the
64-bit Effective Address (that is, bits 0:31 of the ESID)
are forced to zero before the lookup in the Segment
Table starts. Bits 32:35 of the EA, which are the high
order 4 bits of the lower 32 bits of the EA, thus consti
tute the ESID.

If the selected Segment Table Entry identifies the
segment as a direct-store segment, the Page Table is
not referred to. Rather, translation continues as
described in 4.6, "Direct-Store Segments" on
page 37.

For. ordinary· storage. segments the Segmented
Address Translation mechanism may be superseded
by the Block Address Translation (BAT) mechanism
(see section 4.7 on page 38). If not, the translation
moves in two steps from Effective Address to Virtual
Address (which never exists as a specific entity but
can be considered to be the concatenation of the VPN
and Byte Offset), and from Virtual Address to Real
Address.

The first step in segmented address translation is to
convert the effective address into a virtual address,
described in section 4.4.1 on page 24. The second
step, conversion of the virtual address into a real
address, is described in section 4.4.2 on page 28.

Chapter 4. Storage Control 23

IBM Confidential

4.4.1 Virtual Address Generation, 64-bit Implementations

Conversion of a 64-bit Effective Address to a Virtual Address is done by searching a hashed segment table
pointed to by the Address Space Register.

I4-BIT EFFECTIVE ADDRESS

ESID
31, 1I-r--11

. P.g. ~

31

""dre.. Sp... R.,hUr (ASR)

RI.l /lddre .. of S.,...,t Tobl.

51 63

SEGMENT TillllE
.... b,t ..

j ,
/1""11 ! I ! I "u!" ...

515~:~ I "I "i 1 II II
~----------------------~I--~'--~I\ I I

\ I I I II \ ~-+1--41--~--~-4--~·--~~·
14-blt R •• l ""dr ... of S.pont Tobl. Entry GrollP \ 1 1 1 I, I, I STEG31

, t !! . . .

SEGMENT TABLE ENTRY (STE)
11 b1t ••

ESID

35 51 51 5. 51

---------- 12B b,Us ----------

63 •

j
VSlD

1
PIg.

I

n I

• 1&,.--120
1 a,u I
, I

------Vlrtlill Pog. N (VPN)I----------

Bt-IIT VIRTUAL ADDRESS

F1 13. T,_I.llon 0' 84-bll Effocl A 10 VII1U8I A

4.4.1.1 Address Space Register XFX-form" on page 14 and "Move To Special Purpose
Register XFX-form" on page 13.

The ASR is shown in Figure 14. This 64-bit special
purpose register holds the real address of the
Segment Table. The Segment Table defines the set of
segments than can be addressed at anyone time; it is
usual to have different segment tables for different
processes. The contents of the ASR are usually part
of the process state.

Access to the ASR is privileged. The ASR may be
read or written by the mfspr and mtspr instructions.
See "Move From Special Purpose Register

Real address of Segment Table

o 63

Figure 14. Address Space Register

Programming Note -------------------,

The values 0, Ox1000, and Ox2000 cannot be used
as Segment Table addresses, since these pages
contain interrupt vectors.

24 PowerPC Operating Environment Architecture

(_.

IBM Confidential

T=O I ESID 11/ I vi TIK~K~ /1111 VSID II/

0 35 56 57 58 59 630 51 63

T=1 I ESID II/ I vi TIK~K~ 11111 10

0 35 56 57 58 59

Dword Bit Name Description

0 0:35 ESID Effective Segment 10
56 V Entry valid if V-1
57 T Direct-store segment if T-1
58 Ks Supervisor state storage key
59 Kp Problem state storage key

All other fields are reserved.

Figure 15. Segment Table Entry format

Engineering Note -------------,

Since the Segment Table is constrained to lie on a
page boundary, bits 52:63 of the ASR need not be
implemented. The mfspr instruction should return
a 64-bit quantity with O's in these positions,
however.

4.4.1.2 Segment Table

The Segment Table (STAB) is a one-page data struc
ture that defines the mapping between Effective
Segment IDs and Virtual Segment IDs. The STAB
must be on a page boundary.

The STAB contains 32 Segment Table Entry Groups,
or STEGs. A STEG contains 8 Segment Table Entries..
(STEs) of 16 bytes each; each STEG is thus 128 bytes
long. STEGs are entry points for searches of the
Segment Table.

See section 4.12, "Table Update Synchronization
Requirements" on page 53 for the rules that software
must follow when updating the Segment Table.

Segment Table Entry

Each Segment Table Entry (STE) maps one ESID to
one VSID. Additional information in the STE controls
the STAB search process and provides input to the
storage protection mechanism. Figure 15 shows the
layout of an STE.

See 4.10, "Storage Protection" on page 44 for a dis
cussion of the storage key bits.

630 63

Dword Bit Name Description

0:51 VSID Virtual SID

0:63 10 110 specific

4.4.1.3 Segment Table Search

An outline of the STAB search process is shown in
Figure 13 on page 24. The detailed algorithm is as
follows:

1. Primary Hash: Bits 0:51 of the ASR are concat
enated with bits 31:35 of the Effective Address
(the low 5 bits of the ESID) and with a field of
seven Os to form the 64-bit real address of a
Segment Table Entry Group. This operation is
referred to as the "Primary STAB Hash." This
identifies a particular STEG, each of whose 8
STEs will be tested in turn.

2. The first STE in the selected STEG is tested for a
match with the EA. In order for a match to exist,
the following must be true:

• STEv -1
• STEeslD - EAO:35

If a match is found, the STE search terminates
successfully.

3. Step 2 is repeated for each of the other 7 STEs in
the STEG. The first matching STE terminates the
search. If none of the 8 STEs match, the sec
ondary hash must be tried.

4. Secondary Hash: Bits 0:51 of the ASR are con
catenated with the ones-complement of bits 31 :35
of the Effective Address and with a field of seven
Os to form the 64-bit real address of a Segment
Table Entry Group. This operation is referred to
as the "Secondary STAB Hash."

5. The first STE in the selected STEG is tested for a
match with the EA. In order for a match to exist,
the following must be true:

• STEv - 1
• STEeslD - EAO:35

Chapter 4. Storage Control 25

If a match is found, the STE search terminates
successfully.

6. Step 5 is repeated for each of the other 7 STEs in
the STEG. The first matching STE terminates the
search. If none of the 8 STEs match, the search
fails.

If the Segment Table search succeeds, the Virtual
Page Number (VPN) is formed by concatenating the
VSID from the matching STE with bits 36:51 of the
Effective Address (the page number). The complete
80-bit Virtual Address (VA) is formed by concatenating
the VPN with bits 52:63 of the EA (the byte offset).

If the search fails, a page fault interrupt is taken. This
will be an Instruction Storage interrupt or a Data
Storage interrupt, depending on whether the Effective
Address is for an instruction fetch or for data access.

If the selected STE has T -1, the reference is to a
direct-store segment. No reference is made to the
Page Table; processing continues as described in 4.6,
"Direct-Store Segments" on page 37.

Segment Lookaside Buffer

Conceptually, the segment table is searched by the
address relocation hardware to translate every refer
ence. For performance reasons the hardware usually
keeps a Segment Lookaside Buffer (SLB) that holds
STEs that have recently been used. The SLB is
searched prior to searching the Segment Table. As a
consequence, when software makes changes to the
Segment Table it must perform the appropriate SLB
invalidate operations to maintain the consistency of
the SLB with the tables.

IBM Confidential

Programming Note. -----------,

1. Segment table entries mayor may not be
cached in an SLB.

2. Table lookups are done using real addresses
and storage access mode M -1 (memory
coherence).

3. If software plans to access the STAB with
data relocate on, MSRoR -1, it must avoid
cache synonyms by mapping these tables
such that the real and virtual address bits
used for cache set selection are the same,
just as is required for other virtual accesses.
See address alignment requirements
described in Book II, PowerPC Virtual Envi
ronment Architecture.

4. It is possible that the hardware implements
two SLB arrays (one for data and one for
instruction). In this case the size, shape and
values contained by the arrays may be dif
ferent.

5. The ASR must point to a valid Segment Table
whenever address relocation is enabled
(MSR1R -1 or MSRoR -1 or both) and the
Effective Address is not covered by BAT
translation.

6. Use the slbie, slbiex, or slbia instruction to
ensure that the SLB no longer contains a
mapping for a particular segment.

7. See Appendix F, "Synchronization Require
ments for Special Registers" on page 83, for
the synchronization requirements that must
be satisfied when a program changes the con
tents of the ASR.

8. Hardware never modifies the Segment Table.

4.4.1.4 32-bit Execution Mode

When-a 64-Sit implementation executes in 32-bit mode
(MSRsF-O), the Segment Table search is modified as
follows:

1. The 64-bit .Effective Address is computed by the
processor as usual.

2. The high-order 32 bits of the EA are forced to
zero. Thus the Effective Segment 10 consists of
32 O's concatenated with the high-order 4 bits of
the lower half of the 64-bit EA.

3. The modified EA is then used as input to the
Segment Table search.

The zeroing of the high-order 32 bits effectively trun
cates the 64-bit EA to a 32-bit EA such as would have
been generated on a 32-bit implementation. The ESID
in 32-bit mode is the high-order 4 bits of this trun
cated EA; the ESID thus lies in the range 0:15. These
4 bits would select a Segment Register on a 32-bit
implementation; they select one of 16 STEGs in the
Segment Table on a 64-bit implementation. These
STEGs can be used to emulate the 32-bit machine's
Segment Registers.

26 PowerPC Operating Environment Architecture

(

IBM Confidential

This truncation of the EA is the sale effect of 32-bit
mode (MSRsF-O) on address translation; everything
else proceeds as for 64-bit mode.

Chapter 4. Storage Control 27

IBM Confidential

4.4.2 Virtual to Real Translation, 64-bit Implementations

Conversion of an SO-bit Virtual Address to a Real Address is done by searching a hashed page table located by
SDR 1.

-----'ytrt.11 PI,. N".r (VPN)-----

I 52 I 11,.---:--12;
"-BIT Y1RTIIAL ADDRESS ,-_. _____ YS_I_D _____ -"-. _P_"' __ ~..JL..._B_yt_. --,I

13 51 52 17 61 71

HTAlORG HTAISIZE

~----JT

SDRI 1 """ : 1 III 1 I
• 17 18 4S

T~' I

Hut
I

I
1888 111 ·~1

1

I
I

I

I j
[J

l.r-J __ ,_I_....J

G
I

I
I

I
I I • I

,....----11-8 0' ----;21-8 0' --1l-:r-7] I
I I I ,"'88',/,

1

M-btt Roll Add"ss af PI" Tuh Entry Ora ..

PAGE TAILE ENTRY (PTE)
16 byt ..

\ ,
\ ,

"s 23
1 11

!

"'T
I

I

I

PAGE TAILE

I ! I ! I'",!"~
II II i 1-

------ 128 bytes ------

I
1

1
I

I

I

I

I
I
I

51, APi ii III i'H i'v i,i, ROIl Pig. N."or (RPM) 52 illiR ie i WIMG i, i PP i 1
'-________ --'-. _.!..... _---'-. -"--'. .. ! ! !! !! 1 I I YSID

5256 1213 L-1. ___ --,r--____ S..Jl SS 56 S7 61 6213 .1
I

1 1
52-;---12;

I Byte I M-8IT REAL ADDRESS RPN
! I

Flgur. 18. T,_I.tlon Dr IIO-IIlt VI,twl Addr .. to Jl4.lIlt R •• I AdcIr.1

Generation of the SO-bit Virtual Address that is input
to this stage of the translation process is described in

4.4.1, "Virtual Address Generation,
Implementations" on page 24.

28 PowerPC Operating Environment Arcllitecture

64-bit

(

(

IBM Confidential

4.4.2.1 Page Table

The Hashed Page Table (HTAB) is a variable-sized
data structure that defines the mapping between
Virtual Page Numbers and Real Page Numbers. The
HTAB's size must be a power of 2, and its starting
address must be a multiple of its size.

The layout of the HTAB is similar to that of the
Segment Table, except that the HTAB's size is vari
able while the STAB's size is exactly one page. The
HTAB contains a number of Page Table Entry Groups,
or PTEGs. A PTEG contains 8 Page Table Entries
(PTEs) of 16 bytes each; each PTEG is thus 128 bytes
long. PTEGs are entry points for searches of the Page
Table.

See section 4.12, "Table Update Synchronization
Requirements" on page 53 for the rules that software
must follow when updating the Page Table.

Page Table Entry

Each Page Table Entry (PTE) maps one VPN to one
RPN. Additional information in the PTE controls the
HTAB search process and provides input to the
storage protection mechanism. Figure 17 shows the
layout of a PTE.

0 52 56 6263

I
VSIO I API I //I IH'VI
RPN : IIIRIC:WIMGI/: PP:

0 51 555657 60 62 63

Dword Bit Name Description
0 0:51 VSIO Virtual Segment 10

52:56 API Abbreviated Page Index
62 H Hash function identifier·
63 V Entry valid (V -1)

or invalid (V - 0)

0:51 RPN Real Page Number
55 R Reference bit
56 C Change bit
57:60 WIMG Storage access controls
62:63 PP Page protection bits

All other fields are reserved.

Figure 17. Page Table Entry, 64-bit Implementations

The PTe contains an Abbreviated Page Index rather
than the complete Page field. At least 11 of the low
order bits of the VPN are used in the hash function to
select a PTEG. These bits are not repeated in the
PTEs of that PTEG.

Page Table Size

The number of entries in the Page Table directly
affects performance because it influences the hit ratio

in the Page Table and thus the rate of page fault
interrupts. If the table is too small, it is possible that
not all the virtual pages that actually have real page
frames assigned can be mapped via the Page Table.
This can happen if too many hash collisions occur and
there are more than 16 entries for the same
primary/secondary pair of PTEGs. While this situation
cannot be guaranteed not to occur for any size Page
Table, making the Page Table larger than the
minimum size will reduce the frequency of occurrence
of such collisions.

It is recommended that the number of PTEGs in the
page table be at least one-half the number of real
page frames to be mapped.

As an example, if the real memory size is 231 bytes (2
GB), then we have 231 - 12 = 219 page frames. The
minimum recommended page table size would be 218
PTEGs, or 228 bytes (32 MB).

Engineering Note -------------,

The minimum size page table supported on 64-bit
implementations is 2048 PTEGs, or 218 bytes (256
KB). This is the recommended size for a system
with 224 bytes (16 MB) of storage. Power PC
systems can be built with less storage, but the
Page Table must be at least this minimum size.

4.4.2.2 Storage Description Register 1

The SOR 1 register is shown in Figure 18.

I HTABORG /I bTABSIJE
o 45 58 63

Bits Name Description
0:45 HTABORG Real address of page table
58:63 HTABSIZE Encoded size of table

AI/ other fields are reserved.

Figure 18. SDR 1, 64-bit implementations

The HTABORG field in SOR 1 contains the high-order
46 bits of the 64-bit real address of the page table.
The Page Table is thus constrained to lie on a 218 byte
(256 KB) boundary at a minimum. At least 11 bits
from the hash function (Figure 16 on page 28) are
used to index into the Page Table. The minimum size
Page Table is 256 KB (211 PTEGs of 128 bytes each).

The Page Table can be any size 2" where 18 S n S 46.
As the table size is increased, more bits are used
from the hash to index into the table and the value in
HTABORG must have more of its low-order bits equal
to O. The HTABSIZE field in SOR 1 contains an
integer giving the number of bits from the hash that
are used in the Page Table index. HTABSIZE is used
to generate a mask of the form ObOO ... 011 ... 1, that is,
a string of 0 bits followed by a string of 1 bits. The 1

Chapter 4. Storage Control 29

bits determine which additional bits (beyond the
minimum of 11) from the hash are used in the index;
HTABORG must have this same number of low-order
bits equal to O. See Figure 16 on page 28.

Engineering Note ------------,

The number of low-order 0 bits in HTABORG must
be at least the value in HTABSIZE so that the final
64-bit real address can be formed by ORing the
various components.

Example

Suppose that the Page Table is 16,384 (214) 128-byte
PTEGs, for a total size of 221 bytes (2 MB). A 14-bit
index is required. Eleven bits are provided from the
hash to start with, so 3 additional bits from the hash
must be selected. Thus the value in HTABSIZE must
be 3 and the value in HTABORG must have its low
order 3 bits (bits 31 :33 of SDR 1) equal to O .. This
means that the Page Table must begin on a
23+ 11 + 7 = 221 = 2 MB boundary.

4.4.2.3 Hashed Page Table Search

An outline of the HTAB search process is shown in
Figure 16 on page 28. The detailed algorithm is as
follows:

1. Primary Hash: A 39-bit hash value is computed
by Exclusive-ORing the low-order 39 bits of the
VSID with a 39-bit value formed by concatenating
23 bits of 0 with the Page index.

2. The 64-bit real address of a PTEG is formed by
concatenating the following values:

• Bits 0:17 of SDR 1 (the 18 high-order bits of
HTABORG).

• Bits 0:27 of the value formed in step 1 ANDed .,
with the mask generated from bits 58:63 of
SDR 1 (HTABSIZE) and then ORed with bits
18:45 of SDR 1 (the 28 low-order bits of
HTABORG).

• Bits 28:38 of the value formed in step 1.
• A 7 -bit field of Os.

This operation is referred to as the "Primary
HTAB Hash." This identifies a particular PTEG,
each of whose 8 PTEs will be tested in turn.

3. The first PTE in the selected PTEG is tested for a
match with VPN. In order for a match to exist,
the following must be true:

• PTEH - 0
• PTEv -1
• PTEVSID - VAO:51
• PTEAPI - VA52:56

If a match is found, the PTE search terminates
successfully.

4. Step 3 is repeated for each of the other 7 PTEs in
the PTEG. The first matching PTE terminates the

IBM Confidential

search. If none of the 8 PTEs match, the sec
ondary hash must be tried.

5. Secondary Hash: A 39-bit hash value is com
puted by taking the ones complement of the
Exclusive OR of the low-order 39 bits of the VSID
with a 39-bit value formed by concatenating 23
bits of 0 with the Page index.

6. The 64-bit real address of a PTEG is formed by
concatenating the following values:

• Bits 0:17 of SDR 1 (the 18 high-order bits of
HTABORG).

• Bits 0:27 of the value formed in step 5 ANDed
with the mask generated from bits 58:63 of
SDR 1 (HTABSIZE) and then ORed with bits
18:45 of SDR 1 (the 28 low-order bits of
HTABORG).

• Bits 28:38 of the value formed in step 5.
• A 7 -bit field of Os.

This operation is referred to as the "Secondary
HTAB Hash."

7. The first PTE in the selected PTEG is tested for a
match with VPN. In order for a match to exist,
the following must be true:

• PTEH -1
• PTEv -1
• PTEVSID - VAO:51
• PTEAP1 - VA52:56

If a match is found, the PTE search terminates
successfully.

8. Step 7 is repeated for each of the other 7 PTEs in
the PTEG. The first matching PTE terminates the
search. If none of the 8 PTEs match, the search
fails.

If the Page Table search succeeds, the content of the
PTE that translates the EA is returned. The Real
Address (RA) is formed by concatenating the RPN
from the matching PTE with bits 52:63 of the Effective
Address (the byte offset).

If the search fails, a page fault interrupt is taken. This
will be an Instruction Storage interrupt or a Data
Storage interrupt, depending on whether the Effective
Address is for an instruction fetch or for data access.

Translation Lookaside Buffer

Conceptually, the Page Table is searched by the
address relocation hardware to translate every refer
ence. For performance reasons the hardware usually
keeps a Translation Lookaside Buffer (TLB) that holds
PTEs that have recently been used. The TLB is
searched prior to searching the Page Table. As a
consequence, when software makes changes to the
Page Table it must perform the appropriate TLB inval
idate operations to maintain the consistency of the
TLB with the Page Table.

30 PowerPC Operating Environment Architecture

(

IBM Confidential

Programming Notes -----------,

1. Page table entries mayor may not be cached
in a TLB.

2. Table lookups are done using real addresses
and storage access mode M -1 (memory
coherence).

3. If software plans to access the HTAB with
data relocate on, MS ROR -1, it must avoid
cache synonyms by mapping these tables
such that the real and virtual address bits
used for cache set selection are the same,
just as is required for other virtual accesses.
See address alignment requirements
described in Book II, PowerPC Virtual Envi
ronment Architecture.

4. It is possible that the hardware implements
two TLB arrays (one for data and one for
instruction). In this case the size, shape and
values contained by the arrays may be dif
ferent.

5. Use the tibia, tibia", or tibia instruction to
ensure that the TLB no longer contains a
mapping for a particular page.

6. Refer to Book IV, PowerPC Implementation
Features for the procedure to be used to
invalidate the entire TLB.

Chapter 4. Storage Control 31

IBM Confidential

4.5 Segmented Address Translation, 32-bit Implementations

Figure 19 shows the steps involved in translating from an effective address to a real address on a 32-bit imple-
mentation. " /'

32-blt EA [SRI

Sepent Registers

1
52-bit VA 24 I

VI rtua 1 Se91lent I D .

Pate

Page

1~
Byte .J

1~
Byte .J

I Lookup

Page Table

1
32-bit RA 28 I

Rea 1 Real Page NUllber .
1~

Byte .J
Figure 18. Address Translstlon OVervi_ (32-blt implementations)

The Effective Address (EA) is a 32-bit quantity com
puted by the processor. Bits 0:3 of the EA are the
Segment Register number. These are used to select
a Segment Register, from which is extracted a Virtual
Segment 10 (VSIO). Bits 4:19 of the EA are the Page
Number within the segment; these are concatenated
with the VSID from the Segment Register to form the
Virtual Page Number (VPN). The VPN is lo.oked up in
the Page Table to produce a Real Page Number (RPN).
Bits 20:31 of the EA are the Byte Offset within the
page; these are concatenated with the RPN to form
the Real Address (RA) that is used to access storage.

If the selected Segment Register identifies the
segment as a direct-store segment, the Page Table is
not referred to. Rather, translation continues as

described in 4.6, "Direct-Store Segments" on
page 37.

For ordinary storage segments the Segmented
Address Translation mechanism may be superseded
by the. Block Address. Translation (BAT) mechanism
(see section 4.7 on page 38). If not, the translation
moves in two steps from Effective Address to Virtual
Address (which never exists as a specific entity but
can be considered to be the concatenation of the VPN
and Byte Offset), and from Virtual Address to Real
Address.

The first step in segmented address translation is to
convert the effective address into a virtual address,
described in section 4.5.1 on page 33. The second
step, conversion of the virtual address into a real
address, is described in section 4.5.2 on page 34.

32 PowerPC Operating Environment Architecture

(~

IBM Confidential

4.5.1 Virtual Address Generation,
32-bit Implementations

Conversion of a 32-bit Effective Address to a Virtual
Address is done by using the 4 high-order bits of the
EA to select a Segment Register.

]z·BIT EFFECTIVE ADDRESS

.... _ • .,..---Ie-r--I2-;
I SR I Pigi 1 Bytl 1

1 3 4 It 21 31

.....
________ ~~ ~I __ .-~I

Siloct --'

11 SEGMENT REGISTERS

~:/~
SEGMENT REGISTER
32 bits

I \ f-I----__

\1...1-------

i T ! Ks I K~! III VSID

I I

I ,

I
I
I
I
I
I

2.-, I
I I
I

I 31

I ,

I

I
I

1
VSID

24 j Ie-r--Ij
I Pig, I 8yU
I I I

+-Yirtl.lll Page "UUIr (VPN)-"

52·BIT VIRTUAL ADDRESS

Fig ... 20. Tr I.tion af »·bit Effecti". AdcIr ... to Vlnual A

4.5.1.1 Segment Registers

The 16 32-bit registers are present only in 32-bit
implementations of PowerPC. Figure 21 shows the
layout of a Segment Register. The fields in the
Segment Register are interpreted differently
depending on the value of bit 0 (the T bit).

o 1 2 B

Bit Name
o T
1 Ks
2 Kp
8:31 VSID

VSID

Description
T-O selects this format
Supervisor state storage key
Problem state storage key
Virtual Segment 10

All other fields are reserved

o 1 2 3

Bit Name
o T
1 Ks
2 Kp
3:11 BUID
12:31

controller specific

12

Description
T - 1 selects this format
Supervisor state storage key
Problem state storage key
Bus Unit 10
Device dependent data for

1/0 controller

Figure 21. Segment Register format

31

31

If T-O in the selected Segment Register, the Effective
Address is a reference to an ordinary storage
segment. For ordinary segments the Segmented
Address Translation mechanism may be superseded
by the Block Address Translation (BAT) mechanism
(see section 4.7 on page 38). If not, the 52-bit Virtual
Address (VA) is formed by concatenating

• the 24-bit VSID field from the Segment Register.
• the 16-bit page index, EA4:19, and
• the 12-bit byte offset, EA20:31 •

The VA is then translated to a Real Address as
described in the next section.

If T-1 in the selected Segment Register, the Effective
Address is a reference to a direct-store segment. No
reference is made to the page table; processing con
tinues as in 4.6, "Direct-Store Segments" on page 37.

Chapter 4. Storage Control 33

IBM Confidential

4.5.2 Virtual to Real Translation, 32-bit Implementations

Conversion of a 52-bit Virtual Address to a Real Address is done by searching a hashed page table located by "
SDR 1.

----'lVlrtull Pap "1IIIII1r (VP")----

52·BIT VIRTUAL ADDRESS
Z4

1 Yi rtual Sipont ID (YSID) .

" I ~L.._5_1 ______ -,

c-3
1 11

HTABORB

l Ui r 9 I
SORI , , III , IlI 1 , T ~ ,n j),-3_1_, _L..II~~~-=---..lll ,gil,

I I ~

I ~ I------------~ '-------, I L;J,
• i

Y
I I

12·bit Rial Addre" of Pap Tobit Entry Group

PADE TABLE ENTRY (PTE)
I bytlS

I
I ,

\
\
\

PADE TABLE

I
I I PTE I I

.
I .
I I

I I \ ,

-I I-I by tIS

.
I

I
14 byte'

PTE1 I PTEGI

. .
I I

I
I

I PTE ..

r-i r-I --------2.~&-, I 28 iii i ! S I I

L..IY ____ VS_ID ____ !H_! A_PI--'!! Rill Pagl Nu!!dllr (RP") !"'IR!e! VIM!!!'! P,P !

II 24252131. 11 23242521 3131
I I

1

I
I

I
I
I
I
I
I
I
I •

12·BIT REAL ADDRESS RPN 2e-r----11 ! Byte

F1 22. T._lation.' 52·blt Vlnual AdcIrooa to 32·blt R .. I AdcIr ...

Generation of the 52-bit Virtual Address that is input
to this stage of the translation process is described in

4.5.1, "Virtual Address Generation,
Implementations" on page 33.

34 PowerPC Operating Environment Architecture

32-bit

(

(

IBM Confidential

4.5.2.1 Page Table

The Hashed Page Table (HTAB) is a variable-sized
data structure that defines the mapping between
Virtual Page Numbers and Real Page Numbers. The
HTAB's size must be a power of 2, and its starting
address must be a multiple of its size.

The HTAB contains a number of Page Table Entry
Groups, or PTEGs. A PTEG contains 8 Page Table
Entries (PTEs) of 8 bytes each; each PTEG is thus 64
bytes long. PTEGs are entry points for searches of
the Page Table.

See section 4.12, "Table Update Synchronization
Requirements" on page 53 for the rules that software
must follow when updating the Page Table.

Page Table Entry

Each Page Table Entry (PTE) maps one VPN to one
RPN. Additional information in the PTE controls the
HTAB search process and provides input to the
storage protection mechanism. Figure 23 shows the
layout of a PTE.

o 1

Ivl
0

Word Bit
0 0

1:24
25
26:31

0:19
23
24
25:28
30:31

VSIO

RPN

Name
V

VSIO
H
API

RPN
R
C
WIMG
PP

2526 31

19 23 2425 28 3031

Description
Entry valid (V - 1)

or invalid (V-O)
Virtual Segment 10
Hash function identifier
Abbreviated Page Index

Real Page Number
Reference bit
Change bit
Storage access controls
Page protection bits

All other fields are reserved.

Figure 23. Page Table Entry. 32·bit implementations

The PTE contains an Abbreviated Page Index rather
than the complete Page field. At least 10 of the low·
order bits of the Page are used in the hash function to
select a PTEG. These bits are not repeated in the
PTEs of that PTEG.

Page Table Size

The number of entries in the Page Table directly
affects performance because it influences the hit ratio
in the Page Table and thus the rate of page fault
interrupts. If the table is too small, it is possible that
not all the virtual pages that actually have real page

frames aSSigned can be mapped via the Page Table.
This can happen if too many hash collisions occur and
there are more than 16 entries for the same
primary/secondary pair of PTEGs. While this situation
cannot be guaranteed not to occur for any size Page
Table, making the Page Table larger than the
minimum size will reduce the frequency of occurrence
of such collisions.

It is recommended that the number of PTEGs in the
page table be at least one·half the number of real
page frames to be mapped.

As an example, if the real memory size is 229 bytes
(512 MB), then we have 229 - 12 = 217 page frames. The
minimum recommended page table size would be 21&

PTEGs, or 222 bytes (4 MB).

Engineering Note ----------

The minimum size page table supported on 32·bit
implementations is 1024 PTEGs, or 21& bytes (64
KB). This is the recommended size for a system
with 223 bytes (8 MB) of storage. PowerPC
systems can be built with less storage, but the
Page Table must be at least this minimum size.

4.5.2.2 Storage Description Register 1

The SOR 1 register is shown in Figure 24.

HTABORG III I HTABMASK I
o 15 23 31

Bits
0:15
23:31

Name Description
HTABORG Real address of page table
HTABMASK Mask for page table address

AI/other' fields' are reserved.

Figure 24. SDR 1. 32·blt Implementations

Architecture Note -----------...,

In SOR on 64·bit implementations, the
HTABSIZE field contains a number that specifies
the number of 1 bits in the Page Table index
mask. On 32·bit implementations the mask itself
is contained in the HTABMASK field.

The HTABORG field in SOR 1 contains the high·order
16 bits of the 32-bit real address of the page table.
The Page Table is thus constrained to lie on a 216 byte
(64 KB) boundary at a minimum. At least 10 bits from
the hash function (Figure 22 on page 34) are used to
index into the Page Table. The minimum size Page
Table is 64 KB (210 PTEGs of 64 bytes each).

The Page Table can be any size 2n where 16 S n S 25.
As the table size is increased, more bits are used
from the hash to index into the table and the value in

Chapter 4. Storage Control 35

HTABORG must have more of its low-order bits equal
to O. The HTABMASK field in SDR 1 contains a mask
value that determines how many bits from the hash
are used in the Page Table index. This mask must be
of the form ObOO ... 011 ... 1, that is, a string of 0 bits fol
lowed by a string of 1 bits. The 1 bits determine how
many additional bits (beyond the minimum of 10) from
the hash are used in the index; HTABORG must have
this same number of low-order bits equal to O. See
Figure 22 on page 34.

Engineering Note -------------,

The number of low-order 0 bits in HTABORG must
be at least the number of 1 bits in HTABMASK so
that the final 32-bit real address can be formed by
ORing the various components.

Example

Suppose that the Page Table is 8,192 (213) 64-byte
PTEGs, for a total size of 219 bytes (512 KB). A 13-bit
index is required. Ten bits are provided from the
hash to start with, so 3 additional bits from the hash
must be selected. Thus the value in HTABMASK
must be Ox007 and the value in HTABORG must have
its low-order 3 bits (bits 13: 15 of SDR 1) equal to O.
This means that the Page Table must begin on a
23+10+& = 218 = 512 KB boundary.

4.5.2.3 Hashed Page Table Search

An outline of the HTAB search process is shown in
Figure 22 on page 34. The detailed algorithm is as
follows:

1. A 19-bit hash value is computed by
Exclusive-ORing the low-order 19 bits of the VSID
with a 19-bit value formed by concatenating 3 bits
of 0 with the Page index.

2. Primary Hash: The 32-bit real address of a PTEG
is formed by concatenating the following values:

• Bits 0:6 of SDR 1 (the 7 high-order bits of
HTABORG).

• Bits 0:8 of the value formed in step 1 ANDed
with bits 23:31 of SDR 1 (the value of
HTABMASK) and then ORed with bits 7:15 of
SDR1 (the 9 low-order bits of HTABORG).

• Bits 9:18 of the value formed in step 1.
• A 6-bit field of Os.

This operation is referred to as the "Primary
HTAB Hash." This identifies a particular PTEG,
each of whose 8 PTEs will be tested in turn.

3. The first PTE in the selected PTEG is tested for a
match with VPN. In order for a match to exist,
the following must be true:

• PTEH - 0
• PTEv -1
• PTEVSID - VAo:23
• PTEAPI - VA24:29

IBM Confidential

If a match is found, the PTE search terminates
successfully.

4. Step 3 is repeated for each of the other 7 PTEs in
the PTEG. The first matching PTE terminates the
search. If none of the 8 PTEs match, the sec
ondary hash must be tried.

5. A 19-bit hash -value isoomputed by taking the
ones complement of the Exclusive OR of the low
order 19 bits of the VSID with a 19-bit value
formed by concatenating 3 bits of 0 with the Page
index.

6. Secondary Hash: The 32-bit real address of a
PTEG is formed by concatenating the following
values:

• Bits 0:6 of SDR 1 (the 7 high-order bits of
HTABORG).

• Bits 0:8 of the value formed in step 5 ANDed
with bits 23:31 of SDR 1 (the value of
HTABMASK) and then ORed with bits 7:15 of
SDR1 (the 9 low-order bits of HTABORG).

• Bits 9:18 of the value formed in step 5.
• A 6-bit field of Os.

This operation is referred to as the "Secondary
HTAB Hash."

7. The first PTE in the selected PTEG is tested for a
match with VPN. In order for a match to exist,
the following must be true:

• PTEH -1
.PTEv -1

• PTEVSID - VAO:23

• PTEAPI - VA24:29

If a match is found, the PTE search terminates
successfully.

8. Step 7 is repeated for each of the other 7 PTEs in
the PTEG. The first matching PTE terminates the
search. If none of the- 8 PTEs match, the search -
fails.

If the Page Table search succeeds, the content of the
PTE that translates the EA is returned. The Real
Address (RA) is formed by concatenating the RPN
from the matching PTE with bits 20:31 of the Effective
Address (the byte offset).

If the search fails, a page fault interrupt is taken. This
will be an Instruction Storage interrupt or a Data
Storage interrupt, depending on whether the Effective
Address is for an instruction fetch or for data access.

Translation Lookaside Buffer

Conceptually, the Page Table is searched by the
address relocation hardware to translate every refer
ence. For performance reasons the hardware usually
keeps a Translation Lookaside Buffer (TLB) that holds
PTEs that have recently been used. The TLB is
searched prior to searching the Page Table. As a
consequence, when software makes changes to the

36 PowerPC Operating Environment Architecture

(~

(~

IBM Confidential

Page Table it must perform the appropriate TLB inval
idate operations to maintain the consistency of the
TLB with the Page Table.

Programming Note. -----------,

1. Page table entries mayor may not be cached
·in a TLB.

2. Table lookups are done using real addresses
and storage access mode M -1 (memory
coherence).

3. If software plans to access the HTAB with
data relocate on, MSRoR -1, it must avoid
cache synonyms by mapping these tables
such that the real and virtual address bits
used for cache set selection are the same,
just as is required for other virtual accesses.
See address alignment requirements
described in Book II, PowerPC Virtual Envi
ronment Architecture.

4. It is possible that the hardware implements
two TLB arrays (one for data and one for
instruction). In this case the size, shape and
values contained by the arrays may be dif
ferent.

5. Use the tibia, tlbiax, or tibia instruction to
ensure that the TLB no longer contains a
mapping for a particular page.

6. Refer to Book IV, PowerPC Implementation
Features for the procedure to be used to
invalidate the entire TLB.

4.6 Direct-Store Segments

A direct-store segment is a mapping of effective
addresses onto an external address space, typically
an 1/0 bus.

Compatibility Note ----------,

Direct-store segments are provided for Power
compatibility. Applications that require low
latency load/store access to external address
space should consider more traditional methods.

Effective addresses that lie within direct-store seg
ments complete only the first step of the ordinary
segmented address translation.

• In 64-bit implementations, this is the search of the
Segment Table. If the resulting Segment Table
Entry has T -1, the reference is to a direct-store
segment.

• In 32-bit implementations, this is the selection of
the Segment Register. If the SR has T-1, the
reference is to a direct-store segment.

4.6.1 Completion of direct-store
access

Once the segmented address translation process has
discovered that the segment has T -1, translation ter
minates. Any match due to Block Address Translation
(BAT, section 4.7) is ignored. No reference is made to
the Page Table; reference and change bits are not
updated. The following data is sent to the storage
controller:

For 64-blt implementations:

• A one bit field representing the privilege of
the storage access, computed as follows:

Key. +- (Kp & MSRpR) I (Ks & ~MSRpR)
• The 32-bit 10 field from bits 32:63 of the

second doubleword of the STE
• The low-order 28 bits of the Effective

Address, EA36:63

For 32-blt implementations:

• A one bit field representing the privilege of
the storage access, computed as follows:

Key +- (Kp & MSRpR) I (Ks & ~MSRpR)

• The contents of bits 3:31 of the Segment
Register, which is the BUID field concat
enated with the "controller specific" field.

• The low-order 28 bits of the Effective
Address, EA4:31

An implementation of Power PC Architecture may
cause multiple address/data transfers for a single
instruction. The address for each transfer will be

Chapter 4. Storage Control 37

handled in the same manner that addresses for
access to main store are handled.

Architecture Note -----------.,

Power PC differs from Power in this area. Power
implementations sent the address and byte count
to the storage controller, causing only one
address transfer regardless of the number of
bytes transferred.

4.6.2 Direct-store segment protection

Page-level protection as described in 4.10.1, "Page
Protection" on page 44 is not provided by the
Power PC processor for direct-store segments. The
appropriate key bit (Ks or Kp) from the STe or SR is
sent to the storage controller, but it is up to the
storage controller to implement any protection mech
anism. Frequently no such mechanism will be pro
vided; the fact that a direct-store segment is mapped
into the address space of a process may be regarded
as sufficient authority to access the segment.

4.6.3 Instructions not supported for
T=1

The following instructions are not supported when
issued with an Effective Address in a segment where
T-1:

• 'INane • sawcx.
• Idarx • stdex.
• eCMx • aeoINx

If one of these instructions is executed with an effec
tive address in a segment with T-1, a Data Storage·'
interrupt may occur or the results may be boundedly
undefined.

4.6.4 Instructions with no effect for
T=1

The following instructions are treated as no-ops when
issued with an Effective Address in a segment where
T-1:

• debt • debst
• debtst • dcbz
• debt • icbl
• debl

For further details of storage references to direct
store segments, refer to Book IV, PowerPC Implemen
tation Features.

IBM Confidential

4.7 Block Address Translation

The Block Address Translation (BAT) mechanism pro
vides a means for mapping ranges of virtual
addresses larger than a single page onto contiguous
areas of real storage. Such areas can be used for
data that is not subject to normal virtual storage han
dling (paging), such as a memory-mapped display
buffer or an extremely large array of numerical data.

4.7.1 Recognition of Addresses in
BAT Areas

Block Address Translation is enabled only when
address translation is enabled (MSR'R -1 or
MSRoR -1 or both) and then only for segments that
specify T-O. That is, BAT does not apply to direct
store (T - 1) segments.

A set of Special Purpose Registers (SPRs) called BAT
registers define the starting addresses and sizes of
BAT areas. The BAT registers are accessed in parallel
with segmented address translation to determine
whether a particular EA corresponds to a BAT area.
If an EA is within a BAT area, the real address for
storage access is determined as described below.

It is possible to set up the BAT registers and the seg
mented address translation mechanism such that a
particular Effective Address is within a BAT area and
also is covered by page translation. When this
happens, the translation that is used is determined as
follows:

STe or
MSRoR, Segment

Address Translation
MSR1R Reg

'T' bit

0 - None (real addressing)

1 0 BAT prevails

1 1 Segment prevails

Programming Note -----------,

It is possible for a BAT area to overlay part of an
ordinary segment, such that the BAT portion is
non-pagable while the rest of the segment is
pageable. If this is done, it is not necessary to
supply Page Table entries for the portion of the
segment overlaid by the BAT.

The BAT areas are defined by pairs of SPRs. These
SPRs can be read or written by the mfspr and mtspr
instructions; see page 14. Access to these SPRs is
privileged. The layout of the BAT registers is shown
in figure 25 for 64-bit implementations and in figure 26
for 32-bit implementations.

38 PowerPC Operating Environment Architecture

(

IBM Confidential

Four pairs of BAT registers are provided for trans
lating instruction addresses (the IBAT registers), and
four pairs are provided for translating data addresses
(the DBAT registers).

Programming Note ------------,

If the same storage address is to be mapped via
BAT for both I-fetch and data load and store, it is
necessary to load the mapping into both an IBAT
pair and a DBAT pair. This is true even on an
implementation that does not have split I and D
caches.

It is an error for system software to set up the BAT
registers such that an Effective Address is translated
by more than one IBAT pair or by more than one
DBAT pair. If this occurs, the results are undefined
and may include a violation of the storage protection
mechanism, a Machine Check interrupt, or a
Checkstop.

Each pair of BAT registers defines the starting
address of a BAT area in Effective Address space, the
length of the area, and the start of the corresponding
area in Real Address space. If an Effective Address
is within the range of EAs defined by a pair of BAT
registers, its Real Address is developed by (conceptu
ally) subtracting the starting effective address of the
BAT area from the EA and adding the starting real
address of the BAT area.

BAT areas are restricted to a finite set of allowable
lengths, all of which are powers of 2. The smallest
BAT area defined is 128 KB (217 bytes). The largest
BAT area defined is 256 MB (228 bytes). The starting
address of a BAT area in both EA space and RA
space must be a multiple of the area's length.

4.7.2 BAT Registers

See section "Move To Special Purpose Register
XFX-form" on page 13 for a list of the SPR numbers
for the BAT registers. See Appendix B, "Assembler
Extended Mnemonics" on page 75 for a list of
extended mnemonics for use with the BAT registers.

o
BEPI

BRPN

o

Reg Bit

Upper 0:46
52:62
63

Lower 0:46
55
56
57:60
62:63

Upper BAT Register

46 52 63

!III I BL Iv!
46 55 56 57 60 62 63

Lower BAT Register

Name

BEPI
BL
V

BRPN
Ks
Kp
WIMG
PP

Description

Block Effective Page Index
Block Length
BAT pair valid if V-1

Block Real Page Number
Supervisor state storage key
Problem state storage key
Storage access controls
Protection bits for BAT area

All other fields are reserved.

Figure 25. BAT Registers, 64-bit Implementations

Upper BAT Register

0 14 20 31

I
BEPI III I BL Iv!
BRPN 1/1 IK~K~WiMGI/1 PP:

0 14 23 2425 28 30 31

Lower BAT Register

Reg Bit Name Description

Upper 0:14 BEPI Block Effective Page Index
20:30 BL Block Length
31 V BAT pair valid if V-1

Lower 0:14 BRPN Block Real Page Number
23 Ks Supervisor state storage key
24 Kp Problem state storage key
25:28 WiMG Storage access controls
30:31 PP Protection bits for BAT area

All other fields are reserved.

Figure 26. BAT Registers, 32-bit Implementations

The BL field in the lower BAT register is a mask that
encodes the length of the BAT area.

Chapter 4. Storage Control 39

BAT Area
BL Length

128 KB 000 0000 0000

256 KB 00000000001

512 KB 000 0000 0011

1 MB 000 0000 0111

2 MB 00000001111

4 MB 0000001 1111

8 MB 0000011 1111

16 MB 0000111 1111

32 MB 000 1111 1111

64 MB 001 1111 1111

128 MB 011 1111 1111

256 MB 111 1111 1111

Only the values shown are valid for BL The rightmost
bit of BL is aligned with bit 46 {14} of the EA.

An Effective Address is determined to be within a BAT
area if EA matches BEPI. The boundary between the
string of Os and the string of 1 s in BL determines the
bits of EA that participate in the comparison with
BEPI: bits in EA corresponding to 1 s in BL are forced
to 0 for this comparison.

Bits in EA corresponding to 1 s in BL, concatenated
with the 17 bits of EA to the right of BL, form the
offset within the BAT area.

Programming Note -----------....

The value loaded into BL determines both the
length of the BAT area and the alignment of the
area in both EA space and RA space. It is a pro
gramming error if the value loaded into BL is not
one of those given in the table above, or if the
values loaded into BEPI and BRPN do not have at
least as many low-order Os as there are 1 s in BL

4.7.2.1 BAT Storage Protection

If an Effective Address is determined to be within a
BAT area, the access is next validated by the storage
protection scheme described in section 4.10.2, "BAT
Protection" on page 44. If this protection mechanism
rejects the EA, a page fault (Data Storage interrupt or
Instruction Storage interrupt) is generated.

4.7.2.2 BAT Real Address

If the protection mechanism accepts the access, then
a Real Address is formed as shown in figure 27 for
64-bit implementations, and figure 28 for 32-bit imple
mentations.

IBM Confidential

r-----~3&6,-------

EA

BL

36
BPRN

~

cp
36 11 17J RA

Figure 27. Formation of Real Address via BAT, 64.blt
implementations

EA

BL

4
BPRN

~

cp
4 11 17J RA

Figure 28. Formation of Real Address via BAT, 32·blt
Implementations.

Access. to the real memory of the BAT area is made
according to the storage mode defined by the "WIMG"
bits in the lower BAT register. These bits apply to the

40 PowerPC Operating Environment Architecture

/

(

IBM Confidential

entire BAT area rather than to an individual page.
See 4.8.2, "Supported Storage Modes" on page 42 for
an explanation of these bits.

4.8 Storage Access Modes

When address relocation is enabled and the effective
address generated by a storage access is translated
by the Segmented Address Translation mechanism or
by the Block Address Translation mechanism, the
access is performed under the control of the Page
Table Entry or BAT entry used to translate the effec
tive address. Each entry contains four mode control
bits, W, I, M, and G, that specify the storage mode for
all accesses translated by the entry. The Wand I bits
control how the processor executing the access uses
its own cache. The M bit specifies whether the
processor executing the access must use the storage
coherence protocol to ensure that all copies of the
addressed storage location are made consistent. The
G bit controls whether or not speculative data and
instruction fetching is permitted.

The mode control bits only have meaning when an
effective address is translated in the processor per
forming a storage access. When an access is per
formed for which coherence is required, the processor
performing the access must inform the coherence
mechanism that the access requires memory coher
ence. Other processors affected by the access must
respond to the coherence mechanism. However since
these mode control bits are only relevant when an
effective address is translated and have no direct
relation to data in the cache, processors responding
to the coherence request are able to respond without
knowledge of the state of these bits.

4.8.1 W, I, M and G bits

The W, I, M, and G bits in a Page Table Entry or in a
BAT register control the way in which the processor
accesses cache and main storage. Each bit controls a
separate aspect of storage references.

w Write Through

If the data is in the cache, a store must update
that copy of the data. In addition, if W-1 the
update must be written to the home storage
location (see below).

Store combining optimizations are allowed
except when the store instructions are sepa
rated by sync or eieio. The architecture pre
sumes that data present in the cache is valid
and a store may cause any part of that data to
be copied back to main storage.

The definition of the home storage location is
dependent upon the implementation of the

M

memory system but can be illustrated by the
following examples:

• RAM Storage
The store must be sent to the RAM con
troller to be written into the target RAM.

• 1/0 Adapter Card
the store must be sent to the adapter card
to be written to the target register or
storage location.

In systems with multilevel caching, the store
must be written to at least a depth in the
memory hierarchy that is seen by all
processors and devices.

Caching Inhibited

If 1-1, the storage access is completed by ref
erencing the location in main storage,
bypassing the cache. During the access, the
accessed location is not brought into the cache
nor is the location allocated in the cache. It is
considered a programming error if a copy of
the target location of an access to Caching
Inhibited storage is in the cache. Software
must ensure that the location has not previ
ously been brought into the cache or, if it has,
that it has been flushed from the cache. If the
programming error occurs, the result of· the
access is boundedly undefined.

Loadlstore combining optimizations are
allowed except when the accesses are sepa
rated by sync or eieio.

Memory Coherence

This mode control is provided to allow
improved performance in systems in which
accesses to storage kept consistent by hard
ware is slower than accesses to storage not
kept consistent by hardware, and in which soft
ware is able to enforce the required consist
ency. When the mode is off (M - 0), the
hardware need not enforce data coherence.
When the mode is on (M -1), the hardware
must enforce data coherence.

System Note -----------,

Entities other than processors can request
that their memory transactions obey
memory coherence.

Engineering Note -----------,

Since instruction storage need not be con
sistent with data storage, instruction
fetches may be originated as noncoherent
requests, regardless of the page's M bit.
This can result in better performance in an
implementation in which a coherent
storage request has greater latency or
overhead than a noncoherent storage
request.

Chapter 4. Storage Control 41

G Guarded Storage

This storage attribute is independent of the
other three attributes. The processor will not
speculatively access storage for which G-1
whether for instruction fetch or data access,
except that if an instruction will be executed,
the entire cache block containing that instruc
tion may be loaded, and if a load or store
operation will be executed, the entire cache
block(s) containing the referenced data may be
loaded into the cache.

4.8.2 Supported Storage Modes

The combinations of the write through bit, the caching
inhibited bit, and the memory coherence bit define
eight different storage modes. Six of these modes
are supported. For each, the G bit may be 0 or 1.

• W1M = 000

1. Data may be cached.
2. Loads or stores for which the target location

is in the cache may use that copy of the
location.

3. Exclusive ownership of the block containing
the target location is not required for store
accesses and conSistency operations for the
block may be ignored when fetching the
block, storing it back, or changing its state
from shared to exclusive.

• W1M = 001

1. Data may be cached.
2. Loads or stores for which the target location

is in the cache may use that copy of the
location.

3. Exclusive ownership of the block containing
the target location is required before- store-
accesses are allowed. When fetching the
block, the processor must indicate that con
sistency is to be enforced on the bus trans
action. If the state of the block is read
shared, the processor must gain exclusive
use of the block before storing into it.

• W1M = 010

Caching is inhibited. The storage access goes to
storage bypassing the cache. Hardware enforced
storage consistency is not required.

• W1M = 011

Caching is inhibited. The storage access goes to
storage bypassing the cache. Storage consist
ency is enforced by hardware.

• W1M = 100

1. Data may be cached.
2. Loads for which the target location is in the

cache may use that copy of the location.

IBM Confidential

3. Stores must be written to main storage. The
target location of the store may be cached
and must be updated if there.

4. Exclusive ownership of the block containing
the target location is not required for store
accesses and consistency operations for the
block may be ignored when fetching the
block, storing it back, or changing its state
from shared to exclusive.

• W1M = 101

1. Data may be cached.
2. Loads for which the target location is in the

cache may use that copy of the location.
3. Stores must be written to main storage. The

target location of the store may be cached
and must be updated if there.

4. Exclusive ownership of the block containing
the target location is required before store
accesses are allowed. When fetching the
block, the processor must indicate that con
sistency is to be enforced on the bus trans
action. If the state of the block is read
shared, the processor must gain exclusive
use of the block before storing into it.

• W1M = 110

This mode would represent memory that is write
through, cache inhibited, and memory coherence
not required. This mode is not supported.

• W1M = 111

This mode would represent memory that is write
through, cache inhibited, and memory coherence
required. This mode is not supported.

4.8.3 Mismatched WIMG Bits

Accesses' to the- same storage location using two.
effective addresses for which the Write Through mode
(W bit) differs must meet the memory coherence
requirements described in Book II, PowerPC Virtual
Environment Architecture.

Engineering Note -----------.....,

If an implementation uses a "MESI" coherency
protocol, a store addressed to a Write Through
page may find the addressed cache block in the
cache and modified. If so, the store should
update the location in both the cache block and
main storage (the normal operation of a store to
Write Through storage). It is acceptable for the
implementation to write the block back to main
storage, in which case it can change the state to
"unmodified." It is also acceptable for the imple
mentation to leave the state of the cache block
"modified" after updating the location in cache
and main storage.

42 PowerPC Operating Environment Architecture

(

IBM Confidential

4.9 Reference and Change
Recording

If address translation is enabled (MSR 'R -1 or
MSROR -1), reference (R) and change (C) bits are
maintained in the Page Table Entry for each real page
for accesses due to segment and page table address
translation. Reference and change recording is not
performed for translations due to BAT or for direct
store (T - 1) segments.

The Rand C bits are set automatically by hardware or
by software assist in conjunction with normal Page
Table processing as follows:

Reference bit

As a result of page table processing for a
storage access (load, store, or cache instruc
tion, or instruction fetch), the reference bit may
be set to 1 immediately or its setting may be
delayed until the storage access is determined
to be successful. If the reference bit is not set
because the access failed, the implementation
must set the reference bit on the next suc
cessful access.

The reference bit is only a hint to the operating
system about the activity of a page. The refer
ence bit may be set to 1 even though the
access was not logically required by the
program or was denied by storage protection.
Examples of this include:

• Prefetching of instructions that are not sub
sequently executed.

• Speculative "load" instructions that are
subsequently abandoned.

• String operations that specify a length of.O.

• Accesses that cause exceptions and are not
completed.

Change Bit

Whenever a data store is executed successfully,
as part of the TLB look-up procedure the
change bit in the TLB is checked. If it is already

set to 1, no further action is taken. If the TLB
change bit is 0, it is set to 1 and the corre
sponding change bit in the Page Table Entry is
set to 1.

PowerPC Architecture requires that the Change
bit be set to 1 if and only if the store is allowed
by storage protection and is logically required
by the program.

Execution of either of the Data Cache Block Touch
instructions (debt, debtst) may result in setting the R
bit for a page. Neither instruction may result in
setting the C bit for a page.

See section 4.12, "Table Update Synchronization
Requirements" on page 53 for the rules software
must follow when updating the reference and change
bits in the Page Table.

Architecture Note ------------,

If the reference and change bits are updated by
hardware, this is not necessarily done with atomic
read/modify/write operations.

Programming Note ------------,

On systems with Translation Lookaside Buffers,
the reference and change bits are only set on the
basis of TLB activity. When software resets these
bits to zero it must synchronize the TLB's actions
by invalidating the TLB entries associated with
the pages whose reference and change bits were
reset.

Engineering Note ------------,

Since most TLB reloads do not require setting the
reference or change :bit,.it is suggested that. on a
TLB miss, the search for the entry be done
without fetching the page table entries (PTE's) for
exclusive access. This will reduce cache
thrashing due to TLB reloads. It is assumed that
a nonexclusive request for a PTE will be returned
with exclusive access if no other processor has a
copy.

Chapter 4. Storage Control 43

4.10 Storage Protection

The storage protection mechanism provides a means
for selectively granting read access, granting
read/write access, and prohibiting access to areas of
storage based on a number of control criteria.

Since the protection mechanism operates as part of
the address translation mechanism, storage pro
tection applies to translated accesses only. Instruc
tion storage access protection is active only when
MSR1R -1. Data storage access protection is active
only when MSRoR -1.

A page (4 KB) crossing is relevant to performance
and instruction restart when it corresponds to a pro
tection boundary. Crossing a 4 KB boundary in an
area mapped by Block Address Translation or in a
direct-store segment should have no effect on per
formance and should not cause an instruction restart.

For ordinary translated accesses to memory via the
Page Table, the Page Protection mechanism described
in the next section is active. Different mechanisms
are used for Block Address Translation (BAT)
accesses (see section 4.10.2, "BAT Protection") and
for Direct-store segments (see section 4.6.2, "Direct
store segment protection" on page 38).

4.10.1 Page Protection

The page protection mechanism provides protection
at the granularity of a page (4 KB). It is controlled by
the following inputs:

• MSRpR, which distinguishes between supervisor
state and problem state.

• Ks and Kp' supervisor and problem key bits in the
Segment Table Entry or Segment Register.

• PP bits in the Page Table Entry.

A reference made via the segmented address trans
lation mechanism is associated with a Segment Table
Entry (STE) and a Page Table Entry (PTE) by the
address translation mechanism. The K bits, the PP
bits, and the MSRpR bit are used as follows:

A Key value is developed according to the following
formula:

IBM Confidential

Using the generated Key, the following table is
applied:

Load Store
Key pp Page Type Access Acce ..

Permitted Permitted

0 00 read/write yes yes
0 01 read/write yes yes
0 10 read/write yes yes
0 11 read only yes no

1 00 no access no no
1 01 read only yes no
1 10 read/write yes yes
1 11 read only yes no

Key Key selected by state of MSRpR bit
pp PTE page protect bits

Figure 29. Protection Key Processing

When a reference is not permitted because of the pro
tection mechanism one of the following occurs.

• Data Storage interrupt is generated and bit 4 of
the DSISR is set to 1.

• Instruction Storage interrupt is generated and bit
4 of the SRR1 is set to 1.

Programming Note ------------,

A store that is not permitted because of the
storage protection mechanism will not cause a
change bit to be set in a PTE; such an access may
cause a reference bit to be set in a PTE.

4.10.2 BAT Protection

The 'BAT protection -mechanism operates on an entire
BAT area, not on individual pages. If an Effective
Address is determined to be within a BAT area, the
operations described above in section 4.10.1, "Page
Protection" are performed, with these exceptions:

• The Ks and Kp bits from the upper BAT register
are used, not bits from a Segment Table Entry or
Segment Register.

• The PP bits from the upper BAT register are used,
not bits from a Page Table Entry.

44 PowerPC Operating Environment Architecture

(

(

IBM Confidential

4.11 Storage Control
Instructions

4.11.1 Cache Management
Instructions

This section contains the only privileged cache man
agement instruction and additional specifications. for
the other cache management instructions described in
Book II, PowerPC Virtual Environment Architecture.
See that document for further details.

When data relocate is off, MSR DR -a, the Data Cache
Block set to Zero instruction establishes a block in
the cache and may not verify that the real address is
valid. If a block is created for an invalid real address,
a Machine Check may result when an attempt is made
to write that block back to storage. The block could
be written back as the result of the execution of an
instruction that causes a cache miss and the invalid
address block is the target for replacement or as the
result of a Data Cache Block Store instruction.

Data Cache Block Invalidate X-form

dcbi RA,RB

470

Let the effective address (EA) be ~he sum
(RAIO) + (RB).

The action taken is dependent on the storage mode
associated with the target, and the state of the block.
The list below describes the action to take if the block
containing the byte addressed by EA is or is not in the
cache.

1. Coherence Not Required
Unmodified Block

Invalidate the block in the local cache.
Modified Block

Invalidate the block in the local cache. (Discard
the modified contents.)

Absent Block
No action is taken.

2. Coherence Required
Unmodified Block

Invalidate copies of the block in the caches of
all processors.

Modified Block
Invalidate copies of the block in the caches of
all processors. (Discard the modified con
tents.)

Absent Block
If copies are in the caches of any other
processor, cause the copies to be invalidated.
(Discard any modified contents.)

When data address translation is enabled, MSRoR -1,
and·-the "virtual address has no translation a Data
Storage Interrupt occurs. See 5.5.3, "Data Storage
Interrupt" on page 61.

The function of this instruction is independent of the
Write Through and Caching Inhibited/Allowed modes
of the block containing the byte liIddressed by EA.

This instruction is treated as a store to the addressed
byte with respect to address translation and pro
tection. The reference bit for EA may· be set, the ref
erence and change bits may be set, or neither may be
set.

If EA specifies a storage address for which T -1, the
instruction is treated as a no-op.

This instruction is privileged.

Special Registers Altered:
None

Chapter 4. Storage Control 45

IBM Confidential

4.11.2 Segment Register Manipulation Instructions

Move To Segment Register X-form

mtsr SR,RS

210

SEGREG(SR) ~ (RS)

The contents of register RS is placed into Segment
Register SR.

This instruction is privileged.

This instruction is defined only for 32-bit implementa
tions. Using it on a 64-bit implementation will cause
an Illegal Instruction type Program interrupt.

Special Registers Altered:
None

Move From Segment Register X-form

mfsr RT,SR

595

RT ~ SEGREG(SR)

The contents of Segment Register SR is placed into
register RT.

This instruction is privileged.

This instruction is defined only for 32-bit implementa
tions. Using it on a 64-bit implementation will cause
an Illegal Instruction type Program interrupt.

Special Registers Altered:
None

Programming Note ----------....,

For a discussion of software synchronization
requirements when altering Segment Registers,
please refer to Appendix F, "Synchronization
Requirements for Special Registers" on page 83.

Move To Segment Register Indirect
X-form

mtsrin RS,RB

[Power mnemonic: mtsrl]

11eRB I . Jl
242

SEGREG«RB)o:3) ~ (RS)

The contents of register RS are copied to the
Segment Register selected by bits 0:3 of register RB.

This instruction is privileged.

This instruction is defined only for 32-bit implementa
tions. Using it on a 64-bit implementation will cause
an Illegal Instruction type Program interrupt.

Special Registers Altered:
None

Move From Segment Register Indirect
X-form

mfsrin RT,RB

16 RT 111"1 l,eRB I . 21

659

RT ~ SEGREG«RB)0:3)

The contents of the Segment Register selected by bits
0:3 of register RB are copied into register RT.

This instruction is privileged.

This instruction is defined only for 32-bit implementa
tions. Using it on a 64-bit implementation will cause
an Illegal Instruction type Program interrupt.

Special Registers Altered:
None

Programming Note ----------.....,

The RA field is not defined for the mtsrin and
mfsrln instructions in this architecture. However,
mtsrin and mfsrin will perform the same function
in PowerPC as do mtsri and mfsri in Power if RA
is 0 in the Power instructions.

46 PowerPC Operating Environment Architecture

(

IBM Confidential

4.11.3 Lookaside Buffer Management
Instructions (Optional)

While the PowerPC Architecture describes logically
separate instruction fetch and fixed-point (including
effective address computation) execution units, the
programming model is that there is one translation
mechanism and, for 32-bit implementations, one set of
segment registers.

For performance reasons, most implementations will
implement a Segment Lookaside Buffer (64-bit imple
mentations) and a Translation Lookaside Buffer.
These are caches of portions of the Segment Table
and Page Table respectively. As changes are made
to the address translation tables, it is necessary to
force the SLB and TLB into line with the updated
tables. This is done by invalidating SLB and TLB
entries, or occasionally by invalidating the entire SLB
or TLB, and allowing the translation caching mech
anism to re-fetch from the tables.

Each PowerPC implementation which has an SLB must
provide means for doing the following:

• Invalidating an individual SLB entry

• Invalidating the entire SLB

Each Power PC implementation which has a TLB must
provide means for doing the following:

• Invalidating an individual TLB entry

• Invalidating the entire TLB

An implementation may choose to provide one or
more of the instructions listed in this section in order
to satisfy requirements in the preceding list. If an
instruction is implemented that matches the seman
tics of an instruction described here, the implementa
tion should be as specified here. Alternatively, an
algorithm may be given that performs one of the func
tions listed above (a loop invalidating individual SLB
entries may be used to invalidate the entire SLB, for
example), or instructions with different semantics may
be implemented. Such algorithms or instructions
must be described in Book IV, PowerPC Implementa
tion Features.

It is permissible for an instruction described here to
be implemented so that more is done than absolutely
required. For example, an instruction whose seman
tics are to purge an SLB entry may be implemented
so as to purge an entire congruence class or perhaps
even the entire SLB. Such additional actions should
be described in Book IV.

If the implementation does not implement an SLB, it
does not provide the optional instructions that affect
the SLB (s/bie, s/biex, and s/bla). In such an imple
mentation, it is permissible to treat these SLB
instructions as no-ops. Similarly, if the implementa
tion does not implement a TLB, it does not provide
the optional instructions that affect the TLB (tlbie,
tlbiex, tibia, and tlbsync). In such an implementation,
it is permissible to treat these TLB instructions as
no-ops.

Engineering Notes ------------,

1. It is possible for the hardware to implement
more than one set of Segment Registers,
such as one for data and one for instructions.
If this approach is taken, it is the responsi
bility of the hardware to keep all sets of regis
ters consistent.

2. It is possible that the hardware implements
separate TLB arrays. In this case the size,
shape and values contained may be different.

3. If separate TLB arrays are implemented for
data and instructions, the requirement for an
instruction that purges a TLB entry may be
met with a single instruction for both arrays
or separate instructions for each array.

Programming Note ------------,

Because the presence, absence, and exact
semantics of the various Lookaside Buffer man
agement instructions are model dependent, it is
recommended that system software
"encapsulate" uses of such instructions into sub
routines to minimize the impact of moving from
one implementation to another.

Chapter 4. Storage Control 47

SLB Invalidate Entry X-form

slbie RB

I ill
~

111 //I 11SRB I
. 21

434

EA .. (RB)
if SLB entry exists for EA, then

SLB entry .. invalid

Let the effective address (EA) be the contents of reg
ister RB. If the Segment Lookaside Buffer (SLB) con
tains an entry corresponding to EA, that entry is made
invalid (Le., removed from the SLB).

The SLB search is done regardless of the settings of
MSR'R and MSRoR.

Block Address Translation for EA, if any, is ignored.

This instruction is privileged.

This instruction is optional in Power PC Architecture.

This instruction is defined only for 64-bit implementa
tions. Using it on a 32-bit implementation will cause
an Illegal Instruction type Program interrupt.

Special Registers Altered:
None

Architecture Note ------------,

Bits 11: 15 of this instruction (ordinarily the posi
tion of an RA field) must be zero. This provides
implementations the option of using (RAIO) +
(RB) address arithmetic for this instruction.

Programming Note -----------,

It is not necessary that the ASR point to a valid
Segment Table when issuing slbia.

IBM Confidential

SLB Invalidate Entry by Index X-form

slbiex RB

Is 11/ 11111/ 11sRB I
. 21

466

n .. (RB)
SLB entry n .. invalid

Let n be the contents of register RB. The nth SLB
entry is made invalid (i.e., removed from the SLB).

The SLB entry is invalidated regardless of the set
tings of MSR'R and MSRoR.

If the nth SLB does not exist, the results are
implementation-dependent.

This instruction is privileged.

This instruction is optional in PowerPC Architecture.

This instruction is defined only for 64-bit implementa
tions. Using it on a 32-bit implementation will cause
an Illegal Instruction type Program interrupt.

Special Registers Altered:
None

Programming Notes -------------,

How software "knows" which SLB entry number is
associated with which Segment Table entry, or
even how many SLB entries there are, is not
specified in the architecture. This must be
described in Book IV, PowerPC Implementation
Features.

It is not necessary that the ASR point to a valid
Segment Table when issuing slbiex.

Architecture Note ------------,

Bits 11:15 of this instruction (ordinarily the posi
tion of an RA field) must be zero. This provides
implementations the option of using (RAIO) +
(RB) address arithmetic for this instruction.

48 PowerPC Operating Environment Architecture

(

(

(-

IBM Confidential

SLB Invalidate All X-form

slbia

Ie'" 111'" lIe'" 121
498

All SLB entries ~ invalid

The entire SLB is made invalid (i.e .• all entries are
removed).

The SLB is invalidated regardless of the settings of
MSR1R and MSRoR•

This instruction is privileged.

This instruction is optional in PowerPC Architecture.

This instruction is defined only for 64-bit implementa
tions. Using it on a 32-bit implementation will cause
an Illegal Instruction type Program interrupt.

Special Registers Altered:
None

Programming Note -----------,

It is not necessary that the ASR point to a valid
Segment Table when issuing slbia.

Chapter 4. Storage Control 49

TLB Invalidate Entry X-form

tlbie RB

[Power mnemonic: tlbl]

11aRB I . 21

306

EA ~ (RB)
if TLB entry exists for EA, then

TLB entry ~ invalid

Let the effective address (EA) be the contents of reg
ister RB. If the Translation Lookaside Buffer (TLB)
contains an entry corresponding to EA, that entry is
made invalid (i.e., removed from the TLB).

The TLB search is done regardless of the settings of
MSR1R and MSRoR•

Block Address Translation for EA, if any, is ignored.

If the Segment Register or Segment Table Entry for
EA specifies T-1 (a direct-store segment), it is
implementation-dependent whether any TLB entries
are invalidated and whether the operation is broad
cast.

If an implementation supports broadcast of TLB entry
invalidates, then:

• The tlbl. instruction(s) must be contained in a
critical section, controlled by software locking, so
that tlbl. is issued on only one processor at a
time.

• A sync instruction must be issued at the end of
the critical section. This will cause the hardware
to wait for the effects of the preceding tlbl.
instructions(s) to propagate to all processors.

• A processor receiving a tlbl. broadcast will

1. Prevent execution of any new storage
instructions (loads, stores, cache control, ref
erence and change recording, tlbl., tlblex).

2. Wait for completion of any outstanding
storage instructions, including updates to the
reference and change bits associated with
the invalidated entry.

3. Perform the requested TLB invalidation.

4. Resume normal execution.

This instruction is privileged.

This instruction is optional in PowerPC Architecture.

Special Registers Altered:
None

IBM Confidential

Architecture Note ------------,

Bits 11:15 of this instruction (ordinarily the posi
tion of an RA field) must be zero. This provides
implementations the option of using (RAIO) +
(RB) address arithmetic for this instruction.

Programming Notes ------------,

Nothing is guaranteed about instruction fetching in
other processors if tlbi. deletes the TLB entry for
the page in which some other processor is cur
rently executing.

50 PowerPC Operating Environment Architecture

(

IBM Confidential

TLB Invalidate Entry by Index X-form

tlbiex RB

116RB I • 21

338

n .. (RB)
TLB entry n .. invalid

Let n be the contents of register RB. The nth TLB
entry is made invalid (Le., removed from the TLB).

The TLB entry is invalidated regardless of the settings
of MSR1R and MSRoR•

If the nth SLB does not exist, the results are
implementation..cJependent.

If an implementation supports broadcast of TLB entry
invalidates, then:

• The tlbiex instruction(s) must be contained in a
critical section, controlled by software locking, so
that tlbiex is issued on only one processor at a
time.

• A sync instruction must be issued at the end of
the critical section. This will cause the hardware
to wait for the effects of the preceding tlbiex
instructions(s) to propagate to all processors.

• A processor receiving a tlbiex broadcast will

1. Prevent execution of any new storage
instructions (loads, stores, cache control, ref
erence and change recording, tible, tlbiex).

2. Wait for completion of any outstanding
storage instructions, including updates to the
reference and change bits associated with
the invalidated entry.

3. Perform the requested TLB invalidation.

4. Resume normal execution.

This instruction is privileged.

This instruction is optional in PowerPC Architecture.

Special Registers Altered:
None

Architecture Note ------------,

Bits 11:15 of this instruction (ordinarily the posi
tion of an RA field) must be zero. This provides
implementations the option of using (RAIO) +
(RB) address arithmetic for this instruction.

Programming Notes ------------,

How software "knows" which TLB entry number is
associated with which Page Table entry, or even
how many TLB entries there are, is not specified
in the architecture. This must be described in
Book IV, PowerPC Implementation Features.

It is not necessary that the ASR point to a valid
Segment Table or that SDR 1 point to a valid
Page Table when issuing tlblex.

Nothing is guaranteed about instruction fetching in
other processors if tlbie deletes the TLB entry for
the page in which some other processor is cur
rentlyexecuting.

Chapter 4. Storage Control 51

TLB Invalidate All X-form

tibia

1
111

6 1111/1 116 1/1 I
. 21

370

All TLB entries ~ invalid

The entire TLB is invalidated (i.e., all entries are
removed).

The TLB is invalidated regardless of the settings of
MSR'R and MSRoR.

This instruction is privileged.

This instruction is optional in PowerPC Architecture.

Special Registers Altered:
None

Programming Notes ----------,

It is not necessary that the ASR point to a valid
Segment Table or that SDR 1 point to a valid
page table when issuing tibia.

Nothing is guaranteed about instruction fetching in
other processors if tibia deletes the TLB entry for
the page in which some other processor is cur
rently executing.

IBM Confidential

TLB Synchronize X-form

tlbsync

16 III 1111/1 11S /ll
566

The tlbsync instruction waits until all previou~ tibia,
tlbiex, and tibia instructions executed by the
processor executing this instruction have been
received and completed by all other processors.

This instruction is privileged.

This instruction is optional in Power PC Architecture,
but it must be implemented if any of the following are
true:

• A TLB invalidation instruction that broadcasts is
implemented.

• The aCMx or acowx instructions are imple
mented.

Special Registers Altered:
None

52 PowerPC Operating Environment Architecture

IBM Confidential

4.12 Table Update
Synchronization Requirements

This section describes the steps that software must
take when updating the tables involved in address
translation. Updates to these tables include:

• Adding a new Page Table Entry (PTE).

• Modifying an existing PTE, including the special
case of modifying the PTE's Reference bit.

• Deleting a PTE.

• Adding a new Segment Table Entry (STE).

• Modifying an existing STE.

• Deleting a STE.

In a multiprocessor system it is critical that these
rules be followed to ensure that all processors see a
consistent set of tables. Even in a uniprocessor
system certain rules must be followed, notably those
regarding Reference and Change bit updates, because
software changes must be synchronized with auto
matic updates by the hardware.

The sync instruction ensures that all previous TLB
invalidate instructions executed by the processor exe
cuting the sync instruction have completed on that
processor. However, sync does not ensure that those
invalidate instructions have completed on other
processors. A tlbsync followed by a sync must be
executed to ensure that all previous TLB invalidates
executed by the processor executing the synchro
nizing instructions have been completed on all
processors.

4.12.1 Page Table Updates

HTAB entries must be locked on multiprocessors.
Access to HTAB entries must be appropriately syn
chronized by software locking of (Le., guaranteeing
exclusive access to) entries or groups of entries if
more than one processor can modify the table at
once.

On uniprocessors, HTAB entries need not be locked.
To adapt the examples given below for the
uniprocessor case, simply delete the "lockO" and
"unlockO" lines. The sync instructions shown are still
required even on uniprocessors.

TLBs are non-coherent caches of the HTAB. TLB
entries must be flushed explicitly with one of the TLB
invalidate instructions. The sync instruction waits
until all prior TLB invalidates by this processor are
complete. This may cost a sync per HTAB entry
update.

Unsynchronlzed lookups In the HTAB continue even
while It Is being modified. Any processor, even
including the processor modifying the HTAB, may look
in the HTAB at any time in an attempt to reload a TLB
entry. An inconsistent HTAB entry must never acci
dentally become visible, thus there must be synchro
nization between modifications to the valid bit and
any other modifications. This costs as many as two
syncs per HTAB entry update.

Processors write Reference and Change bits with
unaynchronlzed atomic byte stores. This requires that
the V, R, and C bits be in distinct bytes. It also
requires extreme care to ensure that no store over
writes one of these bytes accidentally.

In the examples below,

• "lockO" and "unlockO" refer to software locks for
exclusive access to the table entry in question,

• sync refers to the sync instruction, and
• tlbie refers to the tlbie instruction.

4.12.1.1 Adding a Page Table Entry

This is the simplest Page Table case. It requires no
synchronization with the hardware, just a lock on the
PTE in a multiprocessor system. We fill in the entries
in the PTE except for the Valid bit, issue a sync to
ensure that the updates have all made it to storage,
and turn on the Valid bit.

lock(PTE)
PTEvsID.H.API ... new values
PTERPN.R,C.WIM,PP ... new values
sync
PTE~ ... 1
unlock(PTE)

4.12.1.2 Modifying a Page Table Entry

General case

In this case a currently-valid PTE must be changed.
To do this we must lock the PTE, mark it invalid, flush
it from the TLB, update the information in the PTE,
mark it valid again, and unlock, using sync at appro
priate times to wait for modifications to complete.

lock(PTE)
PTEv ... a
sync
tlbie(PTE)
sync
tlbsync
sync
PTEvs1D,H,API ... new val ues
PTERPN,R,C,WIM,PP ... new values
sync
PTEv ... 1
unlock(PTE)

Chapter 4. Storage Control 53

Resetting the Reference bit·

In the case where the PTE is modified only to set the
Reference bit to 0, a much simpler algorithm suffices
because the Reference bit need not be maintainec:J
exactly.

lock(PTE)
oldR 4- PTER
if oldR = 1 then

PTER 4- a
tlbte(PTE)

unlock(PTE)

Since only the Rand C bits are modifiec:J by hardware,
and since Rand C are in different bytes, the R bit can
be set to 0 by reading the current contents of the byte
in the PTE containing R (bits 48:55 of the second
doubleword on 64-bit implementations, bits 16:23 of
the second word on 32-bit implementations), ANDing
the value with OxFE, and storing the byte back into
the PTE.

Modifying the virtual address

If the virtual address is being changec:J to a different
address within the same TLB hash class and cache
hash class, it suffices to:

lock(PTE)
val 4- PTEVSID,API,H,V
insert new VSID into val
PTEvslD,APl,H,V 4- val
sync
tlbie(PTE)
sync
tlbsync
sync
unlock(PTE)

Here we take advantage of the fact that the store into
the first doubleword of the PTE (word, on 32-bit
systems) is performed atomically.

Note that if the new address is not a cache synonym
of the old, it will be necessary to flush or invalidate
the page in the cache(s) as well. This may involve
assigning a temporary virtual address that is such a
synonym, and using that address to do the cache
operations.

4.12.1.3 Deleting a Page Table Entry

Here we just lock the entry, mark it invalid, wait for
the change to complete, and unlock.

lock(PTE)
PTEv 4- e
sync
tlbie(PTE)
sync
tlbsync
sync
unlock(PTE)

IBM Confidential

4.12.2 Segment Table Updates

These updates are similar to Page Table updates, but
without the complication of hardware updates to Ref
erence and Change bits,

STAB entries must be locked on multiprocessors.
Access to STAB entries must be appropriately syn
chronized by software locking of (Le., guaranteeing
exclusive access to) entries or groups of entries if
more than one processor can modify the table at
once.

On uniprocessor., STAB entries neec:J not be locked.
To adapt the examples given below for the
uniprocessor case, simply delete the "lockO" and
"unlockO" lines. The sync instructions shown are still
requirec:J even on uniprocessors.

SLBs are non·coherent caches of the STAB. SLB
entries must be flushed explicitly with one of the SLB
invalidate instructions. The sync instruction waits
until all prior SLB invalidates by this processor are
complete. This may cost a sync per STAB entry
update.

Unsynchronized lookups in the STAB continue even
while It Is being modified, Any processor, even
including the processor modifying the STAB, may look
in the STAB at any time in an attempt to reload a SLB
entry. An inconsistent STAB entry must never acci
dentally become visible, thus there must be synchro
nization between modifications to the valid bit and
any other modifications. This costs as many as two
syncs per STAB entry update.

In the examples below,

• "lockO" and "unlockO" refer to software locks for
exclusive access to the table entry in question,

• sync refers to the sync instruction, and
• sible refers to the sible instruction.

4.12.2.1 Adding a Segment Table Entry

We fill in the entries in the STE except for the Valid
bit, issue a sync to ensure that the updates have all
made it to storage, and turn on the Valid bit.

lock(STE)
STEeslD,T,Ks,KP 4- new values
if T = e

then STEvslD 4- new value
else STEla 4- new value

sync
STEv 4- 1
unlock(STE)

54 PowerPC Operating Environment Architecture

IBM Confidential

4.12.2.2 Modifying a Segment Table
Entry

In this case a currently-valid STE must be changed.
To do this we must lock the STE, mark it invalid, flush
it from the SLB, update the information in the STE,
mark it valid again, and unlock, using sync at appro
priate times to wait for modifications to complete.

lock(STE)
STEv to e
sync
slbte(STE)
sync
STEesID.T,Ks,KP to new values
if T = a

then STEvslD to new value
else STEIO to new value

sync
STEv to 1
unlock(STE)

4.12.2.3 Deleting a Segment Table Entry

Here we just lock the entry, mark it invalid, wait for
the change to complete, and unlock.

lock(STE)
STEv to a
sync
slbie(STE)
sync
unlock(STE)

4.12.3 Segment Register Updates

On an implementation that provides Segment Regis
ters rather than a Segment Table, there is no table to
be locked but there are certain synchronization
requirements that must be satisfied when using the
Move to Segment Register instructions. See
Appendix F, "Synchronization Requirements for
Special Registers" on page 83.

Chapter 4. Storage Control 55

IBM Confidential

56 PowerPC Operating Environment Architecture

(-

(

IBM Confidential

Chapter 5. Interrupts

5.1 Overview
5.2 Interrupt Synchronization
5.3 Interrupt Classes ..
5.3.1 Precise Interrupt
5.3.2 Imprecise Interrupt
5.4 Interrupt Processing
5.5 Interrupt Definitions
5.5.1 System Reset Interrupt
5.5.2 Machine Check Interrupt
5.5.3 Data Storage Interrupt
5.5.4 Instruction Storage Interrupt
5.5.5 External Interrupt
5.5.6 Alignment Interrupt

5.1 Overview

57
57
57
58
58
58
59
60
60
61
62
62
63

The Power PC architecture provides an interrupt mech
anism to allow the processor to change state as a
result of external signals, errors, or unusual condi
tions arising in the execution of instructions.

System Reset and Machine Check interrupts are not
ordered. All other interrupts are ordered such that
only one interrupt is reported, and when it is proc
essed (taken), no program state is lost. Since
save/restore registers SRR 0 and SRR 1 are serially
reusable resources used by most interrupts, program
state will be lost when an unordered interrupt is
taken.

5.2 Interrupt Synchronization

When an interrupt occurs, SRR 0 is set to point to an
instruction such that all preceding instructions have
completed execution, no subsequent instruction has
begun execution, and the instruction addressed by
SRR 0 mayor may not have completed execution,
depending on the interrupt type.

5.5.7 Program Interrupt
5.5.8 Floating-Point Unavailable

Interrupt
5.5.9 Decrementer Interrupt
5.5.10 System Call Interrupt
5.5.11 Trace Interrupt
5.5.12 Floating-Point Assist Interrupt
5.6 Partially Executed Instructions
5.7 Exception Ordering
5.7.1 Unordered Interrupt Conditions
5.7.2 Ordered Exceptions
5.8 Interrupt Priorities

64

65
65
65
65
66
66
66
66
67
67

All interrupts are context synchronizing, as defined in
Section 1.7.1, "Context Synchronization" on page 3,
except that System Reset and Machine Check inter
rupts need not be context synchronizing if they are
not recoverable (i.e., if bit 30 of SRR 1 is set to 0 by
the interrupt).

5.3 Interrupt Classes

Interrupts are classified by whether they are directly
caused by the execution of an instruction or are
caused by some other system exception. Those that
are "system-caused" are:

• System Reset
• Machine Check
• External
• Decrementer

External and Decrementer are maskable interrupts.
While MSRee-O, the interrupt mechanism ignores the
exceptions that generate these interrupts. Therefore,
software may delay the generation of these interrupts
by setting MSRee - 0 or by failing to set MSRee -1
after processing an interrupt. When any interrupt is
taken, MSRee is set to 0 by the interrupt mechanism,
delaying the recognition of any further exceptions
causing these interrupts.

Chapter 5. Interrupts 57

System Reset and Machine Check exceptions are not
maskable. These exceptions will be recognized
regardless of the setting of the MSR.

"Instruction-caused" interrupts are further divided
into two classes, precise and imprecise.

5.3.1 Precise Interrupt

Except for the Imprecise Mode Floating-Point Enabled
Exception interrupt, all instruction-caused interrupts
are precise. When the execution of an instruction
causes a precise interrupt, the following conditions
exist at the interrupt point:

1. SRR 0 addresses either the instruction causing
the exception or the immediately following
instruction. Which instruction is addressed can
be determined from the interrupt type and status
bits.

2. An interrupt is generated such that all
instructions preceding the instruction causing the
exception appear to have completed with respect
to the executing processor. However, some
storage accesses generated by these preceding
instructions may not have been performed with
respect to all other processors and mechanisms.

3. The instruction causing the exception may not
have begun execution, may have partially com
pleted, or may have completed, depending on the
interrupt type.

4. Architecturally, no subsequent instruction has
begun execution.

5.3.2 Imprecise Interrupt

This architecture defines one imprecise interrupt:.

• Imprecise Mode Floating-Point Enabled Exception

When the execution of an instruction causes an impre
cise interrupt, the following conditions exist at the
interrupt point:

1. SRR 0 addresses either the instruction causing
the exception or some instruction following the
instruction causing the exception that generated
the interrupt.

2. An interrupt is generated such that all
instructions preceding the instruction addressed
by SRR 0 appear to have completed with respect
to the executing processor.

3. If the imprecise interrupt is forced, by the context
synchronizing mechanism, due to an instruction
that causes another interrupt (e.g., Alignment,
OSI) then SRR 0 addresses the interrupt-forcing
instruction, and the interrupt-forcing instruction
may have been partially executed (see section
5.6, "Partially Executed Instructions" on page 66).

IBM Confidential

4. If the imprecise interrupt is forced, by the context
synchronizing mechanism, due to a context syn
chronizing instruction (e.g., ;syne), then SRR 0
addresses the interrupt-forcing instruction, and
the interrupt-forcing instruction appears not to
have begun execution (except for its forcing the
imprecise interrupt).

5. If the imprecise' interrupt is not forced by the
context synchronizing mechanism, then the
instruction addressed by SRR 0 appears 'not to
have begun execution, if it is not the excepting
instruction.

6. No instruction following the instruction addressed
by SRR 0 appears to have begun execution.

All Floating-Point Enabled Exception interrupts are
maskable using the MSR bits FEO and FE1. Although
these interrupts are maskable, they differ significantly
from the other maskable interrupts in that the
masking of these interrupts is usually controlled by
the application program whereas the masking of
External and Oecrementer interrupts is controlled by
the operating system.

Archltectura Nota -------------,

An implementation may define one or more addi
tional interrupts to be imprecise. If this is done,
then a complete description of how such impre
cise interrupts are implemented by the processor
and how they are to be handled by the operating
system can be found in the Book IV, PowerPC
Implementation Features document for the imple
mentation. Such an implementation must provide
a means of forcing the processor to process inter
rupts in a precise fashion as described here,
perhaps with reduced performance.

The discussion here assumes that only the Impre
cise- Mode-Floating-Point Enabled Exception inter
rupt is imprecise.

5.4 Interrupt Processing

Interrupt processing consists of saving a small part of
the processor's state in certain register~, identifying
the cause of the interrupt in another register, and
continuing execution from an address corresponding
to the type of interruption. When an exception exists
that will cause an interrupt to be generated and it has
been determined that the interrupt can be taken, the
following actions are performed:

1. SRR 0 is loaded with an instruction address that
depends on the type of interrupt; see the specific
interrupt description for details.

2. Bits 0:15 of SRR 1 are loaded with 16 bits of infor
mation specific to the interrupt type.

58 PowerPC Operating Environment Architecture

/

''''-.. .. '

(-

IBM Confidential

3. Bits 16:31 of SRR 1 are loaded with a copy of bits
16:31 of the MSR, except for the Machine Check
interrupt, for which these bits are set to
implementation-dependent values.

4. The MSR is set as described in Figure 30 on
page 60. The new values take effect beginning
with the first instruction following the. interrupt.
MSR bits of particular interest are:

• MSRJR and MSRoR are set to 0 for all inter
rupt types. Thus relocate is turned off for
both instruction fetch and data access begin
ning with the first instruction following the
acceptance of the interrupt. See Chapter 4,
"Storage Control" on page 17.

• MSRsF bit is set to 1 in 64-bit implementa
tions and execution after the interrupt begins
in 64-bit mode. This bit is reserved (not
defined) in 32-bit implementations.

5. Instruction fetch and execution resumes, using
the new MSR value, at a location specific to the
interrupt type. The location is determined by
adding the interrupt's offset (see Figure 31 on
page 60) to the base address determined by
MSRJP (see Interrupt Prefix on page 6). For a
Machine Check that occurs when MSRME-O, the
Checkstop state is entered (the machine stops
executing instructions). See 5.5.2, "Machine
Check Interrupt" on page 60.

Interrupts do not clear reservations obtained with
Iwarx or Idarx. The operating system should do so at
appropriate points, such as at process switch.

Programming Note ------------,

In some implementations, any instruction fetch
with MSRJR -1, and any load or store with
MSRoR -1, may have the side effect of modifying
SRRs 0 and 1.

Programming Note ------------,

In general, at process switch, due to possible
process interlocks and possible data availability
requirements, the operating system needs to con
sider executing the following:

• stwcx., to clear the reservation if one is out
standing, to ensure that a Iwan or Idan in
the "old" process is not paired with a stwcx.
or stdcx. in the "new" process.

• sync, to ensure that all storage operations of
an interrupted process are complete with
respect to other processors before that
process begins executing on another
processor.

• isync or rfI, to ensure that the instructions in
the "new" process execute in the "new"
context.

Programming Note ------------,

The operating system should manage MSRRJ as
follows:

• In the Machine Check and System Reset
interrupt handlers, interpret SRR 1 bit 30
(where MSRRJ is placed) as:

0: interrupt is not recoverable
- 1: interrupt is recoverable with respect to

the processor

• In each interrupt handler, when enough state
has been saved that a Machine Check or
System Reset interrupt can be recovered
from, set MSRRJ to 1.

• In each interrupt handler, do the following just
before returning.

Set MSRRJ to O.
Set SRR 0 and SRR 1 to the values to be
used by rfl. The new value of SRR 1
should have bit 30 set to 1 (which will
happen naturally if SRR 1 is restored to
the value saved there by the interrupt,
because the interrupt handler will not be
executing this sequence unless the inter
rupt is recoverable).
Execute rfi.

Engineering Note ------------,

Implementations that use emulation assists must
report, in SRR 0 and in the DAR if applicable, the
effective addresses computed by the instruction
being emulated and not those computed by one of
the emulation assist instructions.

5.5 Interrupt Definitions

Figure 30 on page 60 below shows all the types of
interrupts and the values assigned to the MSR for
each. Figure 31 on page 60 shows the offset of the
first instruction, for each interrupt type.

Chapter 5. Interrupts 59

Interrupt Type MSR bit
IP ME SFO

System Reset - - 1
Machine Check - 0 1
Data Storage - - 1
Instruction Storage - - 1

. External - - 1
Alignment - - 1
Program - - 1
FP Unavailable - - 1
Decrementer - - 1
System Call - - 1
Trace - - 1
Floating-Point Assist - - 1

0 bit is set to 0
1 bit is set to 1

- bit is not altered

Defined bits not shown above (BE, DR, EE, FEO,
FE1, FP, IR, PR, RI, and SE) are set to O.

Reserved bits are set as if written as O.

In 32-bit implementations, the SF bit (bit 31) is
reserved.

Figure 30. MSR Setting Due to Interrupt

Offset (hex) Interrupt Type

00000 Reserved
00100 System Reset
00200 Machine Check
00300 Data Storage
00400 Instruction Storage
00500 External
00600 Alignment
00700 Program
00800 Floating-Point Unavailable
00900 Decrementer
OOAOO Reserved
OOBOO Reserved
OOCOO System Call
00000 Trace
OOEOO Floating-Point Assist
00E10 Reserved
... . ..

OOFFF Reserved
01000 Reserved, implementation-specific
... . ..

02FFF (end of interrupt vector locations)

Figure 31. Offset of First Instruction by Interrupt
Type

Programming Note ------------,

Use of any of the locations shown as reserved
risks incompatibility with future implementations.

IBM Confidential

5.5.1 System Reset Interrupt

System Reset begins with a System Reset interrupt.

If the System Reset exception caused the processor
state to be corrupted such that the content of SRR 0
or SRR 1 are not valid or other processor resources
are corrupt and would preclude a reliable restart,
then the processor sets SRR 1 bit 30 (where MSRR1 is
normally placed) to 0, to indicate to the interrupt
handler that the interrupt is not recoverable.

The following registers are set

SRR 0

SRR 1
0:15
16:29
30

31

MSR

Set to the effective address of the instruc
tion that the processor would have
attempted to execute next if no interrupt
conditions were present.

Set to O.
Loaded from bits 16:29 of the MSR.
Loaded from bit 30 of the MSR if the
processor is in a recoverable state, other
wise set to O.
Loaded from bit 31 of the MSR.

See Figure 30.

Execution resumes at offset Ox00100 from the base
real address indicated by MSR1P'

Engineering Note -------------,

Every attempt should be made to allow continuing
execution.

5.5.2 Machine Check Interrupt

Machine Check interrupts are enabled when
MSRME -1. If MSRME-O and a Machine Check
occurs, the processor enters the Checks top state.

Disabled Machine Check (Checkstop State)

When a processor is in Checkstop state, instruction
processing is suspended and generally cannot be
restarted without resetting the processor. Some
implementations may freeze the content of all latches
when entering Checkstop state so that the state of the
processor can be analyzed as an aid in problem
determination.

Enabled Machine Check

If the Machine Check exception caused the processor
state to be corrupted such that the content of SRR 0
or SRR 1 are not valid or other processor resources
are corrupt and would preclude a reliable restart,
then the processor sets SRR 1 bit 30 (where MSRR1 is

60 PowerPC Operating Environment Architecture

(

(

IBM Confidential

normally placed) to 0, to indicate to the interrupt
handler that the interrupt is not recoverable.

In some systems, the operating system may attempt
to identify and log the cause of the Machine Check. If
the exception that caused the Machine Check does
not preclude continued execution (Le., if SRR 1 bit 30
is set to 1 for the interrupt handler), the processor
must be able to continue execution at the Machine
Check interrupt vector address.

The following registers are set:

SRR 0

SRR 1

Set on a "best effort" basis to the effective
address of some instruction that was exe
cuting or was about to be executed when
the Machine Check exception occurred.
For further details see the Book IV,
PowerPC Implementation Features docu
ment for the implementation.

See the Book IV, PowerPC Implementation
Features document for the implementation.

MSR See Figure 30 on page SO.

Execution resumes at offset Ox00200 from the base
real address indicated by MSR1P'

Programming Note ------------,

On some implementations a Machine Check inter
rupt may occur due to referencing an invalid (non
existent) real address, either directly (with
MSRoR-O), or through an invalid translation. On
such a system, execution of Data Cache Block set
to Zero can cause a delayed Machine Check inter
rupt by introducing a block into the data cache
that is associated with an invalid real address. A
Machine Check interrupt could eventually occur
when and if a subsequent attempt is made to
store that block to main storage.

Engineering Note ------------,

Not all implementations provide the same level of
error checking. The cause of Machine Check is
implementation-dependent. Every attempt should
be made to allow continuing execution.

5.5.3 Data Storage Interrupt

A Data Storage interrupt occurs when no higher pri
ority exception exists and a data storage access
cannot be performed for any of the following reasons:

• The instruction results in a Direct-Store Error
exception.

• The effective address of a load, store, dcbi, dcbst,
dcbt, dcbz, or icbi instruction cannot be trans
lated.

• The instruction is not supported for the type of
storage addressed. (An interrupt may not occur
for this condition; see Section 4.S.3, "Instructions
not supported for T -1" on page 38).

• The access violates storage protection.
• Execution of a ecJwx or ecowx instruction is disal-

lowed because EARE - O.

Such accesses can be generated by load/store type
instructions (discussed in Book I, PowerPC User
Instruction Set Architecture), certain storage control
instructions, certain cache control instructions (dis
cussed in Book II, PowerPC Virtual Environment
Architecture), and the ecJwx and ecowx instructions
(discussed in Book III, PowerPC Operating Environ
ment Architecture).

If a stwcx. or stdcx. has an effective address for
which a normal store would cause a Data Storage
interrupt, but the processor does not have the reser
vation from Iwane or Idane, then it is implementation
dependent whether or not a Data Storage interrupt
occurs.

If a Move Assist instruction has a length of zero (in
the XER), a Data Storage interrupt does not occur,
regardless of the effective address.

The interrupt cause is defined in the Data Storage
Interrupt Status Register. These interrupts also use
the Data Address Register.

The following registers are set:

SRR 0

SRR 1
0:15
16:31

MSR

DSISR
o

1

2:3
4

5

Set to the effective address of the instruc
tion that caused the interrupt.

Set to O.
Loaded from bits 16:31 of the MSR.

See Figure 30 on page SO.

Set to 1 if a load or store instruction
results in a Direct-Store Error exception,
otherwise O.
Set to 1 if the translation of an attempted
access is not found in the hashed primary
HTEG, or in the re-hashed secondary
HTEG, or in the range of a DBAT register;
otherwise O.
Set to O.
Set to 1 if a storage access is not per
mitted by the page or DBAT protection
mechanism described on page 44, other
wise O.
Set to 1 if the access was due to an ecJwx,
ecowx, Iwarx, Idarx, stwcx., or stdcx. that
addresses a direct-store segment (T -1 in
Segment register or Segment Table Entry),
or if the access was due to a Iwarx, Idarx,

Chapter 5. Interrupts 61

stwcx., or stdcx. that addresses Write
Through storage; set to 0 otherwise.

6 Set to 1 for a store operation and to 0 for a
load operation.

7:8 Set to o.
9 Reserved for DABR (see the Book IV,

PowerPC Implementation Features docu
ment for the implementation).

10 Set to 1 if the Segment Table Search fails
to find a translation for the effective
address, otherwise set to O.

11 Set to 1 if execution of a ec/wx or .cowx
instruction was attempted with EARe-O,
otherwise set to O.

12:31 Set to O.

DAR Set to the effective address of a storage
element as described in the following list.

• A byte in the first word accessed in
the page that caused the Data Storage
interrupt. for a byte. halfword, or word
access to a non-direct-store segment.

• A byte in the first doubleword
accessed in the page that caused the
Data Storage interrupt, for a
doubleword access to a non-direct
store segment.

• A byte in the first word accessed in
the BAT area that caused the Data
Storage interrupt, for a byte, halfword,
or word access to a BAT area.

• A byte in the first doubleword
accessed in the BAT area that caused
the Data Storage interrupt, for a
doubleword access to a BAT area.

• Any effective address in the range of
storage being addressed, for a Direct
Store Error exception.

Execution resumes at offset Ox00300 from the base
real address indicated by MSR,p.

5.5.4 Instruction Storage Interrupt

An Instruction Storage interrupt occurs when no
higher priority exception exists and an attempt to
fetch the next instruction to be executed cannot be
performed for any of the following reasons:

• The effective address cannot be translated.
• The fetch access is to a direct-store segment.
• The fetch access violates storage protection.

Such accesses can only be generated by instruction
fetches. The following registers are set:

SRR 0

SRR 1
o
1

2
3

4

5:9
10

11:15
16:31

MSR

IBM Confidential

Set to the effective address of the instruc
tion that the processor would have
attempted to execute next if no interrupt
conditions were present (if the interrupt
occurs on attempting to fetch a branch
target, SRR 0 is set to the branch target
address).

Set to O.
Set to 1 if the translation of an attempted
access is not found in the hashed primary
HTEG, or in the re-hashed secondary
HTEG, or in the range of an IBAT register;
otherwise O.
Set to O.
Set to 1 if the fetch access was to a direct
store segment (T -1 in Segment Register
or Segment Table Entry); set to 0 other
wise.
Set to 1 if a storage access is not per
mitted by the page or I BAT protection
mechanism described on page 44, other
wiseO.
Set to O.
Set to 1 if the Segment Table Search fails
to find a translation for the effective
address, otherwise set to O.
Set to O.
Loaded from bits 16:31 of the MSR.

See Figure 30 on page 60.

Execution resumes at offset OxOO400 from the base
real address indicated by MSR,p.

5.5.5 External Interrupt

An External interrupt occurs when no higher priority
exception exists, . an- External interrupt exception is'
presented to the interrupt mechanism, and MSRee -1.
The occurrence of the interrupt does not cancel the
request.

The following registers are set:

SRR 0

SRR 1
0:15
16:31

Set to the effective address of the instruc
tion that the processor would have
attempted to execute next if no interrupt
conditions were present.

Set to O.
Loaded from bits 16:31 of the MSR.

MSR See Figure 30 on page 60.

Execution resumes at offset Ox00500 from the base
real address indicated by MSR,p.

62 PowerPC Operating Environment Archjtecture

(

(~

IBM Confidential

5.5.6 Alignment Interrupt

An Alignment interrupt occurs when no higher priority
exception exists and the implementation cannot
perform a storage access for one of the reasons listed
below. The term "protection boundary," used below,
refers to the boundary between protection domains.
A protection domain is a direct-store segment, a block
of storage defined by a BAT entry, or a 4K block of
storage defined by a Page Table entry. Protection
domains are defined only when DR -1.

• The operand of a floating-point load or store is
not word-aligned, for any storage class.

• The operand of a fixed-point doubleword load or
store is not word-aligned, for any storage class.

• The operand of Imw, stmw, Iwarx, or stwcx. is
not word-aligned, or the operand of Idarx or
stdcx. is not doubleword-aligned, for any storage
class.

• The operand of a floating-point load or store is in
a direct-store segment (T - 1).

• The operand of an elementary or string load or
store crosses a protection boundary.

• The operand of Imw or stmw crosses a segment
or BAT boundary.

• The operand of Data Cache Block set to Zero
(dcbz) is in a page that is write through or cache
inhibited, for a virtual mode access.

In all cases above, an implementation may correctly
do the operation and not cause an Alignment inter
rupt. Details can be found in the Book IV, PowerPC
Implementation Features document for the implemen
tation.

Engineering Note ------------,

If attempt is made to execute an Imw or stmw
instruction having an incorrectly aligned effective
address, early implementations must either cor
rectly transfer the addressed bytes or cause an
Alignment interrupt, for reasons of compatibility
with the Power Architecture.

The following registers are set:

SRR 0

SRR 1
0:15
16:31

MSR

DSISR
0:11

Set to the effective address of the instruc
tion that caused the interrupt.

Set to O.
Loaded from bits 16:31 of the MSR.

See Figure 30 on page 60.

Set to O.

12:13

14
15:16

17

18:21

22:26

27:31

OAR

Set to bits 30:31 of the instruction if
OS-form.
Set to ObOO if 0- or X-form. (Set to ObOO on
32-bit implementations.)
Set to O.
Set to bits 29:30 of the instruction if X-form.
Set to ObOO if 0- or OS-form.
Set to bit 25 of the instruction if X-form.
Set to bit 5 of the instruction if 0- or
OS-form.
Set to bits 21 :24 of the instruction if X-form.
Set to bits 1:4 of the instruction if 0- or
OS-form.
Set to bits 6:10 of the instruction
(RTIRS/FRT/FRS), except undefined for
dcbz.
Set to bits 11:15 of the instruction (RA) for
update form instructions; set to either bits
11: 15 of the instruction or to any register
number not in the range of registers loaded
by a valid form instruction, for Imw, law/,
and Iswx; undefined for other instructions.

Engineering Note -------..,

The requirement for Imw, Iswl, and Iswx
assures compatibility with the program
that emulates these instructions on the
Power architecture. It can be met by
storing zeros for Imw, and by storing
the RT field with one subtracted from it
for Imw, Isw; and Iswx (the load string
instructions wrap from GPR 31 to 0, so
simply storing zeros is not adequate).

Set to the effective address of the data
access as computed by the instruction
causing the alignment exception.

For an X-form Load or" Store; it is acceptable to set
the OSISR to the same value that would have
resulted if the corresponding 0- or OS-form instruc
tion had caused the interrupt. Similarly, for a 0- or
OS-form Load or Store, it is acceptable to set the
OSISR to the value that would have resulted for the
corresponding X-form instruction. For example, an
unaligned Iwax (that crosses a protection boundary)
would normally, following the description above,
cause the OSISR to be set to binary:

aaaaaeaaaaea aa a a1 a alaI ttttt 11111
where "ttttt" denotes the RT field, and "?????"
denotes undefined bits. However, it is acceptable if it
causes the OSISR to be set as for Iwa, which is

eaeaaaaaaaae 1a a aa a 11al ttttt 11111
If there is no corresponding alternate form instruction
(e.g., for Iwaux), the value described above must be
set in the OSISR.

The instruction pairs that may use the same OSISR
value are:

Chapter 5. Interrupts 63

lbz/lbzx
1 hall hax
lwa/lwax
stb/stbx
stw/stwx
lfs/lfsx
stfs/stfsx

lbzu/lbzux
1 hau/l haux
1 d/l dx
stbu/stbux
stwu/stwux
lfsu/lfsux
stfsu/stfsux

1 hz/l hzx
1 wz/l wzx
ldu/ldux
sth/sthx
std/stdx
1 fd/l fdx
stfd/stfdx

1 hzu/l hzux
lwzu/lwzux

sthu/sthux
stdu/stdux
1 fdu/lfdux
stfdu/stfdux

ExeCution resumes at offset OX00600 from the base
real address indicated by MSR1P'

Programming Nota ----------......

Software should not attempt to obtain a reserva
tion for an unaligned Iwane or Idane, nor to simu
late an unaligned stlllcx. or stdcx •.

5.5.7 Program Interrupt

An Program interrupt occurs when no higher priority
exception exists and one or more of the following
exceptions arises during execution of an instruction:

Floating-Point Enabled Exception
A Floating-Point Enabled Exception type Program
interrupt is generated when the expression

(MSRFEO I MSRFE1) & FPSCRFEX

is 1. FPSCRFEX is turned on by the execution of a
floating-point instruction that causes an enabled
exception or by the execution of a "Move to
FPSCR" type instruction that results in both an
exception bit and its corresponding enable bit
being 1.

"'egallnstruct/on
An Illegal Instruction type Program interrupt is
generated when execution is attempted of an
instruction with an illegal opcode or an illegal
combination of opcode and extended opcode
fields, or when execution is attempted of an
optional instruction that is not provided by the
implementation (with the exception of optional
instructions that are treated as no-ops). Also,
implementations are allowed to generate this
interrupt for any invalid form instructions.

See the Book I, PowerPC User Instruction Set
Architecture appendix "Incompatibilities with the
Power Architecture" regarding moving to and
from the MQ and Decrementer registers.

Privileged Instruction
A Privileged Instruction type Program interrupt is
generated when the execution of a privileged
instruction is attempted and MSRpR -1. Some
implementations may generate this interrupt for
mtspr or mfspr with an invalid SPR field if spro-1
and MSRpR -1.

Trap
A Trap type Program interrupt is generated when
any of the conditions specified in a Trap instruc
tion is met.

IBM Confidential

The following registers are set:

SRR 0 For all Program interrupts except a
Floating-Point Enabled Exception when in
one of the Imprecise modes, set to the
effective address of the instruction that
caused the Program interrupt.

SRR 1
0:10
11

12

13

14

15

For an Imprecise Mode Floating-Point
Enabled Exception, set to the effective
address of the excepting instruction or to
the effective address of some subsequent
instruction. If it points to a subsequent
instruction, that instruction has not been
executed. If a subsequent instruction is
Synchronize (sync) or Instruction Synchro
nize (/syne) , SRR 0 will not point more than
four bytes beyond the sync or Jsync
instruction.

If FPSCRFEX-1 but Floating-Point Enabled
Exception interrupt is disabled by having
both MSRFEO and MSRFE1 - 0, a Floating
Point Enabled Exception interrupt will occur
prior to or at the next synchronizing event
if these MSR bits are altered with any
instruction that can set the MSR so that
the expression

(MSRFEO I MSRFE1) & FPSCRFEX

is 1. When this occurs, SRR 0 is loaded
with the address of the instruction that
would have executed next, not with the
address of the instruction that modified the
MSR causing the interrupt.

Set to O.
Set to 1 for a Floating-Point Enabled Excep
tion type Program interrupt, otherwise O.
Set to 1 for an Illegal Instruction type
Program· interrupt,' otherwise 0; .
Set to 1 for a Privileged Instruction type
Program interrupt, otherwise O.
Set to 1 for a Trap type Program interrupt,
otherwise O.
Set to 0 if SRR 0 contains the address of
the instruction causing the exception, and
to 1 if SRR 0 contains the address of a
subsequent instruction.

16:31 Loaded from bits 16:31 of the MSR.

Only one of bits 11:14 can be set to 1.

MSR See Figure 30 on page 60.

Execution resumes at offset Ox00700 from the base
real address indicated by MSR1P'

64 PowerPC Operating Environment Architecture

(

IBM Confidential

Engineering Note -----------,

If the Imprecise Recoverable Mode Floating-Point
Enabled Exception interrupt is implemented as
imprecise, the hardware must provide, at the
minimum, the address at which to resume the
interrupted process (this is given in SRR 0), the
excepting instruction's opcode, extended opcode,
and record bit, the source values or registers, and
the target register. This information can be pro
vided directly in registers or by means of a
pointer to the excepting instruction. The manner
in which it is provided is described in the Book IV,
PowerPC Implementation Features document for
the implementation.

5.5.8 Floating-Point Unavailable
Interrupt

A Floating-Point Unavailable interrupt occurs when no
higher priority exception exists, an attempt is made to
execute a floating-point instruction (including floating
point loads, stores, and moves), and MSRFP-O.

The following registers are set:

SRR 0

SRR 1
0:15
16:31

MSR

Set to the effective address of the instruc
tion that caused the interrupt.

Set to O.
Loaded from bits 16:31 of the MSR.

See Figure 30 on page 60.

Execution resumes at offset Ox00800 from the base
real address indicated by MSR1P'

5.5.9 Decrementer Interrupt

A Decrementer interrupt occurs when no higher pri
ority exception exists, the Decrementer exception
exists, and MSREE -1. The occurrence of the inter
rupt cancels the request.

The following registers are set:

SRR 0

SRR 1
0:15
16:31

Set to the effective address of the instruc
tion that the processor would have
attempted to execute next if no interrupt
conditions were present.

Set to O.
Loaded from bits 16:31 of the MSR.

MSR See Figure 30 on page 60.

Execution resumes at offset Ox00900 from the base
real address indicated by MSR1P'

5.5.10 System Call Interrupt

A System Call interrupt occurs when a System Call
instruction is executed.

The following registers are set:

SRR 0

SRR 1
0:15
16:31

MSR

Set to the effective address of the instruc
tion following the System Call instruction.

Undefined.
Loaded from bits 16:31 of the MSR.

See Figure 30 on page 60.

Execution resumes at offset OxOOCOO from the base
real address indicated by MSR1P'

Architecture Note ------------,

Bits 0:15 of SRR 1 are set to an undefined value,
rather than to 0, because some early implementa
tions may save bits 16:31 of the instruction there.

5.5.11 Trace Interrupt

The Trace interrupt may optionally be implemented.

If implemented, a Trace interrupt occurs when no
higher priority exception exists and either MSRsE - 1
and any instruction except r(i is successfully com
pleted, or MSRsE -1 and a branch instruction is com
pleted.

The following registers are set:

SRR 0

SRR 1
0:15

16:31

MSR

Set to the effective address of the instruc
tion that the processor would have
attempted to execute next if no interrupt
conditions were present.

See the Book IV, PowerPC Implementation
Features document for the implementation.
Loaded from bits 16:31 of the MSR.

See Figure 30 on page 60.

For further details see the Book IV, PowerPC Imple
mentation Features document for the implementation.

Execution resumes at offset OxOODOO from the base
real address indicated by MSR1P'

Chapter 5. Interrupts 65

5.5.12 Floating-Point Assist Interrupt

The Floating-Point Assist interrupt may optionally be
implemented. Its purpose is to allow software assist
ance for relatively infrequent and complex floating
point operations such as computations involving
denormalized numbers.

If implemented, the following registers are set:

SRR 0

SRR 1
0:15

16:31

Set to the effective address of the instruc
tion that caused the Floating-Point Assist
interrupt.

See the Book IV, PowerPC Implementation
Features document for the implementation.
Loaded from bits 16:31 of the MSR.

MSR See Figure 30 on page 60.

For further details see the Book IV, PowerPC Imple
mentation Features document for the implementation.

Execution resumes at offset OxOOEOO from the base
real address indicated by MSRJp•

5.6 Partially Executed
Instructions

The architecture permits certain instructions to be
partially executed when an Alignment or Data Storage
interrupt occurs, or an imprecise interrupt is forced by
an instruction that causes an Alignment or Data
Storage exception. These are:

1. Load Multiple or Load String that causes an
Alignment or Data Storage interrupt: Some regis;,··
ters in the range of registers to be loaded may
have been loaded.

2. Store Multiple or Store String that causes an
Alignment or Data Storage interrupt: Some bytes
of storage in the range addressed may have been
updated.

3. An elementary (non-multiple and non-string) store
that causes an Alignment or Data Storage inter
rupt: Some bytes just before the boundary may
have been updated. If the instruction normally
alters CRO (stwcx., stdcx.), CRO is set to an unde
fined value. For update forms, the update reg
ister (RA) is not altered.

4. A floating-point load that causes an Alignment or
Data Storage interrupt: the target register may
be altered. For update forms, the update register
(RA) is not altered.

In the cases above, the questions of how many regis
ters and how much storage is altered are implemen-

IBM Confidential

tation-. instruction-, and boundary-dependent.
However, storage protection is not violated. Further
more, if some of the data accessed is in direct-store
(T-1), and the instruction is not supported for direct
store, the locations in direct-store are not accessed.

In the following situation, partial execution is not
allowed (this preserves restartability):

An elementary (non-multiple and non-string)
fixed-point load that causes an Alignment or Data
Storage interrupt: the target register is not
altered. For update forms, the update register
(RA) is not altered.

5.7 Exception Ordering

Since multiple exceptions can exist at the same time
and the architecture does not provide for reporting
more than one interrupt at a time, the generation of
more than one interrupt is prohibited. Also some
exceptions would be lost if they were not recognized
and handled when they occur. For example, if an
external interrupt was generated when a data storage
exception existed. the data storage exception would
be lost. If the data storage exception was caused by
a Store Multiple instruction that spanned a page
boundary and the exception was a result of
attempting to access the second page, the store could
have modified locations in the first page even though
it appeared that the Store Multiple instruction was
never executed.

In addition, the architecture defines imprecise inter
rupts that must be recoverable, cannot be lost, and
can occur at any time with respect to the executing
instruction stream. Some of the maskable and
nonmaskable exceptions are persistent and can be
deferred. The following exceptions persist even
though some other interrupt is generated:

• Floating-Point Enabled Exceptions
• External
• Decrementer

For the above reasons, all exceptions are prioritized
with respect to other exceptions that may exist at the
same instant to prevent the loss of any exception that
is not perSistent. Some exceptions cannot exist at the
same instant as some others.

5.7.1 Unordered Interrupt Conditions

The exceptions listed here are unordered, meaning
that they may occur at any time regardless of the
state of the interrupt mechanism. These exceptions
must be recognized and processed when presented.

1. System Reset
2. Machine Check

66 PowerPC Operating Environment Architecture

(

(

IBM Confidential

All other interrupts are ordered with respect to the
interrupt mechanism resources.

5.7.2 Ordered Exceptions

The exceptions described here are ordered, meaning
that only one can be reported. However, the single
ordered exception that can be reported may exist in
concert with unordered exceptions. Ordered
exceptions mayor may not be instruction-caused.
The two lists identify the ordered interrupts by type.
The order within the lists does not imply priority but
only lists the possible exceptions that may be
reported.

System-caused or Imprecise

1. Program
- Imprecise Mode Floating-Point Enabled Exception

2. External
3. Decrementer

Instruction-caused and Precise

1. Instruction Storage
2. Program

- Illegal Instruction
- Privileged Instruction

3. Function Dependent
3.a Fixed-Point

1 a Program - Trap
1 b System Call
1 c.l Alignment
1 c.2 Data Storage
2 Trace (if implemented)

3.b Floating-Point
1 FP Unavailable
2a Program

- Precise Mode Floating-Point Enabled Excep~n .
2b Floating-Point Assist (if implemented)
2c.1 Alignment
2c.2 Data Storage
3 Trace (if implemented)

For implementations that execute multiple instructions
in parallel using pipeline or super-scalar techniques,
or combinations of these, it can be difficult to under
stand the ordering of exceptions. To understand this
ordering it is useful to consider a model in which an
instruction is fetched, decoded, and then executed. In
this model, the exceptions a single instruction would
generate are in the order shown in the list of
instruction-caused exceptions. Exceptions with dif
ferent numbers have different ordering. Exceptions
with the same numbering but different lettering are
mutually exclusive and cannot be caused by the same
instruction.

Even on processors that are capable of executing
several instructions simultaneously, or out of order,
instruction-caused interrupts (precise and imprecise)
occur in program order.

5.8 Interrupt Priorities

This section describes the relationship of
nonmaskable, maskable, precise, and imprecise inter
rupts. In the following descriptions, the interrupt
mechanism waiting for all possible exceptions to be
reported includes only exceptions caused by previ
ously initiated instructions (e.g. it does not include
waiting for the Decrementer to step through zero).
The exceptions are listed in order of highest to lowest
priority.

1. System Reset
System Reset exception has the highest priority
of all exceptions. If this exception exists, the
interrupt mechanism ignores all other exceptions
and generates a System Reset interrupt.

Once the System Reset interrupt is generated, no
nonmaskable interrupts are generated due to
exceptions caused by instructions issued prior to
the generation of this interrupt.

2. Machine Check
Machine Check exception is the second highest
priority exception. If this exception ElXists and a
System Reset exception does not exist, the inter
rupt mechanism ignores all other exceptions .. and
generates a Machine Check interrupt.

Once the Machine Check interrupt is generated,
no nonmaskable interrupts are generated due to
exceptions caused by instructions issued prior to
the generation of this interrupt.

3. Instruction Dependent
This exception is the third highest priority excep
tion. When this exception is created, the interrupt
mechanism waits for all possible Imprecise
exceptions to be reported. It then generates the
appropriate ordered interrupt if no higher priority
interrupt exception exists when the interrupt is to
be generated. Within this category a particular
instruction may present more than a single
exception. When this occurs, those exceptions
are ordered in priority as indicated in the fol
lowing lists.

A. Fixed-Point Loads and Stores

a. Alignment
b. Data Storage
c. Trace (if implemented)

B. Floating-Point Loads and Stores

a. Floating-Point Unavailable
b. Alignment
c. Data Storage
d. Trace (if implemented)

Chapter 5. Interrupts 67

C. Other Floating-Point Instructions

a. Floating-Point Unavailable
b. Program - Precise Mode Floating-Point

Enabled Exception
c. Floating-Point Assist (if implemented)
d. Trace (if implemented)

Not all floating-point instructions can cause
enabled exceptions.

D. rll and mtinsr

a. Program - Privileged Instruction
b. Program - Precise Mode Floating-Point

Enabled Exception
c. Trace (if implemented)

If the MSR bits FED and FE1 are set such that
Precise Mode Floating-Point Enabled excep
tion interrupts are enabled and the
FPSCR(FEX) bit is set, a Program interrupt
will result prior to or at the next synchro
nizing event.

The Trace interrupt should not be generated
after an rll.

E. Other exceptions
These exceptions are mutually exclusive and
have the same priority:

• Program - Trap
• System Call
• Program - Privileged Instruction
• Program - Illegal Instruction

IBM Confidential

F. Instruction Storage
This exception has the lowest priority in this
category. It is only recognized when all
instructions prior to the instruction causing
this exception appear to have completed and
that instruction is to be executed.

The priority . of this interrupt is specified for
completeness and to ensure that it is not
given more favorable treatment. It is accept
able for an implementation to treat this inter
rupt as though it had a lower priority.

4. Program - Imprecise Mode Floating-Point Enabled
Exception
This exception is the fourth highest priority
exception. When this exception is created, the
interrupt mechanism waits for all other possible
exceptions to be reported. It then generates this
interrupt if no higher priority exception exists
when the interrupt is to be generated.

5. External
This exception is the fifth highest priority excep
tion. When this exception is created, the interrupt
mechanism waits for all other possible exceptions
to be reported. It then generates this interrupt if
no higher priority exception exists when the inter
rupt is to be generated.

6. Decrementer
This exception is the lowest priority exception.
When this exception is created, the interrupt
mechanism waits for all other possible exceptions
to be reported. It then generates this interrupt if
no higher priority exception exists when the inter
rupt is to be generated.

68 PowerPC Operating Environment Architecture

(~

IBM Confidential

Chapter 6. Timer Facilities

6.1 Overview
6.2 Time Base
6.2.1 Writing and Reading the Time

Base on 64-bit Implementations ..

6.1 Overview

69
69

70

The Time Base and the Decrementer provide timing
functions for the system. Specific instructions are
provided for reading and writing the Time Base, while
the Decrementer is manipulated as an SPR. Both are
volatile resources and must be initialized during start
up.

Time Base (Ta)
The Time Base provides a long-period counter
driven by an implementation-dependent fre
quency.

Decrementer (DEC)
The Decrementer, a counter that is updated at
the same rate as the Time Base, provides .. a.
means of signalling an interrupt after a specified
amount of time has elapsed unless

• the Decrementer is altered in the interim, or
• the Time Base update frequency changes.

6.2 Time Base

The Time Base (TB) is a 64-bit register (see
Figure 32) containing a 64-bit unsigned integer that is
incremented periodically. Each increment adds 1 to
the low-order bit (bit 63). The frequency at which the
counter is updated is implementation dependent and
need not be constant over long periods of time.

6.2.2 Writing and Reading the Time
Base on 32-bit Implementations 70

6.3 Decrementer 71
6.3.1 Writing and Reading the

Decrementer 71

TBU TBl

o 32 63

Field Description
TBU Upper 32 bits of Time Base
TBl Lower 32 bits of Time Base

Figure 32. Time Base

The Time Base runs continuously when powered on.
There is no automatic initialization of the Time Base
to a known value when the CPU is powered up;
system software must perform this initialization if the
value of the Time Base at any instant (rather than the
difference between two values of the Time Base at
different instants) is important.

The Time Base increments until its value becomes
OxFFFF]FFF _FFFF]FFF (214 - 1). At the next incre
ment, its value becomes OxOOOO_OOOO_OOOO_OOOO.
There is no interrupt or other indication when this
occurs.

The period of the Time Base depends on the driving
frequency. As an order of magnitude example,
suppose that the CPU clock is 100 MHz and that the
Time Base is driven by this frequency divided by 32.
Then the period of the Time Base would be

264 x 32 12
TTB = 100 MHz = 5.90 x 10 seconds

which is approximately 187,000 years.

The PowerPC Architecture does not specify a relation
ship between the frequency at which the Time Base is
updated and other frequencies, such as the CPU clock
or bus clock, in a PowerPC system. The Time Base
update frequency is not required to be constant.

Chapter 6. Timer Facilities 69

What is required, so that system software can keep
time of day and operate interval times, is:

• The system provides an (implementation
dependent) interrupt to software whenever the
update frequency of the Time Base changes, plus
a means to determine what the current update
frequency is, or

• The update frequency of the Time Base is under
the control of the system software.

Programming Notes ----------...,

Assuming that the operating system initializes the
Time Base on power-on to some reasonable value
and that the update frequency of the Time Base is
constant, the Time Base can be used as a source
of values that increase at a constant rate, such as
for time stamps in trace entries.

Even if the update frequency is not constant,
values read from the Time Base will be
monotonically increasing. If a trace entry is
recorded each time the update frequency
changes, the sequence of Time Base values can
be post-processed to become actual time values.

On an implementation that performs speculative
execution, the Time Base may be read arbitrarily
far "ahead" of the point at which it appears in the
instruction stream. If it is important that this not
occur, a context synchronizing operation such as
the ;syne instruction should be placed imme
diately before the instructions that read the Time
Base.

See the description of the Time Base in Book II,
PowerPC Virtual Environment Architecture for
ways to compute time of day in POSIX format
from the Time Base.

Architecture Notes -------------,

It is intended that the Time Base be useful for
timing reasonably short sequences of code (a few
hundred instructions) and for low-overhead time
stamps for tracing. The Time Base should not
"tick" faster than the CPU instruction clock.
Driving the Time Base directly from the CPU
instruction clock is probably finer granularity than
necessary; the instruction clock divided by 8, 16,
or 32 would be more appropriate.

The Time Base driving frequency is also used to
update the Decrementer (see 6.3, "Decrementer"
on page 71), which is used by system software to
set interval timers ("alarms"). The update fre
quency chosen should be appropriate for this
purpose as well.

IBM Confidential

6.2.1 Writing and Reading the Time
Base on 54-bit Implementations

Writing the Time Base is privileged; reading the Time
Base is not privileged.

The 6~bit contents of a GPR may be written to the
Time Base by the mtspr instruction. An extended
mnemonic is provided which encodes the SPR number
of the Time Base so that the number need not be
specified as an operand; see page 75. To write the
contents of register Rx to the Time Base, execute:

mttb Rx

At the next Time Base update, the value written by
mttb will be incremented by 1.

The contents of the Time Base may be read into a
54-bit GPR by the mftb instruction. An extended mne
monic (p. 75) is provided for this as well. To read the
contents of the Time Base into register Rx, execute:

mftb Rx

Reading the Time Base has no effect on the value it
contains or the periodic incrementing of that value.

6.2.2 Writing and Reading the Time
Base on 32-bit Implementations

Writing the Time Base is privileged; reading the Time
Base is not privileged.

It is not possible to write or read the entire 54-bit
Time Base in a single instruction on 32-bit machines.
The mttb and mltb extended mnemonics move the
lower half of the Time Base (TBl), while the mttbu
and mltbu extended mnemonics move the upper half
(TBU·). These are extended mnemonics· for the mtspr·
and mltb instructions; see page 75.

On a 32-bit implementation, mttb writes the contents
of the specified GPR to TBl and writes zero to TBU.

The Time Base can be written by a sequence such as:

lwz Rx,upper # load 64-bit value for
lwz Ry,lower # TB into Rx and Ry
li RZ,a
mttb Rz
mttbu Rx
mttb Rz

force TBl to a
set TBU
set TBl

Loading 0 into TBl prevents the possibility of a carry
from TBl to TBU while the Time Base is being initial
ized.

Because of the possibility of a carry from TBl to TBU,
a sequence such as the following is necessary to read
the Time Base on 32-bit implementations.

70 PowerPC Operating Environment Architecture

,
>-,-.

(

(

IBM Confidential

loop:
mftbu Rx
mftb Ry
mftbu Rz
cmpw RZ,Rx
bne loop

load from TBU
load from TBl
load from TBU
see if 'old' = 'new'
loop if carry occurred

The comparison and loop are necessary to ensure
that a consistent pair of values have been obtained.

Programming Note ------------,

The mttbu and mftbu extended mnemonics are
provided even on 64-bit implementations so that
code written to read and write the Time Base on
32-bit implementations will work properly on both
32- and 64-bit implementations.

6.3 Decrementer

The Decrementer (DEC) is a 32-bit decrementing
counter that provides a mechanism for causing a
Decrementer Interrupt after a programmable delay.

DEC
o 31

Figure 33. Decrementer

The Decrementer is driven by the same frequency as
the Time Base. The period of the Decrementer will
depend on the driving frequency, but if the same
values are used as given above for the Time Base
(section 6.2), and if the Time Base update frequency
is constant, the period would be

232 x 32 3
Toec = 100 MHz = 1.37 x 10 seconds

which is approximately 23 minutes.

The Decrementer counts down, causing an interrupt
(unless masked) when passing through zero. The
Decrementer must be implemented such that the fol
lowing requirements are satisfied:

1. The operation of the Time Base and the
Decrementer are coherent, i.e. the counters are
driven by the same fundamental time base.

2. Loading a GPR from the Decrementer shall have
no effect on the Decrementer.

3. Storing a GPR to the Decrementer shall replace
the value in the Decrementer with the value in
the GPR.

4. Whenever bit 0 of the Decrementer changes from
o to 1, an interrupt request is signalled. If mul
tiple Decrementer Interrupt requests are received
before the first can be reported, only one inter
rupt is reported. The occurrence of a
Decrementer Interrupt cancels the request.

5. If the Decrementer is altered by software and the
content of bit 0 is changed from 0 to 1, an inter
rupt request is signaled.

Programming Note -------------,

In systems that change the Time Base update fre
quency for purposes such as power management,
the Decrementer input frequency will also change.
Software must be aware of this in order to set
interval timers.

On an implementation that performs speculative
execution, the Decrementer may be read arbi
trarily far "ahead" of the pOint at which it appears
in the instruction stream. If it is important that
this not occur, a context synchronizing operation
such as the ;syne instruction should be placed
immediately before the instruction that reads the
Decrementer.

6.3.1 Writing and Reading the
Decrementer

The content of the Decrementer can be read or
written using the mfspr and mtspr instructions, both
of which are privileged when they refer to the
Decrementer. Using an extended mnemonic (see 75),
the Decr.ementer . may be. written from register GPR
Rx with:

mtdec Rx

Programming Note -------------,

If the execution of this instruction causes bit 0 of
the Decrementer to change from 0 to 1, an inter
rupt request is signalled.

The Decrementer may be read into GPR Rx with:

mfdec Rx

Copying the Decrementer to a GPR has no effect on
the Decrementer content or interrupt mechanism.

Chapter 6. Timer Facilities 71

IBM Confidential

72 PowerPC Operating Environment Architecture

IBM Confidential

Appendix A. Optional Facilities and Instructions

The facilities (special purpose registers and
instructions) described in this appendix are optional.
An implementation may choose to provide all, some,
or none of them. If a facility is implemented that
matches semantics of a facility described here, the
implementation should be as specified here.

A.1 External Control

The External Control facility provides a means for a
problem state program to communicate with a special
purpose device. Two instructions are provided:

• External Control Out Word Indexed (ecoW'x), which
does the following:

Computes an Effective Address (EA) as for
any X-form instruction
Validates the EA as would be done for a
store to that address
Translates the EA to a Real Address
Transmits the Real Address and a word of
data from a general register to the device

• External Control In Word Indexed (eciwx), which
does the following:

Computes an Effective Address (EA) as for
any X-form instruction
Validates the EA as would be done for a load
from that address
Translates the EA to a Real Address
Transmits the Real Address to the device
Accepts a word of data from the device and
places it in a general register

Depending on the setting of a control bit in a special
purpose register, the External Access Register (EAR),
the processor either performs the external control
operation or it takes a Data Storage interrupt. The
EAR controls access to the external access facility.
Access to the EAR itself is privileged; the operating
system can determine which tasks are allowed to
issue External Access instructions and when they are
allowed to do so.

Interpretation of the real address transmitted by
ecoW'x and eciwx and the 32-bit value transmitted by
ecoW'x is up to the target device. Such interpretation
is not specified by PowerPC Architecture. See the

System Architecture documentation for a given
Power PC system for details on how the External
Control facility can be used with devices on that
system.

Example

An example of a device designed to be used with the
External Control facility might be a graphics adapter.
The ecoW'x instruction might be used to send the
device the translated real address of a buffer con
taining graphics data, and the word transmitted from
the general register might be control information that
tells the adapter what operation to perform on the
data in the buffer. The ecilNx instruction might be
used to load status information from the adapter.

A.1.1 External Access Register

This 32-bit Special Purpose Register controls access
to the External Control facility and, for external
control operations that are permitted, determines
which device is the target.

o

Bit
o
26:31

11/

Name
E
RID

I RID I
26 31

Description
Enable bit
Resource 10

All other fields are reserved.

Figure 34. External Access Register

Appendix A. Optional Facilities and Instructions 73

A.1.2 External Access Instructions

External Control In Word Indexed
X-form

eciwx RT,RA,RB

if RA = 9 then b ~ G
else b ~ (RA)
EA ~ b + (RB)
if EARE = 1 then

raddr ~ address translation of EA
send load request for raddr to

device identified by EARRID
RT ~ 329 II word from devi ce

else
DSISR11 ~ 1
generate Data Storage interrupt

310

Let the effective address (EA) be the sum
(RAIO) + (RB).

If EARE -1, a load request for the real address corre
sponding to EA sent to the device identified by
EARR1D, bypassing the cache. RTo:31 is set to O. The
word returned by the device is placed in RT32:63{O:31}'

If EARE - 0, a Data Storage interrupt is taken, with bit
11 of DSISR set to 1.

The eciwx instruction is supported for Effective
Addresses that reference ordinary (T - 0) segments
and for EAs mapped by Data BAT registers. The
instruction is not supported and the results are
boundedly undefined for EAs in direct-store (T-1)
segments and for EAs generated when MSRDR-O
(real addresses).

The access caused by this instruction is treated as a
load from the location addressed by EA with respect
to protection and reference and change recording.

Special Registers Altered:
None

IBM Confidential

External Control Out Word Indexed
X-form

ecowx RS,RA,RB

I RA 11aRB
11 .

if RA = e then b ~ e
else b ~ (RA)
EA ~ b + (RB)
if EARE = 1 then

raddr ~ address translation of EA
send store request for raddr to

device identified by EARRID
send (RS32:63{O:31}) to devi ce

else
DSISR11 ~ 1
generate Data Storage interrupt

438

Let the effective address (EA) be the sum
(RAIO) + (RB).

If EARE -1, a store request for the real address corre
sponding to EA and the contents of RS32:63{O:31) are
sent to the device identified by EARR1D, bypassing the
cache.

If EARE - 0, a Data Storage interrupt is taken, with bit
11 of DSISR set to 1.

The ecowx instruction is supported for Effective
Addresses that reference ordinary (T - 0) segments
and for EAs mapped by Data BAT registers. The
instruction is not supported and the results are
boundedly undefined· for· EAs in direct-store (T - 1)
segments and for EAs generated when MSRoR - 0
(real addresses).

The access caused by this instruction is treated as a
store to the location addressed by EA with respect to
protection and reference and change recording.

Special Registers Altered:
None

74 PowerPC Operating Environment Architecture

(

(

IBM Confidential

Appendix B. Assembler Extended Mnemonics

In order to make assembler language programs simpler to write and easier to understand, a set of extended
mnemonics and symbols is provided that defines simple shorthand for the most frequently used forms of Branch
Conditional, Compare, Trap, Rotate and Shift, and certain other instructions.

Most extended mnemonics are defined in an appendix to Book I, PowerPC User Instruction Set Architecture.
Defined here are mnemonics related to mtspr and mfspr, including privileged SPRs.

PowerPC-compliant assemblers will provide the mnemonics and symbols listed here and in the appendix cited
above, and possibly others. Programs written·to be portable across various assemblers for the PowerPC Architec
ture should not assume the existence of mnemonics not defined in the PowerPC Architecture books.

Appendix .B. Assembler Extended Mnemonics 75

IBM Confidential

B.1 Move To/From Special Purpose Register mnemonics

The mtspr and mfspr instructions specify a Special Purpose Register (SPR) as a numeric operand. Extended mne-
monics are provided that represent the SPR in the mnemonic rather than requiring it to be coded as an operand. '"-'._0/

Also shown here are extended mnemonics for Move From TIme Base and Move From TIme Base Upper, which
are variants of the mftb instruction rather than of mfspr.

Note: mftb serves as both a basic and an extended mnemonic. The assembler will recognize an mftb mnemonic
with two operands as the basic form, and an mftb mnemonic with one operand as the extended form.

Table 1. Extended mnemonics for moving to/from an SPR

Move To SPR Move From SPRI
Special Purpose Register

Extended Equivalent to Extended Equivalent to

Fixed Point Exception
mtxer Rx mtspr 1,Rx mfxer Rx mfspr RX,1

Register

Unk Register mtlr Rx mtspr 8,Rx mflr Rx mfspr RX,8

Count Register mtctr Rx mtspr 9,Rx mfctr Rx mfspr Rx,9

Data Storage Interrupt
mtdsisr Rx mtspr 18,Rx mfdsisr Rx mfspr Rx,18

Status Register

Data Address Register mtdar Rx mtspr 19,Rx mfdar Rx mfspr Rx,19

Decrementer mtdec Rx mtspr 22,Rx mfdec Rx mfspr Rx,22

Storage Description
mtsdr1 Rx mtspr 25,Rx mfsdr1 Rx mfspr Rx,25 Register 1

Save/Restore Register 0 mtsrrO Rx mtspr 26,Rx mfsrrO Rx mfspr Rx,26

Save/Restore Register 1 mtsrr1 Rx mtspr 27,Rx mfsrr1 Rx mfspr Rx,27

Special Purpose Registers
mtsprg n,Rx mtspr 272 + n,Rx mfsprg Rx,n mfspr Rx,272 + n

GO through G3

Address Space Register mtasr Rx mtspr 280,Rx mfasr Rx mfspr Rx,280

External Access Register mtear Rx mtspr 282, Rx mfear Rx mfspr Rx,282

TIme Base [Lower] mttb Rx mtspr 284,Rx mftb Rx mftb Rx,268

TIme Base Upper mttbu Rx mtspr 285,Rx mftbu Rx mftb Rx,269

Processor Version Register - - mfpvr Rx mfspr Rx,287

IBAT Registers, Upper mtibatu n,Rx mtspr 528+2xn,Rx mfibatu Rx,n mfspr Rx,528+2xn

IBAT Registers, Lower mtibatl n,Rx mtspr 529+2xn,Rx mfibatl Rx,n mfspr Rx,529+2xn

DBAT Registers, Upper mtdbatu n,Rx mtspr 536+2xn,Rx mfdbatu Rx,n mfspr Rx,536 + 2xn

DBAT Registers, Lower mtdbatl n,Rx mtspr 537+2xn,Rx mfdbatl Rx,n mfspr Rx,537 + 2xn

1 Except for mftb and mftbu.

76 PowerPC Operating Environment Archltedure

{

(

IBM Confidential

Appendix C. Cross-Reference for Changed Power Mnemonics

The following table lists the Power instruction mne
monics that have been changed in the PowerPC Oper
ating Environment Architecture, sorted by Power
mnemonic.

To determine the PowerPC mnemonic for one of these
Power mnemonics, find the Power mnemonic in the
second column of the table: the remainder of the line

Power
Page

Mnemonic Instruction

46 mtsri Move To Segment Register Indirect
9 svca Supervisor Call

50 tlbi TLB Invalidate Entry

gives the PowerPC mnemonic and the page on which
the instruction is described, as well as the instruction
names.

Power mnemonics that have not changed are not
listed. Power instruction names that are the same in
PowerPC are not repeated: i.e., for these, the last
column of the table is blank.

PowerPC

Mnemonic Instruction

mtsrin
sc System Call
tlbie TLB Entry Invalidate

Appendix C. Cross-Reference for Changed Power Mnemonics 77

IBM Confidential

78 PowerPC Operating Environment Architecture

(

IBM Confidential

Appendix D. New Instructions

The following instructions in the Power PC Operating
Environment Architecture are new: they are not in the
Power Architecture. debl and the Time Base
instructions exist in all PowerPC implementations,
mfsrin exists only in 32-bit implementations, and the
SLB instructions exist only in 64-bit implementations.
The SLB and TLB instructions are optional.

deb/
eeiwx
eeowx
mfsrin
slbie
sib/ex
slbia
tlbiex
tibia
tlbsyne

Data Cache Block Invalidate
External Control In Word Indexed
External Control Out Word Indexed
Move From Segment Register Indirect
SLB Invalidate Entry
SLB Invalidate Entry by Index
SLB Invalidate All
TLB Invalidate Entry by Index
TLB Invalidate All
TLB Synchronize

Appendix D. New Instructions 79

IBM Confidential

./

80 PowerPC Operating Environment Architecture

IBM Confidential

Appendix E. Processor Version Numbers

The "processor version number" is the value con
tained in bits 0:15 of the Processor Version Register
(PVR). This read-only register is described in section
2.2.4, "Processor Version Register" on page 8. The
processor version number is uniquely determined by
the specific version of the PowerPC Architecture
implemented by a given processor. The value that a
given processor should return is assigned by the
Power PC Architecture process.

Processor version numbers assigned as of 14 June
1992 are (hexadecimal):

0001
0003
0004
0014

Appendix E. Processor Version Numbers 81

IBM Confidential

82 PowerPC Operating Environment Architecture

(

(

IBM Confidential

Appendix F. Synchronization Requirements for Special
Registers

The processor checks for input and output depend
ences with respect to all registers, and honors these
dependences when executing a series of instructions
involving a given register. For example, if an mtspr
instruction writes a value to a particular SPR and an
mfspr instruction later in the instruction stream reads
the same SPR, the mfspr receives the value written
by the mtspr.

Such dependence checking does not extend to certain
side effects of writing to status and control registers,
SPRs, and Segment Registers, nor to the setting of
certain SPRs by interrupts, as described in the
remainder of this appendix.

F.1 Affected Registers

Software synchronization may be required for alter
ation of the registers listed in the following sub
sections, because they affect instruction fetch and
data access.

F.1.1 Instruction Fetch

Altering the content of the following registers or MSR
bits may change the manner in which instruction
addresses are interpreted, or the context in which
instructions execute.

• ASR
• Segment Registers
• SDR 1
• IBAT registers
• MSR bits:

PR, FP, ME, FEO, FE1, SE, BE, IP, IR, SF

F.1.2 Data Access

Altering the content of the following registers or MSR
bits may change the manner in which data accesses
are performed, or the context in which they are per
formed.

• ASR
• Segment Registers

The processor automatically provides all synchroniza
tion required for the GPRs, FPRs, CR, LR, CTR, XER,
FPSCR, SRR 0, SRR 1, DAR, DSISR, SPRGO through
SPRG3, TIme Base, and Decrementer, and for the EE
and RI bits of the MSR, including side effects. These
registers and MSR bits are not discussed further, in
this appendix.

For the remainder of this appendix, words like
"before," "after," "preceding," "following," etc.,
when referring to instruction sequence, are with
respect to program order. (Program order is defined
in Book II, PowerPC Virtual Environment
Architecture.)

• SDR 1
• DBAT registers
• EAR
• MSR bits:

PR,DR,SF

F.2 Context Synchronizing
Operations' .

The following instructions and events comprise the
context synchronizing operations (see Section 1.7.1,
"Context Synchronization" on page 3). They can be
used to synchronize alteration of the registers listed
above, as described below.

• isyne
• se
• rfI
• any interrupt, other than System Reset and

Machine Check

(As described in Chapter 5, "Interrupts" on page 57,
System Reset and Machine Check are context syn
chronizing if they are recoverable.)

The sync instruction, although not context
synchronizing, can sometimes be used to provide the
required synchronization, as described below.

Appendix F. Synchronization Requirements for Special Registers 83

F.3 Software Synchronization
Requirements

To ensure that instructions appear to execute in
program order (i.e., with the correct semantics and in
the correct context), software must use synchroniza
tion instructions, as described below, when altering
any of the registers and MSR bits listed in F.1,
"Affected Registers."

Sometimes advantage can be taken of the fact that
certain instructions that occur naturally in the
program, such as the "1 at the end of an interrupt
handler, provide the required synchronization.

Before Alteration

If the corresponding relocation is enabled (IR -1 for
Section F.1.1, DR -1 for Section F.1.2), a context syn
chronizing operation or sync instruction must precede
an alteration of any of the registers listed in Section
F.1, with the exception of SDR 1 and the MSR.

If the corresponding relocation is enabled, a sync
instruction must precede an alteration of SDR 1. The
sync forces alterations of Reference and Change bits,
due to instructions before the alteration of SDR 1, to
be made in the correct context.

No explicit synchronization is required before soft
ware alters the MSR, because mtmsr is execution
synchronizing (see Section 1.7.2, "Execution
Synchronization" on page 4).

After Alteration

If the corresponding relocation is enabled (IR -1 for
Section F.1.1, DR -1 for Section F.1.2), a context syn
chronizing operation must follow an alteration of any
of the registers listed in Section F.1, with the excep
tion of the MSR.

A context synchronizing operation must follow an
alteration of any of the MSR bits listed in Sections
F.1.1 and F.1.2, except MSR,p if software does not
care which value of this bit is used for non
recoverable System Reset and Machine Check inter
rupts.

Instructions fetched and/or executed after the alter
ation but before the context synchronizing operation
may be fetched and/or executed in either the context
that existed before the alteration or the context estab
lished by the alteration.

IBM Confidential

Multiple Alterations

When several of the registers listed in Section F.1 are
altered with no intervening instructions that are
affected by the alterations, no context synchronizing
operations or sync instructions are required between
the alterations.

Examples

• A single Segment Register is to be altered in iso-
lation:

i sync
mtsr SRn,Rx
isync

• All the Segment Registers are to be reloaded
upon task dispatch at the end of an interrupt.

mtsr SRG,R ...
mtsr SR1,R •••

mtsr SR15,R ...
rfi

Because this instruction sequence reloads all
Segment Registers, it must be executed with
MSR'R - 0 and therefore no synchronization is
required before the Segment Registers are
loaded. (If the Segment Register that is being
used for instruction fetch is not to be reloaded,
the sequence can be executed with MSR'R -1,
and still no such synchronization is required.)
The rfi provides the needed synchronization after
the Segment Registers have been loaded, and
before subsequent instructions are fetched and
subsequent loads and stores executed.

F.4 Additional Software
Requirements

This section describes additional software require
ments with respect to instruction fetching and address
translation. The results of failing to satisfy these
requirements are undefined.

MSR'R
MSR'R should be altered only from code that is
mapped virtual equals real.

ASR
If MSR'R -1, alteration of the ASR is permitted
only if the instructions in storage immediately fol
lowing the mtspr that alters the ASR are identical
in both the old and the new address space. Any
resulting changes in storage protection or storage
access mode are not guaranteed to take effect
until a context synchronizing operation is exe
cuted.

84 PowerPC Operating Environment Architecture

(

(-

IBM Confidential

Segment Registers
No fields in the Segment Register that is being
used for instruction fetch should be altered, with
the exception of the Key bits (Ks and Kp). Alter
ation of the Key bits is always permitted. Any
resulting changes in storage protection are not
guaranteed to take effect until a context synchro
nizing operation is executed.

SDR 1
SDR 1 should be altered only when MSR1R-O.

IBAT registers
No fields in the IBAT Register that is being used
for instruction fetch should be altered, with the
exception of the Valid (V) bit and the Key bits (Ks
and Kp). Alteration of the V bit is permitted only if
the instructions in storage immediately following
the mtspr that alters the IBAT register are also
mapped by the segmented address translation
mechanism to the same address, or if the
instructions are duplicated in the newly mapped
space. Alteration of the Key bits is always per
mitted. Any resulting changes in storage pro
tection or storage access mode are not
guaranteed to take effect until a context synchro
nizing operation is executed.

To make an IBAT register valid in a manner such
that the IBAT register then translates the current
instruction stream, the following sequence should
be used if fields in both the upper and lower IBAT
registers are being altered.

1. The V bit in the IBAT register should be set to
zero.

2. The other fields in the IBAT register should be
initialized appropriately while the V bit
remains zero.

3. The V bit should be set to one.
4. A context synchronizing operation should be

executed.

If all altered fields are contained in either the
upper or lower IBAT register, a single mtspr suf
fices (a synchronizing operation is not necessarily
required).

Appendix F. Synchronization Requirements for Special Registers 85

IBM Confidential

86 PowerPC Operating Environment Architecture

(

IBM Confidential

Appendix G. Implementation-Specific SPRs

This appendix lists Special Purpose Register (SPR)
numbers assigned by the Power PC Architecture
Review Process for implementation-specific uses. If a
register shown here is present in a particular imple
mentation, a detailed description will be found in Book
IV, PowerPC Implementation Features.

The intent of this list is to ensure that if an SPR is
needed for a particular function on more than one
implementation, the same SPR number will be used.

Note that ordering of the bits shown in the table
below matches the descriptions in Move To/From
Special Purpose Register on pages 13 and 14. The
two 5-bit halves of the SPR number are reversed from
the order in which they appear in an assembled
instruction.

SPR Register Privi-
decimal sprS:9 SprO:4 name leged

1023 11111 11111 PIR yes
1022 11111 11110 FPECR yes

Processor 10 Register (PIR)

This register holds a value that distinguishes -this-·
processor from others in a multiprocessor.

Floating-Point Exception Cause Register
(FPECR)

This register identifies the reason a Floating-Point
Exception occurred.

Appendix G. Implementation-Specific SPRs 87

IBM Confidential

88 PowerPC Operating Environment Architecture

(

IBM Confidential

Appendix H. Interpretation of the DSISR as set by an
Alignment Interrupt

For most causes of Alignment interrupt, the interrupt
handler will emulate the interrupting instruction. To
do this, it needs the following characteristics of the
interrupting instruction:

Load or store
Length (half, word, or double)
String, multiple, or elementary
Fixed or float
Update or non-update
Byte reverse or not
Is it dcbz?

The Power PC Architecture provides this information
implicitly, by setting opcode bits in the DSISR that
identify the interrupting instruction type. It is not nec
essary for the interrupt handler to load the inter
rupting instruction from storage. The mapping is
unique except for a few exceptions that are discussed
below. The near-uniqueness depends upon the fact
that many instructions cannot cause an Alignment
interrupt, such as the fixed- and floating-point arith
metic instructions and the byte-width loads and
stores.

See Section 5.5.6, "Alignment Interrupt',' on page 63 '
for a description of how the opcode and extended
opcode is mapped to a DSISR value for an X-, 0-, or
OS-form instruction that causes an Alignment inter
rupt.

The table on the next page shows the inverse
mapping: how the DSISR bits identify the interrupting
instruction. The following notes apply to this table.

(1) The instructions Iwz and Iwarx give the same
DSISR bits (all zero). But if Iwarx causes an align
ment interrupt, it is an invalid form, so it need not
be emulated in any precise way. It is adequate
for the Alignment interrupt handler to simply
emulate the instruction as if it were an Iwz. It is
important that the emulator use the address in the
DAR, rather than computing it from RA/RB/D,
because Iwz and Iwarx are different formats.

If opcode 0 (""'egal or reserved") can cause an
alignment interrupt, it will be indistinguishable
from Iwarx and Iwz.

(2) These are distinguished by DSISR bits 12:13, which
are not shown in the table.

The Alignment interrupt handler will not be able to
distinguish a floating-point load or store interrupting
because it is misaligned, or because it addresses
direct-store. But this does not matter; in either case
it will be emulated by doing the operation with fixed
point instructions.

The interrupt handler has no need to distinguish
between an X-form instruction and the corresponding
0- or DS-forminstruction, if one exists. Therefore two
such instructions may report the same DSISR value
(all 32 bits). For example, sfw and sfwx may both
report either the DSISR value shown in the following
table for sfw; or that shown for sfwx.

Appendix H. Interpretation of the DSISR as set by an Alignment Interrupt 89

IBM Confidential

then It I. or then It i. or
either D/DS- either D/DS-

If DSISR X-form form If DSISR X-form form
15:21 Is: opcode: opcoda: so the Instruction is: 15:21 Is: opcode: opcode: so the Instruction Is:

0000000 OOOOOxxxOO xOOOOO Iwarx, Iwz, reserved 1000000 00000xxx10 -
(1) 1000001 0001 Oxxx1 0 -

0000001 00010xxxOO xOO010 Idarx 1000010 001 00xxx1 0 stwcx.
0000010 00100xxxOO x00100 stw 1000011 00110xxx10 stdcx.
0000011 00110xxxOO x00110 - 1000100 01 000xxx1 0 -
0000100 01000xxxOO x01000 1hz 1000101 01010xxx10 -
0000101 01 01 OxxxOO x01010 Iha 1000110 01100xxx10 -
0000110 01100xxxOO x01100 sth 1000111 01110xxx10 -
0000111 01110xxxOO x01110 Imw 100 1000 1 0000xxx1 0 Iwbrx
000 1000 10000xxxOO x10000 Ifs 100 1001 10010xxx10 -
000 1001 10010xxxOO x10010 Ifd 100 1010 10100xxx10 stwbrx
000 1010 10100xxxOO x10100 stfs 1001011 10110xxx10 -
0001011 10110xxxOO x10110 stfd 1001100 11000xxx10 Ihbrx
0001100 11000xxxOO x11000 - 1001101 11010xxx10 -
0001101 11010xxxOO x11010 Id, Idu, Iwa (2) 1001110 11100xxx10 sthbrx
0001110 11100xxxOO x11100 - 1001111 11110xxx10 -
0001111 11110xxxOO x11110 std, stdu (2) 10 1 0000 00001 xxx1 0 -
0010000 00001xxxOO xOOO01 Iwzu 1010001 00011xxx10 -
001 0001 00011xxxOO x00011 - 10 1 0010 00101xxx10 -
00 1 0010 001 01 xxxOO x00101 stwu 1010011 00111xxx10 -
001 0011 00111xxxOO x00111 - 10 1 0100 01001xxx10 eciwx
00 1 0100 01 001 xxxOO x01001 Ihzu 10 1 0101 01011xxx10 -
00 1 0101 01011xxxOO x01011 Ihau 101 0110 01101xxx10 ecowx
0010110 01101xxxOO x01101 sthu 101 0111 01111xxx10 -
00 1 0111 01111xxxOO x01111 stmw 10 1 1000 10001xxx10 -
00 1 1000 10001xxxOO x10001 Ifsu 10 1 1001 10011xxx10 -
00 1 1001 10011xxxOO x10011 Ifdu 10 1 1010 10101xxx10 -
00 1 1010 10101xxxOO x10101 stfsu 101 1011 10111xxx10 -
0011011 10111 xxxOO x10111 stfdu 101 1100 11001xxx10 -
00 1 1100 11001xxxOO x11001 - 1011101 11011xxx10 -
0011101 11011 xxxOO x11011 - 1011110 11101xxx10 -
001 1110 11101 xxxOO x11101 - 101 1111 11111xxx10 dcbz
001 1111 11111xxxOO x11111 - 11 00000 00000xxx11 Iwzx
0100000 00000xxx01 Idx 11 00001 00010xxx11 -
01 00001 00010xxx01 - 1100010 00100xxx11 stwx
0100010 00100xxx01 stdx 1100011 00110xxx11 -
0100011 00110xxx01 - 1100100 01000xxx11 Ihzx
01 00100 01000xxx01 - 11 0 0101 01010xxx11 Ihax
01 00101 01 01 Oxxx01 Iwax 1100110 01100xxx11 sthx
0100110 01100xxx01 - 1100111 01110xxx11 -
01 0 0111 01110xxx01 - 11 0 1000 10000xxx11 Ifsx
01 0 1000 10000xxx01 Iswx 1101001 10010xxx11 Ifdx
01 01001 10010xxx01 Iswi 1101010 10100xxx11 stfsx
01 0 1010 10100xxx01 stswx 1101011 101.10xxx11 stfdx
01 0 1011 10110xxx01 stswi 1101100 11000xxx11 -
0101100 11000xxx01 - 1101101 11010xxx11 -
01 0 1101 11010xxx01 - 1101110 11100xxx11 -
0101110 11100xxx01 - 1101111 11110xxx11 stfiwx
01 0 1111 11110xxx01 - 11 1 0000 00001xxx11 Iwzux
01 1 0000 00001xxx01 Idux 11 1 0001 00011 xxx11 -
01 1 0001 00011xxx01 - 11 10010 00101xxx11 stwux
01 1 0010 00101xxx01 stdux 11 1 0011 00111xxx11 -
01 1 0011 00111xxx01 - 11 10100 01001xxx11 Ihzux
01 1 0100 01 001 xxx01 - 11 1 0101 01011xxx11 Ihaux
01 1 0101 01011xxx01 Iwaux 1110110 01101xxx11 sthux
01 1 0110 01101xxx01 - 11 1 0111 01111xxx11 -
01 1 0111 01111xxx01 - 11 1 1000 10001xxx11 Ifsux
01 1 1000 10001xxx01 - 11 1 1001 10011xxx11 Ifdux
01 1 1001 10011xxx01 - 11 1 1010 10101xxx11 stfsux
01 1 1010 10101xxx01 - 1111011 10111xxx11 stfdux
01 1 1011 10111xxx01 - 11 1 1100 11001xxx11 -
01 1 1100 11001xxx01 - 11 1 1101 11011xxx11 -
01 1 1101 11011xxx01 - 11 1 1110 11101xxx11 -
01 1 1110 11101xxx01 - 11 1 1111 11111 xxx11 -
01 1 1111 11111 xxx01 -

90 PowerPC Operating Environment Architecture

(

IBM Confidential

Appendix I. Processor Simplifications for Uniprocessor
Designs

Microprocessor designs that will not be used in sym
metric multiprocessor (SMP) systems may adopt opti
mizations to avoid cost and design effort
implementing functions that will never be used.
Further optimizations may be adopted if the design
will never be used in conjunction with an L2 cache.

The following list identifies of the areas in which these
optimizations can be made:

1. Receipt of TLB entry invalidate requests from
other processors. Since the design will not be
used in SMP systems, this function is not
required.

2. Communication of sync to external mechanisms.
The function provided by the sync instruction can
be completed by the processor with no need to
communicate with external mechanisms.

A. Does the design of any storage controller
require a notification that a sync is being
executed?

B. Does the design of any graphics subsystem
require a notification that a sync is being
executed?

C. Does the design of any other I/O mechanism.
require a notification that a sync is being
executed?

3. Communication of ./e/o to external mechanisms.
The function provided by the elelo instruction can
be completed by the processor with no need to
communicate with external mechanisms. It is
assumed that no L2 cache is used or its operation
is totally transparent, and that all other mech
anisms perform storage operations in the order
that they are received.

4. Communication of cache management operations
to external caches. It is assumed that no L2
cache is used or its operation is totally trans
parent. The function of these instructions can be
completed in the processor with no need to com
municate with external mechanisms.

5. Communication of TLB invalidates to external
mechanisms. Graphics subsystem device drivers
that use the move virtual storage instructions
may require notification of a TLB invalidation.

Architecture Note ----------,

There is a pending proposal for these func
tions, so this requirement is dependent on the
resolution of that proposal.

Appendix I. Processor Simplifications for Uniprocessor Designs 91

IBM Confidential

92 PowerPC Operating Environment Architecture

(~

IBM Confidential

Appendix J. PowerPC Operating Environment Instrudion Set

Form
Opcode Mode

Page Mnemonic
Primary Extend Dep.'

X 31 470 45 dcbi
X 31 310 74 eciwx
X 31 438 74 ecowx
X 31 83 15 mfmsr
XFX 31 339 14 mfspr
X 31 595 0 46 mfsr
X 31 659 0 46 mfsrin
X 31 146 15 mtmsr
XFX 31 467 13 mtspr
X 31 210 0 46 mtsr
X 31 242 0 46 mtsrin
XL 19 50 10 rfi
SC 17 1 9 sc
X 31 498 0 49 slbia
X 31 434 0 48 slbie
X 31 466 0 48 slbiex
X 31 370 52 tibia
X 31 306 50 tlbie
X 31 338 51 tlbiex
X 31 566 52 tlbsync

, Key to Mode Dependency Column

Parentheses 0 are shown if the instruction is defined
only for 64-bit implementations.

Braces 0 are shown if the instruction is defined only
for 32-bit implementations.

All instructions in the PowerPC Operating Environ
ment Architecture are mode-independent, except that
if the instruction refers to storage when in 32-bit
mode, only the low-order 32 bits of the 64-bit effective
address are used to address storage.

Instruction

Data Cache Block Invalidate
External Control In Word Indexed
External Control Out Word Indexed
Move From Machine State Register
Move From Special Purpose Register
Move From Segment Register
Move From Segment Register Indirect
Move To Machine State Register
Move To Special Purpose Register
Move To Segment Register
Move To Segment Register Indirect
Return From Interrupt
System Call
SLB Invalidate All
SLB Invalidate Entry
SLB Invalidate Entry by Index
TLB Invalidate All
TLB Invalidate Entry
TLB Invalidate Entry by Index
TLB Synchronize

Appendix J. PowerPC Operating Environment Instruction Set 93

IBM Confidential

94 PowerPC Operating Environment Architecture

IBM Confidential

Index

address
real 21

address translation 43
BAT 38,43
block 22
EA to VA 23,24,26,32,33
esid to vsid 23, 24, 26, 32, 33
overview 22, 32
Page Table Entry 29, 35, 43
PTE 29, 35
reference bit 43
RPN 28,34
Segment Table Entry 25
STE 25
VA to RA 23, 28, 32, 34
VPN 28,34
32-bit mode 26
64-bit mode 23

Alignment interrupt 63
DSISR 89

Architecture
intent 84

ASR 24
assembler language

extended mnemonics 75
mnemonics 75
symbols 75

[!J
BAT 22,38
BE 6
block address translation 22, 38
BranchTrace 65

@]
caching inhibited 18,41
change bit 43
coherence, memory 41
combining

accesses 41

combining (continued)
stores 41

context synchronization 3
context (def) 2

@]
DAR 11, 62, 63
data

access
synchronization 83

Data Storage interrupt 61
dcbi 45
DEC 71
Decrementer interrupt 65
delayed Machine Check interrupt 61
direct-store segment 37
DR 7
DSISR 12

alignment interrupt 89

o
E (Enable bit) 73
EAR 73
eciwx 74
ecowx 74'
EE 6
effective address 18, 22

32-bit 33
64-bit 24

exception (def) 2
execution synchronization 4
External interrupt 62

o
FEO 6
FE1 6
Floating-Point Assist interrupt 66
Floating-Point Unavailable interrupt 65
FP 6

Index 95

@]
guarded storage 20,42

G
hardware (def) 2
hashed page table 29, 35

search 30, 36
HTAB 29,35

search 30, 36

o
inhibited, cache 41
inhibited, caching 41
instruction

fetch
synchronization 83

fields 3
SPR 3
SR 3

formats 3
instruction prefetch 20, 43
Instruction Storage interrupt 62
instruction-caused interrupt 58
instructions

dcbi 45
eciwx 74
ecowx 74
optional 73
storage control 45
sync 91

interrupt priorities 67
interrupt synchronization 57
interrupt vector 60
interrupt (def) 2
interrupts

Alignment 63
Data Storage 61
Decrementer 65
External 62
Floating-Point Assist 66
Floating-Point Unavailable 65
Instruction Storage 62
instruction-caused 58
Machine Check 60
new MSR 59
precise 58
Program 64
System Call 65
System Reset 60
system-caused 57
Trace 65

IP 6

IR 7

K bits 44
key, storage 44

[!]
Machine Check interrupt 80
Machine State Register

Branch Trace Enable 8
Data Relocate 7
External Interrupt Enable 6
FP Available 8
FP Exception Mode 6
Instruction Relocate 7
Interrupt Prefix 6
Machine Check Enable 6
Problem State 6
Recoverable Interrupt 7
Single-Step Trace Enable 6
Sixty-Four-bit mode 7

ME 6
memory coherence 18,41
mismatched WIMG bits 42
mnemonics

extended 75
MSR 6
multiprocessor 91

Next Instruction Address 9, 10

~
page fault 19
page protection 44
page table 29, 35

search 30,36
update 53

Page Table Entry 29, 35, 43
PP bits 44
PR 6
precise interrupt 58
prefetch

instruction 20, 43
processor version number 81
Program interrupt 64
PTE 29,35
PVR 8,81

96 PowerPC Operating Environment Architecture

IBM Confidential

IBM Confidential

o
RC bits 43
real address 21, 22
reference and change recording 43
reference bit 43
registers

Address Space Register 24
Data Address Register 11, 62, 63
Data Storage Interrupt Status Register 12
Decrementer 71
External Access Register 73
implementation-specific 87
Machine State Register 6
Machine Status Save

Restore Register 0 5
Restore Register 1 5

optional 73
Processor Version Register 8,81
SDR1 29,35
Segment Registers 83
SPRGn 12
SPRs 11,83,87
SRR 0 5
SRR 1 5
status and control 83
Time Base 69

reserved field 2
RI 7
RID (Resource 10) 73
RTl 2

o
SDR1 29,35
SE 6
segment

direct-store 22, 37
ordinary 22

segment lookaside buffer 26
Segment Registers 83
segment table 25

search 25
update 53

Segment Table Entry 25
SF 7
Single-Step Trace 65
SlB 26
software

synchronization
requirements 84

speculative operations 20
SPR field 3
SPRGn 12
SPRs 11,83
SR field 3

SRR 0 5
SRR 1 5
STAB 25

search 25
status and control registers 83
STE 25
storage

access
synchronization 83

consistency 18
guarded 20
ordering 18
segments 18
weak ordering 18

storage access modes
defined 41
supported 42

storage control
instructions 45

storage key 44
storage model 18
storage operations

speculative 20
storage protection 44
storage, guarded 42
symbols 75
sync exceptions 53
synchronization 3, 53, 83

context 3
execution 4
interrupts 57
requirements 84

System Call interrupt 65
System Reset interrupt 60
system-caused interrupt 57

o
table update 53

. TB 69
TBl 69
TBU 69
Time Base 69
TlB 30, 36
Trace interrupt 65
translation lookaside buffer 30, 36
trap interrupt (def) 2

uniprocessor 91

~
virtual address 22, 24, 28, 33, 34

Index 97

[!J
WIMG bits 21, 41
write through 18
write through, cache 41

I Numerics I
32-bit mode 26

98 PowerPC Operating Environment Architecture

IBM Confidential

"'-- ..

IBM Confidential

Last 'age - End of Document

Index 99

(

(

(

PowerPC Revisions

Revisions to: PowerPC Book 1, Rev. 0.05
Book 2, Rev. 0.04
Book 3, Rev. 0.03

These are changes for the most part agreed to, or in a few cases, under
consideration, to the recently distributed books 1-3 of the PowerPC
architecture. Most are documentation rather than functional issues.

The change notes are in some cases a little criptic, but they at least flag the
areas being revised. Please contact Ron Hochsprung or John Sell with any
comments.

John Sell (Sell.J, 4-5244), Ron Hochsprung (Hochsprungl, 4-2661)

rr: .

Apple Confidential PowerPC Revisions 1

Changes to Book / 1, Revision 0.05, 4/14/92

We don't know of any open functional issues for book I. The floating point
exception mode perfomlance guidance is still open as noted below; and there are
a couple of new business items noted.

1.6.12.2 Agreed to change "invalid" class to "illegal" class. Invalid forms
are still called invalid forms. So now there are defined, illegal and reserved
instructions, and invalid forms of (defined) instructions.

1.6.13.2 In the programming note, using invalid forms "will result in"
rather than "risk" incompatibility. Agreed to delete the programming note.

1.6.14 Would like to have the last paragraph to make the point that the
normal mode for floating point exceptions is to be imprecise. Agreed to
rewrite the paragraph. Also agreed that for now floating point exceptions are
the only recoverable imprecise exceptions; in particular, page faults are
defined to appear precise to software, but this may be revised as future
business.

1. 7.2 In the fourth paragraph, agreed to insert "appears to" into "effective
address wraps around".

2.3.1 After the bullets, CR bits can't be tested in combination by branches.
Agreed to revise wording.

2.4.1 Agreed to change the encoding of branch always so that the sign of the
displacement and the "prediction bit" follow the same algorthm as conditional
branches.

3.3.6 Agreed to delete the lswcbx instruction!!!

3.3.10 L=l is not a mode that determines how operands are treated. It defines
instruction encodings that aren't valid instructions in 32 bit mode or a 32 bit
only implementations. Agreed to revise wording.

3.3.13.2 sradi's sub op field is 413 rather than 826.

4.1 Agreed to change "is not" to "may not be" in conformance (with IEEE)
with NI "Set. However, NI mode won't be fully conforming to IEEE in forseeable
implementations.
Apple Confidential PowerPC Revisions 2

(

(

4.2.2 Agreed to add a new FPSCR bit which causes YX (invalid operation) to
be set. This is to facilitate software implementation of IEEE confoffiling
operations such as square root since YX cannot be set directly.

Agreed to make the "note" part of the regular text.

In the architectural note, agreed to delete the second paragraph. Also agreed
to revise the architecture note so that it makes the following points. The
purpose of NI mode is to always provide results with a guarenteed rate of
execution; it will generally not significantly improve the overall performance
of an application.

Agreed to delete the programming note.

4.3.5 In the second paragraph of item (3), agreed to delete the "must have at
most 24 bits of significand".

Agreed to delete the engineering note.

4.4 The architecture has been changed, or clarified depending on one's
view, so that any reading or writing to the floating point status register is
content synchonizing. This means that the floating point status register
always appears to software to reflect the sequencial state of the machine.
Reading or writing it will also force any exceptions from preceding operations
to happen first; sync is not required, and would typically have a negative
impact on performance. The programming note will be revised accordingly.

Its been agreed to change the performance guidance section, following the
progranuning note. There is still some disagreement as to what it will be.
Following is our position, and our overview of the various floating point
exception modes. (Cathy, the wording that Keith and I worked out at the
meeting is fine; the following may not be exactly the same.)

For the best performance over the widest range of implementations, an
application should use the imprecise, non recoverable mode if possible.
Imprecise, recoverable mode should be used as a second choice. Precise mode is
intended for diagnostic and specialized debugging purposes, and will be very
slow in many implementations. Enabling the inexact exception will also result
in much lower perfomlance in many implementations. The FEOl = 00 exception
disabIre mode provides compatibility with pre PowerPC implementations.

Apple Confidential PowerPC Revisions 3

-- -----_._- - ---- -,-~--.-~-

Floating Point Exception Modes

The non recoverable mode is, of course, not completely IEEE if any exceptions
are enabled since the program cannot be continued with whatever the application
wanted to do about the excepting operation. If all exceptions are disabled,
this mode is fully IEEE; but future implementations should be using software
assistance to deliver the proper result for many exception cases.

The precise and imprecise recoverable modes are fully IEEE, with software
assistance used in future implementations to deliver the proper result for many
exception cases. The exception models for these modes are as follows.

1. Each exception can be enabled individually. For example, inexact and
underflow might be disabled since the disabled result is usually
what the application would like, and invalid, divide by zero and
overflow might be enabled so that the application can substitute
its desired answer or take other special action.

2. For a disabled exception, the sticky bits or last operation bits can
be tested at any time by the application.

3. For an enabled exception, the interrupt handler can take a default
action, an application specified action or transfer to an
application's handler.

We don't see how the override exceptions mode adds essential functionality to
the above; however its certainly no problem having for compatibility with pre
PowerPC. In this mode (FEOI = 00), all exceptions disabled or only inexact
enabled yield the same results and capabilities as above. If one of the other
exceptions is enabled, the results delivered (no result for invalid and divide
by zero) are not suitable for continued processing without some special action.
The application must test after each floating point operation. Going through
the interrupt handler as in (3) above can be functionally equivalent. It can
certainly be argued as to which is easier and (or) better performance. Going
through the interrupt handler isn't high performance if the enabled exceptions
happen often. But adding instructions after every operation to test the
exception bits is worse in most situations. So in the interest of reducing the
instances of multiple ways to do things and the attendent complexity and
confU'Sion, we would like to phase support for the FEO 1 = 00 mode out over time
(like T = 1).
Apple Confidential PowerPC Revisions 4

('

(

(

4.6 Agreed to delete the introductory paragraphs.

4.6.5 Agreed to investigate suggestions for potentially faster convert to
unsigned integer examples; and to provide a complete set of 32 bit
implementation only examples.

" '

Apple Confidential PowerPC Revisions 5

Changes to Book 2, Revision 0.04, 4/14/92

We don't know of any open functional issues for book 2 assuming that the
aliasing issue is closed. However, as new business we are considering using
OSA rather than cache inhibit as the means of preventing store operation
gathering. It was also agreed that some of the wording revisions may be
finished as new business rather than for revision 1.0.

1.2 Agreed to change the last part of the first paragraph to say "A simple
model for sequential execution ... " rather than "A uni processor model".

1.3 Agreed to to change the definition of the page coherency attribute to
be "required / not required" rather than disabled in this and following
sections. Agreed to change the explanation on the next page to say that a
processor is not required to perform coherency operations when the attribute is
off rather than "inhibited from"; and "may not" rather than "will not".

Under caching inhibited, agreed to say "When caching is inhibited, the write
through attribute has no meaning (period)." The rest of the sentence implies
that one must do something that isn't required.

Under coherency, agreed to say "ensures that all copies of a storage location
appear to be identical" rather than "are", as this is what really happens (one
copy is valid and the others aren't actually identical).

1.3.1.2 "Coherency not Required" rather than "disabled"

Agreed to add a description of the architecturally required provision for other
entities in the system to request coherency for a transaction.

All processors at the book 2 level will be able to make a transaction coming
from another entity (to storage) coherent if told to as part of the
transaction. This is different from making one's own transaction coherent
because the page table said to. We want to say this here so that its
understood that things like DMA I/O can be done to and from pages without
setting the page table coherent bit. Otherwise most of the page table coherent
bits would be set. In fact, no page coherency bits should need to be set in
systems where only one entity has a cache. Leaving the page coherency bits off
where possible minimizes bus traffic and improves performance.

" .

1.4 Agreed to revise all of section l.4xx as new business, including the
Apple Confidential PowerPC Revisions 6

following points.

(A typical situation will be to provide system services that programs call to do
things like make data be executable as code, and most importantly that these
service routines can be optimized to do the minimum necessary for the
particular implementation.

(

The cache operations described (in book 2) are user operations; and that beyond
the data to code issue, many of them are there for graphics and other programs
to optimize the use of memory bandwidth where worthwhile.

Include a programming note to the effect that when the system knows that there
is only one entity with caches (eg. a one general purpose processor system),
all pages should have coherency "not required". This will reduce bus traffic
and improve performance, especially in systems where there is a lot of
graphics, video or other DMA.

1.4.1 The instructions are also defined to work appropriately with combined
caches.

1.4.2 It would be more clear to just say that invalidate is a nop except that
it broadcasts if coherency is required, and its OK to check the address.

1.5 Agreed that all implementations will be designed so that it is possible
to support an aliasing on a page basis. In some cases this may require the
addition of external logic. The following is OK as far as implementations go.
t\1y notes say that we did agree to say at the architectural level that aliasing
is allowed on a page basis (period). Is this issue closed?

1.5.1.1 Agreed to consider allowing gathering of store operations for cache
inhibited data as new business. This is currently not allowed. If this change
were made, then OSA would be revised so that gathering was not allowed across
an OSA.

1.5.1.2 The third bullet should say "completed" instead of "competed".

1.5.2.1 Agreed to clarify that reservation addresses must be specified as
coherency required in the page table (in a multiple cache system) rather than
being implied by the instructions.

2. "Agreed to delete the seven numbered attributes section and the two
sentences immediately preceding them.
Apple Confidential PowerPC Revisions 7

2.2 Agreed to add the example of operations to I/O registers.

3.1 Agreed to delete the specific bit values left over from the deleted
memory access parameters instruction.

3.2 Agreed to add that many of the operations may not be required to make
code coherent in particular implementations; and say that its suggested that
code be made coherent by calling a system service which does what is necessary
for the particular implementation.

3.3 See aliasing issue at (1.5)

Agreed to add an architecture or programming note about the real difference
between touch load and touch store; that is, the second one makes sure that the
copy is exclusive.

3.4 In the engineering note, agreed to change "need not stop the processor"
to "does not synchronize all operations in the processor".

4.1 Agreed to define a new 64 bit RTC which counts clock tics (typically
divided by a small power of two). The old one will continue to exist for
compatibility with pre PowerPC implementations; but there will be a note
recommending that it not be used in new software, and that reading and writing
it may be slow in future implementations. The new RTC will be read and written
by new instruction encodings rather than new SPR numbers so that the 601 will
trap.

<C .

Apple Confidential PowerPC Revisions 8

(
Changes to Book 3, Revision 0.03, 4/13/92

We don't know of any open functional issues for book 3. There are a few new
business items noted.

1.3 First bullet, PSR should be PMR.

l.3.1 Fourth bullet, a trap will refer to a taken trap and not the trap
instruction itself.

There is confusion about the definition of "hardware". Agreed to revise the
definition to something equivalent to the following. "Hardware" means any
combination of hardware and software assistance used to implement the
architecture. Software assistance may involve means, including instructions,
which are implementation dependent; and it may operate soley as an extension of
the hardware, appearing to be invisible to all normal software. In some cases,
software assistance may use means which are part of the architecture. For
example, floating point comer cases will typically invoke implementation
dependent assisting software through architected interrupt means.

l.3.2 Agreed to delete that reserved fields are ignored by the hardware.
They should be, of course; but its sufficient to say that software must make
them zero. Then that they are ignored doesn't have to be verified by an
implementation.

2.2.5 Agreed to clarify that version means each PowerPC implemetation. That
is, each implementation has a unique number regardless of who designed it or
what architecture revision it may be. Also applies to description in Appendix
A.

2.3.1 Agreed to make system call context synchronizing, including floating
point. Note (2) will be revised to delete the part about except floating
point. It should also be made clear in the interrupt chapter that all
interrupts are also context synchronizing.

4.2.1 Agreed to consider adding an architecture note as new business under
direct store segment to the effect that: I/O may be memory mapped instead of
using the direct store segments. Direct store segments are not preferred for
new software development as it would be desirable to simplify the architecture
by phasing them out over time.

Apple Confidential PowerPC Revisions 9

4.2.2 The two paragraphs about stores towards the end could be made more
clear by combining them to simply say that stores finish completely, or call /
the alignment handler having done nothing, or have stopped at a protection \,
boundary.

Between this section and 5.6, it would help to state the architecture
specifications that these book 3 exception rules are supporting; atomic,
interrupted/no repeat, and restartable. The goal of these book 3 rules is to
make it so that one alignment handler will work for a wide range of
implementations.

Agreed to revise wording to clarify this section and reference book 2
architectural specifications.

4.2.5 First bullet under instruction prefetch, agreed to change "pern1itted
except that when" to "permitted. Note that when".

Agreed to add an architectural note about machine check. Machine checks
resulting solely from speculative execution will not be reported. Machine
checks which a non speculatively executed program could not guarantee to avoid
may be reported. Cache or internal data path parity errors are examples of
errors that would be reported if implemented. An error resulting from a
memory
operation to the primary location for the memory address (which could be a
special device rather than main memory) would not be reported.

4.3 Agreed to delete the one control path in the drawing. It was meant to
illustrate logical process flow.

Agreed to delete or correct the last paragraph, which contradicts the BAT
precedence rule.

4.4.1.3 Decided to not combine the primary and secondary hash into one 16
entry search in order to be compatible with the 601 (to late to change). Also
32 bit version at 4.5.2.3.

In the large programming note:

Agreed to delete (2) and (3). Also at 4.4.2.3 and 4.5.2.3. (2) is an
implementation detail, and (3) merely says that these accesses follow the same
rules 'flS -all others.

Apple Confidential PowerPC Revisions 10

(

(

(

Agreed to delete (8), which is superceded by the revised context synchronizing
rules in Appendix B. Agreed to delete the engineering note immediately
preceding the large programming note.

4.4.2.1 Second paragraph before the engineering note should say "at least
one-half ... " to be consistent with similar paragraph in 32 bit section.

4.4.2.2 Engineering note should say 52 rather than 32 bit address.

4.6.1 Agreed to delete 601 note.

4.6.3 Agreed that instructions not supported for t= 1 are invalid forms.
They don't necessarily trap.

4.7.1 Agreed to revise the programming note so that it is more clear that the
architecture allows normal page table entries to lie within a BAT; but since
the BAT overrides, its not necessary for all of the equivalent regular pages
to be entered into the page table.

Agreed that there will be four code and four data BAT's. All powers of two
sizes from 128 KB through 256 MB will be provided in both 32 bit only and
64/32 implementations.

4.7.2 Agreed to delete the 601 note. The 601 BAT configuration will deviate
from the architecture because its too late to fix; as described in the 601 Book
4. Revise this section to conform with changes outlined in 4.7.1.

4.8.1 See Book 2, 1.5.1.1 regarding store gathering.

Under memory coherent, agreed to mention that other entities can request that
their transactions be made coherent, as in similar feature to be added to book
2. Also because of this, M can be off for everything in a system where only
one entity has a cache. Finally, if coherency is off, then hardware "need not"
rather than "should not" enforce data coherency.

4.11 Agreed to move the page table update examples so that they follow the
definitions of the instructions used.

Agreed to note how much less is required for a uni processor system. For
example, usually only a sync after everything is done. Will also provide
examf>les for uni processor systems.

Apple Confidential PowerPC Revisions 1 1

4.12.1 Agreed to move the section 4.12.3 on cache somewhere else. Then 4.12
deals only with virtual address caching, that is look aside buffer operations.
There will be introductory paragraphs explaining that there are a sets of",.,"
functions that an implementation must have; how these may vary depending on
the
look aside capabilities and degree of multiple processor support of the
implementation; and that the instructions described are suggested models for
the operations which implementations should select from or propose desired
alternatives. The goal is to encourage software to constrain where the
operations are used so that it would be practical for them to be different on
an implementation; and to encourage implementations to not be unecessarily
different.

Not agreed, but its our position that the first point of the engineering note
should be changed so that it is equivalent to the third point; that is, its
implementation dependent whether software or hardware keeps multiple sets of
segment registers consistent.

4.12.3 Machine attributes instruction has been deleted.

5.2.1, 5.2.2 Agreed to make t=1 store errors precise and fold into regular
data storage interrupt.

5.3 Agreed that reading fp status bits is content synchronizing.

5.5 Agreed to consider as new business whether power on reset should be
moved from Book 4 to Book 3.

Agreed to add an architected entry point for floating point comer case
assistance code; and list the minimum information that must be delivered by
hardware. The details of what is delivered and where are implementation
dependent. The minimum information and requirements are to be able to
determine the operation, the source operands, the result register, where to
resume execution since the assisted (or excepting) operation may be imprecise,
and be reported one at a time in proper order.

5.5.2 Agreed to delete "and some may do no error checking" from the
engineering note.

i'":,· ,"I
.~ , ; I ... ~ ; • ; : ~ ;

5.5.3 Agreed that stwcx and s'tdcx won't get 'a' Dst if the reservation'has been
lost (to avoid unimportant implementation dependencies).' u

Apple Confidential PowerPC Revisions

(-

Agreed that DSISR is set to 1 if the translation is not found in either HTEG or
a BAT.

5.5.6 Agreed to delete the first paragraph of the engineering note, and to
make the second paragraph a separate section which is not a subset of
alignment.

5.5.7 Agreed to clarify wording of invalid instructions; implementations are
also allowed to generate for any invalid fonns.

5.6 Agreed that this section will be updated to be consistant with the
rules that have been agreed to about exactly which instructions may be
partially completed, where they stop, and which ones are restartable and which
ones must be finished from where they stopped.

5.7.2 Agreed to delete the last two paragraphs (too many questions about the
model example).

6.x Agreed to define a new 64 bit RTC which counts clock tics (typically
divided by a small power of two). The old one will continue to exist for
compatibility with pre PowerPC implementations; but there will be a note
recommending that it not be used in new software, and that reading and writing
it may be slow in future implementations. The new RTC will be read and written
by new instruction encodings rather than new SPR numbers so that the 601 will
trap.

Appendix B.

Agreed to completely revise this section. It will detail context synchonizing
requirements for SPR, TLB and segment registers. A major goal is to eliminate
the need for special synchronization operations in frequently occuring cases.
In most cases, reading or writing an SPR will context sychronize on the
affected data. For example, reading and writing floating point status will be "
context synchronizing. "

General.

Agreed as new business to add an appendix summarizing the major PowerPC
architecture options; 64 ;bit"an~ ~ymmY,tIi~F\.mpltiple'processors (optional
hard~are support for look aside buffer and coge cache coherency operations) .

• , ,..1 \w! '·.1 ~ .'

Apple Confic;fential PowerPC Revisions .
:'.' .:. /'-' i ;q'b\:'" 1 3

It
,

.. ."iJ].';.,

(

) ...:,.'

PowerPC Notes for the 601

Introduction

This document describes where the 601 chip differs from the official 1.02 version of the PowerPC
Architecture. The differences came about because the design of the 60 1 had to be "frozen"
relatively early in the process of the PowerPC Architecture definition. Hence, several changes to
the architecture were made which were not able to be reflected in the 601 chip.

In some cases, the second version of the 601 chip (called DD2) will incorporate changes to make it
more compatible with the official architecture. These instances will be noted below.

General Differences

The PowerPC Architecture defines a new set of mnemonics for many existing POWER
instructions. However, we do not seem to have an assembler capable of accepting the "official"
mnemonics. This issue must be dealt with by either getting an assembler which works! or by pre
processing source code to map the mnemonics and/or generate .long values for new PowerPC
instructions which don't have an existing mnemonic (e.g., LWARX.). .

Book I

The biggest change to Book I occurred with the addition of support for Little-Endian address
mode; this change is described in Appendix D. The first version of the 601 (with which we are
building EVT PDM's and Smurfs) does not have this mode. The second version, DD2, will add
support for Litde-Endian.

Book II
With the exception of the Time Base, the 601 implements Book II as described. Since it has a
unified cache with sectored lines, there are differences between coherency size (which relates to
how cache tags are kept) and block sizes for cache instructions (which relate to the burst-mode unit
of data).

Chapter 3. Storage Control Instructions

3.1 Parameters Useful to Application Programs

The parameters described in section 3.1 for the 601 are:

1. Page Size: 4 KBytes
2. Coherence block size: 64 Bytes
3. Reservation block size: 64 Bytes
4. Split or Combined caches: Combined cache
5,7: Total cache size: 32 KBytes
6,8: cache line size: 64 Bytes
9: debt, debtst block size: 32 Bytes
10: iebi block size: 32 Bytes
11: debz, debst, debf, debi: 32 Bytes
12,13: Combined cache associativity: 8-way
14: See below for Time Base differences

Chapter 4. Time Base

The official PowerPC Architecture defines the Time Base Register to be a 64-bit value which is
incremented at some "implementation-dependent" frequency. In fact, the frequency will (usually)
be the "bus clock", which is a divisor of the processor's clock.

RRH 1 Feb. 8, 1993

i!J
!
I
i

PowerPC Notes for the 601

However, the 601 uses the old POWER definition where the upper 32-bit register is meant to be
seconds and the lower 32-bit register is nano-seconds. The lower register "rolls-over" at
1,000,000,000, whereupon the upper register is incremented and the lower register goes to O.

To implement this, the 601 has a separate pin which is meant to be driven at 7.8125 MHz (128
nsec. cycle time); this, in tum, increments bit -24 of the lower register. In all of our
implementations, the clock is really driven at 7.8336 MHz, so that the Time Base appears to run
slightly faster than it should.

Book III
The major difference of the 601 versus the PowerPC Architecture involves the Block Address
Translation mechanism. In the original PowerPC, there were only 4 BAT registers; the current
PowerPC has 4 BA T registers for each of Instruction and Data. In addition, the format of the
registers changed.

3.4.1 Move To/From System Registers Instructions

The tables defining register values for use in mfspr, mtspr are incorrect for the 601. The 601 only
has a total of 4 BATs, whose addresses correspond to those listed as IBA Tnx in Figures 9 & 10;

4.2.1 Storage Segments

The 601 implements Direct Store Segments, using the T-bit in a Segment Register, as described in
this section. However, unlike the official architecture, the 601 will always look at the T-bit,
regardless of the state of the corresponding MSRIR or MSRDR.

4.6 Direct-Store Segments
See above.

4.7 Block Address Translation

The description in Book III is generally correct, except for Figure 26. The correct version of
Figure 26 for the 601 is:

o

BEPI

BRPN
o

The legal values for BL are:

00000o 128 KB
00000 1 256 KB
000011 512 KB
000111 1 MB
001111 2MB
011111 4MB
111111 8MB

4.8 Storage Access Modes

III

III

2
5

2233
8901

2233
8901

The 601 does not have a G-bit defined; i.e., Guarded Storage is not defined for the 601.

RRH 2 Feb. 8, 1993

PowerPC Notes for the 601

Chapter 6. Timer Facilities
This chapter needs to be interpreted in light of the discussion of Book II Time Base. The
Decrementer register counts down at the "External Clock" rate, which is 7.8336 MHz for our
systems.

Appendix A.1.2 External Access Instructions

While the 601 implements these, along with the EAR register, our systems will not work correctly
if they are used. Assuming that the system never enables them (via the EAR), they will cause a
Data Storage Interrupt.

RRH 3 Feb. 8, 1993

I'
Ij

PowerPC by OpCode :1

*** I * + new PowerPC instruction
* old POWER instruction; not in PowerPC Ii

* P Privileged instruction (Book III) Ii
* ! 54-bit only instruction i
* ? optional instruction
*************************************.***************

10 0 0 0.0 Ol? ?? ? ? ?? ? ? ?? ? ? ?? ? ? ?? ? ? ?? ? ? ?I ««<undeflned»»>
10 0 0 0.0 II? ?? ? ? ?? ? ? ?? ? ? ?? ? ? ?? ? ? ?? ? ? ?I ««<undefined»»>
10 0 0 0.1 01 .T 0 I RA 5 1.1 6 I ! TDI
10 0 0 0.1 11 .T 0 I RA 5 1.1 6 I TWI TI
10 0 0 1.0 Ol? ? .. ? ? ? ? .. ? ? ? ?? ? ? ?? ? ? ?? ? ? ?? ? ? ?I ««<undefined»»>
10 0 0 1.0 II? ?? ? ? ?? ? ? ?? ? ? ?? ? ? ?? ? ? ?? ? ? ?I ««<undefined»»>
10 0 0 1.1 Ol? ?? ? ? ?? ? ? ?? ? ? ?? ? ? ?? ? ? ?? ? ? ?I ««<undefined»»>
10 0 0 1.1 11 .R T I RA I 5 1.1 6 I MULLI MULl
10 0 1 0.0 01 .R T I R A I 5 1.1 6 I 5UBFIC SFI
10 0 1 0.0 1 .R T I R A I D.1 6 I DOZI
10 0 1 0.1 0 B.FI/ILI R A I 5 1.1 6 I CMP[WIDJLI
10 0 1 0.1 1 B.FI/ILI RA I S 1.1 6 I CMP[WIDJI
10 0 1 1.0 0 .R T I RA I S 1.1 6 I ADDIC AI
10 0 1 1.0 1 .R T I RA I S 1.1 6 I ADDIC. AI.
10 0 1 1.1 0 .R T I RA I 5 1.1 6 I ADD I CAL
10 0 1 1.1 1 .R T I RA I S 1.1 6 I ADDIS CAU
10 1 0 0.0 0 .B 0 I B I I B 0 1.4 IAILI BC[LJ (AJ
10 1 0 0.0 1 I 1.1 I I 1.1 I I 1.1 I I 1.1 I I 1.1 I I 1.1 1111/1 SC SVC(AJ
10 1 0 0.1 0 . .L I 2 4. IAILI B(LJ [AJ
10 1 0 0.1 1 B.FII IIB.F AI/ /11 / I /./10 0 0.0 0 0 0.0 o 01/1 MCRF
10 1 0 0.1 1 .B 0 I B I II I I /./10 0 0.0 0 1 0.0 o OILI BCLR[LJ BCR(LJ
10 1 0 0.1 1 .B T I BA I B B. 10 0 0.0 1 0 0.0 o 11/1 CRNOR
10 1 0 0.1 1 I 1./ I 11/.1 I I III I I /./10 0 0.0 1 1 0.0 1 0 III P RFI
10 1 0 0.1 1 I 1.1 I 11/./ / I /11 I I /./10 0 0.1 0 1 0.0 1 01/1 p- RFSVC
10 1 0 0.1 1 .B T I BA I B B. 10 0 1.0 0 0 0.0 o 11/1 CRANDC
10 1 0 0.1 1 I 1.1 I 11/./ / / /1/ / I /./10 0 1.0 0 1 0.1 1 01/1 ISYNC ICS
10 1 0 0.1 1 .B T I B A I B B. 10 0 1.1 0 0 0.0 o 11/1 CRXOR
10 1 0 0.1 1 . B T I B A I B B . 10 0 1.1 1 0 0.0 o 11/1 CRNAND
10 1 0 0.1 1 .B T I B A I B B. 10 1 0.0 0 0 0.0 o 11/1 CRAND
10 1 0 0.1 1 . B T I B A I B B . 10 1 0.0 1 0 0.0 o 11/1 CREQV
10 1 0 0.1 1 . B T I B A I B B . 10 1 1.0 1 0 0.0 o 11/1 CRORC
10 1 0 0.1 1 .B T I B A I B B. 10 1 1.1 0 0 0.0 o 11/1 CROR
10 1 0 0.1 1 .B 0 I B I II I I 1./11 0 0.0 o 1 0.0 a OILI BCCTR[LJ BCC(LJ
10 1 0 1.0 0 . R S I R A 5 H • I m.b I .m e IRI RLWIMI (.J RLIMI [. J
10 1 0 1.0 1 .R 5 I RA 5 H. I m.b I .m e IRI RLWINM[.J RLINME.J
10 1 0 1.1 0 .R 5 I RA R B. I m.b I .m e IRI RLMI[.J
10 1 0 1.1 1 .R 5 I R A R B. I m.b I .m e IRI RLWNME.J RLNM[.J
10 1 1 0.0 01 .R 5 I RA U 1.1 6 I ORI ORIL
10 1 1 0.0 11 .R S I RA U 1.1 6 I ORIS ORIU
10 1 1 0.1 01 .R 5 I RA U 1.1 6 I XORI XORIL
10 1 1 0.1 11 .R S I RA U 1.1 6 I XORI5 XORIU
10 1 1 1.0 01 .R S I RA U 1.1 6 I ANDI. ANDIL.
10 1 1 1.0 11 .R S I RA U 1.1 6 I ANDIS. ANDIU.
10 1 1 1.1 01 .R S I RA s h. I m.b 10 0.0 OlslRI R1OICL(. J
10 1 1 1.1 01 . R S I RA s h . I m.e 10 0.0 11slRI RLDICR(.J
[a 1 1 1.1 01 .R S I RA s h. I m.b 10 0.1 OlslRI R1OIC(.J
10 1 1 1.1 01 .R S I RA s h. I m.b 10 0.1 11slRI RLDIMI (. J
10 1 1 1.1 01 .R S I RA R B. I m.b 10 1.0 o OIRI RLDCL(.J
10 1 1 1.1 01 .R S I RA R B. I m.e 10 1.0 o lIRI RLDCR(. J
10 1 1 1.1 11 B.FI/ILI RA R B. 10 0 0.0 o 0 0.0 o OIRI CMP(WIDJ
10 1 1 1.1 11 .T 0 I RA R B. 10 0 0.0 o 0 0.1 o 01/1 TW T
10 1 1 1.1 11 .R T I RA R B. IVIO 0.0 o 0 1.0 o OIRI 5UBFC (OJ (.J SF(OJ (. J
10 1 1 1.1 11 . R T I R A R B . 1/10 0.0 o 0 1.0 o llRI MULHDU(. J
10 1 1 1.1 11 .R T I R A R B. IVIO 0.0 o 0 1.0 1 OIRI ADDC(OJ (. J A[OJ E. J
10 1 1 1.1 11 • R T I RA I R B . 1/10 0.0 o 0 1.0 1 llRI + MULHWU(.J
10 1 1 1.1 11 .R T 1/.1 I I III I I 1.110 0 0.0 o 1 0.0 1 11/1 MFCR
iO 1 1 1.1 11 . R T I R A I R B • 10 0 0.0 o 1 0.1 o 01/1 + LWARX
10 1 1 1.1 11 .R T I RA I R B. 10 0 0.0 o 1 0.1 o 11/1 LDX
10 1 1 1.1 11 .R T I RA I R B. 10 0 0.0 o 1 0.1 1 11/1 LWZX LX
10 1 1 1.1 11 .R 5 I RA I R B. 10 0 0.0 o 1 1.0 o OIRI SLWE.J 5L(.J
10 1 1 1.1 11 .R 5 I RA 11/11./100 0.0 o 1 1.0 1 OIRI CNTLZW(. J CNTLZ[. J
10 1 1 1.1 11 • R 5 I RA I R B • 10 0 0.0 0 1 1.0 1 l/RI 510[. J
10 1 1 1.1 11 .R S I RA I R B. 10 0 0.0 0 1 1.1 0 OIRI AND(.J
10 1 1 1.1 III 1.1 I 11/.1 I I III I I 1./10 0 0.0 0 1 1.1011/1 MA5KG[. J
10 1 1 1.1 11 B.Ft/ILI RA I R B. 10 0 0.0 1 0 0.0 0 OIRI CMP[WIDJL
10 1 1 1.1 11 .R T I RA I R B. IVIO 0.0 1 0 1.0 0 OIRI + SUBF [OJ [. J
10 1 1 1.1 11 .R T I RA I R B. 10 0 0.0 1 1 0.1 0 11/1 ! LDUX
10 1 1 1.1 III 1,/ I II RA I R B. 10 0 0.0 1 1 0.1 1 Dill + DCBST

RRH - 1 - Jan. 7, 1993

I·~
1

I
I

PowerPC by OpCode

10 1 1 1.1 11 .R T R A I R B. 10 0 0.0 1 1 0.1 1 11/1 LWZUX LUX
10 1 1 1.1 11 .R S R A 1/ / / /./10 0 0.0 1 1 1.0 1 OIRI CNTLZD[. J
10 1 1 1.1 11 .R S R A I R B. 10 0 0.0 1 1 1.1 0 01 RI ANDC[. J
10 1 1 1.1 11 . T 0 RA I R B . 10 0 0.1 0 0 0.1 0 01/1 TD
10 1 1 1.1 11 .R T R A I R B. 1/10 0.1 0 0 1.0 0 11RI MULHD [. J
10 1 1 1.1 11 • R T I R A I R B . 1/10 0.1 0 0 1.0 1 11RI + MULHW[. J
10 1 1 1.1 11 .R T 1/./ / / /1/ / / /./10 0 0.1 0 1 0.0 1 11/1 P MFMSR
10 1 1 1.1 11 .R T I R A I R B. 10 0 0.1 0 1 0.1 0 01/1 LDARX
10 1 1 1.1 11/ /./ / /1 R A I R B. 10 0 0.1 0 1 0.1 1 01/1 + DCBF
10 1 1 1.1 11 . R T I RA I R B . 10 0 0.1 0 1 0.1 1 11/1 LBZX
10 1 1 1.1 11 .R T I R A 1/ / / /./IVIO 0.1 1 0 1.0 0 01 RI NEG[OJ [.J
10 1 1 1.1 11 . R T I R A I R B . IVIO 0.1 1 0 1.0 1 11RI MUL[OJ [. J
10 1 1 1.1 111 1./ / /1/./ I I /11 I / 1./10 0 0.1 1 1 0.1 1 01/1 CLF
10 1 1 1.1 11 . R T I RA I R B . 10 0 0.1 1 1 0.1 1 11/1 LBZUX
10 1 1 1.1 11 .R S I RA I R B. 10 0 0.1 1 1 1.1 0 01 RI NOR[. J
10 1 1 1.1 11 .R T I RA I R B. IVIO 1.0 0 0 1.0 0 OIRI SUBFE [OJ [. J SFE[OJ [.J
10 1 1 1.1 11 .R T I RA I R B. IVIO 1.0 0 0 1.0 1 OIRI ADDE[OJ [.J AE[OJ [. J
10 1 1 1.1 11 .R S 1/1 F.X M 1/10 0 1.0 0 1 0.0 0 01/1 MTCRF
iO 1 1 1.1 11 .R S 1/./ / / /1/ / / 1./10 0 1.0 0 1 0.0 1 01/1 P MTMSR
10 1 1 1.1 11 .R S I R A I R B. 10 0 1.0 0 1 0.1 0 11/1 STDX
10 1 1 1.1 1 .R S I RA I R B. 10 0 1.0 0 1 0.1 1 0111 + STWCX.
10 1 1 1.1 1 .R S I RA I R B. 10 0 1.0 0 1 0.1 1 11/1 STWX STX
10 1 1 1.1 1 / /.1 / /1/./ I I /1/ / I 1./10 0 1.0 a 1 1.0 a 01/1 SLQ[. J
10 1 1 1.1 1 I 1./ I /1/.1 I I /11 I I 1./10 a 1.0 0 1 1.00 11/1 SLE
10 1 1 1.1 1 .R S I RA I R B. 10 a 1.0 1 1 0.1 a 11/1 STDUX
10 1 1 1.1 1 .R S I RA I R B. 10 0 1.0 1 1 0.1 1 11/1 STWUX STUX
10 1 1 1.1 1 I 1.1 / /1/./ I / /11 / / /./10 a 1.0 1 1 1.0 a 01/1 SLIQ[.J
10 1 1 1.1 1 .R T I RA II / I/'/IVIO 1.1 a 0 1.0 0 OIRI SUBFZE [OJ [. J SFZE[OJ [. J
10 1 1 1.1 1 .R T I RA II / II./IVIO 1.1 a a 1. 0 1 OIRI ADDZE [OJ [. J AZE[OJ [. J
10 1 1 1.1 1 .R S III S R II / I /./10 0 1.1 a 1 0.0 1 01/1 P MTSR
10 1 1 1.1 1 .R S I RA I R B. 10 0 1.1 a 1 0.1 1 0111 STDCX.
10 1 1 1.1 1 . R S I RA I R B . 10 0 1.1 0 1 0.1 1 11/1 STBX
10 1 1 1.1 11/ 1./ I 11/.1 I I III I / 1./10 0 1.1 0 1 1.00 01/1 SLLQ[. J
10 1 1 1.1 11/ /./ / 11/./ I I /11 I I /./10 0 1.1 0 1 1.00 11/1 SLEQ[. J
10 1 1 1.1 11 .R T I R A 1/ / / /./IVIO 1.1 1 0 1.00 OIRI SUBFME [OJ [. J SFME [OJ [.J
10 1 1 1.1 11 .R T I RA I R B. IVIO 1.1 1 0 1.00 lIRI MULLD [OJ [. J
10 1 1 1.1 11 .R T I RA 1/ / I/./IVIO 1.1 1 0 1.0 1 OIRI ADDME [0] [.J AME[OJ [. J
10 1 1 1.1 11 . R T I RA I R B . IVIO 1.1 1 0 1.0 1 11RI MULLW[OJ [.J MULS [OJ [. J
1::1 1 1 1.1 11 .R S 1/,/1111 R B. 10 a 1.1 1 1 0.0 1 01/1 P MTSRIN MTSRI
10 1 1 1.1 III 1,/ I II RA I R B. 10 0 1.1 1 1 0.1 1 01/1 + DCBTST
10 1 1 1.1 11 .R S I RA I R B. 10 0 1.1 1 1 0.1 1 11/1 STBUX
," 1 1 1.1 11/ 1.1 / 11/./ I I III I / /./10 a 1.1 1 1 1.00 01/1 SLLIQ[. J IV

;0 1 1 1.1 11 . R T I RA I R B . IVII 0.0 0 0 1.0 0 o IRI DOZ[OJ [. J
," 1 1 1.1 11 .R T I RA I R B. IVl1 0.0 0 a 1.0 1 OIRI ADD [OJ [. J CAX[OJ [.J IV

12 1 1 1.1 11 .R T I R A I R B. 10 1 0.0 0 1 0.1 a URI LSCBX [. J
;0
,v 1 1 1.1 11/ 1./ I /1 RA I R B. 10 1 0.0 0 1 0.1 1 01/1 + DCBT
," IV 1 1 1.1 11 .R T I RA I R B. 10 1 0.0 a 1 0.1 1 11/1 LHZX
;8 1 1 1.1 11 . R S I RA I R B . 10 1 0.0 0 1 1.1 0 OIRI EQV[. J
:~ 1 1 1.1 III 1.1 / 11/./ I I II R B. 10 1 0.0 1 1 0.0 1 01/1 P? TLBIE TL3I
'0 1 1 1.1 11 .R T I RA I R B. 10 1 0.0 1 1 0.1 1 01/1 ? ECIWX
1J 1 1 1.1 11 . R T I RA I R B . 10 1 0.0 1 1 0.1 1 11/1 LHZUX
10 1 1 1.1 11 . R S I RA I R B . 10 1 0.0 1 1 1.1 a a IRI XOR[.J
)8 1 1 1.1 11 .R T I RA I R B. IVl1 0.1 0 0 1.0 1 11RI DIV[OJ [. J
Iv 1 1 1.1 11/ /.1 / /1/.1 I / /1 R B. 10 1 0.1 0 1 0.0 1 01/1 P? TLBIEX
, " 1 1 1.1 11 .R T I S.P R 10 1 0.1 a 1 0.0 1 11/1 MFSPR ,v

10 1 1 1.1 11 .R T I RA I R B. 10 1 0.1 a 1 0.1 0 11/1 LWAX
I" , v 1 1 1.1 11 .R T I R A I R B. 10 1 0.1 0 1 0.1 1 11/1 LHAX
j8 1 1 1.1 11 .R T I R A I R B. IVl1 0.1 1 0 1.0 0 OIRI ABS[OJ [.J
;2 1 1 1.1 11 .R T I R A I R B. IVl1 0.1 1 0 1.0 1 11Rl DIVS [OJ [.J
10 1 1 1.1 III 1.1 / 11/.1 I / /11 / I 1./10 1 0.1 1 1 0.0 1 01/1 P? TLBIA
I" ,v 1 1 1.1 11 .R T I RA I R B. 10 1 0.1 1 1 0.1 0 11/1 LWAUX
i~ 1 1 1.1 11 .R T I RA I R B. 10 1 0.1 1 1 0.1 1 11/1 LHAUX
I:; 1 1 1.1 11 .R S I R A I R B. 10 1 1.0 0 1 0.1 1 11/1 STHX

v 1 1 1.1 11 .R S I R A I R B. 10 1 1.0 a 1 1.1 a OIRI ORC[. J
,,, 1 1 1.1 III 1.1 I /1/.1 I I II R B. 10 1 1.0 1 1 0.0 1 01/1 P! SLBIE ,v

I:] 1 1 1.1 11 .R S I RA I R B. 10 1 1.0 1 1 0.1 1 01/1 ? ECOWX
j::: 1 1 1.1 11 .R S I RA I R B. 10 1 1.0 1 1 0.1 1 11/1 STHUX
!~ 1 1 1.1 11 .R S I R A I R B. 10 1 1.0 1 1 1.1 0 OIRI ORr. J
I::: 1 1 1.1 11 .R T I RA I R B. IVl1 1.1 0 a 1.0 a 11RI DIVDU [OJ [. J
\8 1 1 1.1 11 .R T I RA I R B. IVII 1.1 0 0 1.0 1 lIRI + DIVWU[OJ [.J
," 1 1 1.1 111 /./ I /1/.1 / I II R B. 10 1 1.1 0 1 0.0 1 alii P! SLBIEX I"

10 1 1 1.1 11 .R S I S.P R 10 1 1.1 a 1 0.0 1 11/1 MTSPR
I" ,v 1 1 1.1 III 1,/ I II RA I R B. 10 1 1.1 0 1 0.1 1 01/1 P+ DCBI
1:.1 1 1 1.1 11 .R S I RA I R B. 10 1 1.1 0 1 1.1 a OIRI NAND[.]
i~ 1 1 1.1 11 . R T I RA I R B . IVl1 1.1 1 0 1.0 a OIRI NA3S[O] [.J
IJ 1 1 1.1 11 .R T I RA I R B. IVII 1.1 1 0 1.0 a 11RI ! DIVD [0] [.J

RRH -2- Jan. 7. 1993

PowerPC by OpCode

10 1 1 1.1 11 .R T I RA I R B. IVII 1.1 1 0 1.0 1 lIRI + DIVW[O] [.]
10 1 1 1.1 III 1.1 I 11/.1 I I III I I 1./10 1 1.1 1 1 0.0 1 01/1 P! SLBIA
10 1 1 1.1 III 1.1 I 11/.1 I I III I I 1./10 1 1.1 1 1 0.1 1 01/1 P- CLI
10 1 1 1.1 11 B.FI/ 11/./ / I /11 I I /./11 0 0.0 0 0 0.0 0 01/1 Mcrom
10 1 1 1.1 11 .R T I R I II I I 1./11 0 0.0 0 1 0.0 1 11/1 CLCS
10 1 1 1.1 11 .R T I R A R B. 11 0 0.0 0 1 0.1 0 II/I LSWX LSX
10 1 1 1.1 11 .R T I " R A R B. 11 0 0.0 0 1 0.1 1 01/1 LWBRX LBRX
10 1 1 1.1 11 F.R T I R A R B. 11 0 0.0 0 1 0.1 1 11/1 LFSX
10 1 1 1.1 11 .R S I R A R B. 11 0 0.0 0 1 1.0 o OIRI SRW[.] SR(.J
10 1 1 1.1 III /.1 I 11/.1 I I I I I I 1./11 0 0.0 0 1 1.0 o II/I RRIB(.J
10 1 1 1.1 11 .R S I RA R B. 11 0 0.0 0 1 1.0 1 11RI SRD(.J
10 1 1 1.1 III 1.1 I 11/.1 I I I I I I 1./11 0 0.0 0 1 1.1 o 11/1 MASKIR(.J
10 1 1 1.1 11 F.R T I R A R B. 11 0 0.0 1 1 0.1 1 11/1 LFSUX
10 1 1 1.1 11 .R T 1/1 S R //1/./11 0 0.1 0 1 0.0 1 11/1 P MFSR
10 1 1 1.1 11 .R T I RA N B. 11 0 0.1 0 1 0.1 o 11/1 LSWI LSI
10 1 1 1.1 III /.1 I 11/.1 I I I I I I 1./11 0 0.1 0 1 0.1 1 01/1 SYNC DCS
10 1 1 1.1 11 F.R T I . RA R B. 11 0 0.1 0 1 0.1 1 11/1 LFDX
10 1 1 1.1 III /.1 I 11/./ I I I / I I 1./11 0 0.1 1 1 0.0 1 II/I P- MFSRI
10 1 1 1.1 III 1./ / /1/./ I I / / I I 1./11 0 0.1 1 1 0.1 1 01/1 DCLST
10 1 1 1.1 11 F.R T I RA R B. 11 0 0.1 1 1 0.1 1 1 III LFDUX
10 1 1 1.1 11 .R T 1/./ I I II R B. 11 0 1.0 0 1 0.0 1 1111 P+ MFSRIN
10 1 1 1.1 11 .R S I RA I R B. 11 0 1.0 0 1 0.1 o llRI STSWX STSX
10 1 1 1.1 11 . R S I RA I R B . 11 0 1.0 0 1 0.1 1 01/1 STWBRX STBRX
10 1 1 1.1 11 F.R S I RA I R B. 11 0 1.0 0 1 0.1 1 11/1 STFSX
10 1 1 1.1 11/ 1.1 I 11/.1 I / III I I 1./11 0 1.0 0 1 1.0 o 01/1 SRQ(.J
10 1 1 1.1 III 1.1 I 11/.1 I I III I I 1./11 0 1.0 0 1 1.0 o 11/1 SRE(.J
10 1 1 1.1 11 F.R S I RA I R B. 11 0 1.0 1 1 0.1 1 11/1 STFSUX
10 1 1 1.1 1 I 1.1 I 11/.1 I I III I I 1./11 0 1.0 1 1 1.0 o 01/1 SRIQ(.J
10 1 1 1.1 1 .R S I RA I N B. 11 0 1.1 0 1 0.1 o 11/1 STSWI STSI
10 1 1 1.1 1 F.R S I RA I R B. 11 0 1.1 0 1 0.1 1 11/1 STFDX
10 1 1 1.1 1 I 1.1 I 11/.1 I I III I I 1./11 0 1.1 0 1 1.0 o 01/1 SRLQ(.J
10 1 1 1.1 1 I 1.1 I 11/.1 I I III I I 1./11 0 1.1 0 1 1.0 o 11/1 SREQ(.J
10 1 1 1.1 1 F.R S I RA I R B. 11 0 1.1 1 1 0.1 1 11/1 STFDUX
10 1 1 1.1 1 I 1./ I 11/./ I / III I I /./11 0 1.1 1 1 1.0 o 01/1 SRLIQ(.J
10 1 1 1.1 1 .R T I RA I R B. 11 1 0.0 0 1 0.1 1 01/1 LHBRX
10 1 1 1.1 1 . R S I RA I R B . 11 1 0.0 0 1 1.0 o OIRI SRAW(.] SRA(.J
10 1 1 1.1 1 .R S I RA I R B. 11 1 0.0 0 1 1.0 1 OIRI SRAD(.J
10 1 1 1.1 1 / /.1 I 11/.1 I I III I / 1./11 1 0.0 1 1 0.0 1 01/1 P- RAC
iO 1 1 1.1 1 .R S I RA I S H. 11 1 0.0 1 1 1.0 o OIRI SRAWI (.J SRAI (.J
10 1 1 1.1 1 .R S I RA I s h. 11 0 0.1 1 1 0.1 OlslRI SRADI (.J
10 1 1 1.1 III 1./ I 11/./ I I III / I 1./11 1 0.1 0 1 0.1 1 01/1 + EIEIO
10 1 1 1.1 11 . R S I RA I R B . 11 1 1.0 0 1 0.1 1 0 III STHBRX
10 1 1 1.1 III /./ I /1/.1 / / /11 / I 1./11 1 1.0 0 1 1.0 o 01/1 SRAQ(.J
10 1 1 1.1 11/ 1.1 I /1/./ / I /11 I I 1./11 1 1.0 0 1 1.0 o 11/1 SREA(.J
:0 1 1 1.1 11 .R S I RA II I I 1./11 1 1.0 0 1 1.0 1 OIRI EXTSH(.J EXTS(.J
iO 1 1 1.1 III 1./ I /1/./ / I III I I 1./11 1 1.0 1 1 1.0 o 01/1 SRAIQ(.J
10 1 1 1.1 11 .R S RA II / I 1./11 1 1.0 1 1 1.0 1 OIRI + EXTSB(.J
10 1 1 1.1 111 /./ / / RA I R B. 11 1 1.1 0 1 0.1 1 01/1 + ICBI
;V 1 1 1.1 11 F.R S RA I R B. 11 1 1.1 0 1 0.1 1 11/1 ? STFIWX
,n 'v 1 1 1.1 11 .R S RA II I I 1./11 1 1.1 0 1 1.0 1 OIRI EXTSW(.J
:0 1 1 1.1 III 1./ I I RA I R B. 11 1 1.1 1 1 0.1 1 01/1 DCBZ DCLZ
, , 0 0 0.0 01 .R T RA I D.l 6 I 1WZ L I"

11 0 0 0.0 11 .R T RA I D.l 6 I LWZU LU
11 0 0 0.1 01 .R T RA I D.1 6 I LBZ
:1 0 0 0.1 11 .R T RA I D.1 6 I 1BZU
11 0 0 1.0 01 .R S R A I D.l 6 I STW ST
II 0 0 1.0 11 .R S RA I D.l 6 I STWU STU
:1 0 0 1.1 01 .R S RA I D.l 6 I STB
!l 0 0 1.1 11 .R S RA I D.l 6 I STBU
11 0 1 0.0 01 .R T RA I D.l 6 I LHZ
il 0 1 0.0 11 .R T RA I D.1 6 I LHZU
:1 0 1 0.1 01 .R T RA I D.l 6 I LHA
t::" 0 1 0.1 11 .R T RA 1 D.l 6 I LHAU
ii. 0 1 1.0 01 .R S RA I D.l 6 I STH
'1 ,~ 0 1 1.0 11 .R S RA I D.1 6 I STHU
11 0 1 1.1 01 .R T R A I D.l 6 I LMW 1M

il 0 1 1.1 11 .R S RA I D.l 6 I STMW STM
I::' 1 0 0.0 01 F.R T RA I D.l 6 I 1FS
:1 1 0 0.0 11 F.R T RA I D.1 6 I LFSU
11 1 0 0.1 01 F.R T RA I D.1 6 I 1FD
I~ 1 0 0.1 11 F.R T RA I D.1 6 I LFDU
11 1 0 1.0 0 I F.R S RA I D.l 6 I STFS
11 1 0 1.0 11 F.R S RA I D.1 6 1 STFSU
11 1 0 1.1 01 F.R S RA I D.l 6 1 STFD
11 1 0 1.1 11 F.R S RA I D.1 6 I STFDU
11 1 1 0.0 Ol? ?? ? ? ?? ? ? ?? ? ? ?? ? ? ?? ? ? ?? ? ? ?I ««<undefined»»>

RRH -3- Jan. 7, 1993

PowerPC by OpCode

11 1 1 0.0 1 ? ?? ? ? ?? ? ? ?? ? ? ?? ? ? ?? ? ? ?? ? ? ?I ««<undefined»»>
11 1 1 0.1 a .R T RA I D S 1. 4 10 01 10
I 1 1 1 0.1 a .R T RA I D S 1.4 10 11 LDU
11 1 1 0.1 a .R T RA I D S 1.4 11 01 LWA
11 1 1 0.1 1 F.R T .F R A I F R B. 1/ / /./ /11 0.0 1 a I RI + FDIVS[.J
11 1 1 0.1 1 F.R T .F R A I F R B. 1/ / /./ /11 0.1 0 OIRI + FSUBS[.J
11 1 1 0.1 1 F.R T I .F R A I F R B. 1/ / /./ /11 0.1 a 11RI + FADDS[.J
11 1 1 0.1 1 F.R T 1/./ / / /1 F R B. 10 0 0.0 o 1 0.1 1 o IRI ? FSQRTS
11 1 1 0.1 1 F.R T 1/./ / / /1 F R B. 10 o 0.0 a 1 1.0 a OIRI ? FRES[.J
i1 1 1 0.1 1 F.R T I .F R A 1/ / / /./1 F R.C 11 1.0 0 1JRI + FMULS[.J
11 1 1 0.1 1 F.R T 1/./ / / /1 F R B. 10 o 0.0 o 1 1.0 1 OIRI ? FRSQRTE[.J
11 1 1 0.1 1 F.R T I .F R A I F R B. I F R.C 11 1.1 0 OIRI + FMSUBS[.J
11 1 1 0.1 1 F.R T I .F R A I F R B. I F R.C 11 1.1 0 llRI + FMADDS[.J
11 1 1 0.1 11 F.R T I .F R A I F R B. I F R.C 11 1.1 1 o IRI + FNMSUBS [. J
11 1 1 0.1 11 F.R T I .F R A I F R B. I F R.C 11 1.1 1 llRI + FNMADDS [.]
11 1 1 1.0 Ol? ?? ? ? ?? ? ? ?? ? ? 1.1 ? ? 1.? ? ? ?? ? ? ?I ««<undefined»»>
11 1 1 1.0 II? ?? ? ? ?? ? ? ?? ? ? ?1 ? ? ?? ? ? ?? ? ? ?I ««<undefined»»>
11 1 1 1.1 01 .R S I RA I D S 1.4 10 01 STD
i1 1 1 1.1 01 .R S I R A I D S 1.4 10 11 STDU
11 1 1 1.1 11 B.FII /1 .F R A I F R B. 10 0 0.0 0 0 0.0 o OIRI FCMPU
11 1 1 1.1 11 F.R T 1/.////1 F R B. 10 0 0.0 0 0 1.1 a a IRI FRSP[.J
i1 1 1 1.1 11 F.R T 1/./ / / /1 F R B. o a 0.0 o 0 1.1 1 OIRI + FCTIW[.J
11 1 1 1.1 11 F.R T 1/./ / / /1 F R B. o 0 0.0 0 a 1.1 1 llRI + FCTIWZ[.]
11 1 1 1.1 11 F.R T I .F R A I F R B. ///.//11 0.0 1 OIRI FDIV['J FD[.J
11 1 1 1.1 11 F.R T I .F R A I F R B. / / /./ /11 0.1 o OIRI FSUB[.] FS[.]
11 1 1 1.1 11 F.R T I .F R A I F R B. / / /./ /11 0.1 o llRI FADD[.J FA[.J
II 1 1 1.1 11 F.R T 1/./ / / /1 F R B. o 0 0.0 0 1 0.1 1 OIRI ? FSQRT
11 1 1 1.1 11 F.R T I . F R A I F R B . F R.C 11 0.1 1 llRI ? FSEL[.J
i1 1 1 1.1 11 F.R T I .F R A 1/ / / /./ F R.C 11 1.0 o 11RI FMUL[.J FM[.]
11 1 1 1.1 11 F.R T I .F R A I F R B. F R.C 11 1.1 o OIRI FMSUB[.J FMS[.J
11 1 1 1.1 11 F.R T I .F R A I F R B. F R.C 11 1.1 a 11RI FMADD[.] FMA[.J
11 1 1 1.1 11 F.R T I .F R A . I F R B. F R.C 11 1.1 1 OIRI FNMSUB[.J FNMS[.J
11 1 1 1.1 11 F.R T I .F R A I F R B. F R.C 11 1.1 1 11RI FNMADD[.J FNMA[.J
11 1 1 1.1 11 B.FI/ /1 .F R A I F R B. o 0 0.0 1 a 0.0 o OIRI FCMPO
11 1 1 1.1 11 .B T 1/./ / I III I I 1.1 o 0 0.0 1 0 0.1 1 OIRI MTFSB1 [.J
11 1 1 1.1 11 F.R T 1/.1 I I II F R B. 0 o 0.0 1 0 1.0 o OIRI FNEG[.J
11 1 1 1.1 11 B.FII IIB.F All III / I 1./10 o 0.1 0 0 0.0 o 01/1 MCRFS
11 1 1 1.1 11 .B T 1/.1 I I III I / 1.110 o 0.1 0 0 0.1 1 OIRI MTFSBO[.J
11 1 1 1.1 11 F.R T 1/.1 I I II F R B. 10 o 0.1 0 0 1.0 o OIRI FMR[.J
11 1 1 1.1 11 B.FII 11/.1 I I II U 1110 o 1.0 0 0 0.1 1 OIRI MTFSFI [.J
11 1 1 1.1 11 F.R T 1/.1 I I II F R B. 10 o 1.0 0 0 1.0 o OIRI FNABS[.J
11 1 1 1.1 11 F.R T 1/.1 I I II F R B. 10 1 0.0 0 0 1.0 o OIRI FABS[.J
'1 I- 1 1 1.1 11 F.R T 1/.1 I I 11/ / / 1.111 o 0.1 0 0 0.1 1 11RI MFFS [.J
II 1 1 1.1 11/1 F L.M I I I F R B. 11 o 1.1 0 0 0.1 1 11RI MTFSF [.]
11 1 1 1.1 11 F.R T 1/,/1111 F R B. 11 1 0.0 1 0 1.1 1 OIRI FCTID[.]
,..L 1 1 1.1 11 F.R T 1/./ / / /1 F R B. 11 1 0.0 1 0 1.1 1 11RI FCTIDZ[.J
I~ 1 1 1.1 11 F.R T 1/.1 I I II F R B. 11 1 0.1 0 0 1.1 1 OIRI FCFID[.]

RRH -4 - Jan.7,1993

PowerPC by Mnemonic

+ new PowerPC instruction
old POWER instruction; not in PowerPC

* P Privileged instruction (Book III)
* ! 64-bit only instruction
* ? optional instruction

10 1 1 1.1 11 .R T RA I R B. IVII 0.1 1 a 1.0 a OIRI ABS[O] [.]
10 1 1 1.1 11 .R T RA I R B. IVII 0.0 a a 1.0 1 a IRI ADD [0] [.] CAX[O] [.]
10 1 1 1.1 11 .R T RA I R B. IVIO 0.0 a a 1.0 1 OIRI ADDC[O] [.] A[O] [.]
10 1 1 1.1 11 .R T RA I R B. IVIO 1.0 a a 1.0 1 OIRI ADDE[O][.] AE[O] [.]
:0 0 1 1.1 01 .R T RA I S I.l 6 I ADD I CAL
10 a 1 1.0 01 .R T RA I S I.l 6 I ADDIC AI
10 a 1 1.0 11 .R T RA I S I.l 6 I ADDIC. AI.
10 a 1 1.1 11 .R T RA I S 1.1 6 I ADDIS CAU
10 1 1 1.1 11 .R T RA 1/ / / /./IVIO 1.1 1 a 1.0 1 OIRI ADDME (0) [.) AME[O] [.]
10 1 1 1.1 11 .R T RA 1/ / / /./IVIO 1.1 a 0 1.0 1 OIRI ADDZE [0] [.] AZE[O] [.]
10 1 1 1.1 11 .R S RA I R B. 10 a 0.0 a 1 1.1 a OIRI AND[.)
iO 1 1 1.1 11 .R S RA I R B. 10 a 0.0 1 1 1.1 0 OIRI ANDC[.]
10 1 1 1.0 01 .R S RA I U I.1 6 I ANDI. ANDIL.
10 1 1 1.0 11 .R S RA I U I.1 6 I ANDIS. ANDIU.
10 1 a 0.1 01 .L I 2 4. IAILI B[L) [A]
10 1 a 0.0 01 .B 0 B I I . B D 1.4 IAILI BC[L] [A]
!O 1 0 0.1 11 .B 0 B I 1/ / / /./11 a 0.0 a 1 0.0 o OILI BCCTR[L] BCC[L]
!o 1 a 0.1 11 .B 0 B I 1/ / / /./10 a 0.0 a 1 0.0 o OILI BCLR[L] BCR[L]
iO 1 1 1.1 11 .R T I R I 1////./11 a 0.0 a 1 0.0 1 11/1 CLCS
.0 1 1 1.1 11/ /./ / /1/./ / / /1/ / / /./10 0 0.1 1 1 0.1 1 alii CLF
:0 1 1 1.1 III /.1 I 11/./ I / III I / 1./10 1 1.1 1 1 0.1 1 alii P- CLI
:0 a 1 0.1 11 B.FI/ILI RA I S 1.1 6 I CMP [WI D]I
,0 1 1 1.1 11 B.FI/ILI RA I R B. 10 0 0.0 0 0 0.0 0 OIRI CMP[WID]
:0 0 1 0.1 01 B.FI/ILI RA I S 1.1 6 I CMP[WID]LI
:0 1 1 1.1 11 B.FI/ILI RA I R B. 10 0 0.0 1 a 0.0 0 OIRI CMP[WID]L
:0 1 1 1.1 11 .R S I RA II I I /./10 0 0.0 1 1 1.0 1 OIRI CNTLZD[.]
·0 1 1 1.1 11 .R S I RA 1/ / / /./10 a 0.0 a 1 1.0 1 o IRI CNTLZW[.] CNTLZ[.]
10 1 a 0.1 11 .B T I B A I B B. 10 1 0.0 a a 0.0 a 11/1 CRAND
:0 1 a 0.1 11 .B T I BA I B B. 10 a 1.0 a a 0.0 a 11/1 CRANDC
0 1 a 0.1 11 .B T I B A I B B. 10 1 0.0 1 0 0.0 a 11/1 CREQV

10 1 a 0.1 11 .B T I B A I B B. 10 0 1.1 1 0 0.0 0 11/1 CRNAND
,-J 1 0 0.1 11 .B T I B A I B B. 10 0 0.0 1 0 0.0 a 11/1 CRNOR
'0 1 0 0.1 11 .B T I B A I B B. 10 1 1.1 a 0 0.0 a 11/1 CROR
0 1 0 0.1 11 .B T I B A I B B. 10 1 1.0 1 0 0.0 0 1111 CRORC
0 1 a 0.1 11 .B T I B A I B B. 10 a 1.1 a 0 0.0 0 11/1 CRXOR
~ 1 1 1.1 11/ /./ / II RA I R B. 10 a 0.1 a 1 0.1 1 alii + DCBF v
~ 1 1 1.1 III 1.1 I II RA I R B. 10 1 1.1 0 1 0.1 1 alii P+ DCBI v
~ 1 1 1.1 III 1,/ I II RA I R B. 10 a 0.0 1 1 0.1 1 01/1 + DCBST v
~ 1 1 1.1 III /.1 I II RA I R B. 10 1 0.0 0 1 0.1 1 01/1 + DCBT v

:; 1 1 1.1 III /.1 I /1 RA I R B. 10 a 1.1 1 1 0.1 1 01/1 + DCBTST
:; 1 1 1.1 III /./ / II RA I R B. 11 1 1.1 1 1 0.1 1 01/1 DCBZ DeLZ
v 1 1 1.1 III 1.1 I 11/.1 I / /11 I I 1./11 0 0.1 1 1 0.1 1 01/1 DCLST
J 1 1 1.1 11 .R T I RA I R B. IVl1 0.1 0 0 1.0 1 llRI DIV[O] [.)
J 1 1 1.1 11 .R T I RA I R B. IVl1 1.1 1 0 1.0 a 11RI DIVD[O] [.]
J 1 1 1.1 11 .R T I RA I R B. IVl1 1.1 0 a 1.0 0 11RI DIVDU [0] [.)
:; 1 1 1.1 11 .R T I RA I R B. IVII 0.1 1 a 1.0 1 llRI DIVS [0] [.]
~ 1 1 1.1 11 .R T I RA I R B. IVl1 1.1 1 a 1.0 1 11RI + DIVW [0] [.] v

:J 1 1 1.1 11 .R T I RA I R B. IVl1 1.1 0 a 1.0 1 11RI + DIVWU [0] [.]
~ 1 1 1.1 II .R T I RA I R B. IVII 0.0 a 0 1.0 0 OIRI DOZ[O] [.]
:; a 1 0.0 11 .R T I RA I D.l 6 I DOZI
v 1 1 1.1 11 .R T I RA I R B. 10 1 0.0 1 1 0.1 1 01/1 ? ECIWX
, 1 1 1.1 11 .R S I RA I R B. 10 1 1.0 1 1 0.1 1 alii ? ECOWX
:; 1 1 1.1 III 1.1 I I 1.1 I / III / / /./11 1 0.1 a 1 0.1 1 alii + EIEIO
:; 1 1 1.1 11 .R S RA I R B. 10 1 0.0 0 1 1.1 a OIRI EQV[.]
, 1 1 1.1 11 .R S RA 1/ I / /./11 1 1.0 1 1 1.0 1 a IRI + EXTSB[.] v

J 1 1 1.1 11 .R S RA 1/ / I /./11 1 1.0 a 1 1.0 1 OIRI EXTSH[.] EXTS [.]
:; 1 1 1.1 II .R S RA 1/ / / /./11 1 1.1 a 1 1.0 1 OIRI EXTSW[.]

1 1 1.1 11 F.R T 1./ I I /1 F R B. 10 1 0.0 a a 1.0 a OIRI FABS[.]
1 1 1.1 11 F.R T .F R A I F R B. II / 1.1 /11 0.1 a 11RI FADD[.) FA[.]
1 1 0.1 11 F.R T .F R A I F R B. II I 1./ III 0.1 a 11RI + FADDS[.]
1 1 1.1 11 F.R T 1.1 / / II F R B. 11 1 0.1 a a 1.1 1 OIRI FCFID[.]
1 1 1.1 11 B.FII / .F R A I F R B • 10 a 0.0 1 a 0.0 a OIRI FCMPO . 1 1 1.1 11 B.FII / .F R A I F R B. 10 a 0.0 a a 0.0 a OIRI FCMPU
1 1 1.1 11 F.R T 1./ / I /1 F R B. 11 1 0.0 1 0 1.1 1 OIRI FCTID[.)
1 1 1.1 11 F.R T /./ / / /1 F R B. 11 1 0.0 1 a 1.1 1 11RI FCTIDZ[.]
1 1 1.1 11 F.R T /.1 I / /1 F R B. 10 a 0.0 a 0 1.1 1 OIRI + FCTIW[. J
1 1 1.1 11 F.RT 1.1 / I II F R B. 10 0 0.0 0 0 1.1 1 11RI + FCTIWZ[. J
1 1 1.1 11 F.R T .F R A I F R B. II I 1.1 III 0.0 1 OIRI FDIV[. J FD[.)

RRH - 1- Jan. 7. 1993

I".

If

PowerPC by Mnemonic

,1 1 1 0.1 11 F.R T I .F RA F R B. 1/ / /./ /11 0.0 1 o IRI + FDIVS [. J
I 1 1 1 1.1 11 F.R T I .F R A F R B. I F R.C 11 1.1 0 lJRI FMADD[.] FMA(.I
11 1 1 0.1 11 F.R T I .F R A I F R B. I F R.C 11 1.1 0 lJRI + FMADDS (.]
11 1 1 1.1 11 F.R T 1/./ / / /1 F R B. 10 o 0.1 0 0 1.0 0 o IRI FMR(.1
11 1 1 1.1 11 F.R T I .F R A I F R B. I F R.C 11 1.1 0 OIRI FMSUB(.I FMS (. J
11 1 1 0.1 1 F.R T I .F R A I F R B. I F R.C 11 1.1 0 o IRI + FMSUBS(.]
11 1 1 1.1 1 F.R T I .F R A 1/ / / /./1 F R.C 11 1.0 0 11 RI FMUL(.] FM(.]
11 1 1 0.1 1 F.R T I .F R A 1/ / / /./1 F R.C 11 1.0 0 llRI + FMULS (.J
11 1 1 1.1 1 F.R T 1/./ / / /1 F R B. 10 o 1.0 0 0 1.0 0 OIRI FNABS(.J
11 1 1 1.1 1 F.R T 1/./ / / /1 F R B. 10 o 0.0 1 0 1.0 0 OIRI FNEG(. J
11 1 1 1.1 1 F.R T I .F R A I F R B. I F R.C 11 1.1 1 llRI FNMADD(.J FNMA[.J
11 1 1 0.1 1 F.R T I .F R A I F R B. I F R.C 11 1.1 1 11RI + FNMADDS (.]
11 1 1 1.1 1 F.R T I .F R A I F R B. I F R.C 11 1.1 1 OIRI FNMSUB[.] FNMS[.]
;1 1 1 0.1 1 F.RT I .F R A I F R B. I F R.C 11 1.1 1 OIRI + FNMSUBS [.]
11 1 1 0.1 1 F.R T 1/./ / / /1 F R B. 10 o 0.0 0 1 1.0 0 OIRI ? FRES[.]
11 1 1 1.1 1 F.R T i/.////I F R B. 10 o 0.0 0 0 1.1 0 OIRI FRSP[.]
11 1 1 0.1 1 F.R T 1/./ / / /1 F R B. 10 o 0.0 0 1 1.0 1 OIRI ? FRSQRTE[.]
11 1 1 1.1 11 F.R T I .F R A I F R B. I F R.C 11 0.1 1 11RI ? FSEL[.]
11 1 1 1.1 11 F.R T 1/./ / / /1 F R B. 10 o 0.0 0 1 0.1 1 o IRI ? FSQRT
11 1 1 0.1 11 F.R T 1/./ / / /1 F R B. 10 0 0.0 0 1 0.1 1 OIRI ? FSQRTS
[1 1 1 1.1 11 F.RT I .F R A I F R B. 1/ / /./ /11 0.1 0 o IRI FSUB[.] FS(.J
11 1 1 0.1 11 F.R T I .F R A I F R B. 1/ / /./ /11 0.1 0 OIRI + FSUBS[.J
10 1 1 1.1 11/ /./ / /1 RA I R B. 1111.101 0.1 1 01/1 + ICBI
10 1 0 0.1 11/ /./ / /1/./ / / / / / / /./10 0 1.0 0 1 0.1 1 01/1 ISYNC ICS
11 0 0 0.1 01 .R T I RA D.1 6 I LBZ
11 0 0 0.1 11 .R T I RA D.1 6 I LBZU
10 1 1 1.1 11 .R T I RA R B. 10 o 0.1 1 1 0.1 1 11/1 LBZUX
!O 1 1 1.1 11 .R T I RA R B. 10 o 0.1 0 1 0.1 1 11/1 LBZX
!1 1 1 0.1 01 .R T I RA D S 1.4 10 01 LD
:0 1 1 1.1 11 .R T I RA R B. 10 o 0.1 0 1 0.1 o 01/1 LDARX
11 1 1 0.1 01 .R T I RA D S 1. 4 10 11 LDU
:0 1 1 1.1 11 .R T I RA R B. 10 o 0.0 1 1 0.1 o 11/1 LDUX
!O 1 1 1.1 11 .R T I RA R B. 10 o 0.0 0 1 0.1 o 11/1 LOX
[I 1 0 0.1 01 F.RT I RA D.1 6 I LFD
II 1 0 0.1 11 F.R T I RA 0.1 6 I LFDU
'0 1 1 1.1 11 F.R T I RA R B. 11 0 0.1 1 1 0.1 1 11/1 LFDUX
,0 1 1 1.1 1 F.R T I RA R B. 11 0 0.1 0 1 0.1 1 11/1 LFDX
:1 1 0 0.0 0 F.R T I RA D.1 6 I LFS
:1 1 0 0.0 1 F.R T RA D.1 6 I LFSU
.0 1 1 1.1 1 F.R T RA R B. 11 0 0.0 1 1 0.1 1 11/1 LFSUX
:8 1 1 1.1 1 F.R T RA R B. 11 0 0.0 0 1 0.1 1 11/1 LFSX
!l 0 1 0.1 0 .R T R A D.1 6 I LHA

0 1 0.1 1 .R T R A D.1 6 I LHAU
0 1 1 1.1 1 .R T RA R B. 10 1 0.1 1 1 0.1 1 11/1 LHAUX

:0 1 1 1.1 1 .R T RA R B. 10 1 0.1 0 1 0.1 1 11/1 LHAX
:0 1 1 1.1 1 .R T RA R B. 11 1 0.0 0 1 0.1 1 01/1 LHBRX
'l 0 1 0.0 0 .R T RA D.1 6 I LHZ
1 0 1 0.0 1 .R T RA D.1 6 I LHZU
() 1 1 1.1 1 .R T RA R B. 10 1 0.0 1 1 0.1 1 11/1 LHZUX
0 1 1 1.1 1 .R T RA R B. 10 1 0.0 0 1 0.1 1 11/1 LHZX
1 0 1 1.1 0 .R T RA D.1 6 I LMW LM
0 1 1 1.1 1 .R T RA R B. 10 1 0.0 0 1 0.1 0 11RI LSCBX(.J

,8 1 1 1.1 1 .R T I RA N B. 11 0 0.1 0 1 0.1 0 11/1 LSWI LSI
0 1 1 1.1 1 .R T I RA R B. 11 0 0.0 0 1 0.1 o 11/1 LSWX LSX

.1 1 1 0.1 0 .R T I RA D S 1.4 11 01 LWA
0 1 1 1.1 1 .R T I RA R B. 10 0 0.0 0 1 0.1 o Dill + LWARX

:0 1 1 1.1 1 .R T I RA R B. 10 1 0.1 1 1 0.1 o 1 i/I LWAUX
,0 1 1 1.1 1 .R T I RA R B. 10 1 0.1 0 1 0.1 o 11/1 LWAX
0 1 1 1.1 1 .R T I RA R B. 11 0 0.0 0 1 0.1 1 01/1 LWBRX LBRX
1 0 0 0.0 01 .R T I RA D.1 6 I LWZ L
1 0 0 0.0 11 .R T I RA D.1 6 I LWZU LU
0 1 1 1.1 11 .R T I RA R B. 10 o 0.0 1 1 0.1 1 11/1 LWZUX LUX

'0 1 1 1.1 11 .R T I RA R B. 10 o 0.0 0 1 0.1 1 11/1 LWZX LX
0 1 1 1.1 Ii/ 1.1 / 11/./ I / / / I I /./10 o 0.0 0 1 1.1 0 11/1 MASKG[.J
:1 1 1 1.1 III 1.1 I 11/.1 I I I I / I 1./11 o 0.0 0 1 1.1 0 11/1 MASKIR(.J

::1 1 0 0.1 11 B.FII IIB.F All I I I I 1./10 o 0.0 0 0 0.0 0 Oi/I MCRF
:1 1 1 1.1 11 B.FII IIB.F AI/ I I I I 1./10 o 0.1 0 0 0.0 0 01/1 MCRFS
,0 1 1 1.1 11 B.FII 11/.1 I I / I / I 1./11 o 0.0 0 0 0.0 0 Dill MCRXR
.0 1 1 1.1 1 J .R T 1/,////1/1 1.110 o 0.0 0 1 0.0 1 11/1 MFCR
;1 1 1 1.1 11 F.R T 1/.1// 11/ / I 1./ J1 o 0.1 0 0 0.1 1 11RI MFFS (.]
'0 1 1 1.1 11 .R T 1/.1 I I 11/ / I 1./10 o 0.1 0 1 0.0 1 11/1 P MFMSR
'0 1 1 1.1 11 .R T I S.P R 10 1 0.1 0 1 0.0 1 11/1 MFSPR
.:1 1 1 1.1 11 .R T I I I S R II / I /./11 o 0.1 0 1 0.0 1 11/1 P MFSR
0 1 1 1.1 11/ 1.1 / 11/./ / / /1/ I I 1./11 o 0.1 1 1 0.0 1 11/1 P- MFSRI
0 1 1 1.1 11 .R T 1/./ / / II R B. 11 o 1.0 0 1 0.0 1 11/1 P+ MFSRIN

:0 1 1 1.1 11 .R S III F.X M 1/10 o 1.0 0 1 0.0 0 01/1 MTCRF

RRH -2- Jan.7,1993

PowerPC by Mnemonic

11 1 1 1.1 11 .B T 1/./ / / /1/ / / /./10 0 0.1 0 o 0.1 1 01 RI MTFSBO[.J
11 1 1 1.1 11 .B T 1/./ / / /1/ / / /./10 0 0.0 1 o 0.1 1 OIRI MTFSB1[.1
I 1 1 1 1.1 11/1 F L.M I II F R B. 11 0 1.1 0 o 0.1 1 llRI MTFSF[.J
11 1 1 1.1 1 B.FII 11/./ / / /1 U 1/10 0 1.0 0 o 0.1 1 OIRI MTFSFI[.J
:0 1 1 1.1 1 .R S 1/./ / / /1/ / / 1./10 0 1.0 0 1 0.0 1 01/1 P MTMSR
10 1 1 1.1 1 .R S I S.P R 10 1 1.1 0 1 0.0 1 11/1 MTSPR
:0 1 1 1.1 1 .R S 1/1 S R II I I 1./10 0 1.1 0 1 0.0 1 01/1 P MTSR
:0 1 1 1.1 1 . R S 1/./ / / II R B • 10 0 1.1 1 1 0.0 1 01/1 P MTSRIN MTSRI
10 1 1 1.1 1 .R T I R A I R B. IVIO 0.1 1 o 1.0 1 11 RI MUL[OJ [.1
10 1 1 1.1 1 .R T I R A I R B. 1/10 0.1 0 o 1.0 0 11RI ! MULHD[.J
10 1 1 1.1 1 .R T I R A I R B. 1/10 0.0 0 o 1.0 0 11RI ! MULHDU[.I
10 1 1 1.1 1 . R T I R A I R B . 1/10 0.1 0 o 1.0 1 11RI + MULHW[.J
10 1 1 1.1 1 .R T I R A I R B. 1/10 0.0 0 o 1.0 1 11RI + MULHWU[.J
10 1 1 1.1 1 .R T I R A I R B. IVIO 1.1 1 o 1.0 0 11RI ! MULLD [01 [. J
'0 0 0 1.1 1 .R T I R A I S 1.1 6 I MULLI MULl
:0 1 1 1.1 1 .R T I RA I R B. IVIO 1.1 1 o 1.0 1 11RI MULLW[OI [.J MULS[OJ [.J
iO 1 1 1.1 11 .R T I RA I R B. IVII 1.1 1 o 1.0 0 OIRI NABS [OJ [.J
;0 1 1 1.1 11 . R S I RA I R B . 10 1 1.1 0 1 1.1 0 OIRI NAND[.I
iO 1 1 1.1 11 .R T I RA II / / /./IVIO 0.1 1 o 1.0 0 OIRI NEG[OJ [.1
iO 1 1 1.1 11 .R S I R A I R B. 10 0 0.1 1 1 1.1 0 OIRI NOR[.J
iO 1 1 1.1 11 .R S I RA I R B. 10 1 1.0 1 1 1.1 0 OIRI OR[.J
:0 1 1 1.1 11 .R S I RA I R B. 10 1 1.0 0 1 1.1 0 OIRI ORC[.J
I:) 1 1 0.0 01 .R S I RA I U 1.1 6 I ORI ORIL
10 1 1 0.0 1 .R S I RA I U 1.1 6 I ORIS ORIU
:0 1 1 1.1 1 / /./ I 11/./ / / /1/ / I 1./11 1 0.0 1 1 0.0 1 01/1 P- RAC
:0 1 0 0.1 1 / /.1 / 11/./ I / /1/ / / /./10 0 0.0 1 1 0.0 1 01/1 P RFI
:0 1 0 0.1 1 / /./ / 11/./ / / /11 I I /./10 0 0.1 o 1 0.0 1 01/1 p- RFSVC
:0 1 1 1.1 0 .R S I R A I R B. I m.b 10 1.0 0 OIRI RLDCL[.1
,:) 1 1 1.1 0 .R S I R A I R B. I m.e 10 1.0 o lIRI RLDCR[.J
i8 1 1 1.1 0 .R S I RA I s h. I m.b 10 0.1 OlslRI RLDIC[.J
,Q 1 1 1.1 0 .R S I RA I s h. I m.b 10 0.0 OlslRI RLDICL[.J
,8 1 1 1.1 0 .R S I RA I s h. I m.e 10 0.0 IlslRI RLDICR[.J
'Q 1 1 1.1 0 . R S I RA I s h . I m.b 10 0.1 IlslRI RLDIMI [.J

Q 1 0 1.1 0 .R S I RA I R B. I m.b I .m e IRI RLMI[.J
Q 1 0 1.0 0 .R S I R A I S H. I m.b I .m e IRI RLWIMI [.J RLIMI[.I
8 1 0 1.0 11 .R S I RA I S H. I m.b I .m e IRI RLWINM[.J RLINM[.J
8 1 0 1.1 11 .R S I RA I R B. I m.b I .m e IRI RLWNM[.I RLNM[.I
8 1 1 1.1 III 1./ I /1/.1 / I 11/ I I 1./11 0 0.0 0 1 1.0 o 11/1 MIB[.]
8 1 0 0.0 11/ /./ I I /.1 / I /.1 I / /.1 I / 1.1 / I 1.1 /111/1 SC SVC[AJ
" 1 1 1.1 11/ /./ / /1/./ / / /1/ I / /./10 1 1.1 1 1 0.0 1 01/1 P! SLBIA v

8 1 1 1.1 11/ /./ / 11/./ / I /1 R B. 1011.0110.0 1 01/1 P! SLBIE
:J 1 1 1.1 11/ /./ / /1/.1 / I II R B. 10 1 1.1 0 1 0.0 1 01/1 P! SLBIEX
: 1 1 1.1 11 .R S I RA I R B. 1000.0011.0 1 llRI SLD[.1
J 1 1 1.1 11/ /./ / /1/.1 / I /11 I / 1./10 0 1.0 0 1 1.0 o 11/1 SLE
~ 1 1 1.1 11/ /./ I /1/.1 / / /11 I / /./10 0 1.1 0 1 1.0 o 11/1 SLEQ[.J
J 1 1 1.1 111 /.1 I 11/.1 I / /11 I I 1./10 0 1.0 1 1 1.0 o 01/1 SLIQ[.J
J 1 1 1.1 11/ /./ I 11/.1 / I /11 / / 1./10 0 1.1 1 1 1.0 o 01/1 SLLIQ[.J
~ 1 1 1.1 11/ /./ / /1/./ / / /11 / / /./10 0 1.1 0 1 1.0 o 01/1 SLLQ[.]
J 1 1 1.1 11/ /./ / 11/./ / / /11 / I 1./10 0 1.0 0 1 1.0 o 01/1 SLQ[.J
" 1 1 1.1 11 .R S I RA I R B. 10 0 0.0 0 1 1.0 o OIRI SLW[.J SL[.1 v

J 1 1 1.1 11 .R S I RA I R B. 1110.0011.0 1 OIRI ! SRAD[.I
J 1 1 1.1 11 .R S I R A I s h. 11 0 0.1 1 1 0.1 OlslRI ! SRADI [.J
:J 1 1 1.1 111 1.1 I 11/./ I I III I I 1./11 1 1.0 1 1 1.0 o 01/1 SRAIQ[.J
J 1 1 1.1 11/ /./ / /1/./ / I /11 I I 1./11 1 1.0 0 1 1.0 o 01/1 SRAQ[.I
J 1 1 1.1 11 .R S I RA I R B. 11 1 0.0 0 1 1.0 o OIRI SRAW[.I SRA[.J
J 1 1 1.1 11 .R S I RA I S H. 11 1 0.0 1 1 1.0 o OIRI SRAWI [.1 SRAI[.I
J 1 1 1.1 11 .R S I R A I R B. 1100.0011.0 1 lIRI SRO[.I
J 1 1 1.1 11/ 1./ / /1/./ I / /1/ I / 1./11 0 1.0 0 1 1.0 o 11 I I SRE[.1
J 1 1 1.1 1// /./ I 11/.1 I / /1/ / I 1./11 1 1.0 0 1 1.0 o 11/1 SREA[.I
J 1 1 1.1 III /.1 I 11/.1 / I III I I 1./11 0 1.1 0 1 1.0 o 11/1 SREQ[.J
J 1 1 1.1 III 1./ I 11/.1 / / /1/ / I 1./11 0 1.0 1 1 1.0 o 01/1 SRIQ[.I
v 1 1 1.1 11/ 1./ I 11/.1 I / /11 I / 1./11 0 1.1 1 1 1.0 o 01/1 SRLIQ[.J
J 1 1 1.1 11/ 1./ / /1/.1 I I /1/ I I 1./11 0 1.1 0 1 1.0 o 0111 SRLQ[.I
J 1 1 1.1 11/ 1./ I 11/.1 I I III I I 1./11 0 1.0 0 1 1.0 o 01/1 SRQ[.J
J 1 1 1.1 11 .R S I RA I R B. 11 0 0.0 0 1 1.0 o OIRI SRW[.I SR[.J

0 0 1.1 01 .R S I RA I D.l 6 I STB
0 0 1.1 11 .R S I RA I D.l 6 I STBU

J 1 1 1.1 11 .R S I RA I R B. 10 0 1.1 1 1 0.1 1 11/1 STBUX
v 1 1 1.1 11 .R S I . RA I R B. 10 0 1.1 0 1 0.1 1 11/1 STBX

1 1 1.1 01 .R S I RA I D S 1.4 10 01 STD
J 1 1 1.1 11 .R S I RA I R B. 10 0 1.1 0 1 0.1 1 0111 STDCX.

1 1 1.1 01 .R S I RA I D S 1.4 10 11 STDU
J 1 1 1.1 11 .R S I RA I R B. 10 0 1.0 1 1 0.1 o 11/1 STDUX
J 1 1 1.1 11 .R S I RA I R B. 10 0 1.0 o 1 0.1 o 11/1 STDX

1 0 1.1 01 F.RS I RA I 0.1 6 I STFD
1 0 1.1 11 F.R S I RA I 0.1 6 I STFDU

RRH - 3- Jan. 7, 1993

,J,

PowerPC by Mnemonic

10 1 1 1.1 1 F.R S I RA I R B. 11 0 1.1 1 1 0.1 1 111 STFDUX
10 1 1 1.1 1 F.R S I RA 1 R B. 11 0 1.1 0 1 0.1 1 111 STFDX

I
10 1 1 1.1 1 F.R S I RA I R B. 11 1 1.1 0 1 0.1 1 111 ? STFIWX
11 1 0 1.0 0 F.R S I RA I 0.1 6 STFS
11 1 0 1.0 1 F.R S I RA I 0.1 6 STFSU

I 10 1 1 1.1 1 F.R S I RA I R B. 11 o 1.0 1 1 0.1 1 111 STFSUX
10 1 1 1.1 1 F.R S I RA I R B. 11 o 1.0 0 1 0.1 1 111 STFSX t,~\

11 0 1 1.0 0 .R S I RA I 0.1 6 STH I~
10 1 1 1.1 1 .R S I RA 1 R B. 11 1 1.0 0 1 0.1 1 011 STHBRX !i

I

11 0 1 1.0 1 .R S I RA 1 0.1 6 STHU I

10 1 1 1.1 1 .R S I RA I R B. 10 1 1.0 1 1 0.1 1 111 STHUX i
10 1 1 1.1 1 .R S I RA I R B. 10 1 1.0 0 1 0.1 1 111 STHX
11 0 1 1.1 1 .R S I RA I 0.1 6 STMW STM
10 1 1 1.1 1 .R S I RA I N B. 11 o 1.1 0 1 0.1 0 111 STSWI STSI
10 1 1 1.1 1 .R S I RA I R B. 11 o 1.0 0 1 0.1 0 11RI STSWX STSX
11 0 0 1.0 0 .R S I RA I 0.1 6 I STW ST
10 1 1 1.1 11 .R S I RA I R B. 11 o 1.0 0 1 0.1 1 01/1 STWBRX STBRX
10 1 1 1.1 11 .R S I RA I R B. 10 o 1.0 0 1 0.1 1 0111 + STWCX.
11 0 0 1.0 11 .R S I RA I 0.1 6 I STWU STU
10 1 1 1.1 11 .R S I RA I R B. 10 o 1.0 1 1 0.1 1 1111 STWUX STUX
10 1 1 1.1 11 .R S I RA I R B. 10 0 1.00 1 0.1 1 11/1 STWX STX
10 1 1 1.1 11 .R T I RA I R B. IVIO 0.0 1 0 1.0 0 OIRI + SUBF [OJ [. J
10 1 1 1.1 11 .R T I RA I R B. IVIO 0.0 0 0 1.0 0 o IRI SUBFC [OJ [. J SF[OJ [. J
10 1 1 1.1 11 .R T I RA I R B. IVIO 1.00 0 1.0 0 OIRI SUBFE [OJ [. J SFE[OJ [. J
:0 0 1 0.0 01 .R T I RA I S 1.1 6 I SUBFIC SFI
10 1 1 1.1 11 .R T I RA II I I I./IVIO 1.1 1 0 1.0 0 OIRI SUBFME [OJ [. J SFME[OJ [. J
:0 1 1 1.1 11 .R T I RA II I I I./IVIO 1.1 0 0 1.0 0 01 RI SUBFZE [OJ [. I SFZE[OJ [.J
10 1 1 1.1 III 1.1 I 11/.1 I I III I I 1./11 0 0.1 0 1 0.1 1 01/1 SYNC DCS
!O 1 1 1.1 11 .T 0 I RA I R B. 10 0 0.1 0 0 0.1 0 01/1 TO
10 0 0 0.1 01 .T 0 I RA I S 1.1 6 I TOI
:0 1 1 1.1 III 1.1 I 11/.1 I I III I I 1./10 1 0.1 1 1 0.0 1 01/1 P? TLBIA
10 1 1 1.1 III 1.1 I 11/.1 I I II R B. 10 1 0.0 1 1 0.0 1 01/1 P? TLBIE TLBI
10 1 1 1.1 111 1.1 I 11/./ I I II R B. 10 1 0.1 0 1 0.0 1 01/1 P? TLBIEX
10 1 1 1.1 11 .T 0 I RA I R B. 10 o 0.0 0 0 0.1 0 01/1 TW T
'0 0 0 0.1 11 .T 0 I RA I S 1.1 6 I TWI TI
10 1 1 1.1 11 .R S I R A I R B. 10 1 0.0 1 1 1.1 0 OIRI XOR[.j
:0 1 1 0.1 01 .R S I RA I U 1.1 6 I XORI XORIL
10 1 1 0.1 11 .R S I RA I U 1.1 6 I XORIS XORIU

RRH -4 - Jan. 7, 1993

