
(•~ Macintosh®

Macintosh Programmer's

ti APPLE COMPUTER, INC.

This manual and the software described
in it are copyrighted, with all rights
reserved. Under the copyright laws, this
manual or the software may not be
copied, in whole or in part, without
written consent of A!Jple, except in the
normal use of the software or to make a
backup copy of the software. The same
proprietary and copyright notices must
be affixed to any permitted copies as
were affixed to the original. This excep­
tion 00es not allow copies to be made
for othe.is, whether or not sold, but all of
the material purchased (with all backup
copies) may be sold, given, or loaned to
another pe.ison. Under the law, copying
includes translating into another lan­
guage or format

You may use the software on any
computer owned by you, but extra
copies cannot be made for this purpose.

The Apple logo is a registered trademark
of Apple Computer, Inc. Use of the
"keyboard• logo (Option-Shift-K) for
conunercial purposes without the prior
written consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal and
state laws.

© 1988 Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
(408) 996-1010

Apple, the Apple logo, I.aserWriter,
Macintosh, and MacApp are registered
trademarks of Apple Computer, Inc.

ITC Garamond and ITC Zapf Dingbats
are registered trademarks of International
Typeface Corporation.

Microsoft is a registered trademark of
Microsoft Corporation.

POSTSCRIPT and Adobe illustrator are
registered trademarks of Adobe
Systems Incorporated.

Adobe illustrator is a trademark of
Adobe Systems Incorporated.

IrnageStudio is a trademark of Esselte
Pendaflex Corporation in the United
States, of LetraSet Canada Limited in
Canada, and of F.sselte LetraSet
Llmited elsewhere.

QMS is a registered trademark of
QMS, Inc.

Llnotronic is a registered trademark of
Linotype company.

Smalltallc-80 is a registered trademark of
the Xerox Corporation.

Simultaneously published in the United
States and Canada.

Contents

Tables and Figures xvii

Preface xix

1 About MPW Pascal 1

About MPW Pascal version 3.0 3
About SADE and MacsBug 4
Object Pascal 5
About the Pascal interface files 6
Using interface files 9
About the Pascal libraries 10
About the Pascal examples 13
Installing MPW Pascal 14
Segmentation control 1 S
Creating resoun:es 16
Creating an application in MPW Pascal 16

Building an application 17
Compiling an application 17
linking an application 18

Creating a tool in MPW Pascal 19
Building a tool 20
Compiling a tool 20 '"
linking a tool 20

Creating a desk accessory in MPW Pascal 21
Desk accessory restrictions 21
The DRVRRuntime library 21
Desk accessory routines 22
Building a desk accessory 23
linking a desk accessory 23

Creating code for different models of the Macintosh 24
Source code 24

ill

Interface files 24
Compiler options 25

SANE and the Macintosh II 25
Floating-point enhancements 25
MC68881 enhancements 26
MC680/0 t:1LJC'.ncen1ent.:i 27

Other MPW 3.0 products 27

2 Symbols 29
Symbols 31
Special symbols and reserved words 32
Identifiers 33
Numbers 34
labels 36

Quoted string constants 36
Quoted character constants 37

Delimiters 38
Directives 38

Special directives for Object Pascal 38
Comments and Compiler directives 39

3 Blocks and Scope 41
Block syntax 43
Scope rules 46

Redeclaration in an enclosed block 46
Position of declaration within its block 46
Redeclaration within a block 47
Declarations in units 47
Predefined identifiers 47
Special rule for object types 48
Scopes, object files, and other languages 48

iv MPW 3.0 Pascal Reference

(4 Data Types 49
Simple types 52

Real types 53
Scalar types 55

The integer type 56
1'he longint type 56
The boolean type 57
The char type 57
Enumerated types 58
Subrange types 59

String types 60
The pointer type 61
Structured types 64

Array types 65
Record types 67
Set types 69
File types 70
Object types 71

Type compatibility 73
Compatible types 73
Assignment-compatible types 74

Type coercion 75
Type declarations 76

User-defined anonymous types 77

5 Constants and Variables 79
Constant declarations 81
Constant expressions 81

Predefined numeric constants 85 "
Predefined string constants 86

Variable declarations 86
Variable accesses 88
Qualifiers 89

Arrays and string indexes 90
Records and field designators 92
File window variables 92
Pointers and their identified variables 93

Object references 93

CONTENTS v

6 Expressions 95
Operators 97

Arithmetic operators 97
Boolean operators 99
Set operators 100

Result types in set operations 101
Relational operators 101

Comparing numbers 101
Comparing booleans 102
Comparing strings 102
Comparing sets 103
Testing set membership 103
Comparing packed arrays of char 103

The @ operator 103
The @ operator with a variable 104
The @ operator with a value parameter 104
The @ operator with a variable parameter 104
The@ operator with a procedure or function 105

Function calls 105
Set constructors 107
Writing expressions 108

Factors 108
Tenm 110
Simple expressions 111
Expression syntax 112

7 Statements 113
Assignment statements 116
Compound statements 117
Procedure statements 118
Repetition statements 120

FOR statements 120
WHILE statements 122
REPEAT statements 123
loop control: a comparison 124

Conditional statements 125
IF statements 125

Nested IF statements 126

vi MPW 3.0 Pascal Reference

(CASE statements 126
Control statements 128

GOTO statements 128
Cycle statements 129
I.eave statements 130

NUll statements 132

8 Procedures and Functions: 133
Procedure declarations 135
Function declarations 136
Procedure and function directives 139

The FORWARD directive 140
The EXTERNAL and C directives 140
The INLINE directive 141

Parameters 142
Value parameters 144
Variable parameters 144
Procedural parameters 145

Procedure pointers 147
Functional parameters 147
Univ parameters 147
Parameter list compatibility 148

9 Programs and Units 149
Program syntax 151
Segmentation 152
Unit syntax 152
The USF.S clause 155

Units that use other units 156
Automatic symbol table loading 158

CONTENTS vii

10 Files and 1/0 159
Input/Output routines 161
Pascal files 162

External files 162
File variables 162

St1.i\..t1rtc.; itiP.s 162
Text files 163
Untyped files 163
Predeclared file variables 164

The file window variable 165
Opening a file 165
Closing a file 166
Sequential versus random access 166

Routines for all files 167
The Reset procedure 167
The Rewrite procedure 168
The Open procedure 168

The Close procedure 169
The Eof function 169
The IOResult procedure 170

The ErrNo variable 170
The Seek procedure 173
The PLFilepos function 174
The PLCrunch procedure 174
The PI.Purge procedure 174
The PLRename procedure 174

Record-oriented routines 17 4
The Get procedure 175
The Put procedure 175
The Read procedure with a structured file
The Write procedure with a strucrured file

Text-oriented routines 176
The Read procedure 177

Read with a char variable 178
Read with an integer variable 178
Read with a real variable 178
Read with a string variable 179

The Readln procedure 180
The Write procedure 181

viii MPW 3.0 Pascal Reference

175
176

(Write with a char value 182
Write with an integer value 182
Write with a value of type real 183
Write with a string value 184
Write with a packed array of char 184
Write with a boolean v::i.lue 185

The Writeln procedure 185
The Eoln function 185
The Page procedure 185
The PI.SetVBuf procedure 185
The PI.Flush procedure 186
The Get and Put procedures with text files 186

Routines for untyped files 187
The Blockread function· 187
The Blockwrite function 188
The Byteread and Bytewrite functions 189

11 Predefined Routines 191
Exit and halt procedures 195

The Exit procedure 195
The Halt procedure 195

Dynamic allocation procedures 195
The PLHeapinit procedure 196
The PI.SetHeapCheck procedure 197
The PLSetNonCont procedure 197
The PLSetMErrProc procedure 197
The PLSetHeapType procedure 197
The New procedure 198
The Dispose procedure 19')
The Heapresult function 19')

The Mark procedure 200
The Release procedure 200
The Mernavail function 200

Transfer functions 201
The Trunc function 201
The Round function 201
The Ord4 function 201
The Pointer function 202

Arithmetic functions 202

CONTENTS ix

The Odd function 203
The Abs function 203
The Sqr function 203
The Sin function 204
The Cos function 204
i'he Exp fliixtion 204
The In function 204
The Sqrt function· 205
The Arctan function 205

Ordinal functions 205
The Ord function 205
The Chr function 206
The Succ function 206
The Pred· function 206

String procedures and functions 207
The Length function 207
The Pos function 207
The Concat function 207
The Copy function 208
The Delete procedure 208
The Insert procedure 208

Byte-oriented procedures and functions 209
The Moveleft procedure 2()<)

The Moveright procedure 210
The Sizeof function 210

Packed character array routines 210
The Scaneq functi~n 211
The Scanne function 211
The Fillchar procedure 211

Logical bit functions and procedures 212
The BAND function 213
The BOR function 213
The BXOR function 213
The BNOT function 213
The BSL function 213
The BSR function 214
The BRotL function 214
The BRotR function 214
The BTst function 214
The HiWrd function 214

x MPW 3.0 Pascal Reference

The l.oWrd function 215
The BClr procedure 215
The BSet procedure 215

12 Obf ert-Cd"'n~~~. r'r•>r.r·~nuning 217

What are objects? 219
Differences from traditional programming 220
Creating objects 221

Declaring object types 222
Object type membership 222
Object reference variables 223
The OVERRIDE directive 224

Declaring methods 224
The Self parameter 225

Calling methods 226
The INHERITED directive 227

Using Object Pascal 227
Object Pascal without MacApp 227
The Object Pascal routines 228

The Member function 228
The ShallowClone function 228
The Clone function 229
The ShallowFree function 229
The Free function 229

Object Pascal with MacApp 229

13 Compiler Options and Directives 231 ·

The MPW Pascal command line 233
Compiler options 233

Compiler directives 237
Input file control 240

The $1 directive 240
The $U directive 240

Shell variable substitution in filenames and segment names 240
Control of code generation 241

The $B± directive 241
The $c± directive 241
The $]± directive 242

CONTENTS. xi

The $MC6802o± directive 242
The $MC68881± directive 242
The $0V± directive 242
The $R± directive 242
The $S directive 243
The $!:·:;l. directive 243
The $W± directive 243

Debugging 243
The $D± directive 243
The $H± directive 244

Conditional compilation 244
The $SETC directive 244
The $IFC directive 244
The $EI.SEC directive 245
The $ENDC directive 245

Output control 245
The $z± directive 245
The $N± directive 245

Other directives 246
The $Al directive 246
The $AS directive 246
The $E directive 246
The $K directive 246
The $P directive 247
The $PUSH and $POP directives 247

A MPW 3.0 Pascal and Other Pasca1s 249
MPW 3.0 Pascal and ANS Pascal 251

Exceptions to the ANSI Standard 251 ,
Extensions to ANS Pascal 252
Implementation-dependent features 252

MPW 3.0 Pascal and MPW 2.0 Pascal 253

xil MPW 3.0 Pascal Reference

(".'•

'"~_,/

B Special Scope Rules 255
Scope of enumerated scalar constants 257
Scope of pointer base types 258

Reserved words 261
The character set 261

D Syntax Summary 263

E MPW 3.0 Pascal Files 289
Pascal compiler and tools 291
PF.xamples folder 291
Plnterfaces folder 291
Plibraries folder 293

F Pascal and C Calling Conventions 295
External calling conventions 297

Parameters 297
Real type parameters 297
Structured type parameters 298
Function results 299
Register conventions 302

C calling conventions 302
C parameters 302
C function results 302
C register conventions 303

Interfacing C functions to Pascal 303
Examples of functions declared with the C directive 305

G The SANE Library 307
The SANE data types 311

Descriptions of the types 311
Choosing a data type 311
Values represented 312

Range and precision of SANE types 312

CONTENTS xill

Example 313
The single type 314
The double type 314
The comp type 315
The e'1:ended type 315

Extended ::irithmetic 316
Special cases 317
Nurnberclasses 318

Infinities 318
NaNs 318
Denonnalized numbers 320

Exceptional conditions 320
Invalid operation 320
Underflow 321
Overflow 321
Divide-by-zero 321
Inexact 321

The SANE environment 321
The SANE interfaces and libraries 322

Descriptions of constants and types 322
The DecStrLen constant 3'2
Exception condition constants 322
The DecStr type 323
The DecForm record type 323
The RelOp type 324
The NumCJass type 324
The Exception type 324
The RoundDir type 325
The RoundPre type 325
The Environment type 325

Numeric procedures and functions 326
Conversions between numeric binary types 326

The Num2Integer and Num2Longint functions 326
The Num2Extended function 327

Conversions between decimal strings and binary 327
The Num2Str procedure 328
The Str2Num function 328

Arithmetic, auxiliary, and elementary functions 328
The Remainder function 328
The Rint function 329

xiv MPW 3.0 Pascal Reference

(

(

The Scalb function 329
The Logb function 329
The CopySign function 329
The NextReal function 329
The NextDouble function 330
The NextExtended function 330
The Log2 function 330
The Lnl function 330
The Exp2 function 330
The Expl function 330
The Xpwrl function 331
The XpwrY function 331

Financial functions 331
The Compound function 331
The Annuity function 331

Trigonometric functions 332
The Tan function 332

Additional transcendental routines 332
The Arctanh function 332
The Cosh function 332
The Sinh function 333
The Tanh function 333
The LoglO function 333
The ExplO function 333
The Arccos function 333
The Arcsin function 333
The SinCos procedure 333

Inquiry functions 334
The ClassReal function 334
The ClassDouble function 3~4

The ClassExtended function 334
The ClassComp function 335
The SignNum function 335

The RandomX function 335
The NaN function 335
The Relation function 335

Environmental access procedures and functions 336
The rounding direction 336

The GetRound function 336
The SetRound procedure 337

CONTENTS xv

Rounding precision 337
The GetPrecision function 337
The SetPrecision procedure 337

Exceptions 338
The SetException procedure 339
Th~ TF;Si.Exc~.j.!Jon function 3.J9

Using exceptional conditions to halt a program 340
The TestHalt function 340
The SetHalt procedure 340

Halts and the 68881 340
Saving and restoring environmental settings 341

The GetEnvironment procedure 341
The SetEnvironment procedure 342
The ProcEntry procedure 342
The ProcExit procedure 343

Support for the 68881 343
SANE and the 68881 344

More about the 68881 345
Register usage 345
Converting between extended formats in mixed-world programs 346

H The PasMat Utility 349

I The PasRef Utility 367

J The ProcNames Utility 377

K Advanced Topics for 68020 Prografilmers 381
Support for the 68020 383

Faster Iongint arithmetic 383
Bit-field operations 383

Glossary 385

Index 389

xvi MPW 3.0 Pascal Reference

(

r{

(/

Tables and Figures

Preface xix
Table P-1 Example of syntax diagram· xxvii

1 About MPW Pascal 1
Table 1-1 New interface files used in MPW Pascal 7
Table 1-2 Interface files included for compatibility in MPW Pascal 8
Table 1-3 Interface-file search rules 10
Table 1-4 library object files used by MPW Pascal 12
Table 1-5 Example source mes used by MPW Pascal 13
Table 1-6 linking an application 18

2 Symbols 29
Table 2-1 Reserved words 32

4 Data Types 49

6

9

Table 4-1 Data types 51
Table 4-2 Real types 53

Expressions 95
Table 6-1 Precedence of operators 91
Table 6-2 Binary arithmetic operators 98
Table 6-3 Unary arithmetic operators (signs)
Table 6-4 Boolean operators 99
Table 6-5 Set operators 100
Table 6-6 Relational operators 101
Table 6-7 The pointer operator 103

Programs and Units 149
Figure 9-1 Example of simple unit reference

98

157

CONTENTS xvii

11 Predefined Routines 191
Table 11-1 Bit manipulation routines 212

13 Compiler OptionE 1n-t Directives 231
Table 13-1 Compiler opti.011s 234
Table 13-2 Compiler directives 238

C Reserved Words and the Character Set 259
Figure C-1 The character set 262

F Pascal and C calllng Conventions 295
Table F-1 Parameter passing conventions 298
Table F-2 Function result passing conventions 300
Table F-3 C-compatible Pascal types 303

G The SANE Library 307
Table G-1 SANE data types 313
Table G-2 NaN codes 319
TableG-3 Number class descriptions 324
Table G-4 Num2Str examples 328
Table G-5 SANE exceptions 338
Table G-6 68881 SANE exceptions 339

xvm MPW 3.0 Pascal Reference

(

;t ..

"'

Preface

WELCOME TO TIIE MACINIOSH PROGRAMMER'S WORKSHOP 3.0 PASCAL REFERENCE. This
manual contains complete reference material on the Macintosh Programmer's
Workshop implementation of the Pascal language (called MPW Pascal), as well as
material on the Pascal Compiler and the libraries of predeclared procedures and
functions that are part of the MPW Pascal system. •

Contents

About APDA xxi
User groups xxii

About this manual xxiii
Aids to understanding xxiv
Other reference materials xxv
Notation xxvi

Syntax diagrams xxvii
Ellipses xxviii

xix

(
About APDA

APDA ™ is an excellent source of technical information for anyone interested in
developing Apple-compatible products. Membership in the association allows you to
pur.:hase Apple technical documentation, programming tools, and utilities. For
information on membership fees, available products, and prices, please contact

APDA
Apple Computer, Inc.
20525 Mariani Avenue, Mailstbp 33-G ·
Cupertino, CA 95014-6299

1-800-282-APDA, or 1-800-282-2732
Fax: 408-562-3971
Telex: 171-576
Applelink: DEV.CHANNELS

If you plan to develop hardware or software products for sale through retail channels, you
can get valuable support from Apple Developer Programs. Write to

Apple Developer Programs
Apple Computer, Inc.
20525 Mariani Avenue, Mailstop 51-W
Cupertino, CA 95014-6299

PREFACE xxi

User groups

Ask your authorized Apple dealer for the name of the Macintosh user group nearest you, or
call 1-800-538-9696. for information about starting your own user group, contact either:

The Boston Computer Society
One Center Plaza
Boston, MA 02108
USA
(617) 367-8080 .

or

Berkeley Macintosh User's Group
1442-A Walnut Street #62
Berkeley, CA 94709
USA
(415) 849-9114

xxii MPW 3.0 Pascal Reference

(
About this manual

This manual provides information about the MPW Pascal language and the use of the MPW
3.0 Pascal programming system Here is a brief description of each chapter and appendix:

r. Cha,;te1 l, "About MPW Pascal,'' contains general infonnation about the MPW 3.0
Pascal language and Compiler and tells about the files you use to build an application
for an Apple• Macintosh™ computer.

• Chapter 2, "Symbols, n describes the fundamental components of the Pascal language.

• Chapter 3, "Blocks and Scope, n explains the block-structured nature of MPW Pascal
and discusses its scope rules.

• Chapter 4, "Data Types,n gives an overview of MPW Pascal's predefined data types
and type constructors.

• Chapter 5, "Constants and Variables,n describes the forms that variables can take
within a Pascal program

• Chapter 6, "Expressions, n details the rules governing the structure of Pascal
expressions and includes descriptions of the Pascal operators.

• Chapter 7, "Statements,n defines and gives examples of each of the Pascal statement
types.

• Chapter 8, "Procedures and Functions,n tells how to declare procedures and functions
and defines the use of parameters.

• Chapter 9, "Programs and Units,n discusses the overall structure of Pascal programs and
describes the use of units in writing large programs.

• Chapter 10, "Files and I/0, n explains the use of files and the routines that perform
input and output tasks in a Pascal program

• Chapter 11, "Predefined Routines,n provides information on the routines that are built
into the MPW Pascal Compiler and the non-I/O routines that are included in Paslib.

• Chapter 12, "Object-Oriented Programming,n describes the facilities provided in
MPW Pascal for creating and manipulating objects. '

• Chapter 13, "Compiler Options and Directives," contains information on Compiler
options and directives.

• Appendix A, "MPW 3.0 Pascal and Other Pascals," explains how this version of Pascal
relates to the ANSI Standard and other Apple versions of Pascal.

• Appendix B, "Special Scope Rules,n covers MPW Pascal scope rules that are appli~ble
in special situations.

• Appendix C, "Reserved Words and the Character Set," contains quick reference
information on these topics.

PREFACE xxiil

• Appendix D, "Syntax Summary," lists all the syntax diagrarn.5 used in this book.

• Appendix E, "MPW 3.0 Pascal Files," is a complete list of the files that constitute the
MPW Pascal system.

• Appendix F, "Pascal and C Calling Conventions," explains how the Compiler passes
parameters and tells how to declare procedures using the C directive.

• Appendix G, "The SANE Library," describes the routines ir, the Pascai libi~'.1y Jia~
implement the Standard Apple Numerics Environment (SANE) and provides special
information about the use of SANE and the 68881 floating-point coprocessor.

• Appendix H, "The PasMat Utility," tells how to use the Pascal utility program that
converts your source text into standard format.

,. Appendix I, "The PasRef Utility," tells how to use the Pascal utility program that
. generates a cross-referenced list of the identifiers in your program

• Appendix], "The ProcNames Utility," tells how to use the Pascal utility program that
displays Pascal procedure and function names.

• Appendix K, "Advanced Topics for 68020 Programmers," gives special information for
those programmers using the 68020 central processing unit.

Aids to understanding

Look for these visuat cues throughout the manual:

.A Warning Warnings like this indicate potential problern.5.

6 Important Text set off in this manner presents impol'ta!lt information. t:.

+ Note: Text set off in this manner presents notes, reminders, and hints.

Computer words and phrases appear in boldface type when they are introduced. The term
is defined in the Glossary.

xxiv MPW 3.0 Pascal Reference

(

Other reference materials

The following books contain important reference material that you'll need when writing
prograrm in MPW Pascal:

r Apple Computer~ Int., Apple Numedcs Mam!Al, i\ddison-Wesky, 1986. A description
of the Standard Apple Numeric Environment and how it is invoked in the Macintosh.

• Apple Computer, Inc., Inside Macintosh (Volumes I-ill), Addison-Wesley, 1985. The
complete story of the architecture and operation of the 128K and 512K Macintosh,
including details of its.ROM routines.

• Apple Computer, Inc., Inside Macintosh (Volume IV), Addison-Wesley, 1986.
Additional and updated material covering the Macintosh and Macintosh Plus.

• Apple Computer, Inc., Inside Macintosh (Volume V), APDA, 1987. Additional and
updated material covering the Macintosh II and Macintosh SE.

• Apple Computer, Inc., Macintosh Programmer's Workshop 3.0 Reference, APDA, 1988.
A full description of how to use the MPW program preparation tools, including the
Pascal Compiler.

In addition, you may find the following books helpful as a supplement to this manual:

• Henry Ledgard, 1he American Pascal Standard, with Annotations, Springer-Verlag,
1984. An annotated guide to ANS Pascal, as defined by the American National
Standards Institute.

• Apple Computer, Inc., MacApp 2.0 Programmer's Refnrnce, APDA, 1987. How to use
MacAppn1 with Object Pascal. For a brief description of MacApp, see Chapter 12.

• Apple Computer, Inc., Macintosh Programmer's Workshop 3.0 Assembler Re/erence,
APDA, 1988. How to write assembly-language progra~ that you can link with MPW
Pascal.

• Apple Computer, Inc., Macintosh Programmer's Workshop 3.0 C Reference, APDA,
1988. How to wrfte C pro~ that you can link with MPW Pascal.

• Kurt}. Schmucker, Object-Oriented Programming/or tfle Macintosh, Hayden Book
Co., 1986. A comprehensive introduction to Object Pascal and the theory behind
MacApp.

• Kathleen Jemen and NikJaus Wirth, Pascal User Manual fl1ld Report, 3rd edition,
Springer-Verlag, 1985. Revised by Andrew B. Mickel and James F. Miner. The original,
and in many ways best, definition of Pascal.

PREFACE xxv

You may want to find further information about the MC68020 and the MC68881 in these
volumes:

• Motorola, MC68020 32-Bit Microprocessor User's Manual, 2nd edition, Prentice-Hall,
1985. The latest complete information for engineers, software architects, and
computer designers working on hardware and software system5 using the MC68020.

• Motorola, MC68881 Floating-Point Coprocessor User's Manual, 1st edition, Motorola,
1985. The latest complete information for engineers, software architects, and
computer designers to aid in the implementation of hardware and software systems
using the MC68881.

Notation

This manual uses typographic conventions to distinguish between different types of
words and symbols. Four fonts are used:

• Ordinary English is printed in plain Roman letters, the kind you are reading now.

• Special technical terms are printed in boldface when they are first defined. After that,
they are treated as ordinary English. Such terms are also defined in the Glossary at the
end of this manual.

• Elements of the Pascal language (or any other computer language) are printed in
computer voice. This helps you avoid confusing them with ordinary English words.

• Artificial terms, which have meaning only in this book, are printed in italics. Such
terms are sometimes called metasymbols; they are used primarily to indicate parts of
syntax diagrams that you replace with actual Pascal symbols.

Within the Pascal language, using the computer voice font, the following capitaliz.ation
conventions are used: ·

• Reserved words are printed in ALL CAPITALS.

• The names of predefined procedures and functions (that is, those that are part of the
MPW Pascal language) are printed in Initial Capitals.

• The names of data types and constants are printed in lowercase.

Here is an example of how these fonts work together:

"The value of each write parameter, p,., is given by an output expression, which may
be of type char, integer, real, STRING, PACKED ARRAY OF char, or boolean."

xxvi MPW 3.0 Pascal Reference

"- ___ ;../

Syntax diagrams

Throughout this manual, the syntax of MPW Pascal is illustrated with syntax diagrams.
These diagrams show you the rules that govern the way the elements of the language are
used. Figure P-1 is an example of a syntax diagram.

Within the syntax diagrams, words enclosed in rounded bubbles are reserved words or
other Pascal symbols. Words enclosed in boxes with square comers are higher-level
constructs, many of which have their own syntax diagrams.

• Figure P-1 Example of syntax diagram (identifier syntax)

letter

underscore letter

digit

underscore

This diagram shows that an identifier begins with a letter or an underscore, and that this
letter may be followed by a letter, a digit, an underscore, or nothing. From there, you can
loop back to add another letter, digi~ or underscore, or nothing at all.

The notation used to describe the syntax of predefined procedures and functions is
different. Here's an example of the format:

Write cf, Pi[, f>i., ... , P~l

This represents the actual syntax of the predefined procedure write. Notice the
following details:

• The tenm /, PJ., Pz, and Pn stand for actual parameters. The types and interpretations of
the parameters are given in the discussion of each procedure or function.

• The notation "A, Pz, ... , Pnn means that any number of actual parameters can appear
here, separated by commas.

• Square brackets, [], indicate parts of the syntax that can be omitted.

Hence the example shows that you must pass to the procedure write parameters that
correspond to f and p1. Additional parameters are optional.

PREF ACE xxvii

Ellipses

A seqtience of three dots (...) in a syntax diagram indicates repetition of the preceding
material.

A sequence of two dots(..) indicates a scalar range. For example, 0 . .127 means "O through
127."

A sequence of three hyphens (---) in a sample source text listing indicates lines not
specified in the sample.

xxviii MPW 3.0 Pascal Reference

(

Chapter 1 About MPW Pascal

MPW 3.0 PASCAL IS AN IMPLEMENTATION of the Pascal language that is part of the
Macintosh Programmer's Workshop 3.0. It consists of several disk files:

• the MPW 3.0 Pascal compiler

• three special tools, PasMat and PasRef, for formatting and cross-referencing
Pascal programs (described in Appendixes Hand I, respectively) and
ProcNames, for producing lists of the procedures and functions in your
Pascal programs or units (described in Appendix J)

• files of interface declarations that provide access to the Pascal, SANE, and
Macintosh routines

• the Pascal and SANE libraries

• several sample programs, with instructions for building them (including the
sample program, TestPerf.p for the performance tool PerformReport, which
is located in the Tools folder on the MPW 3.0 disk)

A complete list of the MPW 3.0 Pascal files is included in Appendix E. •

Contents
About MPW Pascal version 3.0 3
About SADE and MacsBug 4
Object Pascal 5
About the Pascal interface files 6
Using interface files 9
About the Pascal libraries 10
About the Pascal examples 13
Installing MPW Pascal 14
Segmentation control 15
Creating resoun:es 16
Creating an application in MPW Pascal 16

Building an application 17
Compiling an application 17
linking an application 18

Creating a tool in MPW Pascal 19

1

Building a tool 20
Compiling a tool 20
linking a tool 20

Creating a desk accessory in MPW Pascal 21
Desk accessory restrictions 21
The DRVRRuntime libra1 y 2i
Desk accessory routines 22
Building a desk accessory 23
linking a desk accessory 23

Creating code for different models of the Macintosh 24
Source code 24
Interface files 24
Compiler options 25

SANE and the Macintosh II 25
Floating-point enhancements 25
MC68881 enhancements 26
MC68020 enhancements 27

Other MPW 3.0 products 27

2 MPW 3.0 Pascal Reference

(

(

About MPW Pascal version 3.0

MPW 3.0 Pascal is a replacement version of MPW Pascal 2.0. If you're familiar with MPW
Pascal 2.0, see Appendix A for a list of the differences between the two versions.
Appendix A ~lso comr..iru: ~ compii2,nct st~t··x11.:.1t d.1.-:•''· Ml'V/ !'asCAl's re.idtionship to the
American National Standards Institute's definition of Pascal (AHS Pascal).

Besides providing nearly all the capabilities of Pascal described in the ANS Pascal
Standard, MPW 3.0 Pascal includes the following new features that expand the power and
flexibility of Pascal programming:

• support for SADE, the symbolic debugger (described in Chapter 13)

• a replacement for the s LOAD directive (described in •Automatic Symbol Loading" in
Chapter 9 and "The -noload, -clean, and -rebuild options" in Chapter 13)

• the use of character constants as valid string expressions

• extended and improved symbol support for MacsBug (described in Chapter 13)

• support for greater than 32K global data (described in Chapter 13)

• less strict requirements for forward class references

• new interface file organization

CHAPTER 1 About MPW Pascal 3

About SADE and MacsBug

The new Symbolic Apple Debugging Environment (SADE) is a symbolic debugger with an
interactive graphic interface like that of the MPW Shell. You can monitor the execution of
yo;r· p;ugrC:ifu simultaneously at the processor level and th~ symbolic program source level.
This first release of SADE includes

• source display and source breakpoints

• variable display according to type (including records)

• display of Macintosh system structures

• programmable, extensible command language

SADE is included with the MPW 3.0 program but documented separately in the SADE
Reference. The familiar MacsBug application has been improved for MPW 3.0, and is also
documented in a separate volume, MacsBug Reference.

MacsBug fully supports the MC68000 and MC68020 processors, as well as the MC68881 and
MC68851 coprocessors. It is installed at startup, resides in RAM with your computer, and
runs on all Macintosh computers, including the Macintosh SE and the Macintosh II. With
MacsBug, you can examine memory, trace through a program, or set up break conditions
and execute a program until these conditions occur. See the SADE Reference for
instructions on using MacsBug and Appendix F of the Macintosh Programmer's Workshop
3.0 Reference for the object file format

4 MPW 3.0 Pascal Reference

(

·.~

Object Pascal

MPW Pascal includes a set of extensions, collectively known as Object Pascal, that
provide you with the ability to write object-oriented programs.

Object-oriented languages, such as Smalltalk-80 and Simula-67, let y0u strucmre your
programs in ways that allow for greater control over the ways they process data. Object­
oriented programming couples data and routines to produce powerful, easily
maintainable code. It also gives you the ability to write programs using MacApp, Apple's
"expandablen Macintosh application.

MacApp provides a skeleton Macintosh application. It supplies a framework that
implements many of the features of the Macintosh interface, to which you add the unique
features of your own application. See the MacApp 2.0 Programmer's Reference for more
information.

The Object Pascal extensions are described at various places in this manual. If you're new
to object-oriented programming, you may want to read an introductory book on the
subject before you attempt to use Object Pascal. For suggestions, see "Other Reference
Materialsn in the Preface.

The philosophy behind object-oriented programming is summarized briefly in Chapter 12.

Llnk, the linker tool described in the Macintosh Programmer's Workshop 3.0 Reference,
now contains the optimizing code for Object Pascal. It is available as the -opt option,
and it eliminates any need for the Optimize tool distributed with MacApp.

MPW Pascal provides strict error reporting for object errors. For details, see "Compiler
Optionsn in Chapter 13.

CHAPTER 1 About MPW Pascal 5

About the Pascal interface files

The MPW 3.0 Pascal interface files contain declarations for the routines in the MPW 3.0
Pascal libraries and the MPW 3.0 libraries, as well as the User Interface Toolbox and
Opei<Ldr; Sy3te,n rout: \·1t:S I.ha! art: b~•.li!: iu1.u i.:1~ Mad1uu;;i1 RCvi. .. in.::: t,~adrnA;.,;;i Rvi\11
routines are described in detail in Instde Macintosh, Volumes 1 through 5. The interfaces to
these routines are divided into files according to their •Manager," as described in Inside
Macintosh.

Here is a list of the changes in the Pascal interface files since MPW Pascal 2.0:

• Toolbox and operating system interfaces have been divided into files according to
Manager rather than being divided between Toolintf. p and OSintf. p. This
parallels the organization of Inside Macintosh as well as the C include fdes.

• MemTypes.p,OSintf.p,Toolintf.p,Packintf.p,Pickerintf.p,
scSIIIntf .p, and Videointf .pare retained for compatibility; however, they
have been modified to include the appropriate new interface flles. It is often
preferable to use the new interfaces directly. It is unlikely that you will need all of the
new interfaces previously included in osrntf. p and Toolintf. p, so only use the
new intetfaces that your program depends upon.

• The new interface files will include the files that they depend upon, if necessary.

• sound. p has been updated to include all the Macintosh sound routines previously
included in Sound. p and OSintf. p.

• Printing. p and Print Traps. p perform essentially the same function; however,
Printing. p checks to find out if it can use the apppropriate ROM routines and
includes the necessary glue to work with 64K ROMs. Print Traps .p generates more
efficient code that calls the ROM directly.

See Appendix G for more about SANE and the MC68881.

6 MPW 3.0 Pascal Reference

(
Table 1-1 lists the new interface files.

• Table 1-1 New interface files used in MPW Pascal

-·· --.· ··---· ------
Controls.p
Desk.p.
DeskBus.p
Devices.p
Dialoqs.p
DisAsmLookup.p
Diskinit.p
Disks.p
Errors.p
Events.p
Files.p

.Fonts.p
HyperXCmd.p

Lists.p
Memory.p
Menus.p
Notification.p
OSEvents.p
OSUtils.p
Packaqes.p
Palettes.p
Picker.p
Printinq.p
Resources.p
Retrace.p
Scrap.p
SCSI.p
SeqLoad.p
Serial.p
Shutdown.p
Slots.p

, Start.p
Strinqs.p

Contt.1'.'.J') ·---- --~· - ,_ ·---------
Control Manager interface
Desk Manager interface
Apple Desktop Bus Manager interface
Device Manager interface ·
Dialog Manager interface
SADE and MacsBug symbols
Disk Initialization package interface
Disk Driver interface
Error file
Event Manager interface
File Manager interface
Font Manager interface
HyperCard 'XCMD' interface
List Manager interface
Memory Manager interface
Menu Manager interface
Notification Manager interface
Operating System Event Manager interface
Operating System Utilities interface
Package Manager interface
Palette Manager interface
Color Picker Manager interface
Printing interface
Resources Manager interface
Vertical Retrace Manager interface
Scrap Manager interfaee
SCSI Manager interface
Segment Loader interface
Serial Driver interface
Shutdown Manager interface
Slot Manager interface
Start Manager interface
String conversion routines

(Continued)

CHAPTER 1 About MPW Pascal 7

• Table 1-1

Interface file

TextEdit.p
i,1c;er. p

'L'oolUtils. p
Types.p
Video.p
Windows.p

(Continued) New interface files used in MPW Pascal

Contents

Text Edit interface
Timer Manager intf.rface
Toolbox Utilities interface
Conunon types
Video interface
Window Manager interface

Table 1-2 lists the old Pascal intetfaces along with the new interfaces to use directly.

• Table 1-2

Instead of this file

MacPrint.p
MemTypes.p
OSintf.p

Packintf.p
Pickerintf.p
SCSIIntf.p
Toolintf.p

Videointf.p

Interface files included for compatibility in MPW Pascal

Use a subset of

Printing.p
Types.p
OSUtils.p, Events.p, Files.p,
Devices.p, DeskBus.p, Diskinit.p,
Disks.p, Errors.p, Memory.p, OSEvents.p,
Retrace.p, Segload.p, Serial.p, Shutdown.p,
Slots.p, Sound.p, Start.p, Timer.p
Packages.p
Picker.p
SCSI.p
ToolUtils.p, Events.p, Controls.p,
Desk.p, Windows.p, TextEdit.p,
Dialogs.p, Fonts.p, L+sts.p, Menus.p,
Resources.p, Scrap.p,
Video.p

8 MPW 3.0 Pascal Reference

(
Using interface ftles

The interface files for the Pascal and MPW libraries as well as the Macintosh ROMs are in
the {Pinterfaces} directory. You can determine which interface files to use for a specific
routine or data type by finding out which library or M3cintosh M~.n?.ger the routine or @tl

type belon~ to. You can also find out the library or Managc1 namt by searching the
{Pinterfaces} directory for the routine or type name with the MPW Search command,
described in the Macintosh Programmer's Works~ 3.0 Ref enmce.

The compiler searches several directories for interface files; until the specified file is
found. It searches the directory containing the current input file, directories specified
using the - i option to the compiler, and directories specified in the Shell variable
{Pinterfaces}. ·

You specify the units needed for your programs by using the uses statement:

uses unitname, unitname, ... ;

The compiler assumes that a unit 'unitname' will be found in the file 'unitname.p'. This is
the ftle for which it then searches. To override this assumption, use the {$U} directive. See
'Compiler Directives' in Chapter 13 for details.

The form of the pathname also determines where the compiler looks for the interface file.
If a full pathname is specified, the compiler uses exactly that name and performs no
search. A full pathname contains at least one colon (:) but doesn't begin with a colon. If a
partial pathname is specified, the compiler searches several directories for the file. Partial
pathnames either begin with a colon or don't contain any colons.

Interface files can be nested up to five levels deep.

CHAPTER 1 About MPW Pascal 9

Table 1-3 summarizes the compiler's interface-file search rules.

• Table 1-3 Interface-file search rules

-·-~~ ·- ------------------·---------
uses filename

uses filename

Use the name as specified.

Search the following directories, in this order:
1. The directory of the source file that contains the uses

statement
2. Directories specified by the compiler's -i option, in the order

specified
3. Directories specified by the Shell variable { Pinterfaces}

About the Pascal libraries

The MPW 3.0 Pascal files include several libraries that contain the executable object
code for most of the predefined Pascal procedures and functions (described in
Chapter 11) as well as the code for more specialized routines. In addition, libraries include
code needed to access the Macintosh ROM routines. A full description of the Macintosh
ROM routines is included in Inside Macintosh.

Certain libraries are shared by Pascal and one or more other languages; they are in the
directory identified by the MPW 3.0 Shell variable {Libraries}. Three libraries
(Pas Lib. o, SANELib. o, and SANELib8 81. o) are specific to Pascal; they are in the
directory {PLibraries}. ·

Every MPW 3.0 Pascal program must be linked with the libraries Runtime. o,
Interface. o, and PasLib. o. Others are required for different program operations,
as summarized below. For further infonnation about using these libraries, see the
Macintosh Programmer's Workshop 3.0 Reference.

10 MPW 3.0 Pascal Reference

·-

MPW Pascal includes the following libraries.

• The Standard Pascal Llbrary in the file { PLibraries} PasLib. o contains all of the
standard Pascal 1/0 routines, the heap initialization routines, and certain special 1/0
routines described in Chapter 10. Every MPW Pascal program must be linked with this
library. The names of the special I/O routines all begin with PL; if yo:i call any of them
explicitly, you must use the interface file PasLibintf. p. The standard Pascal I/0
routines are implemented implicitly by the compiler and do not require an interface
file.

• The Pascal SANE libraries in the file { PLibraries} SANELib. o contain the
procedures and functions described in Appendix G. These procedures and functions
provide accurate, extended-precision floating-point arithmetic. If yoµ use any of
them in your program, you must use the interface file SANE. p in your compilation and
link it with the library { PLibraries} SANELip. o. SANELib. 0 will use the MC68881
when one is available.

• The Pascal SANE Library for the MC68881 floating-point coproces5or is included in the
file { PLibraries} SANELib8 81. o and contains alternate SANE routines that call
the MC68881 directly. This library does not work on machines without an MC68881.

Table 1-4 lists the library object files used with MPW Pascal. The first eight files, provided
with the Macintosh Programmer's Workshop, are shared with other languages and appear
in the (Libraries} directory. The remaining files, provided with MPW Pascal, are used only
with Pascal and appear in the {PLlbraries} directory.

CHAPTER 1 About MPW Pascal 11

• Table 1-4 Library object files used by MPW Pascal

Libraries that may be med
wJth MPW Pucal

Interface.a
TaalLibs.a

DRVRRuntime.a

ObjLib.a

PerfarmLib.a

Stubs.a

Runtime.a
HyperXLib.a
PasLib.a

SANELib.a

SANELib881.o

Use

Inside Macintosh libraries shared with other languages.
Contairu the cod; ;(;, tile cuisor cunt•ol a.l.i~ .u:.u.1..tger

routines described in the Macintosh Programmer's
Workshop 3.0 Reference. If you use any of these
procedures in your program, you must include the
appropriate interface file in your compilation and link
it with this library.
Run-time support for desk accessories and other
drivers. If your program is a desk accessory, you must
link it with this library.
Facilities described in Chapter 12 that implement ..
object-oriented programming without MacApp. If you
use any of these techniques without using MacApp, use
the interface file objintf. pin your compilation and
link it with this library.
Performance measurement routines. (See the MPW 3.0
Reference for more information on perforrilance
measurement.)
Stubs used by the Linker to replace unused library
routines for tools.
Data initialization routines.
HyperCard 'XCMD' routines
Standard Pascal library containing all standard Pascal
1/0 routines and heap initialization routines.
SANE Library of procedures and functions that provide
accurate, extended-precision floating-point ·
arithmetic. ·
SANE Library that is functionally equivalent to the
library SANELib.o except this version must be used
when you have invoked the -MC68881 compiler
option.

See "Linking an Application" later in this chapter for more information on using these
libraries.

12 MPW 3.0 Pascal Reference

(
About the Pascal examples

The Pascal files consist of eight sample Pascal programs included with MPW Pascal: an
application, a tool, a desk accessory, and a program that demonstrates the use of
perfonn~ce tools. In adC.:1!lo1i: the r;·..tkeJle~ wnt;.iah1g the coni.lmnd~ ueeded to build
each of the examples are provided in the same folders. These files are in {PExamples}.
Table 1-5 lists these files.

• Table 1-S

Makefile

Instructions

Sample.p

TES ample

SillyBalls.p

TubeTest.p

ResEqual.p

Memory.p

EditCdev.p

TestPerf. p-

Example source files used by MPW Pascal

Pbamples folder

Makefile for building sample programs
Instructions for building sample programs.
Sample Pascal application. This is the sample
application described in •A Simple Example Programn
in Chapter 1 of Inside Macintosh, Volume 1. It is a simple
MultiFinder-aware sample application.
Simple MultiFinder-aware TextEdit application.
Simple color QuickDraw sample application
Simple color QuickDraw and Palette Manager
Sample application: an MPW tool.
Sample desk accessory. The Memory desk accessory
displays the current free space in the application and
system heaps, the free space on the default volume, and
the name of the default volume. This information is
updated every 5 seconds. When Memory is first opened,
it calls _MaxMem to purge memory, thus showing the
upper bounds on free space in the heaps.
Sample Control Panel device with a TextEdit item
A sample program that uses the Pascal Performance
Tools.

The file Instructions contains step-by-step instructions for building each of the
sample programs. After installing MPW and MPW Pascal, as described in the Macintosh
Programmer's Workshop 3.0 Reference, open this file and follow the instructions.

CHAmR 1 About MPW Pascal 13

Installing MPW Pascal

Instructions for installing MPW Pascal on a hierarchical file system (HFS) hard disk 20 or
20SC ap~r in the Macintosh Programmer's Workshop 3.0 Reference. After installing MPW
by tollo,>ring :hose instructions, run the MPW Install script ~!lC:. im:ert the MFW P2So.il disk.

Alternatively, you can install Pascal with these steps:

1. Copy the file Pascal (the compiler) to the {MPW)Tools folder.

2. Copy the folder PExamples to the {MPW)F.xamples folder.

3. Copy the folder Plnterfaces to the {MPWJinterfaces folder.

4. Copy the folder PLibraries to the {MPW}Ubraries folder.

• Note. You can put the compiler, examples, and libraries in different directories,
provided you change the default values of various Shell variables defined in the
Startup file. You can modify the file Startup itself or, preferably, modify the file
UserStartup. The following variables determine the locations of files supplied with
MPW Pascal.

• {Commands}

• {Pinterfaces}

• { PLibraries}

A comma-separated list of directories containing tools
and applications. The directory containing the Pascal
compiler should appear in this list

A comma-separated list of directories to search for
Plnterface files. This should include the Plnterfaces
directory.

The directory containing PLibrary files. This should be
the pathname of the PLibraries directory.

For more information, see the Macintosh Programmer's Workshop 3.0 Reference.

14 MPW 3.0 Pascal Reference

·~-

Segmentation control

A segment ·is a part of code that can be separately loaded into memory. Your program can
be written without explicit segmentation or it can contain a number of different
segments.

Each •CODE• resource in the application's resource fork corresponds to a segment
containing one or more routines. (The • Cc;>DE • resource with ID 0 contains the jump table;
other • CODE • resources contain routines:) At run time, a segment is automatically loaded
by the Segment Loader when you call one of the routines contained in the segment The
segment is not unloaded until the application explicitly unload.5 it by calling unloadSeq.
See Inside Macintos,h for more information about the Segment Loader.

You can specify which routines are placed in which segments in two ways. This section
tells how to use the s s directive to specify segmentation. The Macintosh Programmer's
Workshop 3.0 Reference explains how to use the Link command to inodify a program's
segmentation.

Segmentation helps you reduce your program's run-time memory requirements. A typical
segmentation scheme divides a program into an initialization segment and a main
processing segment You can also put routines that are seldom executed-printing
routines, for instance-in a separate segment that is not loaded when the program begins
executing. This allows the program to be loaded faster because the printing routines are
not loaded until they are needed. If you don't specify segmentation, the compiler puts
the entire program into a segment called Main.

The ss directive also lets you specify several segments within a single source file. To
assign source code to a segment, precede the code with a compiler directive of the form

< ss segment-name>

The code following this directive is placed in the named segment until the compiler reads
another s s or the end of the source file.

• Note. In an s s directive, segment names are case sensitive. Leading spaces are not
significant, and all characters are included, up to the end of the comment character.

'ij

CHAPTER 1 About MPW Pascal 15

Code for a given segment does not have to be contiguous within the source file. The
program may take the following fonn:

{$S SegA}
function
{$S SegBJ
function
{$S SegA}

and so forth. The code following an $ s directive is placed in the named segment until the
next $ s directiv~ is encountered or the compiler reads the end of the source ftle.

The compiler marks each routine with the name of its segment. Then the Unker collects all
.of the functions and procedures for a segment from various input ftles and places them
into one code segment in the output ftle.

Creating resources

Noncode resources, such as the resources that specify menus, windows, and dialogs, can
be created using the Resource Editor (ResEdit) and the Resource compiler (Rez). These
tools are described in the Macintosh Programmer's Workshop 3.0 Reference and the
Res&iit Reference.

Creating an application in MPW Pascal

An application is a program that can be run under the Macintosh Finder or MultiFinder.
Applications can also be run from the MPW Shell: execution of the MPW Shell is
suspended, and the application takes over the computer's memory and display while
executing.

The code for an application is contained in • cooE • resoun:es in the resource fork of its
file. Additional resources in the same file describe the menus, windows, dialogs, strings,
and other resources used by the application. Inside Macintosh explains in detail how to
write ~ Macintosh application.

This section outlines the steps for building an application in MPW Pascal. The Instructions
file in the PExamples folder describe some of the tools that can be used to automate the
process. The MakeFile file in the PExamples folder illustrates the use of some of the tools.
The Macintosh Programmer's Workshop 3.0 Reference describes these tools in detail.

16 MPW 3.0 Pascal Reference

I..., ,/

(Building an application

The easiest way to build any program in MPW is to use the Build menu. We will build
Sample, an application from the Examples folder. The sourc:e files for Sample are Sample.p
and Sample.r. Using the Directory menu, set the current directory to
HD:MPW:Examples:PExamples.

Select Build from the Build menu and type the program name sample.

You will see something like this on the screen:

t 3:58:13 PM -----Build of Sample

t 3:58:13 PM -----Analyzing dependencies.

t 3: 58: 14 PM -----Executing build conunands

t 3:58:40 PM -----Done

sample

The Build command compiles and links the application. For details on independently
compiling and linking an application, see the sections •Compiling an Application"and
•linking an Application" that follow.

Press Enter to launch the sample application. You can cut, paste, copy, and move the
cwsor. Quit (Command-Q) returns you to the MPW Shell.

Compiling an application

To compile a Pascal program, first start the MPW Shell application, then enter the Pascal
command in any window. Typically, the command specifies options and the name of the
sourc:e file to the compiler, although neither is required. For example, the command

Pascal -p Sample.p

compiles the sourc:e file Sample.p, producing the object file Sample.p.o. The -p option
specifies that progress information should be written to diagnostic output. This
information appears on the screen after the command.

You can find a complete specification of the Pascal command-including input,
output, and diagnostic specifications, status values, and options-in the Macintosh
Programmer's Workshop 3.0 Reference.

CHAPTER 1 About MPW Pascal 17

Linking an application

The linker is used to combine object files from several separate compilations, together
with any necessary library object files, to produce the executable code resources for a
program. The linker either creates a new resource file, c0nt.ain:~r only the c<0e resomc:P.s
for your program, or replaces the code resmm:es in Jil .-~~~~i11g t.)ourcf.' file, lea'.r;ng othP.r
resources, such as menus and dialogs, intact. This allows you to run the Resource compiler
either before or after running the linker. The Macintosh Programmer's Workshop 3.0
Reference describes the Linker in detail.

An application written partly or totally in Pascal for use on any Macintosh should be linked
with the libraries listed in Table 1 ~.

Link code for use on any Macintosh with these libraries:

• Table 1-6 linking an application

Inside Macintosh interfaces

(Libraries}Interface.o

Run time support

{Libraries}Runtime .o
{PLlbraries}SANELib.o

Code compiled to use the MC68881 on the Macintosh II:

Inside Macintosh interfaces Run time support

{Libraries}Interface.o {Libraries)Runtime.o

{PLibraries}PasLib.o

{PLibrarieslPasLib.o
{PLibraries SANELib881.o

It's wise to link new programs with all the libraries that might be appropriate. If you
specify unnecessary files in the Link command, the Linker displays a message listing which
files can be removed from your build instructions.

If you are using the -Mc 6aaa1 compiler option, you must place the file·
{PLlbraries)SANELlb881.o first in your link list. This file contains some definitions that
override 80-bit versions in other libraries. The Linker uses the first definition it reaches,
then displays warning messages when it encounters duplicate definitions. You can use
the -d linker option to suppress warnings about duplicate definitions.

Programs written partly in Pascal and partly in assembly language or C should be linked
with the file CRuntime.o and not the file Runtime.o. The Linker will detect several
duplicate entry points when linking with both the Pascal and the C libraries. All but one of
these duplicates can be safely ignored: the copies of the routines are identical.

18 MPW 3.0 Pascal Reference

(

(

The exception is the execution starting point. If execution is expected to begin with the
c function main<> , no special precautions are necessary. However, if your main program
is written in assembly language or Pascal but parts of your program are written in C (and
must therefore be linked with file CRuntime.o), the object file containing your main
program must appear before CRuntime.o in the list of object files passed to the linker.

Creating a tool in MPW Pascal

A tool is a program that operates within the MPW Shell environment The Pascal compiler,
Rez, and link are all tools. You can write your own tools in Pascal, C, or assembly language.
The Macintosh Programmer's Workshop 3.0 Refemicedescribes tools and how they are
created. This section contains specific information about writing tools in Pascal.

You execute a tool by entering an MPW command. The parameters specified in the
command line are passed as parameters to the main program. The Shell variables that are
exported are also passed as a parameter to the main program; they can be accessed
directly or by using the qetenv < > function from the Pascal library. To access these
parameters, use interfaces as follows:

USES
CursorCtl,
IntEnv,
PasLibintf;

You can find additional details about parameters to tools in the Macintosh Programmer's
Workshop 3.0 Reference.

Tools have direct access to MPW Shell windows and selections. The FILE variables
stdin, stdout, and stderr refer to MPW's standard input, standard output, and
diagnostic output, respectively. By default, Pascal library 1/0 functions read standard
input (text entered from the Shell) and write to standard'Pascal output. Any files opened
by tools, using either Pascal library functions or Inside Macintosh library functions, read
and write to windows if the file specified is open in a window. The contents of the
window are read or written in place of the data fork of the file. Selections in windows can
also be read and written as if they were files, by adding the suffix .j to the filename (for
example, HD:MPW:Worksheet.I).

CHAPTER 1 About MPW Pascal 19

Building a tool

The easiest way to build any program in MPW is to use the Build menu. We will build
ResEqual, a sample MPW tool that compares the resources in two files. The source files for
ResEqual are ResEqual.p and ResEqual.r; since a rmkefile alr.eady exists, you dot1.'t need to
create one. Using th~ Dilectory menu, set the current dircctmy to
HD:MPW:Examples:PExamples.

Now select Build from the Build menu and type the program name ResEqual.

You will see something like this on the screen:
t 10:58:07 PM ----- Build of ResEqual.
t 10:58:08 PM----- Analyzing dependencies.
t 10: 58: 10 PM ----- Executing build commands .•

Rez :Examples:PExamples:ResEqual.r -append -o ResEqual
Pascal :Examples:PExamples:ResEqual.p
Link -w -t MPST -c 'MPS ' "Oya: .MPW: Libraries: "Runtime. o

"Oya: .MPW: Libraries: "Interface. o "Oya: .MPW: PLibraries: "PasLib. o
"Oya:.MPW:PLibraries:"SANELib.o "Oya:.MPW:Libraries:"ToolLibs.o
:Examples:PExamples:ResEqual.p.o -o ResEqual
t 10:58:35 PM -----Done.

Res Equal

Now press Enter.

Compiling a tool

You compile a tool in exactly the same way you compile an application. The previous
information regarding include-file search rules, segmentation, and resources applies
equally to tools and applications.

Linking a tool

The MPW Shell recognizes a tool by the type and creator. Specify the following options
when linking a tool:
Link -t MPST -c "MPS " ...

This command specifies the file type and creator of an MPW tool. Follow the same library
linking rules for tools as for applications (see the section "linking an Applicationn). In
addition, if your tool calls any of the spinning cursor or error manager routines, link with
the following libraries:
{Libraries}Stubs.o
{Libraries}ToolLibs.o

20 · MPW 3.0 Pascal Reference

(

!'1~·'

(

The file stubs. o contains a collection of "stubs," or dummy routines, for several
functions that are defined in the run-time library but are not necessary for MPW tools
running under the MPW Shell. You can use these stubs to reduce the size of a tool.
stubs. o should be linked in before any of the other libraries.

Creating a desk ~cessory in MPW Pascal

A desk accessory is a program that you run by selecting it from the Apple rrenu. It shares
its execution environment with the currently executing application. Information on
writing desk accessories appears in the Desk Manager and Device Manager chapters of
Inside Macintosh and in the Macintosh Programmer's Workshop 3.0 Reference. This section
contains information specific to writing desk accessories in MPW Pascal.

Desk accessory restrictions

A desk accessory has neither a jump table nor a global data area.

• Because it does not have a jump table, a desk accessory must be in a single segment.
Either omit segmentation specifications so that all your code is placed in the default
segmen~ or use identical segmentation specifications for all of your routines. Use the
link command to move any library routines you use into your single segment

• Because it does not have a global data area, a desk accessory written in Pascal must
not use global variables. Furthermore, a desk accessory cannot call library routines that
require global data. Programming hints for avoiding these restrictions appear in the
Macintosh Programmer's Workshop 3.0 Reference.

The DRVRRuntlme library

Desk accessories have traditionally been written in assembly-language source, partly
because of the peculiar resource format used by the system for desk accessories, the
' DRVR • resource. Setting up the • DRVR • layout header, passing register-based procedure
parameters, and coping with the nonstandard exit conventions of the driver routines have
made it fairly difficult in the past for programmers not familiar with assembly language to
implement desk accessories in higher-level languages.

CHAPTER 1 About MPW Pascal 21

To overcome these difficulties and simplify the task of writing a desk accessory in Pascal,
MPW provides the library DRVRRuntime.o and the resource type 'DRVW' declared in
MPWfypes.r. Together they compose the driver layout header and the five entry points
that set up the open, prime, status, control, and close functions of a driver.
For more information about • DRVR • resources, see the Device Driver chapter of JnsitltJ
Macin!osh, Volume 2. For an e:•am!Jlt. defwfof; d,~!~ <!CCl"~f.: J, / . 1.,:, di.:.:r;~, s >- chc file
Memory.r in the folder PExamples.

Using the library DRVRRuntime.o to create desk accessories offe~ a number of
advantages: :

• No assembly-language source is required. Each of the driver routines-DRVROpen,
DRVRPrime, DRVRStatus, DRVRControl, and DRVRClose-can be written in
Pascal.

• The DRVRRuntime library handles desk accessory exit conventions: your routines
simply return a result code.

The DRVRRuntime library consists of a main entry point that overrides the Pascal run-time
initial entry point. The DRVRRuntime entry point contains driver "glue" that sets up the
paramete~ for you, calls your routine, and performs the special exit code required by a
desk accessory to return control to the system. Your routines perform the actions of the
desk accessory, such as opening a window or responding to mouse clicks in it

Desk accessory routines

Desk accessories that use the library DRVRRuntime must contain the five functions
DRVROpen, DRVRPrime, DRVRStatus, DRVRControl, and DRVRClose. All of these
functions have the same parameter and result types. They are declared as Pascal­
compatible functions so that the library DRVRRuntime can be used for writing desk
accessories in Pascal, C, and assembly language. Each of these five routines should be
declared as follows:

FUNCTION DRVROpen(ctlPB: ParmBlkPtr; dCtl: DCtlPtr): OSErr;
BEGIN

... your axle ...
DRVROpen := resultCode;

END;

Types ParmBlkPtr and DCtlPtr are defined in the Files.p file. Type OSErr is defined
in MemTypes.p. Details on each function appear in the Macintosh Programmer's
Workshop 3.0 Reference, in the Desk Manager chapter of Inside Macintosh, Volume 1, and in
the Device Manager chapter of Inside Macintosh, Volume 2.

22 MPW 3.0 Pascal Reference

(
Building a desk accessory

The easiest way to build any program in MPW is to use the Build menu. We will build
Memory, a sample desk accessory that displays the memory available in the application
and system heaps, and on the boot disk.

The source files for Memory are Memory.c and Memory.r; since a makefile already exists,
you don't need to create one. Using the Directory menu, set the current directory to
HD:MPW:Examples:PExamples.

Using the Directory menu, set the directory to.HD:MPW:Examples: PExamples. Now
select Build from the Build menu and type the program name Memory. You will see
something like this ?n the screen:

f 4:12:40 PM ----- Build of Memory.
f 4:12:41 PM ----- Analyzinq dependencies.
f 4:12:43 PM----- Executinq build·commands.

pascal Memory.c
Link -w -rt DRVW•O -sq Memory "Oya:MPW:Libraries"DRVRRuntime.o
Memory.p.o
"Oya:MPW:Libraries"Interface.o "Oya:MPW:PLibraries"Paslib.o -o
Memory.DRVW -c "????" -t "????"

Rez -rd -c DMOV -t DFIL Memory.r -o Memory
f 4:13:06 PM ----- Done.

'Font/DA Mover' 'Oya:System Folder:System' Memory f Install DA

Press Enter to launch the Font/DA Mover. (If you have two megabytes or less of RAM,
you may not be able to do this under MultiFinder; restart with the Command key held
down, then tty again.) Install the Memory DA in your System file. It gives you the current
size of the System Heap and the Application Heap.

I.Inking a desk accessory

A desk accessory written in Pascal must be linked with both DRVRRuntime.o and
Runtime.o. DRVRRuntime.o must precede Runtime.o in the list of object files passed
to the Linker, for example

LINK (Libraries}DRVRRuntime.o (Libraries}Runtime.o

CHAPTER 1 About MPW Pascal 23

Creating code for different models of the Macintosh ·

Using version 3.0 of MPW Pascal, you can create applications that run on all models of the
Macintosh. This section outlines the compatibilities among the machines and the
strategies for writing and compiling code that will mr'. o ·- tht c!ifi···:·c1,. :·:_:::.· L .- .. •~

megabytes of RAM are required.

Soutce code

You can write yoilr source code to be compatible with one or more models of the
Macintosh. You have four primary options:

• Code written for a Macintosh 512K also runs on a Macintosh XL, a Macintosh Plus, a
Macintosh SE, and a Macintosh II. If you want your program to run on any model,
follow the recommendations in Inside Macintosh, Volumes 1 through 3.

• Code written for a Macintosh Plus also runs on a Macintosh SE and a Macintosh II. If
you want your program to run on either of these models, follow the recommendations
in Inside Macintosh, Volumes 1 through 4.

• Code written for a Macintosh SE also runs on a Macintosh II and a Macintosh 512Ke or
Macintosh Plus. If you want your code to run on any model with the most recent
system disk, follow the recommendations for a Macintosh SE in Inside Macintosh,
Volume5.

• Code written for a Macintosh II, using the ROM code that is present only in that
model, runs only on a Macintosh II.

Interface mes

A set of interface files provided with MPW Pascal gives you access from Pascal to the
Macintosh Toolbox and Macintosh Operating System routines built into the Macintosh
ROMs. Volume 5 of Inside Macintosh describes the ROM code that is new with the
Macintosh II and the Macintosh SE. Volume 4 of Inside Macintosh describes the code for
the Ma<;intosh Plus.

Much of the new material is usable only on a Macintosh II, because it makes use of
hardware options that are not available on other models. You can include all of the
interface-file definitions in code for use on any model, but you cannot call ROM routines
that are not present on the machine that will run the compiled code.

24 MPW 3.0 Pascal Reference

(See Inside Macintosh, Volume 5, for detailed descriptions of the new material and the
models with which it can be used.

Compiler optlon£

With the addition of the Macintosh II to the product line, there are now compiler
differences among the models as well as ROM code differences. These compiler
differences are cliscuMed in the following sections.

SANE and the Macintosh D

MPW Pascal includes numeric capabilities that conform to the Institute of Electrical and
Electronics Engineers OEEE) Standard 754 for Floating-Point Arithmetic. This Standard is
the set of guidelines defined by the IEEE for the design and implementation of systems
that perform floating-point arithmetic.

The Standard Apple Numeric Environment (SANE) is Apple's implementation of these
guidelines. MPW 3.0 Pascal uses SANE to provide a powerful, flexible environment for
numeric calculations.

The IEEE Standard recommends the implementation of two additional data typeS for
numeric programming, in addition to the real type that's specified in the ANSI
Standard. MPW Pascal includes these two additional typeS. They are described in
Appendix G. You'll also fmd references to SANE in the descriptions of predefined
arithmetic functions in Chapter 11.

SANE includes a library (SANEI.ib) of useful numeric procedures and functions. This
library, described in Appendix G, works on all machines in the Macintosh family.

Floating-point enhancements

Applications using the SANE packages (Pack4 and Packs) run faster on the Macintosh II
because of the 68881 floating-point coprocessor. The default nxxie of the compiler is to
call these packages for all floating-point operations. For the fastest possible arithmetic
on machines with a 68881, the compiler has an option that forces direct calls to the 68881.
When the option is used, the resulting code will not run on Macintoshes without both a
68020 and a 68881.

CHAmR 1 About MPW Pascal 25

The SANE interface has been extended to provide support for the 68881: one new
constant for setting the default environment to work in both the 68000 and the 68881
worlds, two new functions for transferring between extended fonnats, and two new
functions for access to the 68881 trap mechanism. The code for these new features is
included in a new library SANELlb881.o. The features are described in the updated
interface file1 SANE.p, and are discussed in det:i.il iu "Coff1e1.di.lf;, 13·:.:twe;;. ::Xtc-:.:dcd
Fonnats in Mixed-World Programs," in Appendix G.

The SetEnvironment (0) call will not work under the -MC68881 option. Replace it
with SetEnvironment (IEEEDef aul tEnv) , which works with or without the
-MC68881 option .

. MC6888t enharicements

The Motorola 68881 does basic arithmetic and a large number of transcendental functions
very fast Ordinarily, the MPW Pascal compiler generates calls to the SANE packages
(Pack4 and Packs) for floating-point operations; if a 68881 is present, the SANE
packages use i~ so floating-point packages are automatically faster. To take better
advantage of the 68881, the Pascal compiler has been modified to provide optional
direct calls to the coprocessor.

To access the 68881 directly for greater speed in basic arithmetic calls, type -Mc 6aaa1
on the command line or use the equivalent $MC68881+ compiler directive (described in
detail in Chapter 13) and link with SANELlb881.o instead of SANELlb.o. With the
-MC68881 option, the extended type is 12 bytes long and variables of the extended

type may be allocated to registers.

The -Mc 6 a a a 1 option will result in the use of transcendental functions whose accuracy is
identical to that of the SANE packages. For the faster but less accurate transcendental
functions provided on the 68881, type -d Elems88l=true on the command line. For
details, see Chapter 13.

For details on using the -MC688 81 option, see Appendix G ..

6 Important Use of the -Mc 6 a a a 1 option can generate instructions incompatible
with the 68000. Your program might not run on a Macintosh without·
the 68881. 6

26 MPW 3.0 Pascal Reference

(
MC68020 enhancements

MPW Pascal supports the Motorola 68020 central processing unit with the compiler option
-MC68020 or the equivalent compiler directive $MC68020+ (described in Chapter 13).
The 68020 yields faster longint arithmetic and improved performance with packed
structures. See Appendix K for advanced programming techniques for the MC68020.

6. Important Use of the -Mc6ao20 option can generate instructions incompatible
with the 68000. t:.

Other MPW 3.0 products

The MPW 3.0 Shell provides an integrated working environment within which you can write
progra~ in assembly language, Pascal, and C.

If you write progmm in Pascal, you can also use MacApp for object-oriented
programming, as described in Chapter 12. The MPW 3.0 Pascal compiler cannot be used as
a stand-alone program.

Besides the assembly-language Assembler and the Pascal and C compilers, the MPW 3.0
Shell also contains a rich complement of editing, linking, and debugging tools including
SADE and MacsBug.

Here's how to find more information about the ways you can combine your Pascal
progra~ with other MPW 3.0 facilities:

• For more information about the MPW 3.0 Shell, including how to edit your source text,
·how to use the Build Menu facility, how to use Commando, how to use the command
language, how: to create resources for your program, and how to use the linking and
debugging tools, consult the Macintosh Programmer's Workshop 3.0 Reference.

• If you want to use assembly-language subroutines in your Pascal progmm, or vice
versa, consult the Macintosh Programmer's Workshop 3.0 Assembler Reference.

• If you want to write your program partly in Pascal and partly in C, consult the
Macintosh Programmer's Workshop C 3.0 Reference and Appendix E of this reference.

• If you want to use MacApp to write object-oriented progra~ in MPW 3.0 Pascal,
consult the MacApp 2.0 Programmer's Reference and Chapter 12 of this reference.

Many of the books just cited are all listed under "Other Reference Materialsn in the
Preface.

CHAPTER 1 About MPW Pascal

(

(

Chapter 2 Symbols

THIS CHAPTER DISCUSSES SYMBOLS, the smallest meaningful units of source text in a
Pascal program. •

Contents

Symbols 31
Special symbols and reserved words 32
Identifiers 33
Numbers 34
Labels 36

Quoted string constants 36
Quoted character constants 37

Delimiters 38
Directives 38

Special directives for Object Pascal 38
Comments and Compiler directives 39

29

·.~

Symbols

This chapter discusses symbols under the following headings:

• special symbols and reserved words

• identifiers

• numbers
• labels

• quoted string constants

• delimiters

• directives

• comments and Compiler directives

Every Pascal source text consists of a succession of such symbols. You write each symbol
as a string of ASCII characters, according to these rules:

• Each symbol must be complete and unbroken; you may not insert one symbol within
another.

• You can write comments anywhere, as long as they do not break up other symbols.
The Pascal Compiler simply skips over them.

• Subject to certain exceptions, explained below, you must write delimiters alternately
with the other symbols. The Compiler uses delimiters to determine where other
symbols begin and end.

The character set used by MPW Pascal is eight-bit extended ASCII, with characters
represented by numeric codes in the range 0 .. 255. See Appendix C for the complete
character set.

The Compiler does not recognize the ASCII control codes (ASCII 0 through ASCII 31),
except tab and carriage return. Otherwise, it processes the following subsets of the ASCII
character set: .

• The letters are those of the English alphabe~ A through Zand a through z.
• The digits are the Arabic numerals 0 through 9.
• The ha digits are the Arabic numerals o through 9, the letters A through F, and the

letters a through f
• The blanks are the space character (ASCII 32), the horizontal tab character (ASCII 9),

the return character (ASCII 13), and option-space (ASCII 202).

• The underscore, ASCII 95.

CHAPTER 2 Symbols 31

Special symbols and reserved words

Special symbols and reserved words are symbols having fixed meanings. If you try to
change their meanings or usP. them in ways other than their intended us~, the ':ompiler will
issue an erro~·. , J.~11e foi10·~1in3 sin£le cl:~.!2,~:te;.5 at~ s;-: :!.}~1 cy~~!lt·o~~s:
+ - * I = < > @ $ &

The following character pairs are special symbols:
<> <= >= := (* *) (.•) **

So~ of the special symbols are also operators. Operators are defined in Chapter 3.

. • Note-. The symbols (. and .) are equivalent to [and].

The reserved words in MPW Pascal are listed in Table 2-1.

• Table 2-1 Reserved words

AND DOWNTO IF NIL PROGRAM TYPE
ARRAY ELSE IMPLEMENTATION NOT RECORD UNIT
BEGIN END IN OF REPEAT UNTIL
CASE FILE INTERFACE OR SET USES
CONST FOR INTRINSIC* OTHERWISE STRING VAR
DIV FUNCTION LABEL PACKED THEN WHILE
DO GO'I.'O MOD PROCEDURE TO WITH

• INTRINSIC is reserved for future use.

These reserved words appear in uppercase letters throughout this book. However, MPW
Pascal is not case sensitive-corresponding uppercase and lowercase letters are
equivalent. ·

32 MPW 3.0 Pascal Reference

(

Identifiers

Identifiers are the names that denote constants, types, variables, procedures, functions,
units and programs, and fields in records. Here are the rules for writing identifiers:

• An identifier can be of any length, but only the fir5t 63 charncters are sig;1Vlcant.

• They ate not case sensitive; corresponding uppercase and lowercase letters are
equivalent.

• They may contain only letters, digits, and underscore characters (ASCII 95); in
particular, they may not contain spaces.

• Every identifier must begin with a letter or an underscore.

identifier
letter

underscore letter

digit

underscore

Here are some examples of identifiers:

z Knowledge SUM get byte
An_identifier_can_be_as_long_as~ou_want_stop

CHAPTER 2 Symbols 33

Numbers

Within an MPW Pascal program, you can use ordinary decimal notation for numbers that
are constants of the data types integer and longint and tbe real types (see
Chapter 4). You can also write hexadcdrmJ inlegei corst~1-.;,~: vs!ng th~ '!: <.:i1arz::tcr as ;i

prefix. Finally, you can use scientific notation (E or e followed by an exponent) for real
types. Here are the syntax diagrams for writing numbers:

digit sequence
(.. ..,_ --di-'g_it_)

..

hex dtgtt sequence
[~ , __ :_, -)

..

sign

unsigned number
digit sequence

hex digit sequence

34 MPW 3.0 Pascal Reference

sign

digit
sequence

digit
sequence

sign

The letter E or e preceding the scale factor in an unsigned real means "times ten to the
power of_W

These are examples of correct notation for numbers in MPW Pascal programs:

1 +100 -0.1 SE-3 87.35e+8 $A05D

Notice that SE-3 means 5xl()-3 and 87. 35e+8 means 87.35xl08. You can omit the plus
sign (+)before the exponent so that 8E+7 and 8E7 are equivalent.

Numbers written with a decimal point or exponent are stored as type extended (unless
explicitly assigned to a variable of another of the real types). Other decimal numbers are
stored as the smallest numerical type (integer or longint) needed for that value. For
example, an integer value from-32768 to 32767 is stored in two bytes, as type
integer. See Chapter 4 for the value limits of different numerical data types.

A hexadecimal constant with one to four digits is stored as an integer (two-byte)
quantity; one with five to eight digits is stored as a longint (four-byte) quantity. An
integral hexadecimal value with more than eight significant digits causes an overflow error.
Leading zeros are counted in hexadecimal digit counts. The sign of the resulting value is
implied by the hexadecimal notation.

digit
sequence

CHAPTER 2 Symbols 35

Here are some examples of hexadecimal constants and their integer valuei:"

$F=15
$FFFF=-1 (integer)
$0FFFF=65535 (longint)
$FFFFF=l048575
$FFFFFFFF=-1 (longint)

Labels

A label is a digit sequence in the range 0 .. 9999. Leading zeros are not significant in labels.
For example, o o 7 a and 7 a are equivalent.

Labels are used with GOTO statements, described in Chapter 7.

Quoted string constants

A quoted string constant is a sequence of zero or more characters from the ASCII
character set given in Appendix C. Here are the rules for writing quoted string constants:

• F.ach constant must be written all on one line of the program source text

• F.ach must be enclosed by single quotation marks (apostrophes).

• Blanks count as characters in quoted string constants.

• The maximum number of characters in one constant is 255.

• A quoted string constant with nothing between the single quotation marks denotes
the null string.

• If you want the quoted string constant to contain a single cwotation mark, you must
write the single quotation mark twice.

MPW 3.0 Pascal Reference

(quoted string constant

string
chmcter

any char except 0 or Return

These are examples of quoted string constants:

'Baltic'
'A'

'NOVOGOROD'
'.' ,

'Don''t Panic!'
' ' ' ' ''

The last is a null string. The next to last contains one single quotation mark.

All string values have a length attribute (see "String Types• in Chapter 4). In the case of a
quoted string constant, the length is faed; it is equal to the actual number of characters in
the string value.

Quoted character constants

Syntactically, a quoted character constant is simply a quoted string constant whose length is exactly
one. •A• is an example of a quoted character constant.

quotld character constant string
character

A quoted character constant is compatible with any char type or STRING type; that is, it
can be used either as a character value or as a string value.

CHAPTER 2 Symbols 37

Delimiters

Delimiters are symbols that separate other symbols in the source text so that the
Compiler can distinguish them as discrete objects. Blanks (spaces, tabs, carriage returns,
and option-spacc:s) are the principal delfalite1s. hi addition, all the :;;µetial sy1nbols listed
earlier in this chapter serve as delimiters while performing their other functions. Hence the
Compiler can process the expression

2+seven=nurnber_of_planets

even though it contains no spaces or tabs, because + and • are delimiters.

Comments and Compiler directives (described below) also act as delimiters.

Directives

Directives are words that have special meanings only when used in place of a procedure or
function block. They are not reserved and can be used as identifiers in other contexts.
FORWARD, EXTERNAL, c, and INLINE are the four directives used by MPW Pascal.
INLINE is different from the other three in that it is followed by a list of constants, which
make up a machine-language subprogram used by the Compiler in interpreting the
directive. See Chapter 8 for more information about INLINE.

Special directives for Object Pascal

The words INHERITED and SELF have special meanings only when used in an Object
Pascal method declaration (discussed in Chapter 12). You can use the words inherited and
self as identifiers anywhere but within a method. In practice, Object Pascal programs
consist almost entirely of methods, so INHERITED and SELF are rarely used as identifiers
in Object Pascal programs. Ordinary Pascal programs never contain methods.

The word OVERRIDE is used like a directive. It has special meaning only when used after a
method heading in an object type declaration. However, OVERRIDE is added to the
method and does not replace its block.

38 MPW 3.0 Pascal Reference

(

Comments and Compiler directives

The constructs

{ '!n~' te:>-:t 11ot c0ntaining right··brc:>.ce }
(* any text not containing star-.c:ight--paren *)

are called comments. They are ignored by the Compiler.

A comment cannot be nested within another comment formed with the same kind of
delimiters. However, a comment formed with { ... J delimiters can be nested within a
comment formed with < * . . . *) delimiters, and vice versa.

• Note: The use of nested comments is one of the differences between MPW Pascal and
ANS Pascal. Nested comment structures allow you to "comment out" source text that
contains only one style of comment delimiters-that is, render it invisible to the
Compiler.

A Compiler directive is a comment that contains a $ character immediately after the { or
< * that begins the comment. The $ character is followed by the mnemonic of the
Compiler command. Compiler directives are similar to the Compiler options you enter
through the MPW Pascal command line, the main difference being that you embed
directives in the source text of your program They are listed in Chapter 13.

CHAPTER 2 Symbols 39

:r'·-

(

Chapter 3 Blocks and Scope

THE BLOCK IS TIIE FUNDAMENTAL UNIT of Pascal source text. F.ach block is part of
one of the following listed items:

• a procedure declaration

• a function declaration

• a program

• a unit

Each block consists of declarations and statements, constructed according to
these rules:

• No specific declaration parts are required.

• Declarations may be written or intermixed in any order. •

Contents

Block syntax 43
Scope rules 46

Redeclaration in an enclosed block 46
Position of declaration within its block 46
Redeclaration within a block 47
Declarations in units 47
Predefined identifiers 47
Special rule for object types 48
Scopes, object files, and other languages 48

41

(
Block syntax

The following dia~ specify the overall syntax of any block:

,,.-·

blodi label
...... dedaratk>n ..-- -

part

~
constant ~ declaration part

type
~ declaraOOll ..-

part

variable .._) ~ declaratk>n
part

~
procedure and function

1----" declaration part

~
statement

part

The label declaration part declares all labels that mark 'statements in the corresponding
statement part Each label must mark exactly one statement in the statement part.

CHAPTER 3 Blocks and Scope 43

{ LIBEL)i---[,....._.., •_I label_ .,___l__.,•0--.
. 011111 .. 1-----

labe, --·-I ~ ~

The digit sequence used for a label must be in the range 0 .. 99')9.

The coast.ant declaration part contains all constant declarations local to the block.

constant declaratfon part
{ CONSI').__[,..._..... ·I_ :m_ara00n_I l

The type declaration part contains all type declarations local to the block.

type declaration part ..

The variable declaration part contains all variable declarations local to the block .

..

44 MPW 3.0 Pascal Reference

The procedure and function declaration part contains all procedure and function
declarations local to the block.

procedure and function declaralion part
--------------791~ .. procedure

declaration

function
declaration

method
declaration

The statement part specifies the actions to be executed by the block.

_s1a1emen __ 1pan __ ~.,-.t1 = ~
+ Note. At run time, all variables except file variables declared within a particular block

have unspecified values each time the statement part of the block is entered. File
variables are initialized to NIL.

The next section discusses the scope of items within the program or unit in which they are
defined. See Chapter 8 for the scope of items defined in the interface part of a unit and
referred to in a host program or unit. ·

CHAPTER 3 Blocks and Scope 45

Scope rules

The appearance of an identifier or label in a declaration defines the identifier or label. All
subsequent occurrences of the identifier or label must be within the scope of its
dedarntion.

Ordinarily, the scope of an identifier or label extends from its declaration onward to the
end of the current block, including all blocks enclosed by the current block within that
area. There are several exceptions to this rule, however. They are explained below.

+ Note. Additional anomalies in the MPW Pascal scope rules are described in
Appendix B.

Redeclaration in an enclosed block

Suppose that outer is a block and Inner is another block that is enclosed within
outer. If an identifier declared in block Outer has a further declaration in block
Inner, then block Inner and all blocks enclosed by Inner are excluded from the scope
of the declaration in block outer.

Object identifiers cannot be redeclared.

Position of declaration within its block

The declaration of an identifier or label must precede all corresponding occurrences of
that identifier or label in the program text. In other words~ identifiers and labels cannot
be used until after they are declared. However, there are tWo exceptions to this rule:

• The base type of a pointer type can be an identifier that has not yet been declared.
In this case, the identifier must be declared somewhere in the same type declaration
part in which the pointer type occurs.

• An object type identifier may appear before it is declared, as long as that appearance
is in the same type declaration part as the declaration.

46 MPW 3.0 Pascal Reference

(
Redeclaration within a block

An identifier or label cannot be declared more than once in the outer level of a particular
block, except for record and object field identifiers.

A reco~ field identifier is decl21ed within :? recorcf type. It Lo; meaningful only in
combination with a reference to a va1iable of that record type. Therefore, the following
redeclarations are possible:

• A field identifier can be redeclared within the same block, as long as it is not declared
again at the same level within the same record type.

• An identifier that has been declared to denote a constant can be redeclared as a
record field identifier in the same block.

Declarations in units

Identifiers declared in the interface part of a unit have a scope that extends to the end of
a unit The scope of these identif1ers also extends to include any other units or progra~
that reference the unit in a USES clause.

Identifiers declared in the implementation part of a unit have a scope that extends to the
end of the unit These identifiers are hidden from any other units or progra~ that
reference the unit in a USES clause.

For a more complete discussion of units, the interface part, and the implementation part,
see "Unit Syntaxn in Chapter 9.

Predefined identifiers

MPW Pascal provides a set of predefined constants, types, procedures, and functions.
The identifiers of these objects, along with the statement identifiers cycle and Leave,
behave as if they were declared in a "super-0utennosr block enclosing the entire program;
thus, their scope includes the entire program.

CHAPTER 3 Blocks and Scope 47

Special role for object types

In addition to having normal identifier scope, the scope of any object type
identifier, object field identifier, or method identifier extends over the following
areas:
iil ~ll desce1:cb1r. of its type

• all procedure and function blocks that implement methods of that object type and its
descendants

The following extra redeclaration rules apply to object types and their associated
identifiers:

• If you declare the identifier OBJECT in a programthat uses Object Pascal, the
Compiler will issue an error.

• Object field identifiers can be redeclared in objects that are not descendants of the
original object type. However, they cannot be redeclared in any descendant of the
object type where they are originally declared, even if that object is declared in a
different block.

• Method identifiers can be redeclared, but the parameter list and return value (if any)
for the new method must be identical to those for the original method.

Scopes, object ftles, and other languages

Thf. discussion of scopes in this chapter assumes that programs are written entirely in
Pascal. Pascal provides strong type checking at compile time and a secure mechanism
(the unit) for sharing global declarations across modular compilations. Other languages,
such as C and assembly language, do not have identical mechanisms. To mix Pascal with
other languages, you may need to use some of the Compiler options that modify the
default treatment of Pascal" symbols in object files. See the discussion of the SN+, s z *,
and sz+ options in Chapter 13.

48 MPW 3.0 Pascal Reference

(

(

Chapter 4 D~.~Y Type~

You MUST SPECIFY A nPE when you declare a variable. The type determines the set
of values that variable can assume and the operations that can be performed
upon the variable. •

Comflf.s

Simple types 52
Real types 53
Scalar types 55

The integer type 56
The longint type 56
The boolean type 57
The char type 57
Enumerated types 58
Subrange types 59

String types 60
The pointer type 61
Structured types 64

Array types 65
Record types 67
Set types 69
File types 70
Object types 71

Type compatibility 73
Compatible types 73
Assignment-compatible types 74

Type coercion 75
Type declarations 76

User-defined anonymous types 77

49

(

(

(

A type declaration associates an identifier with a type.

identifier

simple
type.

structured
type

pointer
type

objea
type

type

The occurrence of an identifier on the left side of a type decbration decbres it as a type
identifier for the block in which the type decbration occurs. The scope of a type
identifier does not include its own declaration, except for pointer types and object
types. The MPW Pascal data types are arranged as shown in Table 4-1.

• Table4-1

Simple types

Real types

real, single"
double"
extended"

Data types

comp, computational"

Scalar types

integer•
long int•
char•

boolean•
enumerated types
subrange types
String types•

Pointer type

ARRAY

RECORD
SET
FILE
OBJECT

CHAPTER 4 Data Types 51

The types marked with an asterisk in Table 4-1 are predefined; their type declarations are
built into the Compiler. Others are user-defined and require a prior type declaration in
your source text.

The types listeci in Table 4-1 are discussed in the rest of tli..is cfri!Ji.(;1.

Simple types

· All the simple types define ordered sets of values.

stmpletype scalar
type

real
type

string
type

The simple types include real types, scalar types, and strings.

52 MPW 3.0 Pascal Reference

(

(

(~

Real types

There are four real types in MPW Pascal, all predefined. They are listed in Table 4-2.

• Table4-2 Real types

real, sinqle

double

extended

extended ,.'.'

comp, computational

Values

floating-point numbers
floating-point numbers
floating-point numbers

floating-point numbers .. ··

whole numbers

'WUh -68881, ail jloattng potnt t)fJes ure 12 l!ytes.

4 bytes
8 bytes
10 bytes (without
-MC68881)

12 bytes (with
-MC68881)9

8 bytes

All the floating-point calculations required in MPW Pascal progra~ are performed
according to the specifications for the Standard Apple Numeric Environment (SANE).
SANE is based on the IBEE Standard for Floating-Point Arithmetic, which recommends
the use of four floating-point types in high-level languages. In the IBEE Standard, the
types are called single, double, extended, and comp. SANE provides the three
additional floating-point types included in MPW Pascal.

The numeric environment for the real types uses IEEE· Standard defaults;' numbers are
rounded to the nearest value in extended precision, and all halts are disabled. Each
program begins with these defaults and with all exception flags clear. Functions for
managing the environment and changing these parameters are included in the SANE library,
which is discussed in Appendix G of this manual.

The ANS real type is identical to the SANE single type. The MPW Compiler will accept
both identifiers and treats them identically. In addition, the Compiler treats the names
comp and computational in exactly the same way.

The real types are written as follows:

_reaJ_type ___ • --1 1 _identifi_t:!_. i_er__,~

CHAPTER 4 Data Types 53

These are the possible values for real-type variables:
• Finite values (a subset of the mathematical real numbers). As constants, these values

can be denoted as described under "Numbersn in Chapter 2. The value zero has a sign,
like ;::;:11c, · 1 '.l:11,l;t1.~, v.·UJ• >;)fl~<.~';, t.::~;.11:-:~ Q\ltµ'JL

• Infinite values, +INF and - INF. These arise either as the result of an operation that
overflows its intended storage type or as the result of dividing a finite value by zero;

• NaNs (the word NaN stands for Not a Number). NaNs arise as the result of operations
that have no meaningful numeric result For example, the result of multiplying 00 by
zero is a NaN. In textual output, a NaN appears as NAN, followed by a set of
parentheses enclosing an integer that identifies the source of the NaN.

The four real types differ in the range and precision of values that they can hold and in the
amount of storage space they require:

• Real (or single) type variables take up four bytes of storage. The magnitude of
real type values can range from approximately 1.401298464E-45 to 3.402823466E38
in scientific notation. They have 7 to 8 digits of precision.

• Double type variables take up eight bytes of storage. The magnitude of double
values can range from approximately 5.0E-324 to 1.7E308 in scientific notation. They
have 15 to 16 digits of precision.

• Extended type variables take up ten bytes of storage (12 bytes with the -MC68881's
flag). The magnitude of extended type values can range from approximately
1.9E-4951 to 1.1E4932 in scientific notation. They have 19 to 20 digits of precision.

• The comp, or computational, data type holds only integer values in the
approximate range ±9.2E18. (The exact range is -2'>'+1 to 2'i'-1; -2'>' is treated as a
NaN.) Comp type variables are used for fDCed-point values, where the decimal point is
placed by the application. Although comp values appear to be more like the integer
types than like the other real types, computations using comp values are performed as
with the real types. Comp values are converted to extended before computations are
performed. ·

+ Note: Real values are converted to extended before calculations are perfonned, so
calculations using the extended data type are faster and more compact than other
real-type calculations. You may want to declare all real-type temporary variables,
formal value parameters, and function results as extended in order to save execution
time and code size. External data should be stored as one of the smaller types rather
than as extended, which varies among SANE implementations.

54 MPW 3.0 Pascal Reference

(

Scalar types

Scalar types are simple types with the following special characteristics:

• Wldtln a given scalar type, all possible value form an ordered set and each possible
value is associated with an ordinality, which is an integer or longint value. Except
for integer and longint values, the first value of the scalar type has ordinality 0,
the next has ordinality 1, and so on for each value in that scalar type. The ordinality of
an integer or longint value is the value itself; for example, the ordinality of-10 is
-10. In any scalar type, each value except the first has a predecessor based on this
ordering, and each value except the last has a successor based on this ordering.

• The standard function Ord, described in Chapter 11, can be applied to any value of
scalar type; it returns the' ordinality of the value.

• The standard function Pred, described in Chapter 11, can be applied to any value of
scalar type; it returns the predecessor of the value. For the first value in the scalar type,
the result is unspecified.

• The standard function succ, described in Chapter 11, can be applied to any value of
scalar type; it returns the successor of the value. For the last value in the scalar type,
the result is unspecified.

Scalar types are written as follows:

scalar type subrange
type

enumerated
type

ordinal
type

identifier

MPW Pascal has four predefined scalar types-integer, longint, boolean, and
char-and two classes of user-defined scalar types: enumerated types and subrange
types. These are described in the following sections.

CHAmR 4 Data Types 55

The integer type

Values of type integer are a subset of the whole numbers. As constants, these values can .
b d ..t -' ·• d ' "N · i...~ " • ~h ~ ... ' ' " ' e enot~ as Cti:scm1c. um,i=-~· l i.lffi!Y~'~' J:.• :, .a;·1~ , ;. .. 1 •. 1:; l»~:ct1'''e~· -~ 1':e9 .• r
constant maxint is defined to b~ 3Z7G7. TI1c rat.5c of ti.1e typ;;. inlt:9er 1:: ti1e 5'l of
values
-(maxint+l), -maxint, ... -1, O, 1, ... maxint-1, maxint

that is, -32768 to +32767. These are 16-bit, 2's-complement integers.

The longint type

Values of type longint are a subset of the whole numbers. As constants, these values can
. be denoted as described under "Numbers" in Chapter 2. The predefined longint

constant maxlongint is defined to be +2147483647. The range of the type longint is
the set of values
-(maxlongint+l), -maxlongint, ... -1, 0, 1, ... maxlongint-1, maxlongint

that is, -2'1 to 2'1-1, or -2147483648 to +2147483647. These are 32-bit, 2's-complement
integers. Arithmetic on integer and longint operands is done in both 16-bit and 32-
bit precision, as follows:

• All integer constants in the range of type integer are considered to be of type
integer. All integer constants in the range of type longint, but not in the range
of type integer, are considered to be of type longint.

• When both operands of an operator (or the single operand of a unary operator) are of
type integer, 16-bit operations are always performed and the result is of type
integer (truncated to 16 bits if necessary). Similarly, if both operands are of type
longint, 32-bit operations are always performed and the result is of type longint.

• When one operand is of type longint and the other is of type integer, the
integer operand is converted to longint, 32-bit operatiQns are performed, and
the result is of type longint. However, if this value is assigned to a variable of type
integer, it is truncated (see next rule).

• The expression on the right of an assignment statement is evaluated independently of
the size of the variable on the left For example, if variable longvar is declared as
type longint, the statement longVar : .. maxint+maxint will still cause
integer overflow. If necessary, the result of the expression is truncated or extended
to match the size of the variable on the left.

An important point to remember is that each operator is applied only to its two operands,
so, at most, one of those operands is converted. If the expression contains other
operands, those are not necessarily converted.

56 MPW 3.0 Pascal Reference

(
For example, in the expression

oneint+twoint+threeint+oneLongint

the value of one Int is added to twoint in a 16-bit operation, the result is added to
threeint in another 16-bit operation, and the result of that is converted to a long int
value and added to oneLongint. The result of the expression is a longint.

The ord4 function described in Chapter 11 can be used to convert an integer value to a
longint value. ·

• Note: Operations other than division and multiplication on longint values take
approximately one and a half times as long as corresponding operations on integer
values. Division and multiplication take more than twice as long.

The boolean type

The values of the boolean type are truth values denoted by the predefined constant
identifiers false and true. These values are ordered so that false is "less than" true.
The function call Ord (false> returns zero, and Ord (true) returns one.

All boolean variables are one byte (except in packed arrays and records). Because of
this, a "garbage" byte may be allocated due to alignment of a subsequent variable (for
example, a boolean variable followed by a longint or integer variable).

The char type

A variable of type char holds extended eight-bit ASCII values, represented by numeric
codes in the range 0 .. 255. The ordering of the char values is defined by the ordering of
these numeric codes. The function call Ord (c) , where c is a char value, returns the
numeric code of c. The Macintosh character set is given in Appendix C.

A char variable occupies two bytes of storage, except in packed arrays and records.

CHAPTER 4 Data Types 57

Enumerated types

An enumerated type defines an ordered set of values by listing the identifiers that denote
these values. The ordering of these valu~s is detem~im~d. by the sequen".:P. in v. 1L.i~h the
identifiers are listed.

fdenttJier list

The occurrence of an identifier within the identifier list of an enumerated type declares it
as a constant for the block in which the enumerated type is declared. The type of this
constant is the enumerated type being declared. These values are constants of the
enumerated type in the same way that the characters 'A• , ' s' , and ' c' are constants of
type char and the integers 1, 2, and 3 are constants of type inteqer.

These are examples of enumerated types:

color a (red, yellow, qreen, blue)
suit • (club, diamond, heart, spade)
maritalStatus a .<married, divorced, widowed, sinqle)

Given these declarations, yellow is a constant of type color, diamond is a constant of
type suit, and so forth.When the Ord function is applied to. a value of an enumerated
type, it returns an inteqer representing the ordering of the value with respect to the
other values of the enumerated type. For example, given the declarations above,
ord (red) relllrns zero, ord (yellow) returns one, and ord (blue) returns three.

• Note: Certain special scope rules apply to enumerated scalar types. They are described
in Appendix B.

58 MPW 3.0 Pascal Reference

/

(

/•I

·' .
;. ·.:..;

c ~ ..

Subrange types

You define a subrange type by giving a range of values from some scalar type, called the
associated sca1ar type. A subrange type provicles for range checking of values within the
associated scalar type. The syntax for a subrange type is

_subrange __ IJIPe __ ____,~.. = k--n _~_onstatt_. ___.~
Both constants must be of scalar type. The first constant expression in a subrange type
declaration must be smaller than the second constant expression. Both must be of the
same scalar type, or one must be of type integer and the other of~type longint. If one
is of type integer and the other of type lonqint, the associated scalar type is
longint.

• Note: When using a constant expression in a type declaration that is declaring a
subrange type, you cannot use a parenthesis as the fust character after the equal sign.
The Compiler distinguishes subrange types from enumerated types by the first symbol
after the equal sign: a left parenthesis in that position signifies an enumerated type. If
a subrange specification needs parentheses, precede it with o +. This rule applies only
within the type declaration part of a program.

Here are some examples of subrange types:

1. .100
-10 •. +10
red •. green
O+(constl-const2) DIV 2 .. const2

'o

A variable of a subrange type possesses all the properties of variables of the associated
scalar type, with the restriction that its runtime value must be in the specified interval. In
addition, the variable may have less space allocated only if the range checking is on.

CHAPTER 4 Data Types 59

String types

A string value is a sequence of characters that has a dynamic length attribute.

The length attribute of a string is the actual number of characters in the sequence at any
time during program execution. An example of a string type declaration is

aStrinq • STRING[l5]

where 15 is lhe maximum size of the string. The size is the maximum limit on the length of
any value of this type. The size attribute of a string type is detennined when the string
type is defined, and cannot change. It has a value in the range 1..255. A string type
declared without a size attribute is treated as STRING [2551. ·

The length is the actual number of characters in the sequence at any time during program
execution. The current value of the length attribute is returned by the standard function
Length.

string type si7.e
STRING attribute

string
type

identifier

size altrlbute

~ constant
expreMion ..

The ordering relationship between any two string values is deterinined by the ordering
relationship of character values in corresponding positions in the two strin~. The exact
algorithm is given under •Comparing Strin~· in Chapter 6. A capital letter does not have
the same ordering value as the corresponding lowercase letter; for example, A is valued
lower than a.

Remember that the size of a string is the value of the size attribute assigned to the string
type when it is declared, and the length of a string is the number of characters it holds at
any point, regardless of its size attribute. A program can measure the actual length of a
string by using the Length function described under "String Procedures and Functions• in
Chapter 11.

6o · MPW 3.0 Pascal Reference

•," /

(

(

+ Note: With a string constant, the size attribute is equal to the length-that is, the
number of characters actually in the string.

Although string types are simple types by definition, they have some charan.::fistics of
structured types. As explained under •Array Types" later in this chapter, individual
characters in a string can be accessed as if they were components of an array. In addition,
all string types are implicitly packed types and all restrictions on packed types apply to
strings. A list of these restrictions is given later in the section •structured Types."

A string is stored as a one-byte-length field followed by the characters in the string. You
can therefore change the length of the string by changing its zeroth character. For
example,

myStr[O] := chr(ord(myStr[O])+n);

changes the length of myStr by the value of n.

Operators applicable to strings are discussed in Chapter 6. Predeclared procedures and
functions for manipulating strings are described in Chapter 11.

The pointer type

You can use the pointer type to define a pointer variable-a variable that holds a memory
address. When you declare a pointer variable, you must specify the data type of the
memory area it points to, which is then called the base type of that pointer variable.

potnter type

base t}Pe# J type
--~---1 identifier

pointer
type

identifier

..

base
type

CHAmR 4 Data Types 61

The base type may be an identifier that has not yet been declared. In this case, it must be
declared somewhere in the same type declaration part as the pointer type.

• Note: Certain special scope rules <1.pply to pointer base types. They a1e described in
Appendix B.

Aside from an address, any pointer variable can also hold the value NIL.

Conceptually, NIL is a pointer type value that does not point to anything. You can assign
NIL to any pointer variable, regardless of type. However, you cannot assign the value of a
pointer variable of one type to a pointer variable of another type, even if the first pointer
variable has the value NIL. You assign the value NIL to a pointer variable, rather than
leaving it with an undefined value, primarily because you can test for NIL.

You can create a pointer in three ways:

• By using the New procedure described in Chapter 11. This allocates a new memory area
in the application heap for a dynamic variable and points the pointer variable to it
The size of the area is determined by the base type of the pointer variable, including
optionally specified variants; see the discussion of New in Chapter 11. A dynamic
variable is a variable that has no identifier of its own; the only way to access one is
through a pointer.

• By u~ing the @ operator described in Chapter 6. This points to the memory area
occupied by any existing variable. The @ operator pointer function creates a pointer
that is compatible with all other pointer types.

• By using the Pointer function described in Chapter 11. This allows any pointer to be
coerced to any other pointer type.

Every memory address is numeric. You can use the predefined functions Ord and ord4 to
convert any address to its corresponding longint type valu~.

The Pointer function and the @ operator avoid the Compiler's type-checking safeguards
and should be used with caution.

Chapter 5 discusses the syntax for accessing a variable pointed to by a pointer variable.

The following is an example showing how the Pointer function, the@ operator, and the
New procedure can be used to access memory dynamically. Suppose you have these
declarations:

TYPE ptr = Alongint;
charPtr = Achar;

VAR p: ptr;
thisLong: longint;
cp: charPtr;
thisStr: STRING;

62 MPW 3.0 Pascal Reference

If the address of a longint variable is already known, you can use the Pointer
function to intialize the longint pointer p to it:

p :• Pointer($904); {Point p to address $904 in low memory.}

If the longint variable is already identified, you can use the @ operator to point p to it:

p :=- @thisLong; {Point p to memory location of thisLong.}

Here's another example to shows the difference: between Pointer and@:

p:=- @cp; {p points to the pointer cp}

whereas

p:• Pointer(cp); {p and cp point to the same address}

• Note: The value of the pointer p remains valid only within the scope of the variable
this Long.

If you want to create a new memory area to hold a dynamic variable of longint type,
you use the New procedure:

New (p); {Point p to new heap area of longint size.}

Once p is given a value by one of the foregoing techniques, you can alter its value by the
same means. For example, the following assignment moves the area pointed to by p four
bytes toward higher memory:

p := Pointer(Ord4(p)+4); {Move pointer 4 bytes.}

As an example, this technique lets you access the first character in a string thisStr and
assign its value to the char variable cp:

cp := Pointer(Ord4(@thisStr)+l); {Access first char in string.}
{length byte is at Ord4(@thisStr)+0}

CHAPTER 4 Data Types 63

Structured types

A structured type is a data type that stores more than one value. Ear:P struCJ:i.i:CJ: t:J1i.:.: it'
characterized by its structuring method and by the type or types of its components. If
the component type is itself structured, the resulting structured type exhibits more than
one level of structuring. There is no specified limit on the number of levels of structuring a
data type can have.

structured type array _.. _.. _.. _..
~ ~ ~ --type

~PACKED}- ~
set ~ type

~
file

I--type

~
record
type I--

structured • _.. type
identifier

object
type

identifier

The use of the word PACKED in the declaration of a structured type indicates to the
Compiler that data storage should be economized, even if this causes less efficient access
to a component of a variable of this type. Although you can use the word PACKED when
declaring any structured type, PACKED only affects the storage of record and array types.

The word PACKED only affects the representation of·one level of the structured type in
which it occurs. If a component is itself structured, the component's representation is
packed only if the word PACKED also occurs in the declaration of its type.

64 MPW 3.0 Pascal Reference

(

(

The a operator is valid on byte-aligned fields of packed structures.

!;:,. Important If 68000 programmers get an odd address and try to access more than
a byte, they'll get an illegal address. 6.

There are two restrictions on using components of packed variables:

• You can only use components of variables of packed types as actual variable
parameters with procedures or functions if the component is allocated on a byte
boundary.

• You can only use the a operator on components of variables of packed types if the
component is allocated on a byte boundary.

The implementation of packing is complex; details of memory allocation to components
of a packed variable are not specified in this manual.

Array types

An array type consists of a fixed number of components that are all of one type, called the
component type. The number of elements is determined by one or more index types,
one for each dimension of the array. There is no specified limit on the number of
dimensions. In each dimension, the array can be indexed by every possible value of the
corresponding index type, so the number of elements is the product of the number of
values in each of the index types. However, static global arrays should not contain more
than 32767 bytes unless the -m option is used. See Chapter 13 for details on the -m

Compiler option.

ARRAY

_1nde%_1ype __ -1.,:• _oi_:_· ---~

index
type

OF type

CHAPTER 4 Data Types 65

The type following the word OF is the component type of the array and can be an existing
type identifier or a new type.

'-' Note: The index type cannot be longint or a subrange of longint.

Here are some examples of array types:

ARRAY(l •. 100] OF real
ARRAY(boolean] OF color
ARRAY[l •. Pagesize-1) OF char

If the component type of an array type is also an array type, the result can be regarded
either as an array of arrays or as a single multidimensional array. For example,

ARRAY[boolean] OF ARRAY[l •. 10] OF ARRAY[size] OF real

is equivalent to

ARRAY[boolean, 1 .. 10, size] OF real

Likewise,

PACKED ARRAY[l .. 10] OF PACKED ARRAY[l .. 8] OF boolean

is equivalent to

PACKED ARRAY[l .. 10,1 .. 8] OF boolean

"Equivalent" means that the Compiler performs the same actions with the two
constructions.

A component of an array can be accessed by following the array's identifier with one or
more indexes in brackets, separated by commas. For example, the two expressions

myArray[S,4]
myArray[S] [4]

both access the fourth element in the fifth subarray of the array my Array. For further
information, see •Arrays and String Indexes" in Chapter 5.

MPW 3.0 Pascal Reference

(

(

Record types

A record type consists of a fixed number of components called fields, which can be of
different ty~s. For each component, the record type declaration specifies the type of
the field and an identifier that names the field.

field ltst

fixed part

fixed
part

identifier
list

field
declaration

field
l~

variant
part

type

ENO

CHAmR 4 Data Types 67

The fixed part of a record type specifies a list of "fixed" fields, giving an identifier and a
type for each field. Each fixed field contains data that is always accessed in the same
way.

Here is an example of a record type:

RECORD
year: integer;
month: 1. .12;
day: 1.. 31

END

A variant part allocates memory space with more than one list of fields, thus permitting
the data in this space to be accessed in more than one way. Each list of fields is called a
variant. The variants overlay each other-that is, they occupy the same space in memory.

variant part

tag
field
type

CASE

OF

_tag_field_lY.(Je __ 1 ~ r
variant

constant

MPW 3.0 Pascal Reference

identif.ter

variant

field
list

The variant part allows for an optional identifier, called the tag fldd identifier. If a tag
field identifier is present, it is automatically declared as the identifier of an additional
fixed field of the record, called the tag field. The value of the tag field may be used by
the program to indicate which variant should be used at :i given time. If there is no tag
field, the program must select a variant on some other criterion.

• Note: The type lonqint cannot be used as a tag type.

Each variant is identified by one or more constants. All the constants must be distinct and
must be of a scalar type that is the same as or compatible with the tag type. The constants
that introduce a variant are not used for referring to fields of the variant; the actual field
identifiers are used. However, these constants can be used as optional arguments with the
New procedure, described in Chapter 11.

Variant fields are accessed in exactly the same way as fixed fields.

Here are some examples of record types with variants:
RECORD

name, firstName: STRING[80];
age: 0 .• 99;
CASE married: boolean OF
true: (spousesName: STRING[80]);
false: ()

END

RECORD
~ x, y: real;

area: real;
CASE s: shape OF
triangle: (side: real; inclination, anglel, anqle2: angle);
rectangle: (sidel, side2: real; skew, angle3: anqle);
circle: (diameter: real)

END

Set types

A set type defines a group of values, each of which has the same scalar type, called the
set's base type. Each possible value of a set type is some subset of the possible values of
the base type.

CHAPTER 4 Data Types 69

+· Note: The base type must not have more than 2040 possible values and cannot be
lonqint or inteqer. If the base type is a subrange of inteqer, all its values must
be within the limits 0 .. 2039. Because of the way sets are stored, you cannot specify a
bas"! type range such as 5000 .. 5001.

When you create a variable of a set type, that variable can hold none, one, several, or all of
the values of the set.

set type
SET OP ordinal

type

The set operators and the way in which set values are denoted in Pascal are discussed in
Chapter6.

Sets with fewer than 32 possible values in the base type can be held in a register and offer
the quickest access time. For sets larger than that, there is a performance penalty that is
essentially a linear function of the si1.e of the base type.

The empty set cl is a possible value of every set type.

Here are some examples of set types:

SET OF char
SET OF (black, brown, red, yellow, white)
SET OF 1. .10
names • (Eliot, Pound, Yeats) {a new scalar type}
poets • SET OF names {a set type usinq the new scalar type}

File types

A file type is a structured type consisting of a sequence of components that are all of one
type, the component type. The component type may be any type except a fde type or
any type containing a file type.

The component data is not in program-addressable memory but is accessed by means of a
peripheral device. The number of components (the length of the file) is not fa:ed by the
file type declaration.

70 MPW 3.0 Pascal Reference

(

(

FILE

OF type

The type FILE (without the OF TYPE construct) represents an untyped file, for use with
the Blockread and Blockwri te functions described in Chapter 10.

• Note: Although the symbol FILE can be used as a type identifier, it cannot be
redeclared because it is a reserved word.

The predefined file type text denotes a file of characters organized into. lines. The file
may be stored on a file-structured device, or it may be a stream of characters from a
character device such as the Macintosh keyboard. Files of type text are supported by
the specialized J/0 procedures discussed in Chapter 10;

In a stored file of type text or FILE OF -128 .• 127, the component values are packed
into bytes on the storage medium. With the type FILE OF char, the component values
of this type are stored in 16-bit words.

In MPW Pascal, files can be passed to procedures and functions as variable parameters.

Chapters 5 and 10 discuss methods of accessing file components and.data.

Object types

An object type defines a structure for an object An object type can have fields, like a
record The diagram for field lists above and the discussion of record type fields also

. apply to object type fields, except that an object type cannot have a variant part In
addition to fields, an object type can have associated procedures and functions, called
methods.

CHAPTER 4 Data Types 71

object type

method list method
heading

object
type

identifier

field
list

OVERRIDE

method
list

The method heading has the syntax of a procedure or function heading, as shown in
Chapter 8.

If you include the optional object type identifier and period, it must be the object type
identifier that you are defining. If the method has a formal parameter lis~ that list must
be given with the heading; similarly, if the method is a function, the type of the return
value must be given with the heading.

Object types are further discussed in Chapter 12.

72 MPW 3.0 Pascal Reference

END

(

Type compatibility

There are three levels of type compatibility in Pascal:

• Two types may be the same. Two types are the same when they are declared using the
same type identifier or when their definitions can be traced back to the same type
identifier. For the rules under which user-defined anonymous types are the same, see
"User-Defined Anonymous Typesn at the end of this chapter.

• Two types may be compatible.

• Two types may be assignment compatible.

Compatibility and assignment compatibility are discussed below.

The same types are required only

• between actual and formal variable parameters

• between actual and formal result types of functional parameters

• between actual and formal value and variable parameters within parameter lists of
procedural or functional parameters

• when a one-dimensional PACKED ARRAY OF char is being compared with another
via a relational operator

Parameters are discussed in Chapter 8.

Assignment compatibility is usually required in other contexts, although simple
compatibility is occasionally enough.

Compatible types

Compatible types are required in many contexts where two or more entities are used
together, such as in expressions, in relational operations, and with FOR statement control
variables and their initial and final values. Other specific instances where type
compatibility is required are noted elsewhere in this manual.

CHAPTER 4 Data Types 73

Two types are compatible if any of the following are true:

• They are the same type.

P One is a subrange of the other.

Ll Both are subranges of the sarne type:.

• Both are string types (the lengths and si.1.es may differ).

• Both are set types, and their base types are compatible.

• Both are of type PACKED ARRAY OF char and have the same number of
components.

Assignment-compatible types

Assignment compatibfilty is required whenever a value is assigned to something, either
explicitly (as in an assignment statement) or implicitly (as in passing value parameters).

A type T2 is assignment compatible with another type Tl in the expression Tl : - T2 if
any of the following are true:

• Tl and T2 are identical types, and neither is a file type or a structured type that
contains a file type component at any level of structuring.

• Tl is a real type, and T2 is type integer.

• Tl and T2 are compatible scalar types, and the value of T2 is within the range of
possible values of T 1.

• Tl and T2 are compatible set types, and all the members of T2 are within the range of
possible values of the base type of Tl.

• Tl and T2 are string types, and the current length of T2 is equal to or less than the size
attribute of T 1 .

• Tl and T2 are both type PACKED ARRAY OF char.

• Tl is a string type with si.1.e greater than zero or a char type, and T2 is a quoted
character constant.

• Tl is type PACKED ARRAY [1 •• nJ OF char, or actually has n elements, and T2 is a
string constant containing exactly n characters. This is not true, however, if n = 1,
because a string constant of length 1 is a quoted character constant.

• Tl is an object type, and T2 is an object reference to the same type or a descendant
type.

Whenever assignment compatibility is required and none of the above is true, either a
Compiler error or a runtime error occurs.

74 MPW 3.0 Pascal Reference

(

(

Type coercion

A valuP. or variabl!" accf's.s cf one. type can be changed into a value of another type with the
syntax

type!D(x)

Using this construction, x can be a variable identifier, a variable identifier plus one or
more qualifiers (array index, field designator, file buffer symbo~ or pointer symbol), or an
expression. You can use this syntax on the left or right side of an assignment statement

The term type!D stands for any type identifier. The expression typeJD (x) is treated as an
instance of the type specified by the term type!D, provided that the storage size of x is
not changed For conversion between scalar types, the resulting storage size can be
different.

.& Warning Constants cannot be type coerced to a structured type. •

Here are some examples of type coercion:

TYPE
ARecord = RECORD

VAR

x, y: integer
END;

recordVar: ARecord;
LongVar: longint;
IntVar: integer;

recordVar :a ARecord(LongVar);
longint(recordVar) := 34 + 65536*180;
IntVar :- integer(LongVar);

The last line shows a conversion from a four-byte quantity to a two-byte quantity, which
is allowed for scalar types. In this case, the conversion is checked for overflow if overflow
checking is in effect. (Overflow checking can be controlled by the $ov Compiler option
described in Chapter 13.)

.t. Warning Using type coercion to widen a variable can alter adjacent memory
locations, for example, longint (anintegerl : = 5;. •

CHAPTER 4 Data Types 75

You can also use type coercion for object types. In that case, the coerced value must be a
member of the type into which it is coerced. The coercion is checked for legality only if
$ R range checking is in effect.

MPW Pascal does not support typE coercio11 of ser var~.bies.

!YPC declarations

Any program, procedure, or function that declares type identifiers contains a type
declaration part, as discussed in Chapter 3.

Here is an example of a type declaration part:

TYPE count = integer;
range = integer;
color= (red, yellow, green, blue);
sex = (male, female);
year = 1900 .. 1999;
shape= (triangle, rectangle, circle);
card = ARRAY[l .. 80] OF char;
str = STRING[80];
polar = RECORD r: real; theta: angle END;
person = ApersonDetails;
personDetails = RECORD

name, firstName: str;
age: integer;
married: boolean;
father, child, sibling: person;
CASE s: sex OF
male: (enlisted, bearded: boolean);
female: (pregnant: boolean)

END;
people = FILE OF personDetails;
intfile = FILE OF integer;

In the example above, count, range, and integer denote identical types. The type
year is compatible with, but not identical to, the types range, count, and integer.

76 MPW 3.0 Pascal Reference

(

User-defined anonymous types

You can give a type to a variable without defining a type identifier. In that case, the type
declaration appears on the right side of a variable declaration, in place of ? type
identifier. This is called a user-defined anonymous type. You can create the same
strucrures with these types that you can with identified types, except that you cannot use
them in the following contexts:

• formal parameter lists
• definitions of functional return values

• definitions of object reference variables

Here are some examples of user-defined anonyroous type declarations, appearing
on the right sides of variable declarations:
VAR varl: (red, yellow, green, blue);

var2: STRING[80];
var3: RECORD

name, firstName: str;
age: integer;
married: boolean;
father, child, sibling: person;
CASE s: sex OF

male: (enlisted, bearded: boolean);
female: (pregnant: boolean)

END;
END;

User-defined anonyroous types that are separately declared are never the same types. For
example, the declarations

varl: RECORD
a, b: real

END;
var2: RECORD

a, b: real
END;

do not give varl and var2 the same type, even though they appear to be exactly the
same. However, two variables declared in the same user-defined anonyroous type
declaration, as in

varl, var2: RECORD
a, b: real

END;

are of the same type.

You can coerce two separately declared user-defined anonyroous types into being treated
as identical by using the type coercion technique described earlier in this chapter.

CHAPTER 4 Data Types T!

(

Chapter 5 Constants and Variables

THE DATA PROCES.5ED BY A PASCAL PROGRAM IS HEID in constants and variables,
which must be declared before they can be used. For a discussion of how these
declarations fit into programs and units, see Chapter 9. •

·contents

Constant declarations 81
Constant expressions 81

Predefined numeric constants 85
Predefined string constants 86

Variable declarations 86
Variable accesses 88
QualifieIS 89

Arrays and string indexes 90
Records and field designators 92
File window variables 92
PointeIS and their identified variables 93

Object references 93

79

·"·

(
Constant declarations

A constant declaration defines an identifier that denotes a constant within the block that
contains the declaration. The scope of a constant identifier does not include its own
declaration. See Chapter 3 for a discus.sio11 of scope.

constant
identifier

Constant expressions

A constant expression is an expression that denotes a constant. You can write a sign in
front of a constant expression whenever that expression's value is a number. For example,
you can use a minus sign with the predefined constant rnaxlongint to denote the value
-2147483647.

CHAPTER S Constants and Variables 81

constant e:x:presston

simple constant ex:presston

simple
constant

expres.U>n

sign

<>

IN

constant
term

simple
comtant

exp res:; ion
'--··------'

Constant expressions can be used wherever a single constant is allowed. This means that
constant expressions are allowed in the constant declarations described in the preceding
section, in subranges, and as CASE constants. (Subranges are described in Chapter 4, and
CASE statements in Chapter 7.) Constant expressions are evaluated by the Compiler.

MPW 3.0 Pascal Reference

Constant expressions follow the same rules as other expressions. Operands must be
compatible with their operators(+, -: *, **, DIV, /, IN, AND, OR, NOT, &, 1,
and relational operators). Constant sets may be defined within the CONST section, and
set operations are permitted. You can use an index to refer to a single character in a string
constant, as described later in the section •Arrays and String Indexes.•

constant
factor

CHAPTER 5 Constants and Variables

constant /actor unsigned
constant

functional
C?Jl

set
constructor

NOT

constant
. expression

constant
factor

These functions are permitted in constant expressions:

Abs Sqr Odd Ord Ord4 Chr Trunc Round Sizeof

When using Si zeo f in constant expressions, only a single type or variable identifier is
allowed. (The Sizeof function ordinarily allows field specifications.)

All integer arithmetic is performed using longint values (32-bit integers). All real
arithmetic is performed using extended (80-bit) values.

Here is an example of the use of constant expressions:

TYPE
Color

CONST
(Blue, Cyan, Green, Yellow, Red, Magenta);

PageSize = 1024;
NbrOfBlks = PageSize DIV 512;
WhiteColor = [Blue, Green, Red];
BlackColor =[Cyan, Yellow, Magenta];

VAR
InputBufr: PACKED ARRAY [0 .. PageSize - l] OF char;
AColor: Color;

BEGIN

Read(Input, Ch);
AColor := AssignColor(Ch);
IF Acolor IN WhiteColor THEN ShowLight;
IF Acolor IN BlackColor THEN ShowDark;

END.

84 MPW 3.0 Pascal Reference

(

(

• Note: When using a constant expression in a type declaration that is declaring a
subrange type, you cannot use a parenthesis as the first character after the equal sign.
The Compiler distinguishes subrange types from enumerated types by the first symbol
after the equal sign: a left parenthesis in that position signifies an enumerated type. If
a subrange specification needs parentheses, precede it with "O+n.
Here are two examples:

TYPE
range= 0+(constl-const2) DIV 2 .. const2;
color= (black, brown, red, orange, yellow, green);

This rule only applies within the type declaration part of a program.

Predefined numeric constants

The predefined constant maxint is of type integer. Its value is 3Z767. This value
satisfies the following conditions:

• Any unary operation performed on a whole number in this interval is correctly
performed according to the mathematical rules for whole-number arithmetic, with the
exception of - <-maxint-1).

• Any binary integer operation on two whole numbers in this same interval is correctly
performed according to the mathematical rules for whole-number arithmetic,
provided that the result is also in this interval. If the mathematical result is not in this
interval, then the actual result is the low-order 16 bits of the mathematical result Note
that the sign of the acrual result will sometimes be the opposite of the mathematical
result in this case.

• Any relational operation on two whole numbers in this same interval is correctly
performed according to the mathematical rules for whole-number arithmetic.

• Note: Two operations do not work correctly, even though they are technically in the
correct interval. They are

- (-maxint-1)
abs (-maxint-1)

The predefined constant pi is the representation, in extended format, of the value of 1t.

This value is precise to 19 decimal digits: 3.141592653589793239.

CHAPTER 5 Constants and Variables 85

The predefined constant inf represents positive infinity in an extended fonnat

The predefined constant maxcomp is the maXimum comp value, 9223372036854n5807.

The following predefined constants are the smallest normalized values for each data type:
minnormreal has the value 2-126; minnormdouble has the value 2-1022, and
rninnor:nexL.8nded the value cl63!l3,

The predefined constant compsecs is of type lonqint. Its value holds the compilation
date/time in seconds, as described in the "OSUtiJs• section of Inside Macintosh.

Predefined string constants

MPW Pascal includes two predefined string constants that are evaluated at compile time.
They are intended for version control. The constant compdate holds the compilation
date, and comptime holds the compilation time.

The two constants act as if you specified them in the constant declaration part of your
program as

compdate = 'MM/DD/YY';

where MM is the month, oo is the day of the month,YY is the year; and

com.ptime = '"HH:MM:ss AM/PM';

where HH is the hour (in 24-hour fonnat), MM the minute, ss the second, AM morning, and
PM afternoon.

Variable declarations

A variable declaration consists of a list of identifiers denoting new variables, followed by
their type.

variable declamtton identifier
list

86 MPW 3.0 Pascal Reference

type

(

(__

The syntax for an identifier list.is given under "Enumerated Typesn in Chapter 4.

The type given for a variable can be a type identifier declared in a preceding type
declaration part (which can be in the same block or an enclosing block, or in a unit) or a
new type definition (a user-defined anonymous type). User-defined anonymous types are
discussed at the end of Chapter 4.

The occurrence of an identifier within the identifier list of a variable declaration declares
it as a variable identifier for the block in which the declaration occurs. The variable can
then be referred to .throughout the remainder of that block, unle~ the identifier is
redeclared in an enclosed block as described in Chapter 3. If it is redeclared, the
redeclaration creates a new variable that uses the same identifier and does not affect the
value of the original variable.

The values of all variables are undefined at the start of each activation of a block. The
main program block is activated when the program is run. A procedure or function block is
activated each time the procedure or function is called.

Local data (that is, data declared within a procedure or function) may be greater than
32K. The code generated for references to variables beyond the first 32K will be ~
efficient than that generated for variables within the fust 32K.

Here are some examples of variable declarations. There may not be more than 32K of
global data declared uni~ the -m option is used. The -m option will generate I~
efficient code. See Chapter 13 for details.

x, y, z: real;
i, j: integer;
k: o .. 9;
p, q, r: boolean;
operator: (plus, minus, times);
a: ARRAY[0 •. 63] OF real;
c: color;
f: FILE OF char;
huel, hue2: SET OF color;
pl, p2: person;
m, ml, m2 : ARRAY [1. . 10, 1. . 10] OF real; ·
coord: polar;
pooltape: ARRAY[l .• 4] OF tape;

A. Warning The 32K of globals limit is inherent in the current run-time architecture
(without the -m option), and applies to all object files at link time.
Because this limit includes the implementation globals of units and
even the object files from other languages, the Pascal compiler cannot
detect a problem in all cases. The linker will give an error, however. ""

CHAPTER 5 Constants and Variables

Variable accesses

When a variable's identifier is used in a program, it is· called an access of that variable. You
use a variable access to do any of the following:

u obtain the value c: a ·variable

• assign a value to a variable

• pass the value of a variable to a procedure or function

The object accessed may be any one or a combination of the following:

• a simple variable

• a pointer variable
• the collection represented by a variable of structured type

• a part of a structured type

• the identified variable of a pointer

• the identified object of an object reference variable

• a variable reached through a function call

variable access variable
identifier

fun<.tion
call

variable tdenttjfer ·I identifier ..

qualifier

Syntax for the various kinds of qualifiers used with variable accesses is given below.

88 MPW 3.0 Pascal Reference

Qualifiers

In a variable access, the variable identifier or function call can be followed by one or more
qualifiers. Each qualifier modifies the meaning of the variable access.

qualifier
index

field
desigriator

file
buffer

symbol

pointer
symbol

As indicated in the diagram for variable accesses, there can be none, one, or more than
one qualifier following a variable identifier or function call, depending on the levels of
structure in the variable and on which particular level you want to access.

For example, an array identifier with no qualifier is a reference to the entire array:

xResults

If the array identifier is followed by an index, this denotes a specific component of the
array, which may be a simple or structured variable:

xResults[current+l]

If the array component is a record or object reference, the index may be followed by a
field designator; in this case, the variable access denotes a specific field within a specific
array component:

xResults[current+l] .link

CHAPTER 5 Constants and Variables

If the field is a pointer, the field designator may be followed by the pointer symbol to
denote the variable pointed to by the pointer:

xResults[current+l] .link~

If the variable identified by the pointer is an array, another index can be added to denote
a component of •!.:is a:r .. }, Z"lc' so forti1:

xResults[current+l] .link~[i]

Arrays and string indexes

A specific component of an array variable is denoted by a variable access that refers to
. the array variable, followed by an index that specifies the component.

A specific character within a string variable or constant is denoted by a variable access,
quoted string constant, or string constant identifier, followed by an index that specifies
the character position.

t11t'le%~._ CD---.[-., --... , __ exp_ress-ion_:---i-.. (J)--.

' OM·---·

The index of a string always ranges from 0 to a maximum of 255, depending on the size
and length of the string. The index of an array depends on the ordinal type or types
defined as the array's index type or types.

Each expression in the index selects a component in the corresponding dimension of the
array. The number of expressions must not exceed the numbCr of index types in the array
declaration, and the type of each expression must be assignment compatible with the
corresponding index type.

In indexing a multidimensional array, you can use either multiple indexes or multiple
expressions within an index. The two forms are equivalent For example,

m[i] [j]

is equivalent to

m[i, j]

90 MPW 3.0 Pascal Reference

(

('•·,

·'

A string value can be indexed by only one index expression, whose value must be in the
range 1 .. n, where n is the current length of the string value. The effect is to access one
character of the string value.

~ Note: In general, you cannot assign a value to an individual character position in a
string unless a character previously occupied that position.

When a string value is manipulated by assigning values to individual character positions,
the dynamic length of the string is not maintained. For example, suppose that strval is
declared as follows:

strval: strinq[lOJ;

Pascal allocates one byte for a number that represents the current length of the string,
followed by space for ten char values. (The dynamic length is the number of char values
in the string at any given time.) Initially, all of this space contains unspecified values. The
assignment

strval[l] :• 'F'

may or may not work, depending on what the unspecified length happens to be. If this
assignment works, it stores the char value F in character position 1, but the length of
strval remains unspecified. Therefore, the effect of a statement such as
Writeln (strval) is unspecified.

You do not have to worry about this if you are dealing with the entire string. The
statement

strval :"" 'F'

always works. The dynamic length of the string acquires a value of on~, and the statement
Writeln (strval) prints an F. The values of character positions beyond position 1 are
still unspecified, and the subsequent assignment

strval[2] :~ 'F'

leaves strval unchanged, because you cannot change the length of the string by
assigning a.string element as a character.

The predefined procedures for string manipulation, described in Chapter 11, always
·properly maintain the lengths of the string values they modify, and so are easier to use
than this kind of indexed string. manipulation.

The zeroth position of a string is special: it contains the dynamic length of the string. For
details, see "String Types" in Chapter 4.

CHAPTER 5 Constants and Variables 91

Record.1 and field designators

A specific field of a record variable is denoted by a variable access that refers to the
record variable, followed by a field designator that specifies the field.

field designator

Here are some examples of field designators:

- employee. salary
coord.tneta

The period (.), as well as ·the record variable identifier or function call, can be omitted
inside a WI TH statement that lists the record variable identifier or function call. See
Chapter 7 for more infonnation about the WITH statement.

File window variables

Although a file variable may have any number of components, only one component is·
accessible at any time. The position of the current component in the file is called the
current me position. See Chapter 10 for predefined procedures that move the current
file position. Program access to the current component uses a special variable associated
with the file, called a me window 'Variable.

The file window variable is implicitly declared when the file variable is declared. If F is a
file variable with components of type T, the associated file buffer is a variable of type T.

The file window variable associated with a file variable is denoted by a variable access
that refers to the ftle variable, followed by a qualifier called the file buff er symbol.

file bu.ff er symbol

Thus, the ftle window variable of ftle Fis referred to by F".

MPW 3.0 Pascal Reference

. . 'i

/

(

-~'·

(-

Chapter l O describes the predefined procedures that are used to move the current file
position within the file and to transfer data between the file window variable and the
current file component.

Pointers and their identilled varJabl~

The value of a variable is either NIL or a value that identifies some other variable, called
the i~ntffled ftliable of the pointer. Pointer types are discussed in Chapter 4.

The identified variable of a pointer variable is accessed by using the pointer variable
followed by a pointer symbol qualifier.

potnter symbol

The constant NIL does not point to a variable. If you access memory by means of a NIL

pointer reference, the results are unspecified. However, there may not be any error
indication.

Here are some examples of references using pointeis:

pl"
pl".siblinq"

Object references

A variable that is declared using an object type is an object reference variable. Object
reference variables are discussed in Chapter 12.

CHAPTER S Constants and Variables 93

(

Chapter 6 Expressions

ExPRES.5IONS CONSIST OF OPERANDS and (usually) operators. Operands consi.St of
the following:

• constants

• variables

• function calls

• set constructors

Constants and variables are discussed in Chapter 5. Function calls and set
constructors are described later in this chapter.

Operators make up a subset of the special symbols described in Chapter 2. They
are described below. The rules for writing expressions are given at the end of this
chapter. •

Contents

Operators 97
Arithmetic operators 97
Boolean operators 99
Set operators 100

Result types in set operations 101
Relational operators 101

Comparing numbers 101
Comparing booleans 102
Comparing strings 102
Comparing sets 103
Testing set membership 103
Comparing packed arrays of char 103

95

The @ operator 103
The @ operator with a variable 104
The @ operator with a value parameter 104
The @ operator with a variable parameter 104
ThP r!" opr.~t•'Ji with 2 p:o.::ic"'clure or function 105

Function calls 10:>
Set constructors 107
Writing expressions 108

Factors 108

Terms 110
Simple expressions 111
Expression syntax 112

96 MPW 3.0 Pascal Reference

-·

(

Operators

Table 6-1 shows the MPW Pascal operators and their precedence:

• Table 6-1 Precedence of operators

Opention

@,NOT,**
*,/,DIV,MOD,AND,&
+,-,OR, I
-,<>,<,>,<~,>•,IN

highest
second
third
lowest

Cate1ory

exponent and unary operatois
•multiplying• operators
"adding• operatois and signs
relational operatois

Operations with equal precedence are perfonned from left to right, in general. The single
exception is for the exponentiation operator (* *). Multiple exponentiation operations
are performed right to left.

Subexpressions that are not related by precedence may be evaluated in any order.

Arithmetic operators

The types of operands and results for arithmetic binary and unary operations are shown in
Tables 6-2 and 6-3.

CHAPTER 6 Expressions 'J7

• Table 6-2 Binary arithmetic operators

Operator Opcntioa. Operand type Type of result

+ addition inteqer, lonqint;, inteqer, lonqint,
or real type or ext i;.~.-:.~r.l

subttaction integer, longint, integer, longint,

or real type or extended

* multiplication inteqer,longint, inteqer, longint,
or real type or extended

** exponentiation integer, longint, inteqer, longint,
or real type or extended

I division integer, longint, extended
or real type

DIV division with integer or longint integer or longint
integer result

MOD remainder integer or longint inteqer

The symbols+,-, and* are also used as set operators (described later in this chapter).

• Note: Except for I and &, the Compiler may evaluate the operands of a binary
operator in either order. With I and &, the left operand is evaluated first, then the right
operand only if required to detennine a value.

The real types are real (or single), double, extended, and comp (or
computational).

Use of the exponentiation operator when either operand is a real type requires linking to
the SANE library.

• Table6-3

Operator

+

Unary arithmetic operators (signs)

Opcntion

identity integer, longint,
or real type

sign negation inteqer, lonqint,
or real type

MPW 3.0 Pascal Reference

Type of result

integer, longint,
or extended

inteqer, longint,
or extended

~,\

··.\.·

(/

Any operand whose type is a subrange of a scalar type is treated as if it were of the scalar
type.

If both the operands of an addition, subtraction, or multiplication operator are of type
inteqer or lonqint, the result is of type inteqer or lonqint as described in
Chapter 3; otherwise, the result is of type extended.

The result of the identity or sign negation operator is of the same type as the
operand, except that real types are converted to extended.

The value of i DIV j is the mathematical quotient of i /j, rounded toward zero to an
inteqer or lonqint value. An error occurs if j • 0.

The MOD operator returns the remainder of the division of its two operands. That is,

(-i) MOD j = - (i MOD j)

The value of i MOD j is equal to the value of

i-(iDIVj)*j

The sign of the result of MOD is always the same as the sign of i. An error occurs if the value
of jis zero.

• Note: The name MOD is actually a misnomer; MOD retµrns the remainder after division
of i by j. To obtain the modulus, a number in the closCd interval from 0 to j- 1, use the
expression

((tMODj)+j) MOD}

Boolean operators

The types of operands and results for Boolean operatio~ are shown in Table 6-4.

• Tablc6-4 Boolean operators

Opera ton Operation Opcnnd type Type of result

OR, I disjunction boolean boolean
AND,& conjunction boolean boolean
NOT negation boolean boolean

CHAPTER 6 Expressions

Notice that there are two operators each for disjunction and conjunction. When you 1,1Se

the AND and OR operators, the Compiler evaluates the entire expression, even if that is not
necessary. For example, consider the expression

true OR boolTst(~

wi1ere bool '.i.'s1 .• b r ftinctiori ti!2i returns a boolean value. Tnis expressio;i will alw~ys
have the value true, regardles.5 of the resultofboolTst (.x). However, boolTst (.x)

will always be called. This could be important if bool Tst has side effects.

With the expression

true I boolTst(~

evaluation stops as soon as the value true is reached, because evaluation proceeds from
left to right for operators of the same precedence. The ampersand (&) and vertical bar (1)
are referred to as the short-drcuit operators.

A Warning Pascal does not support mixing short-circuit and normal operations
and nonnal operators in the same expression. •

Set operators

The types of operands for set operations are shown in Table 6-5.

• Table6-5 Set operators

Operator Operation Operand Type

+ union compatible set types
difference compatible set types

* intersection compatible set types

100· MPW 3.0 Pascal Reference

·~

(

Result types in set operations

The following rules govern the type of the result of a set operation where one or both of
the operands are a SET OF subr. In the statement of these rules, ordtyp represents any
scalar type and subr represents a subrange of ordtyp:

• If ordt.yp is not ty}Je integei·, then the type of the result is type SET OF ordtyp.

• If ordtyp is type integer, then the type of the result is type SET OF 0 .. 2039. This rule
results from the limitations described under ·set Typesn in Chapter 4.

Relational operators

The types of operands and results for relational operations are shown in Table 6-6.

• Table6-6 Relational operators

Operator Operation Operand type Type of .rault

- equal to compatible set, simple, or boolean
pointer types

<> not equal to pointer types
< less than compatible simple types . boolean

> greater than compatible simple types boolean

<=- less than or compatible simple types boolean
equal to

>= greater than or compatible simple types bo·olean
equal to

<- subset of compatible set types boolean

>• superset of compatible set types boolean

IN member of left operand: any scalar type T; boolean
right operand: type SET OF T

Comparing numbers

When the operands of-,<>,<,>,>=, or<= are numeric, they need not be of compatible
type if one operand is of real type and the other is integer or longint.

CHAPTER 6 Expressions 101

• Note: Because of extensions provided for use with the Standard Apple Numeric
Environment (SANE), the result of a comparison can be unordered. An unordered result
occurs from a comparison involving a NaN (Not a Number). One important effect is
that NOT (a< b) is true if either a is greater than b or a and bare unordered. You can use
the relation fun:tic'1, whic'1 is included in thr SA!-!F. library, to test for an
unordaed COin:.•21iG0i•. Th.: SJ.NE !ibr-17 i!: d-:scribed h1 Api;eiJdt~ Ci.

See Appendix G and the Apple Numerics Manual for more information on
relational operations with real operands.

Comparing booleans

If p and q are boolean operands, then p = q denotes their equivalence, p <> q denotes
the logical exclusive-or operation, and p <= q denotes the logical expression •p implies q n

(because false<true). You can also write NOT p OR qfor logical implication.

Comparing strinp

When the reJational operators=,<>,<,>,<=, and> are used to compare strings, they
order them according to the ordering of the ASCII character set Note that any two string
values can be compared because all string values are compatible. String comparisons
follow these steps:

1. The two strings are compared a character at a time, starting with the first character.

2. Two corresponding characters are compared. If the ASCII value of one character is
greater than the other, then the corresponding string is greater than the other.

3. If the two corresponding characters are equal, the point of comparison advances to
the next character in each string, and the process returns to step 2.

4 . If the end of one string has been reached, its value is less than the other string.

5. If the ends of both strings have been reached, the two stripgs are equal.

• Note: A set of utilities that apply ordinary Janguage rules for comparing strings is
included in the Macintosh ROM routines. If you use those utilities to compare strings
rather than using the operators described here, alphabetization will follow the local
language's rules rather than the ASCII table. These routines are documented in the
International Utilities chapter in Inside Macintosh.

102 MPW 3.0 Pascal Reference

Comparing sets

If u and v are set operands, their comparisons have these results:

• u <• v is true if u is included in v.
• u >• v is true if v is included in u.
• u ., vis true if u aud v contain exactly the same members.

• u <> vis true if either u or v contains a member not contained in the other.

Testing set membership

The IN operator yields the value true if the value of the scalar type operand is a member
of the set type operand; otherwise, it yields the value false.

Comparing packed arrays of char

In addition to the operand types shown in the table, the = and <> operators can also be
used to compare a PACKED ARRAY [m .. m + n-1] OF char with a string constant
containing exactly n characteis, or to compare two one-dimensional PACKED ARRAYS

OF char of identical type. The comparison follows the steps given above under
·comparing Strings."

The @ operator

A pointer to a variable (an address) can be computed with the @ operator. The operand
and result types are shown in Table 6-7.

• Table6-7 The pointer operator

Operator Operation Operand Type of result

@ pointer formation variable, parameter, procedure, pointer
or function

The @ operator is a unary operator taking a single variable, parameter, procedure, or
function as its operand and computing the value of its pointer. The type of the value is
equivalent to the type of NIL and consequently can be assigned to any pointer variable.
The pointer type is discussed in Chapter 4.

CHAPTER 6 Expressions 103

• Note: Objects and identified variables of handles are relocatable and may be moved
at any time. Therefore, using @ on handles and object reference variables produces
addresses that may not be useful.

The@ Op,...,, {•"' .. .,.,. ..•. • ·:.
-"'aC.U.t. ,.\.. u.a ': -.·;. .. ;. :: . .':

For an ordinary variable (not a parameter), the use of e is straightforward. For example,
given the declarations

TYPE twochar - PACKED ARRAY [0 •• 1) OF char;
VAR int: integer;

twocharptr: Atwochar;

the statement

twocharptr := @int

causes twocharptr to point to int. Now twocharptr" is a reinterpretation of the bit
value of int as though it were a PACKED ARRAY [o •. 1 J OF char.

• Note: The @ operator is valid on byte-aligned fields of packed structures. For example:

@mystrinq[3]

is valid. (See "Structured Types" in Chapter 4 for details.)

The i operator with a value parameter

When @ is applied to a formal value parameter, the result is a pointer to the stack location
containing the actual value. Suppose that name is a formal value parameter in a procedure
and nameptr is a pointer variable. The statement nameptr : "' @name gives
nameptrA the value of name.

The i operator with a variable parameter

When @ is applied to a formal variable parameter, the result is a pointer to the actual
parameter (the pointer is taken from the stack). Suppose that furn is a formal variable
parameter of a procedure, fie is a variable passed to the procedure as the actual
parameter for fum, and fumptr is a pointer variable.

If the procedure executes the statement

fumptr :• @furn

then fumptr is a pointer to fie. The pointer fumptrA denotes fie itself.

104 MPW 3.0 Pascal Reference

(

(

The i operator with a procedure or function

It is ~ible to apply @ to a procedure or a function, yielding a pointer to its entry point.
Note that Pascal provides no mechanism for using such a pointer. The only use for a
procedure pointer is to pass it to an assembly-language routine, which can then jump to
that address using the assembly-language JSR instmction.

• Note: Procedures or functions used with @ should be at the outermost nesting level.

If the procedure pointed to is in the local segment, @ returns the current address of the
procedure's entry point. If the procedure is in some other segment, however, @ returns the
address of the jump-table entry for the procedure. The generation of current-address or
jump-table code can be controlled by means of the $B Compiler directive described in
Chapter 13. When a Pascal routine address is passed to a Macintosh ROM routine, the
jump table must be used.

If the procedure's segment is unloaded, code swapping may change a local segment
procedure address without warning, and the procedure pointer can become invalid. If the
procedure is not in the local segmen~ the jump-table-entry address will remain valid
despite swapping because the jump table is not moved.

Function calls

A function call executes the function denoted by the function identifier. A function
identifier is any identifier·that has been declared to denote a function, as described in
Chapters.

If the corresponding function declaration contains a list of formal parameters, then the
function call must contain a corresponding list of actual parameters.

Each actual imameter is substituted for the corresponding formal parameter, according
to these rules:

• The correspondence is established by the positions of the parameters in the lists of
actual and formal parameters, respectively.

• The number of actual parameters must be equal to the number of formal parameters.

• The order of evaluation and binding of the actual parameters is unspecified.

CHAPTER 6 Expressions 105

function call

actual parameter list

actual parameter

function
identifier

expression

variable
reference

procedure
identifier

function
identifier

Here are some examples of function calls:

surn(a, 63)
gcd(l47, k)
sin(x+y)
eof(f)
ord(f")

aClUal
parameter

list

actual
parameter

A special case of a function call is the method call. Method calls are discussed in detail in
Chapter 12.

See Chapter 7 for a description of the procedure call statement.

lo6 MPW 3.0 Pascal Reference

(
Set constructors

A set constructor denotes a value of a set type and is formed by writing expressions
within square brackets, [l . Each expression denotes a value of the set

set construcu

expression

member
groop

expression

The notation [l denotes the empty set, which belongs to every set type. Any member
group x. . y denotes as set members the range of all values of the base type in the dosed
interval x to y.

If x is greater than y, then x. . y denotes no members and [x. . y] denotes the empty set.

All values designated in member group.s in a particular set constructor must be of the same
scalar type. This scalar type is the base type of the resulting set If an integer value
designated as a set member is outside the limits 0 .. 2039, the results are unspecified.

Here are some examples of set constructors:

[red, c, green]
[l, 5, 10 •. k MOD 12, 23]
['A' .. 'Z', 'a' .. 'z', chr(xcode)]

CHAPTER 6 Expressions 107

Writing expressions

You build expressions from factors, terms, and simple expressions. These objects are
described below.

Factors

A factor may be any of the expressions shown in the following syntax diagram:

facflJr

.funaion
call

set
construaor

NOT

108 MPW 3.0 Pascal Reference

faaor

variable
ac:ceM

/

(

;.

A function call activates a function and denotes the value returned by the function;
functions are discussed in Chapter 8. A set constructor denotes a value of a set type, as
described in Chapter 4.

An unsigned constant has the following syntax:

unsigned
number

quored
string

comtant

COl1St2nl
identifier

NIL

Here are some examples of factors:

x (variable access}
@x (pointer to a variable}
15 {unsigned constant}
(x+y+z) {subexpression}
sin(x/2) {function call}
['A' .. 'F', 'a' .. 'f'] (set constructor}
NOT p (neqation of a boolean}

CHAPTER 6 Expressions 10')

Terms

Terms apply the multiplying operators to factors:

term

DIV

MOD

AND

&

••

Here are some examples of terms:

x*y
i/(1-i)
p AND q
(x<=y) AND (y<z)
(i>O) & (a [i] =b)

110 MPW 3.0 Pascal Reference

(

(,. -

--

Simple expressions

Simple expressions apply adding operators and signs to terms:

-r . ~rm

~===-s-ign====~ , _r-_ ---t)1111----1

Here are some examples of simple expressions:

x+y
-x
huel + hue2
i*j + 1

CHAPTER 6 Expressions 111

Expression syntax

The syntax for an expression applies the re1atlonal operators to simple expressions:

_ex:JJ_remon_·---4•.il .::.. ~----------------~· --i

<•

>•

<>

IN

Here are some examples of correctly written expressions:

x=l.5
p<=q
p = q AND r
(i<j) "" (j<k)
c IN huel

112 MPW 3.0 Pascal Reference

simple
expression

.~

;,,,
~'

(~

Chapter 7 Statements

STATEMENTS ARE MADE UP OF EXPRESSIONS combined with certain reserved words.
Statements describe algorithms and are executable. They perform the actual work
of the Pascal program, doing such things as giving a value to a variable or
providing conditional execution of other statements. •

Contents

Assignment statements 116
Compound statements 117
Procedure statements 118
Repetition statements 120

FOR statements 120
WHILE statements 122
REPEAT statements 123
Loop control: a comparison 124

Conditional statements 125
IF statements 125

Nested IF statements 126
CASE statements 126

Control statements 128
GOTO statements 128
Cycle statements 129
Leave statements 130
WI11I statements 130
NUU. statements 132

113

MPW Pascal has 13 statements:

statement assignment
statement

.. compound
smement

procedure
swement

FOR
statement

WHILE
swement

REPEAT
swement

IP
swement

CASI!
swement

GOTO
Slalement

Cycle
swement

Leave
starcment

wrm
statement

NUil
swement

These statements are discussed in this chapter.

(.. ,

_, CHAPTER 7 Statements 115

Assignment statements

The assignment statement sets the value of a variable. The symbol : == can be read as "set
to." The statement is written:

assignment statement variable
access

function
identifier ·= expression

. The variable reference of the left side identifies a variable of any of the types except a file
type. With most variables it is simply an identifying name, but in four cases it consists of
a name followed by a qualification:

• If the variable is a string elemen~ it is identified by the string name followed by the
element's index number in brackets.

• If the variable is an array elemen~ it is identified by the array name followed by one or
more index values (one for each dimension of the array) enclosed in square brackets
and separated by commas.

• If the variable is a record field, its name must be preceded by the name of its
containing record and a period (unless the assignment statement is enclosed in a WITH

statement).

• If the variable is a dynamic variable, it is identified by the name of its pointer
followed by a caret.

In writing assignments, keep these rules in mind:

• A real-type variable may be set to the value of another real-type, an integer or
longint, an integer subrange type, or an expression yielding integer or real
results.

• A longint variable may be set to the value of an integer, an integer subrange
type, or an expression yielding integer results. It may be set to the value of another
longint or to an expression yielding longint results, provided the actual value
does not exceed its declared size.

• A boolean variable may be set to the value of another boolean or to an expression
yielding a boolean result

116 MPW 3.0 Pascal Reference

(

(

• A char variable may be set to the value of another char, a char subrange type, or a
string element.

• A scalar variable of subrange type may be set to the value of another scalar (or an
expression yielding scalar results) of the host type, provided the actual value lies
within its declared range.

• A user-defined scalar variable may be set to any of the values named in its declaration.

• A string variable may be set to the value of another string, provided its actual length
does not exceed the variable's declared size.

• A set variable may take the value of another set variable or set constructor, provided
they have the same base type.

• A whole array variable or record variable may be set to the value of another whole array
or record variable of assignment-compatible type.

• A one-dimensional packed character array variable may be set to the value of a string
constant (but not a string variable), provided its index range is the same as the string's
length.

• Array elements (including elements that are arrays) and record fields (including fields
that are records) act in assignments like ordinary variables of their declared types.

Here are some examples of assignment statements:

X :a y+z
p := (l<=i) AND (i<lOO)
i :• Sqr(k)-(i*j)
huel :• [blue, succ(c)J

Compound statements

When writing Pascal programs, you often need to treat several statements as if they were
one-for example, when they are all executed by a single control statement. To do this,
you use the compound statement.

The body of every Pascal procedure, function, and main program consists of a single
compound statement To create a single compound statement out of a sequence of
statements, preface the sequence with BEGIN and terminate it with END, separating the
internal statements with semicolons.

CHAPTER 7 Statements 117

compound statement .,(BEGIN) r·I statement .. c END)---.
l 0·

The arrow coming back through the semicolon indicates that many statements may be
placed between BEGIN and END, as Jong as they are separated by semicolons.

You can nest any number of BEGIN ••• END statements. Within any block, the Compiler
will associate the last BEGIN with the first END, the next-to-last BEGIN with the second
END, and so on. If you have written more BEGINS than ENDS, the Compiler will stop and
display an error message.

Here is an example of a compound statement:

BEGIN
z := x;
x := y;
y :• z

END

Procedure statements

A prcx:edure is called by writing its identifier in the source text, followed by its actual
parameter list (if it has one) in parentheses. The parameters in a parameter list are
separated by commas.

procedute statement procedure . identifier .

actual
'--. parameter !------'

list

118 MPW 3.0 Pascal Reference

"

(

(

The identifier must be the same as the identifier used in the procedure or function
declaration.

The parameter list in a procedure or function call contains the same number of formal
parameters as were listed in the procedure or function declaration. Those in the
declaration are called formal panmeters; those in the calling statement, actual (or
source) parameters. The values of the actual parameters are said to be passed to the
formal parameters as part of the call.

The order and number of actual parameters in the call must match the order and number of
formal parameters in the declaration. Each actual parameter must have the same type as
the corresponding formal parameter, with these exceptions:

• Subrange types are equivalent to their base types.

• A fonnal parameter of type lonqint will accept an actual parameter of type
inteqer. ·

• Formal parameters preceded by univ accept any actual parameter that occupies the
same space in memory. For a full discussion of univ, see Chapter9.

In addition, the actual parameters specified in any procedure or function call must follow
these rules:

• Actual variable parameters must be variables. As opposed to value parameters,
variable parameters cannot be constants, expressions, or elements of packed
variables.

• The value of any actual string variable may be passed to any formal variable string
parameter, regardleM of length. However, if the declared maximum length of the
fonnal parameter is longer then the declared maximum length of the actual parameter,
you will get a Compiler error. You can avoid the problem by suspending range checking
with the Compiler directive $ R-.

• If the value of an actual parameter exceeds the range of a formal parameter (for
instance, because the formal parameter is a subrange type), you will get an execution
error unless you have suspended range checking with the Compiler directive SR-.

Here are some examples of procedure statements:

printheadinq
transpose(a, n, m)
bisect(fct, -1.0, +1.0, x)

'•

CHAPTER 7 Statements 119

Repetition statements

Pascal provides three ways to execute the same program section repeatedly-the process
called looping. But Pascal sets up the loop and exit routines for you; all you neP.d to do is
tell it the conditions for repetition. The repetition statements are the following:

• The FOR statement FOR ••• DO executes the same program section a given number of
times. The number of executions may be constant or may be determined by the result
of any scalar calculation.

• The WHILE statement WHILE ••• Do executes the same program section repeatedly as
long as a given boolean expression is true. It evaluates the boolean control before
each pass, including the fitst time; hence it can bypass the program section altogether.

• The REPEAT statement REPEAT ••• UNTIL also executes the same program section
repeatedly as long as a given boolean expression is true. But it evaluates the
boolean control after each pass; hence it executes the program section at least once.

FOR statements

The FOR statement requires a previously declared local variable of scalar type. It
repeatedly increments or decrements the value of the variable, executing a section of your
program each time. You define the starting and ending scalar values (which may be
constant or calculated) and whether the FOR statement is to count upward or downward.

120 MPW 3.0 Pascal Reference

(

,,;,.,,,:

FOR statement
FOR

TO

DOWNTO

control
variable

firuJ
value

inttfal value

final value

·I
·I
·I

·=

DO

variable
identifier

~1

expreMion

initial
value

statement

..

..

The control variable is the name of a scalar variable-integer, char, boolean,
subrange, or user-defined. It cannot be an array or string element, a record field, or a
dynamic variable. It must be declared in the block that contains the FOR statement. The
FOR statement gives it a value before each p& through the program section it controls.
Note that the value of this variable is accessible in the controlled section.

The initial and final value expressions must have the same scalar type as the variable. They
may be simple constants or variables, or complex expressions containing operators and
functions.

You write TO or DOWNTO, depending on whether the ordinality of the value of the second
expression is higher or lower than the ordinality-of the value of the first expression.

The statement controlled by the FOR statement can be a single other statement (such as
an ~ignment or a procedure call) or a compound statement containing many other
statements.

CHAPTER 7 Statements 121

--- - ------·----

Observe these rules and cautions when writing any FOR statement:

• The control variable must be a: simple variable with local scope.

• If the control variable is a subrange type or user-defined scalar, it must be capable of
accepting the initial and limit values as well as all values with an ordinality in between.

" Do net try to change th"! value of the control variable from within the FOR iltAtemer.;t;
doing so can have unpredictable results.

• Do not include the control variable in either of the limit expressions.

• After the FOR statement is finished, the value of the control variable may be
unspecified.

• The limit expressions are evaluated just once, before the fll'St pass. Changing them
from within the FOR statement will not alter its behavior.

• If the limit expressions have equal value, the FOR statement will execute its controlled
statement once.

• If the limit values are reversed-large limit less than small limit-the FOR statement will
be skipped.

Here are some examples of FOR statements:

FOR i :• 2 TO 63 DO IF a[i]>max THEN max :• a[i]

FOR i :- 1 TO n DO FOR j :• 1 TO n DO
BEGIN

x :• O;
FOR k :- 1 TO n DO x :• x+ml[i, k]*m2[k, j];
m(i, j] :• x

END

FOR c :• red TO blue DO q(c)

WHILE statements

The WHILE statement evaluates a boolean expression and then executes a statement if
the expession is true. It repeats the execution, evaluating the expression before each
pass, until the expression becomes false. The WHILE statement is written as follows:

WHILE statement
expression DO statement

122 MPW 3.0 Pascal Reference

(
The controlling expression must have boolean type; usually it is formed out of relational
and logical operators.

The statement controlled by WHILE ••• Do may be either a single statement or a
compound BEGIN ••• END construction containing other statements.

Here are some examples of WHILE statements:

WHILE a[i]<>x DO i :• i+l

WHILE ;i.>0 DO
BEGIN

IF odd(i) THEN z :• z*x;
i :- i DIV 2;
x :• sqr(x)

END

WHILE NOT eof(f) DO
BEGIN ,,,
process(f");
get (f)

END

REPEAT statements

The REPEAT statement behaves much like the WHILE statement, but it evaluates its
boolean expression after executing the statements it controls. It is written as follows:

RFl'F.ATstatement
REPEAT statement UN1U

REPEAT and UNTIL create their own compound out of the statements they control; you
do not need to use BEGIN and END.

expression

The controlling expression must have boolean type; usually it is formed out of relational
and logical operators.

• Note: With both WHILE and REPEAT, take care that the program statements they
control include some practical means to change the expression, or to escape by means
of a GOTO or Leave statement or Exit call. Otherwise your program can never
terminate.

CHAPTER 7 Statements 123

Here are some examples of REPEAT statements:

REPEAT
k := i MOD j;
i := j;
j := k

UN'i "!, j: ~·

REPEAT
process(f");

.get(f)
UNTIL eof (f)

Loop control: a comparison·

The three repetition statements each have specific advantages and disadvantages in any
given programming situation. Here are some of them.

The FOR statement automatically keeps track of which repetition it is executing, by
changing the value of its control variable at the end of each pass. Thus you can use the
control value to modify what your program does each time. For example, the control value
can cause the repeated section to

• select a different element in an array each time by changing the index number

• call a different procedure each time by serving as the selector value for the CASE

statement (described below)

• perform a different calculation each time by becoming a factor in an expression

The FOR statement is somewhat inflexible, however. You can change its number of
repetitions only by terminating it with a GOTO or Leave statement.

The WHILE statement and REP EAT statement allow better control of the conditions
under which they stop executing. The main difference between them is that the WHILE

statement need not be executed at all, whereas the REPEAT statement executes at least
once. Thus the WHILE statement is most useful when the condition controlling its
execution may have already been satisfied; the REPEAT statement is most useful when the
condition can be satisfied only by executing the statement.

The WHILE statement should also be used in cases where executing it under the wrong
conditions could be detrimental, because it evaluates its control before each pass.

124 MPW 3.0 Pascal Reference

(

Conditional statements

Pascal provides two ways for your program to choose what to do next-the process
sometimes called branching:

• The IF statement IF ... THEN •.. ELSE evaluates a boolean expression and
executes a controlled statement only if it is true. It can also be written to execute a
second statement if the expression is false.

• The CASE statement CASE ••. OF ••• OTHERWISE executes one statement from a list,
depending on the value of a scalar control expression.

IF statements

The IF statement executes a single controlled statement (which may be a compound
BEGIN ••• END construction) if a boolean expression is true. You can add an optional
ELSE part on the end that executes another (possibly compound) statement if it is
false:

IF sllllemenl ·(~ n .,..-KnmNrJ - Ir: l ..
l{ ELSE rt staterrent ~

The controlling expression between IF and THEN must have boolean type; usually it is
formed· out of relational and logical operators.

Either or both controlled statements may be single statements or compound
BEGIN ••. END constructions containing other statements. The only place you need to
put a semicolon in an IF statement is within a compound BEGIN ••• END construction.

When executing an IF statement, Pascal performs these steps:

1. It evaluates the boolean expression.

2. If its value is true, Pascal executes the statement following THEN and exits the IF

statement.

3. If its value is false and there is a statement after ELSE, Pascal executes it;
otherwise, it exits the IF statements.

CHAPTER 7 Statements US

Here are some exampels of IF statements:

IF x<l.5 THEN z := x+y ELSE z := 1.5
IF pl<>nil THEN pl := plA.father

Nested IF stat.ements

In any IF statement, the statement following the word ELSE can also be an IF statement
and can contain its own ELSE clause. Thus an IF statement can be written to take
different actions for each of several mutually exclusive conditions.

Pascal will evaluate boolean expressions only until a true one is found._ You get
maximum ~xecution speed if you put the most probable conditions fust.

·The statement following the word THEN can also be a nested IF statement, but this can
create confusing source text If it becomes unclear which ELSE matches which THEN;

clarify the situation by using a compound BEGIN ••• END construction or appropriate
indentation.

CASE statements

The CASE statement lets you write a list of alternative statements to be executed,
associating a scalar constant with each one. When executing the CASE statement, Pascal
evaluates a controlling scalar expression; if its value matches one of the constants, Pascal
executes the corresponding statement You can add an optional OTHERWISE part on the
end that executes an additional statement if nothing was selected from the list. The CASE

statement follows this syntax:

CASE statement
CASE

126 MPW 3.0 Pascal Reference

expression

otherwise
clause

OF

(-
The clauses shown in the diagram have the following form:

"!".r.\-. ·~.r· ·~nstarr
· ~ expression

olhenJJtse clause
OTIIERWISE statement

The controlling expression may have any scalar type-integer, char, boolean,

subrange, or user-defined. It should be capable of returning the value of any of the
constants in the CASE clause.

The constant expressions in the CASE clause must have the same scalar type as the
controlling expression.

Any of the controlled statements in the CASE clause or the default statement following
OTHERWISE may be single statements or compound BEGIN •.. END constructions
containing other statements.

Here are two examples of CASE statements:

CASE operator OF
plus: x :• x+y;
minus: x :• x-y;
times:'.:,?' :• x*y

END

CASE i 01'
1: x :• sin(x);
2: x :m cos(x);
3, 4, 5: x :a exp(x);
OTHERWISE x :a ln(x)

END

statement

CHAPTER 7 Statements

Control statements

The three repetition statements and two conditional statements described in this
chapter, along with assignments and procedme calls, are flexible enough to handle almost
al! prcgr.:ffuning jobs. Occasionally, however, you l'.!lay encour.teI " sit11ai.i01; t.hat
demands immediate transfer or suspension of program execution. For these cases, Pascal
provides five additional tools:

• the GOTO statement, which transfers control directly from one program statement to
another

• the Cycle statement, which forces an immediate reiteration of a repetition
statement loop

· • the Leave statement, which immediately cancels a repetition statement loop

• the Exit procedure, which terminates any procedure, function, or whole program

• the Halt procedure, which stops program execution then and there

The GOTO, Cycle, and Leave statements are described below. The Exit and Halt

procedures are described in Chapter 12.

GOTO statements

The GOTO statement transfers program execution to the beginning of any statement that
is within the same procedure, function, or main program. Before you can use a GOTO

statement, you must do two things:

• Declare a label for every GOTO destination in your program. Each label is a number of
one to four digits. The label declaration consists of the reserved word LABEL,

followed by one or more label numbers separated by commas. Label declarations are
discussed under "Block Syntax" in Chapter 4.

• Write one of the declared destination labels, followed by a colon, in front of the
statement that is the destination for each GOTO statement.

The GOTO statement is written

GOTO statement ('__J L.__
-------4 .. "'4 GOTO_ ./---l __ 1a_be_1 _ _.l

128 MPW 3.0 Pascal Reference

(,

The. unsigned integer is the destination label; it must not exceed four decimal digits .

. Two more cautions apply to GOTO statements:

• The destination of any GOTO statement must be the beginning of a statement

• Jumping to a statement that is within the structure of another statement (except
wW ·. ~ ·. •!T.tJOund stateri.lent that fomi.5 a program block) can have undefined
efrec~, <tithough the Compiler will not indicate an error.

Thus, every GOTO destination should be the beginning of a statement that is at the top
level of nesting in a program block.

Here is an example illustrating the use of a GOTO statement:

BEGIN
1234: Write ('Give·me a number: ');
Readln(n);
IF n•O THEN GOTO 1234

END

Cycle statements

_Cycl8_s_tat.ement ____ .. (Cycle r

The cycle statement passes program control to the end of the looping portion of the
smallest WHILE, REPEAT, or FOR statement that encloses it. It is similar to the continue
statement in the C language.

Here is an example illustrating the use of a cycle statement It calls the
procedure £ for all positiVe values of a c i l :

FOR i :• 1 TO n DO
BEGIN

IF a[il<•O THEN Cycle;
f(a[iJ)

END

• Note: The word Cycle is not a reserved word. If you redefine i~ you cannot use Cycle
statements within the scope of your definition.

CHAPTER 7 Statements 129

Leave statements

Leave __ s1a1emen __ '-.... i.-(Leave r
The Leave statement terminates the smallest WHILE, REPEAT, or FOR statement that
encloses it, passing control to the next statement. It resembles the break statement in C.

Here is an example illustrating the use of a Leave statement; in it, the WHILE statement
terminates when the first x value of a [i J is found:

WHILE i<63 DO
BEGIN
IF a[i]=x THEN leave;
i := i+l

END

+ Note: The word Leave is not a reserved word. If you redefine it, you cannot use Leave

statements within the scope of your definition.

WITH statements

The WITH •.. Do statement provides a means by which the fields of specified records can
be referenced using only their field identifiers. It has the following syntax:

Willi statement
WITH

130 MPW 3.0 Pascal Reference

record
variable
acces.5

object
reference

variable access

DO statement

,-
Any number of record variable identifiers, including those of records that are fields of
other records, may be listed between WITH and DO. The statement

WITH vl, v2, v3 DO s;

is equivalent to the group of WI TH statements

WITH vl DO
WITH v2 DO

WITH v3 DO s

. The following rules govern the use of WITH .•. DO:

• When listing a record that is a field of another record, you must either list the
containing record earlier or list that field in explicit form.

• WITH statementS may be nested. The record variables "opened" by any WITH
statement remain open in the nested statements.

• Where fields of different record variables have the same name, WI TH accesses the
field of that name in the record last listed, including redundant listings in nested
statements. The identity of field names does not cause a Compiler error.

• Where a record field identifier is the same as a variable or other identifier declared
outside. the record, WITH accesses the field.

• Within a WITH statement, fields may still be identified explicitly, even though their
record variables are listed. This feature can be used to resolve the ambiguity of
identical field names.

• When used with variant record variables, WITH accesses the identifiers for their tag
fields and all variant fields.

Here is an example of a WITH statement:

WITH date DO IF month=12 THEN
BEGIN
month := 1;.
year := year+l

END
ELSE month := month+l

CHAPTER 7 Statements 131

NULL statements

NULL statements are statements that don't contain anything. This simply means that
whenever Pascal syntax calls for a statemen~ you can omit it. It also means that when a
program contains ~n unner.ess~ry semicolon, the P:>sc::i! Ccrnr:f.,.. ~'!\:J~irl~r.; thf' sewit:olrry
to be separating a null statement from another statemti!l. liJ~ •duiL is two stat:emlm:s
where you only intend one. Most of the time, this is harmless, but it occasionally causes an
error when only one statement is allowed.

132 MPW 3.0 Pascal Reference

·"

Chapter 8 Procedures and Functions

WRITING PROCEDURES AND FUNCTIONS IN YOUR PROGRAM lets you nest additional
blocks inside the main program block.

Each procedure or function declaration consists of a heading followed by a
block. These are the principal differences between procedures and functions:

• Their heading formats are different.

• A procedure block is activated by a procedure call statemen~ as described in
Chapter 7; a function block is activated by th~evaluation of an expression
that contains its call.

• A function returns a value to the expression that calls it. •

Contents

Procedure declarations 135
Function declarations 136
Procedure and function directives 139

The FORWARD directive 140
The EXTERNAL and C directives 140
The INLINE directive 141

Parameters 142
Value parameters 144
Variable parameters 144
Procedural parameters 14 5

Procedure pointers 147
Functional parameters 147
Univ parameters 147
Parameter .Jist compatibility 148

133

(
Procedure declarations

A procedure declaration associates an identifier with a block, so that part of the program
can be activated by a procedure statement

· procedure body

procedure
heading

block

procedure
body

i-----~ FORWARD t---------------'

INllNE

The procedure heading specifies the identifier for the procedure and its formal
parameters (if any).

object
type

PROCEDURE_..--------~.i identifier

fonnal
parameter

list

CHAPTER 8 Procedures and Functions 135

An object type is only given if this is a method declaration. A method declaration is a
special type of procedure declaration made as part of an object type declaration.
Detailed information on method declarations is given in Chapter 12.

The syntax for a formal parameter list is shown later in this chapter.

A precede e is 2 ~rb-<it~d : , ::< ~)roc.ed1jir:' stAenieut, :as delined hi Chapter 7, which gives
the procedure's identifier and any actual parameters required by the procedure. The
statements to be executed upon activation of the procedure are specified by the
statement part of the procedure's block. If the procedure's identifier is used in a
procedure statement within the procedure's block, the procedure is executed recursively.

Here is an example of a procedure declaration:

PROCEDURE Summation (n: integer; a: intarray; VAR sum: longint);
VAR i: integer;
BEGIN {Summation}
Sum :== 0;

FOR i := 1 TO n DO sum := Sum+a[i]
END; {Summation}

Function declarations

A function declaration serves to define a part of the program that computes and returns a
value. The return value can be of any type.

function declaration function
heading

136 · MPW 3.0 Pascal Reference

function
body

(function body
block"

----- FORWARD i---------------.1

INUNE

EXTERNAL i-------.1

constant
expression

The function heading specifies the identifier for the function, the formal parameters (if
any), and the type of the function result.

function heading

identifier

FUNCTION

formal
parameter

list

object
type

type
identifier

The syntax for a formal parameter list is given later in this chapter.

CHAPTER 8 Procedures and Functions 137

A function is activated by the evaluation of a function call (see Chapter 6), which gives
the function's identifier and ·any actual parameters required by the function. The function
call usually appears as an operand in an expression. The expression is evaluated by
executing the function and replacing the function call with the value returned by the
function.

Function caHs can also be used wiu' vd.1.iable quafukts t.O ideui.iiy i:i v-"r.iavlt to which a
value is assigned. In that case, the function is executed, the qualifiers are applied to the
result of the function, and the result of the expression is assigned to the variable thus
located. It is not specified whether the expression or the function is evaluated first.

The statements to be executed upon activation of the function are specified by the
statement part of the function's block. This block should contain at least one assignment
statement that assigns a value to the function identifier. The result of the function is the
last value assigned. If no such assignment statement exists or if it exists but is not
executed, the value returned by the function is unspecified. If the return value of the
function is a structured type, you can assign values to components alone or to the entire
structure.

If the size of the return value of the function is no more than four bytes, the return value
itself is placed on the stack. If the return value is longer than.four bytes, a pointer is
placed on the stack and code is generated so that the return value is obtained through the
pointer.

If the function's identifier is used in a function call within the function's block, the
function is executed recursively.

• Note: If the return value of a function is a record type, a pointer to a record type, or an
object type, you cannot use a WITII statement to assign values to the fields of the
record or object. The Compiler will interpret use of the function's identifier in the
WITII statement as a function call.

138 MPW 3.0 Pascal Reference

Here are some examples of function declarations:

FUNCTION rnax(a: vector; n: integer): extended;
VAR x: extended; i: integer;
BEGIN

x :=- a(l];
FOR i ~ = .2 TO n Dn 3. f •, ~.. c [_.;_ ~

max := x
END;

c:. (" , ·'

FUNCTION power(x: extended; y: integer): extended; { y >= 0}
VAR w, z: extended; i: integer;
BEGIN

w := x; z := l; i := y;
WHILE i > 0 DO BEGIN

{z*(w**i) = x**y}
IF odd(i) THEN z := z*w;
i := i DIV 2;
w : ... sqr(w)

END;
{z = x**y}
power := z

END;
FUNCTION RelRect(BaseRect: Rect; top, left, bot, right: integer): Rect;

BEGIN
RelRect.top := BaseRect.top + top;
RelRect.left := BaseRect.left + left;
RelRect.bot := BaseRect.bot + bot;
RelRect.right := BaseRect.right + right

END;

newRect := RelRect(oldRect, 10, 10, 20, 20);

Procedure and function directives

In place of the block in a procedure or function declaration, you can write the following
directives:

• FORWARD lets you use the procedure or function immediately but postpone defining
the block to a later part of your program.

• EXTERNAL and c let you link a C or assembly-language routine to your program, which
will be executed as the procedure or function's block.

• INLINE lets you write actual assembly-language instructions to be executed in place
of the block.

These directives are described below.

CHAPTER 8 Procedures and Functions 139

The FORWARD directive

A procedure or function declaration containing the directive FORWARD instead of a block
is called a forward declaration. Somewhere after the forward declaration but in the same
l-ik:~.\ the ·-w · .- ' ' 0 1 ~ ·.-;:· ') 1 is d<"fin;:,~ l'-y a { :·.7.iiL:>g ?' ~i' ~!? .'_r. 2 ciecb.r:·tion
uiai: uses tl1 s~ui1:.. iJentifa.:1 add includes " bloc!~. 'fh.; fmrnai pa1ameter list may G~
repeated in the defining declaration; but if you repeat the formal parameter list, it must
be identical to the list in the forward declaration. The forward declaration and the
defining declaration must be local to the same block but need not be contiguous; that is,
other procedures or functions can be declared between them and can call the procedure
that has been declared forward. This permits mutual recursion.

The forward declaration and the defining declaration constitute a complete declaration
of the procedure or function. The procedure or function is considered to be declared at
the place of the forward declaration.

Here is an example of a forward declaration that permits mutual recursion:

PROCEDURE walter(m, n: integer);
FORWARD;

PROCEDURE clara(x, y: real);
BEGIN

{forward declaration}

walter(4, 5); {OK because walter is forward declared.}

END;
PROCEDURE walter; {defining declaration}

BEGIN

clara (8. 3, 2. 4) ;

END;

Forward procedures and functions may not be written in the interface part of a unit.

The EXTERNAL and C directives

A procedure or function declaration containing the directive EXTERNAL instead of a
block defines the Pascal interface to a separately assembled or compiled routine, such as
a procedure code module in MPW assembly language. The external code must be linked
with the compiled Pascal host program before execution; see the Linker instructions in
the Macintosh Programmer's Workshop 3.0 Reference for details. Pascal and C calling
conventions are described in Appendix F.

140 MPW 3.0 Pascal Reference

(When you use the c directive in addition to EXTERNAL, the parameters (and function
return values) are automatically arranged according to C language standards. As with other
external routines, C-declared procedures and functions have no body; they are linked with
C Compiler output by the Linker.

The c directive causes the Compiler to

• push parameters onto the stack in reverse order

• push all scalars as lonqint values and all real values as extended values

• expect function return values in register DO (DO, Dl, and AO for extended results)

• Note: For nonreaJ results longer than four bytes, the address of the result is returned in
register DO. In that case, the Compiler generates code to copy the result into the
ca!Jer's space before continuing.

Here are two examples of external procedure declarations:

PROCEDURE MakeScreen(index: integer); EXTERNAL;
PROCEDURE Allen(howl: strinq); C; EXTERNAL;

In these examples, MakeScreen is an external procedure that must be linked to the host
program before execution. Allen is a C procedure that must be linked to the host
program before execution.

It is the programmers responsibility to ensure that the external procedure or function is
compatible with the EXTERNAL and c declarations in the Pascal program; the Linker does
not check for compatibility.

External procedures and functions may not be written in the interface part of a unit.

The INLINE directive

The INLINE directive allows you to write explicit hexadecimal MC680x0 machine
instructiom in place of the block. The code is expressed in constants or constant
expressions.

When a nonnal procedure or function is called, the Compiler generates code that pushes
the procedure's arguments on the stack (along with two or four bytes for a return value, if
this is a function) and then generates an assembly-language JSR (Jump to SubRoutine) to
call the procedure, as explained in Appendix F. When you use a procedure declared
INLI~, the Compiler generates code (in place of the JSR) from the constants following
the word INLINE.

CHAPTER 8 Procedures and Functions 141

Each constant (or constant expression) represents exactly one machine-instruction word
in the code generated by the Compiler. The code is generated in the order of the
constants. Take care that you observe the proper rules for adjusting the stack, saving
registers, and so on. These are documented in Inside Macintosh and Appendix F.

Unlike the FORWARD and EXTERNAL directives, no block is ever defmed in an INLINE

directive. INLINE can also be used in the interface part of a unit In that case, there is still
no block for the procedure in the corresponding implementation part

. Here is an example of a procedure declared INLINE:

PROCEDURE trap (Tos: lonqint); INLINE $A9ED;

The @ operator cannot be used to generate a pointer to an INLINE routine.

Parameters

Procedure and function declarations may have any or all of four kinds of formal
parameters:

• value parameters

• variable parameters

• procedural parameters

• functional parameters

When writing a formal parameter list, you distinguish the four kinds as follows:

• A parameter group preceded by VAR is a list of variable parameters . ..
• A parameter group without a preceding VAR is a list of value parameters.

• A procedure heading denotes a procedural parameter.
• A function heading denotes a functional parameter.

A formal parameter list may be part of a procedure declaration or function declaration, or
it may be part of the declaration of a procedural or functional parameter.

142 MPW 3.0 Pascal Reference

(+ Note: The types of formal parameters are denoted by type identifiers, so you cannot
define a new type in a parameter list. In other words, only a simple identifier can be
used to denote a type in a formal parameter list. To use a type such as PACKED

ARRAY [o .. 2551 OF char as the type of a parameter, you must first declare a
type identifier for this type:

·rYPE charray = PACKED ARRAY[O •• 255] OF char;

The identifier charray can then be used in a formal parameter list to denote the
type.

If a formal parameter list is part of a· procedure declaration or function declaration, it
declares the formal parameters of the procedure or function. F.ach parameter so declared
is local to the procedure or function being declared and can be ref erred to by its identifier
in the block associated with the procedure or function.

If the list is part of the declaration of a procedural or functional parameter, it declares the
formal parameters of the procedural or functional parameter. In this case, there is no
associated block and the identifiers of parameters in the formal parameter list are
significant only to the extent that they indicate the format and number of parameters.

VAR

procedure
heading

funaion
heading

identifier
list

univ

type
identifier

CHAPTER 8 Procedures and Functions 143

• Note: The word FI LE (for an uit~ file) is not allowed as a type identifier in a
parameter declaration, because it iS a re~,rved -word. To use a parameter of this type,
declare some other identifier for the type FILE. For example,

TYPE phyle = FILE;

The identifier phy le can then be uSP.d iI1 a fo11i.1~.! ~IWi1'.~.:.. Hst to d.e .. 0tr. the
type FILE.

Value parameters

A formal value parameter acts like a variable local to the procedure or function, except
that it gets an initial value from the actual parameter in the corresponding position in the
acrual parameter list.

• Note: At run time, the procedure makes a copy of each actual parameter value that is
longer than four bytes in its own local variable space.

No changes made to a formal value parameter change the value of whatever is in the
corresponding position in the acrual parameter list

For a value parameter, the corresponding actual parameter in a procedure statement or
function call must be an expression, and its value must not be of a file type or of any
strucrured type that contains a file type.

The acrual parameter must be assignment-compatible with the type of the formal value
parameter. However, you can override this restriction by declaring the parameter as
univ, as described later in this chapter.

Variable parameters

Variable parameters are used when a value must be passed back from a procedure or
function to the calling program.

The corresponding acrual parameter in a procedure statement or function call must be a
variable access, as defined in Chapter 5. The formal variable parameter denotes the actual
variable during the entire activation of the procedure or function, so any changes to the
value of the formal variable parameter are reflected in the actual parameter.

144 MPW 3.0 Pascal Reference

(

(

Within the procedure or function, any access of the formal variable parameter is an access
of the actual parameter itself. The type of the actual parameter must be identical to that
of the formal variable parameter. However, you can override this restriction by declaring
the parameter as univ, as described later in this chapter.

File types must be passed as variable parame~ers.

• Note: If the access of an actual variable parameter involves indexing an array, finding
the identified variable of a pointer, or finding the field of a record or an object, these
actions are executed before the activation of the procedure or function. If the
variable is in a relocatable block of the heap, compaction of the heap can cause the
original object to be moved, which yields unpredictable results.

Byte-aligned fields of packed structures are valid as variable parameters.

Procedural paratneters

When the formal parameter is a procedure heading, the corresponding actual parameter in
a procedure statement or function call must be a procedure identifier. The identifier in
the formal procedure heading represents the actual procedure during execution.of the
procedure or function receiving the procedural parameter.

Here are some examples of procedural parameters:

PROGRAM passProc;
VAR i: integer;
PROCEDURE a(PROCEDURE x); {xis a formal procedural}

BEGIN {parameter.}
write('About to call x ');
x {Call the PROCEDURE passed as}

END; {parameter.}
PROCEDURE b;

BEGIN
write('In PROCEDURE b')

END;
FUNCTION c(PROCEDURE x): integer;

BEGIN
x; {Call the PROCEDURE x, passed as}
c:=2 {formal procedural parameter_}

END;
BEGIN

a (b);

i:= c(b)
END.

{Call a, passing bas parameter.}
{Call c, passing bas parameter.}

CHAPTER 8 Procedures and Functions 145

If the actual procedure and the formal procedure have formal parameter lists, the formal
parameter lists must be compatible, as described in Chapter 7. However, only the
identifier of the actual procedure is written as an actual parameter; no parameters are
given for the actual procedure.

Here is an example o; proceciura! p~tarr-:;tr.rs with their O'\'m form,.11. pa~te~ lis~:

PROGRAM test;
PROCEDURE xAsPar(y: integer);

BEGIN
writeln ('y•', y)

END;
PROCEDURE eallProe(PROCEDURE xAqain(z: integer));

BEGIN
xAgain(l)

END;
BEGIN (body of program}
eallProe(xAsPar) (Note only the PROCEDURE identifier is qiven.}

END.

If the procedural parameter, upon activation, accesses any nonlocal entity (by variable
access, procedure statement, function cal~ or label), the entity accessed must be one that
was accessible to the procedure when the procedure was ~ as an actual parameter.
To see what this means, consider a procedure P roe that is local to another procedure,
firstl?asser.

Suppose that the following sequence takes place:

1. Firstl?asser is executing.

2. Firstl?asser calls a procedure named firstReeeiver, ~ing !?roe as an actual
parameter.

3. FirstReeeiver calls seeondReeeiver, again passing !?roe as an actual
parameter.

4. SeeondReeeiver calls Pree (first execution of !?roe).

5. SeeondReeeiver calls thirdReeeiver, again passing,J?roe as an actual
parameter.

6. ThirdReeeiver calls firstl?asser (indirect recursion) and passes !?roe to
firstl?asser as an actual parameter.

7. Firstl?asser (executing recursively) calls !?roe (second execution of !?roe).

Thus the procedure P roe is called first from seeondReeei ver and then from the second
(recursive) execution of firstl?asser.

Suppose that Pree uses a variable access pvar and pvar is not local to !?roe, and
suppose that each of the other procedures has a local variable named pvar.

146 MPW 3.0 Pascal Reference

(

(

Each time Proc is called, which pvar does it access? The answer is that in each case,
Proc accesses the pVar that is local to the first execution of firstPasser-that is,
the pVar that was accessible when P roe was originally passed as an actual parameter.

Procedure pointers

The @ operator can create procedure pointers. See "The @ Operator in a Procedure or a
Function" in Chapter 6 for details on procedure pointers.

Functional parameters

When the fonnal parameter is a function heading, the actual parameter must be a function
identifier. The identifier in the formal function heading represents the actual function
during the execution of the procedure or function receiving the functional parameter.

Functional parameters are exactly like procedural parameters, with the additional rule that
corresponding formal and actual functions must have identical result types.

Univ parameters

When the word univ is given before the type identifier in the formal parameter list, the
corresponding item in an actual parameter list can be of any type that is the same size as
the formal parameter's type.

Here is an example of a univ parameter:

TYPE
ptrl "char;
ptr2 "integer;

VAR
four: longint;
pint: ptr2;

PROCEDURE RealAddr(virt: longint; rAddr: univ ptrl);

RealAddr(v, pint); {pint can be a pointer to a type}
{other than char, or can be}

RealAddr(v, four); {any other four-byte type.}

CHAPTER 8 Procedures and Functions 147

Parameter list compatibility

Parameter list compatibility is required of the parameter lists of corresponding formal
and actual procedural or functional parameters.

and if the parameters in corresponding positions match. Two parameters match if one of
the following is true:

• They are both value parameters of identical type.

• They are both variable parameters of identical type.

• The formal parameter has univ before its type, and the actual parameter is a value or
variable of the same size. The parameters must still be both value parameters or both
variable. parameters.

• They are both procedural parameters with compatible parameter lists.

• They are both functional parameters with compatible parameter lists and identical
result types.

148 MPW 3.0 Pascal Reference

Chapter 9 Programs and Units

THE p ASCAL BLOCKS DISCUSSED IN CHAmR 3 are assembled into programs and
units. The principal difference between the two is that a program is complete
and executable; a unit resembles a program but cannot be executed by itself.
Both programs and units are separately compiled. Their object files are then
combined by the Linker to form a single executable object file. This process is
described in the Macintosh Programmer's Workshop 3.0 Reference.

There are several reasons for using units in Pascal programming:

• They help modularize large programs.

• They make common declarations and blocks easily available to more than
one program;

• They can be used to maintain the privacy of sections of a source text. •

Contents

Program syntax 151
Segmentation 152
Unit syntax 152
The USES clause 155

Units that use other units 156
Automatic symbol table loading 158

149

(

i(

Program syntax

A Pascal program consists of a heading, an optional USES clause, and a block. (The USES

clause is discussed later in this chapter.)

program

progmm lurlding

program parameters

~

program
heading

PROGRAM

identifier
list

identifier

..

uses
clause

program
parameters

The occurrence of an identifier immediately after the reserved word PROGRAM declares it
as the program's identifier.

• Note: Program.parameters, as described by Jensen and Wirth and the ANSI Standard,
are ignored by MPW Pascal.

block

CHAPTER 9 Programs and Units 151

Segmentation

The code of every program's main lxxiy is always placed in a runtime segment whose name
is Main (capitalization of the name Main is significant). Any other program block can be
pl~ced ia a different segmen~ by u:;ing the $ s Comp~ler command de.scriber i.1. Ch1pt·~1 13.
If no $S command is used in the program, all program code is placed in the Main segment.

By default, code copied from units is also placed in the Main segment. The code of any
entire unit, or of any procedure or function within a unit, can be placed in one or more
different segments by using the $S Compiler command in the unit's source text

. (Procedures and functions are described in Chapter 8.)

Unit syntax

The syntax for writing a unit is

unit .. , __ head_urut_;n_g_ ~....__in_~_ac_e_ ~ ~ I re END ro-
unit heading c) I I ~ -----t.,_ UNIT 1---.. -... __ ide_n_tifi_er _ _.I

The Interface part of a unit declares constants, types, variables, procedures, and
functions that are "publicn-that is, available to the host program (which may be
another unit). In other words, the scope of the public entities is the entire host program.
It can access these entities just as if they had been declared in its source text.

You declare procedures and functions in the interface part by giving only the procedure or
function name, parameter specifications, and function result type. In other words, you
give only the part that defines how the procedure or function is called. You declare
methods in object type declarations the same way, except that you also specify
OVERRIDE where appropriate.

152 MPW 3.0 Pascal Reference

(

(

If INLINE or c directives are used within routines in the unit, the directives must also
appear in the interface to the unit. Otherwise, each piece of header information in the

· interface is treated like a FORWARD declaration when the unit is compiled.

Variables and routines that appear in the interface are global. The entire unit is within the
scope of the block in which the USES clause that references the unit appears.

tnfl!fface part
INI'ERFACE

USES
clause

constant
declaration

part

type
cleclarali>n

part

variable
declaration

part

procedure and function
declaration part

.!:

The optional implementatJon part, which follows the last declaration in the interface
part, declares any constants, types, variables, procedures, or functions that are
"privaten-that is, not available to the host program. Private procedures and functions
are declared like procedures and functions in programs, with a procedure or function
heading and a body. For further information about declaring procedures and functions,
see Chapter 8. ·

CHAPTER 9 Programs and Units 153

All public procedures, functions, and methods are redeclared in the implementation part.
Parameters and function result types can be omitted from these declarations because
they were declared in the interface part; the procedure and function blocks, omitted in
the interface part, are included in the implementation part. If you repeat parameter lists
and function result types, they must be identical to those in the interface part.

In effect, the procedure, funci.ion, and m~Ll1c-O decla1adon.& in th;.-; inte1iac\; au:; like
forward declarations, although the FORWARD directive is not used. Therefore, these
procedures and functions can be defined and referred to in any sequence in the
implementation.

The interface part may contain a USES clause; thus any unit can use another unit

There is no "initialization" section in MPW Pascal units (unlike Apple II Pascal and Apple
III Pascal). If a unit requires initialization of its data, it should define a public procedure
that performs the initialization; the host program should then call this procedure.

• Note: Global labels cannot be declared in a unit.

implementation part

154 MPW 3.0 Pascal Reference

constant
declaration

part

type
declaration

part

variable
declaration

part

procedure and function
declaration part

',_,_ ,./

.~·.

(

Here is short example of a unit:

UNIT Simple;

INTERFACE {public items declared}
CONST FirstValue = 1;
TYPE Nntn = OB TEC'.I''

val: integer;
PROCEDURE Bump;
PROCEDURE Init

END;
PROCEDURE AddOne(VAR Iner: integer);
FUNCTION Addl(Incr: integer): integer;

IMPLEMENTATION
PROCEDURE AddOne;

BEGIN
l'ncr :- Incr+l

END;

{Note lack of parameters .•. }

FUNCTION Addl; { ... and lack of function result type.}
BEGIN

Addl := Incr+l
END;

PROCEDURE Num.Bump;
BEGIN
val := val+l

END;
PROCEDURE Num.Init;

BEGIN
val := FirstValue

END
END.

The USES clause

You write a USES clause in a program or unit to access a ~nit:

us'ES_c1au.sB ____ ~(usES rl _ide_:_· JC_r_ ... ~

The USES clause appends the ".pn suffix (which denotes source code) to the unit name
and causes the Compiler to open the file. For example, the statement

USES QuickDraw, memTypes;

opens the files QuickDraw.p and memTypes.p.

CHAPTER 9 Programs and Units 155

The USES clause identifies all units required by the program. These include both units that
it uses directly and any other units that are used by those units.

In a host program, the us Es clause (if any) immediately follows the program heading. In a
host unit, the usEs clause (if any) immediately follows the reserved word INTERFACE.
Only one USES cla~ may appear in any host program or unit: it declares aU units t1sed by
the hosi: program or unit.

See below for the case where a host uses a unit that uses another unit

It may be necessary to search a particular file for a unit. You can use the su Compiler
command to specify this file, as described in Chapter 13.

Assume that the example unit is named simple. The following is a short program that uses
simple. It also uses another unit named other, which is in fde Appl:Other.

PROGRAM CallSimple;
USES {$U APPL:SIMPLE} {file to search for units}

Simple, {use unit Simple)
{$U APPL:OTHER} {file to search for units}
Other; {use unit Other}

VAR i: integer;
n: Num;

BEGIN
i := FirstValue;
write('i+l is •,
write(xyz(i));
New (n);
n.Init;
n.Bump;
write(n.val)

END.

{FirstValue is from Simple.}
Addl(i)); {Addl is defined in Simple.}

{xyz is defined in Other.}

Units that use other units

As explained above, the USES clause in the host program or unit must name all units that
are required. Here •required" !Jr.!ns that the host directly references something in the
interface of the unit Consider the unit references in Figure 9-1.

156 MPW 3.0 Pascal Reference

'"·· ./

/

'

(

• Figure 9'-1

host program uses
unitA. unitB.

Example of simple unit reference

unitA

interfac'!

implementation
usesunitC.

unitB

interface

implemertaUon

unilC

interface

implementation

The host program directly references the interfaces of uni tA and uni ts; the USES clause
names both of these units. The implementation part of uni tA also references the
interface of unite, but it is not necessary to name unite in the host program's
USES clause.

In some cases, the USES clause must also name a unit that is not directly referred to by the
host. Figure 9-2 is exactly like Figure 9-1 except that this time the interface of uni tA
references the interface of unite, and unite must be named in the hmt program's USES
clause. Note that unite must be named before unitA.

CHAPTER 9 Programs and Units 157

• Figure 9-2 Example of nested unit references

host program uses
unitC. unitA. unitB.

inte1[2·:f;
usesunitC.

implementlfion

unitB

implemenwian

umC

implemenwion

In a case like this, the documentation for uni tA should state that uni tc must be named
in the USES clause before uni tA.

Automatic symbol table loading

The Pascal Compiler automatically builds a precompiled version of the symbol table for
each unit and puts it into the resource fork of the file containing the unit On subsequent
compilations, the Compiler loads this resource instead of compiling the unit. The
Compiler does not use the resource if the modification date of the file is later than the
date stored when the resource was created or if the values of the compile time options (or
compile time variables) that were in effect when the resource was created have changed
so as to invalidate the resource. The -noload, -clean, and -rebuild options
respectively instruct the Compiler not to create any symbol table resources, to erase all of
them, and to rebuild all of them. For more on these options, see Chapter 13 of this manual.

• Note: If you have units that can't be written to (for instance, on a file server), the s K

directive (or the -k option) can be used to store the symbol resources in a writable
directory that you specify. For details on the SK directive, see Chapter 13.

158 MPW 3.0 Pascal Reference

(

' ,,

Chapter 10 Files and 1/0

THis CHAPTER OF.SCRIBES TIIE USE OF p ASCAL FILES, including the declaration of files
in a program. It also includes detailed information on each of the predefined
procedures and functions for performing input and output, or 1/0. •

Contents -

Input/Output routines 161
Pascal flles 162

External files 162
File variables 162

Structured files 162
Text files 163
Untyped files 163
Predeclared file variables 164

The file window variable 165
Opening a file 165
Closing a file 166
Sequential versus random access 166

Routines for all files 167
The Reset procedure 167
The Rewrite procedure 168
The Open procedure 168

The dose procedure 169
The Eof function 169
The IOResult procedure 170

The ErrNo variable 170
The Seek procedure 173
The PLFilepos fttnction 174
The PLCrunch procedure 174
The PLPurge procedure 174
The PLRename procedure 174

159

Record-oriented routines 174
The Get procedure 175
The Put procedure 175
The Read procedure with a structured file 175
The Writ~ procedure with a structured file 176

Texi.-od~ni.t~· •. :;uU11es 1"!6
The Read procedure 177

Read with a char variable 178
Read with an integer variable 178
Read with a real variable 178
Read with a string variable 179

The Readln procedure 180
The Write procedure 181

Write with a char value 182
Write with an integer value 182
Write with a value of type real 183
Write with a string value 184
Write with a packed array of char 184
Write with a boolean value 185

The Writeln procedure 185
The Eoln function 185
The Page procedure 185
The PI.SetVBuf procedure 185
The PI.Flush procedure 186
The Get and Put procedures with text files 186

Routines for untyped files 187
The Blockread function 187
The Blockwrite function 188
The Byteread and Bytewrite functions 189

16o MPW 3.0 Pascal Reference

(

Input/Output routines

MPW Pascal offers you three distinct ways to accomplish input and output in your
program:

• by using the VO procedures and functions that are built into the Pascal Compiler and
the library PasLib.o

• by using the VO procedures in the Integrated Environment library (described in the
Macintosh Programmer's Workshop 3.0 Reference)

In general, t!J.e Macintosh ROM routines provide the most direct way to access the
Macintosh screen, keyboard, and mouse. The Pascal built-in routines provide the easiest
way to access the contents of files and perform 1/0 operations with external devices. The
Integrated Environment routines are used only by programs that are going to run under the
MPW Shell and use its VO facilities. -

Most of what you need to know about accessing the Macintosh Operating System and
Toolbox routines is contained in Inside Macintosh. Consult the following parts for further
information:

• The File Manager chapter tells you how to handle disk files with ROM routines.

• The Event Manager chapter gives you information on how events are handled and on
how to use the Event Manager routines to get information from character devices such
as the keyboard.

• The QuickDraw chapter contains details of how to provide text output to the screen.

• The Printing Manager chapter discusses printing routines.

The interface files that access the Macintosh ROM routines from MPW/iascal are listed in
Appendix E.

The rest of this chapter discusses the 1/0 routines that come with MPW Pascal. Some of
them are built into the Compiler itself; others are included 'in PasLib. The PasLib
procedures and functions have names beginning with PL. Any time you use one of them
you must include the statement USES P~sLibint f in your program or unit. You must
also link your program or unit to the library file PasLib.o.

This chapter uses a modified BNF notation instead of syntax diagrams to show the syntax
of actual parameter lists for standard procedures and functions. The notation is explained
in the Preface.

CHAPTER 10 Files and 1/0 161

Pascal files

A Pascal file variable is a structured variable. A file variable resembles an array, in that it
consists of a sequence of distinct variable components all of the same type. However, the
n;.1ml;er of 1.:omponerits ii; incic.···fi11ip;;-~'» ~11(: they ;ire not accessed by indexi.-1E Lu~ by
using the predefined 1/0 procedures and functions.

External files

~ile variables are used to store data outside of memory, in an external me. An external
file is either a peripheral device or a named disk ftle. In order for a program to read or
write information using an external fde, a file variable must be declared and then

· associated with the external file.

File variables

The most important feature of a file variable is that its components are not generally in
memory, but you can access them as though they were. The components exist outside the
program as the contents of an external file.

A file variable is declared along with other variables, using a file type. There are three basic
Pascal file types:

• structured files

• text files

• untyped files

The syntax for writing file types is given under "Structured Typesn in Chapter 6.

Structured. files

A structured ftle is made up of components called logical records. These components
may be of any type that is not a file type (or a structured type that contains a file type
component at any level of structuring). They do not need to be of type RECORD.

162 MPW 3.0 Pascal Reference

(

(

For example, the declarations

VAR
IntVals: FILE OF integer;
RealVals: FILE OF real;
CompVals: FILE OF RECORD

I: intege:r.;
R: real

END;

create three file variables:

• IntVals is a file variable whose logical records are integer values.

• Real vals is a file variable whose logical records are real values.

• compvals is a file variable whose logical records are of RECORD type, with an
integer value and a real value in each record. ·

Text rues

The Pascal predefined file type text can be used to store any type of data, as long as it is
,~ in character format. For example, this declaration creates a file variable of type text:

VAR NameFile: text;

This type of file is most efficient in handling lines of text. It transfers data in blocks
between the external device and a buffer, from which your program can access the data
efficiently one line or one character or value at a time.

• Note: There are many cases where this isn't the most efficient way to perform I/O. For
example, if you want to store floating-point values in a file, using a file of type text
would require converting each value to its equivalent in ASCII characters before it is
stored in the file. Each time a value is read from the file, it would have to be converted
back to its binary representation.

Untyped rues

To declare a file variable as untyped use the type identifier FILE alone. For example,

VAR BlockFile: FILE;

Pascal transfers data in and out of such a file without interpreting its internal structure. An
untyped file has no file window variable, and it can be used only with the routines Reset,
Rewrite,Close,Eof,Blockread,Blockwrite,Byteread,andBytewrite.
Operations on untyped files are described at the end of this chapter.

CHAPTER 10 Files and I/0 163

Predeclared file variables

MPW Pascal sees all peripheral devices, such as the keyboard and the Macintosh screen, as
external files. It predeclares two corresponding file variables of type text, called input

and output. Unless specifically redirected, input comes from the MPW Shell's standard
~~~~ · ~ .. 1(~ .:; , :. ~ . :~. 3:;e~ tc thp i:'~r'~·f St<:.:P~ ~· :~ .. ...,,._,;.- .·." .. ~ .n."'...!tput 

+ Note: The MPW Shell's diagnostic output file is available when you use the Integrated 
Environment tools described in the Macintosh Programmer's Workshop 3.0 Reference. 

At the start of each program execution, the files input and output are automatically 
opened for use without being declared. Procedures and functions that can be used with 
files of type text can use them, directly (receiving them as parameters) or indirectly (as 
the default when the file variable parameter is omitted), without declaring them first. The 
program should not try to close these files. 

+ Note: The ANSI Standard specifies that input and output must appear in the 
program heading if they are used. Many versions of Pascal rely on this. If you are 
writing code that may be transported to other versions of Pascal, include input and 
output in your program heading. 

If input is used within the program, the standard input file is opened automatically 
as a read-only file (as though a Reset were performed for it) when program 
execution begins. 

If output is used within the program, the standard output file is opened automaticaJly as 
a write-only file (as though a Rewrite were performed for it) when program execution 
begins. 

Several of the predefined procedures and functions for use with files of type text, 

described later in this chapter, need not have a file variable expticitly given as a 
parameter. In these cases, input and output will be assumed by defaul~ depending on 
whether the procedure or function is input-oriented or output-oriented. 

164 MPW 3.0 Pascal Reference 



( 

( 

The file window variable 

Although a typed file variable may have any number of logical records, only one is 
accessible at any one time. Each logical record has a number that is its position in the file 
relative to the first record in the file, which is record number 0. The position of the current 
record in the f!ie is cah:d the curre;-:t fiie position. Program access to the curren~ record 
uses a special variable associated with the file, called a file window variable. The file 
window variable is discussed in Chapter 5. 

At any time, there is only one logical record of a file that may be accessed directly through 
the file window variable. Whenever a file is opened, using any of the procedures described 
in this chapter, the current file position is set to record 0-the beginning of the file. 

The file window. variable cannot be used with untyped files. 

• Note: Under certain conditions, such as when the current file position is at the end of 
the file, the value of the file variable f is said to be undefined. It is an error to attempt 
to use the value of the file window variable f" when the value of f is undefined. 
However, assignment to f" is still possible if the file may be written to. 

Opening a file 

Before you can use a file variable, it must be opened. Three procedures are provided for 
opening existing files and creating and opening new files-Reset, Rewrite, and open. 
Each of these procedures is explained in detail later in this chapter. 

A new file may be created and opened 

• by using Rewrite, which creates a new file for write-only, sequential access 

• by using open, which creates a new file for read/write,..sequential, or random access 

An existing file may be opened 

• by using Reset, which opens the existing file for sequential,. read-only access 

• by using Open, which opens the existing file for read/write, sequential, or 
random access 

• by using Rewrite, which opens the existing file for s~quential, write-only access 

Each of these procedures sets the current file position to zero. You can also use the 
Reset and Rewrite procedures to set the current file position of an already-open file to 
zero. These rules are surrunarized in Table 10-1. 

CHAPTER 10 Files and 1/0 165 



• Table 10-1 

Reset 
Reset 

Open 
Open 
Rewrite 
Rewrite 

Oosingafile 

File-opening options 

new 
existing 

new 
existing 
new 
existing 

Effect 

An error occurs 
Or-.,;,'.·. ·"·:ttL ... ,.. f;!f- fo1 l~d-on!•,1 with ::P.;oir~:Ptial ' ... . 
accesl 
Creates a new file for read/write with random access 
Opens an existing file for read/write with random access 
Creates a new file for write-only with sequential access 
Opens an existing file for read/write with sequential 
access; previous contents erased 

If you want to associate a file variable with a different external file, you must fust close 
the open file, using the Close procedure. This procedure is described in the section 
"Routines for All Files." 

SequentJal versus random access 

Files may be accessed sequentially or randomly. When a file is opened and accessed 
sequentially, the first logical record is read or written and then the current file position 
moves to the numerically next logical record in the file. 

Alternatively, files opened with Open can be accessed randomly with the seek procedure. 
The seek procedure takes a parameter whose value is a number referring to the sequence 
of logical records. By using the seek procedure, you can jump from one record to 
another, in any order, or access a specific byte position in a text file or untyped file. 

The function I?LFilepos may be applied to any file variable; it returns the record number 
of the current file position. This function is described in detail later in this chapter. 

+ Note: The terms random file and sequential file ace commonly used but misleading. 
Random and sequential are two methods ,for accessing filer-not two kinds of files. 
Any file can be accessed randomly or sequentially, or both ways. The predefined 
procedures that support random access are generally used with nontext files, but are 
not restricted to them. 

lfi6 '/dPW 3.0 Pascal Reference 



. ' 

( 

Routines for all files 

The procedures and functions described in this section can be applied to files of all kinds, 
both typed and untyped. 

+ Note: Routines whose identifiers begin with PL (such as PLCrunch) are defined in the 
interface file Pasliblntf.p; their code is in the PasLib library . 

The Reset procedure 

The Reset procedure opens an existing file for sequential read-only~ccess or "rewinds" 
an open file so that its window variable contains the first logical record. 

Reset </ (, filename] ) 

The parameter /is a variable reference that refers to a file variable. The parameter filename 
is an optional expression with a string value. If filename is given, the file must not already 
be open. If filename is not given, the file must be open. 

The value of filename, if used, must be a valid Macintosh file pathname, window name, 
pseudodevice name, or selection specifier. 

The statement Reset(/), when the file specified by /is already open, causes the file to 
be "rewound." The fde must have been originally opened with Open or Reset. If the file 
was opened with open, it now becomes read-only. 

Notice that Reset preserves the contents of an existing file, unlike Rewrite, which 
erases the current contents of any file on which it is used. 

An error occurs and IOResul t returns a nonzero value if there is no existing external file 
with the name specified by filename. 

The following conditions always hold after Reset</[, filename]) is executed: 

• Eof </> is true if the file is empty. Otherwise, Eof </> is false. 

· • The current file position is the first logical record of the file (logical record number 0), · 
and the file window variable f" contains the value of that logical record unless 
Eof </) is true, in w~ch case the value of/" is undefined. 

CHAPTER 10 Files and I/O 167 



---~ -----------·- ---- ---

The Rewrite procedure 

The Rewrite procedure creates and opens a new, empty file for write-only access or 
"rewinds" and erases an open file. 

R ,.. (J •.... if 1- tl~fJYr.'-'1 ")' ,;.--. ' t:::•. ri ... e v ". J., . .,,.,,_r.1~i; 

The parameter f is a fde variable. If filename is given, the file cannot already be open; if it 
is, an error occurs. The parameter filename is an optional expression with a string value. 
The string must be a valid Macintosh pathname, window name, pseudodevice name, or 
selection ·specifier. 

• Note: Rewrite</> (with no filename specified), when /is not yet open, is not 
implemented. It is reserved for a future extension of MPW Pascal. 

Rewrite</), when the file specified by /is already open causes the file to be "rewound"; 
that is, the current file position is reset to the beginning of the file, and any prior contents 
of the file are deleted. The file must have been opened with Open or Rewrite. If the file 
was originally opened with open, it now becomes write-only. Reset followed by 
Rewrite causes an error. 

Rewrite </, filename) creates a new external file with the name filename and associates 
the file variable/ with this external file. If an external file with the name filename already 
exists, it is truncated (that is, the resource fork stays the same although the data fork is 
deleted). 

The following conditions always hold after Rewrite </[, filename]) is executed: 

• Eof </> is true, either because the file is new or because the contents have just been 
erased. 

• The current file position is logical record O; that is, the first logical record written to 

the file will become the first logical record of the file. The value off" is undefined, 
and remains undefined until something is written to the file.' 

The Open procedure 

The open procedure opens an existing file or creates and opens a new file for random, 
read/write access, setting the file window variable to the first logical record. An existing 
file is not truncated. 

Open </, filename> 

168 MPW 3.0 Pascal Reference 
/ 



The parameter /is a variable reference that refers to a file variable. The file may not 
already be· open. The parameter filename is an expression with a string value, which must 
be a valid Macintosh file pathname, window name, pseudodevice name, or selection 
specifier. 

The statement Open (/, filename) opens an existing external file wit.h thP 11."me fi!eri"!me 
and associates the file variable specified by f with this external file. If w eAternal l:i1c with 
the name filename does not already exis~ a new empty file is created. The file is opened 
for both reading and writing. 

The following conditions always hold after open (/, filename) is executed: 

• Eof (/) is true if the file is empty; otherwise, Eof </) is falae. 

• The current file position is logical record 0, and the file window variable f" contains 
the value of that logical record, unless Eof </) is true. 

The Close procedure 

The Close procedure doses an open file. It ends the association between the file variable 
and the external file, if one exists. 

Cloae </> 
The parameter /is a variable reference that refers to a file,variable, which must be open. 

The statement cl o a e </) closes f. That is, the association between f and its external file 
is broken, and the file system marks the extemal file closed. All subsequent references to f 
are invalid (except to open it again). In particular, the value off" becomes undefined. 

If a file has not been closed during program execution, it is closed automatically when the 
program terminates. 

• Note: Files that have local scope in a procedure or function block are not automatically 
closed when the procedure or function is exited. 

The Eof function 

The Eof function returns a boolean value that indicates whether or not the current file 
position is the end of the file. 

Eof [ (j) ] 

CHAPTER 10 Files and 1/0 169 



The parameter /is a variable reference that refers to a file variable. If /is omitted, the 
function is applied to the predefined file input. The file must be open, or an error 
occurs. 

The Eof function returns true in these cases: 
~- th~ file i:''.)Sition is b"ycrd r.b.f J,,:r l.i:::;:):~1 rer -:;"(~ 0f rhe :l!e 

• if the file contains no logical records 

• after a Get procedure, if the current file position is the last logical record of the file 

• after a Put procedure, if the logical record written by the Put is now the last logical 
record 

In all other cases, Eof returns false. 

The IOResult procedure 

IOResult 

The IOResult routine returns an integer value that indicates the result of the most 
recently perfomed I/O operation. If IOResult returns zero, it means that the last I/O 
operation was successful. Any nonzero result indicates that the last I/O operation was 
unsuccessful. 

Because files of type text are buffered, IOResult does not indicate the result of 
writing to one until the buffer contents are transferred to the external file. A buffer 
transfer occurs whenever the buffer is full or when there is a call to PLFlush or Close. 

If the IOResult code is negative, the number indicates a Toolbox error. The equivalent 
Macintosh ROM error-return values set in MacOSErr are documented in Chapter 4 and in 
the System Error Handler chapter of Inside Macintosh. 

If the IOResul t code is positive, it is an error that has been detected by the Language 
Library without going to the Toolbox. 

The ErrNo variable 

The following list documents the values for the variable ErrNo. This is a complete list; not 
all of the ErrNos appear in Pascal. 

1 EPERM No permission match 
This error occurs after an attempt to modify a file in some way forbidden except to 
its creator. 

170 MPW 3.0 Pascal Reference 



( 

2 ENO ENT No such file or directory 
This error occurs when a file whose filename is specified does not exist or when one of 
the directories in a pathname does not exist 

3 ENORSRC Resource not found 
A required resource was not found. This error applies to faccess calls that return tab, 
font, or print record inf ormatiun. 

4 EINTR System service interrupted 
A requested system call cannot be completed. This error may occur if a request to 
rename a file is unsuccessful. 

5 EIO VO error 
Some physical J/0 error has occurred. This error may in some cases be signaled on a call 
following the one to which it actually applies. 

6 ENJCIO No such device or address 
J/O on a special file refers to a subdevice that does not exist, or the J/O is beyond the 
limits of the device. This error may also occur when, for example,··no disk is present in 
a drive. 

7 E2BIG Insufficient space for return argument 
The data to be returned is too large for the space allocated to receive it. 

9 EBADF Badfi/e number 
Either a file descriptor does not refer to an open file, or a read (or write) request is 
made to a file that is open only for writing (or reading). 

12 ENOMEM Not enough space 
The system ran out of memory while the library call was executing. 

13 EACCES Permission denied 
An attempt was made to access a file in a way forbidden by the protection system. 

14 EFAULT I/legal filename 
A filename or volume name was too long or otherwise illegal. 

15 ENOTBLK Block device required 
This error occurs if a non-block file is used when a block device is required. 

16 EBUSY Device or resource busy 
An attempt was made to mount a volume that was already mounted, or to delete a 
locked file. 

17 EEXIST File exists 
An existing file was mentioned in an inappropriate context. 

18 EXDEV Cross-device link 
This error occurs after a link to a file on another device is attempted. 

CHAPTER 10 Files and J/0 171 



19 ENODEV No such device 
An attempt Was made to apply an inappropriate system call to a device; for example, 
read a write-only device. 

20 ENOTDIR Not a directory 
An object that is not 3 directory was sperifk.i wb"r,.. ? • Iiw".tO! .'' is :-rnuiretf; for 
example, in a path prefix. 

21 EISDIR Is a directory 
An attempt was made to write on a directory. 

22 EINVAL Invalid parameter 
Some invalid parameter was provided to a library function. 

'23 ENFILE File table overflow 
. The system's table of open files is full, so temporarily a call to open cannot be 

accepted. 

·24 EMFILE Too many apenfiles 
The system cannot allocate memory to record another open file. 

25 ENOTTY Not a typewriter 
This error occurs if the specified file isn't a character file. 

26 ETXTBSY Text file busy 
An attempt was made to open a file that was already open for writing. 

27 EFBIG File too large 
This error occurs if the size of a file was larger than the maximum file size. 

28 ENOSPC No space left on device 
During a write to a file, there is no free space left on the device. 

29 ESPIPE Il/egalseek 
An !seek was issued incorrectly. 

30 EROFS Read-only file system 
An attempt to modify a file or directory was made on a device mounted for read-only 
access. 

31 EMLINK Too many links 
An attempt to delete an open file was made. 

33 EDOM Math atg out of domain of June 
This error occurs if the argument of a math function is outside the domain of the 
function. 

34 ERANGE Math result not ~le 
This error occurs when the value of a math function can't be represented within 
machine precision. 

172 MPW 3.0 Pascal Reference 



·~· 

+ Note: Beware of trying to .access the value of IOResul t with an I/O operation, 
such as 

Reset </, 'myflle~ ; 
Writeln('IOResult = •, IOResult); 
In this example, the value of JCR~'~i.1 ) tis set by the wr:tteln call, not by the Reset 

call. 

A. Warning Some VO operations may set IOResult due to an unseen VO call. 
For example, using Rewrite to create a new file will rerum an 
IOResult Eof <-39), even though the file was rewritten correctly. "" 

The Seek procedure 

Seek</, n> 

The seek procedure allows you to access any logical record in a file. It does two 
things: 
• It sets the current file position to logical record n. 

• It reads the new current logical record into the file window variable. 

The parameter f is a file variable. 

The parameter n is an expression with a longint value that specifies a logical record 
number in the file. logical records are numbered from zero. With untyped files or files of 
the type text, n is the byte position from the beginning of the file. 

For example, 

Seek(Names, 18) 

causes the file window variable associated with file Names to point to the nineteenth 
record of the file. 

The value off" becomes the value of that logical record unless n is greater than the 
number of the last logical record of the file, in which case Eof </ > becomes true, 
IOResult is setto eofErr <-39), and the value of/" becomes undefined. Thus, 
Seek</, maxlongint) always sets the current file position to the end of file. EofErr is 
not a fatal error, so you can use It to verify that the current file position has acrually been 
moved to the end of the file. 

CHAPTER 10 Files and VO 173 



The PI.Fllepos ·function 

PLFilepos </> 

The PLFilepos function returns a value of type longint that is the logical record 
number of the current file position. With untyped files or files of type text, it returns the 
number of l.Jytes from the beginning of the file to the currern fi.!.'; µ-:;.1iiio :!.. 

The parameter /is a variable reference that refers to a file variable. The file must be open. 

The PLCrunch procedure 

PLCrunch</> 

The PLCrunch procedure takes an open file as an argument. It truncates the file at the 
current position. 

The PI.Purge procedure 

PLPurge</> 

The PLPurge procedure deletes the fde named by f An error occurs if the fde is open. 

The PI.Rename procedure 

PLRename (o/dname, newname) 

The PLRename procedure allows you to rename any fde. 

Oldname and newname are strin~. Oldname is the Macint0sh pathname of an existing 
file, which may be open; newname is a new Macintosh pathname. If a file named 
newname already exists, an error occurs and the value of I OResul t is set to nonzero. 

Record-oriented routines 

The procedures described in this section are used to access the logical records of a file 
randomly. Most can be used only with structured files. Get and Put can be used with 
textfiles. See the section "Using Get and Put with Textfiles" below for details. 

174 MPW 3.0 Pascal Reference 

/"'' 



( 

( 

. .. 

The Get procedure 

Get cf> 

The Get procedure does two things: 

• It advances the current file position to the next component 

• It reads the new current logical record into the file window variable. 

The parameter /is a variable reference that refers to a file variable. The file must be open; 
if it is not, an error occurs. 

If a Get procedure is perfonned when no next logical record exists, Eof </> becomes 
true and the value off" becomes undefined. 

The Put procedure 

Put cf> 

The Put procedure does two things: 

• It writes the file window variable into the file at the current file position. 

• It advances the file position to the next logical record 

The parameter /is a variable reference that refers to a file variable. The file must be open, 
and the value off" must not be undefined 

The statement Put </) writes the value off" to the external file at the current file 
position and advances the current file position to the next logical record. If Eof </ > is 
true, Put</> appends the value of/" to the end of the file/and Eof </> remains true. 

The Read procedure with a structured file 

The Read procedure is usually used with files of type te~·t, as descibed below under 
"Text-Oriented Routines.• When used with a structured file, it reads one or more logical 
records into one or more variables, starting at the current file position and advancing the 
current position pointer. 

Read( r/,] V1 [, V2, ••• , Vnj) 

The optional parameter /is the variable of an open structured file. Each parameter v11 

must be a variable of a type that is assignment-compatible with the logical records off 

For example, if Newvals is a file of type FILE OF real, then the procedure call 

Read(NewVals, Subtotal, Total); 

CHAPTER 10 Files and 1/0 175 



requires that Subtotal and Total be variables of types to which a value of the type 
real can be assigned. If NewVals is a variable of type integer, for instance, a 
Compiler error occurs. For the rules that determine possible types in this context, see 
"Assignment-Compatible Types" in Chapter 4. 

The Write procedure with a structured me 

The write procedure is usually used with files of type text, as described below under 
"Text-Oriented Routines." When used with a structured file, it writes the value of one or 
more variables into one or more logical records of the file, starting at the current file 
position and advancing the current position pointer. 

Write (cf,] P1 [, P21 • · ·' Pnl ) 

The optional parameter f is the variable of an open structured file. Each parameter p,. 
must be a variable of the type that is assignment-compatible with the logical records off 

For example, if Newvals is a file of type FILE OF real, then the procedure call 

Write(NewVals, SubTotal, Total); 

requires that SubTotal and Total be variables of types that can be assigned to a value 
of the type real (that is, real or integer). If NewVals. is a variable of type 
extended, for instance, a Compiler error occuIS. For the rules that determine possible 
types in this context, see "Assignment-Compatible Types" in Chapter 4. 

Text-oriented routines 

This section describes input and output routines designed to bC used with file variables of 
type text. Text files are distinguished from other kinds of files (for example, FILE OF 
char) by the special significance given to the end-of-line character. This character allows 
a file of type text to be treated as a sequence of lines, rather than a sequence of 
individual characteIS. All the text-oriented routines may also be used to read data from 
the keyboard. An entire line may be read from the file into a string type variable using the 
Readln procedure, and an entire line may be written to the file by using the wri teln 
procedure. You can test for the end-of-line character by using the Eoln function 
described later in this chapter. 

176 MPW 3.0 Pascal Reference 

/. 



( 
• Note: When the value of the logical record at the current file position of a file is an 

end-of-line character, the Read and Readln procedures read it as a space character 
(ASCII 32). 

The Read and Write procedures can be applied to any typed file. If used with nontext 
stiuctured flles, they pe1form as discussed above under "Record-Oriented Routines." 
However, the procedures Readln and Wri teln depend upon the presence of the Eoln 

character, which appears only in files of type text. 

• Note: None of the predefined procedures and functions in this section need an explicit 
file variable parameter. If no file is named, one of the predefined files, input or 
output, will be assumed by default, depending on whether the procedure or function 
is input-oriented or output-oriented. Remember that input and output are 
predeclared as files of type text. 

The Read procedure 
Read([ /,J V1 [, V2 , ••• , Vn]) 

The Read procedure reads one or more 'Y3iles from a text file into one or more variables. 

If /is given, it must be a variable reference that refers to a file variable of type text. The 
file must be open. If /is omitted, it is assumed to be the predefi.ned text file input. 

Each v,. is a variable reference that refers to a variable of one of the following types: 

• char or a subrange of type char 

• integer, lonqint, or a subrange of integer or lonqint 

• one of the real types 

• a scalar type (including boolean) or a subrange of a scalar type 

• a string type 

• a PACKED ARRAY OF char 

Read with an array element follows the rules for the element's type. The other 
possibilities are discussed below. 

CHAPTER 10 Files and I/0 177 



Read with a char variable 

A Read perfonned with a char type variable is considered equivalent to this compound 
statement: 

BEGIN 
v :"" f~"; 
Get(ff) 

END 

In this example, vis a variable of type char and ff is a FILE OF char. Remember that 
if the current file position is at an end-of-line character, ff" contains a space character. 

Read with an integer variable 

A Read procedure performed with an integer or integer subrange variable reads a 
sequence of characters that form a signed, whole number in the range of type integer or 
type longint. If the sequence of characters is a valid representation of an integer, the 
integer value is assigned to the variable. Otherwise, an error occurs. 

When an integer is being read, the sequence of characters, spaces, tabs, and end-of-line 
characters preceding the ftrst digit or the sign is skipped. Reading ceases as soon as a 
character is reached that (together with the characters already read) does not form part of 
a signed whole number; or when Eof ( f) becomes true. 

If a signed whole number is not found after skipping any preceding spaces, tabs, and end­
of-line characters, an errors occurs and IOResul t returns a value of-1025. 

The following conditions are true immediately after a Read from a text file with an 
integer variable: 

• The current file position is the character following the last character in the numeric 
string, unless the last character in the string was the last character in the file. 

• Eof < f > will return true if the last character in the numeric string was the last 
character in the file. 

• Eo l n < f > will return true if the last character in the numeric string was the last 
character on the line. 

Read with a real variable 

A Read performed on a text file with a variable of one of the real types reads a sequence 
of characters that forms a signed number. If the sequence of characters is a valid 
representation of a value of a real type, the value is assigned to the variable. Otherwise, an 
error occurs. 

178 MPW 3.0 Pascal Reference 



( 

( 

When a value of type real is being read, any sequence of blanks and tabs preceding the 
first digit or the sign is skipped. Reading ceases as soon as a character is reached that 
(together with the characters already read) does not form part of a signed number, or 
when Eof ( / > becomes true. 

If a signed real number is not found afrer skipping any preceding spar.es and t;1bs, NaN is 
returned and the Invalid exception, described in Appendix G, is signaled. 

• Note: In addition to standard Pascal syntax, MPW Pascal regards, for example, inf, 
NaN,NaN(O),NaN( ),NaN(39), .369, .369312,1. ,andl.e9 allasvalidand 
real numbers. 

Immediately after a Read from a text file with a variable of the real type, the following 
conditions are true: 

• The current file position is the character following the last character in the numeric 
string, unless the last character in the string was the last character in the file. 

• Eo f ( f) will return true if the last character in the numeric string was the last 
character in the file. 

• Eoln ( f) will return true if the last character in the numeric string was the last · 
character on the line. 

Read with a string variable 

A Read performed with a string variable reads a sequence of characters up to, but not 
including, the next end-of-line character, or until the end of the file. The resulting character 
string is assigned to the variable. It is an error if the number of characters read exceeds the 
size attribute of the variable. 

• Note: With a string variable, Read does not skip to the next line after reading; an end­
of-line character is left in the file buffer. For this reason, you cannot use successive 
Read calls to read a sequence of strings; after the first Read, each subsequent Read 
will access the end of line (instead of a character) and will read a zero-length string. 
Instead, you must use Readln to read string values; Readln skips to the beginning of 
the next line after each input 

CHAPTER 10 Files and I/O 179 



The following conditions are true immediately after a Read from a text me with a 
string variable: 
• The current file position is the character following the last character in the string, 

unless the last character in the string was the last character in the file. 

11 Eof < /) will return true if the last character in the string was the last character in the 
file. 

• Eoln C/) will return true unless Eof C/) is true, in which~ Eoln </> is 
undefined. 

The Readln procedure 
Readln ( C/, ] V1 [ , V2, ••• , V11 ] ) 

The Readln procedure is an extension of Read. It reads a sequence of characters until 
the next character is the end-of-line character. It then skips to the beginning of the next 
line in the input me. Because Readln depends on finding the end-of-line character, it can 
be used only with files of type text. 

The parameters allowed with Readln are the same as those for Read. In addition, you 
can use Readln 

• with no input variables 
• with no parameters 

If the first parameter does not specify a file or if no parameters are used, Readln reads 
from the standard file input. 

When Readln is used without input variables, it advances the current file position to the 
beginning of the next line, if there is one. If there is no next line, it advances the current 
file position to the end of the file. 

The following conditions are true immediately after a Readln, regardless of the type of 
any input variable used: 

• Eo f < f > will return true if the line read was the last line in the file. 

• Eoln ( f > will return false unless the line following the line read is empty. 

180 MPW 3.0 Pascal Reference 



( 
The Write procedure 

Write (cf,] P1 C1P21 • • • ,p,,J) 

The write procedure writes one or more values to a text ftle. The parameter /(if given) is 
a variable reference that refers to a me variable of type text. The file must be open. If f 
is omitted, the procedure writes to the predefined file output. 

Each p11 parameter is a write parameter. At least one write parameter must be present 
The value of each write parameter, p,,, is given by an output expression, which may be of 
typechar,inteqer,real,STRING,PACKED ARRAY OF char,Orboolean. 

Besides complex expressions, such output expressions also include single variables and 
constants. The effects of using the write procedure with these different types are 
discussed below. 

Each Write parameter has the form 

Out&p C : Min Width C : DecPlaces l l 

where OutF.xp is an output expression. Min Width and DecPlaces are optional expressions 
with inteqer values. For example, in the statements 

Write(NewVals, Total); 
Write(NewVals, Total:8:4); 

Total is the output expression. The value of the real type variable Total is to be written 
to file NewVals. In the ftrst case, the optional Min Width and DecPlaces speciftcations 
are omitted. In the second case, Min Width is eight and DecPlaces four. Total will be 
written to a fteld eight spaces wide and with four characters to the right of the decimal 
place. 

Min Width speciftes the minimum fteld width. Min Width must be greater than or equal to 
zero. Exactly Min Width characters are written (using leading spaces if necessary), except 
when Out.Expr has a value that must be represented in more than Min Width characters, in 
which case the exact number o•f characters needed is written. Min Width can be used 
with an OutExp of any type that is valid in a write parameter. 

DecPlaces specifies the number of decimal places to be used in the fixed-point 
representation of a real value. It can be specifted only if OutF.xpr has a real type value and 
if Min Width is also specifted. If specifted, it must be greater than zero. If DecPlaces is 
not specifted and the value is one of the real types, a floating-point representation is 
written. Floating-point representation is discussed later in this chapter. 

CHAPTER 10 Files and 1/0 181 



Write with a char value 

If write is given a variable of type char and Min Width is not specified, the character 
value of OutExpr is written to the specified file. If Min Width is included, exactly 
Min Width -1 spaces are written, followed by the character value of OutExpr. For example, 

Wi.ite: {Nait1CS, .i:11itial); 
Write(Names, Initial:3); 

In the first example, the character that is the value of Initial is written to the file, 
without leading spaces. In the second example, Initial is written, preceded by two : 
spaces. 

Write with an integer value 

If OutExpr is of type integer, its decimal representation is written to the specified file 
as if by this algorithm: 

BEGIN 
FOR I :a 1 TO MinWidth - (length(OutDigits) + 1) DO 

Write(ff, ' '); 
IF OutExpr < 0 THEN 

Write(ff, '-') 
ELSE 

Write (ff, ' '); 
Write(ff, OutDigits) 

END; 

The parameter ff represents the variable referenced by f OutDigits is a string value that 
contains the decimal representation of the absolute value of OutF.xpr, with no leading 
zeros unless the value of OutF.xpris zero, in which case outDigits contains the single 
character "O". 

For example, if the decimal representation of the value of OutExpris 4545 and MinWidth 

is given as eight, the FOR statement will write three space characters to a file. Because 
outExpr is not less than zero, the IF clause will not execute arit1 the ELSE clause will 
output one roore space. Finally, the last Write statement will output the decimal number 
4545 to the file. 

Here are some additional syntax rules for using write with an integer value: 

• If Min Width is used and its value is greater than the number of digits in the decimal 
representation of the value to be written, leading spaces will be written to the left of 
the number. The number of spaces depends upon the Min Width specification. 

• If the value of OutF.xpr is less than zero, a minus sign (ASCII $2D) is written to the file, 
denoting a negative value. 

• If Min Width is omitted, it is given a default value of eight. 

182 MPW 3.0 Pascal Reference 



Write with a value of type real 

If OutExpr has a real value, its decimal representation is written to the specified file. This 
representation depends upon the value of the parameter DecPlaces (if it is present). 

If DecP!aces is present, a fixed-point representation is written. If DecP!aces is absent, a 
floating-point representation is written. The.5( two cases are discussed separately below. 

Fixed-point representation 

Assume that IntDigits is a string value containing the decimal representation of this 
expression: 

Trunc(Abs(OutExpr)) 

IntDigits contains no leading zeros (unless the value of outExpr is zero, in which case 
IntDigits contains the single character 0). This expression is the value for the portion 
of outExpr to the left of the decimal point. 

Now assume that FracDigi ts is a string value that contains the decimal representation 
of this expression: 

Round((Abs(OutExpr) - Trunc(Abs(OutExpr))) * ioDecPlaces) 

with enough leading zeros to make Length (FracDigits) equal to DecPlaces. 

Then the fixed-point representation is written to the file using this algorithm: 

BEGIN 
IF MinWidth >• length(IntDigits)+length(FracDigits)+2 THEN 

Write(ff, ' ': MinWidth-TotalDigits-3); 
IF OutExpr < 0 THEN Write(ff, '-') 

ELSE 
IF MinWidth >= length(IntDigits)+length(FracDigits) +2 THEN 

Write (ff, ' '); 
Write(ff, IntDigits, '.', FracDigits) 

END; 

If Min Width is omitted from the Write parameter, it is assumed to be ten. 

Floating-point representation 

The algorithm used to write a floating-point representation works in this way. The 
expression Abs (OutExpr) can be represented in floating-point notation in this form: 

m.n *lOe 

CHAPTER 10 Files and I/O 183 



In this expression, mis always a digit from one to nine, unless the value of outExpr is 
zero. Assume that IntDigi t is a string value that contains the decimal representation of 
m-a single digit. Assume that FracDigits is a string value that contains the first 
Minwidth -9 digits of the decimal representation of n rounded, or with trailing blanks 
retained and trailing zeros added if necessary. Assume that ExpDigits is a string value 
mat contains the d~dmal re1J1·~sen~tio:1 of il>bt \ ~ ~· ;-,.·:th e1,0u!:;!:. ie~C:i.!.; b!.Lh: ~c mate 
Length (Expo igi ts ) equal to four. Also assume that NegExp has the value true if 
e <O and otherwise is false. Given these assumptions, the following is the algorithm for 
writing a floating-point representation: 

BEGIN 
IF OutExpr < 0 THEN Write(ff, '-') ELSE Write(ff, I '); 

Write(ff, IntDigit, •.•, FracDigits, 'E'); 
IF NeqExp THEN Write(ff, '-') ELSE Write(ff, '+'); 
Write(ff, ExpDigits) 

END; 

Write with a string value 

The results of using write with a string variable depend upon the length attribute of the 
string that appears as the OutExpr and whether or not Min Width is specified. 

Here are the rules: 

• If Min Width is specified and the length of the string is less than Min Width, then the 
string is written preceded by a number of spaces equal to Min Width minus the length 
of the string. 

• If Min Width is specified and the length of the string is greater than Min Width, then 
the first Min Width number of characters are written. 

• If Min Width is specified and the length of the string equals Min Width, or if Min Width 
is not specified, the entire string value is written on the file. 

For example, in the statement 

Write(LastName: 8); 

LastName is a string variable with a size of ten. If LastName holds a value that is either 
nine or ten characters, only eight will be written to output. 

Write with a packed array of char 

If OutExpris a PACKED ARRAY OF char, the effect is the same as writing a string whose 
length is the number of logical records in the type. 

184 MPW 3.0 Pascal Reference 



( 

Write with a boolean value 

If the value of OutF.xpr is type boolean, the string ' TRUE' (with a leading space) or the 
string • FALSE • is written to the file f The default value of Min Width is five. If Min Width 
is greater than five, leading spaces are added; if Min Width is less than five, the character T 

or F is written, padded with spaces as if a value of type STRING [ 1] . 

The Writeln procedure 

Writeln{[ /, J'fJi [, P2• · · ., Pnl> 
The Wri teln procedure is an extension of write. It performs the same actions and then 
writes an end-of-line character to the output file. 

The parameters are the same as those used with write, except the write parameters 
can be entirely omitted; without them, writeln writes an end-of-line character to the 
output. 

The Eoln function 

Eoln [ </>] 
The parameter f is a variable reference that refers to a file variable of type tex. The file 
must be open. If /is omitted, the function is applied to the predefined file input. 

Eoln returns true if the character at the current file position is an end-of-line character. 
An error occurs if Eoln ( /> is applied to a nontext file or if /is write-only. If Eof ( f) is 
true, Eoln ( ) is undefined. 

The Page procedure 

Page [ </) l 
' 

The Page procedure sends a form feed character (ASCII 12) to the file designated by f If 
the file parameter is omitted, the character is sent to the predefined file output. 

The PLSetVBuf procedure 

PLSetVBuf C/, bu/ptr, style, bufsize) 

The PLSetVBuf procedure allows you to specify your own buffer for use with files of 
type text. 

CHAPTER 10 Files and I/0 185 



The parameter /is a variable reference that refers to a file variable of type text. The 
parameter bufptris a pointer to a PACKED ARRAY OF char to be used as a text 1/0 
buffer. Bu/size is an integer that gives the size of the buffer in bytes. Style is an 
integer that determines how buffering is performed . 

... ........ -··-.·:-- ___ , ___________________ _ 
s-:·1'~•· Y!"'t Ef:i::;c:~ 

.. --··...-.-----·~- .. ·- ·~-----.... ------------~-..,-- ...... -, ............. u-.............. 

IOFBF 

IOLBF 

IONBF 

1/0 is file buffered 
Output is line buffered; the buffer is flushed when full or at Eoln 

1/0 is unbuffered; bufptr and bu/size are ignored 

The system normally allocates a file's buffer when the fust read or write operation is 
performed on it To allocate your own buffer, call PLSetVBuf after the ftle is opened but 
before the first read or write operation. If the vallie of bufptr is NIL, the system allocates 
a buffer of size bu/size at the first read or write operation. Be sure to close the file before 
deallocating its buffer. 

The PUlush procedure 

PLFlush </> 
The PLFlush procedure causes the contents of the current output buffer associated with 
the file f of type text to be written to the file. 

The Get and Put procedures with text files 

The Get and Put procedures can be used for character-at-a-time 1/0. Get with a text file 
differs from Get with a structured file only in that a character is not read until a program 
reads the file window variable. This behavior of Get makes it possible to interact with 
inf romation entered from the keyboard. 

6 Important Don't mix Get and Put with Read and Write. Currently they're not 
compatible. t::. 

186 MPW 3.0 Pascal Reference 



( 

Routines for untyped files 

The following routines can be used only on untyped files-that is, variables of type FI LE 

with no specified logical record type. With Blockread and Blockwri te, an untyped 
file is treated as a sequence of 512-byte blocks With Byterec>.d and Byte•«ri te, it is 
treated as a sequence of bytes. In both cases, the file bytes are not type-checked but are 
considered as raw data. This can be useful for applications where the data need not be 
interpreted at all during 1/0 operations. 

The blocks in an untyped file are considered to be numbered sequentially starting with 
logical record 0. The system keep.s track of the current block number; it is block 0 
immediately after the file is opened. Each time a block is read, the current block number 
is incremented. By default, each 1/0 operation begins at the current block number; 
however, an arbitrary block number can be specified. 

An untyped file has no file window variable, and it cannot be used with the Get or Put 

procedure or with any of the text-oriented 1/0 procedures. It can only be used with 
Reset, Rewrite, Open, Close, Seek, Eof, and the four functions described below. 

To use untyped file 1/0, an untyped file is opened with open, Reset, or Rewrite; the 
Block read, Blockwri te, Byte read, and Bytewri te functions may then be used for 
input and output. 

The Blockread function 

Blockread(/, databuf, count [, blocknum]) 

The Blockread function reads one or more 512-byte blocks of data from an untyped 
file to a program variable and returns an integer representing the number of blocks read. 
Its parameters are the following: 

• The parameter /is a variable reference that refers to a variable of type FILE. The file 
must be open. 

• Databuf is a variable reference that refers to the variable into which the blocks of data 
will be read. The size and type of this variable are not checked; if it is not large enough 
to hold the data, other data may be overwritten and the results are unpredictable. 

• Countis an expression with an integer value. It specifies the maximum number of 
blocks to be transferred. Blockread will read blocks until this limit is reached, the 
end-of-file is reached, or an error occurs. 

CHAPTER 10 Files and 1/0 187 



• Blocknum is an optional expression with an integer value. It specifies the starting 
block number for the transfer. If it is omitted, the transfer begins with the current 
block. Thus the transfers are sequential if the blocknum parameter is never used; if a 
blocknum parameter is used, it provides random access to blocks. 

After the last block in the file has been rezd, the current block number is unspecified and 
Eof <f > is t:r11e. Otheri;v!se, Eof </) is f.aJ.3e and the cm rent bloc!~ number is :.:i.dvanced 
to the block after the last block that was read. If Blockread reads fewer than bloc/mum 
blocks, it returns the actual number of blocks read. H the end of the file occurs while the 
last block is being read, the remainder of the block is filled with zero bytes. H Eof </ > is 
true when Blockread is called, Blockread returns zero and IOReault returns a value 
of eofErr (-39). 

The Blockwrite function 

Blockwrite(i databui countL blocknum]) 

The Blockwri te function writes one or more 512-byte blocks of data from a buffer to 
an untyped file and returns an integer representing the number of blocks written. 

• The parameter /is a variable reference that refers to a variable of type FI LE. The file 
must be open. 

• Databuf is a variable reference that refers to the variable from which the blocks of 
data will be written. The size and type of this variable are not checked. 

• Count is an expression with an integer value. It specifies the maximum number of 
blocks to be transferred. Blockwri te will write blocks up to this limit unless an error 
occurs. 

• Blocknum an optional expression with an integer value. It specifies the starting 
block number for the transfer. If it is omitted, the transfer begins with the current 
block. Thus the transfers are sequential if the blocknum parameter is never used; if a 
blocknum parameter is used, it provides random access to-blocks. 

If disk space runs out during data transfer, the current block number is unspecified. · 
Blockwri te returns the actual number of blocks written and sets IOReaul t to a 
nonzero value. Otherwise, the current block number is advanced to the block after the last 
block that was written. 

188 MPW 3.0 Pascal Reference 



( 

( 

The Byteread and Bytewrlte functions 

Byteread < J. databuf. count [, blocknumh 

Bytewrite </. databuf, count[, blocknum]) 

The Byte read and Bytewri te fur1_ctions peiform identically to Blockread and 
Blockwrite, with four differences: 

• They transfer bytes of data instead of blocks. 
• The type of the parameters bytenum and count in the function result is longint 

instead of integer. 

• The value bytenum is the current byte position in the file. The first byte is numbered 
zero. 

• Byte read and Bytewri te return the number of bytes transferred. 

• Note: Mixing block and byte untyped file functions can result in confusion unless their 
blocknum and bytenum parameters are used to adjust the current file position. A 
block function always transfers the next 512 bytes; after a byte function, this may no 
longer conform to a natural block boundary. 

CHAPTER 10 Files and VO 189 





( 

( 

( 

Chapter 11 Predefined Routines 

THIS CHAPTER DESCRIBF.S ALL TIIE PREDEFINED ("BUILT-INn) PROCEDURES and 
functions in MPW Pascal, except for the VO procedures and functions described 
in Chapter 10. The routines described in Appendix Gare contained in the SANE 
libraries, rather than being implemented by the MPW Pascal Compiler or the 
PasLib library. 

The Macintosh also has more than 500 ROM routines available, which are 
described in Inside Macintosh. Those routines ease implementation of the 
Macintosh user interface and provide program services. 

Standard procedures and functions are predeclared. Predetlared entities act as if 
they were declared in a block surrounding the program, so no conflict arises from 
a declaration that redefines the same identifier within the program. 

• Note: Predefined procedures and functions cannot be used as actual 
parameters for procedures and functions. 

This chapter uses a modified BNF notation instead of syntax diagrams to 
indicate the syntax of actual parameter lists for standard procedures and 
functions. The notation is explained in the Preface. • · 

Contents 

Exit and halt procedures 195 
The Exit procedure 195 
The Halt procedure 195 

Dynamic allocation procedures 195 
The PLHeaplnit procedure 196 
The PLSetHeapCheck procedure 197 
The PLSetNonCont procedure 197 
The PLSetMErrProc procedure 197 
The PLSetHeapType procedure 197 
The New procedure 198 

191 



The Dispose procedure 199 
The Heapresult function 199 
The Mark procedure 200 
The Release procedure 200 
The Memavail function 200 

Transfe~· functions 201 
The Trunc function 201 
The Round function 201 
The Ord4 function 201 
The Pointer function 202 

Arithmetic functions 202 
The Odd function 203 
The Abs function 203 
The Sqr function 203 
The Sin function 204 
The Cos function 204 
The Exp function 204 
The Ln function 204 
The Sqrt function 205 
The Arctan function 205 

Ordinal functions 205 
The Ord function 205 
The Chr function 206 
The Succ function 206 
The Pred function 206 

String procedures and functions 207 
The Length function 207 
The Pos function 207 
The Concat function 207 
The Copy function 208 
The Delete procedure 208 
The Insert procedure 208 

Byte-oriented procedures and functions 209 
The Moveleft procedure 209 
The Moveright procedure 210 
The Sizeof function 210 

Packed character array routines 210 

192 MPW 3.0 Pascal Reference 
( 

. ./ 



( The Scaneq function 211 
The Scanne function 211 
The Fillchar procedure 211 

Logical bit functions and procedures 212 
The BAND function 213 
The BOR function 213 
The BXOR function 213 
The BNOT function 213 
The BSL function 213 
The BSR function 214 
The BRotL function 214 
The BRotR function 214 
The BTst function 214 
The HiWrd function 214 
The Lo Wrd function 215 
The BClr procedure 215 
The BSet procedure 215 

:l 

( 
CHAPTER 11 Predefined Routines 193 





' \ 
' 
l 
~ 

( 

( 

Exit and halt procedures 

Two procedures, Exit and Halt, let you tenninate current program execution 
unconditionally. 

The Exit procedure 

The Exit procedure exits immediately from a specified procedure or function or from 
the main program. 

Exit ((id I PROGRAM}) 

The parameter id is the identifier of a procedure or function, or of the main program, in 
the scope of the Exit call. You can also use the reserved word PROGRAM to identify the 
currently executing program. 

The call Exit { id ) causes an immediate exit from id. Essentially, it causes a jump to the 
end of id. The routine identified by id must be part of the current dynamic calling chain. 

Exit (PROGRAM) sets the MPW {stat us} variable to zero. 

The Halt procedure 
Halt 

Halt (with no parameters) causes an immediate exit from the main program and sets the 
MPW {status} variable to one. 

Dynamic allocation procedures 

These procedures are used to manage the heap, a memory area within the application heap 
zone. (See the Memory Manager chapter of Inside Macintosh for details of memory 
allocation on the Macintosh.) The PLHEAPINIT procedure lets you specify the size of the 
heap you wish to use with your program. The PLSetNonCont, PLSetMErrProc, and 
PLSetHeapType procedures let you control the characteristics of the heap. The procedure 
New is used for all allocation of heap space by the program The Mark and Release 

procedures are used together to deallocate all of a marked part of heap space. The 
Dispose procedure is used to deallocate a single identified variable. The Heapresult 

function is used to return the status of the preceding dynamic allocation operation. 

CHAPTER 11 Predefined Routines .195 



• Note: The routines whose names begin with PL are located in PasLlbintf. p. 

Except when dealing with object types, the NewHandle procedure in the Macintosh ROM 
can also be used to allocate heap space. NewHandle returns handles (double indirect 
pointers) rather than ordin".fY pointers. Th~ Memory Manager ~n th·-r rmi.,_t.,!o ieap 
space for you, compactint 1.hc lie.t{J whc1 l u•:.1~c • ...:1ry :-.1.Hd ~lk · "'i:; ii1C1 ;;:;; .. d::;:". :,.:,~vi 
memory space. See Inside Macintosh for details of NewHandle. When creating new 
objects, always use the New procedure described here; it calls NewHandle with the 
proper arguments. Objects are always relocatable. 

Except when creating objects, the allocation procedures described here allocate 
nonrelocatable blocks in the heap. The Memory Manager cannot move those blocks in 
order to free larger contiguous blocks for later allocation. The New procedure has the 
advantage that it lets you allocate heap space without having to specify its size. 

The Pllleaplnit procedure 
PLHeapinit <sizeHeap: lonqint; heapDe/la: lonqint; 

memerrProc: UNIV P ascalPointer, aJlowNonConl: boolean,/orDispose:boolean) 

The PLHeapini t procedure initializes the heap, using infonnation you supply to 
determine the characteristics of the heap. 

The sizeHeap parameter takes a lonqint value that represents the size of the heap. MPW 
Pascal's built-in heap-initialization routine automatically allocates 5000 bytes of heap 
space. Using PLHEAPINIT, you can specify a heap size other than 5000 bytes. 

The heapDelta parameter specifies the size in bytes of additional space to be added to 
the heap if allowNonCont is true. New allocations may not be adjacent to the existing 
heap. 

The memerrProc argument is a procedure pointer that enables you to specify a routine to 
be executed if a memory error, such as heap oveiflow, occurs. · 

The. al/owNonCont parameter is a boolean value. If it is set to true, additional heap 
space equal to the argument given to heapDelta will be allocated when the initial heap 
space is exhausted. If it is set to false, PLHeapini twill ignore heapDelta, and no 
aditional space is allocated. 

The forDispose parameter is also a boolean value. The forDispose parameter must be set to 
true if you want to use the Dispose procedure. Otherwise, an error occurs if you attempt 
to call Dispose. The default setting is false. 

PLHeapini t should be called by your main program. 

196 MPW 3.0 Pascal Reference 

/' 

J 
) 
~ 
~ 
·I 

~ 

J 
'· i 



( 

The PLSetHeapCheck procedure 

PLSetHeapCheck(Do/~ boolean) 

Whenever heap space is allocated or deallocated, a consistency check is normally 
perforrred on the heap. The procedure PLSetHeapCheck allows you to suspend this 
checking process by setting the boolean parnmeter TJoltto false. It remains 
suspended until a subsequent PLSetHeapCheck procedure is made with Do/ttrue. 

PLSetHeapCheck should be called by your main program. 

The PLSetNonCont procedure 

PLSetNonCont(allowNonCont: boolean) 

The PLSetNoncont procedure lets you set the additional heap space flag without calling 
PLHeapinit. The allowNonCont parameteI i5a boolean value. If it's set to true, 
additional heap space will be allocated if the current heap is full and cannot be extended. 

' 

The PLSetMErrProc procedure 

PLSetMErrProc (memerrProc: univ PascalPointer) 

The PLSetMErrProc procedure allows you to specify a procedure to be executed in 
case of a memory error. The parameter m~roc points to the procedure. 

The PLSetHeapType procedure 
PLSetHeapType</orDispose: boolean) 

The PLSetHeapType procedure lets you specify, without accessing PLHeapini t, 

whether or not use of the Dispose procedure is to be allowed in your program. If the 
boolean/orDisposeis true, Dispose is allowed. 

• Note: Be careful if you change the heap type in the middle of the program. Pointers 
allocated for one type of heap are not compatible with pointers allocated for the · 
other type of heap. 

CHAPTER .11 Predefined Routines l<J7 

" 



The New procedure 

New (p[, ~' ... , t11D 
The New procedure allocates a new dynamic variable and sets a pointer variable to point 
to it. 

The parameter p is a variable reference that refers to a variable of any pointer type. It may 
also be an object type reference variable, in which case New creates a new object of that 
type. The parameter pis a variable parameter; it can be a pointer variable or object type 
reference variable of any type. 

The optional parameters ~ , ... , t11 are constants, used only when allocating a variable of 
record type with variants (see below). 

If pis a pointer variable, New <P> allocates a new variable of the base type of p and makes 
p point to it The variable can be referenced as JY". 

• Note: The New procedure is not the same as the New Pt r function described in Inside 
Macintosh. When you call New Pt r, you give a size value and the result does not have a 
type. The result of New always points to an identified variable of a specific type. 

If p is an object type reference variable, space is allocated for an object of the variable's 
type and a handle (a double indirect pointer) is assigned top. You do not, however, use 
pointer symbols to reference values that are in fields of the new object. You reference 
fields of objects as if they were fields of ordinary records. Successive calls do not 
necessarily allocate contiguous areas. In general, objects can move when the heap is 
compacted. 

If the heap does not contain enough free space to allocate the new variable, p is set to 
NIL and a subsequent call to the Heapresult function will return a nonzero result. 

If the base type of pis a record type with variants, New <P> allocates enough space to 
allow for the largest variant. The form 

New(p, tli ... , t,) 

allocates a variable with space for the variants specified by the tag values ~, ... , t11 

(instead of enough space for the largest variants). The tag values must be constants; they 
must be listed contiguously and in the order of their declaration. The tag values are not 
assigned to the tag fields by this procedure. 

Trailing tag values can be omitted. The space allocated allows for the largest variants for 
all tag values that are not specified. 

198 MPW 3.0 Pascal Reference 



( 

( 

.& WarnJng When a record variable is dynamically allocated with explicit tag 
values as shown above, you should not make assignments to any fields 
of variants that are not selected by the tag values. You should also not 
assign an entire record to this record. If you do either of these things, 
other data can be overwritten without any error being detected at 
compile time. '-· 

The Dispose procedure 

Dispose<P> 

The Dispose procedure deallocates an identified variable or an object. 

The parameter p is a variable reference that refers to a variable of any pointer type or 
object type reference variable. It is a variable parameter. 

Dispose releases the space allocated to a dynamic variable or object. It is an error if pis 
undefined or NIL. After Dispose executes, the value of pis undefined. All other 
references to the identified variable or object that was reached through p are also 
undefined. 

• Note: You must use the PLHeapinit or PLSetHeapType procedure, described 
above, to set the allowDisposeflag to true before you use the Dispose procedure. 
In addition, the allowDispose flag must have been true at the time that p was 
established by a call to New. 

The Heapresult function 
Heapresult 

The Heapresult function returns an integer representing the status of the most recent 
dynamic allocation operation. 

CHAPTER 11 Predefined Routines 19') 



The Heapresult function returns an integer code that reflects the status of the most 
recent call on New, Mark, Release, Memavail, or PLHeapini t. The codes are given 
below: 

Code .MeanJng 

-1051 Illegal size request (larger than total heap space) 
-1052 Invalid pointer 
-1053 Insufficient room in heap 

The Mark procedure 
Mark (p) 

The Mark procedure sets a pointer to a heap area. 

The parameter p is a variable reference that refers to a variable of any pointer type. It is a 
variable parameter. 

Mar k(p) causes the pointer p to point to the start of the current free area in the heap. The 
pointer pis also placed on a stacklike list for subsequent use with the Release procedure 
(see below). 

The Release procedure 
Release(p) 

The Release procedure deallocates all variables in a marked heap area. 

The parameter p is a variable reference that refers to a pointer variable. It must be a 
pointer that was previously set with the Mark procedure. 

Release(p) deallocates all areas allocated since the pointer p Was passed to the Mark 
procedure. 

The Memavail function 
Memavail 

The Memavail function returns a longint that gives the maximum possible amount of 
available heap space. It has no parameters. 

200 MPW 3.0 Pascal Reference 



Memavail returns the maximum number of words (not bytes) of heap space that can 
currently be made available to the New procedure (assuming that the Pascal heap is 
allowed to grow in size). Note that the result of Memavail can change over time even if 
the program does not allocate any heap space, because of other memory management 
activities. 

Transfer functions 

Transfer functions transfer a value from an expression of one type to an expression of 
another type. See "Real Types" in Chapter 4 for a discussion of real and extended values. 

The Trone function 
Trunc (X) 

The Trunc function converts an extended value to a longint value. Its parameter xis an 
expression with a value of type extended. Trunc (X) returns a long int result that is 
the value of x rounded to the largest whole number between zero and x (inclusive). 

The Round function 

Round(X) 

The Round function converts an extended value to a longint value. Its parameter xis an 
expression with a value of type extended. If xis exactly halfway between two whole 
numbers, the resuJt is the whole number with the greatest absolute magnitude. 

The Ord4 function 

Ord4 (X) 

The Ord4 function converts a scalar type or pointer type value to type longint. Its 
parameter xis an expression with a value of scalar type or pointer type. Ord4 ( x) returns 
the value of x, converted to type longint. 

If xis of type longint, the result is the same as x. 

If xis of pointer type, the result is the corresponding physical address of type longint. 

CHAPTER 11 Predefined Routines 201 



If xis of type integer, the result is the same numerical value represented by x but of 
type longint. This is useful in arithmetic expressions. For example, consider the 
expression 

abc*xyz 

where both abc and :.cyz are of type ·i .,i_o:;•g( ::. By th.': !i !'°.:: ;;;ivr,. :. .... : . •·· ·: :;, · ''"· ,.1 

of this multiplication is of type integer (16 bits). If the mai:hemaucai product oi abc 
and xyz cannot be represented in 16 bits, the result is the low-order 16 bits. To avoid this, 
the expression can be written as 

Ord4(abc)*xyz 

·This expression causes 32-bit arithmetic to be used, and the result is a 32-bit longint 

value. 

If xis of a scalar type other than integer or longint, the numerical value of the result is 
the ordinal number determined by mapping the values of the type onto consecutive 
nonnegative integers starting at zero. 

The Pointer fundlon 

Pointer (X) 

The Pointer function converts an integer or longint value to pointer type. Its 
parameter xis an expression with a value of type integer or longint. Pointer <X> 
returns a pointer value that corresponds to the physical address x. This pointer is of the 
same type as NIL and is assignment compatible with any pointer type. The value of 
Pointer ( 0) is NIL. 

Arithmetic functions 

The MPW Pascal arithmetic functions that take parameters of real types reside in the 
Macintosh ROM and/or the 68881. The Pascal Compiler generates the code necessary to 
call them from Pascal source text. For information about the limits and accuracy of these 
functions, consult the Apple Numerics Manual. For more information on the 68881 
functions, consult Motorola's MC68881 Floating-Point Coprocessor User's Manual. In 
general, any result returned by an arithmetic function is an approximation, although the 
result of the Abs function is exact 

202 MPW 3.0 Pascal Reference 

'\..., __ ,.,,;' 



Functions that do not have parameters of real types are implemented by code generated 
by the Compiler. 

In this section, a numeric value is defined as an expression involving constants and 
variables of types extended, double, real, comp, longint, or integer. Numeric 
values are therefore of type extended, longint, or integer. 

When you set the -MC68881 option, the Compiler generates direct calls to the 68881 for 
several of the functions described below. See Appendix G for details. 

The Odd function 

Odd(.X) 

The Odd function tests whether a whole-number value is odd, returning a boolean value. 
Its parameter xis an expression with a value of type integer or longint. Odd ( .x) 

returns true if xis odd; otherwise, it yields false. 

The Abs function 

Abs (.X) 

The Abs function returns the absolute value of a nurreric value. Its parameter xis a 
numeric value. Abs <X> returns the absolute value of x, with the same type. 

The Sqr function 

Sqr (.X) 

The Sqr function returns the square of a nurreric value. Its parameter xis a nurreric value. 
Sqr < x> returns the square of x. 

If xis of a real type, the result is extended; if xis of type longint, the result is 
longint; and if xis of type integer, the result may be either integer or longint. 

If xis of real type and floating-point overflow occurs, the result is +inf. (See 
Appendix G and the Apple Numerics Manual for more information on infinities.) 

CHAPTER 11 Predefined Routines 203 



The Sin function 
Sin (.X) 

The Sin function returns an extended value that is the sine of a numeric value. Its 
parameter xis a numeric value. This value is assumed to represent an angle in radians. If xis 
irJinite, a diagnostic m.N ~· produced and the invalid operation signal is set (s~e 
Appendix G). 

The Cos function 
Cos (X) 

The cos function returns an extended value that is the cosine of a numeric value. Its 
parameter xis a numeric value. This value is assumed to represent an angle in radians. If xis 
infinite, a diagnostic NAN is produced and the invalid operation signal is set (see 
Appendix G). 

The Exp function 
Exp (X) 

The Exp function returns an extended value that is the natural exponential of a numeric 
value. Its parameter .xis a numeric value. All possible values are valid. Exp ex> returns the 
value of ez, where e is the base of the natural logarithm. If floating-point ovedlow occurs, 
the result is +oo. 

The Ln function 
Ln(X) 

The Ln function returns an extended value that is the natural logarithm of a numeric value. 
Its parameter xis a numeric value. 

If x is nonnegative, Ln < x> returns the natural logarithm (lo8e) of x. If x is negative, a 
diagnostic NAN is produced and the invalid operation signal is set (see Appendix G). 

204 MPW 3.0 Pascal Reference 

\"' _ _/ 



( 

The Sqrt function 

Sqrt (X) 

The Sqrt function returns an extended value that is the square root of a numeric value. Its 
parameter xis a numeric value. 

If xis nonnegative, Sqrt ( x) returns the positive square root of x. If xis negative, a 
diagnostic NAN is produced and the invalid operation signal is set (see Appendix G). 

The Arctan function 
Arctan (X) 

The Arctan function returns an extended value that is the principal value, in radians, of 
the arctangent of a numeric value. Its parameter x is a numeric value. All numeric values of 
x are valid, including ±oo. 

Ordinal functions 

The ordinal functions operate on the ordinal value of scalar and pointer types, as 
explained in Chapter 4. 

The Ord function 
Ord(X) 

The Ord function returns the ordinal number of a scalar type or pointer type value. Its 
parameter x is an expression with a value of scalar type or.pointer type. 

If xis of type integer or longint, the result is the same as x. 

If xis of pointer type, the result is the corresponding physical address of type longint. 

If x is of another scalar type, the result is the ordinal number detennined by mapping the 
values of the type onto consecutive nonnegative whole numbers starting at zero. 

For a parameter of type char, the result is the corresponding ASCII code. For a parameter 
of type boolean, 

Ord(false) returns zero 
Ord(true) returns one 

CHAPTER 11 Predefined Routines 205 



The Chr function 

Chr.(X) 

The Chr function returns the char value corresponding to a whole-number value. Its 
parameter xis an expression with an integer or longint value. Chr (%) returns the 

' . v~1•1e , ..... 1. ""' -11~; . • ,. ~ ·-J .. ,1 ... ('. (i·'·,. !.· t;·,· ! r- ··ir t.G 1.' :.. . .,.. , ~ .. ~- ~ ~f"" "'·n' ,:, !":. .,.c-~ If C, .,,;< l" o.lU ,·: ,_. Jv'i: \J ..... J.c_: HU.I.I!.~ -1 \·-'-'~ '· '''• .,,)) f _,,. ·'•·' •, • ; !;:; . , L' • .~ il. 1 l'- J.·. C';'· · J.,-' .) ·"' 

xis not in the range 0 .. 255, the value returned is not within the range of the type char, and 
any attempt to assign it to a variable of type char will cause an error. 

For any char value ch, the following is true: 

Chr(ord(ch)) •ch 

The Succ function 

Succ (X) 

The succ function returns the successor of its parameter x, a value of a scalar type. 
Succ <x> returns the successor of x if such a value exists according to the inherent 
ordering of values in the type of x. 

If x is the last value in the type of x, it has no successor. In this case, the value returned is 
not within the range of the type of x, and any attempt to assign it to a variable of this 
type will cause unspecified results. 

The Pred function 

Pred (X) 

The P red function returns the predecessor of its parameter x, a value of a scalar type. 
P red <x> returns the predecessor of x if such a value exists according to the inherent 
ordering of values in the type of x. ' 

If x is the first value in the type of x, it has no predecessor. In this case, the value returned 
is not within the range of the type of x, and any attempt to assign it to a variable of this 
type will cause unspecified results. 

206 MPW 3.0 Pascal Reference 

\.. ;./ 



String procedures and functions 

The string procedures and functions do not accept PACKED ARRAY OF char 

parameters, and they do not accept indexed string parameters. 

The Length function 
Length (Str) 

The Length function returns an integer value that is the current length of its parameter 
str, which rrrust have a value of type STRING. 

The Pos function 
Pos <substr, stT) 

The Pos function searches for substrwithin strand returns an integer value that is the 
index of the first character of substrwithin str. Both parameters must be of type STRING. 

If substr is not found, Po s returns zero. 

The Concat function 

Conca t concatenates all the parameters in the order in which they are written and returns 
the concatenated string. Character constants and strings may be mixed, Each parameter is 
an expression with a value of type STRING. Any number of parameters may be passed. 
Note that the number of characters in the result cannot exceed 255. 

CHAPTER 11 Predefined Routines 207 



The Copy function 
copy <source, index, count> 

copy returns a string containing count characters from source, beginning at source [inde.xl. 
The parameter source is an expression with a value of type STRING. The parameter index 
is 3.n expression witli :m integer value in the range 1 .. 255. Th·'.! lXlfi'._,7,,,,'.r:. tw:;:' i~ <'.!l 

expression with an integer value in the range 1..2;). 

If the values of index or count are out of range or if there are not count characters in 
source starting at source [inde.xl, copy returns the null string. 

The Delete procedure 
Delete <dest, index, count) 

Delete removes count characters from the value of dest, beginning at dest [index]. The 
parameter dest is a variable reference that refers to a variable of type STRING. It is a 
variable parameter. The parameter index is an expression with an integer value in the 
range 1..255. The parameter count is an expression with an integer value in the 
range 1..255. 

If the values of index or count are out of range or if index is greater than Length { dest ) , 
Delete is ignored. If the attempted deletion extends beyond the end of dest, dest 
becomes truncated at index -1. 

The Insert procedure 
Insert (source, dest, index> 

Insert inserts source into dest. The first character of source becomes dest [index]. The 
parameter source is an expression with a value of type s TRI NG. The parameter dest is a 
variable reference that refers to a variable of type STRING. It is a variable parameter. The 
parameter index is an expression with an integer value in the· range 1..255. 

If the value of index is out of range, Insert is ignored. 

208 MPW 3.0 Pascal Reference 



( 

( 

Byte-oriented procedures and functions 

The byte-oriented procedures allow a program to treat a program variable as a sequence 
of bytes, without regard to data types. 

These procedures do no type checking on their soul'ce Oi dest actmtl parameters. However, 
because these are variable parameters, they cannot be indexed if they are packed. If an 
unpacked "byte array" is desired, then a variable of the type 

ARRAY [lo •. hi] OF -128 .. 127 

should be used for source or dest. The elements in an array of this type are stored in 
contiguous bytes; because it is unpacked, an array of this type can be used with an index 
as an actual para.mete~ for these routines. 

+ Note: An unpacked array with elements of the type 0 .. 255 or the type char has its 
elements stored in words, not bytes. A word is two bytes. 

The Movdeft procedure 
Moveleft csource, dest, count) 

The Move left procedure copies a specified number of contiguous bytes from a source 
range to a destination range (starting at the lowest address). Its parameters are the 
following: 

• Source is a variable reference that refers to a variable of any type except a file type or 
a structured type that contains a file type. It is a variable parameter. The first byte 
allocated to source (lowest address within source) is the first byte of the source range. 

• Dest is a variable reference that refers to a variable of a_ny type except a file type or a 
structured type that contains a file type. It is a variable parameter. The first byte 
allocated to dest (lowest address within dest) is the first byte of the destination range. 

• Count is an expression with an integer value. The source range and the destination 
range are each count bytes long. The count parameter is not range checked. 

CHAPTER 11 Predefined Routines 209 



The Moveright procedure 

Move right is exactly like Moveleft, except that it starts from the "right" end of the 
source range (highest address). It proceeds to the "left" (lower addresses), copying bytes 
into the destination i<:nge, s!~rt!ng at the highest address of the destination range. 

The reason for having both Moveleft and Move right is that the source and destination 
ranges may overlap. If they overlap, the order in which bytes are moved is critical: each 
byte must be moved before it gets overwritten by another byte. 

The SJzeof function 

Sizeof(id [, 111 ••• , 111]) 

The Sizeof function returns a longint value that is the number of bytes occupied bya 
specified variable, or by any variable of a specified type. Its parameter id is either a 
variable identifier or a type identifier. The optional parameters t1, ••. , 4a are tag values 
specified only to get the size of a variant record and may be specified only if the first 
parameter is a type identifier. 

Si zeof returns the number of bytes occupied by id, if id is a variable identifier; if id is a 
type identifier, Si zeof returns the number of bytes occupied by any variable of type id. 
If the type id is a record that contains variants, you may specify the tag values (which 
must be constants listed contiguously and in order of their declaration). In this case, the 
sizeof function returns the size of the record with the specified variants. The value of 
Sizeof is determined by the Compiler, which subsequently treats it as a constant at 
compile time. 

Packed character array routines 

The routines described in this section operate only on arrays of type PACKED ARRAY OF 

char. When used as parameters, such arrays cannot be subscripted; the routines 
described below always begin at their ftrst character. 

210 MPW 3.0 Pascal Reference 



( 
The Scaneq function 

Scaneq(limit, ch, paoc> 

scaneq scans paoc, looking for the first occurrence of ch. The scan begins with the first 
character in paoc. If the character is not found within limit characters from the beginning 
of paoc, the value ret·Jmed is an integer equal to limit. Otherwise, the value returned is 
an integer that gives the number of characters scanned before ch was found. The 
parameters of scaneq have these types: 

• Limit is an expression with a value of type integer or longint. It is truncated to 16 
bits and is not range checked. 

• Ch is an expression with a value of type char. 

• Paoc is an expression with a value of type PACKED ARRAY OF char. It is a variable 
parameter. 

The Scanne function 

The Scanne function is exactly like scaneq, except that it searches for a character that 
does not match the ch parameter. 

The Ffilchar proeedure 

Fillchar <Paoc, count, ch> 

The Fillchar procedure fills a specified number of characters in a PACKED ARRAY OF 

char with a specified character. It has the following parameters: 

• Paoc is an expression with a value of type PACKED ARRAY OF char. It is a variable 
parameter. 

• Count is an expression with a value of type integer or longint. It is truncated to 
16 bits and is not range checked. 

• Ch is an expression with a value of type char. 

Fill char writes the value of ch into count contiguous bytes of memory, starting at the 
first byte of paoc. Because the count parameter is not range checked, it is possible to 
write into memory outside of paoc, with unspecified results. 

CHAPTER 11 Predefined Routines 211 



Logical bit functions and procedures 

This section describes a set of procedures and functions for bit manipulations. These 
routines correspond to a Sf't of essentially identiC21 instructions of the Motorola 68000. 

Many of the coutines he1~ Wilt->V.J:.1d to Ii.side Macintosh routines. However, MPW Pascal 
generates more efficient code than calls to these routines, so you should use the 
identifiers given here in preference to the Macintosh ROM routines. 

If the type of any argument is specified as a scalar, the argument can be a whole-number 
value of any size, from 1 to 32 bits (one bit to a long integer). If the scalar argument is less 

· than 32 bits, code is generated to extend the argument to 32 bits but without sign 
extension (zeros are added on the left to make up a 32-bit value). 

+ Note: Bit numbering for these routines follows the convention of the 68000 
microprocessor, not the convention used in Inside Macintosh. Bit 0 is the low-order 
bit; bit 31 is the high-order bit 

Table 11-1 summarizes the bit manipulation functions and procedures. 

• Table 11·1 Bit manipulation routines 

MPIV MC68000 First Second 
name opcode arpm.c:nt argument .Result lbl 

BAND AND.L scalar scalar longint function 
BOR OR.L scalar scalar longint function 
BXOR EOR scalar scalar longint function 
BNOT NOT.L scalar longint function 
BSL LSL.L scalar integer longint function 
BSR LSR.L scalar integer longint function 
BRotL ROL.L scalar integer lonqint function 
BRotR ROR.L scalar integer lonqint function 
BT st BTST.L scalar integer boolean function 
HIWrd scalar integer function 
LOW rd scalar integer function 
BClr BCLR.L longint (VAR) integer procedure 
BS et BSET.L lonqint (VAR) integer procedure 

212 MPW 3.0 Pascal Reference 



(_ 

These routines are generally identical in function to a corresponding set of routines 
described in Inside Macintosh. However, these routines are more efficient because they 
·are implemented by the Compiler as 68000 instructions, while the Inside Macintosh 
routines are calls to the ROM. The routines BTst, BClr, and BSet, while functionally 
similar to three Inside Macintosh routines, have different arguments. 

The syntax of each bit maulpulation routine is described below. 

The BAND function 

BAND cargl, arg2> 

BAND returns the logical AND of its two arguments. 

The BOR function 

BOR ( argl, arg2> 

BOR returns the logical OR of its two arguments. 

The BXOR function 
BXOR(argl, arg2> 

sxoR returns the logical exclusive-OR of its two arguments. 

The BNOT function 
BNOT(arg) 

BNOT returns the 1 's-complement of its argument 

The BSL function 
BSL < arg, count> 

BSL left-shifts the bits of arg by the number of bits specified in count, modulo 64. Zeros 
are shifted into the low-order bit. 

CHAPTER 11 Predefined Routines 213 



The BSR function 
BSR < arg, count> 

BSR right-shifts the bits of arg by the number of bits specified in count, modulo 64. Zeros 
are shifted into the high-order bit. 

The BRotL function 
BRotL <arg, count> 

BRotL left-rotates the bits of arg by the number of bits specified in count, modulo 64. 
Bits shifted out of the high-order position go back into the low-order position. 

The BRotR function 

BRotR carg, count> 

BRotR right-rotates the bits of arg by the number of bits specified in count, modulo 64. 
Bits shifted out of the low-order position go back into the high-order position. 

The BTst function 
BTst carg, bitNfm 

The parameter bitNbr is an integer that indicates the bit of arg to be tested. B Ts t 
returns true if the specified bit has the value one and returns false if it has the value 
zero. Because this function maps directly onto the 68000 instruction, bits are numbered in 
the way conventional in the 68000: 0 to 31, low-order bit to high-order bit. 

The HlWrd function 
HiWrd(Q78) 

HiWrd returns the high-order word of arg. If aJR is not a longint, HiWrd returns zero. 
When the argument is a simple variable or array access, no code is generated by this 
function because the argument is simply addressed and used as an integer. 

214 MPW 3.0 Pascal Reference 

/ 



( 

(_ 

The LoWrd function 
LoWrd(tug) 

LoWrd returns the low-order word of arg. When the argument is a simple variable or array 
access, no code is generated by this function because the argument is simply addressed 
and used as an integer. 

The BClr procedure 
BClr < arg, bitNlm 

sci r clears bit bitNbr in arg. The value of bitNbr is reduced modulo 32. 

The BSet procedure 
BSet < arg, bitNlm 

sset sets bit bitNbrin arg. The value of bitNbris reduced modulo 32. 

CHAmR 11 Predefined Routines 215 





( 

( 

Chapter 12 Object-Oriented Programming 

OBJECT-ORIENTED PROGRAMMING IS AN IMPORTANT FEATURE of MPW Pascal. This 
chapter briefly covers the philosophy behind object-oriented programming and 
the mechanisms built into MPW Pascal that support it. For a more complete 
treatment of object-oriented programming theory, see Kurt Schmucker's book 
Object-Oriented Programming for the Macintosh, listed in the Preface. 

To use the object-oriented facilities of MPW Pascal, follow the instructions given 
under "Using Object Pascal" at the end of this chapter. • 

Contents 

What are objects? 219 
Differences from traditional programming 220 
Creating objects 221 

Declaring object types 222 
Object type membership 222 
Object reference variables 223 
The OVERRIDE directive 224 

Declaring methods 224 
The Self parameter 225 

Calling methods 226 
The INHERITED directive 227 

Using Object Pascal 227 
Object Pascal without MacApp 227 
The Object Pascal routines 228 

The Member function 228 
The ShallowClone function 228 
The Clone function 229 
The ShallowFree function 229 
The Free function 229 

Object Pascal with MacApp 229 

217 



/ 



( 
What are objects? 

The object type is an addition to the familiar standard Pascal structured types. Objects 
are closely related to records; like a record, an object consists of a number of fields, each 
of which may be of a r\ff-:=rent type. Objects add an extra "dimension" to thi:: idea of a 
record-they include not only data fields but also private procedures and functions 
(called methods). A method that is declared in an object type definition operates 
primarily on the data stored in an object of that type. 

Much of the power of object-oriented programming derives from the concept of 
inheritance. You can define an object type as a customization of another object type. 
When one object type is derived from another, the first is called an ancestor and the 
second is called a descendant. A descendant type inherits all the fields and methods of its 
ancestor; you can add new fields and methods to it as well. Although you cannot change 
the interl'ace to an inherited method, you can change the way it is implemented. 

Here is an example of three object type declarations: 

Employee = OBJECT 

END; 

firstName, lastName: STRING[32]; 
hourlyWage, hoursPaid: integer; 
PROCEDURE Hire(namel, name2: string[32]; 

rate, hoursWorked: integer).; 
FUNCTION RegularPay(hoursWorked: integer): integer; 
PROCEDURE IssuePaycheck(hoursWorked: integer) 

ExemptEmployee = OBJECT(Employee) 

END; 

FUNCTION RegularPay(hoursWorked: integer): integer; 
OVERRIDE; 

Executive = OBJECT(ExemptEmployee) 
weeklyBonus: integer; 
PROCEDURE SetBonus(performanceLevel: integer); 
PROCEDURE IssuePaycheck(hoursWorked: integer); OVERRIDE; 

END; 

In this example, the object type Employee begins the chain of inheritance. Employee 
isn't defined in te~ of any other object-it doesn't have any ancestors. Like a record, an 
object of type Employee consists of several data fields. But in addition to data, an 
Employee object has three methods: the Hire and IssuePaycheck procedures, and 
the RegularPay function. These methods are declared as if they were FORWARD 
routines; their blocks come later in the program. 

CHAPTER 12 Object-Oriented Programming 219 



The object type ExemptEmployee is a descendant of Employee. In it, the function 
RegularPay is changed by overriding the function's body. However, it inherits 
unchanged all the data fields of Employee, as well as the procedures Hire and 
IssuePaycheck. 

The object Executive is a descendant of ExernptE.mployee. It retains d1t:? fie!-is of 
ExernptEmployee (which are also fields of Employee) and adds the field 
weeklyBonus. It also adds a new procedure, SetBonus. In addition, it changes the 
IssuePaycheck method by overriding it This lets IssuePaycheck operate on the 
value of weeklyBonus. 

It is an important feature of this kind of programming that object type declarations do 
not need to include declarations that occur inside their ancestor objects; these 
declarations are automatically present by inheritance. They need to declare only changes. 
For example, the object types ExemptEmployee and Executive automatically include 
the procedure Hire, because they inherited it from Employee. As a result, you can create 
a very complex object type with a few simple declarations, just by naming another object 
type from which it inherits its structure. 

Differences from traditional programming 

You can look at the differences between object-oriented programming and standard 
programming in several ways: 

• from a code viewpoint, in terms of the program structures that you create 

• from a data viewpoint, in terms of the data strucrures they handle 

• from a strucrural viewpoint, in terms of the resulting programming discipline 

From a code viewpoint, each object in an object-oriented program may be thought of as 
a small virrual computer, existing independently within the overall computer. It operates 
on the data passing through it according to its own rules. To change these rules, you 
"reprogramn the object by changing its methods. 

From a data viewpoint, the objects in an object-oriented program may also be thought of 
as "smart data structures." Each one not only stores information but also processes it, 
somewhat in the manner of a spreadsheet. Because each object operates on the 
information within it, you can treat its data fields as interrelated, rather than isolated. 

220 MPW 3.0 Pascal Reference 



( 

·~· 

Structurally, object orientation introduces a new kind of programming discipline. When 
creating a standard program, you "design down and code up." You first determine what 
blocks your program needs and then build the required blocks out of individual 
declarations and statements. Object-oriented programming lets you design down and 
code down at the same time. If you already have an object that nearly fits your 
requirements, you start coding with it. Instead of creating new blocks out of elemental 
parts, you create them by modifying existing blocks. You carve and shape, instead of 
piecing together. The object-oriented process is closer to high-level application 
programming and farther from machine programming. As a result, object-oriented 
programming has a number of practical advantages: 

• You can use objects from existing programs to form new programs, instead of always 
building them anew. This is a great timesaver, particularly when you are developing 
large applications. 

• When modifying objects, you start with something that already works and change its 
operation by easily understandable increments. This can decrease debugging time 
dramatically. 

• F.ach object remains a closed universe; you don't need to worry about data leaks or 
code interactions between objects. This makes program development more orderly. 

• In a complex environment, such as the Macintosh's, object-oriented programs are 
easier to maintain. Changes to the program yield relatively specific and predictable 
consequences. 

Creating objects 

You do not create objects from object types in the same way you create ordinary 
variables from other. variable types. Instead, you use the standard New procedure to 
create an object of a given type. The New procedure sets aside a part of dynamic memory 
for the object, and returns a handle for the object. 

CHAPTER 12 Object-Oriented Programming 221 



• Note: This is an extension of the standard Pascal New procedure. When New is given an 
ordinary p<>inter variable, it reserves space for an identified variable and returns a 
pointer to the identified variable. When New is given an object type variable, it 
creates the object in dyQamic memory and returns a handle to the object. See the 
Memory Manager chapter of Inside Macintosh for a discussion of handles. 

Declaring object types 

Unlike other types, an object type can only be declared in the type declaration part of a 
main program or unit You cannot declare an object type in a variable declaration part or 
in a procedure or function declaration block. 

. When you use an object type in a variable declaration part, you create a reference variable 
for that type. The reference variable stores a handle to an object of that type (or a 
descendant type). You always access objects through reference variables. Hence you do 
not create special types for object references. Instead, an object type is used to declare 
each variable that can hold a reference to an object of that type (or a descendant type). 

The scope of an object type (the type identifier and field and method identifiers) also 
extends over all descendants of that type, and over procedure and function blocks that 
implement methods of that object type and its descendants. 

For an illustration of object type declarations, see the example given at the beginning of 
this chapter. 

Object type membership 

When an object of a specific type is created during program execution, it is considered a 
member of that type and of all ancestral types. In the example at the beginning of the 
chapter, an object created as an Executive is a member of types Executive, 
Exempt Employee, and Employee. References to the object of type Executive may 
be assigned to object reference variables of types Executive, Exempt Employee, and 
Employee. Which particular version of an overridden method is executed when a method 
call is executed depends on the type of the object, not the type of the reference variable. 

222 MPW 3.0 Pascal Reference 



( 
Object reference variables 

A variable that is declared uc;ing an object type is an object reference variable. An object 
reference variable is not itself an object. The value of an object reference variable is either 
NIL or a value that identifies an object, called the identified object of the reference. 
Objects themselves are dynamic variables. An object reference variable that refers to an 
object does so by means of a handle-a pointer to a pointer. 

The pointer symbol (") uc;ed to denote the identified variable of a pointer is not allowed 
after an object reference variable. Similarly, the double pointer symbol ("")used to 
dereference a handle is not allowed. Hence there is no way to treat the identified object 
as a variable in its own right unless type coercion is used. However, you can access 
components of the object through a reference variable as you would access fields of a 
record. 

Data is stored in fields of objects, and you access tho.5e fields by giving the reference 
variable identifier, a period, and the field name, which appears the same as a record field 
access. As with records, you can omit the reference variable identifier and period under 
certain circumstances. Variable accesses uc;ing the reference variable identifier alone 
access the pointer type value stored in the reference variable, just as with other pointers. 

• Note: The MPW Compiler is now stricter about reporting errors about passing 
reference pointers to fields within objects. 

The object reference variable and the period(.) can be omitted inside a WITH statement 
that lists the reference variable, or within any method block that declares a method of the 
object's type. 

• Note: Using a WITH statement with an object reference variable does not dereference 
the handle that represents the object; however, the following three actions do 
dereference the object's handle: passing fields of an object as VAR parameters, 
passing fields longer than four bytes as parameters, or uc;ing a WI TH statement for a 
field of an object that is itself a record (but not an object reference). 

Compaction of the heap can cause the object's handle to move and yield 
unpredictable results. The Pascal Compiler flags such unsafe object dereferences as 
errors unless the SH Compiler directive is turned off. (For details on the SH directive, 
see Chapter 13.) 

CHAmR 12 Object-Oriented Programming 223 



Here is an example of how a variable declared as object type Employee can be used to 
refer to an object of type Exe cu ti ve, using the type declarations at the beginning of 
this chapter: 

VAR anEmployee: Employee; 
anExecutive: Executive; 
{other declar~tions} 
New(anExecutive); 
anEmployee := anExecutive; 
anEmployee.IssuePaycheck(40); 

The OVERRIDE directive 

A descendant of an object type always inherits all fields and methods of its ancestors. It 
can add fields and methods to those it has inherited, and it can override the action of 
methods. To override a method, you follow the method heading with the word 
OVERRIDE. When a method is overridden, the implementation of the method is changed 
but the interface to the method must remain exactly the same. It must retain the same 
spelling of all identifiers and the same data types for the method's formal parameters and 
return value (if any). 

Declaring methods 

A method is a procedure or function that is declared as part of an object type declaration. 
Methods are declared like other procedures or functions, except that they are always 
declared in the style of a forward declaration but without the word FORWARD. Object 
types are often declared in the interface part of a unit, while the blocks of their methods 
are declared in the implementation part of the same unit 

An object type can inherit methods from another object type. If you want to override the 
action of an inherited method, write the word OVERRIDE following the formal parameter 
list (or following the method identifier, if there are no formal parameters). The formal 
parameter list you give for the override method must be identical to the formal parameter 
list of the overridden method. If you do not override an inherited method, you do not 
need to declare the inherited method. 

224 MPW 3.0 Pascal Reference 



( 

( 

When declaring a method, the initial heading declaration and the block declaration must 
both appear in the main program or must both appear in the same compilation unit. The 
heading declaration appears in the type declaration part, as part of the object type 
declaration, while the declaration of the method's block appears in the procedure and 
function declaration part. You must write the object type and a period along with the 
procedure or function identifier when you declare the blrn:k. You may repeat the formal 
parameter list; if you do, it must be identical to the original list 

The Self parameter 

In addition to ordinary parameters, every method has an implldt parameter, called 
self. Self is a reference to the object used to call the method. Its type is the reference 
type of the object type to which the method belongs. (Notice that this is not necessarily 
the type of the actual parameter supplied by the caller. Self could refer to an object of a 
descendant type.) The scope of Self extends over the method declaration block. You 
can assign values to fields of Self, but you cannot change the value of Self, which 
would cause Self to reference another object. The method acts as if its entire statement 
part were surrounded by WITH Self Do BEGIN . • • END, so you do not have to give 
the identifier Self when accessing fields or methods of Self. 

This object type definition uses the implicit parameter Self in a method declaration: 

TYPE AnObject - OBJECT 
PROCEDURE Grow(howBig: integer) 
END; 
{other type declarations} 
PROCEDURE ThisObjectGrew(obj: AnObject; howMuch: integer); 
BEGIN 

END; 
PROCEDURE AnObject.GRow(howBig: integer); 
BEGIN 
ThisObjectGrew(SELF, howBig); 
END; 

CHAPTER 12 Object-Oriented Programming 225 



Calling methods 

A method call is a special case of a function call. The same rules apply to methods and 
method calls for both procedures and functions. 

As with fields of objects or records, a method can be accessed by using a qua1ifie1 01 by 
using a WITH statement 

Here are some examples of procedural method calls: 

v.Draw 
WITH v DO Draw 
x(i].Track(y+l, z-1) 

Here are some examples of functional method calls: 

a.Times(b) + c 
y: = x.Extent 
WITH x DO y :- Extent 

Unlike a field, which can be evaluated or assigned a new value, a method is executed when 
it is called. When a method is called, a reference to the specific object through which the 
method was accessed (for example, object v in v. Draw) is bound to the automatically 
declared formal parameter self, whose type is the object type of which the method is 
part. 

If y is de~red to be a variable of object type TView, then at any moment during 
execution y may be a reference to an object of any type that inherits from TView. If 
TView has a method Draw, for example, different inheriting types may define different 
implementations of the method Draw. Executing y. Draw calls the implementation of 
or aw defined for the type of the object that y refers to at the time of the call. The value 
of self in the called method becomes a reference to that same object. Note that y may 
be a variable of a different type-the method actually called is the one that belongs to the 
object, not the variable. 

One way to read the statement y • Draw is "Tell y to draw. n Reading it that way points out 
that the program only says the object referred to by y should draw. At run time, the current 
value of y detennines how it should draw by choosing the appropriate implementation of 
draw for its object type. 

226 MPW 3.0 Pascal Reference 

/ 



The INHERITED directive 

When one object type inherits from another but overrides an inherited method with its 
own implementation, you may want to call the overridden method from within the new 
method. 

For example, if object type Truck inherits from vehicle and overrides method 
Accelerate, then Truck. Accelerate may wish to invoke Vehicle. Accelerate 
at one or more points. You can call the overridden method with the special form 

INHERITED Accelerate 

In genera~ to call a method that belongs to the immediate ancestor of the object type 
that owns the current method, write INHERITED (without a period). The value of Self in 
the called method is the same value as it is in the calling method. 

INHERITED may only be used within a method declaration block. It must precede a 
method identifier that was inherited by the object type that owns the method 
declaration block. 

Using Object Pascal 

There are two basic ways you can write object-oriented applications for the Macintosh: 
without or with MacApp. This section discusses both approaches. 

Object Pascal without MacApp 

Support for Object Pascal syntax is. included in the MPW Compiler, so you do not need 
MacApp to write an object-oriented program. However, you do need to provide runtime 
support by linking your compilation with the file ObjI.ib.o. 

You must also access the unit Objintf.p by including the declaration USES objintf. pin 
your source text Objlntf.p provides the interface for the type TObject, which has no 
data fields and four methods-shallowClone, Clone, ShallowFree, and Free. 
These routines are described below. 

CHAPTER 12 Object-Oriented Progranuning '1I7 



The Object Pascal routines 

This section describes five functions available for use in object-oriented programming 
without MacApp. 

The Member function . 

Member (anObject, aType> 

Member is used only in object-oriented programming. Member tests if a particular object 
is of a particular object type or a descendant of that type. It has two parameters: 

• AnObject is an object reference. It is an error if anObject is undefined. AnObject can 
have the value NIL. 

• AType is an object type. 

Member returns true if anObject is not NIL and if the object it references is a member of 
the type aType. The parameter anObject is a member of aType if it is of that type or a 
descendant of aType. 

Although rarely used, Member is useful for screening questionable object reference 
coercions. The following use of member is strongly discouraged, however, because it 
defeats the advantages of object-oriented programming: 

IF member (x, A) THEN •.• 
ELSE IF member (x, b) THEN ... 
ELSE IF member (x, c) THEN ... 

Instead, define the code in each THEN clause as a method of the corresponding types. 
Give all the methods the same name and arguments. Be sure their conunon ancestor also 
declares the method. Write a method call instead of the entire conditional statement. 
That way, new types can be added without changing the program, which is one of the 
main advantages of object-oriented programming. 

The ShallowClone function 
ShallowClone 

ShallowClone returns a copy of an object of type TObject. It is a function without 
any parameters. You should not override it. If you want to override it to copy objects 
referred to by fields, use Clone, described below. 

228 MPW 3.0 Pascal Reference 
./ 



f 

(_ 

The Cone function 
Clone 

Clone normally calls Shallowclone, but may be overridden to copy objects referred to 
by fields. 

The ShallowFree function 
ShallowFree 

ShallowFree frees the space occupied by an object in memory. You should not 
override it If you want to override it to free objects referred to by fields, use Free, 

described below. 

The Free function 
Free 

Free normally calls ShallowFree, but may be overridden to free objects referred to by 
fields. 

Object Pascal with MacApp 

The simplest way to create an object-oriented application is to use MacApp, Apple's 
"expandablen Macintosh application. MacApp implements the Macintosh user interface in 
an object-oriented environment To create a specific application to fit your 
requirements, you expand MacApp by adding to it a series of descendant object type 
declarations, each of which inherits some part of the original object type. These 
descendant objects become the elements of your program. 

From the outset, each new object type inherited from MacApp is guaranteed to work 
because its ancestor object type has already been debugged. Its data and methods form 
an integrated whole-a virtual computer within your program that performs a specific 
group of tasks. As you modify it to meet your needs, you can test each modification and 
see its effects. This helps you achieve orderly and bug-free program development. 
MacApp frees you from many of the chores required when you write progra~ from the 
ground up. It lets you concentrate on the parts of your application that are specific to the 
job it performs. 

MacApp provides built-in runtime support for object-oriented programming; you do not 
need to link your program to any other file. 

CHAPTER 12 Object-Oriented Programming 229 





( 

Chapter 13 Compiler Options and Directives 

THE COMPILER CAN BE CONTROll.ED IN THREE WAYS: by using the Compiler options 
available from the MPW command line, by using Compiler directives that you 
write directly in your Pascal source text, or by using the Commando tool from the 
MPW Shell. The Commando tool is a series of dialog boxes that displays all the 
functions, parameters, and options for MPW commands, including Pascal. See 
the Macintosh Programmer's Workshop 3.0 Reference for a discussion of the 
interface available for Pascal and for information on writing your own series of 
dialog boxes. • 

Contents 

The MPW Pascal command line 233 
Compiler options 233 

Compiler directives 237 
Input file control 240 

The $1 directive 240 
The $U directive 240 

Shell variable substitution in filenames and segment names 240 
Control of code generation 241 

The $B± directive 241 
The $C± directive 241 
The $]± directive 242 
The $MC6802o± directive 242 
The $MC68881± directive 242 
The $0V± directive 242 
The $R± directive 242 
The $S directive 243 
The $Sc± directive 243 
The $W± directive 243 

Debugging 243 
The $D± directive 243 
The $H± directive 244 

Conditional compilation 244 

231 



The $SEfC directive 244 
The $IFC directive 244 
The $ELSEC directive 245 
The $ENDC directive 245 

Output control 245 
The $Z:t directive 2{~ 

The $N± directive 245 
Other directives 246 

The $Al directive 246 
The $A5 directive 246 
The $E directive 246 
The $K directive 246 
The $P directive 247 
The $PUSH and $POP directives 247 

232 MPW 3.0 Pascal Reference 



-------------- -

The MPW Pascal command line 

This is the syntax for specifying options on the Pascal command line: 

P ascal[optton ... ](file. .. ] 

You can specify zero or more filenames. Each file is compiled separately-compiling file 
Name.p creates object file Name.p.o. By convention, Pascal source filenames end in a ".p" 
suffix. If you do not specify a filename, standard input is compiled to a file named "p.o". 

Compiler errors are written to diagnostic output, a predeclared file of type text, which 
can be written to another file or redirected. Progress and summary information is also 
written to diagnostic output, if requested, by using the Compiler directives described in 
the section of that name. Diagnostic output is fully described in the Macintosh 
Programmer's Workshop 3.0 Reference. 

Compiler options 

The MPW Pascal Compiler options are symbols in the MPW command line that send 
instructions to the Compiler. MPW 3.0 Pascal supplies an option, -sym, that emits 
records for the symbolic debugger and an option, -mbg, that includes symbols for 
MacsBug. Also, the -h option suppresses error messages regalding the use of unsafe 
handles, the -m option allows greater than 32k globals, the - k option puts symbol table 
resources in the directory specified by prefixpath and the -n option generates 
separate global data modules for better allocation. Finally, three new command line 
options, -noload, -clean, and -rebuild, support the Compiler's automatic loading 
facility. MPW 3.0 Pascal no longer offers the -z option. Table 13-1 presents an 
alphabetical listing of the Compiler options for MPW 3.0 Pascal. 

CHAPTER 13 Compiler Options and Directives 233 



• Table 13-1 Compiler options . 

Option 

-b 

-c 

-clean 

-d name=true false 

-e file 

-h 

-ipathname [, path~ ... 

Description 

Generate AS-relative references whenever the address of 
a procedure or function is required. (By default, PC­
re.lative rcfeLt.~nc;c;; 2r;: g(. ... 11;;1, i'~c; ;"·., ro·.i ':: ~:" ill the 
same segment.) This option is equivalent to specifying 
{ SB-} in the soun:e code. 
Syntax check only-no object file is generated. 
Erase all symbol table resources. 
Set the compile-time variable name to true or false 
(for example, 
-d Elems88l•true directs the Compiler to emit 
direct calls to the 68881 for transcendental functions. 
This option is equivalent to specifying 
{ $SETC name: •true I false) in the source code. 

Write all errors to the error log ftle file. A copy of the 
error report will still be sent to diagnostic output. This 
option is equivalent to specifying {SE file} in the 
source code. 
Suppress error messages regarding the use of unsafe 
handles. 

Search for include or USES files in the specified 
directories. Multiple - i options may be specified. At 
most, 15 directories will be searched. The sean:h order is 
as follows: 
1. In the case of a usEs filename, if no prior filename 

was specified, the filename is assumed to be the same 
as the unit name (with a •.p" appended). 

2. The filename is used as specified. If a full pathname 
is given, no other searching is applied. 
If the file is not yet found and the pathname used to 
specify the file is a partial pathname (no colons in the 
name or a leading colon), the following directories are 
searched: 

3. The directory containing the current input file. 

4. The directories specified in - i options, in the order 
listed. 

5. The directories specified in the Shell variable 
{ Pinterfaces}. 

(Continued) 

234 MPW 3.0 Pascal Reference 



(' 
• Table 13-1 

Opdon 

-k 

-m 

-mbq ch8 

-mbq ful·l* 

-mbq off 

-mbq number 
-MC68020 

-MC68881 

( 

- - -·--------- --------------------------

(Continued) Compiler options 

Description 

Put symbol table resources in the directory specified by 
prefixpath. 

Allow greater thai.132K giobais by using 32 uit refe1~.nce:>. 
Include v2.0 compatible MacsBug symbols (eight 
characters only, in a special format). 
Include full (untruncated) symbols for MacsBug. 
Don't include symbols for the MacsBug debugger. 
Include MacsBug symbols truncated to length number. 
Generate 68020 code. The Compiler generates 68020 
instructions or addressing modes that are selected to be 
faster and/or smaller than the 68000 equivalent. When 
the Compiler is generating 68020 code for the main 
program, it inserts a TRAPF instruction in the program 
preamble code. The TRAPF instruction does nothing on 
the 68020 and causes an illegal instruction trap on a 
68000 so that your programs can detect early whether 
they are being run without a 68020. This option is 
equivalent to specifying { $MC 6 a o 2 o +} in the source 
code. 
Generate 68881 code on a per-file basis. The Compiler 
allocates 12 bytes for each extended variable and 
assigns up to 4 extended variables (either local or 
parameter) per procedure to the 68881 registers FP4 
through FP7. The Compiler generates 68881 code 
whenever possible for arithmetic operations and binary 
data (but not string) conversions. 
When the Compiler generates code to call an external 
routine, the code passe$ parameters using the MPW 
Pascal 1.0 conventions with one exception: extended 
types are 12 bytes wide. However, the Compiler 
expects that a C function returning an extended type 
will return the result value in register FPO. 

(Continued) 

CHAPTER 13 Compiler Options and Directives 235 



• Table 13-1 (Continued) Compiler options 

Option 

-n 

-no load 
-o objname 

-ov 

-p 

-r 

-rebuild 
-sym off* 
-sym on I full 

Description 

If-MC68881 and-d Elems88l=trueare both 
specified on the command line, then the Compiler also 
recog1:Jzt":; and generates inli11e c0c:f.. for th~- sin, co=·, 
Ln, Exp, Arctan routines, and these additional 
routines that are supported by the 68881: Arctanh, 
Cosh,Sinh,Tanh,LoqlO,ExplO,Arccos,Arcsin, 
Sincos, Tan, Expl, Loq2, The -MC68881 option is 

· equivalent to specifying { $MC 6 a a a 1 + } in the source 
code. 
Generate separate global data modules for better 
allocation. 

Don't use or create any symbol table resources. 
Specify the pathname for the generated object file. If 
objname ends with a colon (: ), it indicates a directory 
for the output file, whose name is then formed by the 
normal rule (that is, tnputFilename.o). If the source 
filename contains a pathname, it is stripped off and 
replaced by objname: as a prefix. (In this case, only one 
source flle should be specified.) 
If objname does not end with a colon, the object file is 
written to the file objname. 
Tum on overflow checking. (Warning: This may 
significantly increase code size.) This option is 
equivalent to specifying { sov+ J in the sourcecode. 
Supply progress and summary information to diagnostic 
output, including Compiler header information 
(copyright notice and version number), module names 
and code sizes in bytes, and number of errors and 
compilation time. 
Suppress range checking. This option is equivalent to 
specifying { $R-} in the source code. 
Rebuild all symbol table resources. 
Don't emit SADE object file information. 
Emit complete SADE object file information. To limit 
this option, also specify one or more of novars, 
nolines, notypes to omit variable, line, or type 
information respectively from the object file. 

(Continued) 

236 MPW 3.0 Pascal Reference 



( 

( 

• Table 13--1 (Continued) Compiler options 

Option 

-t 

-u 

-w 

-y pathrrame 

Compiler directives 

Description 

Report compilation time to diagnostic output. The -p 
option also reports the compilation time. 
Initializes all data (global and local) to the patteu1 
$ 7 2 6 7. This option is useful for debugging programs 
that may be using uninitialized data. 
Halt the operation of the peephole optimizer on a per­
file basis. The Compiler no longer executes a final pass 
on the generated code and no longer attempts to 
replace certain code sequences with more efficient 
ones. This option is equivalent to specifying { $W-} in 
the source code. 
Put the Compiler's intermediate (".o.i") files in the 
directory specified by pathname. 

Compiler directives are commands that you embed directly in the Pascal source code. 

Every Compiler directive begins with a dollar sign ( $) and must be enclosed in comment 
delimiters, as described under "Corrunents and Compiler Directives" in Chapter 2. You can 
put only one directive within each pair of delimiters. 

The MPW Pascal Compiler directives are listed alphabetically in Table 13-2, with the 
default conditions marked by asterisks. The individual directives are discussed in the 
remainder of this chapter. . 
The MPW 3.0 Pascal Compiler supports the $K directive which puts symbol table resources 
in the directory specified by prefixpath. 

MPW 3.0 Pascal no longer offers the $LOAD Compiler directive. The $LOAD syntax is still 
supported, but ignored-if Compiler progress information is requested, the Compiler 
states that the use of the feature is "obsolete but harmless." If you have included 
dependencies for $LOAD files in your makefiles, you can remove them; however, if you do 
not remove them, they remain harmless because they simply restate what the Compiler 
does automatically. 

CHAPTER 13 Compiler Options and Directives 237 



• Table 13-2 

$Al 

$P.5 

$8+ 

$B­

$C+ 

$C­

$D­

$D+ 

$E filename 

$ELSEC 

$ENDC 

$H+ 

$H-

$I filename 

$IFC comp-expr 

Compiler directives 

Effect 

Allow the global data sections of the unit to be noncontiguous 

Generate PC-relative code* 

Generate AS-relative code 

Generate code• 

Do not generate code 

Do not embed routine names in object code 

Embed routine names in object code* 

Send compilation errors to filename (See detailed discussion of 
filenames and segment names below.) 

Compile source text if comp-exprin preceding $IFC is false 

End range of conditionally compiled source text 

Check dereferencing of object handles• 

Assume all object handles are valid 

Include separate source file in the compilation (See detailed 
discussion of filenames and segment names below.) 

Compile subsequent source text if value of comp-expris true 

$IFC OPTION (option-name) 

This version of $IFC lets you determine the current settings of 
Compiler options 

SJ- Global data definitions must be in the Pascal source file• 

$J+ Global data may be defined in another file 

SK [pathname l Control destination of symbol table resources 

$MC68020+ Generate 68020 code on a per-procedure basis 

$MC68020- Halt generation of 68020 code on a per-procedure basis' 

$MC68881+ Generate 68881 code on a per-file basis 

$MC688Bl- Halt generation of 68881 code on a per-file basis' 

(Continued) 

238 MPW 3.0 Pascal Reference 



( 
• Table 13-2 

Directive 

SN-

$N+ 

sov-
sov+ 
SP 

$PUSH 

$POP 

SR+ 

SR-

SSC-

$SC+ 

ss segname 

(Continued) Compiler directives 

Effect 

Identify all routines to the Linker as anonymous• 

Send actua I names of routines to the Linker 

Ignore arithmetic overflows• 

Detect arithmetic overflows 

Tell PasRef to do a page eject 

Save the current option settings 

Restore the saved option settings 

Perform range checking of strings, sets, and arrays• 

Do not perform range checking of strings, sets, and arrays 

Normal evaluation of AND and oR* 

Short-circuit evaluation of AND and OR 

Place subsequent routines in segment segname (See detailed 
description of filename/ segname below.) 

$SETC id : = comp-expr 
Declare a compile-time variable and assign it a value 

su filename Specify filename for next unit in USES declaration (See detailed 
description of filename/ segname below.) 

$W+ 

$W­

$Z-

$Z* 

$Z+ 

Turn on the peephole optimizer* 

Halt the operation of the peephole optimizer 

Identify all routines and variables to the Linker as local* 

Identify all routines at the top level to theLlnker as external 

Identify all routines and variables to the Llnker as external 

CHAPTER 13 Compiler Options and Directives 239 



Input file control 

The $1 dJrective 
I s I filename} 

The s I directive instructs the Compiler to fetch subsequent source input from the 
specified file. The Compiler will read from the new file until the end of that file, at which 
point the Compiler will continue from the origin;il source file. The filename can include 
prefixes if desired; however, the Compiler will open the file by using its search rules. 
Included files may be nested up to five deep.This number includes units accessed by 
USES declarationsin included files or nested units. A unit may not use the SI directive in 

. its interface section. See "Shell Variable Substitution in Filenames and Segment Names" 
below for more details on the $I directive. 

The $U directive 
I su filename} 

In a USES statemen~ the Compiler will read each unit name and will search for the 
corresponding file unitname.p. This mechanism can be overridden by using the su 
command to specify a filename in which to fmd the following unit. In either case, the 
Compiler will use its search rules to open the file. F.ach su directive is valid only once, for 
the next unit name specified in the source text. See the section "Shell Variable 
Substitution in Filenames and Segment Names" below for more details on the su 
directive. 

Shell variable substitution in filenames and segment names 

Four directives ( {SE}, {SI}, { ss}, and {SU} require a string that is interpreted as a 
filename (or in the case of { ss} as a segment name). For these directives, the value of the 
string may be controlled by an MPW Shell variable. In the following example, { $I } is used, 
but the discussion holds for all five directives. 

Normally, the directive has the form {SI string} in which case the string is exactly as 
specified. For example, { s I foo. p} includes the file foo.p. 

240 MPW 3.0 Pascal Reference 



( 

( 

Two other possibilities are 

• {$I $$Shell (shell-variable> } , in which case the value of the string is the value of 
the specified shell variable. For example, {$I $$Shell (myvar) } is equivalent to 
{$I foo. p} if the shell variable myvar is set to f oo. p. 

" {SI $$Shell <shell-variable> string}, in which MSe the val11t! of the string is the 
vaiue of the specified sheU variabl~ witl.1 th.,c; vaiue of tbe spfdfied srring appeuded. 
Forexample, {$I $$Shell(myVar)foo.p} isequivalentto 
{$I hd: includes: foo. p} if the shell variable myVar is set to 
'hd: includes: '. 

It is an error if the Compiler cannot access a specified shell variable. 

One way to specify the shell variable myvar in the above example would be 

set myVar 'hd:includes:' 
export myVar 

See the Macintosh Programmer's Workshop 3.0 Reference for further information about 
shell variables. 

Control of code generation 

The $B± directive 
{$B+} 
{$B-} 

When a program takes the address of a routine (for example, with the @ operator) that is 
in the same segment, the Compiler generates PC-relative code. The directive $B- forces 
the Compiler to generate AS-relative code instead. The default value $ B+ switches back 
to PC-relative code. 

The $c± directive 
{$C+} 
{$C-} 

When this command is turned off ($C-), the Compiler will not produce object code for 
subsequent statements, although syntax checking still continues. Code generation can be 
resumed by specifying $C+. sc+ is the default condition. This directive affects only 
entire procedures or functions. 

CHAPTER 13 Compiler Options and Directives 241 



The $J± directive 
{$J+} 
{$J-} 

The directive s J + allows global data declared in the source file to be defined in another 
filp, the G)nnections being made by the Linker. Such r.onnections are case sensitive. The 
default dii'ective $.:;- requires all definitions to be in the Pascal source file. 

The $MC6802o± directlve 
{$MC68020+} 
{$MC68020-} 

The directive $MC68020+ permits the Compiler to generate 68020 code. The default 
directive $MC68020- halts the generation of 68020 code. 

The $MC68881± dJrectlve 
{$MC68881+} 
{$MC68881-} 

The directive $MC6 8 8 81 + permits the Compiler to generate 68881 code on a per-file 
basis. The default directive $MC 6 8 8 81- halts the generation of 68881 code on a per-file 
basis. 

The $0V± directive 
{$0V-} 
{$0V+} 

The default condition sov- prevents the Compiler from generating code to detect 
arithmetic overflow during assignments and expression evaluation. The directive sov+ 
causes it to produce such code. 

The $R± directive 
{$R+} 
{$R-} 

The SR- command instructs the Compiler to forego the generation of code to perform 
range checking of string, set, and array bounds. The default, SR+, is to produce such 
code·. 

242 MPW 3.0 Pascal Reference 



( 
The $S dJrcctive 
{ s s [ segnameJ J 

By default, the Compiler will instruct the Linker to place all routines within a single 
segment (with the case-sensitive identifier Main). The ss command allows the 
prog~mmer to specify that subsequent routines be directed to the specified segment. 
The ss command can only appear between global routines. If segname is omitted, the 
segment name Main is assumed. 

The $sc± directive 
{$SC-} 
{$SC+} 

The ssc+ directive instructs the Compiler to evaluate AND and OR as short-circuit 
operators. In this case, the evaluation process starts with the left operand and ends when 
a true value has been reached for the expression. The default directive ssc- causes the 
Compiler to evaluate both operands of AND and OR. 

The $W± d.frectlve 
{$W-} 
{$W+} 

The default directive sw+ turns on the peephole optimizer. The sw- directive halts the 
operation of the peephole optimizer. 

Debugging 

The $D± directive 
{$D+} 
{$0-} 

The Macintosh debugger MacsBug is capable of reading routine names embedded in the 
object code. By default, the Compiler embeds the procedure (or function) name in the 
object code. so- turns off this feature; so+ turns it back on. 

CHAPTER 13 Compiler Options and Directives 



The $8± directive 
{$H+} 
{$H-} 

When the default value $H+ is in effec~ the Compiler tests each expression that 
dereferences a handle iri objer.t-orient~d source text, to make sure it is currently valid, It 
issu,:s a Cornpil~r errn• if i\ is no~. The directive SH- disables such velification. 

Conditional compilation 

, MPW Pascal lets you compile sections of your source text conditionally by means of the 
$.IFC, $ELS EC, and $ENDC directives. The $IFC directive is controlled by the value of a 
compile-tlme expression. Sections of source text controlled by these directives may be 
nested; the rules covering such nesting are the same as the rules for IF statements 
explained in Chapter 7. 

You can form compile-time expressions out of compile-tlme variables or constants of 
type integer or boolean. The final value of the expression that controls a $IFC 

directive must be boolean. You can use all the Pascal operators in compile-time 
expressions except IN and @. If you use the operator I, the Compiler will automatically 
change it to DIV. 

The $SETC directive 

{ $SETC id : = comp-expn 

The $SETC directive declares a compile-time variable named td and assigns it the value 
comp-expr. 

The $IFC directive 

{ $IFC comp-expr} 

The $IFC directive causes the Compiler to compile subsequent source text until the next 
$ELSEC or $ENDC directive, only if the boolean value of comp-expris true. 

You can write this directive in the form { $IFC UNDEFINED varnameJ. This will act like 
1 $ IFC true J if varname has not yet been declared with a $SETC directive; otherwise, 
it will act like { $IFC false}. 

You can also write this directive 1 $IFC OPTION (option-name) J to test the current 
setting of Compiler options. For example, { $IFC OPTION (MC68881 > J acts like 
{ $ IFC true J if {$MC68 a 81+} had been specified priorto the $IFC. 

244 MPW 3.0 Pascal Reference • 



( 

• 

The $ELSEC dJrective 
{$ELSEC} 

The $ELS EC directive marks the beginning of source text that is compiled only if the 
value of the comp-e.lpr controlling its corresponding $IFC directive is false. 

The $ENDC directive 
{$ENDC} 

The $ENDC directive marks the end of a section of conditionally compiled source text, 
matching a $IFC directive. 

Output control 

The $z± dJrective 
{$Z*} 
{$Z+} 
{$Z-} 

The Compiler identifies all routines and variables (other than those in a unit interface) to 
the Linker as local (that is, not accessible from outside the program). By specifying $ z+, 
the programmer will force the Compiler to identify subsequent routines and variables as 
external. The sz- command returns the Compiler to its default action. A subset of sz+ is 
available: s z * forces the Compiler to identify subsequent routines at the top nesting level 
(and not variables) as external. Using sz+ increases the size of the ccxie file substantially. 

The $N± directive 
{$N+} 
{$N-} 

By default, all routines are identified to the Linker as anonymous. When SN+ is specified, 
the Compiler passes the actual names of subsequent routines to the Linker. This can be 
useful for tracking down link-time errors, as the Linker will be able to report the name of 
the routine involved in the error. $N- returns the Compiler to its default behavior. 

• Note: The SN± directive operates on an entire source file; $ z± can be used in selected 
areas of a source file . 

CHAPTER 13 Compiler Options and Directives 245 



Other directives 

The $Al directlve 
{ $1U} 

By default, the global data for the inte1fa~t and imµlemenrailon seu.ion~ of a unit is 
allocated contiguously in memory. By specifying $Al (1 is one) in the interface of a unit, 
the programmer can allow the two data sections to be allocated noncontiguously. 

The $AS directlve 
{$AS} 

Normally, the global data of the main program is located immediately below register AS, 
and all data references within this area are resolved by the Llnker. By specifying SAS in a 
unit (before any interface data declarations), the programmer ensures that the unit data is 
located immediately below register AS and that references to that unit's data are resolved 
by the Compiler. This is useful when most global data is declared in a separate unit The 
SAS directive can only be used in a unit and only in one unit within a compilation. 

The $E directive 
! s E filename} 

When the $E command is used, subsequent compile-time errors are sent to the file 
specified; they are also echoed to standard diagnostic. By default, compile-time errors 
are not sent to an error file. The filename specified must include the necessary prefixes; 
none will be supplied by the Compiler. See the section "Shell Variable Substitution in 
Filenames and Segment Names" above for more details on the $E directive. 

The $K directive 
! SK [ dirname] } 

Normally, the symbol table resources of a unit will be stored in the resource fork of the 
unit's source file. With the $K directive, if a directory is specified, symbol table resources 
will be stored in a file with the same name as the unit it came from, but in the directory 
dirname. If no directory is specified, symbol table resources will be stored in the unit's 
source file. The $K directive differs from the -k compiler option in that it allows you to 
specify which units will be stored in which directory. You may find the $K directive useful 
if your units are in a location that cannot be written to. · 

246 MPW 3.0 Pascal Reference • i 



i ' 
i 

( 

( 

For example, you might use the $K directive while reading units from a file server. If you 
give a SK directive and a directory name, the Compiler will read the source code on the file 
server for the unit it is looking for. Then the Compiler creates a file with the same name as 
the unit in the specified directory and will store and read the symbol table resources there. 

The $P directive 
{$P} 

The s P directive tells PasRef to perform a page eject. For further information about 
PasRef, see Appendix I. 

The $PUSH and $POP directives 
{$PUSH} 
{$POP} 

The $PUSH directive allows you to save the current option settings. 

The $POP directive allows you to restore the saved option settings. 

These directives are used with includes or with USE statements~ It is an error to have more 
{$POP }S than {$PUSH} es. 

CHAPTER 13 Compiler Options and Directives 247 





( 

Appendix A MPW 3.0 Pascal and Other Pascals 

THIS APPENDIX CONTAINS BRIEF DESCRIPTIONS of the differences between MPW 3.0 
Pascal, ANS Pascal, and MPW 2.0 Pascal. • 

Contents 

MPW 3.0 Pascal and ANS Pascal 251 
Exceptions to the ANSI Standard 251 
Extensions to ANS Pascal 252 
Implementation-dependent features 252 

MPW 3.0 Pascal and MPW 2.0 Pascal 253 

249 





( 

( 

MPW 3.0 Pascal and ANS Pascal 

MPW 3.0 Pascal contains several exceptions and extensions to American National 
Standard (ANS) Pascal, as described below. 

Exceptions to the ANSI Standard 

The MPW 3.0 Pascal Compiler complies with the requirements of ANSVIEEE770X3.97-1983, 
with the following exceptions: 

• Identifiers are limited to 63 characters. 

• The at symbol(@) is not equivalent to the caret ("' ). 

• Values that are assigned to pointers can be obtained in ways other than from the New 

procedure. 

• The range of a SET OF integer is limited to 0 .. 2039. 

• The MPW 3.0 Pascal string type is stored as a one-byte-length field followed by the 
characters in the string. The ANSI Standard string type is a PACKED ARRAY c 1 •• nl OF 

char. 

• In MPW 3.0 Pascal, the type text is distinct from the type FILE OF char. The type 
FILE OF char is a file whose records are of type char, containing char values that 
are not interpreted or converted in any way during 1/0 operations. 

• The procedures Pack and unpack, described by Jensen and Wirth, are not supported. 

• The Standard comment delimiters I l and c••) are used to allow comment nesting, so the 
Standard comment delimiters I") and C""l are not supported. 

APPENDIX A MPW Pascal 3.0 and Other Pascals 251 · 



Extensions to ANS Pascal 

In addition to the requirements of the Standard, this implementation of Pascal includes 
the following extensions: 

11 Constant expressions are allowed in declarations ::i.ri:1 ;ndexes. 

• Declarations can be written in any order. 

• The Cycle statement is supported. 

• The Leave statement is supported. 

• Ranges are allowed in CASE statement tags. 

• The Standard Apple Numeric Environment is supported. 

• The Exit procedure is supported. 

• The vertical bar ( 1 ) and the ampersand (& ) operators are supported. 

• Functions can return values of structured types. 

• univ parameters are supported. 

• Type coercion techniques are supported. 

• There are built-in bit manipulation routines. 

• The exponentiation operator * * is supported. 

• Units and the USES declaration are supported. 

• Object Pascal is supported. 

• The predefined constants maxlongint, pi, inf, maxcomp, minnormreal, 
minnormdouble,minnormextended,compsecs,compdate,andcomptimeare 
supported. 

• The routines open, bJ:ockread, blockwrite, byteread, and bytewrite are 
supported. 

8 The routines Arctanh, Cosh, Sinh, Tanh, LoglO, ExplO, ArcCos, Arcsin, and 
Sincos are supported. 

Implementation-dependent features 

ANSI/IEEE770X3.97-1983 defines several requirements that are implementation­
dependent. The Standard uses the term implementation-dependent to describe a feature 
that may differ between processors but that is not necessarily defined for any particular 
processor. 

252 MPW 3.0 Pascal Reference 



( 
The effect of using a feature of MPW 3.0 Pascal that is required by the Standard, but that 
is implementation-dependent, is unspecified. Programs that use these features should not 
depend on any specific course being chosen because the results may be unpredictable. 
This leaves MPW free to choose the course that is most convenient at the time. 

MPW 3.0 Pascal and MPW 2.0 Pascal 

MPW 3.0 Pascal differs from MPW 2.0 Pascal in the following ways: 
• The MPW 3.0 Pascal Compiler no longer provides the command line option -z or the 

Compiler directive $LOAD. 

• The MPW 3.0 Pascal Compiler provides an automatic replacement for the $LOAD 

mechanism. 

• The MPW 3.0 Pascal Compiler provides a directive (SK) that controls the destination 
of symbol table resources. 

• The MPW 3.0 Pascal Compiler provides the command line options -sym, -mbg, 

-noload, -clean, -rebuild, -k, -h, -rn, and -n. 

• The MPW 3.0 Pascal Compiler provides support for greater thari 32K global data. 

• The MPW 3.0 Pascal Compiler imposes less strict requirements for forward class 
references. 

• The MPW 3.0 Pascal Compiler allows character constants as valid string expressions. 

• The MPW 3.0 Pascal Compiler extends the ability to include symbols for MacsBug. 

APPENDIX A MPW Pascal 3.0 and Other Pascals 253 



/ 



f 

Appendix B Special Scope Rules , 

THIS APPENDIX DESCRIBES CERTAIN SCOPE RULES of MPW Pascal that are applicable 
under special circumstances. • · 

Contents 

Scope of enumerated scalar constants 257 
Scope of pointer base types 258 

255 



' / 



( 

( 

Scope of enumerated scalar constants 

Consider the following program: 

PROGRAM Cscopel; 
CONST ten = 10; 
PROCEDURE P; 

CONST ten= ten; {This should be an error.} 
BEGIN 
Writeln(ten) 

END; 
BEGIN 

p 

END. 

The constant declaration in procedure P should cause a Compiler error, because it is illegal 
to use an identifier within its own declaration (except for pointer identifiers). However, 
the Compiler does not detect errors of this kind. It assigns the value of the global 
constant ten to the local procedure constant ten; the wri teln statement therefore 
writes the number 10. 

A more serious anomaly of the same kind is illustrated by the following program: 

PROGRAM Cscope2; 
CONST red = 1; 

violet = 2; 
PROCEDURE Q; 

TYPE arrayType = ARRAY[red .. violet] OF integer; 
color= (violet, blue, green, yellow, orange, red); {Error?} 

VAR arrayVar: arrayType; 
c: color; 

BEGIN 
arrayVar[l] := 1; 
c := red; 
Writeln (Ord (c)) 

END; 
BEGIN 

Q 
END. 

Within the procedure Q, the global constants red and violet are used to define an array 
index type, making ARRAY [red .. violet l equivalent to ARRAY [1 .. 2 l. In the 
declaration of the type color, the constants red and violet are locally redefined and 
given the new ordinal values of five and zero. Hence the wri teln statement writes the 
number 5. 

Using red in the declaration of color should cause a Compiler error, but it does not. 

APPENDIX B Special Scope Rules 257 



If the first statement of the main program, arrayvar (1 J : = 1, is replaced by the 
statement arrayVar c red) : = 1, a Compiler error will result because red is now an 
illegal index value for arrayva.r-even though arrayVar is of type arrayType, which 
is defined as ARRAY [red .. violet J. 

To avoid this kind of problem, do not redefine const?e ideDtlfiP:'S r{ ~.:•-r-1:~r.:itfd ~'C'" 1~r 

types. 

Scope of pointer base types 

Consider the following program: 

PROGRAM Pscopel; 
TYPE s = 0 .. 7; 
PROCEDURE Makecurrent; 

TYPE sptr = "'s; 
s = RECORD 

ch: char; 
bool: boolean 

END; 
VAR current: s; 

ptrs: sptr; 
BEGIN 

New (pt rs); 
ptrs"' := current {Compiler error here} 

END; 
BEGIN 
Makecurrent 

END. 

This program declares a global integer subrange type s and also a local record type s. 
Within the procedure Makecurrent, the type sptr is defined as a pointer to a variable 
of types, with the intention of referring to the local declaratisn of s. However, the 
Compiler uses the global declaration of s. This produces the Compiler error shown in the 
comment, because pt rs" and current are assignment incompatible. To avoid this kind 
of problem, you could redeclare the type s locally before using it in a nested block. The 
more general solution, however, is to avoid redeclaring identifiers of pointer base types 
altogether. 

258 MPW 3.0 Pascal Reference 



( 

( 

Appendix C Reserved Words and the Character Set 

THis APPENDIX PROVIDES A COMPLETE UST of the MPW Pascal reserved words and 
the character set • 

Contents 

Reservedwords 261 
The character set 261 

259 



/ 



( 

Reserved words 
AND DOWNTO IF NIL PROGRAM TYPE 
ARRAY ELSE IMPLEMENTATION NOT RECORD UNIT 
BEGIN END IN OF REPEAT UNTIL 
CASE FILE INTERFACE OR SET USES 
CONS'J.' FOR INTRINSIC" OTHER~HSE STRING VAR 
DIV FUNCTION LABEL PACKED THEN WHILE 
DO GOTO MOD PROCEDURE TO WITH 

• INTRINSIC i& reserved for future use. 

Reserved words appear in uppercase letters throughout this book. However, MPW Pascal 
isn't case sensitive-corresponding uppercase and lowercase letters are equivalent. 

The character set 

The first two columns of the character set in Figure C-1 are nonprinting ASCII control 
characters. Codes $D9 through $FF are reserved for future use. 

APPENDIX C Reserved Words and the Character Set 261 



• Figure C-1 The character set 

First digit 

4 5 6 7 8 9 AB CD E F 
- T r ~ i-. ;-:--r""T -n 

@ P ' P I : · i ' . .- i ·1· '"' • l -· i 
.. ~~~+--+---+~-t--

1 111~11: A Q a q A ~ o ± I 

2 1ll~l~-~ . 2 B R b r ~ -. ¢ s 

3ETXl!]#3CScs t .J £ 2'; 

4 11)j?lf.~ $ 4 D T d t N T f. ' § ¥ 

5 lffiljljj~ ,, 5 E U e u 0 • 

~-~ ; : : ~ : ~ : ~ : 
• µ 

11 a 
a I: 

s~g:c SHXhxao •9 ® n 

9HT il:l::::) 9 Y Y 0 0 © 1t 

A 1@1:~;::::]1::: • J Z Z 0 0 TM f 
!l B l@!\!i::11~: + K k 0 0 A 
l! C 1gjt~~\\IFS < L \ a u A 

= M 

> N 

I ? 0 

m 'I: n 
"n - e OJEceCE 

oll!\e a 0 0 ce 

- stands for a nonbreaking space, the same width as a digit 
The shaded characters cannot normally be generated from 
the Macintosh keybood or keypad. 

• The light-shaded characters are not in all fonts. 

262 MPW 3.0 Pascal Reference 



Appendix D Syntax Summary 

THis APPENDIX COil.ECTS THE SYNTAX DIAGRAMS found in this manual and shows 
them in alphabetic order. See the Preface for an explanation of them. • 





( 

actual parameter 

actual parameter list 

array t;pe 
ARRAY 

( 

expression 

variable 
reference 

procedure 
identifier 

function -
identifier 

actual 
parameter 

ihdex 
type 

OF type 

APPENDIX D Syntax Summary 265 



assignment statement 

block 
-. 

case 

__., -. 

,.._.. 

I--

1---i 

variable 
access 

function 
identifier 

label 
declaration 

part 

constant 
declaration part 

type 
declaration 

part 

variable 
declaration 

part 

1---i procedure and function 

~ 

constant 
expression 

declaration part 

statement 
part 

266 MPW 3.0 Pascal Reference 

·= 

,, ____ , 

i---• 

.........-~ 

.........-• 

........,_ 

__., 
~ 

constant 
expression 

expression 

-·---' 

/ 

statement 



CASE sraumumt 

compound statement 

~·· 

constant declaration 

constant d«/aratlon part 

CASE 

•(BEGIN) 

comtant 
identifier 

expression 

<Xherwise 
clause 

[ul statement 

0· 

OP 

l ·( 
END r 

• 

·(CONST )1------..lr~·l.__d_~~m_:_·on_I ] • 

APPENDIX D Syntax Summary 267 



constant e:xpresston 

constant facflJr 

simple 
constant 

expression 

unsigned 
constant 

functional 
call 

set 
construction 

NOT 

268 MPW 3.0 Pascal Reference 

constant 
expression 

constant 
factor 

<= 

>= 

<> 

IN 

simple 
constant 

exoressioo 



( 

constant tmn 

(· .. 

Constanl 
factor 

DIV 

MOD 

AND 

& 

.. 

APPENDIX D Syntax Summary 269 



..:.C;:....'c_le_sra_;_2_;_;;;;_ •• :_t ----t~--i(- Cy~e -)-------~i;p-

digit sequence 

enumerated l'jfJe 

expression simple 
expression 

270 MPW 3.0 Pascal Reference 

identifier 
list 

.. 

<= 

>= 

<> 

IN. 

simple 
expression 

/ 



factor 

ur.sig,1ed 
constant 

functk>n 
call 

set 
constructor 

NOT 

expression 

factor 

variable 
access 

1..:fteld.:._dec_lara_tion __ --1~~L.-ide--~ist-· i_er_.~L.--type __ _. 

field designator 

field list 

file buff er symbol 

fixed 
part 

identifier 

variant 
part 

APPENDIX D Syntax Summary 271 



text 

file type 
FILE 

--· -. 

final value I 
----------....... ~ ~xpression 

frxedpart 

formal parameter list 

FOR statement 
FOR 

TO 

m MPW 3.0 Pascal Reference 

field 
declaration 

control 
variable 

final 
value 

parameter 
declaration 

procedure 
heading 

function 
heading 

.. 

·= 

DO 

} 

initial 
value 

statement 



( 

(_ 

function body 
block 

r-----.. FORWARD l---------------::i 

function caJl 

function declaration 

function heading 

identifier 

INUNE 

function 
identifier 

function 
heading 

FUNCTION 

formal 
parameter 

Ii$t 

EXTERNAL ----

constant 
expre$iOn 

actual 
parameter 

list 

function 
body 

object 
type. 

type 
identifier 

APPENDIX D Syntax Summary Z73 



c_o_ro_statemen_· --'---4 ...... ( GOTO }-1..__labeJ __ _.~ 

----i hex digit sac~1e11ce , b~ , -· ·--'--··---T __ -_;. ·i_digit_r __ ~J 

letter 

letter 

digil 

underscore 

identifier list 
identifier 

IF statement 
IF expression TIIEN statement 

ELSE statement 

274 MPW 3.0 Pascal Reference 



( 

implementation part 
IMPLEMENTATION 

L. 

constant 
declaration 

part 

type 
declaration 

part 

variable 
declaration 

part 

procedure and function 
declaration part 

index 
.. CD1-----.[___..... •I expression ---1 • i-~ Qr 

~-~~--1~w4---~-

inittaJ r.Wue I I ~ 
----------~• expression I 

APPENDIX D Syntax Summary 275 



imerf ace pan 

labeJ 

label declaralion pan 

leave Slalemenl 

member group 

276 MPW 3.0 Pascal Reference 

INTERFACE 

. I USPS ~.. .., 
-·j._ ---da._!JSI.;_· --..-1· I 

constant 
declaration 

part 

type 
declaration 

part 

variable 
declaration 

part 

procedure and function 
declaration part 

·I digit ~ sequence 

•(LABEL) 
r· ·I 

•( Leave ) • 

expression 

label 

o~ l 
~o-

expression 



( 
method list 

object t'jJJe 

method 
heading 

object 
type 

identifier 

OBJECT 

olherwise clause 

parameter declaration 

pointer symbol 

pointer t'jJJe 

OTIIERWISE 

VAR 

pointer 
'-----...,. ·. . type 

. identifier 

field 
list 

statement 

identifier 
list 

base 
type 

OVERRIDE 

method 
list 

univ 

END 

type 
identifier 

APPENDIX D Syntax Sununary m 



procedure and function declaration part __.. ..... procedure .... -,_ 
- declaration 

~ 
function r-J 

declaration 
~··---·- --

I ! I 
I 

procedure body 
block 

FORWARD l-----------"'j 

procedure declaration procedure 
heading 

object 
type 

INUNE 

procedure 
body 

EXTERNAL -----... 

constant 
expression 

procedure 
heading 

PROCEDUREl----f------------...., identifier 

278 MPW 3.0 Pascal Reference 

formal 
parameter 

list 



procedure statement 

( -

program 

program heading 

program parameters 1 ( 

qualifier 

quoted character constant 

procedure 
identifier 

program 
heading 

program 

identifier 
list 

index 

field 
designator 

me 
buffer 

symbol 

pointer 
symbol 

actual 
~ parameter 

list 

identifier 

.. 

string 
character 

t---' 

USF.S 
clause 

-"" - ..... -

program 
parameters 

block 

APPENDIX D Syntax Summary 



quoted string constant 

rml-type numbers 

record type 

sign 

digit 
sequence 

RECORD 

inf 

NaN 

280 MPW 3.0 Pascal Reference 

string 
char? ct'.> 

L - .. ·-----···! 

digit 
sequence 

field 
list 

digit 
sequence 

END 

sign 

digit 
sequence 



( .. REPEAT statement 

scalar type 

set constructor 

set type 

sign 

(~ 

REPEAT 

subrange 
type 

enumerated 
type 

SET 

ordinal 
type 

identifier 

statement 

member 
group 

OF ordinal 
type 

UNTIL expression 

APPENDIX D Syntax Summary 281 



simple opression 

simple type 

sign 

sign 

scalar 
type 

real 
type 

string 
type 

constant size tlilribule I ______ _,.,.,. expression 

28'Z MPW 3.0 Pascal Reference 

constant 
term 

+ 



.. , compound L~ 
----------..._ statement ! 
statement part 

( 
APPENDIX D Syntax Summary 283 



string character 

-

string type 

stnu:Jureti type 

subrange type 

~ any char except 0 or Return 

. , ' {.\_ --- -l0-t., . ,._) ,__,,, 

STIUNG 

string 
type 

identifier 

L{PACKFD r 

. 

~ 

constant 
expression 

structured 
type 

identifier 

object 
type 

identifier 

..... 

I'-+ 

t---

~ 

size 
attribute 

array 
type 

set 
type 

file 
type 

record 
type 

constant 
expression 

284 MPW 3.0 Pascal Reference 

....... ...... .. 

.~ ... - ---- ----··-

~ 

~ 

!----~ 

1--' 

A 



( tag field type 

term 

l 

type declaration 

( 

~1 ordinal 
type 

identifier 

factor 

DIV 

MOD 

AND 

& 

•• 

simple 
type 

structured 
type 

pointer 
type 

object 
type 

identifier 

r 

type 

APPENDIX D Syntax Sununary 285 



type declaration part 

unit ·I unit 
heading 

unit heading ·( 

unsigned constant 

unsigned number 

•( lYPE) 

~ 

UNIT >--1 
unsigned 
number 

quoted 
string 

constant 

constant 
identifier 

NIL 

286 MPW 3.0 Pascal Reference 

' 

I ·I type .. 
[. l declaration 

lrcENDxr ~ 
interface implementation 

part part 

identifier ~ 

digit sequence 

hex digit sequence 



( 

USF,S clause ( "\ J identifiC: I ~ -------t .. ~ USES /11.. __ lis_t _ __.! 

mrlab/e access 

variable declaration 

variable declaration part 

variable 
identifier 

function 
call 

identifier 
list 

qualifier 

type 

.. ( ) I variable I 
~~ >--~[• •,___declara_tDn l • 

tXJrlable identirier I L__ ----"-~·----1 .. ~ idemifier i----

mrlant 

mrlant part 

tag 
field 
type 

constant 

CASE 

OF 

identifier 

variant 

field 
list 

APPENDIX D Syntax Sununary 



WHILE staJement 

Willi statement 

288 MPW 3.0 Pascal Reference 

expres.sion 

record 
variable 
access 

object 
reference 

variable access 

00 statement 

00 statement 



( 

Appendix E MPW 3.0 Pascal Files 

THIS APPENDIX CONSISTS OF A LIST OF TIIE FILES CONTAINED on the MPW 3.0 Pascal 
disk: MPW 3.0 Pascal. 

• Note: For the latest list of MPW Pascal files, consult the MPW 3.0 
Pascal release letter. • 

Contents 

Pascal compiler and tools 291 
PExamples folder 291 
Plnterfaces folder 291 
Plibraries folder 293 

289 



/ 



( 
Pascal· compiler and tools 

Pascal 
Pas Mat 
Pas Ref 

Pascal Compiler 
Pascal print formatter ("pretty printer'') 
Pascal cross-referencer 

PExamples folder 

Fstubs.a 
Instructions 
Makefile 
Memory.p 
Memory.r 
ResEd.p 
ResEd68K.a 
ResEqual.p 
ResEqual.r 
ResXXXXEd.p 
Sample.p 
Sample.r 
TestPerf.p 

Dummy library routines that override those not used by MPW tool 
Instructions for building example program 
Makefile for Sample program 
Sample MPW tool 
Resource description file for Memory.p 
Routines for extending ResEdit 
Routines for extending ResEdit 
Sample MPW tool 
Resource description file for ResEqual.p 
Sample resource editor 
Sample application 
Resource description file for Sample.p 
Sample Performance tool 

Plnterfaces folder 

AppleTalk.p 
Controls.p 
CursorCtl.p 
Desk.p 
DeskBus.p 

Devices.p 
Dialogs.p 
DisAsmLookup.p 
Disklnit.p 
Disks.p 

AppleTalk interface 
Control Manager interface 
MPW cursor-control interface 
Desk manager interface 
Apple Desktop Bus Manager interface 

Device Manager interface 
Dialog Manager interface 
SADE and MacsBug symbols 
.Disk Initialization Package interfaces 
Disk Driver interfaces 

APPENDIX E MPW Pascal 3.0 Files 291 



ErrMgr.p 
Errors.p 
Events.p 
Files.p 
FixMath.p 

Fovb.j.) 

Graf3D.p 
HyperXCmd.p 
IntEnv.p 
Lists.p 

MacPrint.p 
Memory.p 
MemTypes.p 
Menus.p 
Notification. p 

Objlntf.p 
OSEvents.p 

OSintf.p 

OSUtils.p 
Packages.p 
Packlntf.p 
PaletteMgr.p 
Palettes.p 

Pasliblntf. p 
Perf.p 
Picker.p 
P ickerlntf. p 
Printing.p 

PrintTraps.p 
QuickDraw.p 
Resources.p 
Retrace.p 
ROMDefs.p 

MPW Error Manager interface 
Error file 
Event Manager interfaces 
File Manager interfaces 
Interface for fixed-point mathematics routines 

I»:,1it Mzm,e;er interfac;; 
3-D graphics interface 
HyperCard XCmd interfaces 
Integrated Environment (MPW tool) interface 
List Manager interface 

Printing interface-includes Printing.p 
Memory Manager interface 
Common types-includes Types.p 
Menu Manager interfaces 
Notification Manager 

Object Pascal support 
OS Event Manager interfaces 

Operating system interface-includes 
OSUtils.p, Events.p, Files.p, Devices.p, 
DeskBus.p, Disklnit.p, Disks.p, 
Errors.p, Memory.p, OSEvents.p, Retrace.p, 
Segload.p, Serial.p, Shutdown.p, Slots.p, 
Sound,p, Start.p, and Timer.p 

Operating System Utilities interfaces 
Package Manager interfaces 
Packages interface-includes Packages.p 
Palette Manager-includes Palettes.p 
Palette Manager interfaces 

Pascal Library interface 
Pascal Performance tools 
Color Picker Manager interfaces 
Color Picker Manager-includes Picker.p 
Alternate printing interface 

Preferred printing interface 
QuickDraw interface 
Resources Manager interfaces 
Vertical Retrace Manager interfaces 
ROM definitions 

'192 MPW 3.0 Pascal Reference 



( 
SANE.p 
Scrap.p 
Script.p 
SCSI.p 
SCSIIntf.p 

SegLoad.p 
Serial.p 

Shutdown.p 
SignaJ.p 
Slots.p 
Sound.p 
Start.p 

Strings.p 
SysEqu.p 
TextEdit.p 
Timer.p 
Toollntf.p 

ToolUtils.p 
Traps.p 
Types.p 
Video.p 
Videolntf.p 
Windows.p 

SANE numerics interface 
Scrap Manager interfaces 
International writing interface 
SCSI Manager interfaces 
SCSI interface-includes SCSI.p 

Segment Loader interfaces 
Serial Driver interfaces 

Shut Down Manager interfaces 
Signal-handling interface (talks with C-style interface) 
Slot Manager interfaces 
Updated Sound Manager interface 
Start Manager interfaces 

String conversion utilities 
I.ow-memory globals 
Text Edit interfaces 
Time Manager interfaces 
Macintosh toolbox interface-includes 
ToolUtils.p, Events.p, Controls.p, Desk.p, 
Windows.p, TextEdit.p, Dialogs.p, Fonts.p, 
Lists.p, Menus.p, Resources.p, Scrap.p 

Toolbox Utilities interfaces 
Trap codes 
Conumn types 
Video interface 
Video interface-includes Video.p 
Window Manager interface 

Plibraries folder 

PasLib.9 

SANELib.o 
SANELib881.o 

Pascal language library, including built-ins 
and VO 
SANE numerics library 
SANE numerics library for use with 
-MC68881 Compiler option 

APPENDIX E MPW Pascal 3.0 Files 293 



/ 



( 

Appendix F Pascal and C Calling Conventions 

THIS APPENDIX DESCRIBES TIIE TREATMENT of different kinds of parameter and 
function results by the Pascal Compiler. It covers all the basic data types and 
discusses C interfacing. • 

Contents 

External calling conventions 297 
Parameters 297 
Real type parameters 297 
Structured type parameters 298 
Function results 299 
Register conventions 302 

C calling conventions 302 
C parameters 302 
C function results 302 
C register conventions 303 

Interfacing C functions to Pascal 303 
Examples of functions declared with the C directive 305 

295 



/ 



( 
External calling conventions 

This section describes the treatment of parameters, function results, and register 
conventions. 

Parameters 

Parameters are evaluated from left to right and are pushed onto the stack in that order as 
they are evaluated. The called procedure is responsible for removing the parameters from 
the stack. All VAR parameters are passed as pointers to the actual storage location. Note 
that in cases of byte-wide parameters, the pointer may have an odd value. 

Non-VAR parameters are passed in the following ways, depending upon the type of the 
parameter. Values of type boolean, elements of an enumerated type with fewer than 128 
elements, and subranges within the range -128 . .127 are passed as signed byte values. (They 
are pushed as bytes; the 68000 allocates two bytes for each byte on the stack.) The called 
procedure expects boolean parameters to be in the range 0 . .1. 

Values of types integer and char and all other enumerations and subranges are passed 
as signed word values. Pascal char values are expected to be in the range 0 .. 255; the 
upper half of this range is used for special characters. Pointers and longint values are 
passed as signed 32-bit values. 

Real type parameters 

Values of types real, double, comp, and extended are passed as pointers to 
extended values. The Compiler does this in a reentrant way by allocating a temporary 
location in the caller's activation record, converting the pa~meter value to an extended 
value in this location and passing a pointer to this location. The called procedure then 
allocates a local location of the declared type and converts the extended value, using the 
pointer, into the location and type. 

APPENDIX F Pascal and C Calling Conventions 2<J7 



Structured type parameters 

Arrays, strings, and records whose size is less than or equal to four bytes are passed by 
pushing their value (either a word or a long) onto the stack. larger arrays, strings, and 
records (as well as extended values, as mentioned above) are passed as a pointer to the 
value; for reeut1 f pnrpc.~~~. L.'1 .. ·:of••.tJ'1'~t .rl,:t; ~:,,:~·,. ·. ·.: ,_: > · · \, tc C')PY th( 
value to a local storage location. 

Sets are passed by rounding the set size up to the next whole word, if necessary, then 
pushing the set value so that the lowest-order word is pushed last. In the case of a byte­
width set, the called procedure will only access the low-order half of the word pushed. 

• Table F-1 

Parameta' type 

boolean 

enumeration: 
range 0 . .127 
enumeration 
range 0 .. 255 
enumeration: 
range 0 .. 32767 
char 

subrange: 
range -128 . .127 
subrange: 

Parameter passing conventions 

Pushes byte: 
range 0 . .1 
Pushes byte: 
range 0 . .127 
Pushes word: 
range 0 .. 255 
Pushes word: 
range 0 .. 32767 
Pushes word: 
range 0 .. 255 
Pushes byte: 
range -128 . .127 
Pushes word: 

range -32768 .. 32767 range -32768 .. 32767 
Pushes word: integer 

longint 

pointer 
real 

range -32768 . .32767 
Pushes long 
Pushes long 
Converts to extended, 
pushes address of 
extended 

298 MPW 3.0 Pascal Reference 

Accesses byte: range 0 . .1 

Accesses byte: range 0 . .127 

Accesses word: range 0 .. 255 

Accesses word: range 
0 . .32767 
Accesses word: range 0 .. 255 

Accesses byte: range 
-128 . .127 
Accesses word: range 
-32768 .. 32767 
Acce5ses word: range 
-32768 . .32767 
Accesses signed long value 
Accesses long 
Converts extended on stack 
to local real, accesses local 
value 

(Continued) 

/ 



( 

( 

• Table F-1 (Continued) Parameter passing conventions 

Parameter type Puca1 caller Puca1 ftlCdvc:r 

double Converts to extended, Converts extended on stack 
pushes address of to local double, accesses 
extended locai value 

comp Converts to extended, Converts extended on stack 
pushes address of to local comp, accesses local 
extended value 

extended Pushes address of Copies extended to local 
extended extended, accesses local value 

ARRAY, RECORD, Pushes value (word or Accesses value (word or long) 
s TRING s four bytes long) 

ARRAY, RECORD, Pushes address of value Copies value to local, 
STRING> four bytes accesses local 

SET Pushes set value rounded Accesses value on stack 
to whole number of words (Note: Use word or long for 

those sizes; accesses 
low-order half of word for 
byte-size set.) 

Function results 

Function results are returned by value or by address on the stack. Space for the function 
result is allocated by the caller before the parameters are pushed. The caller is responsible 
for removing the result from the stack after the call. · 

For types boolean, char, and integer, and enurrerated and subrange types, the caller 
allocates a word on the stack to make space for the function result. Values of type 
boolean, enumerated types with fewer than 128 elements, and subranges within the range 
-128 . .127 are returned as signed byte values. The value goes in the low-address byte, which 
is the most significant byte of the word. The calling procedure expects boolean results 
to be in the range 0 . .1. 

Integer and char values and all enumerated and subrange types not covered above are 
returned as signed word values. Pascal char values are expected to be in the range 0 .. 255; 
the upper half of this range is used for special characters. 

APPENDIX F Pascal and C Calling Conventions 29'J 



For pointers, longint, and the real types, the caller allocates a long on the stack to make 
space for the function result. Pointers and longint values are returned as signed 32-bit 
values. Values of type real are returned as 32-bit real values. For double, comp, and 
extended types, and for sets, arrays, strings, and records greater than four bytes in size, 
the caller pushes a pointer to a temporary location. 

]".' b ··~ ,. t~ ~ ,.; ,.~c·.•·, •.. ·,,-.• ··tr' ,,..• .,._, ·d . 'h' F ,.· • ,-. ,,.; .',,.. f''l'j • 
i or one- Y·-- ,,e~ d.1 .. • ',)C ;;.t;. c.j-:., ,) iags, c.J,·' !.\..·~01 ~s ..... ~)S,. ,;IZe lS OLt wc ... c, ;L. ~...! ei 
allocates a word on the stack. For sets, arrays, strings, and records whose size is two 
words, the caller allocates a long word on the stack. One-byte sets are returned as a byte 
value. Sets, arrays, strings, and records whose sizes are one or two words are returned as 
either a word or a long word. 

• Table F-2 Function result passing conventions 

Result type Pascal caller Pascal m:civcr After the call 

boolean Allocates Returns byte value: Pops byte 
word range 0 .. 1 

enumeration: Allocates Returns byte value: Pops byte 
range 0 .. 127 word range 0 .. 127 
enumeration: Allocates Returns word value: Pops word 
range 0 .. 32767 word range 0 .. 32767 
char Allocates Returns word value: Pops word 

word range 0 .. 255 
subrange: Allocates Returns byte value: Pops byte 
range -128 .. 127 word range -128 . .127 
subrange: Allocates Returns word value: Pops word 
range -32768 .. 32767 word range -32768 .. 32767 
integer Allocates Returns word value: Pops word 

word range -32768 . .32767 
longint Allocates Returns long word Pops long word 

longword value: range-signed 
32 bits 

real Allocates Returns real value Pops real value 
longword 

double Pushes Puts double result in Pops temporary 
address temporary address, accesses 
of double temporary value 
temporary 

(Continued) 

300 MPW 3.0 Pascal Reference 



( 

1{ 

• Table F-2 (Continued) Function result passing conventions 

.Result type Pascal caller Pascal receM:r After the call 

comp Pushes Puts double result in Pops temporary 
address temporary address, accesses 
of comp temporary value 
temporary 

extended Pushes Puts extended result Pops temporary 
address of in temporary address, accesses 
extended temporary value 
temporary 

ARRAY, STRING, Allocates Returns word or long Pops word or 
RECORD S 4 bytes word or word longword 

longword 
ARRAY, STRING, Pushes Puts result in Pops temporary 
RECORD > 4 bytes address of temporary address, accesses 

temporary temporary value 
SET: one byte Allocates Returns byte value of Pops byte 

word result 
SET: one word Allocates Returns word value of Pops word 

word result 
SET: two words Allocates Returns long word Pops long word 
SET> two words Pushes address Puts result in Pops temporary 

of temporary temporary address, accesses 
temporary value 

• Note: Pascal does not assume any initial value for memory space allocated to a 
function result unless it is a pointer to a type that occupies more than four bytes of 
memory. 

APPENDIX F Pascal and C Calling Conventions 301 



Register conventions 

Registers DO, Dl, D2, AO, and Al are considered scratch registers and are not preserved 
across procedure calls. All other registers are preserved by the called routine. Register AS is 
the global data pointer, register A 6 the local frame pointer. 

C calling conventions 

This section describes the treatment of C parameters, C function results, and C register 
conventions. 

C parameters 

Parameters to C functions are evaluated from right to left and are pushed onto the stack 
in the order they are evaluated. Characters, integers, and enumerated types are passed as 
sign-extended 32-bit values. Pointers and arrays are passed as 32-bit addresses. Types 
float, double, comp, and extended are passed as extended 80-bit values (or as 96-
bit values for -Mc 6aaa1). Structures are also passed on the stack. Their size is rounded 
up to a multiple of 16 bits (2 bytes). If rounding occurs, the unused storage has the highest 
memory address. The caller removes the parameters from the stack. 

C function results 

Characters, integers, enumerated types, and pointers are return~d in register DO using as 
many significant bits as are required by the type of the result. Types float, double, 
comp, and extended are returned as extended values in registers DO, Dl, and AO (or 
FPO for -MC68881). The low-order 16 bits of DO contain the sign and exponent bits, 
register Dl contains the high-order 32 bits of the significand, and register AO contains the 
low-order 32 bits of the significand. Structure values are returned by moving the value into 
a location, the address of which is passed to the routine as if it were the first parameter 
(that is, on top of the stack before the JSR). This scheme differs from MPW C 2.0. 

302 MPW 3.0 Pascal Reference 



( 

( 

C register conventions 

Registers DO, 01, 02, AO, and Al (and FPO, FPl, FP2, and FP3 for-mc68881) are scratch 
registers that are not preserved by C functiom. All other registers are preserved. Register 
AS is the global frame pointer, register A6 is the local frame pointer, and register A 7 is the 
stack pointer. Local stack frames are not necessarily created for simple functions, except 
when debugger symbol information is being preserved. This scheme differs from MPW C 
2.0. 

Interfacing C functions to Pascal 

Access to routines implemented in C is obtained by declaring the equivalent procedures or 
functiom as •c ; EXTERNAL; " in the Pascal source text Such procedures may then be 
called using a normal Pascal calling sequence (with some caveats shown in Table F-3). The 
Pascal Compiler arranges the parameters to the C methodology automatically. 

Follow the guidelines shown in Table F-3 when using the "c; EXTERNAL; " directives. 

• Table F-3 C-compatible Pascal types 

c type Pucal type 

boolean (typedeO boolean (Note: Only function result values of zero or one 
will be interpreted correctly by Pascal. Some C functiom may 
return other values.) 

enum enumerated (Note: If the enumerated type does not have 
contiguous values, "dummy" values will need to be declared 
in Pascal.) 

char -128 . .127 subrange (Note: If the intention is to denote the 
extended Macintosh character set, the result may have to be 
"normalized" by adding + 256 to negative values. One would 
also do this to convert to the Pascal type char.) 

unsigned char char 

short integer 

(Continued) 

APPENDIX F Pascal and C Calling Conventiom 303 



• Table F-3 

c type 

unsigned short 

float 

double 

comp 
extended 

,x* 

char* 

int, long 

unsigned int, 
unsigned long 

struct 

union 
array 

unsigned char 

unsigned short 

unsigned long 

(Continued) C-compatible Pascal types 

Pascal type 

longint (Note: This must be a longint because of Pascal's 
range checking. Pascal does not have an unsienpd inte~er 
type.) 

real 

double 

comp 
extended 
VAR of x • or pointer to x • , where x ' is the Pascal type 
corresponding to the C type x. Also may convert to 

pointer to array of x • when C intends an array to be 
passed. 
pointer to ARRAY OF char 

longint 
longint (Note: If the C declaration is unsigned long, 
then negative values of C function results will be interpreted 
incorrectly by the receiver.) 

RECORD 

variant RECORD 
ARRAY (Note: C function results of type ARRAY are not 
allowed.) 
SET OF 0 .. 7 (or byte size) 
SET oF 0 . .15 (or word size) 
SET OF 0 . .31 (or long size) 

Note: Use of the type STRING in Pasal declarations of C functions is not supported. 

304 MPW 3.0 Pascal Reference 



( 

Examples of functions declared with the C directive 

C function 

int scani(t) chart; 

char expos(d, i) 

double d; int*i; 

TYPE signedByte = -128 .. 127; 

FUNCTION scani(t: signed.Byt~): longint; C, 

EXTERNAL; 

FUNCTION expos(d: double; VAR i: longint): 

signed.Byte; C; EXTERNAL 

APPENDIX F Pascal and C Calling Conventions 305 



/ 



( Appendix G The SANE Library 

THIS APPENDIX DP.SCRIBES TIIE STANDARD APPLE NUMERIC ENVIRONMENT (SANE) 
and the routines contained in the SANE libraries SANELlb.o and SANELlb881.o. It 
contains two parts: 

• a discussion of the data types provided by SANE 

• a description of each of the types, procedures, and functions contained in 
the SANE libraries 

SANE is the basis for floating-point mathematical calculations performed by 
MPW Pascal. It meets all requirements for extended-precision floating-point 
arithmetic as prescribed by IEEE Standards 754 and 854. It ensures that all 
floating-point operations are performed consistently and that they return the 
most accurate results possible. 

SANE provides an easy-to-use, flexible environment for floating-point 
calculations. It gives you extremely accurate results without extra coding. You 
can write standard ANS Pascal programs using only the real type and be 
confident that your results are as accurate as possible within that format. 

If you are interested in precision beyond that possible using only the real type, 
you can use the other floating-point types provided as an extension to Pascal by 
SANE. In addition, the SANE library contains numerical functions not found in 
standard Pascal and routines for controlling the environment in which floating­
point calculations are performed. 

For complete details about SANE, see the Apple Numerics Manual. For 
information about the Macintosh ROM routines that perform fixed-point 
calculations, see Inside Macintosh, Volume 1, Chapter 16, and Volume 4, 
Chapter 12. 

This appendix discusses the version of SANE that is available on all Macintoshes. 
On Macintoshes with a 68020 and 68881 (like the Macintosh II), the SANE 
packages can call the 68881 for basic arithmetic functions. This appendix also 
provides information on the 68881 transcendental functions. 

See "SANE and the 68881" later in this appendix and Chapter 13. • 

APPENDIX G The SANE Llbrary 307 



Cofllents 

The SANE data types 311 
Des<:riptions of the typeS 311 
Choosing a data type 311 
Values represented 312 

Range and precision of SANE typeS 312 
Example 313 
TI1t single tyµc 314 
The double type 314 
The comp type 315 
The extended type 315 

Extended arithmetic 316 
Special cases 317 
Number c~ 318 · 

Infutities 318 
NaNs 318 
Denonnalized numbers 320 

Exceptional conditions 320 
Invalid operation 320 
Undedlow 321 
Overflow 321 
Divide-by-zero 321 
Inexact 321 

The SANE environment 321 
The SANE interfaces and libraries 322 

Descriptions of constants and types 322 
The DecStrLen constant 322 
Exception condition constants 322 
The DecStr type 323 
The DecFonn record type 323 
The RelOp type 324 
The NumClass type 324 
The Exception type 324 
The RoundDir type 325 
The RoundPre type 325 
The Environment type 325 

Numeric procedures and functions 326 
Conversions between numeric binary types 326 

The Num2Integer and Num2Longint functions 326 
The Num2Extended function 327 

Conversions between decimal strings and binary 327 
The Num2Str procedure 328 

3M MPW 3.0 Pascal Reference 



( 

The Str2Num function 328 
Arithmetic, auxiliary, and elementary functions 328 

The Remainder function 328 
The Rint function 329 
The Scalb function 329 
The Logb function 329 
The CopySign function 329 
The NextReal functjon 329 
The Ne:xtDouble function 330 
The NextExtended function 330 
The Log2 function 330 
The Lnl function 330 
The Exp2 function 330 
The Expl function 330 
The XpwrI function 331 
The XpwrY function 331 

Financial functions 331 
The Compound function 331 
The Annuity function 331 

Trigonometric functions 332 
The Tan function 332 

Additional transcendental routines 332 
The Arctanh function 332 
The Cosh function 332 
The Sinh function 333 
The Tanh function 333 
The LoglO function 333 
The ExplO function 333 
The Arccos function 333 
The Arcsin function 333 
The SinCos procedure 333 

Inquiry functions 334 
The ClassReal function 334 
The ClassDouble function 334 
The ClassExtended function 334 
The ClassComp function 335 
The SignNum function 335 

The RandomX function . 335 
The NaN function 335 
The Relation function 335 

Environmental access procedures and functions 336 
The rounding direction 336 

The GetRound function 336 

APPENDIX G The SANE library 30') 



The SetRound procedure 337 
Rounding precision 337 

The GetPrecision function 337 
The SetPrecision procedure 337 

Exceptions 338 
The SetException procedure 339 
The TestException function 339 

Using e.\:ceptional conditions to h?lt a pror,ram ~1'0 

The TestHalt function 340 
The SetHalt procedure 340 

Halts and the 68881 340 
Saving and restoring environmental settings 341 

The GetEnvironment procedure 341 
The SetEnvironment procedure 342 
The ProcEntry procedure 342 
The ProcExit procedure 343 

Support for the 68881 343 
SANE and the 68881 344 

More about the 68881 345 
Register usage 345 
Converting between extended formats in mixed-world programs 346 

310 MPW 3.0 Pascal Reference 

/ 



The SANE data types 

The original specification for Pascal called for only one data type for use with floating­
point numbeis: the real type. MPW Pascal extends the language with four types: 
single, double, extended, and comp. 

+ Note: The ANSI Standard specifies that any implernenmion of Pasc2.l that meets itc; 
requirements must include a type named real. The MPW Pascal single type and the 
ANS Pascal real type are synonymous. The body of this manual refers to the real 
type, while the same type is often referred to as single in this appendix. The MPW 
Pascal Compiler will accept either of these terms and treats them in exactly the same 
way. 

Descriptions of the types 

The single type is the smallest format for use with floating-point numbers. It stores 
floating-point numbers using 32 bits of storage. 

The double type is twice the size of the single type. It uses 64 bits for storage. 

The extended type is larger yet-it uses an 80-bit format. All arithmetic involving real­
type values is done using the extended type. The extended type occupies 96 bitswhen 
the -MC68881 option is invoked. 

The comp type stores integral values in a 64-bit format. It's classified as a real type 
because extended precision arithmetic is done with operands of type comp and uses the 
extended type. Results assigned to a variable of type comp are converted from 
extended. 

The single, double, and extended types are defined by the IEEE Standard. 

Choosing a data type 

Typically, picking a data type requires that you determine the trade-offs among 

• fixed-point and floating-point form 

• precision 

• range 

• memory usage 

The precision, range, and memory usage for each SANE data type are shown in 
Table G-1. 

APPENDIX G The SANE library 311 



Many programs require a counting type that counts things (pennies, dollars, widgets) 
exactly. Using SANE, you can write a program that deals with monetary values by 
representing these values as integral numbers of ceflts or mils, which can be stored exactly 
in the comp type. The sum, difference, or product of any two comp values is exact if the 
magnitude of the result does not exceed '263 -1 (that is, 9223372036854775807). In 
addition, comp values (for example, the results of accounting computations) can be 
mixed with ext ended values in floating-point computations (such as compound 
interest). 

Arithmetic with comp type variables, like all SANE arithmetic, is done internally using the 
extended type for arithmetic. There is no loss of precision, as conversion from comp to 
extended is always exact You can save space by storing numbers in the comp type, 
which is shorter than extended. 

Values represented 

The floating-point types (single, double, and extended) store binary 
representations of a sign ( + or - ), an exponent, and a significand. A represented number 
has the value 
± signiflcand * 2 exponent 

where for normalized numbers, the significand has a single bit to the left of the binary 
point (that is, 0 S signiflcand < 2). 

Range and precision of SANE types 

The range and precision of the real types supported by SANE and MPW Pascal are shown in 
Table G-1. Decimal ranges are expressed as chopped two-digit decimal representations of 
the exact binary values. 

3U MPW 3.0 Pascal Reference 



( 

( 

( 

• Table G-1 SANE data types 

Type ldcntffter SJngle Double Comp Extended• 

SJ2:e (bytes:bits) 4:32 8:64 8:64 10:80• 

Bhwy cspona1t nnae 
-16383 Minimum -126 -1022 

Maximum 127 1023 16383 

Slgnilkand pred ....... :>D 

Bits 24 53 63 64 
Decimal digits 7-8 15-16 18-19 19-20 

Dedmalnnae 
(appro:dmate) 

Min negative -3.4E+38 -1.7E+308 -9.2E18 -l.1E+4932 
Maxnegnonn -1.2E-38 -2.3E-308 -1.7E-4932 
Max neg denonn -1.5E-45 -5.0E-324 -1.9E-4951 
Min pos denonn 1.5E-45 5.0E-324 1.9E-4951 
Min posnonn 1.2E-38 2.3E-308 l.7E-4932 
Max positive 3.4E+38 1.7E+308 ==9.2E18 1.1E+4932 
Inftnftla Yes Yes No Yes 
NaNs Yes Yes Yes Yes 

'When-MC68881 um~ the extended typeoccuples 12byf'1S, or96bUs. Thereareno 
other changes m th8 dattJ types m this table. See Appendix N for more tnfomtatton. 

Example 

Using the single type, the largest representable number has 

significand 

exponent 
value 

= 2 - 2-23 

= 1.111111111111111111111112 

- 121 
.. (2 - i-23 ) * 2121 

- 3.403 * 1038 

the smallest representable p<;>Sitive nonnalized number has 

significand 

exponent 
value 

.. 1 

- 1.000000000000000000000002 
.. -126 
= 1 * 2-126 

... i.11s * lo-38 

APPENDIX G The SANE library 313 



and the smallest representable positive denormalized number has 

significand = 2-23 

exponent 
value 

= 0.000000000000000000000012 
= -126 
di 2-23 * 2-126 

... 1. 401 * 10-45 

The single type 

A 32-bit single number is divided into three fields: 

1 8 23 

Isl e I I 
msblsbmsb lsb 

The value v of the number is determined by these fields: 

If O < e< 255, 
If e • 0 and f ;i1: 0, 
If e• 0 and/• 0, 
If e • 255 and/• 0, 
If e• 255 and/;i1: 0, 

The double type 

then v • (-1)5 • 'Jf-•- 127' • (l.f). 
then v • (-l)s •2(-126) • (OJ). 
then v•(-1y•o. 
then v • (-1)5 • oo, 

then vis a NaN. 

A 64-bit double number is divided into three fields: 

1 11 52 

Isl e I I 
msb lsb msb 

The value v of the number is determined by these fields: 

If O < e< 2047, then v• (-1)s•2C•-I023) • (lj). 
If e• O and/;i1: 0, then v = (-l)s•2c-1022> •(Of). 
If e• 0 and/• 0, then v • (-1)5 • 0. 
If e• 2047 and/• O, then v• (-l)s• oo. 

If e .. 2047 and f ;i1: 0, then vis a NaN. 

314 MPW 3.0 Pascal Reference 

Jsb 



( 

( 

The comp type 

A 64-bit comp number is divided into two fields: 

63 
d 

msb lsb 

The value v of the number is determined by these fields: 

then vis the unique comp NaN. Ifs· 1 and d • 0, 
Otherwise, v is the 2's-complement value of the 64-bit representation. 

The extended type 

An 80-bit extended fonnat number is divided into four fields: . 

15 1 63 

I 
msb lsb msb lsb 

The value v of the number is determined by these fields: 

If 0 Se< 32767, then v • (-l)s • ~·-16383) •(if). 
If e • 32767 and/· 0, then v • (-t)s • oo, regardless of i. 
If e • 32767 and f "#:- 0, then v is a NaN, regardless of i . 

The 96-bit extended fonnat used when -MC68881 is invoked differs from the 80-bit 
format only in the inclusion of 16 bits of unused space. 

16unused 
1 15 bits 1 63 

s e I 
msb lsb rnsb lsb 

APPENDIX G The SANE library 315 



Extended arithmetic 

While the MPW Pascal types single, double, and comp are intended for economical 
data storage, the extended type is the foundation for all arithmetic computation. As 
specified by the IEEE Standard, all basic arithmetic operations, including addition, 
subtraction, multiplication, division, and square root extraction, yield the best possible 
results. In MPW Pascal, these operations produce extended results, so they are accurate 
to <.l precision of 19 decirru.il dieits throughout 2 range c;;ceedint JQ-490° K' 10<:~;c 

MPW Pascal takes advantage of extended arithmetic by storing all noninteger numeric 
constants in the extended format and by evaluating all noninteger numeric expressions 
to extended, regardless of the types involved. For example, the entire right side of the 
assignment below will be computed in extended before being converted to the type of 
the left side: 

VAR 
x, a, b, c: real; 

BEGIN 

x :"" (b+sqrt(b*b-a*c))/a; 

END. 

With no special effort by the programmer, MPW Pascal performs computations using the 
precision and range of the extended type. Extra precision means smaller roundoff errors 
so that results are more accurate, more often. Extra range means overflow and underflow 
are less common so that programs work more often. 

By following a few simple programming practices, you can exploit the extended type 
beyond what MPW Pascal does for you automatically. 

Declare variables used for intermediate results to be of type extended. This practice is 
illustrated in the following example, which computes a sum of products: 

VAR 
Sum: real; 
X, Y: ARRAY[l •. n] OF real; 
I: integer; 
T: extended; {to hold intermediate results} 

BEGIN 

T := 0.0; 
FOR I := 1 TO n DOT:= T+X[I]*Y[I]; 
Sum :"" T; 

END. 

316 MPW 3.0 Pascal Reference 



( 

( 

Had T been declared real, like the input arrays x and Y and the result sum, each time 
through the loop the assignment to T would have caused a roundoff error at the limit of 
single precision. In the example, all roundoff errors are at the limit of extended 

precision, except for the one caused by the assignment of T to sum. This means roundoff 
errors will be less likely to accumulate to produce an inaccurate result. 

Declare formal value parameters and function results to be of type extended, rather than 
real, double, or comp. This saves MPW Pascal from having to do unnecessary 
conversions between numeric types, which may ri:su!t in loss of accuracy. The example 
below illustrates this practice. 

FUNCTION Area(Radius: extended): extended; 
BEGIN 

Area ·- Pi*Radius*Radius 
END; 

Special cases 

Although use of the extended type makes program.5 work more often, exceptional cases 
do arise. Your programs may contain statements like these: 

Average :• Sum/Count; 
Area :- Side*Side; 

where all the variables are of type real. What happens if count is zero, if Count and 
sum are both zero, or if the product of side* side is too large to be represented. in the 
real format? 

MPW Pascal assigns special values to Average and Area, and your program continues. In 
fact, the IEEE Standard refers to •exceptions" rather than "errors" and specifies •no halts" 
as the default mode of operation for its arithmetic. If you need to re-install the IEEE 
defaults, you would use this statement: 

SetEnvironment(IEEEDefaultEnv); 

Note that the Environment type is not the integer type when the -MC68881 option 
is invoked, so the older usage, SetEnvirorunent < o > , will no longer work with this 
option. For compatibility, SetEnvironment (IEEEDefaultEnv) works correctly 
regardless of the setting of the -Mc 6 a a a 1 option. 

The SANE library also contains functions and procedures for determining when 
exceptional cases occur. 

APPENDIX G The SANE library 317 



Number classes 

Representations in the SANE data formats fall into five classes: 

• normalized nurnbetS-like 3.0, 75.8, -2.3e78, and all others that can be represented 
with a leading significand bit of 1 

• zero-+0 and --0 

l!I infinities·-positive and negative infinity 

ii Nai~s -sho1i. for H0t a Hun.mer 

• denormalized nurnbetS-nonzero numbers that are too small for norrnalized 
representation 

Infinities 

Infinities are special SANE representations that can arise in two ·ways from operations on 
finite values: 

• When an operation should produce an exact mathematical infinity (such as 1 Io ), the 
result is an infinity. 

• When an operation produces a number with magnitude too great for the number's 
intended floating-point format, the result may (depending on the current rounding 
direction) be an infinity. 

MPW Pascal predefines the constant inf to have the value positive infinity. The string 
constant inf also represents infinity for input and output of floating-point values. 
Infinities behave like mathematical infinities; for example, 1-inf =-inf. Infinities can 
be helpful even when "infinity arithmetic" is not the goal; for example, if x * x is too 
large for the extended format, the expression 1 + 1 I (X * X) still computes to the 
correct value of one (assuming overflow halts are off). 

Try this: 

PROGRAM Useinf; 
USES SANE; 
VAR 

X: extended; 
BEGIN 

X := le4000; 
Writeln('X*X=' ,X*X); 
Writeln('l/(X*X)=',l/(X*X)) 
Writeln('l+l/(X*X)=',l+l/(X*X)) 

END. 

NaNs 

Another special SANE representation is a NaN (Not a Number). A NaN is produced 
whenever an operation cannot yield a meaningful numeric result. For example, o I o and 
Sqrt < -1 > produce NaNs. 

318 MPW 3.0 Pascal Reference 



(-
When a NaN is generated by software SANE or by routines in a SANE library, an associated 
NaN code is returned as part of the NaN's representation. This code tells you what kind of 
operation caused the NaN to be created .. NaN codes, shown in Table G-2, can help with 
debugging. 

• TableG-2 NaN codes 

Code M'3!fti:. -·- •··"·---- .-~·-•~-·--·-w ________ _ 
1 
2 
4 
8 
9 
17 
20 
21 
33 
34 
36 
37 
38 

Invalid square root, such as Sqrt c-1 > 
Invalid addition, such as (+inf) - (+inf) 
Invalid division, such as o I o 
Invalid multiplication, such as o *inf 
Invalid remainder or MOD, such as XMOD 0 

Attempt to convert invalid ASOI string 
Result of converting the comp NaN to floating-point fonnat 
Attempt to create a NaN with a zero code 
Invalid argument to trig routine 
Invalid argument to inverse trig routine 
Invalid argument to log routine 
Invalid argument to x 'or x 1 routine 
Invalid argument to financial function 

All NaNs generated by the 68881 will have a NaN code of 255. 

6. Important When the -MC68881 option is set, many of the NaNs in Table G-2 are 
generated by the 68881; therefore, you will not receive all the settings 
listed in this table. a 

The statement wri teln < o Io> will produce the result NAN coo 4 > (provided the invalid 
operation halt is off). NAN< 004 >,nan< 4 >,and NaN are examples of acceptable input for 
reading a NaN into a SANE variable. 

APPENDIX G The SANE library 319 



Denormalized numbers 

Whenever possible, SANE stores values in normalized fonn: the most significant bit of the 
significand is a one, rather than a zero. 

However, when a very small number is being stored and the exponent is the smallest 
possible negative value, it is possible to store still smaller values by storing leading zeros. 
For example, 

1. O •• o2 * 2-126.....;smc-.1 :i esr ncr.T.".1.i ~zd r.:;.<:..l_ 

0.1 .. 02 * 2-126-still smaller denormalized real 

Because of denormalized numbers, IEEE arithmetic has the desirable property that 
a <> b if and only if a - b <> 0. In most non-IEEE arithmetics, a - b will "flush to 
zero" if a - b is too small for normalized representation, even though a and b may be 
different values. 

Exceptional conditions 

Exceptional conditions can arise from floating-point calculations in a number of cases. 
For example, multiplying two very large values can result in a value too large to be 
represented in one of the MPW Pascal data formats. Or an operation such as o Io can be 
performed. 

SANE provides a way for a program to detennine when a floating-point calculation has 
resulted in one of these exceptional conditions. Exceptional conditions fall into five 
categories: 

• invalid operation 

• underflow 

• overflow 

• divide-by-zero 

• inexact 

Invalid operation 

The invalid operation exception arises when operands for an operation are invalid, so that 
a rreaningful nurreric result is impossible. For example, o Io and Sqrt (-1 > are invalid 
operations. 

320 MPW 3.0 Pascal Reference 



( 

( 

Underflow 

Underflow occws when a result is both denormalized and has lost significant digits 
through rounding. For example, to return the result of 

(1.000000000000000000000012 * 2-126> I 2 

to the real fonnat, a leading zero would be introduced and the last significant bit would 
be lost in rounding. The result 
0.100000000000000000C00G000 2 * 2 12G 

would be returned and underflow would be signaled. 

Overflow occws when a value is calculated that is too large to fit in the fonnat of its 
designated type. The destination format must be one of the floating-point types; if the 
destination fonnat is an integer type, the invalid exception occurs. 

Dlvide-by-7.efO 

The divide-by-zero exception occurs when a finite nonzero number is divided by zero. It 
also occws when an operation on finite operands produces an exact infinite result. For 
example, the operation 1 I a (which results in INF ) and the operation Ln < o > (which 
results in - INF ) both signal divide-by-zero. 

Inexact 

The inexact exception occws when the rounded result of an operation is not identical to 
the mathematical (exact) result. (Thus any time overflow or underflow occurs, the inexact 
exception is signaled.) For example, the operation 2 I 3 signals inexact, regardless of the 
floating-point format used. 

The SANE environment 

The SANE •environmenr consists of 

• rounding direction 

• rounding precision 

• exception flags 

• halt settin~ 

APPENDIX G The SANE library 321 



The SANE library includes procedures and· functions that allow you to determine the 
current status of the environment. These procedures and functions can be used to flag 
exceptional conditions and to control optional environment settings. For example, you 

· may be working with very small values and need to know exactly when underflow occurs. 
Or you might want to have floating-point conversions rounded downward. 

The SANE interfaces and libraries 

This section explains each of the constants, types, functions, and procedures contained 
in the SANE interfaces and libraries. The SANEUb881.o library contains the same 
procedures and functions available in SANEUb.o but must be used when you have 
invoked the -MC68881 compiler option. Most of the actual SANE code is in Pack4 and 
Packs. SANELib.o and SANEUb88l.o contain code interl'aces to Pack4 and Packs. The 
file SANE.p contains the interface text for SANE. 

Desaiptions of constanm and types 

Each of the constants and types defined by the SANE interface is briefly discussed in the 
following section. For more information, see the descriptions of the specific procedures 
and functions mentioned. 

The DecStrLen constant 

DecStrLen (Decimal String Length) is defined by 

DecStrLen = 2SS; 

DecStrLen is the constant that defines the maximum length of a decimal numeric string. 
It is the size attribute of variables of type DecStr. 

Exception condition constants 

The declarations that define the five exception condition constants used when you have 
not invoked the -MC68881 option are 

Invalid • l; 
Underflow • 2; 
Overflow = 4; 
DivByZero • 8; 
Inexact = 16; 

These constants are ~d to define the value of a variable of the type Exception . 

322. MPW 3.0 Pascal Reference 



( 

For example, if e is a variable of type Exception , then 

e := Invalid + Overflow + DivByZero 

gives ea value that represents these three exceptions collectively. 

The SetException, TestException, SetHalt, and TestHalt routines all take 
arguments of type Exception. 

The declarations that define the 13 exception condition constants used when yo\! have 
invoked the -MC68881 option are 
Inexact .. 8; 
DivByZero • 16; 
Underflow • 32; 
Overflow - 64; 
Invalid • 128; 

Curinexl • 256; 
Curinex2 .. 512; 
CurDivByZero • 1024; 
CurUnderflow • 2048; 
CurOverflow - 4096; 
CurOpError • 8192; 
CurSigNaN • 16384; 
CurBSonUnor • 32768; 

Refer to the MC68881 Floating-Point Coprocessor User's Manual for further information 
about 68881 exceptions. 

The DecStr type 

The declaration that defines the DecStr type is 

DecStr - STRING[DecStrLen]; 

The DecStr type is a string with a size attribute of DecStrLen, or 255 characters. It's 
used to hold the decimal representation, in ASCII characters, of a number. 

The DecForm rccoid type 

A record of type oecForm (Decimal Format) is defined by this declaration: 

DecForm - RECORD 
Style: (FloatDecimal, FixedDecimal); 
Digits: integer 

END; 

A DecForm record holds the specifications for the format of a decimal number. 

• The Style field determines whether the decimal representation will be floating-point 
or fixed-point. 

• The Digits field holds the number of significant digits for float style or the number 
of digits to the right of the decimal point for fixed style. 

APPENDIX G The SANE library 323 



The Num2Str procedure takes a DecForm argument It uses the information in 
becForm to determine the format for the string to be returned. 

The RelOp type 

The Relop (Relational Operator) type is defined by 

RelOp = (GreaterThan, LessThan, EqualTo, Unordered); 

A result of Ji:s L}'J.::e is re~i.m1r.d ;,/ :i)t. '-·'c;lation funcdon, described later. 

The NumCJass type 

The NumClass type is defined by 

NumClass = (SNaN, QNaN, Infinite, ZeroNum, NormalNum, DenormalNum); 

• TableG-3 Number class descriptions 

SNaN 
QNaN 
Infinite 
ZeroNum 
NormalNum 
DenormalNum 

Signaling NaN 
Quiet NaN 
Infinity or -Infinity 
Oor-0 
Normalized number 
Denormalized number 

Quiet NaNs are the usual kind produced by floating-point operations. Signaling NaNs, 
potentially useful for flagging uninitialized variables, are discussed in the Apple Numerics 
Manual. 

The NumClass type is used to return results from the inquiry functions, described below. 

The Exception type 

A variable of type Exception holds an integer value that corresponds to the value of 
one of the Exception constants, or to a sum of two or more of the Exception 
constants. Unless the -MC68881 option is set, the Exception type is defined by 

Exception = integer; 

324 MPW 3.0 Pascal Reference 



( 

( 

If the -MC68881 option is set, the Exception type is defined by 

Exception mlonqint; 

The SetException, TestException, SetHal t, and TestHal t routines all take 
arguments of type Exception. 

The RoundDfr type 

The RoundDir (Rounding Direction) type is defined by 

RoundDir • (ToNearest, Upward, Downward, TowardZero); 

The RoundDir type is used to determine how values are to be rounded, when rounding 
becomes necessary during arithmetic operations or conversions. The SetRound 
procedure takes an argument of type RoundDir. The GetRound function returns a value 
of type RoundDir. 

The RoundPre type 

The RoundP re (Rounding Precision) type is defined by 

RoundPre • (ExtPrecision, DblPrecision, RealPrecision); 

Rounding precision can be used to simulate arithmetic with only single or double 

precision. The SetPrecision procedure takes an argument of type RoundPre. The 
GetPrecision function returns a value of type RoundPre. 

The Environment type 

A variable of type Environment holds a value that represents the settings of the SANE 
environment For example, a setting of IEEEDef'aultEnv represents the default IEEE 
setting (rounding to the nearest, extended-precision rounding, exceptions clear, and no 
halts set). Unless the -MC68881 option is set, the Environment type is defined by 

Environment • integer; 
' 

You use a variable of type Environment with the environmental access routines 
SetEnvironment, GetEnvironment, ProcEntry, and ProcExit. 

If -MC68881 is set, the Environment type is defined by 

Environment m RECORD 
FPCR: longint; 
FPSR: longint; 

END; 

where PPCR stands for the 68881 floating-point control register and FPSR stands for its 
floating-point status register. 

APPENDIX G The SANE library 325 



Numeric procedures and functions 

This section includes a description of each of the procedures and functions in the SANE 
libraries. More detailed information can be found in the Apple Numerics Manual, which is 
available from Apple dealers. 

Remember that any function with a formal parameter of any of the real types can be 
passed a value of any real Oi ii1ti?.gc1 i]'i-;':. Pl0.c:·,~g-p0int. value pa!'8.mc1-.;:: k MPW 3.0 
Pascal will accept expressions and variables of any of the following types: integer, 
longint, real (single), double, comp, or extended. We abbreviate the list with 
the tenn numeric argument in the explanatory text below. 

Conversions between numeric binary types 

The SANE libraries contain functions that convert numeric values (in binary 
representation) to the binary formats of the integer , longint , and extended types. 

The Nwn2Integer and Nwn2Longfnt functions 

Num2Integer(X: extended): integer; 
Num2Longint(X: extended): longint; 

The Num2Integer function takes a numeric argument ~d returns a result of type 
integer. 

The Num2Longint function takes a numeric argument and returns a result of type 
longint. 

The value returned by these functions depends upon the rounding direction (set using the 
setRound procedure). Using the standard rounding direction, ToNearest, the examples 

Num2Integer(99.6); 
Num2Longint ( 99. 6) ·; 

return the value 100.0. 

Num2 Integer and Num2Longint are similar to the MPW 3.0 Pascal functions Round 
and Trunc. However, Num2Integer and Num2Longint take the current rounding 
direction into account The Round function always returns the nearest longint value; 
the T rune function always rounds toward zero. 

326 MPW 3.0 Pascal Reference 



( 

Here's an example of how these functions are used: 

VAR 
A: extended; 
B, C, D: longint; 

BEGIN 
A :• 99.999; 
B :• Num2Longint(A); 
C :"" Round (A); 
D :• Trunc(A) 

END; 

After this code is exeruted, both sand c have the value 100 and o has the value 
99. 

BEGIN 
A :• 99.999; 
SetRound(Downward); 
B :• Num2Longint(A); 
C :• Round(A); 
D :• Trunc(A) 

END; 

With this code, however, the values of s and o are 99. But the value of c is again 100. The 
Round and Trunc functions always calrulate their value in the same way, regardless of the 
rounding direction. 

Using the ToNearest rounding direction, Num2Integer and Num2Longint round 
values halfway between two integers to the nearest even integer (as prescribed by the 
IEEE Standard). For example, Nwn2Integer (2. 5) returns two. The Round function 
rounds these halfway values away from zero. For example, Round< 2 . s > returns three. 

The Num.2Extended fundioa 

Num2Extended(X: extended): extended; 

The Num2Extended function can be passed any real-type or integer-type argument It 
converts its argument to the extended format. This is useful for forcing floating-point 
arithmetic when all variables involved are of the integer types. 

Conversions between decimal strings and binary 

The SANE library includes the Num2Str procedure and the Str2Num function to convert 
numbers between decimal ASCII character representations and binary. 

• Note: The MPW 3.0 Pascal input and output procedures, described in Chapter 10, use 
the routines for Pascal J/O conversions between decimal ASCII and binary. 

APPENDIX G The SANE library 3Z7 



The Num2Str procedure 

Num2Str </: DecFo:cm; .X: extended; VAR S: DecStr) ; 

The Num2Str procedure converts a numeric value .xto a decirml string, returned ins, using 
the specifications in the DecForm record/. Here are some examples of how Num2Str 
uses the arguments passed to it to fonnat a string: 

• TableG4 Num2Str examples 

Dec:Form.Style Dec:Form..Dlllfts JI I 

FloatDecimal 6 123.45 ' l.23450e+2' 
FloatDecimal 2 123.45 ' l.2e+2' 
FixedDecimal 6 123.45 1 123.450000' 
FixedDecimal 2 123.45 '123.45' 

The Str2Num function 
Str2Num(S: DecStr): extended; 

The Str2Num function takes a decirml string argument (of type oecstr) and converts it 
to type extended. 

The SANE library includes a set of functions that supplement the arithmetic functions 
described in Chapter 12. 

The Remainder function 
Remainder(.X, y: extended; VAR quo: integer); 

The Remainder function returns the remainder of the division of its two numeric 
arguments .x /y, as specified by the IEEE Standard. This function returns an exact 
remainder of the smallest possible magnitude. The result is computed as »- n~. where n is 
a nearest integral approximation to the quotient .x ly. For example, Remainder ( 9, 5, 
q) returns -1, because-1•9-2*5. · 

The integer variable argument quo receives the seven low-order bits of n as a value 
between -127 and 127; this is useful for programming functions, like the trigonometric 
functions, that require argument reduction. 

328 MPW 3.0 Pascal Reference 



( 

• Note: Remember that the Pascal operator MOD can be used only with integral values. 
The Remainder function can be used with either real-type or integer-type values. 

The Rfnt function 
Rint(.X: extended): extended; 

The Rint function takes a numeric argument and rounds it to an integral value in the 
extended format Note that all sufficiently large floating-point values ate inttgr-11. The 
result depends upon the rounding direction, which can be changed by using the 
SetRound procedure. 

The Scalb function 
Scalb(n: inteqer; .X: extended): extended; 

The Scalb function takes two arguments. The fust is a value of type integer;the 
second is an extended value. The function scales the extended value by the power of 
two specified by the integer argument The value 2•.x is returned in extended format 

The Logb function 
Logb(.X: extended): extended; 

The Loqb function takes a numeric argument and returns the largest power of two that 
does not exceed its argument's magnitude. For example, Loqb < -6 55 3 5 > yields 15 
because 21s S 65535 < 216. 

The CopySign fundfon 
CopySiqn(.X, y: extended): extended; 

The copySiqn function takes numeric arguments. It returns a value equal to the second 
argument, but with the sign of the fiist argument For example, copy s iqn ~ 2 • o, - 3 • o > 

yields 3.0. The CopySiqn function returns an extended value. 

The Nextleal function 

NextReal(.%, y: real): extended; 

The NextRea.l function takes two real arguments. It returns the next value that can be 
represented in the real format after the fiist argument, in the direction of the second 
argument It returns an extended value. 

• Note: Although NextReal, NextDouble, and NextExtended can take any numeric 
argument, NextReal internally converts its arguments to real, NextDouble to 
double, and NextExtended to extended. 

APPENDIX G The SANE library 329 



The NextDouble function 
NextDouble(X, y: double): extended; 

The NextDouble function takes two double arguments. It returns the next value that 
cari be represented in the double format after the first argument, in the direction of the 
second argument It returns an extended value. 

The NextExtended function 

NextExtended(X, y: extended): ext.endtlci; 

The NextExtended function takes two extended arguments. It returns the next value 
that can be represented in the extended format after the first argument, in the direction 
of the second argument. It returns an extended value. 

The Log2 function 
Log2(X: extended): extended; 

The Log2 function takes a numeric argument and returns the base-2 logarithm of its 
argument in extended format. 

The Lnl function 
Lnl(X: extended): extended; 

The Lnl function takes a numeric argument and returns the base-e logarithm of one plus 
the argument: Ln (1 + x). It returns an extended value. For xnear zero, Lnl <x> is more 
accurate than Ln < 1 . o + x> . 

The Exp2 function 
Exp2(.X: extended): extended; 

The Exp2 function takes a numeric argument and returns two raised to the power of the 
argument: 2z. It returns an extended value. 

The Expl function 
Expl(X: extended): extended; 

The Expl function takes a numeric argument and returns ez-1. It returns an extended 
value. For xnearzero, Expl (X) is rmre accurate than Exp (x) - 1. o. 

330 MPW 3.0 Pascal Reference 



( 

The Xpwrl function 
XpwrI(X: extended; i: integer): extended; 

The XpwrI function takes one numeric argument and one integer argument. It 
returns the value of its first argumen~ raised to the power specified by the integer 

argument: xi, It returns an extended value. 

The XpwrY function 
XpwrY(X, y: extended): ext'-:!nded; 

The XpwrY function takes two numeric arguments. It returns the value of the first 
argument, raised to the power specified by the second argument: x Y. It returns an 
extended value. 

Financial functions 

SANE provides two functions that can be used in financial applications: the compound 
function and the Annuity function. 

The Compound function 
Compound(~ n: extended): extended; 

The Compound function takes two numeric arguments. The first argument specifies the 
interest rate; the second specifies the number of periods compound. It returns (1 + r )", 
which is the principal plus accrued compound interest on an original investment of one 
unit. It returns an extended value. 

The Annuity function 
Annuity(~ n: extended): extended 

The Annuity function takes two numeric arguments. The first argument specifies the 
interest rate; the second specifies the number of periods. Annuity returns 
(1- (1 + r r") I r, which is the present value factor of an ordinary annuity. It returns an 
extended value. Here is an example of how the Annuity function can be used: 

APPENDIX G The SANE Llbrary 331 



PROGRAM Loan; 
VAR 

Loan, Payment, Interest, Periods: extended; 
BEGIN 
writeln('Loan amount: '); 
readln (Loan); 
writeln('Annual interest rate (Enter as a decimal.): '); 
readln(Interest); 
writeln('Number of years: '); 
readln(Periods); 
Pa~rme:r!.t :. =- -::·:~ ~ / A·1.' · . .-' 1.~: • ~T {:'l".r tero:·Jt / J.?. .P~:r-~ n(t1~ ·,'.,. J ? ) ; 
~rite('Y.;.,,:;._ ~a.ymmii.. i~. '); 
write(Payment:8:2) 

END. 

In this example, given a loan amount of $120,000 and an interest rate of 0.1075 for 30 
years, the monthly payment will be $1120.18. 

Trigonometric functions 

MPW 3.0 Pascal includes the predefined Sin, Cos, and Arctan functions. In addition, 
the SANE library provides the Tan function. 

The Tan function 

Tan(X: extended): extended; 

The Tan function returns the tangent of a numeric argument. Note that the argument must 
be expressed in radians. The Tan function returns an extended value. 

Additional transcendental routines 

MPW 3.0 Pascal predefines these nine routines when the -Mc 6aaa1 Compiler option is 
used. These routines are not part of the SANE interface and are currently unavailable 
without the -Mc68881 option. 

The Arctanh function 
Arctanh (X: extended) : extended; 

The Arctanh function returns the hyperbolic arctangent of a numeric argument. The 
Arctanh function returns an extended value. 

The Cosh function 
Cosh(X: extended): extended; 

The cosh function returns the hyperbolic cosine of a numeric argument. The co sh 
function returns an extended value. 

332 MPW 3.0 Pascal Reference 



1be Sinh function 
Sinh(X: extended): extended; 

The Sinh function returns the hyperbolic sine of a numeric argument. The sinh function 
returns an extended value. 

The Tanh function 
Tanh(X: extended): extended; 

The Tanh function returns the hyperbolic tangent of a numeric argument. The Tanh 
function returns an extended value. 

The 1.og10 function 
LoglO(X: extended): extended; 

The Logl o function returns the base-10 logarithm of a numeric arg(lment. The Logl o 
function returns an ext ended value. 

The ExplO function 
ExplO(X: extended): extended; 

The Expl o function returns ten raised to the power of a numeric argument: 10.s. The 
ExplO function returns an extended value. 

The Arccos function 
Arccos(X: extended): extended; 

The Arc cos function returns the principal value, in radians, of the arccosine of a numeric 
argument. The Arccos function returns an extended value. 

The An:sfn function 
Arcsin(X: extended): extended; 

The Arcsin function returns the principal value, in radians, of the arcsine of a numeric 
argument The Arcs in function returns an extended value. 

·The SfnCos procedure 
SinCos(VAR S,C: extended; X: extended); 

The sincos procedure simultaneously sets the variable sto Sin (X) and the variable cto 
cos ( x) . The pararreter Xis a numeric argument. The sin Cos procedure is faster than 
separate function calls to Sin and cos. 

APPENDIX G The SANE Llbraiy 333 



Inquiry functions 

SANE includes several functions that allow you to determine the class of a numeric value. 
The result of each of these functions is of type NumClass, described above. In addition, 
they include a function that returns the sign of a numeric argument. 

The ClassReal function 

The ClassReal function determines the number class of a numeric argument as if the 
argument were converted to real format. For example, 

ClassReal(l) 
ClassReal(le-310) 

The first function call returns NormalNum, the code for a normalized number. The second 
call returns zeroNum, the code for zero (because le-310 rounds to +O in the real 
format). 

The ClassDouble function 
ClassDouble(X: double): NumClass; 

The ClassDouble function determines the number class of a numeric argument as if the 
argument were converted to a double format The result is of type NumClass. For 
example, 

ClassDouble(0.0/0.0) 
ClassDouble(le-310) 

The first example returns QNaN , the code for a quiet NaN. The second example returns 
DenormalNum, the code for a denormalized number (because le-310 is denormalized 
in the double format). 

The OassExtended function 
ClassExtended(X: extended): NumClass; 

The ClassExtended function determines the number class of a numeric argument as if 
the argument were converted to an extended format. The result is of type NumClass. For 
example, 

ClassExtended(l/0) 
ClassExtended(e-310) 

The first example returns Infinite , the code for infinities. The second example returns 
NormalNum, the code for a normalized number. 

334 MPW 3.0 Pascal Reference 



( 

( 

The ClassComp function 
ClassComp(%: comp): NumClass; 

The Classcomp function determines the number cJass of its numeric argument as if the 
argument were converted to comp format The result is of type NumClass. For example, 

ClassComp(l) 
ClassComp(O.l) 

The fi.n:t examµJ..~ returns No rmalNum , the code for a nonnal number. The second 
exa1aple returns zeroNum, the code for zero. (Remember that comp stores integral 
values.) 

The Slgo.Num function 
SignNum(%: extended): integer; 

The SignNum function takes a numeric argument and returns an integer value that 
indicates the sign of the argument. The value returned is one if the argument's sign is 
negative, zero if the argument's sign is positive. 

The RandomX function 
RandomX(VAR %: extended): extended; 

The RandomX function takes a variable parameter of type extended that must contain 
an integral value in the range 1 ~ x ~ 2'1- 2. It returns the next random number (in 
extended format) in sequence within the same range. The variable argument is 
updated to the value returned. RandomX uses this algorithm: 
NewX - (75 * OldX) MOD (231_1) 

The NaN function 

Nan(%: integer): extended; 

The Nan function takes an integer argument and returns a NaN, in extended format, 
associated with the code given as an argument. The SANE NaN error codes are shown in 
Table G-2 in the section "NaNs," earlier in this chapter. 

The Relation function 
Relation(%, y: extended): RelOp; 

The Relation function takes two numeric arguments and returns a value of type 
Relop. The value returned specifies the relationship between the two arguments. 

For example, Relation< o. 1, NaN ( o > ) returns unordered, as all comparisons 
involving NaNs are unordered. Relation (1, 3. 9) returns LessThan. 

APPENDIX G The SANE library 335 



Environmental access procedures and functions 

The SANE environmental access routines allow you to determine how calculations are to 
be performed and how to respond to exceptional conditions. The environment 
consists of 

• the rounding direction 

• exception flags 

• halt settings 

The rounding direction 

The rounding direction can be set in four ways: 

• ToNearest 

• Upward 

• Downward 

• TowardZero 

The default rounding direction is ToNearest . You can find out what the current 
rounding direction is by using the GetRound function. You can change the rounding 
direction by using the set Round procedure. 

The GetRound function 
GetRound: RoundDir; 

The GetRound function returns the current rounding direction as a value of type 
RoundDir. 

336 MPW 3.0 Pascal Reference 

''\,_ __ _ 



( 

( 

The SetRound procedure 
SetRound(r: RoundDir); 

The Set Round procedure takes an argument of type RoundDi r. The procedure sets the 
effective rounding direction to the one indicated by the argument. 

For example, the code below saves the current rounding direction, computes a function 
using TowardZero rounding, and finally restores the saved rounding direction. 

VAR 
R: RoundDir; 
X, Y: extended; 

BEGIN 

R :• GetRound; 
SetRound(TowardZero); 
Y :• f(X); 
SetRound (R) ; 

END. 

Rounding precision 

You may find that you want to use SANE for performing calculations and simulating the 
results you would get if you used a system that did not provide extended-precision 
arithmetic. Normally, all MPW 3.0 Pascal floating-point calculations return results that are 
rounded to extended precision and range. However, the rounding precision can be set to 
single or double precision and range. Results will still be returned in the extended fonnat. 
There is no performance benefit in setting single or double rounding precision. You can 
access the rounding precision by using the setPrecision procedure and the 
GetPrecision function. 

The GetPredsion function 
GetPrecision: RoundPre; 

The GetPrecision function retu~ a vahre of type RoundPre, which indicates the 
current rounding precision. 

The SetPredsion procedure 
SetPrecision(p: RoundPre); 

The SetPrecision procedure takes an argument that is a variable of type RoundPre, 
which indicates the desired rounding precision. 

APPENDIX G The SANE library :;37 



Exceptions 

When -MC68881 is not set, exceptional results arising from numeric calculations fall into 
five categories. The file SANE.pin Plnterfaces defines a constant for each kind of 
exception, as shown in Table G-5. 

• TableG-S SANE exceptions ·-----------=-.----... -----·~ .... ~--·-.·-,.._.~-··· .. -.!·.....-..:-·~~~·~. ---
Con~t•'l'.• 

E.xceptioa vain • .: 1.~·!tC.O\. c.::~1B.iJJL ,i.:_ ·._.;. l'~:-:, l!Xlampk. 

Invalid 1 Operation not meaningful-NaN result Sqrt(-1) 
Underflow 2 Accuracy lost-result too small 2-16383 /3 
Overflow 4 Result too large for number representation 216384 

DivByZero 8 Division of nonzero number by zero 1/0 
Inexact 16 Rounded result not same as exact math result 1/3 

The exceptions shown in Table G-5 occur under the following conditions: 

• If an invalid operation is performed, Invalid is set 

• If underflow occurs, underflow is set. 

• If overflow occurs, overflow is set. 

• If division by zero occurs, DivByZero is set 

• If the result of the calculation is inexact, Inexact is set 

Table G-6 lists the exceptional results that can occur when -MC68881 is set The prefix 
cur stands for current exception. These eight values match the 68881 Exception Status 
byte. See the Motorola MC68881 Floating-Point Coprocessor User's Manual for details. 

338 MPW 3.0 Pascal Reference 

/ 



( 

( 

• TableG-6 68881 SANE exceptions 

Excepdon C.Omtmt value 

Inexact 8 
DivByZero 16 
Underflow 32 
Overflow 64 
Invalin 128 
Cu:z:Inexl 256 
Curinex2 512 
CurDivByZero 1024 
CurUnderflow 2048 
CurOverflow 4()C)6 
CurOpError 8192 
CurSiqNaN 16384 
CurBSonUnor 32768 

The SetExceptlon procedure 
SetException(e: Exception; b: boolean); 

The SetException procedure takes one argument of type Exception and a second 
argument of type boolean. If the second argument is true, the procedure signals the 
exceptions encoded in its first argument. If the second argument is false, it clears the 
exception flags specified by the first argument. For example, 
SetException(Overflow +Inexact, true); 

signals the Overflow and Inexact exceptions. If halt on overflow or Inexact were 
set, this statement would halt the program. 

The TcstExccptfon function 
TestException(e: Exception): boolean; 

The TestException furiction takes an argument of type Exception and returns a 
boolean value that indicates whether any of the exceptions encoded in its argument are 
set or not. 

Following the SetException statement above, the statement 

TestException(OverFlow +Invalid); 

would return true. 

APPENDIX G The SANE Library 339 



Using exceptional conditions to halt a program 

The SANE environment includes a halt setting for each of the exceptions that determines 
whether the occurrence of the exception halts the program. By defaul~ MPW 3.0 Pascal 
adheres to the IEEE Standard by initializing all halts clear (off). 

You can access the halt settings by using the Test Halt function and the setHal t 
procedure. 

The TestHalt function 
TestHalt(e: Exception): boolean; 

The TestHal t function takes an argument of type Exception and returns a boolean 
value. If any of the halts indicated by the Exception argument are se~ the function 
returns true; otherwise it returns false. 

The SetBalt procedure 
SetHalt(e: Exception; b: boolean); 

The SetHalt procedure takes two arguments. The first is of type Exception. This 
indicates which exceptions you want t.o halt your program. The second argument is of 
type boolean. If the value of the boolean argument is true , occurrences of the 
indicated exceptions will cause your program to halt. If it is false, your program will 
continue to run when these exceptions occur. 

Halts and the 68881 

When the -MC68881 option is set, floating-point halts are generated by the 68881 and 
not by Pack4. Old sources fora halt handler will no longer work when compiled with 
-MC68881 set. 

To write a halt handler for the 68881, consult the Motorola MC68881 Floating-Point 
Coprocessor User's Manual. 

340 MPW 3.0 Pascal Reference 



( 

For details on SANE halt handlers compatible with Pack4 , see the Apple Numerics 
Manual. The following support for 68881 halts and traps has been added to the file 
SANE.p: 

TrapVector -
Unordered: 
Inexact: 
DivByZero: 
Underflow: 
Cpf:.;::~G:t: · 

Ovorflol'.r: 
SiqNaN: 

END; 

RECORD 
lonqint; 
lonqint; 
lonqint; 
lonqint; 
lc.n;:dnt; 
lonyint; 
lonqint 

PROCEDURE GetTrapVector (VAR Traps: TrapVector); 
{ Traps <-- FPCP trap vectors } 

PROCEDURE SetTrapVector (Traps: TrapVector); 
{ FPCP trap vectors <-- Traps 

The TrapVector type definition and its accompanying procedures, GetTrapVector 
and setTrapVector, give you access to those 68020 exception vectors that manage 
68881 floating-point exceptions. For details on 68881 exception vectors, see Motorola's 
68020 and 68881 manuals. The procedures for setting and getting halts, exceptions, and 
environments work as they do when -MC 6aaa1 is not set; they differ only in the data 
types used as their arguments. 

Finally, unlike the Pack4 halt mechanism, the 68881 supports the IEEE-recommended 
trapping mechanism. The word trap is prominent in the names above to emphasize this 
difference. IEEE traps sometimes rebias the exponent of floating-point results; in some 
cases, exceptions are set differently when traps are enabled, and the stack passed to a 
trap handler is set up differently by the 68881 trap mechanism. 

Saving and restoring environmental settings 

The entire SANE environment (rounding direction, rounding precision, exception flags, 
and halt settings) can be encoded in a value of type Environment. The procedures 
described below access the current SANE environment as a whole. They are useful for 
managing the environment so that routines run with the environments they require and for 
controlling the exception information passed between routines. 

The GetEnvfronment procedure 
GetEnvironment(VAR e: Environment); 

The GetEnvironment procedure takes an argument of type Environment as a variable 
parameter and assigns the current settings of the environment to that variable. 

APPENDIX G The SANE library 341 



When your program begins, the environment will reflect the MPW 3.0 Pascal defaults: 

• rounding direction ToNearest 

• roUJ}.ding precision extended 

• all exception flags cleared 

• no halts set 

SetEnvironment(e: Environment); 

The SetEnvironment procedure takes an argument of type Environment . It sets the 
floating-point environment to the one encoded in its argument. To re-install the default 
environment, use the statement 

SetEnvironment(IEEEOefaultEnv); 

The following procedure ensures that it will run under the IEEE default environment, while 
not affecting its caller's environment: 

PROCEDURE P; 
VAR 

SaveEnv: Environment; 
BEGIN 

GetEnvironment(SaveEnv); 
SetEnvironment(IEEEOefaultEnv); 

SetEnvironment(SaveEnv) 
ENO; 

Note that the Environment type is not the inteqer type when the -MC68881 
Compiler option is invoked, so the older usage, setEnvi ronmen t < o) , will no longer 
work with this option. For compatibility, SetEnvironment ( IEEEDefaul tEnv) 
works correctly regardless of the setting of the -Mc 6aaa1 option. 

ProcEntry(VAR e: Environment); 

The ProcEntry procedure saves the current environment(the rounding direction, 
rounding precision, exception flags, and halt settings) in the Environment variable 
passed to the procedure, and then sets the environment to the IEEE defaults. The 
statement P roe Entry < e) is equivalent to 

GetEnvironment(e); 
SetEnvironment(IEEEDefaultEnv); 

342 MPW 3.0 Pascal Reference 



( 

.,. 

The ProcExit procedure 
ProcExit(e: Environment); 

The ProcExit procedure takes an argument of type Environment. It temporarily saves 
the current exception flags, sets the effective environment to be the one encoded in its 
argument, and then signals the temporarily saved exceptions. 

ProcEntry and ProcExit can be used in routines to selectively hide spurious 
exceptions from the routine's cane~. I'or ex~.mple, 

FUNCTION Arccos(x: extended): extended; 
VAR 

e: Environment; 
BEGIN 
ProcEntry (e); 
Arccos :• 2.0*Arctan(Sqrt(l.0-x)/(l.O+x)); 
SetException(DivByZero, false); 
ProcExit(e) 

END; 

P rocEntry < e> saves the caller's environment in e and sets IEEE defaults so that 
exceptions cannot halt the routine. If x • -1, the computation of the right side of the 
assignment to ArcCos will signal Di vByZero, even though ArcCos will be assigned the 
correct value, pi. SetException (DivByZero, false) clears the DivByZero flag, 
so the caller never sees it. If x > 1 or x < -1, the computation of Arccos will 
appropriately signal Invalid. The ProcExi t procedure will resignal Invalid after 
restoring the caller's environment, so if the caller's environment calls for halts on invalid, 
the halt will occur. 

Support for the 68881 

The following list summarizes the MPW 3.0 Pascal support for the 68881 floating-point 
coprocessor. Detailed information about SANE and prograrruning the 68881 is provided in 
the sections below. 

• Applications compiled without the -MC68881 option will run on all Macintoshes. If 
-Mc 6 a a 81 is set, then your application will run only with a 68020 and a 68881 in the 
computer. 

• One library, SANELlb881.o, has been added and the interface file SANE.p has been 
updated to provide support for the floating-point coprocessor. 

• The command-line option -MC68881 may be used to access the 68881 directly for 
addition, subtraction, multiplication, division, square root, remainder, binary-binary 
conversion, and comparison. When this option is set, you must link with 
SANELlb881.o instead of SANELib.o. 

APPENDIX G The SANE library 343 



• For the same effec~ you may type { $MC 6 8 8 81 + } in the source code (it must appear 
at the start of the file before any VAR, PROCEDURE, or FUNCTION declarations or any 
USES statements). 

• With the ...:Mc68881 option, the extended type becomes 12 bytes long and variables 
of extended type may be allocated to registers. 

• By default, the Compiler calls Packs to perform accurate and fully compatible 
transcendental (elementary) functions even if you have set the -Mc 6 8 8 81 option . 

... - If you ..,,,.nt J:"" Cor· • ·-'i·"· •o <-iii··!• 14- · .~. ,..,i:~ ,,., i ~ .e <r·n;Tt f,-,. !--"· ··: ,,..,: ·~·, ·. . ,, '"1 • \l'f'Gr. """ 1. .. t.Jt wJ. I.'. \.. .. .LO.•\..""'··" 'l.,,,.c;.1.-'1 t.v .... } . .. \. -~1L ....... vi -~·~·- ; . , .. .., .... 

compatible, but very fast transcendental functions, then add -d Elems881=true 

to the Pascal command line. 

SANE and the 68881 

SA.NE is Apple's numeric environment. It is a superset of IEEE Standard 754 numerics. All 
Apple computers and most Apple programming languages incorporate SANE. In the 
Macintosh family, SA.NE is contained in the system ROM as Pack4 and Packs . MPW 3.0 
Pascal handles floating-point arithmetic by emitting code to call the packs. Floating­
point across the Macintosh family is identical in accuracy and, except for the Macintosh 
II, about equally fast. 

Floating-point performance on the Macintosh II is about an order of magnitude faster 
than on the Macintosh Plus because Pack4 and Packs (in the Macintosh II ROM) take 
advantage of the 68881 floating-point coprocessor whenever feasible. The 68881 is a very 
fast floating-point chip that conforms fully to IEEE 754 and, like SANE, has several built­
in extensions to the IEEE Standard. For the fastest possible floating-point performance, 
MPW 3.0 Pascal can use the 68881 directly, avoiding calls to Pack4 and Packs. 

The -Mc 6 8 8 81 command line option directs the Compiler to use the 68881 calls for basic 
arithmetic operations (addition, subtraction, multiplication, square root, remainder, 
comparison, and binary-binary format conversions). When you invoke this option, the 
following three effects occur: 

• The size of the extended data type changes. 

• Arithmetic executes about two orders of magnitude faster than on the Macintosh Plus 
(about one order of magnitude faster than the Macintosh II without the -Mc 6 8 a 81 

option). 

• Your application will contain 68881 instructions and therefore will no longer run on a 
Macintosh without a 68881. 

344 MPW 3.0 Pascal Reference 



( 

Result values will be identical to those received without the -Mc 6aaa1 option. A funher 
option, written -d Elems88l=true, directs the Compiler to use the 68881 calls for all 
the 68881 transcendental functions (logarithms, exponentials, trigonometric, and 
hyperbolic trigonometric). This option has no meaning unless the -Mc6aaa1 option is 
already invoked; in addition, it has two important effects: 

• Results will differ from results without the -d El ems a 81 ==true option because 
Packs in ROM is more accurate in its transcendental functions than the 68881. 

• Transcendental function perfonnance will improve by more than another order of 
magnitude. 

Mon: about the 68881 

Pascal allows you to redefine any predefined functions, procedures, and types. Using 
-d Elems881 .. true, described above, simply controls the redefinition of several 
routines built into the Compiler. SANE.p in the Plnterfaces folder contains declarations of 
19 transcendental functions that the Compiler predefines. The transcendental functions 
fall into three groups: 

• Pascalpredeftnedfunctions, including Sin, Cos, Arctan, Exp, and Ln 

• SANE junctions, including Tan, Expl, Exp2, Lnl, and Log2 

• Additional functions, including Arctanh, Cosh, Sinh, Tanh, LoglO, ExplO, 
Arccos, Arcsin, and Sincos 

When -d Elems881=-trueis set(and -MC68881 is invoked), the Compiler makes 
direct 68881 calls for all Pascal predefined functions, SANE functions, and additional 
functions listed above. Otherwise, the declarations for the Pascal predefined functions 
and the SANE functions are seen by the Compiler in SANE.p, direct calls for these 
functions are not madet and the Compiler generates calls to the versions of these routines 
found in SANEI.ib.881.o. In effect, SANE.p tells the Compiler to call the version of these 
functions that. is supplied at link time in the file SANELib881.o in the {Plibraries} folder. 
SANEI.ib881.o, in tum, calls Packs in the ROM for accuracy and compatibility. (When the 
-MC 6 a a 81 option is set, link only with SANELib881.o; otheiwise, link with SANELib.o.) 

Register usage 

The 68881 adds eight new registers, called FPO, ... ,FP7, to the familiar DO, ... ,D7 and 
AO, ... ,A7 of the 68020. The FP registers are 96 bits wide and are designed to hold 
extended-precision data. Pascal optimizes the use of these registers for variables and for 
expression evaluation. Pascal puts variables in FP4, ... ,FP7 and allocates FPO, ... ,FP3 as 
scratch registers. 

APPENDIX G The SANE Library 345 



For example, all floating-point expressions, such as the right-hand side of 

x:= 3*y+6; 

are evaluated in FP registers. If x and y are variables of the extended type, then the 
Compiler may also allocate them to registers, improving performance even further. 

Converting between extended formats in mixed-world programs 

Apple recommends compiling all of your program files eithc, with the; -z..(;6l:ico1 option 
never set or with it always set Building a program with mixed settings of this option 
causes problems in the following ways: 

• Extended constants and variables in some parts of a mixed-setting program are 80 
bits long; in other parts, they are 96 bits long. This can cause problems when a portion 
of your program refers to constants and variables from another portion with the other 
extended format. 

• Since floating-point value parameters are always promoted to extended, calling a 
function that has the other extended format can cause trouble. 

• The two SANE libraries SANELlb.o and SANELlb881.o contain routines with identical 
names. To refer to routines from both libraries in the same link step: 

a Use Lib to build your own library (selecting the routines you need from one of the 
libraries). 

a Rename the routines and the modules containing them to avoid name collision. 
This is further complicated by requiring the use of DumpObj to determine the 
names of the modules containing the entry points whose names need changing. 

a Link with your new library and with the unchanged SANE library. 

If you must mix files that contain different extended formats, limited support is offered 
to solve the problem with calling a function that has the other extended format. SANE.p 
defines the following functions to convert between 96-bit and 80-bit extended formats: 

FUNCTION X96to80(X: extended96): extended; 
FUNCTION X80to96(X: extended): extended96; 

for use in the 80-bit world, and 

FUNCTION X96to80(X: extended): extended80; 
FUNCTION X80to96(X: extended80}: extended96; 

for use in the 96-bit world. 

346 MPW 3.0 Pascal Reference 



( 

The types 

Extended80 = ARRAY (0 .. 4] OF integer; 

and 

Extended96 =ARRAY (0 .. 5] OF integer; 

are useful only in these transfer routines-you cannot do arithmetic with them. They are 
not understood by the Compiler to be equivalent to the ext€nded type. 

For example, if 

FUNCTION foo(X: extended): extended; 

is compiled with the -MC68 881 option set (so tha~ for this function, the extended 

type is 96 bits wide), then to call f oo from an 80-bit world, you would 

1. Declare foo in the 80-bit interface as follows: 
function foo(X: extended96): extended96; 

2. Call foo as 
X96toX80(foo(X80toX96(X))); 

APPENDIX G The SANE Library 347 



/ 



( 

Appendix H The PasMat Utility 

Syntax 

Description 

THIS APPENDIX DESCRIBES PASMAT, an MPW Shell utility program that you can use 
to convert your source text into "pretty-printed" format. 

P asMa t [ option ... ] [ inputflle [ outputfile l l 

Reformats Pascal source code into a standard format, suitable for printouts or 
compilation. PasMat accepts full programs, external procedures, blocks, and 
groups of statements. 

• Note: A syntactically incorrect program causes PasMat to abort. If 
this happens, the generated output will contain the formatted 
source up to the point of the error. 

PasMat options let you do the following: 

• convert a program to uniform case conventions 

• indent a program to show its logical structure, and adjust lines to fit into a 
specified line length 

• change the comment delimiters ( * * ) to { l 

• remove the underscore character (_) from identifiers, rename identifiers, or 
change their case 

• format include files named in MPW Pascal include directives 

PasMat specifications can be made through its options or through special 
formatter directives, which resemble Pascal Compiler directives and are inserted 
into the source file as Pascal comments. 

PasMat's default formatting is straightforward and does not necessarily require 
you to use any options. The best way to find out how PasMat formats something 
is to try out a small example and see. • 





( 

Input 

Output 

Options 

If no input files are specified, standard input is formatted. 

If no output file is specified, the formatted output is written to the standard 
output file. Refer to "Error Handling" below for more information about 
PasMat's treatment of errors in the source. 

Most of the following options modify the initial default settings of the 
directives described in the Macintosh Programmer's Workshop 3.0 Reference 
manual. 

-a Set a- to disable CASE label bunching. 

-b Set b+ to enable IF bunching. 

-body Set body+ to align procedure bodies with their 
enclosing BEGIN ••• END pair. 

-c Set c+ for placement of BEGIN on same line as 
previous word. 

-d Set d+ to enable the replacement of ( * * ) with 
{ } comment delimiters. 

-e Set e+ to capitalize identifiers. 

-entab Replace runs of blanks with tabs. The tab stop 
value is determined by the -t option or current 
t=n directive (not by the file's tab setting). 

-f Set f- to disable formatting. 

-g Set g+ to group assignment and call statements. 

-h Seth- to disable FOR, WHILE, and WITH 

bunching. 

-ipathname [, pathname ... ] Search for included files in the specified 
directories. Multiple -i options may be specified. 
At most 15 directories will be searched. The search 
order is specified under the description of the 
Pascal command. (Note that USES declarations 
are not processed by PasMat.) 

APPENDIX H The PasMat Utility 351 



-in 

-k 

-1 

- list filename 

-n 

-o width 

-p 

Set in+ to process Pascal Compiler includes. This 
option is implied if the - i option is used. 

Set k+ to indent statements between 
BEGIN ••• END pairs. 

Set l + for literal copy of reserved words and 
identifiers. 

Generate a listing-of the formatted source. The 
listing is written to the specified file. 

Set n + to group formal parameters. 

Set the output line width. The maximum value 
allowed is 150. The default is 80. 

Display version information and progress 
information on the diagnostic file. 

-pattern =pattem=replacement= 

352 MPW 3.0 Pascal Reference 

Process includes (-in) and generates a set of 
output mes with the same include structure as the 
input, but with new names as specified in the 
pattern and replacement strings. The output 
filenames and Pascal Compiler include directives 
are generated by editing the input (included) 
filenames according to the pattern and 
replacement strings. Pattern is a pathname that is 
to be looked for in the input file and in each 
included file (the entire pathname is used and case 
is ignored). If the pattern is found, that sequence 
of characters is replaced by the replacement string. 
The result is -a new pathname, which becomes the 
name for an output file. For example, 

PasMat -pattern =OldFile•NewFile= 

replaces each name containing the string OldFile 
with the string 

NewFile 



-q 

-r 

-rec 

-s renameFile 

-t tab 

( ··.·. '· 

Any character not contained in the pattern or 
replacement strings can be used in place of an 
equal sign. Note that special characters must be 
quoted. See the example at the end of this 
appendix. 

Set q+ not to treat .t::Ls E ••• r F sequence 
specially. 

Set r + to uppercase reserved words. 

Indent a record's field list under the identifier the 
record definition is defining. 

Rename identifiers. RenameFi/e must be a file 
containing a list of identifiers and their new 
names. Each line in this file contains two 
identifiers of up to 63 characters each: the first is 
the identifier to be renamed, and the second is the 
name that will replace all occurrences of the first 
identifier when creating the output. There must be 
at least one space or tab between the two 
identifiers. Leading and trailing spaces and tabs 
are optional. The case of the first identifier 
doesn't matter, but the second identifier must be 
specified exactly as it is to appear in the output. 
The case of all identifiers not specified in the 
renameFile is subject to the other case options 
(-e, -1, -u, and -w) or their corresponding 
directives. Reserved words cannot be renamed. 

Set the tab amount for each indentation level. If 
the -entab option is also specified, tab 
characters will actually be generated. The default 
tab value is two. 

APPENDIX H The PasMat Utility 353 



-u 

-v 

-w 

-x 

-y 

-z 

-: 

-@ 

"-t" 

Rename all identifiers based on their first 
occurrence in the source. Specifications in the 
rename (-s) file always have precedence over this 
option-that is, the identifier's translation is 
based on the rename file rather than on the first 

Set v+ to put THEN on a separate line. 

Set w+ to write identifiers in uppercase. 

Set x + to suppress space around operators. 

Set y+ to suppress space around : =. 

Set z + to suppress space after commas. 

Set : +to align colons in VAR declarations (only if 
a j PasMat directive in the source specifies a 
width). 

Set @+ to force multiple CASE tags onto separate 
lines. 

Set # + for •smart" grouping of assignment and call 
statements (grouped assignment and call 
statements on an input line will appear grouped on 
output). 

• Note: Because# is the Shell's comment 
character, this option must be quoted on the 
command line. 

Set + for "portability" mode (underscores are 
deleted from identifiers). 

Ail options except for -list, -pattern, -s, and -en tab have directive 
counterparts. It's recommended that you specify the options as directives in the 
input source so that you won't have to specify them each time you call PasMat 

354 MPW 3.0 Pascal Reference 



( 

( 

{PasMatOpts} 

variable: You can also specify a set of default options in the exported Shell variable 
{ Pa sMa t Opts } -PasMat processes these options before it processes the 
command-line options. { PasMatopts} should contain a string (maximum 
length 255) specifying the options exactly as you would specify them on the 
command line (except for command-line quoting, which shouid be omi~ted; also 
note that the options -pattern, -list, -s, and-i, which require a string 
parameter, can only be specified on the command line). For example, you can 
define { PasMatopts} to the Shell (perhaps in ~e UserStartup file) as follows: 

Set PasMatOpts "-n -u -r -d -entab -t -o 82 -t 2" 
Export PasMatOpts 

The entire definition string must be quoted to preserve the spaces. 

As an alternative to specifying the options directly, you can indicate that the· 
options are stored in a file, by specifying the file's full pathname prefixed with 
the character " : 

Set PasMatOpts ""pathname" 
Export PasMatOpts 

PasMat will now look for the default options in the specified file. The lines in this 
file can contain any sequence of command-line options (except for -pattern, 
-list, -s, and -i), grouped together on the same or separate lines. The lines 
may be commented by placing the comment in braces ( { ... } ). A typical options 
file might appear as follows: 

-n {group formal params on same line} 
-u {auto translation of id's based on 1st 

-r 

-d 
-en tab 
-t 
-o 82 
-t 2 

occurrence} 
(uppercase reserved words} 
{leave comment braces alone} 
{place real tabs ~n th~ output} 
{smart grouping} 
(output line width} 
{indent tab value} 

(Except for the tab value, this example shows the recommended set of options.) 

If PasMat does find a default set of options, those options will be echoed as part 
of the status information given with the -p option. 

APPENDIX H The PasMat Utility 355 



Directives Directives are specified by special comments included in the Pascal source 
code. These comments have the form 

{ [directives] optional text} 

The directives themselves are either switches with the format 

<character(s)>+ 

or 

<character (s)>-

or numeric directives with the format 

<character(s)>=< number> 

For the j directive only, the numeric directive can also have the special format 

j=<number>c/ <number>cc/ <number >c 

where the cs are characters and either or both of the first two entries can be 
omitted (but not the slashes separating them-for example, I I <number >c). 

Multiple directives are separated by commas. Spaces within a directive are not 
allowed. For example, 

{[b+,o=95,t=4,r-J} 

sets the switch b on and r off and sets the numeric directive o to 95 and t to 4. 
Case is ignored in directives. 

The following directives are recognized: 

a Place a statement following a CASE label. It will be put on the same 
line if it fits. The default value is a+. · 

b Place a statement following THEN or ELSE. It will be put on the 
same line if it fits. The default'value is b-. 

body Do not indent a procedure body between BEGIN ••• END. The 
directive body+ aligns the procedure body with BEGIN and END. 

The default value is body-. 

c Place BEGIN on same line as its introductory keyword. If c+ is 
specified, then k- (the default) should be used. The default value is 
c-. 

d Replace the comment delimiters ( * * ) by { } . The default value is 
d-. 

356 MPW 3.0 Pascal Reference 



( 
e Capitalize first (or only) letter of identifiers and the first letter 

following a break character (underscore). Retain the break 
character. This directive overrides the l and w directives. See also 
the_ (portability) option below. The default value is e-. 

f Turn formatting on or off. This directive goes into effect 
immediately following the comment i.n whicb it is phc:::d This is 
useful for saving hand-formatted portions of a program. The 
default value is f +. 

g Group statements (i per line). This directive is specified either as a 
switch (g+ or g-) or as a numeric directive (g•i ). For g•i, the 
space from the current indentation level to the end of the line is 
divided into i fields, and successive statements are put on the 
boundaries of successive fields. A statement may take more than 
one field, in which case the next statement again goes on the 
boundary of the next field. This is similar to the use of tabs on a 
typewriter. Any statement that requires more than one line may 
produce strange results on following statements. The g•i form 
affects constant declarations and statements. By specifying the 
g+ form, only assignment and call statements are grouped together 
(if they fit on a line). The g+ directive has effect only if g•l is set. 
The default values are g- and g• 1. 

h Bunch a single statement on the same line as FOR, WHILE, and 
WITH if it fits. Otherwise, indent it on the next line. This also 
applies to IF (without ELSE) with the b- directive. The default 
value is h+. 

in Process INCLUDE {$I filename} Pascal Compiler (not PasMat) 
directives. Pa.sMat provides three ways to process include files, 
with the third way recommended: 

• Process all the include files in the input to produce a single 
output file. To do this, use the in+ PasMat directive (or 
option). As each include Pascal Compiler directive is 
encountered, it will be output on the line before the output of 
the included source. However, to avoid reprocessing of this 
directive by the Pascal Compiler (assuming the output is to be 
eventually compiled), the i in the directive is not output. 

APPENDIX H The PasMat Utility 357 



j 

• Treat each include file separately. Each file is given individually 
to PasMat to format. By placing an in•n PasMat numeric 
directive at the start of each source input file, you can specify 
the initial indenting level for the file. Indenting for in •n will 
start at column n* t, that is, the specified level times the 
indr.nting tab value (see the t ciirective). Note that be.:·mse 
individual include files need not represent syntactically 
complete Pascal constructs (for example, an include file can 
contain a procedure with many nested inner procedures but 
without the body of the outer procedure), PasMat may report 
a syntax error. If this happens, check the output to see if the 
entire include file was processed. 

• Process the entire source as in the first method above, but 
instead of generating a single source with the include directives 
removed, generate as many output files as there are input 
(include) files. The result is a set of formatted files with exactly 
the same include structure as the input. All the include 
directives are output and edited to reflect the new filenames. 
This method of processing include files is indicated by 
specifying the -pattern option on the command line when 
PasMat is invoked. For further details, refer to the discussion 
of -pattern under "Options" in this appendix. 

The default value is in-, in=O (include files not processed). 

Special alignment of declarations and comments. This is a unique 
numeric directive with the general format 
j=<width>[±]/<coll>[sd]/<col2>c 

<width>[±] 

Specifies that width columns are to be reserved for all following 
CONST, TYPE, or VAR identifiers (you can also control the 
alignment of the colons in VAR declarations within the width by 
using the : option). The optional sign following width indicates 
whether to apply the width to record lists (if+ is used or the sign is 
omitted) or to apply it to just the declared variables themselves (if 
- is specified). 

358 MPW 3.0 Pascal Reference 



( 

k 

l 

n 

<coll>[sd] 

Specifies what column a comment following a statement on the 
same line is to start in. Note that width is a width specification, 
and coll is a column specification. Using coll allows you to align all 
comments in declarations. All comments follow statements (when 
the comment is the last thing on the same line as the statement), 
unless you use the options s and d following coll (case is ignored 
and the letters may be in either order). Ifs is specified, coll is only 
applied to statements and not declarations. If d is specified, then 
coll is only applied to declarations. Omitting both s and d is the 
same as specifying both; coll is applied to all comments following 
statements if the comment is the last thing on the line. 

<col2>c 

Specifies a starting column for comments, as coll does, but only 
affects comments that have the trigger character c as the first 
comment character. 

If width is omitted, its previous value remains unchanged; the slash 
in front of the coll is required. If coll is omitted, the previous 
value remains unchanged; the slash in front of it is optional unless 
col2 is specified, in which case both slashes are required. 

For constant declarations, the 9• i directive (where i is greater than 
one) overrides width. Comments should not be used for these 
statements. Also, the width and coll values are ignored for a line if 
they cannot be used because an identifier or its declarative 
information is too wide. A value of zero for width, coll, or col2 
disables the corresponding alignment. The default value is j"'0/0/0. 

Indent statements between BEGIN ••• END pairs. Normally, the 
statements are indented to the same level as the BEGIN ••• END 

pair. The c directive determines the actual placement of BEGIN. 

Nonnally, BEGIN appears on a separate line unless c+ is used. Also, 
k- should be used if c+ is specified. The default value is k-. 

The case of reserved words and identifiers is to be a literal copy of 
the input. This directive overrides thew directive and is disabled 
by the _ directive. The r directive overrides l for reserved words. 
The default value is 1-. 

Group fonnal procedure parameters. This is similar to the g+ 
option, but only for fonnal parameters of procedure and function 
declarations. Normally, these appear one per line. The default value 
is n-. 

APPENDIX H The PasMat Utility 359 



o This is a numeric directive (o=w) that specifies the output line 
width. The maximum value allowed is 150 characters. If a particular 
token will not fit in this width, that line will be lengthened to fit it 
and a message will be displayed at the end of formatting. The 

• default value is o•80. 

q ~/:1.::,1 .u: 1.,i.lo··;., :.: .i.· '1:t., C.:o ... ~}l: t.eat IE speci~Hy. his thus 
indented on the next line after ELSE. The default value is q-. 

r Output all reserved words in uppercase; otherwise (r-), output in 
lowercase. The default value is r-. 

rec Indent record field lists under the record's identifier, instead of 
under the reserved word RECORD. The directive rec+ formats 
records like this: 

t 

u 

v 

identifier = RECORD 
{fieldlist} 
END; 

The default value rec- formats records like this: 

identifier = RECORD 
{fieldlist} 

END; 

Specifies the amount of tab for each indentation level. This is a 
numeric directive ( t • n). Statements that continue on successive 
lines are additionally indented by half this amount. The -en tab 
command option causes actual tab characters to be placed in the 
output file using the t directive's tab stop value. The default value 
is t .. 2. 

Case conventions for each identifer are to be based on the 
identifier's first occurrence in the source. The first occurrence of 

' each identifier is left as is; all subsequent occurrences are made to 
look exactly like its first occurrence. This option overrides the l 

and w options, but the e and _ options can still be used. The 
default value is u-. 

Align an IF statement so that THEN is indented on the next line 
after the line containing IF. ELSE is aligned with THEN. The 
default value is v-. 

360 MPW 3.0 Pascal Reference 



w Convert identifiers to uppercase; otherwise, convert to lowercase. 
This directive is overridden by the 1, e, and_ directives. The 
default value is w-. 

x Suppress space around the arithmetic operators +, -, *,and I 
and the relational operators =, <>, <, <=,>,and>=. Nonnally, 
one space is placed on each side of the5e ope,ators. This option 
has no effect on the= used in CONST and TYPE declarations. The 
default value is x-. 

y Suppress space around the assignment operator : =. The default 
value is y-. 

z Suppress space after commas. The default value is z - . 

Controls CASE statement tags (labels). This directive is specified 
either as a switch ( q+ or q-) or as a numeric directive (@• i). In its 
@•i form, the i indicates that the statement associated with the 
CASE tag is to start i columns after the start of the case tag. This is 
similar to the j-<width> I <coll> I <col2>c directive where 
width indicates how much space to reserve for an identifier being 
declared. Here the i indicates how much space to reserve for the 
CASE tag(s). If @•O (the default), statements following a CASE tag 
are indented (using the current indenting tab value) on the line 
following the the tag. If @ • 1, the width of the first tag plus two (for 
the tag's colon and following space) is used to determine the space 
to reserve for all following tags in that CASE statement. This means 
you should put your longest CASE tag first For @•i (where i is 
greater than one), i spaces are reserved for the CASE tags. If the tag 
is too wide for the specified width, then the statements that 
follow are placed on the following line, indented i spaces. 

@ + and @- specify what to do with a list of tags that don't fit into 
the specified width. @ +· indicates that a tag that is part of a list is 
to be put on the next line if it would exceed the i width. @­

indicates that as many tags as possible are to be kept together on 
the same line. If the resulting list is longer than i, the statements are 
placed on the following line indented by i. The default values are 
@-, @•O. 

APPENDIX H The PasMat Utility 361 



Positioning of colons in aligned VAR declarations. The reserved 
width for identifiers in declarations is controlled by the j 

directive's width parameter. In VAR declarations, you have the 
choice of allowing the colons to immediately follow their 
identifiers (by specifying the directive : - ) or to align the colons 
<it thr. right enri of th<: :·-;se1v';.1 't' 1idci.1. (by sp·~dfyin3 the ,~iir-cdve 
: +).The default value is : -. 

t "Smart" grouping option. If t + is specified, then assignment and 
call statements that were grouped together on the same line in the 
input will be grouped together on the same line in the output (if 
they don't exceed the output line width). The default value is #-. 

Formatting Comments: 

This directive (an underscore) sets portability mode formatting, 
which removes the underscore character from identifiers. The first 
letter of each identifier and the first letter following each 
underscore character are capitalized, while the remaining 
characters are lowercase. This directive overrides the l and w 
directives. The case of reserved words is set with the r directive. 
The default value is - . 

Comments in Pascal are hard to format, and PasMat tries to be clever about it 
The rules should allow you to use comments to achieve almost any effect you 
would like. The following rules govern PasMat's formatting of comments: 

• A comment that stands alone on a single line will be passed to the output 
unaltered. Its left end is set to the current indentation level so that it is 
aligned with the statements before and/or after it. If it is too long to fit with 
this alignment, it is placed on the page as far right as it will go. 

• A comment that begins as the first thing on a line and continues on another 
line is passed to the output unaltered, including its indentation. This type of 
comment is assumed to contain text formatted by the user. 

• If a comment covered by one of the above rules will not fit within the 
defined output line length, the output line is extended as necessary to 
accommodate it, and a message will be printed at the end of the formatting. 

362 MPW 3.0 Pascal Reference 



( 

( 

• A comment that is not the first thing on a line is formatted with the rest of 
the code. Words within it are moved to the next line to make it fit, so 
nothing that has a fixed format may be used in such a comment. The 
comment is broken only at blanks; if there is no way to break a comment and 
still fit the output within the output line length, the line is extended as 
necessacy and a message is written at the end of the for.1ia1.ting. ~r n · code 
follows a comment in the input line, then no code will be placed after the 
comment in the output line. The j directive lets you force these comments 
to start in a specific column. This feature is useful for commenting 
declarations (see below). 

• A comment that follows a statement on a line and begins with a specific 
character can be forced to start in a specific column. This feature is useful if 
you are making updates to a program and you want to show who made the 
update and when. 

Statement bunching: 
Statement bunching refers to the way PasMat aligns a statement with respect to 
some component of another statement that precedes it. There are three cases: 

• a statement following CASE labels 

• a statement following THEN or ELSE 

• a statement following FOR, WHILE, or WITH 

Because users have diverse styles in formatting these statements, PasMat allows 
control, to some degree, over how these statements are aligned. 

The following discussions on bunching deal with how a statement can be aligned 
with respect to its "lead-in• statement-that is, whether it's indented after or on 
the same line as the lead-in. Therefore, statement in these cases refers to a simple 
statement. Compound statements are usually indented starting on a new line 
(except perhaps for their BEGINS as-controlled by the c directive). 

Bunching with CASE Jabels:The default formatting rule for a CASE statement is 
to place the selected statements on the same line as the case label(s). The a 
directive lets you make the statement appear on a separate line from the case 
label. The @ directive lets you control how far the statements following the case 
label are indented. 

Bunching with IF statements: The default is to place the controlled statements 
on separate lines. The b directive tells PasMat to place the controlled statements 
on the same line as THEN or ELSE. · 

APPENDIX H The PasMat Utility 363 



Tables: 

In the special case of ELSE ••• IF, the default is to put IF on the same line as 
ELSE. The q directive lets you make ·IF appear on the next line, indented after 
ELSE. 

Bunching with FOR, WHILE, and Willi: The default is to place the controlled 
statement on the .same lirf' (if it fit..:). Otherwise, it is indented on the next line. 
'::he h direcLi.ve le,:s yo~: sp"'~if~· th?': J1~ sr-:i•f.ment 2lway.s aµp2ar on the riext 
line. 

• Note: The h directive also affects the IF statement. With IF 

bunching off (b- directive) and the h directive off (h-), the 
controlled statement would normally appear on a separate line. If 
there is no ELSE, then the h directive applies to the IF statement 
just like FOR, WHILE, and WITH; that is, the controlled statement 
is placed on the same line as IF (if it fits). 

Many Pascal programs contain long lists of initializ.ation statements or constant 
declarations that are logically a single action or declaration. You can fit these 
into as few lines as possible using the g (g•i form) directive. If this is done, tab 
stops are set up on the line and successive statements or constant declarations 
are aligned to these tab stops instead of beginning on new lines. 

Structured statements, which normally format on more than one line, will not be 
affected by the g directive. However, care must be taken because assignment 
and call statements may be grouped with the end of the structured statement 
(for instance, following an END statement). A special form of grouping directive 
is provided specifically for assignment and call statements. 

Assignment and call statement grouping: 
As described above, the grouping directive to format tables is g•i, where i is the 
maximum number of statements per line. This sets up tab stops to align up to i 
statements or constant declarations. However, for assignment and call 
statements it is not always known how many statements will fit on a line. Even if 
it is known, these statements aligned on tab stops may insert too much space 
and produce an aesthetically unpleasant result A special form of grouping can be 
specified using g+, which affects only assignment and call statements. They are 
grouped so that as many as possible fit on a line without exceeding the line 
length. They are never grouped on a line ending a structured statement, so the 
problem arising with the g•i form of grouping cannot happen. 

364 MPW 3.0 Pascal Reference 



( 

Declarations: 

Limitations 

You probably won't want to group all assignment and call statements together 
everywhere in your program. The preset option is g- to format assignment and 
call statements one per line. Bracket the grouped sections of your code with g+ 

and g- directives. 

If you are formatting a program that is already partially formatted and has 
sections of code p,roup~d according to the the coder's style, you may not want it 
reformatted using g+ and g-. The "smart" grouping option ( # +) lets you specify 
that if more than one assignment or call statement is on the same input line and 
they don't exceed the output line width, they will be kept grouped in the output. 
Thus they will appear in the output exactly as in the input (except perhaps for 
the space between the statements). 

• Note: If g•i is in effect with i greater than one, it will have 
precedence over the effect of g + and # +. Thus g + or # + may be 
enabled and g•i still be used (except for g•l). 

If you want to align declarations so that the objects of the identifiers (constants 
or types) all start at a particular column, or align comments explaining the 
identifiers, use the j directive. It allows you to specify the number of columns 
to reserve for the identifiers and in which column the explaining comment is to 

begin. 

PasMat has the following limitations: 

• The maximum input line length is 255 characters. 

• The maximum output line length is 150 characters. 

• The input files and output files must be different. 

• Only syntactically correct programs, units, blocks, procedures, and 
statements are formatted. This must be taken into consideration when 
separate include files and conditional compiler directives are to be 
formatted. 

• The Pascal include directive should be the last thing on the input line if 
include files are to be processed. Include files are processed to a maximum 
nesting depth of five. All include files not processed are summarized at the 
end of formatting. (This assumes, of course, that the in directive/option is 
in effect.) 

APPENDIX H The PasMat Utility 36S 



• The identifiers Cycle and Leave are treated as reserved Pascal keywords by 
PasMat They are treated as two loop control statements by Pascal unless 
explicitly declared. 

• While Pasmat supports Pascal's $$Shell facility in include fdes, the 
processing of MPWs {Pfote&.c~d !i'f'" is -:tot fully s11ppoited because these 
files condit!om1Uy inclu~"" F:!'::'.: (r.":"lr-:nf:r,, .'.:' .. m~itt~··.~-. :· '. ;.o;; ~Jroccs.sed). 
For this reason, do not use the -in or -e option 

Error handHng: The following errors are detected and written to diagnostic output: 

Example 

• In general, premature end.of-file conditions in the input are not reported as 
errors, to accommodate formatting of individual include files, which may be 
only program segments. There are cases, however, where the include file is a 
partial program that PasMat interprets and reports as a syntax error. 

• There is a limit on the number of indentation levels that PasMat can handle. If 
this limit is exceeded, processing will abort This problem should be 
exceedingly rare. 

• If a comment would require more than the maximum output length (150) to 
meet the rules given, processing will abort This problem should be even rarer 
than indentation level proble~. 

If a syntax error in the input code causes formatting to abort, an error message 
will give the input line number on which the error was detected. The error 
checking is not perfect-successful formatting is no guarantee that the program 
will compile. 

PasMat -n -u -r -d -pattern "==formatted/=" Sample.p a 
"formatted/Sample.p" 

Format the file Sample.p with the -n, -u, -r, and -d options, and write the 
output to the file "formatted/Sample.p." Include files are processed 
(-pattern) and each Pascal Compiler $I include file causes additional output 
files to be generated. Each of these files is created with the name 
"formatted/ filename, n where filename is the filename specified in the 
corresponding include file. 

Care must be taken when a command line contains quotation marks, slashes, or 
other special characters that are processed by the Shell itself. This example uses 
the slash character, so the strings containing it have to be quoted. 

The -pattern parameter contains a null pattern(==) with "formatted/" as a 
replacement string. A null pattern always matches the start of a string. 

3(J6 MPW 3.0 Pascal Reference 



( 

Appendix I The PasRef Utility 

Syntax 

Desaiptlon 

THIS APPENDIX OF.SCRIBES PASREF, an MPW Shell utility program that you can use to 
generate a cross-reference table of variable references in your source text 

PasRef [option ... ] [ sourceFile ... ] 

Reads Pascal source files, and writes a listing of the source followed by a cross­
ref erence listing of all identifiers. Each identifier is listed in alphabetical order, 
followed by the line numbers on which it appears. Llne numbers can refer to the 
entire source file, or can be relative to individual include files and units. Each 
reference indicates whether the identifier is defined, assigned, or simply named 
(for example, used in an expression). 

Identifiers may be up to 63 characters long and are displayed in their entirety 
unless overridden with the -x directive. Identifiers may remain as they appear in 
the input, or they can be converted to all lowercase (-1) or all uppercase (-u). 

For include files, line numbers are relative to the start of the include file; an 
additional key number indicates which include file is referred to. A list of each 
include file processed and its associated key number is displayed before the 
cross-reference listing. 

USES declarations can also be processed by PasRef (their associated su filename 
compiler directives are processed as in the Pascal Compiler). These declarations 
are treated exactly like include files; and, as with the Compiler, only the 
outermost USES declaration is processed (that is, a used unit's USES declaration 
is not processed). 

As an alternative to processing USES declarations, PasRef accepts multiple 
source files. Thus you can cross-reference a set of main programs together with 
the units they use. All the sources are treated like include files for display 
purposes. In addition, PasRef checks to see whether it has already processed a 
file (for example, if it appeared twice on the input list or if one of the files 
already used or included it). If it has already been processed, the file is 
skipped. • 





Input 

Output 

Diagnostics 

Status 

Options 

If no filenames are specified, standard input is processed. Unless the -d option 
is specified, multiple source files are cross-referenced as a whole, producing a 
single source listing and a single cross-reference listing. Specifying the -d option 
is the same as executing PasRef individually for each file. 

Ali listings are wrinen to standard output Furm feed characters are piaced in che 
file before each new source listing and its associated cross-reference. Pascal s P 

(page eject) Compiler directives are also processed by PasRef, which may 
generate additional form feeds in the standard output listing. 

Parameter errors and progress information are written to diagnostic output. 

The following status codes are returned to the Shell: 

0 Normal termination 

1 Parameter or option error 

2 Execution terminated 

-a Process all files even if they are duplicates of ones already 
processed. The default is to process each (include) file or us Es 
unit only once. 

-c Do not process a unit if the unit's filename is specified in the list of 
files to be processed on the command line, or if the unit has already 
been processed. 

-d Treat each file specified on the command line as distinct. The 
default is to treat the entire list of files as a whole, producing a 
single source listing and a single cross-reference listing. This option 
is the same as executing PasRef individually for each specified file. 

-i pathname [, pathname ... ] 
Search for include or us Es files in the specified directories. 
Multiple -i options may be specified. At most 15 directories will 
be searched. The search order is specified under the description of 
the Pascal command in the Macintosh Programmer's Workshop 3.0 
Reference. 

APPENDIX I The PasRef Utility 369 



-1 Display all identifiers in the cross-reference table in lowercase. This 
option should not be used if -u is specified, but if it is, the -u 

is ignored. 

-ni -noincludes 
Do not procr.ss tl·.2 'x .. :::.!0-. fiir;;. The defaul~ is to p:·:xess the 
include files. 

-nl I -nolisting 

-no lex 

Do not display the input source as it is being processed. The 
default is to list the input 

Do not display the lexical information on the source listing. See the 
example at the end of this appendix for further details. 

-nt I -nototal 
Do not display the total line count in the source listing. This option 
is ignored if no listing is being generated (-nl). 

-n[u) I -nouses 
Do not process USES declarations. The default is to process USES 

declarations. If -nu is specified, the -c option is ignored. 

-o The source file is an Object Pascal program. The identifier OBJECT 

is considered to be a reserved word so that Object Pascal 
declarations may be processed. The default is to assume the source 
is not an Object Pascal program. 

-p Display version and progress information on the diagnostic file. 

-s Do not display include and us Es information in the listing or cross-
reference, and cross-reference by total source line number count 
rather than by include-file line number. 

' 
-t Cross-reference by total source line number count rather than by 

include-file line number. This option can be used if you are not 
interested in knowing the positions in included files. However, the 
include information is still displayed (unless -s, -ni, or -nu is 
specified). This option is implied by the - s option. 

-u Display all identifiers in the cross-reference table in. uppercase. This 
option should not be used if -1 is specified. 

370 MPW 3.0 Pascal Reference 



( 

(. 

·-w width Set the maximum output width of the cross-reference listing. This 
setting determines how many line numbers are displayed on one line 
of the cross-reference listing. It does not affect the source listing. 
Width can be a value from 40 to 255; the default is 110. 

-x width Set ::he rn~:r.lm.11rr1 display width for identifiers in the cross­
reference listing. (The default is to set the width to the size of the 
largest identifier cross-referenced.) If an identifier is too. long to fit 
in the specified width, it is indicated by preceding the last four 
characters with an ellipsis (. .. ). Width can be a value from 8 to 63. 

Normally, both include files and USES declarations are processed. The -
noincludes option suppresses processing of include files. The -nouses 

option suppresses processing of USES declarations. 

Omitting the -nouses option causes PasRef to process a USES declaration 
exactly as does the Pascal Compiler. However, you may want to cross-reference 
an entire system, including all the units of that system. Processing the units 
through the USES declaration would cause only the interface section of each unit 
to be processed. If the -nous es option is used, then USES will not be processed 
and each unit from the parameter list can be cross-referenced, treating the entire 
list as a single source. 

PasRef can also cross-reference all the units of a program while still expanding 
other units not directly part of that program, such as the Toolbox units. In that 
case, the -c option should be used. With the -c option, if the ($u interface) 
filename is the same as one of the filenames specified on the parameter list, then 
the unit will not be processed from the USES declaration because its full source 
will be (or has been) processed. 

To summarize, you have the following choices: 

• Don't process the USES, and specify a list of all files you want to process, by 
using the -nouses option. 

• Process only the interface sections through the USES declarations (like the 
Compiler), by omitting the -nouses option. 

• Process some of the units through the us Es and others as full sources, by 
specifying the -c option. 

In all cases where a. list of files is specified, no unit will ever be processed more 
than once (unless the -a option is given). 

APPENDIX I The PasRef Utility 371 



. Example· 

1 1 1 
2 1 2 
3 1 3 
4 1 4 
5 1 5 
6 1 6 
7 1 7 
8 1 8 
9 1 9 

10 1 10 
11 1 11 
12 1 12 
13 1 13 
14 1 14 
15 1 15 
16 1 16 
17 1 17 
18 1 18 
19 1 19 
20 1 20 
21 1 21 
22 1 22 
23 1 23 
24 1 24 
25 1 25 
26 1 26 

etc. 
63 1 63 
64 1 64 o-
65 1 65 
66 1 66 1-
67 1 67 
68 1 68 
69 1 69 -1 
70 1 70 
71 1 71 -o 

etc. 
178 1 178 
179 1 179 
180 1 180 

PasRef -nu -w 80 Memory.p > Memory.p.Xref 

Cross-reference the sample desk accessory Memory.p and write the output to the 
file Memory.p.Xref. No USES are processed (-nu). The following source and 
cross-reference listings are generated: 

File Memory.p 

Copyright Apple Computer, Inc. 1985-1987 
All rights reserved. 

) 

($D+) MacsBug symbols on ) 
($R-} No range checking } 

UNIT Memory; 

INTERFACE 

USES 
MemTypes, QuickDraw, OSintf, Toolintf, Packintf; 

FUNCTION DRVROpen (ctlPB: ParmBlkPtr; dCtl: DCtlPtr): OSErr; 
FUNCTION DRVRControl (ctlPB: ParmBlkPtr; dCtl: DCtlPtr) : OSErr; 
FUNCTION DRVRStatus (ctlPB: ParmBlkPtr; dCtl: DCtlPtr) : OSErr; 
FUNCTION DRVRPrime (ctlPB: ParmBlkPtr; dCtl: DCtlPtr): OSErr; 
FUNCTION DRVRClose (ctlPB: ParmBlkl?tr; dCtl: DCtlPtr) : OSErr; 

IMPLEMENTATION 

A FUNCTION DRVRClose(ctll?B: l?armBlkl?tr; dCtl: DCtlPtr): OSErr; 
A BEGIN 

IF dCtlA.dCtlwindow <>NIL THEN 
BEGIN 

DisposeWindow <Windowl?tr(dCtlA.dCtlWindow)); 
dCtlA.dCtlWindow := NIL; 

END; 
DRVRClose :• NOErr; 

A END; 

END. (of memory UNIT} 

372 MPW 3.0 Pascal Reference 



1. Memory.p 

-A-

Each line of the source listing is preceded by five columns of information: 

• The total line count. 

• The include key assigned by PasRef for an include or USES file (see below). 

• The line number within the include or main file. 

• Two indicators (left and right) th.:it reflec~ the static block nesting level. The 
left indicator is incremented (mod 10) an<l displayed whenever a BEGIN, 
REPEAT, or CASE is encountered. On tennination of these structures with an 
END or UNTIL, the right indicator is displayed, then decremented. It is thus 
easy to match BEGIN, REPEAT, and CASE statements with their matching 
terminations. 

• A letter that reflects the static level of procedures. The character is updated 
for each procedure nest level (A for level 1, B for level 2, and so on), and 
displayed on the line containing the heading and on the BEGIN and END 
associated with the procedure body. Using this column, you can easily find 
the procedure body for a procedure heading when there are nested 
procedures declared between the heading and its body. 

The cross-reference listing follows: 

accEvent 144 ( 1) 
accRun 158 ( 1) 
ApplicZone 121 ( ll 
Away 33*( 1) 146 ( 1) 

-B-
BeginUpdate 
BNOT 
Bold 
Boolean 
BOR 
BSL 

-c­
csCode 
CSP a ram 
ctlPB 

151 ( 1) 
39 ( 1) 
90 ( 1) 
31* ( 1) 
39 ( 1) 
39 ( 1) 

143 1) 
146 ( 1) 

117 ( 1) 

19*( 1) 20*( 1) 21*( 1) 22*( 1) 23*( 1) 43*( 1) 
63*( 1) 74*( 1) 143 ( 1) 146 ( 1) 168*( 1) 173*( 1) 

APPENDIX I The PasRef Utility 373 



-D-
dCtl 19* ( 1) 20*( 1) 21* ( 1) 22* ( 1) 23* ( 1) 37* ( 1) 

39 ( 1) 43* ( 1) 50 ( 1) 53 ( 1) 54 ( 1) 55 ( 1) 
63* ( 1) 65 ( 1) 67 ( 1) 68 ( 1) 74* ( 1) 115 ( 1) 

142 ( 1) 168* ( 1) 173* ( 1) 
DCtll?tr 19 ( 1) 20 ( 1) 21 ( 1) 22 1) 23 1) 37 1) 

43 ( 1) 63 ( 1) 74 ( 1) 168 1) 173 1) 
dCtlRefNum 39 ( 1) 54 ( 1) 
dCtlWindow 50 ( 1) 55=( 1) 67 1) 68= ( 1) 142 1) 

etc. 
-v-

VolName 79* ( 1) 100 ( 1) 135 1) 

-w-
what 149 ( 1) 
WindowKind 54=( 1) 
windowpeek 54 ( 1) 
Windowl?tr 48 ( 1) 67 ( 1) 151 ( 1) 153 ( 1) 
wRect 47*( 1) 

*** End l?asRef: 105 id's 249 references 

Limitations 

The numbers in parentheses following the line numbers are the include keys of the 
associated include files (shown in column 2 of the source listing). The indude-file 
names are shown following the source listing. Thus you can see what line number 
was in which include file. An asterisk ( *) following a line number indicates a 
definition of the variable. An equal sign ( =) indicates an assignment. A line 
number with nothing following it means a reference to the identifier. 

PasRef does not process conditional compilation directives! Thus, given the 
"right" combination of $IFcs and $ELSECS, PasRers lexical (nesting) 
information can be thrown off. If this happens or if you just don't want the lexical 
information, you may specify the -no lex option. 

PasRef stores all its information on the Pascal heap. Up to 5000 identifiers can be 
handled, but more identifiers will mean less cross-reference space. A message is 
given if PasRef runs out of heap space. 

• Note: Although PasRef never misses a reference, it can infrequently 
be fooled into thinking that a variable is defined when it actually 
isn't. One case where this happens is in record structure variants. 
The record variant's case tag is always flagged as a definition (even 
when there is no tag type), and the variant's case label constants 
(if they are identifiers) are also sometimes incorrectly flagged 
depending on the context. (This occurs only in the declaration 
parts of the program.) 

374 MPW 3.0 Pascal Reference 



While PasRef supports Pascal's $ s Shell facility in include files and USES 

declarations, the processing of MPWs {Pinterfaces} files is not fully supported 
because these files conditionally include files (remember, conditionals are not 
processed). For this reason, always use the -nu option to suppress processing of 
USES declarations. 

The identifiers Cycle and Lea .,e are treated as rese1ved Pascal keywords by 
Pas Ref. These are treated as two loop control statements by Pascal unless 
explicitly declared. 

APPENDIX I The PasRef Utility 375 





( 

( 

Appendix] The ProcNames Utility 

Syntax 

Description 

Input 

Output 

THis APPENDIX DESCRIBES ProcNames, an MPW Shell utility program that you can 
use to produce a list of all procedure and function names in your Pascal program 
or unit. 

ProcNames [cption ... ][file ... ] 

Accepts a Pascal program or unit as input and produces a listing of all its 
procedure and function names. The names are shown indented as a function of 
their nesting level. The nesting level and line number information is also displayed. 

ProcNames can be used in conjunction with the Pascal "pretty-printer" PasMat 
when that utility is used to format separate include files. For that case, PasMat 
requires that the initial indenting level be specified. This level is exactly the 
information provided by ProcNames. 

The line number information displayed by ProcNames exactly matches that 
produced by the Pascal -cross-reference utility PasRef (with or without USES 

being processed), so ProcNames may be used in conjunction with the listing 
produced by PasRef to show just the line numbers of every procedure or function 
header. 

Another possible use for the ProcNames output is to use the line number and file 
information to find procedures and functions quickly with Shell editing 
commands. 

The file parameters specify a list of Pascal source filenames to be processed. 
Standard input is processed if no filenames are specified. Unless the -d option is 
specified, the entire list of files is treated as a single group of files to be 
processed as a whole, producing a single procedure or function summary. 
Specifying the -ct option is equivalent to executing ProcNames individually for 
each specified file. 

The procedure or function name listing is written to the standard output file. 
Fonn feed characters are placed in the file before each new list (unless the -e 

option is specified). • 





( 
Diagnostics 

Status 

Options 

Errors are written to the diagnostic file. 

The following status codes may be returned to the Shell: 
O Normal termination 
1 Parameter or option error 

2 Execution terminated 

-c Do not process a used unit if the unit's $ u interface filename is specified in 
the list of files to be processed. This option has the same effect on the line 
numbering as does the -c option in the PasRef utility. 

-d Reset total line number count to 1 on each new file. If a list of files is 
specified, then the total line number count may either start at 1 or continue 
from where it left off in the previous file. The default is to agree with the 
listing produced by PasRef when it processes a list of files, that is, to 
continue the count. However, if you want ProcNames to treat each file 
independently, you may specify the -d option so that the total line number 
count is reset to 1 before each file is processed. 

-e Suppress page eject (form feed) between each procedure or function 
listing. 

-f PasMat format compatibility mode. The default lists the procedure and 
function names as a function of their Pascal compiler indenting level. 
However, for indenting purposes only, a special case is made of level-1 
procedures in the IMPLEMENTATION section of a unit. PasMat formats 
these procedures indented under the word IMPLEMENTATION. Thus they 
are indented as if they were level-2 procedures. If you intend to use the level 
information for PasMat, then you should specify the -f option. 

- i pathname [, pathname ... ] 
Search for include or USES files in the specified directories. Multiple - i 
options may be specified. At most, 15 directories will be searched. The 
search order is specified under the description of the - i option for the 
Pascal command. 

-n Suppress all line number and level information in the output display. Only 
the procedure and function names will be shown appropriately indented. 

-o The source file is an Object Pascal program The identifier OBJECT is 
considered as a reserved word so that Object Pascal declarations may be 
processed. The default assumes that the source is an Object Pascal 
program. 

APPENDIX J The ProcNames Utility 379 



Examples 

-------------~ 

-p Display version information and progress information on the diagnostic 
file. 

-u Process USES declarations. The only reason you would need to process 
usEs with ProcNames would be to make the line number information agree 
with a PasRef listing that also contains processed us Es. The default does 
not process the USES declarations because they fiave no cffec( Oit tbi:. 
procedure name listing, only the associated line numbers. Thus, if you 
specify the -n option to suppress the line number information, it makes no 
sense to process USES, so the -u option will be ignored when the -n option 
is specified. 

ProcNames Memory.p >names 

list all the procedures and functions for the Pascal program Memory.p and write 
the output to the filenames. The listing below is the output generated in the 
names file: 

Procedure/Function names for Memory.p 

11 11 0 Memory [Main] Memory.p 
37 37 1 RsrcID 
43 43 1 DRVROpen 
63 63 1 DRVRClose 
74 74 1 DRVRControl 
76 76 2 DrawWindow 
83 83 3 l?rintNum 
93 93 3 GetVolStuff 

108 108 3 PrtRsrcStr 
168 168 1 DRVRPrime 
173 173 1 DRVRStatus 

*** End ProcNames: 11 Procedures and Functions 

Limitations 

The first two columns on each line are line number information. The third column 
is the level number. The first column shows the line number of a routine within the 
total source. The second column shows the line number within an include file 
(includes are always processed). As each include file changes, the name of the file 
from which input is being processed is shown along with the routine name on the 
first line after the change in source. Segment names (from Pascal Compiler s s 
directives) are similarly processed. These are shown enclosed in square brackets 
(the blank segment name is shown as "[Main]"). 

Only syntactically correct programs are accepted by ProcNames. Conditional 
compilation Compiler directives are not processed. 

380 MPW 3.0 Pascal Reference 

,-, 



Appendix K Advanced Topics for 68020 
Programmers 

THIS APPENDIX SUMMARIZES THE SUPPORT MPW PASCAL PROVIDES for the Motorola 
68020 central processing unit. In addition, it considers some programming 
implications such as longint arithmetic and bit-field operations. • 

Contents 
Support for the 68020 383 

Faster longint arithmetic 383 
Bit-field operations 383 

381 





( 
Support for the 68020 

MPW Pascal provides support for the 68020 central processing unit in the following ways: 

• The -Mc 6 a o 2 o Compiler option or the equivalent { SMC 6 a o 2 o + l Compiler directive 
permits the Compik·. to generate 68020 instructions: CHK. L, CHK2, RTD Mu:r,s. L, 

DIVS. L, BFFXXX, and EXTB. L. 

• The use of the 68020 instructions has two main advantages: faster longint arithmetic 
and more efficient use of packed data types. 

• If you elect to use the -MC68020 option, your application may run only if a 68020 is 
·present in your Macintosh. 

Faster longint arithmetic 

The 68020 provides new instructions for longint multiplication and division. The 
-Mc 6 a o 2 o option permits the Compiler to generate these instructions. 

Bit-field operations 

The -Mc 6 a o 2 o option permits the Compiler to generate the 68020 bit-field instructions. 
These instructions can significantly improve performance in the use of packed data 
types. 

APPENDIX K Advanced Topics for 68020 Programmers 383 





( 

( 

Glossary 

access: To use a variable's identifier in source 
text 

actual parameter: A parameter whose value is 
given to a formal parameter by a procedure or 
function call. 
address: A number that specifies a location in 
memory. 

allocate: To reserve an area of memory for use. 

ancestor: The object from which another 
object is created. 
application: a program that can be run under the 
Macintosh Finder or Multifinder. 

array: A data structure containing an ordered 
set of elements. 

ASCD: Acronym for American Staruiard Code for 
Information Interchange, a system of assigning 
code numbers to letters, numerals, punctuation 
marks, and control codes. 

usignment compatible: Of two types, 
capable of being combined in an assignment 
statement. 
usodated scalar type: The type of the 
elements of a subrange. 

base type: The type of the members of a set 

blank: A tab, space, return, or Option~pace 
character. 

block: The fundamental large-scale unit of a 
Pascal program 

Boolean expression: An expression whose 
value is either true or false. 

comment: Source text intended for a human 
reader, ignored by the Compiler. 

Compiler dlrcctfve: A symbol placed in Pascal 
source text to send an instruction to the 
Compiler. 

Compiler option: A symbol placed in the MPW 
Pascal command line to send an instruction to 
the Compiler. 

compile-time expression: An expression 
whose value controls conditional compilation. 

compile-time variable: A variable, created by 
the $SETC directive, that goes into a compile­
time expression. 

component type: The type of the elements of a 
structured type. 

constant: An identifier that represents a fixed, 
unchanging value. 

constant declaration part: A part of a block 
that contains constant declarations. 

current file position: The position in a file 
currently accessed by the file window variable. 
defin.Jng declaration: The block of a forward 
declaration. 

delimiter: A symbol that separates other 
symbols in source text. 

descendant: An object created by another 
object. 

desk accessory: a program that you run by 
selecting it from the Apple menu. 

diagnostic output file: A file (often the 
topmost window) to which the Compiler sends 
error messages and information about its 
progress. 

digits: The numerals 0 .. 9. 

385 



dimension: An ordering relation among 
elements of an array. 

directive: A source text symbol that modifies 
the action of the Compiler. 
dyna1D.lc varlalllf": A vari<J.bl~ created during 

exception: An unusual condition arising during 
execution of an instruction. Exceptions can also 
be externally generated, for example, 
interruptsbus errors, or reset. 

expression: Any representation of a value. It 
can be a single identifier of a constant or 
variable, or a combination of identifiers and 
operators. 

external file: A peripheral device or disk file 
that contains the value of a file variable. 

factor: A part of a term. 

field: A data structure within a record or object. 

file window variable: A buffer variable that 
accesses one component of a file at a time. 

fixed-point number: A signed 32-bit quantity 
containing an integer part in the high-order word 
and a fractional part in the low-order word. 

Floating-Point Arithmetic Package: A 
Macintosh package that supports extended­
precision arithmetic according to IEEE 
standard 754. 
floating-point: A way of representing decimal 
numbers. 

floating-point coprocessor (MC68881): A 
coprocessor chip that provides high-speed 
support for extended-precision arithmetic. 

fonnal parameter: A parameter in a procedure 
or function declaration. 

forward declaration: A procedure or function 
declaration whose block occurs later in the 
source text. 

free block: A memory block containing space 
available for allocation. 

global scope: The scope of code or data that is 
accessible throughout a program. 

386 MPW 3.0 Pascal Reference 

handle: A pointer to a master pointer, which 
designates a relocatable block in the heap by 
double indirection. 

hexadedmal: Base-16 number representation, 
using the numerals 0 .. 9 and the letters A .. F. 

hu: cifr;.:i·~: Symbols representin[; the 
hexadecimal numerals. 

host program: A program or unit that uses a 
unit. 

identified variable: A variable pointed to by a 
pointer. 

Identifier: A name in source text 

Implementation part: The part of a unit 
containing code that executes the procedures 
and functions declared in the interface part. 

hnplldt parameter: An undeclared parameter 
of a method, such as Self. 

Index: A numeric value that indicates the 
position of an element in a sublist or array, 
expressed by a subscript. 

Index type: The type of an index expression. 

Inheritance: The process by which one object 
generates another object. 

Input: The process of entering data into an 
executing program. 

Interface file: A code file that provides an 
interface between a specific language and a 
library. 

interface part: The part of a unit that is 
available to a host program. 

' 
intermpt: An exception that's signaled to the 
processor by a device to notify the processor of 
a change in condition of the device, such as the 
completion of an I/O request. 

interrupt handler: A routine that services 
interrupts. 

1/0: Abbreviation for input and output 
operations, taken collectively. 

label: A name that identifies a location in source 
text. 

/ 



( 
label declaration part: A part of a block that 
contains label declarations. 

length: Of a string, the number of characters in 
its acrual value. 

letters: The symbols A .. Z and a .. z. 

libra, f• A co<le file that contains procedures 
and functions available to a program. 

local scope: The scope of code or data that is 
accessible in only part of a source text. 

logical record: A component of a file. 

Macintosh Programmer's Workshop (MPW): 
Apple's software development environment for 
the Macintosh family. 

master pointer: A single pointer to a 
relocatable blcok, maintained by the Memory 
Manager and updated whenever the block is 
moved, purged, or reallocated. All handles to a 
relocatable block refer to it by double 
indirection. 

member: The relation of an object to its type. 

memory block: An area of contiguous memory 
within a heap zone. 

method: A procedure or function in an object. 

method call: A special type of function call that 
calls a method in an object. 

MPW Shell: The application that provides the 
environment within which the other parts of the 
Macintosh Programmer's Workshop operate. 
The Shell combines an editor, command 
interpreter, and built-in commands. 

MPW tool: An executable program (type 
• MPs T •) that is integrated with the MPW Shell 
environment (contrasted with an application, 
which rum 
stand -alone). Examples of MPW tools are 
ProcNames, PasRef, PasMat, and the Pascal 
Performance Tools. 

mutual recursion: The situation in which two 
or more procedures and/or functions call each 
other. 

NaN: Acronym for Not a NumOer, the result of a 
meaningless arithmetical operation. 

null string: A string of zero length, containing 
no characters. 

object: A program strucrure that contains both 
data (called fields) and routines (called 
methods). 

Object Pascal: An extension of Pascal based on 
the use of objects. 

object reference variable: A variable declared 
with an object type. 

object type: The type of an object. 

operand: Data that controls or modifies the 
action of an operation. 

operator: A symbol that acts upon one or two 
operands, generating a new value. 

output: The process of accessing data 
generated by an executing program. 

package: A set of routines and that types that's 
stored as a resource and brought into memory 
only when needed. 

predefined: Of an identifier, having its meaning 
supplied by the Compiler. 

procedure and function declaration part: The 
part of a block that contains procedure and 
function declarations. 

program: A complete, executable Pascal source 
text. 
qualifier: A symbol that modifies a variable 
access. 

quoted string constant: A sequence of ASCII 
characters enclosed in apostrophes. 

relational operator: An operator that compares 
two operands, producing a boolean result. 
Relational operators are listed in Table 6-6. 
reserved word: A word or sequence of 
characters reserved by Pascal for special use, 
and therefore unavailable as an identifier in a 
Pascal program. 

scope: The area of source text in which an 
identifier can be referenced. 
segment: A part of code that can be separately 
loaded into memory. 

GLOSSARY 387 



set constructor: An expression enclosed in 
brackets that defines a set. 

short-circuit operator: An operator that 
evaluates two operands from left to right, and 
does not evaluate the second if the first 
produces a t r l '. ·~ result. 

simple expression: A combination of a term 
with a sign, OR, or I . 

simple type: A real type, scalar type, or string 
type. 

source text: Text written by a programmer. 

special symbol: A punctuation mark 
recognized by the Compiler. 

stack: The area of memory in which space is 
allocated and released in UFO (last-in, first-out) 
order. 

stack frame: The area of the stack used by a 
routine for its parameters, return address, local 
variables, and temporary storage. 

standard input: The input that the MPW Shell 
gives to Pascal input operations by default. 

standard output: The output that the MPW 
Shell gives to Pascal output operations by 
default. 

statement part: A part of a block that contains 
statements. 

structured type: A data type that stores more 
than one value. 

subscript: A numeric expression whose value is 
the index of an element in a string or an array. 

symbol: A lexical component of source text 
processed by the Compiler. 

tag field: A field of a record that contains 
information used to identify variant fields. 

tag field identifier: The identifier used to 
access a tag field. 

term: A part of an expression. 

388 MPW 3.0 Pascal Reference 

Transcendental Functions Package: A 
Macintosh package that contains 
trigonometric, logarithmic, exponential, and 
financial functions as well as a random number 
generator. 

ti ,.t;. , .u .::. c;;.p~ic::1 caused by instruction 
execution. Ii arises from either process 
recognition of abnormal conditions during 
instruction execution or from use of the specific 
instructions whose normal behavior is to cause 
an exception. 

type: The kind of quantity represented by a 
data value. 

type declaration: Pascal source text that 
associates an identifier with a type. 

type declaration part: A part of a block that 
contains type declarations. 

underscore: The symbol _ (ASCII 95). 
unit: A separately compiled coIIection of types, 
variables, procedures, and/or functions that are 
not executable by themselves but may be used 
by a program. 

user-defined: Of an identifier, requiring a 
meaning to be supplied by a program. 

user-defined anonymous type: A user-defined 
type that does not have an identifier. 

variable: A symbol that represents a location in 
memory where a value can be stored. 

variable declaration part: A part of a block 
that contains variable declarations. 

variant: A group of fields that share memory 
space with other fields. 



Index 

cast of characters 
& operator 99 
* * operator 98 
@ operator 103 
I operator 99 
> operator 101 
>• operator 101 
<operator 101 
<= operator 101 
<>operator 101 
+ operator 98 
I operator 98 
- operator 98 

A 
Abs function 203 
actual (or source) parameters 119 
addition 98 
$AS Compiler directive 238, 246 
American National Standard (ANS) Pascal 3, 251, 252 
ancestor 218 
AND operator 99 
angle 204 
anonymous type 77 
ANS53 
$Al Compiler directive 238, 246 
application 16 
Arctan function 205 
array 67, 117, 298 
array variable 89 
ASCII 31, 102, 2061 261 
assembly lquage 27, 139, 140 
assignmenl oompalibility 73, 74 
assignmett statement 116 
assignments 116 
associated scalar type 59 

B 
BAND function 213 
base type 61, 69 
BCl r function 215 

- b Compiler option 234 
BEGIN statement 117 
bit ~field instructions 383 
bit manipulations 213 
blanks 31, 36, 38 
block 43 
Block read function 187 
8lockwrite function 188 
$8- Compiler directive 238, 241 
BNOT function 213 
boolean 51, 99, 185 
80R function 213 
$8+ Compiler directive 238, 241 
branching 125 
8RotL function 214 
BRotR function 214 
8Set function 215 
BSL function 213 
BSR function 214 
BT st function 214 
building an application 16 
BXOR function 213 
Byte read function 189 
Bytewrite function 189 

c 
c 27, 129, 140, 141, 302-305 
case seruitivity 32 
CAS~ statement 125, 126-127, 252 
-c Compiler option 234 
char 55, 184 
character constants 3 
character set 261 
char type variable 181 
Ch r function 2o6 
-clean Compiler option 234 
Clone function 229 
Close procedure 166, 169 
$C- Compiler directive 238, 241 
'CODE' resource 15 
comments 39, 362 

INDEX 389 



comparison 101-103 
compdate constant86 
Compiler 25 
Compiler directives 39, 237-247 
Compiler options 39, 233-237 
compile-time variables 244 
component type 65-G6 
compound statement 117-118 
compsecs constant 86 
comptime constant 86 
comp type 53, 297, 312, 315, 317 
Concat function 207 
conditional compilation 244-245 
constant expression 81 
constants 44, 54, 69, 81-86 
control codes 31 
control variable 121-122 
Copy function 208 
cos function 204 
SC+ Compiler directive 238, 241 
Creating code for different models of the Macintosh 24 
current file position 90, 165 
cursor control 12 
Cycle statement 128, 129, 252 

D 
-d Compiler option 234 
Dec:Form record type 323 
Declarations43-47,67, 76-77, 135-139, 365 
Dec:Strtype323 
Dec St rLen constant 322 
Delete procedure 208 
Delimiters 38 
denormalized numbers 320 
descendant 219 
Diagnostic file 379 
diagnostic output 233 
difference 100 
digits 31 
directives 38 
Dispose procedure 195, 199 
division 98. 
DIV operator 98 
-d linker option 18 
SD- Compiler directive 238, 243 
double type 533, 297, 314, 317 
DOWNTO statement 120 
SD+ Compiler directive 238, 243 
DRVROpen function 22 
' DRVR' resource 21 

390 MPW 3.0 Pascal Reference 

dynamic variable 62, 116 

E 
$E Compiler directive 238, 246 
-e Compiler option 234 
80-bit format 315 
$f~I,£E:C C0rr1!~!.!e~· t:!i:~,~:~-:;:: ~:;f\ ~4~; 

empty set 70 
SENDC Compiler directive 238, 245 
END statement 117-118 
enumerated scalar constants 257-258 
enumerated type 58 
Eof function 169-170, 179, 188 
Eoln function 178, 179, 185 
equal to 101 
equivalence 103 
error reporting for object errors 5 
exception Bags 321 
Exception type 324 
exclusive-or 102 
Exit procedure 123, 195 
Exp function 204 
exponentiation 97, 98 
exponentiation operator 98 
extended types 51, 53, 54, 297-298, 316-321 
EXTERNAL directive 140-141 
external file 162 

F 
factor 108-109 
field46, 67, 89, 130 
file buffer symbol 91 
files 159-189 
file type 70, 162, 164 
file variables 45, 92, 162-164 
file winoow variable 92, 165 
Fillchar procedure 211 
Fixed-point' representation 183 
floating-point arithmetic 12, 312 
floating-point operations 25 
floating-point representation 183 
fonnal parameters 119, 135 
FOR statement 120-122, 124 
forward declaration 140 
FORWARD directive 140 
Free function 229 
functional parameters 142-144, 147 
function call 105 
function declaration 45, 136-139 
function names 377-380 



( 
function results 299-301 IOResul t procedure 170 
functions 45, 133, 303-305 J 
G $J- Compiler directive 238, 242 
getenv function 19 $J + Compiler directive 238, 242 
Get procedure 175, 186 IC 
global data 3 
GOTO statement 128 $K Compiler directive 238,246 

H 
- k Compiler option 233, 235 

Halt procedure 128, 195 
L 

handle 104, 244 label 36, 43, 128-129 

- h Compiler option 233, 234 Leave statement 128, 130, 252 

Heapresul t funai>n 199-200 Length funaion 6o, 207 

hexadecimal 31, 34-36 letters 31 

HiWrd function 214 libraries 10-12 

$ H- Compiler directive 238, 244 limit expressiom 122 

host program 152 Llnker 149, 243 

$H+ Compiler directive 238, 244 linking a desk accessory 23 
list68 

I Ln function 204 
$I Compiler directive 238, 240 $LOAD3 
-i Compiler option 9, 234 logical records 162 
identified variable 93 longint arithmetic 383 
identifiers 33, 47, 67-69, 251, -Y,7 longint type 56, 69-70 

'( 
IEEE Standard 25, 754 longint values 84 
$IFC Compiler directive 238, 244 looping 120 
$IFC OPTION Compiler directive 238, 244 "LOW rd function 215 
IF statement 125 M 
implementation 153 
implication 102 MacApp 5, 12, 27, 227 

index 89 Macintosh Programmer's Workshop 3.0 1 

index types 65-66 MacsBug 243 

inf comtant 86 Main segment 152 

infmite value 54 Mark procedure 200 

inflllity 86 rnaxcomp constant 86 

inheritance 219 maxint comtant 85 

INHERITED directive 227 -mbg Compiler option 233, 235 

initialization 154 -m Compiler option 233, 235 

INLINE directive 139, 141-142 -MC 6 8 0 2 0 Compiler option 235 

IN Operal<X 101 $MC 6 8 0 2 0 - Compiler direaive 238, 242 

input 164, 369, 371 { $MC6802 0+} Compiler 383 

Insert procedure 2!11 $MC 6 8 0 2 0 + Compiler directive 238, 242 

installing MPW Pascal 14 -MC 6 8 8 81 Compiler option 235 

integer types 55, 56 $MC 6 8 8 81- Compiler direaive 238, 242 

integer variable 178 $MC 6 8 8 81 + Compiler directive 238, 242 

Integrated Environment 161, 164 Memavail function 200 

interface-file search rules 10 Member function 228 

Interface. o 10 memory allocation 195 

interface part 152 Memory Manager 195 

(_~ .. 

intersection 100 method call 106 

INDEX 391 



method identifier 48 
methods 70, 154, 219, 224-225 
minnormdoubleconstant86 
minnormextendedconstant86 
minnormrealconstant86 
MOD operator 98, 99 
modulus 99 
Moveleft procedure 20') 

Moveright procedure 210 
MPW Shell 4, 27, 164 
MPW 3.0 Pascal 249-253, 289-293 
multiplication 98 

N 
NaNs 53, 102, 324 
-n Compiler option 233, 236 
nested comments 39 
Nested IF statements 126 
NewHandle procedure 196 
New procedure 62, 198-199 
NewPtr function 198 
NIL 62, 202 
96 bits 313 
$N- Compiler directive 239, 245 
-no load Compiler option 236 
not equal to 101 
NOT operator 99 
$N+ Compiler directive 239, 245 
NULL statements 132 
null string 3 7 
numbers 34-36, 54, 56-57 
NumClass type 324 

0 
object 47, 219-220, 221-224 
Object-oriented programming 5, 12, 217-229 
Object Pascal 5, 227 
object reference variable 223-224 
object type 48, 71-72, 93, 222 
Objintf .p 12, 227 
Obj Lib. o 227 
- o Compiler option 236 
Odd function 203 
opening existing files 165 
Open procedure 168 
operands 95 
Operators 97-105 
Ord4 function 57, 201-202 
Ord function 55, 57, 205 
OR operator 99-.100 

392 MPW 3.0 Pascal Reference 

OTHERWISE statement 125, 126-127 
output 164,369,377 
-ov Compiler option 236 
overflow 75, 242, 321 
OVERRIDE directive 224 
$OV- Compiler directive 239, 242 
$CV-!· Com~ ilt:r direc:ive 2:'.9, 242 

p 

PACKED ARRAY 103, 210-211 
PACKED type 64, 186 
Packs 27 
Pack4 27 
Pack procedure 251 
Page procedure 1.85 
parameter list 118-119 
parameters 296-298, 302. 
parenthesis85 
Pascal Compiler 291, 295 
PasLibintf. p 11, 167 
Pas Lib. o 10, 11, 12, 161 
PasMat 349 
{ PasMatOpts} 355 
PasRef367 
$P Compiler directive 239, 247 
-p Compiler option 236 
PExamples folder 291 
pi constant 85 
Plnterfaces folder 291-293 
PLCrunch procedure 174 
PLFilepos function 166, 174 
PLFlush procedure 186 
PLHeapini t procedure 196, 200 
PLlbraries folder 10-11, 293 
PLPurge procedure 174 
PLRename procedure 174 
PLSetHeapCheck procedure 197 
PLSetHeapType procedure 197 
PLSetMErrProc procedure 197 
PLSetNonCont procedure 197 
PLSetVBuf procedure 185 
plus sign 35 
pointer 46, 61-63, 93, 103-105, 197-198 
Pointer function 202 
$POP Compiler directive 239, 247 
Po s fuoction 207 
precedence 97 
predefined identifiers 47, 52 
P red function 55, 2o6 
procedural parameters 142, 145-147 



( 
procedure 45, 118 $SC+ Compiler directive 239, 243 
procedure declaration 135-136 Seek procedure 173 
procedure names 3n-380 segment names 240-241 
procedure statement 118-119 Self parameter 225 
ProcNames utility 3n-380 semicolons 118 
program heading 164 $SETC Compiler directive 239, 244 
programs 149-158 set constructor 107 
$PUSH Corupiler directive 239, 247 sets298 
Put procedure 170, 175, 186 SET statement 101 

Q set type 69-70 

qualification 116 
ShallowClone function 228 

qualifiers 89-90, 138, 226 
ShallowFree function 229 
Shell variable 240-241 

quoted character constant 37 short<ircuil operators 100, 243 
quoted string constant 36-37 simple expre~ions 111 
R simple types 52 

range checking 242 Simula-67 5 

-r Compiler option 236 Sin function 204 

Readln procedure 180 single quotation mark 36, 37 

Read procedure 175-176, 1n-1ao 6888126 

real types 53-54, 183-184, 203, 297, 311 68020 27, 383 

-rebuild Compiler option 236 size attribute 60 

record 47, 67-69, 92, 116, 298 Sizeof function84, 210 

~. 
recursion 140 Smalltalk 5 

register 141 source code, writing compatible 24 

Release procedure 200 special circumstances 255 

RelOp type 324 special symbols 31 

REPEAT statement 120, 123-124 Sqr function 203 

reserved words 32, 261 Sqrt function 205 

Reset procedure 165, 166, 167 Standard Apple Numeric Environment 25, 53, 102 

Rewrite procedure 165, 166, 168 standard input 164, 351 

$ R- Compiler directive 118, 239, 242 standard output 164, 351 

ROM routines 9, 142, 161, 191, 212 statement bunching 363 

RoundDir type 325 statements 45, 113-132 

Round function 201 string element 116 

RoundP re type 325 string procedures 207-208 

$R+ Compiler directive 239, 242 strings 60-61, 90-91, 102, 179, 184, 298 

Runtime.olO struelliied file 162-163, 175-176 

s structured type 64-66, 219 
structured type parameters 298 

sample programs 1 subrange 59 
SANELib. o 10, 11, 12, 322 subtraction 98 
Scalar 55-59 Succ function 55, 2o6 
Scaneq function 211 symbolic debugger 3 
Scanne function 211 symbol table 158 
scientific notation 34-35 -sym Compiler option 233, 236 
$SC- Compiler directive 239, 243 syntax 161, 3n 
$S Compiler directive 151, 152, 239, 243 syntax diagrams 191, 263-288 
scope 46-48, 255-258 

<~' 
scope of pointer base type 258 

INDEX 393 



T 

tag fields 69. 131 
-t Compiler option 237 
terms 110 
text files 176-177, 186 
tools 291 
T rune function 201 
type coercion 75-76 
type declaration 44, 76-77 
type integer 182 
types 49-77 

u 
$ u Compiler directive 239, 240 
-u Compiler option 237 
underflow 321, 322 
union 100 
units 152-155 
univ parameter 119, 147, 252 
UnloadSeg 15 
Unpack procedure 251 
UNTIL statement 123-124 
untyped files 163, 187-189 
user-defined 52, 77 
USES clause 155-158 
USE statements 247 

v 
value 182-184 
value parameter 104, 142, 144 
VAR 142 
variable access 88 
variable parameters 105, 142, 144-145 
variables 44, 70, 86-88 
variants 68, 198 

w 
-w Compiler option 237 
WHILE statement 120, 122-123 
window variable 165 
WITH statement 92, 130-131, 223 
$W- Compiler directive 239, 243 
$W+ Compiler directive 239, 243 
Wri teln procedure 176, 177, 185 
Write procedure 176, 181-185 

394 MPW 3.0 Pascal Reference 

y 

-y Compiler option 237 

z 
$Z* Compiler directive 239, 245 
S z -- Comoiler cli.rPCtivr "~~, 745 
$.:.-; _d«[·il,~i ~:.~u;e l.)9, 24) 



( 

'nil! APPLE PUBIJSHING SYSTEM 

This Apple9 manual was wriaen, 
ediled, and composed on a 
desktoo publishing system using 
Apple• Macintosh• computers and 
Miaosolt• Woni software. Proof and 
final pages were aeared on the 
Apple laserWrlteie IINTX printer. 
P~, the laserWrilere page­
desaiption Janauase was developed 
by Adobe Systems IncorpoJlted. 1be 
illuslradom were created using 
Adobe Wustrata and some were 
output to a I.inCllonic 300. 

1be illusnti>n on the cover was 
genmted using Adobe muamror 88 
on a Macintosh• n computer. Some 
c:i the imases were scanned using an 
Apple• Scanner and then 
manipulated in ImageStudio. Initial 
pl'OOfing was done using a QMS color 
printer. Color separatiom were done 
using Adobe separator and output to 
a LinoUonic 300 at standard 
resolution. 

Ten type is Apple's corpoiale foll, a 
condensed version of Gmmond. 
Bullers are rrc l.apf Dingbats•. Some 
elements, such as programs 1.Wtings, 
are sel in Apple Courier, a fixed-
widlh font. 




