&. Macintosh®

Macintosh Programmer’s

AAU S L o I o
ol 2 6 Peecal

& APPLE COMPUTER, INC.

This manual and the software described
in it are copyrighted, with all rights
reserved. Under the copyright laws, this
manual or the software may not be
copied, in whole or in part, without
written consent of Apple, except in the
normal use of the software or to make a
backup copy of the software. The same
proprietary and copyright notices must
be affixed to any permitted copies as
were affixed to the original. This excep-
tion does not allow copies to be made
for others, whether or not sold, but all of
the material purchased (with all backup
copies) may be sold, given, or loaned to
another person. Under the law, copying
includes translating into another lan-
guage or format.

You may use the software on any
computer owned by you, but extra
copies cannot be made for this purpose.

The Apple logo is a registered trademark
of Apple Computer, Inc. Use of the
“keyboard” logo (Option-Shift-K) for
commercial purposes without the prior
written consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal and
state laws.

© 1988 Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014

(408) 996-1010

Apple, the Apple logo, LaserWriter,
~ Macintosh, and MacApp are registered
trademarks of Apple Computer, Inc.

ITC Garamond and ITC Zapf Dingbats
are registered trademarks of International
Typeface Corporation.

Microsoft is a registered trademark of
Microsoft Corporation.

POSTSCRIPT and Adobe Illustrator are
registered trademarks of Adobe
Systems Incorporated.

Adobe Illustrator is a trademark of
Adobe Systems Incorporated.

ImageStudio is a trademark of Esselte
Pendaflex Corporation in the United
States, of LetraSet Canada Limited in
Canada, and of Esselte LetraSet
Limited elsewhere.

QMS is a registered trademark of
QMS, Inc.

Linotronic is a registered trademark of
Linotype company.

Smalltalk-80 is a registered trademark of
the Xerox Corporation.

Simultaneously published in the United
States and Canada.

Contents

Tables and Figures xvii

Preface xix

About MPW Pascal 1

About MPW Pascal version 3.0 3

About SADE and MacsBug 4

Object Pascal 5

About the Pascal interface files 6

Using interface files 9

About the Pascal libraries 10

About the Pascal examples 13

Installing MPW Pascal 14

Segmentation control 15

Creating resources 16

Creating an application in MPW Pascal 16
Building an application 17
Compiling an application 17
Linking an application 18

Creating a tool in MPW Pascal 19
Building a tool 20
Compiling a tool 20 .
Linking a tool 20

Creating a desk accessory in MPW Pascal 21
Desk accessory restrictions 21
The DRVRRuntime library 21
Desk accessory routines 22
Building a desk accessory 23
Linking a desk accessory 23

Creating code for different models of the Macintosh 24
Source code 24

Interface files 24

Compiler options 25
SANE and the Macintosh I 25
Floating-point enhancements 25
MC68881 enhancements 26
MC6807%) exancements 27

Other MPW 3.0 products 27

2 Symbols 29
Symbols 31
Special symbols and reserved words 32
Identifiers 33
Numbers 34
Labels 36
Quoted string constants 36
Quoted character constants 37
Delimiters 38
Directives 38
Special directives for Object Pascal 38
Comments and Compiler directives 39

3 Blocks and Scope 41

Block syntax 43

Scope rules 46 :
Redeclaration in an enclosed block 46
Position of declaration within its block 46
Redeclaration within a block 47
Declarations in units 47
Predefined identifiers 47
Special rule for object types 48
Scopes, object files, and other languages 48

iv MPW 3.0 Pascal Reference

4 Data Types 49

Simple types 52
Real types 53
Scalar types 55
The integer type 56
The longint type 56
The boolean type 57
The chartype 57
Enumerated types 58
Subrange types 59
String types 60
The pointer type 61
Structured types 64
Array types 65
Record types 67
Set types 69
File types 70
Object types 71
Type compatibility 73
Compatible types 73
Assignment-compatible types 74
Type coercion 75
Type declarations 76
User-defined anonymous types 77

Constants and Variables 79

Constant declarations 81
Constant expressions 81
Predefined numeric constants 85+
Predefined string constants 86
Variable declarations 86
Variable accesses 88
Qualifiers 89
Arrays and string indexes 90
Records and field designators 92
File window variables 92
Pointers and their identified variables 93
Object references 93

CONTENTS

6 Expressions 95

Operators 97
Arithmetic operators 97
Boolean operators 99
Set operators 100
Result types in set operations 101
Relational operators 101
Comparing numbers 101
Comparing booleans 102
Comparing strings 102
Comparing sets 103
Testing set membership 103
Comparing packed arrays of char 103
The @ operator 103
The @ operator with a variable 104
The @ operator with a value parameter 104
The @ operator with a variable parameter 104
The @ operator with a procedure or function 105
Function calls 105
Set constructors 107
Writing expressions 108
Factors 108
Terms 110
Simple expressions 111
Expression syntax 112

7 Statements 113

Assignment statements 116
Compound statements 117 N
Procedure statements 118
Repetition statements 120

FOR statements 120

WHILE statements 122

REPEAT statements 123

Loop control: a comparison 124
Conditional statements 125

[F statements 125

Nested IF statements 126

vi MPW 3.0 Pascal Reference

CASE statements 126
Control statements 128
GOTO statements 128
Cycle statements 129
Leave statements 130
WITH stai,meni 1530

NULL statements 132

Procedures and Functions: 133

Procedure declarations 135
Function declarations 136
Procedure and function directives 139
The FORWARD directive 140
The EXTERNAL and C directives 140
The INLINE directive 141
Parameters 142
Value parameters 144
Variable parameters 144
Procedural parameters 145
Procedure pointers 147
Functional parameters 147
Univ parameters 147
Parameter list compatibility 148

Programs and Units 149

Program syntax 151

Segmentation 152

Unit syntax 152

The USES clause 155)
Units that use other units 156

Automatic symbol table loading 158

CONTENTS

vii

10 Filesand /O 159
Input/Output routines 161
Pascal files 162
External files 162
File variables 162
Stiucwred ftles 162
Text files 163
Untyped files 163
Predeclared file variables 164
The file window variable 165
Opening a file 165
Closing a file 166
Sequential versus random access 166
Routines for all files 167
The Reset procedure 167
The Rewrite procedure 168
The Open procedure 168
The Close procedure 169
The Eof function 169
The IOResult procedure 170
The ErrNo variable 170
The Seek procedure 173
The PLFilepos function 174
The PLCrunch procedure 174
The PLPurge procedure 174
The PLRename procedure 174
Record-oriented routines 174
The Get procedure 175
The Put procedure 175
The Read procedure with a structured file 175
The Write procedure with a structured file 176
Text-oriented routines 176
The Read procedure 177
Read with a char variable 178
Read with an integer variable 178
Read with a real variable 178
Read with a string variable 179
The Readln procedure 180
The Write procedure 181

MPW 3.0 Pascal Reference

Write with a char value 182
Write with an integer value 182
Write with a value of type real 183
Write with a string value 184
Write with a packed array of char 184
Write with a boolean value 185

The Writeln procedure 185

The Eoln function 185

The Page procedure 185

The PLSetVBuf procedure 185

The PLFlush procedure 186

The Get and Put procedures with text files 186

Routines for untyped files 187

The Blockread function- 187
The Blockwrite function 188
The Byteread and Bytewrite functions 189

11 Predefined Routines 191
Exit and halt procedures 195

The Exit procedure 195
The Halt procedure 195

Dynamic allocation procedures 195

The PLHeaplnit procedure 196
The PLSetHeapCheck procedure 197
The PLSetNonCont procedure 197
The PLSetMErrProc procedure 197
The PLSetHeapType procedure 197
The New procedure 198

The Dispose procedure 199

The Heapresult function 199

The Mark procedure 200

The Release procedure 200

The Memavail function 200

Transfer functions 201

The Trunc function 201
The Round function 201
The Ord4 function 201
The Pointer function 202

Arithmetic functions 202

CONTENTS

ix

The Odd function 203

The Abs function 203

The Sqr function 203

The Sin function 204

The Cos function 204

ihe Exp function 204

The Ln function 204

The Sqrt function 205

The Arctan function 205
Ordinal functions 205

The Ord function 205

The Chr function 206

The Succ function 206

The Pred function 206
String procedures and functions 207

The Length function 207

The Pos function 207

The Concat function 207

The Copy function 208

The Delete procedure 208

The Insert procedure 208
Byte-oriented procedures and functions 209

The Moveleft procedure 209

The Moveright procedure 210

The Sizeof function 210
Packed character array routines 210

The Scaneq function 211

The Scanne function 211

The Fillchar procedure 211
Logical bit functions and procedures 212

The BAND function 213

The BOR function 213

The BXOR function 213

The BNOT function 213

The BSL function 213

The BSR function 214

The BRotL function 214

The BRotR function 214

The BTst function 214

The HiWrd function 214

MPW 3.0 Pascal Reference

The LoWrd function 215
The BClr procedure 215
The BSet procedure 215

12 Obiect-Crispted Propramming 217
What are objects? 219
Differences from traditional programming 220
Creating objects 221
Declaring object types 222
Object type membership 222
Object reference variables 223
The OVERRIDE directive 224
Declaring methods 224 '
The Self parameter 225
Calling methods 226
The INHERITED directive 227
Using Object Pascal 227
Object Pascal without MacApp 227
The Object Pascal routines 228
The Member function 228
The ShallowClone function 228
The Clone function 229
The ShallowFree function 229
The Free function 229
Object Pascal with MacApp 229

13 Compiler Options and Directives 231

The MPW Pascal command line 233
Compiler options 233 :
Compiler directives 237
Input file control 240
The $1 directive 240
The $U directive 240
Shell variable substitution in filenames and segment names 240
Control of code generation 241
The $B+ directive 241
The $C+ directive 241
The $J* directive 242

CONTENTS.

xi

The $MC68020% directive 242

The $MC68881+ directive 242

The $OV+ directive 242

The $R+ directive 242

The $S directive 243

The ¢34 directive 243

The $W+ directive 243
Debugging 243

The $D= directive 243

The $Ht directive 244
Conditional compilation 244

The $SETC directive 244

The $IFC directive 244

The $ELSEC directive 245

The $ENDC directive 245
Output control 245

The $Z+ directive 245

The $N+ directive 245
Other directives 246

The $A1 directive 246

The $AS directive 246

The $E directive 246

The $K directive 246

The $P directive 247

The $PUSH and $POP directives 247

A MPW 3.0 Pascal and Other Pascals 249
MPW 3.0 Pascal and ANS Pascal 251
Exceptions to the ANSI Standard 251
Extensions to ANS Pascal 252
Implementation-dependent features 252
MPW 3.0 Pascal and MPW 2.0 Pascal 253

xii MPW 3.0 Pascal Reference

AW

Special Scope Rules 255

Scope of enumerated scalar constants 257
Scope of pointer base types 258

Ressved .. 'y v e Character S~ 259
Reserved words 261
The character set 261

~ Syntax Summary 263

MPW 3.0 Pascal Files 289
Pascal compiler and tools 291
PExamples folder 291
Plnterfaces folder 291
PLibraries folder 293

Pascal and C Calling Conventions 295

External calling conventions 297

Parameters 297
Real type parameters 297
Structured type parameters 298
Function results 299
Register conventions 302
C calling conventions 302
C parameters 302
C function results 302
C register conventions 303
Interfacing C functions to Pascal 303
Examples of functions declared with the C directive 305

The SANE Library 307

The SANE data types 311
Descriptions of the types 311
Choosing a data type 311
Values represented 312

Range and precision of SANE types 312

CONTENTS

xiii

xiv

Example 313
The single type 314
The double type 314
The comp type 315
The extended type 315
Extended arithmetic 316
Special cases 317
Number classes 318
. Infinities 318
~ NaNs 318
Denormalized numbers 320
Exceptional conditions 320
Invalid operation 320
Underflow 321
Overflow 321
Divide-by-zero 321
Inexact 321
The SANE environment 321
The SANE interfaces and libracies 322
Descriptions of constants and types 322
The DecStrLen constant 332
Exception condition constants 322
The DecStr type 323
The DecForm record type 323
The RelOp type 324
The NumClass type 324
The Exception type 324
The RoundDir type 325
The RoundPre type 325
The Environment type 325
Numeric procedures and functions 326
Conversions between numeric binary types 326
The Num2Integer and Num2Longint functions 326
The Num2Extended function 327
Conversions between decimal strings and binary 327
The Num2Str procedure 328
The Str2Num function 328
Arithmetic, auxiliary, and elementary functions 328
The Remainder function 328
The Rint function 329

MPW 3.0 Pascal Reference

The Scalb function 329

The Logb function 329

The CopySign function 329

The NextReal function 329

The NextDouble function 330

The NextExtended function 336

The Log2 function 330

The Ln1 function 330

The Exp2 function 330

The Expl function. 330

The Xpwrl function 331

The XpwrY function 331
Financial functions 331

The Compound function 331

The Annuity function 331
Trigonometric functions 332

The Tan function 332
Additional transcendental routines 332

The Arctanh function 332

The Cosh function 332

The Sinh function 333

The Tanh function 333

The Log10 function 333

The Exp10 function 333

The Arccos function 333

The Arcsin function 333

The SinCos procedure 333
Inquiry functions 334

The ClassReal function 334

The ClassDouble function 334

The ClassExtended function 334

The ClassComp function 335

The SignNum function 335
The RandomX function 335
The NaN function 335
The Relation function 335

Environmental access procedures and functions 336

The rounding direction 336

The GetRound function 336

The SetRound procedure 337

CONTENTS

Rounding precision 337
The GetPrecision function 337
The SetPrecision procedure 337

Exceptions 338
The SetException procedure 339
Thi TesiExen piion funcion 359

Using exceptional conditions to halt a program 340
The TestHalt function 340
The SetHalt procedure 340

Halts and the 68881 340

Saving and restoring environmental settings 341
The GetEnvironment procedure 341
The SetEnvironment procedure 342
The ProcEntry procedure 342
The ProcExit procedure 343

Support for the 68881 343

SANE and the 68881 344
More about the 68881 345
Register usage 345
Converting between extended formats in mixed-world programs 346

H The PasMat Utility 349
I The PasRef Utility 367
J The ProcNames Utility 377

K Advanced Topics for 68020 Programmers 381

Support for the 68020 383
Faster longint arithmetic 383
Bit-field operations 383

Glossary 385

Index 389

xvi MPW 3.0 Pascal Reference

=N

Tables and Figures

Preface xix
Table P-1 Example of syntax diagram* xxvii

About MPW Pascal 1

Table 1-1 New interface files used in MPW Pascal 7

Table 1-2 Interface files included for compatibility in MPW Pascal 8
Table 1-3 Interface-file search rules 10

Table 14 Library object files used by MPW Pascal 12

Table 1-5 Example source files used by MPW Pascal 13

Table 16 Linking an application 18

Symbols 29
Table 2-1 Reserved words 32

Data Types 49
Table 41 Data types 51
Table 42 Realtypes 53

Expressions 95

Table 6-1 Precedence of operators 97

Table 6-2 Binary arithmetic operators 98

Table 6-3 Unary arithmetic operators (signs) 98
Table 64 Boolean operators 99

Table 6-5 Set operators 100

Table 6-6 Relational operators 101

Table 6-7 The pointer operator 103

Programs and Units 149
Figure 9-1 Example of simple unit reference 157

CONTENTS

xvii

xviii

11

13

Predefined Routines 191
Table 11-1 Bit manipulation routines 212

Compiler Options 7nd Directives 231
Table 13-1 Compiler options 234

Table 13-2 Compiler directives 238

Reserved Words and_ the Character Set 259
Figure C-1 The characterset 262

Pascal and C Calling Conventions 295

Table F-1 Parameter passing conventions 298
Table F-2 Function result passing conventions 300
Table F-3 C-compatible Pascal types 303

The SANE Library 307

Table G-1 SANE data types 313

Table G-2 NaNcodes 319

Table G-3 Number class descriptions 324
Table G4 Num2Strexamples 328

Table G-5 SANE exceptions 338

Table G6 68881 SANE exceptions 339

MPW 3.0 Pascal Reference

Preface

WELCOME TO THE MACINTOSH PROGRAMMER'’S WORKSHOP 3.0 PASCAL REFERENCE. This
manual contains complete reference material on the Macintosh Programmer’s
Workshop implementation of the Pascal language (called MPW Pascal), as well as
material on the Pascal Compiler and the libraries of predeclared procedures and
functions that are part of the MPW Pascal system. =

Contents

About APDA xxi
User groups xxii
About this manual xxiii
Aids to understanding xxiv
Other reference materials xxv
Notation xxvi
Syntax diagrams xxvii
Ellipses xxviii

xix

e,

About APDA

APDA™ is an excellent source of technical information for anyone interested in
developing Apple-compatible products. Membership in the association allows you to
purchase Apple technical documentation, programming tools, and utilities. For
information on membership fees, available products, and prices, please contact

APDA

Apple Computer, Inc.

20525 Mariani Avenue, Mailstop 33-G
Cupertino, CA 950146299

1-800-282-APDA, or 1-800-282-2732
Fax: 408-562-3971

Telex: 171-576

AppleLink: DEV.CHANNELS

If you plan to develop hardware or software products for sale through retail channels, you
can get valuable support from Apple Developer Programs. Write to

Apple Developer Programs

Apple Computer, Inc.

20525 Mariani Avenue, Mailstop 51-W
Cupertino, CA 95014-6299

PREFACE

xxi

User groups

Ask your authorized Apple dealer for the name of the Macintosh user group nearest you, or
call 1-800-538-9696. for information about starting your own user group, contact either:

The Boston Computer Society
One Center Plaza

Boston, MA 02108

USA

(617) 367-8080 -

or

Berkeley Macintosh User's Group
1442-A Walnut Street #62
Berkeley, CA 94709

USA

(415) 849-9114

xxii MPW 3.0 Pascal Reference

A

About this manual

This manual provides information about the MPW Pascal language and the use of the MPW
3.0 Pascal programming system. Here is a brief description of each chapter and appendix:

r

Chaste1 1, “About MPW Pascal,” contains general inforination about the MPW 3.0
Pascal language and Compiler and tells about the files you use to build an application
for an Apple® Macintosh™ computer.

Chapter 2, “Symbols,” describes the fundamental components of the Pascal language.
Chapter 3, “Blocks and Scope,” explains the block-structured nature of MPW Pascal
and discusses its scope rules.

Chapter 4, “Data Types,” gives an overview of MPW Pascal’s predefined data types
and type constructors.

Chapter 5, “Constants and Variables,” describes the forms that variables can take
within a Pascal program.

Chapter 6, “Expressions,” details the rules governing the structure of Pascal
expressions and includes descriptions of the Pascal operators.

Chapter 7, “Statements,” defines and gives examples of each of the Pascal statement
types.

Chapter 8, “Procedures and Functions,” tells how to declare procedures and functions
and defines the use of parameters.

Chapter 9, “Programs and Units,” discusses the overall structure of Pascal programs and
describes the use of units in writing large programs.

Chapter 10, “Files and I/O,” explains the use of files and the routines that perform
input and output tasks in a Pascal program. -

Chapter 11, “Predefined Routines,” provides information on the routines that are built
into the MPW Pascal Compiler and the non-I/O routines that are included in PasLib.
Chapter 12, “Object-Oriented Programming,” describes the facilities provided in
MPW Pascal for creating and manipulating objects.

Chapter 13, “Compiler Options and Directives,” contains information on Compiler
options and directives.

Appendix A, “MPW 3.0 Pascal and Other Pascals,” explains how this version of Pascal
relates to the ANSI Standard and other Apple versions of Pascal.

Appendix B, “Special Scope Rules,” covers MPW Pascal scope rules that are applicable
in special situations.

Appendix C, “Reserved Words and the Character Set,” contains quick reference
information on these topics.

PREFACE xxiii

s Appendix D, “Syntax Summary,” lists all the syntax diagrams used in this book.

= Appendix E, “MPW 3.0 Pascal Files,” is a complete list of the files that constitute the
MPW Pascal system.

= Appendix F, “Pascal and C Calling Conventions,” explains how the Compiler passes
parameters and tells how to declare procedures using the C directive.

= Appendix G, “The SANE Library,” describes the routines in the Pascai libiaiy tha:
implement the Standard Apple Numerics Environment (SANE) and provides special
information about the use of SANE and the 68881 floating-point coprocessor.

» Appendix H, “The PasMat Utility,” tells how to use the Pascal utility program that
converts your source text into standard format.

w Appendix [, “The PasRef Utility,” tells how to use the Pascal utility program that
. generates a cross-referenced list of the identifiers in your program.
= Appendix J, “The ProcNames Utility,” tells how to use the Pascal utility program that
displays Pascal procedure and function names.

s Appendix K, “Advanced Topics for 68020 Programmers,” gives special information for
those programmers using the 68020 central processing unit.

Aids to understanding

Look for these visual cues throughout the manual:

A Warning Warnings like this indicate potential problems. a
A Important Text set off in this manner presents important information. A
& Note: Text set off in this manner presents notes, reminders, and hints.

Computer words and phrases appear in boldface type when they are introduced. The term
is defined in the Glossary.

xxiv MPW 3.0 Pascal Reference

Other reference materials

The following books contain important reference material that you'll need when writing

programs in MPW Pascal:

r Apple Computer, Inc., Apple Numerics Manual, Addisca-Wesley, 1986. 4 description
of the Standard Apple Numeric Environment and how it is invoked in the Macintosh.

s Apple Computer, Inc., Inside Macintosh (Volumes I-1II), Addison-Wesley, 1985. The
complete story of the architecture and operation of the 128K and 512K Macintosh,
including details of its-ROM routines.

s Apple Computer, Inc., Inside Macintosh (Volume IV), Addison-Wesley, 1986.
Additional and updated material covering the Macintosh and Macintosh Plus.

» Apple Computer, Inc., Inside Macintosh (Volume V), APDA, 1987. Additional and
updated material covering the Macintosh II and Macintosh SE.

= Apple Computer, Inc., Macintosh Programmer’s Workshop 3.0 Reference, APDA, 1988.
A full description of how to use the MPW program preparation tools, including the
Pascal Compiler.

In addition, you may find the following books helpful as a supplement to this manual:

» Henry Ledgard, The American Pascal Standard, with Annotations, Springer-Verlag,
1984. An annotated guide to ANS Pascal, as defined by the American National
Standards Institute.

s Apple Computer, Inc., MacApp 2.0 Programmer’s Reference, APDA, 1987. How to use
MacApp™ with Object Pascal. For a brief description of MacApp, see Chapter 12.

s Apple Computer, Inc., Macintosh Programmer’s Workshop 3.0 Assembler Reference,
APDA, 1988. How to write assembly-language programs that you can link with MPW

- Pascal.

m Apple Computer, Inc., Macintash Programmer’s Workshop 3.0 C Reference, APDA,
1988. How to write C programs that you can link with MPW Pascal.

s Kurt]. Schmucker, Object-Oriented Programming for the Macintosh, Hayden Book
Co., 1986. A comprehensive introduction to Object Pascal and the theory behind
MacApp.

= Kathleen Jensen and Niklaus Wirth, Pascal User Manual and Report, 31d edition,
Springer-Verlag, 1985. Revised by Andrew B. Mickel and James F. Miner. The original,
and in many ways best, definition of Pascal.

PREFACE xxv

You may want to find further information about the MC68020 and the MC68881 in these
volumes:

Motorola, MC68020 32-Bit Microprocessor User’s Manual, 2nd edition, Prentice-Hall,
1985. The latest complete information for engineers, software architects, and
computer designers working on hardware and software systems using the MC68020.

Motorola, MC68881 Floating-Point Coprocessor User’s Manual, 1st editicii, Motorola,
1985. The latest complete information for engineers, software architects, and
computer designers to aid in the implementation of hardware and software systems
using the MC683881.

Notation

This manual uses typographic conventions to distinguish between different types of
words and symbols. Four fonts are used:

Ordinary English is printed in plain Roman letters, the kind you are reading now.

Special technical terms are printed in boldface when they are first defined. After that,
they are treated as ordinary English. Such terms are also defined in the Glossary at the
end of this manual.

Elements of the Pascal language (or any other computer language) are printed in
computer voice. This helps you avoid confusing them with ordinary English words.

Artificial terms, which have meaning only in this book, are printed in italics. Such
terms are sometimes called metasymbols; they are used primarily to indicate parts of
syntax diagrams that you replace with actual Pascal symbols.

Within the Pascal language, using the computer voice font, the following capitalization
conventions are used:

Reserved words are printed in ALL, CAPITALS.

The names of predefined procedures and functions (that is, those that are part of the
MPW Pascal language) are printed in Initial Capitals.

The names of data types and constants are printed in Lowercase.

Here is an example of how these fonts work together:

“The value of each write parameter, p,, is given by an output expression, which may
be of type char, integer, real, STRING, PACKED ARRAY OF char, Of boolean.”

xxvi MPW 3.0 Pascal Reference

Syntax diagrams

- Throughout this manual, the syntax of MPW Pascal is illustrated with syntax diagrams.
These diagrams show you the rules that govern the way the elements of the language are
used. Figure P-1 is an example of a syntax diagram.

Within the syntax diagrams, words enclosed in rounded bubbles are reserved words or
other Pascal symbols. Words enclosed in boxes with square comers are higher-level
constructs, many of which have their own syntax diagrams.

= Figure P-1 Example of syntax diagram (identifier syntax)

letter -
L f !
underscore letter <

digit

identifier

v

“—— underscore ja—’

This diagram shows that an identifier bégins with a letter or an underscore, and that this
letter may be followed by a letter, a digit, an underscore, or nothing. From there, you can
loop back to add another letter, digit, or underscore, or nothing at all.

The notation used to describe the syntax of predefined procedures and functions is
different. Here’s an example of the format:

write (f, ;yl, D2s v D)
This represents the actual syntax of the predefined procedure write. Notice the
following details:

s The terms f p,, p,, and p, stand for actual parameters. The types and interpretations of
the parameters are given in the discussion of each procedure or function.

m The notation “p,, p,, ..., p,” means that any number of actual parameters can appear
here, separated by commas.

® Square brackets, [], indicate parts of the syntax that can be omitted.

Hence the example shows that you must pass to the procedure write parameters that
correspond to fand p,. Additional parameters are optional.

PREFACE xxvii

Ellipses
A sequence of three dots (...) in a syntax diagram indicates repetition of the preceding
material, '

A sequence of two dots (..) indicates a scalar range. For example, 0..127 means “0 through
127

A sequence of three hyphens (-—-) in a sample source text listing indicates lines not
specified in the sample.

xxviii MPW 3.0 Pascal Reference

e R, o

Chapter 1 About MPW Pascal

MPW 3.0 PASCAL IS AN IMPLEMENTATION of the Pascal language that is part of the
Macintosh Programmer’s Workshop 3.0. It consists of several disk files:

n the MPW 3.0 Pascal compiler

s three special tools, PasMat and PasRef, for formatting and cross-referencing
Pascal programs (described in Appendixes H and I, respectively) and
ProcNames, for producing lists of the procedures and functions in your
Pascal programs or units (described in Appendix J)

= files of interface declarations that provide access to the Pascal, SANE, and
Macintosh routines
s the Pascal and SANE libraries

s several sample programs, with instructions for building them (including the
sample program, TestPerf.p for the performance tool PerfformReport, which
is located in the Tools folder on the MPW 3.0 disk)

A complete list of the MPW 3.0 Pascal files is included in Appendix E. =

Contents

About MPW Pascal version 3.0 3

About SADE and MacsBug 4

Object Pascal 5

About the Pascal interface files 6

Using interface files 9

About the Pascal libraries 10

About the Pascal examples 13

Installing MPW Pascal 14

Segmentation control 15

Creating resources 16

Creating an application in MPW Pascal 16
Building an application 17
Compiling an application 17
Linking an application 18

Creating a tool in MPW Pascal 19

Building a tool 20
Compiling a tool 20
Linking a tool 20
Creating a desk accessory in MPW Pascal 21
Desk accessory restrictions 21
The DRVRRuntire libraiy 21
- Desk accessory routines 22
Building a desk accessory 23
Linking a desk accessory 23
Creating code for different models of the Macintosh 24
Source code 24
Interface files 24
Compiler options 25
SANE and the Macintosh I 25
Floating-point enhancements 25
MC68881 enhancements 26
MC68020 enhancements 27
Other MPW 3.0 products 27

2 MPW 3.0 Pascal Reference

iy,

About MPW Pascal version 3.0

MPW 3.0 Pascal is a replacement version of MPW Pascal 2.0. If you're familiar with MPW
Pascal 2.0, see Appendix A for a list of the differences between the two versions.
Appendix A also contzine » compliance stati.ri.a eixe . MW Tascal’s relationship to the
American National Standards Institute’s definition of Pascal (AINS Pascal).

Besides providing nearly all the capabilities of Pascal described in the ANS Pascal
Standard, MPW 3.0 Pascal includes the following new features that expand the power and
flexibility of Pascal programming:

support for SADE, the symbolic debugger (described in Chapter 13)

a replacement for the $L.oAD directive (described in "Automatic Symbol Loading" in
Chapter 9 and "The -noload, -clean, and -rebuild options" in Chapter 13)

the use of character constants as valid string expressions

extended and improved symbol support for MacsBug (described in Chapter 13)
support for greater than 32K global data (described in Chapter 13)

less strict requirements for forward class references

new interface file organization

CHAPTER 1 About MPW Pascal

About SADE and MacsBug e

The new Symbolic Apple Debugging Environment (SADE) is a symbolic debugger with an
interactive graphic interface like that of the MPW Shell. You can monitor the execution of
yCil” piografu simuitaneously at the processor level and the symbolic prograra source level.
This first release of SADE includes

source display and source breakpoints

m variable display according to type (including records)
m display of Macintosh system structures
]

programmable, extensible command language

SADE is included with the MPW 3.0 program but documented separately in the SADE
Reference. The familiar MacsBug application has been improved for MPW 3.0, and is also
documented in a separate volume, MacsBug Reference.

MacsBug fully supports the MC68000 and MC68020 processors, as well as the MC68881 and
MC68851 coprocessors. It is installed at startup, resides in RAM with your computer, and
runs on all Macintosh computers, including the Macintosh SE and the Macintosh II. With
MacsBug, you can examine memory, trace through a program, or set up break conditions
and execute a program until these conditions occur. See the SADE Reference for
instructions on using MacsBug and Appendix F of the Macintosh Programmer's Workshop
3.0 Reference for the object file format.

4 MPW 3.0 Pascal Reference

Object Pascal

MPW Pascal includes a set of extensions, collectively known as Object Pascal, that
provide you with the ability to write object-oriented programs.

Object-oriented languages, such as Smalltalk-80 and Simula-67, let you struciure your
programs in ways that allow for greater control over the ways they process data. Object-
oriented programming couples data and routines to produce powerful, easily
maintainable code. It also gives you the ability to write programs using MacApp, Apple’s
“expandable” Macintosh application.

MacApp provides a skeleton Macintosh application. It supplies a framework that

~ implements many of the features of the Macintosh interface, to which you add the unique

features of your own application. See the MacApp 2.0 Programmer's Reference for more
information.

The Object Pascal extensions are described at various places in this manual. If you're new
to object-oriented programming, you may want to read an introductory book on the
subject before you attempt to use Object Pascal. For suggestions, see “Other Reference -
Materials” in the Preface.

The philosophy behind object-oriented programming is summarized briefly in Chapter 12.

Link, the Linker tool described in the Macintosh Programmer’s Workshop 3.0 Reference,
now contains the optimizing code for Object Pascal. It is available as the —opt option,
and it eliminates any need for the Optimize tool distributed with MacApp.

MPW Pascal provides strict error reporting for object errors. For details, see “Compiler
Options” in Chapter 13.

CHAPTER 1 About MPW Pascal

5

About the Pascal interface files

The MPW 3.0 Pascal interface files contain declarations for the routines in the MPW 3.0
Pascal libraries and the MPW 3.0 libraries, as well as the User Interface Toolbox and
Cperaidrg Sysiem routines ithat are bailt hiw e Madinosh RCia. The hizcidos ROM
routines are described in detail in Inside Macintosh, Volumes 1 through 5. The interfaces to
these routines are divided into files according to their “Manager,” as described in Inside
Macintosh.

Here is a list of the changes in the Pascal interface files since MPW Pascal 2.0:

Toolbox and operating system interfaces have been divided into files according to
Manager rather than being divided between ToolInt£.p and 0Sint£.p. This
parallels the organization of Inside Macintosh as well as the C include files.

MemTypes.p, 0SIntf.p, ToolIntf.p,PackIntf.p, PickerIntf.p,
SCSIIIntf.p,and videoIntf.p are retained for compatibility; however, they
have been modified to include the appropriate new interface files. It is often
preferable to use the new interfaces directly. It is unlikely that you will need all of the
new interfaces previously included in 0sInt£.p and ToolInt£. p, 50 only use the
new interfaces that your program depends upon.

The new interface files will include the files that they depend upon, if necessary.

Sound.p has been updated to include all the Macintosh sound routines previously
included in Sound.pand 0SIntf.p.

Printing.pand PrintTraps.p perform essentially the same function; however,
Printing.p checks to find out if it can use the apppropriate ROM routines and
includes the necessary glue to work with 64K ROMs. Print Traps.p generates more
efficient code that calls the ROM directly.

See Appendix G for more about SANE and the MC68881.

6

MPW 3.0 Pascal Reference

s

w»

Table 1-1 lists the new interface files.

s Table 1-1 New interface files used in MPW Pascal
Interface file Contey 'z -
Controls.p Control Manager interface
Desk.p . Desk Manager interface
DeskBus.p Apple Desktop Bus Manager interface
Devices.p Device Manager interface
Dialogs.p Dialog Manager interface
DisAsmLookup.p SADE and MacsBug symbols
DiskInit.p Disk Initialization package interface
Disks.p Disk Driver interface
Errors.p Error file
Events.p Event Manager interface
Files.p File Manager interface

,Fonts.p Font Manager interface
HyperXCmd.p HyperCard 'XCMD' interface
Lists.p List Manager interface
Memory.p Memory Manager interface
Menus.p Menu Manager interface
Notification.p Notification Manager interface
OSEvents.p Operating System Event Manager interface
oSUtils.p Operating System Utilities interface
Packages.p Package Manager interface
Palettes.p Palette Manager interface
Picker.p Color Picker Manager interface
Printing.p Printing interface
Resources.p Resources Manager interface
Retrace.p Vertical Retrace Manager interface
Scrap.p Scrap Manager interface
SCSI.p SCSI Manager interface
SegLoad.p Segment Loader interface
Serial.p Serial Driver interface
Shutdown.p Shutdown Manager interface
Slots.p Slot Manager interface

_Start.p Start Manager interface
Strings.p String conversion routines

(Continued)

CHAPTER 1 About MPW Pascal

= Table 1-1 (Continued) New interface files used in MPW Pascal
Interface file Contents

TextEdit.p Text Edit interface

Lier.p Timer Manager interface
ToolUtils.p Toolbox Utilities interface

Types.p Common types

video.p Video interface

Windows.p Window Manager interface

Table 1-2 lists the old Pascal interfaces along with the new interfaces to use directly.

= Table 1-2 Interface files included for compatibility in MPW Pascal

Instead of this file Use a subset of

MacPrint.p Printing.p

MemTypes.p Types.p

OSIntf.p OSUtils.p, Events.p, Files.p,
Devices.p, DeskBus.p, DiskInit.p,
Disks.p, Errors.p, Memory.p, OSEvents.p,
Retrace.p, Segload.p, Serial.p, Shutdown.p,
Slots.p, Sound.p, Start.p, Timer.p

PackIntf.p Packages.p

PickerIntf.p Picker.p

SCSIIntf.p SCSI.p

ToolIntf.p ToolUtils.p, Events.p, Controls.p,

VideoIntf.p

Desk.p, Windows.p, TextEdit.p,
Dialogs.p, Fonts.p, Lists.p, Menus.p,
Resources.p, Scrap.p,

Video.p

8 MPW 3.0 Pascal Reference

Using interface files

The interface files for the Pascal and MPW libraries as well as the Macintosh ROMs are in
the {PInterfaces} directory. You can determine which interface files to use for a specific
routine or data type by {inding out which library or Maciriosh Manager the routine or datz
type belongs to. You can also find out the library or Manage: name by searching the
{PInterfaces} directory for the routine or type name with the MPW Search command,
described in the Macintosh Programmer's Workshop 3.0 Reference.

The compiler searches several directories for interface files, until the specified file is
found. It searches the directory containing the current input file, directories specified
using the —i option to the compiler, and directories specified in the Shell variable
{PInterfaces}. '

You specify the units needed for your programs by using the uses statement:
uses unitname, unitname, ... ;

The compiler assumes that a unit 'unitname' will be found in the file 'unitname.p'. This is
the file for which it then searches. To override this assumption, use the {$U} directive. See
"Compiler Directives" in Chapter 13 for details.

The form of the pathname also determines where the compiler looks for the interface file.
If a full pathname is specified, the compiler uses exactly that name and performs no
search. A full pathname contains at least one colon (:) but doesn’t begin with a colon. If a
partial pathname is specified, the compiler searches several directories for the file. Partial
pathnames either begin with a colon or don't contain any colons.

Interface files can be nested up to five levels deep.

CHAPTER 1 About MPW Pascal

9

Table 1-3 summarizes the compiler’s interface-file search rules.

s Table 1-3 Interface-file search rules

Fuil pathazr-.c

uses filename Use the name as specified.

Partial pathnames

uses filename Search the following directories, in this order:
1. The directory of the source file that contains the uses
statement ’
2. Directories specified by the compiler’s - i option, in the order
specified
3. Directories specified by the Shell variable {PInterfaces}

About the Pascal libraries

The MPW 3.0 Pascal files include several libraries that contain the executable object
code for most of the predefined Pascal procedures and functions (described in

Chapter 11) as well as the code for more specialized routines. In addition, libraries include
code needed to access the Macintosh ROM routines. A full description of the Macintosh
ROM routines is included in Inside Macintosh.

Certain libraries are shared by Pascal and one or more other languages; they are in the
directory identified by the MPW 3.0 Shell variable (Libraries}. Three libraries
(PasLib.o, SANELib.o,and SANELib881 . o) are specific to Pascal; they are in the
directory {PLibraries}. ‘

Every MPW 3.0 Pascal program must be linked with the libraries Runtime. o,
Interface.o, and PasLib. o. Others are required for different program operations,
as summarized below. For further information about using these libraries, see the
Macintosh Programmer’s Workshop 3.0 Reference.

10 MPW 3.0 Pascal Reference

MPW Pascal includes the following libraries.

s The Standard Pascal Library in the file (PLibraries}PasLib. o contains all of the
standard Pascal I/O routines, the heap initialization routines, and certain special I/O
routines described in Chapter 10. Every MPW Pascal program must be linked with this
library. The names of the special I/O routines all begin with p1; if you call any of them
explicitly, you must use the interface file PasLibInt£.p. The standard Pascal I/O
routines are implemented implicitly by the compiler and do not require an interface
file.

s The Pascal SANE libraries in the file {PLibraries}SANELib. o contain the
procedures and functions described in Appendix G. These procedures and functions
provide accurate, extended-precision floating-point arithmetic. If you use any of
them in your program, you must use the interface file SANE. p in your compilation and
link it with the library (PLibraries}SANELib.o. SANELib. o will use the MC68881
when one is available.

s The Pascal SANE Library for the MC68881 floating-point coprocessor is included in the

file {pLibraries}SANELib881 . o and contains alternate SANE routines that call
the MC68881 directly. This library does not work on machines without an MC68881.

Table 14 lists the library object files used with MPW Pascal. The first eight files, provided
with the Macintosh Programmer’s Workshop, are shared with other languages and appear
in the {Libraries} directory. The remaining files, provided with MPW Pascal, are used only
with Pascal and appear in the {PLibraries} directory.

CHAPTER 1 About MPW Pascal

11

s Table 14 Library object files used by MPW Pascal

Libraries that may be used
with MPW Pascal

Use

Interface.o
ToolLibs.o

DRVRRuntime.o

ObjLib.o

PerformLib.o

Stubs.o

Runtime.o
HyperXLib.o

PaslLib.o

SANELib.o

SANELib881 .o

Inside Macintosh libraries shared with other languages.
Couiains the cod: . the cussor Contol afid .usuager
routines described in the Macintosh. Programmer’s
Workshap 3.0 Reference. If you use any of these
procedures in your program, you must include the
appropriate interface file in your compilation and link
it with this library.

Run-time support for desk accessories and other
drivers. If your program is a desk accessory, you must
link it with this library.

Facilities described in Chapter 12 that implement .
object-oriented programming without MacApp. If you
use any of these techniques without using MacApp, use
the interface file objInt£. p in your compilation and
link it with this library.

Performance measurement routines. (See the MPW 3.0
Reference for more information on performance
measurement.)

Stubs used by the Linker to replace unused library
routines for tools.

Data initialization routines.

HyperCard 'XCMD' routines

Standard Pascal library containing all standard Pascal
I/0 routines and heap initialization routines.

SANE Library of procedures and functions that provide
accurate, extended-precision floating-point
arithmetic.

SANE Library that is functionally equivalent to the
library SANELib.o except this version must be used
when you have invoked the -Mcé68881 compiler
option.

See “Linking an Application” later in this chapter for more information on using these

libraries.

12 MPW 3.0 Pascal Reference

About the Pascal examples

The Pascal files consist of eight sample Pascal programs included with MPW Pascal: an
application, a tool, a desk accessory, and a program that demonstrates the use of
pedormance tools. Iz adaition, the rn-akeiiles conizizéing the conunands ueeded to build
each of the examples are provided in the same folders. These files are in {PExamples}.
Table 1-5 lists these files.

s Table 1-5 Example source files used by MPW Pascal

Source flles PExamples folder

Makefile ‘ Makefile for building sample programs
Instructions Instructions for building sample programs.
Sample.p Sample Pascal application. This is the sample

application described in “A Simple Example Program”
in Chapter 1 of Inside Macintosh, Volume 1. It is a simple
MultiFinder-aware sample application.

TESample Simple MultiFinder-aware TextEdit application.
SillyBalls.p Simple color QuickDraw sample application
TubeTest.p Simple color QuickDraw and Palette Manager
ResEqual.p Sample application: an MPW tool.

Memory.p Sample desk accessory. The Memory desk accessory

displays the current free space in the application and
system heaps, the free space on the default volume, and
the name of the default volume. This information is
updated every 5 seconds. When Memory is first opened,
it calls _MaxMem to purge memory, thus showing the
upper bounds on free space in the heaps.

EditCdev.p Sample Control Panel device with a TextEdit item.
TestPerf.p A sample program that uses the Pascal Performance
Tools.

The file Instructions contains step-by-step instructions for building each of the
sample programs. After installing MPW and MPW Pascal, as described in the Macintosh
Programmer’s Workshop 3.0 Reference, open this file and follow the instructions.

CHAPTER 1 About MPW Pascal

13

Installing MPW Pascal

Instructions for installing MPW Pascal on a hierarchical file system (HFS) hard disk 20 or
20SC appear in the Macintosh Programmer’s Workshop 3.0 Reference. After installing MPW

by tollorving rhose instructions, run the MPW Instal! script anc. insart the MY Pascal disk:,

Alternatively, you can install Pascal with these steps:

1. Copy the file Pascal (the compiler) to the {MPW}Tools folder.
2. Copy the folder PExamples to the {MPW}Examples folder.

3. Copy the folder Plnterfaces to the {(MPW}Interfaces folder.
4. Copy the folder PLibraries to the {(MPW]Libraries folder.

¢ Note: You can put the compiler, examples, and libraries in different directories,
provided you change the default values of various Shell variables defined in the
Startup file. You can modify the file Startup itself or, preferably, modify the file
UserStartup. The following variables determine the locations of files supplied with
MPW Pascal.

s {Commands} A comma-separated list of directories containing tools
and applications. The directory containing the Pascal
compiler should appear in this list.

» {PInterfaces} A comma-separated list of directories to search for
PInterface files. This should include the Plnterfaces
directory.

®» (PLibraries} The directory containing PLibrary files. This should be

the pathname of the PLibraries directory.
For more information, see the Macintosh Programmer’s Workshop 3.0 Reference.

14 MPW 3.0 Pascal Reference

S

Segmentation control

A segment is a part of code that can be separately loaded into memory. Your program can
be written without explicit segmentation or it can contain a number of different
segments.

Each 'copE" resource in the application’s resource fork corresponds to a segment
containing one or more routines. (The 'copE* resource with ID 0 contains the jump table;
other *CODE"* resources contain routines:) At run time, a segment is automatically loaded
by the Segment Loader when you call one of the routines contained in the segment. The
segment is not unloaded until the application explicitly unloads it by calling un1oadseg.
See Inside Macintosh for more information about the Segment Loader.

You can specify which routines are placed in which segments in two ways. This section
tells how to use the $s directive to specify segmentation. The Macintosh Programmer's
Workshop 3.0 Reference explains how to use the Link command to modify a program’s
segmentation.

Segmentation helps you reduce your program’s run-time memory requirements. A typical
segmentation scheme divides a program into an initialization segment and a main
processing segment. You can also put routines that are seldom executed—printing
routines, for instance—in a separate segment that is not loaded when the program begins
executing. This allows the program to be loaded faster because the printing routines are
not loaded until they are needed. If you don't specify segmentation, the compiler puts
the entire program into a segment called Main.

The $s directive also lets you specify several segments within a single source file. To
assign source code to a segment, precede the code with a compiler directive of the form

{$S segment-name)

The code following this directive is placed in the named segment until the compiler reads
another $s or the end of the source file.

¢ Note: Inan $s directive, segment names are case sensitive. Leading spaces are not
significant, and all characters are included, up to the end of the comment character.

w

CHAPTER 1 About MPW Pascal

15

Code for a given segment does not have to be contiguous within the source file. The
program may take the following form:

{$S SegA}
Sfunction
{$S SegB!
Sfunction
{$S SegA}

and so forth. The code following an $s directive is placed in the named segment until the
next $s directive is encountered or the compiler reads the end of the source file.

The compiler marks each routine with the name of its segment. Then the Linker collects all
-of the functions and procedures for a segment from various input files and places them
into one code segment in the output file.

Creating resources

Noncode resources, such as the resources that specify menus, windows, and dialogs, can
be created using the Resource Editor (ResEdit) and the Resource compiler (Rez). These
tools are described in the Macintosh Programmer’s Workshop 3.0 Reference and the
ResEdit Reference.

Creating an application in MPW Pascal

An application is a program that can be run under the Macintosh Finder or MultiFinder.
Applications can also be run from the MPW Shell: execution of the MPW Shell is
suspended, and the application takes over the computer’s memory and display while
executing. N

The code for an application is contained in * CODE" resources in the resource fork of its
file. Additional resources in the same file describe the menus, windows, dialogs, strings,
and other resources used by the application. Inside Macintosh explains in detail how to
write 2 Macintosh application.

This section outlines the steps for building an application in MPW Pascal. The Instructions
file in the PExamples folder describe some of the tools that can be used to automate the
process. The MakeFile file in the PExamples folder illustrates the use of some of the tools.
The Macintosh Programmer’s Workshop 3.0 Reference describes these tools in detail.

16 MPW 3.0 Pascal Reference

Building an application

The easiest way to build any program in MPW is to use the Build menu. We will build
Sample, an application from the Examples folder. The source files for Sample are Sample.p
and Sample.r. Using the Directory menu, set the current directory to
HD:MPW:Examples:PExamples.

Select Build from the Build menu and type the program name sample.

You will see something like this on the screen:

3:58:13 PM ----- Build of Sample
3:58:13 PM ====- Analyzing dependencies
3:58:14 PM -—-—- Executing build commanas
3:58:40 PM —=--- Done

sample

The Build command compiles and links the application. For details on independently
compiling and linking an application, see the sections “Compiling an Application”and
“Linking an Application” that follow.

Press Enter to launch the sample application. You can cut, paste, copy, and move the
cursor. Quit (Command-Q) returns you to the MPW Shell.

Compiling an application

To compile a Pascal program, first start the MPW Shell application, then enter the Pascal
command in any window. Typically, the command specifies options arid the name of the
source file to the compiler, although neither is required. For example, the command

Pascal -p Samplé.p

compiles the source file Sample.p, producing the object file Sample.p.o. The -p option
specifies that progress information should be written to diagnostic output. This
information appears on the screen after the command.

You can find a complete specification of the Pascal command—including input,
output, and diagnostic specifications, status values, and options—in the Macintosh
Programmer’s Workshop 3.0 Reference.

CHAPTER 1 About MPW Pascal

17

Linking an application

The Linker is used to combine object files from several separate compilations, together
with any necessary library object files, to produce the executable code resources for a
program. The Linker either creates a new resource file, containing oply the code resources
for your program, or replaces the code rescurces in i exiniiug £ source file, leaving other
resources, such as menus and dialogs, intact. This allows you to run the Resource compiler
either before or after running the Linker. The Macintosh Programmer's Workshop 3.0
Reference describes the Linker in detail.

An appiimtion written partly or totally in Pascal for use on any Macintosh should be linked
with the libraries listed in Table 1-6.

Link code for use on any Macintosh with theSe libraries:

= Table1-6 Linking an application

Inside Macintosh interfaces Run time support Pascal libraries
{Libraries}Interface.o {Libraries}Runtime.o {PLibraries}PasLib.o

{PLibraries}SANELib.o

Code compiled to use the MC68881 on the Macintosh II:

Inside Macintosh interfaces Run time support Pascal libraries
{Libraries}Interface.o {Libraries}Runtime.o {PLgbrar_ies}PasLib:o
PLibraries)SANELib881.0

It's wise to link new programs with all the libraries that might be appropriate. If you
specify unnecessary files in the Link command, the Linker dxsplays a message listing which
files can be removed from your build instructions.

If you are using the -Mc68881 compiler option, you must place the file
{PLibraries]SANELib881.0 first in your link list. This file contains some definitions that
override 80-bit versions in other libraries. The Linker uses the first definition it reaches,
then displays warning messages when it encounters duplicate definitions. You can use
the -d linker option to suppress warnings about duplicate definitions.

Programs written partly in Pascal and partly in assembly language or C should be linked
with the file CRuntime.o and not the file Runtime.o. The Linker will detect several
duplicate entry points when linking with both the Pascal and the C libraries. All but one of
these duplicates can be safely ignored: the copies of the routines are identical.

18 MPW 3.0 Pascal Reference

.,

The exception is the execution starting point. If execution is expected to begin with the
c functionmain (), no special precautions are necessary. However, if your main program

- is written in assembly language or Pascal but parts of your program are written in C (and

must therefore be linked with file CRuntime.o), the object file containing your main
program must appear before CRuntime.o in the list of object files passed to the Linker.

Creating a tool in MPW Pascal

A tool is a program that operates within the MPW Shell environment. The Pascal compiler,
Rez, and Link are all tools. You can write your own tools in Pascal, C, or assembly language.
The Macintosh Programmer’s Workshop 3.0 Reference describes tools and how they are
created. This section contains specific information about writing tools in Pascal.

You execute a tool by entering an MPW command. The parameters specified in the
command line are passed as parameters to the main program. The Shell variables that are
exported are also passed as a parameter to the main program; they can be accessed
directly or by using the getenv () function from the Pascal Library. To access these
parameters, use interfaces as follows:

USES
CursorCtl,
IntEnv,
PasLibInt€£;

You can find additional details about parameters to tools in the Macintosh Programmer’s

Workshop 3.0 Reference.

Tools have direct access to MPW Shell windows and selections. The FILE variables
stdin, stdout, and stderr refer to MPW's standard input, standard output, and
diagnostic output, respectively. By default, Pascal Library 1/O functions read standard
input (text entered from the Shell) and write to standard Pascal output. Any files opened
by tools, using either Pascal Library functions or Inside Macintosh library functions, read
and write to windows if the file specified is open in a window. The contents of the
window are read or written in place of the data fork of the file. Selections in windows can
also be read and written as if they were files, by adding the suffix .§ to the filename (for
example, HD:MPW:Worksheet.§).

CHAPTER 1 About MPW Pascal

19

Building a tool

The easiest way to build any program in MPW is to use the Build menu. We will build
ResEqual, a sample MPW tool that compares the resources in two files. The source files for
ResEqual are ResEqual.p and ResEqual.r; since 2 makefile already exists, vou don’t need to
create one. Using the Ditectory menu, set the current directoty to
HD:MPW:Examples:PExamples.

Now select Build from the Build menu and type the program name ResEqual.

You will see something like this on the screen:

10:58:07 PM —==-- Build of ResEqual.
10:58:08 PM -==—- Analyzing dependencies.
10:58:10 PM —-=——- Executing build commands.

Rez :Examples:PExamples:ResEqual.r -append -o ResEqual

Pascal :Examples:PExamples:ResEqual.p

Link -w -t MPST =-c 'MPS ' "Oya:.MPW:Libraries:"Runtime.o
"Oya:.MPW:Libraries:"Interface.o "Oya:.MPW:PLibraries:"PasLib.o
"Oya:.MPW:PLibraries:"SANELib.o "Oya:.MPW:Libraries:"ToolLibs.o
:Examples:PExamples:ResEqual.p.o -o ResEqual
10:58:35 PM —-=-——- Done.

ResEqual

Now press Enter.

Compiling a tool

You compile a tool in exactly the same way you compile an application. The previous
information regarding include-file search rules, segmentation, and resources applies
- equally to tools and applications.

Linking a tool

The MPW Shell fecognizes a tool by the type and creator. Specify the following options
when linking a tool:
Link -t MPST -c "MPS " ..

This command specifies the file type and creator of an MPW tool. Follow the same library
linking rules for tools as for applications (see the section “Linking an Application”). In
addition, if your tool calls any of the spinning cursor or error manager routines, link with
the following libraries:

{Libraries}Stubs.o
{Libraries}ToolLibs.o

20 MPW 3.0 Pascal Reference

The file stubs. o contains a collection of “stubs,” or dummy routines, for several
functions that are defined in the run-time library but are not necessary for MPW tools
running under the MPW Shell. You can use these stubs to reduce the size of a tool.
Stubs. o should be linked in before any of the other libraries.

Creating a desk accessory in MPW Pascal

A desk accessory is a program that you run by selecting it from the Apple menu. It shares
its execution environment with the currently executing application. Information on
writing desk accessories appears in the Desk Manager and Device Manager chapters of
Inside Macintosh and in the Macintosh Programmer'’s Workshaop 3.0 Reference. This section
contains information specific to writing desk accessories in MPW Pascal.

Desk accessory restrictions

A desk accessory has neither a jump table nor a global data area.

s Because it does not have a jump table, a desk accessory must be in a single segment.
Either omit segmentation specifications so that all your code is placed in the default
segment, or use identical segmentation specifications for all of your routines. Use the
Link command to move any library routines you use into your single segment.

= Because it does not have a global data area, a desk accessory written in Pascal must
not use global variables. Furthermore, a desk accessory cannot call library routines that
require global data. Programming hints for avoiding these restrictions appear in the
Macintosh Programmer’s Workshop 3.0 Reference.

The DRVRRuntime library

Desk accessories have traditionally been written in assembly-language source, partly
because of the peculiar resource format used by the system for desk accessories, the
"DRVR' resource. Setting up the 'DRVR' layout header, passing register-based procedure
parameters, and coping with the nonstandard exit conventions of the driver routines have
made it fairly difficult in the past for programmers not familiar with assembly language to
implement desk accessories in higher-level languages.

CHAPTER 1 About MPW Pascal

21

To overcome these difficulties and simplify the task of writing a desk accessory in Pascal,
MPW provides the library DRVRRuntime.o and the resource type 'DRvW' declared in
MPWTypes.r. Together they compose the driver layout header and the five entry points
that set up the open, prime, status, control,and close functions of a driver.
For more information about *DRVR' resources, see the Device Driver chapter of Inside
Macin’osh, Volume 2. For an exampls defining dash access ;7 winaeee, 5o e dile
Memory.r in the folder PExamples.

Using the library DRVRRuntime.o to create desk accessories offers a number of
advantages: -

= No assembly-language source is required. Each of the driver routines—DRVROpen,
DRVRPrime, DRVRStatus, DRVRControl, and DRVRClose—can be written in
Pascal.

s The DRVRRuntime library handles desk acceésory exit conventions: your routines
simply retumn a result code.

The DRVRRuntime library consists of a main entry point that overrides the Pascal run-time
initial entry point. The DRVRRuntime entry point contains driver “glue” that sets up the
parameters for you, calls your routine, and performs the special exit code required by a
desk accessory to return control to the system. Your routines perform the actions of the
desk accessory, such as opening a window or responding to mouse clicks in it.

Desk accessory routines

Desk accessories that use the library DRVRRuntime must contain the five functions
DRVROpen, DRVRP rime, DRVRStatus, DRVRCont rol, and DRVRClose. All of these
functions have the same parameter and result types. They are declared as Pascal-
compatible functions so that the library DRVRRuntime can be used for writing desk
accessories in Pascal, C, and assembly language. Each of these five routines should be
declared as follows: .

FUNCTION DRVROpen(ctlPB: ParmBlkPtr; dCtl: DCtlPtr): OSErr;
BEGIN

DRVROpen := resultCode;
END;

Types ParmB1kPtr and DCt 1Pt r are defined in the Files.p file. Type 0SErr is defined ’
in MemTypes.p. Details on each function appear in the Macintosh Programmer’s
Workshop 3.0 Reference, in the Desk Manager chapter of Inside Macintosh, Volume 1, and in
the Device Manager chapter of Inside Macintosh, Volume 2.

2 MPW 3.0 Pascal Reference

P

Building a desk accessory

The easiest way to build any program in MPW is to use the Build menu. We will build
Memory, a sample desk accessory that displays the memory available in the application
and system heaps, and on the boot disk.

The source files for Memory are Memory.c and Memory.r; since a makefile already exists,
you don’t need to create one. Using the Directory menu, set the current directory to
HD:MPW:Examples:PExamples.

Using the Directory menu, set the directory to HD: MPW : Examples: PExamples. Now
select Build from the Build menu and type the program name Memory. You will see
something like this on the screen:

4:12:40 PM -=--- Build of Memory.
4:12:41 PM ----- Analyzing dependencies.
4:12:43 PM ----- Executing build commands.

pascal Memory.c
Link -w -rt DRVW=(0 -sg Memory "Oya:MPW:Libraries"DRVRRuntime.o
Memory.p.o
"Qya:MPW:Libraries"Interface.o "Oya:MPW:PLibraries"Paslib.o -o
Memory.DRVW -c "?222?2" -t "227?2?"

Rez -rd -c DMOV -t DFIL Memory.r -o Memory
4:13:06 PM —=-—- Done.

'Font/DA Mover' 'Oya:System Folder:System' Memory # Install DA

Press Enter to launch the Font/DA Mover. (If you have two megabytes or less of RAM,
you may not be able to do this under MultiFinder; restart with the Command key held
down, then try again.) Install the Memory DA in your System file. It gives you the current
size of the System Heap and the Application Heap.

Linking a desk accessory

A desk accessory written in Pascal must be linked with both DRVRRunt ime.o and

Runt ime.o. DRVRRunt ime.o must precede Runt ime.o in the list of object files passed
to the Linker, for example

LINK [Libraries}DRVRRuntime;o {Libraries}Runtime.o

CHAPTER 1 About MPW Pascal

23

Creating code for different models of the Macintosh

Using version 3.0 of MPW Pascal, you can create applications that run on all models of the
Macintosh. This section outlines the compatibilities among the machmes and the
strategies for writing and compiling code that will mir 0 - e difiiei. Lo
megabytes of RAM are required.

Source code

You can write your source code to be compatible with one or more models of the
Macintosh. You have four primary options:

s Code written for a Macintosh 512K also runs on a Macintosh XL, a Macintosh Plus, a
Macintosh SE, and a Macintosh II. If you want your program to run on any model,
follow the recommendations in nside Macintosh, Volumes 1 through 3.

» Code written for a Macintosh Plus also runs on a Macintosh SE and a Macintosh II. If
you want your program to run on either of these models, follow the recommendations
in Inside Macintosh, Volumes 1 through 4.

n Code written for a Macintosh SE also runs on a Macintosh II and a Macintosh 512Ke or
Macintosh Plus. If you want your code to run on any model with the most recent
system disk, follow the recommendations for a Macintosh SE in Inside Macintosh,
Volume 5.

n Code written for a Macintosh II, using the ROM code that is present only in that
model, runs only on a Macintosh II.

Interface files

A set of interface files provided with MPW Pascal gives you access from Pascal to the
Macintosh Toolbox and Macintosh Operating System routines built into the Macintosh
ROMs. Volume 5 of Inside Macintosh describes the ROM code that is new with the
Macintosh II and the Macintosh SE. Volume 4 of Inside Macintosh describes the code for
the Macintosh Plus.

Much of the new material is usable only on a Macintosh II, because it makes use of
hardware options that are not available on other models. You can include all of the
interface-file definitions in code for use on any model, but you cannot call ROM routines
that are not present on the machine that will run the compiled code.

24 MPW 3.0 Pascal Reference

See Inside Macintosh, Volume 5, for detailed descriptions of the new material and the
models with which it can be used.

Compiler optionc
With the addition of the Macintosh II to the product line, there are now compiler

differences among the models as well as ROM code differences. These compiler
differences are discussed in the following sections.

SANE and the Macintosh II

~ MPW Pascal includes numeric capabilities that conform to the Institute of Electrical and

Electronics Engineers (IEEE) Standard 754 for Floating-Point Arithmetic. This Standard is
the set of guidelines defined by the IEEE for the design and implementation of systems
that perform floating-point arithmetic.

The Standard Apple Numeric Environment (SANE) is Apple’s implementation of these
guidelines. MPW 3.0 Pascal uses SANE to provide a powerful, flexible environment for
numeric calculations.

The IEEE Standard recommends the implementation of two additional data types for
numeric programming, in addition to the real type that's specified in the ANSI-
Standard. MPW Pascal includes these two additional types. They are described in
Appendix G. You'll also find references to SANE in the descriptions of predefined
arithmetic functions in Chapter 11.

SANE includes a library (SANELIb) of useful numeric procedures and functions. This
library, described in Appendix G, works on all machines in the Macintosh family.

Floating-point enhancements

Applications using the SANE packages (Pack4 and Pack5) run faster on the Macintosh II
because of the 68881 floating-point coprocessor. The default mode of the compiler is to
call these packages for all floating-point operations. For the fastest possible arithmetic
on machines with a 68881, the compiler has an option that forces direct calls to the 68881.
When the option is used, the resulting code will not run on Macintoshes without both a
68020 and a 68881.

CHAPTER 1 About MPW Pascal

25

The SANE interface has been extended to provide support for the 68881: one new
constant for setting the default environment to work in both the 68000 and the 68881
worlds, two new functions for transferring between extended formats, and two new
functions for access to the 68881 trap mechanism. The code for these new features is
included in a new library SANELib881.0. The features are described in the updated
interface file, SAME.p, and are discussed in deiai! iu “Corvesiing, Potwes:. Ixteuded
Formats in Mixed-World Programs,” in Appendix G.

The setEnvironment (0) call will not work under the -Mc68881 option. Replace it
with SetEnvironment (IEEEDefaultEnv), which works with or without the
-MC68881 option.

~ MC68881 enhancements

The Motorola 68881 does basic arithmetic and a large number of transcendental functions
very fast. Ordinarily, the MPW Pascal compiler generates calls to the SANE packages
(pack4 and Packs5) for floating-point operations; if a 68881 is present, the SANE
packages use it, so floating-point packages are automatically faster. To take better
advantage of the 68881, the Pascal compiler has been modified to provide optional
direct calls to the coprocessor.

To access the 68881 directly for greater speed in basic arithmetic calls, type -Mc68881
on the command line or use the equivalent sMc68881+ compiler directive (described in
detail in Chapter 13) and link with SANELib881.0 instead of SANELib.o. With the
-MC68881 option, the extended type is 12 bytes long and variables of the extended
type may be allocated to registers.

The -Mc68881 option will result in the use of transcendental functions whose accuracy is
identical to that of the SANE packages. For the faster but less accurate transcendental
functions provided on the 68881, type -4 Elems881=true on the command line. For
details, see Chapter 13.

For details on using the -MCc68881 option, see Appendix G. .

A Important Use of the -MCc68881 option can generate instructions incompatible
with the 68000. Your program might not run on a Macintosh without
the 68881. a

26 MPW 3.0 Pascal Reference

MC68020 enhancements

MPW Pascal supports the Motorola 68020 central processing unit with the compiler option
-MC68020 or the equivalent compiler directive $Mc68020+ (described in Chapter 13).
The 68020 yields faster longint arithmetic and improved performance with packed
structures. See Appendix K for advanced programming techniques for the MC68020.

A Important Use of the -MC68020 option can generate instructions incompatible
with the 68000. a

Other MPW 3.0 products

The MPW 3.0 Shell provides an integrated'working environment within which you can write
programs in assembly language, Pascal, and C.

If you write programs in Pascal, you can also use MacApp for object-oriented
programming, as described in Chapter 12. The MPW 3.0 Pascal compiler cannot be used as
a stand-alone program. ‘

Besides the assembly-language Assembler and the Pascal and C compilers, the MPW 3.0
Shell also contains a rich complement of editing, linking, and debugging tools including
SADE and MacsBug.

Here’s how to find more information about the ways you can combine your Pascal
programs with other MPW 3.0 facilities:

s For more information about the MPW 3.0 Shell, including how to edit your source text,
‘how to use the Build Menu facility, how to use Commando, how to use the command
language, how to create resources for your program, and how to use the linking and
debugging tools, consult the Macintosh Programmer’s Workshop 3.0 Reference.

w If you want to use assembly-language subroutines in your Pascal programs, or vice
versa, consult the Macintosh Programmer’s Workshop 3.0 Assembler Reference.

= If you want to write your program partly in Pascal and partly in C, consult the
Macintosh Programmer’s Workshop C 3.0 Reference and Appendix E of this reference.

= If you want to use MacApp to write object-oriented programs in MPW 3.0 Pascal,
consult the MacApp 2.0 Programmer’s Reference and Chapter 12 of this reference.

Many of the books just cited are all listed under “Other Reference Materials” in the
Preface.

CHAPTER 1 About MPW Pascal

»Chapter 2 Symbols

THIS CHAPTER DISCUSSES SYMBOLS, the smallest meaningful units of source text in a
Pascal program. =

Contents

Symbols 31 7
Special symbols and reserved words 32
Identifiers 33
Numbers 34
Labels 36
Quoted string constants 36
Quoted character constants 37
Delimiters 38
Directives 38
Special directives for Object Pascal 38
Comments and Compiler directives 39

Symbols

This chapter discusses symbols under the following headings:

a special symbols and reserved words

s identifiers

s numbers

s labels

s quoted string constants

s delimiters

s directives

s comments and Compiler directives

Every Pascal source text consists of a succession of such symbols. You write each symbol
as a string of ASCII characters, according to these rules:

» Each symbol must be complete and unbroken; you may not insert one symbol within
another.

s You can write comments anywhere, as long as they do not break up other symbols.
The Pascal Compiler simply skips over them.

s Subject to certain exceptions, explained below, you must write delimiters alternately
with the other symbols. The Compiler uses dehmlters to determine where other
symbols begin and end.

The character set used by MPW Pascal is eight-bit extended ASCII, with characters
represented by numeric codes in the range 0..255. See Appendix C for the complete
character set.

The Compiler does not recognize the ASCII control codes (ASCII 0 through ASCII 31),
except tab and carriage return. Otherwise, it processes the following subsets of the ASCII
character set: .

» The letters are those of the English alphabet, A through Zand 4 through z.
s The digits are the Arabic numerals 0 through 9.

= The hex digits are the Arabic numerals 0 through 9, the letters A through F, and the
letters a through f.

s The blanks are the space character (ASCII 32), the horizontal tab character (ASCII 9),

the return character (ASCII 13), and option-space (ASCII 202).
» The underscore, ASCII 95.

CHAPTER 2 Symbols

31

Special symbols and reserved words

Special symbols and reserved words are symbols having fixed meanings. If you try to
change their meanings or use them in ways other than their intended uses, the Compiler will
issue an erro.. L ue foucing single chareniess ate spauul cymlioly

+ - * / =< > [1 . , () = ; ~ @ { } $ & |
The following character pairs are special symbols:

<> <= >= = .. (* *) (. .) **

Some of the special symbols are also operators. Operators are defined in Chapter 3.
. & Note: The symbols (. and .) are equivalent to [and].

The reserved words in MPW Pascal are listed in Table 2-1.

= Table2-1 Reserved words

AND DOWNTO IF NIL PROGRAM TYPE
ARRAY ELSE IMPLEMENTATION NOT RECORD UNIT
BEGIN END IN OF REPEAT UNTIL
CASE FILE INTERFACE OR SET USES
CONST FOR INTRINSIC* OTHERWISE STRING VAR
DIV FUNCTION LABEL PACKED THEN WHILE
DO GOTO MOD PROCEDURE TO WITH

* INTRINSIC is reserved for future use.

These reserved words appear in uppercase letters throughout this book. However, MPW
Pascal is not case sensitive—corresponding uppercase and lowercase letters are
equivalent.

32 MPW 3.0 Pascal Reference

Identifiers

Identifiers are the names that denote constants, types, variables, procedures, functions,
units and programs, and fields in records. Here are the rules for writing identifiers:

» An identifier can be of any lengih, but only the first 63 characters are sig::iicant.

» They are not case sensitive; corresponding uppercase and lowercase letters are
equivalent.

s They may contain only letters, digits, and underscore characters (ASCII 95); in
particular, they may not contain' spaces.

s Every identifier must begin with a letter or an underscore.

{denti
‘ fer > letter >
J ‘
underscore letter <

digt |

Yy
v

g . - underscore fa—’

Here are some examples of identifiers:

z Knowledge SUM get_byte
An_identifier can_be_as_long_as_you_want_stop

CHAPTER 2 Symbols 33

Numbers

Within an MPW Pascal program, you can use ordinary decimal notation for numbers that
are constants of the data types integer and 1ongint and the real types (see

Chapter 4). You can also write hexadecimzl iniege, corstan.c nsing the & Character as 2
prefix. Finally, you can use scientific notation (E or e followed by an exponent) for real
types. Here are the syntax diagrams for writing numbers:

digiisequence i
hex digit sequence hex
(N i
s ~(+)
S
unsigned number

> digit sequence

o hex digit sequence

34 MPW 3.0 Pascal Reference

real-type numbers

sign »——»{ NaN -@
L dgi
sequence
- digit ;J B digit
sequence ' sequence

3
‘PO sign
sequence

The letter E or e preceding the scale factor in an unsigned real means “times ten to the
power of.”

These are examples of correct notation for numbers in MPW Pascal programs:

1 +100 -0.1 5E-3 87.35e+8 $A05SD

Notice that SE-3 means 5x10- and 87 . 35e+8 means 87.35x108. You can omit the plus
sign (+) before the exponent so that 8+7 and 8E7 are equivalent.

Numbers written with a decimal point or exponent are stored as type extended (unless
explicitly assigned to a variable of another of the real types). Other decimal numbers are
stored as the smallest numerical type (integer or Longint) needed for that value. For
example, an integer value from -32768 to 32767 is stored in two bytes, as type
integer. See Chapter 4 for the value limits of different numerical data types.

A hexadecimal constant with one to four digits is stored as an integer (two-byte)
quantity; one with five to eight digits is stored as a 1ongint (four-byte) quantity. An
integral hexadecimal value with more than eight significant digits causes an overflow error.
Leading zeros are counted in hexadecimal digit counts. The sign of the resulting value is
implied by the hexadecimal notation.

CHAPTER 2 Symbols 35

Here are some examples of hexadecimal constants and their integer values:* i

$SF=15

SFFFF=-1 (integer)
SOFFFF=65535 (longint)
SFFFFF=1048575
SFFEFFFFF=-1 (longint)

Labels

A label is a digit sequence in the range 0..9999. Leading zeros are not significant in labels.
For example, 0078 and 78 are equivalent.

Labels are used with GoTo statements, described in Chapter 7.

Quoted string constants

A quoted string constant is a sequence of zero or more characters from the ASCII
character set given in Appendix C. Here are the rules for writing quoted string constants:

» Each constant must be written all on one line of the program source text.
s Each must be enclosed by single quotation marks (apostrophes).

» Blanks count as characters in quoted string constants.

s The maximum number of characters in one constant is 255.

» A quoted string constant with nothing between the single quotation marks denotes
the null string.

s If you want the quoted string constant to contain a single quotation mark, you must
write the single quotation mark twice.

36 MPW 3.0 Pascal Reference

quoted string constant

Y

(O)—

o)} —
-/
=

character

string character
g > any char except @ or Retum
-O—0O

These are examples of quoted string constants:

. 'Baltic’ * NOVOGOROD* 'Don''t Panic!'

lAl L ; 1 Tty LR]
The last is a null string. The next to last contains one single 'quotation mark.

All string values have a length attribute (see “String Types” in Chapter 4). In the case of 2
quoted string constant, the length is fixed; it is equal to the actual number of characters in
the string value.

Quoted character constants

Syntactically, a quoted character constant is simply a quoted string constant whose length is exactly

one. 'A' is an example of a quoted character constant.

- quoted character constant .@ . string

A quoted character constant is compatible with any char type or STRING type; that s, it
can be used either as a character value or as a string value.

CHAPTER 2 Symbols

37

Delimiters

Delimiters are symbols that separate other symbols in the source text so that the
Compiler can distinguish them as discrete objects. Blanks (spaces, tabs, carriage returns,
and option-spaces) are the principal celimiters. Tu acdiion, 21l the syetial symbois listed
earlier in this chapter serve as delimiters while performing their other functions. Hence the
Compiler can process the expression

2+seven=number_ of_planets

even though it contains no spaces or tabs, because + and = are delimiters.

Comments and Compiler directives (described below) also act as delimiters.

Directives

Directives are words that have special meanings only when used in place of a procedure or
function block. They are not reserved and can be used as identifiers in other contexts.
FORWARD, EXTERNAL, C, and INLINE are the four directives used by MPW Pascal.
INLINE is different from the other three in that it is followed by a list of constants, which
make up a machine-language subprogram used by the Compiler in interpreting the
directive. See Chapter 8 for more information about INLINE.

Special directives for Object Pascal

The words INHERITED and SELF have special meanings only when used in an Object
Pascal method declaration (discussed in Chapter 12). You can use the words inherited and
self as identifiers anywhere but within a method. In practice, Object Pascal programs
consist almost entirely of methods, so INHERITED and SELF are rarely used as identifiers
in Object Pascal programs. Ordinary Pascal programs never contain methods.

The word OVERRIDE is used like a directive. It has special meaning only when used after a
method heading in an object type declaration. However, OVERRIDE is added to the
method and does not replace its block.

38 MPW 3.0 Pascal Reference

Comments and Compiler directives

The constructs

{ any text uct containing right--brace }
(* any text not containing star-right-paren *)

are called comments. They are ignored by the Compiler.

A comment cannot be nested within another comment formed with the same kind of
delimiters. However, a comment formed with { . . .} delimiters can be nested within a
comment formed with (. . .*) delimiters, and vice versa.

& Note: The use of nested comments is one of the differences between MPW Pascal and
ANS Pascal. Nested comment structures allow you to “comment out” source text that
contains only one style of comment delimiters—that is, render it invisible to the
Compiler.

A Compiler directive is a comment that contains a $ character immediately after the { or
(* that begins the comment. The $ character is followed by the mnemonic of the
Compiler command. Compiler directives are similar to the Compiler options you enter
through the MPW Pascal command line, the main difference being that you embed
directives in the source text of your program. They are listed in Chapter 13.

CHAPTER 2 Symbols

39

Chapter 3 Blocks and Scope

THE BLOCK IS THE FUNDAMENTAL UNIT of Pascal source text. Each block is part of
one of the following listed items:

s a procedure declaration

= 2 function declaration

= 4 program

= 2 unit

Each block consists of declarations and statements, constructed according to
these rules:

s No specific declaration parts are required.

» Declarations may be written or intermixed in any order. =

Contents
Block syntax 43
Scope rules 46

Redeclaration in an enclosed block 46

Position of declaration within its block 46

Redeclaration within a block 47

Declarations in units 47

Predefined identifiers 47 T
Special rule for object types 48

Scopes, object files, and other languages 48

41

Block syntax

The following diagrams specify the overall syntax of any block:

block label A
declaration
part

Y

constant [3
declaration part

type 4
declaration

part

variable A
L" declaration
part

procedure and function
declaration part

statement

The label declaration part declares all labels that mark ‘statements in the corresponding
statement part. Each label must mark exactly one statement in the statement part.

CHAPTER 3 Blocks and Scope

sequence

The digit sequence used for a label must be in the range 0..9999.

The constant declaration part contains all constaht declarations local to the block.

constant declaration part constant

CONST decaraton —]—‘

The type declaration part contains all type declarations local to the block.

‘ type
TYPE declaration l

The variable declaration part contains all variable declarations local to the block.

(VAR) declaration >

type declaration part

44 MPW 3.0 Pascal Reference

,“’%w‘ .

The procedure and function declaration part contains all procedure and function
declarations local to the block.

rocedure and function declaration part

procedure
declaration

Y
v

function |
declaration

method
declaration

The statement part specifies the actions to be executed by the block.

statement part compound |
statement y

4 Note: At run time, all variables except file variables declared within a particular block
have unspecified values each time the statement part of the block is entered. File
variables are initialized to NIL.

The next section discusses the scope of items within the program or unit in which they are
defined. See Chapter 8 for the scope of items defined in the interface part of a unit and
referred to in a host program or unit.

CHAPTER 3 Blocks and Scope

45

Scope rules

The appearance of an identifier or label in a declaration defines the identifier or label. All
subsequent occurrences of the identifier or label must be within the scope of its
declarztion.

Ordinarily, the scope of an identifier or label extends from its declaration onward to the
end of the current block, including all blocks enclosed by the current block within that
area. There are several exceptions to this rule, however. They are explained below.

& Note: Additional' anomalies in the MPW Pascal scope rules are described in
Appendix B.

Redeclaration in an enclosed block

Suppose that outer is a block and 1nner is another block that is enclosed within
outer. If an identifier declared in block outer has a further declaration in block
Inner, then block Inner and all blocks enclosed by 1nner are excluded from the scope
of the declaration in block cuter.

Object identifiers cannot be redeclared.

Position of declaration within its block

The declaration of an identifier or label must precede all corresponding occurrences of
that identifier or label in the program text. In other words, identifiers and labels cannot
be used until after they are declared. However, there are two exceptions to this rule:

= The base type of a pointer type can be an identifier that has not yet been declared.
~ In this case, the identifier must be declared somewhere in the same type declaration
part in which the pointer type occurs.

= An object type identifier may appear before it is declared, as long as that appearance
is in the same type declaration part as the declaration.

46 MPW 3.0 Pascal Reference

Redeclaration within a block

An identifier or label cannot be declared more than once in the outer level of a particular
block, except for record and object field identifiers.

A recod field identifier is declzred within 2 record type. It is raeaningful only in
combination with a reference to s variable of that record type. Therefore, the following
redeclarations are possible:

» A field identifier can be redeclared within the same block, as long as it is not declared
again at the same level within the same record type.

s An identifier that has been declared to denote a constant can be redeclared as a
record field ider_xtifier in the same block. ‘

Declarations in units

Identifiers declared in the interface part of a unit have a scope that extends to the end of
aunit. The scope of these identifiers also extends to include any other units or programs
that reference the unit in a uses clause.

Identifiers declared in the implementation part of a unit have a scope that extends to the
end of the unit. These identifiers are hidden from any other units or programs that
reference the unit in a USES clause.

For a more complete discussion of units, the interface part, and the implementation part,
see “Unit Syntax” in Chapter 9.

Predefined identifiers

MPW Pascal provides a set of predefined constants, types, procedures, and functions.
The identifiers of these objects, along with the statement identifiers Cycle and Leave,
behave as if they were declared in a “super-outermost” block enclosing the entire program,
thus, their scope includes the entire program.

CHAPTER 3 Blocks and Scope 47

Special rule for object types

In addition to having normal identifier scope, the scope of any object type
identifier, object field identifier, or method identifier extends over the following
areas:

= ail descedant. of its type
= all procedure and function blocks that implement methods of that object type and its
descendants

The following extra redeclaration rules apply to object types and their associated
identifiers:

s If you declare the identifier oBJECT in a program that uses Object Pascal, the
Compiler will issue an error.

s Object field identifiers can be redeclared in objects that are not descendants of the
original object type. However, they cannot be redeclared in any descendant of the
object type where they are originally declared, even if that object is declared in a
different block.

» Method identifiers can be redeclared, but the parameter list and return value (if any)
for the new method must be identical to those for the original method.

Scopes, object files, and other languages

The discussion of scopes in this chapter assumes that programs are written entirely in
Pascal. Pascal provides strong type checking at compile time and a secure mechanism
(the unit) for sharing global declarations across modular compilations. Other languages,
such as C and assembly language, do not have identical mechanisms. To mix Pascal with
other languages, you may need to use some of the Compiler options that modify the
default treatment of Pascal symbols in object files. See the discussion of the $N+, $z*,
and $z+ options in Chapter 13. .

48 MPW 3.0 Pascal Reference

Chapter 4 Dsaiz Types

YOU MUST SPECIFY A TYPE when you declare a variable. The type determines the set
of values that variable can assume and the operations that can be performed
upon the variable. a

Contents

Simple types 52
Real types 53
Scalar types 55
The integer type 56
The longint type 56
The boolean type 57
The char type 57
Enumerated types 58
Subrange types 59
String types 60
The pointer type 61
Structured types 64
Array types 65
Record types 67
Set types 69
File types 70
Object types 71
Type compatibility 73
Compatible types 73
Assignment-compatible types 74
Type coercion 75
Type declarations 76
User-defined anonymous types 77

49

e Ak w T a

A type declaration associates an identifier with a type.

type declaration

1 identifier

pointer

The occurrence of an identifier on the left side of a type declaration declares it as a type
identifier for the block in which the type declaration occurs. The scope of a type
identifier does not include its own declaration, except for pointer types and object
types. The MPW Pascal data types are arranged as shown in Table 4-1.

= Table 41 Data types

Simple types Pointer type Structured types

‘Real types ARRAY

real, single* RECORD
double* SET
extended® FILE
comp, computational® OBJECT
Scalar types

integer*

longint*®

char*

boolean’

enumerated types

subrange types

String types*

CHAPTER 4 Data Types

51

The types marked with an asterisk in Table 4-1 are predefineds; their type declarations are

built into the Compiler. Others are user-defined and require a prior type declaration in
your source text.

The tvpes listec in Table 4-1 are discussed in the rest of this chapici.

Simple types

" All the simple types define ordered sets of values.

simple type

{
cHIRERARELS

The simple types include real types, scalar types, and strings.

52 MPW 3.0 Pascal Reference

Real types

There are four real types in MPW Pascal, all predefined. They are listed in Table 4-2.

s Table 42 Real types

Identifiers Values Memory size

real,single floating-point numbers 4 bytes

double floating-point numbers 8 bytes

- extended floating-point numbers 10 bytes (without

-MC68881)

extended . floating-point numbers. - - 12 bytes (with
-MCc68881)"

comp, computational whole numbers 8 bytes

“With -68881, all floating point types use 12 bytes.

All the floating-point calculations required in MPW Pascal programs are performed
according to the specifications for the Standard Apple Numeric Environment (SANE).
SANE is based on the IEEE Standard for Floating-Point Arithmetic, which recommends
the use of four floating-point types in high-level languages. In the IEEE Standard, the
types are called single, double, extended, and comp. SANE provides the three
additional floating-point types included in MPW Pascal.

The numeric environment for the real types uses IEEE Standard defaults: numbers are
rounded to the nearest value in extended precision, and all halts are disabled. Each
program begins with these defaults and with all exception flags clear. Functions for
managing the environment and changing these parameters ase included in the SANE library,
which is discussed in Appendix G of this manual.

The ANS real type is identical to the SANE single type/. The MPW Compiler will accept
both identifiers and treats them identically. In addition, the Compiler treats the names
comp and computational in exactly the same way.

The real types are written as follows:

real type real
e —— type —>
identifier

CHAPTER 4 Data Types

53

These are the possible values for real-type variables:

Finite values (a subset of the mathematical real numbers). As constants, these values
can be denoted as descn‘bed under “Numbers” in Chapter 2. The value zero has a sign,
like cthe moabers, vil b 2opee o L ol outpal.

Infinite values, +INF and - INF. These arise either as the result of an operation that
overflows its intended storage type or as the result of dividing a finite value by zero.
NaNs (the word NaN stands for Not a Number). NaNs arise as the result of operations
that have no meaningful numeric result. For example, the result of multiplying e by
zero is a NaN. In textual output, a NaN appears as NAN, followed by a set of
parentheses enclosing an integer that identifies the source of the NaN.

The four real types differ in the range and precision of values that they can hold and in the
amount of storage space they require:

%4

Real (or single) type variables take up four bytes of storage. The magnitude of
real type values can range from approximately 1.401298464E—45 to 3.402823466E38
in scientific notation. They have 7 to 8 digits of precision.

Double type variables take up eight bytes of storage. The magnitude of double
values can range from approximately 5.0E-324 to 1.7E308 in scientific notation. They
have 15 to 16 digits of precision.

Extended type variables take up ten bytes of storage (12 bytes with the -MC68881's
flag). The magnitude of extended type values can range from approximately
1.9E-4951 to 1.1E4932 in scientific notation. They have 19 to 20 digits of precision.

The comp, Of computational, data type holds only integer values in the
approximate range 19.2E18. (The exact range is -26+1 to 263-1; 283 is treated as a
NaN.) comp type variables are used for fixed-point values, where the decimal point is
placed by the application. Although comp values appear to be more like the integer
types than like the other real types, computations using comp values are performed as
with the real types. Comp values are converted to extended before computations are
performed.

Note: rReal values are converted to extended before calculations are performed, so
calculations using the extended data type are faster and more compact than other
real-type calculations. You may want to declare all real-type temporary variables,
formal value parameters, and function results as extended in order to save execution
time and code size. External data should be stored as one of the smaller types rather
than as extended, which varies among SANE implementations.

MPW 3.0 Pascal Reference

Scalar types

Scalar types are simple types with the following special characteristics:

s Within a given scalar type, all possible values form an ordered set and each possibie
value is associated with an ordinality, which is an integer or Longint value. Except
for integer and longint values, the first value of the scalar type has ordinality 0,
the next has ordinality 1, and so on for each value in that scalar type. The ordinality of
an integer Of longint value is the value itself; for example, the ordinality of -10 is
-10. In any scalar type, each value except the first has a predecessor based on this
ordering, and each value except the last has a successor based on this ordering.

w The standard function ord, described in Chapter 11, can be applied to any value of
scalar type; it returns the ordinality of the value.

s The standard function pred, described in Chapter 11, can be applied to any value of
scalar type; it returns the predecessor of the value. For the first value in the scalar type,
the result is unspecified.

s The standard function succ, described in Chapter 11, can be applied to any value of
scalar type; it returns the successor of the value. For the last value in the scalar type,
the result is unspecified.

Scalar types are written as follows:

scalar tipe o subrange
type

enumerated

f.

ordinal

identifier

MPW Pascal has four predefined scalar types—integer, longint, boolean, and
char—and two classes of user-defined scalar types: enumerated types and subrange
types. These are described in the following sections.

CHAPTER 4 Data Types

55

The integer type

Values of type integer are a subset of the whole numbers. As constants, these values can
be denoted as described under “Nuribe:s™ i Thaire. 2. T4z pederived Citeger

constant maxint is defined o b2 32767. The range of tie type integer i me sci of
values

- (maxint+1l), -maxint, ... -1, 0, 1, ... maxint-1, maxint

that is, 32768 to +32767. These are 16-bit, 2's-complement integers.

The longint type

Values of type 1ongint are a subset of the whole numbers. As constants, these values can

. be denoted as described under “Numbers” in Chapter 2. The predefined 1ongint

constant maxlongint is defined to be +2147483647. The range of the type longint is

the set of values

- (maxlongint+l), -maxlongint, ...-1, 0, 1, ...maxlongint-1l, maxlongint

that is, -231 to 2311, or -2147483648 to +2147483647. These are 32-bit, 2’s-complement
integers. Arithmetic on integer and longint operands is done in both 16-bit and 32-
bit precision, as follows:

s All integer constants in the range of type integer are considered to be of type
integer. All integer constants in the range of type 1ongint, but not in the range
of type integer, are considered to be of type 1ongint.

s When both operands of an operator (or the single operand of a unary operator) are of
type integer, 16-bit operations are always performed and the result is of type
integer (truncated to 16 bits if necessary). Similarly, if both operands are of type
longint, 32-bit operations are always performed and the result is of type 1ongint.

s When one operand is of type Longint and the other is of type integer, the
integer operand is converted to longint, 32-bit operations are performed, and
the result is of type 1ongint. However, if this value is assigned to a variable of type
integer, it is truncated (see next rule).

= The expression on the right of an assignment statement is evaluated independently of
the size of the variable on the left. For example, if variable Longvar is declared as
type longint, the statement longVar : =maxint+maxint will still cause
integer overflow. If necessary, the result of the expression is truncated or extended
to match the size of the variable on the left.

An important point to remember is that each operator is applied only to its two operands,
so, at most, one of those operands is converted. If the expression contains other
operands, those are not necessarily converted.

56 MPW 3.0 Pascal Reference

For example, in the expression
onelnt+twoInt+threeInt+onelongint

the value of oneInt is added to twoInt in a 16-bit operation, the result is added to
threeInt in another 16-bit operation, and the result of that is converted to 2 Longint
value and added to oneLongint. The result of the expression is a 1ongint.

The orda function described in Chapter 11 can be used to convert an integer value toa
longint value.’

& Note. Operations other than division and multiplication on longint values take
approximately one and a half times as long as corresponding operations on integer
values. Division and multiplication take more than twice as long.

The boolean type

The values of the boolean type are truth values denoted by the predefined constant
identifiers £alse and t rue. These values are ordered so that £alse is “less than” true.
The function call ord (false) returns zero, and Ord (t rue) returns one.

All boo1lean variables are one byte (except in packed arrays and records). Because of
this, a "garbage" byte may be allocated due to alignment of a subsequent variable (for
example, a boolean variable followgd by a 1longint oOr integer varable).

The char type

A variable of type char holds extended eight-bit ASCII values, represented by numeric
codes in the range 0..255. The ordering of the char values is defined by the ordering of
these numeric codes. The function call ord (¢), where cis a char value, returns the
numeric code of ¢. The Macintosh character set is given in Appendix C.

A char variable occupies two bytes of storage, except in packed arrays and records.

CHAPTER 4 Data Types

57

Enumerated types
An enumerated type defines an ordered set of values by listing the identifiers that denote

these values. The ordering of these values is determined by the sequence in wilich the
identifiers are listed.

enumerated bpe @ dentifier C)
: list

identifier list

identifier

The occurrence of an identifier within the identifier list of an enumerated type declares it
as a constant for the block in which the enumerated type is declared. The type of this
constant is the enumerated type being declared. These values are constants of the
enumerated type in the same way that the characters *aA', 'B*, and 'C" are constants of
type char and the integers 1, 2, and 3 are constants of type integer.

These are examples of enumerated types:

color = (red, yellow, green, blue)
suit = (club, diamond, heart, spade)
maritalStatus = (married, divorced, widowed, single)

Given these declarations, yellow is a constant of type color, diamond is a constant of
type suit, and so forth. When the ord function is applied to a value of an enumerated
type, it returns an integer representing the ordering of the value with respect to the
other values of the enumerated type. For example, given the declarations above,

ord (red) returns zero, ord (yellow) returns one, and ord (blue) returns three.

& Note: Certain special scope rules apply to enumerated scalar types. They are described
in Appendix B. ’

58 MPW 3.0 Pascal Reference

Subrange types

You define a subrange type by giving a range of values from some scalar type, called the
associated scalar type. A subrange type provides for range checking of values withir: the
associated scalar type. The syntax for a subrange type is

subrange tpe constant constant
> expression - expression ’

Both constants must be of scalar type. The first constant expression in a subrange type
declaration must be smaller than the second constant expression. Both must be of the
same scalar type, or one must be of type integer and the other of.type 1ongint. If one
is of type integer and the other of type Longint, the associated scalar type is
longint.

¢ Note: When using a constant expression in a type declaration that is declaring a
subrange type, you cannot use a parenthesis as the first character after the equal sign.
The Compiler distinguishes subrange types from enumerated types by the first symbol
after the equal sign: a left parenthesis in that position signifies an enumerated type. If
a subrange specification needs parentheses, precede it with 0+. This rule applies only
within the type declaration part of a program.

Here are some examples of subrange types:

1..100

-10..+10

red. .green

0+ (constl-const2) DIV 2..const2

A variable of a subrange type possesses all the properties of variables of the associated
scalar type, with the restriction that its runtime value must be in the specified interval. In
addition, the variable may have less space allocated only if the range checking is on.

CHAPTER 4 Data Types

59

String types

A string value is a sequence of characters that has a dynamic length attribute.

The length attribute of a string is the actual number of characters in the sequence at any
time during program execution. An example of a string type declaration is

aString = STRING[15]
where 15 is the maximum size of the string. The size is the maximum limit on the length of
any value of this type. The size attribute of a string type is determined when the string

type is defined, and cannot change. It has a value in the range 1..255. A string type
declared without a size attribute is treated as STRING [255].

The length is the actual number of characters in the sequence at any time during program
execution. The current value of the length attribute is returned by the standard function
Length,

string bpe size N\
»{ STRING —@——. attribute \] / >

string

identifier

size attribute constant
expression

The ordering relationship between any two string values is determined by the ordering
relationship of character values in corresponding positions in the two strings. The exact
algorithm is given under “Comparing Strings” in Chapter 6. A capital letter does not have
the same ordering value as the corresponding lowercase letter; for example, A4 is valued
lower than a.

Remember that the size of a string is the value of the size attribute assigned to the string
type when it is declared, and the length of a string is the number of characters it holds at
any point, regardless of its size attribute. A program can measure the actual length of a
string by using the Length function described under “String Procedures and Functions” in
Chapter 11.

60 MPW 3.0 Pascal Reference

& Note: With a string constant, the size attribute is equal to the length—that is, the
number of characters actually in the string.

Althougn string types are simple types by definition, they have some characieristics of
structured types. As explained under “Array Types” later in this chapter, individual
characters in a string can be accessed as if they were components of an array. In addition,
all string types are implicitly packed types and all restrictions on packed types apply to
strings. A list of these restrictions is given later in the section “Structured Types.”

A string is stored as a one-byte-length field followed by the characters in the string. You
can therefore change the length of the string by changing its zeroth character. For
example, '

myStr[0] := chr(ord(myStr[0])+n);
changes the length of myst r by the value of n.

Operators applicable to strings are discussed in Chapter 6. Predeclared procedures and
functions for manipulating strings are described in Chapter 11.

The pointer type

You can use the pointer type to define a pointer variable—a variable that holds a memory
address. When you declare a pointer variable, you must specify the data type of the
memory area it points to, which is then called the base type of that pointer variable.

pointer type A - base
type
pointer
type
identifier
base hpe,, type

identifier

CHAPTER 4 Data Types

61

The base type may be an identifier that has not yet been declared. In this case, it must be
declared somewhere in the same type declaration part as the pointer type.

& Note: Certain speciai scope rules #pply to pointer base types. They aie desciiped in
Appendix B.

Aside from an address, any pointer variable can also hold the value NIL.

Conceptually, NIL is a pointer type value that does not point to anything. You can assign
NIL to any pointer variable, regardless of type. However, you cannot assign the value of a
pointer variable of one type to a pointer variable of another type, even if the first pointer
variable has the value NIL. You assign the value NIL to a pointer variable, rather than
leaving it with an undefined value, primarily because you can test for NIL.

You can create a pointer in three ways:

» By using the New procedure described in Chapter 11. This allocates a new memory area
in the application heap for a dynamic variable and points the pointer variable to it.
The size of the area is determined by the base type of the pointer variable, including
optionally specified variants; see the discussion of New in Chapter 11. A dynamic
variable is a variable that has no identifier of its own; the only way to access one is
through a pointer.

m By using the @ operator described in Chapter 6. This points to the memory area
occupied by any existing variable. The @ operator pointer function creates a pointer
that is compatible with all other pointer types.

s By using the Pointer function described in Chapter 11. This allows any pointer to be
coerced to any other pointer type.

Every memory address is numeric. You can use the predefined functions ord and ord4 to
convert any address to its corresponding Longint type value.

The Pointer function and the @ operator avoid the Compiler’s type~checking safeguards
and should be used with caution.

Chapter 5 discusses the syntax for accessing a variable pointed to by a pointer variable.

The following is an example showing how the Pointer function, the @ operator, and the
New procedure can be used to access memory dynamically. Suppose you have these
declarations:

TYPE ptr = “longint;
charPtr = “char;
VAR p: ptr;
thisLong: longint:;
cp: charPtr;
thisStr: STRING;

62 MPW 3.0 Pascal Reference

If the address of a Longint variable is already known, you can use the Pointer
function to intialize the 1ongint pointer p to it:

p := Pointer($904); ({(Point p to address $904 in low memory.}

If the Longint variable is already identified, you can use the @ operator 10 point p to it:
p := @QthisLong; {Point p to memory location of thislLong.}
Here's another example to shows the difference: between pointer and @:

p:= @cp; (p points to the pointer cp}"

whereas |

p:= Pointer(cp); {p and cp point to the same address}

& Note: The value of the pointer p remains valid only within the scope of the variable
thisLong.

If you want to create a new memory area to hold a dynamic variable of 1ongint type,
you use the New procedure:

New (p) ; {Point p to new heap area of longint size.}

Once p is given a value by one of the foregoing techniques, you can alter its value by the
same means. For example, the following assignment moves the area pointed to by p four
bytes toward higher memory:

p := Pointer(Ord4 (p)+4): {Move pointer 4 bytes.}

As an example, this technique lets you access the first character in a string thisstr and
assign its value to the char variable cp:

cp := Pointer(Ord4 (RthisStr)+l); {Access first char in string.}
{length byte is at Ord4 (@thisStr)+0}

CHAPTER 4 Data Types 63

Structured types

A structured type is a data type that stores more than one value, Eack strucinner e is
characterized by its structuring method and by the type or types of its componenis. If
the component type is itself structured, the resulting structured type exhibits more than
one level of structuring. There is no specified limit on the number of levels of structuring a
data type can have.

’ e F— amay >
type
PACKED | w‘;; 3
| e A
type
record
\— type —
structured A
N——-———. W
identifier
object
e -
identifier

The use of the word PACKED in the declaration of a structured type indicates to the
Compiler that data storage should be economized, even if this causes less efficient access
to a component of a variable of this type. Although you can use the word PACKED when
declaring any structured type, PACKED only affects the storage of record and array types.

The word PACKED only affects the representation of -one level of the structured type in
which it occurs. If a component is itself structured, the component’s representation is
packed only if the word PACKED also occurs in the declaration of its type.

64 MPW 3.0 Pascal Reference

The @ operator is valid on byte-aligned fields of packed structures.

A Important If 68000 programmers get an odd address and try to access more than
a byte, they'll get an illegal address. a

There are two restrictions on using components of packed variables:

= You can only use components of variables of packed types as actual variable
parameters with procedures or functions if the component is allocated on a byte
boundary.

= You can only use the @ operator on components of variables of packed types if the
component is allocated on a byte boundary.

The implementation of packing is complex; details of memory allocation to components
‘of a packed variable are not specified in this manual.

Array types

An array type consists of a fixed number of components that are all of one type, called the
component type. The number of elements is determined by one or more index types,
one for each dimension of the array. There is no specified limit on the number of
dimensions. In each dimension, the array can be indexed by every possible value of the
corresponding index type, so the number of elements is the product of the number of
values in each of the index types. However, static global arrays should not contain more
than 32767 bytes unless the -m option is used. See Chapter 13 for details on the -m
Compiler option.

a .
a C20 w T -

O

type

CHAPTER 4 Data Types

65

The type following the word oF is the component type of the array and can be an existing
type identifier or a new type.

€ Note: The index type cannot be Longint or a subrange of longint.

Here are some examples of array types:

ARRAY[1..100] OF real
ARRAY [boolean] OF color
ARRAY[1..Pagesize-1] OF char

- If the component type of an array type is also an array type, the result can be regarded
either as an array of arrays or as a single multidimensional array. For example,

ARRAY [boolean] OF ARRAY([1..10] OF ARRAY[size] OF real

is equivalent to

ARRAY [boolean, 1..10, size] OF real

Likewise,

PACKED ARRAY([1..10] OF PACKED ARRAY([1..8] OF boolean

is equivalent to ‘

PACKED ARRAY[1..10,1..8] OF boolean

“Equivalent” means that the Compiler performs the same actions with the two
constructions.

A component of an array can be accessed by following the array’s identifier with one or
more indexes in brackets, separated by commas. For example, the two expressions

myArray[5, 4]
myArray[5] [4]

both access the fourth element in the fifth subarray of the array myarray. For further
information, see “Arrays and String Indexes” in Chapter 5.

66 MPW 3.0 Pascal Reference

Record types

A record type consists of a fixed number of components called fields, which can be of
different types. For each component, the record type declaration specifies the type of
the field and an identifier that names the field.

record

field
list

part

[ield list fixed
e ——— part

fixed part

field declaration identifier

list

type

CHAPTER 4 Data Types 67

The fixed part of a record type specifies a list of “fixed” fields, giving an identifier and a
type for each field. Each fixed field contains data that is always accessed in the same
way.

Here is an example of a record type:

RECORD

year: integer;
month: 1..12;
day: 1..31
END

A variant part allocates memory space with more than one list of fields, thus permitting
the data in this space to be accessed in more than one way. Each list of fields is called a
variant. The variants overlay each other—that is, they occupy the same space in memory.

variant part

| field

type
lag field type ordinal
——* e [
identifier
variant
constant

(
1~. ﬁgd

68 MPW 3.0 Pascal Reference

The variant part allows for an optional identifier, called the tag field identifier. If a tag
field identifier is present, it is automatically declared as the identifier of an additional
fixed field of the record, called the tag field. The value of the tag field may be used by
the program to indicate whict: variant should be used at a given time. If there is no tag
field, the program must select a variant on some other criterion.

& Note: The type longint cannot be used as a tag type.

Each variant is identified by one or more constants. All the constants must be distinct and
must be of a scalar type that is the same as or compatible with the tag type. The constants
that introduce a variant are not used for referring to fields of the variant; the actual field
identifiers are used. However, these constants can be used as optional arguments with the
New procedure, described in Chapter 11.

Variant fields are accessed in exactly the same way as fixed fields.

Here are some examples of record types with variants:

RECORD
name, firstName: STRING[80]:;
age: 0..99;

CASE married: boolean OF
true: (spousesName: STRING([80]):;
false: ()
END

RECORD

x, y: real;

area: real;

CASE s: shape OF

triangle: (side: real; inclination, anglel, angle2: angle);

rectangle: (sidel, side2: real; skew, angle3: angle);

circle: (diameter: real)
END

- Set types

A set type defines a group of values, each of which has the same scalar type, called the
set’s base type. Each possible value of a set type is some subset of the possible values of
the base type.

CHAPTER 4 Data Types

& Note: The base type must not have more than 2040 possible values and cannot be
longint of integer. If the base type is a subrange of integer, all its values must
be within the limits 0..2039. Because of the way sets are stored, you cannot specify a
hase type range such as 5000..5001.

When you create a variable of a set type, that variable can hold none, one, several, or all of
the values of the set.

(= (o) W
tym .

The set operators and the way in which set values are denoted in Pascal are discussed in
Chapter 6.

Sets with fewer than 32 possible values in the base type can be held in a register and offer
the quickest access time. For sets larger than that, there is a performance penalty that is
essentially a linear function of the size of the base type.

The empty set [] is a possible value of every set type.

Here are some examples of set types:

SET OF char

SET OF (black, brown, red, yellow, white)

SET OF 1..10

names = (Eliot, Pound, Yeats) {a new scalar type}

poets = SET OF names {a set type using the new scalar type}

File types

A file type is a structured type consisting of a sequence of components that are all of one
type, the component type. The component type may be any type except a file type or
any type containing a file type.

The component data is not in program-addressable memory but is accessed by means of a
peripheral device. The number of components (the length of the file) is not fixed by the
file type declaration.

70 MPW 3.0 Pascal Reference

h N
OF type

The type FILE (without the OF TYPE construct) represents an untyped file, for use with
the Blockread and Blockwrite functions described in Chapter 10.

& Note: Although the symbol FILE can be used as a type identifier, it cannot be
redeclared because it is a reserved word.

The predefined file type text denotes a file of characters organized into lines. The file
may be stored on a file-structured device, or it may be a stream of characters from a
character device such as the Macintosh keyboard. Files of type text are supported by
the specialized I/O procedures discussed in Chapter 10.

In a stored file of type text or FILE OF -128..127, the component values are packed
into bytes on the storage medium. With the type FILE OF char, the component values
of this type are stored in 16-bit words.

In MPW Pascal, files can be passed to procedures and functions as variable parameters.

Chapters 5 and 10 discuss methods of accessing file components and.data.

Object types

An object type defines a structure for an object. An object type can have fields, like a
record. The diagram for field lists above and the discussion of record type fields also
.apply to object type fields, except that an object type cannot have a variant part. In
addition to fields, an object type can have associated procedures and functions, called
methods.

CHAPTER 4 Data Types

n

object
type
' : identifier : ’

- 1 (. ; .
— =y =y

field method
list list
method list . method - -
~ | heading ‘J" T
OVERRIDE
r,\A '

The method heading has the syntax of a procedure or function heading, as shown in
Chapter 8.

If you include the optional object type identifier and period, it must be the object type
identifier that you are defining, If the method has a formal parameter list, that list must
be given with the heading; similarly, if the method is a function, the type of the return
value must be given with the heading.

Object types are further discussed in Chapter 12.

2 MPW 3.0 Pascal Reference

Type compatibility

There are three levels of type compatibility in Pascal:

s Two types may be the same. Two types are the same when they are declared using the
same type identifier or when their definitions can be traced back to the same type
identifier. For the rules under which user-defined anonymous types are the same, see
“User-Defined Anonymous Types” at the end of this chapter.

s Two types may be compatible.
s Two types may be assignment compatible.

| Compatibility and assignment compatibility are discussed below.

The same types are required only
s between actual and formal variable parameters
s between actual and formal result types of functional parameters

s between actual and formal value and variable parameters within parameter lists of
procedural or functional parameters

s when a one-dimensional PACKED ARRAY OF char is being compared with another
via a relational operator

Parameters are discussed in Chapter 8.

Assignment compatibility is usually required in other contexts, although simple
compatibility is occasionally enough.

Compatible types

Compatible types are required in many contexts where two or more entities are used
together, such as in expressions, in relational operations, and with FOR statement control
variables and their initial and final values. Other specific instances where type
compatibility is required are noted elsewhere in this manual.

CHAPTER 4 Data Types

Two types are compatible if any of the following are true:

u

They are the same type.

One is a subrange of the other.

Both are subranges of the saine iype.

Both are string types (the lengths and sizes may differ).
Both are set types, and their base types are compatible.

Both are of type PACKED ARRAY OF char and have the same number of
components.

Assignment-compatible types

Assignment compatibility is required whenever a value is assigned to something, either
explicitly (as in an assignment statement) or implicitly (as in passing value parameters).

A type T2 is assignment compatible with another type T1 in the expression T1 : = T2 if
any of the following are true:

T1 and T2 are identical types, and neither is a file type or a structured type that
contains a file type component at any level of structuring.

T1 is a real type, and T2 is type integer.

T1 and T2 are compatible scalar types, and the value of T2 is within the range of
possible values of T1.

T1 and T2 are compatible set types, and all the members of T2 are within the range of
possible values of the base type of T1.

T1 and T2 are string types, and the current length of T2 is equal to or less than the size
attribute of T1.

T1 and T2 are both type PACKED ARRAY OF char.

T1 is a string type with size greater than zero or a char type, and T2 is a quoted
character constant.

T1 is type PACKED ARRAY[1..7m] OF char, oractually has nelements, and T2 is a
string constant containing exactly n characters. This is not true, however, if n=1,
because a string constant of length 1 is a quoted character constant.

T1 is an object type, and T2 is an object reference to the same type or a descendant
type.

Whenever assignment compatibility is required and none of the above is true, either a
Comopiler error or a runtime error occurs.

74

MPW 3.0 Pascal Reference

s,

Type coercion

A value or variable access of one vpe can be changed inio a value of another type with the
syntax

typelD(x)

Using this construction, x can be a variable identifier, a variable identifier plus one or
more qualifiers (array index, field designator, file buffer symbol, or pointer symbol), or an
expression. You can use this syntax on the left or right side of an assignment statement.

The term typelD stands for any type identifier. The expression ¢ypelD (x) is treated as an
instance of the type specified by the term typelD, provided that the storage size of x is
not changed. For conversion between scalar types, the resulting storage size can be
different.

A Warning Constants cannot be type coerced to a structured type. a

Here are some examples of type coercion:

TYPE
ARecord = RECORD
X, y: integer
END;
VAR
recordVar: ARecord;
LongVar: longint;
IntVar: integer;

recordVar := ARecord(LongVar);

longint (recordvar) := 34 + 65536*180;

IntVar := integer (LongVar);

The last line shows a conversion from a four-byte quantity to a two-byte quantity, which
is allowed for scalar types. In this case, the conversion is checked for overflow if overflow
checking is in effect. (Overflow checking can be controlled by the Sov Compiler option
described in Chapter 13.)

A Warning Using type coercion to widen a variable can alter adjacent memory
locations, for example, Longint (anInteger) := 5;. a

CHAPTER 4 Data Types

75

You can also use type coercion for object types. In that case, the coerced value must be a
member of the type into which it is coerced. The coercion is checked for legality only if
$Rr range checking is in effect.

MPV/ Pascai does not suppoit typs coercion of ser varizbies.

Type declarations

Any program, procedure, or function that declares type identifiers contains a type
declaration part, as discussed in Chapter 3.

Here is an example of a type declaration part:

TYPE count = integer;

range = integer;
color = (red, yellow, green, blue);
sex = (male, female):;
year 1900..1999;

shape = (triangle, rectangle, circle);
card = ARRAY([1..80] OF char;

str = STRING[80];
polar = RECORD r: real; theta: angle END;
person = “personDetails;
personDetails = RECORD

name, firstName: str;

age: integer;

married: boolean;

father, child, sibling: person;

CASE s: sex OF

male: (enlisted, bearded: boolean);

female: (pregnant: boolean)

END;
people = FILE OF personDetails;
intfile = FILE OF integer;

In the example above, count, range, and integer denote identical types. The type
year is compatible with, but not identical to, the types range, count, and integer.

76 MPW 3.0 Pascal Reference

o,

User-defined anonymous types

You can give a type to a variable without defining a type identifier. In that case, the type
declaration appears on the right side of a variable declaration, in place of » type
identifier. This is called a user-defined anonymous type. You can create the same
structures with these types that you can with identified types, except that you cannot use
them in the following contexts:

» formal parameter lists
s definitions of functional return values
s definitions of object reference variables

Here are some examples of user-defined anonymous type declarations, appearing
on the right sides of variable declarations:

VAR varl: (red, yellow, green, blue);
var2: STRING(80];
var3: RECORD
name, firstName: str;
age: integer;
married: boolean;
father, child, sibling: person;
CASE s: sex OF
male: (enlisted, bearded: boolean);
female: (pregnant: boolean)
END;
END;

User-defined anonymous types that are separately declared are never the same types. For
example, the declarations
varl: RECORD
a, b: real
END;
var2: RECORD
a, b: real
END;

do not give vari and var2 the same type, even though they appear to be exactly the
same. However, two variables declared in the same user-defined anonymous type
declaration, as in

varl, var2: RECORD
a, b: real
END;

are of the same type.

You can coerce two separately declared user-defined anonymous types into being treated
as identical by using the type coercion technique described earlier in this chapter.

CHAPTER 4 Data Types

Chapter 5 Constants and Variables

T

THE DATA PROCESSED BY A PASCAL PROGRAM IS HELD in constants and variables,
which must be declared before they can be used. For a discussion of how these
declarations fit into programs and units, see Chapter9. =

Contents

Constant declarations 81
Constant expressions 81
Predefined numeric constants 85
Predefined string constants 86
Variable declarations 86
Variable accesses 88
Qualifiers 89
Arrays and string indexes 90
Records and field designators 92
File window variables 92
Pointers and their identified variables 93
Object references 93

g,

Constant declarations

A constant declaration defines an identifier that denotes a constant within the block that
contains the declaration. The scope of a constant identifier does not include its own
declaration. See Chapter 3 for a discussioa of scooe.

constant declaration constant

constant identifier
> identifier >
constani - constant .
expression

Constant expressions

A constant expression is an expression that denotes a constant. You can write a sign in
front of a constant expression whenever that expression’s value is a number. For example,
you can use a minus sign with the predefined constant maxlongint to denote the value
-2147483647. ‘

CHAPTER 5 Constants and Variables

81

constant expression simple

L constant i
expression ‘
simple
constant

expression

L |

simple constant expression constant

=T

Constant expressions can be used wherever a single constant is allowed. This means that
constant expressions are allowed in the constant declarations described in the preceding
section, in subranges, and as caSE constants. (Subranges are described in Chapter 4, and
CASE statements in Chapter 7.) Constant expressions are evaluated by the Compiler.

1] MPW 3.0 Pascal Reference

Constant expressions follow the same rules as other expressions. Operands must be
compatible with their operators (+, -, *, ** DIV, /, IN, AND, OR, NOT, &, |,
and relational operators). Constant sets may be defined within the consT section, and
set operations are permitted. You can use an index to refer to a single character in a string
constant, as described later in the section “Arrays and String Indexes.”

consiant term

factor

%

e
L

S

=
-

DIV

. Py

1909

=

CHAPTER 5 Constants and Variables 83

constant factor

»| unsigned
constant
| functional
call
set
constructor

rd

NOT

constant
_expression

constant
factor

These functions are permitted in constant expressions:

Abs Sqr 0dd Ord Ord4 Chr Trunc Round Sizeof

When using Sizeof in constant expressions, only a single type or variable identifier is

allowed. (The sizeof function ordinarily allows field specifications.)

All integer arithmetic is performed using Longint values (32-bit integers). All real

arithmetic is performed using extended (80-bit) values.

Here is an example of the use of constant expressions:

TYPE
Color =
CONST
PageSize
NbrOfBlks

1024;
PageSize DIV 512;

WhiteColor = [Blue, Green, Red];
BlackColor = [Cyan, Yellow, Magenta];

VAR

(Blue, Cyan, Green, Yelléw, Red, Magenta):;

InputBufr: PACKED ARRAY [0..PageSize - 1] OF char;

AColor:
BEGIN

Color:;

Read (Input, Ch);

AColor := AssignColor(Ch):;

IF Acolor IN WhiteColor THEN ShowLight;
IF Acolor IN BlackColor THEN ShowDark;

END.

84 MPW 3.0 Pascal Reference

& Note: When using a constant expression in a type declaration that is declaring a

subrange type, you cannot use a parenthesis as the first character after the equal sign.
The Compiler distinguishes subrange types from enumerated types by the first symbol
after the equal sign: a left parenthesis in that position signifies an enumerated type. If
a subrange specification needs parentheses, precede it with “0+".

Here are two examples:

TYPE
range = 0+ (constl-const2) DIV 2..const2;
color = (black, brown, red, orange, yellow, green);

This rule only applies within the type declaration part of a program.

Predefined numeric constants

The predefined constant maxint is of type integer. Its value is 32767. This value
satisfies the following conditions:

Any unary operation performed on a whole number in this interval is correctly
performed according to the mathematical rules for whole-number arithmetic, with the
exception of - (-maxint-1).

Any binary integer operation on two whole numbers in this same interval is correctly
performed according to the mathematical rules for whole-number arithmetic,
provided that the result is also in this interval. If the mathematical result is not in this
interval, then the actual result is the low-order 16 bits of the mathematical result. Note
that the sign of the actual result will sometimes be the opposite of the mathematical
result in this case.

Any relational operation on two whole numbers in this same interval is correctly
performed according to the mathematical rules for whole-number arithmetic.

Note: Two operations do not work correctly, even though they are technically in the
correct interval, They are

- (-maxint-1)

abs (-maxint-1)

The predefined constant pi is the representation, in extended format, of the value of =.
This value is precise to 19 decimal digits: 3.141592653589793239.

CHAPTER 5 Constants and Variables 85

The predefined constant inf represents positive infinity in an extended format.
The predefined constant maxcomp is the maximum comp value, 9223372036854775807.

The following predefined constants are the smallest normalized values for each data type:
minnormreal has the value 2-126: mi nnormdouble has the value 2-1022 and
minnormexiended the value 2-163%3,

The predefined constant compsecs is of type 1longint. Its value holds the compilation
date/time in seconds, as described in the “OSUtils” section of Inside Macintosh.

" Predefined string constants

MPW Pascal includes two predefined string constants that are evaluated at compile time.
- They are intended for version control. The constant compdate holds the compilation
date, and comptime holds the compilation time.

The two constants act as if you specified them in the constant declaration part of your
program as

compdate = 'MM/DD/YY';

where MM is the month, DD is the day of the month, ¥y is the year; and

comptime = 'HH:MM:ss AM/PM';

where HH is the hour (in 24-hour format), M the minute, ss the second, AM morning, and
PM afternoon.

Variable declarations

A variable declaration consists of a list of identifiers denoting new variables, followed by
their type.

variable declaration e
“w O = O~

8 MPW 3.0 Pascal Reference

The syntax for an identifier list is given under “Enumerated Types” in Chapter 4.

The type given for a variable can be a type identifier declared in a preceding type
declaration part (which can be in the same block or an enclosing block, or in a unit) or a
new type definition (a user-defined anonymous type). User-defined anonymous types are
discussed at the end of Chapter 4.

The occurrence of an identifier within the identifier list of a variable declaration declares
it as a variable identifier for the block in which the declaration occurs. The variable can
then be referred to throughout the remainder of that block, unless the identifier is
redeclared in an enclosed block as described in Chapter 3. If it is redeclared, the

~ redeclaration creates a new variable that uses the same identifier and does not affect the

value of the original variable.

The values of all variables are undefined at the start of each activation of a block. The
main program block is activated when the program is run. A procedure or function block is
activated each time the procedure or function is called.

Local data (that is, data declared within a procedure or function) may be greater than

32K. The code generated for references to variables beyond the first 32K will be less
efficient than that generated for variables within the first 32K.

Here are some examples of variable declarations. There may not be more than 32K of
global data declared unless the -m option is used. The -m option will generate less
efficient code. See Chapter 13 for details.

X, Y, z: real;

i, j: integer;

k: 0..9;

P, 9, r: boolean;

operator: (plus, minus, times);
a: ARRAY[0..63] OF real;

c: color;

f: FILE OF char:;

huel, hue2: SET OF color:;

pl, p2: person;

m, ml, m2: ARRAY[1..10, 1..10] OF real;
coord: polar;

pooltape: ARRAY[1l..4] OF tape;

A Warning The 32K of globals limit is inherent in the current run-time architecture
(without the -m option), and applies to all object files at link time.
Because this limit includes the implementation globals of units and
even the object files from other languages, the Pascal compiler cannot
detect a problem in all cases. The Linker will give an error, however. a

CHAPTER 5 Constants and Variables

Variable accesses

When a variable’s identifier is used in a program, it is called an access of that variable. You
use a variable access to do any of the following:

v obtain the value ¢! 3 variable
= assign a value to a variable
= pass the value of a variable to a procedure or function

The object accessed may be any one or a combination of the following:
= asimple variable

= a pointer variable

= the collection represented by a variable of structured type

= a part of a structured type

» the identified variable of a pointer

= the identified object of an object reference variable

= avariable reached through a function call

variable access . variable
' identifier I l I
function .
call qualifier
variable identifier

identifier |}

Syntax for the various kinds of qualifiers used with variable accesses is given below.

88 MPW 3.0 Pascal Reference

Qualifiers

In a variable access, the variable identifier or function call can be followed by one or more
qualifiers. Each qualifier modifies the meaning of the variable access.

qualifier

- index

field
designator v

file
buffer

pointer

As indicated in the diagram for variable accesses, there can be none, one, or more than
one qualifier following a variable identifier or function call, depending on the levels of
structure in the variable and on which particular level you want to access.

For example, an array identifier with no qualifier is a reference to the entire array:

xResults

If the array identifier is followed by an index, this denotes a specific component of the
array, which may be a simple or structured variable:

xResults([current+1]

If the array component is a record or object reference, the index may be followed by a
field designator; in this case, the variable access denotes a specific field within a specific
array component:

xResults[current+1l].link

CHAPTER 5 Constants and Variables

If the field is a pointer, the field designator may be followed by the pointer symbol to
denote the variable pointed to by the pointer:

xResults(current+l] .link"

If the variable identified by the pointer is an array, another index can be added to denote
a componeri of *ds 2:ray, 272¢ s0 forui:

xResults[current+l].link”[i]

Arrays and string indexes

A specific componerit of an array variable is denoted by a variable access that refers to
. the array variable, followed by an index that specifies the component.

A specific character within a string variable or constant is denoted by a variable access,
quoted string constant, or string constant identifier, followed by an index that specifies
the character position.

index

| expression

The index of a string always ranges from 0 to a maximum of 255, depending on the size
and length of the string. The index of an array depends on the ordinal type or types
defined as the array’s index type or types.

Each expression in the index selects a component in the corresponding dimension of the
array. The number of expressions must not exceed the number of index types in the array
declaration, and the type of each expression must be assignment compatible with the
corresponding index type.

In indexing a multidimensional array, you can use either multiple indexes or multiple
expressions within an index. The two forms are equivalent. For example,

m(i] []]

is equivalent to

m(i, j]

90 MPW 3.0 Pascal Reference

A string value can be indexed by only one index expression, whose value must be in the
range 1.m, where nis the current length of the string value. The effect is to access one
character of the string value.

& Ncte: In general, you cannot assign a value to an individual character position ina
string unless a character previously occupied that position.

When a string value is manipulated by assigning values to individual character positions,
the dynamic length of the string is not maintained. For example, suppose that st rval is
declared as follows:

strval: string{10];

Pascal allocates one byte for a number that represents the current length of the string,
followed by space for ten char values. (The dynamic length is the number of char values
in the string at any given time.) Initially, all of this space contains unspecified values. The
assignment

strval(l] := 'F'

may or may not work, depending on what the unspecified length happens to be. If this
assignment works, it stores the char value F in character position 1, but the length of
strval remains unspecified. Therefore, the effect of a statement such as
Writeln(strval) is unspecified. :

You do not have to worry about this if you are dealing with the entire string. The
statement
strval := 'F'

always works. The dynamic length of the string acquires a value of one, and the statement
Writeln(strval) prints an F. The values of character positions beyond position 1 are
still unspecified, and the subsequent assignment

strval(2] := 'F'

leaves strval unchanged, because you cannot change the length of the string by
assigning a.string element as a character.

The predefined procedures for string manipulation, described in Chapter 11, always
‘properly maintain the lengths of the string values they modify, and so are easier to use
than this kind of indexed string manipulation.

The zeroth position of a string is special: it contains the dynamic length of the string. For
details, see "String Types" in Chapter 4.

CHAPTER 5 Constants and Variables

91

Records and field designators

A specific field of a record variable is denoted by a variable access that refers to the
record variable, followed by a field designator that specifies the field.

field designator - —
(o] i }—

Here are some examples of field designators:

- employee.salary
coord.theta _
The period (.), as well as the record variable identifier or function call, can be omitted
inside a wITH statement that lists the record variable identifier or function call. See
Chapter 7 for more information about the wiTH statement.

File window variables

Although a file variable may have any number of components, only one component is-
accessible at any time. The position of the current component in the file is called the
current file position. See Chapter 10 for predefined procedures that move the current
file position. Program access to the current component uses a special variable associated
with the file, called a file window variable.

The file window variable is implicitly declared when the file variable is declared. If F is a
file variable with components of type T, the associated file buffer is a variable of type T.

The file window variable associated with a file variable is denoted by a variable access
that refers to the file variable, followed by a qualifier called the file buffer symbol.

Jile buffer symbol ()

Thus, the file window variable of file F is referred to by F~.

92 MPW 3.0 Pascal Reference

P

Chapter 10 describes the predefined procedures that are used to move the current file
position within the file and to transfer data between the file window variable and the
current file component.

Pointers and their identified variablec

The value of a variable is either NIL or a value that identifies some other variable, called
the identified variable of the pointer. Pointer types are discussed in Chapter 4.

The identified variable of a pointer variable is accessed by using the pointer variable
followed by a pointer symbol qualifier.

pointer symbol C

The constant NIL does not point to a variable. If you access memory by means of a NIL
pointer reference, the results are unspecified. However, there may not be any error
indication.

Here are some examples of references using pointers:

pl®
pl”~.sibling”®

Object references

A variable that is declared using an object type is an object reference variable. Object
reference variables are discussed in Chapter 12.

CHAPTER 5 Constants and Variables

Chapter 6 Expressions

EXPRESSIONS CONSIST OF OPERANDS and (usually) operators. Operands consist of
the following:

m constants

s variables
function calls
set constructors

Constants and variables are discussed in Chapter 5. Function calls and set
constructors are described later in this chapter.

Operators make up a subset of the special symbols described in Chapter 2. They
are described below. The rules for writing expressions are given at the end of this
chapter. =

Contents

Operators 97

Arithmetic operators 97

Boolean operators 99

Set operators 100
Result types in set operations 101

Relational operators 101
Comparing numbers 101
Comparing booleans 102
Comparing strings 102
Comparing sets 103
Testing set membership 103
Comparing packed arrays of char 103

95

The @ operator 103 ,
The @ operator with a variable 104
The @ operator with a value parameter 104
The @ operator with a variable parameter 104
The @ operats: with 2 procedure or funciion 105
Function calls 105
Set constructors 107
Writing expressions 108
Factors 108
Terms 110
Simple expressions 111
Expression syntax 112

% MPW 3.0 Pascal Reference

Operators

Table 6-1 shows the MPW Pascal operators and their precedence:

= Table 6-1 Precedence of operators

Operation Precedence Category

@, NOT, ** highest exponent and unary operators
*, /, DIV, MOD, AND, & second “multiplying” operators

+,= OR, | third “adding” operators and signs
=, <>, <, >, <=, >=, IN lowest relational operators

Operations with equal precedence are performed from left to right, in general. The single
exception is for the exponentiation operator (**). Multiple exponentiation operations
are performed right to left.

Subexpressions that are not related by precedence may be evaluated in any order.

Arithmetic operators

The types of operands and results for arithmetic binary and unary operations are shown in
Tables 6-2 and 6-3.

CHAPTER 6 Expressions

97

= Table 6-2

Binary arithmetic operators

Operator Operation Operand type Type of result

+ addition integer, longint, integer, longint,

' or real type Of extended

- subtraction integer, longint, integer, longint,
or real type of extended

* multiplication integer, longint, integer, longint,
or real type or extended

** exponentiation integer, longint, integer, longint,
or real type of extended

/ division integer, longint, extended
or real type

DIV division with integer Of longint integer Of longint

integer result
MOD remainder integer Of longint integer

The symbols +, -, and * are also used as set operators (described later in this chapter).

& Note: Except for | and &, the Compiler may evaluate the operands of a binary
operator in either order. With | and &, the left operand is evaluated first, then the right
operand only if required to determine a value.

The real types are real (or single), double, extended, and comp (or

computational).

Use of the exponentiation operator when either operand is a real type requires linking to

the SANE library.
s Table 63 Unary arithmetic operators (signs)
Operator Operation Operand type Type of result
+ identity integer, longint, integer, longint,
, orreal type of extended
- sign negation integer, longint, integer, longint,
or real type or extended

98 MPW 3.0 Pascal Reference

Any operand whose type is a subrange of a scalar type is treated as if it were of the scalar
type.

If both the operands of an addition, subtraction, or multiplication operator are of type
integer Of longint, the result is of type integer or longint as described in
Chapter 3; otherwise, the result is of type extended.

The result of the identity or sign negation operator is of the same type as the
operand, except that real types are converted to extended.

The value of iD1V jis the mathematical quotient of i /j, rounded toward zero to an
integer or longint value. An error occurs if j= 0.

The MoD operator returns the remainder of the division of its two operands. That is,
(=i) MOD j = —(i MOD j)

The value of §MoD jis equal to the value of

i-(§ DIV f)*f

The sign of the result of MOD is always the same as the sign of 1. An error occurs if the value
of jis zero.

Note: The name MOD is actually a misnomer, MOD retuns the remainder after division
of iby j. To obtain the modulus, a number in the closed interval from 0 to j- 1, use the
expression

((MOD j)+f) MOD j

Boolean operators

The types of operands and results for Boolean operations are shown in Table 6-4.

= Table 6-4 Boolean operators

Operators Operation Operand type Type of result
OR, | disjunction boolean boolean
AND, & conjunction boolean boolean
NOT negation boolean boolean

CHAPTER 6 Expressions

9

Notice that there are two operators each for disjunction and conjunction. When you yse
the aND and oR operators, the Compiler evaluates the entire expression, even if that is not
necessary. For example, consider the expression

true OR boolTst (x)

witere bool®'st. ¢ funciion thas retuins 3 boolean value. This expression will always
have the value t rue, regardless of the result of boolTst (x) . However, boolTst (%)
will always be called. This could be important if boolTst has side effects.

With the expression

true | boolTst (x)

evaluation stops as soon as the value t rue is reached, because evaluation proceeds from
left to right for operators of the same precedence. The ampersand (&) and vertical bar (1)
are referred to as the short-circuit operators.

A Warning Pascal does not support mixing short-circuit and normal operations
and nomal operators in the same expression. a

Set operators

The types of operands for set operations are shown in Table 6-5.

= Table 6-5 Set operators

Operator Operation Operand Type

+ union compatible set types
- difference compatible set types
* intersection compatible set types

1000 MPW 3.0 Pascal Reference

i,

e

Result types in set operations

The following rules govern the type of the result of a set operation where one or both of
the operands are a SET OF subr. In the statement of these rules, ordtyp represents any
scalar type and subr represents a subrange of ordtyp:

a [fordiyp is not type integer, then the type of the result is tvpe SET OF ordtyp.

s [fordtyp is type integer, then the type of the result is type SET OF 0..2039. This rule
results from the limitations described under “Set Types” in Chapter 4.

Relational operators

The types of operands and results for relational operations are shown in Table 6-6.

= Table 6-6 Relational operators

Operator Operation Operand type Type of result
= equal to compatible set, simple, or boolean
pointer types
<> not equal to pointer types
less than compatible simple types . boolean
> greater than compatible simple types boolean
<= less than or compatible simple types boolean
equal to
>= greater than or compatible simple types boolean
equal to '
<= subset of compatible set types boolean
>= superset of compatible set types - boolean
IN member of left operand: any scalar type T; boolean

right operand: type SET OF T

Comparing numbers

When the operands of =, <>, <, >, >=, or <=are numeric, they need not be of compatible
type if one operand is of real type and the other is integer of longint.

CHAPTER 6 Expressions

101

& Note: Because of extensions provided for use with the Standard Apple Numeric et
Environment (SANE), the result of a comparison can be unordered. An unordered result
occurs from a comparison involving a NaN (Not a Number). One important effect is
that NOT (a <b) is true if either a is greater than b or a and b are unordered. You can use
the relation functicn, which is included in the SANE library, to test for an
unordered compeiiste, The SANE library i described i Appendis G.

See Appendix G and the Apple Numerics Manual for more information on
relational operations with real operands.

Comparing booleans

If pand gare boolean operands, then p= g denotes their equivalence, p <> ¢ denotes
the logical exclusive-or operation, and p <= ¢ denotes the logical expression “p implies g”
(because £alse<true). You can also write NOT p OR g for logical implication.

Comparing strings

When the relational operators =, <>, <, >, <=, and > are used to compare strings, they
order them according to the ordering of the ASCII character set. Note that any two string
values can be compared because all string values are compatible. String comparisons
follow these steps:

1. The two strings are compared a character at a time, starting with the first character.

2. Two corresponding characters are compared. If the ASCII value of one character is
greater than the other, then the corresponding string is greater than the other.

3. If the two corresponding characters are equal, the point of comparison advances to
the next character in each string, and the process returns to step 2.

4. If the end of one string has been reached, its value is less than the other string.
5. If the ends of both strings have been reached, the two strings are equal.

& Note: A set of utilities that apply ordinary language rules for comparing strings is
included in the Macintosh ROM routines. If you use those utilities to compare strings
rather than using the operators described here, alphabetization will follow the local
language’s rules rather than the ASCII table. These routines are documented in the
International Utilities chapter in Inside Macintosh.

102 MPW 3.0 Pascal Reference

i

A

Comparing sets

If u and v are set operands, their comparisons have these results:

w % <=yistrue if uis included in v.

s u>=yistrue if vis included in u.

s = vistrue if 4 and v contain exactly the same members.

s u <> vis true if either u or v contains a2 member not contained in the other.

Testing set membership

The 1N operator yields the value t rue if the value of the scalar type operand is a member
of the set type operand; otherwise, it yields the value false.

Comparing packed arrays of char

In addition to the operand types shown in the table, the = and <> operators can also be
used to compare 2 PACKED ARRAY [m.m+n-1] OF char with a string constant
containing exactly # characters, or to compare two one-dimensional PACKED ARRAYS
OF char of identical type. The comparison follows the steps given above under
“Comparing Strings.”

The @ operator

A pointer to a variable (an address) can be computed with the @ operator. The operand
and result types are shown in Table 6-7.

s Table6-7 The pointer operator

Operator Operation Operand Type of result
@ pointer formation variable, parameter, procedure, pointer
or function

The @ operator is a unary operator taking a single variable, parameter, procedure, or
function as its operand and computing the value of its pointer. The type of the value is
equivalent to the type of NIL and consequently can be assigned to any pointer variable.
The pointer type is discussed in Chapter 4.

CHAPTER 6 Expressions

103

#® Note: Objects and identified variables of handles are relocatable and may be moved
at any time. Therefore, using @ on handles and object reference variables produces
addresses that may not be useful.

*

The @ opzrato:. with ¢ x5 &

For an ordinary variable (not a parameter), the use of @ is straightforward. For example,
given the declarations

TYPE twochar = PACKED ARRAY [0..1] OF char;
VAR int: integer;
twocharptr: “twochar;

the statement
twocharptr := @int

causes twocharptr to point to int. Now twocharptr is a reinterpretation of the bit
value of int as though it were a PACKED ARRAY[0..1] OF char.

¢ Note: The @ operator is valid on byte-aligned fields of packed structures. For example:

@mystring (3]
is valid. (See "Structured Types" in Chapter 4 for details.)

The @ operator with a value parameter

When @ is applied to a formal value parameter, the result is a pointer to the stack location
containing the actual value. Suppose that name is a formal value parameter in a procedure
and namept r is a pointer variable. The statement nameptr := @name gives
nameptr* the value of name.

The @ operator with a variable parameter

When @ is applied to a formal variable parameter, the result is a pointer to the actual
parameter (the pointer is taken from the stack). Suppose that £um is a formal variable
parameter of a procedure, £ie is a variable passed to the procedure as the actual
parameter for fum, and fumptr is a pointer variable.

If the procedure executes the statement
fumptr := @fum

then fumptr is a pointer to £ie. The pointer fumptr~ denotes fie itself.

104 MPW 3.0 Pascal Reference

i,

The @ operator with a procedure or function

It is possible to apply @ to a procedure or a function, yielding a pointer to its entry point.
Note that Pascal provides no mechanism for using such a pointer. The only use for a
procedure pointer is to pass it to an assembly-language routine, which can then jump to
that address using the assembly-language Jsr instruction.

¢ Note: Procedures or functions used with @ should be at the outermost nesting level.

~ If the procedure pointed to is in the local segment, @ returns the current address of the

procedure’s entry point. If the procedure is in some other segment, however, @ returns the
address of the jump-table entry for the procedure. The generation of current-address or
jump-table code can be controlled by means of the $B Compiler directive described in
Chapter 13. When a Pascal routine address is passed to a Macintosh ROM routine, the
jump table must be used.

If the procedure’s segment is unloaded, code swapping may change a local segment
procedure address without warning, and the procedure pointer can become invalid. If the
procedure is not in the local segment, the jump-table-entry address will remain valid
despite swapping because the jump table is not moved.

Function calls

A function call executes the function denoted by the function identifier. A function
identifier is any identifier that has been declared to denote a function, as described in
Chapter 8.

If the corresponding function declaration contains a list of formal parameters, then the
function call must contain a corresponding list of actual parameters.

Each actual parameter is substituted for the corresponding formal parameter, according
to these rules:

s The correspondence is established by the positions of the parameters in the lists of
actual and formal parameters, respectively.

s The number of actual parameters must be equal to the number of formal parameters.
s The order of evaluation and binding of the actual parameters is unspecified.

CHAPTER 6 Expressions

105

Y
\J

identifier
actual
parameter
list
actual parameter list (actual
parameter

actual parameter .
| expression |——
variable
™ reference v
procedure
identifier y
function -
™ identifier o
Here are some examples of function calls: .

sum(a, 63)
gcd (147, k)
sin (x+y)
eof (£f)
ord(£f*)

A special case of a function call is the method call. Method calls are discussed in detail in
Chapter 12.

See Chapter 7 for a description of the procedure call statement.

106 MPW 3.0 Pascal Reference

Set constructors oA

A set constructor denotes a value of a set type and is formed by writing expressions
within square brackets, [1. Each expression denotes a value of the set.

(D -(D—

member group

expression

‘ >
expression -——-f
The notation [] denotes the empty set, which belongs to every set type. Any member

group x. . y denotes as set members the range of all values of the base type in the closed
interval xto y.

If x is greater than y, then x. . y denotes no members and [x. . y] denotes the empty set.

All valyes designated in member groups in a particular set constructor must be of the same
scalar type. This scalar type is the base type of the resulting set. If an integer value
designated as a set member is outside the limits 0..2039, the results are unspecified.

Here are some examples of set constructors:
[red, c, green]

[1, 5, 10..k MOD 12, 23]
['‘A'..'2', 'a'..'z', chr(xcode)]

CHAPTER 6 Expressions

107

Writing expressions

You build expressions from factors, terms, and simple expressions. These objects are
described below.

Factors

A factor may be any of the expressions shown in the following syntax diagram:

Jactor variable
T ‘ access
. unsigned .
function
all Y
set
™1 constructor v
s—.‘)———-— expression —o{ >—ﬁ .
P \
factor >—

108 MPW 3.0 Pascal Reference

A function call activates a function and denotes the value returned by the function;
functions are discussed in Chapter 8. A set constructor denotes a value of a set type, as

described in Chapter 4.
An unsigned constant has the following syntax:

unsigned constant unsigned
number

quoted
constant Y

constant
identifier

nED,

Here are some examples of factors:

x {variable access}

@x {pointer to a variable}

15 {unsigned constant}

(x+y+2z) {subexpression}

sin(x/2) {function call}

[fA'..'F', 'a'..'f'] {set constructor}

NOT p {negation of a boolean}

CHAPTER 6 Expressions

109

Terms

Terms apply the multiplying operators to factors:

lerm

—
:'I factor e

Here are some examples of terms:

X*y
i/(1-1)
p AND g

(x<=y) AND (y<z)
(1>0) & (af(il=b)

110 MPW 3.0 Pascal Reference

Simple expressions

Simple expressions apply adding operators and signs to terms:

fr — st term T >
L sign @ﬁ

stmple expression

Here are some examples of simple expressions:

x+y

-X

huel + hue2
i*j + 1

CHAPTER 6 Expressions 111

:::::

Expression syntax

The syntax for an expression applies the relational operators to simple expressions:

expression | simple A
expression [

ke

]

expression

Here are some examples of correctly written expressions:

x=1.5
p<=q
P = q AND r
(i<3) = (3<x)

. ¢ IN huel

112 MPW 3.0 Pascal Reference

Chapter 7 Statements

STATEMENTS ARE MADE UP OF EXPRESSIONS combined with certain reserved words.
Statements describe algorithms and are executable. They perform the actual work
of the Pascal program, doing such things as giving a value to a variable or
providing conditional execution of other statements. =

Contents

Assignment statements 116
Compound statements 117
Procedure statements 118
Repetition statements 120

FOR statements 120

WHILE statements 122

REPEAT statements 123

Loop control: a comparison 124
Conditional statements 125

IF statements 125

Nested IF statements 126

CASE statements 126
Control statements 128

GOTO statements 128

Cycle statements 129 -

Leave statements 130

WITH statements 130

NULL statements 132

113

(' MPW Pascal has 13 statements:

Statement assignment

statement

L__,‘_l compound | _ |
'l stuement 1

procedure
— satement [¥

FOR
™1 swement [¥

WHILE

™ suement [¥
REPEAT

™1 sutement F—]y

IF
1 statement R]

statement y

=

GOTO
- satement | ¥

Cycle
statement 4

statement

statement

statement

These statements are discussed in this chapter.

CHAPTER 7 Statements 115

Assignment statements

‘_ e

The assignment statement sets the value of a variable. The symbol : = can be read as “set

to.

assignment statement variable

” The statement is written:

- ——

access

function

identifier expression f—

.The variable reference of the left side identifies a variable of any of the types except a file

type. With most variables it is simply an identifying name, but in four cases it consists of
a name followed by a qualification:

If the variable is a string element, it is identified by the string name followed by the
element’s index number in brackets.

If the variable is an array element, it is identified by the array name followed by one or
more index values (one for each dimension of the array) enclosed in square brackets
and separated by commas.

If the variable is a record field, its name must be preceded by the name of its
containing record and a period (unless the assignment statement is enclosed in a wITH
statement).

If the variable is a dynamic variable, it is identified by the name of its pointer .
followed by a caret.

In writing assignments, keep these rules in mind:

116

A real-type variable may be set to the value of another real-type, an integer or
longint, an integer subrange type, or an expression yielding integer or real
results.

A longint variable may be set to the value of an integer, an integer subrange
type, or an expression yielding integer results. It may be set to the value of another
longint Or to an expression yielding 1ongint results, provided the actual value -
does not exceed its declared size.

A boolean variable may be set to the value of another boolean or to an expression
yielding a boolean result.

MPW 3.0 Pascal Reference N

s A char variable may be set to the value of another char, a char subrange type, ora
string element.

» A scalar variable of subrange type may be set to the value of another scalar (or an
expression yielding scalar results) of the host type, provided the actual value lies
within its declared range.

s A user-defined scalar variable may be set to any of the values named in its declaration.

» A string variable may be set to the value of another string, provided its actual length
does not exceed the variable’s declared size.

» A set variable may take the value of another set variable or set constructor, provided
they have the same base type.

s A whole array variable or record variable may be set to the value of another whole array
or record variable of assignment-compatible type.

s A one-dimensional packed character array variable may be set to the value of a string
constant (but not a string variable), provided its index range is the same as the string's

length.

s Arnay elements (including elements that are arrays) and record fields (including fields
that are records) act in assignments like ordinary variables of their declared types.

Here are some examples of assignment statements:

X = y+z

p := (l1<=i) AND (i<100)
i := Sgr(k)-(i*j)

huel := [blue, succ(c)]

Compound statements

When writing Pascal programs, you often need to treat several statements as if they were
one—for example, when they are all executed by a smgle control statement. To do this,
you use the compound statement.

The body of every Pascal procedure, function, and main program consists of a single
compound statement. To create a single compound statement out of a sequence of
statements, preface the sequence with BEGIN and terminate it with END, separating the
internal statements with semicolons.

CHAPTER 7 Statements

117

compound statement
BEGIN statement m

The arrow coming back through the semicolon indicates that many statements may be
placed between BEGIN and END, as long as they are separated by semicolons.

You can nest any number of BEGIN. . . END statements. Within any block, the Compiler
will associate the last BEGIN with the first END, the next-to-last BEGIN with the second
END, and so on. If you have written more BEGINs than ENDs, the Compiler will stop and
display an error message.

Here is an example of a compound statement:

BEGIN
z = X;
X =Yy;
y :=

END

Procedure statements

A procedure is called by writing its identifier in the source text, followed by its actual
parameter list (if it has one) in parentheses. The parameters in a parameter list are
separated by commas.

procedure statement procedure
™ identifir [—

actual

parameter
list

118 MPW 3.0 Pascal Reference

The identifier must be the same as the identifier used in the procedure or function
declaration.

The parameter list in a procedure or function call contains the same number of formal
parameters as were listed in the procedure or function declaration. Those in the
declaration are called formal parameters; those in the calling statement, actual (or
source) parameters. The values of the actual parameters are said to be passed to the
formal parameters as part of the call.

The order and number of actual parameters in the call must match the order and number of
formal parameters in the declaration. Each actual parameter must have the same type as
the corresponding formal parameter, with these exceptions:

» Subrange types are equivalent to their base types.

» A formal parameter of type 1longint will accept an actual parameter of type
integer.

» Formal parameters preceded by univ accept any actual parameter that occupies the
same space in memory. For a full discussion of univ, see Chapter 9.

In addition, the actual parameters specified in any procedure or function call must follow
these rules:

s Actual variable parameters must be variables. As opposed to value parameters,
variable parameters cannot be constants, expressions, or elements of packed
variables.

s The value of any actual string variable may be passed to any formal variable string
parameter, regardless of length. However, if the declared maximum length of the
formal parameter is longer then the declared maximum length of the actual parameter,
you will get a Compiler error. You can avoid the problem by suspending range checking
with the Compiler directive $r-,

s If the value of an actual parameter exceeds the range of a formal parameter (for
instance, because the formal parameter is a subrange type), you will get an execution
error unless you have suspended range checking with the Compiler directive $r-.

Here are some examples of procedure statements:
printheading

transpose(a, n, m)
bisect (fct, -1.0, +1.0, x)

CHAPTER 7 Statements

119

Repetition statements

Pascal provides three ways to execute the same program section repeatedly—the process
called looping. But Pascal sets up the loop and evit routines for you; all you need to do is
tell it the conditions for repetition. The repetition statements are the following:

» The FOR statement FOR. . . DO executes the same program section a given number of
times. The number of executions may be constant or may be determined by the result
of any scalar calculation.

» The WHILE statement WHILE. . . DO executes the same program section repeatedly as
long as a given boolean expression is t rue. It evaluates the boolean control before
each pass, including the first time; hence it can bypass the program section altogether.

s The REPEAT statement REPEAT. . . UNTIL also executes the same program section
repeatedly as long as a given boolean expression is t rue. But it evaluates the
boolean control after each pass; hence it executes the program section at least once.

FOR statements

The FOR statement requires a previously declared local variable of scalar type. It
repeatedly increments or decrements the value of the variable, executing a section of your
program each time. You define the starting and ending scalar values (which may be
constant or calculated) and whether the FOR statement is to count upward or downward.

120 MPW 3.0 Pascal Reference

(éﬁ;}‘r\

FOR statement control initial
FOR variable value T

v v o ——————— -

=
control variable variable
> identifier

initial value

| expression.q ——»

final value

> expression (——

The control variable is the name of a scalar variable—integer, char, boolean,
subrange, or user-defined. It cannot be an array or string element, a record field, or a
dynamic variable. It must be declared in the block that contains the FoOR statement. The
FOR statement gives it a value before each pass through the program section it controls.
Note that the value of this variable is accessible in the controlled section.

The initial and final value expressions must have the same scalar type as the variable. They
may be simple constants or variables, or complex expressions containing operators and
functions.

You write TO or DOWNTO, depending on whether the ordinality of the value of the second
expression is higher or lower than the ordinality of the value of the first expression.

The statement controlled by the For statement can be a single other statement (such as
an assignment or a procedure call) or a compound statement containing many other
statements.

CHAPTER 7 Statements

final DO statement f——m>mn

121

Observe these rules and cautions when writing any FOR statement:
s The control variable must be a simple variable with local scope.

s If the control variable is a subrange type or user-defined scalar, it must be capable of
accepting the initial and limit values as well as all values with an ordinality in between.

& Do not try to change the value of the control variable from within the FoRr staicmext;
doing so can have unpredictable results.

s Do not include the control variable in either of the limit expressions.

s After the FOR statement is finished, the value of the control variable may be
unspecified.

s The limit expressions are evaluated just once, before the first pass. Changing them
from within the FOR statement will not alter its behavior.

a If the limit expressions have equal value, the FoR statement will execute its controlled
statement once.

s If the limit values are reversed—large limit less than small limit—the FOR statement will
be skipped.

Here are some examples of FOR statements:

FOR i :

2 TO 63 DO IF a[i]>max THEN max := a[il]

FOR i :=1 TOn DO FOR j := 1 TO n DO

BEGIN
x := 0;
FOR k := 1 TO n DO x := x+ml([i, k]*m2(k, j];
m{i, j] := x

END

FOR c := red TO blue DO g(c)

WHILE statements

The WHILE statement evaluates a boolean expression and then executes a statement if
the expession is t rue. It repeats the execution, evaluating the expression before each
pass, until the expression becomes false. The wHILE statement is written as follows:

WHILE statement Ve
=\WHILE}—> expression —-—C DO)———a statement

122 MPW 3.0 Pascal Reference

s,

The controlling expression must have boolean type; usually it is formed out of relational
and logical operators.

The statement controlled by wHILE. . .Do may be either a single statement or a
compound BEGIN. . .END construction containing other statements.

Here are some examples of WHILE statements:
WHILE a[i]<>x DO i := i+l

WHILE i>0 DO
BEGIN :
IF odd(i) THEN z := z*x;
i := i DIV 2;
X := sqr(x)
END ' ..

WHILE NOT eof(f) DO
BEGIN
process (f*);
get (£)
END

REPEAT statements

The REPEAT statement behaves much like the WHILE statement, but it evaluates its
boolean expression after executing the statements it controls. It is written as follows:

REPEAT statement

expression

.

REPEAT and UNTIL create their own compound out of the statements they control; you
do not need to use BEGIN and END.

The controlling expression must have boolean type; usually it is formed out of relational
and logical operators.

-

Note: With both wHILE and REPEAT, take care that the program statements they
control include some practical means to change the expression, or to escape by means
of 2 GOTO or Leave statement or Exi t call. Otherwise your program can never
terminate.

CHAPTER 7 Statements

123

Here are some examples of REPEAT statements:

REPEAT
k -
i:
j

UL

i MOD j;

o

3z
k
BRI

REPEAT
process (f*);
.get (£)

UNTIL eof (f)

Loop control: a comparison-

The three repetition statements each have specific advantages and disadvantages in any
given programming situation. Here are some of them.

The For statement automatically keeps track of which repetition it is executing, by
changing the value of its control variable at the end of each pass. Thus you can use the
control value to modify what your program does each time. For example, the control value
can cause the repeated section to

s select a different element in an array each time by changing the index number

s call a different procedure each time by serving as the selector value for the case
statement (described below)

s perform a different calculation each time by becoming a factor in an expression

The FoR statement is somewhat inflexible, however. You can change its number of
repetitions only by terminating it with 2 GOTO or Leave statement.

The wHILE statement and REPEAT statement allow better control of the conditions
under which they stop executing. The main difference between them is that the WHILE
statement need not be executed at all, whereas the REPEAT statement executes at least
once. Thus the WHILE statement is most useful when the condition controlling its
execution may have already been satisfied; the REPEAT statement is most useful when the
condition can be satisfied only by executing the statement.

The WHILE statement should also be used in cases where executing it under the wrong
conditions could be detrimental, because it evaluates its control before each pass.

124 MPW 3.0 Pascal Reference

Conditional statements

Pascal provides two ways for your program to choose what to do next—the process
sometimes called branching:

s The IF statement IF. . .THEN. . .ELSE evaluates a boolean expression and
executes a controlled statement only if it is t rue. It can also be written to execute a
second statement if the expression is false.

s The CASE statement CASE. . .OF. . . OTHERWISE executes one statement from a list,
depending on the value of a scalar control expression.

IF statements
The IF statement executes a single controlled statement (which may be a compound
BEGIN. . . END construction) if 2 boolean expression is true. You can add an optional

ELSE part on the end that executes another (possibly compound) statement if it is
false:

i BN gy W ey v W s .
o=}

Y

The controlling expression between 1F and THEN must have boolean type; usually it is
formed-out of relational and logical operators.

Either or both controlled statements may be single statements or compound

BEGIN. . . END constructions containing other statements. The only place you need to
put a semicolon in an IF statement is within a compound BEGIN. . . END construction.
When executing an 1F statement, Pascal performs these steps:

1. Itevaluates the boolean expression.

2. Ifits value is t rue, Pascal executes the statement following THEN and exits the IF
statement.

3. Ifits value is f£alse and there is a statement after ELSE, Pascal executes it;
otherwise, it exits the IF statements.

CHAPTER 7 Statements 125

Here are some exampels of TF statements:

IF x<1.5 THEN z := x+y ELSE z := 1.5
IF pl<>nil THEN pl := pl~.father

Nested IF statements

In any IF statement, the statement following the word ELSE can also be an IF statement
and can contain its own ELSE clause. Thus an IF statement can be written to take
different actions for each of several mutually exclusive conditions.

Pascal will evaluate boolean expressions only until a t rue one is found. You get
maximum execution speed if you put the most probable conditions first.

"The statement following the word THEN can also be a nested IF statement, but this can
create confusing source text. If it becomes unclear which ELSE matches which THEN,
clarify the situation by using a compound BEGIN. . . END construction or appropriate
indentation.

CASE statements

The caskE statement lets you write a list of alternative statements to be executed,
associating a scalar constant with each one. When executing the CASE statement, Pascal
evaluates a controlling scalar expression; if its value matches one of the constants, Pascal
executes the corresponding statement. You can add an optional OTHERWISE part on the
end that executes an additional statement if nothing was selected from the list. The cAsE
statement follows this syntax:

CASE statement

otherwise °
clause .

126 MPW 3.0 Pascal Reference

g,

The clauses shown in the diagram have the following form:

case
expression -

v 1w

[~ }<::>‘“L| Qg::gn

ot =@——b@THERWISID-—> satement f—w

The controlling expression may have any scalar type—integer, char,boolean,
subrange, or user-defined. It should be capable of returning the value of any of the
constants in the CASE clause.

The constant expressions in the CASE clause must have the same scalar type as the
controlling expression.

Any of the controlled statements in the caSE clause or the default statement following
OTHERWISE may be single statements or compound BEGIN. . . END constructions
containing other statements.

Here are two examples of CASE statements:

CASE operator OF
pPlus: x := x+y;
minus: x := x-y:

times: x := x*y

END

CASE i OF
1: X := 3in(x);
2: X := cos(x);

3, 4, 5: x := exp(x);
OTHERWISE x := 1ln(x)
END

CHAPTER 7 Statements

127

Control statements

The three repetition statements and two conditional statements described in this
chapter, along with assignments and procedure calls, are flexible enough to handle almost
ali pregraraming jobs. Occasionally, however, you niay encourter a situaios: that
demands immediate transfer or suspension of program execution. For these cases, Pascal
provides five additional tools:

s the GoTo statement, which transfers control directly from one program statement to
another

s the Cycle statement, which forces an immediate reiteration of a repetition
statement loop

" m the Leave statement, which immediately cancels a repetition statement loop
= the Exit procedure, which terminates any procedure, function, or whole program
s the Halt procedure, which stops program execution then and there

The GoTo, Cycle, and Leave statements are described below. The Exit and Halt
procedures are described in Chapter 12.

GOTO statements

The GOTO statement transfers program execution to the beginning of any statement that
is within the same procedure, function, or main program. Before you can use a GoTo
statement, you must do two things:

s Declare a label for every coTo destination in your program. Each label is a number of
one to four digits. The label declaration consists of the reserved word LABEL,
followed by one or more label numbers separated by commas. Label declarauons are
discussed under “Block Syntax” in Chapter 4.

s Write one of the declared destination labels, followed by a éolon, in front of the
statement that is the destination for each coTo statement.

The GoTo statement is written

GOTO statement
, {com)——o abel f—u

128 MPW 3.0 Pascal Reference

The-unsigned integer is the destination label; it must not exceed four decimal digits.

Two more cautions apply to GOTO statements:
» The destination of any GoTo statement must be the beginning of a statement.

= Jumping to a statement that is within the structure of another statement (except
wit! & -.spound statemaent that forins a program block) can have undefined
efiecis, aithough the Compiler will not indicate an error.

Thus, every GoTo destination should be the beginning of a statement that is at the top
level of nesting in a program block.

Here is an example illustrating the use of a2 GoTo statement:

BEGIN

1234: Write ('Give me a number: ');
Readln(n);

IF n=0 THEN GOTO 1234
END

Cycle statements

Cycle statement

The cycle statement passes program control to the end of the looping portion of the
smallest WHILE, REPEAT, Of FOR statement that encloses it. It is similar to the continue
statement in the C language.

Here is an example illustrating the use of a Cyc1le statement, It calls the
procedure £ for all positive values of a[i]: .

FOR i := 1 TO n DO
BEGIN
IF a[i]<=0 THEN Cycle;
£(ali])
END

Note: The word Cycle is not a reserved word. If you redefine it, you cannot use Cycle
statements within the scope of your definition.

CHAPTER 7 Statements

Leave statements |

Leave statement

The Leave statement terminates the smallest WHILE, REPEAT, Of FOR Statement that
encloses it, passing control to the next statement. It resembles the break statement in C.

Here is an example illustrating the use of a Leave statement; in it, the WHILE statement
terminates when the first x value of a (1] is found:

WHILE i<63 DO

BEGIN
IF a[il=x THEN leave;
i = i+l

END

& Note: The word Leave is not a reserved word. If you redefine it, you cannot use Leave
statements within the scope of your definition.

WITH statements

The wITH. . . Do statement provides a means by which the fields of specified records can
be referenced using only their field identifiers. It has the following syntax:

WITH statement TN record . '
»{ WITH variable @——D statement |—
S——r’ access

object
reference
variable access

)

y

Y

130 MPW 3.0 Pascal Reference

Any number of record variable identifiers, including those of records that are fields of
other records, may be listed between wITH and po. The statement

WITH v1, v2, v3 DO s;

is equivalent to the group of wiTH statements

WITH vl DO
WITH v2 DO
WITH v3 DO s

. The following rules govern the use of WITH. . . DO:

s When listing a record that is a field of another record, you must either list the
containing record earlier or list that field in explicit form.

m WITH statements may be nested. The record variables “opened” by any wiTH
statement remain open in the nested statements.

s Where fields of different record variables have the same name, wITH accesses the
field of that name in the record last listed, including redundant listings in nested
statements. The identity of field names does not cause a Compiler error.

s Where a record field identifier is the same as a variable or other identifier declared
outside the record, wITH accesses the field.

s Within a wiTH statement, fields may still be identified explicitly, even though their
record variables are listed. This feature can be used to resolve the ambiguity of
identical field names.

s When used with variant record variables, wITH accesses the identifiers for their tag
fields and all variant fields.

Here is an example of a wITH statement:

WITH date DO IF month=12 THEN

BEGIN

month := 1;.
year := year+l
END

ELSE month := month+l

CHAPTER 7 Statements

131

NULL statements

NULL statements are statements that don’t contain anything. This simply means that
whenever Pascal syntax calls for a statement, you can omit it. It also means that when a
program contains an unneressary semicolon, the Pascal Compil=- ~nnsiders the semirolrn
to be separating a null staterent from another statenicin. Tic «wsui i tWo statemenis
where you only intend one. Most of the time, this is harmless, but it occasionally causes an
error when only one statement is allowed.

132 MPW 3.0 Pascal Reference

s,

Chapter 8 Procedures and Functions

WRITING PROCEDURES AND FUNCTIONS IN YOUR PROGRAM lets you nest additional
blocks inside the main program block.

Each procedure or function declaration consists of a heading followed by a
block. These are the principal differences between procedures and functions:

s Their heading formats are different.
» A procedure block is activated by a procedure call statement, as described in

Chapter 7; a function block is activated by the.evaluation of an expression
that contains its call.

= A function returns a value to the expression that calls it. =

Contents

Procedure declarations 135
Function declarations 136
Procedure and function directives 139
The FORWARD directive 140
The EXTERNAL and C directives 140
The INLINE directive 141
Parameters 142
Value parameters 144
Variable parameters 144
Procedural parameters 145
Procedure pointers 147
Functional parameters 147
Univ parameters 147
Parameter list compatibility 148

133

Procedure declarations

A procedure declaration associates an identifier with a block, so that part of the program

can be activated by a procedure statement.

procedure declaration

" procedure body

»| procedure

Sos

procedure

block

FORWARD

The procedure heading specifies the identifier for the procedure and its formal

parameters (if any).

constant
expression

O

CHAPTER 8 Procedures and Functions

identifier

v

formal

parameter
list

Y

135

An object type is only given if this is a method declaration. A method declaration is a
special type of procedure declaration made as part of an object type declaration.
Detailed information on method declarations is given in Chapter 12.

The syntax for a formal parameter list is shown later in this chapter.

A procecu e is 2:tivated 1.y 2 orocediie st:tement, as derined iu Chapter 7, which gives
the procedure’s identifier and any actual parameters required by the procedure. The
statements to be executed upon activation of the procedure are specified by the
statement part of the procedure’s block. If the procedure’s identifier is used in a
procedure statement within the procedure’s block, the procedure is executed recursively.

Here is an example of a procedure declaration:

PROCEDURE Summation (n: integer; a: intarray; VAR sum: longint);
VAR i: integer;
BEGIN {Summation}
Sum := 0;
FOR i := 1 TO n DO sum := Sum+a[i]
END; {Summation}

Function declarations

A function declaration serves to define a part of the program that computes and returns a
value. The return value can be of any type.

[unction declaration function function
heading O body C

136° MPW 3.0 Pascal Reference

nction
function body block 7

/" . .
¢ U—l
| :

=
expression]

M
o/

Y
v

The function heading specifies the identifier for the function, the formal parameters (if
any), and the type of the function result.

object
l type
> FUNCI‘ION } F]
L identifier >O-—> ”tygeﬁer >
L formal __J

parameter

function heading

The syntax for a formal parameter list is given later in this chapter.

CHAPTER 8 Procedures and Functions

137

A function is activated by the evaluation of a function call (see Chapter 6), which gives
the function’s identifier and any actual parameters required by the function. The function
call usually appears as an operand in an expression. The expression is evaluated by
executing the function and replacing the function call with the value returned by the
function.

Function calls can zlsc be used witii vadable qualiiicrs ideniuy 4 vataule 1o which a
value is assigned. In that case, the function is executed, the qualifiers are applied to the
result of the function, and the result of the expression is assigned to the variable thus
located. It is not specified whether the expression or the function is evaluated first.

The statements to be executed upon activation of the function are specified by the
statement part of the function’s block. This block should contain at least one assignment
statement that assigns a value to the function identifier. The result of the function is the
last value assigned. If no such assignment statement exists or if it exists but is not
executed, the value returned by the function is unspecified. If the return value of the
function is a structured type, you can assign values to components alone or to the entire
structure.

If the size of the return value of the function is no more than four bytes, the return value
itself is placed on the stack. If the return value is longer than four bytes, a pointer is
placed on the stack and code is generated so that the return value is obtained through the
pointer. :

If the function’s identifier is used in a function call within the function’s block, the
function is executed recursively.

& Note: If the return value of a function is a record type, a pointer to a record type, or an
object type, you cannot use a WITH statement to assign values to the fields of the
record or object. The Compiler will interpret use of the function’s identifier in the
WITH statement as a function call.

138 MPW 3.0 Pascal Reference

Here are some examples of function declarations:

FUNCTION max(a: vector; n: integer): extended;
VAR x: extended; i: integer;

BEGIN

x := a[l]:;

FOR i := 2 TO n DO Zf - « 3% S R
max := X

END;

FUNCTION power (x: extended; y: integer): extended; (y >= 0}
VAR w, z: extended; i: integer;
BEGIN
w:=x; z :=1; 1 :=y;
WHILE i > 0 DO BEGIN
{z*(w**i) = x**y}
IF odd(i) THEN z := z*w;
i := i DIV 2;
w := sqr(w)
END;
{z = x**y}
power := z
END;
FUNCTION RelRect (BaseRect: Rect; top, left, bot, right: integer): Rect;
. BEGIN
RelRect.top := BaseRect.top + top;
RelRect.left := BaseRect.left + left;

4 RelRect.bot := BaseRect.bot + bot;
{ 7 RelRect.right := BaseRect.right + right
' END;

newRect := RelRect (oldRect, 10, 10, 20, 20);

Procedure and function directives

In place of the block in a procedure or function declaration, you can write the following
directives:

s FORWARD lets you use the procedure or function immediately but postpone defining
the block to a later part of your program.

s EXTERNAL and C let you link a C or assembly-language routine to your program, which
will be executed as the procedure or function’s block.

= INLINE lets you write actual assembly-language instructions to be executed in place
of the block.

These directives are described below.

CHAPTER 8 Procedures and Functions 139

The FORWARD directive

A procedure or function declaration containing the directive FORWARD instead of a block
is called a forward declaration. Somewhere after the forward declaration but in the same
hloc, the ore 7 -0 o s defined by a o 3misg etk 2¥oe 2 deckiertion
tai uses tie sau identitier aud includes a block, 'vhe foimnal parameter list may Le
repeated in the defining declaration; but if you repeat the formal parameter list, it must
be identical to the list in the forward declaration. The forward declaration and the
defining declaration must be local to the same block but need not be contiguous; that is,
other procedures or functions can be declared between them and can call the procedure
that has been declared forward. This permits mutual recursion.

The forward declaration and the defining declaration constitute a complete declaration
of the procedure or function. The procedure or function is considered to be declared at
the place of the forward declaration.

Here is an example of a forward declaration that permits mutual recursion:

PROCEDURE walter(m, n: integer); {forward declaration}
FORWARD;
PROCEDURE clara(x, y: real);
BEGIN
walter(4, 5); {OK because walter is forward declared.}
END;
PROCEDURE walter; {defining declaration}
BEGIN

clara(8.3, 2.4);

END;

Forward procedures and functions may not be written in the interface part of a unit.

N

The EXTERNAL and C directives

A procedure or function declaration containing the directive EXTERNAL instead of a
block defines the Pascal interface to a separately assembled or compiled routine, such as
a procedure code module in MPW assembly language. The external code must be linked
with the compiled Pascal host program before execution; see the Linker instructions in
the Macintosh Programmer's Workshop 3.0 Reference for details. Pascal and C calling
conventions are described in Appendix F.

140 MPW 3.0 Pascal Reference

When you use the C directive in addition to EXTERNAL, the parameters (and function
return values) are automatically arranged according to C language standards. As with other
external routines, C-declared procedures and functions have no body; they are linked with
C Compiler output by the Linker.

The C directive causes the Compiler to

= push parameters onto the stack in reverse ordex

» push all scalars as 1ongint values and all real values as extended values

s expect function return values in register DO (DO, D1, and AQ for ext ended results)

& Note: For nonreal results longer than four bytes, the address of the result is returned in
register DO. In that case, the Compiler generates code to copy the result into the
caller’s space before continuing.

Here are two examples of external procedure declarations:

PROCEDURE MakeScreen(index: integer); EXTERNAL;
PROCEDURE Allen(howl: string); C; EXTERNAL;

In these examples, MakeScreen is an external procedure that must be linked to the host
program before execution. Allen is a C procedure that must be linked to the host
program before execution.

It is the programmer’s responsibility to ensure that the external procedure or function is
compatible with the ExTERNAL and C declarations in the Pascal program; the Linker does
not check for compatibility.

External procedures and functions may not be written in the interface part of a unit.

The INLINE directive

The INLINE directive allows you to write explicit hexadecimal MC680x0 machine
instructions in place of the block. The code is expressed in constants or constant
expressions.

When a normal procedure or function is called, the Compiler generates code that pushes
the procedure’s arguments on the stack (along with two or four bytes for a return value, if
this is a function) and then generates an assembly-language Jsr (Jump to SubRoutine) to
call the procedure, as explained in Appendix F. When you use a procedure declared
INLINE, the Compiler generates code (in place of the Jsr) from the constants following
the word INLINE.

CHAPTER 8 Procedures and Functions

141

Each constant (or constant expression) represents exactly one machine-instruction word
in the code generated by the Compiler. The code is generated in the order of the
constants, Take care that you observe the proper rules for adjusting the stack, saving
registers, and so on. These are documented in Inside Macintosh and Appendix F.

Thie facility is interded fir wrivag =ne™ yitiner anc' Macintosh ROM outine calls, If you
Wailt 10 Uk feape @ indd C.oin S5, i, CICAIE Gh €Aelu2) ok 2UNE fusiead,

4

Unlike the FORWARD and EXTERNAL directives, no block is ever defined in an INLINE
directive. INLINE can also be used in the interface part of a unit. In that case, there is still
no block for the procedure in the corresponding implementation part.

_ Here is an example of a procedure declared INLINE:

PROCEDURE trap (Tos: longint); INLINE $A9ED;

The @ operator cannot be used to generate a pointer to an INLINE routine.

Parameters

Procedure and function declarations may have any or all of four kinds of formal
parameters:

s value parameters
variable parameters
procedural parameters

functional parameters

When writing a formal parameter list, you distinguish the four kinds as follows:
= A parameter group preceded by VAR is a list of variable parameters.

s A parameter group without a preceding VAR is a list of value parameters.

= A procedure heading denotes a procedural parameter.

» A function heading denotes a functional parameter.

A formal parameter list may be part of a procedure declaration or function declaration, or
it may be part of the declaration of a procedural or functional parameter.

142 MPW 3.0 Pascal Reference

Note: The types of formal parameters are denoted by type identifiers, so you cannot
define 2 new type in a parameter list. In other words, only a simple identifier can be

used to denote a type in a formal parameter list. To use a type such as PACKED

ARRAY [0..255] OF char as the type of a parameter, you must first declare a

type identifier for this type:

TYPE charray = PACKED ARRAY[0..255] OF char;
The identifier charray can then be used in a formal parameter list to denote the

type.

If a formal parameter list is part of a procedure declaration or function declaration, it

declares the formal parameters of the procedure or function. Each parameter so declared
is local to the procedure or function being declared and can be referred to by its identifier

in the block associated with the procedure or function.

If the list is part of the declaration of a procedural or functional parameter, it declares the

formal parameters of the procedural or functional parameter. In this case, there is no

associated block and the identifiers of parameters in the formal parameter list are

significant only to the extent that they indicate the format and number of parameters.

formal parameter list

parameter declaration

:@_

parameter

procedure
heading

function
heading

(e

;:@_.

AN

identifier
list

type
identifier

CHAPTER 8 Procedures and Functions

143

¢ Note: The word F1LE (for an untyped file) is not allowed as a type identifier in a S
parameter declaration, because it is a reserved word. To use a parameter of this type,
declare some other identifier for the type FILE. For example,

TYPE phyle = FILE;

The identifier phy 1e can then be used ir: @ fonian! paraineic. iist i ceuote the
type FILE.

Value parameters

A formal value parameter acts like a variable local to the procedure or function, except
that it gets an initial value from the actual parameter in the corresponding position in the
actual parameter list.

& Note: At run time, the procedure makes a copy of each actual parameter value that is
longer than four bytes in its own local variable space.

No changes made to a formal value parameter change the value of whatever is in the
corresponding position in the actual parameter list.

For a value parameter, the corresponding actual parameter in a procedure statement or
function call must be an expression, and its value must not be of a file type or of any
structured type that contains a file type.

The actual parameter must be assignment-compatible with the type of the formal value
parameter. However, you can override this restriction by declaring the pammeter as
univ, as described later in this chapter.

Variable parameters

Variable parameters are used when a value must be passed back from a procedure or
function to the calling program.

The corresponding actual parameter in a procedure statement or function call must be a
variable access, as defined in Chapter 5. The formal variable parametér denotes the actual
variable during the entire activation of the procedure or function, so any changes to the
value of the formal variable parameter are reflected in the actual parameter.

144 MPW 3.0 Pascal Reference

Within the procedure or function, any access of the formal variable parameter is an access
of the actual parameter itself. The type of the actual parameter must be identical to that
of the formal variable parameter. However, you can override this restriction by declaring
the parameter as univ, as described later in this chapter.

File types must be passed as variable parameters.

& Note: If the access of an actual variable parameter involves indexing an array, finding
the identified variable of a pointer, or finding the field of a record or an object, these
actions are executed before the activation of the procedure or function. If the
variable is in a relocatable block of the heap, compaction of the heap can cause the
original object to be moved, which yields unpredictable results.

Byte-aligned fields of packed structures are valid as variable parameters.

Procedural parameters

When the formal parameter is a procedure heading, the corresponding actual parameter in
a procedure statement or function call must be a procedure identifier. The identifier in
the formal procedure heading represents the actual procedure during execution of the
procedure or function receiving the procedural parameter.

Here are some examples of procedural parameters:

PROGRAM passProc;

VAR i: integer;

PROCEDURE a (PROCEDURE x) ; {x is a formal procedural}
BEGIN {parameter. }
write('About to call x ');
x {Call the PROCEDURE passed as}

END; {parameter.}
PROCEDURE b;
BEGIN
write('In PROCEDURE b')
END;
FUNCTION c (PROCEDURE x): integer;
BEGIN
x; {Call the PROCEDURE x, passed as}
c:=2 {formal procedural parameter.}
END;
BEGIN
a(b); {Call a, passing b as parameter.}
i:= c(b) {Call ¢, passing b as parameter.}
END.

CHAPTER 8 Procedures and Functions

145

If the actual procedure and the formal procedure have formal parameter lists, the formal
parameter lists must be compatible, as described in Chapter 7. However, only the
identifier of the actual procedure is written as an actual parameter; no parameters are
given for the actual procedure.

Here is an example of procedural nmamaters with their own formal nararmeter lists:
p . _ .

PROGRAM test;
PROCEDURE xAsPar(y: integer);
BEGIN
writeln('y=', y)
END;
PROCEDURE callProc (PROCEDURE xAgain(z: integer));
BEGIN
xAgain (1)
END;
BEGIN {body of program}
callProc (xAsPar) {(Note only the PROCEDURE identifier is given.}
END.

If the procedural parameter, upon activation, accesses any nonlocal entity (by variable
access, procedure statement, function call, or label), the entity accessed must be one that
was accessible to the procedure when the procedure was passed as an actual parameter.
To see what this means, consider a procedure Proc that is local to another procedure,
firstPasser.

Suppose that the following sequence takes place:

1. FirstPasser is executing.

2. FirstPasser callsa procedure named £irstReceiver, passing Proc as an actual
parameter.

3. FirstReceiver calls secondreceiver, again passing Proc as an actual
parameter.

4. secondReceiver calls Proc (first execution of Proc).

SecondReceiver calls thirdReceiver, again passing Proc as an actual
parameter.

6. ThirdReceiver calls firstPasser (indirect recursion) and passes Proc to
firstPasser as an actual parameter.

7. FirstPasser (executing recursively) calls proc (second execution of Proc).

Thus the procedure Proc is called first from secondReceiver and then from the second
(recursive) execution of £irstPasser.

Suppose that Proc uses a variable access pvar and pvar is not local to proc, and
suppose that each of the other procedures has a local variable named pvar.

146 MPW 3.0 Pascal Reference

m, seokas =

Each time proc is called, which pvar does it access? The answer is that in each case,
Proc accesses the pvar that is local to the first execution of £i rstPasser—that is,
the pvar that was accessible when P roc was originally passed as an actual parameter.

Procedure pointers

The @ operator can create procedure pointers. See “The @ Operator in a Procedure or a
Function” in Chapter 6 for details on procedure pointers.

Functional parameters

When the formal parameter is a function heading, the actual parameter must be a function
identifier. The identifier in the formal function heading represents the actual function
during the execution of the procedure or function receiving the functional parameter.

Functional parameters are exactly like procedural parameters, with the additional rule that
corresponding formal and actual functions must have identical result types.

Univ parameters

When the word univ is given before the type identifier in the formal parameter list, the
corresponding item in an actual parameter list can be of any type that is the same size as
the formal parameter’s type.

Here is an example of a univ parameter:
TYPE

ptrl = “char;
ptr2 = “integer;

VAR
four: longint;
pInt: ptr2;

PROCEDURE RealAddr(virt: longint; rAddr: univ ptrl);

RealAddr (v, pInt); {pInt can be a pointer to a type}
{other than char, or can be}
RealAddr (v, four); {any other four-byte type.}

CHAPTER 8 Procedures and Functions

147

Parameter list compatibility

Parameter list compatibility is required of the parameter lists of corresponding formal
and actual procedural or functional parameters.

Two formai PRILITIL L0 6SIS e® L ohil 03 1Y COnitin the s mp L 0T IEIRLE

and if the parameters in corresponcﬁng positions match. Two parameters match if one of
the following is true:

s They are both value parameters of identical type.
» They are both variable parameters of identical type.

s The formal parameter has univ before its type, and the actual parameter is a value or
variable of the same size. The parameters must still be both value parameters or both
variable parameters.

» They are both procedural parameters with compatible parameter lists.

s They are both functional parameters with compatible parameter lists and identical
result types.

148 MPW 3.0 Pascal Reference

ety

Chapter 9 Programs and Units

THE PASCAL BLOCKS DISCUSSED IN CHAPTER 3 are assembled into programs and
units. The principal difference between the two is that a program is complete
and executable; a unit resembles a program but cannot be executed by itself.
Both programs and units are separately compiled. Their object files are then
combined by the Linker to form a single executable object file. This process is
described in the Macintosh Programmer’s Workshop 3.0 Reference.

- There are several reasons for using units in Pascal programming:
a They help modularize large programs.

s They make common declarations and blocks easily available to more than
one program:. '

= They can be used to maintain the privacy of sections of a source text. =

Contents

Program syntax 151
Segmentation 152
Unit syntax 152
The USES clause 155
Units that use other units 156
Automatic symbol table loading 158

149

Program syntax

A Pascal program consists of a heading, an optional uskgs clause, and a block. (The uses
clause is discussed later in this chapter.)

ram
prog > ﬁ;oﬁ _.G > block —=

uses
clause

Y
v

ram headin, -
prg g identifier

program
parameters

rogram parameters dentifier
list

The occurrence of an identifier immediately after the reserved word PROGRAM declares it
as the program’s identifier.

¢ Note: Program.parameters, as described by Jensen and Wirth and the ANSI Standard,
are ignored by MPW Pascal.

CHAPTER 9 Programs and Units 151

Segmentation

The code of every program’s main body is always placed in a runtime segment whose name
is Main (capitalization of the name Main is significant). Any other program block can be

placed in a different segmen. &y using the $s Compiler command described i Thapist 15.
If no $s command is used in the program, all program code is placed in the Main segment.

By default, code copied from units is also placed in the Main segment. The code of any
entire unit, or of any procedure or function within a unit, can be placed in one or more

different segments by using the $s Compiler command in the unit’s source text.
_(Procedures and functions are described in Chapter 8.)

Unit syntax

The syntax for writing a unit is

unit : \
unit
heading —.@.

unit heading
UNIT

Y

The interface part of 2 unit declares constants, types, variables, procedures, and
functions that are “public’—that is, available to the host program (which may be

interface implementation
part part
identifier

another unit). In other words, the scope of the public entities is the entire host program.

It can access these entities just as if they had been declared in its source text.

You declare procedures and functions in the interface part by giving only the procedure or
function name, parameter specifications, and function result type. In other words, you

give only the part that defines how the procedure or function is called. You declare
methods in object type declarations the same way, except that you also specify

OVERRIDE where appropriate.

152 MPW 3.0 Pascal Reference

e

If INLINE or ¢ directives are used within routines in the unit, the directives must also
appear in the interface to the unit. Otherwise, each piece of header information in the

- interface is treated like a FORWARD declaration when the unit is compiled.

Variables and routines that appear in the interface are global. The entire unit is within the
scope of the block in which the uses clause that references the unit appears.

interface part

»{ INTERFACE) W

USES
clause

2

constant y
declaration
part

declaration

Varia ble 'y
declaration
part

procedure and function
> declaration part ——

\J

Y

The optional implementation part, which follows the last declaration in the interface
part, declares any constants, types, variables, procedures, or functions that are
“private”—that is, not available to the host program. Private procedures and functions
are declared like procedures and functions in programs, with a procedure or function
heading and a body. For further information about declaring procedures and functions,
see Chapter 8. '

CHAPTER 9 Programs and Units

153

All public procedures, functions, and methods are redeclared in the implementation part.
Parameters and function result types can be omitted from these declarations because
they were declared in the interface part; the procedure and function blocks, omitted in
the interface part, are included in the implementation part. If you repeat parameter lists
and function result types, they must be identical to those in the interface part.

In effect, the procedure, funciion, ans medicd declaadons in the interiace ae like
forward declarations, although the ForwaRD directive is not used. Therefore, these
procedures and functions can be defined and referred to in any sequence in the
implementation.

The interface part may contain a USES clause; thus any unit can use another unit.

There is no “initialization” section in MPW Pascal units (unlike Apple II Pascal and Apple
111 Pascal). If a unit requires initialization of its data, it should define a public procedure
that performs the initialization; the host program should then call this procedure.

& Note: Global labels cannot be declared in a unit.

implementation part ~\
-(IMPLEMENTATION) \

7 3

r

constant |
> declaration
part

type A
declaration
part

variable /'y
declaration
part

procedure and function
declaration part

154 MPW 3.0 Pascal Reference

Here is short example of a unit:
UNIT Simple;

INTERFACE {public items declared}
CONST FirstValue = 1;
TYPE N»rm = QRJECT
val: integer;
PROCEDURE Bump;
PROCEDURE Init
END;
PROCEDURE AddOne (VAR Incr: integer);
FUNCTION Addl (Incr: integer): integer;

IMPLEMENTATION S
PROCEDURE AddOne; ({Note lack of parameters...}
BEGIN
Incr := Incr+l
END;
FUNCTION Addl; {...and lack of function result type.}
BEGIN
Addl := Incr+l
END;
PROCEDURE Num.Bump;
BEGIN
val := val+l
END;
PROCEDURE Num.Init;
BEGIN
val := FirstvValue
END
END.

The USES clause

You write a USES clause in a program or unit to access a unit:

USES clause USES | idenliﬁer

list

The uskes clause appends the “.p” suffix (which denotes source code) to the unit name
and causes the Compiler to open the file. For example, the statement

USES QuickDraw, memTypes;

opens the files QuickDraw.p and memTypes.p.

CHAPTER 9 Programs and Units 155

The usks clause identifies all units required by the program. These include both units that
it uses directly and any other units that are used by those units.

In a host program, the usks clause (if any) immediately follows the program heading. In a
host unit, the uses clause (if any) immediately follows the reserved word INTERFACE.
Only one usks clause may appear in any host program or unit: it declares all units vsed by
the host program or unit.

See below for the case where a host uses a unit that uses another unit.

It may be necessary to search a particular file for a unit. You can use the $u Compiler
command to specify this file, as described in Chapter 13.

Assume that the example unit is named simple. The following is a short program that uses
Simple. It also uses another unit named other, which is in file Appl:Other.

PROGRAM CallSimple;
USES {$U APPL:SIMPLE} {file to search for units}

Simple, {use unit Simple}
{$U APPL:OTHER} {file to search for units}
Other; {use unit Other}
VAR i: integer;
n: Num;
BEGIN
i := FirstValue; {FirstValue is from Simple.}
write('i+l is ', Addl(i)); {Addl is defined in Simple.)}
write(xyz(i)); {xyz is defined in Other.)}
New (n) ;
n.Init;
n.Bump;
write(n.val)
END.

Units that use other units

As explained above, the USES clause in the host program or unit must name all units that
are required. Here “required” means that the host directly references something in the
interface of the unit. Consider the unit references in Figure 9-1.

156 MPW 3.0 Pascal Reference

s Figure 91 Example of simple unit reference

unitA

interface

implementation unitC

uses unitC. \
host program uses interface

unitA. unitB.

unitB
implementation

interface

implementation

The host program directly references the interfaces of unita and unitB; the USES clause
names both of these units. The implementation part of unita also references the
interface of unitc, but it is not necessary to nrame unitc in the host program’s

USES clause.

In some cases, the USES clause must also name a unit that is not directly referred to by the
host. Figure 9-2 is exactly like Figure 9-1 except that this time the interface of unita
references the interface of unitc, and unitc must be named in the host program’s USES
clause. Note that unitc must be named before unita.

CHAPTER 9 Programs and Units

157

= Figure9-2 Example of nested unit references

inteir2e
uses unitC. e s

unitC

implementation

host program uses interf
unitC. unitA. unitB. ot

implementation

interface

implementation

In a case like this, the documentation for unita should state that unitc must be named
in the uses clause before unita.

Automatic symbol table loading

The Pascal Compiler automatically builds a precompiled version of the symbol table for
each unit and puts it into the resource fork of the file containing the unit. On subsequent
compilations, the Compiler loads this resource instead of compiling the unit. The
Compiler does not use the resource if the modification date of the file is later than the
date stored when the resource was created or if the values of the compile time options (or
compile time variables) that were in effect when the resource was created have changed
so as to invalidate the resource. The -noload, -clean, and -rebuild options
respectively instruct the Compiler not to create any symbol table resources, to erase all of
them, and to rebuild all of them. For more on these options, see Chapter 13 of this manual.

& Note: If you have units that can't be written to (for instance, on a file server), the $k
directive (or the -k option) can be used to store the symbol resources in a writable
directory that you specify. For details on the $k directive, see Chapter 13.

158 MPW 3.0 Pascal Reference

Chapter 10 Files and I/0

THIS CHAPTER DESCRIBES THE USE OF PASCAL FILES, including the declaration of files
in a program. It also includes detailed information on each of the predefined
procedures and functions for performing input and output, or I/O. =

Contents

Input/Output routines 161
Pascal files 162
External files 162
File variables 162
Structured files 162
Text files 163
Untyped files 163
Predeclared file variables 164
The file window variable 165
Opening a file 165
Closinga file 166
Sequential versus random access 166
Routines for all files 167
The Reset procedure 167
The Rewrite procedure 168
The Open procedure 168
The Close procedure 169
The Eof function 169
The IOResult procedure 170
The ErrtNo variable 170
The Seek procedure 173
The PLFilepos function 174
The PLCrunch procedure 174
The PLPurge procedure 174
The PLRename procedure 174

159

Record-oriented routines 174
The Get procedure 175
The Put procedure 175
The Read procedure with a structured file 175
The Write procedure with a structured file 176
Texi-ouienice woutings 178
The Read procedure 177
Read with a char variable 178
Read with an integer variable 178
Read with a real variable 178
Read with a string variable 179
The Readln procedure 180
The Write procedure 181
Write with a char value 182
Write with an integer value 182
Write with a value of type real 183
Write with a string value 184
Write with a packed array of char 184
Write with a boolean value 185
The Writeln procedure 185
The Eoln function 185
The Page procedure 185
The PLSetVBuf procedure 185
The PLFlush procedure 186
The Get and Put procedures with text files 186
Routines for untyped files 187
The Blockread function 187
The Blockwrite function 188 .
The Byteread and Bytewrite functions 189

160 MPW 3.0 Pascal Reference

-

Input/Output routines

MPW Pascal offers you three distinct ways to accomplish input and output in your

program:

s by calling the /G rrsines in the Maciniosi koM

» by using the I/O procedures and functions that are built into the Pascal Compiler and
the library PasLib.o

» by using the I/O procedures in the Integrated Environment library (described in the
Macintosh Programmer's Workshop 3.0 Reference)

In general, the Macintosh ROM routines provide the most direct way to access the
Macintosh screen, keyboard, and mouse. The Pascal built-in routines provide the easiest
way to access the contents of files and perform I/O operations with external devices. The
Integrated Environment routines are used only by programs that are going to run under the
MPW Shell and use its /O facilities. '

Most of what you need to know about accessing the Macintosh Operating System and
Toolbox routines is contained in Inside Macintosh. Consult the following parts for further
information:

» The File Manager chapter tells you how to handle disk files with ROM routines.
= The Event Manager chapter gives you information on how events are handled and on

how to use the Event Manager routines to get information from character devices such
as the keyboard.

» The QuickDraw chapter contains details of how to provide text output to the screen.
s The Printing Manager chapter discusses printing routines.

The interface files that access the Macintosh ROM routines from MPW:#Pascal are listed in
Appendix E.

The rest of this chapter discusses the /O routines that come with MPW Pascal. Some of
them are built into the Compiler itself; others are included in PasLib. The PasLib
procedures and functions have names beginning with L. Any time you use one of them
you must include the statement USES PasLibInt £ in your program or unit. You must
also link your program or unit to the library file PasLib.o.

This chapter uses a modified BNF notation instead of syntax diagrams to show the syntax
of actual parameter lists for standard procedures and functions. The notation is explained
in the Preface.

CHAPTER 10 Files and I/O

161

Pascal files

A Pascal file variable is a structured variable. A file variable resembles an array, in that it
consists of a sequence of distinct variable components all of the same type. However, the
painuer of components is incenninat, and they are not accessed by indexing Lut by
using the predefined /O procedures and functions.

External files

File variables are used to store data outside of memory, in an external file. An external

file is either a peripheral device or a named disk file. In order for a program to read or

write information using an external file, a file variable must be declared and then
“associated with the external file.

File variables

The most important feature of a file variable is that its components are not generally in
memory, but you can access them as though they were. The components exist outside the
program as the contents of an external file.

A file variable is declared along with other variables, using a file type. There are three basic
Pascal file types:

s structured files
s text files
= untyped files

The syntax for writing file types is given under “Structured Types” in Chapter 6.

Structured files
A structured file is made up of components called logical records. These components

may be of any type that is not a file type (or a structured type that contains a file type
component at any level of structuring). They do not need to be of type RECORD.

162 MPW 3.0 Pascal Reference

For example, the declarations

. VAR

IntVals: FILE OF integer;
RealvVals: FILE OF real;
CompVals: FILE OF RECORD
' I: integer;
R: real
END;

create three file variables:
» IntVals is a file variable whose logical records are integer values.
m RealvVals is a file variable whose logical records are real values.

s CompVals is a file variable whose logical records are of RECORD type, with an
integer value and a real value in each record.

Text files

The Pascal predefined file type text can be used to store any type of data, as long as it is
in character format. For example, this declaration creates a file variable of type text:

VAR NameFile: text;

This type of file is most efficient in handling lines of text. It transfers data in blocks
between the external device and a buffer, from which your program can access the data
efficiently one line or one character or value at a time.

& Note: There are many cases where this isn't the most efficient way to perform I/O. For
example, if you want to store floating-point values in a file, using a file of type text
would require converting each value to its equivalent in ASCII characters before it is
stored in the file. Each time a value is read from the file, it would have to be converted
back to its binary representation.

Untyped files

To declare a file variable as untyped use the type identifier F1LE alone. For example,

VAR BlockFile: FILE;

Pascal transfers data in and out of such a file without interpreting its internal structure. An
untyped file has no file window variable, and it can be used only with the routines Reset,
Rewrite, Close, Eof, Blockread, Blockwrite, Byteread, and Bytewrite.
Operations on untyped files are described at the end of this chapter.

CHAPTER 10 Files and I/O

163

Predeclared file variables

MPW Pascal sees all peripheral devices, such as the keyboard and the Macintosh screen, as
external files. It predeclares two corresponding file variables of type text, called input
and output. Unless specifically redirected, input comes from the MPW Shell's standard

: e] . . ~ TAT Ch A st e el
I, "and or om 302010 the YT Shelle wlndr o) antput.

& Note: The MPW Shell’s diagnostic output file is available when you use the Integrated
Environment tools described in the Macintosh Programmer's Workshop 3.0 Reference.

At the start of each program execution, the files input and output are automatically
opened for use without being declared. Procedures and functions that can be used with
files of type text can use them, directly (receiving them as parameters) or indirectly (as
the default when the file variable parameter is omitted), without declaring them first. The
program should not try to close these files.

& Note: The ANSI Standard specifies that input and output must appear in the
program heading if they are used. Many versions of Pascal rely on this. If you are
writing code that may be transported to other versions of Pascal, include input and
output in your program heading.

If input is used within the program, the standard input file is opened automatically
as a read-only file (as though a Reset were performed for it) when program
execution begins.

If output is used within the program, the standard output file is opened automatically as
a write-only file (as though a Rewrite were performed for it) when program execution
begins.

Several of the predefined procedures and functions for use with files of type text,
described later in this chapter, need not have a file variable explicitly given as a
parameter. In these cases, input and output will be assumed by default, depending on
whether the procedure or function is input-oriented or output-oriented.

164 MPW 3.0 Pascal Reference

The file window variable

Although a typed file variable may have any number of logical records, only one is
accessible at any one time. Each logical record has a number that is its position in the file
relative to the first record in the file, which is record number 0. The position of the current
record in the fiie is calwed e current fiie position. Program access to the current record
uses a special variable associated with the file, called a file window variable. The file
window variable is discussed in Chapter 5.

At any time, there is only one logical record of a file that may be accessed directly through
the file window variable. Whenever a file is opened, using any of the procedures described
in this chapter, the current file position is set to record 0—the beginning of the file.

The file window variable cannot be used with untyped files.

& Note: Under certain conditions, such as when the current file position is at the end of
the file, the value of the file variable £ is said to be undefined. It is an error to attempt
to use the value of the file window variable £~ when the value of £ is undefined.
However, assignment to £~ s still possible if the file may be written to.

Opening a file

Before you can use a file variable, it must be opened. Three procedures are provided for
opening existing files and creating and opening new files—Reset, Rewrite, and Open.
Each of these procedures is explained in detail later in this chapter.

A new file may be created and opened

» by using Rewrite, which creates a new file for write-only, sequential access

s by using open, which creates a new file for read/write, sequential, or random access

An existing file may be opened
» by using Reset, which opens the existing file for sequential, read-only access

» by using open, which opens the existing file for read/write, sequential, or
random access

s Dby using Rewrite, which opens the existing file for sequential, write-only access

Each of these procedures sets the current file position to zero. You can also use the
Reset and Rewrite procedures to set the current file position of an already-open file to
zero. These rules are summarized in Table 10-1.

CHAPTER 10 Filesand I/O

165

s Table10-1 File-opening options

Procedure File kind Effect

Reset new An efror occurs

Resel existing QOraaoe . =ristiac fle for read-on'y with <emential
4CCESE

Open new Creates a new file for read/write with random access

Open existing Opens an existing file for read/write with random access

Rewrite new Creates a new file for write-only with sequential access

Rewrite existing Opens an existing file for read/write with sequential

access; previous contents erased

Closing a file

If you want to associate a file variable with a different external file, you must first close
the open file, using the c1ose procedure. This procedure is described in the section
“Routines for All Files.”

Sequential versus random access

Files may be accessed sequentially or randomly. When a file is opened and accessed
sequentially, the first logical record is read or written and then the current file position
moves to the numerically next logical record in the file.

Alternatively, files opened with open can be accessed randomly with the seek procedure.
The seek procedure takes a parameter whose value is a number referring to the sequence
of logical records. By using the seek procedure, you can jump from one record to
another, in any order, or access a specific byte position in a text file or untyped file.

The function PLFilepos may be applied to any file variable; it returns the record number
of the current file position. This function is described in detail later in this chapter.

& Note: The terms random file and sequential file are commonly used but misleading.
Random and sequential are two methods for accessing files—not two kinds of files.
Any file can be accessed randomly or sequentially, or both ways. The predefined
procedures that support random access are generally used with nontext files, but are
not restricted to them.

166 MPW 3.0 Pascal Reference

Routines for all files

The procedures and functions described in this section can be applied to files of all kinds,
both typed and untyped.

& Note: Routines whose identifiers begin with p1 (such as PLCrunch) are defined in the
interface file PasLibIntf.p; their code is in the PasLib library.

The Reset procedure

The Reset procedure opens an existing file for sequential read-only.access or “rewinds”
an open file so that its window variable contains the first logical record.

Reset (f [, filename))

The parameter fis a variable reference that refers to a file variable. The parameter filename
is an optional expression with a string value. If filename is given, the file must not already
be open. If filename is not given, the file must be open.

The value of filename, if used, must be a valid Macintosh file pathname, window name,
pseudodevice name, or selection specifier.

The statement Reset (f), when the file specified by fis already open, causes the file to
be “rewound.” The file must have been originally opened with open or Reset. If the file
was opened with open, it now becomes read-only.

Notice that Reset preserves the contents of an existing file, unlike Rewrite, which
erases the current contents of any file on which it is used. :

An error occurs and IOResult retums a nonzero value if there is no existing external file
with the name specified by filename.

The following conditions always hold after reset (f[, filename]) is executed:

s Eof (f) is true if the file is empty. Otherwise, Eof (f) is £alse.

-u The current file position is the first logical record of the file (logical record number 0), -
and the file window variable f~ contains the value of that logical record unless
Eof (f) is true, in which case the value of f~ is undefined.

CHAPTER 10 Files and I/O

167

The Rewrite procedure

The Rewrite procedure creates and opens a new, empty file for write-only access or
“rewinds” and erases an open file.

: > - ¥ 3 . e .
Rewrite{ {. j‘lf&;&.’r.‘mg;

The parameter fis a file variable. If filename is given, the file cannot already be open; if it
is, an error occurs. The parameter filename is an optional expression with a string value.
The string must be a valid Macintosh pathname, window name, pseudodevice name, or
selection specifier.

_® Note: Rewrite (f) (with no filename specified), when fis not yet open, is not
implemented. It is reserved for a future extension of MPW Pascal.

Rewrite (f), when the file specified by fis already open causes the file to be “rewound”;
that is, the current file position is reset to the beginning of the file, and any prior contents
of the file are deleted. The file must have been opened with open or Rewrite. If the file
was originally opened with open, it now becomes write-only. Reset followed by
Rewrite C3uses an error.

Rewrite (f, filename) creates a new external file with the name filename and associates
the file variable fwith this external file. If an external file with the name filename already
exists, it is truncated (that is, the resource fork stays the same although the data fork is
deleted).

The following conditions always hold after Rewrite (f[, filename]) is executed:

m Eof (f) is true, either because the file is new or because the contents have just been
erased.

= The current file position is logical record 0; that is, the first logical record written to
the file will become the first logical record of the file. The value of f~ is undefined,
and remains undefined until something is written to the file.

The Open procedure
The open procedure opens an existing file or creates and opens a new file for random,

read/write access, setting the file window variable to the first logical record. An existing
file is not truncated.

open (f, filename)

168 MPW 3.0 Pascal Reference

The parameter fis a variable reference that refers to a file variable. The file may not
already be open. The parameter filename is an expression with a string value, which must
be a valid Macintosh file pathname, window name, pseudodevice name, or selection
specifier.

The statement open (f, filename) opens an existing external file with the nvme filerame
and associates the file variable speciiied by fwith this exteinal file. If av exierna: [with
the name filename does not already exist, a new empty file is created. The file is opened
for both reading and writing.

The following conditions always hold after open (f, filename) is executed:

n Eof (f) is true if the file is empty; otherwise, Eof (f) is false.

» The current file position is logical record 0, and the file window variable f~ contains
the value of that logical record, unless Eof (f) is t rue.

The Close procedure

The close procedure closes an open file. It ends the association between the file variable
and the external file, if one exists.

Close (f)
The parameter f is a variable reference that refers to a file-variable, which must be open.

The statement Close (f) closes f That is, the association between fand its external file
is broken, and the file system marks the external file closed. All subsequent references to f
are invalid (except to open it again). In particular, the value of f~ becomes undefined.

If a file has not been closed during program execution, it is closed automatically when the
program terminates.

Note: Files that have local scope in a procedure or function block are not am0inatically
closed when the procedure or function is exited.

The Eof function

The Eof function returns a boolean value that indicates whether or not the current file
position is the end of the file.

Eof [(f)]

CHAPTER 10 Filesand /O

169

The parameter fis a variable reference that refers to a file variable. If fis omitted, the
function is applied to the predefined file input. The file must be open, or an error
occurs.
The Eo£ function returns t rue in these cases:
U the file position is bevord the Jaet looinaf rer 0. of the fle
s if the file contains no logical records
s aftera Get procedure, if the current file position is the last logical record of the file
s aftera put procedure, if the logical record written by the put is now the last logical
record

In all other cases, Eo £ returns false.

The IOResult procedure
IOResult

The ToResult routine returns an integer value that indicates the result of the most

recently perfomed I/O operation. If T0Result returns zero, it means that the last I/O
operation was successful. Any nonzero result indicates that the last /O operation was

unsuccessful. ‘

Because files of type text are buffered, 1orResult does not indicate the result of
writing to one until the buffer contents are transferred to the external file. A buffer
transfer occurs whenever the buffer is full or when there is a call to PLF1ush or Close.

If the ToResult code is negative, the number indicates a Toolbox error. The equivalent
Macintosh ROM error-return values set in MacOSErr are documented in Chapter 4 and in
the System Error Handler chapter of Inside Macintosh.

If the TorResult code is positive, it is an error that has been detected by the Language
Library without going to the Toolbox.

R

The ErrNo variable

The following list documents the values for the variable £xrNo. This is a complete list; not
all of the ErrNos appear in Pascal.

1 EPERM No permission match
This error occurs after an attempt to modify a file in some way forbidden except to
its creator.

170 MPW 3.0 Pascal Reference

3

2 ENOENT No such file or directory
This error occurs when a file whose filename is specified does not exist or when one of
the directories in a pathname does not exist.

3 ENORSRC Resource not found
A required resource was not found. This error applies to faccess calls that return tab,
font, or print record information.

4 EINTR System service interrupted
A requested system call cannot be completed. This error may occur if a request to
rename a file is unsuccessful.

5 EIO Y0 error
Some physical I/O error has occurred. This error may in some cases be signaled on a call
following the one to which it actually applies.

6 ENXIO No such device or address
I/O on a special file refers to a subdevice that does not exist, or the I/O is beyond the
limits of the device. This error may also occur when, for example, no disk is present in
a drive.

7 E2BIG Insufficient space for return argument
The data to be returned is too large for the space allocated to receive it.

9 EBADF Bad file number 4
Either a file descriptor does not refer to an open file, or a read (or write) request is
made to a file that is open only for writing (or reading).

12 ENOMEM Not enough space
The system ran out of memory while the library call was executing,
13 EACCES Permission densed
An attempt was made to access a file in a way forbidden by the protection system.

14 eravrr lllegal filename
A filename or volume name was too long or otherwise illegal.

15 ENOTBLK Block device required
This error occurs if a non-block file is used when a block device is required.

16 EBUSY Device or resource busy

An attempt was made to mount a volume that was already mounted, or to delete a
locked file.

17 EEXIST File exists
An existing file was mentioned in an inappropriate context.

18 EXDEV Cross-device link
This error occurs after a link to a file on another device is attempted.

CHAPTER 10 Filesand I/O

17

19 ENODEV No such device
An attempt was made to apply an inappropriate system call to a device; for example,
read a write-only device.

20 ENOTDIR Not a directory
An object that is not 3 directory was sparifie~ where ¢ dirertor 7 ig required, for
example, in a path prefix.

21 EISDIR Isadirectory
An attempt was made to write on a directory.

22 EINVAL Invalid parameter
Some invalid parameter was provided to a library function.

23 ENFILE File table overflow
- The system'’s table of open files is full, so temporarily a call to open cannot be

accepted.

24 EMFILE Too many open files
The system cannot allocate memory to record another open file.

25 ENOTTY Not a typewriter
This error occurs if the specified file isn’t a character file.

26 ETXTBSY Text file busy
An attempt was made to open a file that was already open for writing.

27 EFBIG File too large
This error occurs if the size of a file was larger than the maximum file size.

28 ENOSPC No space left on device
During a write to a file, there is no free space left on the device.

29 EspPIPE lllegal seck
An 1seek was issued incorrectly.

30 EROFS Read-only file system
An attempt to modify a file or directory was made on a device mounted for read-only
access.

31 eMLINK Too many links
An attempt to delete an open file was made.

33 EDOM Math arg out of domain of func
This error occurs if the argument of a math function is outside the domain of the
function.

34 ERANGE Math result not representable
This error occurs when the value of a math function can't be represented within
machine precision.

172 MPW 3.0 Pascal Reference

& Note: Beware of trying to access the value of 10Result with an I/O operation,
such as

Reset (f, 'myfile’) ;

Writeln('IOResult = ', IOResult):;

In this example, the valve of TCR=sv1t is set by the writeln call, not by the rReset
call.

A Warning Some I/O operations may set Ioresult due to an unseen /O call.
For example, using Rewri te to create a new file will return an
IOResult Eof (-39), even though the file was rewritten correctly. a

The Seek procedure

Seek (f, M)

The seek procedure allows you to access any logical record in a file. It does two
things:

w It sets the current file position to logical record .

= It reads the new current logical record into the file window variable.

The parameter fis a file variable.

The parameter n is an expression with a Longint value that specifies a logical record
number in the file. Logical records are numbered from zero. With untyped files or files of
the type text, n is the byte position from the beginning of the file.

For example,

Seek (Names, 18)

N

causes the file window variable associated with file Name s to point to the nineteenth
record of the file.

The value of f~ becomes the value of that logical record unless n is greater than the
number of the last logical record of the file, in which case Eo£ (f) becomes true,
IOResult is sett0 eofErr (-39), and the value of f~ becomes undefined. Thus,

Seek (f, maxlongint)always sets the current file position to the end of file. EofErr is
not a fatal error, so you can use it to verify that the current file position has actually been
moved to the end of the file.

CHAPTER 10 Files and I/O

173

The PLFilepos function
PLFilepos (f)

The PLFilepos function returns a value of type Longint that is the logical record
number of the current file position. With untyped files or files of tvpe text, it returns the

o

number of uytes from the beginning of the file to the currein fits pusiic .

The parameter fis a variable reference that refers to a file variable. The file must be open.

The PLCrunch procedure
PLCrunch (f)

The PLCrunch procedure takes an open file as an argument. It truncates the file at the
current position.

The PLPurge procedure
PLPurge (f)

The PLPurge procedure deletes the file named by f. An error occurs if the file is open.

The PLRename procedure
PLRename (0ldname, newname)
The PLRename procedure allows you to rename any file.

Oldname and newname are strings. Oldname is the Macintosh pathname of an existing
file, which may be open; newname is a new Macintosh pathname. If a file named
newname already exists, an error occurs and the value of T0rResult is set to nonzero.

Record-oriented routines

The procedures described in this section are used to access the logical records of a file
randomly. Most can be used only with structured files. Get and Put can be used with
textfiles. See the section “Using Get and Put with Textfiles” below for details.

174 MPW 3.0 Pascal Reference

The Get procedure

Get (f)

The Get procedure does two things:

» It advances the current file position to the next component.

s [t reads the new current logical record into the file window variable.

The parameter fis a variable reference that refers to a file variable. The file must be open;
if it is not, an EITor OCCurs.

If a Get procedure is performed when no next logical record exists, Eof (fy becomes
t rue and the value of f~ becomes undefined.

The Put procedure
Put (f)
The pPut procedure does two things:

s It writes the file window variable into the file at the current file position.
s It advances the file position to the next logical record.

The parameter fis a variable reference that refers to a file variable. The file must be open,
and the value of f~ must not be undefined.

The statement Put (f) writes the value of f~ to the external file at the current file
position and advances the current file position to the next logical record. If Eof (f) is
true, Put (f) appends the value of f~ to the end of the file fand Eo£ (f) remains t rue.

The Read procedure with a structured file

The Read procedure is usually used with files of type text, as descibed below under
“Text-Oriented Routines.” When used with a structured file, it reads one or more logical
records into one or more variables, starting at the current file position and advancing the
current position pointer. ‘

Read([f,1 9 [, Uy, +.., U,))

The optional parameter fis the variable of an open structured file. Each parameter ,
must be a variable of a type that is assignment-compatible with the logical records of f.

For example, if Newvals is a file of type FILE OF real, then the procedure call

Read (NewVals, Subtotal, Total);

CHAPTER 10 Files and /O

175

requires that Subtotal and Total be variables of types to which a value of the type
real can be assigned. If Newvals is a variable of type integer, for instance, a
Compiler error occurs. For the rules that determine possible types in this context, see
“Assignment-Compatible Types” in Chapter 4.

The Write procedure with a structured file

The write procedure is usually used with files of type text, as described below under
“Text-Oriented Routines.” When used with a structured file, it writes the value of one or
more variables into one or more logical records of the file, starting at the current file
position and advancing the current position pointer.

Write([f,]Pl ['Pzr---an])

The optional parameter f is the variable of an open structured file. Each parameter p,
must be a variable of the type that is assignment-compatible with the logical records of f.

For example, if Newvals is a file of type FILE OF real, then the procedure call

Write (NewVals, SubTotal, Total);

requires that SubTotal and Total be variables of types that can be assigned to a value
of the type real (thatis, real or integer). If Newvals is a variable of type
extended, for instance, a Compiler error occurs. For the rules that determine possible
types in this context, see “Assignment-Compatible Types” in Chapter 4.

Text-oriented routines

This section describes input and output routines designed to be used with file variables of
type text. Text files are distinguished from other kinds of files (for example, FILE oF
char) by the special significance given to the end-of-line character. This character allows
a file of type text to be treated as a sequence of lines, rather than a sequence of
individual characters. All the text-oriented routines may also be used to read data from
the keyboard. An entire line may be read from the file into a string type variable using the
Readln procedure, and an entire line may be written to the file by using the writeln
procedure. You can test for the end-of-line character by using the Eoln function
described later in this chapter.

176 MPW 3.0 Pascal Reference

& Note: When the value of the logical record at the current file position of a file is an
end-of-line character, the Read and Read1n procedures read it as a space character
(ASCII 32).

The read and write procedures can be applied to any typed file. If used with nontext
stiuctured files, they peiform as discussed above under “Record-Oriented Routines.”
However, the procedures Readln and Writeln depend upon the presence of the Eoln
character, which appears only in files of type text.

& Note: None of the predefined procedures and functions in this section need an explicit
file variable parameter. If no file is named, one of the predefined files, input or
output, will be assumed by default, depending on whether the procedure or function
is input-oriented or output-oriented. Remember that input and output are
predeclared as files of type text.

The Read procedure
Read([fi1 0 [, ¥, ..., U,])
The rRead procedure reads one or more valees from a text file into one or more variables.

If fis given, it must be a variable reference that refers to a file variable of type text. The
file must be open. If fis omitted, it is assumed to be the predefined text file input.
-Each v, is a variable reference that refers to a variable of one of the following types:

s char ora subrange of type char

8 integer, longint,0ra submnge of integer Of longint

s one of the real types

= ascalar type (including boolean) or a subrénge of a scalar type

= a string type
= 2 PACKED ARRAY OF char

Read with an array element follows the rules for the element’s type. The other
possibilities are discussed below.

CHAPTER 10 Filesand /O

177

Read with a char variable

A Read performed with a char type variable is considered equivalent to this compound
statement:

BEGIN
v = fIi~;
Get (f££f)
END

In this example, v is a variable of type char and ££ is a FILE OF char. Remember that
if the current file position is at an end-of-line character, ££~ contains a space character.

Read with an integer variable

A Read procedure performed with an integer or integer subrange variable reads a
sequence of characters that form a signed, whole number in the range of type integer or
type Longint. If the sequence of characters is a valid representation of an integer, the
integer value is assigned to the variable. Otherwise, an efror occurs.

When an integer is being read, the sequence of characters, spaces, tabs, and end-of-line
characters preceding the first digit or the sign is skipped. Reading ceases as soon as a
character is reached that (together with the characters already read) does not form part of
a signed whole number; or when Eof (f) becomes t rue.

If a signed whole number is not found after skipping any preceding spaces, tabs, and end-
of-line characters, an errors occurs and IOResult retums a value of -1025.

The following conditions are true immediately after a Read from a text file with an
integer variable:

» The current file position is the character following the last character in the numeric
string, unless the last character in the string was the last character in the file.

s Eof (f) will retun true if the last character in the numeric string was the last
character in the file.

s Eoln(f) will return t rue if the last character in the numeric string was the last
character on the line.

Read with a real variable

A rRead performed on a text file with a variable of one of the real types reads a sequence
of characters that forms a signed number. If the sequence of characters is a valid
representation of a value of a real type, the value is assigned to the variable. Otherwise, an
€r1or occurs.

178 MPW 3.0 Pascal Reference

When a value of type real is being read, any sequence of blanks and tabs preceding the
first digit or the sign is skipped. Reading ceases as soon as a character is reached that
(together with the characters already read) does not form part of a signed number, or
when Eof (f) becomes t rue.

If a signed real number is not found after skipping any preceding spaces and tabs, NaN is
returned and the Invalid exception, described in Appendix G, is signaled.

& Note: In addition to standard Pascal syntax, MPW Pascal regards, for example, inf,
NaN, NaN (0), NaN(),NaN(39), .369, .369312,1. ,and1.e9 allasvalidand
real numbers.

Immediately after 2 Read from a text file with a variable of the real type, the following
conditions are true:

s The current file position is the character following the last character in the numeric
string, unless the last character in the string was the last character in the file.

» Eof (f) will return t rue if the last character in the numeric string was the last
character in the file.

s Eoln (f) will return t rue if the last character in the numeric string was the last
character on the line. '

Read with a string variable

A rRead performed with a string variable reads a sequence of characters up to, but not
including, the next end-of-line character, or until the end of the file. The resulting character
string is assigned to the variable. It is an error if the number of characters read exceeds the
size attribute of the variable.

& Note: With a string variable, Read does not skip to the next line after reading; an end-
of-line character is left in the file buffer. For this reason, you cannot use successive
Read calls to read a sequence of strings; after the first Read, each subsequent Read
will access the end of line (instead of a character) and will read a zero-length string.
Instead, you must use Readln to read string values; Read1n skips to the beginning of
the next line after each input.

CHAPTER 10 Filesand /O

179

The following conditions are true immediately after a Read from a text file with a

string variable:

s The current file position is the character following the last character in the string,
unless the last character in the string was the last character in the file.

e Eof (f) will return t rue if the last character in the string was the last character in the
tile.

s Eoln (/) will retum t rue unless Eof (f) is true, in which case Eoln (f) is
undefined.

The Readln procedure
Readln((f,1 0 [, Uy, -, Uyl)

The Read1n procedure is an extension of Read. It reads a sequence of characters until
the next character is the end-of-line character. It then skips to the beginning of the next
line in the input file. Because Read1n depends on finding the end-of-line character, it can
be used only with files of type text.

The parameters allowed with Read1n are the same as those for Read. In addition, you
€an us€ Readln

= with no input variables

s with no parameters

If the first parameter does not specify a file or if no parameters are used, Readln reads
from the standard file input.

When Readln is used without input variables, it advances the current file position to the
beginning of the next line, if there is one. If there is no next line, it advances the current
file position to the end of the file.

The following conditions are true immediately after a Readln, regardless of the type of
any input variable used:
s Eof (f) will return true if the line read was the last line in the file.

s Eoln () will retum false unless the line following the line read is empty.

180 MPW 3.0 Pascal Reference

The Write procedure
write (Lf,) Dy UiDyr ooiDpl)

The write procedure writes one or more values to a text file. The parameter f(if given) is
a variable reference that refers to a file variable of type text. The file must be open. If f
is omitted, the procedure writes to the predefined file output.

Each p, parameter is a Write parameter. At least one write parameter must be present.
The value of each write parameter, p,, is given by an output expression, which may be of
type char, integer, real, STRING, PACKED ARRAY OF char, Of boolean.

Besides complex expressions, such output expressions also include single variables and
constants. The effects of using the write procedure with these different types are
discussed below.

Each write parameter has the form
OwtExp (: MinWidth [: DecPlaces 1]

where OutExp is an output expression. MinWidth and DecPlaces are optional expressions
with integer values. For example, in the statements

Write (NewVals, Total);
Write (NewVals, Total:8:4);

Total is the output expression. The value of the real type variable Total is to be written
to file Newvals. In the first case, the optional Min Width and DecPlaces specifications
are omitted. In the second case, MinWidth is eight and DecPlaces four. Total will be
written to a field eight spaces wide and with four characters to the right of the decimal
place.

MinWidth specifies the minimum field width. MinWidth must be greater than or equal to
zero. Exactly MinWidth characters are written (using leading spaces if necessary), except
when OutExpr has a value that must be represented in more than Min Width characters, in
which case the exact number o=f characters needed is written. MinWidth can be used
with an OutExp of any type that is valid in a write parameter.

DecPlaces specifies the number of decimal places to be used in the fixed-point
representation of a real value. It can be specified only if OutExpr has a real type value and
if MinWidth is also specified. If specified, it must be greater than zero. If DecPlaces is
not specified and the value is one of the real types, a floating-point representation is
written. Floating-point representation is discussed later in this chapter.

CHAP’I’ER 10 Filesand I/O

Write with a char value

Ifwrite is given a variable of type char and MinWidth is not specified, the character
value of OutExpr is written to the specified file. If MinWidth is included, exactly
MinWidth -1 spaces are written, followed by the character value of OutExpr. For example,

Write !Nanes, Initialj;
Write (Names, Initial:3):;

In the first example, the character that is the value of 1nitial is written to the file,
without leading spaces. In the second example, Initial is written, preceded by two -
spaces.

Write with an integer value

If OutExpr is of type integer, its decimal representation is written to the specified file
as if by this algorithm:

BEGIN _
FOR I := 1 TO MinwWidth - (length(OutDigits) + 1) DO
Write(ff, ' ');

IF QutExpr < 0 THEN
Write(f£, '-')

ELSE
Write(ff, ' ');
Write(f£f, OutDigits)
END;

The parameter £ £ represents the variable referenced by £ OutDigits is a string value that
contains the decimal representation of the absolute value of OutExpr, with no leading
zeros unless the value of QutExpr is zero, in which case outDigits contains the single
character “0”.

For example, if the decimal representation of the value of OutExpris 4545 and Minwidth
is given as eight, the FOR statement will write three space characters to a file. Because
outExpr is not less than zero, the IF clause will not execute ard the ELSE clause will
output one more space. Finally, the last write statement will output the decimal number
4545 to the file.

Here are some additional syntax rules for using write with an integer value:

s If MinWidth is used and its value is greater than the number of digits in the decimal
representation of the value to be written, leading spaces will be written to the left of
the number. The number of spaces depends upon the MinWidth specification.

u If the value of OutExpris less than zero, a minus sign (ASCII $2D) is written to the file,
denoting a negative value.

= If MinWidth is omitted, it is given a default value of eight.

182 MPW 3.0 Pascal Reference

Write with a value of type real

If OutExpr has a real value, its decimal representation is written to the specified file. This
representation depends upon the value of the parameter DecPlaces (if it is present).

If DecPlaces is present, a fixed-point representation is written. If DecPlaces is absent, a
floating-point representation is writien. These two cases are discussed separately below.

Fixed-point representation

Assume that IntDigits is a string value containing the decimal representation of this
expression:

Trunc (Abs (OutExpr))

IntDigits contains no leading zeros (unless the value of outExpr is zero, in which case
IntDigits contains the single character 0). This expression is the value for the portion
of outExpr to the left of the decimal point.

Now assume that FracDigits is a string value that contains the decimal representation
of this expression:
Round ((Abs (OutExpr) - Trunc (Abs (OutExpr))) * 1l(QDecPlaces)

with enough leading zeros to make Length (FracDigits) equalto DecPlaces.
Then the fixed-point representation is written to the file using this algorithm:

BEGIN
IF MinWidth >= length(IntDigits)+length(FracDigits)+2 THEN
Write(ff, ' ': MinWidth-TotalDigits-3);
IF OutExpr < 0 THEN Write(ff, '-')
ELSE
IF MinWidth >= length(IntDigits)+length(FracDigits) +2 THEN
Write(ff, ' ");
Write (££f, IntDigits, '.', FracDigits)
END;

If MinWidth is omitted from the write parameter, it is assumed to be ten.

Floating-point representation

The algorithm used to write a floating-point representation works in this way. The
expression Abs (OutExpr) can be represented in floating-point notation in this form:

mmn *10¢€

CHAPTER 10 Filesand /O

183

In this expression, m is always a digit from one to nine, unless the value of out Expr is
zero. Assume that IntDigit is a string value that contains the decimal representation of
m—a single digit. Assume that FracDigits is a string value that contains the first
Minwidth -9 digits of the decimal representation of # rounded, or with trailing blanks
retained and trailing zeros added if necessary. Assume that ExpDigits is a string value
that conizins the dscimal repisseniction of abe (=: vith ewcug: feaciug bleds i make
Length (ExpDigits) equal to four. Also assume that NegExp has the value t rue if

e <0 and otherwise is £alse. Given these assumptions, the following is the algorithm for
writing a floating-point representation:

BEGIN
IF OutExpr < 0 THEN Write(ff, '-') ELSE Write(ff, ' ');
Write(ff, IntDigit, '.', FracDigits, 'E');
IF NegExp THEN Write(ff, '-') ELSE Write(ff, '+');
Write(ff, ExpDigits)

END;

Write with a string value

The results of using write with a string variable depend upon the length attribute of the
string that appears as the OutExpr and whether or not MinWidth is specified.
Here are the rules:

s If MinWidth is specified and the length of the string is less than MinWidth, then the
string is written preceded by a number of spaces equal to MinWidth minus the length
of the string. '

s If MinWidth is specified and the length of the string is greater than MinWidth, then
the first MinWidth number of characters are written.

s If MinWidth is specified and the length of the string equals MinWidth, or if MinWidth
is not specified, the entire string value is written on the file.

For example, in the statement

Write (LastName: 8);

LastName is a string variable with a size of ten. If LastName holds a value that is either
nine or ten characters, only eight will be written t0 output.

Write with a packed array of char

If OwtExpris a PACKED ARRAY OF char, the effect is the same as writing a string whose
length is the number of logical records in the type.

184 MPW 3.0 Pascal Reference

!

Write with a boolean value

If the value of OutExpr is type boolean, the string ' TRUE' (with a leading space) or the
string *FALSE" is written to the file £ The default value of MinWidth is five. If MinWidth
is greater than five, leading spaces are added; if MinWidth is less than five, the character T
or F is written, padded with spaces as if a value of type STRING[1].

The Writeln procedure

writeln([f, 1'py [, Par « v v Dpl)

The writeln procedure is an extension of write. It perfforms the same actions and then
writes an end-of-line character to the output file.

The parameters are the same as those used with write, exceptthe write parameters
can be entirely omitted; without them, writeln writes an end-of-line character to the
output.

The Eoln function

Eoln([(f)]

The parameter fis a variable reference that refers to a file variable of type tex. The file
must be open. If fis omitted, the function is applied to the predefined file input.

Eoln returns true if the character at the current file position is an end-of-line character.
An error occurs if Eoln (f) is applied to a nontext file or if fis write-only. If Eof (f) is
true, Eoln () is undefined.

The Page procedure

Page((f)]

The page procedure sends a form feed character (ASCII i2) to the file designated by f If
the file parameter is omitted, the character is sent to the predefined file output.

The PLSetVBuf procedure
PLSetVBuf (f bufptr, style, bufsize)

The pLSetvBuf procedure allows you to specify your own buffer for use with files of
type text.

CHAPTER 10 Filesand I/O

185

The parameter fis a variable reference that refers to a file variable of type text. The
parameter bufptris a pointer to 2 PACKED ARRAY OF char to be used as a text /O
buffer. Bufsize is an integer that gives the size of the buffer in bytes. Styleis an
integer that determines how buffering is performed.

-

.

sy n B | S
_IOFBF I/O is file buffered

_IOLBF Output is line buffered; the buffer is flushed when full or at Eo1n

_IONBF I/O is unbuffered; bufbtrand bufsize are ignored

The system normally allocates a file’s buffer when the first read or write operation is
performed on it. To allocate your own buffer, call LSetvBuf after the file is opened but
before the first read or write operation. If the value of bufptris N1L, the system allocates
a buffer of size bufsize at the first read or write operation. Be sure to close the file before
deallocating its buffer.

The PLFlush procedure
PLFlush (f)

The PLFlush procedure causes the contents of the current output buffer associated with
the file fof type text to be written to the file.

The Get and Put procedures with text files

The Get and Put procedures can be used for character-at-a-time I/O. Get with a text file
differs from Get with a structured file only in that a character is not read until a program
reads the file window variable. This behavior of Get makes it possible to interact with
infromation entered from the keyboard.

A Important Don't mix Get and Put with Read and write. Currently they're not
compatible. a

18 MPW 3.0 Pascal Reference

Routines for untyped files

The following routines can be used only on untyped files—that is, variables of type FILE
with no specified logical record type. With BLockread and Blockwrite, an untyped
file is treated as a sequence of 512-byte blocks With Byteread and Bytewzite, itis
treated as a sequence of bytes. In both cases, the file bytes are not type-checked but are
considered as raw data. This can be useful for applications where the data need not be
interpreted at all during I/O operations.

The blocks in an untyped file are considered to be numbered sequentially starting with
logical record 0. The system keeps track of the current block number; it is block 0
immediately after the file is opened. Each time a block is read, the current block number
is incremented. By default, each /O operation begins at the current block number;
however, an arbitrary block number can be specified.

An untyped file has no file window variable, and it cannot be used with the Get or Put
procedure or with any of the text-oriented I/O procedures. It can only be used with
Reset, Rewrite, Open, Close, Seek, Eof, and the four functions described below.

To use untyped file 1/O, an untyped file is opened with open, Reset, Or Rewrite; the
Blockread, Blockwrite, Byteread, and Bytewrite functions may then be used for
input and output.

The Blockread function

Blockread(f, databuf, count [, blocknumj)

The Blockread function reads one or more 512-byte blocks of data from an untyped
file to a program variable and returns an integer representing the number of blocks read.
Its parameters are the following:

s The parameter fis a variable reference that refers to a variable of type FILE. The file
must be open.

» Databufis a variable reference that refers to the variable into which the blocks of data
will be read. The size and type of this variable are not checked; if it is not large enough
to hold the data, other data may be overwritten and the results are unpredictable.

» Countis an expression with an integer value. It specifies the maximum number of
blocks to be transferred. BLockread will read blocks until this limit is reached, the
end-of-file is reached, or an error occurs.

CHAPTER 10 FilesandI/O 187

» Blocknum is an optional expression with an integer value. It specifies the starting
block number for the transfer. If it is omitted, the transfer begins with the current
block. Thus the transfers are sequential if the blocknum parameter is never used; if a
blocknum parameter is used, it provides random access to blocks.

After the last block in the file has been read, the current block number is unspecified and
Eof (f) is trme. Otherwise, Eof (f) is false and the cuirent block number is advanced
to the block after the last block that was read. If Blockread reads fewer than blocknum
blocks, it returns the actual number of blocks read. If the end of the file occurs while the
last block is being read, the remainder of the block is filled with zero bytes. If Eo£ (f) is
true when Blockread is called, Blockread returns zero and IOResult retums a value
of eofErr(-39).

The Blockwrite function

Blockwrite(f databuf, count(, blocknum)

The Blockwrite function writes one or more 512-byte blocks of data from a buffer to
an untyped file and returns an integer representing the number of blocks written.

s The parameter fis a variable reference that refers to a variable of type F1LE. The file
must be open.

s« Databufis a variable reference that refers to the variable from which the blocks of
data will be written. The size and type of this variable are not checked.

» Countis an expression with an integer value. It specifies the maximum number of
blocks to be transferred. Blockwrite will write blocks up to this limit unless an error
occurs.

s Blocknum an optional expression with an integer value. It specifies the starting
block number for the transfer. If it is omitted, the transfer begins with the current
block. Thus the transfers are sequential if the blocknum parameter is never used; if a
blocknum parameter is used, it provides random access to-blocks.

If disk space runs out during data transfer, the current block number is unspecified. -
Blockwrite returns the actual number of blocks written and sets ToResult toa
nonzero value. Otherwise, the current block number is advanced to the block after the last
block that was written.

188 MPW 3.0 Pascal Reference

The Byteread and Bytewrite functions

Byteread (f; databuf, count [, blocknum])

Bytewrite (f databuf, count |, blocknum)

The Bytexread and Bytewr:te functions perform identically to Blockread and
Blockwrite, with four differences:

s They transfer bytes of data instead of blocks.

s The type of the parameters bytenum and count in the function resultis Longint
instead of integer.

n The value bytenum is the current byte position in the file. The first byte is numbered
zero.

s Byteread and Bytewrite return the number of bytes transferred.

& Note: Mixing block and byte untyped file functions can result in confusion unless their
blocknum and bytenum parameters are used to adjust the current file position. A
block function always transfers the next 512 bytes; after a byte function, this may no
longer conform to a natural block boundary.

CHAPTER 10 Filesandl/O 189

Chapter 11 Predefined Routines

THIS CHAPTER DESCRIBES ALL THE PREDEFINED (“BUILT-IN") PROCEDURES and
functions in MPW Pascal, except for the I/O procedures and functions described
in Chapter 10. The routines described in Appendix G are contained in the SANE
libraries, rather than being implemented by the MPW Pascal Compiler or the
PasLib library.

The Macintosh also has more than 500 ROM routines available, which are
described in Inside Macintosh. Those routines ease implementation of the
Macintosh user interface and provide program services.

Standard procedures and functions are predeclared. Predeclared entities act as if
they were declared in a block surrounding the program, so no conflict arises from
a declaration that redefines the same identifier within the program.

& Note: Predefined procedures and functions cannot be used as actual
parameters for procedures and functions.

This chapter uses a modified BNF notation instead of syntax diagrams to
indicate the syntax of actual parameter lists for standard procedures and
functions. The notation is explained in the Preface. =

Contents

Exit and halt procedures 195
The Exit procedure 195
The Halt procedure 195

Dynamic allocation procedures 195
The PLHeaplnit procedure 196
The PLSetHeapCheck procedure 197
The PLSetNonCont procedure 197
The PLSetMErrProc procedure 197
The PLSetHeapType procedure 197
The New procedure 198

191

The Dispose procedure 199

The Heapresult function 199

The Mark procedure 200

The Release procedure 200

The Memavail function 200
Transfer functions 201

The Trunc function 201

The Round function 201

The Ord4 function 201

The Pointer function 202
Arithmetic functions 202

The Odd function 203

The Abs function 203

The Sqr function 203

The Sin function 204

The Cos function 204

The Exp function 204

The Ln function 204

The Sqrt function 205

The Arctan function 205
Ordinal functions 205

The Ord function 205

The Chr function 206

The Succ function 206

The Pred function 206
String procedures and functions 207

The Length function 207

The Pos function 207

The Concat function 207

The Copy function 208

The Delete procedure 208

The Insert procedure 208
Byte-oriented procedures and functions 209

The Moveleft procedure 209

The Moveright procedure 210

The Sizeof function 210
Packed character array routines 210

192 MPW 3.0 Pascal Reference

The Scaneq function 211
The Scanne function 211
The Fillchar procedure 211
Logical bit functions and procedures 212
The BAND function 213
The BOR function 213
The BXOR function 213
The BNOT function 213
The BSL function 213
The BSR function 214
The BRotL function 214
The BRotR function 214
The BTst function 214
The HiWrd function 214
The LoWrd function 215
The BClr procedure 215
The BSet procedure 215

CHAPTER 11 Predefined Routines 193

e A -

1 N

Exit and halt procedures

Two procedures, Exit and Halt, let you terminate current program execution
unconditionally.

The Exit procedure

The Exit procedure exits immediately from a specified procedure or function or from
the main program.

Exit ({id | PROGRAM})

The parameter id is the identifier of a procedure or function, or of the main program, in
the scope of the Exit call. You can also use the reserved word PROGRAM to identify the
currently executing program.

The call Exit (#d) causes an immediate exit from id. Essentially, it causes a jump to the
end of id. The routine identified by id must be part of the current dynamic calling chain.

Exit (PROGRAM) sets the MPW {status} variable to zero.

The Halt procedure
Halt

Halt (with no parameters) causes an immediate exit from the main program and sets the
MPW {status} variable to one.

Dynamic allocation procedures

These procedures are used to manage the heap, a memory area within the application heap
zone. (See the Memory Manager chapter of Inside Macintosh for details of memory
allocation on the Macintosh.) The PLEEAPINIT procedure lets you specify the size of the
heap you wish to use with your program. The PLSetNonCont, PLSetMErrProc, and
PLSetHeapType procedures let you control the characteristics of the heap. The procedure
New is used for all allocation of heap space by the program. The Mark and Release
procedures are used together to deallocate all of a marked part of heap space. The
Dispose procedure is used to deallocate a single identified variable. The Heapresult
function is used to return the status of the preceding dynamic allocation operation.

CHAPTER 11 Predefined Routines

195

& Note: The routines whose names begin with PL are located in PasLibIntf.p.

Except when dealing with object types, the NewHand1e procedure in the Macintosh ROM
can also be used to allocate heap space. NewHandle returns handles (double indirect
pointers) rather than ordin=ry pointers. Th= Mamory Manager can tht maint=in heap
space for you, compacting he hieap whe uvecescary aud ollr - w3p inct «faien. 52 of
memory space. See Inside Macintosh for details of NewHand1e. When creating new
objects, always use the New procedure described here; it calls NewHandle with the
proper arguments. Objects are always relocatable.

Except when creating objects, the allocation procedures described here allocate
nonrelocatable blocks in the heap. The Memory Manager cannot move those blocks in
order to free larger contiguous blocks for later allocation. The New procedure has the
advantage that it lets you allocate heap space without having to specify its size.

The PLHeaplnit procedure

PLHeapInit (SizeHeap: longint; heapDelta: longint;
memerrProc: UNIV PascalPointer, allowNonCont:boolean, forDisposeboolean)

The PLHeapInit procedure initializes the heap, using information you supply to
determine the characteristics of the heap.

The sizeHeap parameter takes a Longint value that represents the size of the heap. MPW
Pascal’s built-in heap-initialization routine automatically allocates 5000 bytes of heap
space. Using PLHEAPINIT, you can specify a heap size other than 5000 bytes.

The heapDelta parameter specifies the size in bytes of additional space to be added to
the heap if allowNonCont is t rue. New allocations may not be adjacent to the existing
heap.

The memerrProc argument is a procedure pointer that enables you to specify a routine to
be executed if 2 memory error, such as heap overflow, occurs.

The allowNonCont parameter is a boolean value. If it is set to t rue, additional heap
space equal to the argument given to heapDelta will be allocated when the initial heap
space is exhausted. If it is set to false, PLHeapInit will ignore heapDelta, and no
aditional space is allocated.

The forDispose parameter is also 2 boolean value. The forDispose parameter must be set to
true if you want to use the Dispose procedure. Otherwise, an error occurs if you attempt
to call Dispose. The default setting is false.

PLHeapInit should be called by your main program.

196 MPW 3.0 Pascal Reference

R IS e .

s
. v g

The PLSetHeapCheck procedure
PLSetHeapCheck (Dolt: boolean)

Whenever heap space is allocated or deallocated, a consistency check is normally
performed on the heap. The procedure PLSet HeapCheck allows you to suspend this
checking process by setting the boolean patmieter Dolit¢ £alse. It remains
suspended until a subsequent PLSet HeapCheck procedure is made with Dolt t rue.

PLSetHeapCheck should be called by your main program.

The PLSetNonCont procedure

PLSetNonCont (allowNonCont: boolean)

The PLSetNonCont procedure lets you set the additional heap space flag without calling
PLHeapInit. The allowNonCont parametes is a boolean value. If it's set to t rue,
additional heap space will be allocated if the current heap is full and cannot be extended.

The PLSetMErrProc procedure

PLSetMErrProc (memerrProc: univ PascalPointer)

The PLSetMErrProc procedure allows you to specify a procedure to be executed in
case of a memory error. The parameter memerrProc points to the procedure.

The PLSetHeapType procedure
PLSetHeapType (forDispose: boolean)
The PLSetHeapType procedure lets you specify, without accessing PLHeapInit,

whether or not use of the Dispose procedure is to be allowed in your program. If the
boolean forDisposeis t rue, Dispose is allowed.

Note: Be careful if you change the heap type in the middle of the program. Pointers
allocated for one type of hedp are not compatible with pointers allocated for the
other type of heap.

CHAPTER 11 Pred_eﬁned Routines

197

The New procedure

New (p[,‘l, XY t,.D

The New procedure allocates a new dynamic variable and sets a pointer variable to point
to it.

The parameter p is a variable reference that refers to a variable of any pointer type. It may
also be an object type reference variable, in which case New creates a new object of that
type. The parameter p is a variable parameter; it can be a pointer variable or object type
reference variable of any type.

The optional parameters 4, ..., t,are constants, used only when allocating a variable of
record type with variants (see below).

If pis a pointer variable, New (p) allocates a new variable of the base type of p and makes
p point to it. The variable can be referenced as p~.

& Note: The New procedure is not the same as the NewPt r function described in Inside
Macintosh. When you call NewPt r, you give a size value and the result does not have a
type. The result of New always points to an identified variable of a specific type.

If p is an object type reference variable, space is allocated for an object of the variable’s
type and a handle (a double indirect pointer) is assigned to p. You do not, however, use
pointer symbols to reference values that are in fields of the new object. You reference
fields of objects as if they were fields of ordinary records. Successive calls do not
necessarily allocate contiguous areas. In general, objects can move when the heap is
compacted.

If the heap does not contain enough free space to allocate the new variable, p is set to
NIL and a subsequent call to the Heapresult function will return a nonzero result.

If the base type of p is a record type with variants, New (p) allocates enough space to
allow for the largest variant. The form

New(p, tl’ ey tﬂ)

allocates a variable with space for the variants specified by the tag values 4, ..., ¢,
(instead of enough space for the largest variants). The tag values must be constants; they
must be listed contiguously and in the order of their declaration. The tag values are not
assigned to the tag fields by this procedure. '

Trailing tag values can be omitted. The space allocated allows for the largest variants for
all tag values that are not specified.

198 MPW 3.0 Pascal Reference

A Warning When a record variable is dynamically allocated with explicit tag
values as shown above, you should not make assignments to any fields
of variants that are not selected by the tag values. You should also not
assign an entire record to this record. If you do either of these things,
other data can be overwritten without any error being detected at
compile time. s

The Dispose procedure
Dispose (p)
The pispose procedure deallocates an identified variable or an object.

The parameter p is a variable reference that refers to a variable of any pointer type or
object type reference variable. It is a variable parameter.

Dispose releases the space allocated to a dynamic variable or object. It is an error if p is
undefined or NIL. After Dispose executes, the value of p is undefined. All other
references to the identified variable or object that was reached through p are also
undefined.

¢ Note: You must use the PLHeapInit Of PLSetHeapType procedure, described
above, to set the allowDispose flag to t rue before you use the Dispose procedure.
In addition, the allowDispose flag must have been t rue at the time that p was
established by a call to New.

The Heapresult function

Heapresult

The Heapresult function retuns an integer representing the status of the most recent
dynamic allocation operation.

CHAPTER 11 Predefined Routines

19

The Heapresult function retums an integer code that reflects the status of the most
recent call on New, Mark, Release, Memavail, Of PLHeapInit. The codes are given
below:

Code Meaning _
0 Sucresst | pzizdoi

-1051 Illegal size request (larger than total heap space)

-1052 Invalid pointer

-1053 Insufficient room in heap

The Mark procedure
Mark (D)
The Mark procedure sets a pointer to a heap area.

The parameter p is a variable reference that refers to a variable of any pointer type. It is a
variable parameter.

Mark(p) causes the pointer p to point to the start of the current free area in the heap. The
pointer p is also placed on a stacklike list for subsequent use with the Release procedure
(see below).

The Release procedure
Release ()
The Release procedure deallocates all variables in a marked heap area.

The parameter p is a variable reference that refers to a pointer variable. It must be a
pointer that was previously set with the Mark procedure.

Release(p) deallocates all areas allocated since the pointer p was passed to the Mark
procedure.

The Memavail function

Memavail

The Memavail function retuns a Longint that gives the maximum possible amount of
available heap space. It has no parameters.

200 MPW 3.0 Pascal Reference

Memavail returns the maximum number of words (not bytes) of heap space that can
currently be made available to the New procedure (assuming that the Pascal heap is
allowed to grow in size). Note that the result of Memavail can change over time even if
the program does not allocate any heap space, because of other memory management
activities.

Transfer functions

Transfer functions transfer a value from an expression of one type to an expression of
another type. See "Real Types" in Chapter 4 for a discussion of real and extended values.

The Trunc function

Trunc (X)

The Trunc function converts an extended value to 2 Longint value. Its parameter x is an
expression with a value of type extended. Trunc (X) returns a longint result that is
the value of x rounded to the largest whole number between zero and x (inclusive).

The Round function

Round (X)

The Round function converts an extended value to a Longint value. Its parameter x is an
expression with a value of type extended. If x is exactly halfway between two whole
numbers, the result is the whole number with the greatest absolute magnitude.

The Ord4 function

Ord4 (X)

The ord4 function converts a scalar type or pointer type value to type Longint. Its
parameter x is an expression with a value of scalar type or pointer type. 0rd4 (x) returns
the value of x, converted to type longint.

If x is of type Longint, the result is the same as x.

If x is of pointer type, the result is the corresponding physical address of type longint.

CHAPTER 11 Predefined Routines

201

If x is of type integer, the result is the same numerical value represented by x but of
type Longint. This is useful in arithmetic expressions. For example, consider the
expression

abc*xyz

,.'.

where both ake and xyz are ol tyne i ntege = By the s lez pive. 70 - 7 e e
of this multiplication is of type integer (16 bits). If the mathexmucal product oi abc
and xyz cannot be represented in 16 bits, the result is the low-order 16 bits. To avoid this,
the expression can be written as

Ord4 (abce) *xyz

‘This expression causes 32-bit arithmetic to be used, and the result is a 32-bit 1ongint

value.

If x is of a scalar type other than integer Of longint, the numerical value of the result is
the ordinal number determined by mapping the values of the type onto consecutive
nonnegative integers starting at zero.

The Pointer function
Pointer (X)

The Pointer function converts an integer or longint value to pointer type. Its
parameter x is an expression with a value of type integer or Longint. Pointer (X)
returns a pointer value that corresponds to the physical address x. This pointer is of the
same type as NIL and is assignment compatible with any pointer type. The value of
Pointer(0) iS NIL.

Arithmetic functions

The MPW Pascal arithmetic functions that take parameters of real types reside in the
Macintosh ROM and/or the 68881. The Pascal Compiler generates the code necessary to
call them from Pascal source text. For information about the limits and accuracy of these
functions, consult the Apple Numerics Manual. For more information on the 68881
functions, consult Motorola's MC68881 Floating-Point Coprocessor User's Manual. In
general, any result returned by an arithmetic function is an approximation, although the
result of the abs function is exact.

202 MPW 3.0 Pascal Reference

Functions that do not have parameters of real types are implemented by code generated
by the Compiler.

In this section, a numeric value is defined as an expression involving constants and
variables of types extended, double, real, comp, longint, Of integer. Numeric
values are therefore of type extended, longint, Of integer.

When you set the -MCc68881 option, the Compiler generates direct calls to the 68881 for
several of the functions described below. See Appendix G for details.

The 0dd function
0dd (x)

The odd function tests whether a whole-number value is odd, returning a boolean value.
Its parameter x is an expression with a value of type integer 0f longint. 0dd (x)
returns true if x is odd; otherwise, it yields false.

The Abs function
Abs (X)

The abs function returns the absolute value of a numeric value. Its parameter x is a
numeric value. Abs (x) retumns the absolute value of x, with the same type.

The Sqr function
- Sqr(x)

The sqr function returns the square of a numeric value. Its parameter x is a numeric value.
Sqr (x) returns the square of x. .

If xis of a real type, the result is extended; if x is of type Longint, the result is
longint;and if xis of type integer, the result may be either integer Of longint.

If xis of real type and floating-point overflow occurs, the result is +in€£. (See
Appendix G and the Apple Numerics Manual for more information on infinities.)

CHAPTER 11 Predefined Routines

203

The Sin function
Sin (X)

The sin function returns an extended value that is the sine of a numeric value. Its
parameter x is a numeric value. This value is assumed to represent an angle in radians. If xis
infinite, 3 diagnostic N2 is produced anc the invalid operation signal is set (sae
Appendix G).

The Cos function
Cos (%) |

The cos function returns an extended value that is the cosine of a numeric value. Its
parameter x is a numeric value. This value is assumed to represent an angle in radians. If xis
infinite, a diagnostic NAN is produced and the invalid operation signal is set (see
Appendix G).

The Exp function
Exp (X)

The Exp function returns an extended value that is the natural exponential of a numeric
value. Its parameter x is a numeric value. All possible values are valid. Exp (%) returns the
value of e where e is the base of the natural logarithm. If floating-point overflow occurs,
the result is +oo,

The Ln function
Ln(X)

The vn function returns an extended value that is the natural logarithm of a numeric value.
Its parameter x is a numeric value.

If x is nonnegative, Ln (x) returns the natural logarithm (loge) of x. If x is negative, a
diagnostic NAN is produced and the invalid operation signal is set (see Appendix G).

204 MPW 3.0 Pascal Reference

The Sqrt function
Sqrt (X)

The sqrt function returns an extended value that is the square root of a numeric value. Its
parameter x is a numeric value.

If x is nonnegative, Sqrt (x) returns the positive square root of x. If x is negative, a
diagnostic NAN is produced and the invalid operation signal is set (see Appendix G).

The Arctan function
Arctan (X)

The Arctan function retumns an extended value that is the principal value, in radians, of
the arctangent of a numeric value. Its parameter x is a numeric value. All numeric values of
xare valid, including +eo.

Ordinal functions

The ordinal functions operate on the ordinal value of scalar and pointer types, as
explained in Chapter 4.

The Ord function
Ord (X)

The orxd function returns the ordinal number of a scalar type or pointer type value. Its
parameter x is an expression with a value of scalar type or pointer type.

If xis of type integer Or longint, the result is the same as x.
If x is of pointer type, the result is the corresponding physical address of type Longint.

If x is of another scalar type, the result is the ordinal number determined by mapping the
values of the type onto consecutive nonnegative whole numbers starting at zero.

For a parameter of type char, the result is the corresponding ASCII code. For a parameter
of type boolean,

Ord(false) returns zero
Ord(true) returns one

CHAPTER 11 Predefined Routines

205

The Chr function
Chr.(Xx)

The chr function returns the char value corresponding to a whole-number value. Its
parameter x is an expression with an integer Or longint value. Chr (x) retums the

ci.e v vaiue v ose OrCial pbalxs Ghe iy fis LSO el Yk 1T s o the tenge 20551
x is not in the range 0..255, the value returned is not within the range of the type char, and
any attempt to assign it to a variable of type char will cause an error.

For any char value ch, the following is true:

Chr(ord(ch)) = ch

The Succ function

Succ(X)

The succ function returns the successor of its parameter x, a value of a scalar type.
Succ (%) returns the successor of x if such a value exists according to the inherent
ordering of values in the type of x.

If x is the last value in the type of x, it has no successor. In this case, the value returned is
not within the range of the type of x, and any attempt to assign it to a variable of this
type will cause unspecified results.

The Pred function

Pred (X)

The pred function retumns the predecessor of its parameter x, a value of a scalar type.
Pred(x) returns the predecessor of x if such a value exists according to the inherent
ordering of values in the type of .

If x is the first value in the type of x, it has no predecessor. In this case, the value returned
is not within the range of the type of x, and any attempt to assign it to a variable of this
type will cause unspecified results.

206 MPW 3.0 Pascal Reference

String procedures and functions

The string procedures and functions do not accept PACKED ARRAY OF char
parameters, and they do not accept indexed string parameters.

K'e

The Length function
Length (SIn

The Length function returns an integer value that is the current length of its parameter
str, which must have a value of type STRING.

The Pos function
Pos (Substr, stn

The pos function searches for substr within strand returns an i nteger value that is the
index of the first character of substr within str. Both parameters must be of type STRING.

If substris not found, Pos returns zero.

The Concat function

Concat (Slry, Str,, (Sir3, ..., Sir,])

Concat concatenates all the parameters in the order in which they are written and returns
the concatenated string. Character constants and strings may be mixed. Each parameter is
an expression with a value of type STRING. Any number of parameters may be passed.
Note that the number of characters in the result cannot exceed 255.

CHAPTER 11 Predefined Routines

207

The Copy function
Copy (source, index, count)

Copy returns a string containing count characters from source, beginning at source [index].
The parameter source is an expression with a value of type STRING. The parameter index
is an expression with an integer value in the range 1..255. The patr=iz. it iz 20
expression with an integer value in the range 1..255.

If the values of index or count are out of range or if there are not count characters in
source starting at source [index], Copy returns the null string,

The Delete procedure
Delete (dest, index, count)

Delete removes count characters from the value of dest, beginning at dest [index]. The
parameter dest is a variable reference that refers to a variable of type STRING. Itis a
variable parameter. The parameter index is an expression with an integer value in the
range 1..255. The parameter count is an expression with an integer value in the

range 1..255.

If the values of index or count are out of range or if index is greater than Length (dest),
Delete is ignored. If the attempted deletion extends beyond the end of dest, dest
becomes truncated at index -1.

The Insert procedure
Insert (Source, dest, index)

Insert inserts source into dest. The first character of source becomes dest [index. The
parameter source is an expression with a value of type STRING. The parameter dest is a
variable reference that refers to a variable of type STRING. It is a variable parameter. The
parameter index is an expression with an integer value in the'range 1..255.

If the value of index is out of range, Insert is ignored.

208 MPW 3.0 Pascal Reference

N

Byte-oriented procedures and functions

The byte-oriented procedures allow 2 program to treat a program variable as a sequence
of bytes, without regard to data types.

These procedures do no type checking on their source or dest actual parameiets. However,
because these are variable parameters, they cannot be indexed if they are packed. If an
unpacked “byte array” is desired, then a variable of the type

ARRAY [lo..hi] OF -128..127

should be used for source or dest. The elements in an array of this type are stored in
contiguous bytes; because it is unpacked, an array of this type can be used with an index
as an actual parameter for these routines.

¢ Note: An unpacked array with elements of the type 0..255 or the type char has its
elements stored in words, not bytes. A word is two bytes.

The Moveleft procedure
Moveleft (source, dest, count)

The Moveleft procedure copies a specified number of contiguous bytes from a source
range to a destination range (starting at the lowest address). Its parameters are the
following:

» Source is a variable reference that refers to a variable of any type except a file type or
a structured type that contains a file type. It is a variable parameter. The first byte
allocated to source (lowest address within source) is the first byte of the source range.

» Destis a variable reference that refers to a variable of any type except a file type or a
structured type that contains a file type. It is a variable parameter. The first byte
allocated to dest (lowest address within des?) is the first byte of the destination range.

» Count is an expression with an integer value. The source range and the destination
range are each count bytes long. The count parameter is not range checked.

CHAPTER 11 Predefined Routines 209

The Moveright procedure

Moveright is exactly like Moveleft, except that it starts from the “right” end of the
source range Chighest address). It proceeds to the “left” (lower addresses), copying bytes
into the destination ranige, st rting at the highest address of the destination range.

The reason for having both Moveleft and Moveright is that the source and destination
ranges may overlap. If they overlap, the order in which bytes are moved is critical: each
byte must be moved before it gets overwritten by another byte.

The Sizeof function
Sizeof(id [, b, ..., &)

The sizeof function returns a longint value that is the number of bytes occupied by a
specified variable, or by any variable of a specified type. Its parameter id is either a
variable identifier or a type identifier. The optional parameters 4, ..., I, are tag values
specified only to get the size of a variant record and may be specified only if the first
parameter is a type identifier.

sizeof returns the number of bytes occupied by 4, if id is a variable identifier; if idis a
type identifier, Sizeof returns the number of bytes occupied by any variable of type id.
If the type id is a record that contains variants, you may specify the tag values (which
must be constants listed contiguously and in order of their declaration). In this case, the
sizeof function returns the size of the record with the specified variants. The value of
sizeof is determined by the Compiler, which subsequently treats it as a constant at
compile time.

Packed character array routines

The routines described in this section operate only on arrays of type PACKED ARRAY OF
char. When used as parameters, such arrays cannot be subscripted; the routines
described below always begin at their first character.

210 MPW 3.0 Pascal Reference

The Scaneq function
Scanegq (limit, ch, paoc)

Scaneq scans paoc, looking for the first occurrence of ¢h. The scan begins with the first
character in paoc. If the character is not found within /imst characters from the beginning
of pacc, the value returned is an integer equal to limit. Otherwise, the value returned is
an integer that gives the number of characters scanned before ¢k was found. The
parameters of Scaneq have these types:

m Limitis an expression with a value of type integer or longint. Itis truncated to 16
bits and is not range checked.

m Chis an expression with a value of type char.

8 Paocis an expression with a value of type PACKED ARRAY OF char.ltis a variable
parameter.

The Scanne function

The scanne function is exactly like scaneq, except that it searches for a character that
does not match the ch parameter.

The Fillchar procedure

Fillchar (paoc, count, ch)
The Fillchar procedure fills a specified number of characters in a PACKED ARRAY OF
char with a specified character. It has the following parameters:

® Paocis an expression with a value of type PACKED ARRAY OF char. Itis a variable
parameter.

m Countis an expression with a value of type integer of longint. It is truncated to
16 bits and is not range checked.

m Chis an expression with a value of type char.

Fillchar writes the value of chinto count contiguous bytes of memory, starting at the
first byte of paoc. Because the count parameter is not range checked, it is possible to
write into memory outside of paoc, with unspecified results.

CHAPTER 11 Predefined Routines

211

Logical bit functions and procedures

This section describes a set of procedures and functions for bit manipulations. These
routines correspond to a set of essentially identical instructions of the Motorola 68000.

Many of the routities here coiespo:ad to Iiside Macintosh routines. However, MPW Pascal
generates more efficient code than calls to these routines, so you should use the
identifiers given here in preference to the Macintosh ROM routines.

If the type of any argument is specified as a scalar, the argument can be a whole-number
value of any size, from 1 to 32 bits (one bit to a long integer). If the scalar argument is less
- than 32 bits, code is generated to extend the argument to 32 bits but without sign
extension (zeros are added on the left to make up a 32-bit value).

& Note: Bit numbering for these routines follows the convention of the 68000

microprocessor, not the convention used in Inside Macintosh. Bit 0 is the low-order
bit; bit 31 is the high-order bit.

Table 11-1 summarizes the bit manipulation functions and procedures.

s Table 11-1 Bit manipulation routines

MPW MC68000 First Second

name opcode argument argument Result Kind
BAND AND.L scalar scalar longint function
BOR OR.L scalar scalar longint function
BXOR EOR scalar scalar longint function
BNOT NOT.L scalar longint function
BSL LSL.L scalar integer longint function
BSR LSR.L scalar integer - longint function
BRotL ROL.L scalar integer longint function
BROtR ROR.L scalar integer longint function
BTst BTST.L scalar integer boolean function
HIWrd scalar integer function
LOWrd scalar . integer function
BClr BCLR.L longint (VAR) integer procedure
BSet BSET.L longint (VAR) integer procedure

212 MPW 3.0 Pascal Reference

These routines are generally identical in function to a corresponding set of routines
described in Inside Macintosh. However, these routines are more efficient because they

‘are implemented by the Compiler as 68000 instructions, while the Inside Macintosh

routines are calls to the ROM. The routines BTst, BC1r, and BSet, while functionally
similar to three Inside Macintosh routines, have different arguments.

The syntax of each bit maiipulation rouiine is described below.

The BAND function
BAND (argl, arg2)

BAND returns the logical AND of its two arguments.

The BOR function
BOR (argl, arg2)
BOR returns the logical oR of its two arguments.

The BXOR function
BXOR (argl, arg2)

BXOR returns the logical exclusive-or of its two arguments.

The BNOT function
BNOT (4rg)

BNOT retums the 1's-complement of its argument.

The BSL function

BSL(arg, count)

BSL left-shifts the bits of arg by the number of bits specified in count, modulo 64. Zeros
are shifted into the low-order bit.

CHAPTER 11 Predefined Routines

213

The BSR function
BSR(arg, count)

BSR right-shifts the bits of arg by the number of bits specified in count, modulo 64. Zeros
are shifted into the high-order bit.

The BRotL function
BRotL (4rg, count)

BRotL left-rotates the bits of arg by the number of bits specified in count, modulo 64.
Bits shifted out of the high-order position go back into the low-order position.

The BRotR function

BROtR (4rg, count)

BRotR right-rotates the bits of arg by the number of bits specified in count, modulo 64.
Bits shifted out of the low-order position go back into the high-order position.

The BTst function
BTst (arg, bitNbn

The parameter bitNbr is an integer that indicates the bit of arg to be tested. BTst
returns t rue if the specified bit has the value one and retums £a1se if it has the value
zero. Because this function maps directly onto the 68000 instruction, bits are numbered in
the way conventional in the 68000: 0 to 31, low-order bit to high-order bit.

The HiWrd function
HiWrd (arg)

Hiwrd returns the high-order word of arg. If arg is nota Longint, Hiwrd returns zero.
When the argument is a simple variable or array access, no code is generated by this
function because the argument is simply addressed and used as an integer.

214 MPW 3.0 Pascal Reference

The LoWrd function
LoWrd (4rg)

LoWrd retums the low-order word of arg. When the argument is a simple variable or array
access, no code is generated by this function because the argument is simply addressed
and used as an integer.

The BClr procedure
BClr (arg, bitNbn

BC1r clears bit bitNbrin arg. The value of bitNbr is reduced modulo 32.

The BSet procedure
BSet (arg, bitNbn
BSet Sets bit bitNbrin arg. The value of bitNbris reduced modulo 32.

CHAPTER 11 Predefined Routines

215

Chapter 12 Object-Oriented Programming

OBJECT-ORIENTED PROGRAMMING IS AN IMPORTANT FEATURE of MPW Pascal. This
chapter briefly covers the philosophy behind object-oriented programming and
the mechanisms built into MPW Pascal that support it. For a more complete
treatment of object-oriented programming theory, see Kurt Schmucker's book
Object-Oriented Programming for the Macintosh, listed in the Preface.

To use the object-oriented facilities of MPW Pascal, follow the instructions given
under “Using Object Pascal” at the end of this chapter. »

Contents

What are objects? 219
Differences from traditional programming 220
Creating objects 221
Declaring object types 222
Object type membership 222
Object reference variables 223
The OVERRIDE directive 224
Declaring methods 224
The Self parameter 225
Calling methods 226
The INHERITED directive 227
Using Object Pascal 227
Object Pascal without MacApp 227
The Object Pascal routines 228
The Member function 228
The ShallowClone function 228
The Clone function 229
‘The ShallowFree function 229
The Free function 229
Object Pascal with MacApp 229

217

What are objects?

The object type is an addition to the familiar standard Pascal structured types. Objects
are closely related to records; like a record, an object consists of a number of fields, each
of which may be of a different type. Objects add an extra “dimension” to the idea of a
record—they include not only data fields but also private procedures and functions
(called methods). A method that is declared in an object type definition operates
primarily on the data stored in an object of that type.

Much of the power of object-oriented programming derives from the concept of
inheritance. You can define an object type as a customization of another object type.
When one object type is derived from another, the first is called an ancestor and the
second is called a descendant. A descendant type inherits all the fields and methods of its
ancestor; you can add new fields and methods to it as well. Although you cannot change
the interface to an inherited method, you can change the way it is implemented.

Here is an example of three object type declarations:

Employee = OBJECT
firstName, lastName: STRING([32];
hourlyWage, hoursPaid: integer;
PROCEDURE Hire (namel, name2: string([32];
rate, hoursWorked: integer);
FUNCTION RegularPay (hoursWorked: integer): integer;
PROCEDURE IssuePaycheck (hoursWorked: integer)
END;

ExemptEmployee = OBJECT (Employee)
FUNCTION RegularPay(hoursWorked: integer): integer;
OVERRIDE;

END;

Executive = OBJECT (ExemptEmployee)

weeklyBonus: integer;

PROCEDURE SetBonus (performancelevel: integer);

PROCEDURE IssuePaycheck (hoursWorked: integer); OVERRIDE;
END;

In this example, the object type Employee begins the chain of inheritance. Employee
isn’t defined in terms of any other object—it doesn’t have any ancestors. Like a record, an
object of type Employee consists of several data fields. But in addition to data, an
Employee object has three methods: the Hire and IssuePaycheck procedures, and
the RegularPay function. These methods are declared as if they were FORWARD
routines; their blocks come later in the program.

CHAPTER 12 Object-Oriented Programming

219

The object type ExemptEmployee is a descendant of Employee. In it, the function
RegularPay is changed by overriding the function’s body. However, it inherits
unchanged all the data fields of Emp1oyee, as well as the procedures Hire and
IssuePaycheck.

The object Executive is a descendant of ExemptEnployee. It retains date fiels of
ExemptEmployee (Which are also fields of Employee) and adds the rieid
weeklyBonus. It also adds a new procedure, set Bonus. In addition, it changes the
IssuePaycheck method by overriding it. This lets IssuePaycheck operate on the
value of weeklyBonus.

It is an important feature of this kind of programming that object type declarations do
not need to include declarations that occur inside their ancestor objects; these
declarations are automatically present by inheritance. They need to declare only changes.
For example, the object types Exempt Employee and Executive automatically include
the procedure Hire, because they inherited it from Employee. As a result, you can create
a very complex object type with a few simple declarations, just by naming another object
type from which it inherits its structure.

Differences from traditional programming

You can look at the differences between object-oriented programming and standard
programming in several ways:

= from a code viewpoint, in terms of the program structures that you create

= from a data viewpoint, in terms of the data structures they handle

= from a structural viewpoint, in terms of the resulting programming discipline

From a code viewpoint, each object in an object-oriented program may be thought of as
a small virtual computer, existing independently within the overall computer. It operates

on the data passing through it according to its own rules. To change these rules, you
“reprogram” the object by changing its methods.

From a data viewpoint, the objects in an object-oriented program may also be thought of
as “smart data structures.” Each one not only stores information but also processes it,
somewhat in the manner of a spreadsheet. Because each object operates on the
information within it, you can treat its data fields as interrelated, rather than isolated.

220 MPW 3.0 Pascal Reference

Structurally, object orientation introduces a new kind of programming discipline. When
creating a standard program, you “design down and code up.” You first determine what
blocks your program needs and then build the required blocks out of individual
declarations and statements. Object-oriented programming lets you design down and
code down at the same time. If you already have an object that nearly fits your
requirements, you start coding with it. Instead of creating new blocks out cf elemental
parts, you create them by modifying existing blocks. You carve and shape, instead of
piecing together. The object-oriented process is closer to high-level application
programming and farther from machine programming. As a result, object-oriented
programming has a number of practical advantages:

= You can use objects from existing programs to form new programs, instead of always
building them anew. This is a great timesaver, particularly when you are developing
large applications.

s When modifying objects, you start with something that already works and change its
operation by easily understandable increments. This can decrease debugging time
dramatically.

s Each object remains a closed universe; you don’t need to worry about data leaks or
code interactions between objects. This makes program development more orderly.

» Ina complex environment, such as the Macintosh’s, object-oriented programs are
easier to maintain. Changes to the program yield relatively specific and predictable
consequences.

Creating objects

You do not create objects from object types in the same way you create ordinary
variables from other. variable types. Instead, you use the standard New procedure to
create an object of a given type. The New procedure sets aside a part of dynamic memory
for the object, and returns a handle for the object.

CHAPTER 12 Object-Oriented Programming

221

& Note: This is an extension of the standard Pascal New procedure. When New is given an
ordinary pointer variable, it reserves space for an identified variable and returns a
pointer to the identified variable. When New is given an object type variable, it
creates the object in dynamic memory and returns a handle to the object. See the
Memory Manager chapter of Inside Macintosh for a discussion of handles.

Declaring object types

. Unlike other types, an object type can only be declared in the type declaration part of a
main program or unit. You cannot declare an object type in a variable declaration part or
in a procedure or function declaration block.

- When you use an object type in a variable declaration part, you create a reference variable
for that type. The reference variable stores a handle to an object of that type (or a
descendant type). You always access objects through reference variables. Hence you do
not create special types for object references. Instead, an object type is used to declare
each variable that can hold a reference to an object of that type (or a descendant type).

The scope of an object type (the type identifier and field and method identifiers) also
extends over all descendants of that type, and over procedure and function blocks that
implement methods of that object type and its descendants.

For an illustration of object type declarations, see the example given at the beginning of
this chapter.

Object type membership

When an object of a specific type is created during program execution, it is considered a
member of that type and of all ancestral types. In the example at the beginning of the
chapter, an object created as an Executive is 2 member of types Executive,
ExemptEmployee, and Employee. References to the object of type Executive may
be assigned to object reference variables of types Executive, ExemptEmployee, and
Employee. Which particular version of an overridden method is executed when a method
call is executed depends on the type of the object, not the type of the reference variable.

222 MPW 3.0 Pascal Reference

Object reference variables

A variable that is declared using an object type is an object reference variable. An object
reference variable is not itself an object. The value of an object reference variable is either
NIL or a value that identifies an object, called the identified object of the reference.
Objects themselves are dyriamic variables. An object reference variable thai refers to an
object does so by means of a handle—a pointer to a pointer.

The pointer symbol (~) used to denote the identified variable of a pointer is not allowed
after an object reference variable. Similarly, the double pointer symbol (~+) used to
dereference a handle is not allowed. Hence there is no way to treat the identified object
as a variable in its own right unless type coercion is used. However, you can access
components of the object through a reference variable as you would access fields of a
record.

Data is stored in fields of objects, and you access those fields by giving the reference
variable identifier, a period, and the field name, which appears the same as a record field
access. As with records, you can omit the reference variable identifier and period under
certain circumstances. Variable accesses using the reference variable identifier alone
access the pointer type value stored in the reference variable, just as with other pointers.

& Note: The MPW Compiler is now stricter about reporting errors about passing
- reference pointers to fields within objects.

The object reference variable and the period (.) can be omitted inside a wITH statement
that lists the reference variable, or within any method block that declares a method of the
object’s type.

¢ Note: Using a wITH statement with an object reference variable does not dereference
the handle that represents the object; however, the following three actions do
dereference the object’s handle: passing fields of an object as vaR parameters,
passing fields longer than four bytes as parameters, or using a WwITH statement for a
field of an object that is itself a record (but not an object reference).

Compaction of the heap can cause the object’s handle to move and yield
unpredictable results. The Pascal Compiler flags such unsafe object dereferences as
errors unless the 1 Compiler directive is turned off. (For details on the $H directive,
see Chapter 13.)

CHAPTER 12 Object-Oriented Programming 223

Here is an example of how a variable declared as object type Employee can be used to
refer to an object of type Execut ive, using the type declarations at the beginning of
this chapter:

VAR anEmployee: Employee;
anExecutive: Executive;
{other declarations}

New (anExecutive) ;
anEmployee := anExecutive;
anEmployee.IssuePaycheck (40);

The OVERRIDE directive

A descendant of an object type always inherits all fields and methods of its ancestors. It
can add fields and methods to those it has inherited, and it can override the action of
methods. To override a method, you follow the method heading with the word
oVERRIDE. When a method is overridden, the implementation of the method is changed
but the interface to the method must remain exactly the same. It must retain the same
spelling of all identifiers and the same data types for the method’s formal parameters and
return value (if any).

Declaring methods

A method is a procedure or function that is declared as part of an object type declaration.
Methods are declared like other procedures or functions, except that they are always
declared in the style of a forward declaration but without the word FORWARD. Object
types are often declared in the interface part of a unit, while the blocks of their methods
are declared in the implementation part of the same unit.

An object type can inherit methods from another object type. If you want to override the
action of an inherited method, write the word ovERRIDE following the formal parameter
list (or following the method identifier, if there are no formal parameters). The formal
parameter list you give for the override method must be identical to the formal parameter
list of the overridden method. If you do not override an mhented method, you do not
need to declare the inherited method.

224 MPW 3.0 Pascal Reference

=

When declaring a method, the initial heading declaration and the block declaration must
both appear in the main program or must both appear in the same compilation unit. The
heading declaration appears in the type declaration part, as part of the object type
declaration, while the declaration of the method’s block appears in the procedure and
function declaration part. You must write the object type and a period along with the
procedure or function identifier when you declare the block. You may repeat the formal
parameter list; if you do, it must be identical to the original list.

The Self parameter

In addition to ordinary parameters, every method has an implicit parameter, called
Self. Self is a reference to the object used to call the method. Its type is the reference
type of the object type to which the method belongs. (Notice that this is not necessarily
the type of the actual parameter supplied by the caller. se1£ could refer to an object of a
descendant type.) The scope of self extends over the method declaration block. You
can assign values to fields of se1 £, but you cannot change the value of se1 £, which
would cause self to reference another object. The method acts as if its entire statement
part were surrounded by WITH Self DO BEGIN ... END,s0 you do not have to give
the identifier se1£ when accessing fields or methods of se1£.

This object type definition uses the implicit parameter se1£ in a method declaration:

TYPE AnObject = OBJECT

PROCEDURE Grow (howBig: integer)

END;

{other type declarations}

PROCEDURE ThisObjectGrew(obj: AnObject; howMuch: integer):;
BEGIN

END;

PROCEDURE AnObject.GRow (howBig: integer);
BEGIN

ThisObjectGrew (SELF, howBig):

END;

CHAPTER 12 Object-Oriented Programming 225

Calling methods

- A method call is a special case of a function call. The same rules apply to methods and
method calls for both procedures and functions.

As with fields of objects or records, a method can be accessed by using a quatifies o1 by
using a WITH statement.

Here are some examples of procedural method calls:

v.Draw
WITH v DO Draw
x[i].Track(y+1l, z-1)

Here are some examples of functional method calls:

a.Times(b) + c
y: = x.Extent
WITH x DO y := Extent

Unlike a field, which can be evaluated or assigned a new value, a method is executed when
it is called. When a method is called, a reference to the specific object through which the
method was accessed (for example, object v inv.Draw) is bound to the automatically
declared formal parameter sel£, whose type is the object type of which the method is
part.

If y is declared to be a variable of object type TView, then at any moment during
execution y may be a reference to an object of any type that inherits from Tview. If
Tview has a method praw, for example, different inheriting types may define different
implementations of the method praw. Executing y . Draw calls the implementation of
praw defined for the type of the object that y refers to at the time of the call. The value
of self in the called method becomes a reference to that same object. Note that y may
be a variable of a different type—the method actually called is the one that belongs to the
object, not the variable.

One way to read the statement y . Draw is “Tell y to draw.” Reading it that way points out
that the program only says the object referred to by y should draw. At run time, the current
value of y determines how it should draw by choosing the appropriate implementation of
draw for its object type.

26 MPW 3.0 Pascal Reference

The INHERITED directive

When one object type inherits from another but overrides an inherited method with its
own implementation, you may want to call the overridden method from within the new
method.

For example, if object type Truck inherits from vehicle and overrides method
Accelerate, then Truck .Accelerate may wish to invoke vehicle . Accelerate
at one or more points. You can call the overridden method with the special form

INHERITED Accelerate

In general, to call a method that belongs to the immediate ancestor of the object type
that owns the current method, write INHERITED (without a period). The value of self in
the called method is the same value as it is in the calling method.

INHERITED may only be used within a method declaration block. It must precede a
method identifier that was inherited by the object type that owns the method
declaration block.

Using Object Pascal

There are two basic ways you can write object-oriented applications for the Macintosh:
without or with MacApp. This section discusses both approaches.

Object Pascal without MacApp

Support for Object Pascal syntax is included in the MPW Compiler, so you do not need
MacApp to write an object-oriented program. However, you do need to provide runtime
support by linking your compilation with the file ObjLib.o.

You must also access the unit ObjIntf.p by including the declaration USES objIntf.pin
your source text. ObjIntf.p provides the interface for the type Tob ject, which has no
‘data fields and four methods—ShallowClone, Clone, ShallowFree, and Free.
These routines are described below.

CHAPTER 12 Object-Oriented Programming

The Object Pascal routines

This section describes five functions available for use in object-oriented programming
without MacApp.

The Member function
Member (anObject, aType)

Member is used only in object-oriented programming. Member tests if a particular object
is of a particular object type or a descendant of that type. It has two parameters:

s AnObject is an object reference. It is an error if @anObject is undefined. AnObject can
have the value NIL.

o AType is an object type.

Member retums t rue if anObject is not NIL and if the object it references is a member of
the type aType. The parameter anObject is a member of aType if it is of that type ora
descendant of aType.

Although rarely used, Member is useful for screening questionable object reference
coercions. The following use of member is strongly discouraged, however, because it
defeats the advantages of object-oriented programming:

IF member(x, A) THEN..
ELSE IF member(x, b) THEN..
ELSE IF member(x, c¢) THEN..

Instead, define the code in each THEN clause as a method of the corresponding types.
Give all the methods the same name and arguments. Be sure their common ancestor also
declares the method. Write a method call instead of the entire conditional statement.
That way, new types can be added without changing the program, which is one of the
main advantages of object-oriented programming.

The ShallowClone function
ShallowClone

ShallowClone returns a copy of an object of type Tobject. It is a function without
any parameters. You should not override it. If you want to override it to copy objects
referred to by fields, use c1one, described below.

228 MPW 3.0 Pascal Reference

The Clone function

Clone

Clone normally calls ShallowClone, but may be overridden to copy objects referred to
by fields.

The ShallowFree function
ShallowFree

ShallowFree frees the space occupied by an object in memory. You should not
override it. If you want to override it to free objects referred to by fields, use Free,
described below.

The Free function

Free

Free normally calls shallowFree, but may be overridden to free objects referred to by
fields.

Object Pascal with MacApp

The simplest way to create an object-oriented application is to use MacApp, Apple’s
“expandable” Macintosh application. MacApp implements the Macintosh user interface in
an object-oriented environment. To create a specific application to fit your
requirements, you expand MacApp by adding to it a series of descendant object type
declarations, each of which inherits some part of the original object type. These
descendant objects become the elements of your program.

From the outset, each new object type inherited from MacApp is guaranteed to work
because its ancestor object type has already been debugged. Its data and methods form
an integrated whole—a virtual computer within your program that performs a specific
group of tasks. As you modify it to meet your needs, you can test each modification and
see its effects. This helps you achieve orderly and bug-free program development.
MacApp frees you from many of the chores required when you write programs from the
ground up. It lets you concentrate on the parts of your application that are specific to the
job it performs.

MacApp provides built-in runtime support for object-oriented programming; you do not
need to link your program to any other file.

CHAPTER 12 Object-Oriented Programming

229

Chapter 13 Compiler Options and Directives

THE COMPILER CAN BE CONTROLLED IN THREE WAYS: by using the Compiler options
available from the MPW command line, by using Compiler directives that you
write directly in your Pascal source text, or by using the Commando tool from the
MPW Shell. The Commando tool is a series of dialog boxes that displays all the
functions, parameters, and options for MPW commands, including Pascal. See
the Macintosh Programmer’s Workshop 3.0 Reference for a discussion of the
interface available for Pascal and for information on writing your own series of
dialog boxes. =

Contents

The MPW Pascal command line 233
Compiler options 233
Compiler directives 237
Input file control 240
The $I directive 240
The $U directive 240
Shell variable substitution in filenames and segment names 240
Control of code generation 241
The $B+ directive 241
The $C+ directive 241
The $J+ directive 242
The $MC68020= directive 242
The $MC68881+ directive 242
The $OV= directive 242
The $R+ directive 242
The $S directive 243
The $SC+ directive 243
The $W+ directive 243
Debugging 243
The $D+ directive 243
The $H= directive 244
Conditional compilation 244

231

232

The $SETC directive 244

The $IFC directive 244

The $ELSEC directive 245

The $ENDC directive 245
Output control 245

The $Z:i directive 247

The $N= directive 245
Other directives 246

The $A1 directive 246

The $AS directive 246

The $E directive 246

The $K directive 246

The $P directive 247

The $PUSH and $POP directives 247

MPW 3.0 Pascal Reference

The MPW Pascal command line

This is the syntax for specifying options on the Pascal command line:

Pascalloption.. lfile.]

You can specify zero or more filenames. Each file is compiled separately—compiling file
Name.p creates object file Name.p.o. By convention, Pascal source filenames end in a “.p”
suffix. If you do not specify a filename, standard input is compiled to a file named “p.0”.

Compiler errors are written to diagnostic output, a predeclared file of type text, which
can be written to another file or redirected. Progress and summary information is also
written to diagnostic output, if requested, by using the Compiler directives described in
the section of that name. Diagnostic output is fully described in the Macintosh
Programmer’s Workshop 3.0 Reference.

Compiler options

The MPW Pascal Compiler options are symbols in the MPW command line that send
instructions to the Compiler. MPW 3.0 Pascal supplies an option, -sym, that emits
records for the symbolic debugger and an option, -mbg, that includes symbols for
MacsBug. Also, the -h option suppresses error messages regarding the use of unsafe

~ handles, the -m option allows greater than 32k globals, the -x option puts symbol table

resources in the directory specified by prefixpath and the -n option generates
separate global data modules for better allocation. Finally, three new command line
options, -noload, -clean, and -rebuild, support the Compiler's automatic loading
facility. MPW 3.0 Pascal no longer offers the -z option. Table 13-1 presents an
alphabetical listing of the Compiler options for MPW 3.0 Pascal.

CHAPTER 13 Compiler Options and Directives

233

= Table13-1 Compiler options

Option Description

-b Generate A5-relative references whenever the address of
a procedure or function is required. (By default, PC-
relative teferences 20 goaers LG 17 100 s B the
same segment.) This option is equivalent to specifying
{$B-} in the source code.

-c Syntax check only—no object file is generated.

-clean Erase all symbol table resources.

. =d name=true | false

e file

~h

-ipathname(, pathnamé...

Set the compile-time variable name to t rue or false
(for example,

-d Elems88l=true directs the Compiler to emit
direct calls to the 68881 for transcendental functions.
This option is equivalent to specifying

{ $SETC name:=true|false} in the source code.

Write all errors to the error log file file. A copy of the
error report will still be sent to diagnostic output. This
option is equivalent to specifying { SE file} in the
source code.

Suppress error messages regarding the use of unsafe
handles.

Search for include or usks files in the specified
directories. Multiple -i options may be specified. At
most, 15 directories will be searched. The search order is
as follows:

1. In the case of a usks filename, if no prior filename
was specified, the filename is assumed to be the same
as the unit name (with a “.p” appended).

2, The filename is used as specified. If a_full pathname
is given, no other searching is applied.

If the file is not yet found and the pathname used to
specify the file is a partial pathname (no colons in the
name or a leading colon), the following directories are
searched:

3. The directory containing the current input file.

4. The directories specified in —i options, in the order
listed.

5. The directories specified in the Shell variable
{PInterfaces}.

(Continued)

234 MPW 3.0 Pascal Reference

= Table 13-1

(Continued) Compiler options

. Option

Description

-k

-m

-mbg ch8

-mbg full*
-mbg off
-mbg number
-MC68020

-MC68881

Put symbol table resources in the directory specified by
prefixpath.

Allow greater thian 32K giobais by using 32 cit refers. ices.

Include v2.0 compatible MacsBug symbols (eight
characters only, in a special format).

Include full (untruncated) symbols for MacsBug.
Don't include symbols for the MacsBug debugger.
Include MacsBug symbols truncated to length number.

Generate 68020 code. The Compiler generates 68020
instructions or addressing modes that are selected to be
faster and/or smaller than the 68000 equivalent. When
the Compiler is generating 68020 code for the main
program, it inserts a TRAPF instruction in the program
preamble code. The TRAPF instruction does nothing on
the 68020 and causes an illegal instruction trap on a
68000 so that your programs can detect early whether
they are being run without a 68020. This option is
equivalent to specifying { $MC68020+} in the source
code.

Generate 68881 code on a per-file basis. The Compiler
allocates 12 bytes for each extended variable and
assigns up to 4 extended variables (either local or
parameter) per procedure to the 68881 registers FP4
through FP7. The Compiler generates 68881 code
whenever possible for arithmetic operations and binary
data (but not string) conversions.

When the Compiler generates code to call an external
routine, the code passes parameters using the MPW
Pascal 1.0 conventions with one exception: extended
types are 12 bytes wide. However, the Compiler
expects that a C function returning an extended type
will return the result value in register FPO.

(Continued)

CHAPTER 13 Compiler Options and Directives

235

s Table 13-1

(Continued) Compiler options

Option

Description

-n

—-noload
-o objname

P

-

-rebuild
-sym off*

-sym on | full

If -Mc68881 and -d Elems881=true are both
specified on the command line, then the Compiler also
recoguizes and generates inliue code for tix sin, Cox,
Ln, Exp, Arctan routines, and these additional
routines that are supported by the 68881: Arctanh,
Cosh, Sinh, Tanh, Logl0, Expl0, Arccos, Arcsin,
Sincos, Tan, Expl, Log2, The -MC68881 option is
equivalent to specifying { $MC68881+} in the source
code.

Generate separate global data modules for better
allocation.

Don't use or create any symbol table resources.

Specify the pathname for the generated object file. If
objname ends with a colon (:), it indicates a directory
for the output file, whose name is then formed by the
normal rule (that is, inputFilename.o). If the source
filename contains a pathname, it is stripped off and
replaced by objname: as a prefix. (In this case, only one
source file should be specified.)

If objname does not end with a colon, the object file is
written to the file objname.

Turn on overflow checking. (Warning: This may
significantly increase code size.) This option is
equivalent to specifying { $ov+} in the sourcecode.

Supply progress and summary information to diagnostic
output, including Compiler header information
(copyright notice and version number), module names
and code sizes in bytes, and number of errors and
compilation time. .

Suppress range checking. This option is equivalent to
specifying { $rR-} in the source code.

Rebuild all symbol table resources.

Don't emit SADE object file information.

Emit complete SADE object file information. To limit
this option, also specify one or more of novars,
nolines, notypes to omit variable, line, or type
information respectively from the object file.

(Continued)

236 MPW 3.0 Pascal Reference

s Table131 (Continued) Compiler options

Option Description

-t Report compilation time to diagnostic output. The -p
option also reports the compilation time.

-u Initializes ail data (global and local) tc the patiein

$7267. This option is useful for debugging programs
that may be using uninitialized data.

-w Halt the operation of the peephole optimizer on a per-
file basis. The Compiler no longer executes a final pass
on the generated code and no longer attempts to
replace certain code sequences with more efficient
ones. This option is equivalent to specifying { $w-} in
the source code.

-y pathname Put the Compiler’s intermediate (“.0.i") files in the
directory specified by pathname.

Compiler directives

Compiler directives are commands that you embed directly in the Pascal source code.

Every Compiler directive begins with a dollar sign ($) and must be enclosed in comment
delimiters, as described under “Comments and Compiler Directives” in Chapter 2. You can
put only one directive within each pair of delimiters.

The MPW Pascal Compiler directives are listed alphabetically in Table 13-2, with the
default conditions marked by asterisks. The individual directives are discussed in the
remainder of this chapter.

The MPW 3.0 Pascal Compiler supports the $K directive which puts symbol table resources
in the directory specified by prefixpath.

MPW 3.0 Pascal no longer offers the $Loap Compiler directive. The $LOAD syntax is still
supported, but ignored—if Compiler progress information is requested, the Compiler
states that the use of the feature is "obsolete but harmless." If you have included
dependencies for $LoAD files in your makefiles, you can remove them; however, if you do
not remove them, they remain harmless because they simply restate what the Compiler
does automatically.

CHAPTER 13 Compiler Options and Directives 237

s Table13-2 Compiler directives

Directive Effect

$a1 Allow the global data sections of the unit to be noncontiguous

Sa5 T2t Compiler resolv= referenres to the vnifs olohal oate

$B+ Generate PC-relative code*

$B- Generate A5-relative code

SC+ Generate code*

$c- Do not generate code

$D- Do not embed routine names in object code

$D+ Embed routine names in object code* A

SE filename Send compilation errors to filename (See detailed discussion of
filenames and segment names below.)

SELSEC Compile source text if comp-expr in preceding $IFCis false

SENDC End range of conditionally compiled source text

SH+ Check dereferencing of object handles*

$H- Assume all object handles are valid

$I filename Include separate source file in the compilation (See detailed

SIFC comp-expr

discussion of filenames and segment names below.)
Compile subsequent source text if value of comp-expris t rue

SIFC OPTION (option-name)

$J-

$J+

$K [pathname]
SMC68020+
SMC68020-
SMC68881+
$MC68881~-

This version of $1Fc lets you determine the current settings of
Compiler options

Global data definitions must be in the Pascal source file*
Global data may be defined in another file

Control destination of symbol table resources

Generate 68020 code on a per-procedure basis

Halt generation of 68020 code on a per-procedure basis®
Generate 68881 code on a per-file basis

Halt generation of 68881 code on a per-file basis*®

(Continued)

238 MPW 3.0 Pascal Reference

= Table 13-2

(Continued) Compiler directives

Directive Effect

$N- Identify all routines to the Linker as anonymous*

SN+ Send actuz! names of routines to the Linker

$ov- Ignore arithmetic overflows®

Sov+ Detect arithmetic overflows

$P Tell PasRef to do a page eject

$PUSH Save the current option settings

$POP Restore the saved option settings

SR+ Perform range checking of strings, sets, and arrays*

SR- Do not perform range checking of strings, sets, and arrays
$sc- Normal evaluation of AND and orR*

$SC+ Short-circuit evaluation of AND and oR

$S segname Place subsequent routines in segment segname (See detailed

description of filename/segname below.)

$SETC 1d := comp-expr

su filename

SW+
SW-
$z-
Sz*
$z+

Declare a compile-time varable and assign it a value

Specify filename for next unit in uses declaration (See detailed
description of filename/ segname below.)

Turn on the peephole optimizer*

Halt the operation of the peephole optimizer

Identify all routines and variables to the Linker as local*
Identify all routines at the top level to theLinker as external
Identify all routines and varables to the Linker as external

CHAPTER 13 Compiler Options and Directives 239

Input file control

The $1 directive
151 filenamey

The $1 directive instructs the Compiler to fetch subsequent source input from the
specified file. The Compiler will read from the new file until the end of that file, at which
point the Compiler will continue from the original source file. The filename can include
prefixes if desired; however, the Compiler will open the file by using its search rules.
Included files may be nested up to five deep.This number includes units accessed by
uskes declarations in included files or nested units. A unit may not use the $1 directive in
_ its interface section. See “Shell Variable Substitution in Filenames and Segment Names”
below for more details on the $1 directive.

The $U directive
{5U filename}

Ina uskes statement, the Compiler will read each unit name and will search for the
corresponding file unitname.p. This mechanism can be overridden by using the su
command to specify a filename in which to find the following unit. In either case, the
Compiler will use its search rules to open the file. Each su directive is valid only once, for
the next unit name specified in the source text. See the section "Shell Variable
Substitution in Filenames and Segment Names" below for more details on the su
directive.

Shell variable substitution in filenames and segment names

Four directives ({ SE}, {$I}, {$S}, and {$U} require a string that is interpreted as a
filename (or in the case of {$s} as a segment name). For these directives, the value of the
string may be controlled by an MPW Shell variable. In the following example, {$1} is used,
but the discussion holds for all five directives.

Normally, the directive has the form {$1 string} in which case the string is exactly as
specified. For example, {$SI foo.p} includes the file foo.p.

240 MPW 3.0 Pascal Reference

Two other possibilities are

s {$I $$Shell (shell-variable) 1, in which case the value of the string is the vatue of
the specified shell variable. For example, {$I $$Shell (myvar) } is equivalent to
{$I foo.p} if the shell variable myvar is set to foo.p.

s {SI $$sShell (shell-variabley string}, in which case the value of the string is the
value of the specified shel! variable with the vaiue of the specified string appeuded.
For example, {$I $$Shell (myVar) foo.p} is equivalent to
{$I hd:includes:foo.p} if the shell variable myvar is set to
'hd:includes:'.

It is an error if the Compiler cannot access a specified shell variable.

One way to specify the shell variable myvar in the above example would be
set myVar 'hd:includes:'
export myVar

See the Macintosh Programmer’s Workshop 3.0 Reference for further information about
shell variables. '

Control of code generation

The $B+ directive

{$B+}

{$B-}

When a program takes the address of a routine (for example, with the @ operator) that is
in the same segment, the Compiler generates PC-relative code. The directive $B- forces
the Compiler to generate A5-relative code instead. The default value $B+ switches back
to PC-relative code.

The $Ct directive
{SC+}
{sc-}

When this command is turned off ($c-), the Compiler will not produce object code for
subsequent statements, although syntax checking still continues. Code generation can be
resumed by specifying $c+. $c+ is the default condition. This directive affects only
entire procedures or functions.

CHAPTER 13 Compiler Options and Directives 241

The $J+ directive

{$J+}
{$J-}

The directive $J+ allows global data declared in the source file to be defined in another
file, the connections being made by the Linker. Such ronnections are case sensitive. The
defauli divective $J- requires all definitions to be in the Pascal source file.

The $MC68020+ directive

{$SMC68020+}
{$SMC68020-}

The directive $MC68020+ permits the Compiler to generate 68020 code. The default
directive $MC68020- halts the generation of 68020 code.

The $MC68881+ directive

{$MC68881+}

{SMC68881-}

The directive $MC68881+ permits the Compiler to generate 68881 code on a per-file
basis. The default directive $MC68881 - halts the generation of 68881 code on a per-file
basis.

The $OV+ directive

{Sov-}
{SOV+}

The default condition $ov- prevents the Compiler from generating code to detect
arithmetic overflow during assignments and expression evaluation. The dnrecnve Sov+
causes it to produce such code.

The $R+ directive

{ SR+}
{SR-}

The $rR- command instructs the Compiler to forego the generation of code to perform
range checking of string, set, and array bounds. The default, $r+, is to produce such
code-

242 MPW 3.0 Pascal Reference

Sapey

T

The $S directive
($S [segname))

By default, the Compiler will instruct the Linker to place all routines within a single
segment (with the case-sensitive identifier Main). The $s command allows the
progrommer to specify that subsequent routines be directed to the specified segment.
The $s command can only appear between global routines. If segname is omitted, the
segment name Main is assumed.

The $5Ct directive
{$sC-}
{$5C+}

The $sc+ directive instructs the Compiler to evaluate AND and OR as short-circuit
operators. In this case, the evaluation process starts with the left operand and ends when
a true value has been reached for the expression. The default directive $sc- causes the
Compiler to evaluate both operands of AND and oR.

The $W+ directive

{$W-}
{$W+}

The default directive $w+ turns on the peephole optimizer. The sw- directive halts the
operation of the peephole optimizer.

Debugging

The $D= directive

{$D+}
{$D-}

The Macintosh debugger MacsBug is capable of reading routine names embedded in the
object code. By default, the Compiler embeds the procedure (or function) name in the
object code. $p- turns off this feature; $p+ tums it back on.

CHAPTER 13 Com'pilér Options and Directives

2%

The $H+ directive
{$H+} '
{$H-}

When the default value $u+ is in effect, the Compiler tests each expression that
dereferences a handle in object-oriented source text, to make sure it is currently valid. It
issu=s o Compiler eror if i is noi. The directive sr- disables such veification.

Conditional compilation

MPW Pascal lets you compile sections of your source text conditionally by means of the
$IFC, $ELSEC, and $ENDC directives. The $1Fc directive is controlled by the value of a
compile-time expression. Sections of source text controlled by these directives may be
nested; the rules covering such nesting are the same as the rules for 1F statements
explained in Chapter 7.

You can form compile-time expressions out of compile-time variables or constants of
type integer Of boolean. The final value of the expression that controls a $IFC
directive must be boolean. You can use all the Pascal operators in compile-time
expressions except IN and @. If you use the operator /, the Compiler will automatically
change it to DIV.

The $SETC directive
{SSETC id := comp-expr}

The $seTc directive declares a compile-time variable named id and assigns it the value

comp-expr.

The S$IFC directive
{$IFC comp-expr}

The s1Fc directive causes the Compiler to compile subsequent source text until the next
SELSEC or SENDC directive, only if the boolean value of comp-expris true.

You can write this directive in the form { $IFC UNDEFINED varname}. This will act like
{$IFC true} if varname has not yet been declared with a $sETc directive; otherwise,
it will act like {$IFC false}.

You can also write this directive { SIFC opTION (option-name)} to test the current
setting of Compiler options. For example, { SIFC OPTION (MC68881)} acts like
{$IFC true} if{sMc68881+} had been specified prior to the $IFC.

244 MPW 3.0 Pascal Reference

==

The SELSEC directive
{ $ELSEC}

The sELsEC directive marks the beginning of source text that is compiled only if the
value of the comp-expr controlling its corresponding $1Fc directive is false.

The SENDC directive
{ SENDC}

The $ENDC directive marks the end of a section of conditionally compiled source text,
matching a $1Fc directive.

Output control

The $Z+ directive

{$2*})

{$2+}

{$z-}

The Compiler identifies all routines and variables (other than those in a unit interface) to
the Linker as local (that is, not accessible from outside the program). By specifying sz+,
the programmer will force the Compiler to identify subsequent routines and variables as
external. The $z- command returns the Compiler to its default action. A subset of $z+ is
available: $z~* forces the Compiler to identify subsequent routines at the top nesting level
(and not variables) as external. Using $z+ increases the size of the code file substantially.

The $N+ directive

{$SN+}

{$N-} .

By default, all routines are identified to the Linker as anonymous. When $n+ is specified,
the Compiler passes the actual names of subsequent routines to the Linker. This can be
useful for tracking down link-time errors, as the Linker will be able to report the name of
the routine involved in the error. $N- returns the Compiler to its default behavior.

¢ Note: The $N+ directive operates on an entire source file; $ 2+ can be used in selected
areas of a source file. '

CHAPTER 13 Compiler Options and Directives

245

Other directives

The $A1 directive
{$21}

By default, the globai data for the interface and implementadon secdons of a unit is
allocated contiguously in memory. By specifying $A1 (1 is one) in the interface of a unit,
the programmer can allow the two data sections to be allocated noncontiguously.

The $AS5 directive
{$a5)

Normally, the global data of the main program is located immediately below register A5,
and all data references within this area are resolved by the Linker. By specifying sas ina
unit (before any interface data declarations), the programmer ensures that the unit data is
located immediately below register A5 and that references to that unit's data are resolved
by the Compiler. This is useful when most global data is declared in a separate unit. The
$as directive can only be used in a unit and only in one unit within a compilation.

The $E directive
{SE filename)

When the $E command is used, subsequent compile-time errors are sent to the file
specified; they are also echoed to standard diagnostic. By default, compile-time errors
are not sent to an error file. The filename specified must include the necessary prefixes;
none will be supplied by the Compiler. See the section “Shell Variable Substitution in
Filenames and Segment Names” above for more details on the $E directive.

The $K directive
{SK [dirmame] }

Normally, the symbol table resources of a unit will be stored in the resource fork of the
unit's source file. With the sk directive, if a directory is specified, symbol table resources
will be stored in a file with the same name as the unit it came from, but in the directory
dirname. If no directory is specified, symbol table resources will be stored in the unit's
source file. The sk directive differs from the -x compiler option in that it allows you to
specify which units will be stored in which directory. You may find the sk directive useful
if your units are in a location that cannot be written to. '

246 MPW 3.0 Pascal Reference

For example, you might use the $K directive while reading units from a file server. If you
give a $K directive and a directory name, the Compiler will read the source code on the file
server for the unit it is looking for. Then the Compiler creates a file with the same name as
the unit in the specified directory and will store and read the symbol table resources there.

The $P directive
{$P}

The sp directive tells PasRef to perform a page eject. For further information about
PasRef, see Appendix L.

The $PUSH and $POP directives

{ SPUSH}
{$POP}

The spusH directive allows you to save the current option settings.
The spop directive allows you to restore the saved option settings.

These directives are used with includes or with USE statements. It is an error to have more
{$PoP}s than ($PUSH}es.

CHAPTER 13 Compiler Options and Directives

247

Appendix A MPW 3.0 Pascal and Other Pascals

THIS APPENDIX CONTAINS BRIEF DESCRIPTIONS of the differences between MPW 3.0
Pascal, ANS Pascal, and MPW 2.0 Pascal. »

Contents

MPW 3.0 Pascal and ANS Pascal 251
Exceptions to the ANSI Standard 251
Extensions to ANS Pascal 252
Implementation-dependent features 252

MPW 3.0 Pascal and MPW 2.0 Pascal 253

249

MPW 3.0 Pascal and ANS Pascal

MPW 3.0 Pascal contains several exceptions and extensions to American National
Standard (ANS) Pascal, as described below.

Exceptions to the ANSI Standard

The MPW 3.0 Pascal Compiler complies with the requirements of ANSI/IEEE770X3.97-1983,
with the following exceptions:

Identifiers are limited to 63 characters.
The at symbol (@) is not equivalent to the caret ().

Values that are assigned to pointers can be obtained in ways other than from the New
procedure.

The range of 2 SET OF integer is limited to 0..2039.

The MPW 3.0 Pascal string type is stored as a one-byte-length field followed by the
characters in the string. The ANSI Standard string type is a PACKED ARRAY [1. . 7] OF
char. '

In MPW 3.0 Pascal, the type text is distinct from the type FILE OF char.The type
FILE OF char is a file whose records are of type char, containing char values that
are not interpreted or converted in any way during I[/O operations.

The procedures Pack and Unpack, described by Jensen and Wirth, are not supported.

The Standard comment delimiters () and (**) are used to allow comment nesting, so the
Standard comment delimiters {**) and (4 are not supported. :

APPENDIX A MPW Pascal 3.0 and Other Pascals

251 -

Extensions to ANS Pascal

In addition to the requirements of the Standard, this implementation of Pascal includes
the following extensions:

e Constant expressions are allowed in declarations an! indezes.
s Declarations can be written in any order.

a The Cycle statement is supported.

» The Leave statement is supported.

= Ranges are allowed in CASE statement tags.

» The Standard Apple Numeric Environment is supported.

s The Exit procedure is supported.

w The vertical bar (|) and the ampersand (&) operators are supported.
s Functions can return values of structured types.

® Univ parameters are supported.

= Type coercion techniques are supported.

s There are built-in bit manipulation routines.

s The exponentiation operator ** is supported.

s Units and the uses declaration are supported.

s Object Pascal is supported.

» The predefined constants maxlongint, pi, inf, maxcomp, minnormreal,
minnormdouble, minnormextended, compsecs, compdate, and comptime are
supported.

m The routines open, blockread, blockwrite, byteread, and bytewrite are
supported.

m The routines Arctanh, Cosh, Sinh, Tanh, Logl0, Expl0, ArcCos, Arcsin, and
Sincos are supported.

Implementation-dependent features

ANSI/IEEE770X3.97-1983 defines several requirements that are implementation-
dependent. The Standard uses the term implementation-dependent to describe a feature
that may differ between processors but that is not necessarily defined for any particular
processor.

252 MPW 3.0 Pascal Reference

The effect of using a feature of MPW 3.0 Pascal that is required by the Standard, but that
is implementation-dependent, is unspecified. Programs that use these features should not
depend on any specific course being chosen because the results may be unpredictable.
This leaves MPW free to choose the course that is most convenient at the time.

MPW 3.0 Pascal and MPW 2.0 Pascal

MPW 3.0 Pascal differs from MPW 2.0 Pascal in the following ways:

The MPW 3.0 Pascal Compiler no longer provides the command line option -z or the
Compiler directive $L.0AD.

The MPW 3.0 Pascal Compiler provides an automatic replacement for the $Loap
mechanism.

The MPW 3.0 Pascal Compiler provides a directive ($k) that controls the destination
of symbol table resources.

The MPW 3.0 Pascal Compiler provides the command line options -sym, -mbg,
-noload, -clean, -rebuild, -k, -h, -m, and -n.

The MPW 3.0 Pascal Compiler provides support for greater than 32K global data.

The MPW 3.0 Pascal Compiler imposes less strict requirements for forward class
references.

The MPW 3.0 Pascal Compiler allows character constants as valid string expressions.
The MPW 3.0 Pascal Compiler extends the ability to include symbols for MacsBug.

APPENDIX A MPW Pascal 3.0 and Other Pascals

253

| Appendix B Special Scope Rules

THIS APPENDIX DESCRIBES CERTAIN SCOPE RULES of MPW Pascal that are applicable
under special circumstances. = ‘

Contents

Scope of enumerated scalar constants 257
Scope of pointer base types 258

255

Scope of enumerated scalar constants

Consider the following program:

PROGRAM Cscopel;
CONST ten = 10;
PROCEDURE P;
CONST ten = ten; {This should be an error.}
BEGIN
Writeln(ten)
END;
BEGIN
P
END.

The constant declaration in procedure P should cause a Compiler error, because it is illegal
to use an identifier within its own declaration (except for pointer identifiers). However,
the Compiler does not detect errors of this kind. It assigns the value of the global
constant ten to the local procedure constant ten; the writeln statement therefore
writes the number 10.

A more serious anomaly of the same kind is illustrated by the following program:

PROGRAM Cscope2;
CONST red = 1;
violet = 2;
PROCEDURE Q;
TYPE arrayType = ARRAY[red..violet] OF integer;
color = (violet, blue, green, yellow, orange, red):; {Error?}
VAR arrayVar: arrayType;
c: color;
BEGIN
arrayVar([l] := 1;
c := red;
Writeln (Ord(c))
END;
BEGIN
Q
END.

Within the procedure Q, the global constants red and violet are used to define an array
index type, making ARRAY [red. .violet] equivalent to ARRAY[1..2].In the
declaration of the type color, the constants red and violet are locally redefined and

given the new ordinal values of five and zero. Hence the writeln statement writes the
number 5.

Using red in the declaration of color should cause a Compiler error, but it does not.

APPENDIX B Special Scope Rules

257

If the first statement of the main program, arrayvar (1] := 1, is replaced by the
statement arrayVar[red] := 1,a Compiler error will result because red is now an
illegal index value for arrayvar—even though arrayvar is of type arrayType, which
is defined as ARRAY [red. .violet].

To avoid this kind of problem, do not redefine constrr: ideptifiers o7 e:rzrated realar
types.

Scope of pointer base types

Consider the following program:

PROGRAM Pscopel;
TYPE 8 = 0..7;
PROCEDURE Makecurrent;
TYPE sptr = *s;
8 = RECORD
ch: char;
bool: boolean
END;
VAR current: s;
ptrs: sptr;
BEGIN
New (ptrs);
ptrs® := current {Compiler error here}
END;
BEGIN
Makecurrent
END.

This program declares a global integer subrange type s and also a local record type s.
Within the procedure Makecurrent, the type sptr is defined as a pointer to a variable
of type s, with the intention of referring to the local declaration of s. However, the
Compiler uses the global declaration of s. This produces the Compiler error shown in the
comment, because pt rs~ and current are assignment incompatible. To avoid this kind
of problem, you could redeclare the type s locally before using it in a nested block. The
more general solution, however, is to avoid redeclaring identifiers of pointer base types
altogether. :

258 MPW 3.0 Pascal Reference

Appendix C Reserved Words and the Character Set

THIS APPENDIX PROVIDES A COMPLETE LIST of the MPW Pascal reserved words and
the character set. =

Contents

Reserved words 261
The character set 261

259

Reserved words

AND DOWNTO IF NIL PROGRAM TYPE
ARRAY ELSE IMPLEMENTATION NOT RECORD UNIT
BEGIN END IN OF REPEAT UNTIL
CASE FILE INTERFACE OR SET USES
CONS'v FOR INTRINSIC® CTHERWISE STRING VAR
DIV FUNCTION LABEL PACKED THEN WHILE
DO GOTO MOD PROCEDURE TO WITH

* INTRINSIC is reserved for future use.

Reserved words appear in uppercase letters throughout this book. However, MPW Pascal
isn't case sensitive—corresponding uppercase and lowercase letters are equivalent.

The character set

The first two columns of the character set in Figure C-1 are nonprinting ASCII control
characters. Codes $D9 through $FF are reserved for future use.

APPENDIX C Reserved Words and the Character Set

261

The character set

First digit

3 4 5 6 7 8 9 A B CD
slalp] Tpli o slalel-
1{A|@|lalqgl|Ale]|z]||-
2|B|R|bjr{¢c|li|els]|~}|"
3|C|S|c|s|E]ije]=2]|V]|"
AlD|T|d|t|N|T]|§]|¥]|Tf.
5|E{Ule|u|O|T|eln]|=
6|F|V]t]lv]|U|a|n]lalal~+
7|16|Wlglwl|alsé|slz]|]
8|H|{X|h|x|a|o|®@|m|[»]y
elI|{Yll]yla|d]|®@|=x

Jlz|jlz|afoa|™|[|
Kl (lkf{(]aja]| |2]|A
<LV alal-]e|A
=(M[)[m|)|glul=[Ql|d
>IN|Aln}~|é|0|A | |C
210l _|ole|la|d|e]|

w— stands for a nonbreaking space, the same width as a digit.
The shaded characters cannot normally be generated from
the Macintosh keyboard or keypad.

m The light-shaded characters are not in all fonts.

262 MPW 3.0 Pascal Reference

Appendix D Syntax Summary

THIS APPENDIX COLLECTS THE SYNTAX DIAGRAMS found in this manual and shows
them in alphabetic order. See the Preface for an explanation of them. =

263

. actual parameter)
expression [

] variable
reference]

procedure
identifier Y

function” -
— identifier o

actual parameter list (actual
parameter

amay tpe ;
ARRAY “ OF type —

O |k

APPENDIX D Syntax Summary 265

assignment statement

base type

variable
access

b - - - ot

function
identifier

type identifier

. [
]

case

label
declaration
part

constant
declaration part

type
declaration
part

variable
declaration
part

procedure and function
declaration part

statement
part

constant
expression

expression

ST —

—()—

constant
expression

an
_/

266 MPW 3.0 Pascal Reference

statement

CASE statement O. .
CASE expression o

L l > > fEND
otherwise
o =V Lo

compound statement
BEGIN statement m

constant constant

expression

Y

constant declaration constant e 0
identifier

constant declaration part constant

CONST declaration l

APPENDIX D Syntax Summary 267

constant expression

constant factor

>

simple
constant
expression

268

unsigned

.
| o

-
>

constant

ﬁnabnd

all

{

set

construction

.@.,

constant
expression

NOT

constant
factor

simple
constant
expression

MPW 3.0 Pascal Reference

Y
\]

Y
v

constant identifier

constant term

constant

-

.

.

-

[

B

> identifier ——»

factor

DIV

199001

APPENDIX D Syntax Summary

269

control varigble

Cycle staiziizt

digit sequence

variable .
identifier

:f Cyde }—=———p
digit

r—

enumerated tpe O

expression

identifier

simple

expression

270 MPW 3.0 Pascal Reference

simple
expression

Sactor

variable

Y

field declaration

O

constant

unsigned

access

function
call

set

constructor

NOT

-O—

expression

factor

identifier

[ield designator

list

o e

type

fleld list

(O~

identifier

fixed

part

Y
Y
\/

variant
part

file buffer symbol =®_’

APPENDIX D Syntax Summary 271

== J-@ |

[inal value -
& expression

fixed part field
declaration

formal parameter list ‘/E\

U >
procedure 3
heading
function
™ heading [
FOR variable | value —}

=
DOWNTO

272 MPW 3.0 Pascal Reference

P Y

Sunction body

S
]
g
-

EXTERNAL y

constant
expression

Y
v

Junction call function .
™ identifier -
actual
parameter
list

function declaration | gyngrion _() | function ,(> \
heading body

object

type
Junction heading v
FUNCTION P—}

L i i > . type
identifier > :O—’ identifier T
formal ’
parameter

list

APPENDIX D Syntax Summary 273

GOTO statement

label —>

v

J 2 letter <

hex digit secirence A ! hax - _5
identifier
- letter
underscore
identifier list
identifier

digit <

“— underscore je—

IF statement
———.C IF)—-» expression

—o< THEN }-—» statement

v
v

274 MPW 3.0 Pascal Reference

statement

o

implementation part

index

index type

'\IMPLEMENTATION)

constant
declaration

part

type
declaration

part

variable
declaration

part

procedure and function
declaration part

expression

ordinal

initial value

type

expression f—w-

APPENDIX D Syntax Summary

275

276

interface pant e
INTERFACE

~—

. USES
© clause

constant
dedlaration

part

type
> declaration

part

variable

dedlaration
part

procedure and function

dedaration part

digit

label declaration part

sequence

Leave statement

LABEL

label

member group

Leave

MPW 3.0 Pascal Reference

expression

expression

\

method list

method o
heading J >
OVERRIDE
i
(N J
)
object
type
identifier

object type] [

olherwise clause

Y
v

parameter declaration

Y

=D L

list list

ommns@-—

statement

pointer symbol @_.

Dpointer type

identifier

method I

Y

END

univ

(D)

e E]

pointer
- . type

_ identifier

type
identifier

APPENDIX D Syntax Summary

277

Drocedure and function declaration part

procedure body

Y

Drocedure declaration

Dprocedure

procedure _,@_.
heading

object '
type

heading
PROCEDURE

278 MPW 3.0 Pascal Reference

constant > >
expression
procedure _,@_,
body
identifier S
formal
parameter
list

procedure siatement procedure

block

v

™1 identifier —
actual
parameter
program program . -—
"1 heading J
USES
clause
ram headin,
prg c »{ program identifier
program
parameters
program paramelers . ider.niﬁer
list
qualifier .
- index —
field
designator v
file
i buffer
symbol /
] pointer
symbol

quoted character constant

, ' string
character

-0

APPENDIX D Syntax Summary

279

quoled string constant

.

O

real
i » type >
identifier
real-type numbers
= J- @0
P _J
- digit .
sequence

L string l ___]
ctaracte: il

e e

o)—
-/

digit _J

sequence

280 MPW 3.0 Pascal Reference

(O~

digit
sequence

digit
sequence

sign

field
list

Y

G

v

REPEAT statement

scalar type subrange
type

enumerated

type

fy

statement

ordinal
> ype
identifier

expression |—ap

set constructor @

member
group

set type

sign
-®

CI)

ordinal
type

APPENDIX D Syntax Summary 281

simple constant expression

constant

\— sign

b e

o term

\J

)

g

simple expression _
L sign J
simple type csalar]
type
- real
“type
o string —
type
Size a“ﬂbule constant
expression »

282 MPW 3.0 Pascal Reference

=

Statement

statement part

assignment
statement

compound
statement

procedure
staternent

FOR
statement

WHILE
statement

REPEAT
statement

IF
statement

CASE
statement

GOTO
statement

Cycle
statement

Leave
statement

WITH
statement

NULL
statement

compound
statement

A

APPENDIX D Syntax Summary

283

string character

any char except @ or Return

N— N
siring type size
»(STRING | ambue ——
string
type y
identifier
structured type armay
—- type >
set [§
PACKED
(e) -
file A
type
record
4 [ype
structured A
type
identifier
object
— type g
identifier
subrange type constant constant
expression | expression ’

284 MPW 3.0 Pascal Reference

tag field type

ordinal

lerm

identifier

v

factor

o simple

type declaration

structured

pointer

object

v

#1 identifier r—»@—u type

O

APPENDIX D Syntax Summary

285

bpe declaration part ‘ type
TYPE declaration

unit | unit interface
heading part

unit heading UNIT identifier

unsigned constant unsigned
number

quoted
string
constant

constant
identifier

GO

unsigned number

digit sequence

o hex digit sequence

286 MPW 3.0 Pascal Reference

USES clause

idéntiﬁer
list

USES
variable access variable
identifier
function
call
variable declaration identifier
variable declaration part
VAR
lable identy
variable identifier idenuifier

|
list —’Q—’ pe

qualifier

variable
declaration

variani part

- SE)

N

y

identifier

L 28
‘ field

type

APPENDIX D Syntax Summary

287

WITH statement h

WHILE statement JW P-‘IE)—’]
expression
A P C

288

record
> variable

MPW 3.0 Pascal Reference

access

object
reference
variable access

| 8

)—u statement |

statement

+

Appendix E MPW 3.0 Pascal Files

THIS APPENDIX CONSISTS OF A LIST OF THE FILES CONTAINED on the MPW 3.0 Pascal
disk: MPW 3.0 Pascal.

& Note: For the latest list of MPW Pascal files, consult the MPW 3.0
Pascal release letter. =

Contents

Pascal compiler and tools 291
PExamples folder 291
PInterfaces folder 291
PLibraries folder 293

P i‘*_

Pascal compiler and tools

Pascal
PasMat
PasRef

Pascal Compiler
Pascal print formatter (“pretty printer”)
Pascal cross-referencer

PExamples folder

Fstubs.a
Instructions
MakeFile
Memory.p
Memory.r
ResEd.p
ResEd68K.a
ResEqual.p
ResEqual.r
ResXXXXEd.p
Sample.p
Sample.r
TestPerf.p

Dummy library routines that override those not used by MPW tool
Instructions for building example program
Makefile for Sample program

Sample MPW tool

Resource description file for Memory.p
Routines for extending ResEdit

Routines for extending ResEdit

Sample MPW tool

Resource description file for ResEqual.p
Sample resource editor

Sample application

Resource description file for Sample.p
Sample Performance tool

PInterfaces folder

AppleTalk.p
Controls.p
CursorCtl.p
Desk.p
DeskBus.p

Devices.p
Dialogs.p
DisAsmLookup.p
DiskInit.p
Disks.p

AppleTalk interface

Control Manager interface

MPW cursor-control interface

Desk manager interface

Apple Desktop Bus Manager interface

Device Manager interface
Dialog Manager interface
SADE and MacsBug symbols

Disk Initialization Package interfaces

Disk Driver interfaces

APPENDIX E MPW Pascal 3.0 Files

291

ErrMgr.p
Errors.p
Events.p
Files.p
FixMath.p

Forts.p
Graf3D.p
HyperXCmd.p
IntEnv.p
Lists.p

MacPrint.p
Memory.p
MemTypes.p
Menus.p
Notification.p

ObjIntf.p
OSEvents.p

OSIntf.p

OSUtils.p
Packages.p
PackIntf.p
PaletteMgr.p
Palettes.p

PasLibIntf.p
Perf.p
Picker.p
PickerIntf.p
Printing.p

PrintTraps.p
QuickDraw.p
Resources.p
Retrace.p
ROMDefs.p

292

MPW Error Manager interface

Error file

Event Manager interfaces

File Manager interfaces

Interface for fixed-point mathematics routines

Frat Menager interfacs

3-D graphics interface

HyperCard XCmd interfaces

Integrated Environment (MPW tool) interface
List Manager interface

Printing interface—includes Printing.p
Memory Manager interface

Common types—includes Types.p
Menu Manager interfaces

Notification Manager

Object Pascal support
OS Event Manager interfaces

Operating system interfface—includes
OSUtils.p, Events.p, Files.p, Devices.p,
DeskBus.p, DiskInit.p, Disks.p,

Errors.p, Memory.p, OSEvents.p, Retrace.p,
Segload.p, Serial.p, Shutdown.p, Slots.p,
Sound.p, Start.p, and Timer.p

Operating System Utilities interfaces
Package Manager interfaces

Packages interface—includes Packages.p
Palette Manager—includes Palettes.p
Palette Manager interfaces

Pascal Library interface

Pascal Performance tools

Color Picker Manager interfaces
Color Picker Manager—includes Picker.p
Alternate printing interface

Preferred printing interface
QuickDraw interface

Resources Manager interfaces
Vertical Retrace Manager interfaces
ROM definitions

MPW 3.0 Pascal Reference

SANE.p
Scrap.p
Script.p
SCSLp
SCSIIntf.p

Segload.p
Serial.p

Shutdown.p
Signal.p
Slots.p
Sound.p
Start.p

Strings.p
SysEqu.p
TextEdit.p
Timer.p
Toollntf.p

ToolUtils.p
Traps.p
Types.p
Video.p
Videolntf.p
Windows.p

SANE numerics interface

Scrap Manager interfaces
International writing interface
SCSI Manager interfaces

SCSI intefface—includes SCSLp

Segment Loader interfaces
Serial Driver interfaces

Shut Down Manager interfaces

Signal-handling interface (talks with C-style interface)
Slot Manager interfaces

Updated Sound Manager interface

Start Manager interfaces

String conversion utilities

Low-memory globals

Text Edit interfaces

Time Manager interfaces

Macintosh toolbox intefface—includes
ToolUtils.p, Events.p, Controls.p, Desk.p,
Windows.p, TextEdit.p, Dialogs.p, Fonts.p,
Lists.p, Menus.p, Resources.p, Scrap.p

Toolbox Utilities interfaces

Trap codes

Common types

Video interface

Video interface—includes Video.p
Window Manager interface

PLibraries folder

PasLib.o

SANELib.o

SANELib881.0

Pascal language library, including built-ins
and /O

SANE numerics library

SANE numerics library for use with
-Mc68881 Compiler option

APPENDIX E MPW Pascal 3.0 Files

Appendix F Pascal and C Calling Conventions

THIS APPENDIX DESCRIBES THE TREATMENT of different kinds of parameter and
function results by the Pascal Compiler. It covers all the basic data types and
discusses C interfacing. =

Contents

External calling conventions 297
Parameters 297
Real type parameters 297
Structured type parameters 298
Function results 299
Register conventions 302
C calling conventions 302
C parameters 302
C function results 302
C register conventions 303
Interfacing C functions to Pascal 303
Examples of functions declared with the C directive 305

‘1\\“ o

External calling conventions

This section describes the treatment of parameters, function results, and register
conventions.

Parameters

Parameters are evaluated from left to right and are pushed onto the stack in that order as
they are evaluated. The called procedure is responsible for removing the parameters from
the stack. All vaR parameters are passed as pointers to the actual storage location. Note
that in cases of byte-wide parameters, the pointer may have an odd value.

Non-vaR parameters are passed in the following ways, depending upon the type of the
parameter. Values of type boolean, elements of an enumerated type with fewer than 128
elements, and subranges within the range -128..127 are passed as signed byte values. (They
are pushed as bytes; the 68000 allocates two bytes for each byte on the stack.) The called
procedure expects boolean parameters to be in the range 0..1.

Values of types integer and char and all other enumerations and subranges are passed
as signed word values. Pascal char values are expected to be in the range 0..255; the
upper half of this range is used for special characters. Pointers and 1ongint values are
passed as signed 32-bit values.

Real type parameters

Values of types real, double, comp, and extended are passed as pointers to
extended values. The Compiler does this in a reentrant way by allocating a temporary
location in the caller’s activation record, converting the parameter value to an extended
value in this location and passing a pointer to this location. The called procedure then
allocates a local location of the declared type and converts the extended value, using the
pointer, into the location and type.

APPENDIX F Pascal and C Calling Conventions

297

Structured type parameters

Arrays, strings, and records whose size is less than or equal to four bytes are passed by
pushing their value (either a word or a long) onto the stack. Larger arrays, strings, and
records (as well as extended values, as mentioned above) are passed as a pointer to the

value; for reevty purpcsze, L, Tongloi it codl

value to a local storage locauon

N

Sets are passed by rounding the set size up to the next whole word, if necessary, then
pushing the set value so that the lowest-order word is pushed last. In the case of a byte-
width set, the called procedure will only access the low-order half of the word pushed.

s TableF-1 Parameter passing conventions

Parameter type Pascal caller Pascal receiver

boolean Pushes byte: Accesses byte: range 0..1
range 0..1

enumeration: Pushes byte: Accesses byte: range 0..127

range 0..127 range 0..127

enumeration Pushes word: Accesses word: range 0..255

range 0..255 range 0..255

enumeration: Pushes word: Accesses word: range

range 0..32767 range 0..32767 0..32767

char Pushes word: Accesses word: range 0..255
range 0..255

subrange: Pushes byte: Accesses byte: range

range -128..127 range -128..127 -128..127

subrange: Pushes word: Accesses word: range

range -32768..32767 range -32768..32767 -32768..32767

integer Pushes word: Accesses word: range
range -32768..32767 -32768..32767

longint Pushes long Accesses signed long value

pointer Pushes long Accesses long

real Converts t0 extended, Converts extended on stack

pushes address of
extended

298 MPW 3.0 Pascal Reference

to local real, accesses local
value

(Continued)

s TableF-1 (Continued) Parameter passing conventions

Parameter type Pascal caller Pascal receiver

double Converts t0 extended, Converts extended on stack
pushes address of to local doubl.e, accesses
extended locai value

comp Converts to extended, Converts extended on stack
pushes address of to local comp, accesses local
extended value

extended Pushes address of Copies extended to local
extended extended, accesses local value

ARRAY, RECORD, Pushes value (word or Accesses value (word or long)

STRING < four bytes long)

ARRAY, RECORD, Pushes address of value Copies value to local,

STRING > four bytes accesses local

SET Pushes set value rounded Accesses value on stack

to whole number of words

(Note: Use word or long for
those sizes; accesses
low-order half of word for
byte-size set.)

Function results

Function results are returned by value or by address on the stack. Space for the function
result is allocated by the caller before the parameters are pushed. The caller is responsible

for removing the result from the stack after the call.

For types boolean, char, and integer, and enumerated and subrange types, the caller
allocates a word on the stack to make space for the function result. Values of type
boolean, enumerated types with fewer than 128 elements, and subranges within the range
-128..127 are returned as signed byte values. The value goes in the low-address byte, which
is the most significant byte of the word. The calling procedure expects boolean results
to be in the range 0..1.

Integer and char values and all enumerated and subrange types not covered above are
returned as signed word values. Pascal char values are expected to be in the range 0..255;
the upper half of this range is used for special characters.

APPENDIX F Pascal and C Calling Conventions

For pointers, longint, and the real types, the caller allocates a long on the stack to make
space for the function result. Pointers and 1ongint values are returned as signed 32-bit
values. Values of type real are returned as 32-bit real values. For double, comp, and
extended types, and for sets, arrays, strings, and records greater than four bytes in size,
the caller pushes a pointer to a temporary location.

For one-byiz sets and "y zi:n 7z, strings, a7 icconds whose size is one wosd, e caller
allocates a word on the stack. For sets, arrays, strings, and records whose size is two
words, the caller allocates a long word on the stack. One-byte sets are returned as a byte
value. Sets, arrays, strings, and records whose sizes are one or two words are returned as
either a word or a long word.

300 MPW 3.0 Pascal Reference

= Table F-2 Function result passing conventions

Result type Pascal caller Pascal receiver After the call

boolean Allocates Returns byte value: Pops byte
word range 0..1

enumeration: Allocates Returns byte value: Pops byte

range 0..127 word range 0..127

enumeration: Allocates Returns word value: Pops word

range 0..32767 word range 0..32767

char Allocates Returns word value: Pops word
word range 0..255

subrange: Allocates Returns byte value: Pops byte

range -128..127 word range -128..127

subrange: Allocates Returns word value: Pops word

range -32768..32767 word range -32768..32767

integer Allocates Returns word value: Pops word
word range -32768..32767

longint Allocates Returns long word Pops long word
long word value: range—signed

32 bits

real Allocates Returns real value Pops real value
long word

double Pushes Puts double result in Pops temporary
address temporary address, accesses
of double temporary value
temporary

(Continued)

= Table F-2 (Continued) Function result passing conventions

Result type Pascal caller Pascal receiver After the call

comp Pushes Puts double result in Pops temporary
address temporary address, accesses
of comp temporary value
temporary

extended Pushes Puts extended result Pops temporary
address of in temporary address, accesses
extended temporary value
temporary

ARRAY,STRING, Allocates Returns word or long Pops word or

RECORD <4 bytes word or word long word
long word

ARRAY, STRING, Pushes Puts result in Pops temporary

RECORD > 4 bytes address of temporary address, accesses
temporary : temporary value

SET: one byte Allocates Returns byte value of Pops byte
word result '

SET: one word Allocates Returns word value of Pops word
word result

SET: two words Allocates Returns long word Pops long word

SET >two words Pushes address Puts result in Pops temporary
of temporary temporary address, accesses

temporary value

& Note: Pascal does not assume any initial value for memory space allocated to a

function result unless it is a pointer to a type that occupies more than four bytes of

memory.

APPENDIX F Pascal and C Calling Conventions

301

Register conventions

Registers DO, D1, D2, A0, and A1 are considered scratch registers and are not preserved
across procedure calls. All other registers are preserved by the called routine. Register A5 is
the global data pointer, register a6 the local frame pointer.

C calling conventions

This section describes the treatment of C parameters, C function results, and C register
conventions.

C parameters

Parameters to C functions are evaluated from right to left and are pushed onto the stack
in the order they are evaluated. Characters, integers, and enumerated types are passed as
sign-extended 32-bit values. Pointers and arrays are passed as 32-bit addresses. Types
float, double, comp, and extended are passed as extended 80-bit values (or as 9%6-
bit values for -Mc68881). Structures are also passed on the stack. Their size is rounded
up to a multiple of 16 bits (2 bytes). If rounding occurs, the unused storage has the highest
memory address. The caller removes the parameters from the stack.

C function results

Characters, integers, enumerated types, and pointers are returned in register DO using as
many significant bits as are required by the type of the result. Types £1oat, double,
comp, and extended are retumed as ext ended values in registers D0, D1, and A0 (or
FPo for -Mc68881). The low-order 16 bits of D0 contain the sign and exponent bits,
register D1 contains the high-order 32 bits of the significand, and register A0 contains the
low-order 32 bits of the significand. Structure values are returned by moving the value into
a location, the address of which is passed to the routine as if it were the first parameter
(that is, on top of the stack before the JsR). This scheme differs from MPW C 2.0.

302 MPW 3.0 Pascal Reference

C register conventions

Registers DO, D1, D2, A0, and A1 (and FPO, FP1, FP2, and FP3 for -mc68881) are scratch
registers that are not preserved by C functions. All other registers are preserved. Register
as is the global frame pointer, register A6 is the local frame pointer, and register A7 is the
stack pointer. Local stack frames are not necessarily createc for simple functions, except
when debugger symbol information is being preserved. This scheme differs from MPW C
2.0.

Interfacing C functions to Pascal

Access to routines implemented in C is obtained by declaring the equivalent procedures or
functions as “c; EXTERNAL; " in the Pascal source text. Such procedures may then be
called using a normal Pascal calling sequence (with some caveats shown in Table F-3). The
Pascal Compiler arranges the parameters to the C methodology automatically.

Follow the guidelines shown in Table F-3 when using the “c; EXTERNAL; " directives.

s TableF-3 C-compatible Pascal types

C type Pascal type

boolean (typedef) boolean (Note: Only function result values of zero or one
will be interpreted correctly by Pascal. Some C functions may
return other values.)

enum ~ enumerated (Note: If the enumerated type does not have
contiguous values, “dummy” values will need to be declared
in Pascal.) '

char -128..127 subrange (Note: If the intention is to denote the

extended Macintosh character set, the result may have to be
“nomalized” by adding +256 to negative values. One would
also do this to convert to the Pascal type char.)

unsigned char char
short integer

(Continued)

APPENDIX F Pascal and C Calling Conventions

= Table F-3

(Continued) C-compatible Pascal types

C type

Pascal type

unsigned short

float
double
comp
extended

L X*

Char*
int,long
unsigned int,
unsigned long

struct
union
array

unsigned char
unsigned short

unsigned long

longint (Note: This must be a Longint because of Pascal’s
range checking. Pascal does not have an unsigned integer

type.)

real

double

comp

extended

VARof X' or pointerto X', where x' is the Pascal type
corresponding to the C type x. Also may convert to
pointer to array of x* when C intends an array to be
passed.

pointer to ARRAY OF char

longint

longint (Note: If the C declaration is unsigned long,
then negative values of C function results will be interpreted
incorrectly by the receiver.)

RECORD

variant RECORD

ARRAY (Note: C function results of type ARRAY are not
allowed.)

sET OF 0..7 (or byte size)

seT oF 0..15 (or word size)

seT oF 0..31 (or long size)

Note: Use of the type STRING in Pascal declarations of C functions is not supported.

304 MPW 3.0 Pascal Reference

Examples of functions declared with the C directive

C function Pascal declaration
int scani(t) char t; TYPE signedByte = -128..127;
FUNCTION scani(t: signedByte): longint; C,
EXTERNAL;
char expos(d, 1i) FUNCTION expos(d: double; VAR i: longint):
double d; int*i; signedByte; C; EXTERNAL

APPENDIX F Pascal and C Calling Conventions 305

Appendix G The SANE Library

THIS APPENDIX DESCRIBES THE STANDARD APPLE NUMERIC ENVIRONMENT (SANE)
and the routines contained in the SANE libraries SANELib.o and SANELib881.0. It
contains two parts:

s a discussion of the data types provided by SANE

s a description of each of the types, procedures, and functions contained in
the SANE libraries

SANE is the basis for floating-point mathematical calculations performed by
MPW Pascal. It meets all requirements for extended-precision floating-point
arithmetic as prescribed by IEEE Standards 754 and 854. It ensures that all
floating-point operations are performed consistently and that they return the
most accurate results possible.

SANE provides an easy-to-use, flexible environment for floating-point
calculations. It gives you extremely accurate results without extra coding. You
can write standard ANS Pascal programs using only the real type and be
confident that your results are as accurate as possible within that format.

If you are interested in precision beyond that possible using only the real type,
you can use the other floating-point types provided as an extension to Pascal by
SANE. In addition, the SANE library contains numerical functions not found in
standard Pascal and routines for controlling the environment in which floating-
point calculations are performed.

For complete details about SANE, see the Apple Numerics Manual. For
information about the Macintosh ROM routines that perform fixed-point
calculations, see Inside Macintosh, Volume 1, Chapter 16, and Volume 4,
Chapter 12. .

This appendix discusses the version of SANE that is available on all Macintoshes.
On Macintoshes with a 68020 and 68881 (like the Macintosh II), the SANE
packages can call the 68881 for basic arithmetic functions. This appendix also
provides information on the 68881 transcendental functions.

See “SANE and the 68881” later in this appendix and Chapter 13. =

APPENDIX G The SANE Library 307

Contents

The SANE data types 311
Descriptions of the types 311
Choosing a data type 311
Values represented 312

Range and precision of SANE types 312
Example 313
The single type 314
The double type 314
The comp type 315
The extended type 315

Extended arithmetic 316
Special cases 317
Number classes 318 -

Infinities 318
NaNs 318
Denormalized numbers 320
Exceptional conditions 320

Invalid operation 320
Underflow 321
Overflow 321
Divide-by-zero 321
Inexact 321

The SANE environment 321

The SANE interfaces and libraries 322

Descriptions of constants and types 322

The DecStrLen constant 322

Exception condition constants 322

The DecStr type 323

The DecForm record type 323

The RelOp type 324

The NumClass type 324

The Exception type 324

The RoundDir type 325

The RoundPre type 325

The Environment type 325
Numeric procedures and functions 326

Conversions between numeric binary types 326 i
The Num2Integer and Num2Longint functions 326

The Num2Extended function 327

Conversions between decimal strings and binary 327

The Num2Str procedure 328

MPW 3.0 Pascal Reference

The Str2Num function 328
. Arithmetic, auxiliary, and elementary functions 328
The Remainder function 328
The Rint function 329
The Scalb function 329
The Logb function 329
The CopySign function 329
The NextReal function 329
The NextDouble function 330
The NextExtended function 330
The Log2 function 330
The Ln1 function 330
The Exp2 function 330
The Expl1 function 330
The Xpwil function 331
The XpwrY function 331
Financial functions 331
The Compound function 331
The Annuity function 331
Trigonometric functions 332
The Tan function 332
Additional transcendental routines 332
The Arctanh function 332
The Cosh function 332
The Sinh function 333
The Tanh function 333
The Logl0 function 333
The Expl0 function 333
The Arccos function 333
The Arcsin function 333
The SinCos procedure 333
Inquiry functions 334
The ClassReal function 334
The ClassDouble function 334
The ClassExtended function 334
The ClassComp function 335
The SignNum function 335
The RandomX function - 335
The NaN function 335
The Relation function 335
Environmental access procedures and functions 336
The rounding direction 336
The GetRound function 336

APPENDIX G The SANE Library

The SetRound procedure 337

Rounding precision 337
The GetPrecision function 337
The SetPrecision procedure 337

Exceptions 338
The SetException procedure 339
The TestException function 339

Using exceptional conditions to hslt a program 247
The TestHalt function 34C
The SetHalt procedure 340

Halts and the 68881 340

Saving and restoring environmental settings 341
The GetEnvironment procedure 341
The SetEnvironment procedure 342
The ProcEntry procedure 342
The ProcExit procedure 343

Support for the 68881 343

SANE and the 68881 344
More about the 68881 345
Register usage 345
Converting between extended formats in mixed-world programs 346

310 MPW 3.0 Pascal Reference

- The SANE data types

The original specification for Pascal called for only one data type for use with floating-
point numbers: the real type. MPW Pascal extends the language with four types:
single, double, extended, and comp.

© Note: The ANSI Standard specifies that any implementzation of Pascel that mests its
requirements must include a type named real. The MPW Pascal single type and the
ANS Pascal real type are synonymous. The body of this manual refers to the real
type, while the same type is often referred to as single in this appendix. The MPW
Pascal Compiler will accept either of these terms and treats them in exactly the same
way.

Descriptions of the types

The single type is the smallest format for use with floating-point numbers. It stores
floating-point numbers using 32 bits of storage.

The double type is twice the size of the single type. It uses 64 bits for storage.

The extended type is larger yet—it uses an 80-bit format. All arithmetic involving real-
type values is done using the extended type. The extended type occupies 96 bitswhen
the -Mc68881 option is invoked.

The comp type stores integral values in a 64-bit format. It's classified as a real type
because extended precision arithmetic is done with operands of type comp and uses the
extended type. Results assigned to a variable of type comp are converted from
extended.

The single, double, and extended types are defined by the IEEE Standard.

Choosing a data type

Typically, picking a data type requires that you determine the trade-offs among
» fixed-point and floating-point form

s precision

s fange

= memory usage

The precision, range, and memory usage for each SANE data type are shown in
Table G-1.

APPENDIX G The SANE Library

n

Many programs require a counting type that counts things (pennies, dollars, widgets)
exactly. Using SANE, you can write a program that deals with monetary values by
representing these values as integral numbers of cents or mils, which can be stored exactly
in the comp type. The sum, difference, or product of any two comp values is exact if the
magnitude of the result does not exceed 263 -1 (that is, 9223372036854775807). In
addition, comp values (for example, the results of accounting computations) can be
mixed with ext ended values in floating-point computations (such as compound
interest).

Arithmetic with comp type variables, like all SANE arithmetic, is done internally using the
extended type for arithmetic. There is no loss of precision, as conversion from comp to
extended is always exact. You can save space by storing numbers in the comp type,
which is shorter than extended.

Values represented

The floating-point types (single, double, and extended) store binary
representations of a sign (+ or -), an exponent, and a significand. A represented number
has the value

+ significand = 2exponent

where for normalized numbers, the significand has a single bit to the left of the binary
point (that is, 0 < significand <2).

Range and precision of SANE types

The range and precision of the real types supported by SANE and MPW Pascal are shown in
Table G-1. Decimal ranges are expressed as chopped two-digit decimal representations of
the exact binary values.

312 MPW 3.0 Pascal Reference

s Table G-1 SANE data types

Type identifier Single Double Comp Extended*
Size (bytes:bits) 4:32 8:64 8:64 10:80*
Binary exponent range

Minimum -126 -1022 — -16383
Maximum 127 1023 — 16383
Significand preciz’on)

Bits 24 53 63 o4

Decimal digits 7-8 15-16 18-19 19-20
Decimal range

(approximate)

Min negative = -3.4E+38 -1.7E+308 -9.2E18 -1.1E+4932
Max negnormm -1.2E-38 -2.3E-308 -1.7E-4932
Max neg denorm -1.5E-45 -5.0E-324 -1.9E-4951
Min pos denorm 1.5E-45 5.0E-324 1.9E-4951
Min pos norm 1.2E-38 2.3E-308 1.7E-4932
Max positive 3.4E+38 1.7E+308 =9.2E18 1.1E+4932
Infinities Yes Yes No Yes

NaNs Yes Yes Yes Yes

*When ~-MC68881 is invoked, the extended bpe occupies 12 bytes, or 96 bits. There are no
other changes in the data types in this table. See Appendix N for more information.

Example

Using the single type, the largest representable number has

significand = 2 - 2-23

= 1.11111111111111111111111,
exponent = 127
value = (2 - 2723) * 2127

= 3.403 * 1038

the smallest representable positive normalized number has

significand = 1
exponent = -126
value =1 * 2-126

1.175 * 10-38

1.00000000000000000000000,

APPENDIX G The SANE Library

313

and the smallest representable positive denormalized number has

significand = 2723
= 0.00000000000000000000001,
exponent - = -126
value = 2723 » 27126
= 1.401 * 10745
The single type

A 32-bit single number is divided into three fields:

1 8 3
s| e f
msb Isb msb Isb

The value v of the number is determined by these fields:

If0<e<255, then v= (-1)s* 2e-120* (1,f),
Ife=0and f#0, then v = (<1)s*2¢129 * (0.f).
Ife=0and f=0, then v = (-1)*0.

Ife=255and f=0, then v = (~1)5* oo,
Ife=255and f#0, then v is a NaN.

The double type
A 64-bit double number is divided into three fields:

1 1 52

s| e f .
msb Isb msb Isb

The value v of the number is determined by these fields:

If 0 < e < 2047, then v = (<1)s*2(e-102) * (1 f),
Ife=0and f#0, then v = (~1)*26102) * (0.f).
Ife=0and f=0, then v=(-1)**0.

If e= 2047 and f=0, then v = (~1)s* oo,
Ife=2047and f#0, then visa NaN.

314 MPW 3.0 Pascal Reference

The comp type

A 64-bit comp number is divided into two fields:

1 63
s d
msb Isb

The value v of the number is determined by these fields:

Ifs=1andd=0, then vis the unique comp NaN.
Otherwise, v is the 2's-complement value of the 64-bit representation.

The extended type

An 80-bit extended format number is divided into four fields:

1 15 1 63
s e { f

msb lsb msb Isb
The value v of the number is determined by these fields:

If0 < e< 32767, then v = (~1)s = 2e-16383) * (5.),
Ife=32767and f=0, then y=(~1)= e, regardless of 5.
Ife=32767and f#0, then vis a NaN, regardless of 1.

The 96-bit ext ended format used when -Mc68881 is invoked differs from the 80-bit
format only in the inclusion of 16 bits of unused space.
16 unused
1 15 bits 1 63
s e 2 o f
msb Isb msb . Isb

APPENDIX G The SANE Library

315

Extended arithmetic

While the MPW Pascal types single, double, and comp are intended for economical
data storage, the extended type is the foundation for all arithmetic computation. As
specified by the IEEE Standard, all basic arithmetic operations, including addition,
subtraction, multiplication, division, and square root extraction, yield the best possible
results. In MPW Pascal, these operations produce extended results, so they are accurate
to a precision of 19 decimai digits throughout # range cxceeding 10490 r¢ 16+

MPW Pascal takes advantage of extended arithmetic by storing all noninteger numeric
constants in the extended format and by evaluating all noninteger numeric expressions
to extended, regardless of the types involved. For example, the entire right side of the

assignment below will be computed in extended before being converted to the type of

the left side:

VAR
x, a, b, c: real;
BEGIN

x := (b+sqrt (b*b-a*c))/a;

END.

With no special effort by the programmer, MPW Pascal performs computations using the
precision and range of the extended type. Extra precision means smaller roundoff errors
so that results are more accurate, more often. Extra range means overflow and underflow
are less common so that programs work more often.

By following a few simple programming practices, you can exploit the extended type
beyond what MPW Pascal does for you automatically.

Declare variables used for intermediate results to be of type extended. This practice is
illustrated in the following example, which computes a sum of products:

VAR

Sum: real; .

X, Y: ARRAY[1l..n] OF real;

I: integer; .

T: extended; {to hold intermediate results}
BEGIN

T := 0.0;

FOR I :=1 TOn DO T := T+X[I]*Y[I]:;

Sum := T;

END.

316 MPW 3.0 Pascal Reference

Had T been declared rea1, like the input arrays x and v and the result sum, each time
through the loop the assignment to T would have caused a roundoff error at the limit of
single precision. In the example, all roundoff errors are at the limit of extended
precision, except for the one caused by the assignment of T to Sum. This means roundoff
errors will be less likely to accumulate to produce an inaccurate result.

Declare formal value parameters and function results to be of type extended, rather than
real, double, Of comp. This saves MPW Pascal from having to do unnecessary
conversions between numeric types, which may result in loss of accuracy. The example
below illustrates this practice.

FUNCTION Area(Radius: extended): extended;
BEGIN

Area := Pi*Radius*Radius

END;

Special cases

Although use of the extended type makes programs work more often, exceptional cases
do arise. Your programs may contain statements like these:

Average := Sum/Count;

Area := Side*Side;

where all the variables are of type rea1. What happens if Count is zero, if Count and
sum are both zero, or if the product of side*side is too large to be represented in the
real format?

MPW Pascal assigns special values to Average and Area, and your program continues. In
fact, the IEEE Standard refers to “exceptions” rather than “errors” and specifies “no halts”
as the default mode of operation for its arithmetic. If you need to re-install the IEEE
defaults, you would use this statement:

SetEnvironment (IEEEDefaultEnv) ;

Note that the Environment type is not the integer type when the -MCc68881 option
is invoked, so the older usage, SetEnvironment (0), will no longer work with this
option. For compatibility, SetEnvironment (IEEEDefaultEnv) works correctly
regardless of the setting of the -Mc68881 option.

The SANE library also contains functions and procedures for determining when
exceptional cases occur.

APPENDIX G The SANE Library 317

Number classes

Representations in the SANE data formats fall into five classes:

» normalized numbers—like 3.0, 75.8, -2.3¢78, and all others that can be represented
- with a leading significand bit of 1

s zero—+) and

e infinities—positive and negative infinity

a Naivs —shoii for ot a Humber

s denormalized numbers—nonzero numbers that are too small for normalized
representation

Infinities

Infinities are special SANE representations that can arise in two ways from operations on
finite values:

s When an operation should produce an exact mathematical infinity (such as 1/0), the
result is an infinity.

s When an operation produces a number with magnitude too great for the number’s
intended floating-point format, the result may (depending on the current rounding
direction) be an infinity.

MPW Pascal predefines the constant inf to have the value positive infinity. The string
constant inf also represents infinity for input and output of floating-point values.
Infinities behave like mathematical infinities; for example, 1 - inf =-inf. Infinities can
be helpful even when “infinity arithmetic” is not the goal; for example, if x * x is too
large for the extended format, the expression 1 + 1/(x * X) still computes to the
correct value of one (assuming overflow halts are off).

Try this:

PROGRAM UseInf;

USES SANE;

VAR
X: extended;

BEGIN
X := 1e4000;
Writeln ('X*X="',6X*X);
Writeln('1l/ (X*X)="',1/(X*X))
Writeln('1+1/ (X*X)="',1+1/ (X*X))
END.

NaNs

Another special SANE representation is 2 NaN (Not a Number). A NaN is produced
whenever an operation cannot yield a meaningful numeric result. For example, 0/0 and
sqrt (-1) produce NaNs.

- 318 MPW 3.0 Pascal Reference

When a NaN is generated by software SANE or by routines in a SANE library, an associated
NaN code is returned as part of the NaN's representation. This code tells you what kind of
operation caused the NaN to be created. NaN codes, shown in Table G-2, can help with

debugging. :

s Table G-2 NaN codes

_(‘Z?dc L Menoln, —

1 Invalid square root, such as sqrt (-1)

2 Invalid addition, such as (+inf) - (+inf)
4 Invalid division, such as 0/0

8 Invalid multiplication, such as 0 * inf

9 Invalid remainder or MOD, such as xMoD 0

17 Attempt to convert invalid ASCII string

20 Result of converting the comp NaN to floating-point format
21 Attempt to create a NaN with a zero code

33 Invalid argument to trig routine

34 Invalid argument to inverse trig routine

36 Invalid argument to log routine

37 Invalid argument to x for x 7 routine

38 Invalid argument to financial function

All NaNs generated by the 68881 will have a NaN code of 255.

A Important When the -MC68881 option is set, many of the NaNs in Table G-2 are
generated by the 68881; therefore, you will not receive all the settings
listed in this table. a

The statement writeln (0/0) will produce the result NAN (004) (provided the invalid
operation halt is off). NAN (004), nan (4), and NaN are examples of acceptable input for
reading a NaN into a SANE variable.

APPENDIX G The SANE Library

319

Denormalized numbers

Whenever possible, SANE stores values in normalized form: the most significant bit of the
significand is a one, rather than a zero.

However, when a very small number is being stored and the exponent is the smallest
possible negative value, it is possible to store still smaller values by storing leading zeros.
For example,

1.0..0, = 27126_gmr11est normalined real
0.1..0p * 27126_5t3i11 smaller denormalized real

Because of denormalized numbers, IEEE arithmetic has the desirable property that
a<> bif and only if - b <> 0. In most non-IEEE arithmetics, @ - b will “flush to
zero” if a- b is too small for normalized representation, even though @ and b may be
different values.

Exceptional conditions

Exceptional conditions can arise from floating-point calculations in a number of cases.
For example, multiplying two very large values can result in a value too large to be
represented in one of the MPW Pascal data formats. Or an operation such as 0/0 can be
performed.

SANE provides a way for a program to determine when a floating-point calculation has
resulted in one of these exceptional conditions. Exceptional conditions fall into five
categories:

s invalid operation
s underflow

s overflow

» divide-by-zero

= inexact

Invalid operation
The invalid operation exception arises when operands for an operation are invalid, so that

a meaningful numeric result is impossible. For example, 0/0 and sqrt (-1) are invalid
operations.

320 MPW 3.0 Pascal Reference

s

Underflow

Underflow occurs when a result is both denormalized and has loét significant digits
through rounding. For example, to return the result of

(1.00000000000000000000001, * 2-126) / 2

to the real format, a leading zero would be introduced and the last significant bit would
be lost in rounding. The result
0.10000000000000000CC4L600G, * 2 126

would be returned and underflow would be signaled.

Overflow
Overflow occurs when a value is calculated that is too large to fit in the format of its

. designated type. The destination format must be one of the floating-point types; if the

destination format is an integer type, the invalid exception occurs.

Divide-by-zero

The divide-by-zero exception occurs when a finite nonzero number is divided by zero. It
also occurs when an operation on finite operands produces an exact infinite result. For
example, the operation 1/0 (which results in INF) and the operation Ln (0) (which
results in -1NF) both signal divide-by-zero.

Inexact

The inexact exception occurs when the rounded result of an operation is not identical to
the mathematical (exact) result. (Thus any time overflow or underflow occurs, the inexact
exception is signaled.) For example, the operation 2/3 signals inexact, regardless of the
floating-point format used.

The SANE environment

The SANE “environment” consists of
= rounding direction

s rounding precision

s exception flags

= halt settings

APPENDIX G The SANE Library

321

The SANE library includes procedures and functions that allow you to determine the
current status of the environment. These procedures and functions can be used to flag
exceptional conditions and to control optional environment settings. For example, you
“may be working with very small values and need to know exactly when underflow occurs.
Or you might want to have floating-point conversions rounded downward.

LA TR ST W i T I T T L6 L SR AU T TN A KRR I I AR RS YR Yk S0 B o SIS

The SANE interfaces and libraries

This section explains each of the constants, types, functions, and procedures contained
in the SANE interfaces and libraries. The SANELib881.0 library contains the same
procedures and functions available in SANELib.o but must be used when you have
invoked the -Mc68881 compiler option. Most of the actual SANE code is in Pack4 and
Pack5. SANELib.o and SANELib881.0 contain code interfaces to Pack4 and Packs5. The
file SANE.p contains the interface text for SANE.

Descriptions of constants and types

Each of the constants and types defined by the SANE interface is briefly discussed in the
following section. For more information, see the descriptions of the specific procedures
and functions mentioned.

The DecStrLen constant

DecStrLen (Decimal String Length) is defined by

DecStrlLen = 255;

DecStrLen is the constant that defines the maximum length of a decimal numeric string.
It is the size attribute of variables of type pecst«r .

Exception condition constants

The declarations that define the five exception condition constants used when you have
not invoked the -Mc68881 option are

Invalid = 1;
Underflow = 2;
Overflow = 4;
DivByZero = 8;
Inexact = 16;

These constants are used to define the value of a variable of the type Exception .

322 MPW 3.0 Pascal Reference

'For example, if e is a variable of type Exception , then

e := Invalid + Overflow + DivByZero
gives e a value that represents these three exceptions collectively.

The setException, TestException, SetHalt,and TestHalt routines all take
arguments of type Exception.

The declarations that define the 13 exception condition constants used when youv have
invoked the -Mc68881 option are

Inexact = 8;

DivByZero = 16;
Underflow = 32;
Overflow = 64;
Invalid = 128;

Curlnexl = 256;

CurInex2 = 512;

CurDivByZero = 1024;

CurUnderflow = 2048;

CurOverflow = 4096;

CurOpError = 8192;

CurSigNaN = 16384;

CurBSonUnor = 32768;

Refer to the MCG8881 Floating-Point Coprocessor User’s Manual for further information

about 68881 exceptions.

The DecStr type

The declaration that defines the pecst r type is

DecStr = STRING([DecStrLen];

The Decstr type is a string with a size attribute of Decst rLen, or 255 characters. It's
used to hold the decimal representation, in ASCII characters, of a number.

The DecForm record type

A record of type DecForm (Decimal Format) is defined by this declaration:

DecForm = RECORD
Style: (FloatDecimal, FixedDecimal);
Digits: integer
END;

A pecForm record holds the specifications for the format of a decimal number.

s The style field determines whether the decimal representation will be floating-point
or fixed-point.

s The pigits field holds the number of significant digits for float style or the number
of digits to the right of the decimal point for fixed style.

APPENDIX G The SANE Library 323

The Num2St r procedure takes a DecForm argument. It uses the information in
DecForm to determine the format for the string to be returned.

The RelOp type
The rRe10p (Relational Operator) type is defined by

RelOp = (GreaterThan, LessThan, EqualTo, Unordered):;

A result of ihis wype is rewined U7 :he ielation function, described later.

Thé NumClass type
The NumClass type is defined by

NumClass = (SNaN, QONaN, Infinite, ZeroNum, NormalNum, DenormalNum) ;

= Table G-3 Number class descriptions

Number class Meaning

SNaN Signaling NaN

QNaN Quiet NaN
Infinite Infinity or -Infinity
ZeroNum Oor-0

NormalNum Normalized number
DenormalNum Denormalized number

Quiet NaNs are the usual kind produced by floating-point operations. Signaling NaNs,
potentially useful for flagging uninitialized variables, are discussed in the Apple Numerics
Manual.

The NumClass type is used to return results from the inquiry functions, described below.

The Exception type

A variable of type Exception holds an integer value that corresponds to the value of
one of the Exception constants, or to a sum of two or more of the Exception
constants. Unless the -MCc68881 option is set, the Exception type is defined by

Exception = integer;

324 MPW 3.0 Pascal Reference

If the -MC68881 option is set, the Exception type is defined by

Exception =longint;

The setException, TestException, SetHalt, and TestHalt routines all take

arguments of type Exception.

The RoundDir type
The Roundpir (Rounding Direction) type is defined by

RoundDir = (ToNearest, Upward, Downward, TowardZero):

The Roundpi r type is used to determine how values are to be rounded, when rounding
becomes necessary during arithmetic operations or conversions. The setRound
procedure takes an argument of type RoundDir. The GetRound function returmns a value
of type Roundbir.

The RoundPre type

The RoundP re (Rounding Precision) type is defined by

RoundPre = (ExtPrecision, DblPrecision, RealPrecision);

Rounding precision can be used to simulate arithmetic with only single or double
precision. The setPrecision procedure takes an argument of type RoundPre. The
GetPrecision function returns a value of type RoundPre.

The Environment type

A variable of type Environment holds a value that represents the settings of the SANE
environment. For example, a setting of IEEEDefaultEnv represents the default IEEE
setting (rounding to the nearest, extended-precision rounding, exceptions clear, and no
halts set). Unless the -Mc68881 option is set, the Environment type is defined by

Environment = integer;

You use a variable of type Environment with the environmental access routines
SetEnvironment, GetEnvironment, ProcEntry, and ProcExit.

If -Mc68881 is set, the Environment type is defined by

Environment = RECORD
FPCR: longint;
FPSR: longint;
END;

where FPCR stands for the 68881 floating-point control register and FPSR stands for its
floating-point status register.

APPENDIX G The SANE Library

325

Numeric procedures and functions

This section includes a description of each of the procedures and functions in the SANE
libraries. More detailed information can be found in the Apple Numerics Manual, which is
available from Apple dealers.

Remember that any function with a formal parameter of any of the real types can be
passed a value of any real o1 intege:r iyyn. Fios ! ig-poing value pararacre:s in MPW 3.0
Pascal will accept expressions and variables of any of the following types: integer,
longint, real (single), double, comp, Of extended. We abbreviate the list with
the term numeric argument in the explanatory text below.

Conversions between numeric binary types

The SANE libraries contain functions that convert numeric values (in binary
representation) to the binary formats of the integer, longint , and extended types.

The Num2Integer and Num2Longint functions
Num2Integer (X: extended): integer;
Num2Longint (X: extended): longint;

The Num2Integer function takes a numeric argument and returns a result of type
integer.

The Num2Longint function takes a numeric argument and returns a result of type
longint.

The value returned by these functions depends upon the rounding direction (set using the
SetRound procedure). Using the standard rounding direction, ToNearest, the examples

Num2Integer(99.6)
Num2Longint (99.6)

return the value 100.0.
Num2Integer and Num2Longint are similar to the MPW 3.0 Pascal functions Round
and Trunc. However, Num2Integer and Num2Longint take the current rounding

direction into account. The Round function always returns the nearest Longint value;
the Trunc function always rounds toward zero.

326 MPW 3.0 Pascal Reference

Here’s an example of how these functions are used:

VAR

A: extended;

B, C, D: longint;
BEGIN

A := 99.999;

B := Num2Longint (4);
C := Round(A):

D := Trunc(A)

END;

After this code is executed, both B and ¢ have the value 100 and D has the value
99.

BEGIN

A := 99,999;
SetRound (Downward) ;
B := Num2Longint (a);
C := Round(A):;

D := Trunc(A)
END;

With this code, however, the values of B and D are 99. But the value of ¢ is again 100. The
Round and Trunc functions always calculate their value in the same way, regardless of the
rounding direction.

Using the ToNearest rounding direction, Num2Integer and Num2Longint round
values halfway between two integers to the nearest even integer (as prescribed by the
[EEE Standard). For example, Num2Integer(2.5) retums two. The Round function
rounds these halfway values away from zero. For example, Round (2. 5) returns three.

The Num2Extended function

Num2Extended (X: extended): extended;

The Num2Extended function can be passed any real-type or integer-type argument. It
converts its argument to the extended format. This is useful for forcing floating-point
arithmetic when all variables involved are of the integer types.

Conversions between decimal strings and binary

The SANE library includes the Num2st r procedure and the st r2Num function to convert
numbers between decimal ASCII character representations and binary.

¢ Note: The MPW 3.0 Pascal input and output procedures, described in Chapter 10, use
the routines for Pascal I/O conversions between decimal ASCII and binary.

APPENDIX G The SANE Library

327

The Num2Str procedure

Num2Str (f: DecForm; X: extended; VAR §: DecStr);

The Num2st r procedure converts a numeric value x to a decimal string, returned in s, using
the specifications in the DecForm record f. Here are some examples of how Num2str
uses the arguments passed to it to format a string:

= Table G-4 Num2Str examples

DecForm.Style DecForm.Digits x s
FloatDecimal 6 123.45 ' 1.23450e+2"
FloatDecimal 2 123.45 ' 1.2e+2"
FixedDecimal 6 123.45 '123.450000°'
FixedDecimal 2 123.45 v123.45"

The Str2Num function

Str2Num(S: DecStr): extended;

The st r2Num function takes a decimal string argument (of type Decstr) and converts it
0 type extended.

Arithmetic, auxiliary, and elementary functions

The SANE library includes a set of functions that supplement the arithmetic functions
described in Chapter 12.

The Remainder function
Remainder (X,): extended; VAR 4qu0: integer);

The Remainder function returns the remainder of the division of its two numeric
arguments x /y, as specified by the IEEE Standard. This function returns an exact
remainder of the smallest possible magnitude. The result is computed as x- n*, where n is
a nearest integral approximation to the quotient x /. For example, Remainder (9, 5,
q) returns -1, because -1 = 9-2*5.

The integer variable argument quo receives the seven low-order bits of nas a value
between -127 and 127, this is useful for programming functions, like the trigonometric
functions, that require argument reduction.

328 MPW 3.0 Pascal Reference

& Note: Remember that the Pascal operator MoD can be used only with integral values.
The Remainder function can be used with either real-type or integer-type values.

The Rint function

Rint (X: extended): extended:;

The Rint function takes a numeric argument and rounds it to an integral value in the
extended format. Note that all sufficiently large floating-point values aie intcgral. The

result depends upon the rounding direction, which can be changed by using the
SetRound ptocedure.

The Scalb function
Scalb(n: integer; X: extended): extended;
The scalb function takes two arguments. The first is a value of type integer;the

second is an extended value. The function scales the extended value by the power of
two specified by the integer argument. The value 2%x is returned in extended format.

The Logb function
Logb (X: extended): extended:
The Logb function takes a numeric argument and returns the largest power of two that

does not exceed its argument’s magnitude. For example, Logb (-65535) yields 15
because 215 < 65535 < 216,

The CopySign function
CopySign (X,): extended): extended;
The Copysign function takes numeric arguments. It returns a value equal to the second

argument, but with the sign of the first argument. For example, CopySign (2.0, -3.0)
yields 3.0. The copySign function returns an extended value.

The NextReal function
NextReal (X, J: real): extended;

The NextReal function takes two real arguments. It returns the next value that can be
represented in the real format after the first argument, in the du'ectmn of the second
argument. It retumns an extended value.

¢ Note: Although NextReal, NextDouble, and NextExtended can take any numeric
argument, NextReal internally converts its arguments to real, NextDouble tO
double, and NextExtended t0 extended.

APPENDIX G The SANE Library

329

The NextDouble function
NextDouble (X, y: double): extended;

The NextDouble function takes two double arguments. It returns the next value that
can be represented in the double format after the first argument, in the direction of the
second argument. It returns an ext ended value.

The NextExtended function

NextExtended (X, J: extended): extended,

The NextExtended function takes two extended arguments. It retums the next value
that can be represented in the extended format after the first argument, in the direction
of the second argument. It returns an extended value.

The Log2 function
Log2 (X: extended): extended;

The Log2 function takes a numeric argument and returns the base-2 logarithm of its
argument in extended format.

The Lal function
Lnl (X: extended): extended;

The rn1 function takes a numeric argument and returns the base-e logarithm of one plus
the argument: Ln (1 + x) . [t returns an ext ended value. For x near zero, Lnl (x) is more
accurate than Ln (1.0 +x).

The Exp2 function
Exp2 (X: extended): extended;

The Exp2 function takes a numeric argument and returns two raised to the power of the
argument: 2%, It returns an extended value.

The Exp1 function
Expl (X: extended): extended:

The Exp1 function takes 2 numeric argument and returns e*- 1. It returns an extended
value. For x near zero, Exp1l (X) is more accurate than Exp (x) - 1.0.

330 MPW 3.0 Pascal Reference

The Xpwrl function
Xpwrl (X: extended; §: integer): extended;
The xpwrI function takes one numeric argument and one integer argument. It

returns the value of its first argument, raised to the power specified by the integer
argument: x % It returns an extended value.

The XpwrY function
XpwrY (X, 7: extended): ext=nded,
The xpwry function takes two numeric arguments. It returns the value of the first

argument, raised to the power specified by the second argument: x 7. It returns an
extended value,

Financial functions

SANE provides two functions that can be used in financial applications: the Compound
function and the Annuity function.

The Compound function

Compound (7, 7n: extended): extended;

The compound function takes two numeric arguments. The first argument specifies the
interest rate; the second specifies the number of periods compound. It returns (1 +),

which is the principal plus accrued compound interest on an original investment of one
unit. It returns an extended value.

The Annuity function

Annuity (7, n: extended): extended
The Annuity function takes two numeric arguments. The first argument specifies the
interest rate; the second specifies the number of periods. Annuity returns

(1-Q +r)y*)/ r, which is the present value factor of an ordinary annuity. It retumns an
extended value. Here is an example of how the Annui ty function can be used:

APPENDIX G The SANE Library 331

PROGRAM Loan;

VAR

Loan, Payment, Interest, Periods: extended;

BEGIN

writeln('Loan amount: '); R
readln(Loan);

‘writeln ('Annual interest rate (Enter as a decimal.): *):

readln(Interest);

writeln ('Number of years: '):;

readln(Periods);

Payment = "2an/An.chl vilrterest/12, Poriofcotlf2);
write {("¥our paymeuc is. ')

write (Payment:8:2)
END.

In this example, given a loan amount of $120,000 and an interest rate of 0.1075 for 30
years, the monthly payment will be $1120.18.

Trigonometric functions

MPW 3.0 Pascal includes the predefined sin, Cos, and Arctan functions. In addition,
the SANE library provides the Tan function.

The Tan function

Tan (X: extended): extended;

The Tan function returns the tangent of a numeric argument. Note that the argument must
be expressed in radians. The Tan function returns an extended value.

Additional transcendental routines

MPW 3.0 Pascal predefines these nine routines when the -Mc68881 Compiler option is
used. These routines are not part of the SANE interface and are currently unavailable
without the -Mc68881 option.

The Arctanh function
Arctanh (X: extended): extended;

The Arctanh function returns the hyperbolic arctangent of a numeric argument. The
Arctanh function returns an extended value.

The Cosh function
Cosh(X: extended): extended;

The cosh function returns the hyperbolic cosine of a numeric argument. The Cosh
function returns an extended value.

-~

332 MPW 3.0 Pascal Reference

The Sinh function
Sinh(X: extended): extended;

The sinnh function returns the hyperbolic sine of a numeric argument. The sinh function
retums an extended value.

The Tanh function
Tanh (X: extended): extended;

The Tanh function returns the hyperbolic tangent of a numeric argument. The Tanh
function returns an extended value.

The Log10 function
Logl0(X: extended): extended:

The Log10 function returns the base-10 logarithm of a numeric argument. The Log10
function returns an extended value.

The Exp10 function
Expl0 (X: extended): extended;

The Exp10 function returns ten raised to the power of a numeric argument: 10%. The
Exp10 function returns an ext ended value.

The Arccos function

Arccos (X: extended): extended;

The arccos function returns the principal value, in radians, of the arccosine of a numeric
argument. The aArccos function returns an extended value.

The Arcsin function

Arcsin(X: extended): extended;

The arcsin function returns the principal value, in radians, of the arcsine of a numeric
argument. The Arcsin function returns an extended value.

'The SinCos procedure
SinCos (VAR §,C: extended; X: extended);

The sinCos procedure simultaneously sets the variable sto sin (x) and the variable cto
Cos (x) . The parameter X is a numeric argument. The sinCos procedure is faster than
separate function calls to sin and Cos.

APPENDIX G The SANE Library

333

Inquiry functions

SANE includes several functions that allow you to determine the class of a numeric value.
The result of each of these functions is of type NumClass, described above. In addition,
they include a function that returns the sign of a numeric argument.

The ClassReal function
Clome Ras (R r=aty s Nwali s 3s

The classReal function determines the number class of a numeric argument as if the
argument were converted to real format. For example,

ClassReal (1)

ClassReal (1e—-310)

The first function call returns No rma 1Num, the code for a normalized number. The second
call returns ze roNum, the code for zero (because 1e-310 rounds to +0 in the real
format).

The ClassDouble function
ClassDouble (X: double): NumClass;

The classDouble function determines the number class of a numeric argument as if the
argument were converted to a double format. The result is of type NumClass. For
example,

ClassDouble(0.0/0.0)
ClassDouble (le-310)

The first example returns gNaN , the code for a quiet NaN. The second example returns
DenormalNum, the code for a denormalized number (because 1e-310 is denormalized
in the double format).

The ClassExtended function
ClassExtended (X: extended): NumClass;

~

The classExtended function determines the number class of a numeric argument as if
the argument were converted to an extended format. The result is of type NumC1ass. For
example,

ClassExtended(1/0)
ClassExtended (e-310)

The first example returns Infinite , the code for infinities. The second example returns
NormalNum, the code for a2 normalized number.

334 MPW 3.0 Pascal Reference

The ClassComp function
ClassComp (X¥: comp): NumClass;

The classcomp function determines the number class of its nume ric argument as if the
argument were converted to comp format. The result is of type NumClass. For example,

ClassComp (1)
ClassComp (0.1)

The finst exar«:pic retums No rmalNum , the code for a normal number. The second
exatiple returns ze roNum , the code for zero. (Remember that comp stores integral
values.)

The SignNum function
SignNum(X: extended): integer;

The signNum function takes a numeric argument and retums an integer value that
indicates the sign of the argument. The value returned is one if the argument's sign is
negative, zero if the argument’s sign is positive.

The RandomX function
RandomX (VAR X: extended): extended;

The Randomx function takes a variable parameter of type extended that must contain
an integral value in the range 1 < X< 23! - 2, It returns the next random number (in

extended format) in sequence within the same range. The variable argument is
updated to the value returned. Randomx uses this algorithm:

NewX = (73 * 0l1dx) MoD (231-1)

The NaN function

Nan (X: integer): extended;

The Nan function takes an integer argument and returns a NaN, in extended format,
associated with the code given as an argument. The SANE NaN error codes are shown in
Table G-2 in the section “NaNs,” earlier in this chapter.

The Relation function
Relation (X, J: extended): RelOp;

The Relation function takes two nume ric arguments and returns a value of type
Relop. The value returned specifies the relationship between the two arguments.

For example, Relation (0.1, NaN(0)) returns Unordered, as all comparisons
involving NaNs are unordered. Relation (1,3.9) retums LessThan.

APPENDIX G The SANE Library

335

Environmental access procedures and functions

The SANE environmental access routines allow you to determine how calculations are to
be performed and how to respond to exceptional conditions. The environment
consists of

= the rounding direction
v the ro:liny precicines
s exception flags

= halt settings

The rounding direction

The rounding direction can be set in four ways:
m ToNearest

] Upwardb

s Downward

s TowardZero

The default rounding direction is ToNearest . You can find out what the current
rounding direction is by using the GetRound function. You can change the rounding
direction by using the setRound procedure.

The GetRound function
GetRound: RoundDir;

The Get Round function returns the current rounding direction as a value of type
RoundDir. ‘

336 MPW 3.0 Pascal Reference

The SetRound procedure
SetRound(7: RoundDir);

The setRound procedure takes an argument of type Roundpi r. The procedure sets the
effective rounding direction to the one indicated by the argument.

For example, the code below saves the current rounding direction, computes a function
using Towardzero rounding, and finally restores the saved rounding direction.

VAR
R: RoundDir;
X, Y: extended;
BEGIN
R := GetRound;
SetRound (TowardZero) ;
Y := £(X);
SetRound (R) ;

END.

Rounding precision

You may find that you want to use SANE for performing calculations and simulating the
results you would get if you used a system that did not provide extended-precision
arithmetic. Normally, all MPW 3.0 Pascal floating-point calculations return results that are
rounded to extended precision and range. However, the rounding precision can be set to
single or double precision and range. Results will still be returned in the ext ended format.
There is no performance benefit in setting single or double rounding precision. You can
access the rounding precision by using the setPrecision procedure and the
GetPrecision function.

The GetPrecision function

GetPrecision: RoundPre;

The GetPrecision function returns a value of type Roundp re, which indicates the
current rounding precision.

The SetPrecision procedure

SetPrecision(p: RoundPre);

The setPrecision procedure takes an argument that is a variable of type RoundPre ,
which indicates the desired rounding precision.

APPENDIX G The SANE Library 337

. Exceptions

When -MCc68881 is not set, exceptional results arising from numeric calculations fall into
five categories. The file SANE.p in Plnterfaces defines a constant for each kind of
exception, as shown in Table G-5.

s Table G-5 SANE exceptions

0 mevenrs 7 R o]

Constrst
Exception vafin FALH (RS RV Exampi.
Invalid 1 Operation not meaningful—NaN result Sqrt(-1)
Underflow 2 Accuracy lost—result too small 2716383 /3
overflow 4 Result too large for number representation 21634
DivByZero 8 Division of nonzero number by zero 1/0
Inexact 16 Rounded result not same as exact math result 1/3

The exceptions shown in Table G-5 occur under the following conditions:

s If an invalid operation is performed, I1nvalid is set.

s If underflow occurs, Underflow is set.

s If overflow occurs, overflow is set.

s If division by zero occurs, DivByzero is set.

» If the result of the calculation is inexact, Inexact is set.

Table G-6 lists the exceptional results that can occur when -MC68881 is set. The prefix

cur stands for current exception. These eight values match the 68881 Exception Status
byte. See the Motorola MC68881 Floating-Point Coprocessor User's Manual for details.

338 MPW 3.0 Pascal Reference

= Table G-6 68881 SANE exceptions

Exception Constant value
Inexact 8
DivByZero 16
Underflow 32
Overflow 64
Invalid 128
CurInexl 256
CurInex2 512
CurDivByZero 1024
CurUnderflow 2048
CurOverflow 4096
CurOpError 8192
CurSigNaN 16384
CurBSonUnor 32768
The SetException procedure

SetException(e: Exception; b: boolean);

The setException procedure takes one argument of type Exception and a second
argument of type boolean. If the second argument is t rue, the procedure signals the

exceptions encoded in its first argument. If the second argument is £alse, it clears the
exception flags specified by the first argument. For example,

SetException (Overflow + Inexact, true);

signals the overflow and Inexact exceptions. If halt on overflow or Inexact were
set, this statement would halt the program.

The TestException function

TestException(e: Exception): boolean;

The TestException function takes an argument of type Except ion and returns a
boolean value that indicates whether any of the exceptions encoded in its argument are
set or not.

Following the setException statement above, the statement

TestException(OverFlow + Invalid);

would return t rue.

APPENDIX G The SANE Library

Using exceptional conditions to halt a program

The SANE environment includes a halt setting for each of the exceptions that determines
whether the occurrence of the exception halts the program. By default, MPW 3.0 Pascal
adheres to the IEEE Standard by initializing all halts clear (off).

You can access the halt settings by using the TestHalt function and the SetHalt
procedure.

The TestHalt function

TestHalt (€: Exception): boolean;

The TestHalt function takes an argument of type Exception and retumns a boolean
value. If any of the halts indicated by the Exception argument are set, the function
retums t rue; otherwise it returns false.

The SetHalt procedure
SetHalt (e: Exception; b: boolean);

The setHalt procedure takes two arguments. The first is of type Exception. This
indicates which exceptions you want to halt your program. The second argument is of
type boolean. If the value of the boolean argument is t rue , occurrences of the
indicated exceptions will cause your program to halt. If it is false , your program will
continue to run when these exceptions occur.

Halts and the 68881

When the -Mc68881 option is set, floating-point halts are generated by the 68881 and
not by Packa4. Old sources for a halt handler will no longer work when compiled with
-MC68881 set.

To write a halt handler for the 68881, consult the Motorola MC68881 Floating-Point
Coprocessor User's Manual. :

340 MPW 3.0 Pascal Reference

For details on SANE halt handlers compatible with pack4 , see the Apple Numerics
Manual. The following support for 68881 halts and traps has been added to the file
SANE.p:

TrapVector = RECORD

Unordered: longint;
Inexact: longint;
DivByZero: longint;
Underflow: longint;
cplrior loncint;
Overfiow: lonygint;
SigNaN: longint
END;

PROCEDURE GetTrapVector (VAR Traps: TrapVector):;
{ Traps <-- FPCP trap vectors }

PROCEDURE SetTrapVector (Traps: TrapVector):;
{ FPCP trap vectors <-- Traps }

The TrapVector type definition and its accompanying procedures, Get Trapvector
and setTrapVector, give you access to those 68020 exception vectors that manage
68881 floating-point exceptions. For details on 68881 exception vectors, see Motorola’s
68020 and 68881 manuals. The procedures for setting and getting halts, exceptions, and
environments work as they do when -MC68881 is not set; they differ only in the data
types used as their arguments.

Finally, unlike the Pack4 halt mechanism, the 68881 supports the IEEE-recommended
trapping mechanism. The word trap is prominent in the names above to emphasize this
difference. IEEE traps sometimes rebias the exponent of floating-point results; in some
cases, exceptions are set differently when traps are enabled, and the stack passed to a
trap handler is set up differently by the 68881 trap mechanism.

Saving and restoring environmental settings

The entire SANE environment (rounding direction, rounding precision, exception flags,
and halt settings) can be encoded in a value of type Environment. The procedures
described below access the current SANE environment as a whole. They are useful for
managing the environment so that routines run with the environments they require and for
controlling the exception information passed between routines.

The GetEnvironment procedure

GetEnvironment (VAR €: Environment);

The GetEnvironment procedure takes an érgument of type Environment as a variable
parameter and assigns the current settings of the environment to that variable.

APPENDIX G The SANE Library

341

When your program begins, the environment will reflect the MPW 3.0 Pascal defaults:
s rounding direction ToNearest

s rounding precision extended

. all exception flags cleared

é no halts set

The SgfFpyamano® -

SetEnvironment (€: Environment);

The setEnvironment procedure takes an argument of type Environment . It sets the
floating-point environment to the one encoded in its argument. To re-install the default
environment, use the statement

SetEnvironment (IEEEDefaultEnv);

The following procedure ensures that it will run under the IEEE default environment, while
not affecting its caller’s environment:

PROCEDURE P;

VAR
SaveEnv: Environment;

BEGIN
GetEnvironment (SaveEnv) ;
SetEnvironment (IEEEDefaultEnv) ;

SetEnvironment (SaveEnv)
END;

Note that the Environment type is not the integer type when the -MC68881
Compiler option is invoked, so the older usage, SetEnvironment (0) , will no longer
work with this option. For compatibility, Set Environment (IEEEDefaultEnv)
works correctly regardless of the setting of the -Mc68881 option.

The ProcEntry procedure

ProcEntry (VAR €: Environment);
The ProcEntry procedure saves the current environment (the rounding direction,
rounding precision, exception flags, and halt settings) in the Environment variable

passed to the procedure, and then sets the environment to the IEEE defaults. The
statement ProcEntry (e) is equivalent to

GetEnvironment (e) ;
SetEnvironment (IEEEDefaultEnv) ;

42 MPW 3.0 Pascal Reference

The ProcExit procedure

ProcExit (€: Environment);

The ProcExit procedure takes an argument of type Environment. It temporarily saves
the current exception flags, sets the effective environment to be the one encoded in its
argument, and then signals the temporarily saved exceptions.

ProcEntry and ProcExit can be used in routines to selectively hide spurious
exceptions from the routine’s calle:. For example,

FUNCTION Arccos(x: extended): extended;

VAR

e: Environment;

BEGIN

ProcEntry(e);

Arccos := 2.0*Arctan(Sqrt(1.0-x)/(1.0+x));

SetException (DivByZero, false);
ProcExit (e)
END;

ProcEntry (e) saves the caller's environment in e and sets IEEE defaults so that
exceptions cannot halt the routine. If x = -1, the computation of the right side of the
assignment to ArcCos will signal DivByzero, even though Arccos will be assigned the
correct value, pi. SetException (DivByZero, false) clears the DivByzero flag,
so the caller never sees it. If x > 1 or x < -1, the computation of ArcCos will
appropriately signal 1nvalid. The ProcExit procedure will resignal Invalid after
restoring the caller’s environment, so if the caller's environment calls for halts on invalid,
the halt will occur.

Support for the 68881

The following list summarizes the MPW 3.0 Pascal support for the 68881 floating-point
coprocessor. Detailed information about SANE and programming the 68881 is provided in
the sections below.

= Applications compiled without the -Mc68881 option will run on all Macintoshes. If
-MC68881 is set, then your application will run only with a 68020 and a 68881 in the
computer.

s One library, SANELib881.0, has been added and the interface file SANE.p has been
updated to provide support for the floating-point coprocessor.

s The command-line option -MC68881 may be used to access the 68881 directly for
addition, subtraction, multiplication, division, square root, remainder, binary-binary
conversion, and comparison. When this option is set, you must link with
SANELib881.0 instead of SANELib.o.

APPENDIX G The SANE Library

u For the same effect, you may type { $Mc68881+} in the source code (it must appear
at the start of the file before any VAR, PROCEDURE, or FUNCTION declarations or any
USES statements).

= With the -Mc68881 option, the extended type becomes 12 bytes long and variables
of extended type may be allocated to registers.

n By default, the Compiler calls Packs5 to perform accurate and fully compatible
transcendental (elementary) functions even if you have set the -Mc68881 option.

1

¢ If you want whe Compilzi 10 enidt ¢orw calls o i E8081 fou boup povso - 0 ST
compatible, but very fast transcendental functions, then add -4 Elem5881=true
to the Pascal command line.

SANE and the 68881

SANE is Apple’s numeric environment. It is a superset of IEEE Standard 754 numerics. All
Apple computers and most Apple programming languages incorporate SANE. In the
Macintosh family, SANE is contained in the system ROM as Pack4 and Pack5 . MPW 3.0
Pascal handles floating-point arithmetic by emitting code to call the packs. Floating-
point across the Macintosh family is identical in accuracy and, except for the Macintosh
11, about equally fast.

Floating-point performance on the Macintosh II is about an order of magnitude faster
than on the Macintosh Plus because Pack4 and Packs5 (in the Macintosh IT ROM) take
advantage of the 68881 floating-point coprocessor whenever feasible. The 68881 is a very
fast floating-point chip that conforms fully to [EEE 754 and, like SANE, has several built-
in extensions to the IEEE Standard. For the fastest possible floating-point performance,
MPW 3.0 Pascal can use the 68881 directly, avoiding calls to pack4 and Packs5.

The -Mc68881 command line option directs the Compiler to use the 68881 calls for basic
arithmetic operations (addition, subtraction, multiplication, square root, remainder,
comparison, and binary-binary format conversions). When you invoke this option, the
following three effects occur:

» The size of the extended data type changes.

s Arithmetic executes about two orders of magnitude faster than on the Macintosh Plus
(about one order of magnitude faster than the Macintosh II without the -Mc68881
option).

= Your application will contain 68881 instructions and therefore will no longer runona
Macintosh without a 68881. :

344 MPW 3.0 Pascal Reference

S o,

Result values will be identical to those received without the -Mc68881 option. A further
option, written -d Elems881=true, directs the Compiler to use the 68881 calls for all
the 68881 transcendental functions (logarithms, exponentials, trigonometric, and
hyperbolic trigonometric). This option has no meaning unless the -MC68881 option is
already invoked; in addition, it has two important effects:

» Results will differ from results without the -d Elems881=t rue option because
Packs5 in ROM is more accurate in its transcendental functions than the 68881,

s Transcendental function performance will improve by more than ancther order of
magnitude.

More about the 68881

Pascal allows you to redefine any predefined functions, procedures, and types. Using

-d Elems881=true, described above, simply controls the redefinition of several
routines built into the Compiler. SANE.p in the Plnterfaces folder contains declarations of
19 transcendental functions that the Compiler predefines. The transcendental functions
fall into three groups:

n Pascal predefined functions, including sin, Cos, Arctan, Exp, and Ln

n SANE functions, including Tan, Expl, Exp2, Lnl, and Log2

s Additional functions, including Arctanh, Cosh, Sinh, Tanh, Logl0, Expl0,
Arccos, Arcsin, and Sincos

When -d Elems881=trueis set(and -MCc68881 is invoked), the Compiler makes
direct 68881 calls for all Pascal predefined functions, SANE functions, and additional
functions listed above. Otherwise, the declarations for the Pascal predefined functions
and the SANE functions are seen by the Compiler in SANE.p, direct calls for these
functions are not made, and the Compiler generates calls to the versions of these routines
found in SANELib.881.0. In effect, SANE.p tells the Compiler to call the version of these
functions that is supplied at link time in the file SANELib881.0 in the {Plibraries} folder.
SANELib881.0, in tum, calls Packs5 in the ROM for accuracy and compatibility. (When the
-MC68881 option is set, link only with SANELib881.0; otherwise, link with SANELib.0.)

Register usage

The 68881 adds eight new registers, called FPO,...,FP7, to the familiar DO,...,D7 and
A0,...,A7 of the 68020. The FP registers are 96 bits wide and are designed to hold
extended-precision data. Pascal optimizes the use of these registers for variables and for
expression evaluation. Pascal puts variables in FP4,... FP7 and allocates FPO,...,FP3 as
scratch registers.

APPENDIX G The SANE Library

345

For example, all floating-point expressions, such as the right-hand side of

x:= 3*y+6;

are evaluated in FP registers. If x and y are variables of the extended type, then the
Compiler may also allocate them to registers, improving performance even further.

Converting between extended formats in mixed-world programs

Apple recommends compiling all of your program files eithcr witi the ~1.Cc66831 option
never set or with it always set. Building a program with mixed settings of this option
causes problems in the following ways:

s Extended constants and variables in some parts of a mixed-setting program are 80
bits long; in other parts, they are 96 bits long. This can cause problems when a portion
of your program refers to constants and variables from another portion with the other
extended format.

» Since floating-point value parameters are always promoted to extended, calling a
function that has the other extended format can cause trouble.

s The two SANE libraries SANELib.o and SANELib881.0 contain routines with identical
names. To refer to routines from both libraries in the same link step:

o Use Lib to build your own library (selecting the routines you need from one of the
libraries).

o Rename the routines and the modules containing them to avoid name collision.
This is further complicated by requiring the use of DumpObj to determine the
names of the modules containing the entry points whose names need changing.

o Link with your new library and with the unchanged SANE library.

If you must mix files that contain different extended formats, limited support is offered
to solve the problem with calling a function that has the other extended format. SANE.p
defines the following functions to convert between 9%-bit and 80-bit extended formats:

FUNCTION X96to80(X: extended96): extended;
FUNCTION X80to96(Xx: extended): extended96;

for use in the 80-bit world, and

FUNCTION X96to80(Xx: extended): extended80;
FUNCTION X80to96(X: extended80): extended96;

for use in the 96-bit world.

346 MPW 3.0 Pascal Reference

The types
Extended80 = ARRAY [0..4] OF integer;

and

Extended96 = ARRAY [0..5] OF integer;

are useful only in these transfer routines—you cannot do arithmetic with them. They are
not understood by the Compiler to be equivalent to the extended type.

For example, if

FUNCTION foo(X: extended): extended;

is compiled with the -Mc68881 option set (so that, for this function, the extended
type is 96 bits wide), then to call £oo from an 80-bit world, you would

1. Declare foo in the 80-bit interface as follows:
function foo(X: extended96): extended96;

2. Call fooas
X96t0X80 (foo (X80toX96 (X))) ;

APPENDIX G The SANE Library

347

Appendix H The PasMat Utility

Syntax
Description

THIS APPENDIX DESCRIBES PASMAT, an MPW Shell utility program that you can use
to convert your source text into “pretty-printed” format.

PasMat [option... [inputfile[outputfile]]

Reformats Pascal source code into a standard format, suitable for printouts or
compilation. PasMat accepts full programs, external procedures, blocks, and
groups of statements.

& Note: A syntactically incorrect program causes PasMat to abort. If
this happens, the generated output will contain the formatted
source up to the point of the error.

PasMat options let you do the following:
= convert a program to uniform case conventions

= indent a program to show its logical structure, and adjust lines to fit into a
specified line length

» change the comment delimiters (* *) to { }

= remove the underscore character (_) from identifiers, rename identifiers, or
change their case

» format include files named in MPW Pascal include directives
PasMat specifications can be made through its options or through special

formatter directives, which resemble Pascal Compiler directives and are inserted
into the source file as Pascal comments.

PasMat’s default formatting is straightforward and does not necessarily require
you to use any options. The best way to find out how PasMat formats something
is to try out a small example and see. =

349

Input ' If no iﬁput files are specified, standard input is formatted.

Output If no output file is specified, the formatted output is written to the standard
output file. Refer to “Error Handling” below for more information about
PasMat's treatment of errors in the source.

Options Most of the following options modify the initial default settings of the
directives described in the Macintosh Programmer's Workshop 3.0 Reference
manual.

-a Set a- to disable cask label bunching.
-b Set b+ to enable 1F bunching.
-body Set body + to align procedure bodies with their

enclosing BEGIN. . . END pair.

-c Set c+ for placement of BEGIN on same line as
previous word.

-d Set d+ to enable the replacement of (* *) with
{ } comment delimiters.

-e Set e+ to capitalize identifiers.

-entab Replace runs of blanks with tabs. The tab stop
value is determined by the -t option or current
t=n directive (not by the file’s tab setting).

-f , Set £- to disable formatting.
-g Set g+ to group assignment and call statements.
" -h Set h- to disable FOR, WHILE, and WITH
bunching.

-ipathname|(, pathname..] Search for included files in the specified
directories. Multiple -1 options may be specified.
At most 15 directories will be searched. The search
order is specified under the description of the
Pascal command. (Note that USEs declarations
are not processed by PasMat.)

APPENDIX H The PasMat Utlity 351

352

-1ist filename

-n

-o width

P

Set in+ to process Pascal Compiler includes. This
option is implied if the -1 option is used.

Set k+ to indent statements between
BEGIN. . . END paifs.

Set 1+ for literal copy of reserved words and
identifiers.

Generate a listing of the formatted source. The
listing is written to the specified file.

Set n+ to group formal parameters.

Set the output line width. The maximum value
allowed is 150. The default is 80.

Display version information and progress
information on the diagnostic file.

-pattern =pattern=replacement=

MPW 3.0 Pascal Reference

Process includes (-in) and generates a set of
output files with the same include structure as the
input, but with new names as specified in the
pattern and replacement strings. The output
filenames and Pascal Compiler include directives
are generated by editing the input (included)
filenames according to the pattern and
replacement strings. Pattern is a pathname that is
to be looked for in the input file and in each
included file (the entire pathname is used and case
is ignored). If the pattern is found, that sequence
of characters is replaced by the replacement string,
The result is a new pathname, which becomes the
name for an output file. For example,

PasMat -pattern =0ldFile=NewFile=

replaces each name containing the string 01dFile
with the string

NewFile

.

o,

-q

-r

—-rec

—s renameFile

-t tab

Any character not contained in the pattern or
replacement strings can be used in place of an
equal sign. Note that special characters must be
quoted. See the example at the end of this
appendix.

Set g+ not to treat £LSE. . . IF sequence
specially.

Set r+ to uppercase reserved words.

Indent a record’s ﬁeld list under the identifier the
record definition is defining.

Rename identifiers. RenameFile must be a file
containing a list of identifiers and their new
names. Each line in this file contains two
identifiers of up to 63 characters each: the first is
the identifier to be renamed, and the second is the
name that will replace all occurrences of the first
identifier when creating the output. There must be
at least one space or tab between the two
identifiers. Leading and trailing spaces and tabs
are optional. The case of the first identifier
doesn’t matter, but the second identifier must be
specified exactly as it is to appear in the output.
The case of all identifiers not specified in the
renameFile is subject to the other case options
(-e, -1, -u, and -w) or their corresponding
directives. Reserved words cannot be renamed.

Set the tab amount for each indentation level. If
the -entab option is also specified, tab
characters will actually be generated. The default
tab value is two. ‘

APPENDIX H The PasMat Utility 353

354

-u

-V
-W
=X

4

Rename all identifiers based on their first
occurrence in the source. Specifications in the
rename (-s) file always have precedence over this
option—that is, the identifier’s translation is
based on the rename file rather than on the first
G FE e,

Set v+ to put THEN on a separate line.

Set w+ to write identifiers in uppercase.
Set x+ to suppress space around operators.
Set y+ to suppress space around : =,

Set z+ to suppress space after commas.

Set : + to align colons in VAR declarations (only if
a j PasMat directive in the source specifies a
width).

Set @+ to force multiple CASE tags onto separate
lines.

Set #+ for “smart” grouping of assignment and call
statements (grouped assignment and call
statements on an input line will appear grouped on
output).

& Note: Because # is the Shell's comment
character, this option must be quoted on the
command line.

Set _+ for “portability” mode (underscores are
deleted from identifiers).

All options except for -1ist, -pattern, -s, and -entab have directive
counterparts. It's recommended that you specify the options as directives in the
input source so that you won't have to specify them each time you call PasMat.

MPW 3.0 Pascal Reference

{PasMatOpts}
variable:

You can also specify a set of default options in the exported Shell variable
{PasMatOpts }—PasMat processes these options before it processes the
command-line options. { PasMatopts } should contain a string (maximum
length 255) specifying the options exactly as you would specify them on the
command line (except for cornmand-line quoting, which shouid be omiited; also
note that the options -pattern, -1ist, -s, and -i, which require a string
parameter, can only be spécified on the command line). For example, you can
define {PasMatopts} to the Shell (perhaps in the UserStartup file) as follows:
Set PasMatOpts "-n -u -r -d -entab -# -o 82 -t 2"
Export PasMatOpts

The entire definition string must be quoted to preserve the spaces.

As an alternative to specifying the options directly, you can indicate that the
options are stored in a file, by specifying the file’s full pathname prefixed with
the character ~:

Set PasMatOpts "“pathname"
Export PasMatOpts

PasMat will now look for the default options in the specified file. The lines in this
file can contain any sequence of command-line options (except for -pattern,
-list, -s, and -1i), grouped together on the same or separate lines. The lines
may be commented by placing the comment in braces ({ ... }). A typical options
file might appear as follows:

-n {group formal params on same line}

-u {auto translation of id’s based on 1lst
occurrence}

-r {uppercase reserved words}

-d {leave comment braces alone}

-entab {place real tabs in the output}

-# {smart grouping}

-0 82 {output line width}

-t 2 {indent tab value}

(Except for the tab value, this example shows the recommended set of options.)

If PasMat does find a default set of options, those options will be echoed as part
of the status information given with the -p option.

APPENDIX H The PasMat Utility 355

Directives Directives are specified by special comments included in the Pascal source
‘ code. These comments have the form

{ [directives] optional text}

The directives themselves are either switches with the format

< character (5)>+

or

< character (s)>~

or numeric directives with the format

<character ($)>=<number >

For the j directive only, the numeric directive can also have the special format
j=<number >c/ <number >cc/ <number >¢

where the ¢'s are characters and either or both of the first two entries can be
omitted (but not the slashes separating them—for example, //<number >c).

Multiple directives are separated by commas. Spaces within a directive are not
allowed. For example,

{[b+,0=95,t=4,r-]}

sets the switch b on and r off and sets the numeric directive o to 95 and t to 4.
Case is ignored in directives.

The following directives are recognized:

a Place a statement following a cask label. It will be put on the same
line if it fits. The default value is a+.

b Place a statement following THEN or ELSE. It will be put on the
same line if it fits. The default value is b-.

body Do not indent a procedure body between BEGIN. . . END. The
directive body+ aligns the procedure body with BEGIN and END.
The default value is body-.

c Place BEGIN on same line as its introductory keyword. If c+ is
specified, then k- (the default) should be used. The default value is

c—.

d Replace the comment delimiters (* *) by { }. The default value is
d-.

356 MPW 3.0 Pascal Reference

in -

Capitalize first (or only) letter of identifiers and the first letter
following a break character (underscore). Retain the break
character. This directive overrides the 1 and w directives. See also
the _ (portability) option below. The default value is e-.

Turn formatting on or off. This directive goes into effect
immediately following the comment in which it is placad Thus is
useful for saving hand-formatted portions of a program. The
default value is £+.

Group statements (i per line). This directive is specified either as a
switch (g+ or g-) or as a numeric directive (g=1). For g=1, the
space from the current indentation level to the end of the line is
divided into i fields, and successive statements are put on the
boundaries of successive fields. A statement may take more than
one field, in which case the next statement again goes on the
boundary of the next field. This is similar to the use of tabs on a
typewriter. Any statement that requires more than one line may
produce strange results on following statements. The g=1 form
affects constant declarations and statements. By specifying the
g+ form, only assignment and call statements are grouped together
(if they fit on a line). The g+ directive has effect only if g=1 is set.
The default values are g-and g=1.

Bunch a single statement on the same line as FOR, WHILE, and
wITH if it fits. Otherwise, indent it on the next line. This also
applies to 1F (without ELSE) with the b- directive. The default
value is h+,

Process INCLUDE { $I filename} Pascal Compiler (not PasMat)
directives. PasMat provides three ways to process include files,
with the third way recommended:

» Process all the include files in the input to produce a single
output file. To do this, use the in+ PasMat directive (or
option). As each include Pascal Compiler directive is
encountered, it will be output on the line before the output of
the included source. However, to avoid reprocessing of this
directive by the Pascal Compiler (assuming the output is to be
eventually compiled), the 1 in the directive is not output.

APPENDIX H The PasMat Utility 357

» Treat each include file separately. Each file is given individually
to PasMat to format. By placing an in=n PasMat numeric
directive at the start of each source input file, you can specify
the initial indenting level for the file. Indenting for in=n will
start at column n*, that is, the specified level times the
indenting tab value (see the L cirective). Note that beciuse
individual include files need not represent syntactically
complete Pascal constructs (for example, an include file can
contain a procedure with many nested inner procedures but
without the body of the outer procedure), PasMat may report
a syntax error. If this happens, check the output to see if the
entire include file was processed.

s Process the entire source as in the first method above, but
instead of generating a single source with the include directives
removed, generate as many output files as there are input
(include) files. The result is a set of formatted files with exactly
the same include structure as the input. All the include
directives are output and edited to reflect the new filenames.
This method of processing include files is indicated by
specifying the -pattern option on the command line when
PasMat is invoked. For further details, refer to the discussion
of -pattern under “Options” in this appendix.

The default value is in-, in=0 (include files not processed).

3 Special alignment of declarations and comments. This is a unique
numeric directive with the general format

j=<width>[t] /<coll>[sd]/<col2>c

<width>(4]

Specifies that width columns are to be reserved for all following
CONST, TYPE, Of VAR identifiers (you can also control the
alignment of the colons in vaR declarations within the width by
using the : option). The optional sign following width indicates
whether to apply the width to record lists (if + is used or the sign is
omitted) or to apply it to just the declared variables themselves (if
- is specified).

| 358 MPW 3.0 Pascal Reference

<colI>{sd]

Specifies what column a comment following a statement on the
same line is to start in. Note that width is a width specification,
and col1 is a column specification. Using col1 allows you to align all
comments in declarations. All comments follow statements (when
the comment is the last thing on the same line as the statement),
unless you use the options s and d following coiI (case is ignored
and the letters may be in either order). If s is specified, col1 is only
applied to statements and not declarations. If d is specified, then
col1 is only applied to declarations. Omitting both s and d is the
same as specifying both; col1 is applied to all comments following
statements if the comment is the last thing on the line.

<col2>c¢

Specifies a starting column for comments, as col1 does, but only
affects comments that have the trigger character c as the first
comment character.

If width is omitted, its previous value remains unchanged; the slash
in front of the col1 is required. If colI is omitted, the previous
value remains unchanged; the slash in front of it is optional unless
col2 is specified, in which case both slashes are required.

For constant declarations, the g=1 directive (where {1 is greater than
one) overrides width. Comments should not be used for these
statements. Also, the width and col1 values are ignored for a line if
they cannot be used because an identifier or its declarative
information is too wide. A value of zero for width, coll, or col2
disables the comesponding alignment. The default value is 3=0/0/0.

Indent statements between BEGIN. . .END pairs. Normally, the
statements are indented to the same level as the BEGIN. . .END
pair. The c directive determines the actual placement of BEGIN.
Normally, BEGIN appears on a separate line unless c+ is used. Also,
k- should be used if o+ is specified. The default value is x-.

The case of reserved words and identifiers is to be a literal copy of
the input. This directive overrides the w directive and is disabled
by the _ directive. The r directive overrides 1 for reserved words.
The default value is 1-.

Group formal procedure parameters. This is similar to the g+
option, but only for formal parameters of procedure and function
declarations. Normally, these appear one per line. The default value
isn-.

APPENDIX H The PasMat Utility 359

360

rec

This is a numeric directive (o=w) that specifies the output line
width. The maximum value allowed is 150 characters. If a particular
token will not fit in this width, that line will be lengthened to fit it
and a message will be displayed at the end of formatting. The
default value is 0=80.

Wil 22 1GilOvio D43k, GO w0 heat IF specially. Ii is thus
indented on the next line after ELSE. The default value is q-.

Output all reserved words in uppercase; otherwxse (z-), output in
lowercase. The default value is r-.

Indent record field lists under the record’s identifier, instead of
under the reserved word RECORD. The directive rec+ formats
records like this:

identifier = RECORD
{fieldlist}
END;

The default value rec- formats records like this:

identifier = RECORD
{fieldlist}
END;

Specifies the amount of tab for each indentation level. This is a
numeric directive (t=n). Statements that continue on successive
lines are additionally indented by half this amount. The —ent ab
command option causes actual tab characters to be placed in the
output file using the t directive’s tab stop value. The default value
is t=2.

Case conventions for each identifer are to be based on the
identifier’s first occurrence in the source. The first occurrence of
each identifier is left as is; all subsequent occurrences are made to
look exactly like its first occurrence. This option overrides the 1
and w options, but the e and _ options can still be used. The
default value is u-.

Align an 1F statement so that THEN is indented on the next line
after the line containing 1F. ELSE is aligned with THEN. The
default value is v-.

MPW 3.0 Pascal Reference

Convert identifiers to uppercase; otherwise, convert to lowercase.
This directive is overridden by the 1, e, and _ directives. The
default value is w-.

Suppress space around the arithmetic operators +, -, *, and /
and the relational operators =, <>, <, <=, > and >=. Normally,
one space is placed on each side of these opesators. This option
has no effect on the = used in consT and TYPE declarations. The
default value is x-.

Suppress space around the assignment operator : =. The default
value is y-.

Suppress space after commas. The default value is z-.

Controls cask statement tags (labels). This directive is specified
either as a switch (g+ or g-) or as a numeric directive (@=1). In its
@=1 form, the { indicates that the statement associated with the
CASE tag is to start § columns after the start of the case tag. This is
similar to the j=<width>/<col1>/<col2>c directive where
width indicates how much space to reserve for an identifier being
declared. Here the i indicates how much space to reserve for the
casE tag(s). If @=0 (the default), statements following a CASE tag
are indented (using the current indenting tab value) on the line
following the the tag. If @=1, the width of the first tag plus two (for
the tag’s colon and following space) is used to determine the space
to reserve for all following tags in that CASE statement. This means
you should put your longest casE tag first. For @=i (where 1 is
greater than one), # spaces are reserved for the CaSE tags. If the tag
is too wide for the specified width, then the statements that
follow are placed on the following line, indented i spaces.

@+ and @- specify what to do with a list of tags that don't fit into
the specified width. @+ indicates that a tag that is part of a list is
to be put on the next line if it would exceed the i width. @—
indicates that as many tags as possible are to be kept together on
the same line. If the resulting list is longer than i, the statements are
placed on the following line indented by 1. The default values are
e—, @=0.

 APPENDIX H The PasMat Utility 361

Formatting Comments:

Positioning of colons in aligned var declarations. The reserved
width for identifiers in declarations is controlled by the 5
directive’s width parameter. In VAR declarations, you have the
choice of allowing the colons to immediately follow their
identifiers (by specifying the directive : —) or to align the colons
at the right end of th= reseivzd vidih (by spacifying tie diseciive
: +). The default value is : -

“Smart” grouping option. If #+ is specified, then assignment and
call statements that were grouped together on the same line in the
input will be grouped together on the same line in the output (if

they don't exceed the output line width). The default value is #-.

This directive (an underscore) sets portability mode formatting,
which removes the underscore character from identifiers. The first
letter of each identifier and the first letter following each
underscore character are capitalized, while the remaining
characters are lowercase. This directive overrides the 1 and w
directives. The case of reserved words is set with the r directive.
The default value is _—.

Comments in Pascal are hard to format, and PasMat tries to be clever about it.
The rules should allow you to use comments to achieve almost any effect you
would like, The following rules govern PasMat’s formatting of comments:

= A comment that stands alone on a single line will be passed to the output
unaltered. Its left end is set to the current indentation level so that it is
aligned with the statements before and/or after it. If it is too long to fit with
this alignment, it is placed on the page as far right as it will go.

» A comment that begins as the first thing on a line and continues on another
line is passed to the output unaltered, including its indentation. This type of
comment is assumed to contain text formatted by the user.

= Ifa comment covered by one of the above rules will not fit within the
defined output line length, the output line is extended as necessary to
accommodate it, and a message will be printed at the end of the formatting.

362 MPW 3.0 Pascal Reference

s A comment that is not the first thing on a line is formatted with the rest of
the code. Words within it are moved to the next line to make it fit, so
nothing that has a fixed format may be used in such a comment. The
comment is broken only at blanks; if there is no way to break a comment and
still fit the output within the output line length, the line is extended as
necessary and a message is written at the end of the for.aaiiing, ' o - code
follows a comment in the input line, then no code will be placed after the
comment in the output line. The § directive lets you force these comments
to start in a specific column. This feature is useful for commenting
declarations (see below).

» A comment that follows a statement on a line and begins with a specific
character can be forced to start in a specific column. This feature is useful if
you are making updates to a program and you want to show who made the
update and when.

Statement bunching:
Statement bunching refers to the way PasMat aligns a statement with respect to
some component of another statement that precedes it. There are three cases:

= a statement following casE labels
s 2 statement following THEN or ELSE
= 2 statement following FOR, WHILE, Of WITH

Because users have diverse styles in formatting these statements, PasMat allows
control, to some degree, over how these statements are aligned.

The following discussions on bunching deal with how a statement can be aligned
with respect to its “lead-in” statement—that is, whether it's indented after or on
the same line as the lead-in. Therefore, statement in these cases refers to a simple
statement. Compound statements are usually indented starting on a new line
(except perhaps for their BEGINS as-controlled by the ¢ directive).

Bunching with CASE labels:The default formatting rule for a CASE statement is
to place the selected statements on the same line as the case label(s). The a
directive lets you make the statement appear on a separate line from the case
label. The @ directive lets you control how far the statements following the case
label are indented.

Bunching with IF statements: The default is to place the controlled statements
on separate lines. The b directive tells PasMat to place the controlled statements
on the same line as THEN of ELSE. ‘

APPENDIX H The PasMat Utility 363

Tables:

In the special case of ELSE. . . IF, the default is to put 1F on the same line as .
ELSE. The g directive lets you make 1F appear on the next line, indented after
ELSE.

Bunching with FOR, WHILE, and WITH: The default is to place the controlled
statement on the same Yire (if it fit). Otherwise, it is indented on the next line.

he h direcidve leis vou specitv thet the staiement always appzar on the next

line.

& Note: The h directive also affects the IF statement. With 1F
bunching off (b- directive) and the h directive off (h-), the
controlled statement would normally appear on a separate line. If
there is no ELSE, then the h directive applies to the 1F statement
just like FOR, WHILE, and wITH; that is, the controlled statement
is placed on the same line as TF (if it fits).

Many Pascal programs contain long lists of initialization statements or constant
declarations that are logically a single action or declaration. You can fit these
into as few lines as possible using the g (g=i form) directive. If this is done, tab
stops are set up on the line and successive statements or constant declarations
are aligned to these tab stops instead of beginning on new lines.

Structured statements, which normally format on more than one line, will not be
affected by the g directive. However, care must be taken because assignment
and call statements may be grouped with the end of the structured statement
(for instance, following an END statement). A special form of grouping directive
is provided specifically for assignment and call statements.

Assignment and call statement grouping:

364

As described above, the grouping directive to format tables is g=1, where i is the
maximum number of statements per line. This sets up tab stops to align up to
statements or constant declarations. However, for assignment and call
statements it is not always known how many statements will fit on a line. Even if
it is known, these statements aligned on tab stops may insert too much space
and produce an aesthetically unpleasant result. A special form of grouping can be
specified using g+, which affects only assignment and call statements. They are
grouped so that as many as possible fit on a line without exceeding the line
length. They are never grouped on a line ending a structured statement, so the
problem arising with the g=1 form of grouping cannot happen.

MPW 3.0 Pascal Reference

o

Declarations:

Limitations

You probably won’t want to group all assignment and call statements together
everywhere in your program. The preset option is g- to format assignment and
call statements one per line. Bracket the grouped sections of your code with g+
and g- directives.

If you are formatting a program that is already partially formatted and has
sections of code grouped according tc the the coder’s style, you may not want it
reformatted using g+ and g-. The “smart” grouping option (# +) lets you specify
that if more than one assignment or call statement is on the same input line and
they don't exceed the output line width, they will be kept grouped in the output.
Thus they will appear in the output exactly as in the input (except perhaps for
the space between the statements).

& Note: If g=i is in effect with greater than one, it will have
precedence over the effect of g+ and #+. Thus g+ or #+ may be
enabled and g=i still be used (except for g=1).

If you want to align declarations so that the objects of the identifiers (constants
or types) all start at a particular column, or align comments explaining the
identifiers, use the j directive. It allows you to specify the number of columns
to reserve for the identifiers and in which column the explaining comment is to
begin.

PasMat has the following limitations:

s The maximum input line length is 255 characters.
s The maximum output line length is 150 characters.
= The input files and output files must be different.

s Only syntactically correct programs, units, blocks, procedures, and
statements are formatted. This must be taken into consideration when
separate include files and conditional compiler directives are to be
formatted.

s The Pascal include directive should be the last thing on the input line if
include files are to be processed. Include files are processed to a maximum
nesting depth of five. All include files not processed are summarized at the
end of formatting, (This assumes, of course, that the in directive/option is
in effect.)

APPENDIX H The PasMat Utility ~ 365

Error handling:

Example

» The identifiers Cycle and Leave are treated as reserved Pascal keywords by
PasMat. They are treated as two loop control statements by Pascal unless
explicitly declared.

= While Pasmat supports Pascal’s $$shell facility in include files, the
processing of MPW's {PInterfacec) fi'es is ot fully stnported because these
files conditionilly inchurd= Fier (moqemhn conditicer. + Lot nrocessed).
For this reason, do not use the -in or -e option

The following errors are detected and written to diagnostic output:

= [n general, premature end-of-file conditions in the input are not reported as
errors, to accommodate formatting of individual include files, which may be
only program segments. There are cases, however, where the include file is a
partial program that PasMat interprets and reports as a syntax error.

s There is a limit on the number of indentation levels that PasMat can handle. If
this limit is exceeded, processing will abort. This problem should be
exceedingly rare.

s Ifa comment would require more than the maximum output length (150) to
meet the rules given, processing will abort. This problem should be even rarer
than indentation level problems.

If a syntax error in the input code causes formatting to abort, an error message
will give the input line number on which the error was detected. The error
checking is not perfect—successful formatting is no guarantee that the program
will compile.

PasMat -n -u -r -d -pattern "==formatted/=" Sample.p 0
"formatted/Sample.p"

Format the file Sample.p with the -n, -u, -r, and -d options, and write the
output to the file “formatted/Sample.p.” Include files are processed
(-pattern) and each Pascal Compiler s1 include file causes additional output
files to be generated. Each of these files is created with the name

“formatted/ filename,” where filename is the filename specified in the
corresponding include file.

Care must be taken when a command line contains quotation marks, slashes, or
other special characters that are processed by the Shell itself. This example uses
the slash character, so the strings containing it have to be quoted.

The -pattern parameter contains a null pattern (==) with “formatted/"asa
replacement string. A null pattern always matches the start of a string.

366 MPW 3.0 Pascal Reference

=y

Appendix I

Syntax
Description

The PasRef Utility

THIS APPENDIX DESCRIBES PASREF, an MPW Shell utility program that you can use to
generate a cross-reference table of variable references in your source text.

PasRef [option ... | [sourceFile...

Reads Pascal source files, and writes a listing of the source followed by a cross-
reference listing of all identifiers. Each identifier is listed in alphabetical order,
followed by the line numbers on which it appears. Line numbers can refer to the
entire source file, or can be relative to individual include files and units. Each
reference indicates whether the identifier is defined, assigned, or simply named
(for example, used in an expression).

Identifiers may be up to 63 characters long and are displayed in their entirety
unless overridden with the -x directive. Identifiers may remain as they appear in
the input, or they can be converted to all lowercase (-1) or all uppercase (-u).

For include files, line numbers are relative to the start of the include file; an
additional key number indicates which include file is referred to. A list of each
include file processed and its associated key number is displayed before the
cross-reference listing.

usEs declarations can also be processed by PasRef (their associated $u filename
compiler directives are processed as in the Pascal Compiler). These declarations
are treated exactly like include files; and, as with the Compiler, only the
outermost USES declaration is processed (that is, a used unit's uses declaration
is not processed). '

As an alternative to processing USES declarations, PasRef accepts multiple
source files. Thus you can cross-reference a set of main programs together with
the units they use. All the sources are treated like include files for display
purposes. In addition, PasRef checks to see whether it has already processed a
file (for example, if it appeared twice on the input list or if one of the files
already used or included it). If it has already been processed, the file is
skipped. =

367

Input

Outpui

Diagnostics

Status

Options

If no filenames are specified, standard input is processed. Unless the -d option
is specified, multiple source files are cross-referenced as a whole, producing a
single source listing and a single cross-reference listing. Specifying the -d option
is the same as executing PasRef individually for each file.

Ali listings are written to standard output Form feed characters are piaced in the
file before each new source listing and its associated cross-reference. Pascal sp
(page eject) Compiler directives are also processed by PasRef, which may
generate additional form feeds in the standard output listing.

Parameter errors and progress information are written to diagnostic output.

The following status codes are returned to the Shell:
0 Normal termination

1 Parameter or option error

2 Execution terminated

-a Process all files even if they are duplicates of ones already
processed. The default is to process each (include) file or USES
unit only once.

-c Do not process a unit if the unit's filename is specified in the list of
files to be processed on the command line, or if the unit has already
been processed.

-d Treat each file specified on the command line as distinct. The

default is to treat the entire list of files as a whole, producing a
single source listing and a single cross-reference listing. This option
is the same as executing PasRef individually for each specified file.

-i pathname|, pathname...] .
Search for include or usks files in the specified directories.
Multiple -i options may be specified. At most 15 directories will
be searched. The search order is specified under the description of
the Pascal command in the Macintosh Programmer’s Workshop 3.0
Reference.

APPENDIX 1 The PasRef Utility 369

-1 Display all identifiers in the cross-reference table in lowercase. This
option should not be used if -u is specified, but if it is, the -u
is ignored.

-ni | -noincludes N
Do not process £1-: rsinds fise, The defadt is to process the
include files.

-nl | -nolisting
Do not display the input source as it is being processed. The
default is to list the input.

-nolex Do not display the lexical information on the source listing. See the
example at the end of this appendix for further details. “

-nt | -nototal
Do not display the total line count in the source listing. This option

is ignored if no listing is being generated (-n1).

-nfu] | -nouses
Do not process uses declarations. The default is to process USES
declarations. If —nu is specified, the -c option is ignored.

-0 The source file is an Object Pascal program. The identifier oBJECT
is considered to be a reserved word so that Object Pascal
declarations may be processed. The default is to assume the source
is not an Object Pascal program.

-p Display version and progress information on the diagnostic file.

-s Do not display include and usks information in the listing or cross-
reference, and cross-reference by total source line number count
rather than by include-file line number.

-t Cross-reference by total source line number count rather than by
include-file line number. This option can be used if you are not
interested in knowing the positions in included files. However, the
include information is still displayed (unless -s, -ni, or —nu is
specified). This option is implied by the —s option.

-u Display all identifiers in the cross-reference table in uppercase. This
option should not be used if -1 is specified.

370 MPW 3.0 Pascal Reference

—w width Set the maximum output width of the cross-reference listing. This
setting determines how many line numbers are displayed on one line
of the cross-reference listing. It does not affect the source listing.
Width can be a value from 40 to 255; the default is 110.

-x width Set the maxirmien display width for identifiers in the cross-
reference listing. (The default is to set the width to the size of the
largest identifier cross-referenced.) If an identifier is too long to fit
in the specified width, it is indicated by preceding the last four
characters with an ellipsis (...). Widtth can be a value from 8 to 63.

Normally, both include files and uses declarations are processed. The -
noincludes option suppresses processing of include files. The -nouses
option suppresses processing of USEs declarations.

Omitting the -nouses option causes PasRef to process a uSes declaration
exactly as does the Pascal Compiler. However, you may want to cross-reference
an entire system, including all the units of that system. Processing the units
through the uses declaration would cause only the interface section of each unit
to be processed. If the -nouses option is used, then uses will not be processed
and each unit from the parameter list can be cross-referenced, treating the entire
list as a single source.

PasRef can also cross-reference all the units of a program while still expanding
other units not directly part of that program, such as the Toolbox units. In that
case, the -c option should be used. With the -c option, if the ($u interface)
filename is the same as one of the filenames specified on the parameter list, then
the unit will not be processed from the uses declaration because its full source
will be (or has been) processed.

To summarize, you have the following choices:

" = Don't process the USES, and specify a list of all files you want to process, by
using the -nouses option.

s Process only the interface sections through the uses declarations (like the
Compiler), by omitting the -nouses option.

s Process some of the units through the uses and others as full sources, by
specifying the -c option.

In all cases where a list of files is specified, no unit will ever be processed more
than once (unless the -a option is given).

APPENDIX [The PasRef Utility 371

- Exémple-

1 1 1 -
2 1 2 -
3 1 3 -
4 1 4 -
5 1 5 -
6 1 6 -
7 1 7 -
8 1 8 -
9 1 9 -
10 1 10
11 1 11
12 1 12
13 1 13
14 1 14
15 1 15
16 1 16
17 1 17
18 1 18
19 1 19
20 1 20
21 1 21
22 1 22
23 1 23
24 1 24
25 1 25
26 1 26
etc.
63 1 63
64 1 64
65 1 65
66 1 66
67 1 67
68 1 68
69 1 69
70 1 70
71 1 71
etc.
178 1 178
179 1 179

180 1 180

PasRef -nu -w 80 Memory.p > Memory.p.Xref

Cross-reference the sample desk accessory Memory.p and write the output to the
file Memory.p.Xref. No usEs are processed (-nu). The following source and
cross-reference listings are generated:

{
File Memory.p

Copyright Apple Computer, Inc. 1985-1987
All rights reserved.
}

{$D+} { MacsBug symbols on }
{SR-} { No range checking }

UNIT Memory;
INTERFACE

USES
MemTypes, QuickDraw, OSIntf, ToolIntf, PackIntf;

FUNCTION DRVROpen (ctlPB: ParmBlkPtr; dCtl: DCtlPtr): OSErr;
FUNCTION DRVRControl (ctlPB: ParmBlkPtr; dCtl: DCtlPtr): OSErr;
FUNCTION DRVRStatus (ctlPB: ParmBlkPtr; dCtl: DCtlPtr): OSErr;
FUNCTION DRVRPrime (ctlPB: ParmBlkPtr; dCtl: DCtlPtr): OSErr;
FUNCTION DRVRClose (ctlPB: ParmBlkPtr; dCtl: DCtlPtr): OSErr;
IMPLEMENTATION

A FUNCTION DRVRClose(ctlPB: ParmBlkPtr; dCtl: DCtlPtr): OSErr;
A BEGIN

IF dCtl”.dCtlwindow <> NIL THEN

BEGIN

DisposeWindow (WindowPtr (dCtl”.dCtlWindow)):

dCtl”.dCtlWindow := NIL;

END; : ’
DRVRClose := NOErr:;

A END;

END. {of memory UNIT}

32 MPW 3.0 Pascal Reference

1. Memory.p

-A-

accEvent

accRun
Away

-B-

Each line of the source listing is preceded by five columns of information:

The total line count.
The include key assigned by PasRef for an include or usks file (see below).
The line number within the include or main file.

Two indicators (left and right) that refiect the static block nesting level. The
left indicator is incremented (mod 10) and displayed whenever a BEGIN,
REPEAT, Of CASE is encountered. On termination of these structures with an
END Of UNTIL, the right indicator is displayed, then decremented. It is thus
easy to match BEGIN, REPEAT, and CASE statements with their matching
terminations.

A letter that reflects the static level of procedures. The character is updated
for each procedure nest level (A for level 1, B for level 2, and so on), and
displayed on the line containing the heading and on the BEGIN and END
associated with the procedure body. Using this column, you can easily find
the procedure body for a procedure heading when there are nested
procedures declared between the heading and its body.

The cross-reference listing follows:

144 (1)
158 (1)
ApplicZone 121
33*(1) 146 (1)

(1)

BeginUpdate 151 (1)
39 (1)
90 (1) 117 (1)
31*(1)
39 (1)
39 (1)

BNQT
Bold
Boolean
BOR
BSL

~C~-
csCode
CSParam
ctlPB

143 (1)
146 (1)

19*%(1) 20*(1) 21*(1) 22*%(1) 23*(1) 43*(1)
63*(1) 74*(1) 143 (1) 146 (1) 168*(1) 173*(1)

APPENDIX I The PasRef Utility 373

dCtl

DCtlPtr

dCt1RefNum
dCtlWindow
etc.
..V..
VolName

"W"
what
WindowKind
windowpeek
WindowPtr
wRect

19*(1) 20*(1) 21*(1) 22*(1) 23*(1) 37*(1)
39 (1) 43*(1) 50 (1) 53 (1) 54 (1) 55 (1)
63*(1) 65 (1) 67 (1) 68 (1) 74*(1) 115 (1)
142 (1) 168*(1) 173*(1)

19 (1) 20 (1) 21 (1) 22 (1) 23 (1) 37 (1)
43 (1) 63 (1) 74 (1) 168 (1) 173 (1)

39 (1) 54 (1)
50 (1) 55=(1) 67 (1) 68=(1) 142 (1)

79*%(1) 100 (1) 135 (1)

149 (1)
54=(1)
54 (1)
48 (1) 67 (1) 151 (1) 153 (1)
47*(1)

*** End PasRef: 105 id's 249 references

Limitations

The numbers in parentheses following the line numbers are the include keys of the
associated include files (shown in column 2 of the source listing). The include-file
names are shown following the source listing. Thus you can see what line number
was in which include file. An asterisk (*) following a line number indicates a
definition of the variable. An equal sign (=) indicates an assignment. A line
number with nothing following it means a reference to the identifier.

PasRef does not process conditional compilation directives! Thus, given the
“right” combination of $1Fcs and $ELSECS, PasRef’s lexical (nesting)
information can be thrown off. If this happens or if you just don’t want the lexical
information, you may specify the -nolex option.

PasRef stores all its information on the Pascal heap. Up to 5000 identifiers can be
handled, but more identifiers will mean less cross-reference space. A message is
given if PasRef runs out of heap space.

@ Note: Although PasRef never misses a reference, it can infrequently
be fooled into thinking that a variable is defined when it actually
isn’t. One case where this happens is in record structure variants.
The record variant's case tag is always flagged as a definition (even
when there is no tag type), and the variant’s case label constants
(if they are identifiers) are also sometimes incorrectly flagged
depending on the context. (This occurs only in the declaration
parts of the program.)

374 MPW 3.0 Pascal Reference

While PasRef supports Pascal’s $$shell facility in include files and usEs
declarations, the processing of MPWs {PInterfaces} files is not fully supported
because these files conditionally include files (remember, conditionals are not
processed). For this reason, always use the -nu option to suppress processing of
uses declarations.

The identifiers Cycle and Leave are treated as reserved Pascal keywords by
PasRef. These are treated as two loop control statements by Pascal unless
explicitly declared.

APPENDIX [The PasRef Utility 375

Appendix] The ProcNames Utility

Syntax
Description

Input

Output

THIS APPENDIX DESCRIBES ProcNames, an MPW Shell utility program that you can
use to produce a list of all procedure and function names in your Pascal program
or unit.

ProcNames [option...][file...]

Accepts a Pascal program or unit as input and produces a listing of all its
procedure and function names. The names are shown indented as a function of
their nesting level. The nesting level and line number information is also displayed.

ProcNames can be used in conjunction with the Pascal “pretty-printer” PasMat
when that utility is used to format separate include files. For that case, PasMat
requires that the initial indenting level be specified. This level is exactly the
information provided by ProcNames.

The line number information displayed by ProcNames exactly matches that
produced by the Pascal cross-reference utility PasRef (with or without USES
being processed), so ProcNames may be used in conjunction with the listing
produced by PasRef to show just the line numbers of every procedure or function
header.

Another possible use for the ProcNames output is to use the line number and file
information to find procedures and functions quickly with Shell editing
commands. '

The file parameters specify a list of Pascal source filenames to be processed.
Standard input is processed if no filenames are specified. Unless the -d option is
specified, the entire list of files is treated as a single group of files to be
processed as a whole, producing a single procedure or function summary.
Specifying the -d option is equivalent to executing ProcNames individually for
each specified file.

The procedure or function name listing is written to the standard output file.
Form feed characters are placed in the file before each new list (unless the -e
option is specified). =

377

Diagnostics
Status

Options

Errors are written to the diagnostic file.

The following status codes may be returned to the Shell:
0 Normal termination

1 Parameter or option error

2 Execution terminated

=C

-e

Do not process a used unit if the unit’s $U interface filename is specified in
the list of files to be processed. This option has the same effect on the line
numbering as does the -c option in the PasRef utility.

Reset total line number count to 1 on each new file. If a list of files is
specified, then the total line number count may either start at 1 or continue
from where it left off in the previous file. The default is to agree with the
listing produced by PasRef when it processes a list of files, that s, to
continue the count. However, if you want ProcNames to treat each file
independently, you may specify the —-d option so that the total line number
count is reset to 1 before each file is processed.

Suppress page eject (form feed) between each procedure or function
listing.

PasMat format compatibility mode. The default lists the procedure and
function names as a function of their Pascal compiler indenting level.
However, for indenting purposes only, a special case is made of level-1
procedures in the IMPLEMENTATION section of a unit. PasMat formats
these procedures indented under the word 1MPLEMENTATION. Thus they
are indented as if they were level-2 procedures. If you intend to use the level
information for PasMat, then you should specify the -£ option.

-i pathname(, pathname ...]

-n

-0

Search for include or usEs files in the specified directories. Multiple - i
options may be specified. At most, 15 directories will be searched. The
search order is specified under the description of the -i option for the
Pascal command.

Suppress all line number and level information in the output display. Only
the procedure and function names will be shown appropriately indented.

The source file is an Object Pascal program. The identifier oBJECT is
considered as a reserved word so that Object Pascal declarations may be
processed. The default assumes that the source is an Object Pascal
program.

APPENDIX] The ProcNames Utility 31

Examples

-p Display version information and progress information on the diagnostic
file.

-u Process uses declarations. The only reason you would need to process
uses with ProcNames would be to make the line number information agree
with a PasRef listing that also contains processed uses. The default does
not process the uses declarations because they have no cffect ca the
procedure name listing, only the associated line numbers. Thus, if you
specify the -n option to suppress the line number information, it makes no
sense to process USES, so the —u option will be ignored when the —n option
is specified.

ProcNames Memory.p >names

List all the procedures and functions for the Pascal program Memory.p and write
the output to the filenames. The listing below is the output generated in the
names file:

Procedure/Function names for Memory.p

11
37
43
63
74
76
83
93
108
168
173

* % %

Limitations

380

11
37
43
63
74
76
83
93
108
168
173

HEPWWWNRHERP RO

Memory (Main] Memory.p
RsrcID
DRVROpen
DRVRClose
DRVRControl
DrawWindow
PrintNum
GetVolStuff
PrtRsrcStr
DRVRPrime
DRVRStatus

End ProcNames: 11 Procedures and Functions

The first two columns on each line are line number information. The third column
is the level number. The first column shows the line number of a routine within the
total source. The second column shows the line number within an include file
(includes are always processed). As each include file changes, the name of the file
from which input is being processed is shown along with the routine name on the
first line after the change in source. Segment names (from Pascal Compiler $s
directives) are similarly processed. These are shown enclosed in square brackets
(the blank segment name is shown as ‘{Main]").

Only syntactically correct programs are accepted by ProcNames. Conditional
compilation Compiler directives are not processed.

MPW 3.0 Pascal Reference

B

=y

Appendix K Advanced Topics for 68020
Programmers

THIS APPENDIX SUMMARIZES THE SUPPORT MPW PASCAL PROVIDES for the Motorola
68020 central processing unit. In addition, it considers some programming
implications such as longint arithmetic and bit-field operations. =

Contents

Support for the 68020 383
Faster longint arithmetic 383
Bit-field operations 383

381

Support for the 68020

MPW Pascal provides support for the 68020 central processing unit in the following ways:

s The -Mc68020 Compiler option or the equivalent { sMce68020+} Compiler directive
permits the Compile: to generate 68020 instructions: CHK . L, CHK2, RTD MULS.L,
DIVS.L, BFFXXX, and EXTB. L.

» The use of the 68020 instructions has two main advantages: faster longint arithmetic
and more efficient use of packed data types.

s [fyou elect to use the -MC68020 option, your application may run only if a 68020 is
present in your Macintosh.

Faster longint arithmetic

The 68020 provides new instructions for longint multiplication and division. The
-MC68020 option permits the Compiler to generate these instructions.

Bit-field operations
The -MCc68020 option permits the Compiler to generate the 68020 bit-field instructions.

These instructions can significantly improve performance in the use of packed data
types.

APPENDIX K Advanced Topics for 68020 Programmers

383

Glossary

access: To use a variable's identifier in source
text

actual parameter: A parameter whose value is
given to a formal parameter by a procedure or
function call.

address: A number that specifies a location in
memory.

allocate: To reserve an area of memory for use.

ancestor: The object from which another
object is created.

application: a program that can be run under the
Macintosh Finder or Multifinder.

array: A data structure containing an ordered
set of elements.

ASCIE: Acronym for American Standard Code for
Information Interchange, a system of assigning
code numbers to letters, numerals, punctuation
marks, and control codes.

assignment compatible: Of two types,
capable of being combined in an assignment
statement.

associated scalar type: The type of the
elements of a subrange.

base type: The type of the members of a set.

blank: A tab, space, return, or Option:space
character.

block: The fundamental large-scale unit of a
Pascal program.

Boolean expression: An expression whose
value is either t rue or false.

comment: Source text intended for a human
reader, ignored by the Compiler.

Compiler directive: A symbol placed in Pascal
source text to send an instruction to the
Compiler.

Compiler option: A symbol placed in the MPW
Pascal command line to send an instruction to
the Compiler.

compile-time expression: An expression
whose value controls conditional compilation.

compile-time variable: A variable, created by
the ssETC directive, that goes into a compile-
time expression.

component type: The type of the elements of a
structured type.

constant: An identifier that represents a fixed,
unchanging value.

constant declaration part: A part of a block
that contains constant declarations.

current file position: The position in a file
currently accessed by the file window variable.

defining declaration: The block of a forward
declaration.

delimiter: A symbol that separates other
symbols in source text.

descendant: An object created by another
object.

desk accessory: a program that you run by
selecting it from the Apple menu.

diagnostic output file: A file (often the
topmost window) to which the Compiler sends
error messages and information about its
progress.

digits: The numerals 0..9.

385

dimension: An ordering relation among
elements of an array.

directive: A source text symbol that modifies
the action of the Compiler.

dynamic variahle: A variable created during

DIOGHafi S¥OUULie,

exception: An unusual condition arising during
execution of an instruction. Exceptions can also
be externally generated, for example,
interruptsbus errors, or reset.

expression: Any representation of a value. It
can be a single identifier of a constant or
variable, or a combination of identifiers and
operators.

external file: A peripheral device or disk file
that contains the value of a file variable.

factor: A part of a term.
fleld: A data structure within a record or object.

file window variable: A buffer variable that
accesses one component of a file at a time.

fixed-point number: A signed 32-bit quantity
containing an integer part in the high-order word
and a fractional part in the low-order word.

Floating-Point Arithmetic Package: A
Macintosh package that supports extended-
precision arithmetic according to IEEE
standard 754.

floating-point: A way of representing decimal
numbers.

floating-point coprocessor (MC68881): A
coprocessor chip that provides high-speed
support for extended-precision arithmetic.

formal parameter: A parameter in a procedure
or function declaration.

forward declaration: A procedure or function
declaration whose block occurs later in the
source text.

free block: A memory block containing space
available for allocation.

global scope: The scope of code or data that is
accessible throughout a program.

38 MPW 3.0 Pascal Reference

handle: A pointer to a master pointer, which
designates a relocatable block in the heap by
double indirection.

hexadecimal: Base-16 number representation,
using the numerals 0..9 and the letters A. F.

hew éiptiv: Symbols representivyg; the
hexadecimal numerals.

host program: A program or unit that uses a
unit.

identified variable: A variable pointed to by a

- pointer.

identifier: A name in source text.

implementation part: The part of a unit
containing code that executes the procedures
and functions declared in the interface part.

implicit parameter: An undeclared parameter
of a method, such as self.

index: A numeric value that indicates the
position of an element in a sublist or array,
expressed by a subscript.

index type: The type of an index expression.

inheritance: The process by which one object
generates another object.

input: The process of entering data into an
executing program.

interface file: A code file that provides an
interface between a specific language and a
library. :

interface part: The part of a unit that is
available to a host program.

interrupt: An exception that’s signaled to the
processor by a device to notify the processor of
a change in condition of the device, such as the
completion of an I/O request.

interrupt handler: A routine that services
interrupts.

1/0: Abbreviation for input and ousput
operations, taken collectively.

label: A name that identifies a location in source
text.

. "/

label declaration part: A part of a block that
contains label declarations.

length: Of a string, the number of characters in
its actual value.

letters: The symbols A..Z and a..z.

libra. 7z A code file that contains procedures
and functions available to a program.

local scope: The scope of code or data that is
accessible in only part of a source text.

logical record: A component of a file.

Macintosh Programmer’s Workshop (MPW):
Apple’s software development environment for
the Macintosh family.

master pointer: A single pointer to a
relocatable blcok, maintained by the Memory
Manager and updated whenever the block is
moved, purged, or reallocated. All handles to a
relocatable block refer to it by double
indirection.

member: The relation of an object to its type.

memory block: An area of contiguous memory
within a heap zone.

method: A procedure or function in an object.

method call: A special type of function call that
calls a method in an object.

MPW Shell: The application that provides the
environment within which the other parts of the
Macintosh Programmer’s Workshop operate.
The Shell combines an editor, command
interpreter, and built-in commands.

MPW tool: An executable program (type
'MpsT") that is integrated with the MPW Shell
environment (contrasted with an application,
which runs

stand -alone). Examples of MPW tools are
ProcNames, PasRef, PasMat, and the Pascal
Performance Tools.

mutual recursion: The situation in which two
or more procedures and/or functions call each
other.

NaN: Acronym for Not @ Number, the result of a
meaningless arithmetical operation.

null string: A string of zero length, containing
no characters.

object: A program structure that contains both
data (called fields) and routines (called
methods).

Object Pascal: An extension of Pascal based on
the use of objects.

object reference variable: A variable declared
with an object type.

object type: The type of an object.

operand: Data that controls or modifies the
action of an operation.

operator: A symbol that acts upon one or two
operands, generating a new value.

output: The process of accessing data
generated by an executing program.

package: A set of routines and that types that's
stored as a resource and brought into memory
only when needed.

predefined: Of an identifier, having its meaning
supplied by the Compiler.

procedure and function declaration part: The
part of a block that contains procedure and
function declarations.

program: A complete, executable Pascal source
text.

qualifier: A symbol that modifies a variable
access.

quoted string constant: A sequence of ASCII
characters enclosed in apostrophes.

relational operator: An operator that compares
two operands, producing 2 boolean result.
Relational operators are listed in Table 6-6.

reserved word: A word or sequence of
characters reserved by Pascal for special use,
and therefore unavailable as an identifier in a
Pascal program.

scope: The area of source text in which an
identifier can be referenced.

segment: A part of code that can be separately
loaded into memory.

GLOSSARY 387

set constructor: An expression enclosed in
brackets that defines a set.

short-circuit operator: An operator that
evaluates two operands from left to right, and
does not evaluate the second if the first
produces a t v result.

simple expression: A combination of a term
with a sign, OR, or |.

simple type: A real type, scalar type, or string
type.

source text: Text written by a programmer.
special symbol: A punctuation mark
recognized by the Compiler.

stack: The area of memory in which space is
allocated and released in LIFO (last-in, first-out)
order.

stack frame: The area of the stack used by a
routine for its parameters, return address, local
variables, and temporary storage.

standard input: The input that the MPW Shell
gives to Pascal input operations by default.

standard output: The output that the MPW
Shell gives to Pascal output operations by
default.

statement part: A part of a block that contains
statements.

structured type: A data type that stores more
than one value.

subscript: A numeric expression whose value is
the index of an element in a string or an array.

symbol: A lexical component of source text
processed by the Compiler.

tag field: A field of a record that contains
information used to identify variant fields.

tag field identifier: The identifier used to
access a tag field.

term: A part of an expression.

388 MPW 3.0 Pascal Reference

Transcendental Functions Package: A
Macintosh package that contains
trigonometric, logarithmic, exponential, and
financial functions as well as a random number
generator.

fawy. ol SCEpHCH caused by instruction
execution. li arises irom either process
recognition of abnormal conditions during
instruction execution or from use of the specific
instructions whose normal behavior is to cause
an exception.

type: The kind of quantity represented by a
data value.

type declaration: Pascal source text that
associates an identifier with a type.

type declaration part: A part of a block that
contains type declarations.

underscore: The symbol _ (ASCII 95).

unit: A separately compiled collection of types,
variables, procedures, and/or functions that are
not executable by themselves but may be used
by a program.

user-defined: Of an identifier, requiring a
meaning to be supplied by a program.

user-defined anonymous type: A user-defined
type that does not have an identifier.

variable: A symbol that represents a location in
memory where a value can be stored.

variable declaration part: A part of a block
that contains variable declarations.

variant: A group of fields that share memory
space with other fields.

Index

Cast of characters

& operator 99
* * operator 98
@ operator 103

| operator 99

> operator 101
>= operator 101
< operator 101
<= operator 101
<> operator 101
+ operator 98

/ operator 98

- operator 98

A

Abs function 203

actual (or source) parameters 119
addition 98

$AS5 Compiler directive 238, 246

American National Standard (ANS) Pascal 3, 251, 252

ancestor 218

AND operator 99

angle 204

anonymous type 77

ANS 53

$Al Compiler directive 238, 246
application 16

Arctan function 205

amray 67, 117, 298

array variable 89

ASCII 31, 102, 206, 261
assembly language 27, 139, 140
assignment compatibility 73, 74
assignment statement 116
assignments 116

associated scalar type 59

B

BAND function 213
base type 61, 69
BC1 r function 215

-b Compiler option 234
BEGIN statement 117
bit-field instructions 383

bit manipulations 213

blanks 31, 36, 38

block 43

Blockread function 187
Blockwrite function 188
$B- Compiler directive 238, 241
BNOT function 213

boolean 51, 99, 185

BOR function 213

$B+ Compiler directive 238, 241
branching 125

BRotL function 214
BROtR function 214

BSet function 215

BSL function 213

BSR function 214

BTst function 214

building an application 16
BXOR function 213
Byteread function 189
Bytewrite function 189

C

C 27, 129, 140, 141, 302-305

case sensitivity 32

CASE statement 125, 126-127, 252
-c Compiler option 234

char 55, 184

character constants 3

character set 261

char type variable 181

Chr function 206

-clean Compiler option 234
Clone function 229

Close procedure 166, 169
$C- Compiler directive 238, 241
'CODE" resource 15
comments 39, 362

INDEX

comparison 101-103
compdate constant 86
Compiler 25

Compiler directives 39, 237-247
Compiler options 39, 233-237
compile-time variables 244
component type §5-06
compound statement 117-118
compsecs constant 86
compt ime constant 8
comp type 53, 297, 312, 315, 317
Concat function 207
conditional compilation 244-245
constant expression 81
constants 44, 54, 69, 81-86
control codes 31

control variable 121-122

Copy function 208

Cos function 204

$C+ Compiler directive 238, 241
Creating code for different models of the Macintosh 24
current file position 90, 165
cursor control 12

Cycle statement 128, 129, 252

D

-d Compiler option 234
DecFormrecord type 323
Declarations 4347, 67, 76-77, 135-139, 365
DecStr type 323

DecSt rLen constant 322
Delete procedure 208
Delimiters 38

denormalized numbers 320
descendant 219

Diagnostic file 379

diagnostic output 233

difference 100

digits 31

directives 38

Dispose procedure 195, 199
division 98

DIV operator 98

~d linker option 18

$D- Compiler directive 238, 243
double type 533, 297, 314, 317
DOWNTO statement 120

$D+ Compiler directive 238, 243
DRVROpen function 22
'DRVR' resource 21

390 MPW 3.0 Pascal Reference

dynamic variable 62, 116

E

SE Compiler directive 238, 246

-e Compiler option 234

80-bit format 315

SRLSEC Compiles cranize 138, 240
empty set 70

$ENDC Compiler directive 238, 245
END statement 117-118

enumerated scalar constants 257-258
enumerated type 58

Eof function 169-170, 179, 188
Eoln function 178, 179, 185

equal to 101

equivalence 103

error reporting for object errors 5
exception flags 321

Exception type 324

exclusive-or 102

Exit procedure 123, 195

Exp function 204

exponentiation 97, 98
exponentiation operator 98
extended types 51, 53, 54, 297-298, 316-321
EXTERNAL directive 140-141
external file 162

F

factor 108-109

field 46, 67, 89, 130

file buffer symbol 91

files 159-189

file type 70, 162, 164

file variables 45, 92, 162-164
file window variable 92, 165

" Fillchar procedure 211

Fixed-point representation 183
floating-point arithmetic 12, 312
floating-point operations 25
floating-point representation 183
formal parameters 119, 135
FOR statement 120-122, 124
forward declaration 140
FORWARD directive 140
Free function 229

functional parameters 142-144, 147
function call 105

function declaration 45, 136-139
function names 377-380

asgs, :,

function results 299-301
functions 45, 133, 303-305

G

getenv function 19
Get procedure 175, 186
global data 3

GOTO statement 128

H

Halt procedure 128, 195
handle 104, 244

-h Compiler option 233, 234
Heapresult function 199-200
hexadecimal 31, 34-36

HiWrd function 214

$H- Compiler directive 238, 244
host program 152

$H+ Compiler directive 238, 244

I

$T Compiler directive 238, 240
-1 Compiler option 9, 234
identified variable 93

identifiers 33, 47, 6769, 251, 367
IEEE Standard 25, 754

$IFC Compiler directive 238, 244
SIFC OPTION Compiler directive 238, 244
IF statement 125
implementation 153
implication 102

index 89

index types 65-66

inf constant 86

infinite value 54

infinity 86

inheritance 219

INHERITED directive 227
initialization 154

INLINE directive 139, 141-142
IN operator 101

input 164, 369, 377

Insert procedure 208
installing MPW Pascal 14
integer types 55, 56
integer variable 178
Integrated Environment 161, 164
interface-file search rules 10
Interface.oll

interface part 152

intersection 100

IOResult procedure 170

J

$J~- Compiler directive 238, 242
$J+ Compiler directive 238, 242

K

$K Compiler directive 238,246
-k Compiler option 233, 235

L

label 36, 43, 128-129
Leave statement 128, 130, 252
Length function 60, 207
letters 31

libraries 10-12

limit expressions 122
Linker 149, 243

linking a desk accessory 23
list 68

Ln function 204

$LOAD 3

logical records 162

longint arithmetic 383
longint type 56, 69-70
longint values 84

looping 120

‘LoWrd function 215

M

MacApp 5, 12, 27, 227

Macintosh Programmer's Workshop 3.0 1
MacsBug 243

Main segment 152

Mark procedure 200

maxcomp constant 86

maxint constant 85

-mbg Compiler option 233, 235

-m Compiler option 233, 235
-MC68020 Compiler option 235
$MC68020~- Compiler directive 238, 242
{$MC68020+} Compiler 383

SMC 68020+ Compiler directive 238, 242
-MC68881 Compiler option 235

SMC 68881 - Compiler directive 238, 242
$MC 68881+ Compiler directive 238, 242
Memavail function 200

Membe r function 228

memory allocation 195

Memory Manager 195

method call 106

INDEX

391

method identifier 48

methods 70, 154, 219, 224-225
minnormdouble constant 8
minnormextended constant 86
minnormreal constant 86
MOD operator 98, 99

modulus 99

Moveleft procedure 209
Moveright procedure 210
MPW Shell 4, 27, 164

MPW 3.0 Pascal 249-253, 289-293
multiplication 98

N

NaNs 53, 102, 324

~n Compiler option 233, 236
nested comments 39

Nested IF statements 126
NewHandle procedure 1%
New procedure 62, 198-199
NewPt r function 198

NIL 62202

96 bits 313

$N~- Compiler directive 239, 245
-noload Compiler option 236
not equal to 101

NOT operator 99

$N+ Compiler directive 239, 245
NULL statements 132

null string 37

numbers 34-36, 54, 56-57
NumClass type 324

0
object 47, 219-220, 221-224

Object-oriented programming 5, 12, 217-229

Object Pascal 5, 227

object reference variable 223-224
object type 48, 71-72, 93, 222
ObjIntf.p 12,227
ObjLib.o 227

-o Compiler option 236
0dd function 203

opening existing files 165
Open procedure 168
operands 95

Operators 97-105

Ord4 function 57, 201-202
ord function 55, 57, 205
OR operator 99-100

392 MPW 3.0 Pascal Reference

OTHERWISE statement 125, 126-127
output 164, 369, 377

-ov Compiler option 236

overflow 75, 242, 321

OVERRIDE directive 224

$0V- Compiler directive 239, 242
$CV+ Comy-iier direciive 243, 242

P

PACKED ARRAY 103, 210-211
PACKED type 64, 186

Pack527

Pack4 27

Pack procedure 251

Page procedure 185

parameter list 118-119

parameters 296-298, 302.

parenthesis 85

Pascal Compiler 291, 295
PasLibIntf.p 11,167
PasLib.o 10,11, 12, 161

PasMat 349

{PasMatOpts} 355

PasRef 367

$P Compiler directive 239, 247

-p Compiler option 236

PExamples folder 291

pi constant 85

PInterfaces folder 291-293
PLCrunch procedure 174
PLFilepos function 166, 174
PLFlush procedure 186
PLHeapInit procedure 196, 200
PLibraries folder 10-11, 293
PLPurge procedure 174
PLRename procedure 174
PLSetHeapCheck procedure 197
PLSetHeapType procedure 197
PLSetMErrP roc procedure 197
PLSetNonCont procedure 197
PLSetVBuf procedure 185

plus sign 35

pointer 46, 61-63, 93, 103-105, 197-198
Pointer function 202

$POP Compiler directive 239, 247
Pos function 207

precedence 97

predefined identifiers 47, 52

Pred function 55, 206

procedural parameters 142, 145-147

procedure 45, 118
procedure declaration 135-136
procedure names 377-380

~ procedure statement 118-119

ProcNames utility 377-380
program heading 164

programs 149-158

$PUSH Compiler directive 239, 247
Put procedure 170, 175, 186

Q

qualification 116

qualifiers 89-90, 138, 226
quoted character constant 37
quoted string constant 36-37

R

range checking 242

- Compiler option 236

Readln procedure 180

Read procedure 175-176, 177-180
real types 53-54, 183-184, 203, 297, 311
-rebuild Compiler option 236
record 47, 6769, 92, 116, 298
recursion 140

register 141

Release procedure 200
RelOp type 324

REPEAT statement 120, 123-124
reserved words 32, 261

Reset procedure 165, 166, 167
Rewrite procedure 165, 166, 168
$R- Compiler directive 118, 239, 242
ROM routines 9, 142, 161, 191, 212
RoundD1i r type 325 '
Round function 201

RoundPre type 325

$R+ Compiler directive 239, 242
Runtime.o 10

S

sample programs 1

SANELib. o 10, 11, 12, 322
Scalar 55-59

Scaneq function 211

Scanne function 211

scientific notation 34-35

$SC- Compiler directive 239, 243

$S Compiler directive 151, 152, 239, 243

scope 4648, 255-258
scope of pointer base type 258

$SC+ Compiler directive 239, 243
Seek procedure 173

segment names 240-241

Self parameter 225

semicolons 118

$SETC Compiler directive 239, 244
set constructor 107

sets 298

SET statement 101

set type 69-70

ShallowClone function 228
ShallowFree function 229
Shell variable 240-241

short-circuit operators 100, 243
simple expressions 111

simple types 52

Simula-67 5

Sin function 204

single quotation mark 36, 37
68881 26

68020 27, 383

size attribute 60

Sizeof function 84, 210
Smalltalk 5

source code, writing compatible 24
special circumstances 255

special symbols 31

Sqr function 203

Sqrt function 205

Standard Apple Numeric Environment 25, 53, 102

standard input 164, 351

standard output 164, 351
statement bunching 363
statements 45, 113-132

string element 116

string procedures 207-208
strings 6061, 90-91, 102, 179, 184, 298
structured file 162-163, 175-176
structured type 64-66, 219
structured type parameters 298
subrange 59

subtraction 98

Succ function 55, 206

symbolic debugger 3

symbol table 158

-sym Compiler option 233, 236
syntax 161, 377

syntax diagrams 191, 263-288

T

tag fields 69, 131

-t Compiler option 237
terms 110

text files 176-177, 186
tools 291

Trunc function 201
type coercion 75-76

type declaration 44, 76-77
type integer 182

types 49-77

U

$U Compiler directive 239, 240
-u Compiler option 237
underflow 321, 322

union 100

units 152-155

univ parameter 119, 147, 252
UnloadSegl5

Unpack procedure 251
UNTIL statement 123-124
untyped files 163, 187-189
user-defined 52, 77

USES dlause 155-158

USE statements 247

A4

value 182-184

value parameter 104, 142, 144
VAR 142

variable access 88

variable parameters 105, 142, 144-145

variables 44, 70, 86-88

variants 68, 198

w

—-w Compiler option 237
WHILE statement 120, 122-123
window variable 165

WITH statement 92, 130-131, 223
$W- Compiler directive 239, 243
$W+ Compiler directive 239, 243

Writeln procedure 176, 177, 185

Write procedure 176, 181-185

394 MPW 3.0 Pascal Reference

Y

-y Compiler option 237

Z

$z* Compiler directive 239, 245

52~ Compiler diractive 739, 245
San napilen diectve 259, 24>

THE APPLE PUBLISHING SYSTEM

duktog publishing system using
Apple® Macintosh® computers and
Microsoft® Word software. Proof and
final pages were created on the

Apple LaserWriter® [INTX printer.
POSTSCRIPT®, the LaserWriter® page-
description language was developed
by Adobe Systems Incorporated. The
illustrations were created using

Adobe Illustrator and some were
output to 2 Linotronic 300.

The illustration on the cover was

using Adobe Ilustrator 88
on a Macintosh® II computer. Some
of the images were scanned using an
Apple® Scanner and then
manipulated in ImageStudio. Initial
proofing was done using 2 QMS color
printer. Color separations were done
using Adobe separator and output to
a Linotronic 300 at standard
resolution.

Text type is Apple's corporate font, 2
condensed version of Garamond.
Bullets are ITC Zapf Dingbats®. Some
elements, such as programs listings,
are set in Apple Courier, a fixed-

width font.

ERN
i

