Overview

Installation

MPW 3.0A2 Release Notes

July 14,1988

This release note pertains to the following MPW products:

* MPW Development Environment
¢ MPW Pascal

e MPWC

* MPW Assembler

MPW C++ has its own separate release note. This release note, the
MPW 3.0 ERS’s, and other tool-specific release notes are the
documentation for this release. Differences between the ERS,
previous 3.0 development releases, and this release are documented
below. If no release note exists for something that has an ERS, assume
that the piece has been implemented as documented in the ERS.

MPW 3.0A2 highlights include a symbolic debugger, project
management system, and new C compiler. All of the C pieces of
MPW, were compiled with this new C. Since MPW 2.0, the C header
files have three important changes: every function has a function
prototype, the capitalization for routines that pass strings and points
has changed, and the definition of Str255 has changed. The
capitalization and Str255 changes will require changes to your C
source. See the section below titled “Interfaces.”

Another change in MPW 3.0A2 may require a change to your
Makefiles. The Pascal compiler no longer uses the Load/Dump
mechanism. Instead, the compiled object code for each unit is saved
in the unit’s resource fork. Therefore, dependency rules (in
Makefiles) upon Pascal dump files are obsolete. See the section below
titled “Pascal.”

The A2 C compiler now has function prototype checking turned on.
Furthermore, the C compiler is very strict about type compatibility.
Be forewarned...

¢ Installation from floppies - MPW 3.0 now includes an installer disk
for installing MPW from a set of floppy disks. Here are the steps for
automatically installing MPW on your disk:
1) drag the “Installation Folder” onto the hard disk where
you want MPW installed
2) launch the MPW Shell found in the “Installation Folder”

Apple Computer, Inc. Confidential
Page 1

Reporting
Bugs

Getting the
Latest Stuff

Folder
Reorganization

(the one you just dragged onto your hard disk)

3) the installation script will run and will prompt you to
insert a disk in the internal drive. You can insert the MPW
disks in any order and it won’t hurt to insert a disk more
than once.

4) once the installation is complete, throw away the
“Installation Folder,” and launch the newly installed shell.

For those not using the installer script, you will notice that the
configuration of MPW on the floppies has changed. The files on the
disks are in folders that represent their final destination when
moved to a hard disk. Pascal, for example, used to be found at the
root level of the Pascal disk. Now, however, Pascal will be found in
a “Tools” folder on the Pascal disk. This means that there will be
duplicate folders across the set of floppies and you won’t be able to
drag the contents of each floppy onto a hard disk without some
conflict.

* Installation from Spuds/Taters - simply drag the MPW and SADE
folders onto your hard disk.

Please report any bugs you find to the BRC. Please use the latest
version of “Outside Bug Reporter,” found on the Spuds/Taters
server. After completing the bug report, copy the report into the
folder “Put New Bugs Here” which is found on:

Zone: EtherKnott

Server: BRC Central

Volume: Bug Jungle

As bugs are reported and fixed in A2, newer pre-beta versions of

MPW will be placed on:
Zone: Development Tools
Server: AlmostMPW

Volume: AlmostMPW

Note: this software is for Apple internal use only. Use Backup to
find out which pieces are new.

Examples - In order to reduce the propagation of example folders
within the MPW folder, all of the example folders have been placed
inside a single folder: Examples. This folder contains AExamples,
CExamples, CPlusExamples, Examples, LL1Examples, and
PExamples.

Interfaces- In order to reduce the propagation of interface folders
within the MPW folder, all of the interface folders have been placed

Apple Computer, Inc. Confidential
Page 2

inside a single folder: Interfaces. This folder contains the folders:

, Alncludes, CIncludes, PInterfaces, RIncludes, and AStructMacs. The
(| various interfaces Shell variables are, of course, set up correctly by

' the Startup script. If you have any hardcoded paths in scnpts how-
ever, they will have to be changed.

Libraries- In order to reduce the propagation of library folders within
the MPW folder, all of the library folders have been placed inside a
single folder: Libraries. This folder contains the folders: CLibraries,
Libraries, and PLibraries. The various libraries Shell variables are, of
course, set up correctly by the Startup script. If you have any hard-
coded paths in scripts, however, they will have to be changed.

’ Debuggers & ResEdit- Since MacsBug, SADE, and ResEdit are now
separate products from MPW, their folders are no longer found in
the MPW folder. In fact, the Debuggers and Applications folders no
longer exist. The SADE, MacsBug, and ResEdit folders can be
placed anywhere on your hard disk.

Release Notes

“' APW Shell The Shell enhancements are documented fully in the Maintosh
Programmer’s Workshop 3.0 Shell ERS. .

3.0 A2 Enhancements Included:

The Shell variable {MPW} is now {ShellDirectory} rather than (Boot} MPW:. This
makes it easier to run MPW from a non-boot volume.

Tools are now opened read-only. They may be run in a shared environment (e.g.
from a file server).

The Startup script will now execute any file in the shell directory named
“UserStartupe=" (in addition to UserStartup).

The Files command has an extra option -h. This option is for not printing the di-
rectory headers when multiple directories are listed. This allows the output
of files to be used in pipe without worrying about a directory listed twice
(with the -r option) or worrying about blank lines or the directory name.

The MoveWindow command has a new option -i. This option is for ignoring
errors on the position of the window. This allows windows to be moved
completely off screen. Once a windows is moved off the screen, it can only
be moved, closed, or zoomed through commands.

Pre 3.0 A2 Enhancements Included:

Directory Path
Numeric Variables

(| ‘ Apple Computer, Inc. Confidential
- Page 3

e m e e ety e

Projector

Pascal

Background operation of Tools

Request -q

Close <

FAccess - Selection information

Read only check box in open dialog

Current window size and position information (SizeWindow, MoveWindow)

RotateWindows Command

Format Command

New shell variables: (Font), {FontSize}, {Tab}, {AutoIndent}, (SearchWrap},
{SearchBackward}, (SearchType}

The tab limit has been increased to 80.

The line length limit has been increased to 256.

Horizontal scrolling goes faster.

Option-Enter will invoke Commando.

TileWindows and StackWindows have options for windows and area for
tile/stack.

The Date command has -n and -c options for date arithmetic.

Opening zoomed windows will zoom to current screen.

Locked and read-only will open without the dialog box. An icon in the bottom of
the window will display the locked or read-only status.

Selecting text by matching delimiters has changed: You may abort by pressing
and-., and if a matching delimiter is not found, the current delimiter will be
selected.

ZoomWindow without any options will toggle the window size just like clicking
in the zoom box.

X (Option-W) will direct both stdout and stderr to the same place.

Evaluate supports decimal, hexadecimal, octal, and binary radices.

New windows will be opened according to rectangle {NewWindowSize).

Zooming will be done according to rectangle {ZoomWindowSize}.

The TileWindows and StackWindows menu commands may be customized with
{TileOptions} and {StackOptions} variables.

New Position command.

New Flush command. This command will clear any tools that are in the cache.

See the Shell ERS for more specific information.

Read the Projector ERS, release note, and manual pages for complete
details on how to use the new project management system. Projector,
by the way, is actually part of the MPW Shell.

Note: if you used projector in 3.0A1, you will need to convert your
project. Be sure to read the “Converting Your Projects” document.

* The 3.0 Pascal compiler no longer supports the ‘{$LOAD}’ facility.
Instead, the compiler automatically builds a ‘pre-compiled’ version
of the symbol table for each unit and puts this into the resource fork
of the file containing the unit. On subsequent compilations, the
compiler will load this resource instead of compiling the unit. The
compiler will not use the resource if the modification date of the file
is later than the date stored when the resource was created, or if

Apple Computer, Inc. Confidential
Page 4

C Compiler

compile time options that were in effect when the resource was
created have changed in such a manner as to invalidate the resource.
The '{$LOADY’ syntax is still supported, but ignored - if compiler
progress information is requested, the compiler will state that the
use ui the feature is ‘obsolete but harmless’ .

Some users will have included dependencies for {($LOADY files in
their makefiles. These can now be removed, but they are harmless
since they simply restate what the compiler does automatically.

There are three new command-line options that help support the
new feature :

-NoLoad don't use or create any symbol table resources
-Clean erase all symbol table resources
-Rebuild rebuild all symbol table resources
* The following items have not yet been implemented or are under
construction:
- Global Data > 32k is not supported.
- Forward references for records and objects must still be resolved
within a single TYPE block.
- The 'nolines’, 'novars' and 'notypes' options for SADE do not
work.
¢ Chars can be used where strings used to be required (e.g.
someString := CHR($0D);)

* Assignment compatibility for pointers is strictly enforced.
* Type checking for function prototype arguments is strictly enforced.

For example:
extern pascal short GetCtlValue (ControlHandle theControl);
Handle h; /* not a ControlHandle */
short val;

val = GetCtlValue(h); /* will generate a comp:.er error */
val = GetCtlValue ((ControlHandle)h); /* ok */

* Some of the compiler options are different than the Greenbhills
compiler. See the “C Manual Page” (in the Release Notes folder) for
a complete list of the C compiler options. The C compiler’s
Commando dialog now shows all of the compiler’s available op-
tions.

* The volatile keyword has been implemented as meaning “not
register.”

* For 3.0, the C compiler’s calling conventions are the same as the
Greenhills compiler with four exceptions:

1) the underlying mechanism for functions that return structures
or unions is incompatible between the two compilers (i.e.

Apple Computer, Inc. Confidential
Page 5

Interfaces

Linker Tools

mixing object code in this case will break).

2) unlike the Greenhills compiler, no global variables are ever
generated by functions returning structures or by switch
statements.

3) functions that return results that are smaller than a longword
return the smallest possible result in DO (instead of extending
the result to a long).

4) the C compiler now considers D2 to be a scratch register.

o If at all possible, recompile all C source with this compiler to avoid
mixing pre-3.0 object code with 3.0 object code.

* If your C source is using pre-3.0 C header files, be sure to convert
your C source with the CCvt script. There is more information
about the changed interfaces below.

* Here is a list of known bugs or features under construction:
- The 'U' and 'F' constant type modifiers are not completely
implemented.
- The 'nolines’, 'novars' and 'notypes’ options for SADE do not
work.
- SADE output is limited by static internal buffer size.

The major change to the interfaces for MPW 3.0 was to change
capitalization conventions in CIncludes for those functions which use
Points or strings. This was a major change which was specified in the
MPW 3.0 ERS. Functions calling glue to convert C strings to Pascal
strings or dereference Points are now spelled with all lower case. The
inline versions of those function calls, which do no conversion, are
now spelled with mixed case spelling to match "Inside Mac". In order .
to easily convert source code to these new conventions, we have
written a script, CCvt (in MPW:Scripts), which calls the Canon tool to
change the sources. CCvt first duplicates the original source as a
backup procedure. It then uses two canon dictionaries located in the
Tools folder, CCvtUMx.dict and CCvtMxL.dict, to first change mixed
case spellings to all lower case and then to change all upper case
spellings to mixed case conventions. ClInterface.o and other libraries
changed so the linker would find the glue necessary for these lower
case C functions.

See the Interfaces release note and the Pre-A2 Interfaces note for much
more information.

See the Linker Tools release notes.

Apple Computer, Inc. Confidential
Page 6

Libraries

Choose Tool

Commando

Make

Also see the Libraries release notes.

* In the C library’s printf formatting string, the meaning of %p has
changed. Before this release, it meant read/print a pascal-style
string. In order to conform to the ANSI spec, howev.r, %p is now
used to print the value of a pointer. %P is used to read/print pascal-
style strings.

* The library Stubs.o is new. MPW tools can save about 4300 bytes
each by linking with this library BEFORE linking with Runtime.o or
CRuntime.o; standalone applications should not link with this

library.

Pascal bugs fixed:

* Error message for set range checking is no longer garbled.

¢ IOResult no longer reports error -1025 (an AppleTalk error number)
when string overflow is detected, and when READ expects an
integer, but gets no numeric value. IOResult now reports error 34
in these circumstances.

Pascal changes:
¢ Added support for error manager in startup sequence.

C and Integrated Environment changes:

¢ Added support for error manager in startup sequence

¢ F_GSELINFO and F_SSELINFO now supported in all languages.

* mktemp() is now implemented. To support mktemp(), we also have
getpid() and access(). These functions will all be documented once it
is clear how they fit into the ANSI environment.

Choose is a new MPW tool that allows you to mount servers and
select LaserWriters from the MPW environment. See the ERS for
more information. Choose now works with AppleShare version 1.1
and 2.x. Choose no longer complains about “no bridge found” if you
happen to be in a zone-less network.

Commando has a simple built-in editor that allows controls to be
moved around and resized and labels and help messages to be edited.
See the Commando release note.

Changes have been made to the way variables (macros) are treated:

¢ Exported shell variables are automatically expanded by Make so
that variables such as {AIncludes}, (MPW]}, etc. can be used to
express file names. Recently, however, {Status} was made an

Apple Computer, Inc. Confidential
Page 7

Print Tool

Rez

DeRez
Types.r
SysTypes.r

exported variable, which had the unfortunate side effect that if
{status} was referenced in Make build rules it would get emitted as
"0" (the value of status at the time of running Make). The 3.0 version
of Make will still automatically define exported variables for use in
dependency lines, but will now not expand exported variable
references when they appear in build rules.

* Variable references in variable definitions were previously required
to refer to already-defined variables, since the variable references
were expanded at definition time. Variable references in variable
definitions are now not expanded until the time of use, which allows
some new behaviors which were not permitted before. (All old
makefiles will continue to behave as they used to.) Now variable
definitions can refer to dynamically defined variables such as {targ)
which don't take on values until build rule expansion time, allowing
some clever effects not possible previously.

None of these changes should change the behavior of any currently
working make files, although how errors are reported for bad variable
definitions has of necessity changed.

Although there is no ERS for the print tool, there is a new print
option:

-ps filename
This option allows one to include a file of postscript commands to be
sent to the laserwriter prior to printing the file. See print’s commando
help message for more information.

¢ All features have been implemented as documented in the Rez
Tools ERS (you will need WriteNow to open the ERS).
¢ In Types.r, the following type declarations have changed:
‘cien’, 'ppat’, ‘crsr’ - redefined to use labels (not changed since

D1)

'SIZE - now supports MultiFinder and Switcher
- two new flags have been added

¢ In SysTypes.r, the following type declarations have changed:

'scrn’ - flags were in the wrong order

FONT', ' FOND' -redefined to use labels

'snd ' - newly added
- added synth values

'vers' - newly added

KSwWP' - added more specific bit information

* A new resource template, Pict.r, allows you to DeRez PICT’s (both
types 1 & 2)

Apple Computer, Inc. Confidential
Page 8

LL1Generator

DumpFile

CreateMake

“ 9

SetVersion

MPW 3.0 includes a parser generator tool (similar to YACC) called
LL1Generator. See the ERS and the LL1Examples folder inside the
Examples folder.

See the DumpFile ERS.

Changes in this release from previous releases:

* The -c option has been renamed -w (for width).

* A -g nn option has been added to permit groupings other than the
default.

* Several changes have been made to CreateMake and to its
Commando window. To the existing options for program type:
Application, Tool, and DA, has been added a fourth option: CR,
which is an abbreviation for Stand-Alone Code Resource. If CR is
specified, the parameters -m mainEntryPoint and -rt resourceType
are mandatory. The commands -c creator and -t type (meaning file
type) are optional for CR and -c creator is optional for Application.

* Further changes are that the makefiles produced by CreateMake
now contain lines of the form:

SOURCES
OBJECTS

<all source files>
<all object files>

*The diagnostics for calls of CreateMake with improper parameters
have been improved.
* CreateMake does not yet support a 68881 code generation option.

SetVersion now supports the ‘vers’ resource as documented in
TechNote #189. See the new manual page in the release notes.

Apple Computer, Inc. Confidential
Page 9

§
ot

~

Which ERS To
Use

Performance

Projector Alpha 2 Release Notes

Authors: Jeff Parrish
Bob Etheredge
Peter Potrebic
John Dance

Date: July 6,1988

What is Projector, and how the heck do | use it

Projector is a collection of built-in MPW commands and windows that
help programmers (both individuals and teams) control and account for
changes to all the files (documentation, source, applications, etc.) associat-
ed with a software project.

The exact definition of the built-in MPW commands and windows is
specified in the July 6, 1988 Projector ERS. This ERS is a complete, accu-
rate description of Projector, it is not just a list of the differences since the
Alpha 1 ERS — so throw away any old copies you might have lying
around. In addition, the ERS describes the Projector model for controlling
project files, and details many of the issues related to that model.

The Projector team strongly suggests that before you use Projector, you at
at least read the ERS overview and section dealing with the components of
a Project.

The Projector team, as well as other members of the Development Sys-
tems Group, have been using Projector for several months. Projector has
been used both as a network based project control system shared between
several people, and as a local HD based system used by single individuals.

Performance will continue to be one of our highest priorities between
alpha 2 and beta (assuming no one finds the bug we left in). Significant
performance enhancements have already been added between the alpha 1
and alpha 2 releases. Performance has remained essentially constant be-
tween alpha 1 and alpha 2 in spite of the fact that the data compaction that
wg)s added for alpha 2 requires a considerable amount of processing and
I/0.

The sections below represent the accumulated wisdom of Projector’s ini-
tial users; what they found to be particularly useful, and what they could
easily do without. Since the Projector team would definitely like to im-
prove Projector (and this list), please let us know what you think we can
improve, as well as what we are doing right. If there is something you
don’t like about Projector (I know it’s hard to imagine), please help us out
by taking a minute to think of how it could be improved.

Comments and questions can be directed to: Jeff Parrish x2395, Bob
Etheredge x6250, or Peter Potrebic x6494.

Page 1

Important
Update Info

Modifying
Read-Only Files

What’s new since Alpha 1

The Alpha 2 Projector is incompatible with Alpha 1 projects. The
“Convert” folder (which can be found on the AlmostMPW server in the
Development Tools zone, in the AlmostMPW volume) contains the scripts
and tools needed to make your existing projects compatible with the new
Projector (and save loads of disk space). The details of how to convert
your projects are in the release note titled “Converting your projects”.

Projector now saves ‘TEXT’ files in compressed form.

A “Touch Mod Date” check box was added to the “Check In” and “Check
Out” windows. The default for the “Check In”” window is to leave the
revision’s modification date untouched. The default for the “Check Out”
window is to touch the revision’s modification date.

The “-touch” and “-noTouch” options were also added to the “CheckIn”
and “CheckOut” commands respectively.

The new Projector command “ModifyReadOnly”, was added to allow
users to modify files that were checked out as read—only. The primary use
of this command is to allow users who don’t have access to a project (e.g.
working at home), to edit the read—only files that were previously checked
out. Once this command has been run on a file, the user may treat the file
as though it were checked out for modification—with one exception: you
will not be able to check a modified read—only file into a project if some-
one else happened to have created a revision more recent than the revision
you modified. The syntax is:

ModifyReadOnly file.

The Shell now displays all the appropriate Projector icons in its editing
windows. The Shell used to display only the “read—only” and *“locked”
icons for the files that belonged to Projector.

A “~cancel” option was added to the CheckIn command to correspond to
the “Cancel Checkout” button in the “Check In” window.

Projector will automatically continue to try to open a project if the project
is currently being accessed by someone else. A “command-.” will discon-
tinue the automatic retry.

Several changes have been made to the Projector windows to help differ-
entiate their various states. For example, the window titles change to indi-
cate when the window is displaying information.

A logging mechanism has been added to Projector to keep track of all the
commands which delete information from a project. The “-log” option to
the Projectinfo command can be used to list a project’s log.

The new options, “-newer” and “-update”, have been added to the
CheckOut command. The “-newer” option will check out all read—only
files that you either don’t currently have or are newer than your existing
files. The “-update” option will check out only the read-only files that are
newer than your existing files.

A “-m” option has been added to the ProjectInfo command and can be
used to list information about all the revisions that are checked out for
modification.

Page 2

‘Jseful Scripts

(

Canceling
Checkouts

Two new scripts/commands have been added to make manipulating ‘ckid’
resources a little bit easier: “OrphanFile” and “TransferCkid”. It is impor-
tant to keep in mind that you will only need these scripts under exception-
al circumstances. For example, if you duplicate a file that has been
checked out from a project, you will end up with two files that both think
they tl_lavc: been checked out. OrphanFile can be used to clean up the dupli-
cate file.

An example of when you would use TransferCkid, would be if you were
using Projector to maintain the history of a file where each revision was
generated from scratch (e.g. most object files, Microsoft Word documents,
etc.). Since the new revision would not have a ‘ckid’ resource, you would
have to check out the latest revision of the file for modification, use
TransferCkid to move the ‘ckid’ resource from the checked out revision to
the generated file (to make Projector think that the generated file was
checked out for modification), and then delete the revision you checked
out. What you are then left with, is a new revision of the file that can be
checked back into the project.

Two other utility scripts, CheckOutActive and CheckInActive, have been
supplied in an example project in the MPW Examples folder. To access
these scripts, execute the following commands:

MountProject “{MPW}Examples:Projector”
CheckOutDir Projectoﬂbtilities “{MPW}Scripts:”
CheckOutDir ProjectonCommands “{MPW}Scripts:”

and then use the “Check Out” window to look at the scripts in the example
projects and decide which ones to check out. Both CheckOutActive and
CheckInActive are intended to be used as user—-defined menu items. An
example of how you might set up your menus would be to execute the fol-
lowing commands:

AddMenu Project (-’ ‘/
AddMenu Project ‘Check Out Active’ ‘CheckOutActive’
AddMenu Project ‘Check In Active’ ‘CheckInActive’

Special features that make life wonderful.

Holding the option key down while you choose the “Check Out” button in
the CheckOut window will open any TEXT files after they are checked
out.

Be sure to add a comment (or task) when you check a file out from the
CheckOut window. It gives other people the opportunity to find out what
changes you are currently making to the file.

If you check a file out by mistake, you can easily cancel the check out by
selecting the “Cancel Checkout” (of course) button in the CheckIn win-
dow.

If you check out a file for modification and then lose it (delete it, send it to
your aunt Millie, etc.), you can cancel/delete the checkout by using the -
checkout option to the DeleteRevisions command. Think three or four
times about this before you actually do it though. If you cancel/delete the
checkout and then find the file, Projector will disavow any knowledge of

Page 3

SYRPER AT RSy TR A

CheckOutDir
Short Cuts

Adding To A
Symbolic Name

the file or any of its IM force.

If you find yourself working on a shared file, but doing something a little
(or a lot) off the beaten path, create a branch! You can create a branch ei-
ther when you check a file out, or when you check a file in. To create a
branch when you check the file out, simply check the “branch” check box
before you check the file out. To create a branch when you check in the
file, select the “Revision...” button in the CheckIn window and then check
the “Create a Branch” checkbox. Branches allow you to work on a tangent
to the main development effort without affecting anybody else. For exam-
ple, if you wanted to add and test out a new source file, you might check
out the g{_oup’s makefile on a branch in order to add the dependencies on
the new file.

The CheckOutDir command gives you the ability to have Projector auto-
matically direct files checked out from a project to any directory you
choose. If your directory structure (and names) match your project struc-
ture (and names), you can use the following handy CheckOutDir com-
mand to automatically map all your projects to their corresponding direc-
tories:

CheckOutdir -r -project TheRootProjectI TheRootDir

The “Select Newer” button in the CheckOut window is a great way of en-
suring that you have the latest copies of all the files in a project.

Changing the current project (whether by using the Check In or Check Out
windows, or by using the Project command) will cause the check out di-
rectory to be displayed in the Check In window. In the case of the Check
In window, this means that changing the current project will automatical-
ly adjust the list of files displayed according to the CheckOutDir you have
set for that project.

To add or delete a specific revision from an existing symbolic name, you
can get the current definition of the name (the -s option is helpful in that
each component of the name is listed on a separate line), and then edit the
specific entries you’re interested in. Note: symbolic names are tied to
projects, not revisions. For example, the following three commands:

NameRevisions george file.c,3 file.h,5
NameRevisions george file.c,1
NameRevisions -s george

will print out
NameRevisions george -project MyProject ~user Me 0
file.c,1

not

NameRevisions george -project MyProject -user Me d
file.c,1 d
file.h,5

To delete symbolic names, use the DeleteNames command.

Special features that make life not so wonderful.
Think twice before you use the DeleteNames command with the -public

Page 4

N

-4

option. Once you have deleted a public name, it is gone for good—Ilike to-
tally. If this happens to you, you can use the -log option to the ProjectInfo
command to find out what the name was, and then manually recreate it.

The NameRevisions command with the -public option is also dangerous
(for the same reason as above) because it will replace any previous defini-
tion for the same name.

There is no automatic merge for revisions. To merge two revisions, you
can check the revisions out to two different directories and then compare
and merge them the same as you would any two files today.

If you delete a project without deleting all the files checked out from it,
the files will continue to think that they belong to the project long after the
project is gone. A symptom of this is having files in the “Check In” win-
dow listed with an icon showing a document with a question mark (this
will also occur if the project isn’t mounted). Files in this state cannot be
checked into any projects. A file with such an icon does not necessarily
mean that its associated project has been deleted. To find out if it has,
click the big question mark button to switch the window to an information
view, and then select the file in question. If the project listed for that file
does not exist, your file has been orphaned. If the project listed for that file
currently exists, make sure that the “current project” in the Check In win-
dow is the project listed for the file. If the file still shows the same icon,
you probably deleted the original project and then created a new one with
the same name.

If you find out that you either deleted a project or deleted a project and
then created a new one with the same name, you will need to disassociate
the file from the original project by using the “OrphanFile” script.
Caution: make sure that you only orphan the files associated with a
deleted project.

Page 5

Projector Conversion Tool
Converting your projects

The following describes the process of converting projects created with the old Projector
(MPW 3.0 Alphal) into projects compatible with the new Projector (MPW 3.0 Alpha2).
This conversion is necessary because the internal format of the project changed to sup-
port deltas and the logging mechanism.

Please read this entire document before proceeding with the conversion.

Steps to take:

1. Please read this entire document before proceeding with the conversion.

2. Make a backup of your projects.

3. All modifiable files must be checked in and all read-only copies must be deleted.
Before conversion takes place the tool makes sure that no files are checked out for

¥ modification and conversion will terminate if any files are checked out.

Execute the following command (in the Alphal Shell) on each project tree:
projectInfo -project Project -m -r -revisions

This command will list all revisions that are checked out for modification. The files
must be checked in before continuing.

Deleting all checked out files is necessary because the format of the ckid resource
changed, there by invalidating files checked out using the Alphal Projector. The
script “FindOldFiles” (in the “Convert “folder) will recursively search directories and
list Delete commands for all files that have a ckid resource.

4. Make a copy of the “Convert” folder on a local hard disk.
This disk will be the destination disk - the new projects will be created within the
“Convert” folder. You will need enough space on this disk to accommodate the new
projects. Previous conversion have reduced the size of projects from 2 to 5 fold de-
pending on several parameters. Remember that only TEXT files are compressed —
projects with non-TEXT files will not shrink as much as projects with only TEXT files.

5. Manually save all public names
This needs to be done because the conversion tool ignores names.

NameRevisions -project Project -r -public >> savedNamesFile

Execute the above command on every project tree. This will save the definition of all
public names. The names will be restored after the new projects are created.

6. Set the current directory to “Convert” on the destination disk.

7. The {User} variable must be set and exported, preferably to someone’s name.

Peter J. Potrebic Friday, July 8, 1988

Projector Conversion Too!

8. Convert old projects by running the following command:

projectCvt Projects..

The list of projects should contain the full HFS pathname of all your old root projects.
The conversion process will convert each of the project trees and when it finishes the
new project trees will be inside the “Convert” folder.

The first part of the conversion process is the validation stage where all the projects
are inspected to make sure that no file is checked out for modification. Depending
on the number and size of the projects this stage could take a few minutes. Please
wait until this stage is over (the conversion tool will print out an appropriate message)
before leaving the machine because conversion will terminate if any files are checked
out.

9. After the conversion has successfully completed replace the old projects with the new

projects — Copy the projects out of the “Convert” folder to replace the old projects.

10. Mount all the new projects and execute the file savedvamesFile in order to restore

the public names.

Caveats and Notes:

1.

Think about what Shell you a running. In order to checkin files into your existing
projects you must run the old Shell (pre Alpha2). The conversion process needs to be
run in the new Shell.

The conversion process adjusts your Mac’s clock so don't be alarmed if you noticed
the time changing wildly. The script will restore the proper time when completed.
Unfortunately, if the script terminates because of some error (e.g. out of disk space)
the proper time will not be restored.

Be patient - the conversion process is slow. As a rough guideline it took 7.5 hours to
convert a 25 megabyte project tree on a local disk.

We recommend that the conversion place place locally rather than over the network.
Check to make sure that all files are checked in before copying the project off the
server. In this way people can easily check in the appropriate files. Then make sure
to change the access privileges so that people can't inadvertently modify the old
project because these changes won't be reflexed in the new project.

Peter J. Potrebic ’ Friday, July 8, 1988

Macintosh Programmer's Workshop
Project Management System ERS
“Projector”

Bob Etheredge, Jeff Parrish, Peter Potrebic
July 6, 1988

(, Changes (4/14/88):

[

Added the modifyReadOnly command
Updated the window pictures and descriptions

Described the logging mechanism

Changes (4/14/88):

[)

ObsoleteRevisions has been removed from the “will be done for MPW 3.0”.

Added Task and Comment fields to the 'ckid’ resource and changed it to lower case. The
user can now add Task and Comment information to a file without requiring the file's
project to be currently mounted.

Removed the Projectinfo window as a separate entity, by integrating its functionality
into both the CheckIn and CheckOut windows. To get project information, just press the
Question Mark button in the CheckIn or CheckOut windows.

Replaced the {Project} variable with the Project command.

The project option, used in most of the command examples has been renamed from -p to
-project.

References to the “Log” file have been removed.

The new option in the CheckIn command has been renamed from -n to -new.

Changes (1/25/88):

The resource forks of all files are saved on a per revision basis. Previously, the resource
fork of text files was not saved.

Updated the screen shots of the three projector windows (Thé “Project Info” window
has not been updated). The pictures are of the windows as they exist in MPW 3.0 D3. In
some places the descriptions of the windows refer to not yet implemented features.

MergeRevisions has been removed from the “will be done for MPW 3.0 to the wish list
appendix.

(‘ Table of Contents

Table of Contents........cccevviviniiniiininnnen. e eeeeeerietreeeeteeraeraaaenas PPN
IntrodUCHION. (.o e e e e evenes 2
Purpose of this DOCUMENTvvitiuitiiiiniiiieineiieaeiereneeeeenenenannnns w2
Product Defimitiono.vviiiiiiiiiiiiiiiieiniii e eerere e erentenenenaenenand
Hardware Compatibility......c..ccuuiiiiiriiiiiniiiiiiiiiiieirieiieeeeeeenenennn .2
Software Compatibility....ccoocvrniiiiiiieiiiiiieirineniiiieir e ieeenaees v
SYNLAX NOAHOM. ...t itiuitiiiniiiieerenietererenereieeeeeseteneeenseneanensnsenenensnsesl

OV BTVIEW . ittt ettt et tee e e e e raeeseeeeancasanensananssnsnenennensed
110 (TP
Limitations......cooeiiiiiiiiiiininiiiiiiiieiie e eenenns e eeeeeetaeaanaaaaean veeeennd
USINg PIOJECIOTN . .euiiiviitiiiiii et cer e e e e eee e neeneenen o
Components of @ PTOJECt.......ccviiiiiuiiiiiiiiiiiiiiiiiieecieeneneeenenenenenea .l

3 (T2 £ TP P PP UPPPPPRPRY

Files ..oviiiiiiiiiiiii e eeeeereertraeeaaae Y

Revisions e, P |

USEr Names ..oeviiiiiiiiitiniiiiiireieieeeneeeeaneneenseneeneennesiaensessd
Working on a Project.................. ereereeeeetieaane P PRTP § |
Project Creationcouitiiiiiiiiieiieiieeieeeiieeieeaeneeneaneanenaenaanennal]

Locating Projects.....cccoiiiuiiiiiiiiiiiiieiiiiriieene et eeeeeeeeaennannas S

Checkout and Checkinc.oeiueriiiiiinenienineeeeeeneneenenenseneanana13
Branching.....oooiiiiiiiiiiii e e .17

Merging Branchesoooviviiiiiiiiinn., e cereeee.. 18
{ ‘ Project AdminiStration............cccccoeveueiiiivverereisssineeeeeeeessssseeeeseeseenenn 18
Moving & Renaming Projects.........c.cccvvveiiiiiiiiiiiiiiniiiininnne.. 18

Project Informationccoiiiiiiiiiiiiiiiiiiiiiiineieerneneerernennseeneninaennea 18
APPENAIX it ittt e er et e s ee e enee e 22
CKId' RESOUITE . ettt rer e eereeneeetereerneneeeenenenenernenenenidd
Glossary of TEIMS.veuiuiiiieiiniiiiiiiiiiiiiiriiieereneeneeeteeneeneenensn . 24
Wish—List for Future Releases...........ccoveviiiiiiiniiiiniiiiniicnenenineenenen....26
Naming Revisions........cccoiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiienie e 26

Preferences . o.ouviiiiiiiiii et ee 0020 20
Additional Windows.....ccoiiviriiiiiiiiiiiniiiriiieiirenreirirereeeneeen 26

Project Path Names.........cccooiieiniiiiiiiiiiiiiiiiiiinecieieeenenieneenenn 27

Projector ERS

Introduction

Purpose of this Document

This document describes the Macintosh Programmer’s Workshop (MPW) Project
Management System named “Projector”.

Product 6efinitlon

Projector is a collection of built-in MPW commands and windows that help programmers
(both individuals and teamns) control and account for changes to all the files
(documentation, source, applications, etc.) associated with a software project. Projector
can be used to coordinate changes among a team of programmers, and to maintain a history
of project revisions.

Hardware Compatibility

Projector will run on the same machines that are supported by MPW 3.0, i.e. the
Macintosh II, the Macintosh SE and the Macintosh Plus.

Software Compatibility

Projector requires the presence of the Macintosh Programmer’'s Workshop 3.0. It will not
run outside MPW either as a Macintosh application or desk accessory.

Syntax Notation

The Projector ERS uses the same notation as used by the MPW 2.0 Reference manual (the
description can be found on page viii of the Preface). A glossary term appears in boldface
only the first time it is mentioned.

There are two types of special paragraphs in this document:

> Paragraphs marked with a pointing finger explain design decisions or contain a
more in depth explanation for a point discussed in the text.

0 Paragraphs marked with a stop sign raises an issue that has not been resolved.
The Authors would appreciate extra thought and comments on these areas.

Overview

During the evolution of a project each team member invariably makes numerous changes to
the source and documentation files that comprise the project. At present, MPW has no
integrated facilities to help teams manage the files comprising a programming project.
Projector is designed to substantally ease this task by providing an easy to use yet
powerful facility for file management that is useful to both the individual programmer

Apple Computer Inc. 2 Confidential

Projector ERS

working on a small project and a team of programmers working on a large and complex set
of programming projects.

Projector organizes the programmer's files into projects which can either be stored locally
on a hard disk or floppy or remotely anywhere on the AppleTalk network. Each project
contains zero or more files. In addition, projects may contain other projects. This last fact is
of key importance, since it allows large projects to be broken down into subunits yet
accessed as a whole by those outside of the immediate programming team, e.g. testing,
software configuration management, etc.

When the programmer wishes to work on one or more files, he or she selects the
appropriate project and “checks out” the files needed in the same fashion that books are
checked out from the public library, although Projector distributes both read-only and
modifiable copies of the “books”. This creates a copy of the file(s) that the programmer can
modify. Projector remembers the fact that the file is checked out and denies access to
anyone attempting to modify the checked out files. Of course, Projector has a mechanism
where more than one person can modify the same file simultaneously; this will be fully
discussed in a later section.

The programmer can check in the file at any time, although files are normally checked in
once modifications are complete and tested. This new file is now available to anyone on the
team.

Each new copy of a file is referred to as a revision. All revisions to a particular file define
its history. Besides supporting a single sequence of revisions to each file, Projector also
allows alternative revisions to be created. This feature is called revision branching.
Branching allows:

+ old revisions to be modified.

» several programmers to work on the same revision of a file simultaneously.

» parallel lines of development. The alternate lines of development may be experimental
in nature.

As programmers iterate through the checkout — checkin process, they are encouraged to

document all the changes and the reasons for the particular changes. This allows the
project's current status and history to be easily retrieved by all team members.

Features
» Projects can be organized into a hierarchy of projects.

* Allrevisions to a file are saved. Each revision is uniquely identified by its file name
and revision number.

* Allows non-text as well as text files to be stored in the project: e.g. Word, Paint, and
executable files.

* Revisions made to text files are stored in a compact format.

* Access by multiple users is supported. AppleShare can also be used to assign and
- control access privileges.

Apple Computer Inc.) 3 Contidential

Projector ERS

* Flexible naming allows revisions to files to be identified by symbolic name as well as
by file name and revision number.

* The entire history and status of all of the files in the project can be conveniently and
accurately displayed. Comments can be saved with revisions, files, and projects.
Projector also associates a task with every revision of a file.

* A command line interface is supported. This allows project requests to be embedded in
MPW shell command files.

< A window-based interface is supported. This allows for convenient and easy browsing
and access to projects.

~ Limitations

e Allfiles in a project must have unique names.
e Revisions to non-text files are not compressed.

» Commas are not allowed in file names.

Using Projector

Components of a Project

Projects

A project consists of a project name, an author, some text describing the project, a
project log, a set of files belonging to the project and zero or more subprojects which
also are projects in their own right. The author is the person who created the project.
Projects can reside locally on a user’s disk or can be placed on an AppleTalk file server to
facilitate access by more than one user. AppleShare can be used to assign privileges to
different users.

Projector has a Project command that determines the current project, i.c. the project the
user is currently working on. Projector assumes all Projector commands pertain to the
current project unless told otherwise.

The project log keeps a record of all actions that delete information from the project,
including deletion of revisions and creation and deletion of public symbolic names. The
record that is kept includes the name of the person who carried out the action, the date and
time, and exactly what was done.

The project directory of a project is the directory where the project resides, and it is
created when the project is created. This directory is the same for all users of the project.
All the revisions to all the files and all other Projector information is kept in the project
directory within the project file (called ProjectorDB). Nested projects are also kept in this
directory as subdirectories. Every user has a checkout directory for each project, this is
the directory where, by default, Projector will place checked out files. The checkout
directory can be changed with the “CheckQOutDir”’ command.

Apple Computer Inc. 4 Confidential

s

Projector ERS

Each user can select one or more projects to access by using the “MountProject” command.
Selecting a project makes it and all its nested projects accessible to the user (see the
following discussion on nested projects). Projects can also be removed from the list with
the “MountProject” command. Typically, the UserStartup file contains a series of
“MountProject” commands that connects the users to a set of projects. Simply mounting a
volume does not give a user access to the projects that are contained on that volume. This
would be undesirable since many projects may not be of interest to the user. The
“MountProject” and “CheckOutDir”’ commands allow users to customize their own project
name space. The location of the project directory is the same for all users, but the checkout
directory can be different for each user. For example, Bob and Peter both access the sort
project, but they have different checkout directories (see figure 1). When Peter checks out
files they go, by default, to Rambo:work:sort, where as Bob's files go to “hd:MPW:Tool

Projects:sort tool:”.

-
MPW
project directories smetmm————p {
N\

Peter's System (hard disk)

< FileServer: >

.

Tools

e

Sort Count

< Rambo: >
O 0
work MPW
ID Peter's checkout
¢ directory for the
SO Sort Project
< >

Figure 1 - Example configuration.

0
Rez
< i

Beter's
project tree
O oy
Sort project tree
Tools

Rez Sort Count

Peter's UserStartup could contain the following commands:

MountProject FileServer:MPW:Tools:Sort
CheckOutDir -project Sort] Rambo:work:sort

Bob's could contain:

MountProject FileServer:MPW:Tools:

CheckOutDir -project Tools|

Global project tree
MPW

Tools

Rez Sort Count

Bob's System (hard disk)

__ hd: 5
|
0

MPW

0

Tool Projects Rez Count

| X t t
D - Bob's checkout

directories
sort tool

< i

"hd:MPW:Tools Projects"

CheckOutDir -project Tools[Sort "hd:MPW:Tools Projects:sort tool"
CheckOutDir -project Tools[Rez hd:MPW:Rez
CheckOutDir -project Tools/Count hd:MPW:Count

Apple Computer Inc.

Confidential

Projector ERS

(See the MountProject and CheckOutDir manual pages for more information and
examples.)

Most Projector commands require a project name as a parameter. The command line
interface to Projector supports two ways to specify the project the command will affect.
The order of precedence (from greatest to least) is:

1. Use the project specified on the command line.

2. Use the current project as specified by the Project command. By setting the current
project to the name of a particular project the user does not need to specify that project
with every command.

If Projector cannot determine the project to access, an error is reported and the command is
aborted. When using Projector interactively the project is selected by selecting the desired
project in a manner that is similar to opening a folder in Standard File.

Projector supports nested projects. A series of related projects, such as all the projects
within the MPW product can be configured as a hierarchy of projects. Team members can
then access the project structure on the level they choose, very similar to the way people
use HFS. See figure 2 for a sample project hierarchy.

Pascal Print

Figure 2 - Sample project hierarchy.

In Figure 2 the MPW project is a highest level project, since it does not have a parent
project. Projects are drawn as circles and files are smaller boxes. Just as a person can
mount several volumes, there can be several mounted projects. However, Projector does
not allow mounted projects to have identical names. The MountProject command is used to
add projects to the root project list (called “mounting” projects). In the figure above
mounting the MPW project gives the user access to all the projects in the tree.

Projects are named in a similar fashion to directories, only the integral character

(‘J’, option-b) is used as the name separator. However, Projector requires full path names
at all times. Partial project path names will not be supported. Similar to HFS, an integral
character (‘") at the end of a project path is optional.

= Projector does not use colons as project pathname separators to avoid confusion
with HFS pathnames. Some commands, NewProject for instance, accept both
HFS and project paths as parameters. Since the separator is different there will
not be any confusion as to what the parameter represents.

Apple Computer inc. 6 Confidential

Projector ERS

1€ Integral characters are not allowed in Project names for the same reason that
colons are not allowed in HFS paths.

Flles

Each file in a project consists of a name, an author, text describing the file, a record
describing the current state of the file, i.e. who has checked out the file, etc., and all of its
revisions. The author of a file has no special privileges; this field is basically used for
accounting purposes - tracking and assigning portions of a project to different team
members.

Projector can be used on all types of files, i.e. TEXT, APPL, Word documents, etc. The
only difference between text files and non-text files is that revisions to non-text files are
saved, but are not compressed.

Apart from this difference there is no distinction between text and non-text files. Users can
check out read-only copies of non-text files, or check out such a file for modification and
then check in a new revision. Revisions of non-text files can also be named and deleted.

File names within a project must be unique. Also, commas are not allowed in file names
because commas are used to separate file names and revision numbers.

Revisions

Each time a programmer checks in an updated copy of a file a new revision is created. As
changes are made and the number of revisions grows a revision tree forms that traces the
history of the file. By accessing various portions of this tree a user can retrieve, inspect,
and compare any of the previous revisions of a file. Projector also allows old revisions to
be deleted when the revisions are no longer of interest.

Once a revision is checked out for modification it is locked preventing a second modifiable
copy of that revision from being checked out. However, checking out a modifiable copy of
another revision is okie dokie, and so is checking out a read-only copy of the locked
revision. If a user needs to check out a revision that is already locked Projector can create a
new branch for this new copy. The user can then manually merge the changes to
synchronize the file.

Each revision of a file has a revision number, a creation date (i.e. when it was checked in to
the project), a comment describing the reason for the revision, a task, an author of the
revision, and a compacted copy of the file itself. The task is simply another place to record
information about the revision. The comment field is intended to document the specific
changes to a file while the task field could be used to tie different revisions, perhaps across
several files, together. For example, implementing a feature might require several changes
to each of three files. Each revision might have a different comment, but the tasks for all the
revision could say “enhancement X”. The task makes it easier to look at the history of a
project and determine what changes were made to accomplish various tasks. Projector has
reserved the shell variable “Task” as a place to maintain the current task. When using the
*“Check In” and “Check Out” windows {Task} is placed in the “Task:” field by default.
There is no default task when using the command line interface (see the ChecklIn and
CheckOut command pages to see how a task can be specified).

Apple Computer Inc. 7 Confidential

Projector ERS

file.c
T
2 \Eijlal
3 2al 2bl
4 222

Figure 3 - Revision tree.

Revisions are normally numbered in order, i.e. 1, 2, 3,, 99, 100, 101, etc. However,
the user can use major/minor numbering instead, i.e. 1.1, 1.2, 1.3, ..., 1.99, 1.100 ,
1.101, ...2.1, 2.2, etc. When a new revision of a file is checked in Projector will
automatically increase its revision number by one, i.e. 4 to 5, or 4.9.2 to 4.9.3. The user
can override this action by specifying a different revision number. The only restriction is
that this new number must be greater than the revision that was checked out.

Revision Numbers: Major [. Minor]* .

I Revision numbers of the form 3.0 are not allowed.

To specify a particular revision of a file append a comma followed by the desired revision
number to the end of the name, i.e. file.c,3 refers to revision 3 of file.c (commas are not
allowed in project file names). The first command in the following example checks out the
latest (current) revision of file.c. The second command checks out revision 3 of file.c
regardless of what the current revision is:

CheckOut file.c
CheckOut file.c,3

The following command checks in file.c changing the revision to 4.1: (Note: this is only
legal if the revision that was checked out was less than 4.1, e.g 4, 3.9, 4.0.9, or 2 etc.)

CheckIn file.c,4.1

In addition to supporting a sequence of revisions to a file in a project, Projector also allows
users to create branches, alternative sequences of revisions that are parallel to the main
revision sequence. In figure 3 revisions 1, 2, 3, and 4 form the main trunk of file.c's
revision tree. Revisions not on the main trunk form branches. These branches can be easily
identified by the alphabetic character embedded in the revision number. For example, the
user can checkout revision 2 of a file and check it back in as revision 2al, instead of
revision 3. This begins the new sequence, 2al, 2a2, 2a3, etc. A second branch off revision
2 would create revision 2bl. Revisions off branches follow the same default numbering
scheme as revision on the main trunk, i.e. 1, 2, 3, etc. However, the user can use
major/minor numbering, with an arbitrary number of minor components.

When specifying a revision, a name such as “file.c,2a” implies the latest revision on the “a”
bra:cllch off revision 2. If there are two revisions, 2al, and 2a2, then the revision 2a2 will be
used.

Apple Computer Inc. 8 Confidential

Projector ERS

To refer to particular revisions when using The “Check Out” window the user can double
click on a file to display its revision tree. The individual revisions can then be selected and
acted upon, such as checking out a particular revision of a file, or getting information about
that revision.

User Names

Most Projector commands requires a user name in order to keep track of who did what.
Projector has reserved the shell variable “User” as a place to maintain the current user.
When using Pro;ector interactively, via its windows, the current value of {User} appears
in the “User:” field. On the command line there are two ways to specify the current user,;
the order of precedence (from greatest to least) is:
1. Use the name given on the command line (via the “-u” option)
2. Use the name given in the {User} variable. The {User} variable is a predefined
variable that the MPW Shell initialized at launch time. It is initialized to the value in the
User Name field in the Chooser.

If a name cannot be determined an error is reported and the command aborts. The above
description for determining the user applies to most Projector commands. Any exceptions
are noted on the command page for the appropriate command.

= User privileges should be handled by AppleShare. Since AppleShare
determines privileges when a network volume is initially mounted changing the
{User} variable will not change the access privileges to those corresponding to
the new user.

Symbolic Names

Projector supports a general purpose naming facility that allows project users to easily
identify files, revisions and branches within a project. The first character of a symbolic
name (or ‘Name’) cannot be a digit (0-9). Also, commas, greater than or less than
symbols (‘<’, >’), and dashes (‘-’) are not allowed anywhere in a Name. Names are kept
on a per project basis, and can refer to at most one revision per file in that project. A Name
can be used anywhere a list of files can be used, and finally, names are not case sensitive.
For example, the following commands check out three files.

NameRevisions Work file.c file.h library.c
CheckOut Work

o Projector needed its own naming facility rather then using the Set command and
the existing Shell variable mechanism for the following reasons:

* Names can only refer to one revision per file. Shell variables are arbitrary
text macros so this restriction could not be enforced.

* Names are kept on a per project basis. In Projector the “scope” is the
current project. In the Shell, scope is based on nested command files.

» Names do not need funny dehmxters (‘{’ and ‘}’) in order to be
recognized.

Of couse you can use shell variabIéS if you’d like.

Apple Computer Inc. -9 Confidential

Projector ERS

By default, Names are expanded to the revision level when they are used, not when they
are defined. In the above example the Name “Work” will expand to the latest revisions of
the three files each time “Work” is used. This means the revisions that “Work” implies will
change as new revisions to those files are created. To explicitly bind a revision to a Name
the revision number must be included at the time of definition. The following example
illustrates the differences:

NameRevisions Work file.c,4 file.h,3 library.c

The Name ““Work” will expand to revision 4 of file.c and revision 3 of file.h. However,
library.c will always expand to the latest revision. The “-¢” option will expand all files to
the revision level during definition, for example:

NameRevisions -e Work file.c file.h library.c

This is equivalent to:

NameRevisions Work file.c,6 file.h,3.5 library.c,’

Where the specified revisions are the latest revisions of the respective files. The “-¢” option
saves the trouble of determining the latest revision of each file.

Names are recursively expanded until no further expansion can occur or a comma is found.
For example, given the following Names:

NameRevisions defs.h defs.h,1.1

NameRevisions file.c file.c,2

NameRevisions Work file.c defs.h,2.1 library.c
The following CheckOut command:

CheckOQut Work

Expands to:

CheckOut file.c,2 defs.h,2.1 library.c

Since an explicit revision was specified for “defs.h” in the definition of “Work” the
expansion of “defs.h” to “defs.h,1.1” did not occur.

Names are particularly useful when working on a branch of a file. For example, suppose a
programmer is designing a new algorithm in file.c and wants to implement the algorithm on
branch 4a of file.c. By defining the following Name:

NameRevisions file.c file.c,4a

the programmer can automatically check out and check in the latest revisions on the 4a
branch.

CheckOut -m file.c
The above command will check out a modifiable copy of the latest revision on the 4a

branch of file.c. The user can override the Name, simply by specifying a particular revision
along with the name.

Apple Computer Inc. 10 Confidential

Projector ERS

CheckOut file.c,3

This will check out revision 3 of file.c, regardless of any Names. Because an explicit
revision was given no Name expansion occurs. A comma with no subsequent revision
number implies the latest revision on the main trunk of the file:

CheckOut file.c,

This will check out the latest revision on the main trunk of file.c. If “file.c” had not been
defined as a Name (see a few examples above) then the comma at the end would not be
necessary.

Names can be defined recursively in a project tree. Going back to figure 1 as an example,
suppose Bob wanted to “freeze” the current state of his projects and name the current
version “Release 1"

NameRevisions -e -a -r -project Tools "Release 1"

This would create a name “Release 1” in each of the projects that would expand to the latest
revisions as of when the name was defined. The above command is equivalent to the
following:

NameRevisions -e -project Tools| "Release 1" -a
NameRevisions -e =-project Tools/Sort "Release 1" -a
NameRevisions -e -project Tools[Rez "Release 1" -a
NameRevisions -e =-project Tools/Count "Release 1" -a

It is very important to understand the difference between the above commands and the
following command (notice that the “-¢” option is missing):

NameRevisions -r -project Tools "Fred" -a

The Name “Fred” will be expanded to the latest revisions each time it is used. The Name
“Release 1” will always expand to the latest revisions that existed whcn the name was
defined.

Both public and private (the default) Names are supported. Public Names are visible to all
members of the project. Private Names are only visible to the individual who created them,
and can be declared in the UserStartup file using the NameRevisions command. Public
Names are stored in the project itself.

Working on a Project

Project Creation

The simplest way to create a project is to create it interactively using the “New Project”
window (see figure 4). The window can be displayed by using the -w option to
NewProject. The other Projector windows (Check In and Check Out) can be displayed in a
similar fashion. Once the windows are visible the standard Macintosh wmdowmg
techniques apply.

Apple Computer Inc. 11 ‘ Contfidential

Projector ERS

E==——————— New Project

—
e ——

e Nature

Project Name: (Tes{

S Environments

User: Peter J. Potrebic

O ERS

OOMPW Schedu...
YMP_Shell

0O Shell

Y Shell Bugs

[Test Suites

2 TheShell

—Q Comment:

Testing tools for MPH 3.0.

O]

[©

=

Dpen}

Drive | tject |

New Project

Figure 4 - “New Project” window.

The “New Project” window is fairly self explanatory. The left most pane of the window is
a standard file like control where the HFS file structure is shown. The difference between
this control and standard file is that projects are graphically indicated by a small icon
representing a project (see figure 4). This allows the user to create a project anywhere in the
file system, either under an existing project or in some other directory. In figure 4 the
directory “TheShell” is listed and it happens to be the project directory (represented by the
multiple document icon) for the “TheShell” project.

To create a new project via the command line requires a single two word command:

NewProject Test

This creates a project named Test whose project directory, created by Projector, is :Test:.
Projector will maintain all information regarding this project in the project file within this
directory. Nested projects will appears as folders within this directory. The checkout
directory is set to-the current directory at the time of the check out. Every user can have a
different checkout directory, and this directory can be set using the CheckOutDir command.

Test also becomes the current project and is automatically mounted for you. If the new
project does not have a parent project, a MountProject command should be added to your
UserStartup file, followed by a CheckOutDir command to specify where the files to be

checked out should go.

Test can actually be an HFS pathname or a Project pathname. In either case the project
name is the leaf of the path. If an HFS path is given, that directory becomes the project

Apple Computer Inc.

12

Confidential

Projector ERS

directory for the new project. If a project pathname is given the new project becomes a
subproject of its parent. For example:

NewProject MPW/Tools[Fortran

This creates a new project Fortran that is a subproject of the Tools project. If the project
directory of the Tools project is FS:Projects:MPW:Tools then the project directory of the
Fortran project would be FS:Projects:MPW:Tools:Fortran.

The following example is equivalent to the previous example:

NewProject Fs:Projects:MPW:Tools:Fortran

Since the project directory of the Tools project is FS:Projects:MPW:Tools the Fortran
project automatically becomes a subproject of the Tools project.

- When creating a project a descriptive comment can also be given. This is useful so no one

will forget why they keep coming to work every morning — if they forget they can look at
this comment to refresh their memory (see the ProjectInfo command).

Locating Projects

The set of mounted projects defines a set of project trees. This tells Projector both the
names of the mounted projects and where their project directories are located. If a project is
not in one of those trees the project cannot be accessed. If a project is moved or renamed
(changing its project directory) users must change their MountProject commands in order to
re-connect to the project. .

Checkout and Checkin

The simplest way to check out a file is to use the “Check Out” window (see figure 5).
When browsing through the project hierarchy in this, or any other Projector window, the
following visual cues are used to convey file ownership:

D file is free, no own has the last revision checked out for modification
) the current user has the latest revision of this file checked out for modification
& some other user has the latest revision of this file checked out for modification

= A checked out file matches its corresponding checked in file in all ways except
for the 'ckid’ resource that Projector places in every file in the project to
correctly identify copies that the user has checked out..

The following description refers to figure 5.

The two radio buttons at the bottom of the of the window specify read-only or write-
modify check out. The default is to check out read-only copies.

The “Checkout to:” field is a pop-up menu that allows the user to pick the checkout

directory (default), the current directory, or any other directory. Checked out files will be
placed in the this directory which defaults to the checkout directory.

Apple Computer Inc. | 13 Confidential

Projector ERS

The “Select all” button will select all files whose most recent revisions are not checked out
for modification.

If the user is doing a read-only check out, the “Select newer” button will select all the files
the user doesn't already have checked out for modification by comparing each file in the
checkout directory with the latest revision of that file in the project. This is a convenient
way of checking out the “latest” revisions in the project.

€ The two buttons “Select all”” and “Select newer” do not actually check out files,
they simply make a selection in the Project list. Only the “CheckOut” button (the
button in the lower right-hand corner of figure 5) actually checks out the
selected files.

EO==——————————=(heck Ui =————————

Selectall | [Open] O Read-only

Current Project Checkout to: | HD:pjp:Headers:
L@_ﬂf_‘iﬂ_ei{_ User: Peter J. Potrebic
[characters.h <> | Task: [Fix bug *#17 - window update problen|
D debug.h Check Out comment:
P timits.h - =
@ sharelleteh]
[shellLists.h
Select Files in Name: | None
& B Touch mod date

@® Modifiable —
[Select apwer []Branch [Check Out |

Figure S - “Check Out” window.

When checking out a file for modification, the “Task” and “Comment” fields allow the user
to specify the purpose of the check out. This allows other users to determine the reason the
file(s) were checked out. Both fields are saved in the 'ckid' resource of file, and Projector
allows the owner to edit these fields in the Check In window.

In normal circumstances it is bad practice to check out a writeable copy of a file that already
is checked out for modification. To prevent this from happening Projector does not allow
users to select files that are already locked (names are dimmed). Since the default is to
check out the most recent revision on the main trunk, a file is considered locked when the
most recent revision is checked out for modification. However, checking the “Branch”
control will allow selection of locked files. Checking out a locked revision will
automatically create a branch off of that revision.

Apple Computer Inc. 14 . Confidential

Projector ERS

Users can check.out a particular revision of a file by displaying the revision tree (double
click on the file) and selecting the revision they want.

Files can also be checked out using the “CheckOut” command:
CheckOut file.c -m

This will place a modifiable copy of file.c in the checkout directory of the current project.
The checkout directory can be changed using the CheckOutDir command. If no project has
been mounted or if file.c does not exist in the current project an error is reported. Along
with giving the user a copy of the file several pieces of information will be saved in 'ckid'
resource of the file's resource fork:

The project that the file came from.

The name of the file itself.

The revision of the file that was checked out.

Whether the file is a read-only, modifiable, or modified read-only copy.
The user that checked out this copy of the file.

Date and time of the checkout.

The Task.

The Comment.

When a file is being checked out the default action is to place the file in the checkout
directory for the project. However, a different directory can be used. The rules for the
determining the directory are as follows, from highest to lowest precedence:

1. The directory indicated if a non-leaf name is specified.
2. The directory specified with the “-d” option.
3. The checkout directory for the project (see CheckOutDir command).

For example:

CheckOut -d hd:MPW: file.c hd:work:defines.h
CheckOut hd:MPW:main.c library.h

This first CheckOut will place a copy of file.c in hd:MPW:file.c and a copy of defines.h in
hd:work:defines.h. In this case the checkout directory was not used. The second CheckOut
will place a copy of main.c in hd:MPW:main.c and a copy of library.h in the checkout
directory for the {Project} project.

Checkln is used to create new revisions to files, implying that changes have been made and
the user wants to add the changes to the project. This means that checking in read-only files
does not make sense since read-only copies do not contain changes and therefore cannot
create new revisions. When the changes to modifiable copies are complete, the CheckIn
command will submit the changes and create a new revision of the file:

CheckIn file.c

The “Check In” window can be used (see figures 6) for the same purpose.

Apple Computer Inc. 15 Confidential

Projector ERS

ED Check n=&6FcF————————
e HD Project: | Headers
O Headers User: Peter J. Potrebic
‘ﬁ{:hm'é;(ters.h Task: |[Fix bug #17 - window update problem
R debug.h Rev: 4 [Beuision...]
- o Check In comment:
shelllists.h Changed window defs for word alignment] 2
|
[0 Touch mod date
Select all Bpen
(® Keep read-only [Cancel Checkout |
[Show all files O Keep modifiable —
Drive |(tject] i:QODelete Copy -—ec n

Figure 6 - “Check In”’ window

When checking out a file the project to which the file belongs needs to be specified. Since
this project is “remembered” in the resource fork of the file it does not have to be specified
on check in. All Projector needs to know is what file to check in. When using the CheckIn
command, files belonging to different projects may be specified at the same time.

In the “Check In” window (figure 6) the current project can be selected with a pop-up menu
in the “Project:” control. Only the files that belong to the current project are displayed in the
standard file control.

I If, for whatever reason, the ‘ckid' resource of the file is corrupted or removed
then Projector cannot identify the file and it becomes an orphaned file, and no
longer belongs to any project. If you still need to check the file in, then move or
rename your copy, check the file out again (you may need to cancel the
checkout using the “Cancel Checkout” button in the “Check In” window) and
use the transferCkid command as documented in its command page.

In the “Check In” window selecting a file that is not currently checked out is not allowed.
That is, only the file names in boldface can be selected. This is the restriction saying that
only files that have been checked out for modification can be checked in.

The standard action after checking in a file is to leave the user a read-only copy of the file.
The radio buttons at the bottom of the “CheckIn” window have this and two other choices.
The “Keep read-only” radio button keeps a read-only copy in your directory. The “Keep
modifiable” radio button lets you check the file in and still retain a modifiable copy. The
“Delete Copy” radio button deletes your copy of the file once it is successfully checked in.
These 1as(i two radio buttons correspond to the “-m” and “-del” options of the CheckIn
comman

Apple Computer Inc. 16 Confidential

el

-4

Projector ERS

To throw away any changes use the “Cancel Checkout” button located in the lower right-
hand corner of the windows - above to the “ChecklIn” button. This is especially useful
when if half the file was accidently deleted or you goofed and checked out a file for
modification when you really wanted a read-only copy.

The “select all” button selects all the files checked out for modification by the current user
in the directory listed in the Standard File list. The selected files can then be checked in by
clicking the “Check in” button.

New files can be added to projects with the “-new” option to the CheckIn command, or by
checking the “Show all files” control in the “Check In” window. When that button is
checked all files in the current directory are shown. Files not belonging to any project can
be selected and checked in. The files w111 be added to the current project.

Below is a list and a short description of all the different icons that can appear in the Check
In window:

modifiable file from the current project owned by current user

Read-only file from current project

modified read-only file from current project

modifiable file from current project, owned by another user

file not belonging to any project

modifiable file from another project Only appear if “show all files”
read-only file from another project is selected

file with a corrupt or out-of-date *“ckid” resource

'

PEE0Dws

Branching

A branch can be created during the checkout or checkin process. Checking out a modifiable
copy of an old revision automatically creates a new branch (see figure 7). When file.c is
checked back in it will automatically become revision 2al.

file.c file.c file.c

1 1 1
CheckOut -m file.c,2 CheckIn file.c

2 - N2 - N2

‘.::Z:.... . \
3 s[] i 3] O

4 current revision 4 current revision 4 current revision

Figure 7 - A changing revision tree.
The following command will create a branch when checking in a file:

CheckIn main.c -b

Apple Computer Inc. 17 Contidential

Projector ERS

In the above example the user did not need to specify a revision number in order to create a
branch. The branch is automatically created off the revision that was checked out. When a
file is checked out Projector remembers the revision that was checked out. When a file
(obtained from revision x) is checked back in it can create a revision in one of two places:

» The next revision after x, continuing on the same line.
* On a branch off revision x.

Looking at figure 7 the user could not check in file.c as revision 3al or revision 6.
The following command will create a branch and number the first revision 1:

CheckIn main.c,l -b

If revision 4 of main.c was initially checked out the above CheckIn command would create
revision 4al (or 4b1 if revision 4 already had one branch, etc.).

Merging Branches

The initial release of Projector will not support automatic merging of files. The user can
manually merge two branches (revisions) by checking out one revision as a read-only copy
into a temporary directory and checking out the second revision for modification into a
different directory (e.g. the checkout directory). The user can then use the Compare tool to
find the differences and manually cut and paste the changes into the file checked out for
modification. This file can then be checked in and the read-only copy in the temporary
directory can be discarded.

Project Administration

The administrative duties for projects under Projector are very simple. Anyone who has
write access to the project (under AppleShare) can administer the project. Responsibilities
include:

» deleting old revisions of files that are no longer needed. This can be done to reduce the
size of the project on disk.

* moving and renaming projects.

» Keeping track of the project log to ensure that the project is not being abused.

Moving & Renaming Projects

Projector was designed in such a way that a project could be moved or renamed using the
Finder or the regular MPW commands. However, there are a few areas of concern. First of
all, when a project is moved or renamed the project hierarchy is changed; users of this
project must update their root project list to reflect the changes. Secondly, projects can be
moved or renamed only when there are no files checked out for modification, and that after
the Project has been changed all read-only copies be checked out again. This is because
Projector puts the full-path project name in the resource fork's of files during checkout;
once the project is moved or renamed the information is no longer valid.

I No other Finder or MPW operations are allowed on project directories.

Apple Computer Inc. 18 Confidential

,,,,,,,,,

Projector ERS

Project Information

Information retrieval is one of the most important aspects of any source control system.
There are several different ways to get information out of Projector: via the ‘“ProjectInfo”

command (see the ProjectInfo command), or via the “CheckOut” and “CheckIn” windows

using the Question mark button (see figures 8-11). The information that can be retrieved

from the project includes:

* Project Information
 author - person responsible for the project
 last modification date of the project

* project comment
* project log
« File information
e author - person responsible for the file
« last modification date of the file
+ file comment
+ Revision Information
author
task
date the revision was created
revision comment

e o ¢ o

g§[[==——————= Check Out/Information
Current Project When File Selected Show:
h@ Headers | ® Latest Revision Info QO File Info
D characters.h <>|: Name: shareDefs.h Rev: 5+
D debug.h Owner: fred
J limits.h Create Date: Fri, Jul 8, 1988, 9:35 AM

m shareDefs.h

D' sheliLists.h Ta¢K: iAdding new shared types
| Latest repision’s (omments
h few new types belong in this file. _{}_
0]
View by... Open) || o
OFittering on Reuert] Saue)

Figure 8 - Project information in the “CheckOut” window.

Apple Computer Inc. 19 Confidential

Projector ERS

UView by...

Revision| Author: John Dance

Revision| Date: | -

Revision] Comment:

Task:

Name: Rewpisians in name

Clear All) (cancel

Figure 9 - View by... filter.

The “CheckOut” window's information (see figures 8 thru 9) is oriented toward browsing
through the project to obtain information about individual files and revisions. The
command line interface can handle more complex batch type requests such as: list all the
revisions, including comments, that Bob made to file.c of the Sort project.

This can also be done with the “CheckOut” window, by selecting a subset of the project to
view via the “View by...” dialog. The “View by...” dialog provides different items with
which you may filter the files or revisions displayed in the list. Only files or revisions that
match the criteria you have chosen will be displayed. To specify a filter, bring up the “View
by...” dialog, and select the different items that are important to you. You may specify the
following items:

» The author of a file or revision. All the authors known to the project will be listed in a
popup menu. Select the desired author from the list.

« The file modification date or revision creation date. Type in the starting and ending
dates. The format is dd/mm/yy [hh:mm[:ss] [AMIPM]]. If you would like to specify
“on or since a date” enter the starting date in the first box, and leave the second box
empty. If you would like to specify “before or on a date” enter the ending date in the
second box, and leave the first box empty.

» File or revision comments. Type in either a literal string, or a regular expression in
slashes (fregular expression/).

» Task comments. Type in either a literal string, or a regular expression in slashes
(/regular expression/).

* Name. The popup menu will contain all your private names followed by the project's
public names. Select the desired name from the list. You may also specify a relation to
that name. (For example, to list all the revisions since “Alpha”.) Select the desired
relation from the popup next to the Name.

Apple Computer Inc. 20 Confidential

Projector ERS

For the author, date, and comment items, you will need to specify if it should be applied to
files or revisions.

| € If you have specified a filter, and all the files or revisions are still being
displayed, check the revision/file setting on your selection criteria.

For example, in Figure 10, the user has specified a filter to list all revisions in “alpha”,
created by John Dance, on or after April 4, 1988, dealing with Bug #222.

UView by...
Revision| Author: John Dance
Reuvision| Date: 4/4/88 -
Revision| Comment:
Task: /bug=222/
Name: {alpha Revisions in hame

Clear All | Cancel |

Figure 10 - View by... dialog with selection criteria

Selecting a project will display the project information. Selecting a file will either display
the current state of the file, that is the status of the latest revision or it will display the file
information. Which is displayed depends on the radio buttons at the top of the window (see
figure 8). Double clicking on a file will display its revision tree. The latest revision will be
selected by default, with its information (status) displayed. Selecting another revision will
display its status. The comment and task fields are editable so changes or additions can be
made.

€ Deleting comments is not nice! Use Projector to record history - not destroy it.

Apple Computer Inc. , 21 Confidential

Projector ERS

ED Check In/Information oo
= HD Project: | Headers
& Headers .
: Name: limits.h Rev: 3+
.}icharacters.h Owner: Peter J. Potrebic
_f debug.h Project: Headers|
Checked Out: Thu, Jul 7, 1988, 2.57 PM
Task: [Move IsLocked() macro to sharedefs.h]
File’s comment:
| &
5
i
W

[Show all files
Drive |{ fjet)

[R»v»ﬂ [313:1»)

\'\\,

Figure 11 - Project information in the “CheckIn” window.

Apple Computer inc.

22 Confidential

Projector ERS

Appendix

'ckid; Resource

The following describes the ‘ckid’ resource that Projector maintains in the resource fork of
all files that belong to a project.

Resource Name 'ckid' CheckOut IDentification.

Resource Contents Project name full project pathname of the project
File name name of the file
Revision number the revision that was checked out
State read-only, modified read-only or modifiable
User name name of user who checked out the file
Date-Time date and time of the checkout
Task contents of task field when checked out
Comment contents of comment field when checked out

Apple Computer Inc. 23 Confidential

Projector ERS

Appendix

The Project Directory

A project resides in an HFS directory called the project directory. The name of this
directory is the name of the project. Users need not worry about what goes on inside the
project directory, and they are warned not to place their own files in these directories. The
following is just given for completeness.

Project file

The entire project, including all the files, revisions, comments, etc is kept in a
single HFS file called “ProjectorDB” with the type ‘MPSP’.

Apple Computer Inc. 24 Confidential

Author

Branch

CheckOut Directory

'ckid' resource

Comment

Current Project

File Information

Locked Revision
Mounted Project

Name

Orphaned file

Project

Project Directory

Apple Computer inc.

Proj :ctor ERS

Appendix

Glossary of Terms

With respect to revision it is the name of the person who made a
revision. For files and projects it is the person with primary
responsibility for that file or project.

An alternate sequence of revisions emanating from another
revision and running parallel to the main trunk.

This is the directory where, by default, Projector will place
checked out files. Each project has a corresponding CheckOut
directory which can be changed with the “CheckOutDir”
command. '

A resource that Projector maintains in the resource fork of all files
belonging to a project in order for identification purposes.

Text describing the revision, file, or project.

The name of the current project. Projector assumes all actions
pertain to this project unless a different project is specified with
the “-project” option.

Information maintained by Projector on a per file basis. Includes:
* Author
» Last modification date
* Comment

A revision that is currently checked out for modification.

A project that is not nested beneath another project. Similar to the
root directory on a volume. A user can mount several projects,
just as they may mount several volumes. All projects under the
mounted project can be accessed by the user.

An identifier that represents a set of files, revisions and branches,
with the restriction that a name can only refer to one revision in
any one file.

A file that belongs to a project, but it resource fork no longer
contains the information that Projector needs to determine to
which project it belongs.

A set of files and zero or more projects.

The directory where Projector maintains all the information with
respect to a given project.

25 Confidential

Project File

Project Information

Project Log

Project Name

Revision

Revision Information

Revision Number

Revision Tree

Task

{Task}

Trunk

User

{User}

Apple Computer Inc.

Projector ERS

The file (always named ProjectorDB) where an entire project is
maintained. There is one and only one project file within every
project directory.

Information maintained by Projector on a per project basis.
Includes:

* Author

« Last modification date

* Comment

The log that records all actions that delete information from the
project. Can be printed oput using the -log option to projectInfo.

The name of the project also the name of the directory containing
the project.

An instance of a file in project. A new revision is created each
time a file is checked in.

Information maintained by Projector on a per revision basis. Also
known as the current state of a revision. For unlocked revisions
this includes:

¢ Author

« Creation date

¢ Comment

» Task
For locked revisions the information is:

* Author (person who checked out the file)

+ Check out date

¢ Task

A unique number identifying a revision within a file.

The composite history of a file, that is all the revisions and
branches made to a file. The revision tree for a file can be
displayed via the Status command or by double clicking a file
name in the Project hierarchy pane.

A short description of the task the person accomplished with a
revision.

The name of the current task. It appears in the “Check Out” and
“Check In” windows as the default task.

The main sequence of revisions to a file.

Each project has one or more users that are permitted to access
files in a project.

The name of the current user. Projector logs this name with all

transactions. This can be overridden by specifying a different
name with the “-u” option available in all Projector commands.

26 Confidential

Projector ERS

Wish-List for Future Releases

Naming Revisions
The initial release of Projector will only support revision naming of the form:

fileName, revNum

where the RevNum may include branches. Future releases will support of more powerful
naming mechanism where revisions could be named by date/time, or by a symbolic name:

CheckOut file.c,9/8/87
CheckOut file.c,Betal

The first command would checkout the latest revision of file.c that existed on the given day
(at 12pm). The second command would checkout the Betal revision of file.c, assuming the
file.c has a Betal revision. A further extension would be to include ranges in order to
specify a set of revisions:

ProjectInfo file.c,Betal-Beta2

This command would list all the revisions that were created between the Betal revision and
the Beta2 revision of file.c. Dates and times could also be used in place of or along with the
names.

Preferences

Configurable preferences would be a useful enhancement. These preferences could be set
using the Set command. Commands could be added to the startup file in order to
automatically configure the preferences every time MPW is launched. Possible preferences
include:

* Open window on checkout (only applies to text files).
Open all files checked out.
Only open files checked out for modification.
* Maintain menu of checked out files.
Display all files checked out.
Only display files checked out for modification.
» Multiple owners not allowed.

Additional Windows
Projector could be made easier to use with the addition of several more windows:
“Name Revisions” Window
A window would allow users to interactive create new Names and modify
existing Names.
“Merge Revisions” Window

An interactive merge process could facilitate resolving conflicts that arise when
several users make modifications to the same file. In this window a user could

Apple Computer Inc. 27 Confidential

Projector ERS

interactively merge the files with Projector's help. When Projector detects a
conflict the associated text could be so marked. The user could then take the
necessary steps to resolve the conflict.

“Compare Revisions” Window
This window would be very similar to the MergeRevisions window.

Project Path Names

The first release of Projector will only support full project path names. Future releases
should support a naming mechanism that mimics HFS so that partial paths are allowed.
Setting the current project would then be equivalent to changing directories. (For the
following examples assume that the current project is set to “MPW™.)

Project shell

The above command would then set the current project to MPW/shell, that is the shell
project within the MPW project. The first release of Projector only allows commands like
the following:

Project MPW[shell

Merging Branches

Revisions can either be merged automatically, or the user can get a copy of the revisions,
merge them himself, and then check in the merged file. Using Figure 8 as an cxample the
following command will merge revisions 2al and 4:

MergeRevisions file.c,2al file.c,4

This will give the user a modifiable copy (the target revision, 4, is implicitly checked out
for modification) of the file containing the merged text. Or the user can check out a read-
only copy of revision 2al and a modifiable copy of revision 4 and then merge the files into
the copy of revision 4, either manually or with the Merge command. The merged file can
then be checked in creating a new revision to file.c.

Apple Computer Inc. 28 Confidential

Part II—Commands

Projector ERS

Projector Command Summary

CheckIn -w | -close

CheckIn [-u user] [-project project] [-t task] [-cs comment | -cf file] [-n |-y | -c]
~ [-del |-m] [-new | -b | cancel] [-touch] (-alfile...)

CheckOut -w | -close

CheckOut [-u user] [-project project] [[-m | -b] [-t task] [-cs comment | -cf file]]
[-d directory] [-n | -y | -c] [-1] [-open] [-noTouch] -
(-update | -newer | -a | file...)

CheckOutDir [-project project] | -m] [-r] [-x | directory]
DeleteNames [-u user] [-project project] [-public] [-r] [names... | -a]
DeleteRevisions [-u user] [-project project] [-checkout] revision...
ModifyReadOnly file

MountProject [-d] [project]

NameRevisions [-u user] [-project project] [-public | -b] [-€] [-r] [-s]
[name [names... | -a]]

NewProject -w | -close

NewProject [-u user] [-cs comment | -cf file] project

OrphanfFiles file... ’

ProjectInfo [-p project] [-comments] [-revisions] [-f] [-r] [-s] [-only | -m]

(-af author] [-a author] (-df dates] [-d dates) [-cf partern] [-c pattern]
[-t pattern] [-n name] [object...]

TransferCkid sourceFile destinationFle

Changes (7/5/88):
* Added the modifyReadOnly command

¢ CheckIn:
New options: “-cancel” and “-touch”

Apple Computer inc. 32 Contidential

Projector ERS
CheckOut:
New options: “-update” and “-noTouch”

ProjectInfo:
New option: “-log”

Changes (4/14/88):

This is the alpha release.
“-p project” option was renarmed to *‘-project project’

CheckIn:

“-n” option renamed to “ ncw”

“-c” option renamed to*

Ncw opuons clo R2 1Y y’?’ “-n,’ (X3 C”

“-d directory’” option was removed. It was deemed unnecessary.

CheckOut:
“c” optxon rcnamed to “-cs”

AN 1Y ” (6 7) [13 ”

New options: “~close”, “-y”, , -C

DeleteNames:
New command

DeleteRevisions:

Deleted the “-n” and “-d” options (for names and dates)

Added the “ chcckout” option to delete check outs.

Changed the semantics to delete all revisions (on the same branch) previous to the
specfied revision.

NameRevisions:
New options: “-b”, “-s”
Project:

New command

ProjectInfo:
“-ap author”, “-dp dates” , “-cp string”, “-i”, and “-w”’ options removed
Changed syntax for specxfymg dates and names

Changes (1/25/88):

Added the -w option to the CheckIn, CheckOut, NewProject, and ProjectInfo
commands. This option brings up the respective window.

Changed -w option in CheckOut to -m (modification)

Apple Computer Inc. 33 Confidential

Projector ERS
* Changed default behaviour of Checkln to leave a read-only copy of the file, rather then
delete the user’s copy.

* Various other options have new names.

Apple Computer inc. 34 Confidential

N

Projector ERS

CheckIn - check in files to a project

Syntax

Description

Input
Output
Diagnostics

Status

Options

CheckIn -w
CheckIn -close
Checkln [-u user] [-project project] [-t task] [-touch] [-n | -y |]
[-cs comment | cf file] [-del | -m] [-new -b | -cancel] (-a | file...))

Check the specified files back into the project creating a new revision.
After check in the file will be a read-only copy of the newly created
revisions.

Projector determines to which project the file belongs to looking for a
Projector identification resource in the resource fork of the file. The
identification resource is placed in the file during checkout. This allows
files belonging to different projects to be checked in with a single
command.

If the -a (all) option is used instead of file..., Projector checks in all of the
files in the current directory that have been checked out for modification.
The files are checked into their respective projects.

To add a new file to the project, use the “-new” option. The file will be
added to the current project.

When the file is checked in, Projector automatically increments the
revision number by one. For example, if revision 2.17 was checked out,
the new revision will be 2.18. This default numbering scheme can be
overriden by using the “filename,rev” notation. For example if file.c
revision 2.17 was checked out, then the user could check it in as file.c,3
to jump to the next major revision level.

If no comment is specified (-cs option) then the comments that are saved
with each file will be used. The same applies to the task.

None.

None.

Errors and warnings are written to diagnostic output.

The following status values are returned:

0 No Errors

1 Syntax Error

2 Errorin Processing

3 System Error

-u user Name of the current user. This overrides the {User}

shell variable..

Apple Computer Inc. 35 Confidential

Examples

_-project project

-new
-cs comment

-cf file
-t task

-touch

-b
-cancel
-del

-m

Projecto" ERS

Name of the project that contains the files. This
project becomes the current project for this
command.

Add a new file to the current project.

A short description of what changes have been made

to the file(s) being checked in. This comment will be
associated with all the file(s) being checked in. This

overrides any comment saved with the file.

The comment is contained in the file file.

A very short description of the task that was
accomplished by the changes made to the file(s).
This overrides any task saved with the file.

Touch the modification date of the file after checking
it into the project. This option does not do anything

when used with the “-del” option.

Check in all modifiable files in the current directory.

The files will be checked in to their respective
projects.

Check the file in as a branch off of the revision that
was checked out.

Discard any changes made to the files being checked
in. This is useful when the changes made should be
thrown away.

Delete the user’s copy of the file after it is checked
in.

Keep a write-privileged copy of the file(s) for further
modification. This basically check points the file(s),
doing a checkin followed by a checkout for
modification of the new revision.

Open the “Check In” window. Bring it to the front if
it is already open.
Close the “Check In” window.

Answer “yes” to any confirmation dialog that occurs,
causing check in to proceed if any conflicts occur.

Answer “no” to any confirmation dialog that occurs,
skipping files that cause some type of conflict.

Answer “cancel” to any confirmation dialog that
occurs, causing check in to stop if any conflicts
occur.

CheckIn file.c =-cs "added some comments"

Checkin the file.c to the current project. A new revision of file.c will be
created and the user will be left with a read-only copy of the file. The
comment will be saved with the new revision. Since no revision number
was specified, Projector will simply increase the revision number by one.

Apple Computer Inc.

36 Confidential

/et

bl 2

Projector ERS

CheckIn file.c interface.c,5 -t "Added -x option" 9
-cf commentFile -del

This command will check in two files reading the comment from the file
commentFile. The task will also be saved with the new revisions. The
user’s copies of the files will be deleted. The new revision for interface.c
will be revisior 5.

CheckIn file.c :main.c -m

This command will check in two files using the comments that are saved
with each file (see the reference manual for further details on saving
comments with checked out files). After the command executes the user
will still have modifiable copies of the files. This shows how files can be
check pointed, saving the changes to this point while allowing further
modification to continue without needing to manually checkout the file.

CheckIn -m -cancel file.c

The above command would be used if the user wanted to throw away any
changes and start over again. The ‘““-cancel” option signals Projector to
cancel the previous checkout and the “-m” option means that the user
wants to check it out again. The result is that the user is given another -
modifiable copy of the file she originally checked out.

CheckIn -new file.c

To check a new file into the project use the “-new” option. The above
command adds file.c the the current project.

CheckOut -project MPW[Tools[Sort file.c -m
...edit the file...
CheckIn -project MPW|Tools[Sort file.c -b

The above two commands illustrate the usefulness of the “-b” option. In
this example the user checked out a modifiable copy of the latest revision
of file.c in the Sort project, edited the file, and then, using the branch
option, checked the file in as a branch off the revision that was initially
checked out:

Apple Computer Inc.) 37 Confidential

Projector ERS

CheckOut - check out file revisions from a project

Syntax CheckOut -w
Checkout -close
CheckOut [-u user] [-project project] [[-m | -b] [-t task] [-n | -y | -c]
[-cs comment | -cf file]] [-d directory] [-r] [-open] [-noTouch]
(-update | -newer | -a | file...)

-

Description Obtain copies of a particular revision of a file from the current project
project; the default is to check out read-only copies. Unless otherwise
specified, copies will be placed in the checkout directory associated with
the project. The default behavior is to touch the modification date of the
checked out files ensuring that builds are triggered (using the Make tool).
This is especially important when getting read-only copies from the
project.

If file is a leafname (e.g. file.c) then Projector will checkout the latest
revision of the file from the current project . If file specifies a revision
(e.g. file.c,22) then that revision is checked out.

If file is a partial or full HFS pathname (e.g. :work:file.c or
HD:work:file.c), the file will be placed in the specified directory,
overriding the checkout directory for the current proejct.

Finally, file may be a Name. See the NameRevisions command for more
information names. The Name is expanded and the corresponding
revisions are checked out.

The “-m” and “-b” options check out the specified revisions for
modification. Projector marks that revisions as bing checked out and
excepts that file to be checked back in at some point in the future. (Note:
read-only files do not have to be checked back in, in fact they cannot be
checked in.)

When checking out files for modification a comment and task can be
specified to remind yourself and others why the files are being checked
out. If no task is specified the contents of the {Task]} variable will be

used.
Input None.
Output None.

Diagnostics Errors and warnings are written to diagnostic output.

Status The following status values are returned:
0 No Errors
1 Syntax Error
2 Error in Processing
3 System Error

Apple Computer Inc. 38 Confidential

‘, \\,

Options -u user

-project project

-d directory

-Cs comment

-cf file
-update

-newer

-noTouch

Apple Computer Inc.

Projector ERS

Name of the current user. This overrides the {User)
shell variable.

Name of the project that contains the files. This
project becomes the current project for this
command.

The directory where the checked out files should go.
This overrides the checkout directory for the current
project. See the CheckOutDir command.

A very short description of the task to be
accomplished by checking out files for modification.

Check out all the files in the Project.

Check out a modifiable copy of the file. This locks
the revision preventing other users from
inadvertently changing the revision.

Branch. A modifiable copy of the file is checked
out. When the file is checked back in it will create a
branch off the revision that was checked out.

A short description of what changes have been made
to the file(s) being checked in. This comment will be
associated with all the file(s) being checked in.

The comment is contained in the file file.

Find all read-only files on the main trunk from the
current project in the checkout directory (or the “-d”
directory) and update them to the latest revision if
they are older revisions. Files in the directory that
have been checked out for modification are not
affected. Files that are on branches are not affected.
Files in the project, but not in the checkout directory
are not checked out. This option cannot be used with
the options to check out files for modification.

For all files in the project make sure that the lastest
revision exists in the checkout directory (or the “-d”
directory). Files in the checkout directory that have
been checked out for modification or a on branches
are not affected. This option cannot be used with the
options to check out files for modification.

Recursively execute the CheckOut command on the
current project and all of its subprojects.

Open the file after it is checked out. This option only
works for files of type TEXT.

Open the “Check Out” window. Bring it to the front
if it is already open.

Do not touch the modification date of the checked out
files.

39 Confidential

Examples

Projector ERS

-close Close the “Check Out” window.

-y Answer “yes” to any confirmation dialog that occurs,
causing check out to proceed if any conflicts occur.

-n , Answer “no” to any confirmation dialog that occurs,
skipping files that cause some type of conflict.

-C Answer “cancel” to any confirmation dialog that
occurs, causing check out to stop if any conflicts
occur.

CheckOut -m =-project MPW/Tools/Count file.c

Checks out a modifiable copy of the latest revision of file.c from the
“MPW [Tools/Count” project. The file is placed in the checkout directory
for the project.

CheckOut =-project MPW|Toolsfcount file.c,22

The above command checks out a read-only copy of revision 22 of file.c
from the “MPW/Tools/Count” project. The file is placed in the checkout
directory for the project.

CheckOut file.c -t "Fix Bug 7" -m -d "{MPW}ToolsSrc:Count"

This command will check out a modifiable copy of file.c. By setting the
task other users will be able to see why this user has checked out file.c.
The files are placed in {MPW }ToolsSrc:Count.

CheckOut =-a -d HD:Work:Count

The above example checks out read-only copies of all of the files in the
current project and places the copies in the directory HD:work:count.

CheckOut -a -project MPW[-r

Checks out read-only copies of all of the files in the MPW project and all
of its subprojects. Its behavior is the same as if the user executed the
following commands individually:

CheckOut -a =-project MPW/

CheckOut -a -project MPW[Shell
CheckOut ~a -project MPW[Tools
CheckOut -a -project MPW/ToolsSort

To conveniently update the read-only files (from the current project)
without affecting any files checked out for modification use the “-newer”
option:

CheckOut =-update

Projector scans through the checkout directory of the current project and
finds all the read-only files that are out of date (i.e. they aren’t the latest
revision on the main trunk). All such files are checked out.

Apple Computer Inc. 40 Confidential

See Also CheckOutDir

Apple Computer Inc.

41

Projector ERS

Confidential

Projector ERS

CheckOutDir - set checkout directory

Syntax

Description

Input

Output

Diagnostics

Status

Options

Examples

CheckOutDir [-project project] | -m] [-1] [-x | directory)]

Change the checkout directory associated with the current project to the
HFS pathname directory. From this point on, files checked out of the
named project will be placed, by default, into this directory. When a new

project is created, the checkout directory is set “:”, i.e. the current
directory.

It is recommended that you put CheckOutDir commands for projects in

UserStartup following the MountProject commands. This will
automatically configure the Projector environment each time MPW is
launched.

If directory is missing the checkout directory of the current project is
written to standard output in the form of a CheckOutDir command.

Note that this command has no -u (user) option. Since the checkout
directories are part of the MPW environment, which is not partitioned on a
per user basis, a user name is not required.

None.

If directory is missing the checkout directory of the current project is listed
in the form of a CheckOutDir command.

Errors and warnings are written to diagnostic output.

0 No Errors

1 Syntax Error

2 Error in Processing
3 System Error

-project project Name of the project to associate the checkout
directory with. It overrides the {Project} variable
and becomes the current project for this command.

-m All “mounted” root projects. Display or set the
checkout directories for all root projects currently
mounted.

-r Recursively display or set checkout directories.

-X Reset the checkout directory back to the default, i.e.
the current directory “:”.

The following command causes subsequent files in the current project to
be checked out to the HD:work:sort directory.

CheckOutDir HD:work:sort

Apple Computer Inc. 42 Confidential

See Also

Projector ERS

“The next command outputs the checkout directory of the current project in

the form of a CheckOutDir command.

CheckOutDir
CheckOutDir -project MPW[Tools[Sort HD:work:sort

To -r option allows the user to display the checkout directory for the
current project and all subprojects. In this case only the sort project has a
checkout directory setting that differs from the default.

CheckOutDir -project MPW| -r

CheckOutDir =-project MPW[:

CheckOutDir -project MPW[Shell :

CheckOutDir -project MPW[Tools :

CheckOutDir =-project MPW|[Tools/Sort HD:work:Sort

The -r option can also be used to set the checkout directories of a complex
project to mirror the projects own hierarchical structure. For example:

CheckOutDir -p MPW| -r HD:Work:

After executing the above command, listing the checkout directories for
the projects under MPW would yield:

CheckOutDir =-project MPW| -r

CheckOutDir =-project MPW| HD:work:

CheckOutDir -project MPW/Shell HD:Work:Shell
CheckOutDir -project MPW|Tools HD:Work:Tools
CheckOutDir -project MPW/Tools[/Sort HD:Work:Tools:Sort

Notice how the directory structure is similar to the project structure.

The “-m” option lists the checkout directories of the root projects. For
example:

CheckOutDir -m
CheckOutDir -project MPW/ HD:Work:MPW
CheckOutDir -project Test| HD:Test

MountProject

Apple Computer Inc. 43 Confidential

Projector ERS

DeleteNames - delete user-defined symbolic Names

Syntax

Description

Input
Output
Diagnostics

Status

Options

Examples

See Also

DeleteNames [-u wuser] [-project project] [-public] [-r] [names... | -a]

Delete the specified Names from the current project. Names are spilt into
two categories, public or private. Either kind can be deleted with this
command. Special care should be used when deleting public names
because once deleted they cannot be recovered.

None.
None.
Errors and warnings are written to diagnostic output.

The following status values are returned:

0 No Errors

1 Syntax Emror

2 Error in Processing

3 System Error

-u user Name of the current user. This overrides the { User}
shell variable.

-project project The name will be deleted from this project.

-public The specified names are public names

-a Delete all private names, or public names if “-public”
option is present.

-r Delete names recursively starting with the current
project.

The following example deletes the name “workingSet” from the private
name space.

DeleteNames -p MPW|Tools[Sort workingSet

This example deletes the same name recursively starting with the Tools
project.

DeleteNames -p MPW[Tools -r workingSet

NameRevisions

Apple Computer Inc. 44 Confidential

\

|
\‘“‘xw’ !

Projector ERS

DeleteRevisions - delete revisions and branches

Syntax

Description

Input
Output
Diagnostics

Status

Options

Examples

DeleteRevisions [-u user] [-project project] [-checkout] revision ...

For each specified revision delete all the previous revisions on that
branch. If a branch name is specified then the entire branch will be
deleted. Itis an error to try to delete a revision that is currently checked
out for modification. It is also an error to attempt to delete a branch that
has one or more revisions checked out for modification.

Revision is either a Name, the name of a file in the current project, or a
filename followed by a comma and a revision number.

Checkouts (for modification) can also be canceled using this command
and the “-checkout” option. If a revision has been checked out for
modification and for some reason the file cannot be checked back in (the
file was lost) then use this option to cancel the checkout.

Warning! DeleteRevisions permanently removes the revisions and
branches specified. They cannot be recovered.

None.

None.

Errors and wamings are written to diagnostic output.

The following status values are returned:

0 No Errors

1 Syntax Error

2 Error in Processing

3 System Error

-u user Name of the current user. This overrides the {User}

shell variable.

-project project Name of the project that contains the files. This
overrides the {Project} variable and becomes the
current project for this command.

-checkout Cancel the checkout on the specified revisions.

The following example deletes all the revisions before the latest in file.c in
the named project.

DeleteRevisions =-project MPW|Tools[Sort file.c

The following example deletes all the revisions on branch 22a in file.c of
the current project.

Apple Computer Inc. 45 Confidential

Projector ERS

DeleteRevisions file.c,22a

Suppose that revision 5 of interface.c (in project Sort) is checked out for
modification and somehow the file is lost. The project expects the file to
be checked back in at some point creating revision 6. But since the file is
gone that will never happen. Work sould continue by making a branch
off revision 5 and working on the branch, but at some point you’d like to
get back on the main trunk. This can be done by the following command:

- DeleteRevisions -checkout interface.c,5

Now work can procedd on the main trunk as if revision 5 was never
checked out.

Apple Computer Inc. 46 Confidential

Projector ERS

ModifyReadOnly - allow modifications to a read-

only file

Syntax

Description

Input

Output

Diagnostics

Status

Examples

ModifyReadOnly file

The ModifyReadOnly command allows read-only Projector files to be
subsequently modified. After executing this command on the desired file
any modifications can be made. The file can then be checked back into the

project.

This command is very useful when the project cannot be accessed in order
to check a file out for modification. One of the dangers is that several
people can then make changes to the same revision forcing someone to
merge together all the changes.

None.

None.

Errors and warnings are written to diagnostic output.

The following status values are returned:

0 No Errors

1 Syntax Error

2 Errorin Processing
3 System Error

The following command allows the user to edit main.c
ModifyReadOnly FS:MPW:main.c
The next command makes the active window editable

ModifyReadOnly "({Active}"

After making the modifications to the active window it can be checked in
as follows

CheckIn "{Active}"

When this file is checked in it trys to become the next revision on its
branch. If the file was revision 5 then the checkin attempts to create
revision 6. However, someone else may have already created revision 6
since revision 5 was not locked by the user. In this case the above
checkin will fail. A second alternative is to check the file in on a branch as
follows

CheckIn -b "{Active}"

Apple Computer Inc. 47 Confidential

Projector ERS

This will create a new branch off revision 5. Another possiblity is to
check out revision 6 for modification and merge the changes into revision
6 and check in this new file creating revision 7.

Apple Computer Inc. 48 Confidential

Projector ERS

MountProject - mount an existing project

Syntax

Description

P

Input

Output

Diagnostics

Status

Options

Examples

MountProject [-d] [project]

MountProject adds project to the root project list. Project is the HFS path
of the project directory for the project. Once a project is added to the root
project list, it and all of its subprojects can be accessed.

MountProject commands typically appear in the UserStartup file in order
to automatically initialize the root project list.

If project is omitted, then the root project list is written to standard output
in the form of MountProject commands.

To remove a project from the root project list, use the “-d” option. To
permanently remove the project from the list delete the corresponding
MountProject command from the UserStartup file.

Note that this command has no -u (user) option. Since the root project list
is part of the MPW environment, which is not partitioned on a per user
basis, a user name is not required.

None.

If no parameters are given, MountProject outputs the list of root projects.

Errors and warnings are written to diagnostic output.

The following status values are returned:

0 No Errors

1 Syntax Error

2 Errorin Processing

3 System Error

-d Remove the named project from the project list. The

specified project must be a root project.

NOTE: The name should be a project path, not the
corresponding HFS path. The next release will
support either.

The following MountProject commands add the projects MPW and sort to
the root project list.

MountProject FS:MPW
MountProject HD:localProjects:sort

To obtain a list of the current root projects, execute the MountProject
command without parameters.

Apple Computer Inc. 49 Confidential

Projector ERS

MountProject

MountProject FS:MPW

MountProject HD:localProjects:sort

To remove the MPW project from the project list use the “-d” option.
MountProject -d MPW

The following will remove all projects from the project list.

MountProject -d

Suppose under the MPW project there is a subproject called Tools.
Mounting the MPW project gives access to all the subprojects simply by
specifying the full project path of the project. Mounting a project that is
already a subproject of a mounted project brings that project to the level of
a mounted project. For example:

MountProject FS:MPW:

The Tools project is named MPW/Tools. But after executing:
MountProject FS:MPW:Tools

the Tools project can be accessed by the name Tools.

Apple Computer inc. _ 50 Confidential

Projector ERS

NameRevisions - name files and revisions

Syntax NameRevisons [-u user] [-project project] [-public | -b] [-e] [-r] [-s]
[name [names... | -a]]

Description Create name to represent a set of revisions. Subsequently, when name is
— used in Projector commands, its value, names, will be substituted in its

place. Names are kept on a per project basis and can be composed of file
names, revisions, branches and other defined Names. A Name can only
include one revision per file. The first character of a Name cannot be a
digit (0-9). Also, commas, greater than or less than symbols (‘<’, *>’),
or dashes (‘-’) are not allowed anywhere in a Name. Names are not case
senstive.

The Names are partioned into two groups, public and private names. The
default is to create a private Name. Include the “-public”’ option to make
the Name available to all users. Definitions for private Names can be
added to UserStartup. Public Names are stored with the project so they
only need to be defined once. Do not put public Name definitions in
UserStartup.

If names is missing then the definition for name is listed. If name is
missing then NameRevisions lists all of the Names in the project. In
either case, the output is in the form of NameRevisions commands. The
default behavior is to only list private names.

Projector checks for various errors both when a Name is defined and
when it is used. Errors include refering to a non-existent file or refering
to more than one revision in a file.

Input None.
Output When name or names are missing, the command writes Names and their
values to standard output.

Diagnostics Errors and warnings are written to diagnostic output.

Status The following status values are returned:
0 No Errors
1 Syntax Error
2 Errorin Processing
3 System Error
Options -u user Name of the current user. This overrides the {User}
shell variable.

-project project Name of the project in which to create this name. .
This overrides the {Project} variable and becomes
the current project for this command.

Apple Computer Inc. 51 Confidential

Examples

Projector ERS

_-public Create a public Name. This lets all users in the

project have access to the name. Without this option
a private Name is defined.

-b Print both public and private names. The option is
only valid when listing name definitions as opposed
to defining a Name.

-a All the files in the project. The Name will expand to
all the files in the project.
-e Evaluate and expand Names and files to the revision

level before defining the Name or listing values if
name or names is missing.

-r Recursively execute the NameRevisions command
on the current project and all of its subprojects.
-S Print a single name per line.

The first example defines a Name “Work” that gets expanded to the files
file.c and interactive.c.

NameRevisions Work file.c interactive.c
The following command:

CheckOut Work

Is equivalent to:

CheckOut file.c interactive.c

By omitting the Names parameter, the next NameRevisions command will
output the current definition of Work.

NameRevisions -s Work

NameRevisions Work -u ‘'user name' -project 'name' d
file.c d
interactive.c

The next command creates the Name “file.c” that expands to the second
revision off the first branch off the 1.1 revision of file.c.

NameRevisions file.c file.c,1.1la2
The following:
CheckOut file.c

will now check out revision 1.1a2 of file.c.

The next example creates a Name “file.c” that expands to the the first
branch off the 1.1 revision of file.c.

NameRevisions file.c file.c,l.1la

So the checkout command:

Apple Computer inc. 52 Confidential

See Also

Pro ector ERS

CheckOut file.c

will check out the latest revision on the first branch off revision 1.1 of
file.c.

The “-¢” is an important option. The following two command illustrate its
function:

NameRevisions fred file.c
NameRevisions -e fred file.c

The first command defines a Name “fred” that always expands to the latest
revision of file.c. The second example expands to the latest revision at the
time of definition. If the latest revision of file.c is revision 9, the second
NameRevisions command is equivalent to:

NameRevisions fred file.c,9
No matter what new revisions are added to file.c “fred” will always
expand to revision 9 of file.c.

This next example will define all the latest revisions in the project Count to
be part of “v1.0 B1”. By making this a global name, all users accessing
the Count project will be able to use the name “v1.0 B1”.

NameRevisions =-public "vBl 1.0" -p Count -e -a

The name “BetaRelease” is defined recursively for all projects within the
MPW project:

NameRevisions =-project MPW/ -r -e "BetaRelease" -a

Its behavior is the same as if the user executed the following commands
individually:

NameRevisions -project MPW -e "BetaRelease" -a
NameRevisions -project MPW/Shell -e "BetaRelease" -a
NameRevisions -project MPW[Tools -e "BetaRelease" -a
NameRevisions -project MPW[Tools/Sort -e "BetaRelease" -a

ProjectInfo

Apple Computer Inc. 53 Confidential

Projector ERS

NewProject — create a project

Syntax

Description

Input
Output
Diagnostics

Status

Options

NewProject -w e
NewProject -close
NewProject [-u user] [-cs comment | -cf file] project

Create a project under control of Projector. This project becomes the
current project. A project directory is created where the project database is
maintained. All files, comments, and other information related to the
project is stored within this database. The name of the directory is the
narne of the project.

If project is a projectpath (e.g. MPW/Tools[Sort) then Projector creates
“Sort” in the existing MPW/Tools project. In this case MPW/Tools must
be a mounted project (see the MountProject command).

NOTE (3.0 Alpha2): This doesn’t quite work correctly. The project is
created but Projector doesn’t realize that it should be a subproject.

If project is a leafname (e.g. Sort) then project directory “Sort” is created
in the current directory.

Finally, if projectname is a partial or full HFS pathname (e.g. :Work:Sort
or FS:Projects:Sort) the “Sort” project is created in the HFS location
specified.

If the new project is a root project, i.e. is not part of an existing project
tree, it is added to the root project list. The user should add a

MountProject command to the UserStartup file in order to permanently e
add this project to the list.

The checkout directory is initially set to the current directory (:). To
change the checkout directory, refer to the CheckOutDir command.

Use the -new option to the CheckIn command to add files to the new
project.

None.
None.
Errors and warnings are written to diagnostic output.

The following status values are returned:

0 No Errors

1 Syntax Error

2 Error in Processing

3 System Error

-u use;_;'l'-‘_ E Name of the current user. This overrides the {User)

shell variable.

Apple Computer Inc. 54 Confidential

Projector ERS

-Cs comment A short comment about the project.
-cf file The comment is contained in the file file.
-W Open the “New Project” window. Bring it to the
front if it is already open.
-close Close the “New Project” window.
Examples The following command creates a project “count” in the current directory.

- No comment is saved with the project. One can be added later using the
“Project Info”” window.

NewProject count

The next example creates a count project in FS:work:count. The -cf
option indicates that the comment for the new project is contained in the
file “info”.

NewProject FS:work:count -cf info

Finally, given that the project MPW/Tools exists and has been mounted
using the MountProject command, this command creates a “count’ project
in the MPW{Tools project. In this case you don't need to add a
MountProject command to UserStartup, but you may want to add a

CheckOutDir command to change the checkout directory for the new
project.

NewProject MPW[Tools/Count -c "MPW word count tool"

See Also CheckOutDir
MountProject

Apple Computer Inc. 55 Confidential

Projector ERS

Project - set or write the current project

Syntax Project [-q | projeci]

Description If specified, project becomes the current project. Otherwise the full
project name of the current project is written to standard output.

-

Input None.
Output If no project is specified, the full project name of the current project is
written to standard output.

Diagnostics Errors and warnings are written to diagnostic output.

Status The following status values are returned:
0 No Errors
1 Syntax Ermror
2 Error in Processing
3 System Error
Options -q Don”t quote the project name the is written to

standard output. Normally, a project name is quoted
if it contains spaces or other special characters.

Examples The following Project commands set the current project to the Sort
project.
Project MPW/Tools[Sort

The following command will write the name of the current project to
standard output.

Project
MPW, ToolsJSo:t

Apple Computer Inc. 56 . Confidential

Projector ERS

OrphanFile - orphan files from a project

Syntax

Description

Input
Output
Diagnostics

Status

Options

Examples

See Also

OrphanFile file...

Remove any association between a file and the project from which it
was.checked out. File may be specified with a complete or partial
pathname.

None.

None.
Errors and warnings are written to diagnostic output.
The following status values are returned:

0 No Errors

1 Syntax Error

2 Error in Processing
3 System Error

None.

OrphanFile HD:MPW:MyWork:file.c
HD:MPW:fileTypes.h

Disassociate the files: HD:MPW:MyWork:file.c and
HD:MPW fileTypes.h, from their respective projects.

OrphanFile =, [ach]

Disassociate all the assembly, C, and C include files in the current
directory from their respective projects.

TransferCkid

Apple Computer Inc. ‘ 57 Contfidential

Projector ERS

ProjectInfo - list project information

Syntax

ProjectInfo [-project project] [-comments] [-revisions] [-f] [-1] [-s]
[-only | -m] [-af auhor] [-a author] [-df dates] [-d dates)
[-cf pastern)[-c pattern] [-t pattern] [-n name] [-log] [object...]

Description For each project, list the the current state of all the files within that project

Input

Output

(subprojects,by default, are ignored). For each file, list the current state
of the file. For each revision, list information on that revision. If no
objects are given, list the current state of all files within the current
project.

If object is a projectpath (e.g. MPW/Sortfile.c or MPW/Sort) then
Projector lists information about file.c or the files in MPW/Sort,
respectively.

If object is a leafname (e.g. file.c), then Projector looks in the current
project for the file. If the file is not a member of that project, then
Projector looks for the file in the current directory. If the file exists and is
part of a project then the current state of that file is listed. Projector can
determine if a file belongs to a project because that information is
maintained in the resource fork of all checked out files.

Finally, if object is a valid partial or full HFS pathname of a file, and the
file is part of a project, then the current state of that file is listed.

To list the contents of a specific revision of a file, append a comma
followed by the revision number to the filename specified, e.g. revision
22 of file.c is specified as file.c,22.

The -af, -a, -df, -d, -n, -cf, -c, -t options may be used to constrain the
information listed to specific authors, dates, names, or containing specific
comments or tasks.

None.

Information is written to standard output.
The following template shows the information listed in ProjectInfo.

Project Name
filename,revision
Author: author of current revision
Status: Date
Task:
Comment:

The first line lists the project name to which the file or revision belongs.
The project name is listed only at the beginning of the file or revision list
corresponding to that project. The filename is something like file.c. The
revision is the latest revision of filename by default. If the -revisions
option is used, then all revisions will be listed. A “+” on the revision

Apple Computer Inc. 58 Confidential

Projector ERS

“indicates that it is currently checked out. The status will be either
“Checked in” or “Checked out”. The date is the date and time
corresponding to the checkin or checkout of that revision. The task lists
the task associated with that file or revision, and the comment is an
optional field included with the -comments option.

Status 0 No Errors
1 Syntax Error
_ 2 Errorin Processing
3 System Error
Options -u user Name of the current user. This overrides the {User}
shell variable.

-project project Name of the project that contains the files. This
overrides the {Project) variable and becomes the
current project for this command.

-revisions List the revision history for each file specified.

-r Recursively list all subprojects encountered, i.e. list
every file in every subproject.

-S Short listing.

-f List file names.

-comments Include comments associated with each project, file
and revision listed. Normally, they will be
ommitted.

-m Only list modifiable files or revisions.

-log Print the log information for the current project. The
log contains information about the creation and
deletion of public names, and the deletion of
revisions.

-only Only list information about projects and subprojects
in the current or named project, i.e. not files.

-af author Only list those files whose author is author.

-a author Only list those revisions whose author is author.

-df dates Only list those files which were created during dates.

Apple Computer Inc.

Dates can take the following forms:

Format Meaning

date On date

<date Before but not including date
<date Before and including date.

>date After but not including date.
2date After and including date.
datel-date2 Between and including datel and

A date is specifed as mm/dd/yy [[hh:mm(:ss]
AMIPM].

59 Confidential

Examples

Projector ERS

Note: Be sure and quote dates so that the MPW
Shell does not interprete any of the special

characters.
-d dates Only list those revisions which were created during
‘ dates.
-cf pattern Only list those files whose comments contain

string. A string may be a literal string, or a regular
expression enclosed in slashes (/).

-C pattern Only list those revisions whose comments contain
string.
-n name Only list those files whose revisions have the Name

name. Names can take the following forms:

Format Meaning

name With Name name

<name Before but not including name
<name Before and including name.
>name After but not including name.
2name After and including name.

Note: If any of the name relations are used (<, <,
>, 2) quote name so that the MPW Shell does not
interprete the special characters.

-t pattern Only list those revisions whose task fields contain
string.

In the example below, the current project has three files. The presence of
the plus (+) indicates that Bob currently has revision 22 of file.c checked
out for modification, and Peter has revision 33 of hdr.c checked out for
modification. The date field of these two files reflects the date-time they
were checked out. Since no plus appears on the line for file.h it can be
checked out for modification. Its latest revision is 17 and the author of the
revision was Bob.

ProjectlInfo

Samplef

file.c,22+
Owner: Bob
Checked out: Fri, Apr 8, 1988, 3:45 PM
Task: Fixing bug #223

file.h,17
Author: Bob
Checked in: Mon, Apr 4, 1988, 10:10 AM
Task:

hdr.c, 33+
Owner: Peter
Checked out: Tue, Apr 12, 1988, 5:58 PM
Task: Fixing bug #333

Apple Computer Inc. 60 Confidential

Projector ERS

Using the -only option causes ProjectInfo to only list information about
the project itself.

ProjectInfo =-only

Samplef '
Author: Bob
Create date: Mon, Apr 4, 1988 8:20 AM
Mod date: Thu, Apr 14, 1988, 6:00 PM

Using the -f option causes ProjectInfo to list file names. Note that
revision numbers are absent and the file's author and last-mod-date are
listed. In the example below, file.c and hdr.c are currently checked out.

ProjectInfo -f

Sample,

file.c
Author: Bob
Create date: Mon, Apr 4, 1988, 10:00 AM
Mod date: Tue, Apr 5, 1988, 2:15 PM
Free: No

file.h
Author: Bob
Create date: Mon, Apr 4, 1988, 10:00 AM
Mod date: Mon, Apr 4, 1988, 10:00 aM
Free: Yes

hdr.c
Author: Peter
Create date: Mon, Apr 4, 1988, 3:30 PM
Mod date: Mon, Apr 4, 1988, 6:00 PM
Free: No

Using the -f and -s options together cause ProjectInfo output the list of
files in the project.

ProjectInfo -f -s
Samplef

file.c

file.h

hdr.c

Using the -revisions option when naming a project or a file causes the
revision history of the file to be displayed. Note that the comment option
has been included here as well.

ProjectInfo -revisions -comments file.c
file.c
Revision 22+
Owner: Bob
Checked out: Fri, Apr 8, 1988, 3:45 PM
Task: Fixing bug #223
Comment : COMMENT..
Revision 22
Author: Bob
Checked in: Thu, Apr 7, 1988, 1:10 PM
Task: Fixing bug #222
Comment : COMMENT..

Apple Computer Inc. 61 Confidential

Projectcr ERS

Revision 21
Author: Bob
Checked in: Mon, Apr 4, 1988, 9:25 PM
Task: Updating procedure comments
Comment: COMMENT..

Information about HFS files may be displayed by specifying a partial or
ft;_lihH};S pathname. This displays the information in the 'ckid' resource
of the file. :

ProjectInfo :file.c
:file.c,22+
Owner: Bob
‘Project: Samplef
Checked out: Fri, Apr 8, 1988, 3:45 PM
Task: Fixing bug #223

In the example below, only revisions created by “Bob” and created on or
after April 4, 1988 are displayed.

ProjectInfo -revisions =-a Bob -d "24/4/88"
Samplej
file.c
Revision 22+
Owner: Bob
Checked out: Fri, Apr 8, 1988, 3:45 PM
Task: Fixing bug #223
Revision 22
Author: Bob
Checked in: Thu, Apr 7, 1988, 1:10 PM
Task: Fixing bug #222
Revision 21
Author: Bob
Checked in: Mon, Apr 4, 1988, 9:25 PM
Task: Updating procedure comments
file.h
Revision 17
Author: Bob
Checked in: Mon, Apr 4, 1988, 10:10 aM
Task:

In the example below, only revisions that have a task dealing with “Bug
#222” are listed.

ProjectInfo -revisions -t /bug=222/
Sample]
file.c
Revision 22
Author: Bob
Checked in: Thu, Apr 7, 1988, 1:10 PM
Task: Fixing bug #222
hdr.c
Revision 31
Author: Peter
Checked in: Fri, Apr 1, 1988, 3:50 PM

Apple Computer Inc. 62 Confidential

Projector ERS

Task: Bug222 - Adding check procedure

The final example shows the log option.

ProjectInfo -log
TheShelLbrojector
Author: Peter J. Potrebic
Create date: Mon, Apr 4, 1988, 1:59 AM
Mod date: Wed, Jul 6, 1988, 10:35 AM
7/5/88 4:07 PM
Peter J. Potrebic
DeleteNames Work
7/2/88 1:37 PM
Peter J. Potrebic
NameRevisions Work bitmaps.a,2 ckid.c,3a2

The log shows that Peter created a public name on July 2 and then deleted
it on July §.

See Also MountProject

Apple Computer Inc. 63 Confidential

Projector ERS

TransferCkid - move a ckid from one file to

Syntax

Description

Input
Output
Diagnostics

Status

Options

Examples

See Also

another
TransferCkid sourceFile destFile
Move the Projector ckid associated with sourceFile into destFile, and
then remove the ckid from sourceFile. SourceFile and destFile may be
specified with a complete or partial pathnames.
None.
None.
Errors and warnings are written to diagnostic output.
The following status values are returned:
0 No Errors
1 Syntax Error
2 Error in Processing
3 System Error
None.
TransferCkid oldrile.c newFile.c
Move the ckid from oldrile.c to newFile.c. Once the transfer is
complete, Projector will only recognize newfile.c as belonging to a
project. In addition, Projector will consider newFile.c to be the same file
as oldFile.c.

OrphanFile

. Apple Computer Inc. 64 Confidential

SADE -- Symbolic Debugger Project

Alpha 2 Release Notes July 8, 1988 Fred Forsman m/s 27-E|

Summary.

These notes provide information about how to use the MPW 3.0 Alpha 2 release of SADE (the
Symbolic Application Debugging Environment).

This is the first SADE release to include the manual (as opposed to the ERS). These release notes,
however, should definitely be read because they provide installation information and additional
tips and hints in the use of the debugger based on the problems our early users have experienced.
The section "How to Use SADE" below tells how to set up SADE and the section "More Information
on Using SADE" gives some pointers on where to find information on using SADE without going to
the manual. The command section of the manual, however, is up-to-date and can serve as a
reference on matters not covered in the builtin help.

Please direct your comments on this release to one of the debugger team: Fred Forsman (x2520),
Russ Daniels (x4568), John Paulson (x4163), Ira Ruben (x2002), or Burt Sloane (x6252). Feel
free to give us feedback on any and all aspects of SADE (e.g., user interface, command language,
command output formats, etc.).

How To Use SADE.

Installation. You may drag the SADE folder from the release disk to anywhere you like on your
system (it does not need to be associated with the MPW folders). Note that the SADE application
also has auxiliary files which should be kept in the same folder as SADE itself; these are
SADEStartup, SADEUserStartup,- SADE.Help and the SADE Worksheet. A copy of the SysErrs.Err
file should be kept either in the SADE folder or else in your System Folder so that SADE can
report system-related errors with textual messages. The SADEScripts folder which is included in
the release is not essential to the operation of SADE and may be placed anywhere or omitted
altogether.

SADE requires a special version of MultiFinder in order to access and control processes. The
version of MultiFinder included with the SADE release is compatible with the latest System
release (6.0). The additional code to support debugging in this version of MultiFinder should not
affect your normal (non-debugging) use of MultiFinder. To install this new version of
MultiFinder, drag your current MultiFinder to some place other than your System Folder, then
copy this new MultiFinder into your System Folder, and then reboot.

If you do not install the special version of MultiFinder needed for SADE (or if you inadvertently
replace it by updating your system) SADE will crash into Macsbug when you launch it (we will be
trying to improve this graceless behavior). You can verify that your version of MultiFinder was
the problem if SADE crashed on invocation by switching back to the main screen and observing
whether there is a SADE window with a "TWRegisterDebugger failed!" message in it.

DO NOT run SADE on a system with QuickKeys installed. QuickKeys is known to hang the system
when tracing traps in SADE.

Launching and Entering SADE. SADE should be launched like any other application, i.e., by

double clicking on the application icon, by double clicking on a SADE document, or by launching
it from the MPW shell.

Page 1

SADE Alpha 2 Release Notes 7/11/88

You should be able to switch to SADE using the usual MultiFinder process switching mechanisms.
If you want to enter SADE from the context of another program, hitting the NMI bution should
transfer you to SADE which will either display the program source or a message of the form
"Program interrupted at <location>".

The target application you wish to debug with SADE may be launched from the Finder or from
SADE via the "launch" command. In order to inspect the target application with SADE, the target
application must be suspended. The application can be suspended by being interrupted with the
NMI button, by hitting a breakpoint, or by raising an exception which SADE handles. In this
release of SADE, this means that you will typically first suspend your application by hitting the
NMI button, and subsequently by setting breaks. (We hope to support setting breakpoints in code
segments applications which have not yet run shortly, which would eliminate the need for
initially breaking with an NML)

SADE and MacsBug. MacsBug is still available while SADE is present. While SADE will take
over the NMI button, MacsBug can be entered via any SA9FF or SABFF trap. There is an F-Key
("DebugFKey.r") which can be easily installed with Rez into your System to generate one of these
traps.

Symbolic Information. The symbolic program information support i~ . release of SADE is
working well for C and Pascal programs. Symbolic debugging information can be generated by
using the "-sym on" compiler option and the "-sym on" linker option. The ".SYM" file generated
by the linker should be in the same directory as the target program; otherwise the symbol file can
be identified with the "Target” command.

SADE is also able to fall back to the MacsBug symbol mechanism which identifies the names of
loaded procedures and functions whose names are embedded in the code. SADE uses MacsBug
information for display purposes only; that is, Macsbug names may appear in the output of the
"disasm” and "stack” commands and in the string returned by the "where" function. However,
SADE does not use MacsBug information on command input, so you may not use a MacsBug name
(unless the name is also defined in the ".SYM" file) to set a breakpoint or to request a
disassembly.

Symbolic information is available for most Mac system (ROM and low memory) symbols.

Note that Lib has been changed to support symbolic debugging information, so that object files
passing through Lib will no longer lose their symbolic information.

Source Level Debugging. SADE now supports source display, allowing the current execution

point (PC) to be identified in your source, and permitting the setting and unsetting of breakpoints

by identifying points in the source. To allow this mechanism to work you should either keep a
copy of your sources in the current SADE directory or else use SADE's "SourcePath” command to
identify where your source files are located.

Source level debugging is provided through a "SourceCmds" menu which allows setting and
unsetting breakpoints, single stepping by source statement, "go til", display of variable values,
etc. The menu commands are also available through command keys. The "SourceCmds" menu
includes a final item which allows switching between source level (statement-oriented) and
assembly level (instruction-oriented) debugging. The "step” and "step into” menu items and
command keys will change their behavior depending on the ‘setting of the debugging level, as will
the debugger displays when entering the debugger after program execution.

The "SourceCmds" menu includes "Break” and "Unbreak” commands which work on the current

selection in the active window. There are "Step” and "Step Into" commands which wark either at
the source statement level or the assembly instruction level (depending on the setting of the final

Page 2

!
a

P

N

SADE Alpha 2 Release Notes 7/11/88

"SourceCmds” menu item). The "Go" menu command begins program execution, and the "Go Til"
command begins program execution with a temporary break set at the statement indicated by the
current selection in the active window. The "Where PC?" item will bring up the source
corresponding to the current PC, while the "Show Where" item will put up an alert indicating the
procedure and statement (number) of the selection in the active window. The "Show Value" menu
item allows you to select variable names in your source and then use the menu command to
display the variable value; the value will be displayed in a "Values” window which is opened in
the current directory.

The support for this source debugging capability is implemented in the SADEStartup file by
means of several procedures in the debugger's language and some AddMenu commands;
consequently, the source debugging mechanism can be modified to suit your own tastes if you
spend some time investigating how it is implemented in the SADEStartup file. It is easy, for
example, to disable the alert which identifies the procedure/function and statement number
where execution has been suspended. To change this behavior you need to modify the
"StandardEntry” proc definition which appears in the SADEStartup file. This debugger proc
handles all display upon entry into the debugger; it plays this role because it is the designated
action in the "onEntry" command in the startup file. (You do not need to restart SADE to have a
new "StandardEntry" proc definition take effect; just select your edited definition and hit Enter.)

Another characteristic of source display that can be changed easily, is whether source windows
will be brought up as the topmost window. The standard behavior in this regard has changed in
this release so that source windows are not brought up as the topmost windows so that you can
continue to issue commands conveniently from a worksheet window. If you want the source
windows to appear om top, all you need to do is enter an assignment of the form:

SourceInFront := 1
If you want to change this behavior for future debugging sessions you can modify the definition of
"SourceInFront” in the SADEStartup file. (Let us know if you think that the default for this
behavior is set incorrectly.)

More Information on Using SADE.
The' following are some places to look for information on how to use SADE:
e The "Help” command works, providing on-line information about the command language.

« The SADE Worksheet file contains a variety of commands which demonstrate aspects of the
command language which you may be likely to use. The Worksheet also contains a
sequence of commands outlining how to debug MPW tools.

« The SADEStartup file contains a number of debugger Proc definitions and AddMenu
commands which implement a source level debugging interface.

« The “SADEScripts" folder in this release contains some examples of the use of various
debugger language constructs. Some of the examples provide implementations of builtin
SADE commands using the SADE command language. Some information on these scripis is
provided in a following section of these notes.

The following points should be noted in using SADE:
e All traps are identified in SADE by names beginning with underscores (as in Traps.a).

Trap names without the underscores represent either glue or ROM addresses. Thus
_InitGraf represents the trap while InitGraf represents an address in the ROM.

Page 3

SADE Alpha 2 Release Notes 7/11/88

+ SADE looks up symbol references based on the context in which program execution was
stopped. In the simplest case, if we have broken inside of procedure "foo", then the name
"foo" and the names of any variables declared within "foo" will be recognized in their
simple or unqualified form. The names of other procedures and globals in the compilation
unit containing "foo" will -also be known. If you want to refer to something which is not
defined within the context of the point where execution was suspended you may have to
qualify the symbolic reference to allow SADE to find the symbol. For example, if you want
to refer to an embedded Pascal procedure "snuk" which is inside of procedure "bar", you
may specify "bar.snuk”. If it is necessary to identify the compilation unit that a
procedure is in then a reference of the form ™UnitOrFile.Procedure” is required. (The
"\" indicates that the following name will be a Pascal unit name or C compilation file
name, i.e., a "top level” name.) If you hit NMI and end up in ROM or other system code you
will have to make such a qualified reference to talk about objects in your program.

e If you hit NMI and end up in ROM or other system code and want to get back to your
program, you have several alternatives, some of which will take longer to execute than
others. The simplest is to use the "step” command to single step until it reaches the next
statement in your program -- which can take a while depending on how much and what
system code SADE must step through. Alternately, you can bring up one of your source
files, set a source break, and go, which should be a much faster operation. If you want to
get back to the next statement to be executed in your program, you should use the "stack”
command to see what the last program statement is in your call chain and set a break on
the next statement and go. (We are working on ways to speed up stepping in cases such as
these.)

« The first (0'th) statement of a procedure or function corresponds to the entry point to that
routine before the LINK instruction has been executed, at which time the stack frame has
not been set up and the variables and parameters do not have meaningful values. /
Consequently, if you want to check the value of a parameter you should go to statement 1 - .
(e.g., "foo.(1)", instead of "foo" or "foo.(0)") before inquiring about the value.

« Symbolic debugging information from the Pascal compiler does not include information
about the use of WITH statements, consequently, SADE does not know how to deal with
unqualified field references. To access a field of a record which has been identified with
a WITH statement you will need to include the name of the record variable (as you would if
the WITH were not present).

« In SADE a variable reference always refers to its value, and not its address; thus, "foo"
refers to the value of the variable "foo" and "@foo" refers to its address. The "Dump"
command takes an expression argument to specify what address to dump from, thus, if you
want to dump the value of "foo" you should specify "dump @foo" (since "dump foo" will
interpret the value of foo as an address and display the memory at the address indicated
by foo's value).

* The values of expressions in SADE are long values by default. If some other size is
desired a type coercion should be used. Thus the following "find" command will look for a
long value
FIND $ABCD PC 20
while
FIND word(SABCD) PC 20
will look for a word-sized value.

e The names of procedures and functions (and statement references relative to procedures) s+
can be specified as arguments to the break and other commands, as in "break foo"; @

o

Page 4

SADE Alpha 2 Release Notes 7/11/88

however, if you wish to assign the address of a procedure to a register you should precede
the procedure name with the @ operator, as in "pc := @foo". In the former case the
procedure name (or statement reference) represents a special code reference (with extra.
information about resources and offsets), while in the latter it represents a simple
address (at a specific point in time).

Known Problems In This Release.

The followirg features described in the ERS are pot yet implemented:

PMMU registers are not supported (and perhaps never will be), and 68030 transparent
translation registers are also not supported.

Setting breakpoints in unloaded code segments is now supported; however, you cannot
issue SADE commands which refer to programs which are not yet running.

The "Call” command is not yet implemented. It is likely that "Call” will not be
implemented for the first release

While structured program variables may be assigned to SADE variables, and the SADE
variables may be subsequently displayed as structured types, field dereferences may not
be applied to SADE variables with structured values.

The two machine remote-debugging configuration is not supported (and won't be in this
release of SADE).

Display of Pascal sets is not supported, but is handled better than in the Alpha 1 release.
Display of records containing sets will not terminate when the set is reached.

You may notice problems with the following:

The definition of source statements is still evolving. E.g., a breakpoint set on a WHILE
will only be encountered once on entry (setup) into the WHILE. This and related problems
are being addressed by further refinement of the compilers' notion of statements. You
will also notice that SADE sometimes will select several statements as if they were a
single statement. This results from statements for which there was no generated code,
resulting in several statements which map to the same address. The statements grouped
together in such cases are not always intuitive, so steps are being taken to improve the
display.

The display of your application's windows may look strange after transferring control to
SADE and back. Do not adjust your set; this is not actually a problem. Remember that
your application gets suspended and does not receive any update events for windows which
are obscured while you are in SADE. It is possible that this problem can be improved in
the future if we are able to get additional support from MultiFinder to save the window
bits for suspended applications.

The "system symbol” information (i.e., ROM and low memory names) which are built into
the Alpha version of SADE are for the Mac II. By Beta we will provide support for SE and
Mac Plus systems.

Variables which are declared as EXTERN in one file but whose defining file was not

compiled with symbol information will not be known to SADE. For a variety of reasons
(including the desire to reduce the proliferation of duplicate definitions in and resulting

Page §

SADE Alpha 2 Release Notes 7/11/88

expansion of symbol information) EXTERN definitions do not produce symbolic
information for the debugger.

This Alpha 2 release has the following known bugs:

e The “Kill" command functions correctly by itself, but will terminate any other pending
SADE commands if issued from within a structured conmstruct such as a begin..end. If you
kill a target with breakpoints still in place and then relaunch it, SADE will report false
breaks in the new invocation of the application.

o Outp;t redirection will be cancelled if SADE is reentered a second time after first
reentering via a "stop” command in a break action.

e "Unbreak all” on rare occasions leaves a functioning breakpoint around (visible with the
"List break” command). A second "unbreak all” command will remove the breakpoint.

We are working on the problems described above and expect to have versions of SADE shortly
which will remove some of the above limitations and problems. If you are interested in getting a
more current version of SADE or if you encounter a problem you can't work around using this
release of SADE, please contact one of the SADE team members.

SADE Scripts Included With This Release.

A number of SADE scripts defining procs and funcs (procedures and functions in the debugger's
language) have been provided in this release. These procedures and functions can be loaded using
the "execute” command on the various script files. The new commands that will then be defined
provide a number of higher-level debugging functions which display information about system
and program structures. (Some of these were trial implementations of what are now builtin
commands in SADE.)

The following files are included:

« DisplayMemory has the definition of a "DM" command to display sections of memory in
hex and ASCII. This facility is now built into SADE as the "Dump” command.

e FCBChecker has the definition of a "DisplayFCBs" command which provides a symbolic
display of all of the file control blocks in the system.

o« HeapProcs has the definitions for "HeapDisplay", "ShowFreeMP", and "DisplayHeapInfo"
commands which display the heap, show free master pointers, and dxsplay summary
information about the heap respectively.

e MiscFunctions has the definitions for "Max" and "Min" which show how to create
functions with an arbitrary number of arguments.

e MiscProcs has the definitions for "DisplayRegs" and "DisplayWindowList” which
display the machine register state and the system window list.

e ResMap has the definition of a "ResMap” command to display a resource map. The builtin
"Resource” command performs a similar function.

. ResVér.ify has the definition of a "ResVerify” command to validate resource maps.

Page 6

N

{)

Y 14
\ /
Wreorr

-

SADE Alpha 2 Release Notes 7/11/88

« StackCrawl has the definition of a "StackCrawl" command to display the stack of the
program being debugged. This facility is now built into SADE as the "Stack" command.

Thanks to Jim Friedlander, Julia Menapace, Russ Daniels, and Fred Forsman for the above scripts.
If you develop any useful and/or fascinating debugger procs and funcs of your own, please send a
copy to one of the SADE team members so that it can be used as a manual example or as part of a
library of useful debugging functions.

Page 7

®&. Macintosh.

SADE Reference
Manual

ALPHA DRAFT #2
(corrected version)

Writer: Catherine Lipson
Contact: x2755, LIPSON1
Date: July 8, 1988

NOTE: This draft contains preliminary
material only. It does not contain:

L]

final technical or editorial changes
final art

final program examples

an index

L]

APPLE CONFIDENTIAL

Draft Historv:

Working Draft 1: alpha draft April 15, 1988
Working Draft 2: alpha draft #2 June 17, 1988
Working Draft 2: corrected version July 8, 1988

& APPLE COMPUTER, INC.

Copyright © 1988 by Apple
Computer, Inc.

All rights reserved. No part of
this publication may be repro-
duced, stored in a retrieval
system, or transmitted, in any
form or by any means, mechan-
ical, electronic, photocopying,
recording, or otherwise, without
prior written permission of
Apple Computer, Inc. Printed in
the United States of America.

Apple, the Apple logo,
LaserWriter, and Macintosh are
registered trademarks of Apple
Computer, Inc.

ITC Avant Garde Gothic, ITC
Garamond, and ITC Zapf
Dingbats are registered trade-
marks of International Typeface
Corporation.

Simultaneously published in the
United States and Canada.

ISBN 0-201-xxxxx-x
ABCDEFGHIJ-DO-898
First printing, Nnnn 1988

Working Draft 2

7/8/88

Contents
(6),F:5 0173 D PP P PP PPPPP 1-1
AboUt SADE e e 1-2
SADE and the target application.........ccce..oovvvnnnnnininiiniecciinnnnnn. 1-3
The SADE User INterface. . .cocuuiiiiniiiiiiiiiieieierieiiieereenieeeeteaeeneneenenns 1-4
The SADE WorKshet ... cuuiuiiiiiiiieiiiiiieieieieeenerieieneeeeaenaenaes 1-4
The SADE MenUS. ittt cneeeeeeeneeeneneeaenannns 1-5
SADE Command-line Interfacec.ccoiviieiiiiiiiiiiiiiiiiniiiennnn.. 1-6
SADE files and QireCtOmIeS . .. v vt et iineeeteeneeteerneeeneeaneeaneeracsneasnaseaneens 1-9
(63,73 .12 S SO ST PEPPTPR PP PRI 2-1
InStalling SADEttt a e a 2-2
Launching SADE ..ottt ettt et teeneteeteneeaeenaeaeans 2-3
Entering SADE from an applicationc..ecevuiuiieiiiiniiniiinnenennn. 2-4
The SADEStartup File...coooiiiiiiiiiiiiiiiiiiiiiiiiiiiiinciee, 2-5
Entering and Editing Commands and Text......c.cccceuiiimmiremenmmnicinienienenns 2-6
SADE File-Handling Operations.........ocvvtiiiiieineieiiiinineinineineineneeeenenn. 2-7
File Commandscociiiiiiieiiiiiiiiiiiiiiiiiiiiiiii e 2-8
Getting helpin SADEuiiiiiiiiiiiiiiiiiii i 2-9
Debugging a program: an inroduCtioncceveeieininiiiiiiiiininienenes 2-9
(61115145 S TP Aesesesrsesesonsasans 3-1
About SymbOlS..c.iiiiiiiiiiiiiiiiiiiii e 3-4
Debugger symbol seach path........c..ccviiiiiiiiiiiiiiiiiiiiiiiii. 3-4
Order of Symbol Lookup.......ceveveiniiiiiiiininiiininiiinnnnen. 3-5
NUMETIC CONSLANLS ... eeeiteiniiniiniietitiiniiuieeieteateaeeatonienecnseraeeaecnseanees 3-5
R 3 1175 SO PP PP 3-6
(613114131 o O PP 3-7
Setting Case Sensitivity......ocouiuiiiuiiiieieiiiiiiiiiiiiiiiiiiiiiiieeiiae, 3-8
Variable references....cccciiiiiieiiiiiiiiniiiiiiie e cenceiceee e eeneens 3-9
Predefined debugger variablesccoeeiieiiiiiiiiiiiiiniiiiiiiiiien, 3-10
User-program variable references........ccccocceviiiiiiiiiiiiiininniniinnnnns 3-12
Program procedure and statement reference...........coeeueienene. 3-13
Referencing objects outside the stack activation...........c........ 3-14
REGISIEr NAIMES ...oeuiiiiiiiiiiii it iieieeee et eeeeaeaaenans 3-14
258 0} £ 13 o] 1 £ U PP 3-15
10,575 ¢:100)) ol a [0 Tol T 3-15

Contents Working Draft 2 il

Expression operand base types.........ccccovuiemiereiiiiianiininriinnennnnnns 3-16

Evaluation Of eXPressionS.......cccceveiiiiiiiiiiiiiiineniiiniiiinerinieennnn.. 3-17
The ASSIgNMENt OPETALOTuivinininiiiritieiieeieerenennaaanannns 3-18
The POINter OPerator.......covviviviiiiiiiiiiiiiiiineereeinenns e 3-19
The Address OPeratoOr.........cccovveiiiiiiiiiiniiiiiiiiieeerieeennnens 3-19
The Trap OPETALOT. .. uvuiviiininiiiiit ittt eeernaaaaraanas 3-19
TYPE COBTCION .ttt ittt ettt et e e e aeenees 3-19
RaANBES ..vuiiiitiiiit i e 3-20
Builtin Functions.......cccceveiiiiiiiiiiiiiiiiniicininnnn.n, Vevriraneieeenan 3-21
- AddrToSource....c.ooveviviiiieiiniininnnnen. e etteteeeeeereeeraeaaaas 3-21
600, 1o | S PP P PPN 3-21
(607} 51 4.« OO 3-22
[610)) PP PPN 3-22
Find..oooi e 3-22
Length e 3-22
NaN ..., ettt eeteaeneeeetet et eatn e aen et eaaataaeaaaatas 3-23
ReEQUESE ..ttt 3-23
SizeOf ...ooiiiiiiiiiiiiiine, e eeeeerarereateeeaeeateaaaas3-23
SourceToAddr....... eeeeerieertrteaeeeeaanaas e 3.-23
511 ST PP OPPPP PP SPPRPPN 3-24
TypeOf............. eereerraraeaen e et 3-24
Undef...ocovvricniiiiininnns Cereens ettt tteeee et aee e eaenaas 3-24
Wherecoooiviiiiiiiiinnnnns eereeenenaees ceeeeene eereeeriereeaaea 3-24
SADE Command LangUageccueiiieiiiueiiiiiirnierareneereneneatenenenenenns 3-25
Command eXeCUution........ocevuviiiiiiiniinennne. ettt ereeaaaas 3-26
Debugger Qutput Filescvuivniiiiiiiiiiiiiiiiiiiiini i, 3-26
Debugger EITOT OULPUL...cvuuieiniitiiiiiiiiiecinieiiniaeeaieeaenes ceeeenens 3-27
Symbol Displayc.oveiiiiiiiiiiiiiiiii 3-27
Debugger Variables......oviiiiiiiiiiiiiiiiiiiiiir i e 3-27
User-defined variable references.......c.coooeviiiiiiiiiiiiiiiiiiiinicnnnnn. 3-28
The Undefine Command.........cccoooveiiiiiiiiiiiiiiiiniiiinennenne. 3-29
Chapter 4...iiiiiiiiiiiiiiiiiiiir s SO P PP 4-1
Locating and Controlling Program Files . .oiiiiiiiiiiiiiii 4-3
Locating your Files........... N 4-3
Directory Command........cccocvvvviiniininn. e e 4-3
Target Command....... ceeeeenes eevraeenans ceerrneeereeaaa caveensens 4-4
SourcePath Command................. tessesnescsrassseransnsssanssasen 4-4
Basic Application Control........ccccoiviviiiiiiiiiiiiiininnnn. e 4-5
Launch Command.............coco.euee N 4-5
Kill Command........... eereeeereerenereneeneenaas eereeneraeas 4-5
Displaying Program Information...........c......... teeerrreeeeaneenteratnressrenaes 4-6
~ Formatted Displays...........coooeiiiiiiiiiinnin e 4-7
Printf Optional PArAMEIETS. ..o, .47
Listing Program Information......... ettt ettt ittt ettt eeereaeaaas 4-12
Special-purpose Displays.......ccccoecuviiiiiiiniiininnn. ceeeeeees cerrreenenad-14
The Disasm Command......... e terret et 4-14
The Dump Command.......cccccvvurireiiennnnnnnnes creeeernenenennd-14
The Stack Commandcueeee. eeeereeenens eeeeeraeneaeaae 4-15
Displaying and Checking the Heap eeeraenes rereee ...4-16
Displaying and Checking Resources eeeeeeeaeeeeaeireereaas 4-18
Finding Program Locations......... reeerrr et aesaeeees erereerteereneaeans ..4-18
Setting Memory Values e reereratitiareiieaeiaeaas et 4-19

iv Working Draft 2 Contents

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Ll

Chapter 5.............. .
Resume Progxam Execution............. e e e
Stepping Through a Program...................... . PN
Suspending Program Execution............... e e

Address Breakpoints

Trap Breakpoints....... e N e
Break Acdons e e ceeeens
Unbreak Command..........ccccevineninennnnnn.. e, e

Stop Command.......ccoeuiiiiiiiiiiiiiiiiie e

= Abort Commandccieiiiiiiiiiiii e
Monitoring Program Executionc.cccovviieninininennen et
Trace Command.........cceeiiiniiinieiennnnnn.
Untrace Command.........ccoviuiininiiniiniiiiiiiiiieinee e eeenenen

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
]]]]

]

1]
\D 00 00 00 00 ~1~JWhhhWih)

.
]

Chapter 6....cevvvveeninnenennns erereenaans ettt ete ettt e e eeaaanas

¥ DebuggerCommandFlowControl e eeeereeeeeaeeneaaaas ettt et eee e e e eiraaaeaeaas
Grouping Commands e
Conditional Commandsc.oouiurutiiiiitiiiiiie i e iereeraeaeanaaas

Looping Commands................. e PRI « o

For Command......cccoiiiiiiiiiiiiiiiiiiiiiiii i rie e ee 626

While Commandcooiiiiiiiiiiiiiiiiiiiiiiireee el 646

Repeat Command..........ccooeeevinini e PPN « ¥

Loop and Leave COMMANGS ..o 6-8

Cycle Command N ceennl6-9

.

O\ Lnu.u-u.ipu-u-u:u.u.u.u.u.

'Jl-lkt'\)b—-»-‘

Chapter 7.........ceeeee P e et veeendd
CustormzmgtheDebuggmgEnvu‘onment................ B PP PP |
Executing a Debugger Command File........................ ceeeaenn ceeenen TR &
User-defINed MacTos ..ooiviiiiiiiiiiii it iiiitiiiiiraeeeeiaeeesseeennnseeesnnnennnsd
User-defined procedures............. C et eeteteieeieeeeeeeeaeieeteitaraieeaaaaaan 7
User-defined FUNCHONS ...viiiiiiiiiiiiiiii ittt eiieieeieiiseeeeieaneraeenanns
Customizing your Startup Filecccooeviviiinaie.

The OnEntry Command..........cccccevuveinennnnn. e e
User-Defined Menus and AlertS...ccovevieiieiiiiiiiiiieiiiiieiiiieneenens

AddMenu Command

DeleteMenu Command.......ooeiveeiiiiiieiiiiiiiiieiieereeneecnnaes

Alert Commandovviiiiiiiii i e

SRS
00 00 00 00 ~J ~J W £ U N s s

\n\i'Tx'\n\x

Chapter 8........ B P PP PP UP PP PPTPPPRPRPPRPPE .
Source-Level Debuggmg......................................‘. TP &
To be supplied

p—ay_‘

dix A 1
Appen Ce ettt e eeae et teea et aeeatet et eea st eeeeete et eensaraaaaraaaans

.
Sample PrOgram .. ocoiuiiiniiiiiiiiiiiiiiiiiiiieiitieeeteetieteneenrenseererensnnsessasosanaanens]

.
Editing in SADE 1

Symbol File Formatc.cccouenen.. PP

Contents Working Draft 2 v

.
AppendixE.............. P, e e e e, 1
Linker Output............ et eenae erreee e e e 1

List of Figure and Tables ***for next draft***
S T-4VE L & S PO PP PPN 1

Table xx............ teretteteitetatientaiaae N veeienen .|
-

vi | Working Draft 2 Contents

Preface
About This Book

Hardware and Software Compatibilitycceovuiiiiiiiiniiiiiiiiiiniiiennnnn. viii

About ThisManualccoiiiiiiiiiiiiiiiiiiiiiiii s viii
3721170 @ (o] Ta o) « FO X

Bibliography . .o X

Preface Working Draft 2 Vii

The SADE Reference manual describes the functionality, user interface, and command
language of the Symbolic Application Debugging Environment (SADE™). This symbolic
debugger allows the developer to monitor the execution of a program at the symbolic
program source level and the processor level. SADE is intended primarily to debug
applications and tools created with the Macintosh Programmer’s Workshop (MPW). It is
possible for other development systems to use SADE if they supply the required symbol
information.

Hardware and software compatibility

You can use SADE to debug application programs on the Apple® Macintosh [I™
computer, the Macintosh SE computer, and the Macintosh Plus computer. The size of
SADE prohibits its use on the 128K and 512K versions of the Macintosh. SADE supports
the Motorola MC68000 family of processors and coprocessors.

Generating program debug information during compiles and links using the MPW
development system (version 3.0) requires a minimum of 1 megabyte of memory.

SADE requires MultFinder to be installed and active. The version of MultiFinder included
with the SADE release is compatible with System File 6.0. SADE supports only the
Macintosh Toolbox environment; there is no support for UNIX® or other operating
systems. Later versions of MultiFinder will include the needed support for SADE.

About this manual

The material in the SADE Reference Manual is aimed at readers who have a thorough
understanding of the compilers, linkers, and other programming tools they are currently
using. The “how t0” information on writing, compiling, or linking your program is
covered in the manuals specific to the tools you are using.

The primary audience for this book consists of Macintosh application developers and other
professional programmers. The primary focus is on those users who are already familiar
with the MPW environment. You should already be usmg a debugger or emulator to help
you in your program development work. The chapters in Part I describe SADE features,
and serve as a reference to commands and techniques you need to use often. The chapters
of Part I are as follows:

Chapter 1, “SADE Overview,” provides general information on the SADE interface and its
many powerful features. The chapter presents the high-level interface first, with a
description of the SADE Worksheet and menus. This chapter also-contains a brief preview
of the command-line interface, which is described in more detail in Chapter 3.

viil Working Draft 2 Preface

Chapter 2, “Getting Started,” provides step-by-step instructions for installing the SADE
files on your system. The chapter then describes the various methods used to enter SADE.
The purpose of the SADEStartup file is defined here, and some simple SADE operations,
such as displaying help information, are demonstrated. This chapter also describes some of
the commands that you can use to control the high-level interface that SADE uses in dealing
with files, windows, and menus.

Chapter 3, “Debugger Symbols and Command Language Format,” provides a reference for
all types of debugger symbols and expressions. This chapter focuses on the command-line
interface, and the rules and guidelines you must follow to enable SADE to properly
interpret symbol names. It also describes the proper format for SADE command usage, and
how the SADE command interpreter evaluates commands.

Chapter 4, “Basic Debugger Operations,” includes examples from the program “Eventlog”
to illustrate particular commands. The chapter focuses on the commands that allow you to
locate, display, or alter selected places in in your program’s memory. Heap and resource
commands for displaying and validating these system data stuctures are also included in
this chapter.

Chapter 5, “Program Control,” describes how to use SADE commands to control a target
program’s execution. These commands let you set breakpoints on one or more addresses,
on trap ranges, or on all traps. You can also step through a program, trace program
execution, or suspend execution.

Chapter 6, “Debugger Command Flow Control,” contains information on the conditional,
looping, and grouping constructs used within the SADE command language. These
constructs are useful when you wish to automate your debugging session, because they
allow you to conditonally execute or repeat a series of commands.

Chapter 7, “Customizing the Debugging Environment,” tells how to write your own SADE
procedures, functions, and macros. In addition, this chapter explains how you can use the
SADEStartup file, the AddMenu command, and other SADE features to create a debugging
environment that suits your needs. This chapter also contains information on executing
debugger command files.

Chapter 8, “Source Level Debugging,” describes the SADE source file interface. This
source level debugging functionality is implemented through use of SADE procs within the
SADEStartup file, which can be customized by the user to suit particular debugging needs.

Appendix A, “SADE Menus,” illustrates the standard SADE menus, which are similar to
standard Macintosh menu types.

Appendix B, “Sample Program,” lists the entire sample program used as an example in this
book. Appendix C, “Editing in SADE,” provides an overview of the SADE editing
functions.

Appendix D, “Symbol File Format,” contains a guide to the contents of a SADE symbol
file, which is produced by the Linker. Appendix E, “Object File Format,” provides
information on the symbol output produced by the MPW compilers.

Preface Working Draft 2 ix

As you become familiar with the use of SADE, the introductory chapters will become less
important. The command summary in Part II is designed to be a useful quick reference for
experienced users. Part II contains command pages, arranged in alphabetical order.

Syntax notation

The following syntax notation is used to describe SADE commands:

-

terminal Plain text indicates a word that must appear in the command exactly as
shown. Special symbols (-, §, &, and so on) must also be entered exactly
as shown.

nonterminal Items in italics can be replaced by anything that matches their definition.

[optional] Square brackets mean that the enclosed elements are optional.

repeated... Anellipsis (...), when it appears in the text of this reference only, indicates
that the preceding item can be repeated one or more times.

alb A vertical bar indicates that you can choose between the items on either side
of the bar.

(grouping) Parentheses indicate grouping. Parentheses are useful with the vertical-bar
notation (1) and the ellipsis notation (...).

Filenames and command names are not sensitive to case. By convention, they are shown
with inital capital letters. Terms printed in boldface are defined in the text and appear in
the glossary.

Several of the chapters in this book assume you are familiar with the concepts explained in
Volumes I-IV of Inside Macintosh (published by Addison-Wesley, 1985). For instance,
you need to know how the heap and resources work on the Macintosh for the SADE heap
and resource commands to make sense. Additional features of the Macintosh SE and
Macintosh II computers are documented in /nside Macintosh Volume V (Addison-Wesley,
1988). Finally, you’ll need the appropriate documentation for the programming
environment and languages you'll be using.

X Working Draft 2 Preface

Part | - SADE Reference
Manual

Working Draft 2 1-1

Chapter 1
SADE Overview
ADOUL S A D E i e ettt e 1-2
SADE and the target application...........ccccciviiiiiiiiiiineiiiiinin 1-3
BYTIINY-V D) IR BETS & 4175 o -1 - F 1-4
The SADE WoOrKSheet ..o iii ittt ittt eiieieraaeee 1-4
The SADE MeNUS. i iiitiiiiiiiiitiiiiiiiietieeartitetreetieeeanceninnianenns 1-5
SADE Command-line INterfacecovvuvriiireriiieeieiieneeerereneeininns 1-6
RY.80) SBTIILR: Vole B Vi g Tai o) o (- JRR 1-9

SADE Overview Working Draft 3 1-1

This chapter introduces the Standard Application Debugging Environment (SADE), a
program designed for high-level language debugging. SADE works within the overall {0
program-development environment as a tool for detecting and correcting known program o~
errors. You can also use SADE to test a program to verify that it is functioning as expected.

SADE provides a standard Macintosh window and menu interface, as well as a command-
line interface with its own command language. Using SADE, you can monitor program
execution at both the program-source level and at the processor level. SADE’s intended
use is to debug applications and tools created with the Macintosh Programmer’s
Workshop, but you can also use SADE independently of MPW.

This chapter first contains an overview of SADE features, and describes the relationship
between SADE and your application program. The rest of this chapter concentrates on the
SADE user interface, and gives you a preview of how you can use the SADE Worksheet,
menus, and commands together to accomplish debugging tasks. These topics are all
considered in greater detail in later chapters of the SADE Reference Manual.

About SADE

SADE, with its symbolic debugging capabilities, provides important advantages for

Macintosh programmers. Using symbolic debugging means that symbols within the target
application—procedure and function names, variables, and system objects such as Toolbox

trap names—can easily be located from within SADE. A complete description of how)
SADE identifies symbolic information is contained in the Chapter 3, “Debugger Symbols

and Command Language Format.”

Here are some of the other important SADE features:

« A windowed display provides a familiar Macintosh interface for your debugging
session. SADE can also display your source files in read-only windows.

¢ Debugging sessions are easy to start, because you can launch SADE like any other
application. While your system is running under MultiFinder, you can easily switch to
SADE.

* SADE commands can be saved to and loaded from disk, and debugger output can be
saved for use outside of SADE.

information created by using symbol options with the compiler and linker. SADE can

* Source-level symbol references are fully supported, using symbolic program
display complex data types, listing all the fields in the structure.

» SADE includes a powerful, programmable, and extensible command language with
structured control statements, user-defined procedures and functions, and full

expression evaluation.
< Built-in debugger functions provide a way to perform operations such as displaying the)
statement line that corresponds to an address.

1-2 Working Draft 2 SADE Overview

* Program-control facilities such as breakpoints, single stepping, or suspended execution
let you see the effect of program execution on chosen program locations.

* SADE’s flexible display-formatting capability allows you to choose how your
debugging information will appear.

* Macintosh-specific support lets you identify heap objects and verify the consistency of
heaps. Resource information and system objects, such as Toolbox trap names and
low-memory global variables, can be referenced symbolically.

» SADE is easy to customize.You can define an alias for a SADE command name, add
menus and menu commands, or perform other initialization routines each time you start
the debugger.

These and other features are more fully described in various chapters of this manual. Many
commands described in this manual are used to control execution of the target program,
while other commands are used to control the workings of SADE itself. This division
between program control and debugger control is reflected in subsequent chapters.

‘SADE and the target application

SADE is a stand-alone application, and can operate on its own within the system
environment on your Macintosh. What SADE does require for any kind of meaningful use
is a target application—that is, a program that you wish to debug. SADE works with the
target program on two levels—on the source level, SADE can display source files, while
on the processor level, SADE can display information about the program’s execution.

To start a debugging session, both SADE and your target program have to be launched.
You can launch first SADE, and then launch your target program, or you can launch the
target program first, and then launch SADE. Once both are launched, you can return to
your target program and break into the debugger.

Each time a target application is compiled and linked, symbol information can be generated
in a format that SADE can interpret. The MPW C and MPW Pascal compilers generate
symbolic information, controlled by qualifying options. The MPW Linker tool processes
and outputs this symbol information in the form of a symbol file. See the appropriate
language reference manual for information on compxler options, and the ME__R:fmg
Manual, Chapter xx, for information on linker options.

SADE can use symbol information generated by any compiler that produces the correct
object file format. The linker must also support use of symbol information. Appendix D,
“Symbol File Format,” and Appendix E, “Object File Format,” provide a reference to the
required format for compiler and linker output. Typically, the compiler and linker would
include some kind of optional parameters to control symbol output. For example, a
compiler might include a option for full symbol information, including source-line,
variable, and type information. A compiler could also generate partial symbol information;
for example, a compiler might include options to omit all source line information, all
variable information, or all type information.

SADE Overview Working Draft 2 1-3

As you read in this manual, you’ll soon become aware of the dual nature of the SADE user
interface. Like almost every Macintosh application, SADE has windows, menus, and
dialogs. When you are operating within this graphic-oriented user interface, you can do
much of the work by pulling down menus, clicking the mouse, and pressing command
keys. However, SADE also includes another powerful component: the command-line
interface. In many respects, the SADE command language is similar to a progamming
language. There are many SADE commands, each with its proper syntax. You type these
commands on the keyboard, and execute them through use of the Enter key.

The sections that follow first describe the graphié-on'ented user interface—the SADE
Worksheet and the SADE menus. The description of the command-line interface is next,
and includes a comprehensive list of SADE commands grouped by function.

The SADE Worksheet

When launched, SADE opens its own text window, known as the SADE Worksheet.
Shown in Figure 1-1, this worksheet provides a place to enter SADE commands and
display debugger output. The worksheet includes a menu bar, scroll bars, and other
standard Macintosh window features. You’ll see the SADE icon in the upper-right corner
of the menu bar. A blinking cursor shows where you can enter commands from the
keyboard. You execute the SADE commands by pressing the Enter key.

1-4 Working Draft 2 SADE Overview

" & File Edit Find Mark Window SourceCmds

==t al AMOZiNG:MPW:SADE A1:SADE Worksheet TE=——
Debugging Environment | O Aipha

® Standord App
L]

® Copyright fipple Computer, Inc. 1987-1988
® All rights reserved.

MNOTE: You cannot set breakpoints i1n unioaded code segments with this version
See below for }w sequence to debug MPH tool.

This worksheet contains some coasands you might |ike to try.

Version ® display SRDE's version information
Helip ® a way to find out what con be done >
SADE pD EEEET R fi Sl log

Figure 1-1
The SADE Worksheet

At the window’s lower-left corner, a status panel shows the name of the command
that’s currently executing, or simply the word “SADE” when you’re not executing a
command. A mouse click on the status panel is equivalent to pressing the Enter key.

The first ime you launch SADE, the debugger opens the SADE Worksheet file. This
worksheet is a text file which contains sample SADE commands and other useful
information. You can enter commands and text anywhere within this worksheet.

If you decide tb start debugging with a blank worksheet, you can clear the worksheet just
like any other text file. For example, you can choose “Select All” from the Edit menu, and
then use the Delete key to delete the contents of the current worksheet.

The SADE menus

The standard SADE menu bar includes the Apple, File, Edit, Find, Mark, and Window
menus. In addition, the SourceCmds menu may appear in the menu bar, if it is generated
by your SADEStartup file. (If you watch carefully when SADE starts to run, you will see
that the SourceCmds menu appears just a few seconds later than the standard menu
commands.)

The SADE standard menus provide an easy way to open, save, and close files, perform
edit operations, and find text within files. These menus are described below.

SADE Overview Working Draft 2 1-5

The Apple menu includes an “About SADE” menu item, which displays the current SADE
version number.

The File menu allows you to open a new or existing file, close a file, or save a file. (You
can also enter several of these commands from the SADE command line: these commands
include the Open, Close, and Save.) The Quit command gets you out of SADE and back to
the Finder.

The Edit menu allows you to perform some of the standard edit operations on a selected
portion of text within a SADE Worksheet. This manual assumes that you are already
familiar with standard Macintosh editing commands, such as Cut, Paste, and Undo.

The Find menu can be used to search for a specified string. You can also perform search
and replace operations from this menu.

The Mark menu allows you to set markers within a file. These markers are simply text
selections identified by name, and can used to make selecting expressions easier.

The Window menu can be used to stack or tile windows. Your SADE Worksheet always
appears first in the lower section of the Window menu.

The SourceCmds menu is generated by commands within the SADEStartup file. The menu
includes commands to set or unset a breakpoint in the source program, clear breakpoints,
step through the source program, resume program execution, display variable values,
display the current program counter location, and switch between source level and
assembly level debugging. You can also enter these commands from the SADE command
line. You can alter or change the commands in the SADEStartup file, and add items to the
SourceCmds menu if you wish. See Chapter 2 for more information on the SADEStartup
file.

Many of the menu commands have Command-key equivalents, so you can speed through
these standard operations once you’re familiar with them. Appendix A, “SADE Menus,”
contains detailed information on SADE menu commands and the dialog boxes that appear
when you select those commands.

You can further customize the SADE menus by placing additional AddMenu command
lines in the SADEUserStartup file. Each user-defined menu command specifies a list of
SADE commands that are executed when you select the menu command. See the section on
“User-Defined Menus” in Chapter 7 for more information on the AddMenu command.

SADE command-line inferface

The SADE command-line interface is similar to a high-level programming language. SADE
commands, listed in Table 1-1, allow you to create expressions, define procedures and
functions, control the flow of debugger execution, start and stop program execution, and
display various symbols within your program. Many of the commands have a number of
optional parameters that affect their operation. SADE also includes a number of built-in
debugger functions, which you can use to perform operations such as displaying the source
file that corresponds to an address. These features provide a great deal of flexibility in the
command language, as well as increased power.

1-6 Working Draft 2 SADE Overview

The rules for constructing a SADE command can be compared to the syntax requirements
of a programming language. Chapter 3, “Debugger Symbols and Command Language
Format,” describes the components that make up SADE symbols and expressions, and
explains how the SADE command interpreter evaluates a command line.

When using the command-line interface, you type one or more commands into your current
SADE worksheet, and then execute the commands by pressing the Enter key. To execute
more than one line of commands from the worksheet, you can highlight as many lines as
you wish, and then execute the entire group of commands by pressing Enter.

You can also save a group of SADE definitions, which you use to perform a specific task,
in a command file. You can then execute this file to invoke those definitions. This process
is similar to using an include file with a programming language: the definitions in the file
are executed once each time it is used. You can find more information on this SADE feature
in Chapter 6, “Debugger Command Flow Control.” The SADEScripts folder contains
many examples of command files that perform useful operations.

If you wish to repeat a group of SADE commands many times during your debugging
session, you can write a SADE procedure or function (hereafter known as a proc or func).
You can store this proc or func within a command file. After the command file is executed
for the first time, you can invoke the proc or func by name, as many times as needed. You
can find more information on this subject in Chapter 7, ““Customizing the Debugging
Environment.”

The SADE commands in Table 1-1 are grouped by function. This format reflects, to some
degree, their organization within the chapters of this manual. As you read Chapters 2
through 8, you will find these commands discussed, with examples of their use. Once you
reach Part II of this manual, you will find that the commands are arranged alphabetically.
This change in presentation gives you two ways to find the particular command you need—
by function or by name.

Table 1-1. SADE Commands

File commands (Chapter 2)
Open Opens a file
Save Saves a file
Close Closes a file
Redirect Redirects standard output
Debugger variable commands (Chapter 3)
Define Defines a debugger variable
Undefine Removes a local debugger variable, proc, func, or macro
Symbol command (Chapter 3)
Symbol Controls symbolic display in disassembly
Application control commands (Chapter 4)

SADE Overview Working Draft 2 1-7

Directory Changes the current directory

Target Selects program target
Sourcepath Sets search path for source files
Launch Launches an application
Kill Kills an application
General expression and display formatting (Chapter 4)
Printf _ Sends formatted output to file or
window
Special-purpose display commands (Chapter 4)
Disasm Disassembles instructions
Dump Dumps a range of memory in hex and characters
Stack Displays stack frames
List Lists address or trap breakpoints, processes, symbols
Heap commands . (Chapter 4)
Heap [display] Displays the heap

Heap check Verifies the consistency of the

heap
Heap totals Displays summary information for

the heap
Resource commands (Chapter 4)
Resource [display] Displays the resource map
Resource check Checks the resource map
Searching command (Chapter 4)
Find Searches for a target in memory
Debugger execution control commands (Chapter 5)
Shutdown Shuts down (with restart
option)
Quit Gets out of debugger
Stop Stops execution of debugger commands
Sbort Stops execution of debugger commands and pending commands
Execution commands (Chapter 5)
Go Starts execution
Step Single steps through code
Breakpoint and tracepoint commands (Chapter 5)
Break Sets address or trap breakpoints
Unbreak Removes breakpoints.
Trace Sets tracepoint
Untrace Clears tracepoints
Flow control commands (Chapter 6)

1-8 Working Draft 2 SADE Overview

If..end Condidonally executes commands
While.end Conditionally loops with beginning test

Repeat ..until Conditionally loops with end
test
For..end Loops with a control variable
Cycle Continues execution at top of current loop
Leave Continues exection after the end of the
current-loop
Begin.end Groups commands together
Execute debugger command file (Chapter 7)
Execute Executes debugger commands
in a file
User-defined macros, procedures, and functions (Chapter 7)
Macro Associates characters with an
identifier
Proc..end Defines a procedure in the debugger
language
Func..end Defines a function in the debugger
language
Return Returns from a function
Menu and Alert commands (Chapter 7)
Addmenu Associates commands with menu
commands
Deletemenu Deletes menu items
Alert Displays an alert box
Miscellaneous commands
Help Gets help on SADE topics or commands (Chapter 2)
Case Sets the case of a variable lookup (Chapter 3)
Version Displays current SADE version (Appendix C)

SADE files and directories
This section describes what you will find on the SADE release disk. For installation
instructions, see Chapter 2, “Getting Started.”

The SADE application itself can be opened and executed just like any other application.
You can recognize SADE by its distinctive “insect” icon. When SADE is running, it uses a
number of other files, which are also included on the release disk. These files are as
follows:

SADE Overview Working Draft 2 1-9

SADE Help

SADE Worksheet

-

SADEStartup

This auxiliary file contains the online Help information for the SADE
language. You can get this information at any time from within SADE
simply by using the Help command. More information on the Help
command can be found in Chapter 2.

When you first open this file,you’ll see more than an empty window.
The Worksheet displays a number of typical uses for SADE commands,
to give you an idea of how SADE can be used. Also included in the
Worksheet is a sequence of commands for debugging MPW tools.

This file contains debugger proc definitions and other commands that
set up the initial SADE configuration. More information on this file can
be found in Chaper 2.

SADEUserStartup This file is initially an empy text tile. You can use the SADEUserStartup

SADEScripts

MuldFinder

SysErmrs.Ermr

file to customize SADE startup settings.

This folder contains a number of files that provide examples of
debugger command usage. More information on these scripts is
provided in Chapter 7.

The version of MultiFinder on the SADE release disk is slightly
different than the previous versions of MultFinder. you may replace
this special version with an updated version of MultiFinder sometime in
the future.

This file can be used for IO and system error messages.

Working Draft 2 SADE Overview

Chapter 2
Getting Started

Installing SADEttt e et et 2
Launching SADE ...ttt e e 4
Entering SADE from an applicationcoveeviiiiiiieinieiiinineneennnnn. 4
The SADEStartup fileocoiuiiniiiiiiiiiiiiiiiien e e, 5
Entering and editing commands and teXt..........vciveieiiiiiiiiiiiiiiiininenen. 6
SADE file-handling operations........... P 7
Filecommands...........oiiiiiiiiiiiiiiiiiiiiii e 8
Getting helpin SADE ...ttt it 9
An introduction to debugging a Program.......cccceceeeeeieriiecimmemeeniiiinieeenaens 9
Quitting from SADE........ccciviiiiiiiiiiiii 10
Shutting down the systemcocviiiiiiiiiiiiiiiiiiiiiiien, 11

Getting Started Working Draft 3 , 2-1

This chapter covers what you’ll need to get started using SADE—how to install it, how to
launch the debugger from the Finder, and how to enter the debugger from your executing o
application program. The SADEStartup file, which provides initialization information each S
time you launch SADE, is described in detail. After reading this chapter, you should be

ready to start debugging with SADE.

S

In additon, this chapter provides a brief introduction to file-handling and command-line
editing within SADE. The basic file-handling tasks include opening, closing, and saving
the text files created by SADE. This chapter briefly explains how to enter and edit
commands within a SADE worksheet. This part of SADE follows the standard Macintosh
text-editing conventions, so you'’ll find much that is familiar here.

The SADE Help command is introduced in this chapter, so that as you read the remainder
of this book, you’ll know how to get online help. The last section in this chapter illustrates
how to start up with a sample debugging session.

Installing SADE
SADE is distributed on a disk as a stand-alone apﬁlication, with its own help file and other
material. You can copy the SADE files into any convenient location on your hard disk. The
files SADE.Help, SADE Worksheet, SADEStartup, and SADEUserStartup must be located

in the same directory as the SADE application; the guidelines for placing these files are
shown in Table 2-1. o)

Table 2-1. SADE Files

Same directory Other directory
SADE Application SysEmrs.Err 1/O and system error
messages
SADE Help Auxiliary text file SADEScripts Optional examples
SADE Worksheet Auxiliary text file MultiFinder Place in System folder
SADEStartup Auxiliary text file

|SADEUserStartup ~ Auxiliary text file

You can create a directory for your SADE files wherever it is convenient. For example, if
you want to create a folder called Debugger on your hard disk, you can simply copy the
contents of the SADE distribution disk into the Debugger folder.

The SADE.Help file is a text file that is called by SADE anytime you use the Help
command from your worksheet. The SADE.Help file isn’t designed to be accessed directly
by users.

2-2 Working Draft 3 Getting Started

A SADE Worksheet file is opened each time you launch SADE. Any commands you wish
to enter can put anywhere within this worksheet.

You can create any number of SADE files, place commands or text in them, and give them
names of your choosing. You can double-click on any SADE file to start up SADE. If you
move a SADE file to another directory, and then quit SADE, you should be aware of the
following behavior: when you double-click the SADE file in the other directory, SADE will
launch, but the SADEStartup file won’t be executed.

The commands in the SADEStartup file are executed automatically each ime SADE is
launched. You can change the contents of this file if you choose; see “The SADEStartup
File”, later in this chapter, before you attempt any changes. Any changes you make will
take effect after you have quit SADE and relaunched, or after you have reexecuted the
SADEStartup file.

The SADEUserStartup is an empty text file that you can use for your own commands,
definitions, or procedures. This file is executed from the SADEStartup file.

You can place the SysErrs.Err and SADEScripts files in the same directory as SADE if you
choose. You could also put the SysErrs.Er file in the System Folder; it’s used so SADE
can report system-related errors with textual messages. The SADEScripts folder contains
examples for SADE command files that perform a variety of useful functions. You can
move them anywhere you like, or omit them if you need extra space on your system.
However, since several of the command files are used as examples in this book, it’s a good
idea to keep these samples around until you are well-acquainted with SADE.

The application that you are debugging can reside anywhere on the system. It’s easiest to
keep the symbol file generated by the linker in the same directory as the application.

‘However, you may keep the symbol file elsewhere if you properly identify its location

using the Target command.

To permit source file display, SADE must be able to find the source files for your
application. If the source files aren’t in the current directory, you can use the Sourcepath
command to identify their location. This command is described in Chapter 4, “Basic

Debugger Operations”.

Remove following paragraph after final version ships

Current versions of SADE must run under a special version of MultiFinder, known as
(version xxx?) To make sure that SADE will work correctly, you must first move your
current version of MultiFinder out of your System Folder. Then drag the SADE version of
MultFinder into your System Folder. At this point, restart with the new version of
MultiFinder; you will then be ready to try SADE.

This new version of MultiFinder is compatible with the latest System release (6.0). The
code added to support debugging will not affect your normal use of MultiFinder.

Getting Started Working Draft 3 2-3

Launching SADE

Once you have installed SADE, you can launch it from the Finder as you would any other
application: by double-clicking on its icon, by double-clicking on any SADE document, or
by choosing Open from the File menu. You can also launch SADE from the MPW shell.

You can return to the Finder from your application window and launch SADE at any time.

Each time SADE is launched, it notifies MultiFinder that it is acting as the debugger for the
system. MultiFinder then passes exception handling and process information to SADE.
When other applications run, SADE is suspended, but as soon as an exception occurs,
SADE will once again be in control. Exception handling passes back to the operating
system only when you explicitly quit from SADE by using the Quit command.

When you first start SADE, the commands within the SADEStartup file execute
automatically. This file contains the initialization information for your SADE debugging
session. The details of the default settings for the SADEStartup file are described in this
chapter. Keep in mind that these default settings may be changed if you wish to specify
some other set of SADE startup actions.

Once SADE has been launched, you can begin working in a SADE window right away, or
you can switch back to another application or the Finder with the usual MultiFinder process
switching mechanisms. To return to SADE, just click any SADE window. The various
ways to enter SADE from your application are described next.

Enfering SADE from an applicafion

This section describes several methods you can use to go from SADE to your application
program, and back to SADE. The techniques described in this section assume that you have
already launched the SADE application.

After SADE has been started, you can easily return to your application by clicking its
window. You can then re-enter SADE from your executing application program. The most
common way to do this is by means of the NMI key located on the side of your Macintosh.
Also known as the programmer’s switch, this key interrupts the foreground program as it’s
running on your system, and causes control to be passed to SADE. The SADE worksheet
then comes to the foreground, and a message appears. (See the SADEStartup file for the
default messages.)

If your program generates an exception due to some error, the program enters SADE when
the exception occurs. Again, a SADE worksheet comes to the foreground; the worksheet
may display a message indicating where the program counter was when the exception
occurred. (The message displayed depends on the argument used with the OnEntry
command in the startup file.)

The system error-handling routine, invoked by calling SysError, will also put you into
SADE. You can use this routine within your program as a test:

l if (boolean expression) SysError():

2-4 Working Draft 3 Getting Started

If the boolean expression becomes true while your program is executing, your
program will enter SADE. This error-handling routine allows you to enter SADE from the
point you choose, instead of waiting for an exception or interruption.

You can’t use the debugger traps SABFF and $A9FF for SADE, because they are reserved
for MacsBug.

While you're working with SADE, you can set a breakpoint at one or more places in your
program code. When you resume execution, your program will run until it reaches a
breakpoint, and then control returns to SADE. The commands used to set code breakpoints
are described in Chapter 5. You can also use the menu items in the SourceCmds menu to
set breakpoints in a source file. See Chapter 8 for more information on source breakpoints.

The SADEStartup file

Each time you start SADE, it searches for a file named SADEStartup, and executes the
commands in the file. If the SADEStartup file isn’t in the same directory as SADE, it
won’t be found when SADE is launched. However, you can delete the SADEStartup file,
or “hide” it in another directory, and SADE will still run.

You can change the commands within the SADEStartup file if you wish; however, you
should be familiar with the important functions provided by this file before you attempt to
modify it. This section describes the contents of the default SADEStartup file.

A debugger procedure, or proc, is the first thing you’ll notice in the SADEStartup file.
After this StandardEntry proc is defined, you’ll see it used as the argument for the OnEntry
command. This command can be used with any break action; in the SADEStartup file
OnEntry provides a way for SADE to put a message in the worksheet when your program
code is interrupted.

The StandardEntry proc includes a Printf statement, which shows you the cause of the
interruption, the location of the Program Counter at the time the error occurred, and the
name of the application program that was halted. The numeric codes listed in this debugger
proc correspond to the different reasons that your program might stop executing. For
example, if you press the NMI key, you will get the message “Program Interrupted”. If the
debugger generated an exception, as is the case in a break or trace operation, the
corresponding message is displayed. These messages are described more fully in Chapter

If you change the StandardEntry proc definition, you don’t have to restart SADE for the
new definition to take effect. You can simply select your edited definition and press Enter.

The RegisterDisplay proc causes SADE to open a window, which it places behind the
active window. This window then receives the output of a number of Printf statements that
display the current values of DO-D7, AO-A7, and the program counter.

The set of Macro declarations in the SADEStartup file provides a way to use MacsBug
equivalent names for some SADE commands. These declarations are useful if you are
accustomed to using the MacsBug command language. For more information on the Macro
command, see Chapter 7.

Getting Started Working Draft 3 2-5

The procs SetSourceBreak, unSetSourceBreak, and sourceStep provide a way to work
back and forth between a source location and the corresponding program code in memory.
These procs rely on the built in debugger functions sourceToAddr and addrToSource,
which are described in Chapter 3. The AddMenu commands in the SADEStartup file cause
the SourceCmds menu to appear in the menu bar for SADE. This menu makes it possible to
perform these source-level debugging operations from a menu. For more information on
the AddMenu command, see Chapter 7.

If you want to customize SADE, you can use the SADEUserStartup file. An Execute
command in the SADEStartup file will run the SADEUserStartup file immediately after
running the SADEStartup file. The Execute command is described in Chapter 7.

Entering and editing commands and text
Once you are in SADE, you’ll have a SADE worksheet for typing text and commands.
Each SADE worksheet is a text file, and the standard Macintosh text-editing procedures
will work as you expect. The worksheet has a blinking cursor, a scrollable window, and
menu names as shown in Figure 1-1.

You can edit any lines of text you typed into a worksheet. When you press the Enter key,
SADE executes the current line as a command line. You can enter more than one command
line at a time by highlighting a series of lines, and then using the Enter key. Figure 2-1
provides an example of these two methods of command entry.

The top half of Figure 2-1 shows a worksheet with two lines of commands. The cursor is
positioned at the end of the first line. If you press the Enter key at this point, SADE
executes only the first line of commands.

The bottom half of Figure 2-1 shows another worksheet with the same two command lines,
but this time they are highlighted. You can highlight any portion of a SADE worksheet by
positioning the cursor and pressing the mouse button while you reposition the cursor at the
end of the selection. Once you have highlighted a line or lines, you can press the Enter key
and SADE executes all the highlighted command lines.

2-6 . Working Draft 3 Getting Started

MPW 3.0A2 Document List

MPW Overview

Projector .

SADE

Ed

Libraries

Linker Tools

Interfaces

MPW Shell
Commando
SetVersion

Choose

DumpFile
Wherels
Sort

Resource Tools

Parser Generator

MacsBug

e MPW 3.0A2 Release Notes

* Projector Apha 2 Release Notes

 Converting Your Projects

* Macintosh Programmers’s Workshop Project Management
System ERS “Projector”

e Alpha 2 Release Notes
* Macintosh SADE Reference Manual Alpha Draft #2

e A2 Libraries
e Pre-A2 Libraries

« Release Notes for MPW 3.0A2 - Linker and related tools

N
« Converting Between pre-3.0 5tr255’s and 3.0 Str255’s

¢ Interface Release Notes
¢ Pre-A2 Interfaces
* Macintosh Technical Notes: Setting and Restoring A5

« Macintosh Programmer’s Workshop 3.0 Shell ERS
« Commando’s Built-In Editor and other new features
* SetVersion manual page

» Choose manual page
e Changes to Choose

e DumpFile manual page
e Whereis manual page
 Sort manual page

e Rez & DeRez ERS
e Macintosh ResEdit Reference Manual Beta Draft

« MPW LL(1) Parse Table Generator ERS
* Macintosh MacsBug Reference APDA Final Draft

" & File Edit Find Mark Window SourceCmds ENn3 ?

S A Pt B AR
5 3

amazing:MPW:Debuggers:SADE:SADE Worksheet

go til DisplayText (2)
list break

= amazing:MPl:Debuggers:SADE:another worksheet g3

SADE T LR E o . R T =

Figure 2-1
SADE command lines

Basic editing functions are also available as menu commands. Editing within the SADE
worksheet is similar to the editing functions provided by the MPW Shell. You can select
and edit text with the usual Macintosh editing techniques, using menu commands to cut,
copy, and paste selected text. See Appendix C for a complete description of SADE editing
functions. The Edit menu commands are further described in Appendix A.

Most of the basic file-handling functions are also available as menu commands. You can
open a file by using the Open command, or by selecting its name within the worksheet and
choosing the Open Selection command (Command-D) from the File menu. The file-
handling commands are described in the following section,

When using SADE, you have a choice between using the File menu or the command line
for opening, closing, and saving text files. The commands in the File menu provide the

. usual Macintosh interface for creating a new file, opening an existing file, closing a file, or

saving a file.

The command-line interface gives you the ability to perform file operations from within a
SADE command file. You can create a new text file and then redirect SADE output into it,
from a command line. For instance, in the SADEStartup file, a new ﬁlc named register
display is created with the following command line:

open behind "register display"
The following section describes how to use the Open, Close, Save, and Redirect

commands from the SADE command line. Chapter 3 presents a complete and rigorous

Getting Started Working Draft 3 . 2-7

explanation of the rules for forming SADE commands. The file-handling commands are
simple enough that you will be able to use them even before you delve fully into SADE’s
complexities.

File commands

All of the SADE file commands work on the frontmost SADE window, unless you specify
otherwise. All filenames used within a command line must be strings in quotation marks.
For SADE’s purposes, a window and a file are synonymous. All the windows opened by
SADE function as text files (resource type TEXT).

When you use the Open command on a command line, its format is
open [source] [behind] filename

The optional source parameter indicates that the window to be opened is a read-only
source window, as opposed to a general-purpose text window. The optional behind
parameter causes the specified window to open behind the frontmost SADE window.
Without this parameter, the window opened will become the frontmost window.

You can use the Close command to close the file you specify, or to close all files. Its format
is

close [all | filename]

If you didn’t save the contents of the window; SADE will ask you through a confirmation
dialog whether it should save them.

The Save command will save the file you specify or, alternatively, will save all files. Its
format is '

save [all | filename]

The default file to be saved is the currently selected window. If you didn’t modify the file
since the last time you saved it, no save operation is necessary.

To redirect output from the currently selected window to another file, use the Redirect
command. When you use the command on the command line, its syntax is either

redirect [append] filename
or
redirect [pop][all]

If you used the append parameter, SADE appends the output from the commands entered
in the currently selected window to the end of the named file. If you specify all or pop
all, standard output is redirected to the SADE Worksheet. For more information on the
Redirect command, see the Redirect command page in Part I

2-8 Working Draft 3 Getting Started

One of SADE'’s most useful features is the Help command, which provides online help.
Entering Help with no parameters will display a summary of the help available, as shown
here:

help
SADE 1.0 Help Summaries

Help summaries are available for each of the SADE commands.

To see the list of commands enter "Help Commands". In addition,
brief descriptions of Variables, Constants, Expressions, built
in functions, and Shortcuts are also included.

To see Help summaries, Enter a command such as

Help Builtins # a list of builtin (predefined) variables
and functions

Help commandName # information about commandName

Help Commands # a list of commands

Help Expressions # summary of expressions

Help Patterns # summary of patterns (regular expressions)

Help Shortcuts # summary of SADE shortcuts

Help Variables # summary of variable references

Copyright Apple Computer, Inc. 1987-1988
All rights reserved.

You can get help information on particular topics by using the either Help command with
the name of a topic or a SADE command. For example, to get help on the List command,
you can enter

help list

List break [traps | addrs]
List trace [traps | addrs]
List process
List symbol

An introduction to debugging a progra

This section describes how to get SADE and your application program started. A sample
program named Eventlog is used to show you how a source window looks once you have
halted an executing program. Your application program may not behave in the same way as
the sample program; however, the sample program will give you an idea of some possible
uses for SADE.

The first step is to start SADE. For this example, assume that you have already launched
SADE from the Finder by double-clicking the SADE icon.

Getting Started Working Draft 3 2-9

Once you are in a SADE worksheet, you must identify the files needed for debugging, if
they aren’t in the current directory. The Directory, Target, and Sourcepath commands,
described in Chapter 4, identify the location of your application, symbol file, and source
files. The example shown in in Figure 2-2 assumes that these files are in the same directory
as SADE, or that this information was already supplied.

You can launch your application from the Finder, or you can use the Launch command. In
Figure 2-2, you can see the following command line in a SADE worksheet window:

launch ":Eventlog"

This command line starts the application program Eventlog. (The windows created by the
running application aren’t shown in this example: what you see in Figure 2-2 is a source
file.) The Launch command 1s described in Chapter 4. Remember that you must always use
quotation marks around filenames.

The next command line will cause Eventlog to stop executing on the second statement in the
DisplayText procedure:

go til DisplayText. (2)

Note that a partial pathname is used in this example, identifying only the procedure name.
In some cases, you’ll need to use the full pathname for the program, unit, and procedure
name. For this procedure, the full pathname is eventlog\TransDisplay.DisplayText.(2). See
Chapter 3 for more information on pathnames for program variable references.

SADE displays an alert box that tells you that the Go Til statement worked—an address
break occurred at DisplayText.(2). The Go Til command is described in Chapter 5.

The source program is displayed in the window at the top of Figure 2-2. The particular
source file shown is TransDisplay.c. This file-contains just one part of the Eventlog
program. In the figure, the instructions on which the program stopped executing are
indicated by an outlined box. When you move the cursor back into the source window, the
area within the box will be highlighted.

You can now use the mouse to move the cursor between the source window and the SADE
window. You can also use the SourceCmds menu to step through code, place source
breakpoints, display variable values, or show the location of the program counter. These
topics are all discussed in greater detail in Chapter 8.

This sample program will appear throughout the manual. Always keep in mind that it is
only a sample: each of your applications will present its own unique debugging challenges.

Now that you’ve seen how to begin a debugging session, you’re almost ready for the
material in the rest of this manual. There are just a few more things you need to know
about—how to quit SADE, and how to shutdown your system from SADE. These basic
operations are described below.

Quitting from SADE

2-10 Working Draft 3 . Gefting Started

(

To exit from the SADE application, use the Quit command. This command should not be
confused with the Stop and Abort commands, which operate only on the current break
action. The command format is simply:

quit

The Quit command causes the SADE itself to quit. Quit will display a dialog asking the user
if it’s all right to kill any suspended applications. MultiFinder is notified that SADE is no
longer there as a debugger, and control is passed to another process as determined by
MultiFinder.

Shutting down the system
To shut down the system from within SADE, use the Shutdown command. Its format is:
shutdown [restart]

The Shutdown command causes SADE to be terminated. The Shutdown Manager is called
to perform the actual system shutdown. If restart is specified, the Macintosh will be
restarted.

v N . . . <

€ File Edit find Mark Window SourceCmds ar

E—

| amazing:MPW:Debuggers:SADE.TransDisplay.c

DispioyText (theText, ien)

Per theText;

long len;

register short nlines; /* nuaber of |ines in TERec */

register short dispLines; /* rumber of |ines displaoyable in window */

register short toplLines; /* number of |ines currently scrolled off top */

register short scroiilines; /* nuaber of |ines to scroil up */

register short IHeight;

Rect r

GrafPtr s&v&PoM,'
register TEHandle dTE,

if CcurDispHind == nil)
eturn;

tPort (tsovePort) [
SetPort (curDisplind);
SyncGiobals (curDisplind);

""" @ omazing:MPW:Debuggers:SADE:SADE Worksheet

Figure 2-2
SADE Source Display

Geftting Started Working Draft 3 2-1

- Chapter 3

Debugger Symbols and
Command Language

Format
AbDOout Symbols. ..o 3-4
Debugger symbol seachpath........coooiiiiiiiiiiiiiiiiiii, 3-4
Order of Symbol LOOKUPcuiiiiiiiiiiiiiiiiiiiiiiineeeieans 3-5
NUMETIC CONSIANTS . .uttnttieiteeit ettt e e iee e e ateaaanaseananaaneaaneeaanns 3-5
036 8 ¢ -4 F TP 3-6
(613 11113 1 o P P PSP 3-7
Setting Case SenSitVItYcovueiiieiiiiiiitie i, 3-8
Variable references.......ccociiiiiiiiiiiiiiiiiiiiii i 3-9
Predefined debugger variablesooo 3-10
User-program variable references.........cccoivveeiiriiiiiiiiiiciiiiniinnnnn. 3-12
Program procedure and statement reference 3-13
Referencing objects outside the stack activation..................... 3-14
RegISter NAMESouiuiiiiiiiie i e 3-14
2590 {113 1)« 1 J T TP PP PP 3-15
OPerator PrECEAEMCE ... oueutniiniieireittieeteeateeenanaerenenenanaenenanennn 3-15
Expression operand base types.....cccccocciiiiiiiiiiiiiiniiiinienniineeenns 3-16
Evaluation Of eXPressions.....cccccccieiiiuuiiiiiiiiiiieieiuenenieneenineenennes 3-17
The ASSIgNMENt OPETAtOT ..uoutiitiitiiieieaatieaeenieerareanaeanneans 3-18
The POINter OPerator......coviuiiiiiieiieeieteeeeneieaneereenannes 3-19
The Address OPerator.......cc.cocveiiuiiieniiiinieieniiinneeeannnne. 3-19
The Trap operator...... h et a ettt e et te ettt ea e 3-19
TYPE COBTTION .o iuiiniiieiiiiiiiiie it e et eeeeeaereeeneeeneaeennanen 3-19
Rangescccoeviniiiiniinininn, PN eeieeneaes 3-20
Builtin | Functions........cooiiiiiiiiiiiiiiiiii e 3-21
AddrTOSOUrCe. ..ottt e 3-21
Concat................. e eeaes ettt 3-21
Confim.....c.oceveviiininnnnnnnn. eeereenees e eeteeeentaeeeeeaaeaane 3-22
Copy..cevuvenen eetereereenraeans Ce ettt tettea ettt reeeataaaeaaeaas 3-22
Find..............c.... eeneneas et eeeeteeeieeeae e tene et aaanan 3-22
Length...ocoiiiiiiiiiiiiiiiiiiiienee. ceereene e eetereeeee e 3-22
NaN e 3-23
Request...........cceninnn et teteeeteatieeeneetaeeeteaneaneenannans 3-23
SiZEOf ... 3-23
SourceToOAdAr. .c.iiiiii e 3-23
THDET .ot e 3-24
Debugger Symbois and Working Draft 2 3-1

Command Langucge Format

Undef....... ettt i, e, s 3-24

ALY Y OO s 3-24

SADE Command Language PPN 3-25
Command execution..........coevevvvennenns e, e 3-26
Debugger Output Filesoooveviiiiiiiiiinn, e e 3-26
Debugger error output........ e e R, e, 3-27
Symbol Display.........c.cocceviiiiinen.n. e e 3-27
Debugger Variables........... eeeeteeeereeeaaea PP S |
~ User-defined variable references........ reennnaen e teteteee i, 3-28
The Undefine Command.........ccccoiiiiieiiieeniiiiieineeeenninnn.. 3-29

Working Draft 2 Debugger Symbols and

Command Language Format

This chapter provides a reference for all types of debugger symbols and the expressions
formed using them. These symbols are used within the context of the SADE command
format, which is also introduced in this chapter. Although you may already have looked at
some of the SADE commands, and figured out for yourself how to use a symbol or
expression with a command, the background information in this chapter may answer some
of your questons about how SADE interprets debugger symbols. Topics covered in this
chapter include:

. How SADE determines if a symbol is a debugger, program, or system symbol, and
how it detemines the proper scope for each symbol.

. The use of numeric constants, such as decimal, hexadecimal, binary, or ﬂoating-
point numbers, within SADE expressions.

. The rules for using string constants within SADE expressions. These guidelines tell
you what characters can be used in strings, and what the length of a string can be in
a particular context.

. How to use the various types of identifiers, such as register names, predefined

debugger variables, and program variables. The guidelines for working with
identifiers include the distinction between a fully-qualified identifier and a partially-
qualified indentifier.

. The several classes of variable references—system, debugger, and user-program
variables. These variable types may be used with selector operators and escape
symbols to ensure that SADE can access each type properly.

. The guidelines for using SADE expressions, including the rules for operator
precedence, operand base types, expression evaluation, and type coercion.

. How SADE builtin functons such as AddrToSource and SourceToAddr can be
used within expressions.

This chapter also explains how the SADE command interpreter processes SADE
commands. The SADE command format sections build on the material about symbols and
expressions. Other topics relating to the command language include:

. Debugger output files, which display the result of SADE commands. SADE uses
one or more text files for standard output, and provides a way to redirect command
output from the default output file.

. Controlling symbol display using the Symbol command. By default, all debugger
output is displayed symbolically whenever possible.

. A descripdon of how user-defined variables may be created in SADE. Debugger
variables are useful for capturing values generated during a debugging session,
evaluating expressions, and controlling debugger execution.

Debugger Symbols and Working Draft 2 3-3
Command Language fFormat

. Case sensitivity during symbol lookup. By default, case sensitivity is tumed on
when SADE performs symbol lookup.

As you read this chapter, keep in mind the distinction between those symbols “owned” by
the debugger, and those “owned” by the program being debugged. A debugger object is
either a command name, a predefined debugger variable, or a user-defined variable. These
debugger objects are used to control debugger execution, or, in the case of user-defined
variables, to save values during the debugging session. A program symbol refers to an
address or 2n offset within the program being debugged: this includes procedure and
function names as well as references to program variables. These program symbols refer to
data that is used or altered by an executing program. Program symbols may be used to
examine and modify program memory from within the debugger.

A symbol is a character or a combination of characters used to represent one of three things:
an identifier, a numeric constant, or a string. These basic building blocks can be used to
create all the various kinds of symbols known to the debugger. The SADE command
language contains a number of helpful clues that make it possible to correctly identify
symbols. These clues include the symbol search path, which is described in the following
section.

A symbolic debugger is able to interpret a symbol within a program in much the same way
that the Finder interprets an HFS pathname. The debugger first determines the proper scope
for the symbol; that is, it determines where the symbol has meaning within the program.
The debugger must then find the symbol, whether it represents a pathname, a program
variable, or a register name. Some of the methods SADE uses to find symbols include the
escape characters described in the section “Variable References”, and the procedure
qualifiers described in the section “Program Variable References”.

Debugger symbol seach path

The concept of scope, which is important in programming languages, is just as important
within a debugging environment. A symbol is only meaningful within the scope for which
it is defined. For instance, local variable references are only meaningful within the
procedure or function where they are defined. In addition, a symbol can’t be interpreted by
the debugger until a memory location has been allocated for it. This means that when a
program is interrupted before a procedure containing symbol definitions has a chance to
‘execute, the symbols within that procedure won’t be usable by the debugger.

Within a command line, the first symbol found is evaluted to see if it is among the
command names recognized by SADE. In all other cases, the search path for a debugger
symbol can be summarized as shown below. If you don’t explicitly state where to look for
a variable reference, SADE tries to find the variable first as a debugger symbol, then as a
user-program symbol, and finally as a system symbol.

3-4 Working Draft 2 Debugger Symbols and
Command Language Format

Order of Symbol Lookup
1. Isitadebugger symbol?
a. Is it a user-defined debugger variable parameter?
b. Is it a local variable in a debugger proc?
c.Isita builtin SADE variable?
d. Is it a global user-defined debugger variable?

2. Isita program symbol? The program symbols are provided by compiler output,
and are made accessibie to SADE by using the Linker with the -SYM option.

Once SADE has determined that a symbol is a program symbol, it uses the current
name scope (CNS) information from within the program to ascertain:

a. Is it alocal program symbol?
b. Is it a global program symbol?
3. Isita system symbol, recognizable within the Macintosh Toolbox?
a. Isit a system global variable?
b. Is it a a toolbox routine name?

c. Is it a register name?

This section describes how numeric constants behave within SADE. These constants may
take the form of decimal, hexadecimal, binary, and floating-point numbers. They are
commonly used when specifying an integer value, an address location, or a range
expression. For more information on using numeric constants within expressions, see the
section titled “Expressions”.

The following paragraphs define the syntax for using numeric constants within SADE. The
examples in this section show how each of the numeric types can be used.

Decimal Decimal numbers are formed as a string of decimal digits (0-9). Values are
treated as 32-bit (signed long word) quantities. Decimal values that exceed
32-bits are treated as floating point values.

Examples:
123 5 32
65535 123456 32768
Debugger Symbols and Working Draft 2 3-5

Command Language Format

Hexadecimal Hexadecimal numbers are specified by a dollar sign ($) followed by a
sequence of hexadecimal digits (0-9, A-F or a-f). A period may be used to N
group components of a hexadecimal number. Hexadecimal numbers are RN
normally treated as 32-bit (left-padded with zeros if necessary) quanttes.

If more than eight digits are specified, the hexadecimal number is

considered as a string (a zero will be padded on the righr if there are an odd

number of digits in the string). In effect, when the supplied hexadecimal

value is too long, SADE performs a type coercion to a string.

Examples:
$123 $1A3c $FFFF
$00123 $01a3C $OFFFF
$1234.5678.9A.BC.DE (equivalent to $123456789ABCDE)
$1234567890abcDEF (a string)
Binary Binary numbers are specified by a percent sign (%) followed by a sequence

of binary digits (0-1). A period may be used to group components of a
binary number. Binary numbers are treated as 32-bit (left-padded with
zeros if necessary) quantities. If more than 32 digits are specified, the
binary number is considered as a string (up to 7 zeros will be padded on the
right to fill in the last byte in the string). In effect, when the supplied binary
value is too long, SADE performs a type coercion to a string.

Examples:
%1010 %101 %011101
%1010.0011.1100.1111

Floating-point Floating-point numbers are specified with a decimal point or exponent as L
described in the Apple Numerics Manual . Within SADE, floating-point
numbers are represented as SANE 10-byte extended values.

Examples:
123. 123.4E-12 .123 NaN
Nan() NAN(12) INF

Both the hexadecimal and binary numeric constants may perform a type coercion to a string
if the supplied value is larger than 32 bits. The value of a string created in this manner will
depend on the context in which the resulting constant will be used. The string could sdll be
evaluated, but each of the positions in the string would have an ASCII value, with the total
value of the string being equal to the concatenated values of all the string elements.

Strings
Many of the SADE commands take a string as a parameter. For instance, filenames are
always strings. Whenever you see that a command takes a name, filename, program name

or a str expression for an argument, the argument that you supply must follow the rules for
strings. These rules are described in this section.

3-6 Working Draft 2 Debugger Symbols and
Command Language Format

A string is formally defined as a hexadecimal number consisting of more than 8 digits, a
binary number of more than 32 digits, or a sequence of one or more ASCII characters
(including blanks) enclosed in single (') or double (") quotation marks. You can also use
quotation marks as part of a string. When you do this, two quotation marks (with the same
value as the delimiting quotation marks) must be specified in the string for each quotation
mark (with the same value). Strings are limited to a length of 254 characters.

Escaped characters may be specified in double quoted strings. These are represented by “\”
or “0” immediately followed by one to three decimal digits, or a one or two-digit
hexadecimal number (\$xx), or one of the following single character reserved to represent
certain non-graphic characters: \n (newline, \$OD), \t (tab, \$09), and \f (formfeed, \$0C).
Any other character immediately following the backslash represents just that character, for
example, \ (backslash), ' (single quote), etc. You can also delineate the string with single
quotes and use the double quotes as literals, or vice versa. Note this substitution does not
occur when single quotes are used as delimiters.

Some examples of strings are:

'Hello' 'don''t' "hello\D" "" (one quote)
"Heuo" "don't" "don""t" " Hitnn
'hello\0’ (escape characters not processed)

Based on the context in which you use a string, there are restrictions on how long a string
can be and how it is treated. Strings fall into two categories:

A string constant used in an arithmetic expression (described later) which is to be
used as a numeric value (for example, when combined with arithmetic operators) is
limited to 4 characters. Such strings are treated as right-justified 32-bit signed
values. Each of the characters in such a string is assigned its ASCII value, and the
overall value of the string represents the concatenation of values of the string
elements. For instance, the string “my” has the value (6D + 79).

String (constants) used in logical cxpresswns (in relations) and strmgs used as
search patterns may be up to 254 characters in length.

When executing a file, each command line is limited to a maximum of 254
characters. A maximum length string of 256 characters is too long when executed
from a file, because the quotation marks used as delimiters are counted as part of

the string length.

Identifiers

This section describes the various kinds of identifiers that can be used in SADE. These
include variable references, predefined debugger variables, and register names. Identifiers
are used by SADE as keywords in commands, labels, registers, and to reference program
variables. :

Debugger Symbols and Working Draft 2 3-7
Command Language Format

The first character of an identifier must be an uppercase or lowercase letter (A-Z, a-z), an
underscore (_), or a percent sign (%). Subsequent characters can be letters, digits (0-9),
underscores (_), dollar signs ($), number signs (#), percent signs (%), or “at” symbols
(@). Other characters may be made a part of an identifier by quoting them with a
preceeding “9”. A name may be any length, but only the first 63 characters are significant.

One thing to keep in mind when working with identifiers is the difference between qualified
identifiers and unqualified identifers. A fully-qualified identifer contains all information
needed for its use; SADE will not have to use the symbol search process, since the scope is
completely defined in the identifer name. A partially-qualified identifier contains only part
of the location information, and SADE deduces the rest from the current state of the
debugging session. An unqualified identifier provides no information about its scope, so
SADE assumes its proper place is in the first place it is found when searching.

To prevent ambiguity, you can use the following operators with identifiers:
Aidentifier system symbol
“identifier program symbol

Use of these operators will keep SADE from having to go through the symbol search
process. These operators are also described in the section titled “Variable References”,
since they are most useful for that class of identfiers.

Within the realm of identifiers, certain debugger symbols are predefined: these include

- command names and predefined debugger variables. Other symbols are created during the
debugging session, subject to the rules described within this chapter. Command keywords
are listed in Chapter 1. Register names, predefined debugger variables, and variable
references are described in the sections below.

Seffing Case Sensifivity

Identifiers corresponding to debugger objects are case-insensitive, whereas identifiers
corresponding to program symbols may or may not be case-sensitive, depending on the
conventions of the program source language. Each debugger window is either case
sensitive or case insensitive. Source display windows have the same behavior as the
source language displayed, using the filename conventions of MPW to determine the
source language. The window’s setting can be changed by using the Case command.

Setting case sensitivity in SADE is only significant when SADE is looking for symbols.
The Case command works like a toggle switch to turn case sensitivity for symbol lookup
on or off. By default, the case sensitivity for symbol lookup is turned on. This means that
when SADE is presented with a symbol such as “ABC?”, it will use the lookup rules to find
the first occurence of the ASCII symbol “ABC” in the largest scope currently in effect for
the debugging session. If a lower-case symbol such as “abc” is found before “ABC”,
SADE will still continue looking for “ABC”.

The format for the Case command is:

case { on i off }

3-8 Working Draft 2 Debugger Symbols and
Command Language Format

In most cases, the default situation (case sensitivity is on), will provide the correct symbol
lookup. If case sensidvity is turned off, the symbol lookup will halt at the first occurence of
a selected string, whether the characters are upper or lower case. For instance, when
searching for the symbol “ABC”, SADE will look for “ABC” in the largest current scope;
however, if it finds an “abc” first, the search will halt.

Variable references

This section provides an overview of the different types of variable references. Simple and
structured variable reference types may be used within SADE using the guidelines
explained below. In addition, this section tells you how SADE distinguishes between
system, debugger, and system variables. Detailed information on predefined debugger
variable, user-program variables, and register names is provided in the sections that follow.

A simple variable reference consists of only a single identifier. This would be a
variable from within the program, such as “myVar”. These variables may be of any type
supported in the program being debugged.

A structured variable reference allows a simple variable identifier to be followed by
the following selector operators:

.name record or structure field selection
A pointer dereference
...Jor[n]... array access

This allows SADE to use the some of the structured types common in high-level
programming languages. For instance, you could use the array element “myArrayVar.[1]”
as a variable reference within SADE.

The selector operators are allowed only if the type of the variable to which they are applied
supports the specified selection operation. The result of such a structured variable
reference is, of course, itself a variable reference to which further structure selector
operators can be applied (if it refers to a variable of an appropriate structured type). This
means you can reference nested structured types.

Variable references may be made to three different classes of variables—system, debugger
or user-program variables. Each of these types are further described as follows:

. System variables refer to objects in the Macintosh ToolBox. These include
register names, system global variables, and toolbox routine names. All the global
variables and toolbox routines listed in /nside Macintosh can be accessed from
within SADE. Register names recognized by SADE are listed in a following
section.

. Debugger variables refer to either predefined debugger objects or user-defined
debugger objects (variables defined by the user in the debugging session). The
predefined debugger variables are listed below, while the user-defined variables are
described in the next chapter.

Debugger Symbois and Working Draft 2 3-9
Command Languoge Format

. User-program variables refer to objects in the program being debugged. This
type of variable is described in one of the sections which follow.

If you don’t explicitly state where to look for a variable reference, SADE tries to find the
variable first as a debugger symbol, then as a user-program symbol, and finally as a system
symbol, as described in the section “Debugger Symbol Search Path”. Since each of the
three classes of variables represents a namespace created independently of the others, name
collisions between the different classes of variables are possible. A variable in one
namespace.may “mask out” a variable with the same name in a namespace which is
searched later.

To allow access to variables which might otherwise be “masked out”, SADE supports two
special characters or operators which can be used to force the class of a variable identfier to
be either a system or user-program variable:

. the system symbol escape character (“A”) may be prefixed to an identifier to
indicate that it refers to a system variable. This allows a faster lookup than the
normal symbol search process.

. the user-program symbol escape character (“*”’, backquote) may be
prefixed to an identifier to indicate that it is a user-program variable

For example, assuming that there is a program symbol whose name is “pc” just like the
system symbol representing the program counter, “Apc” would refer to the debugger
symbol and “*pc” or “pc”’would refer to the program symbol.

Simple and structured variable references, as described above, are sufficient to access v
debugger and system variables. Global debugger variables and system variables exist in fTat
namespaces; that is, there are no hierarchical levels for these variables. User-program
variables, on the other hand, exist in a hierarchical scheme that includes a program name,
unit names, and procedure names. The methods for accessing user-program variable
references are described later in this chapter.

Predefined debugger variables

The predefined debugger variables used within SADE establish a set of parameters for each
debugging session. These debugging parameters influence how the debugger interprets a
command and how it displays the results of command execution. At startup, SADE sets a
default for each debugging parameter. The default values may be displayed by entering the
variable name.

Many of the predefined debugger variables are read-only variables; that is, you can’t
change the value contained in the variable. The Arg and NArgs variables are used when
supplying parameters to the current debugger proc. If you need more information on how
to write a debugger proc, see Chapter 8, or the Proc command page in Part II.

The predefined debugger variables are described below with their default values:

Arg[n] is the nth parameter of the current debugger proc. This is like an array
variable for the debugger proc.

3-10 Working Draft 2 Debugger Symbols and
Command Language Format

s

ActiveWindow

Date

DisAsmFormat

Exception

is a string containing the name of the topmost (i.e., active) SADE
window. This is a read-only variable; it cannot be assigned to.

. is a string containing the the current date in the form “dd-mm-yy”.

This is a read-only variable; it cannot be assigned to.

is a string which contains letter “flags” that control the formatting of
the Disasm command output. Each line of the disassembly output is
divided into four fields, as described by the Disasm command.

The order and presence of the four fields are controlled by the “flag”
letters in the DisasmFormat builtin variable. The initial value for
DisAsmFormat is “OAXC”. This means that the initial order of the
fields shown during disassembly is offset, address, hex
representation, and finally the assembly code. The following flags are
allowed:

o display offset field in decimal.

display offset field in hexadecimal

display the address

display the hex code representation

truncate the assembly code if necessary to a uniform
length

show entire assembly code no matter how long
prefix offset and/or address with a “$” (allowed only
before O, a, and A flags)

VVvVyvVv

(0
a A
x, X

v

o
\"

C
$

vV Vv

The flags may be specified in any order, and blanks and tabs are
ignored in the string. A flag specifying the presence of a field may not
be repeated. Whenever the DisAsmFormat variable is used, at least
one of the two flags “x”/X” or “c”/“C” must be specified. If the
assembly code field is specified as the last field, then *“c” has the same
meaning as “C”—the entire assembly code field is displayed. If the
assembly code field is to be displayed before one of the other fields,
then you have the option of either truncating the assembly field to a
uniform length (““c””) or showing it completely (“C”).

The DisAsmFormat variable may also contain a “$” flag in front of the
“O”, “a”, or “A” flags to generate a “$” character in front of the offset
and/or address field values.

is the exception number of the most recently encountered exception.
This is a read-only variable; it cannot be assigned to. Some of its
values (***more to come***) include:

2 Address Error
3 Bus Error

8 Instruction trace
9 Trap Break

Debugger Symbols and Working Draft 2 3-N
Command Language Format

13 Program interrupted at
14 Address Break

Inf is always equal to a SANE infinity. This is a read-only variable; it
cannot be assigned to.

NArgs is the number of actual parameters specified for the current debugger
proc. This is undefined when no debugger proc is in use.

Processld” is the process identifier for the current target program. It marks the
process that was suspended when the debugger was entered. When an
exception occurs and SADE is entered, this variable is set to the
process identifier of the process in which the error occured. It also
changes when the Target command is used. This is a read-only
variable; it cannot be assigned to.

WorksheetWindow is a string with the name of the SADE worksheet window This is
a read-only variable; it cannot be assigned to.

User-program variable references

Each user-program variable may be identified by its place in a hierarchy that includes a
program name, unit names, and procedure names. This hierarchical identification scheme is
described in this section. Variable references, like identifiers, may be fully or partially
qualified, depending on how much information is supplied in the variable name.

This section also describes the namespace for a program symbol. This namespace
represents the result of various separate compilations or units linked together, and thus
requires a means of identfying the program, unit and procedure where a variable may be
found. The methods for using procedure and statement references, and for referencing
variables outside the current procedure or function, are also described in this section.

A fully-qualified variable reference is one which identifies a variable with program
name, unit and, if necessary, procedure qualification, as below:

| \ unit [. procedure 1* . variable reference
These components can be interpreted as follows:

backslash () The backslash is used as the program-level or unit qualifier character, and
should be used preceding the unit name.

[...1* The [...]* construct indicates that zero or more levels of procedure name
qualification may be used: zero when accessing unit level variables, one
when accessing first level procedures, and more when accessing nested
procedures. (This is possible in Pascal but not in C).

unit When referring to the main program’s variables the unit should be the
program name (as opposed to the program file name). The unit names
follow the same rules as do variable identifiers.

3-12 Working Draft 2 Debugger Symbols and
Command Language Format

procedure A procedure reference is used to refer to the starting code location of
procedures. Among other things, a procedure reference may be used as a
location for setting breakpoints. A procedure reference may be structured in
much the same way as a variable reference, and may be fully-qualified or
partly-qualified, as described below.

dot (.) The conventional dot is used as the unit and procedure level qualification
character.

variable reference This can be constructed according to the rules for simple and
structured variable references. (See the section “Variable References”).

To correctly specify a procedure starting at the unit level, you must use the backslash
preceding the unit name. Otherwise, SADE can’t determine if the name refers to a unit or a
procedure. :

A program name surrounded by quotation marks, or a unit name preceded by a backslash,
is interpreted at the global program level. Since program names may contain invalid
identifier characters, such as spaces, they should be specified as a double-quoted string.
Special characters may be escaped with the character escape symbol (9).

A procedure reference is assumed to be local; if it can’t be identified at the local level,
SADE checks the global level. Any variable reference in a fully-qualified variable reference
is interpreted at the local procedure level, unless explicitly specified otherwise. Fully-
qualified variable references are similar to directory-relative absolute pathnames under
HFS; the debugger doesn’t have to do any extra work to find these symbols..

SADE also allows partially-qualified variable references to facilitate access to
program symbols.This allows some or perhaps all of the initial qualification of a fully-
qualified variable reference to be omitted, if it can be deduced from the current state of the
debugging session. More specifically, if SADE is currently suspended in the middle of a
program execution at some breakpoint, that point (the current Program Counter) defines a
current name scope (referred to as CNS below), since the breakpoint identifies a
program, unit, and perhaps procedure from which to begin looking up variable references.

If a partally-qualified reference omits only the program name and begins with the program
level qualifier (the backslash), SADE treats the following identifier as the unit name,
followed by all of the intervening qualification up to the variable name. This implies a
straightforward lookup following the unit-procedure-variable hierarchy.

If a partially-qualified reference omits both the program name and the backslash (the
program level qualifier), then SADE has to resolve a partial reference whose first
component could be a unit, procedure, or variable name, depending on how much
qualification was omitted. This requires a lookup relative to the CNS as defined by the
current breakpoint. The first component of the variable reference (the leftrost identifier)
will be looked up within the symbol table for the procedure or unit corresponding to the
CNS. If the first component is found, then the remainder of the reference components are
checked to see if they identify a valid reference path to some variable. If so, the variable
reference has been resolved. If not, the initial match of the first component was invalid and
the search continues. If the first component is not found in the symbol table for current
procedure, the containing procedure’s or unit’s (if there is one) symbol table is searched.

Debugger Symbois and Working Draft 2 3-13
Command Language Format

If no match is found after reaching the unit level, the lookup in the user-program symbol
table fails.

Program procedure and statement reference

A procedure reference can be used to refer to the starting code location of procedures.
Procedure references may be used, for instance, in the setting of breakpoints. Procedure
references follow the form of the variable references as described above, but omit the final
variable qualification. They consist of a program name, unit name and one or more levels
of procedure names (with some amount of the leading qualification omitted for partially
qualified references).

Source program statements are identified by indices relative to a procedure (or function).
These indices are identified by the compiler and are associated with locations in the text in
source windows. A statement reference consists of a procedure reference followed by
a dot delimiter followed by a reference of the form *“(expr)”, which refers to a particular
statement index relative to the specified procedure. If the procedure reference is omitted
and the “(expr)” form is used by itself, it is taken to refer to the current procedure (defined
by the CNS as the point where execution has been suspended).

Referencing objects outside the stack activation

The notation for referencing program objects described in the previous sections is extended
slightly to allow access to objects in other than the current stack activaton—the current
procedure or function call. An array-like specification (consisting of an expression in
square brackets) may be inserted between the last procedure name and the beginning of a
variable reference to indicate the n’th activation of that procedure from the top of the stack.

Register names

Register names are systemn symbols, and are not built into the SADE application. SADE
uses these names to display the data your program places into the registers provided by the
68000 family of microprocessors. When you disassemble instructions, you can see what
registers were used by a particular instruction. To use these register names from SADE,
you should use the “A” prefix to distinguish them from program symbols. For example, to
disassemble ten instructions starting at the program counter, use the PC register name as
shown below:

disasm Apc 10
The Disasm command is described in Chapter 5.

A list of the register names usable from SADE appears below:

DO0..D7 Data registers
AQ.. A7 Address registers
CCR Condition code register
SR Status register
USP User stack pointer
3-14 Working Draft 2 Debugger Symbols and

Command Language Format

MSP Master stack pointer

SP Stack Pointer

SSP System stack pointer

SFC Source function code register

DFC Destination function code register

CACR Cache control register

VBR Vector base register

CAAR Cache address register

ISP Interrupt stack pointer

PC . Program counter

FPCR Floating-point control register

FPSR Floating-point status register

FPIAR Floating-point instruction address register
FPO..FP7 Floating-point data registers

TTO..TT1 MC68030 transparent translation registers

This section describes the guidelines for using expressions in SADE. The detailed rules for
operator precedence, expression operand base types, expression evaluation, type coercion,
and address ranges are all contained in subsections. Builtin functions may also be used as
expression elements; these are described in a following section.

Expressions are composed of either a single term or an arithmetic combination of terms. A
term is either a named symbol, a constant, or a function call. Terms are combined by
arithmetic, logical, shift, and relational operators. String terms may only be combined with
relational operators.

‘Operator precedence

This section describes the operators used to form expressions within SADE. These
operators are listed from highest precedence to lowest. Groupings within the table show
operators of the same precedence; for instance, multiplication, division, and remainder all
have the same precedence.

Highest

Precedence
() Grouping by parentheses
@ Address of
t Trap Expression
A Pointer to

Qualifier
o Bitwise ones complement
- NOT ! Logical not
Debugger Symbols and Working Draft 2 3-15

Command Language Format

- Unary negation

Muldplication y

/ DIV + Division
) MOD Remainder
+ Addition
- Subtraction

PSS Shift right
<< Shift left
= == Equal
<> = Not equal
< Less than
> Greater than
<= £ Less than or equal
>= 2 Greater than or equal
& AND Bitwise and
&& Logical and
I OR Bitwise or
I Logical or
XOR EOR Bitwise exclusive or
= Size compatible assignment \ P
<- Arbitrary assignment

Range
Lowest
Precedence

The rules for coding expressions are as follows:
Only the +, -, ~, and NOT (=, !) operators are allowed at the start of an expression.
An expression may not contain two terms Or operators in succession.
Subexpressions are designated by enclosing the subexpression in parentheses.
Parentheses may be nested to a maximum depth of 20.
An expression may not consist of more than 20 terms.

The keyword operators DIV, MOD, AND, OR, XOR, and NOT must be separated
from identifier operands by at least one space.

The range operator (..) may only appear once in an expression.

3-16 Working Draft 2 Debugger Symbols and
Command Language Format

Expression operand base fypes

This secton describes the types of constants and variable references that may be used
within SADE expressions. Operands (constants and variable references) used in
expressions may only be combined with operators if they are one of the base types allowed
by the debugger expressions. These base types are:

Boolean

Unsign;iByte

Byte

CChar

PChar, PascalChar
UnsignedWord, UnsignedShort
Word, Short, Integer
UnsignedLong, UnsignedInt

Long, Int, Longlnt
Single, Float, Real
Double

Extended
Extended12

Comp(utational]
CString
PString, String, Str255

AslsString

A one byte Pascal boolean.

A byte with the value range 0 to 255.

A byte with the value range -128 to 127.

A byte with the value range 0 to 255.

A word with the range 0 to 255 (Pascal Char)
A word in the range 0 to 65,535.

A word in the range -32,768 to 32,767.

A long word in the range 0 to
4,294,967,295.

A long word in the range -2,147,483,648 to
2,147.483,647.

A IEEE floating point single-precision value
(4 bytes).

A IEEE floating point double-precision value
(8 bytes).

A IEEE floating point extended-precision
value (10 bytes).

A IEEE floating point extended-precision
value (12 bytes).

A SANE signed 8-byte integer.
Up to 255 characters delimited by null byte.

A length byte followed by up to 255
characters.

A string with no length byte and no
delimiting null byte.

The rules'for—v how these types are evaluated within expressions are discussed in the next:

section. - -

Debugger Symbols and
Command Language Format

Working Draft 2

Evaluafion of expressions

This section describes how a single-term or multi-term expression is evaluated by SADE. A
single-term expression is represented by a single symbol, and takes on the value
represented by the symbol (the value associated with the name, the constant, or string). If
a symbol represents an array or record structure, the “value” of the expression is the entire
array or record structure.

A multi-term expression consists of two or more operands. Multi-term expressions are
reduced to a single value according to the following set of rules:

°

3-18

Each signed integer operand is converted to a 32-bit signed value.
Each unsigned integer operand is converted to a 32-bit unsigned value.

Each floating point and computational value is converted to a 10-byte extended
value.

When a binary operator combines two integer operands, both operands are treated
as unsigned if either is unsxgned The result is then treated as a 32-bit unsigned
value.

If both integer operands combined with a binary operator are signed, then the
result is a signed 32-bit value.

If either operand is a floating point value, then the other operand is converted to
floating point extended and the result is extended.

Integer division by zero yields zero as the result. Floating point division by zero
yields infinity, except for zero divided by zero, which yields a NaN.

Operations are performed from left to right, following the precedence indicated in
the operator table above. Assignment operators are performed right to left.

A parenthesxzed subexpressxon isreducedtoa smglc value. The resultmg value is
then used in computing the final value of the expression.

When parenthesized subexpressions are nested, the innermost subexpression is
evaluated first.

Integer division always yields an integer result; any fractional portion of the result
is dropped.

The logical operators NOT (=, !), = (==), <> (&, !=), >, <, <= (S), >= (2), &&,
Il evaluate to the value 1 (true), and the value O (false). Comparison is algebraic,
except when two character strings are compared.

The shifting operators << and >> shift the left operand by the number of bits
specified in the right operand. Zeros are shifted into vacated bit positions. Bits
shifted out are lost.

Working Draft 2 Debugger Symbols and
Command Language Format

g

+ The assignment (:=, <-), pointer (%), trap (¥), and address (@) operators are special
operators with meanings unique to SADE. They are discussed separately in the
following sections.

The Assignment operator -

The assignment operator in SADE is treated as a binary operator. As such it may be
embedded in a more complex expression to capture intermediate results. The assignment
operator is the only operator which evaluates right to left. Thus an expression of the form,

a:=b:=c:=d
is evaluated as if it had been written,
a:=(b:=(:=d))

The left operand of an assignment must be a variable reference. For a integer reference, the
right operand is saved in the specified variable. For a floating point assignment, the right
operand is converted to extended before the assignment if necessary. For string, record, or
array assignments, the left variable must be compatible with the right operand, and no other
operators may be combined with the assignment.

Compatibility between operands in SADE is defined as it is in Pascal for real and integer.
For structured data, compatible operands are defined as having the same aggregate size. A
second operator is provided for arbitrary assignment, namely <-. Using this assignment
operator, you may assign any tupe to any other type, regardless of size. For arbitrary
assignments, the size of the operand on the right hand side of the operator is used to
determine the number of bytes to move. This operator may be used, for example, to patch
memory. It may not be used to assign to debugger variables.

The Pointer operator

When the pointer symbol is used as an operator, it follows an expression term. When the
term is a variable reference(such as x*), the pointer operator indicates an indirect reference
through the variable, and the type of the term is determined by the type associated with the
pointer variable reference. When the term is a (sub)expression, the pointer operator
indicates an indirect reference through the address represented by that (sub)expression.
The type in this case is assumed to be a pointer to a longint. Type coercion (described
below) may be used to treat the reference as some other type. Note that (sub)expressions
used in conjunction with pointer operators frequently use the address operator. For
example, one may write WindowPtr((@X+Next+4)?).

The Address operator

A pointer to a variable (an address) can be generated with the address operator (@). The
address operator is a unary operator taking a variable reference as the operand. The type of
the value is considered as a pointer to the type of the variable.

The Trap operator

Debugger Symbols and v Working Draft 2 3-19
Command Language Format

An expression whose value is a trap can be created using the trap operator (+). The trap
operator is a unary operator taking an expression element or a parenthesized expression as
the operand. Such trap expressions are used with breakpointing commands to distinguish
trap breakpoints from normal address breakpoints.

Type coercion

Names of known types may be used in a function-like notation (as in Pascal) to perform
type coercions on expressions. The type of the object being coerced will be changed as
long as there is a reasonable way to interpret and perform the coercion. The syntax is as
follows:

ype (expr)

The names of types may be either simple type names, or may be qualified as described in
the section on program variable references. This allows SADE to distinguish type names
defined in more than one scope.

Additionally, the type specification may be preceeded by the pointer operator ("A") to
indicate coercion to a pointer to the specified type. This is an extension of the Pascal
notation which allows type declarations such as “Ainteger”.

The following examples illustrate how the type coercion mechanism works in conjunction
with indirect memory references.

comp(10) converts the number 10 to the comp (computational) type
comp(10~) converts the long at location 10 to the comp type
Acomp(10) identfies 10 as a pointer to a comp

Acomp(10)* returns the comp at location 10

Ranges

Ranges of addresses or values can be expressed by a pair of expressions (the low and high
ends of the range) separated by the range operator (“..”, i.e., two dots). The syntax is as
follows:

expr .. expr

Neither expression used to designate a range can be a floating point value. If one end of
the range expression isa rap number, both must be. Trap ranges are expressed in a similar
fashion using trap expressions on both sides of the range operator for example,
“+$A000..FSAFFF”.

3-20 Working Draft 2 Debugger Symbols and
Command Language Format

e

Builfin Funchions

Builtn SADE functions provide a wide range of useful services. These functions can be
used to return strings or numeric values, address information, or a TickCount value. The
AddrToSource and SourceToAddr functions provide support for source-level debugging,
while the Confirm and Request functions provide a way to communicate with user dialog
boxes.

Each of these builtin functions may be used as part of an expression. For instance, you can
use the Concat function, which returns a string expression, in any SADE command that
takes a string as an argument. The builtin functions, their arguments, and the values they
return, are described individually in the sections which follow.

AddrToSource

The AddrToSource functon is used to display a read-only source window. If you have

" examined the contents of the initial SADEStartup file on the release disk, you’ll see the

AddrToSource function used within the SetSourceDisplay debugger proc. To use the
AddrToSource function, supply an address expression and an optional boolean value as

arguments:
AddrToSource (addr-expr{, bool-expr])

The function returns a boolean value, which will be a “1” (true) or a “0” (false), to indicate
whether or not it was able to display the source window (a source file) corresponding to a
particular code address. If the source file is displayed, the program statement
corresponding to that address will be highlighted in the source window.

The optional boolean expression controls whether the window is brought up as the topmost
(active) window. The default (when the boolean is false or omitted) is for the source
window to be displayed behind the topmost window (from which the command with the
AddrToSource function was likely to have been issued). Remember that the source
windows brought up by the AddrToSource function are read-only windows. These
windows have a “no-write” icon (a pencil with a slash through it) in the lower left corner of
the window.

Concat

The Concat function is used to concatenate a series of string expressions. To use this
function, supply the string expressions as arguments:

Concat ([string-expr,...})

The function returns a string whose value is the concatenation of the argument strings. If
no arguments are specified, a null string is returned.

Debugger Symbols and Working Draft 2 v 3-21
Command Language Format

Confirm

The Confirm function is used to convey. a user’s response to the contents of a confirmation
dialog box. The first argument string passed to the Confirm function will be displayed in
the dialog box. To use the Confirm function, supply the display string and an optional
boolean expression as follows:

Confirm (string-expr [, bool-expr])

The function returns a numeric value indicating the user’s response to a confirmation dialog
box. If the optional second boolean argument is omitted or equal to zero, an OK/Cancel
dialog is presented. A response of “1” (true) is returned when the user selects the OK
button, and a “0” (false) is returned is the user selects Cancel. If the boolean argument is
non-zero, a Yes/No/Cancel dialog is presented, and “1” (yes), “0” (No), and “~1” (Cancel)
are returned.

Copy

The Copy function can be used to copy all or a portion of a string. To use the Copy
function, supply the arguments described below:

Copy (string-expr, expr>, expr)

The function returns the substring of the first string argument, starting at the character
specified by the second argument. The length of the substring is supplied by the third
argument or by the end of the string.

Find

The Find function looks for a target pattern, and returns either an address, a number value,
or a zero, depending on what arguments are used. To use the Find function, supply the
arguments as described below:

Find (zarger-expr, addr-expr, length-expr [, count-expr])

If the counr argument is omitted, Find returns the address of the target pattern in the range
specified by the address and length expressions. It will return zero if the target pattern vas
not found. If the count is present and equal to zero, Find returns the number of occurences
of the target pattern in the specified range. If the count is non-zero, Find returns the
address of the count’th occurence of the pattern in the range.

Length

The Length function simply tells you the length of a string. To use it, supply the string as
an argument:

Length (string-expr)

The function returns an numeric value indicating the length of the string you specified.

3-22 Working Draft 2 Debugger Symbols and
. Command Language Format

NaN

The NaN function is used to convert a specified value into a SANE NaN. Its format is:
NaN (expr) |

The function returns a SANE NaN.

Request _

The Request function returns a string after displaying a request dialog box. The first string
argument is displayed in the dialog box as the request message. The second, optional
string argument specifies a default string to present in the request box. To use the Request
function, specify these arguments as shown below:

Request (string-expr [, string-expr])

If the user cancels the dialog, the string '_CANCEL_' will be returned. Otherwise, the
request specified by the user is returned as a string.

SizeOf

The SizeOf function is used to calculate how many bytes of storage will be needed for a
parameter, variable, or type. To specify a particular parameter, variable, or type, use the
following format:

SizeOf (parameter | variable ! type)

The function returns a the number of bytes needed to store the specified parameter,
variable, or type.

SourceToAddr

To use the SourceToAddr function, you supply a string expression containing the name of .
a window that currently displays a source file. This does not have to be the active window,
but can be any source window in which you have selected one or more statements. The
function will calculate the address of the instruction that corresponds to the selected source
statement, and displays the address location symbolically. The format of the function is:

SourceToAddr (string-expr [, expr])

Nommally, SourceToAddr returns an symbolic expression for the address corresponding to
the selection from the source file. A value of zero is returned if SADE wasn’t able to
determine what address the window selection represented. The optional parameter supplies
an error message telling you why SADE wasn’t able to return the address. This message
will be displayed only if a value of zero is returned by the first parameter.

Debugger Symbols and Working Draft 2 3-23
Command Language Format

U ETEREETE,

Timer

The Timer function uses the global variable TickCount to provide timing-related functions.
To use this funtion, supply the following parameters:

Timer ([expr [, bool-expr 1])

If you use the Timer function without any arguments, the current TickCount is returned. If
one argument is specified, the value (TickCount - n) will be returned; this is the difference
between the current TickCount and the value you specified (usually a previous value of
TickCount). If the second boolean argument is specified and is non-zero, this difference
will be returned as a string of the form “sss.hh”, representing seconds and hundreths of a
second. If the boolean argument is zero, then the function returns the same value as in the
one-argument case.

TypeOf

When you need to return the type of an expression, you can use the TypeOf function. Its
format is:

TypeOf (expr)

The function returns a string containing the name of the type of the expression value. If
SADE does not know the name of the type, then a string of the form “Type #n” will be
returned, where “n” is SADE’s internal index for the type.

Undef

The Undef function is used to determine if a SADE parameter or variable is initialized. Its
format is:

Undef (parameter | vﬁriable)

The function returns a “1” (true) if the parameter or variable is initialized, and returns a “0”
(false) if it is not.

Where

The Where function is useful when you want to get a symbolic representation of an
address. Its format is:

where (addr-expr)

The function returns a string expression.

3-24 Working Draft 2 Debugger Symbols and
. Command Language Format

SADE Command Language

An understanding of the SADE command language allows you to take advantage of
SADE’s many powerful features. The SADE command language was designed to be
programmable and extensible. The debugger language itself uses English-like keywords so
that command scripts and user-defined debugging procedures can be readable and
intelligible. This section describes how the SADE command interpreter processes
commands.

A command is the unit of execution for SADE’s command interpreter. Each command is
composed of a sequence of keywords, names, expressions, operators, and other special
characters, terminated by the end of the line. Multiple commands may appear on the same
line by using a semicolon (";") as a command separator. If a command is incomplete by
the end of a line, the line can be continued by escaping the carriage return with the
character escape ("9").

A command that consists solely of an expression (other than an assignment) is evaluated
and the result is written to standard output. For instance, if you enter the debugger variable
processID, SADE will return a value as shown below:

processID
3

This mechanism is equivalent to a Printf command with a default format specification. For
the example shown above, it is the same as entering:

printf "%t" processID

Since assignments are simply one form of expression, a command consisting only of an
assignment expression won’t have its value written to standard out. For instance, if you
just assign processID to a variable as shown below, SADE won’t immediately return the
value; you’d have to use a printf statement to print the value of x.

x := processID

All other commands begin with a command keyword. The syntax of keyword commands
is discussed throughout this manual; the command pages in Part II provide a handy way to
locate commands alphabetically if you need to quickly check command syntax.

Comments are allowed anywhere in debugger commands, except within strings, and are
delimited by "#" and the end of the line.

If you want to customize the SADE interface so that you can perform debugging tasks with
fewer keystrokes, the debugger language supports a mechanism for abbreviations.
Through use of the Macro command, you can set up a terse, short-named command set if
desired. The SADEStartup file contains a number of macros that allow you to use
Macsbug-style terminology for some SADE commands. You may want to design your own

Debugger Symbols and Working Draft 2 3-25
Command Language Format

set of macros and place them in a UserStartup file; more information on this topic is
contained in Chapter 7, “Customizing the Debugging Environment”.

‘Command execufion

This section briefly describes three of the ways to execute SADE commands: by pressing
the Enter key, by selecting a menu item, or by using the Execute command with the name
of a commaad file.

When a text window has been opened by SADE, any portion of text within the window can
be selected and highlighted. The selected text can then be executed by pressing the Enter
key. If no text is selected, the Enter key will execute any commands in the line containing
the insertion caret.

Commands can also be associated with menu items in SADE’s menus. Selecting such a
menu item causes the associated commands to be executed. If a command key is assocated
with a menu item, the command key will also cause the commands to be executed.

Finally, commands saved in a file can be executed using the Execute command, as
described in Chapter 7. The commands in a special file, named “SADE Startup”, are
executed automatically when SADE is started.

Debugger Output Files

This section describes how SADE creates and manages debugger output—that is, the
output from debugger commands. Related topics include debugger error output and
symbolic display of command output; these are described in subsequent sections. Note that
in these sections, the terms “window” and “file” are often used interchangeably.

All debugger output is directed to a text file, designated as standard output, or to the SADE
WorkSheet window. The default standard output is the same window from which the
commands were entered—referred to here as the command window. When output is
written to the command window, the output immediately follows the currently selected text.
If no text was selected, the output will begin on the next available line.

Redirected command output from SADE can replace, or be appended to, the contents of a
window (file) using the Redirect command. The syntax of the Redirect command was
described in Chapter 2. The simplest way to use redirection is to replace the contents of the
named file. Using the append option adds command output to the end of the named file.

You may also nest Redirect commands, and send command output to as many as 10
different files. When output is redirected, SADE keeps a record of the name of the previous
output file, so that when the commands whose output was redirected are completed, output
can revert to the remembered file. Redirecting output to filename.§ will append the
command output to the currently highlighted selection in the specified file.

3-26 Working Draft 2 Debugger Symbols and
Command Languoge Format

SADE maintains the names of output files used with the Redirect command as a last-in
first-out queue. If you use the pop parameter, or if you use no parameters at all with the
Redirect command, SADE redirects the command output to the file at the head of the
queue. If all or pop all is spec:ﬁed standard output is redirected to the SADE
WorkSheet.

Debugger error oufputf

SADE doesn’t include any standard error or diagnostic files. Any errors generated in the
course of SADE command execution fall into one of two categories: parse-time errors,
generated when command syntax is incorrect, and run-time errors, which happen when the
commands are actually executed. Parse-time errors are typically written out to the same
worksheet window used to enter the commands.

If a run-time error occurs while SADE commands are executing, the commands will be
aborted, and any error messages will be written to the command window. If output was
redirected to another window, the redirection is undone; in these cases SADE performs an
implicit pop all for any redirected files.

‘Symbol Display

By default, a SADE window will display debugger command output symbolically. The
Symbols command can be used to change the default behavior; it works like a toggle
switch, turning symbol display off or on. Its format is:

symbols [{onloff}]

Specifying symbols off will disable attempts to display symbolic representations of
debugger command outputs. Turning off symbols might be desirable for speed, but in most
cases you will want to use the default setting of symbols on. If the Symbols command is
used with no argument, the current symbol setting is written to standard output.

Debugger Variables

Variable references may be made to three different classes of variables--system, debugger
or user-program variables. The following section describes user-defined debugger
variables, which are variables defined by the user in the debugging session. Predefined
debugger variables are listed in a previous section. Rules which apply to all three types of
variables can also be found in the section “Variable References”.

Debugger Symbols and Working Draft 2 3-27
Command Language Format

User-defined variable references
A user can define a debugger variable on one of two levels:

« If a variable is declared within the debugger, but outside of a user-defined proc or func,
then its scope is automatically global. This is known as the outer level.

» If a variable is declared at the inner level, inside of a user-defined proc or func, it is
usually a local variable for that proc or func.

Global variables are those known both at the outer level and inside of user-defined procs
and funcs. If a variable is declared at the outer level, the variable will be global in scope. If
a variable is declared inside a proc or func, then its scope is local unless the define
command is used with the global keyword. If a global and a local variable exist with the
same name, then the local symbol overrides the global.

If you redefine a global variable, the new definition replaces the previous definition with
one exception: If the definition is within a user-defined proc or func, and the new
definition matches the existing definition, the existing definition is retained. For example, a
global variable definition within a user-defined proc or func creates the variable the first
time the procedure is invoked; subsequent invocations can make use of the value left in the
variable by the preceding invocation.

The define command

The define command is used to create variables of arbitrary types for use in capturing
values, evaluating expressions, and in controlling debugger execution. Its command syntax
is

define [global] var declaration, ...
where a var declaration has the form
name [[dimension 1] [:=init value)

where dimension is an expr and init value is either an expr for the initial value of
simple types or a list of the following form for array variables:

([expr of] init value , ...)
where the optional of clause allows for replication of a value or set of values.
The define command may not appear inside a loop or conditional construct.

Debugger variables must be defined before they are used. A debugger variable declaration
identifies the name, scope, and (optionally) the initial value of the variable. One or more
variables may be declared in a single define command by having one or more var
declarations separated by commas.

The name in a var declaration must follow the rules for valid debugger identifiers, and must
be unique in the current debugger scope, such as a proc or func, unless declared global.

3-28 Working Draft 2 Debugger Symbols and
Command Language Format

The name may optionally be followed by an array specifier--a dimension expr enclosed in
brackets.

Debugger variables are dynamically typed, that is, their type is determined on assignment
(and may be changed by new assignments). The only type information supplied at
definition time is whether the variable is an array or a scalar. Debugger array variables may
contain a heterogeneous set of values; that is, the elements may contain values of different

types.

A initial value for simple types may optionally be specified by an expr following an
assignment operator. If the item being declared is an array the fields of the type being
initialized will control the assignment of the values from the list of initial values.

Debugger variables, once defined, may be referenced in expressions in debugger . The
value of a debugger variable can be modified using the assignment expression operator
(:=). If you wish, you can include the definition and the assignment on the same command
line, such as:

define X :=5

However, it is not necessary to assign a type to a debugger variable when it is defined. The
type of a debugger variable is set when a value is actually assigned. The debugger variable
must have the same dimension as the type assigned to it. Components of structured
debugger variables may be accessed using the selector operators described in the section on
"Variable References".

The Undefine Command

The Undefine command simply removes a previously-declared variable. While the value of
a variable can be changed merely by reassigning it, there may be times when you will want
to completely remove the variable instead. This command may also be used with proc,
func, or macro definitions. Its format is:

undefine identifier,

The identifier used may be any valid SADE identifier.

Debugger Symbols and Working Draft 2 3-29
Command Language Format

Chapter 4
Basic Debugger Operations

Locating and Controlling Program Filescccooviiiiiiiiiiiiiiiiiiinininn., 4-3
Locating your Filescooviiiiiiiiiiiiiiiii 4-3
Directory Command........c.coeiiiiiiiiiiiiiiiiiiin i, 4-3
Target Command......cc.coveiiiuiiiiiiiiininriiiieineinneeeeeenan, 4-4
SourcePath Command.......cccoceevuiiiiniiiiiniiiniiiniiieeiinee 4-4
Basic Application Control.........cccieiiiiiiiiiriiiiiieiiininiienenenieeennn. 4-5
Launch Command bttt 4-5
Kill Command........cccoceiviiiiiiiiniiinn.. e 4-5
Displaying Program Information.........cccccceeiiiiiiimmiiireinnniiiiiinieiienenecnnn. 4-6
Formatted Displaysccceuiiiiiiiiiiiiiieiiiiieii i e 4-7
Printf Optional Parameters........c.ccoeiuiiiiiiiniiiniininenennennnn. 4-7
Listing Program Information.............cooiiiiiiiiiiiiiiiiiiiiiiiinn. 4-12
Special-purpose Displays.......ccceveiuiiiiiiiiiiiiiiiiiiiiiii e 4-14
The Disasm Commandcccoovvviiniiiiiiiiiiiiiiiiniinine. 4-14
The Dump Command........ccccceeevrenrrrrereeeeseceesneneeeeeennn 4-14
The Stack Commandcccoeviiiiiiiiiiiiiiiiiiiiieeenenn. 4-15
Displaying and Checkingthe Heap.........cccooiiiiiiiiiiiiiiiiiiiinennennen. 4-16
Displaying and Checking Resourcescceevuvueverieeiniieneennanens 4-18
Finding Program LoCations..........ccccooimiiiiiiiniiiiiiiiiiininiiinn e, 4-18
Setting Memory Values...... ettt a e e ettt et e et n e e eaaeaenae 4-19

Basic Debugger Operations Working Draft 2 4-1

This chapter explains some of the most basic debugger operations available in SADE. After
you’ve begun a debugging session, you need to know how to locate and control your
application’s files. The basic application control commands are included in this chapter,
while more complex commands for controlling program execution are described in Chapter
5, “Program Control.”

Among the basic functions you expect from any debugger is the ability to display
information from within your program. You will often begin by displaying the last |
intruction executed before you entered the debugger. You may also want to display areas
such as the application heap, which contains the bulk of your code, or the stack, which
contains information about procedures that were called. SADE gives you a wide variety of
ways to display program information; some of these display options include:

. produce formatted output to the current file or window. The value to be displayed is
used with a type specifier, and the field width, justification, and precision are all
controllable.

. display the location of address or trap breakpoints, using a symbolic represention

when available

. display local symbols within a program, including the local procedure, parent
procedure, local variables, and type information

. display process information at the time the application was suspended

. disassemble instructions and display the offset, address, hex representation, and
assembly code for each instruction

. dump memory and display each instruction in hexadecimal and ASCII characters,
according to byte, word, or long grouping

. display stack frames for the current target application

. display the application heap zone, including information about block type, master
pointers, and whether the block is locked or nonrelocatable. The heap can also be

checked for consistency.

. display resource information, including the location of each resouce map, and a list
of the instances of each resource type. You can also check the resource map for
consistency.

. search through memory for a numeric or string expression, and display the result

The “Eventlog” sample program is used as a basis for the displays seen in this chapter. In
particular, the sample program was halted within a procedure named “DisplayText”. See
Figure 2-2 to see the SADE window and source display for this sample.

4-2 Working Draft 2 Basic Debugger Operations

Locating and Controlling Program Files

This section deals with program files on the “outer’” level—the commands described here
deal with the application only as a filename. There are three kinds of files that are important
when you’re debugging. The first is the application itself, which is an executable file of
type 'APPL*: The other important files are the symbol file and the source files for your
application. These files can reside anywhere on your system, so SADE needs a way to
locate them.

The sections that follow divide these application control commands into two groups—those
that locate application files, and those that control your applicaton from this outer level.

Locating your Files

As described in Chapter 2, your SADE directory can be used to store files connected with
SADE’s operations, such as the SADEStartup file, the Worksheet file, and any other files
you may create during a debugging session. However, you wouldn’t normally place your
application files in the SADE directory. In most cases, you already have a one or more
directories for your source files, object files, symbol file, and the executable application.

To use SADE with your application files, you must provide enough information so the
debugger can locate them. The Directory, Target, and Sourcepath commands, described
below, allow SADE to locate application files within various directories.

Directory Command

When you first enter SADE, the default directory is the directory where SADE resides. The
Directory command sets the default directory for all SADE operations to the specified
directory. You can use this command to specify the directory where the application resides.
Its format is:

directory [directoryname]

The directory name is a string expression. For example, if you want to spec1fy a dn'ectory
named “Samples”, use the Directory command as follows:

directory ":Samples”

If you use the Directory command with no argument, the current default directory is written
to standard output.

Basic Debugger Operations Working Draft 2 4-3

Target Command

When you are running an application program and then break to the debugger, the program
that was interrupted becomes the target program for subsequent SADE commands and
symbolic references. The target program and its symbol file may reside anywhere on your
system; on your system, you may have placed the target program and the symbol file in
separate directories. When using the name of the target program in SADE commands,
remember to use a filename relative to the current directory. If you need to change the
current directory, use the Directory commmand.

The Target command allows you to spec1fy a target program and its associated symbol file.
The syntax for the Target command is:

target progname [using symbolfilename)

The selected target program will be used as the object for all following SADE commands
and symbolic references. The optional using parameter may be used if the name of the
symbol file for the program is not progname.sym in the same directory as the application.
This allows SADE to find the symbol file even if it’s in another directory.

For instance, to specify the “Eventlog” program as the target program, and use a symbol
file that’s in different directory, enter:

target ":Eventlog" using ":mysymboldir:eventlog.sym"

If you don’t include the using parameter, SADE will expect to find the symbol file
“Eventlog.SYM” in the same directory as the “Eventlog” program.

SourcePath Command

SADE permits source level debugging when the application’s source files are available.
This capability is implemented through the AddrToSource function, described in Chapter 3.
To allow SADE to access an application’s source files, you must provide a search path so
that SADE can find them.

The SourcePath command is used to specify the search path used for source file display. Its
format is:

sourcepath [[add ! del[ete]] directoryname, ...]

The specified directoryname indicates where the AddrToSource function should look to
find files for source display. You can use a list of directory names to allow the use of
source files in more than one directory. The add and delete options allow particular
directories to be added (to the end) and removed from the search path

If you use the command with no arguments, the current search path of directories is written
to standard output.

4-4 Working Draft 2 Basic Debugger Operations

As an example, let’s assume that the source files for the Eventlog sample program reside in
two directories: srcdir and myotherdir. To ensure that these directories will be searched for
source file display, enter the SourcePath command with the following arguments:

sourcepath ":scrdir", ":myotherdir"

Additional examples of source level debugging techniques can be found in Chapter 8.

Basic Application Confrol

You can launch or kill an application program by name from a SADE worksheet, without
returning to the Finder. The Launch, and Kill commands are described below. Note that for
these commands, filenames must always be relative to the current directory.

The commands presented in this section deal with the application program as a filename
representing the program as a whole. The program control commands presented in Chapter
5 provide a means to get inside an executing application program, and control its execution
within SADE.

Llaunch Command

The Launch command launches the application you specify. The applicaton will run
normally untl interrupted by the NMI key, or some other method. This command does
nothing if the filetype of the specified file is not 'APPL". Its syntax is:

launch ﬁlenanie

where filename is a string expression. For instance, to launch the “Eventlog” program,
enter:

launch ":Eventlog"

Refer back to Figure 2-2 for an example of an application program that has been launched
and then halted.

Kill Command

The Kill command halts the execution of the application or tool you specify. You can only
kill processes that are already suspended. Its syntax is:

kill filename
where filename is a string expression. For instance, to kill the program “Eventlog”, enter:
kill ":Eventlog"

Caution: this command can be dangerous if your application is killed without having a
chance to perform its normal exit routines. It’s generally preferable to resume execution and
then quit from the application in the usual way.

Basic Debugger Operations Working Draft 2 4-5

Displaying Program Information

This section provides a description of how to display a variety of information from your
program. The sample program shown in this section is the “Eventlog” program, which you
learned how to launch in the preceding section. The displays shown in the sections below
assume that the program was launched, and then halted at the beginning of the DisplayText
procedure. ‘

The simplest way to display the value of a program symbol is to enter the symbol name in
the SADE worksheet. SADE will evaluate the symbol and display its type, if possible. The
debugger output is always in the same type as the symbol; the default radix for numeric
types is decimal. Address values (pointers) are displayed in hexadecimal. For example, to
display the local variable “len” (type long) from the DisplayText procedure, just enter:

len
3326014

The Where builtin function is useful for displaying the location of a program or system
symbol. For example, to display the current location of the program counter, simply enter:

where (pc)
DisplayText. (0)

If you are familiar with window records, you might like to display something a little more
complicated, as in this example from the SADE Worksheet:

“WindowRecord(windowList) "

This will display the entire WindowRecord data structure for the current FrontWindow
(pointed to by the windowList). Or you can display just a part of the WindowRecord, as
shown below:

“WindowRecord.port.portBits.bounds (windowlList)

RECORD
top: 0:
left: -1648;
bottom: 32;
right: 128;
END

The List command can also be used to display program symbols, as well as other program
information pertaining to processes, breakpoints, and tracepoints. See the section titled
“Listing Program Information” later in this chapter. For other displays, such as code
diassembly, memory dumps, and stack frames, see the section on “Special-purpose
Displays”.

Another way to display a program location is to use the Printf command with the symbol
for that location. The Printf command produces formatted output, and includes many

4-6 Working Draft 2 Basic Debugger Operations

optional parameters. A complete description of the Printf command is included in the
following section, with a few brief examples.

Formafted Displays

The Printf command places formatted output on the current output file or window. Its
many optional parameters can be used to specify what to display and how to format the
display. The value to be displayed is used with a type specifier, and the field width,
justification, and precision are all controllable. The Printf command syntax is:

printf [format[,arg]...]
or
printf ([format [,arg]...])

The formar parameter is a string that specifies the format of the output. The arg parameters
are used to specify the values to be output. If no formar and arg parameters are specified,
any buffered output is displayed.

The format string contains characters to be copied “as is” to the output and conversion
specifications. Each of the format string characters applies to zero or more arg parameters.
If the format is exhausted while arg parameters remain, the extra arg parameters are
ignored. If there are insufficient arg parameters called for by the format, then the rest of the
format string is ignored.

For example, to display in hexadecimal the address of the next instruction to be executed,
enter the Printf command with the name of the program counter register (PC) as a
parameter:

printf "%.8X\n",pc
$00378B7A

Here the format string is “"%.8X\n"”, while the arg parameter is “pc”.

To display the address of the current heap, use Printf with the global symbol theZone:

printf "$%.8X\n",theZone
$00378420

In this example, “"$%.8X\n"” is the format string, while the arg parameter is “theZone”.

The optional parameters for Printf are described in the following section.

Print Optional Parameters

The conversion specification is distinguished from characters to be copied as is in the
format string by preceding it with a % character followed by a sequence of fields which
describe how to format a arg value:

Basic Debugger Operations Working Draft 2 4-7

% [flags] [width] [precision] op

flags

width

An optional sequence of characters which modify the meaning of the main NS

conversion specification:

- Left-justify within the field width rather than right-jusdfy if the
converted value has fewer characters than the specified minimum field
width.

+ Always generate a “+” or “-”” sign when converting signed arg values.
Note, that negative values are always preceded by a “-” regardless of
whether the “+” flag is specified.

space Generate a space for positive values and “-” for negative values. This
space is independent of any padding used to left or right-jusdfy the
value. The “+” flag has precedence over the space flag.

Modify the main conversion operation. The modifications performed
are described in conjunction with the relevant main conversion
operations discussed later.

An optional minimumn field width, specified as a decimal integer constant (that
doesn't begin with a “0”) or an “*”. In the latter case a corresponding arg
parameter specifies the minimum field width. If the converted value has fewer
characters than the width, it will be padded to the width on the left (default) or
right (if the “-” flag is specified) with spaces (default). If the converted value
has more characters than the width, the width is increased to accommodate it.
For %t conversions, the width specifies the minimum width to reserve for
RECORD type field names.

46 9

precision The optional precision is specified as a ““.” followed by an optional

op

decimal integer or as an “*”. In the latter case a corresponding arg parameter
specifies the repetition count. If the decimal integer or “*” following the “.” is
omitted, the precision is assumed to be 0. Precision is used to control the
number of digits to be output for numeric conversions or characters for string
conversions. Omitting the precision has a default value which is a function of
the main conversion to be performed.

The required main conversion operation specified as one of the following single
characters:

d The corresponding arg parameter is converted to a signed decimal value
(floating point values will be truncated).

precision The precision specifies the minimum number of digits to
appear. If the value can be represented with fewer digits,
leading zeros are added up to the specified precision. The
result of converting a 0 value with a precision of O is a null.
The default precision is 1.

flags - left-justfy
+ explicit “+” or

66 9
-

Working Draft 2 Basic Debugger Operations

space space for positive value
ignored

The corresponding arg parameter is converted to an unsigned decimal
value (floating point values will be truncated).

precxsxon The precision specifies the minimum number of digits to
appear. If the value can be represented with fewer digits,
leading zeros are added up to the specified precision. The
result of converting a 0 value with a precision of 0 is a null.
The default precision is 1.

flags - left-justfy
+ ignored
space ignored
ignored

The corresponding arg parameter is converted to an unsigned
hexadecimal value. The number of bytes converted is a function of the
arg's type. The letters abcdef are used for x conversion and ABCDEF
are used for X conversion.

precision The precision specifies the minimum number of digits to
appear. If the value can be represented with fewer digits,
leading zeros are added up to the specified precision. The
result of converting a O value with a precision of 0 is a null.
The default precision is 1.

flags - left-justfy
+ ignored
space ignored
prefix converted value with a “$”

The corresponding arg parameter is converted to an unsigned binary
value. The number of bytes converted is a function of the arg's type.

precision The precision specifies the minimum number of digits to
appear. If the value can be represented with fewer digits,
leading zeros are added up to the specified precision. The
result of converting a 0 value with a precision of O is a null.
The default precision is 1.

flags - left-justfy
+ ignored
space ignored
ignored

The corresponding arg parameter is converted to an unsigned octal
value. The number of bytes converted is a function of the arg's type.

precision The precision specifies the minimum number of digits to
appear. If the value can be represented with fewer digits,
leading zeros are added up to the specified precision. The

Basic Debugger Cperations Working Draft 2 4-9

result of converting a 0 value with a precision of 0 is a null.
The default precision is 1.

flags - left-justify
+ ignored
space ignored

prefix converted value with a “0”

f The corresponding arg parameter is converted to a signed decimal
floating point value. The value is converted to the form “[-]ddd.ddd”,
“[-JINF”, or “[-INAN(ddd)” (where ddd is the NAN code) depending
on the value.

precision The precision specifies the number of digits after the decimal
point. If the precision is 0, no decimal point appears (which
can be overridden with the “#” flag). The default precision

is 6.
flags - left-justify
+ explicit “+” or “-”
space space for positive value
force decimal point in the case where no
digits follow it
E The corresponding arg parameter is converted to a signed decimal

floating point value. The value is converted to the form “[-]d.ddde+dd”
(for e conversion), “[-]d.dddE+dd” (for E conversion), “[-]INF”, or “[-
JNAN(ddd)” (where ddd is the NAN code) depending on the value.
The exponent will always contain at least two digits.

precision The precision specifies the number of digits after the decimal
point. If the precision is 0, no decimal point appears (which
can be overridden with the “#” flag). The default precision

is 6.
flags - left-justify
+ explicit “+” or “-”
space space for positive value
force decimal point in the case where no
digits follow it

4-10 Working Draft 2 Basic Debugger Operations

The corresponding arg parameter is converted to a signed decimal
floaring point value. The value is converted using f or e conversion (or -
in the style f or E conversion when G is specified). The form of
conversion depends on the value being converted; e or E conversion is
performed only if the exponent resulting from the conversion is less

than -4 or greater than the precision. Trailing zeros are removed from
the result (which can be overridden with the “#” flag). A decimal point
appears only if it is followed by a digit (which can be overridden with
the “#” flag) :

precision The precision specifies the fotal number of significant digits.
If the precision is less than 1, then 1 is assumed. The
default precision is 6.

flags - left-justify
+ CXpl_iCit £6+’9 or 6(-9’
space space for positive value
force decimal point in the case where no digits

follow it and keep trailing zeros

The corresponding arg parameter is converted to a character (the value
mod 256 is used).

precision ignored

flags - ignored
+ ignored
space ignored
ignored

Unless the “#” flag is used, the corresponding arg parameter must
be a string type (or a pointer) and the value is copied to the output as
is. C strings and as is (Pascal packed array of char) strings are
copied until a null is encountered (for C strings) or the number of
characters specified at the precision is reached. Pascal strings may
be processed if the type of the arg is a Pascal string. When the “#”
flag is used, the corresponding parameter is treated as an unsigned
long, and printed as if it contains 4 characters.

precision The precision specifies the maximum number of characters
to output. The default precision is assumed to be infinite. In
that case a C and as is strings will be output up to but not
including a terminating null character and entire Pascal

strings will be output.
flags - left-justfy
+ ignored
space ignored
the corresponding parameter is treated as an
unsigned long, and printed as if it contains 4
characters

Basic Debugger Operations Working Draft 2 4-1

4-12

%

Unless the “#” flag is used, the corresponding arg parameter must be a
Pascal string type (or a pointer) and the value is copied to the output as
is. When the “#” flag is used, the corresponding parameter is treated as
an unsigned long, and printed as if it contains 4 characters.

precision The precision specifies the maximum number of characters
to output. The default precision is assumed to be infinite. In
that case the entire Pascal string will be output.

flags - left-justify
+ ignored
space ignored

the corresponding parameter is treated as an
unsigned long, and printed as if it contains 4
characters

Note: You must use an upper-case %P as shown to output a Pascal
string type. If you use a lower-case %p argument, the value displayed
will be a pointer type, which is a hexadecimal number optionally
preceded by 0X.

The corresponding arg parameter is converted as a function of its type as
follows:

abasetype u,d, g, p, ors as appropriate to the type with the
precision and flags interpreted as a function of these format
codes.

non-base type The value(s) are displayed using a pseudo-Pascal type
specification format appropriate to the type of the parameter
(e.g. a RECORD/struct type is displayed using a Pascal-like
RECORD notation). The flags control some of the aspects
of the formatted output.

Note that the corresponding arg parameter need not specify a
value and instead may specify only a type. In this case, the
type definition is displayed, again using the same pseudo-
Pascal type specification format.

flags - display only the type even if corresponding arg
parameter specifies a value. The type is to be
displayed exhaustively, i.e., display every type
down to its base type.

+ display only the type even if corresponding arg
parameter specifies a value.

space show record/struct field offsets

show all values and offsets in hexadecimal

A single “%” is output; no arg is used.
precision ignored
flags - left-justify

+ ignored

Working Draft 2 Basic Debugger Operations

space ignored
ignored

Lisfing Program Informafion

The List command can be used to display a list of current processes or local program
symbols, as'well as to display a list of address and trap breakpoints (or tracepoints). The
format of the List command includes four different options: symbol, process, break, or
trace. These options are shown below:

list symbol

or

list process

or

list break [{traps | addrs}]
or

list trace [{traps | addrs}]

For program symbols, the display includes the local procedure, the parent procedure, the
locally-defined variables, any procedures called by the local procedure, and any types
defined in the local procedure. Note that in this display, the term “module” denotes a
procedure within a program.

For example, to list the local symbols for the DisplayText procedure, use List as follows:

Module DisplayText. (0)
Parent Module
TransDisplay
Variables
theText
len
Contained Modules
None.
Types
None.

For processes, the display includes the following information: a process number, a

“loaded” or “unloaded” designation, and the filename for the process. The process numbers

are incremented up to a value of 16 as each new process is started on the system. When
you quit from an application, however, its process number isn’t reassigned; the next
process started will have a new process ID number.

The example below shows a number of processes that were running when Eventlog was
suspended. The suspended process is indicated by a bullet ().

Basic Debugger Operations Working Drcﬁ 2 4-13

Process# ' Loaded? FileName

. 8 Loaded "Eventlog"
5 Loaded "SADE"
4 Loaded "Microsoft Word 3.01"
2 Loaded "Finder"

For breakpoints and tracepoints, List displays the locaton and the symbolic representation
for the location when sufficient symbolic debug information is present. If the traps or
addrs modifiers are present,the list will be restricted to the specified class of breakpoint.
For trap breakpoints, the names of traps (or ranges of traps) with breakpoints set are
displayed.

4-14 Working Draft 2 Basic Debugger Operations

Special-purpose Displays

The SADE memory display commands listed in this section provide special-purpose
displays. These include disassembly of instructions, dumping memory, and displaying
stack frames.

The Disasm Command

The Disasm command disassembles instructions and displays the offset, address, hex
representation, and the assembly code for each instruction. Its format is:

disasm [addr [count]]
or
disasm [addr range]

The default behavior when no address is specified is to begin disassembling at the end of
the last disassembly. If the value of the program counter has changed since the last
disassembly, the program counter (PC) is used as the starting address. You can also
specify a particular location to begin disassembly by using addr or addr range. If no range
or count is specified, the number of instructions (not lines) disassembled defaults to 20.

Each line of the disassembly output is divided into four fields or areas. The inidal value for
DisAsmFormat is “OAXC”. This means that the initial order of the fields shown during
disassembly is offset, address, hex representation, and finally the assembly code. Their
display (both order and presence) is controlled by the DisAsmFormat builtin variable as
described in Chapter 3.

For example, to diassemble 5 instructions starting at the eighth statement of the DisplayText
routine, enter:

disasm DisplayText.(8) 5

DisplayText

+0040 003191A8 2F2D FE64 MOVE.L -$019C(AS), - (A7)

+0044 O003191AC 2F2D FE78 MOVE.L -$0188 (A5), - (A7)

+0048 003191BO 4EBA FE26 JSR FlushDWindow . ; 00318FD8
+004C 003191B4 486D FEA48 PEA -$01B8 (AS)

+0050 003191B8 4EBA 00CO JSR DisplayString ; 0031%927a

Compare this with the output of the Dump command, shown in the next section.

The Dump Command
The Dump command displays a portion of memory at the specified location within a

program. Just entering “‘dump” with no parameters will display the instruction in memory
at the current program counter location. You can also display the locations specified by

Basic Debugger Operations Working Draft 2 4-15

b s -

addr or addr range. The memory is displayed in hexadecimal and ACSII characters

according to the specified grouping, which may be byte, word, or long. The default
grouping is word.

For example, to display some of the memory area from the DisplayText routine, using the
default word grouping, use Dump as shown below:

dump DisplayText. (0)..DisplayText. (8)

00319168 4ES6 FFF2 48E7 (OF18 286E 0008 4AAD FE60 NV..H...(n..J..®
0319178 6700 OOE8 486E FFFC A874 2F2D FE60 A873 g...Hn...t/-.'.s
00319188 2F2D FE60 4EBA F606 266D FE74 2053 3028 /-."N...&m.t SO(
00319198 003C 48C0 222E 000C D280 B2AD FE68 6F1l4 .<H."........ ho.
003191a8 2F) /

The Stack Command

A look at the stack can help you determine what procedures had been called at the time your
application was interrupted. To display a list of the stack frames for the current target
application, use the Stack command. Its format is:

stack [count] [at addr]

The stack frames displayed are based on register A6 or addr if at is specified. For each
stack frame, the contents of the frame pointer indicated where the frame starts. The frame

owner corresponds to the portion of the program that allocated the frame. The procedure
that called the frame is listed with an offset if needed.

If an explicit count is specified, then at most that many stack frames will be displayed.

For example, the stack frame for the “Eventlog” sample program when it is interrupted at
the DisplayText procedure is:

launch ":Eventlog"
go til DisplayText

stack
Frame Addr Frame Owner Called From
<main> CMain
$0032BC24 main CMain+$0028
$00328BB2C SkelMain main. (51)
$0032BBOC LogEvent SkelMain. (13)+$0012

S0032BADC ReportUpdate LogEvent. (50)+$0004
S0032BACC DisplayText ReportUpdate. (1)+$0004

This shows that the last stack frame used was from the procedure ReportUpdate, which is
part of the “Eventlog” program.

4-16 Working Draft 2 Basic Debugger Operations

Displaying and Checking the Heap

This section describes the SADE heap commands, which act upon the current application
heap zone. The application heap is where the bulk of your program code resides. The heap
is divided into a number of blocks, each with a master pointer. There are a number of
conditdons that can apply to each block on the heap: it may be free or in use, relocatable or
nonrelocatable, locked or unlocked, purgeable or nonpurgeable, and may or may not
contain resources. Each of these conditions have implications for the application’s
performance. A complete discussion of the application heap zone can be found in several
different books, including Inside Macintosh.

The SADE heap commands let you display this wealth of heap information or check the
blocks on the heap for consistency. The Heap [display] command can be used to give a
complete snapshot of the heap at the time your application was interrupted. Its format is:

heap [display] [addr][, biocktype]
where
addr is an address expression

blockrype is a string expression, of which only the first 4 characters are
significant. It must be one of the following values:

‘purgeable’ will limit the display to purgeable blocks
'nonreloc[atable]’ will limit the display to nonrelocatable blocks.
reloc[atable]’ will limit the display to relocatable blocks

‘free’ will limit the display to free blocks.

lock[ed]' will limit the display to locked blocks.

'res[ource] will limit the display to resources

'restype type' will limit the display to the specified resource type

If desired, you can display the heap that starts at addr. The default is to display the heap
pointed at by theZone. By default, the information displayed is:

the address of the beginning of the heap block

the address of the master pointer if it’s a relocatable block
an asterisk if the object is locked or nonrelocatable,

the value of the tag byte (for relocatables)

for a resource, the reference number of the file it’s in, and the resource type
and ID of the resource '

To display a subset of the heap objects, you can specify one of the block types. The
blockzype must be one of the following values: purgeable, non-relocatable, relocatable,
free, locked, resource, or a particular resource type.

Using the “Eventlog” example, only"résources of type ' MENU" are displayed when the-
Heap display command is used as follows:

Basic Debugger Operations Working Draft 2 4-17

Heap display restype 'MENU'
BlkAddr BlklLength Typ MasterPtr Flags RType RId RFRef RName

$00316590 $00000098 H s$0031452C R MENU 1000 $0584 "rFile"

$00316838 $00000050 H 500314528 R MENU 1001 $0584 "Edit"
$00316888 S000000F4 H $00314524 R MENU 1002 30584 "Log"

The Heap totals command provides a way to display summary information about the heap.
Its format is?

heap totals [addr][, blocktype)

where

addr is an address expression

blocktype is a string expression, of which only the first 4 characters are significant.

The type information follows the same rules as the Heap command. The summary shown
is for the heap that starts at addr for blocks of type blocktype . The summary information
is given for free, nonrelocatable, and relocatable objects in the heap unless blockrype is
specified. If blocktype is specified, the summary information is limited to the indicated
type of object.

For instance, the summary information for purgeable blocks within the “Eventlog” sample
program provides the following display:

heap totals purgeable

Total Blks Total Size
Purgeable 8 8816

To check the consistency of the heap for the current target program, use the Heap check
command. Its format is:

heap check [addr]

The Heap check command checks the consistency of the heap . If desired, you can check
only that part of the heap that starts at addr. The default is to display the heap pointed at by
theZone.

The Heap check command performs range checking to make sure all pointers are even and
non-NIL, and that block sizes are within the range of the heap. It then makes sure that the
self-relative handle points to a master pointer referring to the same block. For non-
relocatable blocks, it checks if the heap zone pointer points to the zone where the block
exists. The command also verifies that the total amount of free space is equal to the amount
specified in the heap zone header, that all pointers in the free master pointer list are in
master pointer blocks, and does other header validation.

- 4-18 Working Draft 2 Basic Debugger Operations

Displaying and Checking Resources

No Macintosh debugging system would be complete without a way to display resources. In
SADE, the Resource command is used to display and check the resource map for an
application. This command has two formats: Resource display and Resource check. The
format for displaying resource maps is:

resvurce [display] [addr] [restype 'type’]

If an address expression is not specified in addr , the default is to display all resource maps
for the target application. The information displayed for each resource map includes: its
location, the refnum of the resource file, and a list of the instances of each type. For each
resource type displayed within the map, the following information is displayed: the
resource ID, the resource type, the value of the master pointer, whether the resource is
locked or unlocked, and the resource name.

The following example from the “Eventlog” program shows a partial resource map, using
only the resources of restype 'WIND"'.

resource restype 'WIND'
Resource Map at $00316EFS8
ResId RType MasterPtr Locked? Name
1000 WIND $00316BE4 Unlocked
1001 WIND $00316C08 Unlocked
1002 WIND $00316484 Unlocked
1003 WIND $003164B8 Unlocked
1004 WIND $003164D8 Unlocked

Resource Map at $0002B19C
ResId RType MasterPtr Locked? Name
-16000 WIND NotLoaded
-15968 WIND NotLoaded
-15840 WIND NotLoaded

You can check the resource map for consistency using the Resource check command. Its
syntax is:

resource check [addr]

If an address expression is not specified in addr , the default is to validate all resource maps
for the application. If an inconsistency is found, the command displays a diagnostic
message specifying the problem.

To find an expression within a program, use the Find command. It evaluates the supplied
numeric or string expression, searches for the target, and displays the result. Its syntax is:

Basic Debugger Operations Working Draft 2 4-19

find [count] rarge:[,n] [addr range [mask]]
or
find [count] sarger[,n] [addr [count] [mask]]

The Find command normally counts or searches all of a program’s available code for
occurrences of the target. As options, you may start at the specified address and look up to
count bytes beyond, or limit the search to addr range. The default range is HeapStart to
MemTop.

The mask parameter is an optional numeric or string expression that is logically ANDed to
the contents of each memory location before the comparison is done. The n parameter is an
integer expression that specifies the minimum number of occurrences to ignore. In other
words, the first n—1 occurrences may be ignored in the search. The default for nis 1; in
this case, SADE will find the first occurrence. For example, by specifying 3 for n, you
could find the third occurrence

For example, to find the string “mystring” in your program, enter:

find ‘'mystring’

After you have found and displayed a particular program location, you may want to modify
its contents. The typical modifications a programmer may make are:

. Modifying a program variable
¢ Changing a procedure parameter

However, any time you change a program location, you are altering your program and
could run into unexpected trouble when you resume execution. It’s always a good idea to
save the value of whatever variable or parameter you want to change in a debugger
variable.

For example, you can change the program variable named “len” (type long) to have a value
of 10,000 with an assignment as shown below. First, save the current value of “len” in a
debugger variable named saver. Then do the assignment.

saver := len
len := 10000

4-20 : Working Draft 2 Basic Debugger Operations

Chapter §
Program Control
Resume Program EXecution..........cccviiiiiiiiiiiiiiiiiiiiiiniiee 5-2
Stepping Through a Program..........ccccciiiimiiiiiiiiiiiinniiiiinn, 5-3
Suspending Program EXecution.........ccccccciiiiiiiiiiiiiiiiiiiiniininiiienniennnnns 5-5
Address Breakpointsovuviiieiiiiiiiniiiiiiiiiiiiiiin e 5-5
Trap Breakpoints.....cooiiiiiiiiiiiiiiiiiiiiiieieiei e eaeenes 5-5
Break Actionsc.coeeiiinin, crereenanee ettt aeae 5-7
Unbreak Command.........c.cooiuiuiiiniiiiiiiiiiii i 5-7
Stop Command......c.cceeeneennen. PP 1.
Abort Commandoivviiniiiiiiiiiii e 5-8
Monitoring Program EXecutionccocveviiiiiiiiiiiiiiiiiiiiiiiiiinennns 5-8
Trace Command.........ccciiiiiiiiiiiiiiiiiiiii e 5-8
Untrace Command........ccoeiuiiiiniiiniiniiiiiiiniiiiiieenieineenaenes 5-9

Program Control Working Draft 2 4 5-1

This chapter provides an introduction to the SADE’s program control functions. After you
have launched your program, you can always interrupt it by pushing the NMI key.
However, this method is often unsatisfactory, since you normally have no way of knowing
exactly where you were in the program at the time you pushed the key. The OnEntry
message usually displays the name of a procedure, but you can’t tell if that was the third or
the thirty-third time the procedure was called. Since these kinds of details are important in
debugging, you need to be able to interrupt your program at one or several chosen places in
the code, and examine the results.

The SADE program control commands include the following features:

. The Go command resumes program execution, with the option of using a
temporary breakpoint or a conditional statement to halt the program later.

. The Step command executes the program one instruction or one line at a time.

. The Break command sets breakpoints on one or more addresses, on trap ranges, or

on all traps. A break action may be associated with a breakpoint; this command or
group of commands will be executed when the breakpoint is reached.

. The Stop and Abort commands can be used to stop the debugger during break
actions.
. The Trace command monitors program execution by writing a message to standard

output each time a specified trap or address is reached. Program execution
continues during a trace operation.

. The Unbreak and Untrace commands can be used to clear breakpoints and
tracepoints.

These program control commands are described in the following sections. The sample
program “Eventlog” is used throughout this chapter to show the effect of these commands
on a program.

If you have enabled source level debugging on your system through use of the
StandardEntry proc in the SADEStartup file, you can also perform some program control
operations by selecting items from the SourceCmds menu. See Chapter 8 for more
information on source level debugging.

Resume Program Execution

If you’ve been following the sample program used in previous chapters, you’ve already
seen one way to resume program execution. The Go [ti] addr], form of the Go command is
extremely useful for executing your program up to the point you want to examine, then
halting it. The breakpoint set with Go [til addr] is temporary.

5-2 Working Draft 2 Program Control

Of course, you don’t always know exactly what program location you need to examine.
You can make your program resume execution at the current program counter by entering
the Go command as follows:

g0

After using the Go command like this, the program will keep running untl something
interrupts it. The *“something” may be a bug, or it may be a breakpoint or tracepoint that
you have set, using the other commands in this chapter.

The complete syntax for the Go command is:
go [til addr 1}, ..
or
go [while expr]
or
go [until expr]

The Go command resumes execution of the target program until a breakpoint is reached, a
while condition becomes false, or an until condition becomes true. At this point, the
debugger is entered and control returns to the user.

When you use the Go [til addr] format, the debugger sets temporary breakpoints at any
addresses you specified. When the breakpoint is encountered, the debugger is reentered
and the breakpoint is removed. If the address is in ROM, the debugger will warn you that
it can’t set a temporary breakpoint in ROM. To set a trap breakpoint, use the Break
command as described later in this chapter.

Similarly, if a condition expression is specified, the debugger will run the application in
trace mode until the until condition is met or or the while condition is broken (whichever
is appropriate). The choice of while or until allows you to reverse the sense of the test,
but it doesn’t affect when the test occurs. During trace mode, program execution
continues, but SADE checks to see if the conditional expression is satisfied.

Stepping Through a Program

‘When you step through a program, you are able to examine the effect of each statement.
SADE gives you the option of stepping through one instruction at a time, or stepping
through one line of source at a time. The Step command format is:

step [{asmliline}][iqto]

If line (the default) is spcciﬁcd,ﬁithc debugger will execute all of the instructions associated
with the current source line. If into is used with the line option, each call to a subroutine
will cause the debugger to be reentered at the first line of the called routine. Otherwise,

Program Control ‘ Working Draoft 2 5-3

routines called by JSRs and BSRs will be treated as single instructions. Trap calls are
always stepped over.

If asm is specified, the debugger executes the instruction at the current PC location. The
debugger is reentered after the instruction executes. If into is spec1ﬁed calling
subroutines will cause the debugger to be reentered at the first instruction of the called
routine. Otherwise, routines called by JSRs and BSRs will be treated as single
msmxcuons

If you have source level debugging enabled (using the StandardEntry proc in the
SADEStartup file), you may dxsplay the source window during a step operation. The
window containing the current line is displayed, with the next line to be executed
highlighted. See Figure 5-1 for an example of this display.

In addition, the Step command can be executed from a selected poiht within the source file,
using the SourceCmds menu item Step. More information on source level debugging is
contained in Chapter 8.

& File Edit find Merk Window SourceCmds %E)
amazing:MPW:SADE A1:SADE Worksheet

ll 9o ti! Background
_sllp fine

== 0moazing:MPlW:Debuggers:oid SADE:Eventlog.c

Background procedure. Check front sindow, reset edit menu if window
changes from on application windoe to a non-woncatuon window.
Disadbie the Edit menu whenever an application window is aclive,
enadbie it otherwise.

Also calied whenever it is knoen that the active window has chcnqod.

./

?aekrm Q)

vk Feocaw

fugitidie();

/* Calculote the percent of processor tise - stolen from John Meier ¢/
while ((TickCount() - ourTime) ¢ Quantum)

i
timerTicks = TickCount(); e’!"
runTing += LinerTicks - ourTine;
SADE i i R i et
Trash
Figure 5-1.

Source Window after Step Command

5-4 Working Draft 2 Program Control

Suspending Program Execution

SADE allows you to set a breakpoint in one or more program locations, which can be
referenced as an expression or an address. The two types of breakpoints used in SADE are
known as address breakpoints and trap breakpoints. Both kinds of breakpoints are set
using the Bicak command, and may be optionally be followed by a break action. The
breakpoint types and break actions are described in the following sections.

After the desired breakpoints are set, you can then resume program execution. In the
simplest cases, the program will run until it reaches the first available breakpoint, and then
the debugger will stop program execution. At this point control normally passes back to
SADE.

SADE breakpoints and break actions can interact in many different ways with other SADE
commands. It’s difficult to make a general statement that applies to all uses of breakpoints
and break actions. The simplest kind of breakpoint to use is an address breakpoint with no
break action. The most complex situations occur when a number of trap breakpoints are
set, each having a break action. Break actions themselves may be either simple or may
consist of a series of commands grouped with Begin..end.

The commands within a program also have an effect on SADE’s breakpoint interpretation.
If the last program execution command was in a structured statement, and no break action
was specified for the breakpoint, the commands immediately following the program
execution command are also executed.

Address Breakpoinfs

An address breakpoint can be set anywhere within program code by specifying a RAM
address. Address breakpoints may also be set using symbolic references; in this case the
code may not yet be in memory at the time the breakpoint is set. The form of the Break
command used for address breakpoints is:

break addr, ... [break action]

A break action may be a single debugger command, a debugger proc call, or group of
commands delimited by Begin..end. Break actions, and their interaction with other SADE
commands, are described below.

Trap Breakpoints

Trap breakpoints may be set on a range of traps, or on all traps. For trap ranges, either the
trap name or the trap number can be used in a range expression. Trap numbers are prefixed
with a “+”. The two forms of the Break command used to set trap breakpoints are:

break rrap range [from addr range] [break actidﬁ ']

Program Control Working Draft 2 §-5

or
break all traps [from addr range] [break action]

The break action may a single debugger command, a debugger proc call, or group of
commands delimited by Begin..end, as described below. The trap range is a address range
beginning and ending with trap names of the form $Axxx..F$Axxx. :

The same trap may have a breakpoint set on it by its name alone, as a member of a trap
range, or as a trap within a specified address range. Each of these trap breakpoints will
have a separate breakpoint record created for it; you can see what breakpoints are set using
the List break command.

The same trap can be specified in multiple break commands. This can happen in one of two
ways: either overlapping trap ranges are specified, or different address ranges are specified.
Consider the following examples where multiple break commands are set with overlapping
ranges:

NOTE: These examples have not been tested and may not work on your
program!

break all traps actionl # break on any trap called from any address
break 1$A996..1$A9A0 action2 # break on _OpenResFile (and other traps)
called from any address

Break _OpenResFile from applZone..applZone” action3 #break on
_OpenResFile only if called from application heap

break _OpenResFile from ROMBase..ROMBase+256K action4
break on _OpenResFile only if called from ROM

With the above trap breakpoints set, the program’s calls to _OpenResFile would be handled
as follows: :

address call : action

$10000 _OpenResFile action 2 is interpreted. SADE first looked for breaks
on _OpenResFile only, but the address fell outside of
the specified ranges. It then found the first (most
recently specified) trap range that included
_OpenReskFile.

myproc+$100 _OpenResFile action3 is interpreted. This call
occurred within the application heap

SADE uses a search rule when finding an instance of a trap call that satisfies the conditions
for a specified breakpoint. For any breakpoint that specifies a trap name, SADE first
attempts to find a call within the program that exactly matches that name. Once it finds the
trap, SADE checks to see if it falls into the address range if one was specified.

5-6 : Working Draft 2 Program Control

bt

The next step is to check any trap ranges that might contain the trap. SADE accepts the
most recently defined trap range it finds that contains the trap, even if another trap range
defined earlier also contains the trap. Once a trap range satisfying the description is found,
SADE then checks to see if the range falls within the address range if one was specified.

The Break all traps option sets a trap breakpoint on all traps in a continguous range. If addr
range is specified, the debugger will break on traps called from the specified memory
range.

-

Break Actions

A break action is one or more SADE commands that are meant to be interpreted after the
breakpoint is reached. Normally, once SADE has performed the commands within the
break action, program execution will continue. However, using a Stop or Abort command
as part of the break action may halt subsequent program execution.

If a Stop command is contained in a break action, and the most recent program execution
command was in a structured statement, the commands immediately following the program
execution command are also executed.

If an Abort command is encountered in a break action, all pending program execution
commands are aborted. The debugger is entered immediately.

Note that the commands specified in the breakpoint action are saved and not interpreted
until the time when the breakpoint is reached. Consequently, any SADE variable references
used in a break action should use global variables only. Local variables defined in a break
action won't exist at the point when the breakpoint is reached and the break action is
invoked.

Unbreak Command

To clear a break on traps within the specified addresses or range of traps, use the Unbreak
command. This will also remove their associated break actions. The command format is:

unbreak addr, ...

or
unbreak trap range, ...

or
unbreak all [{traps | addrs}]

The addr is an address expression, and the trap range is a range of trap locations. The all
form will clear all breaks, optionally restricted to just traps or addresses if the traps or
addrs modifiers are present. ‘

For example, to undo a break on the GetResource trap, enter:

unbreak _GetResource

Program Control Working Draft 2 5-7

Stop Command

To return control to SADE while a program is executing, use the Stop command. Its syntax
is simply:

stop

The Stop command terminates any debugger commands already in progress. This
command can be used to stop the debugger during the execution of break actions. See the
section on “Break Actions” for more information about the use of Stop.

Abort Command

The Abort command terminates the current break action, causes the debugger to be fully
entered, and cancels any debugger commands pending. This means that when the previous
. execution was in a structured statement, the pending commands are canceled. The
command syntax is simply:

abort

See the section on “Break Actions” for more information about the use of Abort. See also
the Stop command, which terminates the break action without cancelling other pending
commands.

Monitoring Program Execution

Tracepoints allow you to monitor addresses or traps during program execution, without
haltng the program. When the tracepoint is encountered, a message is written to standard
output reporting the address or trap being traced, or the symbolic representation of the
address if available. This section describes the commands for setting and undoing
tracepoints. .

Trace Command

The Trace command sets tracepoints on the specified address or traps within the target
application. After setting the tracepoints, you can resume program execution. When the
tracepoint is encountered in the executing program, a message is displayed on the current
standard output, reporting the address or trap being traced, and optionally the symbolic
representation of the address. The command format is:

trace addr,...

or
trace trap range [from addr range], ..

5-8 Working Draft 2 Program Control

"

or
trace all traps [from addr range]

If addr range is specified, the message will be written only if the trap was called from the
specified memory range. In any case, execution is resumed after the message is displayed.

For trap ranges, either the trap name or the trap number can be used in a range expression.
Trap numbers may be prefixed with a *“+”; for example, the range from the system trap
_OpenResFile to _GetResource could be specified as

T$A997..T$A9A0
For example, to use a trap range with the Trace command, you can enter:

trace _OpenResFile.._GetResource

Unfrace Command

The Untrace command clears the tracepoint for the specified addresses or traps. Its format
is:

untrace addr ,...

or
untrace trap range,

or
untrace all [{traps | addrs}]

The addr is an address expression, and the trap range is a range of trap locations. The all
form will clear all tracepoints, optionally restricted to just traps or addresses if the traps or
addrs modifiers are present.

For example, to undo a trace on the _GetResource trap, enter:

untrace _GetResource

Program Control Working Draft 2 5-9

Chapter 6
Debugger Command Flow
Control
Debugger Command Flow Control..........cocoiiiiiiiiiiiiniiiniiinniiae 6-1
Grouping COMMANASeuviuiiititiiitieiiitaeeie i eneereteaeaaaneenens 6-2
Conditional Commandsouvuiueeeireetierereereeneaeeeneteeneereaeenenneneeaenns 6-4
Looping Commands.........cocoiiiiiiiiiiiiiiiiiiiiii e 6-5
For Command.......cooiiitiiiiiiiiiii i 6-6
While Commanao.eiiiiiiiiiiiiieii it 6-6
Repeat Command..........ccoeuveninennenienencnnnnnn. e 6-7
Loop and Leave Commands........ccceveveiniiuiniiiiiiiniiininiiinnn... 6-8
Cycle Commandooviiiiiitiiiieiieee e 6-9

Debugger Command Flow Control Working Draft 2 6-1

This chapter provides an introduction to the SADE execution flow control commands.
These commands are used in conjunction with other SADE commands to control the
sequence of debugger execution. Flow control commands are useful for automating your
debugging session: you can execute a group of commands as one unit, specify alternate
actions depending on the values within your program, or repeat debugger actions for a
specified number of times. With flow control, the tests you set for your program code will
only be performed under the conditions you specify.

The flow control commands can be divided into three groups:
» Grouping commands, which include the Begin...end construct.

» Conditional execution commands, including the If...end construct, with the optional
Else and Elseif commands.

« Looping commands, including the For, While, Repeat, Loop, Cycle, and Leave
commands.

The syntax of these commands is similar to that of the structured statements found in high-
level programming languages: a Begin must be followed by an End, a For is used with a
control variable, and an If can have alternate conditions using an Elseif or Else. You can
find many examples of flow control commands in the command files in the SADEScripts
folder.

rouping Commands

The grouping commands, Begin...end, allow a series of commands to be interpreted by
SADE as a single unit. All of the commands within the Begin..end construct are evaluated
before SADE executes any of them. The component commands are executed in the same
sequence as they are written.. The command format is:

begin
commands # all commands are evaluated before execution
end

The SADE Worksheet includes an example of the difference between commmands executed
separately and those that are executed as a group.

with a target suspended, select and execute the following statements
begin

step asm over

printf "this statement will execute when Sade is reentered\n"
end

6-2 Working Draft 2 Debugger Command Flow Control

‘-

note the different behavior if the following statements are executed
instead

step asm over
printf "this statement will not be executed when Sade is reentered\n"

this difference may change in the next release

One use of the Begin..end construct is the specification of breakpoint actions which consist
of more than one command or procedure invocation. If you don’t use a Begin...end
grouping, you can only specify one command or one procedure invocation after your
breakpoint. For instance, the following example is a breakpoint set on the procedure
DisplayText. The StandardEntry proc is the break action when SADE is entered.

break DisplayText StandardEntry # use proc from the SADEStartup file

However, when you use Begin..end, you can use any number of commands following a
breakpoint:

break DisplayText begin
printf "watch out for bugs"” # print a message to yourself
list symbol # list local symbols for this procedure
resource restype 'WIND' # display 'WIND' resources
end
The Stop and Abort commands, described in the previous chapter, may be used within a
Begin..end construct to halt execution of the break action. The example below shows a

Begin..end construct used with the If and Stop commands. If the condition specified in the
If statement is true, the break action will halt execution.

break DisplayString. (4) begin

str := theStr” # save value of parameter in debug variable str
if str = '***' then stop # halt break action if this condition is true
printf "$t\n", str # otherwise continue break action execution
end

Debugger Command Flow Control Working Draft 2 6-3

Conditional Commands

Conditional execution of debugger commands allows you to specify a number of alternate
actions, each based upon the the evaluation of a boolean expression. If the boolean
expression produces the value true, the commands that follow can then be executed. 'I'he
If..end command format is:

if booleanexpr [then]
command

[elseif booleanexpr [then]
commands..]*...

[else
commands...]...

end

Each If command must be followed by an End command. Elseif and Else commands are
optional, but must appear between the If..end commands in the order indicated above.
More than one Elseif may appear (indicated above by the [...]*); but at most one Else may
appear.

When an If ... end construct is evaluated, each of the statements is checked in order of
appearance. When the first If condition (a boolean expression) is true, the statements
controlled by the If are executed and the remainder of the contruct to the End is skipped. If
the condition is false, the statements controlled by the If are skipped and the next (Elseif)
condition is checked, if present. If an Elseif condition is evaluated and is true, the
commands it controls are executed and the remainder of the If construct is skipped. If no
previous conditions were evaluated as true when the Else command is reached (if present),
the commands controlled by the Else are then executed; otherwise they are skipped.

The commands controlled by an If extend to the corresponding End, or to the first Elseif or
Else, whichever comes first. The commands controlled by an Elseif extend to the next
Elseif, Else or End, whichever comes first. The commands controlled by an Else extend to
the corresponding End.

If...end constructs may be nested. They may also be used in combination with the other
flow control commands, as seen below. This example is from the file DisplayMemory in
the SADEScripts folder.

6-4 Working Draft 2 Debugger Command Flow Control

proc dm a,n

define i, j, b, s = "'
If undef(n) then

n := 16
end
for i := 1 to n do
if (i mod 16) = 1 then
if s <> '' then
_ printf " 'st'", s
end
if i <> 1 then
printf "\n"
end
printf "%.8X: ", a
5 = Tt
end
b := “unsignedByte(a)"
printf "%$.2X ", b
if (b < $20) | (b > $7E) then
s := concat(s, '."')
else
s := concat (s, cChar(b))
end
a :=a + 1
end
if s <> '' then

if i > 16 then
i := i mod 16
if 1 <> 0 then
for j := 1i to 15 do

printf " "
end
end

end

printf " 'st'", s
end
printf "\n"

end . -

#

W W W

W W

display memory from address a for n bytes

start with nulls
[default n = 16]
outer for loop

outer if statement
lst nested if

2nd nested if

end of outer if

if..else construct

end of for loop
outer if statement
1lst nested if

2nd nested if

nested for loop
end of 2nd nested if
end of 1lst nested if

end of outer if

end of proc

To use this proc, supply a memory location and the number of bytes to be displayed:

dm $319168,16

00319168: 4E 56 FF F2 48 E7 OF 18 28 6E 00 08 4A AD FE 60 'NV..H...(n..

This performs the same operation as:

dump byte $319168

Looping Commands

This section describes SADE’s looping commands, which allow you to execute one or
more SADE commands repeatedly. You can loop for a specified number of times with For,

Debugger Command Flow Conftrol Working Draft 2

6-5

loop unconditionally with Loop, or loop with a test at the beginning(While) or the end
(Repeat). The Cycle command allows you to execute within a loop construct.

For Command

The For command allows you to repeat a one or more SADE commands repeatedly, using a
control variable to specify the number of repetitions. The command format is:

for for clause [do]
commands
end

The commands enclosed in the For..end construct are executed untl the control variable
has taken on each successive value in the range expressed by the for clause. The for clause
is composed of debugger variables and expressions. It may have one of the following
forms:

var = expr to expr The first expression is the initial value, and the second
expression is the final value. The commands are executed once
for every value in this range.

var := expr downto expr With downto, the value of the control variable is
decremented by one for each repetition, starting with the initial
value and conclusing at the final value.

var := expr, ... A list of expressions may be used. Execution continues until the
control variable has taken the value of each of the listed
expressions.

See Chaptcf 3 for more information on the proper format for debugger variables.

For example, to perform SADE commands starting with a control variable of x equal to 10
until the control variable equals 5, use:

for x := 10 downto S do
(commands) # these commands will execute 5 times
end

For..end commands may be nested. They may also be used with other flow control
constructs, as well as in break actions.

‘While Command

A While statement contains an boolean expression at the beginning of the construct, which
is evaluated before execution takes place. The commands contained in the While...end
construct will only execute when the expression is true. If the expression is false, the

6-6 Working Draft 2 Debugger Command Flow Control

enclosed commands are skipped, and execution resumes following the end. The command

format is:

while boolean expr [do]
commands
end

While..end constructs may be nested.

The following example is from SADEScripts:MiscProcs. It uses a While..end construct to

check each window in the window list, and stops when the NIL pointer at the end of the
window list is encountered.

proc displaywindowlist;
displays the address and title of each window in the window list.

define nextwindow; #used to contain the pointer to each
window record in turn
define wTitleoffset := $86; #from ToolEqu.a. the offset into the

window record to the handle to the
window title.

define wTitle: #used internally to point to the window
title.
nextwindow := windowlist; # start at the first window, pointed to

from low memory.

while (nextwindow <> 0) do # a NIL terminated list.
wTitle := (nextwindow+wTitleoffset);
point at the window's title
printf ("nextwindow: $%.8X Window Title = 0
\"$p\"\n", nextwindow, “pstring (wTitle”"*) ") ;
write the information out.

nextwindow := (nextwindow+$90)";
'# point at the next in the list.
end; # while

end; # displaywindowlist

Repeat Command

To repeat a group of commands with a conditional test at the end of the loop, use the
Repeat command. The SADE commands enclosed by the Repeat..until construct are

executed untl boolean expr is evaluated as true. This ensures that the enclosed commands

are executed at least once.Repeat constructs may be nested.

Debugger Command Flow Control Working Draft 2

6-7

The command format is:
repeat
commands
until boolean expr
For example, to use a Repeat..undl construct that tests the value of variable x:

repeat
<supply commands here>
until x = 5

The SADEScripts:ResVerify command file contains a Repeat..untl construct that executes
once for each resource map. It stops execution when there are no more resource maps to
check. A portion of the ResVerify proc appears below:

proc ResVerify
verifies all resource maps in the resource chain
and all loaded resources

<definitions for local variables>
repeat
NEXTresFile := nextResHndl”
< commands here to check resource maps and display results>
nextResHndl := (NEXTresFile + 16)"°

check next resource map

until (nextResHndl = 0) # until no more resource maps to check
end # proc ResVerify

[loop and [eave Commands

The Loop..end construct provides unconditional looping. Its format is:
loop
commands
end

The enclosed SADE commands are executed repeatedly. Loop..end constructs may be
nested.

To exit the loop use the Leave command. Its format is simply:

leave

6-8 Working Draft 2 Debugger Command Flow Control

.

For example, you could use Loop and Leave as shown below:

loop

< execute commands here>

leave if i =5

< otherwise execute more commands>
end

CTycle Command

The Cycle command can be used with any of the While, Repeat, Loop, or For constructs.
It causes execution to continue from the top of the currently enclosing construct. Its format
“* s

cycle [if boolean expr]

If the optional If clause is present, the cycle action will happen 6nly if the boolean expr is
true; otherwise execution will continue following the Cycle command.To continue
executon within one of the other looping constucts, use the Cycle command.

For example, to use Cycle within a For construct:

for x := 10 downto 5 do

<commands>

cycle if x < 2

<more commands> # executed only when expression is false
end

Debugger Command Flow Control Working Draft 2 : 6-9

Chapter 7
Customizing the Debugging
Environment
Customizing the Debugging Environment..........coooiiiiiiiiiiiiiiiiiiiiiiiiiiiiinienn. 7-1
Executing a Debugger Command File...........ccocoiiiiiiiiiiiiiiiiiiiiinn .. 7-2
User-defined MacTOSo.venuiiniiiiit ittt e e eeaeeaeans 7-3
User-defined procedures.........cocvuiuiiiiiiiiiiiiiiiii i 7-4
User-defined FUNCHONSooiniiiiiii i e 7-5
Customizing your Startup Filecoiiiiiiiiiiiiii e 7-7
The OnEntry Command...........ooeiiiiiiiuieinineiiiiiieeieineeeneenene. 7-7
User-Defined Menus and Alerts......cccoooeieiiiiiiiiniiiiiininniiennnnennn. 7-8
AddMenu Commandcoeiieiiiiiiiiiiiiiiiiiirir e 7-8
DeleteMenu Commandcooeueiiiniiiiiiniiiieinienneennnn. 7-8
Alert Commandcceiieiiiiiiiiiiaiieiiene i ierieeaaaan 7-8

Customizing the Debugging Environment Working Draft 2 7-1

One of the most powerful aspects of SADE is the extent to which you can customize your
debugging sessions. In earlier chapters, you’ve seen how SADE commands include many
options that allow you to display information in the format you specify, or to execute
debugger commands in the sequence you choose. This chapter describes some of the ways
you can customize the SADE user interface—the menus that appear, the messages that are
displayed when you enter the debugger, and the functions and procedures that perform
specialized tasks.

You can extend SADE’s capabilities in one or all of the areas listed below:

* Create a SADE file, fill it with a series of SADE commands, and execute those
commands by invoking the command file name.

» Define a function or procedure in the SADE command language. These functions and
procedures can be called from within a SADE command file. Function and procedure
names, and any variables defined within them, are interpreted according to the scope
guidelines in Chapter 3.

¢ Create abbreviations for command names with user-defined macros. You can choose an
identifier that will stand for for any string expression you specify.

« Customize the SADEStartup file to include the initialization information you want when
you launch your SADE debugging session.

* Supply OnEntry actions that will be executed each time the chugger is entered.

« Add menus and menu items, allowing you to select which debugger commands are
available from the SADE menu bar. You can delete those menu items which aren’t
useful to you.

* Add alert boxes to inform you when selected debugger operations have occurred

The SADEScripts folder contains a number of SADE command files; these will give you an
idea of some of the ways that SADE commands can work together to provide a customized
debugging environment. As you read this chapter, you’ll see several examples of SADE
procs, funcs, and macros; these examples can also be found in the SADE Worksheet and
the SADEStartup file.

If a file or window contains executable commands, the Execute command can be used with
the filename to execute those commands. Any file that contains a group of SADE
commands can be used as a command file. The commands within the file can be executed
simply by using the Execute command with the filename as a parameter. The syntax of the
Execute command is:

execute filename

7-2 Working Draft 2 Customizing the Debugging Environment

P

The filename is a string expression. The Execute command can’t be used in any structured
statement, such as a Begin..end construct.

If you have a set of commands in your worksheet that you wish to save for later use, you
can open a new SADE file, and place the commands you want to save into the new file.
Later, you can use the Execute command to repeat the operations you saved. See Figure 7-
1 for an example.

& File Edit Find Merk Window SourceCmds = .
amozing:MPW:SADE A1:SADEScripts:newfite

| redirect 8 redirects output back to the main Worksheet
N define str
break DisployString. (4) begin

str = theStr* ® sgue value of porameter in debug variocble str
printf! “str = Kt\n", str

Figure 7-1.
Cregating @ new command file for execution

The Macro command allows you to define a macro, which associates a string of characters
with a named identifier. When SADE encounters these characters, it interprets the macro as
if it was dealing with the identifier. For instance, when the macro is used in place of a
command, SADE temporarily redirects input to the command that forms the macro’s actual

value.

The command syntax is:

macro name string expr

Customizing the Debugging Environment Working Draft 2 7-3

References to a macro may appear anywhere a token could appear in the debugger input
stream. Macro definitions are limited to a length of 254 characters. Macros allow you to
create abbreviations, which could be used to change the debugger language to a more terse,
Macsbug-like language. (See the example below, which is from the SADEStartup file.)

macro br 'break'
macro c¢clr ‘'unbreak all'

To suppress a macro call, you can use an identifier preceded by a “9”. Macro definitions
can be nested; that is, a macro definition can contain references to other macros. Macro
definitions are not recursive; references in a macro definition to the macro being expanded
aren’t treated as macro calls. A macro definition is not allowed in any structured statement.

Macros may be redefined. You can remove a macro definition with the Undefine command.
This is occasionally necessary if your program contains a variable or procedure name
identical to one of the macros defined in the SADEStartup file.

Procedure definitions in the debugger language are delimited by the Proc and end
commands. The Proc command identifies the procedure's name and optional parameter
list. Its format is:

proc name [arg name , ...]

body

end

or

proc name ([arg name,...])
body

end

The name is a string expression, the arg name is a SADE identifier, and the body is
composed of one or more SADE commands.

A debugger proc is called by beginning a debugger command with the name of the proc,
followed by the optional actual parameter list. The parameter list follows the prototype
parameters from the proc’s definition, with the actual parameter values substituted for the
parameter names. When the proc executes, the actual parameter values will be matched
positionally with the formal parameter names.

The number of actual parameters need not match the number of formal parameters in the
proc definition. If too few actual parameters are specified, the formal parameters for which
there were no corresponding actual parameters will be assigned a special undefined value.
Extra actual parameters have no corresponding formal name, but can be referenced through
the predefined debugger array variable Arg (See Chapter 3). This allows the parameters of
a proc to be accessed positionally with references of the form “arg[n]”. The number of the

7-4 Working Draft 2 Customizing the Debugging Environment

last actual parameter specified is contained in the predefined debugger variable NArgs. The
values of these predefined debugger variables represent the parameter state of the currently
active proc and are not defined when debugger execution is not in a proc.

If a parameter list is used with the Proc command, it identifies parameters by name only.
Parameters are not typed within Proc definitions; instead, they take on the types of their
actual parameter values at the point of call.

The parameter list may optionally be enclosed in parentheses. If the parentheses are
included in the proc definition, they must be included when the proc is called as well.
Similarly, if the definition was not parenthesized, then invocations of the proc must not be
parenthesized.

Procs may be redefined. A proc must have been defined before a call to it is processed (so
that the proc name can be recognized as a debugger symbol). Thus, if mutually recursive
procs are desired, one proc must be defined first with a dummy proc definiton, so that the
second proc can refer to it, and then the first proc can be redefined, referencing the second
proc. The minimal dummy proc definition is: “proc foo; end;”. Proc definitions may also
be removed with the Undefine command.

Proc calls may be nested. The Return command may be used with Proc definitions; see the
section which follows for more information.

The following example is from the SADE Worksheet:

=

proc factecrial n, file # the proc Factorial is called with
two arguments
define i
if nargs > 1 then
redirect file
end
for i := 1 to n do

© printf("fact(%.2d) = %19.19g\n", i, fact(i))
this line calls the SADE function fact

end
if nargs > 1 then
redirect
end
end # end of proc Factorial

User-defined Functions
Function definitions in the SADE language are delimited by the Func..end construct. Aside

from these delimiters, procedure and function definitions are essendally the same. The
format for a function definition is:

func name ([param name,...])

Customizing the Debugging Environment Working Draft 2 7-5

body
end

The name is the function name, the param name is the parameter name, and the body is the
code that makes up the function. A function definition must have a Return command, with
a return value specified, as the last executable statemnent. See the syntax for the Return
command below. '

The function type isn’t specified in the function definition. The function takes on the type
of the value specified in the return statement that was executed to leave the functon . This
means that functions are not limited to returning results of a single type.

A debugger func is called using conventonal functional notation, with the function name
followed by the optional actual parameters in a parenthesized list in the format of the
prototype established in the func definition. Func parameters are handled in the same
fashion as Proc parameters, and the predefined debugger variables Arg and NArgs may
also be used.(See Chapter 3). User-defined functions may be called anywhere an expr is
allowed. '

Function names can be removed as SADE symbols through use of the Undefine
command.

The following example of a function definition is found in the SADE Worksheet:

func fact (n) # supply one argument
if n <= 1.0 then
return 1.0
else
return n * fact(n-1) # return the result
end

end

The Return command causes the debugger to exit the a debugger procedure or function
currently in execution. If returning from a function, an expression must be specified for
the function value. When returning from procedures there should be no return value.

The command format is:

return [expr]

Customizing your Startup File

The commands within the SADEStartup file are executed every time you launch the SADE
program. You can, if you wish, edit this file, and change the contents to suit your

7-6 Working Draft 2 Customizing the Debugging Environment

debugging needs.There are a number of different ways that you can customize the
SADEStartup file. You can, of course, define your own SADE procs, funcs, and macros,
as described above, and place these definitions in the startup file. Or you may place the
definitions in command files, and execute the various command files from SADEStartup.

Alternatively, you can leave SADEStartup as it is, and create your own Startup file. For
instance, you could name your startup file “UserStartup”, and place your procs, funcs, and
macros there. To execute “UserStartup” each time SADE is launched, use the Execute
command as follows:

execute 'UserStartup’

You also have the option of changing the default source file display interface that is
established in SADEStartup. The commands used to implement the source file display are
described in the sections that follow. These include the OnEntry command, which controls
SADE’s behavior each time the debugger is entered. The Addmenu and DeleteMenu
commands let you customize SADE’s menu interface. The Alert command gives you the
ability to display an alert box whenever you think you need it. Using one or more of these
commands, you can substantially affect how SADE will work for you.

The OnEnfry Command

The OnEntry command can be used to execute one simple or compound SADE command
each time SADE is entered. It is typically used within a startup file to provide a source
display each time SADE is entered. Break actions specified using OnEntry may also be
used when entering SADE from a breakpoint. The command syntax is:

onEntry [break action]
The break action may be one simple SADE command, as shown below:
onEntry printf "%.8X\n",pc

If more than one command or procedure invocation is needed within the break action, the
Begin..end constuct should be used to group a sequence of commands. A compound
command formed in this way is interpreted by SADE as one unit.

In the SADEStartup file, the “StandardEntry” proc is the default argument to the OnEntry
command. This procedure provides for source display of the current program counter (PC)
on entry into the debugger. If you wish to change the behavior of the source display when
the debugger is entered, you can write your own SADE procedure, and use its name as the
argument to OnEntry.

User-Defined Menus and Alerls

Menu items may be added to, or deleted from, the standard SADE menus File, Edit, Find,
Mark, and Window. Within the SADEStartup file, the SourceCmds menu is implemented
with a list of Addmenu commands. You may wish to change the contents of the

Customizing the Debugging Environment Working Draft 2 7-7

SourceCmds menu, or to create your own menu containing a different set of debugger
commands. The Addmenu and Deletement commands are described below.

The default source display interface uses an alert box to inform you when it has reached a
source break. This alert box is implemented with an Alert command in the SADEStartup
file. If you wish to change this behavior, or to call alert boxes from your own debugger
command files, you can use the Alert command as described below.

AddMenu Command
The AddMenu command associates commands with menu items. Its syntax is:
addmenu [menuname [itemname [command]]]

The menuname is a string expression containing the name of the menu to which to add the
item. If a menu of menuname doesn’t exist, a new menu by that name will be created.The
itemname is a string expression that includes a command key equivalent and the name of
the menu item. If a menu item with the same name exists, it is replaced; otherwise a new
menu item is created. A command is a string expression, containing a single debugger
command that will be submitted to the command interpreter when this item is selected.

If any of the optional parameters are not supplied, the current values of menus from the
specified level down are displayed.

DeleteMenu Command
The DeleteMenu command removes menus or menu items. Its syntax is:
deletemenu [menuname [itemname]]

The menuname is a string expression containing the name of the menu from which to delete
the item. The itemname is a string expression that contains the name of the menu item.

If only menuname is specified, and it contains no menu items, the menu is deleted. If a
menu item with the same name specified in itemname exists, it is deleted.

Caution: If both menuname and itemname are omitted, all user-defined items are deleted.

Alert Command

The Alert command displays an alert box containing the specified message. The alert is
displayed until the OK button is clicked. If beep is specified, a sound is generated when
the alert box appears.

7-8 Working Draft 2 Customizing the Debugging Environment

The command syntax is:
alert [beep] message

The message is a string expression that will be displayed in the alert box, as in the example
below:

alert "watch out for bugs"”

Figure 7-2 shows the how the alert box is positioned on the screen.

" & File Edit

.
Find Mark Window SourceCmds E'S

amazing:MPLW:SADE AR1:SARDEScripts:newfile

redirect 8 redirects output back to the main Horksheet

define str

break DisployStri
str = theStr
printf{ “str =
stop watch out for bugs
end

go

execute “newfile”

str = 7

Figure 7-2.
Position of a SADE alert box

Customizing the Debugging Environment Working Draft 2 7-9

Source-Level Debugging
TO BE SUPPLIED

Source-Level Debugging

Chapter 8
Source-Level Debugging

Working Draft 2

8-

This chapter describes source-level debugging in SADE. It will include examples of how
the user can set up his own source-level debugging world. There will be a number of
screens showing the appearance of source windows and menus, including the sourceCmds
menu.

« TOBE SUPPLIED

The SourceCmds menu
Right now this menu is also described in Appendix A with the other SADE menus.

8-2 Working Draft 2 Source-Level Debugging

SADE Menus

Appendix A
SADE Menus

Working Draft 2

FWET A ey

This chaptér describes the SADE menus. They are similar in most respects to the MPW
Apple, File, Edit, Find, Mark, and Window menus. **list any differences here***

***The following sections are the same as in the MPW manual - please check to see that
this information is also true of SADE. I'm sure this appendix will need extensive
renovation!***

Applé‘ Menu

About SADE Displays version and copyright information.

File Menu
Each of the items in the SADE File menu is described below.

New... %N
Open... %0
Dpen Selection =0
[{nse KA
Save E 33
Save as...

Save s Copy...

Revert to Saved

Page
Pr dow

Quit %xQ

Figure A-1
File menu

NEED TO FIX THIS SCREEN DUMP

New... Displays the New dialog box, shown in Figure A-2.
The SADE New dialog box allows you to enter a name
and select a directory location for the document. The
Command-key equivalent is Command-N.

A-2 Working Draft 1 SADE Menus

Open Selection
Close

Save
Save as...

Save a Copy...

Revert to Saved

Quit

SADE Menus

O Atxamples
O Rincludes
O Applicetions
0O CExamples
0O Cincludes
O ClLibraries

Open document

Figure A-2
New dialog box

Displays an Open dialog box (similar to that in Figure
A-2) that allows you to open any TEXT file on the
disk. When you open a file for the first time, the
selection point is at the top of the file. When you open
the file again, it reappears in the same state in which it
was saved; that is, the previous selection or insertion
point is preserved unless the file has been modified
outside the editor. The Command-key equivalent is
Command-O.

Note: If you try to open a document that’s already open
in another window, that window will be brought to the
front.

Not used in SADE.

Closes the active (frontmost) window. The Command-
key equivalent is Command-W.

Not used in SADE.

Displays a Save As dialog box, allowing you to change
the name and directory location of the active window.
Saves the current contents of the window as the “Save
As” file, and allows you to continue editing the new
file. The old file is closed without saving, under its
original name.

Saves the current state of the active window to a new
file on the disk. You can then continue editing the old
file.

Not used in SADE.

Returns to the Finder, first allowing you to save the
current state of all open files. The Command-key
equivalent is Command-Q.

Working Draft 1

A-3

See Appendix C for more information on using the commands on this menu.

Undo %2
Cut L3t
Copy E-14
Paste %xU
Cleor

Select All %R
Show Clipboard

Format... t 44
Rlign

Shift Left %I
Shift Right 2]

Figure A-3

Edit menu

Undo Undoes the most recent changes to fexz in the active
window (but not changes to resources such as font or
tab settings). You can select Undo again to redo
changes. The Command-key equivalent is Command-
Z.

Cut Copies the current selection in the active window to
the Clipboard, and then deletes it from its original
location. The Command-key equivalent is Command-
X.

Copy Copies the current selection in the active window to
the Clipboard. The Command-key equivalent is
Command-C.

Paste Replaces the contents of the current selection in the
active window with the contents of the Clipboard. The
Command-key equivalent is Command-V.

Clear Deletes the current selection in the active window.

Select All Selects the entire contents of the active window. The

Command-key equivalent is Command-A.

Show Clipboard Opens a window displaying the contents of the
Clipboard, if any.

Format... Displays the Format dialog box offering a selection of
fonts and sizes. The Command-key equivalent is
Command-Y. This dialog box is shown in Figure A-4.

!

A-4 Working Draft 1 SADE Menus

Font Size |

Chicago KO & Auto Indent ’

Courier O show Invisibles |

6eneva 9 .5 .

Helvetica Tabs: E

Monaco

5 |

Figure A-4

Diclog box of the Format menu item

Tabs Sets the number of spaces that a tab character will

signify for the active window. (The default tab setting
iS ***???***)

- Auto Indent Toggles Auto Indent on and off. When Auto Indent is
on, pressing Return lines up text with the previous
line. (A check mark indicates that Auto Indent is on.)

Show Invisibles Displays the invisible characters as follows:

Tab A
Space 0
Return -
All other control characters

The rest of the dialog box consists of a selection of the fonts installed in your System file.
Available font sizes are displayed in the dialog window.

* Note: Selecting a font and font size affects the entire active window, not just the current
selection in that window.

Align Aligns the currently selected text with the top line of the
selection.

Shift Left, These commands move selected text left or right by one tab

Shift Right stop. You can thus move a block of text while maintaining
indentation. Shift Left adds a tab at the beginning of each
line. The Command-key equivalent is Command-[. Shift
Right removes a tab, or the equivalent number of spaces,

~ from the beginning of each line. The Command-key

equivalent is Command-]. If you hold down the Shift key
while using these menu items, the selection will be shifted
by one space, rather than by one tab.

SADE Menus Working Draft 1 A-5

Each of the items in the Find menu is described below.

Find... xF
Find Same %6
Find seipction 3Kt
Displey Selection

Replace... _. %R
Replace Seame %7

Figure A-S
Find menu

Find... Displays a Find dialog box and finds the string you
specify. By default, the Editor searches forward
from the current selection in the active window (and
does not wrap around). The Command-key
equivalent is Command-F. This dialog box is very
similar to the Find-and-Replace dialog box described
below; the explanation of the radio controls and
check boxes applies to both dialog boxes.

Find Same Repeats the last Find operation, on the active
window. The Command-key equivalent is
Command-G.

Find Selection Finds the next occurrence of the current selection in
the active window. The Command-key equivalent is
Command-H.

Display Selection Scrolls the current selection in the active window into
view.

Replace... Displays the Find-and-Replace dialog box shown in
Figure A-6 and explained below. The Command-key
equivalent is Command-R.

Replace Same Repeats the last Replace operation. The Command-
key equivalent is Command-T.

Find whet string?
l , |

@ Literal [0 Case Sensitive
Q Entire Word [Search Backwaerds

Q Selection Enpression

Figure A-6
Dialog box of the Replace... menu item

A-6 Working Draft 1 SADE Menus

The operation aof this dialog box is very similar to that of the Find dialog box, except that
selected strings can be located and replaced with a different string throughout a file. Both
dialog boxes have three radio buttons offering you one of three mutually exclusive options:

Literal Finds the exact string (without regard for case) that
you specify, wherever it may appear, even if part of
other words or expressions.

Entire Word Finds the specified string only when it occurs as a
i single word. To the Editor, a word is composed of
the characters a-z, A-Z, 09, and the underscore
character (_). (You can change these default values
¥can you?*—see “Predefined Variables” in

Chapter 3.)
Selection Enables full selection and regular expression syntax,
Expression used with the command language and described in

Chapter 3. These expressions allow powerful
selection and pattern matching capabilities that use a
special set of metacharacters introduced below.

Any combination of the three check boxes may be selected:

Case Sensitive Searching is normally case insensitive; selecting this
menu item specifies case-sensitive searching. (It does
this ***how?77%**))

Search Backward Search backward, from the current selection to the

beginning of the file. (Normally, searching is
forward, and stops at the end of the file.)

Wrap-Around Searches forward to the end of file, then wraps

Search around and searches from the beginning of the file to
the location of the cursor when the search was
initiated. (Direction of search is reversed if Search
Backward is also checked.)

* Note: For Find and Find-and-Replace operations, a beep indicates that the selection was
not found.

Selection expressions

When the Find-and-Replace dialog’s “Selection Expression” switch is selected, you can
use a special set of expression operators to specify selections and text patterns. This section
introduces a commonly used subset of these selection operators. Many more capabilities are
available, and a full discussion can be found in Appendix C.

Selection by line number: A number given by itself specifies a line number. In the
figure below, for example, the command selects line number 30 in the active window.

SADE Menus Working Draft 1 : A-7

Find what selection expression?
[30] |
O Literai [] Case Sensitive
Q Entire Word O search Backirards
@ Selection Expression O wrep-Around Search
Figure A-7

Selection by line number

Wildcard operators: The same wildcard operators used in filename generation can also
be used to specify text patterns for Find commands:

? Any single character (other than Return).

= Any string of O or more characters, not containing a
Return. (To get the = character, press Option-X.)

[characterList)] Any character in the list.

Note: The brackets must be typed; they don’t indicate
an optional syntax element.

[—characterList] Any character not in the list. (To get the — character,
press Option-L.)

These pattern matching operators are part of a larger set called regular expression
operators. A regular expression consists of literal characters and/or regular expression
operators, and must be enclosed in slashes (/.../). The figure below shows an example.

Find what selection expression?
[/init=/| |

O Litersl O Case Sensitive
Q Entire Word O Seaich Backwards
@ Selection Exnpression O wrep-Around Search

Figure A-8
Example of a regular expression

This command finds and selects any string that begins with “init” and is followed by any
characters other than a return. Figure A-9 shows the result of this command.

A-8 Working Draft 1 ‘ SADE Menus

R HD:MPLW:PExamples:Sample.p IEE
TEPaste(textR);

clearCommand : TEDelete(textd);
END; {of item CASE)
END; (of edatlD)

END; (of menu CASE) (to indicate completion of comsend ,)
Bilitelienu(0); (call tenu Hanager to unhighlight menu |}
(highlighted by HenuSelect))
END; (o2 DoCommand)

BEGIN (main progranm)
()
UnlLoadSes{Q@_Detalnit); (remove data initialization ocode Nxor
InitOrat(@thePore); (initialize QuickDraw)
InitFonts; (initialize Yont Hamager)
l'luh!unu(ovontvont 0), (call 0S Event tgr to discard aay pre O
MPY Shell iy ; Bt
Figure A-9

Text selected with the Find command
need to change to a different display for SADE

Mark Menu

A marker is a text selection that has been given a name. Markers are useful for navigating
within a window, and they can simplify many selection expressions. The upper half of the
Mark menu contains the commands Mark and Unmark and the lower half lists all existing
markers. To jump to the location of a marker you simply choose the name of the marker
you want from the Mark menu, shown in Figure A-10 (only the marker “Here” has been
created in this example).

For a detailed discussion of the syntax, characteristics, and programmatic use of markers,
see Appendix C and Part II.

Mark... %M|

Unmark...

Here

Figure A-10
Mark menu ‘

Mark... To create a new marker interactively, first select the text you
want to mark, then choose ‘“Mark” from the Mark menu. A
dialog box like that in Figure 3-11 appears, asking for the
name you want the marker to have. The editable text field in
the dialog box is initialized to the first word (that is,
whatever you would select by a double-click) in the

selection. If you click Cancel in the dialog box, the selection
is unchanged and no new marker is created. If you click OK
a new marker is created with the specified name and the new
marker’s name is added to the list of marker names displayed
by the Mark menu.

SADE Menus Working Draft 1 A-9

Mark the seiection with what name?

Figure A-11
_'Mark dialog box

If you try to create a new marker using the name of an
already existing marker, a dialog box will appear, giving you
the chance either to delete the old marker and add the new
(OK), or to forget about adding the new marker (Cancel).

Unmark... If you choose the Unmark menu item from the Mark menu,
you'll see a dialog box, like that in Figure A-12, that
contains a list of currently defined markers and the two
buttons Delete and Cancel. If a marker is currently selected,
its name is highlighted in the marker list. You can select any
number of marker names from the list. If you click Delete,
every marker selected in the list is deleted. If you click
Cancel, the selection remains unchanged and no markers are
deleted.

Delete which markers?

Here
There
Everywhere

g \
| Delete)

Figure A-12
Unmark dialog box

I

|

The upper half of the Window menu contains the two commands Tile Windows and Stack
Windows; the lower half lists all open windows, as shown in Figure A-13. Selecting a
window from the menu brings that window to the front, that is, superimposes it over
anything else on your display. A check indicates that the window is currently the “active”
window, that is, the frontmost. A bullet (¢) indicates that the window is the *“target”
window, that is, the second to the front. Underlining indicates that a window contains
changes that have not yet been saved.

A-10 Working Draft 1 SADE Menus

5w

Tile Windows
Stack Windows

v»HD :MPl:iUorksheet

Figure A-13
Window menu

Tile Windows Use this command to arrange windows in a tile pattern
on the screen so that each window’s contents are
visible. Then choose a window and click its zoom box
to enlarge it to full screen size.

Stack Windows Use this command to arrange windows in a diagonally
staggered pattern on your screen. This is the “open file
folder” way to see several windows at once.

Worksheet The Worksheet window always appears first in the
Window menu. The menu item lists the full pathname of
the worksheet.

SourceCmds Menu

The SourceCmds menu contains a group of commands implemented in the SADEStartup
file. This menu is easy to customize by adding menus and menu items, following the
guidelines in Chapter 8. For these menu commands to work, SADE must be able to locate
the source files for your application. If the source files are not in the same directory as the
application, use the Sourcepath command to specify their location.

The default contents of the SourceCmds menu include:

Break This menu item executes the SADE proc
setSourceBreak, which exists in the SADEStartup file.
This proc uses the SourceToAddr function to locate the
address associated with the selected location in the
source file. The debugger then executes a breakpoint
when the source location is reached. The Command-key
equivalent is Command-B.

Unbreak This menu item removes breakpoints set within the
source file by executing the unSetSourceBreak proc.
This proc exists in the SADEStartup file.The
Command-key equivalent is Command-U.

Step This command executes a single line from the source
file, then halts execution. Trap calls and routines called
by JSRs and BSRs will be treated as single instructions
The Command-key equivalent is Command-L.

SADE Menus Working Draft 1 A-11

Step Into

Where PC?-

This command executes a single line from the source
file, then halts execution. Each call to a ROM routine or
subroutine will cause the debugger to be reentered at the
first line of the called routine. The Command-key
equivalent is Command-—.

This command causes the application program to
resume execution. The Command-key equivalent is
Command-P.

This menu item highlights the line in the source file that
represents the current location of the program counter.
If the source file is not available, it displays an alert box
with the message “Cannot find source for PC”. The
Command-key equivalent is Command-I.\

(***See Release Notes for current release - more options have been

Figure A-14

added, including display of variable values and
switching between source level and assembly level
debugging.***)

SourceCmds menu

Working Draft 1

SADE Menus

Appendix B
Sample Program

Sample Program Working Draft 2 B-1

here provide listing of sample program Eventlog

B-2 Working Draft 2

Sample Program

Editing in SADE

Editing in SADE Working Draft 2 C-1

This chapter covers what you’ll need use SADE editing functions. Editing within the SADE
worksheet is similar, although not idendcal, to the editing functions provided by the MPW
worksheet. The major difference is that in SADE the editing functions are not scriptable;
they are confined to the functions available from the SADE Edit menu. This chapter also
includes a list of some editing shortcuts that you might like to try.

Basic editing functions are available as menu commands. You can open a file with the Open
command, or by selecting its name on the screen and choosing the Open Selection
command (Command-D) from the File menu. You can select and edit text with the usual
Macintosh editing techniques, using menu commands to cut, copy, and paste selected text.
The menu commands are described in Appendix A.

By default, command output and any error messages appear in the window immediately
below the executed command line. Commands are not case sensitive. You can have
multiple open files, and you can enter commands in any window.

The simplest commands consist of the command name only. For example, type the
command

version

and press the Enter key (without pressing Return first—that is, the insertion point must be
on the same line as the command when you press Enter). This command outputs SADE
version plus a timestamp:

Debugger (Ver 0.419) - 14:39:48 13-Apr-88

Commands typed into a window are referred to as standard input. When the results of
the command(s) are then displayed in the same window (the normal, default setting) they
are called standard output. Any window that is used to enter standard input and display
standard output is referred to as the console.

SADE Shortcuts

Table C-1 lists some SADE shortcuts that make editing and entering commands quicker and
easier. These shortcuts work in any SADE window. You can also see this list by using the
SADE Help command as follows:

help shortcuts

C-2 Working Draft 2 Editing in SADE

Table C-1. SADE Shortcuts

Command

Double click
Triple click
Double clicking

before any quote (', ", or °)

Double clicking
before or after { }[]()

UpArrow
DownArrow
RightArrow
LeftArrow

CMD-Shift-UpArrow
CMD-Shift-DownArrow
CMD-DownArrow
CMD-RightArrow
CMD-UpArrow
CMD-LeftArrow
CMD-Backspace

Action

select word

select line

select untl

the matching quote

select until
the matching character

move selection point one line above current selection
move selection point one line below current selection
move selection point one character to the right

move selection point one character to the left

move selection point to top of file

move selection point to bottom of file

move selection point down one screen size
move selection point to right edge of current line
move selection point up one screen size

move selection point to left edge of current line
delete from current selection to end of file

In Dialogs without an Edittext item
Y

N
CMD-.

Editing In SADE

Yes
No
Cancel

Working Draft 2

C-3

Symbol File Format

Appendix D
Symbol File Format

Working Draft 2

here provide symbol file format

D-2 Working Draft 2

Symbol File Format

Object File Format

Appendix E
Object File Format

Working Draft 2

E-1

here provide explanation of compiler output

E-2 Working Draft 2

Object File Format

abort
addmenu
alert
begin..end

break
case
close
cycle
define

deletemenu
directory
disasm
dump
execute

find
for..end
func..end

go
heap [display]
heap check
heap totals

help
if..end
Kl
launch
leave
list
loop

Part Il - SADE Command

Pages

terminate break action and pending commands
associates commands with menu items
display an alert box

group commands together

set breakpoint in program code

control case sensitivity of symbol name lookup
close a window

continue execution within construct

declare a debugger variable

deletes menu items

write or set the default directory
disassemble and display code
display unstructured memory
execute debugger commands in a file

search for a target
looping with a control variable
define a function in the debugger language

resume execution

display heap information

verify the consistency of the heap

display summary information for the heap

get help on SADE topics or commands

conditional execution of commands

kills an application or tool

launches an application

exit from a Loop, For, While, or Repeat construct

lists symbols, processes, address or trap breakpoints, or tracepoints
repeat commands until Leave

Working Draft 2 -1

-2

macro...end

onEnty
open
printf

proc...end
quit
redirect

repeat ~until

associate characters with an identifier
set commands for debugger entry

open file in window

sends formatted output to file or window

define a procedure in the debugger language
gets out of debugger
redirect standard output

conditional looping with end test

resource [display] display the resource map

resource check

return

save
shutdown

sourcepath
stack

step

stop
symbols

target
trace
unbreak
undefine
untrace

version
while..end

check the resource map
exit from a proc or func

save specified windows

shuts down system (with restart
option)

identify search path for source files
display stack frame

single step execution

terminate break action

control symbolic display

select program target and identify symbol file

sets tracepoint

removes breakpoints.

remove definition of SADE proc, func, macros, or local variable
clears tracepoints

display current SADE version
repeat commands zero or more times under condition

Working Draft 2

T

Abort — terminate break action and pending
commands

~

Syntax abort

Description The abort command terminates the current break action, causes the debugger to be
fully entered, and cancels any debugger commands pending. This means that when
the previous execution was in a structured statement, the pending commands are

v canceled. See also the Stop command, which terminates the break action without
cancelling other pending commands.

Example abort

See also stop, break

Working Draft 2 Abort -3

AddMenu — create a menu or menu items

Syntax " addmenu [menuname [itemname [command 111
where

menuname is a string expression containing the name of the menu that will include
the item.

itemname is a string expression containing the name of the menu item. The
itemname may include a Command-key equivalent by listing the command key
after a backslash (“\") at the end of the string,

| command is a string expression containing a debugger command.

Description The addmenu command allows you to create a menu or menu items that, when
selected, will execute SADE commands. The addmenu parameters associate SADE
commands with menu items. If a menu of menuname does not exist, a new menu is
created. If a menu item with the same name exists, it is replaced; otherwise a new
menu item is created.

The debugger command contained in the command parameter is submitted to the
command interpreter for execution when the corresponding menu item is selected.

If any of the optiomil parameters are not supplied, the current values of menus from
the specified level down are displayed.

|Excmple addmenu ‘'Debug' 'Disasm/1' ‘'disasm’

I addmenu 'Debug' 'Code Resources' 'heap restype "CODE"'

See also DeleteMenu

4 AddMenu Working Draft 2

Syntax

Description

Example

See also

Working Draft 2

Alert— display an alert box

- alert [beep] message
where
message is a string expression that will be displayed in the alert box.

The alert command displays an alert box containing the specified message. The alert
is displayed until the OK button is clicked. If beep is speaﬁed a sound is generatd
when the alert box appears.

alert "watch out for bugs"”

- displays a special message

to be supplied

Alert -5

Begin...End — group commands

commands are one or more SADE commands

Output redirection applied to a begin...end construct will redirect the output of all

save value of parameter in debug

variable str

Syntax - begin
commands
end
where
Description
example below.
the grouped commands.
IExompIe break DisplayString. (4) begin
str := theStr”
i1f str = '**x' then
stop
end
end
See also break , stop
-6 Begin...End

The begin and end commands allow a sequence of commands to be bracketed or
grouped together. One use of this construct is the specification of breakpoint actions
which consist of more than one command or procedure invocation, as shown in the

Working Draft 2

-

Syntax

Description

Working Draft 2

Break — set a breakpoint in program code

break addr, ... | break action]

or

break trap rangelfrom addr range] [break action]
or

break all traps [from addr range] [break action)

where
addr is an address expression

break action is a single debugger command, a debugger proc call, or group of
commands delimited by begin ... end.

addr range is a range expression

trap range is a address range beginning and ending with trap names of the form
$t8Axxx..t§Axxx

The break command sets one or more breakpoints within a target program’s code.
There are two distinct types of breakpoint: address breakpoints, and trap
breakpoints. Both kinds of beakpoint may be optionally be followed by a break
action, as described below.

After the desired breakpoints are set, you can then resume program execution. The
program will run until it reaches the first available breakpoint, and then the
debugger will stop program execution. At this point control passes back to SADE.

If the last program execution command was in a structured statement, and no break
action was specified for the breakpoint, the commands immediately following the
program execution command are also executed.

Address breakpoints: These can be set anywhere within program code by
specifying a RAM address. Address breakpoints may also be set using symbolic
references; in this case the code may not yet be in memory at the time the
breakpoint is set.

Trap breakpoints: For trap ranges, either the trap name or the trap number can
be used in a range expression. Trap numbers are prefixed with a “4"; for example,
the range from the system trap _OpenResFile to _GetResource could be specified as

1$A997..1SA9A0

Break -7

The same trap may have a breakpoint set on it by its name alone, as a member of a
trap range, or as a trap within a specified address range. Each of these trap
breakpoints will have a separate breakpoint record created for it; you can see what
breakpoints are set using the list break command.

The same trap can be specified in multiple break commands. This can happen in
one of two ways: either overlapping trap ranges are specified, or different address
ranges are specified.

Consider the following examples where multiple break commands are set with
overlapping ranges:

break all traps actionl # break on any trap called from any address

break t$A996..+SA9A0 action2 # break on _OpenResFile (and other traps)
called from any address

break _OpenResFile from applZone..applZoneA action3
break on _OpenResFile only if called from
application heap

break _OpenResFile from RomBase..RomBase+256K action4
break on _OpenResFile only if called from
ROM

With the above trap breakpoints set, the program’s calls to _OpenResFile would be
handled as follows:

address call action

$10000 _OpenResFile action2 is interpreted. SADE first looked for breaks
on _OpenResFile only, but the address fell outside of
the specified ranges. It then found the first (most
recently specified) trap range that included
_OpenResFile.

myproc+$100 _OpenResFile action3 is interpreted. This call
occurred within the application heap

SADE uses a search rule when finding an instance of a trap call that satisfies the
conditions for a specified breakpoint. For any breakpoint that specifies a trap
name, SADE first attempts to find a call within the program that exactly matches
that name. Once it finds the trap, SADE checks to see if it falls into the address
range if one was specified.

The next step is to check any trap ranges that might contain the trap. SADE accepts
the most recently defined trap range that contains the trap, even if another trap
range defined earlier also contains the trap. Once a trap range satisfying the
description is found, SADE then checks to see if the range falls within the address
range if one was specified.

Working Draft 2

«

Example

See also

Working Draft 2

The break all traps option sets a trap breakpoint on all traps in a continguous
range. If addr range is specified, the debugger will break on traps called from the
specified memory range.

Break actions: A break action can be one or more SADE commands that are
meant to be interpreted after the breakpoint is reached. Normally, once SADE has
performed the commands within the break action, program execution will continue.
However, using a stop or abort command as part of the break action may halt
subsequent program execution.

If a stop command is contained in a break action, and the most recent program
execution command was in a structured statement, the commands immediately
following the program execution command are also executed.

If an abort command is encountered in a break action, all pending program
execution commands are aborted. The debugger is entered immediately.

Note that the commands specified in the breakpoint action are saved and not
interpreted until the time when the breakpoint is reached. Consequently, any SADE
variable references used in a break action should use global variables only. Local
variables defined in a break action won't exist at the point when the breakpoint is
reached and the break action is invoked.

break myproc. (0) #breaks on initial statement of myproc
break _GetResource #break on _GetResource trap
break t$A997 #another way to break on _GetResource trap

break _OpenResFile.._GetResource #use a trap range

break t$A997..1SA9A0 #use a trap range

break all traps from DisplayText. (l)..DisplayText.(5) # breaks
on all traps called from # DisplayText. (l)..DisplayText. (5)

break all traps from applZone..applZone” # breaks on all traps '

called from application heap |

onentry, stop, abort

Break 11-9

Case — control case sensitivity of symbol name lookup
| Syntax . case { on | off}

Description The case command lets you control case sensitivity when SADE is searching for
symbol names. The case command used with the on | off parameters works like a
toggle switch to turn case sensitivity on or off.. By default, case sensitivity is turned
on. Using the case command with no parameters will display the current case
sensitivity.

IExcmpIe case on
I - make the SADE symbol lookup case sensitive

See also to be supplied

I-10 Case Working Draft 2

{

Close — close a window

Syntax - close [all | windowName |

where

windowName is a string expression specifying the file pathname of a SADE |
window.

Description The close command closes the window for the specified file or all files. If the contents l
of the window are unsaved, a confirmation dialog will ask if they should be saved.

Example close "myFile" l

- close the file named "myFile" l

See also open

Working Draft 2 Close -1

|Example

Syntax

—

Description

See also

-12

Cycle

Cycle — continue execution within construct

cycle [if boolean expr]

where
boolean expr is an expression

The cycle command will cause execution to continue from the top of the currently
enclosing while, repeat, loop, or for construct. If the optional if clause is present,
the cycle action will happen only if the boolean expr is true, otherwise execution will
continue following the cycle command.

for x := 10 downto S do
<commands>
cycle if x < 2

end

leave

Working Draft 2

Syntax

Description

Working Draft 2

Define — declare a debugger variable

" define [global] var declaration |,...]

where
var declaration has the form
name| [dimension]][:= init value |
where

name must follow the rules for valid debugger identifiers, and must be
unique in the current debugger scope unless declared global. The name
may optionally be followed by an array specifier (a dimension expr
enclosed in brackets).

dimension is an expr

init value is either an expr for the initial value of simple types, or a list of
the following form for structured types:

([exprof] init value, ..)

where the optional of clause allows for replication of a value or set of values.

The define command is used to define one or more debugger variables. Each
debugger variable must be defined before it is used. A debugger variable declaration
identifies the name, scope, and (optionally) the initial value of the variable. One or
more variables may be declared in a single define command by having one or more
var declaration’s separated by commas.

The scope of a variable may be either global or local to the enclosing debugger proc
or func. If a variable is declared at the outer level (not inside of a proc or func) then
its scope is automatically global. Global variables are known both at the outer level,
and inside each proc or func. If a variable is declared inside a debugger proc or func,
then its scope is local unless the define command includes the global keyword. If a
global and a local variable exist with the same name, then the local symbol overrides
the global.

Redefining global variables replaces the previous definition with one exception: If
the definition is within a proc or func, and the new definition matches the existing
definition, the existing definition is retained. For example, a global variable
definition within a proc or func creates the variable the first time the proc is invoked;
subsequent invocations can make use of the value left in the variable by the preceding
invocation. To remove a variable definition, use the undefine command.

Define 1-13

Rl

T

Example

See also

I-14

Debugger variables are dynamically typed, that is, their type is determined on
assignment (and may be changed by new assignments). The only type information
supplied at definition time is whether the variable is an array or a scalar. Debugger
array variables may contain a heterogeneous set of values; that is, the elements may
- contain values of different types.
A initial value for simple types may optionally be specified by an expr following an
assignment operator (:=). If the item being declared is an array, a list of initial values
may be specified as the values of the array elements.

define x := 5
— define a debugger variable x with value equalto 5

undefine

Define Working Draft 2

DeleteMenu — delete user-defined menus or menu
items

Syntax deletemenu menuname| itemname |

where

menuname s a string expression that is the name of the menu from which to delete
the item.

itemname is a string expression that is the name of a menu item.

Description The deleteMenu command deletes menus and (or) menu items. If only menuname
is specified, and it contains no menu items, the menu is deleted. If a user-defined
menu item with the name specified by itemname exists, it is deleted. (The standard
SADE menu items can't be deleted.)

Caution: If both menuname and itemname are omitted, all user-defined items are
deleted.

Example deletemenu "special"™ "launchapp"

— deletes the item launchapp from the special menu

See also addMenu

Working Draft 2 DeleteMenu -18

]
Directory — set or write the default directory

Syntax - directory [directoryname)
where

directoryname is a string expression

Description The directory command sets the default directory to the specified directory. If no
directory is specified, the current default directory is written to standard output.

IExample directory "myOtherDir"
l - sets default directoryio myOtherDir

See also sourcepath

I-16 Directory Working Draft 2

Syntax -

Description

Working Draft 2

Disasm — disassemble and display code

disasm | addr [count]]

or

disasm { gddr range}

where
addr is an address expression
count is an integer expression
addr range is a range expression

The disasm command disassembles instructions starting at the location specified by
addr or addr range. The default behavior when no address is specified is to begin
disassembling at the end of the last disassembly. If the value of the program counter
has changed since the last disassembly, the program counter (PC) is used as the
starting address. If no range or count is specified, the number of instructions (not
lines) disassembled defaults to 20.

Each line of the disassembly output is divided into four fields or areas. Their display
(both order and presence) is controlled by the DisAsmFormat built-in variable as
follows:

The offset field—contains an module offset if there is one otherwise it is blank.
This field is controlled by the flags 'o' and 'O".

o ==> display offset field in decimal.
®) ==> display offset field in hexadecimal

The address field—contains the address of the instruction being disassembled.
This field is controlled by the flags 'a' or 'A' (both have the same meaning).

A ==> display the address

The hex code field—contains the hexadecimal encoding for the instruction at
the corresponding address. This field is controlled by the flags 'x' or 'X' (both
have the same meaning). :

X ==> display the hex code representation

The assembly code field—contains the opcode, operand, and comment
disassembly for the instruction at the corresponding address. This field is
controlled by the flags 'c' and 'C".

c _==> truncate the assembly code if necessary to a uniform length
C ==> show entire assembly code no matter how long
Disasm -17

|Example

See also

-18

The DisAsmFormat variable may also contain a '$' flag in front of the 'O, 'a', or ‘A’
flags to generate a "$" character in front of the offset and/or address field values.

5

FE64
FE78
FE26
FE48
00CO

MOVE.L
MOVE.L
JSR
PEA
JSR

-$019C(AS), - (A7)
-$0188(AS5),-(A7)
FlushDWindow ; 00318FDS8
-$01B8 (AS)

DisplayString ; 0031927A

- diassembles 5 instructions in standard format, starting at the eighth statement of the

_ disasm DisplayText. (8)
DisplayText
+0040 003191A8 2F2D
+0044 003191AC 2F2D
+0048 003191B0 4EBA
+004C 003191B4 486D
+0050 003191B8 4EBA
DisplayText routine
dump

Disasm

Working Draft 2

g

Syntax -

Description

Example

See also

Working Draft 2

Dump — display unstructured memory

dump [byte | word | long }I [addr [count]]
or
dump [{byte | word ! long)] [addr range]
where

addris an address expression

coumt is an integer expression

addr range is a range expression

The dump command displays a portion of memory at the location specified by addr
or addr range. The memory is displayed in hexadecimal and ACSII characters
according to the specified grouping, which may be byte, word, or long. The default
grouping is word.

dump DisplayText. (0)..DisplayText. (8)

00319168 4ES6 FFF2 48E7 QOF18 286E 0008 4AAD FE60 NV..H...(n..J

00319178 6700 OOE8 4B6E FFFC A874 2F2D FE60 A873 g...Hn...%/

00319188 2F2D FE60 4EBA F606 266D FE74 2053 3028 /-."N...&m.t ST(
00319198 003C 48CO0 222E 000C D280 B2AD FE68 6Fl14 .<H."........ n

003191a8 2F /

— dump memory area from within the DisplayText routine, using default word
grouping

disasm

Dump -19

Execute — execute commands in a file

Syntax " execute filename
where

filename is a string expression.

Description The execute command lets you execute any commands contained in the specified
file. An execute command can’t be used within any structured statement.

Example execute "myDebugCommands™"

See also to be supplied

11-20 Execute Working Draft 2

Find — search for a target

Syntax - find [count] targed,nl [addr range| mask]]
or

find [count] targed,n] [addricount [mask]]
where
target is a numeric oOr string expression
- addr rangeis a range expression
7 is an integer expression
countis an integer expression

mask is an optional numeric expression

Description The find command counts or searches program code for occurrences of a target,
which may be a numeric or string expression. As options, you may start at the
specified address and look up to count bytes beyond, or limit the search to addr
range. The default range is HeapStart to MemTop.

, The mask parameter is an optional numeric or string expression that is logically
f(ANDed to the contents of each memory location before the comparison is done. The
‘ n parameter is an integer expression that specifies the minimum number of
occurrences to ignore. In other words, the first 7-1 occurrences may be ignored in
the search. The default for nis 1; in this case, SADE will find the first occurrence. For
example, by specifying 3 for n, you could find the third occurrence

Example find 'mystring'

- searches for the string expression 'mystring'

See also case

Working Draft 2 Find 11-21

For — looping with control variables

Syntax = for for clause(do]
commands
end
where for clause may have one of the following forms:
var:= exprto expr
var := exprdownto expr
var:= expr, ...
where
I varis the name of a previously declared debugger variable.

expris an expression. In the first two for clause forms, expris an integer value. For
the third form, expr should match the list element type of the debugger variable
used.

Description The for ... end construct provides looping with an control variable. The enclosed
commands are executed until the control variable has taken on each successive value
in the range expressed by the for clause.

For commands may be nested.

|Example For x := downto 5 do
I (commands)
I end

I - do commands starting with x equal to 10 until the control variable equals 5

See also to be supplied

1122 For Working Draft 2

Func — user-defined function

Syntax - func name ([argname, ..])
body

end

where
name is the function name
arg name is the argument name
body is the code that makes up the function

Description Function definitions in the debugger language are delimited by the func and end
commands. Aside from these delimiters procedure and function definitions are
essentially the same. Function definitions have the additional requirement that their
last statement to be executed must be a return command with a return value
specified. The type of a function is not specified in the function definition but takes
on the type of the value spedified in the return statement which was executed to leave
the function (which means that functions are not limited to returning results of a single
type).

A func is called using conventional functional notation, with the function name
followed by the optional actual parameters in a parenthesized list in the format of the
prototype established in the func definition. Func parameters are handled in the
same fashion as proc parameters, and the predefined debugger variables Arg and
NArgs may also be used. User-defined functions may be called anywhere an expris
allowed. .

Example func fact (n)
if n <= 1.0 then
return 1.0
else
return n * fact(n-1)
end
end

-~ define a function factorial

See also return

Working Draft 2 Func 11-23

| Ssyntax

Description

|Example

See also

11-24 Go

Go — resume execution

go [tiladdr), ..
or

go [while expr]
or

go [until expr]
where

addr is an address expression
expr is an expression

The go command allows the debugger to resume program execution at the current
program counter. The debugger sets temporary breakpoints at the specified
addresses, if any. When the breakpoint is encountered, the debugger is reentered
and the breakpoint is removed. If the address is in ROM, the debugger will warn you
that it can't set a breakpoint in ROM. Similarly, if a condition expression is specified,
the debugger will use Trace mode until the condition is met or broken (whichever is
appropriate).

The debugger will be entered and control will return to the user when a breakpoint is
reached, when a while condition becomes false, or when an until condition
becomes true.

go til DisplayText. (2)
- resume execution until the program reaches the second statement in the

DisplayText routine

stop

Working Draft 2

Syntax

Description

Example

See also

Working Draft 2

Heap — display information from heap

heap (display | [addr]!, blocktype]
where
addr is an address expression

blocktype is a string expression, of which only the first 4 characters are
significant. It must be one of the following values:

'purgeable’ will limit the display to purgeable blocks
'‘nonreloc{atable]' will limit the display to nonrelocatable blocks.
'relodatable]’ will limit the display to relocatable blocks

'free' will limit the display to free blocks.

'lockled]' will limit the display to locked blocks.

'res(ource] will limit the display to resources

'restype #ype’ will limit the display to a resource type specified

The heap command displays information about the specified heap objects in the
current heap. If desired, you can display the heap that starts at addr. The default is to
display the heap pointed at by theZone. By default, the information displayed is:

the address of the beginning of the heap block

the address of the master pointer if it’s a relocatable block
an asterisk if the object is locked or nonrelocatable,

the value of the tag byte (for relocatables)

for a resource, the reference number of the file it's in, and the resource type
and ID of the resource ‘

You can specify one of the block types to display a subset of the heap objects. The
blocktype must be one of the following values: purgeable, non-relocatable,
relocatable, free, locked, resource, or a particular resource type.

Heap display restype 'MENU'

BlkAddr Blklength Typ MasterPtr Flags RType RId RFRef RName
$00316590 $00000098 H $0031452C R MENU 1000 $0584 "File"
$00316838 $00000050 H $00314528 R MENU 1001 $0584 "Edic™
500316888 S$000000F4 H $00314524 R MENU 1002 $0584 "Log"

heap check

Heap 11-25

Syntax

Description

Example

See also

Heap check — check consistency of the heap

- heap check [addr]

where
addr is an address expression

The heap check command checks the consistency of the heap for the current
target program. If desired, you can check only that part of the heap that starts at
addr. The default is to display the heap pointed at by theZone.

The heap check command performs range checking to make sure all pointers are
even and non-NIL, and that block sizes are within the range of the heap. It then
makes sure that the self-relative handle points to a master pointer referring to the
same block. For non-relocatable blocks, it checks if the heap zone pointer points to
the zone where the block exists. The command also verifies that the total amount
of free space is equal to the amount specified in the heap zone header, that all
pointers in the free master pointer list are in master pointer blocks, and does other
header validation.

heap check
- checks current heap

heap display

11-26 Heap Check Working Draft 2

Syntax

Description

Heap totals — display heap summary

~ heap totals [addr) [, blocktype)

where
addr is an address expression

blocktype is a string expression, of which only the first 4 characters are significant.

It must be one of the following values:

'purgeable’ will limit the display to purgeable blocks
'nonrelocfatable]' will limit the display to nonrelocatable blocks.
‘reloclatable]' will limit the display to relocatable blocks

'free’ will limit the display to free blocks.

"lockled]' will limit the display to locked blocks.
'res[ource] will limit the display to resource blocks.
'restype Hype will limit the display to a particular resource type

The heap totals command displays summary information for the current heap. If

- desired, you may display only that part of the heap that starts at addr. The default is to
display the heap pointed at by theZone. The summary information is given for free,
nonrelocatable, and relocatable objects in the heap unless blocktype is specified. If
blocktype is specified, according to the rules shown above, the summary information

Example

See also

Working Draft 2

is limited to the indicated type of object.

heap totals

Total Blks

Free 23
Nonrelocatable 7
Relocatable 89
Locked & NonPurgeable 2
Locked & Purgeable 2
Unlocked & Purgeable 6
UnlLocked & NonPurgeable 79
Heap (total) 119

heap display

Total Size
49080

1348

21232

5796

8136

680

6620

71660

Heap totals

127

LTI —

Syntax

Description

Example

See also

11-28 Help

~

Help — Get help with SADE commands

“help [identifier, ...]

where
identifier is a SADE identifier

The help command writes information about specified commands to standard
output. If no command is specified, information about the help command is written
to standard output. The search rules for the help file and the format of the help file
follow those described in The MPW Reference Manual.

help

SADE 1.0 Help Summaries

Help summaries are available for each of the SADE commands.

To see the list of commands enter "Help Commands". In addition,

brief descriptions of Variables, Constants, Expressions, built
in functions, and Shortcuts are also included. .

to be supplied

Working Draft 2

Syntax -

Description

Working Draft 2

If...End — conditional execution of commands

if boolean expr{ then |
commands

[elseif boolean exp [then |
commands...)*..

[else
commands..]...

end

where
boolean exp is an expression
commands are SADE commands

The if ... end construct allows for conditional execution of sequences of debugger

commands. Each if command must be followed by an end command. Elseif and
else commands are optional, but must appear between the if and end commands in
the order indicated above. More than one elseif may appear (indicated above by
the [...]*); but at most one else may appear.

The commands controlled by an if extend to the corresponding end, or to the first
elseif or else, whichever comes first The commands controlled by an elseif extend

‘to the next elseif, else or end, whichever comes first. The commands controlled by

an else extend to the corresponding end.

When an if ... end construct is evaluated, if the first if condition (boolean expr) is
true then the statements controlled by the if are executed and the remainder of the -
contruct to the end is skipped. If the condition is false the statements controlled by
the if are skipped and the next (elseif) condition is checked, if present. If an elseif
condition is evaluated and is true, then the commands it controls are executed and
the remainder of the if construct is skipped. If no conditions were evaluated as true
when the else command is reached (if present) then the commands controlled by the
else are executed, otherwise they are skipped.

If ... end constructs may be nested.

If..End 11-29

Example if x > 5 then
<commands>
elseif x < 5 then

I
l
| <commands>
‘ else <more commands>

end

- perform operations using an if...end contruct

See also to be supplied

11-30 If...end Working Draft 2

Kill — Kill an application or tool

Syntax ~ kill filename
where
filename is a string expression

Description The kill command halts the execution of the tool application specified by filename.

’ Only those processes that are already suspended may be killed. This command is
inherently dangerous, since an application killed with this command doesn't have the
chance to perform its usual exit routines. There is no guarantee that the application’s
data will be saved, so use this at your own risk.

-

Example kill "myownfile"

See also launch

Working Draft 2 Kill i1-31

_—
Launch — Launch an application

Syntax ~ launch filename

where
Jilename is a string expression

Description The launch command launches the tool or application specified by filename, a
string expression. This command does nothing if the filetype of the specified file is
not 'APPL'. You may need to use the directory command before launching an
application, so that SADE can locate the application.

Example launch "myownfile"
See also kill
1-32 Launch Working Draft 2

Leave — exit from a Loop, For, While, or Repeat
command

-

Syntax leave [if boolean expr)
where
boolean expr is a boolean expression

Description The leave command will cause execution to continue after the end of the currently

N enclosing loop, while, repeat, or for construct. If the optional if clause is present,
the leave action will happen only if the boolean expr is true; otherwise execution will
continue following the leave command.

Example leave if 1 = 5§

See aiso loop, while, repeat, for

Working Draft 2 Leave 1-33

List — list processes, symbols, and breakpoints

Syntax - list process
or
list symbols
or
list break [{traps | addrs}]

or

list trace [{traps | addrs}]

Description The list command can be used to display a list of current processes or local program
symbols, as well as to display a list of address and trap breakpoints (or tracepoints).

For processes, the display includes the following information: a process number, a
“loaded” or “unloaded” designation, and the filename for the process. The process
numbers are incremented up to a value of 16 as each new process is started on the
system. When you quit from an application, however, its process number isn’t
reassigned; the next process started will have a new process ID number. (See example
below.)

For program symbols, the display includes the local procedure, the parent
procedure, the locally-defined variables, any procedures called by the local
procedure, and any types defined in the local procedure. Note that in this display,
the term “module” denotes a procedure within a program.

For breakpoints and tracepoints, list displays the location and the symbolic
representation for the location when sufficient symbolic debug information is
present. If the traps or addrs modifiers are present the list will be restricted to the
specified class of breakpoint. For trap breakpoints, the names of traps (or ranges of
traps) with breakpoints set are displayed.

Example list break
DisplayText. (2) ($31917C)
DisplayText. (0) ($319168) <break action>
- display breaks currently set

go til DisplayText. (2)

list symbol

Module DisplayText. (0)
Parent Module

-34 List Working Draft 2

P

See aiso

Working Draft 2

TransDisplay

Variables
theText
len

Contained Modules

None.
Types
None.

—display symbols in local procedure DisplayText

list process
Process#

6

5

2

Loaded?
Loaded
Loaded
Loaded

FileName

"SADE"

"Microsoft Word 3.01"
"Finder"

—processes 3 and 4 have already been killed

trace, break

List

11-35

Loop — repeat commands until Leave

Syntax ~ loop
commands

end
where
commands are SADE commands

Description The loop ... end construct provides unconditional looping. The enclosed
commands are executed repeatedly. To exit the loop use the leave command.

Loop constructs may be nested.

Example loop
(add commands here)

leave if 1 = 5

end

See also leave

I-36 Working Draft 2 - Loop

Macro — define a macro

Syntax macro name stning expr

where
name is an identifier
string expr is a suing of characters

Description The macro command allows you to define a macro, which associates a string of
characters with a named identifier. When SADE encounters these characters, it
interprets the macro as if it was dealing with the identifier. For instance, when the
macro is used in place of 2 command, SADE temporarily redirects input to the
command that forms the macro's actual value.

References to a macro may appear anywhere a token could appear in the debugger
input stream. Macros ailow the user to create abbreviations, which could be used to
change the debugger language to a more terse, Macsbug-like language. (See the
example below.)

Macro definitions can be nested; that is, a macro definition can contain references to
other macros. Macro definitions are not recursive; references in a macro definition
to the macro being expanded aren't treated as macro calls. Macros may be
redefined. A macro definition is not allowed in any structured statement Macro
definitions are limited to a length of 254 characters.

Example macro br ‘'break’
macro clr ‘'unbreak all'

See also to be supplied

Working Draft 2 Macro 11-37

Syntax

Description

Example

See also

]
OnEntry — set commands for debugger entry

B onEntry [break action]
where

break action is one simple or compound SADE command

The onEntry command can be used to execute one simple or compound SADE
command each time SADE is entered. It is typically used within a startup file to
provide a source display each time SADE is entered. For instance, in the SADEStartup
file, the “StandardEntry” proc is the argument to the onEntry command. This
procedure provides for source display of the current program counter (PC) on entry
into the debugger.

Break actions specified using onEntry may also be used when entering SADE from a
breakpoint. If more than one command or procedure invocation is needed within the
break action, the begin...end constuct should be used to group a sequence of
commands. A compound command formed in this way is interpreted by SADE as
one unit.

onEntry printf "%.8X\n",pc
- when you enter the debugger, this displays the address of the next instruction to be

executed

break, begin

11-38 OnEntry Working Draft 2

Open — open file in window

Syntax 'open[source] [behind] filename
where

Sfllename is a string expression.

Description The open command opens the specified file. The file must be of type 'TEXT". If
v behind is specified, the window is opened as the window behind the frontmost SADE
window, otherwise, it is opened as the frontmost window. The optional source
modifier indicates that the window is to be treated as a special purpose source window
as opposed to a general purpose text window.

Example open "myFile"
See also close, save
Working Draft 2 Open -39

C

Syntax

Printf — print formatted output

~ printf [format(, arg]..]

Description

11-40

Printf

or

printf ([format(, argl...])

where

Jformat is a format string with values as listed below
arg are parameters used to specify values

The printf command places formatted output on the current output file or window.
You can control SADE output using a number of different parameters with the
printf command. These include the arg parameters and the format parameters.
The arg parameters specify values to be displayed or used under control of the
format string specified as the first parameter. If no format and arg parameters are
specified, any buffered output is displayed.

The format string contains characters to be copied “as is” to the output and
conversion specifications. Each of the format string characters applies to zero or
more arg parameters. If the format is exhausted while arg parameters remain, the
extra arg parameters are ignored. If there are insufficient arg parameters called for
by the format, then the rest of the format string is ignored.

To distinguish a conversion specification from characters to be copied “as is” in
the format string, precede it with a “%” character followed by a sequence of fields
that describe how to format the arg value:

% [flags] [width] [precision] op

flags An optional sequence of characters which modify the meaning of the main
conversion specification:

- Left-justify within the field width rather than right-justify if the converted
value has fewer characters than the specified minimum field width.

+ Always generate a "+" or "-" sign when converting signed arg values.
Note, that negative values are always preceded by a "-" regardless of
whether the "+" flag is specified.

space Generate a space for positive values and "-" for negative values. This
space is independent of any padding used to left or right-justify the
value. The "+" flag has precedence over the space flag.

4 Modify the main conversion operation. The modifications performed
are described in conjunction with the relevant main conversion
operations discussed later.

Working Draft 2

width An optional minimum field width, specified as a decimal integer constant

(that doesn't begin with a "0") or an "*". In the latter case a corresponding arg
parameter specifies the minimum field width. If the converted value has fewer
characters than the width, it will be padded to the width on the left (default) or

- right (if the "-" flag is specified) with spaces (default). If the converted value
has more characters than the width, the width is increased to accommodate it.
For %t conversions, the width specifies the minimum width to reserve for
RECORD type field names.

precision The optional precision is specified as a "." followed by an optional
decimal integer or as an "*". In the latter case a corresponding arg parameter
specifies the repetition count. If the decimal integer or "*" following the "." is
omitted, the precision is assumed to be 0. Precision is used to control the
number of digits to be output for numeric conversions or characters for string
conversions. Omitting the precision has a default value which is a function of
the main conversion to be performed.

op The required main conversion operation specified as one of the following
single characters:

d The corresponding arg parameter is converted to a signed decimal value
(floating point values will be truncated).

precision The precision specifies the minimum number of digits to
‘ appear.- If the value can be represented with fewer digits, leading
i zeros are added up to the specified precision. The result of
converting a 0 value with a precision of 0 is a null. The default
precision is 1.

flags - left-justify
+ explicit "+" or "-"
space space for positive value
ignored

u The corresponding arg parameter is converted to an unsigned decimal
value (floating point values will be truncated).

precision The precision specifies the minimum number of digits to
appear. If the value can be represented with fewer digits, leading
zeros are added up to the specified precision. The result of
converting a 0 value with a precision of 0 is a null. The default
precision is 1.

flags - left-justify
+ ignored
space ignored
* ignored
Working Draft 2 Printf 11-41

«

11-42

Printf

The corresponding arg parameter is converted to an unsigned
hexadecimal value. The number of bytes converted is a function of the
arg's type. The letters abcdef are used for x conversion and ABCDEF are
used for X conversion.

precision The precision specifies the minimum number of digits to
appear. If the value can be represented with fewer digits, leading
zeros are added up to the specified precision. The result of
converting a 0 value with a precision of 0 is a null. The default
precision is 1.

flags - left-justify
+ ignored
space ignored
* prefix converted value with a "$"

The corresponding arg parameter is converted to an unsigned binary
value. The number of bytes converted is a function of the arg's type.

precision The precision specifies the minimum number of digits to
appear. If the value can be represented with fewer digits, leading
zeros are added up to the specified precision. The result of
converting a 0 value with a precision of 0 is a null. The default
precision is 1.

flags - left-justify)
+ ignored)
space ignored
ignored

The corresponding arg parameter is converted to an unsigned octal
value. The number of bytes converted is a function of the arg's type.

precision The precision specifies the minimum number of digits to
appear. If the value can be represented with fewer digits, leading
zeros are added up to the specified precision. The result of
converting a 0 value with a precision of 0 is a null. The default
precision is 1.

flags - left-justify
+ ignored
space ignored
* prefix converted value with a "0"

The corresponding arg parameter is converted to a signed decimal
floating point value. The value is converted to the form "[-]ddd.ddd", "[-
JINF", or "[-INAN(ddd)" (where ddd is the NAN code) depending on the
value.

Working Draft 2)

4

Working Draft 2

precision The precision specifies the number of digits after the
decimal point. If the precision is 0, no decimal point appears
(which can be overridden with the "#" flag). The default
precision is 6.

flags - left-justify
+ explicit "+" or "-"
space space for positive value
force decimal point in the case where no digits
follow it

The corresponding arg parameter is converted to a signed decimal
floating point value. The value is converted to the form "[-ld.ddde+dd"
(for e conversion), "l-ld.dddE+dd" (for E conversion), "[-]INF", or "[-
INAN(ddd)" (where ddd is the NAN code) depending on the value. The
exponent will always contain at least two digits.

precision The precision specifies the number of digits after the
decimal point. If the precision is 0, no decimal point appears
(which can be overridden with the "#" flag). The default
precision is 6.

flags - left-justify
+ explicit "+" or "-"
space space for positive value
* force decimal point in the case where no digits
follow it '

The corresponding arg parameter is converted to a signed decimal
floating point value. The value is converted using f or e conversion (or
in the style f or E conversion when G is specified). The form of
conversion depends on the value being converted; e or E conversion is
performed only if the exponent resulting from the conversion is less
than 4 or greater than the precision. Trailing zeros are removed from
the result (which can be overridden with the "#" flag). A decimal point
appears only if it is followed by a digit (which can be overridden with
the "#" flag)

precision The precision specifies the total number of significant digits.
If the precision is less than 1, then 1 is assumed. The default
precision is 6.

flags - left-justify
+ explicit "+" or "-"
space space for positive value
force decimal point in the case where no digits

follow it and keep trailing zeros

The corresponding arg parameter is converted to a character (the value
mod 256 is used).

Printf 11-43

1-44

Printf

precision ignored

flags - ignored
+ ignored
space ignored
* ignored

Unless the “#” flag is used, the corresponding arg parameter must be a
string type (or a pointer) and the value is copied to the output as is. C
strings and as is (Pascal packed array of char) strings are copied until a
null is encountered (for C strings) or the number of characters specified
a\ the precision is reached. Pascal strings may be processed if the type
of the arg is a Pascal string. When the “#” flag is used, the corresponding
parameter is treated as an unsigned long, and printed as if it contains 4
characters.

precision The precision specifies the maximum number of characters
to output. The default precision is assumed to be infinite. In
that case a C and as is strings will be output up to but not
including a terminating null character and entire Pascal strings

will be output
flags - left-justify
+ ignored
space ignored
* the corresponding parameter is treated as an
unsigned long, and printed as if it contains 4
characters

Unless the “#” flag is used, the corresponding arg parameter must be a

Pascal string type (or a pointer) and the value is copied to the output as
is. When the “#” flag is used, the corresponding parameter is treated as
an unsigned long, and printed as if it contains 4 characters.

precision The precision specifies the maximum number of characters
to output. The default precision is assumed to be infinite. In
that case the entire Pascal string will be output.

flags - left-justify
+ ignored
space ignored
* the corresponding parameter is treated as an
unsigned long, and printed as if it contains 4
characters

Note: You must use an upper-case %P as shown to output a Pascal string
type. If you use a lower-case %p argument, the value displayed will be
output as a pointer type, which is a hexadecimal number optionally
preceded by 0X.

Working Draft 2

s

Example

See also

Working Draft 2

The corresponding arg parameter is converted as a function of its type
as follows:

a base type u, d, 8, p, or s as appropriate to the type with the
. precision and flags interpreted as a function of these
format codes.

non-base type The value(s) are displayed using a pseudo-Pascal
type specification format appropriate to the type of
the parameter (e.g. a RECORD/struct type is
displayed using a Pascal-like RECORD notation).
The flags control some of the aspects of the
formatted output.

Note, that the corresponding arg parameter need
not specify a value and instead may specify only a
type. In this case, the type definition is displayed,
again using the same pseudo-Pascal type
specification format.

flags - display only the type even if corresponding arg
parameter specifies a value. The type is to be
displayed exhaustively, i.e., display every type down

to its base type.

+ display only the type even if corresponding arg
parameter specifies a value.

space show record/struct field offsets

* show all values and offsets in hexadecimal

% A single "%" is output; no arg is used.

precision ignored

flags - left-justify
+ ignored
space ignored
» ignored

:= 5

printf("fact(%.2d) = %19.19g\n", i, fact(i))

fact (05) = 120

to be supplied

Printt

11-45

Syntax

-

Description

I-46

Proc

Proc — define a debugger procedure

proc namel arg name, ... |
body

end

or
proc name ([arg name, ...1)
body

end
where
name is a string expression
arg name is a SADE identifier
body is one or more SADE commands

Procedure definitions in the debugger language are delimited by the proc and end
commands. The proc command identifies the procedure’s name and and an
optional parameter list.

If present, the parameter list identifies parameters by name only. Parameters are not
assigned a type in proc definitions; instead, they take on the types of their actual
parameter values when the proc is called.

The parameter list may optionally be enclosed in parentheses. If the parentheses are
included in the proc definition, they must be included when the proc is called as well.
Similarly, if the definition was not parenthesized, then invocations of the proc must
not be parenthesized.

Procs may be redefined. A proc must be defined before a call to it may be processed
(so that the proc name can be recognized as such). Thus, if mutually recursive procs
are desired, one proc must be defined first with a dummy proc definition so that the
second proc can refer to it, and then the first proc can be redefined, referencing the
second proc. The minimal dummy proc definition is: "proc foo; end;".

A proc is called by beginning a debugger command with the name of the proc
followed by the optional actual parameter list, following the prototype in the proc’s
definition with the actual parameter values substituted for the parameter names. The
actual parameter values will be matched positionally with the formal parameter
names.

Working Draft 2

The number of actual parameters need not match the number of formal parameters in
the proc definition. If too few actual parameters are specified, the formal parameters
for which there were no corresponding actual parameters will be assigned a special
undefined value. Extra actual parameters have no corresponding formal name but

.. can be referenced through the predefined debugger Arg array variable, which allows
the parameters of a proc to be accessed positionally with references of the form
"argin]". The number of the last actual parameter specified is contained in the
predefined debugger variable NArgs. The values of these predefined debugger
variables represent the parameter state of the currently active proc and are not
defined outside cf the proc.

Proc calls may be nested.

Example proc factorial n, file

define i

if nargs > 1 then
redirect file

end

for i := 1 to n do
printf("fact(%.2d) = %19.19g\n", i, fact(i))

end

if nargs > 1 then
redirect

end

end

See also func

Working Draft 2 Proc 1-47

Quit — quit SADE
Syntax -~ quit

Description The quit command causes the debugger to be terminated. Control returns to a
process as determined by MultiFinder. Quit will display a dialog asking the user if it’s
all right to kill any suspended applications.

Example quit

See also shutdown

11-48 Quit Working Dratt 2

Syntax -

Description

Example

See also

Working Draft 2

Redirect — redirect output to file and/or window

redirect [append | filename

or

redirect [popl(all]
where
Sfilename is a string expression

The redirect command redirects the output from SADE commands to the
specified file. If you specify the append parameter, the output will be appended to
the end of the file.

You may nest Redirect commands to as many as 10 different files; SADE will
maintain the names of these files as a last-in first-out queue. If you use the pop
parameter, or if you use no parameters at all with the Redirect command, the
output from SADE commands is redirected to the file at the head of the queue. If
all or pop all is specified, standard output is redirected to the SADE WorkSheet.

Note: any error conditions cause SADE to perform an implicit pop all for any
redirected files. This ensures that output will return to the SADE WorkSheet.

redirect "myOutputFile"

- redirect stdout to myOutputFile

to be supplied

Redirect 11-49

/////

Repeadt...until — conditionally repeat commands

Syntax - repeat
commands
until boolean expr
where
commands are SADE commands
boolean expr is an expression

Description The repeat ... until construct provides conditional looping with a test at the end of
the loop. The enclosed commands are executed until boolean expris true. The
enclosed commands are executed at least once.

Repeat constructs may be nested.

Example repeat
(supply commands here)

until x = 5

See also leave

11-50 Working Draft 2 Repeat

Resource — Display the resource map

Syntax - resource [display] [addr][restype 'type |

whe<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>