

ti® Macintosh®

Macintosh Programmer's
Workshop 3.0 Reference

S APPLE COMPUI'ER, INC.

'J1ili manual and the software
described in iI are copyrighted, with all
righrs reserved. Under the copyright
laws, this manual or the software may
not be copied, in whole or part,
without written consent of Apple,

. except in the normal use of the software
or to make a backup copy of the
software. The same proprietary and
copyright notices must be affixed to any
permitted copies as were affixed to the
original. 'J1ili exception does not allow
copies to be made for others, whether
or not sold, but all of the .material
pwchased (with all backup copies)
may be sold, given, or loaned to
another person. Under the law,
copying includes translating into
another language or format.

You may use the software on any
computer owned by you, but extra

copies cannot be made for
this purpose.

C 1985-88 Apple Computer, Inc.
20525 Mariani Ave.
Cupertino, California 95014
(408) 996-1010

Pascal Compiler C 1982-88
Apple Computer, Inc.
e 1981svs,1nc.

Apple, the Apple logo, AppleShare,
AppleTalk, A/UX, ImageWriier,
LaserWriter, Lisa, MacApp, Macintosh,
and SANE are registered trademarks of
Apple Computer, Inc.

MPW, QuickDraw, ResEdit, and SADE
are trademarks of Apple Computer, Inc.

MacDraw, MacPaint, and MacWriie
are registered trademarks of
Claris Corporation.

Microsoft Wotd is a trademark of
Microsoft Corporation.

POSTSCRIPT is a trademark of
Adobe Systems Incorporated.

Linotronic is a registered trademark of
Linotype company.

Adobe Illustrator 88 is a trademark of
Adobe Systems Incorporated.

lmageStudio is a trademark of Esselte
Pendaflex Corporation in the United
States, of LetraSet Canada Limited in
Canada, and of Esselte LetraSet
limited elsewhere.

Motorola is a trademark of
Motorola, Inc.

QMS is a registered trademark of
QMS, Inc.

UNIX is a trademark of
AT&T Bell Laboratories.

Simultaneously published in the
United States and Canada.

MPW sample programs
Apple Computer, Inc. grantS users of
the Macintosh Programmer's Workshop
a royalty-free license to incorporate
Macintosh Programmer's Workshop
sample programs into their own
programs, or to modify the sample
programs for use in their own
programs, provided such use is
exclusively on Apple computers. For
any modified Macintosh Programmer's
Workshop sample program, you may
add your own copyright notice
alongside the Apple copyright notice.

Contents

Figures and tables xxvii

Part I Shell Reference 1

Introduction: The New and the Nec5ary 3
Power tools for Macintosh programmers 5
What's new in MPW 3.0 7

MPWC++ 7
Projector 8
Symbolic Application Debugging Environment (SADE) 8
New or enhanced tools 8
New or enhanced Shell commands 10
New Shell editor capabilities 12
New standard Shell variables 13
Changes to menus and dialogs 14
Miscellaneous Shell changes 14
Numeric libraries 15
MPW C and MPW C ++ Include files 16
MPW Pascal 16
MPW tool libraries 17

What you'll need 17
Hardware and system requirements 17 .
System Folder requirements 18
Documentation 18

About this reference 19
Finding information fast 20
Syntax notation 21

Aids to understanding 22
For more information 22

CONTENTS Hi

1 System Overview 23

The MPW Shell 25
Window commands 26
File-management commands 27
Project-management commands 28
Editing commands 29
Strucrured commands 29
Other built-in commands 30

MPW scripts 31
MPWtools 32

MPW Assembler 33
MPW Pascal tools 33
MPW C compiler and C++ translator 34
link 34
Make 35
Resource compiler and decompiler 35
Commando 36
Projector 36
Conversion tools 37
Performance-measurement tools 37

Applications 37
ResEdit 38

SADE and MacsBug 38
Special scripts 39
Examples 39

Sample program files 39
command-language examples 40

Overview of MPW files and directories 40

2 Getting Started 41
Installing the system 43
Using MPW with MultiFinder 44
Using MPW on a file server 46
Starting up 46
Selecting commands from menus 48
Building a program: an introduction 49

The sample programs 49
Two easy steps 50

Building a new program 54

iv MPW 3.0 Reference

3 Using the Shell Menus 59
Features 61
File format 62
Menu commands 62

Apple menu 62
Filemenu 63

New 63
Open 64
Open Selection 64
Close 64
Save 64
SaveAs 65
Save a Copy 65
Revert to Saved 65
Page Setup 65
Print Window/Print Selection 65
Quit 66

Editmenu 67
Undo 67
Cut 67
Copy 67-
Paste 68
Clear 68
Select All 68
Show Clipboard 68
Format 68
Align 69
Shift Left, Shift Right 69

Findmenu 70
Find 70
FindSame 71
Find Selection 71
Display Selection 71
Replace 71
Replace Same 71
Selection expression 73

Marie menu 75
Mark 76
Unmark 77

CONTENTS v

Wmdow menu 78
Tile Windows 78
Stack Windows 78
Customizing window commands 78
List of open windows 79

Project menu 79
New Project 79
Checkln 80
Check Out 81

Directory menu 81
Show Directory 82
Set Directory 82
List of directory names 82

Build menu 83
Create Build Commands 84
Build 85
Full Build 85
Show Build Commands 85
Show Full Build C.Ommands 85

User-defined menus 86

4 Using MPW: The Basics 87

Editing 89
Entering commands 89

Typing commands in a window 90
The Enter key 91
Executing several commands at once 92
Tenninating a command 92
The Help command 93

File-management commands 95
File and window names 97

Selection specifications 98
Directories and pathnames 98
C.Ommand search path 101
Changing directories 101
Pathname variables 102
Wtldcards (filename generation) 103
Locked and read-only files 103

vi MPW 3.0 Reference

Commando dialogs 104
Invoking Commando 105
Using Commando dialogs 106.
Standard dialog box controls 107

Generic text parameters 107
Repeatable options 108
Radio buttons 108
Check boxes 108
Shadow pop-up menus 109
Other pop-up variations 109
Multiple input files 110
Multiple directories 111
Multiple files and/or directories 112
Single input or output ftle 112
Output file where a file or directory may be specified 113
New directories 114
Special dialog box controls 114
Nested dialog boxes 114
Redirecting output 116
Options dependent on other options 118
Three-state controls 119

5 Using the Command language 121
Overview 123
Types of conunands 124
Entering and executing corrunands 124

Negative status codes 125
Structure of a comrnand 126

Command name 126
Parameters 126
Command terminators 127

Command continuation 128
Comments 128
Simple versus strucrured corrunands 128

Running an application outside the Shell environment 129
Scripts 130
Special scripts 131

The Startup and UserStartup files 131
Suspend, Resume, and Quit 131

CONTENTS vii

Command aliases 132
Executable error messages 133

Variables 133
Predefined variables 134
Variables defined in the Startup file 135
UserVariables 139
Parameters to scripts 141
Defining and redefining variables 142
Exporting variables 142

Command substitution 144
Filename generation 145
Quoting special characters 146
How commands are interpreted 150
Structured commands 153

Control loops 156
Processing command parameters 157
Expressions 157

Redirecting input and output 160
Standard input 162

Terminating input with Command-Enter 163
Standard output 164
Diagnostic output 164

Pseudo-filenames 165
Editing with the command language 166
Defining your own menu commands 168
Sample scripts 168

"AddMenuAsGroup" 169
"CC" 170

viii MPW 3.0 Reference

6 Advanced Editing 171
Editing commands 173
Selections 175

Current selection (§) 178
Selection by line number 179
Position 180
Markers 180

Behavior of markers 181
Programmatic use of markers 181

Pattern 182
Extending a selection 183

Pattern matching (using regular expressions) 183
Character expressions 185
Wildcard operators 186
Repeated instances of regular expressions 187
Tagging regular expressions with the ® operator 188
Matching a pattern at the beginning or end of a line 189
Inserting invisible characters 189
Note on forward and backward searches 190

Some useful examples 191
Transforming DumpObj output 192
Fmding a whole word 193

Bulldozer 194

7 Projector: Project Management 195
About Projector 197

Overview 197
Features 199
Limitations 200

Using Projector: A walk-through 201
Creating a new project 201
Checking in a revision 204

Project pop-up 206
User field 207
Info (question mark) button 207
Keep Read-Only, Keep Modifiable, and Delete Copy buttons 207
Adding new files to a project 207
Touch Mod Date check box 208
Changing a revision's revision number 208

CONTENTS ix

Locating a project 209
Checking out a revision 209

Checkout directory 212
User field 213
Task and Comment fields 213
Select Newer button 213
Select All button 214
Read-Only/Modifiable buttons 214
Branch check box 215
Touch Mod Date check box 215
Checking out a particular revision 216
Info (question mark) button 216
Select Files in Name 216
Discarding changes 216
Using the Checkout command 217

Creating branches 218
Merging branches 219

Retrieving infonnation 220
Comparing revisions 223

Components of a project 223
Projects 224
Nested projects 226
Revision trees 228
Branches 230
User names 230
Symbolic names 231

Project administration 234
Moving, renaming, and deleting projects 234
Deleting revisions 235
Renaming a file in a project 235
File organization within a project directory 235

CKID resource 236
Projector icons 236

Icons Appearing in the Check In Window 236
Icons Appearing in the Check Out Window 237

Projector command summary 238

x MPW 3.0 Reference

8 The Build Process 239
Overview: the build process 241
The structure of a Macintosh application 244
linking 244

What to link with 245
linking multilingual program.5 246

File types and creators 247
Building a stand-alone code resource 248
Building a desk accessory or driver 251

linking a desk accessory or driver 253
The desk accessory resource file 254
The DRVRRuntime library 255
What your routines need to do 257
Programming hints 258
Sample desk accessory 259

Modifying the Build menu and makefiles 259
Variables 259
Scripts 260
Files 260
UserStartup 260
Modifying the makefiles 261

Include dependencies 261
library object files 261

9 Make 263
Format of a makefile 265
Dependency rules 267

Double1 dependency rules 269
Default rules 270

Built-in default rules 271
Directory dependency rules 272

Variables in makefiles 273
Shell variables 273
Defining variables within a makefile 274
Built-in Make variables 275

Quoting in makefiles 275
line continuation character 276

Comments in makefiles 276

CONTENTS xi

Executing Make's output 276
The order in which Make builds targets 277

Debugging makefiles 278
Problems due to command generation before execution 278
Problems with different specifications for the same file 279
Problems with default rules 279

An example 279
Notes on Make's makefile 282

10 More About Linking 285

link functions 'JJ37
Segmentation 'lJ38

Segments with special treatments 289
Controlling the numbering of code resources 290
Resolving symbol definitions 291

Multiple external symbol definitions 291
Unresolved external symbols 292

Building applications with more than 32K of global data 292
32-bit references-MPW Pascal 293
32-bit references-MPW Assembler 293

linker location map 294
Map entries for the global data segment 295
Optional map formats for compatibility 295

Optirnizingyourlinks 296
library construction 296

Using Lib to build a specialized library 297
Removing unreferenced modules 298
Guidelines for choosing files for a specialized library 299

11 Resource Compiler and Decompiler 301

About the resource compiler and decompiler 303
Resource decompiler 304
Standard type declaration files 304
Using Rez and DeRez 304

Structure of a resource description file 306
Sample resource description file 307

xii MPW 3.0 Reference

Resource description statements 307
Syntax notation 308

Special terms 308
Include-include resources from another file 308

Syntax 309
AS resource description syntax 309
Resource attributes 310

Read-read data as a resource 310
Syntax 310
Description 310

Data-specify raw data 311
Syntax 311
Description 311

Type-declare resource type 311
Syntax 311
Description 312
Data-type specifications 313
Fill and align types 316
Array type 317
Switch type 318
Sample type statement 319

Symbol definitions 319
Delete-delete a resource 320

Syntax 320
Description 320

Change-<:hange a resource's vital information 321
Syntax 321
Description 321

Resource-specify resource data 322
Syntax 322
Description 322
Data statements 322
Sample resource definition 323

Labels 324
Syntax 325
Description 325

Built-in functions to access resource data 325
Declaring labels within arrays 326
Label limitations 327
Using labels: two examples 327

CONTENTS xiii

Preprocessor directives 330
Variable definitions 331

Include directives 331
If-Then-Else processing 332
Print directive 332

Resource description syntax 333
Numbers and literals 334
Expressions 335
Variables and functions 336
Strings 338

Escape characters 339

12 Writing an MPW Tool 341
Overview 343
Conventions 344

Status Codes 345
Restrictions 346

Initialization 346
Memory Management 347

Heap 349
Stack 349

Building an MPW tool 350
linking a tool 350

Programming for the MPW Shell 351
Accessing the MPW Shell-MPW C 351
Accessing the MPW Shell-MPW Pascal 352
Accessing the MPW Shell-Assembler 353

Importing the routines 353
Assembler calling conventions 353
The RTinit function 354
Files to link with 355

Parameters 355
Accessing MPW conunand-line parameters-MPW C 357
Accessing MPW conunand-line parameters-MPW Pascal 357
Accessing MPW command-line parameters-Assembler 358

xiv MPW 3.0 Reference

Standard VO channels 358
VO buffering 358
VO to windows and selections 360
Error information 361
Shell VO routines-MPW C 364

stdi~standard buffered input/output package 364
Shell VO routines-MPW Pascal 367
Shell VO routines-Assembler 367

Shell VO routines 367
open-open for reading or writing 367
dose-close a file descriptor 369
read-read from a file 370
write-write to a ftle 371
Jseek-move read/write file pointer 372
fcntl-:-fde control 373
IOCtl-communicate with device handler 374

Shell utility routines 375
StandAlone-check whether running under the MPW Shell 375
getenv-access exported MPW Shell variables 376
atexit-install a function to be executed at program termination 378
exit-terminate the current application 379
faccess-named file access and control 380

Signal handling 383
Signal handling-C 383
Signal handling-Pascal 384
Signal handling-Assembler 384
Signal-specify a signal handler 384
Raise-raise a signal 385
Writing a signal handler 386

CONTENTS xv

13 Creating a Commando Interface For Tools 389

About Conunando 391
Invoking Commando 391
Creating Commando dialogs 392
Editing Conunando dialogs 393

Enabling Commando's Editor 393
Editing controls 393
Selecting controls 394
Moving controls 394
Sizing controls 394
Editing labels 395
Editing Help messages 395
Changing the size of a Conunando dialog box 395
Saving the modified Conunando dialog 396

Strings and Shell variables 396
Resource description 397

Resource ID and name 397
Size of the dialog box 398
Tool description 399

Regular entry control 399
Multiregular entry 401
Check boxes 402
Radio buttons 404
Boxes, lines, and text titles 406

Box 407
TextBox 407
TextTitle 408

Pop-up menus 409
Editable pop-up menus 411

Lists 414
Three-state buttons 415
Icons and pictures_ 417
Control dependencies 418

Direct dependency 418
Inverse dependency 419
Dependency on the Do-It button 421
Multiple dependencies 421
Dependencies on radio buttons 422

Nested dialog boxes 423

xvi MPW 3.0 Reference

Redirection 425
Files and directories 427

Individual files and directories 427
Multiple files and directories for input and output 430
Multiple ftles and directories for input only 436
Multiple new files 438

Version 439
A Commando example 442

14 Performance-Measurement Tools 447
About performance-measurement tools 449

Components of perfonnance tools 450
Requirements for using performance tools 451

How performance measurement works 451
Program Counter sampling 451

Restrictions 452
Bucketcounts 452

Using performance-measurement tools 453
1. Install under conditional compilation 453
2. Include the interface 454
3. Provide a pointer to a block of variables 455
4. Initialize the performance-measurement tools 455
5. Tum on the measurements 456
6. Dump the results 457
7. Tenninate cleanly 457

MPW performance tools routines 458
The function InitPerf 458
The function PerfControl 460
The function PerlDump 461
The function TennPerf 462

Performance reports 463
Perfonnance output file 463
Analyzing the results with PerformReport 466
Adding identification lines to a data file 467
Interpreting the perfonnance report 468

Implementation issues 468
Locking the interrupt handler 469
Segmentation 469
Dirty CODE segments 469
Movable code resources 470

CONTENTS xvii

A Macintosh Programmer's Workshop Files 471

MPW 3.0 files 473
Distribution disk MPW Installation Disk: 473
Distribution disk MPWl: 473
Distribution disk MPW2: 474
Distribution disk MPW3: 475
Distribution disk MPW4: 476

MPW Assembler files 477
Distribution disk MPW Assemblerl: 477
Distribution disk MPW Assembler2: 477

MPW Pascal files 478
Distribution disk MPW Pascall: 478
Distribution disk MPW Pascal2: 479

MPW C files 481
Distribution disk MPW Cl: 481
Distribution disk MPW C2: 482

Hard disk configuration 484

B Summary of Selections and Regular Expressions 495
Selections 497
Regular expressions 498
Option-key characters 500

C Special Operators 501

D Resource Description Syntax 505

Syntax notation 507
Structure of a resource description file 508

Include-include resources from another file 509
Read-read data as a resource 509
Data-specify raw data 509
Type-declare resource type 510

Data-type 510
Fill-type 511
Alignment 511
Switch-type 511
Array-type 511

xviii MPW 3.0 Reference

Resource-specify resource data 512
Change-change resource vital information 512
Delete-delete resource(s) 5l2

Labels 512
Syntax 512

Preprocessor directives 513
Syntax 513

Identifiers 513
Token delimiters 514
Compound types 514
Expressions 514
Numbers 515
Variables and functions 516
Strings 517

E File Types, Creators, and Suffixes 519
File types and creators 521
File suffixes 521

Text files 522
Object files 522
Data files · 522

F Tools Libraries 523
Animated cursor control routines 525

Cursor control routines-MPW Pascal 525
Cursor control routines-MPW C 525
The InitCursorCtl procedure 526
The Show_Cursor procedure 527
The Hide_Cursor procedure 528
The RotateCursor procedure 529
The SpinCursor procedure 529

Error Message File manager 530
Error Manager-MPW Pascal 530
Error Manager-MPW C 530
The InitErrMgr procedure 531
The GetSysErrText procedure 532
The GetToolErrText procedure 533
The AddErrinsert procedure 534
The CloseErrMgr function 534

CONTENTS xix

Disassembler Lookup routines 535
DisAsmLookUp.p-MPW Pascal 535
DisAsmLookUp.h-MPW C 535
Using the Disassembler 536

The lnitlookup procedure 541
The Lookup procedure 542
The LookupTrapName procedure 542
The ModifyOperand procedure 543
The validMacsBugSymbol function 543
The endOfModule function 545
The showMacsBugSymbol function 545

G The Gra6D library 547
Overview 549
How to use Graf3D 549

How to use Graf3D-MPW Assembler 550
How to use Graf3D-MPW Pascal 550
How to use Graf3D-MPW C 550

Graf3D data types 551
Point3D 551
Point2D 552
XfMatrix 552
Port3DPtr 553

Graph3D procedures and functions 554
The InitGraf3D procedure 555
The Open3DPort procedure 555
The SetPort3D procedure 556
The GetPort3D procedure 556
The Move procedures 557
The Line procedures 557
The Clip3D function 558
The Set Point procedures 558

Setting up the camera 559
The ViewPort procedure 559
The LookAt procedure 560
The View Angle procedure 560

.x .x MPW 3.0 Reference

The transformation matrix 561
The Identity procedure 561
The Scale procedure 561
The Translate procedure 562
The Pitch procedure 562
The Yaw procedure 562
The Roll procedure 563
The Skew procedure 563
The Transform procedure 564

H Object File Format 565
About object file records 567
Scoping of symbolic information 570
ModuleBegin implementation/ declaration semantics 572
Record type notation 572
Object file records 573

Pad record 574
First record 574
Last record 575
Comment record 575
Dictionary record 575
Module record 576
Entry-Point record 577
Size record 578
Contents record 578
Reference record 579
Computed-Reference record 583
Filename record 584
Source Statement record 584
ModuleBegin record 586
ModuleEnd record 587
BlockBegin record 588
BlockEnd record 589
Local Identifier record 589
Local Label record 593
Local Type record 594

CONTENTS xxi

Type interpretation via prefix code 596
Overview 597
Type functions 597
Representation of type information in the SADE symbol table 601
Representation of type codes 602
Representation of scalars 604
Examples 605
Possible object module representation 605
Possible compilation into m 607
Type interpretation and packed data 608

Storage framework 609
Examples 610
C source 610
Possible compilation into m 611

I In Case of Emergency 613
Crashes 615
Stack space 615

Glossary 617

Index 623

xxii MPW 3.0 Reference

Part II Command Reference
A Command prototype 6
AddMenu-add menu item 9
Adjust-adjust lines 13
Alert-display an alert box 14
Alias--define or write command aliases 15
Align-align text to left margin 17
Asm-MC68xxx Macro Assembler 18
Backup-folder file backup 25
Beep-generate tones 34
Begin ... End-group commands 36
Break-break from For or Loop 38
BuildCommands-generate Build commands 40
BuildMenu-create the Build menu 42
BuildProgram-build the specified program 43
C-C Compiler 45
Canon--amonical spelling tool 49
Catenate-concatenate files 52
Checkin-check in files to a project 54
Checkout-check out files from a project 57
CheckOutDir-set checkout directory 61
Choose-choose or list network volumes and printers 64
Clear-clear the selection 68
Close-close specified windows 69
Commando-display dialog interface for a command 71
Compare-compare text files 73
CompareFiles-script that compares files side by side 79
CompareRevisions-compare and identify revisions 81
Confirm-display confirmation dialog box 83
Continue-continue with next iteration of For or Loop 85
Copy-copy selection to Clipboard 87
Count-count lines and characters 89
CPlus-compile C++ programs 91
CreateMake-create a simple makefile 96
Cut-copy selection to Clipboard and delete it 99
Date-write the date and time 100
Delete-delete files and directories 102
DeleteMenu-delete user-defined menus and items 104

CONTENTS xxili

DeleteNames-delete user-defined symbolic names 105
DeleteRevisions-delete revisions and branches 107
DeRez-Resource Decompiler 109
Directory-set or write the default directory 113
DirectoryMenu-create the Directory menu 115
Dolt-script to highlight and execute a series of commands 117
DumpCode-write formatted resources 119
DumpFile-display contents of an arbitrary file 122
DumpObj-write formatted object file 125
Duplicate-duplicate files and directories 128
Echo-echo parameters 130
Eject-eject volumes 132
Entab-convert runs of spaces to tabs 133
Equal-compare fdes and directories 136
Erase-initialize volumes 139
Evaluate-evaluate an expression 140
Execute-execute a script in the current scope 145
Exists-confmn the existence of a file or directory 146
Exit-exit from a script 147
Export-make variables available to programs 148
FileDiv-divide a file into several smaller files 150
Files-list files and directories 152
Find-find and select a text pattern 155
Flush-dear the command cache 157
Format-set or view the window format 16o
For ... -repeat commands once per parameter 158
GetErrotrext-display text for system error numbers 162
GetFileName-display a standard file dialog box 164
Getl.istltem-display items for selection in a dialog box 166
Help-display summary information 168
If ... --conditional command execution 171
Lib-combine object files into a library file 173
line-fmd a line number 177
Llnk-link an application, tool, or resource 179
Loop ... End-repeat command list until Break 189
Make-build up-to-date version of a program 191
MakeErrorFile-create error message textfile 195
Mark-assign a marker to a selection 197
Markers-list markers 199
Matchit-match paired language delimiters 200

xxiv MPW 3.0 Reference

MergeBranch-merge a branch file onto the trunk 205
ModifyReadOnly-change a read-only file to modifiable 207
Mount-mount volumes 209
MountProject-mount an existing project 210
Move-move files and directories 212
MoveWindow-move window to h,v location 214
NameRevisions-name files and revisions 216
New-open a new window 220
Newer-compare modification dates between files 221
NewFolder-create a directory 223
NewProject-create a project 224
Open-open a window 226
OrphanFiles-orphan a file or files from Projector 228
Parameters-write parameters 229
Pascal-Pascal compiler 230
PasMat-Pascal program formatter 234
PasRef-Pascal cross-referencer 241
Paste-replace selection with Clipboard contents 250
PerformReport-generate a performance report 251
Position-list position of selection in window 253
Print-print text files 254
ProcNames-display Pascal procedure and function names 258
Project-set or write the current project 262
Projectlnfo-list project information 263
Quit-quit MPW 272
Quote-quote parameters 273
Rename-rename files and directories 275
Replace-replace the selection 277
Request-request text from a dialog box 279
ResEqual-compare resources in files 281
Revert-revert to saved file 283
Rez-Resource compiler 284
RezDet-detect inconsistencies in resources 288
RotateWindows-bring second window to front 291
Save-save windows 292
Search-search files for a pattern 293
Set-define or write Shell variable 295
SetDirectory-set the default directory 297
Setfile-set file attributes 298
SetPrivilege-set access privileges to folders on file server 300

CONTENTS xxv

SetVersion-maintain version and revision number 302
Shift-renumber script parameters 317
Shutdown-shutdown or software reboot 319
SizeWindow-set a window's size 321
Sort-sort or merge lines of text 322
StackWmdows-arrange windows diagonally 326
Target-make a window the target window 328
TileWmdows-arrange windows in tile pattern 329
TransfeICkicl-transfer CK.ID resources from one file to another 331
Translate-convert selected characters 332
Unalias-remove aliases 334
Undo-undo last edit 335
Unexport-remove a variable definition from export 336
Unmark-remove a marker from a file 338
Unmount-unmount volumes 339
UnmountProject-unmount projects 340
Unset-remove Shell variables 341
Volumes-list mounted volumes 342
Whereis-search for files in directory tree 343
Which-determine which file the Shell will execute 345
Windows-list windows 347
ZoomWmdow-enlarge or reduce a window 348

xxvi MPW 3.0 Reference

Figures and tables

1 System Overview 23
Figure 1-1 Setup of MPW folders and mes 40

2 Getting Started 41
Figure 2-1 Worksheet window 47
Figure 2-2 MPW menu bar with MultiFinder 48
Figure 2-3 Directory menu 50
Figure 2-4 Show Directory alert 51
Figure 2-5 Build menu 51
Figure 2-6 Program Name dialog box 52
Figure 2-7 Finished Sample build 53
Figure 2-8 Set Directory ... standard file dialog box 55
Figure 2-9 CreateMake dialog box 56

3 Using the Shell Menus 59
Figure 3-1 File menu 63
Figure 3-2 New dialog box 63
Figure 3-3 Edit menu 67
Figure 3-4 Dialog box of the Format menu item 68
Figure 3-5 Find menu 70
Figure 3-6 Dialog box of the Replace menu item 72
Figure 3-7 Selection by line number 73
Figure 3-8 Example of a regular expression 74
Figure 3-9 Text selected with the Find command 75
Figure 3-10 Mark menu 76
Figure 3-11 Mark dialog box 76
Figure 3-12 Unmark dialog box 77
Figure 3-13 Window menu 78
Figure 3-14 Project menu 79
Figure 3-15 New Project dialog box 80
Figure 3-16 Check In dialog 80
Figure 3-17 Check Out dialog box 81

CONTENTS xxvii

Figure 3-18 Directory menu 82
Figure 3-19 Dialog box of the Set Directory menu item 82
Figure 3-20 Build menu 83
Figure 3-21 CreateMake dialog box 84
Figure 3-22 Program Name dialog box 85

4 Using MPW: The Basics 87
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7
Figure 4-8
Figure 4-9
Table 4-1

Pressing Enter to execute selected text 92
Help summaries 95
Hierarchical directory structure 99
A locked file with the Lock icon in the Status panel 103
A read-only file with the Read-Only icon in the Status panel 104
The Date dialog box 106
Rez: the first dialog box 115
Rez: nested Preprocessor dialog box 115
Rez: nested Redirection dialog box 116
Basic file-management commands 96

5 Using the Command Language 121
Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Table 5-1
Table 5-2
Table 5-3
Table 5-4
Table 5-5
Table 5-6
Table 5-7
Table 5-8
Table 5-9
Table 5-10
Table 5-11
Table 5-12
Table 5-13

xxviii MPW 3.0 Reference

Trafficking in variables 143
Standard input and output 161
Redirecting diagnostic output 165
Text highlighted in the active and target windows 167
Command terminators 127
Variables defined by the Shell 135
Variables defined in the Startup file 136
User variables not defined in Startup file 140
Parameters to scripts 141
Filename generation operators 145
Special characters and words 147
Quotes 148
Special escape conventions 150
Structured commands 154
Expression operators in order of decreasing precedence 158
I/O redirection 161
Pseudo-filenames 166

6 Advanced Editing 171
Figure 6-1
Figure 6-2
Table 6-1
Table 6-2
Table 6-3
Table 6-4

A selection specification 177
Selections in two windows 178
Built-in editing commands 173
MPW tools useful for editing 175
Selection operators 176
Regular expression operators 184

7 Projector: Project Management 195
Figure 7-1 A project structure 198
Figure 7-2 New Project window 202
Figure 7-3 New Project window after creating a project 203
Figure 7-4 Check In window 205
Figure 7-5 Check Out window 211
Figure 7-6 A changing revision tree 218
Figure 7-7 Revision information 221
Figure 7-8 The View By filter 221
Figure 7-9 The "View By" dialog with selection criteria 222
Figure 7-10 Sample project check-out configuration 225
Figure 7-11 A sample project hierarchy 227
Figure 7-12 A revision tree 229

8 The Build Process 239
The Build process 242
linking 245

Figure 8-1
Figure 8-2
Figure 8-3
Table 8-1
Table 8-2

Building a desk accessory with DRVRRuntime 252
Files to link 246
File types and creators 247

9 Make 263
Table 9-1 Makefile summary 266

CONTENTS xxix

11 Resource Compiler and Decompiler 301
Figure 11-1 Rez and DeRez 303
Figure 11-2 Creating a resource file 305
Figure 11-3 Padding of literals 335
Figure 11-4 Internal representation of a Pascal string 338
Table 11-1 Numeric constants 334
Table 11-2 Resource description expression operators 335
Table 11-3 Resource compiler escape sequences 339

12 Writing an MPW Tool 341
Figure 12-1 Memory map 348
Figure 12-2 Parameters in MPW C and MPW Pascal 356
Figure 12-3 1/0 buffering 360
Figure 12-4 Format of envp array for MPW C and MPW Pascal 377
Table 12-1 Shell 1/0 errors 362
Table 12-2 Standard files 365
Table 12-3 Predeclared file descriptors 369

13 Creating a Commando Interface for Tools 389
Figure 13-1 Example use of the {User} variable 397
Figure 13-2 Basic template for a Commando dialog box 398
Figure 13-3 MultiRegular Entry 402
Figure 13-4 Setting the CheckOption default state 404
Figure 13-5 Radio buttons with default setting 404
Figure 13-6 Clicking a button other than the default 405
Figure 13-7 No button specified as set 406
Figure 13-8 TextBox example 408
Figure 13-9 Pop-up menu with default value 410
Figure 13-10 Pop-up menu without default value 410
Figure 13-11 How Font Size dependency is handled 412
Figure 13-12 Font Size pop-up menu with font selected 412
Figure 13-13 One pop-up menu dependent on another 413
Figure 13-14 Menu title and Item pop-up menus 414
Figure 13-15 list control 415
Figure 13-16 Three-state buttons 417
Figure 13-17 Icon in a Commando window 417
Figure 13-18 Direct dependency 419
Figure 13-19 Inverse dependencies 420
Figure 13-20 Dependency on the Do-It button 421
Figure 13-21 Dependencies on radio buttons 422

xx:x MPW 3.0 Reference

Figure 13-22 Setting up nested dialog boxes 424
Figure 13-23 Placement of nested dialog buttons 425
Figure 13-24 How to obtain input and output redirection 426
Figure 13-25 Resource description for "individual files and directories"

controls 428
Figure 13-26 Examples of "individual files and directories" controls 430
Figure 13-27 Example of multiple input files 432
Figure 13-28 Example of multiple input files with no file extension specified 434
Figure 13-29 Example of multiple input files with object files specified 435
Figure 13-30 Example of multiple input files with all files specified 436
Figure 13-31 Multiple directories for input 437
Figure 13-32 Example of a "directories" control for multiple input files 438
Figure 13-33 Using the MultiOutputFiles subcase of the case MultiFiles 439
Figure 13-34 Version string 440
Figure 13-35 A Commando example: frontmost ResEqual dialog box 445
Table 13-1 Summary of recommended sizes for Commando screen

elements 399

14 Performance-Measurement Tools 447
Table 14-1 Predefined ROM IDs and names 460

B Summary of Selections and Regular Expressions 495
Table B-1 Selections 497
Table B-2 Regular expressions 498

C Special Operators 501
Table C-1 MPW operators 503

E File Types, Creators, and Suffixes 519
Table E-1 File types and creators 521

F Tool Libraries 523
Table F-1
Table F-2
Table F-3
Table F-4

Cursor kinds 527
Disassembler strings 536
Disassembler: Effective addresses 538
Base register values 539

CONTENTS xxxi

G The Graf3D Library 547
Table G-1 Port3DPtr variables 554

H Object File Format 565
Table H-1 Register numbers 592

xxxii MPW 3.0 Reference

Part I Shell Reference

Introduction: The New and the Necessary

WELCOME TO TI:IE MACINTOSH~ PROGRAMMER'S WORKSHOP 3.0. This introduction is
y~ur guide to the new features and enhanced capabilities.

Those currently using MPW™ 2.0 are urged to carefully review the section "What's
New in MPW 3.0" because many changes may affect your MPW 2.0 scripts and
other ways of doing things. The last two sections of this introduction describe
new hardware and software requirements as well as revised notation conventions
and reorganized documentation. If you are new to MPW you can skip the "What's
New in MPW 3.0" section, but be sure to read "What You'll Need" and "About This
Reference." This last section guides you to the parts of this book that help you
get started. •

Contents

Power tools for Macintosh programmers 5
What's new in MPW 3.0 7

MPWC++ 7
Projector 8
Symbolic Application Debugging Environment (SADE) 8
New or enhanced tools 8
New or enhanced Shell commands 10
New Shell editor capabilities 12
New standard Shell variables 13
Changes to menus and dialogs 14
Miscellaneous Shell changes 14
Numeric libraries 15
MPW C and MPW C++ Include files 16
MPW Pascal 16
MPW tool libraries 17

What you'll need 17
Hardware and system requirements 17
System Folder requirements 18
Documentation 18

3

About this reference 19
Finding information fast 20
Syntax notation 21

Aids to undeIStanding 22
For more infonnation 22

4 MPW 3.0 Reference

Power tools for Macintosh programmers

The Macintosh Programmer's Workshop (MPW) provides professional software
development tools for the Apple® Macintosh computer. Briefly, MPW 3.0 consists of the
following parts:

• MPW Shell (the programming environment)

• Project management system (Projector Trademark)

• Resource compiler and decompiler (Rez and DeRez)

• Resource editor (ResEdit™)

• linker (Llnk)

• Make (for tracking file dependencies)

• Dialog interface (Commando)

• Symbolic Application Debugging Environment (SADE™, an interactive symbolic
debugger) and MacsBug

• Performance-measurement tools

Note that ResEdit, although still part of MPW, has been enhanced and is now documented
separately. Also, the new interactive debugger, SADE, and an improved MacsBug are now
each documented in their own separate reference works, included with the MPW product.

The system also includes a comprehensive array of additional tools for creating and
manipulating text and resource files. The following MPW products are separately
available:

• Macintosh Programmer's Workshop 3.0 Assembler provides everything you need
to develop applications, tools, and desk accessories in assembly language, including
the ability to create macro libraries.

• Macintosh Programmer's Workshop 3.0 Pascal provides the additional tools,
interfaces, and libraries you need to develop applications, tools, and desk accessories
in Pascal.

• Macintosh Programmer's Workshop 3.0 C provides a new C compiler and a C++
translator along with the interfaces and libraries needed to develop applications,
tools, and desk accessories in C or C ++.

• MacApp®, the Expandable Macintosh Application, provides of a set of object
oriented libraries that automatically implement the standard Macintosh user interface,
thus simplifying and speeding up the process of software development Either MPW
Pascal or MPW C++ is required for use of MacApp.

The entire MPW system is outlined in detail in Chapter 1, "System Overview."

INTRODUCTION The New and the Necessary 5

The Macintosh Programmer's Workshop 3.0 provides these advantages over previous
development systems:

• Integration: The numerous utilities and tools of the MPW system all run within the
MPW Shell environment. The integrated environment enables separately developed
applications, called MPW tools, to run within the programming environment. The
MPW editor is always available to generate both text and command lines; there is no
distinction between command and text windows.

• MultiFinder™ compatibility: MPW 3.0 tools can now be operated in the
background when using Macintosh System 6.02 with MultiFinder. This means that you
can switch to another application while a tool, such as a compiler, is running. You can
also configure your system so that you can use the MPW Shell for editing or other
operations while a tool runs in the background. See "Using MPW With MultiFinder" in
Chapter 2.

• Project management: Projector, a new program integrated with MPW, makes it easy
to keep track of large projects involving many programmers, or simply to maintain an
orderly revision history, showing who did what to every file and why. You can use
Projector to branch, that is, create many experimental versions of a file at any stage
in its evolution-without risk of confusion.

• Automated build process: A pull-down menu provides several ways to build or
rebuild your programs quickly and automatically. You can also automate complex
builds by using the Make tool and command-language scripts.

• Command scripting: In addition to menu commands, MPW provides a full command
language, including Shell variables, command aliases, pipes, and the ability to redirect
input and output. You can combine any series of commands into an elaborate,
specialized script (command file) for fast, accurate, automatic results.

• Regular expression processing: The editor component of the Shell provides
powerful search and replace capabilities with regular expressions, which form a
language for describing complex text patterns. Regular expressions allow you, for
instance, to restructure complex tables with a single command.

• Extensibility: You can customize MPW in just about any way you can imagine. You
can create your own integrated tools and scripts to run within the Shell environment.
You can also add your own menus, menu items, and dialogs to the Shell.

• Ease of use: On-line help is available at all times. In addition, the Commando dialog
interface gives you immediate on-screen access to all of MPWs versatile options and
functions in specialized dialog boxes. This interface makes learning easier and faster.
You can compose complex command lines without referring to the manual. And you
can create a Commando interface for your own tools and scripts as well.

6 MPW 3.0 Reference

MPW 3.0 provides a customizable programming environment with a completeness, power,
and flexibility unmatched by any other Macintosh-based system. Because it is full
featured and extremely versatile, the first-time user should ~ prepared to devote some
time to learn it. This effort will be well repaid by the power and versatility that MPW
places in your hands.

What's new in MPW 3.0

MPW 3.0 is faster and easier to use than its predecessor and now fully exploits MultiFinder.
Use of MPW with MultiFinder greatly increases its convenience and efficiency. Many new
tools and options to existing tools have been added. Major additions to MPW include
Projector, a project management system, and SADE, the Symbolic Application Debugging
Environment MPW now also supports C++. These innovations are each briefly described
in the sections that follow. Changes to menus, tools, variables, and compilers are itemized
in the lists that follow.

If you are currently using MPW 2.0, it is especially important that you carefully review the
changes listed in this section. The extensive changes implemented in MPW 3.0 might
affect scripts written for the MPW 2.0 Shell.

MPW C++

MPW now includes extensions to the C language that support the features of C ++. MPW
C++ is an approximate superset of the C programming language that maintains the
efficiency and power of C while adding features such as operator overloading (which lets
you define additional meanings for built-in operators), ANSI-like type-checking,
automatic type conversion, and class hierarchies with inheritance. Because C++ supports
object-oriented programming, developers who prefer C to Pascal can now take advantage
of MacApp. For more information, see MPW 3.0 C++ Reference.

INTRODUCTION The New ~nd the Necessary 7

Projector

MPW 3.0 includes an easy-to-use, built-in project management system, Projector, that can
be customized to fit any working style, from that of the single programmer to that of the
large, networked engineering team. Briefly, here's how it works: You check out a file or
group of files from Projector for either review or modification. Although many people can
review a file, only one person at a time can modify it. When you've finished your work,
you check the file back in with Projector, along with a note detailing your modifications.
Your name, your notes, and the date are automatically filed in Projector's revision history
for that project. It's also possible to create parallel branches of a single project for
experimental purposes. Chapter 7 is a detailed account of Projector.

Symbolic Application Debugging Environment (SADE)

The Symbolic Application Debugging Environment (SADE) allows you to monitor the
execution of a program at both the processor level and at the symbolic program source
level. Both SADE and the enhanced MacsBug are now each documented separately from
the MPW Rejerence. For more information, see the MacsBug Reference and the SADE
Reference.

New or enhanced tools

The tools and scripts included with MPW 3.0 have been improved in many ways for
increased versatility. These enhancements are briefly catalogued in the list that follows. In
addition, a number of new tools and scripts have been added to suppon Projector and
the C++ compiler.

MPW 3.0 supports shared tools on a network file server.

These rarely used conversion tools are no longer included with MPW but are still available
from Technical Suppon at Apple Computer, Inc.:

• TLACvt

• MDSCvt

• CVTObj

8 MPW 3.0 Reference

All MPW 3.0 commands, including tools and scripts, are individually documented in the
alphabetically organized Command Reference in Part II of this book; that is the first
place to look for more information about any tool.

• Backup: Two new options have been added.

• C: The C compiler has been completely rewritten for MPW 3.0. Some of the options
and calling conventions are different from those in the MPW 2.0 C compiler. See the
MPW 3.0 C Reference.

• CFront: New translator for C++.

• Choose: A new tool that enables you to mount servers and select Apple Laserwriter®
printers from within the MPW environment

• Commando: Now has a built-in editor that makes it easy to modify Commando
dialog boxes.

• CompareFiles: A script that compares two files side by side, pinpointing any
differences.

• CompareRevisions: A Projector script used to identify and compare revisions. See
Chapter 7 for details.

• CPlus: New script that compiles C++ programs.

• CreateMake: Enhanced with a new option that supports SADE.

• Dolt: A script to highlight and execute a series of commands.

• DumpCode: Enhanced.

• DumpFile: New -bf option. Note that the -c option has been renamed -w (for width).

• DumpObj: Enhanced to support SADE. Two new options have been added.

• GetFileName: Enhanced with a new -c (current) option to write the current Standard
File pathname to standard output. The syntax of this command has also been
improved.

• GetListltem: Getlistltem now supports keyboard shortcuts and a new option: -s
(single) option that permits only a single item to be selected from a displayed list.

• Ub: Enhanced. Llb now determines the optimum buffer allocation from the amount
of available memory; the old -b, -bs, -bf options are therefore obsolete and have been
eliminated.

• link: Enhanced to permit up to 1024 files, including both object files and symbolic
debugger source file specifications. A new -map option produces a sophisticated link
map. Link now determines the optimum buffer allocation from the amount of
available memory; the old -b, -bs, -bf options are therefore obsolete and have been
eliminated. A new option supports SADE. See Chapter 10.

INTRODUCTION The New and the Necessary 9

• MacsBug: MacsBug performance has been enhanced and upgraded. The MC68881 and
MC68882 floating-point coprocessors are supponed. See the separate MacsBug
Reference.

• Make: Changes have been made to the way variables are treated. See "Variables in
Makefiles" in Chapter 9.

• Matchlt: A new command that intelligently seeks the mate of a specified delimiter
used in Pascal, C, or Assembler, allowing for loops, comment fields, nesting, and so
on.

• MergeBranch: A Projector script used to help merge a branch file back into the trunk
of a project See Chapter 7 for details.

• Pascal: Enhanced with object-oriented capabilities. See the MPW Pascal section later
in this chapter and the MPW 3.0 Pascal Reference.

• Print: Enhanced. A new option, -ps, lets you send a file of PostScript® commands to
the I.aserWriter™.

• ProcNames: This Pascal utility now generates Shell marker commands, allowing easy
access to the procedure, function headers, or bodies. Names are now displayed
indented to show their nesting level. Nesting level and line number are also displayed.

• Resource tools: The command language of Rez has been extended with the new
syntax element Label to suppon color QuickDraw resources. There are a few new
syntax rules, new options, and two new functions that allow you to delete resources or
change resource information. See Chapter 11 and Appendix D.

• Sort: A new tool for soning lines of text.

• Wherels: This new tool helps you find files hidden deep in a directory tree. You can
use it to locate files when you know only a panial pathname.

New or enhanced Shell commands

All of these built-in commands are fully described in the Command Reference in Part II;
that is the first place to look for more information.

• Checkln: New Projector command to check files in to a Project See Chapter 7.

• Checkout: New Projector command to check files out from a Project. See Chapter 7.

• CheckOutDir: New Projector command to set Checkout directory. See Chapter 7.

• Close: Enhanced with a -c option; it lets you select the dialog's Cancel button during a
scripted operation.

• Date: Enhanced to provide "date arithmetic."

• DeleteNames: New Projector command. See Chapter 7.

10 MPW 3.0 Reference

• DeleteRevisions: New Projector command. See Chapter 7.

• Directory: A "directory path" variable (similar to the {Commands} variable) for
changing current directories has been added.

• Evaluate: Enhanced to support different radices and variable assignments.

• Flush: A command for flushing tools from the tool cache.

• Format: A scriptable form of the format option in the Edit menu.

• FullBuild: Enhanced.

• ModifyReadOnly: New Projector command to make read-only files modifiable. See
Chapter 7.

• MountProject: New Projector corrunand. See Chapter 7.

• MoveWindow: Enhanced to provide current window size and position.

• NameRevisions: New Projector command to name revised projects. See Chapter 7.

• NewProject: New Projector command to create a new project. See Chapter 7.

• OrphanFiles: New Projector command. See Chapter 7.

• Position: This new command shows the current line number, beginning of selection,
and end of selection in specified windows.

• Project: New Projector command. See Chapter 7.

• Projectlnfo: New Projector command. See Chapter 7.

• Request: Enhanced with -q option to quiet any error messages, permitting a script to
continue regardless of user input.

• RotateWindows: New command that sends the front window to the back.

• SizeWindow: Enhanced to provide current window size and position.

• StackWindows: Enhanced to support user-defined rectangles and a variable number
of windows.

• TileWindows: Enhanced to support user-defined rectangles and a variable number of
windows.

• TransferCkid: New Projector command. See Chapter 7.

• UmountProject: New Projector command. See Chapter 7.

INTRODUCTION The New and the Necessary 11

New Shell editor capabilities

The MPW Shell editor has been refined in various ways:

• MPW 3.0 supports the special keys on the Apple Extended Keyboard:
Esc
Undo
Cut
Copy
Paste
Help

Home
End

Page Up

Same as Cancel button in a dialog box
Same as Undo menu command
Same as Cut menu command
Same as Copy menu command
Same as Paste menu command
With no selection, displays a summary of the Help available. With a
selection, information on that selection is displayed.
Equivalent to moving the vertical scroll box to the top of the scroll bar.
Equivalent to moving the vertical scroll box to the bottom of the scroll
bar.
Equivalent to clicking the mouse pointer in the upper gray region of the
vertical scroll bar.

Page Down Equivalent to clicking the mouse pointer in the lower gray region of the
vertical scroll bar.

• The displayed line-length limit has been increased to 256 characters.

• The tab-length limit has been increased to 100 characters.

• Horizontal scrolling is faster; more screen area is moved per mouse click.

• You can reverse the direction of the Find, Find and Replace, Find Same, Replace Same,
and Find Selection functions by holding down the Shift key when selecting a menu
item (or, in a dialog box, when clicking OK). This makes interactive searching a little
more convenient but does not affect Shell search variables.

• Text selection by matching delimiters (such as {), (), [], and so on), has been
modified. Instead of selecting the rest of the document when a matching character is
not found, the delimiter at the position of the double-click is highlighted. During the
search you can abort by pressing Command-Period.

• The new commands Format and Position (described above in the "New or Enhanced
Shell Commands" section) are useful for scripted editing.

• The library routine faccess has been enhanced to provide more programmatic
control over Shell windows.

U MPW 3.0 Reference

• You can now disable Auto-Indent for one line by pressing Option-Return.

• The MPW Shell editor ignores any zero-width characters that are typed from the
keyboard. (Usually these are typed by accident.) If you really want a control character
in your document, you can enter it in the Key Caps desk accessory and then paste it in
your document. To delete control characters that might not be visible, select Show
Invisibles from the Format dialog box. All control characters are displayed as an
inverse question mark (;,).

New standard Shell variables

Twelve new variables have been added to give you control over almost all formatting and
editing options from scripts. (Only display invisibles cannot be predefined.) The first five
variables listed here provide default settings for new windows and are especially useful
with large-screen monitors. See "Variables Defined in the Startup File" in Chapter 5 for
more information.

• {Autoindent} sets default indenting for new windows.

• {Font} sets default font for new windows.

• {FontSize} sets default font size for new windows.

• {NewWindowRect} sets the default size for new windows.

• {ZoomWindowRect} sets default size for windows that are zoomed to full screen size.

• {TileOptions} sets options for the TileWindows menu item, for example, to specify a
rectangle for the tiled window arrangement.

• {StackOptions} sets options for the StackWindows menu item, for example, to
specify a rectangle for the stacked window arrangement.

• {SearchBackward} can be used to set your default environment to specify backward
searching.

• {SearchType} can be used to set your default environment to specify searching for
literal characters, words, or regular expressions.

• {Search Wrap} can be used to set your default environment to specify wrap-around
searching.

INTRODUCTION The New and the Necessary 13

• {User} specifies the name of the user currently using MPW. It is predefined to be the
same as the user name specified in the Chooser.

• {IgnoreCmdPeriod} is a new variable referenced by MPWs command interpreter. Use
this variable in your scripts when you want any Command-Period input by the user to
be ignored.

Changes to menus and dialogs

A few menus have been slightly changed since the release of MPW 2.0:

• TileWindows and StackWindows menu items now, by defaul~ do not include the
Worksheet. You can include the Worksheet in the tiling or stacking by pressing the
Option key when selecting the TileWindows or StackWindows menu item. The
{TileOptions} and {StackOptions} variables let you completely customize the
operations of the Tile Windows and StackWindows menu commands. See Chapter 3.

• Window menu now lists any open Projector windows. See Chapter 3.

• The Open dialog box now contains a Read Only checkbox.

Miscellaneous Shell changes

Here are some important improvements for the MPW Shell:

• MPW 3.0 supports background operation of tools while running MultiFinder. This is a
significant improvement in convenience and efficiency. Please see "Using MPW With
MultiFinder" in Chapter 2 for instructions on configuring your system for true
multitasking.

• An automatic installation program is included with MPW 3.0. This program, Installer,
and the tools to support i~ can be found on the MPW Installation Disk. Please read
"Installing the System" in Chapter 2 before doing anything with it This is important
because the arrangment of MPW files on the 3.5-inch distribution disks has been
changed to represent their final destination when moved to a hard disk. Thus there
will be some duplication of folders across the set of distribution disks so that you
cannot simply copy the entire contents of a distribution disk without some conflict.

· • The Startup file now executes UserStartup and then any file named UserStartup• name
in the directory that contains the Shell. (Press Option-8 to obtain the • symbol.) If
you have a customized UserStartup file, you may want to personalize it (for example,
UserStartup•Tom) so that when you install MPW 3.0 your customized file won't be
overwritten.

14 MPW 3.0 Reference

• Standard output and diagnostic output can now be directed to the same place with
the L (Option-W) character, meaning: "The summation of all output. .. " See
"Redirecting Input and Output" in Chapter 5 for the new syntax.

• You can now use Option-Enter to invoke the Commando dialog boxes for commands.
Alternatively, you can still type the conunand name, then the ellipsis character
(Option-Semicolon), and then press Enter.

• A new directory path variable for changing current directories is now available from
the Directory command. (See Part II.)

• Numeric variables have been added to the Shell command language. See the Evaluate
command in Part II for details.

• The notation conventions of this reference have been slightly modified. The index has
also been improved. See "About This Reference" at the end of this Introduction.

Numeric libraries

Llnking with numeric libraries has been simplified by placing certain conversion functions,
such as num2dec, in CRuntime.o. A program that simply uses printf will no longer need
to link with CSANElib.o.

A new {Aincludes} macro file called SANEMacs881.a is provided as a migration aid for
Macintosh II developers who seek even greater floating-point perfonnance from their
products by using SANE macros. With little modification of their source files, they can
reassemble by using the 881 SANE macros and thereby generate a faster application that
runs only on the Macintosh II.

INTRODUCTION The New and the Necessary 15

MPW C and MPW C++ Include files

The capitalization conventions for those functions that use Points or strings have been
changed for MPW 3.0. These changes are itemized here:

• Those functions that call "glue" code to convert C strings to Pascal strings or
dereference Points are now spelled with all lower case letters.

• The in-line versions of those function calls, those that do no conversions, are now
spelled with mixed cases to match the conventions in Inside Macintosh.

• You will find in the Scripts folder a new script, CCvt, that changes source code to
conform to the new standard spelling conventions. CCvt first backs up the original
source and then uses two Canon dictionaries to change mixed case spellings to all
lower case and all upper case spellings to mixed case.

• The syntax for ROM calls (A-traps) has been changed. The new syntax allows multiple
instructions for "direct functions" and is more compatible with standard ANSI C and
C++.

• The header files have been rewritten with function prototypes that allow ANSI C and
C++ to do additional type-checking and code optimization.

If you use MPW C, please see the MPW 3.0 C Reference for more information about
interfaces.

MPW Pascal

The MPW 3.0 Pascal Compiler no longer provides the compiler directive $LOAD and the
option -z that were supported in MPW 2.0 Pascal. In addition to providing nearly all the
capabilities described in the ANS Pascal Standard, MPW 3.0 Pascal expands the power
and flexibility of Pascal programming with a range of new features and options:

• SADE, the symbolic debugger (-sym option), and MacsBug (-mbg option) are
supported.

• A replacement for the $LOAD mechanism provides a more automatic and faster
method (-noload, -clean, and -rebuild options).

• You can use character constants as valid string expressions.

• Symbol support for MacsBug has been extended and improved.

• Global data greater than 32K is now possible.

• The requirements for forward type references are more flexible.

16 MPW 3.0 Reference

MPW tool libraries

MPW language libraries that control the MPW Shell were previously documented in their
respective language references. All Shell-related routines are now combined in this
reference.
• Use of the MPW cursor control routines and error file manager is now explained in

Appendix F of this book. Examples are shown in both MPW C and MPW Pascal;
Assembly programmers can use both.

• Use of the MPW Integrated Environment routines are documented in Chapter 12. The
routines are explained for MPW Assembler, MPW C, and MPW Pascal.

• The Graf3D library is now documented in Appendix G. Each routine or function is
explained for MPW C and MPW Pascal; Assembly programmers can use both.

• The calls required to use the performance-measurement tools are now included in
Chapter 14 of this book. Examples are shown in MPW C, MPW Pascal, and MPW
Assembler.

What you'll need

This section describes the hardware and documentation you need to develop software
with the Macintosh Programmer's Workshop 3.0.

Hardware and system requirements

The Macintosh Programmer's Workshop 3.0 can generate applications that run on any
Macintosh, including the Macintosh II, Macintosh SE, Macintosh Plus, Macintosh 128K,
Macintosh 512K and 512K enhanced, and Macintosh XL.

However, the MPW 3.0 system requires, at the minimum, a Macintosh Plus with 2
megabytes of RAM and a hard disk drive. MPW does not run on the Macintosh XL, the
Macintosh 128K, the Macintosh 512K, or Macintosh 512K enhanced or on systems without
hard disks. MPW 3.0 requires the 128K or 256K ROMs; it cannot execute on the older 64K
ROMs. The ideal developmental system for use with MPW 3.0 is a Macintosh II with an
80-megabyte SCSI hard disk drive, 4 or more megabytes of memory, and System 6.0.2 or
later software with MultiFinder.

In general, a small RAM cache of about 32K is useful. Use of MPW with Switcher™ is not
supported.

INTRODUCTION The New and the Necessary 17

MPW software is shipped on BOOK disks. Although MPW 3.0 can still read from and write
to disks that use the nonhierarchical filing system, MPW's files must be kept on disks that
use the hierarchical filing system (HFS). Hard disks, when used as boot disks, must be
HFS volumes.

Apple's Macintosh peripherals, including the LaserWriter family of printers and the
AppleShare• file server, are supported.

System Folder requirements

Please make sure that you are using System file Version 6.0.2 or later versions.

MPW 3.0 requires these minimum system file versions:

• System file 6.0.2

• Finder 6.1
• Laser Prep 4.0

• ImageWriter9 2.6

• AppleTalk• ImageWriter 3.1

• LaserWrittr 4.0

These files are available on version 6.0.2 or later of the System Tools disk, and on the latest
version of the Printer Installation disk.

Documentation

In addition to the MPW 3.0 Reference, you should have the SADE Reference, the Macsbug
Reference, and the ResEdit Reference. These books together make up the MPW 3.0
documentation suite.

The four MPW programming languages, MPW Assembler, MPW C, MPW C++, and MPW
Pascal, are available as separate products.

All programmers need Volumes 1-N of Inside Macintosh (published by Addison-Wesley,
1985), the definitive guide to the Macintosh Operating System and user-interface
toolbox. Additional features of the Macintosh SE and Macintosh II computers are
documented in Volume V. ff you need to understand and control the numeric
environmen~ make sure that you have th~ Apple Numerics Manual, a guide to the
Standard Apple Numerics Environment (SANE™). Finally, you need the appropriate
documentation for the programming language you use:

18 MPW 3.0 Reference

• Assembly language: Macintosh Programmer's Workshop 3.0 Assembler Reference.
This reference is part of a separate product available from Apple. You may also need
the appropriate microprocessor documentation from Motorola.

• C: Macintosh Programmer's Workshop 3.0 C Reference. This reference is available as
part of a separate MPW product. For a guide to the C language itself, you'll need The C
Programming La.nguage by B. Kernighan and D. Ritchie, or a similar C manual.

• C++: MPW 3.0 C++ Reference. Also recommended is The C++ Programming
La.nguage by Bjame Stroustroup.

• MacApp: MacApp Programmer's Reference. This reference is patt of a separate
produc~ MacApp, the Expandable Macintosh Application, available from Apple. The
MacApp product also requires MPW Pascal or MPW C++.

• MacsBug: MacsBug Reference. This reference is included as patt of the MPW 3.0
product.

• Pascal: Macintosh Programmer's Workshop 3.0 Pascal Reference. This reference is
available as part of a separate MPW product.

• R.esEdit: ResEdit Reference. This reference is included as part of the MPW 3.0 product.

• SADE: SADE Reference. This reference is included as part of the MPW 3.0 product.

About this reference

Part I of this book describes the MPW development system, including the Shell and tools.
Part II of this book is a complete alphabetical reference to MPW commands that may be
removed to a smaller binder for easy reference.

This reference is written for programmers who are already familiar with the Macintosh. It
outlines the process of building a program but does not deal with the particulars of writing
it Language-specific information is covered in the appropriate language references.
Language-specific examples in this reference are given in MPW Assembler, MPW Pascal, or
MPWC.

If you are new to MPW, be sure to read the Overview in Chapter 1 and the brief section
"Building a Program: An Introduction" in Chapter 2. This introduction will take you
through MPW's build process in minutes. Chapter 3 introduces the commands available
from the menus and Chapter 4 covers the basics of using MPW, including features of the
Commando dialog interface.

INTRODUCTION The New and the Necessary 19

If you are a seasoned MPW user, this introduction should be sufficient to alert you to the
changes to the MPW Shell since MPW 2.0, and to indicate where you can find complete
details on each innovation. You may wish to read the new Chapter 7, "Projector: Project
Management." Please note that Link and Make are now described in their own chapters in
this reference and that ResEdit and MacsBug are now documented in separate volumes.
More examples have been added since MPW 2.0, and suggestions from readers have been
incorporated to make it easier to find information.

Finding information fast

During MPW sessions, the on-line Help files included with MPW are your first recourse. If
you don't find the information you need there, the recommended procedure is to check
the Table of Contents and then the index at the end of Part I in this reference. Use the
color-keyed tabs to rum quickly to the section in the MPW Reference that you need. Then
use the table of contents provided at the beginning of each chapter.

The index has been redesigned for MPW 3.0. A single datum.in the text (excluding
appendixes and Part II) may be referenced from as many as six different points in the
Index and up to three levels deep. References include practical task-oriented
identification to help you find exactly what you need without looking up a series of page
references for a single word. Trivial references have been eliminated from the index to help
you avoid wild-goose chases. Examples, tables, warnings, and special notes have been
listed to help you find things you may have encountered before but can't remember
exactly where.

Throughout this book you will encounter supplementary background information, hints,
and tips in specially formatted boxes set off by diamond-shaped icons and sans-serif
type. You can ignore these boxes during routine reference.

In spite of redundancy and a plethora of cross references, finding a specific item of
information in a book this size can sometimes be frustrating. A little preparation can help
out later when you are busy and need to find something fast. It's a good idea to begin by
carefully studying the organization of the Contents pages, especially the List of Figures
and Tables and the appendixes at the end of Part I. The List of Figures and Tables and the
appendixes are often overlooked. You may find it useful to glue tabs at the locations of
important figures and tables. Whenever you come across something in the body of the
text that you think you may need to find later, place a tab there and label it.

20 MPW 3.0 Reference

Part II of this manual is a complete alphabetical reference to .MPW commands. A5 you
become familiar with MPW and no longer need to refer often to the indexed chapters of
Part I, you may find it convenient to remove Part II and place it in a smaller binder for
handy reference. You may want to include some of the appendixes (such as the summary
of the Resource compiler's syntax in Appendix D) in the smaller binder also.

Syntax notation

The following syntax notation is used to describe MPW commands:

code

include

nonterminal

{FontSize}

[optional]

-0

repeated ...

alb

(grouping)

Courier text is used in examples to indicate characters that
must appear in a command line exactly as shown. Special
symbols (- , §, &, and so on) must also be entered exactly as
shown. Command-line examples are always set off in separate
paragraphs.

Command-language identifiers and syntax elements are set in
Courier to differentiate them from surrounding Garamond text
(following the Kernighan and Ritchie notation conventions).

Items in italics can be replaced by anything that matches their
definition. When referred to in the text, variables normally
appear in italics.

Standard MPW Shell variables appear without spaces between
braces.

Brackets mean that the enclosed elements are optional.

Hyphenated command-line options appear in boldface when
mentioned in text.

An ellipsis (. ..), when it appears in the texl of this reference o~,
indicates that the preceding item can be repeated one or more
times. Do not confuse this reference convention with the
ellipsis command-line character (Option-Semicolon), used to
invoke the Commando dialog interface.

·A vertical bar indicates an either/or choice.

Parentheses indicate grouping (useful with the I and ...
notation).

This notation is also used in the output of the Help command. (See "The Help Command"
in Chapter 4.)

INTRODUCTION The New and the Necessary 21

Filenames and command names are not sensitive to case. By convention, they are shown
with initial capital letters. Important terms are printed in boldface when they are first
introduced and defined; these terms are also fully defined in the glossary. Proper names
of key user-interface elements, such as the Shell, appear with initial capitals. Command
key or option-key commands (such as Option-L) are always defined in the text with
capitals for clarity; nonetheless, the commands work with lower case letters.

Aids to understanding

Look for these visual cues throughout the manual:
A Warning Warnings like this indicate potential problems. •

.6. Important Text set off in this manner presents important information. 6

+ Note: Text set off in this manner presents important points that should not be
overlooked.

+ Hints

Text set off in this manner in Helvetica type indicates practical hints or background

information that need not be perused during routine reference. +

For more information

APDA ™ provides a wide range of technical products and documentation, from Apple and
other suppliers, for programmers and developers who work on Apple equipment. (MPW is
distributed through APDA.) For information about APDA, contact

APDA
Apple Computer, Inc.
20525 Mariani Avenue, Mailstop 33-G
Cupertino, CA 95014-6299

1-800-282-APDA, or 1-800-282-2732
Fax: 408-562-3971
Telex: 171-576
Applelink: DEV.CHANNELS

If you plan to develop hardware or software products for sale through retail channels, you
can get valuable support from Apple Developer Programs. Write to

Apple Developer Programs
Apple Computer, Inc.
20525 Mariani Avenue, Mailstop 51-W
Cupertino, CA 95014-6299

22 MPW 3.0 Reference

Chapter 1 System Overview

THIS CHAPTER IS A GUIDE TO THE STRUCTURE OF THE MPW 3.0 SYSTEM and an
introduction to its components. If you are new to MPW, this chapter will help you to
get oriented. The MPW Shell commands and the MPW tools are grouped according
to task each tool or command is briefly introduced and cross-referenced. •

Contents

The MPW Shell 25
Wmdow commands 26
File-management commands 27
Project-management commands 28
Editing commands 29
Structured commands 29
Other built-in commands 30

MPW scripts 31
MPWtools 32

MPW Assembler 33
MPW Pascal tools 33
MPW C compiler and C++ translator 34
Link 34
Make 35
Resource compiler and decompiler 35
Commando 36
Projector 36
Conversion tools 37
Performance-measurement tools 37

Applications 37
ResEdit 38

SADE and MacsBug 38
Special scripts 39
Examples 39

Sample program files 39
Command-language examples 40

Overview of MPW files and directories 40

23

The MPW Shell

The MPW Shell is an application that provides an integrated, window-based environment
for program editing, file manipulation, compiling, linking, and program execution. The
other parts of the Macintosh Programmer's Workshop 3.0-the language and resource
compilers, debuggers, Projector, Commando, and other tools described below (except
independent applications such as ResEdit)-operate within the Shell environment These
tools accept input from files and Shell windows, and direct output to them.

The Shell combines a command language, a text editor, the Commando user inteiface, and
the Projector project-management system. You can enter commands in any window, even
within an ordinary text file, or you can execute them by using menus and dialogs. (A
dialog may include one or more dialog boxes, which may in turn contain text boxes,
check boxes, radio buttons, and so on.) For every MPW tool there is a Commando dialog
offering all parameters, functions, and options of the command language along with built
in context-sensitive help.

The command language provides text-editing and program-execution functions, including
parameters to programs, scripting (command file) capabilities, input/output redirection,
and structured commands. You run a tool by typing its name, and then a list of options
and affected files. You can link tools together in custom scripts, piping the output of one
to the input of another, thereby automating complex operations.

The window operations, menus, and menu items are easily customized to fit your specific
needs or preferences.

The MPW Shell integrates the following functional components:

• An editor for creating and modifying text files. The editor implements normal
Macintosh-style editing together with scriptable editing commands so that you can
program the Shell to perform editing functions. (See Chapters 3, 4, and 6.)

• A command interpreter interprets and executes the commands you enter in a
window or read from a file. (See Chapter 5 and Patt II.)

• The Commando user interface displays dialog boxes providing immediate, mouse
access to all of MPW's many functions, features, and options, including on-line help.
(Sec Chapter 4 for an introduction to the use of the Commando dialogs. Chapter 13 is
a guide to creating and editing your own Commando dialogs.)

CHAPTER 1 System Overview 25

• A command interpreter interprets and executes the commands you enter in a
window or read from a file. (See Chapter 5 and Part II.)

• The Commando user interface displays dialog boxes providing immediate, mouse
access to all of MPWs many functions, features, and options, including on-line help.
(See Chapter 4 for an introduction to the use of the Commando dialogs. Chapter 13 is
a guide to creating and editing your own Commando dialogs.)

• Built-in commands, in addition to editing functions, include commands for
managing files without returning to the Finder, commands for manipulating windows,
processing variables, command control flow, and more. (See Chapter 5.)

• Projector, a project-management system, makes it easy to track the revision
history of even large projects with many contributors, with or without a network.
Projector helps you avoid confusing versions or getting out of synch with colleagues.
(See Chapter 7 .)

• The MPW tools, over 135 versatile programming tools and scripts designed to run
within the MPW environment Every tool is equipped with a complete dialog interface
including context sensitive help. Part II of this reference is an alphabetically organized
guide to each of these tools and their many options.

'\Vlndow com.mands

All work in .MPW is done within windows. The following commands are available for
manipulating windows:

Close Close a window.
Move Window
New
Open
Rotate Windows
Size Window
Stack Windows
Target
Tile Windows
Windows
Zoom Window

Move window to a specified location on screen.
Open a new window.
Open a window.
Rotate the sequence of a tiled or stacked array of windows.
Set a window's dimensions.
Arrange open windows in a staggered diagonal array.
Make a window the target window.
Arrange open windows in a tile pattern.
List windows.
Enlarge or reduce a selected window.

MPW 3.0 Reference

File-management commands

The MPW Shell provides the following tools and built-in commands for manipulating files
and directories without having to exit to the Finder (see the MPW tool section later in this
chapter for other commands that help to manage files):

Backup
Catenate
Delete
Directory
Duplicate
Eject
Equal
Erase
Exists
Files
Mount
Move
Newer
New Folder
Rename
Save
SetFile
Sort
Unmount
Volumes
Which

Back up folder files.
Concatenate files.
Delete files and directories.
Set the default directory.
Duplicate files and directories.
Eject volumes.
Compare files and directories.
Initialize volumes.
Find out if a file or directory exists.
List files and directories.
Mount volumes.
Move files and directories.
Compare two files to see which was modified most recently.
Create a directory.
Rename files and directories.
Save files in edit windows.
Set file attributes.
Sort or merge files.
Unmount volumes.
List mounted volumes.
Determine which file (pathname) the Shell will execute.

CHAPTER 1 System Overview

Project-management commands

Projector provides the following built-in commands and scripts.for managing projects and
tracking revisions. See Chapter 7 for a complete explanation of Projector.

Checkln
Checkout
CheckOutDir
CompareRevisions
DeleteRevisions
DeleteNames
MergeBranch
ModifyReadOnly
MountProject
NameRevisions
New Project
OrphanFile
Project
Projectlnfo
TransferCKID
UnmountProject

Add or return files to a project.
Check out a file for reading only or for modification.
Set location of Checkout directory.
Compare two revisions of a file in a project.
Delete selected revisions and branches of the named files.
Delete user-defined symbolic names.
Merge a branch revision onto the trunk
Change a file checked out as read-only to allow modification.
Add the pathname of a project to the root project list.
Name a set of revisions for the files of a project
Create a new project directory.
Orphan a file from a project.
Set or write the current project.
List current state of all files within a project.
Transfer resource information in one Projector file to another.
Remove the pathname of a project from the root project list

MPW 3.0 Reference

Editing commands

Besides the Macintosh's usual mouse-and-menu editing capabilities, a number of built-in
editing commands are provided. You can use these commands both interactively and in
scripts. Editing commands feature the use of regular expressions, a set of special
operators that forms a powerful language for defining tel.t patterns. Other useful
commands for editing (such as Match!t and Translate) are listed later in this chapter under
"MPW tools." See "Pattern Matching" in Chapter 6 for a discussion of regular expressions.

Adjust
Align
Clear
Copy
Cut
Find
Format
Mark
Markers
Paste
Position
Replace
Revert
Undo
Unmark

Adjust lines.
Align text to left margin.
Delete the selection.
Copy the selection to the Clipboard.
Copy the selection to the Clipboard and delete the selection.
Find and select a text pattern.
Specify format of a file (font, tabs, font size).
Mark and name a text selection.
List marked selections.
Replace the selection with contents of the Clipboard.
List the position of selections in a window.
Replace the selection.
Revert to saved file.
Undo last edit
Remove a marker from its text selection.

Structured commands

The Shell also provides a number of built-in structured commands. Used mainly in scripts,
these commands provide conditional execution and looping capabilities:

Begin ... End
Break
Continue
Exit
For ...
If... .
Loop ... End

Group commands.
Break from For or loop.
Continue with next iteration of For or Loop.
Exit from a script.
Repeat commands once per parameter.
Conditional command execution.
Repeat commands until Break.

CHAPTER 1 System Overview 29

Other built-in commands

The MPW Shell also provides a number of other predefined commands:

AddMenu
Alert
Alias
Beep
Confirm
Date
DeleteMenu
Echo
Evaluate
Execute
Export
Flush
Help
Parameters
Quit
Quote
Request
Set
Shift
ShutDown
Unalias
Unexport
Unset

Add menu item.
Display alert box.
Define alternate command names.
Generate tones.
Display confirmation dialog box.
Write the date and time.
Delete a user-defined menu or item.
Echo parameters.
Evaluate an expression.
Execute a script without affecting variable scope.
Make variables available to programs and scripts.
Clear the command cache.
Display summary information.
Identify parameters.
Quit MPW.
Echo parameters, quoting if needed.
Request text from a dialog box.
Define and write Shell variables.
Renumber script positional parameters.
Shut down or reboot machine.
Remove aliases.
Remove variable definition from export list.
Remove Shell variables.

30 MPW 3.0 Reference

MPW scripts

The menu commands available in the Directory and Build menus use some of these scripts:

BuildCommands
BuildMenu
BuildProgram
CCvt
CompareFiles
CompareRevisions
CPlus
CreateMake
Directory Menu

·Dolt
Line
MergeBranch
OrphanFile
SetDirectory
TransfeICKID

Show build commands.
Create the Build menu.
Build the specified program.
Convert pre-3.0 C source to 3.0-compatible source.
Compare two files side by side, pinpointing any differences.
Identify and compare project revisions.
Compile C++ programs.
Create a simple makefile.
Create the Directory menu.
Highlight and execute a series of commands.
Find specified line in file.
Merge a branch file back into the trunk of a project.
Orphan a file from a project.
Set current directory (from Directory menu).
Transfer resource information in one Projector file to another.

CHAPTER 1 System Overview 31

MPW tools

MPW tools are programs that run within the Shell environment. With the exception of the
language compilers, the tools listed here are included with the Macintosh Programmer's
Workshop 3.0; several are described in more detail in the sections that follow.

Asm
Backup
c
Canon
CFront
Choose
Compare
Count
DeRez
DumpCode
Dump File
DumpObj
Entab
File Div
GetErrorText
GetFileName
GetListltem
Lib
Link
Make
MakeErrorFile
Matchlt
Pascal
PasMat
PasRef
PerformReport
Print
ProcNames
Res Equal
Rez
RezDet

MC68000-family Macro Assembler (available as a separate product).
Back up folder files.
C compiler (available as a separate product).
Canonical spelling tool. ·
Translator for C++.
Choose or list volumes or printers (scriptable chooser).
Compare text files.
Count lines and characters.
Resource decompiler.
Dump code resources.
Display contents of an arbitrary file as hex and ASCII.
Dump object files.
Convert runs of spaces to tabs.
Divide a file into several smaller files.
Display text for system error numbers.
Display a standard file dialog box.
Present file selection list in dialog box.
Combine object files into a library file.
Link an application, tool, or resource.
Program maintenance tool.
Create error message textfile.
Match paired language delimiters.
Pascal compiler (available as a separate product).
Pascal program formatter (part of MPW Pascal).
Pascal cross-referencer (part of MPW Pascal).
Generate a report analyzing program performance.
Print text files.
Display Pascal procedure and functions names (part of MPW Pascal).
Compare files on a resource-by-resource basis.
Resource compiler.
Detect inconsistencies in resources.

32 MPW 3.0 Reference

Search files for a pattern. Search
SetPrivilege
Set Version
Sort
Translate
Where Is

Set access privileges to folders on file server.
Maintain version and revision numbers.
Sort files.
Convert one or more characters.
Locate files buried deep in a directory tree.

MPW Assembler

The Assembler is provided as a separate product, MPW 3.0 Assembler, which includes the
following:

• Translation of MC68000, MC68010, MC68020, and MC68030 assembly-language
programs into object code

• Support for MC68881 and MC68882 floating-point instructions and MC68851 memory
management instructions

• Powerful macro facilities, code and data modules, and entry points, local labels, and
(optional) optimized instruction selection

• Assembly-language interfaces to Inside Macintosh routines

• Sample programs

MPW Pascal tools

The Pascal system is provided as a separate product, MPW 3.0 Pascal, which includes the
following:

• Pascal compiler

• Pascal cross-reference program (PasRef)

• Pascal source file format program (PasMat)

• Pascal procedure and name program (ProcNames)

• Pascal runtime library

• Pascal interfaces to the Inside Macintosh routines

• Sample programs

Macintosh Programmer's Workshop 3.0 Pascal is an improved version of MPW 2.0 Pascal.
The Pascal tools PasRef, PasMat, ProcNames, and the Pasca I compiler are also
documented in Pan II of this reference.

CHAPTER 1 System Overview

MPW C compiler and C++ translator

The C compiler and C++ translator are provided as separate products. MPW 3.0 C includes
the following:

• C compiler

• Standard C Library

• C interfaces to the Inside Macintosh libraries

• Sample programs in MPW C

The C Compiler implements the full C language as defined in 1he C Programming
Language, by Brian Kernighan and Dennis Ritchie. The usual extensions to this definition
provide enumerated types and structure assignment, parameters, and function results. In
addition, Apple extensions provide SANE numerics and interfaces to Pascal functions and
Macintosh traps. The compiler supports many ANSI C features, such as function
prototypes and strict pointer compatibility. Most Standard C Library functions, including
character and string processing, memory allocation, and formatted input/output, are also
provided.

MPW 3.0 C++ includes the following:

• C++ translator (CFront)

• C ++ Streams Library

• Sample programs in MPW C++

The CFront translator from AT&T implements the full C++ language as defined in 1he C++
Programming Language, by Bjame Stroustroup. The current version, CFront 2.0, also
implements multiple inheritance and other extensions described in the paper "Evolution
of C++ from 1985 to 1987n by Bjame Stroustroup. In addition to the C extensions listed
in that paper, C++ also contains extensions that allow C++ to be used with MacApp.

link

The linker (link) combines object code files into executable programs, driver resources,
or stand-alone code resources. Link includes, by default, only the code and data modules
that are referenced. Link replaces the code segments in an existing resource file, without
distwbing other resources in the file. An option directs Link to produce a link map as a
text ftle. Other options allow the creation of an object module cross-reference file, a file
containing a list of all the unreferenced modules, and a symbolic debugger file.

MPW 3.0 Reference

A separate tool, Lib, provides library manipulation. linking is performed automatically
for simple programs constructed by using the Build menu. Chapter 8 describes the use of
Llnk in building a program. See Chapter 10 for more details on the operation of the linker.

Make

The Make tool simplifies software construction and maintenance. Its input is a list of
dependencies between files and instructions for building each of the files. Make generates
commands to build specified target files, rebuilding only those components that are out
of-date with respect to their dependencies. You can generate makefiles automatically
from commands in the Build menu. To use Make with more elaborate programs, see
Chapter 9.

Throughout this reference examples demonstrating Make or makefiles assume that you are
using Apple's MPW languages. Because Make assumes certain default rules that apply only
to Apple's MPW languages, you may need to make modifications for non-Apple
programming languages. Please consult your compiler's documentation for instructions on
how to modify these default rules.

Resource compiler and decompiler

The resource compiler (Rez) reads a textual description of a resource and converts it into
a standard Macintosh resource file. The resource decompiler (DeRez) converts resources
into a textual representation that can be edited in the Shell, and recompiled with Rez. You
can use DeRez to create resource compiler input from any existing resource files. Rez and
DeRez need templates (type declarations) to define resource types. Definitions of the
standard Macintosh resource types ('MENU', 'STRi', 'ICON', and so on) are provided
in two commented text files, Types.r and SysTypes.r. Another tool, RezDet, checks
resource files for consistency (see Part II). Rez and DeRez are documented in Chapter 11.

Reis capabilities have been extended in MPW 3.0. Two new functions let you delete
resources or change resource types from within Rez. The new syntax element label has
been supplied to support more complex resources, such as those found in color
QuickDraw.

CHAmR 1 System Overview 35

Commando

The Commando tool implements the Commando dialog user interface for all MPW tools
and commands. Obviously, this is a great convenience for dealing with tools offering
many interdependent options. Newcomers to MPW will appreciate Commando's instant
assistance in building complex command lines. The dialogs include a Help frame with
information on each selected data field or control. You can also use Commando to create
specialized dialogs for your own MPW tools and scripts.

Commando looks in a tool's or script's resource fork for a resource of the type • cmdo • .

Commando then loads the resource, builds a dialog, handles events, and passes the
resulting command line back to the Shell for execution. The basics of using Commando
dialogs are described in Chapter 4. Dialogs utilizing specialized types of dialog boxes are
presented with the tools they support in Part IL Chapter 13 tells you how to create a
Commando interface for your own tools and scripts.

Projector

Projector is an easy-to-use project-management system that can be customized to fit any
working style, from the single programmer to the large networked engineering team. Use
Projector's file-locking feature to control changes to master files, track a project's
revision history, and generally keep your projects organized.

Briefly, here's how it works: You begin a work period by checking out a file from
Projector for either review or modification. Although many people can review a file, only
one person at a time can modify a file. When you've finished your work, you check any
modified files back in with Projector, along with a note detailing your modifications.
Your name, your notes, and the date are automatically filed in Projector's revision history
for that project Various branches of a file containing different modifications may be
later merged into one master file.

Projector's commands (listed in the section "Project-Management Commands" earlier in
this chapter) are built into the Shell. Chapter 7 is a detailed account of Projector.

36 MPW 3.0 Reference

Conversion tools

Canon is a tool for regularizing the spelling and capitalization of identifiers in source files
moved from other systems. (In MPW languages, all characters are significant rather than
just the first eight as in the Lisa Workshop. In C, case is also important.)

The file Canon.diet contains the correct spelling and capitalization for Inside Macintosh
ROM routines. C programmers, in particular, will find Canon and Canon.diet useful.

Entab is a useful tool for converting space characters and tabs to conform to MPW editor
or other editor conventions.

You can look up these conversion tools in Part II.

Performance-measurement tools

The performance-measurement tools enable you to pinpoint where your code is spending
time. These libraries allow you to sample the program counter, produce a file of output
data, and analyze that data With a report generator. Advanced programmers will find these
tools useful for streamlining the execution of their code. Chapter 14 is devoted to this
subject. Examples of the actual calls and procedures are presented in MPW C and MPW
Pascal.

Applications

Applications are stand-alone programs that can execute outside the Shell environment.
SADE and ResEdit are both stand-alone programs provided with MPW. It is assumed that
you already have the Font/DA Mover, which is distributed on the system tooJs and system
installation disks. Any application can be executed from the MPW Shell.

CHAPTER 1 System Overview

Res Edit

ResEdit is an interactive, graphically based editor for creating, editing, and copying
resources. An interface like that in the MacDraw application is provided to help you
design your own fonts. ResEdit includes a set of routines that make it possible to write
your own add-on resource editors for ResEdit. See the separate ResEdit Reference for a
thorough explanation of ResEdit.

SADE and MacsBug

The new Symbolic Application Debugging Environment (SADE) is a symbolic debugger
with an interactive graphic interface like that of the MPW Shell. SADE is an application
that runs under MultiFinder and can be used to debug other applications and MPW tools.
You can monitor the execution of your program simultaneously at the processor level and
the symbolic program source level. This first release of SADE includes

• source display

• variable display according to type

• display of Macintosh system structure

• source level breaks and stepping

• programmable, extensible command language

SADE is included with MPW 3.0 but documented separately in the SADE Reference. See
Appendix F of this reference for the object file format.

The familiar MacsBug has been improved for MPW 3.0, and is also documented in a
separate volume, MacsBug Reference.

MacsBug fully supports the MC68000, MC68020, and MC68030 processors, as well as the
MC68881, MC68881, and MC68851 coprocessors. MacsBug resides in RAM together with
your program MacsBug allows you to examine memory, trace through a program, or set up
break conditions and execute a program until they occur. MacsBug runs on all Macintosh
computers with 128K or larger ROMs, including the Macintosh SE and Macintosh II. See
the MacsBug Reference for instructions on using MacsBug.

MPW 3.0 Reference

Special scripts

Several special command scripts are provided. They are essential for operation of the
MPW Shell. These text files contain commands that are read by the Shell at startup and
shutdown:

• The Startup file is a command script that calls another scrip~ UserStartup, that is run
each time you start the MPW Shell. You can use UserStartup to customize MPW. The
Startup file now executes UserStartup and then any file named UserStartup• name in
the directory that contains the Shell. (Press Option-8 to obtain the • symbol.) If you
have a customized UserStartup file, you may want to personalize it (for example,
UserStartup•Tom) so that when you install MPW 3.0 your customized file won't be
overwritten. The Startup file is discussed in detail in Chapter 5.

• The Suspend and Resume files are scripts that preserve the state of the Shell
environment while a stand-alone application is executing. The Quit file saves the state
of the Shell environment when you exit to the Finder.

Examples

In addition to the examples excerpted in this reference work, you'll find numerous
complete examples in the Examples folder included on the MPW distribution disks. The
examples are written in MPW C, MPW Pascal, and MPW Assembler. Examples illustrating
the use of Projector are also included in this folder. If you are using a different compiler
sold with MPW 3.0, check the compiler's documentation and distribution disks for
specific versions of these sample programs. See Appendix A for the location of the MPW
3.0 Examples folder.

Sample program files

Source files are provided for sample MPW tools and desk accessories. Versions of these
sample programs are included in MPW Assembler, MPW C, and MPW Pascal. They can be
found in the Examples folder. The Examples folder also contains instruction files and
makefiles for building the sample programs. Some of these examples are referred to in
Chapter 2, "Building A Program: An Introduction."

Note that these sample files are part of the respective MPW C, MPW Pascal, and MPW
Assembler products.

CHAPTER 1 System Overview 39

Command-language examples

Examples of the use of the MPW command language are provid~d in the folder Examples.
Among these are

• addmenu commands for creating user-defined menu items

• a list of UNIX-oriented aliases

• suggestions for modifying the Startup script

To learn more about these examples, open the file Instructions in the Examples folder.
Additional examples are included with each of the MPW commands in Part II of this
reference. The command language is documented in Chapter 5.

Overview of MPW files and directories

Appendix A contains a complete list of all of the Macintosh Workshop 3.0 files. It also
describes the recommended setup of files on a hard disk. Figure 1-1 shows the MPW folder
layout. Folders for the Pascal, C, and Assembler systems are also shown, along with folders
for your applications and projects.

• F~ 1-1 Setup of MPW folders and files

15 items 33 ,959K in disk

llMPW Shen

(11startup

[ij User-Startup

[ijsuspend

00Resume

(ijouit
[ij Worksheet

CJ Interfaces

LJLibraries

00 MPW .Help

D SysErrs.Err

Be sure to see "Installing the System" in Chapter 2.

40 MPW 3.0 Reference

CJ Tools

CJ Scripts

5 ,093K available

CJ Examples

LJROMMaps

Chapter 2 Getting Started

THIS CHAPTER EXPWNS HOW TO START USING MACINTOSH PROGRAMMER'S WORKSHOP
3.0. Even if you are familiar with MPW 2.0, it's a good idea to read the next
section that describes the new automated installation procedure. (You might run
into some pathname conflicts if you simply drag files from the 3.5-inch disk to
your hard disk.) This chapter also contains the section "Using MPW With
MultiFinder," which explains how to use MPW while running a compiler in the
background. You'll also find a section with guidelines for sharing MPW from a file
server.

Basic rules of operation are introduced here and in Chapters 3 and 4. If you are
new to MPW, the tutorial "Building a Program: An Introduction," later in this
chapter, will introduce you to the simplicity of using this environment. •

Contents

Installing the system 43
Using MPW with MultiFinder 44
Using MPW on a file server 46
Starting up 46
Selecting commands from menus 48
Building a program: an introduction 49

The sample programs 49
Two easy steps SO

Building a new program 54

41

Installing the system

Macintosh Programmer's Workshop 3.0 is shipped on five SOOK disks: MPWJ, MPW2,
MPW3, MPW4, and the MPW Installation Disk. (MPW Assembler, MPW Pascal, MPW C, and
MPW C++ are separate products.)

Before attempting to install MPW, please check the section "Hardware and System
Requirements" in the Introduction of this book.

Appendix A, "Macintosh Programmer's Workshop Files," contains an annotated list of
MPW files and shows the recommended arrangement of files on a hard disk. Pathname
rules for the Hierarchical File System (HFS) are explained later in this chapter. Also see
Figure 1-1 at the end of Chapter 1 for a suggested arrangement of MPW folders and files.

A complete MPW 3.0 system, including all three MPW languages, requires over 6 megabytes
of disk space.

MPW 3.0 includes an Installer script on the MPW Installation Disk, for systematically
installing the complete MPW system from the other four disks so that everything is
located in the folders that MPW expects. You need at least 6 megabytes of space on your
HFS hard disk to complete the full installation. However, the Installer does give you the
option of stopping the installation before all of the tools on disks MPW3 and MPW4 have
been installed.

.A Warning Don't simply drag the MPW Shell or any other files from the Installer
disk to your hard disk. The files on the Installer disk are used for
automatic installation only, and thereafter you'll discard them. ""

To automatically install MPW 3.0, follow these steps:

1. Insert the MPW Installer disk in the 3.5-inch disk drive.

2. Drag the Installation folder to your hard disk. If you have multiple hard disks, drag the
folder to the hard disk on which you want MPW to reside.

3. Open the folder and double-dick the icon labeled "MPW Installer."

4. The first Installer dialog box appears:

CHAPTER 2 Getting Started

((

This is the installation procedure for MPW 3.0.
"lnternal:MPW:" will be installed. Insert the first
MPW distribution disk in driue 1 and click OK.

OK (Cancel)

5. Click OK and insert the distribution disks in any order. The Installer program creates a
folder named MPW at the root directory of the volume in which the Installer folder is
located.

6. When the installation is complete, or when you have dicked a Cancel button, the
Installer quits the Shell. Now throw away the Installation folder. You are left with MPW
in a folder at the root directory, ready to go.

The order in which the disks are copied doesn't matter, and it's okay to insert the same
disk more than once. You may also choose to stop by clicking the No button before
you've copied all the distribution disks.

If you decide to dick the Cancel button for any reason, the MPW Shell Worksheet
appears. (In that case, after quitting MPW, don't save the Worksheet file that was created
during the installation. It's better to start all over again.)

A Warning Don't use apostrophes or any other special characters in the hard disk
volume name. This would cause the Installer to fail. ""

Using MPW with MultiFinder

It would be very convenient to be able to work in the Shell or editor while waiting for a
compiler to run in the background. But MultiFinder lets you switch to different
applications only while running a tool; you cannot normally work in the Shell or editor
while running a tool in the background.

However, you can obtain this virtual multitasking capability by configuring a second
MPW Shell. You work in the second Shell while the first maintains the background
operation of any tool or script. Here is a way to set up the second MPW Shell:

44 MPW 3.0 Reference

Create a folder called Concurrent MPW and put these files in it:

• MPW Shell
Be sure to rename the second MPW Shell in this directory ·to something like
"Concurrent Shell" or perhaps "MPW Editing Shell" so that you can quickly identify
which Shell you are currently using.

• Startup

• UserStartup
This file isn't crucial, but without the variables, aliases, and menus defined in your
UserStartup, the Concurrent Shell would not be configured to your normal working
environment.

• MPW.Help
Alternatively, you could keep just one copy of MPW.Help in your main MPW directory
and use an alias in your Edit MPW. For example: alias help 'help -f HD:MPW:MPW.help'.

• SysErrs.Err
If you get an error from MPW and don't have a copy of this file, you'll see an error
message such as:

OS error -43 (Error message file not available)

• Quit

You can now use this second MPW Shell system while tools are running concurrently in the
first MPW Shell. This configuration is only a suggestion. You could simplify it a bit,as
indicated in the preceding notes. Also, the memory size in the second Shell may be
decreased to 512K if it is used only for editing and small tools.

• Note: Although you cannot move Shell windows or pull down menus while a tool is
running, remember that you can switch applications by clicking the application icon in
the menu bar.

The same file cannot be opened for editing by both Shells at the same time.

It's a good idea to generate a sound (using Beep or other tools) at the end of scripts so
that you know when your background operations are completed.

CHAPTER 2 Getting Started 45

Using MPW on a file server

To set up MPW in a shared environment, install the MPW system on the file server. The
following files must reside on each workstation that shares the MPW system.

• MPW Shell

• Startup

• UserStartup
Alternatively, you can change Startup to execute a UserStartup on the file server.

• MPW.Help
Alternatively, you can keep just one copy of MPW.Help on the file server by setting an
alias in your Startup file. For example:
alias help 'help -f SharedServer:MPW:MPW.Help'

• SysErrs.Err
If you get an error from MPW and don't have a copy of this file, you'll see an error
message such as:

OS error -43 (Error message file not available)

• Suspend/Resume
You need these files only if you are not running MultiFinder .

• Quit

Starting up

Start up MPW just as you would start any standard Macintosh application.

+ Note: A small RAM cache (perhaps 32K) is useful when running MPW 3.0. You may use
larger caches if you have plenty of memory. However, some functions in MPW 3.0 may
run nx>re slowly with large RAM caches. Use of MPW with Switcher is not
recommended; use MultiFinder.

46 MPW 3.0 Reference

From the Finder, select and open the MPW Shell icon. The Worksheet window (shown in
Figure 2-1) will appear with its full pathname in the title bar (for example,
"HD:MPW:Worksheet"). This window has no close box and is always present on the
screen; otherwise it's just like any other window. The Worksheet is your home base. You'll
use it most often to type commands and see the return output. You can also write and
compile sections of code or keep a diary-anything in the Worksheet can be saved to any
window or file.

You can also start MPW by double-clicking any MPW document or tool.

• Figure 2-1 Worksheet window

s file Edit Find Marie Window Project Directory Build

HO: MPW :Worksheet

The menus available from the Shell appear in the menu bar at the top of the screen. An
explanation of each menu is provided in Chapter 3. You can easily add your own menu
names. (See Chapter 8.)

A status panel at the window's lower-left comer shows the name of the command that's
currently executing, or simply "MPW Shell" when you're not executing a command. A
mouse click on the status panel is equivalent to pressing the Enter key.

When you first start the Macintosh Programmer's Workshop, a script called Startup
executes. The Startup file defines several variables and command aliases (alternative
command names); this file is further described in Chapter 5.

CHAPTER 2 Getting Started 47

!:::. Important The Startup file must be in the same directory as the MPW Shell. See
Figure 1-1, "Setup of MPW folders and files," at the end of Chapter 1
for an illustration of how your root MPW folder should appear. e:.

Sdecting commands from menus

In MPW, commands may be built-in commands, scripts, tools, or applications, as
explained in Chapter 1.

Several of the built-in commands can be executed by using the File, Edit, Mark, and
Window menus. The Project, Directory, and Build menus are optional, and are normally
installed by UserStartup scripts. Some items in these menus execute scripts (see Chapter 3
for details about menus). These scripts must be located in a folder with ·a path in the
{Commands} variable.

You can add your own menu items to the File, Edit, Find, Directory, and Build menus. By
using the Add.Menu command you can even add your own menus. Each user-defined menu
item specifies a list of MPW commands that are executed when the menu item is selected.
See the file Add.Menu in the Examples folder for a number of ideas for user-defined menus.

• Figure 2-2 MPW menu bar with MultiFinder

S File Edit Find Merle Window Project Directory Build II)

48 MPW 3.0 Reference

Building a program: an introduction

This section takes you step by step through the process of building a sample program.
You'll find that the Build menu and the Commando dialog boxes make the learning process
intuitive and comfortable. Even if you've never used MPW before, you can immediately
use the Build menus to build programs.

MPWs automated Build menu lets you assemble, compile, and link simple programs
without studying the command language, the numerous compiler and linker options, or
countless other details. You can use the Build menu to build applications, stand-alone
code resources, desk accessories, and tools written in MPW Assembly language, MPW C,
MPW C++, MPW Pascal, and Rez, or in a combination of these languages. You can include
resource specifications when building programs with these menus.

The sample programs

In this introduction, three assembly-language programs included with MPW Assembler are
suggested as examples:

• Sample: the "Inside Macintoshn sample application

• Count: an MPW tool that counts characters and lines in a file (see Part II)

• Memory: a sample desk accessory that displays the memory available in the
application and system heaps and on the boot disk

Similar program examples are included with MPW C and MPW Pascal. If you are primarily
interested in programming in one of these languages, be sure to read, in the corresponding
language reference, the section on the example programs. If you are using a different (non
Apple) compiler, be sure to check its documentation for information on specific language
versions of these examples.

You can routinely rebuild more complex programs by selecting a single menu item There is
a smooth transition from the simple builds to the more complex ones. (See Chapter 8 for
information on how to modify the Build menu and the makefile that it creates.)

CHAPTER 2 Getting Started 49

The source files for each of these three assembly-language examples are in the
Examples:AExamples folder that is included with the MPW Assembler distribution disks.
For example, the source for Count consists of the files Count.a and FStubs.a. A makefile
that contains the commands for building all of the examples is also provided in the same
folder. Instruction files are also provided on the MPW disks for each language. If you are
new to MPW, we recommend that you start with the tutorial that follows rather than with
the Intructions file on the disks. At the conclusion of this tutorial you will be referred back
to the disk instructions.

Two easy steps

You can build each of the example programs in two steps, using the Directory and Build
menus:

1. Set the current directory.

2. Build the program.

Both of these steps are explained next. You can use this section to take MPW on a test
drive.

1. Set the current directory.

Open the Directory menu. The upper half of the menu contains the commands to show the
current directory and to change it to an arbitrary directory. (See Figure 2-3.) The lower half
of the menu lists frequently used directories.

• Figure 2-3

Show Directory
Set Directory •••

Directory menu

HD2:MPW:Eaemples:REaamples:
HD2:MPW:Eaemples:CEaamples:
HD2:MPW:Ea11mples:CPlusEa11mples:
HD2:MPW:Ea11mples:Ea11mples:
HD2:MPW:Eaemples:PEHamples:
HD2:MPW:Eaemples:Projector EHamples:
HD2:MPW:

50 MPW 3.0 Reference

Select Show Directory to find out what your current directory is. You'll see the alert shown
in Figure 2-4.

• Figure 2-4 Show Directory alert

The default directory Is

HD:MPW:

I DIC I

Click OK to remove the alert. You're going to build the assembly-language program
Sample, so you'll need to set the current directory to the directory that contains the
assembly-language examples. Now open the Directory menu again and select "AExamples."
Selecting "AExamples" from the Directory menu runs commands that set the current
directory. You can check to see if the current directory has been correctly reset by
selecting the Show Directory menu item again. (The Set Directory ... menu item is used to
add other directories to the list at the bottom of the Directory menu. This menu item is
explained in "Building a New Program" later in this chapter.)

2. Build the program.

Now open the Build menu, shown in Figure 2-5, and select any one of the four Build menu
items.

• Figure 2-5 Build menu

Create Build Commends •..

Build... XB
run Build ••.
Show Build Commends •..
Show Full Build Commends •.•

CHAPTER 2 Getting Started 51

Each Build item builds your specified program in a slightly different way:

Build The program is built automatically, but only files that have
been modified since you last built the program will be
processed. Use this item to save time. The Command-key
equivalent is Command-B.

Full Build The program is completely built, ignoring any object files or
intermediate files that may exist from a previous build.

Show Build The commands needed to build the program (using just those
Commands files affected by modifications since the last build) are

displayed on the worksheet, but not executed. You can then
select any or all of the commands-or modify them-and
then press Enter to execute them

Show Full Build All the commands needed to completely rebuild the program
Comm.ands (whether modified since the last build or not) are displayed

on the worksheet, but not executed. This is a convenient way
to see all of the commands used in building the program
you've selected.

See "Build Menu" in Chapter 3 for more information on Build menu items. When selected,
each Build item first displays a dialog box like that in Figure· 2-6, requesting the name of
your program.

For this tutorial, select Full Build.

• Figure 2-6 Program Name dialog box

Program Name?

I OK I Cancel

When the Program Name dialog box appears, type the name of the program you want to
build (in this case, type "Sample") and then click the OK button. (Be sure that you type
the name Sample and not Sample.a. Since you have already set the directory to
AExamples, you don't need to indicate that you want to build the assembly-language
version of Sample. If you give Sample.a as the program name, the Build script will
attempt to build the source file.)

52 MPW 3.0 Reference

The Worksheet window now becomes the frontmost window. The status panel in the
lower-left comer flashes the name of each operation as it is peiformed by MPW. Each of
the MPW corrunands used by the Full Build script appears on. the worksheet as it is
executed. When the build has finished, your worksheet should look like Figure 2-7.

• Figure 2-7 Finished Sample build

Find Window Merle Directory Build

HD :MPW:Worlcsheet

• 2:21 :04 Pl'! - Bui Id of Sample.
• 2:21:04 Pl'! - flnalyzir19 depe11de11ciu.
• 2:21: 11 Pl'! - Executl"'ll bwi Id c-...ds.

Aez Somple.,. -o 5-1• -a
As• Sclllple.a
~ink SC111Ple.a.o -o Saeple

• 2:22:08 Pl'! - eo....
SClllpl.

l'P'ti SheTI

To check your work, press Enter. The Shell then executes the newly built program,
displaying the text-edit window that Sample creates (described at the beginning of Inside
Macintosh). When you quit the Sample program, you are returned to the Shell.

Use the same procedure to build the two other examples in the Examples:AExamples
folder: the tool Count and the desk accessory Memory. For guidance in using these
examples, consult the file Instructions in the folder AExamples.

In general, to run a newly built program, select its name (and, in the case of a tool, any
parameters) and press Enter. If the program you have built is an application, your open
windows, user-defined menus, and other status information will be saved before the
program is run. When you quit the application you are returned directly to MPW with your
previously open windows and menus still displayed. If the program is an MPW tool, it is
run without leaving MPW (be sure to specify any required parameters and options).

• Note: When MultiFinder is running, the application is simply launched in another
partition, and the MPW Shell does not exit or go through the Suspend/Resume
process.

CHAPTER 2 Getting Started 53

When you build a desk accessory by using Build or Full Build, the last line of the Build
transcript is a command that will run ·the Font/DA Mover to install the desk accessory in
the System file. (Make sure there is enough memory to launch Font/DA Mover.) After this
installation is complete, the desk accessory will appear in the Apple menu. If your
Font/DA Mover isn't in the directory specified by the {Commands} Shell variable, then you
should use either the Finder, the MPW Duplicate command, or the MPW Move command,
to move it there.

If you're curious about the functioning of any of the Build commands, see Chapter 8 for
more background on the Build process.

Building a new program

The Directory and Build menus are convenient to use when working with your existing
programs. You use slightly different steps for creating new programs:

1. Set the current directory by using the Directory menu.

2. Type your program.

3. Select Create Build Commands from the Build menu.

4. Select a build item from the Build menu.

Each of these steps is explained next.

1. Set the directory.

The first step in creating a new program is to set the directory where you want your new
program to reside. You can select one of the directories that appears in the Directory
menu, or you can select another directory by using the Set Directory menu item. When you
select Set Directory from the Directory menu, a standard file dialog box, like that in Figure
2-8, appears.

54 MPW 3.0 Reference

• Figure 2-8 Set Directory ... standard file dialog box

(Select Current Directory:)

IGMPWI

D EHamples ~
Cl Interfaces
Cl Libraries
Cl MPW Demo
Cl ROM Maps
Cl Scripts
Cl Tools

CjHD2

E j<H t

Driue

Open

n Directory ,

(Cancel)

Select the directory you need. After highlighting the directory you want, click Directory or -
Select Current Directory: at the top of the dialog box. The new directory will then be
added to the list of directories on the Directory menu.

2. Type your program.

The next step is to create the source files for your program. Select New in the File menu.
(Remember that assembly-language source filenames should end with ".a", C filenames
with ".c", C++ filenames with ".cp", Pascal filenames with ".p", and Rez filenames with
".r".) An empty window now appears and you are ready to type your program. Enjoy!

3. Select Create Build Commands from the Build menu.

When you've finished typing in your program, select Create Build Commands from the
Build menu. You'll see the dialog box shown in Figure 2-9.

CHAPTER 2 Getting Started 55

• Figure 2-9 CreateMake dialog box

,createMelce Options----------------~

Program Name l M_y_P_ro_g_r_a~--------'I (Source files...)

r-Progrem Type--,
! ®Application i
l Otool i
! 0 Dest Accessory !
j O Code Resource j

Creator I???? I
Type ! ???? j

!\iain Entry Point ! ,
Re~ource Type ;-; -------·-1

------··
D Symbolic debugger information

!:Command Line
1 LHtM\¥~ MyPr•"" .

,Help----------------.. (·Cancel J
er.~.~ stmpi. m.11c.m. for building~ ~~tton, tool, or cS.slc . .

KCffSC1111. r.m.abfii.isforUHboJ hllut1cl1M11U. ([rf.>Btl'MBkf.> J

Type in the program's name (without ".a", ".c", ".cp", or ".p" suffixes) and click a radio
button to indicate whether you want to create an application, stand-alone code resource,
desk accessory, or MPW tool. When you click the Files button, another dialog box
appears, permitting you to select the needed source and library (ending with the ".o"
suffix) files. Your program will be linked with these files.

+ Note: It isn't necessary to indicate the standard library files supplied with MPW. Your
program will be automatically linked with the appropriate libraries. The reference for
CreateMake in Part II explains which standard library files will be used.

The Create Build Commands command in the Build menu runs a script that creates a
makefile with the necessary commands for building programs written in assembly
language, C, C++, Pascal, Rez, or a combination of languages. This file is given your
program's name with the suffix ".make".

+ Note: The Build script uses Make to determine the minimum operations necessary to
bring the program up to date. The Build script looks for its build instructions first in
program.make (for example, Sample.make). If no such file is found, the Build script
looks for its instructions in Makefile.

56 MPW 3.0 Reference

4. Select a build command from the Build menu.

The four build conunands on the Build menus are variations on a theme. (See Chapter 3 for
an explanation of each item. A brief explanation appears earlier in this chapter under Step
2 of "Two Easy Steps.") For now, select Full Build. The rotating beach ball cursor appears,
indicating that processing has begun. Each step of the build process is displayed on the
worksheet as it ocrurs. Any errors will be displayed also, making it easy to track down a
bit of misplaced syntax. When you have fixed the problem, just select Build from the
Build menu to quickly rebuild the program. The record of previous builds is left on the
worksheet.

See Part II for detailed information on each of the Build menu commands.

CHAPTER 2 Getting Started

Chapter 3 Using the Shell Menus

THIS CHAPTER DESCRIBES THE MENUS AND ASSOCIATED DIALOG BOXES of the
Macintosh Programmer's Workshop 3.0 Shell. You can build simple programs by
using the Directory, File, and Build menus. (See Chapter 2 for an easy
demonstration.) The other menus are used for general editing. More advanced
editing capabilities, such as scripted editing and selection specification, are
discussed in Chapter 6. •

Contents

Features 61
File format 62
Menu commands 62

Apple menu 62
File menu 63

New 63
Open 64
Open Selection 64
Close 64
Save 64
Save As 65
Save a Copy 65
Revert to Saved 65
Page Setup 65
Print Window/Print Selection 65
Quit 66

Editmenu 67
Undo 67
Cut 67
Copy 67
Paste 68
Clear 68
Select All 68
Show Clipboard 68

59

Format 68
Align 69
Shift Left, Shift Right 69

Findmenu 70
Find 70
FindSame 71
Find Selection 71
Display Selection 71
Replace 71
Replace Same 71
Selection expression 73

Marie menu 75
Mark 76
Unmark 77

Wmdow menu 78
Tile Wmdows 78
Stack Windows 78
Customizing window commands 78
List of open windows 79

Project menu 79
New Project 79
Checkln 80
CheckOut 81

Directory menu 81
Show Directory 82
Set Directory 82
List of directory names 82

Build menu 83
Create Build Commands 84
Build 85
Full Build 85
Show Build Commands 85
Show Full Build Commands 85

User-defined menus 86

MPW 3.0 Reference

Features

The MPW Shell provides the following editing features:

• Both menu and command-language editing. The menu commands provide the usual
Macintosh interface.

• Selecting text by program syntax. You can double-click any of these paired quotation
characters:

() () { } " " ' ' I \
to select everything between the character and its mate. To select text between
n n ' ' I \
click the left quotation character.

• Selection of large sections of text by embedding markers. Marked selections are
scriptable; your command files can refer to one or more marked selections. The
marker commands, Mark and Unmade, are available from the Marie menu. Basic
interactive use of markers is covered later in this chapter. See Chapter 6 for more
detailed information on scripting marked selections.

• Complete integration of editing functions with the command interpreter. In the MPW
Shell, there is no separation of "command" and "editor" modes. To the Shell, text is
text-it is only when you try to directly execute a string of text that the Shell decides
whether it is a legitimate command or not.

• Scriptable commands. Because editing commands are part of the command language,
you can use them with structured commands and variables to put together scripts that
define new editing commands. (See Chapter 6.)

• Regular expressions for matching text patterns. These make possible poweiful search
and-replace functions that eliminate the need to make repetitive changes by hand.
(See Chapter 6.)

CHAPTER 3 Using the Shell Menus 61

File format

Shell text is saved as a text-only (TEXT) file. The file contains tab and return characters,
but no other formatting information. This format is compatible with other applications
that create text-only files-for example, the Shell can process MacWrite® files saved with
the Text Only option. When you select the Open command, the Shell displays all text-only
files in its standard file dialog box, regardless of the file creator.

6 Important From the Finder, you can open a text file created by another
application by selecting both the MPW Shell and the text file icons,
and then choosing the Open command. 1:>.

You can display the invisible characters (spaces, tabs, returns, and all other "control"
characters) with the Show Invisibles checkbox in the Format dialog box.

A file's tab setting, font setting, selection, window settings, auto-indent state, invisibles
state, and markers are saved with the file in its resource fork.

Menu commands

In general, the menu interface is the familiar Macintosh implementation. There are a few
differences and extensions, which are detailed in the following sections. Ot's assumed
that you are already familiar with standard Macintosh editing techniques.) Many menu
commands are scriptable, that is, a command-line form of the command exists (and is
described in Part II) that lets you use the menu item noninteractively in a script. Each of
these are indicated later in this section.

All menu commands act on the active (that is, the frontmost) window.

Apple menu

Open the •About MPW" menu item to display version information.

MPW 3.0 Reference

File menu

The File menu contains the Shell commands for creating, opening, printing, closing, and
saving files. ·

• Figure 3-1 File menu

New... XN
Open... XO
Op•~n Sele~(tiDll :•:D

i: lose :•:Ill
Saue XS
Sa11e <1~ ...
Saue a Copy •••
Reuert to Saued

Page Setap_
PriRt IBindeDJ

Quit XQ

If the Worksheet is the current window, the menu commands Close will appear dimmed, as
shown in Figure 3-1. If a tool is executing, all menu commands (except New and Open)
appear dimmed.

New

Displays the New dialog box, shown in Figure 3-2. The MPW New dialog box allows you to
enter a name and select a directory location for the document. The Command-key
equivalent is Corrunand-N. There is also a scriptable New, described in Part II.

• Figure 3-2 New dialog oox

la MPW I
CJ REaemples
CJ Rlncludes
CJ Applications
CJ CEaemples
CJ Clncludes
CJ Clibraries

Open document

=HD

[jP.C1

New

(Cancel

CHAPTER 3 Using the Shell Menus 63

Open

Displays an Open dialog box (similar to that in Figure 3-2) that allows you to open any
TEXT file on the disk. When you open a file for the first time, the selection point is at the
top of the file. When you open the file again, it reappears in the same state in which it was
saved; that is, the previous selection or insertion point is preserved unless the file has been
modified outside the editor. The Read Only checkbox is located just below the Open
Document box. Check the Read-Only box to open a nonmodifiable copy of the file. The
Command-key equivalent is Command-0. There is also a scriptable Open, described in
Part IL

• Note: If you try to open a document that's already open in another window, that
window will be brought to the front. Whenever you open a file, it appears in a new
window.

Open Selection

If you select a document name within a window, the Open Selection command
automatically displays the selected name. This is a useful shortcut when you have already
displayed filenames on the screen, with the Files command, for example. You can then
select a filename and open a file directly, bypassing the usual Open dialog box. Variable
and command substitution occur on the selection. The Command-key equivalent is
Command-D.

Close

Closes the active (frontmost) window. The Command-key equivalent is Command-W.
There is also a scriptable Close, described in Part II.

Save

Saves the active window under its current name, without closing it. This menu item is
dimmed if the contents of the window haven't been modified since it was last saved. The
Command-key equivalent is Command-S. There is also a scriptable Save, described in
Part II.

MPW 3.0 Reference

Save As

Displays a Save As dialog box, allowing you to change the name and directory location of
the active window. Saves the current contents of the window ·as the Save As file, and
allows you to continue editing the new file. The old file is closed without saving, under its
original name.

Save a Copy

Saves the current state of the active window to a new file on the disk. You can then
continue editing the old file.

Revert to Saved

Throws away any changes you have made since you last saved the active window. This
menu command is dirruned if the window has not been modified since you last saved.
There is also a scriptable Revert, described in Part II.

Page Setup

Displays the standard Page Setup dialog box.

Print Window/Print Selection

Prints either the entire contents of the active window or the selection in the active
window. If any text is selected in the active window, that text is printed. If no text is
selected, the entire contents of the window (that is, the entire file) are printed.

• Note: For the Print command to work properly, you must install the printer drivers
available on the latest version of the Printer Installation disk. Use the Chooser Desk
Accessory from the Apple menu to specify which printer to use. Use the Page Setup
dialog box to specify paper size, orientation, and reductions or enlargements.

CHAPTER 3 Using the Shell Menus 65

The Print menu item doesn't display the usual Print dialog box. Instead, you can specify
printing parameters by setting the Shell variable {PrintOptions}, described in Chapter 5.
Printing options include

• the number of copies to print

• which pages to print

• print quality

• font

• font size

• headings

• title

• borders
• printing the pages iI;l reverse order (for use with the IaserWriter)

See the description of the Print command in Part II for a complete specification of these
options, or enter the command Help Print to see a summary.

• How Print works
The Print Window menu Item executes the Shell command
Print {PrintOptions} "{Active}" ~ "{Worksheet}"

Print Selection executes the same command with.§ added after the name of the
active window. •

Quit

Quit returns you to the Finder, first allowing you to save all open files. The Command-key
equivalent is Command-Q. There is also a scriptable Qui~ described in Part II.

MPW 3.0 Reference

Edit menu

In addition to the usual Macintosh editing commands, the MPW Edit menu (Figure 3-3)
contains a few special menu items. See "Editing With the Command language" in Chapter
5 for more infonnation on using the scriptable forms of the commands on this menu.

• Figure 3-3 Edit menu

Undo acz

[Ut >){:!{

[OJ>q >)(:[

Paste XU
[lenr

Select All XR
Show Clipboard

Format... XY

Align
Shift Left 31:(
Shift Right X)

Undo

Undoes the most recent changes to text in the active window (but not changes to resources
such as font or tab settings). You can select Undo again to redo changes. The Comrnand
key equivalent is Command-Z. There is also a scriptable Undo, described in Part IL

Cut

Copies the current selection in the active window to the Clipboard and then deletes it
from its original location. The Command-key equivalent is Comrnand-X. There is also a
scriptable Cut, described in Part II.

Copy

Copies the current selection in the active window to the Clipboard. The Command-key
equivalent is Comrnand-C. There is also a scriptable Copy, described in Part II.

CHAPTER 3 Using the Shell Menus 67

Paste

Replaces the contents of the current selection in the active window with the contents of
the Clipboard. The Command-key equivalent is Comrnand-V. There is also a scriptable
Paste, described in Part II.

Clear

Deletes the current selection in the active window. There is also a scriptable Clear,
described in Part II. The keyboard equivalent is the Clear key.

Select All

Selects the entire contents of the active window. The Command-key equivalent is
Command-A.

Show Oipboard

Opens a window displaying the contents of the Clipboard, if any.

Format

Displays the Format dialog box offering a selection of fonts and sizes. The Command-key
equivalent is Command-Y. This dialog box is shown in Figure 3-4. There is also a scriptable
Format, described in Part II.

• Figure 3-4 Dialog box of the Format menu item

Font Size

Chicago IQ 1•1 1 181 Auto Indent
courter rnl D Show lnulsibles
Geneua

I

Tabs: LI Heluetlca
I • I

I I Times b
OK

(Cancel)

• Note: Selecting a font and font size affects the entire active window, not just the
current selection in that window.

MPW 3.0 Reference

Tabs

Auto Indent

Sets the number of spaces that a tab character will signify for the
active window.
You can set the default fonnat for a new V{indow by using the Shell
variables {Font}, {FontSize}, {Tab}, and {Autolndent}. These are
described in Chapter 5.

Toggles Auto Indent on and off. When Auto Indent is on, pressing
Return lines up text with the previous line. (A check mark indicates
that Auto Indent is on.)

Temporary disahle feature: To temporarily disable Auto Indent for one line, press Option
Retum. That line will begin flush left.

Show Invisibles Displays these invisible characters:

Tab

Space

Return

All other control characters

,

The MPW Shell editor ignores any zero-width characters (that is, control
characters that do not have a character bitmap) typed from the keyboard.
(Usually these are typed by accident.) If you really want a control character in
your documen~ you can enter it in the Key Caps desk accessory and then paste it
in your document To delete control characters that might not be visible, select
Show Invisibles from the Fonnat dialog box.

The rest of the dialog box consists of a selection of the fonts installed in your System file.
Available font sizes are displayed in the dialog window.

Align

Aligns the currently selected text with the top line of the selection.

Shift left, Shift Right

These commands move the selected text left or right by one tab stop. You can thus move
a block of text while maintaining indentation.

CHAPTER 3 Using the Shell Menus 69

Shift Left

Shift Right

Removes a tab from the beginning of each line. The Command-key
equivalent is Command-[.

Adds a tab, or the equivalent number of spaces, to the beginning of
·each line. The Command-key equivalent is Command-].

If you hold down the Shift key while using these menu items, the selection will be shifted
by one space, rather than by one tab.

Find menu

The Find menu contains the routine commands for searching and replacing text. Each of
the items in the Find menu is described below.

• Figure 3-5 Find menu

8EF
Find Same XG
Find Selec1ion *"
Display Selection

Replace... XR
Replace Same 881'

Find

Displays a Find dialog box and finds the string you specify. By default, the Shell editor
searches forward from the current selection in the active window (and does not wrap
around). The Command-key equivalent is Command-F. This dialog box is very similar to
the Find-and-Replace dialog box described under Figure 3-6; that explanation of the radio
controls and check boxes applies to both dialog boxes. There is also a scriptable Find,
described in Part II.

70 MPW 3.0 Reference

Find Same

Repeats the last Find operation, on the active window. The Conunand-key equivalent is
Command-G.

Find Selection

Finds the next occurrence of the current selection in the active window. The Command
key equivalent is Command-H.

Display Selection

Scrolls the current selection in the active window into view.

Replace

Displays the Find-and-Replace dialog box shown in Figure 3-6 and explained there. The
Command-key equivalent is Command-R.

Replace Same

Repeats the last Replace operation. The Command-key equivalent is Command-I.

CHAPTER 3 Using the Shell Menus 71

• Figure 3-6 Dialog box of the Replace menu item

Find what string?

Replace with what string?

il Literal D Case Sensitiue
0 Entire Word D Search Backwards
0 Selection EHpression D Wrap-around Search
·-----------------·---------------------------------------·
[Replace] @eplace RI) [Find) [Cancel)

The operation of this dialog box is very similar to that of the Find dialog box, except that
selected strings can be located and replaced with a different string throughout a file. Both
the Find and the Replace dialog boxes have three radio buttons, offering you one of three
options:

literal

Entire Word

Selection
Expression

Finds the exact string that you specify, wherever it may
appear, even if it is pan of other words or expressions.

Finds the specified string only when it occurs as a single word.
To the editor, a word is composed of the characters a-z, A-Z,
~9. and the underscore character (_).(You can change these
default values by redefining the Shell variable {WordSet}-see
"Predefined Variables" in Chapter 5.)

Enables the full selection and regular expression syntax, as used
with the command language and described in Chapter 6. These
expressions allow powerful selection and pattern-matching
capabilities that use a special set of metacharacters
introduced later in this section.

Any combination of these three check boxes may be selected:

Case Sensitive

Search Backwards

Wrap-Around
Search

Searching is normally case insensitive; selecting this checkbox
specifies case-sensitive searching.

Search backward from the current selection to the beginning
of the file. (Normally, searching is forward and stops at the end
of the file.)

Searches forward to the end of file, then wraps around and
searches from the beginning of the file to the cursor's
location when the search was initiated. (The direction of
Search is reversed if Search Backward is also selected.)

72 MPW 3.0 Reference

These dialog options set the Shell variables {CaseSensitive}, {SearchBackward},
{Search Wrap}, and {SearchType}. You can also use these variables in scripts to set the
related options in the dialog boxes. See "Variables Defined ~ the Startup File" in
Chapter 5.
For Find and Find-and-Replace operations, a beep indicates that the string was not
found.

+ Hints on using Find

You can reverse the direction of a current search operation by pressing Shift as
you select the menu item or click the OK button. The direction is changed for
the current search operation only; the settings of the dialog's check box and
the {SearchBackward} variable are not affected.

For example. If you are In the middle of a file and you want something above
the current cursor position. then hold down the Shift key as you click OK. The
search will then proceed backward through the first part of the file.

You might also use the Shift key to make sure that you've found all instances
of an Item from an arbitrary position in the window. Press Command-G to run
And Same forward. Press Shift-Command-G to run And Same backward. •

Selection expression

When the Find-and-Replace dialog box's "Selection Expression" switch is selected, you
can use a special set of expression operators to specify selections and text patterns. This
section introduces a commonly used subset of these selection operators. Many more
capabilities are available. A full discussion of them can be found in Chapter 6.

Selection by line number: A number given by itself specifies a line number. In Figure 3-7,
for example, the command selects line 30 in the active window.

• Figure 3-7 Selection by line number

Find whet selection eHpression?

O Literal
0 Entire Word
@ Selection EHpression

(Find J

O Case Sensitiue
O Sear< h Bnck:n•ard~
O lllrnp-flnnmd Senrct1

Cancel

CHAPTER 3 Using the Shell Menus 73

Wildcard operators: The same wildcard operators used in filename generation can also
be used to specify text patterns for Find corr .. rnands:

? Any single character (other than Return).

= Any string of 0 or more characters, that does not contain a
Return. (To get the= character, press Option-X.)

[characterlist] Any character in the list.

Note: The brackets must be typed; they don't indicate an
optional syntax element.

[--,characterlist] Any character not in the list. (To get the -, character, press
Option-L.)

These pattern-matching operators are part of a larger set called regular expression
operators, used to define searches and other scripted operations. A regular expression
consists of literal characters and/or regular expression operators, and it must be enclosed
in slashes(/ ... /). Figure 3-8 shows an example.

• Figure 3-8 Example of a regular expression

Find what selection eHpression?

0 Literal
O Entire Word
® Selection EHpression

(Find J

74 MPW 3.0 Reference

D Case Sensitiue
D Sean h l~oclm1ard~
D Wrop-ffround Secret!

Cancel

The corrunand shown in Figure 3-8 finds and selects any string that begins with "init" and is
followed by any characters other than a return or a space. Figure 3-9 shows the result of this
command.

• Figure 3-9 Text selected with the Fmd command

HD:MPW:EHamples:PEHamples:Sample.p

{$S Main}
BEGIN

UnloadSegCe...Dotalnit>;
F orc::eEnv i r-ons;
MaxApplZone;

EJ'I).

lllfilliim:
UnloadSeoCelnitialize>;

E..-itLoop;

[Q
11

(note that ...Dotalni t •ust not be in Hain!} j~!
(c::hllck for' so.a basic: r-aquiNtaents; axi ts i •:!~!
{expand the heap s:o code s:991ents I oad al ~~1

{initialize the pr'ogra11} ~~f
{note t.hal Initialize 11USt not be in 11ain!} ~illl

(cal I the 11ain auent loop} ~~i

Jt

As mentioned, many additional Find-and-Replace capabilities are available. (See
Chapter 6.) In the command language, the Find-and-Replace functions are performed by
the Find-and-Replace commands. There's also a tool named Search (described in Part II)
that can search through a list of files for the occurrence of any text pattern.

Mark menu

A marker is a text selection that has been given a name. Markers are useful for navigating
within a window, and they can simplify many selection expressions. The upper part of the
Made menu contains the corrunands Mark and Unmade and the lower part lists all existing
markers. (By the way, when you first start MPW 3.0, you'll notice that this area of the Mark
menu contains a list of MPW commands that have been madeed in order to display them
conveniently in a menu. You can unmark them if you prefer.) To jump to the location of a
marker, you simply choose the name of the marker you want from the Mark menu, shown
in Figure 3-10.

CHAPTER 3 Using the Shell Menus 75

Markers can be created and used both interactively, via the Mark· menu, and
progranunatically, via the Shell commands Mark, Unmark, and Markers. For a detailed
discussion of the syntax, characteristics, and programmatic use of markers, see Chapter 6
and Part II.

• Figure 3-10 Mark menu

Mart ••• 18M
Unmark •••

Commando
Eaamples
Help
Rllas
Catenate
Clear
Close
Copy
Count
cut
Date
Delete
Duplicate
Echo
Eject
.....

Mark

To create a new marker interactively, first select the text you want to mark, then choose
"Mark" from the Mark menu. A dialog box like that in Figure 3-11 appears, asking for the
name you want the marker to have. The editable text field in the Mark dialog box is
initialized to the first word (that is, whatever you would select by a double click) in the
selection. If you click Cancel in the dialog box, the selection is unchanged and no new
marker is created. If you click OK, a new marker is created with the specified name and
the new marker's name is added to the list of marker names displayed by the Mark menu.

• Figure 3-11 Mark dialog box

Mark the selection with what name?

I OK I Cancel

76 MPW 3.0 Reference

If you try to create a new marker using the name of an already existing marker, a dialog
box will appear, giving you the chance either to delete the old marker and add the new
(OK), or to forget about adding the new marker (Cancel).

+ Hints on using Mark

Markers are very handy for quick navigation through source fifes. You may
want to mark important data declarations and all procedures so that you can
quickly jump to any procedure by selecting its marker. Markers are listed
according to their position in the fife. •

Unmark

If you choose the Unmark menu item from the Mark menu, you'll see a dialog box (Figure
3-12) that contains a list of currently defined markers and the two buttons Delete and
Cancel. If a marker is currently selected, its name is highlighted in the marker list. You can
select any number of marker names from the list If you click Delete, every marker
selected in the list is deleted. If you click Cancel, the selection remains unchanged and no
markers are deleted.

• Figure 3-12 Unmark dialog box

Delete which martc:ers?

Here
There
Euerywhere

fi Dele1e J Cancel

CHAPTER 3 Using the Shell Menus 77

Window menu

The upper portion of the Window menu contains the two commands Tile Windows and
Staclc Windows; the middle area lists all open windows, as shown in Figure 3-13. The lower
area of the Window menu lists any open Projector windows.

• Figure 3-13 Window menu

Tile Windows
Steck Windows

"'110 :MPW:Wortsheet

Tile Windows

Use this command to arrange windows in a tile pattern on the screen so that each window's
contents are visible. To include the Worksheet in the tiling, press the Option key as you
select rtle Windows.

Stack Windows

Use this command to arrange windows in a diagonally staggered pattern on your screen.
This is the "open file folder" way to see several windows at once. To include the
Worksheet in the stacking, press the Option key as you select Stack Windows.

Customizing window commands

The Ttle Windows and Staclc Windows menu corrunands execute the Shell commands:

TileWindows {TileOptions} >> "{Worksheet}"
StackWindows {StackOptions} >> "{Worksheet}"

You may customize the operations of tiling and stacking by using the Shell variables
{TileOptions} and {StackOptions}. Options include

• which windows to tile

• including the Worksheet (without pressing the Option key)

• horizontal or vertical tiling

• spacing between stacked windows

• specifying a rectangle in which to tile or stack windows

78 MPW 3.0 Reference

list of open windows

The remainder of the menu lists all open windows in the order in which they were opened.
The full pathname is listed. To bring any window to the front, select that window from the
list.

Selecting a window from the menu brings that window to the fron~ that is, superimposes
it over anything else on your display. A check indicates that the window is currently the
"active" window, that is, the frontmost. A bullet (•) indicates that the window is the
"target" window, that is, the second to the front. Underlining indicates that a window
contains changes that have not yet been saved.

Project menu

The Project menu, shown in Figure 3-14, puts three of the most often used Projector
commands at your fingertips. Of course, you can modify this menu to add the rest of
Projector's commands or eliminate the menu altogether if you don't use it.

The three menu items on the Project menu are briefly described here. For an introduction
to the basics of using these functions, see "Projector Windows" in Chapter 4. For a
detailed explanation of the MPW project-management system, see Chapter 7.

• Figure 3-14 Project menu

New Prnject ...
Check In .. .
Check Out .. .

New Project

The New Project dialog box appears as shown in Figure 3-15. Use this dialog box to create
a unique new project or subproject. You can use the Comment text frame to briefly
explain the purpose of the project or subproject. Projector automatically adds your user
name as the project's creator.

CHAPTER 3 Using the Shell Menus 79

• Figure 3-15 New Project dialog box

I§. New Project

c:::> Maui 1 Project Name: [
la Projector EHamples I User: Jeff Porrish

J
CJ sample ~ New Prolect comment:

~

~1 Q
(open)

(New Prnject J (Driue)(Ejec1)

Check In

The Check In dialog box appears as shown in Figure 3-16. After checking out and
modifying a me, you will routinely use this dialog box to check the file back in to
Projector.

• Figure 3-16 Check In dialog

Check In _- -~

c:::> HD i Project: I Test le Projector EHamples 11 user: Jef-.f -Po_m_·_sh ________ _.

jTask:,__~~~~~~~-::::====~
i Reu: 1.0
l Check In comment:
i A SCllP I e f i I e from the l1Pl.I reference llClnUQ I 1-lk-.1

(Selec1 all) (Open) ! . .
i i 0 Keep read-only i

181 Show all files l l 0 Keep modifiable 1
(Driue](E je< t) ij ®_Delete Copy i

O Touch mod date

(Cancel Checkout)

I? J (Check In J

Click the Question Mark button to display information about the projec~ a project file,
or a specific revision of a project file. See Chapter 7 for more information.

MPW 3.0 Reference

Check OUt

The Check Out dialog box appears as shown in Figure 3-17. You'll routinely use this dialog
box to select a project for use and then to check out a projeCt: file you want to modify.
The date, time, and user name of the checked-out file are recorded; no one else can
modify the same revision of a file at the same time.

• Figure 3-17 Check Out dialog box

§l•

Current Project

I gj Utilities I
!Cl Check I nActiue
!Cl CheckOutActiue

(Select all) (Open)

(Select newer J

Check Out

Checkout to: I HD:MPW:Scripts:

User: Jeff Parrish

r a~I<: 1
----~~~~~~~~~~---'

Che(I< Out commen1:

Select Files in Name: 181 Touch mod date
None

j ® Read-only :
10 Modifiable :
l D Bl"dO(h j

(Can(el £ hecl::ou1)

l?I l Che(I< Out J

Click the Question Mark button to display information about the project, a project file,
or a specific revision of a project file. See Chapter 7 for more information.

Directory menu

The Directory menu, shown in Figure 3-18, lets you display and easily change the default
(current) directory. The Directory menu is implemented by the scripts DirectoryMenu and
SetDirectory, which you can modify to suit your own needs.

CHAPTER 3 Using the Shell Menus 81

• Figure 3-18 Directory menu

•• "III.ill

Show Directory
Set Directory •••

HD2:MPW:EHamples:REH&mples:
HD2:MPW:EHamples:CEHamples:
HD2:MPW:EHamples:CPlusEHemples:
HD2:MPW:EHamples:EH&mples:
HD2:MPW:EHamples:PEHamples:
HD2:MPW:EHamples:Projector EHamples:
H02:MPW:

Show Directory

An alert box displays the name of the current default directory.

Set Directory

When you select this menu command the Set Directory dialog box (Figure 3-19) appears,
providing interactive selection of the default directory. Your selection is then added to
the Directory menu.

• Figure 3-19 Dialog box of the Set Directory menu item

(Select Current Directory:)

l6MPWf

C:: Efcamples ~
CJ Interfaces
CJ libraries
CJ MPWDemo
CJ ROM Maps
C Scripts
CJ Tools

list of directory names

e::>HD2

E}e<t

Driue

Open

(Directory B
(Cancel)

Selecting a directory name makes this directory the new default directory.

82 MPW 3.0 Reference

As you select various default directories, using either the Set Directory menu command or
the SetDirectory command, each is added as a separate menu command to make it easy
to return to that directory in the future. The UserStartup script creates menu items for
each of the Examples folders in the MPW directory, and for the default directory at the
time the UserStartup script is run. You can add your own favorite directories by modifying
UserStartup.

.& Warning Directory names should not contain any of these special characters:
I\ < I

These characters have special meanings when they appear
as menu items

Build menu

The Build menu, shown in Figure 3-20, has two primary purposes. The first purpose of the
Build menu is to create a makefile containing the commands needed to build a program.
The command Create Build Commands, which is listed first on the menu, creates the
makefile program.make (using the name of your program). If you have not used this
command-that is, if program.make does not exist-then MPW uses the file Makefile.

The second purpose of the Build menu is either to build a specified program or to display
the commands needed to do the build. When you select one of the remaining commands
on the menu-Build, Full Build, Show Build, and Show Full Build Commands-a dialog box
appears asking for the name of the program that you want to build.

Use of the Build menu is demonstrated in Chapter 2, "Building a Program: An
Introduction."

• Figure 3-20 Build menu

Create Build Commands •••

Build ••• XB
run Build •••
Show Build Commends •••
Show Full Build Commends •••

CHAPTER 3 Using the Shell Menus 83

Create Build Commands

Use this item to create a makefile containing the build commands for a specified
program When you click Create Build Commands, the CreateMake dialog box appears.
(See Figure 3-21.) You can then enter the program name and select its type (that is,
Application, Tool, or Desk Accessory). Make sure that you do not include any of the
following four suffixes to the program name:

.a .c .p .cp

Click the Files button to select the program's source and library files. (MPW libraries are
automatically linked; certain special libraries you may require might not be automatically
linked. See CreateMake in Part II.) If the program's name is program, a new makefile,
called "program.make", is created. The makefile will contain simple build commands from
the program. (See Chapter 9 for more information on Make.)

Be sure to run Create Build Commands whenever you create additional source or library
files for a program Answering the CreateMake dialog box generates a new set of rules in
program.make that includes the new source files.

• Figure 3-21 CreateMake dialog box

rCreateMalce Options

Program Name I MyProgra~ I (Source Files ...)

,-Program Type--1 Creator [???? J . .

! ® Application ! Type inn! ; , , .. , :

! 0Tool l'oiain En try Point 1
1 0 Desk Accessory

Re~ource Type 1 I O Code Resource '

O Symbolic debugger information

f Command Line
crNt.make Ho,jProgr-

I
rHelp [) Create a simple makeffie for bU'llding an application, toot, or desk

Cancel
~. The makefile ;s for use b\j the Bulld menu. I (ren te:-1nkt~ ,

When you select one of the following four Build items from the Build menu, a dialog box
appears (as shown in Figure 3-22), asking for the name of the program you want to build.

84 MPW 3.0 Reference

• Figure 3-22 Program Name dialog box

Program Name?

I DK I Cancel

Type the name and click OK. The build option you have selected will proceed, displaying
on the Worksheet each command needed to build the program as it is used, along with any
error messages. Each of these four Build menu items uses the MPW tool Make to
detennine which operations are necessary to build the program.

Build

The program is built automatically, but only files that have been modified since you last
built the program will be compiled. Use this item to save time. The Command-key
equivalent is Command-B.

Full Build

The program is completely built, ignoring any object files or intermediate files that may
exist from a previous build.

Show Build Commands

The commands needed to build the program (for just those ftles affected by
modifications since the last build) are displayed on the worksheet, but not executed. You
can then select any or all of the commands-or modify them-and press Enter to execute
them.

Show Full Build Commands

All the commands needed to completely rebuild the program (whether modified since the
last build or not) are displayed on the worksheet, but not executed. This is a convenient
way to see all of the commands used in building the program you've selected.

The Makefile "program.make" is created by the Create Build Commands menu item
(described previously in this chapter). If you have not used this item-that is, if
program.make doesn't exist-MPW will use the file Makefile.

CHAPTER 3 Using the Shell Menus 85

User-defined .ID.enus

You can define your own menu commands with the AddMenu command, described at the
end of Chapter 5. These commands can be appended to existing menus, or you can create
new menus. In fact, the Projector, Directory, and Build menus have been created by using
AddMenu. You may add to, change, or delete these menus to suit your individual needs.

MPW 3.0 Reference

Chapter 4 Using MPW: The Basics

THIS CHAPTER INTRODUCES THE BASIC CONVENTIONS FOR MANIPULATING FILES,
editing tex~ executing commands, and responding to dialogs in MPW 3.0. You
can easily enter all commands, command options, and parameters by using the
menus and dialogs. The basics for directly typing commands in any window are
also introduced. A full discussion of command scripting can be found in Chapter
5. For an introduction to building a simple program, using examples contained in
the Examples folder, see Chapter 2. Chapter 3 introduces the menus and their
contents. Chapter 7 presents the dialogs and complete information on Projector,
the project management system. •

Contents

Editing 89
Entering commands 89

Typing commands in a window 90
The Enter key 91
Executing several commands at once 92
Terminating a command 92
The Help command 93

File-management commands 95
File and window names 97

Selection specifications 98
Directories and pathnames 98
Command search path 101
Changing directories 101
Pathname variables 102
Wildcards (filename generation) 103
Locked and read-only files 103

Commando dialogs 104
Invoking Commando 105
Using Commando dialogs 106
Standard dialog box controls 107

Generic text parameters 107

Repeatable options 108
Radio buttons 108
Check boxes 108
Shadow pop-up menus 109
Other pop-up variations 109
Multiple input files 110
Multiple directories 111
Multiple files and/or directories 112
Single input or output file 112
Output file where a file or directory may be specified 113
New directories 114
Special dialog box controls 114
Nested dialog boxes 114
Redirecting output 116
Options dependent on other options 118
Three-state controls 119

88 MPW 3.0 Reference

Editing
Basic editing functions are available as menu commands. You can open a file by using the
Open command, or by selecting its name on the screen and choosing the Open Selection
command (Command-D) from the File menu. You can select and edit text with the usual
Macintosh editing techniques, using menu commands to cut, copy, and paste selected
text. The menu commands are described in Chapter 3.

You enter and edit command lines in a window exactly the same way you enter plain text.
You can select any stretch of text and press Enter to send the selection to MPWs
command interpreter for execution.

Editing with MPW is unique in that most menu functions are duplicated ·in the Shell
command language. Editing and other command-language functions are fully integrated
you enter and execute editing commands just like any other commands. Editing
commands are entered in the active window (the frontmost window), but they act on
text in the target window (the second window from the front), or another window that
you explicitly name. The command language lets you produce scripts of editing
commands: You can save any series of commands as a normal text file and execute the file
by simply entering the filename. Command-language editing is discussed further in
"Editing With the Command Language" in Chapter 5.

For an explanation of selections, markers, and pattern matching with regular expressions,
see Chapter 6, "Advanced Editing."

Entering commands

All MPW commands and their options can be selected from menus and dialog boxes.
Generally, this interactive method of command selection is the easiest You can
immediately execute commands selected from menus and dialog boxes, or you can use
the dialog boxes to compose complex command lines that can then be copied to a script.

CHAPTER 4 Using MPW: The Basics 8')

The dialog boxes for MPW commands are generated by the Commando user L'lterface
(described in the last section of this chapter). Besides the usual Macintosh dialog boxes,
Commando provides several new forms and controls to handle the special requirements of
MPW tools. For example, dialogs for commands with many options may have several
nested dialog boxes. Which dialog boxes are actually displayed may vary according to
dependency relations between the particular options you may have selected. Some of the
specialized dialog controls are introduced at the end of this chapter. Other unique dialog
boxes are shown in Part II of this reference, with their respective commands. A detailed
discussion of all the elements of Commando dialogs can be found in Chapter 13, which
explains how to create a Commando interface for your own tools and scripts.

Of course, you can always type commands directly in any window as a series of words
separated by spaces or tabs. (See below.)

Typing commands in a window

By default, command output and any error messages appear in the window immediately
below the executed command line. Commands are not case sensitive. You can have
multiple open files, and you can enter commands in any window.

The simplest commands consist of the command name only. For example, type the
command

Date

and press the Enter key (without pressing Return first-that is, the insertion point must be
on the same line as the command when you press Enter). This command outputs the date
and time:

Tuesday, January 15, 1989 7:12:00 AM

Commands can have options. For example,

Date -d

The -d option tells the Date command to list the date only,

Tuesday, January 15, 1989

Commands typed into an open file are referred to as standard input Output produced
by most commands is sent to an open file called standard output, which is normally
connected to the window in which the command was entered. Any window that is used to
enter standard input and display standard output is referred to as the console.

90 MPW 3.0 Reference

Most commands read from standard input, write their output to standard output, and
write error messages to diagnostic output. By default, standard input refers to text that is
selected and entered while the tool is running. Standard output and diagnostic output
appear following the commands. (These input and output defaults can be changed using
1/0 redirection. See Chapter 5 for details.)

+ Using the Alias command

You may get tired of typing the entire command name for frequently used
commands such as Directory. However. you can easily define your own
alternative names with the Alias command. For example. after executing this
command.

Alias dir Directory

you can execute the Directory command by entering the new command
name:

dir

To make an alias definition part of the Shell's standard startup procedure. place
the definition in the file UserStartup. See Chapter 5. "The Startup and
UserStartup Files." •

The Enter key

The Enter key serves as a "do it" button, causing commands to be executed. You can type
commands in any window and press the Enter key to execute the command line. You can
also select command text that is already on the screen and press the Enter key to exerute
the selected text. Clicking on the status panel, located at the lower left of a window, has
the same effect as pressing the Enter key. Pressing Conunand-Retum also has the same
effect as presing the Enter key.

~Important When no text is selected, the entire line is exeruted the moment the
Enter key is pressed, regardless of where the insertion point is on the
line. A

CHAPTER 4 Using MPW: The Basics 91

Executing several commands at once

By selecting several lines of command text and then pressing Enter, you can execute any
number of commands with one stroke. An example is shown in Figure 4-1.

• Figure 4-1 Pressing Enter to execute selected text

Ii File Edit Find Window Merk Directory Build

HD :MPW:Worlcsheet

dote -cl
Tuesday, JulW 5, 1987

I

In Figure 4-1, executing the selected text would first make a new folder (directory) named
Backup, then copy the files Startup and UserStartup into Backup, and then list all of the
files in Backup. (Each of these commands, and the pathname syntax, is described in the
sections that follow.)

You can also directly execute text files that contain other commands simply by entering
the filename of the script. Executing a script has the same effect as selecting the
commands in an open window and pressing Enter-the only difference is the scope of
variable and alias definitions (discussed in Chapter 5).

Terminating a command

To terminate a command while it's executing, press Command-period, the standard
Macintosh command for this purpose.

92 MPW 3.0 Reference

~Important Many commands (including Asm, C, and Pascal) nonnally take their
input from a file; however, if no file is specified, they will begin
reading from the console (that is, from the window where the
command was entered: "standard input"). If the Shell appears not to
be listening to the commands you are entering, it probably isn't: The
currently executing command (shown in the active window's status
panel) may be reading the text that you enter. If a program is reading
from standard input, you can press Command-Enter (or Command
Shift-Return) to indicate end-of-file and terminate input. (See
"Terminating Input With Command-Enter" in Chapter 5.) c,.

The Help command

The Help command displays summary information for commands. For example, to display
a description of the Files (list files) command and its options, type the command

Help Files

and press the Enter key. You'll see the following syntax description:

Files [option ...] [name ...]

-c creator
-d
-f
-i
-1

-m columns
-n
-o
-q
-r
-s
-t type
-x format

f

f

f

f
f

f
f
f

f
f

f

f

f

> fileList

list only files with this creator
list only directories
list full pathnames
treat all arguments as files
long format (type, creator, size, dates, etc.)
n column format, where n = columns
don't print header in long or extended format
omit directory headers
don't quote filenames with special characters
recursively list subdirectories
suppress the listing of directories
list only files of this type
extended format--fields specified by format

CHAPTER 4 Using MPW: The Basics 93

Note: The following characters can specify the format
a Flag attributes
b Logical size, in bytes, of the datafork
r Logical size, in bytes, of the resource fork
c Creator of File ("Fldr" for folders)
d Creation date
k Physical size, in kilobytes, of both forks
m Modification date
t Type
o Owner (only for folders on a file server)
g Group (only for folders on a file server)
p Privileges (only for folders on a file server)

+ Note: In Help texts, the brackets are a syntax element indicating that a parameter is
optional. An ellipsis(...) indicates that the preceding item may be repeated. (Note
that this use of the ellipsis is a syntax convention only for Help text and
documentation; an ellipsis character (Option-Semicolon) in an actual command line
invokes the command's Commando dialog.) See the section "Syntax Notation" at the
end of the Introduction to this reference. The number sign (#) is the MPW comment
character.

You can directly edit and execute the text on the screen. For example, assuming that your
current directory is {MPW}, you can edit the above text as follows:
1. Use the mouse to select [option ...] and [name ...] ; replace them with

the option -1 and the directory name Scripts.
2. Remove the output specification > fileList.

The result is a command that will list the files in directory Scripts, in long format:

Files -1 Scripts

(Scripts is the directory containing various MPW scripts; the -1 option generates "long"
output.) Press Enter to execute the command. Directory information appears
immediately following the command.

You can also use the Help command to display additional summary information, including
• an annotated list of all MPW commands
• an annotated list of the characters that have special meanings to the MPW Shell
• descriptions of the syntax of expressions, selections, and text patterns
• a summary of MPW Shell shortcuts
• a summary of predefined MPW Shell variables
• a summary of Projector, the project management system

94 MPW 3.0 Reference

For general information about Help, execute the Help command with no parameters:
Help

This command displays the information shown in Figure 4-2.

• Figure 4-2 Help summaries

HO:MPW:Worlcsheet
Help
MPU 3.0 Help Sunlaaries

Help SU1R1arias are awi I able for .ac:h of the l'FW c~.
To see the I ist of cOINllOl'lds anter "Help c--icts•. In addi lion,
brief descriptions: of Expressions, Patterns, Selections, Chc:raclrs,
Shortcuts, Uarlablas, and Projector - also Included.

To see He Ip S\mlGr i es, Enter a cC11111and such as

• i n f C!r'llQt I on about COlllMil'ldl'IC
• a I ist of -auds
• SUlllnGl"Y of axpressions

Help COii~
Help Ccn.-ds
Help Expressions
Help Patterns
Help Selections

• SUllllQr\I of pattrns <ragulcr expressions)

You can directly execute the Help commands given in the "Help Summaries" list.

• Note: The MPW Help file should be in the same directory as the MPW Shell or in the
System folder.

File-management commands

The MPW Shell lets you manipulate files without returning to the Finder. Table 4-1
introduces the most commonly used file-management commands.

• Note: The descriptions in the table omit some of the command options that are
available. For complete descriptions, see Part II.

CHAPTER 4 Using MPW: The Basics 95

• Table 4-1 Basic file-management commands

Description

Backup [option] -from folder -to folder (file ...]

Catenate [file ... l

Close [option] [-a I window ...]

Delete name ...

Directory directory

Duplicate name ... targetName

Exists name .. .

Ftles [name ...]

GetFileName [option .. .] [pathname]

Mount drive .. .

Move name ... targetName

New[name ...]

Newer [!ption ...] name ... target

NewFolder name ...
Open [option] [names . ..]

Rename namel name2

Revert

Save [-a I window .. .]

SetDirectory directory

SetFile [option ...]file ...

96 MPW 3.0 Reference

Copy files in source folder to destination folder
based on modification date. This is useful when you
maintain an identical backup folder on a separate
disk.

Read the data fork of each file and write it to
standard output. (By defaul~ standard output is to
the active window, immediately after the
command.)

Close windows.

Delete ftle or directory name. If name is a directory,
all of its contents are deleted.

Set the default directory to directory. Directory
with no parameters writes the pathname of the
current directory.

Duplicate file or directory name to file or directory
targetName.

Determine the existence of file or directory name.

List names of directories and files. Options allow
you to include various attributes in the listing.

Display a standard file dialog box.

Mount volumes.

Move file or directory name to targetName.

Open a new window.

Compare modification dates between files name
and target. List files newer than target .

Create the new directory name.

Open a window.

Rename File or Directory name! to name2.

Revert window to previous saved state.

Save windows.

Set the default directory.

Set file attributes.

(Continued)

• Table 4-1 (Continued) Basic file-management commands

SetPrivilege [option .. .J folder ...

SetVersion [option ...] file

Target name

Volumes [name ...]

Wherels [option ...] pattern

Which [command]

Windows

File and window names

Description

Set access privileges for folders on the file server.

Independently maintain the version and revision
numbers as a resource in the application or tool.
Optionally, update a version and revision string in a
source file.

Make a window the target window.

List mounted volumes.

Find all files that have a partial pathname pattern, in
any level of any directories.

Determine, for the specified command, which
existing aliases, Shell built-in commands, and
commands accessed via the Shell variable
{Command$ will be executed when command is
entered.

List open windows.

In the MPW, files and windows are specified in the same way. When a name is passed as a
parameter to a command, the system looks first for an open window with that name; if no
window is found, it looks for a file on the disk.

The following rules apply to naming:

• Names are not case sensitive.

• A single component (file or directory name) of an HFS pathname is limited to 31
characters.

• Any character except a colon(:) may be used in a file or directory name. (Colons
separate elements in a pathname.)

CHAPTER 4 Using MPW: The Basics 'J'T

It's best to avoid using spaces and special characters in filenames. When using filenames
that contain spaces, you'll need to quote them so that they won't be interpreted as
individual words in the command language-for example, you would need to specify the
name "System Folder" as follows:

Files "HD:System Folder"

For the rules concerning quoting, see "Quoting Special Characters" in Chapter 5.

Selection specifications

Commands that take filenames for parameters can also act on the current selection in a
window. The current selection character, § (Option-6), represents the currently selected
text in a window. There are two ways to use this character:

§

name.§

Currently selected text in the target window. (The target window is the
second window from the fron~ as explained in Chapter 1.)

Currently selected text in window name.

For example, the Count command counts lines and/ or characteis in a file. The command

Count -1 Sample.a.§

counts the lines within the current selection in the window Sample.a.

The current selection is explained more fully in "Editing With the Command language" in
Chapter S.

• Note: The MPW Shell uses a number of special characters (like §) from the extended
character set. These characters are fully listed in Appendix C.

Directories and pathnames

With the hierarchical file system (HFS), specifying a filename alone is often not enough to
identify a file-you frequently need to specify a pathname. (See Figure 4-3 for a sample
HFS structure.) A full pathname is specified as follows:

volume : [directory : .. .] filename

98 MPW 3.0 Reference

A full pathname contains at least one colon(:), but cannot begin with a colon. An example
of a full pathname is

"HD:MPW:MPW Shell"

(The quotation marks are required because the filename "MPW Shell" contains a space.)

• Figure 4-3 Hierarchical directory structure

HO:

I I
LJ CJ etc.

System Folder: MPW:

I I
I

I I

~ 00 etc. CJ CJ etc.

-,....., siwn Stan up: Scripts: Tools:

I I I
I
I

00 00 00 etc.

BuildProgram Create Make SetOirectory

I I I

~ ~ ~ etc.

Link Rez Search

A partial pathname is usually all you'll need to specify. When HFS encounters a partial
pathname, it begins the path at the current default directory. Any name .that contains no
colons or begins with a colon is considered a partial pathname. A partial pathname that
contains no colons is a leafname. For example, the name

:AExamples

is taken as a partial pathname. However, the name

MPW:

is taken to be a/u// pathname (that is, a volume name only), rather than meaning the
directory HD:MPW. (When in doubt, you can always specify the full pathname for a file or
command.)

CHAPTER 4 Using MPW: The Basics

Double colons (::) in a pathname specify the current directory's parent directory; triple
colons specify the "grandparent" directory (two levels up), and so on. See the chapter
"File Manager" in Volume IV of Inside Macintosh for more information on HFS
conventions.

• Note: Notice that there's no single "root" directory~ach volume name (that is, disk
name) is a separate starting point for a directory tree.

You can use the Files command to list the names of files and directories. For example, the
command

Files HD:MPW:

might display the following:

:Examples:
:Interfaces:
:Libraries:
:ROM Maps:
:Scripts:
:Tools:
'MPW Shell'
MPW.Help
Quit
Resume
Startup
Suspend
SysErrs.Err
UserStartup
Worksheet
... andsoon

In the output of the Files command, the names that begin and end with colons are
directory names, and the other names are filenames. All of these names are partial
pathnames-in this case, "HD:MPW" forms the beginning of each pathname. Also note
that filenames containing special characters are quoted.

100 MPW 3.0 Reference

Command search path

When you enter a command name (that is, a leafname), the Shell searches for the
command in the directories listed in the Shell variable {Commands}. As described in
Chapter 5, this search path is initially set to

: (the current directory)
HD:MPW: Tools:,
HD:MPW:Scripts:,
HD:MPW:Applications:,

This means that when you type any command the Shell first assumes that you want to
execute a tool; if it can't find the tool, it then assumes that you want a script; if it can't
find the script, it then assumes that you want an application. If your frequency of use is
different, you can change the search path to improve the Shell's perfonnance. (See

Chapter 5.)

Changing directories

You can change the default directory with the Directory command. Assuming you have a
hard disk named HD, you could change the default directory to the directory Examples in
the MPW folder with the command

Directory HD:MPW:Examples

Like most commands, Directory runs silently-that is, it generates output only if an error
occurs. To verify that you have set the appropriate directory, enter the Directory
command with no parameters:

Directory

This command displays the current or default directory.

Remember that to specify a pathname containing spaces or other special characters, you
must surround it with single or double quotation marks. (See Chapter 5 for rules on
quotation.)

If you specify a directory whose name is a leafname, the Directory command searches the
directories listed in the Shell variable {DirectoryPath}. If the variable is undefined, then
the command looks in the current directory.

CHAPTER 4 Using MPW: The Basics 101

• Using the {DirectoryPath}
Here's an easy way to move quickly between directories on different branches.
Suppose you have a directory structure like that shown in Figure 4-3, with a
DirectoryPath of ·

" : , HD : MPW : "

Now, if you happened to be in the System folder, you could set your directory to
Tools with this command:

directory Tools

Because this command specifies only a leafname, the Tools directory is looked
for first in u:• (where it is not found) and then in HD:MPW (where it is found).
The directory is then set to HD:MPW:Tools. •

Pathname variables

One way of specifying a pathname is by using Shell variables. For example, the Shell
variable {MPW}, defined in the Startup file, expands to form the full pathname for the
MPW folder, in this case "HD:MPW:" (assuming that the MPW folder is at the top level).
Thus, the Directory conunand could be entered as
Directory "{MPW}Examples"

In this particular case, the quotation marks aren't necessary. If you adopt the practice of
never using spaces or other special characters in a pathname, you don't need to bother
with quotation marks. On the other hand, if you sometimes use spaces or other special
characters in a pathname, it would be a good idea to use quotation marks whenever
variables are included in a pathname.

You can use the Set conunand to define and redefine variables, as described in Chapter 5.
To see the values of all currently defined variables, enter the Set command with no
parameters:

Set

102 MPW 3.0 Reference

Wildcards (filename generation)

You can specify a number of files at once by using the wildcard characters ? and =
(Option-x). The ? character matches any single character (except a colon or Return); =
matches any string of zero or more characters (other than colon or Return). For example,
the command

Files =.a

lists all filenames in the current directory that end with the suffix ".a". (Several other
wildcard characters can also be used to generate filenames-see "Filename Generation" in
Chapter 5.)

Locked and read-only files

If you open a file that is locked, or located on a locked disk, the status panel displays a
lock icon, as shown in Figure 4-4. When you open a read-only file, the status panel displays
a read-only icon, as shown in Figure 4-5. No editing or command execution is allowed in
these windows.

• Figure 4-4 A locked file with the Lock icon in the Status panel

HD:MPW:worlc:loclcedFile
r
• This; Is; a locked fl la

•/

iI MP'/ Shen

1

Q

When you check out a read-only copy of a file from a project, this file will always open in
read-only mode. The read-only icon is displayed in the status panel, as shown in Figure 4-5.

CHAPTER 4 Using MPW: The Basics 103

• Figure 4-5 A read-only file with the Read-Only icon in the Status panel

·----~- HD:MPW:wort:readOnlyFile ,.
• This is a raod-cnly file . . ,

I

Commando dialogs

The Commando user interface lets you operate any properly configured MPW command
by means of a special Macintosh dialog, rather than the traditional command line
interface. Commando dialogs may consist of several dialog boxes containing a variety of
controls. You can choose options, select filenames, pick directories, and access help
information for each option. Commando lets you operate MPW commands in a more
intuitive format. All options are visible, and help text for each option can be instantly
displayed.

Because of the complexity of many MPW commands, several specialized controls and
nested dialog boxes have been implemented for them. The various types of controls and
dialog boxes are introduced below. Other dialog boxes, specific to a particular
command, appear together with the command in Part II.

104 MPW 3.0 Reference

Invoking Commando

There are three ways you can invoke a Commando dialog from the Worksheet:

• Option-Enter: Type the command name and then press Option-Enter. This is the
easiest method for routine interactive use.

• Ellipsis: Type the command name followed by an ellipsis character(...) and press
Enter. You can also use this expression in a script.

The ellipsis may appear anywhere in a command line (except with quotes or after ())
and is considered a word-break character. Although the ellipsis may be situated
anywhere within the command line, only the first word of the line is actually processed.
For example, in the command line

addmenu asm alert_.

only the AddMenu dialog will appear. This results with or without Exit set to 0 or 1.

The ellipsis invokes the Commando user interface after the Shell has carried out all alias
and variable substitutions. The entire command line is passed to Commando and the
output of Comrnando is then executed by the Shell.

• Important Note: To obtain the ellipsis character, hold down the Option key while
simultaneously typing the semicolon (;) character. Although three periods closely
resemble an ellipsis character, Commando won't be fooled; you must use Option
semicolon to get the true ellipsis character that invokes Commando.

• Type commando: Type the word commando in front of the command line and press
Enter. This method of invoking Commando only outputs the command line; the
comrnand is not executed. You can also use this expression in a script. For example, if
you don't want the resulting command line to be immediately executed, you can type
commando cormnandname

The tool's frontmost Commando dialog box is displayed. Clicking the Do It button
writes the comrnand line to standard output (that is, the window in which you typed
the command) instead of executing it immediately. This second method of using
dialog boxes is useful for building command lines that are to be cut and pasted into
scripts. In this case, Comrnando will not find a command if the command has been
aliased to a different name.

See "Invoking Commando" in Chapter 13 for more information.

CHAPTER 4 Using MPW: The Basics 105

Using Commando dialogs

The function and appearance of Commando dialog boxes may vary widely according to
the syntax and semantics of the particular command or tool selected. The basic dialog
box is typical of a simple command such as Date, the first example used in this chapter.
Type

Date -·

Be sure to use Option-semicolon to get the ellipsis. Then press Enter. Figure 4-6 shows the
resulting Commando dialog box for Date.

• Figure 4-6 The Date dialog box

.-Date Options---------------------.
r-Datelnme----r-Rmount of Detail-. r-Date Input--~
I ® Both date end time i ® Full date I I Date in Seconds
i O Date only i O Rbbreulated date ! i I
i 0 Time only i 0 Short dete i l .._ ____ __.
I 0 In Seconds I II ________ _,

Output

FCommend Line
ut•

Error

f-~-~-lp_ .. _ournnt __ u_w_•_mi._. ________________ IJ Cancel

Date B

Most dialog boxes share the basic structure shown in Figure 4-6. Various controls for
options and parameters appear in the largest, upper area of the box. Date has three
parameters:

Date/rime
Amount of Detail
Date Input

radio button control
radio .button control
editable field

The default settings for Date appear preselected as the topmost radio button for each
parameter.

Clicking and holding down the mouse button on any control or option displays Help
information in the standard Help window at the bottom of every Commando dialog box.
Clicking on the title of a control also displays the Help information.

Use the pop-up menu of the Output box to redirect output See the section "Redirecting
Output" later in this chapter.

to6 MPW 3.0 Reference

The Command Line window displays the command line resulting from the options you
select from the dialog box. As you select options or change parameters, this Command
Line box is continuously updated. You can then copy all or aJ!y part of the command line
using Command-C or the Edit menu.

Clicking the Do It button (the button labelled "Date" in Figure 4-6) passes the completed
command line back to the Shell for execution. Alternatively, you can press the Enter key.
If you change your mind and decide to exit from the dialog, you can click the Cancel
button, which has the same effect as pressing Command-Period.

You can get these special results by holding down the Option and/or Command keys while
clicking a Do It button:

Option key (or pressing Enter) The command line is also written to standard error.
This means that the command is executed and is
echoed to the active window.

Command key The command line is not passed to the Shell; that is,
nothing is executed.

Option key and Command key The command line is written to the active window
without being executed.

Standard dialog box controls

This section describes the most frequently encountered Conunando dialog box controls.

Generic text parameters

Not only do tools have options, they also have parameters. Nonspecific parameters,
where the parameter can be just about any string, are simply entered in an editable text
field. For items where text is required, the text is quoted by Conunando before being
passed to the Shell. You can scroll the line right and left (by dragging) if the text in the box
is longer than the text box. Here's an example of an editable text field:

M11rk the selection with wh11t name?

CHAPTER 4 Using MPW: The Basics 107

Repeatable options

Various text field options, such as the -d[efine] option in Rez and Asm, may be specified
more than once. The control below shows an option of this type. The number of lines
displayed is controllable by the tool's builder. The small window is basically an area where
text can be entered, very much like the Notepad desk accessory. This window does not
automatically wrap around lines larger than the window area. Instead, it scrolls left and
right You create a new line by pressing the Return key. Scroll the window horizontally by
dragging. You can scroll the window's contents vertically either by dragging or by using the
scroll bar control.

Preprocessor defines:
Lenguage•english
slze•helght*200

Radio buttons

Some options are mutually exclusive and are therefore available as a set of radio bunons.
The default setting of the button corresponds to the default state of the option. Groups
of mutually exclusive items are often surrounded with a labeled perimeter:

Print Quality
QHlgh
®Standard
QDrart

Check boxes

An option, such as the Assembler's -print option, may have many simultaneous settings.
Options like this are implemented with check boxes (versus on/off radio buttons). Most
of the MPW tool's options are Boolean flags. Check boxes are also used for these types of
options, and are usually surrounded by a labeled perimeter:

Listing Control------.
181 Show macro eapanslons
181 Rllow automatic page ejects
181 Show warning messages
181 Show macro call statements
181 Show generated object code
O Show up to 255 bytes of date
181 Show macro dlrectlue lines
181 Show beeder lines
181 Show generated literals
O Show assembly status

1<8 MPW 3.0 Reference

Shadow pop-up menus

Some options require the name of a window, alias, font, or Shell variable. Commando will
display a field of this type as a shadowed box:

Window I HD:OS:Wortsheet

When you click inside the shadowed box, a pop-up menu displays all the choices for that
particular field (that is, windows, aliases, fonts, or Shell variables). The menu box is
aligned around the current selection. The current selection is checked in the menu box. As
long as the mouse button is held down, the menu behaves like a standard pull-down menu.
If necessary, the pop-up menu will scroll vertically. When the mouse is released within a
menu item, that item then appears in the shadowed box.

Window "'ffD:OS:Wortsheet]
HD:MPW:MyCrort:test.c
HD:MPW:MyCroft:getopt.c

Other pop-up variations

Some options are similar to the pop-up menus above but also allow a little more
flexibility. The Menu Name box in AddMenu allows you to type in the name of a new menu
or select an existing menu name from a list of names:

Menu Neme._I _____ __..(!1 ...

Click the menu icon at the right of the box to display a pop-up menu containing the
existing choices:

Menu Neme I__ ____ _ • File

Find
Window
!"tnrk
Directory
Build

Drag down the pop-up menu until the item you want is highlighted and then release the
mouse button. The selected item will appear in the text edit box. If you type an item into
the text-edit box, any identical item in the pop-up menu will be automatically checked.

CHAPTER 4 Using MPW: The Basics 10')

Multiple input files

When a tool can handle multiple input files of the same type (C, ASM, Rez, and so on), only
a single button is displayed.

(Source Flies J

Clicking on the button displays a modified standard file dialog box. Commando adds
some functionality to the standard file package (SFGetFile) to let you select multiple files
in different directories. Another scrollable list appears under the file list. Use the standard
file controls to select files and click the Add button to add the selected file to the
scrollable list under the SFGetFile. After doing so the dialog box does not disappear.
Instead, the file is added to the lower list. (Alternatively, you can just double-click a
filename to add it to the lower list.) You can delete a file from the list by selecting it (in
the lower list) and clicking Remove. You can select several files at once by holding down
the Command key while you click their filenames. When all desired files have been
selected, click Done or Cancel to return to Commando's first dialog box.

A tool may tell Commando that the tool requires files with a particular extension. A radio
button lets you display and select any text file (or whatever type of file the tool wants).
When you select a folder, the Open button reads •open." When a file is selected, this
same button is labeled "Add." If you select a file that has already been added to the lower
list, then that file is selected (and scrolled into view if necessary), and the Remove button
undimmed.

110 MPW 3.0 Reference

lei CEHamples I
=:: C ounU :!1 c::i HO
O Memory.c
O Sample.c
O Stubs.c
O testperf.c

E je< t

Done

Cancel

® Files ending in .c O Rll teHt files

Source:

~ ~·~Rd!!!!!d~J bJ Remoue

Multiple directories

Some tools, such as C and Asm, have options that let you specify directories to search
when looking for various files. Clicking a single button, like this one, will display a
modified standard file dialog box:

[Include Directories]

f
The selection of multiple directories works in the same way as the selection of multiple
files. In this example, however, only folders are visible. Because a selected directory has
the potential for being both opened and added to the lower list, there must be two
controls for both operations. Clicking the Add button adds the directory selected in the
upper list to the lower list. The Open button operates in its nonnal manner: Clicking it
opens the selected folder. You can delete a directory from the lower list by selecting it (in
the lower list) and clicking Remove. Finally, clicking Continue or Cancel returns control to
Commando.

CHAPTER 4 Using MPW: The Basics 111

(Rdd Current Directory:)

I a Interfaces I
Cl Rlncludes
Cl RStructMacs
Cl Clncludes
Cl Plnterfaces
D Rln(ludes

#Include Search Paths: r•••iiH"liDH.,
Multiple mes and/or directories

c:::> HO

1: je(t

Done

(Cancel]

Open

t fldd D
(Remo1.1e)

For MPW tools or built-in commands that can deal with both multiple files and directories,
this dialog box, almost the same as the one shown above, lets you select files and
directories. The model is almost the same as the one above, except that both files and
folders are visible. Selecting anything in the upper scroll window highlights the lower Add
button. The controls work as shown in the example above.

Single Input or output me

You select options or parameters that require a single file (whether for input or output)
with a control similar to the example below. Clicking in the shadowed rectangle displays a
pop-up menu with choices depending upon the tool. The first choice can be either
Default Output or No Output (or, if the file is an input file, Default Input or No Input).
The Default Output is used for tools that write to a default output file if one is not
specified. link and Rez, for example, write to link.out and rez.out, respectively, if no
explicit output file is specified. If Input File or Output File is selected, SFGetFile (for
input files), or SFPutFile (for output files) is displayed so that a file can be chosen. If the
filename selected is too long to fit in the space provided, the middle of the path is
annotated with" ... ". An ellipsis (typographical; not a Commando invocation) is added to
the end of the end if the full filename does not fit within the confines of the box.

Resource output FHe _lre_z_.o_ut ___ _

112 MPW 3.0 Reference

Here's an example of an output file pop-up menu:

Select an eKisting output file •.•
Write output to a new file .•.

Output file where a file or directory may be specified

The various compilers have options to specify the object filename or the object file
directory. Commando displays a pop-up menu similar to this one:

File/Directory••· I~·•· rll!mrlJ!rlZlllJll•••••
Specify object file name or select directory •••

except that the standard dialog box that appears when you select the Output File or
Directory item looks like this one:

[Select Current Directory:)
lei REHamples I

IQ c::> HD

[Eject

[Oriue

QI [Direc torq]
......_~~~~~~~

Object File/Directory I OK I
[Cancel)

The OK button is dimmed when the text-edit box is empty. After entering text into the
text-edit box, the OK button is highlighted. Clicking the OK button specifies the file as
the output. Clicking the Directory button specifies a directory as output.

CHAPTER 4 Using MPW: The Basics 113

New directories

The NewFolder command lets you specify the creation of multiple directories. The
example below (based upon SFPutFile) is used to create multiple directories. When you
type a directory name in the middle text-edit area and click the Add button (or press
Rerum), a pathname is added to the lower list. The root of the new directory is the same
as that displayed in the upper scroll list. You can continue to add more directories. Click
the Done button to close the dialog box and return to the first, or "main" dialog box.

IG! REHmples I
D Count.a ~ r=HO
D Caun1x
D In~ truc1ian~ I

(Ejer.1 I
D M<1l:efile (D1it•e]
D Memory.a
~ ~Bmple

New directories: [Done]

11 I [Cancel)

I D •
I Add

[Remoue]

Special dialog box controls

Commando uses standard Macintosh text-edit boxes, radio buttons, and check boxes. In
addition to these, you'll encounter some specialized controls because of the variety of
options and parameters and certain dependencies between them. These various types of
specialized controls are introduced below.

Nested dialog boxes

Some tools, such as Rez and PasMa~ have more options and parameters than can fit into
one dialog box. The additional. options are grouped into nested dialog boxes that are
available from the first dialog box. Figure 4-7 below shows, as an example, the first dialog
box of Rez.

114 MPW 3.0 Reference

• Figure 4-7 Rez: the first dialog box

r-Rez Options .
, ... Resource Output File--·--·---------.., 0 Progress information
i Type ll;IHll i 0 Redeclared types ok
j IRez.out . I Creator ???? i O Modification date

i [®Rewrite resource file : [Description Files ...)
i O Make resource file read-only [#Include Paths ...
j ;-Resource Alignment----·--·) ;;:::======:::::
j i ®Byte O Word O Longword j [Include Paths ...

i o"M;~;;··~;~;~;~;·~-i~t;;;;~~;;; fil~ ' [Preprocessor ...

~--- 0 DK 1~~~~'!_:.:_!~~~ rn~oures I (Redirection ...

:Command Line
Lez

..... [_~ze_!_~_too-1 usec1--to_comp __ ile_r_es_our_c.s_. ________ __.I ~ Cancel

Rez

Note the five control buttons at the right side of the "Rez Options" window. When you
click one of these buttons, a nested dialog box appears with the title of the selected
button. For example, selecting the button labeled "Preprocessor ... " displays the nested
dialog box shown in Figure 4-8.

• Figure 4-8 Rez: nested preprocessor dialog box

..c:.Rez OJ!..tlons

.-Preprocessor·-
Defines: Undennes:

I ~ I ~
rzommend Line

I
fHelp I () Cancel
~.,..._ v.;.blff _, i.. DEFIE"d MICl l.fl)£FINE"d W. ihis di.log.

I Continue ,

CHAPTER 4 Using MPW: The Basics 115

As you type in the preprocessor defines and undefines, the command line you began in the
first dialog box is further updated in the Command Line window of the nested dialog box.
The lower-right Do It button in a nested dialog box is always labeled "Continue." Ciicking
Continue closes the nested dialog box, and again displays the first dialog box with the
command line updated to show the options and parameters selected in the nested dialog
box. (This is always the case, except for the C compiler dialog, which has a third level of
dialog boxes.) If you click Cancel, changes from nested dialog boxes are not recorded and
you return to the first dialog box. From there you can then select another nested dialog
box.

Redirecting output

Every tool that can write information to standard output or to standard error has controls
to assign destinations for this output. Consider the Error Output window in the
Redirection nested dialog box of Rez, shown in Figure 4-9.

• Figure 4-9 Rez: nested Redirection dialog box

.-Bez QJltlons J

[

Redirection •••
Input ,_Erro_r ___ _,

-'~~~__.I -'~~~___,!

p:mmand line

I (Cancel)

. l Continue J

f Help I [Cancel]
Cliolc 1hls button '° ..,... • dNlog with tM ndhction ..nls. . .

f Bez J _____________ __.

116 MPW 3.0 Reference

Clicking inside the Error window (and holding the mouse button down) displays this pop
up menu:

Error
~ Ntt IJulpul Redirllclion

New Fiie-.
£Histing Fiie •••
Window •••
Current Selection In Window •••
current Selection In Target Window
Standard Output
Standard Diagnostic
~·

Console

Here Null Device has been selected. When the mouse is released, the filename dev:null
appears in the Error window. Whenever you select an output redirection, the two invisible
radio buttons directly above the error pop-up are activated.

Selecting "Existing File ... " in the pop-up menu displays the standard ftle dialog box.
Selecting "New File" brings up the standard output file dialog box and lets you create a
new file. Selecting "Window ... n brings up a list of the active windows to choose from
Because a window is a file, you could also choose a window with the Existing File
command.

Selecting Current Selection in Window also brings up a list of windows to choose from
When you select Current Selection in Target Window, output is redirected to §. When you
choose a window, output is redirected to window.§. When you choose any file other than
a new file, the Overwrite and Append radio buttons are activated. These buttons
correspond to the functions of the >,~and»,>> redirection operators, respectively.
Selecting No Output Redirection clears the pop-up menu so that no redirection occurs.

After you release the mouse over Null Device, the command window looks like this:

Error ® i Ou
loeu:Null I

The Diagnostic Output windows and Standard Input windows (in the case of tools that
read standard input) work in a similar fashion.

CHAPTER 4 Using MPW: The Basics 117

Options dependent on other options

Some options may be dependent on other options. For example, the -hf (header font) and
-hs (header size) options of the print tool don't mean anything unless the -h (header)
option is specified. Commando implements this model by disabling all controls
dependent upon some other control. When you check (or otherwise activate) the main
control, the dependent controls are enabled. Another example is the AddMenu command.
The syntax of this command is

AddMenu [menuName [itemName [command...]]]

An itemName cannot be entered until a menuName is entered. Likewise, a command
cannot be entered until an itemName is entered.

Menu Namei:....D _____ __.ti ..
Item Name i...1 _____ __,.t1...,

Command~

Here is the same set of options after "Findn has been typed in the first text-edit entry
field. Notice that as soon as something is entered in the field, the Item Name entry is
enabled, but the Commands field remains dimmed.

Menu Namei...lr_1n_d ____ __..!1_
Item Name i...1 _____ __..If_

Command~

When an item is selected from the Item Name pop-up menu or simply typed into the Item
text-edit box, the Commands field is enabled. If Find is a valid menu name, then Find's
menu ite~ will appear in the It~m Name pop-up menu.

Menu Name I Find 11
Item Name I Replace! ti

Commands

I 0
There may be several text-edit boxes that are disabled (dimmed) until you have entered
something in the adjacent enabled text-edit box.

118 MPW 3.0 Reference

lbree-state controls

Some options, like the -a option of Setfile, need the support of a three-state control. For
example, Setfile can set, clear, or do nothing to the bundle bit. Clicking this control cycles
through its three states. The color of the diamond determines its state:

Gray Don't touch the flag
White Clear the flag
Black Set the flag

Attributes---.

<> Locked
<> I nuisible
+Bundle
+System
+Protected
+Open
+Changed + lnited <> on Desktop

CHAPTER 4 Using MPW: The Basics 119

Chapter 5 Using the Command Language

THIS CHAPTER DESCRIBES THE COMPLETE SYNTAX OF THE MPW 3.0 COMMAND
LANGUAGE and explains its use. Each command is defined in detail in Part II. •

Contents

Overview 123
Types of commands 124
Entering and executing commands 124

Negative status codes 125
Structure of a command 126

Command name 126
Parameters 126
Command terminators 127

Command continuation 128
Comments 128
Simple versus structured commands 128

Running an application outside the Shell environment 129
Scripts 130
Special scripts 131

The Startup and UserStartup files 131
Suspend, Resume, and Quit 131

Command aliases 132
Executable error messages 133

Variables 133
Predefined variables 134
Variables defined in the Startup file 135
UserVariables 139
Parameters to scripts 141
Defining and redefining variables 142
Exporting variables 142

Command substitution 144
Filename generation 145
Quoting special characters 146

Ul

How commands are interpreted 150
Structured commands 153

Control loops 156
Processing command parameters 157
Expressions 157

Redirecting input and output 160
Standard input 162

Terminating input with Command-Enter 163
Standard output 164
Diagnostic output 164

Pseudo-filenames 165
Editing with the command language 166
Defining your own rrenu commands 168
Sample scripts 168

"AddMenuAsGroupn 169
"CCn 170

122 MPW 3.0 Reference

Overview

The command language provides the following features:

• Built-in and user-definable variables of the form {variableNa~

• Command aliases, used to create alternative names for commands

• Command substitution, by which commands enclosed in back-quotation marks
(' ... ') are replaced by their output

• A quoting mechanism for disabling special characters or inserting invisible characters
in text: d literalizes a single character; I , , , I and tr • , , tr quote strings

• An extensive set of structured commands for controlling the order of command
execution, including Begin ... End, If ... Else ... End, and For ... In ... End

• Filename generation with "wildcardn operators such as = and ?

• Redirection of input and output with the<,>,»,~.~. r, and LL operators

When you enter command text, the Shell first interprets and processes all special symbols
before actually running the command. The order of interpretation is explained later in this
chapter under "How Commands Are Interpreted. n For the most part, the order of
presentation in this chapter follows the order of interpretation by the Shell.

In order to begin using MPW, you should read the following sections of this chapter at a
minimum:

• The opening sections of the chapter, which describe the basic form of all commands:
"Types of Commands,n "Entering and Executing Commands, n and "Structure of a
Commandn

• "Command Scriptsn and "Special Scripts"

• •variables"

• "Quoting Special Characters"

The operators and syntax of the command language are summarized in Appendix D.

CHAPTER 5 Using the Command language 123

Types of commands

In all, four kinds of commands are provided:

• Built-in commands, such as Files or Duplicate, are part of the MPW Shell.

• Command scripts, such as Startup, are text mes that contain commands. You can
combine any series of MPW commands in a text file, and execute the file by entering
its filename, just like any other command. You can also pass parameters to a script
and use them in c6mmands within the file.

• Tools, such as Llnk or Asm, are executable programs (that is, separate mes on the
disk) that are fully integrated with the Shell environment

• Applications, such as ResEdit or MacPain~, are stand-alone programs that can be
launched from the Shell but can also run outside the Shell environment

To execute a tool, application, or script, you need to have the proper program file
on your disk.

• Note: A built-in command overrides a script or executable program with the same
name. You should therefore use either full pathnames or quotation marks to specify a
script or program with the same name as a built-in command. (Quotation marks work
for this purpose because the names of built-in commands must appear unquoted-see
"Quoting Special Characters" later in this chapter.)

• Note. The Shell will not execute a tool whose modification date is 12:00 A.M. 1/1/04.

Entering and executing commands

Press the Enter key to execute selected command text. If no text is selected, pressing
Enter executes the entire line that contains the insertion point Alternatively, you can use
the mouse to click the Status Panel in the Worksheet's lower-left comer, or press
Command-Return; both methods have the same result as pressing the Enter key.

6 Important If no text is selected, pressing Enter always passes the entire line to
the Shell (or to whate.ver other program happens to be reading from
the console). This rule also applies to your own integrated programs
that run within the Shell. 6

124 MPW 3.0 Reference

6. Important If you enter a line that ends with the Shell escape character, a, the
command interpreter will pause, waiting for the rest of the line. D-

All commands return a status code: 0 indicates successful completion; nonzero values
usually indicate an error. This code is returned in the {Status} variable, described later in
this chapter.

Negative status codes

The command interpreter will return negative status codes when it encounters an error.
These codes are:

-1 Command not found, script is a directory, script is not
executable, or script has a bad date.

-2 Filename expansion failed, or there was an error in the expression
syntax.

-3 Bad syntax. Quotation characters and braces were not balanced,
or were missing end or ")" command. Error in control constructs.

-4 Missing filename following I/O redirection or the file could not
be opened.

-5 Invalid expression (If, Break If, Continue If, and other such
constructs).

-6 Tool could not be started.

- 7 Runtime error during tool execution, most likely an out-of-
memory error.

-8 User aborted the tool from the debugger.

-9 User aborted the tool with Command-period.

These values can be used to distinguish between errors returned by the commands
themselves and errors returned by the Shell.

6. Important All negative numbers are reserved for the Shell. Use only positive
numbers for errors in tools or scripts. D.

CHAPTER 5 Using the Command Language 125

Structure of a command

A command is written as a list of words separated by blanks. (Blanks may be either space
or tab characters.) The first word is the name of the command, and each word that follows
is passed as a parameter to the command. The general form of a simple command is

commandName [parameters ...] commandTerminator

Each of these elements is described below.

Command name

The command name is either the name of a built-in command or the filename of the
program or script to execute. Command names are not case sensitive. Alternative names
can be defined for a command-see "Command Aliases" in this chapter for information.

The command name is passed to tools and scripts as parameter 0, and can be referenced
by scripts in the variable { 0 } , explained later in this chapter under "Variables."

Parameters

Each of the subsequent words in a command is a parameter to the command or to the
command interpreter. Note that certain parameters, such as 1/0 redirection, are
interpreted by the Shell, and never seen by the command itself. Variables are also
interpreted before being passed to the program.

By convention, there are two distinct types of parameters to commands: options and
files. See the "Command Prototype" section at the beginning of Part IT for more details
on these conventions.

You can reference parameters within scripts by using the variables { 1}, { 2} , ... { n}. (See
Table 5-5.)

126 MPW 3.0 Reference

Command terminators

Each command is normally terminated by a return character. Commands can also be
terminated by the pipe symbol (I), the conditional execution operators (&:&: and 11), or
the simple command terminator (;). Each of these symbols may be followed by a return.
Table 5-1 describes the command terminators in order of decreasing precedence.

Except as modified by structured commands, commands are read sequentially and
executed as they are read.

• Table 5-1 Command terminators

COQJ!N!rvl Description

cmdl I cmd2 Saves the standard output of cmdl in a temporary file and uses it as
the standard input of cmd2. (Standard VO is explained later in this
chapter.)

Note: In MPW, unlike UNIX® systems, the commands are executed
sequentially.

cmdl && cmd2 Executes cmd2 only if cmdl succeeds (that is, returns a status value
of zero).

cmdl I I cmd2 Executes cmd2 only if cmdl fails (returns a nonzero status value).

cmdl ; cmd2 Executes cmdl followed by cmd2; this terminator allows more than
one command to appear on a single line.

These command terminators may be applied to both simple and structured commands.
Grouping is from left to right You can use parentheses to group commands for
conditional execution and pipe specifications. Here are some examples:
Files I Count -1

This command pipes the output of the Files command (a list of files and directories) to
the Count command, which counts the lines in the list
Asm Sample.a && Link Sample.a.o -o Sample.code I I

(Echo Failed; Beep)

This example begins by assembling Sample.a. If that operation succeeds, it links the
object file; but if the assemble-and-link operation fails, it echoes the message •Failed,•
and beeps.

CHAPTER 5 Using the Command language 127

Command continuation

You can continue a command onto the next line by typing a (Option-D) foHowed by a
return. Both characters are discarded when the line is interpreted. The return must come
immediately after the a, with no blanks or comments between them. (For more
infonnation about the a escape character, see "Quoting Special Characters" in this
chapter.)
Echo This is all o
one command
This is all one command

Notice that the output appears on one line.

Comments

The number sign (:f) indicates a comment. Everything from the t to the end of the line is
ignored. (Comments always end at the next return, even if the return is preceded by a a.)
Echo This is echoed.
Echo parameters

more parameters

f This is not.
f comment o
f another comment

Simple versus structured commands

All of the command.5 introduced so far have been simple commands. Simple corrunand.5
consist of a single keyword, followed by zero or more parameters. Simple conunands are
distingui5hed from structured commands-corrunands such as For and If, for example,
that let you control the order in which other commands are executed. For example,
For file In =.c; Count {file}; End

All structured commands are built-in, and usually have more than one keyword. The entire
structured command is read before its execution begins.

Also see "Structured Commands" in this chapter.

118 MPW 3.0 Reference

Running an application outside the Shell environment

You can run an application outside the MPW Shell environment by executing the program
name just like any other command. For example,
ResEdit

The application is loaded and launched as if it had been started from the Finder. Any files
specified as parameters are passed to the program via the application parameter handle,
in Finder fashion. (See "Finder Information" in the chapter "Segment Loader" of Inside
Macintosh.) The following option is available on the command line:

-pfile ... Tell the program to print the specified files.

For example,
MacPaint -p "HD:Screen 1 .. "HD:Screen 2"

This command tells the Shell to run MacPaint (assuming MacPaint is in a directory listed in
the Shell variable {Commands}), and to print the files Screen 1 and Screen 2.

The Shell environment is saved when the application is launched and restored when the
application terminates. (These actions are performed by the Suspend and Resume
command files, described below.)

• Note: When running MPW under MultiFinder, the application is launched into a
separate MultiFinder partition and the state is not saved.

A Warning Running an application from a script normally terminates the script.
Under MultiFinder, the application starts and the script continues to
execute. •

CHAPTER 5 Using the Command language 129

Scripts

You can create your own commands by writing text files of previously defined commands,
called scripts (command files). You can execute such a file just like any other command
within the Shell environment-the name of the ftle you created is the name of the new
command. For example,
Date
Echo Volumes ·
Volumes
Echo Current Directory
Directory
Echo Files .. .
Files

If this text is on the screen, you can execute it by selecting it and pressing Enter. You can
also save this text as a script so that it's always available. To save it under the name "Info,"
for example, first select the command text, making sure that the window with the
selected text is the target (second from the front) window. Then type the following
command in another window:
Duplicate -d § Info

You can now execute this series of commands by entering the command name Info.
(Recall that the § character indicates the selection in the target window.)

You can pass parameters to a script just as you would to a predefined command by using
the normal Shell syntax:

filename [parameters ...]

Parameters can be referred to within the scripts by using the built-in variables { 1 } ,

{ 2} , •.• { m, explained below under "Parameters to Scripts."

+ Note: As a matter of convenience, scripts (as well as applications and tools) are usually
kept in directories that the Shell automatically searches when a leafname is given for a
command name. This convention allows you to invoke the command by using its
leafname instead of its full pathname. The Shell variable {Commands} contains a
comma-separated list of directories to be searched. You can easily modify it to
include additional directories.

130 MPW 3.0 Reference

Special scripts

The scripts described in this section are provided with MPW. You can modify the
conunands in each of these files to suit your needs .

.6. Important Each of these scripts must be in the same directory as the MPW Shell,
or in the System Folder. ~

The Startup and UserStartup ftles

When you statt up the Shell, corrunands are initially read from a file named Startup. The
Shell executes the corrunands in Startup as if you had entered them interactively. The
Startup file provided with MPW contains several default variable and alias definitions.
You can modify the corrunands in Startup to suit your own needs; for instance, you can
change the default pathnames to suit a special directory configuration.

Startup executes another script called UserStartup. It's recommended that you use this file
for your own changes and additions to the startup sequence. You can redefine the
variables defined in Startup, set and export any number of additional command-language
variables, and define aliases and create menu items. Aliases and variables are fully
described in the sections that follow.

Suspend, Resume, and Quit

When you run an application from the Shell, corrunands are read from the file Suspend.
When you quit the application and return to the Shell, corrunands are read from the file
Resume. The Suspend and Resume files save state information about variable definitions,
exports, aliases, and windows before running an application; they then restore the state
after returning to the Shell.

+ Note: Suspend and Resume are not used if the MPW Shell is running under MultiFinder.

When you quit from the Shell, commands are read from the file Quit. The Shell executes
these commands before closing any windows.

CHAPTER 5 Using the Corrunand language 131

• Note: If you cancel from the Quit command, the Quit file will already have been
executed.

like Startup and UserStanup, these scripts run as if you had entered the commands
interactively. You can modify them to suit any special requirements you may have.

Command aliases

An alias is an alternative name for a command (and possibly some parameters). The Alias
command is used to define aliases and to display the list of aliases. If an alias has been
defined, it will be recognized by the command interpreter and the corresponding
definition will be substituted.

• Note: Variable substitution and alias substitution occur on the alias definition itself
after it has been substituted.

The following commands are used to define and undefine aliases:

Alias name word ...
Alias name
Alias
Unalias name
Unalias

Name becomes an alias for the list of words.
Displays any alias definition associated with name.
Displays all alias definitions.
Removes any alias definition associated with name.
Removes all alias definitions.

Aliases are local to the script in which they are defined (and are globally available if they
are defined in the Startup and UserStarrup files or entered interactively). Aliases are
automatically inherited from enclosing scripts, and they may be redefined locally.
However, aliases redefined locally will revert to their previous value when the script
terminates.

See the Alias and Unalias commands in Part II for a complete specification of aliases and
several examples.

132 MPW 3.0 Reference

Executable error messages

The following alias is defined in the Startup file:
Alias File Target

That is, the word "File" is defined as an alias for the Target command, which opens a file as
the target window. (See Chapter 6, "Editing Commands.") This alias is useful when a
compiler rerums an error message such as
#ff Not a parameter name: counts

File "Count.c" ; line 73

By placing the insertion point anywhere on the error message line or by selecting the entire
line and pressing the Enter key, you'll automatically open the specified file as the target
window, find and select the offending line, and bring the window to the top. The
command that the Shell actually executes is
Target "Count.c" ; Line 73

line is a script that automatically finds and selects a line by number and then brings the
target window to the top.

Variables

The Shell provides several predefined variables and allows you to declare any number of
additional variables. Variables are used for

• shorthand notation

• starus information

• local variables in scripts

• parameters to scripts and tools

• certain defaults for the MPW Shell

You can define or redefine variables with the Set command and remove variable
definitions with the Unset command. For example, the command
Set PFiles HD:MPW:PFiles:

defines a variable {PFiles} with the value "HD:MPW:PFiles:".

CHAPTER 5 Using the Command language 133

Variables have strings as their values. You can reference them by using the notation
{name}, where name is the name of the variable. When a command containing a variable
{name} is executed, {name} is replaced with the current value of the variable. In this
example,
Files {PFiles}Src.p

{PFiles} is replaced with its definition before the command is executed.
A variable may comprise one or more words, or part of a word. If a variable is undefined,
{name} is removed (that is, replaced with a string of length zero, called a null string).

Variable names are case insensitive, and must not include the right brace character (}), for
obvious reasons. It's wise to avoid using any special characters in variable names because
future extensions to the command language may assign special meanings to some of these
characters.

• Note: For variables such as {Exit} and {CaseSensitive} that can be either "true" or
"false,• the variable is considered true if it is set to anything other than zero or the null
string (a string of length zero). The variable is considered false if it is set to zero, null,
or undefined. The best way to set one of these variables is like this:

Set Exit 1 # tum {exit} on
Set Exit 0 # tum {exit} off

(These values also apply to expressions that return a Boolean value, defined later in
this chapter under "Structured Commands.")

Predefined variables

Table 5-2 lists the variables defined by the MPW Shell. These variables provide the
status value returned by the last command as well as the pathnames of several files
and directories.

6. Important Since the variables listed in Table 5-2 are predefined or defined
dynamically by the Shell, you should not modify the values of these
variables. 6

134 MPW 3.0 Reference

• Table 5-2

Variable

{Active}

{Aliases}

{Boot}

{Command}

{ShellDirectory}

{Status}

{SystemFolder}

{Target}

{Windows}

{Worksheet}

Variables defined by the Shell

Description

Full pathname of the current active window.

A list of all defined aliases, with each name separated by a comma.
The list contains only the names, not the definitions. Commando
uses this variable with the built-in commands Alias and Unalias.
Commando needs this variable to know the names of existing
variables. {Aliases} must be exported.

Volume name of the boot disk.

Full pathname of the last command executed. (For built-in
commands, this is the name of the command.)

Full pathname of the directory that contains the MPW Shell.

Result of the last command executed. (A value of 0 means successful
completion. Any other value is an error code: Typically, 1 means an
error in parameters, and 2 means that the command failed.)

Full pathname of the directory that contains the System and Finder
files.

Full pathname of the target window. The target window is the second
window from the top; by default, this is the window where editing
commands (such as cut, copy, and paste) take effect

Contains a list of the current windows, with each name separated by
a comma. Commando uses this list to allow redirection of output or
input to or from existing windows. Commando needs this variable to
know the names of the current windows. {Windows} must be
exported.

Full pathname of the Worksheet window.

Variables defmed in the Startup file

Table 5-3 lists the variables defined in the Startup file (described in the aspecial Scripts"
section earlier in this chapter). These variables define pathnames and default settings to
the Shell and are referenced by the Shell and by some of the MPW tools. You can change
any of these definitions to suit your preferences.

Hierarchical file system (HFS) pathname conventions are described in Chapter 4.

CHAPTER 5 Using the Command language 135

• Table S-3 Variables defined in the Startup file

VadabJe Description

Variables referenced by the command interpreter

{Commando} This variable tells the Shell which conunand to execute when the
ellipsis character (Option-semicolon) is present anywhere in a
command line. The Startup file sets this variable to "Commando." The
{Commando} variable allows the development of similar tools whose
output is to be executed by the Shell. If the variable is not set, then
the ellipsis character is removed from the command line and normal
execution proceeds. {Commando} must be exported if scripts are to
use Commando.

{MPW} The volume or folder containing the Macintosh Programmer's
Workshop. Initially set to the directory containing the MPW Shell. If
you put the MPW Shell on your desktop, modify the value of {MPW}

{Commands}

in the Startup file.

A list of the directories that the Shell searches when looking for a
command to execute. Directories in the list are separated by
commas. A single colon indicates the default directory. {Commands}
is initially set to

:,{MPW}Tools:,{MPW}Scripts:

-that is, the current directory; then HD:MPW:Tools, then
HD:MPW:Scripts, and then HD:MPW:Applications (assuming that
{MPW} is set to HD:MPW:).

{Echo} When {Echo} is set to a nonzero value, commands are written to
diagnostic output after aliasing, variable substitution, command
substitution, and filename generation, and just prior to execution.
This capability is useful for watching the progress of a script and for
debugging scripts. As the first line of your file, include the line

{Exit}

{Test}

Set Echo 1

{Echo} is initially set to 0.

When {Exit} is set to a nonzero value, scripts terminate whenever a
command returns a nonzero starus. This nonzero status is rerumed as
the status value of the script. (See the {Status} variable in Table 5-2.)
{Exit} is initially set to 1.

When {Test} is set to a nonzero value, the command interpreter
executes built-in commands and scripts, but not tools or
applications. {Test} is useful for checking the control flow in
command files. (It's most useful if {Echo} is also nonzero.) {Test} is
initially set to 0.

(Continued)

136 MPW 3.0 Reference

• Table S-3 (Continued) Variables defined in the Startup file

Variable Description

Variables referenced by the editor

{Autoindent}

{CaseSensitive}

{Font}

{FontSize}

{PrintOptions}

{SearchBackward}

{Search Type}

{Search Wrap}

{Tab}

Specifies the setting for automatic indenting. The default setting for
a new window is 1. If {Autoindent} is set to any value greater than 0,
automatic indenting occurs.

Any nonzero value specifies case-sensitive pattern matching.
{CaseSensitive} is initially set to 0 (that is, false). You can also set
{CaseSensitive} from the Find and Replace dialog boxes, by clicking
the Case Sensitive button. (See "Find Menu" in Chapter 3.)

Specifies the font for a new window. Its predefined value is
"Monaco."

Specifies the font size for a new window. It is preset to 9.

Options used by the Print Window and Print Selection menu items.
They are initially set to -h. (The -h option prints pages with headers.
For more information on possible print options, see the Print
command in Part II.)

If set to any nonzero value, searching will proceed backward. This
variable can be used to set up the default environment so that you
can access the backward search option. The default value is 0. You
can also set {SearchBackward} from the Find and Replace dialog
boxes by clicking the Search Backward button. (See "Find Menu" in
Chapter 3.)

Use this variable to set up the default environment so you can access
selective search options. If {SearchType} is set to 0, the search will
find the literal character string specified. If it is set to 1, only words
will be searched. If set to 2, regular expressions will be searched. The
default value is 0. You can also set {SearchType} from the Find and
Replace dialog boxes by clicking one of the Literal, Word, or
Selection Expression buttons. (See "Find Menu" in Chapter 3.)

Use this variable to set up the default environment for wrap-around
searching. If set to any nonzero value, searching will wrap around. The
default value is 0. You can also set {Search Wrap} from the Find and
Replace dialog boxes, by clicking the Wrap Around button. (See
"Find Menu" in Chapter 3.)

Default tab setting for new windows (initially 4).

(Continued)

CHAPTER 5 Using the Command language 137

• Table S-3 (Continued) Variables defined in the Startup file

Variable Description

Variables referenced by the editor (Continued)

{User}

{WordSet}

The name of the current user of MPW, predefined to be the same as
the user name specified in the Chooser.

The set of characters that constitute a word to the editor (for use
with Find and Replace menu commands, and for word selection by
double-clicking). By default, {WordSet} is set to the characters a-z,
A-Z, 0-9, and _(underscore). If a character is not in the list, the
editing commands regard it, like a blank, as a break between words.

Pathnames for libraries and Include files

{Alncludes}

{Cincludes}

{ CLlbraries}

{libraries}

{Pinterfaces}

{PLlbraries}

{Rincludes}

The directories to search for assembly-language Include files,
referenced by the Assembler. Initially set to

"{MPW}Interfaces:Aincludes:".

The directories to search for C Include files, referenced by the C
compiler. Initially set to

n {MPW} Interfaces: Cincludes: ".

The directory that contains C library files. Initially set to

n { MPW} Libraries: CLibraries: ".

The directory that contains shared library files. Initially set to

"{MPW}Libraries:Libraries:".

The directories to search for Pascal interface files, referenced by the
Pascal compiler. Initially set to.

"{MPW}Interfaces:Pinterfaces:"

The directory that contains Pascal library files. Initially set to

"{MPW}Interfaces:PLibraries:".

The directory that contains Resource compiler (Rez) Include files.
Initially set to

n {MPW} Interfaces: Rincludes: ".

138 MPW 3.0 Reference

User Variables

UserVariables is a script that lets you use Commando to create Set commands for user
variables that you may wish to include in your startup script. Paste the command line
created by Commando into your User Startup file and fonnat it as you like. Note that the
commands are separated by semicolons. Don't forget to remove the UserVariables
command from the beginning of the command line.

The variables in the UserVariables script are divided into six groups:

Control Variables {Echo}, {Exit}, {lgnoreCmdPeriod}, and {Test}
Search Variables {SearchType}, {CaseSensitive}, {SearchBackward},

Print Options
Window Stacking
Window Tiling
Window Variables

{SearchWrap}, and {WordSet}
{PrintOptions}
{StackOptions}
{TileOptions}
{NewWindowRect}, {ZoomWindowRectl, {Autolndent},
{Fond, {FontSize}, and {Tab}

These variables are described in Table 5-4 that follows and in Table 5-3 in the previous
section.

CHAPTER 5 Using the Command language 139

• Table 5-4 User variables not defined in Startup file

Variable Dcscrlption

{DirectoryPath} Use this variable to change directories easily. {DirectoryPath} is
searched by the Directory command when you attempt to set a
directory by using only its leafname. (See Directory in Part II.)

{IgnoreCmdPeriod} This variable tells scripts to ignore Command-Period. This is useful
for critical sections of a script If this variable is set to a nonzero
number, Command-Period is ignored. Tools that run in the scope that
has {lgnoreCmdPeriod} defined will also ignore Command-Period.
This overrides any signal handler defined in the tool itself.
{lgnoreCmdPeriod} is undefined at startup.

~ Important If {IgnoreCmd.Period} is set, the only way to
prematurely stop execution is to reboot L:.

{NewWindowRect} Specifies the window size when a new window is created. The value
of this variable is the four coordinates of a rectangle, listed in this
order: top, left, bottom, right. The defined rectangle must be visible
on the Macintosh screen. If the rectangle specified is not totally
visible it is clipped to the edges of the screen. The coordiates (0,0)
are at the left side of the screen at the bottom of the menu bar. For
example, to create all new windows in the top left comer of the screen
400 pixels wide and 200 pixels high, use the following command:

Set NewWindowRect 0,0,400,200

{StackOptions} Options used by the Staclc Windows menu command. Use this
variable to specify your own preferences. (See "Window Menu" in
Chapter 3.)

{TileOptions} Options used by the Tile Windows menu command. Use this variable
to specify your preferences. (See "Window Menu" in Chapter 3.)

{Zoom Window Recd
Specifies the size of a window when it is zoomed to full screen size.
The value of this variable is the four coordinates of a rectangle, listed
in this order: top, lef~ bottom, right The defined rectangle must be
visible on the Macintosh screen. If the rectangle specified is not
totally visible, it is clipped to the edges of the screen. The
coordinates (0,0) are at the left side of the screen at the bottom of
the menu bar.

140 MPW 3.0 Reference

Parameters to scripts

When a script is executed, the values of certain Shell variables are set automatically. These
variables are explained in Table 5-5.

• Table S-5

Variable

{0}
{1}, {2}, ... {n}

{#}

{Parameters}

{"Parameters"}

Parameters to scripts

Description

Name of the currently executing script.

Firs~ second, and nth parameter passed to the current script
(These values are null for commands entered interactively.)

Number of parameters (excluding the command name).

Equivalent to u l { 2 l ... { m .
Equivalent to " { 1 l " " { 2 l " ... " { m ". This form should be
used if the parameters could contain blanks or other special
characters.

The {Parameters} variable is especially useful when the number of parameters is unknown.
The quoted forms, such as "{1}" or {"Parameters"}, are usually preferable to the unquoted
forms because, after variable substitution, {1}, {2}, and so on could contain blanks or other
special characters. For example, consider the Line script (which is useful with error
messages, as explained earlier in this chapter under "Executable Error Messages"):
Find "{l}" "{Target}"
Open "{Target}"

f Find line n in the target window.
f Make the target window the active o
f (top) window.

This script takes one parameter, a line number. Parameter {1} is quoted to handle the case
where line is called without any parameters. In this case the value of {1} is the null string,
and without the quotes the {l} would completely disappear, leaving the name of the target
window as the only parameter to Find. The quotation marks ensure that at least a null
string is sent to Find as its first parameter-this is essential, because the window name
must be the second parameter. Also notice that the {Target} variable is quoted, because it
is a filename that might contain blanks or other special characters. (For more information
on quoting rules, see "Quoting Special Characters" later in this chapter.)

CHAPTER 5 Using the Command language 141

Defining and redefining variables

The following commands are used to define and modify variables:

Set name value Assigns the string value to variable name.
Set name Writes the value of variable name to standard output.

Set Writes a list of all variables and their values to standard
output.

Unset name Removes the definition of variable name.
Unset Removes the definition of all variables in the current scope.

(For an explanation of the scope of a variable, see the next
section.)

.&. Warning Removing all variables in the outermost scope can have serious
consequences. For example, the Shell uses the variable {Commands} to
locate MPW tools and other commands. The assembler and compilers
use other variables to help locate Include files. Some variables, such as
{Boot}, cannot be reinitialized without restarting MPW. •

Defining a variable and making it available for use by scripts and programs involves two
separate steps:

1. You can define a variable with the Set command. Note that variables are local to the
script in which they are defined-a variable definition ceases to exist when its
command file terminates.

2. You can pass a variable to scripts and tools with the Export command. After you
export a variable, nested scripts can reference that variable and may override its value
locally-but any redefinition is strictly local and terminates when the script
terminates. It's impossible to affect the value of a variable in an enclosing script. (See
Figure 5-1.)

Exporting variables

The Export command makes variables available to scripts and tools:
Export name... Exports the named variables.
Export Writes the list of exported variables to standard output.
Unexport name... Removes specified variables from the list of exported variables.
Unexport Writes the list of unexported variables to standard output.

142 MPW 3.0 Reference

You can define a variable globally by setting its value in the Startup file and exponing it.
Figure 5-1 illustrates how Export works.

• f'igll!'C 5-1 Trafficking in variables

UserStartup File ###
Set var X
Export var

(var) = 'X'
ACommandFile

ACommandFile ###
Set Var Y
Export var
Set local Z
AnotherCommandFile

AnotherCommandFile ###
(local) is undefined
(var) = 'Y'
Set var Z
(var) = 'Z'

(var) = 'Y'
(local) = ''Z:

(var) = 'X'

+ Note: You can use the Execute command to execute a script without creating a new
scope for variables, exports, and aliases. The Shell "executes" the Startup, Suspend,
Resume, and Quit scripts, and Startup uses Execute to run the UserStartup script For
more details about Execute, see Part II.

CHAPTER 5 Using the Command Language 143

Command substitution

Command substitution causes a command to be replaced by its output. You can specify
conunand substitution by enclosing one or more commands in backquotes (' ... '). The
backquote key is located at the upper-left comer of the original Macintosh keyboard; it
is located near the space bar of the newer keyboards. When the command is executed, the
standard output of the enclosed commands replaces the ' ... '. Command substitution can
form part of a word, a complete word, or several words. Command substitution is not
done within "hard" quotation marks (that is, the standard single quotation marks ' ... ').

• Note: If the standard output of the enclosed commands contains return characters, the
rerums are replaced by blanks. If the output ends with a return, this rerum is
discarded.

For example, the command
Echo The date is 'Date'

echoes the parameters, replacing the Date command with its output, as follows:
The date is Wednesday, October 22, 1987 10:40:00 PM

The following example duplicates the files whose names are output by the Files command:
Duplicate 'Files -t MPST MyDisk:' "{MPW}Tools"

The conunand line
'Files -t MPST MyDisk:'

is replaced with a string of filenames of type MPST (that is, MPW tools) before the
Duplicate command is executed; these files are then copied to the folder {MPW}Tools.
This command is useful because the Files command allows you to specify files with a
certain type or creator, something you can't do with wildcard operators.

144 MPW 3.0 Reference

Filename generation

After variables have been substituted, an unquoted word that contains any of the
characters
? * + «

is considered a filename pattern. The word is replaced with an alphabetically sorted list of
filenames that match the pattern. An error is returned if no filename is found that matches
the pattern.

You can specify a group of file- (or window-) names with the "wildcard" notation given in
Table 5-6.

• Table 5-6

Variable

?

=
[characterlist l
[-, characterlist]

*

+

Filename generation operators

Description

Matches any single character (except a colon).

Matches any string of zero or more characters (except a colon).

Matches any character in the list

Matches any character not in the list

0 or more repetitions of the preceding character or character list (?* is
the same as =).

1 or more repetitions of the preceding character or character list.

«number of repetitions»
Specifies number of repetitions of the preceding character or
character list.

The pathname separator (:) must appear explicitly in the pattern because the : character
will never be substituted for ?, =, or[...].

• Note: Pattern matching is not case sensitive.

CHAPTER 5 Using the Conunand language 145

These special characters are the same regular expression operators used in editing
commands. For a complete discussion of regular expressions, see Chapter 6.

Naturally, you need to be careful with these wildcard operators. The Parameters and Echo
commands are very useful for double-checking which filenames a command will generate.
For example, before giving the command
Delete =.c.o

you might want to run the conunand
Parameters =.c.o

This comrnand lists your ".c.o" files to standard output so that you can make sure you
really want to delete them all.

+ Note: Wildcard characters only generate names that match existing filenames; they do
not create new files. For example, the following attempt to rename files will not work:

Rename =.obj =.o

An example of how to perform a wildcard rename can be found under the description
of the Rename command in Part II.

Quoting special characters

There are numerous characters that have special meanings to the MPW Shell. Normally, the
Shell performs the action indicated by the special character-but you can disable a
character's special meaning (that is, include it as a literal character) by quoting it You
commonly need quotes when specifying filenames that contain blanks or other special
characters or when searching for the literal occurrence of a special character. See also
"Pattern Matching" in Chapter 6.

Table 5-7 lists all of the special symbols recognized by the Shell.

146 MPW 3.0 Reference

• Table 5-7 Special characters and words

Character Meaning

Space Separates words
Tab Separates words

Return Separates commands
; Separates commands

Separates commands, piping output to input
& & Separates commands, executing the second

if the first succeeds
I I Separates commands, executing the second

if the first fails
(. ..) Command grouping; grouping in filename

generation
Invokes Commando

"Structure of a Comrnandn

"Structure of a Comrnandn
Table 5~1

"Invoking Commando"

• Note: This ellipsis character is an Option-semicolon key command, n<it
three periods.

I I

II II

/ .. .!
\ ... \
{ ... }

?

=
[. . .]
*
+

« »

Comments

Escape character: quotes the
subsequent character
Quotes all special characters
Quotes all special characters, except a,{, and ...
Quotes all special characters, except a,{, and ...
Quotes all special characters, except a, {, and ...

Variable substitution

Command substitution

Matches a single character in filename
generation.
Matches any string in filename generation

Character list in filename generation
l.ero or more repetitions in
filename generation
One or more repetitions in filename
generation
Specified number of repetitions in filename
generation

"Structure of a Command"

In this section (Table 5-8)

"Variables"

"Command Substitution"

"Filename Generation"
In this chapter
"Pattern Matching" in
Chapter6

(Continued)

CHAPTER 5 Using the Command Language 147

• Table 5-7 (Continued) Special characters and words

Character .Meaning

<
>
>>
~
~;:::

L
LL

Input file specification
Output file specification
Output file specification (append)
Diagnostic file specification
Diagnostic file specification (append)
Output file and diagnostic file specification
Output file and diagnostic file specification (append)

"Redirecting Input and Output"
Table 5-12

You can literalize a character by preceding it with the Shell escape character, a (Option
D), or by including it within the quotation symbols' ... '," ... ",/. . ./, or\ ... \. The escape
character, a, quotes a single character only; the other quotation symbols may be used to
quote part or all of a word. These symbols are described in Table 5-8.

• Table 5-8

Quote

I I

" "

/ .. ./or\ ... \

Quotes

Description

"Hard quotation marks": Take the enclosed string literally-no
substitutions occur. The quotation marks are removed before
execution.

"Soft quotation marks": Take the enclosed string literally. ck, variable
substitutions, and command substitutions occur. The quotation marks
are removed before execution.

Regular expression quotation characters: Normally used to enclose
regular expressions. Take the entire string literally, including the
quotation characters-the I or \ characters are not removed. Variable
substitutions and command substitutions occur. ' ... ', " ... ", and a have
their usual meanings-however, they are not removed.

Single quotation marks, double quotation marks, and a are removed before parameters
are passed to programs (unless they are themselves enclosed in quotation marks). For
example, here are two ways you might define an AddMenu that compiles a C program in an
active window:

Wrong: AddMenu Extras "C Compile" C "{Active}"

Right: AddMenu Extras "C Compile" 'C "{Active}"'

148 MPW 3.0 Reference

The first example won't work because the {Active} variable will be expanded when the
menu is added (it should be expanded when the menu item is executed'). The second
example is correct-when the AddMenu command is executed, the single quotation marks
defeat variable expansion; they are then stripped off before the item is actually added.
The double quotation marks remain in case the pathname of the active window happens
to contain any special characters.

+ Note: When quoting spaces (as in filenames), you'll usually use double quotation marks
(soft quotes) to permit variable and command substitution.

Slashes (or backslashes) are used to pass regular expressions as parameters to commands,
without filename expansion occurring. For example, ·
Search /proc=/ Sample.p

This command searches the file Sample.p for any string beginning with the characters
•proc". (See "Pattern Matching" in Chapter 6 and the description of the Search command
in Part II.)

CHAmR 5 Using the Command Language 149

• Table 5-9 Special escape conventions

Symbol

de

oRetum

dn

at
df

Escape convention

Escape character: Take the single character c literally. The four escape
conventions that follow are exceptions to this rule.

()Return is discarded, allowing you to continue a command onto the
next line.

Inserts a return character.

Inserts a tab character.

Inserts a fonn feed character.

How commands are interpreted

When you send text to MPWs command interpreter (by pressing the Enter key or the
equivalent), the following sequence of steps is perfonned:

1. Alias substitution.

2. Evaluation of control constructs. (This means that control constructs can't be
produced by command substitution but can have aliases.)

3. Variable substitution, command substitution. All variables (unquoted or quoted with
1 ... 1, / •• ./,or\ ... \) are replaced with their value. All commands enclosed in' ... '
(unquoted or quoted with " ... ", / .. .!, or\ ... \) are replaced with their output If the
ellipsis character (Option-semicolon) is found, Commando is executed and the
command is replaced by the output of Commando.

4. Blank interpretation. After variables and commands have been substituted, the
command text is divided into individual words separated by blanks. A blank is an
unquoted space or tab.

• Note: The following symbols are nonnally considered separate words, whether or
not they are set off by blanks:

; I I I && < > < > >> ~ >>
Within expressions (used with If and Evaluate), all operators are considered
separate words, unless they are quoted. See •structured Commands" in
this chapter.

150 MPW 3.0 Reference

5. Filename generation. A word that contains any of these unquoted characters
? = [* + «
after variable substitution is considered a filename pattern. The word is replaced with
an alphabetically sorted list of the filenames that match the pattern. (If no filename is
found that matches the pattern, an error results.)

6. Input/output redirection. Because this step is performed last, variable substitution,
command substitution, and filename generation can all be used to form the filenames
used in I/O redirection.

7. Execution.

You can suppress any part of this process by using quotation symbols as described in the
previous section. Remaining single and double quotation marks are removed prior to
execution.

CHAPTER 5 Using the Command Language 151

• What went wrong?

If you ever wonder why a command line doesn't work, .refer back to this section
to study the order of command interpretation. You may use the {Echo} variable to
examine how the Shell is interpreting your command. Use the command

Set Echo 1

With {Echo} defined, the command lines will be echoed to standard output after
they are interpreted by the Shell.
The command Parameters is also useful for finding out which parameters will be
passed to the command. Parameters writes its parameters to standard output.
This command is especially handy when you want to experiment with quoting. For
example, try the following commands:

Parameters =
f parameters will be all the files in current directory

Parameters "="
f parameter will be the = character

Parameters "{Commands}"
f Enclosed in soft quotation marks, the

variable will be expanded
Parameters '{Commands}'

f Enclosed in hard quotation marks, the parameter
will be the string {Commands}

Parameters 'date'
f the output of date will be passed as multiple

parameters
Parameters "'date'"

t the output of date will be passed as one parameter •

152 MPW 3.0 Reference

Structured commands

Structured commands (listed in Table 5-10) override the nonnal sequential execution of
commands. They can be used interactively and within saipts. They may be nested to any
depth, subject to a limitation on stack space. The entire structured command is read
before execution begins. All structured commands are built into the MPW Shell.

.&. Warning After the Shell "executes" an opening parenthesis or the opening word
of a Begin, If, For, or loop command, it will not execute any
subsequent commands until a matching closing parenthesis or End
word is encountered. While it is waiting for the end of the command,
the status panel of the Worksheet window will contain the left
parenthesis character,(, or the command name. You can abort the
entire structured command by typing Command-period

The status value for a structured command is the status of the last command executed
within the structured command (except for the Exit command, which lets you set your
own status value).

Expressions (used in If, Break, Continue, and Exit) are defined later in this chapter.

CHAPTER 5 Using the Command Language 153

• Table 5-10

Command

(command ...)

Begin ... End

If ... Else ... End

For ... End

Loop ... End

Break

Structured commands

Description

Parentheses are used to group commands for conditional execution,
pipe specifications, and input/output specifications.

Begin
command ...

End

Like parentheses, Begin and End group commands for conditional
execution, pipe specifications, and input/output specifications.

If expression
command ...

[Else If expression
command ...] ...

[Else
command ...]

End

The conunand If ... Else ... End executes the conunands following the
first expression whose value is true (that is, nonzero and non-null). At
most one of the lists of commands is executed. If none of the
commands is executed, If returns a status value of 0.

For name In UXJTd ...
command ...

End

The command For ... End executes the enclosed commands once for
each word from the "In word ... " list. For each iteration, a variable of
the form { name} represents the current value from the word ... list.

Loop
command ...

End

This conunand repeatedly executes the enclosed commands. The
Break command is used to terminate the loop.

Break [If expression)

The conunand Break terminates execution of the immediately
enclosing For or Loop. If the expression is present, the loop is
terminated only if the expression evaluates to true (nonzero and non
null).

(Continued)

154 MPW 3.0 Reference

• Table 5-10

Command

Continue

Exit

(Continued) Structured commands

Description

Continue [If expression]

The conunand Continue terminates this iteration of the immediately
enclosing For or loop and continues with the next iteration. If the
expression is present, the continue is executed only if the
expression evaluates to true (nonzero and non-null).

Exit [number] [I f expression]

The conunand Exit terminates execution of the script in which it
appears. If number is present, it is returned as the status value of the
script; otherwise, the status of the last command executed is
returned. If the expression is present, the script is terminated only if
the expression evaluates to true (nonzero and non-null). (You can also
use Exit interactively to terminate execution of all previously entered
commands.)

The return characters in the command definitions above are significan~ a return must
appear at the end of each line, as shown above, or it must be replaced by a semicolon (;).

The following keywords are recognized when they appear unquoted as the first word of a
command:
Begin For If Else Loop End Break Continue Exit

The keyword "In" is recognized when it appears unquoted following For; the keyword "If"
is recognized when unquoted following Else, Break, Continue, and Exit. These keywords
are not considered special in other contexts and need not be quoted.

• Note: These keywords cannot be produced as a result of variable substitution or
command substitution.

You can apply conditional execution (&& and 11), pipe specifications (I), and
input/output specifications(<, >, », ~. >>, L, and LL) to entire structured
commands (that is, to Begin ... End, If ... Else ... End, For ... End, and loop ... End, and to
commands within parentheses).

CHAPTER 5 Using the Command language 155

The operator should appear following the End or closing parenthesis. For example, you can
collect the output of a series of commands and redirect it as follows:
Begin

Echo Good day
Echo Sunshine

End > OutputFile

Input/output specifications are discussed later in this chapter. Each of the structured
commands is described in detail in Part II.

Control loops

The For and Loop commands are used for looping.

The For ... End command executes the enclosed commands once for each word in the "In
word ... " list The current word is assigned to variable name, so you can reference the
current word by using the Shell variable notation {name}. For example,
For File In =.c

c "{File}" ; Echo "{File}" compiled.
End

The Loop command provides unconditional looping, so you'll need to use the Break or
Exit commands to terminate the loop. You can use the Continue command to continue
with the next iteration.

For example, the script below runs a command several times, once for each parameter:
ff# Repeat - Repeat a command for several parameters #ft
f
t
t
t
t
f

Repeat command parameter_.

Repeat command once for each parameter in the parameter
list. Options can be specified by including them in
quotes with the command name.

Set cmd "{1}"
Loop

Shift
Break If {#} 0
{cmd} n {1} n

End

In this example, the Shift command (explained in the next section) is used to step through
the parameters, and the Break command ends the loop when all the parameters have been
used. Using the script Repeat, you could compile several C programs, with progress
information, using the command
Repeat 'C -p' Sample.c Count.c Memory.c

156 MPW 3.0 Reference

Processing command parameters

In addition to the commands introduced in Table 5-10, there are several other commands
that are highly useful in scripts. You can use the following commands to display or modify
parameters:

Echo [parameters ...]

Parameters [parameters ...]

Shift [number]

Writes its parameters, separated by blanks and
terminated by a return, to standard output

Writes its parameters, including its name, to
standard output One parameter is written per
line, preceded by the parameter number in
braces and a space. A return is written following
the last parameter.
For example:
Parameters 1 2 "3a 3b"

will output
{ 0} parameters
{ 1} 1
{2} 2

{3} 3a 3b

Renames the parameters by subtracting number
from the parameter number; that is, parameters
number+ 1, number+ 2, and so on are renamed
1, 2, and so on. If number is not specified, the
default value is 1. The variables {1}, {2} ... {n}, {#},
{Parameters}, and {'Parametersn} are all
affected. Shift does not affect parameter {0}
(the command name).

See the Hints box "What Went Wrong."' in the previous section, "How Commands Are
Interpreted," for some suggestions on using Echo and Parameters to troubleshoot
reluctant command lines. For an example of how the various structured commands can
work together, see "Sample Scripts" at the end of this chapter.

Expressions

Expressions are used in the If, Break, Continue, and Exit commands. They're also used in
the Evaluate command, which returns the result of an expression.

Table 5-11 lists the expression operators in order of decreasing precedence. Some
operators have more than one representation; these equivalent symbols are listed on a
single line. Groupings indicate operators of the same order of precedence.

CHAPTER 5 Using the Command language 157

• Table 5-11 Expression operators in order of decreasing precedence

Operator

1. (expr)

2. -

3. *
+

4. +

5. <<
>>

6. <

7.

<=
>
>=

!=

!-

8. &:

9. ,..

10.

Operation

Expression grouping

Unary negation
Bitwise negation

NOT ..., Logical NOT

Multiplication
DIV Division
MOD Modulus division

<> '¢

Addition
Subtraction

Shift left
Shift right

Less than
Less than or equal to
Greater than
Greater than or equal to

Equal
Not equal
Equal pattern (regular
expression)
Not equal pattern
(regular expression)

11. && AND

Bitwise AND

Bitwise XOR

Bitwise OR

Logical AND

Logical OR 12. 11 OR

All operators group from left to right. You can use parentheses to override the operator
precedence. Null or missing operands are interpreted as zero. The result of an expression is
always a string representing a decimal number. Relational operators return the value 1 when
the relation is true and the value 0 when the relation is false.

158 MPW 3.0 Reference

Logical operators: The logical operators !, NOT,..,,&&, AND, I I, and OR interpret
operands of value 0 or null as false; and they interpret nonzero, non-null operands as true.

Numbers may be

• decimal
• hexadecimal, beginning with either $ or Ox

• octal, beginning with zero

• binary, beginning with Ob

Every expression is computed as a 32-bit signed value. Overflows are ignored.

String operators: The operators==,!=,=-, and!- compare their operands as strings. All
others operate on numbers.

• Note: The {CaseSensitive} variable does not apply to the string operators.

Comparing text patterns: The=- (equal pattern) and!- (not-equal pattern) operators
are like == and != (which compare two strings), except that =- and !- are used for
comparing a string with a text pattern. The right side is a regular expression against which
the left-side operand is matched. For example:
If "{l}" !- /=.[acp]/

Echo Filename must end with .a, c, or .p
End

+ Note: The regular expression in the above example must be enclosed in the regular
expression quotation symbols, I .. ./. See Chapter 6 for more information about regular
expression syntax.

If the regular expression contains the tagging operator ®, then, as a side effect of
evaluating the expression, Shell variables of the form { ® n} containing the matched
substrings are created for each tag operator in the expression. (For an example, see the
implementation of a wildcard rename command under the description of the Rename
command in Part II.)

CHAPTER 5 Using the Command language 159

Use of special characters: Within expressions in the If, Break, Continue, Exi~ and
Evaluate commands, the following Shell operations are disabled:

• Filename generation

• Conditional execution (I I and &&)

• Pipe specifications (I)

• Input/output specifications (>, », ~. >>, <, l, and .ll)

This allows the use of many expression operators that would otherwise have to be quoted.
In the case of If commands, the conditional execution or 1/0 specification should come
after the End word. For other commands that contain expressions, you can specify
conditional execution or 1/0 redirection by enclosing the command in parentheses. For
example,
(Evaluate {1} + {2}) ~Errors

Redirecting input and output

All built-in commands, scripts, and tools are provided with three open files: standard
input, standard output, and diagnostic output (Figure 5-2). By default, standard input
comes from the console (the window where the command is executed). Standard output
and diagnostics are returned to the console immediately following the command.

16o MPW 3.0 Reference

• Figure 5-2

Standard
input

<

Standard input and output

>.>>

Resource Compiler
(Rez)

Standard
output

Diagnostic
output

You can override these default assignments with the<,>,»,~,~, I, and II
symbols described in Table 5-12. Note that input and output specifications are
interpreted by the Shell; they are not passed to commands as parameters. You can use
parentheses (or the Begin and End commands) to group commands for input/output
specifications.

• Table 5-12 1/0 redirection

Symbol

<name
>name

»name

~name

~name

Iname

override operation

Standard input is taken from name.
Standard output replaces the contents of name. The file name is created
if it doesn't exist

Standard output is appended to name. The file name is created if it
doesn't exist.

Diagnostic output replaces the contents of name. The file name is
created if it doesn't exist.

Diagnostic output is appended to name. The file name is created if it
doesn't exist.

Standard output and diagnostic output replace the contents of name.
The file name is created if it doesn't exist
Standard output and diagnostic output are appended to name. The file
name is created if it doesn't exist

CHAPTER 5 Using the Conunand Language 161

Files and windows are treated identically; when given a name, the system looks first for an
open window. Input and output can also be applied to selections:

• § indicates the current selection (in the target window).

• name.§ indicates the current selection in window name.

From the point of view of a command running within the Shell environmen~ input always
comes from the standard input me and output goes to the standard output file. The
command doesn't need to know whether standard input happens to be text from a file, a
window, or a selection, or is typed in from the keyboard. For example, in the statement
Program > OutputFile

the string "> OutputFile" is interpreted by the Shell and is not passed as a parameter to the
command-this process is completely invisible to the command.

LIO specifications also apply to scripts. The standard inpu~ standard outpu~ and
diagnostic output files provided to a script become the defaults for commands in the
script.

In addition to the sections later in this chapter, you'll find more on input and output in
"Standard LIO Channels" in Chapter 12.

Standard input

By default, standard input is supplied by typing text and pressing Enter, or by selecting
text that is already on the screen and pressing Enter. You can redirect standard input with
the< operator. Note, however, that most commands that read standard input also accept
a filename parameter. For example, the following two commands have the same result:
Catenate < Sample.c
Catenate Sample.c

The Alert command reads from standard input if no message is supplied as a parameter to
the command, but Alert doesn't accept filenames as parameters. Thus input redirection is
the only way to cause Alert to read input from a file.
Alert Errors
Alert < Errors

f Display Alert box containing the word Errors
t Display Alert box containing the contents
t of the file Errors.

Many commands, including the Assembler and compilers, optionally read standard input
to allow input to be read from a pipe (I) or entered interactively, as explained in the next
section.

162 MPW 3.0 Reference

Terminating input with Command-Enter

Many commands read from standard input if no filename is specified. For example, if you
execute the command ·

Asm

the Assembler will begin reading from standard input-that is, you can enter text to
standard inpu~ and the Assembler will process each line as you enter it

You can repeatedly enter text to a program that reads standard input by typing or
selecting text and pressing Enter. You indicate end-of-file by holding down the Command
key and pressing Enter (or Command-Shift-Return). For example, after you eiecute the
command
Catenate >> {Worksheet}

the Catenate command will be running (its name will appear on the status panel at the
bottom of the window). You can now enter data from the keyboard or select and enter
text from various windows, and all of it will be concatenated to the Worksheet window.
Pressing Command-Enter indicates end-of-file and terminates the command.

+ Power techniques using standard input

There are many ways you can save time and effort by running tools from
standard input.

For example: suppose you want to compose a file from parts of other files-and
there are ten sections that you want to use in your new file. Normally you'd
cut and paste ten times. However. you could also run Catenate from standard
input with the command

Catenate >> MyComposedFile

While Catenate is running. you can open the different source files. select the
desired sections. and press Enter. Each time you press Enter. that selection is
appended to the file MyComposedAle. When you have finished. press
Command-Enter.

Many times it's convenient to quickly type a few lines of code in the
Worksheet and then interactively compile (or Rez. using the resource
compiler) those lines to test out syntax or examine compiler behavior. You'll
find that you can speed up many tasks and increase confidence with quick
tests by running tools interactively and using selections as input. •

CHAPTER 5 Using the Command Language 163

Standard output

By default, standard output appears in the window in which the conunand was executed
(that is, the console) immediately following the command. When conunands are executed
from menus, standard output appears following the selection in the active window. You
can redirect standard output with the> and» operators. For example, the Catenate
conunand
Catenate Filel File2 > Combined.File

concatenates File2 to Filel-but instead of appearing in the active window, output is
sent to the file named CornbinedFile. If the window CombinedFile is open on the
desktop, its contents are overwritten. Otherwise, the file CombinedFile is replaced (or
created if it doesn't exist).

The >> operator appends standard output to the end of a selection, window, or file. If
the named ftle doesn't exist, a new file is created. For example,
Catenate § >> AFile

appends the contents of the current selection in the target window to AFile. (If the
command was entered in the active window, the current selection is the selection in the
target window.) You can also specify a selection in a named window:
Catenate Sample.c.§ >> AFile

Diagnostic output

By default, a command's diagnostic output also appears immediately after the command,
interleaved with standard output. The diagnostic output of commands executed from
menus appeais following the selection in the active window. You can redirect diagnostic
output exactly as you redirect standard output, except that you use the operators ~ (to
replace filename) and~ (to append to filename) in place of> and». You may find it
useful to have all error reporting appear in a separate window set aside for that task. For
example, in Figure S-3, the Assembler has been run and error and progress information has
been appended to a window called "Errors."

164 . MPW 3.0 Reference

• Figure 5-3 Redirecting diagnostic output

s File Edit Find Marie

W:Worlcsheet

•-=- ---- --
... including HO:MPU:lnterfaces:Rlncludes:~ickEqu.a
..• continuing •i th sample.a
... including HO:MP~:lnterfaces:Rlncludes:SysEqu.a
•.• continuing 11i th S0111ple.a
OOICKDAfll
GLI>llRUlATR
SETUPnEKJS
SHOUABWTl1EDIALOG
DOCQl'l1FKI
SRMPl..E

EI apsed t I me: 17. 50 seconds.

Assembly CCllllPl•le - no llN'Ol"S fOWICI. 471!11 I ines.

Often it is useful to redirect both standard output and diagnostic output to the same file,
using the sununation operators L (to replace filename) or LL (to append to filename).
The example used in Figure 5-3 might then be written in the Worksheet like this:
Asm -a Sample.a I.I. SampleTest

Then both the output of Sample.a and its diagnostics, including any errors, would be
appended to a file named HD:MPW:AExamples:SampleTest.

Pseudo-filenames

Pseudo-ffienames are a set of device names that you can use in place of filenames;
however, they have no disk files associated with them Any command can open a pseudo
filename as a file. These device names are most commonly used for 1/0 redirection.

Table 5-13 shows the available pseudo-filenames.

CHAPTER 5 Using the Command language 165

• Table 5-13

Dev:Console

Dev:Null

Dev:Stdln

Dev:StdOut

Dev:StdErr

Pseudo-filenames

Description

Always refers to the current console device. The console is the default
source of input and the default destination of output-that is, the
active window where a command is entered and its output displayed.

Null device. If you read from Dev:Null, it immediately returns end-of
ftle. If you write to Dev:Null, output is thrown away.

Standard input.

Standard output.

Diagnostic output.

Pseudo-filenames are especially useful inside a script if you want to do something like
sending standard output to the diagnostic output of the script Here are some examples:
Echo "An error message.">> Dev:Std.Err
Echo "HELP !" >> Dev:Console

Dev:Null is useful in scripts when you want to throw away diagnostic output. For example:
Eject 1 ~ Dev:Null

This command ejects the disk in drive 1; if no disk is in drive 1, the script continues to run
silently. (Note that you would also need to set {Exit} to 0-see "Variables" earlier in this
chapter.)

Editing with the command language

Almost all menu commands have equivalents in the command language. In most respects,
there is no difference between the menu commands and their command-language
equivalents. The primary difference is that with the command language, you enter
commands in the active (frontmost) window, while an editing command acts on a
selection in another window. You can explicitly name a window as a parameter to the
command. If you don't specify a window, the command acts on the target window.

1(,6 MPW 3.0 Reference

For example, to use command-language techniques to edit the file Sample.a, you must
first open that file, and then click on another window, such as the Worksheet window, to
make it the active window. You enter your commands in the active window, as shown in
Figure 5-4. When you select text in the active window, it's highlighted in the normal
Macintosh fashion. In other windows, selected text is indicated by dim highlighting
(outlining), as shown in the target window in Figure 5-4.

• Figure 5-4

ijii4MIM

Text highlighted in the active and target windows

tlOUE
...GetRMen.i
tlOUE.L
tlOUE.L
Q.R
-' nsertMenu
tlOUE.L
...Acld'lesl1enu

SUBQ
t10UE
...GetRMen.i

9apple1D,-<A7> file
; app I al1erdl : = Getnan.i<app I e 1 D >;
<A7>,appl811erU! Leave extra COP.I of hancll• on
<A7>,-<R7> stack for ..AddResltenu
--<R7> lnstal I Apple ~ in llel'll.I bar
; lnsertnan.i<applallera.it, O>;
•'12l!!i' ,-<A7> Add DR nmes to Apple llel'll.I

Addflesl1enu(applenerut, 'DRUR' >;

•4,R7 Read Fila..,., froe .-.-
•fi lelD,-<A7> file

f'i lal1enl.lf := Getrtenu<fl l•ID>;

'

Editing commands generally act on a selection. (The Find command simply creates a
selection-"DRVR" in this example.)

The§ metacharacter (Option-6) is the current selection character. It signifies the current
selection in a window. For example, the following conunand erases from the current
selection or insertion point in the target window to the end of the window:
Clear §:oo

The infinity character, oo (Option-5), is a selection operator that indicates the end of a
window, as described in Chapter 6. ·For interactive editing, press Command-Delete to
clear to the end of a file.

CHAPTER 5 Using the Command language 167

Defining your own menu commands

The Add.Menu and DeleteMenu commands are for adding and deleting menu items. The
Add.Menu command takes three parameters: the menu name, the item name, and the
command text. For example,
AddMenu Find 'Top of Window/U' 'Find • "{Active}"'

This command adds a "Top of Window" item to the Find menu, using the keyboard
equivalent Command-U. When you select the menu command, the corresponding
commands are executed. (The Top of Window item moves the insertion point to the top
of the active window.)

Invoking a user-defined menu Command is the same as entering the command text from a
window-variable substitution and command substitution are performed normally. Note,
however, that the text of the menu command is processed twice-once when the
Add.Menu command itself is executed, and again whenever the menu item is executed.
This means that you have to be especially careful in your use of quotation symbols. The
mysteries of quoting are explained earlier in this chapter in "Quoting Special Characters,"
together with further Add.Menu examples. You should also pay particular attention to the
section "How Commands Are Interpreted." For further information, and more examples,
see the Add.Menu command in Part II.

Sample scripts

The following examples use most of the Shell's features to illustrate how you can extend
the MPW Shell with your own commands.

168 MPW 3.0 Reference

"AddMenuAsGroup"

The following script adds an extra feature to the Add.Menu command:

t AddMenuAsGroup - AddMenu, grouping user defined menu items:
t
t AddMenuAsGroup [menuName [itemName [command]]]
t
t AddMenuAsGroup duplicates the functionality of the AddMenu
t command, adding a disabled divider before the first user-
defined menu items in the File, Edit, and Find menus.
t
Unalias
Set Exit 0
Set CaseSensitive 0
If ({#} == 3) AND ("{l}" =

OR "{l}" =- /Find/)
If 'AddMenu " { 1} "'

/File/ OR "{l}" =- /Edit/ o
nn f If this is the first addition

in {l},
AddMenu "{l}" "(-" nn # add the group divider

End
End
AddMenu {"Parameters"}

When adding menu items to the predefined menus, it's useful to add a disabled dotted
line item to separate the new menu items from the original ones. The script above
automatically adds the separator before the first new item in the File, Edi~ and Find
menus, the only predefined menus that can be modified by using AddMenu. If you put this
script in a file named Add.MenuAsGroup, the following alias will override the built-in
AddMenu command:
Alias AddMenu AddMenuAsGroup

CHAPTER 5 Using the Command language 169

"CC"

The following script extends the C command by making it possible to compile a number
of specified files:

t CC - Compile a list of files with the C compiler
f
f CC [options ...] [file ...]
f
t Note that the options and the files may be intermixed, and
f that all options apply to all the files. The individual C
f commands are echoed to diagnostic output as they are executed.
f
Unalias
Set Exit 0
Set CaseSensitive 0
Set options nn

Set files nn

Set exitStatus 0
Loop

End

Break If {I} == 0
If "{l}" =- /-[diosul/

Set options "{options}
Shift 2

Else If "{l}" =- !-=/
Set options "{options} '{l}'"
Shift 1
Else
Set files "{files} '{l}'"
Shift 1
End

For i in {files}

f options with a parameter
'{l}' '{2}'"

f other options

C {options} "{i}" I I Set exitStatus 1
End
Exit {exitStatus}

170 MPW 3.0 Reference

Chapter 6 Advanced Editing

MPWS EDITING OPERATIONS ARE AVAILABLE AS BUil.T-IN COMMANDS, including
scriptable selections and the use of regular expressions. These commands enable
powerful find-and-replace functions and make it possible to automate editing
operations by using scripts.

Menu commands for editing are described in Chapter 3. The basics of routine
interactive editing are described in Chapter 4. For a full description of the use of
the command language, see Chapter 5. Appendix B contains a summary of
selections and regular expressions. •

Contents

Editing commands 173
Selections 175

Current selection (§) 178
Selection by line number 179
Position 180
Markers 180

Behavior of markers 181
Progranunatic use of markers 181

Pattern 182
Extending a selection 183

Pattern matching (using regular expressions) 183
Character expressions 185
Wildcard operators 186
Repeated instances of regular expressions 187
Tagging regular expressions with the ® operator 188
Matching a pattern at the beginning or end of a line 189
Inserting invisible characters 189
Note on forward and backward searches 190

Some useful examples 191
Transforming DumpObj output 192
Finding a whole word 193

Bulldozer 194

171

Editing commands

The command language contains editing commands that duplicate the functions of many
of the menu commands and provide additional capabilities. The editing commands are
listed in Table 6-1. (They're explained in detail in Part II.)

• Table 6-1 Built-in editing commands

Command

Adjust [-c cound [-1 ~ selection [wi~

Align [-c cou~ selection [wi~
Clear [-c cou~ selection [windouA

Copy [-c cou~ selection [wi~
Cut [-c count] selection [windouA

Find [-c count] selection [windouA

Format [option ...] [window . ..]

Marlc [-y I -n] selection name [wi~

Markers [-q] [window]

Paste [-c count] selection [wi~

Position [-c I -1] [window ...]

Replace [-c count] selection replacement [wi~
Revert [-y J [window .. .]

Target name
Undo [window]

Unmark name... window

Description

Adjust lines in a selection.

Align text with first line of selection.

Delete selected text

Copy selected text to the Clipboard.

Copy selected text to the Clipboard and
then delete the selection.

Find and select text

Set or view font name, font size, tabs,
and indents on specified windows.

Assign the marker name to the range of
text selection selected in window.

Print list of all markers associated with
window.

Replace selection with the contents of
the Clipboard.

Display the position of the selection in
each specified window.

Replace selection with replacement.
Revert window to last saved state.

Make a window the target window.

Undo last conunand.

Remove the marker(s) name ... from the
list of markers available for window.

CHAPTER 6 Advanced Editing 173

If no window parameter is specified, editing commands act on the target window,
which is the second window from the front. Therefore, to edit the active window, you'll
need to switch to another window for entering your commands, or else specify the name
of the active window in the command line. (The Target command makes a window the
target window; the Shell variables {Active} and {Target} always contain the full pathnames
of the current active and target windows.)

Most editing commands take the following parameters:

-c count

selection

window

You can specify a repeat count with the -c option; count is the
number of times the command should be executed. Count may also
be the infinity character, oo (Option-5), which specifies that the
operation should be repeated as many times as possible.

Most editing commands act on a selection, either the current
selection in the target window or another selection that you
specify. First, an implicit Find is done to select the specified text.
Then the text is modified. The selection syntax is defined in the
next section.

The optional window parameter lets you specify the name of the
window to be affected by a command without changing the
position of the affected window.

A command modifies the selection only if there were no syntactic errors in the selection
and if all regular expressions were matched Commands run silently unless an error occurs.

In addition to the routine editing commands incorporated in the command language,
MPW includes a number of tools and scripts that are useful for many specialized editing
tasks. Some of these are listed in Table 6-2. See Part TI for detailed information.

174 MPW 3.0 Reference

• Table 6-2 MPW tools useful for editing

Editing tools

Canon [option ...] dictionaryFi/e I inputFile ...]

Compare
Entab I aption ...] I.file ...]
FileDiv [option .. .] file

line [number]

Matchit I option ...] [Window]

RezDet [option ...] resourcefile
Translate [option ...] source [destination]

Selections

Description

Replace a file's identifiers with
canonical spellings given in
dictionary File.
Compare text files.
Convert runs of spaces to tabs.
Divide a file into several smaller
files.
Find specified line number in a file.
Match currently selected left
language delimiter with its mate in
window.
Detect inconsistencies in resources.
Convert selected characters.

A selection is a parameter to editing commands; it tells the command what text to select
A selection may be any of the following:

• A line in a file (selected by line number)

• A position in a file

• Amarker

• A specific character pattern

• A selection that begins and ends with any of the above

As an example of the selection syntax, consider the definition of the Find command:

Find [-c count] selection [windo~

Find takes a selection as an argument and selects the argument text (or sets the insertion
point). An actual command might take the form

Find /shazam/

CHAPTER 6 Advanced Editing 175

This command finds and selects the first instance of the string "shazam" that appears
after the current selection. (The slashes are used to enclose a pattern, a special case of a
selection, as explained below.) No count is specified, so the command is executed once.
No window name is specified, so the command operates on the target window.

Table 6-3 shows all of the selection operators. These are more fully explained in the
sections following the table.

• Table6-3 Selection operators

Operator

Current selection
§

line numbered selections

Type of selection

Current selection in the target window (§ is Option-6
on the keyboard)

n Linenumbern
!n Line number n lines after the end of the current

selection

Position (insertion point)

Line number n lines before the start of the current
selection Ci is Option-I)

• Position before the first character of the file (• is

00

a selection

selectionll
selection! n
selection in

Option-8)
Position after the last character of the file (oo is
Option-5)
Position before the first character of selection (a is
Option-])
Position after the last character of selection
Position n characters after the end of selection
Position n characters before the beginning of
selection

Pattern (chanctets to be matched)
I pattern/ Pattern (regular expression)-search forward (see

•Pattern Matching," below)
\pattern\ Pattern-search backward

Extended selection
selectionl:selection2
marked selection name

Grouping
(selection)

176 MPW 3.0 Reference

Both selections and everything in between
The name of a marked selection may contain any
characters except
§ ! (• oo a I \

Controls order of evaluation

A formal definition of selections can be found in Appendix B.

All of the operators group from left to right, and evaluation proceeds from left to right.
The selection operators are listed below in order of precedence:

I and \ Everything within slashes is taken as a regular expression and
is evaluated as explained below under "Pattern Matching."
Controls the order of evaluation. ()

~
! and i

Indicates position.
Indicates position (! = after; i = before).
Joins two selections.

Some examples will illustrate why it's important to pay attention to the precedence of
these operators:
fl/begin/!l means

rather than
(fl/begin/) !l

fl (/begin/ ! 1)

That is, the insertion point is located after the "b" of "begin" rather than
after the "n."

/begin/ : I end/ ! 1 means the selection /begin/: (/end/!l)

rather than the position </begin/ : I end/> ! 1

That is, the character after "end" is included in the selection, as shown in Figure 6-1.

• Figure 6-1 A selection specification

a File Edit Find Merk Window Project

HO:MPW:Worksheet

Find /begin/:/end/! 1
I

MP...,St..11

HO :MPW:EH11mples:PEH11mples:Memory.p
SetPort <SavePort>;

ElfD·
DRuRopen := lfOEl"'I"';

ElfD;

FUlfCTIOlf DRURClose(ctlPB: ParaBlkPtr· dCtl: DCtlPtr): OSEl"'r·
EGllf

IF dCtl".dCtlmindom <> lflL THElf
BEGllf

END·

DisposeUindom CUindomPtr<dCtl".dCtlUindour>>;
dCtl".dCtlUindour :=NIL·

DRURClose := NOErr;

CHAPTER 6 Advanced Editing 177

Current selection (§)

The current selection character, § (Option-6), always indicates the current selection in a
window. If no window is specified, § indicates the current selection in the target window.
For example, consider the windows shown in Figure 6-2.

• Figure 6-2 Selections in two windows

s File Edit Find Marie Window Project

HO:MPW:Worlcsheet

Rep I ace § <)ri

MPV SheTI

HD :MPW:EKamples:PEK8
ouRec:t: Rec:t.
11yU i ndo<D: IH ~tr;

BEGIN
IF dCtl ".dCtlUindow = NIL THEN
BEGIN

GetPort CSavePort>;
11yUindoGI := GettiewUindow<Rsrc:IDCdCtl >,nil,POINTER<-1>>·
windowpeek<inyt.lindow>".UindowKind := dCtl".dCtlRefNum· ' {snow a

dCtl" .dCtlUindOCD := 111~; { let the desk •anager- k~ow too }
fleQDGFow : = MaxMeni <h_ > j
SetPort CSavePort >;

ENO·
DR~ := NOErr-;

EliO;

The command
Replace § on
would replace the current selection in the target window with a single return (newline)
character. ("dn" is a special code for inserting a return-see "Inserting Invisible
Characters" later in this chapter.)

Note that the current selection is a dynamic quantity-it's detennined by the last
subexpression evaluated and thus represents the current state of a selection as it's being
calculated. For example, consider the command

Find /if/:§!1:§!1

178 MPW 3.0 Reference

At various points in the evaluation of the search string "/if/:§!1:§!1", the current selection
(§)has the following different values:

Before calculation
After" I if/"
Aft.er "/if/:§! 1"

Aft.er "Ii f I : § ! 1 : § ! 1"

The pre-existing selection in the target window
"if"
All characters from "if" to (and including) the first
character after the "if"
All characters from "if" to (and including) the first
two characters aft.er the "if'

Selection by line number

If you give a number unquoted by slashes as a selection, it is taken to be a line number.
This may be an absolute line number or a number of lines relative to the current selection.
For example, to select line 3 of a file, you'd use the command

Find 3

This expression is equivalent to
Find '3'

but
Find 3 or Find '3'

is not equivalent to
Find /3/ or Find \3\

The exclamation mark and inverted exclamation mark (! and j) specify the number of lines
after or before the current selection. Thus, the command
Find !3

selects a line that is 3 lines beyond the current selection. Note that the !n notation
specifies a line relative to the end of the current selection (that is, n lines past the line
containing §'1); jn specifies a line relative to the start of the current selection (n lines
before the line containing '1§).

CHAPTER 6 Advanced Editing 179

Position

A position is a special case of selection. Position means the location of the insertion
point only. The A character (Option-]) is used to convey position relative to a selection.
For example, .consider the commands
Find 3
Find 43
Find 34

The fust Find command selects the entire third line in the target file. The Find 43 and
Find 34 commands place the insertion point at the beginning and at the end of the third
line, respectively.

You can also use the! and i operators to specify a position that's a given number of
characters from a selection: selection. n specifies a position n characters after selection,
and selectiOnjn specifies a position n characters before selection.

Note that this leads to two different uses of the ! and i operators, as in the following
example:
Find !4!4

The first •w indicates a selection that's 4 lines beyond the current selection; the second
·w indicates the position that's 4 characters beyond the end of that selection.

You can specify other positions in a file with the following special notation:

•
co

(Option-8)
(Option-5)

Markers

Position preceding the first character in a file
Position following the last character in a file

A marker is a selection that has been given a name. A marker may be used as a selection
variable. You can mark as many selections and insertion points as you wish. You can create
markers directly by selecting text in a window and then clicking the Mark command in the
Mark menu. See "Mark Menu• in Chapter 3 for more information on the interactive use of
markers. This section describes the general behavior and programmatic use of markers .

. 180 MPW 3.0 Reference

Behavior of markers

Markers may be as simple as a position in a window, but more often a marker names a
range of positions. Markers have the special attribute of being able to remember their
assigned position(s) even when you're making editing changes all around them For
example, typing before marked text has the effect of moving both the text and its
associated marker toward the end of the window. Editing "inside" the range of a marker
will either increase or decrease the range of the marker, depending on whether the editing
was an insertion or deletion, respectively.

Markers are "sticky." For example, if an insertion point is marked and you enter text at
that point, everything you type will be added to that marker.

If you delete the text encompassing a marker the marker will also be deleted. For example,
if the string "xyz" is deleted and the character ''y'' is marked, the "y" marker will be
deleted. However, if the string 'Tp." itself is marked as "y," deleting the string "xp." will
result in marker "y" being reduced to an insertion point

Markers are associated with individual windows. When you switch between windows, the
Mark menu is updated to reflect the markers of the new active window.

Markers are persistent They are saved in the resource fork of the file you are editing, just
like fon~ tab, and other information about the window. However, markers are not saved
to the Clipboard. Thus, if you cut a marked region and paste it somewhere else, the
marker will be lost.

Markers are case sensitive. A marker named "Y" is different than a marker named "y."

Programmatic use of markers

You can create or delete Markers programrnatically by using the following three Shell
commands:

Mark [-y I -n] selection name [wi77douJ Assign the marker name to range of text
selection selected in window.

Markers [-q 1 [window 1 Print a list of all markers associated
with window.

Unrnark name ... window· Remove the markeI(s) name ... from the
list of markers available for window.

For example, to mark the currently selected text in the target window with the name
"Function B" and to replace any previous marker of that name, you would type
Mark -y § 'Function B'

CHAPTER 6 Advanced Editing 181

The new marker name will appear in the Mark menu. You might remove the marker later by
using the Unmark command:
Unmark 'Function B' "{Target}"

This command would remove that marker from the target window.

To use markers as selections, just type the marker name. For example,
Find george

For further details on the Shell commands for markers, see Part II.

• Automatic Selection

You'll find many ways to use markers for automaflc selections. For example. to
automaffcally select the output of a script for a user. you could use a script
similar to fhls:

Mark §4 X
Make
Find X

Pattern

fMark the start of output
fRun your Make command
fSelect the output of Make •

A pattem may be either a literal text pattern or a regular expression (defined in the next
section). You specify a pattern between the/ .. ./ and\. .. \ delimiters. Forward slashes
indicate a search forward, and backslashes indicate a search backward. A forward search
begins at the end of the current selection and continues to the end of the file. A backward
search begins at the start of the current selection and continues to the beginning of the
file. For example, the command
Find /myString/

searches forward for the literal expression •mystring. • (Recall that to specify case
sensitive pattern matching, you need to set the Shell variable {CaseSensitive}, or select the
•ease Sensitive• menu item.)

1& MPW 3.0 Reference

Extending a selection

A colon is used to join two selections. For example,
Find /begin/:/end/

This command selects "begin," "end," and everything in between. (See Figure 6-1.)
Compare this command with
Find /begin==end/

which looks for a begin-end pair on a single line.

Pattern matching {using regular expressions)

Regular expressions are a shorthand language for specifying text patterns. Regular
expressions are used in editing commands, in the Search command (which searches one or
more files for occurrences of a pattern), and in If and Evaluate expressions following the
=- and !- operators. Most of the regular expression operators may also be used in filename
generation.

Regular expressions are always used within the pattern delimiters I .. ./ or \ ... \.

A special set of metacharacters, called regular expression operators, is used in regular
expressions (and in filename generation). The regular expression operators are listed in
Table 6-4.

CHAPTER 6 Advanced Editing 183

• TabJe 6-4 Regular expression operators

Operator

c

dC

I I

" "

=

[character ...]
[-.character ...]

regularF.xpr*
regularF.xpr+
regularF.xpr« n»

Meaning

Any character matches itself (unless it's one of the
special characters listed below)
Defeat the special meaning of the following character
(c is taken literally) except

on = return
at = tab
of = form feed

Literalize enclosed characters
Literalize enclosed characters, except a, {, and '
Any single character (other than a Return)
Any string of 0 or more characters that does not contain
a Return
Any character in the list
Any character not in the list (-. is Option-L on the
keyboard)
Regular expression 0 or more times
Regular expression 1 or more times
Regular expression n times (« is Option-\ ; » is
Option-Shift-\)

regularF.xpr«n,» Regular expression nor more times
regularF.xpr«n1,ni» Regular expression n1 to nz times
(regularF.xpr) Grouping
(regularF.xpr)®n Tagged regular expression (where 0 ~ n ~ 9)
regularF.xpr1 regularF.xprz regularF.xpr1 followed by regularF.xprz
• regularF.xpr Regular expression at the beginning of a line
regularF.xproo Regular expression at the end of a line
These characters are considered special in the following circumstances:
o Special everywhere except within single quotation

?=*+[«()
®
•

00

marks c ... ')
· Special anywhere except within [...], ' ... ', and 11 ... 11

Special only after a right parenthesis,)
Special as the first character of an entire regular
expression
Special as the last character of an entire regular
expression

I \ Special if used to delimit a regular expression
., Special only after a left bracket, [

184 MPW 3.0 Reference

Special in brackets, except immediately following
a left bracket, [

Their precedence (from highest to lowest) is as follows:
1. ()

2. ? = * + [] « ®

3. concatenation
4. • 00

A formal definition of regular expressions can be found in Appendix B. The rest of this
section describes the use of regular expressions for describing selections.

Character expressions

In the simplest case, regular expressions consist of literal characters enclosed in slashes.
For example,
/what the ?/

Notice one complication, however: if the literal character happens to be one of the
regular expression operators (such as "?n), it will be specially interpreted rather than taken
as a literal character. If you want to specify a literal character that happens to have a
special meaning within the context of regular expressions, you'll have to precede it with
the escape character, a, or enclose it in quotation marks. The character a has the effect of
mliteralizing" the character that follows it. For example, to find the literal expression given
above, you would use one of the following commands:
Find /what the a?/
Find /what the '?'/
Find /'what the ?'/

You could also use double quotation marks, that is" ... ".

CHAPTER 6 Advanced Editing 185

Wildcard operators

In addition to literal characters, regular expressions can include the operators?, =
(Option-X), and [], which are used as follows:

? Any character other than a Return
= Any string not containing a Return, including the null string

(this is the same as ? *)

[characterLisiJ Any character in the character list (as defined below)

[-, characterListJ Any character not in the list

These operators are a1so used as wildcards in filename generation. (You can also use the*,
+, ?, =,[. . .],and« ... » operators in filename generation-see "Filename Generation" in
Chapter5.)

A character list is an expression consisting of one or more characters enclosed in brackets
([. . .]). It matches any character found in the list The case sensitivity of characters in the
list is governed by the {CaseSensitive} variable. A list may consist of individual characters
or a range of characters, specified with the minus sign(-). For instance, the following two
commands are equivalent:
Find /[ABCDEF]/
Find /[A-F]/

You can also mix the two notations:
Find /t0-9A-F$]/

• Note: This command specifies any of the characters 0 through 9, A through F, and
$. To specify the] or - character, place it at the beginning of the list or literalize
it with the escape character, a.

The negation symbol, ..., (Option-L), lets you specify any character not in the list For
example,

Find I [-iA-Z] I

This example specifies all characters except the letters A through Z. (To specify the ,
character itself, place it anywhere in the list other than the beginning, or literalize it by
preceding it with the escape character, o.)

186 MPW 3.0 Reference

Repeated instances of regular expressions

The asterisk character (*) matches zero or more occurrences- of the immediately
preceding regular expression. The plus sign (+) matches one or more occurrences of an
expression. For example, the command
Find /[0-9]+/

will find any string of one or more digits.

You can also specify an expression that occurs an explicit number of times by using the
«n» notation:

regu/arlixpr·n- Regular expression n times
regularExpr•n,• Regular expression at least n times
regu/arExpr-n1, ni• Regular expression at least ni times and at most ni times

For example,
Replace -c ~ /' '«4,»/ at

This command finds any string of four or more spaces and repJaces it with a tab.
(The -c oo option specifies a repeat count of "infinity"; that is, it repJaces all occurrences
of of the selection to the end of the document)

CHAPTER 6 Advanced Editing 187

Tagging regular expressions with the ® operator

The ® (Option-R) operator tags a regular expression between parentheses. This operator
is useful with the Replace command, for example, in reformatting tables of data. Consider
a table with two columns of numbers separated by spaces or tabs:

123 456
123 456
123 456
123 456
•• • and so on

The following Replace command switches the order of the two columns, which are
separated by one tab:
Replace-coo /([0-9)+)®1[ot)+([0-9)+)®2/ '®2 ®l'

Translated into English, this expression means
C0-91 + Match one or more characters in the set "O" to "9".
< c 0-9 l + > ®l Remember that selection (the expression enclosed in

parentheses) as ®1.
c at]+ Next, match at least one space or tab.
< c 0-9 J + > ®2 Then match one or more characters in the set "O" to "9" and

remember it as ®2.
• ®2 ®l ' Finally, replace the whole matched string with what was

remembered as ®2, a space, and what was remembered as ®1.

• Note: The quotation symbols are stripped off, as explained under "Quoting Special
Charac:telS" in Chapter 5.

After this sequence is executed, the table will look like this:

456 123
456 123
456 123
456 123
•• • and soon

188 MPW 3.0 Reference

Matching a pattern at the beginning or end of a line

In the context of regular expressions, the • metacharacter (Option-8) means that the
subsequent expression must be matched at the beginning of a line. For example, the
regular expression
/•main/

will match a line that begins with "mainn but not a line that begins with "space main". The
beginning of a line is either the first character after a return or the first character of the·
file.

Likewise, the oo metacharacter (Option-5) means that the previous expression must be
matched at the end of a line. The regular expression
/main-/

will match a line that ends with "mainn but not a line that ends with "main space". The end
of a line is either the last character of a line prior to the return, or the end of the file.

Notice that • and oo have another meaning within selections. Within a pattern, they
indicate the beginning and end of a line. Within a selection, they indicate the beginning
and end of the file.

Inserting invisible characters

You can use the Shell escape character, o, to insert the following special characters in text:

on return
ch tab
of form feed

For more information on the escape character, see "Quoting Special Characters" in
Chapter5.

CHAPTER 6 Advanced Editing 189

Note on forward and backward searches

Forward and backward searches aren't always completely symmetrical. For example,
consider the command ·
Find /?*/

This command finds zero or more occurrences of any character other than a return. The
first time you execute this command, some range of characters will be selected if the
current selection is not at the end of a line. However, in subsequent invocations, the
selection will stick at the end of the line and only an insertion point will be left at the end
of the line. This is because the * metacharacter matches zero occurrences and the search
starts with the character following the current selection-in this case, the insertion point
preceding a return. A backward search of the fonn
Find \?*\

will never stick at the beginning of a line. This is because a backward search begins with
the first character to the left of the current selection and so has the effect of jumping over
a return after encountering it.

190 MPW 3.0 Reference

+ Solving selection d"dficutties

What If a selection expression doesn't select what you Intended? Ask yourself

questions like these:

• Am I quoting special characters?
For example. the
"("
character is special. If you are searching for this character. then you
must use
·ac

• Do I remember the definitions of special characters?
Review the special character definitions in Appendix B.

• Are my precedence and usage correct?
Consider the slightly different syntax of these 1wo Find commands:

Find • : /main/

This tells MPW to select everything from the beginning of the file until fhe
first occurrence of fhe word ·main·

Find /•main/

This tells MPW to select the next occurrence of the word ·main· at the
beginning of a line.

• Do the indMdual pieces select what I intended?
Break the difficult expression down Into small parts. Try each part separately
to make sure that it does what you want. Then add each new. tested part
to create more complicated expressions. •

Some useful examples

This section shows some examples of the complex use of regular expressions.

CHAPTER 6 Advanced Editing 191

Transforming DumpObj output

The DumpObj command, described in Part II, formats the contents of an object file. This
example shows how to transform a DumpObj listing, such as the following, back into valid
assembly code.

000000: 4EBA 06F8 'N ... I JSR *+$06FA ; 6004282A
000004: 4EBA 04EA IN ..• ' JSR *+$04EC ; 60042620
000008: 3B7C 0014 FCC4 I ; I ' MOVE.W #$0014,$FCC4(A5)
OOOOOE: 266D 0010 '&m .. ' MOVEA.L $0010 (AS) ,A3
000012: 2653 '&S' MOVEA.L (A3) ,A3
000014: OCSB 0000 ' . [.. ' CMPI.W #$0000, (A3) +
000018: 6600 0008 'f ..• I BNE *+$000A ; 60042152
OOOOlC: 3AlB '. I MOVE.W (A3)+,D5
OOOOlE: 6600 0010 If• • • ' BNE *+$0012 ; 60042160
•• • and soon

You could position the insertion point at the beginning of the code and use the following
Replace command:
Replace -c oo /?«41»/ "atOt." f replace everything up to the

f instruction with 2 tabs

However, the previous command works only because DumpObj happens to place the
instruction at column 42. The following example, by defining some Shell variables, works
regardless of the exact column layout:
Set hex "[0-9A-F]«4,6»"
Set space "[at]+"
Set chars naa• ?+aa•"

t 4 to 6 characters in the set 0-9 and A-F
t 1 or more spaces or tabs
t 1 or more of any character between a
f single quotes

Replace -c oo I {hex l : < {space} {hex l > «l, 3»{ space l {chars l {space l I "atat"

192 MPW 3.0 Reference

Finding a whole word

The following example illustrates how you could find an exact match for a C identifier that
you had previously defined in the variable {ident}: ·
Set tokensep "[--,a-zA-Z_0-9]" f a token separator is any character

f not in the set a-z, A-Z, _, or 0-9
Set CaseSensitive 1 f set to "true"~the case of each

f character must match

The following Find command is not quite right, because it selects not only the matched
identifier but also the token separator on each side of the identifier:
Find /{tokensep}{ident}{tokensep}/

The following Find command selects only the matched identifier. It accomplishes this by
adding 1 to the starting position of the selection (&election!l), and uses that as the
starting point for a new selection that extends to the beginning of the next token
separator:
Find 6/{tokensep}{ident}{tokensep}/!1:6/{tokensep}/

CHAPTER 6 Advanced Editing 193

+ Bulldozer

If you are making a very large number of changes (such as scripted global
replacements in a large file). that file's memory may become fragmented. If this
happens, the rarely seen bulldozer icon may replace your cursor. The bulldozer
tells you that MPW Is trying to clear more memory space for your file.

If you regain the regular cursor, you can close (save) the window and reopen
it, thus completely reinitializing Its memory area. If the bulldozer lingers it may
mean that your computer will be busy with this one script over the weekend.
To avoid this problem, It is better to reboot and modify your script to proceed In
stages so that you don't run out of file memory.

For example, let's suppose that you have a 10,000-line file that you wish to edit
with this script:

clear -c oo /• I
replace-coo/"("/ "["

These two formatting commands operate on each of the 10,000 lines in the file,
a total of 20,000 operations (assuming that each line was changed). Unless
you have a gigantic amount of RAM, this is probably more work than your
computer can comfortably handle. (Of course, you might also try to free more
memory by turning off MultiFinder or increasing MPW's application area, but
doing so would help only a little in this case.)

If your Macintosh has 5 MB of RAM, then you might be able to perform the first
10,CXXl operations of the first command without ever glimpsing the dread
bulldozer. in this case, modify the script so that after the first command the
script closes the window (thus automatically saving the file) and reopens it to
continue with the next large operation:

clear -c oo /• I
close -y tMyEditWindoW}
open -t tMyEditWindow}
replace-coo/"("/ "["

Alas, what If the bulldozer appears during the execution of the first command?
First deduce at what point the bulldozer appeared (let's say somewhere well
after the first 4000 lines were changed) and then modify your script to stop
processing at regular intervals. In the example that follows, the editing
operation stops after 4000 operations. closes the window (thus saving it
automatically), and reopens it. Then the program returns to the top of the file
and resumes editing for another 40CO operations.

find•
loop

clear -c 4000 /• I
break if {status} * O
close -y {MyEditWindouA
open -t {MyEditWindow}

end

194 MPW 3.0 Reference

•

Chapter 7 Projector: Project Management

PROJECTOR IS A BUILT-IN MPW FACIIIIY FOR MANAGING PROGRAMMING PROJECTS of
any size. Projector makes it easy to keep track of the revision history of the files
comprising your programs: who changed what, when, why, and other information.
You can use Projector to create experimental branches of a project and later
remerge the successful efforts.

The syntax of all Projector commands is summarized at the end of this chapter.
You can find det.ailed information and examples for each of these commands in
Part II. There are a number of Projector-specific terms defined throughout this
·chapter; these terms can also be found in the glossary. •

Contents

About Projector 197
Overview 197
Features 199
limitations 200

Using Projector: A walk-through 201
Creating a new project 201
Checking in a revision 204

Project pop-up 206
User field 207
Info (question mark) button 207
Keep Read-Only, Keep Modifiable, and Delete Copy buttons 207
Adding new files to a project 207
Touch Mod Date check box 208
Changing a revision's revision number 208

Locating a project 209

195

Checking out a revision 2()C)

Checkout directory 212
User field 213
Task and Comment fields 213
Select Newer button 213
Select All button 214
Read-Only/Modifiable buttons 214
Branch check box 215
Touch Mod Date check box 215
Checking out a particular revision 216
Info (question mark) button 216
Select Files in Name 216
Discarding changes 216
Using the CheckOut command 217

Creating branches 218
Merging branches 219

Retrieving infonnation 220
Comparing revisions 223

Components of a project 223
Projects 224
Nested projects 226
Revision trees 228
Branches 230
User names 230
Symbolic names 231

Project administration 234
Moving, renaming, and deleting projects 234
Deleting revisions 235
Renaming a file in a project 235
File organization within a project directory 235

CKID resource 236
Projector icons 236

Icons Appearing in the Check In Window 236
Icons Appearing in the Check Out Window 237

Projector command summary 238

196 MPW 3.0 Reference

About Projector

Projector is a collection of built-in MPW commands and windows that help programmers
(both individuals and teams) control and account for changes to all the files
(documentation, source, applications, and so on) associated with a software
development project. Use Projector to coordinate changes among a team of
programmers and to maintain a history of project revisions. When you begin work on a
projec~ you select the appropriate project and check out the files needed just as books
are checked out from the public library-although in this case, Projector distributes both
read-only and modifiable copies of its "books."

Projector requires the presence of .MPW 3.0 and does not run outside .MPW as either a
Macintosh application or desk accessory. The terms and concepts introduced in this
section are discussed in greater detail the the section "Components of a Project," near the
end of this chapter.

Overview

During the evolution of a software development projec~ each team member invariably
makes numerous changes to the source and documentation files. Sometimes the changed
source files are alternative versions or experimental efforts; later you want to discard the
failed efforts and merge the best versions together. Projector is designed to substantially
ease this task by providing an easy-to-use yet powerful facility for file management that is
valuable to both the individual programmer working on a small project and to a team of
programmers working on a complex set of programming projects. Use Projector to
organize your files into projects that can be stored locally on a hard disk, a 3.5-inch disk,
or remotely anywhere on the AppleTalk network.

A project is a conceptual entity for organizing files, analogous to an HFS directory. Once
within Projector, each file becomes a revision tree. Each revision tree comprises the
entire historical sequence of revisions and branches of a particular file. Any of these
revisions may be opened for reading only or checked out exclusively by one user for
modification. Figure 7-1 shO"ws how three files might appear as three revision trees in a
hypothetical project The sequentially numbered circles represent revisions. Those circles
with letter suffixes are branches, which may in tum sprout their own branches and
subsequent revisions. The numbering scheme for revisions, branches, and revisions of
branches is explained in the section "Revisions" later in this chapter.

CHAPTER 7 Projector: Project Management 197

• Figure 7-1

Revision Tree
'filename.a

A project structure

A Project

Revision Tree
filename.b

Revision Tree
filename.c

When you check out a "file" for modification you are actually checking out a copy of a
revision-usually the latest revision-from the file's revision tree. The revision you have
checked out appears in your HFS directory as an ordinary file named after its associated
Projector revision tree. When you check it back in, the "file" becomes the next revision in
its Projector revision tree.

When checking out a file for modification you can write a comment describing the
changes you're about to make (so other project users can see why you have checked out
the revision). Projector remembers that the revision is checked out and denies access to
anyone else attempting to modify checked out revisions. (Of course, you can always
create a new branch off a checked-out revision.)

You can check the revision back into Projector at any time, although you would normally
check in revisions as soon as your modifications are complete and tested. Once your
revision is checked back in, the next sequential number is, by default, appended to its
name to identify its place in the revision tree. This revision is now available to anyone on
the team.

198 MPW 3.0 Reference

Besides supporting a single sequence of revisions to each file, Projector also allows
alternative revisions to be created. This feature is called revision branching. Branching
makes possible

• the modification of old revisions

• work on the same revision of a file by several programmers simultaneously

• paralleL experimental lines of development

See the section "Creating Branches" later in this chapter.

Whenever you go through the simple check-in process, you are encouraged to document
all the changes you have made and the reasons for these changes. This allows the project's
current status and history to be easily retrieved by all team membets. It's also extremely
handy when you have to go back through old revisions to find a problem or retrieve
something of value.

Projects may contain other projects, called subprojects. This last fact is of key
importance, because it lets you break down large projects into subunits that can still be
accessed as a whole by those outside the immediate programming team. See •Nested
Projects" later in this chapter.

Features

Some of Projector's key capabilities are listed here:

• Projects and subprojects can be organized into a hierarchy.

• All revisions to a file are saved in the revision tree. Each revision is uniquely identified
by its filename and revision number.

• Nontext fdes as well as text fdes may be stored in the project

6. Important Be careful of programs that may inadvertantly delete Projector's
'ckid' (that is, check ID) resources from files. When a program such
as Microsoft WordTM saves a file, it deletes the file's 'ckid' resource.
These resources contain the identification Projector uses to track
files. 6

CHAPTER 7 Projector: Project Management 19')

• Revisions made to text files are stored in a compact format.

• Access by multiple users is supported. Requests to modify the Project database are
controlled by user name on a per-project basis. AppleShare can be used to assign
privileges.

• A flexible naming facility allows revisions to be identified by symbolic name as well as
by filename and revision number. (See "Symbolic Names" later in this chapter.)

• The entire history and status of all revision trees in the project can be displayed
conveniently and accurately. A data field for comments is saved with revisions,
revision trees, and projects. Projector also associates another data field, called Task,
with every revision of a file.

• Projector supports a command line interface so that you can embed Projector
commands in MPW Shell scripts.

• A window-based interface is provided for convenient and easy browsing and access to
projects. Any or all Projector windows can be opened from the Project menu.
(However, not all command-line functions are supported in the window interface.)

• Scripts that compare and merge revisions are supplied in "{MPW} Scripts:"

Limitations

Keep these rules in mind when using Projector:

• All files (revision trees) in a project must have unique names.

• There is no easy, integrated way to change a filename.

• Revisions cannot be arbitrarily deleted out of sequence. (See "Deleting Revisions"
later in this chapter.)

• Revisions to nontext files are not compressed.

• Commas are not allowed in filenames.

• Symbolic names must not be hyphenated.

See "Project Administration" later in this chapter for information on ways to get around
some of these limitations.

200 MPW 3.0 Reference

Using Projector: A walk-through

This section takes you through each step of the principle operations of Projector,
demonstrating the functions of the principal windows. The concepts and organization will
become evident as you go through this hands-on tutorial.

First, you'll create a new project. Next, you'll check a new file into the project you just
created. Finally, you'll mount the project Sample and check out revisions from the project
Utilities.

The concepts used here are defined in detail in the section "Components of a Project" and
the summary sections following this walk-through. You can also find Projector terms in the
glossary.

Creating a new project

The simplest way to create a project is to use the New Project window. Follow these steps
to create a project called Test:

1. Double-click the MPW Shell icon to launch MPW and open the Worksheet

• Note: Make sure that the {User} variable is set to your name.

2. Type
Set User 'username'
Note that the Chooser user name will be used if it is available.

3. Set your directory to the Projector example folder by typing the following command
in the worksheet:
Directory "{MPW}Examples:Projector Examples:"

4. Select New Project from the Project menu. The New Project window appears. You can
display all of the other Projector windows in a similar fashion (see Figure 7-2).

CHAPTER 7 Projector: Project Management 201

• Figure 7-2 New Project window

~ New Project

c:::::1 Maui ! Project Name: [] la Projector EHltmples

c:::isample ~ New Project comment:

~

to tQ
(open)

(Driue) (Eject) I New Project J
5. Type the new project's name, Test, into the Project Name field of the New Project

Window.

6. You may add some descriptive information about the new project in the Comment
field.

7. Finally, click the New Project button at the lower right comer of the window. (If the
user name is not specified, the New Project button remains disabled.)

The New Project window should now look like the example shown in Figure 7-3, except
that your name will appear in the User field

202 MPW 3.0 Reference

• Figure 7-3 New Project window after creating a project

New Project ----------
-------• ----==--- -

~ Maui j Project Name:
I e Projector EHamples I l u J ff p . h
:=========~ l ser: e ams

'Test ,

! New Pro ·ect comment:
! This project contains a series of test
! suites for our "l.lorld Class Acc0111ting"

n1we) [Eject (New Project J

The left side of the New Project window is a list similar to that in the Standard File dialog;
it displays the Macintosh's HFS file structure. This lets you create a project anywhere in
the file system, either under an existing project or in some other directoiy.

You could also create the new project Test by using the conunand line

NewProject Test

This creates a project named Test whose project directoiy, created by Projector, is
:Test:. Projector maintains all information regarding this project in the file ProjectorDB
within this directoiy. Nested projects will appear as foldeIS within this directoiy. The
checkout directoiy is set to the current directoiy at the time of the check out. (See the
description of checkout directories later in this chapter.)

Test is automatically mounted for you and also becomes the current project. Test can
actually be an HFS pathname or, if a project is currently mounted, a Project pathname. In
either case, the name of the new project is the leaf of the path. If an HFS path is given,
that directoiy becomes the project directoiy for the new project. If a project pathname
is given, the new project becomes a subproject of its parent, as shown here:

NewProject SamplelFortran

This creates a new project, Fortran, which is a subproject of the Sample project If the
project directoiy of the Sample project were

"{MPW}Examples :Projector Examples": Sample:

then the project directoiy of the Fortran project would be

"{MPW}Examples:Projector Examples":Sample:Fortran

CHAPTER 7 Projector: Project Management 203

This command is equivalent to the previous example:

NewProject "{MPW}Examples:Projector Examples":Sample:Fortran

Since the project directory of the Sample project is "{MPW}Examples:Projector
Examples:Sample", the Fortran project automatically becomes a subproject of the Sample
project.

When you mount a project, all of its subprojects are mounted at the same time. See the
section "Components of a Project" later in this chapter for more information on project
directories and details of naming conventions.

Checking in a revision

When you have finished modifying an existing revision of a file, you should check it back
into the project. When you want to add a new file to a project, follow the same
procedure.

You can add comments to indicate the changes you've made. Projector will record the
date and time, as well as other information about the revision. The changes you have
made become part of a new revision in the file's revision tree. (Of couISe, read-only
revisions cannot be checked in because they do not contain changes and therefore cannot
create new revisions.)

When using the Check In window keep in mind that the HFS directory (displayed in the
list on the left side of the window) is similar to a regular Macintosh Standard File dialog
that displays the files and foldeIS. The Check In window's list does not show files that are
not a part of a project unless you click the Show All Files box.

To check a new file into a project, follow these steps:

1. Execute the following command to create a simple new file that can be used in this
example:
Echo "a new file" > newfile

2. From the Project menu, select Check In. The Check In window appears (Figure 7-4).

3. You must check the Show All Files check box at the bottom left of the window to
select a new file because the list at the left side of the window, by default, lists only
revisions that belong to the current project.

4. Select the file "newfile" in the list at the left of the Check In window.

204 MPW 3.0 Reference

• Note: You can select several files at once for check-in. Use shift-click to select
contiguous filenames by dragging. Use command-clicking to select discontiguous
filenames.

5. Type a comment into the comment field of the Check In window. Whenever you
check a revision into a projec~ it is a good idea to add a comment describing the
changes you've made (or in the case of a new file, its purpose).

6. To check "newfile" in with an initial revision of "l.0" (the default would be "l "), click
the Revision button. When the Revision Number dialog box appears, type "1 .0" into
the Revision field, and then click the OK button. The Check In window should now
look like the example shown in Figure 7-4.

• Figure 7-4 Check In window
Check In

c::> Meui 1 Project: ._I _re_s_t ________ _,

la Projector EHemples l I user: Je_f_f _Pa_m_·_sh ________,

j Task:
c::i Semple I Reu: ~1.0=---------;=======::
c::iTest j~C~he~c~k~l~n~co~m~m::.=en~t~: __________ --..,,..,

1 A SCllllP I e f i I e from the ~ reference manua I

: new file :"!'.:

I.-;::===~-;::=~ 1-··-· OTouch mod dote

(Selec1 <111) (Open) I , i
l i® Keep reed-only i

181Show all files HO Keep modifiablel 1~1
(Driue)(E jed) qo Delete Copy I r I(Check In I

7. Click the Check In button.

later, when you open the Check Out window, you will see that "newftle" has been entered
into the project Test.

CHAPTER 7 Projector: Project Management 205

• Reading icons in the Check In window

This Is a list of small Icons that may appear in the Check In window· s list.

D

. .P

Read-only. The file is a read-only file belonging to the current project.

Modified read-only. The file is a modified read-only file (explained later in
this chapter) belonging to the current project.

The regular document Icon represents a file that does not belong to any
project. It is visible only when Show All Files is checked .

The pencH Icon means that the HFS file Is checked out from the current
project for modification by the current user.

i The lock Icon means that the HFS file Is checked out from the current
project for modification by another user.

l!I File belongs to a project other than current project. Appears only in the

Check In window when Show All Files is checked.

[ii Modifiable file belonging to another project (denoted by the tiny plus

sign In the lower-right comer). Appears only in the Check In window
when Show All Files is checked.

Corrupt • ckid • resource (explained later In this chapter). Appears only
In the Check In window when Show All Files is checked. •

Each of the features of the Check In window is discussed below:

Project pop-up

Click on the "Project:" field at the top center of the Check In window to select the current
project. This is the project into which you will be checking files. The HFS list (shown on
the left side of the Check In window) will be updated to list the selected project's
associated checkout directory (if there is one).

206 MPW 3.0 Reference

User field

The value of the {User} variable is displayed here. The {User} variable must be set in order to
check in revisions.

Info (question mark) button

When you click the Info (question mark) button in the Check In window, the right side of
the window displays Projector's current information on the selected file (that is, the
contents of the file's • ckid • resource). The Check Out window also has an Info View.
Figure 7-7 shows the Info View of the Check Out window. If you are checking in a new file,
the Info View is blank because Projector has not yet created a • ckid • resource for it. If
you are checking in a revision that was checked out for modification, you can modify the
Comment or Task fields in the Info View. These changes are saved in the revision's
• ckid • resource.

Keep Read-Only, Keep Modifiable, and Delete Copy buttons

The default action after checking in a file is to leave you with a read-only copy. The three
radio buttons in Figure 7-4 can alter this default. The top button corresponds to the
default; it leaves you with the read-only copy. Use the Keep Modifiable button to check
in the file and still retain a modifiable copy. The Delete Copy button deletes your copy of
the file once it is successfully checked in. These last two radio buttons correspond to
the -m and -delete options of the Checkln corrunand.

Adding new files to a project

You add new files to projects by checking the Show All Files check box in the Check In
window (or by using the -new option of the Checkin corrunand). When that check box is
checked, all files in the current directory are shown. Any files not belonging to a project
may then be selected and checked in. These files will be added to the current project

CHAPTER 7 Projector: Project Management 2f1'7

A Warning If, for any reason, the ' ckid' resource of the revision is corrupted or
removed, then Projector will not be able to identify the revision,
which becomes an orphan file, no longer belonging to any project. If
you still need to check the file in, move or rename your copy, cancel
the check-out of the revision that is damaged (see "Checking Out a
Revision" later in this chapter), check out the revision again, and use
the TransferCkid command to move the Projector information from
the checked-out revision to your orphaned file. •

In the Check In window, you can select a file only if it is currently checked out. In other
words, only the enabled filenames can be selected. This restriction means that only files
that have been checked out for modification can be checked in. In the Info View, all files
are selectable so that you can also get information on your read-only files.

Touch Mod Date check box

This check box appears on both the Check In and the Check Out windows. In both cases
it lets you change the convention for time and date stamping. In the Check In window,
Projector's default is to leave the date and time of check-in untouched. Check the Touch
Mod Date box to stamp the revision of the file that you are checking in with the current
date and time, that is, the check-in time.

Changing a revision's revision number

Use the Revision button in the middle right comer of the Check In window to open a
dialog box that allows you to specify the revision number for the revision you are about to
check in. Besides enabling you to specify the revision number, the Revision dialog box
also lets you create a branch. This is useful when you want to save your changes but not
along the main trunk of the revision tree.

It is not possible to specify the name of the branch that will be created.

~ MPW 3.0 Reference

Locating a project

The set of mounted projects defines a set of project trees. This list tells Projector the
names of the mounted projects and where their project directories are located. If a
project is not in one of those trees, the project cannot be accessed. If a root project is
moved or renamed (by changing its project directory), users must change their
MountProject commands in order to reconnect to the project

Use the MountProject command to see a list of currently mounted projects.

Checking out a revision

The simplest way to check out a revision is to open the Check Out window (shown in
Figure 7-5) by selecting Check Out from the Project menu. You can also use the CheckOut
command, as explained later in this section.

Nonnally, when you begin work in MPW you first check out a revision for modification
from a Projector revision tree. The checked-out revision then appears in your directory as
a regular HFS file bearing the filename of its Projector revision tree. When you check this
file back into its project, it will be saved as the next sequential revision in its revision tree.

• Note: The Check Out facility in Projector does not copy the actual data if you already
have a copy of the revision that you are checking out For example, if you already
have a read-only copy of revision 5 of f~e.c in hd:work: and you check out a
modifiable copy of revision 5 of file.c into that same directory, Projector does not
recopy the data of that revision. The ' ckid 1 resource is updated to reflect the new
check-out.

Keep in mind that, unlike the Check In window, the list at the left side of the Check Out
window lists the project heirarchy, not HFS.

A checked-out revision matches its corresponding checked-in revision in all ways except
for the • ckid 1 resource and optionally the modification date. By default, when
checking out a revision, the modification date is set to the current time in order to trigger
any makefile dependencies. This setting is needed to automatically trigger rebuilds when
old revisions of source files are checked out You can override this default behavior by
clicking the Touch Mod Date check box in the Check Out window or by using
the -noToucb option to the Checkout command.

CHAPTER 7 Projector: Project Management 209

As part of the check-out process, you can leave a comment describing the changes you
plan to make. Other members of your group can then see what is being done to the
checked-out revisions. This does not prevent anyone else from reading the revisions in any
revision tree of a project, but it does prevent anyone else from modifying the same
revisions at the same time. After completing your work, check your revision back in with
Projector, and add a note describing any changes you have made (if you had not done so
when you checked out the revision or if you want to modify your initial comment).

Follow these steps to mount the Sample Project:

1. Click on the worksheet to make it the active window.

2. Mount the sample project by typing this command:
MountProject "{MPW}Examples:Projector Examples:Sample"

3. Set the checkout directories by executing these commands:
CheckOutDir -project Sample/Commands "{MPW}Scripts:"
CheckOutDir -project Sample/Utilities "{MPW}Scripts:"

This directs Projector to place files from these projects into the Scripts folder.

4. From the Project menu, select Check Out

5. Find the Utilities project in the Project list at the left side of the window, select it, and
click the Open button. The Check Out window appears as shown in Figure 7-5.

• Note: The control at the left of the Check Out window is the Project list and works
somewhat like a Standard File dialog, except that it displays only mounted
projects and the revision trees and revisions within those projects. It does not
show HFS directories.

210 MPW 3.0 Reference

• Figure 7-5 Check Out window
IEf Check Out

Current Project Checkout to: I Maui:MPW:Scrir>ts: I I lil Utilities I User. Jeff Parrish
d!t Check I nRctiue ~ ra~k: L.__ ---··--·----·-

d!t CheckOutRctiue
Ctl<~< k Out i:omment: r-----·· -

~

'--·-···-------.. -- --~
Select files in Name: 181 Touch mod date

~ I None I
(Can< el [heck out }

(Select all) (Open) j ® Read-only 1

~ 1 O Modifiable 1 (Ched< Out J (Select newer) ! O Brandl 1

6. Choose the Modifiable radio button.

7. Click the Select All button in the lower-left comer. This selects the latest trunk
revisions of all revision trees that are not checked out for modification in the Test
project (you have the option of selecting only individual revisions from the project).

8. Click the Check Out button in the lower-right comer.

• Note: You can automatically open a TEXT revision as you check it out by holding
down the Option key while you click the Check Out button. ·

Now you are ready to open and modify the revisions you have just checked out from the
Utilities project No one else can modify the specific revisions you have checked out until
you check them back in by using the Check In window (or Checkln command).

The procedure for checking out nontext revisions is the same as the procedure for
checking out text revisions.

CHAPTER 7 Projector: Project Management 211

+ Reading icons in the Check Out window

These visual cues may appear In the Check Out window.

A project. A similar, but larger Icon is used In the Finder to represent the

ProjectorDB file.

A Projector revision tree. Appears only In the Check Out window.

The regular document Icon represents an Individual revision currently
available. It Is visible when an lndMdual revision tree is displayed.

When a project is displayed (so that all Its revision trees are listed), the

pencil Icon means that the latest revision of the main trunk is checked

out for modification by the current user. When an individual revision

within a revision tree Is displayed (a list of revisions), the pencil icon
means that the particular revision Is checked out for modification by the

current user.

ji When a project is displayed (SO that all its revision trees are listed), the
lock Icon means that the latest revision of the main trunk Is checked out
for modification by another user. When an Individual revision within a
revision tree is displayed (a list of revisions), the lock Icon means that

the particular revision ts checked out for revision by another user. •

Here is an explanation of each part of the Check Out window:

Checkout directory

The •check out to" field in the window's upper-right comer shows the directory where
checked-out revisions will be placed. Clicking the field displays a pop-up menu that gives
you three choices:

• The checkout directory for the current project

• The current directory

• Access to a Standard File dialog where you can choose any directory

The directory that is displayed by default in the field is the check out directory for the
current project (see CheckOutDir command).

212 MPW 3.0 Reference

User field

The value of the {User} variable is displayed here. The {User} variable must be set in o~er to
check out revisions.

Task and C.Omment fields

The Task and Comment fields are optional but it's recommended that you get in the habit
of always stating your purpose. Use the Task field to let others know why you have
checked out the revision. This infonnation can help later if you have to review a long
revision history to find something.

The Comment field is intended to document the specific changes to a revision while the
Task field could be used to relate different revisions, perhaps across several files (that is,
Projector revision trees). You can change the purpose stated in the Task and Comment
fields when you check the revision back in.

For example, implementing a certain feature might require several changes to each of three
files. F.ach revision might have a different comment, but the tasks for all the revisions
might say •Enhancement X. n The Task field makes it easier to look at the history of a
project and detennine what changes were made to accomplish various tasks.

To save a Task field across several revisions, select the revisions in the list at the left of the
window and type directly into the Task field of the Check In window proper. Then click
the Check In button to check in the selected files. To save a unique Comment field with a
particular revision, first select that revision and then click the Info button. Type into the
Wo view's Comment field, click Save, and then click Done.

Select Newer button

Use the Select Newer button to select all the revisions for which the latest revision on the
main trunk is not in the "Check out to" directory. Projector looks in the checkout
directory to detennine which revisions to compare against the project If you have a
modifiable file (or a file that is on a branch) in the checkout directory, then the
corresponding revision trees are not selected In the case of modifiable files, this is done
to prevent checking out a file by overwriting a modifiable file. In the case of any files
that you may have on a branch, Projector assumes that you want to leave that file alone.

• Note: If you do have read-only copies of branches, then use the Select All button to
ensure that you get the latest revision on the main trunk of every revision tree.

CHAPTER 7 Projector: Project Management 213

If you hold down the Option key as you use the Select Newer button, then revisions that
are new to the project (that is, you don't already have a copy of them) will not be
selected.

The Select Newer button cannot be used when checking out revisions for modification.

Select All button

If you are checking revisions out for modification, the Select All button will select all
revision trees whose most recent revisions are not already checked out for modification.
When checking out read-only copies, the Select All button will select all revisions in the
project.

• Note: The two buttons Select All and Select Newer do not actually check out revisions;
they simply make a selection in the Project list (the leftmost frame of the Check Out
window). Only the Check Out button (the button in the lower-right corner of
Figure 7-5) actually checks out the selected revisions.

Read-Only/Modiliable buttons

The two radio buttons at the bottom of the window specify read-only or write-modify
types of revision check out. The default is to check out read-only copies. Everyone with
access to the project can check out revisions for reading-only at any time. But if the
revision is checked out for modification, no one else can check that revision out for
modification.

214 MPW 3.0 Reference

• Modifiable read-only file

On rare occasions you may want to modify a read-only file. For example.
suppose you have taken a number of modifiable files home. You may have also
brought along certain read-only copies of files that you did not expect to
modify. However. once you get into your work at home you discover that you

·do. after all. need to make changes in these files In such an exceptional case.
you can use Projector's ModifyReadOnly command. In the Worksheet type:

ModifyReadOnly filename

You can now make changes to this read-only file exactly as if you had
checked it out as a modifiable file. with two exceptions:

• Once it is saved. the special modifiable read-only icon appears next to the
filename in the Project list.

• \Nhen you check a modified read-only file back into its project you will
have no problem unless someone else has modified the same revision. In this
case you must manually merge the two versions. See ·Merging Branches'
later in this chapter for step-by-step instructions.

Obviously. the ModifyReadOnly command is intended only as an emergency
convenience; you should not routinely rely on it. •

Branch check box

Use this check box to create a branch. This control is enabled only when doing mcxlifiable
check-outs. If the file that you have selected is locked, then this check box will be
selected automatically. See the "Creating Branches" section that follows this walk-through
for instructions on creating and merging branches. See the "Components of a Project"
section for detailed explanations of branching in Projector.

• Note: You can select dimmed files by holding down the Option key while you
click the names.

Touch Mod Date check box

When the Touch Mod Date check box is checked, the revisions checked out (into the
check out to directory) are touched, that is, the modification date is set to the date and
time of check-out. If the box isn't checked, the checked-out revisions have the same
modification date as when the corresponding revision was checked in.

CHAPTER 7 Projector: Project Management 215

Checking out a particular revision

To check out a particular revision of a revision tree, first display the revision tree by
selecting its filename and clicking the Open button (or you can simply double-click the
filename). You can then select the revision you want You can select several noncontiguous
filenames by command-clicking.

Info (question mark) button

If you have selected an individual revision in the Project list, clicking the Info button
overlays the right side of the Check Out window with the Info View, which is a display of
the information pertinent to the selected revision. At this point you can edit the
Comment and Task fields. You can also get information about revisions that are checked
out for modification or information about any other revision in the project.

Select Files in Name

Click on the Select Files in Name field to display a pop-up menu showing both private and
public symbolic names, the private names appearing at the top, the public at the bottom.
When you select a symbolic name, the project list at the left side of the window highlights
all revision trees that correspond to the selected symbolic name. Click the Check Out
button to check out all of them. This makes it easy to select at any time just those
revisions that comprise, for example, an alpha release.

• Note: If you manually change the selection after selecting a symbolic name, you will
void the selection of the name.

Discarding changes

To throw away any changes, use the Cancel Checkout button located in the lower-right
comer of the window just above the Check Out button. For example, if half the revision
trees were accidentally checked out for modification, you could undo the mistake by
simply canceling their check outs. This button is also handy if you want to experiment or
if you checked out a modifiable copy when you intended to make it read-only.

216 MPW 3.0 Reference

Using the CheckOut command

Revisions can also be checked out using the CheckOut corrunand:
Checkout file.c -m

This will place a modifiable copy of file.c in the checkout directory of the current project
You can change the checkout directory by using the CheckOutDir command. If no project
has been mounted, or if file.c does not exist in the current project, Projector reports an
error. You can get a modifiable copy by using the -m option; the default behavior of
Checkout is to distribute read-only copies.

There are several different ways to specify where checked-out revisions should be placed.
The rules for detennining the directory are as follows, from highest to lowest precedence:

1. The directory indicated if a nonleaf name is specified.
2. The directory specified with the -d option.
3. The checkout directory for the project (see the CheckOutDir command).

For example:
Checkout -d hd:MPW: file.c hd:work:defines.h
Checkout hd:MPW:main.c library.h

This first CheckOut will place a copy of ftle.c in hd:MPW:file.c and a copy of defines.h in
hd:work:defines.h. In this case, the checkout directory was not used. The second
Checkout will place a copy of main.c in hd:MPW:main.c and a copy of library.h in the
checkout directory for the project.

+ A quick switch from Read-Only to Modifiable

You can quickly check out the active (frontmost) window and change Its
status from read-only to modifiable by using the CheckOutActlve script found
in the project

{MPW}Examples:Projector Examples:Sample:Utilities:

Likewise, you can quickly check In modifiable files by using the
ChecklnActive script. •

CHAPTER 7 Projector: Project Management 217

Creating branches

In addition to supporting a sequence of revisions to a file in a projec~ Projector also lets
you create branches. Branches are alternative sequences of revisions that are parallel to
the main revision sequence. Branches may be used for

• the modification of old revisions
• work on the same revision of a file by several programmers simultaneously
• parallel, experimental lines of development

You can create a branch off a revision during the check-out or check-in process by
clicking the Branch check box in the Check In or Check Out windows.

Checking out a modifiable copy of an old revision creates a new branch (as shown in
Figure 7-6). When file.c is checked back in, it will automatically become Revision 2al.

• Figure 7-6 A changing revision tree

Revision Tree Revision Tree
file.c file.c

The following command will create a branch when checking in a revision:
Checkin file.c -b

218 MPW 3.0 Reference

In this example, the user did not need to specify a revision number to create a branch.
The branch is automatically created off the revision that was checked out. This is possible
because Projector remembers which revision was checked out When a revision (obtained
from revision x) is checked back in, it can create a revision in one of two places:

• The next revision after x, continuing on the same line
• On a branch off revision x

Referring to Figure 7-6, you'll see that the user could not check in file.c as Revision 3al or
Revision 5.

The following command will create a branch and number the first revision 2:
Checkin file.c,2 -b

If Revision 4 of file.c was initially checked out, the preceding Checkln command would
create Revision 4a2 (or 4b2 if Revision 4 already had one branch, and so on).

Merging branches

You can merge a branch revision with the trunk by using MergeBranch. You'll find details
on this script in Part II.

1. Make sure you have checked out the branch revision you want to merge.

2. Execute the MergeBranch script on the file you want to merge.
MergeBranch file.c

CHAPTER 7 Projector: Project Management 219

Retrieving information

Information retrieval is one of the most important aspects of any source file control
system. Once again, there are two different ways to get information out of Projector: by
using the Projectlnfo command or by clicking the Question button in the Check Out or
Check In window. The information that you can retrieve from a project includes

• Project information
o Author

o Last modification date of the project

o Project comment

• Revision tree (me) information
o Author

o Date original file was added to the project

o Last modification date of the revision tree

o Revision tree comment

• Revision information
o Author

o Task

o Date the revision was created

o Revision comment

The Check Out window's Info View (see Figure 7-7) is designed to help you browse
through the project, finding information about revision trees or individual revisions. The
command-line interface can handle more complex batch-type requests, such as "list all
revisions, including comments, that Bob made to a particular file, Commands."

The script CompareRevisions lets you compare two revisions side by side, highlighting the
differences. Use of this script is described at the end of this section and in Part II.

220 MPW 3.0 Reference

• Figure 7-7

F-0

Revision information

Check Out/Information

Current Project

I !iii Headers I r·w~·i:-:~~~·-~~·:~!:~ .. ~~:~·-~~ile Inf~--·---
~-····-·· .. ---··--··----·--···-·-·-·-·-----··--·--; d!t characters.h

d!t debug.h
IQ Name: shareDefs.h Reu: 6+

Owner: Peter Mac
. .P limits.h Checked Out: Mon, Sep 26, 1988, 3:05 PM
~· lr::IHI

d!t shelllists.h f<l~I<: fiiddi;;g~---;hared t°YPes i
'-··--···--·------------·-·-·---·-·---=

(Selei:1 mine) (Open)

[Uiew by ...) 0 Fil1er ~(Reuert)(saue)

You can also retrieve infonnation in the Check Out window, by selecting a subset of the
project to view via the View By dialog (see Figure 7-8).

• Figure 7-8 The View By filter

Uiew by •••

I Reuision I Huth or. I Peter Mac !===========--=========== I Reuision I Date: 1-1
I Reuisionl Comment: :==========================

Taslc:

Name: "'"' ______ I n~euision~ in nttme

----0 Modifiable (Cancel
0 Newer Clear Hll
D Update ((OK I

The View By dialog provides different items with which you can filter the revisions in the
list Only revision trees or revisions that match your criteria will be displayed. To specify
a filter, bring up the View By dialog box and select the items that are important to you.
You may specify these items:

• The author of a revision tree or revision. All the authors known to the project will be
listed in a poi:rup menu. Select the desired author from the list.

CHAPTER 7 Projector: Project Management 221

• The file modification date or revision creation date. Type in the starting and ending
dates. The format is dd/mm/yy [hh:mm[:ss] [AM I PM]]. To specify "on or since a date,"
enter the starting date in the first box, and leave the second box empty. To specify
"before or on a date," enter the ending date in the second box, and leave the first box
empty.

• File or revision comments. Type in either a literal string, or a regular expression in
slashes (/regular expression/).

• Task comments. Type in either a literal string, or a regular expression in slashes (such
as: !regular expression/).

• Name. The pop-up menu contains all your private names followed by the project's
public names. Select the desired name from the list You may also specify a relation to
that name (for example, to list all the revisions since alpha). Select the desired relation
from the pop-up menu next to the name.

• Modifiable. Llst only those revisions checked out for modification.

• Newer/Update. list only those revisions that would be checked out by using the
corresponding option to the Checkout command.

For the author, date, and comment items, you must specify whether each should be
applied to revision trees or to revisions.

• Note: The display of all the revision trees is affected unless you specify a "file" filter
from the Revision/File pop-up menu.

For example, in Figure 7-9, the user has specified a filter to list all revisions in alpha,
created by John Dance, on or after August 12, 1988, dealing with Bug #222.

• Figure 7-9 The -View By" dialog with selection criteria

Uiew by •••
IReuisionl Author: I John Dance

:::=======:::::;'-=========== IReuisionl Date: I a/12/88 1-1
I Reuisionl Comment:

::::::====================~
Tast: l/bug-222/

Name: .,I a_IP ... h_a ____ __.11 Reuisions in name

D Modifiable
0Newer
0Update

222 MPW 3.0 Reference

Clear RH I
Cancel)

OK I

The following Projectlnfo command is equivalent to the View By dialog in Figure 7-9.
Projectinfo -a 'John Dance' -d '~8/12/88' -t '/bug=222/' -n alpha

Selecting a project displays information about the project (see Figure 7-7). Selecting a
revision tree either displays the current state of the revision tree, that is, the status of the
latest revision (see Figure 7-7), or it displays the revision tree information. Which is
displayed depends on the radio buttons in the upper part of the window's information
display (see Figure 7-7). Double-click a filename to display its revision tree. The latest
revision is selected by default, and its information (status) is displayed. Selecting another
revision displays its status. The Comment and Task fields are editable so that changes or
additions can be made to old comments.

Comparing revisions

You can compare two revisions by using the script CompareRevisions. You'll find details
on CompareRevisions in Part IT.

1. Make sure you have checked out the branch revision against which you want to
compare another revision.

2. Execute the CompareRevisions script on the file you have checked out

Components of a project

This section explains in detail how Projector works. Projector keeps track of these
components for each project under its supervision:

• Projects

• Nested projects (subprojects)

• The files (revision trees) belonging to a project

• All revisions of each file (revision tree)

• The branches of each file (revision tree)

• Names of every user creating or modifying a file or project

• Symbolic names

Each of these components is discussed in the sections that follow.

CHAPTER 7 Projector: Project Management 223

Projects

A project consists of a project name, an author, some text describing the project, a set of
revision trees belonging to the project, and whatever subprojects the project may have,
which are actually projects in their own right. The author is the person who created the
project.

Projects can reside locally on an individual user's disk, or they can be placed on an
AppleTalk file server to facilitate access by multiple users. AppleShare can be used to
assign access privileges to various users. (Projector does not itself provide facilities for
assigning access privileges.)

Use the Project command to set and show the current project. Projector assumes that all
Projector commands pertain to the current project unless told otherwise.

The project directory is the directory in which a given project resides. It is defined at the
time the project is created. All revisions to all revision trees and all other Projector
information are kept in the project directory within the project file, called ProjectorDB.
All users access the same ProjectorDB. Nested projects are also kept in this directory as
subdirectories. (See "Nested Projects" later in this chapter.)

Every user has a checkout directory for each project. This is the directory into which, by
default, Projector places checked-out revisions. You can change the checkout directory
by using the CheckOutDir command.

Each user can select one or more projects for access by using the MountProject command.
Selecting a project makes it and all its nested projects (subprojects) accessible to the
user. You can remove projects from the root project list with the UnMountProject
command. The MountProject and CheckOutDir commands allow individuals to
customize their own project name space.

It is easy to check out one revision into more than one directory by changing the
checkout directory with the CheckOutDir command or by explicitly specifying the
directory with the -d option. This makes it easy to look at an old revision of a file or to
compare the differences between revisions.

A Warning This flexibility of the CheckOutDir command might inadvertently
cause problerm during check-out because the modifiable revision
might not be in the usual checkout directory. A

224 MPW 3.0 Reference

Typically, the UserStartup file, a script, or AddMenu contains a series of MountProject and
CheckOutDir commands that connects users to a set of projects. Simply mounting a
volume does not give you access to the projects that are contained on ~t volume. This
would be undesirable since many projects may not be of interest to every user.

• Figure 7-10 Sample project check-out configuration

File Server

FieServer:

0

Rambo:

d
MPW

Bob's Hard Disk
G::=1

HD:

0

Bob's Checkout
Directories

CHAPTER 7 Projector: Project Management 225

The location of the project directory is the same for everyone, but the checkout directory
can be different for each individual. For example, Bob and Peter both access the
Commands project; but they have different checkout directories (see Figure 7-10). When
Peter checks out files, they go by default to Rarnbo:work:Comrnands. Bob's files, on the
other hand, go to hd:MPW:Sample Project:Commands:.

Peter's UserStartup could contain the following commands:
MountProject FileServer:Projects:Sample:Commands
CheckOutDir -project CommandsJ Rambo:work:Commands

Bob's could contain
MountProject FileServer:Projects:Sample:
CheckOUtDir -project SampleJ "pd:MPW:Sample Project"
CheckOutDir -project SampleJcommands "hd:MPW:Sample Project:Commands"
CheckOutDir -project SampleJutilities hd:MPW:Utils

(See the MountProject and CheckOutDir commands in Part II for more infonnation and
examples.)

Projector provides two ways to specify the current project, that is, the project a
command will affect. The order of precedence (from greatest to least) is

1. Use the project specified on the command line with the -project option.

2. Use the current project specified by the Project command. If you set the current
project to the name of a particular project, then you don't need to specify that
project with every succeeding use of a Projector command. The current project is thus
analogous to the current directory of the Directory command.

If Projector cannot detennine the current project, an error is reported and the command
is aborted. In the Check Out window you select the current project in the Project list, just
as you would select a file in a Standard File dialog box. In the Check In window, click on
the "Project:• in the upper-left comer to display the Project pop-up menu.

Nested projects

Projector supports nested projects, aJso called subprojects. A series of related projects,
such as the example projects found in the Examples folder of MPW, can be configured as a
hierarchy of projects. People can then access the project structure on any level they
choose, much in the same way people use HFS (see Figure 7-10). See Figure 7-11 for a
sample project hierarchy.

226 MPW 3.0 Reference

• Figure 7-11 A sample project hierarchy

SampleJ

In Figure 7-11 the Sample project is the highest level project, that is, it does not have a
parent project. Projects are represented as circles, and revision trees (that is, files with all
their associated revisions) are represented as smaller boxes. Just as you can mount several
volumes, you can also mount several projects. However, Projector does not allow root
projects to have identical names. In Figure 7-11, mounting the Sample project gives you
access to all the projects in the project tree.

Projects are named much in the same way as directories, except that the integral character
(f), obtained by pressing Option-B, is used as the name separator. Projector requires full
Project pathnames at all times. Partial pathnames are not supported. Use of the integral
character at the end of a project path is optional.

• To avoid confusion with HFS pathnames, Projector does not use colons as
project pathname separators. Some commands, NewProject for instance,
accept both HFS and project paths as parameters. Because the separators are
different, there is no confusion as to what the parameter represents.

• Integral characters (f) are not allowed in Project names for the same reason
that colons are not allowed in HFS paths.

CHAPTER 7 Projector: Project Management 2Z"!

Revision trees

When a file is added to a project, it forms the first revision of a new revision tree. The new
revision tree bears the original file's name. Each revision tree in a project consists of the
following components:

• Aname
• An author, the person who added the original file to the project
• A comment describing the revision tree
• A record describing the current state of the revision tree, that is, who has checked out

the revision tree and all of its revisions
• The set of revisions and branches of the original file

Projector can be used with all types of files, such as TEXT, OBJ, APPL, application
documents, and so on. The only difference between text files and nontext files is that
revisions to nontext files are not compressed, and they cannot be automatically opened
at check-out time. Otherwise, there is no distinction between text and nontext files. You
can check out read-only copies of nontext files, or check out any such revision for
modification and then check it back in as a new revision. Revisions of nontext files can
also be named and deleted.

Each time a programmer checks in an updated copy of a revision, a new revision is
created. As changes are made and the number of revisions grows, a revision tree forms.
The revision tree traces the history of the file. By accessing various portions of this tree
you can retrieve, inspect, and compare any of the previous revisions of a file. Projector
also allows old revisions to be deleted when they are no longer of interest, provided that
you delete all old revisions prior to a selected revision. In other words, arbitrary deletion is
not allowed.

Once a revision is checked out for modification, it is locked, thus preventing a second
modifiable copy of that revision from ~ing checked out at the same time. You may
check out a read-only copy of the locked revision.

However, it is possible to check out a modifiable copy of another revision. If you insist
on checking out a revision that is already locked, Projector creates a branch for this new
copy. You can later merge the changes to synchronize the file. Figure 7-12 shows a revision
tree with branches and revisions of branches.

Each revision in a revision tree contains the following identification:
• A revision number
• A creation date
• A Comment field describing the reason for the revision
• A Task field describing any specific tasks undertaken or any other information
• The author of the revision
• A copy of the revision itself (compacted in the case of TEXT files)

228 MPW 3.0 Reference

• Figure 7-12 A revision tree

Revision Tree
file.c

Revisions are normally identified in numeric order, that is, 1, 2, 3, ... , 99, 100, 101, and so
on. However, you can use major/minor numbering instead, that is, 1.1, 1.2, 1.3, ... 1.99,
1.100, 1.101, ... 2.1, 2.2, and so on. When a new revision is checked in, Projector will
automatically increase its revision number by 1, for example, from 4 to 5, or 4.9.2 to 4.9.3.
You can override this action by specifying a different revision number. The only
restriction is that this new number must be sequentially greater than the revision that was
checked out Here's the syntax for major/minor numbering.

Revision Numbers: Major[. Minor .. .]

To specify a particular revision in a command, append a comma followed by the desired
revision number to the end of the name. In other words, file.c,3 refers to revision 3 of
file.c. (Remember that commas are not allowed in project filenames.) The fust command
in the following example checks out the latest (current) revision of file.c. The second
command checks out revision 3 of file.c regardless of what the current revision is

Checkout file.c
Checkout file.c,3

The following command checks in file.c, forcing the revision to 4.1:

Checkin file.c,4.1

This command is legal only if the revision that was checked out was less than 4.1-for
example, 4, 3.9, 4.0.9, or 2, and so on.

CHAPTER 7 Projector: Project Management 229

Branches

In addition to supporting a sequence of revisions to a file in a projec~ Projector also lets
you create branches. Branches are alternative sequences of revisions that are parallel to
the main revision sequence.

In Figure 7-3, Revisions 1, 2, 3, and 4 fonn the main trunk of file.e's revision tree.
Revisions that are not on the main trunk fonn branches. These branches can be easily
identified by the alphabetic character embedded in the revision number. For example,
you might check out Revision 2 of a file and check it back in as Revision 2al, instead of
Revision 3. This would begin the new sequence, 2al, 2a2, 2a3, and so on. A second branch
off Revision 2 would create Revision 2b 1. Revisions off branches follow the same default
numbering scheme as revisions on the main trunk, 1, 2, 3, and so on. However, you can use
major/minor numbering, with an arbitrary number of minor components.

When specifying a revision, a name such as file.c,2a denotes the latest revision on the "a"
branch of Revision 2. If there are two revisions, 2al and 2a2, then Revision 2a2 is used.

To refer to particular revisions when using the Check Out window, double-click on a
filename to display its revision tree. You can then select and act upon the individual
revisions-to check out a particular revision of a file or get information about that
revision. To interactively check in a file with a particular revision, click the Revision
button in the Check In window. This displays a small dialog that lets you change the
number.

User names

Most Projector commands require a user name to keep track of who did what. These
commands report an error if no user is specified. Projector reserves the Shell variable
{User} as a place to maintain the current user name. The MPW Shell initializes the {User}
variable at launch time to the User Name field in the Chooser. When you use Projector
interactively, via its windows, the current value of {User} appears in the User field. On the
command line there are two ways to specify the current user. In their order of precedence
(from greatest to least), they are

1. Use the name given on the command line (via the -u option)

2. Use the name given in the {User} variable.

• Note: User privileges should be handled by AppleShare. Because AppleShare
determines privileges when a network volume is initially mounted, changing the {User}
variable will not change the access privileges to those corresponding to the new user.

230 MPW 3.0 Reference

Symbolic names

Projector supports a general-purpose naming facility, NameRevisions, that allows project
users to easily specify revision trees, versions, and branches within a project. Using
NameRevisions you can create a name that symbolically represents a set of files almost
anywhere Projector accepts a set of files. For instance, you could use a name to specify
the "latest revisions of' a set of files that are checked out regularly. You could also use a
symbolic name to specify the "alpha version" that labels a set of the revisions that can be
used to build an alpha version.

Names are specified by the project user. These restrictions apply:

• The first character of a symbolic name Name cannot be a digit (~9).

• Commas are not allowed anywhere in a name.

• Greater-than or le5s-than symbols (< , .$, > , ~) are not allowed anywhere in a name.

• Dashes (-) are not allowed anywhere in a name.

• Names are not case sensitive.

• Names are kept on a per-project basis and can refer, at most, to one revision per
revision tree in that project.

For example, the following commands create the symbolic name Work for three revisions
that you always check out together. Thereafter you need only check out Work.
NarneRevisions Work file.c file.h library.c
Checkout Work

Projector cannot create symbolic names by using the Set command and the existing Shell
variable mechanism for these reasons:

• Names can refer to only one revision per file. Shell variables are arbitrary text macros,
so this restriction could not be enforced.

• Names are kept on a per-project basis. In Projector the scope is the current project.
In the Shell, scope is based on nested scripts.

• Names do not need special delimiters ({ and }) to be recognized, unlike Shell
variables, which do require delimiters.

CHAPTER 7 Projector: Project Management 231

By default, names are expanded to the revision level when they are defined, not when they
are used. Alternatively, by using the -dynamic option, the names will be expanded to the
revision level when they are used, not when they are defined. In the above example, the
name Work has expanded to the latest revisions of the three revision trees at the time
Work was defined. This means that the revisions that Work implies will never change as
new revisions to those revision trees are created. You can also explicitly bind a name to a
revision (even while using the -dynamic option) by including the revision number at the
time of definition. This example illustrates the differences:
NameRevisions Work file.c file.h library.c

is equivalent to
NameRevisions Work file.c,6 file.h,3.5 library.c,7

where the specified revisions are the latest revisions of the respective revision trees at the
time Work was defined. The -dynamic option allows you to postpone expanding
revisions to the revision level until the name is used. For example,
NameRevisions -dynamic Work file.c,4 file.h,3 library.c

may be equivalent to
NameRevisions -dynamic Work file.c,4 file.h,3 library.c,S

at one time, and equivalent to
NameRevisions -dynamic Work file.c,4 file.h,3 library.c,21

at a later point in time.

Names are recursively expanded until no further expansion can occur or until a comma is
found. For example, given the following names:
NameRevisions defs.h defs.h,1.1
NameRevisions file.c file.c,2.0
NameRevisions -dynamic Work file.c defs.h,2.1 library.c

this CheckOut command,
Checkout Work

expands to
Checkout file.c,2.0 defs.h,2.1 library.c

Because an explicit revision was specified for defs.h in the definition of Work, the
expansion of defs.h to defs.h,1.1 does not occur.

232 MPW 3.0 Reference

Names are particularly useful when working on a branch. For example, suppose you are
designing a new algorithm in file.c and want to implement the algorithm on branch 4a of
file.c. By defining this name:
NameRevisions -dynamic file.c file.c,4a

you can automatically check out and check in the latest revisions on the 4a branch.

The command
Checkout -m file.c

checks out a modifiable copy of the latest revision on the 4a branch of ftle.c. You can
override the name simply by specifying a particular revision along with the name.

The command
Checkout file.c,3

checks out revision 3 of ftle.c, regardless of any names. Because an explicit revision was
given, no name expansion occurs. A comma with no subsequent revision number denotes
the latest revision on the main trunk of the revision tree.

The command
Checkout file.c,

checks out the latest revision on the main trunk of file.c. If file.c has not been defined as
a name, the comma at the end is unnecessary.

Names can be defined recursively in a project tree. Going back to Figure 7-10 as an
example, suppose Bob wanted to freeze the current state of his projects and name the
current version Release 1. Then the command
NameRevisions -a -r -project Sample "Release l"

would create the name Release 1 in each of the projects. This name would thus expand to
the latest revisions when the name was defined. This command is equivalent to the
following:
NameRevisions -project Sample/ "Release l" -a
NameRevisions -project Sample/Commands "Release l" -a
NameRevisions -project Samplefutilities "Release l" -a

Both public and private (the default) names are supported. Public names are visible to all
members of the project. Local names are visible only to the individual who created them.
Local names can be declared in the UserStartup file by using the NameRevisions command.
Public names are stored with the project itself.

CHAPTER 7 Projector: Project Management 233

Project administration

The administrative duties for projects ·under Projector are very simple. Anyone who has
write access to the project (under AppleShare) can administer the project.
Responsibilities include

• moving, renaming, and deleting projects

• deleting old revisions that are no longer needed

• renaming a file in a project

• deleting files that do not belong in the project

Moving, renaming, and deleting projects

You can move or rename a project by using the Finder or the regular MPW commands.
Simply renaming the project directory will rename the project.

No other Finder or MPW operations are allowed on project directories.

There are two points to keep in mind when moving or renaming a project:

• When you move or rename a projec~ the project hierarchy changes;
MountProject commands must be modified to reflect the location of the
project.

• It is highly recommended that projects be moved or renamed only when no
revisions are checked out for modification, and that after the project has
been changed all read-only copies be checked out again. This is
recommended because Projector puts the project name in the resource forks
of revisions during check-out. Once the project is moved or renamed, the
information is no longer valid.

You can delete an entire project by deleting the folder containing the project. Use the
Finder or the MPW Shell's Delete command.

A. Warning Once you delete the projec~ all files and their revisions are lost. •

234 MPW 3.0 Reference

Deleting revisions

You can delete old revisions in a revision tree by using the DeleteRevisions command and
specifying the oldest revision that you want to keep. All prior revisions are then deleted.

For example, if you specify the revision fllename,5, then filenames revisions 4, 3, 2, and 1
are deleted, leavingfllename,5 intact. You cannot, however, arbitrarily delete fllename,4
while leaving revisions 3, 2, and 1 intact This restriction prevents confusion of the
revision numbering scheme.

You can delete entire branches by naming the branch (for instance, fllename.c,22a).

.& Warning Once you delete revisions, there is no way to recover them. ...

If you accidentally check a file into the wrong project, you can remove it and all its
revisions by using the -ftle option of the DeleteRevisions command.

Renaming a me in a project

It is impossible to rename a file in a project Instead, you must check out the file you
wish to rename and check the file back in under a different name by first using the
OrphanFiles command.

File organii.ation within a project directory

A project resides in an HFS directory called the project dfrcctory. The name of this
directory is the name of the project. You need not worry about the exact file structure
within a project directory.

All information regarding a project, including all revision trees, revisions, comments, and
so on, is kept in a single HFS file called ProjectorDB with the type 'MP SP' .

CHAPTER 7 Projector: Project Management 235

CKID resource

Projector maintains a • ckid • (Check ID) resource in the resource fork of all files that
belong to a project This is where Projector identifies each revision tree's filename,
project, user, revision number, and so on. The structure of this resource is subject to
change by Apple.

Projector icons

As you browse through the project hierarchy in Projector windows, look for the following
visual cues that convey revision ownership.

Icons Appearing in the Check In Window

~ Read-only. The file is a read-only file belonging to the current project.

'.:P.. Modified read-only. The file is a modified read-only file belonging to the current
project.

D The regular document icon represents a file that does not belong to any project It
is visible only when Show All Files is checked.

JI The pencil icon means that the HF'S file is checked out from the current project for
modification by the current user.

8 The lock icon means that the HFS file is checked out from the current project for
modification by another user.

~ File belongs to a project other than current project. It appears only in the Check In
window when Show All Files is checked

Iii Modiftable file belonging to another project (denoted by the tiny plus sign in the
lower-right comer). Appears only in the Check In window when Show All Files is
checked.

~ Corrupt • ckid • resource. Appears only in the Check In window when Show All Files
is checked.

236 MPW 3.0 Reference

Icons Appearing in the Check Out Window

g A project. A similar, but larger icon is used in the Finder to represent the
ProjectorDB file.

~ A Projector revision tree. Appears only in Check Out window.

0 The regular document icon represents an individual revision currently available. It is
visible when an individual revision tree is displayed .

. JI When a project is displayed (so that all its revision trees are listed), the pencil icon
means that the latest revision of the main trunk is checked out for modification by
the current user. When an individual revision tree within a project is displayed (a list
of revisions), the pencil icon means that the particular revision is checked out for
modification by the current user.

i When a project is displayed (so that all its revision trees are listed), the lock icon
means that the latest revision of the main trunk is checked out for modification by
another user. When an individual revision tree within a project is displayed (a list of
revisions), the lock icon means that the particular revision is checked out for
revision by another user.

CHAPTER 7 Projector: Project Management 237

Projector command summary

The syntax of the conunands used to operate Projector are summarized here for your
convenience. Detailed information on each of these commands can be found in Part II.

Checkln -w I -close I [-u userl [-project project] [-t task] [-cs comment I -cf file] [-p]
[-new I -b H-m I -delete][-touch][-y I -n I -c] (-a I file ...)

CheckOut-w I -close I [-u usen [-project projecn [-m I -b [-t task]] [-cs comment I -cf ft/cl [-pl
[-d direct~ [-r] [-open] [-y I -n I -cl [-noTouch] [-cancel]

CheckOutDir

DeleteNames

DeleteRevisions

(-update I -newer I -a I file ...)

[-project project] [-m] [-r] [-x I directo~

[-u usen [-project projecn [-public] [-r] [names... I -a]

[-u userl [-project project] [-file] [-y] revision ...

ModifyReadOnly filename

MountProject

NameRevisions

NewProject -w I -close I

OrphanFlles file ...

Project

Projectlnfo

[-sl [-pp] [-ql [-rl [projecn

[-u User] [-project Project] [-public I -b] [-r]
[-only] I name [-expand] [-s] [-replace] I [(names ... [-dynamicD I [-a]Jll

[-u userl [-cs comment I -cf fik'J project

[-q I projectName]

[-project projecn [-log] [-comments] [-latest] [-fl [-r] [-s] [-only] [-ml [-af authoij
[-a authoij [-df ~ [-d ~ [-cf pattern] [-c pattern] [-t pattern] [-n namcl
[object .. .]

TransferCldd sourceFile destinationFile

UnmountProject [-a I project]

238 MPW 3.0 Reference

Chapter 8 The Build Process

THIS CHAPTER DESCRIBES TiiE MECHANICS OF BUILDING A PROGRAM. The steps
involved are nearly the same for applications, desk accessories, stand-alone code
resources, drivers, and MPW tools. (However, you'll find special instructions on
building your own MPW tools in Chapter 12.) All programmers should read the
opening sections of this chapter, which explain the entire build process for an
application, the usual case. later sections explain what's different about building
a desk accessory, stand-alone code resource, or driver.

Those new to MPW should first read "Building a Program: An Introduction" in
Chapter 2. This brief introduction takes you through the steps of using the
Directory and Build menus to build a simple program. For more detailed
information on using the linker and how it works, see Chapter 10, "More About
Linking." •

Contents

Overview: the build process 241
The structure of a Macintosh application 244
linking 244

What to link with 245
linking multilingual programs 246

File types and creators 247
Building a stand-alone code resource 248
Building a desk accessory or driver 251

linking a desk accessory or driver 253
The desk accessory resource file 254
The DRVRRuntime library 255
What your routines need to do 257
Programming hints 258
Sample desk accessory 259

Modifying the Build menu and makefiles 259
Variables 259
Scripts 260
Files 260

239

UserStartup 260
Modifying the makefiles 261

Include dependencies 261
Library object files 261

240 MPW 3.0 Reference

Overview: the build process

Building a program consists of the following steps:

1. Create source files and compile them. Source files are compiled or assembled to
produce object files. For information on writing programs in MPW Pascal, MPW C, or
MPW assembly language, and including the proper intelface or include files, see the
appropriate language manual. Chapter 12 describes writing an MPW tool.

2. Create noncode resources with ResEdit or Rez. If your program requires any additional
resources (other than code resources), you can create them by using the resource
editor (ResEdit) or resource compiler (Rez). These may be decompiled with DeRez
into text files that can be further modified by the Shell editor before being
recompiled with Rez (see Figure 8-1). See Chapter 11 for detailed information.

3. Create the final executable file with Link. The object files are linked together, along
with any needed library routines, into either a new resource file or an existing one
(replacing the • cooE • , • DRVR • , or other executable resources). The output of link
should be placed in the same file as any resources created in Step 2 (except in the case
of drivers, as noted in the next paragraph).

• Note: To build a desk accessory or driver in Pascal or C, an additional step is required:
you must run Rez to create the final • DRVR • resource. For details, see -ihlilding a Desk
Accessory or Driver,n later in this chapter.

Figure 8-1 illustrates the complete process.

CHAPTER 8 The Build Process 241

• Figure 8-1 The Build process

Shell editor

. a .p .c
'TEXT'

Compiler or Assembler

Object
files
.o

'OBJ I

.code
'APPL'

Linker

242 MPW Reference 3.0

Libraries
.o

'OBJ '

ResEdit

Resource
files

.rsrc

Resource decompiler
DeRez

Rez
Source files

.r
'TEXT'

In Figure 8-1 you'll notice that the output from the linker may be placed in a file with the
".code" extension. That file is then reprocessed with Rez to build the final application
program. Also keep in mind that it is usually best to run Rez before running link, even
though Rez appears to the right in Figure 8-1. If you do run Rez after running link,
remember to use the -append option.

For example, the following series of commands compile, run Rez to compile the resource
file, and link the sample Pascal application Sample.p:
Pascal Sarnple.p
Rez Sarnple.r -o Sample
Link Sarnple.p.o o

"{Libraries}"Interface.o o
"{Libraries}"Runtirne.o o
"{PLibraries}"Paslib.o o
-o Sample

This process is usually automated by using the Make tool. (See the sample makefiles in the
Examples folders, and "Using Make" in Chapter 9.)

• Note: If you build an application with customized icons for documents (that is, a
'BNDL • resource for bundling 'ICNf' and 'FREF' resources), then you need to use
setF ile to set your application's bundle bit like this:
SetFile -a B MyApp

See the chapter "Finder Interface" of Inside Macintosh for information.

CHAPTER 8 The Build Process 243

The structure of a Macintosh application

Macintosh files have two forks: a resource fork and a data fork. The resource fork
contains a number of resources. The data fork may contain anything the application purs
there. On the Macintosh, a program is a file whose resource fork contains code resources
(' CODE' or other executable resources), and in most cases additional resources
containing strings, dialogs, menus, and the like. The code resources for applications and
tools must contain a main program (an execution starting point). Desk accessories and
drivers, by contrast, don't require a main program, but instead contain collections of
routines that are called individually when the desk accessory or driver is used.

The simplest possible application has two resources in the resource fork and nothing in
the data fork. The first resource is a • CODE• resource with ID = 0. (The linker creates this
resource, which contains the jump table and information about the application's use of
parameter and global space.) The second resource is a ' CODE • resource with ID = 1, which
contains the application's code segment. For more information, see the chapter "Segment
Loader" of Inside Macintosh.

Linking

This section describes how to link an application, desk accessory, or driver. (The process
is very similar in the case of MPW tools. Special information on linking MPW tools can be
found in Chapter 12.)

For more detailed information about linker functions, see Chapter 10. The link command
itself is described in Part II. The MPW object-file format is described in Appendix H.

Use the command Link to link object files into an application, desk accessory, driver, or
other executable resource. By default, linked segments are placed in • CODE • resources in
the resource fork of the output file. link links together the compiled or assembled object
files, along with any needed library routines, into either an existing resource file (replacing
the ' CODE' , 'DRVR' , or other executable resources of the type that it is creating) or a
new one (Figure 8-2).

244 MPW Reference 3.0

• Figure 8-2

Object
files
=.o

'OBJ'

Linking

Linker

Code
resources

'APPL'.
'MPST'.

or 'DRVR'

Libraries
=.O

'OBJ'

The linker resolves all symbolic references and controls final program segmentation. A
related tool, Lib, provides facilities for modifying and combining object files (libraries).

Link's default action is to link an application (type APPL, creator"????"), placing the
output segments into 'CODE• resources. You can set a file's type and creator with
Link's -t and -c options. (See "File Types and Creators" later in this chapter.)

What to link with

Applications, MPW tools, and desk accessories should be linked with the libraries listed in
Table 8-1. Its wise to link new programs with all of the libraries that might be needed. If
unnecessary files are specified, Link displays warnings indicating that they can be
removed from your build instructions.

CHAPTER 8 The Build Process 245

• Table 8-1 Files to link

Files

Inside Macintosh interfaces
{Libraries} Interface .o

Runtime support
link with one of the following:
{Llbraries}Runtime.o
{CLlbraries}CRuntime.o

Pascal libraries
{PLlbraries}PasLlb.o
{PLibraries}SANELib.o

Clibraries
{CLibraries}Clnterface.o
{CLibraries}CSANELlb.o
{CLlbraries}Math.o
{CLibraries}StdCLlb.o

Specialfttd libraries
{Llbraries}Objlib.o
{Libraries}ToolLibs .o

Desk accessories
{Libraries}DRVRRuntime.o

Description

If no part of the program is written in C
If any part of the program is written in C

Pascal language library
SANE numerics library

Macintosh interface for C
SANE numerics library
Math functions
Standard C library

Object-oriented programming (Pascal and Assembler)
Routines for MPW tools

Driver runtime library

For details about linking stand-alone code resources or desk accessories refer to "Building
a Stand-Alone Code Resource,• or "Building a Desk Accessory or Driver,• later in this
chapter. Details on linking an MPW tool can be found in Chapter 12. MPW tools libraries
(the Cursor Control and Error Message File manager routines) are listed in Appendix F. The
library of 3-D graphics routines .is in Appendix G.

Hoking multilingual prograrm

When you link progmm that use libraries from more than one language, the linker may
detect several duplicate entry points. Normally it doesn't matter which of the duplicate
copies of a particular routine are linked with your program. (You can use Link's -d option
to suppress the duplicate definitions warnings.)

246 MPW Reference 3.0

However, programs written partly in C and partly in assembly language or Pascal require
special precautions. When you link C code with other languages, link with the file
CRuntime.o and not with Runtime.a. If execution is expected to begin with the C
function main (),no special action is necessary. However, if your main program is
written in assembly language or Pascal, but part of your program is written in C, then you
must do one of two things:

1. Place the object file containing your main program be/ ore CRuntime.o in the list of
object files passed to Link.

2. Use Link's -m option to specify the name of the main routine.

For more hints on using link's -m option, see "Dead Code" later in this chapter.

File types and creators

When you execute a command, the Shell determines how to run it based on its file type.
Files of type APPL are considered applications and are run as if launched from the Finder.
Files of type MPST are considered MPW tools and are run within the Shell environment
Files of type TEXT are taken to be scripts and are interpreted by the Shell. An attempt to
run a file of any other type produces an error message. Table 8-2 summarizes file types and
creators.

• Table 8-2 File types and creators

Type of program Type Creator

Application APPL any
MPW tool MPST 'MPS'
Desk accessory DFIL DMOV
Script TEXT any

See Table E-1 in Appendix E for a complete list of special MPW file types.

• Note: Each application has its own unique creator (or signature). For more
information see the chapter "Finder Interface" of Inside Macintosh. For example,
creating a file with the type DFIL and creator DMOV tells the Font/DA Mover that this
file contains desk accessories.

You can set a file's type and creator with the -t and -c options to Link, Rez, or SetFile.

CHAPTER 8 The Build Process 2/{J

Building a stand-alone code resource

When developing programs for the Macintosh environmen~ it is often desirable to build
stand-alone code resources. For example, you may want to create custom controls. Some
of these resources are

WDEF window definition procedure (for custom windows)
CDEF control definition procedure (for custom controls)
LDEF list definition procedure (for Llst Manager)
MDEF menu definition procedure (for custom menus)
INIT a code resource that is loaded and run at boot time by the system startup code
XCMD external command for Hypercard

These rules must be observed to create a stand-alone code resource:

1. No global or static variables can be declared. No calls can be made to library routines
that use global variables (such as printf()).

2. If you are using string or floating-point constants in C source, you'll usually need to use
the C compiler's -b option to put those constants in the code segment (rather than
generating global variables).

3. You must use link's -rt option to specify the code resource type (such as 'WDEF •,

• INIT •, and so on) and the resource ID.

4. Because most stand-alone code resources are called as if they were Pascal procedures,
you must declare the main procedure with the Pascal keyword in C.

5. You must use link's -m option to specify the entry point for the code resource if you
want dead-code-stripping (see "Dead Code" in the hint section that follows). The
procedure that is the main procedure for the stand-alone code resource must be the
first procedure in the source file, and that source file's object file must be the first file
in Link's list of object files to link. In the case of MPW C, you must make the main
entry JX>int the first function in your file (including all #include files) if your main
entry point is not named "main" or if it is named "main" but is of type Pascal, as
required for a CDEF.

6. If you need to place all of your object modules in one resource (as in the case of a
CDEF), use link's -sn and -sg option to combine several segments into one segment.

248 MPW Reference 3.0

• Dead code

Given an entry point to a module. the linker loads object files and creates a
table of all references reached from that point. The table. called a Directed
Acyclic Graph, is a tree of all reachable modules. It tracks every single module
going into a link. For example. 500 modules may be submitted to linking when
only 100 of them will actually be used by the final linked object. The remaining
400 modules cannot be reached by references stemming from the main entry
point and are therefore considered dead code.

Here's how to use Link's -m option with main modules:

When you link a •CODE • resource with ID equal to zero (that Is. a normal
application). you must specify a main module with Link's -m option or specify a
module in one of the object files included with the link.

When you link any other type of resource (such as a • DRVR • or •CODE· resource
with an ID other than zero). the linker doesn't require a main module.
However. you can specify a main module by using the -m option or by
specifying Main at assembly time. Then. if there is a main module. the linker
strips out unreachable modules. that Is. dead code. If there Is no main module
going into a link. then the linker does not remove dead code. In that case.
whatever libraries you submit to the linker will be included in their entirety.

In some cases. for instance. code to be used in a ROM. you might not have a
single entry point; there might be a number of possible entry points. in such
cases you want to be careful to submit only the modules that will actually be
needed by your program. •

Here is a sample CDEF written in C and Pascal that draws boxes:

/* File LinesCDEF.c

*/

Copyright Apple Computer, Inc. 1988
All rights reserved.

CHAPTER 8 The Build Process 249

/* This file implements a control definition proc for drawing boxes. */

#include
#include
#include

<Types.h>
<QuickDraw.h>
<Controls.h>

*((long *)0x904) #define
tdef ine

CurrentA5
GrayPat (**((Pattern **)CurrentA5) - Ox18)

pascal long BoxControl (short
ControlHandle
short
long

varCode,
theControl,
message,
par am)

if (message == drawCntl && (*theControl)->contrlVis)
FrameRect(&((*theControl)->contrlRect));

} else if (message == testCntl) {
return PtinRect(*(Point *)¶m,

&(*theControl)->contrlRect) &&
((*theControl)->contrlHilite != 255);

return 0;

The makefile rules to build the above sample into a program called Application
look like this:
Application ff LinesCDEF.c.o

Link -rt CDEF=258 o
-m BOXCONTROL o
-sn "Main=Lines" o
LinesCDEF.c.o o
-o Application

Here is the same sample CDEF code written in Pascal:

{ File LinesCDEF.p
Copyright Apple Computer, Inc. 1988
All rights reserved.

This file implements a control definition proc for drawing boxes. }

UNIT LinesCDEF;

INTERFACE
USES

Memtypes, QuickDraw, OSintf, Toolintf;

IMPLEMENTATION

250 MPW Reference 3.0

FUNCTION BoxControl (varCode: INTEGER;
theControl:
message:

BEGIN

END;

END.

par am:

BoxControl : = 0;

ControlHandle;
INTEGER;
LONGINT) : LONGINT;

IF (message = drawCntl) AND (theControlAA.contrlVis <> 0) THEN
FrameRect(theControlAA.contrlRect)

ELSE IF message = testCntl THEN
BoxControl := ORD4(PtinRect(Point(param),
theControlAA.contrlRect) AND

(theControlAA.contrlHilite <> 255));

Here are the makefile rules to build the above sample into a program called Application:
Application ff LinesCDEF.p.o

Link -rt CDEF=258 a
-m BOXCONTROL a
-sn "Main=Lines" a
LinesCDEF.p.o a
-o Application

Building a desk accessory or driver

Putting together a desk accessory or driver in languages other than assembly language
requires two steps:

1. link your driver code with the DRVRRuntime library (this must appear first) and with
any other libraries you need. The object code is linked into a code resouce of type
• DRVW • , an intermediate fonn of the standard • DRVR • resource. (The DRVRRuntime
library is the header code for operating desk accessories that cannot be created in C
or Pascal. See the section "The DRVRRuntime library» later in this chapter.)

2. Use the resource compiler, Rez, to create the final driver file. That is, compile the
linked • DRVW' resource into a standard 'DRVR • resource, using the • DRVW • type
declared in :Rlncludes:MPWTypes.r, together with any other resources your desk
accessory may require.

You then install your desk accessory in the System file by using the Font/DA Mover.

Figure 8-3 illustrates the process of building a desk accessory or other driver.

CHAPTER 8 The Build Process 251

• Figure 8-3 Building a desk accessory with DRVRRuntime

Compiled
driver
code

(type 'OBJ')

DRVR
Runtlme.o

library

Linker

'DRVW'
resource

Other
libraries

MPW
Types.r

(for 'DRVW'
declaration)

Resource Compiler
(Rez)

Driver file
('DRVR'

resource;
type 'DFIL')

Additional
resources

+ Note: Of course, it's always possible to create a desk accessory directly in assembly
language, without using DRVRRuntime.

252 MPW Reference 3.0

Lin.king a desk accessory or driver

These rules must be observed to link a driver or desk accessory:

• Link's -rt option must be specified. The -rt option indicates the link of a desk
accessory or driver and sets the resource type and ID. (The defaul~ if no -rt option is
specified, is to output • CODE • resources beginning with resource ID 0.)

• The code must be in a single segment (that is, no jump table is constructed). You can
map code from several segments into a single segment with the -sg or -sn options.

• Desk accessories written in Pascal or C must be linked with DRVRRuntime.o, which
should appear first in the list of object files.

For example, the following command links the sample desk accessory file Memory.c.o,
placing the output in the file Memory. (This output is the intermediate • DRVW • resource,
which must be converted into a • DRVR • resource as explained in the next section.)
Link -rt DRVW=O o

-sn Main=Memory o
n{Libraries}"DRVRRuntime.o # must appear first o
Memory.c.o o
"{CLibraries}"CRuntime.o o
"{CLibraries}"Cinterface.o a
-o Memory.DRVW

This command has these results:

• The -rt option sets the output resource type to • DRVW • and the resource ID to 0.

• Note: This ID must match the ID specified in the $$resource statement in the
Rez input file. Note also that any additional resources "owned" by the desk
accessory must observe a special numbering convention, as described in the
chapter "Resource Manager" of Inside Macintosh

• The -sn option combines the segment Main into the segment Memory.

• The specified files are linked. The DRVRRuntime.o library must be the first object file
in the link list. This ordering ensures that the main entry point in CRuntime.o is
overridden by the DRVRRuntime.o entry point. (A linker warning will call attention to

this requirement unless you suppress it with the -w option.) The main entry point in
CRuntime.o cannot be used for desk accessories.

CHAPTER 8 The Build Process 253

• An easy way to make sure all the code is in one segment

As mentioned in the preceding list of instructions, you must keep your code in a
single segment when linking a desk accessory or driver. Use the -sg option
without an equal (=) sign. For example

Link -rt DRVW=Oo
-sg Memory()
"{Libraries}" DRVRRuntime ...

6 Important Desk accessories must not call routines that use global variables, and
therefore are less likely to need routines from the Pascal, C, and
specialized libraries listed in Table 8-1. In a correct link, the linker's
progress infonnation will report "Size of global data area: o,n and "No
data initialization.n If global data is somehow allocated, the link will
succeed, but the desk accessory will not run correctly. e,.

The desk accessory resource fde

The last step in constructing a desk accessory or driver is to put together the DRVR header
with the linked code. The following example of a resource compiler (Rez) input file shows
how this is done:

#include "Types.r"
#include "MPWTypes.r"
type 'DRVR' as 'DRVW';

•

t9efine DriverID 12 /*The number must be in the range [12 ... 26) */

resource 'DRVR • (DriverID, "\OxOOMemory", purgeable) {
dontNeedLock, /* OK to float around, not saving

ProcPtrs */
needTime, /* Yes, give us periodic Control calls */
dontNeedGoodbye, /* No special requirements */
noStatusEnable,
ctlEnable, /* DA's do only Control calls */
noWriteEnable,
noReadEnable,
5*60, /* Wake up every 5 seconds */
updateMask, /* This DA only handles update events */
O, /* This DA has no menu */
"Memory", /* This isn't used by the DA */
$$resource("Memory.DRVW", 'DRVW', 0)

254 MPW Reference 3.0

The header information contains the details of the desk accessory's event mask, menu ID,
and so on. (See the chapter "Device Manager" of Inside Macintosh and the file
MPWfypes.r for information about the format of a 'DRVR' resource.) The $$resource
directive then appends the linked object code to the DRVR header where it belongs.

If your desk accessory has any owned resources, such as • STRf' or •WIND• resources, you
can add them to your desk accessory's resource compiler input.

To build the desk accessory resource, use the Rez command to compile the resources you
have specified, and set the file type and creator for a Font/DA Mover document:

Rez -c DMOV -t DFIL Memory.r -o Memory

The file type DFIL indicates a document file for the Font/DA Mover; the creator DMOV
indicates a Font/DA Mover document (the suitcase icon).

To install a desk accessory, use the Font/DA Mover to place the desk accessory in the
System file. You can do this from MPW as follows:

"Font/DA Mover" Memory

After exiting the Font/DA Mover, you can execute the desk accessory by selecting its
name from the Apple menu.

The DRVRRuntime library

This section documents the DRVRRuntime library and describes the specifics of writing a
desk accessory or other driver by using MPW and MPW Pascal or MPW C. If you are using
assembly language, you don't need DRVRRuntime. (See Inside Macintosh for details on
creating a desk accessory.) Because a desk accessory is a special case of a driver, all of
the information in this chapter applies to both. You should already be familiar with the
following:

• "Writing Your Own Desk Accessories" in the chapter "Desk Manager" of Inside
Macintosh

• The chapter "Device Manager" of Inside Macintosh (for information about • DRVR •
resources, and so on)

• "Building a Desk Accessory or Driver" earlier in this chapter

For information about the actual routines used in Pascal, C, or assembly language, see the
appropriate MPW language reference manual.

CHAPTER 8 The Build Process 255

A desk accessory is a 'DRVR' resource whose resource name begins with a null character
($00). 'DRVR' resources reside in the System file. Desk accessories have traditionally
been written in assembly language, partly because of the peculiar 'DRVR' resource format
used for desk accessories. Setting up the 'DRVR • layout header, passing register-based
procedure parameters, and coping with the nonstandard exit conventions of the driver
routines have made it difficult to implement desk accessories in higher level languages. To
overcome these difficulties and to simplify the task of writing a desk accessory in Pascal
or C, MPW provides the following:

• The library DRVRRuntime.o, which contains the "glue" for setting up your open, prime,
status, control, and close routines.

• The resource type • DRVW •, declared in {Rlncludes}MPWfypes.r. The 'DRvw • resource
is an intermediate fonn of the 'DRVR' resource and contains constants that point to
the addresses of the driver routines in DRVRRuntime.o.

The DRVRRuntime library contains a main entry point that overrides the main entry point
in CRuntime.o or in your Pascal or assembly-language source. The DRVRRuntime entry
point contains driver glue that sets up the parameters for you, calls your routines, and
perfonm the special exit procedure required for a desk accessory to return control to the
system. Your routines perfonn the actions of the desk accessory, such as opening a
window and responding to mouse clicks in it.

The resource compiler input (resource description file) for your desk accessory includes
the details of your desk accessory header, such as its driver flags, event mask, menu ID,
and driver name. The driver is built by coercing the intermediate ' DRVW' resource to a
resource of type 'DRVR', which is the fonnat required for desk accessories. Your
resource description file also specifies resources for any strings, windows, and menus used
in your desk accessory. (For an example of such a resource description file, see "The Desk
Accessory Resource File" earlier in this chapter.)

Using DRVRRuntime.o has several advantages:

• No assembly-language source code is required.

• The resource compiler is an integral step in the build process, permitting the easy
addition of a desk accessory menu or other owned resources.

• The programmers interface to the open, prime, status, control, and close routines uses
standard calling conventions. F.ach function returns a result code which is passed back
to the system.

• The DRVRRuntime glue handles the proper exit conventions. (Drivers have peculiar
exit conventions, requiring immediate calls to exit via an RTS instruction, but non
immediate calls to jump to the IODone routine-these exit procedures cannot be
expressed in C or Pascal.)

256 MPW Reference 3.0

Together, the DRVRRuntirne library and the 'DRVW' resource form the dispatch
mechanism to your driver routines. The next section describes the structure of your driver
routines.

What your routines need to do

To write a driver, you need to write five functions named DRVROpen, DRVRPrime,

DRVRStatus, DRVRControl, and DRVRClose.

• Pascal note: In Pascal, you'll need to write a unit that declares these five functions in
your interface.

Each of these functions is declared to use Pascal calling conventions, so that the
DRVRRuntime library is available for use by both C and Pascal programmers. (See the
appropriate language reference manual for details.)

The calling sequence for all five driver routines is the same: The parameter ioPB is the
pointer to the driver's I/0 parameter block (passed from the system in register AO), and
dCtl is the pointer to the driver's device control entry (from register Al). The function
returns a result code, which DRVRRuntime puts in register DO. This result code is a Pascal
integer (C short). Desk accessories always return a result code of 0.

For example, here is the Pascal declaration for your DRVROpen routine:
FUNCTION DRVROpen(ctlPB: ParmBlkPtr; dCTl: DCtlPtr): OSErr;

Types ParmBlkPtr and DCtlPtr are declared in the file OSintf.p. Type OSErr is
declared in the unit Types.

In C, write the routines like this:

pascal OSErr
DRVROpen(ctlPB,dCtl)

CntrlParam *ctlPB;
DCtlPtr dCtl;

return(resultCode);

Types CntrlParam and DCtlPtr are declared in the file Devices.h. Type OSErr is a
short and is defined in Types.h.

CHAPTER 8 The Build Process 257

Desk accessories only: The body of the desk accessory code resides in your routines
DRVROpen, DRVRControl, and DRVRClose. Your routines DRVRPrime and
DRVRStatus are never called by the system, but the DRVRRuntime library expects them
to be present anyway-they cannot be omitted. It is sufficient to declare them and have
them simply return 0.

Programming hints

In the current release of MPW, global data is not available for use by desk accessories.
That is, variables declared outside your functions cannot be used. In particular, the
following language constructs reference the global data area and cannot be used:
Asm DATA directives
Pascal UNIT variables
C static or extern variables

Also note that QuickDraw globals cannot be used directly. Furthermore, you cannot call
library functions that use any .of these things. (Look for the linker message "No global data
was allocated.")

Typically, C and Pascal programmers allocate global storage from the heap and use
• STRt • resources for string constants. On MPW Pascal, constants are allocated as part of
the code module in which they appear. The same effect can be obtained in MPW C by
using the -b option.) If you need to allocate global data from the heap, you can declare a
record containing all of the global variables you need. In your DRVROpen routine, you

· should allocate memory from the heap with the size of this record and store its handle in
the dCtlStorage field of the device control entry. Then, to reference an element in the
record, you can use this handle to reference the global variable you want to use.

258 MPW Reference 3.0

Sain.pie desk accessory

A sample desk accessory, Memory, is included in the Examples folders for assembly
language, C, and Pascal. This desk accessory has the following features:

• It displays the current amount of free space in both the application heap and the
system heap.

• It displays the number of free bytes on the default volume, along with the name of the
default volume.

• It performs these operations every 5 seconds, so that you can see how your memory
conditions change.

Modifying the Build menu and makefiles

The Directory and Build menus are implemented as AddMenu commands and scripts. This
lets you customize these menus to serve your own specific needs. In addition, the
makefiles created by using the Create Build Commands menu command (script
CreateMake) can be modified as your scripts grow in complexity. See Chapter 3 for a
description of the Directory and Build menus.

Variables

The Shell variable {Program} is used to remember the name of the most recently built
program. It is set by the Create Build Commands menu command and by each of the Build
menu commands. {Program} is used as the default program name for the Build menu items.

CHAPTER 8 The Build Process 259

Scripts

The following scripts implement the Directory and Build menus. Two of these are
supported by Commando dialogs, as noted. These scripts are located in the Scripts
folder. F.ach is documented in detail in Part II.

Directory Menu

SetDirectory

BuildMenu

CreateMake

BuildProgram

BuildComrnands

Files

Create the Directory menu

Set the current directory. (Commando dialog available.)

Create the Build menu

Create a program makefile. (Commando dialog available.)

Build the selected program

Display the commands required to build the selected program

Conunands in the Directory and Build menus may create the following files:

<Program> .make
<Program> .makeout
{MPW}MPW.Errors

UserStartup

Makefile containing build commands for program
Build instructions for current build
Diagnostic output from commands run from menus

The Directory and Build menus are installed by scripts from the UserStartup file. The
commands listed below should be in UserStartup. In addition to creating the Directory
and Build menus, they create the aliases needed to support the Directory menu.
DirectoryMenu '(Files -d -i "{MPW}"Examples:= 11 Set Status 0) ~

Dev:Null''Directory'
BuildMenu

The parameters to DirectoryMenu become the initial list of directories in the Directory
menu. You can replace or augment the Examples directories with your favorite list of
directories.

26o MPW Reference 3.0

Modifying the makefiles

As the complexity of your program increases, you ca~ modify the makefile created by the
Create Build Commands menu command. You might add new dependencies, specify
compiler and linker options, and so on. The Build menu command will continue to build
the program, using the modified instructions.

Include dependencies

You may want to modify a makefile created by the Create Build Commands menu
command, if you need to overcome the limitations of the CreateMake script. Makefiles
created by CreateMake do not include dependencies on include files or Pascal USES

files. If you plan to change the include or USES files, consider modifying the makefile
to express these dependencies.

For example, assuming that the C source file Count.c includes the header file Utilities.h,
add the following dependency rule to the file Count.make:

Count.c.o f Utilities.h

No build rules are required; just add the dependency rule. Several include or USES files
can be listed in the same dependency rule, or separate rules can be used for each
dependency. Don't forget to specify the directory for files located in another directory.

Lt'brary object mes

Makefiles created by CreateMake link your program with the selected libraries listed on
the Crea'teMake command page in Part II. The libraries are selected according to the
language or languages in which your program is written and according to the program type
(application, tool, desk accessory).

If your program calls routines in a library that is not automatically included in the build
commands, then modify the makefile to add that library. The library's name should be
added in two places: in the dependency rule immediately before the Link command (if
you expect to modify the library), and in the list of libraries in the link command itself.

If you consistently need to add the same library to your makefiles, you can modify the
CreateMake script to include it automatically in the dependency and build rules.

CHAPTER 8 The Build Process 261

Chapter 9 Make

THE MAKE TOOL ENABLES YOU TO KEEP TRACK OF All OF TIIE COMPONENTS OF A

PROGRAM and their relationships to each other. When one component of a
program is modified or updated, Make lets you automatically update all other
parts of the program that depend on it These updates may be such things as
compiles, assemblies, links, and resource compiles.

Make reads a makefile that describes the dependencies of the various
components of a program and outputs commands on the basis of those
dependencies. This section describes how to write a makefile and use Make. Cfhe
Make command and command-line options are described in Part II.) •

Contents

Format of a makefile 265
Dependency rules 267

Double{ dependency rules 269
Default rules 270

Built-in default rules 271
Directory dependency rules 272

Variables in makefiles 273
Shell variables 273
Defining variables within a makefile 274
Built-in Make variables 275

Quoting in makefiles 275
Llne continuation character 276

Comments in makefiles 276
Executing Make's output 276

The order in which Make builds targets 277
Debugging makefiles 278

Problems due to command generation before execution 278
Problems with different specifications for the same file 279
Problems with default rules 279

An example 279
Notes on Make's makefile 282

Format of a makefile

A makefile is a text file that describes dependency information for one or more target
files. A target file is a file to be rebuil~ it depends on one or more prerequisite files that
must exist or be brought up-to-date before the target can be rebuilt For example, an
application depends on its source file or files, a number of library files, and resource files.
If any of a target's prerequisite files are newer than the targe~ then th~ target needs to be
rebuilt.

A target's prerequisites may themselves be targets with their own prerequisites, and so on.
A target that is not a prerequisite of any other target is called a root A makefile may have
one or more roots.

A makefile can include dependency rules, variable definitions, and comments. Table 9-1
summarizes the syntax of a makefile, and the sections following the table describe this
syntax in more detail.

CHAPTER 9 Make 265

• Table 9-1 Makefile summary

targetFile... ! [prerequisiteFi/e ...]
[Shel/Commands ...]

targetFi/e •.. !! [prerequisileFile ...]

Shel/Commands ...
• [suj/UJ J .suffix

Shel/Commands ...

Description

Dependency rule, with or without build commands
This rule means that targetFi/e depends upon
prerequisiteFi/e. If any of the prerequisites are
newer than the targe~ the subsequent Shell
commands are output so that the target can be
made up-to-date with respect to its prerequisites.
Important: Build commands must begin with a
space or tab.
Dependency rule, requiring its own set of build
commands

Default rule (specifies suffix dependencies)

targetDirectory: . . . ! searchDirectory: ...
Directory dependency rule (used with default rules)

variableName = stringValue Variable definition
I comment
{name}
HHI I 0

••• I ••• I

oRetum

Comment
Variable reference
Quotes (as in the Shell)
line continuation character

• Note: Use Option-F to obtain the J character.

• Note: Makefile physical input lines may not exceed 255 charaaers. Logical input lines
(made up of one or more physical input lines continued with the continuation
character) may be of arbitrary length.

266 MPW 3.0 Reference

A makefile for the sample Pascal application (Sample) is shown below:
Variable Definitions ###
Libs "{Libraries}"Interface.o a

"{Libraries}"Runtime.o a
"{PLibraries}"Paslib.o

Dependency Rules ###
Sample ff Sample.r # Sample depends on Sample.r

Rez Sample.r -a -o Sample
Sample ff Sample.p.o # Sample depends on Sample.p.o a

Sample.r # and Sample.r
Link Sample.p.o a

{Libs} a
-o Sample

Sample.p.o f Sample.p
Pascal Sample.p

Sample makefiles are contained in the Examples folder (introduced in Chapter 2).

Dependency rules

A dependency rule specifies the prerequisite files of a given target file, together with a
list of the commands needed for building the target file. These commands will be written
to standard output if any one of the prerequisite files is newer than the target file or if the
target doesn't exist. The general form of a dependency rule is
targetFi/e... f [prerequisiteFi/e ... 1

[ShellCommands ... 1
The first line is called the dependency line. It consists of one or more target file names,
followed by the I (Option-F) character (meaning "is a function of"), followed by a list of

. prerequisite files separated by blanks or tabs. Make looks at the modification dates of
the prerequisite files (and their prerequisites, if any) and decides whether the target needs
to be rebuilt.

Because a target's prerequisites may themselves be targets with their own prerequisites,
the investigation of prerequisites is recursive and "bottom up." Thus, commands to
rebuild lower-level targets are issued, if necessary, before the dependency rule determines
whether higher-level targets need to be rebuilt.

All subsequent lines that begin with a space or tab are build command lines. These are
Shell commands that will be output if the target needs updating. (When Make writes these
command lines to standard output, the initial space or tab is omitted.) If the dependency
rule omits the build commands, the rule expresses only the target's dependencies. The
build lines for the target are assumed to be supplied by another rule.

CHAPTER 9 Make 267

For example,

Sarnple.p.o f Sarnple.p
Pascal Sarnple.p

The first line in the example is a dependency rule for the Pascal object file Sample.p.o.
This rule states that Sample.p.o depends on the source file Sample.p.

The second line is the associated build command line. If Sample.p is newer than
Sample.p.o, or if Sample.p.o doesn't exist, the command Pascal Sample. p is
written to standard output

The target is built according to that set of build rules whenever it is out-of-date with
respect to any of its prerequisites. If no build commands are specified for a dependency
line, the build commands are taken from one of the target's other dependency rules, or
from default rules if no build rules were specified for the target.

If you specify more than one single{ dependency line for a target, then the target
depends on all the prerequisite names on all the lines. However, only one sequence of build
commands may be specified for each target.

More than one target filename can appear on the left-hand side of an "f rule." Each target
file on the left-hand side depends on all of the files listed on the right side (and has the
same build commands, if specified). If more than one target file is specified, it's exactly
as if a separate dependency rule had been given for each target. The built-in Make variable
{Targ} has the value of the current target.

• Note: Typically, you'll have more than one target on the left side of an f rule only when
expressing dependencies, so you won't include any build rules. If you do supply build
rules, you must write them in a generic fashion by using the {Targ} variable because
each target is built independently. Contrary to what the syntax might suggest,
multiple targets on the left side of anf rule do not imply that Make builds all targets by
a single application of the build rules. Therefore you cannot use this construct to
express dependencies in which a tool has more than one output file.

You can also write a dependency rule with an abstract target, that is, a target that is not
actually built but represents a collection of items. A rule with an abstract target has no
build rules, just dependencies; the target on the left side of the f rule does not exist. It
serves merely to trigger the dependencies for the prerequisite files on the right side of the
f rule. Thus, if your makefile represents several different roots that could be built, they
can be collected into a single abstract target that (when it is built) triggers the builds for
all the separate objects. That is,

All f A B C

2f>8 MPW 3.0 Reference

Double/ dependency rules

Double-! dependency rules are slightly different from the standard single-! rules.
Syntactically, a double-! dependency rule is the same as a single-! rule, except that ff is
used in place off. The difference in use is that more than one double-! rule is expressed
for an individual target and that each double{ rule requires its own set of build
commands. Here is a simple example:

TargetFile ff A B D
build commands-1

TargetFile ff C D
build commands-2

If the target is out-of-date with respect to one or more dependency sets, each of the
corresponding sets of build commands will be output (in the order they appear in the
makefile). That is, if TargetFile is out-of-date with respect to both A and C, then both
sets of build commands are output. (In single-! rules, only one set of build commands can
be specified for any one target.)

If TargetFile is out-of-date only with respect to B, then only the first set of build
commands is output If TargetFile is out-of-date with respect to D, then both sets of
build commands are output, because D appears in the dependency sets for both. In other
words, the same file can appear as a prerequisite in more than one double-!
dependency set.

Here is a more realistic example showing how double-! rules are typically used to
separately control the building of different components of the same file:

App ff foo.c.o bar.c.o
link foo.c.o bar.c.o ... -o App

App ff App.r
rez App.r ... -a -o App

Use double-! rules only when you have more than one action to take in building a file, and
when you want the actions to be independent (that is, triggered by different
dependencies and not always occurring together). Double{ rules are useful for separately
building code and resources, as shown in the makefile for Sample. (For more examples, see
the sample makefile at the end of this section.)

The build commands may be left off a double-/ rule if they are to be supplied by default
rules. If build commands are left out of more than one double-/ rule for the same target,
Make applies the default rules only to the first empty set.

CHAPTER 9 Make 2®

Default rules

Default rules express dependencies between pairs of ftles whose names are the same but
whose suffixes differ. They have the following form:
.[suffixl] f .suffix2

Shel/Commands ...

• Note: The pericx:l must be present directly in front of the suffix for a default rule to be
recognized. The period is taken as part of the suffix.

Default rules are powerful because many specific dependencies and build commands can
be expressed by a single rule, thereby eliminating the need to specify many similar
dependency rules. Make has built-in default rules for assemblies and for C and Pascal
compiles. You need to specify only the dependencies not covered by default rules.

For example, in its simplest form a default rule for C compiles might be
.c.o f .c

C {default} .c

In this example the built-in Make variable {default} represents the common part of the
filenames matching the rule. The C compiler will be run on the sourre file with a ".<::' suffix
and will produce an object file with a "c.o" suffix.

Default rules are applied only when no build commands have been given for a particular
target You can augment the default rules for a particular file by using additional
dependency rules, so long as these dependency rules do not include build commands.

If you are planning to have an object file built by a default rule, there is no need to express
the dependency on the sourre ftle because it is implied by the default rule. Only
additional dependencies, such as includes, need to be expressed explicitly.

Make applies default rules only if the file implied by the right-side suffix of the rule exists,
or if Make can arrive at a ftle that exists by further applications of default rules.

If the left side of a default rule has more than one period (or component), there is the
possibility that more than one default rule applies. For example, you may have a default
rule for building ".o" files and another for building ".c.o" files. Because Make tries to apply
default rules by matching the longest suffix first, the ".c.o" rule is tried first.

Default rules of the form

f .suffix

specify dependencies between files with any name and files with the same name followed
by the given suffix.

Z70 MPW 3.0 Reference

• Note: Default rules of this fonn slow down Make processing, because the empty left
side of the rule causes it to match against all filenames.

Built-in default mies

A compiled or assembled object file is dependent on its source file. This dependency is
typically handled by the built-in default rules.

Additional object file dependencies may result from other units that you use or refer to in
your source file-these may be include files, C header files, or Pascal USES files. These
additional dependencies can be expressed by dependency rules with no build line
componen~ leaving the build lines and object-to-source dependency implied by the
default rules.

The data fork of the Make tool contains the following built-in default rules:
.a.o f .a

{Asm} {AOptions} {DepDir}{Default}.a -o {TargDir}{Default}.a.o
.c.o f .c

{C} {COptions} {DepDir}{Default}.c -o {TargDir}{Default}.c.o
.p.o f .p

{Pascal} {POptions} {DepDir}{Default}.p -o {TargDir}{Default}.p.o

{Asm}, {Pascal}, and {C} are built-in Make variables. Their initial values are
{Asm} Asm
{Pascal} Pascal
{C} C

{AOptions}, {POptions}, and {COptions} are initially null; you can custorr.ize the built-in
default-rule build commands by defining these variables in your makefile. For instance,
you might want to specify the location of your Pascal Include files by adding an -i
pathname option to the default rules by a variable definition of the fonn

POptions= -1 pathname

Or you may want to indicate the use of a different C compiler by changing the value of the
{C} variable.

You can redefine the {Asm}, {Pascal}, {C}, {AOptions}, {POptions}, and {COptions}
variables. Variable definitions can be overridden in your makefile, on the command line
(with Make's -d option), or by an exported Shell variable. See "Variables in Makefiles" later
in this chapter.

CHAPTER 9 Make Z71

If you cannot sufficiently customize the default rules by assigning to these built-in
variables, you can override any of the default rules by placing your own versions of the
default rules in your makefile.

{Default} is another built-in variable; its value is the common part of the filenames
matched by a default rule (defined dynamically when Make applies the default rule). The
{Default} variable is what allows you to write a generic default rule without referring to a
specific filename. Because its value is set dynamically by Make, its value cannot be
overriden in your makefile.

{DepDir} and {TargDir} are built-in Make variables that allow default rules to work with the
target and prerequisite files in different (or the same) directories:

{DepDir}
{TargDir}

The directory component of the prerequisite name
The directory component of the target name

+ Note: {DepDir} and {TargDir} have values only when used in the build commands of
default rules for which directory dependency rules were applied. In all other cases
these variables evaluate to the null string so that they won't interfere with the normal
behavior of default rules. Directory dependency rules are explained in the section that
follows.

Directory dependency rules

Normally, default rules work only within a single directory; that is, the target and
prerequisite ftles will have the same directory component because the default rules change
only the suffixes of the filenames. Directory dependency rules allow default rules to be
applied across directories. Just as default rules imply changing a filename suffix between a
target filename and a prerequisite filename, directory dependency rules imply changing
the directory prefix of the filenames. Directory dependency rules have the form

targetDirectory : . . . f searchDirectory : ...

Directory dependency rules are identified by dependency names that end in colons (that
is, directory names). For example,
ObjFiles: f SrcFiles:

The above rule, together with the standard default rules, would mean, for example, that
ObjFiles:name.c.o depends on SrcFiles:name.c. See the working example at the end of
this chapter.

m MPW 3.0 Reference

No build commands may be given for a directory dependency rule. More than one
directory name may appear on either side of the rule. The current directory can be
specified by a single colon(:) on either side of a directory dependency rule.

Directory dependency rules are applied only during the processing of default rules. If
Make is applying a default rule and encounters a target name with a directory component,
Make checks for a directory dependency rule for that directory. If one exists, Make tries
prerequisite filenames with the directory prefixes given on the right side of the rule. The
names are tried in the order they appear in the rule; thus more than one directory name on
the right side of a directory dependency rule constitutes a list of directories to search.

+ Note: If default rules are meant to be applied from a directory A: to a directory B: and
also within A: (that is, from A: to A:), then A: should appear on both the left and right
sides of the directory dependency rule. For example,
A: f A: B:

Variables in makefiles

You can use exported Shell variables and built-in Make variables within makefiles. You can
also define variables within a makefile or on the Make command line. MPW Shell variables
are described in Chapter 5.

Shell variables

Make automatically defines exported Shell variables before it reads the makefile, so you
can use Shell variables in dependency lines and build commands.

Shell variables in dependency lines are expanded because they are typically filenames or
parts of a file. Shell variables in build rules pass through unexpanded so that the Shell will
be able to process and expand them.

If Make doesn't recognize a variable reference in a build command line, the build line is
left unchanged when it is output so that it can be processed later by the Shell.
(Unidentified variables in dependency lines are reported as errors.)

CHAPTER 9 Make 'Z73

... Warning Exported Shell variables override Make variables with the same names .
An attempt to redefine a Shell variable in the makefile results in a
warning message. •

Defining variables within a makefile

Variable definitions are makefile entries of the form

variableName = stringValue

Subsequent appearances of {variableName} are replaced by string Value. Any leading or
trailing blanks or tabs are removed from the variable definition. You can use line
continuations to make a stringValue arbitrarily long.

When a string Value is continued across lines, a single blank replaces any comments,
blanks, or tabs at the end of the continuation line and at the beginning of the line after the
continuation. Thus, variable values can conveniently contain lists of files. Note that
variable values may contain references to other variables.

One common use of variables is to provide parameters to the directory portion of
filenames so that you can easily adapt a makefile to different directory setups. Another
use is to create a list of filenames that will be used in more than one place.

• Note: Make variables are not expanded until they are used in dependency lines or until
generated in a build line. Thus, you must define any variables appearing in
dependency lines somewhere previously in the makefile because variables in
dependency lines are expanded immediately to produce filenames. You can define
variables in build lines anywhere in the makefile because variables in build lines are not
expanded until after the build lines are generated (that is, after the entire makefile has
been read).

You can define a variable on the command line with the Make option -d; this option
overrides any definition of the variable within the makefile, thus allowing the definition in
the makefile to function as a default

• Note: Values of Make variables may not contain the ASCII characters 0 or 1.

274 MPW 3.0 Reference

Built-in Make variables

The following built-in Make variables have values that are dynamically assigned (and that
cannot be overridden) as Make generates the build commands:
{Targ} The complete filename of the target on the left side of the

dependency rule whose build commands are being processed.
{NewerDeps} A list of the names of all of the target's direct prerequisites that

were newer than the target; that is, the files that caused the
target to be out-of-date.

These built-in variables can be used only in build command lines because they have no
value when dependency lines are processed. They cannot be overridden.

When default rules are applied, the following variables are also defined:
{Default} The common part of the filenames matched by a default rule
{TargDir} The directory component of the target name
{DepDir} The directory component of the prerequisite name

• Note: When expanding the built-in variables {Targ}, {NewerDeps}, tt'argDir}, {DepDir},
and {Defaultl in build commands, Make automatically quotes their values, if
necessary, because they will represent filenames or parts of filenames. Don't quote
them yourself.

Quoting in makefiles

The Make command supports several of the Shell's quoting conventions. Quoted items
can appear in dependency lines, variable definition lines, and build command lines. The
following quotation characters are used:

a Quotes the subsequent character; that is, the d is removed and the subsequent
character is taken to be a literal character (except when dRetum is used at the end
of a line as a continuation character).

' ' Quotes the enclosed string. The single quotation marks are removed.

Quotes the enclosed string, but { ... } variable references are expanded, and the
escape character d is processed. The double quotation marks are removed

CHAPTER 9 Make Z15

Quotation characters are processed as follows:

• In dependency lines and in the name part of variable definitions, quotation literalizes
the quoted characters (useful for expanding file or variable ~mes).

• On the right side of variable definitions, quoted items are passed through "as is," so
that the quoting will take effect when the variable is expanded.

• In build command lines, quoted items are passed through as is, so that the quoting will
take effect when the build commands are executed by the Shell.

Une continuation character

like Shell commands, dependency and variable definition lines can be continued over
more than one line by using oRetum. oRetum causes the o, any blanks preceding the o, the
return, and any leading blanks on the next line to be replaced with a single space.
Comments at the ends of such continued lines do not comment out the continuation
character.

Comments in makefiles

The number sign (#) indicates a comment. Everything from the # to the end of the line is
ignored. Comments always end at the next return, even if the return is preceded by a a.
Comments may appear in dependency lines, variable definitions, and build command
lines, or on lines by theimelves. Comments in build command lines are passed through to
standard output where they are processed as comments by the Shell.

Executing Make's output

Make generates a set of commands, which must be executed separately to perfonn the
actual updates. You can automatically execute Make's command output by calling Make
from a Shell script The simplest fonn of such a script consists of the two commands
Make {"Parameters"} > MakeOut
MakeOut

7:76 MPW 3.0 Reference

The first command executes Make, using the parameters passed to the script (See the
description of the {"Parameters"} variable in Chapter 5 under "Variables.") Output (that is,
build commands) is redirected to the file MakeOut. The second line of the script executes
MakeOut.

The order in which Make builds targets

Make builds the top-level target and its prerequisite subtargets in a recursive, "bottom
up" fashion. The top-level target (or targets) may be specified on the Make command
line. If no target is specified on the command line, then Make builds the fust target
appearing on the left side of a dependency rule in the makefile (that is, the default top
level target).

The prerequisites of the top-level target (and subtargets) are also investigated in a
recursive, "bottom up" order, starting with the first prerequisite in the target's
prerequisite list. After the first prerequisite (and its own prerequisites) have been
investigated, the target's next prerequisite is investigated. The next prerequisite will be
the next one mentioned in the current dependency rule or in the next dependency rule in
the file that has the same left-side target.

Thus, the important orderings within a makefile are: the first target mentioned (the
default top-level target) and the order of prerequisites for any given target. Otherwise,
the order in which targets are mentioned is not important

Please note, however, that once a target has been investigated by Make it is not revisited,
even if it appears somewhere else in the top-level target's prerequisite dependency
hierarchy. In other words, while a file may appear as a prerequisite of a number of program
components, Make will rebuild it only once (if necessary) when it is fllSt encountered in
the recursive "bottom up" traversal of the dependency hierarchy.

Remember that a makefile may have one or more top-level targets (or roots), that is, it
may describe how to build more than one object. (The -r option will identify all the
roots.) Running Make will rebuild only the targets you specify on the command line. If no
targets are specified, Make will rebuild the default targets.

CHAPTER 9 Make TT7

Debugging makefiles

When Make doesn't seem to be doing what you expect, the next step is to debug your
makefile. The following procedures are helpful in debugging makefiles:

1. Use Make's -v option to generate verbose diagnostic output. This output tells you
which files don't exist, which files are up-to-date, which files need rebuilding, and why
they are out-of-date. It also points out which files don't have build rules and are thus
assumed to be artificial targets. (Targets that are abstract and not really built. See, for
example, Note 8 in the Make example that follows this section.)

2. Use Make's -s option to show the structure of your target's dependency relations. This
option displays the complete structure of dependencies, including those generated by
default rules. A target (or subtarget) that doesn't appear or that has no prerequisites
may indicate a typographical error in the dependency line for that target (or in the line
for one of the targets that depend on it). A target that appears at the wrong level in
the dependency graph indicates an error in your dependency specification.

3. Use the -u option to find unreachable targets. These may be parts of your target
dependencies that did not get connected to the rest of the dependency hierarchy
because of a bad or mistyped rule.

Problems due to command generation before execution

Make generates commands that must be separately executed to perform the actual
updates. Because Make must determine what build commands to generate before any
targets are actually built, the possibility of "phase errors" exists; that is, unexpected
behavior may occur when generated commands alter the assumptions that Make used to
determine whether targets were out-of-date. (You won't experience these problems unless
you have build commands that do things such as deleting files that Make thinks are
already up-to-date.)

Z78 MPW 3.0 Reference

Problems with different specifications for the same file

You'll experience problems with Make if you use different pathname specifications for
the same file (that is, pathnames with different degrees of volume and directory
qualification). Make uses the name strings exactly as encountered in dependency lines, so
different name strings will result in different entries. (This is done for the sake of
performance-no calls are made to the file system, except to inquire about the date of
targets that are supJX>sed to be built.) If there is more than one name specification for
the same file, each name results in a different Make target, and the resulting dependency
relations will be wrong.

Problems with default rules

An error message may appear saying that no rules were available to build something that
should have been covered by a default rule. This situation may result from any one of the
following problems:

• The default rule may not have matched against anything, and was thus not applied; for
example, the default rule
.p.o f .p

cannot be applied if the .p file does not exist either in the file system or in the
makefile dependency specification.

• There may be a typographical error in the filename, so that the default rule could not
be applied. You should be able to detect such errors by inspecting the output of
Make's -s and -v options.

• There may be a typographical error in a default rule that was given in the makefile, in
which case you may not see any dependencies generated by the rule when you use the
-s option on the Make command line.

An example

This section lists the makefile used to build an experimental version of the Make tool
itself (represented in this makefile by the MakeX target). A series of explanatory notes
follows the listing. These notes describe in detail a number of the Make features that were
used.

CHAPTER 9 Make 'Z79

tttttttttttttttttttt Variables ttttf f ttttttttttttttt

ToolDir {Boot}ToolUnits: See note

Obj Dir :Obj:
MakeUses {ToolDir}Macinterfaces.p.o a see note 2

{ToolDir}MemMgr.p.o a
{ToolDir}SymMgr.p.o a
{ToolDir}Utilities.p.o a
{ToolDir}IOinterfaces.p.o a
{ToolDir}CursorCtl.p.o a
{ToolDir}ErrMgr.p.o a
{Pinterfaces}IntEnv.p a
{Pinterfaces}MemTypes.p a
{Pinterfaces}QuickDraw.p a
{Pinterfaces}OSintf.p

MakeObjs {ObjDir}Make.p.o a
{ToolDir}Stubs.a.o a
{ToolDir}CallProc.a.o a
{ToolDir}Utilities.p.o a
{ToolDir}Utilities.a.o a
{ToolDir}IOinterfaces.p.o a
{ToolDir}IOinterfaces.a.o a
{ToolDir}MemMgr.p.o a
{ToolDir}MemMgr.a.o a
{ToolDir}SymMgr.p.o a
{ToolDir}SymMgr.a.o a
{ToolDir}CursorCtl.p.o a
{ToolDir}CursorCtl.a.o a
{ToolDir}ErrMgr.p.o a
{ToolDir}Maclnt.a.o a
{ToolDir}Maclnterfaces.p.o

Libs = {Libraries}Runtime.o a
{PLibraries}PasLib.o a
{Libraries}Interface.o

LinkOpts = -w t no warnings (for duplicates due to Stubs.a.o)
See note 3

SourceFiles = Make.p a
DefaultRules a
Makefile

H#t###t#:f t Default Rule Customizations HttttHHH

POptions = -i {Boot}ToolUnits: See note 4
{ObjDir} f t directory dependency rule See note 5

28> MPW 3.0 Reference

################ Dependency Rules ##################
MakeX ff {MakeObjs} {Libs} See note 6

Link {LinkOpts} -p -b -o MakeX
-t MPST -c "MPS " CJ

{MakeObjs} {Libs} ~LinkMsgs

MakeX ff defaultRules
Duplicate -d defaultRules MakeX -y # copy default rules into Make's data fork

MakeX

MakeX

ff
Rez Make.r -o MakeX -a

ff
SetFile MakeX -m . -d .

{ObjDir}Make.p.o ff

Make.r
Make's Commando resource

{MakeObjs} {Libs} defaultRules
#set last-mod and creator dates

Make.p See note 7

Save Make.p ~Dev:Null I I Set Status 0 #save source before compile if changed

{ObjDir}Make.p.o

{ToolDir}Macinterfaces.p.o

{ToolDir}MemMgr.p.o

{ToolDir}SymMgr.p.o

{ToolDir}Utilities.p.o

{ToolDir}IOinterfaces.p.o

Backup

ff

Duplicate -y MakeSrc:

Restore
Duplicate -y MakeSrc:=

Listings

{MakeUses}#will be augmented by default rules

f {Pinterfaces}MemTypes.p
See note 9

{Pinterfaces}QuickDraw.p
{Pinterfaces}OSintf.p
{Pinterfaces}Toolintf.p
{Pinterfaces}PasLibintf.p

f

f

f

f

f

f

f

{ToolDir}Utilities.p.o
{ToolDir}Macinterfaces.p.o CJ

{Pinterfaces}MemTypes.p

{ToolDir}MemMgr.p.o
{Pinterfaces}MemTypes.p

{Pinterfaces}MemTypes.p

{ToolDir}Utilities.p.o
{ToolDir}Macinterfaces.p.o
{Pinterfaces}MemTypes.p

#backup to Sony

#restore from Sony

{SourceFiles}

a
a
a

See note a

See note 1 O

See note 11

Print -h -r -ls .85 -s 8 -b -hf helvetica -hs 12 {NewerDeps}
Echo "Last listings made 'Date'" >Listings

CHAPTER 9 Make 281

Notes on Make's makefile

These notes are referenced in the preceding example.

1. The exported Shell variable {Boot}, used in the definition of {ToolDir}, is automatically
defined by Make when invoked.

2. Several variables-{MakeUses}, {MakeObjs}, {Libs}, and {SourceFiles}-are used for lists
of filenames. This is a convenience because the lists are used in several places later in the
makefile; it also helps to reduce errors. Note that you can temporarily remove any file
from the list by placing a comment character at the beginning of the line for the file.

3. The {LinkOpts} variable is used to specify linker options (and is used only once). This
usage is handy because the definition in the makefile functions as a default that can be
overridden from the command line with the -d option, as in
Make -d LinkOpts='-w -1 >Map'

4. This directory dependency rule allows the MakeX tool's objects and sources to be in
different directories and yet be built by the built-in default rules. In particular,
Make.p.o will be in the :Obj: directory while Make.p is in the current directory. Note
that for this device to work, Make.p.o must appear with the object directory prefix.
Thus it appears in the makefile as {ObjDir}Make.p.o.

5. The {POptions} definition gives a value to one of the variables used in the default rules,
customizing the built-in default rules for Pascal compiles for this particular makefile.

6. The four sets of ff rules for MakeX (an experimental version of the Make tool) handle
(a) the Make link (which creates MakeX's code resources), (b) the copying of the
default rules to MakeX's data fork (Make reads the built-in default rules from its own
data fork), and (c) the setting of the creation and modification dates. The link will
take place only if the MakeX objects or libraries change. The default rules will be copied
only if the rules have changed. The resource compiler will rebuild Make's Commando
resource only if Make.r has changed. And the setting of the dates will take place if either
of the first two rules was activated. (Note that the fourth rule has the union of the
dependency relations of the first two.)

7. The two sets of ff rules for Make.p.o control the compilation of the main source for
Make, with some interesting side effects. The first// rule saves the Make source before
it is compiled, only if the source file has changed. The second ff rule does the actual
compile. Note that this last rule has no explicit build commands, so it will be augmented
by the built-in default rules, which will add a dependency relation (on the source file
Make.p), and will supply the actual build commands for the compile.

8. The {ObjDir} prefix is necessary for the directory dependency rule to take effect. It
allows the object and source to be in different directories.

282 MPW 3.0 Reference

9. The dependency rules for Maclnterfaces, MemMgr, SymMgr, Utilities, and IOinterfaces
describe dependencies between various utility units used by Make. Several
dependencies on library interface files are given. Dependencies among the utility units
themselves are described by indicating a dependency on the object files of the lower
level (predecessor) units. These dependencies could have been expressed as
dependencies on the source files of the lower-level units (because it is the source files
that are read in a Uses list). However, expressing these dependencies on the object files
has the nice property of ensuring that the lower-level units have been successfully
compiled before the higher-level units are built.

10. The Backup, Restore, and Listings targets are additional roots (top-level targets) in
Make's makefile, and thus represent other things that can be built besides MakeX itself.
Note that the Backup and Restore targets do not actually get built by their build rules;
they are thus artificial targets and will always generate build commands if they are
specified on the Make command line. Note also that they do not have any dependency
relations.

11. The build rules for the listings target demonstrates the use of the {NewerDeps} variable.
The prerequisite of listings is a list of the Make source files. The first build command
prints the {NewerDeps} files. {NewerDeps} contains the names of the prerequisites that
are newer than the target, that is, the source files that have changed since listings were
last made. The last line of the build rules simply writes the current date into a file called
listings, which is the name of our target-this action results in a file that remembers
when listings were last made. (Writing the datecvf into the file is unnecessary but
convenien~ the Echo itself is enough to change the file's last-modified date.)

+ Note: There are several implicit builds that are generated as needed by the default
rules. For example, the {MakeObjs} variable includes several assembly-language object
files. Because {MakeObjs} appears as a prerequisite of the link step, these assemblies
are generated, if necessary, before the link.

CHAPTER 9 Make 283

Chapter 10 More About Linking

THIS CHAPTER SUPPLEMENfS 1HE INFORMATION IN 1HE SECTION "LINKING" IN
CHAPTER 8 and in the description of the link command in Part II. This chapter will
be more useful after you're familiar with Chapter 8 and the major MPW tools and
when you are ready to optimize your programs or build procedures.

Use link, the MPW linker, to combine a group of MPW object files (such as the
output of the compilers) into a Macintosh-executable resource, such as an
application, desk accessory, driver, or MPW tool. •

Contents

Link functions 287
Segmentation 288

Segments with special treatments 289
Controlling the numbering of code resources 290
Resolving symbol definitions 291

Multiple external symbol definitions 291
Unresolved external symbols 292

Building applications with more than 32K of global data 292
32-bit references-MPW Pascal 293
32-bit references-MPW Assembler 293

Llnker location map 294
Map entries for the global data segment 295
Optional map formats for compatibility 295

Optimizing your links 296
Library construction 296

Using Lib to build a specialized library 297
Removing unreferenced modules 298
Guidelines for choosing files for a specialized library 299

285

Link functions

After a source file has been assembled or compiled into an object file, it contains

• Object code (relocatable machine language).

• Symbolic (named) references to all identifiers whose locations were not known at
compile time. (These include references to routines from separate compilations and
libraries, and references to global variables.)

The linker performs the following functions:

• Sorts code and data modules into segments, by segment name. (Within a segmen~
modules are placed in the order in which they occur in the input files.) The -sg and -sn
options allow you to change segmentation at link time.

+ Note: A module is a contiguous region of memory that contains code or static
data. A module is the smallest unit of memory that is included or removed by the
linker. A segment is a named collection of modules.

• Omits unused ("dead") code and data modules from the output file. (These modules
can be listed with Link's -uf option, and deleted from libraries with the Lib command's
-df option.)

• Provides (together with the Segment Loader) a jump table architecture that supports
relocation of code and data at run time. (See the chapter "Segment loader" of Inside
Macintosh for more information about the jump table.)

• Constructs jump table entries only when needed, that is, only when a symbol is
referenced across segments. This means that the jump table will be of minimum size.

• Edits instructions to use the most efficient addressing mode. AS-relative Gump table)
addressing is used across segments, and PC-relative addressing is used within a
segment.

.A Warning If you take the address of a procedure that is within the same
segmen~ then, as stated, a PC-relative address is used to generate
the effective address. (This is the case in MPW C by defaul~ and in
MPW Pascal when used with the -b option.) If the procedure
address is stored as a variable (or passed to the tool box), and the
segment is unloaded, then any routine calling that address will
transfer control to the wrong place, with the result that the
program will crash. See Macintosh Technical Note 42. •

CHAPTER 10 More About Linking '1E7

/:::;. Important Note that the -b option in MPW Pascal means that you will use the
AS offset to the jump table, rather than the PC-relative address.
The meaning of the -b option in MPW C is opposite; it forces PC
relative addressing and also places strings and constants in the
same module. ~

• Provides (with the data initialization interpreter) support for relocation of data
references at run time. (The data initialization interpreter is the module _DATAINIT
in the libraries Runtime.o and CRuntime.o.)

• Generates a cross-reference listing of link-time (object-level) names (-x option).

• Generates a location map for debugging or performance analysis (-map option).

Link copies linked code segments into code resources in the resource fork of the output
file. By defaul~ these resources are given the same names as the corresponding segment
names.

If linker errors or a user interrupt cause the output file to be invalid, the linker sets the
file's modification date to "zero" Qanuary 1, 1904, 12:00 A.M.). This action guarantees
that the Make command will recognize that the file needs to be relinked, and that the
MPW Shell will not run the file.

Segmentation

Segmenting a program makes it possible for temporarily unneeded parts of the program
to be unloaded and purged from memory, thus freeing memory space. You specify the
name of a segment by placing a directive in your program's source file. See the
appropriate language reference manual for information. Each segment is linked into a
separate code resource.

+ Note: For a desk accessory or driver, the code must be in a single segment, and no jump
table is constructed. Segmentation applies only to applications and MPW tools.

The linker sorts object code into load segments by name, allowing you to organize your
source code for clarity and understanding. You can specify the same segment name more
than once. Link collects code for a given segment name from all of link's input files and
places it into a single segment in the output file.

288 MPW 3.0 Reference

.& Warning Segment names are case sensitive. For example, "Segl" and "SEGl" are
not equivalent names. If you aren't sure about the cases used, you can
use the linker's -p option to get a listing. •

By default, resources created by the linker are given resource names identical to the
corresponding segment names. Llnk provides options for combining and renaming
segments at link time (-sg and -sn). If you don't specify a segment name before the first
routine in your file, the main segment name ("Main") is assumed there. Normally, you
should give the main segment the name Main.

By default, segments are limited to 32, 7(/J bytes. This limit ensures compatibility with all
versions of the Macintosh ROM. larger segments are allowed with link's -ss option.

+ Note: Object code is placed in a segment in the order that ifs encountered in the input
file. For segments larger than 32K, the order is important because PC-relative offsets
are limited to 32K by MC68000 instructions.

For more information about segmentation, see the chapter "Segment Loader" of
Inside Macintosh.

Segments with special treatments

When linking a main program, Llnk creates two segments that don't appear in the input
object files:

• The jump table (• CODE • resource, ID=O), which is unnamed.

• The global data area (no resource), which is named %Globa1Data and appears only in
the link map file (described below). You can't change the name %Globa1Data at link
time.

CHAPTER 10 More About linking 28')

There are also two segments that have special conventions:

• The segment that contains the main program entry point(• CODE' resource, ID=l),
usually named Main.

• A segment named %A5Init, which contains the initial values for the global data area
and code that moves these initial values to the global data area. Applications should
unload this segment before allocating any memory in order to avoid memory
fragmentation. You can unload the %A5Ini t segment by calling UnloadSeg with
the address of entry point _DATAINIT as its parameter. In Pascal, for example,

UnloadSeg(&_DATAINIT);

In C, the same call looks like this:
UnloadSeg((Ptr)_Datainit);

In C and Pascal, this call should be the first statement in the application. In assembly
language the call to UnloadSeg should follow the call to _Datainit.

Controlling the numbering of code resources

Nonnally, you don't need to worry about which segments are given which resource
numbers. However, you may want to control the assignment of resource numbers to
optimize program load time, to implement a specialized code manager, or to match the
numbering produced by another linker.

link creates and numbers code resources based on the order in which it encounters the
segment names in the command-line parameters and the input object files. If you can't
easily predict the order in which the names appear in the object files, you may want to
force the ordering with command-line options that contain dummy segment-mapping
directives. For example, the following sequence of linker options forces Main to come
firs~ followed by Init, Body, and Term:

Link -sn dumrnyl=Main # must contain the main code module o * or entry point a
-sn %A5Init=Init o
-sn dumrny3=Body O
-sn dummy4=Tenn o
_.and soon

290 MPW 3.0 Reference

The "old" segment names may be either "dummy" names (which don't appear in the object
files) or actual mappings, such as the IT'.apping of the %AS r nit code into the segment
Init.

• Note: The segment containing the main code module will always be segment #l.

Resolving symbol definitions

This section describes how the linker resolves references to symbols. For a more detailed
discussion of local and external symbols, see Appendix H.

Symbols in object files are either local or external. A local module or entry point can be
referenced only from within the file where it is defined. An external module or entry point
can be referenced from different object files. An entry point is a location (offset) within
a module. (The module itself is treated as an entry point with offset zero.) A reference is a
location within one module that will contain the address of another module or entry.

If the linker finds a symbol, it will first try to match the symbol to a local symbol in the
same file. If the name cannot be located, the linker will then look for it externally. (An
exception to this procedure is described in the "Record" section of Appendix H.)

Multiple external symbol definitions

If the object files contain more than one definition for an external symbol, the first
definition is used, and all references are treated as references to the first definition. This
lets you selectively override entry points in libraries so that you can substitute new
versions of code. When subsequent definitions are encountered, a warning is generated.

• Note: If you override a module, then all succeeding entry points within the overridden
module also disappear. Therefore be sure that any other referenced entry points in the
overridden module are also defined in the new, overriding module.

CHAPTER 10 More About Linking 291

Unresolved external symbols

Occasionally, you may find that an external symbol is unresolved because a reference was
generated with case sensitivity set one way, whereas the definition was generated with
different case rules. When this happens, you can avoid recompiling by using the link
option -ma (module alias). Whenever link encounters an unresolved symbol, it checks the
list of module aliases in an attempt to resolve it.

Building applications with more than 32K of global data

To pennit your application to use more than 32K of global data, use the -m option of the
MPW Pascal and MPW C compilers. The -m option generates code that causes global data
references to be 32-bits. You should be aware that the code for 32-bit references is larger
and slower than the code for 16-bit references.

Follow these steps:

1. Use the -m option when you compile Pascal or C files that reference "far" data. All
Pascal units and the Pascal main (if any) in the program must be compiled using either
-m or -n (see the note for Pascal users below).

2. Implement 32-bit references in assembly language when necessary (see the note for
Assembler users below).

3. Use the linker's -srt option. This option instructs the linker to sort data modules into
near and far groups, placing all 16-bit referenced global data as close to A5 as possible,
and all only-32-bit-referenced data farther away. Thus, any data with a 16-bit
reference is forced to within 32K of AS. You can also use the -ss size option to
suppress the linker's warning about code or data segments larger than 32K.

The -srt option alters the usual 9roering of global data (that is, it is no longer governed
strictly by link command line order).

292 MPW 3.0 Reference

32-bit references-MPW Pascal

If any Pascal unit in a program is compiled with -n or -m, then all Pascal units (including
the Pascal main) must be compiled with either the -m or -n options. For units that don't
need 32-bit references, specify -n.

Historically, Pascal global data was held in a single module (with the same name as the
unit) and referenced by offsets into the module. The -n option generates a named module
per data item (as in C). The -m option implies the -n option.

If you compile one unit (UNITA) with -n and another (UNITB) without -n, and if both
units reference data declared in the other uni~ this situation results:

Unit has variables complled with exports references

UNITA
UNITB

foo, bar
baz, bletch

-nor-m
nothing

foo, bar
_UNITB

baz, bletch
_UNIT A (+offset)

UNITA references data modules in UNITB using variable names (which are never defined),
while UNITB references a module called _UNITA, which is never defined. The link will fail.

32-bit references-MPW Assembler

In assembly language you must explicitly code 32-bit references when you want to avoid
fixing a data module to within 32K of AS. For the MC68000, you could write something
like this:

IMPORT
MOVE.L
MOVE.x

indirect:

LONGDATA:DATA
indirect(PCJ,DO
CA5,DO.L),dest

DC.L LONGDATA

(4/7/9 clocks] offset -> scratch register
[ea: 3/6/7 clocks] access variable CPEA,etc.)

; 32-bit offset of data

In code that is intended to run only on a MC68020, you can do this:
MACHINE
IMPORT
MOVE.x

MC68020
LONGDATA:DATA
((LONGDATAl .L,A5),dest move to destination (or PEA)

[ea: 11/15/25 clocks]

CHAPTER 10 More About Linking 293

+ Note: The MC68020 code, while smaller, runs more slowly than the MC68000 code
shown above if we ignore the possible impact of the temporary register required (11
versus 7 clocks best case, 15 versus 13 clocks cache case, and 25 versus 16 clocks worst
case).

Linker location map

If you specify the Llnk option -map, Llnk writes a location map to standard output. The
map contains information about segments and where modules are located in the
segments. (See note later in this section about optional formats.)

For each code segment, the linker writes a segment map that looks like
Segment "Main" size=$0326 rsrcid=l JTindex=$0000 #JTEnts=$0001

COMPACTMEM $0000 size=$0018 file="Interface.o"
SAVEORETAl $000A
SAVERETAl $000C
SAVE $000E
SAVEO $0014
NEWPTR $0018 size=$000C
CMain $0024 size=$0036 JT=$0000(A5)

RTinit $005A size=$01F4 file="CRunTime.o"
exit $024E size=$0020

RTExit $026E size=$0050
c2pstr $02BE size=$0032
p2cstr $02FO size=$001E
main $030E size=$0018

• The first line indicates the segment's name, size, and resource id. One or more module
or entry point entries follow the segment description.

• JTindex is the number of the segment's first jump table-entry.
• JTEnts indicates the number of jump-table entries belonging to the segment.
• A name of "%?Anon" indicates that the module or entry point is anonymous (was not

given a name by the language processor).
• The first number following the name is the module or entry point's segment offset. (If

the segment is a • CODE • segment, the segment offset doesn't include the 4-byte
segment header required by the Segment Loader.)

• If the entry is for a module, the module's size is indicated.
• If the module or entry point has a jump-table entry, the AS-offset of that entry is

indicated.

The name of the object file that the module came from is printed every time the object
filename changes. That is, if subsequent modules come from the same object file, the
object filename is not printed again (which reduces the size of the location map).

294 MPW 3.0 Reference

Map entries for the global data segment

When linking an application or tool with global data, link writes a map of the global data
segment that looks like:
Segment "%GlobalData"

#0001
_ArgC
_ArgV

EnvP
StandAlone

IntEnv
SAGlbls

foo

size=$0106
-$0106 (AS)
-$0106 (AS)
-$0102 (AS)
-$00FE (AS)
-$00FA (AS)
-$00F6(AS)
-$00C2(AS)
-$0004 (AS)

size=$000C

size=$0004
size=$0034
size=$00BE
size=$0004

hasContents
hasContents
hasContents
hasContents

• The first line summarizes the global data segment, giving only its name and size.

• Subsequent lines indicate the AS-offsets of variables.

• If a line describes a module, the module's size is indicated; if there is no size present,
the line describes an entry point within the module immediately above.

• If the data module contains initialized data, the word • hasContents • follows the
size.

As for code segments, the name of the object file the data module came from is printed
whenever the object file name changes.

Optional map formats for compatibility

The options -I, -la, and -If produce a linker map in an obsolete format This format has
been retained only for compatibility with the MPW Performance Tools, which currently
read the map files to determine module locations. Tools should not depend on the fonnat
of the location map, as it is likely to change in future releases of MPW. (If tools need
information about module locations, they should read symbolic information files
produced with the -Sym option. Documentation on the Sym file format is available
separately from Developer Technical Support.)

CHAPTER 10 More About linking 295

Optimizing your links

Because of the complexity of the linker's functions, the Llnk step is often the longest
single step during incremental rebuilding of your program. The following steps can
substantially speed up link's performance:

• Use a RAM cache. Llnk must open and close many object files. Experience has shown
that large links run up to four times faster when you use a RAM cache of 64K or more on
machines with at least 1 megabyte or more of RAM. (Use the Control Panel desk
accessory to check your RAM cache settings. If you change the setting, you must
restart the system to have the new setting take effect.)

• Use the Jjb utility to combine input files. You can use the Llb command to reduce the
number of input files. Using Llb can give a 10-15 percent improvement in linking
speed. See •ubrary Construction" later in this chapter.

• Eliminate unneeded files. You can eliminate unneeded input to the linker by heeding
the warning "File not needed for link," and removing such files from the link. This
means customizing your link lists, rather than relying on a generic makefile for linking.

• Eliminate unneeded references. You can aJso eliminate unneeded input by using Lib to
remove unreferenced modules. Experience has shown that producing a specialized
library file can increase Link's speed by as much as 40 percent. See the next section,
•ubrary Construction."

Library construction

The Lib tool enables library construction by allowing you to combine object code from
different files and languages into a single object file. For example, you can combine
assembly-language code with C or Pascal. The Lib tool was used for this purpose in
constructing the libraries distributed with MPW.

The tool Lib and its options are described in Part II. This section explains some aspects
of using Lib.

296 MPW 3.0 Reference

Llb reorganizes the input files, placing the combined library file in the data fork of the
output library file. By default, the library output file is given type •OBJ' and creator
'MPs '. Lib's output is logically equivalent to the concatenation of the input files, except
for its optional renaming, resegmentation, and deletion operations, and the possibility of
overriding an external name (as in link). Lib doesn't combine modules into larger modules,
nor does it resolve cross-module references. This limitation guarantees that the output of
a link that uses the output of Llb is the same as that of a link using the "raw" files
produced by the compilers and assembler.

• Why lib can speed up your links

Object files processed with Lib result in significantly faster links than the ·raw·
object files produced by the compilers and assembler. There are several reasons for
the speed improvements:

• Code and Data modules are separated into different sections. and Code
modules are further sorted by segment name. These actions improve the
performance of Link. which must sort input modules into output code
resources.

• All of the named symbols in the object file are gathered into a single Dictionary
area at the start of the file. This makes the output file smaller and simplifies the
processing needed by Link to resolve references.

• When several object files are combined, multiple Instances of a symbol
definition are replaced by a single definition. Again. this makes the output file
smaller and simplifies the processing by Link. •

Llb correctly handles file-relative scoping conventions, such as nested procedures in
Pascal, static functions in C, or ENI'RY names in assembly language; that is, it never
confuses references to an external symbol with references to a local symbol of the same
name, even if the two symbols are in two files combined with Lib.

Using Lib to build a specialized library

Each of the language libraries has files that you may or may not need to link with,
depending on the functions your program calls. (See Appendix A.) Once you determine
which files are needed for linking a particular program, you can greatly improve the
performance of subsequent links by combining libraries into a single specialized library
file. In building a specialized library, you can use Lib to

CHAPTER 10 More About Linking '1!J7

• change segmentation (with the -sg and -sn options)

• change the scope of a symbol from external to local (with the -dn option)

• delete unneeded modules (with the -dm option)

lib's renaming, resegmentation, and deletion operations give you precise control over
external names, the contents of library files, and the segmentation of object code. To use
these features, you may need to review some of the material in Appendix H to understand
how modules and entry points are represented in object files. The DumpObj command is
also useful in exploring the contents and structure of the library files provided with MPW.

Removing unreferenced modules

You can eliminate unneeded input to link by using lib to remove unreferenced modules.
You can detennine the number of unreferenced modules from Link's progress information.
(Use the -p option.) Llnk reports the total number of symbols read, as well as the number
of active symbols (that is, the symbols in the output), and the number of visible symbols
(that is, the symbols requiring jump-table entries)-for example,
155 active and 54 visible entries of 714 read.

The difference between the total read and the number of active symbols is the number of
unreferenced (and unneeded) symbols. Most of these unreferenced symbols represent
standard library functions that your particular program doesn't require.

Unreferenced modules can be removed in three steps:

1. Use Llnk's -uf option to produce a file containing the unreferenced names.

2. Use the -uf fde produced by link as the input to lib, using the Lib option -df to
produce a specialized library that contains only the modules that your program
requires.

3. Use the output of lib as the input to subsequent links.

298 MPW 3.0 Reference

Guidelines for choosing files for a spedali7.ed library

The choice of files to include in a specialized library file is largely dictated by stability
issues. Files that are unlikely to change for many builds are the best candidates. Stable
files include the library files provided by Apple for the ROM interfaces and for language
support. Files that are under development are best left as single files.

Should you find it necessary to change one of the component files of a specialized library,
you don't always need to rebuild the specialized library immediately. You can simply
include the newer version of the object file in the link list by placing it before the
specialized library file that contains the older version. You'll get some warning messages
about duplicate symbols, but all references will be correctly moved to the first definition
encountered by link. Later, after the file is stable again, you can rebuild the library.

CHAPTER 10 More AboutLinking 299

Chapter 11 Resource Compiler and Decompiler

THIS CHAPTER EXPLAINS IBE USE OF TIIE RESOURCE COMPILER (REZ) AND RESOURCE
decompiler (DeRez). The command line syntax for Rez and DeRez is explained in
Part II. The general syntax for resource description files is summarized in
Appendix D. You can build a resource in text form by using Rez, or graphically by
using the application ResEdit. Complete background information on Macintosh
resource files is given in the chapter "Resource Manager" of Inside Macintosh. •

Contents
About the resource compiler and decompiler 303

Resource decompiler 304
Standard type declaration files 304
Using Rez and DeRez 304

Structure of a resource description file 306
Sample resource description file 307

Resource description statements 307
Syntax notation 308

Special terms 308
Include-include resources from another file 308

Syntax 309
AS resource description syntax 309
Resource attributes 310

Read-read data as a resource 310
Syntax 310
Description 310

Data-specify raw data 311
Syntax 311
Description 311

301

Type-declare resource type 311
Syntax 311
Description 312
Data-type specifications 313
Fill and align types 316
Array type 317
Switch type 318
Sample type statement 319

Symbol definitions 319
Delete-delete a resource 320

Syntax 320
Description 320

Change-cliange a resource's vital information 321
Syntax 321
Description 321

Resource-specify resource data 322
Syntax 322
Description 322
Data statements 322
Sample resource definition 323

Labels 324
Syntax 325
Description 325

Built-in functions to access resource data 325
Declaring labels within arrays 326
Label limitations 327
Using labels: two examples 327

Preprocessor directives 330
Variable definitions 331

Include directives 331
If-Then-Else processing 332
Print directive 332

Resource description syntax 333
Numbers and literals 334
Expressions 335
Variables and functions 336
Strings 338

Escape characters 339

302 MPW 3.0 Reference

About the resource compiler and decompiler

The resource compiler, Rez, compiles a text file (or files) called a resource description
file and produces a resource file as output. The resource decompiler, DeRez, decompiles
an existing resource, producing a new resource description file that can be understood by
Rez. Figure 11-1 illustrates the complementary relationship between Rez and DeRez.

• Figure 11-1 Rez and DeRez

Resource Resource Compiler
file (Rez)

Resource Decompiler
(DeRez)

Resource
description

file
('TEXT')

Rez can combine resources or resource descriptions from a number of files into a single
resource file. Rez can also delete resources or change resource attributes. Rez supports
preprocessor directives that allow you to substitute macros, include other files, and use if
then-else constructs. (These are described under the heading "Preprocessor Directives"
later in this chapter.)

CHAPTER 11 Resource Compiler and Decompiler 303

Resource decompiler

The DeRez tool creates a textual representation of a resource file based on resource type
declarations identical to those used by Rez. (If you don't specify any type declarations,
the output of DeRez takes the form of raw data statements.) The output of DeRez is a
resource description file that may be used as input to Rez. This file can be edited in the
MPW Shell, allowing you to add comments, translate resource data to a foreign language,
or specify conditional resource compilation by using the if-then-else structures of the
preprocessor. You can also compare resources by using the MPW Compare command to
compare resource description files.

+ Note: MPW includes a tool, ResEqual, which directly compares resource files. The
Pascal source for ResEqual is located in the PExamples folder. Also see the MPW tool
RezDet, described in Part IL

Standard type declaration f"tles

Four text files, Types.r, SysTypes.r, MPWfypes.r, and Pict.r, contain resource declarations
for standard resource types. These files are located in the {Rincludes} directory, which is
automatically searched by Rez and DeRez (that is, you can specify a file in {Rlncludes} by
its simple ftlename).These files contain definitions for the following types:

Types.r Type declarations for the most common Macintosh
resource types ('ALRT', 'DITL', 'MENU', and so on)

SysTypes.r Type declarations for 'DRVR •, 'FOND•, •FONT•, 'FWID • , • INTL•,

'NFMT ' , and many others

MPWfypes.r Type declarations for the MPW driver type • DRVW •

Pict.r Type declaration for PICT resources for debugging PICTs

Cmdo.r Type declaration for Commando resources

Using Rez and DeRez

Rez and DeRez are primarily used to create and modify resource files. Figure 11-2
illustrates the process of creating a resource file.

304 MPW 3.0 Reference

• Figure 11-2 Creating a resource file

Shell editor or DeRez

Resource
description

(.r) files
('TEXT')

Resource Editor
(Res Edit)

Resource Compiler
(Rez)

Resource
file

Other
resource

files

Rez can also fonn an integral part of the process of building a program. For instance, when
putting together a desk accessory or driver, you would use Rez to combine the linker's
output with other resources, creating an executable program file. (See Chapter 8 for
details on building desk accessories and drivers.)

CHAPTER 11 Resource Compiler and Decompiler 305

Structure of a resource description file

The resource description file consists of resource type declarations (which can be
included from another file) followed by resource data for the declared types. Note that
the resource compiler and resource decompiler have no built-in resource types. You need
to define your own types or include the appropriate ".f' files.

A resource description file may contain any number of these statements:

include

read

data

type

resource

change

delete

Include resources from another file.
Read data fork of a file and include it as a resource.
Specify raw data.
Type declaration-declare resource type descriptions for
subsequent resource statements.
Data specification-specify data for a resource type declared in
a previous type statement.
Change the type, ID, name, or attributes of existing resources.
Delete existing resources.

Each of these statements is described in the sections that follow.

A type declaration provides the pattern for any associated resource data specifications
by indicating data types, alignment, size and placement of strings, and so on. You can
intersperse type declarations and data in the resource description file as long as the
declaration for a given resource precedes any resource statements that refer to it. An error
is returned if data (that is, a resource statement) is given for a type that has not been
previously defined. Whether a type 'W3S declared in a resource description file or in an
include file, you can redeclare it by providing a new declaration later in a resource
description file.

A resource description file can also include comments and preprocessor directives:

• Comments can be included any place white space is allowed in a resource description
file, by putting it within the comment delimiters /* and•/. Note that comments do
not nest. For example, this is one corrunent:

/* Hello /* there */

Rez also supports C++ style comments:

type 'tost' { // the rest of this line is ignored

• Preprocessor directives substitute macro definitions and include files, and
provide if-then-else processing before other Rez processing takes place. The syntax of
the preprocessor is very similar to that of the C-language preprocessor.

306 MPW 3.0 Reference

Sample resource description file

An easy way to learn about the resource description format is to decompile some existing
resources. For example, the following command decompiles only the 'WIND ' resources in
the Sample application, according to the type declaration in {Rlncludes}Types.r.

DeRez Sample -only WIND Types.r > DeRez.Out

Note that Rez automatically finds Types.r in {Rlncludes}. After executing this command,
DeRez.Out would contain the following decompiled resource:

resource 'WIND' (128, "Sample Window") {
{64, 60, 314, 460},

} ;

documentProc,
visible,
noGoAway,
OxO,
"Sample Window"

Note that this statement is identical to the resource description in the file Sample.r, which
was originally used to build the resource. This resource data corresponds to the following
type declaration, contained in Types.r:

type 'WIND' {

} ;

rect;
integer documentProc, dBoxProc, plainDBox,

altDBoxProc, noGrowDocProc,
zoornProc=8, rDocProc=l6;

byte invisible, visible;
fill byte;
byte noGoAway, goAway;
fill byte;
unsigned hex longint;
pstring
/* title */

/* boundsRect */
/* procID */

/* visible */

/* goAway */

/* refCon */
Untitled = "Untitled";

Type and resource statements are explained in detail in the reference section that follows.

Resource description statements

This section describes the syntax and use of the seven types of resource description
statements available forthe resource compiler: include, read, data, type,

delete, change, and resource.

CHAPTER 11 Resource Compiler and Decompiler 307

Syntax notation

The syntax notation in this chapter follows the conventions given in the preface of this
book. In addition, the following conventions are used:

• Words that are part of the resource description language are shown in the Courier font
(following the conventions used in documentation of the C language) to distinguish
them from surrounding text. Rez is not sensitive to the case of these words.

• Punctuation characters such as commas(,), semicolons(;), and quotation marks('
and ") are to be written as shown. If one of the syntax notation characters (for
example, [or]) must be written as a literal, it is shown enclosed by "curly" single
quotation marks (' .. .'); for example,
bitstring '['length~·

In this case, the brackets would be typed literally-they do not mean that the
enclosed element is optional.

• Spaces between syntax elements, constants, and punctuation are optional; they are
shown for readability only.

Tokens in resource description statements may be separated by spaces, tabs, returns, or
comments.

Spedal terms

The following terms represent a minimal subset of the nonterminal symbols used to
describe the syntax of commands in the resource description language:

Term Definition

resource-type long-expression
resource-name string
resource-ID word-expression
ID-range Ill : m

• Note: F.xpression is defined later in this chapter under "Expressions."

A full syntax definition can be found at the end of this chapter and in Appendix D.

Include-include resources from another file

The include statement lets you read resources from an existing file and include all or
some of them ·

308 MPW 3.0 Reference

Syntax

An include statement can take the following forms:

• include file [resource-type['(' resource-name I JD[:ID]') ']];

Read the resource of type resource-type with the specified resource name or resource
ID range in file. If the resource name or ID is omitted, read all resources of the type
resource-type in file. If resource-type is omitted, read all the resources in file.

• include file not resource-type ;

Read all resources not of the type resource-type in file.

• include file resource-typel as resource-type2;

Read all resources of type resource-typel and include them as resources of resource
type2.

• include fileresource-typel '('resource-name I /D[:/D]')'
as resource-type2 '('ID [, resource-name] [,attributes ...]')';

Read the resource of type resource-typel with the specified name or ID range in file,
and include it as a resource of resource-type2 with the specified ID. You can optionally
specify a resource name and resource attributes. (Resource attributes are defined
below.)

Some examples follow:
include "otherfile"; /* include all resources from the file */
include "otherfile" 'CODE'; /* read only the CODE resources*/
include "otherfile" 'CODE' (128); /*read only CODE resource 128 */

AS resource description syntax

The following string variables can be used in the as resource description to modify the
resource information in include statements:

$$Type Type of resource from include file
$$ID ID of resource from include file
$$Name

$$Attributes

Name of resource from include file
Attributes of resource from include file

For example, to include all • DRVR • resources from one file and keep the same information
but also set the SYSHEAP attribute:

INCLUDE "file" 'DRVR' (0:40) AS

'DRVR' ($$ID, $$Name, $$Attributes 64) ;

The $$Type, $$ID, $$Name, and $$Attributes variables are also set and legal
within a normal resource statement. At any other time the values of these variables are
undefined.

CHAPTER 11 Resource Compiler and Decompiler 309

Resource attributes

You can specify attributes as a numeric expression (as described in the chapter "Resource
Manager" of Inside Macintosh), or you can set them individually by specifying one of the
keywords from any of the following pairs:

Default Alternative

appheap sysheap

nonpurgeable purge able

unlocked locked

unprotected protected

nonpreload preload

unchanged changed

Meaning

Specifies whether the resource is to be loaded into
the application heap or the system heap.
Purgeable resources can be automatically purged by
the Memory Manager.
Locked resources cannot be moved by the Memory
Manager.
Protected resources cannot be modified by the
Resource Manager.
Preloaded resources are placed in the heap as soon
as the Resource Manager opens the resource file.
Tells the Resource Manager whether a resource has
been changed. Rez does not allow you to set this
bi~ but DeRez will display it if it is set.

Bits 0 and 7 of the resource attributes are reserved for use by the Resource Manager and
cannot be set by Rez, but are displayed by DeRez.

You can specify more than one attribute by separating the keywords with a comma(,).

Read-read data as a resource

The read statement lets you read a file's data fork as a resource.

Syntax

read resource-type'(' JD[, resource-name] [, attributeSJ ')'file;

Description

Reads the data fork from file and writes it as a resource with the type resource-type and the
resource ID ID, with the optional resource name resource-name and optional resource
attributes (as defined in the preceding section). For example,

read 'STR ' (-789, "Test String", SysHeap, PreLoad) "Test8";

310 MPW 3.0 Reference

Data-specify raw data

Use the data statement to specify raw data as a sequence of bits, without any
formatting.

Syntax

data resource-t}Pe '('JD[, resource-name] [, attril:Jules ...] '}' '{'
data-string

'}';

Description

Reads the data found in data-string and writes it as a resource with the type resource-type
and the ID ID. You can optionally specify a resource name, resource attributes, or both.

For example,

data 'PICT' (128) {
$"4F35FF8790000000"
$"FF234F35FF790000"

} ;

+ Note: When DeRez generates a resource description, it uses the data statement to
represent any resource type that doesn't have a corresponding type declaration or
cannot be disassembled for some other reason.

Type-declare resource type

A type declaration provides a template that defines the structure of the resource data for
a single resource type or for individual resources. If more than one type declaration is
given for a resource type, the last one read before the data definition is the one that's
used. This lets you override declarations from include files or previous resource
description files.

Syntax

type resource-~ [' (' JD-range'} '] ' {'
type-specifu:ation ...

'}' ;

CHAPTER 11 Resource Compiler and Decompiler 311

Desaiption

Causes any subsequent resource statement for the type resource-type to use the
declaration { type-specification ... } . The optional ID-range specification causes the
declaration to apply only to a given resource ID or range of IDs.

Type-specifu:atton is one of the following:
bitstring [n]
byte
integer
longint
boolean
char
string
pstring
wstring
cstring
point
re ct
fill
align
switch
array

Zero fill
Zero fill to nibble, byte, word, or long word boundary
Control construct (case statement)
Array data specification-zero or more instances of
data types

These types can be used singly or together in a type statement. Each of these type
specifiers is described in the sections that follow.

+ Note: Several of these types require additional fields. The exact syntax is given in the
sections that follow.

You can also declare a resource type that uses another resource's type declaration by
using the following variant of the type statement:

type resource-f#l[' ('JD-range')'] as resource-type2 ['('ID ?1;

312 MPW 3.0 Reference

Data-type specifications

A Data-type statement declares a field of the given data type. It can also associate
symbolic names or constant values with the data type. The data-type specification
can take three forms, as shown in this example:

type 'XAMP' /* declare a resource of type 'XAMP' */
byte;
byte off=O, on=l;
byte = 2;

} ;

• The first byte statement declares a byte field; the actual data is supplied in a
subsequent resource statement.

• The second byte statement is identical to the first, except that the two symbolic
names "off" and "on" are associated with the values 0 and 1. These symbolic names
could be used in the resource data.

• The third byte statement declares a byte field whose value is always 2. In this case, no
corresponding statement would appear in the resource data.

Numeric expressions and strings can appear in type statements; they are defined later in
this chapter under "Expressions."

Numeric types: The numeric types (bitstring,byte,integer,longint)are fully
specified like this:
[unsigned] [radix] numeric-type [=expr I symbol-definition ...];

• The Unsigned prefix signals DeRez that the number should be displayed without a
sign-that the high-order bit can be used for data and the value of the integer cannot
be negative. The Unsigned prefix is ignored by Rez but is needed by DeRez to
correctly represent a decompiled number. Rez uses a sign if it is specified in the data.
Precede a signed negative constant with a minus sign (-); $FFFFFF85 and -$7B are
equivalent in value.

• Radix is one of the following string constants:
hex decimal octal binary literal
You can supply numeric data as decimal, octal, hexadecimal, or literal data.

• Numeric-type is one of the following:

bitstring' ['length']' Declare a bitstring of length bits (maximum 32).

byte Declare a byte (8-bit) field. This is the same as
bitstring[8].

integer Integer (16-bit) field. This is the same as bitstring [16].

longint Long integer (32-bit) field. This is the same as
bitstring [32].

CHAPTER 11 Resource Compiler and Decompiler 313

Rez uses integer arithmetic and stores numeric values as integer numbers. Rez translates
booleans, bytes, integers, and longints to bitstring equivalents. All computations are done
in 32 bits and truncated.

An error is generated if a value won't fit in the number of bits defined for the type. The
valid ranges for values of byte, integer, and long int constants are as follows:

Type

byte

integer

long int

Maximum

255
65,535
4,294,967,295

Minimum

-128
-32,768
-2,147,483,648

Boolean type: A Boolean is a single bit with two possible states: 0 (or false) and 1 (or
true). (True and false are global predefined identifiers.) Boolean values are declared
as follows:

boolean [= constant I symbolic-value ...] ;

The type boolean declares a 1-bit field; this is equivalent to
unsigned bitstring(l]

• Note: This type is not the same as a Boolean variable as defined by Pascal.

Character type: Characters are declared as follows:

char [= string I symbolic-value ...] ;

Type Char declares an 8-bit field (this is the same as writing string [1]).

Here is an example:
type 'SYMB' {

char dollar = "$",percent "%";
} ;

resource 'SYMB' (128)
dollar

} ;

String type: String data types are specified like this:

string-type['[' length']'] [=string I symbol-value .. .];

String-type is one of the following:

314 MPW 3.0 Reference

[hex] string Plain string (no length indicator or tennination character is generated).
The optional hex prefix tells DeRez to display it as a hex string.
string [n J contains n characters and is n bytes long. The type char is
shorthand for String [1 J •

pstring Pascal string (a leading byte containing the length information is
generated). Pstring [n] contains n characters and is n+l bytes long.
Pstring has a built-in maximum length of 255 characters, the highest
value the length byte can hold. If the string is too long to fit the field, a
warning is given and the string is truncated.

wstring Word string is a very large pstring. Its length is stored in the first two
bytes. Therefore, a word string can contain up to 65,535 characters.
wstring[n] contains n characters and is n+2 bytes long.

est ring C string (a trailing null byte is generated). est ring [n] contains n-1
characters and is n bytes long. A C string of length 1 can be assigned only
the value "", because cstring [1 J has room only for the terminating
null.

Each string type may be followed by an optional length indicator in brackets ([n J).
Length is an expression indicating the string length in bytes. I.ength is a positive number in
the range 1 S length S 2147483647 for string and est ring, and in the range 1 S length
S 255 forpstring, and in the range l ,$.length~65535 forwstring.

• Note: You cannot assign the value of a literal to a string type.

If no length indicator is given, a pstring, wstring, or est ring stores the number of
characters in the corresponding data definition. If a length indicator is given, the data
may be truncated on the right or padded on the right. The padding characters for all string
types are nulls. If the data contains more characters than the length indicator provides for,
the string is truncated and a warning message is given.

& Warning A null byte within a est ring is a termination indicator and may
confuse DeRez and C programs. However, the full string,
including the explicit null and any text that follows it, will be stored
by Rez as input. ..

Resource description statements: Point and rectangle types: Because points and rectangles
appear so frequently in resource files, they have their own simplified syntax:
point [=point-constant I symbolic-valu.e ...] ;
re ct [= rnct-constant I symbolic-valu.e ...] ;

where
point-constant = ' { 'x-integer-expr, y-integer-expr '}'

CHAPTER 11 Resource Compiler and Decompiler 315

and
rect-constant = '{'integer-expr, integer-expr, integer-expr, integer-expr'}'

These type statements declare a point (two 16-bit signed integers) or a rectangle (four 16-
bit signed integers). The integers in a rectangle definition specify the rectangle's upper
left and lower-right points, respectively.

Fill and align types

The resource created by a resource definition has no implicit alignment. It's treated as a
bit stream, and integers and strings can start at any bit. The f i 11 and a 1 i gn type
specifiers are two ways of padding fields so that they begin on a boundary that
corresponds to the field type. Align is automatic and fill is explicit. Both fill and
align generate zero-filled fields.

Fill spedfication: The f i 11 statement causes Rez to add the specified number of bits
to the data stream. The fill is always 0. The form of the statement is

fill fill-size [c [' lengtlt] '] ;

where fill-size is one of the following strings:
bit nibble byte word long

These declare a fill of 1, 4, 8, 16, or 32 bits (optionally multiplied by the length modifier).
Length is an expressions; 2147483647.

The following fill statements are equivalent:
fill word[2]:
fill long;
fill bit[32];

The full form of a type statement specifying a fill might be:

type 'XRES' tdata-typespecifications; fill bit[2];};

+ Note: Rez supplies zeros as specified by fill and align statements. DeRez does not
supply any values for fill or align statements; it just skips the specified number of
bits, or until data is aligned as specified.

Align spedfication: Alignment causes Rez to add fill bits of zero value until the data is
aligned at the specified boundary. An alignment statement takes the following form:

align align-size ;

where align-size is one of these strings:

nibble byte word long

316 MPW 3.0 Reference

Alignment pads with zeros until data is aligned on a 4-, 8-, 16-, or 32-bit boundary. This
alignment affects all data from the point where it is specified until the next align

statement.

Array type

An array is declared as follows:

[wide J array [a1Tay-name I '[' lengtlt] 'J '{' a1Tay-/ist'} ';

The a1Tay-/ist, a list of type specifications, is repeated zero or more times. The wide

option outputs the array data in a wide display format (in DeRez}-the elements that
make up the array-list are separated by a comma and space instead of a comma, return,
and tab. Either array-name or [length] may be specified. A1Tay-name is an identifier.

If the array is named, then a preceding statement should refer to that array in a constant
expression with the $$countof(array-name) function; otherwise DeRez will treat the
array as an open-ended array. For example,

type 'STRf' { /* define a string list resource */
integer= $$Countof(StringArray);
array StringArray {

pstring;
} ;

} ;

The $$countof function returns the number of array elements (in this case, the number
of strings) from the resource data.

If [length] is specified, there must be exactly length elements.

Array elements are generated by commas. Commas are element separators. Semicolons are
element terminators. In this example, however, it may be a good idea to use semicolons as
element separators:
type 'xyzy' {

array Increment
integer= $$Arrayindex(Incrernent);

} ;

} ;

resource 'xyzy' (0) {
/* zero elements */

} ;

resource 'xyzy' (1) {
/* two elements */

) ;

CHAITER 11 Resource Compiler and Decompiler 317

resource 'xyzy' (3) {
/* two elements */
; i

} ;

/* The only way to specify one element in an array that has all
constant elements, is to use a semicolon terminator.

/*
resource 'xyzy' (4) {

/* one element */
;

} ;

Switch type

The switch statement specifies a number of case statements for a given field or fields
in the resource. The format is:

switch'{' case-statement ... '}';

where a case-statement has this form:

case case-name : I case-body ; J •••

Case-name is an identifier. Case-body may contain any number of type specifications and
must include a single constant declaration per case, in this form:

key data-type= constant

Which case applies is based on the key value. For example,

type 'DITL' { I* dialog item list declaration from Types.r */

} ;

... type specifications ...
switch { /* one of the following */
case Button:

boolean enabled, disabled;
key bitstring[7] = 4; /* key value */
pstring;

case CheckBox:

} ;

boolean enabled, disabled;
key bitstring[7] = 5; /* key value */
pstring;

.•. and so on.

318 MPW 3.0 Reference

Sample type statement

The following sample type statement is the standard declaration for a •WIND • resource,
taken from the Types.r file:

type 'WIND' {
rect;
integer

byte
fill byte;
byte
fill byte;

documentProc, dBoxProc, plainDBox,
altDBoxProc, noGrowDocProc,
zoomProc=S, rDocProc=l6;
invisible, visible;

noGoAway, goAway;

unsigned hex longint;
pstring Untitled= "Untitled";

} ;

/* bounds
/* procID

I* visible

/* close box

/* ref Con
/* title

The type declaration consists of header information followed by a series of statements,
each terminated by a semicolon(;). The header of the sample window declaration is

type 'WIND'

The header begins with the Type keyword followed by the name of the resource type
being declared-in this case, a window. You may specify a standard Macintosh resource
type, as shown in the chapter "Resource Manager" of Inside Macintosh, or you may declare
a resource type specific to your application.

The left brace m introduces the body of the declaration. The declaration continues for as
many lines as necessary until a matching right brace} is encountered. You can write more
than one statement on a line, and a statement may be on more than one line (like the
Integer statement above). Each statement represents a field in the resource data. Recall
that comments may appear anywhere where white space may appear in the resource
description file; comments begin with I* and end with I* as in C.

Symbol definitions

Symbolic names for data type fields simplify the reading and writing of resource
definitions. Symbol definitions have the form

name= value[, name= value] ...

*/
*/

*/

*I

*I
*I

CHAPTER 11 Resource Compiler and Decompiler 319

For numeric data, the "= value " part of the statement can be omitted. If a sequence of
values consists of consecutive numbers, the explicit assignment can be left out-if value
is omitted, it's assumed to be one greater than the previous value. (The value is assumed
to be zero if it's the first value in the list) This is true for bitstrlngs (and their derivatives,
byte, integer, and longint). For example,

integer documentProc, d.BoxProc, plainDBox,
altDBoxProc, noGrowDocProc,
zoomProc=S, rDocProc=l6;

In this example, the symbolic names documentProc, dBoxProc, plainDBox, altDBoxProc,
and noGrowDocProc are automatically assigned the numeric values 0, 1, 2, 3, and 4.

Memory is the only limit to the number of symbolic values that can be declared for a single
field. There is also no limit to the number of names you can assign to a given value; for
example,

integer documentProc=O, d.BoxProc=l, plainDBox=2, altDBoxProc=3,
rDocProc=l6, Document=O, Dialog=l, DialogNoShadow=2,
ModelessDialog=3, DeskAccessory=l6;

Delete-delete a resource

Sometimes you may want to delete a resource without switching to ResEdit Some
resource operations, such as those needed by "internationalizing" system disks and
applications need to translate menu and dialog text, and hence require deleting or
changing resources.

Syntax

delete resourre-type ['('resource-name I ID [: ID]')'];

Description

Delete the resource of type resource-type from the output file with the specified resource
name or resource ID range. If the resource name or ID is omitted, all resources of type
resource-type are deleted.

• Note: Of course, the delete function is valid only when the -a (append) option is
specified in the command line. It makes no sense to delete resources while creating a
new resource file from scratch.

You can delete resources that have their protected bit set only if you use the -ov option.

320 MPW 3.0 Reference

Here is an example of an executable Shell command that deletes the 'ckid' resource
from a file:

echo "delete 'ckid';" I rez -a -o SomeTextFile

Change-change a resource's vital information

You can change a resource's vital information by using this function. Vital information
includes the resource type, ID, name, attributes, or any combination of these at once.

Syntax

change resource-typel [' (' resource-name1 ID C: ID]'> 'l
to resource-type2 '('ID c, resource-name] c, attributes. ..]'>':

Description

Change the resource of type resource-typel from the output file with the specified
resource name or resource ID range to a resource of type resource-type2 with the specified
ID. You can optionally specify a resource name and resource attributes. If the resource
name or attributes are not specified, the name and attributes are not changed.

For example, here is a Shell command that sets the protected bit on all code resources in
the file TestDA:

echo "change 'CODE' to $$type ($$Id,$$Attributes I 8);" a
I rez -a -o TestDA

• Note: The change function is only valid when the -a (append) option is specified in
the command line. It makes no sense to change resources while creating a new
resource file from scratch.

CHAPTER 11 Resource Compiler and Decompiler 321

Resource--5J>ecify resource data

Resource statements specify actual resources, based on previous type declarations.

Syntax

resource resource-t)pe '('JD[, resource-name] [, attribul~ ')' '{'
[data-statement [, data-statement] ...]

I}';

Desaiption

Specifies the data for a resource of type resource-type and ID ID. The latest type
declaration declared for resource-type is used to parse the data specification. Data
statements specify the actual data; data-statements appropriate to each resource type are
defined in the next section.

The resource definition causes an actual resource to be generated. A resource
statement can appear anywhere in the resource description file, or even in a separate file
specified on the command line or as an t include file, as long as it comes after the
relevant type declaration.

Data statements

The body of the data specification contains one data statement for each declaration in
the corresponding type declaration. The base type must match the declaration.
Base type Instance types
string
bitstring
re ct
point

string, cstring, pstring, wstring, char
boolean, byte, integer, longint, bitstring
re ct
point

Switch data: Switch data statements are specified by using this fonnat:
switch-name data-body

For example, the following could be specified for the •DI TL • type given earlier:

CheckBox { enabled, "Check here" },

Array data: Array data statements have this format:
'{' [a7Tay-elemenl [, atray-element] ...] '}'

where an a7Tay-element consists of any number of data statements separated by commas.

322 MPW 3.0 Reference

For example, the following data might be given for the • STRt • resource defined earlier:

resource 'STRf' (280) {
"this" t
"is" t
nan I

"test"

} ;

Sample resource definition

This section describes a sample resource description file for a window. (See the chapter
"Window Manager" of Inside Macintosh for information about resources in windows.)

Here, again, is the type declaration given above under "Sample Type Statement":

type 'WIND' {
rect;
integer

I* bounds */
documentProc, dBoxProc, plainDBox,
altDBoxProc, noGrowDocProc,
zoomProc=8, rDocProc-16;

I* procID */

byte invisible, visible; /* visible */
fill byte;
byte noGoAway, goAway;
fill byte;
unsigned hex longint;
pstring Untitled = "Untitled";

} ;

/* close box */

/* refCon */
/* title */

Here is a typical example of the window data corresponding to this declaration:

resource 'WIND' (128,"My window",appheap,preload) {
*I

I* Status report window

{40,80,120,300}, /* Bounding rectangle
document.Proc, I* documentProc etc ..
Visible, /* Visible or Invisible
qoAway, I* GoAway or NoGoAway
0, I* Reference value Ref Con
"Statu:'! Report" /* Title
} ;

This data definition declares a resource of type •WIND • , using whatever type declaration
was previously specified for •WIND• . The resource ID is 128; the resource name is "My
window." Because the resource name is represented by the Resource Manager as a
pstring, it should not contain more than 255 characters. The resource name may contain
any character including the null character ($00). The resource will be placed in the
application heap when loaded, and it will be loaded when the resource file is opened.

*/
*/
*/
*/

*/
*/

CHAPTER 11 Resource Compiler and Decompiler 323

The first statement in the window type declaration declares a bounding rectangle for the
window:

rect;

The rectangle is described by two points: the upper-left corner and the lower-right comer.
The points of a rectangle are separated by commas like this:

{top, left, bottom, right}

An example of data for these coordinates is

{40,80,120,300}

Symbolic names: Symbolic names may be associated with particular values of a numeric
type. Notice that a symbolic name is given for the data in the second, third, and fourth
fields of the window declaration. For example,

integer documentProc=O, dBoxProc=l, plainDBox=2,
altDBoxProc=3, noGrowDocProc=4,
zoomProc=8, rDocProc=16; /* windowType */

This statement specifies a signed 16-bit integer field with symbolic names associated
with the values 0 to 4 and 16. The values 0 through 4 need not be indicated in this case; if
no values are given, symbolic names are automatically given values starting at 0, as
explained previously.

In the sample window declaration, we gave the values True (l) and False (0) to two
different byte variables. For clarity, we used those symbolic names in the window's
resource data; that is,
visible,
goAway,

instead of their equivalents
TRUE,
TRUE,

or
1,
1,

Labels

labels support some of the more complicated resources such as 'NFNT ' and color
QuickDraw resources. Use labels within a resource type declaration to calculate offsets
and permit accessing of data at the labels.

324 MPW 3.0 Reference

Syntax

label : :=
character
number : :=
alphanum : : =

character {alphanum}* '·'
'_' I A I B I C ...
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9
character I number

Description

labeled statements are valid only within a resource type declaration. labels are local to
each type declaration. More than one label can appear on a statement.

labels may be used in expressions. In expressions, use only the identifier portion of the
label (that is, everything up to, but excluding, the colon). See "Declaring labels Within
Arraysn later in this chapter for more information.

The value of a label is always the offset, in bits, between the beginning of the resource and
the position where the label occurs when mapped to the resource data. In this example,

type 'cool' {
cstring;

endOfString:
integer = endOfString;

} ;

resource 'cool' (8) {
"Neato"

the integer following the cstring would contain:

(len("Neato") [SJ + null byte [1)) * 8 [bits per byte) = 48.

Built-in functions to access resource data

In some cases, it is desirable to access the actual resource data that a label points to.
Several built-in functions allow access to that data:

• $$BitField(label, startingPosition, numberOfBits)
Returns the numberOfBits (maximum of 32) bitstring found startingPosition bits
from label.

• $$Byte(label)
Returns l.i1e byte found at label.

• $$Word(label)
Returns the word found at label.

• $$Long(label)
Returns the longword found at label.

CHAPTER 11 Resource Compiler and Decompiler 325

For example, the resource type 'STR' could be redefined without using a pstring.

Here is the definition of 'STR' from Types.r:

type 'STR' {
pstring;

Here is a redefinition of 'STR ' using labels:

type I STR ' {
len: byte = (stop - len) I 8 - 1;

string[$$Byte(len)];
stop:
} ;

Declaring labels within arrays

labels declared within arrays may have many values. For every element in the array, there is
a corresponding value for each label defined within the array. Use array subscripts to
access the individual values of these labels. The subscript values range from 1 to n where n
is the number of elements in the array. labels within arrays that are nested in other arrays
require multidimensional subscripts. Each level of nesting adds another subscript. The
rightmost subscript varies most quickly. Here is an example:

type 'test' {
integer= $$CountOf(arrayl);
array arrayl {

integer= $$Count0f(array2);
array array2 {

foo: integer;
} ;

} ;

} ;

resource 'test' (128)

} ;

{1,2,3},
{4,5}

In the above example, the label foo takes on these values:

foo[l,1]
foo[l,2]
foo (1, 3]
foo[2,l]
foo[2,2]

32
48
64
96
112

326 MPW 3.0 Reference

$$Word(foo[l,1])
$$Word(foo[l,2])
$$Word(foo[l,3])
$$Word(foo[2,1])
$$Word(foo[2,2])

1
2
3
4
5

A new built-in function may be helpful in using labels within arrays:
$$Arrayindex(arrayname)

This function returns the current array index of the array arrayname. An error occurs if this
function is used anywhere outside the scope of the array arrayname.

Label limitations

Keep in mind the fact that Rez and DeRez are basically one-pass compilers. This will help
you understand some of the limitations of labels.

• Note: To decompile (or "deRez") a given type, that type must not contain any
expressions with more than one undefined label. An undefined label is a label that
occurs lexically after the expression. To define a label, use it in an expression before
the label is defined.

This example demonstrates how expressions can only have only one undefined label:
type 'test' {

/* In the expression below, start is defined, next is undefined.*/
start: integer = next - start;

/* In the expression below, next is defined because it was used
in a previous expression, but final is undefined.*/

middle: integer = final - next;
next: integer;
final:
} ;

Actually, Rez can compile types that have expressions containing more than one
undefined label, but DeRez cannot decompile those resources and simply generates data

resource statements.

+ Note: The label specified in SSBitField (),$$Byte (),$$Word (),and
s s Long () must occur lexically before the expression; otherwise, an error is
generated.

Using labels: two examples

The first example shows the modified • ppa t • declaration using the new Rez labels.
Boldface text in the example indicates everything that is different between the 2.0 and
3.0 versions of • ppa t • because of the use of labels. Without using labels, the whole end
section of the resource would have to be combined into a single hex string (everything
following the PixelData label). Using labels, the complete 'ppat' definition can be
expressed in Rez language.

CHAPTER 11 Resource Compiler and Decompiler 3Z'7

type 'ppat' {

to

/* PixPat record */
integer

unsigned
unsigned

data
fill long;
fill word;
fill long;

oldPattern,

longint
longint

*/

= PixMap I 8;
= Pixel.Data I

hex string [8];

PixMap:

fill long;
unsigned bitstring[l] = l;
unsigned bitstring[2] 0;
unsigned bitstring[l3];
rect;
integer;
integer unpacked;
unsigned lonqint;
unsigned hex longint;
unsigned hex longint;

/* Pattern type
newPattern,
ditherPattern;
/* Offset to pixmap

8;

/* Expanded pixel image
/* Pattern valid flag
/* expanded pattern
/* old-style pattern
/* PixMap record

I* Base address
/* New pixMap flag
/* Must be 0
/* Offset to next row
/* Bitmap bounds
/* pixMap vers number
/* Packing format
I* size of pixel data
/* h. resolution (ppi)
/* v. resolution (ppi)

integer chunky, chunkyPlanar, plana;r;
storage foi:mat */

integer; /* t bits in pixel

*/

*/
I* Off set

*/
*/
*/
*/
*/

*I
*/
*/
*/
*I
*/
*/
*/

(fixed)*/
(fixed)*/

/* Pixel

integer; /* t components in pixel
*/
*/
*/
*/

integer; /* t bits per field
unsigned lonqint; /* Offset to next plane
unsigned longint = Col.orTabl.e I 8; /* Offset

to color table */
fill long; /* Reserved */

Pixel.l>ata:
hex string [(Col.orTabl.e - Pixel.Data) I 8);

Col.orTable:
unsigned hex l.ongint; I* ct Seed *I
integer; I* trans%ndex *I
integer = $$Countof(Co1orSpec) - 1; I* ctSize *I
wide array Col.orSpec {

integer; I* val.ue *I
unsigned integer; I* RGB: red *I
unsigned integer; I* green *I
unsigned integer; I* bl.ue *I

} ;

} ;

328 MPW 3.0 Reference

Here is another example of a new resourt:e definition with the new features in bold. In this
example, the $$Bi tField c > function is used to access information stored in the
resource, in order to calculate the size of the various data areas added at the end of the
resource. Without labels, all data would have to be combined into one hex string.

type r cicn r {

/* IconPMap (pixMap) record */
fill long;
unsigned bitstring[lJ = 1;
unsigned bitstring[2J = O;

pMapRowBytes: unsigned bitstring[13J;
Bounds:rect;

integer;
integer unpacked;

/* Base address */
/* New pixMap flag */
/* Must be 0 */
/* Offset to next row */
/* Bitmap bounds */
/* pixMap vers number */
/* Packing format */
/* Size of pixel data */ unsigned longint;

unsigned hex longint;
unsigned hex longint;

/* h. resolution (ppi) (fixed)*/
/* v. resolution (ppi) (fixed)*/

integer chunky, chunkyPlanar,
integer;
integer;
integer;
unsigned longint;
unsigned longint;
fill long;

fill long;
maskRowBytes: integer;

rect;

fill long;
iconBMapRowBytes: integer;

rect;
fill long;

planar; /* Pixel storage fo:rmat */
/* t bits in pixel */
/* t components in pixel */
/* t bits per field */
/* Offset to next plane */
I* Offset to color table */
I* Reserved *I

/* IconMask (bitMap) record
/* Base address */
I* Row bytes */
/* Bitmap bounds *I

/* IconBMap (bitMap) record
I* Base address */
I* Row bytes */
I* Bitmap bounds *I
/* Handle placeholder *I

*I

*I

CHAPTER 11 Resourc:e Compiler and Decompiler 329

/* Mask data *I
hex string [$$Word(maskRowBytes) * ($$BitField(Bounds, 32,

16) /*bottom* I
$$BitField(Bounds, 0, 16) /*top*/)];

/* BitMa.p data *I
hex string [$$Word(iconBMapRowBytes) *

($$BitField(Bounds, 32, 16)/*bottom*/
- $$BitField(Bounds, 0, 16) /* top */)];

I* Color Table *I
unsigned hex longint; I* ct Seed
integer; /* trans:Index
integer = $$Countof(ColorSpec) - l;

ct Size *I

} ;

wide array ColorSpec {
integer; I* value
unsigned integer; I* RGB: red
unsigned integer; I* green
unsigned integer; I* blue

} ;

I* PixelMap
hex string

data */
[$$BitField(pMapRowBytes,0,13) *
($$BitField(Bounds,32,16) /* bottom
$$BitField(Bounds, 0, 16) /*top*/)];

Preprocessor directives

Preprocessor directives substitute macro definitions and include files and provide
if-then-else processing before other Rez processing takes place.

The syntax of the preprocessor is very similar to that of the C-language preprocessor.
Preprocessor directives must observe these rules and restrictions:

• Each preprocessor statement must be expressed on a single line, beginning on a new
line and terminated by a rerum character.

• The pound sign (#) must be the first character on the line of the preprocessor
statement (except for spaces and tabs).

• Identifiers (used in macro names) may be letters (A-Z, a-z), digits (0-9), or the
underscore character (_).

330 MPW 3.0 Reference

*I
*/
/*

*/
*/
*/
*/

*/

• Identifiers may be any length.

• Identifiers may not start with a digit.

• Identifiers are not case sensitive.

Variable definitions

The #define and #undef directives let you assign values to identifiers:

#define macro data
#undef macro

The #define directive causes any occurrence of the identifier macro to be replaced
with the text data. You can extend a macro over several lines by ending the line with the
backslash character (\), which functions as the Rez escape character. For example,

#define poem "I wander \
thro\' each\
charter\'d street"

(Quotation marks within strings must also be escaped.)

#undef removes the previously defined identifier macro. Macro definitions can also be
removed with the -undef option on the Rez command line.

The following predefined macros are provided:

Variable Value
true 1
false 0
rez 1 or 0 (1 if Rez
derez 1 or 0 (0 if Rez

Include directives

The #include directive reads a text file:

#include file

is
is

running, 0 if DeRez
running, 1 if DeRez

Include the text file file. The maximum nesting is to ten levels. For example,

#include S$Shell("MPW") "MyProject:MyTypes.r"

is running)
is running)

Note that the #include preprocessor directive (which includes a file) is different from
the previously described include statement, which copies resources from another
file.

CHAPTER 11 Resource Compiler and Decompiler 331

If-Then-Else processing

These directives provide conditional processing:

f:if expression
(f:elif expression
(#else J
f:endif

+ Note: F.xpression is defined later in this chapter. When used with the Hf and tel if
directives, expression may also include this expression:
defined identifier or defined'(' identifier'>'

The following may also be used in place of ti f:

fifdef macro
fifndef macro

For example,
fdefine Thai
Resource 'STR ' (199)
fifdef English

"Hello"
felif defined (French)

·"Bonjour"
felif defined (Thai)

"Sawati"
felif defined (Japanese)

"Konnichiwa"
fendif
} ;

Print dJrective

The fprintf directive is provided to aid in debugging resourte description files:

fprintf (formatString, arguments_.)

The format of the tprintf statement is exactly the same as the printf statement in
the C language, with one exception: There can be no more than 20 arguments. This is the
same restriction that applies to the SSformat function. The f:printf directive writes
its output to diagnostic output Note that the fprin t f directive does not end with a
semicolon.

332 MPW 3.0 Reference

For example:

#define Tuesday 3
Hfdef Monday
#printf("The day is Monday, day #%d\n", Monday)
#elif defined(Tuesday)
#printf("The day is Tuesday, day f%d\n", Tuesday)
felif defined(Wednesday)
fprintf("The day is Wednesday, day f%d\n", Wednesday)
felif defined(Thursday)
fprintf("The day is Thursday, day f%d\n", Thursday)
#else
fprintf("DON'T KNOW WHAT DAY IT IS!\n")
fendif

The above file generates this text:

The day is Tuesday, day #3

Resource description syntax

This section describes the details of the resource description syntax. For a complete
summary definition, see Appendix D.

CHAPTER 11 Resource Compiler and Decompiler 333

Numbers and literals

All arithmetic is performed as 32-bit signed arithmetic. The basic constants are shown in
Table 11-1

• Table 11-1

Numeric: type

Decimal

Hex

Octal

Binary

Literal

Numeric constants

nnn ...

oxhhh ...

$hhh .. .

Oooo .. .

OBbbb ...

'aaaa'

Signed decimal constant between 4,294,967,295 and
-2,147,483,648.

Signed hexadecimal constant between OX7FFFFFFF and
OX80000000.

Alternate form for hexadecimal constants.

Signed octal constant between 017777777777 and
020000000000.

Signed binary constant between
OB11111111111111111111111111111111 and
OBlOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.

A literal may contain one to four characters. Characters
are printable ASCII characters or escape characters.If
there are fewer than four characters in the literal,
then the characters to the left (high bits) are assumed to
be $00. Characters that are not in the printable character
set, and are not the characters \ ' and \ \ (which have
special meanings), can be escaped according to the
character escape rules. (See "Strings" later in this
section.)

literals and numbers are treated in the same way by the resource compiler. A literal is a
value within single quotation mar.ks; for instance, •A• is a number with the value 65; on
the other hand, "A" is the character A expressed as a string. Both are represented in
memory by the bitstring 01000001. (Note, however, that n An is not a valid number and
'A • is not a valid string.) The following numeric expressions are all equivalent:

'B'
66
'A'+l

334 MPW 3.0 Reference

literals are padded with nulls on the left side so that the literal 'ABC • is stored as shown
in Figure 11-3.

• Figure 11-3 Padding of literals

"ABC''" I $00 I A I B I c

Expressions

An expression may consist of simply a number or literal. Expressions may also include
numeric variables, labels, and system functions.

Table 11-2 lists the operators in order of precedence with highest precedence first
groupings indicate equal precedence. Evaluation is always left to right when the priority is
the same. Variables are defined following the table.

• Table 11-2

Operator

1. (expr)

2. -expr
-expr
!expr

3. exprl * expr2
exprl I expr2
exprl % expr2

4. exprl + expr2
exprl - expr2

5. exprl << expr2
exprl >> expr2

6. exprl > expr2
exprl >= expr2
exprl < expr2
exprl <= e:xpr2

Resource description expression operators

Parentheses can be used in the normal manner to force precedence
in expression calculation

Arithmetic (two's complement) negation of expr
Bitwise (one's complement) negation of expr
Logical negation of expr
Multiplication
Division
Remainder from dividing exprl by expr2
Addition
Subtraction

Shift left-shift exprl left by expr2 bits
Shift right-shift e:xprl right by expr2 bits

Greater than
Greater than or equal to
Less than
Less than or equal to

(Continued)

CHAPTER 11 Resource Compiler and Decompiler 335

• Table 11-2 (Continued) Resource description expression operators

Operator Meaning

7. e:xprl == e:xpr2 Equal
e:xprl ! = e:xpr2 Not equal

8. e:xprl & e:xpr2 Bitwise AND

9. e:xprl A expr2 Bitwise XOR

10. e:xprl I e:xpr2 Bitwise OR

11. e:xprl & & e:xpr2 Logical AND

12. e:xprl I I e:xpr2 Logical OR

The logical operators!,>,>=,<,<=, ==, !=,&&,and 11 evaluate to 1 (true) or 0 (false).

Variables and functions

Some resource compiler variables contain commonly used values. All Rez variables start
with $ $ followed by an alphanumeric identifier.

The following variables and functions have string values (typical values are given in
parentheses):

$$Date Current date. Useful for putting timestamps into the resource
file. The format is generated through the ROM call
IUDateString. ("Thursday, May 20, 1987")

$$Format ("formatString", arguments)

$$Name

336 MPW 3.0 Reference

Works just like the :tprintf directive except that $$format
returns a string rather than printing to standard output. (See the
section "Print Directive" earlier in this chapter.)

Name of resource from the current resource. The current
resource is the resource being generated in a resource
statement, being included from an include statement, being
deleted from a delete statement, or changed in a change
statement.

For example, to include all • DRVR • resources from one file and
keep the same information, but also set the SYSHEAP
attribute:

INCLUDE "file" 'DRVR' (0:40) AS
'DRVR ($$ID, $$Name, $$Attributes 64)

The $$Type, $$ID, $$Name, and $$Attributes variables
are undefined outside of a change, delete, incl.ude, or
resource statement.

$$Resource <"filename', 'type', ID I "resourceName')
Reads the resource ' type' with the ID ID or the name
"resourceNami' from the resource file "fl/enami', and returns a
string.

$$Shell ("stringExpr'') Current value of the exported Shell variable {string.Expr}. Note
that the braces must be omitted, and the double quotation
marks must be present.

$$Time Current time. Useful for time-stamping the resource file. The
format is generated through the ROM call IUTimeString.
("7:50:54 AM")

$$Version Version number of Rez. ("V3.0")

These variables and functions have numeric values:

$$Attributes Attributes of resource from the current resource. See the
$$Name string variable.

$$BitField(labe1, startingPosition, numberOfBits)
Returns the numberOfBits (maximum of 32) bitstring found
startingPosition bits from label.

$$Byte (label) Returns the byte found at label.

$$Day Current day. Range 1-31.

$$Hour Current hour. Range 0-23.

$$ID ID of resource from the current resource. See the $$Name string
variable.

$$Long (label) Returns the longword found at label.

$$Minute Current minute. Range 0-59.

$$Month Current month. Range 1-12.

$$PackedSize(Start, RowBytes, RowCount)
Given an offset (Start) into the current resource and two
integers, RowBytes and RowCount, this function calls the
ToolBox routine UnpackBits RowCount times.
$$PackedSize() returns the unpacked size of the data
found at start. Use this function only for decompiling resource
files. An example of this function is found in Pictr.

CHAPTER 11 Resource Compiler and Decompiler 337

$$ResourceSize

$$Second

$$Type

$$Weekday

$$Word(1abe1)

$$Year

Strings

Current size of resource in bytes. When decompiling,
$$Resourcesize is the actual size of the resource being
decompiled. When compiling, $$Resourcesize returns the
number of bytes that have been compiled so far for the current
resource. (See the ' KCHR • resource in SysTypes.r for an
example.)

Current second. Range 0-59.

Type of resource from the current resource. See the $$Name
string variable.

Current day of the week. Range 1-7 (that is, Sunday-Saturday).

Returns the word found at label.

Current year.

There are two basic types of strings:

Text string "a. .. " The string can contain any printable character except ' " ' and '\ '.

Hex string

These and other characters can be created through escape
sequences. (See Table 8-2.) The string " " is a valid string of
length 0.

$ "hh ... " Spaces and tabs inside a hexadecimal string are ignored. There
must be an even number of hexadecimal digits. The string $ " " is
a valid hexadecimal string of length 0.

Any two strings (hexadecimal or text) will be concatenated if they are placed next to each
other with only white space in between. (In this case, returns and comments are
considered white space.)

Figure 11-4 shows a Pascal string declared as

pstring [10];

whose data definition is

"Hello"

• Figure 11-4 Internal representation of a Pascal string

338 MPW 3.0 Reference

In the input file, string data is surrounded by double quotation marks("). You can
continue a string on the next line. A separating token (for example, a comma) or brace
signifies the end of the string data. A side effect of string continuation is that a sequence
of two quotation marks (" ") is simply ignored. For example,

"Hello ""out 11

"there."

is the same string as

"Hello out there.";

To place a quotation mark character within a string, precede the quotation mark with a
backslash like this

(\ ").

Escape chanctcrs

The backslash character {\) is provided as an escape character to allow you to insert
nonprintable characters in a string. For example, to include a newline character in a string,
use the escape sequence

\n

Valid escape sequences are shown in Table 11-3.

• Table 11-3 Resource compiler escape sequences

Escape Hex Printable
sequcac:c Name value equmlcot

\t Tab $09 None
\b Backspace $08 None
\r Return $0A None
\n Newline $OD None
\f Fonn feed $0C None
\v Vertical tab $OB None
\? Rubout $7F None
\\ Backslash $5C \

\' Single quotation mark $3A
\II Double quotation mark $22 "

CHAPTER 11 Resource Compiler and Decompiler 339

You can also use octal, hexadecimal, decimal, and binary escape sequences to specify
characters that do not have predefined escape equivalents. The forms are:

Number
Base form Digits Example

2 \ 0 B bbbbbbbb 8 \OB01000001

8 \000
10 \ODddd
16 \OXhh
16 \$hh

Here are some examples:

\077
\OxFF
\$Fl\$F2\$F3
\Od099

3 \101

3 \OD065

2 \0X41

2 \$41

/* 3 octal digits */
/* 'Ox' plus 2 hex digits */
/* '$' plus 2 hex digits */
/* 'Od' plus 3 decimal digits */

• Note to C programmers: An octal escape code consists of exactly three digits. For
instance, to place an octal escape code with a value of 7 in the middle of an
alphabetic string, write AB\007CD, not AB\ 7CD.

You can use the DeRez command line option -e to print characters that would otherwise
be escaped (characters preceded by a backslash, for example). Normally, only characters
with values between $20 and $08 are printed as Macintosh characters. With this option,
however, all characters (except null, newline, tab, backspace, form-feed, vertical tab, and
rubout) will be printed as characters, not as escape sequences. See DeRez in Part II for
details.

340 MPW 3.0 Reference

Chapter 12 Writing an MPW Tool

THIS CHAPTER PROVIDES INFORMATION SPECIFIC TO WRITING AN INTEGRATED MPW
TOOL. You'll find the utility routines used by tools that run within the MPW Shell
environment and how to access them. •

Contents

Overview 343
Conventions 344

Status Codes 345
Restrictions 346

Initialization 346
Memory Management 347

Heap 349
Stack 349

Building an MPW tool 350
linking a tool 350

Programming for the MPW Shell 351
Accessing the MPW Shell-MPW C 351
Accessing the MPW Shell-MPW Pascal 352
Accessing the MPW Shell-Assembler 353

Importing the routines 353
Assembler calling conventions 353
The RTinit function 354
Files to link with 355

Parameters 355
Accessing MPW command-line parameters-MPW C 357
Accessing MPW command-line parameters-MPW Pascal 357
Accessing MPW command-line parameters-Assembler 358

341

Standard 1/0 channels 358
1/0 buffering 358
1/0 to windows and selections 360
Error information 361
Shell 1/0 routines-MPW C 364

stdi<r-standard buffered input/output package 364
Shell 1/0 routines-MPW Pascal 367
Shell 1/0 routines-Assembler 367

Shell 1/0 routines 367
open--open for reading or writing 367
close-close a file descriptor 369
read-read from a file 370
write-write to a file 371
!seek-move read/write file pointer 372
f cntl-file control 373
IOCtl-communicate with device handler 374

Shell utility routines 375
StandAlone-check whether running under the MPW Shell 375
getenv-access exported MPW Shell variables 376
atexit-install a function to be executed at program termination 378
exit-terminate the current application 379
faccess-named file access and control 380

Signal handling 383
Signal handling-C 383
Signal handling-Pascal 384
Signal handling-Assembler 384
Signal-specify a signal handler 384
Raise-raise a signal 385
Writing a signal handler 386

342 MPW 3.0 Reference

Overview

This chapter provides information specific to writing an integrated MPW tool. You'll also
need to refer to the following:

• Chapter 8, "The Build Process," for information about the mechanics of linking.

• Chapter 13, "Creating a Commando Interface for Tools."

• Tools libraries in Appendix F. These contain the MPW Assembler, MPW C, and MPW
Pascal routines for creating the rotating beach ball cursor and the Error Message File
manager.

• The Graf3D library in Appendix G. Your programs can use these routines to draw three-
dimensional objects.

In this chapter you'll find the utility routines used by tools that run within the MPW Shell
environment and how to access them. Examples of each of these routines are provided for
MPW C, MPW Pascal, and MPW Assembly language. The MPW libraries contain four
groups of these routines:

• Shell environment routines: procedures, functions, and data structures required to
access MPW command-line parameters, Shell variables, and the standard input,
output, and diagnostic files

• Shell signal-handling routines: procedures and functions that give you access to MPW
software interrupts

• MPW cursor-control routines: procedures that let you control the form and action of
the cursor. These are in Appendix F.

• Error message file management routines: procedures that let you access messages in
the Macintosh system error message file. These are in Appendix F.

These routines provide tools running within the MPW Shell environrrent with many
facilities, including:

• parameter passing

• access to Shell variables

• a set of preopened files for text-oriented input and output

• VO to windows and selections

• a means for returning status results

• signal handling (for user aborts, and so on)

• exit processing

CHAPTER 12 Writing an MPW Tool 343

After introducing the conventions that MPW tools should follow and the specifics of
linking tools, each of the sections that follow explain the use of these facilities for each of
the MPW programming languages MPW C, MPW Pascal, and MPW Assembler.

Each section describes the environment in which the tool runs. It then lists the elements
needed to access the libraries available to a tool. Finally, it lists the individual functions
available to tools. Sections detailing each function are titled according to the standard C
naming conventions and are written in this format:

name-short description of function

function prototytpe

Function description: What the routine does, how to use it, arguments needed.

MPWC

function prototype in MPW C

MPW Pascal

function prototype in MPW Pascal

Any applicable information for MPW Pascal.

MPW Assembler

function prototype in MPW Assembler

Any applicable information for MPW Assembler, including the language in which the
function is written.

Conventions

MPW tools adhere to a certain style that allows them to work well together in an
integrated fashion:

• Tools take their inputs as command-line parameters, rather than prompting for input.
This input style allows their execution to be automated and allows them to take
advantage of the Shell's command-line processing features such as variable
substitution and filename generation.

• Deviations from a tool's standard behavior are specified with command options.
Options may be specified anywhere on the command line and their order is not
significant.

344 MPW 3.0 Reference

• Tools operate on a list of filename parameters, not just one, allowing the Shell's
filename generation feature to be exploited.

• When no file parameters are given, tools take their input from standard input and
write their output to standard output. The use of standard VO allows the piping of
the output of one program into the input of another. For example,
Files I Count -1

This command sends the output of the Files command into the input of the Count
command, yielding the number of files and directories in the current directory.

• Tools spin the cursor to allow switching to different applications during tool
execution (under MultiFinder). The cursor is spun at regular intervals for cooperative
multitasking.

• Most tools operate silently as they process their input. Visual feedback is provided by
the spinning cursor. If more feedback is desired, a -p (progress) option is usually
provided to send status and summary information to the diagnostic output.

• Error messages are in the fonn of Shell comments or are "executable" so that the error
can be easily located. For example, the language translators report errors in the fonn
File "Test.c" ; line 25 f## expected: ';' got: name

This message may be directly executed, to open the file and select the offending line.
(See "Executable Error Messages" in Chapter 5.)

See the "Command Prototype" section at the beginning of Part II for more information
on MPW command language conventions.

Status Codes

Every tool is expected to return a status code to the Shell when it terminates. The Shell
inspects this result-if the status code is nonzero and if the Shell variable {Exit} is nonzero
(the default), the Shell terminates the execution of the current command file. The Shell
also converts the result to string fonn and creates a Shell variable called {Status} with that
value. The variable can then be tested with the Shell command language and action can be
taken based on its value.

The following conventions are used for status codes:

0 Success
1 Command syntax error
2 Some error in processing
3 System error or insufficent resources
-9 User abort

CHAPTER 12 Writing an MPWTool 345

• Note: Only the bottom 24 bits of a tool's status code are returned to the Shell. All
negative numbers, except for-9, are reserved for use by the Shell. See "Negative
Status" in Chapter 5 for the meanings of negative status codes.

You may want to return error codes other than these. In that case, you should carefully
document the numbers and their meanings.

MPW C Result codes are passed as the return value from your main
function or as the parameter to the C library exit function.

MPW Pascal Pascal programmers must call the IntEnv procedure IEexit to
return the status result.

MPW Assembly The Integrated Environment routine _ RTExi t is available
to assembly-language programmers. _ RTExi t takes the
status code as a parameter.

• Note: The returned status code will be undefined if you do not explicitly return a value
by using the method recommended for your language.

Restrictions

Tools are similar to desk accessories in that they co-exist with another program (that is,
the MPW Shell). The following sections touch on some of the considerations in enabling
tools to co-exist with the Shell.

lnjfialiution

Because tools run with the Shell, most Macintosh Toolbox initialilation calls are not
necessary and should not be called. In particular, you should not make the following calls:

346 MPW 3.0 Reference

InitFonts
InitWindows
InitMenus
TEinit
InitDialogs
MaxApplZone
SetApplLimit
SetGrowZone
InitResources
RsrcZoneinit
ExitToShell

(Note that this is not an inclusive list)

If your tool uses QuickDraw or any routine that uses QuickDraw, be sure to call the
Ini tGraf routine. This routine is necessary when using QuickDraw, because QuickDraw
uses register AS-relative global variables, and tools have their own private A5 global area.
Even a simple call to the QuickDraw function Random will not work properly unless
InitGraf is called.

If your program opens any windows, make sure that it closes or disposes of those
windows before it terminates.

+ Note: If your tool calls Ini tGraf and writes to stdout or stderr (including error
messages), then you should call SetFScaleDisable with a parameter value of true
after your call to Ini tGraf. Otherwise your text output might be improperly scaled.

Memory Management

The Shell and tools execute out of the same heap and share the same stack. When a tool is
started, the Shell allocates an area in the heap for the tool's globals and jump table, adjusts
the global register AS to point there, and then "calls" the tool. Any dynamic stack space
required is allocated on the same stack, and any heap objects created go into the same
heap.

CHAPTER 12 Writing an MPW Tool 347

• Figure 12-1 Memory map

Screen
1----------t-----AS-Globols (Shell)

Shell globals
1----------t---A6-Stack frame pointer

Stack

~~~' ............... ,.,...,......,~,.,...,......,~,.,...,......,~------A7-Top of stack 

-
Heap 

Tool globals -----AS-Globals (Tool) 

System stuff 

Low memory 

When a tool terminates, the Shell restores the registers to their previous values and 
deallocates the tool's global area and any other pointers and handles in the heap that may 
have not been allocated. The tool's resources, however, are not deallocated irrunediately. 
They are unlocked and made purgeable SQ that the space can be used if needed. This 
practice allows for a quick restart of the tool if it is still in memory, but with no memory 
wastage should the space be needed for other purposes. 

.& Warning Although the Shell releases memocy that has been allocated by the tool, 
sometimes the Shell has insufficient information to determine the 
owner of a master pointer. When a master pointer is NIL, it cannot be 
released by the Shell and cannot be reused. 
NIL master pointers are produced as a result of calls to 
EmptyHandle, and by a number of Resource Manager actions. For 
example, a GetResource with ResLoad set to FALSE will create a 
NIL master pointer. If this is followed by a DetachResource or 
RmveResource, the handle remains as a NIL pointer. It is always 
good programming practice to clean up handles after they have 
become obsolete. Use DisposHandle to get rid of such obsolete 
handles. • 

348 MPW 3.0 Reference 



Heap 

Because the Shell and tools share the same heap, some cooperation is necessary to ensure 
efficient use of the heap. Before a tool is started, the. Shell makes many of its heap 
objects unlocked and purgeable. The Shell's memory-resident code is kept as low in the 
heap as possible. The tool's code should be moved as high in the heap as possible. This is 
done automatically, if the locked bit is not set on the tool's code resources (the default 
from the linker). When allocating heap space, tools should attempt to allocate no more 
space than is needed so that objects aren't needlessly purged from the heap. 

When there is insufficient memory space to run a tool, you can make more space available 
in several ways. 

To obtain more memory while running MPW: 

• Close all MPW windows. (Certain memory-resident data structures are required for 
each window.) 

• Pipe tool output to a file, rather than to a window. 

• Your tool may be able to borrow memory from the MultiFinder heap when running 
MultiFinder. 

To obtain more memory by relaunching MPW: 

• If you are running MultiFinder, change the partition size for MPW in MPWs Get Info 
window. 

• Change the HEXA Shell resource as described in the next section. 

To obtain more memory by rebooting the Macintosh system: 

• Tum off or reduce the size of the cache. (If you are running MultiFinder, you'll need to 
reboot to change the cache size.) 

• Remove any debuggers from the system folder. You can free up about 90K by running 
without the MacsBug debugger (that is, hold down the mouse button while booting). 

Here is the main difference between running under MultiFinder and Finder: Under 
MultiFinder, the amount of memory allocated to MPW is determined by the partition size 
(which you can change in the Info window). Under the Finder, available memory is 
affected by how much available system memory exists. 

Stack 

When the Shell starts up, it immediately grows the heap to its maximum size based on the 
maximum stack size. The default maximum dynamic stack size is lOK bytes when less than 
480K is available for the application heap; the default maximum dynamic stack size is 20K 
when more than 480K is available. Because some tools may require more stack space or 
more heap space, 'HEXA' resource number 128 is available. 

CHAPTER 12 Writing an MPW Tool 349 



+ Note: Because the stack is shared between the Shell and the tool, executing tools from 
within nested scripts results in less stack space for the tool. The Shell uses about 200 
bytes of stack per nesting level. 

A Warning The MPW Shell segments might not be able to load into memory if: 
1. Your tool calls MaxMem and 
2. It allocates all available memory and 
3. You then call any Shell services (such as writing to 

an open window). • 

Building an MPW tool 

In addition to traditional Macintosh applications, the Shell provides an environment for a 
type of program called an MPW tool. When a tool is run from the Shell, it does not replace 
the Shell or erase the screen, but instead runs within the Shell environment and has access 
to the facilities provided by the Shell. The compilers, Link, Make, and so on, are all tools 
in the MPW system. 

From a programming viewpoint, tools resemble applications in many aspects of their 
behavior. Like applications, tools may have global variables and tools are linked just as 
applications are linked. The major difference between tools and applications is that tools 
do not have to initialize their environment (except for Quickdraw, if used) and tools have 
access to any of the Shell's epen windows. 

For a description of additional facilities available to an MPW tool, such as the Cursor 
Control and Error Message File Manager routines, see Appendix F. The Graf3d library is 
described in Appendix G. 

I.inking a tool 

linking an MPW tool is the same as linking an application (described in Chapter 8), 
ex~ept that the file type must be set to MPST and the creator to 'MPS ' (MPS~ace): 
Link -t MPST -c "MPS " ... 

350 MPW 3.0 Reference 



Sample tools are provided in the Examples folders for each of the MPW languages-refer 
to the sample makefiles for examples of the commands used to build a tool. Note that the 
sample tools are linked with the file Stubs.o. This file contains dummy library routines 
used to override standard library routines that aren't used by MPW tools, thus reducing the 
tools' code size. 

• Note: As a matter of convenience, tools are usually kept in the {MPW}Tools folder. This 
allows you to invoke the tool by using its simple name instead of its full pathname. 
{MPW}Tools is one of the directories that the Shell automatically searches when a 
command name is given with a partial pathname. The Shell variable {Commands} 
contains a comma-separated list of directories to be searched; you can easily modify 
it to include additional directories. 

See Chapter 8 for a general introduction to linking and for instructions on linking 
multilingual programs. See Chapter 10 for more detailed infonnation on linking. 

Programming for the MPW Shell 

This section explains how to access the MPW Shell by calling special MPW Pascal and MPW 
Assembler libraries. In the case of MPW C, the Shell can be accessed by using routines in 
the Standard C Library. 

Accessing the MPW Shell-MPW C 

To access the MPW 3.0 Shell environment by using MPW C, do the following: 

• Include the necessary header files 

• Link your program with CRuntime.o, Clnterface.o, and Interface.o. Also link with 
Toollib.o if you are using the cursor control or error management routines described in 
Appendix F. You may also need to link with StdCLib.o. 

The standard C library interface files contain most of the interfaces needed for 
programming the MPW Shell. In addition to the Standard C library functions, MPW C 
contains: 

• Signal.h, containing routines that give you access to MPW software interrupts 

CHAPTER 12 Writing an MPW Tool 351 



• CursorCtl.h, containing routines to control the form and action of the cursor (see 
Appendix F) 

• ErrMgr.h, containing routines to access messages in the Macintosh system error 
message file (see Appendix F) 

The code for Signal.h is in CRuntime.o. The code for CursorCtl.h and ErrMgr.h is in 
ToolLibs.o. All interface files are in {Clncludes}. 

• Note: There is an example of a C tool that runs under the MPW environment in the 
folder {CExamples}. 

Accessing the MPW Shell--MPW Pascal 

To access the MPW 3.0 Shell environment by using MPW Pascal, do the following: 

• Include the statement 

USES {$U PasLibintf.p} PasLibintf,{$U IntEnv.p},IntEnv 

in your source text The USES clause and the su Compiler directive are described in 
the MPW 3.0 Pascal Reference. 

• link your program with the files Runtime.a, Paslib.o, and Interlace.a. If you are using 
cursor-control or error message routines, you'll need to link with Toollibs.o. (See 
Appendix F for information on these routines). 

MPW Pascal 3.0 includes four interlace files containing facilities for programs that work 
with the MPW Shell environment. They are 

• IntEnv.p, containing the routines and data structures required to access MPW 
command-line parameters, Shell variables, and the standard diagnostic variable 

• Signal.p, containing routines that give you access to MPW software interrupts 

• CursorCtl.p, containing routines that let you control the form and action of the cursor. 
See Appendix F of this reference for detailed infonnation on these routines. 

• ErrMgr.p, containing routines that let you access messages in the Macintosh system 
error message file. See Appendix F of this reference for detailed infonnation on these 
routines. 

The code for IntEnv.p and Signal.pis in the library Runtime.o. The code for CursorCtl.p 
and ErrMgr.p is in the library Toollibs.o. 

Programmers writing tools may need to use the special facilities implemented by these 
interlace files. They are all located in the directory {Plnterlaces}. 

352 MPW 3.0 Reference 



• Note: There is an example of a Pascal tool that runs under the MPW environment, using 
IntEnv, in the folder {PExamples}. 

Accessing the MPW Shell-Assembler 

To access the MPW Shell environment from MPW Assembly language, you must do the 
following: 

• Import the names of the routines you are using. 

• Use the correct calling conventions. 

• Call the _RTini t function early in your program and the exit or abort procedure at 
the end of the program. 

• link your assembly with the library or libraries that contain the routines' code. 

These requirements are discussed in the following sections. 

+ Note: There is an example of an Assembly language tool that runs under the MPW 
environment in the folder {AE:xamples}. 

Importing the routines 

Import the names of the routines described in this appendix by using IMPORT directives. 
For the Shell environment and signal-handling routines, you can simply include the files 
IntEnv.a and Signal.a, respectively; they contain the required directives. For the cursor
control and error file management routines, you must write your own IMPORT directives in 
your source text. 

The Shell environment and signal-handling routines are mostly C routines; hence their 
names are case sensitive. The cursor-control and error file management routines are all 
Pascal routines .. Their names are not case sensitive unless CASE OBJ or CASE ON is in 
effect, in which case their names must be imported in capital letters. 

Assembler calling conventions 

Each routine described in this chapter indicates whether to use Pascal or C calling 
conventions. 

CHAPTER 12 Writing an MPW Tool 353 



If the calling convention is C, then push the parameters on the stack from right to left. 
When the function returns, its arguments will still be on the stack and its return value will be 
in register DO. 

If the calling convention is Pascal, you must reserve space on the stack for the return 
value, if any. Then push the arguments from left to right. When the routine returns, the 
arguments will no longer be on the stack; also, the return value (if the routine was a 
function) will be on top of the stack. 

All C functions described in this chapter leave their results in register DO. All Pascal 
functions described in this chapter leave their result on the stack. 

The RTinit function 

longint _RTinit (ptr retPC, longint * pargc, longint * pargv, longint * penvp 
longint forPascal) 

One of the first calls in your program must be to the_ RTini t function; the very last call 
should be to the exit or_ exit procedure, which calls the_ RTExi t procedure. 
_ RTini t is described in this section;_ RTExi t is described later under "Shell Utility 
Routines." 

The _RTini t function allocates approximately 500 bytes of nonrelocatable space in the 
heap and calls _Datainit, the routine that initializes global data. _RTinit must be 
called before any of the other routines described in this section; if possible, it should be 
called before other code segments have been loaded. 

The _RTini t function has these parameters: 

• retPC is the address to which program control should pass upon execution of 
_RTExit, as described under "Shell Utility Routines." 

• pArgC points to a long integer that_ RTini t will set to the value of the Shell variable 
argc, which is discussed under "Accessing MPW Command-Line Parameters." 

• pArgv points to a pointer variable that _RTini twill set to the value of the Shell 
variable argv. The variable argv is discussed under "Accessing MPW Command-Line 
Parameters." 

• pEnvP points to a pointer variable that _RTini t will set to the vector of exported 
Shell variables. 

• forPascal is a numeric value passed to_ RTini t. Its value should be 0 if you want 
the strings pointed to by envp and argv to be in C format (terminated by a zero 
character), and one if you want them to be in Pascal format (preceded by a 
length byte). 

354 MPW 3.0 Reference 



The_ RTini t function returns a value of 1 if your program is being launched by the 
Macintosh Finder, and 0 if it is being launched by the MPW Shell. This is the value placed in 
the stand.Alone variable, described below under "Shell Utility Routines." 

The function_ RTini t uses C calling conventions. 

For an example of the use of the_ RTini t function in the code of an MPW tool, see 
Count.a. The routine Init shows how to call _RTinit. The exiting routine is called 
stop; it shows how to call the very last call, exit. 

Files to link with 

The code for the Shell environment and signal-handling routines is in the library Runtime.a, 
except for the code for the IEGetEnv function, which is in PasLlb.o. The code for the 
cursor-control and error file management routines is in the library ToolLibs.o. You must 
link the appropriate file or files to your object files if you use any of these routines. 

Parameters 

Parameters are passed to tools by the Shell. Every tool is passed at least one parameter: 
the name of the tool itself. This parameter is always the first parameter (technically, 
parameter O) and is useful for error messages or other special actions. 

The text that follows the command name on the command line is first analyzed by the 
Shell for any special processing, such as filename generation or variable substitution. (See 
"How Commands Are Interpreted" in Chapter 5.) This text is then split up into individual 
words and placed in a convenient data structure for programmatic access. 

In any MPW language, there are two variables, argc and argv. 

The argument vector, argv, is a pointer to an array of string pointers. Figure 12-2 
demonstrates the argv structure. 

CHAPTER 12 Writing an MPW Tool 355 



• Figure 12-2 Parameters in MPW C and MPW Pascal 

C Sample.a -a Sample Pascal Sample.p -a Sample 

0 

e O S a m p I e 

I e c 0 Sa mp I e .p 

c a I 

The argument count, argc, contains the number of parameters including parameter 0. The 
value of argc is always greater-than or equal to one, because the first parameter is always 
the command name. For example, in Figure 12-1, the variable argc would have the value 4. 

Element 0 of argv is always the command name, as supplied by the user. When a user is 
running an MPW Shell scrip~ it's important that error messages include the name of the 
particular MPW program that generated the error. You can include the program name with 
code such as this (in MPW Pascal): 

{Store program name in temp variable.} 

IF IOResult <> 0 THEN 
Writeln(diagnostic, progName, '-cannot open file', fileName); 

356 MPW 3.0 Reference 



Accessing MPW command-line parameters-MPW C 

In C, the main program is actually passed three parameters, named argc, the argument 
count; argv, the argument vector; and envp, the environmental pointer. The value of 
a rgc includes the command name (parameter 0), and is thus always one more than the 
number of parameters to the conunand. a rgv is a pointer to a zero-terminated array of 
pointers to the parameters, each of which is in C string (zero-terminated) format. (See 
Figure 12-1.) 

Accessing MPW command-line parameters-MPW Pascal 

In MPW Pascal, the parameters are accessible as the unit global variables Argc and Argv 
from the IntEnv (Integrated Environment) unit. As in C, the value of Argc is one more 
than the parameter count; Argv is a pointer to a null-terminated array of Pascal string 
pointers. 

The Integrated Environment library uses the following types and variables to allow you to 
access the information given in an MPW command line. 

The unit IntEnv in the interface file IntEnv.p declares these types and variables: 
TYPE 

IEString = STRING; 
IEStringPtr = AIEString; 
IEStringVec =ARRAY [0 .. 8191] OF IEStringPtr; 
IEStringVecPtr = AIEStringVec; 

VAR 
ArgC: LONGINT; 
ArgV: IEStringVecPtr; 
EnvP: IEStringVecPtr; 
Diagnostic: TEXT; 

The Argv variable is a pointer to an array of type ARRAY [ o •• Argc l of Pascal string 
pointers, dynamically allocated and initialized by the MPW Shell when a program begins 
execution. Each parameter to the program is stored as a string of type IEString and is 
pointed to by a pointer in the array. 

The code within the library routines creates strings of type IEString that are exactly the 
length of the arguments passed to them. For this reason, you cannot assign values to 
variables of type IEString-their values are passed directly from the MPW Shell. 

CHAPTER 12 Writing an MPW Tool 357 



Accessing MPW command-line parameters-Assembler 

The Integrated Environment routine, _RTinit, can be used to access the command 
parameters in assembly language. The addresses of the variables argv and argc are 
passed to _RTinit, which initializes them. 

The argv variable, set by _RTini t, is a pointer to an array of type ARRAY [ o .. argcJ 

of pointers, dynamically allocated and initialized by the MPW Shell when a program begins 
execution. Each command-line parameter to the program is stored as a Pascal-formatted 
or C-formatted string (depending on the value of the forPascal parameter passed to 
_RTinit), pointed to by a pointer in the array. 

Standard 1/0 channels 

Before starting a tool, the Shell sets up three text I/O channels that the tool can use to 
communicate with the outside world. These are 

• standard input 

• standard output 

• diagnostic output (standard error) 

By default, these channels are connected to the console (that is, the frontmost, active 
window). Program input may be typed (or selected) and entered in any window; program 
output appears immediately after the command in the same window. This input and 
output may be taken from or directed to other files by specifying I/O redirection ( <, >, 
», ~. ~. L,, or LL) on the command line. When the Shell encounters the I/O 
redirection notation, it opens or creates the necessary files, removes the redirection 
notation from the command line so that it doesn't appear in the program's parameter list, 
and then arranges for the open files to be passed to the program. When the tool finishes, 
the Shell flushes any buffered output and closes the files. 

1/0 buffering 

When using 1/0 routines provided by the language libraries, varying degrees of buffering 
are expected to occur on the standard I/O channels: 

358 MPW 3.0 Reference 



• Input from the console is buffered until the Enter key is pressed. If there is a selection 
when Enter is pressed, the selected text is used to satisfy the console read request; 
otherwise, the entire line that contains the insertion point is given to the reader. 

+ Note: The MPW method of reading input creates a difficulty for interactive 
tools that write prompting text and pause to read a response entered on 
the same line: The tool will receive the prompt back as part of the line read, 
unless there was a selection when Enter was pressed. 

• When input is taken from a file, the 1/0 package will, by defaul~ read the data from 
the disk in lK blocks. 

• Text written to standard output is also buffered lK at a time before being sent to a 
file or to the console. (As a convenience, when a read request is issued to the console, 
all interactive output buffers are flushed so that any prompting text will appear before 
the program pauses waiting for input.) 

• Text written to the diagnostic channel is buffered one line at a time, so that error 
messages and progress information appear in a timely manner while the program is 
executing. 

Note that this buffering can cause apparently anomalous behavior: In particular, if both 
standard output and diagnostic output are directed to the console, the order of the 
output on the screen may not match the order in which the data was written.This change in 
order may result because the separate buffers are flushed at different times, as illustrated 
in Figure 12-3. You can circumvent this problem by flushing standard output before writing 
to diagnostic output. 

+ Note: Figure 12-3 shows the output conventions in C and Pascal. Assembly-language 
programmers must do their own buffering, or call C or Pascal routines. 

CHAPTER 12 Writing an MPW Tool 359 



• Figure 12-3 VO buffering 

File J 
1 lK buffer 

..__ ____ ~ 
Standard 

input 
OR -----11~ 

Console Entered text 
(typically 

1 line) 

Standard 
output 

Tool 

Standard 
diagnostic 

lK buffer 

1-line buffer 

C The standard VO files are available for reading or writing in C, via the 
file descriptors 0, 1, and 2, or the Stdio stream descriptors stdin, 

stdout, stderr. These descriptors are fully documented in the 
MPW 3.0 C Reference. 

Pascal In Pascal, the program parameters Input and output correspond to 
the standard input and output channels. A text file variable called 
diagnostic, which is connected to the standard diagnostic channel, 
is available from the IntEnv unit. Most tools written in Pascal can use 
the standard Pascal input and output functions with the text files 
Input, Output, or Diagnostic. The use of these parameters is 
documented in detail in the MPW 3.0 Pascal Reference. 

1/0 to windows and selections 

The MPW environment also provides to tools the ability to read and write to windows or 
to selections within windows. No special programming is required to use this feature. The 
MPW Shell monitors ftle system calls, and intercepts those that refer to a file that is 
currently open as a window. These calls are redirected automatically to the window rather 
than the file. (Thus, any modifications to the file do not become permanent until the 
window is saved.) 

3(,() MPW 3.0 Reference 



Accessing selections within windows is equally transparent to programs. All that is required 
is that the filename contain the selection suffix(.§). Reading from a selection is the same 
as reading from a file, and the beginning and end of the selection are treated as the 
bounds of the file. However, writing to a selection replaces the selection and has the 
interesting property that the data written is inserted into the file, rather than overwriting 
the data that follows. 

Because window and selection 1/0 is handled automatically by the MPW Shell, tools 
should simply assume that they are always dealing with files. 

Error Jnformation 

All Shell 1/0 routines report errors by setting the value of the integer variable errno. In 
addition, the routines open, close, read, write, and ioctl set the variable 
MacOSErr. The error values are shown in Table 12-1. 

MPW C The variables errno and MacOSErr are global variables. 

MPW Pascal Results are reported with IO result, which looks at both errno and 
MacOSErr. If IOresul t is positive, it holds errno. If IOresul t 
is negative, it holds MacOSErr. 

MPW Assembly IMPORT the variables errno (a long) and MacOSErr (a word). You 
can import these variables with the IntEnv.a interface file. 

The variable errno is an integer. Its behavior is described in the MPW 3.0 C Reference. 
The values of errno are typically small positive integers. Zero means that there is no 
error. However, libraries do not set errno to zero on successful calls. 

MacOSErr is a short that holds the error result from Macintosh toolbox calls made by the 
libraries (such as the result of a file system call made by the ioctl function). MacOSErr 

holds zero if there is no error; if it holds a negative number, that means there is an error. 
See Inside Macintosh for details on error numbers. 

CHAPTER 12 Writing an MPW Tool 361 



• Table 12-1 Shell I/O errors 

Value Identifier Message :Explanation 

2 ENO ENT No such file or directory. This error occurs when a file whose 
filename is specified does not exist 
or when one of the directories in a 
pathname does not exist. 

3 ENO RS RC Resource not found A required resource was not found. 
This error applies to faccess calls 
that return tab, font, or print record 
information. 

5 EIO I/0 error Some physical I/O error has 
occurred. This error may in some 
cases be signaled on a call following 
the one to which it actually applies. 

6 ENXIO No such device or address IIO on a special file refers to a 
subdevice that does not exis~ or 
the I/O is beyond the limits of the 
device. This error may also occur 
when, for example, no disk is 
present in a drive. 

7 E2BIG Insufficient space for The data to be returned 
return argument is too largefor 

the space allocated to receive it. 

9 EBADF Bad file number Either a file descriptor does not 
refer to an open file, or a read (or 
write) request is made to a file that 
is open only for writing (or reading). 

12 ENOMEM Not enough space The system ran out of memory while 
the library call was executing. 

13 EACCES Pennission denied An attempt was made to access a 
file in a way forbidden by the 
protection system. 

(Continued) 

362 MPW 3.0 Reference 



• Table 12-1 (Continued) Shell I/O errors 

Value Identifier Message Explanation 

17 EEXIST File exists An existing ftle was mentioned in an 
inappropriate context. 

19 ENODEV No such device An attempt was made to apply an 
inappropriate system call to a 
device; for example, to read a 
write-only device. 

20 ENOTDIR Not a directory An object that is not a directory 
was specified where a directory is 
required; for example, in a path 
prefix. 

21 EI SD IR Is a directory An attempt was made to write on a 
directory. 

22 EINVAL Invalid parameter Some invalid parameter was 
provided to a library function. 

23 ENFILE File table overflow The system's table of open files is 
full, so temporarily a call to open 
cannot be accepted. 

24 EMF ILE Too many open files The system cannot allocate memory 
to record another open file. 

28 ENOS PC No space left on device During a write to an ordinary file, 
there is no free space left on the 
device. 

29 ESP I PE 11legal seek An lseek was issued incorrectly. 

30 EROFS Read-only file system An attempt to modify a file or 
directory was made on a device 
mounted for read-only access. 

31 EMLINK Too many links An attempt to delete an open file 
was made. 

CHAPTER 12 Writing an MPW Tool 363 



Shell 1/0 routines-MPW C 

The MPW C input and output routines are part of the comprehe~ive Standard C Library. 
The Standard C Library is a collection of basic routines that let you read and write files, 
examine and manipulate strings, perform data conversion, acquire and release memory, 
and perform mathematical operations. You may use any of the Standard C Library routines 
or low-level routines individually described later in this chapter. For more information, see 
the MPW 3.0 C Reference. 

stdio-5tandard buffered input/output package 

The Standard 1/0 package constitutes an efficient user-level 1/0 buffering scheme. The 
inline macros getc and putc handle characters quickly. 

The following macros and higher-level routines all use getc and putc: 

get char put char fgetc £gets 
fprintf fputc fputs fread 
fscanf £write gets getw 
print£ puts putw scanf 

Calls to these macros and functions can be freely intermixed. 

The constants and the following functions are implemented as macros: 

getc 
feof 

get char 
£error 

putc 
clearerr 

Avoid redeclaration of these names. 

put char 
fileno 

Any program that uses the Standard 1/0 package must include the <StdIO.h> header file 
of macro definitions. The functions, macros, and constants used in the Standard 1/0 
package are declared in the header file and need no further declaration. 

A stream is a file with associated buffering and is declared to be a pointer to a FILE 

variable. Functions fopen, freopen, and fdopen return this pointer. The information in 
the FILE variable includes 

• the file access-read or write 

• the file descriptor as returned by open, creat, dup, or fcntl 

• the buffer size and location 

• the buffer style (unbuffered, line buffered, or file buffered) 

364 MPW 3.0 Reference 



Output streams, with the exception of the standard error stream stderr, are by default 
file buffered if the output refers to a file. File st de r r is by default line buffered. When an 
output stream is unbuffered, it is queued for writing on the destination file or window as 
soon as written; when it is file buffered, many characters are saved up and written as a 
block; when it is line buffered, each line of output is queued for writing as soon as the line 
is completed (that is, as soon as a newline character is written). Function setvbuf may 
be used to change the stream's buffering strategy. 

Normally, there are three open streams with constant pointers declared in the <StdIO.h> 
header file and associated with the standard open files: 

• Table 12-2 Standard files 

fllE variable Fildcs Description Buffer style 

st din 0 standard input file file buffered 
stdout 1 standard output file file buffered 
stderr 2 standard error file line buffered 

Buffer initiali7.ation: The FILE variable returned by fopen, freopen, or fdopen has an 
initial buffer size of 0 and a NULL buffer pointer. The buffer size is set and the buffer 
allocated by a call to setbuf, setvbuf, or the first 1/0 operation on the stream, 
whichever comes first. Buff er initialization is done using the following algorithm: 

1. If _IONBF (no buffering) was set by a call to setvbuf, initialization steps 2 and 3 are 
skipped. The buffer size remains 0 and the buffer pointer remains NULL. 

2. Checks the access-mode word for _IOLBF (line buffering). This bit is usually set only 
in the predefined FILE stderr, but a call to setvbuf can set it for any file. If line 
buffering is set, the buffer size is set to LBUFSIZ (100). If line buffering is not set, 
ioctl is called with an FIOBUFSIZE request and the buffer size is set to the returned 
value or to BUF s I z (1024) if no value is returned. 

3. If the buffer pointer is NULL, a request is made for a buffer whose size was 
determined in step 2; the buffer pointer is set to point to the newly allocated buffer. 
If the requested size cannot be allocated, attempts are made to allocate BUFSIZ or 
LBUF s r z if these are smaller than the requested size. If all requests fail, the buffer 
pointer remains NULL and the _I ONBF (no buffering) bit is set. 

4. Function ioctl is called with an FIOINTERACTIVE request; if it returns true, the 
_IOSYNC bit is set in the access-mode word. This is done for all FILE variables, 
regardless of their buffering style and size. (The _IOSYNC bit is described in the next 
section.) 

CHAPTER 12 Writing an MPW Tool 365 



The set vbuf function lets you specify values for buffer size, buffer pointer, and access
mode word other than the default values of 0, NULL, and 0, respectively. The setvbuf 

function must be called before the first I/0 operation occurs, so that the buffer 
initialization procedure described above receives the values you specify instead of the 
default values. 

Buffered 1/0: On each write reques~ the bytes are transferred to the buffer and an 
internal counter is set to account for the number of bytes in the buffer. If _IOLBF is set 
and a newline character is encountered while transferring bytes to the buffer, the buffer is 
flushed (written immediately) and the transfer continues at the beginning of the buffer. 
This continues until the write-request count is satisfied or a write error occurs. 

On each read reques~ the _rosYNc bit in the access-mode word is checked. If _IOSYNC 
is on, all current FILE variables that have _rosYNc on and are open for writing are 
flushed. In other words, a read from an interactive FI LE variable flushes all interactive 
output files before reading. This ensures that any prompts, I/O in a window, or other 
visual feedback is displayed before the read is initiated. Then if the internal counter is 0, 
an entire buffer is read into memory if possible. (For the console device, less than a 
buffer's worth is likely to be read.) The bytes required to satisfy the read request are 
transferred, going back to the device for more if necessary, and an internal pointer is 
advanced if any bytes remain unread. · 

When the Standard I/0 package is used, Standard I/0 cleanup is performed just before 
termination of the application. Any normal return including a call to exit causes Standard 
I/0 cleanup, which consists of a call to fclose for every open FILE stream. 

.A Warning Do not use a file descriptor (0, 1, or 2) where a FILE variable (stdin, 
stdou~ or stderr) is required. File <StdIO.h> includes definitions 
other than those described above, but their use is not recommended. 
Invalid stream pointers cause serious errors, possibly including 
program termination. Individual function descriptions describe the 
possible error conditions .... 

An integer constant EOF (-1) is returned upon end of file or error by most integer 
functions that deal with streams. See the descriptions of the individual functions for 
details. 

You may also refer to these Standard C library routines: 
close exit £close ferror 
fopen fread fseek getc 
gets lseek onexit open 
printf putc puts read 
scanf setbuf ungetc write 

3(,6 MPW 3.0 Reference 



Shell 1/0 routines-MPW Pascal 

The Integrated Environment library includes four general 1/0 routines that you can use in 
conjunction with the standard Pascal 1/0 routing from MPW Pascal programs that run 
within the MPW environment. These functions are listed, where available, in the next 
section. 

Shell 1/0 routines-Assembler 

Eight general 1/0 routines are available for use with MPW Assembler programs that run 
within the MPW environment 

Shell 1/0 routines 

In the sections that follow, each 1/0 routine is individually described, along with the 
appropriate calls in MPW C, MPW Pasca~ and MPW Assembly language. 

open--open for reading or writing 

int open(char *filename, int mode) 

The Shell routine Open opens the file, window, or selection named by filename for both 
reading and/or writing. The parameter mode sets the me-status flags, and specifies file 
creation, truncation, and/or exclusive access. 

CHAPTER 12 Writing an MPW Tool ?/)7 



To construct mode, first select one of the following access modes: 

• 0 RDONLY Open for reading only. 

• 0 WRONLY Open for writing only. 

• 0 RDWR Open for reading and writing. 

Then optionally add one or more of these modifiers: 

• o APPEND The file pointer is set to the end of the file before each write. 

• 0 CREAT 

• O_TRUNC 

• 0 RSRC 

If the file does not exist, it is created. 

If the file exists, its length is truncated to O; the mode is 
unchanged. 

The file's resource fork is opened. (Normally, the data fork is 
opened.) 

The following setting is valid only if o _ CREAT is also specified: 

• 0 EXCL Function open fails if the file exists. 

Upon successful completion, a nonnegative integer (the file descriptor) is returned. The 
ftle pointer used to mark the current position within the file is set to the beginning of the 
file. 

The named ftle is opened unless one or roore of the following are true: 

• o _ CREAT is not set and the named file does not exist. [ENOENT] 

• More than about 30 file descriptors are currently open. The actual limit varies 
according to runtime conditions. [EMFILE] 

• O_CREAT and O_EXCL are set and the named file exists. [EEXIST] 

MPWC 

int open(char *filename, int mode) 

MPWPascal 

PROCEDURE IEopen(VAR fvar: univ PascalFile; filename: string; mode: 
longint); 

After IEopen executes successfully, fvar contains a pointer to the beginning of the file 
named by filename. 

Normally, MPW Pascal tools will use the built-in calls Reset, Rewrite, or Open. The 
Procedure IEopen provides additional options with the mode parameter. After using 
IEopen, the tool should then use the built-in MPW Pascal calls Read, Write, and Close 

using the fvar variable. 

368 MPW 3.0 Reference 



MPW Assembler 

longint open(char *filename, longint mode) 

Use the C routine open . After open executes successfully, DO contains an integer file 
descriptor (a nonnegative integer), with the file pointer set to the beginning of the file. 
File descriptors for input, output, and the diagnostic output are predeclared in the 
include file IntEnv.a, as shown in Table 12-3. 

• Table 12-3 Predeclared file descriptors 

Value Identifier File 

0 InputFD 

1 OutputFD 

2 DiagnosticFD 

Standard input 
Standard output 
Diagnostic output 

If there is an error, DO will contain-1 and errno will be set to indicate the error. 

close-dose a file descriptor 

int close(int fd) 

The close function closes the file associated with the file descriptor fd. (!'he file 
descriptor is obtained from an open call.) 

Function close fails if fd is not a valid open file descriptor. 

Upon successful completion, a value of 0 is returned. Otherwise, a value of 
-1 is returned and errno is set to indicate the error. 

MPWC 

int close(int fd) 

(File descriptor fd may also be obtained from a creat, dup, or fcntl call.) 

MPW Pascal 

To close a file opened with IEopen, use the MPW Pascal built-in procedure Close. 

MPW Assembler 
longint close(longint fd) 

Use the C function close. If successful, close sets DO to 0. 

CHAPTER 12 Writing an MPW Tool 369 



read-read from a ftle 

int read(int fd, char *buf, unsigned nbyte) 

On devices capable of seeking, read starts reading at the current position of the file 
pointer associated with fd. Nonseeking devices always read from the current position. 
The value of a file pointer associated with such a file is undefined. 

Upon return from read, the file pointer is incremented by the number of bytes actually 
read. 

File descriptor fd is obtained from a call to open. Function read transfers up to nbyte 
bytes from the file associated with fd into the buffer pointed to by buf. 

Upon successful completion, read returns the number of bytes actually read and placed in 
the buffer; this number may be less than nbyte if the file is associated with a window or if 
the number of bytes left in the file is less than nbyte bytes. 

File descriptor 0 is opened by the MPW Shell as standard input. 

A value of 0 is returned when an end of file has been reached, or-1 if a read error occurred. 
Upon successful completion, a nonnegative integer is returned indicating the number of 
bytes actually read. Otherwise, -1 is returned and errno is set to indicate the error. 

Function read fails if f d is not a valid file descriptor open for reading. 

MPWC 

int read(int fd, char *buf, unsigned nbyte) 

(File descriptor fd may also be obtained from a creat, dup, or fcntl call.) 

MPW Pascal 

To read from a me opened with IEOpen, use the MPW Pascal built-in procedure Read. 

MPW Assembler 

longint read(longint fd, char *buf, unsigned longint nbyte) 

Use the C routine read. If successful, read leaves the number of bytes actually read in DO 
(which may be less than nbyte, if the end-of-file was encountered); otherwiSe it sets DO to 
-1 and sets the value of errno. 

370 MPW 3.0 Reference 



write-write to a .tile 

int write(int fd, char *buf, unsigned nbyte) 

The function write attempts to write nbyte bytes from the buffer pointed to by buf 

to the file associated with the fd. (File descriptor fd is obtained from an open.) Internal 
limitations may cause write to write fewer bytes than requested; the number of bytes 
actually written is indicated by the return value. Several calls to write may therefore be 
necessary to write out the contents of bu f. 

On devices capable of seeking, the actual writing of data proceeds from the position in 
the file indicated by the file pointer. Upon return from write, the file pointer is 
incremented by the number of bytes actually written. On nonseeking devices, writing 
starts at the current position. The value of a file pointer associated with such a device is 
undefined. 

If the a_ APPEND file status flag set in open is on, the file pointer is set to end of file 
before each write. 

The file pointer remains unchanged and write fails if fd is not a valid file descriptor 
open for writing. 

If you try to write more bytes than there is room for on the device, write writes as many 
bytes as possible. For example, if nbyte is 512 and there is room for 20 bytes more on the 
device, write writes 20 bytes and returns a value of 20. The next attempt to write a 
nonzero number of bytes will return an error. 

File descriptor 1 is standard output; file descriptor 2 is standard error. 

Upon successful completion, the number of bytes actually written is returned. Otherwise, 
-1 is returned and errno is set to indicate the error. 

MPWC 

int write(int fd, char *buf, unsigned nbyte) 

(File descriptor fd may also be obtained from a creat, dup, or fcntl call.) 

MPW Pascal 

To write to a file opened with IEopen, use the MPW Pascal built-in procedure Write. 

MPW Assembler 

longin~ write(longint fd, char *buf, unsigned longint nbyte) 

Use the C 10utine write. 

CHAPTER 12 Writing an MPWTool 371 



lseek-move read/write file pointer 

int lseek(int fd, int offset, int whence) 

The function lseek moves the read/write file pointer in the file associated with fd, 
according to the following value of whence and offset: 

• If whence is 0, the pointer is set to offset bytes. 

• If whence is 1, the pointer is set to its current location plus offset. 

• If whence is 2, the pointer is set to the size of the file plus off set. 

• If whence is 1or2, the value of offset may be negative. 

Upon successful completion, the file pointer value, as measured in bytes from the 
beginning of the file, is returned. 

The file pointer remains unchanged and lseek fails if one or more of the following are 
true: 

• File descriptor fd is not open. [EBADF] 

• Parameter whence is not 0, 1, or 2. [EINVAL] 

• The resulting file pointer would point past end of file. [ESP I PE] 

• The resulting file pointer would point before beginning of file. [EINVAL] 

Some devices are incapable of seeking. The value of the file pointer associated with such 
a device is undefined. Upon successful completion, a nonnegative long integer indicating 
the file-pointer value is returned. Otherwise, a value of-1 is returned and errno is set to 
indicate the error. 

. .6. Warning 

MPWC 

Function lseek has no effect on a file opened with the o_APPEND 
flag because the next write to the file always repositions the file 
pointer to the end before writing. ... 

int lseek(int fd, int offset, int whence) 

MPW Pascal 

FUNCTION IElseek(VAR fvar: UNIV PascalFile; offset: LONGINT; whence: 
LONGINT): LONGINT; 

Do not use IELseek with a structured file. 

jTl MPW 3.0 Reference 



MPW Assembler 

longint lseek(longint fd, longint offset, longint whence) 

Use the C function lseek. 

fcntl-file control 

int fcntl(int fd, unsigned int crnd, int arg) 

Function fcntl duplicates a file descriptor. A file remains open until all its file 
descriptors are closed. Parameter fd is an open file descriptor obtained from an open 
call. Parameter cmd takes the value F _DUPFD, which tells fcntl to return the lowest 
numbered available file descriptor greater than or equal to arg. 

Normally arg is greater than or equal to 3, in order to avoid obtaining the standard file 
descriptors 0, 1, and 2. Function fcntl returns a new file descriptor that points to the 
same open file as f d. The new file descriptor has the same access mode (read, write, or 
read/write) and file pointer as fd. Any VO operation changes the file pointer for all file 
descriptors that share it. 

Function fcntl fails if one or more of the following are true: 

• Parameter fd is not a valid open file descriptor. [EBADF] 

• Parameter arg is negative or greater than the highest allowable file descriptor. 
[EINVAL] 

Upon successful completion, the value returned is a new file descriptor. Otherwise, a value 
of-I is returned and errno is set to indicate the error . 

• Note: The F_GETFD, F_SETFD, F_GETFL, and F SETFL commands of fcntl 
are not supported on the Macintosh. 

MPWC 

int fcntl(int fd, unsigned int cmd, int arg) 

MPW Pascal 

The function fcntl is not supported in MPW Pascal. 

:MPW Assembler 

longint fcntl(longint fd, unsigned longint cmd, longint arg) 

Use the C routine fcntl. 

CHAPTER 12 Writing an MPW Tool 373 



IOCtl-communicate with device handler 

The function ioctl communicates with a file's device handler by sending control 
information and/or requesting status information. 

The cmd parameter specifies one of the following device-specific operations: 

FIOINTERACTIVE Return a value of 0 if the device is interactive, -1 otherwise. 
Ignore arg. 

FIOBUFSIZE Return the default buffer size for the device. The buffer size is 
expressed in bytes and is returned as a longint value pointed to 
by arg. If the device has no default buffer size, ioctl returns a 
value of-1; it returns 0 otherwise. 

FIOFNAME 

FIOREFNUM 

FIOSETEOF 

TIOFLUSH 

MPWC 

Store the filename associated with fd in a character array 255 
characteIS in size, pointed to by arg. IEIOCtl returns a value of 
-1 if the filename length exceeds 255 characters, 0 otherwise. 

Return the Macintosh file reference number associated with f d. 

The reference number is returned as an integer value pointed to 
by arg. ioctl returns a value of-1 if the file associated with fd 
is not open on a Macintosh file (such as the console device), 0 
otherwise. 

Set the logical end of the file associated with fd to the value of 
arg, which becomes the new size of the file in bytes. This 
command can be used to reduce or increase the size of an open 
file. The current file pointer is not affected unless the file size is 
set to a value lower than the position to which it points. 

Discard unread terminal input This parameter value is used only 
for the console device and other terminal devices. ioctl returns 
a value of -1 if the file associated with f d is not a terminal 
device, 0 otherwise. Parameter arg is ignored. 

int ioctl(int fd, unsigned int cmd, long *arg) 

The cmd. constants are in Ioctl. h. 

MPW Pascal 
FUNCTION IEioctl(VAR fvar: UNIV PascalFile; cmd: LONGINT; arg: UNIV 
LONGINT): LONGINT; 

The cmd constants are defined in IntEnv unit 

374 MPW 3.0 Reference 



MPW Assembler 

longint ioctl(longint fd, unsigned longint cmd, longint *arg) 

Use the C function ioctl. The cmd constants are defined in IntEnv.a. 

Shell utility routines 

These utilities are useful when writing an MPW tool. The utility routines provide methods 
to: 

• detennine whether a program is running under the MPW Shell (standAlone) 

• to access the values of MPW Shell variables (getenv) 

• to specify exit handlers (atexi t) 

• to tenninate the current application (exit) 

• to access information about MPW Shell documents (faccess) 

Stand.Alone-check whether running under the MPW Shell 

The standard libraries provide a method to tell whether a program is running under the 
MPWShell. 

MPWC 

The global variable standAlone is an int. If StandAlone is zero, the program is running 
under the MPW Shell. 

MPW Pascal 

FUNCTION IEStandalone: BOOLEAN; 

The IEStandalone function returns a result of type boolean. The result is false if the 
program is running under MPW, true if it is not 

MPW Assembler 

Import the longint variable standAlone (in the Interface file IntEnv.a). If 
StandAlone is non-zero, the program is running under the MPW Shell. 

CHAPTER 12 Writing an MPW Tool 375 



getenv-access exported MPW Shell variables 

char *getenv(char *varname) 

The MPW Shell maintains a set of state variables that can be made available to tools with 
the Export command. (See "Variables" in Chapter 5 for the list of standard exported Shell 
variables.) Whenever you run a tool, the Shell makes a copy of the names and string values 
of all exported variables and passes this list to the program. The tool can then determine 
the value of a variable by one of two methods: 

• doing a linear search of the list of variables until the desired variable name is found 

• using the getenv function 

Because only a copy is passed, a tool cannot alter the Shell's value of a variable. 

Function getenv searches the environment for a Shell variable with the name specified by 
varname and returns a pointer to the character string containing its value. The null pointer 
is returned if the Shell variable is not defined or has not been exported. The Shell-variable 
name search is case-insensitive. 

For standalone applications, which do not run under the MPW Shell, getenv always 
returns the null pointer. 

MPWC 

char *getenv(char *varname) 

The environment can also be accessed by means of a parameter to the C main-entry-point 
function main if the main procedure is declared as 
main(argc, argv, envp) 

The envp array represents the set of MPW Shell variables that have been made available to 
tools by means of the MPW Export command. The ith envp entry has the form 
envp[i] = nvarname\Ovarvalue\0"; 

The last envp entry is the null pointer. 

If you use envp to search the environment, be sure to use case-insensitive string 
comparisons. 

MPW Pascal 

FUNCTION IEgetenv(envName: STRING; VAR envValue: UNIV IEString): 
BOOLEAN; 

r76 MPW 3.0 Reference 



IEGetEnv returns TRUE if it is successful in finding the value of a variable that is defined 
and exported in the MPW Shell environment. The parameter envName is a Pascal string 
naming an exported Shell variable, with uppercase and lowercase not distinguished. The 
parameter envVal ue is returned with the value of the Shell variable. IEGetEnv returns 
FALSE if it cannot find the variable. 

Pascal programmers are also provided with another IntEnv unit global variable, called 
EnvP. The variable EnvP points to a list of variable name and value pairs. The structure 
used is the same as that for C, except that the varname is in Pascal string fonnat. 

+ Note: VarValue is inc string fonna~ that is, null-terminated with no length-byte. 
Please refer to Figure 12-4. 

• Figure 12-4 Fonnat of envp array for MPW C and MPW Pascal 

MPW c MPW Pascal 

l'OJ K LO I J K L \0 

MPW Assembler 

char *getenv(char *varname) 
Function IEgetenv(envName: string; VAR envValue: univ IEString): 
boolean; 

Use getenv if the value of the forPascal parameter in the_:e,Tinit call was O; 
otherwise use IEGetEnv. 

CHAPTER 12 Writing an MPW Tool 377 



The Integrated Environment routine, _RTini t, can also be used to access Shell variables 
in assembly language. The address of envp is passed to _RTini t, which initializes it. You 
can choose Pascal or C strings (by setting forPascal to the appropriate value in the call 
to _RTinit). 

A Warning Functions qetenv and IEGetEnv return a pointer to the place in 
memory where a copy of the MPW Shell variable resides. Do not 
modify the value of a Shell variable in such a way as to increase its 
length. • 

atexit-install a function to be executed at program termination 
int atexit(void (*func) (void)) 

Normal program tennination closes and flushes open files and releases program memory. If 
you want additional exit processing, you can use a texi t to insert a routine that is 
executed just before nonnal termination. The parameter func is a pointer to such a 
routine. Up to 32 exit procedures are permitted (not including the one used by the 
Standard 1/0 Package to flush all the buffers). The routines specified will be executed in 
the reverse order of their installation. The routines will be called with no parameters. 

MPWC 

int atexit(void (*func) (void)) 

The routine a texi t returns a zero value if the installation succeeds. 

MPW Pascal 

PROCEDURE IEatexit(exitProc: UNIV LONGINT); C; 

The exit routines cannot be ne~ted procedures. 

MPW Assembler 

int atexit(void (*func) (void)) 

Use the MPW C atexit routine. 

A Warning If a function is installed more than once, it will be executed as many 
times as it was installed. • 

378 MPW 3.0 Reference 



exit~erminate the current application 

void exit(int status) 
void abort() 

The functions exit and abort close open file descriptors and tenninate the application 
or tool. Here is the order in which exit performs its duties: 

1. It executes all exit procedures in reverse order of their installation by atexi t, 
followed by the exit procedures for the Standard LIO package if Standard LIO 
routines were used. All buffered files are flushed and closed. 

2. It closes all open files that were opened with open. 

3. If the program is a tool running under the MPW Shell, exit places the lower three bytes 
of status into the Shell's status variable and returns control to the MPW Shell. 

4. If the program is an application, exit terminates the application. 

There is no return from exit or abort. 

The functions exit and abort do not close files your tool opened with calls to the LIO 
routines documented in Inside Macintosh. However, the MPW Shell closes them after the 
tool returns. 

Status should be 0 for normal execution or a small positive value for errors. (See the 
section "Status Codes" at the beginning of this chapter.) 

The function exit takes a value that will be returned to the caller; abort does not 

MPWC 

void exit(int status) 
void abort() 

Notice that in MPW C the main program is a function that returns an integer. The return 
value of main is interpreted by the MPW Shell as the program status. Main programs that 
return to the Shell without setting status to an integer value will return a random status. 

MPW Pascal 

PROCEDURE IEexit(status: LONGINT); C; 
PROCEDURE IEabort(); C; 

MPW Assembler 

void exit(longint status) 
void abort () 

Both the exit and abort procedures terminate a program running under the MPW Shell 
by calling_ RTExi t. The action of_ RTExi t is described below. 
_RTExit(longint status); 

CHAPTER 12 Writing an MPW Tool 379 



The _RTExit procedure must be the last executed routine in a tool running under the 
MPW Shell. It calls any routines installed by the atexit procedure (described above) and 
then rerums control to the address s~cified by the retPc parameter in the original 

RTinit call. 

Programs normally call the exit or abort procedure, described above. 

faccess-named file access and control 

int faccess(char *filename, unsigned int cmd, long *arg) 

The function faccess provides access to control and status information for named files. 

The parameter cmd must be set to one of the constants in the following list to indicate 
what operation is to be perfomied on the file. As noted in the list, some calls to faccess 

also require the arg parameter, usually as a long or as a pointer to a long. 

The following commands are available to all programs: 

F DELETE Deletes the named file, or returns an error if the file is open or in a window. 
Arg is ignored. 

F RENAME Renames the named file. Arg is a pointer to 3:. s.tring containing the new 
name. 

The following commands are available to programs running under the MPW Shell. All of 
these calls can be used on open or closed files. 

F_GTABINFO 

F STABINFO 

F GFONTINFO 

Returns the tab setting for an MPW text file named by filename. 

Arg is a pointer to a long integer. The long integer's value is the tab 
setting expressed as the number of spaces in the text file's font 

Sets the tab setting for an MPW text file named by filename. 

Arg is a long integer representing the tab setting expressed as the 
number of spaces in its font 

Returns the font and font size of an MPW text file named by 
filename. Arg is a pointer to a long integer. The font number is 
stored in the upper word of the long integer; the font size is stored 
in the lower word. 

380 MPW 3.0 Reference 



F $FONTINFO 

F GPRINTREC 

F SPRINTREC 

F GSELINFO 

F SSELINFO 

Sets the font and font size of an MPW text file named by 
filename. Arg is a long integer. The font number is read from the 
upper word of the long integer; the font size is read from the lower 
word. 

Gets a print record TPrint for the MPW text fde filename. 
Arg is a handle to the print record. Before calling faccess with 
this cmd value, the Macintosh Printing Manager must be initialized 
and the print record handle THPrint must be allocated. 

Sets a print record for the MPW text file filename. Arg is a 
handle to the print record. Before calling faccess with this cmd 

value, the Macintosh Printing Manager must be initialized and the 
print record handle THPrint must be allocated. 

Gets the selection infonnation for the MPW text file filename. 

Arg is a pointer to a selection record. 
A selection record is a C structure (or Pascal record) in this form: 

struct SelectionRecord { 

long startingPos; 

long endingPos; 

long dispayTop 
} ; 

The startingPos is the starting position of the selection, the 
endingPos is the ending position of the selection, and displayTop 
is the position of the first character at the top of the window. All 
three positions are off sets from the beginning of the file, with the 
first position in the file being 0. 

Sets the selection infonnation for the MPW text me filename. 

Arg is a pointer to a selection record described above. The display 
will start on the line that contains the character displayTop. 
DisplayTop does not have to be the first character in a line. The 
window will not automatically scroll horizontally to display the 
actual character specified. It is invalid to set startingPos less than 
zero, greater than endingPos, or greater than the length of the file. 
It is also invalid to set displayTop to a value greater than the length 
of the me. If displayTop is negative, it will be ignored, and only 
startingPos and endingPos will be used. (This is useful if you want 
the MPW Shell to provide for scrolling only when necessary. If 
displayTop is greater than 0, scrolling will be done on each 
faccess call.) 

CHAPTER 12 Writing an MPW Tool 381 



F GWININFO 

F SWININFO 

F OPEN 

Gets the current window position. Arg is a pointer to a rectangle 
(of type Rect) to store the information. The rectangle is in global 
coordinates. 

Sets the current window position. Arg is a pointer to a rectangle 
(of type Rect) specifying the new size and position. If the window 
size is invalid, or the rectangle is completely off the screen, 
faccess returns-I. 

Reserved for operating system use. 

If faccess is successful it returns a nonnegative value, usually 0. If the file cannot be 
accessed, faccess returns-I. If the requested resource for F_GTABINFO, 
F _ GFONTINFO, or F _ GPRINTREC does not exist for the named file, default values are 
stored and the function returns a value greater than 0. 

MPWC 

int faccess(char *filename, unsigned int cmd, long *arg) 

The crnd constants are declared in the file FCntl.h. If faccess returns with an error, it also 
sets the value of errno. 

MPW Pascal 

FUNCTION IEfaccess(filenarne: STRING; crnd: LONGINT; arg: UNIV LONGINT): 
LONGINT; 

The crnd constants are declared in the unit IntEnv. All strings are Pascal strings. 

MPW Assembler 

longint faccess(char *filename, unsigned longint crnd, longint *arg) 

Use the C function faccess. All strings are C strings. The cmd constants are declared in 
the file IntEnv.a. If faccess returns with an error, it also sets the value of errno. 

382 MPW 3.0 Reference 



Signal handling 

The MPW environment provides a set of routines to handle signals. A signal is similar to a 
hardware interrupt in that its invocation can cause program control to be temporarily 
diverted from its normal execution sequence; the difference is that the events that raise a 
signal reflect a change in program state rather than hardware state. Examples of signal 
events are stack overflow, heap overflow, software floating-point exceptions, and 
Command-period interrupts. 

Signal handling is available only for tools that run under the MPW Shell; it is not available 
for applications that run under the Macintosh Finder. 

• Note: There are just two software interrupts that can be detected by a program running 
under the current version of the MPW Shell. One is the Command-period, represented 
by the value SIGINT. The other is abnormal termination by the Abort function, 
represented by the value SIGABRT. As additional software interrupts are added, new 
values will be added to represent them. The signal-handling procedures will then accept 
these new values. 

The default action of any signal is to close all open files, execute any exit procedures 
(described above under "exit"), and terminate the program. If, however, your tool 
requires special handling of a signal, or chooses to ignore i~ you can use the procedure 
signal to replace the default signal handling procedure with your own procedure. 

Signal handling--C 

To access the signal handler in MPW C, do the following: 

• Include the file Signal.h in your source text 

• link your program with the file CRuntime.o. 

• Note: The type definition SignalHandler, used later in this section, is not included 
in the file Signal.h. SignalHandler is equivalent to: 

Typedef void (*SignalHandler) (int); 

CHAPTER 12 Writing an MPW Tool 383 



Signal handling-Pascal 

To access the signal handler in MPW Pascal, do the following: 

• Include the statement 

USES {$U Signal.p} Signal 

in your source text. The USES clause and the $U Compiler directive are described in 
the MPW 3.0 Pascal Reference. 

• link your compilation with the files Runtime.o and Paslib.o. 

The unit Signal declares the following types: 

SignalMap = integer; 
SignalHandler = Alongint; 

Signal handling-Assembler 

To access the signal handler, do the following: 

• Include the file Signal.a in your source text 

• Link your program with the file Runtime.o. 

Signal-specify a signal handler 

void (*signal (int signum, void (*newHandler) (int))) (int); 

Function signal replaces the current signal handler (the procedure to be executed upon 
receipt of the signal specified in signum) with a user-supplied signal handler. The default 
signal handler may be set or restored by specifying srG_DFL as the current signal handler. 

Some predefined signal handlers may be specifed as the newHandler. The function 
SIG_IGN does nothing. It may be used as the newHandler in a call to signal to 
ignore the signal. The function srG_DFL is the default signal handler. It calls the 
program's exit procedure. 

The newHandler function that is passed to signal takes one parameter (a long 
integer). The parameter is the number of the signal that is currently being handled. Writing 
a signal handler is described below. 

Function signal returns the previous SignalHandler pointer. If this pointer must be 
restored in another part of the program, save the return value and restore it with another 
call to signal. 

384 MPW 3.0 Reference 



MPWC 

void (*signal (int signum, void (*newHandler) (int))) (int); 

Alternatively, you can use the equivalent: 
Typedef void (*SignalHandler) (int); 
SignalHandler *signal(int signum, SignalHandler *newHandler) 

MPW Pascal 

FUNCTION IEsignal(SigNum: LONGINT; SigHdlr: UNIV SignalHandler): 
SignalHandler; C; 

MPW Assembler 

signalhandler *signal(longint signum, SignalHandler *newHandler) 

Use the C function signal. 

Raise-ralse a signal 

int raise(int signum) 

The raise allows signals to be raised under program control. It sends the signal signurn 
to the program. It returns 0 if successful, nonzero otherwise. Notice that depending on 
the signal handler installed, raise might not return. 

MPWC 

int raise (int signum) 

MPW Pascal 

FUNCTION IEraise(SIGNUM:LONGINT):LONGINT; C; 

MPW Assembler 

longint raise(longint signum) 

Use the C function raise. 

CHAPTER 12 Writing an MPW Tool 385 



Writing a signal handler 

void signalHandler(int signum) 

When a signal is raised, a call is made to the handler specified as the parameter 
newHandler in a call to signal. One parameter is passed to the signal handler. This 
parameter, signum, is the signal number currently being handled. 

When the tool starts, all signal handlers are set to srG_DFL. The action of srG_DFL is as 
follows: 

• Disable all signals 

• Call the procedure exit 

To specify your own signal handler procedure, call signal with your procedure as the 
newHandler parameter. When the signal is raised, your procedure will be called. Before 
your procedure is called, the SIG_DFL procedure is re-installed as the handler for that 
signal. Therefore, if you want to continue handling the signal, your procedure must re
install itself with another call to signal at the end of your signal handler. 

.& Warning Because s I G _ DFL is re-installed as part of the signal-handling 
process, your tool could be interrupted by a second signal that would 
then call SIG_DFL. It is safest to disable further signals by calling 
signal· ( SIG_IGN) at the beginning of your handler. Then re-install 
the appropriate handler at the end. ... 

You can think of signals as operating at the interrupt level. Therefore, the safest signal 
handler would set a global flag, re-install itself, and return. Then in the main body of your 
code, you could check for the flag and do some appropriate actions. 

If you want to terminate program execution because of a signal, do the following: In your 
signal handler, disable that signal (using SIG_IGN) and set a flag. In the main body of 
your code, you can do some cleanup procedures, and call exit. 

If you install a signal handler for command period, you should return an exit code of -9 to 
the MPW Shell. (For information on returning exit codes, see "Exit.") 

386 MPW 3.0 Reference 



Signals cannot be raised while executing in ROM or in the MPW Shell. If a signal event 
occurs while executing outside the tool, the signal state is set and the signal handler is 
executed as soon as program control returns to the tool. Because a signal can interrupt the 
tool at any point, there is no protection against heap corruption if a signal handler 
executes calls that modify the state of the heap. Because most buffered 1/0 potentially 
modifies the heap, writing to standard out or standard error is not recommended in signal 
handlers. 

If you must perform 1/0 or other operations as a result of a signal, set a flag and check the 
flag during your own processing loop. 

CHAPTER 12 Writing an MPWTool ~ 





Chapter 13 Creating a Commando 
Interface for Tools 

YOU CAN CREATE A COMMANDO DIALOG INfERFACE FOR YOUR OWN MPW TOOI.5 AND 
SCRIPTS. This chapter is a guide to creating the resources Commando requires to 
operate dialogs. The basic use of Commando's dialogs to operate MPW tools is 
described in Chapter 4. • 

Contents 
About Commando 391 

Invoking Commando 391 
Creating Commando dialogs 392 
Editing Commando dialogs 393 

Enabling Commando's Editor 393 
Editing controls 393 
Selecting controls 394 
Moving controls 394 
Sizing controls 394 
Editing labels 395 
Editing Help messages 395 
Changing the size of a Commando dialog box 395 
Saving the modified Commando dialog 396 

Strings and Shell variables 396 
Resource description 397 

Resource ID and name 397 
Size of the dialog box 398 
Tool description 399 

Regular entry control 399 
Multiregular entry 401 
Check boxes 402 
Radio buttons 404 
Boxes, lines, and text titles 406 

Box 407 
TextBox 407 
TextTitle 408 



Pop-up menus 409 
Editable pop-up menus 411 

Lists 414 
Three-state buttons 415 
Icons and pictures 417 
Control dependencies 418 

Direct dependency 418 
Inverse dependency 419 
Dependency on the Do It button 421 
Multiple dependencies 421 
Dependencies on radio buttons 422 

Nested dialog boxes 423 
Redirection 425 
Files and directories 427 

Individual files and directories 427 
Multiple files and directories for input and output 430 
Multiple files and directories for input only 436 
Multiple new files 438 

Version 439 
A Commando example 442 

390 MPW 3.0 Reference 



About Commando 

Commando makes it easier to use the MPW tools and scripts, both interactively and for 
composing scripts. A dialog is the programmed interaction between a user and a tool. A 
dialog box is the graphical vehicle used to display the various controls available for a 
tool or script. A dialog may employ several nested dialog boxes. 

You implement the dialog interface for MPW tools by using Commando. This program 
looks in the resource fork of a tool or script for a resource of the type ' cmdo • , that is, 
any dialogs to be used by the tool. Commando then loads the resource, builds a dialog lis~ 
handles events, and passes the command line back to the Shell for execution. 

Invoking Commando 

You can invoke a Commando dialog from the Worksheet in three ways: 

• Option-Enter: Type the command name and then press Option-Enter. This is the 
easiest method for routine interactive use. 

• Type Commando: Type the word commando in front of the command line and press 
Enter. The Commando dialog outputs the command line without exeruting it. You can 
also use this expression in a script For example, if you don't want the resulting 
command line to be immediately exeruted, you can type 

commando too/name 

In this case, Commando will not find a command if the command has been aliased to a 
different name. The tool's frontmost Commando dialog box is displayed. Clicking the 
Do It button writes the command line to standard output (that is, the window in 
which you typed the command) instead of executing it immediately. This second 
method of using dialog boxes is useful for building command lines that are to be rut 
and pasted into scripts. (The Do It button and other Commando controls are 
described later in this chapter.) 

• Ellipsis: Type the command name followed by an ellipsis (. .. ) and press Enter. You can 
also use this expression in a script. 

The ellipsis may appear anywhere in a command line (except within quotation marks 
or after o) and it is considered a word-break character. The ellipsis invokes the 
Commando user interface after the Shell has carried out all alias and variable 
substitutions. The entire command line is passed to Commando; the output of 
Commando is then executed by the Shell. 

CHAPTER 13 Creating a Commando Interface for Tools 391 



• Note: To get the ellipsis character, hold down the Option key while simultaneously 
typing the semicolon(;) character. Although three periods closely resemble an 
ellipsis character, Commando won't be fooled; you must use Option-semicolon to 
get the true ellipsis character that invokes Commando. 

Three Shell variables are used by Commando: 

• Aliases: This variable lists all defined aliases, with each name separated by a comma. 
The list contains only the names, not the definitions. Commando uses {Aliases} with 
the built-in command Alias. Without this variable Commando would have no way of 
knowing the names of the existing aliases. The variable {Aliases} is exported by the 
Startup script. 

• Commando: This variable tells the Shell which command to execute when the ellipsis 
character is present in a command line. To use the Commando tool, set the variable 
{Commando} to "Commando." You can use this variable to send the output of other 
tools to the Shell for execution. If the variable does not exist, then the ellipsis is 
removed from the command line and normal execution proceeds. 

• Windows: This variable lists the current windows, with each name separated by a 
comma. Commando uses this list to redirect input or output to or from existing 
windows. Without this variable Commando would have no way of knowing the names 
of the current windows. The variable {Windows} is exported by the Startup script. 

Throughout this chapter, each type of Commando control is illustrated with an excerpt 
from Cmdo.r, found in the Rlncludes folder. 

Creating Commando dJalogs 

Here is a procedure for creating your own Commando dialogs: 

1. Create a Connnando resource for your tool or script by starting with one of the 
example Commando resources, such as Countr in CExamples or ResEqual.r in 
PExamples. If an existing tool has a Commando control that you want to use, derez 
(that is, decompile by using the resource decompiler DeRez) the cmdo resource, then 
cut it and paste it into your new Commando resource file. 

For example, to examine the Pascal compiler's cmdo resource: 
DeRez {MPW}Tools:Pascal -only cmdo cmdo.r 

2. Add the Commando resource to your tool or script. For example, 
Rez AddMenu.r -o "{MPW}MPW Shell" -a 
Rez Rez.r -o {MPW}Tools:Rez -a 

392 MPW 3.0 Reference 



3. Now display the Commando dialogs for your tool or script. Adjust the coordinates of 
windows and move or resize the controls by using Commando's editor (see the next 
section). Edit the Help messages and then derez the cmdo resource. 

Editing Commando dialogs 

In MPW 3.0, Commando offers a built-in editor that lets you edit text labels and help 
messages and graphically move and size the controls within a Commando dialog box. This 
feature makes designing, redesigning, and fine-tuning Commando dialogs much easier. 
Although Commando can move and size controls, controls cannot be created, duplicated, 
or deleted. This means that you still have to manually create the Commando resource, but 
you don't have to be too concerned about the coordinates and sizes of the controls. 
Once you've created the Commando resource, you can simply bring up the Commando 
dialog in edit mode, arrange all the controls to your liking, and then use DeRez to 
decompile the cmdo resource. 

Enabling Commando's Editor 

To enable Commando's built-in editor, hold down the command key inunediately after 
launching Commando until the Watch cursor appears. Alternatively, you can write -modify 
in the command line, like this 

Commando Rez -modify 

or 

Rez_. -modify 

Editing controls 

After you have launched Commando with the built-in editor enabled, it can run in either of 
two different modes: 

• Normal mode, in which Commando works as usual 

• Edit mode, in which controls can be dragged and sized. Hold down the Option key to 
put Commando in edit mode. You must also hold down the Option key to select, 
drag, or resize a control. 

CHAPTER 13 Creating a Commando Interface for Tools 393 



Selecting controls 

To select a control, simply press the Option key and click the control. To select multiple 
controls, press the Option and Shift keys together and click each control to be selected. 
You can also click and drag a marquee around a group of controls, as you would in a paint 
program. To unselect a control, click it with the Shift (and Option) key down. 

Basically, selecting controls works exactly like selecting icons in the Finder, except that 
you must hold down the Option key in Commando. Also, the Commando editor will not 
allow you to select controls outside the user control area. For that reason, the coordinates 
you give when manually creating the Commando resourte should fall within the user area. 

Moving controls 

Moving controls works as you would expect: hold down the option key as you click and 
drag a control or a selected group of controls. The Commando editor will not allow 
controls to be dragged outside the user control area. Controls cannot be dragged closer 
than two pixels from the boundary. 

You can move selected controls one pixel at a time by holding down the option key and 
pressing the appropriate arrow key. 

You can align the top-left comer of the control to a four-pixel grid by holding down the 
command key while dragging. If you drag a selected group of controls with the command 
key held down, then the top-left comers of each of the selected controls will be aligned to 
the grid. 

Sizing controls 

You sil.e controls by dragging the small gray rectangle in the control's lower-right comer 
while holding down the Option key. 

Hold down the cormnand key while sizing a control to size the control's height to the 
recommended Commando height (the sections that follow recommend a height for each 
control that works and looks best). ~. the right edge will align to a four-pixel grid. To 
sil.e the contro~ simply click the selected control's grow handle with Option and 
Command keys held down. Ust and MultiRegularEnby controls will be si1.ed to the nearest 
whole line. 

Some controls, such as Redirection controls, cannot be resized and have no grow handles. 

394 MPW 3.0 Reference 



Editing labels 

To edit a text title label, simply select it in the same way you would select a control. You 
can change the text in the same way you change the text for an icon in the Finder. Once 
the title is selected, don't hold down the Option key to change the text. Text title labels 
are the only labels that can be edited. 

Editing Help messages 

Whenever you select a control, the control's Help message is locked in the Help window. 
By clicking inside the Help window you can edit the Help message in the same way you 
edit a regular text edit field except that you don't hold down the Option key. The Help 
message stays locked until another control is selected (and then the new control's Help 
message is locked) or until all the controls are unselected. 

Changing the si7.e of a Commando dialog box 

Once you have enabled Commando's built-in editor, you can resize any Commando dialog 
box by holding down the Option key while clicking and dragging by the dialog box's 
lower-right comer (where you would ordinarily find a Grow box in a standard Macintosh 
window). You can also resize nested dialog boxes. However, dialog boxes cannot be 
enlarged beyond the size of the original Macintosh screen. 

• Hints and kinks 

Lines and boxes surrounding other controls must be declared later In the 
Commando resource than the controls they surround. You may encounter 
situations in which you have to move a control out of the way In order to 
select a control underneath. 

Controls sized or moved In nested dialogs do not go back to their or1glnal size 
or position when you click the nested Cancel button.+ 

With the Commando editor enabled, any text entered in a Regular Entry or MultiRegular 
Entry field is saved as the default text. The text will appear the next time Commando is 
invoked. See the sections on Regular Entry and MultiRegular Entry controls later in this 
chapter. 

CHAPTER 13 Creating a Commando Interface for Tools 395 



Saving the modified Commando dialog 

Once you've modified a Commando dialog and clicked the main cancel or Do-It button, 
Commando prompts you with a Save dialog. The Save dialog has three options: 

1. Save the resource. 

2. Don't save the resource. 

3. Cancel the Save dialog and go back to Commando for more editing. 

When Commando saves the resource, it simply replaces the original resource, wherever it 
came from. The next time you run Commando on the changed resource, the control 
positions and sizes will be where you last left them. You can then use DeRez to decompile 
the cmdo resource to get the actual coordinates or to generate the .r file that will be used 
ina build. 

Strinp and Shell variables 

You can dynamically change sttings in Commando dialogs by having those strings come 
from Shell variables. To make strings come from Shell variables, define the string like this: 

"{shell variable}" 

The string must begin with a 

' { ' 

and end with a 

' } ' 

No leading or trailing spaces are allowed. The Shell variable must be an exported variable. 
If the variable is undefined at the time the Commando dialog is invoked, the variable 
name with braces will be displayed. 

Any string in the Commando resource, including option strings, help strings, titles, and so 
on, can be a Shell variable. However, strings cannot be embedded within strings; they are 
stand-alone only. 

When Commando is invoked with its built-in editor, Shell variable strings are not 
expanded to the Shell variable values. This is done so that the strings can be edited and 
then saved as Shell variables rather than the values of Shell variables. 

Incidentally, this feature has been used in some of Projector's Commando dialogs in order 
to display the current user, as shown in Figure 13-1. 

396 MPW 3.0 Reference 



• Figure 13-1 Example use of the {User} variable 

User Tom Taylor 

Or {{-1}}, RegularEntry 
"User", 

{ , 

{81, 78, 96, 113}, 
{81, 120, 97, 294}, 
"User", 
ignoreCase, 
"-u", 
"Enter the name of the current user. If 
"no name is entered, the name in {User} is used." 

Resource description 

Cmdo.r, the resource description file for Commando, is located in {Rincludes}cmdo.r. 

Resource ID and name 

Any resource ID may be used for tools or scripts. Commando uses the first ' cmdo • 

resource it finds in the command's resource fork. 

Commando draws an outlined button, the Do It button, in the lower-right comer of every 
dialog box. The Do It button is labeled with the name of the tool or script (Normally 
Commando uses the name of the tool or script passed from the Shell.) Commando will 
capitalize the first character and force the rest of the characters to lowercase. For 
example, "StackSNiffER" becomes "Stacksniffer." 

Some people may prefer a different capitalization scheme. If you specify the 
• cmdo ' resource of a tool or script with a resource name, Commando will use that name 
"as is" as the label for the outlined button. This feature should be used sparingly; if you 
rename a tool, the previous name in the resource will still be displayed in the Do It button. 

CHAPTER 13 Creating a Commando Interface for Tools 3'J7 



Size of the dialog box 

The width of Commando dialog boxes is fixed at 480 pixels. You are free to set the height 
to accommodate the controls in your tool's dialog box. The number specifying the height 
shouldn't exceed 295 to be compatible with the smaller Macintosh screens. Specifying this 
height in the 'cmdo' resource will result in the screen elements shown in Figure 13-2. See 
Table 13-1 for other recommended dimensions. 

Please refer to the array declared under" resource • cmdo • "in the sample resource 
description file at the end ofthis chapter. The area labeled "Options" in Figure 13-2 is the 
area reserved for your controls and options. 

• Figure 13-2 Basic template for a Commando dialog box 

.-Options-------------------. 

[Command Line 

[ --e-•p ____________ ___.IJ 
Cancel 

I 

The dimensions given below are not policy but recommendations. The sizes of the text
edit fields are important if you want to avoid text that shifts up and down slightly when it 
is selected. 

398 MPW 3.0 Reference 



• Table 13-1 Summary of recommended sizes for Commando screen elements 

Radio buttons 

Check boxes 

Pop-up menus 

Pop-up menu titles 

Regular entries 

Multi-regular entries 

Editable pop-up menus 

Editable pop-up titles 

Icons 

Pictures 

Tool desaiption 

16 pixels high 

16 pixels high 

19 pixels high 

16 pixels high. Top of title starts 1 pixel below the top 
of the pop-up menu (that is, top of title = top of pop
up rrenu + 1 pixel). 

16 pixels high 

16 pixels per line 

22 pixels high 

16 pixels high. Top of title starts 3 pixels below the 
top of the editable pop-up menu (that is, top of title 
= top of editable pop-up + 3 pixels). 

32 pixels high; 32 pixels wide 

Same relative bounds as the rectangle stored in the 
• PICT' resource 

At the bottom of the Commando dialog box is a three-line Help box. The text in this box 
should be a brief, concise description of the tool, stating what it does. The Help box is 
not scrollable, so you need to limit your text to the confine of the box. See the array 
declared under "resource 'crndo' n in the sample resource description ftle at the end 
of this chapter. 

Regular entry control 

The regular entry control is the most generic control available. The control behaves exactly 
like the text-edit fields in conventional Macintosh dialog boxes. In addition to strings 
and numbers, the regular entry control can be used for special options that have no 
specified standard control. 

Here is the case declaration for regular entry controls: 

CHAPTER 13 Creating a Commando Inteiface for Tools 39'J 



case RegularEntry: 
key byte = RegularEntryID; 
est ring; 
align word; 
rect; 
rect; 
est ring; 

byte ignoreCase keepCase; 

cstring; 
cstring; 

400 MPW 3.0 Reference 

/* title */ 

/* bounds of title */ 
/* bounds of input box */ 
/* default value */ 

/* the default value is never 
displayed in the Command 
window. If what the user 
types in the textedit window 
matches the default value, 
then that value isn't 
displayed. This flag tells 
Commando whether to ignore 
case when comparing the 
contents of the text edit 
window with the default value 
*/ 

I* option returned.*/ 
I* help text for entry */ 



Multiregular entry 

Multiregular entry controls are similar to regular entry controls, except that multiregular 
entry controls accept values that can be entered more than once. For example, most 
compilers accept some type of -define option that can be specified more than once. 

Here is the case declaration for MultiRegular Entry. Note that the cstring for default 
values is the only control that passes its default values to the command line. This is an 
exception to the rule. 

case MultiRegularEntry: /* scrollable lists of an option */ 

key byte = MultiRegularEntryID; 
cstring; /* title */ 

align word; 
rect; /* bounds of title */ 
rect; /* bounds of input list */ 
byte= $$Count0f(DefEntryList); 
array DefEntryList { 

cstring; 
} ; 

cstring; 

cstring; 

/* default values */ 

/* option returned. Each value will 
be preceded with this option.*/ 

/* help text for entry */ 

Figure 13-3 shows the Defines window in the Rez dialog box with two defines entered. 
Here is the resource control for this function: 

NotDependent {}, MultiRegularEntry 
"Defines:", 

} ' 

{20, 35, 35, 125}, 

{40, 30, 120, 225}, 

{ } ' 
"-d", 
"Type in multiple #defines here (such as LANGUAGE=French)" 

The empty braces after the Defines window coordinates indicates that there are no 
default strings. 

CHAPTER 13 Creating a Commando Interface for Tools 401 



• Figure 13-3 MultiRegular Entry 

Defines: 
debug•true 
longuoge•french 

r:Commond Line: 
I raz -d debug:true -d 1 enguoge:franch 

Check boxes 

The check box control is likely to be the most often used because it corresponds to the 
on/off type options typical of MPW tools. Here is the case declaration for CheckOption: 

case CheckOption: 
key byte = CheckOptionID; 
byte NotSet, Set; /* whether button is set or not */ 

rect; I* bounds */ 

cstring; /* title */ 

cstring; I* option returned */ 

cstring; /* help text for button */ 

The byte Not set or set is used to set the button's default state. The option is returned 
only when the button is not its default state. 

This resource code produces the check boxes in Figure 13-4: 

notDependent { }, CheckOption { 
NotSet, {20, 10, 36, 235}, "Show macro expansions", 

"-print GEN", 
"Expand macros in the listing file." }, 

notDependent { }, CheckOption 
Set, {35, 10, 51, 235}, "Allow automatic page ejects", 

"-print NOPAGE", 
"Controls whether the Assembler sends automatic page ejects 

to the listing file" }, 

402 MPW 3.0 Reference 



notDependent { }, CheckOption 
Set, {50, 10, 66, 235}, "Show warning mesages", 

"-print NOWARN", 
"Controls both the display and count of warning messages." }, 

notDependent { }, CheckOption 
Set, {65, 10, 81, 235}, "Show macro call statements", 

"-print NOMCALL", 
"Controls the listing of macro call statements." }, 

notDependent { }, CheckOption { 
Set, {80, 10, 96, 235}, "Show generated object code", 

"-print NOOBJ", 
"List generated object code or data for each listed line." }, 

notDependent { }, CheckOption { 
NotSet, {95, 10, 111, 235}, "Show up to 255 bytes of data", 

"-print DATA", 
"Controls whether object data is shown in full · 

(up to 18 lines) or limited to one line." }, 
notDependent { }, CheckOption { 

Set, {110, 10, 126, 235}, "Show macro directive lines", 
"-print NOMDIR", 

"Controls whether macro directives (including conditional 
and set directives) are shown in the listing." }, 

notDependent { }, CheckOption { 
Set, {125, 10, 141, 235}, "Show header lines", 

"-print NOHDR", 
"Controls whether header li'nes are printed in the listing." }, 

notDependent { }, CheckOption { 
Set, {140, 10, 156, 235}, "Show generated literals", 

"-print NOLITS", 
"Controls listing of literals produce by PEA and LEA machine 

instructions." }, 
notDependent { }, CheckOption { 

NotSet, {155, 10, 171, 235}, "Show assembly status", 
"-print STAT", 

"Controls display of assembly status in the listing." }, 

CHAPTER 13 Creating a Commando Interface for Tools 403 



Figure 13-4 shows a set of check boxes in their default state and again after the two top 
buttons have been clicked. 

• Figure 13-4 Setting the CheckOption default state 

Default state of buttons 

O Show macro eHpansions 
181 Rllow automatic page ejects 
181 Show warning messages 
181 Show macro cell statements 
181 Show generated object code 
O Show up to 255 bytes of data 
181 Show macro directiue lines 
181 Show header lines 
181 Show generated literals 
O Show assembly status 

r:tommand line: 
1esm 

Radio buttons 

State after top two buttons clicked 

181 Show macro eHpansions 
O Rllow automatic page ejects 
181 Show warning messages 
181 Show macro call statements 
181 Show generated object code 
D Show up to 255 bytes of data 
181 Show macro directiue lines 
181 Show header lines 
181 Show generated literals 
0 Show assembly status 

r:Command Line: 
1esm -print GEN -print NOPAGE 

The simplest set of radio buttons offeis several mutually exclusive options. For example, 
the Print Option radio buttons in Figure 13-5 let you choose High or Standard or Draft 
The Standard mode is the default. 

• Figure 13-5 Radio buttons with default setting 

QHlgh 
®Standard 
QDraft 

r:tommand Llne:--
1 test 

404 MPW 3.0 Reference 



Here is the case declaration for radio buttons: 

case RadioButtons: 
key byte = RadioButtonsID; 
byte= $$CountOf(radioArray); 
wide array radioArray { 

rect; 
cstring; 
cstring; 
byte NotSet, Set; 
cstring; 
align word; 
} ; 

/* # of buttons */ 

/* bounds */ 

/* title */ 

/* option returned */ 

/* whether button is set or not */ 
/* help text for button */ 

To make the middle radio button the default, as shown in Figure 13-5, declare the middle 
Standard button set: 

notDependent { }, RadioButtons { 
{ 

{115, 300, 130, 400}, "High", "-q high", notset, 
"Print the selected files in the highest quality" 
"available from the printer.", 

{132, 300, 147, 400}, "Standard", "-q standard", set, 
"Print the selected files in the normal quality mode.", 

{149, 300, 164, 400}, "Draft", "-q draft", notset, 
"Print the selected files in the fastest way possible" 
"at the expense of quality." 

No option is passed to the command line box because the middle button is explicitly 
declared the default If a button other than the default is clicked, Commando passes the 
appropriate option to the command line, as shown in Figure 13-6. 

• Figure 13-6 Clicking a button other than the default 

@High 
0 Standard 
O Draft 

I.Command Line:
I test -Q high 

CHAPTER 13 Creating a Commando Interface for Tools 405 



Suppose that in the previous example you wanted the default radio button to display its 
option in the command line. You would simply change the order in which you declared the 
radio buttons, so that the middle button would be declared first. Be sure that all buttons 
are NotSet. The result is shown in Figure 13-7. Commando will set the first button that it 
encounters if no button is specified as set 

• Figure 13-7 No button specified as set 

QHigh 
®Standard 
0 Draft 

r:tommand Line:-
1 test -q standard 

• Note: A radio button can be either dependent upon or parent to another control. For 
purposes of establishing dependency relations, a cluster of radio buttons is 
considered a single item in the resource listing. See "Control Dependencies" later in 
this chapter for more information. 

Boxes, lines, and text titles 

It is recommended that you group dialog controls or functions within boxes. Commando 
supplies the facilities to draw a box (case Box), to draw a box with a title embedded in 
the upper-left comer (case TextBox), and to create titles in any font (case TextTitle). 

• Note: When you draw a box around a set of controls, always list the box declaration 
after listing the other controls. Otherwise the Dialog Manager might confuse which 
control is clicked. 

406 MPW 3.0 Reference 



Box and TextBox cannot depend on other controls, nor can other controls depend on 
them. Commando would not complain if you set up such a dependency, but the line or 
box would not respond to the state of the determining item. TextTitles, on the other 
hand, can be dependent on another control. 

Box 

Use the case Box to draw boxes around controls or to draw lines. To draw lines, make the 
rect 1 pixel wide or 1 pixel high. In other words, to draw a horizontal line, you might set 
the rect to {10, 10, 11, 100}. Here is the case declaration for the Box control: 

case Box: 

key byte = BoxID; 

byte black, gray; 

rect; 

TextBox 

/* Can be used to draw lines too */ 

/* color of object */ 
/* bounds of box or line */ 

The case TextBox lets you draw a box with the title embedded in the line at the upper-left 
corner. This is a frequently used convention in the Commando dialogs. (See the sample 
dialog box template in Figure 13-2.) Here is the case TextBox declaration from the 
Command resource file: 

case TextBox: 

key byte = TextBoxID; 

byte black, gray; 

rect; 

cstring; 

For example, 

notDependent { }, TextBox 

gray, 

} , 

{ 105, 295, 169, 405}, 

"Print Quality" 

/* Draws a box with title in upper-left */ 

/* color of object */ 

/* bounds of box or line */ 

/* title */ 

This declaration gives you the results shown in Figure 13-8. 

CHAPTER 13 Creating a Commando Interface for Tools 407 



• Figure 13-8 TextBox example 

; Print Quality --1 

l QHigh ! 
1 ® Standard 1 
10 Draft 1 
L-·--·-----·--·---·.: 

TextTitle 

Use TextTitle to draw text in any font Here is the case declaration: 

case TextTitle: 

key byte = TextTitleID; 

byte plain; 

rect; 

int systemFont; 

int systemSize; 

cstring; 

/* style of text */ 
/* bounds of title */ 

/* font number to use */ 

/* font size to use */ 

/* the text to display */ 

For example, let's write "so cooln in a cool way: 

notDependent { }, TextTitle 

bold+ italic, {20,20,40,100}, 

systemFont, 12, "So Cool ... " 
} , 

So Cool .•• 

~ MPW 3.0 Reference 



Pop-up menus 

Pop-up menus are a convenient way to select an item from a list of related items. 
Commando manages the associated windows, aliases, fonts, and Shell variables. Here is 
the case declaration: 

case PopUp: 
key byte = PopUpID; 
byte Window, Alias, Font, Set; /* popup type */ 

rect; 
rect; 
cstring; 
est ring; 
cstring; 

/* bounds of title */ 

/* bounds of popup line */ 
/* title */ 
/* option returned */ 

byte noDefault, hasDefault; 
/* help text for popup */ 
/* hasDefault if 1st item 

is "Default Value" */ 

The last field, "byte noDefault, hasDefault," tells Commando whether the pop
up menu has a default value or not If the pop-up menu does not have a default value, the 
first value in the pop-up list is automatically selected and passed to the command line. If 
the pop-up menu does have a default value, then Commando adds a new item of the form 
"Default Value' to the front of the list. When this value (such as a font or file) is selected, 
no value is displayed in the window that generates the pop-up menu. 

Here is an example of the resource code for a pop-up menu with a default value. See Figure 
13-9 for the resulting window and pop-up menu. 

notDependent { }, PopUp 
Font, 

} , 

{21, 20, 37, 60}, 

{20, 60, 39, 160}, 

"Font", 
"-f", 
"Popup help message", 
hasDefault 

CHAPTER 13 Creating a Commando Interface for Tools 409 



• Figure 13-9 Pop-up menu with default value 

Font ._I ____ _. 

Ruant Ganie ~ 
Bookman 
Chicago 
Courier 
6eneua 
Heluetica 
Monaco 
N Heluetica Narrow 
New Century Schlbt 
Palatlno 
Saigon 
Symbol 
Times 

Here is the resource code for a pop-up menu with no default value. The results are shown in 
Figure 13-10. 

notDependent { }, PopUp 
Font, 

} ' 

{46, 20, 62, 60}, 

{45, 60, 64, 160}, 

"Font", 
"-f", 
"popup help message", 
noDefault 

• Figure 13-10 Pop-up menu without default value 

Font IRuant Garde 

Chicago 
Courier 
Geneua 
Heluetica 
Monaco 
N Heluetica Narrow 
New Century Schlbk 
Palatino 
Saigon 
Symbol 
Times 

410 MPW 3.0 Reference 



Editable pop-up menus 

Pop-up menus associated with a text-edit box can be edited. You can choose existing 
values from a list and still have the flexibility to enter completely new values. 

case EditPopUp: 
key byte = EditPopUpID; 
/* For Menuitem, this EditPopUp must be dependent on 

another EditPopUp of the MenuTitle type so that 
the control recognizes which menu item to display. 

byte 

rect; 

For FontSize, this EditPopUp must be depend~nt on 
a PopUp of the Font type so that the control 
recognizes which sizes of the font exist. */ 

MenuTitle, Menuitem, /* Type of editable pop-up 
FontSize, Alias, Set; 

/* bounds of title */ 

*/ 

rect; I* bounds of text edit area */ 
cstring; I* title */ 

cstring; /* option to return */ 

cstring; /* help text for text-edit */ 
cstring; /* help text for pop-up */ 

The example in Figure 13-11 shows how the Font Size editable pop-up menu is made 
dependent on the current font. 

CHAPTER 13 Creating a Commando Interface for Tools 411 



• Figure 13-11 How Font Size dependency is handled 

Font 

f on1 Siz•~ [~~]~J 

notDependent {}, PopUp { 
Font, 
(21, 20, 37, 60}, 
{20, 60, 39, 160}, 

"Font", 
"-f", 
"Popup help message.", 
hasDefault 

} , 
Or {{l}}, EditPopUp { 

FontSize, 
{48, 20, 64, 90}, 
(45, 90, 67, 140}, 

"Font Size", 
"-size", 
"Textedit help message", 
"Popup help message" 

} , 

If a particular font is selected in the Font box, then the font sizes that actually exist are 
outlined In the example in Figure 13-12 the Monaco font has been selected in the Font 
box. The 9-point item is outlined and has been selected with the mouse. Any font size can 
be typed in the Font Size box. 

• Figure 13-12 Font Size pop-up menu with font selected 

Font !Monaco 

14 Point 
18 Point 
24 Point 

412 MPW 3.0 Reference 



Figure 13-13 demonstrates how one editable pop-up menu can be dependent on another. 

• Figure 13-13 One pop-up menu dependent on another 

Menu I 

notDependent {}, EditPopUp 
MenuTitle, 

}, 

{ 42, 98, 59, 142}, 
{40, 129, 68, 259), 
"Menu", 
"-m", 
"Textedit help message", 
"Popup help message" 

Or {{l}}, EditPopUp { 
Menuitem, 

} , 

{75, 100, 91, 136}, 
{72, 129, 94, 259}, 
"Item", 
"-in' 
"Textedit help message", 
"Popup help message" 

s 
--~~~~~~-- File 

Edit 
Find 
l\1ark 
ll•tndau~ 

Project r 

Tools 
Cmds 
Directory 
Build 

Because the Menuitem EditPopUp is dependent on the MenuTitle EditPopUp, the 
Menuitem control is dinuned until a menu is selected from the Menu pop-up or until a 
menu is typed in the Menu textedit field. 

After "Project" is selected (Figure 13-13), the Item menu is enabled as shown in 
Figure 13-14. 

CHAPTER 13 Creating a Commando Interface for Tools 413 



• Figure 13-14 Menu title and Item pop-up menus 

Menu I Projec~ ltJ 
Item [.__ ____ --1 

Lists 

New Project 
Check In 
Check Out 

REHamples 
CEHamples , , 
PEHamples 
Rlncludes 

Checkout {Rctiue} 
Checkln {Rctlue} 

Use the case Llst to enable users to make multiple selections from a list of items. Four 
types of things can be listed: 

• volumes (Inserted disks will be recognized and added to the list.) 

• shell variables 

• windows 

• aliases 

Here is the case declaration for List: 

case List: 

key byte = ListID; 
byte Volumes, ShellVars, 

Windows, Aliases; 
cstring; 
cstring; 
align word; 
rect; 
rect; 
est ring; 

414 MPW 3.0 Reference 

/* 

/* 

/* 

/* 

I* 
/* 

/* 

Puts up list of items & allows 
multiple selections */ 

what to display in 
the list */ 
option to return before each item */ 

title */ 

bounds of title */ 

bounds of list selection box */ 

help text for selection box */ 



Here is the resource code for the two examples shown in Figure 13-15. The second example 
shows that the user has already selected a window. 

notDependent { }, List { 
Volumes, 

} , 

"" , 
"Volumes", 
{20,30,35,120}, 
{37,30,101,200}, 
"Help message" 

notDependent { }, List { 
Windows, 

} , 

"-w", 

"Window List", 
{20,220,35,303}, 
{37,220,101,400}, 
"Help message" 

• Figure 13-15 List control 

Uolumes 
CJHO 
(gJ System Tools 

Three-state buttons 

Window List 

Three-state buttons were invented to handle the SetFile and SetPrivilege commands. Both 
of these commands deal with the setting or clearing of flags. These commands also have 
another implicit state: "Don't touch." Therefore, these buttons have three states: Set, 
Clear, and DontTouch. 

CHAPTER 13 Creating a Commando Interface for Tools 415 



case TriStateButtons: 
key byte = TriStateButtonsID; 
byte= $$Count0f (threeStateArray); /* t of buttons*/ 
cstring; /* option returned */ 
wide array threeStateArray 

align word; 
rect; /* bounds */ 

cstring; I* title */ 

cstring; /* for Clear state */ 

cstring; /* for DontTouch state */ 

cstring; /* for Set state */ 

cstring; /* help text for button */ 
} ; 

Here is the resource code for the example shown in Figure 13-16. 

notDependent { }, TriStateButtons { 

} I 

"-a", 

{40, 25, 58, 135}, "Locked", "l", "", "L", 
"This button affects the file \"Locked\" attribute.", 

{58, 25, 76, 135}, "Invisible", "v", '"', "V", 
"This button affects the file \"Invisible\" attribute.", 

{76, 25, 94, 135}, "Bundle", "b", "", "B", 
"This button affects the file \"Bundle\" attribute.", 

{94, 25, 112, 135}, "System", "s", "", "S", 
"This button affects the file \"System\" attribute.", 

{112, 25, 130, 135}, "Inited", "i", "", "I", 
"This button affects the file \"Inited\" attribute.", 

{130, 25, 148, 135}, "On Desktop", "d", "", "D", 
"This button affects the file \"On Desktop\" attribute." 

416 MPW 3.0 Reference 



• Figure 13-16 Three-state buttons 

Set--+ 
Don't touch --+ 

Clear--+ 

;-File Attributes-, 
i +Locked 
i + 1nuisible 
i <>Bundle 
!+system 
!+lnited 
! + On Desktop 

r:Command Line:--
1setfile -e Lb 

Icons and pictures 

Use the case PictOrlcon to place icons, pictures, or both in the Commando windows. This 
item cannot be dependent on any other item, nor other itelll.5 on it. Here is the case 
declaration for icons and pictures: 

case PictOricon: 
key byte = PictOriconID; 
byte Icon, Picture; 
int; 
rect; 

/* display a picture or icon */ 
/* resource ID of icon */ 

I* display bounds */ 

The icon in Figure 13-17 is produced by an • I CON• resource with an ID of 0, located in the 
system file. 

• Figure 13-17 Icon in a Commando window 

Here is the resource code that generates the example shown in Figure 13-17: 

notDependent, PictOricon 
Icon, 0, {20, 20, 52, 52} 

} , 

CHAPTER 13 Creating a Commando Interface for Tools 417 



Control dependencies 

Sometimes one control is dependent on the value of another control. For example, a font 
size control might be dependent on a preceding font selection control. In this case the 
font size control is tenned the dependent. The preceding font selection control is called 
the parent because it enables or disables the dependent. 

Commando numbers each item sequentially in the order of its appearance in the resource 
description file. The dependent/parent relationship in Commando is controlled by the 
sequential order of items entered into a Commando resource. 

• Note: These numbers do not appear in the resource code; you must count them 
manually. 

An item may be dependent only on other items within the same dialog box. In the case of 
nested dialog boxes, the items in the second and succeeding dialog boxes must be 
renumbered, starting from one. 

Direct dependency 

Usually dependency on another control means that the dependent control is disabled if 
the parent control is disabled (or has no value). 

Figure 13-18 shows two states of a directly dependent control. In the first case, nothing 
has been entered in the Type field, so the dependent Creator field is disabled and appears 
dimmed in the dialog box. In the second case, the Creator field is enabled as soon as 
something is typed in the Type field. 

Figure 13-18 also illustrates how the ignoreCase/keepCase flag works. Because the flag is 
keepcase and 1appl1 is not equal to •APPL' (the default value in this case), the option is 
displayed in the Command line box. 

418 MPW 3.0 Reference 



• Figure 13-18 Direct dependency 

r;tommand Line: 
I test 

r.tommand Line: 
I test -t eppl 

Inverse dependency 

Type I.______. 
i: rett tt)r L~:n l 

Type jappl 

Creator I???? I 

A control can be inversely dependent on another control. In other words, if the parent is 
disabled, then the dependent is enabled. Or, if the parent is enabled, then the dependent 
is disabled. 

It is also possible for two controls to be inversely dependent on each other. This means 
that both controls are enabled until one is selected; then the other is disabled. For 
example, there are two types of dependencies illustrated in Figure 13-19. The user can 
select either the top check box or the bottom one, but not both; that is, the user is 
allowed to append resources to a resource file or to make the resource map read-0nly. The 
middle box is enabled only when the top box is checked, because it makes sense to 
replace protected resources only when appending to a source file. 

CHAPTER 13 Creating a Commando Interface for Tools 419 



• Figure 13-19 Inverse dependencies 

LO Append resources to resource file 

0 OK to replace protected resources 
0 Make resource file read-only 

[8J Append resources to resource file 
O OK to replace protected resources 
O Make resource file read-only 

0 Append resources to resource file 

O OK to replace protected resources 
[8J Make resource file read-only 

Here is the resource description of the three check boxes shown in Figure 13-19. To make 
a control inversely dependent on another control, make the value of the parent negative. 

Or { {-3} }, CheckOption 
NotSet, 
{20, 10, 40, 350}, 

"Append resources to resource file", 
"-a" I 
"some help text ... " 

} , 
Or {l} }, CheckOption { 

Not Set, 
{40, 10, 60, 350}, 

"OK to replace protected resources", 
"-ov", 

"some help text ... " 
} , 
Or {-1} }, CheckOption 

Not Set, 
{ 60, 10, 80, 350}, 

"Make resources file read-only", 
"-ro", 

"some help text_. n 

} , 

The second CheckOption (the dependent) is enabled only if the first (the parent) is 
enabled. The third CheckOption is enabled only if the first is disabled. 

420 MPW 3.0 Reference 



Dependency on the Do It button 

To make the Do It button dependent on something, you must use the special Do It 
Button item in the Commando resource type definition. This item can be specified only 
once per resource and can be specified only in the first dialog. In the example shown in 
Figure 13-20 the Do It button is dependent on the check box. 

• Figure 13-20 Dependency on the Do It button 

l Test Options 

I O Check me beby 

rmmend Line 

~":!!, CMlllOt .,. ~ ..m1 u.. cl..ck box is clwcbd. 1-( iiiiiiiiiciiiieiiinciiieiil ~] 
~L~~~~~~~~~~~~~~--'-'-;;;;;;;;aml"me~.t_..i#B 

Here is the resource code for the above example: 

NotDependent { }, CheckOption 

NotSet, 

{20, 20, 40, 200}, 

"Check me baby", 

"-c", 
"Help us to help you.", 

} , 
Or {1} }, DoitButton { 

Multiple dependencies 

A Commando item can be dependent on one or more other items. For example, a control 
might be enabled only when two other controls are enabled. Such situations are 
considered multiple dependencies. 

CHAPTER 13 Creating a Commando Interface for Tools 421 



Multiple dependencies may be of two types: OR and AND. In an OR dependency, a 
dependent control is enabled if any of its parents is enabled. In an AND dependency, the 
dependent control is enabled only if all its parents are enabled. It is possible to mix ANDs 
and ORs. For example, include an item within an AND or OR list that is dependent on a 
dummy control (case Dummy}-and make the dummy control dependent on another list 
of controls. An example appears in the next section. 

Depende:ndes on radio buttons 

Commando considers a cluster of radio buttons to be one item. Remember that 
Commando numbers each item sequentially in the order of its appearance in the resource 
deScrlption file. When an item is dependent on a specific radio button within a cluster of 
radio buttons, the number of the individual button is placed in the upper four bits of the 
item number that describes the entire cluster of radio buttons. For example, consider a 
radio button cluster that is item #5 and contains six radio buttons. To have a dependency 
on button #3 you would write, in Rez syntax, 

(3<<12) + 5 

Figure 13-21 shows three ways in which the check box at the bottom of the dialog box is 
dependent on the upper check box and radio buttons. 

• Figure 13-21 Dependencies on radio buttons 

0Check Me ®button 1 
0 button 2 
0 button 3 

D Depends on bou abm1e and bu11on~ I ~- 3 

181 Check Me Obutton 1 
0 button 2 
@button 3 

D Depends on boH aboue and buttons 1 & 3 

181 Check Me 0 button 1 
@button 2 
Qbutton 3 

D Depends on bau aba11e and bu11 on~ I D" 3 

422 MPW 3.0 Reference 



Here is the resource description code describing the operation of the dialog box in Figure 
13-21: 

notDependent { }, CheckOption { 

NotSet, {15, 15, 31, 100}, "Check Me", "-root", "" 

} I 

And {l, 3} }, CheckOption { 

NotSet, {65, 15, 81, 450}, "Depends on box above and" 

"buttons 1 & 3", "-abovel", "" 

} I 

Or { (1 << 12) + 4, (3<< 12) + 4 } }, Dummy { 

} I 

notDependent { } I Rad.ioButtons { { 

{ 15, 150, 31, 450}, "button l ", "-bl", NotSet, 

{30, 150, 46, 450} t "button 2", "-b2", Not Set, 

{45, 150, 61, 450} t "button 3", "-b3", NotSet, 
} } I 

"no help", 

"no help", 

"no help", 

In Figure 13-21 the first CheckOption is Item #l in the resource description file and the 
next CheckOption is Item #2 in the same file. Item #3 is a dummy item used to perfonn 
the complex dependency. Item #4 is the entire cluster of three radio buttons. Item #2 (the 
bottom check box in the sample dialog) is dependent on Item #l (the top check box) 
AND radio button #l OR radio button #3. 

Nested dialog boxes 

Complex tools may require more than one dialog box in order to display all the options. 
When there are several nested dialog boxes, all of them are called from buttons in the first 
dialog box. It's best to avoid calling nested dialog boxes from other nested dialog boxes. 

Figure 13-22 shows how dialog box #2 can be called from dialog box #l. 

CHAPTER 13 Creating a Commando Interface for Tools 423 



• Figure 13-22 Setting up nested dialog boxes 

Dialog # 1 calls dialog #2. 

resource 'CMDO' (128) { 
{ 

270, 

"" , 

wide array itemArray { 
int notDependent = 0; /* item dependent upon */ 

switch { 
case NestedDialog: 

key byte = NestedDialogID; 
--+--byte; /* the number of the dialog 

to call. It must be greater 
than the current dialog */ 

rect; /* bounds of button */ 
cstring; /* button's title */ 
cstring; /* help text for button */ 

:::::..--..J notDependent { } , NestedDialog { 
r--~ ..... 2. 

Dialog #1 

{135, 357, 155, 468}, 
"Nested Dialog-", 
"This is the help message displayed when the nested dialog button is clicked." 

} , 
} , 

270, 

"" 
~ { 

Dialog #2> 
} 

} ; 

All items in a nested dialog box have an implied dependency on the nested dialog button. 
When a nested dialog button is disabled (dimmed), all the controls in that nested dialog 
act as if they were disabled. 

Figure 13-23 shows the recommended placement of nested dialog call buttons. 

424 MPW 3.0 Reference 



• Figure 13-23 Placement of nested dialog buttons 

Test Options------------------. 

~e'>te<l lhalog ... 

Commend Line-----------------. 

User Interface 
recommends 
that nested 
dialog buttons 
begin at the 
lower-right 
and go up. 

t~ -----+-11---While the mouse 

Help ( 
This Is h lwlp l'llffA9I' dlspllv..S ""- h MSt..s &log butblft Is clid<..S. 

I -------------------
Cancel ) 

Test J 

is held down 
over any control. 
help Info is 
displayed here. 

Clicking the Cancel button in a nested dialog box reverts all its controls to their state 
before the nested dialog box was opened, thus returning the user to dialog box 11. 
Clicking the Do-It button (typically labeled "Continuen) saves the current state of all 
controls in the nested dialog box, and returns the user to the first dialog box. 

Redirection 

Redirection is the easiest control to add to a Commando resource description file. Simply 
specify the type of redirection desired and the point location of the upper-left comer. 
Commando takes care of the rest Here is the case declaration for redirection: 

case Redirection 
key byte = RedirectionID; 
byte StandardOutput, /* the type of redirection */ 

DiagnosticOutput, 
Standardinput; 

point; /* upper-left point of the entire contraption * 

Figure 13-23 shows the resource code for Redirection along with its results. 

CHAPTER 13 Creating a Commando Interface for Tools 425 



• Figure 13-24 How to obtain input and output redirection 

notDependent {}, Redirection { 
r--- Standardinput, 

{ 15, 27} 
}, 

notDependent {}, Redirection 
StandardOutput, ~ 
(15, 252} 

}, ,, 
Input 

cumnt Selection iD WilldoUJ
cumnt Selection iD Target 111indolll 
Standenl Input 
NuD lellice 
Console leulce 

426 MPW 3.0 Reference 

,, 
Output 

NII 111/tput ~litm 
NH.I Flle-
ExlsUng nle
lllndo111.-
Current Selection In Window
Current Selection In Target Window 
St1nd1nl Output 
St1nd1nl DlegnosUc 
NuDleulce 
Cnnle Oe•ice 



Files and directories 

There are four types of Commando dialogs, offering four different ways to make files and 
directories available: 

• as individual items for both input and ouput 

• as multiple files for input only 

• as multiple files and directories for input only 

• as multiple new files for output 

Input only means that a standard file dialog box is displayed when the command requires 
a file or directory on which to act. Input or Output allows the user to write over an existing 
output file without going through the standard file dialog. 

Individual fdes and directories 

The Files control enables users to select a single file or directory that can be used for input 
or output. This control supports seven combinations of files, as illustrated in Figure 13-25. 

CHAPTER 13 Creating a Commando Interface for Tools 4Z'7 



• 

428 

Figure 13-25 Resource description for "individual files and directories" controls 

}; 

The files con1rol is used to selecl a single file 
or directory that can be used tor input or oUlpUI 
This con1rOI supports seven combinations of files: 

a.se 1 e: 

., 
/• 'Additional' case below. •/ 

t• These types require the • / 
/• 'NoHore' case below. •/ 

/• Usin9 this case makes a popup with two o:: three .i.tem.s. 
This hrst item. is used to select a default !ile or to 
seleC1: no file. The second (and third) item(s) are,.u,_s..,ed-... _____ ., 

to select input or output files. •/ laThipopup·scase. generates .. 
key int • O; _ I 
rect; /• bounds of title •/ 
rect; 

cstrin9'; 
cstri"9; 

cstrin41; 
cstrinq; 

cst.rinq; 
Dyt.e dim, dont.Dim.; 

/• bounds of d.uplay box •/ 

/• title •/ 
/• defai:lt file •/ 

/• option to return before file • / 
/• If this item u dependent ~pon 

another Files item, an extension 
can be specified here to be added 
to the dependents file. • / 

/• help text for PoPUP •/ 
t• Nomally. dependent i.tems are 

cWnmed if the parent is disabled, 
if this held is •c1ont.Dim .. , t.hen 
this item von't be d.iafted •/ 

/• These next three st.rinqs are the strinqs d.1splayed in t.he popup. Most 
of the fl.le types have only tvo stnn9s but. Input.OrOut.put.File and 
InputO:Out.put.OrDir reqi.aire three st.r1n9s. If a strl.n9 is set to "", 
COlllUndo will use a built-in default. • t 

cstrinq: /• popup it.em t1 •/ 

est.ring: /• popup it.em 12 •/ 

cstrinq; /• popup item t3 •/ 

ase Jt«qu.iredF1le: 
/• Osinq this case 111&kes a button that qoes directly to standard 

file. Use this case when a file is required and. the user doesn • t 

•ey ••t - i: iscasegenerates 
have t.he choice of a default file or no file. • / 1 Th" 1 

rec't; 1• bounds of bu'tton •/ .,aiiibunoniiiiiii"••••• 
cstrinq: /• title of button •/ 
cstrinq; 
cstrinc;: 

/• option to ret.urn before file • / 
/• help text for butt.on • / 

!• Some file types cake additional infoniat.ion. See the comment next to the 
file types to find out. vhich case co choose here. • / 

switch I 
case Acld.ition&l: 

key J:)yte • O; 
cst.rinq; /• For InputOrOut.put.File. an opt1on 

can be specified when • new 
tor output) file is chosen. •/ 

cst.rinq FilterType:s • ":"';/• preferred file ext.ension (i.e. ".c"> 
If null. no radio butt.ons vill be 
displayed. If FilterTypes u used, 
the radio buttons vill togqle 
between shoving files only with 
t.he types bel01lf a.nd all files •/ 

cst.rinq; /• tit.le of only files button •/ 
cst.rinq; /• title of all filea button •/ 
Dyt.e • $$CountOf(TypesArrayJ;/• up to 4 cypes may be specified•/ 
alic;n vord: 
array TypesArray 
literal lonqint text. • "TEXT'. /• desired input file type. spec1fy • / 

}; 

cue Jlollore: 
key~· - l; 

obj • •OBJ •. !• no cype for all types •/ 
appl • 'APPL', 
d& • 'DFI:t.', 
tool • 'MPST'; 

MPW 3.0 Reference 



Here is the resource code for the "individual files and directoriesn controJs that appear in 
Figure 13-25. 

notDependent { } , Files 
InputFile, 
OptionalFile 

{20,20,40,130}, 
{20,100,40,300}, 
"C Input Files", 

} I 

"" nn nn 
I I I 

"Help message here.", 
dim, 
"Read Standard Input", 
"Select a file to compile_.", 
nn 

I 

} I 

Additional 

} I 

nn 
I 

".c", 
"Only files that end in .c", 
"All text files", 
{text} 

Or {{1}}, Files { 
OutputFile, 
OptionalFile 

{50,20,70,100}, 

} I 

} I 

{50,100,70,300}, 
"Object File", 
"c.o", "-o", ".o", 
"Help message here.", 
dontDim, 
"Send object code to c.o", 
n Select an object file_." I 
nn 

I 

NoMore {}, 

CHAPTER 13 Creating a Commando Interface for Tools 429 



Figure 13-26 shows the control resulting from the resource code above. The control is 
shown first in its default state, then as it appears after the user selects an input file, and 
finally as it appears after Commando produces the object file associated with the input 
file selected by the user. 

• Figure 13-26 Examples of "individual files and directories" controls 

Default state 

C Input File I._ _________ __. 
Object File ... lc_.o _________ _ 

Choose an input file 

Object file dependent on input 

C Input File lhd: ... :Commando:check:BoH.c 

Object File lhd: ... Commando:checkBoH.c.ol 

Multiple files and directories for input and output 

Use the case MultiFiles (shown here) to enable users to select multiple files and directories 
for input and output. Note the four cases representing subtypes within the case MultiFiles: 

• case MultilnputFiles 

• case MultiDirs 

• case MultilnputFilesAndDirs 

• case MultiOutputFiles 

430 MPW 3.0 Reference 



Here is the MultiFiles case: 

case MultiFiles: 
key byte MultiFilesID; 
cstring; /* button title */ 
cstring; /* help text for button */ 
align word; 
rect; 
cstring; 

/* bounds of button */ 
/* message like "Source files 

to compile:" */ 
... Cstring; /* option returned before each filename 

Can be Null */ 
switch { 

case MultiinputFiles: 

} ; 

key byte = 0; 
byte= $$Count0f (MultiTypesArray); 

align word; 
array MultiTypesArray 

literal longinit text= 'TEXT', 

obj = 'OBJ ', 
appl = 'APPL', 
da = 'DFIL', 
tool 'MPST'; 

/* 

I* 

/* 

up to 4 types may be 
specified */ 

desired input file 
type, specify no type 
for all types *I 

cstring FilterTypes " .... . , /* preferred file extension 
(that is, ".c"). If null, 
no radio buttons will be 
displayed. If FilterTypes 
is used, the radio buttons 
will toggle between show-

*/ 

ing files with only the types 
below, and all files. */ 

cstring; 
cstring; 

case MultiDirs: 
key byte = l; 

case MultiinputFilesAndDirs: 
key byte = 2; 

case MultiOutputFiles: 
key byte = 3; 

} ; 

/* title of only files button */ 
/* title of all files button */ 

CHAPTER 13 Creating a Commando Interface for Tools 431 



Figure 13-27 is a Files dialog box controlled by resource code using the MultiFiles case. 
Here is the resource code: 

notDependent {}, MultiFiles 
"Description Files-", 

} , 

"Select resource input files to compile", 
{60, 330, 80, 468}, 

"Resource Description Files:", "" 
MultiinputFiles 

{text}, 
n. r", 

"Files ending in .r", 
"All text files" 
} , 

The button "Resource Description Files ... " is the Rez dialog box that displays 
the large standard file dialog box shown in Figure 13-27. The last two titles refer to the two 
radio buttons. 

• Figure 1~27 Example of multiple input files 

I 6 PEHamples I 

® Only files ending in .r 

Resource Description Files: 

432 MPW 3.0 Reference 

~HD 

( f. je< t ) 
Driue ) 

Done 

Cancel 

0 All teHt files 

I Add l;J 
( Remoue ] 



In the example in Figure 13-27 two resource files have just been added. When a file 
extension is specified, two radio buttons allow you to see only those files that have the 
specified extension or all files, regardless of their extension. In either case, only files that 
have a file type matching one of the those specified in the resource are displayed. Up to 
four file types may be displayed. If no file type is specified, all files are eligible for 
display. 

If no file type or file extension is specified in the • cmdo • description, then no radio 
buttons are displayed, as shown in Figure 13-28: 

notDependent {}, MultiFiles { 
"Files to delete ... ", 
"Select files to delete", 

} , 

{ 60, 330, 80, 468}, 

"Files to delete:", 
"-d" , 
MultiinputFiles 

{}, 
nn , /* no file extension specified */ 

} , 

"" , 
"" 

CHAPTER 13 Creating a Commando Interface for Tools 433 



• Figure 13-28 Example of multiple input files with no file extension specified 

[) 3stateCDEFBMap.a 
[) checkBOH.C 
Cl cmdl.r 
Cl cmdo.h 
Cl Cmdo.map 
Cl cmndButtons.c 
Cl cmndWindow.c 

Files to delete: 

checlcBOH.C 
3stateCDEFBMap.a 

l: j(~( t ) 

( Driue 

( Done ) 

Cancel ) 

I[ ff dd J 
[ Remoue 

Sometimes the type of a file is more important than the file's extension. The link tool, 
for example, identifies object files by the file type ( • OBJ ' ) rather than by the file 
extension. By specifiying Fil terTypes as the extension string, the radio buttons will 
toggle between showing files matching the specified types and showing all files, regardless 
of type. Here is an example of this behavior: 

notDependent {}, MultiFiles 
"Files to link_.", 
"Select files to link", 
{60, 330, 80, 468}, 
"Files to link:", 

} , 

"-1" , 
MultiinputFiles 

} , 

{'OBJ '}, 

FilterTypes, 
"Only object files", 
"All files" 

434 MPW 3.0 Reference 



• Figure 13-29 Example of multiple input files with object files specified 

lei CEHamples I 
0 HSampleGlue.a.o f!1 c:::::::>HO 

( i: je( t ) 
( Driue ) 
·-·-·-----·-
( Done ) 
( Cancel ) 

® Only object files 0 Rll files 

Files to link: 

~ I , Rdd 

( Remot•e ) 

In Figure 13-29, TESampleGlue.a.o is the only file in the CF.xamples directory that has a 
type of • OBJ • . After the "All filesn radio button is clicked, all files in the CExamples 
directory are displayed, as shown in Figure 13-30. 

CHAPTER 13 Creating a Commando Interface for Tools 435 



• Figure 13-30 Example of multiple input files with all files specified 

IB CEHamples I 
Cl TESample.h 
Cl TESample.make 
Cl TESample.r 
Cl TESampleGlue.a 
C TES011q.J1eu1ue.a.O 

Cl TestPerf .c 
Cl TubeTest.c 
Cl TubeTest.make 
Cl TubeTest.r 

O Only object files 

Files to link: 

• ~ 
®All files 

~ 

c:>HO 

( t:jed 

[ Driue 

[ Done ] 

( Cancel ) 

c Rdd , 
( flem(W(~ 

Multiple files and directories for input only 

Here's how you can use the case MultiFiles to enable the user to select multiple directories 
for input only. 

NotDependent {}, MultiFiles { 
"Include Paths-.", 

} , 

"Help message for directory button.", 
{110, 330, 130, 468}, 
"Include Search Paths:", 
"-s", 
MultiDirs {}, 

The first item in the above code, "Include Paths_.", is the button in a frontmost 
dialog box (Rez was used in this example) that generates the file dialog box shown in 
Figure 13-31. -include Search Paths:" is the title of the scrollable window at the bottom of 
the dialog box. Two Includes folders have just been selected from the upper window and 
added to the Include Search Paths window just below. 

436 MPW 3.0 Reference 



• Figure 13-31 Multiple directories for input 

[ Rdd Current Directory: J 

jaMPWI 
CJ REHamples ,. 
CJ Applications 
CJ RStructMacs 
CJ CEHamples 
CJ Clncludes 
CJ Clibraries 
CJ EHamples 
CJ Libraries 

Include Search Paths: 

illlll!IHI ~Rla<lude" 

I 
~ 

E je< t 

Driue 

Done 

Cancel 

Open 

I fldd ~, 
( Remoue ) 

Another file dialog box is used to select multiple files and directories. This dialog box 
appears in Figure 13-32. Here is the resource code that produces this dialog box. 

NotDependent {}, MultiFiles { 
"Files to duplicate_.", 

} ' 

"This button brings up a dialog allowing" 
"selection of files and directories to duplicate.", 

{25, 50, 45, 230}, 

"Files and Directories to duplicate:", 

"" , 
MultiinputFilesAndDirs {} 

CHAPTER 13 Creating a Commando Interface for Tools 437 



• Figure 13-32 Example of a "directories" control for multiple input files 

[ Rdd Currl!nt Directory: ) 

l6MPWf 

Cl RI ncludes 
Cl ROM Maps 
Cl Scripts 
Cl Startup 
Cl Suspend 
Cl SysErrs.Err 
Cl Tools 
Cl UserStartup 

I 
Files and Directories to duplicate: 

rCEaample~ :·····::==.Jd 

Multiple new files 

c::>HD 

( !:je( t ) 

( Driue ) 

Done 

Cancel ] 

Open 

C ffdd ~I 
( Remoue ) 

The case MultiFiles also gives the user the ability to select multiple fdes for output. 

Here is the resowte code resulting in the example shown in Figure 13-33. 

notDependent { }, MultiFiles { 
"New Files_.", 

} ; 

"Help message for button", 
{110, 330, 130, 468}, 
"New files to open:", 
"-n", 
'MultiOutputFiles { } , 

438 MPW 3.0 Reference 



• Figure 13-33 Using the MultiOutputFiles subcase of the case MultiFiles 

IG!MPWI 

Cl REHamples ~ c::Jhd 
Cl Rlncludes 
Cl Applications I 

( Eje1:1 l 
Cl RStrucMacs ( Driue l 
Cl CEHamples 
Cl Clncludes 

New files to open: [ Done l 
11 I [ Cancel l 
:testfile1 ~ f I :testfile2 Rdd 
hd:MPW:DifferentDirfile ( Remoue) 

~ 

Version 

You can place a version string in your Commando dialogs for your own identification 
purposes, as shown in Figure 13-34. The version string is centered below the Do-It button. 
Here is the declaration for VersionDialog: 

CHAPTER 13 Creating a Commando Interface for Tools 439 



case VersionDialog: 

key byte = VersionDialogID; 
switch { 

case VersionString: 
key byte = 0; 
cstring; 

case VersionResource: 

key byte = l; 

/* Display a dialog when the version t 
is clicked */ 

/* Version string embedded right here */ 

/* Version string of tool (e.g. V2.0) */ 

/* Versions string comes from another 
resource */ 

literal longint; /* resource type of pascal string 
containing version string */ 

integer; /* resource id of version string */ 

} ; 

cstring; 
align word; 
integer 

/* Version text for help window */ 

noDialog; /* Rsrc id of 'DLOG' */ 

If there is no modal dialog to display when the veision string is clicked, set the resource ID 
to zero (noDialog). 

If the version string comes from another resource (VeisionResource), the string must be 
the first thing in the resource, and the string must be a Pascal-style string. An • STR • 

resource is an example of a resource that fits the bill. 

If the modal dialog is to have a filter procedure, the procedure must be linked as an 
• flt r • resource with the same resource ID as the dialog. 

• Figure 1~34 Veision string 

J •( i!!!!!!iiiciiiaiiin ciiieiiil iii!!!!-.) 
l Bez 

2.0 

Version String 

440 MPW 3.0 Reference 



The version string may be embedded in the commando resource using the VersionString 
case or the version string may come from a resource using the VersionResource case. If the 
version comes from a resource, the resource must contain a Rez-style pstring. You can 
use this with the Set Version tool to read SetVersion's •MPs T' resource. 

As usual, the help string is a string that is displayed when the version string is clicked. 
Typically, this help string contains more detailed author/version information. 

For extra flair, a dialog may be zoomed out when the version string is clicked. If a dialog 
is specified, you must give the resource ID of the 'DLOG' resource (found in the resource 
fork of your tool or script) to display. Commando simply calls ModalDialog( ) with that 
dialog. 

If you want to have a custom filter procedure, you must compile the filter procedure as a 
standalone resource with a resource type of ' f 1 tr ' and with the same id as the ' DLOG' 

resource. The visible/invisible flag in the DLOG resource should be set to invisible. 
Commando will move the • DLOG • window so that the bounds rect specified in the 
• D LOG• are relative to the bounds of the Commando dialog. 

CHAPTER 13 Creating a Commando Interface for Tools 441 



+ Note: If you do not specify a VersionDialog commando item, Commando attempts to 
add one for you by looking for a 'vers' resource with an ID of 1. If found, 
Commando displays the short version string under the Do-It button. When the version 
string is dicked, Commando displays the long version string in the help window. If a 
'vers' (1 > resource is not found, Conunando looks for a 'vers' (2 > resource. 
If one is not found, no version string is displayed. 

A Commando example 

The best way to learn how to make a Commando interface is to study an actual 
Commando resource for an existing MPW tool. Choose a tool, explore the operation of 
the controls in its Commando dialog, and then use DeRez to generate a readable version 
of the tool's Cmdo.r resource. 

To obtain the Commando resource for a tool, use this syntax: 

DeRez {MPW}Tools:toolname Cmdo.r -only cmdo 

To obtain the Commando resource for a Shell command, use this syntax: 

DeRez "{MPW}MPW Shell" Cmdo.r -only "'cmdo' (a"Commandnamea")" 

For your convenience, the Commando resource for ResEqual, called ResEqual.r, is shown 
here. You can fmd this file in the PExamples folder. 

442 MPW 3.0 Reference 



finclude "crndo.r" 
resource 'crndo' (355) 

240, 

"ResEqual compares the resources in two files and reports 
the differences.", 

NotDependent {}, Files 
InputFile, 
RequiredFile { 

} I 

{ 40, 40, 60, 190} t 

"Resource File l", 

"" I 
"Select the first file to compare.", 

} I 

Additional { 

"" I 
FilterTypes, 
"Only applications, DA's, and tools", 
"All files", 

appl, 
tool, 
da 

Or {{l}}, Files { 
InputFile, 
RequiredFile 

{70, 40, 90, 190}, 

"Resource File 2", 

"" , 
"Select the second file to compare.", 

} I 

Additional { 

"" I 
FilterTypes, 
"Only applications, DA's, and tools", 
"All files", 

appl, 

CHAPTER 13 Creating a Commando Interface for Tools 443 



} ; 

} , 

tool, 
da 

NotDependent {}, TextBox 
gray, 

} , 

{30, 35, 95, 195}, 

nFiles to Compare" 

NotDependent {}, CheckOption 
Not Set, 

} , 

{105, 75, 121, 155}, 

"Progress", 
"-p", 
"Write progress information to diagnostic" 
noutput." 

NotDependent {}, Redirection 
StandardOutput, 
{40, 300} 

} , 
NotDependent {}, Redirection 

DiagnosticOutput, 
{80, 300} 

} , 
NotDependent {}, TextBox { 

gray, 

} , 

{30, 295, 121, 420}, 

"Redirectionn 

Or {{2}}, DoitButton 
} , 

The above resource code generates the frontmost dialog box of ResEqual, which appears 
in Figure 13-35. 

444 MPW 3.0 Reference 



• Figure 13-35 A Commando example: frontmost ResEqual dialog box 

,Resequal Options-----------------~ 

,Files to Compare--·-·; 

' ( Resource File I ) i 
I ( He~oum~ me 2 J J 
~ .. 

OProgress 

f Command line 
r~l 

r-·Redirection -----1 
!Output ! 

JI H. 
! Error 

ii IJ 

CHAPTER 13 Creating a Commando Interface for Tools 445 





Chapter 14 Performance-Measurement Tools 

MPW 3.0 PROVIDES A SET OF PERFORMANCE-MEASUREMENf TOOI.5 to aid 
professional software developers in measuring and improving the performance of 
their applications. This chapter explains how to use these tools and provides a 
detailed example. The PerfonnReport tool is also described in Part TI. • 

Contents 

About performance-measurement tools 449 
Components of performance tools 450 
Requirements for using performance tools 451 

How performance measurement works 451 
Program Counter sampling 451 

Restrictions 452 
Bucket counts 452 

Using performance-measurement tools 453 
1. Install under conditional compilation 453 
2. Include the interface 454 
3. Provide a pointer to a block of variables 455 
4. Initialize the performance-measurement tools 455 
5. Tum on the measurements 456 
6. Dump the results 457 
7. Terminate cleanly 457 

MPW performance tools routines 458 
The function InitPerf 458 
The function PerfControl 460 
The function PerfDump 461 
The function TennPerf 462 

Performancereports 463 
Performance output file 463 
Analyzing the results with PerfonnReport 466 
Adding identification lines to a data file 467 
Interpreting the performance report 468 

Implementation issues 468 

447 



Locking the interrupt handler 469 
Segmentation 469 
Dirty CODE segments 469 
Movable code resources 470 

448 MPW 3.0 Reference 



About performance-measurement tools 

In essence, the performance-measurement tools sample the Program Counter (PC) register 
just often enough to obtain a statistically accurate estimate of the program's actual use of 
time. The code is divided into "buckets" of two or more bytes and a count of sampled PC 
values for each bucket during the program's execution is output to a text file. You can 
then analyze these results by running a report generator, PerformReport. PerformReport 
merges the output file with a linkmap of the measured code resources to produce a list of 
procedures, sorted by the number of PC samples found within the procedure. 

A Warning The performance-measurement tools are designed for temporary 
inclusion in an application, desk accessory, or driver for purposes of 
measuring performance. They are not designed for inclusion in 
commercial products, because they rely on low-level system 
mechanisms that are not guaranteed to function correctly on all future 
machines. • 

The memory management strategy for the performance tools is based on the assumption 
that developers wishing to measure performance will likely have a machine larger than the 
smallest target machine for their applications. Thus, they can use performance tools that 
require some additional memory without severely impacting the application's memory 
management strategy. 

The best way to use these tools depends upon your particular environment and the code 
you want to test These considerations are discussed in the section "Implementation 
Issues" later in this chapter. You will need to temporarily insert calls to the performance 
tools within your code. Examples of the placement of these calls are provided in MPW C 
and MPW Pascal. Be sure to remove these calls when you have completed your 
optimizations. 

CHAPTER 14 Performance-Measurement Tools 449 



Components of performance tools 

The performance tools consist of the following pieces: 

• A library file (Performlib.o): This file is in the {Libraries} folder. link with this file. 

• Interface files for Pascal (Perf.p) and C (Perf.h): These files are in the interface 
folders {Plnterfaces} for Pascal and {Clneludes} for C. These are the files that you use 
or include in the source files for your application. These interfaces depend only on the 
standard Macintosh memory types files: MemTypes.p for Pascal and Types.h for C. 

An assembly-language interface has not been provided for the performance tools. 
Assembly-language programmers can use either the Pascal or the C interface. Both go 
directly to the Pascal and assembly-language implementation in Performlib.o. 

• Sample programs, makefiles, and instructions for execution: These files are in 
the Examples folders: {MPW}Examples:PExamples: for Pascal, and 
{CExamples}Examples:CExamples: for C. Instructions for running the performance 
tools sample programs are included in the Examples folders. 

• Perform.Report (a tool for analyzing performance data and producing reports): 
This tool is found in the {MPW}Tools: folder. For detailed information about the tool, 
see the conunand pages in Part II. For detailed instructions on how to run this tool, 
see the instructions in the appropriate Examples folder. Examples of the output from 
this tool are discussed below. 

• ROM map files: You'll find a number of ROM maps in the folder {MPW}'ROM Maps', 
including MacIIROM.map, MacSEROM.map, and MacPlusROM.map. These files are 
combined with the link map file for your application, to add location information for 
the OS and Toolbox routines to the performance data. You will usually append the 
appropriate ROM maps to your application's link map for input to the tool 
PerformReport. 

450 MPW 3.0 Reference 



Requirements for using performance tools 

To use the performance tools, you need to add calls to these routines in your application, 
desk accessory, or driver. They are described later in more detail: 

• InitPerf specifies the types of measurements to be performed, and allocates storage. 
This should be called once near the beginning of your code. 

• TermPerf stops measurements (if active), and frees the storage. TermPerf must be 
called once after rni tPerf succeeds, and measurement is finished. 

• PerfControl starts and stops measurements. PerfControl must be called once 
(after Ini tPerf) to start measurements. Use PerfControl to avoid taking 
measurements in idle loops, dialog boxes, alerts, and other places where the user 
response time determines performance. 

• PerfDump stops measurements (if active), and writes the performance data to an 
output file. You should call PerfDump after measurements are collected for reporting. 

How performance measurement works 

The perfonnance-measurement tools are designed to give you useful information about 
the performance of a program without severely altering the user responsiveness or memory 
requirements-that is, without changing the characteristics of what is being measured. 
However, the act of measurement necessarily alters what is being measured in the ways 
summarized below. 

Program Counter sampling 

The fundamental idea behind the performance-measurement tools is to sample the 
Program Counter (PC) register frequently enough to obtain a statistically accurate 
estimate of the actual program performance, but infrequently enough so that overall 
performance is not affected. The performance-measurement tools use the Vertical 
Blanking signal (VBL) on 64K ROMs and the Time Manager on 128K and larger ROMS. 

The Time Manager allows 1 ms resolution in sampling, but this imposes about a 20 percent 
performance degradation. A value of 4 ms to 10 ms reduces the performance degradation 
to 4 percent to 10 percent. Use of the VBL signal on old ROMs imposes a sampling rate of 
approximately 60 times per second (16 ms). 

CHAPTER 14 Performance-Measurement Tools 451 



Restrictions 

If your application directly uses the VIA Timerl (or some software that uses it, such as the 
sound generator or the Tune Manager) then you might not be able to use these 
perfonnance-measurement tools. 

In the case of old ROMs, the perfonnance-measurement tools may not work correctly with 
programs that make use of VBL tasks. 

If you are running the performance tools under MultiFinder, you may need to increase the 
sampling interval. 

.&. Warning 

Bucket counts 

If you set the sampling interval too low for your machine, the 
performance tools may crash or cause your program to run very slowly. 
It is best to start with a high sampling interval, such as 10 ms or 20 ms, 
and decrease it only after experience allows you to predict the effect 
of the shorter interval. For example, if measurements taken with a 
sampling rate of 10 ms cause your program to run 10 percent slower, 
then it is probably safe to increase the sampling rate to every 5 ms at a 
cost of having the program run 20 percent slower. "' 

The performance tools require 2 bytes of memory for a counter for each "bucket" of code 
that is measured. For instance, for a lOOK tool or application, using a bucket size of 16 
bytes, about 12,800 bytes are required for the counters. If the ROM is measured, an 
additional BK, 16K, or 32K bytes (for 64K, 128K, or 256K ROMs) is required. 

If your program spends a substantial amount of time outside CODE segments and ROM, 
then you may want to measure RAM "misses." Because RAM can be quite large, a second 
(generally larger) bucket size can be specified for RAM "misses." And you can control the 
amount of RAM to be measured by using a low address to start setting up buckets and a 
high address for the last bucket If the RAM misses are measured, additional memory is 
required. 

The sum of all memory required for counters is allocated as a single contiguous block at 
the time Ini tPerf is called. For this reason, you should call Ini tPerf fairly early in 
your initialization, before memory becomes fragmented. 

452 MPW 3.0 Reference 



In addition to the memory for bucket counters, the performance tools will use one master 
pointer for a handle to some information, and will allocate a few small structures with 
NewPtr calls. 

Using performance-measurement tools 

This section presents a detailed explanation for each of the seven steps necessary to 
install the performance-measurement routines into your code. For each step the specifics 
for using these tools with MPW C and MPW Pascal are under separate subheadings. 

You need make only a few changes to install these tools in your code. The changes are 
basically the same, whether you are developing an application, a desk accessory, an MPW 
tool, or a driver. It is even possible to install performance tools in ROM. 

Here are the steps: 

1. Install under conditional compilation 

After measuring the performance of your program, you will probably want to make 
changes, test the changes for correctness, and then repeat the measurements to verify the 
performance improvements. While making and testing changes, it is very important not to 
include the performance tools, unless you are confident that the changes do not introduce 
any new bugs. If your code terminates early for any reason, then the normal system 
recovery techniques (in MacsBug, calls such as G SysRecover under the MPW Shell or ES 
from an application) do not work. In such a case, within a few milliseconds after the 
system tries to reuse the memory occupied by the performance tools, a timer interrupt 
occurs and a system error or crash results. The system error will probably force rebooting 
the system. For this reason, it is advisable to include the performance-measurement tools 
under a conditional flag. 

+ Note: In the steps that follow, it is assumed that all the performance measurement 
changes are surrounded by conditional compilation. However, in the code fragments 
that follow, the actual conditional compilation statements are omitted to save space. 

CHAPTER 14 Performance-Measurement Tools 453 



MPWC 

/* 

*/ 

fdefine PERFORMANCE to turn on the measuring tools. 
fundef PERFORMANCE to turn off the measuring tools. 

fdef ine PERFORMANCE 

Calls to the performance tools routines can then be surrounded by the following 
conditional compilation statements: 

fifdef PERFORMANCE 

fendif PERFORMANCE 

MPW Pascal 

{$SETC DoPerform := true} {false to exclude Performance Tools} 

Calls to the performance tools routines can then be surrounded by the following 
conditional compilation statements: 

{$IFC DoPerform} 

{$ENDC} 

2. Include the interface 

In the main body of your MPW C code, you need to include the header file for the 
performance tools, like this: 

#include <Perf.h> 

In the main body of your MPW Pascal code, you need to reference the interface file for 
the performance tools, like this: 

USES 
MemTypes, 

Perf; 

4S4 MPW 3.0 Reference 



3. Provide a pointer to a block of variables 

For an application or MPW tool, you can declare a global variable. If you are developing a 
desk accessory, driver, or ROM that does not have global variables, then you need to be 
somewhat creative in finding a location for the pointer. The choices include: a local 
variable on the stack (assuming the stack frame will persist long enough), a field of a 
block allocated and locked down in the heap, or a low memory location. In any event, the 
address of the location allocated for the pointer must be passed to the performance 
routines, as indicated in the following steps. 

MPWC 
TP2PerfGlobals ThePGlobals; 

MPW Pascal 
VAR thePerfGlobals: TP2PerfGlobals; 

4. Initialize the performance-measurement tools 

Somewhere near the beginning of your code's execution, and when large chunks of 
memory are available, you need to initialize the performance tools. 

A Warning 

MPWC 

Once your code has initialized the performance routines successfully, 
it is important that you call the termination routine described in Step 
7 before your code terminates. Failure to do so almost always results in 
a fatal system crash. • 

ThePGlobals = nil; 
if ( ! InitPerf (&ThePGlobals, ... otherparameters ... ) ) { 

/* report error in initialization and terminate */ 

} ; 

The function Ini tPerf allocates a block on the heap for the performance global 
variables if ThePGlobals is nil. If the ThePGlobal sis not nil, Ini tPerf assumes 
the block is already allocated. 

CHAPTER 14 Performance-Measurement Tools 455 



MPW Pascal 
thePerfGlobals := NIL; 
IF NOT InitPerf (thePerfGlobals, .. other parameters ... ) THEN 

BEGIN 
{Report error in initialization and terminate.} 
END; 

When you set the pointer thePerfGlobals to NIL, Ini tPerf allocates a block on the 
heap for the perfonnance global variable. If the pointer is not NIL, Ini tPerf assumes 
the block is already allocated. 

s. Turn on the measurements 

After initialization succeeds, you can start measurements at any point in your code. The 
call that starts (and stops) measurements returns the current on-off state as a Boolean 
value. 

You can call PerfControl with a second argument of false in order to turn 
perfonnance measurements off. This is useful for disabling sections of code that you 
don't want to measure, such as the event loop of an application, a dialog box where user 
response time dominates the compute time, parts of the application that rely on the VIA 
timer, and so on. 

MPWC 

(void)PerfControl(ThePGlobals, true); 

MPW Pascal 

VAR OldState: boolean; 

OldState := PerfControl (thePerfGlobals, true); 

Alternatively, you may use: 

IF PerfControl(thePerfGlobals, true) 
THEN {dummy THEN statement}; 

456 MPW 3.0 Reference 



6. Dump the results 

When you reach the end of the code to be measured, you must make a call to have the 
performance counters written into a text file. If the dump routine encounters any I/O, 
memory managemen~ or other system errors, it returns a nonzero return code. You can 
examine this code to determine the nature of the problem. 

MPWC 

OSErr err; 

err = PerfDump(ThePGlobals, "\pPerform.out", ... otherparamele1S); 
if (err != noErr) 

/* Code to report erros during dump */ 

The PerfDump routine takes the output-filename as a Pascal string. If the empty string is 
passed, the name defaults to Perform.out. 

MPW Pascal 

VAR err: OSErr; 

err : = PerfDump (thePerfGlobals, 'Perform. out', ... other parameters) ; 
If err <> noErr 

THEN {Report errors during dump}; 

If the empty string is passed for a filename, the name will default to Perform.out. 

7. Terminate cleanly 

After dumping the counters to a text file, you must terminate the performance
measurement tools cleanly. TermPerf removes the interrupt routine and frees the 
memory associated with the performance global variables and counters. 

MPWC 

TermPerf(ThePGlobals); 

MPW Pascal 

TermPerf(thePerfGlobals); 

CHAPTER 14 Performance-Measurement Tools 457 



MPW performance tools routines 

This section gives detailed information about MPW C and MPW Pascal parameters to the 
performance tools routines. The C and Pascal calls are presented first, followed by 
discussion relevant to both. 

The function InitPerf 

Here is the MPW C declaration for Ini tPerf: 

pascal Boolean InitPerf( 
TP2PerfGlobals 
short 
short 
Boolean 
Boolean 
const 
short 
const 
Boolean 
long 
long 
short 

) ; 

*thePerfGlobal s, 
timerCount, 
codeAndROMBucketSize, 
doROM, 
doAppCode, 
Str255 appCodeType, 
romID, 
Str255 romName, 
doRAM, 
ramLow, 
ramHigh, 
ramBucketSize 

Here is the MPW Pascal declaration for InitPerf: 

FUNCTION InitPerf ( 
VAR thePerfGlobals: 
timerCount, codeAndROMBucketSize: 
doROM, doAppCode: 
appCodeType: 
romID: 
romName: 
doRAM: 
ramLow, ramHigh: 
ramBucketSize: 

boolean; 

458 MPW 3.0 Reference 

TP2PerfGlobals; 
integer; 

boolean; 
Str255; 
integer; 
Str255; 
boolean; 
longint; 
integer 



Call the function Ini tPerf once to set up the performance-monitoring interrupt handler 
and to allocate the memory area for counters. The function returns true if initialization is 
successful, and false if it encounters errors. 

The function Ini tPerf takes a number of parameters: 

• thePerfGlobals is the address of the pointer to the global variable area. If the 
value of the pointer is nil, a new block of global variables is allocated on the heap. 

• timercount (for new ROMs) determines the number of milliseconds between PC 
samples. For most applications, good values are: 

o 10 ms for Macintosh Plus and Macintosh SE, when running under the Finder. Under 
MultiFinder, allow 20 ms. 

o 4 m5 for Macintosh II, running under the Finder. Under MultiFinder, allow 10 ms. 

• Note: For old (64K) ROMs, timerCount is the numberofVBLevents (16ms each) 
between PC samples. 

• codeAndROMBucketSi ze sets the bucket size for user code (and the ROM, if ROM 
measurement is requested). A separate parameter sets the bucket size for RAM, as 
described below. The bucket size may be any integer greater than or equal to 2. 

• Note: The performance tools force the bucket size to be a power of 2 by rounding 
this parameter up to the nearest power of 2. 

If the bucket size is set as low as 2, individual instructions are measured. However, this 
requires a lot of memory-an amount equal to the amount of code (and ROM) being 
measured. 

A more practical value for this parameter is 8, which requires only 25 percent of the 
memory being measured. Even larger bucket sizes may be used if memory is scarce, 
although the resolution of the measurements becomes an issue at some point 

• doROM detennines whether the ROM code as well as the user's code are measured. A 
value of true causes the ROM code to be measured. 

• doAppCode determines whether or not user code is measured. A value of true causes 
user code to be measured. 

• appCodeType is a Pascal string that determines the resource type of user code to be 
measured. For application programs this should be I CODE' (in Pasca0 or n \pCODE n 

(in C); for desk accessories it should be 'DRVR I (in PascaO or n \pDRVR n (in C); and 
so on. Resources of the specified type are obtained from the current (top-level) 
resource file. 

• romID indicates ROM types. You'll normally pass a romID of 0, indicating the use of 
one of the predefined ROMs. Table 14-1 shows the predefined ROM IDs and names. 

CHAPTER 14 Performance-Measurement Tools 459 



• Table 14-1 Predefined ROM IDs and names 

Computer ROM ID 

Macintosh 128K $ 6 9 
Macintosh XL $FF 
Macintosh Plus $75 
Macintosh 512e $75 
Macintosh SE $ 7 6 
Macintosh II $ 7 a 
Macintosh Ilx $ 7 a 

ROM name 

ROM 
RO.MXL 
ROMPLUS 
ROMPLUS 
ROMSE 
ROMII 
ROMI I (unchanged from Macintosh II) 

ROM IDs and the following parameters are mainly to supJX>rt older or newer ROMs not in 
Table 14-1. 

• romName indicates a ROM name other than one of the predefined names listed in 
Table 14-1. This value is usually the empty string, indicating the use of a predefined 
ROM name. This parameter can be used to specify the name of older or newer ROMs. 

• doRAM determines whether RAM misses are measured. A value of true invokes 
measurement 

• ramLow specifies the lower limits of RAM to measure for misses. This parameter has 
no effect unless doRAM is true. 

• ramHiqh specifies the upper limit of RAM to measure for misses. This parameter has 
no effect unless doRAM is true. 

• ramBucketSize specifies the bucket size to use for measuring RAM misses. This 
parameter has no effect unless doRAM is true. 

A "RAM miss" is a PC sample that is not contained in any of the user code segments or the 
ROM. 

The function PerfControl 

Here is the MPW C declaration for PerfControl: 

pascal Boolean PerfControl( 
TP2PerfGlobals thePerfGlobals, 
Boolean turnOn 

) ; 

460 MPW 3.0 Reference 



Here is the MPW Pascal declaration for PerfControl: 

FUNCTION PerfControl( 
thePerfGlobals: TP2PerfGlobals; 
turnOn: boolean 

) : boolean; 

The PerfControl function returns the previous state. You must call PerfControl 
once to begin performance measurements. It can be called more frequently to avoid 
measuring uninteresting areas of code, such as idle loops or dialog boxes. 

• thePerfGlobals points to the global variable area, initialized by a successful call to 
INITPERF. 

• turnon turns measurements on (true) and off (false). 

The function PerfDump 

Here is the MPW C declaration of PerfDump: 

pascal short PerfDump( 
TP2PerfGlobals thePerfGlobals, 
const Str255 reportFile, 
Boolean doHistogram, 
short rptFileColumns 

) ; 

Here is the MPW Pascal declaration of PerfDump: 

FUNCTION PerfDump( 

thePerfGlobals: 
reportFile: 
doHistogram: 

rptFileColumns: 
): integer{OSErr}; 

TP2PerfGlobals; 
Str255; 

boolean; 
integer 

The function PerfDump dumps the statistics gathered by the performance tools into a 
text file suitable either for direct analysis or for processing by PerformReport. PerfDump 
calls PerfControl to tum off measurements and accepts the following parameters: 

• thePerfGlobals points to the global variable area, initialized by a successful call to 
InitPerf. 

• reportFile specifies the name of the report file. If this is the empty string, the 
default name Perform.Out is used. 

CHAPTER 14 Performance-Measurement Tools 461 



• doHistograrn (if true) places a histogram after the bucket counts in the data file. 
The histogram consists of a number of asterisks for each bucket, normalized so that 
the bucket with the largest number of hits receives a line of asterisks out to 
rptFileColumns. 

• rptFileColumns controls the number of columns in the report file. It has no effect 
unless doHistogram is true. 

The function TermPerf 

Here is the MPW C declaration of TermPerf: 

pascal void TermPerf(TP2PerfGlobals thePerfGlobals); 

Here is the MPW Pascal declaration of TermPerf: 

PROCEDURE TermPerf(thePerfGlobals: TP2PerfGlobals); 

If the call to InitPerf succeeds, then TermPerf must be called before terminating the 
program. Otherwise, a system crash results because the timer interrupt, which is still 
enabled, will jump to points unknown. TermPerf removes the interrupt handler and frees 
the storage used by the counters with the parameter thePerfGlobals. This parameter 
points to the global variable area, initialized by a successful call to Ini tPerf. 

462 MPW 3.0 Reference 



Performance reports 

When your code has completed its execution, you call PerfDump to gene.rate a 
performance output file showing the results of the bucket counts. You can analyze this 
data by using the tool PerformReport. Examples of both the performance output and 
report mes appear in this section. See Part II for a command page describing the tool 
PerfonnReport. 

Performance output file 

The results of the performance tests are output to a performance data file when 
PerfDump is called. This file is a text file containing the bucket locations and counts. 
You should call PerfDump at the very end of the tes~ so that no interference with 
program I/Q should occur. The performance output me is not Opened until PerfDump is 
called. 

Below is an example of a performance output file as generated by a call to PerfDump. 

Some repeated lines have been omitted, as indicated by " ... ". 

Notice that the performance data is arranged on a per segment basis. Only nonzero 
buckets are reported; in other words, missing buckets had a hit count of zero. 
(PerfDump has an option to produce a histogram (bar graph) to the right of the Hits 
column. That option was not exercised in this example.) 

CHAPTER 14 Performance-Measurement Tools 463 



Performance Parameters 
====================== 

Bytes per bucket, Code and ROM: 8 
Bytes per bucket, RAM: 4 
Sampling Interval: 4 ms 

Performance Summary 
=================== 

Total hits outside of the sampled segments: 2 
Maximum hits in one bucket: 872 
Total hits in all buckets: 3222 

Performance Data 

Offset Hits I Segment 117 size 20000 
========-------========================================================== 

52F8 1 
5300 1 
53C8 12 
53E8 1 
53FO 2 
5400 1 
5428 1 
5728 872 

1B830 9 
1B838 53 
1B840 41 
1B848 61 
1B850 41 

Off set Hits Segment 253 size lFFFFF 

D6AO 1 
287DO 40 I 
1E6134 1 
1E8990 1 
1FB20C 101 

Off set Hits Segment 13 size B68 name STDIO 

Off set Hits I Segment 12 size 71E name SACONSOL 

464 MPW 3.0 Reference 



Offset Hits I Segment 5 size DO name ROMSEG2 
==================================================================== 

70 2 
SS 5 
90 10 

BO 4 
BS 2 
co 3 

Offset Hits Segment 4 size 136 name ROMSEGl 
===================================================================== 

10 9 
lS 3 
20 5 

110 19 
llS 5S 
120 46 

Offset Hits Segment 3 size SC name SEG2 
========================================================================= 

50 3 
5S 3 
60 9 
6S 1 
70 14 
7S 1 

Offset Hits Segment 2 size DO name SEGl 
==================================================================== 

10 2 
lS 18 
20 4 

AS 7 
BO 12 
BS lS 

Offset Hits Segment 1 size 101C name Main 
======================================================================= 

F3S 43 
F40 116 
F48 78 
F50 19 
FSS 77 
F60 66 
F6S 56 

CHAPTER 14 Perfonnance-Measurement Tools 46S 



Analyzing the results with PerformReport 

Once the performance data file has been generated, you are ready to run the report 
generator, a tool called PerformReport. This tool merges the performance output file 
with a linkrnap of the measured code resources to produce a list of procedures, sorted by 
the number of PC samples found within the procedure. (See Part II for more information 
on PerformReport.) An example of the contents of this file is shown here. 

If your call to Ini tPerf had the parameter do Rom set to true, then you'll need to append 
the correct ROM map file to your application's link map before running 
PerformReport. For example: 

Link -o YourApp -1 >LinkMap YourApp.p. o ... etc ... 
YourApp f run your application, generate Perform.Out 
Catenate {MPWJ'ROM Maps':romName.Map >> LinkMap 
PerformReport -1 LinkMap -m Perform.Out 

PerformReport -- Merges Linker Output and Performance Dump January 30, 
1989 

Reading Link Map file: "LinkMap" 

Reading Performance Measurements file: "Perform.Out" 

PerformReport Parameters: 

ROM and CODE. 
RAM. 
measured. 

4 
2 

3224 
872 

8 bytes per bucket, 
bytes per bucket, 
hits outside code 
hits total, 
maximum hits 

0.0% outside the segments. 
in one bucket. 

466 MPW 3.0 Reference 



Procedures by possible hits (showing Probable % of time): 
Num Segment Procedure Def Prob Poss Prob% 

117 Main ATRAP68020 497 436 872 28.9% 
117 Main CHKSLOT 0 436 872 13.5% 
117 Main DSPATCH 0 0 872 0.0% 
117 Main RSECT 474 13 26 15.1% 

1 Main %I MUL4 399 14 56 12.8% 

.. 1 Main %I DIV4 0 3 5 0.6% 
4 ROMSEGl ROMWlOO 5 0 0 0.1% 

117 Main LVLlINT 1 0 1 0.0% 
117 Main TFSDISPATCH 1 0 0 0.0% 
117 Main LVL2INT 0 0 1 0.0% 

Total Reported = 67.6% 32.1% 99.8% 

PerformReport: That's All Folks! 

Adding identification lines to a data file 

After displaying a title line, and giving the names of the files being read, PerfonnReport 
has an option (-e) to echo lines from the head of the measurements file until the phrase 
"Performance Data" is encountered. This option allows you to add identification lines at 
the head of performance-measurement files. Various parameters are gathered from lines 
that begin with special keywords. Here are the keywords with the phrases they head: 

Bytes Bytes per bucket 
Total Total hits 
Maximum 
Performance 

Maximum hits 
Performance Data 

You are free to add comment lines at the head of a data file, as long as the comment lines 
do not begin with these keywords. 

CHAPTER 14 Performance-Measurement Tools 467 



Interpreting the performance report 

PerformReport translates the bucket hit information into procedure-based 
information. Because procedures can span buckets, there may be some uncertainty about 
how bucket hits are related to procedure hits. PerformReport attempts to deal with 
this uncertainty by classifying hits into several categories: 

Definite When a bucket is completely contained in a single 
procedure, all hits in the bucket are counted as definite 
hits in that procedure. 

Possible/Probable When a bucket is partially contained in several 
procedures, all hits in the bucket are counted as possible 
hits in each procedure; in addition, the hits in the 
bucket are counted as probable hits in a particular 
procedure, based on the amount of the bucket that is 
covered by the particular procedure. 

Please realize that the concept of probable hits is not intended to give an accurate 
statistical picture of the situation. What happens in practice is that buckets are 
frequently covered by two procedures, and almost all of the hits occur in one procedure or 
the other. The intent behind "possible and probable" hits is to give you some feeling for 
the accuracy of the resulting data. 

If the Pascal example TestPerf.p is modified to have a bucket size of 8, then the possible 
hits will be few relative to the definite hits. The exception is the %I_DIV4 procedure, 
which will have zero definite hits, but shares a bucket with % I_ MUL4. In fact there are no 
divide operations in the sample program; therefore all hits apparently belonging to 
% I_ o Iv 4 really belong to the multiply operations. 

If the percentage of definite hits becomes too low, you should consider reducing the 
requested bucket size. 

Implementation issues 

The perfonnance tools have been designed to work "as is" for most conunon application, 
desk accessory, and driver runtime environments. However, because Macintosh has an 
open architecture, it is possible that actions taken or assumptions made by application 
code will conflict with the needs of the performance tools. This section discusses possible 
conflicts, and how to resolve them. 

468 MPW 3.0 Reference 



Locking the interrupt handler 

You must lock down both code and data for the performance tools while taking 
perfonnance measurements. Code for the trap handler must be locked down because the 
timer interrupts occur asynchronously. Data for the counters must be locked down 
because handles cannot be assumed to be valid during interrupt processing. The data area 
for counters cannot be "grown" at interrupt time, because the heap may be inconsistent. 

Segmentation 

The code that must be locked down at execution time has been placed in segment "Main" 
and occupies about 1 kilobyte of space. This is because segment "Main" is usually 
guaranteed not to be unloaded at run time. 

If your application's "Main" segment is too full to allow the performance tools to be 
linked correctly, then you may retarget the code in Performlib.o by using the lib tool. 
However, your application must not have an "unload all segments" routine in its idle 
procedure. One good segment to retarget to is "PerfMain", because this segment contains 
some of the other pieces of the perfonnance tools. 

These MPW commands illustrate how to retarget the code in Performlib.o: 

Duplicate {Libraries}PerformLib.o temp 
Lib -o {Libraries}PerformLib.o -sn Main=PerfMain temp 
Delete temp 

The first command line creates a copy of Performlib.o in temp. The second line replaces 
the original Performlib.o with the output of Lib. The -sn option causes all code originally 
placed in segment "Main" to be in segment "PelfMain". The third line deletes the file temp. 

Dirty CODE segments 

Because AS is not valid at interrupt time, and there are no low memory globals assigned to 
performance measurement, the interrupt routine stores some data values in its code 
space, including the pointer to the locked-down data. Thus, if your application uses 
checksums to detect code segments attacked by errors, the perfonnance tools will cause 
erroneous checksum failures. The easiest fix is simply not to checksum the "Main" 
segment (or whichever segment you choose). 

CHAPTER 14 Performance-Measurement Tools 469 



Moveable code resources 

The code for the trap handler, and the data area for the· counters, must be locked down 
during performance measurement 

In counting "hits" in code resource segments, the performance interrupt routine checks 
that the handle to a measured resource is locked. If it is not locked, the resource is 
assumed to be "unloaded" and PC values are not checked for being within the resource. 

The performance tools call stripAddress, among other A-traps. If you are using A-trap 
breaks in MacsBug (as with the ATHC command), you may get an A-trap from within the 
Performance Tool's interrupt handler, and MacsBug may state that the heap is corrupt. 
The heap might not actually be corrupt, but simply inconsistent at interrupt time. 

470 MPW 3.0 Reference 



Appendix A Macintosh Programmer's 
Workshop Files 

THis APPENDIX usrs All OF THE FILES PROVIDED WITH 1HE MACINTOSH 

PROGRAMMER'S WORKSHOP 3.0. The files are listed as they appear on the 
distribution disks. (Volume names are shown in bold; directory names begin and 
end with a colon.) MPW Assembler, MPW Pascal, MPW C, and MPW C ++ are 
separate products. • 

Contents 

MPW 3.0 files 473 
Distribution disk MPW Installation Disk: 473 
Distribution disk MPWl: 473 
Distribution disk MPW2: 474 
Distribution disk MPW3: 475 
Distribution disk MPW4: 476 

MPW Assembler files 477 
Distribution disk MPW Assemblerl: 477 
Distribution disk MPW Assembler2: 477 

MPW Pascal files 478 
Distribution disk MPW Pascall: 478 
Distribution disk MPW Pascal2: 479 

MPW C files 481 
Distribution disk MPW Cl: 481 
Distribution disk MPW C2: 482 

Hard disk configuration 484 

471 





MPW 3.0 files 

Distribution disk MPW Installation Disk: 

MPW Installation Disk: 

Outside Bug Reporter Application used to document bugs 

MPW Installation Disk:Installation Folder 

Backup 
Dolt 
error File 
'MPW Installer' 
Startup 
Worksheet 

Tool used by MPW Installer to copy files 
Script that shows each file copied 
File used for error redirection 
MPW Shell used for installation procedure 
Script that controls the installation 

Distribution disk MPWl: 

MPWl: 

'MPWShell' 
MPW.Help 
Quit 
Resume 
Startup 
Suspend 
SysErrs.Err 
UserStartup 
Worksheet 

The MPW Shell program 
Command syntax descriptions (for Help command) 
Quit MPW script 
Script to resume MPW after executing an application 
Script to initialize MPW Shell 
Script to suspend MPW to run an application 
Indexed error message file (used by Shell and tools) 
Customizable startup script called by Startup 
Worksheet contents saved from last session 

APPENDIX A Macintosh Programmer's Workshop Files 473 



Distribution disk MPW2: 

MPW2:Examples:Examples: 

AddMenus 
CheckinActive 
CheckOutActive 
DerezPict 
Instructions 
Lookup 
'Startup, etc.' 
State 
'Unix Aliases' 

Add menu to MPW menu bar 
Check in the active window to Projector 
Check out the active window from Projector 
Derez a PICT data file 

MPW2:Examples:Projector Examples:Sample: 

ProjectorDB Projector database 

MPW2:Examples:Projector Examples:Sample:Commands: 

ProjectorDB Projector database 

MPW2:Examples:Projector Examples:Sample:Utllities: 

ProjectorDB Projector database 

MPW2:Interfaces:Rlncludes: 

Cmdo.r · Commando graphic interface resources 
MPWfypes.r MPW-specific resource type definitions 
Pict.r Resource type definition for PICT 
SysTypes.r System resource type definitions 
Types.r Common resource type definitions 

MPW2:Ubraries:Ubraries: 

DRVRRuntime.o 
HyperXI.ib.o 
Interface.a 
Objlib.o 
Performlib.o 
Runtime.a 
SERD 
Stubs.a 
ToolLibs.o 

Driver runtime library 
libraries for Hypercard XCMD's and XFCN's 
Inside Macintosh interface library 
Object-oriented programming library 
Library for perfonnance-measurement tools 
Runtime library for Assembler and Pascal 
Serial driver resources 
Stub routines to make MPW tools smaller 
MPW tool library (spinning cursor, error manager) 

474 MPW 3.0 Reference 



MPW2:ROM Maps: 

MacIIROM.map 
MacPlusROM.map 
MacSEROM.map 

MPW2:Scripts: 

BuildCommands 
BuildMenu 
BuildProgram 
CCvt 
CompareFiles 
CompareRevisions 
CreateMake 
Directory Menu 
Dolt 
Line 
MergeBranch 
OrphanFiles 
SetDirectory 
TransferCKID 
UserVariables 

Automated build commands 
Generates menu for use with automated build commands 
Automated build 
Converts 2.0 C source to 3.0 
Compares two files side by side 
Compares two revisions of the same file 
Generates a makefile to build a program 
Generates Directory menu 
Highlights and executes a series of Shell commands 
Locates line number (useful with other tools and scripts) 
Merges a branch revision onto a project's trunk 
Removes Projector information from files 
Command to set current directory 
Move Projector information from one file to another 
Use Commando to set all user variables 

Distribution disk MPW3: 

MPW3:Tools: 

AboutBox 
Backup 
Canon 
Canon.Diet 
CCvtMxl.dict 
CCvtUMx.dict 
Choose 
Commando 
Compare 
Count 
DeRez 
DumpCode 
DumpFile 

APPENDIX A Macintosh Programmer's Workshop Files 475 



DumpObj 
En tab 
FileDiv 
GetErrorText 
GetFileName 
GetListltem 
Lib 

D.istrihution disk MPW4: 

MPW4:Too1s: 

Link 
Make 
MakeErrorFile 
Matchlt 
PerformReport 
Print 
ProcNames 
Res Equal 
Rez 
RezDet 
Search 
SetPrivilege 
SetVersion 
Sort 
Translate 
Wherels 

476 MPW 3.0 Reference 



MPW Assembler files 

Distribution d.isk MPW Assembler!: 

MPW Assemblerl:Examples:AExamples 

Count.a 
Count.r 
FStubs.a 
Instructions 
Makefile 
Memory.a 
Sample.a 
Sample.h 
Sample.incl .a 
Sample.make 
SampleMisc.a 
Sample.r 

MPW Assemblerl:Tools 

Asm 

Distribution d.isk MPW Assembler2: 

MPW Assembler2:Interfaces:Alndudes: 

ApplDeskBus.a 
ATalkEqu.a 
FixMath.a 
FSEqu.a 
FSPrivate.a 
Graf3DEqu.a 
HardwareEqu.a 
HyperXCmd.a 
IntEnv.a 
ObjMacros.a 
PackMacs.a 
PaletteEqu.a 
PickerEqu.a 
PrEqu.a 

APPENDIX A Macintosh Programmer's Workshop Files 477 



PrintCallsEqu.a 
PrintTrapsEqu.a 
Private.a 
PrPrivate.a 
QuickEqu.a 
ROMEqu.a 
SANEMacs.a 
SANEMacs881.a 
ScriptEqu.a 
SCSIEqu.a 
ShutDownEqu.a 
Signal.a 
SlotEqu.a 
SonyEqu.a 
Sound.a 
SysEqu.a 
SysErr.a 
TimeEqu.a 
ToolEqu.a 
Traps.a 
VideoEqu.a 

MP\V Assembler2:Interfaces:AStructMacs: 

FlowCtlMacs.a 
ProgStrucMacs.a 
Sample.a 
Sample.r 

MPW Pascal files 

Distribution disk MPW Pascall: 

MP\V Pascall:Ubraries:Plibraries: 

PasLib.o 
SANELib.o 
SANELib881.o 

478 MPW 3.0 Reference 



MPW Pascall:Tools: 

Pascal 
Pas Mat 
Pas Ref 

Distribution disk MPW Pascal2: 

MPW Pascal2:Examples:PExamples: 

EditCdev .make 
EditCdev.p 
EditCdev.r 
FStubs.a 
Instructions 
Make File 
Memory.p 
Memory.r 
ResEqual.p 
ResEqual.r 
Sample.h 
Sample.make 
Sample.p 
Sample.r 
Silly Balls.make 
SillyBalls.p 
TESample.h 
TESample.make 
TESample.p 
TESample.r 
TESampleGlue.a 
TESampleGlue.a.o 
TestPerf.p 
TubeTest.make 
TubeTest.p 
TubeTest.r 

MPW Pascal2:Interfaces:Plnterfaces: 

AppleTalk.p 
Controls.p 
CursorCtl.p 
Desk.p 
DeskBus.p 

APPENDIX A Macintosh Programmer's Workshop Files 479 



Devices.p 
Dialogs.p 
DisAsmLookUp.p 
Disklnit.p 
Disks.p 
ErrMgr.p 
Errors.p 
Events.p 
Files.p 
FixMath.p 
Fonts.p 
Graf3D.p 
HyperXCmd.p 
IntEnv.p 
Lists.p 
MacPrint.p 
Memory.p 
MemTypes.p 
Menus.p 
Notification. p 
Objlntf.p 
OSEvents.p 
OSintf.p 
OSUtils.p 
Packages.p 
Packlntf.p 
PaletteMgr.p 
Palettes.p 
PasLiblntf. p 
Perf.p 
Picker.p 
Pickerlntf. p 
Printing.p 
PrintTraps.p 
Quickdraw.p 
Resources.p 
Retrace.p 
ROMDefs.p 
SANE.p 
Scrap.p 
Script.p 
SCSI.p 
SCSilntf.p 
SegLoad.p 
Serial.p 
ShutDown.p 

48o MPW 3.0 Reference 



Signal.p 
Slots.p 
Sound.p 
Start.p 
Strings.p 
SysEqu.p 
TextEdit.p 
Timer.p 
Toollntf.p 
ToolUtils.p 
Traps.p 
Types.p 
Video.p 
Videolntf.p 
Windows.p 

MPW C files 

Distribution disk MPW Cl: 

MPW Cl:libraries:Clibraries: 

Clnterface.o 
CLlb881.o 
Complex.o 
Complex881.o 
CRuntime.o 
CSANELlb.o 
CSANELib881.o 
Math.o 
Math881.o 
StdCLlb.o 

MPW Cl:Tools: 

c 

APPENDIX A Macintosh Programmer's Workshop Files 481 



Distribution disk MPW C2: 

MPW C2:Examples:CExamples: 

Count.c 
Count.r 
EditCDEV.c 
EditCDev .make 
EditCdev.r 
FStubs.c 
Instructions 
Makefile 
Memory.c 
Memory.r 
Sample.c 
Sample.h 
Sample.make 
Sample.r 
SillyBaUs.c 
Silly Balls.make 
TESample.c 
TESample.h 
TESample.rnake 
TESample.r 
TESampleGlue.a 
TESampleGlue.a.o 
TestPerf.c 
TubeTest.c 
Tube Test.make 
TubeTest.r 

MPW C2:Interfaces:Clncludes: 

AppleTalk.h 
~rt.h 
Complex.h 
Controls.h 
CType.h 
CursorCtl.h 
Desk.h 
DeskBus.h 
Devices.h 
Dialogs.h 
DisAsmLookUp.h 
Disklnit.h 

482 MPW 3.0 Reference 



Disks.h 
ErrMgr.h 
ErrNo.h 
Errors.h 
Events.h 
FCntl.h 
Files.h 
FixMath.h 
Float.h 
Fonts.h 
Graf3D.h 
HyperXCmd.h 
IOCtl.h 
Limits.h 
Lists.h 
Locale.h 
Math.h 
Memory.h 
Menus.h 
Notification.h 
OSEvents.h 
OSUtils.h 
Packages.h 
Palette.h 
Palettes.h 
Perf.h 
Picker.h 
Printing.h 
PrintTraps.h 
Quickdraw.h 
Resources.h 
Retrace.h 
ROMDefs.h 
SANE.h 
Scrap.h 
Script.h 
SCSI.h 
Segload.h 
Serial.h 
Setjmp.h 
ShutDown.h 
Signal.h 
Slots.h 
Sound.h 
Start.h 
StdArg.h 

APPENDIX A Macintosh Programmer's Workshop Files 483 



StdDef.h 
StdIO.h 
StdLib.h 
String.h 
Strings.h 
SysEqu.h 
TextEdit.h 
Time.h 
Timer.h 
ToolUtils.h 
Traps.h 
Types.h 
Values.h 
Video.h 
Windows.h 

Hard disk configuration 

HardDJsk:MPW: 

:Examples: 
:Interfaces: 
:Libraries: 
':ROM Maps:' 
:Scripts: 
:Tools: 
'MPWShell' 
MPW.Help 
Quit 
Resume 
Startup 
Suspend 
SysErrs.Err 
UserSrartup 
Worksheet 

484 MPW 3.0 Reference 



HardDisk:MPW:Examples: 

:AExamples: 
:CExamples: 
:Examples: 
:HyperXExamples: 
:PExamples: . 
':Projector Examples:' 

HardDlsk:MPW:Examples:AExamples: 

Count.a 
Count.r 
FStubs.a 
Instructions 
MakeFile 
Memory.a 
Sample.a 
Sample.h 
Sample.incl.a 
Sample.make 
Sample.r 
SampleMisc.a 

HardDlsk:MPW:Examples:CExamples: 

Count.c 
Count.r 
EditCDEV.c 
EditCDev .make 
EditCdev.r 
FStubs.c 
Instructions 
MakeFile 
Memory.c 
Memory.r 
Sample.c 
Sample.h 
Sample.make 
Sample.r 
SillyBalls.c 
Silly Balls.make 
TESample.c 
TESample.h 

APPENDIX A Macintosh Programmer's Workshop Files 485 



TESample.make 
TESample.r 
TESampleGlue.a 
TESampleGlue.a.o 
TestPerf.c 
TubeTest.c 
Tube Test.make 
TubeTestr 

HardDisk:MPW:Examples:Examples: 

AddMenus 
ChecklnActive 
CheckOutActive 
DerezPict 
Instructions 
Lookup 
'Startup, etc.' 
State 
'Unix Aliases' 

HardDisk:MPW:Examples:ByperXExamples: 

HardDisk:MPW:Examples:PExamples: 

EditCdev .make 
EditCdev.p 
EditCdev.r 
FStubs.a 
Instructions 
Makefile 
Memory.p 
Memory.r 
ResEqual.p 
ResEqual.r 
Sample.h 
Sample.make 
Sample.p 
Sample.r 
Silly Balls.make 
SillyBalls.p 
TESample.h 
TESample.make 
TESample.p 
TESample.r 
TESampleGlue.a 

486 MPW 3.0 Reference 



TESampleGlue.a.o 
TestPerf.p 
Tube Test.make 
TubeTest.p 
TubeTest.r 

HardDisk:MPW:Examples:Projector Examples: 

:Sample: 

HardDJsk:MPW:Examples:Projector Examples:Sample: 

:Commands: 
:Utilities: 
ProjectorDB 

HardDisk:MPW:Examples:Projector Examples:Sample:Commands: 

Projector DB 

HardDisk:MPW:Examples:Projector Examples:Sample:Utillties: 

ProjectorDB 

HardDisk:MPW:Interfaces: 

:Alncludes: 
:AStructMacs: 
:Clncludes: 
:Plnterfaces: 
:Rlncludes: 

HardDJsk:MPW:Interfaces:Aincludes: 

ApplDeskBus.a 
ATalkEqu.a 
FixMath.a 
FSEqu.a 
FSPrivate.a 
Graf3DEqu.a 
HardwareEqu.a 
HyperXCmd.a 
IntEnv.a 
ObjMacros.a 
PackMacs.a 
PaletteEqu.a 
PickerEqu.a 
PrEqu.a 

APPENDIX A Macintosh Programmer's Workshop Files 487 



PrintCallsEqu.a 
PrintTrapsEqu.a 
Private.a 
PrPrivate.a 
QuickEqu.a 
ROMEqu.a 
SANEMacs.a 
SANEMacs881.a 
ScriptEqu.a 
SCSIEqu.a 
ShutDownEqu.a 
Signal.a 
SlotEqu.a 
SonyEqu.a 
Sound.a 
SysEqu.a 
SysErr.a 
TimeEqu.a 
ToolEqu.a 
Traps.a 
VideoEqu.a 

HardDJsk:MP\V:Interfaces:AStructMacs: 

FlowCtlMacs.a 
ProgStrucMacs.a 
Sample.a 
Sample.r 

BardDJsk:MP\V:Interfaces:Clncludes: 

AppleTalk.h 
Assert.h 
Complex.h 
Controls.h 
CType.h 
CwsorCtl.h 
Desk.h 
DeskBus.h 
Devices.h 
Dialogs.h 
DisAsml.ookUp.h 
Disklnit.h 
Disks.h 
ErrMgr.h 
ErrNo.h 

488 MPW 3.0 Reference 



Errors.h 
Events.h 
FCntl.h 
Files.h 
FixMath.h 
Float.h 
Fonts.h 
Graf3D.h 
HyperXCmd.h 
IOCtl.h 
Limits.h 
Lists.h 
Locale.h 
Math.h 
Memory.h 
Menus.h 
Notification.h 
OSEvents.h 
OSUtils.h 
Packages.h 
Palette.h 
Palettes.h 
Perf.h 
Picker.h 
Printing.h 
PrintTraps.h 
Quickdraw .h 
Resources.h 
Retrace.h 
ROMDefs.h 
SANE.h 
Scrap.h 
Script.h 
SCSI.h 
SegLoad.h 
Serial.h 
SetJmp.h 
ShutDown.h 
Signal.h 
Slots.h 
Sound.h 
Start.h 
StdArg.h 
StdDef.h 
StdIO.h 
StdLib.h 

APPENDIX A Macintosh Programmer's Workshop Files 489 



String.h 
Strings.h 
SysEqu.h 
TextEdit.h 
Time.h 
Timer.h 
ToolUtils.h 
Traps.h 
Types.h 
Values.h 
Video.h 
Windows.h 

HardDfsk:MPW:Interfaces:Plnterfaces: 

AppleTalk.p 
Controls.p 
CursorCtl.p 
Desk.p 
DeskBus.p 
Devices.p 
Dialogs.p 
DisAsmI.ookUp.p 
Disklnit.p 
Disks.p 
ErrMgr.p 
Errors.p 
Events.p 
Files.p 
FixMath.p 
Fonts.p 
Graf3D.p 
HyperXCmd.p 
IntEnv.p 
Lists.p 
MacPrint.p 
Memory.p 
MemTypes.p 
Menus.p 
Notification.p 
Objlntf.p 
OSEvents.p 
OSintf.p 
OSUtils.p 
Packages.p 

490 MPW 3.0 Reference 



Packintf.p 
PaletteMgr. p 
Palettes.p 
PasLibintf.p 
Perf.p 
Picker.p 
Pickerintf. p 
Printing.p 
PrintTraps.p 
Quickdraw.p 
Resources. p 
Retrace.p 
ROMDefs.p 
SANE.p 
Scrap.p 
Script.p 
SCSI.p 
SCSIIntf.p 
SegLoad.p 
Serial.p 
ShutDown.p 
Signal.p 
Slots.p 
Sound.p 
Start.p 
Strings.p 
SysEqu.p 
TextEdit.p 
Timer.p 
Toolintf.p 
ToolUtils.p 
Traps.p 
Types.p 
Video.p 
Videointf.p 
Windows.p 

HardDisk:MPW:lnterfaces:Rlncludes: 

Cmdo.r 
MPWfypes.r 
Pict.r 
SysTypes.r 
Types.r 

APPENDIX A Macintosh Programmer's Workshop Files 491 



HardDisk:MPW:libraries: 

:CLibraries: 
:Libraries: 
:PLibraries: 

HardDisk:MPW:libraries:Clibraries: 

Clnterface .o 
CLib881.o 
Complex.o 
Complex881.o 
CRuntime.o 
CSANELib.o 
CSANELib881.o 
Math.a 
Math881.o 
StdCLib.o 

HardDisk:MPW:libraries:libraries: 

DRVRRuntime.o 
HyperXLib.o 
Interface.o 
ObjLib.o 
PerformLib.o 
Runtime.o 
SERD 
Stubs.a 
ToaILibs.o 

HardDisk:MPW:libraries:PI.t"braries: 

PasLib.o 
SANELib.o 
SANELib881.o 

HardDisk:MPW:ROM Maps: 

MacIIROM.map 
MacPlusROM.map 
MacSEROM.map 

492 MPW 3.0 Reference 



HardD isk:MPW:Scripts: 

BuildCommands 
BuildMenu 
BuildProgram 
CCvt 
CompareFiles 
CompareRevisions 
CP!us 
Create Make 
Directory Menu 
Dolt 
Line 
MergeBranch 
OrphanFiles 
SetDirectory 
TransferCKID 
UserVariables 

HardDisk:MPW:Tools: 

AboutBox 
Asm 
Backup 
c 
Canon 
Canon.Diet 
CCvtMxL.dict 
CCvtUMx.dict 
CFront 
Choose 
Commando 
Compare 
Count 
DeRez 
DumpCode 
Dump File 
DumpObj 
En tab 
FileDiv 
GetErrorText 
GetFileName 
GetListltem 
Lib 
Link 
Make 

APPENDIX A Macintosh Programmer's Workshop Files 493 



MakeErrorFile 
Matchlt 
Pascal 
PasMat 
Pas Ref 
Perf ormReport 
Print 
ProcNames 
Res Equal 
Rez 
RezDet 
Search 
SetPrivilege 
SetVersion 
Sort 
Translate 
Wherels 

494 MPW 3.0 Reference 



Appendix B Summary of Selections and 
Regular Expressions 

THIS APPENDIX FORMAllY DEFINES TIIE SYNTAX OF SEI.ECITONS AND REGULAR 
EXPRESSIONS as used in the MPW Shell command language. It also lists the Option
key characters used in selections and regular expressions. For examples of their 
use, see Chapter 6. • 

Contents 

Selections 497 
Regular expressions 498 
Option-key characters 500 

495 





Selections 

Selections are passed as arguments to the editing comniands. They're defined in 
Table B-1. 

• Table B-1 Selections 

selection (specifies a selection or insertion point) 

§ Current selection 
name Identifies marked text 
number line number 
! number number lines after the end of the current selection 
i number number lines before the start of the current selection 
position Position (defined below) 
pattern Pattern (defined below) 
(selection) Selection grouping 
selection : selection Both selections and everything in between 

position (specifies an insertion point) 
• Position before the first character in the file 
oo Position after the last character in the file 
fl selection Position before the first character of selection 
selection fl Position after the last character of selection 
selection ! number Position number characters after the end of selection 
selection i number Position number characters before the beginning of 

selection 

pattern (specifies characters to be matched) 
I entireRegularF.:xpr I Regular expression-search forward (see Table B-2) 
\ entireRegularF.:xpr \ Regular expression-search backward 

This is the precedence of the selection operators, from highest to lowest: 

/and\ 
( ) 
fl 
! and i 

APPENDIX B Summary of Selections and Regular Expressions 4'17 



Regular expressions 

Regular expressions are used for pattern matching within /. . ./ and \ ... \. (See "pattern' in 
Table B-1.) Regular expressions are defined in Table B-2. 

• Table B-2 Regular expressions 

entireRegu]arExp.r 
• regular.Expr 
regular.Exproo 
regu/arF:xpr 

regular£xp.r 
simple&pr 
taggedF4Jr 
literal 
regular&pr1 regular.Expr2 

simpleExp.r 
(regularF.xpr) 
character.Expr 
simpleExpr* 
simpleF.xpr + 
simpleExpr «number » 

simpleF:xpr «number,» 
simpleF.xpr « 1Zi ' ni » 

taggedExp.r 
(regularF.xpr)®digit 

literal 
'string 
"string' 

498 MPW 3.0 Reference 

Regular expression at beginning of line 
Regular expression at end of line 
Regular expression 

Untagged regular expression 
Tagged regular expression 
Quoted string literal 
regularF.xpr1 followed by regular!!.xpr2 

Regular expression grouping 
Single-character regular expression 
Regular expression zero or more times 
Regular expression one or more times 
Regular expression number times 
Regular expression at least number times 
Regular expression at least 1Zi times and at most ~ times 

The string matched by the regu/arF.xpr can be 
referred to as ®digit (where 0 Sdigit;;:: 9) 

f.ach character in string is taken literally 
f.ach character in string is taken literally, except for a, 

{ } , and ' ... ' substitutions 

(Continued) 



• Table B-2 (Continued) Regular expressions 

characterExpr 
character 
CJ character 
? 
= 

[ characterlist] 
[ --. characterlist ] 

character list 
] 

character 

Character (unless it's listed as special in the following table) 
a defeats special meaning of following character 
Any character except Return 
Any string not containing a Return, including the null 

string (this is the same as ?*) 
Any character in the list 
Any character not in the list 

"]n first in list represents itself 
"-n first in list represents itself 
Character 

characterlist character 
character1 - character2 

list of characters 
Character range from character1 to character2 inclusive 

• Note: The regular expression operators 
? = [...] * + « ... » 
are also used in filename generation. 

The following characters have special meanings: 

a 
?=*+[«()'' 
® 
• 
00 

I\ 
{ } 
., 

Always special, except within ' ... ' 
Special everywhere except within [. . .], ' ... ', and ' ... ' 
Special only after a right parenthesis character, ) 
Special as first character of entire regular expression 
Special as last character of entire regular expression 
Special if used to delimit regular expression 
Special everywhere except within ' ... ' 
Special immediately following left bracket [ 
Special within brackets except inunediately following left bracket [ 

The operators are listed below beginning with those with the highest precedence. 

( ) 

? = * + [ ] « » ® 

concatenation 

• 00 

APPENDIX B Summary of Selections and Regular Expressions 49'J 



Option-key characters 

The following Option-key characters are used in selections and regular expressions. 

+ Note: Option-key characters are not case-sensitive. Although upper case letters are 
shown in the text of this reference for readability (the number 1 and lower case L look 
the same), you can use lower case for all Option-letter characters. 

Character Key Meaning 
§ Option-6 Current selection character 
() Option-D Escape character 
:::::: Option-X Any string 
• Option-8 Beginning of line or file 
00 Option-5 End of line or file 
i Option-1 Minus number of lines or spaces 
~ Option-] Position 
® Option-R Tag operator 
« Option-\ Encloses number of repetitions 
» Option-Shift·\ Encloses number of repetitions 
, Option-L Character list modifier 

500 MPW 3.0 Reference 



Appendix C Special Operators 

HERE IS A BRIEF SUMMARY OF TIIE SPECIAL OPERATORS USED IN MPW 3.0. For 
characters that are part of the extended character set, Option-key combinations 
are also given. For details on the action of these operators, see Chapters 5 and 6. 
See Appendix B for a summary of selections and regular expressions. • 

501 





• Table C-1 

Operator 

Shell character 
space 
tab 
return 
; 

&& 
II 
(commands) 
#comment 
ochar 
•chars• 
"Chars'' 

/chars! 

\chars\ 

{variablt!i 
'command' 

1/0 redirection 

MPW operators 

Separates words 
Separates words 
Separates commands 
Separates commands 
Pipe-separates commands, piping output to input 
•And" -separates commands, executing second if first succeeds 
"Or"-separates commands, executing second if first fails 
Group commands 
Ignore comment 
Escape-literalizes char; on, ot, and of are special (o is Option-D) 
"Hard quotation marks" -literalize chars 
"Soft quotation marks" -literalize chars except for {. . .} (variable 

substitution), ' .. : (command substitution), and a (escape) 
Regular expression quotes-literalize !chars! except for{...},' .. .', and o 
Ellipsis (Option-semicolon; not three periods) following a 
command invokes Commando 
Regular expression quotation marks-literalize \chars\ except for 

{...},' .. :,and a 
Substitute variable 
Substitute output of command 

Note: Filename is created if it does not exist 
<filename Standard input is taken from filename 
>filename Redirect standard output, replacing contents of filename 
»filename Redirect standard output, appending to filename 
~filename Redirect diagnostics, replacing contents of filename (~ is Option->) 
>>filename Redirect diagnostics, appending to filename (~is Option->) 
Lfilename Redirect both standard output and diagnostics, 

replacing contents of filename (Lis Option-W) 
LL filename Redirect both standard output and diagnostics 

appending to filename (Lis Option-W) 

(Continued) 

APPENDIX C Special Operators 503 



• Table C-1 (Continued) MPW operators 

Operator 

Shell numbers 
$ [ 0-9 a-f ]+ Hexadecimal number 
Ox [ 0-9 a-f ]+ Hexadecimal number 
0 [ 0-7 ]+ Octal number 
Ob [ 0-1 ]+ Binary number 

Shell operators (by precedence) 
(expr) Expression grouping 

* 
+ 

% 
+ 

<< 
>> 
< 
<= 
> 
>= 
--
!= 

!-
& 
/\ 

&& 
II 

NOT ..., 

DIV 
MOD 

:S 

;:: 

<> 

AND 
OR 

(unary) arithmetic negation 
(unary) bitwise negation 
(unary) logical negation(..., is Option-L) 
Multiplication 
Division ( + is Option-/) 
Modulus 
Addition 
Subtraction 
Shift left 
Shift right (logical) 
Less than 
less than or equal (:S is Option-<) 
Greater than 
Greater than or equal (;:: is Option->) 
Equal 
Not equal (* is Option-=) 
Equal to a pattern 
Not equal to a pattern 
Bitwise AND 
Bitwise XOR 
Bitwise OR 
Logical AND 
Logical OR 

504 MPW 3.0 Reference 



Appendix D Resource Description Syntax 

THIS APPENDIX DEFINES THE FORM OF RESOURCE DESCRIPTION FILES used by the 
MPW 3.0 resource compiler (Rez) and decompiler (DeRez). See Chapter 11 for 
infonnation on how to use these tools. Each tool is defined in detail along with 
examples in Part II. • 

contents 

Syntax notation 507 
Structure of a resource description file 508 

Include-include resources from another file 509 
Read-read data as a resource 509 
Data-specify raw data 509 
Type-declare resource type 510 

Data-type 510 
Fill-type 511 
Alignment 511 
Switch-type 511 
Array-type 511 

Resource-specify resource data 512 
Change-change resource vital infonnation 512 
Delete-delete resource(s) 512 

Labels 512 
Syntax 512 

Preprocessor directives 513 
Syntax 513 

Identifiers 513 
Token delimiters 514 
Compound types 514 
Expressions 514 
Numbers 515 
Variables and functions 516 
Strings 517 





Syntax notation 

The following syntax notation is used in this appendix: 

terminal 

nonterminal 
A I B I C 

{...}? 
{ ... }+ 

{ .. .}* 
{...}n 

Must be entered as shown 
May be replaced by anything matching its definition 
Either A or B or C (vertical stacking also indicates an either/or 

choice) 
Enclosed element is optional, but may not be repeated 
Enclosed element may be repeated one or more times (not 

optional) 
Enclosed element may be repeated zero or more times 
Enclosed element must be repeated n times 

If one of the syntax elements must be included literally, it is shown enclosed in single 
quotation marks; for example, 

{ ' { ' data-string ' } ' } ? 

indicates that a data-string is optional, and must be enclosed in braces, if included. 
Otherwise, all punctuation(; , ' " $ =)must be entered as shown. 

Note that the ellipsis (three closely spaced periods) within braces signifies only some 
unspecified element on which an operation is to be performed. An actual ellipsis in a 
command line (Option-semicolon) would invoke a command's Commando dialogs. 

Note that the semicolon is a statement terminator; every statement must be terminated 
by a semicolon. In a resource type definition, semicolons can be liberally sprinkled 
without ill effect. In a resource specification (where the actual resource data is 
initialized), commas are used everywhere to separate items, including array elements. 

The nonterminal symbols used are fully defined under usyntax" at the end of this 
appendix. 

APPENDIX D Resource Description Syntax 5IJ7 



Structure of a resource description ftle 

The MPW resource compiler input file consists of any number of statements, where a 
statement may be any of the following: 

include 

read 

data 

type 

resource 

change 

delete 

Include resources from another file. 

Read the data fork of a file and include it as a resource. 

Specify raw data. 

Dedare resource type descriptions for subsequent resource 
statements. 

Specify data for a resource type declared in a previous type 

statement. 

Change the type, ID, name, or attributes of existing resources. 

Delete existing resources. 

~ MPW 3.0 Reference 



Include-include resources from another file 

include file { include-selector}? ; 

include-selector::= 

file::= 

ID-specifier::= 

ID-range ::= 

resource-specifier::= 

resource-ID ::= 

resource-name ::= 

resource-attrfbutes ::= 

resource-numeric-attributes ::= 

resource-literal-auributes ::= 

Read-nad data as a resource 

resource-~ { ' c' ID-specifier'> ' }? 
not resource-~ 
resource-typel as resource-~2 
resource-~1' c' ID-specifier'>' 

as resource-~·<' resource-specifier'>' 

string 

ID-range 
resource-name 

JD{:l/Yt? 

resource-ID { , resource-name}? { resource-attributes}? 

word-expression 

string 

{resource-literal-attributes} • I resource-numeric-attributes 

, byte-expression 

{ , sysheap I , appheap }? 
{ , purgeable I , nonpurgeable }? 
{ , locked I , unlocked}? 
{ , preload I , nonpreload }? 

read resource-t)pe' ('resource-specifier'>' file ; 

Data-specify raw data 

data resource-~ ' <'resource-specifier'> ' ' { ' data-string { ; }? '} ' ; 

APPENDIX D Resource Description Syntax 5(l') 



Type-declare resource type 

type resource-type { ' <'ID-range '> ' }? ' { ' { {label ':'} • type-statement ;} * ' } ' ; 
resource-type ::= 

type-statement::= 

label::= 

Data-type 

long-expression 

data-type 
fill-type 
alignment 
switch-type 
a"ay-type 

identifier 

data-type :: = data-type-specifier { symbolic-declaration I = declaration-constant}? 

data-type-specifier::= char 

length::= 

numeric-type-specifier ::= 

radix::= 

numeric-type ::= 

symbolic-declaration ::= 

510 MPW 3.0 Reference 

string {'['length']'}? 
pstring {'['length']'}? 
cstring {'['length']'}? 
wstring { 1' length']'}? 
numeric-type-specifier 
point 
re ct 

expression 

boolean 
{unsigned}? { radix}? numeric-type 

binary 

octal 
decimal 
hex 
literal 

byte 

integer 
long int 
bi tstring '[' length']' 

range-block { , range-block}* 



declaration-constant ::= 

Fill-type 

fill-type : := 

fill-size ::= 

Alignment 

alignment::= 

align-size::= 

Switch-type 

switch-type ::= 

switch-body ::= 

case-name ::= 

case-body ::= 

key-constant-statement ::= 

Array-type 

a"ay-type ::= 

a"ay-specifier ::= 

amlJ-name ::= 

type-body ::= 

expression 
point-constant 
rect-constant 
string 

fill.fill-size { 'c' expression 'l '}? 

bit I nibble I byte I word I long 

align align-size 

nibble I byte I word I long 

switch '{'switch-body'}' 

{ case case-name : case-body }+ 

identifier 

{ type-statement ; }* key-constant-statement ; { type-statement ; }* 

key data-type-specifier= declaration-constant 

{wide}? array { a"ay-specifrer }? type-body 

a"ay-name 
' [' e:xpressiort] ' 

identifier 

' {' { type-statement ; } * ' }' 

APPENDIX D Resource Description Syntax 511 



Resource-specify resource data 

resource resource-type'(' resource-specifier')' data-body ; 

data-body ::= 

data-statement::= 

' {' { data-statement { , data-statement }* }? '}' 

expression 
point-constant 

switch-data::= 

a"ay-data ::= 

a"ay-element ::= 

rect-constant 
string 
identifier 
switch-data 
array-data 

case-name data-body 

' { ' { array-element { , array-element }* }? ' } ' 
'{' { array element; } • '}' 

{ data-statement { ' data-statement }* }? 

Change-change resource vital information 

change resource-type { '(' ID-specifier')' }? to resource-type2 '(' resource-specifier')' ; 

Delete-delete resource(s) 

delete resource-type{'(' ID-specifier')'}?; 

Labels 

Labels support some of the more complicated resources such as • NFNT • and color 
QuickDraw resources. Use labels within a resource type declaration to calculate offsets 
and permit accessing of data at the labels. 

Syntax 
label ::= character {alphanum}* •:• 

character •• - •_• I A I B I C -
number : := O I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 
alphanum : := character I number 

512 MPW 3.0 Reference 



Preprocessor directives 

These preprocessor directives are available: 

fdefine identifier{ define-string}? 
fondef identifier . 
ti f preprocessor-expr 
teli f preprocessor-expr 
telse 

tendif 
#if def identifier 
Hfndef identifier 
#printf (string { , [expression I string] } •) 

Preprocessor-expr is the same as expression with the following additional expressions: 

defined '('identifier'>' 
defined identifier 

Syntax 

This section defines the nonterminal symbols used in the previous sections. 

Identifiers 

• An identifier may consist of letters (A-Z, a-z), digits (0-9), or the underscore 
character ( _ ) . 

• Identifiers may not start with a digit; otherwise any mix of letters, digits, and 
underscores is acceptable. 

• Identifiers are not case sensitive. 

• An identifier may be of any length. 

APPENDIX D Resource Description Syntax 513 



Token delimiters 

token-delimiter :: = 

comment::= 

Compound types 

point-constant::= 
rect-constant ::= 

Expressions 

bit-expression ::= 

byte-expression::= 
word-expression::= 
long-expression ::= 

expression ::= 

514 MPW 3.0 Reference 

{ space I tab I newline I comment}+ 

'!*'{printing-character}* '* /' 
11 {printing-character}* newline 

' { , expression , expression ' l , 
' { 'expression , expression , expression , expression '} ' 

expression 
expression 
expression 
expression 

integer-constant 
literal-constant 
numeric-variable 
systemfunction 
expression 
label 
- expression 
- expression 
! expression 
'(' expression ')' 
expression >> expression 
expression << expression 
expression A expression 
expression '11' expression 
expression && expression 
expression '1' expression 
expression & expression 
expression != expression 
expression expression 
expression >= expression 
expression <= expression 



system-function ::= 

Numbers 

integer-constant ::= 

decimal-constant ::= 

octal-constant::= 
hexadecimal-constant ::= 

binary-constant::= 

decimal-marker::= 
hex-marker::= 
binary-marker ::= 

octal-digit ::= 
hex-digit : := 

binary-digit ::= 

literal-constant::= 

expression > expression 
expression < expression 
expression expression 
expression + expression 
expression * expression 
expression I expression 
expression % expression 

$$countof 'c' a"ay-name'>' 
$$packedsize '(' StartOfjSet, RowBytes, RowCount ')' 

decimal-constant 
octal-constant 
binary-constant 
hexadecimal-constant 

nonzero-digit { digit}* 
0 { octal-digit}* 
hex-marker { hex-digit}+ 
binary-marker { binary-digit}+ 

Od I OD 
Ox I ox I $ 

Ob I OB 

0!1121314151617 
01112131415161718191 
AIBICIDIEIFI 
alblcldlelf 

0 I 1 

' { character}* ' 

APPENDIX D Resource Description Syntax 515 



Variables and functions 

string-variable::"' 

numeric-variable ::= 

516 MPW 3.0 Reference 

$$Version 

$$Date 

$$Time 

$$Name 
$$Shell' <'"Shell-variable-name"')' 
$$Resource' <'file, resource-id, resourceName-or-[lJ)' 
$$Format (string{, [expression I string J} *) 

resourceName-or-ID ::= 

$$Hour 

$$Minute 

$$Second 
$$Year 

$$Month 

$$Day 

$$Weekday 

$$Type 

$$ID 

$$Attributes 

$$ResourceSize 

resource-id 
resource-name 

$$BitField (expression, expression, expression) 
$$Byte (expression) 
$$Long (expression) 
$$PackedSize (expression, expression, expression) 
$$Word (expression) 



Strings 

string::= 

simple-string ::= 

hex-string::= 

character ::= 

escape-character ::= 

escape-code ::= 

character-escape-code ::= 

numeric-escape-code::= 

simple-string 
hex-string 
string-variable 
string string 

" { character}* " 

$" { hex-digit hex-digit }* n 

printing-character I escape-character 

\ escape-code 

character-escape-code I numeric-escape-code 

nltlblrlflvl'?l\l •In 

{ octal-digit }3 
decimal-marker{ decimal-digit }3 
hex-marker{ hex-digit }2 
binary-marker { binary-digit }8 

APPENDIX D Resource Description Syntax 517 





Appendix E File Types, Creators, and Suffixes 

Contents 

File types and creators 521 
File suffixes 521 

Text files 522 
Object files 522 
Data files 522 

519 





File types and creators 

Table E-1 lists MPW file types and creators. 

+ Note: The file type •OBJ • actually contains a space before the closing single 
quotation mark. Likewise, the creator •MPs • has a space before its closing 
quotation mark. 

• Table E-1 File types and creators 

Fi.le Type Creator 

MPWShell 'APPL' 'MPS I (MPS.space) 
Tools 'MPST' 'MPS I 

Text files 'TEXT' 'MPS I 

Object files 'OBJ I 'MPS I 

Assembler load/ dump 'DMPA' 'MPS I 

C load/dump 'DMPC' 'MPS I 

Pascal load/dump 'DMPP' 'MPS I 

ProjectorDB 'MPSP' 'MPS I 

SADE 'APPL' 'sade' 

SADE text files 'TEXT' 'sade' 

SADE symbol files 'MPSY' 'sade' 

SADE symbol files .sym 'sade' 

File suffixes 

The following sections define file suffix conventions. 

APPENDIX E File Types, Creators, and Suffixes 521 



Text files 

name.a 
name.a.1st 
name.c 
name.cp 
name.h 
name.map 
name.p 
name.r 

Assembly-language source file 
Assembler listing file 
C or C++ source file 
C ++ source file 
C header file 
linker map 
Pascal source file 
Resource description file (resource compiler (Rez) input) 

Text files are identified by their file type ( • TEXT • ) rather than by a special suffix. Several 
applications (including MacWrite, MDS Edit, and the MPW Shell) can create and edit files 
of type • TEXT • . The creator •MPs • indicates to the Finder that the MPW Shell is the 
application to launch when a text file is opened. 

Object files 

name.a.o 
name.p.o 
name.c.o 
name.o 

Object file created by the assembler 
Object file created by the MPW Pascal Compiler 
Object file created by the MPW C Compiler 
Object file (library) created by Lib; object files shipped with MPW 

Compilers add the suffix ".on to the source file name to construct the object file name. 
The language suffix is left in the name in order to prevent name conflicts for programs 
whose components are written in several languages. (For example, a program might have 
source files MacGismo.a and MacGismo.c and object files MacGismo.a.o and 
MacGismo.c.o.) 

Data files 

Projector DB 
name.SYM 

Database file created by Projector 
Symbolic infonnation file created by the linker 

The linker adds the suffex ".SYMn to the output filename in response to the -sym option. 

522 MPW 3.0 Reference 



Appendix F Tools Libraries 

THE MPW TOOI.5 LIBRARY, FOUND IN TOOLLIBS.O, INCLUDES PROCEDURES AND 
HEADER FILES to 

• control the MPW rotating beach ball cursor 

• retrieve the text of Macintosh Operating System error messages 
from the MPW error message file 

• dissassemble MC68xxx machine code 

MPW Assembly language prograrruners can use either MPW Pascal or MPW C calls 
to all of these routines. Therefore, only the Pascal and C calling conventions are 
shown here. (However, you will find special notes for Assembler users.) • 

Contents 

Animated cursor control routines 525 
Cursor control routines-MPW Pascal 525 
Cursor control routines-MPW C 525 
The InitCursorCtl procedure 526 
The Show_Cursor procedure 527 
The Hide_ Cursor procedure 528 
The RotateCursor procedure 529 
The SpinCursor procedure 529 

Error Message File manager 530 
Error Manager-MPW Pascal 530 
Error Manager-MPW C 530 
The InitErrMgr procedure 531 
The GetSysErrText procedure 532 
The GetToolErrText procedure 533 
The AddErrinsert procedure 534 
The CloseErrMgr function 534 

523 



Disassembler Lookup routines 535 
DisAsmLookUp.p-MPW Pascal 535 
DisAsmLookUp.h-MPW C 535 
Using the Disassembler 536 

The Initlookup procedure 541 
The Lookup procedure 542 
The IookupTrapName procedure 542 
The ModifyOperand procedure 543 
The validMacsBugSymbol function 543 
The endOfModule function 545 
The showMacsBugSymbol function 545 

524 MPW 3.0 Reference 



Animated cursor control routines 

Five procedures in the MPW Tools Library let you control the appearance· and action of 
the MPW cursor. The rotating beach ball cursor says "I am currently processing. n These 
routines all use Pascal calling conventions and Pascal-style strings. 

+ Note: Spinning the cursor allows your tool to operate in the background under 
MultiFinder. 

Cursor control routines--MPW Pascal 

To access the cursor control unit in MPW Pascal, do the following: 

• Include these statements in your source text: 

USES {$U MemTypes.p} MernTypes, 
{$U CursorCtl.p} CursorCtl; 

The USES clause and the su compiler directive are described in the MPW 3.0 Pascal 
Reference. 

• link your compilation with the file ToolLibs.o. 

Cursor control routines-MPW C 

The MPW C header file CursorCtl.h provides interfaces to procedures in the MPW Tools 
Library that let you control the appearance and action of the cursor. Link this file with the 
file ToolLibs.o. 

To access the cursor control unit in MPW C, include this statement in your source text: 

finclude <CursorCtl.h> 

APPENDIX F Tools Libraries 525 



The InitCursorCtl procedure 

The InitCursorCtl procedure initializes the CursorCtl unit. Call this procedure once 
prior to calling the RotateCursor or SpinCursor procedures described later in this 
appendix. Note that InitCursorCtl doesn't need to be called if you use only 
Hide Cursor and Show Cursor. - -
If the parameter NewCursors is NIL, ini tCursorCtl loads in the 'acur' resource and 
the •CURS• resources specified by the • acur • resource ID. If any of the resources 
cannot be loaded, the cursor will not be changed. The •a cur• resource is assumed to be 
either in the currently running tool or application or the MPW 3.0 Shell for a tool or in the 
System file. The •a cur• resource ID must be 0 for a tool or application, 1 for the Shell, 
and 2 for the System file (assuming that cursors are in the System file). 

If NewCursors is not NIL, it is assumed to be a handle to an •a cur• -formatted resource 
designated by the caller and uses it instead of executing the GetResource procedure on 
'acur'. 

• Note: If you call RotateCursor or SpinCursor without first calling 
InitCursorCtl , then RotateCursor and SpinCursor do the work of 
Initcursor the first time you make the call. However, it is preferable to call 
InitCursorCtl first because of one possible disadvantage: The resource memory 
allocated may cause fragmentation to occur in the application. Calling 
InitCursorCtl has the advantage of allocating memory at a time you specify. 

CursorCtl declares acurHandle as a handle to 'acur' resources of type RECORD as 
follows: 

TYPE 
acurHandle 
acurPtr 

a cur = 

"acurPtr; 
"acur; 

RECORD 
N: integer; 
Index: integer 
Framel: integer 
filll: integer 
Frarne2: integer 
fill2: integer 

{- - -- - - - -- - - - -- - -
FrameN: integer 
fillN: integer 

END; 

526 MPW 3.0 Reference 

{Handles to 'acur' resources} 
{Pointers to 'acur' resources} 

{Layout of an 'acur' resource} 
{Number of cursors ("frames of film")} 
{Next frame. to show <for internal use>} 
{'CURS' resource ID - frame fl} 
{<for internal use>} 
{'CURS' resource ID - frame #2} 
{<for internal use>} 

- -- - - -} 
{'CURS' resource ID - frame #2} 
{{<for internal use>} 



See "The RotateCursor Procedure" for a description of how the •a cur• frames are used 
to animate the cursor. 

.& Warning 

MPW Pascal 

InitCursorCtl modifies the 'acur' resource in memory . 
Specifically, it changes each FrameN/fillN integer pair to a handle to 
the corresponding •CURS• resource also in memory. Thus if 
Newcursors is not NUll when Ini tCursorCtl is called, you must 
guarantee that NewCursors always points to a "fresh" copy of an 
•a cur• resource. This need concern you only if you want to 

repeatedly use multiple •a cur• resources during execution 
of your tools. • 

InitCursorCtl(NewCursors: UNIV acurHandle); 

MPWC 

pascal void InitCursorCtl(acurHandle newCursors); 

The Show_ Cursor procedure 

The Show_ cursor procedure increments the cursor level (which may have been 
decremented by Hide_ Cursor). If the level is zero, it displays the cursor. The cursor 
level never increments above zero. The parameter CursorKind lets you select the form of 
the cursor: 

• Table F-1 Cursor kinds 

Value CUrsor 

0 Hidden cursor 
1 I-beam 
2 Cross 
3 Plus sign 
4 Watch 
5 Arrow 

APPENDIX F Tools Libraries 51:7 



Except for HIDDEN_CURSOR, a Macintosh setcursor is done for the specified cursor 
prior to doing a ShowCursor. HIDDEN_ CURSOR Simply causes a ShowCursor call. 

+ Note: IntiGraf ( ) must be called before any calls to ShowCursor 
(ARROW_ CURSOR) because the arrow cursor is one of the QuickDraw globals set up by 
IntiGraf ( ) . 

MPW Pascal 

Show_Cursor(CursorKind: Cursors); 

CursorCtl declares the type Cursors as follows: 

TYPE 
Cursors = (HIDDEN_CURSOR, I_BEAM_CURSOR, CROSS_CURSOR, 

PLUS_CURSOR, WATCH_CURSOR, ARROW_CURSOR); 

MPWC 

pascal void Show_Cursor(Cursors cursorKind); 

The Hide_ Cursor procedure 

The Hide_Cursor procedure calls the Macintosh HideCursor routine. (Thus the 
Macintosh cwsor level is decremented by 1 when this routine is called.) If the cursor was 
visible, it is then hidden. For further infonnation, see the chapter "QuickDraw" of Inside 
Macintosh. 

MPW Pascal 

Hide_Cursor; 

MPWC 

pascal void Hide_Cursor(void) 

528 MPW 3.0 Reference 



The RotateCursor procedure 

The RotateCursor procedure rotates the beach ball cursor (or animates whichever 
sequence of cursors has been set by the user in an • a cur• resource and loaded with 
InitCursorCtl) and rotates it one-quarter tum (that is, advances to the next •a cur• 

resource frame) whenever the value of Counter is a multiple of 32. To use 
Rotatecursor, your program must set up and increment (or decrement) a suitable 
counter. If the value of Counter is positive, the cursor rotates clockwise (that is, 
sequencing is forward through the •a cur• cursor frames}, if it is negative, it rotates 
counterclockwise (that is, sequencing is backward circularly through the •a cur• resource 
frames). 

• Note: RotateCursor invokes a Macintosh SetCursor call for the proper cursor 
picture. It assumes that the cursor is visible as the result of a prior Show_ cursor call. 

MPW Pascal 

RotateCursor(Counter: longint); 

MPWC 

pascal void RotateCursor(long counter); 

The SpinCursor procedure 

The SpinCursor procedure perfonns the same actions as RotateCursor, but 
maintains its own internal counter rather than passing a counter. It is provided for those 
who do not have a convenient counter handy but still want to use the spinning beach ball 
cursor or any sequence of cursors specified by Ini tCursorCtl. Your program specifies 
the Increment to be counted (either positive or negative), and SpinCursor adds it to 
its counter. A positive increment spins the cuISOr clockwise (that is, sequencing is forward 
through the • a cur• cursor frames); a negative increment spins it counterclockwise (that 
is, sequencing is backward circularly through the 'a cur' resource frames). An Increment 
value of zero resets the counter to zero. 

• Note: It is the sign of the increment, not the sign of the accumulated value of the 
Spincursor counter, that determines the cursor's direction of spin. 

APPENDIX F Tools Llbraries 529 



MPW Pascal 

SpinCursor(Increment: integer); 

MPWC 

pascal void SpinCursor(short increment); 

Error Message File manager 

Four procedures in the MPW Tools Library let you retrieve the text of error messages in the 
Macintosh Operating System error message file or in an error file private to a tool (created 
with the MakeErrorFile tooO. 

Error Manager-MPW Pascal 

To use the error message file manager in MPW Pascal, do the following: 

• Include the statement 

USES {$U MemTypes.p} MemTypes, {$U ErrMgr.p} ErrMgr; 

in your source text. The USES clause and the su compiler directive are described in 
the MPW 3.0 Pascal Reference. 

• link your compilation with the file Toollibs.o. 

Error Manager-MPW C 

Use the header file ErrMgr.h which in~udes the file Types.h. link this file with Toollibs.o. 

#include <ErrMgr.h> 

530 MPW 3.0 Reference 



The InitErrMgr procedure 

The Ini tErrMgr procedure must be called before any of the other error message file 
manager procedures. To access Macintosh Operating System error messages, use the 
Pascal call 

InitErrMgr {' ', '', false); 

This call causes the error manager to access the file SysErr.Err in the directory 
{ShellDirectory} if that Shell variable is defined; otherwise, it will use file SysErr.Err. 

If InitErrMgr is not explicitly called, then GetSysErrText Or GetToolErrText will 
call InitErrMgr ( • ', ,., , TRUE) the first time they are called. 

If you wish to access a tool-specific error file, supply the name of the error file as the first 
parameter to InitErrMgr. If the tool is an MPW tool with the error file copied into the 
tool's data fork, the first parameter may be the null string and the ErrMgr will open the 
appropriate file. This occurs only if CRuntime.o or Paslib.o is linked with the program. 

Set ShowToolErrNbrs to TRUE if you want all messages to begin with the error number, as 
in 

<msgtxt> ([OS]Error<n>) 

Failure by the Error Manager to find the message text always results in a message of this 
form (without the <msgtxt> ). ToolErrFileName is used to specify the name of the 
tool-specific error file, and should be the null string if not used (or if the tool's data fork is 
to be used as the error file). Use SysErrFileName to specify the name of the system 
error file. This should normally be the null string which causes the Error Manager to look in 
the MPW Shell directory for "SysErrs.Err". Specifying names for the error files avoids 
IntEnv calls that look up the values of Shell variables. 

MPW Pascal 

PROCEDURE InitErrMgr{toolErrFilename: Str255;sysErrFilename: 

Str255;showToolErrNbrs: BOOLEAN); 

MPWC 

· InitErrMgr(Str255 toolErrFilename,Str255 sysErrFilename, 

Boolean showToolErrNbrs); 

APPENDIX F Tools Libraries 531 



• Note: The Assembler caller must define and export the variable _EnvP with a null value 
if CRuntime.o or Paslib.o is not linked with the tool. For example, outside all 
modules (procs) place the following: 

EnvP 

EXPORT 

DC.L 

EnvP 

0 

The GetSysErrText procedure 

The GetSysErrText procedure fetches the message text that corresponds to the 
system error number value of MsgNbr. E"Msg is a pointer to a string of type Str255, in 
which the error message text will be placed. The maximum length of the message is limited 
to 254 characters. 

If GetSysErrText is successful (and if ShowToolErrNbrs is true on the init call), the 
form of the error message rerumed is 

error text < OS error numben 

If it is unsuccessfu~ the form of the error message returned is 

OS error number <reason message not found> 

Possible reasons for unsuccessful execution of GetsysErrText are that the file 
SysErr.Err was not found or that it contained no message text corresponding to MsgNbr. 

• Note: If a system message filename was not specified to Ini tErrMgr, then the error 
manager assumes the message file contained in the file SysErrs.Err. This file is first 
accessed as {ShellDirectory}SysErrs.Err on the assumption that SysErrs.Err is kept in 
the same directory as the MPW Shell. If the file cannot be opened, then the error 
manager attempts to open SysErrs.Err in the System Folder. 

MPW Pascal 

PROCEDURE GetSysErrText(msgNbr: !NTEGER;errMsg: StringPtr); 

532 MPW 3.0 Reference 



MPWC 

void GetSysErrText(short msgNbr,char *errMsg); 

Get error message text corresponds to the error number msgNbr from the system error 
message file ("SysEns.Err" in {ShellDirectory}). The text of the message is returned in 
errMsg. 

The GetToolErrText procedure 

The Get ToolErrText procedure fetches the message text that corresponds to the tool 
error message file error number msgNbr. (The tool error filename is specified in the 
InitErrMgr call.) The text message is returned in errMsg. 

Inserts are indicated in error messages by specifying a "An (Up Arrow) to indicate where 
the insert is to be placed. Any message to be inserted should be contained in errinsert. 
Otherwise, errinser should be null. The error insert is placed in the text of the error 
message replacing the first instance of the "An character in the message; if no, "An is 
present, the error insert is appended to the end of the text of the message following an 
intervening blank. 

• Note: If a tool message filename was not specified to Ini tErrMgr, then the error 
manager assumes the message file contained in the data forlc of the tool calling the 
error manager. This name is contained in the Shell variable {Command} and the value of 
that variable is used to open the error message file. 

MPW Pascal 

PROCEDURE GetToolErrText(msgNbr: INTEGER;errinsert: Str255;errMsg: 
StringPtr) ; 

MPWC 

void GetToolErrText(short msgNbr,char *errinsert,char *errMsg); 

APPENDIX F Tools Libraries 533 



The AddErrlnsert procedure 

The Add.Errinsert procedure adds another insert to an error message string. This call 
may be used when more than one insert is needed in a message (because it contains more 
than one "A" character). The insert is handled in the same fashion as in the 
GetToolErrText call. 

MPW Pascal 

PROCEDURE Add.Errinsert(insert: Str255;msgString: StringPtr); C; 

MPWC 

void Add.Errinsert(unsigned char *insert,unsigned char *msgString); 

The OoseErrMgr function 

Ideally you should call CloseErrMgr at the end of execution to make sure all files 
opened by the error manager are closed. You can let nonnal program tennination do the 
closing. 

MPW Pascal 

PROCEDURE CloseErrMgr; C; 

MPWC 

void CloseErrMqr(void); 

534 MPW 3.0 Reference 



Disassembler Lookup routines 

The Disassembler Lookup is an interface (available in MPW Pascal and MPW C) to the 
Macintosh libraries. It is a Pascal routine that disassembles a sequence of bytes. 

All MC68xxx family instructions are supported, including MC68881, MC68882, and 
MC68851 instructions. The sequence of bytes to be disassembled are pointed to by 
FirstByte. Bytes used bytes starting at FirstByte are consumed by the 
disassembly, and the Opcode, Operand, and Comment strings returned as NULL 
TERMINATED Pascal strings (for easier manipulation with C). You are then free to fonnat 
or use the output strings in any way appropriate to the application. 

The Pascal interface file DisAsmlookUp.p is located in the Pinterfaces folder. The C 
interface file, DisAsmlookUp.h, is located in the Cinterfaces folder. A discussion of each 
of these interface files and a general explanation of the Disassembler follows. 

DisAsmLookUp.p-MPW Pascal 

TYPE 

LookupRegs 
(_A0_,_Al_,_A2_,_A3_,_A4_,_A5_,_A6_,_A7_,_PC_,_ABS_,_TRAP_); 

DisAsmStr80 = String[80]; 

PROCEDURE Disassembler(DstAdjust: LONGINT;VAR BytesUsed: 

INTEGER; 

FirstByte: UNIV Ptr; VAR Opcode: UNIV DisAsmStr80; 

VAR Operand: UNIV DisAsmStr80;VAR Comment: UNIV 

DisAsmStr80; 

LookUpProc: UNIV Ptr); 

DisAsmLookUp.h-MPW C 

enum {_A0_,_Al_,_A2_,_A3_,_A4_,_AS_,_A6_,_A7_,_PC_,_ABS_,_TRAP_}; 

typedef unsigned char LookupRegs; 

pascal void Disassembler(long DstAdjust,short *BytesUsed,Ptr FirstByte, 

char *Opcode,char *Operand,char *Comment,Ptr LookUpProc); 

APPENDIX F Tools Libraries 535 



Using the Disassembler 

Depending on the opcode and effective addresses (EA's) to be disassembled, the 
Opcode, Operand, and Comment strings contain the following information: 

• Table F-2 Disassembler strings 

Case Opcode Operand C.Om.m.ent 

Non PC-relative EA) op.sz EA's 
PC-relative EA's op.sz EA's ; address 
Toolbox traps DC.W $AXXX ;TBXXXX 
OS traps DC.W $AXXX ;OSXXXX 
Invalid bytes DC.W $XXXX .;m ' .... 
Invalid byte #immediate DC.W $:XXXX, ... ; op.sz #$??XX,EA 

For valid disassembly of processor instructions, Disassembler generates the appropriate 
MC68xxx opcode mnemonic for the Opcode string along with a size attribute when 
required. The source and destination EA's are generated as the Operand along with a 
possible comment Comments start with a semicolon ( ; ). Traps use a DC.W assembler 
directive as the Opcode, the trap word as the Operand, and a comment indicating the 
trap number and whether the trap is a toolbox or OS trap. As described later in this 
appendix, you can generate symbolic substitutions into EA's and provide names for traps. 

Invalid instructions cause the string •DC • w • to be returned in the Opcode string. 
Operand is • sxxxx • (the invalid word) with a comment of '; ????'. 

Bytesused is 2. This is similar to the trap call case except for the comment. 

A special case is made for immediate byte operands with a nonzero high-order byte. For 
example, the bytes $ o 2 o 011 FF, when actually executed, are interpreted as 
ANDI .B $FF ,DO. 

The processor will ignore the high-order byte of the immediate data! Thus, the bytes may 
be considered as valid. Because the Disassembler has no way of knowing the context in 
which it is disassembling, it returns the Opcode as •DC. w • as in the normal invalid case. 
However, the Operand string shows all the words disassembled separated with commas, 
and it places the possibly valid disassembly in the Operand's comment indicating the 
nonzero bytes. Thus, for the example $02001 lFF bytes, the Opcode will be • nc . w • , the 
Operand will be '$0200,$11FF, and the Comment'; ANDl.B #$??FF,DO'. Bytesused in this 
case would be 4. 

536 MPW 3.0 Reference 



+ Note: the Operand EA's are syntactically similar to but not compatible with the MPW 
Assembler! This is because the Disassembler generates byte hex constants as "$XX" 
and word hex constants as "$XXXX". Negative values (such as $FF or $FFFF) produced 
by the Disassembler are treated as long word values by the MPW Assembler. Thus it is 
assumed that Disassembler output will not be used as MPW Assembler input. If that is 
the goal, you must convert strings of the fonn $XX or $XXX:X in the Operand string to 
their decimal equivalent. 

The routine Modifyoperand is provided in the Disassembler routine to aid with the 
conversion process. 

Since a PC-relative comment is an address, the only address that the Disassembler knows 
about is the address of the code pointed to by FirstByte. Generally, that may be a 
buffer that has no relation to "reality," that is, the actual code loaded into the buffer. 
Therefore, to allow the address comment to be mapped back to some actual address, you 
may specify an adjustment factor, specified by DstAdjust, that is added to the value 
that normally would be placed in the comment 

The Disassembler generates operand-effective address strings as a function of the 
effective address mode. A special case is made for A-trap opcode strings. In places where 
a possible symbolic reference could be substituted for an address (or a portion of an 
address), the Disassembler can call a user-specified routine to do the substitution (using 
the LookupProc parameter described later). The following table summarizes the 
generated effective addresses and notes where symbolic substitutions (S) can be made: 

APPENDIX F Tools Libraries ID 



• Table F-3 Disassembler: Effective addresses 

Mode 

0 
1 
2 
3 
4 
5 
6n 
6n 
6n 
6n 
70 
71 
72 
73 
73 
73 
73 
74 

Generated Effective Aclclrcss 

Dn 
An 
(An) 
(An)+ 
-{An) 
O(An) 
O(An,Xn.Size•Scale) 
(BD,An,Xn.Size*Scale) 
CTBD,An],Xm.Size•Scale, OD) 
CTBD,An,Xn.Size•Scale],OD) 
a 
a 
-±a 
-±O(Xn.Size*Scale) 
(-±0,Xn.Size•Scale) 
CT-±o],Xm.Size•Scale,OD) 
CT-±o,Xn.Size•Scale],OD) 
#data 

Effective Address with Substitution 

Dn 
An 
(An) 
(An)+ 
-{An) 
S(An) or just S (if An=A5, a~) 
S(An,Xn.Size*Scale) 
(S,An,Xn.Size•Scale) 
([S,An],Xm.Size•Scale,OD) 
([S,An,Xn.Size•Scale], OD) 
s 
s 
s 
S(Xn.Size*Scale) 
(S,Xn.Size*Scale) 
([S],Xm.Size•scale,OD) 
([S,Xn.Size*Scale],OD) 
#data 

For A-traps, you can substitute for the DC.W opcode string. If the substitution is made, 
the Disassembler will generate ,Sys and/ or ,Immed flags as operands for Toolbox traps 
and AutoPop for OS traps when the bits in the trap word indicate these settings. 

Toolbox 
OS 

Generated 
0 code 0 erand Comment 
OC.W $AXXX ;TBXXXX 
OC.W $AXXX ·OS XXXX 

Comment 
;AXXX 
·AXXX 

All displacements (o, BD, OD) are hexadecimal values shown as a byte ($XX), word 
($XXXX), or long ($XXXXXXXX) as appropriate. The •Scale is suppressed if it is 1. The Size 
is W or L. Note that effective address substitutions can only be made for "O(An)", 
"BD,An", and•-±()• cases. 

For all the effective address modes 5, 6n, 7n, and for A-traps, a coroutine (a procedure) 
whose address is specified by the LookupProc parameter is called by the Disassembler 
(if LookupP roe is not NIL) to do the substitution (or A-trap comment) with a string 
returned by the procedure. It is assumed that the procedure pointed to by LookupProc 
is a level 1 Pascal procedure declared as follows: 

538 MPW 3.0 Reference 



PROCEDURE Lookup( PC:UNIV Ptr; 
BaseReg: LookupRegs; 

{Addr of extension/trap word} 
{Base register/lookup mode } 
{Trap word, PC addr, disp. } 

VAR S: 
·opnd:UNIV Longint; 
DisAsmStr80); {Returned substitution } 

whereTIPEDis 

AsmStr80 = String[80]; 

or in C, 

pascal void LookUp(Ptr 
LookupRegs 
long 

PC, 

BaseReg, 
Opnd, 
*S); char 

These values are explained here: 

PC 

BaseReg 

PC means pointer to instruction extension word or A-trap word 
in the buffer pointed to by the Disassemblers FirstByte 
parameter. 

BaseReg determines the meaning of the Opnd value and 
supplies the base register for the "()(An)n, "BD,Ann, and "-±dn 
cases. 

BaseReg may contain any one of the following values: 

• Table F-4 Base register values 

_AO_ = 0 ==>AO 
_Al_ = 1 ==>Al 
_A2_ = 2 ==> A2 
_A3_ = 3 ==> A3 
_A4_ = 4 ==> A4 
_A5_ = 5 ==> A5 
_A6_ = 6 ==> A6 
_A7_ = 7==>A7 
_PC_ = 8 ==> PC-relative (special case) 
_ABS_ = 9 ==>Abs addr (special case) 
_TRAP_= 10 ==>Trap word (special case) 

For absolute addressing (modes 70 and 71), BaseReg contains_ ABS_. 
For A-traps, BaseReg would contain_TRAP_. 

APPENDIX F Tools Libraries 539 



Opnd The contents of this Longint is determined by the BaseReg parameter 
just described. 

For BaseReg = _TRAP_ (A-traps) 
Opnd is the entire trap word. The high-order 16 bits of 
opnd are zero. 

For BaseReg =_ABS_ (absolute effective address) 
opnd contains the (extended) 32-bit address specified by 
the instruction's effective address. Such addresses are 
generally used to reference low-memory globals on a 
Macintosh. 

For BaseReg =_PC_ (PC-relative effective address) 
opnd contains the 32-bit address represented by "*±a" 
adjusted by the Disassembler's DstAdjust parameter. 

For BaseReg • _An_ (effective address with a base register) 
' Opnd contains the (sign-extended) 32-bit (base) 

displacement from the instruction's effective address. 

In the Macintosh environmen~ a BaseReg specifying AS implies either global 
data references or Jump Table references. Positive opnd values with an AS 
BaseReg thus mean Jump Table references, while a negative offset would mean a 
global data reference. Base registers of A6 or A7 would usually mean local data. 

S S is a Pascal string returned from Lookup containing the effective 
address substitution string or a trap name for A-traps. S is set to null prior 
to calling Lookup. If it is still null on return, the string is not used. If not 
null, then for A-traps, the returned string is used as a opcode string. In all 
other cases the string is substituted as shown in the above table. 

540 MPW 3.0 Reference 



Depending on the application, you have three choices on how to use the Disassembler and 
an associated Lookup procedure: 

1. You can call just the Disassembler and provide your own Lookup procedure. In that 
case, you must follow the calling conventions discussed above. 

2. You can provide NIL for the LookupProc parameter, in which case, no Lookup proc 
will be called. 

3. You can first call Ini tLookup (described later in this appendix, a procedure 
provided with this unit) and pass the address of this unit's standard Lookup 
procedure when Disassembler is called. In this case, all the control logic to detennine 
the kind of substitution to be done is provided for you and all that you need to 
provide are the routines to look up any or all of the following: 

• PC-relative references 

• Jump table references 

• Absolute address references 

• Trap names 
• References with off sets from base registers 

The InitLookup procedure 

PROCEDURE InitLookup(PCRelProc: UNIV Ptr;JTOffProc: UNIV Ptr; 

TrapProc: UNIV Ptr; AbsAddrProc: UNIV Ptr;IdProc: UNIV Ptr); 

This procedure prepares for use of this unit's Lookup procedure. When the Disassembler 
is called and the address of this unit's Lookup procedure is specified, then for PC-
relative, jump table references, A-traps, absolute addresses, and offsets from a base 
register, the associated level 1 Pascal procedure specified here is called (if it is not 
NULL-all five addresses are preset to NULL). The calls assume the following declarations 
for these procedures (see "lookup" later in this appendix for further details): 

PROCEDURE PCRelProc(Address: UNIV Longint; 
VARS: UNIV DisAsmStr80); 

PROCEDURE JTOffProc(ASJTOffset: UNIV Integer; 
VARS: UNIV DisAsmStr80); 

PROCEDURE TrapNameProc(TrapWord: UNIV Integer; 
VARS: UNIV DisAsmStr80); 

PROCEDURE AbsAddrProc(AbsAddr: UNIV Longint; 
VARS: UNIV DisAsmStr80); 

APPENDIX F Tools Libraries 541 



PROCEDURE IdProc(BaseReg: LookupRegs; 
Offset: UNIV Longint; 
VARS: UNIV DisAsmStr80); 

orinC, 

pascal void PCRelProc(long Address, char *S) 
pascal void JTOffProc(short ASJTOffset, char *S) 
pascal void TrapNameProc(unsigned short TrapWord, char *S) 
pascal void AbsAddrProc(long AbsAddr, char *S) 
pascal void IdProc(LookupRegs BaseReg, long Offset, char *S) 

• Note: Ini tLookup contains initialized data that requires initializing at load time. 
This of concern only to users with assembly main programs. 

The lookup procedure 

PROCEDURE Lookup(PC: UNIV Ptr;BaseReg: LookupRegs;Opnd: 
UNIV Longint;VAR S: DisAsmStr80); 

This is a standard Lookup procedure available for calls to the Disassembler. If you use 
this procedure, then you must call InitLookup prior to any calls to the Disassembler. 
This procedure performs all the logic to detennine the type of lookup. For PC-relative, 
jump table references, A-traps, absolute addresses, and offsets from a base register, the 
associated level 1 Pascal procedure specified in the InitLookup call (if not NULL) is 
called. 

This scheme simplifies the Lookup mechanism by allowing you to focus on the problems 
related to the application. 

The IookupTrapName procedure 

PROCEDURE LookupTrapName(TrapWord: UNIV Integer;VAR S: UNIV 
DisAsmStr80); 

This procedure allows conversion of a trap instruction (in TrapWord) to its 
corresponding trap name (in S). It is provided primarily for use with the Disassembler and 
its address may be passed to Ini tLookup above for use by this unit's Lookup routine. 
Alternatively, there is nothing prohibiting you from using it directly for other purposes or 
by some other lookup procedure. 

542 MPW 3.0 Reference 



+ Note: The tables in this procedure make the size of this procedure about 9500 bytes. 
The trap names are fully spelled out in upper and lower case .. 

The ModifyOperand procedure 

PROCEDURE ModifyOperand(VAR Operand: UNIV DisAsmStr80); 

The procedure scans an operand string, that is, the null-terminated Pascal string returned 
by the Disassembler (null must be present here), and modifies negative hex values to 
negated positive value. For example, $FFFF(A5) would be modified to -$000l(A5). The 
operand to be processed is passed as the function's parameter, which is then edited "in 
place" and returned to the caller. 

This routine is essentially a pattern matcher and attempts to modify only 2-, 4-, and 8-
digit hex strings in the operand that "might" be offsets from a base register. If the 
matching tests are passed, the same number of original digits are output (because that 
indicates a value's size: byte, word, or long). 

For a hex string to be modified, the following tests must be passed: 

• There must have been exactly 2, 4, or 8 digits. Only hex strings $XX, $XXXX, and 
$XXXXXX:XX are possible candidates because that is the only way the Disassembler 
generates offsets. 

• The hex string must be delimited by a left parenthesis character," ( n or a comma, .. ' n. 

The left parenthesis character allows offsets for sxxxx (An, ... > and $XX (An, Xn) 

addressing modes. The comma allows for the MC68020 addressing forms. 

• The "sx ... " must not be preceded by a plus-or-minus sign, " ± ". This eliminates the 
possibility of modifying the offset of a PC-relative addressing mode always generated 
in the form "*±$XXXX". 

• The "$X ••• n must not be preceded by a pound sign, .. f ". This eliminates modifying 
immediate data. 

• Value must be negative. Negative values are the only values modified. A value $FFFF 

is modified to -so o o 1. 

The validMacsBugSymbol function 

FUNCTION validMacsBugSymbol(symStart: UNIV Ptr;limit: UNIV Ptr; 

symbol:StringPtr): StringPtr; C; 

Check that the bytes pointed to by symstart represent a valid MacsBug symbol. The 
symbol must be fully contained in the bytes starting at symStart, up to but not including 
the byte pointed to by the limit parameter. 

APPENDIX F Tools Libraries 543 



If a valid symbol is not found, then NULL is returned as the function's result. However, if a 
valid symbol is found, it is copied to symbol (if it is not NULL) as a null-tenninated Pascal 
string, and return a pointer to where we think the following module begins. In the "old 
style" cases (see the following table) this will always be 8 or 16 bytes after the input 
symStart. For new style Apple Pascal and C cases this will depend on the symbol length, 
existence of a pad byte, and size of the constant (literal) area. In all cases, trailing blanks 
are removed from the symbol. 

A valid MacsBug symbol consists of the characters'_','%', spaces, digits, and upper and 
lower case letters in a format detennined by the first two bytes of the symbol as follows: 

1st byte I 2nd byte I Byte 
range range length Comments 

$20-$7F $20-$7F 8 
$20-$7F $20-$7F 8 
$AO-$FF $20-$7F 8 
$20-$7F $80-$FF 16 
$AO-$FF $80-$FF 16 
$80 $01-$FF n 
$81-$9F $00-$FF m 

The formats are determined by whether bit 7 is set in the first and second bytes. This bit 
will removed when it is found OR'ed into the first and/or second valid symbol characters. 

The first two formats in the above table are the basic "old-style" (pre-existing) MacsBug 
formats. The first byte may or may not have bit 7 set if the second byte is a valid symbol 
character. The first byte (with bit 7 removed) and the next 7 bytes are assumed to 
comprise the symbol. 

The second pair of formats are also old-style formats, used for MacApp symbols. Bit 7 set 
in the second character indicates these formats. The symbol is assumed to be 16 bytes 
with the second 8 bytes preceding the first 8 bytes in the generated symbol. For example, 
12345678abcdefgh represents the symbol abcdefgh.12345678. 

The last pair of formats are reserved by Apple and generated by the MPW Pascal and MPW 
C compilers. In these cases the value of the first byte is always between $80 and $9F, or 
with bit 7 removed, between $00 and $1F. For $00, the second byte is the length of the 
symbol with that many bytes following the second byte (thus a maximum length of 255). 
Values $01 to $1F represent the length itself. A pad byte may follow these variable length 
cases if the symbol does not end on a word boundary. Following the symbol and the 
possible pad byte is a word containing the size of the constants (literals) generated by the 
compiler. 

544 MPW 3.0 Reference 



+ Note: If symStart actually does point to a valid MacsBug symbol, then you can use 
showMacsBugSymbol to convert the MacsBug symbol bytes to a string that could 
be used as a DC.B operand for disassembly purposes. This string explicitly shows the 
MacsBug symbol encodings. 

The endOfModule function 

FUNCTION endOfModule(address: UNIV Ptr;limit: UNIV Ptr;symbol: 

StringPtr; VAR nextModule: UNIV Ptr): StringPtr; C; 

This function checks to see if the specified memory address contains a RTS, JMP CAO> 

or RTD tn instruction immediately followed by a valid MacsBug symbol. These 
sequences are the only ones that can determine an end of module when MacsBug symbols 
are present During the check, the instruction and its following MacsBug symbol must be 
fully contained in the bytes starting at the specified address parameter, up to, but not 
including, the byte pointed to by the limit parameter. 

If the end of module is not found, then NUil is returned as the function's result However, 
if a end of module is found, the MacsBug symbol is returned in symbol (if it is not NUil) 
as a null-terminated Pascal string (with trailing blanks removed), and the function returns 
the pointer to the start of the MacsBug symbol (that is, address+ 2 for RT s or JMP CAO> 

and address+4 for RTD tn). This address may then be used as an input parameter to 
showMacsBugSymbol to convert the MacsBug symbol to a Disassembler operand string. 

Also returned in nextModule is where the following module is expected to begin. In the 
old-style cases (see validMacsBugSymbol) this will always be 8or16 bytes after the 
input address. For the new style, the Apple Pascal and C cases, this will depend on the 
symbol length, existence of a pad byte, and size of the constant (literal) area. See 
validMacsBugSymbol for a description of valid MacsBug symbol formats. 

The showMacsBugSymbol function 

FUNCTION showMacsBugSymbol(symStart: UNIV Ptr;limit: UNIV Ptr;operand: 

StringPtr; VAR bytesUsed: INTEGER): StringPtr; C; 

This function formats a MacsBug symbol as a operand of a DC.B directive. The first one 
or two bytes of the symbol are generated as $80+'c' if their high bits are set. All other 
characters are shown as characters in a string constant. The pad byte, if present, is also 
shown as $00. 

This routine is called to check that the bytes pointed to by symstart represent a valid 
MacsBug symbol. The symbol must be fully contained in the bytes starting at symstart, 

up to but not including the byte pointed to by the limit parameter. 

APPENDIX F Tools Libraries 545 



When called, showMacsBugSymbol assumes that symStart is pointing at a valid 
MacsBug symbol as validated by the validMacsBugSymbol or endOfModule routine. 
As with valid.MacsBugSymbol, the symbol must be fully contained in the bytes starting 
at symStart up to, but not including, the byte pointed to by the end parameter. 

The string is returned in the 'operand' parameter as a null-terminated Pascal string. The 
function also returns a pointer to this string as its return value (NUil is returned only if the 
byte pointed to by the limit parameter is reached prior to processing the entire symbol
which should not happen if properly validated). The number of bytes used for the symbol 
is returned in bytesused. Due to the way MacsBug symbols are encoded, bytes used 

may not necessarily be the same as the length of the operand string. 

A valid MacsBug symbol consists of the characters'_', '%',spaces, digits, and upper/lower 
case letters in a format determined by the first two bytes of the symbol as described in 
the validMacsBugSymbol routine. 

546 MPW 3.0 Reference 



Appendix G The Graf3D Libraiy 

GRAF3D IS A SET OF QUICKDRA W CAilS USED TO PRODUCE lHREE-D™ENSIONAL 
GRAPHICS by providing a fixed-point interface to QuickDraw's integer 
coordinates. This appendix describes these routines and their use for both MPW 
Pascal and MPW C. • 

Contents 
OvelView 549 
How to use Graf3D 549 

How to use Graf3D-MPW Assembler 550 
How to use Graf3D-MPW Pascal 550 
How to use Graf3D-MPW C 550 

Graf3D data types 551 
Point3D 551 
Point2D 552 
XfMatrix 552 
Port3DPtr 553 

Graph3D procedures and functions 554 
The InitGraf3D procedure 555 
The Open3DPort procedure 555 
The SetPort3D procedure 556 
The GetPort3D procedure 556 
The Move procedures 557 
The Line procedures 557 
The Clip3D function 558 
The Set Point procedures 558 

Setting up the camera 559 
The ViewPort procedure 559 
The LookAt procedure 560 
The ViewAngle procedure 560 



The transfonnation matrix 561 
The Identity procedure 561 
The Scale procedure 561 
The Translate procedure 562 
The Pitch procedure 562 
The Yaw procedure 562 
The Roll procedure 563 
The Skew procedure 563 
The Transform procedure 564 

548 MPW 3.0 Reference 



Overview 

The Graf3D routines provide several important features: 

• A camera's-eye view. This allows you to set the point of view from which the observer 
sees the object independently from the coordinates of the object itself. The camera is 
set up with the ViewPort, LookAt, and ViewAngle procedures. You can set the 
focal length of the camera as if you had a choice of telephoto, wide-angle, or normal 
lenses. 

• Three-dimensional clipping to a true pyramid. The apex of the pyramid is at the point 
of the camera eye, and the base of the pyramid is equivalent to the viewport. When 
you use the Clip3D function, only objects in front of the camera eye and within the 
pyramid are displayed on the screen. 

• Two-dimensional point and line capability using Fixed type coordinates. Graf3D 
provides commands corresponding to the QuickDraw commands but using Fixed 

type coordinates instead of integers. With Fixed type coordinates you have a larger 
dynamic range for graphics calculations; with integer coordinates you get faster 
drawing time. 

• Two-dimensional or three-dimensional rotation. You can rotate an object along any or 
all axes simultaneously, by using the Pitch, Yaw, and Roll procedures. 

• Translation and scaling of objects in one or more axes simultaneously. Translation 
means movement anywhere in three-dimensional space. Scaling means shrinking or 
expanding. 

How to use Graf3D 

This section describes the language-specific preparations you need to make to use 
Graf3D with your MPW Assembler, MPW Pascal, or MPW C programs. 

APPENDIX G The Graf3D Library 549 



How to use Graf3D-MPW Assembler 

To use Graf3D with MPW Assembler, do the following: 

• Include the file Graf3DEqu.a in your source text. 

• link your assembly with the file {Libraries}lnterface.o. 

• Set values in the Graf3D data structures and call the Graf3D routines from your 
program, using the equates in Graf3DEqu.a. 

Throughout the rest of this appendix, Graf3D is described solely in MPW Pascal and MPW 
C notation. The Graf3d routines are implemented in MPW Pascal; Assembly-language 
programmers should call these routines by using Pascal calling conventions. For 
information on how to convert this notation into assembly-language calling conventions 
for stack-based routines, see the chapter "Using Assembly Language" in Inside Macintosh. 

How to use Graf3D-MPW Pascal 

To use Graf3D in MPW Pascal, do the following: 

• Include the declaration USES Graf3D in your source text. 

• Link your assembly program or object file with the file Interface.o. 

• Set values in the Graf3D data structures, and call the Graf3D routines from your 
program, following the information given in the section "Graf3D Data Types" that 
follows in this appendix. 

How to use Graf3D-MPW C 

To use Graf3D in MPW C, do the following: 

1. Include these statements in your source text: 
#include <Types. h> 
#include <QuickDraw.h> 
#include <Graf3D.h> 

2. link your object file with the file {Libraries} Interface.o. 

3. Set values in the Graf3D data structures and call the Graf3D routines from your 
program, following the information given in the section "Graf3D Data Types" that 
follows in this appendix. · 

550 MPW 3.0 Reference 



Graf3D data types 

Graf3D declares and uses these data types: 

• Fixed 

• Point3D 

• Point2D 

• XfMatrix 

• Port3DPtr 

The type Fixed is discussed in Inside Macintosh, Volume 1. The other types are discussed 
in this section. Examples of the calls are supplied in MPW Pascal and MPW C. 

Point3D 

Point3D contains three fixed-point number coordinates: x, y, and z. Graf3D uses x, y, 

and z for fixed-point number coordinates to distinguish between the h and v integer 
screen coordinates used by QuickDraw. 

MPW Pascal 

TYPE Point3D = RECORD 
x: Fixed; 
y: Fixed; 
z: Fixed 

END; 

MPWC 

typedef struct Point3D 
Fixed x, y, z; 

} Point3D; 

APPENDIX G The Graf3D Library 551 



Point2D 

Point2D is just like a Point3D but contains only x- and y- coordinates. 

MPW Pascal 

TYPE Point2D = RECORD 
x: Fixed; 
y: Fixed 

END; 

MPWC 

typedef struct Point2D 
Fixed x, y; 

} Point2D; 

XfMatrix 

The XfMatrix is a 4x4 matrix of Fixed values used to hold a transformation equation. 
Each transfonning routine alters this matrix so that it contains the concatenated effects 
of all transformations applied. 

MPW Pascal 

XfMatrix = ARRAY[0 .. 3, 0 .. 3] OF Fixed; 

MPWC 

typedef Fixed XfMatrix[4] [4]; 

552 MPW 3.0 Reference 



9@ Macintosh® Programmer's Workshop 
Development Environment 
Version 3.2 

This package contains 

2 Manuals 

Set of release notes 

5 Disks 

1 1-inch binder 

1 2-inch binder 

20 Tab dividers 

1 MPW Suroey 

If you have any questions, please call 

1-800-282-2732 
1-408-562-3910 
1-800-637-0029 

M0019LUD 

(U.S.) 
(International) 
(Canada) 

Macintosh Programmer's Workshop Development Environment, Volume 1 
Macintosh Programmer's Workshop Development Environment, Volume 2 

MPW® 3.2 Release Notes 

MPW Development Environment Installation Disk, Disk 1 of 5 
MPW Development Environment, Version 3.2, Disk 2 of 5 
MPW Development Environment, Version 3.2, Disk 3 of 5 
MPW Development Environment, Version 3.2, Disk 4 of 5 
MPW Development Environment, Version 3.2, Disk 5 of 5 

4/24/91 





Port3DPtr 

The type Port3DPtr contains all the state variables needed to map fixed-point number 
coordinates into integer screen coordinates. 

MPW Pascal 

Port3DPtr 

Port3D 

"Port3D; 

RECORD 

GrPort: GrafPtr; 

viewRect: Rect; 

xLeft, yTop, xRight, yBottom: Fixed; 

pen, penPrime, eye: Point3D; 

hSize, vSize: Fixed; 

hCenter, vCenter: Fixed; 

xCotan, yCotan: Fixed; 

ident: boolean; 

xForm: XfMatrix 

END; 

MPWC 

typedef struct Port3D { 

grPort; 

viewRect; 
Graf Ptr 

Re ct 

Fixed 

Point3D 

Fixed 

Fixed 

Fixed 

char 

char 

XfMatrix 

xLeft, yTop, xRight, yBottom; 

pen, penPrime, eye; 

hSize, vSize; 

hCenter, vCenter; 

xCotan, yCotan; 

filler; 

ident; 

xForm; 

Port3D, *Port3DPtr; 

APPENDIX G The Graf3D Library 553 



• Table G-1 Port3DPtr variables 

Name Description 

GPort Pointer to the grafPort associated with this Port3D 

viewRect Viewing rectangle within the grafPort; the base of the 
viewing pyramid 

xLeft, yTop, World coordinates corresponding to the .viewRect 
xRight, yBottom 

pen Three-dimensional pen location 

penPrime Pen location transformed by the xForm matrix 

eye Three-dimensional viewpoint location established by 
ViewAngle 

hSize, vSize Half-width and half-height of the viewRect in screen 
coordinates 

hCenter, vCenter Center of the viewRect in screen coordinates 

xCotan, yCotan Viewing cotangents set up by ViewAngle, used by Clip3D 

Ident Boolean that allows the transformation to be skipped when 
xForm is an identity matrix 

xForm 4x4 matrix that holds the net result of all transformations 

Graph3D procedures and functions 

Graf3D provides the following procedures and functions to establish a graphics 
environment and create drawings within it: 

• The InitGraf procedure 

• The Open3DPort procedure 

• The SetPort3D procedure 

• The GetPort3D procedure 

• The Move procedures 

• The line procedures 

• The Clip3D function 

• The SetPoint procedures 

Each procedure and function is described in this section in both MPW Pascal and MPW C. 

554 MPW 3.0 Reference 



The InitGraf3D procedure 

The Ini tGraf3D procedure starts up Graf3D and initializes its data structures. GlobalPtr 
is a pointerto heap space for Graf3D data. Call Ini tGraf3D once and only once at the 
beginning of your program. Pass it at the address of a Port3DPtr (using the@ operator) 
that you have declared and reserved for use by Graf3D. 

MPW Pascal 

PROCEDURE InitGraf3D(GlobalPtr: Ptr); 

MPWC 

pascal void InitGrf3D(port) 

Port3DPtr *port; 

The InitGraf3D function initializes the Port3D variable. Call this routine before doing 
Graf3D operations. Allocate space for a variable of type Port3DPtr (whose address is 
passed as a parameter to this function). 

The Open3DPort procedure 

The open3DPort procedure initializes all the fields of a Port3D to their defaults, and 
makes that Port3D the current one. Gport is set to the currently open grafPort. These 
are the default values: 

thePort3D := port; 

portA.GPort := thePort; 

ViewPort(thePortA.portRect); 

WITH thePortA.portRect DO LookAt(left, top, right, bottom); 

ViewAngle(O); 

Identity; 

MoveTo3D(0, 0, 0); 

MPW Pascal 

PROCEDURE Open3DPort(port: Port3DPtr); 

APPENDIX G The Graf3D Library 555 



MPWC 

pascal void Open3DPort(port) 
Port3DPtr port; 

The SetPort3D procedure 

The SetPort3D procedure makes port the current Port3D and calls SetPort for that 

Port3D's associated grafPort. setPort3D allows an application to use more than one 
Port3D and switch between them 

PROCEDURE SetPort3D(port: Port3Dptr); 

MPWC 

pascal void SetPort3D(port) 
Port3DPtr port; 

The GetPort3D procedure 

The GetPort3D procedure returns a pointer to the current Port3D. This procedure is 
useful when you are using more than one Port3D and want to save and restore the current 

one. 

MPW Pascal 

PROCEDURE GetPort3D(VAR port: Port3DPtr); 

MPWC 

pascal void GetPort3D(port) 
Port3D *port; 

556 MPW 3.0 Reference 



The Move procedures 

Graf3D provides four Move procedures that move the pen in two or three dimensions 
without drawing lines. The fixed-point number coordinates are transformed by the xForm 
matrix and projected onto flat screen coordinates; then Graf3D calls QuickDraw's 
MoveTo procedure with the result. 

MPW Pascal 

PROCEDURE MoveTo2D(x, y: Fixed); 
PROCEDURE MoveTo3D(x, y, z: Fixed); 
PROCEDURE Move2D(dx, dy: Fixed); 
PROCEDURE Move3D(dx, dy, dz: Fixed); 

MPWC 

pascal void MoveTo2D(x, y) 
Fixed x, y; 

pascal void MoveTo3D(x, y, z) 
Fixed x, y, z; 

pascal void Move2D(x, y) 
Fixed x, y; 

pascal void Move3D(x, y, z) 
Fixed x, y, z; 

The Une procedures 

Graf3D provides four Line procedures that draw two- and three-dimensional lines from the 
current pen location. The LineTo2D and LineTo3D procedures stay on the same z-plane. 
The fixed-point number coordinates are first transformed by the xForm matrix, then 
clipped to the viewing pyramid, then· projected onto the flat screen coordinates and 
drawn by calling QuickDraw's LineTo procedure. 

MPW Pascal 

PROCEDURE LineTo2D(x, y: Fixed); 
PROCEDURE LineTo3D(x, y, z: Fixed); 
PROCEDURE Line2D(dx, dy: Fixed); 
PROCEDURE Line3D(dx, dy, dz: Fixed); 

APPENDIX G The Graf3D Library 557 



MPWC 

pascal void LineTo2D(x, y) 

Fixed x, y; 
pascal void LineTo3D(x, y, z) 

Fixed x, y, z; 
pascal void Line2D(x, y) 

Fixed x, y; 
pascal void Line3D(x, y, z) 

Fixed x, y, z; 

The Cllp3D function 

The Clip3D function clips a three'1imensional line segment to the viewing pyramid and 
returns the clipped line projected onto screen coordinates. Clip3D returns true 
(nonzero) jf any part of the line is visible. If no part of the line is within the viewing 
pyramid, Clip3D returns false (zero). 

MPW Pascal 

FUNCTION Clip3D(srcl, src2: Point3D; VAR dstl, dst2: Point): 
boolean; 

MPWC 

pascal short Clip3D(srcl, src2, dstl, dst2) 
Point3D *srcl, *src2; 
Point *dstl, *dst2; 

The Set PoJnt procedures 

Graf3D provides two Set Point procedures. The SetPt3D procedure assigns three fixed
point numbers to a Point3D. The setPt2D procedure assigns two fixed-point numbers 
to a Point2D. 

MPWPascal 

PROCEDURE SetPt3D(VAR pt3D: Point3D; x, y, z: Fixed); 
PROCEDURE SetPt2D(VAR pt2D: Point2D; x, y: Fixed); 

SSS MPW 3.0 Reference 



MPWC 

pascal void SetPt3D(pt3D, x, y, z) 

Point3D 

Fixed 

*pt3D; 

x, y, z; 

pascal void SetPt2D(pt2D, x, y) 

Point2D 

Fixed 

*pt2D; 

x, y; 

Setting up the camera 

Procedures ViewPort, LookAt, and ViewAngle position the image in the grafPort, 

aim the camera, and choose the lens focal length in order to map three-dimensional 
coordinates onto the flat screen space. These procedures may be called in any order. 

The ViewPort procedure 

The ViewPort procedure specifies where to put the image in the grafPort. The 
viewPort rectangle is in integer QuickDraw coordinates and tells where to map the 
LookAt coordinates. 

MPW Pascal 

PROCEDURE ViewPort(r: Rect); 

MPWC 

pascal void ViewPort(r) 

Rect *r; 

APPENDIX G The Graf3D Library 559 



The LookAt procedure 

The LookAt procedure specifies the fixed-point number x- and y-coordinates 
corresponding to the viewRect. 

MPW Pascal 

PROCEDURE LookAt(left, top, right, bottom: Fixed); 

MPWC 

pascal void LookAt _(left, top, right, bottom) 
Fixed left, top, right, bottom; 

The VlewAngle procedure 

The ViewAngle procedure controls the amount of perspective by specifying the 
horizontal angle (in degrees) subtended by the viewing pyramid. Typical viewing angles 
are 0° (no perspective), 10° (telephoto lens), 25° (nonnal perspective of the human eye), 
and 80° (wide-angle lens). 

MPW Pascal 

PROCEDURE ViewAngle(angle: Fixed); 

MPWC 

pascal void ViewAngle(angle) 
Fixed angle; 

560 MPW 3.0 Reference 



The transformation matrix 

Use the transformation (xForm> matrix to impose a coordinate transformation between 
the coordinates you plot and the viewing coordinates. Each of the transformation 
procedures concatenates a cumulative transformation onto the xForm matrix. 
Subsequent lines drawn are first transformed by the xForm matrix, then projected onto 
the screen as specified by ViewPort, LookAt, and ViewAngle. 

The Identity procedure 

The Identity procedure resets the transfonnation matrix to an identity matrix. 

MPWPascal 

PROCEDURE Identity; 

MPWC 

pascal void Identity(); 

The Scale procedure 

The scale procedure modifies the transformation matrix to shrink or expand by xFactor, 
yFactor, and zFactor. For example, 

Scale(X2Fix(2.0), X2Fix(2.0), X2Fix(2.0)) 

doubles the size of whatever you draw. 

MPWPascal 

PROCEDURE Scale (xFactor, yFactor, zFactor: Fixed); 

MPWC 

pascal void Scale(xFactor, yFactor, zFactor) 
Fixed xFactor, yFactor, zFactor; 

APPENDIX G The Graf3D Library 561 



The Translate procedure 

The Translate procedure modifies the transformation matrix .so as to displace by dx, 
dy, and dz. 

MPW Pascal 

PROCEDURE Translate(dx, dy, dz: Fixed); 

MPWC 

pascal void Translate(dx, dy, dz) 

Fixed dx, dy, dz; 

The Pitch procedure 

The Pitch procedure modifies the transformation matrix so as to rotate xAngle degrees 
around the x-axis. A positive angle rotates clockwise when looking at the origin from 
positive x. 

MPW Pascal 

PROCEDURE Pitch(xAngle: Fixed); 

MPWC 

pascal void Pitch(xAngle) 

Fixed xAngle; 

The Yaw procedure 

The Yaw procedure modifies the transformation matrix to rotate yAngle degrees around 
the y-axis. A positive angle rotates clockwise when looking at the origin from positive y. 

MPW Pascal 

PROCEDURE Yaw(yAngle: Fixed); 

562 MPW 3.0 Reference 



MPWC 

pascal void Yaw(yAngle) 
Fixed yAngle; 

The Roll procedure 

The Roll procedure modifies the transformation matrix so as to rotate zAngle degrees 
around the z-axis. A positive angle rotates clockwise when looking at the origin from 
positive z. 

MPW Pascal 

PROCEDURE Roll(zAngle: Fixed); 

MPWC 

pascal void Roll(zAngle) 
Fixed zAngle; 

The Skew procedure 

The Skew procedure modifies the transformation matrix so as to skew zAngle degrees 
around the z-axis. Skew changes only the .x-coordinate; the result is much like the slant 
that QuickDraw gives to italic characters. (skew< 15. o > makes a reasonable italic.) A 
positive angle rotates clockwise when looking at the origin from positive z. 

MPW Pascal 

PROCEDURE Skew(zAngle: Fixed); 

MPWC 

pascal void Skew(zAngle) 
Fixed zAngle; 

APPENDIX G The Graf3D Library 563 



The Transform procedure 

The Transform procedure applies the xForm matrix to srcand returns the result as dst. If 
the transformation matrix is Identity, dstwill be the same as src. 

MPW Pascal 

PROCEDURE Transform (src: Point3D; VAR dst: Point3D); 

MPWC 

pascal void Transform(src, dst) 

Point3D *src, *dst; 

564 MPW 3.0 Reference 



Appendix H Object File Format 

THIS APPENDIX IS ADDRESSED TO PROGRAMMERS who are writing compilers or 
assemblers to run under MPW 3.0. • 

Contents 

About object file records 567 
Scoping of symbolic information 570 
ModuleBegin implementation/declaration semantics 572 
Record type notation 572 
Object file records 573 

Pad record 574 
First record 574 
Last record 575 
Cornmentrecord 575 
Dictionary record 575 
Module record 576 
Entry-Point record 577 
Size record 578 
Contents record 578 
Reference record 579 
Computed-Reference record 583 
Ftlename record 584 
Source Statement record 584 
ModuleBegin record 586 
ModuleEnd record 587 
BlockBegin record 588 
BlockEnd record 589 
Local Identifier record 589 
I.ocalI.abelrecord 593 
Local Type record 594 



Type interpretation via prefix code 596 
Overview 597 
Type functions 597 
Representation of type information in the SADE symbol table 601 
Representation of type codes 602 
Representation of scalars 604 
Examples 605 
Possible object module representation 605 
Possible compilation into TIE 607 
Type interpretation and packed data 608 

Storage framework 609 
Examples 610 
CSource 610 
Possible compilation into ITE 611 

5('6 MPW 3.0 Reference 



About object file records 

Object file format describes the structure of MPW object files. These files are created by 
various language processors (such as MPW .Assembler, MPW Pascal, and MPW C) and the 
MPW librarian (Lib). 

An object file consists of a sequence of object file records. The records described in the 
remainder of this appendix are located in the data fork of the object file. MPW object 
files have file type •OBJ • and creator •MPS •. 

+ Note: The MPW linker validates only the file type, since other applications than MPW 
may create MPW-compatible object files. 

At the present time the linker tools do not use the resource fork. Although the current 
versions of Link, Lib, and DumpObj will ignore resource fork information in object files, 
Apple may specify resources for object files at some time in the future. 

There are currently 20 types of object file records, numbered consecutively from 0 to 19. 
(Future record types are not guaranteed to have consecutive record numbers). 

Code records: 

• The first record in the file must be a First record. 

• The last record in the file must be a Last record. 

• One-byte Pad records are used to maintain word alignment 

• Comment records allow comments to be included in the file. 

• Dictionary records associate names with unique IDs. 

• Module records define code and data modules. 

• EntryPoint records define entry points in code and data modules. 

• Si7.e records specify the module sizes. 

• Contents records specify the contents of modules. 

• Reference and ComputedReference records specify locations in modules that 
contain references to other modules or entry points. 

APPENDIX H Object File Format '!1>7 



Symbolic records: 

• Filename records specify source filenames and modification dates. 

• SourceStatement records specify correspondence between module offsets and 
source statements. 

• ModuleBegin and ModuleEnd records declare named scopes (typically associated 
with units, files, or functions). 

• BlockBegin, and BlockEnd records declare unnamed or "block" scopes contained 
within modules. 

• LocalID records declare identifiers scoped within modules or blocks. 

• Locall.abel records specify correspondence between generated code, source 
statements, and label identifiers. 

• Localrype records define type information for local identifiers and functions. 

A module is a contiguous region of memory that contains code or static data. A module 
is the smallest unit of memory that is included or removed by the linker. An entry point is 
a location (offset) within a module. (fhe module itself is treated as an entry point with 
offset zero.) A segment is a named collection of modules. 

+ Note: The jump table (described in Inside Macintosh, Volume If) is considered to be 
code. 

All modules, entries, segments, and symbolic records have a unique 16-bit ID that is 
assigned by the compiler, assembler, or librarian. An ID is an object file-related number 
that identifies a module, entry point, segment, or other entity within a single object file. 

• Note: Older versions of the MPW linker support only ID values in the range 1 ... 16,383. 
The current version accepts ID values in the range 1...65,534 (values 0 and 65,535 are 
reserved). If your compiler needs to be compatible with MPW 2.0, then you should 
restrict the range of IDs accordingly. 

+ Note: The linker is faster and more efficient if the compiler allocates IDs 
sequentially from 1. 

568 MPW 3.0 Reference 



Modules and entry points may be local or external. 

• A local module, entry poin~ or segment can be referenced only from within the file 
where it is defined 

• An external module, entry poin~ or segment can be referenced from different files. In 
addition to an ID, each external module or entry point defined or referenced in an 
object file must also have a unique name (a string identifier) that identifies it across 
files. 

If an ID has a name, that name is specified in a dictionary record. 

If no dictionary entry exists for it, an ID is considered anonymous. 

Local modules and entries need not have unique names, and an external segment may have 
the same name as an external module or entry point. 

• Note: Although the names need not be unique, the IDs of these different objects must 
be unique. There must be multiple dictionary entries even though the names are the 
same. If sYmbolic debugging records are generated, then ModuleBegfn records that 
correspond to Module records must also share the same ID. 

A segment is declared implicitly by specifying a segment ID in a code-type Module record. 

At any given point in an object file there can be one current code module and one current 
data module. The beginning of a new code or data module is indicated by a Module 
record. The current code and data modules are further defined by Entry Poin~ Size, 
Contents, Reference, and Computed-Reference records-these records can occur in any 
order after the Module record. 

In each of these intra-module records, a flag bit indicates whether the record refers to 
the code or the data stream, permitting the interleaving of code and data records by 
compilers. Code and data may be arbitrarily interleaved. For instance, the record 
sequence: 

Module(Code, ID=l) 
Contents, Size, EntryPoint, and reference records for module 1 
Module(Data, ID=2) 
Contents, Size, EntryPoint, and reference records for modules 1 and 2 
Module(Code, ID=3) 
Contents, Size, EntryPoint, and reference records for modules 2 and 3 
Module(Code, ID=4) 
Contents, Size, EntryPoint, and reference records for modules 2 and 4 

declares three code modules and one data module; data module 2's scope extends until 
the next data module, across an arbitrary number of code modules. 

APPENDIX H Object File Format 569 



Scoping of symbolic information 

All symbolic records contain a parent ID field that specifies the scope to which the record 
applies. These records may be emitted in any order, in any part of the object file. 
Whether the code-generating and the symbolic records are interleaved, nested, or 
completely separated is left to the discretion of the language implementor. (However, 
source statement records for a particular module must be written in order by increasing 
source offset.) ' · 

Executable objects (functions and procedures) are scoped lexically, while variables are 
scoped according to their visibility. To see why this is so, consider the following example 
in C (Pascal UNITs are similar): 

/* example.c */ 

static int static_var; 

int public_var; 

static local_func () { -· 
public_func () { ... } 

If• public_func • were contained by the root scope, then it would be impossible to 
access any file-level static variables (such as 'static_ var') from within a breakpoint in 
the function. Even though the Module record for 'public_func' has its external bit set, 
the ModuleBegin for the function must specify the source file as the parent scope. 

On the other hand, the variable 'public_ var' must be visible to procedures outside 
the file scope, so it is necessary to specify the root as its parent. 

570 MPW 3.0 Reference 



The records generated for the above example might be: 

First(version=3) 
Dictionary(l, "example.c") 
Filename ( 1, modificationDate) 
Dictionary(2, "example.c") 
ModuleBegin(moduleID=2, parentID=O, fileID=l, kind=Unit) 
Dictionary(3, "static_var") 
LocalID (parentID=2, fileID=l, ID=3, type, etc.) 
Dictionary(4, "public_var") 
LocalID (parentID=O, fileID=l, ID=4, type, etc.) 
Dictionary(S, "local_func") 
ModuleBegin(moduleID=S, parentID=2, fileID=l, kind=Function) 
ModuleEnd(moduleID=S) 
Dictionary(6, "public_func") 
ModuleBegin(moduleID=6, parentID=2, fileID=l, kind=Function) 
ModuleEnd(moduleID=6) 

ModuleEnd (moduleID=2, fileO.ffset> 
Module (ID=S) 
Contents, references, and entry points for module 5 
Likewise, source statement information 
Module(ID=6, flags=external) 
Contents, references, and entry points for module 6 
Likewise, source statement information 
Last 

The symbolic records may appear in any order (ModuleEnds preceding ModuleBegins, 
if necessary), interspersed with the nonsymbolic records (which do have order 
dependencies). There are a few items of interest in this example: 

• A parent ID of zero indicates the root. 

• The ID referred to by a Filename record cannot also be referred to by a ModuleBegin 
record. languages (such as C) which have file scoping will need to produce two 
Dictionary records that have the same name but different IDs: one for the filename, 
the other for the file-level scope. 

• A point of fine style: The linker is more efficient when multiple entries are emitted in 
the same Dictionary record. Many of the symbolic records also allow multiple 
definitions in the same record, and compiler writers should make use of this facility. 

• Even though it may be necessary to emit data Module records for variables, it is 
incorrect to emit ModuleBegin records for the data modules; use LocalID records 
instead. 

APPENDIX H Object File Format 571 



ModuleBegin implementation/ declaration semantics 

The terms implementation and declaration refer to ModuleBegin records with the 
isDeclaration bit set a~ respectively, zero or one. 

If a module has only an implementation, the linker assumes the declaration and 
implementation source locations are the same. The first declaration encountered is used, 
except that a declaration in the same object file as the first implementation will override 
any previous declaration. Any declarations or implementations following the first 
implementation are ignored (anything contained in such an ignored scope is also 
ignored). It is legal to have a declaration without an implementation or a Module. 

Module scope information is supplied solely by implementation records; declaration 
records may be nested, but the nesting is ignored since the declaration information does 
not affect mapping between the source and the executable code. 

Local variables (such as parameter variables) and types should be attached to either the 
implementation or declaration, but not to both. 

Record type notation 

This section contains important information about the documentation conventions used 
in the record descriptions that follow. Each record type is represented by a diagram such 
as the following: 

10 flags record size 101 

7 6 5 4 

572 MPW 3.0 Reference 

102 

0 

3 2 1 

offsets 

code/ 
data 

0 



The first box illustrates the record. F.ach square block represents a byte. The first byte 
indicates the record type, in this case, 10. The Flags byte is expanded in the second box. 
The Record Size is a signed, 16-bit integer that indicates the total length of the record 
(including the record type byte, flags byte, and record size field). Hence, any one object 
file record is limited to 32767 bytes. (This is not a limit on the size of the module, because 
partial contents can be placed in several records.) 

The second box represents the flag bits. In this example, they are interpreted as follows: 

Bit Meaning 

0 0 indicates code, and 1 indicates data 
1, 2 Must be 0 
3 0 indicates short, and 1 indicates long 
4-5 0 indicates 32 bits, 1 indicates 16 bits, and 2 indicates 8 bits 
6 Must be 0 
7 1 indicates a difference computation 

• Note: All unspecified bits must be zero. 

In the remainder of this document, names in bit-fields will be specified in numeric order. 
For instance, in the case of the text' local/extern', the tags local and extern are 
understood to be respectively zero and one. 

The records have been defined so that: 

• All 16-bit and 32-bit fields are word-aligned in the file. 

• Fixed-size records do not have a Record Size field. 

• All variable-length records have a Record Size field. 

Object file records 

This section describes and diagrams each object file record. 

APPENDIX H Object File Format 573 



Pad record 

A pad record is a single byte that is always zero. 

In order to maintain word alignment, a Pad record follows any record whose length is an 
odd number of bytes. (Other than pad records, all records are word-aligned.) 

First record 

The first record in an object file must be a First record. 

flags version 

nested 

0 

If the nested bit in the flags field is one, then the linker interprets all references to 
undefined ID-name pairs as external references. If the nested bit is zero, the linker will try 
to match the name of an undefined symbol with a local name before treating the 
undefined symbol as external. 

The version field contains a version number: 

Version number 

1 

2 

3 

Meaning 

Nonsymbolic MPW 2.0 OMF file 

Nonsymbolic MPW 3.0 OMF file 

OMF file containing symbolic information 

574 MPW 3.0 Reference 



Last record 

The last record in an object file must be a Last record. 

Comment record 

A comment record allows comments to be included in an object file. 

I 3 I 0 I , .. +~· I -i)nm I 
The record size field specifies the total number of bytes in the record. 

Dictionary record 

A dictionary record associates a name with an ID (or several names with several IDs). 

4 flags record size first ID strings 

:-:-: .......... . 

7 6 5 4 3 2 1 

At most one dictionary record may appear for a given ID in a single object file. 

The record size field specifies the total number of bytes in the record. 

0 

The strings field contains one or more names, each of which is preceded by an unsigned 
length byte. 

The first name in the strings field is associated with the ID given in the FirstID field. The 
second name is associated with FirstlD + 1, and so on. 

APPENDIX H Object File Format 575 



The dictionary record for an ID must appear before the module or entry-point record that 
defines the ID, but need not appear before reference or computed-reference records that 
refer to the ID. If an ID has no dictionary record or has a name with a length of zero, it's 
considered anonymous. 

The LlnkID/DbgID flag bit is used to differentiate symbolic debugging identifiers from 
code-generating identifiers. When the linker is not linking symbolically it ignores 
dictionary records with this bit set, reducing the Link's memory requirements. 

Module record 

A Module record associates an ID with a module, and establishes that module as the 
"current" code or data module. All Entry-Point, Size, Contents, Reference, and Computed
Reference records combine to define a code or data module. 

5 flags module ID 

7 6 

segment ID/ 
size 

main 

5 4 

Modules may contain either code or data: 

local/ 
ext er 

3 

0 

2 

0 
code/ 
data 

0 

• For code modules, the segment ID field specifies the segment in which the code is 
placed. Segments may be named or anonymous. Named segments are treated as 
external; anonymous segments are local. (If the segment is named, the dictionary 
record specifying the name must appear before the segment ID can be used in a 
Module record.) 

• For data modules, a nonzero size field specifies the size of the module. In this case 
Size or Contents records are unnecessary. (The size of a module can also be specified 
by a Size record, or implicitly specified by the offset of the last byte in a Contents 
record.) 

Modules may be either local or external. (Local modules may be anonymous.) 

5'16 MPW 3.0 Reference 



A code module flagged as main becomes the execution starting point of the program. A 
data module flagged as main becomes the main program data area, just below the 
location pointed to by A5. At most one main code module or entry point and one main 
data module may appear in an object file. 

If a code or data module has the force-active bit set, then the linker will not strip that 
module even though it is not referenced by any other module and is not the main module. 

References to a module are considered to be references to the fust byte of the module. 

• Note: The linker ensures that modules are aligned on word or longword boundaries. 

Entry-Point record 

An Entry-Point record declares an entry-point ID. The entry point is in the current code or 
data module, as indicated by bit 0 of the flags field. 

6 flags entry ID 

7 6 5 

offset 

4 3 2 

code/ 
data 

0 

The offset field gives the byte offset of the entry point relative to the beginning of the 
module. The offset of an entry point may be outside the module (for example, a virtual 
base for an array). 

An entry point may be defined for either a code or a data module. Entry points may be 
either local or external. (Local entry points may be anonymous.) A code entry point 
flagged as main becomes the execution starting point of the program. At most one main 
code module or entry point may appear in an object file. 

APPENDIX H Object File Format ;n 



Size record 

A Size record specifies the size of the current code or data module in bytes. 

7 flags module size 

7 6 5 4 3 2 

code/ 
data 

0 

The size of a module may also be specified in a Contents record, or (for data modules) in 
the Module record. If more than one size is specified, the largest size given is taken as the 
size of the module. 

Contents record 

Contents records specify the contents of the current code or data module. 

8 flags record size 

7 6 5 

[offset] 

repeat compl/ 
partial 

4 3 

0 

2 

The record size field specifies the total number of bytes in the record. 

[repeat] 

0 
code/ 
data 

0 

Either complete or partiaf contents may be specified. If partial contents are specified, 
the first four bytes of the contents field specify the offset of the contents from the 
beginning of the module. 

578 MPW 3.0 Reference 



The contents may be either the bytes to be placed in the module, or a 2-byte repeat count 
followed by the bytes to be repeated. (If ooth an offset and a repeat count are 
specified, the offset comes first.) 

Multiple Contents records per module are permitted, in any order. The offset of the last 
byte for which contents are specified determines the module's total size. (Size 
specifications may also appear in the Module record, and in Size records-if more than 
one size is specified, the largest size given is taken as the size of the module.) 

Reference record 

A Reference record specifies a list of references to an ID. The references are from the 
current code or data module, and may be to either code or data. 

9 flags record size ID offsets 

7 6 5 4 3 2 

The record size field specifies the total number of bytes in the record. 

The ID field specifies the module or entry point being referenced. 

0 

1 

code/ 
data 

0 

The offsets field specifies a list of byte offsets from the beginning of the current code or 
data module. These offsets may be either short (16 bits) or long (32 bits). The location 
modified may be either 32or16 bits. Multiple references to the same or overlapping 
locations are permitted. References from code may indicate instruction editing (that is, 
whether an offset is A5- or PC-relative). 

References fall into the four categories described here: 
• Code-to-code references: If the AS-relative flag is 1, the AS-relative offset of a jump

table entry associated with the specified module or entry is added to the specified 
location. No instruction editing is performed. 

APPENDIX H Object File Format ;19 



If the AS-relative flag is 0, the linker selects either PC-relative or AS-relative 
addressing. The immediately preceding 16-bit word must contain a JSR, ]MP, LEA, or 
PEA instruction, and is modified to indicate either PC-relative or AS-relative 
addressing. If the referenced module or entry point and the current code module are in 
the same segmen~ the PC-relative offset of the module or entry point is added to the 
contents of the specified location. If they are in different segments, the AS-relative 
offset of a jump-table entry associated with the specified module or entry is added to 
the specified location. 

• Code-to-data references: The AS-relative flag must be 1 for code-to-data references. 
The AS-relative offset of the specified data module or entry is added to the contents 
of the specified location. No instruction editing is performed. The location may be 
either 16 or 32 bits. (32-bit AS-relative addressing is available for the MC68020, but not 
for the MC68000.) 

• Data-to-code references: If the AS-relative flag is 1, the AS-relative offset of a jump
table entry is added to the specified location, which may be either 16 or 32 bits. 

If the AS-relative flag is 0, the memory address of a jump-table entry associated with 
the specified module or entry is added to the contents of the specified location, 
which must be 32 bits. (Note that this requires a run-time operation that adds the 
actual value of AS to the AS-relative offset.) 

• Data-to-data references: If the AS-relative flag is 1, the AS-relative offset of the 
module or entry is added to the specified location, which may be either 32 or 16 bits. 

If the AS-relative flag is 0, the memory address of the specified module or entry is 
added to the contents of the specified location, which must be 32 bits. (Note that 
this requires a run-time operation that adds the actual value of AS to the AS-relative 
offset.) 

Code-to-Code 

A5:0 

Edit instrudiont 
Force PC-rel if in same segment, 
otherwise add JT -offset. 16 

AS: 1 

Add JT -offset. 
Force PC-relative for non-'CODE' 
links_t 32116 

CodHo-Dala ~ AddA5<>ffsetofdata 

32116 
Add JT offset of code, Add JT-offset of code. 

Data-to-Code requires load-time addition of AS. 
~ 3~6 

Add AS-offset of data, Add AS-offset of data. 
Data-to-Data requires load-time addition of AS. 

32 32116 

t Edited or forced instrudions must be JMP, JSR, LEA or PEA. 

580 MPW 3.0 Reference 



32-bit code-to-code A5=1 references are possible in applications but not non-• CODE• 

links, because the instruction has to be forced PC-relative for a nonapplication link and 
32-bit references cannot be edited. 

This MPW Assembly language example exercises all possible modes of fIXUps except 32-bit 
code-to-code A5=6 which cannot easily be shown in MPW Assembler. Note that further 
instruction editing is done by the linker (for instance, the PC-relative JSR to PROC2 

below will be forced AS-relative when the linker realizes that PROC2 is in a different 
segment). 

APPENDIX H Object File Format 581 



SEG 'SEGl' 

PROC MAIN 

IMPORT 

IMPORT 

JSR 

PROCl:CODE, PROC2:CODE, DATAl:DATA 

DATA I NIT 

DATAINIT DO DATA INITIALIZATION 

CODEREFS FORCEJT ; FORCE AS-RELATIVE: 

JSR PROCl CODE-TO-CODE, AS=l, SAME SEGMENT 

JSR PROC2 ; CODE-TO-CODE, AS=l, DIFFERENT SEGMENT 

LEA DATAl,AO ; CODE-TO-DATA, AS=l 

CODEREFS NOFORCEJT; FORCE PC-RELATIVE: 

JSR PROC2 CODE-TO-CODE, AS=O, DIFFERENT SEGMENT 

DATAl 

PROCl 

JSR PROCl 

ENDMAIN 

RECORD 

IMPORT PROCl:CODE, 

DATAREFS RELATIVE 

DC.L PROCl 

DC.W PROCl 

DC.L DAT Al 

DC.W DAT Al 

DATAREFS ABSOLUTE 

DC.L PROCl 

DC.L DATAl 

ENDR 

PROC EXPORT 

ENDPROC 

SEG 'SEG2' 

PROC2 PROC EXPORT 

ENDPROC 

END 

; (FORCED AS-RELATIVE BY LINKER) 

CODE-TO-CODE, AS=O, SAME SEGMENT 

DATA2:DATA 

; FORCE AS-RELATIVE 

DATA-TO-CODE, AS=l, 32-BIT THROUGH AS 

DATA-TO-CODE, AS=l, 16-BIT THROUGH AS 

DATA-TO-DATA, AS=l, 32-BIT THROUGH AS 

DATA-TO-DATA, AS=l, 16-BIT THROUGH AS 

FORCE ABSOLUTE 

; DATA-TO-CODE, AS=O, 32-BIT 

; DATA-TO-DATA, AS=O, 32-BIT 

; 

The •toad-time" addition of AS is performed by the procedure '_DATAINIT •,which 
appears in the library '{Llbraries}Runtime.o'. 

582 MPW 3.0 Reference 



The Code-to-Code and Code-to-Data reference modes have obvious utility. The reason 
that non-A5-relative Code-to-Data references are disallowed is that there is no mechanism 
for fixing up code on the Macintosh, which would otherwise have to be done every time a 
segment containing such a reference were loaded. 

C's pointer initialization makes use of the 32-bit Data-to-code and Data-to-Data 
reference modes, as in the following examples: 

extern int func(); 
int (*fp) () = func; /* Data-to-Code, 32-bit, load-time addition of A5 *I 
int (**pfp) = &fp; /* Data-to-Data, 32-bit, load-time addition of A5 *I 

The AS-relative Data-to-Code and Data-to-Data reference modes can be used for saving 
space if the application has a large number of pointers to data or code (a dispatch table, 
for instance). 

Computed-Reference record 

A Computed-Reference record specifies a list of computed references based on two 
specified IDs. 

10 record size 101 

7 6 5 4 3 

102 

0 

2 1 

offsets 

code/ 
data 

0 

The record size field specifies the total number of bytes in the record. The references are 
from the current code or data module, and may be to either code or data. 

The IDl and ID2 fields specify the modules or entry points being referenced. If IDl 
specifies a code reference, ID2 must also be a code reference in the same segment-if IDl 
is a data reference, ID2 must also be a data reference. 

The only computation provided is difference (that is, bit 7 must be set). 

The offsets field specifies a list of byte offsets from the beginning of the current code or 
data module. These offsets may be either short (16 bits) or long (32 bits). The location 
modified may be either 32, 16, or 8 bits (a 0 in bits 4 and 5 indicates 32, 1 indicates 16, 
and 2 indicates 8). No instruction editing is performed. 

APPENDIX H Object File Format 583 



The value of the address of IDl minus the address of ID2 is added to the contents of the 
specified location. Multiple references to the same or overlapping locations are 
permitted. 

Filename record 

The Filename record associates a file object with a modification date. 

~ID I 
The file ID associates a dictionary ID with a filename. 

The modification date is the file's modification date. This is used by the debugger to 
help verify that the source file being displayed corresponds to the object file. 

Although the ftleID may be used by other records (such as source statements) prior to the 
appearance of the filename record, a Filename record must exist in the file for every fileID 
encountered. In addition, a dictionary ID must exist for the fileID; that is, files cannot be 
anonymous. 

Source Stateinent record 

The Source Statement record specifies the correspondence between generated code and 
source statements. The debugger uses this information to display source as a function of 
code location. The meaning of astatement• is defined by the language and the compiler's 
author. 

584 MPW 3.0 Reference 



12 flags record size parent ID file ID 

7 6 5 4 3 2 

The record size field specifies the total number of bytes in the record. 

The file ID associates a dictionary ID with a filename. 

The parent ID specifies the scoping entity containing the statement. 

file offset 

0 

code offset 

code 
delta 

The file offset and code offset specify the source file offset and code or data module 
offset for the first statement specified by this source statement record. These fields may 
be either 16 or 32 signed values. The file offset is the 0-relative byte offset in the file 
specified by the file ID. The code offset is the byte offset from the beginning of the 
code or data module for the first byte of code or data corresponding to the statement 
whose off set is specified by the file offset. 

Each additional statement following the one specified by the file and code offset fields is 
specified by a file delta and code delta field. The deltas represent the difference between 
adjacent file and code offsets starting with the one specified by the file and code fields. 
These deltas are in the range from 0 to 255. 

If the subsequent statement cannot be expressed with these offsets, then a new Source 
Statement record should be emitted with new beginning offsets. 

All of the Source Statement records for a module must be emitted in order of increasing 
source code offset. 

APPENDIX H Object File Format 585 



ModuleBegln record 

The ModuleBegin record supplies symbolic information for a module. 

13 flags 

file 
offset 
32/16 

7 6 

record size 

5 4 

module ID 

3 

is 
decl'n 

2 

parent ID 

1 0 

••• 

module 
kind 

The isDeclaration bit in the flags field provides a way to specify source location 
information for a module's declaration, if the module's declaration and implementation 
are separated in the source code (such as a Pascal FORWARD or INTERFACE declaration). 

The record size field specifies the total number of bytes in the record. 

The module ID associates a dictionary ID with the record. This ID must be the same value 
used in the Module record. It is through this ID that the connection is made between the 
debugger object file stream for a module and the standard object module stream. 

+ Note: There doesn't have to be a Module record associated with the ModuleBegin. If 
there isn't a module with the same ID then the scope declared by the ModuleBegin is 
treated as a wrapper that doesn't have any code, but that can contain other symbolic 
objects. This is usually the case when the module-kind field is unit. 

The parent ID specifies the scoping entity that contains the module. An ID of zero 
indicates global scope. This field is ignored if the isDeclaration bit is set (parentage 
information is not extracted from a declaration). 

The file ID associates a dictionary ID with a filename. 

The file offset specifies the source file offset for the module header. This field may be 
either 16 or 32 bits and is the 0-relative byte offset in the file specified by the file ID. 

The module kind indicates the kind of the module as follows: 

586 MPW 3.0 Reference 

0 



Kiod Description 

0 none 
1 reseroed 
2 unit 
3 procedure 
4 function 
5 data module 
6 ... 15 reserved 

A Pascal program's program level should be treated as a unit (module kind 2). 

The byte following the module kind field is reserved. 

ModuleEnd record 

The ModuleEnd record is associated with a ModuleBegin record by the moduleID field. 

14 flags module ID 

7 6 5 4 3 

file offset 

is 
decl'n 

2 1 0 

The file offset specifies the last byte in the source file that is to be considered part of the 
module. The isDeclaration bit specifies whether the file offset reflects the end of the 
module's implementation or declaration. 

APPENDIX H Object File Fonnat Str7 



BlockBegin record 

A BlockBegin record declares a nested scope. Usually these scopes don't have names, but 
it's OK to associate a dictionary ID with the block scope for symbolic naming purposes 
only; the ID can't also be associated with another object (such as an entry point). 

15 flags record size BlocklD Parent ID ••• 

code offset 

7 6 5 4 3 2 0 

The record size field specifies the total number of bytes in the record. 

The parent ID specifies the scoping entity (such as the block or module) containing the 
block. It's illegal to specify a parent of zero, or to specify a parentage chain that doesn't 
(eventually) include a {ModuleBegin, Module} pair; there must be a linkable object in the 
chain. 

· The file ID and file offset specify the source file and source file offset of the first 
statement within the block. 

The code offset specifies the off set of the first instruction in the block. The off set is 
relative to the module that the block appears in, and does not depend on any intervening 
scopes between the BlockBegin and the module in which it appears. 

A Block scope can't contain another ModuleBegin scope. 

588 MPW 3.0 Reference 



BlockEnd record 

The BlockEnd record indicates the end of a block. There must be a block end record for 
each BlockBegin record. 

The file offset specifies the last byte in the source file that is to be considered part of the 
block. 

The code offset specifies the offset within the containing module of the first instruction 
not to be treated as part of the block. 

Local Identifier record 

Local Identifier records specify formal parameters to procedures and functions as well as 
local identifiers (and their types) declared within modules or blocks. 

APPENDIX H Object File Fonnat 5s<J 



17 flags record size parent ID file ID file offset 

file 
offset 
32116 

7 6 

ID 

5 4 

offset size 

7 6 

3 

type 

ence 

5 

2 

File 
Delta 

value 

4 

1 

kind 

3 

0 

count 

storage class 

2 

The record size field is used to determine the number of IDs which follow. 

offset data 

0 

The parent ID specifies the scoping entity (such as module or block) containing the 
identifier. 

The ftle ID associates a dictionary ID with a filename. 

The ftle offset specifies the source ftle offset for the first statement specified by this 
Local Identifier Record. This field may be either a 16- or 32-bit signed value giving the 
zero-relative byte offset in the file specified by the file ID. 

Following the initial ftle offset one or more sets of 5 fields will provide information about 
local identifiers. 

The ID moc:iates a dictionary ID with a formal parameter or a local variable. 

The type is a type ID specifying the identifier's type. For primitive types, this ID will 
range from 0 to 99; for nonprimitive types it will be the ID (~100) of the LocalType record 
describing the type. 

The File Delta byte specifies the identifier's source offset (The first delta byte will 
usually be zero.) If the delta for the variable is not in the range 0 .. 255 then a new record 
must be started. 

590 MPW 3.0 Reference 



The Kind byte is used to determine whether the identifier is in fact a formal parameter, a 
function return "parameter," or a local variable. The Kind field also specifies the size of 
the byte offset which follows, as well as the storage mode for the parameter or variable. 

The offset size field indicates whether there is a byte offset field presen~ and if there is, 
how large it is. If it is three, a 16-bit count field specifies the number of bytes that follow 
the count (used for representing floating-point or string constants). If the count is odd, a 
pad byte should be added to the data. 

offset size 

0 
1 
2 
3 

description 
no offset field follows 
2-byte off set field 
4-byte off set field 
variable size off set field (preceded by 16-bit count) 

The reference and value bits in the Kind field must be 0 in the case of local identifiers, and 
must be specified in the case of formal parameters. 

storage class desaiption offset is the •.• 

0 register register number 
1 AS-relative ID of the module or entry point 

corresponding to this variable 
2 A6-relative A6-relative offset 
3 A7-relative A7-relative offset 
4 absolute absolute address 
5 constant value of the constant 
6 ... 15 reserved reseroed for future use 

A7-offsets (storage class 3) are encoded as offsets from the top of the stack (usually the 
return address) prior to executing a LINK instruction. 

Register numbers are encoded as integers indicating the specific register as follows: 

APPENDIX H Object File Format 591 



• Table H-1 Register numbers 

Value 

0 .. 7 
8 . .15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 .. 39 
40 .. 50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61..62 
63 
64 .. 71 
72 .. 79 

Register 

DO .. D7 
AO .. A7 
CCR 
SR 
USP 
MSP 
SFC 
DFC 
CACR 
VBR 
CAAR 
ISP 
PC 

FPCR 
FPSR 
FPIAR 

FPO .. FP7 

PSR 
PCSR 
VAL 
CRP 
SRP 
DRP 
TC 
AC 
sec 
CAL 
TTO .. TI'l 

BADO .. BAD7 
BACO .. BAC7 

592 MPW 3.0 Reference 

MeanJng 

Data registers 
Address registers 
Condition code register 
Status register 
User stack pointer 
Master stack pointer 
Source function code register 
Destination function code register 
Cache control register 
Vector base register 
Cache address register 
Interrupt stack pointer 
Program counter 
reserved 
Floating-point control register 
Floating-point status register 
Floating-point instruction address register 
reserved 
Floating-point data registers 
reserved 
PMMU status register 
PMMU cache status register 
PMMU validate access level register 
PMMU CPU root pointer register 
PMMU supervisor root pointer register 
PMMU DMA root pointer register 
PMMU translation control register 
PMMU access control register 
PMMU stack change control register 
PMMU current access level register 
MC68030 transparent translation registers 
reserved 
PMMU breakpoint acknowledge data registers 
PMMU breakpoint acknowledge control registers 



Local Label record 

Local Label records give the correspondence between generated code, source statements, 
and label identifiers. 

18 flags record size parent ID 

7 6 5 4 

label ID/ 
Entry ID 

file ID 

is 
Entry 

3 2 

file code 
delta delta 

These records are similar to Source Statement records. 

file offset code offset 

0 

label ID 

The flags, record size, parent ID, file ID, file off set, and code off set fields are identical to 
those fields in the Source Statement record (see description earlier in this appendix). 

The file delta and code delta are also encoded as they are in Source Statement records, 
but here an additional label ID field is supplied with each file and code delta pair. The 
label ID associates a dictionary ID with a label identifier. The first label ID in the Local 
Label record has no file and code delta following it since that ID is at the location 
specified by the file and code offset fields. 

APPENDL'< H Object File Format 593 



Local Type record 

Local Type records ~iate type declarations with type IDs (or several types with 
several IDs). Type IDs are used to define types referred to by I.ocalID and other Local 
Type records. 

19 flags record size Parent ID 

32116 
size 

6 5 

32116 
file 

offset 

sizeOfData 

type Data 

fileDelta 

4 

cntOfFixups physicalSize 

Pad 

(end of record) --' 

first ID 

zero 

The record size field specifies the total number of bytes in the record. 

file ID 

fixupType 

The parent ID specifies the scoping entity (such as a module or block) containing the 
identifier. 

The 32/16 size bit in the flags field specifies whether the physicalSize fields of all type 
declarations in the record are 16 or 32 bits. 

The 32/16 file offset bit in the flags field specifies whether the ftleOffset field is 16 or 32 
bits. 

594 MPW 3.0 Reference 

fileOffset 

ID 



Bit zero of the flags field must be zero. 

The firstID field specifies the first type ID declared by the record, •first ID + 1 • is 
associated with the second type declared, and so on. The first type ID should be~ 100; 
IDs 0 through 99 are treated as "primitive" types and should never be defined by a 
LocalType record. 

The fileID field specifies the dictionary ID containing the source filename. If the file ID 
is 0 then the type declarations in the record are not associated with any source code, and 
the fileOffset and fileDelta fields are ignored (though they must appear). 

The fileOffset field specifies the offset of the type declaration in the source file. This is a 
16-bit or 32-bit unsigned value, as determined by the 32/16 file offset bit in the flags field 

Type declarations immediately follow the firstID field, and extend to the end of the 
record. For each declaration the following fields appear: 

• The sizeOfData field specifies the size of the type data in bytes. (If this field is odd, 
a pad byte of zero must follow the type data.) 

• The cntOfFixups field specifies the number of type ID and dictionary ID fixups that 
follow the type data. 

• The physicalSize field is either 16 or 32 bits (see definition of the flags field) and 
specifies the type's physical representation size, in bytes (such as the value returned 
by C's sizeof operator). This field may be inaccurate for packed types and sliced 
arrays, and is meaningless for ProcOf types. 

• The type data follows the physicalSize record. The format of the type data is 
described in the following section, "Type Interpretation via Prefix Code." If the size 
of the type data is odd then a pad byte of zero must be appended to it. The pad byte 
is not included in the size of the type data. 

• Following the type data is the fixup list, consisting of cntOfFixups entries. Each fJXUp 
entry is two words: an offset into the original type data followed by an ID to translate. 
The ID is translated and the result is inserted into the type data at the specified 
offset. The upper three bits of the fixup offset indicate the kind of translation to be 
made; the remaining bits are the type data offset. The translation kinds are: 

APPENDIX H Object File Format 595 



bit bit bit 
IS 14 13 Translation treatment 

0 0 0 Insert the m index of the ID (which must be a LocalType or a number from 
0 to 99) as a 16-bit word 

0 0 1 reserved 
0 1 0 Insert a scalar based on the ID's type: 

Module insert MTE index of the module 
LocalID insert CVfE index of the variable 
Segment insert RTE index of the segment 
Source file insert FRTE index of the source file 
LocalType insert m index of the type 

0 1 1 reserved 
1 0 0 Insert NTE index of the ID, as a scalar 
1 0 1 reserved 
1 1 0 reserved 
1 1 1 reserved 

(MTE.5, CVI'Es, RTEs, FRTEs, and TTEs and so forth are part of the Sym file produced 
by the linker, and are described in the document SADE Sym File Format, which is 
available separately from Developer Technical Support at Apple Computer, Inc.) 

• The fileDelta field indicates the source file off set of the next type declaration as a 
signed 16-bit integer. This field does not appear following the last type declaration in 
the record. If the source offset will not fit in 16 bits, then a new Local Type record 
should be started. 

· A type ID is associated with a name by a "Dbgldn-type dictionary entry with a 
corresponding ID. 

A new local Type record should be started whenever the source file changes, when the file 
delta cannot be represented in a 16-bit signed integer, or when a type has no source 
declaration. 

Type interpretation via prefix code 

The goals of type interpretation are to support the interpretation of SADE debugger 
variables by type, map from name to type, and map from type information to name. 
Operators such as array indexing, indirection, field name, and so on, are applied to types 
to yield more type and address information. 

596 MPW 3.0 Reference 



The type information should be complete. By complete is meant that the debugger should 
have a minimum amount of knowledge about how data for any particular type is stored. 
Type information should be easy for compilers to emit and for the linker to extract from 
the Object module format. The storage of type infomiation should be compac~ yet fast 
and easy to expand. High-level language interpreters for type information should not be 
prohibitively expensive. · 

Overview 

SADE type information is contained in word aligned variable length data structures called 
Type Table Entries, (7TE). These type table entries are contiguously numbered (starting at 
100, as the indices 0 .. 99 are reserved) and accessed via an indexing table of four byte 
disk addresses. An.index into this table is called a TIE Index. The type table entries are 
aligned on word (two byte) boundaries. No global/local scope information is contained 
in the type table; scoping is via the Modules table and its Contained Modules, Types, and 
so on. A picture of a TIE appears later in this appendix. 

The TypeCodes portion of a TIE contains size information and an interpretative 
representation of a type. The exact form for the TypeCodes is described below. The 
paradigm used for the SADE type mechanism is types as functions. All types are either 
basic types or functions with types and integral constants as arguments. The realization 
of this paradigm is prefix code: an operator followed by operands. 

Type values are either scalar types or composite types. Instances of a scalar type can be 
ordered, while composite types cannot necessarily be ordered. Scalar types are further 
divided into integral and nonintegral scalar types. Integral types can be mapped to the 
set of integers. 

Type functions 

Following are the definitions for the type functions and their arguments. Except for two 
cases, type function arguments are either other type functions, encoded scalars, or 
instances of a scalar type (see the section "ScalarOP'). In one exception, ConstantOf( ), 
one argument is a sequence of uninterpreted bytes. In the other, TIE(), the argument is 
an unaligned 2 bytes interpreted as an unsigned word. Except in these two cases, the 
convention used is to prefix arguments with S if it is a scalar or T if it is a type or an 
instance of a type. 

APPENDIX H Object File Format 597 



BasicType(SType) 

This function returns a ground type, one which cannot be composed of other typest. The 
argument is an integer in the range ~99. By convention, the empty type, called void, is 
represented by BasicType(O). 

TIE(UnsignedWord) 

The type, and also the name for the type, is found at the UnsignedWord entry in the type 
table. This aliasing function allows the association of a name to a type, or the factoring
out of a shared anonymous type into one common entry, thus saving table space. 

PointerTo(Ttype) 

The argument is a type. The value of the function is pointer to that type. 
PointerTo(void) is a generic pointer, equivalent to the C type (void•). 

ScalarOf()'type Swlue) 

The type returned by the ScalarOf function names an instance of given scalar type. The 
ScalarOf function is usually referred to by RecordOf or EnumerationOf. 

NamedTypeOf(Snte, Ttype) 

The scalar is an index for a Name Table Entry. That entry gives the name for the type 
Ttype. This mechanism is used to give names which are local to a type, such as record and 
union field names. 

ConstantOf(Ttype, Slengtb, byte. •• ) 

The function ConstantOf is similar to ScalarOf, except that the constant can be of a 
nonintegral type, such as floating-point constants or composite type constants. The 
Tiype is the type of the constant, the Slength is the number of bytes in the constant, and 
the unencoded bytes following are the bytes comprising that type. 

t 1his is not quire true. Due to historical reasons, strings are considered a ground type instead of a derived type. 

598 MPW 3.0 Reference 



EnumerationOf(Tbase, Slower, Supper, Snelements, Ttype ... ) 

The function EnumerationOf names an enumeration type. Tuase names the underlying 
scalar type that the elements of the enumeration are drawn from. It also determines the 
storage size of the Enumeration. Usually, the elements are drawn from 
BasicType(SignedWord). The Slower and Supper are the lower and upper bounds of the 
enumeration. Snelements is the number of Ttype elements named as part of the 
enumeration. Snelements can be less than Supper Slower + 1 if the enumeration is sparse, 
as is possible with C enums. 

VectolOf(Tindex, Telement) 

The function takes two arguments. The first is the index type, which is the scalar type 
from which the vector indices are drawn. The second argument is the type of the vector 
elements. The value of the function is Array [Tindex] OF Telement 

RecordOf(Snfields, Soft'set & Ttype_.) 

The function RecordOf returns a type composed of a linear sequence of types. Snfields is 
the number of types in the composite type. The argument types are pairs of a scalar and a 
type. The Soffset scalar gives the offset to that element from the beginning of the type. 
The Ttype is the type of that element The offsets are byte offsets. The representation 
details are discussed in the following section. 

UnionOf(Ttag, Soft'set, Snfields, Tvarlant & Ttype ••• ) 

The Union function could be built from the RecordOf function. Ttag is the scalar type of 
the tag. For C and other languages whose unions do not have a tag, Ttag is the ground type 
void. Soffset is the offset to the first variant from the start of the union. If there is no 
tag variable, then Soffset will be 0. Otherwise, Soffset is the size of the tag variable plus 
any required alignment. The Snfields is the number of variants in the union. The Tvariant 
and Ttype pairs define one element of the union. The Tvariant is an instance of the Ttag 
and names the variant If Ttag is void, Tvariant is void. Ttype is the field of the union. 

SubRangeOftTbase, nower, Tupper) 

The function SubRangeOf names a subrange of the scalar type, Tuase. The bounds of the 
subrange are given by the nower and Tupper values. 

APPENDIX H Object File Format 599 



SetOf(Tbase) 

The function SetOf names a set type. The set is composed of elements drawn from scalar 
type Tbase. 

ProcOf(SClass, TReturn, SArgc, TArg .•• ) 

The function Proc:Of names a procedure type. SClass is the class of procedure. The class 
of the procedure defines how arguments are passed to it and values are returned from it. 
TRetum is the type of the return value; if void the ProcOf names a procedure instead of a 
function. SArgc is the number of arguments to the procedure. The TArg are the arguments 
to the procedure. The argument order is the order of declaration, as it appears in the 
source text. How the TArgs are actually passed, on the stack, Pascal or C, or in registers, is 
as per the SClass. 

ValueOf(Ttype, Scvte, Smte) 

The scalar value, of type Ttype, can be obtained by fetching the variable whose cm 
index is Scvte and whose containing module's MTE index is given by Smte. Smte is 
required because the variable named by the Scvte might be in a register or relative to A6, 
requiring a debugger to find the proper stack frame. Ttype will be the same as the type in 
the CVTE; it is duplicated because it's not desirable to reference the cm just to find the 
type. 

ArrayOf(Telement, Sonier, Sndirm, 'lboundl, ••. ) 

The ArrayOf type descriptor is used to describe monolithic arrays, those which cannot or 
should not be described with VectorOf functions. The Telement is the type of each array 
element Sorder describes how the address of an element is computed from the array 
indices. Sndim is the number of dimensions of the array, and Tboundl ... are the indexing 
types, usually SubRangeOf types. 

Sorcier can have one of two values. If 0, then the address of array(i,j,k) is computed by 

(i-lowerBountlfboundl)) + 
(j-lowerBount(Ibound2)) • span(Tboundl) + 
(k-lowerBoun~und3)) • spa1(Tbound2) • spa7(Tboundl) 

If 1, then the address is computed by 

(i-lowerBou~undl)) • span(Tbound2) • spa1(Tbound3) + 
(j-lowerBou~und2)) • span(Tboundl) + 
(k-lowerBouncKTbound3)) 

(;()() MPW 3.0 Reference 



where 

lowerBounll.Jype) 
upperBourul_Type) 
span<,Type) 

= lower bound of the subrange or enumeration 
= upper bound of the subrange or enumeration 
= upperBouncl..Type) - lowerBouncl..Type) 

Note the difference in the order of the element type and index type from that in the 
Vectorof function. This was done to keep the variable number of bounds as the last 
arguments to the Arrayof function. 

Representation of type information in the SADE symbol table 

The SADE symbol table, created by the linker from information in the object modules 
linked, stores type information in a type table Entry. The type table Entry is a word
aligned variable-length data structure of the form: 

Physical Size 

0 .. 1023 

NfE index 

The NTE index is a 4-byte field, giving the name of the type via an index into the Name 
Table. The index can be zero, meaning that this is an anonymous type. 

Physical Size 

The Physical Size 2-byte field defines the number of bytes taken up by the TypeCodes 
field. It does not include the physical size or logical size fields. The maximum size of a 
TypeCodes field is 1023 bytes. The other bits are flag bits. Of these flag bits, only one, 
the B bit, is defined. The other bits are reserved for future expediencies and should be set 
to zero. The B bit applies to the Logical Size and means Big. When set, the logical size 
field will be 4 bytes instead of 2, allowing the description of very large data structures such 
as Fortran arrays. 

APPENDIX H Object File Format 6ol 



Logical 517.e 

The Logical Size field is either 2 bytes or 4 bytes wide. If the B bit in the Physical Size 
field is zero, then the Llogical Size is 2 bytes long. If set, the field is 4 bytes long. In either 
case, the value of the field is the number of bytes required to store the type. 

TypeCodes 

Following the header inforrnation are the TypeCodes themselves. This is a sequence of 
Physical Size bytes of type information. The TypeCodes are described in the next 
section. 

Representation of type codes 

Type function codes are single bytes. The Basic Type function has the Most Significant 
Bit (MSB) of the byte 0 and the basic type number encoded in the lower 7 bits. The Type 
Composition Function has a 1 in the MSB and the function code in the lower 6 bits. The 
next-to-MSB is a flag indicating the type of offset encountered in the arguments to that 
type. If zero, then offsets are byte offsets from the beginning of the type. If 1, then 
offsets are bit offsets from the beginning of the type. 

Basic type 

lol o .. 99 

The byte names a Basic type in the range 0 .. 99. The standard values for Basic types are 
named earlier in this appendix and are as follows: 

6o2 MPW 3.0 Reference 



0 no type 
1 Pascal string 
2 unsigned long word 
3 signed long word 
4 extended (10 bytes) 
5 Pascal boolean (1 byte) 
6 unsigned byte 
7 signed byte 
8 character (1 byte) 
9 character (2 bytes) 
10 unsigned word 
11 signed word 
12 singled 
13 double 
14 extended (12 bytes) 
15 computational (8 bytes) 
16 C string 
17 as-is string 

Type composition function 

The type code is in the lower 6 bits. The P bit means the type is PACKED. The default, 
P=O, means that the type is unpacked. The values for the type codes are: 

1 TIE 
2 PointerTo 
3 ScalarOf 
4 ConstantOf 
5 EnumerationOf . 
6 VectorOf 
7 Record Of 
8 UnionOf 
9 SubRangeOf 
10 SetOf 
11 NamedTypeOf 
12 ProcOf 
13 ValueOf 
14 ArrayOf 

The SClass for ProcOf types has the following immediate meanings: 

APPENDIX H Object File Format 6o3 



0 Undefined 
The calling conventions of the function are undefined. 

1 Pascal 

The calling convention follows Pascal conventions. The return value or a pointer to the return 
value is placed on the stack and is then followed by a fixed number of arguments. The called 
procedure/function cleans up the stack before returning to the caller. 

2 C with fixed arguments 

C calling convention. The caller removes any arguments that were passed. The arg count is the 
number that was specified in the prototype for the C function or in the function definition. 

3 C with variable number of arguments 

Similar to the above, except that the argument count is the minimum number of arguments to 
pass to the function. It is suggested that compilers emit a Proc0f(3, 1Return, 0) for functions 
referenced without prototypes or function definitions, as that is the most general case. This is 
especially useful for declarations of pointers to function. 

Representation of scalars 

I o I o .. 121 

A constant in the range 0-127 fits into a single byte. The high bit is zero, marking this as a 
small integer. 

-63 .. -1 

If the 2 high bits of a byte are one, then the byte represents a small negative integer in the 
range -63-1. The value -64, with the lower 6 bits zero, is used as switch to long. 
See below. 

0 .. 16383 

If the two high bits of a byte are 10, then a larger integer in the range 0 .. 16383is specified 
by appending the next byte to the 10 byte and stripping off the high two bits of the word. 
The constant is not aligned to word boundaries. 

6o4 MPW 3.0 Reference 



I 1 I , I o I o I o I o I o I o I 4 bytes of longint 

A byte whose value is -64 is used for expansion past the preceding bounds. The four bytes 
following (not aligned to word boundaries) are the longint. 

Examples 

In these examples, it is assumed that "Integer" is the name of a BasicType of SignedWord. 

Pascal source 

TYPE 

VHSelect 

Point 
RECORD 

(v, h); 

CASE Integer OF 
0: (v: Integer; 

h: Integer); 
1: (vh: ARRAY [VHSelect] OF Integer); 

END; 

Re ct 
RECORD 

CASE Quux: Integer OF 
0: (top: Integer; 

left: Integer; 
bottom: Integer; 
right: Integer); 

1 : (topLeft: Point; 
botRight: Point); 

END; 

Possible object module representation 

The representation of type information in the object module must be less compact than 
in the type table so that the linker will not have to interpret the type information, just 
resolve linkages, fold anonymous types into types referring to them, and emit the 
compacted information. The differences are: 

• TIE(x) are replaced by the dictionary numbers of the entries. 
• BasicType(x) are replaced by dictionary numbers less than 100. 

APPENDIX H Object File Format 6o5 



In the following, dictionary numbers are distinguished from integers. BasicType(n) 
should be viewed as having been replaced by the canonical dictionary for that type. 

Diet I 

3000 
3010 
3020 
3050 
3052 
3054 

3056 
3060 

3132 

3134 

3140 

Name 
v 

h 
VHSelect 

vh 

Point 

Rect 

6o6 MPW 3.0 Reference 

Type definition 

Scalar0f(3020, 0) 
Scalar0f(3020, 1) 
EnumerationOf(BasicType(O), 0, 1, 2, 3000, 3010) 
Vector0f(3020, BasicType(INTEGER)) 
ScalarOf(BasicType(INTEGER), 0) 
RecordOf( 

/* Record has two fields */ 
2, 
/* First, at offset 0, is the "v: Integer"*/ 
/* Two bytes after it is "h: Integer"*/ 
0, NamedTypeOf("v", BasicType(INTEGER)), 
2, NamedTypeOf("h", BasicType(INTEGER)) 
) , 

ScalarOf(BasicType(INTEGER), 1) 
UnionOf( 

/* Two variants, Integer selector, no tag */ 
2, BasicType(INTEGER), 
3052, 3054, /* 0: selects the record of 

"v" and "h" */ 
3056, 3050 /* 1: selects the array of 

two ints */ 

RecordOf( 
4, 

RecordOf( 

UnionOf( 

0, NamedTypeOf("top", BasicType(INTEGER)), 
2, NamedTypeOf ("left", BasicType (INTEGER) ) , 
4, NamedTypeOf("bottom", BasicType(INTEGER)), 
6, NamedTypeOf ("right", BasicType (INTEGER)) 

2, 
O, NamedTypeOf("topLeft", 3060), 
4, NamedTypeOf("botRight", 3060) 

/* Two variants, Integer selector, 
tag is "Quux", size 2 */ 

2, NamedTypeOf("Quux", BasicType(INTEGER)), 2 
3052, 3132, /* 0: First variant is the 

record of 4 Integers */ 
3056, 3134 /* 1: Second variant is the 

record of 2 Points */ 



Possible compilation into TIE 

The linker can compact the representation, folding anonymous entries into the type 

definitions referring to them. This would yield the following: 

3100 

3101 

3102 

3105 

3106 

v 

h 

VHSelect 

vh 

Point 

Scalar0f(TTE(3102), OJ 

Scalar0f(TTE(3102), 1) 

EnumerationOf(BasicType(SIGNEDWORD), 0, 1, 2, TTE(3100), 

TTE(3101)) 

Vector0f(TTE(3102), BasicType(INTEGER)) 

UnionOf ( 

/* Two variants, Integer selector, no tag */ 

2' BasicType (INTEGER) ' 

/* 0: selects the record of "v" and "h" */ 

ScalarOf(BasicType(INTEGER), 0), 

RecordOf( 

/* Record has two fields */ 

2, 

/* First, at off set 0, is the 

"v: Integer" */ 

0, NamedTypeOf ("V", BasicType (INTEGER))' 

/* Two bytes past the first, is 

"h: Integer" */ 

2' NamedTypeOf ( "h .. ' BasicType (INTEGER) ) 

) , 

/* 1: selects the array of two ints */ 

ScalarOf(BasicType(INTEGER), 1), 

TTE(3105J 

APPENDIX H Object File Fonnat 007 



3114 Re ct UnionOf( 

Type interpretation and packed data 

/* Two variants, Integer selector, 

tag is "Quux", size 2*/ 

2, NamedTypeOf ( "Quux", BasicType (INTEGER) ) , 2 

/* o: Fi_rst variant is the record 

of 4 Integers */ 

ScalarOf(BasicType(INTEGER), 0), 

RecordOf( 

4, 

0, NamedTypeOf ("top", BasicType (INTEGER) ) , 

2, NamedTypeOf ("left", Basic Type (INTEGER) ) , 

4. NamedTypeOf ("bottom", BasicType (INTEGER) ) • 

6, NamedTypeOf ("right", BasicType (INTEGER)) 

) . 
/* 1: Second variant is the record 

of 2 Points */ 

ScalarOf(BasicType("Integer"), 1), 

RecordOf( 

2, 

0, NamedTypeOf("topLeft", 3106), 

4, NamedTypeOf("botRight", 3106) 

The previous section did not describe PACKED data, such as Pascal's packed arrays 
(actually vectors) and records and C's bit-field structures. This proposal for describing 
packed data rests on the observation that it is not the composite types that are packed 
but rather components of the composite types. The solution is general enough to solve 
today's problem and be extensible to future language implementations. 

When a type has the PACKED attribute, it is followed by packing information. The 
packing information describes the packing for that occurrence of the type. In the case of 
the VectorOf composing type, the packing information describes how a given number of 
elements are arranged within a fixed number of bytes. 

6o8 MPW 3.0 Reference 



Storage framework 

In general, an instance of a datatype is a sequence of bits. These bit sequences are usually 
aligned on address boundaries and are totally contained within an integral unit of 
addressable units of storage (bytes). Packing an instance of a datatype minimizes -the 
amount of wasted bits, possibly at the expense of access time. Therefore, the packed 
type information assumes the following bit-level view of K bytes of storage, with the 
most significant bit (and byte) at the left and the least significant bit (byte) at the right: 

K Bytes 

A packed data field is represented by two scalars: the MSB and I.SB. The scalars are 
represented as described in the TypeCodes document. This allows bitfields and packed 
data to be from 1 to 2"32-1 bits widet. The number of bytes occupied by that packed 
data field is (MSB+ 7) DIV 8. I.SB can be thought of as the shift factor and MSB-I.SB+ 1 
the number of bits in the mask. 

A packed non-VectorOf type is followed by a single occurrence of MSB and I.SB. 

Packed vectors have a regular structure. A group of vector elements, M, will be packed 
into a number of bytes, N. The packing is regular, meaning that the bit field for 
Vectorlp*M+k] is the same as that for Vectorlkl except that it is p*N bytes after Vectorlk]. 
Because of this regularity, the bitfield information is in a different format: 

·t Originally, it was thought that the packed data field could be represented by a single byte of mask and shift information. 
One nibble in the byte represented the field widih (0 to 15 bits) in the word. The position of the field was represented by 
the other nibble as the number of bits to left shift the mask. However, one common case, the C bitfield with more than IS 
bits, prevents a single byte representation for packed data. Since more than one byte is required to represent packed data, 
the MSB/ISB view was adopted. 

MSB/ISB was chosen over MASK and SHIFf because one less addition is required to yield the number of bytes required 

for the data type. 

APPENDIX H Object File Format 609 



7LJ 
:ta: :ta: :ta: :ta: :ta: 

m m m r- r-
'< ;::; iD en en - m m CD en 3 -en m CD £ ~ -C) iD ::> -~ 3 en I 

0 G5 -c: CD 
"C a ~ 

0 
c: 

"C 

The first scalar gives N, the number of bytes into which the M vector elements can fit. The 
next scalar gives the width of the bit mask. The third scalar gives M, the number of 
elements in the repeating group. Following these three scalars are M scalars. These M 
scalars give the I.SB for the O'th to the M-1 'th vector element. I.SB[i]+1 Bits/Elements-1 
gives MSB[fl. 

Examples 

The following example is in C and from Harbison and Steele. It is assumed to follow 
MC68000 addressing in that the most significant bytes are at the lowest addresses. A~ 
note that the example assumes that this particular C compiler packs fields into in ts 
starting with the least significant bit of the int. 

Here is a sample bitfield: 

Page 

31 29 23 

C source 

typedef struct { 
unsigned offset 
unsigned page 
unsigned segment 
unsigned 

Offset 

15 0 

16; 
: 8; 

6; 
1; /* For future use */ 

unsigned supervisor : 1; 

V_ADDR; 

610 MPW 3.0 Reference 



Possible compilation into 1TE 

The preceding fields are not all packed fields. Only the segment and supervisor fields 
need to have the PACKED attribute applied to them. Those two fields are followed by the 
bit positions within the byte. 

3107 V ADDR RecordOf( 
4, 

/* First is "offset". Note its byte offset */ 

2, NamedTypeOf("offset", «Unsignedinteger»), 

/* Next is "page".It is physically before "offset" ; 
1, NamedTypeOf ("page n I «Unsignedinteger») , 

/* Finally, "Segment" and "Supervisor" in byte 0*/ 
0, PACKED NamedTypeOf("segment", 

«Unsignedinteger»), 5, O, 
0, PACKED NamedTypeOf ("supervisor", 

«Unsignedinteger»), 7, 7 

APPENDIX H Object File Fonnac 611 





Appendix I In Case of Emergency 

THIS APPENDIX CONTAINS SOME INFORMATION TIIAT MAY BE USEFUL 
when serious system errors occur. • 

Contents 

Crashes 615 
Stack space 615 

613 





Crashes 

If you end up in the MacsBug debugger while running MPW, it may be possible to recover 
without rebooting and losing your recent changes. Type G SYSRECOVER. The Shell will 
attempt to recover by aborting the current command, saving the contents of all the 
windows, and/or returning to the Finder. If this fails, type ES to rerum to the Finder, then 
shut down the system immediately. 

Stack space 

The MPW Shell and tools that run integrated with the Shell share a single stack. The stack 
size is determined by the Shell at initialization time. Complex command files, large links, 
and other tools may require more stack space than is available. System errors 28, 2, and 3 
. are possible indications of this problem. You can increase the stack size by using ResEdit 
to modify • HEXA • resource number 128 in the fiJe MPW Shell. The default size is $2710 
(10,000 bytes) when less than 480,000 bytes are available for the application heap and 
$4E20 (20,000 bytes) when more than 480K are available. 

APPENDIX I In Case Of Emergency 615 





Glossary 

abstract target: In Make dependency rules, a 
target that is not actually built but represents a 
collection of item.5. Use an abstract target to 
trigger dependencies on the right side of the 
dependency rule. See Chapter 9 for details on 
Make dependency rules. 

active window: The frontmost window. The 
Shell variable {Active} always contains the name 
of the current frontmost window. 

alias: An alternate name for a command, 
defined with the Alias command. 

application: A program that runs stand-alone, 
outside of the Shell environment. An 
application's file type is APPL. 

author: In Projector, with respect to a 
particular revision, the name of the person who 
made a revision. With respect to Projector's 
files and projects, the person with the primary 
responsibility for a file or project. 

blank: A space or a tab character (in the 
context of separating words in the command 
language). 

branch: In Projector, an additional sequence of 
revisions emanating from another revision and 
running parallel to the main trunk. 

build commands: Shell commands that are 
output by the Make tool, used to build a 
program. 

build command line: In the dependency rule 
of a makefile, the lines beginning with a space or 
tab that follow the dependency line. 

built-in commands: Editing commands, 
structured commands, and other Shell 
commands that are part of the MPW Shell 
application (as opposed to MPW tools, which 
are separate files on the disk.) 

CheckOut directory: The directory into which, 
by defaul~ Projector places checked out ftles. 
Each project has a corresponding Checkout 
directory which can be changed with the 
CheckOutDir command. 

'ckid' resource: The "check ID" resource that 
Projector maintains in the resource fork of all 
files belonging to a project. The 'ckid' resource 
contains identification such as User name, Task, 
Projec~ and so on. 

code resource: A resource that contains a 
program's code-most commonly a resource of 
type 'CODE' (for applications and MPW tools) 
but also other resource types such as 'DRVR' and 
'PDEF that also contain code. 

command file: See script 

command name: The fiISt word of a 
command, identifying the name of a built-in 
command or the name of a file (tool, command 
file, or application) to execute. 

command script: See script 

command substitution: The replacement of a 
command by its output. Command substitution 
takes place within back quotes (' ... '). 

comment: In Projector, user-supplied text 
describing a particular revision, file, or project. 

617 



console: The window where a command is 
entered and executed (standard input). Also, 
the window to which the command's output is 
returned (standard output). 

current project: In Projector, the name of the 
current project. Projector assumes all actions 
pertain to this project unless a different project 
is specified with the -project option. 

current selection: The currently selected text 
in a window. In editing commands, the current 
selection in the target window is represented by 
the§ metacharacter. 

data fork: The part of a file that contains data 
accessed via the Macintosh File Manager. 

data initialliation interpreter: The module 
_DATAINIT in the libraries Runtime.o and 
CRuntime.o. 

dead code: In the linker, modules that cannot 
be reached from any references available, given 
a main module. See "Dead Code" in Chapter 8 
for more information. 

dependency file: A makefile. 

dependency line: In Make, the first line of a 
dependency rule. See also: dependency rule. 

dependency mle: In Make, a rule that 
specifies the prerequisite files of a given target 
file, along with a list of the commands needed 
to build the target file. 

dependent: In a Commando dialog, a control 
that is enabled or disabled depending on the 
state of its parent control. 

derez: To decompile a resource file by using the 
MPW resouce decompiler, DeRez. 

desk accessory: A "mini-application," 
implemented as a device driver, that can be run 
at the same time as an application. Desk 
accessories are files of type DFIL and creator 
DMOV, and are installed by using the Font/DA 
Mover. 

device driver: A program that controls the 
exchange of information between an 
application and a device. 

618 MPW 3.0 Reference 

diagnostic output: Commands and tools send 
error and progress output to diagnostic output 
(by default, the window where the command 
was executed). You can redirect diagnostic 
output to another file, window, or selection 
with the 2:: and >> operators. Diagnostic output 
is also referred to as "standard error." 

dialog: In Commando, the programmed 
interaction between a user and a tool or script. A 
dialog may utilize more than one dialog box. 

dialog box: A window that appears when a 
command is invoked, offering options and 
parameters. 

Directed Acyclic Graph: The MPW linker 
creates a tree of all reachable modules from a 
given main module. See "Dead Code" in Chapter 
8 for more information. 

Editor: When appearing with initial capitals, 
the built-in commands appearing in MPWs Edit 
menu, a part of the MPW Shell. 

entry point: A location (offset) within a 
module. 

escape character: The Shell escape character is 
a (Option-D). It is used to disable (or "escape") 
the special meaning of the character following 
it, to continue commands over more than one 
line (dRetum), and to insert invisible characters 
into command text. 

external: A module, entry point, or segment 
that can be referenced from different object 
files. 

external reference: A reference to a routine or 
variable defined in a separate compilation or 
assembly. 

file information: Information maintained by 
Projector on a per-file basis. Examples are: 
Author, last Modification Date, and Comment. 

filename: A sequence of up to 31 printing 
characters (excluding colons), that identifies a 
ftle. See also pathname. 

file type: A four-character sequence, specified 
when a file is created, that identifies the type of 
file. (Examples: TEXT, APPL, MPST.) 



Finder information: Information that the 
Finder provides to an application upon starting 
it, telling it which documents to open or print. 

Font/DA Mover: An application, available on 
the System Tools disk, used for installing desk 
accessories in the System file. 

full pathname: See pathname. 

HFS: Hierarchical File System used on SOOK 
disks and the Apple hard disks. 

ID: A file-relative number for identifying a 
module, an entry point, or a segment, within a 
single object file. 

insertion point: An empty selection range; that 
is, the character position where text will be 
inserted (marked with a blinking vertical bar). 

Integrated Environment: A set of routines, 
modeled on the C language, that provide 
parameter passing, access to variables, and 
other functions to MPW tools. (See Chapter 12 
and Appendix F.) 

interface routine: A routine called from C, 
Pascal, or Assembler whose purpose is to trap to 
a certain ROM or library routine. 

jump table: A table that contains one entry for 
every routine in an application or MPW tool, and 
is the means by which the loading and unloading 
of segments is implemented. 

leafname: A partial pathname that contains no 
colons. A leafname might be a directory and a 
filename, such as "Tools:ResDet" or simply a 
filename. MPW assumes the default directory. 
See also: pathname and partial pathname. 

literal: In the resource compiler, Rez, a value 
within single quotation marks. (See Chapter 8.) 

local: A module, entry point, or segment that 
can be referenced only from within the file where 
it is defined. 

location map: The linker can write to standard 
output a map of memory segments sorted by 
segNumand segO!fset. (See Chapter 10.) 

locked revision: In Projector, a revision 
currently checked out for modification. 

main segment: The segment containing the 
main program or procedure. 

makefile: Used by the Make command, a file 
that describes dependencies between the 
various pieces of a program, and contains a set 
of commands for building UJrto-date files. The 
default makefile is named Makefile. 

module: A contiguous region of memory that 
contains code or static data. A module is the 
smallest unit of memory that is included or 
removed by the linker. 

mounted project: In Projector, a project that 
is not nested within another project Similar to 
the root directory on a volume. You can mount 
several projects, just as you can mount several 
volumes. You can access all projects under the 
mounted project. 

MPW Shell: The application that provides the 
environment within which the other parts of the 
Macintosh Programmer's Workshop operate. 
The Shell combines an editor, command 
interpreter, and built-in commands. 

MPW tool: An executable program (type 
MPST) that is integrated with the MPW Shell 
environment (contrasted with an application, 
which runs stand-alone). Like applications, tools 
exist as separate programs on the disk. 

name: In Projector, an identifier that represents 
a set of files, revisions, and branches, with the 
restriction that a name can refer to only one 
revision in any one file. 

non-HFS: The nonhierarchical file system, used 
on 400K disks and Macintosh XL hard disks. 

option: A command-line switch, specifying 
some variation from a command's default 
behavior. Options always begin with a hyphen (
). 

orphaned file: In Projector, a file that belongs 
to a project, but whose resource fork no longer 
contains the information that Projector needs 
to determine to which project it belongs. 

GLOSSARY 619 



parameter: The words following the keyword in 
a simple command. There are two types of 
parameters: options and files. Note that certain 
parameters, such as 1/0 redirection, are 
interpreted by the Shell and never seen by the 
command itself. 

parent: In Commando, an option or control 
whose status detennines whether a dependent 
option or control is enabled or disabled. 

partial pathname: A pathname that either 
contains no colons or has a leading colon. See 
also: leafname. 

pathname: A sequence of up to 255 characters 
that identifies a file, directory, and/or volume. 
Afull pathname contains embedded colons but 
no leading colon. It specifies volume: 
directory: .. filename. A partial pathname either 
contains no colons or has a leading colon. A 
partial pathname is convenient to use if the file 
is located in the current default directory. A 
lea/name is a partial pathname that contains no 
colons. See also: leafname, partial pathname. 

pattern: A literal text pattern (such as 
I ABCDEFG!), or a regular expression. Patterns 
are a case of selection and always appear 
between the pattern delimiters I .. ./ or \ ... \. 

pipe: The command tenninator I is the pipe (or 
pipeline) symbol. It causes the output of the 
preceding command to be used as the input for 
the subsequent command. (See Chapter 5, 
Table 5-1.) 

position: In editing commands, position refers 
to the location of the Insertion point. 

prefix: The directory portion of a filename. 

prerequisite me: In Make, the files that must 
exist or be up-to-date before the target file can 
be built. 

project: In Projector, a set of files that may 
include other projects (subproject). 

project directory: The directory in which 
Projector maintains all the project-management 
information about a given project. 

620 MPW 3.0 Reference 

project file: In Projector, the file (always named 
ProjectorDB) in which an entire project is 
maintained. There is one and only one project 
file within every project directory. 

project information: Information maintained 
by Projector on a per-project basis, including: 
author, last modification date, and comment. 

project name: In Projector, the name of a 
project as well as the name of the directory 
containing that project. 

ProjectorDB: In Projector, the name of the 
database file in which Projector stores all 
information about projects, their revision trees, 
revisions, and branches. 

project tree: In Projector, the set of mounted 
projects 

pseudo-filename: Any device name that you 
can use in place of a filename but that has no 
disk file associated with it. Any command can 
open a pseudo-filename. These are most often 
used for I/0 redirection. 

quotes: A set of characters that literalize the 
enclosed characters, used for disabling special 
characters. The quote symbols are ' ... ', " ... ", 
\ ... \, and/ .. ./. The escape character, a, quotes 
the character that follows it. 

reference: The location within one module that 
contains the address of another module or entry. 

regular expressions: A language for specifying 
text patterns, using a special set of 
metacharacters. (See Appendix B, Table B-2.) 

regular expression operators: A special set 
of rnetacharacters used in regular expressions 
and filename generation. (See "Pattern 
Matching" in Chapter 6.) 

resource: Data or code stored in a resource file 
and managed by the Macintosh Resource 
Manager. 

resource attribute: One of several 
characteristics, specified by bits in a resource 
reference, that detennine how the resource 
should be dealt with. 



resource compiler: A program that creates 
resources from a textual description. The MPW 
resource compiler is named Rez. 

resource description file: A text file that can 
be read by the resource compiler and compiled 
into a resource file. The resource decompiler 
disassembles a resource file, producing a 
resource description file as output. 

resource file: Common usage for the resource 
fork of a Macintosh file. 

resource fork: The part of a file that contains 
data used by an application, such as menus, 
fonts, and icons. An executable file's code is 
also stored in the resource fork. 

revision: In Projector, an instance of a file in a 
project. A new revision is created each time a 
modified file is checked in. 

revision information: Information maintained 
by Projector on a per-revision basis. Also known 
as the current state of a revision. For unlocked 
revisions this includes: Author, Creation date, 
Comment, and Task. For locked revisions the 
information is: Author (person who checked out 
the file), Check-out Date, and Task. 

revision tree: In Projector, the composite 
history of a file; that is, all the revisions and 
branches made to a file. The revision tree for a 
file can be displayed via the Status command or 
by double clicking a filename in the Project 
hierarchy frame of the Check In and Check Out 
windows. 

root: In a makefile, a top-level target that is not 
a prerequisite of any other target. 

scaling: In graphics, to shrink or expand an 
image. See Appendix G: The Graf3D library for 
more information. 

scope: In Projector, the current project 

script: An ordinary text file (type TEXT) 
containing a series of commands. The entire file 
can be executed by entering the filename. A 
script is also referred to as a command file or 
command script. 

segment: One of several parts into which the 
code of an application may be divided. Not all 
segments need to be in memory at the same 
time. 

selection: A series of characters, or a character 
position, at which the next editing operation 
will occur. Selected characters are inversely 
highlighted in the active window, and outlined 
in other windows. A selection is used as an 
argument to most editing commands and can be 
specified by using a special set of selection 
operators. (See Appendix B, Table B-1.) 

signal: An event that diverts program control 
from its normal sequence. (See Chapter 12.) 

signature: Each Macintosh application has its 
own unique signature (or creator). For example, 
creating a file with the type DFII. and signature 
DMOV tells the Font/DA Mover that this file 
contains desk accessories. See the Finder 
Interface chapter·of Inside Macintosh. 

simple command: Any command consisting 
of a single keyword followed by zero or more 
parameters. 

standard error: See "diagnostic output." 

standard input: Input to a command, usually 
typed directly into the active window (the 
console). 

standard output: Output produced by most 
commands that is returned to an open file, 
usually the window in which its command or 
program was typed. 

Startup file: A special command file containing 
commands that are executed each time the Shell 
is launched. Startup executes a second 
command file called UserStartup. 

status panel: The panel in the lower left comer 
of the Worksheet window. The status panel 
shows what command MPW is executing. 
Clicking in the status panel is equivalent to 
pressing the Enter key. 

GLOSSARY 621 



status value: A code returned by commands in 
the Shell variable {Status}. Zero indicates 
successful completion of the previous 
command, and other values usually indicate an 
error. 

structured command: Any command that 
controls the order in which other commands are 
executed. For and If are examples of structured 
commands. All structured commands are built 
into MPW and usually have more than one 
keyword. See also simple command. 

subproject: In Projector, any project 
contained within another project. Subprojects 
may, in tum, contain other subprojects. 

target selection: The current selection in the 
target window, represented by the § character. 

target me: In Make, a file that is to be rebuilt 
and that depends on one or more prerequisite 
files. 

target window: The second window from the 
front-this is the default target for editing 
commands that are entered in the active 
window. The Shell variable {Target} always 
contains the name of the current target window. 

task: In Projector, a short description of the 
task that a user accomplished with a revision. 

{task}: In Projector, the name of the current 
task. It appears in the Check Out and Check In 
windows as the default task. 

tool: See MPW Tool 

type declaration: In the resource compiler, a 
statement that specifies the pattern for any 
associated resource data by indicating data 
types, alignment, size, and placement of strings. 

translation: In graphics, movement anywhere in 
three-dimensional space.-See Appendix G: The 
Graf3D library for more information. 

tronk: In Projector, the main sequence of 
revisions to a file. Branches from any revision 
are always named and numbered with respect to 
the trunk. 

users: In Projector, those persons with access 
to the mes of a project. 

622 MPW 3.0 Reference 

{user}: In Projector, the name of the current 
user. Projector logs this name with all 
transactions. You can override this name by 
specifying a different name with the -u option 
available in all Projector commands. 

user interface: The system or set of 
conventions by which the user interacts with 
software. In addition to the standard Macintosh 
mouse-and-menu interface, MPW includes both 
a command language and a dialog user interface 
(Commando). 

word: A single, blank-separated element in a 
command. A command name and each of its 
parameters are separate words in the command 
language. 

Worksheet window: The main work area in 
MPW; the window usually used as the console. 



Index 

cast of Characters 

$$Attributes 337 
$$BitField 337 
$$Byte 337 
$$Date 336 
$$Day 336 
$$Format 336 
$$Hour 337 
$$ID 337 
$$Long 337 
$$Minute 337 
$$Month 337 
$$Name 336 
$$PackedSize 337 
$$Resource 337 
$$resource directive 255 
$$ResourceSize 338 
$$Second 338 
$$Shell 337 
$$Time 337 
$$Type 338 
$$Version 337 
$$Weekday 338 
$$Year 338 
%A5Init 290 
%Globa1Data 289 
_ IOSYNC bit 365-66 
_RTExit 379 

RTinit 377-78 
f character 167 
§symbol 162, 167, 178 
• symbol 

in panem matching 189 
oo character 167, 189 

a character 128, 148, 184 
invisibles 189 
literalizing 185 

an symbol 178 
I character 227 
f rule 268 

A 

abstract target 268 
accessing MPW command-line parameters 

in Assembler 358 
inC357 
in Pascal 357 

accessing resource data 325 
accessing Shell commands 

in Assembler 358 
in Pascal 357 

accessing the Shell 
Assembler 353 
C352 
Pascal 351 

active window 89, 167, 174 
Adding libraries to Build commands 261 
AddMenu 

use of 48 
AddMenuAsGroup 169 
addressing 

AS-relative 287 
PC-relative 288 

alias 
definition 132 
use in case of error message 133 

annotated list of commands 94 
annotated list of special characters 94 
AppleShare 

use with Projector 200 
application 

structure of 244 
applications 37 

INDEX 623 



difference from MPW tools 351 
running outside Shell 129 

argc 357 
argv 357 
arrangement of MPW file 40 
Assembler 33 
attributes 

in Rez 310 

B 

backquote key 144 
backquotes 144 
backslashes 148, 149 
blank interpretation 150 
'BNDL' resource 243 
branching 

definition 199 
in Projector 218 

bucket counts 
performance measurement 452 

buffering 
buffer initialization procedure 365 
MPW Shell input/output 358 
standard I/0 buffering 366 
stdio 364 
warning about use of file descriptors with 

FILE variable 366 
Build menu 

introduction 49 
tutorial 50 
modifying 259 

building 
desk accessories 

limitations 258 
location of code 258 
result code 257 

desk accessory 254 
steps in building 251 

driver 254 
steps in building 251 

drivers 
calling sequence 257 
structure of 257 

MPW tools 350 
stand-alone code resources 248 

624 MPW 3.0 Reference 

steps in creating 248 
building a program 

introduction 49 
new program 54 
steps 241 

bulldozer 194 
bundle bit 243 

c 
C compiler 34 
C ++ translator 34 
case sensitivity 186 
Caution 

on use of global variables 254 
cc 170 
changing directories 101 
characters 14 5 

asterisk 
in regular expressions 187 

case sensitivity of 186 
character list 186 
colon 183 
current selection 162, 167 
escape 148 
exclamation mark 179 

in filename generation 145 
infinity 167 
integral character 227 
invisible 189 
literalizing 185 
negation 186 
newline 178 
plus sign 

in regular expression 187 
® oeprator 188 
·regular expression operators 

table of 184 
returns in command definitions 155 
slashes 182 
special 147-48 

use of 160 
close function 370 
code resources 

controlling the numbering of 290 
' CODE ' resources 244 



colons 
use in Projector 227 

command aliases 132 
command language 173 

editing with 166 
command line 

executing selected text 92 
Command-Enter 163 
Command-period 92 
Command-Return 91 
Commando 36, 391 

accessing files and directories 427 
boxes 406 
changing the size of a dialog box 395 
check boxes 108, 402 
Cmdo.r 397 
creating dialogs 392 
declaring lines and boxes around controls 395 
default values of popup menus 409 
dependencies between controls 418 
dependency 

direct 418 
on the Do It button 421 
inverse 419 
multiple dependencies 421 
on radio buttons 422 

designing dialog boxes 392 
dialogs introduction 104 
dynamically changing strings 396 
editing controls 393 
editing dialogs 393 
editing Help messages 395 
editing labels 395 
ellipsis character to invoke 105 
Files control 427 
font size dependency 412 
handling of options 401 
icons 417 
invoking built-in editor 393 
invoking Commando 105, 391 
lines 406 
list control 414 
moving controls 394 
MultiFiles 

control 430 

directories 111 
files and directories for input only 436 
files and/or directories 112 
files for output 438 
input files 110 
nested dialog boxes 423-425 
output file with specifications 113 

new directories 114 
Multiregular entry control 401-402 
pictures 417 
pop-up menus 409-411 
pop-up variations 109 
radio buttons 108, 404 
redirection 425-426 
regularentrycontrol399-400 
resource dependency file 

redirection of 425-426 
resource description file 397 

case conventions 397 
ID and name 397 
numbering of items 418 
size of dialog box 398 
tool description 399 

sample resource 442-445 
saving modified dialogs 396 
shadow pop-up menus 109 
Shell variables 396-397 
single input or output file 112-113 
sizing controls 394 
special dialog box controls 114, 116, 118, 119 
standard dialog box controls 107-119 
repeatable options 108 
text edit fields 399 
text parameters 107 
text title embedded in box comer 407 
text titles 406-407 
three-state buttons 415-417 

using Commando dialogs 
introduction 106 

commands 167 
AddMenu 168, 169 
Alert 162 
Alias 

hints for using Alias 91 

INDEX 625 



Align69 
Auto-Indent 69 
Begin ... End 154 
blanks in command lines 126 
Break 154 
Build 85 

include dependencies 261 
C170 
Catenate 

use of 163, 164 
Check In 80, 204 
Check Out81 
Checkln 204-212, 219 
CheckOut 212-217 

use with names 232-233 
CheckOutDir 224-226 
Clear68 
Close 64 
comments 128 
Compare 304 
continuation of line 128 
Continue 155, 156 

-Copy67 
Count, use with Files command345 
Create Build Commands 84 

customizing its makefile 261 
CreateMake 259, 260 
Cut67 
DeleteMenu 168 
DeRez 303-305 

-e option 340 
use of 304-305 

difference between menu commands and 
language equivalents 166-167 

Directory 101-102 
changing directories 101 

Display Selection 71 
double-/ dependency 269 
DumpObj 

transforming output 192 
Duplicate 144 
Echo 157 

use of 146, 321 
entering and executing 89-91, 124-125 
Exit 155 

626 MPW 3.0 Reference 

Export 142 
example of use 143 

expressions used in 157-160 
file-management 95-97 
Files 

use of 144 
Files, use with Count 345 
Find dialog box 70 

finding a whole word 193 
menu70 
use in forward and backward searches 
190 
use of 175, 180 

Find .Same 71 
Find Selection 71 
For 154 
Format dialog box 68 
For ... End 156 
Full Build 85 
Help 93-95 
If 154 
input/output specifications 156 
interpretation of 150-151 
interpreter 125 
keywords 155 
lib 296-298 

-df option 287, 298 
how optimizing works 297 
to combine input files with link 296 

line continuation character 276 
link 241-247 

-ma option 292 
-map option 294 
-p option 289, 298 
-ss option 289 
-uf option 287, 298 
code resources 290 
use of 287 
use with RAM cache 296 

list open windows 79 
listing in Mark menu 75 
loop 156 
loop ... End 154 
Make 



-s option 278 
-u option 278 
-v option 278 
caution about command generation 
before execution 278 
caution about default rules 279 
caution about specifications for same 
file 279 
contents of data fork 271 
debugging makefiles 278 
order of building targets 277 
output execution 276 
phase errors 278 
quoting conventions in 275 
sample makefile 279-283 

Mark 76-77, 180, 181 
Markers 180-182 
menu 

defining your own 168 
MountProject 224 
NameRevisions 

use of 231 
use with names 233 

names of 126 
negative status 125 
New dialog box 63 
New Project 79-80, 201-202 
Open dialog box 64 
Open Selection 64, 89 
Page Setup dialog box 65 
parameters 126, 157 

use of 146 
Paste 68 
PerformReport 467-468 
Print 66 
Print Window 65 
Project 224 
Projectlnfo 220 
Projector command summary 238 
Quit 66 
Replace 71, 187 

reformatting tables 188 
transforming DumpObj output 192 

Replace Same 71 

ResEqual 304 
Revert to Saved 65 
Rez 303 

use in building a program 305 
Save 64 
Save a Copy 65 
Save As 65 
scripts 130 
Select All 68 
Set 142 

use of 133 
Set Directory 82 
SetFile 

use of 243 
Shift 157 
Shift Left/Right 69 
Show Clipboard 68 
Show Build Commands 85 
Show Directory 82 
Show Full Build Commands 85 
Show Invisibles 69 
simple comrnands128 
Stack Windows 78 
structure of 126 
structured 128, 153, 155 

conditional execution 155 
pipe specifications 155 
table of 154-155 
warning on closing parenthesis 153 

structured commands 
substitution 144 
Tabs 69 
Tile Wmdows 78 
to modify parameters 157 
types of 124 
Undo67 
Unexport 143 
Unmark 77, 181 
Unset142 
use of parenthesis 154 

comments 
in makefiles 276 

CompareRevisions 223 
compilers 

Rez, DeRez 303-304 

INDEX 6'l:7 



concurrent MPW 45 
concurrent Shell 45 
conditional execution operators 127 
console 90, 160 
control loops 156 
conversion tools 37 
CRuntime.o 247 
current selection character 98, 162, 167 
CursorCtl.p 352 
customized icons 243 
customizing 

D 

Build menu 259 
Directory menu 259 
makefile of Create Build Commands 261 
menu commands 168 
project names 224 
sample scripts 168 
Startup and UserStartup 131 

DATA directives 
in desk accessories 258 

data fork 244 
data initialization interpreter 288 
dead code 

stripping 249 
debuggers 38 

. defaults 
customizing Startup 131 

delimiters 
slashes 182 

dependency rules 267-269 
dependency 

in Commando 418-423 
DeRez 303-340 

use with Commando 393 
desk accessories 

programming hints 258 
warning on segmentation 288 

desk accessory 
building with DRVRRuntime.o 256-257 
header details 256 
resource ftle 254 

Dev 
Console 166 

618 MPW 3.0 Reference 

Null l(i6 
StdErr 166 
Stdin 166 
StdOut 166 

diagnostic output 160, 164--165 
dialog 25 
dialog boxes 391 
Directed Acyclic Graph 249 
directories 98-100 

listing 100 
name82 
naines warning 83 

Directory menu 81-83 
tutorial 50-51 

DisposHandle, use of 348 
drivers 

structure of 257 
warning on segmentation 288 

'DRVR' resource; 241 
DRVRClose 257-258 
DRVRControl 257-258 
DRVROpen 257-258 
DRVRPrime 257-258 
DRVRRuntime library 251, 255-258 
DRVRRunt ime.o 253 

advantages 256 
DRVRStatus 257-258 
'DRVW' resource 256 
dummy control 

use in Commando 422 
dummy segment-mapping directives 290 

E 

editing 89, 173-175 
Commando dialogs 393-395 
commands 29 
extending a selection 183 
finding a whole word 193 
forward and backward searches 190 
markers 180 
parameters 174 
pattern 182 
pattern matching 183 

at beginning or end of line 189 
position 180 



reformatting tables 188 
selection 175 

by line number 179 
solving selection difficulties 191 
with command language 166-167 

ellipsis 
in Commando 391-392 
use with Commando 105 

Enter key 91, 359 
as status panel 47 

entering commands 89-91 
entry point 

in linking 291 
envp 377 
ErrMgr.p 352 
Error information 

ermo361 
MPW Shell 362 

error message 
use of alias for tracing 133 

escape character 
with invisibles 189 
for literalizing 185 
in Rez 340 

escape conventions 
table of 150 

examples 39 
commando resource 442-445 
finding a whole word 193 
labels in Rez 329 
makefile for CDEF resource 249-251 
Memory 253 
MPW tools 351 
performance-measurement output file 464-

465 
sample desk accessory 

Memory 259 
sample resource description file 307, 323 
sample resource type statement 319 
transforming DumpObj output 192 

exit 379-380 
experiments 199 
exporting variables 142-143 
expression operators 

in resource description statements 335-336 
order of precedence 158 

table of 158 
expressions 157 
extending a selection 183 
external 

in linking 291 

F 

F _DELETE 380 
F _ GFONTINFO 380 
F _ GPRINTREC 381 
F _ GTABINFO 380 
F_OPEN382 
F _RENAME 380 
F _ SFONTINFO 381 
F _ SPRINTREC 381 
F STABINF0380 
faccess 380-382 
fcntl 373 
file creator 

DMOV254 
file dependencies 

Make 35 
file-management commands 27 
file names 97-98 
file organization 

in Projector 235 
file type 'MPSP' 235 
file types 247 

APPL 247 
DFIL 247, 255 
MPST 247 
setting with Link, Rez, or SetFile 247 
TEXf 247 

file-relative scoping conventions 297 
filenames 

generation 145, 151 
pseudo-filenames 165-166 

files 
created by Directory and Build menu 

commands 260 
listing 100 
resource description 

structure of 306 
standard type declaration 304 

Find-and-Replace dialog 

INDEX 629 



regular expression 74 
selection by line number 73 
wildcard operators 74 

Finder 
compared to MultiFinder 349 

FIOBUFSIZE 374 
FIOFNAME 374 
FIOINTERACTIVE 374 
FIOREFNUM374 
FIOSETEOF 374 
font/font size 

important note 68 
'FREF' resource 243 
full pathname 98 
G 

getenv 376 
global variables caution 254 
globals 

use in desk accessories 258 

H 

hardware interrupt 
comparison to signal handling 384 

heap managemen~ of MPW Shell 349 
hints 

I 

automatic selection 182 
Commando 

declaring lines and boxes around 
controls 395 

solving difficulties with large scripted 
operations 194 

solving selection difficulties 191 
troubleshooting command lines 152 
use of aliases in tracing error messages 133 
use of line script in tracing error messages 

133 
using Alias 91 
using {DirectoryPath} 102 

'ICN#' resource 243 
IEGetEnv 377 
IEIOCtl 374 
IEOnExit 379 

630 MPW 3.0 Reference 

IEStandalone 375 
if-then-else processing 

in Rez preprocessor directives 332 
include dependencies 

Build commands 261 
index 

flags 596 
infinity symbol 

in pattern matching 189 
InitGraf 347 
InitPerf 451, 459 
input 

standard 160, 162 
terminating with Command-Enter 163 

input/output 
buffering 358-359 

MPW C stdio 365 
FILE variables 366 
MPW Shell 358 
redirection 151, 160-162 

insertion point 
location of 180 

installation 43 
automatic 43-44 

Installer 43 
integral character 

use in Projector 227 
Integrated Environment 

MPW Assembler 353 
MPW Pascal 352 
Shell J/0 routines 

MPW Assembler 369 
MPWC368 
MPW Pascal 368 

signal handling 384 
MPW Pascal 384, 385 

IntEnv 357 
IntEnv.p 352 
interface files 

MPW Assembler 353 
MPW Pascal 352 
{Perf .h} 450 
{Perf.p} 450 

invisible characters 62, 189 
Show Invisibles command 69 



J 
jump table 289 

L 

labels 
in resource description statements 326, 512 

leafnames 99 
libraries 

DRVRRuntime library 255-257 
dummy library routines 351 
guidelines for choosing files 299 
MPW 

overview 343-344 
MPW Assembler 353 
MPW Pascal 352 
object files 261 
specialized 297-299 
{Performllb.o} 450 

library.Paslib.o 352 
library.Toollibs.o 352 
line number 179 
line script 133 
link 34 

-m option 247, 248 
use with main modules 249 

-rt option 248, 253 
-sg option 248, 253, 254 
-sn option 248, 253 
-w option 246 
introduction to 244 

link and Rez 
sequence of use 243 

linker 34 
linking 

choosing files for specialized library 299 
contents of an object file 287 
dead code 287 
desk accessory 253 
diagram 245 
driver 253 
introduction to 244 
libraries from different languages 246 
location map 294 
MPW tools 350 

multiple external symbol definitions 291 
numbering of code resource· 290-291 
removing unreferenced modules 298 
resolving symbol definitions 291 
segmentation 2~289 
unresolved external symbols 292 
warning on addressing 287 
what to link with 245-246 

literal 
in Rez 336-338 

literal characters 185 
local 

in linking 291 
location map 294 
locked files 103-104 
logical operators 159 
looping 156 
lseek 373 

warning on use with 0 _APPEND 372 

M 

MacOSErr 362 
MacsBug 38 
main entry point 248 
main trunk 

in Projector 230 
Make 35 

abstract target 268 
makefile 263 

build command lines 267 
built-in default rules 271 
comments 276 
CreateMake 

libraries 261 
debugging 278 
default rules 270 
dependency line 267 
dependency rule 267 
directory dependency rules 272 
double{ dependency rules 269 
format of 265 
input limits 266 
overriding default rules 270 
prerequisite file 265 
root 265 

INDEX 631 



sample makefile 279 
Shell variables 273 
target file 265 
variables 273 

built-in make275 
defining variables within a makefile 274 
overriding 271 
precedence of Shell and Make variables 
274 
{AOptions} 271 
{Asm} 271 
{COptions} 271 
{C} 271 
{Default} 272, 275 
{DepDir} 272, 275 
{NewerDeps} 275 
{Pascal} 271 
{POptions} 271 
{TargDir} 272, 275 
{Targ} 275 

makefiles 
markeIS 75, 180-182 

programmatic use of 181-182 
range of 181 

memory management 
in performance tools 449 

memory map 
MPW tools 348 

memory, ways to increase 349-350 
menu commands 48, 62-86 

defining your own 168 
menus 

Build menu 83-86 
checks, bullets, underlinings 79 
Directory menu 81-83 
Edit menu 67-71 
File menu 63-66 
Find menu 70-75 
Mark menu 75-77 
Project menu 79-81 
user-defined menus 86 
Window menu 78-79 

merging 
in Projector 219 

632 MPW 3.0 Reference 

modules 
in linking 287, 291 
unreferenced 298 

MPW Assembler 
IMPORT directives 353 
libraries 352 

MPW dialogs 391 
MPW Pascal 33 

libraries 353 
{MPW}ROM.Maps 450 
MPWShell 

definition 25-26 
features 61 
heap 349 
input/output 358-359 
input/output buffering 358-359 
memory management 347-348 
selection abilities 361 
stack 349-350 
status codes 345-346 
window handling 360-361 

MPWtools 32 
caution on initialization 346 
conventions 344-345 
how to build 350-351 
how to link 351 
how to write 

Lib 

dialog interface 391 
overview 343-344 

use with perfonnance measurement 469 
memory management 347-350 
performance-measurement 449-458 
PerformReport 450, 463, 466 

using -e option 468 
QuickDraw 347 
restrictions 346 
stack 349-350 
status codes 345-346 

MPW utilities 
overview 343-344 

MPWI'ypes.r 251, 304 
MultiFinder 

compared to Finder 350 
cursor control 345 



use with MPW 44-45 
multilingual programs 

a caution 247 
combining with lib 29~297 

multitasking 44, 345 

N 

names 
command names 126 
in Make 279 
pseudo-filenames 165-166 

nested dialog boxes 90 
number sign 128 
numbers and literals 159 

in resource description syntax 334-335 

0 

0 _APPEND 369 
O_CREAT 369 
O_EXCL369 
0 _ RDONLY 369 
O_RDWR369 
O_RSRC369 
O_TRUNC369 
0 WRONLY369 
object files 

contents of 287 
multiple external symbol definitions 291 
records 567 
unresolved external symbols 292 

operators 
regular expression 146 

optimizing 
links 296 
program load time 290 

Option-Enter 105, 391 
Option-Return 69 
orphan file 

in Projector 208 
output 

diagnostic 160, 164 
standard 160, 164 

p 

parameters 
commands for modifying 157 
count 174 
editing 174 
in programming the MPW Shell 355-356 
selection 174, 175 

current selection 178 
operators 
order of precedence 177 

window174 
parent 

in Commando 418 
pathnames 98 

quotes and special characters 102 
variables 102 

patterns 182 
pattern matching 183 

at beginning or end of line 189 
PC 

in performance measurement 451 
PerfControl 451, 456, 460-461 
PerfDump 451, 457, 461-462 
{Perf .h} 450 
{Perf.p} 450 
{PerformLib.o} 450 
performance measurement 449-458 

AS at interrupt time 469 
adding identification lines to a data file 467 
analyzing results 466-467 
bucket counts 452-453 
checksum failures 469 
conditional flag 453 
dirty CODE segments 469 
dumping the results 457 
implementation issues 468-470 
initializing the tools 455-456 
Ini tPerf 455-456 
interpreting the report 468 
locking the interrupt handler 469 
moveable code resources 470 
.MPW C routines 458-462 

InitPerf 458-460 
PerfControl 451, 456. 460-461 
PerfDump 451, 461-462 

INDEX 633 



TermPerf 462 
MPW Pascal routines 

InitPerf 458-460 
PerfContr~l 451, 456, 460-462 
PerfDump 451, 457, 461-462 
TermPerf 462 

output file 463-467 
PerfControl 456 
PerfDump 457 
PerfGlobals 456 
Perf ormReport 450, 467 
pointers 453 
probable hits 468 
procedure for use 453-458 
Program Counter sampling 451-452 
provide pointer to a block of variables 455 
referencing the interface file 454 
reports 463-467 
restriction on use with VIA Timerl 452 
segmentation 469 
tenninating cleanly 457 
TermPerf 457 
tools37, 449-452, 453-457 
turning on the measurements 456 
warning on low sampling interval 452 
warning on terminating cleanly 455 

PeifonnReport 450, 467 
using -e option 467 

Pictr 304 
pipe symbol 

as terminator 127 
piping, example of 345 
point types 315-316 
• ppa t ' definition:expressed in Rez, an 

example 328-329 
predefined ROM IDs and names 460 
preprocessor directives 

expressed in Rez 330-333 
probable hits 

in performance measurement 468 
Program Counter 

in performance measurement 451 
programming hints 

building desk acce~ories 258 
programming the MPW Shell 

634 MPW 3.0 Reference 

Commando dialog interface 391 
files to link with 355 
I/0 routines 

MPW Assembler 369 
MPWC368 
MPW Pascal 368 

MPW Assembler 353-355 
RTExi t function 354 
RTini t function 354 

MPW Pascal 352-353 
parameters 355-358 
signal handling 383-387 
standard I/0 channels 358-359 

project management 36 
commands 28 
about Projector 197 

Projector 36, 197-238 
access privileges 200 
adding new files to a project 207-208 
administration 234-236 

moving, renaming, and deleting 
projects 234 
retrieving information 22(}-222 

author 224 
automatically opening a revision 211 
branching 199 

branch check box 215 
creating branches 218-219 
identifying branches 230 
merging branches 219 

cancelling check out 216 
caution on deleting projects 234 
caution on deleting revisions 235 
caution on use with certain applications 199 
changing revision tree 218-219 
Check Out button 211 
check out default 217 
checking out a particular revision 216 
checkout directory 203, 212, 224-225 
• ckid' resource 236 
colons 227 
command parameters 

order of precedence 226-227 
command summary 238 
comments 200 



comment field 213 
comparing revisions 223 
components of 223-233 
Delete Copy radio button 207 
deleting revisions 235 
difference between text and nontext files 228 
discarding changes 216 
displaying a file's revision tree 230 
experimental projects 199 
file organization 235 
icons 236-237 
Info View 216, 220 
Keep Copy radio button 207 
limitations 200 
main trunk 230 
Modifiable button 211, 214 
modifiable read-only file 215 
modification date 209 
moving, renaming, and deleting projects 234 
multiple users 200 
names 

limitations 231 
private 233 
public 233 
symbolic names 231 
user names 230 

Nested projects 203, 224, 226-227 
New Project 201-204 
Option Key, use of 214 
pathnames 227 
ProjectDB file 224, 235 
projects 197, 224 

. data 220 
directory 203, 224, 235-236 
list 210 
lc:ation 224 
menu79 
trees 209 

radio buttons 214 
Read Only button 214 
renaming a project 209 
retrieving filtered information 221 
retrieving information 22(}..223 
revisions 198, 228 

button 208 

data 228 
number199 
numbering of 229 
trees 228-229 

sample project 21(}..211 
check-out configuration 225-226 

Select All button 211, 213, 214 
Select Newer button 213 
selecting revisions by symbolic name 216 
selection criteria 221-222 
Show All Files check box 207 
subprojects 224, 226-227 
task field 200, 213 
Touch Mod date 208, 215 
tutorial 201-207 

checking in a revision 204-209 
checking out a revision 209-217 
creating a new project 201-202 
locating a project 209 

user field 207, 213 
user privileges 230 
using CheckOut 217 
View By dialog box 221-222 
warning on 'ck id' 208 
warning on orphan files 208 

ProjectorDB file 224, 235 
projects 

definition 197 
protected bit 

in resource description statements 322-323 
pseudo-filenames 165-166 

table of 166 

Q 
Quit 131-132 
quoting 146-149 

R 

in makefiles 275-276 
quoting spaces 149 

RAM cache 46 
with link 296 

read370 
read-only files 103-104 

INDEX 635 



rectangle types 316 
redirecting input/output 160-162 
redirection 

in Conunando 425-426 
reference 

in linking 291 
refonnatting tables 188 
regular expression operators 183-185 

asterisk character 187 
character expressions 185 
character list 186 
examples 191-193 
finding a whole word 193 
forward and backward searches 190 
inserting invisibles 189 
matching pattern at beginning or end of line 

189 
negation symbol 186 
plus sign 187 
repeated 187 
table of 184 
tagging 188 
transforming DumpObj output 192 
wildcard operators 186 
® operator 188 

ResEdit 38, 241 
ResEqual.r 442 
resource attributes 311 
resource compiler see Rez 
resource declarations 304 
resource decompiler see DeRez 
resource description files 303 

Commando numbering of 418 
comments 306 
for Conunando 397 
preprocessor directives 307 
sample Commando resource 442 
structure of 306 
type declarations 306 

resource description statements 
$$countof 

use of 317 
align types 316 
array types 317-318 
boolean types 315 
built-in functions 325-326 

636 MPW 3.0 Reference 

change 321 
character types 314 
cstring 315 
data 311 
data-type 313 
delete 320 
escape characters 339-340 
fill types 317 
include 308-309 
labels 326-330, 512 

declaring in arrays 326-327 
examples 328-330 
limitations 327 

numeric types 313-314 
bitstring 313 
byte 313 
integer313 
longint313 

pstring316 
read310 
resource statements 323 
sample resource description file 323 
sample type statement 319 
special temlS 308 
string 315 
string types 314-315 
strings 338-340 
syntax 308, 335 

expressions 335-336 
numbers and literals 334-335 

type 311-312 
variables 336-338 
wstring315 

resource editor 
definition 38 

resource files 
creating and modifying 304-305 

resource fork 244 
resource types 

defining 306 
resources 

CDEF248 
LDEF 248 
MDEF 248 



owned by desk accessory 255 
WDEF 248 
XCMD248 

restrictions 
MPW tools 346-347 

Resume 131 
revision trees 197, 228-229 
revisions 

definition 197 
number198 

Rez 35, 303-340 
array types 317-318 
change resource data 321 
data statements 323-314 
delete a resource 320-321 
escape characters 339-340 
fill and align types 316 
point and rectangle types 315-316 
preprocessor directives 330-333 

if-then-else processing 332 
print directive 332-333 
variable definitions 331 

sample type statement 319 
specify actual resource data 322-323 
strings 338-340 
switch types 318-319 
symbolic definitions 319-320 
symbolic names 324 
variables 336-338 

Rez and link 
sequence of use 243 

Rincludes 251 
{Rincludes} directory 

contents 304 
Rincludes folder 

Cmdo.r 392 
ROM interfaces 

guidelines for special libraries 299 
ROM maps 450 

s 
SADE 38 
sample programs 49-50 
scoping 570-571 
scripts 31, 39, 168-170, 260 

AddMenuAsGroup 169 
CC170 
definition 130 
examples 168 
line 133 
parameters 141 
Quit 131 
referencing command parameters 126 
Repeat 156 
Resume 131 
special MPW scripts 131-132 
Startup 131 
Suspend 131 
use of pseudo-filenames 166 
used by Directory and Build menus 260 
useful commands for use in 157 
UserStartup 131 
UserVariables 139 
using variables 142 

search path 101 
segmentation 288-290 

case sensitivity of names 289 
length limit 289 

selection 175-193 
automatic 182 
by line number 179 
extending 183 
forward and backward searches 190 
markers 180-182 
MPW Shell abilities 361 
operators 
order of precedence 177 
pattern 182 
pattern matching 183 
position 180 
specifications 98 

selection expression 
Find-and-Replace dialog 73 

setting a file type 245 
setting protected bit on code resources 321 
setup of MPW files 40 
setvbuf 365 
Shell 

features 61 
file format 62 
summary of shortcuts 94 

INDEX 637 



summary of variables 94 
variables 377 

Shell commands 30 
SIG IGN 384 
signal 384-385 
signal handling 383-387 

caution about heap corruption 387 
MPW C 383, 385 
MPW Finder 383 
MPW Pascal 384, 385 
types 385 

Signal.p 352 
signature 247 
single f dependency 268 
slashes 147, 148 
software interrupt 

as signal handling 383 
specifying files with wildcards 103 
specifying pathnames with variables 102 
stand-alone code resources 248 
Standard VO buffering 364-366 
standard input 90, 160, 162 

important note 93 
standard output 90, 161, 164 
start up 46-48 
Startup 131 
Startup file 48, 131 
starus code 125, 345-346 
starus panel 47, 91, 124 
stderr 365-366 
st din 365-366 
stdio 365-366 
stdout 365-366 
storing Shell commands 

in &sembler 358 
in Pascal 358 

streams 365 
String 338-3405 

constants 
desk accessories 258 
operators 159 
Rez 340 

structured commands 29 
Stubs.o 351 
Suspend file 131 

638 MPW 3.0 Reference 

symbolic names 
in resource description statements 325 
in Rez 320 

symbols 145 
asterisk 

in regular expressions 187 
beginning of line metacharacter 189 
colon 183 
considered as separate words 150 
corrupt 'CKID ' resource icon 207, 236 
current selection 162, 167, 178 
end of line metacharacter 189 
escape character 

used to insert invisibles 189 
escape conventions 150 
exclamation mark 179 
expression operators 158 
expressions 157-160 
infinity 167 
integral 227 
lock icon 206, 212, 236, 237 
modified read-only icon 206, 236 
negation 186 
newline178 
pencil icon 206, 212, 236, 237 
plus sign 

in regular expression 187 
project icon 212, 237 
read-only icon 206, 236 
regular document icon 206, 212, 236, 237 
regular expression operators 

table of 184 
revision tree icon 212 
selection operators 176 
special 

use of 160 
® operator 188 

syntax 
in resource description statements 335 
resource description statements 

expressions 335-336 
Rez language 308 

SysTypes.r 304 



T 

tagging operator 159 
target window 89, 167, 174 
terminating input 163 
TermPerf 451, 462 
text patterns 

comparing 159 
Time Manager 

in perfonnance measurement 451 
TIOFLUSH 374 
tools 

editing, table of 175 
tutorial 49-57 
Types.r 304 
typing commands 90-91 

u 
UserStartup 131 

Directory and Build menu scripts 260 
UserVariables 139 
USES files 

Build commands with 261 

v 
variable 

{Targ} 268 
variables 

$$Attributes 309 
$$ID309 
$$Name 309 
$$Type 309 
ArgV357 
built-in makefile variables 275 
defined in Startup 135-138 

referenced by editor 137-138 
table of 136, 137, 138 

defining 142 
defining variables within a makefile 274 
defining with Set 133 
exporting 142-143 
extern variables 

in desk accessories 258 
hints for using {DirectoryPath} 102 
how to use in scripts 141 

IE String type 357 
in makefiles 273-276 
in Rez 336-338 
in Rez preprocessor directives 33~333 
names 134 
pathnames for libraries and Include files 138 
QuickDraw globals 

in desk accessories 258 
Rez string variables 310 
Shell variables in makefiles 273-274 
StandAlone 355 
static variables 

in desk accessories 258 
true/false values 134 
UN IT variables 

in desk accessories 258 
use of 133-134 
{Active} 135, 174 
{Alncludes} 138 
{Aliases} 135, 392 
{AOptions} 271 
{Asm} 271 
{Autolndent} 137 
{Boot} 135 
{CaseSensitive} 137, 186 
{Cincludes} 138 
{Clibraries} 138 
{Commando} 136, 392 
{Commands} 136 
{Command} 135 
{COptions} 271 
{C} 271 
{Default} 271 
{DepDir} 272 
{DirectoryPath} 140 
{Echo} 136 
{Exit} 136 
{Font} 137 
{FontSize} 137 
{JgnoreCmdPeriod} 140 
{Libraries} 138 
{NewWindowRect} 140 
{Parameters} 141 
{Pascal} 271 
{Pinterfaces} 138 

INDEX 639 



{Pllbraries} 138 · 
{POptions} 271 
{PrintOptions} 137 
{Program} 259 
{Rincludes} 138 
{SearchBackward} 137 
{SearchType} 137 
{SearchWrap} 137 
{ShellDirectory} 135 
{StackOptions} 140 
{Status} 135 
{SystemFolder} 135 
{Tab} 137 
{TargDir} 272 
{Target} 135, 174 
{Test} 136 
{TileOptions} 140 
{User} 230 
{W"uxlo'WS}l35, 392 
{WordSet} 138 
·{Worksheet} 135 
{ZoomWindowRect} 140 

VBL 
in perfonnance measurement 451 

Vertical Blanking signal 
in performance measurement 451 

w 
warning 

buffering 366 
calls to EmptyHandle 348 
CheckOutDir 224 
NIL master pointers 348 
on performance measurement 449 
on use of SIG DFL 386 

wildcards 103 -
notation 146 
operators 

in regular expressions 186 
'WIND' 

sample window resource me 323-324 
windows 

aaive 89, 167, 174 
Check In window 205-206 
MPW Shell input/output abilities 361 

640 MPW 3.0 Reference 

names 97 
New Project 201-204 
Projector 

retrieving information 220-223 
reading projector windows 236 
target 89, 167, 174 
window commands 26 
worksheet 47 

worksheet window 47 
write 371 
Writing a signal handler 386-387 

z 
zero-width characters 69 



APPLE COMPUfER, INC. SOFfW ARE llCENSE 

PLEASE READ THIS llCENSE CAREFULLY BEFORE USING THE 
SOFfW ARE. BY USING THE SOFfW ARE, YOU ARE AGREEING 
TO BE BOUND BY THE TERMS OF THIS llCENSE. IF YOU DO 
NOT AGREE TO THE TERMS OF THIS llCENSE, PROMPTI.Y 
RETURN THE UNUSED SOFfWARE TO THE PLACE WHERE YOU 
OBTAINED IT AND YOUR MONEY Will BE REFUNDED. 

1. License. The application, demonstration, system and other software 
accompanying this License, whether on disk, in read only memory, or on 
any other media (the "Apple Software") and related documentation are 
licensed to you by Apple. You own the disk on which the Apple Software 
is recorded but Apple and/or Apple's Licensor(s) retain title to the Apple 
Software and related documentation. This License allows you to use the 
Apple Software on a single Apple computer and make one copy of the 
Apple Software in machine-readable form for bad.-up purposes only. You 
must reproduce on such copy the Apple copyright notice and any other 
proprietary legends that were on the original copy of the Apple Software. 
You may also transfer all your license rights in the Apple Software, the 
bach.-up copy of the Apple Software, the related documentation and a copy 
of this License to another party, provided the other party reads and agrees 
to accept the terms and conditions of this License. 

2. Restrictions. The Apple Software contains copyrighted material, 
trade secrets and other proprietary material and in order to protect them 
you may not decompile, reverse engineer, disassemble or otherwise 
reduce the Apple Software to a human-perceivable form. You may not 
modify, network, rent, lease, loan, distribute or create derivative works 
based upon the Apple Software in whole or in part You may not 
electronically transmit the Apple Software from one computer to another 
or over a network. 

3. Support. You acknowledge and agree that Apple may not offer 
any technical support in the use of the Software. 

4. Termination. This License is effective until terminated. You may 
terminate this License at any time by destroying the Apple Software and 
related documentation and all copies thereof. This License will terminate 
immediately without notice from Apple if you fail to comply with any 
provision of this License. Upon termination you must destroy the Apple 
Software and related documentation and all copies thereof. 

5. Export Law Assurances. You agree and certify that neither the 
Apple Software nor any other technical data received from Apple, nor the 
direct product thereof, will be exported outside the United States except as 
authorized and as permitted by the laws and regulations of the United 
States. 

6. Government End Users. If you are acquiring the Apple Software 
on behalf of any unit or agency of the United States Government, the 
following provisions apply. The Government agrees: 

(i) if the Apple Software is supplied to the Department of Defense 
(DoD), the Apple Software is classified as "Commercial Computer 
Software" and the Government is acquiring only "restricted rights" in the 
Apple Software and its documentation as that term is defined in Clause 
252.227-7013(cX1) of the DFARS; and 

(ii) if the Apple Software is supplied to any unit or agency of the 
United States Government other than DoD, the Government's rights in the 
Apple Software and its documentation will be as defined in Clause 52.227-
19(cX2) of the FAR or, in the case of NASA, in Clause 18-52.227-86(d) of 
the NASA Supplement to the FAR. 

7. Limited Warranty on Media. Apple warrants the disks on which the 
Apple Software is recorded to be free from defects in materials and 
workmanship under normal use for a period of ninety (90) days from the 
date of purchase as evidenced by a copy of the receipt. Apple's entire 
liability and your exclusive remedy will be replacement of the disk not 

meeting Apple's limited warranty and which is returned to Apple or ~n 
Apple authorized representative with a copy of the receipt. Apple will 
have no responsibility to replace a disk damaged by accident, abuse or 
misapplication. ANY IMPLIED WARRANTIES ON THE DISKS, INCLUDING 
THE IMPUED WARRANTIES OF MERCHANTABIUTY AND FITNESS FOR 
A PARTICULAR PURPOSE, ARE UMITED IN DURATION TO NINETY (90) 
DAYS FROM THE DATE OF DEUVERY. THIS WARRANTY GIVES YOU 
SPECIFIC LEGAL RIGHTS, AND YOU MAY ALSO HAVE OTHER RIGHTS 
WHICH VARY FROM STATE TO STATE. 

8. Disclaimer of Warranty on Apple Software. You expressly 
acknowledge and agree that use of the Apple Software is at your sole risk. 
The Apple Software and related documentation are provided "AS IS" and 
without warranty of any kind and Apple and Apple's Licensor(s) (for the 
purposes of provisions 8 and 9, Apple and Apple's Licensor(s) shall be 
collectively referred to as 'Apple') EXPRESSLY DISCLAIM ALL 
WARRANTIES, EXPRESS OR IMPUED, INCLUDING, BUT NOT llMITED TO, 
THE IMPUED WARRANTIES OF MERCHANTABIUTY AND FITNESS FOR 
A PARTICULAR PURPOSE. APPLE DOES NOT WARRANT THAT THE 
FUNCTIONS CONTAINED IN THE APPLE SOF'IWARE WILL MEET YOUR 
REQUIREMENTS, OR THAT THE OPERATION OF THE APPLE SOF'IWARE 
WILL BE UNINTERRUPTED OR ERROR-FREE, OR THAT DEFECTS IN THE 
APPLE SOF'IWARE WILL BE CORRECTED. FURTHERMORE, APPLE 
DOES NOT WARRANT OR MAKE ANY REPRESENTATIONS REGARDING 
THE USE OR THE RESULTS OF THE USE OF THE APPLE SOFTWARE OR 
RELATED DOCUMENTATION IN TERMS OF THEIR CORRECTNESS, 
ACCURACY, REUABIUTY, OR OTHERWISE. NO ORAL OR WRITIEN 
INFORMATION OR ADVICE GIVEN BY APPLE OR AN APPLE 
AUTHORIZED REPRESENTATIVE SHALL CREATE A WARRANTY OR IN 
ANY WAY INCREASE THE SCOPE OF THIS WARRANTY. SHOULD THE 
APPLE SOFTWARE PROVE DEFECTIVE, YOU (AND NOT APPLE OR AN 
APPLE AUTHORIZED REPRESENTATIVE) ASSUME THE ENTIRE COST OF 
ALL NECESSARY SERVICING, REPAIR OR CORRECTION. SOME STATES 
DO NOT ALLOW THE EXCLUSION OF IMPUED WARRANTIES, SO THE 
ABOVE EXCLUSION MAY NOT APPLY TO YOU. 

9. Limitation of liability. UNDER NO CIRCUMSTANCES INCLUDING 
NEGllGENCE, SHALL APPLE BE UABLE FOR ANY INCIDENTAL, 
SPECIAL OR CONSEQUENTIAL DAMAGES THAT RESULT FROM THE USE 
OR INABIUTY TO USE THE APPLE SOFTWARE OR RELATED 
DOCUMENTATION, EVEN IF APPLE OR AN APPLE AUTHORIZED 
REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBIUTY OF SUCH 
DAMAGES. SOME STATES DO NOT ALLOW THE LIMITATION OR 
EXCLUSION OF UABIUTY FOR INCIDENTAL OR CONSEQUENTIAL 
D.A.\iAGES SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT 
APPLY TO YOU. 
In no event shall Apple's total liability to you for all damages, losses, and 
causes of action (whether in contract, tort (including negligence) or 
otherwise) exceed the amount paid by you for the Apple Software. 

10. Controlling Law and Severability. This License shall be governed 
by and construed in accordance with the laws of the United States and the 
State of California, as applied to agreements entered into and to be 
performed entirely within California between California residents. If for 
any reason a court of competent jurisdiction finds any provision of this 
License, or portion thereof, to be unenforceable, that provision of the 
License shall be enforced to the maximum extent permissible so as to effect 
the intent of the parties, and the remainder of this License shall continue in 
full force and effect. 

11. Complete Agreement. This License constitutes the entire 
agreement between the parties with respect to the use of the Apple 
Software and related documentation, and supersedes all prior or 
contemporaneous understandings or agreements, wrinen or oral, 
regarding such subject matter. No amendment to or modification of this 
License will be binding unless in writing and signed by a duly authorized 
representative of Apple. 

711;191 
001--01;8-A 




