\

,0;0-.: '

1 aumjoy NduUAIAUF JUWdofa12g doysHIOY S, IPWURIS0IJ YSOIUDE : I\

MPW: Macintosh® Prog,raimfj‘,.s er’s
Workshop Development
Environment, Volume 1

Vunion 30 g

N PDRALA o
Vi] 1}

YRR e 0 em s re *

' * ’ e [i .

,. ..x‘.,.. .
g «“h-n......

AR

@&. Macintoshe

Macintosh Programmer’s
Workshop 3.0 Reference

& APPLE COMPUTER, INC.

This manual and the software
described in it are copyrighted, with all
rights reserved. Under the copyright
laws, this manual or the software may
not be copied, in whole or part,
without written consent of Apple,

- except in the normal use of the software
or to make a backup copy of the
software. The same proprietary and
copyright notices must be affixed to any
permitted copies as were affixed to the
original. This exception does not allow
copies to be made for others, whether
or not sold, but all of the material
purchased (with all backup copies)
may be sold, given, or loaned to
another person. Under the law,
copying includes translating into
another language or format.

You may use the software on any
computer owned by you, but extra
copies cannot be made for

this purpose.

© 1985-88 Apple Computer, Inc.
20525 Mariani Ave.

Cupertino, California 95014

(408) 996-1010

Pascal Compiler © 1982-88

Apple Computer, Inc.
© 1981 SVS, Inc.

Apple, the Apple logo, AppleShare,
AppleTalk, A/UX, ImageWriter,
LaserWriter, Lisa, MacApp, Macintosh,
and SANE are registered trademarks of
Apple Computer, Inc.

MPW, QuickDraw, ResEdi, and SADE

are trademarks of Apple Computer, Inc.

MacDraw, MacPaint, and MacWrite
are registered trademarks of
Claris Corporation.

Microsoft Word is a trademark of
Microsoft Corporation.

POSTSCRIPT is a trademark of
Adobe Systems Incorporated.

Linotronic is a registered trademark of
Linotype company.

Adobe Illustrator 88 is a trademark of
Adobe Systems Incorporated.

ImageStudio is a trademark of Esselte
Pendaflex Corporation in the United
States, of LetraSet Canada Limited in
Canada, and of Esselte LetraSet
Limited elsewhere.

Motorola is a trademark of
Motorola, Inc.

QMS is a registered trademark of
QMS, Inc.

UNIX is a trademark of
AT&T Bell Laboratories.

Simultaneously published in the
United States and Canada.

MPW sample programs

Apple Computer, Inc. grants users of
the Macintosh Programmer’s Workshop
a royalty-free license to incorporate
Macintosh Programmer’s Workshop
sample programs into their own
programs, or to modify the sample
programs for use in their own
programs, provided such use is
exclusively on Apple computers. For
any modified Macintosh Programmer’s
Workshop sample program, you may
add your own copyright notice
alongside the Apple copyright notice.

Contents

Figures and tables xxvii

PartI Shell Reference 1

Introduction: The New and the Necessary 3

Power tools for Macintosh programmers 5
What's new in MPW 3.0 7
MPW C++ 7
Projector 8
Symbolic Application Debugging Environment (SADE) 8
New or enhanced tools 8
New or enhanced Shell commands 10
New Shell editor capabilities 12
New standard Shell variables 13
Changes to menus and dialogs 14
Miscellaneous Shell changes 14
Numeric libraries 15
MPW C and MPW C++ Include files 16
MPW Pascal 16
MPW tool libraries 17
What you'llneed 17
Hardware and system requirements 17
System Folder requirements 18
Documentation 18
About this reference 19
Finding information fast 20
Syntax notation 21
Aids to understanding 22
For more information 22

CONTENTS

1 System Overview 23

The MPW Shell 25
Window commands 26
File-management commands 27
Project-management commands 28
Editing commands 29
Structured commands 29
Other built-in commands 30
MPW scripts 31
MPW tools 32
MPW Assembler 33
MPW Pascal tools 33
MPW C compiler and C++ translator 34
Link 34
Make 35
Resource compiler and decompiler 35
Commando 36
Projector 36
Conversion tools 37
Performance-measurement tools 37
Applications 37
ResEdit 38
SADE and MacsBug 38
Special scripts 39
Examples 39
Sample program files 39
Command-language examples 40
Overview of MPW files and directories 40

2 Getting Started 41

Installing the system 43

Using MPW with MultiFinder 44

Using MPW on a file server 46

Starting up 46

Selecting commands from menus 48

Building a program: an introduction 49
The sample programs 49
Two easy steps 50

Building a new program 54

iv MPW 3.0 Reference

3 Using the Shell Menus 59

Features 61
File format 62
Menu commands 62
Applemenu 62
File menu 63
New 63
Open 64
Open Selection 64
Close 64
Save 64
Save As 65
Save a Copy 65
Revert to Saved 65
Page Setup 65
Print Window/Print Selection 65
Quit 66
Edit menu 67
Undo 67
Cut 67
Copy 67-
Paste 68
Clear 68
Select All 68
Show Clipboard 68
Format 68
Align 69
Shift Left, Shift Right 69
Findmenu 70
Find 70
Find Same 71
Find Selection 71
Display Selection 71
Replace 71
Replace Same 71
Selection expression 73
Mark menu 75
Mark 76
Unmark 77

CONTENTS

Window menu 78

Tile Windows 78

Stack Windows 78

Customizing window commands 78

List of open windows 79
Project menu 79

New Project 79

CheckIn 80

Check Out 81
Directory menu 81

Show Directory 82

Set Directory 82

List of directory names 82
Build menu 83

Create Build Commands 84

Build 85

Full Build 85

Show Build Commands 85

Show Full Build Commands 85
User-defined menus 86

4 Using MPW: The Basics 87
Editing 89
Entering commands 89
Typing commands in 2 window 90
The Enter key 91
Executing several commands at once 92
Terminating 2 command 92
The Help command 93
File-management commands 95
File and window names 97
Selection specifications 98
Directories and pathnames 98
Command search path 101
Changing directories 101
Pathname variables 102
Wildcards (filename generation) 103
Locked and read-only files 103

vi MPW 3.0 Reference

Commando dialogs 104

Invoking Commando 105

Using Commando dialogs 106

Standard dialog box controls 107
Generic text parameters 107
Repeatable options 108
Radio buttons 108
Check boxes 108
Shadow pop-up menus 109
Other pop-up variations 109
Multiple input files 110
Multiple directories 111
Multiple files and/or directories 112
Single input or output file 112
Output file where a file or directory may be specified 113
New directories 114
Special dialog box controls 114
Nested dialog boxes 114
Redirecting output 116
Options dependent on other options 118
Three-state controls 119

5 Using the Command Language 121

Overview 123
Types of commands 124
Entering and executing commands 124
Negative status codes 125
Structure of a command 126
Command name 126
Parameters 126
Command terminators 127
Command continuation 128
Comments 128
Simple versus structured commands 128
Running an application outside the Shell environment 129
Scripts 130
Special scripts 131
The Startup and UserStartup files 131
Suspend, Resume, and Quit 131

CONTENTS vii

Command aliases 132
Executable error messages 133
Variables 133
Predefined variables 134
Variables defined in the Startup file 135
UserVariables 139
Parameters to scripts 141
Defining and redefining variables 142
Exporting variables 142
Command substitution 144
Filename generation 145
Quoting special characters 146
How commands are interpreted 150
Structured commands 153
Control loops 156
Processing command parameters 157
Expressions 157
Redirecting input and output 160
Standard input 162
Terminating input with Command-Enter 163
Standard output 164
Diagnostic output 164
Pseudo-filenames 165
Editing with the command language 166
Defining your own menu commands 168
Sample scripts 168
“AddMenuAsGroup” 169
“CC” 170

viii = MPW 3.0 Reference

6 Advanced Editing 171

Editing commands 173
Selections 175
Current selection (§) 178
Selection by line number 179
Position 180
Markers 180
Behavior of markers 181
Programmatic use of markers 181
Pattern 182
Extending a selection 183
Pattern matching (using regular expressions) 183
Character expressions 185
Wildcard operators 186
Repeated instances of regular expressions 187
Tagging regular expressions with the ® operator 188
Matching a pattern at the beginning or end of a line 189
Inserting invisible characters 189
Note on forward and backward searches 190
Some useful examples 191
Transforming DumpObj output 192
Finding a whole word 193
Bulldozer 194

Projector: Project Management 195

About Projector 197
Overview 197
Features 199
Limitations 200
Using Projector: A walk-through 201
Creating a new project 201
Checking in a revision 204
Project pop-up 206
Userfield 207
Info (question mark) button 207
Keep Read-Only, Keep Modifiable, and Delete Copy buttons 207
Adding new files to a project 207
Touch Mod Date check box 208
Changing a revision’s revision number 208

CONTENTS

ix

X

Locating a project 209
Checking out a revision 209
Checkout directory 212
User field 213
Task and Comment fields 213
Select Newer button 213
Select All button 214
Read-Only/Modifiable buttons 214
Branch check box 215
Touch Mod Date check box 215
Checking out a particular revision 216
Info (question mark) button 216
Select Files in Name 216
Discarding changes 216
Using the CheckOut command 217
Creating branches 218
Merging branches 219
Retrieving information 220
Comparing revisions 223
Components of a project 223
Projects 224
Nested projects 226
Revision trees 228
Branches 230
User names 230
Symbolic names 231
Project administration 234
Moving, renaming, and deleting projects 234
Deleting revisions 235
Renaming a file in a project 235
File organization within a project directory 235
CKID resource 236
Projector icons 236
Icons Appearing in the Check In Window 236
Icons Appearing in the Check Out Window 237
Projector command summary 238

MPW 3.0 Reference

8 The Build Process 239

Overview: the build process 241
The structure of a Macintosh application 244
Linking 244
What to link with 245
Linking multilingual programs 246
File types and creators 247
Building a stand-alone code resource 248
Building a desk accessory or driver 251
Linking a desk accessory or driver 253
The desk accessory resource file 254
The DRVRRuntime library 255
What your routines need to do 257
Programming hints 258
Sample desk accessory 259
Modifying the Build menu and makefiles 259
Variables 259
Scripts 260
Files 260
UserStartup 260
Modifying the makefiles 261
Include dependencies 261
Library object files 261

Make 263

Format of a makefile 265
Dependency rules 267
Double-fdependency rules 269
Default rules 270
Built-in default rules 271
Directory dependency rules 272
Variables in makefiles 273
Shell variables 273
Defining variables within a makefile 274
Built-in Make variables 275
Quoting in makefiles 275
Line continuation character 276
Comments in makefiles 276

CONTENTS

Xi

xii

Executing Make’s output 276
The order in which Make builds targets 277

Debugging makefiles 278
Problems due to command generation before execution 278
Problems with different specifications for the same file 279
Problems with default rules 279

Anexample 279
Notes on Make’s makefile 282

10 More About Linking 285
Link functions 287
Segmentation 288
Segments with special treatments 289
Controlling the numbering of code resources 290
Resolving symbol definitions 291
Multiple external symbol definitions 291
Unresolved external symbols 292
Building applications with more than 32K of global data 292
32-bit references—MPW Pascal 293
32-bit references—MPW Assembler 293
Linker location map 294
Map entries for the global data segment 295
Optional map formats for compatibility 295
Optimizing your links 296
Library construction 296
Using Lib to build a specialized library 297
Removing unreferenced modules 298
Guidelines for choosing files for a specialized library 299

11 Resource Compiler and Decompiler 301

About the resource compiler and decompiler 303
Resource decompiler 304
Standard type declaration files 304
Using Rezand DeRez 304

Structure of a resource description file 306
Sample resource description file 307

MPW 3.0 Reference

Resource description statements 307
Syntax notation 308
Special terms 308
Include—include resources from another file 308
Syntax 309
AS resource description syntax 309
Resource attributes 310
Read—read data as a resource 310
Syntax 310
Description 310
Data—specify raw data 311
Syntax 311
Description 311
Type—declare resource type 311
Syntax 311
Description 312
Data-type specifications 313
Fill and align types 316
Aray type 317
Switch type 318
Sample type statement 319
Symbol definitions 319
Delete—delete a resource 320
Syntax 320
Description 320
Change—change a resource’s vital information 321
Syntax 321
Description 321
Resource—specify resource data 322
Syntax 322
Description 322
Data statements 322
Sample resource definition 323
Labels 324
Syntax 325
Description 325
Built-in functions to access resource data 325
Declaring labels within arrays 326
Label limitations 327
Using labels: two examples 327

CONTENTS

Preprocessor directives 330
Variable definitions 331
Include directives 331
If-Then-Else processing 332
Print directive 332
Resource description syntax 333
Numbers and literals 334
Expressions 335
Variables and functions 336
Strings 338
Escape characters 339

12 Writing an MPW Tool 341

Overview 343
Conventions 344
Status Codes 345
Restrictions 346
Initialization 346
Memory Management 347
Heap 349
Stack 349
Building an MPW tool 350
Linking a tool 350
Programming for the MPW Shell 351
Accessing the MPW Shell-MPW C 351
Accessing the MPW Shell—MPW Pascal 352
Accessing the MPW Shell—Assembler 353
Importing the routines 353
Assembler calling conventions 353
The RTInit function 354
Files to link with 355
Parameters 355
Accessing MPW command-line parameters—MPW C 357
Accessing MPW command-line parameters—MPW Pascal 357
Accessing MPW command-line parameters—Assembler 358

xiv MPW 3.0 Reference

Standard I/O channels 358
I/O buffering 358
I/0 to windows and selections 360
Error information 361
Shell /O routines—MPW C 364
stdio—standard buffered input/output package 364
Shell I/O routines—MPW Pascal 367
Shell I/O routines—Assembler 367
Shell I/O routines 367
open—open for reading or writing 367
close—close a file descriptor 369
read—read from a file 370
write—write to a file 371
Iseek—move read/write file pointer 372
fentl—file control 373
IOCt—communicate with device handler 374
Shell utility routines 375
StandAlone—check whether running under the MPW Shell 375
getenv—access exported MPW Shell variables 376
atexit—install a function to be executed at program termination 378
exit—terminate the current application 379
faccess—named file access and control 380
Signal handling 383
Signal handling—C 383
Signal handling—Pascal 384
Signal handling—Assembler 384
Signal—specify a signal handler 384
Raise—raise a signal 385
Writing a signal handler 386

CONTENTS

Xv

13 Creating a Commando Interface For Tools 389

About Commando 391
Invoking Commando 391
Creating Commando dialogs 392
Editing Commando dialogs 393
Enabling Commando’s Editor 393
Editing controls 393
Selecting controls 394
Moving controls 394
Sizing controls 394
Editing labels 395
Editing Help messages 395
Changing the size of a Commando dialog box 395
Saving the modified Commando dialog 3%
Strings and Shell variables 396
Resource description 397
Resource ID and name 397
Size of the dialog box 398
Tool description 399
Regular entry control 399
Multiregular entry 401
Check boxes 402
Radio buttons 404
Boxes, lines, and text titles 406
Box 407
TextBox 407
TextTitle 408
Pop-up menus 409
Editable pop-up menus 411
Lists 414
Three-state buttons 415
Icons and pictures 417
Control dependencies 418
Direct dependency 418
Inverse dependency 419
Dependency on the Do-It button 421
Multiple dependencies 421
Dependencies on radio buttons 422
Nested dialog boxes 423

xvi MPW 3.0 Reference

14

Redirection 425

Files and directories 427
Individual files and directories 427
Multiple files and directories for input and output 430
Multiple files and directories for input only 436
Multiple new files 438

Version 439

A Commando example 442

Performance-Measurement Tools 447

About performance-measurement tools 449
Components of performance tools 450
Requirements for using performance tools 451

How performance measurement works 451
Program Counter sampling 451

Restrictions 452
Bucket counts 452

Using performance-measurement tools 453

Install under conditional compilation 453

Include the interface 454

Provide a pointer to a block of variables 455

Initialize the performance-measurement tools 455

Tum on the measurements 456

Dump the results 457
7. Terminate cleanly 457

MPW performance tools routines 458
The function InitPerf 458
The function PerfControl 460
The function PerfDump 461
The function TermPerf 462

Performance reports 463
Performance output file 463
Analyzing the results with PerformReport 466
Adding identification lines to a data file 467
Interpreting the performance report 468

Implementation issues 468
Locking the interrupt handler 469
Segmentation 469
Dirty CODE segments 469
Movable code resources 470

S

CONTENTS

A Macintosh Programmer's Workshop Files 471

MPW 3.0 files 473
Distribution disk MPW Installation Disk: 473
Distribution disk MPW1: 473
Distribution disk MPW2: 474
Distribution disk MPW3: 475
Distribution disk MPW4: 476
MPW Assembler files 477
Distribution disk MPW Assemblerl: 477
Distribution disk MPW Assembler2: 477
MPW Pascal files 478
Distribution disk MPW Pascall: 478
Distribution disk MPW Pascal2: 479
MPW Cfiles 481
Distribution disk MPW C1: 481
Distribution disk MPW C2: 482
Hard disk configuration 484

B Summary of Selections and Regular Expressions 495

Selections 497
Regular expressions 498
Option-key characters 500

C Special Operators 501

D Resource Description Syntax 505

Syntax notation 507
Structure of a resource description file 508
Include—include resources from another file 509
Read—read data as a resource 509
Data—specify raw data 509
Type—declare resource type 510
Data-type 510
Fill-type 511
Alignment 511
Switch-type 511
Array-type 511

xvili MPW 3.0 Reference

Resource—specify resource data 512
Change—change resource vital information 512
Delete—delete resource(s) 512
Labels 512
Syntax 512
Preprocessor directives 513
Syntax 513
Identifiers 513
Token delimiters 514
Compound types 514
Expressions 514
Numbers 515
Variables and functions 516
Strings 517

E File Types, Creators, and Suffixes 519

File types and creators 521
File suffixes 521

Text files 522

Object files 522

Data files - 522

F Tools Libraries 523

Animated cursor control routines 525
Cursor control routines—MPW Pascal 525
Cursor control routines—MPW C 525
The InitCursorCtl procedure 526
The Show_Cursor procedure 527
The Hide_Cursor procedure 528
The RotateCursor procedure 529
The SpinCursor procedure 529

Error Message File manager 530
Error Manager—MPW Pascal 530
Error Manager—MPW C 530
The InitErrtMgr procedure 531
The GetSysEnText procedure 532
The GetToolErText procedure 533
The AddEmInsert procedure 534
The CloseErtMgr function 534

CONTENTS

xix

Disassembler Lookup routines 535
DisAsmLookUp.p—MPW Pascal 535
DisAsmLookUp.h—MPW C = 535
Using the Disassembler 536

The InitLookup procedure 541

The Lookup procedure 542

The LookupTrapName procedure 542
The ModifyOperand procedure 543
The validMacsBugSymbol function 543
The endOfModule function 545

The showMacsBugSymbol function 545

G The Graf3D Library 547

Overview 549
How to use Graf3D 549
How to use Graf3D—MPW Assembler 550
How to use Graf3D—MPW Pascal 550
How to use Graf3SD—MPW C 550
Graf3D data types 551
Point3D 551
Point2D 552
XfMatrix 552
Port3DPtr 553
Graph3D procedures and functions 554
The InitGraf3D procedure 555
The Open3DPort procedure 555
The SetPort3D procedure 556
The GetPort3D procedure 556
The Move procedures 557
The Line procedures 557
The Clip3D function 558
The Set Point procedures 558
Setting up the camera 559
The ViewPort procedure 559
The LookAt procedure 560
The ViewAngle procedure 560

XX MPW 3.0 Reference

The transformation matrix 561
The Identity procedure 561
The Scale procedure 561
The Translate procedure 562
The Pitch procedure 562
The Yaw procedure 562
The Roll procedure 563
The Skew procedure 563
The Transform procedure 564

H Object File Format 565

About object file records 567
Scoping of symbolic information 570
ModuleBegin implementation/declaration semantics 572
Record type notation 572
Object file records 573
Pad record 574
First record 574
Last record 575
Comment record 575
Dictionary record 575
Module record 576
Entry-Point record 577
Size record 578
Contents record 578
Reference record 579
Computed-Reference record 583
Filename record 584
Source Statement record 584
ModuleBegin record 586
ModuleEnd record 587
BlockBegin record 588
BlockEnd record 589
Local Identifier record 589
Local Label record 593
Local Type record 594

CONTENTS

xxi

Type interpretation via prefix code 596
Overview 597
Type functions 597 ‘
Representation of type information in the SADE symbol table 601
Representation of type codes 602
Representation of scalars 604
Examples 605
Possible object module representation 605
Possible compilation into TTE 607
Type interpretation and packed data 608
Storage framework 609
Examples 610
C source 610
Possible compilation into TTE 611

I In Case of Emergency 613
Crashes 615

Stack space 615

Glossary 617

Index 623

xxii MPW 3.0 Reference

Part I Command Reference
A Command prototype 6
AddMenu—add menu item 9
Adjust—adjust lines 13
Alert—display an alert box 14
Alias—define or write command aliases 15
Align—align text to left margin 17
Asm—MC68xxx Macro Assembler 18
Backup—folder file backup 25
Beep—generate tones 34
Begin...End—group commands 36
Break—break from For or Loop 38
BuildCommands—generate Build commands 40
BuildMenu—create the Build menu 42
BuildProgram—build the specified program 43
C—C Compiler 45
Canon—canonical spelling tool 49
Catenate—concatenate files 52
CheckIn—check in files to a project 54
CheckOut—check out files from a project 57
CheckOutDir—set checkout directory 61
Choose—choose or list network volumes and printers 64
Clear—clear the selection 68
Close—close specified windows 69
Commando—display dialog interface for a command 71
Compare—compare text files 73
CompareFiles—script that compares files side by side 79
CompareRevisions—compare and identify revisions 81
Confirm—display confirmation dialog box 83
Continue—continue with next iteration of For or Loop 85
Copy—copy selection to Clipboard 87
Count—count lines and characters 89
CPlus—compile C++ programs 91
CreateMake—create a simple makefile 96
Cut—copy selection to Clipboard and delete it 99
Date—write the date and time 100
Delete—delete files and directories 102
DeleteMenu—delete user-defined menus and items 104

CONTENTS xxiii

DeleteNames—delete user-defined symbolic names 105
DeleteRevisions—delete revisions and branches 107
DeRez—Resource Decompiler 109

Directory—set or write the default directory 113
DirectoryMenu—create the Directory menu 115
Dolt—script to highlight and execute a series of commands 117
DumpCode—write formatted resources 119
DumpFile—display contents of an arbitrary file 122
DumpObj—write formatted object file 125
Duplicate—duplicate files and directories 128
Echo—echo parameters 130

Eject—eject volumes 132

Entab—convert runs of spaces to tabs 133
Equal—compare files and directories 136
Erase—initialize volumes 139

Evaluate—evaluate an expression 140

Execute—execute a script in the current scope 145
Exists—confirm the existence of 2 file or directory 146
Exit—exit from a script 147

Export—make variables available to programs 148
FileDiv—divide a file into several smaller files 150
Files—list files and directories 152

Find—find and select a text pattern 155

Flush—clear the command cache 157

Format—set or view the window format 160
For...—repeat commands once per parameter 158
GetErrorText—display text for system error numbers 162
GetFileName—display a standard file dialog box 164
GetListltem—display items for selection in a dialog box 166
Help—display summary information 168
If...—conditional command execution 171
Lib—combine object files into a library file 173
Line—find a line number 177

Link—link an application, tool, or resource 179
Loop...End—repeat command list until Break 189
Make—build up-to-date version of a program 191
MakeErrorFile—create error message textfile 195
Mark—assign a marker to a selection 197

Markers—list markers 199

Matchlt—match paired language delimiters 200

xxiv MPW 3.0 Reference

MergeBranch—merge a branch file onto the trunk 205
ModifyReadOnly—change a read-only file to modifiable 207
" Mount—mount volumes 209

MountProject—mount an existing project 210
Move—move files and directories 212
MoveWindow—move window to h,v location 214
NameRevisions—name files and revisions 216
New—open a new window 220

Newer—compare modification dates between files 221
NewFolder—create a directory 223
NewProject—create a project 224

Open—open a window 226

OrphanFiles—orphan a file or files from Projector 228
Parameters—write parameters 229

Pascal—Pascal compiler 230

PasMat—Pascal program formatter 234
PasRef—Pascal cross-referencer 241

Paste—replace selection with Clipboard contents 250
PerformReport—generate a performance report 251
Position—list position of selection in window 253
Print—print text files 254

ProcNames—display Pascal procedure and function names 258
Project—set or write the current project 262
ProjectInfo—list project information 263

Quit—quit MPW 272

Quote—quote parameters 273

Rename—rename files and directories 275
Replace—replace the selection 277

Request—request text from a dialog box 279
ResEqual—compare resources in files 281
Revert—revert to saved file 283

Rez—Resource compiler 284

RezDet—detect inconsistencies in resources 288
RotateWindows—bring second window to front 291
Save—save windows 292

Search—search files for a pattern 293

Set—define or write Shell variable 295
SetDirectory—set the default directory 297
Setfile—set file attributes 298

SetPrivilege—set access privileges to folders on file server 300

CONTENTS

XXv

SetVersion—maintain version and revision number 302
Shift—renumber script parameters 317
Shutdown—shutdown or software reboot 319
SizeWindow—set a window’s size 321

Sort—sort or merge lines of text 322
StackWindows—arrange windows diagonally 326
Target—make a window the target window 328
TileWindows—arrange windows in tile pattern 329
TransferCkid—transfer CKID resources from one file to another 331
Translate—convert selected characters 332
Unalias—remove aliases 334

Undo—undo last edit 335

Unexport—remove a variable definition from export 336
Unmark—remove a marker from a file 338
Unmount—unmount volumes 339
UnmountProject—unmount projects 340
Unset—remove Shell variables 341

Volumes—Tlist mounted volumes 342

Whereis—search for files in directory tree 343
Which—determine which file the Shell will execute 345
Windows—list windows 347

ZoomWindow—enlarge or reduce a window 348

xxvi MPW 3.0 Reference

Figures and tables

1 System Overview 23

Figure 1-1

Figure 2-1
Figure 2-2
Figure 2-3
Figure 24
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8
Figure 2-9

3 Using the
Figure 3-1
Figure 3-2
Figure 3-3
Figure 34
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 3-9
Figure 3-10
Figure 3-11
Figure 3-12
Figure 3-13
Figure 3-14
Figure 3-15
Figure 3-16
Figure 3-17

Setup of MPW folders and files 40

Getting Started 41

Worksheet window 47

MPW menu bar with MultiFinder 48
Directory menu 50

Show Directory alett 51

Build menu 51

Program Name dialog box 52

Finished Sample build 53

Set Directory... standard file dialog box 55
CreateMake dialog box 56

Shell Menus 59

File menu 63

New dialog box 63

Editmenu 67

Dialog box of the Format menu item 68
Find menu 70

Dialog box of the Replace menu item 72
Selection by line number 73

Example of a regular expression 74

Text selected with the Find command 75
Mark menu 76

Mark dialog box 76

Unmark dialog box 77

Window menu 78

Project menu 79

New Project dialog box 80

Check In dialog 80

Check Out dialog box 81

CONTENTS xxvii

Figure 3-18 Directory menu 82

Figure 3-19 Dialog box of the Set Directory menu item 82
Figure 3-20 Build menu 83

Figure 3-21 CreateMake dialog box 84

Figure 3-22 Program Name dialog box 85

4 Using MPW: The Basics 87

Figure 4-1 Pressing Enter to execute selected text 92

Figure 4-2 Help summaries 95

Figure 4-3 Hierarchical directory structure 99

Figure 44 A locked file with the Lock icon in the Status panel 103

Figure 4-5 A read-only file with the Read-Only icon in the Status panel 104
Figure 46 The Date dialog box 106

Figure 47 Rez: the first dialog box 115

Figure 4-8 Rez: nested Preprocessor dialog box 115

Figure 49 Rez: nested Redirection dialog box 116

Table 4-1 Basic file-management commands 96

5 Using the Command Language 121

Figure 5-1 Trafficking in variables 143

Figure 5-2 Standard input and output 161

Figure 5-3 Redirecting diagnostic output 165

Figure 54 Text highlighted in the active and target windows 167
Table 5-1 Command terminators 127

Table 5-2 Variables defined by the Shell 135

Table 5-3 Variables defined in the Startup file 136

Table 54 User variables not defined in Startup file 140

Table 5-5 Parameters to scripts 141

Table 56 Filename generation operators 145

Table 57 Special characters and words 147

Table 58 Quotes 148

Table 5-9 Special escape conventions 150

Table 5-10 Structured commands 154

Table 5-11 Expression operators in order of decreasing precedence 158
Table 512 1/O redirection 161

Table 5-13 Pseudo-filenames 166

xxviii MPW 3.0 Reference

6 Advanced Editing 171

Figure 6-1 A selection specification 177
Figure 6-2 Selections in two windows 178
Table 6-1 Built-in editing commands 173
Table 6-2 MPW tools useful for editing 175
Table 6-3 Selection operators 176

Table 64 Regular expression operators 184

7 Projector: Project Management 195

Figure 7-1 A project structure 198

Figure 7-2 New Project window 202

Figure 7-3 New Project window after creating a project 203
Figure 74 Check In window 205

Figure 7-5 Check Out window 211

Figure 76 A changing revision tree 218

Figure 7-7 Revision information 221

Figure 7-8 The View By filter 221

Figure 79 The “View By” dialog with selection criteria 222
Figure 7-10 Sample project check-out configuration 225
Figure 7-11 A sample project hierarchy 227

Figure 7-12 A revision tree 229

8 The Build Process 239

Figure 8-1 The Build process 242

Figure8-2 Linking 245

Figure 8-3 Building a desk accessory with DRVRRuntime 252
Table 8-1 Filesto link 246

Table 8-2 File types and creators 247

9 Make 263
Table 9-1 Makefile summary 266

CONTENTS xxix

11 Resource Compiler and Decompiler 301

Figure 11-1 Rezand DeRez 303

Figure 11-2 Creating a resource file 305

Figure 11-3 Padding of literals 335

Figure 114 Internal representation of a Pascal string 338
Table 11-1 Numeric constants 334

Table 11-2 Resource description expression operators 335
Table 11-3 Resource compiler escape sequences 339

12 Writing an MPW Tool 341
Figure 12-1 Memorymap 348
Figure 12-2 Parameters in MPW C and MPW Pascal 356
Figure 12-3 /O buffering 360
Figure 124 Format of envp array for MPW C and MPW Pascal 377
Table 12-1 ShellI/Oerrors 362
Table 12-2 Standard files 365
Table 12-3 Predeclared file descriptors 369

13 Creating a Commando Interface for Tools 389

Figure 13-1 Example use of the {User} variable 397

Figure 13-2 Basic template for a Commando dialog box 398
Figure 13-3 MultiRegular Entry 402

Figure 134 Setting the CheckOption default state 404
Figure 13-5 Radio buttons with default setting 404
Figure 13-6 Clicking a button other than the default 405
Figure 13-7 No button specified as set 406

Figure 13-8 TextBox example 408

Figure 13-9 Pop-up menu with default value 410

Figure 13-10 Pop-up menu without default value 410
Figure 13-11 How Font Size dependency is handled 412
Figure 13-12 Font Size pop-up menu with font selected 412
Figure 13-13 One pop-up menu dependent on another 413
Figure 13-14 Menu title and Item pop-up menus 414
Figure 13-15 List control 415

Figure 13-16 Three-state buttons 417

Figure 13-17 Icon in 2 Commando window 417

Figure 13-18 Direct dependency 419

Figure 13-19 Inverse dependencies 420

Figure 13-20 Dependency on the Do-It button 421

Figure 13-21 Dependencies on radio buttons 422

XXX MPW 3.0 Reference

14

Figure 13-22 Setting up nested dialog boxes 424

Figure 13-23 Placement of nested dialog buttons 425

Figure 13-24 How to obtain input and output redirection 426

Figure 13-25 Resource description for “individual files and directories”
controls 428

Figure 13-26 Examples of “individual files and directories” controls 430

Figure 13-27 Example of multiple input files 432

Figure 13-28 Example of multiple input files with no file extension specified 434
Figure 13-29 Example of multiple input files with object files specified 435

Figure 13-30 Example of multiple input files with all files specified 436
Figure 13-31 Multiple directories for input 437

Figure 13-32 Example of a “directories” control for multiple input files 438
Figure 13-33 Using the MultiOutputFiles subcase of the case MultiFiles 439

Figure 13-34 Version string 440

Figure 13-35 A Commando example: frontmost ResEqual dialog box 445

Table 13-1 Summary of recommended sizes for Commando screen
elements 399

Performance-Measurement Tools 447
Table 14-1 Predefined ROM IDs and names 460

Summary of Selections and Regular Expressions 495

Table B-1 Selections 497
Table B-2 Regular expressions 498

Special Operators 501
Table C-1 MPW operators 503

File Types, Creators, and Suffixes 519
Table E-1 File types and creators 521

Tool Libraries 523

Table F-1 Cursor kinds 527

Table F-2 Disassembler strings 536

Table F-3 Disassembler: Effective addresses 538
Table F4 Base register values 539

CONTENTS

xxxi

G The Graf3D Library 547
Table G-1 Port3DPtr variables 554

H Object File Format 565
Table H-1 Register numbers 592

xxxii MPW 3.0 Reference

Part] Shell Reference

Introduction: The New and the Necessary

WELCOME TO THE MACINTOSH® PROGRAMMER’S WORKSHOP 3.0. This introduction is
your guide to the new features and enhanced capabilities.

Those currently using MPW™ 2.0 are urged to carefully review the section “What's
New in MPW 3.0” because many changes may affect your MPW 2.0 scripts and
other ways of doing things. The last two sections of this introduction describe
new hardware and software requirements as well as revised notation conventions
and reorganized documentation. If you are new to MPW you can skip the “What's
New in MPW 3.0” section, but be sure to read “What You'll Need” and “About This
Reference.” This last section guides you to the parts of this book that help you
get started. =

Contents

Power tools for Macintosh programmers 5
What's new:in MPW 3.0 7
MPW C++ 7
Projector 8
Symbolic Application Debugging Environment (SADE) 8
New or enhanced tools 8
New or enhanced Shell commands 10
New Shell editor capabilities 12
New standard Shell variables 13
Changes to menus and dialogs 14
Miscellaneous Shell changes 14
Numeric libraries 15
MPW C and MPW C++ Include files 16
MPW Pascal 16
MPW tool libraries 17
What you'll need 17
Hardware and system requirements 17
System Folder requirements 18
Documentation 18

4

About this reference 19
Finding information fast 20
Syntax notation 21

Aids to understanding 22
For more information 22

MPW 3.0 Reference

Power tools for Macintosh programmers

The Macintosh Programmer’s Workshop (MPW) provides professional software
development tools for the Apple® Macintosh computer. Briefly, MPW 3.0 consists of the
following parts:

= MPW Shell (the programming environment)

Project management system (Projector Trademark)
Resource compiler and decompiler (Rez and DeRez)
Resource editor (ResEdit™)

Linker (Link)

Make (for tracking file dependencies)

Dialog interface (Commando)

Symbolic Application Debugging Environment (SADE™, an interactive symbolic
debugger) and MacsBug

m Performance-measurement tools

Note that ResEdit, although still part of MPW, has been enhanced and is now documented
separately. Also, the new interactive debugger, SADE, and an improved MacsBug are now
each documented in their own separate reference works, included with the MPW product.

The system also includes a comprehensive array of additional tools for creating and
manipulating text and resource files. The following MPW products are separately
available:

m Macintosh Programmer’s Workshop 3.0 Assembler provides everything you need
to develop applications, tools, and desk accessories in assembly language, including
the ability to create macro libraries.

m Macintosh Programmer’s Workshop 3.0 Pascal provides the additional tools,
interfaces, and libraries you need to develop applications, tools, and desk accessories
in Pascal.

m Macintosh Programmer’s Workshop 3.0 C provides a new C compiler and a C++
translator along with the interfaces and libraries needed to develop applications,
tools, and desk accessories in C or C++.

s MacApp®, the Expandable Macintosh Application, provides of a set of object-
oriented libraries that automatically implement the standard Macintosh user interface,
thus simplifying and speeding up the process of software development. Either MPW
Pascal or MPW C++ is required for use of MacApp.

The entire MPW system is outlined in detail in Chapter 1, “System Overview.”

INTRODUCTION The New and the Necessary

The Macintosh Programmer’s Workshop 3.0 provides these advantages over previous
development systems:

6

Integration: The numerous utilities and tools of the MPW system all run within the
MPW Shell environment. The integrated environment enables separately developed
applications, called MPW tools, to run within the programming environment. The
MPW editor is always available to generate both text and command lines; there is no
distinction between command and text windows.

MultiFinder™ compatibility: MPW 3.0 tools can now be operated in the
background when using Macintosh System 6.02 with MultiFinder. This means that you
can switch to another application while a tool, such as a compiler, is running. You can
also configure your system so that you can use the MPW Shell for editing or other
operations while a tool runs in the background. See “Using MPW With MultiFinder” in
Chapter 2.

Project management: Projector, a new program integrated with MPW, makes it easy
to keep track of large projects involving many programmers, or simply to maintain an
orderly revision history, showing who did what to every file and why. You can use
Projector to branch, that is, create many experimental versions of a file at any stage
in its evolution—without risk of confusion.

Automated build process: A pull-down menu provides several ways to build or
rebuild your programs quickly and automatically. You can also automate complex
builds by using the Make tool and command-language scripts.

Command scripting: In addition to menu commands, MPW provides a full command
language, including Shell variables, command aliases, pipes, and the ability to redirect
input and output. You can combine any series of commands into an elaborate,
specialized script (command file) for fast, accurate, automatic results.

Regular expression processing: The editor component of the Shell provides
powerful search and replace capabilities with regular expressions, which form a
language for describing complex text patterns. Regular expressions allow you, for
instance, to restructure complex tables with a single command.

Extensibility: You can customize MPW in just about any way you can imagine. You
can create your own integrated tools and scripts to run within the Shell environment.
You can also add your own menus, menu items, and dialogs to the Shell.

Ease of use: On-line help is available at all times. In addition, the Commando dialog
interface gives you immediate on-screen access to all of MPW’s versatile options and
functions in specialized dialog boxes. This interface makes learning easier and faster.
You can compose complex command lines without referring to the manual. And you
can create a Commando interface for your own tools and scripts as well.

MPW 3.0 Reference

MPW 3.0 provides a customizable programming environment with a completeness, power,
and flexibility unmatched by any other Macintosh-based system. Because it is full-
featured and extremely versatile, the first-time user should be prepared to devote some
time to learn it. This effort will be well repaid by the power and versatility that MPW
places in your hands.

What’s new in MPW 3.0

MPW 3.0 is faster and easier to use than its predecessor and now fully exploits MultiFinder.
Use of MPW with MultiFinder greatly increases its convenience and efficiency. Many new
tools and options to existing tools have been added. Major additions to MPW include
Projector, a project management system, and SADE, the Symbolic Application Debugging
Environment. MPW now also supports C++. These innovations are each briefly described
in the sections that follow. Changes to menus, tools, variables, and compilers are itemized
in the lists that follow.

If you are currently using MPW 2.0, it is especially important that you carefully review the
changes listed in this section. The extensive changes implemented in MPW 3.0 might
affect scripts written for the MPW 2.0 Shell.

MPW C++

MPW now includes extensions to the C language that support the features of C++. MPW
C++ is an approximate superset of the C programming language that maintains the
efficiency and power of C while adding features such as operator overloading (which lets
you define additional meanings for built-in operators), ANSI-like type-checking,
automatic type conversion, and class hierarchies with inheritance. Because C++ supports
object-oriented programming, developers who prefer C to Pascal can now take advantage
of MacApp. For more information, see MPW 3.0 C++ Reference.

INTRODUCTION The New and the Necessary

Projector

MPW 3.0 includes an easy-to-use, built-in project management system, Projector, that can
be customized to fit any working style, from that of the single programmer to that of the
large, networked engineering team. Briefly, here’s how it works: You check out a file or
group of files from Projector for either review or modification. Although many people can
review a file, only one person at a time can modify it. When you've finished your work,
you check the file back in with Projector, along with a note detailing your modifications.
Your name, your notes, and the date are automatically filed in Projector’s revision history
for that project. It's also possible to create parallel branches of a single project for
expefimental purposes. Chapter 7 is a detailed account of Projector.

Symbolic Application Debugging Environment (SADE)

The Symbolic Application Debugging Environment (SADE) allows you to monitor the
execution of a program at both the processor level and at the symbolic program source
level. Both SADE and the enhanced MacsBug are now each documented separately from
the MPW Reference. For more information, see the MacsBug Reference and the SADE
Reference.

New or enhanced tools

The tools and scripts included with MPW 3.0 have been improved in many ways for
increased versatility. These enhancements are briefly catalogued in the list that follows. In
addition, a number of new tools and scripts have been added to support Projector and
the C++ compiler.

MPW 3.0 supports shared tools on a network file server.

These rarely used conversion tools are no longer included with MPW but are still available
from Technical Support at Apple Computer, Inc.:

s TLACvVt

= MDSCwvt

s CVTObj

8 MPW 3.0 Reference

All MPW 3.0 commands, including tools and scripts, are individually documented in the
alphabetically organized Command Reference in Part II of this book; that is the first
place to look for more information about any tool.

® Backup: Two new options have been added.

m C: The C compiler has been completely rewritten for MPW 3.0. Some of the options
and calling conventions are different from those in the MPW 2.0 C compiler. See the
MPW 3.0 C Reference.

m CFront: New translator for C++.

» Choose: A new tool that enables you to mount servers and select Apple Laserwriter®
printers from within the MPW environment.

s Commando: Now has a built-in editor that makes it easy to modify Commando
dialog boxes.

n CompareFiles: A script that compares two files side by side, pinpointing any
differences.

m CompareRevisions: A Projector script used to identify and compare revisions. See
Chapter 7 for details.

CPlus: New script that compiles C++ programs.

CreateMake: Enhanced with a new option that supports SADE.

Dolt: A script to highlight and execute a series of commands.

DumpCode: Enhanced.

DumpFile: New -bf option. Note that the -c option has been renamed -w (for width).
DumpObj: Enhanced to support SADE. Two new options have been added.

GetFileName: Enhanced with a new -c (current) option to write the current Standard
File pathname to standard output. The syntax of this command has also been
improved.

m GetListItem: GetListitem now supports keyboard shortcuts and a new option: -s
(single) option that permits only a single item to be selected from a displayed list.

» Lib: Enhanced. Lib now determines the optimum buffer allocation from the amount
of available memory; the old -b, -bs, -bf options are therefore obsolete and have been
eliminated.

m Link: Enhanced to permit up to 1024 files, including both object files and symbolic
debugger source file specifications. A new -map option produces a sophisticated link
map. Link now determines the optimum buffer allocation from the amount of
available memory; the old -b, -bs, -bf options are therefore obsolete and have been
eliminated. A new option supports SADE. See Chapter 10.

INTRODUCTION The New and the Necessary

9

MacsBug: MacsBug performance has been enhanced and upgraded. The MC68881 and
MC68882 floating-point coprocessors are supported. See the separate MacsBug
Reference.

Make: Changes have been made to the way variables are treated. See “Variables in
Makefiles” in Chapter 9.

MatchIt: A new command that intelligently seeks the mate of a specified delimiter
used in Pascal, C, or Assembler, allowing for loops, comment fields, nesting, and so
on.

MergeBranch: A Projector script used to help merge a branch file back into the trunk
of a project. See Chapter 7 for details.

Pascal: Enhanced with object-oriented capabilities. See the MPW Pascal section later
in this chapter and the MPW 3.0 Pascal Reference.

Print: Enhanced. A new option, -ps, lets you send a file of PostScript® commands to
the LaserWriter™.

ProcNames: This Pascal utility now generates Shell marker commands, allowing easy
access to the procedure, function headers, or bodies. Names are now displayed
indented to show their nesting level. Nesting level and line number are also displayed.

Resource tools: The command language of Rez has been extended with the new
syntax element Label to support color QuickDraw resources. There are a few new
syntax rules, new options, and two new functions that allow you to delete resources or
change resource information. See Chapter 11 and Appendix D.

Sort: A new tool for sorting lines of text.

Wherels: This new tool helps you find files hidden deep in a directory tree. You can
use it to locate files when you know only a partial pathname.

New or enhanced Shell commands

All of these built-in commands are fully described in the Command Reference in Part II;
that is the first place to look for more information.

10

CheckIn: New Projector command to check files in to a Project. See Chapter 7.
CheckOut: New Projector command to check files out from a Project. See Chapter 7.
CheckOutDir: New Projector command to set Checkout directory. See Chapter 7.

Close: Enhanced with a -¢ option; it lets you select the dialog’s Cancel button during a
scripted operation.

Date: Enhanced to provide “date arithmetic.”
DeleteNames: New Projector command. See Chapter 7.

MPW 3.0 Reference

DeleteRevisions: New Projector command. See Chapter 7.

Directory: A “directory path” variable (similar to the {Commands} variable) for
changing current directories has been added.

Evaluate: Enhanced to support different radices and variable assignments.
Flush: A command for flushing tools from the tool cache.

Format: A scriptable form of the format option in the Edit menu.
FullBuild: Enhanced.

ModifyReadOnly: New Projector command to make read-only files modifiable. See
Chapter 7.

MountProject: New Projector command. See Chapter 7.

MoveWindow: Enhanced to provide current window size and position.
NameRevisions: New Projector command to name revised projects. See Chapter 7.
NewProject: New Projector command to create a new project. See Chapter 7.
OrphanFiles: New Projector command. See Chapter 7.

Position: This new command shows the current line number, beginning of selection,
and end of selection in specified windows.

Project: New Projector command. See Chapter 7.
ProjectInfo: New Projector command. See Chapter 7.

Request: Enhanced with -q option to quiet any error messages, permitting a script to
continue regardless of user input.

RotateWindows: New command that sends the front window to the back.
SizeWindow: Enhanced to provide current window size and position.

StackWindows: Enhanced to support user-defined rectangles and a variable number
of windows.

TileWindows: Enhanced to support user-defined rectangles and a variable number of
windows.

TransferCkid: New Projector command. See Chapter 7.
UmountProject: New Projector command. See Chapter 7.

INTRODUCTION The New and the Necessary

11

New Shell editor capabilities

The MPW Shell editor has been refined in various ways:

12

MPW 3.0 supports the special keys on the Apple Extended Keyboard:

Esc Same as Cancel button in a dialog box

Undo Same as Undo menu command

Cut Same as Cut menu command

Copy Same as Copy menu command

Paste Same as Paste menu command

Help With no selection, displays a summary of the Help available. With a
selection, information on that selection is displayed.

Home Equivalent to moving the vertical scroll box to the top of the scroll bar.

End Equivalent to moving the vertical scroll box to the bottom of the scroll
bar.

Page Up Equivalent to clicking the mouse pointer in the upper gray region of the
vertical scroll bar.

Page Down Equivalent to clicking the mouse pointer in the lower gray region of the
vertical scroll bar.

The displayed line-length limit has been increased to 256 characters.
The tab-length limit has been increased to 100 characters.
Horizontal scrolling is faster; more screen area is moved per mouse click.

You can reverse the direction of the Find, Find and Replace, Find Same, Replace Same,
and Find Selection functions by holding down the Shift key when selecting a2 menu
item (or, in a dialog box, when clicking OK). This makes interactive searching a little
more convenient but does not affect Shell search variables.

Text selection by matching delimiters (such as { }, (), [], and so on), has been
modified. Instead of selecting the rest of the document when a matching character is
not found, the delimiter at the position of the doubleclick is highlighted. During the
search you can abort by pressing Command-Period.

The new commands Format and Position (described above in the “New or Enhanced
Shell Commands” section) are useful for scripted editing.

The library routine faccess has been enhanced to provide more programmatic
control over Shell windows.

MPW 3.0 Reference

You can now disable Auto-Indent for one line by pressing Option-Return.

The MPW Shell editor ignores any zero-width characters that are typed from the
keyboard. (Usually these are typed by accident.) If you really want a control character
in your document, you can enter it in the Key Caps desk accessory and then paste it in
your document. To delete control characters that might not be visible, select Show
Invisibles from the Format dialog box. All control characters are displayed as an
inverse question mark (;).

New standard Shell variables

Twelve new variables have been added to give you control over almost all formatting and
editing options from scripts. (Only display invisibles cannot be predefined.) The first five
variables listed here provide default settings for new windows and are especially useful
with large-screen monitors. See “Variables Defined in the Startup File” in Chapter 5 for
more information.

{AutoIndent} sets default indenting for new windows.

{Font} sets default font for new windows.

{FontSize} sets default font size for new windows.

{NewWindowRect} sets the default size for new windows.

{ZoomWindowRect} sets default size for windows that are zoomed to full screen size.

{TileOptions} sets options for the TileWindows menu item, for example, to specify a
rectangle for the tiled window arrangement.

{StackOptions} sets options for the StackWindows menu item, for example, to
specify a rectangle for the stacked window arrangement.

{SearchBackward} can be used to set your default environment to specify backward
searching.

{SearchType} can be used to set your default environment to specify searching for
literal characters, words, or regular expressions.

{SearchWrap} can be used to set your default environment to specify wrap-around
searching.

INTRODUCTION The New and the Necessary

13

n {User} specifies the name of the user currently using MPW. It is predefined to be the
same as the user name specified in the Chooser.

n {IgnoreCmdPeriod} is a new variable referenced by MPW’s command interpreter. Use
this variable in your scripts when you want any Command-Period input by the user to
be ignored.

Changes to menus and dialogs

A few menus have been slightly changed since the release of MPW 2.0:

» TileWindows and StackWindows menu items now, by default, do not include the
Worksheet. You can include the Worksheet in the tiling or stacking by pressing the
Option key when selecting the TileWindows or StackWindows menu item. The
{TileOptions} and {StackOptions} variables let you completely customize the
operations of the TileWindows and StackWindows menu commands. See Chapter 3.

s Window menu now lists any open Projector windows. See Chapter 3.
s The Open dialog box now contains a Read Only checkbox.

Miscellaneous Shell changes

Here are some important improvements for the MPW Shell:

s MPW 3.0 supports background operation of tools while running MultiFinder. This is a
significant improvement in convenience and efficiency. Please see “Using MPW With
MultiFinder” in Chapter 2 for instructions on configuring your system for true
multitasking.

® An automatic installation program is included with MPW 3.0. This program, Installer,
and the tools to support it, can be found on the MPW Installation Disk. Please read
“Installing the System” in Chapter 2 before doing anything with it. This is important
because the arrangment of MPW files on the 3.5-inch distribution disks has been
changed to represent their final destination when moved to a hard disk. Thus there
will be some duplication of folders across the set of distribution disks so that you
cannot simply copy the entire contents of a distribution disk without some conflict.

* m The Startup file now executes UserStartup and then any file named UserStartupe name
in the directory that contains the Shell. (Press Option-8 to obtain the ¢ symbol.) If
you have a customized UserStartup file, you may want to personalize it (for example,
UserStartupe Tom) so that when you install MPW 3.0 your customized file won't be
overwritten.

14 MPW 3.0 Reference

» Standard output and diagnostic output can now be directed to the same place with
the X, (Option-W) character, meaning: “The summation of all output...” See
“Redirecting Input and Output” in Chapter 5 for the new syntax.

m You can now use Option-Enter to invoke the Commando dialog boxes for commands.
Alternatively, you can still type the command name, then the ellipsis character
(Option-Semicolon), and then press Enter.

® A new directory path varable for changing current directories is now available from
the Directory command. (See Part I1.)

m Numeric variables have been added to the Shell command language. See the Evaluate
command in Part II for details.

w The notation conventions of this reference have been slightly modified. The index has
also been improved. See “About This Reference” at the end of this Introduction.

Numeric libraries

Linking with numeric libraries has been simplified by placing certain conversion functions,
such as num2dec, in CRuntime.o. A program that simply uses print £ will no longer need
to link with CSANElib.o.

A new {Alncludes} macro file called SANEMacs881.a is provided as a migration aid for
Macintosh II developers who seek even greater floating-point performance from their
products by using SANE macros. With little modification of their source files, they can
reassemble by using the 881 SANE macros and thereby generate a faster application that
runs only on the Macintosh II.

INTRODUCTION The New and the Necessary

15

MPW C and MPW C++ Include files

The capitalization conventions for those functions that use Points or strings have been
changed for MPW 3.0. These changes are itemized here:

Those functions that call “glue” code to convert C strings to Pascal strings or
dereference Points are now spelled with all lower case letters.

The in-line versions of those function calls, those that do no conversions, are now
spelled with mixed cases to match the conventions in Inside Macintosh.

You will find in the Scripts folder a new script, CCvt, that changes source code to
conform to the new standard spelling conventions. CCvt first backs up the original
source and then uses two Canon dictionaries to change mixed case spellings to all
lower case and all upper case spellings to mixed case.

The syntax for ROM calls (A-traps) has been changed. The new syntax allows multiple
instructions for “direct functions” and is more compatible with standard ANSI C and
C++.

The header files have been rewritten with function prototypes that allow ANSI C and
C++ to do additional type-checking and code optimization.

If you use MPW C, please see the MPW 3.0 C Reference for more information about
interfaces.

MPW Pascal

The MPW 3.0 Pascal Compiler no longer provides the compiler directive $LoaD and the
option -z that were supported in MPW 2.0 Pascal. In addition to providing nearly all the
capabilities described in the ANS Pascal Standard, MPW 3.0 Pascal expands the power
and flexibility of Pascal programming with a range of new features and options:

16

SADE, the symbolic debugger (-sym option), and MacsBug (-mbg option) are
supported.

A replacement for the $LOAD mechanism provides a more automatic and faster
method (-noload, -clean, and -rebuild options).

You can use character constants as valid string expressions.
Symbol support for MacsBug has been extended and improved.
Global data greater than 32K is now possible.

The requirements for forward type references are more flexible.

MPW 3.0 Reference

MPW tool libraries

MPW language libraries that control the MPW Shell were previously documented in their
respective language references. All Shell-related routines are now combined in this
reference.

m Use of the MPW cursor control routines and error file manager is now explained in
Appendix F of this book. Examples are shown in both MPW C and MPW Pascal;
Assembly programmers can use both.

m Use of the MPW Integrated Environment routines are documented in Chapter 12. The
routines are explained for MPW Assembler, MPW C, and MPW Pascal.

m The Graf3D library is now documented in Appendix G. Each routine or function is
explained for MPW C and MPW Pascal; Assembly programmers can use both.

s The calls required to use the performance-measurement tools are now included in
Chapter 14 of this book. Examples are shown in MPW C, MPW Pascal, and MPW
Assembler.

What you’ll need

This section describes the hardware and documentation you need to develop software
with the Macintosh Programmer’s Workshop 3.0.

Hardware and system requirements

The Macintosh Programmer’s Workshop 3.0 can generate applications that run on any
Macintosh, including the Macintosh II, Macintosh SE, Macintosh Plus, Macintosh 128K,
Macintosh 512K and 512K enhanced, and Macintosh XL.

However, the MPW 3.0 system requires, at the minimum, a Macintosh Plus with 2
megabytes of RAM and a hard disk drive. MPW does not run on the Macintosh XL, the
Macintosh 128K, the Macintosh 512K, or Macintosh 512K enhanced or on systems without
hard disks. MPW 3.0 requires the 128K or 256K ROMs; it cannot execute on the older 64K
ROMs. The ideal developmental system for use with MPW 3.0 is a Macintosh II with an
80-megabyte SCSI hard disk drive, 4 or more megabytes of memory, and System 6.0.2 or
later software with MultiFinder.

In general, 2 small RAM cache of about 32K is useful. Use of MPW with Switcher™ is not
supported.

INTRODUCTION The New and the Necessary 17

MPW software is shipped on 800K disks. Although MPW 3.0 can still read from and write
to disks that use the nonhierarchical filing system, MPW”s files must be kept on disks that
use the hierarchical filing system (HFS). Hard disks, when used as boot disks, must be
HFS volumes.

Apple’s Macintosh peripherals, including the LaserWriter family of printers and the
AppleShare?® file server, are supported.

System Folder requirements

Please make sure that you are using System file Version 6.0.2 or later versions.

MPW 3.0 requires these minimum system file versions:
System file 6.0.2

Finder 6.1

Laser Prep 4.0

ImageWriter® 2.6

AppleTalk® ImageWriter 3.1

LaserWriter 4.0

These files are available on version 6.0.2 or later of the System Tools disk, and on the latest
version of the Printer Installation disk.

Documentation

In addition to the MPW 3.0 Reference, you should have the SADE Reference, the Macsbug
Reference, and the ResEdit Reference. These books together make up the MPW 3.0
documentation suite.

The four MPW programming languages, MPW Assembler, MPW C, MPW C++, and MPW
Pascal, are available as separate products.

All programmers need Volumes IV of Inside Macintosh (published by Addison-Wesley,
1985), the definitive guide to the Macintosh Operating System and user-interface
toolbox. Additional features of the Macintosh SE and Macintosh II computers are
documented in Volume V. If you need to understand and control the numeric
environment, make sure that you have the Apple Numerics Manual, a guide to the
Standard Apple Numerics Environment (SANE™). Finally, you need the appropriate
documentation for the programming language you use:

18 MPW 3.0 Reference

= Assembly language: Macintosh Programmer’s Workshop 3.0 Assembler Reference.
This reference is part of a separate product available from Apple. You may also need
the appropriate microprocessor documentation from Motorola.

n C: Macintosh Programmer’s Workshop 3.0 C Reference. This reference is available as
part of a separate MPW product. For a guide to the C language itself, you'll need The C
Programming Language by B. Kernighan and D. Ritchie, or a similar C manual.

m C++: MPW 3.0 C++ Reference. Also recommended is The C++ Programming
Language by Bjame Stroustroup.

s MacApp: MacApp Programmer’s Reference. This reference is part of a separate
product, MacApp, the Expandable Macintosh Application, available from Apple. The
MacApp product also requires MPW Pascal or MPW C++.

m MacsBug: MacsBug Reference. This reference is included as part of the MPW 3.0
product.

m Pascal: Macintosh Programmer’s Workshop 3.0 Pascal Reference. This reference is
available as part of a separate MPW product.

m ResEdit: ResEdit Reference. This reference is included as part of the MPW 3.0 product.
m SADE: SADE Reference. This reference is included as part of the MPW 3.0 product.

About this reference

Part I of this book describes the MPW development system, including the Shell and tools.
Part I1 of this book is a complete alphabetical reference to MPW commands that may be
removed to a smaller binder for easy reference.

This reference is written for programmers who are already familiar with the Macintosh. It
outlines the process of building a program but does not deal with the particulars of writing
it. Language-specific information is covered in the appropriate language references.
Language-specific examples in this reference are given in MPW Assembler, MPW Pascal, or
MPW C.

If you are new to MPW, be sure to read the Overview in Chapter 1 and the brief section
“Building a Program: An Introduction” in Chapter 2. This introduction will take you
through MPW’s buiid process in minutes. Chapter 3 introduces the commands available
from the menus and Chapter 4 covers the basics of using MPW, including features of the
Commando dialog interface.

INTRODUCTION The New and the Necessary

19

If you are a seasoned MPW user, this introduction should be sufficient to alert you to the
changes to the MPW Shell since MPW 2.0, and to indicate where you can find complete
details on each innovation. You may wish to read the new Chapter 7, “Projector: Project
Management.” Please note that Link and Make are now described in their own chapters in
this reference and that ResEdit and MacsBug are now documented in separate volumes.
More examples have been added since MPW 2.0, and suggestions from readers have been
incorporated to make it easier to find information.

Finding information fast

During MPW sessions, the on-line Help files included with MPW are your first recourse. If
you don't find the information you need there, the recommended procedure is to check
the Table of Contents and then the index at the end of PartI in this reference. Use the
color-keyed tabs to turn quickly to the section in the MPW Reference that you need. Then
use the table of contents provided at the beginning of each chapter.

The index has been redesigned for MPW 3.0. A single datum jn the text (excluding
appendixes and Part IT) may be referenced from as many as six different points in the
Index and up to three levels deep. References include practical task-oriented
identification to help you find exactly what you need without looking up a series of page
references for a single word. Trivial references have been eliminated from the index to help
you avoid wild-goose chases. Examples, tables, wamings, and special notes have been
listed to help you find things you may have encountered before but can’t remember
exactly where.

Throughout this book you will encounter supplementary background information, hints,
and tips in specially formatted boxes set off by diamond-shaped icons and sans-serif
type. You can ignore these boxes during routine reference.

In spite of redundancy and a plethora of cross references, finding a specific item of
information in a book this size can sometimes be frustrating. A little preparation can help
out later when you are busy and need to find something fast. It’s a good idea to begin by
carefully studying the organization of the Contents pages, especially the List of Figures
and Tables and the appendixes at the end of Part I. The List of Figures and Tables and the
appendixes are often overlooked. You may find it useful to glue tabs at the locations of
important figures and tables. Whenever you come across something in the body of the
text that you think you may need to find later, place a tab there and label it.

20 MPW 3.0 Reference

Part II of this manual is a complete alphabetical reference to MPW commands. As you
become familiar with MPW and no longer need to refer often to the indexed chapters of
Part I, you may find it convenient to remove Part I and place jt in a smaller binder for
handy reference. You may want to include some of the appendixes (such as the summary
of the Resource compiler’s syntax in Appendix D) in the smaller binder also.

Syntax notation

The following syntax notation is used to describe MPW commands:

code

include

nonterminal

{FontSize}

[optional]
-0

repeated...

alb
(grouping)

Courier text is used in examples to indicate characters that
must appear in 2 command line exactly as shown. Special
symbols (-, §, &, and so on) must also be entered exactly as
shown. Command-line examples are always set off in separate
paragraphs.

Command-language identifiers and syntax elements are set in
Courier to differentiate them from surrounding Garamond text
(following the Kernighan and Ritchie notation conventions).

Items in italics can be replaced by anything that matches their
definition. When referred to in the text, variables normally
appear in italics.

Standard MPW Shell variables appear without spaces between
braces.

Brackets mean that the enclosed elements are optional.

Hyphenated command-line options appear in boldface when
mentioned in text.

An ellipsis (...), when it appears in the text of this reference only,
indicates that the preceding item can be repeated one or more
times. Do not confuse this reference convention with the
ellipsis command-line character (Option-Semicolon), used to
invoke the Commando dialog interface.

-A vertical bar indicates an either/or choice.

Parentheses indicate grouping (useful with the | and ...
notation).

This notation is also used in the output of the Help command. (See “The Help Command”

in Chapter 4.)

INTRODUCTION The New and the Necessary

21

Filenames and command names are not sensitive to case. By convention, they are shown
with initial capital letters. Important terms are printed in boldface when they are first
introduced and defined; these terms are also fully defined in the glossary. Proper names
of key user-interface elements, such as the Shell, appear with initial capitals. Command-
key or option-key commands (such as Option-L) are always defined in the text with
capitals for clarity; nonetheless, the commands work with lower case letters.

Aids to understanding

Look for these visual cues throughout the manual:
A Warning Warnings like this indicate potential problems. a

A Important Text set off in this manner presents important information. a

¢ Note: Text set off in this manner presents important points that should not be
overlooked.

¢ Hints

Text set off in this manner in Helvetica type indicates practical hints or background
information that need not be perused during routine reference.

For more information

APDA™ provides a wide range of technical products and documentation, from Apple and
other suppliers, for programmers and developers who work on Apple equipment. (MPW is
distributed through APDA.) For information about APDA, contact

APDA

Apple Computer, Inc.

20525 Mariani Avenue, Mailstop 33-G
Cupertino, CA 95014-6299

1-800-282-APDA, or 1-800-282-2732
Fax: 408-562-3971

Telex: 171-576

AppleLink: DEV.CHANNELS

If you plan to develop hardware or software products for sale through retail channels, you
can get valuable support from Apple Developer Programs. Write to

Apple Developer Programs

Apple Computer, Inc.

20525 Mariani Avenue, Mailstop 51-W
Cupertino, CA 95014-6299

2 MPW 3.0 Reference

Chapter 1 System Overview

THIS CHAPTER IS A GUIDE TO THE STRUCTURE OF THE MPW 3.0 SYSTEM and an
introduction to its components. If you are new to MPW, this chapter will help you to
get oriented. The MPW Shell commands and the MPW tools are grouped according
to task each tool or command is briefly introduced and cross-referenced. =

Contents

The MPW Shell 25
Window commands 26
File-management commands 27
Project-management commands 28
Editing commands 29
Structured commands 29
Other built-in commands 30
MPW scripts 31
MPW tools 32
MPW Assembler 33
MPW Pascal tools 33
MPW C compiler and C++ translator 34
Link 34
Make 35
Resource compiler and decompiler 35
Commando 36
Projector 36
Conversion tools 37
Performance-measurement tools 37
Applications 37
ResEdit 38
SADE and MacsBug 38
Special scripts 39
Examples 39
Sample program files 39
Command-language examples 40
Overview of MPW files and directories 40

23

The MPW Shell

The MPW Shell is an application that provides an integrated, window-based environment
for program editing, file manipulation, compiling, linking, and program execution. The
other parts of the Macintosh Programmer’s Workshop 3.0—the language and resource
compilers, debuggers, Projector, Commando, and other tools described below (except
independent applications such as ResEdit}—operate within the Shell environment. These
tools accept input from files and Shell windows, and direct output to them.

The Shell combines a command language, a text editor, the Commando user interface, and
the Projector project-management system. You can enter commands in any window, even
within an ordinary text file, or you can execute them by using menus and dialogs. (A
dialog may include one or more dialog boxes, which may in turn contain text boxes,
check boxes, radio buttons, and so on.) For every MPW tool there is a Commando dialog
offering all parameters, functions, and options of the command language along with built-
in context-sensitive help.

The command language provides text-editing and program-execution functions, including
parameters to programs, scripting (command file) capabilities, input/output redirection,
and structured commands. You run a tool by typing its name, and then a list of options
and affected files. You can link tools together in custom scripts, piping the output of one
to the input of another, thereby automating complex operations.

The window operations, menus, and menu items are easily customized to fit your specific
needs or preferences.

The MPW Shell integrates the following functional components:

m An editor for creating and modifying text files. The editor implements normal
Macintosh-style editing together with scriptable editing commands so that you can
program the Shell to perform editing functions. (See Chapters 3, 4, and 6.)

= A command interpreter interprets and executes the commands you enter in a
window or read from a file. (See Chapter 5 and Part I1.)

s The Commando user interface displays dialog boxes providing immediate, mouse
access to all of MPW's many functions, features, and options, including on-line help.
(Sec Chapter 4 for an introduction to the use of the Commando dialogs. Chapter 13 is
a guide to creating and editing your own Commando dialogs.)

CHAPTER 1 System Overview

25

A command interpreter interprets and executes the commands you enter in a
window or read from a file. (See Chapter 5 and Part II.)

The Commando user interface displays dialog boxes providing immediate, mouse
access to all of MPW’s many functions, features, and options, including on-line help.
(See Chapter 4 for an introduction to the use of the Commando dialogs. Chapter 13 is
a guide to creating and editing your own Commando dialogs.)

Built-in commands, in addition to editing functions, include commands for
managing files without returning to the Finder, commands for manipulating windows,
processing variables, command control flow, and more. (See Chapter 5.)

Projector, a project-management system, makes it easy to track the revision
history of even large projects with many contributors, with or without a network.
Projector helps you avoid confusing versions or getting out of synch with colleagues.
(See Chapter 7.)

The MPW tools, over 135 versatile programming tools and scripts designed to run
within the MPW environment. Every tool is equipped with a complete dialog interface
including context sensitive help. Part II of this reference is an alphabetically organized
guide to each of these tools and their many options.

Window commands

All work in MPW is done within windows. The following commands are available for
manipulating windows:

Close Close a window.

MoveWindow Move window to a specified location on screen.
New Open a new window.

Open Open a window.

RotateWindows Rotate the sequence of a tiled or stacked array of windows.
SizeWindow Set a window’s dimensions.

StackWindows - Arrange open windows in a staggered diagonal array.
Target Make a window the target window.

TileWindows Arrange open windows in a tile pattern.

Windows List windows.

ZoomWindow Enlarge or reduce a selected window.

% MPW 3.0 Reference

File-management commands

The MPW Shell provides the following tools and built-in commands for manipulating files
and directories without having to exit to the Finder (see the MPW tool section later in this
chapter for other commands that help to manage files):

Backup
Catenate
Delete
Directory
Duplicate
Eject
Equal
Erase
Exists
Files
Mount
Move
Newer
NewFolder
Rename
Save
SetFile
Sort
Unmount
Volumes
Which

Back up folder files.

Concatenate files.

Delete files and directories.

Set the default directory.
Duplicate files and directories.
Eject volumes.

Compare files and directories.
Initialize volumes.

Find out if a file or directory exists.
List files and directories.

Mount volumes.

Move files and directories.
Compare two files to see which was modified most recently.
Create a directory.

Rename files and directories.

Save files in edit windows.

Set file attributes.

Sort or merge files.

Unmount volumes.

List mounted volumes.

Determine which file (pathname) the Shell will execute.

CHAPTER 1 System Overview

27

Project-management commands

Projector provides the following built-in commands and scripts.for managing projects and
tracking revisions. See Chapter 7 for a complete explanation of Projector.

CheckIn
CheckOut
CheckOQutDir
CompareRevisions
DeleteRevisions
DeleteNames
MergeBranch
ModifyReadOnly
MountProject
NameRevisions
NewProject
OrphanFile
Project
Projectlnfo
TransferCKID
UnmountProject

Add or return files to a project.

Check out a file for reading only or for modification.

Set location of CheckOut directory.

Compare two revisions of a file in a project.

Delete selected revisions and branches of the named files.
Delete user-defined symbolic names.

Merge a branch revision onto the trunk

Change a file checked out as read-only to allow modification.
Add the pathname of a project to the root project list.

Name a set of revisions for the files of a project.

Create a new project directory.

Orphan a file from a project.

Set or write the current project.

List current state of all files within a project.

Transfer resource information in one Projector file to another.
Remove the pathname of a project from the root project list.

28 MPW 3.0 Reference

Editing commands

Besides the Macintosh’s usual mouse-and-menu editing capabilities, a number of built-in
editing commands are provided. You can use these commands both interactively and in
scripts. Editing commands feature the use of regular expressions, a set of special
operators that forms a powerful language for defining text patterns. Other useful
commands for editing (such as MatchIt and Translate) are listed later in this chapter under
“MPW tools.” See “Pattern Matching” in Chapter 6 for a discussion of regular expressions.

Adjust Adjust lines.

Align Align text to left margin.

Clear Delete the selection.

Copy Copy the selection to the Clipboard.

Cut Copy the selection to the Clipboard and delete the selection.
Find Find and select a text pattern.

Format Specify format of a file (font, tabs, font size).

Mark Mark and name a text selection.

Markers List marked selections.

Paste Replace the selection with contents of the Clipboard.
Position List the position of selections in a window.

Replace Replace the selection.

Revert Revert to saved file.

Undo Undo last edit.

Unmark Remove a marker from its text selection.

Structured commands

The Shell also provides a number of built-in structured commands. Used mainly in scripts,
these commands provide conditional execution and looping capabilities:

Begin...End Group commands.

Break Break from For or Loop.

Continue Continue with next iteration of For or Loop.
Exit Exit from a script.

For... Repeat commands once per parameter.

If... 4 Conditional command execution.
Loop...End Repeat commands until Break.

CHAPTER 1 System Overview

29

Other built-in commands

The MPW Shell also provides a number of other predefined commands:

AddMenu
Alert

Alias
Beep
Confirm
Date
DeleteMenu
Echo
Evaluate
Execute
Export
Fhush
Help
Parameters
Quit
Quote
Request
Set

Shift
ShutDown
Unalias
Unexport
Unset

Add menu item.

Display alert box.

Define alternate command names.

Generate tones.

Display confirmation dialog box.

Write the date and time.

Delete a user-defined menu or item.

Echo parameters.

Evaluate an expression.

Execute a script without affecting variable scope.
Make variables available to programs and scripts.
Clear the command cache.

Display summary information.

Identify parameters.

Quit MPW.

Echo parameters, quoting if needed.
Request text from a dialog box.

Define and write Shell variables.

Renumber script positional parameters.
Shut down or reboot machine.

Remove aliases.

Remove variable definition from export list.
Remove Shell variables.

30 MPW 3.0 Reference

MPW scripts

The menu commands available in the Directory and Build menus use some of these scripts:

BuildCommands Show build commands.

BuildMenu Create the Build menu.

BuildProgram Build the specified program.

CCwvt Convert pre-3.0 C source to 3.0-compatible source.
CompareFiles Compare two files side by side, pinpointing any differences.
CompareRevisions Identify and compare project revisions.

CPlus Compile C++ programs.

CreateMake Create a simple makefile.

DirectoryMenu Create the Directory menu.
-Dolt . Highlight and execute a series of commands.

Line Find specified line in file.

MergeBranch Merge a branch file back into the trunk of a project.
OrphanFile Orphan a file from a project.

SetDirectory Set current directory (from Directory menu).

TransferCKID Transfer resource information in one Projector file to another.

CHAPTER 1 System Overview

31

MPW tools

MPW tools are programs that run within the Shell environment. With the exception of the
language compilers, the tools listed here are included with the Macintosh Programmer’s
Workshop 3.0; several are described in more detail in the sections that follow.

Asm

Backup

C

Canon
CFront
Choose
Compare
Count
DeRez
DumpCode
DumpFile
DumpObj
Entab
FileDiv
GetErrorText
GetFileName
GetListltem
Lib

Link

Make
MakeErrorFile
Matchlt
Pascal
PasMat
PasRef

PerformReport

Print
ProcNames
ResEqual
Rez
RezDet

MC68000-family Macro Assembler (available as a separate product).
Back up folder files.

C compiler (available as a separate product).
Canonical spelling tool. '

Translator for C++.

Choose or list volumes or printers (scriptable chooser).
Compare text files.

Count lines and characters.

Resource decompiler.

Dump code resources.

Display contents of an arbitrary file as hex and ASCII.
Dump object files.

Convert runs of spaces to tabs.

Divide a file into several smaller files.

Display text for system error numbers.

Display a standard file dialog box.

Present file selection list in dialog box.

Combine object files into a library file.

Link an application, tool, or resource.

Program maintenance tool.

Create error message textfile.

Match paired language delimiters.

Pascal compiler (available as a separate product).
Pascal program formatter (part of MPW Pascal).
Pascal cross-referencer (part of MPW Pascal).
Generate a report analyzing program performance.
Print text files.

Display Pascal procedure and functions names (part of MPW Pascal).
Compare files on a resource-by-resource basis.
Resource compiler.

Detect inconsistencies in resources.

32 MPW 3.0 Reference

Search Search files for a pattern.

SetPrivilege Set access privileges to folders on file server.
SetVersion Maintain version and revision numbers.

Sort Sort files.

Translate Convert one or more characters.

Wherels Locate files buried deep in a directory tree.

MPW Assembler

The Assembler is provided as a separate product, MPW 3.0 Assembler, which includes the
following:

Translation of MC68000, MC68010, MC68020, and MC68030 assembly-language
programs into object code

Support for MC68881 and MC68882 floating-point instructions and MC68851 memory
management instructions

Powerful macro facilities, code and data modules, and entry points, local labels, and
(optional) optimized instruction selection

Assembly-language interfaces to Inside Macintosh routines
Sample programs

MPW Pascal tools

The Pascal system is provided as a separate product, MPW 3.0 Pascal, which includes the
following:

Pascal compiler

Pascal cross-reference program (PasRef)

Pascal source file format program (PasMat)
Pascal procedure and name program (ProcNames)
Pascal runtime library

Pascal interfaces to the Inside Macintosh routines
Sample programs

Macintosh Programmer’s Workshop 3.0 Pascal is an improved version of MPW 2.0 Pascal.
The Pascal tools PasRef, PasMat, ProcNames, and the Pascal compiler are also
documented in Part II of this reference.

CHAPTER 1 System Overview 33

MPW C compiler and C++ translator

The C compiler and C++ translator are provided as separate products. MPW 3.0 C includes
the following:

s C compiler

s Standard C Library

m C interfaces to the Inside Macintosh libraries
Sample programs in MPW C

The C Compiler implements the full C language as defined in The C Programming
Language, by Brian Kernighan and Dennis Ritchie. The usual extensions to this definition
provide enumerated types and structure assignment, parameters, and function results. In
addition, Apple extensions provide SANE numerics and interfaces to Pascal functions and
Macintosh traps. The compiler supports many ANSI C features, such as function
prototypes and strict pointer compatibility. Most Standard C Library functions, including
character and string processing, memory allocation, and formatted input/output, are also
provided.

MPW 3.0 C++ includes the following:

m C++ translator (CFront)

m C++ Streams Library

s Sample programs in MPW C++

The CFront translator from AT&T implements the full C++ language as defined in The C++
Programming Language, by Bjarne Stroustroup. The current version, CFront 2.0, also
implements multiple inheritance and other extensions described in the paper “Evolution

of C++ from 1985 to 1987” by Bjarne Stroustroup. In addition to the C extensions listed
in that paper, C++ also contains extensions that allow C++ to be used with MacApp.

Link

The linker (Link) combines object code files into executable programs, driver resources,
or stand-alone code resources. Link includes, by default, only the code and data modules
that are referenced. Link replaces the code segments in an existing resource file, without
disturbing other resources in the file. An option directs Link to produce a link map as a
text file. Other options allow the creation of an object module cross-reference file, a file
containing a list of all the unreferenced modules, and a symbolic debugger file.

34 MPW 3.0 Reference

A separate tool, Lib, provides library manipulation. Linking is performed automatically
for simple programs constructed by using the Build menu. Chapter 8 describes the use of
Link in building a program. See Chapter 10 for more details on the operation of the linker.

Make

The Make tool simplifies software construction and maintenance. Its input is a list of
dependencies between files and instructions for building each of the files. Make generates
commands to build specified target files, rebuilding only those components that are out-
of-date with respect to their dependencies. You can generate makefiles automatically
from commands in the Build menu. To use Make with more elaborate programs, see
Chapter 9.

Throughout this reference examples demonstrating Make or makefiles assume that you are
using Apple’s MPW languages. Because Make assumes certain default rules that apply only
to Apple’s MPW languages, you may need to make modifications for non-Apple
programming languages. Please consult your compiler's documentation for instructions on
how to modify these default rules.

Resource compiler and decompiler

The resource compiler (Rez) reads a textual description of a resource and converts it into
a standard Macintosh resource file. The resource decompiler (DeRez) converts resources
into a textual representation that can be edited in the Shell, and recompiled with Rez. You
can use DeRez to create resource compiler input from any existing resource files. Rez and
DeRez need templates (type declarations) to define resource types. Definitions of the
standard Macintosh resource types (*MENU ', 'STR#', 'ICON', and so on) are provided
in two commented text files, Types.r and SysTypes.r. Another tool, RezDet, checks
resource files for consistency (see Part II). Rez and DeRez are documented in Chapter 11.

Rez’s capabilities have been extended in MPW 3.0. Two new functions let you delete
resources or change resource types from within Rez. The new syntax element Label has
been supplied to support more complex resources, such as those found in color
QuickDraw.

CHAPTER 1 System Overview

35

Commando

The Commando tool implements the Commando dialog user interface for all MPW tools
and commands. Obviously, this is a great convenience for dealing with tools offering
many interdependent options. Newcomers to MPW will appreciate Commando’s instant
assistance in building complex command lines. The dialogs include a Help frame with
information on each selected data field or control. You can also use Commando to create
specialized dialogs for your own MPW tools and scripts.

Commando looks in a tool’s or script’s resource fork for a resource of the type ' cmdo.
Commando then loads the resource, builds a dialog, handles events, and passes the
resulting command line back to the Shell for execution. The basics of using Commando
dialogs are described in Chapter 4. Dialogs utilizing specialized types of dialog boxes are
presented with the tools they support in Part II. Chapter 13 tells you how to create a
Commando interface for your own tools and scripts.

Projector

Projector is an easy-to-use project-management system that can be customized to fit any
working style, from the single programmer to the large networked engineering team. Use
Projector’s file-locking feature to control changes to master files, track a project’s
revision history, and generally keep your projects organized.

Briefly, here’s how it works: You begin a work period by checking out a file from
Projector for either review or modification. Although many people can review a file, only
one person at a time can modify a file. When you've finished your work, you check any
modified files back in with Projector, along with a note detailing your modifications.
Your name, your notes, and the date are automatically filed in Projector’s revision history
for that project. Various branches of a file containing different modifications may be
later merged into one master file.

Projector’s commands (listed in the section “Project-Management Commands” earlier in
this chapter) are built into the Shell. Chapter 7 is a detailed account of Projector.

36 MPW 3.0 Reference

Conversion tools

Canon is a tool for regularizing the spelling and capitalization of identifiers in source files
moved from other systems. (In MPW languages, all characters are significant rather than
just the first eight as in the Lisa Workshop. In C, case is also important.)

The file Canon.dict contains the correct spelling and capitalization for Inside Macintosh
ROM routines. C programmers, in particular, will find Canon and Canon.dict useful.

Entab is a useful tool for converting space characters and tabs to conform to MPW editor
or other editor conventions.

You can look up these conversion tools in Part II.

Performance-measurement tools

The performance-measurement tools enable you to pinpoint where your code is spending
time. These libraries allow you to sample the program counter, produce a file of output
data, and analyze that data with a report generator. Advanced programmers will find these
tools useful for streamlining the execution of their code. Chapter 14 is devoted to this
subject. Examples of the actual calls and procedures are presented in MPW C and MPW
Pascal.

Applications

Applications are stand-alone programs that can execute outside the Shell environment.
SADE and ResEdit are both stand-alone programs provided with MPW. It is assumed that
you already have the Font/DA Mover, which is distributed on the system tools and system
installation disks. Any application can be executed from the MPW Shell.

CHAPTER 1 System Overview

37

ResEdit

ResEdit is an interactive, graphically based editor for creating, editing, and copying
resources. An interface like that in the MacDraw application is provided to help you
design your own fonts. ResEdit includes a set of routines that make it possible to write
your own add-on resource editors for ResEdit. See the separate ResEdit Reference for a
thorough explanation of ResEdit.

SADE and MacsBug

The new Symbolic Application Debugging Environment (SADE) is a symbolic debugger
with an interactive graphic interface like that of the MPW Shell. SADE is an application
that runs under MultiFinder and can be used to debug other applications and MPW tools.
You can monitor the execution of your program simultaneously at the processor level and
the symbolic program source level. This first release of SADE includes

= source display

variable display according to type

display of Macintosh system structure

source level breaks and stepping
programmable, extensible command language

SADE is included with MPW 3.0 but documented separately in the SADE Reference. See
Appendix F of this reference for the object file format.

The familiar MacsBug has been improved for MPW 3.0, and is also documented in a
separate volume, MacsBug Reference.

MacsBug fully supports the MC68000, MC68020, and MC68030 processors, as well as the
MC68881, MC68881, and MC68851 coprocessors. MacsBug resides in RAM together with
your program. MacsBug allows you to examine memory, trace through a program, or set up
break conditions and execute a program until they occur. MacsBug runs on all Macintosh
computers with 128K or larger ROMs, including the Macintosh SE and Macintosh II. See
the MacsBug Reference for instructions on using MacsBug.

38 MPW 3.0 Reference

Special scripts

Several special command scripts are provided. They are essential for operation of the
MPW Shell. These text files contain commands that are read by the Shell at startup and
shutdown:

s The Startup file is a command script that calls another script, UserStartup, that is run
each time you start the MPW Shell. You can use UserStartup to customize MPW. The
Startup file now executes UserStartup and then any file named UserStartupe name in
the directory that contains the Shell. (Press Option-8 to obtain the e symbol.) If you
have a customized UserStartup file, you may want to personalize it (for example,
UserStartupe Tom) so that when you install MPW 3.0 your customized file won't be
overwritten. The Startup file is discussed in detail in Chapter 5.

s The Suspend and Resume files are scripts that preserve the state of the Shell
environment while a stand-alone application is executing. The Quit file saves the state
of the Shell environment when you exit to the Finder.

Examples

In addition to the examples excerpted in this reference work, you'll find numerous
complete examples in the Examples folder included on the MPW distribution disks. The
examples are written in MPW C, MPW Pascal, and MPW Assembler. Examples illustrating
the use of Projector are also included in this folder. If you are using a different compiler
sold with MPW 3.0, check the compiler’s documentation and distribution disks for
specific versions of these sample programs. See Appendix A for the location of the MPW
3.0 Examples folder.

Sample program files

Source files are provided for sample MPW tools and desk accessories. Versions of these
sample programs are included in MPW Assembler, MPW C, and MPW Pascal. They can be
found in the Examples folder. The Examples folder also contains instruction files and
makefiles for building the sample programs. Some of these examples are referred to in
Chapter 2, “Building A Program: An Introduction.”

Note that these sample files are part of the respective MPW C, MPW Pascal, and MPW
Assembler products.

CHAPTER 1 System Overview

39

Command-language examples

Examples of the use of the MPW command language are provided in the folder Examples.
Among these are

s addmenu commands for creating user-defined menu items

m a list of UNIX-oriented aliases

w suggestions for modifying the Startup script

To learn more about these examples, open the file Instructions in the Examples folder.

Additional examples are included with each of the MPW commands in Part IT of this
reference. The command language is documented in Chapter 5.

Overview of MPW files and directories

Appendix A contains a complete list of all of the Macintosh Workshop 3.0 files. It also
describes the recommended setup of files on a hard disk. Figure 1-1 shows the MPW folder
layout. Folders for the Pascal, C, and Assembler systems are also shown, along with folders
for your applications and projects.

= Figure 1-1 Setup of MPW folders and files

EOI=——————— MPD =05
1S items 33,959K in disk 5,093K available
a8 MPY Shell () interfaces () Tools [)Examples Q
[B) startup (OLibraries [C)Scripts [JROM Maps
@ UserStartup
[#) suspend [B)MPw Help
Ej Resume D SysErrs.Err
[®) ouit
@ Yorksheet |

14
< =)

Be sure to see “Installing the System” in Chapter 2.

40 MPW 3.0 Reference

Chapter 2 Getting Started

THIS CHAPTER EXPLAINS HOW TO START USING MACINTOSH PROGRAMMER’S WORKSHOP
3.0. Even if you are familiar with MPW 2.0, it's a good idea to read the next
section that describes the new automated installation procedure. (You might run
into some pathname conflicts if you simply drag files from the 3.5-inch disk to
your hard disk.) This chapter also contains the section “Using MPW With
MultiFinder,” which explains how to use MPW while running a compiler in the
background. You'll also find a section with guidelines for sharing MPW from a file
server.

Basic rules of operation are introduced here and in Chapters 3 and 4. If you are
new to MPW, the tutorial “Building a Program: An Introduction,” later in this
chapter, will introduce you to the simplicity of using this environment. =

Contents

Installing the system 43
Using MPW with MultiFinder 44
Using MPW on a file server 46
Startingup 46
Selecting commands from menus 48
Building a program: an introduction 49
The sample programs 49
Two easy steps 50
Building 2 new program 54

41

Installing the system

Macintosh Programmer’s Workshop 3.0 is shipped on five 800K disks: MPW1, MPW2,
MPW3, MPW4, and the MPW Installation Disk. (MPW Assembler, MPW Pascal, MPW C, and
MPW C++ are separate products.)

Before attempting to install MPW, please check the section “Hardware and System
Requirements” in the Introduction of this book.

Appendix A, “Macintosh Programmer's Workshop Files,” contains an annotated list of
MPW files and shows the recommended arrangement of files on a hard disk. Pathname
rules for the Hierarchical File System (HFS) are explained later in this chapter. Also see
Figure 1-1 at the end of Chapter 1 for a suggested arrangement of MPW folders and files.

A complete MPW 3.0 system, including all three MPW languages, requires over 6 megabytes
of disk space.

MPW 3.0 includes an Installer script on the MPW Installation Disk, for systematically
installing the complete MPW system from the other four disks so that everything is
located in the folders that MPW expects. You need at least 6 megabytes of space on your
HFS hard disk to complete the full installation. However, the Installer does give you the
option of stopping the installation before all of the tools on disks MPW3 and MPW4 have
been installed.

A Warning Don’t simply drag the MPW Shell or any other files from the Installer
disk to your hard disk. The files on the Installer disk are used for
automatic installation only, and thereafter you'll discard them. a

To automatically install MPW 3.0, follow these steps:
1. Insert the MPW Installer disk in the 3.5-inch disk drive.

2. Drag the Installation folder to your hard disk. If you have multiple hard disks, drag the
folder to the hard disk on which you want MPW to reside.

3. Open the folder and double-click the icon labeled “MPW Installer.”
4. The first Installer dialog box appears:

CHAPTER 2 Getting Started

8

This is the installation procedure for MPW 3.0.
“Internal:MPLU:” will be installed. Insert the first
MPLW distribution disk in drive 1 and click OK.

5. Click OK and insert the distribution disks in any order. The Installer program creates a
folder named MPW at the root directory of the volume in which the Installer folder is
located.

6. When the installation is complete, or when you have clicked a Cancel button, the
Installer quits the Shell. Now throw away the Installation folder. You are left with MPW
in a folder at the root directory, ready to go.

The order in which the disks are copied doesn’t matter, and it’s okay to insert the same
disk more than once. You may also choose to stop by clicking the No button before
you've copied all the distribution disks.

If you decide to click the Cancel button for any reason, the MPW Shell Worksheet
appears. (In that case, after quitting MPW, don’t save the Worksheet file that was created
during the installation. It's better to start all over again.)

A Warning Don't use apostrophes or any other special characters in the hard disk
volume name. This would cause the Installer to fail. a

Using MPW with MultiFinder

It would be very convenient to be able to work in the Shell or editor while waiting for a
compiler to run in the background. But MultiFinder lets you switch to different
applications only while running a tool; you cannot normally work in the Shell or editor
while running a tool in the background. '

However, you can obtain this virtual multitasking capability by configuring a second
MPW Shell. You work in the second Shell while the first maintains the background
operation of any tool or script. Here is a way to set up the second MPW Shell:

44 MPW 3.0 Reference

Create a folder called Concurrent MPW and put these files in it:

s MPW Shell
Be sure to rename the second MPW Shell in this directory to something like
“Concurrent Shell” or perhaps “MPW Editing Shell” so that you can quickly identify
which Shell you are currently using.

m Startup

= UserStartup
This file isn’t crucial, but without the variables, aliases, and menus defined in your
UserStartup, the Concurrent Shell would not be configured to your normal working
environment.

s MPW.Help
Alternatively, you could keep just one copy of MPW.Help in your main MPW directory
and use an alias in your Edit MPW. For example: alias help 'help -f HD:MPW:MPW help'.

= SysErrs.Err
If you get an error from MPW and don’t have a copy of this file, you'll see an error
message such as:

OS error -43 (Error message file not available)
s Quit
You can now use this second MPW Shell system while tools are running concurrently in the
first MPW Shell. This configuration is only a suggestion. You could simplify it a bit,as

indicated in the preceding notes. Also, the memory size in the second Shell may be
decreased to 512K if it is used only for editing and small tools.

¢ Note: Although you cannot move Shell windows or pull down menus while a tool is
running, remember that you can switch applications by clicking the application icon in
the menu bar.

The same file cannot be opened for editing by both Shells at the same time.

It's a good idea to generate a sound (using Beep or other tools) at the end of scripts so
that you know when your background operations are completed.

CHAPTER 2 Getting Started

4

Using MPW on a file server

To set up MPW in a shared environment, install the MPW system on the file server. The
following files must reside on each workstation that shares the MPW system.

MPW Shell
Startup

UserStartup
Alternatively, you can change Startup to execute a UserStartup on the file server.

MPW.Help

Alternatively, you can keep just one copy of MPW.Help on the file server by setting an
alias in your Startup file. For example:

alias help 'help -f SharedServer:MPW:MPW.Help"

SysErrs.Err
If you get an error from MPW and don’t have a copy of this file, you'll see an error
message such as:

0OS error -43 (Error message file not available)

Suspend/Resume
You need these files only if you are not running MultiFinder.

Quit

Starting up

Start up MPW just as you would start any standard Macintosh application.

4

46

Note: A small RAM cache (perhaps 32K) is useful when running MPW 3.0. You may use
larger caches if you have plenty of memory. However, some functions in MPW 3.0 may
run more slowly with large RAM caches. Use of MPW with Switcher is not
recommended; use MultiFinder.

MPW 3.0 Reference

From the Finder, select and open the MPW Shell icon. The Worksheet window (shown in
Figure 2-1) will appear with its full pathname in the title bar (for example,
“HD:MPW:Worksheet™). This window has no close box and is always present on the
screen; otherwise it’s just like any other window. The Worksheet is your home base. You'll
use it most often to type commands and see the return output. You can also write and
compile sections of code or keep a diary—anything in the Worksheet can be saved to any
window or file.

You can also start MPW by double-clicking any MPW document or tool.

= Figure 2-1 Worksheet window

€ File Edit Find Mark Window Project Directory Build
—_— hD:MPW:Worksheet == =

The menus available from the Shell appear in the menu bar at the top of the screen. An
explanation of each menu is provided in Chapter 3. You can easily add your own menu
names. (See Chapter 8.)

A status panel at the window’s lower-left comer shows the name of the command that’s
currently executing, or simply “MPW Shell” when you’re not executing a command. A
mouse click on the status panel is equivalent to pressing the Enter key.

When you first start the Macintosh Programmer’s Workshop, a script called Startup
executes. The Startup file defines several variables and command aliases (alternative
command names); this file is further described in Chapter 5.

CHAPTER 2 Getting Started

47

A Important The Startup file must be in the same directory as the MPW Shell. See
Figure 1-1, “Setup of MPW folders and files,” at the end of Chapter 1
for an illustration of how your root MPW folder should appear. a

Selecting commands from menus

In MPW, commands may be built-in commands, scripts, tools, or applications, as
explained in Chapter 1.

Several of the built-in commands can be executed by using the File, Edit, Mark, and
Window menus. The Project, Directory, and Build menus are optional, and are normally
installed by UserStartup scripts. Some items in these menus execute scripts (see Chapter 3
for details about menus). These scripts must be located in a folder with a path in the
{Commands} variable.

You can add your own menu items to the File, Edit, Find, Directory, and Build menus. By
using the AddMenu command you can even add your own menus. Each user-defined menu
item specifies a list of MPW commands that are executed when the menu item is selected.
See the file AddMenu in the Examples folder for a number of ideas for user-defined menus.

= Figure 2-2 MPW menu bar with MultiFinder

[& File Edit Find Mark Window Project Directory Build]

48 MPW 3.0 Reference

Building a program: an introduction

This section takes you step by step through the process of building a sample program.
You'll find that the Build menu and the Commando dialog boxes make the learning process
intuitive and comfortable. Even if you've never used MPW before, you can immediately
use the Build menus to build programs.

MPW's automated Build menu lets you assemble, compile, and link simple programs
without studying the command language, the numerous compiler and Linker options, or
countless other details. You can use the Build menu to build applications, stand-alone
code resources, desk accessories, and tools written in MPW Assembly language, MPW C,
MPW C++, MPW Pascal, and Rez, or in a combination of these languages. You can include
resource specifications when building programs with these menus.

The sample programs

In this introduction, three assembly-language programs included with MPW Assembler are
suggested as examples:

= Sample: the “Inside Macintosh” sample application
s Count: an MPW tool that counts characters and lines in a file (see Part II)

= Memory: a sample desk accessory that displays the memory available in the
application and system heaps and on the boot disk

Similar program examples are included with MPW C and MPW Pascal. If you are primarily
interested in programming in one of these languages, be sure to read, in the corresponding
language reference, the section on the example programs. If you are using a different (non-
Apple) compiler, be sure to check its documentation for information on specific language
versions of these examples.

You can routinely rebuild more complex programs by selecting a single menu item. There is
a smooth transition from the simple builds to the more complex ones. (See Chapter 8 for
information on how to modify the Build menu and the makefile that it creates.)

CHAPTER 2 Getting Started

9

The source files for each of these three assembly-language examples are in the
Examples:AExamples folder that is included with the MPW Assembler distribution disks.
For example, the source for Count consists of the files Count.a and FStubs.a. A makefile
that contains the commands for building all of the examples is also provided in the same
folder. Instruction files are also provided on the MPW disks for each language. If you are
new to MPW, we recommend that you start with the tutorial that follows rather than with
the Intructions file on the disks. At the conclusion of this tutorial you will be referred back
to the disk instructions.

Two easy steps

You can build each of the example programs in two steps, using the Directory and Build
menus:

1. Set the current directory.
2. Build the program.

Both of these steps are explained next. You can use this section to take MPW on a test
drive.

1. Set the current directory.

Open the Directory menu. The upper half of the menu contains the commands to show the
current directory and to change it to an arbitrary directory. (See Figure 2-3.) The lower half
of the menu lists frequently used directories.

= Figure 2-3 Directory menu

[show Directory
Set Directory...

HD2:MPLW:Examples:AExamples:
HD2:MPW:Examples:CExamples:
HD2:MPW:Examples:CPlusExamples:
HD2:MPW:Examples:Examples:
HD2:MPIU:Examples:PEramples:
HD2:MPlU:Examples:Pro jector Examples:
HD2:MPIU:

50 MPW 3.0 Reference

Select Show Directory to find out what your current directory is. You'll see the alert shown
in Figure 24.

s Figure 244 Show Directory alert

The default directory is

HD:MPLD:

L ==

Click OK to remove the alert. You're going to build the assembly-language program
Sample, so you'll need to set the current directory to the directory that contains the
assembly-language examples. Now open the Directory menu again and select “AExamples.”
Selecting “AExamples” from the Directory menu runs commands that set the current
directory. You can check to see if the current directory has been correctly reset by
selecting the Show Directory menu item again. (The Set Directory... menu item is used to
add other directories to the list at the bottom of the Directory menu. This menu item is
explained in “Building a New Program” later in this chapter.)

2. Build the program.

Now open the Build menu, shown in Figure 2-5, and select any one of the four Build menu
items.

s Figure2-5 Build menu

Create Build Commands...

Build... %B
Full Build...

Show Build Commands...
Show Full Build Commands...

CHAPTER 2 Getting Started

51

Each Build item builds your specified program in a slightly different way:

Build The program is built automatically, but only files that have
been modified since you last built the program will be
processed. Use this item to save time. The Command-key
equivalent is Command-B.

Full Build The program is completely built, ignoring any object files or
intermediate files that may exist from a previous build.

Show Build The commands needed to build the program (using just those

Commands files affected by modifications since the last build) are
displayed on the worksheet, but not executed. You can then
select any or all of the commands—or modify them—and
then press Enter to execute them.

Show Full Build All the commands needed to completely rebuild the program

Commands (whether modified since the last build or not) are displayed
on the worksheet, but not executed. This is a convenient way
to see all of the commands used in building the program
you've selected.

See “Build Menu” in Chapter 3 for more information on Build menu items. When selected,
each Build item first displays a dialog box like that in Figure: 2-6, requesting the name of
your program.

For this tutorial, select Full Build.

= Figure 26 Program Name dialog box

Program Name?

When the Program Name dialog box appears, type the name of the program you want to
build (in this case, type “Sample”) and then click the OK button. (Be sure that you type
the name Sample and not Sample.a. Since you have already set the directory to
AExamples, you don't need to indicate that you want to build the assembly-language
version of Sample. If you give Sample.a as the program name, the Build script will
attempt to build the source file.)

52 MPW 3.0 Reference

The Worksheet window now becomes the frontmost window. The status panel in the
lower-left corner flashes the name of each operation as it is performed by MPW. Each of
the MPW commands used by the Full Build script appears on the worksheet as it is
executed. When the build has finished, your worksheet should look like Figure 2-7.

= Figure 2-7 Finished Sample build

€ File Edit Find Window Mark Directory - Build

:04 PH =—-= Build of Sample.
:04 PH RAnalyzing dependencies.
111 PH ——— Executing build commands.

‘ Link s.»plé.a.o -0 Sampie
8 2:22:08 PN Done.
Sample

To check your work, press Enter. The Shell then executes the newly built program,
displaying the text-edit window that Sample creates (described at the beginning of Inside
Macintosh). When you quit the Sample program, you are retumned to the Shell.

Use the same procedure to build the two other examples in the Examples:AExamples
folder: the tool Count and the desk accessory Memory. For guidance in using these
examples, consult the file Instructions in the folder AExamples.

In general, to run a newly built program, select its name (and, in the case of a tool, any
parameters) and press Enter. If the program you have built is an application, your open
windows, user-defined menus, and other status information will be saved before the
program is run. When you quit the application you are retumed directly to MPW with your
previously open windows and menus still displayed. If the program is an MPW tool, it is
run without leaving MPW (be sure to specify any required parameters and options).

& Note: When MultiFinder is running, the application is simply launched in another
partition, and the MPW Shell does not exit or go through the Suspend/Resume
process.

CHAPTER 2 Getting Started

53

When you build a desk accessory by using Build or Full Build, the last line of the Build
transcript is a command that will run the Font/DA Mover to install the desk accessory in
the System file. (Make sure there is enough memory to launch Font/DA Mover.) After this
installation is complete, the desk accessory will appear in the Apple menu. If your
Font/DA Mover isn't in the directory specified by the {Commands} Shell variable, then you
should use either the Finder, the MPW Duplicate command, or the MPW Move command,
to move it there.

If you’re curious about the functioning of any of the Build commands, see Chapter 8 for
more background on the Build process.

Building a new program

The Directory and Build menus are convenient to use when working with your existing
programs. You use slightly different steps for creating new programs:

1. Set the current directory by using the Directory menu.
2. Type your program.

3. Select Create Build Commands from the Build menu.
4. Select a build item from the Build menu.

Each of these steps is explained next.

1. Set the directory.

The first step in creating a new program is to set the directory where you want your new
program to reside. You can select one of the directories that appears in the Directory
menu, or you can select another directory by using the Set Directory menu item. When you
select Set Directory from the Directory menu, a standard file dialog box, like that in Figure

2-8, appears.

% MPW 3.0 Reference

= Figure 2-8 Set Directory... standard file dialog box

-

(select Current Directory:)
S MPW
oy

3 Interfaces
D Libraries tject
0O MPWJ Bemo
3 ROM Maps
0O Scripts

0O Tools

| 5] ([Birectory |

Select the directory you need. After highhghﬂng the directory you want, click Directory or -
Select Current Directory: at the top of the dialog box. The new directory will then be
added to the list of directories on the Directory menu.

2. Type your program.

The next step is to create the source files for your program. Select New in the File menu.
(Remember that assembly-language source filenames should end with “.a”, C filenames
with “.c”, C++ filenames with “.cp”, Pascal filenames with “.p”, and Rez filenames with
“r".) An empty window now appears and you are ready to type your program. Enjoy!

3. Select Create Build Commands from the Build menu.

When you've finished typing in your program, select Create Build Commands from the
Build menu. You'll see the dialog box shown in Figure 2-9.

CHAPTER 2 Getting Started

55

s Figure 29 CreateMake dialog box

FCreateMaké Options

Program Name |MyProgram| | (__sourceFiles...)

~Program Type Creator |222?
i @ Rpplication Type {2227
i OTool Main Entry Point

i O Desk Accesso
8130 de Resourczy Resvurce Type

[symbolic debugger information

~Command Line
createmake MyProgram

Create a simple makefile for building an application, tool, or desk

accessory. The makefile is for use by the Build menu. » {renteMake '

Type in the program’s name (without “.a”, “.c”, “.cp”, or “.p” suffixes) and click a radio
button to indicate whether you want to create an application, stand-alone code resource,
desk accessory, or MPW tool. When you click the Files button, another dialog box
appears, permitting you to select the needed source and library (ending with the “.0”
suffix) files. Your program will be linked with these files.

Note: It isn’t necessary to indicate the standard library files supplied with MPW. Your
program will be automatically linked with the appropriate libraries. The reference for
CreateMake in Part I explains which standard library files will be used.

The Create Build Commands command in the Build menu runs a script that creates a
makefile with the necessary commands for building programs written in assembly
language, C, C++, Pascal, Rez, or a2 combination of languages. This file is given your
program’s name with the suffix “.make”.

¢ Note: The Build script uses Make to determine the minimum operations necessary to
bring the program up to date. The Build script looks for its build instructions first in
program.make (for example, Sample.make). If no such file is found, the Build script
looks for its instructions in MakeFile.

5 MPW 3.0 Reference

4, Select a build command from the Build menu.

The four build commands on the Build menus are variations on a theme. (See Chapter 3 for
an explanation of each item. A brief explanation appears earlier in this chapter under Step
2 of “Two Easy Steps.”) For now, select Full Build. The rotating beach ball cursor appears,
indicating that processing has begun. Each step of the build process is displayed on the
worksheet as it occurs. Any errors will be displayed also, making it easy to track down a
bit of misplaced syntax. When you have fixed the problem, just select Build from the
Build menu to quickly rebuild the program. The record of previous builds is left on the
worksheet.

See Part 1I for detailed information on each of the Build menu commands.

CHAPTER 2 Getting Started 57

Chapter 3 Using the Shell Menus

THIS CHAPTER DESCRIBES THE MENUS AND ASSOCIATED DIALOG BOXES of the
Macintosh Programmer’s Workshop 3.0 Shell. You can build simple programs by
using the Directory, File, and Build menus. (See Chapter 2 for an easy
demonstration.) The other menus are used for general editing. More advanced
editing capabilities, such as scripted editing and selection specification, are
discussed in Chapter 6. »

Contents

Features 61
File format 62
Menu commands 62
Apple menu 62
File menu 63
New 63
Open 64
Open Selection 64
Close 64
Save 64
Save As 65
Save a Copy 65
Revert to Saved 65
Page Setup 65
Print Window/Print Selection 65
Quit 66
Edit menu 67
Undo 67
Cut 67
Copy 67
Paste 68
Clear 68
Select All 68
Show Clipboard 68

59

Format 68

Align 69

Shift Left, Shift Right 69
Findmenu 70

Find 70

Find Same 71

Find Selection 71

Display Selection 71

Replace 71

Replace Same 71

Selection expression 73
Matk menu 75

Mack 76

Unmark 77
Window menu 78

Tile Windows 78

Stack Windows 78

Customizing window commands 78

List of open windows 79
Project menu 79

New Project 79

CheckIn 80

Check Out 81
Directory menu 81

Show Directory 82

Set Directory 82

List of directory names 82
Build menu 83

Create Build Commands 84

Build 85

Full Build 85

Show Build Commands 85

Show Full Build Commands 85
User-defined menus 86

60 MPW 3.0 Reference

Features

The MPW Shell provides the following editing features:

Both menu and command-language editing. The menu commands provide the usual
Macintosh interface.

Selecting text by program syntax. You can double-click any of these paired quotation

characters:
() [1] {1} " v vl / \

to select everything between the character and its mate. To select text between

w o ow 1] LN / \
click the left quotation character.

Selection of large sections of text by embedding markers. Marked selections are
scriptable; your command files can refer to one or more marked selections. The
marker commands, Mark and Unmark, are available from the Mark menu. Basic
interactive use of markers is covered later in this chapter. See Chapter 6 for more
detailed information on scripting marked selections.

Complete integration of editing functions with the command interpreter. In the MPW
Shell, there is no separation of “command” and “editor” modes. To the Shell, text is
text—it is only when you try to directly execute a string of text that the Shell decides
whether it is a legitimate command or not.

Scriptable commands. Because editing commands are part of the command language,
you can use them with structured commands and variables to put together scripts that
define new editing commands. (See Chapter 6.)

Regular expressions for matching text patterns. These make possible powerful search-
and-replace functions that eliminate the need to make repetitive changes by hand.
(See Chapter6.)

CHAPTER 3 Using the Shell Menus

61

File format

Shell text is saved as a text-only (TEXT) file. The file contains tab and return characters,
but no other formatting information. This format is compatible with other applications
that create text-only files—for example, the Shell can process MacWrite® files saved with
the Text Only option. When you select the Open command, the Shell displays all text-only
files in its standard file dialog box, regardless of the file creator.

A\ Important From the Finder, you can open a text file created by another
application by selecting both the MPW Shell and the text file icons,
and then choosing the Open command. a

You can display the invisible characters (spaces, tabs, returns, and all other “control”
characters) with the Show Invisibles checkbox in the Format dialog box.

A file’s tab setting, font setting, selection, window settings, auto-indent state, invisibles
state, and markers are saved with the file in its resource fork.

Menu commands

In general, the menu interface is the familiar Macintosh implementation. There are a few
differences and extensions, which are detailed in the following sections. (It's assumed
that you are already familiar with standard Macintosh editing techniques.) Many menu
commands are scriptable, that is, a command-line form of the command exists (and is
described in Part II) that lets you use the menu item noninteractively in a script. Each of
these are indicated later in this section.

All menu commands act on the active (that is, the frontmost) window.

Apple menu

Open the “About MPW” menu item to display version information.

62 MPW 3.0 Reference

File menu

The File menu contains the Shell commands for creating, opening, printing, closing, and
saving files. ‘

= Figure 3-1 File menu

New... %N
Open... €0

Bpea Selectipn =h

{ipse i
Save %S

Sape as...

Save a Copy...
Revert to Saved

Page Setup...
Print IDindow

. Quit X0

If the Worksheet is the current window, the menu commands Close will appear dimmed, as
shown in Figure 3-1. If a tool is executing, all menu commands (except New and Open)
appear dimmed.

New

Lo

Displays the New dialog box, shown in Figure 3-2. The MPW New dialog box allows you to
enter a2 name and select a directory location for the document. The Command-key
equivalent is Command-N. There is also a scriptable New, described in Part II.

s Figure 3-2 New dialog box

SQAMPW

O ARExamples < HD

O Alncludes -

O Applications

0O CEramples Thive

O Cincludes

[ClLibraries

Open document
| —

CHAPTER 3 Using the Shell Menus

Open

Displays an Open dialog box (similar to that in Figure 3-2) that allows you to open any
TEXT file on the disk. When you open a file for the first time, the selection point is at the
top of the file. When you open the file again, it reappears in the same state in which it was
saved; that is, the previous selection or insertion point is preserved unless the file has been
modified outside the editor. The Read Only checkbox is located just below the Open
Document box. Check the Read-Only box to open a nonmodifiable copy of the file. The
Command-key equivalent is Command-O. There is also a scriptable Open, described in
Part II.

Note: If you try to open a document that’s already open in another window, that
window will be brought to the front. Whenever you open a file, it appears in 2 new
window.

Open Selection

If you select a document name within a window, the Open Selection command
automatically displays the selected name. This is a useful shortcut when you have already
displayed filenames on the screen, with the Files command, for example. You can then
select a filename and open a file directly, bypassing the usual Open dialog box. Variable
and command substitution occur on the selection. The Command-key equivalent is
Command-D.

Close

Closes the active (frontmost) window. The Command-key equivalent is Command-W.
There is also a scriptable Close, described in Part II.

Save

Saves the active window under its current name, without closing it. This menu item is
dimmed if the contents of the window haven’t been modified since it was last saved. The
Command-key equivalent is Command-S. There is also a scriptable Save, described in
Part II.

64 MPW 3.0 Reference

Save As

Displays a Save As dialog box, allowing you to change the name and directory location of
the active window. Saves the current contents of the window as the Save As file, and
allows you to continue editing the new file. The old file is closed without saving, under its
original name.

Save a Copy

Saves the current state of the active window to a new file on the disk. You can then
continue editing the old file.

Revert to Saved

Throws away any changes you have made since you last saved the active window. This
menu command is dimmed if the window has not been modified since you last saved.
There is also a scriptable Revert, described in Part I

Page Setup
Displays the standard Page Setup dialog box.

Print Window/Print Selection

Prints either the entire contents of the active window or the selection in the active
window. If any text is selected in the active window, that text is printed. If no text is
selected, the entire contents of the window (that is, the entire file) are printed.

Note: For the Print command to work properly, you must install the printer drivers
available on the latest version of the Printer Installation disk. Use the Chooser Desk
Accessory from the Apple menu to specify which printer to use. Use the Page Setup
dialog box to specify paper size, orientation, and reductions or enlargements.

CHAPTER 3 Using the Shell Menus

65

The Print menu item doesn’t display the usual Print dialog box. Instead, you can specify
printing parameters by setting the Shell variable {PrintOptions}, described in Chapter 5.
Printing options include

m the number of copies to print

= which pages to print

m print quality

= font

font size

headings

title

s borders

m printing the pages in reverse order (for use with the LaserWriter)

See the description of the Print command in Part II for a complete specification of these
options, or enter the command Help Print to see 2 summary.

¢ How Print works

The Print Window menu item executes the Shell command
Print {PrintOptions} "{Activel}" 22 "{Worksheet}"

Print Selection executes the same command with .§ added after the name of the
active window. e

Quit

Quit returns you to the Finder, first allowing you to save all open files. The Command-key
equivalent is Command-Q. There is also a scriptable Quit, described in Part II.

66 MPW 3.0 Reference

Edit menu
In addition to the usual Macintosh editing commands, the MPW Edit menu (Figure 3-3)

contains a few special menu items. See “Editing With the Command Language” in Chapter
5 for more information on using the scriptable forms of the commands on this menu.

= Figure 3-3 Edit menu

Undo 82
fu 314
{opy P2
Paste 1]
{iear

Select All %A
Show Clipboard

Format... %Y

Rlign
Shift Left %[
Shift Right %]

Undo

Undoes the most recent changes to fext in the active window (but not changes to resources
such as font or tab settings). You can select Undo again to redo changes. The Command-
key equivalent is Command-Z. There is also a scriptable Undo, described in Part II.

Cut

Copies the curmrent selection in the active window to the Clipboard and then deletes it
from its original location. The Command-key equivalent is Command-X. There is also a
scriptable Cut, described in PartII.

Copy

Copies the current selection in the active window to the Clipboard. The Command-key
equivalent is Command-C. There is also a scriptable Copy, described in Part IL.

CHAPTER 3 Using the Shell Menus

67

Paste

Replaces the contents of the current selection in the active window with the contents of
the Clipboard. The Command-key equivalent is Command-V. There is also a scriptable
Paste, described in Part II.

Clear

Deletes the current selection in the active window. There is also a scriptable Clear,
described in Part II. The keyboard equivalent is the Clear key.

Select All

Selects the entire contents of the active window. The Command-key equivalent is
Command-A.

Show Clipboard
Opens a window displaying the contents of the Clipboard, if any.

Format

Displays the Format dialog box offering a selection of fonts and sizes. The Command-key
equivalent is Command-Y. This dialog box is shown in Figure 3-4. There is also a scriptable
Format, described in Part II.

= Figure3-4 Dialog box of the Format menu item

Font

Chicago BX Auto Indent
Courier O show Invisibles
Geneva

Helvetica

& Note: Selecting a font and font size affects the entire active window, not just the
current selection in that window.

68 MPW 3.0 Reference

Tabs

Auto Indent

Sets the number of spaces that a tab character will signify for the
active window.

You can set the default format for a new window by using the Shell
variables {Font}, {FontSize}, {I'ab}, and {Autolndent}. These are
described in Chapter 5.

Toggles Auto Indent on and off. When Auto Indent is on, pressing
Return lines up text with the previous line. (A check mark indicates
that Auto Indent is on.)

Temporary disable feature: To temporarily disable Auto Indent for one line, press Option-
Return. That line will begin flush left.

Show Invisibles Displays these invisible characters:

Tab

Space 0
Return 2
All other control characters ¢

The MPW Shell editor ignores any zero-width characters (that is, control
characters that do not have a character bitmap) typed from the keyboard.
(Usually these are typed by accident.) If you really want a control character in
your document, you can enter it in the Key Caps desk accessory and then paste it
in your document. To delete control characters that might not be visible, select
Show Invisibles from the Format dialog box.

The rest of the dialog box consists of a selection of the fonts installed in your System file.
Available font sizes are displayed in the dialog window.

Align

Aligns the currently selected text with the top line of the selection.

Shift Left, Shift Right

These commands move the selected text left or right by one tab stop. You can thus move
a block of text while maintaining indentation.

CHAPTER 3 Using the Shell Menus 69

Shift Left Removes a tab from the beginning of each line. The Command-key
equivalent is Command-{.

Shift Right Adds a tab, or the equivalent number of spaces, to the beginning of
-each line. The Command-key equivalent is Command-].

If you hold down the Shift key while using these menu items, the selection will be shifted
by one space, rather than by one tab.

Find menu

The Find menu contains the routine commands for searching and replacing text. Each of
the items in the Find menu is described below.

s Figure 3-5 Find menu

Find... 8F
Find Same %6
Find Seipctian EH
Display Selection

Replace... 38R
Replace Same T

Find

Displays a Find dialog box and finds the string you specify. By default, the Shell editor
searches forward from the current selection in the active window (and does not wrap
around). The Command-key equivalent is Command-F. This dialog box is very similar to
the Find-and-Replace dialog box described under Figure 3-6; that explanation of the radio
controls and check boxes applies to both dialog boxes. There is also a scriptable Find,
described in Part II.

70 MPW 3.0 Reference

Find Same

Repeats the last Find operation, on the active window. The Command-key equivalent is
Command-G.

Find Selection

Finds the next occurrence of the current selection in the active window. The Command-
key equivalent is Command-H.

Display Selection

Scrolls the current selection in the active window into view.

Replace

Displays the Find-and-Replace dialog box shown in Figure 3-6 and explained there. The
Command-key equivalent is Command-R.

Replace Same

Repeats the last Replace operation. The Command-key equivalent is Command-T.

CHAPTER 3 Using the Shell Menus

71

» Figure3-6 Dialog box of the Replace menu item

Find what string?

I

Replace with what string?

@ Literal [Case Sensitive
O Entire Word [0 search Backwards
O selection Expression [Wrap-around Search

Replace Ail [Find) [cancel)

The operation of this dialog box is very similar to that of the Find dialog box, except that
selected strings can be located and replaced with a different string throughout a file. Both
the Find and the Replace dialog boxes have three radio buttons, offering you one of three
options:

Literal Finds the exact string that you specify, wherever it may
appear, even if it is part of other words or expressions.

Entire Word Finds the specified string only when it occurs as a single word.
To the editor, a word is composed of the characters a-z, A-Z,
0-9, and the underscore character (_). (You can change these
default values by redefining the Shell variable {WordSet}—see
“Predefined Variables” in Chapter5.)

Selection Enables the full selection and regular expression syntax, as used

Expression with the command language and described in Chapter 6. These
expressions allow powerful selection and pattern-matching
capabilities that use a special set of metacharacters
introduced later in this section.

Any combination of these three check boxes may be selected:
Case Sensitive Searching is normally case insensitive; selecting this checkbox
specifies case-sensitive searching.

Search Backwards Search backward from the current selection to the beginning
of the file. (Normally, searching is forward and stops at the end

of the file.)
Wrap-Around Searches forward to the end of file, then wraps around and
Search searches from the beginning of the file to the cursor’s

location when the search was initiated. (The direction of
Search is reversed if Search Backward is also selected.)

72 MPW 3.0 Reference

These dialog options set the Shell variables {CaseSensitive}, {SearchBackward},
{SearchWrap}, and {SearchType}. You can also use these variables in scripts to set the
related options in the dialog boxes. See “Variables Defined in the Startup File” in
Chapter 5.

For Find and Find-and-Replace operations, a beep indicates that the string was not
found.

¢ Hints on using Find

You can reverse the direction of a current search operation by pressing Shift as
you select the menu item or click the OK button. The direction is changed for
the current search operation only; the settings of the dialog’s check box and
the {SearchBackward} variable are not affected.

For example, if you are in the middle of a file and you want something above
the current cursor position, then hold down the Shift key as you click OK. The
search will then proceed backward through the first part of the file.

You might also use the Shift key to make sure that you've found all instances
of an item from an arbitrary position in the window. Press Command-G to run
Find Same forward. Press Shift-Command-G to run Find Same backward. ¢

Selection expression

When the Find-and-Replace dialog box’s “Selection Expression” switch is selected, you
can use a special set of expression operators to specify selections and text patterns. This
section introduces a commonly used subset of these selection operators. Many more
capabilities are available. A full discussion of them can be found in Chapter 6.

Selection by line number: A number given by itself specifies a line number. In Figure 3-7,
for example, the command selects line 30 in the active window.

s Figure3-7 Selection by line number

Find what selection expression?

[3d]

O Literal [case Sensitive

O Entire Word O search Backwards
@® Selection Expression O srep-fhrgund Search

CHAPTER 3 Using the Shell Menus

Wildcard operators: The same wildcard operators used in filename generation can also
be used to specify text patterns for Find commands:

? Any single character (other than Return).

= Any string of 0 or more characters, that does not contain a
Return. (To get the = character, press Option-X.)

[characterList] Any character in the list.

Note: The brackets must be typed; they don't indicate an
optional syntax element.

[—characterList] Any character not in the list. (To get the — character, press
Option-L.)

These pattern-matching operators are part of a larger set called regular expression
operators, used to define searches and other scripted operations. A regular expression
consists of literal characters and/or regular expression operators, and it must be enclosed
in slashes (/.../). Figure 3-8 shows an example.

» Figure 3-8 Example of a regular expression

Find what selection expression?

[/init=/ |

O lLiteral [case Sensitive

O Entire Word [Sear¢h Backwards
@ Selection Expression O wrap-fround Search

74 MPW 3.0 Reference

The command shown in Figure 3-8 finds and selects any string that begins with “init” and is
followed by any characters other than a return or a space. Figure 3-9 shows the result of this
commard.

= Figure 3-9 Text selected with the Find command

[E0J====== HD:MPW:Examples:PExamples:Sample.p ==—==uDE|

{$S Main}

BEGIN
UnloadSeg(®_Datalnit); {note that _Datalnit must not be in Main!}
ForceErwirons; {check for some basic requirements; exits i
Maxfipp | 2Zone; {expand the heap so code segments load at
{initialize the program}

UnloadSeg(Rinitialize); {note that Initialize must not be in Main!}
{call the main event loop}

Eventloop;
END.

MPY Shell

As mentioned, many additional Find-and-Replace capabilities are available. (See
Chapter 6.) In the command language, the Find-and-Replace functions are performed by
the Find-and-Replace commands. There’s also a tool named Search (described in Part II)
that can search through a list of files for the occurrence of any text pattern.

Mark menu

A marker is a text selection that has been given a name. Markers are useful for navigating
within a window, and they can simplify many selection expressions. The upper part of the
Mark menu contains the commands Mark and Unmark and the lower part lists all existing
markers. (By the way, when you first start MPW 3.0, you’ll notice that this area of the Mark
menu contains a list of MPW commands that have been marked in order to display them
conveniently in 2 menu. You can unmark them if you prefer.) To jump to the location of a
marker, you simply choose the name of the marker you want from the Mark menu, shown
in Figure 3-10.

CHAPTER 3 Using the Shell Menus

75

Markers can be created and used both interactively, via the Mark menu, and
programmatically, via the Shell commands Mark, Unmark, and Markers. For a detailed
discussion of the syntax, characteristics, and programmatic use of markers, see Chapter 6
and Part II.

= Figure 3-10 Mark menu

Mark... %®M|

Unmark...

Commando
Exsamples
Help

Rlias
Catenate
Clear
Close
Copy
Count
Cut

Date
Delete
Duplicate
Echo
Eject

v

Mark

To create a new marker interactively, first select the text you want to mark, then choose
“Mark” from the Mark menu. A dialog box like that in Figure 3-11 appears, asking for the
name you want the marker to have. The editable text field in the Mark dialog box is
initialized to the first word (that is, whatever you would select by a double click) in the
selection. If you click Cancel in the dialog box, the selection is unchanged and no new
marker is created. If you click OK, a new marker is created with the specified name and
the new marker’s name is added to the list of marker names displayed by the Mark menu.

s Figure 3-11 Mark dialog box

Mark the selection with what name?

76 MPW 3.0 Reference

If you try to create a new marker using the name of an already existing marker, a dialog
box will appear, giving you the chance either to delete the old marker and add the new
(OX), or to forget about adding the new marker (Cancel).

¢ Hints on using Mark
Markers are very handy for quick navigation through source files. You may
want to mark important data declarations and all procedures so that you can
quickly jump to any procedure by selecting its marker. Markers are listed
according to their position in the file.

Unmark

If you choose the Unmark menu item from the Mark menu, you'll see a dialog box (Figure
3-12) that contains a list of currently defined markers and the two buttons Delete and
Cancel. If a marker is currently selected, its name is highlighted in the marker list. You can
select any number of marker names from the list. If you click Delete, every marker
selected in the list is deleted. If you click Cancel, the selection remains unchanged and no
markers are deleted.

» Figure 312 Unmark dialog box

Delete which markers?

Here 1O
There
Everywhere

CHAPTER 3 Using the Shell Menus 77

Window menu

The upper portion of the Window menu contains the two commands Tile Windows and
Stack Windows; the middle area lists all open windows, as shown in Figure 3-13. The lower
area of the Window menu lists any open Projector windows.

s Figure 313 Window menu

Tile Windows
Stack Windows

Imn :MPID:Worksheet

Tile Windows

Use this command to arrange windows in a tile pattern on the screen so that each window’s
contents are visible. To include the Worksheet in the tiling, press the Option key as you
select Tile Windows.

Stack Windows

Use this command to arrange windows in a diagonally staggered pattern on your screen.
This is the “open file folder” way to see several windows at once. To include the
Worksheet in the stacking, press the Option key as you select Stack Windows.

Customizing window commands

The Tile Windows and Stack Windows menu commands execute the Shell commands:

TileWindows {TileOptions} >> "{WorkSheet}"
StackWindows {StackOptions} >> "{WorkSheet}"

You may customize the operations of tiling and stacking by using the Shell variables
{TileOptions} and {StackOptions}. Options include

s which windows to tile

including the Worksheet (without pressing the Option key)

horizontal or vertical tiling

spacing between stacked windows

specifying a rectangle in which to tile or stack windows

78 MPW 3.0 Reference

List of open windows

The remainder of the menu lists all open windows in the order in which they were opened.
The full pathname is listed. To bring any window to the front, select that window from the
list.

Selecting a window from the menu brings that window to the front, that is, superimposes
it over anything else on your display. A check indicates that the window is currently the
“active” window, that is, the frontmost. A bullet (¢) indicates that the window is the
“target” window, that is, the second to the front. Underlining indicates that a window
contains changes that have not yet been saved.

Project menu

The Project menu, shown in Figure 3-14, puts three of the most often used Projector
commands at your fingertips. Of course, you can modify this menu to add the rest of
Projector’s commands or eliminate the menu altogether if you don't use it.

The three menu items on the Project menu are briefly described here. For an introduction
to the basics of using these functions, see “Projector Windows” in Chapter 4. For a
detailed explanation of the MPW project-management system, see Chapter 7.

= Figure 3-14 Project menu

New Project...
Check In...
Check Out...

New Project

The New Project dialog box appears as shown in Figure 3-15. Use this dialog box to create
a unique new project or subproject. You can use the Comment text frame to briefly
explain the purpose of the project or subproject. Projector automatically adds your user
name as the project’s creator.

CHAPTER 3 Using the Shell Menus

New Project dialog box
New Project E———————|

Figure 3-15

= Maui
[€3 Projector Examples |

o sample <

5

Project Name:l

]

User: Jeff Parrish
New Project comment:

(Drive][Eject)

Check In

The Check In dialog box appears as shown in Figure 3-16. After checking out and
modifying a file, you will routinely use this dialog box to check the file back in to

Projector.

s Figure 316 Check In dialog

Check In

= HD

la Projector Exampies |
£ sample

BTest

i
(setectain | [Bpen)
X Show all files

Drive][¢ject

()

Project: | Test

User: Jeff Parrish

Task: |

Rewv: 1.0
Check In comment:

‘ Revision... |

walk through.|

A sample file from the MPU reference manual

&

5

O Keep read-only
O Keep maodifiable
@ Delete Copy

[J Touch mod date
(cencel Checkout |

P @)

Click the Question Mark button to display information about the project, a project file,
or a specific revision of a project file. See Chapter 7 for more information.

80

MPW 3.0 Reference

Check Out

The Check Out dialog box appears as shown in Figure 3-17. You'll routinely use this dialog
box to select a project for use and then to check out a project file you want to modify.
The date, time, and user name of the checked-out file are recorded; no one else can
modify the same revision of a file at the same time.

= Figure 3-17 Check Out dialog box

Cheek it =i
Current Project Checkout to: [HD:MPLW:Scripts:]
@ Utilities | User: Jeff Parrish
{2 CheckInRctive 5] Task: !
© CheckOutActive Check Bul comment:
! &
]
Select Files in Name: X Touch mod date
5 | None]
P Cancetl £ heckout
(‘setectall] (apen) g Read-only [)
i Modifiable : f .
[select newer] . DOsranch | @ LCheck But)

Click the Question Mark button to display information about the project, a project file,
or a specific revision of a project file. See Chapter 7 for more information.

Directory menu
The Directory menu, shown in Figure 3-18, lets you display and easily change the default

(current) directory. The Directory menu is implemented by the scripts DirectoryMenu and
SetDirectory, which you can modify to suit your own needs.

CHAPTER 3 Using the Shell Menus

81

= Figure 318 Directory menu

I 0 tory I

Show Directory
Set Directory...

HO2:MPW:Examples:AERamples:
HD2:MPLWW:Exampies:CExamples:
HD2:MPW:Examples:CPlusEgamples:
HD2:MPW:Examples:Examples:
HD2:MPW:Examples:PExamples:
HD2:MPW:Examples:Projector Examples:
HD2:MPLW:

Show Directory
An alert box displays the name of the current default directory.

Set Directory

When you select this menu command the Set Directory dialog box (Figure 3-19) appears,
providing interactive selection of the default directory. Your selection is then added to
the Directory menu.

= Figure 3-19 Dialog box of the Set Directory menu item

(_Select Current Directory: |
S MPW

0O Interfaces
O Libreries

0O MPW Demo

O ROM Maps
0 Scripts
O Tools

List of directory names

Selecting a directory name makes this directory the new default directory.

14 MPW 3.0 Reference

As you select various default directories, using either the Set Directory menu command or
the SetDirectory command, each is added as a separate menu command to make it easy
to return to that directory in the future. The UserStartup script creates menu items for
each of the Examples folders in the MPW directory, and for the default directory at the
time the UserStartup script is run. You can add your own favorite directories by modifying
UserStartup.

A Warning Directory names should not contain any of these special characters:

- ; A | < / (

These characters have special meanings when they appear
as menu items. a

Build menu

The Build menu, shown in Figure 3-20, has two primary purposes. The first purpose of the
Build menu is to create a makefile containing the commands needed to build a program.
The command Create Build Commands, which is listed first on the menu, creates the
makefile program.make (using the name of your program). If you have not used this
command—that is, if program.make does not exist—then MPW uses the file Makefile.

The second purpose of the Build menu is either to build a specified program or to display
the commands needed to do the build. When you select one of the remaining commands
on the menu—Build, Full Build, Show Build, and Show Full Build Commands—a dialog box
appears asking for the name of the program that you want to build.

Use of the Build menu is demonstrated in Chapter 2, “Building a Program: An
Introduction.”

= Figure 320 Build menu

Create Build Commands...

Build... %8B
Full Build...

Show Build Commands...
Show Full Build Commands...

CHAPTER 3 Using the Shell Menus

&

Create Build Commands

Use this item to create a makefile containing the build commands for a specified
program. When you click Create Build Commands, the CreateMake dialog box appears.
(See Figure 3-21.) You can then enter the program name and select its type (that is,
Application, Tool, or Desk Accessory). Make sure that you do not include any of the
following four suffixes to the program name:

.a .C .p .cp

Click the Files button to select the program’s source and library files. (MPW libraries are
automatically linked; certain special libraries you may require might not be automatically
linked. See CreateMake in Part I.) If the program’s name is program, a new makefile,
called “program.make”, is created. The makefile will contain simple build commands from
the program. (See Chapter 9 for more information on Make.)

Be sure to run Create Build Commands whenever you create additional source or library
files for a program. Answering the CreateMake dialog box generates a new set of rules in
program.make that includes the new source files.

= Figure 3-21 CreateMake dialog box

—CreateMake Options

Program Name |MyProgram| | (_sourceFiles...]

;—Program Type Creator | 2?22
: @ Application Type 7777
: OTool Main Entry Point

i O Desk Accesso
8(:ode nesourc';y Resource Type

[0 symbolic debugger information

F—Command Line
createmake MyProgram

Ty
Create a simple makefile for building an application, tool, or desk .

accessory. The makefile is for use by the Build menu. l fronloMake ‘}

When you select one of the following four Build items from the Build menu, a dialog box
appears (as shown in Figure 3-22), asking for the name of the program you want to build.

84 MPW 3.0 Reference

» Figure 322 Program Name dialog box

Program Name?

Type the name and click OK. The build option you have selected will proceed, displaying
on the Worksheet each command needed to build the program as it is used, along with any
error messages. Each of these four Build menu items uses the MPW tool Make to
determine which operations are necessary to build the program.

Build

The program is built automatically, but only files that have been modified since you last
built the program will be compiled. Use this item to save time. The Command-key
equivalent is Command-B.

Full Build

The program is completely built, ignoring any object files or intermediate files that may
exist from a previous build.

Show Build Commands

The commands needed to build the program (for just those files affected by
modifications since the last build) are displayed on the worksheet, but not executed. You
can then select any or all of the commands—or modify them—and press Enter to execute
them.

Show Full Build Commands

All the commands needed to completely rebuild the program (whether modified since the
last build or not) are displayed on the worksheet, but not executed. This is a convenient
way to see all of the commands used in building the program you've selected.

The Makefile “program.make” is created by the Create Build Commands menu item
(described previously in this chapter). If you have not used this item—that is, if
program.make doesn’t exist—MPW will use the file MakeFile.

CHAPTER 3 Using the Shell Menus

8

User-defined menus

You can define your own menu commands with the AddMenu command, described at the
end of Chapter 5. These commands can be appended to existing menus, or you can create
new menus. In fact, the Projector, Directory, and Build menus have been created by using
AddMenu. You may add to, change, or delete these menus to suit your individual needs.

8 MPW 3.0 Reference

Chapter 4 Using MPW: The Basics

THIS CHAPTER INTRODUCES THE BASIC CONVENTIONS FOR MANIPULATING FILES,
editing text, executing commands, and responding to dialogs in MPW 3.0. You
can easily enter all commands, command options, and parameters by using the
menus and dialogs. The basics for directly typing commands in any window are
also introduced. A full discussion of command scripting can be found in Chapter
5. For an introduction to building a simple program, using examples contained in
the Examples folder, see Chapter 2. Chapter 3 introduces the menus and their
contents. Chapter 7 presents the dialogs and complete information on Projector,
the project management system. =

Contents
Editing 89
Entering commands 89
Typing commands in a window 90
The Enter key 91
Executing several commands at once 92
Terminating a command 92
The Help command 93
File-management commands 95
File and window names 97
Selection specifications 98
Directories and pathnames 98
Command search path 101
Changing directories 101
Pathname variables 102
Wildcards (filename generation) 103
Locked and read-only files 103
Commando dialogs 104
Invoking Commando 105
Using Commando dialogs 106
Standard dialog box controls 107
Generic text parameters 107

Repeatable options 108

Radio buttons 108

Check boxes 108

Shadow pop-up menus 109

Other pop-up variations 109

Multiple input files 110

Multiple directories 111

Multiple files and/or directories 112
Single input or output file 112

Output file where a file or directory may be specified 113
New directories 114

Special dialog box controls 114

Nested dialog boxes 114

Redirecting output 116

Options dependent on other options 118
Three-state controls 119

88 MPW 3.0 Reference

Editing

Basic editing functions are available as menu commands. You can open a file by using the
Open command, or by selecting its name on the screen and choosing the Open Selection
command (Command-D) from the File menu. You can select and edit text with the usual
Macintosh editing techniques, using menu commands to cut, copy, and paste selected
text. The menu commands are described in Chapter 3.

You enter and edit command lines in a window exactly the same way you enter plain text.
You can select any stretch of text and press Enter to send the selection to MPW’s
command interpreter for execution.

Editing with MPW is unique in that most menu functions are duplicated in the Shell
command language. Editing and other command-language functions are fully integrated—
you enter and execute editing commands just like any other commands. Editing
commands are entered in the active window (the frontmost window), but they act on
text in the target window (the second window from the front), or another window that
you explicitly name. The command language lets you produce scripts of editing
commands: You can save any series of commands as a normal text file and execute the file
by simply entering the filename. Command-language editing is discussed further in
“Editing With the Command Language” in Chapter 5.

For an explanation of selections, markers, and pattern matching with regular expressions,
see Chapter 6, “Advanced Editing.”

Entering commands

All MPW commands and their options can be selected from menus and dialog boxes.
Generally, this interactive method of command selection is the easiest. You can
immediately execute commands selected from menus and dialog boxes, or you can use
the dialog boxes to compose complex command lines that can then be copied to a script.

CHAPTER 4 Using MPW: The Basics

The dialog boxes for MPW commands are generated by the Commando user interface
(described in the last section of this chapter). Besides the usual Macintosh dialog boxes,
Commando provides several new forms and controls to handle the special requirements of
MPW tools. For example, dialogs for commands with many options may have several
nested dialog boxes. Which dialog boxes are actually displayed may vary according to
dependency relations between the particular options you may have selected. Some of the
specialized dialog controls are introduced at the end of this chapter. Other unique dialog
boxes are shown in Part II of this reference, with their respective commands. A detailed
discussion of all the elements of Commando dialogs can be found in Chapter 13, which
explains how to create a Commando interface for your own tools and scripts.

Of course, you can always type commands directly in any window as a series of words
separated by spaces or tabs. (See below.)

Typing commands in a window

By default, command output and any error messages appear in the window immediately
below the executed command line. Commands are not case sensitive. You can have
multiple open files, and you can enter commands in any window.

The simplest commands consist of the command name only. For example, type the
command

Date
and press the Enter key (without pressing Return first—that is, the insertion point must be
on the same line as the command when you press Enter). This command outputs the date
and time:

Tuesday, January 15, 1989 7:12:00 aM

Commands can have options. For example,

Date -d

The -d option tells the Date command to list the date only,

Tuesday, January 15, 1989

Commands typed into an open file are referred to as standard input. Output produced
by most commands is sent to an open file called standard output, which is normally
connected to the window in which the command was entered. Any window that is used to
enter standard input and display standard output is referred to as the console.

9 MPW 3.0 Reference

Most commands read from standard input, write their output to standard output, and
write error messages to diagnostic output. By default, standard input refers to text that is
selected and entered while the tool is running. Standard output and diagnostic output
appear following the commands. (These input and output defaults can be changed using
I/O redirection. See Chapter 5 for details.)

¢ Using the Alias command

You may get tired of typing the entire command name for frequently used
commands such as Directory. However, you can easily define your own
alternative names with the Alias command. For example, after executing this
command,

Alias dir Directory

you can execute the Directory command by entering the new command
name:

dir

To make an dlias definition part of the Shell’s standard startup procedure, place

the definition in the file UserStartup. See Chapter 5, “The Startup and
UserStartup Files.” o

The Enter key

The Enter key serves as a “do it” button, causing commands to be executed. You can type
commands in any window and press the Enter key to execute the command line. You can
also select command text that is already on the screen and press the Enter key to execute
the selected text. Clicking on the status panel, located at the lower left of a window, has
the same effect as pressing the Enter key. Pressing Command-Return also has the same
effect as presing the Enter key.

A Important When no text is selected, the entire line is executed the moment the
Enter key is pressed, regardless of where the insertion point is on the
line. &

CHAPTER 4 Using MPW: The Basics

9

Executing several commands at once

By selecting several lines of command text and then pressing Enter, you can execute any
number of commands with one stroke. An example is shown in Figure 4-1.

= Figure 41 Pressing Enter to execute selected text

€ File Edit Find Window Mark Directory Build

In Figure 4-1, executing the selected text would first make a new folder (directory) named
Backup, then copy the files Startup and UserStartup into Backup, and then list all of the
files in Backup. (Each of these commands, and the pathname syntax, is described in the
sections that follow.)

You can also directly execute text files that contain other commands simply by entering
the filename of the script. Executing a script has the same effect as selecting the
commands in an open window and pressing Enter—the only difference is the scope of
variable and alias definitions (discussed in Chapter 5).

Terminating a command

To terminate 2 command while it's executing, press Command-period, the standard
Macintosh command for this purpose.

R MPW 3.0 Reference

A Important Many commands (including Asm, C, and Pascal) normally take their
input from a file; however, if no file is specified, they will begin
reading from the console (that is, from the window where the
command was entered: “standard input”). If the Shell appears not to
be listening to the commands you are entering, it probably isn’t: The
currently executing command (shown in the active window’s status
panel) may be reading the text that you enter. If a program is reading
from standard input, you can press Command-Enter (or Command-
Shift-Return) to indicate end-of-file and terminate input. (See
“Terminating Input With Command-Enter” in Chapter 5.) a

The Help command

The Help command displays summary information for commands. For example, to display
a description of the Files (list files) command and its options, type the command

Help Files
and press the Enter key. You'll see the following syntax description:

Files [option..] [name..] > filelist

-c creator # list only files with this creator

-d # list only directories

-f # list full pathnames

-i # treat all arguments as files

-1 # long format (type, creator, size, dates, etc.)
-m columns # n column format, where n = columns

-n # don't print header in long or extended format
-0 # omit directory headers

-gq # don't quote filenames with special characters
-r # recursively list subdirectories

-s # suppress the listing of directories

-t type # list only files of this type

-x format # extended format--fields specified by format

CHAPTER 4 Using MPW: The Basics 93

Note: The following characters can specify the format
Flag attributes

Logical size, in bytes, of the datafork
Logical size, in bytes, of the resource fork
Creator of File ("Fldr" for folders)

Creation date

Physical size, in kilobytes, of both forks
Modification date

Type

Owner (only for folders on a file server)
Group (only for folders on a file server)
Privileges (only for folders on a file server)

Qo8 FOOKRUDTWM

¢ Note: In Help texts, the brackets are a syntax element indicating that a parameter is
optional. An ellipsis (...) indicates that the preceding item may be repeated. (Note
that this use of the ellipsis is a syntax convention only for Help text and
documentation; an ellipsis character (Option-Semicolon) in an actual command line
invokes the command’s Commando dialog.) See the section “Syntax Notation” at the
end of the Introduction to this reference. The number sign (#) is the MPW comment
character.

You can directly edit and execute the text on the screen. For example, assuming that your
current directory is {MPW}, you can edit the above text as follows:

1. Use the mouse to select [option...] and [name...]; replace them with
the option -1 and the directory name Scripts.

2. Remove the output specification > fileList.

The result is a command that will list the files in directory Scripts, in long format:
Files -1 Scripts

(Scripts is the directory containing various MPW scripts; the -1 option generates “long”
output.) Press Enter to execute the command. Directory information appears
immediately following the command.

You can also use the Help command to display additional summary information, including
an annotated list of all MPW commands

an annotated list of the characters that have special meanings to the MPW Shell
descriptions of the syntax of expressions, selections, and text patterns

a summary of MPW Shell shortcuts

a summary of predefined MPW Shell variables

a summary of Projector, the project management system

% MPW 3.0 Reference

For general information about Help, execute the Help command with no parameters:
Help
This command displays the information shown in Figure 4-2.

= Figure 42 Help summaries

HD:MPW:Worksheet SFee——>——
5

Help
MPH 3.0 Help Summaries

Help sunmaries are available for each of the MPH commands.

To see the list of commands enter "Help Commands”. In addition,
brief descriptions of Expressions, Patterns, Selections, Characters,
Shortcuts, Uariables, and Projector are aiso included.

To see Help sumnaries, Enter a command such as

Help commandName 8 information about commandName

Help Commands % a list of commands

Help Expressions ® summary of expressions

Help Patterns * summary of patterns (regular expressions)

Help Selections % summary of selections

Help Characters & summary of MPH Shell special characters

Help Shortecuts 3 summary of MPH Shell shortcuts

Help Uariables & summary of the stondard MPH shell variables

Help Projector ® summary of Projector, a project/source control system

Copyright Apple Computer, Inc. 1986-1988
All rights reserved.

MPY Shell K E

You can directly execute the Help commands given in the “Help Summaries” list.

& Note: The MPW Help file should be in the same directory as the MPW Shell or in the
System folder.

File-management commands

The MPW Shell lets you manipulate files without returning to the Finder. Table 4-1
introduces the most commonly used file-management commands.

Note: The descriptions in the table omit some of the command options that are
available. For complete descriptions, see Part IL.

CHAPTER 4 Using MPW: The Basics

= Table 41 Basic file-management commands

Command Description

Backup [option] -from folder -to folder [file..]
Copy files in source folder to destination folder
based on modification date. This is useful when you
gxail?tain an identical backup folder on a separate
isk.

Catenate | file...] Read the data fork of each file and write it to
standard output. (By default, standard output is to
the active window, immediately after the

command.)

Close [option] [-a | window...] Close windows.

Delete name... Delete file or directory name. If name is a directory,
all of its contents are deleted.

Directory directory Set the default directory to directory. Directory

with no parameters writes the pathname of the
current directory.

Duplicate name... targetName Duplicate file or directory name to file or directory
targetName.

Exists name... Determine the existence of file or directory name.

Files [name... List names of directories and files. Options allow

you to include various attributes in the listing.
GetFileName [option...] [pathname] Display a standard file dialog box.

Mount drive... Mount volumes.

Move name... targetName Move file or directory name to targetName.

New [name...] Open a new window.

Newer [option..] name... target Compare modification dates between files name
and target. List files newer than target .

NewFolder name... Create the new directory name.

Open [option] [names...] Open a window.

Rename namel name2 Rename File or Directory namel to name?2.

Revert Revert window to previous saved state.

Save [-a | window...] Save windows.

SetDirectory directory Set the default directory.

SetFile [option...] file... Set file attributes.

(Continued)

% MPW 3.0 Reference

= Table 4-1 (Continued) Basic file-management commands

Command Description
SetPrivilege [option..] folder... Set access privileges for folders on the file server.
SetVersion [option ...] file Independently maintain the version and revision

numbers as a resource in the application or tool.
Optionally, update a version and revision string in a

source file.

Target name Make a window the target window.

Volumes [name...] List mounted volumes.

Wherels [option... | pattern Find all files that have a partial pathname pattern, in
any level of any directories.

Which [command] Determine, for the specified command, which

existing aliases, Shell built-in commands, and
commands accessed via the Shell variable
{Commands} will be executed when command is
entered.

Windows List open windows.

File and window names

In the MPW, files and windows are specified in the same way. When a name is passed as a
parameter to a command, the system looks first for an open window with that name; if no
window is found, it looks for a file on the disk.

The following rules apply to naming:
s Names are not case sensitive.

m A single component (file or directory name) of an HFS pathname is limited to 31
characters.

m Any character except a colon (:) may be used in a file or directory name. (Colons
separate elements in a pathname.)

CHAPTER 4 Using MPW: The Basics

97

It's best to avoid using spaces and special characters in filenames. When using filenames
that contain spaces, you'll need to quote them so that they won't be interpreted as
individual words in the command language—for example, you would need to specify the
name “System Folder” as follows:

Files "HD:System Folder"™

For the rules conceming quoting, see “Quoting Special Characters” in Chapter 5.

Selection specifications

Commands that take filenames for parameters can also act on the current selection in a
window. The current selection character, § (Option-6), represents the currently selected
text in 2 window. There are two ways to use this character:

$§ Currently selected text in the target window. (The target window is the
second window from the front, as explained in Chapter 1.)

name.§ Currently selected text in window name.

For example, the Count command counts lines and/or characters in a file. The command
Count -1 Sample.a.$§

counts the lines within the current selection in the window Sample.a.

The current selection is explained more fully in “Editing With the Command Language” in
Chapter 5.

& Note: The MPW Shell uses a number of special characters (like §) from the extended
character set. These characters are fully listed in Appendix C.

Directories and pathnames

With the hierarchical file system (HFS), specifying a filename alone is often not enough to
identify a file—you frequently need to specify a pathname. (See Figure 4-3 for a sample
HFS structure.) A full pathname is specified as follows:

volume :[directory :...] filename

98 MPW 3.0 Reference

A full pathname contains at least one colon (:), but cannot begin with a colon. An example
of a full pathname is

"HD:MPW:MPW Shell" .
(The quotation marks are required because the filename “MPW Shell” contains a space.)

s Figure 43 Hierarchical directory structure

=]

|
D D etc.

System Folder: MPW

MPY Shell St

)

p: Scripts: Tools:

®
3
<

D

% otc.

BuildProgram CreateMake SetDirectory

[1]

[I !
%ﬁ etc.

Link Rez Search

A partial pathname is usually all you'll need to specify. When HFS encounters a partial
pathname, it begins the path at the current default directory. Any name that contains no
colons or begins with a colon is considered a partial pathname. A partial pathname that
contains no colons is a leafname. For example, the name

:AExamples
is taken as a partial pathname. However, the name
MPW:

is taken to be a full pathname (that is, a volume name only), rather than meaning the
directory HD:MPW. (When in doubt, you can always specify the full pathname for a file or
command.)

CHAPTER 4 Using MPW: The Basics

Double colons (::) in a pathname specify the current directory’s parent directory; triple
colons specify the “grandparent” directory (two levels up), and so on. See the chapter
“File Manager” in Volume IV of Inside Macintosh for more information on HFS
conventions.

@ Note: Notice that there’s no single “root” directory—each volume name (that is, disk
name) is a separate starting point for a directory tree.

You can use the Files command to list the names of files and directories. For example, the
command

Files HD:MPW:
might display the following:

:Examples:
:Interfaces:
:Libraries:
:ROM Maps:
:Scripts:
:Tools:
'MPW Shell'"
MPW.Help
Quit

Resume
Startup
Suspend
SysErrs.Erxrr
UserStartup
Worksheet
...and so on

In the output of the Files command, the names that begin and end with colons are
directory names, and the other names are filenames. All of these names are partial
pathnames—in this case, “HD:MPW"” forms the beginning of each pathname. Also note
that filenames containing special characters are quoted.

100 MPW 3.0 Reference

Command search path

When you enter a command name (that is, a leafname), the Shell searches for the
command in the directories listed in the Shell variable {Commands). As described in
Chapter 5, this search path is initially set to

: (the current directory)
HD:MPW:Tools:,
HD:MPW:Scripts:,
HD:MPW:Applications:,

This means that when you type any command the Shell first assumes that you want to
execute a tool; if it can’t find the tool, it then assumes that you want a script; if it can’t
find the script, it then assumes that you want an application. If your frequency of use is
different, you can change the search path to improve the Shell’s pefformance. (See
Chapter 5.)

Changing directories

You can change the default directory with the Directory command. Assuming you have a
hard disk named HD, you could change the default directory to the directory Examples in
the MPW folder with the command

Directory HD:MPW:Examples

Like most commands, Directory runs silently—that is, it generates output only if an error
occurs. To verify that you have set the appropriate directory, enter the Directory
command with no parameters:

Directory

This command displays the current or default directory.

Remember that to specify a pathname containing spaces or other special characters, you
must surround it with single or double quotation marks. (See Chapter 5 for rules on
quotation.)

If you specify a directory whose name is a leafname, the Directory command searches the
directories listed in the Shell variable {DirectoryPath}. If the variable is undefined, then
the command looks in the current directory.

CHAPTER 4 Using MPW: The Basics

101

¢ Using the {DirectoryPath}

Here’s an easy way to move quickly between directories on different branches.
Suppose you have a directory structure like that shown in Figure 4-3, with a
DirectoryPath of '

":,HD:MPW:"

Now, if you happened to be in the System folder, you could set your directory to
Tools with this command:

directory Tools

Because this command specifies only a leafname, the Tools directory is looked
for first in “” (where it is not found) and then in HD:MPW (where it is found).
The directory is then set to HD:MPW:Tools. ¢

Pathname variables

One way of specifying a pathname is by using Shell variables. For example, the Shell
variable {MPW}, defined in the Startup file, expands to form the full pathname for the
MPW folder, in this case “HD:MPW:” (assuming that the MPW folder is at the top level).
Thus, the Directory command could be entered as

Directory "{MPW}Examples"

In this particular case, the quotation marks aren’t necessary. If you adopt the practice of
never using spaces or other special characters in a pathname, you don’t need to bother
with quotation marks. On the other hand, if you sometimes use spaces or other special
characters in a pathname, it would be a good idea to use quotation marks whenever
variables are included in a pathname.

You can use the Set command to define and redefine variables, as described in Chapter 5.
To see the values of all currently defined variables, enter the Set command with no
parameters:

Set

102 MPW 3.0 Reference

Wildcards (filename generation)

You can specify a number of files at once by using the wildcard characters ? and =
(Option-x). The ? character matches any single character (except a colon or Return); =
matches any string of zero or more characters (other than colon or Return). For example,
the command

Files =.a

lists all filenames in the current directory that end with the suffix “.a”. (Several other
wildcard characters can also be used to generate filenames—see “Filename Generation” in

Chapter 5.)

Locked and read-only files

If you open a file that is locked, or located on a locked disk, the status panel displays a
lock icon, as shown in Figure 44. When you open a read-only file, the status panel displays
a read-only icon, as shown in Figure 4-5. No editing or command execution is allowed in

these windows.

s Figure 44 A locked file with the Lock icon in the Status panel

EO==—=—= wp:MPW:work:lockedFile ==—==DF|
S

r*
* This is a locked file
*/

@] MPY Shen

When you check out a read-only copy of a file from a project, this file will always open in
read-only mode. The read-only icon is displayed in the status panel, as shown in Figure 4-5.

CHAPTER 4 Using MPW: The Basics

103

= Figure 4-5 A read-only file with the Read-Only icon in the Status panel

[IL]

[E=——— HD:MPW:work:readOnlyfile ==——=0

%
* This is a read-only file.
*/

Commando dialogs

The Commando user interface lets you operate any properly configured MPW command
by means of a special Macintosh dialog, rather than the traditional command line
interface. Commando dialogs may consist of several dialog boxes containing a variety of
controls. You can choose options, select filenames, pick directories, and access help
information for each option. Commando lets you operate MPW commands in a more
intuitive format. All options are visible, and help text for each option can be instantly
displayed.

Because of the complexity of many MPW commands, several specialized controls and
nested dialog boxes have been implemented for them. The various types of controls and
dialog boxes are introduced below. Other dialog boxes, specific to a particular
command, appear together with the command in Part IL.

104 MPW 3.0 Reference

Invoking Commando

There are three ways you can invoke a Commando dialog from the Worksheet:

m Option-Enter: Type the command name and then press Option-Enter. This is the
easiest method for routine interactive use.

m Ellipsis: Type the command name followed by an ellipsis character (...) and press
Enter. You can also use this expression in a script.

The ellipsis may appear anywhere in a command line (except with quotes or after d)
and is considered a word-break character. Although the ellipsis may be situated
anywhere within the command line, only the first word of the line is actually processed.
For example, in the command line

addmenu asm alert..
only the AddMenu dialog will appear. This results with or without Exit set to 0 or 1.

The ellipsis invokes the Commando user interface after the Shell has carried out all alias
and variable substitutions. The entire command line is passed to Commando and the
output of Commando is then executed by the Shell.

& Important Note: To obtain the ellipsis character, hold down the Option key while
simultaneously typing the semicolon (;) character. Although three periods closely
resemble an ellipsis character, Commando won’t be fooled; you must use Option-
semicolon to get the true ellipsis character that invokes Commando.

» Type Commando: Type the word Commando in front of the command line and press
Enter. This method of invoking Commando only outputs the command line; the
command is not executed. You can also use this expression in a script. For example, if
you don’t want the resulting command line to be immediately executed, you can type
commando commandname
The tool’s frontmost Commando dialog box is displayed. Clicking the Do It button
writes the command line to standard output (that is, the window in which you typed
the command) instead of executing it immediately. This second method of using
dialog boxes is useful for building command lines that are to be cut and pasted into
scripts. In this case, Commando will not find a command if the command has been
aliased to a different name.

See “Invoking Commando” in Chapter 13 for more information.

CHAPTER 4 Using MPW: The Basics

105

Using Commando dialogs

The function and appearance of Commando dialog boxes may vary widely according to
the syntax and semantics of the particular command or tool selected. The basic dialog
box is typical of a simple command such as Date, the first example used in this chapter.

Type
Date ..

Be sure to use Option-semicolon to get the ellipsis. Then press Enter. Figure 4-6 shows the
resulting Commando dialog box for Date.

s Figure 46 The Date dialog box

rl)ate Options
-Date/Time ————— ~Amount of Detail —; ~Date Input

’ @ Both date and time i { © Full date H i Date in Seconds

i O Date only O fbbreviated date ; ’l j
i O Time only O Short date i
i O In Seconds : H

Output Error

l |

~Command Line
date

~Help
Show the ocurrent date and time.

Most dialog boxes share the basic structure shown in Figure 4-6. Various controls for
options and parameters appear in the largest, upper area of the box. Date has three
parameters:

Date/Time radio button control
Amount of Detail radio button control
Date Input editable field

The default settings for Date appear preselected as the topmost radio button for each
parameter.

Clicking and holding down the mouse button on any control or option displays Help
information in the standard Help window at the bottom of every Commando dialog box.
Clicking on the title of a control also displays the Help information.

Use the pop-up menu of the Output box to redirect output. See the section “Redirecting
Output” later in this chapter.

106 MPW 3.0 Reference

The Command Line window displays the command line resulting from the options you
select from the dialog box. As you select options or change parameters, this Command
Line box is continuously updated. You can then copy all or any part of the command line
using Command-C or the Edit menu.

Clicking the Do It button (the button labelled “Date” in Figure 4-6) passes the completed
command line back to the Shell for execution. Alternatively, you can press the Enter key.
If you change your mind and decide to exit from the dialog, you can click the Cancel
button, which has the same effect as pressing Command-Period.

You can get these special results by holding down the Option and/or Command keys while
clicking a Do It button:

Option key (or pressing Enter) ~ The command line is also written to standard error.
This means that the command is executed and is
echoed to the active window.

Command key The command line is not passed to the Shell; that is,
nothing is executed.

Option key and Command key ~ The command line is written to the active window
without being executed.

Standard dialog box controls

This section describes the most frequently encountered Commando dialog box controls.

Generic text parameters

Not only do tools have options, they also have parameters. Nonspecific parameters,
where the parameter can be just about any string, are simply entered in an editable text
field. For items where text is required, the text is quoted by Commando before being
passed to the Shell. You can scroll the line right and left (by dragging) if the text in the box
is longer than the text box. Here’s an example of an editable text field:

Mark the selection with what name?

I |

CHAPTER 4 Using MPW: The Basics

107

Repeatable options

Various text field options, such as the -dlefine] option in Rez and Asm, may be specified
more than once. The control below shows an option of this type. The number of lines
displayed is controllable by the tool’s builder. The small window is basically an area where
text can be entered, very much like the Notepad desk accessory. This window does not
automatically wrap around lines larger than the window area. Instead, it scrolls left and
right. You create a new line by pressing the Return key. Scroll the window horizontally by
dragging. You can scroll the window’s contents vertically either by dragging or by using the
scroll bar control. '

Preprocessor defines:
Language=english K
size=height*200

-
Radio buttons

Some options are mutually exclusive and are therefore available as a set of radio buttons.
The default setting of the button corresponds to the default state of the option. Groups
of mutually exclusive items are often surrounded with a labeled perimeter:

O High
@ Standard

Print Quality—
IVO Draft

Check boxes

An option, such as the Assembler’s -print option, may have many simultaneous settings.
Options like this are implemented with check boxes (versus on/off radio buttons). Most
of the MPW tool’s options are Boolean flags. Check boxes are also used for these types of
options, and are usually surrounded by a labeled perimeter:

— Listing Control
X Show macro expansions

B3 Rllow sutomatic page ejects
(X show warning messages

BJ Show macro call statements
BJ Show generated object code
[J Show up to 255 bytes of data
[X Show macro directive lines
3 Show header lines

[X) Show generated literals

[J Show assembly status

108 MPW 3.0 Reference

Shadow pop-up menus

Some options require the name of a window, alias, font, or Shell variable. Commando will
display a field of this type as a shadowed box:

Window | HD:0S:Worksheet |

When you click inside the shadowed box, a pop-up menu displays all the choices for that
particular field (that is, windows, aliases, fonts, or Shell variables). The menu box is
aligned around the current selection. The current selection is checked in the menu box. As
long as the mouse button is held down, the menu behaves like a standard pull-down menu.
If necessary, the pop-up menu will scroll vertically. When the mouse is released within a
menu item, that item then appears in the shadowed box.

Window |vHD:0S:Worksheet |
HD:MPI:MyCroft:test.c

HD:MPIW:MyCroft:getopt.c

Other pop-up variations

Some options are similar to the pop-up menus above but also allow a little more
flexibility. The Menu Name box in AddMenu allows you to type in the name of a new menu
or select an existing menu name from a list of names:

Menu Neme | E

Click the menu icon at the right of the box to display a pop-up menu containing the
existing choices:

Menu Name ||

Find
Windows
Mark
Directory
Build

Drag down the pop-up menu until the item you want is highlighted and then release the
mouse button. The selected item will appear in the text edit box. If you type an item into
the text-edit box, any identical item in the pop-up menu will be automatically checked.

CHAPTER 4 Using MPW: The Basics

109

Multiple input files

When a tool can handle multiple input files of the same type (C, ASM, Rez, and so on), only
a single button is displayed.

[Source Files]

Clicking on the button displays a modified standard file dialog box. Commando adds
some functionality to the standard file package (SFGetFile) to let you select multiple files
in different directories. Another scrollable list appears under the file list. Use the standard
file controls to select files and click the Add button to add the selected file to the
scrollable list under the SFGetFile. After doing so the dialog box does not disappear.
Instead, the file is added to the lower list. (Alternatively, you can just double-click a
filename to add it to the lower list.) You can delete a file from the list by selecting it (in
the lower list) and clicking Remove. You can select several files at once by holding down
the Command key while you click their filenames. When all desired files have been
selected, click Done or Cancel to return to Commando’s first dialog box.

A tool may tell Commando that the tool requires files with a particular extension. A radio
button lets you display and select any text file (or whatever type of file the tool wants).
When you select a folder, the Open button reads “Open.” When a file is selected, this
same button is labeled “Add.” If you select a file that has already been added to the lower
list, then that file is selected (and scrolled into view if necessary), and the Remove button
undimmed.

110 MPW 3.0 Reference

m
&3 CExamples
ERTTEC oo
D Memory.c _
D Sample.c
D oo (o)
D testperf.c [_Dive]
5| (Cancer]
@ Files ending in .c QO Al text files
Source:
:(Examples:Memory.c O prm—
3

—_-

Multiple directories

Some tools, such as C and Asm, have options that let you specify directories to search
when looking for various files. Clicking a single button, like this one, will display a
modified standard file dialog box:

(include Directories)

The selegtion of multiple directories works in the same way as the selection of multiple
files. In this example, however, only folders are visible. Because a selected directory has
the potential for being both opened and added to the lower list, there must be two
controls for both operations. Clicking the Add button adds the directory selected in the
upper list to the lower list. The Open button operates in its normal manner: Clicking it
opens the selected folder. You can delete a directory from the lower list by selecting it (in
the lower list) and clicking Remove. Finally, clicking Continue or Cancel returns control to
Commando.

CHAPTER 4 Using MPW: The Basics

111

(Rdd Current Directory: |

€3 Interfaces

0O Rincludes
O AStructMacs
O Cincludes
O Pinterfaces
T Rincludes

5

#Include Search Paths:

:Interfaces:Rincludes: {>

i

Multiple files and/or directories

For MPW tools or built-in commands that can deal with both multiple files and directories,
this dialog box, almost the same as the one shown above, lets you select files and
directories. The model is almost the same as the one above, except that both files and
folders are visible. Selecting anything in the upper scroll window highlights the lower Add
button. The controls work as shown in the example above.

Single input or output file

You select options or parameters that require a single file (whether for input or output)
with a control similar to the example below. Clicking in the shadowed rectangle displays a
pop-up menu with choices depending upon the tool. The first choice can be either
Default Output or No Output (or, if the file is an input file, Default Input or No Input).
The Default Output is used for tools that write to a default output file if one is not
specified. Link and Rez, for example, write to link.out and rez.out, respectively, if no
explicit output file is specified. If Input File or Output File is selected, SFGetFile (for
input files), or SFPutFile (for output files) is displayed so that a file can be chosen. If the
filename selected is too long to fit in the space provided, the middle of the path is
annotated with “...". An ellipsis (typographical; not a Commando invocation) is added to
the end of the end if the full filename does not fit within the confines of the box.

Resource Output File rez.out |

112 MPW 3.0 Reference

Here’s an example of an output file pop-up menu:

vilirite auipul? la Fes.aul
Select an existing output file...
Write output to a new file...

Output file where a file or directory may be specified

The various compilers have options to specify the object filename or the object file
directory. Commando displays a pop-up menu similar to this one:

QI YTCIRUIGT) o Lise delfoult noming canvention
Specify object file name or select directory...

except that the standard dialog box that appears when you select the Output File or
Directory item looks like this one:

(_Select Current Directory:]
l@ RExamples I

5] ©HD
B (Bwectory)

0bject File/Directory

"] | Cancel |

The OK button is dimmed when the text-edit box is empty. After entering text into the
text-edit box, the OK button is highlighted. Clicking the OK button specifies the file as
the output. Clicking the Directory button specifies a directory as output.

CHAPTER 4 Using MPW: The Basics

113

New directories

The NewFolder command lets you specify the creation of multiple directories. The
example below (based upon SFPutFile) is used to create multiple directories. When you
type a directory name in the middle text-edit area and click the Add button (or press
Return), a pathname is added to the lower list. The root of the new directory is the same
as that displayed in the upper scroll list. You can continue to add more directories. Click
the Done button to close the dialog box and retum to the first, or “main” dialog box.

3 AExamples

D Caunta

o County .

D instructions
0 Makefile

D Memary.a
& sample

New directories:
[| (cancer)

= —

Rempue

Special dialog box controls

Commando uses standard Macintosh text-edit boxes, radio buttons, and check boxes. In
addition to these, you'll encounter some specialized controls because of the variety of
options and parameters and certain dependencies between them. These various types of
specialized controls are introduced below.

Nested dialog boxes

Some tools, such as Rez and PasMat, have more options and parameters than can fit into
one dialog box. The additional options are grouped into nested dialog boxes that are
available from the first dialog box. Figure 4-7 below shows, as an example, the first dialog
box of Rez.

114 MPW 3.0 Reference

= Figure 47 Rez: the first dialog box

—Rez Options - -

-Resource Qutput File [0 Progress information
Type [0 Redeclared types ok

| Creator O Modification date

@ Rewrite resource file (Description Files...]

O Make resource file read-only (#inciude Paths...)
~Resource Alignment :
. @Byte OWord OlongWord | (_Include Paths...

|Rez.out

[8K 16 veplace protecied ressures

O Merge resources into resource file (Preprocessor... |

[Redirection...

—~Command Line
Rez

~Help
Rez is a tool used to compile resources.

Note the five control buttons at the right side of the “Rez Options” window. When you
click one of these buttons, a nested dialog box appears with the title of the selected
button. For example, selecting the button labeled “Preprocessor...” displays the nested
dialog box shown in Figure 4-8.

» Figure 48 Rez: nested preprocessor dialog box

Defines:

Undefines:

~Command Line
Rez

Preprecessor variables can be DEFINE'd and UNDEF INE'd in this dialeg.

CHAPTER 4 Using MPW: The Basics 115

As you type in the preprocessor defines and undefines, the command line you began in the
first dialog box is further updated in the Command Line window of the nested dialog box.
The lower-right Do It button in a nested dialog box is always labeled “Continue.” Ciicking
Continue closes the nested dialog box, and again displays the first dialog box with the
command line updated to show the options and parameters selected in the nested dialog
box. (This is always the case, except for the C compiler dialog, which has a third level of
dialog boxes.) If you click Cancel, changes from nested dialog boxes are not recorded and
you retum to the first dialog box. From there you can then select another nested dialog
box.

Redirecting output

Every tool that can write information to standard output or to standard error has controls
to assign destinations for this output. Consider the Error Output window in the
Redirection nested dialog box of Rez, shown in Figure 4-9.

s Figure 49 Rez: nested Redirection dialog box

Redirection...
Input

|

Command Line
ILA

Help
l;ezmnuwmmmavmuwm.

Help
,-C!iekﬁsmhwadiabgvm&nrmmk.

116 MPW 3.0 Reference

Clicking inside the Error window (and holding the mouse button down) displays this pop-
Up menu:

Error
v No Ouipu? Redirection
New File...
Enisting File...
Window...
Current Selection in Window...
Current Selection In Target Window
Standard Output
Standard Diagnostic
Null Detuce r
Console

Here Null Device has been selected. When the mouse is released, the filename dev:null
appears in the Error window. Whenever you select an output redirection, the two invisible
radio buttons directly above the error pop-up are activated.

Selecting “Existing File...” in the pop-up menu displays the standard file dialog box.
Selecting “New File” brings up the standard output file dialog box and lets you create a
new file. Selecting “Window...” brings up a list of the active windows to choose from.
Because a window is a file, you could also choose a window with the Existing File
command.

Selecting Current Selection in Window also brings up a list of windows to choose from.
When you select Current Selection in Target Window, output is redirected to §. When you
choose a window, output is redirected to window §. When you choose any file other than
a new file, the Overwrite and Append radio buttons are activated. These buttons
correspond to the functions of the >> and >>, 22 redirection operators, respectively.
Selecting No Output Redirection clears the pop-up menu so that no redirection occurs.

After you release the mouse over Null Device, the command window looks like this:

Error ®:> Q2

The Diagnostic Qutput windows and Standard Input windows (in the case of tools that
read standard input) work in a similar fashion.

CHAPTER 4 Using MPW: The Basics

117

Options dependent on other options

Some options may be dependent on other options. For example, the -hf (header font) and
-hs (header size) options of the print tool don’t mean anything unless the -h (header)
option is specified. Commando implements this model by disabling all controls
dependent upon some other control. When you check (or otherwise activate) the main
control, the dependent controls are enabled. Another example is the AddMenu command.
The syntax of this command is

AddMenu [menuName [itemName [command..]]]

An itemName cannot be entered until 2 menuName is entered. Likewise, a command
cannot be entered until an itemName is entered.

Menu Name || H

Item Nome | E

Cammands

Here is the same set of options after “Find” has been typed in the first text-edit entry
field. Notice that as soon as something is entered in the field, the Item Name entry is
enabled, but the Commands field remains dimmed.

Menu Name |Find B
Item Name | E
Cammands

When an item is selected from the Item Name pop-up menu or simply typed into the Item
text-edit box, the Commands field is enabled. If Find is a valid menu name, then Find’s
menu items will appear in the Item Name pop-up menu.

Menu Name |Find %
Item Name |Replace] E
Commands
=

There may be several text-edit boxes that are disabled (dimmed) until you have entered
something in the adjacent enabled text-edit box.

118 MPW 3.0 Reference

Three-state controls

Some options, like the -a option of Seffile, need the support of a three-state control. For
example, Setfile can set, clear, or do nothing to the bundle bit. Clicking this control cycles
through its three states. The color of the diamond determines its state:

Gray Don't touch the flag
White Clear the flag
Black Set the flag

— Attributes

< Locked

> Invisible
4 Bundle

€ System

€ Protected
€ Open

€ Changed
& Inited

< on Desktop

CHAPTER 4 Using MPW: The Basics 119

Chapter 5

Using the Command Language

THIS CHAPTER DESCRIBES THE COMPLETE SYNTAX OF THE MPW 3.0 COMMAND
LANGUAGE and explains its use. Each command is defined in detail in PartII. =

Contents

Overview 123
Types of commands 124
Entering and executing commands 124
Negative status codes 125
Structure of a command 126
Command name 126
Parameters 126
Command terminators 127
Command continuation 128
Comments 128
Simple versus structured commands 128
Running an application outside the Shell environment 129
Scripts 130
Special scripts 131
The Startup and UserStartup files 131
Suspend, Resume, and Quit 131
Command aliases 132
Executable error messages 133
Variables 133
Predefined variables 134
Variables defined in the Startup file 135
UserVariables 139
Parameters to scripts 141
Defining and redefining variables 142
Exporting variables 142
Command substitution 144
Filename generation 145
Quoting special characters 146

121

How commands are interpreted 150
Structured commands 153

Control loops 156

Processing command parameters 157

Expressions 157
Redirecting input and output 160

Standard input 162

Terminating input with Command-Enter 163

Standard output 164

Diagnostic output 164
Pseudo-filenames 165
Editing with the command language 166
Defining your own menu commands 168
Sample scripts 168

“AddMenuAsGroup” 169

“CC” 170

122 MPW 3.0 Reference

Overview

The command language provides the following features:

Built-in and user-definable variables of the form {variableName}
Command aliases, used to create alternative names for commands

Command substitution, by which commands enclosed in back-quotation marks
(°...7) are replaced by their output

A quoting mechanism for disabling special characters or inserting invisible characters
in text: 0 literalizes a single character; *...* and "..." quote strings

An extensive set of structured commands for controlling the order of command
execution, including Begin...End, If...Else...End, and For...In...End

Filename generation with “wildcard” operators such as = and ?
Redirection of input and output with the <, >, >>, 2, 22 ¥, and 33 operators

When you enter command text, the Shell first interprets and processes all special symbols
before actually running the command. The order of interpretation is explained later in this
chapter under “How Commands Are Interpreted.” For the most part, the order of
presentation in this chapter follows the order of interpretation by the Shell.

In order to begin using MPW, you should read the following sections of this chapter at a
minimum:

The opening sections of the chapter, which describe the basic form of all commands:
“Types of Commands,” “Entering and Executing Commands,” and “Structure of a
Command”

“Command Scripts” and “Special Scripts”
“Variables”
“Quoting Special Characters”

The operators and syntax of the command language are summarized in Appendix D.

CHAPTER 5 Using the Command Language

123

Types of commands

In all, four kinds of commands are provided:
s Built-in commands, such as Files or Duplicate, are part of the MPW Shell.

m Command scripts, such as Startup, are text files that contain commands. You can
combine any series of MPW commands in a text file, and execute the file by entering
its filename, just like any other command. You can also pass parameters to a script
and use them in commands within the file.

m Tools, such as Link or Asm, are executable programs (that is, separate files on the
disk) that are fully integrated with the Shell environment.

Applications, such as ResEdit or MacPaint®, are stand-alone programs that can be
launched from the Shell but can also run outside the Shell environment.

To execute a tool, application, or script, you need to have the proper program file
on your disk.

& Note: A built-in command overrides a script or executable program with the same
name. You should therefore use either full pathnames or quotation marks to specify a
script or program with the same name as a built-in command. (Quotation marks work
for this purpose because the names of built-in commands must appear unquoted—see
“Quoting Special Characters” later in this chapter.)

& Note: The Shell will not execute a tool whose modification date is 12:00 A.M. 1/1/04.

Entering and executing commands

Press the Enter key to execute selected command text. If no text is selected, pressing
Enter executes the entire line that contains the insertion point. Alternatively, you can use
the mouse to click the Status Panel in the Worksheet's lower-left comner, or press
Command-Return; both methods have the same result as pressing the Enter key.

A Important If no text is selected, pressing Enter always passes the entire line to
the Shell (or to whatever other program happens to be reading from
the console). This rule also applies to your own integrated programs
that run within the Shell. a

124 MPW 3.0 Reference

A Important If you enter a line that ends with the Shell escape character, 9, the
command interpreter will pause, waiting for the rest of the line. a

All commands return a status code: 0 indicates successful completion; nonzero values
usually indicate an error. This code is returned in the {Status} variable, described later in
this chapter.

Negative status codes

The command interpreter will return negative status codes when it encounters an error.
These codes are:

-1 Command not found, script is a directory, script is not
executable, or script has a bad date.

-2 Filename expansion failed, or there was an error in the expression
syntax.

-3 Bad syntax. Quotation characters and braces were not balanced,
or were missing end or “)” command. Error in control constructs.

-4 Missing filename following I/O redirection or the file could not
be opened.

-5 Invalid expression (If, Break If, Continue If, and other such
constructs).

-6 Tool could not be started.

-7 Runtime error during tool execution, most likely an out-of-
memory error.

-8 User aborted the tool from the debugger.
-9 User aborted the tool with Command-period.

These values can be used to distinguish between errors returned by the commands
themselves and errors returned by the Shell.

A Important All negative numbers are reserved for the Shell. Use only positive
numbers for errors in tools or scripts. &

CHAPTER 5 Using the Command Language

125

Structure of a command

A command is written as a list of words separated by blanks. (Blanks may be either space
or tab characters.) The first word is the name of the command, and each word that follows
is passed as a parameter to the command. The general form of a simple command is

commandName | parameters...] commandTerminator

Each of these elements is described below.

Command name

The command name is either the name of a built-in command or the filename of the
program or script to execute. Command names are not case sensitive. Alternative names
can be defined for 2 command—see “Command Aliases” in this chapter for information.

The command name is passed to tools and scripts as parameter 0, and can be referenced
by scripts in the variable { 0}, explained later in this chapter under “Variables.”

Parameters

Each of the subsequent words in 2 command is a parameter to the command or to the
command interpreter. Note that certain parameters, such as I/O redirection, are
interpreted by the Shell, and never seen by the command itself. Variables are also
interpreted before being passed to the program.

By convention, there are two distinct types of parameters to commands: options and
files. See the “Command Prototype” section at the beginning of Part II for more details
on these conventions.

You can reference parameters within scripts by using the variables {1}, {21,...{n}. (See
Table 5-5.)

126 MPW 3.0 Reference

Command terminators

Each command is normally terminated by a return character. Commands can also be
terminated by the pipe symbol (1), the conditional execution operators (&& and 1), or
the simple command terminator (;). Each of these symbols may be followed by a return.
Table 5-1 describes the command terminators in order of decreasing precedence.

Except as modified by structured commands, commands are read sequentially and
executed as they are read.

s Table 51 Command terminators

Command Description

cmdl | cmd2 Saves the standard output of ¢cmd1 in a temporary file and uses it as
the standard input of ¢cmd2. (Standard 1/0 is explained later in this

chapter.)
Note: In MPW, unlike UNIX® systems, the commands are executed
sequentially.

cmdl && cmd2 Executes cmd2 only if cmd1 succeeds (that is, returns a status value
of zero).

cmdl 11 cmd2 Executes cmd2 only if cmd]1 fails (returns a nonzero status value).

cmdl ; cmd2 Executes cmd1 followed by cmd?2; this terminator allows more than
one command to appear on a single line.

These command terminators may be applied to both simple and structured commands.
Grouping is from left to right. You can use parentheses to group commands for
conditional execution and pipe specifications. Here are some examples:

Files | Count -1

This command pipes the output of the Files command (a list of files and directories) to
the Count command, which counts the lines in the list.

Asm Sample.a && Link Sample.a.o -o Sample.code ||
(Echo Failed; Beep)

This example begins by assembling Sample.a. If that operation succeeds, it links the
object file; but if the assemble-and-link operation fails, it echoes the message “Failed,”
and beeps.

CHAPTER 5 Using the Command Language

127

Command continuation

You can continue a command onto the next line by typing d (Option-D) followed by a
return. Both characters are discarded when the line is interpreted. The return must come
immediately after the 9, with no blanks or comments between them. (For more
information about the d escape character, see “Quoting Special Characters” in this
chapter.)

Echo This is all @
one command

This is all one command

Notice that the output appears on one line.

Comments

The number sign (#) indicates a comment. Everything from the # to the end of the line is
ignored. (Comments @lways end at the next return, even if the return is preceded by a 9.)

Echo This is echoed. # This is not.
Echo parameters # comment 0
more parameters # another comment

Simple versus structured commands

All of the commands introduced so far have been simple commands. Simple commands
consist of a single keyword, followed by zero or more parameters. Simple commands are
distinguished from structured commands—commands such as For and If, for example,
that let you control the order in which other commands are executed. For example,

For file In =.c; Count {file}; End

All structured commands are built-in, and usually have more than one keyword. The entire
structured command is read before its execution begins.

Also see “Structured Commands” in this chapter.

128 MPW 3.0 Reference

Running an application outside the Shell environment

You can run an application outside the MPW Shell environment by executing the program
name just like any other command. For example,

ResEdit
The application is loaded and launched as if it had been started from the Finder. Any files
specified as parameters are passed to the program via the application parameter handle,

in Finder fashion. (See “Finder Information” in the chapter “Segment Loader” of Inside
Macintosh.) The following option is available on the command line:

-pfile... Tell the program to print the specified files.
For example,
MacPaint -p "HD:Screen 1" "HD:Screen 2%

This command tells the Shell to run MacPaint (assuming MacPaint is in a directory listed in
the Shell variable {Commands}), and to print the files Screen 1 and Screen 2.

The Shell environment is saved when the application is launched and restored when the
application terminates. (These actions are performed by the Suspend and Resume
command files, described below.)

¢ Note: When running MPW under MultiFinder, the application is launched into a
separate MultiFinder partition and the state is not saved.

A Warning Running an application from a script normally terminates the script.
Under MultiFinder, the application starts and the script continues to
execute. a

CHAPTER 5 Using the Command Ianguage

Scripts

You can create your own commands by writing text files of previously defined commands,
called scripts (command files). You can execute such a file just like any other command
within the Shell environment—the name of the file you created is the name of the new
command. For example,

Date

Echo Volumes.......cciiiiiiineenenennnnns ettt .

Volumes

Echo Current DireCtoOry....c.ceeeeeereeenroaeaeneacnannnn
Directory

ECHO FileS..uieeeeeeeeeeeeeecacseesaeescaenansnecannnnens
Files

If this text is on the screen, you can execute it by selecting it and pressing Enter. You can
also save this text as a script so that it's always available. To save it under the name “Info,”
for example, first select the command text, making sure that the window with the

selected text is the target (second from the front) window. Then type the following
command in another window:

Duplicate -d § Info

You can now execute this series of commands by entering the command name Info.
(Recall that the § character indicates the selection in the target window.)

You can pass parameters to a script just as you would to a predefined command by using
the normal Shell syntax:

filename [parameters...]

Parameters can be referred to within the scripts by using the built-in variables {1},
{2},... { n}, explained below under “Parameters to Scripts.”

& Note: As a matter of convenience, scripts (as well as applications and tools) are usually
kept in directories that the Shell automatically searches when a leafname is given for a
command name. This convention allows you to invoke the command by using its
leafname instead of its full pathname. The Shell variable {Commands} contains a
comma-separated list of directories to be searched. You can easily modify it to
include additional directories.

130 MPW 3.0 Reference

Special scripts

The scripts described in this section are provided with MPW. You can modify the
commands in each of these files to suit your needs.

A Important Each of these scripts must be in the same directory as the MPW Shell,
or in the System Folder. a

The Startup and UserStartup files

When you start up the Shell, commands are initially read from a file named Startup. The
Shell executes the commands in Startup as if you had entered them interactively. The
Startup file provided with MPW contains several default variable and alias definitions.
You can modify the commands in Startup to suit your own needs; for instance, you can
change the default pathnames to suit a special directory configuration.

Startup executes another script called UserStartup. It's recommended that you use this file
for your own changes and additions to the startup sequence. You can redefine the
variables defined in Startup, set and export any number of additional command-language
variables, and define aliases and create menu items. Aliases and variables are fully
described in the sections that follow.

Suspend, Resume, and Quit

When you run an application from the Shell, commands are read from the file Suspend.
When you quit the application and return to the Shell, commands are read from the file
Resume. The Suspend and Resume files save state information about variable definitions,
exports, aliases, and windows before running an application; they then restore the state
after returning to the Shell.

& Note: Suspend and Resume are not used if the MPW Shell is running under MultiFinder.

When you quit from the Shell, commands are read from the file Quit. The Shell executes
these commands before closing any windows.

CHAPTER 5 Using the Command Language

131

& Note: If you cancel from the Quit command, the Quit file will already have been
executed.

Like Startup and UserStartup, these scripts run as if you had entered the commands
interactively. You can modify them to suit any special requirements you may have.

Command aliases

An alias is an alternative name for a command (and possibly some parameters). The Alias
command is used to define aliases and to display the list of aliases. If an alias has been
defined, it will be recognized by the command interpreter and the corresponding
definition will be substituted.

& Note: Variable substitution and alias substitution occur on the alias definition itself
after it has been substituted.

The following commands are used to define and undefine aliases:

Alias name word... Name becomes an alias for the list of words.

Alias name Displays any alias definition associated with name.
Alias Displays all alias definitions.

Unalias name Removes any alias definition associated with name.
Unalias Removes all alias definitions.

Aliases are local to the script in which they are defined (and are globally available if they
are defined in the Startup and UserStartup files or entered interactively). Aliases are
automatically inherited from enclosing scripts, and they may be redefined locally.
However, aliases redefined locally will revert to their previous value when the script
terminates. :

See the Alias and Unalias commands in Part II for a complete specification of aliases and
several examples.

132 MPW 3.0 Reference

Executable error messages

The following alias is defined in the Startup file:
Alias File Target
That is, the word “File” is defined as an alias for the Target command, which opens a file as

the target window. (See Chapter 6, “Editing Commands.”) This alias is useful when a
compiler retums an error message such as
Not a parameter name: counts

File “Count.c" ; line 73

By placing the insertion point anywhere on the error message line or by selecting the entire
line and pressing the Enter key, you’ll automatically open the specified file as the target
window, find and select the offending line, and bring the window to the top. The
command that the Shell actually executes is

Target "Count.c" ; Line 73

Line is a script that automatically finds and selects a line by number and then brings the
target window to the top.

Variables

The Shell provides several predefined variables and allows you to declare any number of
additional variables. Variables are used for

s shorthand notation

status information

local variables in scripts

parameters to scripts and tools

certain defaults for the MPW Shell

You can define or redefine variables with the Set command and remove variable
definitions with the Unset command. For example, the command

Set PFiles HD:MPW:PFiles:

defines a variable {PFiles} with the value “HD:MPW:PFiles:”.

CHAPTER 5 Using the Command Language

133

Variables have strings as their values. You can reference them by using the notation
{name}, where name is the name of the variable. When a command containing a variable
{name) is executed, {name} is replaced with the current value of the variable. In this
example,

Files {PFiles}Src.p

{PFiles} is replaced with its definition before the command is executed.
A variable may comprise one or more words, or part of a word. If a variable is undefined,
{name} is removed (that is, replaced with a string of length zero, called a null string).

Variable names are case insensitive, and must not include the right brace character (}), for
obvious reasons. It's wise to avoid using any special characters in variable names because
future extensions to the command language may assign special meanings to some of these
characters.

& Note: For variables such as {Exit} and {CaseSensitive} that can be either “true” or
“false,” the variable is considered true if it is set to anything other than zero or the null
string (a string of length zero). The variable is considered false if it is set to zero, null,
or undefined. The best way to set one of these variables is like this:

Set Exit 1 # turn {exit} on
Set Exit 0 # turn {exit} off

(These values also apply to expressions that retumn a Boolean value, defined later in
this chapter under “Structured Commands.”)

Predefined variables

Table 5-2 lists the variables defined by the MPW Shell. These variables provide the
status value retumed by the last command as well as the pathnames of several files
and directories.

A Important Since the variables listed in Table 5-2 are predefined or defined
dynamically by the Shell, you should not modify the values of these
variables. a

134 MPW 3.0 Reference

= Table 5-2 Variables defined by the Shell

Variable Description

{Active} Full pathname of the current active window.

{Aliases} A list of all defined aliases, with each name separated by a comma.
The list contains only the names, not the definitions. Commando
uses this variable with the built-in commands Alias and Unalias.
Commando needs this variable to know the names of existing
variables. {Aliases} must be exported.

{Boot} Volume name of the boot disk.

{Command} Full pathname of the last command executed. (For built-in
commands, this is the name of the command.)

{ShellDirectory} Full pathname of the directory that contains the MPW Shell.

{Status} Result of the last command executed. (A value of 0 means successful
completion. Any other value is an error code: Typically, 1 means an
error in parameters, and 2 means that the command failed.)

{SystemFolder} ;‘ull pathname of the directory that contains the System and Finder

iles.

{Target} Full pathname of the target window. The target window is the second
window from the top; by default, this is the window where editing
commands (such as cut, copy, and paste) take effect.

{Windows} Contains a list of the current windows, with each name separated by
a comma. Commando uses this list to allow redirection of output or
input to or from existing windows. Commando needs this variable to
know the names of the current windows. {Windows} must be
exported.

{Worksheet} Full pathname of the Worksheet window.

Variables defined in the Startup file

Table 5-3 lists the variables defined in the Startup file (described in the “Special Scripts”
section earlier in this chapter). These variables define pathnames and default settings to
the Shell and are referenced by the Shell and by some of the MPW tools. You can change
any of these definitions to suit your preferences.

Hierarchical file system (HFS) pathname conventions are described in Chapter 4.

CHAPTER 5 Using the Command Language

135

n Table 5-3 Variables defined in the Startup file

Variable Description

Variables referenced by the command interpreter

{Commando} This variable tells the Shell which command to execute when the
ellipsis character (Option-semicolon) is present anywhere in a
command line. The Startup file sets this variable to “Commando.” The
{Commando} variable allows the development of similar tools whose
output is to be executed by the Shell. If the variable is not set, then
the ellipsis character is removed from the command line and normal
execution proceeds. {Commando} must be exported if scripts are to
use Commando.

{MPW} The volume or folder containing the Macintosh Programmer’s
Workshop. Initially set to the directory containing the MPW Shell. If
you put the MPW Shell on your desktop, modify the value of {MPW}
in the Startup file.

{Commands} A list of the directories that the Shell searches when looking for a
command to execute. Directories in the list are separated by
commas. A single colon indicates the default directory. {Commands}
is initially set to
:, {MPW}Tools:, {MPW}Scripts:

—that is, the current directory; then HD:MPW:Tools, then
HD:MPW:Scripts, and then HD:MPW:Applications (assuming that
{MPW} is set to HD:MPW":).

{Echo} When {Echo} is set to a nonzero value, commands are written to
diagnostic output after aliasing, variable substitution, command
substitution, and filename generation, and just prior to execution.
This capability is useful for watching the progress of a script and for
debugging scripts. As the first line of your file, include the line

Set Echo 1
{Echo} is initially set to 0.

{Exit} When {Exit} is set to a nonzero value, scripts terminate whenever a
command retums a nonzero status. This nonzero status is returned as
the status value of the script. (See the {Status} variable in Table 5-2.)
{Exit} is initially set to 1.

{Test} When {Test} is set to a nonzero value, the command interpreter
executes built-in commands and scripts, but not tools or
applications. {Test} is useful for checking the control flow in
command files. (It's most useful if {Echo} is also nonzero.) {Test} is
initially set to 0.

(Continued)

136 MPW 3.0 Reference

= Table 53 (Continued) Variables defined in the Startup file

Variable

Description

Variables referenced by the editor

{AutoIndent}

{CaseSensitive}

{Font}

{FontSize}
{PrintOptions}

{SearchBackward}

{SearchType}

{SearchWrap}

{Tab}

Specifies the setting for automatic indenting. The default setting for
a new window is 1. If {AutoIndent} is set to any value greater than 0,
automatic indenting occurs.

Any nonzero value specifies case-sensitive pattern matching.
{CaseSensitive} is initially set to 0 (that is, false). You can also set
{CaseSensitive} from the Find and Replace dialog boxes, by clicking
the Case Sensitive button. (See “Find Menu” in Chapter 3.)

Specifies the font for a new window. Its predefined value is
“Monaco.”

Specifies the font size for a new window. It is preset to 9.

Options used by the Print Window and Print Selection menu items.
They are initially set to -h. (The -h option prints pages with headers.
For more information on possible print options, see the Print
command in PartII.)

If set to any nonzero value, searching will proceed backward. This
variable can be used to set up the default environment so that you
can access the backward search option. The default value is 0. You
can also set {SearchBackward} from the Find and Replace dialog
boxes by clicking the Search Backward button. (See “Find Menu” in
Chapter 3.)

Use this variable to set up the default environment so you can access
selective search options. If {SearchType} is set to 0, the search will
find the literal character string specified. If it is set to 1, only words
will be searched. If set to 2, regular expressions will be searched. The
default value is 0. You can also set {SearchType} from the Find and
Replace dialog boxes by clicking one of the Literal, Word, or
Selection Expression buttons. (See “Find Menu” in Chapter 3.)

Use this variable to set up the default environment for wrap-around
searching. If set to any nonzero value, searching will wrap around. The
default value is 0. You can also set {SearchWrap} from the Find and
Replace dialog boxes, by clicking the Wrap Around button. (See
“Find Menu” in Chapter 3.)

Default tab setting for new windows (initially 4).

(Continued)

CHAPTER 5 Using the Command Language

= Table 5-3 (Continued) Variables defined in the Startup file

Variable

Description

Variables referenced by the editor (Continued)

{User}

{WordSet}

The name of the current user of MPW, predefined to be the same as
the user name specified in the Chooser.

The set of characters that constitute 2 word to the editor (for use
with Find and Replace menu commands, and for word selection by
double-clicking). By default, {WordSet} is set to the characters a-z,
A-Z, 0-9, and _ (underscore). If a character is not in the list, the
editing commands regard it, like a blank, as a break between words.

Pathnames for libraries and Include files

{AIncludes}

{CIncludes}

{CLibraries}

{Libraries}

{PInterfaces}

{PLibraries}

{RIncludes}

The directories to search for assembly-language Include files,
referenced by the Assembler. Initially set to

"{MPW}Interfaces:AIncludes:".

The directories to search for C Include files, referenced by the C
compiler. Initially set to

"{MPW}Interfaces:CIncludes:".

The directory that contains C library files. Initially set to
"{MPW}Libraries:CLibraries:".

The directory that contains shared library files. Initially set to
"{MPW}Libraries:Libraries:".

The directories to search for Pascal interface files, referenced by the
Pascal compiler. Initially set to.

"{MPW}Interfaces:PInterfaces:"
The directory that contains Pascal library files. Initially set to
"{MPW}Interfaces:PLibraries:".

The directory that contains Resource compiler (Rez) Include files.
Initially set to

"{MPW}Interfaces:RIncludes:™".

138 MPW 3.0 Reference

UserVariables

UserVariables is a script that lets you use Commando to create Set commands for user
variables that you may wish to include in your startup script. Paste the command line
created by Commando into your User Startup file and format it as you like. Note that the
commands are separated by semicolons. Don't forget to remove the UserVariables
command from the beginning of the command line.

The variables in the UserVariables script are divided into six groups:

Control Variables {Echo}, {Exit}, {IgnoreCmdPeriod}, and {Test}

Search Variables {SearchType}, {CaseSensitive}, {SearchBackward},
{SearchWrap}, and {WordSet}

Print Options {PrintOptions}

Window Stacking {StackOptions}

Window Tiling {TileOptions}

Window Variables {NewWindowRect}, {ZoomWindowRect}, {AutoIndent},
{Font}, {FontSize}, and {Tab}

These variables are described in Table 54 that follows and in Table 5-3 in the previous
section.

CHAPTER 5 Using the Command Language 139

s Table 54

User variables not defined in Startup file

Variable

Description

{DirectoryPath}

Use this variable to change directories easily. {DirectoryPath} is
searched by the Directory command when you attempt to set a
directory by using only its leafname. (See Directory in Part I.)

{IgnoreCmdPeriod} This variable tells scripts to ignore Command-Period. This is useful

for critical sections of a script. If this variable is set to a nonzero
number, Command-Period is ignored. Tools that run in the scope that
has {IgnoreCmdPeriod} defined will also ignore Command-Period.
This overrides any signal handler defined in the tool itself.
{IgnoreCmdPeriod} is undefined at startup.

A Important If {IgnoreCmdPeriod} is set, the only way to
prematurely stop execution is to reboot. &

{NewWindowRect} Specifies the window size when a new window is created. The value

of this variable is the four coordinates of a rectangle, listed in this
order: top, left, bottom, right. The defined rectangle must be visible
on the Macintosh screen. If the rectangle specified is not totally
visible it is clipped to the edges of the screen. The coordiates (0,0)
are at the left side of the screen at the bottom of the menu bar. For
example, to create all new windows in the top left corner of the screen
400 pixels wide and 200 pixels high, use the following command:

Set NewWindowRect 0,0,400,200

{StackOptions} Options used by the Stack Windows menu command. Use this
variable to specify your own preferences. (See “Window Menu” in
Chapter 3.)

{TileOptions} Options used by the Tile Windows menu command. Use this variable
to specify your preferences. (See “Window Menu” in Chapter 3.)

{ZoomWindowRect}

Specifies the size of a window when it is zoomed to full screen size.
The value of this variable is the four coordinates of a rectangle, listed
in this order: top, left, bottom, right. The defined rectangle must be
visible on the Macintosh screen. If the rectangle specified is not
totally visible, it is clipped to the edges of the screen. The
coordinates (0,0) are at the left side of the screen at the bottom of
the menu bar.

140 MPW 3.0 Reference

Parameters to scripts

When a script is executed, the values of certain Shell variables are set automatically. These
variables are explained in Table 5-5.

= Table 5-5 Parameters to scripts

Variable Description

{0} Name of the currently executing script.

{1}, {2},...{n} First, second, and nth parameter passed to the current script.
(These values are null for commands entered interactively.)

{#) Number of parameters (excluding the command name).

{Parameters} Equivalentto {1} {2} ...{m}.

{"Parameters"} Equivalentto " {1} " {2} " ..."{n} . This form should be
used if the parameters could contain blanks or other special
characters.

The {Parameters} variable is especially useful when the number of parameters is unknown.
The quoted forms, such as "{1}" or {"Parameters"}, are usually preferable to the unquoted
forms because, after variable substitution, {1}, {2}, and so on could contain blanks or other
special characters. For example, consider the Line script (which is useful with error
messages, as explained earlier in this chapter under “Executable Error Messages™):

Find "{1}" "{Target}" # Find line n in the target window.

Open "{Target}"™ # Make the target window the active @
(top) window.

This script takes one parameter, a line number. Parameter {1} is quoted to handle the case
where Line is called without any parameters. In this case the value of {1} is the null string,
and without the quotes the {1} would completely disappear, leaving the name of the target
window as the only parameter to Find. The quotation marks ensure that at least a null
string is sent to Find as its first parameter—this is essential, because the window name
must be the second parameter. Also notice that the {Target} variable is quoted, because it
is a filename that might contain blanks or other special characters. (For more information
on quoting rules, see “Quoting Special Characters” later in this chapter.)

CHAPTER 5 Using the Command Language

141

Defining and redefining variables

The following commands are used to define and modify variables:

Set name value
Set name
Set

Unset name
Unset

A Warning

Assigns the string value to variable name.
Writes the value of variable name to standard output.

Writes a list of all variables and their values to standard
output.

Removes the definition of variable name.

Removes the definition of 4ll variables in the current scope.
(For an explanation of the scope of a variable, see the next
section.)

Removing all variables in the outermost scope can have serious
consequences. For example, the Shell uses the variable {Commands} to
locate MPW tools and other commands. The assembler and compilers
use other variables to help locate Include files. Some variables, such as
{Boot}, cannot be reinitialized without restarting MPW. a

Defining a variable and making it available for use by scripts and programs involves two

separate steps:

1. You can define a variable with the Set command. Note that variables are local to the
script in which they are defined—a variable definition ceases to exist when its
command file terminates.

2. You can pass a variable to scripts and tools with the Export command. After you
export a variable, nested scripts can reference that variable and may override its value
locally—but any redefinition is strictly local and terminates when the script
terminates. It's impossible to affect the value of a variable in an enclosing script. (See

Figure 5-1)

Exporting variables

The Export command makes variables available to scripts and tools:

Export name...
Export

Unexport name...
Unexport

Exports the named variables.

Writes the list of exported variables to standard output.
Removes specified variables from the list of exported variables.
Writes the list of unexported variables to standard output.

142 MPW 3.0 Reference

You can define a variable globally by setting its value in the Startup file and exporting it.
Figure 5-1 illustrates how Export works.

s Figure 5-1 Trafficking in variables

UserStartup File
Set var X
Export var

(var) = 'X'
ACommandFile

ACommandFile
Set Var Y

Export var

Set local Z
AnotherCommandFile

AnotherCommandFile
(local) is undefined

(var) =Y

Set var Z

(var) = 'Z
(var) =Y’

(local) = 'Z

(var) = 'X

¢ Note: You can use the Execute command to execute a script without creating a new
scope for variables, exports, and aliases. The Shell “executes” the Startup, Suspend,
Resume, and Quit scripts, and Startup uses Execute to run the UserStartup script. For
more details about Execute, see PartII.

CHAPTER 5 Using the Command Language

143

Command substitution

Command substitution causes a2 command to be replaced by its output. You can specify
command substitution by enclosing one or more commands in backquotes (°..."). The
backquote key is located at the upper-left comer of the original Macintosh keyboard; it
is located near the space bar of the newer keyboards. When the command is executed, the
standard output of the enclosed commands replaces the "...". Command substitution can
form part of 2 word, a complete word, or several words. Command substitution is not
done within “hard” quotation marks (that is, the standard single quotation marks *...*).

& Note: If the standard output of the enclosed commands contains return characters, the
retumns are replaced by blanks. If the output ends with a return, this return is
discarded.

For example, the command

Echo The date is ‘Date’

echoes the parameters, replacing the Date command with its output, as follows:

The date is Wednesday, October 22, 1987 10:40:00 PM

The following example duplicates the files whose names are output by the Files command:
Duplicate ‘Files -t MPST MyDisk:' "{MPW}Tools"

The command line

‘Files -t MPST MyDisk:"

is replaced with a string of filenames of type MpsT (that is, MPW tools) before the
Duplicate command is executed; these files are then copied to the folder {MPW}Tools.
This command is useful because the Files command allows you to specify files with a
certain type or creator, something you can’t do with wildcard operators.

144 MPW 3.0 Reference

Filename generation

After variables have been substituted, an unquoted word that contains any of the

characters
? = [* + «

is considered a filename pattern. The word is replaced with an alphabetically sorted list of
filenames that match the pattemn. An error is returned if no filename is found that matches
the pattern.

You can specify a group of file- (or window-) names with the “wildcard” notation given in
Table 5-6.

s Table 56 Filename generation operators

Variable Description

? Matches any single character (except a colon).

= Matches any string of zero or more characters (except a colon).
[characterlList] Matches any character in the list.

(= characterList] ~ Matches any character not in the list.

* 0 or more repetitions of the preceding character or character list (?* is
the same as =).
+ 1 or more repetitions of the preceding character or character list.

«number of repetitions»
Specifies number of repetitions of the preceding character or
character list.

The pathname separator (;) must appear explicitly in the pattern because the : character
will never be substituted for ?, =, or [...].

¢ Note: Pattern matching is not case sensitive.

CHAPTER 5 Using the Command Language

145

These special characters are the same regular expression operators used in editing
commands. For a complete discussion of regular expressions, see Chapter 6.

Naturally, you need to be careful with these wildcard operators. The Parameters and Echo
commands are very useful for double-checking which filenames a command will generate.
For example, before giving the command

Delete =.c.0
you might want to run the command

Parameters =.c.0

This command lists your “.c.0” files to standard output so that you can make sure you
really want to delete them all.

& Note: Wildcard characters only generate names that match existing filenames; they do
not create new files. For example, the following attempt to rename files will not work:

Rename =.obj =.0

An example of how to perform a wildcard rename can be found under the description
of the Rename command in Part II.

Quoting special characters

There are numerous characters that have special meanings to the MPW Shell. Normally, the
Shell performs the action indicated by the special character—but you can disable a
character’s special meaning (that is, include it as a literal character) by quoting it. You
commonly need quotes when specifying filenames that contain blanks or other special
characters or when searching for the literal occurrence of a special character. See also
“Pattern Matching” in Chapter 6.

Table 5-7 lists all of the special symbols recognized by the Shell.

146 MPW 3.0 Reference

= Table 5-7 Special characters and words

Character Meaning Where described
Space Separates words “Structure of a Command”
Tab Separates words
Return Separates commands “Structure of a Command”
; Separates commands Table 5-1
| Separates commands, piping output to input
&& Separates commands, executing the second
if the first succeeds
Il Separates commands, executing the second
if the first fails
¢.) Command grouping; grouping in filename
generation
Invokes Commando “Invoking Commando”
& Note: This ellipsis character is an Option-semicolon key command, not
three periods.
Comments “Structure of a Command”
) Escape character: quotes the In this section (Table 5-8)
subsequent character
vt Quotes all special characters
n.n Quotes all special characters, except 9, {, and °
/... Quotes all special characters, except 9, {, and
A Quotes all special characters, except 9, {, and
{...} Variable substitution “Variables”
S Command substitution “Command Substitution”
? Matches a single character in filename “Filename Generation”
generation. In this chapter
= Matches any string in filename generation “Pattern Matching” in
Chapter 6
L. Character list in filename generation
* Zero or more repetitions in
filename generation
+ One or more repetitions in filename

« »

generation
Specified number of repetitions in filename
generation

(Continued)

CHAPTER 5 Using the Command Language

147

s Table 5-7 (Continued) Special characters and words

Character Meaning Where described

< Input file specification “Redirecting Input and Output”
> Output file specification Table 5-12

>> Output file specification (append)

> Diagnostic file specification

22 Diagnostic file specification (append)

)Y Output file and diagnostic file specification

P Output file and diagnostic file specification (append)

You can literalize a character by preceding it with the Shell escape character, @ (Option-
D), or by including it within the quotation symbols '...", "...", /.../, or \...\. The escape
character, 9, quotes a single character only; the other quotation symbols may be used to
quote part or all of a word. These symbols are described in Table 5-8.

s Table58 Quotes

Quote Description

L “Hard quotation marks™: Take the enclosed string literally—no
substitutions occur. The quotation marks are removed before
execution.

"L “Soft quotation marks”: Take the enclosed string literally. dc, variable
substitutions, and command substitutions occur. The quotation marks
are removed before execution.

/.../or\...\ Regular expression quotation characters: Normally used to enclose
regular expressions. Take the entire string literally, including the
quotation characters—the / or \ characters are not removed. Variable
substitutions and command substitutions occur. '...", "...", and d have
their usual meanings—however, they are not removed.

Single quotation marks, double quotation marks, and 0 are removed before parameters
are passed to programs (unless they are themselves enclosed in quotation marks). For
example, here are two ways you might define an AddMenu that compiles a C program in an
active window:

Wrong: AddMenu Extras "C Compile™ C "{Active}"
Right: AddMenu Extras "C Compile" 'C "{Active}™'

148 MPW 3.0 Reference

The first example won’t work because the {Active} variable will be expanded when the
menu is added (it should be expanded when the menu item is executed). The second
example is correct—when the AddMenu command is executed, the single quotation marks
defeat variable expansion; they are then stripped off before the item is actually added.
The double quotation marks remain in case the pathname of the active window happens
to contain any special characters.

& Note: When quoting spaces (as in filenames), you'll usually use double quotation marks
(soft quotes) to permit variable and command substitution.

Slashes (or backslashes) are used to pass regular expressions as parameters to commands,
without filename expansion occurring. For example,

Search /proc=/ Sample.p
This command searches the file Sample.p for any string beginning with the characters

“proc”. (See “Pattern Matching” in Chapter 6 and the description of the Search command
in Part11.)

CHAPTER 5 Using the Command Language

149

s Table 5-9 Special escape conventions

Symbol Escape convention

ac Escape character: Take the single character c literally. The four escape
conventions that follow are exceptions to this rule.

JReturn oReturn is discarded, allowing you to continue a command onto the
next line.

on Inserts a return character.

ot Inserts a tab character.

of Inserts a form feed character.

How commands are interpreted

When you send text to MPW's command interpreter (by pressing the Enter key or the

equ
1.
2.

150

ivalent), the following sequence of steps is performed:

Alias substitution.

Evaluation of control constructs. (This means that control constructs can’t be
produced by command substitution but can have aliases.)

Variable substitution, command substitution. All variables (unquoted or quoted with
.M/, or\ L\) are replaced with their value. All commands enclosed in °..."
(unquoted or quoted with "...", /.../, or \...\) are replaced with their output. If the

ellipsis character (Option-semicolon) is found, Commando is executed and the
command is replaced by the output of Commando.

Blank interpretation. After variables and commands have been substituted, the
command text is divided into individual words separated by blanks. A blank is an
unquoted space or tab.
& Note: The following symbols are normally considered separate words, whether or
not they are set off by blanks:
; | Il && () < > > 0 > >

Within expressions (used with If and Evaluate), all operators are considered
separate words, unless they are quoted. See “Structured Commands” in
this chapter.

MPW 3.0 Reference

5. Filename generation. A word that contains any of these unquoted characters
? = [* + «
after variable substitution is considered a filename pattern. The word is replaced with
an alphabetically sorted list of the filenames that match the pattem. (If no filename is
found that matches the pattern, an error results.)

6. Input/output redirection. Because this step is performed last, variable substitution,
command substitution, and filename generation can all be used to form the filenames
used in I/O redirection.

7. Execution.

You can suppress any part of this process by using quotation symbols as described in the
previous section. Remaining single and double quotation marks are removed prior to
execution.

CHAPTER 5 Using the Command Language

151

2

What went wrong?

If you ever wonder why a command line doesn’t work, refer back to this section
to study the order of command interpretation. You may use the {Echo} variable to
examine how the Shell is interpreting your command. Use the command

Set Echo 1

With {Echo} defined, the command lines will be echoed to standard output after
they are interpreted by the Shell.

The command Parameters is also useful for finding out which parameters will be
passed to the command. Parameters writes its parameters to standard output.
This command is especially handy when you want to experiment with quoting. For
example, try the following commands:

Parameters =
parameters will be all the files in current directory
Parameters "="
parameter will be the = character
Parameters "{Commands}"
Enclosed in soft quotation marks, the
variable will be expanded
Parameters '{Commands}"'
Enclosed in hard quotation marks, the parameter
will be the string {Commands}
Parameters “date’
the output of date will be passed as multiple
parameters
Parameters "‘date'™
the output of date will be passed as one parameter

152

MPW 3.0 Reference

Structured commands

Structured commands (listed in Table 5-10) override the normal sequential execution of
commands. They can be used interactively and within scripts. They may be nested to any
depth, subject to a limitation on stack space. The entire structured command is read
before execution begins. All structured commands are built into the MPW Shell.

A Warning After the Shell “executes” an opening parenthesis or the opening word
of a Begin, If, For, or Loop command, it will not execute any
subsequent commands until a matching closing parenthesis or End
word is encountered. While it is waiting for the end of the command,
the status panel of the Worksheet window will contain the left
parenthesis character, (, or the command name. You can abort the
entire structured command by typing Command-period. a

The status value for a structured command is the status of the last command executed
within the structured command (except for the Exit command, which lets you set your
own status value).

Expressions (used in If, Break, Continue, and Exit) are defined later in this chapter.

CHAPTER 5 Using the Command Language 153

= Table 510

Structured commands

Command

Description

(command...)

Begin...End

If...Else...End

For...End

Loop...End

Break

Parentheses are used to group commands for conditional execution,
pipe specifications, and input/output specifications.

Begin
command...
End

Like parentheses, Begin and End group commands for conditional
execution, pipe specifications, and input/output specifications.

If expression
command...

[Else 1f expression
command...] ...

[Else
command... |

End

The command If...Else...End executes the commands following the
first expression whose value is true (that is, nonzero and non-null). At
most one of the lists of commands is executed. If none of the
commands is executed, If retums a status value of 0.

For name In word...
command...
End

The command For...End executes the enclosed commands once for
each word from the “In word...” list. For each iteration, a variable of
the form { name} represents the current value from the word... list.

Loop
command...
End

This command repeatedly executes the enclosed commands. The
Break command is used to terminate the loop.

Break [If expression]

The command Break terminates execution of the immediately
enclosing For or Loop. If the expression is present, the loop is
terminated only if the expression evaluates to true (nonzero and non-

null).
(Continued)

154 MPW 3.0 Reference

= Table 5-10 (Continued) Structured commands

Command Description

Continue Continue [If expression]

The command Continue terminates this iteration of the immediately
enclosing For or Loop and continues with the next iteration. If the
expression is present, the Continue is executed only if the
expression evaluates to true (nonzero and non-null).

Exit Exit [number] [1£ expression]

The command Exit terminates execution of the script in which it
appears. If number is present, it is returned as the status value of the
script; otherwise, the status of the last command executed is
returned. If the expression is present, the script is terminated only if
the expression evaluates to true (nonzero and non-null). (You can also
use Exit interactively to terminate execution of all previously entered
commands.)

The return characters in the command definitions above are significant; a return must
appear at the end of each line, as shown above, or it must be replaced by a semicolon (;).

The following keywords are recognized when they appear unquoted as the first word of a
command:
Begin For If Else Loop End Break Continue Exit

The keyword “In” is recognized when it appears unquoted following For; the keyword “If”
is recognized when unquoted following Else, Break, Continue, and Exit. These keywords
are not considered special in other contexts and need not be quoted.

& Note: These keywords cannot be produced as a result of variable substitution or
command substitution.

You can apply conditional execution (&& and | 1), pipe specifications (1), and
input/output specifications (<, >, >>, 2, 22, ¥, and YY) to entire structured
commands (that is, to Begin...End, If...Else...End, For...End, and Loop...End, and to
commands within parentheses).

CHAPTER 5 Using the Command Language

155

The operator should appear following the End or closing parenthesis. For example, you can
collect the output of a series of commands and redirect it as follows:
Begin

Echo Good day

Echo Sunshine
End > OutputFile

Input/output specifications are discussed later in this chapter. Each of the structured
commands is described in detail in Part II.

Control loops

The For and Loop commands are used for looping.

The For...End command executes the enclosed commands once for each word in the “In
word...” list. The current word is assigned to variable name, so you can reference the
current word by using the Shell variable notation {name}. For example,
For File In =.cC

C "{File]}"™ ; Echo "{File}" compiled.
End
The Loop command provides unconditional looping, so you'll need to use the Break or
Exit commands to terminate the loop. You can use the Continue command to continue
with the next iteration.

For example, the script below runs a command several times, once for each parameter:

Repeat - Repeat a command for several parameters
#
Repeat command parameter..

list. Options can be specified by including them in

¥
#
Repeat command once for each parameter in the parameter
#
quotes with the command name.

#
Set cmd "{1}"
Loop

Shift

Break If {#} == 0

{cmd} "{1}"
End
In this example, the Shift command (explained in the next section) is used to step through
the parameters, and the Break command ends the loop when all the parameters have been
used. Using the script Repeat, you could compile several C programs, with progress
information, using the command

Repeat 'C -p' Sample.c Count.c Memory.c

156 MPW 3.0 Reference

Processing command parameters

In addition to the commands introduced in Table 5-10, there are several other commands
that are highly useful in scripts. You can use the following commands to display or modify
parameters:

Echo [parameters...] Writes its parameters, separated by blanks and
terminated by a return, to standard output.

Parameters [parameters...] Writes its parameters, including its name, to
standard output. One parameter is written per
line, preceded by the parameter number in
braces and a space. A return is written following
the last parameter.

For example:

Parameters 1 2 "3a 3b"
will output

{0} parameters

{1} 1

{2} 2

{3} 3a 3b

Shift [number] Renames the parameters by subtracting number
from the parameter number; that is, parameters
number +1, number +2, and so on are renamed
1, 2, and so on. If number is not specified, the
default value is 1. The variables {1}, {2}...{n}, {#},
{Parameters}, and {"Parameters"} are all
affected. Shift does not affect parameter {0}
(the command name).

See the Hints box “What Went Wrong?” in the previous section, “How Commands Are
Interpreted,” for some suggestions on using Echo and Parameters to troubleshoot
reluctant command lines. For an example of how the various structured commands can
work together, see “Sample Scripts” at the end of this chapter.

Expressions

Expressions are used in the If, Bréak, Continue, and Exit commands. They’re also used in
the Evaluate command, which returns the result of an expression.

Table 5-11 lists the expression operators in order of decreasing precedence. Some
operators have more than one representation; these equivalent symbols are listed on a
single line. Groupings indicate operators of the same order of precedence.

CHAPTER 5 Using the Command Language

157

= Table511 Expression operators in order of decreasing precedence

Operator ‘ Opcration
1. (expn) Expression grouping
2. - Unary negation

~ Bitwise negation
! NoT — Logical NOT

3. * Multiplication
- DIV Division
% MOD Modulus division
4. + Addition
Subtraction
5. << Shift left
>> Shift right
6. < Less than
= < Less than or equal to
> Greater than
>= > Greater than or equal to
7. = Equal
1= <> # Not equal
= Equal pattern (regular
expression)
1~ Not equal pattern
(regular expression)
8. & Bitwise AND
9. » Bitwise XOR
10. | Bitwise OR
11. && aND Logical AND
12. 11 or Logical OR

All operators group from left to right. You can use parentheses to override the operator
precedence. Null or missing operands are interpreted as zero. The result of an expression is
always a string representing a decimal number. Relational operators return the value 1 when
the relation is true and the value 0 when the relation is false.

158 MPW 3.0 Reference

Logical operators: The logical operators !, NOT, =, &&, AND, | |, and OR interpret
operands of value 0 or null as false; and they interpret nonzero, non-null operands as true.
Numbers may be

s decimal

s hexadecimal, beginning with either $ or 0x

= octal, beginning with zero

s binary, beginning with Ob

Every expression is computed as a 32-bit signed value. Overflows are ignored.

String operators: The operators ==, !=, =~ and !~ compare their operands as strings. All
others operate on numbers.

& Note: The {CaseSensitive} variable does not apply to the string operators.

Comparing text patterns: The =~ (equal pattern) and !~ (not-equal pattern) operators
are like == and != (which compare two strings), except that =~ and !~ are used for
comparing a string with a text pattern. The right side is a regular expression against which
the left-side operand is matched. For example:
If "{1}" !~ /=.[acp]/

Echo Filename must end with .a, ¢, or .p
End

@ Note: The regular expression in the above example must be enclosed in the regular
expression quotation symbols, /.../. See Chapter 6 for more information about regular
expression syntax.

If the regular expression contains the tagging operator ®, then, as a side effect of
evaluating the expression, Shell variables of the form {®n} containing the matched
substrings are created for each tag operator in the expression. (For an example, see the
implementation of a wildcard rename command under the description of the Rename
command in Part IL.)

CHAPTER 5 Using the Command Language

159

Use of special characters: Within expressions in the If, Break, Continue, Exit, and
Evaluate commands, the following Shell operations are disabled:

= Filename generation

s Conditional execution (|| and &&)

s Pipe specifications (1)

= Input/output specifications (>, >>, 2, 2>, <, ¥, and 3.3)

This allows the use of many expression operators that would otherwise have to be quoted.
In the case of If commands, the conditional execution or I/O specification should come
after the End word. For other commands that contain expressions, you can specify

conditional execution or I/O redirection by enclosing the command in parentheses. For
example,

(Evaluate {1} + {2}) 2 Errors

Redirecting input and output

All built-in commands, scripts, and tools are provided with three open files: standard
input, standard output, and diagnostic output (Figure 5-2). By default, standard input
comes from the console (the window where the command is executed). Standard output
and diagnostics are returned to the console immediately following the command.

160 MPW 3.0 Reference

s Figure 5-2 Standard input and output
Standard
output
>,>> ﬂ
Standard

input

L < Resource Compiler
— DN

z,zz\

Diagnostic
output

You can override these default assignments with the <, >, >>, 2, 22> ¥ and 33
symbols described in Table 5-12. Note that input and output specifications are
interpreted by the Shell; they are not passed to commands as parameters. You can use
parentheses (or the Begin and End commands) to group commands for input/output

specifications.

s Table 512 1/O redirection

Symbol Override operation

< name Standard input is taken from name.

> name Standard output replaces the contents of name. The file name is created
if it doesn't exist.

>> name Standard output is appended to name. The file name is created if it
doesn’t exist.

> name Diagnostic output replaces the contents of name. The file name is
created if it doesn't exist.

>> name Diagnostic output is appended to name. The file name is created if it
doesn’t exist.

2 name Standard output and diagnostic output replace the contents of name.
The file name is created if it doesn’t exist.

23 name Standard output and diagnostic output are appended to name. The file

name is created if it doesn'’t exist.

CHAPTER 5 Using the Command Language

161

Files and windows are treated identically; when given a name, the system looks first for an
open window. Input and output can also be applied to selections:

= § indicates the current selection (in the target window).

s name.§ indicates the current selection in window name.

From the point of view of a command running within the Shell environment, input always
comes from the standard input file and output goes to the standard output file. The

command doesn’t need to know whether standard input happens to be text from a file, a
window, or a selection, or is typed in from the keyboard. For example, in the statement

Program > OutputFile

the string “> OutputFile” is interpreted by the Shell and is not passed as a parameter to the
command—this process is completely invisible to the command.

I/0 specifications also apply to scripts. The standard input, standard output, and
diagnostic output files provided to a script become the defaults for commands in the
script.

In addition to the sections later in this chapter, you’ll find more on input and output in
“Standard I/O Channels” in Chapter 12.

Standard input

By default, standard input is supplied by typing text and pressing Enter, or by selecting
text that is already on the screen and pressing Enter. You can redirect standard input with
the < operator. Note, however, that most commands that read standard input also accept
a filename parameter. For example, the following two commands have the same result:

Catenate < Sample.c
Catenate Sample.c

The Alert command reads from standard input if no message is supplied as a parameter to
the command, but Alert doesn’t accept filenames as parameters. Thus input redirection is
the only way to cause Alert to read input from a file.

Alert Errors # Display Alert box containing the word Errors
Alert < Errors # Display Alert box containing the contents

of the file Errors.
Many commands, including the Assembler and compilers, optionally read standard input
to allow input to be read from a pipe (1) or entered interactively, as explained in the next
section.

162 MPW 3.0 Reference

Terminating input with Command-Enter

Many commands read from standard input if no filename is specified. For example, if you
execute the command '

Asm

the Assembler will begin reading from standard input—that is, you can enter text to
standard input, and the Assembler will process each line as you enter it.

You can repeatedly enter text to a program that reads standard input by typing or
selecting text and pressing Enter. You indicate end-of-file by holding down the Command
key and pressing Enter (or Command-Shift-Return). For example, after you execute the
command

Catenate >> {Worksheet}

the Catenate command will be running (its name will appear on the status panel at the
bottom of the window). You can now enter data from the keyboard or select and enter
text from various windows, and all of it will be concatenated to the Worksheet window.
Pressing Command-Enter indicates end-of-file and terminates the command.

& Power techniques using standard input

There are many ways you can save time and effort by running tools from
standard input.

For example: Suppose you want to compose a file from parts of other files—and
there are ten sections that you want to use in your new file. Normally you’'d
cut and paste ten times. However, you could also run Catenate from standard
input with the command

Catenate >> MyComposedFile

While Catenate is running, you can open the different source files, select the
desired sections, and press Enter. Each time you press Enter, that selection is
appended to the file MyComposedFile. When you have finished, press
Command-Enter.

Many times it’s convenient to quickly type a few lines of code in the
Worksheet and then interactively compile (or Rez, using the resource
compiler) those lines to test out syntax or examine compiler behavior. You'll
find that you can speed up many tasks and increase confidence with quick
tests by running tools interactively and using selections as input. e

CHAPTER 5 Using the Command Language

163

Standard output

By default, standard output appears in the window in which the command was executed
(that is, the console) immediately following the command. When commands are executed
from menus, standard output appears following the selection in the active window. You
can redirect standard output with the > and >> operators. For example, the Catenate
command

Catenate Filel File2 > CombinedFile

concatenates File2 to Filel—but instead of appearing in the active window, output is
sent to the file named CombinedFile. If the window CombinedFile is open on the
desktop, its contents are overwritten. Otherwise, the file CombinedFile is replaced (or
created if it doesn't exist).

The >> operator appends standard output to the end of a selection, window, or file. If
the named file doesn't exist, a new file is created. For example,

Catenate § >> AFile

appends the contents of the current selection in the target window to AFile. (If the

command was entered in the active window, the current selection is the selection in the
target window.) You can also specify a selection in a2 named window:

Catenate Sample.c.§ >> AFile

Diagnostic output

By default, a command’s diagnostic output also appears immediately after the command,
interleaved with standard output. The diagnostic output of commands executed from
menus appears following the selection in the active window. You can redirect diagnostic
output exactly as you redirect standard output, except that you use the operators = (to
replace filename) and 2> (to append to filename) in place of > and >>. You may find it
useful to have all error reporting appear in a separate window set aside for that task. For
example, in Figure 5-3, the Assembler has been run and error and progress information has
been appended to a window called “Errors.”

164 MPW 3.0 Reference

s Figure 53 Redirecting diagnostic output

]

File Edit Find Mark Window Project BDirectory Build
HD:MPLW:Worksheet SR

= — :MPw:Euamples:ﬁEunmples:irrors

...including HD:MPH: Interfaces:RIncliudes:QuickEqu.a
...continuing with sampie.a
...including HO:MPH: Interfaces:RIncludes:SysEqu.a
...continuing with sasple.a
QU I CKDRAW
GLOBALDATA
SETUPHENUS
SHONABOUTMED | ALOG
DOCOMMAND
SAMPLE

Elapsed time: 17.3506 seconds.

fAssenbly compiete — no errors found. 4719 lines.

Often it is useful to redirect both standard output and diagnostic output to the same file,
using the summation operators 3, (to replace filename) or 33 (to append to filename).
The example used in Figure 5-3 might then be written in the Worksheet like this:

Asm -a Sample.a XY SampleTest

Then both the output of Sample.a and its diagnostics, including any errors, would be
appended to a file named HD:MPW:AExamples:SampleTest.

Pseudo-filenames

Pseudo-filenames are a set of device names that you can use in place of filenames;
however, they have no disk files associated with them. Any command can open a pseudo-
filename as a file. These device names are most commonly used for I/O redirection.

Table 5-13 shows the available pseudo-filenames.

CHAPTER 5 Using the Command Language 165

s Table 513 Pseudo-filenames

Pscudo-filename Description

Dev:Console Always refers to the current console device. The console is the default
source of input and the default destination of output—that is, the
active window where a command is entered and its output displayed.

Dev:Null Null device. If you read from Dev:Null, it immediately returns end-of-
file. If you write to Dev:Null, output is thrown away.

Dev:StdIn Standard input.

Dev:StdOut Standard output.

Dev:StdErr Diagnostic output.

Pseudo-filenames are especially useful inside a script if you want to do something like
sending standard output to the diagnostic output of the script. Here are some examples:

Echo "An error message." >> Dev:StdErr
Echo "HELP !™ >> Dev:Console

Dev:Null is useful in scripts when you want to throw away diagnostic output. For example:
Eject 1 2 Dev:Null

This command ejects the disk in drive 1; if no disk is in drive 1, the script continues to run
silently. (Note that you would also need to set {Exit} to 0—see “Variables” earlier in this
chapter.)

Editing with the command language

Almost all menu commands have equivalents in the command language. In most respects,
there is no difference between the menu commands and their command-language
equivalents. The primary difference is that with the command language, you enter
commands in the active (frontmost) window, while an editing command acts on a
selection in another window. You can explicitly name a window as a parameter to the
command. If you don't specify a window, the command acts on the target window.

166 MPW 3.0 Reference

For example, to use command-language techniques to edit the file Sample.a, you must
first open that file, and then click on another window, such as the Worksheet window, to
make it the active window. You enter your commands in the active window, as shown in
Figure 54. When you select text in the active window, it's highlighted in the normal
Macintosh fashion. In other windows, selected text is indicated by dim highlighting
(outlining), as shown in the target window in Figure 5-4.

= Figure 54 Text highlighted in the active and target windows

& File Edit Find Mark Window Project Directory Build

=== H):MPW:Worksheet == ———="U =5

HD:MPI:Examples:RExamples:Sample.a
SapplelD,-CA?> file

; appletermH := GethMenulapplelD);
(A?),appletlernH Leave extra copy of handle on
C(A?),~<A?) stack for _AddResMenu
-(A?) Install Rpple menu in menu bar
; Insertienulappletiern, 0);
s'DRUR’,-CA?> RAdd DA names to Rpple menu

; RAddResMenu(applelterndd, ‘DRUR®)D;

%4, A7 Read File meru from resource
*filelD,-C(A? file
; fileMerwH := GetHenulfilalD);

Editing commands generally act on a selection. (The Find command simply creates a
selection—“DRVR” in this example.)

The § metacharacter (Option-6) is the current selection character. It signifies the current
selection in a2 window. For example, the following command erases from the current
selection or insertion point in the target window to the end of the window:

Clear S:eo

The infinity character, = (Option-5), is a selection operator that indicates the end of a
window, as described in Chapter 6. -For interactive editing, press Command-Delete to
clear to the end of a file.

CHAPTER 5 Using the Command Language

167

Defining your own menu commands

The AddMenu and DeleteMenu commands are for adding and deleting menu items. The
AddMenu command takes three parameters: the menu name, the item name, and the
command text. For example,

AddMenu Find 'Top of Window/U' 'Find e« "{Activel}™'

This command adds a “Top of Window” item to the Find menu, using the keyboard
equivalent Command-U. When you select the menu command, the corresponding
commands are executed. (The Top of Window item moves the insertion point to the top
of the active window.)

Invoking a user-defined menu Command is the same as entering the command text from a
window—variable substitution and command substitution are performed normally. Note,
however, that the text of the menu command is processed twice—once when the
AddMenu command itself is executed, and again whenever the menu item is executed.
This means that you have to be especially careful in your use of quotation symbols. The
mysteries of quoting are explained earlier in this chapter in “Quoting Special Characters,”
together with further AddMenu examples. You should also pay particular attention to the
section “How Commands Are Interpreted.” For further information, and more examples,
see the AddMenu command in Part II.

Sample scripts

The following examples use most of the Shell’s features to illustrate how you can extend
the MPW Shell with your own commands.

168 MPW 3.0 Reference

“AddMenuAsGroup”

The following script adds an extra feature to the AddMenu command:

AddMenuAsGroup - AddMenu, grouping user defined menu items:
#
AddMenuAsGroup [menuName [itemName [command]]]
#
AddMenuAsGroup duplicates the functionality of the AddMenu
command, adding a disabled divider before the first user-
defined menu items in the File, Edit, and Find menus.
#
Unalias
Set Exit 0
Set CaseSensitive 0
If ({#} == 3) AND ("{1}" =~ /File/ OR "{1}" =~ /Edit/ d
OR "{1}" =~ /Find/)
If ‘AddMenu "{1}"* == "©@ # If this is the first addition
in {1},
AddMenu "{1}"™ " (-" ""© # add the group divider
End

End

AddMenu {"Parameters"}

When adding menu items to the predefined menus, it's useful to add a disabled dotted
line item to separate the new menu items from the original ones. The script above
automatically adds the separator before the first new item in the File, Edit, and Find
menus, the only predefined menus that can be modified by using AddMenu. If you put this
script in a file named AddMenuAsGroup, the following alias will override the built-in
AddMenu command:

Alias AddMenu AddMenuAsGroup

CHAPTER 5 Using the Command Language

169

3 CC”

The following script extends the C command by making it possible to compile a number

of specified files:

CC - Compile a list of files with the C compiler

#

CC [options..] [file..]

#

Note that the options and the files may be intermixed, and

that all options apply to all the files. The individual C

commands are echoed to diagnostic output as they are executed.
#

Unalias

Set Exit O

Set CaseSensitive 0
Set options ""

Set files ""

Set exitStatus 0

Loop

End
For i

End

Break If {#} ==

If "{1}" =~ /-[diosul/ # options with a parameter
Set options "{options} '{1}' '{2}'"
Shift 2

Else If "{1}" =~ /[/-=/ # other options

Set options "{options} '{1}'"

Shift 1

Else

Set files "{files} ‘{1}'"

Shift 1

End

in {files}
C {options} "{i}"™ || Set exitStatus 1

Exit {exitStatus)}

170

MPW 3.0 Reference

Chapter 6 Advanced Editing

MPW’S EDITING OPERATIONS ARE AVAILABLE AS BUILT-IN COMMANDS, including
scriptable selections and the use of regular expressions. These commands enable
powerful find-and-replace functions and make it possible to automate editing
operations by using scripts.

Menu commands for editing are described in Chapter 3. The basics of routine
interactive editing are described in Chapter 4. For a full description of the use of
the command language, see Chapter 5. Appendix B contains a summary of
selections and regular expressions. =

Contents

Editing commands 173
Selections 175
Current selection (§) 178
Selection by line number 179
Position 180
Markers 180
Behavior of markers 181
Programmatic use of markers 181
Pattern 182
Extending a selection 183
Pattern matching (using regular expressions) 183
Character expressions 185
Wildcard operators 186
Repeated instances of regular expressions 187
Tagging regular expressions with the ® operator 188
Matching a pattern at the beginning or end of a line 189
Inserting invisible characters 189
Note on forward and backward searches 190
Some useful examples 191
Transforming DumpObj output 192
Finding a whole word 193
Bulldozer 194

17

Editing commands

The command language contains editing commands that duplicate the functions of many
of the menu commands and provide additional capabilities. The editing commands are

listed in Table 6-1. (They’re explained in detail in Part I1.)

= Table 6-1 Built-in editing commands

Command Description

Adjust [-c coundl [l spaces selection [windou] Adjust lines in a selection.

Align [-c cound selection [windoul Align text with first line of selection.
Clear [« cound selection (windouj Delete selected text.

Copy [cound selection [windou Copy selected text to the Clipboard.

Cut [cound] selection [windou)

Find [count] selection [windouj
Format [option...] [window..]

Mark [-y|-n] selection name [windou}
Markers [-q] [window]

Paste [cound] selection (windou}
Position [< | -1] [window ..

Replace [cound] selection replacement [windouj
Revert [-y] [window...]

Target name

Undo [window)

Unmark name... window

Copy selected text to the Clipboard and
then delete the selection.

Find and select text.

Set or view font name, font size, tabs,
and indents on specified windows.

Assign the marker name to the range of
text selection selected in window.

Print list of all markers associated with
window.

Replace selection with the contents of
the Clipboard.

Display the position of the selection in
each specified window.

Replace selection with replacement.
Revert window to last saved state.
Make a window the target window.
Undo last command. '

Remove the marker(s) name... from the
list of markers available for window.

CHAPTER 6 Advanced Editing 173

If no window parameter is specified, editing commands act on the target window,
which is the second window from the front. Therefore, to edit the active window, you'll
need to switch to another window for entering your commands, or else specify the name
of the active window in the command line. (The Target command makes a window the
target window; the Shell variables {Active} and {Target} always contain the full pathnames
of the current active and target windows.)

Most editing commands take the following parameters:

-ccount You can specify a repeat count with the -c option; count is the
number of times the command should be executed. Count may also
be the infinity character, e (Option-5), which specifies that the
operation should be repeated as many times as possible.

selection Most editing commands act on a selection, either the current
selection in the target window or another selection that you
specify. First, an implicit Find is done to select the specified text.
Then the text is modified. The selection syntax is defined in the
next section.

window The optional window parameter lets you specify the name of the
window to be affected by a command without changing the
position of the affected window.

A command modifies the selection only if there were no syntactic errors in the selection
and if all regular expressions were matched. Commands run silently unless an error occurs.

In addition to the routine editing commands incorporated in the command language,
MPW includes a number of tools and scripts that are useful for many specialized editing
tasks. Some of these are listed in Table 6-2. See Part II for detailed information.

174 MPW 3.0 Reference

= Table 6-2 MPW tools useful for editing

Editing tools

Description

Canon [option...] dictionaryFile [inputFile...]

Compare
Entab [option...] [file...]
FileDiv [option...] file

Line [number]
Matchit [option...] [window]

RezDet [option...] resourcefile
Translate [option...] source [destination]

 Replace a file’s identifiers with

canonical spellings given in
dictionaryFile.

Compare text files.

Convert runs of spaces to tabs.
Divide a file into several smaller
files.

Find specified line number in a file.
Match currently selected left
language delimiter with its mate in
window.

Detect inconsistencies in resources.

Convert selected characters.

Selections

A selection is a parameter to editing commands; it tells the command what text to select.

A selection may be any of the following:

s A line in a file (selected by line number)
s A position in a file

s A marker

s A specific character pattern

s A selection that begins and ends with any of the above

As an example of the selection syntax, consider the definition of the Find command:

Find [-c cound selection [windou}

Find takes a selection as an argument and selects the argument text (or sets the insertion

point). An actual command might take the form

Find /shazam/

CHAPTER 6 Advanced Editing

175

This command finds and selects the first instance of the string “shazam” that appears
after the current selection. (The slashes are used to enclose a pattern, a special case of a
selection, as explained below.) No count is specified, so the command is executed once.
No window name is specified, so the command operates on the target window.

Table 6-3 shows all of the selection operators. These are more fully explained in the
sections following the table.

= Table 6-3 Selection operators

Operator Type of selection

Current selection

§ Current selection in the target window (§ is Option-6
on the keyboard)

Line numbered selections

n Line number n

n Line number # lines after the end of the current
selection

in Line number 7 lines before the start of the current
selection (j is Option-1)

Position (insertion point)

. Position before the first character of the file (e is
Option-8)

oo Position after the last character of the file (oo is
Option-5)

Aselection Position before the first character of selection (A is
Option-])

selectionA Position after the last character of selection

selectionin Position 7 characters after the end of selection

selectionin Position n characters before the beginning of
selection

Pattern (characters to be matched)

/pattern/ Pattern (regular expression)—search forward (see
“Pattern Matching,” below)

\ pattern\ Pattern—search backward

Extended selection

selection1:selection2 Both selections and everything in between

marked selection name The name of a marked selection may contain any
characters except
§ 1 (o = A [/ N\
Grouping
(selection) Controls order of evaluation

176 MPW 3.0 Reference

A formal definition of selections can be found in Appendix B.

All of the operators group from left to right, and evaluation proceeds from left to right.
The selection operators are listed below in order of precedence:
/and\ Everything within slashes is taken as a regular expression and
is evaluated as explained below under “Pattern Matching.”
Q) Controls the order of evaluation.
A Indicates position.
Yand Indicates position (! = after; j = before).
: Joins two selections.
Some examples will illustrate why it’s important to pay attention to the precedence of
these operators: :
A/begin/!1 means (A/begin/)!1
rather than A(/begin/!1)
That is, the insertion point is located after the “b” of “begin” rather than
after the “n.”

/begin/:/end/!1 means the selection /begin/: (/end/!'1)
rather than the position (/begin/:/end/)!1

That is, the character after “end” is included in the selection, as shown in Figure 6-1.

s Figure 6-1 A selection specification

& File Edit Find Mark Window Project Directory Build

HD:MPI.U:IUorkseet —————— &

]]Find /begin/: /end/! 1

MPY Shell

HD:MPW:Examples:PExamples:Memory.p

SetPort (SavePort);
END;

% DRUROpen := NOErr; '
N END;

N FUNCTION DRURClose(ctIPB: ParmBlkPtr; dCtl: DCtIPtr)>: OSErr;
4 BEGIN
IF dCtl®.dCtiwindow <> NIL THEN
BEGIN
Disposelindow (HindowPtr(dCtl* . dCtilindow));
dCtl- dCtilindow := NIL;
END;
DRURClose := NOErr;

CHAPTER 6 Advanced Editing

177

Current selection (§)
The current selection character, § (Option-6), always indicates the current selection in a

window. If no window is specified, § indicates the current selection in the target window.
For example, consider the windows shown in Figure 6-2.

s Figure 6-2 Selections in two windows

' HD:MPW:Worksheet

Replace § or

HD:MPw:xmpe:PExample:Meo. m“

wRect: Rect;
myHindow: HindowP tr;
BEGIN
IF dCtl~.dCtilindow = NIL THEN
BEGIN

GetPort (SavePort);
lv_}«lindow := GetNeuwl indow(RsrciD(dCtI >, nil ,POINTER(-1));
windowpeek(mylindow)" .HindowKind := dCtl~.dCtiIRefNum; { show a O
dCtl“.dCtilindow := mylindow; { let the desk manager know too)
heapGrow := Maxtiem (heapGrow)]
SetPort (SavePort);

END;
DRUROpen := NOErr;
END;

The command

Replace § dn

would replace the current selection in the target window with a single return (newline)
character. (“On” is a special code for inserting a return—see “Inserting Invisible
Characters” later in this chapter.)

Note that the current selection is a dynamic quantity—it's determined by the last
subexpression evaluated and thus represents the current state of a selection as it's being
calculated. For example, consider the command

Find /if/:§!'1:§!1

178 MPW 3.0 Reference

At various points in the evaluation of the search string /if/:§!1:§!1”, the current selection
(§) has the following different values:

Before calculation The pre-existing selection in the target window
After“/if€/” “if”
After“/7if/:§!1" All characters from “if” to (and including) the first

character after the “if”
After/if/:811:8'1" All characters from “if” to (and including) the first
two characters after the “if”

Selection by line number

If you give a number unquoted by slashes as a selection, it is taken to be a line number.
This may be an absolute line number or a number of lines relative to the current selection.
For example, to select line 3 of a file, you'd use the command

Find 3

This expression is equivalent to

Find '3°

but

Find 3 or Find '3°

is not equivalent to

Find /3/ or Find \3\

The exclamation mark and inverted exclamation mark (! and) specify the number of lines
after or before the current selection. Thus, the command

Find !3

selects a line that is 3 lines beyond the current selection. Note that the !z notation
specifies a line relative to the end of the current selection (that is, 7 lines past the line

containing §A); jn specifies a line relative to the start of the current selection (n lines
before the line containing A§).

CHAPTER 6 Advanced Editing

1

Position

A position is a special case of selection. Position means the location of the insertion
point only. The A character (Option-J) is used to convey position relative to a selection.
For example, consider the commands

Find 3

Find A3

Find 3A

The first Find command selects the entire third line in the target file. The Find A3 and
Find 3A commands place the insertion point at the beginning and at the end of the third
line, respectively.

You can also use the ! and ; operators to specify a position that's a given number of
characters from a selection: selectionin specifies a position n characters after selection,
and selectiomn specifies a position 7 characters before selection.

Note that this leads to two different uses of the ! and ; operators, as in the following
example:

Find '4!'4

The first “!4” indicates a selection that's 4 lines beyond the current selection; the second
“4” indicates the position that's 4 characters beyond the end of that selection.

You can specify other positions in a file with the following special notation:

. (Option-8) Position preceding the first character in a file
oo (Option-5) Position following the last character in a file

Markers

A marker is a selection that has been given a name. A marker may be used as a selection
variable. You can mark as many selections and insertion points as you wish. You can create
markers directly by selecting text in a window and then clicking the Mark command in the
Mark menu. See "Mark Menu” in Chapter 3 for more information on the interactive use of
markers. This section describes the general behavior and programmatic use of markers.

180 MPW 3.0 Reference

Behavior of markers

Markers may be as simple as a position in a window, but more often a marker names a
range of positions. Markers have the special attribute of being able to remember their
assigned position(s) even when you're making editing changes all around them. For
example, typing before marked text has the effect of moving both the text and its
associated marker toward the end of the window. Editing “inside” the range of a marker
will either increase or decrease the range of the marker, depending on whether the editing
was an insertion or deletion, respectively.

Markers are “sticky.” For example, if an insertion point is marked and you enter text at
that point, everything you type will be added to that marker.

If you delete the text encompassing a marker the marker will also be deleted. For example,
if the string “xyz” is deleted and the character “y” is marked, the “y” marker will be
deleted. However, if the string “xyz” itself is marked as “y,” deleting the string “xyz” will
result in marker “y” being reduced to an insertion point.

Markers are associated with individual windows. When you switch between windows, the
Mark menu is updated to reflect the markers of the new active window.

Markers are persistent. They are saved in the resource fork of the file you are editing, just
like font, tab, and other information about the window. However, markers are not saved
to the Clipboard. Thus, if you cut a marked region and paste it somewhere else, the
marker will be lost.

Markers are case sensitive. A marker named “Y” is different than a marker named °y.”

Programmatic use of markers

You can create or delete Markers programmatically by using the following three Shell
commands: -

Mark [-y | -n] selection name [windou] Assign the marker name to range of text
selection selected in window.

Markers [-q][window] Print a list of all markers associated
with window.
Unmark name...window - Remove the marke1(s) name... from the

list of markers available for window.

For example, to mark the currently selected text in the target window with the name
“Function B and to replace any previous marker of that name, you would type

Mark -y § ‘'Function B'

CHAPTER 6 Advanced Editing

181

The new marker name will appear in the Mark menu. You might remove the marker later by
using the Unmark command:

Unmark ‘'Function B' "{Target}"

This command would remove that marker from the target window.
To use markers as selections, just type the marker name. For example,
Find george

For further details on the Shell commands for markers, see Part I1.

¢ Automdatic Selection

You'll find many ways to use markers for automatic selections. For example, to
automatically select the output of a script for a user, you could use a script
similar to this:

Mark §SA X #Mark the start of output

Make #Run your Make command
Find X #Select the output of Make ¢
Pattern

A pattern may be either a literal text pattern or a regular expression (defined in the next
section). You specify a pattern between the /.../ and \...\ delimiters. Forward slashes
indicate a search forward, and backslashes indicate a search backward. A forward search
begins at the end of the current selection and continues to the end of the file. A backward
search begins at the start of the curmrent selection and continues to the beginning of the
file. For example, the command

Find /myString/
searches forward for the literal expression “mystring.” (Recall that to specify case-

sensitive pattern matching, you need to set the Shell variable {CaseSensitive}, or select the
“Case Sensitive” menu item.)

182 MPW 3.0 Reference

Extending a selection

A colon is used to join two selections. For example,
Find /begin/:/end/

This command selects “begin,” “end,” and everything in between. (See Figure 6-1.)
Compare this command with

Find /begin=end/

which looks for a begin-end pair on a single line.

Pattern matching (using regular expressions)

Regular expressions are a shorthand language for specifying text patterns. Regular
expressions are used in editing commands, in the Search command (which searches one or
more files for occurrences of a pattern), and in If and Evaluate expressions following the
=~ and !~ operators. Most of the regular expression operators may also be used in filename
generation.

Regular expressions are always used within the pattern delimiters /.../ or \...\.

A special set of metacharacters, called regular expression operators, is used in regular
expressions (and in filename generation). The regular expression operators are listed in
Table 6-4.

CHAPTER 6 Advanced Editing

183

» Table 64 Regular expression operators

Operator Meaning

c Any character matches itself (unless it’s one of the
special characters listed below)
dc Defeat the special meaning of the following character
(cis taken literally) except
on = retum
ot = tab
of = form feed
Lt Literalize enclosed characters
w " Literalize enclosed characters, except 9, {, and °

? Any single character (other than a Return)

= : Any string of 0 or more characters that does not contain
a Return

(character...] Any character in the list

[—character..] Any character not in the list (= is Option-L on the
keyboard)

regularExpr* Regular expression 0 or more times

regularExpr+ Regular expression 1 or more times

regularExpr« n» Regular expression 7 times (« is Option-\; » is
Option-Shift-\)

regularExpr«n,» Regular expression 7 or more times

regularExpre«ny,ny» Regular expression ny to n, times

(regularExpr) Grouping

(regularExpr)®n Tagged regular expression (where 0 < n<9)

regularExpriregularExpr, regularExpr, followed by regularExpr,

* regularExpr Regular expression at the beginning of a line

regularExpreo Regular expression at the end of a line

These characters are considered special in the following circumstances:

0 Special everywhere except within single quotation
marks (...")

2= * 4+ [« () ~ Special anywhere except within[...],"...", and "..."

® Special only after a right parenthesis,)

. Special as the first character of an entire regular
expression

oo Special as the last character of an entire regular
expression

/\ Special if used to delimit a regular expression

- Special only after a left bracket, [

- Special in brackets, except immediately following
a left bracket, [

184 MPW 3.0 Reference

Their precedence (from highest to lowest) is as follows:
L ()

22?7 = * + [] « ®

3. concatenation

4. o oo

A formal definition of regular expressions can be found in Appendix B. The rest of this
section describes the use of regular expressions for describing selections.

Character expressions

In the simplest case, regular expressions consist of literal characters enclosed in slashes.
For example,

/what the ?/

Notice one complication, however: if the literal character happens to be one of the
regular expression operators (such as ©?”), it will be specially interpreted rather than taken
as a literal character. If you want to specify a literal character that happens to have a
special meaning within the context of regular expressions, you'll have to precede it with
the escape character, 9, or enclose it in quotation marks. The character 9 has the effect of
“literalizing” the character that follows it. For example, to find the literal expression given
above, you would use one of the following commands:

Find /what the 02/

Find /what the '?2'/
Find /‘what the 2'/

You could also use double quotation marks, that is "...".

CHAPTER 6 Advanced Editing

185

Wildcard operators

In addition to literal characters, regular expressions can include the operators ?, =

(Option-X), and [], which are used as follows:

? Any character other than a Return

= Any string not containing a Return, including the null string
(this is the same as 2 *)

(characterList] Any character in the character list (as defined below)

[— characterList) Any character not in the list

These operators are also used as wildcards in filename generation. (You can also use the *
+,2, = [...], and «...» operators in filename generation—see “Filename Generation” in
Chapter 5.)

A character list is an expression consisting of one or more characters enclosed in brackets
([...]). It matches any character found in the list. The case sensitivity of characters in the
list is governed by the {CaseSensitive} variable. A list may consist of individual characters
or a range of characters, specified with the minus sign (-). For instance, the following two
commands are equivalent:

Find /[ABCDEF]/
Find /[A-F]/

You can also mix the two notations:
Find /[0-9A-F$]/

Note: This command specifies any of the characters 0 through 9, A through F, and
$. To specify the] or - character, place it at the beginning of the list or literalize
it with the escape character, 9.

The negation symbol, = (Option-L), lets you specify any character not in the list. For
example,

Find /[-A-2]/

This example specifies all characters except the letters A through Z. (To specify the -

character itself, place it anywhere in the list other than the beginning, or literalize it by
preceding it with the escape character, 9.)

186 MPW 3.0 Reference

Repeated instances of regular expressions

The asterisk character (*) matches zero or more occurrences of the immediately
preceding regular expression. The plus sign (+) matches one or more occurrences of an
expression. For example, the command

Find /[0-9]+/

will find any string of one or more digits.

You can also specify an expression that occurs an explicit number of times by using the
«n» notation:

regularExprens Regular expression 7 times

regularExprn,» Regular expression at least n times

regularExprny,np» Regular expression at least »; times and at most 7, times

For example,

Replace -c o /' ‘'«4,»/ dt

This command finds any string of four or more spaces and replaces it with a tab.

(The -C o= option specifies a repeat count of “infinity”; that is, it replaces all occurrences

of of the selection to the end of the document.)

CHAPTER 6 Advanced Editing

187

Tagging regular expressions with the ® operator

The ® (Option-R) operator tags a regular expression between parentheses. This operator
is useful with the Replace command, for example, in reformatting tables of data. Consider
a table with two columns of numbers separated by spaces or tabs:

123 456
123 456
123 456
123 456
...andsoon

The following Replace command switches the order of the two columns, which are
separated by one tab:

Replace -c o /([0-9]+)®1[ot]+([0-9]+)®2/ '®2 ®1'

Translated into English, this expression means
[0-9]+ Match one or more characters in the set “0” to “9”.

([0-9]1+)®1 Remember that selection (the expression enclosed in
parentheses) as ®1.

[)+ Next, match at least one space or tab.

([0-9]+)®2 Then match one or more characters in the set “0” to “9” and
remember it as ®2.

'®2 ®1°' Finally, replace the whole matched string with what was

remembered as ®2, a space, and what was remembered as ®1.

¢ Note: The quotation symbols are stripped off, as explained under “Quoting Special
Characters” in Chapter 5.

After this sequence is executed, the table will look like this:

456 123
456 123
456 123
456 123
...andsoon

188 MPW 3.0 Reference

Matching a pattern at the beginning or end of a line

In the context of regular expressions, the ¢ metacharacter (Option-8) means that the
subsequent expression must be matched at the beginning of a line. For example, the
regular expression

/emain/

will match a line that begins with “main” but not a line that begins with “space main”. The
beginning of a line is either the first character after a return or the first character of the
file.

Likewise, the o= metacharacter (Option-5) means that the previous expression must be
matched at the end of a line. The regular expression

/maines/

will match a line that ends with “main” but not a line that ends with “main space ”. The end
of a line is either the last character of a line prior to the return, or the end of the file.

Notice that ¢ and = have another meaning within selections. Within a pattern, they
indicate the beginning and end of a /ine. Within a selection, they indicate the beginning
and end of the file.

Inserting invisible characters

You can use the Shell escape character, 9, to insert the following special characters in text:

on return
ot tab
of form feed

For more information on the escape character, see “Quoting Special Characters” in
Chapter 5.

CHAPTER 6 Advanced Editing

189

Note on forward and backward searches

Forward and backward searches aren’t always completely symmetrical. For example,
consider the command '

Find /2*/

This command finds zero or more occurrences of any character other than a return. The
first time you execute this command, some range of characters will be selected if the
current selection is not at the end of a line. However, in subsequent invocations, the
selection will stick at the end of the line and only an insertion point will be left at the end
of the line. This is because the * metacharacter matches zero occurrences and the search
starts with the character following the current selection—in this case, the insertion point
preceding a return. A backward search of the form

Find \2*\
will never stick at the beginning of a line. This is because a backward search begins with

the first character to the left of the current selection and so has the effect of jumping over
a return after encountering it.

190 MPW 3.0 Reference

L Solving selection difficulties

What If a selection expression doesn’t select what you intended? Ask yourself
questions like these:
® Am | quoting special characters?
For example, the
L (L]
character is special. If you are searching for this character, then you
must use
la(i
m Do | remember the definitions of special characters?
Review the special character definitions in Appendix B.

m Are my precedence and usage cormrrect?
Consider the slightly different syntax of these two Find commands:
Find °¢:/main/
This tells MPW to select everything from the beginning of the file until the
first occurrence of the word “main”
Find /emain/
This tells MPW to select the next occurrence of the word “main” at the
beginning of a line.

m Do the individual pieces select what | intended?
Break the difficult expression down into small parts. Try each part separately
to make sure that it does what you want. Then add each new, tested part
to create more complicated expressions. ¢

Some useful examples

This section shows some examples of the complex use of regular expressions.

CHAPTER 6 Advanced Editing 191

Transforming DumpObj output

The DumpObj command, described in Part II, formats the contents of an object file. This
example shows how to transform a DumpOb; listing, such as the following, back into valid
assembly code.

000000 4EBA 06F8 'N..."' JSR *+S06FA ; 6004282A
000004: 4EBA 04EA 'N...!' JSR *+S04EC ; 60042620
000008: 3B7C 0014 FCC4 ';|....' MOVE.W #$0014, SFCC4 (AS)

00000E: 266D 0010 ‘sm.." MOVEA.L $0010(AS),A3

000012: 2653 &S MOVEA.L (A3) ,A3

000014: 0CSB 0000 LI CMPI.W #$0000, (A3)+

000018: 6600 0008 LE BNE *+$000A ; 60042152
00001C: 3A1B vt MOVE.W (A3)+,D5

00001E: 6600 0010 L BNE *+$0012 ; 60042160
...andsoon

You could position the insertion point at the beginning of the code and use the following
Replace command:

Replace -c = /?«41»/ “"dtot™ # replace everything up to the
instruction with 2 tabs

However, the previous command works only because DumpObj happens to place the
instruction at column 42. The following example, by defining some Shell variables, works
regardless of the exact column layout:
Set hex "[0-9A-F]«4,6»" # 4 to 6 characters in the set 0-9 and A-F
Set space "[dt]+" # 1 or more spaces or tabs
Set chars ™00'?+dd'" # 1 or more of any character between 0
single quotes
Replace -c¢ o /{hex}: ({space}{hex})«l,3»{space}{chars}{space}/ "dtot"

192 MPW 3.0 Reference

Finding a whole word

The following example illustrates how you could find an exact match for a C identifier that
you had previously defined in the variable {ident}:

Set tokensep "[—a-zA-Z_0-9]" # a token separator is any character
not in the set a-z, A-Z, _, or 0-9
Set CaseSensitive 1 # set to "true"—the case of each
character must match
The following Find command is not quite right, because it selects not only the matched
identifier but also the token separator on each side of the identifier:

Find /{tokensep}{ident} {tokensep}/

The following Find command selects only the matched identifier. It accomplishes this by
adding 1 to the starting position of the selection (Aselection!1), and uses that as the
starting point for a new selection that extends to the beginning of the next token
separator:

Find A/{tokensep}{ident}{tokensep}/!1:A/{tokensep}/

CHAPTER 6 Advanced Editing

193

¢ Bulldozer

If you are making a very large number of changes (such as scripted global
replacements in a large file), that file’s memory may become fragmented. If this
happens. the rarely seen bulldozer icon may replace your cursor. The bulldozer
tells you that MPW is trying to clear more memory space for your file.

If you regain the regular cursor, you can close (save) the window and reopen
it, thus completely reinitializing its memory area. If the bulldozer lingers it may
mean that your computer will be busy with this one script over the weekend.
To avoid this problem, it is better to reboot and modify your script to proceed in
stages so that you don’t run out of file memory.

For example, let's suppose that you have a 10,000-line file that you wish to edit
with this script:

clear -c o /o /

replace -c o /" ("/ "["

These two formatting commands operate on each of the 10,000 lines in the file,
a total of 20,000 operations (assuming that each line was changed). Unless
you have a gigantic amount of RAM, this is probably more work than your
computer can comfortably handle. (Of course, you might also fry to free more
memory by tuming off MultiFinder or increasing MPW'’s application area. but
doing so would help only a little in this case.)

If your Macintosh has § MB of RAM, then you might be able to perform the first
10,000 operations of the first command without ever glimpsing the dread
bulldozer. In this case, modify the script so that after the first command the
script closes the window (thus automatically saving the file) and reopens it to
continue with the next large operation:

clear -c o [+ [/

close -y {MyEditWindow)

open -t {MyEditWindow}

replace =-c o /" ("/ "["

Alas, what if the bulldozer appears during the execution of the first command?
First deduce at what point the bulldozer appeared (let's say somewhere well
after the first 4000 lines were changed) and then modify your script to stop
processing at regular intervals. In the example that follows, the editing
operation stops after 4000 operations. closes the window (thus saving it
automatically). and reopens it. Then the program returns to the top of the file
and resumes editing for another 4000 operations.

finde
loop
clear -c 4000 /- /
break if f{status}= 0

close -y {MyEditWindou}
open -t {MyEditWindou}

end .

194 MPW 3.0 Reference

Chapter 7

Projector: Project Management

PROJECTOR IS A BUILT-IN MPW FACILITY FOR MANAGING PROGRAMMING PROJECTS of
any size. Projector makes it easy to keep track of the revision history of the files
comprising your programs: who changed what, when, why, and other information.
You can use Projector to create experimental branches of a project and later
remerge the successful efforts.

The syntax of all Projector commands is summarized at the end of this chapter.
You can find detailed information and examples for each of these commands in
Part II. There are a number of Projector-specific terms defined throughout this
chapter; these terms can also be found in the glossary. =

Contents

About Projector 197
Overview 197
Featres 199
Limitations 200
Using Projector: A walk-through 201
Creating a new project 201
Checking in a revision 204
Project pop-up 206
User field 207
Info (question mark) button 207
Keep Read-Only, Keep Modifiable, and Delete Copy buttons 207
Adding new files to a project 207
Touch Mod Date check box 208
Changing a revision’s revision number 208
Locating a project 209

195

Checking out a revision 209
Checkout directory 212
User field 213
Task and Comment fields 213
Select Newer button 213
Select All button 214
Read-Only/Modifiable buttons 214
Branch check box 215
Touch Mod Date check box 215
Checking out a particular revision 216
Info (question mark) button 216
Select Files in Name 216
Discarding changes 216
Using the CheckOut command 217
Creating branches 218
Merging branches 219
Retrieving information 220
Comparing revisions 223
Components of a project 223
Projects 224
Nested projects 226
Revision trees 228
Branches 230
User names 230
Symbolic names 231
Project administration 234
Moving, renaming, and deleting projects 234
Deleting revisions 235
Renaming a file in a project 235
File organization within a project directory 235
CKID resource 236
Projector icons 236
Icons Appearing in the Check In Window 236
Icons Appearing in the Check Out Window 237
Projector command summary 238

196 MPW 3.0 Reference

About Projector

Projector is a collection of built-in MPW commands and windows that help programmers
(both individuals and teams) control and account for changes to all the files
(documentation, source, applications, and so on) associated with a software
development project. Use Projector to coordinate changes among a team of
programmers and to maintain a history of project revisions. When you begin work on a
project, you select the appropriate project and check out the files needed just as books
are checked out from the public library—although in this case, Projector distributes both
read-only and modifiable copies of its “books.”

Projector requires the presence of MPW 3.0 and does not run outside MPW as either a
Macintosh application or desk accessory. The terms and concepts introduced in this
section are discussed in greater detail the the section “Components of a Project,” near the
end of this chapter.

Overview

During the evolution of a software development project, each team member invariably
makes numerous changes to the source and documentation files. Sometimes the changed
source files are alternative versions or experimental efforts; later you want to discard the
failed efforts and merge the best versions together. Projector is designed to substantially
ease this task by providing an easy-to-use yet powerful facility for file management that is
valuable to both the individual programmer working on a small project and to a team of
programmers working on a complex set of programming projects. Use Projector to
organize your files into projects that can be stored locally on a hard disk, a 3.5-inch disk,
or remotely anywhere on the AppleTalk network.

A project is a conceptual entity for organizing files, analogous to an HFS directory. Once
within Projector, each file becomes a revision tree. Each revision tree comprises the
entire historical sequence of revisions and branches of a particular file. Any of these
revisions may be opened for reading only or checked out exclusively by one user for
modification. Figure 7-1 shows how three files might appear as three revision trees in a
hypothetical project. The sequentially numbered circles represent revisions. Those circles
with letter suffixes are branches, which may in turn sprout their own branches and
subsequent revisions. The numbering scheme for revisions, branches, and revisions of
branches is explained in the section “Revisions” later in this chapter.

CHAPTER 7 Projector: Project Management

197

= Figure 7-1 A project structure

(A Project j

Revision Tree Revision Tree Revision Tree
filename.a filename.b filename.c

When you check out a “file” for modification you are actually checking out a copy of a
revision—usually the latest revision—from the file’s revision tree. The revision you have
checked out appears in your HFS directory as an ordinary file named after its associated
Projector revision tree. When you check it back in, the “file” becomes the next revision in
its Projector revision tree.

When checking out a file for modification you can write a comment describing the
changes you’re about to make (so other project users can see why you have checked out
the revision). Projector remembers that the revision is checked out and denies access to
anyone else attempting to modify checked out revisions. (Of course, you can always
create a new branch off a checked-out revision.)

You can check the revision back into Projector at any time, although you would normally
check in revisions as soon as your modifications are complete and tested. Once your
revision is checked back in, the next sequential number is, by default, appended to its
name to identify its place in the revision tree. This revision is now available to anyone on
the team.

198 MPW 3.0 Reference

Besides supporting a single sequence of revisions to each file, Projector also allows
alternative revisions to be created. This feature is called revision branching. Branching
makes possible

= the modification of old revisions
= work on the same revision of a file by several programmers simultaneously
s panllel, experimental lines of development

See the section “Creating Branches” later in this chapter.

Whenever you go through the simple check-in process, you are encouraged to document
all the changes you have made and the reasons for these changes. This allows the project’s
current status and history to be easily retrieved by all team members. It's also extremely
handy when you have to go back through old revisions to find a problem or retrieve
something of value.

Projects may contain other projects, called subprojects. This last fact is of key
importance, because it lets you break down large projects into subunits that can still be
accessed as a whole by those outside the immediate programming team. See “Nested
Projects” later in this chapter.

Features

Some of Projector’s key capabilities are listed here:
s Projects and subprojects can be organized into a hierarchy.

s All revisions to a file are saved in the revision tree. Each revision is uniquely identified
by its filename and revision number.

s Nontext files as well as text files may be stored in the project.

A Important Be careful of programs that may inadvertantly delete Projector’s
*ckid" (that is, check ID) resources from files. When a program such
as Microsoft Word™ saves a file, it deletes the file’s *cxid® resource.
These resources contain the identification Projector uses to track
files. a

CHAPTER 7 Projector: Project Management

19

Revisions made to text files are stored in a compact format.

Access by multiple users is supported. Requests to modify the Project database are
controlled by user name on a per-project basis. AppleShare can be used to assign
privileges.

A flexible naming facility allows revisions to be identified by symbolic name as well as
by filename and revision number.<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>