

First digit

0 1 2 3 4 5 6 7 8 9 A B C D E F

p X e t • i

1 A Q a q A. e ±

2 ::11:!!:: .:I!!!:!: " 2 B R b r <; 1 ¢ £ -, u

3rncl.li;J,;.# 3 cs cs E £
,,

N 1 § ¥ f

: 11,1--:-+--:-+--:-+--~-+-;--+-~---+-~-::-+--:-+--cr-+--+---+---+--+--1 m !

d D

7 :.;j:i:,:1 ·11::.i.'/ 7 G W g w a 6 B A.

8 85 1jli/:·C 8 H X h x a o ®

A :1.1::.:::i':.I.',': •

B 11:.::i::/·::l'.1:·:: +

C fl':.::::,:1 FS

D CR GS

I

y a o © p

J z j z i 6 ™ 0
K k a 5 i A

< L \

M m

> N A n

0

-a u 2 A

w 0

ii 0 0 a:

.._.. Stands for a nonbreaking space, the same width as a digit

* y

El The dark-shaded characters cannot normally be generated from the Macintosh
keyboard or keypad.

AP P E N D I X E Macintosh Character Set 221

Appendix F Instruction Sets

THIS APPENDIX DEFINES TiiE INSTRUCTION SETS accepted by the MPW Assembler.
They are equivalent to the MC68000, MC68010, MC68020, MC68030,
MC68881/MC68882, and MC68851 instruction sets described in more detail in the
Motorola M68000 8-116-132-Bit Microprocessors Programmer's Reference
Manual, the Motorola MC68881 Floating-Point Coprocessor User's Manual, and the
Motorola MC68851 Paged Memory Management Unit User's Manual. Refer to
those manuals for full descriptions of these instructions.

• Note: Some mnemonics have been changed to eliminate
ambiguities or to conform to the Motorola assembler forms. If in
doubt, check your mnemonics with those given later in this
appendix (in Tables F-7, F-8, and F-9).

The Macintosh instruction sets contain certain machine instructions that encode
into more than one bit configuration, depending on the instruction's operands.
Each instruction consists of an opcode word and zero or more extension words.
The opcode word contains some basic constant information about the
instruction, but other fields must be set to indicate the kinds of operands
(effective addresses) and the size of the instruction. •

Contents

Instruction evaluation 225
Listing conventions 225

Opcode 226
Operands 226
Opcode word 227
Cp type 228
Group 228
Flags 228
Range 229
Equivalent 229

Condition codes 229
Instruction set listings 233

223

Instruction evaluation

The Assembler determines the encoding for an instruction by looking at the group
corresponding to the mnemonic. Starting with the first encoding line in the group, the
Assembler checks the machine type, the size, the source operand mode, the destination
operand mode, and (where applicable) the immediate data range. If all the infonnation
matches, the Assembler generates the code for the instruction, through its encoding group
number. If any one of the items doesn't match, the next encoding (if any) in the group is
checked. This process continues until an encoding is found or the end of the group is
reached.

If the Assembler reaches the end of the group before finding a valid encoding (including
coprocessor opcodes), it indicates an invalid instruction. It then tries to interpret the
source text line as a macro. Finally, it tries to interpret it as an OPWORD directive.

Listing conventions

Tables F-2 through F-9 list the instructions and condition codes accepted by the MPW
Assembler. Table F-7, covering the processor instructions for the MC68000, 68010, and
68020, is divided into seven columns with the following headings:

• Opcode: The mnemonic you write in your source text.

• Operands: The operands (if any) required by the opcode.

• Opcode word: The binary encoding of the first word or extension word of the
instruction.

• Group: The encoding group number assigned to the instruction.

• Flags: Letters indicating specific characteristics of the instruction.

• Range: A code number identifying the instruction's data range.

• Equivalent: The actual code equivalent for generic instructions.

A P P E N D I X F Instruction Sets 225

Tables F-8 and F-9, covering the coprocessor instructions, have a slightly different set of
column headings:

• Opcode: The mnemonic you write in your source text.

• Operands: The operands (if any) required by the opcode.

• Opcode word: The binary encoding of the first word of the instruction.

• Cp type: The coprocessor instruction type.

• Group: The encoding group number assigned to the instruction.

• Flags: Letters indicating specific characteristics of the instruction.

• Equivalent: (Table F-8 only.) The actual code equivalent for generic instructions.

The columns are described in more detail in the following sections.

Opcode

This column contains the legal instruction mnemonics recognized by the Assembler. For
further information about the instructions they represen~ see the appropriate Motorola
manual listed at the beginning of this appendix.

Operands

This column may contain register names (such as Dn or An) or nonterminal symbols (such
as ean or Re). The nonterminal symbols stand for addressing modes.Table F-1 shows all
possible operand forms. The number 1 in the table indicates that the corresponding
addressing mode is legal. The number 0 means it is illegal. Addressing modes are further
described in the Motorola manuals and in Chapter 3 of this manual.

226 MPW 3.0 Assembler Reference

• Table F-1 Instruction operands

Operand eaO eal ea2 ea3 ea4 ea5 ea6 ea7 ea8 ea9 ealO

Special 0 0 0 0 0 0 0 0 0 0 0
Dn 1 1 0 1 0 0 1 0 0 1 1
An 1 1 0 0 0 0 0 0 0 0 0
(An) 1 1 1 1 1 1 1 1 1 1 1
(An)+ 1 1 1 1 0 1 1 0 1 0 0
- (An) 1 1 1 1 1 1 1 0 0 0 0
d(An) 1 1 1 1 1 1 1 1 1 1 1
d(An, Xn) 1 1 1 1 1 1 1 1 1 1 1
<bd, An, xn) 1 1 1 1 1 1 1 1 1 1 1
< [bd, An, xnJ, od) 1 1 1 1 1 1 1 1 1 1 1
([bd, An] , xn, od) 1 1 1 1 1 1 1 1 1 1 1
(ae) .w 1 (ae) . L 1 1 1 1 1 1 1 1 1 1 1
#data 1 0 0 0 0 0 1 0 0 0 0
label 1 0 0 0 0 1 1 1 1 0 1
d(PC) 1 0 0 0 0 1 1 1 1 0 1
d(PC, Xn) 1 0 0 0 0 1 1 1 1 0 1
(bd,PC,Xn) 1 0 0 0 0 1 1 1 1 0 1
([bd, Pc, xnJ , od) 1 0 0 0 0 1 1 1 1 0 1
([bd, PCJ , xn,od) 1 0 0 0 0 1 1 1 1 0 1
RList 0 0 0 0 0 0 0 0 0 0 0
CCR 0 0 0 0 0 0 0 0 0 0 0
SR 0 0 0 0 0 0 0 0 0 0 0
USP 0 0 0 0 0 0 0 0 0 0 0
Ct! Regs• 0 0 0 0 0 0 0 0 0 0 0

• Re ::= SFC I DFC I CACR I VBR I CAAR I MSP I ISP

Opcode word

This column contains the binary encoding of the fixed information placed in the first
word of the instruction corresponding to the specified mnemonic.

eall

0
0
0
1
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0

A P P E N D I X F Instruction Sets

eal2 Re

0 0
0 0
0 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
0 0
0 0
0 0
0 1
0 1

Cp type

This column lists the instruction type for coprocessor instructions. The meanings of the
type codes in this column are shown here:

Type Meaning

Genl General coprocessor instruction; register operand or operands, or no operand
Gen2 General coprocessor instruction; memory to register or registers
Gen3 General coprocessor instruction; register or registers to memory
Bee Branch on coprocessor condition
DBcc Decrement and branch on coprocessor condition
Rest Coprocessor restore instruction (privileged)
Save Coprocessor save instruction (privileged)
Sec Set on coprocessor condition
Teel Trap on coprocessor condition; predicate supplied by processor
Tcc2 Trap on coprocessor condition; operand predicate

Group

This column lists the Assembler's encoding group for that mnemonic. The set of all MPW
Assembler instructions may be viewed as a collection of subsets, with each subset
corresponding to a specific encoding. There are 49 distinct encoding groups, numbered 0
to 48.

Flags

This column indicates various attributes about the instruction. The meanings of the flag
symbols are given here:

Flag Meaning

1 MC68010 instruction
2 MC68020 instruction
P Privileged instruction
G Generic instruction
B Byte data size accepted
W Word data size accepted
L Long-word data size accepted
S Single-precision data size accepted
D Double-precision data size accepted
X Extended data size accepted
K Packed BCD data size accepted

228 MPW 3.0 Assembler Reference

Range

This column specifies the legal range for absolute data, if the range is not otherwise
expressed. The codes that specify the ranges are described here:

Number Meaning

0 Value= 0
3 Value ::= 1..8; 0 indicates a value of eight
4 4-bit unsigned value
8 8-bit unsigned value

-8 8-bit signed value
16 16-bit unsigned value

-16 16-bit signed value
32 32-bit unsigned value

Equivalent

This column indicates what actual instruction the mnemonic represents in cases where the
instruction form is generic. Generic instructions are described in Appendix A.

Condition codes

Tables F-2 through F-6 list only the condition codes that the MPW Assembler accepts.
Tables F-7, F-8, and F-9 list all combinations of instructions and condition codes that the
MPW Assembler accepts.

A P P E N D I X F Instruction Sets 229

• Table F-2 MC68xxx condition codes

Mnemonic C.Onclition Encoding Test

T True 0000 1

HI High 0010 c•z
LS Low or same 0011 c+z

cc, cs Carry clear 0100 c
CS,LO Carry set 0101 c

ME,NZ Not equal 0110 z
EQ,Z Equal 0111 z

VC Overflow clear 1000 v
vs Overflow set 1001 v

PL Plus 1010 N

MI Minus 1011 N

GE Greater than or equal to 1100 N•V+N•V

LT Less than 1101 N•V+N•V

GT Greater than 1110 N•V•Z+N•V• z

LE Less than or equal to 1111 Z+N•V+N•V

230 MPW 3.0 Assembler Reference

• Table F-3 MC68881 IEEE nonaware tests

Mnemonic Definition Equation Predicate

EQ Equal z 000001

Not equal -
001110 NE z

GT Greater than NAN+Z+N 010010

NGT Not greater than NAN+Z+N 011101

GE Greater than or equal to Z+(NAN+N) 010011

NGE Not (greater than or equal to) NAN+(N•Z) 011100

Less than --
LT N• (NAN+Z) 010100

NLT Not less than NAN+Z+N 011011

LE Less than or equal to Z+(N+NAN) 010101

NLE Not (less than or equal to) NAN+(N+Z) 011010

GL Greater than or less than NAN+Z 010110

NGL Not (greater than or less than) NAN+Z 011001

GLE Greater than, less than, or equal to NAN 010111

NGLE Not (greater than, less than, or equal to) NAN 011000

• Table F-4 MC68881 IEEE aware tests

Mnemonic Definition Equation Predicate

EQ Equal z 000001

Not equal -
NE z 001110

OGT Ordered greater than NAN+Z+N 000010

ULE Unordered less than or equal to NAN+Z+N 001101

OGE Ordered greater than or equal to Z+(NAN+N) 000011

ULT Unordered less than NAN+(N•Z) 001100

OLT Ordered less than N• (NAN+Z) 000100

UGE Unordered or greater than or equal to NAN+Z+N 001011

OLE Ordered less than or equal to Z+(N+NAN) 000101
(continued)

A P P E N D I X F Instruction Sets 231

• Table F-4 (continued) MC68881 IEEE aware tests

Mnemonic

UGT

OGL

UEQ

OR

UN

• Table F-5
Mnemonic

F

T

SF
ST
SEQ
SNE

• Table F-6

BS
BC
LS
LC
SS
SC
AS
AC
ws
we
IS
IC
GS
GC
cs
cc

Definition

Unordered or gi:!ater than

Ordered greater than or less than
Unordered or equal to

Ordered

Unordered

MC68881 miscellaneous tests
Definition Equation

False False
True True
Signaling false False
Signaling true True
Signaling equal z
Signaling not equal z

MC68851 PMMU condition codes

Condition Encoding

B set 000000
B clear 000001
L set 000010
L clear 000011
S set 000100
S clear 000101
A set 000110
A clear 000111
W set 001000
Wclear 001001
I set 001010
I clear 001011
G set 001100
G clear 001101
C set 001110
C clear 001111

232 MPW 3.0 Assembler Reference

Equation

NAN+ (N+Z)

NAN+Z

NAN+Z

NAN

NAN

Predicate

000000
001111
010000
011111
010001
011110

Predicate

001010

000110

001001

000111

001000

Instruction set listings

Tables F-7, F-8, and F-9 are edited listings of the actual data files used to produce the
opcode table used by the Assembler. These tables show all the opcodes sorted
alphabetically. Different encodings for the same mnemonic are grouped, with a blank line
separating each group. The encodings within each group are ordered so that generic forms
or optimizations occur before more general forms.

In Tables F-8 and F-9, the following metasymbols are used to denote groups of
coprocessor registers:

FPn FPO .. FP7
FRList Floating-point register list
FCRList . ·= Floating-point control register list
BADn : := BADO .. BAD7
BACn . ·= BACO .. BAC7
XRP . ·= CRP I SRP I DRP
SCCCAL : := sec 1 CAL

• Table F-7 MC68000, MC68010, and MC68020/MC68030 instructions

Opcode Operands Opcode word Group Flags Range Equivalent

ABCD Dn,Dn 1100 000 100 000 000 6 B
ABCD - (An), - (An) 1100 000 100 001 000 6 B

ADD :tdata, <eal> 0101 000 000 000 000 24 BWLG 3 ADDQ (Opt)
ADD * da.ta, <ea3> 0000 011 000 000 000 25 BWLG ADDI
ADD <eaO>, Dn 1101 000 000 000 000 22 BWL
ADD Dn, <ea2> 1101 000 100 000 000 23 BWL
ADD <eaO>, An 1101 000 011 000 000 27 WLG ADDA

ADDA :tdata, <eal> 0101 000 000 000 000 24 WLG 3 ADDQ (Opt)
ADDA <eaO>,An 1101 000 011 000 000 27 WL

ADDI *data, <ea3> 0000 011 000 000 000 25 BWL

ADDQ tdata, <eal> 0101 000 000 000 000 24 BWL 3

ADDX Dn,Dn 1101 000 100 000 000 8 BWL
ADDX - (An), - (An) 1101 000 100 001 000 8 BWL

AND *data, <ea3> 0000 001 000 000 000 25 BWLG ANDI
AND Dn, <ea2> 1100 000 100 000 000 23 BWL
M"'D <ea6>, Dn 1100 000 000 000 coo 22 BWL

(continued)

A P P E N D I X F Instruction Sets 233

• Table F-7 (continued)

Opcode

ANDI
ANDI
ANDI

ASL
ASL
ASL

ASR

Operands

:it data, CCR
:itdata, SR
:it data, <ea3>

:itdata,Dn
on,Dn
<ea2>

:it data, Dn
ASR Dn, Dn
ASR <ea2>

BCC /al;el

BCHG :it data, Dn
BCHG :itdata, <ea2>
BCHG Dn, Dn
BCHG D n' <ea2>

BCLR :itdata, Dn
BCLR *data' <ea2>
BCLR Dn,Dn
BCLR Dn, <ea2>

BCS /al;el

BEQ /al;el

BFCHG special

BFCLR special

BFEXT s special

BFEXTU special

BFFFO special

BFINS special

BF SET special

BFTST special

BGE /al;el

BGT Jaf;el

BHI Jaf;el

BHS

BKPT

lal;el

:it data

MC68000, MC68010, and MC68020/MC68030 instructions

Opcode word

0000 001 000 111 100
0000 001 001 111 100
0000 001 000 000 000

1110 000 100 000 000
1110 000 100 100 000
1110 000 111 000 000

1110 000 000 000 000
1110 000 000 100 000
1110 000 011 000 000

0110 0100 00000000

0000 100 001 000 000
0000 100 001 000 000
0000 000 101 000 000
0000 000 101 000 000

0000 100 010 000 000
0000 100 010 000 000
0000 000 110 000 000
0000 000 110 000 000

0110 0101 00000000

0110 0111 00000000

1110 101 011 000 000

1110 110 011 000 000

1110 101 111 000 000

1110 100 111 000 000

1110 110 111 000 000

1110 111 111 000 000

1110 111 011 000 000

1110 100 011 000 000

0110 1100 00000000

0110 1110 00000000

0110 0010 00000000

0110 0100 00000000

0100 100 001 001 000

Group Flags Range Equivalent

1 B
1 PW
25 BWL

10 BWL
9 BWL
15 w
10 BW
9 BWL
15 w

14 BWL

19 L
19 B
20 L
20 B

19 L
19 B
20 L
20 B

14 BWL

14 BWL

31 2

31 2

32 2

32 2

32 2

33 2

31 2

31 2

14 BWL

14 BWL

14 BWL

8
16

3

3

14

2

BWLG BCC

2 4

234 MPW 3.0 Assembler Reference

• Table F-7 (continued) MC68000, MC68010, and MC68020/MC68030 instructions

Opcode Operands Opcode word Group Flags Range Equivalent

BLE label 0110 1111 00000000 14 BWL

BLO label 0110 0101 00000000 14 BWLG BCS

BLS label 0110 0011 00000000 14 BWL

BLT label 0110 1101 00000000 14 BWL

BMI label 0110 1011 00000000 14 BWL

BNE label 0110 0110 00000000 14 BWL

BNZ label 0110 0110 00000000 14 BWLG BNE

BPL label 0110 1010 00000000 14 BWL

BRA label 0110 0000 00000000 14 BWL

BSET #data, Dn 0000 100 011 000 000 19 L
BSET #data, <ea2> 0000 100 011 000 000 19 B
BSET Dn,nn 0000 000 111 000 000 20 L
BSET Dn, <ea2> 0000 000 111 000 000 20 B

BSR label 0110 0001 00000000 14 BWL

BT label 0110 0000 00000000 14 BWLG BRA

BTST #data, nn 0000 100 000 000 000 19 L
BTST #data, <ea5> 0000 100 000 000 000 19 B
BTST nn,Dn 0000 000 100 000 000 20 L
BTST nn, <ea12> 0000 000 100 000 000 20 B

BVC label 0110 1000 00000000 14 BWL

BVS label 0110 1001 00000000 14 BWL

BZ label 0110 0111 00000000 14 BWL BEQ

CALLM #data, <ea 7> 0000 011 011 000 000 47 2

CAS special 0000 100 011 000 000 34 2BWL

CAS2 special 0000 100 011 111 100 35 2BWL

CHK <ea6>, nn 0100 000 110 000 000 21 w
CHK <ea6>, on 0100 000 100 000 000 21 2L

CHK2 <ea7>, Dn 0000 000 011 000 000 36 2BWL
CHK2 <ea7>, An 0000 000 011 000 000 36 2BWL

CLR Dn 0111 000 0 00000000 11 LG MOVEQ (Opt)
CLR <ea3> 0100 001 000 000 000 17 BWL

(continued)

A P P E N D I X F Instruction Sets 235

• Table F-7 (continued) MC68000, MC68010, and MC68020/MC68030 instructions

Opcode

CMP
CMP
CMP
CMP
CMP
CMP

CMPA

CMPI

CMPM
CMPM
CMPM

CMP2
CMP2

OBCC

OBCS

OBEQ

OBF

OBGE

OBGT

OBHI

OBHS

OBLE

OBLO

OBLS

OBLT

OBMI

OBNE

OBNZ

OBPL

OBRA

OBT

OBVC

Opcode word

tdata, <ea3> 0000 110 ooo ooo ooo
<eaO>, on 1011 ooo ooo ooo ooo
<eaO>,An 1011 ooo 011 ooo ooo
(An)+, (An)+ 1011 000 100 001 000
(An)+, (An)+ 1011 000 101 001 000
(An)+, (An)+ 1011 000 110 001 000

<eaO>,An 1011 ooo 011 ooo ooo
tdata,<ea3> 0000 110 ooo ooo ooo
(An)+, (An)+ 1011 000 100 001 000
(An)+, (An)+ 1011 000 101 001 000
(An)+, (An)+ 1011 000 110 001 000

<ea7>, on
<ea7>,An

on, label

Dn, label

Dn, label

Dn, label

on, label

Dn, label

Dn, label

Dn, label

Dn, label

Dn, label

Dn, label

Dn, label

Dn, label

Dn, label

Dn, label

Dn, label

on, label

on, label

on, label

0000 000 011 000 000
0000 000 011 000 000

0101 0100 11 001 000

0101 0101 11 001 000

0101 0111 11 001 000

0101 0001 11 001 000

0101 1100 11 001 000

0101 1110 11 001 000

0101 0010 11 001 000

0101 0100 11 001 000

0101 1111 11 001 000

0101 0101 11 001 000

0101 0011 11 001 000

0101 1101 11 001 000

0101 1011 11 001 000

0101 0110 11 001 000

0101 0110 11 001 000

0101 1010 11 001 000

0101 0001 11 001 000

0101 0000 11 001 000

0101 1000 11 001 000

236 MPW 3.0 Assembler Reference

Group Flags .Range Equivalent

25 BWLG
22 BWL
27 WLG
6 WG
6 BG
6 LG

27 WL

25 BWL

6
6
6

w
B
L

37 2BWL
37 2BWL

13 w
13 w

13 w
13 w
13 w

13 w
13 w

13 WG

13 w

13 WG

13 w
13 w
13 w

13 w

13 WG

13 w

13 WG

13 w
13 w

CMPI

CMPA
CMPM
CMPM
CMPM

DBCC

DBCS

DBNE

DBF

• Table F-7 (continued) MC68000, MC68010, and MC68020/MC68030 instructions

Opcode

DBVS

DBZ

DIVS
DIVS

DIVU
DIVU

EOR
EOR

EORI
EORI
EORI

EXG
EXG
EXG
EXG

EXT
EXT

EXTB
EXTB

EXTW

ILLEGAL

JMP

JSR

LEA

LINK
LINK

LSL
LSL
LSL

LSR
LSR
LSR

Operands

Dn, label

Dn, label

special
<ea6>, on

Opcode word

0101 1001 11 001 000

0101 0111 11 001 000

0100 110 001 000 000
1000 000 111 000 000

special 0100 110 001 ooo ooo
<ea6>,on 1000 ooo 011 ooo ooo
fdata,<ea3> 0000 101 ooo ooo ooo
on,<ea3> 1011 ooo 100 ooo ooo
fdata,<ea3> 0000 101 ooo ooo ooo
fdata,CCR 0000 101 000 111 100
fdata,SR 0000 101 001 111 100

An,Dn
on, on
An, An
on, An

Dn
Dn

Dn
Dn

Dn

<ea7>

<ea7>

<ea7>,An

An, fdata
An, fdata

fdata, Dn
on,Dn
<ea2>

fdata, on
on,Dn
<ea2>

1100 000 110 001 000
1100 000 101 000 000
1100 000 101 001 000
1100 000 110 001 000

0100 100 010 000 000
0100 100 011 000 000

0100 100 010 000 000
0100 100 111 000 000

0100 100 011 000 000

0100 101 011 111 100

0100 111 011 000 000

0100 111 010 000 000

0100 000 111 000 000

0100 111 001 010 000
0100 100 000 001 000

1110 000 100 001 000
1110 000 100 101 000
1110 001 111 000 000

1110 000 000 001 000
1110 000 000 101 000
1110 001 011 000 000

Group Flags Range Equivalent

13 w

13 w

38 2L
21 w

39 2L
21 w

DBEQ

25 BWLG EORI
23 BWL

25 BWL
1 B 8
1 PW 16

6
7
7
7

2
2

2
2

2

0

L
L
L
L

w
L

WG
2L

LG

15 w

15 w

46 L

4 w -16
4 L

10 BWL 3
9 BWL
15 w

10 BWL 3
9 BWL
15 w

EXT.W

EXT.L

(continued)

A P P E N D I X F Instruction Sets 237

• Table F-7 (continued) MC68000, MC68010, and MC68020/MC68030 instructions

Opcode

MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE

MO VEA
MO VEA

MOVEC
MOVEC
MOVEC
MOVEC

MOVEM
MOVEM

MOVEP
MOVEP
MOVEP
MOVEP

MOVEQ
MOVEQ

MOVES
MOVES
MOVES
MOVES

MULS
MULS

MULU
MULU

NBCD

NEG

NEGX

NOP

Operands Opcode word Group Flags Range Equivalent

#data, on 0111 ooo o 00000000 11 LG -8 MOVEQ (Opt)
#data,<ea3> 0100 001 ooo ooo ooo
#data, An 1001 ooo 111 ooo ooo
<ea0>,<ea3> 0000 ooo ooo ooo ooo

18 BWLC 0 CLR (Opt)
28 WLG 0 SUBA.L (Op0
26 BWL

<eaO>, An 0000 ooo ooo ooo ooo 26 WLG MOVEA
An,USP 0100 111 001 100 000
USP,An 0100 111 001 101 000
<ea6>, CCR 0100 011 011 000 000
CCR, <ea3> 0100 001 011 000 000
<ea6>, SR 0100 010 011 ooo ooo
SR, <ea3> 0100 ooo 011 ooo ooo

2 PL
3 PL
15 w
16 1 w
15 PW
16 PW

#data,An 1001 ooo 111 ooo ooo 28 WLG 0 SUBA.L (Op0
<eaO>, An 0000 ooo ooo ooo ooo 26 WL

Rc,Dn
Re, An
on, Re
An, Re

<ea8>, rlist
rlist, <ea4>

d (An), on
on, d (An)
d(An),Dn
on, d (An)

:If data, on
:If data, An

on, <ea2>
An, <ea2>
<ea2>, on
<ea2>, An

special
<ea6>, on

special
<ea6>, Dn

<ea3>

<ea3>

<ea3>

0100 111 001 111 010
0100 111 001 111 010
0100 111 001 111 011
0100 111 001 111 011

0100 110 010 000 000
0100 100 010 000 000

0000 000 100 001 000
0000 000 110 001 000
0000 000 101 001 000
0000 000 111 001 000

0111 000 0 00000000
1001 000 111 000 000

42 lPL
42 lPL
42 lPL
42 lPL

29 WL
30 WL

5 w
5 w
5 L
5 L

11 L

28 LG

0000 111 000 000 000 43 lPBWL
0000 111 000 000 000 43 lPBWL
0000 111 000 000 000 43 lPBWL
0000 111 000 000 000 43 lPBWL

0100 110 000 000 000 38 2L
1100 000 111 000 000 21 w

0100 110 000 000 000 39 2L
1100 000 011 000 000 21 w

0100 100 000 000 000 15 B

0100 010 000 000 000 17 BWL

0100 000 000 000 000 17 BWL

0100 111 001 110 001 0

-8
0 SUBA. L (Opt)

238 MPW 3.0 Assembler Reference

• Table F-7 (continued) MC68000, MC68010, and MC68020/MC68030 instructions

Opcode

NOT

OR
OR
OR

ORI
ORI
ORI

PACK

PEA

RESET

ROL
ROL
ROL

ROR
ROR
ROR

ROXL
ROXL
ROXL

ROXR
ROXR
ROXR

RTD

RTE

RTM
RTM

RTR

RTS

SBCD
SBCD

sec

scs

Operands Opcode word

<ea3> 0100 011 000 000 000

#data, <ea3> 0000 ooo ooo ooo ooo
<ea6>,Dn 1000 ooo ooo ooo ooo
Dn,<ea2> 1000 ooo 100 ooo ooo
#data, <ea3> 0000 ooo ooo ooo ooo
#data, CCR 0000 000 000 111 100
#data, SR 0000 000 001 111 100

special 1000 ooo 101 ooo ooo
<eal>

#data, Dn
Dn,Dn
<ea2>

#data, on
Dn,Dn
<ea2>

#data, on
Dn,Dn
<ea2>

#data, on
Dn,Dn
<ea2>

#data

Dn
An

0100 100 001 000 000

0100 111 001 110 000

1110 000 100 011 000
1110 000 100 111 000
1110 011 011 000 000

1110 000 000 011 000
1110 000 000 111 000
1110 011 111 000 000

1110 000 100 010 000
1110 000 100 110 000
1110 010 111 000 000

1110 000 000 010 000
1110 000 000 110 000
1110 010 011 000 000

0100 111 001 110 100

0100 111 001 110 011

0000 011 011 000 000
0000 011 011 001 000

0100 111 001 110 111

0100 111 001 110 101

on,Dn 1000 ooo 100 ooo ooo
-(An) ,-(An) 1000 ooo 100 001 ooo
<ea3> 0101 0100 11 ooo coo
<ea3> 0101 0101 11 ooo ooo

Group Flags Range Equivalent

17 BWL

25 BWLG ORI
22 BWL
23 BWL

25 BWL
1 B 8
1 PW 16

44 2 16

45

0

L

p

10 BWL 3
9 BWL
15 w

10 BWL 3
9 BWL
15 w
10 BWL 3
9 BWL
15 w

10 BWL 3
9 BWL
15 w
1 lW -16

0

48
48

0

0

p

2
2

6 B
6 B

15 B

15 B

(continued)

A P P E N D I X F Instruction Sets 239

• Table F-7 (continued) MC68000, MC68010, and MC68020/MC68030 instructions

Opcode

SEQ

SF

SGE

SGT

SHI

SHS

SLE

SLO

SLS

SLT

SMI

SNE

SNZ

SPL

ST

STOP

SUB
SUB
SUB
SUB
SUB

SUBA
SUBA

SUBI

SUBQ

SUBX
SUBX

SVC

svs
SWAP

TAS

TCC

Operands

<ea3>

<ea3>

<ea3>

<ea3>

<ea3>

<ea3>

<ea3>

<ea3>

<ea3>

<ea3>

<ea3>

<ea3>

<ea3>

<ea3>

<ea3>

4tdata

- 4tdata, <eal>
*data, <ea3>
Dn, <ea2>
<ea()>, Dn
<ea()>, An

4tdata, <eal>
<eaO>, An

*data, <eaJ>

4tdata, <eal>

Opcode word

0101 0111 11 000 000

0101 0001 11 000 000

0101 1100 11 000 000

0101 1110 11 000 000

0101 0010 11 000 000

0101 0100 11 000 000

0101 1111 11 000 000

0101 0101 11 000 000

0101 0011 11 000 000

0101 1101 11 000 000

0101 1011 11 000 000

0101 0110 11 000 000

0101 0110 11 000 000

0101 1010 11 000 000

0101 0000 11 000 000

0100 111 001 110 010

0101 000 100 000 000
0000 010 000 000 000
1001 000 100 000 000
1001 000 000 000 000
1001 000 011 000 000

0101 000 100 000 000
1001 000 011 000 000

0000 010 000 000 000

0101 000 100 000 000

Dn,on 1001 ooo 100 ooo ooo
-CAn),-(An) 1001 ooo 100 001 ooo
<ea3> 0101 1000 11 ooo ooo
<ea3> 0101 1001 11 ooo ooo
Dn 0100 100 001 000 000

<ea3> 0100 101 011 ooo ooo
0101 0100 11111 100

240 MPW 3.0 Assembler Reference

Group Flags Range Equivalent

15 B

15 B

15 B

15 B

15 B

15 BG

15 B

15 BG

15 B

15 B

15 B

15 B

15 BG

15 B

15 B

1 p 16

24 BWLG 3
25 BWLG
23 BWL
22 BWL
27 WLG

24 WLG 3
27 WL

25 BWL

24 BWL 3

8 BWL
8 BWL

15 B

15 B

2 w
15 B

0 2

sec

scs

SNE

SUBQ (Opt)
SUBI

SUBA

SUBQ (Opt)

• Table F-7 (continued) MC68000, MC68010, and MC68020/MC68030 instructions

Opcode Operands Opcode word Group Flags Range Equivalent

TCS 0101 0101 11111 100 0 2

TD IVS special 0100 110 001 000 000 40 2L

TDIVU special 0100 110 001 000 000 41 2L

TEQ 0101 0111 11111 100 0 2

TF 0101 0001 11111 100 0 2

TGE 0101 1100 11111 100 0 2

TGT 0101 1110 11111 100 0 2

THI 0101 0010 11111 100 0 2

THS 0101 0100 11111 100 0 2G TCC

TLE 0101 1111 11111 100 0 2

TLO 0101 0101 11111 100 0 2G TCS

TLS 0101 0011 11111 100 0 2

TLT 0101 1101 11111 100 0 2

TMI 0101 1011 11111 100 0 2

TNE 0101 0110 11111 100 0 2

TNZ 0101 0110 11111 100 0 2G TNE

TPCC #data 0101 0100 11111 010 1 2W -16
TPCC #data 0101 0100 11111 011 1 2L

TPCS #data 0101 0101 11111 010 1 2W -16
TPCS #data 0101 0101 11111 011 1 2L

TPEQ #data 0101 0111 11111 010 1 2W -16
TPEQ #data 0101 0111 11111 011 1 2L

TPF #data 0101 0001 11111 010 1 2W -16
TPF #data 0101 0001 11111 011 1 2L

TPGE #data 0101 1100 11111 010 1 2W -16
TPGE #data 0101 1100 11111 011 1 2L

TPGT #data 0101 1110 11111 010 1 2W -16
TPGT #data 0101 1110 11111 011 1 2L

TPHI #data 0101 0010 11111 010 1 2W -16
TPHI #data 0101 0010 11111 011 1 2L

TPHS #data 0101 0100 11111 010 1 2WG -16 TPCC
TPHS #data 0101 0100 11111 011 1 2LG TPCC

(continued)

A P P E N D I X F Instruction Sets 241

• Table F-7 (continued) MC68000, MC68010, and MC68020/MC68030 instructions

Opcode

TPL

TPLE
TPLE

TPLO
TPLO

TPLS
TPLS

TPLT
TPLT

TPMI
TPMI

TPNE
TPNE

TPNZ
TPNZ

TPPL
TPPL

TPT
TPT

TPVC
TPVC

TPVS
TPVS

TPZ
TPZ

TRAP

TRAPV

TST

TT

TVC

TVS

TZ

UNLK

UNPK

Operands

tdata
tdata

tdata
tdata

tdata
tdata

tdata
tdata

tdata
tdata

tdata
tdata

tdata
tdata

tdata
tdata

tdata
tdata

tdata
tdata

tdata
tdata

tdata
tdata

tdata

<ea3>

An

special

Opcode word

0101 1010 11111 100

0101 1111 11111 010
0101 1111 11111 011

0101 0101 11111 010
0101 0101 11111 011

0101 0011 11111 010
0101 0011 11111 011

0101 1101 11111 010
0101 1101 11111 011

0101 1011 11111 010
0101 1011 11111 011

0101 0110 11111 010
0101 0110 11111 011

0101 0110 11111 010
0101 0110 11111 011

0101 1010 11111 010
0101 1010 11111 011

0101 0000 11111 010
0101 0000 11111 011

0101 1000 11111 010
0101 1000 11111 011

0101 1001 11111 010
0101 1001 11111 011

0101 0111 11111 010
0101 0111 11111 011

0100 111 001 00 0000

0100 111 001 110 110

0100 101 000 000 000

0101 0000 11111 100

0101 1000 11111 100

0101 1001 11111 100

0101 0111 11111 100

0100 111 001 011 000

1000 000 110 000 000

242 MPW 3.0 Assembler Reference

Group Flags Range Equivalent

0

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

12

0

2

2W
2L

-16

2WG -16 TPCS
2LG TPCS

2W
2L

2W
2L

2W
2L

2W
2L

-16

-16

-16

-16

2WG -16 TPNE
2LG TPNE

2W
2L

2W
2L

2W
2L

2W
2L

2W
2L

-16

-16

-16

-16

-16 TPEQ
TPEQ

4

17 BWL

0

0

0

0

2

44

2

2

2

2

2

TEQ

16

• Table F-8 MC68881 instructions

Opcode Operands Opcode word Cp type Group Flags Equivalent

FABS FPn 000 000 000 0011000 Genl 1 x
FABS FPn, FPn 000 000 000 0011000 Genl 2 x
FABS <ea6>, FPn 010 000 000 0011000 Gen2 3 BWLSDXK
FACOS FPn 000 000 000 0011100 Genl 1 x
FACOS FPn, FPn 000 000 000 0011100 Genl 2 x
FACOS <ea6>, FPn 010 000 000 0011100 Gen2 3 BWLSDXK
FADD FPn 000 000 000 0100010 Genl 1 XG FADD FPn, FPn
FADD FPn, FPn 000 000 000 0100010 Genl 2 x
FADD <ea6>, FPn 010 000 000 0100010 Gen2 3 BWLSDXK
FAS IN FPn 000 000 000 0001100 Genl 1 x
FAS IN FPn, FPn 000 000 000 0001100 Genl 2 x
FAS IN <ea6>, FPn 010 000 000 0001100 Gen2 3 BWLSDXK
FATAN FPn 000 000 000 0001010 Genl 1 x
FATAN FPn, FPn 000 000 000 0001010 Genl 2 x
FATAN <ea6>, FPn 010 000 000 0001010 Gen2 3 BWLSDXK
FATANH FPn 000 000 000 0001101 Genl 1 x
FA TANH FPn, FPn 000 000 000 0001101 Genl 2 x
FATANH <ea6>, FPn 010 000 000 0001101 Gen2 3 BWLSDXK
FBEQ label 1111 000 01 0 000001 Bee 4 WL
FBF label 1111 000 01 0 000000 Bee 4 WL
FBGE label 1111 000 01 0 010011 Bee 4 WL
FBGL label 1111 000 01 0 010110 Bee 4 WL
FBGLE label 1111 000 01 0 010111 Bee 4 WL
FBGT label 1111 000 01 0 010010 Bee 4 WL
FBLE label 1111 000 01 0 010101 Bee 4 WL
FBLT label 1111 000 01 0 010100 Bee 4 WL
FBNE label 1111 000 01 0 001110 Bee 4 WL
FBNGE label 1111 000 01 0 011100 Bee 4 WL
FBNGL label 1111 000 01 0 011001 Bee 4 WL
FBNGLE label 1111 000 01 0 011000 Bee 4 WL
FBNGT label 1111 000 01 0 011101 Bee 4 WL
FBNLE label 1111 000 01 0 011010 Bee 4 WL
FBNLT label 1111 000 01 0 011011 Bee 4 WL
FBOGE label 1111 000 01 0 000011 Bee 4 WL
FB_OGL label 1111 000 01 0 000110 Bee 4 WL
FBOGT label 1111 000 01 0 000010 Bee 4 WL
FBOLE label 1111 000 01 0 000101 Bee 4 WL
FBOLT label 1111 000 01 0 000111 Bee 4 WL
FBRA label 1111 000 01 0 001111 Bee 4 WLGFBT
FBSEQ label 1111 000 01 0 010001 Bee 4 WL
FBSF label 1111 000 01 0 010000 Bee 4 WL
FBSNE label 1111 000 01 0 011110 Bee 4 WL
FBST label 1111 000 01 0 011111 Bee 4 WL

(continued)

A P P E N D I X F Instruction Sets 243

• Table F-8 (continued) MC68881 instructions

Opcode Operands Opcode word Cp type Group Flags Equivalent

FBT label 1111 000 01 0 001111 Bee 4 WL
FBUEQ label 1111 000 01 0 001001 Bee 4 WL
FBUGE label 1111 000 01 0 001011 Bee 4 WL
FBUGT label 1111 000 01 0 001010 Bee 4 WL
FBULE label 1111 000 01 0 001101 Bee 4 WL
FBULT label 1111 000 01 0 001100 Bee 4 WL
FBUN label 1111 000 01 0 001000 Bee 4 WL
FCMP FPn, FPn 000 000 000 0111000 Genl 2 x
FCMP <ea6>, FPn 010 000 000 0111000 Gen2 3 BWLSDXK
FCOS FPn 000 000 000 0011101 Genl 1 x
FCOS FPn, FPn 000 000 000 0011101 Genl 2 x
FCOS <ea6>, FPn 010 000 000 0011101 Gen2 3 BWLSDXK
FCOSH FPn 000 000 000 0011001 Genl 1 x
FCOSH FPn, FPn 000 000 000 0011001 Genl 2 x
FCOSH <ea6>, FPn 010 000 000 0011001 Gen2 3 BWLSDXK
FDBEQ Dn, label 0000000000 000001 DBcc 5 w
FDBF Dn, label 0000000000 000000 DBcc 5 w
FDBGE Dn, label 0000000000 010011 DBcc 5 w
FDBGL Dn, label 0000000000 010110 DBcc 5 w
FD BG LE Dn, label 0000000000 010111 DB cc 5 w
FDBGT Dn, label 0000000000 010010 DB cc 5 w
FDBLE Dn, label 0000000000 010101 DB cc 5 w
FD BLT Dn, label 0000000000 010100 DB cc 5 w
FDBNE Dn, label 0000000000 001110 DB cc 5 w
FDBNGE Dn, label 0000000000 011100 DB cc 5 w
FDBNGL Dn, label 0000000000 011001 DB cc 5 w
FDBNGLE Dn, label 0000000000 011000 DB cc 5 w
FDBNGT on, label 0000000000 011101 DB cc 5 w
FDBNLE Dn, label 0000000000 011010 DB cc 5 w
FDBNLT Dn, label 0000000000 011011 DBcc 5 w
FD BOGE Dn, label 0000000000 000011 DB cc 5 w
FDBOGL Dn, label 0000000000 000110 DBcc 5 w
FDBOGT Dn, label 0000000000 000010 DBcc 5 w
FD BOLE Dn, label 0000000000 000101 DB cc 5 w
FD BOLT Dn, label 0000000000 000100 DBcc 5 w
FDBOR Dn, label 0000000000 000111 DB cc 5 w
FD BRA Dn, label 0000000000 001111 DB cc 5 WGFDBT
FDBSEQ Dn, label 0000000000 010001 DB cc 5 w
FDBSF Dn, label 0000000000 010000 DBcc 5 w
FDBSNE Dn, label 0000000000 011110 DB cc 5 w
FDBST Dn, label 0000000000 011111 DB cc 5 w
FDBT Dn, label 0000000000 001111 DB cc 5 w
FDBUEQ Dn, label 0000000000 001001 DB cc 5 w
FDBUGE Dn, label 0000000000 001011 DBcc 5 w
FDBUGT Dn, label 0000000000 001010 DB cc 5 w

244 MPW 3.0 Assembler Reference

• Table F-8 (continued) MC68881 instructions

Opcode Operands Opcode word Cp type Group Flags Equivalent

FDBULE Dn, label 0000000000 001101 DBcc 5 w
FD BULT Dn, label 0000000000 001100 DB cc 5 w
FD BUN Dn, label 0000000000 001000 DBcc 5 w
FDIV FPn, FPn 000 000 000 0100000 Genl 2 x
FDIV <ea6>, FPn 010 000 000 0100000 Gen2 3 BWLSDXK
FETOX FPn 000 000 000 0010000 Genl 1 x
FETOX FPn, FPn 000 000 000 0010000 Genl 2 x
FETOX <ea6>, FPn 010 000 000 0010000 Gen2 3 BWLSDXK
FETOXMl FPn 000 000 000 0001000 Genl 1 x
FETOXMl FPn, FPn 000 000 000 0001000 Genl 2 x
FETOXMl <ea6>, FPn 010 000 000 0001000 Gen2 3 BWLSDXK
FGETEXP FPn 000 000 000 0011110 Genl 1 x
FGETEXP FPn,FPn 000 000 000 0011110 Genl 2 x
FGETEXP <ea6>, FPn 010 000 000 0011110 Gen2 3 BWLSDXK
FGETMAN FPn 000 000 000 0011111 Genl 1 x
FGETMAN FPn,FPn 000 000 000 0011111 Genl 2 x
FGETMAN <ea6>, FPn 010 000 000 0011111 Gen2 3 BWLSDXK
FINT FPn 000 000 000 0000001 Genl 1 x
FINT FPn, FPn 000 000 000 0000001 Genl 2 x
FINT <ea6>, FPn 010 000 000 0000001 Gen2 3 BWLSDXK
FINTRZ FPn 000 000 000 0000011 Genl 1 x
FINTRZ FPn, FPn 000 000 000 0000011 Genl 2 x
FINTRZ <ea6>, FPn 010 000 000 0000011 Gen2 3 BWLSDXK
FLOGlO FPn 000 000 000 0010101 Genl 1 x
FLOGlO FPn, FPn 000 000 000 0010101 Genl 2 x
FLOGlO <ea6>, FPn 010 000 000 0010101 Gen2 3 BWLSDXK
FLOG2 FPn 000 000 000 0010110 Genl 1 x
FLOG2 FPn, FPn 000 000 000 0010110 Genl 2 x
FLOG2 <ea6>, FPn 010 000 000 0010110 Gen2 3 BWLSDXK
FLOGN FPn 000 000 000 0010100 Genl 1 x
FLOGN FPn, FPn 000 000 000 0010100 Genl 2 x
FLOGN <ea6>, FPn 010 000 000 0010100 Gen2 3 BWLSDXK
FLOGNPl FPn 000 000 000 0000110 Genl 1 x
FLOGNPl FPn,FPn 000 000 000 0000110 Genl 2 x
FLOGNPl <ea6>, FPn 010 000 000 0000110 Gen2 3 BWLSDXK
FMOD FPn, FPn 000 000 000 0100001 Genl 2 x
FMOD <ea6>, FPn 010 000 000 0100001 Gen2 3 BWLSDXK
FMOVE special 011 000 000 0000000 21 P {k-factor}
FMOVE FPn,FPn 000 000 000 0000000 Genl 2 x
FMOVE FPn,<ea3> 011 000 000 0000000 Gen3 6 BWLSDX
FMOVE <ea 6>, FPn 010 000 000 0000000 Gen2 3 BWLSDXK
FMOVE FPCR, <ea3> 101 100 0000000000 Gen3 7 L
FMOVE FPSR, <ea3> 101 010 0000000000 Gen3 7 L
FMOVE FPIAR, <ea3> 101 001 0000000000 Gen3 7 L

(continued)

A P P E N D I X F Instruction Sets 245

• Table F-8 (continued) MC68881 instructions

Opcode Operands Opcode word Cp type Group Flags Equivalent

FMOVE FPIAR,An 101 001 0000000000 Gen3 7 L
FMOVE <ea6>, FPCR 100 100 0000000000 Gen2 8 L
FMOVE <ea6>, FPSR 100 010 0000000000 Gen2 8 L
FMOVE <ea6>, FPIAR 100 001 0000000000 Gen2 8 L
FMOVE An, FPIAR 100 001 0000000000 Gen2 8 L
FMOVECR #data, FPn 010111 000 0000000 Genl 9 x
FMOVEM <ea8>, f rlist 110 10 000 00000000 Gen2 10 x
FMOVEM frlist, <ea4> 111 00 000 00000000 Gen3 11 x
FMOVEM <ea8>, on 110 11 000 00000000 Gen2 12 x
FMOVEM on, <ea4> 111 01 000 00000000 Gen3 13 x
FMOVEM <eaO>, fer list 11 0 000 0000000000 Gen2 14 L
FMOVEM fcr/ist, <eal > 11 1 000 0000000000 Gen3 15 L
FMUL FPn 000 000 000 0100011 Genl 1 XG FMUL FPn, FPn

FMUL FPn, FPn 000 000 000 0100011 Genl 2 x
FMUL <ea6>, FPn 010 000 000 0100011 Gen2 3 BWLSDXK
FNEG FPn 000 000 000 0011010 Genl 1 x
FNEG FPn, FPn 000 000 000 0011010 Genl 2 x
FNEG <ea6>, FPn 010 000 000 0011010 Gen2 3 BWLSDXK
FNOP 0000000000000000 0
FREM FPn, FPn 000 000 000 0100101 Genl 2 x
FREM <ea6>, FPn 010 000 000 0100101 Gen2 3 BWLSDXK
FRESTORE <ea8> 1111 000 101 000 000 Rest 16 p
FSA VE <ea4> 1111 000 100 000 000 Save 16 p
FSCALE FPn, FPn 000 000 000 0100110 Genl 2 x
FSCALE <ea6>, FPn 010 000 000 0100110 Gen2 3 BWLSDXK
FSEQ <ea3> 0000000000 000001 Sec 17 B
FSF <ea3> 0000000000 000000 Sec 17 B
FSGE <ea3> 0000000000 010011 Sec 17 B
FSGL <ea3> 0000000000 010110 Sec 17 B
FSGLE <ea3> 0000000000 010111 Sec 17 B
FSGT <ea3> 0000000000 010010 Sec 17 B
FSLE <ea3> 0000000000 010101 Sec 17 B
FSLT <ea3> 0000000000 010100 Sec 17 B
FSNE <ea3> 0000000000 001110 Sec 17 B
FSNGE <ea3> 0000000000 011100 Sec 17 B
FSNGL <ea3> 0000000000 011001 Sec 17 B
FSNGLE <ea3> 0000000000 011000 Sec 17 B
FSNGT <ea3> 0000000000 011101 Sec 17 B
FSNLE <ea3> 0000000000 011010 Sec 17 B
FSNLT <ea3> 0000000000 011011 Sec 17 B
FSOGE <ea3> 0000000000 000011 Sec 17 B
FSOGL <ea3> 0000000000 000110 Sec 17 B
FSOGT <ea3> 0000000000 000010 Sec 17 B
FSOLE <ea3> 0000000000 000101 Sec 17 B
FSOLT <ea3> 0000000000 000100 Sec 17 B

246 MPW 3.0 Assembler Reference

• Table F-8 (continued) MC68881 instructions

Opcode Operands Opa>deword Cp type Group Flags Equivalent

FSOR <ea3> 0000000000 000111 Sec 17 B
FSSEQ <ea3> 0000000000 010001 Sec 17 B
FSSF <ea3> 0000000000 010000 Sec 17 B
FSSNE <ea3> 0000000000 011110 Sec 17 B
FSST <ea3> 0000000000 011111 Sec 17 B
FST <ea3> 0000000000 001111 Sec 17 B
FSUEQ <ea3> 0000000000 001001 Sec 17 B
FSUGE <ea3> 0000000000 001011 Sec 17 B
FSUGT <ea3> 0000000000 001010 Sec 17 B
FSULE <ea3> 0000000000 001101 Sec 17 B
FSULT <ea3> 0000000000 001100 Sec 17 B
FSUN <ea3> 0000000000 001000 Sec 17 B
FSGLDIV FPn, FPn 000 000 000 0100100 Genl 2 x
FSGLDIV <ea6>, FPn 010 000 000 0100100 Gen2 3 BWLSDXK
FSGLMUL FPn, FPn 000 000 000 0100111 Genl 2 x
FSGLMUL <ea6>, FPn 010 000 000 0100111 Gen2 3 BWLSDXK
FSIN FPn 000 000 000 0001110 Genl 1 x
FSIN FPn, FPn 000 000 000 0001110 Genl 2 x
FSIN <ea6>, FPn 010 000 000 0001110 Gen2 3 BWLSDXK
FSINCOS special 000 000 000 0110 000 22 BWLSDXK
FSINH FPn 000 000 000 0000010 Genl 1 x
FSINH FPn, FPn 000 000 000 0000010 Genl 2 x
FSINH <ea6>, FPn 010 000 000 0000010 Gen2 3 BWLSDXK
FSQRT FPn 000 000 000 0000100 Genl 1 x
FSQRT FPn, FPn 000 000 000 0000100 Genl 2 x
FSQRT <ea6>, FPn 010 000 000 0000100 Gen2 3 BWLSDXK
FSUB FPn, FPn 000 000 000 0101000 Genl 2 x
FSUB <ea6>, FPn 010 000 000 0101000 Gen2 3 BWLSDXK
FTAN FPn 000 000 000 0001111 Genl 1 x
FTAN FPn, FPn 000 000 000 0001111 Genl 2 x
FTAN <ea6>, FPn 010 000 000 0001111 Gen2 3 BWLSDXK
FTANH FPn 000 000 000 0001001 Genl 1 x
FT ANH FPn, FPn 000 000 000 0001001 Genl 2 x
FTANH <ea6>, FPn 010 000 000 0001001 Gen2 3 BWLSDXK
FTENTOX FPn 000 000 000 0010010 Genl 1 x
FT ENT OX FPn,FPn 000 000 000 0010010 Genl 2 x
FTENTOX <ea6>, FPn 010 000 000 0010010 Gen2 3 BWLSDXK
FTEST FPn 000 000 000 0111010 Genl 20 x
FTEST <ea6> 010 000 000 0111010 Gen2 20 BWLSDXK
FTEQ 0000000000 000001 Teel 18
FTF 0000000000 000000 Teel 18
FTGE 0000000000 010011 Teel 18
FTGL 0000000000 010110 Teel 18
FTGLE 0000000000 010111 Teel 18

(continued)

A P P E N D I X F Instruction Sets 247

• Table F-8 (continued) MC68881 instructions

Opcode Operands Opcode word Cp type Group Flags Equivalent

FTGT 0000000000 010010 Teel 18
FTLE 0000000000 010101 Teel 18
FTLT 0000000000 010100 Teel 18
FTNE 0000000000 001110 Teel 18
FTNGE 0000000000 011100 Teel 18
FTNGL 0000000000 011001 Teel 18
FTNGLE 0000000000 011000 Teel 18
FTNGT 0000000000 011101 Teel 18
FTNLE 0000000000 011010 Teel 18
FTNLT 0000000000 011011 Teel 18
FT OGE 0000000000 000011 Teel 18
FTOGL 0000000000 000110 Teel 18
FTOGT 0000000000 000010 Teel 18
FT OLE 0000000000 000101 Teel 18
FTOLT 0000000000 000100 Teel 18
FTOR 0000000000 000111 Teel 18
FT SEQ 0000000000 010001 Teel 18
FTSF 0000000000 010000 Teel 18
FTSNE 0000000000 011110 Teel 18
FTST 0000000000 011111 Teel 18
FTT 0000000000 001111 Teel 18
FTUEQ 0000000000 001001 Teel 18
FTUGE 0000000000 001011 Teel 18
FTUGT 0000000000001010 Teel 18
FTULE 0000000000 001101 Teel 18
FTULT 0000000000 001100 Teel 18
FTUN 0000000000 001000 Teel 18
FTPEQ :tdata 0000000000 000001 Tcc2 19 WL
FTPF #data 0000000000 000000 Tcc2 19 WL
FTP GE :tdata 0000000000 010011 Tcc2 19 WL
FTPGL :tdata 0000000000 010110 Tcc2 19 WL
FTPGLE :tdata 0000000000 010111 Tcc2 19 WL
FTP GT :tdata 0000000000 010010 Tcc2 19 WL
FTP LE :tdata 0000000000 010101 Tcc2 19 WL
FTP LT :tdata 0000000000 010100 Tcc2 19 WL
FTPNE #data 0000000000 001110 Tcc2 19 WL
FTPNGE tdata 0000000000 011100 Tcc2 19 WL
FTPNGL :tdata 0000000000 011001 Tcc2 19 WL
FTPNGLE :tdata 0000000000 011000 Tcc2 19 WL
FTPNGT :tdata 0000000000 011101 Tcc2 19 WL
FTPNLE :tdata 0000000000 011010 Tcc2 19 WL
FTPNLT :tdata 0000000000 011011 Tcc2 19 WL
FTP OGE #data 0000000000 000011 Tcc2 19 WL
FTPOGL #data 0000000000 000110 Tcc2 19 WL
FTPOGT tdata 0000000000 000010 Tcc2 i9 WL

248 MPW 3.0 Assembler Reference

• Table F-8 (continued) MC68881 instructions

Opcode Operands Opcode word Cp type Group Flags Equivalent

FTP OLE #data 0000000000 000101 Tcc2 19 WL
FTPOLT #data 0000000000 000100 Tcc2 19 WL
FTP OR #data 0000000000 000111 Tcc2 19 WL
FTP SEQ #data 0000000000 010001 Tcc2 19 WL
FTP SF #data 0000000000 010000 Tec2 19 WL
FTPSNE #data 0000000000 011110 Tcc2 19 WL
FTP ST #data 0000000000 011111 Tcc2 19 WL
FTPT #data 0000000000 001111 Tcc2 19 WL
FTPUEQ #data 0000000000 001001 Tcc2 19 WL
FTPUGE #data 0000000000 001011 Tcc2 19 WL
FTPUGT #data 0000000000 001010 Tcc2 19 WL
FT PULE #data 0000000000 001101 Tcc2 19 WL
FTPULT #data 0000000000 001100 Tcc2 19 WL
FT PUN #data 0000000000 001000 Tcc2 19 WL
FTWOTOX FPn 000 000 000 0010001 Genl 1 x
FTWOTOX FPn, FPn 000 000 000 0010001 Genl 2 x
FTWOTOX <ea6>, FPn 010 000 000 0010001 Gen2 3 BWLSDXK

• Table F-9 MC68851 instructions

Opcode Operands Opcode Word CpType Group Flags

PEAS label 1111 000 01 0 000110 Bee 4
PEAC label 1111 000 01 0 000111 Bee 4
PEES label 1111 000 01 0 000000 Bee 4
PEEC label 1111 000 01 0 000001 Bee 4
PECS label 1111 000 01 0 001110 Bee 4
PECC label 1111 000 01 0 001111 Bee 4
PEGS label 1111 000 01 0 001100 Bee 4
PEGC label 1111 000 01 0 001101 Bee 4
PEIS label 1111 000 01 0 001010 Bee 4
PEIC label 1111 000 01 0 001011 Bee 4
PELS label 1111 000 01 0 000010 Bee 4
PELC label 1111 000 01 0 000011 Bee 4
PESS label 1111 000 01 0 000100 Bee 4
PESC label 1111 000 01 0 000101 Bee 4
PEWS label 1111 000 01 0 001000 Bee 4
PEWC label 1111 000 01 0 001001 Bee 4
PDEAS Dn, label 0000000000 000110 DBec 5
PDEAC Dn, label 0000000000 000111 DBcc 5
PDEBS Dn, label 0000000000 000000 DB cc 5
PD BBC Dn, label 0000000000 000001 DB cc 5
PDBCS Dn, label 0000000000 001110 DB cc 5

(continued)

A P P E N D I X F Instruction Sets 249

• Table F-9 (continued) MC68851 instructions

Opcode Operands Opcode Word Cp Type Group Flags

PDBCC Dn, label 0000000000 001111 DBcc 5
PDBGS Dn, label 0000000000 001100 DBcc 5
PDBGC Dn, label 0000000000 001101 DB cc 5
PDBIS Dn, label 0000000000 001010 DB cc 5
PDBIC Dn, label 0000000000 001011 DB cc 5
PDBLS Dn, label 0000000000 000010 DB cc 5
PDBLC Dn, label 0000000000 000011 DB cc 5
PDBSS Dn, label 0000000000 000100 DB cc 5
PDBSC Dn, label 0000000000 000101 DB cc 5
PDBWS Dn, label 0000000000 001000 DB cc 5
PDBWC Dn, label 0000000000 001001 DB cc 5
PFLUSH special 001 100 0 0000 00000 10
PFLUSHA 001 001 0 0000 00000 Genl 0
PFLUSHR <ea12> 101 0000000000000 Gen2 2 D
PFLUSHS special 001 101 0 0000 00000 10
PLOADR special 001 000 1 0000 00000 11
PLOADW special 001 000 0 0000 00000 11
PMOVE <eaO>, BADn 011 000 0 0000000 00 Gen2 12 w
PMOVE BADn, <eal> 011 000 1 0000000 00 Gen3 12 w
PMOVE <eaO>, BACn 011 000 0 0000000 00 Gen2 12 w
PMOVE BAcn, <eal> 011 000 1 0000000 00 Gen3 12 w
PMOVE <eaO>, PSR 011 000 0 0000000 00 Gen2 12 w
PMOVE PSR, <eal> 011 000 1 0000000 00 Gen3 12 w
PMOVE <eaO>, TC 010 000 0 000000000 Gen2 12 L
PMOVE TC, <eal> 010 000 1 000000000 Gen3 12 L
PMOVE <eaO>, XRP 010 000 0 000000000 Gen2 12 D
PMOVE XRP, <eal> 010 000 1 000000000 Gen3 12 D
PMOVE <eaO>, SCCCAL 010 000 0 000000000 Gen2 12 B
PMOVE SCCCAL, <eal> 010 000 1 000000000 Gen3 12 B
PMOVE <eaO>, VAL 010 000 0 000000000 Gen2 12 B
PMOVE VAL, <eal> 010 000 1 000000000 Gen3 12 B
PMOVE <eaO>, AC 010 000 0 000000000 Gen2 12 w
PMOVE AC, <eal> 010 000 1 000000000 Gen3 12 w
PMOVE PCSR, <eal> 011 000 1 0000000 00 Gen3 12 w
PRES TORE <eaB> 1111 000 101 000 000 Rest 6
PSAVE <ea4> 1111 000 100 000 000 Save 6
PSAS <ea3> 0000000000 000110 Sec 7 B
PSAC <ea3> 0000000000 000111 Sec 7 B
PSBS <ea3> 0000000000 000000 Sec 7 B
PSBC <ea3> 0000000000 000001 Sec 7 B
PSCS <ea3> 0000000000 001110 Sec 7 B
PSCC <ea3> 0000000000 001111 Sec 7 B
PSGS <ea3> 0000000000 001100 Sec 7 B
PSGC <ea3> 0000000000 001101 Sec 7 B

250 MPW 3.0 Assembler Reference

• Table F-9 (continued) MC68851 instructions

Opcode Operands Opcode Word CpType Group Flags

PSIS <ea3> 0000000000 001010 Sec 7 B
PSIC <ea3> 0000000000 001011 Sec 7 B
PSLS <ea3> 0000000000 000010 Sec 7 B
PSLC <ea3> 0000000000 000011 Sec 7 B
PSSS <ea3> 0000000000 000100 Sec 7 B
PSSC <ea3> 0000000000 000101 Sec 7 B
PSWS <ea3> 0000000000 001000 Sec 7 B
PSWC <ea3> 0000000000 001001 Sec 7 B
PTESTR special 100 000 1 0000 00000 13
PTESTW special 100 000 0 0000 00000 13
PTAS 0000000000 000110 Teel 8
PTAC 0000000000 000111 Teel 8
PTBS 0000000000 000000 Teel 8
PTBC 0000000000 000001 Teel 8
PTCS 0000000000 001110 Teel 8
PTCC 0000000000 001111 Teel 8
PTGS 0000000000 001100 Teel 8
PTGC 0000000000 001101 Teel ·s
PTIS 0000000000 001010 Teel 8
PTIC 0000000000 001011 Teel 8
PTLS 0000000000 000010 Teel 8
PTLC 0000000000 000011 Teel 8
PTSS 0000000000 000100 Teel 8
PTSC 0000000000 000101 Teel 8
PTWS 0000000000 001000 Teel 8
PTWC 0000000000 001001 Teel 8
PTPAS #data 0000000000 000110 Tcc2 9 WL
PT PAC #data 0000000000 000111 Tcc2 9 WL
PTPBS #data 0000000000 000000 Tcc2 9 WL
PTPBC #data 0000000000 000001 Tcc2 9 WL
PTPCS #data 0000000000 001110 Tcc2 9 WL
PTPCC #data 0000000000 001111 Tcc2 9 WL
PTPGS #data 0000000000 001100 Tcc2 9 WL
PTPGC #data 0000000000 001101 Tcc2 9 WL
PTPIS #data 0000000000 001010 Tcc2 9 WL
PTPIC #data 0000000000 001011 Tcc2 9 WL
PTPLS #data 0000000000 000010 Tcc2 9 WL
PT PLC #data 0000000000 000011 Tcc2 9 WL
PTPSS #data 0000000000 000100 Tcc2 9 WL
PTPSC #data 0000000000 000101 Tcc2 9 WL
PTPWS #data 0000000000 001000 Tcc2 9 WL
PTPWC #data 0000000000 001001 Tcc2 9 WL
PVALID VAL, <eaJJ> 001 010 0000000000 Gen3 3 L
PVALID An, <eall> 001 011 0000000000 Gen3 3 L

A P P E N D I X F Instruction Sets 251

Appendix G Assembler Command Syntax

THIS APPENDIX DEFINES 1HE COMMAND SYNTAX ACCEPTED BY the MPW Assembler. It
includes a detailed listing of the invocation options. •

253

Assembler command syntax

Syntax

Description

Input

Output

Diagnostics

Status

Options

Asm [option .. .] (file .. .]

Assembles the specified assembly-language source files. One or more filenames
may be specified. If no filenames are specified, standard input is assembled and
the file a.o is created. By convention, assembly-language source filenames end in
the suffix .a. Each file is assembled separately-assembling file Name.a creates
object file Name.a.o. The object filename can be changed with the -o option.

If no filenames are specified, standard input is assembled. (End-of-file is
indicated by typing Command-Enter.)

If either the -I or -s option is specified, an assembler listing is generated. If
standard input is used for the source file, the listing is written to standard output.
If the input is taken from file Name.a, the listing is written to Name.a.1st. The
listing filename can be changed with the -lo option.

Errors and warnings are written to diagnostic output. If the -p option is
specified, progress and summary information is also written to diagnostic
output.

The following status values are returned to the Shell:

0 No errors detected in any of the files assembled
1 Parameter or option errors
2 Errors detected
3 Execution terminated

Except for the -case on option, options may appear in any order.

-addrsize size
Set address displays in the listing to size digits (values 4 to 8 are allowed).
The default is 5 digits.

-blksize blocks
Set the Assembler's text file VO buffer size to blocks• 512 bytes. Values 6 to
62 are allowed. Odd values are made even by reducing the value by 1. The
default value is 16 (8192 bytes) if the Assembler determines it has the
memory space for the VO buffers, and 6 (3072 bytes) otherwise. This
option permits optimization of I/O performance (transfer rate for text file
input, load/dump files, and listing output) as a function to the disk device
being used. Note that increasing the blocks value reduces the amount of
memory available for other Assembler structures (such as symbol tables).

A P P E N D I X G Assembler Command Syntax 255

-case on
Distinguish between uppercase and lowercase letters in non-macro names
(same as CASE oN). (Case is always ignored in macro names.) If you intend
to preserve the case of names declared by the -define option, then the case
on option must precede the -define option(s) in the command
parameter list.

-case obj[ect]
Preserve the case of module, EXPORT, IMPORT, and ENTRY names only in
the generated object file. In all other respects, case is ignored within the
assembly, and the behavior is the same as the preset CASE OFF situation.

-case off
Ignore the case of letters. All identifiers are case insensitive. This is the
preset mode of the Assembler, but it may be used in the command line to
reverse the effect of one of the other -case modes.

-c[heck]
Syntax check only. No object file is generated.

-d[efine] name[=value] [, name[=value]] ...
Define the name as having the specified value. The value is a decimal
integer. If value is omitted, a value of 1 is assumed. This option is
equivalent to placing the directive
name EQU value
at the beginning of your source file. Note that in order to test whether or
not the name is defined, the &Type function should be used. You can
define more than one name by specifying multiple -d options or multiple
namd=value] parameters separated by commas, as in this example:
Asm -d debugl, &debug=' on' ...

-d[efine] &namd=[value]] [, &namd=[valuell] ...
Define the macro name as having the specified value. The value is a decimal
integer or a string constant. If the "=value' is omitted, the decimal value 1 is
assumed. If only the value is omitted, the null string is assumed. -define is
equivalent to declaring the name as a global arithmetic symbol (GBLA for an
integer value) or global character macro symbol (GBLC for a string value)
and placing one of the following directives at the beginning of the
source file:

GBLA &name

&name SETA value
or
GBLC &name

&name SETC value

256 MPW 3.0 Assembler Reference

Note that in order to test whether the name is defined, the &Type
function should be used. You can define more than one macro name by
specifying multiple -d options or multiple &namll.=value] parameters
separated by commas.

-e[rrlog] filename

-f

Write all errors and warnings to the error log file with the specified filename
(same as ERRLOG 'filename'). If only warnings are generated during
assembly, the error log file is not created. Use of this option is discouraged.

Suppress page ejects (same as PRINT NOPAGE).

-font fontname[, fontsiz~

-h

Set the listing font to fontname (for example, Courier), and the size to
fontsize. This option is meaningful only if the -s or the -1 option is used. The
default listing font is Monaco 7. Note that listings will be formatted
correctly only if a monospaced font is used.

Suppress page headers (same as PRINT NOHDR).

-i pathname[, pathna~ ...

-1

Search for include and load files in the specified directories. Multiple -i
options may be specified. At most 15 directories will be searched. The
search order is as follows:

1. The include or load filename is used as specified. If a full pathname is
given, then no other searching is applied.

If the file wasn't found, and the pathname used to specify the file was a
partial pathname (no colons in the name or a leading colon), then the
following directories are searched.

2. The directory containing the current input file.

3. The directories specified in -i options, in the order listed.

4. The directories specified in the Shell variable {Alncludes}.

Generate full listing. If file Name.a is assembled, the listing is written to
Name.a.1st.

A P P E N D I X G Assembler Command Syntax 257

-lo /istingname
Pathname for the listing file and directory for the listing scratch file. If
/istingname ends with a colon (:), it indicates a directory for the listing file,
whose name is then formed by the normal rules (that is,
inputFilename.a.lst). If listingname does not end with a colon, the listing
file is written to the file /istingname. In this case, listings for multiple source
files are appended to the listing file. In either case, the directory implied by
the listing name is used for the assembler's listing scratch file. The -lo option
is only meaningful if the -s or the -1 option is used.

-o objname
Pathname for the generated object file. If objname ends with a colon (:), it
indicates a directory for the output file, whose name is then formed by the
normal rules (that is, inputFi/ename.o). If objname does not end with a
colon, the object file is written to the file objname. (In this case, only one
source file should be specified to the Assembler.)

-pagesize I [, w]

-p

Set the listing page size. (This option is only meaningful if the -s or -1 option
is specified.) The I and w parameters are integers: I is the page length
(default= 75) and w is the page width (default= 126). (These settings
assume that Courier 7 is being used with the MPW Print command to the
LaserWriter.)

Write assembly progress information (module names, included, loads, and
dumps) and summary information (number of errors, warnings, and
compilation time) to the diagnostic output file. (This option is the same as
PRINT STAT.)

-print mode [, mode] ...
Set a print option mode. Mode may be any one of the following PRINT

directive options:
[No]DATA Data
[No]GEN Macro expansions
[No]HDR Page headings
[NO]LITS Literals
[No]MCALL Macro calls
[NolMDIR Macro directives
[No]oBJ Object code ·
[No]PAGE Page ejects
[No]sTAT Progress information
[No]sYM Symbol table display
[No]wARN Warnings

258 MPW 3.0 Assembler Reference

Example

-s

See Chapter 4 for a discussion of these PRINT settings. You can specify
more then one print option by specifying multiple -print options or
multiple mode parameters separated by commas, as in this example:

Asm -print nowarn,noobj,nopage ...

Note that single-letter options are provided for some of the settings: -f
(NOPAGE), -h (NOHDR), -p (STAT), and-w (NOWARN).

Set PRINT NOOBJ to generate a shortened fonn of the listing file. If the -I
option is also specified, the rightmost option takes precedence.

-sym off
Do not write object file records containing information for SADE, the MPW
symbolic debugger. This is the default, and will be in effect if no sym option
is specified.

-sym [onlfull]

-t

-w

-wb

Write complete object file records containing information for use by SADE.
The options on and full are equivalent. The symbolic infonnation generated
by the assembler consists of Module Begin (entry) oMF records for
identifiers defined by the PROC, FONC, and MAIN directives, Local
Identifier OMF records for all EQU and SET identifiers except for those
identifiers defined in the files included from the {Alncludes} folder, and
Local Label OMF records for the local code labels.

Display the assembly time and the number of lines to the diagnostic file
even if progress information (-p) is not being displayed.

Suppress warning messages (same as PRINT NOWARN).

Suppress branch warning messages only.

Asm -w -1 Sample.a Memory.a -d Debug

Assembles Sample.a and Memory.a, producing object files Sample.a.o and
Memory.a.o. Suppresses warnings and defines the name "Debug" as having the
value 1. Two listing files are generated: Sample.a.1st and Memory.a.1st. (These
programs are located in the AExamples directory.)

AP P E N D IX G Assembler Command Syntax 259

Appendix H Object Assembler Macros

THE FILE OBJMACROS.A CONfAINS A COllECITON OF MPW ASSEMBLY-language macros.
The macros permit you to write applications, or parts of applications, in an
object-oriented fashion using assembly language.

Object-oriented assembly language allows you to

• create descendants of objects defined in Object Pascal

• call methods written in Object Pascal from assembly-language code

• call methods written in assembly language from Object Pascal

Object-oriented assembly language is as much a style of programming as a
language. This chapter describes the macros provided for use with assembly
language. For more complete information about object-oriented programming in
general, see the Macintosh Programmer's Workshop Pascal Reference. For a sample
program that uses object-oriented macros, see the MacApp Programmer's
Guide. •

Contents

InitObjects 263
ObjectDef 263
Objectlntf and the IMPL keyword 265
ObjectWith and EndObjectWith 266
ProcMethOf, FuncMethOf, and EndMethod 267
MethCall 268
Inherited 268
NewObject 269
MoveSelf 269

261

InitObjects

I nit objects is a macro that must be called at the beginning of every program written
entirely in assembly language using objects. In other words, this must be the first line of
every object-oriented assembly-language program that isn't linked with an Object Pascal
program.

The InitObjects prototype statement is
InitObjects

ObjectDef

The objectDef macro allows you to define objects in object-oriented assembly
language programs. The ObjectDef macro also generates code so method calls are
handled properly.

The objectDef macro sets up assembly language definitions so that you can later refer
to fields of objects by using % Typename and the field name. For example, imagine that an
object has this definition:

ObjectDef
\

(nextShape, TShape),
(arcAngle,2),

METHODS,
(Draw)

You can then use a statement like this:

TArc,TShape,

\
\

\

MOVE.W %TArc.arcAngle(A0),-(SP)

A percent sign(%) is appended to the object type identifier (other than when used in the
ObjectDef and Objectwi th macros) so that you can use the Object Pascal object
type identifier in an EQU statement to define the size of an object and then use that name
in place of the size for a field that refers to an object of that type. For example,
TShape EQU 4

was used to set the value of the identifier TShape for the above ObjectDef.

+ Note: Because an object reference is a handle, the EQU value will always be 4.

A P P E N D I X H Object Assembler Macros

In object-oriented assembly language you must qualify the field name by the name of the
object type that defined it. For example, if TArc inherits the field £Color from
TShape, % TArc. £Color would be undefined. You would have to call it
%TShape. fColor. The ObjectWith macro (described later in this appendix) is
provided to get around this problem.

The ObjectDef prototype statement is
ObjectDef &TypeName,&Heritage[,fieldList] [,METHODS,methodList]

• Note: The part of the prototype statement for ObjectDef that is in square brackets
is optional. Fieldlist should be replaced by a list of all field.5 of the object type, with a
size for each field, all in parentheses, as shown in the examples. Methodlist, similarly,
should be replaced by a list of the methods of the object type. If you have a method
lis~ the word METHODS must be present. Otherwise, it should never be present.

These are some examples of the use of objectDef:
ObjectDef Shape,

(boundRect,8),
(borderThickness,2),
(color,2),

METHODS,
(Draw),
(MoveBy),
(Stretch)

TObject,
\
\
\
\
\
\

ObjectDef Arc,Shape, \
(startAngle,2), \
(arcAngle,2), \

METHODS, \
(Draw, OVERRIDE), \
(GetArea) , \
(SetArcAngle)

\

The numbers given after the field identifiers give the size, in bytes, of the storage
required. If a method is inherited and reimplemented, you must qualify the method name
with the word OVERRIDE as shown for the Draw method.

264 MPW 3.0 Assembler Reference

Objectlntf and the IMPL keyword

Objectintf is used to create an interface in assembly language for an object type that is
declared in Object Pascal. It is the same as ObjectDef except that it does not generate
method tables.

This macro is generally used when you want an assembly-language implementation of a
method declared in an Object Pascal unit. It allows you to specify which methods will be
implemented in assembly language. In the Object Pascal unit, you should declare the
method EXTERNAL, as shown here:

TFoo = OBJECT(TObject)
fieldl: INTEGER;
PROCEDURE TFoo.Methl;
PROCEDURE TFoo.Meth2;

END;

IMPLEMENTATION
PROCEDURE TFoo.Methl; EXTERNAL;
PROCEDURE TFoo.Meth2;

BEGIN

END;

In the assembly-language file, you need to supply an Objectintf template for the class.
You must give the entire object-type declaration in the objectintf template. You give
the IMPL keyword, preceded by a comma, after any method you want to implement in
assembly language. The corresponding assembly-language declaration for the Object
Pascal declaration just given is presented in "Examples," later in this appendix.

If the method for which you are providing an assembly-language implementation is a
reimplementation of an inherited method, you must specify both OVERRIDE and IMPL:

Object Inf
\

MyShape, Shape

\
(Draw, OVERRIDE, IMPL), \

\

The Objectintf prototype statement is

Objectintf &TypeNarne, &Heritage [,fteldlist] [,METHODS, methodlist]

A P P E N D I X H Object Assembler Macros 265

The parts of the prototype statement for objectintf that are in square brackets is
optional. A list of all fields of the object type should replace fieldlist, with a size for each
field as shown in the examples. Similarly, a list of the methods of the object type should
be replaced by methodList. If you have a method lis~ the word METHODS must be present.
Otherwise, it should never be present.

Here are some examples of its use:

Methl

Objectintf
\

ProcMethOf

EndMethod

(fieldl, 2),
METHODS,
(Methl, IMPL) ,
(Meth2)

TFoo, TObject,

\
\
\

TFoo

The following code creates an assembly-language interface for TObject:

Objectinf
METHODS,
(Free),
(ShallowFree),
(Clone),
(ShallowClone)

ObjectWith and EndObjectWith

TObject,,
\
\
\
\

\

The objectWith and EndObjectwi th macros allow you to specify a field of an object
without having to qualify it with the object reference.

As noted earlier, you must normally qualify the name of an inherited field with the name of
the object type that defined it. These macros allow you to avoid that. ObjectWith
inserts a series of MPW assembly language WITH directives, one for each ancestor class, so
you can specify fields of any ancestor object type without qualifying it with the ancestor
object type name. objectWith can be nested. The most recent invocation has
precedence when there are field-name conflicts. You end an objectWith block with an
EndObjectWith.

These are the ObjectWith and EndObjectWith prototype statements:

ObjectWith
EndObjectWith

&TypeName

266 MPW 3.0 Assembler Reference

Here are two examples:

ObjectWith
MOVE.W
EndObjectWith

ObjectWith
MOVE.W
PEA
EndObjectWith

Shape
color (Al) , DO

Arc
startAngle(Al),-(SP)
bound.Rect (Al)

ProcMethOf, FuncMethOf, and EndMethod

The ProcMethOf, FuncMethOf, and EndMethod macros are used to bracket methods.
ProcMethOf and FuncMethOf invoke the PROC and FUNC directives. They provide the
implicit parameter SELF, which is a reference to the object used to call the method. They
also invoke the Objectwi th macro with the specified type name so that fields of SELF

can be accessed without type-name qualification. End.Method invokes the
EndObjectWith macro and the ENDPROC directive.

As with any assembly-language routine, before ending the routine (that is, before the
EndMethod macro), you must remove the parameters from the stack. In a method, you
should be careful to remove the implicit parameter SELF. (See the sample program at the
end of this appendix for examples of this.)

The ProcMethOf, FuncMethOf, and End.Method prototype statements are as follows:

&ProcName ProcMethOf

&ProcName FuncMethOf

EndMethod

Here is an example of its use:

Draw ProcMethOf

EndMethod

GetArea

EndMethod

& TypeName

&TypeName

Shape

FuncMethOf Arc

A P P E N D I X H Object Assembler Macros 267

Meth Call

The MethCall macro is used to invoke methods. If the second parameter is omitted, the
current method's object type is assumed. The MethCall macro generates a JSR to the
proper method.

The MethCall prototype statement is

MethCall

Here is an example of its use:

Inherited

MOVE.L
MethCall
MOVE.W
MOVE.W
MOVE.L
MethCall

&ProcName,&TypeName

A2,-(SP)
Draw
DO,-(SP)
Dl,-(SP)
aShape(A6),-(SP)
MoveBy,Shape

The Inherited macro calls the named method in the closest ancestor object type that
implemented the method.

The Inherited prototype statement is

Inherited

This is an example of its use:

Move Self
Inherited

&ProcName

-(SP)
Draw

268 MPW 3.0 Assembler Reference

NewObject

The Newobject macro is used to create a new object. It is equivalent to the Pascal
procedure New used with an object reference.

NewObject generates a JSR to %_OBNEW after pushing the appropriate parameters onto
the stack. If & Size is omitted (and it usually is), the instance size for the given object
type is used. The &Loe parameter must be a memory reference.

The NewObject prototype statement is

NewObject

Here are examples of its use:

NewObject
NewObject

MoveSelf

&Loc,&TypeName,&Size

-4(A6),Arc

gArray,DynArray,200

The MoveSelf macro is a convenience macro. It executes the following statement:

MOVE.L 8 (A6) ,&Dest

Move Self assumes that the method began with a LINK A6, #nnnn. (8 (A6) is the
location of SELF when in a method.)

The MoveSelf prototype statement is

Move Self

These are some examples of its use:

Move Self
Move Self
MoveSelf

&Dest

A4
-(SP)
a Square (A6)

A P P E N D I X H Object Assembler Macros 269

Appendix I Pascal and C Calling Conventions

THIS APPENDIX DESCRIBES THE CONVENTIONS USED in Pascal and c to pass
parameters, return function results, and save and restore register contents during
procedure and function calls. •

Contents

Pascal calling conventions 273
Parameters 273

Real-type parameters 27 4
Structured-type parameters 275

Function results 275
Register conventions 277

C calling conventions 277
Parameters 278
Function results 278
Register conventions 278

271

Pascal calling conventions

This section covers parameter passing, function returns, and register conventions in
Pascal.

Parameters

Pascal parameters are evaluated from left to right and are pushed onto the stack in that
order as they are evaluated. The called procedure is responsible for removing the
parameters from the stack. All VAR parameters are passed as pointers to the actual storage
location. In cases of byte-wide types, VAR parameters may have odd absolute values.

Non-VAR parameters are passed in different ways, depending on the type of the
parameter. Values of type boolean, elements of an enumerated type with fewer than 128
elements, and subranges within the range -128 . .127 are passed as signed byte values. (They
are pushed as bytes; the 68000 allocates two bytes for each byte on the stack.) The called
procedure expects boolean parameters to be in the range 0 . .1. Values of types
integer, char, and all other enumerations and subranges are passed as signed word
values. In Pascal, values of type char are expected to be in the range 0 .. 255; the upper
half of this range is used for special characters. Pointers and longint values are passed as
signed 32-bit values.

Table 1-1 summarizes the Pascal parameter passing conventions.

• Table 1-1

Parameter type

boolean

enumeration:
range 0 .. 127

enumeration:
range 0 .. 32767
char

subrange:
range -128 . .127

Parameter passing conventions

Pascal caller Action

Pushes byte:
range 0 . .1

Pushes byte:
range 0 . .127

Pushes word:
range 0 .. 32767

Pushes word:
range 0 .. 255

Pushes byte:
range -128 .. 127

Pascal receiver Action

Accesses byte: range 0 . .1

Accesses byte: range 0 . .127

Accesses word: range
0 .. 32767

Accesses word: range 0 .. 255

Accesses byte: range
-128 . .127

(continued)

A P P E N D I X I Pascal and C Calling Conventions Z'T3

• Table 1-l(continued) Parameter passing conventions

Parameter type Pascal caller Action Pascal rccdver Action

subrange: Pushes word: Accesses word: range
range -32767 .. 32767 range -32767 .. 32767 -32767 .. 32767

integer Pushes word: Accesses word: range
range -32767 .. 32767 -32767 . .32767

longint Pushes long Accesses signed long value

pointer Pushes long Accesses long

real Converts to extended; Converts extended on stack
pushes address of to local real; accesses local
extended value

double Converts to extended; Converts extended on stack
pushes address of to local double; accesses
extended local value

comp Converts to extended; Converts extended on stack
pushes address of to local comp; accesses local
extended value

extended Pushes address of Copies extended to local
extended extended; accesses local

value

ARRAY, RECORD, Pushes value (word or Accesses value (word or long)
STRING~ four bytes long)

ARRAY, RECORD, Pushes address of value Copies value to local;
STRING> four bytes accesses local

SET Pushes set value rounded Accesses value on stack
to whole number of words (Note: Use word or long for

those sizes; accesses
low-order half of word for
byte-size set.)

Real-type parameters

Values of types real, double, comp, and extended are passed as pointers to
extended values. The Compiler does this in a reentrant way by allocating a temporary
location in the caller's activation record, converting the parameter value to an extended
value in this location, and passing a pointer to this location. The called procedure then
allocates a local location of the declared type and converts the extended value, using the
pointer, into the location and type.

274 MPW 3.0 Assembler Reference

Structured-type parameters

Arrays, strings, and records whose size is less than or equal to 4 bytes are passed by
pushing their value (either a word or a long word) onto the stack. larger arrays, strings, and
records (as well as extended values, as mentioned earlier in this appendix) are passed
as a pointer to the value; for reentry purposes, the Compiler emits code in the called
procedure to copy the value to a local storage location.

Sets are passed by rounding the set size up to the next whole word, if necessary, then
pushing the set value so that the lowest-order word is pushed last. In the case of a byte
width set, the called procedure will only access the low-order half of the word pushed.

Function results

Function results are returned by value or by address on the stack. Space for the function
result is allocated by the caller before the parameters are pushed. The caller is responsible
for removing the result from the stack after the call.

For types boolean, char, integer, and enumerated and subrange types, the caller
allocates a word on the stack to make space for the function result. Values of type
boolean, enumerated types with fewer than 128 elements, and subranges within the range
-128 . .127 are returned as signed byte values. The value goes in the low-address byte, which
is the most significant byte of the word. The calling procedure expects boolean results
to be in the range 0 . .1.

Integer and char values and all enumerated and subrange types not covered above are
returned as signed word values. Pascal char values are expected to be in the range 0 .. 255;
the upper half of this range is used for special characters.

For pointer, long int, and the real types, the caller allocates a long word on the stack to
make space for the function result. Pointers and longint values are returned as signed
32-bit values. Values of type rea 1 are returned as 32-bit real values. For double, comp,

and extended types, and also for sets, arrays, strings, and records greater than 4 bytes in
size, the caller pushes a pointer to a temporary location.

For 1-byte sets and for arrays, strings, and records whose size is 1 word, the caller allocates
a word on the stack. For sets, arrays, strings, and records whose size is 2 words, the caller
allocates a long word on the stack. 1-byte sets are returned as a byte value. Sets, arrays,
strings, and records whose sizes are 1 or 2 words are returned as either a word or a long
word.

Pascal function-result passing conventions are summarized in Table I-2.

A P P E N D I X I Pascal and C Calling Conventions T75

• Table 1-2 Function-result passing conventions

Parameter type Pascal caller Action Pascal receiver Action After the call

boolean Allocates Returns byte value: Pops byte
word range 0 . .1

enumeration: Allocates Returns byte value: Pops byte
range 0 . .127 word range 0 . .127

enumeration: Allocates Returns word value: Pops word
range 0 .. 32767 word range 0 .. 32767

char Allocates Returns word value: Pops word
word range 0 .. 255

subrange: Allocates Returns byte value: Pops byte
range -128 . .127 word range -128 . .127

subrange: Allocates Returns word value: Pops word
range -32768 .. 32767 word range -32768 .. 32767

integer Allocates Returns word value: Pops word
word range -32768 .. 32767

longint Allocates Returns long word Pops long word
longword value: range-signed

32 bits

real Allocates Returns real value Pops real value
longword

double Pushes Puts double result in Pops temporary
address temporary address, accesses
of double temporary value
temporary

comp Pushes Puts double result in Pops temporary
address temporary address, accesses
of comp temporary value
temporary

extended Pushes Puts extended result Pops temporary
address of in temporary address, accesses
extended temporary value
temporary

ARRAY, STRING, Allocates Returns word or long Pops word or
RECORD ::;; four bytes word or word longword

longword

Z'76 MPW 3.0 Assembler Reference

• Table 1-2 (continued) Function-result passing conventions

Parameter type Pascal caller Action Pascal receiver Action After the call

ARRAY, STRING, Pushes Puts result in Pops temporary
RECORD> four bytes address of temporary address, accesses

temporary temporary value

SET: one byte Allocates Returns byte value of Pops byte
word result

SET: one word Allocates Returns word value of Pops word
word result

SET: two words Allocates Returns long word Pops long word
longword value of result

SET> two words Pushes address Puts result in Pops temporary
of temporary temporary address, accesses

temporary value

+ Note: Pascal does not assume any initial value for memory space allocated to a
function result unless it is a pointer to a type that occupies more than 4 bytes of
memory.

Register conventions

Registers DO, D1, D2, AO, and Al are considered scratch registers and are not preserved
across procedure calls. All other registers are preserved by the called routine. Register AS is
the global frame pointer, register A6 the local frame pointer, and register A7 the stack
pointer.

C calling conventions

This section covers the treatment of parameters, function results, and registers in C.

AP P E ND IX I Pascal and C Calling Conventions zn

Parameters

Parameters to C functions are evaluated from right to left and are pushed onto the stack
in the order they are evaluated. Characters, integers, and enumerated types are passed as
sign-extended 32-bit values. Pointers and arrays are passed as 32-bit addresses. Types
float, double, comp, and extended are passed as extended 80-bit values. Structures
are also passed on the stack. Their value is rounded up to a multiple of 16 bits (2 bytes). If
rounding occurs, the unused storage has the highest memory address. The caller removes
the parameters from the stack.

Function results

Characters, integers, enumerated types, and ponters are returned as sign-extended 32-bit
values in register DO. Types float, double, comp, and extended are returned as
extended values in registers DO, Dl, and AO. The low-order 16 bits of DO contain the sign
and exponent bits; register Dl contains the high-order 32 bits of the significand; register
AO contains the low-order 32 bits of the significand. Structured values are returned as a 32-
bit pointers in register DO. The pointer contains the address of a static variable into which
the result is copied before returning. This implementation of structured function results is
not reentrant.

Register conventions

Registers DO, Dl, AO, and Al are scratch registers that are not preserved by C functions. All
other registers are preserved. Register A5 is the global frame pointer, register A6 is the local
frame pointer, and register A7 is the stack pointer. Local stack frames are not necessarily
created for simple functions.

?:JS MPW 3.0 Assembler Reference

Appendix J Structured Assembly Macros

HIGHER-LEVEL LANGUAGES, SUCH AS PASCAL AND c, provide the programmer with
statements that represent basic structured programming operations. There are
statements for looping (FOR, WHILE, REPEAT), conditionals (IF-THEN-ELSE,

SWITCH, CASE), procedure declarations (PROCEDURE, FUNCTION), and
procedure invocation. The compilers accept the high-level statements and
generate the proper code for the programmer. Assembler programmers must code
all these constructs explicitly. The structured assembly macros are used as high
level statements that serve the same purpose as their high-level language
counterparts, and thus relieve the programmer of such explicit coding. •

Contents

Structured macro statements 281
Expressions 281
Flow-control macros 283

The If statement 283
The Switch statement 285
The Repeat statement 287
The While statement 287
The For statement 288
The Leave statement 290
The Cycle statement 291
The GoTo statement 292

'!79

Program structure macros 292
Sample code generation from program structure macros 294
Procedure and function header 295
Local variable declaration 298
Procedure or function start 299
Procedure or function secondary entry point 300
Procedure or function exit 301
Procedure, function, or trap invocation 303

Considerations for use 306
Why you should or should not use the structured assembly macros 307
Rules for using structured assembly macros 308

Syntax summary 309
Expressions 309
Flow-control macros 310
Program structure macros 311

280 MPW 3.0 Assembler Reference

Structured tDacro statetDents

The macros are divided into two categories: program structure macrcs and flow-control
macros.

The program structure macros are as follows:

PROCEDURE Define a procedure declaration
FUNCTION Define a function declaration
VAR Declare procedure or function local variables
BEGIN Define a procedure or function primary entry point
ENTER Define a procedure or function secondary entry point
RETURN Exit from a procedure or function
CALL Invoke a procedure, function, or trap

The flow-control macros are as follows:

IF#,ELSEIF#,ELSE#,ENDIF#
SWITCH#, CASE#, DEFAULT#, ENDS#
REPEAT#, UNTIL#

WHILE#, ENDW#
FOR#,ENDF#
LEAVE#
CYCLE#
GOTO#

Multiway decision
Multiway decision
Loop control
Loop control
Loop control
Loop and switch terminator
Loop iterator
Transfer of control

With the exception of assignment statements and full arithmetic expressions, these
macros provide all the constructs found in high-level languages such as Pascal and C.
Because of the restrictions imposed on the kinds of conditional expressions allowed in
these macros (discussed later), the code generated for these statements is as efficient as
that any programmer can generate "by hand."

Expressions

Expressions are used as operands to many of the flow-control macros. Such expression
operands are used for testing conditions. The following syntax describes what is allowed
for flow-control macro expressions:

APPENDIX] Structured Assembly Macros 281

expr ··= s-expr I s-expr op s-expr
s-expr ··= cc I ea CC[. SZ] ea
op ··= AND I OR
cc ··= EQ I NE I LE LT GE GT MI I PL I HI I LS I

LO I cc I cs NZ HS vc vs
sz ··= B I w I L

An expression, expr, consists of either one simple expression, s-expr, or two simple
expressions combined by AND or OR. Simple expressions, in turn, either test a condition
code, cc, or set and test a condition code by comparing two operands, each of which is
specified by an effective address, ea. The comparisons cause the macros to generate
compare instructions. To indicate the size of the comparison, an optional size, sz, may be
specified along with the condition code. Word comparisons are the default.

Note that the effective address and size for the comparisons must be valid for the form
of compare instruction generated. For example, byte size cannot be specified for
comparisons involving address registers, and both effective addresses must specify a
post increment if a memory-to-memory comparison is to be done. However, the order of
the comparison will be reversed by the macros if a legal comparison cannot be generated
as specified, but it would be legal if the comparison were reversed. The condition being
tested would be similarly reversed.

The effective address operands may be arbitrarily complex effective addresses, which
may contain full Assembler expressions. AND and OR operators are also legal operators
when used in Assembler expressions. When using these operators in both Assembler and
macro expressions, the AND and OR macro expression operators will be recognized only if
not nested in paired parentheses. The use of the condition code symbols, cc, is somewhat
more restrictive. They should only be used as shown in the syntax and never for identifiers
used in effective addresses anywhere else.

Macro expressions combined by AND and OR will generate the comparisons determined by
the two simple expressions in the order given. However, for OR operations, the second
operand will not be executed if the first operand is true. Similarly, for AND operations, the
second operand will not be executed if the first operand is false. In these cases, the
resulting condition code would only reflect the result of the first simple expression.
NE *'$' LE.B DS
DO NE.W Dl 10(A5) NE.L D3
DO NE.B Dl D3 NE.B 10(A5)
*5 GT DO (A2)+ EQ.B (A3)+
DO EQ.B *'*' ([10,AS] ,D2) NE D3

282 MPW 3.0 Assembler Reference

MI OR VS
DO EQ.B *$13 OR DO EQ.B *$12
(A2)+ EQ *' I OR (A2) EQ *$13
(X+lO) (A2,D2.W) EQ.B D3 OR NE
([X,A5,D3], (Y) .L) NE.L D6

Flow-control macros

The flow-control macros provide a full set of the standard conditional and loop control
statements found in most higher-level languages. The flow-control macros are as follows:

IF#, ELSEIF#, ELSE#, ENDIF#

SWITCH#, CASE#, DEFAULT#, ENDS#

REPEAT#, UNTIL#

WHILE#, ENDW#

FOR#, ENDF#

CYCLE#

LEAVE#

GOTO#

The If statement

IF# expr 1 THENLextl

statements 1

[
ELSEIF# Lext] expr 2 THEN[. ext 2]]

statements 2

[
ELSE# Lext]]

statements 3

END IF#

Multiway decision
Multiway decision
Loop control
Loop control
Loop control
Loop iterator
Loop and switch terminator
Transfer of control

If expr1 is true, execute only the statement list, statementSi. If expr1 is false, execute the
statement list for the first true ELSEIF# clause if present. If all the expressions are false,
then execute the statement list, statement53, if the ELSE# clause is presen~ otherwise skip
to the first statement following END IF#.

APPENDIX J Structured Assembly Macros 283

There may be any number of ELSEIF# clauses, but only one ELSE# clause, betv.reen the
IF# and END IF# pair. If the ELSE# clause is presen~ it must follow all the ELSE IF#
clauses. If statements may be nested to an implementation-defined limit (see
"Considerations for Use").

The optional extension attributes, ext s, are the letters S or B, W, or L, and control the size .
of the branch instructions generated during compilation of the If statement.

• The extension on the THEN portion of the IF# determines the size of the branches to
the next ELSEIF#, ELSE#, or END IF#, whichever comes first.

• The ELSEIF# extension, e:xti, determines the size of the branch to the END IF#.

• The extension, e:xti., on the THEN portion of the ELSEIF# determines the size of the
branches to the next ELSEIF#, ELSE#, orENDIF#, whichever comes first.

• The ELSE# extension determines the size of the branch to ENDIF#.

The default for all the branch extensions is for word (w) branches. Here is an example:

IF# DO EQ.B #$20 OR DO EQ.B #$09 THEN.S
JSR SkipBlanks

ELSEIF#.S DO GE.B #'A' AND DO LE.B #'Z' THEN.S
JSR Identifier

ELSEIF#.S DO GE.B #'a' AND DO LE.B #'z' THEN.S
JSR Identifier

ELSEIF#.S DO GE.B #'0' AND DO LE.B #'9' THEN.S
JSR Number

ELSE#.S
JSR Special

END IF#

This example checks for characters in DO and calls an appropriate processing routine as a
function of the character. For blanks ($20) and tabs ($09), SkipBlanks is called. For
uppercase and lowercase letters, Identifier is called. For digits, Number is called, and
if the character is anything else, Special is called. Note that all the extensions are s to
cause all short branches to be generated.

284 MPW 3.0 Assembler Reference

The Switch statement

SWITCH# [.SZ] selector [, Dreg=Dn] [, JmpTbl= {NI y I ext} J , [ChkRng={ NI y} l
CASE# [• exrlae1 [.. a£2J , ...

statements1

[
DEFAULT#]

statements 2

ENDS#

The SWITCH statement is a multiway branch based on the value of selector. Each CASE#

absolute expression, ae1, specifies a list or range of constants representing a value of
selector. If selector equals one of the constants, then the statements following that CASE#

are executed. If selector is not one of the values, and the DEFAULT# clause is present, the
statements following the DEFAULT# are executed. If selector is not one of the values, and
there is no DEFAULT# clause, then none of the statements of the SWITCH statement are
executed and control passes to the first statement following END s #. After control passes
to one of the CASE or DEFAULT statements, execution continues through successive
statements until the end of the sw ITCH statement, END s #, is reached, or control is
transferred out of the SWITCH structure (for example, using a LEAVE# macro).

There may be any number of CASE# clauses, but only one DEFAULT# clause, between the
. i. SWITCH# and ENDS# pair. There is no restriction on the placement of the DEFAULT#

clause within the SWITCH statement. SWITCH statements may be nested to an
implementation-defined limit (see "Considerations for Use").

The code for SWITCH statements is generated to do either repeated subtractions from
the selector value to determine the case, or to use a relative address jump table indexed by
the selector value. The default is to use repeated subtractions unless either JmpTbl=Y or
JmpTbl=ext is specified. Using the jump table, you have the option of validating the
selector value to make sure it is in the proper index range of the jump table, and using the
default (or skipping the SWITCH statement) if it is out of range. This is specified by
ChkRng=Y. The default is to not validate the selector value when a jump table is used (and
therefore no DEFAULT# clause is possible).

APPENDIX J Structured Assembly Macros 28;

The choice of whether to use the repeated subtraction technique or a jump table is up to
you. It generally depends on Lie nurnber of cases and the distribution of case values. If
you choose the repeated subtraction technique, then you may specify a branch size, s or
B, w, or L, as an extension attribute on the CASE:#: statements, to indicate the size of the
branches to the next CASE:#: or DEFAULT:#: clause. If you choose the jump table technique,
then the CASE:#: extensions are ignored, but you may specify the size of the branch
required to branch from SWITCH:#: to ENDS:#:, where the actual indexed jump table code is
generated. This is specified by an explicit extension value for the SWITCH# JmpTbl

parameter; that is, JmpTbl=S I BI w IL. JmpTbl=Y is equivalent to JmpTbl=W.

No matter which technique is used, SWITCH statements require a work register in which to
do the subtractions or to convert to a table index. This is specified by the swI TCH:#:

DREG parameter, or DO is used by default If you explicitly specify the DREG parameter,
then the specified D-register will be loaded from selector. Whenever selector is placed in the
work register, you may indicate the size attribute of the move instruction, B or w, to do
the load by specifying an attribute, sz, on the SWITCH:#: macro call. The default is to
assume a word move. The work register is always used as a word (note that selectorwill not
be moved to the work register if DO is specified as selector, but in that case it is assumed
that DO already contains a word value).

SWITCHf DO

CASE:#:.S $20, $09

JSR SkipBlanks

LEAVE:#:.S

CASE:#: • S 'A' •• ' z ' ' ' a ' •• ' z '
JSR Identifier

LEAVE:#:.S

CASE:#:. s I 0 I •• I 9 I

JSR Number

LEAVE:#:.S

DEFAULT:#:

JSR Special

ENDS:#:

This example checks for characters in Do (previously loaded as a word) and calls an
appropriate processing routine as a function of the character. It is the same example
shown for IF statements, but here rewritten using a CASE statement. Repeated
subtractions and all short branches are used. The LEAVE statements are used to terminate
each case (see "The Leave Statement'' later in this appendix).

286 MPW 3.0 Assembler Reference

The Repeat statement

REPEAT:#
statements

UNTIL:#(.extJ {exfJr I FALSE}

The statements between REPEAT:# and UNTIL:# are executed at least once and then
repeatedly until expr is true. FALSE may be specified in place of expr to generate an
infinite loop. The size of the branch instructions, s or B, w, or L, generated by UNTIL# to
loop back to REPEAT# may be specified by the extension attribute, ext.

REPEAT statements may be nested to an implementation-defined limit (see
"Considerations for Use" later in this appendix).

REPEAT#
PEA filterProc
PEA itemHit(A6)
_ModalDialog

UNTIL:#.S itemHit(A6) EQ #OK

This example calls ModalDialog until the OK button is clicked. A short branch is used to
branch back to the top of the loop.

The While statement

WHILE# {~I TRUE} DO[. exn
statements

ENDW:#

The statements between WHILE# and ENDW:# are executed repeatedly only if expr is true.
If expr is false, control passes to the first statement following ENDW#. True may be
specified in place of exprto generate an infinite loop. The size of the branch, s ors, w, or
L, generated by the WHILE# to ENDW# structure is specified by the extension attribute
following the DO keyword.

While statements may be nested to an implementation-defined limit (see "Considerations
for Use" later in this appendix). Here is an example:

SkipBlanks WHILE# DO EQ.B #$20 OR DO EQ.B #$09 DO.S
JSR Next Char
ENDW#

APPENDIX J Structured Assembly Macros '1S'7

This example illustrates a possible blank and tab skipping routine that might be called by
the IF:#: or CASE:#: example. As long as DO contains a blank ($20) or tab ($09), a
Next Char routine is called, which loads DO with the next input character. As soon as DO
does not contain a blank or tab, a short branch (oo. s) is taken to the statement
following ENDW:#:.

The For statement

FOR:#: ctl-var[=[.szl initia~ [DOWN]To.final[BY increment] [UNTIL expr] DO[. ext]\
[,DREG=Dn] [,opt={Y I N}] [,Clr= { y IN}]

statements

ENDF:#:

The statements between FOR:#: and ENDF:#: are executed repeatedly while the control
variable, ctl-var, is assigned a progression of values starting with the initial value. If the
initial value is greater than (To) or less than (oowNTO) the final value on entry to the FOR
statement, control passes to the first statement following ENDF:#:. Otherwise, the control
variable is incremented (To) or decremented (oowNTO) by increment (default 1).
Incrementing continues on each repetition of the loop until the value of the control
variable is greater than (To) or less than (oowNTo) the final value, or until the value of e:xpr
is true. The optional UNTIL e:xprclause is similar in function to a REPEAT statement's
UNTIL clause. It is only processed at the end of the loop and thus does not control
whether the loop will be entered the first time.

For statements may be nested to an implementation-defined limit (see "Considerations
for Use" later in this appendix).

The variables ctl-var, intial, final, and increment all represent effective addresses. The
control variable must be an alterable effective address mode. All effective address modes
are allowed for the initial, final, and increment specifications. The size of the control
variable, B, w, or L, is determined by the size attribute, sz, following the equal sign
assigning the initial value to the control variable. The default is to assume a word size
control variable. Note that the initial value may be omitted, which implies a word size
control variable that already has its initial value.

The size of the branch statements, s or B, w, or L, generated by the FOR statement is
determined by the extension on oo. The default is to assume word size branches.

288 MPW 3.0 Assembler Reference

For statements always require the use of one work D-register. If the control variable
already specifies a D-register, that register is used and rri.ay be referenced by the loop
statements as usual. If the control variable does not specify a D-register, then the D
register specified by the DREG parameter is used, or DO if DREG is not specified. In that
case the control variable is still maintained and can be referenced by the loop statements.
Although the work register also contains the current control variable value, it should not be
considered safe across the loop.

As you can see, the most efficient FOR loop code is generated when the control variable is
a D-register. If it isn'~ additional code is generated to copy the control variable to and
from a work register while incrementing or decrementing it. The incrementing and
decrementing itself is done by explicit ADD or SUB instructions, and the end of loop
condition is tested with a CMP instruction.

For a restricted class of FOR loop operands the generated code can be further optimized
to use a DBCC instruction. The following four FOR statements will generate DBCC
instructions:

FOR#
FOR#
FOR#
FOR#

Dn
Dn
Dn
Dn

[=[.sz] initial]
[=[.sz] initial]
[=[.sz] initial]
[=[.sz] initial]

DOWNTO
TO
DOWNTO
TO

#0 [BY U]
#0 BY f-1
U [BY U]
U BY f-1

[UNTIL expr]
[UNTIL expr]

DO
DO

The first two FOR statements allow an UNTIL exprclause. If e.xpris just a condition code,
the DBcc instruction generated will be a function of that condition code. If expr is
anything more than a condition code, a DBF is generated, but additional code will be
generated to implement an If statement to test the terminating e.xpr. If the UNTIL expr
clause is omitted, or one of the last two FOR statement classes is specified, a DBF is
generated.

In all four special cases, the size, sz, for the control variable must be byte or word. Since
DBCC instructions require a word size register value, if the size is specified as byte, the
control variable must be cleared (cLR. w) prior to setting its initial value. This clearing
process may be suppressed by specifying the CLR=N FOR# parameter, or loading the
control variable (as a word) prior to FOR#, and not specifying an initial value. If you don't
want any of the optimizations, and would rather have an explicit increment or decrement
along with the accompanying CMP instruction, you may suppress the DBcc optimization
by specifying the FOR# OPT=N parameter.

FOR# DO=O TO #4*(N-l) BY #4 DO.S
IF# 0(A0,DO.W) GT Dl Then.S
MOVE.W O(AO,DO.W),Dl

END IF#
ENDF#

DO
DO

APPENDIX J Structured Assembly Macros 289

This example scans N word values pointed to by AO and returns the maximum value in Dl
(assumed initialized). Short branches are used. Since the FOR statement does not fall into
one of the four possible DBcc optimization classes, an explicit ADD and CMP will be
generated. Here is an example:

FOR# D0=#63 DOWNTO #0 DO.S
MOVE.L

ENDF#
(AO)+, (Al)+

This example copies 256 bytes from the area pointed to by AO to the area pointed to by
Al. A DBF loop is generated to loop 64 times (0 to 63) to move 4 bytes at a time.

The Leave statement

LEAVE#[.ext] [/aben (IF[#Je.?pr]]

The LEAVE statement causes execution of the smallest enclosing FOR, WHILE, REPEAT,
or SWITCH statement to be terminated. A label may be specified to indicate an enclosing
FOR, WHILE, REPEAT, or SWITCH statement that is at a higher nesting level than the one
containing this LEAVE statement. All loops and switches up to and including the one
associated with the label are terminated. The LEAVE statement may be made conditional
by specifying the IF clause.

LEAVE statements cause a generation of a branch to the first statement following the
loop or switch to be terminated. The size of the branch, s or B, w, or L, may be specified
with the extension attribute, ext.

FOR# DO=O TO #4*(N-l) BY #4 DO.S
LEAVE#.S IF TABLE(AS,DO.W) EQ Dl

ENDW#

This example searches a table of values for the value in Dl and stops when all the elements
of the table are searched or the value is found, whichever occurs first. Here is an example:

Outer FOR# DO=#l TO #N DO.S
Inner FOR# Dl=#l TO #M DO.S

LEAVE# Outer IF D3 EQ D4

ENDF#
ENDF#

In this example, both loops are terminated when D3 equals D4. The explicit label, outer,
indicates which loop is to be terminated. If the label were omitted, only the inner loop
would be terminated.

290 MPW 3.0 Assembler Reference

LEAVE statements used in switches are illustrated in the example for SWITCH statements
(see "The Switch Statement," given earlier in this appendix).

The Cycle statement

CYCLE#[.exrl [taben [IF[#]~]]

The CYCLE statement causes the next iteration of the smallest enclosing FOR, WHILE, or
REPEAT statement to be executed. A label may be specified to indicate an enclosing
FOR, WHILE, or REPEAT statement that is at a higher nesting level than the one containing
this CYCLE statement. All loops enclosing this CYCLE statement are tenninated and the
one associated with the label is iterated. The CYCLE statement may be made conditional
by specifying the IF clause.

CYCLE statements cause a generation of a branch to the loop continuation part of the
associated loop statement. The size of the branch, s or B, w, or L, may be specified with
the extension attribute, ext.

Note that CYCLE statements do not apply to SWITCH statements. A CYCLE statement
inside a swI TCH statement nested in a loop causes the loop to be iterated. Here is an
example:

Outer WHILE# DO NE.L 0 DO.S
Inner WHILE# Dl NE.L 0 DO.S

IF# D3 EQ D4 THEN.S
CYCLE# Outer
ELSEIF#.S D4 EQ.L #0 THEN.S
CYCLE# Inner
END IF#

ENDW#
ENDW#

In the example given here, when D3 equals D4, the inner loop is terminated and the outer
loop is iterated. If D3 does not equal D4, but D4 is zero, then the inner loop is iterated.
The explicit labels indicate which loop is to be terminated. In the case of CYCLE# Inner,

you could have omitted the label reference.

APPENDIX J Structured Assembly Macros 291

The GoTo statement

GOTO#Lextl [IF[4t)expt"THEN[.ext]]Iabe/

The GOTO statement is included only for the sake of completeness. A BRA instruction is
generated for the GOTO statement. The branch is made conditional by specifying the IF
clause. The size of the branch, s or B, w, or L, is specified by the extension, ext. It may be
specified either on the GOTO# or THEN. The rightmost extension is the one used.

Progratn structure tnacros

The program structure macros are used to define procedures and functions, to define local
variables belonging to them, and to call them. The macros are as follows:

PROCEDURE Define a procedure declaration header
FUNCTION Define a function declaration header
VAR Declare procedure or function local variables
BEGIN Define a procedure or function starting point
ENTER Define a procedure or function secondary entry point
RETURN Exit from a procedure or function
CALL Invoke a procedure, function, or trap

These macros make it easier to define and call modules. They take much of the burden off
you as a programmer, who would otherwise have to explicitly define formal parameters
and local variables using either equates or template mappings. The syntax is also more
readable, and taken together with the CALL macro, tends to compress an Assembler
source file so that it takes fewer source lines to define and call a procedure.

With the exception of the CALL macro, all the other program structure macros are used to
define a procedure or function code module. They have a fixed relationship with one
another. That relationship is governed by the standard rules imposed by the Assembler on
defining code modules.

To define a code module you first must have a PROC, FUNC, or MAIN directive to delimit
the scope of the code module and the local variables declared inside it. Inside the module
you may define a template to map over the formal parameters and local variables to be
placed in the module's stack frame. The entry point of the code module possibly does a
LINK to set up the stack frame, and saves any nonvolatile registers. Finally comes the
code for the module followed by a restore of the saved registers, an UNLK to delete the
stack frame, and a return to the caller. Thus the macros, which perform these functions,
are specified in the order illustrated by the following example:

292 MPW 3.0 Assembler Reference

Export FUNCTION EXAMPLE (Argl: L, Arg2, Arg3:B) :L ;Function hdr, formals,
VAR Locall:L, Local2:LEN ; Local variables
VAR Local3:B[256], Local4 :Tl;
BEGIN SAVE=D3-D5/A2-A4,WITH=(Globals,T2) ;Entry point, reg save,

;code for module •••
RETURN DO ; Exit with DO as result
ENDP ;End module

The PROCEDURE or FUNCTION macro is responsible for setting up the PROC or FUNC

directive and declaring the module's scope. The example just given shows an exported
function with a result. ENTRY procedures or functions are also possible, as well as
embedded (local) procedures. (An embedded procedure is one that is local to another
procedure.)

In addition to declaring the module's scope, the header also declares any formal
parameters. These are translated into a template mapping over a stack frame. The exact
syntax for declaring formal parameters is discussed in "Procedure and Function Header,"
given later in this appendix. In general, the syntax allows you to declare the name, size,
and a repetition count of each formal. Sizes can be specified as bytes, words, longs,
absolute expressions, or as template names. The latter case also defines the type of the
formal parameter.

If local variables are to be declared, as they are in this example, they are added to the
stack frame definition started by the procedure header by using the VAR macro. The
functionality for declaring local variables is much the same as that for formal parameters.
As many VAR macros as desired may be specified to declare all the local variables needed
by the procedure. They may be declared one variable per call or many variables per call.

All the VAR local variable declarations are placed between the procedure header and the
BEGIN macro. The BEGIN macro marks the start of the procedure code body. The stack
frame template definition is closed and LINK and MOVEM instructions are generated as
required. With BEGIN you specify any registers to be saved and additional templates or
data modules to be converted with a WITH directive. The stack frame is always covered
by a WITH directive, and the stack frame pointer, A6 or A7, is equated to the local name
FP. Using FP you can access the local variables and formals on the stack via the stack
frame template.

At the end of the procedure you use the RETURN macro to exit The RETURN macro
generates a MOVEM statement to restore any registers saved by the BEGIN macro. The
UNLK is also done and code is generated to pop the arguments off the stack and to rerum
to the caller. Depending on the PROCEDURE macro parameters you can also generate the
ASCII module name following the exit so that the procedures can be debugged using
MacsBug.

result

LINK

APPENDIX J Strucrured Assembly Macros 293

As you can see, the program structure macros do a lot of work for you. All the lines except
the ones marked as comments with an asterisk are generated by the macros. The following
sections will discuss each macro in detail.

Sample code generation from program structure macros

* Export FUNCTION

Example PROC
SF#X:UX RECORD
Example DS.L
Argl DS.L
Arg2 DS.W
Arg3 DS.W
RetAddr DS.L

* VAR
LinkA6 DS.L
FramePtr EQU
Locall DS.L
Local2 DS.W

* VAR
Local3 DS .B
Local4 DS.W

* BEGIN

Local Size
ENDR
WITH
LINK

FP SET
MOVEM

* RETURN
MOVEM.L
UNLK
MOVEA.L
ADD.W
MOVE.L
JMP
ENDP

EXAMPLE(Argl:L, Arg2, Arg3:B) :L
;Function hdr, formals, result

Export
{FramePtr),Decr
0
1
1
1
1
Locall:L, Local2:Len
1

*
1
LEN

;Local variables

Local3:B[256], Local4:Tl;
256
Tl
SAVE=D3-D5/A2-A4,WITH=(Globals,T2)

;Entry point, reg save, LINK
DS.W 0

Globals,T2,SF#XXX.X
A6,#Loca1Size
A6
D3-D5/A2-A4,-(A7)

DO ;Exit with DO as result
(A7)+,D3-D5/A2-A4

A6
(A7) +,AO
#8,A7 ;Optimizes to ADDQ
DO, (A7)
(AO)

294 MPW 3.0 Assembler Reference

Procedure and function header

[{
ENTRY }]

~~~~T 
{ PROCEDURE} 

FUNCTION 
[module-id] [( [jomzal , .. .]}]:[result] [,cl [,Link= {YI DEBUG} l\ 
[,Main=(NI Y}] 

where 

formal .. = 
formal-sz · · = 

count .. = 
result ··= 

idjomza~s~[counfj 

B I W I L I S I D I X I P I ae I template-id 
'['ae1' 
BIWILISIDIXIPlid 

The procedure and function header macros are used to do the following things: 

• Declare a new code module as a procedure or function. 

The two macro calls, PROCEDURE and FUNCTION, are interchangeable and may be 
used as appropriate for documentation purposes. For simplicity, both procedures and 
functions are ref erred to as procedures in the following discussion. A main program 
entry point may be specified using the Main=Y macro parameter. 

• Define the procedure's scope. 
A procedure may be declared as ENTRY (the default), EXPORT, or LOCAL. These 
words are specified in the label field of the macro call. An entry or export procedure is 
declared using the standard Assembler PRoc or FUNC directives, with ENTRY or 
EXPORT as the directive's parameter and the module name, module-id, as the 
directive's label (note that the macro syntax is thus inverted from that of the 
corresponding Assembler directives). A local procedure does not cause generation of a 
PRoc or FUNC directive. This form of declaration is used to define an inner procedure 
where only the label (module-id) is defined. An ALIGN 2 directive always precedes a 
local procedure declaration. 

• Declare a procedure's formal parameters (if any) that are to be passed on the 
stack. 

As shown in the syntax description at the beginning of this section, the formal 
parameter list is enclosed in parentheses. The formal parameters' identifiers are 
defined by placing them in a stack frame template definition started by the macro 
(discussed later in this appendix). 

APPENDIX ] Structured Assembly Macros 295 



Each formal parameter identifier may be followed by a size attribute. If the size is not 
specified, word (w) is assumed. If the size is specified it may be any of the standard 
Assembler size attributes, an absolute expression, or a template name. An absolute 
expression explicitly specifies the size of the formal. A template name defines both 
the size and the type of the formal (see description of template types elsewhere in 
this Reference). 

Following the size you may specify a repeat count enclosed in required brackets. The 
default repeat count is 1. The repeat count indicates how repetitions of the basic size 
are to be allocated for the formal parameter. Thus the amount of space actually 
allocated for a formal is count* f ormal-sz. Note that since you are describing the size 
of parameter passed on the stack, and assumed pushed on the stack using A7, all sizes 
are rounded up to an even value. Specifying a byte actually allocates a word, and 
absolute expressions are rounded up to an even value. 

Normally, each formal parameter is processed left to right, causing a new entry in the 
stack frame template set up for this procedure. However, for C procedures, you may 
have the option of processing the formal parameters right to left, so that the leftmost 
argument is the one closest to the top of the stack. Right-to-left processing is 
specified by using the C parameter, as indicated in the syntax. 

• Define a function result 

By placing result after the formal parameter list (if any), you indicate that a function 
result is to be returned (you can still use the Procedure macro even if this is a 
function). The result parameter specifies the size or an identifier. If you specify a 
size, then the assumed identifier is the same as the procedure's name, module-id. 
Whichever name is used, that name may be referenced as a stack frame offset to store 
the function result; for example, MOVE. w DO, namli.FP ). More specifically, the name 
is defined as the first stack frame entry (template) field with no space allocated to it 
(if you specify a size it is used for commentary purposes only). In this position you 
could set the function result after all arguments have been popped off the stack prior 
to exit. See "Procedure or Function Exit," given later in this appendix, for further 
details on how the function result is set. 

• Force a LINK to be done at entry (by the BEGIN macro) and the 
corresponding UNLK to be done at exit (by the RETURN macro). 

Normally the LINK/UNLK pair is automatically generated for a procedure when you 
specify local variables (with the VAR macro), or have saved registers (specified by the 
BEGIN macro) and a function result or formal parameters. However, you may force 
generation of the LINK/UNLK pair by specifying the L!NK=Y er LINK=DEBUG 

parameter on the PROCEDURE or FUNCTION macro call. The LINK=DEBUG is the same 
as LINK=Y, but in addition causes the procedure's module-id (up to its first eight 
characters) to be generated following the exit code. This allows you to use MacsBug, 
which requires the LINK/UNLK pair and name so it can identify the module in memory. 

296 MPW 3.0 Assembler Reference 



It is possible that you might want to tum on the debugging option during 
development of your program and later tum it off. It could be inconvenient for you to 
have to set all the LINK= parameters in your source file and then later have to change 
them again. A pair of global equates are provided so you can simulate the LINK= 
parameter without explicitly specifying the parameter on each macro call. 

The global LinkAll is assumed to be 0 (false). If you set it to 1 (true), then LINK=Y 
will be assumed on all the PROCEDURE and FUNCTION calls. The second global is 
named Debug. It too is initially 0. But by setting it to 1 you simulate LINK=DEBUG. 
Note that the Debug setting overrides the LinkAll setting. Both cause the 
LINK/UNLK pair to be generated, but the Debug global generates the module name 
after the exit code for MacsBug. The setting of these globals should be done prior to 
using any of the program structure macros. You may set them explicitly in your source 
via EQU or SET statements or through the Assembler's -d command line option. 

The general skeleton for the code generated by just the PROCEDURE or FUNCTION macros 
is as follows: 

module-id 

SFf.XXXX 

[resultName 

formali 

RetAddr 

PROC I FUNC ENTRY I EXPORT Start a new code module 
and declare its scope 

RECORD {FramePtr},DECR Origin-shifted 
decrementing stack frame 

DS. size 0 ] Function result if this 
is a function 

DS.size amount Declare all formals ... if 
any (all are word 
aligned) 
i=l to n or n to 1 for C 

DS.L 1 Return address 

The stack frame template has a unique name, SFtxxx.x(the :ts are digits), for each 
procedure. It is a decrementing, origin-shifted template with the origin defined by the 
field FramePtr. The field FramePtr is generated either by the first VAR declaration or 
BEGIN if there are no local variables declared (the descriptions of each of these macros 
will show the skeletons they follow in completing the stack frame). The template 
definition is left open by the PROCEDURE and FUNCTION macros because either a VAR or 
BEGIN macro must follow. VAR macros are used to define local variables that will be 
added to the stack frame. The BEGIN macro actually closes the template definition. 

APPENDIX J Structured Assembly Macros 2<J7 



Local variable declaration 

VAR local, ... 

where 

local::= formal (see "Procedure or Function Header," given earlier in this appendix) 

The VAR macro is used to declare local stack variables that are to be used by the 
procedure. Each VAR macro may declare one or more variables. VAR macro calls must be 
placed after the procedure or function header and before the BEGIN macro. 

The syntax for defining local variables is exactly the same as that for declaring formal 
procedure parameters (see "Procedure or Function Header," given earlier in this 
appendix). Each variable is added to the stack frame template definition opened by the 
PROCEDURE or FUNCTION macro the same way formal parameters are. The only 
difference is that local variables are not automatically aligned to word boundaries and 
rounded up to an even size. 

The general skeleton for the code generated by VAR macros continues the skeleton 
started in the procedure and function header description given earlier. 

LinkA6 DS.L 1 
FramePtr EQU * 

locali DS. size amount 

A6 link to previous stack frame 
Stack frame Origin 
(proc's A6 points here) 

Declare a local. 
(one for each VAR parameter) 

On the first VAR call following the procedure or function header, the fields LinkA6 and 
FramePtr are generated. They are followed by the local variable definitions. Each 
additional VAR call just adds its variable definitions to the stack frame. 

When local variables are declared, it is assumed a LINK on A6 will be generated (by the 
Begin macro). Thus the LinkA6 field is generated to hold the previous stack frame link 
address. The frame pointer will be defined as A6 and will point to LinkA6 (see "Procedure 
or Function Start," given later in this appendix). This then becomes the origin for the 
template definition. FramePtr was defined as the origin field label when the template 
definition was opened (see procedure and function header skeleton), so it is now defined 
as the same offset as LinkA6 (remember this is a decrementing template definition). 

298 MPW 3.0 Assembler Reference 



Procedure or function start 

BEGIN [non-blank] [,save= reg-list] [ { template-id }] 
WITH= . 

' (template-id, ... ) 

The BEGIN macro is placed after all the local variable declarations (if any). BEGIN is used 
to close (ENDR) the stack frame template definition begun by the PROCEDURE or 
FUNCTION header macros and to generate the procedure's entry point code. 

The general skeleton for the code generated by the BEGIN macro is shown here: 

LinkA6 DS.L 

FramePtr EQU 

LocalSize EQU 

ENDR 
WITH 

1 A6 link if required and allowed 

* ] Stack frame Origin (only if no Var macros) 

* Negative of the size of the stack frame 

; Close the stack frame template definition 
temp/ate-id, . .. , SF:#:XXX.X 

; Cover WITH= templates and the stack frame 

[ LINK A6,:#:Loca1Size ] 
Allocate local stack frame if required 

and allowed 

FP SET A6 or A7 ; A6 if LINK generated else A7 
[ MOVE[M].L reg-list,-(A7)] 

; Save registers specified by Save= 

If there are no local variables declared, the LinkA6 and FramePtr fields are generated 
(see "Local Variable Declaration," given earlier in this appendix, for the meanings of these 
fields). The BEGIN macro signals the end of the local variable declarations and defines 
procedure entry point, so that the stack frame definition is closed with LocalSize set 
to the current stack frame offset. Since the stack frame is defined as a decrementing 
template, Local Size is a negative value whose absolute value is the size of the 
template. Local Size is used for the LINK instruction. 

The LINK instruction is generated under the following conditions: 

• There are local variables declared with VAR macros. 

• You specify register to be saved with the SAVE= parameter of BEGIN, and you have 
either a function with a return value (result specified on a PROCEDURE or FUNCTION 

macro), or formal parameters declared on a PROCEDURE or FUNCTION macro. 

• LINK is forced by the LINK= {Y I DEBUG} parameter on a PROCEDURE or 
FUNCTION macro. 

• LINK is forced by setting either of the globals, LinkAll or Debug, to 1 (true). 

APPENDIX J Structured Assembly Macros 'NJ 



Even if you have any of these conditions you may still suppress LINK by specifying any 
nonblank value as the first parameter to BEGIN. 

If none of the listed LINK conditions is true, or you suppress LINK with the nonblank first 
BEGIN parameter, then the stack frame pointer, FP, will be defined to be A7. If LINK is 
generated, FP is defined as A6. You use the frame pointer register to access the local 
variables and arguments on the stack. The variables may be directly referenced as frame 
pointer offsets, for example, local ( FP) . 

The stack frame field names may be directly referenced because the BEGIN macro always 
generates an Assembler WITH directive to cover the stack frame template. You may add 
your own template and data module names to this WITH for additional coverage by 
specifying the WITH= BEGIN parameter. If more than one name is specified, you must 
enclose the list in parentheses. Note in the skeleton that the stack frame name is always 
placed last in the WITH list so its definitions will override fields that belong to templates 
mentioned earlier in the list. 

You may specify that registers are to be saved on the stack by using the SAVE= BEGIN 

parameter. This parameter takes either a single register or a list of registers using the same 
syntax defined for a MOVEM instruction. The registers that are saved will be restored for 
you when you exit from a procedure via a RETURN macro. 

Procedure or function secondary entry point 

entry-id ENTER [non-blank] [ { template-id }] 
WITH= . 

' (template-1~ ... ) 

Sometimes it is convenient to have one procedure or function with multiple entry points; 
for example, a sine function with a cosine entry point You can use the ENTER macro to 
define a secondary entry point into a procedure module. 

ENTER is used within the body of a procedure (that is, somewhere beyond the BEGIN 

call). A label, entry-id, should be specified to define the secondary entry point. It is up to 
you to define its scope; that is, EXPORT or ENTRY (the default) prior to calling ENTER. 

The parameters of ENTER are the same as those of BEGIN and perform the same 
functions. Thus you may define additional WITH coverage and suppress LINK. However, 
the one parameter missing in ENTER that is in BEGIN is the list of registers to be saved. 
The registers to be saved are assumed to be the same as those specified by BEGIN (there 
can only be one set of saved registers so that RETURN knows how to restore them). 

300 MPW 3.0 Assembler Reference 



The general skeleton of the code generated by ENTER is shown here: 

BRA.S %L%X::O:X ; Branch around secondary entry point code 
entry-id ; Entry point label -- you define its scope 

WITH temp/ate-id,. . . ] 
; Cover additional WITH= templates 

LINK A6,fLocalSize ] 
; Allocate the local stack frame 

MOVE [M] . L reg-list,- (A 7) ] 
Save registers specified by 

; Save= on Begin macro 
%L%.xxxx ; The branch-around label (the x's are digits) 

A short branch is always generated around the entiy point code. WITH, LINK, and MOVE[MJ 

are generated just as they are in BEGIN (except that WITH does not respecify the stack 
frame). 

Procedure or function exit 

where 

RETURN [ret-resulrl 

ret-result 
sz 

ea[:£ZJ 
BIWILISIDIXIP 

At the end of the procedure you must generate code to return to the caller. The RETURN 

macro is used to perform this function. It is responsible for 

• restoring any saved registers 

• unlinking (UNLK) the stack frame if IJNK was generated on entiy 

• popping the parameters off the stack (if not C) 

• leaving a function result on the top of the stack (if not C) 

• returning to the caller 

• defining the module name as a string for MacsBug 

If you are exiting from a C procedure (as indicated by the C parameter on the PROCEDURE 

and FUNCTION macros), or if you are exiting from a procedure that has no arguments and 
is not a function with a result to rerurn, then the following skeleton illustrates the code 
generated by RETURN: 

MOVE [M] . L (A 7) +'reg-list 

UNLK A6 ] 
RTS 

DC. B ' module-id• 

Restore registers specified by 
Save= on Begin macro 
Set A6 back to the caller's stack frame 
Exit 
Name for MacsBug as an as-is string 
(8 chars) 

APPENDIX J Structured Assembly Macros 301 



This skeleton shows the basic exit code. Registers saved by the BEGIN macro at entry are 
restored, UNLK is generated if LINK was generated by BEGIN, and execution exits. If you 
specified the LINK=DEBUG parameter to the PROCEDURE or FUNCTION macros, or you 
defined the global DEBUG as 1 (TRUE), then the module name is generated for MacsBug 
following RTS. The name will be generated as an as-is string of eight characters, padded on 
the right with blanks if necessary. 

If you are not exiting from a C procedure and the procedure has arguments or there is a 
result to return, as specified by the optional ret-result parameter of RETURN, then the 
following skeleton illustrates the code generated: 

MOVE [M] . L (A 7) +,reg-list ] 

UNLK A6 ] 

MOVEA.L (A7)+,AO 
ADDQ. w #argsize,A 7 

or 

LEA argsize(A7) ,A7 

[F] MOVE .szea, (A7) 

JMP (AO) 
DC.B •module-id• J 

Restore registers specified by 
Save= on Begin macro 

; Set A6 back to the caller's stack 
; frame 
; Pop return address into AO 
; Pop arguments off the stack 

c argsize :S a l 

Pop arguments off the stack 
c argsize > 8 l 
Set function value (MOVE if sz ::= B 

; W I L) 
Exit 
Name for MacsBug as an as-is string 
(8 chars) 

As in the simple case, the registers are restored, UNLK is generated, and the name for 
MacsBug is generated. But if there are arguments, they must be popped off the stack. 
They are popped by generating ADDQ or LEA to pop the stack most efficiently. If a 
function result is specified with the ret-result parameter, then it is left on the top of the 
stack prior to returning to the caller. 

Note that ret-result may only be specified if result was specified on the PROCEDURE or 
FUNCTION macro. The default size for the move is taken from the size specified for the 
PROCEDURE or FUNCTION result. If an identifier is specified for result instead of a size, 
then word is assumed. However, you do not have to use the size specified on the 
PROCEDURE and FUNCTION macros. Instead it may be overridden with an explicit size 
specification following the effective address portion of the ret-result (see syntax at the 
beginning of this section). No matter which way the size is specified, a standard MOVE is 
generated when the size is byte, word, or long (B, w, or L) and a FMOVE when the size is 
single, double, extended, or packed (s, D, x, or P ). 

302 MPW 3.0 Assembler Reference 



There is no requirement that a function's result must be set on exit from the module with 
RETURN. It may be more convenient at times to set the return value at various places 
within the module and just use RETURN for a common exit point. When a function result is 
specified to the PROCEDURE and FUNCTION macros, a field is defined in the stack 
template that corresponds to where the function result is to be returned; that is, the first 
field of the stack frame template with no space reserved, which corresponds to the stack 
position after all the arguments and RETURN have been popped off the stack. It may be 
addressed through the field name. This name is the same as the module-id if you specified 
the result as a size, or if an identifier was specified instead of a size, that identifier is used 
as the field name. You may access it prior to exit just like any of the other stack frame 
fields, namely as an offset from the frame pointer register, FP; for example, MOVE. w 
DO,naml(FP). 

Procedure, function, or trap invocation 

Call[ . ex~ module-id[ : result-sz] [ ( [arg], ... ) ] [,disposition] 

where 

ext 
result-sz 
arg 
arg-sz 
disposition · · = 

SIBIWILI* 
BI WI L 
ed: arg-sz] I NIL I TRUE I FALSE 
B I w IL I A I D-register 
~ I {ea I CC I POP}[: result-szl I (PASS,{ea I CC}[: result-sz]) 

The CALL macro is used to invoke a procedure, function, trap, or another macro. 
Arguments may be pushed on the stack. If the invoked routine is a function, space on the 
stack may be reserved for the function result and the disposition of that result may be 
specified. The following general code skeleton shows how all these actions are performed: 

APPENDIX ] Structured Assembly Macros 303 



SUBQ.W 
CLR.L 
ST 
CLR.B 
MOVE . arg-sz 
PEA 
MOVEQ 
MOVE.L 

JSR 
or 

BSR.ext 
or 

module-id 
TST. result-sz 

or 

#2 or *4,A7 ] 
- (A7) 
-(A7) 
-(A7) 
ea,-(A7) 
ea 
ea, D-register 
D-register,- (A 7) 

module-id 

module-id 

(A7)+ 

ADDQ.W #2 or #4,A7 

or 
MOVE. result-sz (A 7 > +, ea 

or 
TST. result-sz (A 7) 

or 
MOVE . result-sz (A 7) ' ea 

; Leave space if resu/t-sz specified 
If NIL 
If TRUE 

; If FALSE 
If ea: arg-sz, where arg-sz ::= B I w I L 
If ea:A 
If ea: D-register. . • 
... ea: D-register generates a push of a long 
Additional arguments are pushed onto 
the stack 

; Call if external or ext ::= * 

Call if ext ::= s I B I w I L 

Call if module-id is opword, macro, or _id 
If result-action : := cc: result-sz 

If result-action::= POP: result-sz 

If result-action : := ea: result-sz 

If result-action ::= (PASS, cc: result-SZ) 

If result-action::= (PASS, ea: result-SZ) 

Arguments are passed on the stack by enclosing the argument list in parentheses after 
module-id. An argument may take any of the following forms: 

• The identifier NIL. NIL causes a push of a long word 0 by generating 
CLR. L -{A7). 

• The identifier TRUE. TRUE causes a word push of $FFXX (the xx is a garbage byte) 
by generating ST -{A7). 

• The identifier FALSE. FALSE causes a word push of $00xx (the xx is a garbage 
byte) by generating CLR. B -(A7). 

• An effective address optionally followed by a size (B, w, or L) specifier. The size 
specifier indicates the size of the argument that is to be pushed on the stack (byte, 
word, or long). MOVE.sz ea,-{A7) is generated. If no specifier is given, a word push is 
assumed. Note that MOVE.sz #O,-{A7) will be optimized by the Assembler to 
CLR.SZ -{A7) unless OPT NOCLR or OPT NONE is in effect. 

• An effective address followed by the address specifier A. Using A as a specifier 
indicates that the address of the argument is to be pushed (PEA). 

304 MPW 3.0 Assembler Reference 



• An effective address followed by a D-register. This is a special case that restricts the 
effective address to an immediate mode (that is, #ae) with a value 
-128 .. +127. It is used to generate a space-efficient long word push of small constants 
by generating MOVEQ to the specified D-register and then a move of the D-register 
onto the stack. 

• An argument in the argument list may be omitted, indicated by a comma with nothing 
before it. Nothing is generated for such an argument. This is useful for commentary 
purposes when the first argument is already on the stack; for example, F ( , Y) • It 
could also be used for arguments beyond the first argument if, for example, you push a 
long argument that actually corresponds to two word arguments. Thus_ MOVE TO 
QuickDraw call, which requires integer point coordinates as parameters, could be 
written as _MOVETO(h,v). But if you happen to have a template defined that overlays 
the two integer coordinates with a long word, called, for example, thePoin~ you could 
write _MOVETO (thePoint: L,). 

To call the specified module-id either JSR, BSR, or module-id itself is used to perform the 
call. The determination of which call form is used is based on the following criteria: 

• JSR is generated whenever the routine you are calling is either undefined, a code 
module previously declared in the same file, or a code import; or an asterisk ( *) is 
specified for the CALL extension attribute, ext, to force JSR. 

• BSR is generated if you specify an explicit extension, s or B, w, or L, indicating the 
size of BSR. If you don't specify the extension, BSR (default size) is still generated if 
module-id does not satisfy the JSR criteria or the following criteria. 

• If module-id is an opword (defined by the Assembler's OPWORD directive), or a MACRO 
name, or an undefined type (as determined by the Assembler's &Type function) and 
begins with an underscore, then module-id itself is used as an opcode. This will cause 
generation of the opcode word (usually a trap) for opwords and a macro call for 
macros. 

If a function is being called, then the amount of space to be reserved on the stack for the 
function result is specified with result-sz following module-id. The result size may B, w, or 
L, with both B and w reserving a word on the stack and L reserving a long word. 

On return from the function it is assumed the result is left on the top of the stack in the 
space reserved prior to the call. The action to perform on the function result is specified 
by disposition. The value of disposition may be just the keyword PASS, an effective 
address, or the keywords cc or POP optionally followed by a size attribute. 

APPENDIX J Structured Assembly Macros 305 



Each of these forms causes a different action to be performed, as follows: 

• PAS s is the default disposition. This leaves the function result on the top of the 
stack. 

• cc causes the function result to be tested by a Ts T instruction to set the condition 
codes. 

• An effective address, ea, indicates that the function result is to be copied to the 
specified alterable address. 

• POP indicates that the function result is to be popped off the stack. 

Note that specifying an effective address, cc, or POP all cause the function result to be 
popped off the stack. The size attribute, result-sz, indicates how much to pop off the 
stack. The default is to use the size specified by result-sz, which is the normal case. The 
only time you might want to use a different pop size is if, for example, you want to pop 
less than what is actually the result size, leaving a portion of the result on the stack. For 
example, this could be used for the Menu Manager's MenuSelect call as follows: 

CALL _MenuSelect:L(thePoint:L),DO:W 

Since MenuSelect returns a long word with the high-order word containing the menu ID 
and the low-order word containing the menu item number, you could pop just the menu ID 
off the stack into DO while leaving the item number on the top of the stack for later use. 

A situation exists where you may want to copy the function result or set the condition 
codes based on the result, but still want to leave the result on the top of the stack. By 
enclosing the keyword PASS followed by an effective address or cc in parentheses, you 
may perform this action. The value of result-sz for this case indicates the size of the MOVE 

or Ts T instruction. 

Considerations for use 

This section describes the various considerations you need to take into account to use 
the structured assembly macros. The considerations are split into two groups. The first are 
the more esoteric considerations: why you should or should not use the macros. The 
second group of considerations are specific and cover the rules you must follow to use the 
macros, over and above the syntax and semantic considerations described in the previous 
sections. 

306 MPW 3.0 Assembler Reference 



Why you should or should not use the structured assembly macros 

This document provides a set of macros that essentially simulate almost all the 
functionality provided by a high-level language compiler. You have many of the 
advantages of a higher-level language but still retain the ability to "drop" into assembly 
code at any time. This is a powerful combination, and you can be reasonably sure that the 
code generated is as optimal as you can write. 

However, you must remember that this "compiler'' is implemented as a set of Assembler 
macros. Macros are more or less interpreted, and that means that this compiler is an 
interpretive compiler. In terms of raw speed it will never compile and generate code as 
fast as a native code compiler. The MPW Assembler is fast, but there is a limit. The macros 
presented here are extremely complex and push the Assembler to that limit. Average 
compilation speed is about 10,000 lines per minute on a 1-megabyte Macintosh Plus. That 
may appear faster than most compilers, but remember that most of those "lines" are 
macro definition lines, not source input lines. The actual net throughput is more on the 
order of 500-800 source lines per minute. 

Error and consistency checking is not perfect, and is in fact almost nonexistent, because 
such checking would slow the macros down even more (much more). Except for a few 
tests for specific parameter syntatic forms and depending on the Assembler itself to 
catch errors, there are no additional error checks. 

You have to weigh the advantages of using these macros against the assembly speed 
disadvantages. The reason the assembly speed aspect is noted as a consideration at all is 
that users of the Assembler not using these macros will see a large decrease in assembly 
speed when they do. This can be very disconcerting and discourage use of the macros, 
especially if you are already used to the speed of the Assembler and you know how long it 
takes to assemble a file. Those already coding in assembly language also have their own 
styles of coding and these macros will greatly affect those styles. It is conceivable that 
any advantages gained by using the macros cannot be justified when weighed against the 
loss of assembly speed or change of coding style. 

Of the two groups of macros, program structure macros and flow-control macros, the 
flow-control macros are the more complex and require the most assembly time. You could 
decide to compromise and use only the simpler program structure macros. If you consider 
ease of coding, maintainability, and readability more important than assembly time, then 
you may want to use the full set of macros. 

These arguments are presented for your careful consideration. Only you can decide 
whether these macros are worth using. 

APPENTIIX J Structured Assembly Macros 307 



Rules for using structured assembly macros 

It is assumed in the following discussion that you already know how to use the Assembler 
and its directives and modes, and how to call macros. 

The following rules must be observed when using the macros: 

• Nesting of IF, SWITCH, REPEAT, WHILE, and FOR statements is limited to a 
maximum depth of 25. 

• To use the flow-control macros you must have BLANKS ON (the Assembler default 
setting). The flow-control macros "read" like high-level language statements, with 
spaces or tabs between the keywords. 

• The macros assume OPT ALL is in effect because they generate generic instructions 
and depend on the modes of their effective address parameters to cause the proper 
instruction generation. Indeed, code generated from macros is one of the prime 
reasons for having generic instructions in an Assembler. 

• Don't generate assembly listings with PRINTGEN in effect. (This is a recommendation, 
not a must.) 

• Macro parameters may be continued the usual way using the standard Assembler"\" 
continuation character. This could be particularly useful for the VAR program structure 
macro for declaring multiple local variables and commenting on them with one VAR 

declaration. 

• Keyword macros may be in any order and there need not be a comma preceding the 
first keyword parameter if all the positional parameters are omitted. These are 
standard Assembler macro rules, but it is important to point out the fact that the 
syntax descriptions do not show all possible keyword permutations. For example, the 
BEGIN program structure macro may have its nonblank first (and in this case, only) 
positional parameter omitted. If it is omitted, the comma that follows it may be 
omitted and the two keyword parameters could be reversed. 

• Long branches (produced from an L ext extension specification) may only be used if 
the MC68020 or MC68030 is specified as the target microprocessor. 

• Branch warnings are not suppressed. This is done so you can get the appropriate 
extension specifications on the macros that require them, and normally default to 
word size branches. 

• Due to the size of the 5tructured assembly macros, you cannot use them on a 512K 
machine. 

308 MPW 3.0 Assembler Reference 



The macros are provided as two source files ready for assembly in the folder AStructMacs. 
File ProgStrucMacs.a contains the program structure macros and file FlowCtlMacs.a 
contains the flow-control macros. The folder also contains Sample.a, which is a rewrite of 
Sample.a in the AExamples folder, except that it illustrates the use of the structured 
macros. Both macro files are set up to generate DUMP files (ProgStrucMacs.d and 
FlowCtlMacs.d). You have the choice of editing the source files to remove the DUMP 

directives or just assembling them to generate the DUMP files. It is recommended that you 
generate DUMP files because to use the sources you have to INCLUDE them. Considering 
the size of these source files it is not a good idea to INCLUDE them. LOAD statements are 
very much faster. 

No matter which technique you decide to use, it is suggested that you put the files in the 
directory specified by the {Aincludes} MPW Shell variable. Since the {Aincludes} Shell 
variable is known to the Assembler as part of its standard search rules for input file 
pathnames, you only have to LOAD or INCLUDE the files with no additional qualification 
and no -i Assembler option to access them. 

Syntax summary 

Expressions 

expr ::= s-expr I s-expr op s-expr 
s-expr ::= cc I ea CC[. SZ] ea 
op ··= AND I OR 

cc ::= EQ I NE I LE LT GE GT MI PL I HI I 

LS I LO I cc cs NZ HS vc VS 

sz ::= B I w I L 

APPENDIX J Structured Assembly Macros 30CJ 



Flow-control macros 

IF# exprl THEN[ .ext] 
statements1 

ELSEIF#[.ext] exprz THEN[.ext~ 
statements2 

ELSE#[.ext] 

statemen~ 

END IF# 

SWITCH# [ .sz] selector[,Dreg=Dn] [,JmpTbl= {NI y I ext} ],[ChkRng={NIY}] 

CASE #Lextlae1L. aei], ... 
statements1 

DEFAULT# 
statements2 

ENDS# 

REPEAT# 
statements 

UNTIL#[. ext] {expr I FALSE} 

WHILE# {expr I TRUE} DO[. ext] 
statements 

ENDW# 

FOR# ctl-var[=[. sz] initian [DOWN]TO ftnal[BY incwnent] [UNTIL expr] DO[. ext]\ 
[,DREG=Dn] [,opt={Y IN}] [,clr={YIN)] 

statements 

ENDF# 

LEAVE#[. ext] [faben [IF(#JE?lpr] 

CYCLE#[. exrj [/aben [IF[#]exfJr] 

GOTO#[. ex~ [IF[#]exfJrTHEN[. exilllabel 

310 MPW 3.0 Assembler Reference 



Program structure macros 

EN..T.EY 
EXPORT PROCEDURE 
LOCAL FUNCTION 

[modul~id] [([formal, .. .])]: [ result][,c] [,Link= {YI DEBUG} J \ 
[,Main={NIY)] 

formal .. = 

f ormal-sz : : = 

count ··= 
result ··= 

Var local, ... 

local ::=formal 

idJormal-szl [count] 
B I w I L I S I D I X I P I ae I templa.te-id 
[at3 
BIWILISIDIXIPI id 

BEGIN [ non-blank ] [,save = Te'5-l ist ] [ { template - id }] 
,WITH= . 

( template - 1d, •.• ) 

entry-id ENTER [ non-blank] [ { template - id }] 
,WITH= . 

( template - Id, ... ) 

Return [ret-result] 

ret-result · · = ed:szl 
sz BIWILISIDIXIP 

call [.ex~ module-id:result-szl [([argl, ... )] [,disposition] 

ext 
result-sz 
arg 
arg-sz 
disposition 

··= 
··= 
··= 
··= 
··= 

SIBIWILI* 

BIWIL 

ed:arg-szl I NIL I TRUE I FALSE 

B I w I L I A I D-register 
~ I {ea I cc I POP}[:result-szl I (PASs,{ea I cc}[:result-szl) 

APPENDIX J Structured Assembly Macros 311 





Glossary 

@-label: A label of very limited scope, written 
with @ as its first character. 

absolute: Of an expression, having a value that 
can be determined during assembly. 

actual parameter: A parameter in a macro call. 

addressing mode: see effective addressing 
mode. 

anonymous: Of a file or variable, not having an 
identifier. Anonymous objects are accessed by 
pointers. 

application globals area: An area in RAM in 
which application programs store data. 

application parameter area: An area in RAM 
pointed to by register AS. 

array: A data structure containing an ordered set 
of elements. 

ASCII: Acronym for American Standard Code for 
Information Interchange; a system of assigning 
code numbers to letters, numerals, punctuation 
marks, and control codes. 

ASCII character: A character whose ASCII code 
number lies in the range 0 .. 127. 

as-is string: A string that the Assembler stores 
without length information. 

assembler: A program that translates source 
text into object code. 

Assembler option: An instruction passed to the 
Assembler at the time it is invoked. 

Assembler system variable: A variable whose 
value is determined by the Assembler. 

assembly: The process of translating source 
text into object code. Also, the set of modules 
being assembled. 

assembly-control directive: A directive that 
controls whether or not some portion of source 
text is assembled. 

back.quote: The ASCII $60 character, written, 
which tells the Macro Processor that the next 
character is to be processed literally during 
macro expansion. 

binary: Base-2 number representation, using the 
numerals 0 and 1. 

blank: A tab or space character. 

body: In a macro definition, the machine 
instruction and directive statements that 
comprise the macro, other than the MACRO 
directive, prototype line, and ENDM directive. 

Boolean expression: An expression whose 
value is either true or false. 

built-in function: A function that is part of the 
macro language. 

code: Executable computer instructions. 

command line: The text you enter to execute a 
command in the MPW Shell. 

comment: Source text intended for a human 
reader, ignored by the Assembler. 

313 



comment field: The area of a source text line 
reserved for comments. 

comment line: A source text line containing 
only a comment. 

comparison operator: An operator that 
compares two values; they are listed in Table 2-3. 

conditional assembly: The process of 
controlling what source text is assembled. 

continuation character: A character at the end 
of a source text line that lets you continue the 
text onto a second line. Backslash(\) is the 
Assembler's continuation character. 

C string: A string in a format compatible with 
the C programming language; it is terminated 
with a 0 byte. 

data: Information that a computer processes. 

decimal: Base-l 0 number representation, using 
the numerals 0 through 9. 

destination: An address into which an 
instruction places data. 

diagnostic output file: A file to which MPW 
tools, including the Assembler, write error 
messages and progress information. 

dimension: An ordering relation among 
elements of an array. 

directive statement: A source text instruction 
to the Assembler, which generates no direct 
code. 

equal: (Of strings) indistinguishable. 

equate: An EQU or SET directive. 

error code: A code (usually a number) returned 
by the Assembler to indicate that it has 
·encountered an error in the source text or 
assembly process. 

expand: To replace a macro call with the 
appropriate macro body, substituting actual 
values for variables and parameters where 
needed. 

export: To make a module or entry point 
defined in the current assembly linkable to other 
assemblies. 

field: A data structure within a template or 
statement. 

first-level call: The outer macro call of a macro 
call chain. 

floating-point: A way of representing decimal 
numbers. 

formal parameter: A parameter in a macro 
definition. 

generic form: A way of writing a statement so 
that the Assembler will convert it into a different 
form. 

global scope: The scope of code or data that is 
accessible in more than one module. 

global symbol table: A symbol table that 
contains symbols with global scope. 

dynamic nesting level: The ordinal position of header: In a macro definition, the MACRO 
a macro call in a macro call chain. directive itself. 

effective addressing mode: Any of several 
ways of writing an address so it can be 
assembled. 

element: One item in a sublist. 

314 MPW 3.0 Assembler Reference 

hexadecimal: Base-16 number representation, 
using the numerals 0 through 9 and the letters A 
through F. 

identifier: A name in source text. 



IF ... ENDIF construct: Source text enclosed by 
an IF directive followed by an E~'DIF directive. 

import: To make a module or entry point 
defined in another assembly linkable to the 
current assembly. 

include: To insert the contents of a source text 
file into an assembly. 

index: A numeric value that indicates the 
position of an element in a sublist or array, 
expressed by a subscript. 

initial value: The value the Macro Processor 
assigns to a SET variable when it is created. 

inner macro call: A macro call inside a macro. 

instruction: A program element representing a 
single computer operation. 

jump table: In the Macintosh, a table of 
references in RAM, used for communication 
between segments. 

keyword: An identifier for a macro parameter. 

keyword macro: A macro whose parameters are 
identified by keywords. 

keyword macro call: A call to expand a 
keyword macro. 

label: A name that identifies a location in 
assembled code or data. 

label field: The leftmost field of a statement. 

lifetime: Of a variable, the duration of program 
execution during which it is accessible. 

literal: Immediate data given to an instruction. 

literali7.e: To modify a symbol in source text so 
that the Assembler does not interpret it. 

literal pool: A table of all literals in an assembly, 
without duplications, maintained by the 
Assembler. 

local scope: The scope of code or data that is 
accessible in only one module. 

local symbol table: A symbol table that 
contains symbols with local scope. 

location counter: A counter maintained by the 
Assembler that points to the current byte of 
code or data being assembled. 

logical operator: One of the operators OR, 
XOR, AND, and NOT. 

machine instruction statement: A statement 
that generates executable code. 

Macintosh library routine: Any of the 
standard Macintosh routines described in Inside 
Macintosh. 

macro: Defined source text that the Macro 
Processor expands into other source text on 
command. 

macro call: A command to the Macro Processor 
to insert a macro at a specific point in a source 
text. 

macro call chain: A sequence of one outer 
macro call and any number of inner macro calls. 

macro definition: The source text that 
constitutes a macro. 

macro directive: A directive that controls 
macro expansion but does not generate any 
source text directly. 

macro label: A label indicating a location in 
source text, used only with GOTO directives. 

macro language: The directives and functions 
that create and manipulate macros. 

Glossary 315 



Macro Processor: The part of the Assembler 
that interprets the macro language. 

macro symbol table: A symbol table that 
contains macro symbols and definitions. 

macro variable: A variable whose value is 
controlled by macro directives. 

main code module: The code module that will 
be executed first when a program runs. 

main data module: A specific data module that 
the Linker places at the base of the global data 
area where its offset is known to the Assembler. , 

mixed-mode macro: A macro containing both 
positional and keyword parameters. 

mnemonic: A source text symbol that expresses 
an instruction or directive. 

model statement: In a macro body, a 
statement that the Macro Processor uses as a 
model to generate actual machine instruction or 
directive statements. 

module: A contiguous collection of code or 
data. 

module directive: A directive that defines a 
code or data module. 

nonterminal symbol: Part of a syntax diagram 
that stands for something to be written in the 
source text, such as expr for an expression. 

numeric constant: A number expressed directly 
in a source text 

object code: Machine-language code generated 
by the Assembler. 

object file: A file containing specifications for 
data and code module contents, references to 
other code and data modules, and segmentation 
information. 

316 MPW 3.0 Assembler Reference 

operand field: The source text column that 
contains instruction operands and directive 
parameters. 

Operating System routine: A Macintosh 
library routine that performs a task such as 
accessing a disk file or handling an error. 

operation: A directive or instruction in a source 
text. 

outer macro call: A macro call that is not inside 
a macro. 

paired brackets: A left bracket and a right 
bracket that the Assembler treats as enclosing an 
expression. 

paired parentheses: A left parenthesis and a 
right parenthesis that the Assembler treats as 
enclosing an expression. 

paired single quotation marks: The first and 
last single quotation marks in a quoted string. 

parameter: A piece of data in the operand field 
of a directive, macro prototype, or macro call 
statement. 

parameter list: A sequence of parameters, 
separated by commas, in a macro prototype or 
macro call. 

Pascal string: A string assembled into a form 
compatible with the Pascal programming 
language; it begins with a length byte and has a 
maximimum length of 255 characters. 

pass: One processing cycle of the Assembler. 

PC-relative: Located relative to the current 
value of the program counter. 

positional macro: A macro whose parameters 
are identified by their position in its parameter 
list. 



positional parameter: A macro parameter 
identified by its position in the parameter list. 

postfix notation: A way of representing object 
code in an incomplete form, used by the 
Assembler on its first pass. 

predefined SET variable: A SEf variable whose 
value is set by the Macro Processor. 

prototype: In a macro definition, the statement 
that establishes the name and parameter format 
of the macro. 

qualified: Said of an identifier that is written 
with a qualifier. 

qualifier: An identifier appended to another 
identifier (usually with a period between), which 
modifies its meaning. 

quoted string: A string enclosed in single 
quotation marks (' ). 

register list: A source text list of 
microprocessor registers, used as an operand of 
move-multiple instructions. 

relative ASOI ordering: The algorithm by 
which the Macro Processor compares strings. 

relocatable: Of an expression, having a value 
that cannot be determined during assembly. 

scope: The area of source text in which a piece 
of code or data can be referenced. 

scratch file: An area of RAM or disk memory 
used for temporary storage. 

second-level call: The first inner macro call in a 
macro call chain. 

segment: A collection of modules that is loaded 
together from disk into RA~ during program 
execution. 

SET variable: A macro variable whose value is 
assigned by a SETA or SETC directive. 

source: In instruction syntax, an address from 
which the instruction takes data. 

source text: Program text written by a 
programmer. 

statement: A line of source text, including 
machine instruction statements and directive 
statements. 

string: A sequence of one or more characters. 

string constant: A string written explicitly in 
source tex~ enclosed in single quotation marks. 

sublist: A collection of macro call parameters 
that the Macro Processor treats as a unit. 

subscript: A numeric expression whose value is 
the index of an element in a sublist or array. 

symool: A lexical component of source text 
processed by the Assembler. 

symbolic parameter: A variable that acquires a 
value during macro expansion. 

symbol table: A list of source text symbols and 
their values maintained by the Assembler. 

table: An ordered list of code or data objects 
that the Assembler creates in memory during 
assembly. 

template: A source text structure that describes 
a collection of data without allocating memory 
for it. 

terminal symbol: Part of a syntax diagram that 
must be written in the source text exactly as it 
appears in the diagram. 

token: A character or group of characters that 
the Assembler interprets as a single syntactic 
entity. 

Glossary 317 



tool: A program that runs in the MPW Shell 
environment. 

Toolbox routine: A Macintosh library 
routine that performs a task such as creating a 
menu or manipulating a window. 

trailer: In a macro definition, the ENDM or 
MEND directive. 

trap dispatcher: A routine in RAM that handles 
unimplemented instructions, among other tasks. 

unequal: Of strings, able to be distinguished. 

unimplemented: Of an instruction, one that is 
not part of the standard MC68xxx instruction 
set. 

variable definition directive: A directive that 
creates a macro variable. 

WHILE ... ENDWHILE construct: Source text 
enclosed by a WHILE directive followed by an 
ENDWHILE directive. 

318 MPW 3.0 Assembler Reference 



Index 

Cast of Characters 
& (ampersand) 124, 129, 144 

(asterisk) 24, 26, 121, 166 
@ (at sign) 17, 130, 213 

(backquote) 130 
\ (backslash) 23,24, 149 
{ ) (braces) xxi, 149 
[ l (brackets) xx~ 128, 149 

(colon) 107, 149 
(comma) 149 
(compliment) 29, 149 

I (division symbol) 29, 148 
$ (dollar sign) 26, 213 

(ellipses) xxii 
(equal sign symbol) 148, 175 

> (greater than symbol) 149, 175, 176 
~ (greater than or equal to symbol) 29, 149, 175, 176 
>= (greater than or equal to symbol) 29, 149, 175, 176 

(left bracket) 149 
< Gess than symbol) 175, 176 
~ Oess than or equal to symbol) 176 
<= Gess than or equal to symbol) 29, 149, 175, 176 
•• Gogical and) 29 

(minus sign) 29, 148 
II (modulus division) 29, 148 

(multiplication) 29 
, (NOD 29, 149 
<> (not equal symbol) 29, 149, 175 
':I:- (not equal symbol) 29, 149, 175 
# (number sign) 231 
() (parentheses) 29, 128 
% (percent sign) 26, 263 

(period) 149, 213 
(period-asterisk) 121 

+ (plus sign) 148 
(quotation mark) 26 
(right brace) 149 
(right bracket) 149 
(semicolon) 121 

« (shift left symbol) 149 
» (shift right symbol) 149 

(single quotation mark) 128 
I (slash) 29, 148 

(underscore) 25, 213 

A 

&ABS: return absolute value 146 
absolute expressions 31 
accessing variable substrings 158 
address 

formats 192 
optimizations 192 
registers 44 

address syntax 35-56 
ambiguities 41-43 
forward-reference 43 
MC68030 instructions 49 
MC68851 instructions 53 
MC68881 instructions 52-53 
MC68882 instructions 52-53 
modes 37-41 
optimizations 41 
registers 44-45 
special address formats 46-48 

literals 55-56 
MC68xxx instructions 46 
MC68020 instructions 47-48 
MC68030 processor 49-51 
MC68851 53-54 
MC68881 and MC68882 instructions 52-53 

-addrsize option 255 
AERROR directive 182 
anonymous module 65 
ANOP directive 182 
application global area 13 
application parameter area 13 
As-is string 28 
Assembler command syntax 23&-259 
assemblers, comparison of 211-218 

addressing 217 
communicating between modules 215 
defining modules 215 
expressions, writing of 215 
identifiers, writing of 213 
location-counter reference 216 
macros, writing of 217 
module definition 215 
number, writing of 214 
strings, writing of 214 

319 



assembly files 7 
assembly listing format 207-209 
assembly options 93-100 

BLANKS: control blanks in operand field 99-100 
BRANCH and FORWARD: resolve forward branches 
96-97 

CASE: treatment of lowercase letters 98-99 
MACHINE: specify target machine 93 
MC 6 8 8 51: coprocessor instructions 95 
MC 6 8 8 81 and MC 6 8 8 8 2: coprocessor instructions 
94-95 

OPT: specify level of optimization 97-98 
STRING: specify format 9~96 

@ labels 17, 130, 213 
aware and nonaware tests 231-232 

B 
backquote character(') 117, 130 
backslash character (\) 149 
binary numbers 26 
BLANKS directive 99 
-blks.i1.e option 255 
Boolean control expressions 17~ 176 

comparing two integers 175 
comparing two strings 175 
comparing integers and strings 176 

braces ({ }) :xxi, 149 
brackets CTD xxi, 128, 149 
BRANCH directive 96 
built-in functions 141-142 

c 
CASE directive 98 
C calling conventions 277-278 

function results 278 
parameters 278 
register conventions 278 

<[heck] option 256 
&CHR: convert integer to character 159 
code and data module definitions, 62-fJ7 

CODE and DATA, switch between 67 
END: end the assembly 67 
FUNC and ENDFUNC, define function code 

module 63 
MAIN and ENDMAIN: define main program 

code module 63 
PROC and ENDPROC: define procedure code 

module 62-fJ3 
RECORD and ENDR: define a data module 
64-65,7~ 

CODE directive 67 

320 MPW 3.0 Assembler Reference 

CODEREFS directive 88 
coding conventions 11-34 

definitions, scope of 1~18 
expressions 28 

absolute 31 
evaluation of 30 
relocatable 30 

imported and exported objects 17 
machine instruction syntax 19-24 

label field 20 
operand field 23 
operation field 21 

segmentation 18-19 
source text structure 13 
symbols 25 

identifiers 25 
numeric constants 26 
strings 27 

command syntax 253-259 
COMMENT directive 93 
comments 24, 93 
companion operators 29, 175 
&CONCAT: concatenate strings 16o 
concatenating symbolic parameters 124 
conditional-assembly directives 

ACTR: limit looping 180-181 
AERROR: error generation 182 
ANOP: Assembler NOP 182 
Boolean control expressions 17~176 
CYCLE and LEAVE directives 180 
EXITMandMEXIT:exitmacro 181 
GOTO and IF ... : branching 176-177 
IF, ELSE IF, ELSE, and END IF: conditional 
assembly 178-179 

WHILE and ENDWHILE: looping 179 
WRITE and WRITELN: write to output 181-182 

condition· codes 229-233 
coprocessor instructions 94-95 
c string 28 
CYCLE directive 180 

D 

data definition directives 59, 72-75 
DC and DCB: place contents in code or data 73 
D S: define storage area 75 
data module definitions 64--67 

DATA directive 67 
DATAREFS directive 88 
DC directive 73 
DCB directive 73 
DECREMENT parameter 65 



&DEFAULT: return string value or default 160 
-d[efine] option 256 
definitions of code and data modules 62---08 

scope of 15-16 
&DELSYMTBL: delete symool table 157 
directives 57-112 

ALIGN 100 
BLANKS 99 
BRANCH 96 
CASE 98 
CODE 67 
CODEREFS 88 
COMMENT 93 
DATA 67 
DATAREFS 88 
DC 73 
DCB 73 
DS 75 
DUMP 105 
EJECT 111 
END 67 
ENDFUNC 63 
ENDMAIN 63 
ENDPROC 62 
ENDR 64 
ENDWITH 82 
ENTRY 85 
EQU 68 
ERRLOG lo6 
EXPORT 85 
FORWARD 96 
FREG 70 
FUNC 63 
IMPORT 87 
INCLUDE 104 
LOAD 105 
MACHINE 93 
MAIN 63 
MC68851 95 
MC68881 94-95 
OPT 97 
OPWORD 71 
ORG 102 
P/'.GESIZE 107 
PRINT 108 
PROC 62 
RECORD 64 
REG 70 
SET 68 
SPACE 111 

E 

STRING 95 
TITLE 108 
WITH 82 

ellipses xxii 
END directive 67 
ENDFUNC directive 63 
ENDMAIN directive 73 
ENDPROC directive 62 
ENDR directive 64 
ENTRY directive 85 
ENDWITH directive 82 
EQU directive 68 
equates 40, 68, 105 
-e[rrlog] option 257 
&EVAL: evaluate contents of string 147 
exclusive OK 29 
EXPORT directive 85 
expressions 28-33 

F 

absolute 32 
evaluation of 3~31 
relocatable 33 

fields xx, 19-24, 76 
files, assembly-language 7 

search rules 104 
file control directives 103-107 

DUMP and LOAD: write and read symbol table 105 
ERRLOG: specify errorlog 106-107 
INCLUDE: take source text from another 104 
search rules 104 

&FINDSYM: find symbol in table 156 
flow-control macros 310 
-font option 110, 257 
formats 61-72 
FORWARD directive 96 
FREG directive 70 
FUNC directive 63 
FUNCTION macro 293, 311 
functions 

&ABS 146 
&CHR 159 
&CONCAT 160 
&DEFAULT 160 
&DELSYMTBL 157 
&ENTERSYM 155 
&EVAL 147 
&FINDSYM 156 

INDEX 321 



G 

&GETENV 160 
&INTTOSTR 160 
&ISINT 147 
&I2S 160 
&LC 161 
&LEN 147 
&LEX 148 
&LIST 150 
&LOWCASE 161 
&MAX 151 
&MIN 151 
&NBR 151 
&NEWSYMTBL 154 
&ORD 152 
&POS 152 
&SCANEQ 153 
&SCANNE 153 
&SETTING 161 
&STRTOINT 154 
&S2I 154 
&SUBSTR 162 
&TRIM 163 
&UC 164 
&UPCASE 164 
symbol table functions 154-157 

GBLA directive 143-145 
GBLC directive 143-145 
general assembly 196-200 
generic instruction 18S-188 
& GET ENV: return MPW Shell variable value 160 
global symbol table 6 
GOTO directive 178, 183 
GOTO statement 176 

H 

-h option 257 

I 

identifiers 25 
imported, exported objects 17 
INCREMENT parameter 65 
instruction sets 233-251 

condition codes 229 
instruction evaluation 225 
instruction operands 214 
instruction set listings 233 
listing conventions 22S-229 

322 MPW 3.0 Assembler Reference 

Cptype 228 
flag.s 228 
equivalent 229 
group 228 
operands 226-227 
opcode 226-227 
range 229 

& !NTTOSTR: COP.Vert integer to string 160 
-i option 257 
& IS INT: test string for integer content 147 
& I 2 s: convert integerto string 160 

J 
jump table 13 

K 

keyword macros 135-137 

L 

label field 20 
& LC: convert string to lowercase 161 
LCLA directive 143-145 
LCLC directive 143-145 
LEA VE directive 180 
&LEN: measure string length 147 
& LEX: parse string lexically 148 
libraries, Macintosh 9 
linker and scope controls 6o, 84-93 

CODEREFS andDATAREFS: control name 
linking 88 

EXPORT and ENTRY: expand scope of entry 
points 85-87 

SEG: specify current code segment 92 
Lisa Workshop 211 
&LIST: divide string into list 150 
listing controls 107-111 

EJECT: start new page listing 111 
PAGESIZE: specify listing page size 107-108 
PRINT: control listing information 108-111 
SPACE: insert blank line 111 
TITLE: specify title line 108 

lkerals 55, 113, 196 
local symbol table 6 
location-counter controls 100-102 

ALIGN: align location counter 100 
ORG: set location counter 102-103 

logical operators 29 
-1 ootion 255, 257 
-lo option 258 
&LOWCASE: convert string to lowercase 161 



MACHINE directive 93 
machine instruction syntax 19 

comments 24 
label field 20 
operand field 23-24 
operation field 21 

Macintosh character set 219 
macros 115-182 

body 120 
calling 125-134 
call labels 127 
comments 121-122 
conditional-assembly directives 173-182 

Boolean control expressions 175-176 
MACRO, ENDEM, and MEND delimit 119 
prototype statement 119 
symbolic parameters 123 

controls, scope of 118 
defining 118-125 

MACRO and ENDM delimit 119 
prototype statement 119 

expansion 117 
keyword 

calling 136-137 
defining 135 

mixed-mode 138 
nesting macros 133-135 
object assembler 261-269 
operand sublists 131-133 
operand syntax 128-131 
symbol table 6 

See also structured assembly 
main code module 15 
main data module 66 
MAIN parameter 66 
&MAX: find maximum integer in list 151 
MC68000 5 
MC68010 5 
MC68020 5, 47-49 
MC68030 5, 49 
MC68851 5, 53 
MC68881 5, 52-53 
MC 6 8 8 81 directive 94-95 
Mc68882 5, 52-53 
MC68851 directive 95 
&MIN: find minimum integer in list 151 
mnemonics 21, 223 
model statement 120 
MOLS 47, 192 
MOLU 192 

N 

&NBR: count sublist elements 151 
nesting macros 133-135 
notation conventions xviii 

braces and brackets xxi 
Courier typeface xviii 
delimiter symbols xx 
ellipses xxii 
fields xx 
italic xix 
underlining xxii 

numeric constants 26-27 

0 
object files 13 
object-oriented programming 

EndObjectWith 266 
EndMethod 267 
FuncMethOf macro 267 
IMPL keyword 265 
IMPL macro 265 
Inheritedmacro 268 
Ini tObjects macro 263 
MethCall macro 268 
MoveSelf macro 269 
NewObject macro 269 
ObjectDef macro 263 
Objectinf macro 265 
ObjectWithmacro 266 
ProcMethOf macro 267 

-o option 258 
opcode 226 
operand field 23 
operation field 21-23 
o PT directive 97 
optimiz.ation of instructions 22-23 
options 255-259 

-addrsb.e option 208-209, 255 
-blksb.e option 255 
<[heck] option 256 
-d{efine] option 256 
-e[errlog] option 257 
~font option 110, 209, 257 
-h option 257 
-i option 257 
-1 option 255, 257 
-lo option 258 
-o option 7, 258 
-p option 7, 258 
-pagesize option 258 

INDEX 323 



-print 114, 258 
-s option 259 
-sym off 259 
-sym[on][full] 259 
-t option 259 
-w option 259 
-wb option 259 

option directives 
BLANKS: control blanks in operand field 99-100 
BRANCH, FORWARD: resolve forward branches 
96-97 

CASE: treatment of lowercase letters 98-99 
MACHINE: specify target machine 93 
MC 6 8 8 51: coprocessor instructions 95-96 
MC 6 8 8 81, MC 6 8 8 8 2: coprocessor instructions 
94-95 

ORG directive 102 
& ORD: return integer value 152 

p 

PAGESIZE directive 107 
-pagesize option 258 
Pascal calling conventions 273-276 

function results 275-276 
parameters 273-274 

real-type 274 
structure-type 275 

register conventions 277 
PASCAL string 28 
&POS: find substring 152 
-p option 255 
print directive parameters 109 
-print option 258 
PROC directive 62-63 
PROCEDURE macro 293, 311 
programming for Macintosh 8-9 
program structure macros 281, 292-294, 311 

R 

RECORD directive 76 
REG directive 70 
relocatable expressions 31-33 

s 
scope of definitions 15-18 
SEG directive 92 
segmentation of code 18 
SET directive 68 
SET variables 141-143 
& SETTING: return directive setting 161 

324 MPW 3.0 Assembler Reference 

&SCANEQ: scan string 153 
&SCANNE: scan string 153 
s option 259 
source text structure 14 
SPACE directive 111 
special address formats 192-195 

bit field instructions 193 
CAS, CAS 2: comparing and swapping 193 
DIVs, DIVU: signed, unsigned division 193 
FMOVE with packed BCD data 194 
FMOVEM with explicit register lists 194 
FSINCOS: simultaneous sine and cosine 194 
FTee, FTPee: floating-point trap on condition 
194 

literals 195 
for MC6800 192 
for MC8020 192-193 
for MC68881 and MC68882 194-195 
for MC68851 195 
p ACK, UNPK: pack and unpack 193 
Tee, TPee: trap on condition 193 
TDIVS, TDIVU: truncated signed, unsigned 

division 193 
status codes 7 
STRING directive 95 
strings 27-28, 152-155, 157-159 
& s TRO I NT: convert string to integer 154 
structured assembly macros 279-311 

expressions 281-282 
flow-control macros 283-292 

Cycle statement 291 
For statemenr 288 
GoTo statement 292 
If statement 283 
Leave statement 290 
Repeat statement 287 
Switch statement 285 
While statemenr 287 

program structure macros 292-305 
code generation 294 
local variable declaration 298 
procedures and functions 295, 298-3o6 

syntax 309-312 
expressions 309 
flow-control macros 310 
program structure macros 311 
usage, considerations for 306-308 

&SUBSTR: return substring 162 
symbol definitions 

EQU and SET: name constants and registers 68 
OPWORD: name machine instruction 71-72 
REG and FREG: name register list 70 

symbols 25 



-sym off option 259 
-sym [on] [off] option 259 
syntax diagrams 189-204 

assembly-language addresses 191 
addressing modes 191 
literals 195 
macro 200 
SET variable 202 

syntax rules: see coding conventions 
& SYSDATE: current date 170 
&SYSFLAGS: values set by &FINDSYM 171 
&SYSGLOBAL: symbol table IDs 171 
& SYS INDEX: macro call index 168 
&SYSLIST: macro operand list 169 
&SYSLOCAL: symbol table IDs 171 
&SYSLST: macro call index 168 
&SYSMOD: current module identifier 170 
& SYSNDX: macro call index 168 
& SYSSEG: current segment identifier 170 
& SYS TIME: current time 170 
&SYSTOKEN: values set by &LEX 171 
&SYSTOKSTR: values set by &LEX 171 
& SYSVALUE: values set by &FINDSYM 171 

T 
template definitions 76-92 

linker, scope controls 60 
RECORD and ENDR: define a template 76-80 
WITH and ENDWITH: supply record name 
qualification 82-84 

TI TLE directive 108 
-t option 259 

u 
underlining xxii 

v 
variables 139-172 

Assembler system variables 16~172 
SET variables 141-144 
& SYSDATE: current date 170 
& SYS FLAGS: value set by &FINDSYM 171 
& SYSGLOBAL: symbol table IDs 171 
&SYSINDEX: macro call index 168 
&SYSLIST:macrooperandlist 169 
&SYSLOCAL: symbol table IDs 171 
& SYSLST: macro operand list 169 
& SY SMOD: current module identifier 164 
& SYSNDX: macro call index 168 
& SYSSEG: current segment identifier 170 

&SYSTIME: current time 170 
&SYSTOKEN: value set by &LEX 171 
&SYSTOKSTR: value set by &LEX 171 
& SYSVALUE: value set by &FINDSYM 171 

w 
-wb option 259 
WITH directive 82 
While statement 287 
-w option 259 

x 
XOR operator 29 

INDEX 325 



TIIE APPLE PUBLISHING SYSTEM 

This Apple® manual was written, 
edited, and composed on a 
desktop publishing system using 
Apple® Macintosh® computers and 
Microsoft® Word software. Proof and 
final pages were created on the Apple 
l.aserWriter® llNTx printer. 
POSTSCRIPT®, the LaserWriter® page
description language was developed 
by Adobe Systems Incorporated. The 
illustrations were created using 
Adobe Illustrator. Some syntax 
diagrams were prepared using 
MathType. 

The illustration on the cover was 
generated using Adobe Illustrator 88 
on a Macintosh® II computer. Some 
of the images were scanned using an 
Apple® Scanner and then 
manipulated in Image Studio. Initial 
proofing was done using a QMS color 
printer. Color separations were done 
using Adobe separator and output to 
a Llnotronic 300 at standard 
resolution. 

Text type is Apple's corporate fonl, a 
condensed version of Garamond. 
Bullets are ITC Zapf Dingbats. Some 
elemen!S, such as programs listings, 
are set in Apple Courier, a fixed
width fon!. 




